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Abstract 

The prevalence of computer networks has shifted the computing paradigm 

from mainframe or host-centric computing to network-centric computing. In network­

centric computing, applications are executed distributedly on a collection of comput­

ers interconnected via local and wide area networks. The performance of network­

centric applications can be dramatically improved with switch-based high-speed net­

works, such as HIPPI, ATM, and Fibre Channel. In this study, we focus on the 

high-speed network support for two important applications in network-centric com­

puting: high-performance network computing and multimedia communication. 

One important class of network computing is cluster computing, which enables 

a collection of locally interconnected computers to be used as a general-purpose par­

allel computing system. Large problems can be solved cost effectively by using the 

aggregate processing power and memory space of a cluster. However, communication 

between processors has long been the bottleneck of cluster computing. We have es­

pecially concentrated on maximizing the achievable throughput and minimizing the 

communication delay for cluster computing in homogeneous environments. We have 

enhanced a popular cluster computing environment, Parallel Virtual Machine (PVM) 

with clusters of workstations on either local ATM or HIPPI networks. 

One possible extension of cluster computing is to incorporate clusters of com­

puters via wide area networks. This is called meta-computing. For example, a group 

of diverse high-performance computers from several geographically distributed super­

computer centers can be employed to solve large problems. ATM is the de facto 

standard for wide area networks. However, most of the supercomputer centers use 
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HIPPI in their computing facilities. The internetworking of HIP PI networks and wide 

area ATM networks becomes an important issue for meta-computing. Two feasible 

solutions for the problem, HIPP! Tunneling and IP Routing, have been studied in 

this thesis. 

Multimedia communication imposes another challenge for high speed networks. 

The delivery of continuous media requires high communication bandwidth and real­

time constraint. \Ve have studied two new CBR transmission schemes, called PCR­

assist CBR (PCBR) and PCR-assist Dual-Rate CBR (PDCBR), which employ the 

Program Clock References (PCR) embedded in the MPEG-2 Transport Streams to 

regulate their transmission. The two schemes provide flexible trade-off between buffer 

requirement and transmission rates. 
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Chapter 1 

Introduction 

The prevalence of computer networks has shifted the computing paradigm from 

mainframe or host-centric computing to network-centric computing. In host-centric 

computing, powerful computers and servers provide service to a large number of users 

in a time-sharing style. In network-centric computing, applications are executed 

distributedly on a collection of computers interconnected via local and wide area 

networks. Applications can be arranged to run on different computers, depending on 

data access patterns, types of processors available, amount of data to be transmitted, 

and the communication latency between computers sharing data. This allows the 

computer system best suited for a particular function to be fully utilized. 

The performance of network-centric applications can be dramatically improved 

with switch-based high-speed networks, such as High Performance Parallel Interface 

(HIPP!) [60, 61, 62, 63], Asynchronous Transfer Mode (ATM)[6, 36], and Fibre Chan­

nel [40, 64]. Compared to the legacy networks, these high-speed networks have the 

following superior features: 

• High data transfer rates. Switch-based high-speed networks provide higher data 

transfer rates than traditional local area networks, such as Ethernet, Token 

Ring, and Fiber Distributed Data Interface (FDDI) . The typical date transfer 

rates of ATM, HIPPI, and Fibre Channel are 155 or 622, 800, and 800 Megabits 

per second (Mbps), respectively. In the standards of these network technologies, 

transfer rates higher than Gigabits per second have also been defined. 

• Low latency. With hardware assistance in the physical and network layer, such 

1 



Chapter 1. Introduction 2 

as segmentation and re-assembly and fast packet switching in ATM platform, 

these high-speed networks have lower communication latency. We have ob­

served less than 300 µsec end-to-end latency at the application level between 

two processors [26]. As the technology involved in these networks matures, their 

hardware and software components will be refined to provide greater reductions 

in latency. 

• Scalability. In switch-based high-speed networks, each host usually has a dedi­

cated connection to the switch. The communication between each pair of hosts 

is established through the switch. A switch is capable of supporting multiple 

connections simultaneously. The aggregate throughput may easily be scaled up 

by connecting more hosts via additional links and switches. 

• Flexible paradigm. Diverse applications can be benefited by the flexible com­

munication paradigm provided by switch-based high-speed networks. For ex­

ample, multica.sting communication can be used for multimedia applications 

such as video-conferencing and computer supported cooperative work (CSC\i\T) . 

The switch can prevent multicasting traffic from disturbing other hosts whose 

communication paths do not overlap with the multicasting communication. 

• Support for multiple classes of service. By segmenting user data into fixed-size 

packets (as in ATM) or using multiple routing fabrics in a switch (as in Fibre 

Channel), traffic from different types of service may be multiplexed together. 

For example, ATM provides connection-oriented and connectionless circuits, re­

altime and non-realtime connections, and constant bit-rate and variable bit-rate 

transmission. Fibre Channel supports three classes of services (circuit-oriented 

connection, datagram transmission with acknowledgment, and datagram with­

out acknowledgment) and intermix of these service. 
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With this rich set of features, it is important to understand how network­

centric applications can benefit by using these networks as their underlying commu­

nication facilities. In this study, we focus on the high-speed network support for 

two important applications in network-centric computing: high-performance network 

computing and multimedia communications. 

1.1 High-Performance Network Computing 

Network computing refers to distributed parallel computing based on networks 

of computers. ·with the connectivity provided by various networks, it is possible to 

employ a collection of computers together for large computation tasks. One important 

feature of network computing is the potential of partitioning a computing task based 

on the service provided by different types of processors. Since networked computing 

environment consists of a variety of computing capabilities, its ability to execute 

subtasks of a computation on the processor most suited to a particular function 

enhances performance and improves resource utilization [23]. 

One important class of network computing is cluster computing. Cluster com­

puting enables a collection of locally interconnected multiprocessor computers (e.g. 

shared memory multiprocessors), workstations, or personal computers with off-the­

shelf components to be used as a general-purpose parallel computing system. Large 

computational problems can be solved more cost effectively by using the aggregate 

processing power and memory space of a cluster than using expensive special purpose 

computers. In cluster computing, ne~works of computers are controlled by a cluster 

management software (CMS) to provide a cluster computing environment (CCE). 

Distributed applications are implemented by partitioning the computation into sub­

tasks and assigning them to individual processes. Processes communicate with each 

other based on a message passing model. 
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Usually, the message passing model is supported by special communication 

libraries in a CCE. It allows flexible communications among collaborative processes, 

such as point-to-point communication, multicasting and broadcasting communication, 

group communication, and collective communication. Most of CCEs are designed to 

be used on a collection of general purpose computer systems such as Unix work­

stations. Their communication libraries are implemented with standard t ransport 

protocols, such as Transmission Control Protocol (TCP) or User Datagram Protocol 

(UDP), for portability. For example, the communication library of a popular CCE, 

Parallel Virtual Machine (PVM), is built on top of TCP, UDP, and Unix domain 

inter-process communication (IPC). Although a CCE provides flexible and portable 

communication facilities, the message exchange between processors usually has long 

latency. Latency is incurred by hardware and software components. Hardware la­

tency is incurred by memory and bus architecture of the host, network interface 

board, switches, and signal propagation delay. Software latency is incurred by inter­

actions among the host's operating system, device drivers, and high level protocols. 

Long communication latency not only affects the performance of cluster computing, 

but may also becomes the bottleneck. 

Fast message passing is achievable with the following three approaches. First, 

employment of switch-based high-speed networks increases the message passing speed. 

Second, efficient implementation of device drivers of network interfaces can improve 

the performance of message passing. Third, the performance can be further enhanced 

via bypassing the high-level protocol stack and using lower layer protocols to reduce 

the overhead of protocol process. In this study, we have especially concentrated 

our effort on minimizing the communication delay and maximizing the achievable 

throughput with the first and the third approaches. \Ve have also focused on cluster 

computing in homogeneous environments in order to use the third approach. In 

these environments, all participating· computers use same network interfaces and the 
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associated low-level application programming interface (API). 

We have enhanced the communication subsystem of PVM on clusters of work­

stations with either local ATM or HIPPI networks. From the experimental results, 

the achievable throughput is improved while reducing the end-to-end communica­

t ion delay. The study shows that not only the performance of a CCE is improved, 

the approaches also allow a CCE to utilize unique features of the switch-based high 

speed networks. For example, the inherent multicasting feature of ATM switch facili­

tates the point-to-multipoint communication in a CCE. The credit-based fl.ow control 

mechanism of HIPPI network reduces the chance of packet loss due to buffer overflow 

at the receiver. 

1.2 Meta-Computing 

The advantage of cluster computing have already attracted many institutes to 

use it as an alternative form of high-performance computing. One possible extension 

of cluster computing is to incorporate clusters of computers via metropolitan or wide 

area networks. This is called meta-computing. In meta-computing, an assembly of 

diverse high-performance computers or clusters of computers interconnected via local 

and wide area networks are perform as one computing system. A typical example 

is to employ a group of distinct computers with special functionalities from several 

supercomputer centers, which are geographically distributed in different locations, to 

solve large scientific problems. From the user's point of view, a meta-computer is 

a powerful virtual computing system that can be tailored to fulfill their processing 

requirements. 

It is obvious that networking is critical to the performance of meta-computing. 

Some of meta-computing environments use different network technologies in their 

local and wide area networks. For example, most of the supercomputer centers use 
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HIPPI as high-speed local area networks in their computing facilities. This is because 

HIPPI was originally designed by supercomputing community to provide transmission 

of large volume of data between supercomputers or high-end servers. For wide area 

networks, ATM is the de facto standard. Therefore, the internetworking of local area 

HIPPI networks and wide area ATM networks becomes an important issue for the 

meta-computing. 

Two feasible solutions for the problem, HIPP! Tunneling and IP Routing, have 

been studied in this thesis. HIPPI Tunneling provides interconnection between HIPPI 

and ATM at the physical layer while IP Routing forwards data packets between them 

at the network layer. In the former solution, HIPPI packets are encapsulated in the 

ATM Adaptation Layer (AAL) 5 packets and forwarded between HIPPI networks. 

In the last solution, HIPPI packets are delivered in a store-and-forward fashion with 

standard network routing approach. We have compared these two schemes in terms 

of their network connectivities, protocol overheads, and flow controls. Experimental 

results of both schemes are presented. 

1.3 Multimedia Communications 

Multimedia communications refer to the transmission of continuous media, 

such as video and audio, via any type of communication networks while satisfying their 

real-time constraint. It imposes challenges for high speed networks. First, the delivery 

of compressed continuous media requires .sustained high communication bandwidth. 

For example, video compressed in Motion Pictures Expert Group (MPEG)-2 format 

usually require 4 to 20 Mbps bandwidth. Second, in order to provide continuous 

playback of these media, video frames or audio clips must be received before the time 

they need to be displayed. 
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Video transmission has become an essential component of multimedia appli­

cations, such as video-conferencing, video on demand and distance learning. Before 

video or other continuous media are transmitted through the network, they must be 

compressed. Otherwise, the network will not be able to accommodate their bandwidth 

requirement. Among the compression schemes and network technologies, MPEG-2 

over ATM has been embraced by the industry to deliver high quality video and audio 

over high speed networks [20). MPEG-2 uses both intra-frame and inter-frame encod­

ing schemes[21). It achieves high compression ratio by the use of bi-directional motion 

compensation, which generates a more accurate prediction t hat requires fewer bits to 

represent. Thus, for constant video quality, MPEG-2 compressed video demonstrate 

the property of variable bit rate. 

Intuitively, variable bit-rate (VBR) service is suitable to deliver MPEG-2 com­

pressed video. However, VBR service supports statistical multiplexing feature by 

sharing the bandwidth dynamically among all traffic within the same service class. It 

only guarantees statistical quality of service based on a set of traffic descriptors, such 

as peak rate, burst length, and sustained rate. On the other hand, transmitting com­

pressed VBR video with traditional constant bit-rate (CBR) service often requires a 

large buffer at the viewer's side to absorb the difference between the rate that video 

is received and the rate that video is displayed. 

In this thesis, we have studied two new CBR transmission schemes which 

utilize the timing information (called Program Clock References, PCR) embedded in 

the MPEG-2 streams. PCRs are readings of the system clock of a MPEG-2 encoder. 

They are embedded in a stream periodically or not longer than 100 ms apart. PCRs 

are used for media synchronization and clock synchronization. Media synchronization 

allows multiple media (video, audio, and associated data) to be presented together 

at the right time. Clock synchronization forces the decoder to synchronize its clock 

with the source, thus reduces the buffer requirement. The two new schemes, called 
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PCR-assist CBR (PCBR) and PCR-assist Dual-Rate CBR (PDCBR), which employ 

the PCRs embedded in the MPEG-2 streams to regulate their transmission. 

The PCBR scheme uses PCRs to examine its transmission regularly. It holds 

up the transmission if it is ahead of schedule, based on the knowledge provided by 

PCRs. The PCBR scheme requires slightly higher transmission rates than the tra­

ditional CBR service. To reduce the transmission rate, we introduce the PDCBR 

scheme which dynamically changes its transmission between two rates. It uses a low 

rate if the transmission is ahead of schedule and uses a high rate if the transmis­

sion is behind of schedule. The experimental results of these two schemes with real 

video traces are presented. Based on the results, we have found that the twu schemes 

provide flexible trade-off between buffer requirement and transmission rates. 

1.4 Thesis Organization 

The organization of this thesis is as follows. In chapter two, we study the 

high speed network support for cluster computing. The popular PVM is used as 

the CCE on ATM and HIPPI local area networks. We first describe the popular 

P\"M with emphasis on its existing communication subsystem. Then we outline 

the approaches that we used to enhance the communication performance of PVM. 

PVM's communication subsystem was re-implemented directly using two low-level 

APis, Hewlett Packard's Link Level Access (LLA) and FORE Systems' ATM API 

[18]. The performance results of both existing and enhanced versions of PVM are 

presented. 

In chapter three, two solutions (HIPP! Tunneling and IP Routing) to form 

clusters of computers into meta-computers are presented. We first present how HIPPI 

networks are extended by encapsulating HIPPI packets on ATM networks. Then, we 

describe how IP packets are forwarded between HIPP! and ATM networks. The 
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experimental results of both approaches on the same environment are presented. In 

both schemes, we used TCP as the transport protocol and measure the end-to-end 

performance. The experimental results also demonstrate the impact of flow control 

of high level protocol on the communication performance. 

In chapter four, we first provide background information of MPEG-2 system 

and one of its bit streams, the MPEG-2 Transport Stream, which is designed for net­

work transmission. Then, we introduce the system model of the two new transmission 

schemes, PCBR and PDCBR. Their analytical models are used to determine the re­

quired buff er space and transmission rates. Finally, we present their performance 

with real video traces. 

In chapter five, we conclude the thesis with a summary of contributions. 



Chapter 2 

High-Speed Network Support for 
Cluster Computing 

Network computing offers a great potential for increasing the amount of com­

puting power and communication facility for large-scale distributed applications. The 

aggregate computing power of a cluster of workstations or personal computers (PC) 

interconnected by switch-based high-speed local area networks (LAN) can be em­

ployed to solve a variety of scientific and engineering problems. Because of mass 

production, commercial workstations and PCs have much better performance to 

price ratio than Massively Parallel Processing (MPP) machines, which uses propri­

etary components and interconnection networks. With switch-based networks such as 

HIPP I, ATM, or Fibre Channel, a cluster of workstations also provides cost-effective, 

high-bandwidth communications. The advantages of network computing have already 

attracted many companies to use it as an alternative form of high-performance com­

puting. A recent report shows that several companies in aeronautics industry utilize 

clusters of workstations for computational fluid dynamics processing and propulsion 

applications during off hours and weekends1 [59]. 

1 Three case studies of recent aeronautics industry experience show how workstation clusters are 
being used as alternative forms of high-performance computing: (1) McDonnell Douglas has as many 
as 400 workstations (with an average of 200 per session) divided into clusters of 20 workstations per 
parallel job doing CFD (computational fluid dynamics) processing during off hours and weekends. 
(2) Pratt & Whitney (P&W) has achieved the throughput equivalent of 16 CRAY C90 CPUs by 
using networked workstations at two sites. P&W harnessed 600 workstations in East Hartford plus 
300 in West Palm Beach during off hours. (3) Boeing has been conducting a variety of cluster pilot 
tests including interdepartmental testing on two workstation clusters. One cluster, completed in 
1994, involved 14-20 workstations dedicated to propulsion applications. 
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The following items are the motivational factors for considering the imple­

mentation of a parallel computing platform over switch-based high speed local area 

networks. 

• High data transfer rat'es. Traditional local are~ networks, such as Ethernet 

and Fiber Distributed Data Interface (FDDI), are shared medium architec­

tures. In shared medium architectures, network capacity is shared among all 

the interconnected processors. Aggregate network capacity is limited to speeds 

between 10 Mbits/sec (Ethernet) to 100 Mbits/sec (FDDI). High speed switch­

based network architectures, such as the Hlgh Performance Parallel Interface 

(HIPP!), Fibre Channel, and Asynchronous Transfer Mode (ATM) feature ag­

gregate throughput of several gigabits/sec. Moreover each host usually has a 

dedicated high-speed (155 Mbits/sec or more) connection to the switch. 

• Scalability. In shared medium architectures, since network capacity is shared 

among all the interconnected processors, as the number of processing nodes is 

increased, network saturation quickly occurs. High-speed switch-based networks 

may easily be scaled up, in t erms of processing power or storage, by simply 

connecting the new devices via additional l~nks and switches. 

• Potentially low latency. Inherent features, such as dedicated connections, of 

switch-based high-speed networks lend themselves to potentially supporting low 

latency data transfers. However currently, as shown in Section 2.3.5.3, tradi­

tional networks, like Ethernet, provide slightly lower latency than ATM. This 

is because Ethernet is a mature technology, and hence software and hardware 

components have been fine-tuned to provide low latency. As the technology 

involved in high-speed switch-based networks matures, their software and hard­

ware components will, likewise, be fine-tuned to provide greater reductions in 

latency. 
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• Paradigm flexibility. The attributes of switch-based high speed networks are 

likely to foster performance improvements in many existing network applica­

tions, as well as increase the feasibility of potential network applications. These 

applications may belong to disparate paradigms. For instance, high data trans­

fer rates are very attractive to applications requiring large data shipments such 

as visualization applications. Also switch-based networks inherently support 

efficient multicasting, and thus may be attractive for supporting distributed 

shared memory, where multicasting operations are frequently used to update, 

lock or unlock multiple data copies. 

The typical methodology for cluster computing is based on a software frame­

work that executes on participating workstations. The cluster is controlled by a 

cluster management software (CMS) which is designed to administer and manage ap­

plication jobs submitt ed to a cluster. It may also supports functions like configuration, 

job scheduling and monitoring, load balancing, process management, resource utiliza­

tion, and fault tolerance. The software framework provides a parallel programming 

environment that allows programmers to implement distributed algorithms based on 

a message passing model. Distributed applications utilize the computational power 

and communication facility of the cluster by using special libraries provided by the 

software framework. Those libraries usually support process management, synchro­

nization, and message passing based on standard network protocols. Examples of such 

software framework are PVM (Parallel Virtual Machine) [4, 23, 42], P4 [7], Express 

[37], Linda [8], and MPI (Message Passing Interface) [19]. 

Given an environment consisting of a cluster of workstations interconnected by 

a LAN, it is well-known among programmers that message passing facilities lack the 

performance found in distributed memory computers such as the Connection iv1achine 

CM-5 or the nCUBE which provides specialized high speed switch(es) or interconnect 
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hardware. This is especially true about current slow speed (e.g., Ethernet) LAN. 

However, fast message passing is possible via three approaches. First, the change 

of the underlying network to a high speed network greatly increases the message 

passing speed. Second, improving the efficiency of device drivers of network interfaces. 

Third, bypassing the high-level protocol stack and using a lower layer protocol reduces 

overhead, and thus increases message passing speed. In this study, we have adopted 

the first and the third approaches to improve communication performance of cluster 

computing in homogeneous environments. 

To reduce the communication latency and exploit high speed networks, we 

enhanced a popular message-passing library, PVM, on clusters of workstations. The 

PVM message passing library was originally implemented using the BSD socket pro­

gramming interface. The transport protocols used are TCP, UDP, and Unix domain 

inter-process communication mechanism. Figure 2.1 shows how PVM was imple­

mented on the BSD socket programming interface (on the right side of Figure 2.1). 

The main idea of improving PVM's message passing is to reduce the overhead in­

curred by the high-level protocols. The overhead incurred by the high-level protocols 

and the delay caused by the interactions with the host operating system can be varied 

by using different Application Programming Interfaces (APis) which are available on 

different protocol layers [41]. In order to provide as close to optimal performance as 

possible, part of PVM's communication subsystem is re-implemented directly using 

two APis, Hewlett Packard's Link Level Access (LLA) and FORE's ATM API [18], 

( on the left side of Figure 2.1) instead of the BSD socket interface. Since both APis 

reside at a lower layer in the protocol stack, the overhead incurred when directly 

using these APis is expected to be lower than the overhead incurred by using the 

BSD sockets programming APL 

In Section 2.2, we provide a brief description of PVM with emphasis on its 

existing communication subsystem. The re-implementation of PVM using FORE's 
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ATM API on a cluster of workstations interconnected via a local ATM network is 

presented in Section 2.3. Another re-implementation of PVM using HP's LLA on 

a cluster of workstations interconnected via a local HIPP! network is presented in 

Section 2.4. 

Applications PYM (Parallel Virtual Machine) 

Socket Interface 

TCP Unix Domain UDP 

ATMAPI LLA IP 

Device Drivers 

Network Interfaces 

(" ATM/HIPPI Networks 

Figure 2.1: Protocol hierarchy of PVM's communication subsystem. 

2.1 Related Work 

Several communication models have been proposed to enhance the perfor­

mance of message passing for cluster computing [14, 57, 5, 54, 56, 13]. The Network 

of \Vorkstations (NOW) project at the University of California at Berkeley demon­

strates a new approach to large-scale system design enabled by scalable interconnect 
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networks that provides low latency and high bandwidth [14]. The interconnect was 

formed as a variant of a Fat-tree to connect more than one hundred workstations. 

Active Messages are the basic communication primitives in NOW [57]. The basic 

idea of Active Messages is that the control information at the head of a message is 

the address of a user-level instruction sequence that will extract the message from 

the network on the message arrival and integrate it into the on-going computation at 

the receiver side. The low overhead of Active Messages for small messages is due to 

elimination of buffering and rapid handling upon message arrival. Active Messages 

is a low-level communication primitive for homogeneous clusters. General-purpose 

message passing libraries or parallel programming models, such as PYM or MPI, can 

be implemented upon its support. 

The SHRIMP multicomputer project at Princeton University studies the use of 

commodity PCs or workstations and commercially available routing switches to con­

struct scalable multicomputers [5]. SHRIMP uses custom designed network interfaces 

which allow processes to establish channels connecting virtual memory pages on two 

nodes such that data written into a page on one side gets propagated automatically 

to the other side. To create a virtual memory mapping from one node to another, 

appropriate physical mapping information in the page tables of both network inter­

faces need to be set up. Based on the virtual memory-mapped communication model, 

implementations on two network interfaces show that the model eliminates operating 

system involvement in communication, supports user-level buffer management, and 

minimizes software communication overhead [12]. A similar memory-based network 

access model was proposed by Thekkath et al [54). Their communication model con­

sists of a set of primitives to access remote memory. These primitives allow processes 

on one node access to a set of remote memory segments, which are contiguous pieces 

of another process' virtual memory. 

