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While loop parallelization usually relies on compile-time analysis of data dependences, for some loops the data 
dependences cannot be detennined at compile time. An example is loops referencing arrays with subscripted 
subscripts. To parallelize these loops, it is necessary to use run-time analysis. In this paper, we present a new 
run-time algorithm to parallelize these loops. Our scheme handles any type of data dependence in the loop with­
out requiring any special architectural support in the multiprocessor. Furthermore, compared to an older scheme 
with the same generality, our scheme significantly reduces the amount of processor communication required and 
increases the overlap among dependent iterations. We evaluate our algorithm with an extensive set of loops 
running on the 32-processor Cedar shared-memory multiprocessor. The execution times show speedups over 
the serial case that reach up to 13 with the full overhead of run-time analysis and up to 26 if part of the work is 
reused across loop invocations. Moreover, our algorithm outperforms the older scheme with the same generality 
in nearly all cases, reaching a 37-fold speedup over the older scheme when the loop has many dependences. 
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1 Introduction 

Loop-level parallelism is often the main source of speed-up in multiprocessors that exploit medium-grain 
parallelism. To parallelize a loop, it is necessary to identify the dependence relations between loop iterations 
via dependence analysis [1]. If the loop is inherently parallel, that is, it does not have any dependences across 
iterations, then it can run in parallel. Similarly, if it can be transformed to eliminate such dependences, it can run 
in parallel too. However, it is possible that the dependences across iterations cannot be eliminated. In this case, 
if we still want to run the loop in parallel, we have to insert proper synchronization to ensure that the iterations 
are executed in the correct sequence. Such a loop is called a DO ACROSS loop. 

DOACROSS loops are parallelized in different ways. Sometimes, the difference in iteration number between 
dependent iterations (called dependence distance) is known at compile time. In this case, techniques like loop­
alignment [9], loop skewing [17], or dependence uniformization [3, 15] can be used to parallelize the loop. 
Unfortunately, many other times it is not possible to determine the dependence distance at compile time. An 
example is when array elements are accessed via subscripted subscripts. In these cases, the compiler cannot 
prove the independence of iterations. Therefore, even if the loop turns out to be very parallel, compile-time 
schemes fail to parallelize the loop. 

For the loops where dependences are unknown at compile time, we can still perform the dependence analysis 
at run-time and maybe execute the loop in parallel. This approach is called run-time parallelization. Much 
previous research has been done to design effective run-time parallelization algorithms [5, 7, 8, 14, 18, 19]. The 
main differences between the schemes proposed are the types of dependence patterns that are handled and the 
required system or architecture support. In all cases, however, the key to success is to minimize the time spent 
on the analysis of dependences and synchronization. Indeed, if too much time is spent on these overheads, it is 
better to keep the loop serial. 

In this paper, we describe and evaluate a new algorithm for the run-time parallelization of loops. Our scheme 
handles any type of dependence pattern without requiring any special architectural support. Furthermore, 
compared to an older scheme with the same generality [18], it speeds up execution by significantly reducing the 
amount of communication required and by increasing the overlap among dependent iterations. The effectiveness 
of this algorithm is evaluated via measurements in the 32-processor Cedar shared-memory multiprocessor [6]. 
The results show speedups that reach up to 13 with the full overhead of the analysis overhead and up to 26 if part 
of the analysis work is reused over loop invocations. Moreover, our algorithm outperforms the older scheme 
with the same generality in nearly all cases, reaching a 37-fold speedup when the loop has many dependences. 

The organization of this paper is as follows. Section 2 provides background on run-time parallelization issues. 
Section 3 explains our scheme in detail. Section 4 describes our experimental procedure, and Section 5 presents 
the performance results. Section 6 concludes our study. 

2 Background on Run-Time Parallelization Issues 

In this section, we first present the basic concepts and then the previous work. 

2.1 Loop Model and Basic Concept 

Consider a loop as shown in Figure l(a). In order to determine if there is any loop-carried dependence [16] 
between statements Sp and Sq across iterations and to compute its dependence distance, we have to solve the 

following integer equation 
f(i) = g(i') 
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DO i=l,N DO i =l,N 

Sp : A ( Il ( i ) ) = 

Sq: ... = A(g(i)) + ... Sq: . . . = A(I2(i)) + ... 

ENDDO ENDDO 

(a) (b) 

Figure 1: Loop Example. 

Dependence Example Parallelizing 
Type f( i) g(i) Methods 

Uniform Distance 2i+3 2i+l Loop Alignment [9], Loop Skewing [17) (if loop level> I) 

Non-Uniform Distance 2i+9 3i+3 Dependence Uniformization [15, 3] (if loop level> 1) 

Unknown Distance ll(i) l2(i) Run-time Parallelization 

Table 1: Sample dependence types and parallelization methods. 

and evaluate the distance ( i' - i) within the constraints of the loop limits. Depending on the format of f( i) 
and g( i), there are several possible parallelization techniques to use (see Table 1). In the first and the second 
cases where f ( i) and g( i) are linear functions of the loop index with constant coefficients. In these cases, 
the dependence distances are known or can be estimated at compile-time, and parallelizing compilers can 
generate proper synchronization instructions to preserve dependences. However, in the third case of Table 1, the 
dependence distance information is not available at compile-time. f( i) and g( i) are array expressions whose 
values are not known until run-time because they depend on the input data. Therefore, to parallelize the otherwise 
serial loop, we need to use a run-time parallelization scheme. 

Without loss of generality, we use the loop in Figure l(b) as our main example, where we assume the values of 
arrays lJ and /2 are not available until run-time. The values of both 11 and /2 have no restriction. Each array can 
have duplicated values, which implies that all three kinds of data dependences, namely flow (Read-after-Write), 
anti (Write-after-Read), and output (Write-after-Write) dependences, could occur between instances of statements 
Sp and S

9
. For example, if Jl(l) = 12(3) = 11(4) = 11(5) = x in Figure l(b), then we have the following 

( ) 
f low S ( anti ( ) output S ( ) . dependences: Sq I ---. P 3) ---. Sq 4 ---. q 5 . These accesses form a dependence (or access) chain. 

