
Technical Report

Department of Computer Science
and Engineering

University of Minnesota
4·192 EECS Building
200 Union S treet SE

Minneapolis, MN 55455·0159 USA

TR 97-050

High-Speed Network Support for
High-Performance Network
Computing and Multimedia

Communications

by: Jenwei Hsieh
(Ph.D. Thesis)

HIGH-SPEED NETWORK SUPPORT FOR
HIGH-PERFORMANCE NETWORK COMPUTING AND

MULTIMEDIA COMMUNICATIONS

A THESIS
SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA
BY

JENWEI HSIEH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

October 1997

© J enwei Hsieh 1997

ii

UNIVERSITY OF MINNESOTA

This is to certify that I have examined this bound copy of a doctoral thesis by

JENWEI HSIEH

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

David H.C. Du

Name of Faculty Adviser(s)

Signature of Faculty Adviser(s)

Date

GRADUATE SCHOOL

111

Abstract

The prevalence of computer networks has shifted the computing paradigm

from mainframe or host-centric computing to network-centric computing. In network­

centric computing, applications are executed distributedly on a collection of comput­

ers interconnected via local and wide area networks. The performance of network­

centric applications can be dramatically improved with switch-based high-speed net­

works, such as HIPPI, ATM, and Fibre Channel. In this study, we focus on the

high-speed network support for two important applications in network-centric com­

puting: high-performance network computing and multimedia communication.

One important class of network computing is cluster computing, which enables

a collection of locally interconnected computers to be used as a general-purpose par­

allel computing system. Large problems can be solved cost effectively by using the

aggregate processing power and memory space of a cluster. However, communication

between processors has long been the bottleneck of cluster computing. We have es­

pecially concentrated on maximizing the achievable throughput and minimizing the

communication delay for cluster computing in homogeneous environments. We have

enhanced a popular cluster computing environment, Parallel Virtual Machine (PVM)

with clusters of workstations on either local ATM or HIPPI networks.

One possible extension of cluster computing is to incorporate clusters of com­

puters via wide area networks. This is called meta-computing. For example, a group

of diverse high-performance computers from several geographically distributed super­

computer centers can be employed to solve large problems. ATM is the de facto

standard for wide area networks. However, most of the supercomputer centers use

lV

HIPPI in their computing facilities. The internetworking of HIP PI networks and wide

area ATM networks becomes an important issue for meta-computing. Two feasible

solutions for the problem, HIPP! Tunneling and IP Routing, have been studied in

this thesis.

Multimedia communication imposes another challenge for high speed networks.

The delivery of continuous media requires high communication bandwidth and real­

time constraint. \Ve have studied two new CBR transmission schemes, called PCR­

assist CBR (PCBR) and PCR-assist Dual-Rate CBR (PDCBR), which employ the

Program Clock References (PCR) embedded in the MPEG-2 Transport Streams to

regulate their transmission. The two schemes provide flexible trade-off between buffer

requirement and transmission rates.

V

Acknowledgments

I wish to express my sincere gratitude to my advisor, Professor David H.C.

Du for his guidance, encouragement and support throughout the past years. It is

my privilege to have his supervision. I would like to thank the members of my the­

sis committee, Professors Pen-Chung Yew and Jaideep Srivastava from the Computer

Science Department, Professor David J. Lilja from the Electrical Engineering Depart­

ment, and Professor Walter Littman from Mathematics Department for their valuable

feedback on my work. In particular, I would like to thank Professors David J. Lilja

and J aideep Srivastava for reviewing this thesis. I would also like to thank Professor

Pierre C. Robert from Soils Science Department for his funding during the early years

of my Ph.D. study.

My research \Vas inspired by many colleagues of our research group. In partic­

ular, I would like to thank Mengjou Lin for his support, suggestions and hard work on

various topics we worked on together. I would like to thank Rose Tsang and James

Schnepf for their valuable comments on my research work. I would like to thank

Jonathan Liu for his hardwork and support on video-on-demand server issues. I

would like to thank Horng-Juing Lee, Taisheng Chang for their support and feedback

on PCR-assist video transmission. I would like to thank Simon Shim and Yue-wei

\,Vang for their hardwork and support on serial storage issues. I also wish to express

my appreciation to Yen-Jen Lee, Wei-hsui Ma, Ying-Li Wu, Sheue-Ling Chang, Paisal

Keattithananant, and Sudesh Karnath for their support on all the exciting projects

we have worked on.

The system staffs of Computer Science Department have solved many tedious

Vl

problems for my experimental work. I would like to thank James MacDonald, An­

drew Nelson, Paul Dokas, Dan Mack, Dr. Norman Troullier, Mike McShane, and

Irrene Jobcoson for their support. I would like to thank Tom Ruwart from the Labo­

ratory of Computational Science and Engineering for his support on various projects.

Many friends from industry community also provided support to my experimental

work. I would like to thank Joseph Thomas and Timothy Salo from the Minnesota

Supercomputer Center Inc., Jack Pugaczewski and Jeffrey Kays from U S WEST

Communications, Dave Archer, Gary Delp, Kevin Plotz and Walt Krapohl from IBM

Rochester for their suggestions and support. I would also like to thank Reza Rooho­

lamini at Dell Computer Corporation for his support during the final stage of my

thesis work.

Finally, I wish to thank my parents, James and Chen-shi Hsieh, and my

parents-in-law for their love and support. I would like to dedicate this thesis to my

wife, Wei-wen Pan, and our daughter, Dana, for their continual support and love.

vu

Contents

Abstract

Ack now Iedgments

1 Introduction

1.1 High-Performance Network Computing

· 1.2 Meta-Computing

1.3 Multimedia Communications .

1.4 Thesis Organization

2 High-Speed Network Support for Cluster Computing

2.1 Related \Vork

2.2 Parallel Virtual Machine

2.2.1 The Communication Subsystem of PYM

2.3 Enhanced PYM Communications on ATM Networks

2.3.1 PYM and ATM Advantages

2.3.2 ATM: the Next Generation Network

2.3.3 Application P rogramming Interface .

2.3.4 PYM Communications: Existing and Enhanced

2.3.5 Performance Measurements

2.4 Enhanced PYM Communications on HIPP! Networks

2.4.1 HIPP! Networks

2.4.2 A Re-implementation of PYM over a HIPPI Network

2.4.3 Performance Evaluation

viii

iv

v i

1

3

5

6

8

10

14

16

19

27

29

32

34

36

38

45

48

48

52

2.4.4 Performance Tuning of PVM/LLA over HIPPI . 57

2.5 Summary and Future Work 60

3 High-Speed Network Support for Meta-Computing 64

3.1 Related Work 67

3.2 HIPPI Tunneling and IP Routing 68

3.2.1 HIPPI Tunneling Through ATM Networks 68

3.2.2 IP Routing 70

3.2.3 Extended HIPP! Connectivities 71

3.2.4 Protocol Overhead 73

3.2.5 Flow Control . . . 74

3.3 Implementation of HIPP! Tunneling . 76

3.3.l Environment 76

3.3.2 Performance of HIPPI-FP and TCP over HIPPI Networks 78

3.3.3 Performance of HIPPI-FP and TCP over HIPPI Tunneling 86

3.4 Implementation of IP Routing 92

3.4.1 Performance of TCP over IP Routing . 94

3.5 Summary . 98

4 High-Speed Network Support for Multimedia Communications 100

4.1 Related Work 104

4.2 Constant Bit Rate (CBR) Transmission . 105

4.3 System Model for MPEG-2 over ATM 108

4.3.1 MPEG-2 Transport Streams 110

4.3.2 An "Ideal Scheduling" 114

4.3.3 PCR-assist Mechanism 115

4.4 PCR-assist CBR 116

ix

4.5 PCR-Assist Dual-Rate CBR 119

4.6 Comparison of CBR and PCR-Assist Schemes 123

4.6.1 Comparison Using MPEG-1 Traces 125

4.6.2 Comparison Using MPEG-2 Traces 129

4.6.3 Comparison Using Motion JPEG Traces 130

4.6.4 Observations 133

4.7 Comparison of PCBR and PDCBR Schemes 134

4.7.1 Fixed Buffer Sizes 135

4.7.2 Fixed Transmission Rates 136

4.8 Summary 140

5 Conclusion 141

Bibliography 144

X

List of Tables

2.1 'Transport protocols or inter-process communications used by PVM. 22

2.2 Normal Route . 42

2.3 Direct Route 42

2.4 LLA commands used in the re-implementation of PYM . . 50

2.5 User-to-User performance of PYM and PVM/LLA over Ethernet. 54

2.6 End-to-end performance over of PYM and PVM/LLA over HIPPI. . 60

4.1 Video Contents. 124

4.2 Statistical Data of MPEG-1 Streams. 126

4.3 Statistical Data of MPEG-2 Streams. 129

4.4 Statistical Data of M-JPEG Streams. 132

xi

List of Figures

2.1 Protocol hierarchy of PVM's communication subsystem.

2.2 An instance of PVM configuration

2.3 Comparison of PYM Normal and PYM Direct modes

2.4 Two-phase multicasting communications

2.5 Normal mode: Bandwidth as a function of message size

2.6 Direct mode: Bandwidth as a function of message size

2.7 The latencies of original PYM multicasting (top graphs) and the re-

14

18

25

26

40

41

implementation of PYM-ATM multicasting (bottom graphs) 46

2.8 Preliminary latency measurement of original PYM and PYM/LLA over

an Ethernet network. · 54

2.9· Preliminary throughput measurement of original PVM and PVM/LLA

over an Ethernet network. 55

2.10 Latency measurement of PVM and PYM/LLA on a HIPP! network. . 56

2.11 Throughput measurement of PVM and PVM/LLA on a HIPP! network. 57

2.12 Latency measurement of PYM/LLA with different transmission sizes. 58

2.13 Throughput measurement of PYM/LLA with different transmission

sizes • • • • • • • 59

3.1 Extend HIPPI connectivities with HIPPI-ATM converters. 69

3.2 Extend HIPP! connectivities with IP Routers. 71

3.3 Extended HIPPI Connectivities with HIPPI Tunneling or IP Routing. 72

3.4 Protocol overhead of Tunneling and IP Routing. 75

3.5 Extend HIPPI connections over dedicated OC-3 ATM Network . 76

xii

3.6 Round-Trip Latency of transferr~;1g short messages over HIPPI net-

work, Bottom: HIPPI-FP; Top: TCP. 79

3. 7 Achievable throughput of HIP PI network when transferring messages

from 1 KBytes to 64 KBytes, Bottom: HIPPI-FP; Top: TCP. Note:

MBytes/sec is 220 Bytes per second . . . 81

3.8 Achievable throughput of HIPPI network when transferring messages

from 64 KBytes to 2 MBytes, Bottom: HIPPI-FP; Top: TCP. 82

3.9 Achievable throughput of HIPPI network with large volume of data,

Bottom: HIPPI-FP; Top: TCP. 84

3.10 The effect of the window size on the TCP performance over the HIPPI

network. 85

3.11 Round-Trip Latency of transferring short messages via HIPP! Tunnel-

ing over OC-3 ATM link, Bottom: HIPPI-FP; Top: TCP. 87

3.12 Achievable throughput of HIPPI tunneling when transferring messages

from 1 KBytes to 64 KBytes, Bottom: HIPPI-FP; Top: TCP. 88

3.13 Achievable throughput of HIPPI Tunneling when transferring messages

from 64 KBytes to 2 MBytes, Bottom: HIPPI-FP; Top: TCP. 90

3.14 The effect of the window size on the TCP performance over HIPPI

Tunneling. 91

3.15 Trace of the sequence number an<l acknowledgment number. Top: us-

ing TCP window size of 64 KBytes, Bottom: using TCP window size

of 512 KBytes. 93

3.16 Round-Trip Latency of transferring short messages via IP Routing over

OC-3 ATM link.

3.17 Achievable throughput of IP Routing, Top: transferring messages from

1 KBytes to 64 KBytes; Bottom: t ransferring messages from 64 KBytes

94

to 2 MBytes. 95

Xlll

3.18 The effect of the window size on the TCP performance over IP Routing. 97

3.19 The effect of MSS sizes on the TCP performance over IP Routing, Top:

MSS size is 4096 bytes; Bottom: MSS size is 8192 bytes. 99

4.1 A model of video delivery. 101

4.2 The delivery curve of CBR and consumption curve of the decoder. 106

4.3 Minimum rate and buffer required for different start-up delays. The

unit is Mbit/sec for transmission rates, Mbits for buffer sizes. 107

4.4 The end-to-end model of MPEG-2 over ATM networks. 109

4.5 MPEG-2 encoder and decoder for Transport Streams. . 111

4.6 Constructing a Transport Stream from packetized elementary streams. 112

4.7 The delivery curve of PCR-assist CBR and consumption curve of the

decoder. 117

4.8 The delivery curve of PCR-assist Dual-Rate CBR and consumption

curve of the decoder. 121

4.9 Comparison of CBR, PCBR, and PDCBR using MPEG-1 Traces. 127

4.10 More MPEG-1 Traces. 128

4.11 t260 (MPEG-2) Trace 129

4.12 Comparison of CBR, PCBR, and PDCBR with MPEG-2 t races. 131

4.13 More MPEG-2 traces. 132

4.14 Comparison of CBR, PCBR, and PDCBR using M-JPEG t races. . 133

4.15 Required t ransmission rates with fixed buffer sizes. . . 137

4.16 Required start-up delays with fixed transmission rates. 139

XIV

Chapter 1

Introduction

The prevalence of computer networks has shifted the computing paradigm from

mainframe or host-centric computing to network-centric computing. In host-centric

computing, powerful computers and servers provide service to a large number of users

in a time-sharing style. In network-centric computing, applications are executed

distributedly on a collection of computers interconnected via local and wide area

networks. Applications can be arranged to run on different computers, depending on

data access patterns, types of processors available, amount of data to be transmitted,

and the communication latency between computers sharing data. This allows the

computer system best suited for a particular function to be fully utilized.

The performance of network-centric applications can be dramatically improved

with switch-based high-speed networks, such as High Performance Parallel Interface

(HIPP!) [60, 61, 62, 63], Asynchronous Transfer Mode (ATM)[6, 36], and Fibre Chan­

nel [40, 64]. Compared to the legacy networks, these high-speed networks have the

following superior features:

• High data transfer rates. Switch-based high-speed networks provide higher data

transfer rates than traditional local area networks, such as Ethernet, Token

Ring, and Fiber Distributed Data Interface (FDDI) . The typical date transfer

rates of ATM, HIPPI, and Fibre Channel are 155 or 622, 800, and 800 Megabits

per second (Mbps), respectively. In the standards of these network technologies,

transfer rates higher than Gigabits per second have also been defined.

• Low latency. With hardware assistance in the physical and network layer, such

1

Chapter 1. Introduction 2

as segmentation and re-assembly and fast packet switching in ATM platform,

these high-speed networks have lower communication latency. We have ob­

served less than 300 µsec end-to-end latency at the application level between

two processors [26]. As the technology involved in these networks matures, their

hardware and software components will be refined to provide greater reductions

in latency.

• Scalability. In switch-based high-speed networks, each host usually has a dedi­

cated connection to the switch. The communication between each pair of hosts

is established through the switch. A switch is capable of supporting multiple

connections simultaneously. The aggregate throughput may easily be scaled up

by connecting more hosts via additional links and switches.

• Flexible paradigm. Diverse applications can be benefited by the flexible com­

munication paradigm provided by switch-based high-speed networks. For ex­

ample, multica.sting communication can be used for multimedia applications

such as video-conferencing and computer supported cooperative work (CSC\i\T) .

The switch can prevent multicasting traffic from disturbing other hosts whose

communication paths do not overlap with the multicasting communication.

• Support for multiple classes of service. By segmenting user data into fixed-size

packets (as in ATM) or using multiple routing fabrics in a switch (as in Fibre

Channel), traffic from different types of service may be multiplexed together.

For example, ATM provides connection-oriented and connectionless circuits, re­

altime and non-realtime connections, and constant bit-rate and variable bit-rate

transmission. Fibre Channel supports three classes of services (circuit-oriented

connection, datagram transmission with acknowledgment, and datagram with­

out acknowledgment) and intermix of these service.

Chapter 1. Introduction 3

With this rich set of features, it is important to understand how network­

centric applications can benefit by using these networks as their underlying commu­

nication facilities. In this study, we focus on the high-speed network support for

two important applications in network-centric computing: high-performance network

computing and multimedia communications.

1.1 High-Performance Network Computing

Network computing refers to distributed parallel computing based on networks

of computers. ·with the connectivity provided by various networks, it is possible to

employ a collection of computers together for large computation tasks. One important

feature of network computing is the potential of partitioning a computing task based

on the service provided by different types of processors. Since networked computing

environment consists of a variety of computing capabilities, its ability to execute

subtasks of a computation on the processor most suited to a particular function

enhances performance and improves resource utilization [23].

One important class of network computing is cluster computing. Cluster com­

puting enables a collection of locally interconnected multiprocessor computers (e.g.

shared memory multiprocessors), workstations, or personal computers with off-the­

shelf components to be used as a general-purpose parallel computing system. Large

computational problems can be solved more cost effectively by using the aggregate

processing power and memory space of a cluster than using expensive special purpose

computers. In cluster computing, ne~works of computers are controlled by a cluster

management software (CMS) to provide a cluster computing environment (CCE).

Distributed applications are implemented by partitioning the computation into sub­

tasks and assigning them to individual processes. Processes communicate with each

other based on a message passing model.

Chapter 1. Introduction 4

Usually, the message passing model is supported by special communication

libraries in a CCE. It allows flexible communications among collaborative processes,

such as point-to-point communication, multicasting and broadcasting communication,

group communication, and collective communication. Most of CCEs are designed to

be used on a collection of general purpose computer systems such as Unix work­

stations. Their communication libraries are implemented with standard t ransport

protocols, such as Transmission Control Protocol (TCP) or User Datagram Protocol

(UDP), for portability. For example, the communication library of a popular CCE,

Parallel Virtual Machine (PVM), is built on top of TCP, UDP, and Unix domain

inter-process communication (IPC). Although a CCE provides flexible and portable

communication facilities, the message exchange between processors usually has long

latency. Latency is incurred by hardware and software components. Hardware la­

tency is incurred by memory and bus architecture of the host, network interface

board, switches, and signal propagation delay. Software latency is incurred by inter­

actions among the host's operating system, device drivers, and high level protocols.

Long communication latency not only affects the performance of cluster computing,

but may also becomes the bottleneck.

Fast message passing is achievable with the following three approaches. First,

employment of switch-based high-speed networks increases the message passing speed.

Second, efficient implementation of device drivers of network interfaces can improve

the performance of message passing. Third, the performance can be further enhanced

via bypassing the high-level protocol stack and using lower layer protocols to reduce

the overhead of protocol process. In this study, we have especially concentrated

our effort on minimizing the communication delay and maximizing the achievable

throughput with the first and the third approaches. \Ve have also focused on cluster

computing in homogeneous environments in order to use the third approach. In

these environments, all participating· computers use same network interfaces and the

Chapter 1. Introduction 5

associated low-level application programming interface (API).

We have enhanced the communication subsystem of PVM on clusters of work­

stations with either local ATM or HIPPI networks. From the experimental results,

the achievable throughput is improved while reducing the end-to-end communica­

t ion delay. The study shows that not only the performance of a CCE is improved,

the approaches also allow a CCE to utilize unique features of the switch-based high

speed networks. For example, the inherent multicasting feature of ATM switch facili­

tates the point-to-multipoint communication in a CCE. The credit-based fl.ow control

mechanism of HIPPI network reduces the chance of packet loss due to buffer overflow

at the receiver.

1.2 Meta-Computing

The advantage of cluster computing have already attracted many institutes to

use it as an alternative form of high-performance computing. One possible extension

of cluster computing is to incorporate clusters of computers via metropolitan or wide

area networks. This is called meta-computing. In meta-computing, an assembly of

diverse high-performance computers or clusters of computers interconnected via local

and wide area networks are perform as one computing system. A typical example

is to employ a group of distinct computers with special functionalities from several

supercomputer centers, which are geographically distributed in different locations, to

solve large scientific problems. From the user's point of view, a meta-computer is

a powerful virtual computing system that can be tailored to fulfill their processing

requirements.

It is obvious that networking is critical to the performance of meta-computing.

Some of meta-computing environments use different network technologies in their

local and wide area networks. For example, most of the supercomputer centers use

Chapter 1. Introduction 6

HIPPI as high-speed local area networks in their computing facilities. This is because

HIPPI was originally designed by supercomputing community to provide transmission

of large volume of data between supercomputers or high-end servers. For wide area

networks, ATM is the de facto standard. Therefore, the internetworking of local area

HIPPI networks and wide area ATM networks becomes an important issue for the

meta-computing.

Two feasible solutions for the problem, HIPP! Tunneling and IP Routing, have

been studied in this thesis. HIPPI Tunneling provides interconnection between HIPPI

and ATM at the physical layer while IP Routing forwards data packets between them

at the network layer. In the former solution, HIPPI packets are encapsulated in the

ATM Adaptation Layer (AAL) 5 packets and forwarded between HIPPI networks.

In the last solution, HIPPI packets are delivered in a store-and-forward fashion with

standard network routing approach. We have compared these two schemes in terms

of their network connectivities, protocol overheads, and flow controls. Experimental

results of both schemes are presented.

1.3 Multimedia Communications

Multimedia communications refer to the transmission of continuous media,

such as video and audio, via any type of communication networks while satisfying their

real-time constraint. It imposes challenges for high speed networks. First, the delivery

of compressed continuous media requires .sustained high communication bandwidth.

For example, video compressed in Motion Pictures Expert Group (MPEG)-2 format

usually require 4 to 20 Mbps bandwidth. Second, in order to provide continuous

playback of these media, video frames or audio clips must be received before the time

they need to be displayed.

Chapter 1. Introduction 7

Video transmission has become an essential component of multimedia appli­

cations, such as video-conferencing, video on demand and distance learning. Before

video or other continuous media are transmitted through the network, they must be

compressed. Otherwise, the network will not be able to accommodate their bandwidth

requirement. Among the compression schemes and network technologies, MPEG-2

over ATM has been embraced by the industry to deliver high quality video and audio

over high speed networks [20). MPEG-2 uses both intra-frame and inter-frame encod­

ing schemes[21). It achieves high compression ratio by the use of bi-directional motion

compensation, which generates a more accurate prediction t hat requires fewer bits to

represent. Thus, for constant video quality, MPEG-2 compressed video demonstrate

the property of variable bit rate.

Intuitively, variable bit-rate (VBR) service is suitable to deliver MPEG-2 com­

pressed video. However, VBR service supports statistical multiplexing feature by

sharing the bandwidth dynamically among all traffic within the same service class. It

only guarantees statistical quality of service based on a set of traffic descriptors, such

as peak rate, burst length, and sustained rate. On the other hand, transmitting com­

pressed VBR video with traditional constant bit-rate (CBR) service often requires a

large buffer at the viewer's side to absorb the difference between the rate that video

is received and the rate that video is displayed.

In this thesis, we have studied two new CBR transmission schemes which

utilize the timing information (called Program Clock References, PCR) embedded in

the MPEG-2 streams. PCRs are readings of the system clock of a MPEG-2 encoder.

They are embedded in a stream periodically or not longer than 100 ms apart. PCRs

are used for media synchronization and clock synchronization. Media synchronization

allows multiple media (video, audio, and associated data) to be presented together

at the right time. Clock synchronization forces the decoder to synchronize its clock

with the source, thus reduces the buffer requirement. The two new schemes, called

Chapter 1. Introduction 8

PCR-assist CBR (PCBR) and PCR-assist Dual-Rate CBR (PDCBR), which employ

the PCRs embedded in the MPEG-2 streams to regulate their transmission.

The PCBR scheme uses PCRs to examine its transmission regularly. It holds

up the transmission if it is ahead of schedule, based on the knowledge provided by

PCRs. The PCBR scheme requires slightly higher transmission rates than the tra­

ditional CBR service. To reduce the transmission rate, we introduce the PDCBR

scheme which dynamically changes its transmission between two rates. It uses a low

rate if the transmission is ahead of schedule and uses a high rate if the transmis­

sion is behind of schedule. The experimental results of these two schemes with real

video traces are presented. Based on the results, we have found that the twu schemes

provide flexible trade-off between buffer requirement and transmission rates.

1.4 Thesis Organization

The organization of this thesis is as follows. In chapter two, we study the

high speed network support for cluster computing. The popular PVM is used as

the CCE on ATM and HIPPI local area networks. We first describe the popular

P\"M with emphasis on its existing communication subsystem. Then we outline

the approaches that we used to enhance the communication performance of PVM.

PVM's communication subsystem was re-implemented directly using two low-level

APis, Hewlett Packard's Link Level Access (LLA) and FORE Systems' ATM API

[18]. The performance results of both existing and enhanced versions of PVM are

presented.

In chapter three, two solutions (HIPP! Tunneling and IP Routing) to form

clusters of computers into meta-computers are presented. We first present how HIPPI

networks are extended by encapsulating HIPPI packets on ATM networks. Then, we

describe how IP packets are forwarded between HIPP! and ATM networks. The

Chapter 1. Introduction 9

experimental results of both approaches on the same environment are presented. In

both schemes, we used TCP as the transport protocol and measure the end-to-end

performance. The experimental results also demonstrate the impact of flow control

of high level protocol on the communication performance.

In chapter four, we first provide background information of MPEG-2 system

and one of its bit streams, the MPEG-2 Transport Stream, which is designed for net­

work transmission. Then, we introduce the system model of the two new transmission

schemes, PCBR and PDCBR. Their analytical models are used to determine the re­

quired buff er space and transmission rates. Finally, we present their performance

with real video traces.

In chapter five, we conclude the thesis with a summary of contributions.

Chapter 2

High-Speed Network Support for
Cluster Computing

Network computing offers a great potential for increasing the amount of com­

puting power and communication facility for large-scale distributed applications. The

aggregate computing power of a cluster of workstations or personal computers (PC)

interconnected by switch-based high-speed local area networks (LAN) can be em­

ployed to solve a variety of scientific and engineering problems. Because of mass

production, commercial workstations and PCs have much better performance to

price ratio than Massively Parallel Processing (MPP) machines, which uses propri­

etary components and interconnection networks. With switch-based networks such as

HIPP I, ATM, or Fibre Channel, a cluster of workstations also provides cost-effective,

high-bandwidth communications. The advantages of network computing have already

attracted many companies to use it as an alternative form of high-performance com­

puting. A recent report shows that several companies in aeronautics industry utilize

clusters of workstations for computational fluid dynamics processing and propulsion

applications during off hours and weekends1 [59].

1 Three case studies of recent aeronautics industry experience show how workstation clusters are
being used as alternative forms of high-performance computing: (1) McDonnell Douglas has as many
as 400 workstations (with an average of 200 per session) divided into clusters of 20 workstations per
parallel job doing CFD (computational fluid dynamics) processing during off hours and weekends.
(2) Pratt & Whitney (P&W) has achieved the throughput equivalent of 16 CRAY C90 CPUs by
using networked workstations at two sites. P&W harnessed 600 workstations in East Hartford plus
300 in West Palm Beach during off hours. (3) Boeing has been conducting a variety of cluster pilot
tests including interdepartmental testing on two workstation clusters. One cluster, completed in
1994, involved 14-20 workstations dedicated to propulsion applications.

Chapter 2. High-Speed Network Support for Cluster Computing 11

The following items are the motivational factors for considering the imple­

mentation of a parallel computing platform over switch-based high speed local area

networks.

• High data transfer rat'es. Traditional local are~ networks, such as Ethernet

and Fiber Distributed Data Interface (FDDI), are shared medium architec­

tures. In shared medium architectures, network capacity is shared among all

the interconnected processors. Aggregate network capacity is limited to speeds

between 10 Mbits/sec (Ethernet) to 100 Mbits/sec (FDDI). High speed switch­

based network architectures, such as the Hlgh Performance Parallel Interface

(HIPP!), Fibre Channel, and Asynchronous Transfer Mode (ATM) feature ag­

gregate throughput of several gigabits/sec. Moreover each host usually has a

dedicated high-speed (155 Mbits/sec or more) connection to the switch.

• Scalability. In shared medium architectures, since network capacity is shared

among all the interconnected processors, as the number of processing nodes is

increased, network saturation quickly occurs. High-speed switch-based networks

may easily be scaled up, in t erms of processing power or storage, by simply

connecting the new devices via additional l~nks and switches.

• Potentially low latency. Inherent features, such as dedicated connections, of

switch-based high-speed networks lend themselves to potentially supporting low

latency data transfers. However currently, as shown in Section 2.3.5.3, tradi­

tional networks, like Ethernet, provide slightly lower latency than ATM. This

is because Ethernet is a mature technology, and hence software and hardware

components have been fine-tuned to provide low latency. As the technology

involved in high-speed switch-based networks matures, their software and hard­

ware components will, likewise, be fine-tuned to provide greater reductions in

latency.

Chapter 2. High-Speed Network Support for Cluster Computing 12

• Paradigm flexibility. The attributes of switch-based high speed networks are

likely to foster performance improvements in many existing network applica­

tions, as well as increase the feasibility of potential network applications. These

applications may belong to disparate paradigms. For instance, high data trans­

fer rates are very attractive to applications requiring large data shipments such

as visualization applications. Also switch-based networks inherently support

efficient multicasting, and thus may be attractive for supporting distributed

shared memory, where multicasting operations are frequently used to update,

lock or unlock multiple data copies.

The typical methodology for cluster computing is based on a software frame­

work that executes on participating workstations. The cluster is controlled by a

cluster management software (CMS) which is designed to administer and manage ap­

plication jobs submitt ed to a cluster. It may also supports functions like configuration,

job scheduling and monitoring, load balancing, process management, resource utiliza­

tion, and fault tolerance. The software framework provides a parallel programming

environment that allows programmers to implement distributed algorithms based on

a message passing model. Distributed applications utilize the computational power

and communication facility of the cluster by using special libraries provided by the

software framework. Those libraries usually support process management, synchro­

nization, and message passing based on standard network protocols. Examples of such

software framework are PVM (Parallel Virtual Machine) [4, 23, 42], P4 [7], Express

[37], Linda [8], and MPI (Message Passing Interface) [19].

Given an environment consisting of a cluster of workstations interconnected by

a LAN, it is well-known among programmers that message passing facilities lack the

performance found in distributed memory computers such as the Connection iv1achine

CM-5 or the nCUBE which provides specialized high speed switch(es) or interconnect

Chapter 2. High-Speed Network Support for Cluster Computing 13

hardware. This is especially true about current slow speed (e.g., Ethernet) LAN.

However, fast message passing is possible via three approaches. First, the change

of the underlying network to a high speed network greatly increases the message

passing speed. Second, improving the efficiency of device drivers of network interfaces.