A new abstraction for low-latency communication was proposed in the U-Net 
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communication architecture [56] . The U-N et model virtualizes the network interface 

so that each process has the illusion of owning the interface to the network. The 

basic idea in U-Net is to incorporate message multiplexing and demultiplexing into 

the network interface and to move buffer management and protocol processing to 

user-level. The approach basically removes the kernel from the critical path of send­

ing and receiving messages. The processing overhead on messages can be reduced. 

V1/ith the influence of the U-Net architecture and other research experiences, the Vir­

tual Interface architecture (VI architecture) is being jointly specified by a number of 

companies [13] for cluster computing. The VI architecture defines mechanisms for 

low-latency, high-bandwidth message-passing for clusters of high-volume servers or 

workstations. In VI architecture, a process is allowed to send and receive messages 

to and from the network interface without the involvement of the operating system. 

2.2 Parallel Virtual Machine 

Parallel Virt ual Machine (PVM) [4, 23, 42] is a software system for the devel­

opment and execution of parallel applications. It allows an interconnected collection 

of independent heterogeneous computers to appear as a single virtual computational 

resource or a single parallel machine. The independent machines may be ordinary 

workstations, multiprocessors, supercomputers, or specialized processors. The inter­

connection network may be a general network such as an Ethernet, the Internet, or 

any high-speed network. 

Computing resources are accessed by applications via a suite of PVM defined 

user-interface primitives. The PVM suite provides a standard interface that supports 

common parallel processing paradigms, such as message passing and shared mem­

ory. An application would embed well-defined PVM primitives in their procedural 

host language, usually C or Fortran. The PVM suite provides primitives for such 
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operations as point-to-point data transfer, message broadcasting, mutual exclusion, 

process control, and barrier synchronization. In most cases, the user views PVM as 

a loosely coupled, distributed memory computer with message passing capabilities 

programmable in C or Fortran. 

In a PVM virtual machine environment there exists a support process, called 

pvmd, or daemon process, which executes on each host. Pvmds execute independently 

from one another. During normal operations they are considered equal peer processes. 

However, during startup, reconfigurations, or operations such as multicasting, there 

exists a master-slave relationship between pvmds. Each pvmd serves as a message 

router and a controller. Pvmds are used to exchange network configuration informa­

tion, and dynamically allocate memory to store packets traveling between distributed 

tasks. Pvmds are also responsible for all application component processes (tasks) 

executing on their hosts. 

Figure 2.2 depicts a network of three hosts. Each host has a local pvmd and 

a number of local tasks. Communications between hosts may occur as a task-task, 

task-pvmd-pvmd-task, or pvmd-pvmd interaction. Communication within a host, 

task-pvmd, occurs via Unix domain sockets. PVM message routing will be discussed 

in detail in Section 2.2.1. In Figure 2.2, Machine Chas two tasks, task 6 and a console 

program. A console program may be used to perform tasks such as configuring the 

virtual machine, starting and killing processes, and checking and collecting status 

information of processes. The network of independent PVM pvmds forms the basis 

for support of important features for a cluster computing environment. These features 

include dynamic reconfigurability, fault tolerance and scalability. 

PVM provides dynamic reconfigurability by allowing hosts to enter and exit 

the virtual machine via notification messages [42] . PVM version 3 also supports the 

notion of dynamic process groups. Processes can belong to multiple named groups, 

and groups can be changed dynamically at any time during a computation. Functions 
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Figure 2.2: An instance of PVM configuration 

18 

that logically deal with groups of tasks such as broadcast and barrier synchronization 

use the user's explicitly defined group names as arguments. Routines are provided 

for processes to join and leave a named group. This dynamic reconfigurability also 

provides support for scalability and fault tolerance. 

Since management is decentralized and localized, a PVM virtual machine may 

potentially scale up to hundreds of hosts executing thousands of tasks. However, 

the largest reported virtual machines consist of approximately 100 hosts [42] . This 

is due to, in part, the lack of availability of high-speed networks. Also, in general, 

there do not exist interesting algorithms which can make use of hundreds of relatively 

fast processors interconnected by a low-speed network. The growing availability of 

high-speed networks may make very large virtual machines more likely and feasible. 
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2.2.1 The Communication Subsystem of PVM 

As shown in Figure 2.1, the three main components of PVM are the pvmd 

daemon program, libpvm programming library, and the applications which are running 

as PVM tasks. In this section, we discuss the role of pvmd daemon programs and 

the libpvm library in the communication subsystem of PVM. We also describe how 

these components employ transport protocols and control protocols to provide process 

control, dynamic configuration, and reliable transmission of messages and packets. 

2.2.1.1 Components of Communication Subsystem 

The pvmd daemon process is running on each participating host. The pvmd 

serves as a message router and process controller. As a message router, the pvmd 

provides intra-host and inter-host communications. Local tasks (application processes 

running on the same host) can exchange messages with one another through the pvmd. 

Local tasks can also request pvmd to forward messages to remote tasks ( application 

processes running on different hosts). The message exchange between local tasks and 

remote tasks will be discussed in detail in Section 2.2.1.4. 

The first pvmd manually started by a user is the master pvmd, others invoked 

by the master pvmd are slave pvmds. Many of the control and management operations 

are done by the collaboration of the master pvmd and slave pvmds. Some of the 

operations are: startup of remote PVM tasks, addition or deletion of hosts, and fault 

detection and recovery. A special pvmd, called shadow pvmd, is used by the master 

pvmd to startup new slave pvmds. The shadow pvmd runs on the same host as the 

master pvmd. The purpose of using shadow pvmd is to prevent the master pvmd 

from blocking because of the startup of slave pvmds. The pvmd is more robust than 

application tasks. An idle pvmd will occasionally check if others are still running. 

The main body of pvmd is a work loop which repeatedly executes the following jobs. 
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• Send packets to remote pvmds. Th~ packet could contain a message input from 

local tasks. In this case, the pvmd acts like a message router. The packet 

could also be control messages that related a certain task between pvmds. In 

Section 2.2.1.3, we will discuss the control and management protocols used 

between pvmds and between a pvmd and a task. 

• Receive packets from a remote pvmd. If these are messages carried in the 

packet, pvmd will forward the message to the corresponding local tasks. The 

packet might be a control message, such as the host table issued from the master 

pvmd to slave pvmds. The host table describes the configuration of the virtual 

machine. 

• Accept the new connection from a task. The first time an application uses a 

PVM system call, the process becomes a new PVM task by requesting connec­

tion with its local pvmd. The pvmd authenticates the new PVM task before 

granting the new connection. 

• Output messages to local tasks. The pvmd forwards messages destined to local 

tasks. The message could come from remote tasks or local tasks. 

• Input messages from local tasks. The pvmd receives a message from local tasks. 

The pvmd uses Unix domain socket for local message and standard network 

protocol for forwarding the message to remote sites. 

The libpvm library provides a programming interface which allows applica­

tions to communicate with the pvmd and other tasks. The libpvm contains routines 

for conversion of data formats, message passing, and PVM system calls for process 

control, dynamic configuration, and barrier synchronization. A fast message passing 

mechanism based on TCP /IP is also included in the libpvm library. The message 
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passing mechanism sets up direct connections between two tasks instead of using the 

routing function provided by the pvmd. For example, in Figure 2.2, there is a TCP 

connection between task 1 on Machine A and task 6 on Machine C. Each application 

process is linked with the libpvm library and executed as a PVM task. The message 

passing model supported by the PVM requires users to partition their tasks properly 

based on their distributed algorithms. 

2.2.1.2 Transport Protocols 

The communication subsystem of PVM is based on TCP, UDP, and Unix do­

main socket. TCP is a stream-oriented protocol. It supports the reliable, sequenced 

and unduplicated flow of data without record boundaries. UDP is a datagram pro­

tocol which is conceptually similar to conventional packet switched networks such as 

Ethernet. Because of the consideration of scalability, overhead, and fault tolerance, 

PVM uses UDP sockets for the communications between pvmds. UDP is a datagram 

protocol which provides a connectionless unreliable datagram service. Messages de­

livered via UDP sockets are not guaranteed to be in-order, reliable or unduplicated. 

Therefore, PVM uses its own acknowledgment and retransmission mechanism on top 

of UDP sockets for reliable transmission. 

For the communications among local tasks and between tasks and the pvmd, 

PYM uses Unix domain sockets as the message exchange mechanism. In earlier 

versions of PVM (before version 3.3), TCP sockets were used as the message exchange 

mechanism. The Unix domain sockets were later adopted for better transfer rate and 

lower latency. A local task can use the following routing mode to communicate with 

remote tasks: (1) Normal Routing mode, and (2) Direct Routing mode. We will 

discuss these two routing modes in Section 2.2.1.4. In Table 2.1, we summarize the 

transport protocols or inter-process communications used by PVM. 
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Table 2.1: Transpor' protocols or inter-process communications used by PVM. 

II loc, · task I remote task I local pvmd I remote pvmd I 
local task Unix domain TCP or pvmd Unix domain 

remote task TCP or pvmd 
local pvmd Unix domain UDP with ACK 

remote pvmd UDP with ACK.: 

PVM has its own header formats in messages and packets. The message header 

contains a integer tag for message type and an encoding field to pass the encoding style 

of the message. The message type can be used by PVM tasks to differentiate messages. 

The encoding field is used to exchange messages in a heterogeneous environment which 

uses different data formats. The header has two formats, one for packets exchanging 

among pvmds and the other one for packets exchanging between the pvmd and tasks. 

Some of the common fields appear in both formats are source task identifier and 

destination task identifier. Because the data streams between entities of PVM contain 

headers and data. A PVM entity always reads header first and then the message or 

packet body. A simple optimization can be applied to reduce the read operation from 

two-step reading to one-step reading. 

2.2.1.3 Control and Management Protocols 

Based on the communication mechanism provided by TCP, UDP and Unix 

domain sockets, PVM uses its high-level protocols for control and management pur­

poses. The high-level control and management protocols are Task-Daemon protocol 

and Daemon-Daemon protocol. Many configuration operations are performed by em­

ploying both protocols. For example, the addition of a new host (start a new pvmd) 

is performed by pvmds with Daemon-Daemon protocol. A case of employing both 

protocols to set up a multicasting connection is presented in Section 2.2.1.4. 
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There are two types of important interactions which are frequently used: task­

to-pvmd communication and pvmd-to-pvmd communication. As mentioned above, 

task-to-pvmd communication occurs via Unix domain sockets, and pvmd-to-pvmd 

communications occurs via UDP in the Normal mode. We illustrate how these inter­

actions occur by discussing some common PVM constructs. 

pvm_addhost() is executed when a new host joins a virtual machine. A task 

on an existing host of the virtual machine, either on the master host or a slave host, 

initiates the pvm_addhost() function. If a task on an existing slave host initiates the 

function, a task-to-pvmd interaction occurs, i.e., the initiating task sends an "add 

host" message to its local pvmd and waits for an acknowledgment. Then the local 

pvmd of the initiating host sends an "add host" message to the master pvmd, i.e., a 

pvmd-to-pvmd communication occurs. The master pvmd then forks a process pvmd 

on the new host and takes other appropriate actions to include the new host in the 

virtual machine. When these actions are completed, the master daemon sends an 

acknowledgment to the local pvmd of the initiating slave host, i.e., pvmd-to-pvmd 

interaction, and the local pvmd sends an acknowledgment to the task, i.e., task-to­

pvmd interaction. Similar actions occur if the initiating task is on the master host. 

Some other PVM constructs which use both task-to-pvmd and pvmd-pvmd in­

teractions include pvm_delhost(), delete hosts from a virtual machine, and pvm_mcast, 

execute a multicast operation. An example of a PVM construct which uses only task­

to-pvmd interaction is pvm_config(), where a task fetches its machine configuration 

information from its local pvmd. 

2.2.1.4 Message and Packet Routing 

In this section, we first briefly introduce the PVM system calls used for message 

passing. Then discuss the two message routing options available for communications 
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between local PYM tasks and remote tasks. We also provide a detail description of 

PYM's implementation of multicasting communications. 

PVM System Calls for Message Passing 

Sending a message with PYM is composed of three steps. First, a send buffer 

must be initialized by a call to pvm_initsend() or pvm_mkbuf(). Second, the message 

must be packed into a buffer using any number of pvm_pk*() routines. Each of the 

pvm_pk*() routines packs an array of a given data type into an active send buffer. 

The pvm_pk*() routines also perform data type conversation in a heterogeneous envi­

ronment. Calls to pvm_unpk*() routines unpack the message from the active receive 

buffer into an array of a given data type. Third, the message is sent to another 

process by calling the pvm..send() routine or the pvm_mcast() (multicasting) routine. 

The message is received by calling either a blocking receive using pvm_recv() or a 

non-blocking receive using pvm_probe() and pvm_recv(). 

Normal Routing Mode and Direct Routing Mode 

PVM provides two types of communication modes, Normal Routing mode and 

Direct Routing mode. In the Normal Routing mode, in order for a source task to 

communicate with a remote task, it must first communicate through a Unix domain 

socket to its local pvmd daemon. The local pvmd daemon then communicates through 

a UDP socket to the remote pvmd. The remote pvmd then communicates to the 

destination task through a Unix domain socket. Thus two Unix domain connections 

and two UDP connections are required for a bi-directional communication between 

the two communicating application processes. In the Direct Routing mode, PYM sets 

up a direct TCP connection between the two communicating processes or tasks. The 

detailed transmission facilities of the Direct and Normal Routing modes are hidden 

from the end-users. Figure 2.3 depicts these two communication modes. 
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Figure 2.3: Comparison of PVM Normal and PVM Direct modes 

The advantage of the Direct Routing mode is that it provides a more efficient 

communication path than the Normal Routing mode. A previous report observed 

more than a twofold increase in communication performance when using Direct Rout­

ing mode [41). The main reason PVM provides the Normal Routing mode, despite its 

lower performance, is because of the limited number of file descriptors some Unix sys­

tems provide. Each open Unix domain or TCP connection consumes a file descriptor. 

Some operating systems limit the number of open files to as few as 32. If a virtual 

machine consists of N hosts, each machine must have N - l connections to the other 

hosts. Thus the drawback of the Direct Routing mode is its limited scalability [42]. 

Multicasting 

Efficient support for multicasting is important because multicast data flow 

patterns are often found in parallel programming applications. It is also important in 
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a virtual machine environment because the host machines which comprise the virtual 

machine must regularly be coordinated, i.e., updated periodically when the virtual 

machine configuration changes, e.g., a host is added/deleted to/from the host pool. 

For portability reason, PVM only assumes that the underlying network has 

point-to-point communication mechanism. The multicast function was implemented 

by invoking a sequential series of send primitives. A previous study h~ demonstrated 

that PVM can be re-implemented to take advantage of the inherent multicast nature 

of ATM networks [10]. PVM's implementation of multicast communications replies 

on both Task-Daemon protocol and Daemon-Daemon protocol. We will use Figure 2.4 

to explain the two-phase implementation of multicasting communications. 

Task List 

I 11 fil 
123456789 Local Task List 

[TI] -
I 2 3 . 

Host X 

Host List 

CHIii 
X Y Z 

Local Task Lisi -6 7 8 9 

Host Y 

HostZ 

Figure 2.4: Two-phase multicasting communications. 
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• Phase I: Set up a multicasting connection. To initiate a multicast communica­

tion, the sender task uses the Task-Daemon protocol for requesting the local 

pvmd to setup a multicasting connection. The sender task sends the task id list 

and the message to its local pvmd. The task id list consists of a list of tasks 

which will be receiving the multicasting message. The sender's pvmd sorts the 

list according to the receiving hosts. For example, in Figure 2.4, Host X corre­

sponds to the unshaded boxes (task id 1, 2, and 3); Host Y corresponds to the 

lightly shaded boxes (task id 4 and 5); Host Z corresponds to the darkly shaded 

boxes (task id 6 to 9). The task id list is distributed to the pvmd of each host 

which has a task in the sender's task id list. N sends are required if there are N 

remote receiving hosts. Now the sender's local pvmd need only retain a list of 

the hosts, instead of a list of the task ids, for which the data must be multicas­

ted. The receiving hosts now have a list of local tasks for which the multicast 

is intended. The multicasting of task id list is performed by pvmds with the 

Daemon-Daemon protocol. Finally, a unique multicasting address is assigned 

to each pvm_mcast() and sent back the sender's task. This also completes the 

Task-Daemon protocol between the sender task and its local pvmd. 

• Phase JI: Message forwarding. The sender's pvmd multicasts the data to the 

pvmds of all the hosts on the host list via N serial sends ( assuming there are 

N remote receiving hosts). Each receiving pvmd receives the data and then 

distributes it to the appropriate tasks on its local task list. 

2.3 Enhanced PVM Communications on ATM Net­

works 

Emulating a parallel machine via a collection of homogeneous independent 
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hosts and a general-purpose local area network has obvious advantages such as cost­

effectiveness and large aggregate processing power and memory. However, the abil­

ity of most current general-purpose local area networks to support communication­

intensive parallel applications has been questionable. Today with the emergence of 

several high-speed switch-based networks, such as HIPPI, Fibre Channel, and ATM, 

the possibility of networks effectively supporting communication-intensive parallel 

applications may soon prove a reality. 

Several advantages to cluster computing exists. First, by using independent 

commercially available systems and a general local area network, advances in proces­

sor and network technology may be readily incorporated. Second, due to the large 

amount of memory and processing power available in the aggregate collection of in­

dividual host systems, very large applications may be executed using a collection of 

relatively low-priced host systems. Third, the underlying network may be able to 

support high-speed I/0 to applications, for instance, by using disk arrays. 

One of the factors which previously caused much skepticism on the feasibility 

of network-based parallel computing was the limitations imposed by using traditional 

local area networks, such as an Ethernet, as the system interconnect. For many typ­

ical network applications which require only occasional file transfers, or infrequent 

small amounts of data to be transmitted between workstations, an Ethernet based 

cluster of workstations is adequate. However, for network-based applications, such 

as communication intensive, course grain parallel applications, it is well known that 

traditional networks such as Ethernet are incapable of providing adequate perfor­

mance. Thus in our study we have chosen to use a high-speed transport mode as the 

supporting communication medium. 
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2.3.1 PVM and ATM Advantages 

The following enumerates the advantages of the particular parallel program­

ming environment (PVM) and high speed network platform (ATM) we have chosen 

as the basis for our cluster computing environment. 

• Fast message passing. Given an environment consisting of a cluster of work­

stations interconnected by a local area network, it is well-known among par­

allel programmers that message passing facilities lack the performance found 

in distributed memory computers such as the Connection Machine CM-5 or 

the nCube. This is because most distributed memory computers provide spe­

cialized hardware - high speed switch(es) and interconnect hardware - which 

provide speeds and latencies that local area networks cannot match. This is 

especially true about current available slow speed (e.g., Ethernet) local area 

networks. Thus PVM designers originally developed t heir system with assump­

tions about the underlying network being slow and unreliable. For this reason, 

as well as for portability reasons, the BSD socket programming interface was 

chosen to act as the interface between the message passing interface and the 

network medium. Fast message passing via PVM is possible via two changes. 

First, the change in the underlying network to a high speed network, such as 

ATM, greatly increases the message passing speed. Second, bypassing the BSD 

socket programming interface and using a lower layer protocol reduces overhead, 

and thus increases message passing speed. 

• PVM application portability. As mentioned before, PVM is a widely used mes­

sage passing library for distributed computing. It is available to the public 

and is easily installable. Moreover, several vendors including Cray Research, 

Convex, SGI, IBM, DEC and Thinking Machines have committed to supplying 

and supporting PVM on their systems. Thus PVM programs are portable from 



Chapter 2. High-Speed Network Support for Cluster Computing 30 

many distributed memory machines to a cluster of workstations interconnected 

by a local or wide area network. 

• Network flexibility. ATM provides a great deal of flexibility in terms of support­

ing varying types of application traffic. It may support constant bit rate traffic, 

variable bit rate traffic, traffic with low data loss tolerances, high bandwidth 

requirements, and delay-sensitive data. Much of ATM's flexibility is due to its 

transport mechanisms such as its fixed size data cells, and switch-based network 

architecture. Features of ATM are explained in greater detail in Section 2.3.2. 

• Availability of high-speed network components. The past year has seeri the bur­

geoning of high speed local area networks, namely ATM networks. Although 

the ATM standard is not yet fully complete, the major aspects of the definition 

of the ATM high speed transport mechanism are complete. Optical lines based 

upon SONET, the most commonly associa.ted physical layer for ATM, are avail­

able. ATM local area switches and ATM interface cards for most workstations 

are also readily available. Current market forces as well as ATM's wide-spread 

acceptance in the networking community has caused it become the most likely 

transport mode for high-speed local and wide-area networking [41]. 

In this study, we sought to achieve high performance (e.g., low latency, high 

bandwidth) not only by implementing PVM on a high speed medium, such as ATM, 

but also by minimizing possible sources of overhead. Overhead is incurred by hard­

ware and software components. Hardware overhead, which is incurred by memory 

and bus architecture of the host, the network interface board, the switch, and the 

signal propagation delay, is a function of the particular system components which are 

used, and hence considered unavoidable in this study. Software overhead is incurred 

by interactions with the host system's operating system, device driver and higher 
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layer protocols. The device driver overhead is mainly caused by the design of the 

host interface and the bus architecture of the host computer. The overhead incurred 

by the high-level protocols and the delay caused by the interactions with the host op­

erating system can be varied by using different Application Programming Interfaces 

(APis) which are available on different communication layers. 

A protocol stack is a conceptual diagram where each layer in the stack corre­

sponds to a set of services provided to the adjacent higher layer. For example, the TCP 

and UDP layer corresponds to the transport layer, as defined by the Open Systems 

Interconnection Reference Model. The major service that the transport layer protocol 

provide to the higher layer is end-to-end service, i.e., transport from the source ma­

chine to the destination machine. TCP provides reliable connection-oriented service; 

UDP provides unreliable packet-oriented service. 

Figure 2.1 depicts the layers of a protocol stack. A user application mes­

sage ,vould have to be processed at each layer of the stack, beginning at the ap­

plication layer, until it is finally in the form suitable for physical transmission via 

the network medium. Each layer performs processing on the user message by frag­

menting/reassembling the message and appending/stripping the appropriate headers, 

depending upon whether the message is traversing down or up the protocol stack. 

Figure 2.1 shows how PYM may be implemented on the BSD socket programming 

interface (on the right side of Figure 2.1) or directly on the ATM API (on the left 

side of Figure 2.1). Since, the ATM API resides at a lower layer in the protocol stack, 

the overhead incurred when directly using this API is expected to be lower than the 

overhead incurred by using the BSD sockets programming API. A previous study [41) 

validated this performance gain when evaluating the performance of four API's: Fore 

Systems' ATM API [18], BSD socket programming interface [39, 45], Sun's Remote 

Procedure Call (RPC) [45], and PYM over the BSD socket programming interface 

[42). The Fore Systems' ATM API provided the best performance of the four APis. 
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The existing PVM message passing library is implemented using the BSD 

socket programming interface. The transport protocols used are TCP and UDP. In 

order to provide as close to optimal performance as possible, in our study, PVM was 

implemented directly over the ATM Adaptation layer protocol via the Fore Systems' 

ATM API instead of the BSD socket interface. The experimental environment for this 

study consisted of several workstations interconnected via a Fore Systems' ASX-100 

ATM switch. Details of this environment are discussed in Section 2.3.5. 

Despite the performance gains of using a lower layer protocol, the consequen­

tial drawback is that it lacks features found in higher layer APis such as distributed 

programming support, loss-free transmission, and flow control. It also lacks the porta­

bility found in the original PVM over BSD socket programming interface. In our 

study, we provided two main enhancements to the existing communications facilities. 