The values of arrays /l and /2 are assumed to remain constant during the execution of one invocation of the loop, 
although they are allowed to change outside the loop. 

Run-time parallelization schemes usually have two stages, namely inspector and executor [14, 19], both 
performed at runtime. The inspector determines the dependence relations among the data accesses. The executor 
uses this information to execute the iterations in an order that preserves the dependences. If both the inspector 
and the executor are parallel algorithms, the scheme can take full advantage of the parallel machines. The key 
to the success of these schemes is to reduce the communication overhead in these two stages. Note that, since 
index arrays such as ll and /2 for a loop do not usually change between invocations of the loop, the inspection 
results can be reused across loop invocations. 
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2.2 Previous Work 

Several run-time parallelization schemes have been proposed. The first one was proposed by Zhu and Yew [18]. 
Their scheme is general enough to handle any dependence pattern. Given a loop like that in Figure l(b), the 
compiler transforms it into the code shown in Figure 2. In the figure, each element of array A has two fields, 

Done(l:N)= .FALSE. 
Repeat until ((Done(i) .EQ .. TRUE) for all i) 
C Inspector Phase 

DOALL i=l,N 
A ( Il ( i ) ) . key= oo 
A( I 2(i)) .key= oo 

END DOALL 
DOALL i=l,N 

IF (Done(i) .EQ .. FALSE) 
C Note the fol lowi ng two instructions are atomic instructions 

compare&store{ if (A( Il(i) .key>i) { A(Il(i)) .key <- i; } } 
compare&store{ if (A(I2(i) .key>i) { A(I2(i)) . key<- i ; } } 

END IF 
END DOALL 

C Executor Phase 
DOALL i=l,N 

IF (Done(i) . EQ .. FALSE) 
IF ( (A(Il (i) . key . EQ. i) .AND. (A (12 ( i) . key . EQ. i)) THEN 

A(Il (i)) .data= 

= A(I2 (i)) .data + ... 

Done( i)=.TRUE. 
END IF 

END IF 
END DOALL 

END REPEAT 

Figure 2: Loop of Figure l(b) transformed to use Zhu-Yew's scheme. 

data, which contains the data value, and key, which is used to order the accesses. In this scheme, an iteration i is 
allowed to proceed at runtime only if all accesses to the array elementsA(Il(i)) andA(l2(i)) by iterationsj<i have 
completed. To do so, the inspector and the executor are placed in a repeat loop. Within one iteration of this loop, 
the inspector determines the set of iterations that can proceed. This is done by having all unexecuted iterations 
visit the array elements they want to access and save in the key field of these elements the iteration number if it 
is less than the content of value stored in the key field. After all checks, the result numbers are the number of 
iterations that can proceed. In the executor phase, iterations check if the key field of the elements that they want 
to access have a number equal to the iteration number. If so, the iteration has no unexecuted predecessor and is 
allowed to proceed. Once iteration i is executed, we set Done(i) to TRUE. This procedure will continue until all 
iterations are executed. 
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Iteration number 
1 2 3 4 

1st access 

.... ..... ... . ......... . : . : . 
=access L......:access: 

A[x] : A[x ] : 
: : . . . . . : 

:········1 :········-: . . . . 
:acce ss :---...:access: 
: A [ z ) : A [ z] : . 

. 
2nd access :accessj_.:access: 

; A[y] : : A[y] : 

; ......... ~ : ......... : , ........ . 
Figure 3: Example of dependence chains. 

A good property of Zhu-Yew's algorithm is to have fully parallel inspector and executor phases. Unfortunately, 
it requires many memory accesses. Indeed, for each iteration of the repeat loop, each unexecuted iteration i 
requires at least 3r memory accesses, where r is the number of references to array A per iteration. 

A second scheme, proposed by Midkiff and Padua [8], improved Zhu-Yew's scheme by allowing concurrent 
reads to the same array element by several iterations. To do so, the scheme requires data synchronization with 
more than one key field. However, it still requires high communication as Zhu-Yew's scheme. 

Other less general schemes have been proposed [5, 10]. They restrict the problem in three ways. First, no two 
index elements of a given index array (II and /2 in Figure l(b)) have the same values. This makes scheduling 
simpler. Second, they require a serial pre-processing loop, which can reduce speedup. Finally, if the index 
arrays are not one-to-one mappings, they require shared-memory allocation. Unfortunately, this can be slow and 
complicated in large-scale multiprocessors. How to do it is not described. 

Lately, schemes for loops without output dependences have been proposed by Saltz et al. [13, 14] and 
Leung and Zahorjan [7]. This assumption simplifies the problem. The emphasis of Saltz et al. 's work is on 
the scheduling issues. The results show that the best scheduling method is to statically partition the iterations 
among the processors and to rearrange the iteration order within each partition. Their recent work [ 11] focuses 
on run-time compilation techniques for FORALL loops with only output dependences for reduction operations 
on distributed memory computer~. There are similar issues, but the context is different. 

A common limitation of most of the previous works is the lack of performance results. It is therefore hard to 
evaluate the effectiveness of all these algorithms. 

3 A New Algorithm for Run-time Parallelization 

Although Zhu-Yew's algorithm can handle all types of dependences and does not require any support beyond 
a compare&store instruction, it has two limitations. First, the inspector cannot be reused across invocations 
of the same loop, even if the dependences do not change, because the inspector and the executor are tightly 
connected. Second, the execution of iterations with dependences cannot be overlapped. For example, assume 
that the dependences in the loop of Figure l(b) are those in Figure 3. While the first access in iteration 3 does 
not depend on anything, the algorithm in Figure 2 will not perform it until after the second iteration is finished, 
because the second access of iteration 3 depends on iteration 2. This limitation not only reduces part of the 
parallelism available; but also causes redundant traffic. Indeed, iteration 3 will be inspected by the inspector 
three times. Each time, it will generate extra traffic by issuing compare&store instructions. 

