
Technical Report

Department of Computer Science
and Engineering

University of Minnesota
4-192 EECS Building
200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 97-067

Design Issues in Mobile Agent
Programming Systems

by: Neeran Karnik and Anand
Tripathi

Design Issues in
Mobile Agent Programming Systerns*

Neeran M. Karnik Anand R. Tripathi
Department of Computer Science, University of Minnesota

Minneapolis, MN 55455, USA

December 15, 1997

Abstract

Vve describe the mobile agent paradigm which is becoming increasingly popular for network-centric
programming, and compare it with earlier paradigms for distributed computing from which it has evolved.
The design of mobile agent systems requires the resolution of several system-level issues, such as the
provision of code mobility, portability and scalability on wide-area heterogeneous networks, and a host of
security-related problems that go hand-in-hand with mobile code. Agent programming requires suitable
languages and programming models that can support code mobility, and runtime systems that provide
some fundamental primitives for the creation, migration and management of agents. We discuss these
requirements and then d<>$Cribe six mobile agent systems which illustrate different approaches taken by
designers to address the problems.

1 Introduction
Interest in network-centric programming and applications has surged in recent months due to the exponential
growth of the Internet user-base and the widespread popularity of the Worldwide Web. In response to this,
new techniques, languages, and paradigms have evolved which make such applications possible. Perhaps
the most promising among the new paradigms is the use of mobile agents. This paper discusses the mobile
agents paradigm, its requirements (in terms of language-level features and system-level support) and the
problems it introduces in enforcing security. We d.escribe several currently-available mobile agent systems
and examine the support they provide for agent programming.

Mobile A gents: In a broad sense, an agent is any program that acts on behalf of a (human) user. A
mobile agent then is a program which represents a user in a computer network, and is capable of migrat­
ing autonomously from node to node, to perform some computation on behalf of the user. Its tasks are
determined by the agent application, and can range from online shopping to real-time device control to
distributed scientific computation. Applications can inject mobile agents into a network, allowing them to
roam the network either on a predetermined path, or one that the agents themselves determine based on
dynamically gathered information. Having accomplished their goals, the agents may return to their "home
site" in order to report their results to the user.

Background: Traditionally, distributed applications have relied on the client- server paradigm in which
client and server processes communicate either through message-passing or remote procedure calls (RPC).
The RPC model is usually synchronous, i.e., the cli<mt suspends itself after sending a request to the server,
waiting for the results of the call. An alternative architecture called Remote Evaluation (REV) was proposed
by Stamos and Gifford[20] in 1990. In REV, the client, instead of invoking a remote procedure, sends its

*Email: karnik ltripathi@cs.umn.edu

1

paranictcrs (data) procedure (ctxlc)

Client Server Client Scl'ver

rcsulls (data) r0ssults (darn)

Remote Procedure Call (RPC) Remote Evaluation (REV)
- - - - - ~ - '- -

Mobile Agent

Server-I
prograrn

Scrver-2

program (code data)
program

Client Server-3

Figure 1: Interaction paradigms

own procedure code to a server, and requests the server to execute it and return the results. Earlier systems
like R2D2[22] and Ohorus[l] introduced the concept of active messages that could migrate from node to
node, carrying with them program code to be executed at these nodes. A more generic concept is a mobile
object, which encapsulates data along with the set of operations on that data, and which can be transported
from one network node to another. An early example of a system that provided object mobility within a
homogeneous local area network was Emerald[l4].

The mobile agent paradigm has evolved from these antecedents. Figure 1 illustrates how it differs from
RPO and REV. In RPO, data is transmitted between the client and server in both directions. In REV,
executable code is sent from the client to the server, and data is returned. In contrast, a mobile agent is
a program which is sent by a client to a server and executes remotely. Unlike a procedure call, it does not
have to return to the sender with its results. It could migrate to other servers, transmit information back to
its origin , or migrate back to the client if appropriate. It thus has more autonomy than a simple procedure
call.

Advantages and Disadvantages: Several advantages of the mobile agent paradigm, in comparison with
RPO and message-passing, have been identified by Harrison et al.[11]. First, by moving processing functions
close to where the information is stored, it reduces communication between the client and the server. This
is because a typical RPO-based application usual1y requires several remote calls to accomplish a task, each
of which involves network communication. With mobile agents, we only need to send the agent once (with
its init ial parameters) across to the remote server. It can then interact with the server locally without using
the network, and after completing its task, migrate back with the results to its home site. For example,
instead of a simple keyword-based web search, we can send an a.gent to perform a more intelligent searching
and filtering task, customized for the user. Another potential application is in monitoring for events or
conditions, such as whether a particular stock's price has fa1len below a threshold. Instead of periodically
downloading stock quote data, we can send an agent to the quotes service. The agent can monitor the stock
price locally, without incurring network usage, and inform the user when the event occurs.

Secondly, the mobile agent paradigm increases the degree of asynchrony between the client and the server
- a client may become inactive for an arbitrary interval after initiating an agent-based computation. While
its agents execute on various servers, the client need not remain connected to t he network. This feature

2

is especially useful for mobile comput0rs which are often switched off to save 011 power consumption and
network connection charges. As pointed out in (11], another advantage of agents is in real-time control
applications. If the application uses RPCs to control a device, it may be difficult (if not impossible) to
guarantee that it will meet the real-time deadlines associated with the device. This is because in general,
network communication delays are not accurately predictable. Instead, the applicat ion can send an agent to
the device and control the device locally, resulting in better predictability. In a similar vein, agents can be
used to set up a communication path between application-level objects, which provides a guaranteed level
of performance. The agents can monitor factors such as CPU load, network latency and bandv-ridth, and
negotiate the desired quality of service.