Since the Fore Systems' ATM API provides only "best-effort" delivery and no flow 

control, we implemented an end-to-end protocol which provides cell retransmissions 

as well as imposes flow control. We also took advantage of the inherent multicasting 

capability provided by the ATM switch to significantly improve upon existing PVM 

multicasting functionality. 

2.3.2 ATM: the Next Generation Network 

ATM [6, 36] is a standard developed by the networking standards community 

(CCITT) which specifies the network layer protocol of broadband networks (B-ISDNs 

- Broadband Integrated Services Digital Network). It specifies a fast packet switched 

network where data is fragmented into fixed-size 53 byte cells. Cells consist of 53 

bytes - a 5 byte header and a 48 byte information payload. ATM resides above the 

physical layer and directly below the ATM Adaptation Layer (AAL). 

ATM is expected to serve as· the transport network for a wide spectrum of 
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traffic types with varying performance requirements. Using the statistical sharing of 

network resources ( e.g. bandwidth, processing buffers, etc.), it is expected to effi­

ciently support multiple transport rates from multiple users with stringent require­

ments on loss, end-to-end delay, and cell-interarrival delay. Even though the ATM 

standard was initially developed and intended to serve as an infrastructure for wide­

area (telecommunications) networks, it is currently being much more rapidly adopted 

for local area networks. 

ATM is distinguished from conventional local area networks, such as Ethernet 

and FDDI, by the following features: 

• Connection-oriented service. ATM provides a virtual connection for any two 

physically dislocated processes which wish to communicate. All cells from the 

same call traverse the same physical path, or virtual connection. Virtual connec­

tions are specified by a virtual circuit ident ifier (VCI) and virtual path identifier 

(VPI), found in each cell header. The VPI and VCI are used for multiplexing, 

demultiplexing, and switching the cells through the network. ATM connection­

oriented service has the potential to provide low-latency. 

• High data transfer rates. ATM is independent of any particular physical layer, 

but is most commonly associated with Synchronous Optical Network (SONET) . 

SONET defines a standard set of optical interfaces for network transport. It is 

a hierarchy of optical signals that are multiples of a basic signal rate of 51.84 

Mbits/sec called OC-1 (Optical Carrier Level 1). OC-3 (155.52 Mbits/sec) 

and OC-12 (622.08 Mbits/sec) have been designated as the customer access 

rates in B-ISDN. OC-3, 155 Mbits/sec, is the rate currently supported by first 

generation ATM networks. Recall, that the aggregate throughput of current 

available high-speed shared-medium networks, such as FDDI, is 100 Mbits/sec. 

Since ATM is a switch-based network architecture, the aggregate throughput 
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is usually several gigabits. The ASX-100 Fore switch, used in our experiments, 

provides an aggregate throughput of 2.4 Gbits/sec. Each host on an OC-3 

ATM network has access to a link speed of 155 Mbits/sec. In a FDDI network, 

all hosts attached to the network must share the same 100 Mbits/sec network 

capacity. 

• Support for multiple classes of service. ATM was intended for the support of 

multiple classes of service, i.e., classes of traffic with varying quality of service 

parameters such as cell loss, delay, cell inter-arrival times, and data transfer 

rates. These parameters reflect the varying types of traffic ATM was intended 

to support, such as connection-oriented traffic types (e.g., audio), connection­

less traffic types (e.g., file transfers), etc. The purpose of the ATM adaptation 

layer (AAL) is to provide a link between the services required by higher network 

layers and the generic ATM cells used by the ATM layer. Five AAL protocols 

are defined for various types of services, such as constant bit rate services, 

connection-oriented/ connection-less services, etc. 

The overriding factor which distinguishes ATM from other network architec­

tures lies in its flexibility. It is based upon a high-speed medium and thus provides the 

basic infrastructure for supporting high-speed transport. It also provides a network 

architecture which is based upon fast packet switching which is suitable for a wide 

range of applications. 

2.3.3 Application Programming Interface 

Figure 2.1 depicts the protocol stack from the application layer to the network 

transport (ATM) layer. From this figure, we note that there are two possible APis 

which we can use to interface to the ATM AAL layers - namely the BSD socket 
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programming interface which includes TCP /IP and UDP /IP, or the ATM APL In 

this study, we sought to minimize unnecessary overhead [41), and hence chose to 

implement PYM on the Fore Systems' ATM API rather than the BSD socket interface. 

The Fore Systems' ATM API library routines support the client-server model. 

Consistent with ATM specifications, a connection (Switched Virtual Circuit or Per­

manent Virtual Circuit) must be established before data can be exchanged between 

a client and a server. Typical connection-oriented client-server interactions described 

below may then proceed. 

The Fore Systems' user-level ATM library routines provide a socket-like inter­

face. Applications first use atm_open() to open a file descriptor and then bind a local 

Application Service Access Point (ASAP) to the file descriptor with atm_bind(). Each 

ASAP is unique for a given end-system and is comprised·of an ATM switch identifier 

and a port number on the switch. Connections are established using atm_connect() 

within the client process in combination with atm_listen() and atm_accept() within 

the server process. These operations allow the data transfer to be specified as simplex, 

duplex, or multicast. atm_send(} and atm_recv() are used to transfer user messages. 

One protocol data unit (PDU) is transferred on each call. The maximum size of 

the PDU depends on the AAL selected for the connection and the constraints of the 

underlying socket-based or stream-based device driver implementation. Applications 

can select the type of ATM AAL to be used for data exchange. In the Fore Sys­

tems' implementation, AAL Types 1 and 2 are not currently supported by Series-200 

interfaces, and Type 3 and Type 4 are treated identically. 

Bandwidth resources are reserved for each connection. Resource allocation is 

based upon the following three user specifications: (i) peak bandwidth, the maximum 

data injection rate which the source may transmit, (ii) mean bandwidth, the average 

band,vidth over the lifetime of the connection, and (iii) mean burst length, the aver­

age amount of data sent at the peak bandwidth. The network control function will 
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compute the chances that the requested connection will create buffer overflow (cell 

loss) and consequentially accept or reject the connection request. 

If the connection is accepted, an ATM VPI and VCI is allocated by the net­

work. The device driver associates the VPI/VCI with an ASAP, which is in turn 

associated with a file descriptor. Bandwidth resources are then reserved for the ac­

cepted connection. The network then makes a "best-effort" attempt to deliver the 

ATM cells to the destination. A ''best-effort" attempt implies that during transmis­

sion, cells may be dropped depending on the available resources. End-to-end flow 

control between hosts and cell retransmissions are left to the higher layers. 

2.3.4 PVM Communications: Existing and Enhanced 

In order to enhance the performance and functionality of the existing PVM 

communication facilities, we made several changes to the existing PVM platform. 

First, we bypassed the BSD socket interface and directly implemented PVM on the 

lower level Fore Systems' ATM APL This resulted in a performance gain discussed in 

Section 2.3.5.3. Since the Fore Systems' ATM API only provides "best-effort" deliv­

ery, as opposed to the reliable delivery TCP provides, we implemented an end-to-end 

flow control protocol which ensures reliability via a selective retransmission mecha­

nism. The second change we made was to improve PVM's multicasting capabilities. 

PVM assumes the underlying network cannot support multicast. We capitalized 

on the inherent multicasting capabilities of ATM, and re-implemented a more effi­

cient multicasting operation. Section 2.3.5.4 presents the performance gain of the 

re-implemented multicasting operation. The following two subsections describe the 

two implementations. 
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2.3.4.1 End-to-End Flow Control Protocol with Selective Retransmis­

sions 

As mentioned in the previous section, the Fore Systems' ATM API provides 

only "best-effort" transmission (i.e. a message may be lost during its transmission) 

and no flow control. In order to guarantee the delivery of user messages while not 

sacrificing performance, we developed a flow control scheme which incorporates a 

selective retransmission scheme. 

Our experimental results revealed that user messages begin to experience losses 

as the message size increases beyond 256 KBytes [41, 10]. So in our scheme, we chose 

to divide each user message into 256 KBytes segments. The message unit that Fore 

Systems' implementation of ATM recognizes is 4 KBytes. Thus, at the ATM layer, 

each user message segment of 256 KBytes is divided into 64 4 KByt es segments. 

In the selective re-transmission flow control algorithm, the sender begins by 

setting and starting a timer, timer!, for the next user message. The sender sends out a 

number of 4 KB segments until either an entire 256 KB segment has been transmitted 

or the end of the user message has been reached. The sender then sets and starts 

another timer, timer2, and sets the number of retry attempts, n. The sender then 

waits for either the timer to expire or a (selective) acknowledgment to be received . If 

the sender receives the acknowledgment, it checks to see if any of the 4 KB segments 

were lost. If not, the sender process repeats the algorithm by transmitting the next 

set of 64 4-KB segments, otherwise, the missing packets are re-sent, the number of re­

tries is decremented and the sender waits again for an acknowledgment. If the sender 

times out (does not receive the acknowledgment), it resends the previous segment, 

decrements the number of re-tries, resets the timer and begins the process of waiting 

for an acknowledgment again. 

The receiver process acknowledges (by sending a selective retransmission or 



Chapter 2. High-Speed Network Support for Cluster Computing 38 

acknowledgment packet) to the sender, when it receives the last 4 KB segment of a 

256 KB segment or the last 4 KB of the user message, or when it (the receiver) times 

out. \Vhen the receiver acknowledges a 256 KBytes segment, it does so by sending a 

64 bit bit-map, where each bit signifies whether the corresponding 4 KBytes segment 

had been received or not. 

2.3.4.2 Multicasting Protocol 

PVM implements the multicast function by invoking a sequential series of send 

primitives. By taking advantage of the inherent multicast nature of ATM, we re­

implemented the multicast function to occur as a parallel send to multiple receivers. 

Both multicast implementations occurs in two phases. Our re-implementation of 

the multicasting operation is the same as the above two-phase operation except the 

N serial sends are replaced (in both phases) by a simultaneous send to N remote 

receiving hosts. Performance results of this re-implementation and the original PVM 

multicast operation are presented in Section 2.3.5.4. 

2.3.5 Performance Measurements 

2.3.5.1 Experimental Network Computing Environment 

The ATM environment was provided by the MAGIC (Multidimensional Ap­

plications and Gigabit Internetwork Consortium) project and the Army High Perfor­

mance Computing Research Center at the University of Minnesota. Fore Systems, 

Inc. host adapters and local area switches were used. The host adapter was a Series-

200 interface for the Sun SBus. The physical media for the Series-200 adapter was the 

100 Mbits/sec TAXI interface (FDDI fiber and signal encoding scheme). The local 
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area switch was a Fore ASX-100. Four Sun Spare 2 machines and two Sun 4/690 

machines were directly connected to the Fore switch. 

The Series-200 host adapter is Fore's second generation interface and uses an 

Intel i960 as an onboard processor. The i960 takes over_ most of the AAL and cell 

related tasks including the cell level segmentation and re-assembly (SAR) functions 

for AAL 3/4 and AAL 5, and cell multiplexing. With the Series-200 adapter, the host 

interfaces at the packet level feeds lists of _outgoing packets and incoming buffers to 

the i960. The i960 uses local memory to manage pointers to packets, and uses DMA 

(Direct Memory Access) to move cells out of and into host memory. Cells are never 

stored in adapter memory. 

The ASX-100 local ATM switch is based on a 2.4 Gbits/sec (gigabit per sec­

ond) switch fabric and a RISC control processor. The ASX-100 supports Fore's 

SPANS signaling protocol, and can establish either Switched Virtual Circuits (SVCs) 

or Permanent Virtual Circuits (PVCs). All of the experiments conducted ignored 

circuit setup time and thus the ATM circuits used can be viewed as PVCs. 

2.3.5.2 Echo Programs 

The echo program is used for measuring the end-to-end communication la­

tency between two machines. In this program, a client sends a M-byte message to a 

server and waits to receive the M byte message back. The client/server repeats this 

interaction N times. The round trip timing for each iteration in the client process 

is collected. The timing starts when the client sends the M byte message to the 

server, and ends when the client receives M bytes of the response message. Thus the 

problem of synchronizing clocks in two different machines is avoided. The commu­

nication latency for sending a M-byte message can be estimated as half of the total 

round-trip time. The communication throughput is calculated by dividing 2 x M by 
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Figure 2.5: Normal mode: Bandwidth as a function of message size 

40 

the round-trip time (since 2 x M bytes of message have been physically transmitted). 

A previous study [41] presents the round trip delay (milliseconds) as a function of 

message size for ATM/AAL5. 

2.3.5.3 End-to-End Performance 

Vv'e measured the performance of four different PVM platforms. PVM-ATM 

(AAL4) and PYM-ATM (AAL5) refers to the implementation of PVM directly on the 

Fore Systems' ATM API with the appropriate adaptation layer. PVM/TCP / ATM 

refers to the implementation of PYM on the BSD socket programming interface on 

an ATM network. PYM/TCP /Ethernet refers to the implementation of PVM on the 

BSD socket programming interface on an Ethernet network. 

Figure 2.5 shows bandwidth as a function of message size for messages using the 

Normal route. PVM-ATM (AAL4) achieves the highest maximum bandwidth of 7.403 

Mbits/sec. PYM-ATM (AALS) and PYM/TCP/ ATM achieve close to PYM-ATM 

(AAL4) bandwidth measurements, i.e., their maximum bandwidth measurements·are 
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Figure 2.6: Direct mode: Bandwidth as a function of message size 

within 0.2 Mbits/sec of each other. PVM/TCP /Ethernet achieves a maximum band­

width measurement of 4.406 Mbits/sec, approximately 60% that achieved by PVM­

ATM (AAL4), PVM-ATM (AAL5) and PVM/TCP/ATM. We conclude from these 

results that, when using the Normal mode, the significant performance gain occurs 

primarily from using the high-speed ATM medium as opposed to the slower-speed 

Ethernet medium. 

Figure 2.6 shows bandwidth as a function of message size for messages using 

the Direct route. PVM-ATM (AAL5) achieves the highest maximum bandwidth of 

27.202 Mbits/sec. PVM-ATM (AAL4) achieves close to PVM-ATM (AAL5) band­

width measurements, i.e., their maximum bandwidth measurements are within 0.6 

Mbits/sec of each other. PVM/TCP / ATM achieves a maximum bandwidth value of 

20.826 Mbits/sec. And PVM/TCP /Ethernet achieves a maximum bandwidth mea­

surement of 8.312 Mbits/sec. From these results, we conclude that when PVM by­

passes TCP and directly uses the ATM API a rather significant performance gain 
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Table 2.2: Normal Route 

PVM Environment Tmax n112 to 
Mbits/sec Bytes µsec 

PYM-ATM using AAL5 7.369 4710 4986.5 
PYM-ATM using AAL4 7.403 4944 4687 

PYM-TCP-ATM 7.216 4352 4076 
PYM-TCP-Ethernet 4.406 1948 4053.5 

Table 2.3: Direct Route 

PVM Environment Tmax n1;2 to 
Mbits/sec Bytes µsec 

PYM-ATM using AALS 27.202 7867 1905.5 
PYM-ATM using AAL4 26.627 8239 1903 

PYM/TCP/ ATM 20.826 7649 1839 
PYM/TCP /Ethernet 8.312 1945 1541 

occurs of approximately 6 to 7 Mbits/sec. Again we observe a significant perfor­

mance gain when using ATM as opposed to Ethernet. 

The maximal achievable throughput is bounded by the speed of the TAXI 

interface, 100 Mbits/sec. In our previous study [41], we observed the maximum 

achievable throughput to be 46.08 Mbits/sec. In this study, we observed the maximum 

achievable throughput of PYM-ATM (AAL5) to be 27.202 Mbits/sec. Thus the 

overhead occurs at two levels: the end system and ATM interface (software and 

hardware) limits the throughput to 46.08 Mbits/sec, and the overhead from PYM 

limits the maximal throughput of PYM-ATM to 27.202 MBits/sec. 

Tables 2.2 and 2.3 show the above measurements in terms of the following 

three performance metrics. These metrics are crucial to the communication perfor­

mance at the application level. 

• Tmax (maximum achievable throughput) : the maximum achievable throughput 

which is obtained from experiments by transmitting very large messages. This 



Chapter 2. High-Speed Network Support for Cluster Computing 43 

is an important measure for applications requiring large volumes of data trans­

missions. 

• n 1; 2 (half performance length) : the message size needed to achieve half that 

of the maximum achievable throughput. This number may not be compared 

with t he corresponding numbers from different hardware and software configu­

rations, since the maximum achievable throughput may be different for different 

configurations. This measure provides a reference point that shows the effect of 

message sizes on the achievable throughput. Users can observe more than half 

of the maximum achievable throughput with messages larger than n 1; 2 . 

• t0 (startup latency) : the time required to send a short message of 16 bytes to 

a receiver and receive the same message back. This is an important measure 

when transmitting short messages. 

From both tables, PVM-ATM (AAL5), PVM-ATM (AAL4), PVM-TCP-ATM, 

and PVi\1-TCP-Ethernet provided decreasing values for t0 , respectively. The great­

est time difference occurs between using ATM or Ethernet. The overhead , in terms 

of latency, for the ATM network is thought to be primarily caused by the device 

driver. It is believed that the firmware code for Ethernet has been fine-tuned for 

better communication latency [41]. 

2.3.5.4 Multicasting Measurements 

On ATM, we measured the performance of the multicasting operations (PVM's 

original multicast operation and our re-implementation) by iteratively executing the 

multicast operation. During each iteration, a timer is started, the sender then per­

forms the multicast operation and then waits to receive positive acknowledgments 



Chapter 2. High-Speed Network Support for Cluster Computing 44 

from all the members of the multicast receiving group. Once all acknowledgments 

have been received, the timer is stopped, and another iteration begins. 

In Figure 2.7, the top (bottom) two graphs depict the time to perform the 

multicasting operation as a function of message size using the existing PYM multi­

casting (our re-implementation). When using PVM's existing multicasting facilities, 

for message sizes of 64 KB, the time to multicast to 1, 2, 3, 4, 5 remote hosts is 

approximately 108, 130, 184, 235, 290 milliseconds, respectively. For message sizes 

of 1 MB, the time to multicast to 1, 2, 3, 4, 5 remote hosts is approximately 1550, 

1800, 2650, 3200, 3850 milliseconds, respectively. When using our PYM-ATM re­

implementation (bottom _two graphs of Figure 2. 7), we observe that when increasing 

the number of remote hosts of the receiving pool from 1 to 4 the largest time dif­

ference is approximately 20 milliseconds. The total latency (Ttotal) of a multicasting 

operation includes: (1) the latency to send out multicast messages (T multicast), and 

(2) the latency to collect acknowledgments from all of the receivers (Tacknowledgment)-

Ttotal = T multicast + Ta.cknowledgment (2.1) 

To compare the two implementations of the multicasting operation, we derived 

the following approximate gain factor based on the message size of 64 KB: 

70 + 37n 
95.83 + 4.17n 

{2.2) 

where n is the size of the receiving pool. The numerator (denominator) was derived 

by examining the increase in latency caused by the increase in the number of receiv­

ing hosts when using the original PVM multicast operation ( our re-implementation) . 

At a fixed message size, the average increase per additional receiving host was used 

to extrapolate to the case of n receiving hosts. In Equation 2.2, the original PYM 
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has more per-receiver latency. This is because the multicasting operation is im­

plemented by a series of point-to-point message passing. The per-receiver latency 

includes Tacknowledgment and a portion of Tmulticast· 

Thus our re-implementation results in a performance gain (for 4 remote receiv­

ing hosts) of a factor of approximately two. For 10 remote hosts, our re-implementation 

results in a performance gain of a factor of approximately 3.2. Note that these per­

formance gains are amortized by other PVM processing functions which occur during 

the PVM multicasting operation. 

2.4 Enhanced PVM Communications on HIPP! 

Networks 

In this section, we present a study of improving Parallel Virtual Machine's 

(PVM) communication performance over a HIPPI local area network. After a detailed 

examination of PVM's communication subsystem, we re-implemented PVM using 

the He,vlett Packard's Link Level Access (LLA) interface instead of the BSD socket 

interface which was originally used by PVM. From the experimental results of the 

performance evaluation, our study demonstrates the potential and feasibility of high­

performance network computing over a high-speed switch-based local area network. 

In this study, we utilized high speed networks and reduced the overhead of 

protocol processing. For the underlying high-speed network, we used the HIPPI [60, 

61, 62, 63] as the switch-based network platform. HIPPI offers a connection-oriented 

service with peak data transmission rates of 800 or 1600 Mbits/sec. HIPPI is a mature 

t echnology, which is widely used in supercomputers and high-end workstations. For 

the parallel programming environment, we chose the popular Parallel Virtual Machine 

(PVM). A detailed description of PVM and HIPPI can be found in Section 2.2 and 
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2.4.1. 

For our study, we sought to achieve high performance (e.g., low latency, high 

bandwidth) by enhancing PYM's communication subsystem to utilize the high-speed 

HIPPI LANs. As mentioned before> the PVM message passing library was originally 

implemented using the BSD socket programming interface. The transport protocols 

used are the Transmission Control Protocol (TCP) and the User Datagram Protocol 

(UDP). Figure 2.1 shows how PYM was implemented on the BSD socket programming 

interface (on the right side of Figure 2.1) . The main idea of improving PVM's message 

passing is to reduce the overhead incurred by the high-level protocols. In order to 

provide as close to optimal performance as possible, in this study, part of PYM's 

communication subsystem is re-implemented directly using Hewlett Packard's Link 

Level Access (LLA) API (on the left side of Figure 2.1). We called the re-implemented 

version of PYM as PVM/LLA. Since, HP's LLA API resides at a lower layer in the 

protocol stack, the overhead incurred when directly using this API is expected to be 

lower than the overhead incurred by using the BSD sockets programming APL 

A prototype of the PYM/LLA is presented in this section. The performance 

of the PVM/LLA is obtained by conducting a series of experiments in our test envi­

ronment. The experimental environment consists of two HP 9000 series 735 worksta­

tions equipped with HP's HIPPI interface boards. The experimental measurement 

shows that our PYM/LLA on a HIPPI LAN can achieve comparable performance as 

the Message Passing Library (MPL) in IBM's scalable POWERparallel system SP2 

[52]. The performance measurement also demonstrates that clusters of workstations 

inter-connected with switch-based high-speed LANs can be used for high-performance 

network computing. 
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2.4.1 HIPPI Networks 

The High-Performance Parallel Interface (HIPPI) [60, 61, 62, 63) is one of the 

high-speed network or channel solutions commercially available. HIPPI is a simplex 

point-to-point interface for transferring data at peak rates of 800 or 1600 Mbits/sec 

over distances up to 25 meters. A related standard defines the usage of a crossbar 

switch to support multiple interconnections between HIPPI interfaces on different 

hosts [63). Standards [62, 49] were also defined for running standard network proto­

cols, such as TCP /IP and UDP /IP, over HIPPI. To extend HIPP I's connectivity, an 

implementor's agreement (the Serial-HIPP! [25]) specifies how the HIPPI packets are 

to be carried over a pair of fiber optical cables. The HIPPI can be extended up to 10 

km on single-mode fiber. 

HIPPI provides reliable communication and connection oriented service among 

hosts. ·with the crossbar switch, HIPPI can be used as a high-speed LAN. Multiple 

simultaneous connections can exist through a switch with their own switch resource. 

All of the connections can pass data concurrently at full HIPPI speed. The HIPP! 

network is suitable for distributed applications and network attached storage which 

may require many simultaneous interactions. The reliable communication provided 

by HIPPI is based on its credit-based flow cont rol. The credit mechanism provides 

positive flow control to prevent buffer overflow at the receiving-side. The flow con­

trol is performed at the physical layer. HIPP! is a mature technology, most super­

computers and many high-end workstations are equipped with HIPPI interfaces for 

high-throughput data connections. The success and widespread use of HIPP! is due 

to its "KISS" (Keep It Sweet and Simple) design philosophy[55). 