Our algorithm, instead, reuses the inspectorresults across loop invocations, and allows the overlap of dependent 
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iterations. This is done by splitting the inspector and the executor. In the inspector, we gather all the dependence 
information and store it in a table called Ticket. Then, this information is used in one or more executor phases. 
Building this table, however, is very expensive, because it requires interprocessor communication. To reduce 
communication, our inspector algorithm exploits locality. The inspector and the executor phases are described 
next. 

3.1 Inspector Phase 

In this phase, we will order the references that access the same location but still maintain the original dependences. 
In this phase, processors share the Ticket table, whose x-dimension is the number of iterations in the loop and 
y-dimension the number of references to the shared locations per iteration. For example, the Ticket table for the 
loop of Figure 1 (b) with N = 12 is shown in Figure 4( a). In the figure, we have numbered the accesses according 
to their serial execution order. 

To illustrate how the algorithm gathers the dependence information, assume that, for a given entry x of array 
A in Figure l(b), Il(l )= l2(3)=l2(4)=l1(7)=l1(9)=12(9)=l2(1 l)=x. This chain of dependences is represented in 
Figure 4(b) as a set of arrows on the Ticket table. The goal of the inspector is to store in the table entries sequence 
numbers that order the references involved in this chain of dependences from left to right. In the ideal case, the 
numbers assigned would be the ones shown in Figure 4(c). 

In the executor phase, we will use an extra field called key assigned to each element of the shared data structure 
to enforce the ordering. For example, whatever processor is assigned in the executor phase to execute iteration 
4 will wait for A(l2(4)).key to become 2. It will then access A(l2(4)) and incrementA(l2(4)).key by one. This, 
in turn, will trigger the execution of the first access in iteration 7, and so on. Of course, all other accesses not 
present in this chain of dependences can proceed in parallel if they do not belong to any other dependence chain. 

To fill the table quickly, we use all processors to do it in parallel. Unfortunately, this requires some commu­
nication overhead. Our algorithm tries to minimize inter-processor communication by first filling most of the 
entries in the table in a communication-free phase called the local inspector, and then filling the few remaining 
ones with communication in the global inspector phase. We consider each phase in tum. 

Local Inspector Phase 

We divide the iteration space into as many groups of contiguous iterations as the number of processors, and then 
assign each group of iterations to a processor for inspection. Each processor, therefore, is in charge of updating 
a set of contiguous columns in the Ticket table. If we assume that we have 3 processors, the assignment is as 
shown in Figure 4(d). 

Note that in the local inspector phase, processors are trying to determine the dependence chain and to assign 
the sequence numbers. Hence, they still do not know the shape of the dependence chain is like what fa shown in 
Figure 4(c) at this point. Each processor will fill its position of the Ticket table. The main difficulty is to know 
the sequence number of the first access in each local portion without communicating to other processors. Once 
the sequence number of the first access is known, the remaining accesses in the local portion can be determined 
accordingly. 

Also note that the sequence number only need to be unique and in an increasing order. They do not have to 
be consecutive. Hence, we can leave the sequence number of the first access in each local portion open until the 
global inspection phase. To simplify our algorithm, we also assign only consecutive sequence numbers to the 
accesses of the dependence chain within the local portion of each processor. 

To allow each processor to assign sequence numbers in its local portion, we use a conservative estimate. We 
assume that all of the accesses in all of the iterations prior to the local portion of the accesses are all in the 
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Iteration number --------
1 2 3 4 5 6 7 8 9 10 11 12 

Access 
number 1 

2 

1 

2 

1 

3 5 

4 6 

2 3 

:111 
1 2 3 

:11~, 
proc 1 

1 2 3 

1 

2 

1 2 3 

1 

2 

7 9 11 13 

8 10 12 14 

(a) 

4 5 6 7 

~+H 
(b) 

4 5 6 7 

~,tl"1' 
(c) 

pr oc 2 

4 5 6 7 

., 

(d) 

4 5 6 7 

.. 

15 17 19 21 

16 18 20 22 

8 9 10 11 

I 11 I I-
8 9 10 11 

I r· is I 1-, 
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8 9 10 11 

8 9 10 11 
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1 2 3 4 5 6 7 8 9 10 11 

(f) 

Figure 4: Example of the Ticket table. 
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Processor 1: • • • ---EED-- • • • 
Processor 2: • • • ~ • • • 
Processor 3 : • • • ~ • • • 

Figure 5: Unresolved lists for Figure 4. 

dependence chain. Using this estimate, we can come up with a starting sequence number for each local portion 
of the accesses which is unique in each processor and in increasing order. 

Figure 4(d) shows the result of such a scheme. Processor 1 can fill all its entries since its local starting 
sequence number is the global starting sequence number. Processor 2 has only one access in its local portion of 
the dependence chain. Hence, it will leave its sequence number open (shown as a question mark in Figure 4(d)). 
Processor 3 also has its first access open and we have to determine a safe starting sequence number for the 
second access of iteration 9. Since each iteration has 2 accesses, the conservative estimate for its starting 
sequence number will be 2 x 8 + l = 17 which is shown in Figure 4(d). Therefore, we set 1icket(9,2) to 17 and 
Ticket(ll,2) to 18. 