Mobile agents also introduce a higher level of abstraction which can help the programmer to better
structure a network-based application. Instead of creating systems of stationary objects that communicate
using RPC, we can program agents as active application components that traverse the network performing
computations relevant to their current location. For many applications, this is a more natural programming
style. For example, agents are an intuit,ive mechanism for low-level network maintenance, testing and fault
diagnosis. They can be used for installing and upgrading software on remote machines, and for extending
the capabilities of existing services by dynamically adding to their functionality. At the same time, the use of
mobile agents does not preclude the traditional client -server style of interaction, since mobility is optional.
Agents can always be programmed to interact using messages or RPC if an application is inherently better
served by those paradigms at certain stages of its computation. For example, an agent may periodically send
a small amount of status information to its home site using messages.

The mobile agent paradigm, however, also adds sig11ificant problems, primarily in the area of security. To
enable agent-based programming, each cooperating host in the distributed system must provide a facility for
executing agents. These hosts are exposed to the risk of system penetration by malicious agents, analogous
to viruses and Trojan horses. Unless some countermeasures are taken, such agents can potentially leak or
destroy sensitive data and disrupt the normal functioning of the host. Malicious (or just buggy) agents can
cause inordinate consumption of a host's resources, thereby denying their use to other agents and legitimate
users of the host. Security mechanisms are thus necessary to safeguard hosts' resources. Similarly, agents
themselves may need to be protected from the hosts they visit. An agent is likely to carry, as part of its
state, sensitive information about the user it represents - e.g. personal preferences to customize an intelli­
gent search, credit card numbers or electronic cash to pay for online purchases, etc. Such data must not be
revealed to unauthorized hosts or agents, nor must they be allowed to modify it arbitrarily. Thus, security
is usually a major concern in the design of mobile agent systems.

In this paper, we discuss the mobile agent paradigm in the context of its use in network-centric appli­
cations. The next section considers the system-level issues encountered in designing mobile agent systems,
including object mobility, naming, and security. Section 3 discusses programming languages, models and
primitives needed for agent-based computing. In section 4, we examine six currently available systems,
which represent different points in the design space for mobile agent systems. Two of them (Aglets(15] and
Voyager[l8]) use Java for coding agents, but with very different programming models. Two others (Agent
Tcl[lO] and Tacoma[13]) use the Tel language, but differ significantly in their mobility mechanisms. One
system (Knowbots[12]) uses the Python language which combines script-based and object-oriented features.
Finally, Telescript(23] illust rates the approach of designing a language expressly for agent-based computing.
We present our conclusions in section 5.

2 System-level Issues
A mobile agent system is an infrastructure that implements the agent paradigm. Each machine which
intends to play host to mobile agents must provide a protected agent execution environment - an agent
server. The agent server is responsible for executing agent code and providing primitive operations to
agent programmers, such as those which allow agents to migrate, communicate with each other, access host
resources securely, query their environment, etc. In effect, a logical network of agent servers implements the

3

mobile agent system. The interaction between these servers must take place via a well-defined and secure
protocol which protects the privacy of agents as they traverse the potentially insecure network. The main
challenges in designing this infrastruct,1irc are discussed in this section. Many useful agent applications will
require Internet-wide access to resources, such as Web search engines, database servers, etc. Users will need
to dispatch agents from their laptops, irrespective of their physical location. Hence the mechanisms used in
the agent infrastructure must scale up to wide-area networks.

2.1 Agent Mobility

The primary identifying characteristic of mobile agents is their ability to autonomously migrate from host to
host. Thus, support for agent mobility is a fundamental requirement of the agent infrastructure. An agent
requests its host server to transport it to some remote destination. The agent server must then deactivate
the agent, capture its state, and transmit it to the server at the remote host. The destination server must
restore the agent state and reactivate it at the remote host, thus completing the migration request.

The state of an agent includes all its data, as well as the execution sta.te of its thread. At the lowest level,
this is represented by its execution context and thread stack. If this can be captured and transmitted along
with the code, the destination server can reactivate the thread at precisely the point where it requested the
migration. This is sometimes referred to as transparent process migration[7], because the point of migration
is not under the programmer's control, and thus the migration is transparent to the programmer. It can be
useful for implementing load-balancing schemes in distributed systems, as well as fault-tolerant applications
which may be checkpointed and restarted at arbitrary points during their execution. However, transparent
migration introduces portability problems because the runtime system must typically be modified to support
thread-level mobility, which renders it incompatible with unmodified installations of the same system. Also,
mobile agent migration only occurs under explicit programmer control, and thus agent state can be captured
at a higher level. Most mobile agent systems therefore rely on programmers to encode their agents' execution
state using agent data, and perform the appropriate flow control when the state is restored at the destination.

Agents can execute on many different hosts during their lifetimes. In general, we ca.nnot assume that
these hosts have identical architectures or even that they run the same operating system. Thus, agents
must be programmed in a language that is machine-independent and widely available. Since the underlying
support system must also be made available on these heterogeneous hosts, the agent system itself also must
be easy to port.

