
Technical Report

Department of Computer Science
and Engineering

University of Minnesota
4-192 EECS Building
200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 97-060

PARMETIS: Parallel Graph
Partitioning and Sparse Matrix

Ordering Library

by: George Karypis, Kirk Schloegel
and Vipin Kumar

PARMEmS: Parallel Graph Partitioning and Sparse Matrix

Ordering Library*

Version 1.0

George Karypis, Kirk Schloegel and Vipin Kumar

University of Minnesota, Department of Computer Science

Minneapolis, MN 55455

{karypis, kirk, kumar}@cs.umn.edu

Last updated on July 18, 1997 at 7:52am

1 Introduction

PARMETIS is an MPI-based parallel library that implements a variety of algorithms for partitioning unstructured graphs

and for computing fill-reducing orderings of sparse matrices. PARMEliS is particularly suited for parallel numerical

simulations involving large unstructured meshes. In this type of computation, PARMEliS dramatically reduces the time

spent in communication by decomposing the mesh and distributing it among the processors in a way that minimizes

the number of interface elements.

The algorithms in PARMEliS are based on the multilevel partitioning and fill-reducing ordering algorithms that arc

implemented in the widely used serial package METIS [1]. However, PARME1iS extends the functionality provided by

METIS and includes routines that are especially suited for parallel computations and large scale numerical simulations.

In particular, PARMl;(IS provides the following four major functions:

• Partition an unstructured graph.

• Improve the quality of an existing partition.

• Repartition a graph that corresponds to an adaptively refined mesh.

• Compute a fill-reducing ordering for sparse direct factorization.

• PARMS'iS is copyrighted by the regents of the University of Minnesota. This work was supponed by IST/BMDO through Anny Research Office
contract DNDAAH04-93-G-0080, and by Anny High Perfomiance Computing Research Center under the auspices of the Depanment of the Anny,
Anny Resc.irch L:iboratoty cooperative :igreement number DAAH04-95-2-0003/contract number DAAH04-95-C-0008, the content of which docs
not necessarily reflect the position or the policy of the government, and no official endorsement should be inferred. Access to computing facilities
wen: provided by Minncsot.a Supercomputer Institute. Cray Research Inc, and by tbe Pittsburgh Supercomputing Center.

Parti1ion a graph or
a mesh

Refine the quality
of a pert~ion

Repart~nan
adaptively refined mesh

Find a fil~reducing
ordering

Do you have coordinates
for 1he vertices?

PARRMETIS

How muct, has the
mesh changed?

-l'AROIIETIS

What are your
tim&'quaJity tradeo!fs?

PARGKMETIS

-PARGIIETIS

Figure 1 : A brief overview of the functionality provided by PARMETIS. The shaded boxes correspond to the actual routines in
PARMEliS that implement each particular operation.

This manual is organized as follows. In Section 2 we briefly describe the various algorithms that are used in PAR MEliS.

Section 3 describes the format of the basic parameters that are supplied to the various routines. Section 4 provides a

detailed description of the calling sequence of PARMETIS's functions. Finally, Section 5 provides contact information.

2 Algorithms Used in PARME:11S

PARMETIS provides a variety of algorithms that can be used to compute a number of different partitionings as well as

fill-reducing orderings. Figure I provides an overview of the functionality provided by PARMETIS and how it can be

used to solve a particular problem.

2.1 Unstructured Graph Partitioning

PARKMETIS is the function in PARMETIS that can be used to partition an unstructured graJ?h, This routine takes a

graph and computes a k-way partition (where k is equal to the number of processors). PARKMETIS makes no assump­

tions on how the graph is initially distributed among the processors. It can effectively partition a graph that is randomly

distributed as well as a graph that is nicely distributed1. If the graph is already nicely distributed among the proces­

sors, PARKMETIS will take less time. However, the quality of the produced partitions does not depend on the initial

distribution. We will get to this point later in this section.

The parallel graph partitioning algorithm used in PARKMETIS is based on the serial multilevel k-way partitioning

1 The reader should note the difference between the ternlS graph distriburion and graph panirion. In order 10 partition a graph in parallel, we
need to first distribute the nodes and edges of the graph among the processors. Of course you can think of this initial distribution as a partition;
however, most likely this partition will be of extremely poor quality. For example, consider a graph that COITCSponds to the dual of a finite element
mesh. An initial distribution of this mesh will assign n/ p clements to each processor where n is the number of elements and p is lhe number of
processors. If Ibis distribution was done in a simple-minded fashion (e.g. , you read the mesh from a file and assign consecutive n/ p elements 10 each
processor}. then most likely it will not be a very good partition. This is because you may end-up assigning to each processor elements that belong 10

many different partS of the mesh (i.e., each processor gets a lot of small disjoint sub-domains as opposed 10 a single large contiguous sut>.domain).
The purpose of a parallel partitioner is 10 take such a simple-minded distribution and compute another distribution (i.e ., partition), such !hat each
processor will end up getting just a single sub-domain, and the number of intelface elements will be minimized. Of course, it may happen !hat the
initial distribution is already a pretty good partition, as in the case of meshes thnt are adnptively refined. In this case we will refer 10 Ibis situation as
one in which the graph is nicely distributed.