Global Inspector Phase 

In the global inspector phase, we fill the entries that have a question mark in Figure 4(d). Each processor 
determines the sequence number that will generate after executing its last access in the local dependence chain, 
and send to the processor on its right. We call this number the transition sequence number. For example, processor 
1 needs to pass 3 to processor 2 (Figure 4(e)). Processor 3 would pass 19 if there were more processors. For 
processor 2, its group of iterations has only one access to A(x), which has a questiori mark. In this case, as 
indicated in the local inspector phase, we assume that all accesses in processor 1 belong to the dependence chain. 
Therefore, the safe value for the access in 1icket(7, i) to set the key to is 9, which will be passed to processor 3 
(Figure 4(e)). 

To communicate these transition sequence numbers we use a fast parallel algorithm that relies on com­
pare&store. We use a shared variable Done, and two shared arrays Tempi and Temp2 which have as many 
entries as in the original shared data structure (array A in Figure l(b)). In addition, each processor has a linked 
list called the unresolved list with nodes corresponding to its Ticket table entries that have question marks. Each 
node in the list has three fields. The first field is the index of the shared data structure element that is being 
accessed (x in our example). This is necessary because a processor will have one of these nodes per dependence 
chain it participates in. The second field identifies which entry in the Ticket table has the question mark (entry 
13 for processor 2 in Figure 4(d)). The last field is the transition sequence number. The unresolved lists for the 
processors in our example are shown in Figure 5. In the figure, processor 1 has a node for the first access of the 
dependence chain (entry 1), even though we know its sequence number, namely 0. This is necessary to pass the 
transition sequence number 3 to the second processor. Of course, each list has as many nodes as dependence 
chains a processor participates in. 

The algorithm is shown in a Single-Program-Multi ple-Data form in Figure 6. The algorithm consists of an 
infinite loop where each iteration has two rounds, namely the Tempi and Temp2 rounds. At the beginning of 
each round, in the first foreach statement, processors use compare&store to determine the transition sequence 
numbers in the nodes currently at the head of the dependence chains. These transition sequence numbers are 
stored in the correct entries of Tempi (in the Tempi round) or Temp2 (in the Temp2 round). Then, in the second 
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foreach statement, processors check if their transition sequence numbers are the ones selected in the first foreach 
statement. If so, they read the transition sequence number determined in the previous round (not the current one) 
and save it in the Ticket table in place of the question mark. Note that the transition sequence number determined 
in the previous round was saved in the other Temp array. This other Temp array is reset and the node removed 
from the unresolved list. 

We leave the while loop when all processors finish their unresolved lists. In our example, in the very first 
round (Tempi round), processor 1 saves its transition sequence number 3 in Tempi (x). It then retrieves the value 
of0 from Temp2(x) and saves it in Ttcket(i,i). In the next round (Temp2 round), processor 2 saves 9 in Temp2(x) 
and retrieves 3 from Tempi(x) and stores it in Ttcket(7,i). Processor 3 will then update its question mark entry 
in the same way. The resulting Ticket table is shown in Figure 4(f). Note that, if the dependence chain has only 
one access, then the corresponding entry in the Ticket table will be set to zero. The reason is that, in the very first 
round in the algorithm of Figure 6, that access will be found at the head of its dependence chain. Therefore, its 
Ticket table entry will be set to the value of the corresponding entry of Temp2. Temp2 is initialized to 0 at the 
beginning of the algorithm. 

3.2 Executor Phase 

We now perform the accesses to the shared data structures. We perform all accesses in parallel except for the 
dependences specified in the Ticket table. As indicated before, we use an extra field (key) associated with each 
element of the shared data structures. This field is initialized to 0 and contains, at any time, the sequence number 
of the next access to be performed to that particular element. In the course of the executor, a processor will grab 
iteration i of the DOA CROSS loop via self-scheduling and, for each access j in the iteration, obtain the sequence 
number S from Ttcket(i,j). Then, instead of accessing the corresponding entry A(x), the processor will wait until 
A(x).key is equal to S. Once this is true, it will perform the access and then update A(x).key to the value expected 
by the next access in the dependence chain. 

This update will usually imply incrementing A(x).key by one. The exceptions are the accesses that had once 
belonged to the unresolved list. As indicated above, these accesses increment the A(x).key field by a larger 
amount. To always perform the right update, we can keep an extra number in each entry of the Ticket table: the 
value the key field should be set to after the access. Remember that we know it from the inspector. However, 
this implies doubling the size of the table. To save space, we can increment the key by one by default unless 
we were waiting for what was a transition sequence number in the inspector. The latter will be the case if, for a 
given iteration i in a loop with N iterations and r accesses per iteration executed by P processors, the sequence 
number we are waiting for is smaller than L = (i div NIP) *NIP* r + 1. For example, Ttcket(7,1) has a value 
of 3, which is less than L = 9, the serial access number in Figure 4(a) for the first entry in the iteration block 
containing iteration 7. When this occurs, we set A(x).key to L (value 9 in the example). 

Figure 7 shows the resulting program in Single-Program-Multiple-Data form. While the assignment of 
iterations to processors can be self-scheduled, we choose static round robin (cyclic) scheduling to reduce 
overhead. Clearly, we do not want to use static block scheduling as used in the inspector, because the processors 
with the last few iterations would be idle in the beginning while waiting for dependences to be satisfied, whereas 
the processors with the first few iterations would have no work to do towards the end. In Figure 7, we first set 
the key field to zero. Then, each processor repeatedly grabs one iteration and, for each access in the iteration, 
waits for the key to be set to the correct value, performs the access, and updates key. 