2.4.2 A Re-implementation of PVM over a HIPPI Network 

The prototype of a re-implementation of PVM Version 3.3.4 (PVM/LLA) over 
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a HIPPI LAN is presented in this section. As shown in Figure 2.1, t he communication 

subsystem of PVM was originally designed to use the BSD socket interface which is a 

common interface for accessing standard network protocols and inter-process commu­

nications. To reduce the overhead of protocol processing and utilize the throughput 

of underlying networks, we re-implemented part of PVM's communication subsystem 

using a low-level LLA HIPP! APL The low-level LLA HIPP! API is discussed in 

Section 2.4.2.1. In Section 2.4.2.2, we present the re-implementation. 

2.4.2.1 The LLA Application Programming Interface 

The Link Level Access. (LLA) application programming interface is a low-level 

communication interface provided in Hewlett Packard's workstation platform. The 

LLA interface allows application to encapsulate data into 802.2 frames. LLA uses 

standard HP-UX file system calls, such as open(), close(), read(}, write(), select(), 

and ioctl(}, to access the device drivers that control the network interface card. To 

communicate with remote processes through LLA interface, the following information 

must be provided by the sending process: 

• SSAP: Source Service Access Point. 

• Local Address: The MAC (Medium Access Control) address of the sending 

host . 

• DSAP: Destination Service Access Point. 

• Destination Address: The MAC address of the receiving host. 

These four tuples (Local Address, SSAP, Destination Address, DSAP) are used in 

a similar way as TCP or UDP connections. In BSD socket interface, each TCP or 

UDP connection is identified by { source IP address, source port number, destination 

IP address, destination port number} . 
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Table 2.4: LLA commands used in the rt·-implementat ion of PVM. 

Command Description 

LOG..SSAP modify the 802.2 SSAP field (integer value, 0-255). 
LOG_READ_CACHE increase the receive caching to 16 packets for normal 

users, and up to 64 packets for the super-users. 
RX_FLOW_CONTROL sets the inbound flow control of the current LLA session. 
LOG_DSAP modify the 802.2 DSAP field (integer value, 0-255). 
LOG_DEST ..ADDR specifies the destination MAC address. 
LOCAL.ADDRESS get the local station MAC address. 

Two types of LLA commands are used for accessing the network interface: 

NETSTAT (NETwork STATus) and NETCTRL (NETwork ConTRoL) commands. 

NETSTAT commands are used for querying status information of drivers and devices. 

NETCTRL commands are used to control and set up drivers and devices. Some of 

the LLA commands used in our re-implementation are listed in Table 2.4. 

The following code segment is a simple LLA example to illustrate the usage of 

LLA interface. The program shows how to open the HIPPI device, set up source and 

destination Service Access Point (SAP), and specify the destination MAC address. 

Both NETCTRL and NETSTAT commands can be issued to LLA by the ioctl system 

call. A data structure (arg in the example) was used to specify (1) the NETCTRL 

or NETSTAT command type; (2) the data type of the argument value, and (3) the 

argument value. 

i f ((s = open("/dev/hippi", O_RDWR)) === -1) { 

perror ( "mroute () lla \n") ; 

exit(l); 

} 

arg .reqtype = LOG_SSAP; 

arg.vtype = INTEGERTYPE; 

arg.value.i = ssap; 
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ioctl(s, NETCTRL, &arg); 

arg.reqtype = LOG_DSAP; 

arg.vtype = INTEGERTYPE; 

arg.value.i = dsap; 

ioctl(s, NETCTRL, &arg); 

arg.reqtype = LOG_DEST_ADDR; 

arg.vtype = 6; 

memcpy(arg.value.s, dmac, 6); 

ioctl(s, NETCTRL, &arg); 

read(s , &rxbuf, PACKET_SIZE); 

write(s, &txbuf, PACKET_SIZE); 

close(s); 

2.4.2.2 Enhanced Communications of PVM with LLA API 

51 

The LLA provides a generic communication interface for upper layer protocols 

(in our case, PVM's communication subsystem) to access network devices. The re­

implementation of PVM over LLA (called PVM/LLA) can be used over Ethernet and 

HIPPI without any change. Upper layer processes can specify the device name to use 

any network interface and its device driver. For example, /dev/hippi represents the 

HIP PI interface card and its device driver, and / dev /lanO corresponds to the Ethernet 

interface and driver. However, the LLA interface may have slightly different function­

alities which are depend on the device driver of network interfaces. For example, the 

LLA interface provided by Ethernet doesn't support flow control mechanism, while 

HIPPI's LLA interface provides in-bound flow control to prevent buffer overflow at 

the receiving side. 

We re-implemented part of the communication subsystem of PVM using the 

LLA interface as follow: 
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• The connections between PVM daemons was changed from UDP sockets to 

LLA interface. The master daemon also uses LLA to exchange messages with 

the shadow daemon. 

• The direct communications between local tasks and remote tasks (Direct Rout­

ing mode) is changed from TCP /IP to LLA. 

As mentioned in Section 2.2.1.4, the Direct Routing mode employs TCP sock­

ets for reliable communications. To achieve the same reliable communication as TCP 

sockets, the PVM/LLA relies on the sequence number of messages and the inbound 

flow control of LLA interface. We also increase the number of the read buffers of 

each LLA connection for high performance. There two features are specified by us­

ing RX_FLOW_CONTROL (inbound flow control) and LOG_READ_CACHE (receiving 

cache) commands. 

2 .4.3 Performance Evaluation 

We present the performance evaluation of a prototype PVM/LLA implementa­

tion in this Section. The experimental environment is first described in Section 2.4.3.1. 

A preliminary performance evaluation of PYM /LLA over Ethernet is presented in Sec­

tion 2.4.3.2. The performance data is used as a proof of concept. It demonstrates 

that PVM/LLA provides better performance even without using any high-speed net­

work. The performance evaluation of PVM/LLA over a HIPPI network is presented 

in Section 2.4.3.3 followed by a performance tuning in Section 2.4.4. 

2.4.3.1 Experimental Environment 

The environment we used for PYM /LLA over Ethernet is different from that 

for PVM/LLA over HIPPI. For Et hernet environment, two HP 9000 Series 735 work­

stat ions and their Ethernet interface cards were used for the preliminary performance 
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measurement. For PVM/LLA over the HIPPI network, we used two HP 9000 Series 

735/125 workstations which were connected with point-to-point HIPP! links. Each 

735/125 workstation equipped with 125 MHz PA-RISC processor and 80 MBytes 

memory. These workstations are faster than those used in the preliminary perfor­

mance tests. 

The HIPPI interface card is directly connected to HP's Standard Graphics 

Connection (SGC) I/O bus as the main I/O sub-system card. The SGC I/O bus is 

a 32-bit wide I/O bus which was optimized for write operations (graphical display 

involves lots of write operations). The theoretical throughput of the SGC bus is 

60 MB/sec for outbound writing and 38 MB/sec for inbound reading. A recent 

performance measurement 3 shows that the the LLA interface provided by the HIPPI · 

interface card can achieve up to 55 MB/sec throughput for outbound transmission 

[46]. However, the LLA interface can only achieve around 24 MB/sec throughput for 

inbound reception. 

2.4.3.2 PVM and PVM/LLA on Ethernet 

The preliminary tests of PVM/LLA were conducted on HP's Ethernet driver 

which also support LLA application programming interface. The results of PVM/LLA 

over Ethernet demonstrate that our re-implemented PVM/LLA can achieve better 

performance even in a traditional low-speed network. Figure 2.8 shows the user-to­

user (between two PVM tasks) round-trip latency of original PVM's (Version 3.3.4) 

Normal Routing mode and Direct Routing mode, and PVM/LLA's Normal Rout­

ing mode and Direct Routing mode. Figure 2.9 shows the achievable user-to-user 

throughput of these four communication modes. 

As shown in Figure 2.8, the round-trip latency of PVM Normal mode is twofold 

3 The measurement was done with a HIPPI analyzer and the netperf benchmark program. 
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Figure 2.8: Preliminary latency measurement of original PVM and PVM/LLA over 
an Ethernet network. 

more than PVM Direct mode for short messages (less than 512 bytes). For Direct 

Routing mode, the re-implemented PVM/LLA has up to 38% improvement for the 

round-trip latency. For the achievable throughput, the 10 Mbits/sec Ethernet does 

not have much space for PVM/LLA to demonstrate the improvement. Figure 2.9 

illustrates that PVM/LLA improves the achievable throughput for PVM Direct mode. 

Table 2.5 summarizes the performance of PVM and PVM/LLA over 10 Mbits/sec 

Ethernet network with the three performance metrics as Section 2.3.5.3: 

Table 2.5: User-to-User performance of PVM and PVM/LLA over Ethernet. 

Normal Routing mode Direct Routing mode 
PVM Environment Tmax n1;2 to Tmax n1;2 to 

Mbits/sec Bytes µsec Mbits/sec Bytes µsec 

PVM 3.3.4 6.514 797 2226 8.400 540 1045 
PVM/LLA 5.817 541 2004 8.879 382 661 
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Figure 2.9: Preliminary throughput measurement of original PVM and PVM/LLA 
over an Ethernet network. 

2.4.3.3 PVM and PVM/LLA on HIPP! 

The same set of experiments was conducted on two HP 9000 Series 735/125 

workstations which were connected with point-to-point HIPP! links. In this section, 

the re-implemented PVM/LLA uses the LLA interface provided by the HIPPI device 

driver. Figure 2.10 depicts the round-trip latency measurement of the original PVM 

and the re-implemented PVM/LLA over the HIPPI network. For the Direct Routing 

mode, the re-implemented PVM/LLA shows consistent improvement of the round-trip 

latency. The improvement was reflected in Figure 2.10 for a wide range of message 

sizes, from 4 bytes to 8 KBytes. For the message sizes shown in Figure 2.10, the 

re-implemented PVM/LLA achieved up to 33% of latency reduct ion. 

Figure 2.11 depicts the measurement of achievable throughput of the original 

PVM and the re-implemented PVM/LLA over the HIPPI network. For this test, 

we did not use the flow control feature provided by the LLA interface. As shown 
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Figure 2.10: Latency measurement of PVM and PVM/LLA on a HIPP! network. 

in Figure 2.11, the re-implemented PVM/LLA can achieve higher throughput than 

original PYM for messages size less than or equal to 256 KBytes. However, the 

achievable throughput of PVM/LLA reaches the peak with 64 KBytes and can not 

obtain higher throughput after that. On the other hand, the original PVM's Direct 

mode reach its peak achievable throughput 9.679 MBytes/sec with message size of 

256 KBytes. 

Figure 2.11 shows one interesting behavior of the re-implemented PVM/LLA. 

For message sizes larger than 256 KBytes, the achievable throughput drops dramat­

ically from 11.72 MBytes/sec to 7.35 MBytes/sec. The reason for the performance 

degradation is due to the throughput mismatch between the speed of HIPPI and the 

processing speed of a PVM task. The PVM task can not send out or receive messages 

in a comparable speed as HIPPI. We experienced loss of data with messages larger 

than 256 KBytes. The data lost problem was also due to receiving buffer overflow 

when RX_FLOW_CONTROL feature was off. In next Section, we will demonstrate the 
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Figure 2.11: Throughput measurement of PVM and PVM/LLA on a HIPPI network. 

effect of flow control and the size of message transmission unit on the performance of 

PVM/LLA. 

2.4.4 Performance Tuning of PVM/LLA over HIPP! 

The throughput mismatch problem between the HIPP! network and the SGC 

I/O bus of HP Series 735/125 workstations suggests that SGC I/O bus is the bottle­

neck. As mentioned before, the SGC I/O bus can sustain 55 MBytes/sec for write 

operations and only 24 MBytes/sec for read operations, which are much lower than 

the 100 MBytes/sec bandwidth of HIPP! network (with 32-bit data channel). To im­

prove the performance of PVM/LLA, we should try to retrieve messages across SGC 

1/0 bus as fast as possible. Therefore, the main design principle of our PVM/LLA 

is to preserve the low user-to-user latency while increasing the achievable throughput 

for larger messages. 
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Our early re-implementation of PVM/LLA sends out a message to the HIPPI 

device or receives a message from the HIPP! device using packets of 4 KBytes, which 

is the default size of the transmission unit. For example, a message of 256 KBytes will 

be chopped into 64 packets of 4 KBytes for transmission. A simple optimization for 

improving the achievable throughput is to increase the size of packets used to transfer 

data between PVM tasks and the HIPPI device. It will speed up the transmission 

· of data across the SGC I/0 bus because of the reduction of the overhead from the 

per-packet processing. This approach is similar to one solution used to improve the 

Direct Memory Access (DMA) performance of a network I/0 subsystem [40]. In 

their quantitative analysis of the network operations, they found that the per-page 

processing is the biggest bottleneck of the DMA operations. They increased the page 

size for each DMA operation to reduce the total overhead. 
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Figure 2.12: Latency measurement of PVM/LLA with different transmission sizes. 

To verify that the improvement of throughput does not affect the latency, 

we tested the PVM/LLA with different transmission sizes. Figure 2.12 shows the 
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round-trip latency measurement of PVM/LLA over HIPP! network with different 

transmission sizes, which correspond to the size of packets transferred across SGC 

1/0 bus. As shown in Figure 2.12, the low latency of PVM/LLA was preserved with 

different transmission sizes. The latencies are very close to each other with message 

sizes from 4 bytes to 8 KBytes. Figure 2.13 depicts the achievable throughput of 

PVM/ LLA over HIPPI network with different transmission sizes. In this test, we 

increased the number of read buffers and used the flow control mechanism provided 

by the HIPPI LLA interface. 

15MB 

u 
"' ~ 12.5MB 
>-
.0 

~ 
'[ 
,,:; 
Cl) 
:, 

10MB 

e 7.5MB 
,,:; 
~ 

"' :0 
<II 
a'.; 

E 
~ 

5MB 

< 2.5MB 

Throughput Comparison for PVM 3.3.4 over HIPPI 

~=:~.!~~:l ::=;. . . -- - · .... - ---: ---~----•-... .. :::,.,_ , ... :· 
PVM/LLA (16KB) -~··· ./ •·····..._ , ·-~. ···/·· 

PVM/LLA (SKB) ·•·· · _.t::~::4· -·· ···-.. _ \ . 
PVM/UA (4KB) - _ / .< . '! .. : ~----· 

PVM Direct ··•···· .-,• / _____ ...,. \ \ 

.... , ....... .... , .......... c,i:,..,<,,.~-/ .:....... .. •. ·\ .. - .\ .... . 
,_,/ )}.,.-•· ........... ,. ....................... -, ............ _•{•,,, ·: •,•.·:· ... •X;ii,•,•::;,: 

- .. .. ....... ·-·---·-·- - -- --- ---- . . 
I ••• •• 

. ,..~!:,_~_ -------• ••----•~M!,. •-• 
.... ·x·· 

1K 2K 4K SK 16K 32K 64K 12SK256K512K 1M 2M 4M SM 
Message Size (Bytes) 

Figure 2.13: Throughput measurement of PVM/LLA with different transmission 
sizes. 

Two interesting observations can be found in Figure 2.13. First, the peak 

achievable throughput of PVM/LLA was increased with larger transmission sizes. The 

peak achievable throughput is 11.763 MBytes/sec with transmission size of 4 KBytes. 

\ iVith transmission size of 48 KBytes, PVM/ LLA has peak achieva~le throughput 

of 16.103 MBytes/sec. Second, the performance degradation problem was alleviated 
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with larger transmission sizes and the activation of in-bound flow control. There 

is a small performance degradation when we used 32 KBytes as the transmission 

size. For PVM/LLA with transmission size of 48 KBytes, there is no performance 

degradation when the size of messages are less than 4 MBytes. Table 2.6 summarizes 

the performance of PVM and PVM/LLA over 100 MBytes/sec HIPPI network with 

the same performance metrics as before. 

Table 2.6: End-to-end performance over of PVM and PVM/LLA over HIPPI. 

Normal Routing mode Direct Routing mode 
PVM Environment Tmax n1;2 to Tmax n1;2 to 

MBytes/sec Bytes µsec MBytes/sec Bytes µsec 

PVM 3.3.4 3.506 3086 1922 9.679 4717 758 

un-tuned PVM/LLA 3.390 1989 1855 11.763 4050 528 

tuned PVM/LLA 3.390 1989 1855 16.103 7551 540 

The experimental measurement shows that our PVM/LLA on a HIPPI LAN 

can achieve comparable performance as the Message Passing Library (MPL) in IBM's 

scalable POWERparallel system SP2 [52]. The IP version of the MPL provides round­

trip latency of 554.0 µsec and point-to-point throughput of 10.8 MBytes/sec. 

2.5 Summary and Future Work 

PVM communication is primarily based upon the BSD socket interface. For 

this study, we chose to bypass the BSD socket interface and implement PVM over 

lower layer protocols, the Fore Systems' ATM API and HP's LLA interface. Vle have 

achieved a performance gain resulting from two factors - utilizing the higher speed 

network media (ATM and HIPPI) and reducing overhead with lower layer protocols. 

Vve observed the following performance results: 

• Using the Direct Routing mode of PVM over ATM, we observed greater than 
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twofold improvement with ATM networks, compared to Ethernet. When the 

Fore Systems' ATM API was used, instead of the TCP protocol, we observed 

an improvement of 6 to 7 Mbps. The maximum throughput achieved by PYM­

ATM (AAL5) is 27.202 Mbits/sec. 

• V/ith the Direct Routing mode of PVM over HIPP!, we observed 66% of through­

put improvement (from 9.679 MBytes/sec to 16.103 MBytes/sec) and 30% of 

reduction for round-trip latency (from 758 µsec to 540 µsec). The improvement 

of our re-implemented PVM/LLA was restricted by the SGC I/O bus which is 

used to connect the HIPPI interface card. 

One of the drawbacks of usi!}g lower layer protocols is that it does not provide 

support typically found in higher layer protocols. For instance, the Fore Systems' 

ATM API does not provide flow control and guaranteed delivery. In Section 2.3.4.l, 

we described an end-to-end flow control mechanism which provides guaranteed de­

livery by using a selective retransmission mechanism. We also took advantage of 

the inherent multicasting capability ATM provided, and re-implemented the original 

PVM multicasting facility. PVM assumes the underlying network cannot perform si­

multaneous sends from a single source, and thus implemented the multicast operation 

as a series of sequential sends. In our re-implementation, sending to multiple receivers 

occurs in parallel. Therefore, with the original PVM multicast, as the number of re­

ceivers increases, the latency increases. In our implementation, as the number of 

receivers increases, the latency remains relatively constant. Figure 2. 7 depicts this 

performance gain. 

In t his study, we achieved performance improvement at the expense of PVM's 

het erogeneousness. PVM was originally designed to be used on a network of het­

erogeneous computer systems. The computer systems may be workstations, multi­

processor computers, or even supercomputers. Our re-implemented PVM over ATM 
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or PVM/LLA can only be used on a cluster of homogeneous workstations in a LAN 

environment. Nevertheless, the re-implemented PVM/LLA can potentially be used 

on a heterogeneous network environment. The LLA interface is a generic commu­

nication interface, which provides a common interface for accessing the underlying 

network devices. A possible extension of this study is to re-implement PVM/LLA 

such that it can be used on a cluster of homogeneous workstations with heterogeneous 

high-speed network interfaces, HIPPI, ATM, and Fibre Channel. The PVM tasks can 

dynamically choose the appropriate network interface based on their communication 

requirement and utilize the features provided by the underlying network. 

An important conclusion from our results is that the performance improvement 

at the application level is not as good as one may expect from an implementation on 

a high speed network ·platform. The maximum achievable bandwidth at the appli­

cation level, 27.202 Mbits/sec, is far below the "raw" available network bandwidth, 

100 l\1bps provided by the TAXI interface. Also the measured latency of ATM net­

works was slightly higher than that of Ethernet. A previous study [40] discussed how 

the communications overhead has shifted from the network transmission medium to 

the network subsystem, or I/0 subsystem. The network subsystem includes host 

architecture, software system on the host, and the network interface [40]. To take 

advantage of a high-speed networking medium such as ATM, the overhead induced 

by these components and their interactions must be evaluated and reduced. 

The computing power of a single workstation and personal computer (PC) is 

increasing at a very fast pace. How to connect several of them together to form a 

cluster to perform computing intensive jobs becomes an interesting research topic. 

The key issue of creating a high-performance cluster of workstations or PCs is to find 

ways to reduce user level communication latency and to increase user level communi­

cation throughput . In this chapter we presented some research results. Our work has 

been concentrated on standard switch-based high-speed networks like Fibre Channel, 
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HIPPI and ATM. However, it is possible to use other types of interconnect like SCI 

(Scalable Coherent Interface [53]), ServerNet [31] and MyriNet. In fact, SCI, Server­

Net and MyriNet may provide better performance than HIPPI, Fibre Channel and 

ATM. However, they are not yet as popular as HIPPI, Fibre Channel and ATM. We 

are currently investigating these configurations. Another emerging standard which 

may have profound impact on I/0 performance is the "Intelligent I/0" (hO). This 

standard is still under development. It may potentially reduces the communication 

latency and increases the throughput by using an extra !OP (I/0 Processor). 



Chapter 3 

High-Speed Network Support for 
Meta-Computing 

Among the networks used for distributed computing, the High Performance 

Parallel Interface (HIPPI) [60, 61, 62, 63] networks are widely used for connections 

between supercomputers, or between supercomputers and high-end workstations. 

HIPPI is a simplex point-to-point interface for transferring data at peak data rates 

of 800 or 1600 Mbits/sec over distances of up to 25 meters. A related standard de­

fines the usage of a cross-point switch to support multiple interconnections between 

HIPPI interfaces on different hosts [63]. HIPPI is a mature technology, most super­

computers and many high-end workstations are equipped with HIPPI interfaces for 

high-throughput data connections. Thus, most of the supercomputing institutes use 

HIPPI as high speed local area networks in their communication infrastructure. 

To extend cluster computing to meta-computing, the physical limitation of 

HIPPI must be solved. The 25-meter limitation of HIPPI restricts the distance from 

channel endpoint (HIPPI interface on the host) to channel endpoint, channel endpoint 

to switch port (HIPPI interface on the switch), or switch port to switch port. Ex­

tension mechanisms are required to increase the distance between channel or switch 

connection points. There are three options available for alleviating the problem of dis­

tance limitation of HIPP! networks: Serial-HIPP!, HIPPI/SONET or HIPPI-ATM 

mapping, and IP Routing. 

• Serial-HIPP!: The serial-HIPP! specifies how the HIPPI packets are to be car­

ried over a pair of fiber optical cables [25]. The HIPPI can be extended up to 

64 
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10 km on single-mode fiber. This option provides a transparent extension cord 

for HIPPI-PH. However, serial-HIPP! is an implementation agreement, not an 

ANSI standard project. 

• HIPPI/SONETor HIPPI-ATM mapping: This approach extends HIPPI's con­

nectivity using SONET (Synchronous Optical NETwork), which operating at 

multiple of OC-1 rates (51.840 Mbits/sec), or ATM (Asynchronous Transfer 

Mode). Popular data transfer rates are OC-3 (155.520 Mbits/sec) and OC-12 

(622.080 Mbits/sec). A HIPPI/SONET mapping scheme over STS-12 SONET 

was proposed in [27]. In this approach, a HIPPI/SONET link extender is re­

quired at each channel endpoint. Each HIPPI burst is encapsulated in one 

STS-12 frame. For the HIPPI-ATM mapping, the HIPPI-ATM [65] defines the 

frame formats and protocol definitions for encapsulation of HIPPI-PH packets 

for transfer over ATM networks. 