2

algorithm described in [2] and parallelized in [3]. This k-way partitioning algorithm has been shown to quickly produce

partitions that are of very high-quality. The multilevel Jc-way partitioning algorithms works as follows: The graph is

first gradually coarsened down to a graph containing a few hundred vertices, a k•way partition of this much smaller

graph is computed, and then this partitioning is projected back to the original graph (finer graph) by periodically re­

fining the partition. Since the finer graph has more degrees of freedom, such refinements improve the quality of the

partition. Comparisons perfonned in (2) have shown that the serial multilevel k•way partitioning algorithm is over 50

times faster than the popular multilevel spectral bisection [4] while producing partitions that cut 10% to 50% fewer

edges. PARKMETIS further reduces the amount of time required for partitioning. Experiments on a 128•processor

Cray T3D have shown that PARKMETIS can partition an eight million element 3D mesh in about 14 seconds!

Recall earlier we mentioned that if the graph is nicely distributed among the processors PARKMETIS runs faster.

In fact, our experiments have shown that when we use PARKMETIS to partition a graph that is distributed according

to the partition produced by an earlier call to PARKMETIS2, the amount of time required for this second partitioning

is often smaller by a factor of two to four. The reason for this has to do with the amount of communication required

by PARKMETIS. If the graph is initially distributed randomly (i.e., there are many interface vertices), PARKMETIS

spends a lot of time communicating infonnation about these interface vertices. On the other hand, if the graph is nicely

distributed, the number of interface vertices is much smaller, reducing the overall runtime of the partitioner. Of course,

this is the typical chicken and egg problem. How can we initially distribute the graph nicely without actually having

to run the partitioner? Hopefully, when partitioning graphs that correspond to finite element meshes we can quickly

compute a fairly nice initial distribution by using the coordinate values of the mesh. We can then move the graph

according to this initial distribution (partition) and call PARKMETIS on this moved graph. PARMl=JiS provides the

PARGKMETIS function for doing just that. Given a graph that is distributed among the processors and the coordi­

nates of the venices3 PARGKMETIS quickly computes an initial partitioning using space•filling curves, redistributes

the graph according to this partition and then calls PARKMETIS to compute the final partition. Our experiments have

shown that PARGKMETIS is often two times faster than PARKMETIS, and achieves identical partitioning quality.

PARMl=fiS also provides two additional functions for partitioning unstructured graphs when coordinates for the ver­

tices are available. These functions are PARGMETIS and PARGRMETIS. PARGMETIS computes a partition based

only on the space-filling curves. It is extremely fast (often 5 to 10 times faster than PARGKMETIS), but it produces

poor quality partitions (it may cut 2 to 3 times more edges than PARGKMETIS). However, it can be useful for a very

large number of processors or for computations in which the use of space-filling curves is the appropriate partitioning

technique (e.g., n-body computations). The second function PARGRMETIS is in the spirit of PARGKMETIS. How­

ever, after redistributing the graph according to the initial geometric partition, it uses the multilevel refinement algo­

rithm PARRMETI S described in Section 2.2 to improve the quality of the partition. Our experiments have shown that

PARGRMETIS is usually faster than PARGKMETIS, especially for a large number of processors, but its quality is 30%

to 40% worse than PARGKMETIS.

2.2 Partitioning Refinement

PARRMETIS is the routine provided by PARMl=JiS to improve the quality of an existing partition. Once a graph is

partitioned and it has been redistributed accordingly, PARRMETIS can be called to compute a new partition that further

2Tha1 is. we tirs1 called PAAXMETIS to find :i good p:inition of a graph. Next we moved the vcnices of~ graph acc.ording 10 the ~1ion found
by PARKMETIS. and then we called PARKMETIS to partition this newly distributed graph.

3tf PARGKMETIS is used 10 partition the dual of a mesh, the coordinates of the centers of each element must be provided.