Note that iterations with dependencies can be overlapped now because we consider dependences between 
accesses instead of between iterations. For example, a processor can access A( Ii ( i) ).data in Figure 7 even though 
A(/2(i)).data may not be ready yet. This ability to overlap dependent iterations enables more parallelism in the 
inspector and executor phases over the Zhu-Yew algorithm. In addition, as indicated above it removes redundant 
operations in the inspector. It may, however, increase the spinlocking in the executor phase, since the processor 
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Done +- true; 
Tempi(:) +- oo; /* this can be done in parallel by distributing it to all processors *I 
Temp2(:) +- O; 
barrier; 

while (true) do 
I* beginning of Tempi round *I 

foreach (x,y,z) in the unresolved list do 
compare&store{ if (Tempi(x)>z) { Templ(x) +- z;} }/* atomic instruction *I 

end.for; 
barrier; /* at this point, Tempi(:) has the minimum values of the iteration sequence numbers *I 
foreach (x,y,z) in the unresolved list do 

end.for; 
barrier; 

if (Tempi(x) == z) then/* Am I the processor currently at the head of the dependence chain for A(x)? *I 
Ti.cket(y div number _access_per _iteration,y mod number _access_per _iteration) +- Temp2(x); 
Temp2(x) t- oo; 
delete (x,y,z) from the unresolved list; 

else Done +- false; /* Not my turn yet, will try in the next round *I 
endif; 

if (Done== true) stop;/* done, the Ticket table is finished for all processors *I 
Done +-true;/* no need to worry about race because of the next barrier *I 

I* beginning of Temp2 round *I 
foreach (x,y,z) in the unresolved list do 

compare&store{ if (Temp2(x)>z) { Temp2(x) +- z;}} /* atomic instruction *I 

endfor; 
barrier; /* at this point, Temp2(:) has the minimum values of the iteration sequence numbers *I 
foreach (x,y,z) in the unresolved list do 

end.for; 
barrier; 

if (Temp2(x) == z) then/* Am I the head of the global chain? *I 
Tzcket(y div number _access_per _iterat ion,y mod number ..access_per _iteration) +- Tempi (x); 

Tempi(x) +- oo; 
delete (x,y,z) from the UNRESOLVED list; 

else Done +- false; /* Not my turn yet, will try in the next round *I 
endif; 

if (Done == true) stop;/* done, the Ti.cket table is finished for all processors *I 
Done +- true; /* no need to worry about race because of the next barrier *I 

endwhile; 

Figure 6: Global inspection algorithm. 



integer pid,P,Bsize,L,i,N 
C pid is the processor id, Pis the# of processors, N is the# of iterations 
Bsize=N/P 
C size of the block of iterations assigned to one processor in the inspector 
A (:). key=O 
C this can be done in parallel by distributing to all processors 
call barrier() 
DO i=pid, N,P 
C use cyclic scheduling 

L= (i div Bsize) *Bsize*number..references_per_iteration+l 
C this value will help determine if the sequence number 
C t hat we wil l wait for is a transition sequence number 

DO WHILE (A(Il(i)) . key!= Ticket(i,l)) 
C busy-waiting 

A(Il (i)) .data= . . . 
C access the data 

IF (Ticket (i,l) <L) A(Il(i)) .key=L 
C update the key 

ELSE A(Il(i)) . key++ 

DO WHILE (A(I2(i)) .key!= Ticket(i,2)) 
C busy- waiting 

... =A ( I2 ( i) ) . data + 
C access the data 

IF (Ticket(i,2) <L) A(I2(i)) .key=L 
C update the key 

ELSE A(I2(i)) .key++ 

ENDDO 

Figure 7: The executor algorithm. 

may have to wait for A(/2(i)).key to become valid. 

4 The Experimental System 

To evaluate the algorithms described, we use a shared-memory multiprocessor with advanced hardware support 
for compare&store synchronization. In this section, we describe the machine, the synchronization support, and 
the workloads used. 

4.1 The Cedar Multiprocessor 

Our experiments are timing runs on the Cedar [6], a 32-processor scalable shared-memory multiprocessor 
designed at the Center for Supercomputing Research and Development. The machine has 4 clusters of 8 
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processors each (Figure 8). Each cluster is a bus-based Alliant FX/8 and it has 32 Mbytes of memory shared 
by the processors in the cluster. The clusters are connected via a forward and a reverse Omega network to 64 
Mbytes of global memory shared by all processors. The processors in a cluster also share a 512-Kbyte cache. 
The latency to access the cache is 170 ns, while to access the local memory takes ~ 1190 ns and to access the 
global memory takes ~2210 ns. (see Figure 8). The workloads are measured with Cedar's high-resolution 10 

Clustor 0 Cluster 1 

GM- Gl o:bal Mwmory 
SP-synchronization Proces sor 
CE-Computational Elecnent 

CLOSTER 

T o 
O:nega 
Nlltwork 

Figure 8: The Cedar Multiprocessor. 

µs clock and run in a single-user mode. 

4.2 Advanced Synchronization Support 

Each global memory module in Cedar has a custom-designed synchronization processor (SP in Figure 8). This 
processor supports Cedar ..sync, a very powerful synchronization primitive that operates on variables composed 
of two fields, namely key and data. The semantics of the primitive are explained in Figure 9. A Cedar ..sync 
operation on address target, first locks target and then performs a test on target.key. If the test fails, then the 
operation aborts. Otherwise, it performs operations on target.key and target.data and then unlocks target. The 
whole operation is specified in 1 instruction. It is completed atomically in global memory similarly to the 

Cedar_sync(target, (test on target.key), 
operation on target.key, 
operation on target.data) 

⇒ 

lock( target); 
if ( test on target.key is true) then 

perform operation on target.key; 
perform operation on target.data; 

end.if; 
unlock( target); 

Figure 9: Cedar ..sync semantics. 
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Pararn. Explanation What we want to measure Values Loop Examples 
Ll L2 L3 

N Iteration count Problem size scalability 1600,3200,6400, 1520 1500 50681 
12800,25600 

Hjrac Hot spot frequency Consistency over 10%, 50%, 90% 33% 0% 100% 

Hsize Hot spot size dependence patterns 10%, 50%, 90% <1% 0% 100% 

Consistency over 40 µs (235 cycles), 

w Iteration grain size 160 µs (941 cycles), 20 µs 108 µs 6µs 

grain size 640 µs (3765 cycles) 

r # references Consistency 1, 2, 4, 8 9 18 2 

per iteration over number of accesses 

Table 2: Loop parameters used in the experiments. The cycles in column 4 are 170 ns processor cycles. 

fetch-and-¢ operations of the NYU Ultracomputer[4]. Hence, only one trip for each synchronization access 
is required, and no remote busy-waiting across the network is necessary. In the case of Temp] and Temp2 in 
Figure 6, we use the key fields of the elements of the arrays and ignore the data fields. Note that synchronization 
operations from different processors can all proceed concurrently in the Omega network. This primitive is ideal 
to implement compare&store, since 

compare&store{if (A(x).key > z) {A(x).key <- z;}} = Cedar..c;ync(&(A(x)), (A(x).key > z), A(x).key +- z, nop). 

