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Abstract 

Vipin Kumar 

Traditional clustering algorithms, used in data mining for transactional databases, arc mainly con­
cerned with grouping transactions, but they do not generally provide an adequate mechanism for grouping 
items found within these transactions. Item clustering, on the other hand, can be useful in many data min­
ing applications. We propose a new method for clustering related items in transactional databases that is 
based on partitioning an association rule hypcrgraph, where each association rule defines a hyperedge. We 
also discuss some of the applications of item clustering, such as the discovery of meta-rules among item 
clusters, and clustering of transactions. We evaluated our scheme experimentally on data from a number 
of domains, and, wherever applicable, compared it with AutoClass. In our experiment with stock-market 
data, our clustering scheme is able to successfully group stocks that belong to the same industry group. In 
the experiment with congressional voting data, this method is quite effective in finding clusters of trans­
actions that correspond to either democrat or republican voting patterns. We found clusters of segments 
of protein-coding sequences from protein coding database that share the same functionality and thus are 
very valuable to biologist for determining functionality of new proteins. We also found clusters of re­
lated words in documents retrieved from the World Wide Web (a common and important application in 
information retrieval). These experiments demonstrate that our approach holds promise in a wide range 
of domains, and is much faster than traditional clustering algorithms such as AutoClass. 
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1 Introduction 

Clustering in data mining [SAD+93, CHY96, GHK+96] is a discovery process that groups a set of data such 

that the intracluster similarity is maximized and the intercluster similarity is minimized [CHY96]. These 

discovered clusters are used to explain the characteristics of the data distribution. For example, in many 

business applications, clustering can be used to characterize different customer groups and allow businesses 

to offer customized solutions, or to predict customer buying patterns based on the profiles of the cluster to 

which they belong. 

In transaction databases, attributes generally represent items that could potentially occur in one trans­

action. If / is the number of different items, then each transaction can be represented by a point in an / -

dimensional space. Traditional clustering techniques [NH94, CS96, SD90, Fis95, DJ80, Lee81] focus mainly 

on grouping together such transactions based on some measure of similarity or distance. These techniques, 

however, do not generally provide an adequate mechanism for grouping related items that appear within 

transactions. In this paper we are mainly concerned with clustering related items and the application of item 

clustering to various data mining domains. 

Given a database of transactions, there are two areas where clustering related items may be useful. First, 

item clusters themselves could lead to the discovery of important hidden knowledge within the database. 

Such clusters could be used in some domains to classify data items, to make predictions about similar data 

items, or to reduce the size of rule sets by eliminating those that are not interesting. Consider for instance 

the items that are sold in a grocery store. If we can cluster these items into item-groups that are often sold 

together, we can then use this knowledge to perform effective shelf-space organization as well as target sales 

promotions. 

Furthermore, once the item clusters have been found, an analyst can use each item cluster as a unique item 

and discover relationships (such as association rules) among the item clusters. For example, given a database 

of stock market data, where each row would represent one day of activity for the available stocks, item clus­

tering can be used to discover industry groups containing related stocks. Then, by finding association rules 

among these item clusters, one can discover various relationships between the industry groups in terms of 

their price or volume movements (see Section 5). 

The second area where item clustering can play an important role is transaction clustering. As noted above, 

transaction clustering has been the purview of traditional clustering algorithms, and has been used for knowl­

edge discovery in a variety of domains. Most of these clustering algorithms are able to effectively cluster 

transactions only when the dimensionality of the space (i.e., the number of different items) is relatively small 

and most of the items are present in each transaction [DJ80, SD90, NH94] . However, these schemes fail to 

produce meaningful clusters, if the number of items is large and/or the fraction of the items present in each 

transaction is small. This type of data-sets are quite common in many data mining domains (e.g., market 

basket analysis). For example, a typical grocery store sells thousands of different items but each customer 

buys only a small number of them (usually less than thirty). 
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Item clustering can be used to improve the performance of traditional clustering algorithms by reducing the 

dimensionality of the clustering problem. Once item clusters are found, they can be used as (a much smaller 

set of) attributes in a new meta-transaction database, thus making the application of clustering algorithms 

more efficient. There are also situations where item clusters naturally induce cluster of transactions. 

Another way that item clustering can be used to cluster transactions is by inverting that transaction database 

so that each transaction ID is treated as an attribute, and then performing item clustering on these new at­

tributes, thus effectively partitioning the transaction space. 