3

improves the quality. Thus, as opposed to PARKMETI s this routine assumes that the graph is already nicely distributed

among the processors. As discussed in Section 2.1 when we talked about PARGRMETIS, PARRMETIS can be used to

improve the quality of partitionings that are produced by other partitioning algorithms. PARRMETIS can also be used

repeatedly to further improve the quality. That is, you can call PARRMETIS once, move the graph according to the

new partition, and then call PARRMETIS again. However, each successive call to PARRMETIS will tend to produce

smaller improvements in the quality.

The refinement algorithm implement in PARRMETIS is based on the multilevel k-way refinement algorithm, also

used by PARKMETIS. It is in nature similar to the the multilevel k-way partitioning algorithm; however, only vertices

belonging to the same partition are coarsened together. Thus, the original distribution of the vertices determines the

initial k-way partitioning of the coarse graph. Since PARRMETIS starts from a graph that is already nicely distributed,

it is very fast.

2.3 Partitioning Adaptively Refined Meshes

For a large class of irregular mesh applications, the structure of the mesh changes from one phase of the computation

to the next, due to mesh refinement or derefinement. Eventually, as the mesh evolves, the adapted mesh has to be

repartitioned to ensure good load balance. Even though this repartitioning can be done by computing a new partition

from scratch using either PARKMETIS or PARGKMETIS, this approach will in general lead to significant vertex/data

movement in order to redistribute the mesh according to the new partitioning. For this reason PARMirriS provides the

routines PARUAMETIS and PARDAMETIS to repartition these adaptively refined meshes. These routines assume that

the mesh is initially nicely distributed among the processors, but the distribution is not load balanced.

Both of these routines can be used to load balance the mesh either after or before the adaptation. In the former case,

each processor first locally adapts its mesh, leading to different processors having different number of elements. Then

calling PARUAMETIS or PARDAMETIS on the graph corresponding to either the mesh or the dual of the mesh will

result in a partition that after redistribution of the mesh will be load balanced. However, the load balancing can also be

done before adaptation. For example, if we can estimate for each element the degree of refinement (i.e., into how many

elements we will subdivide each element), we can then use this as a weight on the vertex that corresponds to the dual

of the mesh. PARUAMETIS or PARDAMETIS can then be called to load balance this weighted graph. Now we can

redistribute the mesh according to this new partition and perfonn the refinement. After the refinement, each domain

will have an equal number of elements.

These adaptive repartitioning algorithms are based on the multilevel diffusion algorithms described in [5]. They

perfonn local multilevel coarsening followed by multilevel diffusion and refinement to balance the graphs while main­

taining the edge-cut. These algorithms produce partitions of quality comparable to that of PARKMETIS, but tend to dra­

matically reduce the amount of data that needs to be moved due to the repartitioning. The difference between these two

functions is that PARUAMETI S performs undirected diffusion based on local balancing criteria, whereas P ARDAMETI S

uses a 2-nonn minimization algorithm at the coarsest graph to guide the diffusion (for this reason we refer to it as di­

rected diffusion). Both of these routines should be capable of load balancing graphs, and PARUAMETIS is in general

faster. Furthermore, since these routines start from a graph that is already nicely distributed, they are very fast. Exper­

iments on a 256-processorCray T3D show that PARUAMETIS is able to compute a partition for an 8-million element

mesh in under 3 seconds.

4

2.4 Computing Fill-Reducing Orderings

PAROMETIS is the routine provided by PARMl:TiS for computing a fill-reducing ordering, suited for Cholesky-based

direct factorization algorithms. PAROMETIS makes no assumptions on how the graph is initially distributed among

the processors. It can effectively compute a fill-reducing ordering for a graph that is randomly distributed as well as a

graph that is nicely distributed.

The algorithm implemented by PAROMETIS is based on a multilevel nested dissection algorithm. This algorithm

has been shown to produce low fill orderings for a wide variety of matrices. Furthennore, it leads to balanced elim­

ination trees which is essential for parallel direct factorization. PAROMETIS uses a multilevel node-based refine­

ment algorithm that is particularly suited for directly refining the size of the separators. To achieve high perfonnance,

PAROMETIS first uses PARKMETIS to compute a higb quality partition and accordingly redistributes the graph. Next

it proceeds to compute the log p levels of the elimination tree concurrently. When the graph has been separated in

p parts (where pis the number of processors), the graph is redistributed among the processor so that each processor

receives a single subgraph, and a multiple minimum degree algorithm is used to order these smaller subgraphs.