Cedar ..sync can also be used in the executor to perform the key check, data access and key update with 1 
instruction. 

4.3 Workloads 

The performance of the algorithms we have presented depends on some parameters of the loops. Table 2 shows 
what these parameters are (column 2) and what they measure (column 3). In our analysis, we try to cover as 
wide a range of values as possible for these parameters. Column 4 shows the range of values chosen. We use 
three loops selected from two widely used benchmark programs to illustrate corresponding parameter values. 
They are loop 100 of subroutine PREDIC (Ll) and loop 900 of subroutine CORREC (L2) of BDNA from Perfect 
Benchmark Suite [2], and loop 2 of subroutine COOCSR (L3) from the Sparskit [12]. Note that loops from 
the benchmarks tend to have smaller problem size, hence the smaller number of iterations, than real application 
codes. 

In the table, iteration count N is assumed to be the same as the size of the array A. A loop with parameter values 
N = 6400 and W = 160µs is selected as the "base" loop. The H frac and H size parameters are used to simulate 
different dependence patterns. Each access has a probability of H frac to be a hot reference. If it is, then it is 
targeted to a randomly chosen location in the hot section of the array A. The hot section is a portion Hsize of the 
A array. If it is not hot, its target location is chosen from the entire A array. Loops with long dependence chains 
and therefore low parallelism have high H frac and low H size . In the following sections, a "mostly-serial" loop 
is one with (H frac, Hsize) = (90%, 10% ), while a "mostly-parallel" loop has (H Jrac, Hsize) = (10%, 90% ). 

All runs are executed on Cedar. A sequential version of each of the loops without inspection overhead was 
executed to calculate the speedups. Because most results showed similar trends, we will show a few typical ones 
only. 
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S Evaluation 

In this section, we analyze our experimental results. First, we show the speedup of our scheme over serial 
execution. Then we compare our scheme to Zhu-Yew's. 

5.1 Speedup 

To determine the speedup of our algorithm, we consider two situations: one in which it performs both the 
inspector and the executor (Table 3) and another in which it only performs the executor (Table 4). The latter 
corresponds to the case where we reuse the Ticket table from a previous inspection of the loop. For each table, 
we consider two types of loops: the mostly-serial loop and the mostly-parallel loop. We used 32 processors in 
both experiments, and varied the number of iterations, the iteration grain size, and the number of references per 
iteration. The latter affects the amount of communication required in the inspector and synchronization in the 
executor. We are not able to obtain measurement data for entries marked with "n/a" because of some limitations 
of the experimental system. 

w r Mostly-serial loop Mostly-parallel loop 
N =1600 3200 6400· 12800 25600 N =1600 3200 6400 12800 25600 

8 0.74 0.79 n/a n/a n/a 0.98 1.00 n/a n/a n/a 
4 0.90 0.89 0.89 n/a n/a 1.28 1.30 1.30 n/a n/a 

40µs 2 1.22 1.26 1.22 1.21 n/a 1.91 1.98 1.76 1.73 n/a 
1 1.64 1.83 2.00 1.93 1.87 1.80 2.50 2.71 2.46 2.35 
8 1.10 1.13 n/a n/a n/a 1.36 1.42 n/a n/a n/a 
4 1.50 1.56 1.56 n/a n/a 2.26 2.26 2.25 n/a n/a 

160 µs 2 2.35 2.65 2.47 2.54 n/a 3.49 3.76 3.59 3.49 n/a 
1 3.66 4.36 4.76 4.53 4.45 4.67 6.18 5.48 5.80 5.58 
8 2.41 2.48 n/a n/a n/a 2.96 2.97 n/a n/a n/a 
4 3.93 3.86 3.90 n/a n/a 5.67 5.40 5.39 n/a n/a 

640µs 2 6.23 6.94 6.70 6.81 n/a 9.23 9.57 9.11 8.97 n/a 
1 9.55 11.95 11.39 11.36 11.41 11.65 13.60 14.19 13.60 13.52 

Table 3: Speedup of our algorithm including inspection and execution for 32 processors. 

Overall, we obtain good speedups: more than 13 when inspector and executor are considered, and more than 
26 when only the executor is considered. Obviously, the best results occur when the size of the loop body (W) is 
large and the number of accesses (r) is low. In this case, the loop has a low communication-to-computation ratio. 
Of course, when the opposite is true, speedups will be lower. However, even with 8 accesses per iteration, the 
speedup is above 74% of the sequential execution. Tables 3 and 4 also show that, as expected, the performance 
is better if the dependence chains are short; this is why the speedup of the mostly-parallel loops is higher than 
the speedup of the mostly-serial loops.1 In summary, the results show that run-time parallelization is a viable 
approach to speedup loops that cannot be handled by compile-time transformations. This approach is potentially 

1 Because the dependence patters are generated using probablistic method, some entries in for the mostly-serial loops show slightly 
higher speedup than their counterpart of the mostly-parallel loops in Table 4. 
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w r Mostly-serial loop Mostly-parallel loop 