Third, bypassing the high-level protocol stack and using a lower layer protocol reduces

overhead, and thus increases message passing speed. In this study, we have adopted

the first and the third approaches to improve communication performance of cluster

computing in homogeneous environments.

To reduce the communication latency and exploit high speed networks, we

enhanced a popular message-passing library, PVM, on clusters of workstations. The

PVM message passing library was originally implemented using the BSD socket pro­

gramming interface. The transport protocols used are TCP, UDP, and Unix domain

inter-process communication mechanism. Figure 2.1 shows how PVM was imple­

mented on the BSD socket programming interface (on the right side of Figure 2.1).

The main idea of improving PVM's message passing is to reduce the overhead in­

curred by the high-level protocols. The overhead incurred by the high-level protocols

and the delay caused by the interactions with the host operating system can be varied

by using different Application Programming Interfaces (APis) which are available on

different protocol layers [41]. In order to provide as close to optimal performance as

possible, part of PVM's communication subsystem is re-implemented directly using

two APis, Hewlett Packard's Link Level Access (LLA) and FORE's ATM API [18],

(on the left side of Figure 2.1) instead of the BSD socket interface. Since both APis

reside at a lower layer in the protocol stack, the overhead incurred when directly

using these APis is expected to be lower than the overhead incurred by using the

BSD sockets programming APL

In Section 2.2, we provide a brief description of PVM with emphasis on its

existing communication subsystem. The re-implementation of PVM using FORE's

Chapter 2. High-Speed Network Support for Cluster Computing 14

ATM API on a cluster of workstations interconnected via a local ATM network is

presented in Section 2.3. Another re-implementation of PVM using HP's LLA on

a cluster of workstations interconnected via a local HIPP! network is presented in

Section 2.4.

Applications PYM (Parallel Virtual Machine)

Socket Interface

TCP Unix Domain UDP

ATMAPI LLA IP

Device Drivers

Network Interfaces

(" ATM/HIPPI Networks

Figure 2.1: Protocol hierarchy of PVM's communication subsystem.

2.1 Related Work

Several communication models have been proposed to enhance the perfor­

mance of message passing for cluster computing [14, 57, 5, 54, 56, 13]. The Network

of \Vorkstations (NOW) project at the University of California at Berkeley demon­

strates a new approach to large-scale system design enabled by scalable interconnect

Chapter 2. High-Speed Network Support for Cluster Computing 15

networks that provides low latency and high bandwidth [14]. The interconnect was

formed as a variant of a Fat-tree to connect more than one hundred workstations.

Active Messages are the basic communication primitives in NOW [57]. The basic

idea of Active Messages is that the control information at the head of a message is

the address of a user-level instruction sequence that will extract the message from

the network on the message arrival and integrate it into the on-going computation at

the receiver side. The low overhead of Active Messages for small messages is due to

elimination of buffering and rapid handling upon message arrival. Active Messages

is a low-level communication primitive for homogeneous clusters. General-purpose

message passing libraries or parallel programming models, such as PYM or MPI, can

be implemented upon its support.

The SHRIMP multicomputer project at Princeton University studies the use of

commodity PCs or workstations and commercially available routing switches to con­

struct scalable multicomputers [5]. SHRIMP uses custom designed network interfaces

which allow processes to establish channels connecting virtual memory pages on two

nodes such that data written into a page on one side gets propagated automatically

to the other side. To create a virtual memory mapping from one node to another,

appropriate physical mapping information in the page tables of both network inter­

faces need to be set up. Based on the virtual memory-mapped communication model,

implementations on two network interfaces show that the model eliminates operating

system involvement in communication, supports user-level buffer management, and

minimizes software communication overhead [12]. A similar memory-based network

access model was proposed by Thekkath et al [54). Their communication model con­

sists of a set of primitives to access remote memory. These primitives allow processes

on one node access to a set of remote memory segments, which are contiguous pieces

of another process' virtual memory.

A new abstraction for low-latency communication was proposed in the U-Net

Chapter 2. High-Speed Network Support for Cluster Computing 16

communication architecture [56] . The U-N et model virtualizes the network interface

so that each process has the illusion of owning the interface to the network. The

basic idea in U-Net is to incorporate message multiplexing and demultiplexing into

the network interface and to move buffer management and protocol processing to

user-level. The approach basically removes the kernel from the critical path of send­

ing and receiving messages. The processing overhead on messages can be reduced.

V1/ith the influence of the U-Net architecture and other research experiences, the Vir­

tual Interface architecture (VI architecture) is being jointly specified by a number of

companies [13] for cluster computing. The VI architecture defines mechanisms for

low-latency, high-bandwidth message-passing for clusters of high-volume servers or

workstations. In VI architecture, a process is allowed to send and receive messages

to and from the network interface without the involvement of the operating system.

2.2 Parallel Virtual Machine

Parallel Virt ual Machine (PVM) [4, 23, 42] is a software system for the devel­

opment and execution of parallel applications. It allows an interconnected collection

of independent heterogeneous computers to appear as a single virtual computational

resource or a single parallel machine. The independent machines may be ordinary

workstations, multiprocessors, supercomputers, or specialized processors. The inter­

connection network may be a general network such as an Ethernet, the Internet, or

any high-speed network.

Computing resources are accessed by applications via a suite of PVM defined

user-interface primitives. The PVM suite provides a standard interface that supports

common parallel processing paradigms, such as message passing and shared mem­

ory. An application would embed well-defined PVM primitives in their procedural

host language, usually C or Fortran. The PVM suite provides primitives for such

Chapter 2. High-Speed Network Support for Cluster Computing 17

operations as point-to-point data transfer, message broadcasting, mutual exclusion,

process control, and barrier synchronization. In most cases, the user views PVM as

a loosely coupled, distributed memory computer with message passing capabilities

programmable in C or Fortran.

In a PVM virtual machine environment there exists a support process, called

pvmd, or daemon process, which executes on each host. Pvmds execute independently

from one another. During normal operations they are considered equal peer processes.

However, during startup, reconfigurations, or operations such as multicasting, there

exists a master-slave relationship between pvmds. Each pvmd serves as a message

router and a controller. Pvmds are used to exchange network configuration informa­

tion, and dynamically allocate memory to store packets traveling between distributed

tasks. Pvmds are also responsible for all application component processes (tasks)

executing on their hosts.

Figure 2.2 depicts a network of three hosts. Each host has a local pvmd and

a number of local tasks. Communications between hosts may occur as a task-task,

task-pvmd-pvmd-task, or pvmd-pvmd interaction. Communication within a host,

task-pvmd, occurs via Unix domain sockets. PVM message routing will be discussed

in detail in Section 2.2.1. In Figure 2.2, Machine Chas two tasks, task 6 and a console

program. A console program may be used to perform tasks such as configuring the

virtual machine, starting and killing processes, and checking and collecting status

information of processes. The network of independent PVM pvmds forms the basis

for support of important features for a cluster computing environment. These features

include dynamic reconfigurability, fault tolerance and scalability.

PVM provides dynamic reconfigurability by allowing hosts to enter and exit

the virtual machine via notification messages [42] . PVM version 3 also supports the

notion of dynamic process groups. Processes can belong to multiple named groups,

and groups can be changed dynamically at any time during a computation. Functions

Chapter 2. High-Speed Network Support for Cluster Computing

Machine A MachineC

Machine B

o pvmdaemon

0 Console

0 Task process

E> UDP

El Unix domain
socket

~ TCP

Figure 2.2: An instance of PVM configuration

18

that logically deal with groups of tasks such as broadcast and barrier synchronization

use the user's explicitly defined group names as arguments. Routines are provided

for processes to join and leave a named group. This dynamic reconfigurability also

provides support for scalability and fault tolerance.

Since management is decentralized and localized, a PVM virtual machine may

potentially scale up to hundreds of hosts executing thousands of tasks. However,

the largest reported virtual machines consist of approximately 100 hosts [42] . This

is due to, in part, the lack of availability of high-speed networks. Also, in general,

there do not exist interesting algorithms which can make use of hundreds of relatively

fast processors interconnected by a low-speed network. The growing availability of

high-speed networks may make very large virtual machines more likely and feasible.

Chapter 2. High-Speed Network Support for Cluster Computing 19

2.2.1 The Communication Subsystem of PVM

As shown in Figure 2.1, the three main components of PVM are the pvmd

daemon program, libpvm programming library, and the applications which are running

as PVM tasks. In this section, we discuss the role of pvmd daemon programs and

the libpvm library in the communication subsystem of PVM. We also describe how

these components employ transport protocols and control protocols to provide process

control, dynamic configuration, and reliable transmission of messages and packets.

2.2.1.1 Components of Communication Subsystem

The pvmd daemon process is running on each participating host. The pvmd

serves as a message router and process controller. As a message router, the pvmd

provides intra-host and inter-host communications. Local tasks (application processes

running on the same host) can exchange messages with one another through the pvmd.

Local tasks can also request pvmd to forward messages to remote tasks (application

processes running on different hosts). The message exchange between local tasks and

remote tasks will be discussed in detail in Section 2.2.1.4.

The first pvmd manually started by a user is the master pvmd, others invoked

by the master pvmd are slave pvmds. Many of the control and management operations

are done by the collaboration of the master pvmd and slave pvmds. Some of the

operations are: startup of remote PVM tasks, addition or deletion of hosts, and fault

detection and recovery. A special pvmd, called shadow pvmd, is used by the master

pvmd to startup new slave pvmds. The shadow pvmd runs on the same host as the

master pvmd. The purpose of using shadow pvmd is to prevent the master pvmd

from blocking because of the startup of slave pvmds. The pvmd is more robust than

application tasks. An idle pvmd will occasionally check if others are still running.

The main body of pvmd is a work loop which repeatedly executes the following jobs.

Chapter 2. High-Speed Network Support for Cluster Computing 20

• Send packets to remote pvmds. Th~ packet could contain a message input from

local tasks. In this case, the pvmd acts like a message router. The packet

could also be control messages that related a certain task between pvmds. In

Section 2.2.1.3, we will discuss the control and management protocols used

between pvmds and between a pvmd and a task.

• Receive packets from a remote pvmd. If these are messages carried in the

packet, pvmd will forward the message to the corresponding local tasks. The

packet might be a control message, such as the host table issued from the master

pvmd to slave pvmds. The host table describes the configuration of the virtual

machine.

• Accept the new connection from a task. The first time an application uses a

PVM system call, the process becomes a new PVM task by requesting connec­

tion with its local pvmd. The pvmd authenticates the new PVM task before

granting the new connection.

• Output messages to local tasks. The pvmd forwards messages destined to local

tasks. The message could come from remote tasks or local tasks.

• Input messages from local tasks. The pvmd receives a message from local tasks.

The pvmd uses Unix domain socket for local message and standard network

protocol for forwarding the message to remote sites.

The libpvm library provides a programming interface which allows applica­

tions to communicate with the pvmd and other tasks. The libpvm contains routines

for conversion of data formats, message passing, and PVM system calls for process

control, dynamic configuration, and barrier synchronization. A fast message passing

mechanism based on TCP /IP is also included in the libpvm library. The message

Chapter 2. High-Speed Network Support for Cluster Computing 21

passing mechanism sets up direct connections between two tasks instead of using the

routing function provided by the pvmd. For example, in Figure 2.2, there is a TCP

connection between task 1 on Machine A and task 6 on Machine C. Each application

process is linked with the libpvm library and executed as a PVM task. The message

passing model supported by the PVM requires users to partition their tasks properly

based on their distributed algorithms.

2.2.1.2 Transport Protocols

The communication subsystem of PVM is based on TCP, UDP, and Unix do­

main socket. TCP is a stream-oriented protocol. It supports the reliable, sequenced

and unduplicated flow of data without record boundaries. UDP is a datagram pro­

tocol which is conceptually similar to conventional packet switched networks such as

Ethernet. Because of the consideration of scalability, overhead, and fault tolerance,

PVM uses UDP sockets for the communications between pvmds. UDP is a datagram

protocol which provides a connectionless unreliable datagram service. Messages de­

livered via UDP sockets are not guaranteed to be in-order, reliable or unduplicated.

Therefore, PVM uses its own acknowledgment and retransmission mechanism on top

of UDP sockets for reliable transmission.

For the communications among local tasks and between tasks and the pvmd,

PYM uses Unix domain sockets as the message exchange mechanism. In earlier

versions of PVM (before version 3.3), TCP sockets were used as the message exchange

mechanism. The Unix domain sockets were later adopted for better transfer rate and

lower latency. A local task can use the following routing mode to communicate with

remote tasks: (1) Normal Routing mode, and (2) Direct Routing mode. We will

discuss these two routing modes in Section 2.2.1.4. In Table 2.1, we summarize the

transport protocols or inter-process communications used by PVM.

Chapter 2. High-Speed Network Support for Cluster Computing 22

Table 2.1: Transpor' protocols or inter-process communications used by PVM.

II loc, · task I remote task I local pvmd I remote pvmd I
local task Unix domain TCP or pvmd Unix domain

remote task TCP or pvmd
local pvmd Unix domain UDP with ACK

remote pvmd UDP with ACK.:

PVM has its own header formats in messages and packets. The message header

contains a integer tag for message type and an encoding field to pass the encoding style

of the message. The message type can be used by PVM tasks to differentiate messages.

The encoding field is used to exchange messages in a heterogeneous environment which

uses different data formats. The header has two formats, one for packets exchanging

among pvmds and the other one for packets exchanging between the pvmd and tasks.

Some of the common fields appear in both formats are source task identifier and

destination task identifier. Because the data streams between entities of PVM contain

headers and data. A PVM entity always reads header first and then the message or

packet body. A simple optimization can be applied to reduce the read operation from

two-step reading to one-step reading.

2.2.1.3 Control and Management Protocols

Based on the communication mechanism provided by TCP, UDP and Unix

domain sockets, PVM uses its high-level protocols for control and management pur­

poses. The high-level control and management protocols are Task-Daemon protocol

and Daemon-Daemon protocol. Many configuration operations are performed by em­

ploying both protocols. For example, the addition of a new host (start a new pvmd)

is performed by pvmds with Daemon-Daemon protocol. A case of employing both

protocols to set up a multicasting connection is presented in Section 2.2.1.4.

Chapter 2. High-Speed Network Support for Cluster Computing 23

There are two types of important interactions which are frequently used: task­

to-pvmd communication and pvmd-to-pvmd communication. As mentioned above,

task-to-pvmd communication occurs via Unix domain sockets, and pvmd-to-pvmd

communications occurs via UDP in the Normal mode. We illustrate how these inter­

actions occur by discussing some common PVM constructs.

pvm_addhost() is executed when a new host joins a virtual machine. A task

on an existing host of the virtual machine, either on the master host or a slave host,

initiates the pvm_addhost() function. If a task on an existing slave host initiates the

function, a task-to-pvmd interaction occurs, i.e., the initiating task sends an "add

host" message to its local pvmd and waits for an acknowledgment. Then the local

pvmd of the initiating host sends an "add host" message to the master pvmd, i.e., a

pvmd-to-pvmd communication occurs. The master pvmd then forks a process pvmd

on the new host and takes other appropriate actions to include the new host in the

virtual machine. When these actions are completed, the master daemon sends an

acknowledgment to the local pvmd of the initiating slave host, i.e., pvmd-to-pvmd

interaction, and the local pvmd sends an acknowledgment to the task, i.e., task-to­

pvmd interaction. Similar actions occur if the initiating task is on the master host.

Some other PVM constructs which use both task-to-pvmd and pvmd-pvmd in­

teractions include pvm_delhost(), delete hosts from a virtual machine, and pvm_mcast,

execute a multicast operation. An example of a PVM construct which uses only task­

to-pvmd interaction is pvm_config(), where a task fetches its machine configuration

information from its local pvmd.

2.2.1.4 Message and Packet Routing

In this section, we first briefly introduce the PVM system calls used for message

passing. Then discuss the two message routing options available for communications

Chapter 2. High-Speed Network Support for Cluster Computing 24

between local PYM tasks and remote tasks. We also provide a detail description of

PYM's implementation of multicasting communications.

PVM System Calls for Message Passing

Sending a message with PYM is composed of three steps. First, a send buffer

must be initialized by a call to pvm_initsend() or pvm_mkbuf(). Second, the message

must be packed into a buffer using any number of pvm_pk*() routines. Each of the

pvm_pk*() routines packs an array of a given data type into an active send buffer.

The pvm_pk*() routines also perform data type conversation in a heterogeneous envi­

ronment. Calls to pvm_unpk*() routines unpack the message from the active receive

buffer into an array of a given data type. Third, the message is sent to another

process by calling the pvm..send() routine or the pvm_mcast() (multicasting) routine.

The message is received by calling either a blocking receive using pvm_recv() or a

non-blocking receive using pvm_probe() and pvm_recv().

Normal Routing Mode and Direct Routing Mode

PVM provides two types of communication modes, Normal Routing mode and

Direct Routing mode. In the Normal Routing mode, in order for a source task to

communicate with a remote task, it must first communicate through a Unix domain

socket to its local pvmd daemon. The local pvmd daemon then communicates through

a UDP socket to the remote pvmd. The remote pvmd then communicates to the

destination task through a Unix domain socket. Thus two Unix domain connections

and two UDP connections are required for a bi-directional communication between

the two communicating application processes. In the Direct Routing mode, PYM sets

up a direct TCP connection between the two communicating processes or tasks. The

detailed transmission facilities of the Direct and Normal Routing modes are hidden

from the end-users. Figure 2.3 depicts these two communication modes.

Chapter 2. High-Speed Network Support for Cluster Computing 25

PYM Nonna! Mode
Machine I Machine2

Unix Domain Socket Unix Doamin Socket

UDP Socket

Networks

' UDP Socket

PVM Direct Mode

Machine I Machine 2

Qask Proces~ ~ E:M-Daemo~ (f ask Process 2)

TCP Socket ..___
~

-

Networks

Figure 2.3: Comparison of PVM Normal and PVM Direct modes

The advantage of the Direct Routing mode is that it provides a more efficient

communication path than the Normal Routing mode. A previous report observed

more than a twofold increase in communication performance when using Direct Rout­

ing mode [41). The main reason PVM provides the Normal Routing mode, despite its

lower performance, is because of the limited number of file descriptors some Unix sys­

tems provide. Each open Unix domain or TCP connection consumes a file descriptor.

Some operating systems limit the number of open files to as few as 32. If a virtual

machine consists of N hosts, each machine must have N - l connections to the other

hosts. Thus the drawback of the Direct Routing mode is its limited scalability [42].

Multicasting

Efficient support for multicasting is important because multicast data flow

patterns are often found in parallel programming applications. It is also important in

Chapter 2. High-Speed Network Support for Cluster Computing 26

a virtual machine environment because the host machines which comprise the virtual

machine must regularly be coordinated, i.e., updated periodically when the virtual

machine configuration changes, e.g., a host is added/deleted to/from the host pool.

For portability reason, PVM only assumes that the underlying network has

point-to-point communication mechanism. The multicast function was implemented

by invoking a sequential series of send primitives. A previous study h~ demonstrated

that PVM can be re-implemented to take advantage of the inherent multicast nature

of ATM networks [10]. PVM's implementation of multicast communications replies

on both Task-Daemon protocol and Daemon-Daemon protocol. We will use Figure 2.4

to explain the two-phase implementation of multicasting communications.

Task List

I 11 fil
123456789 Local Task List

[TI] -
I 2 3 .

Host X

Host List

CHIii
X Y Z

Local Task Lisi -6 7 8 9

Host Y

HostZ

Figure 2.4: Two-phase multicasting communications.

Chapter 2. High-Speed Network Support for Cluster Computing 27

• Phase I: Set up a multicasting connection. To initiate a multicast communica­

tion, the sender task uses the Task-Daemon protocol for requesting the local

pvmd to setup a multicasting connection. The sender task sends the task id list

and the message to its local pvmd. The task id list consists of a list of tasks

which will be receiving the multicasting message. The sender's pvmd sorts the

list according to the receiving hosts. For example, in Figure 2.4, Host X corre­

sponds to the unshaded boxes (task id 1, 2, and 3); Host Y corresponds to the

lightly shaded boxes (task id 4 and 5); Host Z corresponds to the darkly shaded

boxes (task id 6 to 9). The task id list is distributed to the pvmd of each host

which has a task in the sender's task id list. N sends are required if there are N

remote receiving hosts. Now the sender's local pvmd need only retain a list of

the hosts, instead of a list of the task ids, for which the data must be multicas­

ted. The receiving hosts now have a list of local tasks for which the multicast

is intended. The multicasting of task id list is performed by pvmds with the

Daemon-Daemon protocol. Finally, a unique multicasting address is assigned

to each pvm_mcast() and sent back the sender's task. This also completes the

Task-Daemon protocol between the sender task and its local pvmd.

• Phase JI: Message forwarding. The sender's pvmd multicasts the data to the

pvmds of all the hosts on the host list via N serial sends (assuming there are

N remote receiving hosts). Each receiving pvmd receives the data and then

distributes it to the appropriate tasks on its local task list.

2.3 Enhanced PVM Communications on ATM Net­

works

Emulating a parallel machine via a collection of homogeneous independent

Chapter 2. High-Speed Network Support for Cluster Computing 28

hosts and a general-purpose local area network has obvious advantages such as cost­

effectiveness and large aggregate processing power and memory. However, the abil­

ity of most current general-purpose local area networks to support communication­

intensive parallel applications has been questionable. Today with the emergence of

several high-speed switch-based networks, such as HIPPI, Fibre Channel, and ATM,

the possibility of networks effectively supporting communication-intensive parallel

applications may soon prove a reality.

Several advantages to cluster computing exists. First, by using independent

commercially available systems and a general local area network, advances in proces­

sor and network technology may be readily incorporated. Second, due to the large

amount of memory and processing power available in the aggregate collection of in­

dividual host systems, very large applications may be executed using a collection of

relatively low-priced host systems. Third, the underlying network may be able to

support high-speed I/0 to applications, for instance, by using disk arrays.

One of the factors which previously caused much skepticism on the feasibility

of network-based parallel computing was the limitations imposed by using traditional

local area networks, such as an Ethernet, as the system interconnect. For many typ­

ical network applications which require only occasional file transfers, or infrequent

small amounts of data to be transmitted between workstations, an Ethernet based

cluster of workstations is adequate. However, for network-based applications, such

as communication intensive, course grain parallel applications, it is well known that

traditional networks such as Ethernet are incapable of providing adequate perfor­

mance. Thus in our study we have chosen to use a high-speed transport mode as the

supporting communication medium.

Chapter 2. High-Speed Network Support for Cluster Computing 29

2.3.1 PVM and ATM Advantages

The following enumerates the advantages of the particular parallel program­

ming environment (PVM) and high speed network platform (ATM) we have chosen

as the basis for our cluster computing environment.

• Fast message passing. Given an environment consisting of a cluster of work­

stations interconnected by a local area network, it is well-known among par­

allel programmers that message passing facilities lack the performance found

in distributed memory computers such as the Connection Machine CM-5 or

the nCube. This is because most distributed memory computers provide spe­

cialized hardware - high speed switch(es) and interconnect hardware - which

provide speeds and latencies that local area networks cannot match. This is

especially true about current available slow speed (e.g., Ethernet) local area

networks. Thus PVM designers originally developed t heir system with assump­

tions about the underlying network being slow and unreliable. For this reason,

as well as for portability reasons, the BSD socket programming interface was

chosen to act as the interface between the message passing interface and the

network medium. Fast message passing via PVM is possible via two changes.

First, the change in the underlying network to a high speed network, such as

ATM, greatly increases the message passing speed. Second, bypassing the BSD

socket programming interface and using a lower layer protocol reduces overhead,

and thus increases message passing speed.

• PVM application portability. As mentioned before, PVM is a widely used mes­

sage passing library for distributed computing. It is available to the public

and is easily installable. Moreover, several vendors including Cray Research,

Convex, SGI, IBM, DEC and Thinking Machines have committed to supplying

and supporting PVM on their systems. Thus PVM programs are portable from

Chapter 2. High-Speed Network Support for Cluster Computing 30

many distributed memory machines to a cluster of workstations interconnected

by a local or wide area network.

• Network flexibility. ATM provides a great deal of flexibility in terms of support­

ing varying types of application traffic. It may support constant bit rate traffic,

variable bit rate traffic, traffic with low data loss tolerances, high bandwidth

requirements, and delay-sensitive data. Much of ATM's flexibility is due to its

transport mechanisms such as its fixed size data cells, and switch-based network

architecture. Features of ATM are explained in greater detail in Section 2.3.2.

• Availability of high-speed network components. The past year has seeri the bur­

geoning of high speed local area networks, namely ATM networks. Although

the ATM standard is not yet fully complete, the major aspects of the definition

of the ATM high speed transport mechanism are complete. Optical lines based

upon SONET, the most commonly associa.ted physical layer for ATM, are avail­

able. ATM local area switches and ATM interface cards for most workstations

are also readily available. Current market forces as well as ATM's wide-spread

acceptance in the networking community has caused it become the most likely

transport mode for high-speed local and wide-area networking [41].

In this study, we sought to achieve high performance (e.g., low latency, high

bandwidth) not only by implementing PVM on a high speed medium, such as ATM,

but also by minimizing possible sources of overhead. Overhead is incurred by hard­

ware and software components. Hardware overhead, which is incurred by memory

and bus architecture of the host, the network interface board, the switch, and the

signal propagation delay, is a function of the particular system components which are

used, and hence considered unavoidable in this study. Software overhead is incurred

by interactions with the host system's operating system, device driver and higher

Chapter 2. High-Speed Network Support for Cluster Computing 31

layer protocols. The device driver overhead is mainly caused by the design of the

host interface and the bus architecture of the host computer. The overhead incurred

by the high-level protocols and the delay caused by the interactions with the host op­

erating system can be varied by using different Application Programming Interfaces

(APis) which are available on different communication layers.

A protocol stack is a conceptual diagram where each layer in the stack corre­

sponds to a set of services provided to the adjacent higher layer. For example, the TCP

and UDP layer corresponds to the transport layer, as defined by the Open Systems

Interconnection Reference Model. The major service that the transport layer protocol

provide to the higher layer is end-to-end service, i.e., transport from the source ma­

chine to the destination machine. TCP provides reliable connection-oriented service;

UDP provides unreliable packet-oriented service.

Figure 2.1 depicts the layers of a protocol stack. A user application mes­

sage ,vould have to be processed at each layer of the stack, beginning at the ap­

plication layer, until it is finally in the form suitable for physical transmission via

the network medium. Each layer performs processing on the user message by frag­

menting/reassembling the message and appending/stripping the appropriate headers,

depending upon whether the message is traversing down or up the protocol stack.

Figure 2.1 shows how PYM may be implemented on the BSD socket programming

interface (on the right side of Figure 2.1) or directly on the ATM API (on the left

side of Figure 2.1). Since, the ATM API resides at a lower layer in the protocol stack,

the overhead incurred when directly using this API is expected to be lower than the

overhead incurred by using the BSD sockets programming API. A previous study [41)

validated this performance gain when evaluating the performance of four API's: Fore

Systems' ATM API [18], BSD socket programming interface [39, 45], Sun's Remote

Procedure Call (RPC) [45], and PYM over the BSD socket programming interface

[42). The Fore Systems' ATM API provided the best performance of the four APis.

Chapter 2. High-Speed Network Support for Cluster Computing 32

The existing PVM message passing library is implemented using the BSD

socket programming interface. The transport protocols used are TCP and UDP. In

order to provide as close to optimal performance as possible, in our study, PVM was

implemented directly over the ATM Adaptation layer protocol via the Fore Systems'

ATM API instead of the BSD socket interface. The experimental environment for this

study consisted of several workstations interconnected via a Fore Systems' ASX-100

ATM switch. Details of this environment are discussed in Section 2.3.5.

Despite the performance gains of using a lower layer protocol, the consequen­

tial drawback is that it lacks features found in higher layer APis such as distributed

programming support, loss-free transmission, and flow control. It also lacks the porta­

bility found in the original PVM over BSD socket programming interface. In our

study, we provided two main enhancements to the existing communications facilities.

Since the Fore Systems' ATM API provides only "best-effort" delivery and no flow

control, we implemented an end-to-end protocol which provides cell retransmissions

as well as imposes flow control. We also took advantage of the inherent multicasting

capability provided by the ATM switch to significantly improve upon existing PVM

multicasting functionality.

2.3.2 ATM: the Next Generation Network

ATM [6, 36] is a standard developed by the networking standards community

(CCITT) which specifies the network layer protocol of broadband networks (B-ISDNs

- Broadband Integrated Services Digital Network). It specifies a fast packet switched

network where data is fragmented into fixed-size 53 byte cells. Cells consist of 53

bytes - a 5 byte header and a 48 byte information payload. ATM resides above the

physical layer and directly below the ATM Adaptation Layer (AAL).

ATM is expected to serve as· the transport network for a wide spectrum of

Chapter 2. High-Speed Network Support for Cluster Computing 33

traffic types with varying performance requirements. Using the statistical sharing of

network resources (e.g. bandwidth, processing buffers, etc.), it is expected to effi­

ciently support multiple transport rates from multiple users with stringent require­

ments on loss, end-to-end delay, and cell-interarrival delay. Even though the ATM

standard was initially developed and intended to serve as an infrastructure for wide­

area (telecommunications) networks, it is currently being much more rapidly adopted

for local area networks.

ATM is distinguished from conventional local area networks, such as Ethernet

and FDDI, by the following features:

• Connection-oriented service. ATM provides a virtual connection for any two

physically dislocated processes which wish to communicate. All cells from the

same call traverse the same physical path, or virtual connection. Virtual connec­

tions are specified by a virtual circuit ident ifier (VCI) and virtual path identifier

(VPI), found in each cell header. The VPI and VCI are used for multiplexing,

demultiplexing, and switching the cells through the network. ATM connection­

oriented service has the potential to provide low-latency.

• High data transfer rates. ATM is independent of any particular physical layer,

but is most commonly associated with Synchronous Optical Network (SONET) .

SONET defines a standard set of optical interfaces for network transport. It is

a hierarchy of optical signals that are multiples of a basic signal rate of 51.84

Mbits/sec called OC-1 (Optical Carrier Level 1). OC-3 (155.52 Mbits/sec)

and OC-12 (622.08 Mbits/sec) have been designated as the customer access

rates in B-ISDN. OC-3, 155 Mbits/sec, is the rate currently supported by first

generation ATM networks. Recall, that the aggregate throughput of current

available high-speed shared-medium networks, such as FDDI, is 100 Mbits/sec.

Since ATM is a switch-based network architecture, the aggregate throughput

Chapter 2. High-Speed Network Support for Cluster Computing 34

is usually several gigabits. The ASX-100 Fore switch, used in our experiments,

provides an aggregate throughput of 2.4 Gbits/sec. Each host on an OC-3

ATM network has access to a link speed of 155 Mbits/sec. In a FDDI network,

all hosts attached to the network must share the same 100 Mbits/sec network

capacity.