In this paper, we propose a new methodology for clustering related items in transactions using association 

rules and hypergraph partitioning. Association rule discover in data mining has been used to discover rela­

tionships in very large data repositories [AMS+96, HS95]. Here we explore the feasibility and advantages 

of using the discovered association rules to cluster closely related items into groups. Our algorithm for item 

clustering uses as its basis the frequent item sets, derived as part of association rule discovery, that meet a 

minimum support criterion [AMS+96]. These frequent item sets are then used to group items into hyper­

graph edges, and a hypergraph partitioning algorithm [KAKS97] is used to find the item clusters. We also 

explore the use of discovered item clusters to cluster related transactions containing the data items. 

We evaluated our item clustering schemes on five different data sets, namely S&P500 stock data, US con­

gressional voting data, protein coding data, Web document data and US census data. Wherever applicable, 

we compared our results with the those of AutoClass [CS96]. These experiments demonstrate that our ap­

proach is applicable in a wide range of domains and provide better clusters and is much faster than AutoClass. 

We chose AutoClass for comparison because AutoClass can handle data with the mixture of continuous and 

discrete attributes, where distance or similarity measures are difficult to define, and is known for producing 

quality clusters. 

The rest of this paper is organized as follows. Section 2 contains related work. Section 3 presents cluster­

ing of items and Section 4 discusses applications of the item clusters . Section 5 presents the experimental 

results. Section 6 contains conclusion and future works. 

2 Related Work 

Clustering of transactions can be done using methods that have been studied in several areas including statis­

tics [D180, Lee81, CS96], machine learning [SD90, Fis95], and data mining [NH94, CS96]. Most of the these 

approaches are based on either probability, distance or similarity measure. Distance-based methods such as 

k-means method [1088], nearest-neighbor method [LF78] and CLARANS algorithm [NH94] are effective 

when the distance between two data points can be easily defined. Transaction data, however, often contains 

a mixture of attributes, and so the distance between data points in the multidimensional space of attributes 

may be very hard to define, thus making distance-based methods inapplicable. If the data contains only dis­

crete attributes or continuous attributes that can be discretized, the similarity measure can be obtained and 

translated into a distance matrix with multidimensional scaling methods. However, these multidimensional 
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scaling methods have high computational complexity of O(n2) where n is the number of transactions [JD88]. 

Probability based methods do not require distance meac;ure and are more applicable in data mining domain 

where attribute space has mixture of discrete and continuous attributes. AutoClass [CS96] is based on the 

probabilistic mixture modeling [TSM85) and handles the mixture of attributes. However, the underlying 

expectation-maximization (EM) algorithm [TSM85] has the computational complexity of O(kd2nl) where 

k is the number of clusters, d is the number of attributes, n is the number of transactions and / is the average 

number of iterations of the EM algorithm. In data mining domain, where then and d is large, AutoClass' run 

time can be unacceptably high. 

The use of hypergraphs in data mining has been studied recently. For example [GKMT97] shows that the 

problem of finding maximal elements in a lattice of patterns is closely related to the hypergraph transversal 

problem [EG95] and explore the use of known algorithms for finding maximal elements to solve the hyper­

graph transversal problem. 

The clustering or grouping of association rules have been proposed in [TKR+95], [LSW97] and [KA96]. 

[TKR+95] proposed clustering of association rules that have the same right-hand side to structure associa­

tion rules for better understanding. The clustering is accomplished by defining a distance between association 

rules (the number of rows where the two rules differ). [LSW97] proposed a heuristic approach to clustering 

two attribute association rules, based on the geometric properties of the two-dimensional grid. Association 

rules of the form A I\ B =} C, where A and B are continuous attributes and C is categorical, are clustered 

in this approach. Segmentation of attributes values of A and B with a specific value of C is obtained. The 

algorithm does not handle the discrete attributes on the left-hand side of the rules. In both of these works, the 

focus is on finding clusters of association rules that have the same right hand side rather than on finding item 

clusters. [KA96] also proposed to cluster database attributes based on binary associations. In this approach, 

the association graph is constructed by taking items in a database as vertex set and considering binary associ­

ations among the items as edges in the graph. The minimum spanning tree is constructed and the remaining 

edges in the minimum spanning tree are proposed as the most interesting associations. It is suggested that 

successive removal of edges from the minimum spanning tree would produce clusters of attributes, but it is 

noted that a good criterion for continuing the clustering process is hard to define [KA96]. 