N =1600 3200 6400 12800 25600 N = 1600 3200 6400 12800 25600 

8 4.30 6.21 n/a n/a n/a 9.98 9.09 n/a n/a n/a 

4 9.22 10.77 9.43 n/a n/a 11.96 8.77 10.38 n/a n/a 
40 µs 2 14.08 13.11 10.68 9.76 n/a 13.07 15.71 11.02 10.49 n/a 

1 12.36 11.08 10.62 11.17 11.19 14.78 12.76 12.14 12.78 11.17 

8 6.79 8.02 n/a n/a n/a 12.14 12.07 n/a n/a n/a 

4 14.08 11.71 12.43 n/a n/a 19.42 14.72 15.12 n/a n/a 

160 µs 2 18.23 18.43 14.84 15.94 n/a 21.32 19.07 17.02 15.25 n/a 

1 16.57 21.27 19.77 18.02 18.54 18.42 21.36 21.57 18.59 18.97 

8 13.52 15.11 n/a n/a n/a 17.99 16.92 n/a n/a n/a 

4 22.80 21.36 20.25 n/a n/a 25.54 21.69 21.22 n/a n/a 

640µs 2 21.30 23.58 22.64 23.10 n/a 26.18 24.33 24.05 23.75 n/a 

1 26.59 26.06 24.25 25.12 25.51 24.46 26.32 25.90 25.69 26.33 

Table 4: Speedup of our scheme including execution only for 32 processors. 

promising if the compiler is sophisticated enough to reuse the results of the inspector analysis across loop 
invocations. 

Speedup Scalability 

To see how the speedup varies with the number of processors, we run several experiments with mostly-serial 
and mostly-parallel loops using increasing number of processors. Figure 10 shows the speedup for loops with 
r = l, and W = l 60µs. We consider two cases. They include mostly-serial and mostly-parallel loops with 1600 
iterations. We vary number of processors from 2 to 32. In Figure lO(a), the speedup was calculated including 
inspector plus the executor, while Figure l0(b) has only executor. From Figure 10(a), we see that, when the 
number of processors is small, the speedup is less than 1 because it is not as efficient as serial execution, owing 
to the inspector phases. Overall, we can have speedup over 4.5 with 32 processors. The speedup will be bigger 
if a larger number of iterations are used. The cause of the saturation is the inspector, which has less parallelism. 
However, if we consider the executor alone (Figure lO(b )), we still see an increasing trend in the speedup curve 
because the executor phase has high concurrency. In general, we observe a nearly linear speedup up to 18 for the 
executor, and the inspector talces at least the same amount of time as the executor in our experiments, therefore 
the inspector should be the focus of optimization. 

5.2 Performance Comparison with Zhu-Yew's Scheme 

Since Zhu-Yew's scheme has the same applicability and requires the same system support as ours, we have 
compared its performance to that of our algorithm. Table 5 shows the ratio between the execution time of 
Zhu-Yew's algorithm and ours for 32 processors. The table shows that, in general, our scheme is faster than 
Zhu-Yew's, in some cases, up to 37 times. Furthermore, our algorithm is relatively faster in the mostly-serial 
loops, where it is harder to obtain speedup, because our scheme allows overlapped execution of dependent 
iterations and reduced communication via iteration blocking. 

The table also shows that Zhu-Yew's scheme is sometimes slightly faster than our scheme. However, for those 
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Figure 10: Speedups for executor only. 

cases, the absolute speedups for our scheme are fairly good already (Table 3). Consequently, it is clear-that our 
scheme's performance is more consistent than Zhu-Yew's scheme's. In addition, note that we do not consider 
the reuse of the Ti.cket table in the comparison. If the table is reused, the speedup for our scheme will be much 
higher because there will be no inspector overhead. To understand why our scheme performs better, we now 
examine the issues of communication overhead and sensitivity to access and dependence patterns. 

Communication Overhead 

To compare the communication overhead in the two algorithm, we compare the number of synchronization 
operations. There are two types of synchronization operations, namely compare&stores and barriers. We 
implement the former with Cedar ..sync. In the following, we measure the number of Cedar ..syncs and barrier 
operations. 

Figure 11 depicts the number of Cedar ..syncs performed in each scheme using the base loop and r = 1 or 4 
references per iteration. The experiments use 8 and 32 processors and run the mostly-serial and mostly-parallel 
loops. Because of the big difference in some of the results, we use logarithmic scale in the y-axis. From the 
figure, we see that when there are many dependences, such as in the mostly-serial loops (Figure ll(a)), and 
where the number of references per iteration is high, the new algorithm uses fewer Cedar ..syncs. For example, 
for the mostly-serial loops with r = 4 and 8 processors, the new scheme has 1 % of the Cedar ..sync in Zhu-Yew's 
scheme. One reason for this is that the local inspector in the new scheme reduces the amount of communication 
required. A second reason is that in Zhu-Yew's scheme, iterations with dependences cannot overlap at all, and 
therefore more retries are necessary. 

With mostly-parallel loops and few references per iteration, the differences in the total number of Cedar ..syncs 
in the two schemes are small. This is shown in Figure 11 (b ). In this case, the new scheme does not have a clear 
advantage, because if the loop has few dependences, few dependent iterations are overlapped in the new scheme. 
In addition, the local inspector in the new scheme is relatively less effective and most of the dependence chains 
are identified in the global inspector using Cedar ..sync. 