• Support for multiple classes of service. ATM was intended for the support of

multiple classes of service, i.e., classes of traffic with varying quality of service

parameters such as cell loss, delay, cell inter-arrival times, and data transfer

rates. These parameters reflect the varying types of traffic ATM was intended

to support, such as connection-oriented traffic types (e.g., audio), connection­

less traffic types (e.g., file transfers), etc. The purpose of the ATM adaptation

layer (AAL) is to provide a link between the services required by higher network

layers and the generic ATM cells used by the ATM layer. Five AAL protocols

are defined for various types of services, such as constant bit rate services,

connection-oriented/ connection-less services, etc.

The overriding factor which distinguishes ATM from other network architec­

tures lies in its flexibility. It is based upon a high-speed medium and thus provides the

basic infrastructure for supporting high-speed transport. It also provides a network

architecture which is based upon fast packet switching which is suitable for a wide

range of applications.

2.3.3 Application Programming Interface

Figure 2.1 depicts the protocol stack from the application layer to the network

transport (ATM) layer. From this figure, we note that there are two possible APis

which we can use to interface to the ATM AAL layers - namely the BSD socket

Chapter 2. High-Speed Network Support for Cluster Computing 35

programming interface which includes TCP /IP and UDP /IP, or the ATM APL In

this study, we sought to minimize unnecessary overhead [41), and hence chose to

implement PYM on the Fore Systems' ATM API rather than the BSD socket interface.

The Fore Systems' ATM API library routines support the client-server model.

Consistent with ATM specifications, a connection (Switched Virtual Circuit or Per­

manent Virtual Circuit) must be established before data can be exchanged between

a client and a server. Typical connection-oriented client-server interactions described

below may then proceed.

The Fore Systems' user-level ATM library routines provide a socket-like inter­

face. Applications first use atm_open() to open a file descriptor and then bind a local

Application Service Access Point (ASAP) to the file descriptor with atm_bind(). Each

ASAP is unique for a given end-system and is comprised·of an ATM switch identifier

and a port number on the switch. Connections are established using atm_connect()

within the client process in combination with atm_listen() and atm_accept() within

the server process. These operations allow the data transfer to be specified as simplex,

duplex, or multicast. atm_send(} and atm_recv() are used to transfer user messages.

One protocol data unit (PDU) is transferred on each call. The maximum size of

the PDU depends on the AAL selected for the connection and the constraints of the

underlying socket-based or stream-based device driver implementation. Applications

can select the type of ATM AAL to be used for data exchange. In the Fore Sys­

tems' implementation, AAL Types 1 and 2 are not currently supported by Series-200

interfaces, and Type 3 and Type 4 are treated identically.

Bandwidth resources are reserved for each connection. Resource allocation is

based upon the following three user specifications: (i) peak bandwidth, the maximum

data injection rate which the source may transmit, (ii) mean bandwidth, the average

band,vidth over the lifetime of the connection, and (iii) mean burst length, the aver­

age amount of data sent at the peak bandwidth. The network control function will

Chapter 2. High-Speed Network Support for Cluster Computing 36

compute the chances that the requested connection will create buffer overflow (cell

loss) and consequentially accept or reject the connection request.

If the connection is accepted, an ATM VPI and VCI is allocated by the net­

work. The device driver associates the VPI/VCI with an ASAP, which is in turn

associated with a file descriptor. Bandwidth resources are then reserved for the ac­

cepted connection. The network then makes a "best-effort" attempt to deliver the

ATM cells to the destination. A ''best-effort" attempt implies that during transmis­

sion, cells may be dropped depending on the available resources. End-to-end flow

control between hosts and cell retransmissions are left to the higher layers.

2.3.4 PVM Communications: Existing and Enhanced

In order to enhance the performance and functionality of the existing PVM

communication facilities, we made several changes to the existing PVM platform.

First, we bypassed the BSD socket interface and directly implemented PVM on the

lower level Fore Systems' ATM APL This resulted in a performance gain discussed in

Section 2.3.5.3. Since the Fore Systems' ATM API only provides "best-effort" deliv­

ery, as opposed to the reliable delivery TCP provides, we implemented an end-to-end

flow control protocol which ensures reliability via a selective retransmission mecha­

nism. The second change we made was to improve PVM's multicasting capabilities.

PVM assumes the underlying network cannot support multicast. We capitalized

on the inherent multicasting capabilities of ATM, and re-implemented a more effi­

cient multicasting operation. Section 2.3.5.4 presents the performance gain of the

re-implemented multicasting operation. The following two subsections describe the

two implementations.

Chapter 2. High-Speed Network Support for Cluster Computing 37

2.3.4.1 End-to-End Flow Control Protocol with Selective Retransmis­

sions

As mentioned in the previous section, the Fore Systems' ATM API provides

only "best-effort" transmission (i.e. a message may be lost during its transmission)

and no flow control. In order to guarantee the delivery of user messages while not

sacrificing performance, we developed a flow control scheme which incorporates a

selective retransmission scheme.

Our experimental results revealed that user messages begin to experience losses

as the message size increases beyond 256 KBytes [41, 10]. So in our scheme, we chose

to divide each user message into 256 KBytes segments. The message unit that Fore

Systems' implementation of ATM recognizes is 4 KBytes. Thus, at the ATM layer,

each user message segment of 256 KBytes is divided into 64 4 KByt es segments.

In the selective re-transmission flow control algorithm, the sender begins by

setting and starting a timer, timer!, for the next user message. The sender sends out a

number of 4 KB segments until either an entire 256 KB segment has been transmitted

or the end of the user message has been reached. The sender then sets and starts

another timer, timer2, and sets the number of retry attempts, n. The sender then

waits for either the timer to expire or a (selective) acknowledgment to be received . If

the sender receives the acknowledgment, it checks to see if any of the 4 KB segments

were lost. If not, the sender process repeats the algorithm by transmitting the next

set of 64 4-KB segments, otherwise, the missing packets are re-sent, the number of re­

tries is decremented and the sender waits again for an acknowledgment. If the sender

times out (does not receive the acknowledgment), it resends the previous segment,

decrements the number of re-tries, resets the timer and begins the process of waiting

for an acknowledgment again.

The receiver process acknowledges (by sending a selective retransmission or

Chapter 2. High-Speed Network Support for Cluster Computing 38

acknowledgment packet) to the sender, when it receives the last 4 KB segment of a

256 KB segment or the last 4 KB of the user message, or when it (the receiver) times

out. \Vhen the receiver acknowledges a 256 KBytes segment, it does so by sending a

64 bit bit-map, where each bit signifies whether the corresponding 4 KBytes segment

had been received or not.

2.3.4.2 Multicasting Protocol

PVM implements the multicast function by invoking a sequential series of send

primitives. By taking advantage of the inherent multicast nature of ATM, we re­

implemented the multicast function to occur as a parallel send to multiple receivers.

Both multicast implementations occurs in two phases. Our re-implementation of

the multicasting operation is the same as the above two-phase operation except the

N serial sends are replaced (in both phases) by a simultaneous send to N remote

receiving hosts. Performance results of this re-implementation and the original PVM

multicast operation are presented in Section 2.3.5.4.

2.3.5 Performance Measurements

2.3.5.1 Experimental Network Computing Environment

The ATM environment was provided by the MAGIC (Multidimensional Ap­

plications and Gigabit Internetwork Consortium) project and the Army High Perfor­

mance Computing Research Center at the University of Minnesota. Fore Systems,

Inc. host adapters and local area switches were used. The host adapter was a Series-

200 interface for the Sun SBus. The physical media for the Series-200 adapter was the

100 Mbits/sec TAXI interface (FDDI fiber and signal encoding scheme). The local

Chapter 2. High-Speed Network Support for Cluster Computing 39

area switch was a Fore ASX-100. Four Sun Spare 2 machines and two Sun 4/690

machines were directly connected to the Fore switch.

The Series-200 host adapter is Fore's second generation interface and uses an

Intel i960 as an onboard processor. The i960 takes over_ most of the AAL and cell

related tasks including the cell level segmentation and re-assembly (SAR) functions

for AAL 3/4 and AAL 5, and cell multiplexing. With the Series-200 adapter, the host

interfaces at the packet level feeds lists of _outgoing packets and incoming buffers to

the i960. The i960 uses local memory to manage pointers to packets, and uses DMA

(Direct Memory Access) to move cells out of and into host memory. Cells are never

stored in adapter memory.

The ASX-100 local ATM switch is based on a 2.4 Gbits/sec (gigabit per sec­

ond) switch fabric and a RISC control processor. The ASX-100 supports Fore's

SPANS signaling protocol, and can establish either Switched Virtual Circuits (SVCs)

or Permanent Virtual Circuits (PVCs). All of the experiments conducted ignored

circuit setup time and thus the ATM circuits used can be viewed as PVCs.

2.3.5.2 Echo Programs

The echo program is used for measuring the end-to-end communication la­

tency between two machines. In this program, a client sends a M-byte message to a

server and waits to receive the M byte message back. The client/server repeats this

interaction N times. The round trip timing for each iteration in the client process

is collected. The timing starts when the client sends the M byte message to the

server, and ends when the client receives M bytes of the response message. Thus the

problem of synchronizing clocks in two different machines is avoided. The commu­

nication latency for sending a M-byte message can be estimated as half of the total

round-trip time. The communication throughput is calculated by dividing 2 x M by

Chapter 2. High-Speed Network Support for Cluster Computing
Bandwidth Comparison for PVM 3.3.2 over ATM, Normal Route

10.0 ...-----.,..----,------r-----,---....-----,

7.5

5.0

2.5

1KB 4KB

! PVM-ATM/AAL 5 -+­
iPVM-ATM/AAL 3/4 ·+··
! PVM/TCP/ATM ·G···
iPVM/TCP/Ethemet

: : .

..... +······ .. ~·" + +

16KB 64KB 256KB 1MB 4MB
Message Size

Figure 2.5: Normal mode: Bandwidth as a function of message size

40

the round-trip time (since 2 x M bytes of message have been physically transmitted).

A previous study [41] presents the round trip delay (milliseconds) as a function of

message size for ATM/AAL5.

2.3.5.3 End-to-End Performance

Vv'e measured the performance of four different PVM platforms. PVM-ATM

(AAL4) and PYM-ATM (AAL5) refers to the implementation of PVM directly on the

Fore Systems' ATM API with the appropriate adaptation layer. PVM/TCP / ATM

refers to the implementation of PYM on the BSD socket programming interface on

an ATM network. PYM/TCP /Ethernet refers to the implementation of PVM on the

BSD socket programming interface on an Ethernet network.

Figure 2.5 shows bandwidth as a function of message size for messages using the

Normal route. PVM-ATM (AAL4) achieves the highest maximum bandwidth of 7.403

Mbits/sec. PYM-ATM (AALS) and PYM/TCP/ ATM achieve close to PYM-ATM

(AAL4) bandwidth measurements, i.e., their maximum bandwidth measurements·are

Chapter 2. High-Speed Network Support for Cluster Computing 41

30.0
Bandwidth Comparison for PVM 3.3.2 over ATM, Direct Route

25.0
u .,
"' "iii
:5 20.0
6
.t:.
-s
"i
"O
C:

15.0

"' CD .,
Zi
"' > .,
".E
0

<

10.0

5.0

1KB 4KB 16KB 64KB 256KB 1MB 4MB
Message Size

Figure 2.6: Direct mode: Bandwidth as a function of message size

within 0.2 Mbits/sec of each other. PVM/TCP /Ethernet achieves a maximum band­

width measurement of 4.406 Mbits/sec, approximately 60% that achieved by PVM­

ATM (AAL4), PVM-ATM (AAL5) and PVM/TCP/ATM. We conclude from these

results that, when using the Normal mode, the significant performance gain occurs

primarily from using the high-speed ATM medium as opposed to the slower-speed

Ethernet medium.

Figure 2.6 shows bandwidth as a function of message size for messages using

the Direct route. PVM-ATM (AAL5) achieves the highest maximum bandwidth of

27.202 Mbits/sec. PVM-ATM (AAL4) achieves close to PVM-ATM (AAL5) band­

width measurements, i.e., their maximum bandwidth measurements are within 0.6

Mbits/sec of each other. PVM/TCP / ATM achieves a maximum bandwidth value of

20.826 Mbits/sec. And PVM/TCP /Ethernet achieves a maximum bandwidth mea­

surement of 8.312 Mbits/sec. From these results, we conclude that when PVM by­

passes TCP and directly uses the ATM API a rather significant performance gain

Chapter 2. High-Speed Network Support for Cluster Computing 42

Table 2.2: Normal Route

PVM Environment Tmax n112 to
Mbits/sec Bytes µsec

PYM-ATM using AAL5 7.369 4710 4986.5
PYM-ATM using AAL4 7.403 4944 4687

PYM-TCP-ATM 7.216 4352 4076
PYM-TCP-Ethernet 4.406 1948 4053.5

Table 2.3: Direct Route

PVM Environment Tmax n1;2 to
Mbits/sec Bytes µsec

PYM-ATM using AALS 27.202 7867 1905.5
PYM-ATM using AAL4 26.627 8239 1903

PYM/TCP/ ATM 20.826 7649 1839
PYM/TCP /Ethernet 8.312 1945 1541

occurs of approximately 6 to 7 Mbits/sec. Again we observe a significant perfor­

mance gain when using ATM as opposed to Ethernet.

The maximal achievable throughput is bounded by the speed of the TAXI

interface, 100 Mbits/sec. In our previous study [41], we observed the maximum

achievable throughput to be 46.08 Mbits/sec. In this study, we observed the maximum

achievable throughput of PYM-ATM (AAL5) to be 27.202 Mbits/sec. Thus the

overhead occurs at two levels: the end system and ATM interface (software and

hardware) limits the throughput to 46.08 Mbits/sec, and the overhead from PYM

limits the maximal throughput of PYM-ATM to 27.202 MBits/sec.

Tables 2.2 and 2.3 show the above measurements in terms of the following

three performance metrics. These metrics are crucial to the communication perfor­

mance at the application level.

• Tmax (maximum achievable throughput) : the maximum achievable throughput

which is obtained from experiments by transmitting very large messages. This

Chapter 2. High-Speed Network Support for Cluster Computing 43

is an important measure for applications requiring large volumes of data trans­

missions.

• n 1; 2 (half performance length) : the message size needed to achieve half that

of the maximum achievable throughput. This number may not be compared

with t he corresponding numbers from different hardware and software configu­

rations, since the maximum achievable throughput may be different for different

configurations. This measure provides a reference point that shows the effect of

message sizes on the achievable throughput. Users can observe more than half

of the maximum achievable throughput with messages larger than n 1; 2 .

• t0 (startup latency) : the time required to send a short message of 16 bytes to

a receiver and receive the same message back. This is an important measure

when transmitting short messages.

From both tables, PVM-ATM (AAL5), PVM-ATM (AAL4), PVM-TCP-ATM,

and PVi\1-TCP-Ethernet provided decreasing values for t0 , respectively. The great­

est time difference occurs between using ATM or Ethernet. The overhead , in terms

of latency, for the ATM network is thought to be primarily caused by the device

driver. It is believed that the firmware code for Ethernet has been fine-tuned for

better communication latency [41].

2.3.5.4 Multicasting Measurements

On ATM, we measured the performance of the multicasting operations (PVM's

original multicast operation and our re-implementation) by iteratively executing the

multicast operation. During each iteration, a timer is started, the sender then per­

forms the multicast operation and then waits to receive positive acknowledgments

Chapter 2. High-Speed Network Support for Cluster Computing 44

from all the members of the multicast receiving group. Once all acknowledgments

have been received, the timer is stopped, and another iteration begins.

In Figure 2.7, the top (bottom) two graphs depict the time to perform the

multicasting operation as a function of message size using the existing PYM multi­

casting (our re-implementation). When using PVM's existing multicasting facilities,

for message sizes of 64 KB, the time to multicast to 1, 2, 3, 4, 5 remote hosts is

approximately 108, 130, 184, 235, 290 milliseconds, respectively. For message sizes

of 1 MB, the time to multicast to 1, 2, 3, 4, 5 remote hosts is approximately 1550,

1800, 2650, 3200, 3850 milliseconds, respectively. When using our PYM-ATM re­

implementation (bottom _two graphs of Figure 2. 7), we observe that when increasing

the number of remote hosts of the receiving pool from 1 to 4 the largest time dif­

ference is approximately 20 milliseconds. The total latency (Ttotal) of a multicasting

operation includes: (1) the latency to send out multicast messages (T multicast), and

(2) the latency to collect acknowledgments from all of the receivers (Tacknowledgment)-

Ttotal = T multicast + Ta.cknowledgment (2.1)

To compare the two implementations of the multicasting operation, we derived

the following approximate gain factor based on the message size of 64 KB:

70 + 37n
95.83 + 4.17n

{2.2)

where n is the size of the receiving pool. The numerator (denominator) was derived

by examining the increase in latency caused by the increase in the number of receiv­

ing hosts when using the original PVM multicast operation (our re-implementation) .

At a fixed message size, the average increase per additional receiving host was used

to extrapolate to the case of n receiving hosts. In Equation 2.2, the original PYM

Chapter 2. High-Speed Network Support for Cluster Computing 45

has more per-receiver latency. This is because the multicasting operation is im­

plemented by a series of point-to-point message passing. The per-receiver latency

includes Tacknowledgment and a portion of Tmulticast·

Thus our re-implementation results in a performance gain (for 4 remote receiv­

ing hosts) of a factor of approximately two. For 10 remote hosts, our re-implementation

results in a performance gain of a factor of approximately 3.2. Note that these per­

formance gains are amortized by other PVM processing functions which occur during

the PVM multicasting operation.

2.4 Enhanced PVM Communications on HIPP!

Networks

In this section, we present a study of improving Parallel Virtual Machine's

(PVM) communication performance over a HIPPI local area network. After a detailed

examination of PVM's communication subsystem, we re-implemented PVM using

the He,vlett Packard's Link Level Access (LLA) interface instead of the BSD socket

interface which was originally used by PVM. From the experimental results of the

performance evaluation, our study demonstrates the potential and feasibility of high­

performance network computing over a high-speed switch-based local area network.

In this study, we utilized high speed networks and reduced the overhead of

protocol processing. For the underlying high-speed network, we used the HIPPI [60,

61, 62, 63] as the switch-based network platform. HIPPI offers a connection-oriented

service with peak data transmission rates of 800 or 1600 Mbits/sec. HIPPI is a mature

t echnology, which is widely used in supercomputers and high-end workstations. For

the parallel programming environment, we chose the popular Parallel Virtual Machine

(PVM). A detailed description of PVM and HIPPI can be found in Section 2.2 and

.,
&
J
i
~
E
F

i
~
~

~
C
E
i::

Chapter 2. High-Speed Network Support for Cluster Computing 46

2,0
PVM 3.3.2 Multicasting (PVM,\JDPIIP/ATM) PVM 3.3.2 Mul1icas1ing (PVWUOPIIP/ATM)

4000 ,---- - .--- - --.--- - - .--- - - --,

200

1,0

100

so

0

250

200

1,0

100

so

S remote hosts ~
4 remote hosts' n

3 remote hOSts ·• ·-· - 2,emotenoots"··.;.::;c··-- ----
1 r1mot1 host .,..._

10 20 30 40
Massage Size (KBytes)

so 60

PVM•ATM 3.32.0 Mul1icMting (PVWATM)

10 20 30 40
Massage Size (KBytes)

4 rn,ote hOSts:-
3 remote hosts ·- ·
2 remote hosts ·•···

1 remote host -

,a

.,
~
§
-~
!
• E
F

3500 ·····-···-- - -•. ·-· .••. - ·-

3000

500

128KB

Sremolehos!S­
' remote hosts· --

... 3 rtffl0lifho"S1s ~-+;-:'." -
2 remole hosts --
1 remote hos~ --

256KB
Message Sizo

S12KB

PVM-ATM 3.32.0 Multicasting (PVMIA TM)
4000

3500 --

3000

2500

2000

1500

1000

500 ... ·--····-··-·--

1281<8

.. L
;

4 remote hosts: -.
3 remote hosts -­
·2 ·;emote hosts: ••· ··

1 remote host --

256KB
Massage Size

512KB

Figure 2.7: The latencies of original PVM multicasting (top graphs) and the re­
implementation of PVM-ATM multicasting (bottom graphs).

1MB

1MB

Chapter 2. High-Speed Network Support for Cluster Computing 47

2.4.1.

For our study, we sought to achieve high performance (e.g., low latency, high

bandwidth) by enhancing PYM's communication subsystem to utilize the high-speed

HIPPI LANs. As mentioned before> the PVM message passing library was originally

implemented using the BSD socket programming interface. The transport protocols

used are the Transmission Control Protocol (TCP) and the User Datagram Protocol

(UDP). Figure 2.1 shows how PYM was implemented on the BSD socket programming

interface (on the right side of Figure 2.1) . The main idea of improving PVM's message

passing is to reduce the overhead incurred by the high-level protocols. In order to

provide as close to optimal performance as possible, in this study, part of PYM's

communication subsystem is re-implemented directly using Hewlett Packard's Link

Level Access (LLA) API (on the left side of Figure 2.1). We called the re-implemented

version of PYM as PVM/LLA. Since, HP's LLA API resides at a lower layer in the

protocol stack, the overhead incurred when directly using this API is expected to be

lower than the overhead incurred by using the BSD sockets programming APL

A prototype of the PYM/LLA is presented in this section. The performance

of the PVM/LLA is obtained by conducting a series of experiments in our test envi­

ronment. The experimental environment consists of two HP 9000 series 735 worksta­

tions equipped with HP's HIPPI interface boards. The experimental measurement

shows that our PYM/LLA on a HIPPI LAN can achieve comparable performance as

the Message Passing Library (MPL) in IBM's scalable POWERparallel system SP2

[52]. The performance measurement also demonstrates that clusters of workstations

inter-connected with switch-based high-speed LANs can be used for high-performance

network computing.

Chapter 2. High-Speed Network Support for Cluster Computing 48

2.4.1 HIPPI Networks

The High-Performance Parallel Interface (HIPPI) [60, 61, 62, 63) is one of the

high-speed network or channel solutions commercially available. HIPPI is a simplex

point-to-point interface for transferring data at peak rates of 800 or 1600 Mbits/sec

over distances up to 25 meters. A related standard defines the usage of a crossbar

switch to support multiple interconnections between HIPPI interfaces on different

hosts [63). Standards [62, 49] were also defined for running standard network proto­

cols, such as TCP /IP and UDP /IP, over HIPPI. To extend HIPP I's connectivity, an

implementor's agreement (the Serial-HIPP! [25]) specifies how the HIPPI packets are

to be carried over a pair of fiber optical cables. The HIPPI can be extended up to 10

km on single-mode fiber.

HIPPI provides reliable communication and connection oriented service among

hosts. ·with the crossbar switch, HIPPI can be used as a high-speed LAN. Multiple

simultaneous connections can exist through a switch with their own switch resource.

All of the connections can pass data concurrently at full HIPPI speed. The HIPP!

network is suitable for distributed applications and network attached storage which

may require many simultaneous interactions. The reliable communication provided

by HIPPI is based on its credit-based flow cont rol. The credit mechanism provides

positive flow control to prevent buffer overflow at the receiving-side. The flow con­

trol is performed at the physical layer. HIPP! is a mature technology, most super­

computers and many high-end workstations are equipped with HIPPI interfaces for

high-throughput data connections. The success and widespread use of HIPP! is due

to its "KISS" (Keep It Sweet and Simple) design philosophy[55).

2.4.2 A Re-implementation of PVM over a HIPPI Network

The prototype of a re-implementation of PVM Version 3.3.4 (PVM/LLA) over

Chapter 2. High-Speed Network Support for Cluster Computing 49

a HIPPI LAN is presented in this section. As shown in Figure 2.1, t he communication

subsystem of PVM was originally designed to use the BSD socket interface which is a

common interface for accessing standard network protocols and inter-process commu­

nications. To reduce the overhead of protocol processing and utilize the throughput

of underlying networks, we re-implemented part of PVM's communication subsystem

using a low-level LLA HIPP! APL The low-level LLA HIPP! API is discussed in

Section 2.4.2.1. In Section 2.4.2.2, we present the re-implementation.

2.4.2.1 The LLA Application Programming Interface

The Link Level Access. (LLA) application programming interface is a low-level

communication interface provided in Hewlett Packard's workstation platform. The

LLA interface allows application to encapsulate data into 802.2 frames. LLA uses

standard HP-UX file system calls, such as open(), close(), read(}, write(), select(),

and ioctl(}, to access the device drivers that control the network interface card. To

communicate with remote processes through LLA interface, the following information

must be provided by the sending process:

• SSAP: Source Service Access Point.

• Local Address: The MAC (Medium Access Control) address of the sending

host .

• DSAP: Destination Service Access Point.

• Destination Address: The MAC address of the receiving host.

These four tuples (Local Address, SSAP, Destination Address, DSAP) are used in

a similar way as TCP or UDP connections. In BSD socket interface, each TCP or

UDP connection is identified by { source IP address, source port number, destination

IP address, destination port number} .

Chapter 2. High-Speed Network Support for Cluster Computing 50

Table 2.4: LLA commands used in the rt·-implementat ion of PVM.

Command Description

LOG..SSAP modify the 802.2 SSAP field (integer value, 0-255).
LOG_READ_CACHE increase the receive caching to 16 packets for normal

users, and up to 64 packets for the super-users.
RX_FLOW_CONTROL sets the inbound flow control of the current LLA session.
LOG_DSAP modify the 802.2 DSAP field (integer value, 0-255).
LOG_DEST ..ADDR specifies the destination MAC address.
LOCAL.ADDRESS get the local station MAC address.

Two types of LLA commands are used for accessing the network interface:

NETSTAT (NETwork STATus) and NETCTRL (NETwork ConTRoL) commands.

NETSTAT commands are used for querying status information of drivers and devices.

NETCTRL commands are used to control and set up drivers and devices. Some of

the LLA commands used in our re-implementation are listed in Table 2.4.

The following code segment is a simple LLA example to illustrate the usage of

LLA interface. The program shows how to open the HIPPI device, set up source and

destination Service Access Point (SAP), and specify the destination MAC address.

Both NETCTRL and NETSTAT commands can be issued to LLA by the ioctl system

call. A data structure (arg in the example) was used to specify (1) the NETCTRL

or NETSTAT command type; (2) the data type of the argument value, and (3) the

argument value.

i f ((s = open("/dev/hippi", O_RDWR)) === -1) {

perror ("mroute () lla \n") ;

exit(l);

}

arg .reqtype = LOG_SSAP;

arg.vtype = INTEGERTYPE;

arg.value.i = ssap;

Chapter 2. High-Speed Network Support for Cluster Computing

ioctl(s, NETCTRL, &arg);

arg.reqtype = LOG_DSAP;

arg.vtype = INTEGERTYPE;

arg.value.i = dsap;

ioctl(s, NETCTRL, &arg);

arg.reqtype = LOG_DEST_ADDR;

arg.vtype = 6;

memcpy(arg.value.s, dmac, 6);

ioctl(s, NETCTRL, &arg);

read(s , &rxbuf, PACKET_SIZE);

write(s, &txbuf, PACKET_SIZE);

close(s);

2.4.2.2 Enhanced Communications of PVM with LLA API

51

The LLA provides a generic communication interface for upper layer protocols

(in our case, PVM's communication subsystem) to access network devices. The re­

implementation of PVM over LLA (called PVM/LLA) can be used over Ethernet and

HIPPI without any change. Upper layer processes can specify the device name to use

any network interface and its device driver. For example, /dev/hippi represents the

HIP PI interface card and its device driver, and / dev /lanO corresponds to the Ethernet

interface and driver. However, the LLA interface may have slightly different function­

alities which are depend on the device driver of network interfaces. For example, the

LLA interface provided by Ethernet doesn't support flow control mechanism, while

HIPPI's LLA interface provides in-bound flow control to prevent buffer overflow at

the receiving side.

We re-implemented part of the communication subsystem of PVM using the

LLA interface as follow:

Chapter 2. High-Speed Network Support for Cluster Computing 52

• The connections between PVM daemons was changed from UDP sockets to

LLA interface. The master daemon also uses LLA to exchange messages with

the shadow daemon.

• The direct communications between local tasks and remote tasks (Direct Rout­

ing mode) is changed from TCP /IP to LLA.

As mentioned in Section 2.2.1.4, the Direct Routing mode employs TCP sock­

ets for reliable communications. To achieve the same reliable communication as TCP

sockets, the PVM/LLA relies on the sequence number of messages and the inbound

flow control of LLA interface. We also increase the number of the read buffers of

each LLA connection for high performance. There two features are specified by us­

ing RX_FLOW_CONTROL (inbound flow control) and LOG_READ_CACHE (receiving

cache) commands.

2 .4.3 Performance Evaluation

We present the performance evaluation of a prototype PVM/LLA implementa­

tion in this Section. The experimental environment is first described in Section 2.4.3.1.

A preliminary performance evaluation of PYM /LLA over Ethernet is presented in Sec­

tion 2.4.3.2. The performance data is used as a proof of concept. It demonstrates

that PVM/LLA provides better performance even without using any high-speed net­

work. The performance evaluation of PVM/LLA over a HIPPI network is presented

in Section 2.4.3.3 followed by a performance tuning in Section 2.4.4.

2.4.3.1 Experimental Environment

The environment we used for PYM /LLA over Ethernet is different from that

for PVM/LLA over HIPPI. For Et hernet environment, two HP 9000 Series 735 work­

stat ions and their Ethernet interface cards were used for the preliminary performance

Chapter 2. High-Speed Network Support for Cluster Computing 53

measurement. For PVM/LLA over the HIPPI network, we used two HP 9000 Series

735/125 workstations which were connected with point-to-point HIPP! links. Each

735/125 workstation equipped with 125 MHz PA-RISC processor and 80 MBytes

memory. These workstations are faster than those used in the preliminary perfor­

mance tests.

The HIPPI interface card is directly connected to HP's Standard Graphics

Connection (SGC) I/O bus as the main I/O sub-system card. The SGC I/O bus is

a 32-bit wide I/O bus which was optimized for write operations (graphical display

involves lots of write operations). The theoretical throughput of the SGC bus is

60 MB/sec for outbound writing and 38 MB/sec for inbound reading. A recent

performance measurement 3 shows that the the LLA interface provided by the HIPPI ·

interface card can achieve up to 55 MB/sec throughput for outbound transmission

[46]. However, the LLA interface can only achieve around 24 MB/sec throughput for

inbound reception.