3 Clustering of Items 

Our algorithm for clustering related items consists of the foliowing two steps. During the first step, it con­

structs a weighted hypergraph H to represent the relations among different items, and during the second step, 

it uses a hypergraph partitioning algorithm to partition this hypergraph into k partitions such that the items 

in each partition are highly related. Each one of these partitions will become an item cluster. We first present 

a brief overview of association rules that are used to model the information in a transaction database as a 

hypergraph, and then describe the hypergraph modeling and the clustering algorithm. 
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TID Items 

1 Bread, Coke, Milk 
2 Beer, Bread 
3 Beer, Coke, Diaper, Milk 
4 Beer, Bread, Diaper, Milk 
5 Coke, Diaper, Milk 

Table 1: Transactions from supermarket. 

3.1 Association Rules 

Association rules capture the relationship of items that are present in a transaction [AMS+96]. Let T be the 

set of transactions where each transaction is a subset of the item-set /. Let C be a subset of / , then we define 

the support count of C with respect to T to be: 

a(C) = l{tlt ET, C ~ t} I. 

Thus a ( C) is the number of transactions that contain C. For example, consider a set of transactions from 

supermarket as shown in Table 1. The items set I for these transactions is {Bread, Beer, Coke, Diaper, Milk}. 

The support count of {Diaper, Milk} is a (Diaper, Milk)= 3, whereas a(Diaper, Milk , Beer)= 2. 

An association rule is an expression of the form X s,a: Y, where X ~ I and Y ~ I . The supports of the 

rule X ~ Y is defined asa(X U Y) /I T I, and the confidence a is defined as a{XU Y)/a(X). For example, 

consider a rule { Diaper, Milk} ===} {Beer}, i .c. presence of diaper and milk in a transaction tends to indicate 

the presence of beer in the transaction. The support of this rule is u(Diaper,~ilk, Beer) = 0.40. The confidence 

f th. l . u(Diaper.Milk,Beer) 0 66 R I ·th h. h fid c· I 1 0) · b , o 1s rue 1s u(Diaper.Milk) = . . u es w1 1g con ence 1.e., c ose to . are important, ecause 

they denote a strong correlation of the items in the rule. Rules with high support are important, since they 

are supported by a non-trivial fraction of transactions in the database. 

The task of discovering an association rule is to find all rules X s .a Y, such that s is greater than a given 

minimum support threshold and a is greater than a given minimum confidence threshold. The association 

rule discovery is composed of two steps. The first step is to discover all the frequent item-sets (candidate 

sets that have more support than the minimum support threshold specified). The second step is to generate 

association rules from these frequent item-sets. The computation of finding the frequent item-sets is usually 

much more expensive than finding the rules from these frequent item-sets. 

A number of algorithms have been developed for discovering frequent item-sets [AIS93, AS94, HS95]. 

Apriori algorithm presented in [AS94] is one of the most efficient algorithms available. This algorithm has 

been experimentally shown to be linearly scalable with respect to the size of the database [AS94 ], and can also 

be implemented on parallel computers [HKK97] to use their large memory and processing power effectively. 
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3.2 Hypergraph Modeling 

A hypergraph [Ber76] H = (V, E) consists of a set of vertices (V) and a set of hyperedges (£). A hyper­

graph is an extension of a graph in the sense that each hyperedge can connect more than two vertices. In our 

model, the set of vertices V corresponds to the item set I in the transaction database, and each hyperedge 

e E E corresponds to a set of related items. A key problem in modeling of transaction data as hypergraph is 

the determination of related items that can be grouped as hyperedges and determining weights of each such 

hyperedge. 

The frequent item sets computed by an association rule algorithm such as Apriori are excellent candidate 

to find such related items. Note that these algorithm only find frequent item sets that have support greater than 

a specified threshold. The value of this threshold may have to be determined in a domain specific manner. 

Assignment of weight to the resulting hyperedges is more tricky. One obvious possibility is to use the 

support of each frequent item set as the weight of the corresponding hyperedge. This has the disadvantage 

that the weight of larger hyperedges will generally be much more smaller than the weight of smaller hyper­

edges. Another, more natural, possibility is to define a weight as a function of the support and confidence of 

the rules that are made of a group of items in a frequent item set. In our current implementation of the model, 

each frequent item-set is represented by a hyperedge e E E whose weight is equal to the average confidence 

of all the association rules involving the items in the item-set. For example, if {A,B,C} is a frequent item­

set, then the hypergrapb contains a hyperedge that connects A, B, and C. If {A}~{B,C}, {A,B}~{C}, 

{A,C}~{B}, {B} 0
·
4 {A,C}, {B,C}~{A}, and {C}~{A,B} are all the possible association rules with 

confidence noted and the weighting function is the average of the confidences, then the weight of the hyper­

edge connecting A,B, and C is 0.6. We will refer to this hypergraph as the association-rule hypergraph. 