The second type of synchronization in these schemes is barriers between concurrent loops in the inspector. 
Barriers not only consume network bandwidth but also introduce processor idle time. Our scheme has fewer 
barriers. There are two reasons for this. First, in the new scheme, the dynamic number of barriers is proportional 
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w r Mostly-serial loop Mostly-parallel loop 
N =1600 3200 6400 12800 25600 N = 1600 3200 6400 12800 25600 

8 30.68 37.86 n/a n/a n/a 7.40 7.93 n/a n/a n/a 

4 13.24 14.04 14.08 n/a n/a 2.62 2.82 2.69 n/a n/a 

40 µs 2 5.01 5.22 5.11 4.98 n/a 1.20 1.16 1.03 0.96 n/a 

1 1.58 l.65 1.71 1.61 1.52 0.55 0.85 0.73 0.69 0.67 

8 31.70 37.55 n/a n/a n/a 7.22 7.92 n/a n/a n/a 
4 12.93 13.96 13.89 n/a n/a 2.77 2.86 2.70 n/a n/a 

160 µs 2 4.57 5.05 4.78 4.84 n/a 1.04 1.12 1.03 0.94 n/a 

1 1.58 1.66 1.72 1.56 1.48 0.72 0.91 0.71 0.73 0.73 

8 31.69 37.35 n/a n/a n/a 7.25 7.61 n/a n/a n/a 

4 13.04 13.13 13.05 n/a n/a 2.88 2.79 2.61 n/a n/a 

640µs 2 4.49 4.76 4.49 4.39 n/a 1.27 1.27 1.15 1.03 n/a 

1 1.71 1.85 1.61 1.50 1.42 0.95 1.00 0.90 0.87 0.84 

Table 5: Ratio between the execution time of Zhu-Yew's scheme and ours using 32 processors. 

to the longest chain of dependent accesses, while in Zhu-Yew's scheme it is proportional to the longest chain of 
dependent iterations. Second, many barriers are eliminated in the new scheme if the sources and the sinks of the 
dependences are in iterations given to the same processor in the local inspector. The resulting number of barriers 
for the two schemes is shown in Figure 12, which shows the number of barriers for the base loops with r = 1 
and r = 4 using· 8 and 32 processors. From the figure we see that the new scheme requires less barriers than 
Zhu-Yew's, in particular for r = 4 and mostly serial loops (Figure 12(a)). 

To summarize, our scheme requires fewer Cedar ...sync operations and barriers, particularly when there are 
many dependences. For the new scheme, the plots show a correlation between the number of processors used 
and the communication required: more processors introduce more partition boundaries in the local inspector, 
which results in a higher communication involved in the global inspector. 

Sensitivity to Access and Dependence Patterns 

Since the performance of run-time schemes varies when loop characteristics change, we measured the sensitivity 
to the number of references per iteration r (Figure 13(a)), and the fraction of accesses to the hot location H frac 

(Figure 13(b)) . In Figure 13(a), we plot the base mostly-parallel loop, with 1, 2, and 4 references per iteration 
running with 32 processors. The columns show the performance normalized to the loop with r = 1. For each 
set of three columns, the leftmost one corresponds to the executor phase of the new algorithm, the central one 
to the inspector and executor phases of the new algorithm, and the rightmost one to Zhu-Yew's scheme. From 
Figure 13(a), we see that, the performance decreases as we increase the number of accesses per iteration. The 
reason is that the ratio of communication-to-computation bas increased. However, our scheme is much less 
sensitive than Zhu-Yew's scheme, particularly if only the executor phase is considered. 

In Figure 13(b), we use the base loop with r = 1, 32 processors, and set HJrac to 10%, 50%, and to 90%. In 
all cases, hot locations account for 10% of the shared locations (Hsize = 10%), therefore the rightmost set of 
three columns corresponds to mostly-serial loops. The columns are normalized to the H Jrac = 10% case. From 
Figure 13(b), we see that the overall performance of our scheme changes less than 25% compared to the more 
than 60% drop in performance for the Zhu-Yew's scheme. For the executor-alone column, the small increase in 
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Figure 11: Comparing the number of Cedar ...syncs in the two algorithms for the base loop with r = 1 or 4 and 8 

or 32 processors. 

performance when Hf rac = 90% is likely to be the result of the changed dependence pattern among iterations. 
Overall, these results indicate that the performance of our scheme is more consistent than that of Zhu-Yew's 

scheme. 

6 Conclusions and Future Work 

The parallelization of loops is usually based on compile-time analysis of data dependences. In some loops, 
however, the data dependences cannot be determined at compile time. An example is loops accessing arrays 
with subscripted subscripts. To parallelize these loops, we use a more expensive analysis that is performed at run 
. time. In this paper, we presented and evaluated a new run-time algorithm to parallelize these loops. Our scheme 
handles any type of data dependence pattern without requiring any special architectural support. Furthermore, 
compared to an older scheme with the same generality, it speeds up execution by allowing the reuse of the 
inspector phase across loop invocations, allowing partial overlap of dependent iterations, and optimizing the 
inspector for high locality and low communication. 

We have evaluated our algorithm with an extensive set of loops running on the 32-processor Cedar shared­
memory multiprocessor. We used loops with varying parameters, such as number of iterations and references. 
The results show that our algorithm gives good speedups that reach 13 if the inspector is not reused and 26 if it is. 
Furthermore, our algorithm outperforms Zhu-Yew's scheme [18) in nearly all cases, reaching a 37-fold speedup 
when the loop has many dependences. 

There are a few issues in run-time parallelization that we are currently working on. The first one is to use 
the dependence information gathered by the inspector to rearrange the order of execution of iterations in the 
executor to minimize busy-waiting time. This strategy would imply spreading the iterations that participate in 
a dependence chain as much as possible so that the processors that execute them do not have to wait for each 
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Figure 12: Barrier synchronization counts in the two schemes for the base loopwith r = 1 or 4 and 8 or 32 

processors. 

other. This is not currently done and, therefore, processors spend time busy-waiting for the previous access in 
the dependence chain to finish. 

A second optimization is to eliminate the serialization of reads belonging to input dependences. Currently, 
our scheme serializes all accesses to the same location, including concurrent reads. Finally, we are developing 
compiler algorithms to determine if the inspector results can be reused across loop invocations. This approach 
requires very aggressive interprocedural analysis to assure that the index arrays are not changed. 
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