2.4.3.2 PVM and PVM/LLA on Ethernet

The preliminary tests of PVM/LLA were conducted on HP's Ethernet driver

which also support LLA application programming interface. The results of PVM/LLA

over Ethernet demonstrate that our re-implemented PVM/LLA can achieve better

performance even in a traditional low-speed network. Figure 2.8 shows the user-to­

user (between two PVM tasks) round-trip latency of original PVM's (Version 3.3.4)

Normal Routing mode and Direct Routing mode, and PVM/LLA's Normal Rout­

ing mode and Direct Routing mode. Figure 2.9 shows the achievable user-to-user

throughput of these four communication modes.

As shown in Figure 2.8, the round-trip latency of PVM Normal mode is twofold

3 The measurement was done with a HIPPI analyzer and the netperf benchmark program.

Chapter 2. High-Speed Network Support for Cluster Computing 54

4500
Round-Trip Latency Comparison for PVM 3.3.4 over Ethernet

4000

3500 ••• • ••• • ·- •• ••• - •'""M ,, ,,.

3000 .,
2- 2500
>-
0
C:
Q)

3 2000

1500

1000

500 , , a , ... -l

0 L...__.,___....__...___..1..-_ _,___ ~-~--'--...J
16 32 64 128 256 512 1K 2K 4K SK

Message Si.ze (Bytes)

Figure 2.8: Preliminary latency measurement of original PVM and PVM/LLA over
an Ethernet network.

more than PVM Direct mode for short messages (less than 512 bytes). For Direct

Routing mode, the re-implemented PVM/LLA has up to 38% improvement for the

round-trip latency. For the achievable throughput, the 10 Mbits/sec Ethernet does

not have much space for PVM/LLA to demonstrate the improvement. Figure 2.9

illustrates that PVM/LLA improves the achievable throughput for PVM Direct mode.

Table 2.5 summarizes the performance of PVM and PVM/LLA over 10 Mbits/sec

Ethernet network with the three performance metrics as Section 2.3.5.3:

Table 2.5: User-to-User performance of PVM and PVM/LLA over Ethernet.

Normal Routing mode Direct Routing mode
PVM Environment Tmax n1;2 to Tmax n1;2 to

Mbits/sec Bytes µsec Mbits/sec Bytes µsec

PVM 3.3.4 6.514 797 2226 8.400 540 1045
PVM/LLA 5.817 541 2004 8.879 382 661

Chapter 2. High-Speed Network Support for Cluster Computing

Throughput Comparison for PVM 3.3.4 over Ethernet
10 .---~--.-- -,---.-----,-----,----,---,----,

8

6

' PVM/LLA. Diredt - '
. PVM Direct ·+··· '
PVM/LLA Normal ·i!> •• •

PVM Normal -+----

16 32 64 128 256 512 1K 2K 4K BK
Message Size (Bytes)

55

Figure 2.9: Preliminary throughput measurement of original PVM and PVM/LLA
over an Ethernet network.

2.4.3.3 PVM and PVM/LLA on HIPP!

The same set of experiments was conducted on two HP 9000 Series 735/125

workstations which were connected with point-to-point HIPP! links. In this section,

the re-implemented PVM/LLA uses the LLA interface provided by the HIPPI device

driver. Figure 2.10 depicts the round-trip latency measurement of the original PVM

and the re-implemented PVM/LLA over the HIPPI network. For the Direct Routing

mode, the re-implemented PVM/LLA shows consistent improvement of the round-trip

latency. The improvement was reflected in Figure 2.10 for a wide range of message

sizes, from 4 bytes to 8 KBytes. For the message sizes shown in Figure 2.10, the

re-implemented PVM/LLA achieved up to 33% of latency reduct ion.

Figure 2.11 depicts the measurement of achievable throughput of the original

PVM and the re-implemented PVM/LLA over the HIPPI network. For this test,

we did not use the flow control feature provided by the LLA interface. As shown

Chapter 2. High-Speed Network Support for Cluster Computing

2500

2000

'ii, 1500
2-
>,
<J
C:
a,

j 1000

0

Round-Trip latency Comparison for PVM 3.3.4 over H!PPI

~,4~M~~4=i014
~VM/LlA Norfnal ' :

; : ·1 ... ···-·-··

; PVM/LLA Direct

4 8 16 32 64 128 256 512 1K 2K 4K SK
Message Size (Bytes)

56

Figure 2.10: Latency measurement of PVM and PVM/LLA on a HIPP! network.

in Figure 2.11, the re-implemented PVM/LLA can achieve higher throughput than

original PYM for messages size less than or equal to 256 KBytes. However, the

achievable throughput of PVM/LLA reaches the peak with 64 KBytes and can not

obtain higher throughput after that. On the other hand, the original PVM's Direct

mode reach its peak achievable throughput 9.679 MBytes/sec with message size of

256 KBytes.

Figure 2.11 shows one interesting behavior of the re-implemented PVM/LLA.

For message sizes larger than 256 KBytes, the achievable throughput drops dramat­

ically from 11.72 MBytes/sec to 7.35 MBytes/sec. The reason for the performance

degradation is due to the throughput mismatch between the speed of HIPPI and the

processing speed of a PVM task. The PVM task can not send out or receive messages

in a comparable speed as HIPPI. We experienced loss of data with messages larger

than 256 KBytes. The data lost problem was also due to receiving buffer overflow

when RX_FLOW_CONTROL feature was off. In next Section, we will demonstrate the

Chapter 2. High-Speed Network Support for Cluster Computing

15.0MB

u
<l)

~ 12.5MB
<l)

$.
m

~ 10.0MB
Q.

g,
e 7.5MB

.i:;; ...
(I) I 5.0MB

:i::
l:'
< 2.5MB

Throughput Comparison for PVM 3.3.4 over HIPPI

PVM/UA Oirect-with Flow· Control
PVM/LLA Direct -• .. -··• ···"·····•,

\
'·)IL ...

_.v·
--.-•-•~--•-~~;;:;:••\tj 7·=._l,_· ::r:

t ~···· i 4-... ~

:l:·~~~".'-r-•----~-_--;:~±:·•·--+---~------
1K 2K 4K SK 16K 3.2K 64K 128K256K512K 1M 2M 4M BM

Message Size (Bytes)

57

Figure 2.11: Throughput measurement of PVM and PVM/LLA on a HIPPI network.

effect of flow control and the size of message transmission unit on the performance of

PVM/LLA.

2.4.4 Performance Tuning of PVM/LLA over HIPP!

The throughput mismatch problem between the HIPP! network and the SGC

I/O bus of HP Series 735/125 workstations suggests that SGC I/O bus is the bottle­

neck. As mentioned before, the SGC I/O bus can sustain 55 MBytes/sec for write

operations and only 24 MBytes/sec for read operations, which are much lower than

the 100 MBytes/sec bandwidth of HIPP! network (with 32-bit data channel). To im­

prove the performance of PVM/LLA, we should try to retrieve messages across SGC

1/0 bus as fast as possible. Therefore, the main design principle of our PVM/LLA

is to preserve the low user-to-user latency while increasing the achievable throughput

for larger messages.

Chapter 2. High-Speed Network Support for Cluster Computing 58

Our early re-implementation of PVM/LLA sends out a message to the HIPPI

device or receives a message from the HIPP! device using packets of 4 KBytes, which

is the default size of the transmission unit. For example, a message of 256 KBytes will

be chopped into 64 packets of 4 KBytes for transmission. A simple optimization for

improving the achievable throughput is to increase the size of packets used to transfer

data between PVM tasks and the HIPPI device. It will speed up the transmission

· of data across the SGC I/0 bus because of the reduction of the overhead from the

per-packet processing. This approach is similar to one solution used to improve the

Direct Memory Access (DMA) performance of a network I/0 subsystem [40]. In

their quantitative analysis of the network operations, they found that the per-page

processing is the biggest bottleneck of the DMA operations. They increased the page

size for each DMA operation to reduce the total overhead.

2500

2000

U)
2.

1500

>-
(.)
C
<I)

iij
...J 1000

500

0

Round-Trip Latency Comparison for PVM 3.3.4 over HIPPI
. . .

PVM/LLA Direct' ·• · ·
Transmission siie 4KB. - o •- :

Transmission size 8KB' ·~··· '
··TransmissioTT'Size"16KB' --a•- .. :·

4 8 16 32 64 128 256 512 1K 2K 4K SK
Message Size {Bytes)

Figure 2.12: Latency measurement of PVM/LLA with different transmission sizes.

To verify that the improvement of throughput does not affect the latency,

we tested the PVM/LLA with different transmission sizes. Figure 2.12 shows the

Chapter 2. High-Speed Network Support for Cluster Computing 59

round-trip latency measurement of PVM/LLA over HIPP! network with different

transmission sizes, which correspond to the size of packets transferred across SGC

1/0 bus. As shown in Figure 2.12, the low latency of PVM/LLA was preserved with

different transmission sizes. The latencies are very close to each other with message

sizes from 4 bytes to 8 KBytes. Figure 2.13 depicts the achievable throughput of

PVM/ LLA over HIPPI network with different transmission sizes. In this test, we

increased the number of read buffers and used the flow control mechanism provided

by the HIPPI LLA interface.

15MB

u
"' ~ 12.5MB
>-
.0

~
'[
,,:;
Cl)
:,

10MB

e 7.5MB
,,:;
~

"' :0
<II
a'.;

E
~

5MB

< 2.5MB

Throughput Comparison for PVM 3.3.4 over HIPPI

~=:~.!~~:l ::=;. . . -- - · - ---: ---~----•-... .. :::,.,_ , ... :·
PVM/LLA (16KB) -~··· ./ •·····..._ , ·-~. ···/··

PVM/LLA (SKB) ·•·· · _.t::~::4· -·· ···-.. _ \ .
PVM/UA (4KB) - _ / .< . '! .. : ~----·

PVM Direct ··•···· .-,• / _____ ...,. \ \

.... , , c,i:,..,<,,.~-/ .:....... .. •. ·\ .. - .\
,_,/)}.,.-•· ,. -, _•{•,,, ·: •,•.·:· ... •X;ii,•,•::;,:

- ·-·---·-·- - -- --- ---- . .
I ••• ••

. ,..~!:,_~_ -------• ••----•~M!,. •-•
.... ·x··

1K 2K 4K SK 16K 32K 64K 12SK256K512K 1M 2M 4M SM
Message Size (Bytes)

Figure 2.13: Throughput measurement of PVM/LLA with different transmission
sizes.

Two interesting observations can be found in Figure 2.13. First, the peak

achievable throughput of PVM/LLA was increased with larger transmission sizes. The

peak achievable throughput is 11.763 MBytes/sec with transmission size of 4 KBytes.

\ iVith transmission size of 48 KBytes, PVM/ LLA has peak achieva~le throughput

of 16.103 MBytes/sec. Second, the performance degradation problem was alleviated

Chapter 2. High-Speed Network Support for Cluster Computing 60

with larger transmission sizes and the activation of in-bound flow control. There

is a small performance degradation when we used 32 KBytes as the transmission

size. For PVM/LLA with transmission size of 48 KBytes, there is no performance

degradation when the size of messages are less than 4 MBytes. Table 2.6 summarizes

the performance of PVM and PVM/LLA over 100 MBytes/sec HIPPI network with

the same performance metrics as before.

Table 2.6: End-to-end performance over of PVM and PVM/LLA over HIPPI.

Normal Routing mode Direct Routing mode
PVM Environment Tmax n1;2 to Tmax n1;2 to

MBytes/sec Bytes µsec MBytes/sec Bytes µsec

PVM 3.3.4 3.506 3086 1922 9.679 4717 758

un-tuned PVM/LLA 3.390 1989 1855 11.763 4050 528

tuned PVM/LLA 3.390 1989 1855 16.103 7551 540

The experimental measurement shows that our PVM/LLA on a HIPPI LAN

can achieve comparable performance as the Message Passing Library (MPL) in IBM's

scalable POWERparallel system SP2 [52]. The IP version of the MPL provides round­

trip latency of 554.0 µsec and point-to-point throughput of 10.8 MBytes/sec.

2.5 Summary and Future Work

PVM communication is primarily based upon the BSD socket interface. For

this study, we chose to bypass the BSD socket interface and implement PVM over

lower layer protocols, the Fore Systems' ATM API and HP's LLA interface. Vle have

achieved a performance gain resulting from two factors - utilizing the higher speed

network media (ATM and HIPPI) and reducing overhead with lower layer protocols.

Vve observed the following performance results:

• Using the Direct Routing mode of PVM over ATM, we observed greater than

Chapter 2. High-Speed Network Support for Cluster Computing 61

twofold improvement with ATM networks, compared to Ethernet. When the

Fore Systems' ATM API was used, instead of the TCP protocol, we observed

an improvement of 6 to 7 Mbps. The maximum throughput achieved by PYM­

ATM (AAL5) is 27.202 Mbits/sec.

• V/ith the Direct Routing mode of PVM over HIPP!, we observed 66% of through­

put improvement (from 9.679 MBytes/sec to 16.103 MBytes/sec) and 30% of

reduction for round-trip latency (from 758 µsec to 540 µsec). The improvement

of our re-implemented PVM/LLA was restricted by the SGC I/O bus which is

used to connect the HIPPI interface card.

One of the drawbacks of usi!}g lower layer protocols is that it does not provide

support typically found in higher layer protocols. For instance, the Fore Systems'

ATM API does not provide flow control and guaranteed delivery. In Section 2.3.4.l,

we described an end-to-end flow control mechanism which provides guaranteed de­

livery by using a selective retransmission mechanism. We also took advantage of

the inherent multicasting capability ATM provided, and re-implemented the original

PVM multicasting facility. PVM assumes the underlying network cannot perform si­

multaneous sends from a single source, and thus implemented the multicast operation

as a series of sequential sends. In our re-implementation, sending to multiple receivers

occurs in parallel. Therefore, with the original PVM multicast, as the number of re­

ceivers increases, the latency increases. In our implementation, as the number of

receivers increases, the latency remains relatively constant. Figure 2. 7 depicts this

performance gain.

In t his study, we achieved performance improvement at the expense of PVM's

het erogeneousness. PVM was originally designed to be used on a network of het­

erogeneous computer systems. The computer systems may be workstations, multi­

processor computers, or even supercomputers. Our re-implemented PVM over ATM

Chapter 2. High-Speed Network Support for Cluster Computing 62

or PVM/LLA can only be used on a cluster of homogeneous workstations in a LAN

environment. Nevertheless, the re-implemented PVM/LLA can potentially be used

on a heterogeneous network environment. The LLA interface is a generic commu­

nication interface, which provides a common interface for accessing the underlying

network devices. A possible extension of this study is to re-implement PVM/LLA

such that it can be used on a cluster of homogeneous workstations with heterogeneous

high-speed network interfaces, HIPPI, ATM, and Fibre Channel. The PVM tasks can

dynamically choose the appropriate network interface based on their communication

requirement and utilize the features provided by the underlying network.

An important conclusion from our results is that the performance improvement

at the application level is not as good as one may expect from an implementation on

a high speed network ·platform. The maximum achievable bandwidth at the appli­

cation level, 27.202 Mbits/sec, is far below the "raw" available network bandwidth,

100 l\1bps provided by the TAXI interface. Also the measured latency of ATM net­

works was slightly higher than that of Ethernet. A previous study [40] discussed how

the communications overhead has shifted from the network transmission medium to

the network subsystem, or I/0 subsystem. The network subsystem includes host

architecture, software system on the host, and the network interface [40]. To take

advantage of a high-speed networking medium such as ATM, the overhead induced

by these components and their interactions must be evaluated and reduced.

The computing power of a single workstation and personal computer (PC) is

increasing at a very fast pace. How to connect several of them together to form a

cluster to perform computing intensive jobs becomes an interesting research topic.

The key issue of creating a high-performance cluster of workstations or PCs is to find

ways to reduce user level communication latency and to increase user level communi­

cation throughput . In this chapter we presented some research results. Our work has

been concentrated on standard switch-based high-speed networks like Fibre Channel,

Chapter 2. High-Speed Network Support for Cluster Computing 63

HIPPI and ATM. However, it is possible to use other types of interconnect like SCI

(Scalable Coherent Interface [53]), ServerNet [31] and MyriNet. In fact, SCI, Server­

Net and MyriNet may provide better performance than HIPPI, Fibre Channel and

ATM. However, they are not yet as popular as HIPPI, Fibre Channel and ATM. We

are currently investigating these configurations. Another emerging standard which

may have profound impact on I/0 performance is the "Intelligent I/0" (hO). This

standard is still under development. It may potentially reduces the communication

latency and increases the throughput by using an extra !OP (I/0 Processor).

Chapter 3

High-Speed Network Support for
Meta-Computing

Among the networks used for distributed computing, the High Performance

Parallel Interface (HIPPI) [60, 61, 62, 63] networks are widely used for connections

between supercomputers, or between supercomputers and high-end workstations.

HIPPI is a simplex point-to-point interface for transferring data at peak data rates

of 800 or 1600 Mbits/sec over distances of up to 25 meters. A related standard de­

fines the usage of a cross-point switch to support multiple interconnections between

HIPPI interfaces on different hosts [63]. HIPPI is a mature technology, most super­

computers and many high-end workstations are equipped with HIPPI interfaces for

high-throughput data connections. Thus, most of the supercomputing institutes use

HIPPI as high speed local area networks in their communication infrastructure.

To extend cluster computing to meta-computing, the physical limitation of

HIPPI must be solved. The 25-meter limitation of HIPPI restricts the distance from

channel endpoint (HIPPI interface on the host) to channel endpoint, channel endpoint

to switch port (HIPPI interface on the switch), or switch port to switch port. Ex­

tension mechanisms are required to increase the distance between channel or switch

connection points. There are three options available for alleviating the problem of dis­

tance limitation of HIPP! networks: Serial-HIPP!, HIPPI/SONET or HIPPI-ATM

mapping, and IP Routing.

• Serial-HIPP!: The serial-HIPP! specifies how the HIPPI packets are to be car­

ried over a pair of fiber optical cables [25]. The HIPPI can be extended up to

64

Chapter 3. High-Speed Network Support for Meta-Computing 65

10 km on single-mode fiber. This option provides a transparent extension cord

for HIPPI-PH. However, serial-HIPP! is an implementation agreement, not an

ANSI standard project.

• HIPPI/SONETor HIPPI-ATM mapping: This approach extends HIPPI's con­

nectivity using SONET (Synchronous Optical NETwork), which operating at

multiple of OC-1 rates (51.840 Mbits/sec), or ATM (Asynchronous Transfer

Mode). Popular data transfer rates are OC-3 (155.520 Mbits/sec) and OC-12

(622.080 Mbits/sec). A HIPPI/SONET mapping scheme over STS-12 SONET

was proposed in [27]. In this approach, a HIPPI/SONET link extender is re­

quired at each channel endpoint. Each HIPPI burst is encapsulated in one

STS-12 frame. For the HIPPI-ATM mapping, the HIPPI-ATM [65] defines the

frame formats and protocol definitions for encapsulation of HIPPI-PH packets

for transfer over ATM networks.

• IP Routing: Using commercial available IP routers, e.g. the GigaRouter from

NetStar, Inc. to extend the HIPPl's connectivity [29]. A IP router operates at

the network layer, which recovers the data block from one protocol, and maps

it into the other protocol, e.g. IP on HIPP! to IP on ATM.

The Serial-HIPP!, HIPPI/SONET mapping and HIPPI-ATM mapping provide ex­

tended HIPPI connectivities at the physical layer, while IP Routing forwards data

packets between HIPPI networks and other networks at the network layer. With ATM

as the de facto standard for wide area network, HIPPI-ATM mapping and IP Routing

are two feasible solutions for the internetworking of HIPP! and ATM networks.

In this chapter, we describe a join effort by Computer Science Department,

University of Minnesota, Minnesota Supercomputer Center, Inc., and US WEST

Communications to interconnect HII:>PI networks via private and public ATM net­

works. The GigaRouters from NetStar, Inc. are used as an IP router and as a

Chapter 3. High-Speed Network Support £or Meta-Computing 66

HIPPI-ATM converter. As an IP router, the GigaRouter can route the entire IP

packet between HIPPI networks and ATM networks. We called this scheme IP Rout­

ing. As a HIPPI/ ATM converter, the GigaRouter encapsulates the HIPPI bursts in

the ATM Adaptation Layer 5's (AAL 5) Packet Data Unit (PDU), then forwards the

AAL 5 PDU via ATM networks. At the receiving end, the GigaRouter extracts the

HIPPI bursts from AAL 5 PD Us, then forwards the HIPPI bursts via HIPPI networks

[65]. We called this scheme HIPP! Tunneling.

Two GigaRouters are used to connect the HIPPI network at the University of

J\,1innesota's EE/CS Building and the HIPPI network at the Minnesota Supercom­

puter Center, Inc. (MSCI). The ATM networks was used as the intermediate media

between the two GigaRouters. We investigate the performance issues of HIPPI Tun­

neling and IP Routing in the same environment. The performance issues we studied

include end-to-end latency, user-level achievable throughput, and the protocol behav­

ior of TCP /IP. The effect of TCP's window sizes and the maximum segment size on

the end-to-end performance is verified by the result of experimental measurements

and detailed timing trace of one ATM analyzer. We hope the practical performance

data can provide valuable insight for the vBNS (very high speed Backbone Network

Service) project.

The vBNS is funded by the National Science Foundation as the first operation

of a very high speed network using the Internet Protocol (IP) over a nationwide

ATM and SONET-based network. The vBNS uses the GigaRouter to provide IP

routing among a combination of ATM, FDDI, and HIPPI media in a network that

transmits high-bandwidth applications at ATM OC-3c speed (OC-12c at 622 Mbps

eventually). The vBNS will provide the scientific and engineering community with

a new environment for research and will serve as the national test bed for building

new applications, increasing telecommunications speeds and developing new advanced

national networking technology. The GigaRouters are installed at each of the five

Chapter 3. High-Speed Network Support for Meta-Computing 67

NSF-funded supercomputing centers participating in the launch of the v BNS network.

3.1 Related Work

The first design to extend HIPPI connectivity was the Serial-HIPPI [25].

Serial-HIPPI is an implementor's agreement specifying how the HIPP! packets are to

be carried over a pair of optical fiber. Serial-HIPPI was first implemented as HIPP!

"modems", which converted HIPPI to serial and back. Further use of Serial-HIPPI

can lead to the realization of large-scale HIPP! cross-point switches. Since HIPP!

switches are limited in size by the number of parallel paths that must be intercon­

nected and by the number of HIPPI's large-size connectors.

\,\Tith the potential widespread of SONET connections by public long-haul car­

rier, SONET provides another mechanism to extend HIPPI's connectivity. Several

research groups have proposed or implemented HIPPI/SONET gateways to intercon­

nect HIPPI Local Area Networks (LAN) [27, 38, 66]. Among these approaches, [27]

extends HIPPI's connectivity using SONET STS 12c over OC-12, which operating

at 622.080 Mb/s with a payload of around 600 Mb/s. In this scheme, each row of

the STS-12c frame was used for a HIPPI burst which has a maximum length of 1024

bytes. The key to the performance of this HIPP! extension is a method of relax­

ing the HIPPI protocol to eliminate the requirement of full round-trip times by the

connection and flow control, and adequate data buffering at the gateways.

Los Alamos National Laboratory (LANL) has developed and delivered a HIPPI

to multiple OC-3 SONET device that can strip up to eight 155 Mbits/sec connec­

tions with forward error correction [38]. Researchers in Bellcore also implemented a

HIPPI/ ATM/SO NET interface that maps HIPPI over multiple ATM and SON ET

OC-3s streams [66]. Each HIPP! packet is placed in a single ATM virtual circuit,

which is then carried over a single SONET OC-3 path. Up to 16 SONET OC-3 paths

Chapter 3. High-Speed Network Support for Meta-Computing 68

can be multiplexed together to form an OC-48 stream when multiple HIPPI packets

are being transferred. Both of these schemes utilize the ability to multiplex together

multiple OC-3 paths.

The packet delay and loss characteristics of a wide-area HIPPI-based testbed

was investigated in [11). They show that HIPP! locking, receiving side is busy with

existing connection, can degrade performance by increasing delay and/or packet loss.

Study of the effect of HIPP! blocking on the performance of TCP shows the de­

lay /loss tradeoffs manifests itself in TCP as inducing either the slow-start congestion

avoidance algorithm or requiring TCP to adjust retransmission timeout value due to

increased delay variance.

3.2 HIPP! Tunneling and IP Routing

An unique feature of our environment is that the same infrastructure can be

used for both HIPPI Tunneling and IP Routing. The GigaRouter can act as an

HIPPI-ATM converter for HIPPI Tunneling through ATM networks. It also can

be used as an IP router which routes IP packet between HIPPI networks and ATM

networks. In this section, we describe how the GigaRouter is used in both approaches.

3.2.1 HIPP! Tunneling Through ATM Networks

The tunneling mechanism operates at the physical layer, which does not look at

the data, adds little latency, and does not require much buffering. In the case of HIPPI

tunneling through ATM Networks, the HIPPI-ATM converter directly encapsulates

low-level HIPPI-PH packets into AAL 5 PDUs at the sending side. The receiving

HIPPI-ATM converter extracts the carried HIPPI-PH packets from the payload of

AAL 5 PDUs. Virtual wide-area HIPPI networks can be built by connecting HIPPI

Chapter 3. High-Speed Network Support for Meta-Computing 69

LANs with HIPPI Tunneling through ATM networks.

HIPPI-ATM [65] defines the frame formats and protocol definitions for encap­

sulation of HIPPI-PH packets for transfer over ATM equipment. A pair of HIPPI

converters (the GigaRouters in our case) are used to perform the HIPPI tunneling

task. In this scheme, the HIPPI-PH bursts and HIPPI-PH signals are encapsulated

in H-PDUs, transferred transparently through the intermediate media, and recon­

structed as HIPPI-PH signals and bursts. The H-PDU consists of a HB_Header and

the data portion of HIPPI-PH bursts. HB_Header is an eight-byte header used to

pass control information between HIPPI converters.

An end-to-end connection, shown in Figure 3.1, in the HIPPI-ATM environ­

ment is actually composed of three separate connections, two connections between

HIPPI-based devices and HIPPI-ATM converters (called HIPP! connections) and the

connection between two HIPPI converters (called HIPPI-ATM connection). Connec­

tion control, routing control, and flow control of the HIPP! connections shall be as

specified by HIPPI-PH. The connection across an ATM intermediate media shall be

as specified by HIPPI-ATM.

HIPPI-based device
HIPPI-ATM Convener HIPPI-ATM Convener

HIPPI-based device
H-PDU H-PDU

Transparent AALS AAL5 Transparent
Data HIPPI-PH ATM ATM HIPPI-PH Data

--------- ---------
HIPPI-PH PHY PHY HIPPI-PH

Figure 3.1: Extend HIPPI connectivities with HIPPI-ATM converters.

These connections are separated for performance reasons. The connection

across the intermediate media may be independent of the HIPPI equipment making

and breaking connections. For example, the ATM connection may last across multiple

Chapter 3. High-Speed Network Support for Meta-Computing 70

packets and for a long time. · The HIP PI converters are also assumed to be indepen­

dent of each other to avoid the latency of intermediate media becoming part of the

connection setup time. These separate connections allow a system to send packets in

a store-and-forward fashion, with connection breaking on one link while the packet is

being forward on the next link.

Figure 3.1 also depicts the protocol hierarchy of HIPPI Tunneling. To transfer

data using high-level protocol such as TCP, user's data is prefixed by TCP header, IP

header, IEEE 802.2 LLC/SNAP header, HIPPI-LE header, and HIPPI-FP header.

Then, the HIPPI-FP packet is transferred via the HIPP! network as a number of

HIPPI-PH bursts. The low-level HIPPI-PH bursts are carried by ATM AAL 5 PDUs,

which in turn are transferred via ATM layer. The ATM layer provides the function­

alities of a network layer protocol, which allow the AAL 5 PDUs being transferred

through private and public ATM networks. The receiving HIPPI-ATM converter ex­

tracts the HIPPI-PH bursts and forwards them through the HIPP! network. At the

receiving HIPPI-based device, user's data is sent to the application after protocol

processing operations have been done through the protocol stack.

3.2.2 IP Routing

IP Routing uses existing standards for routing Internet Protocol (IP) packets

between HIPP! based systems and ATM based systems. The IP router operates at

the network layer, which recovers the data block from one protocol, and maps it

into the other protocol, e.g. IP on HIPPI to IP on ATM. Compare to t he tunneling

mechanism, a router has more intelligence, requires more buffering, and might have

longer latency.

The relationship of protocol hierarchy of IP over HIPPI and IP over ATM

is depicted in Figure 3.2. On the HIPP! side, the IP PDU is placed in a HIPPI

Chapter 3. High-Speed Network Support for Meta-Computing 71

packet as specified by HIPPI-LE [62} and Internet Request for Comment (RFC) 1374

[49]. HIPPI switches may be between the HIPPI-based device and the HIPPI-ATM

IP Router for multiple connections. In the HIPP! portion of the sending-size of the

HIPPI-ATM IP Router (the HIPPI-ATM IP Router on the left side of Figure 3.2), the

HIPPI headers are discarded, and the IP PDU passed to the ATM side. In the AAL

5 portion of the sending-size of the HIPPI-ATM IP Router, the IP PDU is packaged

in an AAL 5 packet. A similar scenario may be used to transfer IP PDUs from the

ATM-based device to the HIPPI-based device.

HIPPI-based device
IP-PDU

LLC/SNAP
HIPP!-LE
HIPPI-FP
HIPPI-PH ~

HIPPI-ATM
IP Router
CP-PDU

LLC/SNAP
HIPPI-LE AAL5
HIPPI-FP ATM
HIPPI-PH PHY ~TM!m0swi?>-

HIPPI-ATM
IP Router

IP-PDU
LLC/SNAP

AALS HIPPI-LE

ATM HIPPI-FP
PHY HIPPI-PH

HIPPI-based device
IP-PDU

LLC/SNAP
HIPPI-LE
HIPPI-FP

i..--- HIPPI-PH

Figure 3.2: Extend HIPPI connectivities with IP Routers.

In the IP Routing scheme, the HIPPI-ATM IP Routers and any other IP

routers located between the two HIPPI-ATM IP Routers must wait for the arrival

of the entire IP PDU before forwarding it to the next link. The store-and-forward

behavior on the IP layer (network layer in the OSI model) introduces longer latency

and requires more buffer space than HIPPI Tunneling approach.

3.2.3 Extended HIPPI Connectivities

Both HIPPI Tunneling and IP Routing scheme provides extended HIPPI con­

nectivities as shown in Figure 3.3. The HIPPI Tunneling (upper part of Figure 3.3)

supports trunk lines between HIPPI-based LANs. The connection provided by the

HIPPI-ATM converter and the intermediate ATM networks acts like an extended

Chapter 3. High-Speed Network Support for Meta-Computing 72

HIPPI link between t he HIPPI switches. The HIPPI packets are forwarded by the

HIPPI-ATM converters through the trunk link in a multiplexing style. Any HIPPI­

based device can setup a connection with the HIPPI-ATM converters (directly or

through a HIPPI switch), send HIPPI packets, and tear down connection afterward.