3 Input/Output Formats used by PARMSIS

3.1 Format of the Input Graph

All of the routines in PARMETIS take as input the adjacency structure of the graph, the weights of the vertices and edges

(if any), and an array describing how the graph is distributed among the processors. Note that depending on the appli­

cation this graph can represent different things. For example, in the case of finite element computations, the vertices

of the graph can correspond to nodes (points) in the mesh while edges represent the connections between these nodes

(e.g., triangular edges in the case of triangle- or tetrahedron-based meshes). Alternatively, the graph can correspond

to the dual of the finite element mesh. In this case each vertex corresponds to an element and two vertices are con­

nected via an edge if the corresponding elements share a face. In another case, when PARMSiS is used to compute a

fill-reducing ordering. the graph corresponds to the non-zero structure of the matrix (excluding the diagonal entries).

However, regardless of what the graph actually represents, it must be undirected. That is, for every pair of connected

vertices v and u, it must contain both edges (v, u) and (u, v).

The adjacency structure of the graph is stored using the compressed storage format (CSR), extended for parallel

storage. We will first describe how the CSR fonnat is used to store a graph serially and then describe how it is extended

for storing a graph that is distributed among processors.

Serial CSR Format The CSR format is a widely used scheme for storing sparse graphs. In this format the adjacency

structure of a graph is represented using two arrays xadj and adjncy, and the weights on the vertices and edges (if

any) are represented by using two additional arrays called vwgt and adjwgt. For example, consider a graph with n

vertices and m edges. In the CSR format, this graph is stored serially using the arrays of the following sizes:

xadj {n + I], vwgt [n], adjncy [2m], and adjwgt [2m]

Note that the reason both adjncy and adjwgt are of size 2m is because for each edge between vertices v and u we

actually store (v, u) as well as (u, v). Also note that in the case in which the graph is unweighted (i.e., all vertices and

edges have the same weight), then the arrays vwgt and adjwgt can be set to NULL.

The adjacency structure of the graph is stored as follows. Assuming that vertex numbering starts from O (C style),

then the adjacency list of vertex i is stored in array adj ncy starting at index xadj [i l and ending at (but not including)

5

(a) A sample graph

Description of the graph on a serial computer (serial MeTiS)

xadj O 2 S 8 I I 13 16 20 24 28 31 33 36 39 42 44

adjnc-y I 5 0 2 6 I 3 7 2 4 8 3 9 0 6 10 I 5 7 II 2 6 8 12 3 7 9 13 4 8 14 5 II 6 IO 12 7 II 13 8 12 14 9 13

(b) Serial CSR format

Description of the graph on a parallel computer with 3 processors (ParMeTiS)

Processor 0: udj O 2 5 8 II 13

adjncy 1502613?24839

vudiSI O 5 10 15

Prnccs."-ir I: xadj O 3 7 11 15 IK

adjnc-y O 6 JO I 5 7 1 L 2 6 8 12 3 7 9 13 4 8 14

vudisl O S 10 15

Processor 2: .adj O 2 5 8 II 13

adjncy S 11 6 10 12 7 11 13 8 12 14 9 13

vudist O 5 10 JS

(c) Distributed CSR format

Figure 2: An example of the parameters passed to PARMSiS in a three processor case. The arrays vwgt and adjwgt are
assumed to be NULL.

index xadj [i + I J (i.e., adjncy [xadj [i]] through and including adjncy [xadj [i + 1] - 1]). That is, for each

vertex i, its adjacency lists is stored in consecutive locations in tihe array adj ncy, and the array xadj is used to point to

where it begins and where it ends. Figure 2(b) illustrates the CSR fonnat for the 15-vertex graph shown in Figure 2(a).

If the graph was weights on the vertices, then vwgt [i] is used to store the weight of vertex i. Similarly, if the graph

has weights on the edges, then the weight of edge adj ncy [j] is stored in adjwgt [j] . For those familiar with the

MEliS package, this is exactly the fonnat that is used by the user callable library of MlmS.

Distributed CSR Format PARMlmS extends the CSR format for the case in which the vertices of the graph and

their adjacency lists are distributed among the various processors. In particular, PARMlmS assumes that each processor

P; stores n; consecutive vertices of the graph and the corresponding m; edges, so that n = L; n;, and m = L; m;.

Each processor now stores its local part of the graph in the four arrays xadj [n; + 1], vwgt [n;], adj ncy (2 * m;],

and adjwgt [2*m;], using the CSR storage scheme. Again if the graph is unweighted, the arrays vwgt and adjwgt

can be set to NULL. One way of thinking about this distributed CSR fonnat is as follows. Serially you have a single

xadj and adjncy arrays. When you go parallel, the vertices and their adjacency Jists are equally distributed among

the processors. That is, you can taken/ p consecutive adjacency lists from adjncy and store them on consecutive

processors (p is the number of processors). These ponions of the whole adjncy array are then the adj ncy arrays

supplied by each of the processors in the distributed CSR format. In addition, each processor supplies its local xadj

array to point to where each adjacency list begins and ends. Thus, if we take all the local adj ncy arrays and concate-

6

nate them will get exactly the adjncy array that is used in the serial CSR. However, concatenating the local xadj

arrays will not give us the serial xadj array. since the entries in each local xadj point to their local adjncy array.