• IP Routing: Using commercial available IP routers, e.g. the GigaRouter from 

NetStar, Inc. to extend the HIPPl's connectivity [29]. A IP router operates at 

the network layer, which recovers the data block from one protocol, and maps 

it into the other protocol, e.g. IP on HIPP! to IP on ATM. 

The Serial-HIPP!, HIPPI/SONET mapping and HIPPI-ATM mapping provide ex­

tended HIPPI connectivities at the physical layer, while IP Routing forwards data 

packets between HIPPI networks and other networks at the network layer. With ATM 

as the de facto standard for wide area network, HIPPI-ATM mapping and IP Routing 

are two feasible solutions for the internetworking of HIPP! and ATM networks. 

In this chapter, we describe a join effort by Computer Science Department, 

University of Minnesota, Minnesota Supercomputer Center, Inc., and US WEST 

Communications to interconnect HII:>PI networks via private and public ATM net­

works. The GigaRouters from NetStar, Inc. are used as an IP router and as a 
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HIPPI-ATM converter. As an IP router, the GigaRouter can route the entire IP 

packet between HIPPI networks and ATM networks. We called this scheme IP Rout­

ing. As a HIPPI/ ATM converter, the GigaRouter encapsulates the HIPPI bursts in 

the ATM Adaptation Layer 5's (AAL 5) Packet Data Unit (PDU), then forwards the 

AAL 5 PDU via ATM networks. At the receiving end, the GigaRouter extracts the 

HIPPI bursts from AAL 5 PD Us, then forwards the HIPPI bursts via HIPPI networks 

[65]. We called this scheme HIPP! Tunneling. 

Two GigaRouters are used to connect the HIPPI network at the University of 

J\,1innesota's EE/CS Building and the HIPPI network at the Minnesota Supercom­

puter Center, Inc. (MSCI). The ATM networks was used as the intermediate media 

between the two GigaRouters. We investigate the performance issues of HIPPI Tun­

neling and IP Routing in the same environment. The performance issues we studied 

include end-to-end latency, user-level achievable throughput, and the protocol behav­

ior of TCP /IP. The effect of TCP's window sizes and the maximum segment size on 

the end-to-end performance is verified by the result of experimental measurements 

and detailed timing trace of one ATM analyzer. We hope the practical performance 

data can provide valuable insight for the vBNS (very high speed Backbone Network 

Service) project. 

The vBNS is funded by the National Science Foundation as the first operation 

of a very high speed network using the Internet Protocol (IP) over a nationwide 

ATM and SONET-based network. The vBNS uses the GigaRouter to provide IP 

routing among a combination of ATM, FDDI, and HIPPI media in a network that 

transmits high-bandwidth applications at ATM OC-3c speed (OC-12c at 622 Mbps 

eventually). The vBNS will provide the scientific and engineering community with 

a new environment for research and will serve as the national test bed for building 

new applications, increasing telecommunications speeds and developing new advanced 

national networking technology. The GigaRouters are installed at each of the five 
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NSF-funded supercomputing centers participating in the launch of the v BNS network. 

3.1 Related Work 

The first design to extend HIPPI connectivity was the Serial-HIPPI [25]. 

Serial-HIPPI is an implementor's agreement specifying how the HIPP! packets are to 

be carried over a pair of optical fiber. Serial-HIPPI was first implemented as HIPP! 

"modems", which converted HIPPI to serial and back. Further use of Serial-HIPPI 

can lead to the realization of large-scale HIPP! cross-point switches. Since HIPP! 

switches are limited in size by the number of parallel paths that must be intercon­

nected and by the number of HIPPI's large-size connectors. 

\,\Tith the potential widespread of SONET connections by public long-haul car­

rier, SONET provides another mechanism to extend HIPPI's connectivity. Several 

research groups have proposed or implemented HIPPI/SONET gateways to intercon­

nect HIPPI Local Area Networks (LAN) [27, 38, 66]. Among these approaches, [27] 

extends HIPPI's connectivity using SONET STS 12c over OC-12, which operating 

at 622.080 Mb/s with a payload of around 600 Mb/s. In this scheme, each row of 

the STS-12c frame was used for a HIPPI burst which has a maximum length of 1024 

bytes. The key to the performance of this HIPP! extension is a method of relax­

ing the HIPPI protocol to eliminate the requirement of full round-trip times by the 

connection and flow control, and adequate data buffering at the gateways. 

Los Alamos National Laboratory (LANL) has developed and delivered a HIPPI 

to multiple OC-3 SONET device that can strip up to eight 155 Mbits/sec connec­

tions with forward error correction [38]. Researchers in Bellcore also implemented a 

HIPPI/ ATM/SO NET interface that maps HIPPI over multiple ATM and SON ET 

OC-3s streams [66]. Each HIPP! packet is placed in a single ATM virtual circuit, 

which is then carried over a single SONET OC-3 path. Up to 16 SONET OC-3 paths 
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can be multiplexed together to form an OC-48 stream when multiple HIPPI packets 

are being transferred. Both of these schemes utilize the ability to multiplex together 

multiple OC-3 paths. 

The packet delay and loss characteristics of a wide-area HIPPI-based testbed 

was investigated in [11). They show that HIPP! locking, receiving side is busy with 

existing connection, can degrade performance by increasing delay and/or packet loss. 

Study of the effect of HIPP! blocking on the performance of TCP shows the de­

lay /loss tradeoffs manifests itself in TCP as inducing either the slow-start congestion 

avoidance algorithm or requiring TCP to adjust retransmission timeout value due to 

increased delay variance. 

3.2 HIPP! Tunneling and IP Routing 

An unique feature of our environment is that the same infrastructure can be 

used for both HIPPI Tunneling and IP Routing. The GigaRouter can act as an 

HIPPI-ATM converter for HIPPI Tunneling through ATM networks. It also can 

be used as an IP router which routes IP packet between HIPPI networks and ATM 

networks. In this section, we describe how the GigaRouter is used in both approaches. 

3.2.1 HIPP! Tunneling Through ATM Networks 

The tunneling mechanism operates at the physical layer, which does not look at 

the data, adds little latency, and does not require much buffering. In the case of HIPPI 

tunneling through ATM Networks, the HIPPI-ATM converter directly encapsulates 

low-level HIPPI-PH packets into AAL 5 PDUs at the sending side. The receiving 

HIPPI-ATM converter extracts the carried HIPPI-PH packets from the payload of 

AAL 5 PDUs. Virtual wide-area HIPPI networks can be built by connecting HIPPI 
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LANs with HIPPI Tunneling through ATM networks. 

HIPPI-ATM [65] defines the frame formats and protocol definitions for encap­

sulation of HIPPI-PH packets for transfer over ATM equipment. A pair of HIPPI 

converters (the GigaRouters in our case) are used to perform the HIPPI tunneling 

task. In this scheme, the HIPPI-PH bursts and HIPPI-PH signals are encapsulated 

in H-PDUs, transferred transparently through the intermediate media, and recon­

structed as HIPPI-PH signals and bursts. The H-PDU consists of a HB_Header and 

the data portion of HIPPI-PH bursts. HB_Header is an eight-byte header used to 

pass control information between HIPPI converters. 

An end-to-end connection, shown in Figure 3.1, in the HIPPI-ATM environ­

ment is actually composed of three separate connections, two connections between 

HIPPI-based devices and HIPPI-ATM converters (called HIPP! connections) and the 

connection between two HIPPI converters (called HIPPI-ATM connection). Connec­

tion control, routing control, and flow control of the HIPP! connections shall be as 

specified by HIPPI-PH. The connection across an ATM intermediate media shall be 

as specified by HIPPI-ATM. 

HIPPI-based device 
HIPPI-ATM Convener HIPPI-ATM Convener 

HIPPI-based device 
H-PDU H-PDU 

Transparent AALS AAL5 Transparent 
Data HIPPI-PH ATM ATM HIPPI-PH Data 

--------- ---------
HIPPI-PH PHY PHY HIPPI-PH 

Figure 3.1: Extend HIPPI connectivities with HIPPI-ATM converters. 

These connections are separated for performance reasons. The connection 

across the intermediate media may be independent of the HIPPI equipment making 

and breaking connections. For example, the ATM connection may last across multiple 
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packets and for a long time. · The HIP PI converters are also assumed to be indepen­

dent of each other to avoid the latency of intermediate media becoming part of the 

connection setup time. These separate connections allow a system to send packets in 

a store-and-forward fashion, with connection breaking on one link while the packet is 

being forward on the next link. 

Figure 3.1 also depicts the protocol hierarchy of HIPPI Tunneling. To transfer 

data using high-level protocol such as TCP, user's data is prefixed by TCP header, IP 

header, IEEE 802.2 LLC/SNAP header, HIPPI-LE header, and HIPPI-FP header. 

Then, the HIPPI-FP packet is transferred via the HIPP! network as a number of 

HIPPI-PH bursts. The low-level HIPPI-PH bursts are carried by ATM AAL 5 PDUs, 

which in turn are transferred via ATM layer. The ATM layer provides the function­

alities of a network layer protocol, which allow the AAL 5 PDUs being transferred 

through private and public ATM networks. The receiving HIPPI-ATM converter ex­

tracts the HIPPI-PH bursts and forwards them through the HIPP! network. At the 

receiving HIPPI-based device, user's data is sent to the application after protocol 

processing operations have been done through the protocol stack. 

3.2.2 IP Routing 

IP Routing uses existing standards for routing Internet Protocol (IP) packets 

between HIPP! based systems and ATM based systems. The IP router operates at 

the network layer, which recovers the data block from one protocol, and maps it 

into the other protocol, e.g. IP on HIPPI to IP on ATM. Compare to t he tunneling 

mechanism, a router has more intelligence, requires more buffering, and might have 

longer latency. 

The relationship of protocol hierarchy of IP over HIPPI and IP over ATM 

is depicted in Figure 3.2. On the HIPP! side, the IP PDU is placed in a HIPPI 
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packet as specified by HIPPI-LE [62} and Internet Request for Comment (RFC) 1374 

[49]. HIPPI switches may be between the HIPPI-based device and the HIPPI-ATM 

IP Router for multiple connections. In the HIPP! portion of the sending-size of the 

HIPPI-ATM IP Router (the HIPPI-ATM IP Router on the left side of Figure 3.2), the 

HIPPI headers are discarded, and the IP PDU passed to the ATM side. In the AAL 

5 portion of the sending-size of the HIPPI-ATM IP Router, the IP PDU is packaged 

in an AAL 5 packet. A similar scenario may be used to transfer IP PDUs from the 

ATM-based device to the HIPPI-based device. 

HIPPI-based device 
IP-PDU 

LLC/SNAP 
HIPP!-LE 
HIPPI-FP 
HIPPI-PH ~ 

HIPPI-ATM 
IP Router 
CP-PDU 

LLC/SNAP 
HIPPI-LE AAL5 
HIPPI-FP ATM 
HIPPI-PH PHY ~TM!m0swi?>-

HIPPI-ATM 
IP Router 

IP-PDU 
LLC/SNAP 

AALS HIPPI-LE 

ATM HIPPI-FP 
PHY HIPPI-PH 

HIPPI-based device 
IP-PDU 

LLC/SNAP 
HIPPI-LE 
HIPPI-FP 

i..--- HIPPI-PH 

Figure 3.2: Extend HIPPI connectivities with IP Routers. 

In the IP Routing scheme, the HIPPI-ATM IP Routers and any other IP 

routers located between the two HIPPI-ATM IP Routers must wait for the arrival 

of the entire IP PDU before forwarding it to the next link. The store-and-forward 

behavior on the IP layer (network layer in the OSI model) introduces longer latency 

and requires more buffer space than HIPPI Tunneling approach. 

3.2.3 Extended HIPPI Connectivities 

Both HIPPI Tunneling and IP Routing scheme provides extended HIPPI con­

nectivities as shown in Figure 3.3. The HIPPI Tunneling (upper part of Figure 3.3) 

supports trunk lines between HIPPI-based LANs. The connection provided by the 

HIPPI-ATM converter and the intermediate ATM networks acts like an extended 
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HIPPI link between t he HIPPI switches. The HIPPI packets are forwarded by the 

HIPPI-ATM converters through the trunk link in a multiplexing style. Any HIPPI­

based device can setup a connection with the HIPPI-ATM converters ( directly or 

through a HIPPI switch), send HIPPI packets, and tear down connection afterward. 

The receiving HIPPI-ATM converters connects to a HIPPI-based device according 

to the H-PDU it received, then forwards the packets. The entire configuration can 

be treated as one network which consists of two HIPPI switches interconnected with 

each other. 

Extended HIPPI Link 

~---l HIPPI-A TM 
-..- Convener 

IP Router IP Router 

HIPP! Network HIPP! Network 

Figure 3.3: Extended HIPPI Connectivities with HIPPI Tunneling or IP Routing. 

On the other hand, the IP Routing (lower part of Figure 3.3) connects two 

separate HIPPI networks via IP networks which can be any kind of media. In our 

environment, the intermediate media is an ATM-based network. Working on the 

network layer, the IP router forwards IP PDUs through any IP networks with different 

medium. However, the high bandwidth of HIP PI restricts the selection of intermediate 
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media to those high-speed networks like ATM or Fibre Channel. 

3.2.4 Protocol Overhead 

As a comparison of HIPP! Tunneling and IP Routing at the AAL 5 layer, 

HIPP! Tunneling does not package the entire IP datagram into the payload of one 

AAL 5 PDU. The IP datagram is chopped into data packets in the unit of one HIPPI­

PH burst or two HIPPI-PH bursts. Whereas with IP Routing, each IP datagram is 

packaged into the payload of one AAL 5 PDU. Therefore, these two approaches 

introduce different degrees of protocol overhead. 

HIPPI-ATM specifies that the HIPPI converter at the sending-side shall as­

semble up to 2048 bytes of HIPPI-PH bursts, with an HB..Header (8 bytes), into an 

H-PDU with size of 2056 bytes. The HIPPI converter can also assemble one HIPPI­

PH burst (up to 1024 bytes) and an HB..Header into an H-PDU with size of 1032 

bytes. ·when using ATM as the intermediate media, the ATM AAL 5 shall be used 

to carry the H-PDUs. 

It is easy to find out the protocol overhead and available bandwidth of HIPPI­

ATM with the above information. The OC-3c provides 135.632 Mbits/sec bandwidth 

to the AAL after considering the protocol overhead of SONET and ATM [9] . With 

1032-byte H-PDUs, we need to use AAL 5 PDU of 1056 bytes, 22 ATM cells, to 

encapsulate one H-PDU. Since AAL 5 uses Unused Pad bytes to fill out the last ATM 

cell to right adjust the AAL 5 Tail. Consider the size of the MTU as 61440 bytes 

on the HIPPI side. To transfer 61440 bytes of data, we need a small AA.L 5 PDU 

(3 ATM cells) for the protocol headers (from TCP, IP, LLC/SNAP, HIPPI-LE, and 

HIPPI-FP) and one AAL 5 PDU (22 ATM cells) for each HIPPI-PH burst. The 

channel utilization is calculated from the following equation. 
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61440 - 0 9675 
(3 + 22 X 60) X 48 - . 

(3.1) 

Therefore, only 96.75% of the 135.632 Mbits/sec bandwidth is used to transfer data 

via TCP /IP. With 2056-byte H-PDUs, one AAL 5 PDU of 2064 bytes (43 ATM cells) 

shall be used to carry one H-PDU. This means 98.99% of the 135.632 Mbits/sec 

bandwidth is used to transfer data via TCP /IP. The channel utilization is calculated 

from the following equation. 

61440 
(3 + 43 X 30) X 48 = 0·

9899 (3.2) 

The channel utilization of IP Routing depends on the maximum transmission 

unit (l'viTU) size used by the HIPPI-ATM IP Router. Before forwarding to ATM 

networks, an IP packet is segmented into a number of data packets with the size 

up to MTU size. For smaller MTU sizes, there is more protocol overhead due to 

packet headers or packet tailers. Figure 3.4 shows the effect of MTU size on the 

channel utilization. Figure 3.4 is calculated by considering the protocol overhead 

of the transmission of 61440 bytes data via TCP /IP. The two lines in Figure 3.4 

represent the channel utilization of HIPPI Tunneling with 2056-byte H-PDUs and 

1032-byte H-PDUs, respectively. Figure 3.4 suggests that the MTU size used by the 

HIPPI-ATM IP router must greater than 6000 bytes in order to have better channel 

utilization than HIPPI Tunneling. 

3.2.5 Flow Control 

In HIPPI Tunneling, the flow control is treated as three separate entities like 

the connection control. The credit-based flow control is used for both HIPP/ connec­

tions and HIPPI-ATM connections. The credit-based flow control provides positive 
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Figure 3.4: Protocol overhead of Tunneling and IP Routing. 
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flow control to prevent buffer overflow at the receiving-side. The credit-based flow 

control is accomplished by using HIPPI-PH's READY signals on the HIPP I connec­

tion. Each READY signal sent from the receiver represents that the receiver has one 

available buffer space for one HIPPI-PH burst. The receiving side use the READY 

signals to regulate the behavior of the sending side. 

On HIPPI-ATM connection, the flow control is accomplished by using the 

credit information carried in the HB_Header as specified in HIPPI-ATM. The credit 

sent from the receiver to the sender is the number of buffer available for H-PDUs at 

the receiving-side. As HIPPI-ATM converter at the receiving-side forwards the HIPPI 

packets in the H-PDU to the destination HIPPI-based device, buffers are freed up. 

The receiving-side shall periodically inform the sending-side of the number of buffers 

freed up to avoid sending-side credit starvation. In our environment, the GigaRouter 

sends credit information every one second if there is no data packet for piggy-backing. 

The HIPP! Tunneling provides a low-level flow control scheme. The applica­

tions on the HIPPI-based host can use the low-level communication interface to fully 
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utilize the high bandwidth of the physical link. On the other hand, the IP Routing 

relies on the flow control and congestion control of higher layer protocol, like TCP's 

window-based flow control and congestion avoidance scheme, to regulate the data 

traffic. 

3.3 Implementation of HIPPI Tunneling 

In this section, we present one implementat ion of HIPPI Tunneling over ATM 

networks. We first describe our test environment and the measurement tools we 

used to monitor the data traffic. Then, the performance data of HIPPI network and 

HIPPI Tunneling are presented. The performance of the HIPPI network is used as a 

reference , which represents HIPPI's performance without extended connectivity over 

ATM networks. In both cases, the performance data suggests that this implementa­

tion highly utilizes the network bandwidth. 

3.3.1 Environment 

Minnesola Supercomputer Center, Inc. EE/CS Building 

HP 75000 ATM Analyzer 

Figure 3.5: Extend HIPPI connections over dedicated OC-3 ATM Network 

Figure 3.5 shows the connectivity between the two HIPPI networks via ded­

icated OC-3 ATM connections. At the EE/CS Building, the GigaRouter is used as 
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a HIPPI switch and an IP router. An ATM OC-3 connection over single-mode fiber 

connects the GigaRouter to a Hewlett Packard's 75000 series ATM Analyzer (Hewlett 

Packard Broadband Series Test System, HP BSTS) at US WEST's COMPASS Lab. 

The HP BSTS is also connected to the GigaRouter at the MSCI. The GigaRouter 

at the MSCI can be connected to a HIPPI switch or directly to the SGI Challenge 

workstation. The SGI Challenge workstation will be the primary computer systems 

on both HIPP! networks. Therefore, both sides have computer systems with similar 

performance. 

The HP BSTS at US WEST's COMPASS Lab is used to measure the per­

formance at the cell level and the AAL level. The HP BSTS is connected between 

both GigaRouters. The HP BSTS acts as a SONET repeater which retransmits the 

received signal without altering the SONET information. Therefore the HP BSTS 

does not cause any extra delay or introduce any jitter. SONET splitters are installed 

which will provide a monitor access. This will allow the HP BSTS to be turned off 

,:i,•ithout taking the connection down. 

Engineers at the COMPASS Lab are developing decoding software which will 

allow the HP BSTS to decode the HIPPI-FP /HIPP-LE/802.2 LLC/IP /TCP protocol 

between both GigaRouters. The software will also provide information in graphical 

form. For example, it is possible to see the HIPPI Credit and TCP Send/Receive 

Segment Size each versus time. These tools can be used to better understand the 

ATM affects on application performance. 

\/\Tith the decoding software, the HP BSTS can be used to monitor data traffic 

at any protocol layer, from ATM cell level to user-defined high-level protocol. For 

example, the HIPPI-ATM decoding software can provide the user with a timing dia­

gram of the HIPPI signals (READY; PACKET, etc) which are encapsulated within 

the HB_Header. The HP BSTS when placed in line can also be used to inject SONET 

Section, Line, and Path error conditions. The reason for injecting errors is to study 
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the effects of errors on such items as TCP performance (retransmissions). 

3.3.2 Performance of HIPPI-FP and TCP over HIPP! Net­

works 

The performance evaluation of HIPPI-FP (HIPP! Framing Protocol) and TCP 

between two SGI Challenge workstations via a HIPP! switch is presented in this 

section. Two SGI Challenge machines in the EE/CS Building are used to perform 

the test in a HIPPI Local Area Network (LAN) environment. 

To study the performance of HIPPI-FP, a pair of echo-style client and server 

programs using SGI's HIPPI-FP Application Programming Interface (API) [30] is 

executed on the two SGI Challenge machines. The client measures the latency re­

quired to send a message of a certain size to the server and from server back to the 

client. "With the wall clock at the client side, the round-trip latency is used to cal­

culated the end-to-end achievable throughput by dividing two times of the message 

size by the round-trip latency. The same echo-style client and server programs are 

also used to investigate the performance of TCP. To achieve the best performance of 

TCP, we set the size of socket buffer (TCP window size) to 512 KBytes and use the 

TCP _NODELAY option. For each experiment, we conduct the test for 30 times. The 

results of the test are used to calculate the mean value, minimum value, maximum 

value, and the 90% confidence interval. We show the mean value, minimum value, 

and the 90% confidence interval for the end-to-end latency measurement. For user­

level achievable throughput, we present the mean value, minimum value, and the 90% 

confidence interval. 

Figure 3.6 shows the round-trip latency of short messages, from 32 bytes to 

1024 bytes. The round-trip latency is around 2.5 milliseconds for HIPPI-FP and 

around 2.6 milliseconds for TCP in this range of message sizes, which is reasonable 
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Figure 3.6: Round-Trip Latency of transferring short messages over HIPPI network, 
Bottom: HIPPI-FP; Top: TCP. 
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because each HIPPI-PH burst can transfer up to 1 KBytes. Only one HIPPI-PH burst 

is required in this range of message sizes. Figure 3.6 also depict the 90% confidence 

interval as error bars. 

Figure 3. 7 shows the achievable end-to-end throughput of messages from 1 

KBytes to 64 KBytes. As shown in Figure 3.7, the throughput of HIPPI network 

increases dramatically with larger message sizes. With messages of 64 KBytes, more 

than 20 MBytes/sec1 throughput can be achieved by using HIPPI-FP API and more 

than 17 MBytes/sec for TCP. 

To investigate the maximum achievable throughput of HIPPI network, we 

continue to transfer larger messages, from 64 KBytes to 2 MBytes. In SGI's HIPPI­

FP API, the 2 MBytes is the largest message can be transferred with one single 

write() system call. For message sizes larger than 2 MBytes, multiple write() system 

called are required. 

Figure 3.8 depicts the achievable throughput of HIPPI network when trans­

ferring messages from 64 KBytes to 2 MBytes. With messages of 2 MBytes, 73. 73 

MBytes/sec throughput is achieved by using HIPPI-FP API, which is equal to 618.47 

Mbits/sec. This represents 77.31% bandwidth utilization of HIPPI's 800 Mbits/sec 

physical limitation. The high utilization due to the powerful end-systems and the 

high-performance cross-point HIPPI switch. However, only 44.57 MBytes/sec through­

put is achieved by using TCP. 