The receiving HIPPI-ATM converters connects to a HIPPI-based device according

to the H-PDU it received, then forwards the packets. The entire configuration can

be treated as one network which consists of two HIPPI switches interconnected with

each other.

Extended HIPPI Link

~---l HIPPI-A TM
-..- Convener

IP Router IP Router

HIPP! Network HIPP! Network

Figure 3.3: Extended HIPPI Connectivities with HIPPI Tunneling or IP Routing.

On the other hand, the IP Routing (lower part of Figure 3.3) connects two

separate HIPPI networks via IP networks which can be any kind of media. In our

environment, the intermediate media is an ATM-based network. Working on the

network layer, the IP router forwards IP PDUs through any IP networks with different

medium. However, the high bandwidth of HIP PI restricts the selection of intermediate

Chapter 3. High-Speed Network Support for Meta-Computing 73

media to those high-speed networks like ATM or Fibre Channel.

3.2.4 Protocol Overhead

As a comparison of HIPP! Tunneling and IP Routing at the AAL 5 layer,

HIPP! Tunneling does not package the entire IP datagram into the payload of one

AAL 5 PDU. The IP datagram is chopped into data packets in the unit of one HIPPI­

PH burst or two HIPPI-PH bursts. Whereas with IP Routing, each IP datagram is

packaged into the payload of one AAL 5 PDU. Therefore, these two approaches

introduce different degrees of protocol overhead.

HIPPI-ATM specifies that the HIPPI converter at the sending-side shall as­

semble up to 2048 bytes of HIPPI-PH bursts, with an HB..Header (8 bytes), into an

H-PDU with size of 2056 bytes. The HIPPI converter can also assemble one HIPPI­

PH burst (up to 1024 bytes) and an HB..Header into an H-PDU with size of 1032

bytes. ·when using ATM as the intermediate media, the ATM AAL 5 shall be used

to carry the H-PDUs.

It is easy to find out the protocol overhead and available bandwidth of HIPPI­

ATM with the above information. The OC-3c provides 135.632 Mbits/sec bandwidth

to the AAL after considering the protocol overhead of SONET and ATM [9] . With

1032-byte H-PDUs, we need to use AAL 5 PDU of 1056 bytes, 22 ATM cells, to

encapsulate one H-PDU. Since AAL 5 uses Unused Pad bytes to fill out the last ATM

cell to right adjust the AAL 5 Tail. Consider the size of the MTU as 61440 bytes

on the HIPPI side. To transfer 61440 bytes of data, we need a small AA.L 5 PDU

(3 ATM cells) for the protocol headers (from TCP, IP, LLC/SNAP, HIPPI-LE, and

HIPPI-FP) and one AAL 5 PDU (22 ATM cells) for each HIPPI-PH burst. The

channel utilization is calculated from the following equation.

Chapter 3. High-Speed Network Support for Meta-Computing 74

61440 - 0 9675
(3 + 22 X 60) X 48 - .

(3.1)

Therefore, only 96.75% of the 135.632 Mbits/sec bandwidth is used to transfer data

via TCP /IP. With 2056-byte H-PDUs, one AAL 5 PDU of 2064 bytes (43 ATM cells)

shall be used to carry one H-PDU. This means 98.99% of the 135.632 Mbits/sec

bandwidth is used to transfer data via TCP /IP. The channel utilization is calculated

from the following equation.

61440
(3 + 43 X 30) X 48 = 0·

9899 (3.2)

The channel utilization of IP Routing depends on the maximum transmission

unit (l'viTU) size used by the HIPPI-ATM IP Router. Before forwarding to ATM

networks, an IP packet is segmented into a number of data packets with the size

up to MTU size. For smaller MTU sizes, there is more protocol overhead due to

packet headers or packet tailers. Figure 3.4 shows the effect of MTU size on the

channel utilization. Figure 3.4 is calculated by considering the protocol overhead

of the transmission of 61440 bytes data via TCP /IP. The two lines in Figure 3.4

represent the channel utilization of HIPPI Tunneling with 2056-byte H-PDUs and

1032-byte H-PDUs, respectively. Figure 3.4 suggests that the MTU size used by the

HIPPI-ATM IP router must greater than 6000 bytes in order to have better channel

utilization than HIPPI Tunneling.

3.2.5 Flow Control

In HIPPI Tunneling, the flow control is treated as three separate entities like

the connection control. The credit-based flow control is used for both HIPP/ connec­

tions and HIPPI-ATM connections. The credit-based flow control provides positive

Chapter 3. High-Speed Network Support for Meta-Computing

0.99

0.98

C:
.Q 0.97 ii
~
5 0.96
ai
C:
C:

"' .s::; 0.95
u

0.94

0.93

0.92

.....

1000

IP Routing -
Tunneling, 2 HIPPI-PH bursts per AAl 5 PDU -­
Tunneling, 1 H!PPI-PH burst per AAl 5 PDU ········

10000
Maximum Transmission Unit (Bytes)

Figure 3.4: Protocol overhead of Tunneling and IP Routing.

75

flow control to prevent buffer overflow at the receiving-side. The credit-based flow

control is accomplished by using HIPPI-PH's READY signals on the HIPP I connec­

tion. Each READY signal sent from the receiver represents that the receiver has one

available buffer space for one HIPPI-PH burst. The receiving side use the READY

signals to regulate the behavior of the sending side.

On HIPPI-ATM connection, the flow control is accomplished by using the

credit information carried in the HB_Header as specified in HIPPI-ATM. The credit

sent from the receiver to the sender is the number of buffer available for H-PDUs at

the receiving-side. As HIPPI-ATM converter at the receiving-side forwards the HIPPI

packets in the H-PDU to the destination HIPPI-based device, buffers are freed up.

The receiving-side shall periodically inform the sending-side of the number of buffers

freed up to avoid sending-side credit starvation. In our environment, the GigaRouter

sends credit information every one second if there is no data packet for piggy-backing.

The HIPP! Tunneling provides a low-level flow control scheme. The applica­

tions on the HIPPI-based host can use the low-level communication interface to fully

Chapter 3. High-Speed Network Support for Meta-Computing 76

utilize the high bandwidth of the physical link. On the other hand, the IP Routing

relies on the flow control and congestion control of higher layer protocol, like TCP's

window-based flow control and congestion avoidance scheme, to regulate the data

traffic.

3.3 Implementation of HIPPI Tunneling

In this section, we present one implementat ion of HIPPI Tunneling over ATM

networks. We first describe our test environment and the measurement tools we

used to monitor the data traffic. Then, the performance data of HIPPI network and

HIPPI Tunneling are presented. The performance of the HIPPI network is used as a

reference , which represents HIPPI's performance without extended connectivity over

ATM networks. In both cases, the performance data suggests that this implementa­

tion highly utilizes the network bandwidth.

3.3.1 Environment

Minnesola Supercomputer Center, Inc. EE/CS Building

HP 75000 ATM Analyzer

Figure 3.5: Extend HIPPI connections over dedicated OC-3 ATM Network

Figure 3.5 shows the connectivity between the two HIPPI networks via ded­

icated OC-3 ATM connections. At the EE/CS Building, the GigaRouter is used as

Chapter 3. High-Speed Network Support for Meta-Computing 77

a HIPPI switch and an IP router. An ATM OC-3 connection over single-mode fiber

connects the GigaRouter to a Hewlett Packard's 75000 series ATM Analyzer (Hewlett

Packard Broadband Series Test System, HP BSTS) at US WEST's COMPASS Lab.

The HP BSTS is also connected to the GigaRouter at the MSCI. The GigaRouter

at the MSCI can be connected to a HIPPI switch or directly to the SGI Challenge

workstation. The SGI Challenge workstation will be the primary computer systems

on both HIPP! networks. Therefore, both sides have computer systems with similar

performance.

The HP BSTS at US WEST's COMPASS Lab is used to measure the per­

formance at the cell level and the AAL level. The HP BSTS is connected between

both GigaRouters. The HP BSTS acts as a SONET repeater which retransmits the

received signal without altering the SONET information. Therefore the HP BSTS

does not cause any extra delay or introduce any jitter. SONET splitters are installed

which will provide a monitor access. This will allow the HP BSTS to be turned off

,:i,•ithout taking the connection down.

Engineers at the COMPASS Lab are developing decoding software which will

allow the HP BSTS to decode the HIPPI-FP /HIPP-LE/802.2 LLC/IP /TCP protocol

between both GigaRouters. The software will also provide information in graphical

form. For example, it is possible to see the HIPPI Credit and TCP Send/Receive

Segment Size each versus time. These tools can be used to better understand the

ATM affects on application performance.

\/\Tith the decoding software, the HP BSTS can be used to monitor data traffic

at any protocol layer, from ATM cell level to user-defined high-level protocol. For

example, the HIPPI-ATM decoding software can provide the user with a timing dia­

gram of the HIPPI signals (READY; PACKET, etc) which are encapsulated within

the HB_Header. The HP BSTS when placed in line can also be used to inject SONET

Section, Line, and Path error conditions. The reason for injecting errors is to study

Chapter 3. High-Speed Network Support for Meta-Computing 78

the effects of errors on such items as TCP performance (retransmissions).

3.3.2 Performance of HIPPI-FP and TCP over HIPP! Net­

works

The performance evaluation of HIPPI-FP (HIPP! Framing Protocol) and TCP

between two SGI Challenge workstations via a HIPP! switch is presented in this

section. Two SGI Challenge machines in the EE/CS Building are used to perform

the test in a HIPPI Local Area Network (LAN) environment.

To study the performance of HIPPI-FP, a pair of echo-style client and server

programs using SGI's HIPPI-FP Application Programming Interface (API) [30] is

executed on the two SGI Challenge machines. The client measures the latency re­

quired to send a message of a certain size to the server and from server back to the

client. "With the wall clock at the client side, the round-trip latency is used to cal­

culated the end-to-end achievable throughput by dividing two times of the message

size by the round-trip latency. The same echo-style client and server programs are

also used to investigate the performance of TCP. To achieve the best performance of

TCP, we set the size of socket buffer (TCP window size) to 512 KBytes and use the

TCP _NODELAY option. For each experiment, we conduct the test for 30 times. The

results of the test are used to calculate the mean value, minimum value, maximum

value, and the 90% confidence interval. We show the mean value, minimum value,

and the 90% confidence interval for the end-to-end latency measurement. For user­

level achievable throughput, we present the mean value, minimum value, and the 90%

confidence interval.

Figure 3.6 shows the round-trip latency of short messages, from 32 bytes to

1024 bytes. The round-trip latency is around 2.5 milliseconds for HIPPI-FP and

around 2.6 milliseconds for TCP in this range of message sizes, which is reasonable

Chapter 3. High-Speed Network Support for Meta-Computing

Round-Trip Latency of TCP over' HIPPI Network
6 .----..---,------,,--....:...---,- ---.- --.-- --r---.

! ' ITllian -90% confidence interval __..

5
r(lin •••••

4•....... , __;... __________ ,_ ,., -··---

3

2

0 '----L----''-----'----1---"----L---'--- -'
768 896 1K 128 256 384 512 640

Message Size (Bytes)

Round-Trip Latency of HIPPI-FP over HIPP! Network
6 ,--- - ,------,,------,----.- ---.----.---.....----,

5

mean -
90% confidence interval -

min ·····

0 .__ _ _ .__ _ __...._ _ ___. __ --1 __ _,_ _ _1. __ __,__ _ _ _,

896 1K 128 256 384 512 640 768
Message Size (Bytes)

79

Figure 3.6: Round-Trip Latency of transferring short messages over HIPPI network,
Bottom: HIPPI-FP; Top: TCP.

Chapter 3. High-Speed Network Support for Meta-Computing 80

because each HIPPI-PH burst can transfer up to 1 KBytes. Only one HIPPI-PH burst

is required in this range of message sizes. Figure 3.6 also depict the 90% confidence

interval as error bars.

Figure 3. 7 shows the achievable end-to-end throughput of messages from 1

KBytes to 64 KBytes. As shown in Figure 3.7, the throughput of HIPPI network

increases dramatically with larger message sizes. With messages of 64 KBytes, more

than 20 MBytes/sec1 throughput can be achieved by using HIPPI-FP API and more

than 17 MBytes/sec for TCP.

To investigate the maximum achievable throughput of HIPPI network, we

continue to transfer larger messages, from 64 KBytes to 2 MBytes. In SGI's HIPPI­

FP API, the 2 MBytes is the largest message can be transferred with one single

write() system call. For message sizes larger than 2 MBytes, multiple write() system

called are required.

Figure 3.8 depicts the achievable throughput of HIPPI network when trans­

ferring messages from 64 KBytes to 2 MBytes. With messages of 2 MBytes, 73. 73

MBytes/sec throughput is achieved by using HIPPI-FP API, which is equal to 618.47

Mbits/sec. This represents 77.31% bandwidth utilization of HIPPI's 800 Mbits/sec

physical limitation. The high utilization due to the powerful end-systems and the

high-performance cross-point HIPPI switch. However, only 44.57 MBytes/sec through­

put is achieved by using TCP.

To transfer messages larger than 2 MBytes with HIPPI-FP API, we need to

use multiple write(} system calls. The SGI's HIPPI API provides commands for

access method, data flow control, and connection control. One of the API commands

allows the user to keep the HIPPI connection while transferring large amount of data.

During the transmission, the HIPP! connection will be maintain, which allow large

1 MBytes/sec refers to 220 bytes per second.

Chapter 3. High-Speed Network Support for Meta-Computing 81

Achievable Throughput of TCP over HIPP! Network
25 ~ - ~----------~-----~- - ~

20

max······
' ' , mean-

.. ! 1....... ····· J~~~.confidence int~.:~~--= ··

15

10

4BK 56K 64K
0 .__ _ _._ __ __ .,__ __ .___~----'---...J...- --'

BK 16K 24K 32K 40K
Message Size (Bytes)

Achievable Throughput of HIPPI-FP over HIPP! Network
25

max•
mean· -

u 20
Cl>

"' <ii
.l!!
ct
~ 15
-s
a. .r.
er,
:::,

~ 10 I-
~
IJ

"' >
.91 .r.
(.)

c(5

0
BK 16K 24K 32K 40K

Message Size (Bytes)
48K 56K 64K

Figure 3.7: Achievable throughput of HIPPI network when transferring messages
from 1 KBytes to 64 KBytes, Bottom: HIPPI-FP; Top: TCP. Note: MBytes/sec is
220 Bytes per second.

Chapter 3. High-Speed Network Support for Meta-Computing

u
(1)

~ .,
(1)

>,
a>
~
:5
0. .r:;
0,
::,
e

.r:;
I-
0)

~
>
(1)

:c
0
<(

80

70

60

50

40

30

20

•··'

Achievable Throughpu1 of TCP over HIPPI Network

..... _ : ,·-·

max
mean -

.................. 90% confidence .in1erva1 ... - ..

. .

................ ~.! ,. ______ ! ····•·· , _ ; ..

64K 0.25M 0.5M 0.75M 1M 1.25M 1.5M 1.75M 2M
Message Size (Bytes)

Achievable Throughput of HIPPI-FP over HIPPI Network
80,..-----,- - --,---.----,----,----r-- -"T""---,

70

max
60 ... mean .. -

50

40 , .. .

30
. '

,,-M .. i, ~•••••••_, : ~

20 ... , __;C-----; ___ _ _; ·

64K 0.25M 0.5M 0.75M 1M 1.25M 1.5M 1.75M 2M
Message Size (Bytes)

82

Figure 3.8: Achievable throughput of HIPP! network when transferring messages
from 64 KBytes to 2 MBytes, Bottom: HIPPI-FP; Top: TCP.

Chapter 3. High-Speed Network Support for Meta-Computing 83

volume data transmission as seen in many scientific visualization applications.

The end-to-end achievable throughput of large volume data transmission is

shown in Figure 3.9. There is only a minor improvement when transferring message

sizes larger than 2 MBytes. Part of the reason is because of the overhead from

the end-system processing. In the case of HIPPI-FP, multiple write() system calls

are required, which increase the end-system overhead. With message of 16 MBytes,

76.81 MBytes/sec throughput is achieved, which is equal to 644.363 Mbits/sec. This

represents 80.05% bandwidth utilization of HIPPI's 800 Mbits/sec physical limitation.

Again, only 49.06 MBytes/sec throughput is achieved by using TCP. The overhead

is due to the protocol processing on the host system.

3.3.2.1 The Effect of TCP Window Size

There are several parameters that affect TCP's performance, such as sending

and receiving window size, TCP _NODELAY option, and TCP's maximum segment

size (MSS). In a communication path with large bandwidth x delay product such as

the dedicated OC-3 link in our environment, the TCP performance depends on the

product of the transfer rate and the round-trip delay. The bandwidth x delay product

is the amount of data that would occupy the communication link. TCP uses sliding

window flow control to regulate how many un-acknowledged data can be transferred.

In order to fully utilize the communication link with large bandwidth x delay , larger

window sizes are required to keep the link full.

The RFC-1323 presents a set of TCP extensions to improve performance over

transmission paths of large bandwidth x delay product and to provide reliable opera­

tion over high-speed paths [32]. A TCP Window Scale option was designed to expand

the size of the TCP window, which uses a scale factor to carry the actual window size

in the 16-bit Window field of the TCP header. The SGI's TCP implementation (in

Chapter 3. High-Speed Network Support for Meta-Computing

75

70

65

Achievable Throughput ol TCP over HIPPI Network

max
... ni.ean-
90% confidence interval ,..._.

60 ____ __; ___ ___ ___,

55 - - ..;...------'---··· .. ·

50 ~---s

··········-
••·•·· ·•••·•• l

45

~
40

__ __,___ ;-----·-···-·--·- :
.... ·······;················~-- ·······

'

35 '------'-----'----'------'-----'----.,__ __ _,
2M 4M 6M BM 10M 12M 14M 16M

Message Size (Bytes)

Achievable Throughput of HIPPI-FP over HIPPI Network
80 ---....---~-.....:.-.---....-----r---..--- -,

..................; :., .. :::::::.~:=-::.;.;;,~k==-=======··=···:r. : : .. ': :•:· .. ·1·· 75 ,_ t.-••····...............

70 .. : ; .. -l

65

60

55

max
meari-

50

45 .. --,---•·· ,, ____ _

40 ····--------

········--·'"-·-···:· ,

35 L._ __ __,_ __ ___. ___ ,L_ _ _ _,_ __ --1 _ __ .._ __J

2M 4M 6M 8M 10M 12M 14M 16M
Message Size (Bytes)

84

Figure 3.9: Achievable t hroughput of HIPPI network with large volume of data,
Bottom: HIPPI-FP; Top: TCP.

Chapter 3. High-Speed Network Support for Meta-Computing

Achievable Throughput of TCP over HIPPI NetworK
50 ,--,----,--- ----.---..-------,---,.---,----.----,

45 ·-·

40

35

5

····--·····-·····-'·· , , ·•. ~ · ,- .. .
· 512KB .-. ~•·•. _ .. · ···--·';·-···· ·····

............... _.... -.. .. ···i····/·· .. -· .. L/ . ·, · .. _~··;>.·';;: ·.;:. ~ ... fffl'i?'~~,,,..."l
_ ...;.._ _ _ \ _______ , ! ..

l !
; ---------: ___ ,. __ , 1·-------

.......... , ... ~s~~ ... :.•.i::.:.'.:.:···::.·.:::l·:::·.:··:::.•.-.:.l :·.······

·· ······ ···' ·· ·· .. ••••• = ' _ :

h28KB : i 1

.::: ... ······· ... ~ -·•··+-... .L ··········-

0 '-'--_,_-~ _ _ .,__ _ _._ _ __. _ _ _.__ _ __,__ _ ___J

64K 0.25M 0.5M 0.75M 1M 1.25M 1.5M 1.75M 2M
Message Size (Bytes)

85

Figure 3.10: The effect of the window size on the TCP performance over the HIPPI
network.

the IRIX 5.3 operating system) we used in this study allows the TCP window size to

be expended up to 512 KBytes. This means the value of the scale factor can be up

to 8.

Figure 3.10 demonstrates the effect of window sizes on the TCP performance

over the HIPPI network. From previous measures, the round-trip delay of our HIPPI

network at the TCP level is around 2.6 milliseconds. The bandwidth x delay product

will be 260 KBytes, which means the TCP window size should be larger than 260

KBytes in order to keep the link full. The performance results in Figure 3.10 reflect

the effect of window sizes on the performance. For window sizes of 256 KBytes, 128

KBytes, and 64 KBytes, the achievable throughput is bounded by 27 MBytes/sec, 14

MBytes/sec, and 7.5 MBytes/sec.

Chapter 3. High-Speed Network Support for Meta-Computing 86

3.3.3 Performance of HIPPI-FP and TCP over HIPPI Tun­

neling

The Performance evaluation of HIPPI-FP and TCP between two SGI Chal­

lenge workstations via HIPP! Tunneling over ATM OC-3 network is presented in

this section. One SGI Challenge machines in the EE/CS Building and another one at

MSCI are used to perform the test in a HIPPI Tunneling over Metropolitan Area Net­

work (MAN) environment. The entire bandwidth of the OC-3 connection is allocated

for the two GigaRouters.

The two SGI Challenge machines are treated like they are connected to each

other via an end-to-end HIPP! connection. The echo-style client and server programs

are executed on the two SGI Challenge machines to measure the round-trip latency

and end-to-end achievable throughput. We expect a longer round-trip latency in this

environment and the maximum achievable throughput will be bounded by the 155.520

Mbits/sec OC-3 link.

Figure 3.11 shows the round-trip latency of short messages, from 32 bytes to

1024 bytes. The round-trip latency is around 3.25 milliseconds for HIPPI-FP over

HIPPI Tunneling and 2.5 to 3 milliseconds for TCP over HIPP! Tunneling in this

range of message sizes. For HIPPI-FP, the latency is 0.75 milliseconds on average

longer than its counterpart in the HIPP! network environment. For TCP, the latency

is less than 0.5 milliseconds longer than its counterpart. The longer latency is due to

the overhead of HIPPI-ATM converters and the propagation delay. Figure 3.11 also

depict the 90% confidence interval as error bars.

Figure 3.12 shows the achievable end-to-end throughput of messages from 1

KBytes to 64 KBytes. As shown in Figure 3.12, the throughput of HIPP! Tunneling

also increases dramatically with larger message size. With messages of 64 KBytes,

more than 8.5 MBytes/sec throughput can be achieved by using HIPPI-FP and 7.97

Chapter 3. High-Speed Network Support for Meta-Computing

Round-Trip latency of TCP over HIPP I-ATM Tunneling 6...------...---.,_:_---- -----.......;-----.
. . mean -
~0"/4 confidence interval ,.._.

min ·•••·
5

4

2

: '. ~ , .. ,~

0 '--- - '----'---_...__ _ _ ..__ __ ..__ __ ..__ _ _ .,._ ____

3848 5128 6408 7688 8968 1KB 1288 2568
Message Size (Bytes)

Round-Trip latency of HIPPI-FP over HIPPl•ATM Tunneling s~-------------------- ----.
5

' mean -
confidence inter.val,.

min

4 1-, ... , .. -...---..-- -•·,

3

2

0 .__ __ ...__ __ ..__ __ ..__ __ ..__ _ _ .,._ __ .,._ __ ..._ _ __,

768 896 1K 128 256 384 512 640
Message Size (Bytes)

87

Figure 3.11 : Round-Trip Latency of transferring short messages via HIPP! Tunneling
over OC-3 ATM link, Bottom: HIPPI-FP; Top: TCP.

Chapter 3. High-Speed Network Support for Meta-Computing

Achievable Throughput of TCP over HIPPI-ATM Tunneling 9--------..;.._------.----,---..,...- --,

6

5

4 ..

max ······
mean­

..... 90%.coolidencejnten,al ·-····

0 L...--.....L.--....L...---'--- -l...-- --'- ---'---.....L.---'
56K 64K BK 16K 24K 32K 40K

Message SiZe (Bytes)
48K

Achievable Throughput of HIPPI-FP over HIPPI-ATM Tunneling
9 ---,----,---..----.-----r-- --r---,----,

B

7

6

4 ·········•'·· ·
/

BK 16K

. .

. .

24K 32K 40K
Message Size (Bytes)

maX: ······
mean· ...,,,,.-:.

! I
••••••••••-,..•-•••u•u,,.,, •• ~,,.,,,., .. , ''""""

88

Figure 3.12: Achievable throughput of HIPPI tunneling when transferring messages
from 1 KBytes to 64 KBytes, Bottom: HIPPI-FP; Top: TCP.

Chapter 3. High-Speed Network Support for Meta-Computing 89

MBytes/sec for TCP.

To investigate the maximum achievable throughput of HIPPI tunneling, we

continue to transfer larger messages, from 64 KBytes to 2 MBytes. Figure 3.13 depicts

the achievable throughput of the HIPPI network when transferring messages from 64

KBytes to 2 MBytes. With messages of 2 MBytes, 13.29 MBytes/sec throughput is

achieved by using HIPPI-FP and 13.27 MBytes/sec for TCP. For TCP, the throughput

is equal to 111.32 Mbits/sec. This represents 82.1% bandwidth utilization of the

throughput available to the AAL 5 layer from the OC-3 link (135.632 Mbits/sec). The

TCP's performance demonstrates a high degree of channel utilization. As expected,

the achievable throughput is bounded by the OC-3 link.

3.3.3.1 The Effect of TCP Window Size

Figure 3.14 demonstrates the effect of window sizes on the TCP performance

over the HIP PI Tunneling. From previous measurements, the round-trip delay of the

HIP PI Tunneling at the TCP level is around 2. 75 milliseconds. The bandwidth x delay

product will be around 53 KBytes, which means the TCP window size should be larger

than 53 KBytes in order to keep the link full. However, the performance results in

Figure 3.14 shuw that the communication link can not be fully occupied with window

size of 128 KBytes. Figure 3.14 also shows that there is minor difference between

v.·indow size of 256 KBytes and 512 KBytes. This suggests that the TCP can keep

the communication link full when the window size is larger than 256 KBytes. For

window sizes of 128 KBytes, and 64 KBytes, the achievable throughput is bounded

by 8.35 MBytes/sec and 7 MBytes/sec, respectively.

To further study the effect of window sizes on the TCP performance, we used

the HP BSTS to capture the traffic of the OC-3 link. The HP BSTS can capture

any ATM cell traverse the OC-3 link and records a time stamp (which is the time

Chapter 3. High-Speed Network Support for Meta-Computing 90

Achievable Throughput of TCP over HIPPI-ATM Tunneling
14 ...--r- ---.--.....-- ---..----.--- -r-----r---r---i

12

10

max •·····
. , mean' -

······· ···90".!'o ·confideri=e interva\ ..,..... · ...

1 l ' , .. ~ ... ; :
h , _., + ~••• ••• .. •

. '

6

4

2 ,. ... , , ,

0 ~----'---....L.-- ...L.---.1--- L-----'---....L.---'
64K 0.25M 0.5M 0.75M 1M 1.25M 1.5M 1.75M 2M

Message Size (Bytes)

Achievable Throughput of HIPPI-FP over HIPPI-ATM Tunneling
14 ...--r----.-- -.-- --r---...---,-----,----.--- -,

12
'u' .,
"' o\ 10 .,
>-CD

max
··mea~·=

............ , ; -

e
s 8 ... , ...

_g.
Cl
::,
0

6 ~ .,
:0
"' 4 >
.!!l
.r:;
(.)
<(

2

0 l....L---'----'----'----'----L----'----'---....l
64K 0.25M 0.5M 0.75M 111.1 1.25M 1.5M 1.75M 2M

Message Size (Bytes)

Figure 3.13: Achievable throughput of HIPPI Tunneling when transferring messages
from 64 KBytes to 2 MBytes, Bottom: HIPPI-FP; Top: TCP.

Chapter 3. High-Speed Network Support for Meta-Computing 91

Achievable Throughput of TCP over HIPPI Tunneling

14

.. i

!1281<6

--;--•· .. ··.i _.

2

0 L......L..-....L-----'---.L..---'----'---.J..-- --'--- -'
64K 0.25M O.SM 0.75M 1M 1.25M 1.SM 1.75M 2M

Message Size (Bytes)

Figure 3.14: The effect of the window size on the TCP performance over HIPP!
Tunneling.

when the ATM cell reached the HP BSTS) for each ATM cell. The header of each

TCP packet was extracted from the captured data. We used the sequence number

and acknowledgment number to study the detailed behavior of the TCP connection.

Figure 3.15 is the detailed timing trace of the TCP connection when using TCP

window size of 512 KBytes and 64 KBytes. We used the echo-style test program

to transfer data of 1 MBytes twice in both cases. Figure 3.15 shows the change of

the sequence number and acknowledgment number on the direction from MSCI to

EE/CS Building. In both cases, the acknowledge number first increases from O to

1048576 (which means the host is receiving data), then stays at 1048576 until the

sequence number also increase up to 1048576 (which means the host is sending data).

The same pattern repeats twice. Each mark in Figure 3.15 represents one data TCP

packet.

It is easy to find out that the sequence number increases faster with larger TCP

window sizes (lower part of Figure 3.15). With larger window sizes, the source can

Chapter 3. High-Speed Network Support for Meta-Computing 92

send out more data before waiting for acknowledgments from the receiver. Therefore,

there are fewer acknowledgment marks when using larger window sizes.

3.4 Implementation of IP Routing

In this section, we present an implementation of IP Routing on the same

environment as that of HIPPI Tunneling (Figure 3.5). In this implementation, the

two GigaRouters were configured as IP routers which connect two HIPPI networks

with one ATM network. Below is the output from running the traceroute program

from one SGI Challenge (with IP address 137.66.51.152) at MSCI to another SGI

Challenge (with IP address 192.0.10.10) at EE/CS Building:

i. traceroute 192.0.10 .10

traceroute to 192.0.10.10 (192.0.10.10), 30 hops max, 40 byte packets

1 137 . 66.51.160 (137.66.51.160) 3 ms 3 ms 3 ms

2 192 .0.2.1 (192.0.2 .1) 3 ms 3 ms 2 ms

3 polar- hip (192.0.10 .10) 3 ms 3 ms 6 ms

i.

The output shows that the two SGI Challenges are three hops away from each other.

The connection spreads over three networks.

In our HIPPI networks, the SGI Challenges sent out TCP packets with max­

imum segment size (MSS) of 61440 bytes (60 KBytes). In our ATM network, t he

GigaRouters use around 8 KBytes as the size of the maximum t ransmission unit.