In addition to these four arrays, each processor also supplies an additional array vtxdi st [p + I] , that ind icates

the range of vertices stored at each processor. In particular, processor P; stores the vertices starting from vtxdi st [i J ,

up to (but not including) vertex vtxdist [i +I]. Figure 2(c) illustrates the distributed CSR fonnat by an example on

a three processor system. The 15-vertex graph in Figure 2(a) is distributed among the processors so that each proces­

sor gets 5 vertices and their corresponding adjacency lists. That is, processor O gets .vert.ices O through 4, processor I

gets vertices 5 through 9, and processor 2 gets vertices 10 through 14. This figure shows the elements that the arrays

xadj, adjncy, and vtxdist store at each processor. Note that the array vtxdist will always be the same at each

processor.

All five arrays that describe the distributed CSR format are defined in PARME:11S to be of type idxtype. By default

idxtype is set to be equivalent to type int (i.e., integers). However, idxtype can be made to be equivalent to a

short int for certain architectures that use 64-bit integers by default. The conversion of idxtype from int to

short can be done by modifying the file struct . h (instructions are included there). The same idxtype is used

for the arrays that are used to store the computed partiti.on and pennutation vector.

3.2 Format of Vertex Coordinates

As discussed in Section 2.1 PARME:11S provides routines that can use the coordinate information of the vertices (when

available) to quickly redistribute the graph in a fashion that will speedup the execution of the parallel k-way partitioning

algorithms.

These coordinates are specified in an array called xyz of single precision floating point numbers (i.e .• float). If

dis the number of dimensions (which is also supplied as a parameter) of the mesh (i.e., d = 2 for 2D meshes or d = 3

for 3D meshes). then each processor supplies an array of size d * n; where n; is the number of vertices that it stores.

In this array, the coordinates of vertex i are stored starting at location xyz [i * d] up to (but not including) location

xyz [i * d + d] . For example, if d = 3, then the x, y, and z coordinates of vertex i are stored in locations xyz [3 • i J ,

xyz [3 • i + 1] , and xyz [3 • i + 2 J • respectively.

3.3 Format of the Computed Partitions and Orderings

Format of the Partition Array In all the partitioning routines of PARME:11S each processor also supplies an array

called part which stores the new partition found by PARMl.ffiS. Each processor P; supplies an array of size n; (i.e., the

number of vertices stored at this processor), and upon return, for each vertex j, part [j J stores the partition number

(i.e., the processor label) that this vertex belongs to in the new partition.

Note that PARMl:TiS does not redistribute the graph according to the new partition, but it simply computes it and

returns it to the calling program.

Format of the Permutation Array When PARMSiS is used to compute a fill-reducing ordering by calling PAROMETI s,
the result of the ordering is returned in an array called order. Similar to the part array, the size of order is equal

to the number of vertices stored at each processor. Upon return, for each vertex j, order [j J stores the new global

number of this vertex in the fill-reducing permutation.

Besides the ordering vector, PAROMETIS also returns an additional array that stores information about the sizes

of the different subdomains as well as the separators at different levels. This array is called sizes and is of size 2 p

7

•is•• 2 2 2 2 2 2 3

order O 14 6 7 4 S 13 JO 11 2 3 12 8 9

Figure 3: An example of the ordering produced by PAROMETIS. Consider the simple 3 x 5 grid and assume that we have four
processors. PAROMETIS finds the three separators that are shaded. It first find the big separator and then for each of the two
subdomains it finds the two smaller. At the end of the ordering, the order vector concatenated over all the processors will be the
one shown. Similarly, the sizes array will be the one shown, corresponding to the regions pointed by the arrows.

(where pis the number of processors). Every processor supplies this array and upon return, this array is filled with the

size information. Every processor receives exactly the same information.