2.2 Naming and Name Resolution

Various entities in the system, such as agents, agent servers, hosts, users etc. need to be assigned names ,
which can uniquely identify them throughout the distributed system. Some namespaces may be common to
multiple types of entities - e.g., agents and agent servers may share a namespace. This allows agents to use
a uniform migration primitive to request either migration to a particular server (which may have advertised
some service of interest to it) or co-location with another agent with which it needs to communicate.

Next, the system must provide a mechanism to find the current location of an entity, given its name. This
process is called name resolution. The names assigned to entities may be location-dependent, which allows
easier implementation of name resolution. However, it is usually desirable for the system to provide location
transparency at the language level. For example, an agent's owner should not have to know its current
location in order to issue commands to it, or communicate with it. This can be achieved by providing name
servers, which map human-readable location-transparent names to the corresponding location-dependent
ones. Hierarchically organized namespaces arc usually preferred to flat global spaces. Although flat spaces
are easier to implement, they usually require server replication, thus introducing consistency and scalability
problems.

4

2.3 Security Issues

The introduction of mobile code in a network raises several security issues. In a completely closed local area
network - contained entirely within one organization it is possible to trust all machines and the softwar e
installed on them. Users may be willing to allow arbitrary agent programs to execute on their machines,
and their agents to execute on arbitrary machines. However in an open network such as a LAN connected
to the Internet, it is entirely possible that the agent and server originate in different administrative domains.
In such cases, they will have much lower levels of mutual trust, thus making security mechanisms necessary.
The security-related requirements encountered in mobile agent systems can be categorized as follows:

• Privacy and integrity of the agent

• Mutual authentication of the agent and server

• Authorization and access control mechanisms

• Metering/charging/payment mechanisms

2.3.1 Privacy and Integrity

Agents carry their own code and data along with them as they t raverse the network. Parts of their state
may be sensitive, and may need to be kept secret when the agent travels on an untrusted network. Thus the
agent transport protocol needs to provide privacy, to prevent network sniffers from acquiring the sensitive
information. Also, an agent may not trust all servers equally. We need a mechanism to selectively reveal
different portions of the agent state to different servers.

A security breach could result in the modification· of the agent's code as it traverses the network. As
Farmer et al. argue[8], it is generally considered impossible to prevent such modification (especially by hostile
servers), but it should be possible to detect it. Thus we need some means of verifying that an agent's code
is unaltered. during transit across an untrusted network or after visiting an untrusted server. On the other
hand, an agent's state typically needs to be updated during its journey so that it can collate its results,
for example. We cannot assume that all servers viisited are benign, and thus we cannot guarantee that the
agent's state will not be maliciously modified.

Public-key cryptography[5] is perhaps the most promising technique to address these problems. By using
encryption, we can provide a secure communication facility which an agent can use to communicate with
its home site or servers can use to transport agents safely across untrusted networks. Selective revealing of
state can be accomplished by encrypting different parts of the state with different public keys belonging to
the servers allowed to access those parts of the state. Cryptographic mechanisms such as seals or message
digests can be used to detect any tampering of agent code.

2.3 .2 Authentication

vVhen an agent attempts to transport itself to a remote server, the server needs to ascertain the identity
of the agent's owner, in order to decide what rights and privileges the agent will be given in the server's
environment. Conversely, when an agent migrates to a server, it needs some assurance of the identity of the
server itself before it reveals any of its sensitive data to the server.

Cryptographic digital signat1Lre systems have been used to develop such mutual authentication schemes[6].
These need to be adapted to the mobile agent domain, and integrated into agent t ransport protocols. In
order to verify digital signatures, agents and servers need to reliably know the signing entity's public key.
This requires a public key certification infrastructure. In order to make various entities' public keys securely
available, they must be certified by trusted agencies. Such public key certificates can then be posted in online
directories which can be accessed by agents and servers. This public key infrastructure could be integrated
with the name resolution service, so that. name lookups can return a public key in addition to the object
location. In general, agents cannot use secret-key cryptosystems for authentication purposes. This would
require carrying their secret keys with them, ,vhich leaves them vulnerable to malicious hosts.

5

2.3 .3 Authorization and Access Control

Authorization is the granting of specific resource access rights to specific principals (such as owners of agents).
Some principals are more trusted than others, and thus their agents can be grantE!d less restrictive access
than the general populace. This involves specifying policies for controlling access to resources, based either
on identities of principals, their roles in an organization, or their security classification levels. Traditional
mechanisms like access control lists, capabilities, security labels, etc. must be adapted to implement access
control policies in agent systems. These mechanisms do not take into account, for example, the length of
time for which an entity may access a resource. This will be necessary in mobile agent systems so as to
prevent "denial of service" attacks by agents which acquire but never release resources, thus preventing other
agents from using them. Similarly, a malicious server could repeatedly retransmit an agent to another server,
thus tying up its resources. Such retransmissions must therefore be detected and foiled.