Therefore, the GigaRouter need to perform fragmentation and re-assembly opera­

tions in addition to routing IP packets between networks.

iii
~

E
:, z .,
" C: .,
:,
O'
Q)

{/)

A
E
:, z .,
"' C:
Q)
:,
g

Cf)

Chapter 3. High-Speed Network Support for Meta-Computing 93

2.5e+06

2e+06

1.Se+06

1e+06

500000

0
2400

TCP over HIPPI Tunneling (with 64 KB window size)

Sequence Number -
Acknowledgment Number ·-···

/./·"

;;;;_.!.:-.========~;;,~"=====~:!:!..-------------l--------~
.-'.

•·' 1

,./,_.,,·

_./

·' .-~
2600 2800 3000

Time (milliseonds)

TCP over H IPP! Tunneling (with 512 KB window size)

3200 3400

2 Se+06 ,-----------,---------~---------.--------------------,

2e+06

1.Se+06

I

_ Sequence Number -+­

Ackr]owledgment Number ·-···
,!

1e+06 -···-···- ···-···- ·· _ ____ _l._ __ J:.===~·:;,:;·"~· ==~--------------1-------- -l ,.

500000

/
/

.· ·•- .. :I
f

,,/

------------------------- ________ ,. _____ ... ,---···--· ·····-

... -~·
0 L--~-··,.,.,··--··:.::···;;;;··::.;···;.:;··::.;···c;;·-:c.·· ... •• ---..... ----..__--------'-- ---------'---- - ------'

4000 4200 4400 3400 3600 3800
Time (milliseonds)

Figure 3.15: Trace of the sequence number and acknowledgment number. Top: using
TCP window size of 64 KBytes, Bottom: using TCP window size of 512 KBytes.

Chapter 3. High-Speed Network Support for Meta-Computing

Round-Trip Latency ofTCP over IP Routing
6 .--~- ---,-- ---.--..--- -.----.-- -.....-----,

5

<> .,
V, 4 .s.
g
.9l
j 3

%
1-;-
'0

§ 2
ti.

i
··········, _

! . mlian-
90% confidence interval ,.._.

. ... J :___ ' min •••••

0 L_ _ _.__ _ __._ _ __. _ ___1-_--1.. _ _ .__----1

128 256 384 512 640 768 896 1K
Message Size (Bytes)

94

Figure 3 .16: Round-Trip Latency of transferring short messages via IP Routing over
OC-3 ATM link.

3.4.1 Performance of TCP over IP Routing

The round-trip latency of transferring short messages via IP Routing over two

HIPPI links and one OC-3 ATM link is shown in Figure 3.16. The figure show that

the round-trip latency is around 2.5 milliseconds for messages shorter than 640 bytes.

The latency is comparable to that of TCP over HIPP! Tunneling.

To investigate the achievable throughput of TCP over IP Routing, we used

larger messages. Figure 3.16 and Figure 3.17 depict the achievable throughput when

t ransferring messages from 1 KBytes to 64 KBytes and from 64 KBytes to 2 MBytes,

respectively. We have seen 13.47 MBytes/sec throughput with messages of 2 MBytes.

The throughput is equal to 113.01 Mbits/sec, which is slightly higher than that of

transferring messages of 2 MBytes via TCP over HIPP! Tunneling. The throughput

was achieved even with the additional overhead on the GigaRouters for the fragmen­

tation and re-assembly operations. The result supports our argument in Section 3.4

that IP Routing could have better channel utilization than HIPP! Tunneling with

Chapter 3. High-Speed Network Support for Meta-Computing

Achievable Throughput of TCP over IP Routing 9..----.---~--~--~-----~--~-~
8

max ······
. mean -
t90%·coi'llit1ence intehlar;..:;;;. ·

7 ········· · ' _: : ···············' ······ .. ·· - ·········· ·

:i 5 ' , ---'--
2-
O'I
:,
e 4
,:;
I­
S?
i 3
a;
:c
~

u
~
1
~
:i
2
g,
0

~
Q)

2i

BK

12

10

16K 24K 32K 40K 48K 56K
Message Size (Bytes)

max ··· ···
mean -

...... ····90"k·confident:e•intervat,...

64K

! 4 ... : -········· ····'·······~-~ ,·,

~
2 f-··~----'-............... , i...--.+-----'----·'· .. ·············· .. .;. -1

0 ._. _ __. __ __,_ ___ __ ..._ __ ..__ _ __. _ _ __,_ __

64K 0.25M 0.SM 0.75M 1M 1.25M 1.5M 1.75M 2M
Message Size (Bytes)

95

Figure 3.17: Achievable throughput of IP Routing, Top: transferring messages from
1 KBytes to 64 KBytes; Bottom: transferring messages from 64 KBytes to 2 MBytes.

Chapter 3. High-Speed Network Support for Meta-Computing 96

packet size greater than 6000 bytes. In this case, the packet size is around 8 KBytes.

The minor difference between the throughput of TCP over IP Routing and TCP over

HIPP! Tunneling is because both approaches already reach high degrees of channel

utilization.

3.4.1.1 The Effect of TCP Window Size

The effect of Window Size on end-to-end TCP performance over IP Routing is

illustrated in Figure 3.18. The TCP's performance strongly depends on the window

sizes as we expected. However, the curves of Figure 3.18 are different than that of

Figure 3.14 in Section 4.3.1. In Figure 3.14, there is no difference between window

sizes of 256 KBytes and 512 KBytes. This suggests that TCP can keep the com­

munication link full of data when the window size is larger than 256 KBytes. In

Figure 3.18, TCP still can not keep the link full with window size of 256 KBytes.

The curves of Figure 3.18 suggests that:

1. There is protocol processing and fragmentation/re-assembly overhead at the

GigaRouter, and

2. The delay item of bandwidth x delay product is the end-to-end delay which

includes any latency occurs along the communication path. These latencies

include the time spent at the host, protocol processing (and fragmentation/re­

assembly operation if necessary) of routers, and the propagation delay.

3.4.1.2 The Effect of Maximum Segment Size

The performance measurement of t he previous section was obtained when

there is fragmentation and re-assembly overhead at the GigaRouter. As we mentioned

before, the GigaRouter uses around 8 KBytes as the size of the maximum transmission

Chapter 3. High-Speed Network Support for Meta-Computing 97

Achievable T hroughput of TCP over IP Routing

14

0 L-'--....J-----'---~--'-- --'- - ...,__ _ __,_ _ ____
64K 0.25M O.SM 0.75M 1M 1.25M 1.SM 1.75M 2M

Message SiZe (Bytes)

Figure 3.18: The effect of the window size on the TCP performance over IP Routing.

unit. In this section, we reduce the TCP maximum segment size (MSS) from 61440

bytes to 8192 bytes and 4096 bytes to investigate the end-to-end TCP performance

without fragmentation and re-assembly overhead. Figure 3.19 shows the effect of

:tvlSS sizes on TCP's performance over IP Routing. The achievable throughput of

TCP with MSS of 8192 bytes is better than that of TCP with MSS of 4096 bytes.

The difference of throughput increases as the message size is getting larger.

The performance data here and the analytical model of protocol overhead in

Section 3.4 suggest that larger MSS could have higher degree of channel utilization.

However, there will have fragmentation and re-assembly overhead at the router when

the MSS of HIPPI networks is larger than the maximum transmission unit of the in­

termediate network. There is a trade-off between reduction of protocol overhead with

larger MSS and avoidance of fragmentation/re-assembly overhead with appropriate

MTU.

Chapter 3. High-Speed Network Support for Meta-Computing 98

3.5 Summary

In this chapter, we study two of the available options to interconnect HIPP I

networks via ATM networks: HIPPI Tunneling, and IP Routing. We compare the

differences between HIPPI Tunneling and IP Routing in terms of their extended

connectivit ies, protocol overhead, and flow control. A Metropolitan Area Network

(MAN) environment which consists of two HIPPI networks and one ATM network is

used to conduct a series of tests to study the performance issues of these two options.

Experimental measurements and detailed timing trace of one ATM analyzer suggest

a high degree of bandwidth utilization is achieved by both HIPPI Tunneling and IP

Routing in our environment.

Chapter 3. High-Speed Network Support for Meta-Computing 99

Achievable Throughput of TCP over IP Routing

14 : ; '. '. ~·---<---~---i-

12
···· ·······l········;.. -~-· -·· ···• ·· · ': '

2 •

0 L-L- ---L--....L.-- --'-- - -'--- --''------L--....1..--...J
64K 0.25M 0.5M 0.75M 1M 1.25M 1.5M 1.75M 2M

Message Size (Bytes)

Achievable Throughput of TCP over IP Routing

14
..... ··· ···· ··· ······ ·· ··;······ ·

u 12 .,
V,

o\
!!)
>- 10 CD

~
s
2- 8
O> :,
0
l: 6 I-
Q)

:is
"' > 4 .91
.t:
(.)

<
2

0 L-L----L--....1..----'----'----L.......,,----L--_._ _ __,
64K 0.25M 0.5M 0.75M 1M 1.25M 1.5M 1.75M 2M

Message Size (Bytes)

Figure 3.19: The effect of MSS sizes on the TCP performance over IP Routing, Top:
MSS size is 4096 bytes; Bottom: MSS size is 8192 bytes.

Chapter 4

High-Speed Network Support for
Multimedia Communications

Transmission of digital video has become an essential component of multimedia

applications. Video is usually delivered in a compressed format. The entire delivery

path of video transmission starts from the video is digitized and passed to an encoder

which employs compression schemes to reduce its bit rate while preserving the video

quality. The compressed video is then packetized and transferred through communi­

cation networks. At the receiver side, compressed video is decoded and displayed in

a continuous manner.

The compressed video can be either constant quality with variable bit rate

(VBR coded video) or constant bit rate with variable quality (CBR coded video).

With constant quality video, the encoding parameters of an encoder remain the same

during the encoding process. Due to the compression scheme and different complexity

of video frames, a video with constant quality has variable bit rate. With constant

bit rate video, the encoding parameters of an encoder are adjusted dynamically to

generate a bit stream with a constant rate. In this study, we consider VBR coded

video which provides constant quality throughout the playback.

The video transmitted to the receiver can be either real-time coded video or

pre-recorded video. For real-time coded video, live video is encoded, transmitted,

decoded, and viewed by the user. Example applications are videoconferencing and

broadcasting of live programs. Pre-recorded video are digitized and encoded in ad­

vance and stored as files in a video server. It provides an on-demand service in which

100

Chapter 4. High-Speed Network Support for Multimedia Communications 101

users can activate video transmission at any time. The transmission of real-time

coded video has been studied in [34, 47, 48). In this study we only consider transmis­

sion of pre-recorded video. For a pre-recorded video, its characteristics is completely

known a priori. An efficient delivery scheme can be designed to take advantage of

this knowledge.

. Buffer Size

Reference Curve

~ ;

.------+- _ ___ _ T~rame Size

Consumption Curve

Accumulative Data

Start-Up Delay Frame Time

Figure 4.1: A model of video delivery.

A model of video delivery is illustrated in Figure 4.1. The decoder decodes

and presents video frames periodically, such as 30 frames per second (fps), to provide

continuous playback. The _interval for each video frame is called frame time. For 30

fps, the interval is 33.33 ms. The decoder consumes one compressed video frame for

each frame time. For VBR coded video, the number of bytes in each frame varies.

Assume t he decoder consumes one coded v.ideo frame instantaneously every frame

t ime, the accumulative amount of data consumed by the decoder can be represented

as a consumption curve in Figure 4.1 . The objective of video delivery is to provide

video frames in time for the decoder such that it always has video frames for contin­

uous playback. The accumulative amount of data provided by a video server can be

Chapter 4. High-Speed Network Support for Multimedia Communications 102

represented as a delivery curve. A possible delivery curve is depicted in Figure 4.1.

In this example, the path of the delivery curve always above the consumption curve,

which means the coded video frames are delivered in time.

Most of the receivers have limited buffer space to accommodate the difference

between the consumption rate and the delivery rate. In Figure 4.1, we also depict

a reference curve whose vertical distance from the consumption curve is the size of

the receiver's buffer space. A video delivery scheme must make sure that at no time

the delivery curve will intersect with the consumption curve or the reference curve.

If a delivery curve intersects with the consumption curve, a starvation occurs due

to insufficient data for continuous playback. If a delivery curve intersects with the

reference curve, the delivered data overflows the buffer. Both cases introduce jitters

in the playback. A video delivery scheme should produces a delivery curve which

always traverses the shaded area between the consumption and reference curve.

For a given video delivery scheme, there are three parameters influence t he out­

come of the delivery curve: buffer size, start-up delay, and transmission rate. Start-up

delay is the difference between the instant that the first video frame is delivered and

the instant that it is consumed by the decoder. During this period, a certain amount

of data is pre-loaded into the receiver's buffer. The decoder has adequate video frames

to start the playback. In Figure 4.1, the transmission rate determines the shape of a

delivery curve. The slope of a line segment is the transmission rate used during that

period. The relationship among there three parameters is briefly discussed as follow.

With a given buffer space, longer start-up delays may allow lower transmission rates

to be used in a delivery scheme. With a given start-up delay, higher transmission rates

require larger buffer space to accommodate pre-delivered video frames before they can

be decoded. Similarly, with a given constant transmission rate, lower start-up delays

may reduce the buffer requirement at the receiver.

Chapter 4. High-Speed Network Support for Multimedia Communications 103

In this chapter, we study two new CBR transmission schemes, called PCR­

assist CBR (PCBR) and PCR-assist Dual-Rate CBR (PDCBR). They utilize the time

stamps, called Program Clock References (PCR), inserted by a MPEG-2 encoder to

regulate the transmission and to reduce the buffer requirement at the viewer's side.

These two schemes keep track of their transmission and dynamically adjust their

transmission rates based on the timing information provided by the time stamps.

The PCBR scheme was introduced by IBM Rochester [28]. In PCBR scheme, a

transmission rate higher than the average rate of a video is used. The time stamps

embedded in the video are used to hold up the t ransmission if it is ahead of the

schedule. For PDCBR scheme, two rates are used to adjust its transmission based

on the timing information provided by the time stamps. A higher rate is used if the

transmission is behind of the schedule, while a lower rate is used if the transmission

is ahead of the schedule.

\Ve have developed analytical models of these two schemes. Several video

traces are used to compare the transmission rate and buffer requirement of traditional

CBR, PCBR, and PDCBR schemes. From the experimental results, PCBR and

PDCBR schemes provide more flexible trade-offs between buffer requirement and

transmission rate for MPEG streams with high rate variation. The contribution

of our study is twofold. First, we have compared the resource requirement (rate

and buffer space) of three video transmission schemes. Second, we have studied the

relationship among the three parameters (buffer size, transmission rate, and start-up

delay) in the two PCR-assist schemes. For example, with a fixed start-up delay, we

have studied the minimal transmission rate and buffer requirement. For a given buffer

space, we have determined the minimal rate required with an upper bound on the

start-up delay. For a given transmission rate, we have studied the minimal start-up

delay required with an upper bound on buffer space.

The remainder of this chapter is organized as follows. Section 4.2 discusses

Chapter 4. High-Speed Network Support for Multimedia Communications 104

the traditional CBR service which has been studied intensively by researchers. Before

describing PCBR and PDCBR schemes, Section 4.3 describes the system model of

delivering MPEG-2 over ATM networks. It also covers the PCR-assist mechanism

which is used by PCBR and PDCBR to determine the proper transmission rate. We

discuss PCBR and PDCBR schemes in detail in Sections 4.4 and 4.5, respectively.

The experimental results of these three schemes for several video traces are presented

and discussed in Section 4.6. We further compare PCBR and PDCBR schemes in

Section 4.7.

4.1 Related Work

Delivering VBR coded video over high speed networks has been studied by

a number of researchers [15, 16, 17, 35, 43, 44, 51]. For transmitting pre-recorded

VBR coded video (also called stored video) with traditional constant bit rate (CBR)

service, McManus and Ross have developed a fundamental relationship between the

buffer requirement and transmission rates [44]. They reported that it requires a

large buffer at the viewer's side for continuous playback. For example, the minimal

buffer required for video Star Wars is 23 Mbytes. This makes the pure CBR scheme

infeasible under practical consideration since the viewer side may have a decoder with

limited memory space.

Other studies have considered piecewise CBR service for the delivery of stored

video in order to reduce the buffer or transmission rate requirement [15, 35, 43, 51].

Among them, Salehi et al focus on reduction in variability of transmission rates

with a given buffer space [51]. Feng et al consider reducing the number of rate

changes during transmission [15]. McManus and Rose determine the transmission

schedule which minimizes the buffer and average transmission rate required for a fixed

number of transmission intervals [43] . The transmission rate used in each interval

Chapter 4. High-Speed Network Support for Multimedia Communications 105

can be different. The schemes proposed in [15, 43, 51] can be implemented on the

Renegotiated CBR service proposed by Grossglauser et al [24].

Considering the three parameters mentioned before, the approaches proposed

by Salehi et al and Feng et al concentrate on the transmission rate with a given

buffer space. The approach proposed by McManus and Rose does not establish a

relationship between the buffer and transmission rate requirement.

4.2 Constant Bit Rate (CBR) Transmission

The CBR service is the simplest approach for transmitting video in many ap­

plications. In this scheme, a virtual circuit is established with a constant transmission

rate. The rate may be equal to or slightly higher than the average rate of a MPEG-2

video stream. If the rate is higher than the average rate, it may requires a large

buffer space at the receiver side. Since most MPEG-2 video are VBR coded, at some

instant the decoder may consume more data than the server can transmit even with a

rate higher than the average rate. In this case, the decoder is starved of video frames

during the playback. Therefore, CBR service requires a certain amount of data to be

transmitted and stored in the receiver's buffer before the commencement of playback.

The fundamental relationship between the start-up delay, transmission rate, and the

size of buffer at the receiver side has been studied in [44}.

Analytically, the transmission rate can be determined base on the content of

a MPEG-2 stream and the length of a start-up delay. For a given start-up delay,

the minimum rate required to transmit a MPEG-2 stream can be easily determined

using the concept of convex hull as illustrated in Figure 4.2. We assume the network

delay is constant and the decoder consumes one coded video frame instantaneously

every frame time. The accumulative amount of data consumed by the decoder can

be described by a consumption curve. It can be represented as a set of points M ,

Chapter 4. High-Speed Network Support for Multimedia Communications 106

Convex Hull of M

I
Frame Size

r----
' I
I
t

Consumption Curve

Accumulative Data

_ _ ..:..---------~-.... • _ ________ __ _,__ _ _.Time -Start-Up Delay Frame Time

Figure 4.2: The delivery curve of CBR and consumption curve of the decoder.

M = { (n X F, An), ((n + 1) x F, An) I 1 :$ n :$ N}, (4.1)

where F is the frame time, N is the total number of frames in a video stream, and

An is the amount of cumulative data consumed by the client over [l, n] frame time.

An = I:;'.:,1 Si and Si is the size of frame i . A convex hull, CH(M) , of M can be

obtained using Jarvis' march algorithm [33). Figure 4.2 shows a portion of boundary

edges of CH(M) which is used to calculate the minimum rate required.

For a given start-up delay P, we can find a line, denoted as the delivery curve,

connecting point t (whose distance from the first frame time is the start-up delay) and

a point of CH(M), say H, with the largest slope. The slope, denoted as RcBR, is the

minimum rate required to transmit an MPEG stream without starving the receiver's

buffer. The minimum buffer required at the receiver side can then be determined

by comput ing the maximum difference between the delivery curve and consumption

curve. The amount of data that have been received at time nxF is (P+n) xFxRcBR·

Chapter 4. High-Speed Network Support for Multimedia Communications 107

The amount of data that have been consumed right before time n x Fis An-I· The

maximum difference between the delivery curve and consumption curve for a given

start-up delay P is

0

fcBn(P) = max ((P + n) X F X RcBR - ~ si) .
l<n<N L_,;

- - i=l

10 15 20
Slart·UP Delay (frame time)

acup

Fiate-
8utfar ·-·

i

25 30

horse

0 5 10 15 20
Stan-Up Delay (frame l ime)

1260

(4.2)

25 30

8 ,-----,---.------,-- ---,,-----,-----, 8 ,---~-,--- .------.---.------,----,

1 l Rate -
7

Rate --
•--• .. ·--.. --.. ··••-·-- ····- - --"-R~eL:".!::::: _

........ 1/_, ..

7 e ~-~----......_._ ... 8_uffer .• ·a.,·.- ..
6 ~-! !

______ LL. .l. ~· ~~-✓~ .
I i ...-- T ··
! i . •• ,

4 1---'-' ;_i - -'-------'~)--_' ---~ i ! ~/,. ... •
I /

~-·" . -

2 ,_a,., --~•+...-,,C•••;_~•-•'•-"-----'---- -

3

'
0 10 15 20 25

Stan-Up Delay (frame lime)
30 0 5 10 15 20 25 30

Stan-Up Delay (frame lime)

Figure 4.3: Minimum rate and buffer required for different start-up delays. The unit
is Mbit/sec for transmission rates, Mbits for buffer sizes.

In Figure 4.3, we used four MPEG-2 traces to study the relat ionships between

transmission rate, buffer requirement, and start-up delay for CBR service. The figure

Chapter 4. High-Speed Network Support for Multimedia Communications 108

shows the minimum rate RcBR and buffer fcsR(P) required for different start-up de­

lays: from one frame-time to 30 frame-time. As the length of start-up delay increases,

the minimum required rate decreases. This is because the slope from point t to one

of the CH(Af) points decreases with larger start-up delays. However, the buffer re­

quirement first declines, then increases as the length of start-up delay increases. It is

easy to understand this behavior with the illustration of Figure 4.2. Assume b1 is the

largest difference between the delivery curve and consumption curve before the point

H, b2 is the largest difference after the point H. The minimum buffer requirement is

the maximum of these two, max(b1 , b2). For smaller start-up delays in these four cases

(e.g. start-up delays less than 7 frame time in the case of "horse"), b2 is the dominant

component, i.e. max(b1 , b2) = b2 . As the length of the start-up delay increases, b1

also increases while b2 decreases. Eventually, b1 becomes the dominant component,

i.e. max(b1 , b2) = b1. The curve of buffer requirement ("Buffer") reflects the change

of b1, b2, and max(b1, b2)-

4.3 System Model for MPEG-2 over ATM

The system model of t ransporting MPEG-2 streams over ATM networks is

depicted in Figure 4.4. At the sending side, a server retrieves pre-recorded MPEG-

2 streams from a storage device and transfers them into the buffer of a network

interface. The network interface encapsulates a certain number of MPEG-2 packets

into an ATM Adaptation Layer 5 (AAL 5) packet. The AAL 5 packets are then

segmented into ATM cells and transmitted over a connection to the client. At the

client side, the received ATM cells are re-assembled back to AAL 5 packets. MPEG-2

packets are extracted from the payload of AAL 5 packets and sent to a MPEG-2

decoder. In order to accommodate the difference between transmission rate of the

server and consumption rate of the client, a buffer is used as a cushion. Usually, the

Chapter 4. High-Speed Network Support for Multimedia Communications 109

client can start to decode and playback the MPEG-2 stream right after some data

have been received in the buffer. To ensure the continuous playback of a MPEG-2

stream, a certain amount of data will be transmitted and stored in the client's buffer

before the commencement of playback. We have defined the time between the start

of transmission and the start of playback as start-up delay. For the same start-up

delay, different transmission schemes may accumulate different amount of data in the

buffer.

Storage

Server

Network
lnterface

Compare
PCRs~---<----

Store Counter

Client
- ---------------- ------- --,

Network
Interface Buffer Decoder

I
I

I '-------- ------------------ --~

PCR-assist Mechanism

Figure 4.4: The end-to-end model of MPEG-2 over ATM networks.

Different classes of service of ATM can be used to transmit MPEG-2 streams.

In this chapter, we focus on CBR, PCR-assist CBR (PCBR) and PCR-assist Dual­

Rate CBR (PDCBR). For CBR service, a virtual channel is established between the

server and the client with a pre-negotiated constant bandwidth. We assume that

MPEG-2 streams are t ransmitted at a constant cell rate. For PCBR and PDCBR

schemes, a special PCR-assist mechanism is used to detect the appearance of PCRs

and to control the transmission of ATM cells. We will discuss the mechanism in

Sect ion 4.3.3.

Chapter 4. High-Speed Network Support for Multimedia Communications 110

4.3.1 MPEG-2 'Iransport Streams

The Motion Picture Expert Group (MPEG) has standardized compression

techniques for video and audio, system streams and transport streams for multiplex­

ing and carrying video, audio, and data in a single time synchronized bit stream.

MPEG-2 is a collection of standards which consist of System, Video, Audio, Compli­

ance, and a Digital Storage Media Control Commands (DSM-CC) standard [1, 2, 3].

Among them, the MPEG-2 System standard covers the media multiplexing, media

synchronization, and clock synchronization. It organizes the information to be trans­

ferred in programs, where a program includes video streams with associated audio and

text streams. Figure 4.5 shows the architecture of the MPEG-2 encoder and decoder.

In the MPEG-2 encoder, each component (video, audio, text) of a program is first

coded into a elementary stream which is the bit stream in a compressed format. In or­

der to multiplex a number of elementary streams together, they are further converted

into Packetized Elementary Streams (PES) with different stream identifiers (Stream

ID). The Stream ID allows the decoder to differentiate PES. PES are assigned two

types of time stamps, Decoding Time Stamps (DTS) and Presentation Time Stamps

(PTS), before multiplexing together. These time stamps represent the instant that

the associated video frame and audio clip need to be decoded or presented.

Two kinds of System streams are defined by the MPEG-2 standard to meet

the needs of various applications. The Program Stream is intended for use in a reliable

environment such as playback from a local storage device. It consists of large and

variable-sized packets. The Transport Stream (TS) is intended for use in a lossy envi­

ronment such as ATM networks. It consists of small fixed-sized packets of 188 bytes,

called Transport Packets (TP), to reduce the impact of data loss. For transmission

over a network, it is important that the MPEG-2 decoder and the MPEG-2 stream

source be synchronized so that the decoder consumes data at the same rate that the

Chapter 4. High-Speed Network Support for Multimedia. Communications 111

Video

Audio

MPEG-2 Encoder

MPEG-2 Decoder

MPEG-2
Program Stream

MPEG-2
Transport Stream

Figure 4.5: MPEG-2 encoder and decoder for Transport Streams.

source sends it. If the decoder is not synchronized to the source, buffer overflows

or underflows may occur in the decoder. The clock synchronization is done by us­

ing time stamps called Program Clock References (PCR) embedded in the MPEG-2

TS. 'When encoding a program, the MPEG-2 encoder inserts time stamps, which are

readings of its clock, into the program periodically (or randomly but keep the spacing

of two consecutive PCRs within 100 ms). The MPEG-2 decoder uses received PCRs

to synchronize its clock to the program source.

Figure 4.6 shows how a MPEG-2 Transport Stream is constructed from pack­

etized elementary streams of one video stream, two audio streams, and one data

stream. Each PES contains a series of variable-sized packets. For those PES share

Chapter 4. High-Speed Network Support for Multimedia Communications 112

the same time base, they are multiplexed with additional system information into

fixed-sized 188-byte Transport Packets. Within the 188-byte packet, four bytes are

used for Transport Header, the payload of 184 bytes is used for packetized elementary

streams.

Video .;·

Audio l

Packetized Elementary
Streams (PES)

I PES Header

MPEG-2 Transport Stream

I Transport Header

Packetized Elementary
Streams (PES)

Figure 4.6: Constructing a Transport Stream from packetized elementary streams.

MPEG-2 System standard defines a timing model for media synchronization

and clock synchronization. The media synchronization is used to correctly playback

a video stream with its associated audio or text. The clock synchronization is used

to coordinate the decoder and program source. The clock synchronization is ac­

complished by sending time stamps in the MPEG-2 st ream from the source to the

decoder. These time stamps are called Program Clock References (PCR) in MPEG-2

Chapter 4. High-Speed Network Support for Multimedia Communications 113

Transport Stream. The PCRs indicate to the decoder what time its clock, called Sys­

tem Time Clock (STC), should be read at the instant the PCRs are received. Both

STC and PCR use a 42-bit counter to represent the clock running at a 27 MHz rate.

The decoder uses a clock recovery mechanism to synchronize its clock to the program

source.

The media synchronization is accomplished by using PCRs, Decoding Time

Stamps (DTS) and Presentation Time Stamps (PTS). When a Transport Stream

program was encoded, the DTSs and PTSs are embedded in each component . These

time stamps indicate the time that a video picture (or audio clip) need to be decoded

or presented. During the playback process, the decoder's STC is initialized by the

first received PCR. The decoding (or presentation) of a video picture (or audio clip)

will be triggered when its DTS (or PTS) matches the system clock. Since all media of

a program share the same clock, they will be correctly displayed as they are encoded.

Vhthin the coding of MPEG-2, time stamps are related to the decoding and

presentation of video picture and blocks of audio samples. The pictures and blocks

are called Presentation Units, PU. The encoded data representing the PUs are called

Access Units, AU. For example, a Video PU (VPU) is a picture, and a Video AU

(VAU) is an encoded picture. Some, but not necessarily all, AAUs and VAUs have

PTSs associated with them. A PTS indicates the time that the PU (results from

decoding the AU which is associated with the PTS) should be presented. Another

time stamp, DTS, refers to the time that an AU is to be extracted from the decoder

buffer and decoded. Both PTSs and DTSs are 33 bits long. The STC contains

two portions, the upper 33 bits incrementing at a 90 KHz rate and lower 9 bits

incrementing at 27 MHz. The 33 bits, 90 KHz portion of STC is used for comparison

with PTSs and DTSs.

Chapter 4. High-Speed Network Support for Multimedia Communications 114

4.3.2 An "Ideal Scheduling"

Since PCR.s are readings of the encoder's clock, their values represent the time

that they are inserted by the encoder. Assume the first PCR, PCR1, is inserted at

the time represented by its value, IPCRil. The ith PCR is inserted at the instant

that is IPC~I - IPCRil later than PCR1• Assume the decoder consumes PCR1-

containing TP at time T0 . If the decoder consumes every PC~-containing TP at

time T0 + IPC~I - IPCRil, it playbacks the MPEG-2 TS at the same rate as the

encoder encoded it. In addition to clock synchronization, PCRs can also be used as

timing reference to schedule the transmission of MPEG-2 TS. Therefore, an "ideal

schedule" can be defined as follow: At any point of the delivery path1
, · from the

program source to the decoder, the TS packet containing PC~ will be transmitted,

forwarded, or consumed at the time that IPC~I - IPCRil later than the TS packet

containing PCR1.