The format of this array is as follows. The first p entries of sizes starting from Oto p - I store the number

of nodes in each one of the p subdomains. The remaining p - I entries of this array starting from sizes [p) up to

sizes [2p-2 J store the sizes of the separators at the log p levels of nested dissection. In particular, sizes [2p-2 l

stores the size of the top level separator, sizes [2 p - 4] and sizes [2 p - 3] store the sizes of the two separators at

the second level (from left to right). Similarly, sizes [2p - 8] through sizes [2p - 5] store the sizes of the four

separators of the third level (from left to right), and so on. This array can be used to quickly construct the separator

tree (a form of an elimination tree) for direct factorization. Given this separator tree and the sizes of the subdomains,

the nodes in the ordering produced by PAROMETIS are numbered in a postorder fashion. The use of sizes and the

postorder ordering produced by PAROMETIS based on this tree is shown in Figure 3.

3.4 Numbering and Memory Allocation

PARMETiS allows you to specify a graph that the numbering starts either from O (C style) or from I (Fortran style).

PARME:TiS requires that same numbering scheme to be consistently used for all the arrays passed to and also numbers

the returned arrays (part and order) in a similar fashion.

PARME:TiS allocates all the memory it requires dynamicaffly. This has the advantage that the user does not have

to provide workspace, but if there is not enough memory. the routines in PARME:TiS abort. Note that the routines in

PARMETiS do not modify the arrays that store the graph.

4 Calling Sequence of the Routines in PARM~S

The calling sequences of the routines provided by PARME:TiS are described in the rest of this section.

8

PARKMETIS (idxtype *vtxdist, idxtype *xadj, idxtype *vwgt, idxtype *adjncy, idxtype *adjwgt, idxtype *pan,

int •options, MPLComm comm)

D~scription

It is used to compute a p-way partition of a graph on p processors using the multilevel p-way partitioning algo­

rithm.

Parameters

vtxdist, xadj, vwgt, adjncy, adjwgt

The various arrays describing the graph stored at each processor. Both vwgt and adjwgt can be set to NULL.

part

The array that returns the result of the partition.

options

This is an array of 5 integers that is used to pass parameters in and out of the program. Their meaning is as

follows:

options[0] Returns the edge-cut of the computed partition (OUT).

options{ 1] A parameter that controls successive foldingfolding factor (IN).

options[2) Selects the type of initial partitioning algorithm at the coarsest graph (IN).

If it is equal to I, then a serial partitioning algorithm is used

if it is equal to 2, then a parallel atgorithm is used. Only for power of 2 partitions.

options[3] It is used to specify whether or not the numbering starts from 0 or I (IN).

If it is equal to 0, then the numbering starts from 0 (C style), and

if it is equal to 1, then the numbering starts from 1 (Fortran style).

options[4] Specifies the level of information to be returned during the execution of the algorithm (IN).

The folding factor is used to optimize the run time of the partitioning algorithm. If it is set to 0, no folding is per­

formed and the partitioning algorithm may run somewhat slowly. The optimal value for this parameter depends

on the underlying parallel computer as well as the graph being partitioned. Extensive tests on T3D show that a

value of 150 produces acceptable results. In general, as the latency of the interconnection network increases, this

parameter should also increase.

The initial partitioning option (i.e., options[2]) is used to select how the partitioning is done at the coarsest graph.

If the serial partitioning algorithm is selected, then each processor partitions the coarsest (i.e., smallest) graph

serially. If the parallel partitioning is selected, the coarsest graph is partitioned using a parallel formulation of

multilevel recursive bisection. This parallel fonnulation is particularly useful for very large number of processors

(over 128). Note that parallel initial partitioning currently works only with partitions that are power of two. If

the number of partitions (i.e., processor) is not a power of two and parallel partitioning is selected, PARKMETI S

automatically switches to the serial partitioner.

The value for options[4] should be set to 0. Timing information can be obtained by setting it to I. Additional

options for this parameter can be obtained by looking at the end of the file def s . h. The numerical values there

need to be added to obtain the results.

9

comm

This is the MPI communicator of the processes that call PA RM~S. For most programs this will be MP LCQMM_WORLD.

PARGKMETIS (idxtype •vtxdist, idxtype •xadj, idxtype •vwgt, idxtype •adjncy, idx1ype •adjwgt, int ndims,

float •xyz, idxtype •part, int •options, MPLComm comm)

Description

It is used to compute a p-way partition of a graph on p processors by combining coordinate-based partitioning

and the multilevel p-way partitioning algorithm.

Parameters

vtxdist, xadj, vwgt, adjncy, adjwgt

The various arrays describing the graph stored at each processor. Both vwgt and adjwgt can be set to NULL.

ndims,xyz

Used to specify the number of dimensions and the coordinates of the vertices, respectively.

part

The array that returns the result of the partition.

options

This is an array of 5 integers that is used to pass parameters in and out of the program. Their meaning is identical

to that of PARKMETIS.

comm

This is the MPI communicator of the processes that call PAR M~S. For most programs this will be MPLCOM?-LWORLD.