The agent server needs to protect its resources from unauthorized access by agents. Therefore, in addition
to authorization mechanisms, it is also necessary to provide some enforcement mechanism so that an access
control policy can be implemented. The authorization and enforcement mechanisms can operate at different
levels - e.g. at the level of individual objects ("the agent is granted read/write access to a particular file"), or
at a site-wide level ("the agent can create any network connections"), or something in between ("the agent
can use a maximum of 1MB of disk space, and create connections only to hosts in the foo . com domain") .
The infrastructure must provide convenient means of specifying such rules.

2.3.4 Metering and Charging Mechanisms

When agents travel on a network, they consume resources such as CPU time, disk space, etc. at different
servers. These servers may legitimately expect to be reimbursed monetarily for providing such resources.
Also, agents may access value added services, information products, etc. provided by other agents, which
could also expect payment in return. Thus, mechanisms are needed so that an agent can carry an electronic
equivalent of cash, and use it to pay for resources and services used by it. Further, a negotiation protocol
is necessary so that an agent knows beforehand what it can expect to pay when it migrates to a particular
server. Operating system level support may be needed for metering of resource usage, such as the CPU time
used by an agent or the amount of disk space it needed during its visit.

Some electronic payment mechanisms are already in existence[4]. These include digital currency as well
as secure payment using credit cards or debit cards. These protocols often assume the existence of underlying
cryptographic support. Sometimes, the payment protocol itself can require more resource consumption than
the money transfer it is implementing. Micropayment protocols (e.g.[17]) have been designed for just such
a situation. Alternatively, a server may implement more coarse-grained charging - e.g. a fixed charge could
be levied per visit by an agent. Subscription based services are also possible, wherein a server would allow
an incoming agent only if its owner had already paid a monthly fee.

3 Language-level Issues

3.1 Agent Programming Languages and Models

The implementation of a mobile agent system is greatly facilitated if agents are written in an interpretable
programming language, as against one that is usually pre-compiled into native code. This allows easier
portability and better control over security - interpreted code is easier to inspect for security violations than
compiled native code. While it does suffer a performance penalty due to run-time interpretation, this can
be alleviated by compiling programs into native code at run-time, using a "just-in-time" compiler. This ap­
proach is used by Perl, and some implementations of Java. An agent language must also provide a convenient
means for state capture, to enable agent migration. State capture is often easier to implement in interpreted
languages, because it does not necessitate modifications to the operating system, and thus is easier to port.

6

Existing agent systems therefore use a variety of interpreted languages for agent progTamming(21]. These
are either executed directly by interpreters, or "compiled" into machine-independent object code, which is
then executed using an abstract machine. Many mobile agent systems use scripting languages such as Tel,
Python, and Perl for coding agents. These languages are relatively simple and allow rapid prototyping for
moderately sized agent programs. They have mature interpreter environments which permit efficient, high­
level access to local resources and operating system facilities. However , script programs often suffer from
poor modularization, encapsulation, and performance. Some agent systems therefore use object-oriented
languages such as .Java, Telescript or Obliq. Agents are defined as first-class objects which encapsulate their
state as well as code, and the system provides support for object migration in the network. Such systems offer
the natural advantages of object-orientation in building agent-based applications. In comparison with script
languages, complex agent programs are easier to write and maintain using object-oriented languages. Some
systems have also used interpreted versions of traditional procedural languages like C, for agent programming.

Mobile agent systems differ significantly in the programming model used for coding agents. In some
cases, the agent program is merely a script, often with little or no Bow control. In others, such as Python,
the script language borrows features from object-oriented programming and provides extensive support for
procedural Bow control. Some systems model the agent-based application as a set of distributed interacting
objects, each having its own thread of control and thus able to migrate autonomously across the network.
Others use an event-based programming model in which the system signals certain events at different times
in the agent's life-cycle. The agent is then programmed as a set of event-handling procedures.

3.2 Programming Primitives

In this section, we identify the primitive language-level operations required by programmers implementing
agent-based applications, and briefly describe the system support needed to execute them. We categorize
agent programming primitives into:

• Basic agent management: creation, dispatching, cloning and migration of agents.

• Agent-to-agent and agent-to-server communication and synchronization.

• Agent monitoring and control: status queries, recall and termination of agents.

• Fault tolerance: checkpointing of agent state, propagation of exceptions, audit trails, etc.

• Security-related: encryption, signing, data sealing, key lookup, digital currency usa.ge, etc.

3.2.1 Basic Agent Management Primitives

Agent Creation and Dispatch: An agent creation primitive allows the programmer to create instances of
agents, thereby partitioning the application's task among its roving components. It involves the submission
of the entity to be treated as a mobile agent, to the system. This could be a single procedure to be evaluated
remotely (as in REV[20]), a script (as in Agent Tcl(IO)), or a language-level object (as in Telescript[23]).
In object-oriented languages, agent creation usually involves the instantiation of a class which provides the
agent abstraction. At creation time, the agent can be supplied with a customized itinerary of hosts to visit.
Before creating the agent, the system can inspect the submitted code for security purposes, to ensure that
it conforms to the relevant protocols and doesn't violate security policy. Based on the identity of the agent
creator, a set of cryptographic credentials for the agent may also be generated at this time. These must be
transmitted as part of the agent, to allow other entities to identify it unambiguously.