To transfer messages larger than 2 MBytes with HIPPI-FP API, we need to 

use multiple write(} system calls. The SGI's HIPPI API provides commands for 

access method, data flow control, and connection control. One of the API commands 

allows the user to keep the HIPPI connection while transferring large amount of data. 

During the transmission, the HIPP! connection will be maintain, which allow large 

1 MBytes/sec refers to 220 bytes per second. 
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Figure 3.8: Achievable throughput of HIPP! network when transferring messages 
from 64 KBytes to 2 MBytes, Bottom: HIPPI-FP; Top: TCP. 
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volume data transmission as seen in many scientific visualization applications. 

The end-to-end achievable throughput of large volume data transmission is 

shown in Figure 3.9. There is only a minor improvement when transferring message 

sizes larger than 2 MBytes. Part of the reason is because of the overhead from 

the end-system processing. In the case of HIPPI-FP, multiple write() system calls 

are required, which increase the end-system overhead. With message of 16 MBytes, 

76.81 MBytes/sec throughput is achieved, which is equal to 644.363 Mbits/sec. This 

represents 80.05% bandwidth utilization of HIPPI's 800 Mbits/sec physical limitation. 

Again, only 49.06 MBytes/sec throughput is achieved by using TCP. The overhead 

is due to the protocol processing on the host system. 

3.3.2.1 The Effect of TCP Window Size 

There are several parameters that affect TCP's performance, such as sending 

and receiving window size, TCP _NODELAY option, and TCP's maximum segment 

size (MSS). In a communication path with large bandwidth x delay product such as 

the dedicated OC-3 link in our environment, the TCP performance depends on the 

product of the transfer rate and the round-trip delay. The bandwidth x delay product 

is the amount of data that would occupy the communication link. TCP uses sliding 

window flow control to regulate how many un-acknowledged data can be transferred. 

In order to fully utilize the communication link with large bandwidth x delay , larger 

window sizes are required to keep the link full. 

The RFC-1323 presents a set of TCP extensions to improve performance over 

transmission paths of large bandwidth x delay product and to provide reliable opera­

tion over high-speed paths [32]. A TCP Window Scale option was designed to expand 

the size of the TCP window, which uses a scale factor to carry the actual window size 

in the 16-bit Window field of the TCP header. The SGI's TCP implementation (in 
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Figure 3.9: Achievable t hroughput of HIPPI network with large volume of data, 
Bottom: HIPPI-FP; Top: TCP. 



Chapter 3. High-Speed Network Support for Meta-Computing 

Achievable Throughput of TCP over HIPPI NetworK 
50 ,--,----,--- ----.---..-------,---,.---,----.----, 

45 ·-· 

40 

35 

5 

····--·····-·····-'·· .......... , .... , ..... ·•. . ...... ~ ........... · ,- .. . 
· 512KB .-. . ... ~•·•. _ .. · ···--·';·-···· ····· 

............... _.... -.. .. ···i····/·· .. -· .. L/ . ·, .... · .. _~··;>.·';;: ·.;:. ...... ~ ... fffl'i?'~~,,,..."l 
_ ...;.._ _ _ \ _______ , .......... ! .. 

l ! 
; ---------: ___ ,. __ , ......... 1·-------

.......... , ... ~s~~ ... :.•.i::.:.'.:.:···::.·.:::l·:::·.:··:::.•.-.:.l :·.······ 

·· ······ ···' ·· ·· .. ••••• .......... . = ... . .................. ' . ..... . . .. .... _ .... . . : . ....... ... ... ..... . 

h28KB : i 1 

.::: ... ······· ... ~ ........ -·•··+-... .L ··········-

0 '-'--_,_-~ _ _ .,__ _ _._ _ __. _ _ _.__ _ __,__ _ ___J 

64K 0.25M 0.5M 0.75M 1M 1.25M 1.5M 1.75M 2M 
Message Size (Bytes) 

85 

Figure 3.10: The effect of the window size on the TCP performance over the HIPPI 
network. 

the IRIX 5.3 operating system) we used in this study allows the TCP window size to 

be expended up to 512 KBytes. This means the value of the scale factor can be up 

to 8. 

Figure 3.10 demonstrates the effect of window sizes on the TCP performance 

over the HIPPI network. From previous measures, the round-trip delay of our HIPPI 

network at the TCP level is around 2.6 milliseconds. The bandwidth x delay product 

will be 260 KBytes, which means the TCP window size should be larger than 260 

KBytes in order to keep the link full. The performance results in Figure 3.10 reflect 

the effect of window sizes on the performance. For window sizes of 256 KBytes, 128 

KBytes, and 64 KBytes, the achievable throughput is bounded by 27 MBytes/sec, 14 

MBytes/sec, and 7.5 MBytes/sec. 
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3.3.3 Performance of HIPPI-FP and TCP over HIPPI Tun­

neling 

The Performance evaluation of HIPPI-FP and TCP between two SGI Chal­

lenge workstations via HIPP! Tunneling over ATM OC-3 network is presented in 

this section. One SGI Challenge machines in the EE/CS Building and another one at 

MSCI are used to perform the test in a HIPPI Tunneling over Metropolitan Area Net­

work (MAN) environment. The entire bandwidth of the OC-3 connection is allocated 

for the two GigaRouters. 

The two SGI Challenge machines are treated like they are connected to each 

other via an end-to-end HIPP! connection. The echo-style client and server programs 

are executed on the two SGI Challenge machines to measure the round-trip latency 

and end-to-end achievable throughput. We expect a longer round-trip latency in this 

environment and the maximum achievable throughput will be bounded by the 155.520 

Mbits/sec OC-3 link. 

Figure 3.11 shows the round-trip latency of short messages, from 32 bytes to 

1024 bytes. The round-trip latency is around 3.25 milliseconds for HIPPI-FP over 

HIPPI Tunneling and 2.5 to 3 milliseconds for TCP over HIPP! Tunneling in this 

range of message sizes. For HIPPI-FP, the latency is 0.75 milliseconds on average 

longer than its counterpart in the HIPP! network environment. For TCP, the latency 

is less than 0.5 milliseconds longer than its counterpart. The longer latency is due to 

the overhead of HIPPI-ATM converters and the propagation delay. Figure 3.11 also 

depict the 90% confidence interval as error bars. 

Figure 3.12 shows the achievable end-to-end throughput of messages from 1 

KBytes to 64 KBytes. As shown in Figure 3.12, the throughput of HIPP! Tunneling 

also increases dramatically with larger message size. With messages of 64 KBytes, 

more than 8.5 MBytes/sec throughput can be achieved by using HIPPI-FP and 7.97 
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Figure 3.11 : Round-Trip Latency of transferring short messages via HIPP! Tunneling 
over OC-3 ATM link, Bottom: HIPPI-FP; Top: TCP. 
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Figure 3.12: Achievable throughput of HIPPI tunneling when transferring messages 
from 1 KBytes to 64 KBytes, Bottom: HIPPI-FP; Top: TCP. 
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MBytes/sec for TCP. 

To investigate the maximum achievable throughput of HIPPI tunneling, we 

continue to transfer larger messages, from 64 KBytes to 2 MBytes. Figure 3.13 depicts 

the achievable throughput of the HIPPI network when transferring messages from 64 

KBytes to 2 MBytes. With messages of 2 MBytes, 13.29 MBytes/sec throughput is 

achieved by using HIPPI-FP and 13.27 MBytes/sec for TCP. For TCP, the throughput 

is equal to 111.32 Mbits/sec. This represents 82.1% bandwidth utilization of the 

throughput available to the AAL 5 layer from the OC-3 link (135.632 Mbits/sec). The 

TCP's performance demonstrates a high degree of channel utilization. As expected, 

the achievable throughput is bounded by the OC-3 link. 

3.3.3.1 The Effect of TCP Window Size 

Figure 3.14 demonstrates the effect of window sizes on the TCP performance 

over the HIP PI Tunneling. From previous measurements, the round-trip delay of the 

HIP PI Tunneling at the TCP level is around 2. 75 milliseconds. The bandwidth x delay 

product will be around 53 KBytes, which means the TCP window size should be larger 

than 53 KBytes in order to keep the link full. However, the performance results in 

Figure 3.14 shuw that the communication link can not be fully occupied with window 

size of 128 KBytes. Figure 3.14 also shows that there is minor difference between 

v.·indow size of 256 KBytes and 512 KBytes. This suggests that the TCP can keep 

the communication link full when the window size is larger than 256 KBytes. For 

window sizes of 128 KBytes, and 64 KBytes, the achievable throughput is bounded 

by 8.35 MBytes/sec and 7 MBytes/sec, respectively. 

To further study the effect of window sizes on the TCP performance, we used 

the HP BSTS to capture the traffic of the OC-3 link. The HP BSTS can capture 

any ATM cell traverse the OC-3 link and records a time stamp (which is the time 
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when the ATM cell reached the HP BSTS) for each ATM cell. The header of each 

TCP packet was extracted from the captured data. We used the sequence number 

and acknowledgment number to study the detailed behavior of the TCP connection. 

Figure 3.15 is the detailed timing trace of the TCP connection when using TCP 

window size of 512 KBytes and 64 KBytes. We used the echo-style test program 

to transfer data of 1 MBytes twice in both cases. Figure 3.15 shows the change of 

the sequence number and acknowledgment number on the direction from MSCI to 

EE/CS Building. In both cases, the acknowledge number first increases from O to 

1048576 (which means the host is receiving data), then stays at 1048576 until the 

sequence number also increase up to 1048576 (which means the host is sending data). 

The same pattern repeats twice. Each mark in Figure 3.15 represents one data TCP 

packet. 

It is easy to find out that the sequence number increases faster with larger TCP 

window sizes (lower part of Figure 3.15). With larger window sizes, the source can 
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send out more data before waiting for acknowledgments from the receiver. Therefore, 

there are fewer acknowledgment marks when using larger window sizes. 

3.4 Implementation of IP Routing 

In this section, we present an implementation of IP Routing on the same 

environment as that of HIPPI Tunneling (Figure 3.5). In this implementation, the 

two GigaRouters were configured as IP routers which connect two HIPPI networks 

with one ATM network. Below is the output from running the traceroute program 

from one SGI Challenge (with IP address 137.66.51.152) at MSCI to another SGI 

Challenge (with IP address 192.0.10.10) at EE/CS Building: 

i. traceroute 192.0.10 .10 

traceroute to 192.0.10.10 (192.0.10.10), 30 hops max, 40 byte packets 

1 137 . 66.51.160 (137.66.51.160) 3 ms 3 ms 3 ms 

2 192 .0.2.1 (192.0.2 .1) 3 ms 3 ms 2 ms 

3 polar- hip (192.0.10 .10) 3 ms 3 ms 6 ms 

i. 

The output shows that the two SGI Challenges are three hops away from each other. 

The connection spreads over three networks. 

In our HIPPI networks, the SGI Challenges sent out TCP packets with max­

imum segment size (MSS) of 61440 bytes (60 KBytes). In our ATM network, t he 

GigaRouters use around 8 KBytes as the size of the maximum t ransmission unit. 

Therefore, the GigaRouter need to perform fragmentation and re-assembly opera­

tions in addition to routing IP packets between networks. 
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Figure 3 .16: Round-Trip Latency of transferring short messages via IP Routing over 
OC-3 ATM link. 

3.4.1 Performance of TCP over IP Routing 

The round-trip latency of transferring short messages via IP Routing over two 

HIPPI links and one OC-3 ATM link is shown in Figure 3.16. The figure show that 

the round-trip latency is around 2.5 milliseconds for messages shorter than 640 bytes. 

The latency is comparable to that of TCP over HIPP! Tunneling. 

To investigate the achievable throughput of TCP over IP Routing, we used 

larger messages. Figure 3.16 and Figure 3.17 depict the achievable throughput when 

t ransferring messages from 1 KBytes to 64 KBytes and from 64 KBytes to 2 MBytes, 

respectively. We have seen 13.47 MBytes/sec throughput with messages of 2 MBytes. 

The throughput is equal to 113.01 Mbits/sec, which is slightly higher than that of 

transferring messages of 2 MBytes via TCP over HIPP! Tunneling. The throughput 

was achieved even with the additional overhead on the GigaRouters for the fragmen­

tation and re-assembly operations. The result supports our argument in Section 3.4 

that IP Routing could have better channel utilization than HIPP! Tunneling with 
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Figure 3.17: Achievable throughput of IP Routing, Top: transferring messages from 
1 KBytes to 64 KBytes; Bottom: transferring messages from 64 KBytes to 2 MBytes. 
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packet size greater than 6000 bytes. In this case, the packet size is around 8 KBytes. 

The minor difference between the throughput of TCP over IP Routing and TCP over 

HIPP! Tunneling is because both approaches already reach high degrees of channel 

utilization. 

3.4.1.1 The Effect of TCP Window Size 

The effect of Window Size on end-to-end TCP performance over IP Routing is 

illustrated in Figure 3.18. The TCP's performance strongly depends on the window 

sizes as we expected. However, the curves of Figure 3.18 are different than that of 

Figure 3.14 in Section 4.3.1. In Figure 3.14, there is no difference between window 

sizes of 256 KBytes and 512 KBytes. This suggests that TCP can keep the com­

munication link full of data when the window size is larger than 256 KBytes. In 

Figure 3.18, TCP still can not keep the link full with window size of 256 KBytes. 

The curves of Figure 3.18 suggests that: 

1. There is protocol processing and fragmentation/re-assembly overhead at the 

GigaRouter, and 

2. The delay item of bandwidth x delay product is the end-to-end delay which 

includes any latency occurs along the communication path. These latencies 

include the time spent at the host, protocol processing (and fragmentation/re­

assembly operation if necessary) of routers, and the propagation delay. 

3.4.1.2 The Effect of Maximum Segment Size 

The performance measurement of t he previous section was obtained when 

there is fragmentation and re-assembly overhead at the GigaRouter. As we mentioned 

before, the GigaRouter uses around 8 KBytes as the size of the maximum transmission 
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Figure 3.18: The effect of the window size on the TCP performance over IP Routing. 

unit. In this section, we reduce the TCP maximum segment size (MSS) from 61440 

bytes to 8192 bytes and 4096 bytes to investigate the end-to-end TCP performance 

without fragmentation and re-assembly overhead. Figure 3.19 shows the effect of 

:tvlSS sizes on TCP's performance over IP Routing. The achievable throughput of 

TCP with MSS of 8192 bytes is better than that of TCP with MSS of 4096 bytes. 

The difference of throughput increases as the message size is getting larger. 

The performance data here and the analytical model of protocol overhead in 

Section 3.4 suggest that larger MSS could have higher degree of channel utilization. 

However, there will have fragmentation and re-assembly overhead at the router when 

the MSS of HIPPI networks is larger than the maximum transmission unit of the in­

termediate network. There is a trade-off between reduction of protocol overhead with 

larger MSS and avoidance of fragmentation/re-assembly overhead with appropriate 

MTU. 
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3.5 Summary 

In this chapter, we study two of the available options to interconnect HIPP I 

networks via ATM networks: HIPPI Tunneling, and IP Routing. We compare the 

differences between HIPPI Tunneling and IP Routing in terms of their extended 

connectivit ies, protocol overhead, and flow control. A Metropolitan Area Network 

(MAN) environment which consists of two HIPPI networks and one ATM network is 

used to conduct a series of tests to study the performance issues of these two options. 

Experimental measurements and detailed timing trace of one ATM analyzer suggest 

a high degree of bandwidth utilization is achieved by both HIPPI Tunneling and IP 

Routing in our environment. 
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Achievable Throughput of TCP over IP Routing 
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MSS size is 4096 bytes; Bottom: MSS size is 8192 bytes. 



Chapter 4 

High-Speed Network Support for 
Multimedia Communications 

Transmission of digital video has become an essential component of multimedia 

applications. Video is usually delivered in a compressed format. The entire delivery 

path of video transmission starts from the video is digitized and passed to an encoder 

which employs compression schemes to reduce its bit rate while preserving the video 

quality. The compressed video is then packetized and transferred through communi­

cation networks. At the receiver side, compressed video is decoded and displayed in 

a continuous manner. 

The compressed video can be either constant quality with variable bit rate 

(VBR coded video) or constant bit rate with variable quality (CBR coded video). 

With constant quality video, the encoding parameters of an encoder remain the same 

during the encoding process. Due to the compression scheme and different complexity 

of video frames, a video with constant quality has variable bit rate. With constant 

bit rate video, the encoding parameters of an encoder are adjusted dynamically to 

generate a bit stream with a constant rate. In this study, we consider VBR coded 

video which provides constant quality throughout the playback. 

The video transmitted to the receiver can be either real-time coded video or 

pre-recorded video. For real-time coded video, live video is encoded, transmitted, 

decoded, and viewed by the user. Example applications are videoconferencing and 

broadcasting of live programs. Pre-recorded video are digitized and encoded in ad­

vance and stored as files in a video server. It provides an on-demand service in which 

100 
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users can activate video transmission at any time. The transmission of real-time 

coded video has been studied in [34, 47, 48). In this study we only consider transmis­

sion of pre-recorded video. For a pre-recorded video, its characteristics is completely 

known a priori. An efficient delivery scheme can be designed to take advantage of 

this knowledge. 

. Buffer Size 

Reference Curve 

~ ; 

.------+- _ ___ _ T~rame Size 

Consumption Curve 

Accumulative Data 

Start-Up Delay Frame Time 

Figure 4.1: A model of video delivery. 

A model of video delivery is illustrated in Figure 4.1. The decoder decodes 

and presents video frames periodically, such as 30 frames per second (fps), to provide 

continuous playback. The _interval for each video frame is called frame time. For 30 

fps, the interval is 33.33 ms. The decoder consumes one compressed video frame for 

each frame time. For VBR coded video, the number of bytes in each frame varies. 

Assume t he decoder consumes one coded v.ideo frame instantaneously every frame 

t ime, the accumulative amount of data consumed by the decoder can be represented 

as a consumption curve in Figure 4.1 . The objective of video delivery is to provide 

video frames in time for the decoder such that it always has video frames for contin­

uous playback. The accumulative amount of data provided by a video server can be 
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represented as a delivery curve. A possible delivery curve is depicted in Figure 4.1. 

In this example, the path of the delivery curve always above the consumption curve, 

which means the coded video frames are delivered in time. 

Most of the receivers have limited buffer space to accommodate the difference 

between the consumption rate and the delivery rate. In Figure 4.1, we also depict 

a reference curve whose vertical distance from the consumption curve is the size of 

the receiver's buffer space. A video delivery scheme must make sure that at no time 

the delivery curve will intersect with the consumption curve or the reference curve. 

If a delivery curve intersects with the consumption curve, a starvation occurs due 

to insufficient data for continuous playback. If a delivery curve intersects with the 

reference curve, the delivered data overflows the buffer. Both cases introduce jitters 

in the playback. A video delivery scheme should produces a delivery curve which 

always traverses the shaded area between the consumption and reference curve. 

For a given video delivery scheme, there are three parameters influence t he out­

come of the delivery curve: buffer size, start-up delay, and transmission rate. Start-up 

delay is the difference between the instant that the first video frame is delivered and 

the instant that it is consumed by the decoder. During this period, a certain amount 

of data is pre-loaded into the receiver's buffer. The decoder has adequate video frames 

to start the playback. In Figure 4.1, the transmission rate determines the shape of a 

delivery curve. The slope of a line segment is the transmission rate used during that 

period. The relationship among there three parameters is briefly discussed as follow. 

With a given buffer space, longer start-up delays may allow lower transmission rates 

to be used in a delivery scheme. With a given start-up delay, higher transmission rates 

require larger buffer space to accommodate pre-delivered video frames before they can 

be decoded. Similarly, with a given constant transmission rate, lower start-up delays 

may reduce the buffer requirement at the receiver. 
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In this chapter, we study two new CBR transmission schemes, called PCR­

assist CBR (PCBR) and PCR-assist Dual-Rate CBR (PDCBR). They utilize the time 

stamps, called Program Clock References (PCR), inserted by a MPEG-2 encoder to 

regulate the transmission and to reduce the buffer requirement at the viewer's side. 

These two schemes keep track of their transmission and dynamically adjust their 

transmission rates based on the timing information provided by the time stamps. 

The PCBR scheme was introduced by IBM Rochester [28]. In PCBR scheme, a 

transmission rate higher than the average rate of a video is used. The time stamps 

embedded in the video are used to hold up the t ransmission if it is ahead of the 

schedule. For PDCBR scheme, two rates are used to adjust its transmission based 

on the timing information provided by the time stamps. A higher rate is used if the 

transmission is behind of the schedule, while a lower rate is used if the transmission 

is ahead of the schedule. 

\Ve have developed analytical models of these two schemes. Several video 

traces are used to compare the transmission rate and buffer requirement of traditional 

CBR, PCBR, and PDCBR schemes. From the experimental results, PCBR and 

PDCBR schemes provide more flexible trade-offs between buffer requirement and 

transmission rate for MPEG streams with high rate variation. The contribution 

of our study is twofold. First, we have compared the resource requirement (rate 

and buffer space) of three video transmission schemes. Second, we have studied the 

relationship among the three parameters (buffer size, transmission rate, and start-up 

delay) in the two PCR-assist schemes. For example, with a fixed start-up delay, we 

have studied the minimal transmission rate and buffer requirement. For a given buffer 

space, we have determined the minimal rate required with an upper bound on the 

start-up delay. For a given transmission rate, we have studied the minimal start-up 

delay required with an upper bound on buffer space. 

The remainder of this chapter is organized as follows. Section 4.2 discusses 
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the traditional CBR service which has been studied intensively by researchers. Before 

describing PCBR and PDCBR schemes, Section 4.3 describes the system model of 

delivering MPEG-2 over ATM networks. It also covers the PCR-assist mechanism 

which is used by PCBR and PDCBR to determine the proper transmission rate. We 

discuss PCBR and PDCBR schemes in detail in Sections 4.4 and 4.5, respectively. 

The experimental results of these three schemes for several video traces are presented 

and discussed in Section 4.6. We further compare PCBR and PDCBR schemes in 

Section 4.7. 

4.1 Related Work 

Delivering VBR coded video over high speed networks has been studied by 

a number of researchers [15, 16, 17, 35, 43, 44, 51]. For transmitting pre-recorded 

VBR coded video (also called stored video) with traditional constant bit rate (CBR) 

service, McManus and Ross have developed a fundamental relationship between the 

buffer requirement and transmission rates [44]. They reported that it requires a 

large buffer at the viewer's side for continuous playback. For example, the minimal 

buffer required for video Star Wars is 23 Mbytes. This makes the pure CBR scheme 

infeasible under practical consideration since the viewer side may have a decoder with 

limited memory space. 

Other studies have considered piecewise CBR service for the delivery of stored 

video in order to reduce the buffer or transmission rate requirement [15, 35, 43, 51]. 

Among them, Salehi et al focus on reduction in variability of transmission rates 

with a given buffer space [51]. Feng et al consider reducing the number of rate 

changes during transmission [15]. McManus and Rose determine the transmission 

schedule which minimizes the buffer and average transmission rate required for a fixed 

number of transmission intervals [43] . The transmission rate used in each interval 
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can be different. The schemes proposed in [15, 43, 51] can be implemented on the 

Renegotiated CBR service proposed by Grossglauser et al [24]. 

Considering the three parameters mentioned before, the approaches proposed 

by Salehi et al and Feng et al concentrate on the transmission rate with a given 

buffer space. The approach proposed by McManus and Rose does not establish a 

relationship between the buffer and transmission rate requirement. 