11

PARGRMETIS (idxtype *vtxdist, idxtype *xadj, idxtype *vwgt, idxtype *adjncy, idxtype *adjwgt, int ndims,

float *xyz, idxtype *pan, int *options, MPLComm comm)

Description

It is used to compute a p -way partition of a graph on p processors by combining coordinate-based partitioning

and the multilevel p-way refinement algorithm.

Parameters

vtxdist, xadj, vwgt, adjncy, adjwgt

The various arrays describing the graph stored at each processor. Both vwgt and adjwgt can be set to NULL.

ndims, xyz

Used to specify the coordinates of the vertices. The format is identical to the one used by PARGKMETIS.

part

The array that returns the result of the partition.

options

This is an array of 5 integers that is used to pass parameters in and out of the program. Their meaning is as

follows:

options[O]

options[!]

options[2]

options[3]

options[4]

comm

Returns the edge-cut of the computed partition (OUT).

It is not used.

It is not used.

It is used to specify whether or not the numbering starts from O or I (IN).

Similar to options[3] of PARKMETIS.

Specifies the level of information to be returned during the execution of the algorithm (IN).

Similar to options[4) of PARKMETIS.

This is the MPI communicator of the processes that call PARME:fiS. For most programs this will be MPI _COM?-LWORLD.

Notes

The quality of the produced partitions are moderately worse than those produced by PARGKMETI s or PARKMETI s .

12

PARGMETIS (idxtype •vtxdist, idxtype •xadj, idxtype •adjncy, int ndims, float •xyz, idxtype •part,

int •options, MPLComm comm)

Description

It is used to compute a p-way partition of a graph on p processors by using coordinate-based space-filling curves.

Parameters

vtxdist, xadj, adjncy

The various arrays describing the graph stored at each processor. Note that this partitioning scheme operates on

unweighted graphs.

ndims, xyz

Used to specify the coordinates of the venices. The fonnat is identical to the one used by PARGKMETIS.

part

The array that returns the result of the partition.

options

This is an array of 5 integers that is used to pass parameters in and out of the program. Their meaning is as

follows:

options[OJ

options[I)

options[2J

options[3]

options[4]

comm

It is not used.

It is not used.

It is not used.

It is used to specify whether or not the numbering starts from O or I (IN).

Similar to options(3] of PARKMETIS.

Specifies the level of infonnation to be returned during the execution of the al~orithm (IN).

Similar to options(4J of PARKMETIS.

This is the MPI communicator of the processes that call PARMEllS. For most programs this will be MP LCOMlLWORLD.

Notes

The quality of the produced partitions are significantly worse than those produced by PARGKMETI Sor PARKMETI S,

but PARGMETIS is very fast.

PARGMETIS cannot handle graphs with weights on venices or the edges.

13

PARRMETIS (idxtype *vtxdist, idxtype *xadj, idxtype *vwgt, idxtype *adjncy, idxtype *adjwgt, idxtype *part,

int *options, MPLCornm comm)

Description

It is used to improve the quality of an existing a p-way partition p processors by using the multilevel p-way re­

finement algorithm.

Parameters

vtxdist, xadj, vwgt, adjncy, adjwgt

The various arrays describing the graph stored at each processor. Both vwgt and adjwgt can be set to NULL.

part

The array that returns the result of the partition.

options

This is an array of 5 integers that is used to pass parameters in and out of the program. Their meaning is as

follows:

options[O] Returns the edge-cut of the computed partition (OUT).

options[I] It is not used.

options[2] It is not used.

options[3) It is used to specify whether or not the numbering starts from O or 1 (IN).

Similar to options{3) of PARKMETIS.

options[4) Specifies the level of information to be returned during the execution of the algorithm (IN).

Similar to options[4] of PARKMETIS.

comm

This is the MPI communicator of the processes that call PARMEffiS. For most programs this will be MPLCOMt•LWORLD.

14

PARUAMETIS (idxtype •vtxdist, idxtype •xadj, idxtype •vwgt, idxtype *adjncy, idxtype *adjwgt, idxtype *part,

int •options, MPLComm comm)

PARDAMETIS (idxtype •vtxdist, idxtype •xadj, idxtype •vwgt, idxtype *adjncy, idxtype *adjwgt, idxtype *part,

int •options, MPLComm comm)

Description

They are used to load balance the work load of a graph that corresponds to a mesh that has been adaptively refined.

They utilize multilevel diffusion algorithms.