Intuitively, a variable bit-rate (VBR) transport is suitable to transmit MEPG-

2 TS in order to follow t he "ideal schedule". Assume the byte-order of ith PCR in

a MPEG-2 TS is b(PC~)- The transmission rate in a PCR interval (t he interval

between two consecutive PCR.s), from PC~ to PC~+i , should be the amount of

dat a between them divided by the length of the interval , which is

b(PC~+1) - b(PC~)

IPC~+il - IPC~I
(4.3)

This means the rates required for each PCR interval are different. However,

the VBR service provided by ATM networks is difficult to enforce the "ideal sched­

ule". Since VBR service takes advantage of statistically multiplexing by sharing the

bandwidth dynamically among all traffic within a service class. It only guarantees

1 For pre-recorded MPEG-2 streams, the delivery path includes the storage device and network
interface of the server, ATM networks, the network interface and decoder of the client.

Chapter 4. High-Speed Network Support for Multimedia Communications 115

statistical quality of service based on a set of traffic descriptors such as peak rate,

burst length, and sustained rate. The transmission is even difficult to manage if a

traffic shaper is used to regulate the cell transmission.

On the other hand, the constant bit-rate (CBR) service guarantees no or neg­

ligible cell loss, delay, and jitter by allocating network resources (link bandwidth and

buffer) based on the requested peak transmission rate. Although CBR provides de­

terministic transmission, it can not be used for the "ideal schedule". Moreover, when

transmitting VBR-coded MPEG streams for continuous playback, it often requires a

large buffer at the receiving side to accommodate accumulated data due to the dif­

ference between the transmission of a server and the data consumption by a decoder

[44].

In this chapter, we study two new transmission schemes which employ the

timing information from PCRs to provide transmission schedules which are approxi­

mations of the "ideal schedule". These two schemes collect timing information with

the help of a PCR-assist mechanism discussed in Section 4.3.3.

4.3.3 PCR-assist Mechanism

PCRs are embedded in MPEG-2 Transport Packets to facilitate clock syn­

chronization between the decoder and the program source. The MPEG-2 standard

recommends the interval between two consecutive PCRs, called PCR interval, should

not be longer than 100 ms. In most implementation, PCRs are periodically inserted

by the encoder. PCRs can also be used as timing reference to regulate the trans­

mission of MPEG-2 TPs. Figure 4.4 shows a possible implementation of PCR-assist

mechanism in the network interface. It is capable of reading PCR values of MPEG-2

TPs while delivering TPs with different ATM services.

Chapter 4. High-Speed Network Support for Multimedia Communications 116

At the beginning of video transmission, the first PCR obtained from the stor­

age is stored in a counter which also runs at 27 MHz as the System Time Clock in

a MPEG-2 encoder or decoder. Whenever a TP with a PCR is ready to be trans­

mitted, the network interface compares the PCR to the content of the counter. If

the PCR is smaller than the counter, the transmission of MPEG-2 TS is behind of

its original schedule. Otherwise, the transmission is earlier than its original schedule.

In Sections 4.4 and 4.5, we will describe the two PCR-assist transmission schemes

which employ the PCR-assist mechanism to adjust the transmission rate.

4.4 PCR-assist CBR

Using CBR service to transmit MPEG-2 streams requires a large buffer and

a long start-up delay, especially for VBR-coded MPEG streams [44]. With CBR

services, the server keep transmitting MPEG-2 streams at a constant rate. The

transmission rate should be high enough in order to prevent starvation occurs in the

client's buffer. For VBR-coded MPEG-2 streams, the consumption rate of decoder

varies from time to time, depends on the content of the biggest component of a

program, video. If the consumption rate can not match with the transmission rate,

large amount of data will be accumulated in the client's buffer.

In this section, we describe a new scheme proposed by IBM Rochester [28],

called PCR-assist CBR (PCBR), which utilizes the PCRs embedded in MPEG-2

streams to regulate the outgoing traffic. In PCBR, a CBR virtual channel is estab­

lished with a transmission rate higher than the required average rate of a MPEG-2

TS. The PCR-assist mechanism of the network interface monitors the video stream for

presence of PCRs. The value of the PCR in the stream is used to make sure that the

PCR-containing packets are sent out at the correct time. The value of the first PCR

is stored in a counter of t he network interface as shown in Figure 4.4. The counter

Chapter 4. High-Speed Network Support for Multimedia Communications 117

running at a rate of 27 MHz. The content of the counter is used to compare with

any PCR transmitted through the network interface. Denote the value of ith PCR as

JPC~I and Ci is the value of the counter at the instant ith PCR appeared, except

that C1 is assigned as jPCR1 j. During the transmission, whenever IPC~I > Ci for

i > 1, the delivery is faster than it should be. If JPC~I < Ci for any i > 1, on the

other hand, the delivery is behind of its schedule. In the PCBR scheme, whenever

JPC~I > Ci happens the network interface will hold up the delivery until Ci reaches

JPC~I- The transmission is idle during this period of time. The objective is to

minimize the required buffer space at the client side. If JPC ~ I < Ci for any i > 1,

t he network interface does not change the transmission rate. · Since t he transmission

is already behind of its schedule.

cu
iii
0
Q)

.2:
iii
:S
E
:::i

(_)

PCR-assist CBR
2.5 ,---.----,----.----r---r---r---,---,----,-----,

2

Delivery Curve - : -
PCR appearance c

Consumption Curve ·t ···
······---·-···;····· : : .. .

: !-······
1.5 I········.,

' ; '-----·---•t
I ! : f····

;-------~
\ PCR~ . ;°·-·····:

0.5 PCR2: J - · ···-

1 · · ······"

0 _ _ ._____. _ __._ _ __._ _ __._ _ _.___...._ _ _.__ _ _._____,

2 3 4 5 6 7 8
Frame Time (33.33 ms/frame)

9 10

Figure 4.7: The delivery curve of PCR-assist CBR and consumption curve of the
decoder.

Chapter 4. High-Speed Network Support for Multimedia Communications 118

The behavior of PCBR scheme is mustrated in Figure 4.7. The bottom curve,

denoted as a Consumption Curve, represents the amount of cumulative data consumed

by the decoder2 . In Figure 4. 7, we also assume the network delay is constant and the

decoder extracts one coded video frame from the buffer instantaneously every 33.33

ms (i.e. 30 frames per second). The upper curve, denoted as a Delivery Curve, is

the amount of cumulative data transmitted by the server. For simplicity, we assume

PCRs are embedded in the MPEG-2 stream periodically. The interval of any two

consecutive PCRs is 33.33 ms, the same as the frame interval. The start-up delay

used in Figure 4. 7 is two-frame time. The decoder waits for two-frame time before

decoding and presenting the MPEG-2 stream. Assume the byte-order of ith PCR in

a MPEG-2 stream is b(PC~). If the most recently observed PCR is PCR;. The

PCR-assist mechanism will not see the next PCR (byte order b(PCR,;+1)) until the

data between them (b(PCR;+i) - b(PC~)) have been transmitted. In Figure 4.7,

when the PCR-assist mechanism sees PCR2 the transmission is slightly behind the

schedule, IPCR2I < C2. The PCBR scheme does not change the transmission rate.

vVhen PCR3 arrives the transmission is ahead of the schedule, since IPCR3I > C3.

The transmission is held up until the counter reaches IPCR3 j. This "go-and-stop"

pattern continues from frame-time 2 to frame-time 10. This means the transmission

rate is high enough to transmit data between two consecutive PCRs within one PCR

interval. Figure 4.7 also points out the instants that PCRs are detected. Note that

PCBR scheme only changes the transmission rate when it observes a PCR or when

the value of the counter reaches the value of the most recently observed PCR.

Next, we develop an analytical model of PCBR scheme. The model will be

used to determine the amount of data that have been transmitted. Assume that in

the ith frame interval, Si is the remaining data to be transmitted at the beginning of

2Note that even though these curves are derived from real MPEG-2 traces. The curve and data
used here are for illustration purpose only.

Chapter 4. High-Speed Network Support for Multimedia Communications 119

the interval. Si is the size of frame i. Si is the amount of data have been transmitted

in ith frame interval. F is the frame interval. For a given rate RPcBR, Si and Si can

be calculated by the following recurrence equations:

Si - min(RPcBR x F, Si + Si) (4.4)

Si+l - max(Si + Si - Si, o) (4.5)

S1 - 0

In Equation 4.4, Si is equal to RPcBR x F if the transmission rate is not

high enough to transmit data of size Si+ Si within one PCR interval. Equation 4.5

calculates the remaining data for the next interval The minimum buffer required

at the client side can be determined by computing the maximum difference between

delivery curve and consumption curve. The amount of data that have been received

at time n x Fis E~=I Si . The amount of data that have been consumed right before

time n x F is An-t · The maximum difference between delivery curve and consumption

curve for a given start-up delay P is

(4.6)

4.5 PCR-Assist Dual-Rate CBR

In PCBR scheme, the transmission rate is either RPcBR or zero. A virtual

channel with a peak transmission rate of RPcBR is established before the delivery. As

the experimental results shown in Section 4.6, compared to traditional CBR service,

PCBR requires less buffer at the client side with higher transmission rate. One

drawback of PCBR scheme is that its go-and-stop delivery curve may intersects with

Chapter 4. High-Speed Network Support for Multimedia Communications 120

the consumption curve (i.e. starvation) if there is not enough cushion between them.

To reduce the transmission rate and to reduce the chance of starvation, we

propose a more flexible transmission scheme, called PCR-assist Dual-Rate CBR (PD­

CBR) . In PDCBR scheme, the transmission is switched between two rates, a high and

a low rates denoted as Rhigh and R1ow. The rate used depends on if the transmission is

earlier or later than its schedule. If jPCl¼I > Ci for any i > 1, the delivery is earlier

than it should be. Instead of holding up the delivery as PCBR, PDCBR changes the

rate to Riow to slow down the accumulation in client's buffer. If jPCi¼I < Ci for any

i > 1, on the other hand, the delivery is behind its schedule. The rate is changed to

Rhigh in order to prevent starvation at the client side. Actually, PCBR is a special

case of PDCBR. For PCBR, Rhigh is RPcBR and R1ow is zero. Note that the rate can

only be changed when a PCR appears, which means the amount of data between the

previous and the current PCR have been delivered.

Figure 4.8 shows the delivery curve of PDCBR and the consumption curve

of the decoder. The consumption curve and the start-up delay are the same as the

previous section. In this example, the Rhigh rate is a little bit higher than RcsR, but

is lower than RPcBR used in Figure 4.7. R10w is a little bit lower than RcBR· From

the appearance of PCR.s (denoted as points in the figure), it is easy to understand the

behavior of PDCBR scheme. Initially, Rhigh rate is used between PCR1 and PCR2.

At the instant PCR2 appears, the PCR-assist mechanism detects that jPCR2 1 > C2.

It s1,vitches the rate to R1ow when transmitting packets containing PCR2. Rate Riow

is used until PCR6 appears (between frame-time 5 and 6) . Because when PCR3 ,

PCR4 , and PCR5 appear, the transmission is faster than it should be. When the

PCR-Assist mechanism observes PC~, the transmission is behind of its schedule

(i.e. jPC~I < C6). The rate is switched back to Rhigh to prevent starvation at the

client side. Intuitively, the buffer space required at client side for PDCBR should be

smaller than that of CBR, but may be bigger than that of PCBR.

Chapter 4. High-Speed Network Support for Multimedia Communications 121

PCR-assist Dual-Rate CBR
2.5 .---.---- --- ------.----.----.-----.

Delivery Curve -
PCR appearance o

2 Consumption Curve --···

:········
1 .5 r:--····i

0.5

! r········~
' p· ... :
! l

I :-------~

.. _______ r---~-:
•-------· '

0 '---_..___..___.,___.,___ .,_____.'-----''-----'----'---'
2 3 4 5 6 7 8

Frame Time (33.33 ms/frame)
9 10

Figure 4.8: The delivery curve of PCR-assist Dual-Rate CBR and consumption curve
of the decoder.

An analytical model of PDCBR scheme can be developed as follows. Assume

that in ith frame interval (Fi-I, Fi), the PCR-assist mechanism observes ni PCRs.

For example, there are two PCRs during the sixth frame interval in Figure 4.8. The

instants that PCRs are observed divide the ith frame interval into ni + 1 periods,

denoted as T = {T1 , . .. , Tn;+1}. The corresponding transmission rates used in each

period are R = {Rate1, ... ,Raten;+1}. The amount of data have been transmitted,

Si, and the remaining data need to be transmitted at the beginning of next frame

interval, S\+1 , are

n;+l
Si = L 'h x Ratek (4.7)

k=l

Chapter 4. High-Speed Network Support for Multimedia Communications 122

In Equation 4.8, S1ast is the size of the data between the last PCR (appears at

time ~ - Tn;+i) in this frame interval and the subsequent PCR. Si+1 equals to the

remaining data of S1ast after transmitted at a rate Raten;+l for a period of Tn;+l·

The set of T and R of it h frame interval can be calculated using the following

algorithm. Assume Ui and½ are two reference points within frame interval (~_1 , Fi)­

Siast is the amount of data needed to be delivered before observing the next PCR.

Initially, Siast is set to the size of the first frame, Sb, where b = l. Rate is the current

rate, which could be either Rhigh or Rtow· Initially, R is set to Rhigh·

1 T = 0; R = 0;

2 ui = Fi-1; v; = Fi- 1;

3 while v; < Fi

4 v; = min(~~l~ + Ui, Fi);

5 S1ast = max(Stast - (v; - Ui) X Rate,O);

6 add Rate into R

7 add interval (Ui, v;) into T

8 if S1ast == 0

9 if l PCR l~terval J < b

10 Rate= Riowi

11 else

12 Rate = Rhigh;

13 b = b+l ;

14 Siast = Sb;

15 if Rate == 0

16 Rate = Rhighi

17 v; = Fi;

1s ui = v;;

Chapter 4. High-Speed Network Support for Multimedia Communications 123

The algorithm can also be applied to PCBR scheme, since it is a special case

of PDCBR. Lines 15 to 17 are used for PCBR scheme. For a given start-up delay P,

the maximum buffer required at the client side can be determined by computing the

maximum difference between delivery curve and consumption curve like Equation 4.6

in the previous section.

4.6 Comparison of CBR and PCR-Assist Schemes

As mentioned before, video transmission is influenced by three important pa­

rameters: buffer size, transmission rate, and start-up delay. Buffer size and transmis­

sion rate are related to the resource requirement at the client side. Start-up delay

is related to the service provided to the client by a transmission scheme. These

three parameters can be used to study the behavior of a video delivery scheme. In

this section, we first compare the transmission and buffer requirements of traditional

CBR, PCBR and PDCBR schemes with given start-up delays. The experimental

results reveal the resource requirement for a specific waiting time. In Sections 4.7,

we will further study the relationship among the three three parameters in the two

PCR-assist transmission schemes.

Our methodology is to determine the required transmission rates and buff er

sizes by adjusting the start-up delay. For a given value of start-up delay, we compute

the minimum rate requirement with a required buffer size to guarantee the jitter-free

delivery in each of the following transmission schemes: CBR, PCBR, and PDCBR.

The guaranteed delivery ensures that the starvation never happens. For simplicity,

we assume the PCR interval is the same as a frame interval, i.e., a PCR occurs every

33.33 ms. Four MPEG-2 trace data which close to CBR-encoded are used in this

Chapter 4. High-Speed Network Support for Multimedia Communications 124

analysis. Due to lack of long VBR-encoded MPEG-2 TS available in public domain,

we also use six VBR-encoded MPEG-1 and two Motion JPEG [58) (M-JPEG) traces

for a complete study. JPEG encoding format was originally designed for encoding and

decoding still images. For a sequence of video frames, motion JPEG only uses intra­

frame coding scheme. Each video frame can be encoded and decoded independently.

Table 4.1 shows the contents of these video sequences.

Table 4.1: Video Contents.

I Video Name I Encoding I Content
mtv MPEG-1 Music Clips
adv MPEG-1 Advertisement of Graphic Products
silence MPEG-1 Movie: The Silence of the Lambs
soccer MPEG-1 Sports: World Soccer Cup 1994 Final: Brazil vs Italy
6trans MPEG-2 Transport Stream test bit stream
horse MPEG-2 Transport Stream test bit stream
t260 MPEG-2 Movie: Terminator II
acup MPEG-2 Sports: American Cup Yacht Race
backdraft M-JPEG Movie: Backdraft
fugitive M-JPEG Movie: Fugitive

For CBR scheme, given a start-up delay, the calculation of minimum rate

requirement with a required buffer size is based on the discussion in Section 4.2. The

minimum rate and buffer requirement under CBR scheme will be used as a basis

to compare with two PCR-assist transmission schemes. We call the minimum rate

requirement as RcBR· As mentioned in [44), if a rate lower than RcBR is used to

deliver a video stream, the delivery curve will intersect with the consumption curve,

indicating a buffer starvation situation.

For PCBR scheme, given the same start-up delay as in CBR, the minimum

required rate must be higher than RcBR· Otherwise, some video data will arrive late.

For example, assume RcBR is the rate used by PCBR scheme, the transmission uses

a rate of either RcBR or zero (i.e., held up by the network interface) based on PCR

Chapter 4. High-Speed Network Support for Multimedia Communications 125

values. As discussed in Section 4.2, RcBR is the rate that the delivery scheme should

transmit during the entire session to avoid starvation at the client side. Whenever

the transmission is held up by the PCR-assist mechanism, the server will not be

able to send any data until the counter reaches the same value as the transmitting

PCR. Therefore, a higher rate (RPcBR) than RcsR for the same start-up delay is

required for a jitter-free delivery. In the analysis, we set RPcBR as RcsR initially.

Then incrementally add 1 % of RcsR to RPcBR until the rate is applicable to transmit

video stream without causing starvation in client's buffer. The corresponding buffer

requirement can then be computed thereafter.

For PDCBR, the determination of high and low rates is needed. However,

the number of feasible combinations of high and low rates can be large. Here, we

restrict the search space by limiting the high rates from the set RH= {RcsR , 1.01 x

RceR, 1.02 x RcBR, . .. , 1.19 x RcBR}, This means the high rate is determined based

on the rate used in CBR scheme. After choosing one high rate, say Rhigh from RH,

the low rate is determined from RL: {0.05 x Rhigh, 0.10 x Rhigh, .. . , 0.95 x Rhigh}­

After trying all possible combinations of high and low rates from RH and RL, we

report the rate combination which demands the least amount of buffer space and use

it to compare with other schemes.

4.6.1 Comparison Using MPEG-1 Traces

Table 4.2 shows the encoding information of six VER-encoded MPEG-1 trace

data3 which are from (22, 50]. Figures 4.9 and 4.10 show the buffer requirement

(the left column) and rate requirement (the right column) versus start-up delays in

six MPEG-1 trace data for CBR, PCBR, and PDCBR schemes. There are three

curves in each figure of buffer requirement. From top to bottom, they are the buffer

3The trace "adv" is available via anonymous FTP from ftp://tenet.berkeley.edu/pub/dbind

Chapter 4. High-Speed Network Support for Multimedia Communications 126

requirements of CBR, PDCBR, and PCBR schemes. For each figure of required

transmission rates, there are four curves. They are the rate used by PCBR, the high

rate used by PDCBR, the rate used by CBR, and the low rate used by PDCBR (also

from top to bottom). Note these orders are consist with all the figures. From the

experimental results they indeed exhibit insight of each delivery scheme.

Table 4.2: Statistical Data of MPEG-1 Streams.

I Video Name mtv adv silence soccer

Video Length 27.78 min 11.33 min 27.78 min 27.78 min
Picture Size 384 X 288 160 X 120 384 X 288 384 X 288
Picture Pattern IBB(PBB)4 IBBPBB IBB(PBB)4 IBB(PBB)4

No. of Video Frames 40000 16317 40000 40000

• Trade-offs between buffer and rate requirements. CBR service requires

lower rates (the third curve) at the cost of higher buffer requirement (the first

curve). PCBR and PDCBR schemes, on the opposite, require higher transmis­

sion rates with less buffer requirement. PDCBR as expected demands less rate

(the second curve) than it is in PCBR scheme (the first curve) . For the case

of trace "adv" with the start-up delay of 300 frames, two PCR-assist schemes

can reduce client buffer requirement from 4.75 Mbytes down to 0.675 Mbytes

by allocating network bandwidth of 0.547 Mbits/sec up from 0.516 Mbits/sec.

This translates into a reduction of 6.5 times memory requirement at the cost

of 6% more transmission rate. The t rade-offs between buffer requirement and

transmission rate exist in all six traces with various degrees of significance.

• Impact of start-up delay. For CBR scheme, while the start-up delay is

increasing, the buffer requirement is decreasing. However, the trend is different

in two PCR-assist schemes. For example, in delivery of trace "soccer" as shown

Chapter 4. High-Speed Network Support for Multimedia Communications 127

mrv (MPEG·1)
225

mlV (MPEG•1)

35 CBABulfor - Rattt 01 PCBR -
Buffer tor POCBA ·• · · 2 \ Rates ot POCBAJHi~~

30
Buffer tor PCBR ·-···

'.~
Rates C -

1.75 Rates ot POCBA (Low) --

25 1.5 --
II) 20 1 125 "···-··-~-----------:E

I 15 •
0.75 4\.••o•o..,.e•• ·•· .. ••.c••·•·•·•·• ·• ·• ·•·•--·••• ·• ·•·

10
• •o.. O•Cl-v•••••■·-<O-,o.o.••••-o•e••••◄•O••·•◄• ... ,o 0.5

0.25

·--------
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Stan•Up Delay (trame time) Start•Up Delay (trama time)

adv (MPEG·1)
125

adv (MPEG·1)

12 CBAButter - Rates ot PCBA ·- ···
Bulfer tor POCBA • Rates ot PDCBR jHf) . ., ...

Bulfertor PCBA ·- ·- \ Rateso C A -
10 \ Rates ot PDCBR (Low) - ·-

\
8

\

¥ 0.75

\,~-II) i: ::. 6 ; ··~
0.5 .-•·•·•·• ·•·•,·

O o--••-o-o •• ·• -o--o-o-• ,••-..1? -4 -i
' 0.25

~/\/\
2

....................
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Start-Up Delay (frame time) Start-Up Delay (frame time)

silence (MPEG-1) silence (MPEG-1 l
0.7

CBRButter - \ Rates of PCBA ·-···

50
Bulfer tor PDCBR ,o ... \ Rates ot P~~:.RJ1i~ ~ Butter to, PCBR - ••· 0.6

...... Rates of PDCBR (Low) - -

40
0.5

..... _
--..___ _______

¥ 0.4
:..tl._ --___,_

II) 30 ~
·

:;
is \,
:E 0.3 b •G·w.,

••■·-O••••·lll .

20 . a•• ·• ·•·• ·• ·• ·••·• ·•.,. .• .• .
0.2

10
0.1

•••-•~·O·♦•O-•■·-V·C>·O•••■•-CII-O•••• .. •• - • ·•· ••••♦•·l>-•·•4t•

0 50 100 150 200 250 300 0 50 100 150 200 250 300
S1an-Up Delay (frame lime) Stan•Up Delay (trame time)

Figure 4.9: Comparison of CBR, PCBR, and PDCBR using MPEG-1 Traces.

Cl)
::;

Chapter 4. High-Speed Network Support for Multimedia Communications 128

soccer (MPEG· 1)
1.75

soccer (MPEG· 1)

9

8 C). .'Q,

7 ··• ·o.o.,a.q_

CBRBuffer -
Buffer tor POCBR . ..,

Buffer tor PCBR - ··· 1.5

Rates ot PCBR ·-·
Rates ol POCBR (High) ·<>···

Rates of C8R -
Rates ol POCBR (Low) ~

6

5

4

3

2

0

1.25

•·a._
'Gt- ,u , • •1>••-0--0.,a.-ci.

•■ .. D
·a--o--a,,c_

·•• •• •a••O•

¥
~
ii 0.75 ::;

0.5

0.25

50 1 00 150 200 250 300
SIM-Up Delay (frame 1ime)

0 50 100 150 200 250
Slart•UP Delay (frame time)

300

Figure 4.10: More MPEG-1 Traces.

in Figure 4.10, the buffer requirement of PDCBR scheme decreases as the start­

up delay increases. For PCBR scheme, the buffer requirement keeps increasing

while allowing longer start-up delay. This situation indicates that the buffer

accumulation during start-up delay period is the dominant factor for PCBR.

In other words, the increase of buffer space is due to the longer start-up delay,

causing more data to be stock up before playback starts.

• Cases of short start-up delays. For applications that need short start-up

delays, CBR scheme demands larger amount of available buffer space at the

client side. If either one of PCR-assist schemes is used, it requires a higher

network bandwidth. As an example, assume 10 frames of time (i.e., 333.33 ms)

is the maximum allowable start-up delay. For CBR delivery of "rntv", the client

at least needs available memory space of 37.5 Mbytes and network bandwidth

of 0.96 Mbits/sec before the playback begins. For PCBR scheme, the client

memory requirement reduces to 0.107 Mbytes and the rate increases to 2.57

Mbits/sec.

Chapter 4. High-Speed Network Support for Multimedia Communications 129

4.6.2 Comparison Using MPEG-2 Traces

The experimental results of Section 4.6.1 show the resource requirement of

three delivery schemes for MPEG viideo with high rate variation. In this section, we

study their behavior when transmitting video with low rate variation. Table 4.3 shows

the encoding information of four MPEG-2 trace data. These traces were encoded with

less rate variation. Therefore, they are very close to CBR-encoded MPEG streams.

For example, Figure 4.11 displays frame sizes of "t260" trace by averaging every 10

frames. The fluctuations of frame sizes remain minimum.

Table 4.3: Statistkal Data of MPEG-2 Streams.

[Video Name 6trans

Video Length 20.161 sec
Picture Size 352 X 480
Picture Pattern IBB(PBB)4

No. of Video Frames 602

70000

60000

50000

., 40000 .,
>-
"' 30000

10000

horse
30.13 sec
704 X 480

IBB(PBB)4

897

·----·--"~·1··-· .
'

t260 acup

28.953 min 3.9 min
352 X 480 352 X 480

IBB IBB(PBB)3

52077 7021

Average size of 10 frames .;..._

0 .__ ____ _._ ____ _ .,__ _ _ _ _ __._ _____ .,___ ____ __.___,

20000 30000 40000 50000 10000
Frame Number

Figure 4.11: t260 (MPEG-2) Trace

Figures 4.12 and 4.13 illustrate buffer (left column) and rate (right column)

requirements of CBR, PCBR, and PDCBR schemes. The start-up delays of all figures

Chapter 4. High-Speed Network Support for Multimedia Communications 130

range from 1 to 30 frame time. There are three curves in each figure of buffer re­

quirement. For most of the cases from the top most, they are the buffer requirements

of CBR, PCBR, and PDCBR schemes. For each figure of the required transmission

rates, there are four curves. They are the rates used by PCBR, the high rate used

by PDCBR, the rate used by CBR, and the low rate used by PDCBR (also from the

top most).

As can be observed from these results, they show the same behavior as in

VBR MPEG-1 cases regard to the buffer and rate requirements. CBR t ransmis­

sion demands lower rates while requires a larger buffer space. The two PCR-assist

transmission schemes need higher rates but consume smaller buffer spaces. The trans­

mission rate of PDCBR scheme is less than that used in PCBR scheme. However,

the degree of rate or buffer gain or lose is not in the same order of MPEG-1 traces.

The less rate variation embedded in MPEG-2 traces may contribute to this effect.

For instance, the required rates are about the same for all traces in all three trans­

mission schemes for start-up delays longer than 10 frame time. The amount of buffer

requirement is not so widely different either. We observed a reduction of 5% to 20%

in buffer requirement for PCR-assist schemes, compared to CBR scheme. Except for

the trace of "horse" which shows more than 100% buffer saving by using PDCBR

with the start-up delay equals to 20 frame time. In this set of experiments PDCBR

seems to outperform PCBR in both rate and buffer requirements.

4.6.3 Comparison Using Motion JPEG Traces

To demonstrate that the PCR-assist schemes can reduce the buffer require­

ment for any VBR-coded video, we further use Motion JPEG video to study their

performance. MPEG encoded streams can achieve greater compression ratio be­

cause of the use of int ra-frame and inter-frame encoding and the use of bi-directional

a,
:::;

a,
:::;

"' :::;

Chapter 4. High-Speed Network Support for Multimedia Communications 131

6trans (MPEG·2)
1.0 ,--- -.----.----...---.----.--- ---,

0.9

0.8

0.7

0.6

0.5

0,4

0.3

0.2

0 .1

0 5

CBR Butter -
Buffer for PCBR ·- ···

Butter for PDCBR o

10 15

horse (MPEG-2)

20 25 30

1,0 ,-.,--,----.-- -.---- --.----,

0.9

0.8

0.7

0.6

0.5

o.,

0.3

0.2

0 5

CBR Butter -
Buffer for PCBR ·- ···

Bufferfor POCBR o

r'

_!"'

1/~ • ..-1
:;;':,,,;,•;.,,. ,. .• w•" -~. ··•·•· e ,., ,.,--·• ·

·l!t • .c

10 20 25 30

acup (MPEG·2J
1 .o ,----,----,----,----,----,----,

09

0.8

0,7

0.6

0.5

OA

0.3

0.2

01

0 5

CBRBuHer -
Butter for PCBR - ·

Butter for POCBR . ., ...

10 15 20 25 30

6trans {MPEG·2)
12 ,----.---- ...---.--- -...---,-----,

11

10

9

8
\
' \ 7 •. I___

6

5

'
3

2

11

10

9

3

2

0 5

0 5

10

10

Rates of PCBR - ···
Rates of POCBR (High) ,., "

Rates of CBA -
Rates of PDCBR (Low) - ·

IS 20 25

horse (MPEG·2)

Rates of PCBR ·-···
Rates of PDCBR (High) ,., .. ,

Rates of CSA -
Rates ol POCBR (Low) -

30

....

15 20 25 30

acup (MPEG·2)
12 --.----,----.----...---.----,

i
11

10

9

8

7

i
l
i

~
6 • \ -.... _
5

4

3

2

0

I

\
5 10

Rates of PCBR - ­
Rates ol POCBA (Hg,) . .,,_

Rates of CSR -
Rates of POCBA (Low) -

15 20 25 30

Figure 4.12: Comparison of CBR, PCBR, and PDCBR with MPEG-2 traces.

~

Chapter 4. High-Speed Network Support for Multimedia Communications 132

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1260 (MPEG·2)

CBRButter -
Buller 1or PCBR ·•·-

Butter for POCBR ·<> ...

~---~ g
;,-,.. ~

~,,- ;
~/"

,..
' ,,,,.,,,.

___ l-,,,..,.,..

10 15 20 25 30

1260 (MPEG·2)
12 ~-~-~-~-~--~~

11 !
10 1

' : \,
6 \
5 I

\

Ra1es of PCBR ·-·
Rates of POCBR (High)

Rates of CSR -
Rates of POCBR (Low) - ·-

4

\~ 3

2

0 5 10 15 20 25 30

Figure 4.13: More MPEG-2 traces.

motion compensation. This results in higher rate variance, video frames with intra-­

frame encoding generate more data bits than video frames with inter-frame encoding.