A newly created agent is just passive code, sinc-e it has not yet been assigned a thread of execution. For
activation, it must be dispatched to a specific agent server. The server authenticates the incoming agent
using its credentials and determines the privileges to be granted to it. It then assigns a thread to execute
the agent code. Agent Tel provides an agent_begin primitive for registering a new agent, and agent_submit
for dispatching a child agent to a server. In Tacoma[13], the agent source code is stored in a "briefcase",

7

which is then submitted to an agent server using the meet primit ive. In Messengers[2), the inject primitive
allows the programmer to submit a. program to a server for execution. In some systems, the agent creation
and dispatch operations are combined so that an agent starts executing immediately upon creation.

A variant of the create primitive allows an agent to create identical copies of itself, which can execute
in parallel with it, and potentially visit other hosts performing the same task as their creator. Knowbots
supports a primitive called clone which exhibits th.is behaviour. Similarly the clone operation on an Obliq[3]
object allows programmers to create passive copies of the object, which can then be dispatched to a. server
for activation.

Agent M igration: During the course of its execution, an agent program may determine that it needs to
visit another site on the network. To achieve this, it invokes a migration primitive. The agent server must
suspend the agent's execution, capture its state and transmit it to the requested destination. The server
at the destination can then receive the agent state and activate it after the appropriate security checks are
passed. The destination can be specified by t he agent in different ways:

• It may determine (using a "yellow pages" service) that a resource which it needs is available at a
particular agent server, and supply that server's name as the destination.

• If it needs to interact with another agent (such as a peer cooperating on some task), it can request the
system to co-locate it with the specified a.gent.

• It may specify an Internet host name, possibly including wildcards (say *. foo . com), so that it can
migrate to a trusted domain such as its O\vner's organization.

Migration is accomplished in Telescript and Sumatra[19] using the go primitive. Agent Tel uses the
agent_jump command and Knowbots(12] has a migrate primitive. All of these require the programmer to
supply a specific host name as the destination, and thus do not provide location-transparence. Telescript
also has a meet primitive which requests co-location with a named agent. In Messengers(2], the hop primitive
migrates an agent along an application-level logical network.

3 .2 .2 Agent Communication and Synchronization

In order to accomplish useful work, agents often need to communicate and/or synchronize with each other
- e.g. a child agent sends results back to its parent, or a set of peer agents exchange data for a distributed
computation, or a client agent requests information or services from a resource provider's agent. Suitable
inter-agent communication primitives must therefore be made available. Typically, systems provide RPC
(or remote method invocation in object-based systems), but other alternatives are also used. For example,
Aglets(15] can pass Message objects to each other. In Agent Tel, the primitives agent_send and agent_receive
are used for message-passing. In Tacoma, agents can exchange "briefcases" containing data, whereas in [16],
each agent server provides a tuple space which co-located agents can use for sharing data. Some systems
allow agents to set up direct connections for communication (e.g. the connect primitive in Telescript).

These communication mechanisms can be used by agents for implementing traditional synchronization
operations like critical sections, barriers and rendez-vous. They may also request the system to notify them
when certain events of interest occur - e.g. when a particular agent arrives at the same host, or when a
specific resource becomes available. The system can provide primitives for this purpose. Often these need
to be extended by the programmer to handle application-specific events.

Sometimes it is useful to aggregate agents into groups. This can enable primitives which deliver a single
message or synchronization operation to the entire group. For example, Voyager(l8] uses a hierarchical object
grouping mechanism to provide a multicast communication primitive. Most other systems however do not
support agent grouping.

8

3.2.3 Agent Monitoring and Control

An agent's parent application may need to monitor the agent's status while it executes on a remote host. If
exceptions or errors occur during the agent's execution, the application may need to terminate the agent or
recall it back to its home site. For example, if it encounters a set of inputs it is unable to process, it may
"hang" and waste resources. In such a situation, the application can request the system to terminate the
agent. This involves tracking the current location of the agent and requesting its host server to terminate it.
The Messengers system provides a kill primitive for this purpose. Most other agent systems do not support
such a primitive.

Similarly, the agent owner may simply recall its agent back to its home site and allow it to continue
executing there. This is equivalent to forcing the agent to execute a migrate call to its home site. The owner
can use an event mechanism to signal the agent, or raise an exception remotely. The agent 's event/exception
handler can respond by migrating home. e.g. Aglcts provides a retract operation using which a user can
recall his/her agents from their remote locations.

This capability of remotely terminating and recalling agents raises security issues - only an agent's owner
should have the authority to terminate it. Thus, some authentication functions need to be built into these
primitives, i.e. the system must ensure that the entity attempting to control the agent is indeed its owner,
or has been autholized by the owner to do So.

In order to determine whether it needs to recall/abort an agent, the owner must be able to query the
agent's status from time to time. Such queries will be answered by the agent's host server, which keeps
track of the status information (such as active/inactive status, error conditions and resource consumption)
for all agents executing on its site. If the owner needs to make a more application-specific query which can
only be answered by the agent, it simply communicates with the agent via the usual agent communication
primitives. If an agent grouping mechanism is available, an application can monitor a set of its agents for
faults , multicast signals or exceptions to them, recall all of them, etc.

3.2.4 P rimitives for Fault Tolerance

A checkpoint primitive creates a representation of the agent's state which can be stored in non-volatile mem­
ory. If an agent (or its host node/server) crashes, the owner can initiate a recovery process. It can determine
the agent's last known checkpoint, and request the server to restart the agent from that state. In addition
to the checkpoints themselves, agent servers can also maintain an audit trail so as to allow the owner to
trace the agent's progress along its itinerary, and potentially determine the cause of the crash. Current agent
systems do not have such functionality, although Tacoma does provide some support for fault-tolerance in
the form of rear-guard agents that can be used to track the agent.