Parameters

vtxdist, xadj, vwgt, adjncy, adjwgt

The various arrays describing the graph stored at each processor. Both vwgt and adjwgt can be set to NULL.

part

The array that returns the result of the partition.

options

This is an array of 5 integers that is used to pass parameters in and out of the program. Their meaning is as

follows:

options[O] Returns the edge-cut of the computed partition (OUl).

options[I] It is not used.

options[2] It is not used.

options[3) It is used to specify whether or not the numbering starts from O or 1 (IN).

Similar to options[3) of PARKMETIS.

options[4) Specifies the level of information to be returned during the execution of the algorithm (IN).

Similar to options[4] of PARKMETIS.

comm

This is the MPI communicator of the processes that call PARMSIS. For most programs this will be MPI .COMM..WORLD.

Notes

If the adapted graph is significantly different from the original graph, repartitioning the graph from scratch using

either PARKMETIS or PARGKMETIS may be a more appropriate solution in order to minimize the edge-cut.

15

PAROMETIS (idxtype *vtxdist, idxtype *xadj, idxtype *vwgt, idxtype *adjncy, idxtype *adjwgt, idxtype *order,

idxtype *sizes, int *options, MPLComm comm)

Description

It is used to compute a fill-reducing ordering of a sparse matrix by using multilevel nested dissection.

Parameters

vtxdist. xadj, vwgt, adjncy, adjwgt

The various arrays describing the graph stored at each processor. Both vwgt and adjwgt can be set to NULL.

order

The array that returns the result of the ordering.

sizes

The array that returns the number of nodes of each subdomain and each separator.

options

This is an array of 5 integers that is used to pass parameters in and out of the program. Their meaning is as

follows:

options[O] It is not used.

options[1] It is not used.

options[2] Selects the type of initial partitioning (IN).

If it is equal to 1, then an edge-based bisection is computed at the coarser graph,

if it is equal to 2, then a node-based bisection is computed.

options[3] It is used to specify whether or not the numbering starts from O or I (IN).

Similar to options[3] of PARKMETIS.

options[4) Specifies the level of infonnation to be returned during the execution of the algorithm (IN).

Similar to options[4} of PARKMETIS.

The initial partitioning option (i.e., options[2])is used to select how the partitioning is done at the coarsest graph.

If the edge-based bisection is selected, then the algorithm first computes a bisection and then uses a min-cover

algorithm to compute the vertex separator. If the node-based bisection is selected, then the algorithm directly

computes a vertex separator. In either case, the refinement is done using vertex-based refinement schemes.

comm

This is the MPI communicator of the processes that call PARMS!$. For most programs this will be MPLCOMl-LWORLD.

Notes

PAROMETIS requires that the number of processors is a power of 2.

The current version of PAROMETIS switches to multiple minimum degree after log p levels of nested dissection.

In many cases, the orderings produced on larger number of processors can lead to smaller fill, as more nested

dissection levels are perfonned.

16

5 Contact Information

Instructions on how to build PARMl:11S are available in the file calle<l INSTALL in PARME:TiS's distribution. Also,

in the directory called TEST you will find a program that tests if PARME:TiS was built correctly. You can use the file

main. c in the TEST directory as an example of how to invoke the routines in PARME:TiS.

Also, a header file called parmetis. his provided that contains prototypes for the functions in PARME:TiS.

PARMEliS have been extensively tested on many different parallel computers. However, even though PARMEliS

contains no known bugs, it does not mean that all of its bugs have been found and fixed. If you find any problems,

please send email to karypis@cs.umn.edu, with a brief description of the problem you have found .

References
[I] G. Karypis and V. Kumar. MEITiS: Unstructured graph partitioning and sparse matrix ordering system. Tech-

nical report, Department of Computer Science, University of Minnesota, 1995. Available on the WWW at URL

http://www.cs.umn.edu/"karypislmetislmetis.html.

[2] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. Technical Report TR 95-064, Department

of Computer Science, University of Minnesota, 1995. Also available on WWW at URL http://www.cs.urnn.edurkarypis.

[3] George Karypis and Vi pin Kumar. A coarse-grain parallel multilevel k-way partitioning algorithm. In Proceedings of the eighth

SIAM conference on Parallel Processing for Scientific Computing, 1997.

[4] Alex Pothen, H. D. Simon, Lie Wang, and Stephen T. Bernard. Towards a fast implementation of spectral nested dissection. In

Supercomputing '92 Proceedings, pages 42-51, 1992.

[5] Kirk Schloegel, George Karypis, and Vipin Kumar. Parallel multilevel diffusion algorithms for repartitioning of adaptive

meshes. In Submitted to Journal of Parallel Computing, 1997.

17

	Blank Page