4.2 Constant Bit Rate (CBR) Transmission 

The CBR service is the simplest approach for transmitting video in many ap­

plications. In this scheme, a virtual circuit is established with a constant transmission 

rate. The rate may be equal to or slightly higher than the average rate of a MPEG-2 

video stream. If the rate is higher than the average rate, it may requires a large 

buffer space at the receiver side. Since most MPEG-2 video are VBR coded, at some 

instant the decoder may consume more data than the server can transmit even with a 

rate higher than the average rate. In this case, the decoder is starved of video frames 

during the playback. Therefore, CBR service requires a certain amount of data to be 

transmitted and stored in the receiver's buffer before the commencement of playback. 

The fundamental relationship between the start-up delay, transmission rate, and the 

size of buffer at the receiver side has been studied in [44}. 

Analytically, the transmission rate can be determined base on the content of 

a MPEG-2 stream and the length of a start-up delay. For a given start-up delay, 

the minimum rate required to transmit a MPEG-2 stream can be easily determined 

using the concept of convex hull as illustrated in Figure 4.2. We assume the network 

delay is constant and the decoder consumes one coded video frame instantaneously 

every frame time. The accumulative amount of data consumed by the decoder can 

be described by a consumption curve. It can be represented as a set of points M , 
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Figure 4.2: The delivery curve of CBR and consumption curve of the decoder. 

M = { ( n X F, An), ( ( n + 1) x F, An) I 1 :$ n :$ N}, (4.1) 

where F is the frame time, N is the total number of frames in a video stream, and 

An is the amount of cumulative data consumed by the client over [l, n] frame time. 

An = I:;'.:,1 Si and Si is the size of frame i . A convex hull, CH(M) , of M can be 

obtained using Jarvis' march algorithm [33). Figure 4.2 shows a portion of boundary 

edges of CH(M) which is used to calculate the minimum rate required. 

For a given start-up delay P, we can find a line, denoted as the delivery curve, 

connecting point t (whose distance from the first frame time is the start-up delay) and 

a point of CH(M), say H, with the largest slope. The slope, denoted as RcBR, is the 

minimum rate required to transmit an MPEG stream without starving the receiver's 

buffer. The minimum buffer required at the receiver side can then be determined 

by comput ing the maximum difference between the delivery curve and consumption 

curve. The amount of data that have been received at time nxF is (P+n) xFxRcBR· 
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The amount of data that have been consumed right before time n x Fis An-I· The 

maximum difference between the delivery curve and consumption curve for a given 

start-up delay P is 

0 

fcBn(P) = max ((P + n) X F X RcBR - ~ si) . 
l<n<N L_,; 
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Figure 4.3: Minimum rate and buffer required for different start-up delays. The unit 
is Mbit/sec for transmission rates, Mbits for buffer sizes. 

In Figure 4.3, we used four MPEG-2 traces to study the relat ionships between 

transmission rate, buffer requirement, and start-up delay for CBR service. The figure 
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shows the minimum rate RcBR and buffer fcsR(P) required for different start-up de­

lays: from one frame-time to 30 frame-time. As the length of start-up delay increases, 

the minimum required rate decreases. This is because the slope from point t to one 

of the CH(Af) points decreases with larger start-up delays. However, the buffer re­

quirement first declines, then increases as the length of start-up delay increases. It is 

easy to understand this behavior with the illustration of Figure 4.2. Assume b1 is the 

largest difference between the delivery curve and consumption curve before the point 

H, b2 is the largest difference after the point H. The minimum buffer requirement is 

the maximum of these two, max(b1 , b2). For smaller start-up delays in these four cases 

(e.g. start-up delays less than 7 frame time in the case of "horse"), b2 is the dominant 

component, i.e. max(b1 , b2) = b2 . As the length of the start-up delay increases, b1 

also increases while b2 decreases. Eventually, b1 becomes the dominant component, 

i.e. max(b1 , b2) = b1. The curve of buffer requirement ("Buffer") reflects the change 

of b1, b2, and max(b1, b2)-

4.3 System Model for MPEG-2 over ATM 

The system model of t ransporting MPEG-2 streams over ATM networks is 

depicted in Figure 4.4. At the sending side, a server retrieves pre-recorded MPEG-

2 streams from a storage device and transfers them into the buffer of a network 

interface. The network interface encapsulates a certain number of MPEG-2 packets 

into an ATM Adaptation Layer 5 (AAL 5) packet. The AAL 5 packets are then 

segmented into ATM cells and transmitted over a connection to the client. At the 

client side, the received ATM cells are re-assembled back to AAL 5 packets. MPEG-2 

packets are extracted from the payload of AAL 5 packets and sent to a MPEG-2 

decoder. In order to accommodate the difference between transmission rate of the 

server and consumption rate of the client, a buffer is used as a cushion. Usually, the 
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client can start to decode and playback the MPEG-2 stream right after some data 

have been received in the buffer. To ensure the continuous playback of a MPEG-2 

stream, a certain amount of data will be transmitted and stored in the client's buffer 

before the commencement of playback. We have defined the time between the start 

of transmission and the start of playback as start-up delay. For the same start-up 

delay, different transmission schemes may accumulate different amount of data in the 

buffer. 

Storage 

Server 

Network 
lnterface 

Compare 
PCRs~---<----

Store Counter 

Client 
- ---------------- ------- --, 

Network 
Interface Buffer Decoder 

I 
I 

I '-------- ------------------ --~ 

PCR-assist Mechanism 

Figure 4.4: The end-to-end model of MPEG-2 over ATM networks. 

Different classes of service of ATM can be used to transmit MPEG-2 streams. 

In this chapter, we focus on CBR, PCR-assist CBR (PCBR) and PCR-assist Dual­

Rate CBR (PDCBR). For CBR service, a virtual channel is established between the 

server and the client with a pre-negotiated constant bandwidth. We assume that 

MPEG-2 streams are t ransmitted at a constant cell rate. For PCBR and PDCBR 

schemes, a special PCR-assist mechanism is used to detect the appearance of PCRs 

and to control the transmission of ATM cells. We will discuss the mechanism in 

Sect ion 4.3.3. 
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4.3.1 MPEG-2 'Iransport Streams 

The Motion Picture Expert Group (MPEG) has standardized compression 

techniques for video and audio, system streams and transport streams for multiplex­

ing and carrying video, audio, and data in a single time synchronized bit stream. 

MPEG-2 is a collection of standards which consist of System, Video, Audio, Compli­

ance, and a Digital Storage Media Control Commands (DSM-CC) standard [1, 2, 3]. 

Among them, the MPEG-2 System standard covers the media multiplexing, media 

synchronization, and clock synchronization. It organizes the information to be trans­

ferred in programs, where a program includes video streams with associated audio and 

text streams. Figure 4.5 shows the architecture of the MPEG-2 encoder and decoder. 

In the MPEG-2 encoder, each component (video, audio, text) of a program is first 

coded into a elementary stream which is the bit stream in a compressed format. In or­

der to multiplex a number of elementary streams together, they are further converted 

into Packetized Elementary Streams (PES) with different stream identifiers (Stream 

ID). The Stream ID allows the decoder to differentiate PES. PES are assigned two 

types of time stamps, Decoding Time Stamps (DTS) and Presentation Time Stamps 

(PTS), before multiplexing together. These time stamps represent the instant that 

the associated video frame and audio clip need to be decoded or presented. 

Two kinds of System streams are defined by the MPEG-2 standard to meet 

the needs of various applications. The Program Stream is intended for use in a reliable 

environment such as playback from a local storage device. It consists of large and 

variable-sized packets. The Transport Stream (TS) is intended for use in a lossy envi­

ronment such as ATM networks. It consists of small fixed-sized packets of 188 bytes, 

called Transport Packets (TP), to reduce the impact of data loss. For transmission 

over a network, it is important that the MPEG-2 decoder and the MPEG-2 stream 

source be synchronized so that the decoder consumes data at the same rate that the 
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Figure 4.5: MPEG-2 encoder and decoder for Transport Streams. 

source sends it. If the decoder is not synchronized to the source, buffer overflows 

or underflows may occur in the decoder. The clock synchronization is done by us­

ing time stamps called Program Clock References (PCR) embedded in the MPEG-2 

TS. 'When encoding a program, the MPEG-2 encoder inserts time stamps, which are 

readings of its clock, into the program periodically (or randomly but keep the spacing 

of two consecutive PCRs within 100 ms). The MPEG-2 decoder uses received PCRs 

to synchronize its clock to the program source. 

Figure 4.6 shows how a MPEG-2 Transport Stream is constructed from pack­

etized elementary streams of one video stream, two audio streams, and one data 

stream. Each PES contains a series of variable-sized packets. For those PES share 
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the same time base, they are multiplexed with additional system information into 

fixed-sized 188-byte Transport Packets. Within the 188-byte packet, four bytes are 

used for Transport Header, the payload of 184 bytes is used for packetized elementary 

streams. 

Video .;· 

Audio l 

Packetized Elementary 
Streams (PES) 

I PES Header 

MPEG-2 Transport Stream 

I Transport Header 

Packetized Elementary 
Streams (PES) 

Figure 4.6: Constructing a Transport Stream from packetized elementary streams. 

MPEG-2 System standard defines a timing model for media synchronization 

and clock synchronization. The media synchronization is used to correctly playback 

a video stream with its associated audio or text. The clock synchronization is used 

to coordinate the decoder and program source. The clock synchronization is ac­

complished by sending time stamps in the MPEG-2 st ream from the source to the 

decoder. These time stamps are called Program Clock References (PCR) in MPEG-2 
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Transport Stream. The PCRs indicate to the decoder what time its clock, called Sys­

tem Time Clock (STC), should be read at the instant the PCRs are received. Both 

STC and PCR use a 42-bit counter to represent the clock running at a 27 MHz rate. 

The decoder uses a clock recovery mechanism to synchronize its clock to the program 

source. 

The media synchronization is accomplished by using PCRs, Decoding Time 

Stamps (DTS) and Presentation Time Stamps (PTS). When a Transport Stream 

program was encoded, the DTSs and PTSs are embedded in each component . These 

time stamps indicate the time that a video picture ( or audio clip) need to be decoded 

or presented. During the playback process, the decoder's STC is initialized by the 

first received PCR. The decoding ( or presentation) of a video picture ( or audio clip) 

will be triggered when its DTS (or PTS) matches the system clock. Since all media of 

a program share the same clock, they will be correctly displayed as they are encoded. 

Vhthin the coding of MPEG-2, time stamps are related to the decoding and 

presentation of video picture and blocks of audio samples. The pictures and blocks 

are called Presentation Units, PU. The encoded data representing the PUs are called 

Access Units, AU. For example, a Video PU (VPU) is a picture, and a Video AU 

(VAU) is an encoded picture. Some, but not necessarily all, AAUs and VAUs have 

PTSs associated with them. A PTS indicates the time that the PU (results from 

decoding the AU which is associated with the PTS) should be presented. Another 

time stamp, DTS, refers to the time that an AU is to be extracted from the decoder 

buffer and decoded. Both PTSs and DTSs are 33 bits long. The STC contains 

two portions, the upper 33 bits incrementing at a 90 KHz rate and lower 9 bits 

incrementing at 27 MHz. The 33 bits, 90 KHz portion of STC is used for comparison 

with PTSs and DTSs. 
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4.3.2 An "Ideal Scheduling" 

Since PCR.s are readings of the encoder's clock, their values represent the time 

that they are inserted by the encoder. Assume the first PCR, PCR1, is inserted at 

the time represented by its value, IPCRil. The ith PCR is inserted at the instant 

that is IPC~I - IPCRil later than PCR1• Assume the decoder consumes PCR1-

containing TP at time T0 . If the decoder consumes every PC~-containing TP at 

time T0 + IPC~I - IPCRil, it playbacks the MPEG-2 TS at the same rate as the 

encoder encoded it. In addition to clock synchronization, PCRs can also be used as 

timing reference to schedule the transmission of MPEG-2 TS. Therefore, an "ideal 

schedule" can be defined as follow: At any point of the delivery path1
, · from the 

program source to the decoder, the TS packet containing PC~ will be transmitted, 

forwarded, or consumed at the time that IPC~I - IPCRil later than the TS packet 

containing PCR1. 

Intuitively, a variable bit-rate (VBR) transport is suitable to transmit MEPG-

2 TS in order to follow t he "ideal schedule". Assume the byte-order of ith PCR in 

a MPEG-2 TS is b(PC~)- The transmission rate in a PCR interval (t he interval 

between two consecutive PCR.s), from PC~ to PC~+i , should be the amount of 

dat a between them divided by the length of the interval , which is 

b(PC~+1) - b(PC~) 

IPC~+il - IPC~I 
(4.3) 

This means the rates required for each PCR interval are different. However, 

the VBR service provided by ATM networks is difficult to enforce the "ideal sched­

ule". Since VBR service takes advantage of statistically multiplexing by sharing the 

bandwidth dynamically among all traffic within a service class. It only guarantees 

1 For pre-recorded MPEG-2 streams, the delivery path includes the storage device and network 
interface of the server, ATM networks, the network interface and decoder of the client. 
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statistical quality of service based on a set of traffic descriptors such as peak rate, 

burst length, and sustained rate. The transmission is even difficult to manage if a 

traffic shaper is used to regulate the cell transmission. 

On the other hand, the constant bit-rate (CBR) service guarantees no or neg­

ligible cell loss, delay, and jitter by allocating network resources (link bandwidth and 

buffer) based on the requested peak transmission rate. Although CBR provides de­

terministic transmission, it can not be used for the "ideal schedule". Moreover, when 

transmitting VBR-coded MPEG streams for continuous playback, it often requires a 

large buffer at the receiving side to accommodate accumulated data due to the dif­

ference between the transmission of a server and the data consumption by a decoder 

[44]. 

In this chapter, we study two new transmission schemes which employ the 

timing information from PCRs to provide transmission schedules which are approxi­

mations of the "ideal schedule". These two schemes collect timing information with 

the help of a PCR-assist mechanism discussed in Section 4.3.3. 

4.3.3 PCR-assist Mechanism 

PCRs are embedded in MPEG-2 Transport Packets to facilitate clock syn­

chronization between the decoder and the program source. The MPEG-2 standard 

recommends the interval between two consecutive PCRs, called PCR interval, should 

not be longer than 100 ms. In most implementation, PCRs are periodically inserted 

by the encoder. PCRs can also be used as timing reference to regulate the trans­

mission of MPEG-2 TPs. Figure 4.4 shows a possible implementation of PCR-assist 

mechanism in the network interface. It is capable of reading PCR values of MPEG-2 

TPs while delivering TPs with different ATM services. 
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At the beginning of video transmission, the first PCR obtained from the stor­

age is stored in a counter which also runs at 27 MHz as the System Time Clock in 

a MPEG-2 encoder or decoder. Whenever a TP with a PCR is ready to be trans­

mitted, the network interface compares the PCR to the content of the counter. If 

the PCR is smaller than the counter, the transmission of MPEG-2 TS is behind of 

its original schedule. Otherwise, the transmission is earlier than its original schedule. 

In Sections 4.4 and 4.5, we will describe the two PCR-assist transmission schemes 

which employ the PCR-assist mechanism to adjust the transmission rate. 

4.4 PCR-assist CBR 

Using CBR service to transmit MPEG-2 streams requires a large buffer and 

a long start-up delay, especially for VBR-coded MPEG streams [44]. With CBR 

services, the server keep transmitting MPEG-2 streams at a constant rate. The 

transmission rate should be high enough in order to prevent starvation occurs in the 

client's buffer. For VBR-coded MPEG-2 streams, the consumption rate of decoder 

varies from time to time, depends on the content of the biggest component of a 

program, video. If the consumption rate can not match with the transmission rate, 

large amount of data will be accumulated in the client's buffer. 

In this section, we describe a new scheme proposed by IBM Rochester [28], 

called PCR-assist CBR (PCBR), which utilizes the PCRs embedded in MPEG-2 

streams to regulate the outgoing traffic. In PCBR, a CBR virtual channel is estab­

lished with a transmission rate higher than the required average rate of a MPEG-2 

TS. The PCR-assist mechanism of the network interface monitors the video stream for 

presence of PCRs. The value of the PCR in the stream is used to make sure that the 

PCR-containing packets are sent out at the correct time. The value of the first PCR 

is stored in a counter of t he network interface as shown in Figure 4.4. The counter 
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running at a rate of 27 MHz. The content of the counter is used to compare with 

any PCR transmitted through the network interface. Denote the value of ith PCR as 

JPC~I and Ci is the value of the counter at the instant ith PCR appeared, except 

that C1 is assigned as jPCR1 j. During the transmission, whenever IPC~I > Ci for 

i > 1, the delivery is faster than it should be. If JPC~I < Ci for any i > 1, on the 

other hand, the delivery is behind of its schedule. In the PCBR scheme, whenever 

JPC~I > Ci happens the network interface will hold up the delivery until Ci reaches 

JPC~I- The transmission is idle during this period of time. The objective is to 

minimize the required buffer space at the client side. If JPC ~ I < Ci for any i > 1, 

t he network interface does not change the transmission rate. · Since t he transmission 

is already behind of its schedule. 
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Figure 4.7: The delivery curve of PCR-assist CBR and consumption curve of the 
decoder. 
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The behavior of PCBR scheme is mustrated in Figure 4.7. The bottom curve, 

denoted as a Consumption Curve, represents the amount of cumulative data consumed 

by the decoder2 . In Figure 4. 7, we also assume the network delay is constant and the 

decoder extracts one coded video frame from the buffer instantaneously every 33.33 

ms (i.e. 30 frames per second). The upper curve, denoted as a Delivery Curve, is 

the amount of cumulative data transmitted by the server. For simplicity, we assume 

PCRs are embedded in the MPEG-2 stream periodically. The interval of any two 

consecutive PCRs is 33.33 ms, the same as the frame interval. The start-up delay 

used in Figure 4. 7 is two-frame time. The decoder waits for two-frame time before 

decoding and presenting the MPEG-2 stream. Assume the byte-order of ith PCR in 

a MPEG-2 stream is b(PC~). If the most recently observed PCR is PCR;. The 

PCR-assist mechanism will not see the next PCR (byte order b(PCR,;+1 )) until the 

data between them (b(PCR;+i) - b(PC~)) have been transmitted. In Figure 4.7, 

when the PCR-assist mechanism sees PCR2 the transmission is slightly behind the 

schedule, IPCR2I < C2. The PCBR scheme does not change the transmission rate. 

vVhen PCR3 arrives the transmission is ahead of the schedule, since IPCR3I > C3. 

The transmission is held up until the counter reaches IPCR3 j. This "go-and-stop" 

pattern continues from frame-time 2 to frame-time 10. This means the transmission 

rate is high enough to transmit data between two consecutive PCRs within one PCR 

interval. Figure 4.7 also points out the instants that PCRs are detected. Note that 

PCBR scheme only changes the transmission rate when it observes a PCR or when 

the value of the counter reaches the value of the most recently observed PCR. 

Next, we develop an analytical model of PCBR scheme. The model will be 

used to determine the amount of data that have been transmitted. Assume that in 

the ith frame interval, Si is the remaining data to be transmitted at the beginning of 

2Note that even though these curves are derived from real MPEG-2 traces. The curve and data 
used here are for illustration purpose only. 
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the interval. Si is the size of frame i. Si is the amount of data have been transmitted 

in ith frame interval. F is the frame interval. For a given rate RPcBR, Si and Si can 

be calculated by the following recurrence equations: 

Si - min(RPcBR x F, Si + Si) ( 4.4) 

Si+l - max(Si + Si - Si, o) (4.5) 

S1 - 0 

In Equation 4.4, Si is equal to RPcBR x F if the transmission rate is not 

high enough to transmit data of size Si+ Si within one PCR interval. Equation 4.5 

calculates the remaining data for the next interval The minimum buffer required 

at the client side can be determined by computing the maximum difference between 

delivery curve and consumption curve. The amount of data that have been received 

at time n x Fis E~=I Si . The amount of data that have been consumed right before 

time n x F is An-t · The maximum difference between delivery curve and consumption 

curve for a given start-up delay P is 

(4.6) 

4.5 PCR-Assist Dual-Rate CBR 

In PCBR scheme, the transmission rate is either RPcBR or zero. A virtual 

channel with a peak transmission rate of RPcBR is established before the delivery. As 

the experimental results shown in Section 4.6, compared to traditional CBR service, 

PCBR requires less buffer at the client side with higher transmission rate. One 

drawback of PCBR scheme is that its go-and-stop delivery curve may intersects with 
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the consumption curve (i.e. starvation) if there is not enough cushion between them. 

To reduce the transmission rate and to reduce the chance of starvation, we 

propose a more flexible transmission scheme, called PCR-assist Dual-Rate CBR (PD­

CBR) . In PDCBR scheme, the transmission is switched between two rates, a high and 

a low rates denoted as Rhigh and R1ow. The rate used depends on if the transmission is 

earlier or later than its schedule. If jPCl¼I > Ci for any i > 1, the delivery is earlier 

than it should be. Instead of holding up the delivery as PCBR, PDCBR changes the 

rate to Riow to slow down the accumulation in client's buffer. If jPCi¼I < Ci for any 

i > 1, on the other hand, the delivery is behind its schedule. The rate is changed to 

Rhigh in order to prevent starvation at the client side. Actually, PCBR is a special 

case of PDCBR. For PCBR, Rhigh is RPcBR and R1ow is zero. Note that the rate can 

only be changed when a PCR appears, which means the amount of data between the 

previous and the current PCR have been delivered. 

Figure 4.8 shows the delivery curve of PDCBR and the consumption curve 

of the decoder. The consumption curve and the start-up delay are the same as the 

previous section. In this example, the Rhigh rate is a little bit higher than RcsR, but 

is lower than RPcBR used in Figure 4.7. R10w is a little bit lower than RcBR· From 

the appearance of PCR.s (denoted as points in the figure), it is easy to understand the 

behavior of PDCBR scheme. Initially, Rhigh rate is used between PCR1 and PCR2. 

At the instant PCR2 appears, the PCR-assist mechanism detects that jPCR2 1 > C2. 

It s1,vitches the rate to R1ow when transmitting packets containing PCR2. Rate Riow 

is used until PCR6 appears (between frame-time 5 and 6) . Because when PCR3 , 

PCR4 , and PCR5 appear, the transmission is faster than it should be. When the 

PCR-Assist mechanism observes PC~, the transmission is behind of its schedule 

(i.e. jPC~I < C6). The rate is switched back to Rhigh to prevent starvation at the 

client side. Intuitively, the buffer space required at client side for PDCBR should be 

smaller than that of CBR, but may be bigger than that of PCBR. 
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Figure 4.8: The delivery curve of PCR-assist Dual-Rate CBR and consumption curve 
of the decoder. 

An analytical model of PDCBR scheme can be developed as follows. Assume 

that in ith frame interval (Fi-I, Fi), the PCR-assist mechanism observes ni PCRs. 

For example, there are two PCRs during the sixth frame interval in Figure 4.8. The 

instants that PCRs are observed divide the ith frame interval into ni + 1 periods, 

denoted as T = {T1 , . .. , Tn;+1}. The corresponding transmission rates used in each 

period are R = {Rate1, ... ,Raten;+1}. The amount of data have been transmitted, 

Si, and the remaining data need to be transmitted at the beginning of next frame 

interval, S\+1 , are 

n;+l 
Si = L 'h x Ratek (4.7) 

k=l 
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In Equation 4.8, S1ast is the size of the data between the last PCR (appears at 

time ~ - Tn;+i) in this frame interval and the subsequent PCR. Si+1 equals to the 

remaining data of S1ast after transmitted at a rate Raten;+l for a period of Tn;+l· 

The set of T and R of it h frame interval can be calculated using the following 

algorithm. Assume Ui and½ are two reference points within frame interval (~_1 , Fi)­

Siast is the amount of data needed to be delivered before observing the next PCR. 