If the agent programming language supports exceptions, the agent server can allow any exceptions en­
countered (but not handled) by the agent to be propagated either to the agent's owner, or to an exception
handler object designated by the owner. The handler can then take the appropriate actions, such as recalling
the agent or possibly restarting it with new parameters. For example, if an agent encounters an exception
because it has run out of digital currency to pay for continued use of the agent server, this cannot be handled
by the agent itself. It could be propagated back to the owner, who can then decide whether to supply the
agent with more cash or recall it back to its own base. Other types of exceptions, such as those caused by
violations of security protocols may need to be handled by the hosting agent server itself.

3.2.5 Security-related Primitives

Since agents may need to pass through untrusted hosts or networks, the agent programmer needs primitive
operations for protecting sensitive data. This includes primitives for encryption and decryption which pro­
tect the privacy of data, as well as message sealing or message digests using which any tampering of the

9

code or data can be detected. Digital signatures and signature verification primitives may also be needed
to establish authenticated communication channels. If public-key cryptography is used, the programmer
needs to haw a secure key-pair generat ion primitive, as well as a key certification infrastructure. Newly
generated public keys must be digitally signed by trusted authorities. Agents and servers should be able to
look up certified public keys, and use them for encryption or signature verification. Primitives related to the
encoding, allocation and disbursement of digital cash may also be required. An agent's identity, its certified
public key, digital cash allocation, constraints on its access rights, etc. can be encodr.d into its credentials
by its owner using suitable operations provided by the system. Most current agent systems do not provide
such security primitives.

When an agent returns to its home site, the parent application must have an unforgeable audit trail (a
travel log) available, which lists the set of hosts visited by that agent. This is necessary so that, based on
the trustworthiness of these hosts, the application can assign a degree of trust to the results delivered by the
agent. Similarly, intermediate servers visited by an agent may also need to look up its audited travel log.
They may impose different access controls based on which hosts the agent has passed through previously.

4 Examples of Mobile Agent Systems

Several academic and industrial research groups are currently investigating and building mobile agent sys­
tems. In this section, we give an overview of a representative subset of these.

4.1 Telescript and Odyssey

Telescript[23], developed by General Magic, was among the pioneering efforts in promoting the mobile agent
paradigm. It comprises a full-fledged object-oriented language designed specifically for network-centric com­
puting, along with a runtime environment which supports mobile agents. The Telescript language is type-safe
and provides interface and implementation inheritance. Several pre-defined base classes support the develop­
ment of agent-based applications. Telescript agents, which are objects derived from the base class Agent , can
travel between places, which are logical nodes on the network. Agents and places are executed by abstract
machines called engines. Engines interpret the machir1e-independent bytecode format to which Telescript
programs are compiled.

Agents use the go primitive to migrate to a specified place. The system captures program state at
the thread level, transfers it to the destination, and recreates the agent object there. The agent resumes
operation immediately after the go statement. A place offers services, usually by installing a stationary
agent of its own, to interact with visit ing agents. Communication between co-located agents is established
at the language-level using the meet primitive, after which the agent objects can invoke each other's methods.

Telescript has significant support for security and access control. Each agent and place has an associated
authority, which is the principal responsible for it. A place can use the name primitive to query a visiting
agent's authority, and potentially deny entry to the agent or restrict its access rights based on the authority.
The agent is issued a permit, which encodes its capabilities in terms of access rights for sensitive operations,
resource consumption quotas, etc. The system terminates agents that exceed their quotas, and raises excep­
tions when they attempt unauthorized operations.

Despite its extensive support for agent programming, Telescript was not commercially successful, pri­
marily because of the reluctance of programmers to learn a complete new language. General Magic has now
shelved the Telescript project and embarked on a similar, Java-based system called Odyssey[9]. Odyssey has
limited functionality in comparison with Telescript, but can be viewed as a derivative of the same design
framework. In common with most other Java-based systems, it lacks thread-level state capture. Thus the
application programmer is responsible for managing the thread migration explicitly.

4.2 Aglets Workbench

Like Odyssey, IBM's Aglets Workbench (AWB) is a Java-based system. Agents (which arc called aglets in
this system) are coded as Java objects, and can migrate between agent servers (called aglet contexts) located
on different network hosts. However, the AWB differs considf!rably in terms of the programming model used.
Aglets are programmed as a set of event-handlers. The system defines several standard events, and invokes
specific methods on the aglet object whenever those events occur. For example, whenever an aglet arrives
at a destination, its onArrival method is automatically invoked. The programmer implements an agent
class by inheriting default implementations of these event-handlers from the system-defined Aglet class, and
overriding them with application-specific code.

An aglet can interact with other aglets via proxy objects, which provide a degree of language-level protec­
tion as well as location transparency. Explicit message-passing is the only mode of communication supported
by the AWB - aglets cannot invoke each others' methods. Synchronous as well as asynchronous message­
passing is supported. Aglets can carry an itinerary of hosts to be visited, but the specification of the code
to be executed at each host is somewhat awkward - a message is associated with each host, and is auto­
matically delivered when that host is visited. The aglet's handleMessage method must then inspect the
delivered message type and execute the appropriate code. An aglet can interact with its host's environment
via an AgletContext object. This can be used to create new aglets in the same context, acquire proxies for
existing aglets, set or query context properties, etc. It can also be called upon to recall an aglet back to the
caller's context.