Compared to variable bit-rate MPEG streams, video in JPEG format has less rate

variance. Since JPEG only uses intra-frame encoding scheme. The rate variance of

a Motion JPEG video is a function of the complexity of the scene and the extent of

scene changes from frame to frame. Table 4.4 shows the encoding information of two

Motion JPEG traces.

Table 4.4: Statistical Data of M-JPEG Streams.

I Video Name I backdraft I fugitive [
Video Length 22.22 min 25 min
Picture Size 640 X 480 640 X 480
Picture Pattern I I
No. of Video Frames 32000 36000

Figure 4.14 shows buffer (left column) and rate (right column) requirements of

the three transmission schemes. The start-up delays of all figures also range from 1 to

30 frame time. We observed similar performance trend as in previous sections. The

experimental results demonstrate that PCBR and PDCBR schemes require much less

"' :;

~

Chapter 4. High-Speed Network Support for Multimedia Communications 133

60

•,
50

40

30

20

10

0 5

160

140

120

100

BO

60

40

20

0

backdraft (M-JPEG)

CSR Buffer -
Buffer tor PDCBR . ., ...

Buffer tor PCBR -

10 15 20 25
Start-Up Delay (frame Ume)

fugitive (M•JPEG)

CSR Buffer -
Buffer for PDCBR ·<>···

Buffer for PCBR ·-···

10 15 20 . 25
Slart•Up Delay (frame time)

30

30

bacl<draft (M-JPEG)

7
\ Rates ot PCBR ·-···
, Rates of PDCBR (High) . ., ...

6 -...________ Rates of CSR -

' ' ~.Q9~.BJ~..:::::

5 •,

4 \ ... 11>-0•• ·•D·~ --e-.c,.o,.9 .. g- -o,o, a ,'tl, ,.P•o •a..'!l.•• •Q ____ /,.··.,·• •'l>·G._• ··

3

2

0

9 1
\

8 \

7 \

\

..._ -----------------

5 10 15 20 25
Start-Up Oelay (frame time)

fugitive (M•JPEG)

Rates of PCBR ·-·
Rates of PDCBR (High) ·<>···

Rates of CSR -
Rates of PDCBR (Low) - ···

30

: ... :·-··--·-·-·-·-·--·--·•·-·-·--·--·-·--·•·-·--·
4

3

2

0 10 15 20 25
Start-Up Delay (frame time)

30

Figure 4.14: Comparison of CBR, PCBR, and PDCBR using M-JPEG traces.

buffer space for any video stream with rate variance, not only for MPEG streams.

Figure 4.14 also indicates that the two Motion JPEG traces require more buffer space

and t ransmission rates than the previous two cases (MPEG-1 and MPEG-2 cases).

This is because the traces used here have larger picture sizes and the motion JPEG

encoding scheme has less compression ratio than MPEG schemes. The average bit of

traces "backdraft" and "fugitive" are 3.3 and 3.0 Mbit/sec, respectively.

4 .6.4 Observations

Six MPEG-1 (VBR-encoded), four MPEG-2 (close to CBR-encoded) and two

Motion JPEG traces are used in the analysis. Based on the experimental results in

Chapter 4. High-Speed Network Support for Multimedia Communications 134

this section, we have the following observations:

• PCBR scheme significantly reduces buffer requirement, especially for VBR­

encoded MPEG-1 traces. The reduction of buffer requirement in some cases

can be up to 10 times (Figures 4.9 and 4.10 when the start-up delay is 10 frame

time) compared to CBR scheme. The reduction of buffer requirement comes at

the cost of higher transmission rates. In the same cases as mentioned above,

the delivery demands a rate of 1.5 to 2 times higher than t hat in CBR scheme.

• The proposed PDCBR scheme provides more flexible trade-offs between the

buffer requirement and transmission rate. In the analysis, we limit the maximum

rate difference between PDCBR and CBR to 20%. The results show that buffer

requirement can be reduced with slightly higher t ransmission rates.

4. 7 Comparison of PCBR and PDCBR Schemes

In Section 4.6, we compared the buffer and rate requirements of the three

transmission schemes. The methodology is to determine the required transmission

rates and buffer sizes by adjusting the start-up delay. For some environments, such

as video on demand or video t ransmission through residential networks, the user may

have fixed buffer space or fixed link bandwidth. For example, most of the setop

boxes which are used to receive and decode video streams have limited memory space

due to cost consideration. The communication links between setop boxes and video

server may go through cable TV networks or ISDN connections. These links also have

restricted bandwidth for video transmission. In Sections 4.7.1 and 4.7.2, we study

the performance of both PCBR and PDCBR schemes in these environments.

Chapter 4. High-Speed Network Support for Multimedia Communications 135

4.7.1 Fixed Buffer Sizes

With fixed buffer sizes at the receiver side, the objective of this section is to

compare the transmission rates required by PCBR and PDCBR schemes in order to

provide a continuous playback. The transmission scheme should not either overflow

or underflow the receiver's limited buffer space during the entire session of video

transmission. Assume t he accumulative amount of data consumed by the decoder can

be described by a consumption curve (as illustrated in Figure 4.1). The consumption

curve can be represented by a discrete function C(n),

n

C(n) = LSi, (4.9)
i=l

where Si is the size of video frame i . Given a fixed buffer size B, there is a reference

curve which can be denoted as R(n) = C(n) + B. A transmission scheme should

provides a feasible delivery curve, which represents the accumulative amount of video

data delivered to the receiver, between the consumption curve and reference curve.

VVith a given buffer space, there is also an upper bound for the start-up delay.

Because the amount of data pre-loaded into the client's buffer during the period of

start-up delay can not excess the capacity of the buffer. In this study, we minimize the

required transmission rate by adjusting the start-up delay within the range allowed

by the fixed buffer space. Longer start-up delays (more pre-loaded data) may result

in lower transmission rates.

Figure 4.15 shows the required transmission rates of PCBR and PDCBR

schemes with different buffer sizes. Four MPEG-1 and two Motion JPEG traces

are used to compare PCBR and PDCBR schemes. The experimental result with

trace "mtv" uses a buffer size of 2 MBytes. The result with trace "adv" uses a buffer

size of 1 MBytes. The results from the rest of traces use a buffer size of 4 MBytes.

Since different traces have different rate variance. For each trace, we conducted the

Chapter 4. High-Speed Network Support for Multimedia Communications 136

performance evaluation with various buffer sizes. We present those results that can

demonstrate the difference between PCBR and PDCBR schemes.

There are three curves in each figure. From top to bottom, they are the

transmission rate required by the PCBR scheme, the high rate and the low rate used

by the PDCBR scheme. For a given buffer size, the required transmission rates are

obtained by adjusting the start-up delay. The start-up delay is controlled by the

amount of data pre-fetched into the receiver's buffer. It is the time required to pre­

fetched a certain amount of data before the playback. Therefore, for those points

closer to the left side of each figure, video transmission has smaller start-up delays

because it only needs to wait for smaller amount of data to be re-fetched. For those

points closer to the right side of each figure, video transmission needs to wait for

larger amount of data be pre-fetched. In the former case, video transmission has less

data in decoder's buffer for cushion.

From Figure 4.15, we observed that with larger start-up delays PCBR and

PDCBR schemes require similar transmission rates. However, the PDCBR scheme

requires lower transmission rates than PCBR with smaller start-up delays. This

means the PCBR scheme requires higher transmission rates than PDCBR when the

user demands low delays. Because of the "go-and-stop" transmission pattern of PCBR

scheme, it requires higher transmission rate to avoid starving decoder's buffer (i.e.

avoid intersection between the delivery curve and the consumption curve) .

4. 7.2 Fixed Transmission Rates

For a given transmission rate for PCBR scheme or a given pair of high rate

and low rate for PDCBR scheme, there will be a fixed delivery curve. In order to

provide jitter-free video transmission (avoid intersection between the delivery curve

and the consumption curve) for continuous playback, we need to include appropriate

Chapter 4. High-Speed Network Support for Multimedia Communications 137

mtv (MPEG-1)
2.Se-o-06 ,------,-----.------,------.-,

I PCBR -'­
: POCBR high -;-·
· POCBR low , .•

I .Se-o-06 \ -

1 !

I e-o-06 :._\!:...J.\""\~\~F::=~~-~---

500000

0 '--'-----'-------_...:::... ___ ______,

0 500000

600000

500000

400000

300000

200000

100000 ..:.

\ e-o-06

silence (MPEG-1)

2e+06

PCBR -
•• POCBRnigh ·;,:,;:

POC8R low ··· ·:··

0 .___....., _ __. __ ..._ _ _._ __ ...__...._ _ __. __ ~

0 500000 \e-o-06 1.Se-o-06 2e-o-06 2.5e+-06 3e+-06 3.Se+-06 4"+06

t>ackdraft (M,JPEG)
7e+06 ,------,---,.---,-- ----,---,---.-,

6e+06

Se-o-06

4e+06

38+06

2e-o-06

\e+-06

\f'\

PCBR -
. POCSR high - ·•· ·
: POCBR low , ..

' ➔--••" -••-OM<~ :,.;
1• l r - .. ~_.J\r-.,.✓

' - ~----;.-----'----- ·-- :

0 L,....::._~ _ _.__.,_~ _._-....::..::.c.= :::::..... _ _,__J

0 500000 18+06 1.Se+06 2e+-06 2.5e<-06 3e+-06 3.Se+-06 4e..OS

aav (MPEG-1)
1o6 ,----,----,,-- - -,-- - --,-----,--,

PCBR­
POCBR hi9h - ··

1.2e,06 .,._ __ -,; _ _ _ __., ___ ~ ----=''CSP.Jow- 1.:.;..:.;;

1&+06

eooooo

600000

400000

1.2e+06

1&+06

800000

200000

I
.. i

PCBR -
POC8R high -···

• • , _ _ _ , • _____ ___ .. __ _____ ._ ... ,. _ -.--PDC88 low

0 L_,;._;_,.J....,l__._ _ _,i __ ..._ _ _._ _ ___..::..,__"""'::..,_~

500000 1 e-o-06 1.S.+06 2e-o-06 2.Se-o-06 3e+06 3.Se+06 4"-o-06 0

6e-o-06

Se+-06

PC8R -
POCBR high ···­
POCBR low

4e◄-Oli F-'::,-.,,_-,,,=!::i =~=------,;--'-""'----"=_:::c-.r--.=--;-i- -----'--- - --1
3e+06 l----'---- --''-----L- - - _:::,,.__---1

28+06 .,_ _ __.._ ___ _ .;._ ____ ;,-_ _ __ ~ _ _______,.

1e+06

0 L_....., _ ___ ..__....._ _ _ .._...._;;c,,;,_ _ _j..__~

o 500000 le.OS 1.Se+06 2e-o-06 2.5e..OS 3e+06 3.5e+06 4e+06

Figure 4.15: Required t ransmission rat es with fixed buffer sizes.

Chapter 4. High-Speed Network Support for Multimedia Communications 138

start-up delays as the Figure 4.2 in Section 4.2 suggests. On the other hand, the buffer

requirement increases as the start-up delay increases. Since the buffer requirement

is the maximum difference between the delivery curve and the consumption curve.

This suggests that start-up delays must have a reasonable range. In this section, we

compare the start-up delay required by PCBR and PDCBR schemes with different

fixed transmission rates. We also restrict the buffer requirement in order to produce

reasonable results. For those viewers have fixed communication bandwidth, the results

reflect the time they need to wait before the commencement of playback.

Figure 4.16 shows the required s"tart-up delays of PCBR and PDCBR schemes

with fixed transmission rates. We used same six traces as in the previous section. The

buffer requirements of trace "adv", "silence", and "soccer" are limited by 4 MBytes.

The buffer requirements of trace "mtv" and "fugitive" are limited by 8 MBytes. We

use 16 l\·1Bytes as the buffer limitation for trace "backdraft". For a given transmission

rate in each figure, we obtain the minimum start-up delay required for both schemes.

Assume Raverage is the average bandwidth of a trace. A series of transmission rates are

used, from Raverage, Raverage x 1.01, Raverage x 1.02, ... to Raverage x 1.24. For PDCBR

scheme, these rates are used as its high transmission rate. We find out the low rate

which allow t he minimum start-up.

From Figure 4.16, we observed the performance differences between PCBR and

PDCBR schemes, except for trace "backdraft" . The result from trace "adv" shows

that with transmission rates closer to Raverage both PCBR and PDCBR require similar

start-up delays. With higher transmission rates, the PDCBR allows shorter start-up

delays than PCBR. For the rest four traces, PDCBR always provides shorter start-up

delays. Note that the unit used for start-up delay is second.

j
~

i
0
C.
::, ..
;;;

u

" w

t
2!,
C. ::,

j

Chapter 4. High-Speed Network Support for Multimedia Communications 139

90

eo

70 ~~
\ ,

60 .\
'·

50

40

30

20

10

160

140

120

100

eo

60 \

mlv(MPEG-1)

! PC8R -
· · --·-.P0C81H8MB) -

\ ,.-.. ,- ____ :::-,.._
\
'· ··,.~ .

.. ,
·,

'···---.~-----i--....................... _
1.05 1.1 1.15 1.2 1.25

Rate (x times of average rale)

silence (MPEG-1)

' PCBR -
POCBR (4MB) · • · -

"°
........ _ ____ ______ ·--·-··---- -

---~----------t----------.._ __ _ 20

1.05

40

30

20

10

1.05

1,1 1.15 1.2 1.25
Rate (x times of average rate)

t>ackdrah (M.JPEG)

1.1 1.15

'PCBR -
POCBR (16MB) ·--

1.2
Rate (x tsmes 01 average rate)

1.25

!
~
-a;
0 ..
::,
1::
!!
"'

I
!
C.
::,
1::
s
"'

30

25

20

15

10

5

aav (MPEG-1)

PCBR -
f----- ~----------f'OC&R•(4MB)·-

..

1.05 1.1 1.15
Raio (x times or ave,age rare)

1.2 1.25

soccer (MPEG-1)
-o~-------~----~-------~

35

30

25

PCBR -
POCB~ (◄MB) ·•--

20 f----

15 ~ -------- ------ --',....---=·
'----10 ---- ~--_________ _____ __.. ----~--­f----------- - - ----_:-:,c~-~

1.05 1,1 1.15 1.2 1.25
Aate (x times ol average rale)

fugitive (M.JPEG) 20~---~----- -------~-- --

15

10

5

1.05 1,1 1.15

PCBR­
POCBR (8MB) ·--

1.2
Rate (x tlmes of average rate)

1.25

Figure 4.16: Required start-up delays with fixed transmission rates.

Chapter 4. High-Speed Network Support for Multimedia Communications 140

4.8 Summary

In this chapter, we have st udied the technique of real-time transport of MPEG-

2 streams using PCRs as timing reference to regulate the transmission. In particular,

we have studied two PCR-assist transport schemes: PCR-assist GBR (PCBR) and

PCR-assist Dual-Rate CBR (PDCBR). We used CBR transport scheme as a com­

parison basis to evaluate the network bandwidth and client buffer requirement for

PCBR and PDCBR schemes. We concluded that PCR-assist schemes require higher

transmission rate but less buffer space compared to CBR scheme. Moreover, PDCBR

scheme provides more flexible trade-offs between buffer requirement and required

transmission rates than PCBR scheme.

We have studied these two schemes with three important parameters: buffer

size, transmission rate, and start-up delay. With fixed buffer space, the PDCBR

scheme allows lower transmission rates than the PCBR scheme when the viewer de­

mands low start-up delays. With fixed transmrssion rates, PDCBR scheme requires

lower waiting time than the PCBR scheme.

Chapter 5

Conclusion

Switch-based high speed networks possess superior features, such as high data

transfer rates, low latency, scalability, and support for multiple classes of service, than

legacy networks. For application developers, the challenge lies on how to utilize the

high performance communication provided by the switch-based high speed networks.

For system designer, the challenge lies in how to deliver these features to application

level by reducing overheads from hardware and software components. In this thesis,

we have concentrated our effort on the high speed network support for two impor­

tant classes of applications in network-centric computing: network computing and

multimedia communications.

Our contribution is summarized as follows.

• High speed network support for cluster computing. In cluster computing environ­

ment, distributed applications are implemented by partitioning the computation

into tasks and assigning them to processes which collaborated with each other

based on a message passing model. The speed of message passing is critical to

the performance of cluster computing. We have carefully examined a popular

cluster computing environment and enhanced its communication performance

by reducing the protocol processing overhead and employing features provided

by the underlying high speed networks. The protocol processing overhead is

reduced by bypassing higher layer protocols and using low level application

programming interfaces. The communication performance is further improved

with features of the underlying networks, such as multicasting communication

141

Chapter 5. Conclusion 142

and credit-base flow control.

Based on the experimental results from the same cluster computing environment

on local ATM and HIPP! networks, we have improved the achievable throughput

while preserving low communication latency. This demonstrates the feasibility

and potential of network computing on clusters of workstations.

• High speed network support for meta-computing. Meta-computing is one possible

extension of cluster computing. The advantage of meta-computing is allowing

researchers to utilize geographically distributed computing resources connected

via local and wide area networks to solve large problems. We have studied two

feasible approaches to facilitate the internetworking of local HIP PI networks and

wide area ATM networks for meta-computing. They are HIPP! Tunneling and

IP Routing. The former provides interconnection at the physical layer and the

later supports internetworking at the network layer. We have compared these

two approaches in terms of their network connectivities, protocol overheads,

and flow control. The impact of flow control of upper layer protocol on the

performance is also presented. The unique feature of our study is that both

approaches were implemented and evaluated in the same network infrastructure.

• High speed network support for multimedia communications. Network delivery

for continuous media is an inherently difficult problem due to the time-sensitive

nature of the data and its rate variance. Transmitting compressed variable

bit rate video with traditional constant bit-rate (CBR) service for continuous

playback requires a large buffer at the viewer's side. We have studied two new

CBR transmission schemes which utilizing the timing information embedded in

the MPEG-2 stream and a hardware-assist mechanism at the network interface.

The two schemes, called PCR-assist CBR (PCBR) and PCR-assist Dual-Rate

CBR (PDCBR), reduce buffer requirement by using the timing information to

Chapter 5. Conclusion 143

regulate their transmission. We have compared their performance with tradi­

tional CBR service with real video traces.

Bibliography

[l] ISO/IEC 13818-1. "Information Technology - Generic Coding of Moving Pic­

tures and Associated Audio, Part 1: Systems, Recommendation ITU H.222.0".

International standard, International Standardization Organization, November

1994.

[2] ISO /IEC 13818-2. "Information Technology - Generic Coding of Moving Pictures

and Associated Audio, Part 1: Video, Recommendation ITU H.262". Interna­

tional standard, International Standardization Organization, November 1994.

[3] ISO /IEC 13818-3. "Information Technology - Generic Coding of Moving Pictures

and Associated Audio, Part 3: Audio". International standard, International

Standardization Organization, November 1994.

[4] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. "A User's

Guide to PYM (Parallel Virtual Machine)". Technical Report ORNL/TM-11826,

Oak Ridge National Laboratory, Oak Ridge, TN, July 1991.

[5] M. Blumrich, C. Dubnicki, E .\V. Felten, and K. Li. "Virtual Memory-Mapped

Network Interfaces" . IEEE Micro, pages 21-28, Feb. 1995.

[6] J. Boudec. "The Asynchronous Transfer Mode: A Tutorial". Computer Networks

and ISDN Systems, 24:279-309, 1992.

[7] R. Bulter and E. Lusk. "User's Guide to the P4 Programming System". Technical

Report ANL-92/17, Argonne National Laboratory, 1992.

[8] N. Carriero and D. Gelernter. "Linda in Context". Communications of the ACM,

32(4) :444- 458, April 1989.

144

Bibliography 145

[9] J.D. Cavanaugh. "Protocol Overhead in IP/ ATM Networks". Technical report,

Minnesota Supercomputer Center, Inc., Aug. 1994.

[10] Sheue-Ling Chang, David H.C. Du, Jenwei Hsieh, Mengjou Lin, and Rose P.

Tsang. "Enhanced PVM Communications over a High-Speed Local Area Net­

work". IEEE Parallel and Distributed Technology, pages 20-32, Fall 1995.

[11] B. Chinoy and K. Fall. "TCP /IP and HIPPI Performance in the CASA Gigabit

Testbed". In USENIX High-Speed Networking Symposium, page 45, Aug. 1994.

[12] C. Dubnicki, L. Iftode, E.\V. Felten, and K. Li. "Software Support for Virtual

Memory-Mapped Communication". In Proc. of the 1996 International Parallel

Processing Symposium, pages 372-381, April 1996.

[13] Dave Dunning and Greg Regnier. "Virtual Interface Architecture". In Proc. of

the Hot Interconnect Symposium V, August 1997.

[14] D.E. Culler et. al. "Parallel Computing on the Berkeley NOW" . In Proc. of the

9th Joint Symposium on Parallel Processing, Kobe, Japan, 1997.

[15] W. Feng, F . Jahanian, and S. Sechrest. "Optimal Buffering for the Delivery of

Compressed Prerecorded Video". In Proc. of the IASTED/ISMM International

Conference on Networks, January 1995.

[16] W. Feng and J. Rexford. "A Comparison of Bandwidth Smoothing Techniques

for the Transmission of Prerecorded Compressed Video". In IEEE Infocom '97,

page 58, April 1997.

[17] W . Feng and S. Sechrest. "Critical Bandwidth Allocation for Delivery of Com­

pressed Video". Computer Communications, 18(10):709-717, October 1995.

Bibliography 146

[18] Inc. Fore Systems. "ForeRunner SBA-200 ATM SBus Adapter User's Manual".

Fore Systems, Inc., 1993.

[19] Message Passing Interface Forum. "MP!: A Message-Passing Interface Standard,

Version 1.1 ", June 1995.

[20] The ATM Forum. "Audiovisual Multimedia Services: Video no Demand Spec­

ification 1.0". Technical report, ATM Forum Technical Committee, December

1995.

[21] D. Le Gall. "MPEG: A Video Compression Standard for Multimedia Applica­

tions". Communications of the ACM, 34(4):46-58, April 1991.

[22] M. Garrett and W . Willinger. "Analysis, Modeling and Generation of Self-Similar

VBR Video Traffic". In ACM SIG COMM, pages 269-280, London, England UK,

August 1994.

[23] G.A. Geist and V.S. Sunderam. "Network-Based Concurrent Computing on the

PVM System". Concurrency: Practice and Experience, 4(4):293-311, June 1992.

[24] M. Grossglauser, S. Keshav, and D. Tse. "RCBR: A Simple and Efficient Service

for Multiple Time-Scale Traffic". In Proc. ACM SIGCOMM, Cambridge, MA,

1995.

[25] Serial HIPPI Implementors Group. "Serial HIPP I Specification, Revision 1. O",

May 1991.

[26] Jenwei Hsieh, David H.C. Du, Norman J. Troullier, and Mengjou Lin. "En­

hanced PVM Communications over HIPP! Networks" . In Proceedings of The

Second International Workshop on High-Speed Network Computing (HiNet '96),

Honolulu, April 1996.

Bibliography 147

[27] J.P. Hughes and W.R. Franta. "Geographical Extension of HIPP! Channels via

High Speed SONET". IEEE Network, pages 42-53, May/June 1994.

[28] IBM. "IBM ATM 155+ SAR Module, Functional Description: CHARM 1.5".

IBM, October 1996.

[29] NetStar Inc. "GigaRouter System Description, Revision 2". NetStar Inc., Dec.

1994.

[30] Silicon Graphics Inc. "IRIS HIPP! AP! Programmer's Guide". Silicon Graphics

Inc., April 1994.

[31] Tandem Computer Inc. "ServerNet". Enterprise Systems Journal, June 1995.

[32] V. Jacobson, R. Braden, and D. Borman. "TCP Extensions for High Perfor­

mance, Request for Comment (RFC) 1323", May 1992.

[33] R.A. Jarvis. "On the Identification of the Convex Hull of a Finite Set of Points

in the Plane". Information Processing Letters, 2:18-21, 2 1973.

[34] H. Kanakia, P.P. Mishra, and R. Reibman. "An Adaptive Congestion Control

Scheme for Real Time Packet Video Transport". IEEE/ACM Transactions on

Networking, 3(6):671-682, December 1995.

[35] G. Karlsson. "Asynchronous Transfer of Video" . IEEE Communications Maga­

zine, pages 118-126, August 1996.

[36] M. Kawarasaki and B. Jabbari. "B-ISDN Architecture and Protocol". IEEE

Journal on Selected Areas in Communications, 9(9):1405- 1415, Dec. 1991.

[37] A. Kolawa. "The Express Programming Environment". In Workshop on Het­

erogeneous Network-Based Concurrent Computing, Tallahassee, Oct. 1991.

Bibliography 148

[38] Los Alamos National Laboratory. "High Performance Networking at Long Dis­

tances" . http://juggler.lanl.gov/lanp/gateway-info.html.

[39] S. Leffler, M. McKusick, M. Karels, and J.Quarterman. "The Design and Imple­

mentation of the 4.3BSD Unix Operating System". Addison-Wesley, 1990.

[40] M. Lin, J. Hsieh, D.H.C. Du, and J. MacDonald. "Performance of High-Speed

Network I/0 Subsystems: Case Study of a Fibre Channel Network". In IEEE

Proceedings of Supercomputing 1994, Washington D.C., Nov. 1994.

[41] M. Lin, J . Hsieh, D.H.C. Du, J. Thomas, and J. MacDonald. "Distributed

Network Computing Over Local ATM Networks". IEEE Journal on Selected

Areas in Communications, 13(4):733-748, May 1995.

[42] R.J . Manchek. "Design and Implementation of PVM Version 3". Master thesis,

University of Tennessee, Knoxville, May 1994.

[43] J .M. McManus and K.W. Ross. "Pre-recorded VBR Sources in ATM Net­

works: Piecewise-Constant-Rate Transmission and Transport". Technical re­

port, Department of Computer Systems Engineering, University of Pennsylvania,

September 1995.

[44] J.M. McManus and K.W. Ross. "Video-on-Demand Over ATM: Constant-Rate

Transmission and Transport". IEEE Journal on Selected Areas in Communica­

tions, 14(6):1087-1098, August 1996.

[45] Sun Microsystems. "Network Programming Guide", March 1990.

[46] Hewlett-Packard France Rami el Sebeiti. "Personal communications", 1995.

Bibliography 149

[47] A.R. Reibman and Berger A.W. "Traffic Descriptors for VBR Video Tele­

conferencing Over ATM Networks". IEEE/ACM Transactions on Networking,

3(3):329-339, June 1995.

[48] D.J. Reininger, D. Raychaudhuri, and J.Y. Hui. "Bandwidth Renegotiation for

VBR Video Over ATM Networks". IEEE Journal on Selected Areas in Commu­

nications, 14(6):1076-1086, August 1996.

[49] J. Renwick and A. Nicholson. "IP and ARP on HIPP!, Request for Comment

(RFC) 1374", Oct. 1992.

[50] 0. Rose. "Statistical Properties of MPEG Video Traffic and Their Impact on

Traffic Modeling in ATM Systems". In Proc. of the 20th Annual Conference on

Local Computer Networks, Minneapolis, MN, 1995.

[51] J.D. Salehi, Z.L. Zhang, J. Kurose, and D. Towsley. "Supporting Stored Video:

Reducing Rate Variability and End-to-End Resource Requirements through Op­

timal Smoothing". In Proc. ACM SIGMETRICS, Philadelphia, PA, May 1996.

[52] M. Snir, P. Hochschild, D.D. Frye, and K.J. Gildea. "The Communication

Software and Parallel Environment of the IBM SP2". IBM Systems Journal,

34(2):205-221, Feb. 1995.

[53] IEEE Computer Society. "IEEE Standard for Scalable Coherent Interface

(SCI)", 1993.

[54] C.A. Thekkath, H.M. Levy, and E.D.Lazowska. "Separating Data and Control

Transfer in Distributed Operating Systems". In Proc. of the 6th International

Conference on Architectural Support for Programming Language and Operating

Systems, October 1994.

Bibliography 150

[55] D. Tolmie and J. Renwick. "HIPP!: Simplicity Yields Success". IEEE Network,

page 28, Jan. 1993.

[56] T. von Eicken, A. Basu, V. Buch, and W . Vogels. "U-Net: A User-Level Network

Interface for Parallel and Distributed Computing". In Proc. of the 15th A CM

Symposium on Operating Systems Principles, Dec. 1995.

[57] T. von Eicken, D.E. Culler, S. Goldstein, and K. Schauser. "Active Messages:

a Mechanism for Integrated Communication and Computation". In Proc. of the

19th Annual International Symposium on Computer Architecture, pages 256-67,

May 1992.

[58] Gregory K. Wallace. "The JPEG Still Picture Compression Standard". Com­

munications of the ACM, 34(4):31- 44, April 1991.

[59] Elisabeth Wechsler. "Industry Harnesses Clustered Workstations To Squeeze

Extra Cycles". NAS News, 2(9), March/ April 1995.

[60] ANSI X3.183-1991. "High-Performance Parallel Interface: Mechanical, Electri­

cal, and Signaling Protocol Specification (HIPPI-PH)". Technical report, Amer­

ican National Standard Institute, Inc., June 1991.

[61] ANSI X3.210-1992. "High-Performance Parallel Interface: Framing Protocol

(HIPPI-FP)". Technical report, American National Standard Institute, Inc.,

Feb. 1992.

[62] ANSI X3.218-1993. "High-Performance Parallel Interface: Encapsulat ion of ISO

8802-2 (IEEE Std 802.2) Logical Link Control Protocol Data Unit (802.2 Link

Encapsulation), (HIPPI-LE)" . Technical report, American National Standard

Institute, Inc., June 1993.

Bibliography 151

[63] ANSI X3.222-1993. "High-Performance Parallel Interface: Physical Switch Con­

trol (HIPPI-SC)". Technical report, American National Standard Institute, Inc.,

July 1993.

[64] ANSI X3.230-1994. "Fibre Channel - Physical and Signaling Interface (FC-PH)".

Technical report, American National Standard Institute, Inc., 1994.

[65] ANSI X3Tll. "High-Performance Parallel Interface - Mapping to Asynchronous

Transfer Mode". Technical report, American National Standard Institute, Inc.,

Feb. 1995.

[66] K.C. Young, C.A. Johnston, D.J. Smith, J.W. Mann, J.J. DesMarais, M.Z. Iqbal,

J.C. Young, K.A. Walsh, and W.S. Holden. "A HIPPI/ATM/SONET Network

Interface for the Nectar Gigabit Testbed" . In LEOS 1993 Summer Topical Meet­

ing Digest on Gigabit Networks, page 14. IEEE Lasers and Electro-Optics Society,

July 1993.

	TR_97-050_original_P1
	TR_97-050_original_P2
	TR_97-050_original_P3
	Blank Page