Initially, Siast is set to the size of the first frame, Sb, where b = l. Rate is the current 

rate, which could be either Rhigh or Rtow· Initially, R is set to Rhigh· 

1 T = 0; R = 0; 

2 ui = Fi-1; v; = Fi- 1; 

3 while v; < Fi 

4 v; = min( ~~l~ + Ui, Fi); 

5 S1ast = max(Stast - (v; - Ui) X Rate,O); 

6 add Rate into R 

7 add interval (Ui, v;) into T 

8 if S1ast == 0 

9 if l PCR l~terval J < b 

10 Rate= Riowi 

11 else 

12 Rate = Rhigh; 

13 b = b+l ; 

14 Siast = Sb; 

15 if Rate == 0 

16 Rate = Rhighi 

17 v; = Fi; 

1s ui = v;; 
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The algorithm can also be applied to PCBR scheme, since it is a special case 

of PDCBR. Lines 15 to 17 are used for PCBR scheme. For a given start-up delay P, 

the maximum buffer required at the client side can be determined by computing the 

maximum difference between delivery curve and consumption curve like Equation 4.6 

in the previous section. 

4.6 Comparison of CBR and PCR-Assist Schemes 

As mentioned before, video transmission is influenced by three important pa­

rameters: buffer size, transmission rate, and start-up delay. Buffer size and transmis­

sion rate are related to the resource requirement at the client side. Start-up delay 

is related to the service provided to the client by a transmission scheme. These 

three parameters can be used to study the behavior of a video delivery scheme. In 

this section, we first compare the transmission and buffer requirements of traditional 

CBR, PCBR and PDCBR schemes with given start-up delays. The experimental 

results reveal the resource requirement for a specific waiting time. In Sections 4.7, 

we will further study the relationship among the three three parameters in the two 

PCR-assist transmission schemes. 

Our methodology is to determine the required transmission rates and buff er 

sizes by adjusting the start-up delay. For a given value of start-up delay, we compute 

the minimum rate requirement with a required buffer size to guarantee the jitter-free 

delivery in each of the following transmission schemes: CBR, PCBR, and PDCBR. 

The guaranteed delivery ensures that the starvation never happens. For simplicity, 

we assume the PCR interval is the same as a frame interval, i.e., a PCR occurs every 

33.33 ms. Four MPEG-2 trace data which close to CBR-encoded are used in this 
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analysis. Due to lack of long VBR-encoded MPEG-2 TS available in public domain, 

we also use six VBR-encoded MPEG-1 and two Motion JPEG [58) (M-JPEG) traces 

for a complete study. JPEG encoding format was originally designed for encoding and 

decoding still images. For a sequence of video frames, motion JPEG only uses intra­

frame coding scheme. Each video frame can be encoded and decoded independently. 

Table 4.1 shows the contents of these video sequences. 

Table 4.1: Video Contents. 

I Video Name I Encoding I Content 
mtv MPEG-1 Music Clips 
adv MPEG-1 Advertisement of Graphic Products 
silence MPEG-1 Movie: The Silence of the Lambs 
soccer MPEG-1 Sports: World Soccer Cup 1994 Final: Brazil vs Italy 
6trans MPEG-2 Transport Stream test bit stream 
horse MPEG-2 Transport Stream test bit stream 
t260 MPEG-2 Movie: Terminator II 
acup MPEG-2 Sports: American Cup Yacht Race 
backdraft M-JPEG Movie: Backdraft 
fugitive M-JPEG Movie: Fugitive 

For CBR scheme, given a start-up delay, the calculation of minimum rate 

requirement with a required buffer size is based on the discussion in Section 4.2. The 

minimum rate and buffer requirement under CBR scheme will be used as a basis 

to compare with two PCR-assist transmission schemes. We call the minimum rate 

requirement as RcBR· As mentioned in [44), if a rate lower than RcBR is used to 

deliver a video stream, the delivery curve will intersect with the consumption curve, 

indicating a buffer starvation situation. 

For PCBR scheme, given the same start-up delay as in CBR, the minimum 

required rate must be higher than RcBR· Otherwise, some video data will arrive late. 

For example, assume RcBR is the rate used by PCBR scheme, the transmission uses 

a rate of either RcBR or zero (i.e., held up by the network interface) based on PCR 
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values. As discussed in Section 4.2, RcBR is the rate that the delivery scheme should 

transmit during the entire session to avoid starvation at the client side. Whenever 

the transmission is held up by the PCR-assist mechanism, the server will not be 

able to send any data until the counter reaches the same value as the transmitting 

PCR. Therefore, a higher rate (RPcBR) than RcsR for the same start-up delay is 

required for a jitter-free delivery. In the analysis, we set RPcBR as RcsR initially. 

Then incrementally add 1 % of RcsR to RPcBR until the rate is applicable to transmit 

video stream without causing starvation in client's buffer. The corresponding buffer 

requirement can then be computed thereafter. 

For PDCBR, the determination of high and low rates is needed. However, 

the number of feasible combinations of high and low rates can be large. Here, we 

restrict the search space by limiting the high rates from the set RH= {RcsR , 1.01 x 

RceR, 1.02 x RcBR, . .. , 1.19 x RcBR}, This means the high rate is determined based 

on the rate used in CBR scheme. After choosing one high rate, say Rhigh from RH, 

the low rate is determined from RL: {0.05 x Rhigh, 0.10 x Rhigh, .. . , 0.95 x Rhigh}­

After trying all possible combinations of high and low rates from RH and RL, we 

report the rate combination which demands the least amount of buffer space and use 

it to compare with other schemes. 

4.6.1 Comparison Using MPEG-1 Traces 

Table 4.2 shows the encoding information of six VER-encoded MPEG-1 trace 

data3 which are from (22, 50]. Figures 4.9 and 4.10 show the buffer requirement 

(the left column) and rate requirement (the right column) versus start-up delays in 

six MPEG-1 trace data for CBR, PCBR, and PDCBR schemes. There are three 

curves in each figure of buffer requirement. From top to bottom, they are the buffer 

3The trace "adv" is available via anonymous FTP from ftp://tenet.berkeley.edu/pub/dbind 
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requirements of CBR, PDCBR, and PCBR schemes. For each figure of required 

transmission rates, there are four curves. They are the rate used by PCBR, the high 

rate used by PDCBR, the rate used by CBR, and the low rate used by PDCBR ( also 

from top to bottom). Note these orders are consist with all the figures. From the 

experimental results they indeed exhibit insight of each delivery scheme. 

Table 4.2: Statistical Data of MPEG-1 Streams. 

I Video Name mtv adv silence soccer 

Video Length 27.78 min 11.33 min 27.78 min 27.78 min 
Picture Size 384 X 288 160 X 120 384 X 288 384 X 288 
Picture Pattern IBB(PBB)4 IBBPBB IBB(PBB)4 IBB(PBB)4 

No. of Video Frames 40000 16317 40000 40000 

• Trade-offs between buffer and rate requirements. CBR service requires 

lower rates ( the third curve) at the cost of higher buffer requirement ( the first 

curve). PCBR and PDCBR schemes, on the opposite, require higher transmis­

sion rates with less buffer requirement. PDCBR as expected demands less rate 

(the second curve) than it is in PCBR scheme (the first curve) . For the case 

of trace "adv" with the start-up delay of 300 frames, two PCR-assist schemes 

can reduce client buffer requirement from 4.75 Mbytes down to 0.675 Mbytes 

by allocating network bandwidth of 0.547 Mbits/sec up from 0.516 Mbits/sec. 

This translates into a reduction of 6.5 times memory requirement at the cost 

of 6% more transmission rate. The t rade-offs between buffer requirement and 

transmission rate exist in all six traces with various degrees of significance. 

• Impact of start-up delay. For CBR scheme, while the start-up delay is 

increasing, the buffer requirement is decreasing. However, the trend is different 

in two PCR-assist schemes. For example, in delivery of trace "soccer" as shown 
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Figure 4.10: More MPEG-1 Traces. 

in Figure 4.10, the buffer requirement of PDCBR scheme decreases as the start­

up delay increases. For PCBR scheme, the buffer requirement keeps increasing 

while allowing longer start-up delay. This situation indicates that the buffer 

accumulation during start-up delay period is the dominant factor for PCBR. 

In other words, the increase of buffer space is due to the longer start-up delay, 

causing more data to be stock up before playback starts. 

• Cases of short start-up delays. For applications that need short start-up 

delays, CBR scheme demands larger amount of available buffer space at the 

client side. If either one of PCR-assist schemes is used, it requires a higher 

network bandwidth. As an example, assume 10 frames of time (i.e., 333.33 ms) 

is the maximum allowable start-up delay. For CBR delivery of "rntv", the client 

at least needs available memory space of 37.5 Mbytes and network bandwidth 

of 0.96 Mbits/sec before the playback begins. For PCBR scheme, the client 

memory requirement reduces to 0.107 Mbytes and the rate increases to 2.57 

Mbits/sec. 
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4.6.2 Comparison Using MPEG-2 Traces 

The experimental results of Section 4.6.1 show the resource requirement of 

three delivery schemes for MPEG viideo with high rate variation. In this section, we 

study their behavior when transmitting video with low rate variation. Table 4.3 shows 

the encoding information of four MPEG-2 trace data. These traces were encoded with 

less rate variation. Therefore, they are very close to CBR-encoded MPEG streams. 

For example, Figure 4.11 displays frame sizes of "t260" trace by averaging every 10 

frames. The fluctuations of frame sizes remain minimum. 

Table 4.3: Statistkal Data of MPEG-2 Streams. 

[ Video Name 6trans 

Video Length 20.161 sec 
Picture Size 352 X 480 
Picture Pattern IBB(PBB)4 

No. of Video Frames 602 
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., 40000 ., 
>-
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Figure 4.11: t260 (MPEG-2) Trace 

Figures 4.12 and 4.13 illustrate buffer (left column) and rate (right column) 

requirements of CBR, PCBR, and PDCBR schemes. The start-up delays of all figures 
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range from 1 to 30 frame time. There are three curves in each figure of buffer re­

quirement. For most of the cases from the top most, they are the buffer requirements 

of CBR, PCBR, and PDCBR schemes. For each figure of the required transmission 

rates, there are four curves. They are the rates used by PCBR, the high rate used 

by PDCBR, the rate used by CBR, and the low rate used by PDCBR ( also from the 

top most). 

As can be observed from these results, they show the same behavior as in 

VBR MPEG-1 cases regard to the buffer and rate requirements. CBR t ransmis­

sion demands lower rates while requires a larger buffer space. The two PCR-assist 

transmission schemes need higher rates but consume smaller buffer spaces. The trans­

mission rate of PDCBR scheme is less than that used in PCBR scheme. However, 

the degree of rate or buffer gain or lose is not in the same order of MPEG-1 traces. 

The less rate variation embedded in MPEG-2 traces may contribute to this effect. 

For instance, the required rates are about the same for all traces in all three trans­

mission schemes for start-up delays longer than 10 frame time. The amount of buffer 

requirement is not so widely different either. We observed a reduction of 5% to 20% 

in buffer requirement for PCR-assist schemes, compared to CBR scheme. Except for 

the trace of "horse" which shows more than 100% buffer saving by using PDCBR 

with the start-up delay equals to 20 frame time. In this set of experiments PDCBR 

seems to outperform PCBR in both rate and buffer requirements. 

4.6.3 Comparison Using Motion JPEG Traces 

To demonstrate that the PCR-assist schemes can reduce the buffer require­

ment for any VBR-coded video, we further use Motion JPEG video to study their 

performance. MPEG encoded streams can achieve greater compression ratio be­

cause of the use of int ra-frame and inter-frame encoding and the use of bi-directional 
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Figure 4.12: Comparison of CBR, PCBR, and PDCBR with MPEG-2 traces. 
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Figure 4.13: More MPEG-2 traces. 

motion compensation. This results in higher rate variance, video frames with intra-­

frame encoding generate more data bits than video frames with inter-frame encoding. 

Compared to variable bit-rate MPEG streams, video in JPEG format has less rate 

variance. Since JPEG only uses intra-frame encoding scheme. The rate variance of 

a Motion JPEG video is a function of the complexity of the scene and the extent of 

scene changes from frame to frame. Table 4.4 shows the encoding information of two 

Motion JPEG traces. 

Table 4.4: Statistical Data of M-JPEG Streams. 

I Video Name I backdraft I fugitive [ 
Video Length 22.22 min 25 min 
Picture Size 640 X 480 640 X 480 
Picture Pattern I I 
No. of Video Frames 32000 36000 

Figure 4.14 shows buffer (left column) and rate (right column) requirements of 

the three transmission schemes. The start-up delays of all figures also range from 1 to 

30 frame time. We observed similar performance trend as in previous sections. The 

experimental results demonstrate that PCBR and PDCBR schemes require much less 
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Figure 4.14: Comparison of CBR, PCBR, and PDCBR using M-JPEG traces. 

buffer space for any video stream with rate variance, not only for MPEG streams. 

Figure 4.14 also indicates that the two Motion JPEG traces require more buffer space 

and t ransmission rates than the previous two cases (MPEG-1 and MPEG-2 cases). 

This is because the traces used here have larger picture sizes and the motion JPEG 

encoding scheme has less compression ratio than MPEG schemes. The average bit of 

traces "backdraft" and "fugitive" are 3.3 and 3.0 Mbit/sec, respectively. 

4 .6.4 Observations 

Six MPEG-1 (VBR-encoded), four MPEG-2 (close to CBR-encoded) and two 

Motion JPEG traces are used in the analysis. Based on the experimental results in 
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this section, we have the following observations: 

• PCBR scheme significantly reduces buffer requirement, especially for VBR­

encoded MPEG-1 traces. The reduction of buffer requirement in some cases 

can be up to 10 times (Figures 4.9 and 4.10 when the start-up delay is 10 frame 

time) compared to CBR scheme. The reduction of buffer requirement comes at 

the cost of higher transmission rates. In the same cases as mentioned above, 

the delivery demands a rate of 1.5 to 2 times higher than t hat in CBR scheme. 

• The proposed PDCBR scheme provides more flexible trade-offs between the 

buffer requirement and transmission rate. In the analysis, we limit the maximum 

rate difference between PDCBR and CBR to 20%. The results show that buffer 

requirement can be reduced with slightly higher t ransmission rates. 

4. 7 Comparison of PCBR and PDCBR Schemes 

In Section 4.6, we compared the buffer and rate requirements of the three 

transmission schemes. The methodology is to determine the required transmission 

rates and buffer sizes by adjusting the start-up delay. For some environments, such 

as video on demand or video t ransmission through residential networks, the user may 

have fixed buffer space or fixed link bandwidth. For example, most of the setop 

boxes which are used to receive and decode video streams have limited memory space 

due to cost consideration. The communication links between setop boxes and video 

server may go through cable TV networks or ISDN connections. These links also have 

restricted bandwidth for video transmission. In Sections 4.7.1 and 4.7.2, we study 

the performance of both PCBR and PDCBR schemes in these environments. 
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4.7.1 Fixed Buffer Sizes 

With fixed buffer sizes at the receiver side, the objective of this section is to 

compare the transmission rates required by PCBR and PDCBR schemes in order to 

provide a continuous playback. The transmission scheme should not either overflow 

or underflow the receiver's limited buffer space during the entire session of video 

transmission. Assume t he accumulative amount of data consumed by the decoder can 

be described by a consumption curve (as illustrated in Figure 4.1). The consumption 

curve can be represented by a discrete function C(n), 

n 

C(n) = LSi, (4.9) 
i=l 

where Si is the size of video frame i . Given a fixed buffer size B, there is a reference 

curve which can be denoted as R(n) = C(n) + B. A transmission scheme should 

provides a feasible delivery curve, which represents the accumulative amount of video 

data delivered to the receiver, between the consumption curve and reference curve. 

VVith a given buffer space, there is also an upper bound for the start-up delay. 

Because the amount of data pre-loaded into the client's buffer during the period of 

start-up delay can not excess the capacity of the buffer. In this study, we minimize the 

required transmission rate by adjusting the start-up delay within the range allowed 

by the fixed buffer space. Longer start-up delays (more pre-loaded data) may result 

in lower transmission rates. 

Figure 4.15 shows the required transmission rates of PCBR and PDCBR 

schemes with different buffer sizes. Four MPEG-1 and two Motion JPEG traces 

are used to compare PCBR and PDCBR schemes. The experimental result with 

trace "mtv" uses a buffer size of 2 MBytes. The result with trace "adv" uses a buffer 

size of 1 MBytes. The results from the rest of traces use a buffer size of 4 MBytes. 

Since different traces have different rate variance. For each trace, we conducted the 
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performance evaluation with various buffer sizes. We present those results that can 

demonstrate the difference between PCBR and PDCBR schemes. 

There are three curves in each figure. From top to bottom, they are the 

transmission rate required by the PCBR scheme, the high rate and the low rate used 

by the PDCBR scheme. For a given buffer size, the required transmission rates are 

obtained by adjusting the start-up delay. The start-up delay is controlled by the 

amount of data pre-fetched into the receiver's buffer. It is the time required to pre­

fetched a certain amount of data before the playback. Therefore, for those points 

closer to the left side of each figure, video transmission has smaller start-up delays 

because it only needs to wait for smaller amount of data to be re-fetched. For those 

points closer to the right side of each figure, video transmission needs to wait for 

larger amount of data be pre-fetched. In the former case, video transmission has less 

data in decoder's buffer for cushion. 

From Figure 4.15, we observed that with larger start-up delays PCBR and 

PDCBR schemes require similar transmission rates. However, the PDCBR scheme 

requires lower transmission rates than PCBR with smaller start-up delays. This 

means the PCBR scheme requires higher transmission rates than PDCBR when the 

user demands low delays. Because of the "go-and-stop" transmission pattern of PCBR 

scheme, it requires higher transmission rate to avoid starving decoder's buffer (i.e. 

avoid intersection between the delivery curve and the consumption curve) . 

4. 7.2 Fixed Transmission Rates 

For a given transmission rate for PCBR scheme or a given pair of high rate 

and low rate for PDCBR scheme, there will be a fixed delivery curve. In order to 

provide jitter-free video transmission (avoid intersection between the delivery curve 

and the consumption curve) for continuous playback, we need to include appropriate 
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start-up delays as the Figure 4.2 in Section 4.2 suggests. On the other hand, the buffer 

requirement increases as the start-up delay increases. Since the buffer requirement 

is the maximum difference between the delivery curve and the consumption curve. 

This suggests that start-up delays must have a reasonable range. In this section, we 

compare the start-up delay required by PCBR and PDCBR schemes with different 

fixed transmission rates. We also restrict the buffer requirement in order to produce 

reasonable results. For those viewers have fixed communication bandwidth, the results 

reflect the time they need to wait before the commencement of playback. 

Figure 4.16 shows the required s"tart-up delays of PCBR and PDCBR schemes 

with fixed transmission rates. We used same six traces as in the previous section. The 

buffer requirements of trace "adv", "silence", and "soccer" are limited by 4 MBytes. 

The buffer requirements of trace "mtv" and "fugitive" are limited by 8 MBytes. We 

use 16 l\·1Bytes as the buffer limitation for trace "backdraft". For a given transmission 

rate in each figure, we obtain the minimum start-up delay required for both schemes. 

Assume Raverage is the average bandwidth of a trace. A series of transmission rates are 

used, from Raverage, Raverage x 1.01, Raverage x 1.02, ... to Raverage x 1.24. For PDCBR 

scheme, these rates are used as its high transmission rate. We find out the low rate 

which allow t he minimum start-up. 

From Figure 4.16, we observed the performance differences between PCBR and 

PDCBR schemes, except for trace "backdraft" . The result from trace "adv" shows 

that with transmission rates closer to Raverage both PCBR and PDCBR require similar 

start-up delays. With higher transmission rates, the PDCBR allows shorter start-up 

delays than PCBR. For the rest four traces, PDCBR always provides shorter start-up 

delays. Note that the unit used for start-up delay is second. 
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4.8 Summary 

In this chapter, we have st udied the technique of real-time transport of MPEG-

2 streams using PCRs as timing reference to regulate the transmission. In particular, 

we have studied two PCR-assist transport schemes: PCR-assist GBR (PCBR) and 

PCR-assist Dual-Rate CBR (PDCBR). We used CBR transport scheme as a com­

parison basis to evaluate the network bandwidth and client buffer requirement for 

PCBR and PDCBR schemes. We concluded that PCR-assist schemes require higher 

transmission rate but less buffer space compared to CBR scheme. Moreover, PDCBR 

scheme provides more flexible trade-offs between buffer requirement and required 

transmission rates than PCBR scheme. 

We have studied these two schemes with three important parameters: buffer 

size, transmission rate, and start-up delay. With fixed buffer space, the PDCBR 

scheme allows lower transmission rates than the PCBR scheme when the viewer de­

mands low start-up delays. With fixed transmrssion rates, PDCBR scheme requires 

lower waiting time than the PCBR scheme. 
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Conclusion 

Switch-based high speed networks possess superior features, such as high data 

transfer rates, low latency, scalability, and support for multiple classes of service, than 

legacy networks. For application developers, the challenge lies on how to utilize the 

high performance communication provided by the switch-based high speed networks. 

For system designer, the challenge lies in how to deliver these features to application 

level by reducing overheads from hardware and software components. In this thesis, 

we have concentrated our effort on the high speed network support for two impor­

tant classes of applications in network-centric computing: network computing and 

multimedia communications. 

Our contribution is summarized as follows. 

• High speed network support for cluster computing. In cluster computing environ­

ment, distributed applications are implemented by partitioning the computation 

into tasks and assigning them to processes which collaborated with each other 

based on a message passing model. The speed of message passing is critical to 

the performance of cluster computing. We have carefully examined a popular 

cluster computing environment and enhanced its communication performance 

by reducing the protocol processing overhead and employing features provided 

by the underlying high speed networks. The protocol processing overhead is 

reduced by bypassing higher layer protocols and using low level application 

programming interfaces. The communication performance is further improved 

with features of the underlying networks, such as multicasting communication 

141 
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and credit-base flow control. 

Based on the experimental results from the same cluster computing environment 

on local ATM and HIPP! networks, we have improved the achievable throughput 

while preserving low communication latency. This demonstrates the feasibility 

and potential of network computing on clusters of workstations. 

• High speed network support for meta-computing. Meta-computing is one possible 

extension of cluster computing. The advantage of meta-computing is allowing 

researchers to utilize geographically distributed computing resources connected 

via local and wide area networks to solve large problems. We have studied two 

feasible approaches to facilitate the internetworking of local HIP PI networks and 

wide area ATM networks for meta-computing. They are HIPP! Tunneling and 

IP Routing. The former provides interconnection at the physical layer and the 

later supports internetworking at the network layer. We have compared these 

two approaches in terms of their network connectivities, protocol overheads, 

and flow control. The impact of flow control of upper layer protocol on the 

performance is also presented. The unique feature of our study is that both 

approaches were implemented and evaluated in the same network infrastructure. 

• High speed network support for multimedia communications. Network delivery 

for continuous media is an inherently difficult problem due to the time-sensitive 

nature of the data and its rate variance. Transmitting compressed variable 

bit rate video with traditional constant bit-rate (CBR) service for continuous 

playback requires a large buffer at the viewer's side. We have studied two new 

CBR transmission schemes which utilizing the timing information embedded in 

the MPEG-2 stream and a hardware-assist mechanism at the network interface. 

The two schemes, called PCR-assist CBR (PCBR) and PCR-assist Dual-Rate 

CBR (PDCBR), reduce buffer requirement by using the timing information to 
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regulate their transmission. We have compared their performance with tradi­

tional CBR service with real video traces. 
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