The Aglet class itself provides primitives for identification, cloning, activation and deactivation of aglets.
The dispatch method allows the programmer to migrate an aglet from one context to another. The desti­
nation is specified using the URL syntax. The AWB does not capture agent state at the thread level, thus
avoiding modifications to the standard Java virtual machine. Aglets currently have limited security support;
however a more comprehensive authorization framework is being developed[15] .

4.3 Agent Tel

Agent Tel, developed at Dartmouth College, is an agent system which allows Tel scripts to migrate between
servers that provide agent execution, communication, status queries and non-volatile storage. The modified
Tel interpreter which is used to execute the scripts, allows the capture of agent state at the thread level.

A programmer must use the agent_begin primitive to first register an agent with a server. The agent is
assigned a unique identifier, and can then be activated on the desired host using agent..submi t. An agent can
migrate to another server by calling agent_ju.mp. Its state is captured, transferred to the named destination,
and reactivated there. Since agent names are location-dependent, it is assigned a new name at its destination.

Agents can communicate with each other by exchanging messages using the primitives agent__send and
agent...recei ve provided by Agent Tel. Alternatively, they can set up a stream connection using agent..meet
and agent_accept. Agent Tel calls upon an external program (PGP) to pedorm authentication checks when
necessary, and for encrypting data in transit. No public-key distribution mechanism is provided, however.
Hosts' resources can be protected using access control lists, which are maintained by local resource manager
agents. The access control lists have coarse granularity, in that all agents arr iving from a particular host arc
subjected to the same access rules. The system ensures that agents cannot execute dangerous operations
without the appropriate security mediation. This is done by executing agent code in a Safe Tel interpreter,
which delegates sensitive resource access to a trusted interpreter.

4.4 Tacoma

Tacoma is a joint project of the University of Troms0(Norway), and Cornell University. Agents can tech­
nically carry code written in any language, but Tel is the only language currently supported. An agent's
state must be explicitly stored in folders, which are aggregated into briefcases. The system does not capture

11

agent state at the thread level.

An agent is created by packing the program into a distinguished folder called CODE. Next, its intended
host's name is stored in the HOST folder. Migration to this destination is achieved using the meet primitive.
The meet command names among its parameters, an agent on the destination host which is capable of
executing the incoming code (such as the system-supplied ag_tcl which executes Tel scripts). A briefcase
containing the CODE, HOST and other application-defined folders is sent to this agent, which then restores the
state and executes the provided code. No security mechanisms are implemented.

Agents can also use the meet primitive to communicate by exchanging briefcases. Both synchronous and
asynchronous communication are supported. An alternative communication mechanism is the use of cabinets,
which are immobile repositories for shared state. Agents can store folders containing application-specific data
in cabinets, which can then be accessed by other agents.

4.5 Voyager

This is a Java-based agent system developed by ObjectSpace, Inc. A novel feature of Voyager is a command­
line utility called vcc which takes any ordinary Java class and creates a remotely-accessible equivalent, called
a virtual class. Instances of the virtual class can be created on remote hosts, resulting in virtual refer-ences
which provide location-independent access to the object. Agent instances arc assigned a globally unique
identifier, and an optional symbolic name during object construction. A name service is available, which can
locate the object, given its identifier or name.

The virtual class provides a moveTo method which allows the agent to migrate to the desired location.
The destination is specified either using its hostname and port number, or as a virtual reference to another
object with which the agent wishes to be co-located. The agent also specifies a particular method name,
which is executed when the migration is complete. A forwarder object remains in the original location, and
ensures that attempts to contact the agent at that site are redirected to its new location.

Agent communication is possible via virtual references, but an extensive message-passing mechanism is
also supported. Agents can send synchronous, one-way, or future-reply based messages. Multicasting is also
possible, since objects can be aggregated hierarchically into groups. A simple checkpointing facility has also
been implemented.

4.6 Knowbots

The Knowbots system, developed at CNIU, uses the script language Python for agent programming. Know­
bot agents are executed by agent servers called Knowbot Operating Systems (KOS), which arc designed to be
language-neutral. A KOS provides a safe agent hosting environment, communication support via RPC, and
agent migration. Like Safe Tel, user code is executed in a restricted environment, whereas trusted system
code which provides resource access is executed by a separate interpreter.

Mobility in Knowbots is achieved by using the migrate primitive. The hosting KOS packages the agent's
code and state as a MIME document, and sends it to the named destination KOS. The state includes a
suitcase which can contain arbitrary application-created data. Execution state is not currently captured
at the thread level. Communication between agent s is established using connectors, a layer on top of RPC
which allows the system to isolate agents from each other for security reasons, at the expense of performance.
Connection brokers provide a publication facility for service providers, and thus a yellow pages service for
agents.

12

5 Conclusions

We have intNduced the mobile agent paradigm and discussed its requirements in terms of system-level as well
as language-level support. The different approaches taken by designers to address these issues were illustrated
using some representative mobile agent systems that are currently available. The choice of programming
model varies from script-based agents, useful for quickly automating simple tasks, to object-oriented agents
which are better suited for more complex programs that can benefit from modularity and code reusf). The
demise of a technically impressive system like Telescript also indicates that the more popular general-purpose
languages and programming models in the Internet domain are more likely to survive, than special-purpose
ones like Telescript.

The major obstacle preventing the widespread acceptance of the mobile agent paradigm is the security
problems it raises. These include the potential for system penetration by malicious agents, as well as the
converse problem of exposure of agents to malicious servers. We find that no current system solves these
security problems satisfactorily, and thus mobile agent security remains an open research area. Ad hoc
integration of security mechanisms into the mobile agent framework is unlikely to work; therefore a design
that integrates security with the basic agent protocols would be preferable.

References

[1] J.S. Banino. Parallelism and Fault Tolerance in Chorus. Journal of Systems and Software, pages
205- 211, 1986.

[2] Lubomir F. Bic, Munehiro Fukuda, and Michael B. Dillencourt. Distributed Computing using Au­
tonomous Objects. IEEE Computer, pages 55-61, August 1996.

[3] Luca Cardelli. A Language with Distributed Scope. In Proceedings of the ACM Symposium on Principles
of Programming Languages, pages 286--297, 1995.

(4] D. Cha.urn, A. Fiat, and M. Naor. Untraceable Electronic Ca.sh. In Advances in Cryptology - Proceedings
of CRYPTO '88, pages 319- 327. Springer LNCS 403, 1990.

[5] Whitfield Diffi.e and Martin E. Hellman. New Directions in Cryptography. IEEE Transactions on
Information Theon.J, 22(6):644-654, November 1976.

[6] Whitfield Diffi.e, Paul C. van Oorschot, and Michael J. Weiner. Authentication and Authenticated
Key Exchanges. In Designs, Codes and Cryptography, vol.2, no.2, pages 107- 125. Kluwer Academic
Publishers, June 1992.

[7] Fred Doughs and John Ousterhout. Transparent Process Migration: Design Alternat ives and the Sprite
Implementation. Software - Practice and Experience, 21(8):757- 785, August 1991.

[8] William M. Farmer, Joshua D. Guttman, and Vipin Swarup. Security for Mobile Agents: l<;sues and
Requirements. In Proceedings of the 19th National Information Sy.$tems Security Conference, pages
591-597, October 1996.

[9] GeneralMagic. Odyssey web page. Available at URL http://www.genmagic.com/agents/odyssey.html.

[10] Robert S. Gray. Agent Tel: A flexible and secure mobile-agent system. In Proceedings of the Fourth
Annual Tcl/Tk Workshop (TCL '96), J uly 1996.

{11] Colin G. Harrison, David M. Chess, and Aaron Kcrshenbaum. Mobile Agents: Are they a good idea?
Technical report, IBM Research Division, T .. J.Watson Researd1 Center, March 1995. Available at URL
http://www.rcsearch.ibrn.com/massdist/rnobag.ps.

[12] Jeremy Hylton, Ken Manheimer, Freel L. Drake Jr., Barry Warsaw, Roger Masse, and Guido van
Rossum. Knowbot programming: System support for mobile agents. In Proceedings of the Fifth Inter­
national Workshop on Object Orientation in Operating Systems (IWOOOS '96), October 1996.

13

[13] Dag Johansen, Robbert van Renesse, and Fred B. Schneider. An Introduction to the TACOMA Dis­
tributed System. Technical Report 95-23, Department of Computer Science, University of Troms0, June
1995.

[14] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-Grained Mobility in the Emerald
System. ACM Transactions on Computer Systems, 6(1):109-133, February 1988.

[15] Gunter Karjoth, Danny Lange, and Mitsuru Qshima. A Security Model for Aglets. IEEE Internet
Computing, pages 68- 77, July-August 1997.

[16] Anselm Lingnau, Oswald Drobnik, and Peter Dome!. An HTTP-based Infrastructure for Mobile Agents.
In Proceedings of the Fall 1995 WWW Conference, December 1995.

[17] Wenbo Mao. Lightweight Micro-cash for the Internet. In ESORICS '96 - 4th European Symposium on
Research in Computer Security, pages 15- 32. Springer LNCS 1146, September 1996.

[18] ObjcctSpace. ObjeetSpace Voyager Core Package Technical Overview. Technical report, Objec:tSpace,
Inc., July 1997. Available at http://www.objectspace.com/.

[19] M. Ranganathan, Anurag Acharya, Shamik Sharma, and Joel Saltz. Network-aware Mobile Programs.
In Proceedings of USENIX '97, Winter 1997.

[20] James W. Stamos and David K. Gifford. Remote Evaluation. ACM Transactions on Programming
Languages and Systems, 12(4):537- 565, October 1990.

[21] Tommy Thorn. Programming Languages for Mobile Code. ACM Computing Surveys, 29(3):213- 239,
September 1997.

[22] John Vittal. Active Message Processing: Messages as Messengers. In R.P. Uhlig, editor, Computer
Message System, pages 175- 195. North-Holland, 1981.

[23] James E. White. Mobile Agents. Technica-1 report, General Magic, Available at URL
http:/ /www.genmagic.com/Telescript/, October 1995.

14

	Blank Page