3.3 Finding Clusters of Items 

Note that the frequent items sets already represent relationship among the items of a transaction. But these 

relationships are "fine grain". For example, consider the following three frequent item sets found from a 

database of stock transactions: 

{Texas Instt, Intel t, Micron Tech t} 

{National Semiconductt, Intelt} 

{National Semiconductt,Micron Techt} 

These item sets indicate that on many different days, stocks of Texas Instrument, Intel and Micron Tech­

nology moved up together, and on many days, stocks of Intel and National Semiconductor moved up together, 

etc. From these, it appears that Texa<; Instrument, Intel, Micron Technology and National Semiconductor are 

somehow related. But a frequent item set of these four stocks may have small support and my not be captured 

by the association rule computation algorithm. 

However the hypergraph representation can be used to cluster together relatively large groups of related 

items by partitioning it into highly connected partitions. One way of achieving this is to use a hypergrapb 
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partitioning algorithm that partitions the hypergraph into two parts such that the weight of the hyperedges that 

are cut by the partitioning is minimized. Note that by minimizing the hyperedge-cut we essentially minimize 

the relations that are violated by splitting the items into two groups. Now each of these two parts can be 

further bisected recursively, until each partition is highly connected. One way to define a fitness function is 

to use the connectivity of the vertices in each partition to determine whether a partition is highly connected or 

it needs to be subdivided further. If each vertex belongs to a large fraction of the hyperedges in its partition, 

then we can stop the recursive subdivision. 

The method as described, works for transactions with binary attributes ( either an item is present or is absent 

from the transactions). For discrete attributes with multiple values, each value of the attribute is considered 

to be a separate item. Continuous attributes can be handled once they have been discretized using techniques 

proposed in [SA96]. 

3.4 Computational Complexity 

There are two distinct phases in our item-clustering algorithm, namely finding the association rules and par­

titioning the association-rule hypergraph. 

The problem of finding association rules has been shown to be linearly scalable with respect to the number 

of transactions [AMS+96]. Very fast and highly efficient algorithms such as Apriori are able to quickly find 

association rules in very large databases. For example, our experiments with Apriori have shown that the 

rules in more than J million transactions can be found in less than hundreds of seconds. Thus computing 

these association rules is not a bottleneck. Furthermore, many times these rules will be already available as 

a result of an earlier analysis. 

Hypergraph partitioning is a well studied problem and highly efficient algorithms such as HMETIS have 

been developed [KAKS97]. In particular, the complexity of HMETIS for a k-way partitioning is O((V + 
E) log k) where V is the number of vertices and E is the number of edges. The number of vertices in an 

association-rules hypergraph is the same as the number of distinct items in the database which is fixed for 

a given database. The number of hyperedges is the same as the number of frequent item-sets with support 

greater than the minimum support. Note that the number of frequent item sets (i.e., hyperedges) does not 

increase as the number of transactions increases. Furthermore, we can control the number of hyperedges by 

changing the minimum support and/or lower limit on the weights of the hyperedges. In particular, we can 

raise the minimum support to decrease the number of frequent item-sets and we can include hyperedges in 

the hypergraph only if they have at least a certain minimum weight. Hence, our clustering method is linearly 

scalable with respect to the number of transactions. 

4 Applications of Item Clusters 

Once item clusters have been discovered, a new meta-transaction database can be induced using the original 

transaction database and the item clusters. The new database has item clusters as attributes, and attribute 
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Item Cluster {A,B,C} 
Support A: 0.2, B :0.5, C:0.1 
Utility A: 5, B:2, C:10 
SU 17 

item matching item matching with utility 

T1 = {A,C} ! = 0.67 S+IO - 0 88 
17 - ' 

T2 = {A,B} 'i = 0.67 5-/;/ = 0.41 

Table 2: Examples of matching transactions with an item cluster. 

values are matching scores reflecting the affinity between transactions and item clusters. Table 3 depicts the 

general form of the meta-transaction database. 

One simple scoring function based on item matching is defined as the fraction of the items in the cluster 

that are present in the transactions; i.e., the matching score of a transaction T; on an item cluster / C j is: 

For example, transactions T1 and T2 of Table 2 match 2 out of 3 items from the item cluster and thus have 

0.67 as matching value. One variation of this matching scoring function uses support information of each 

item in the cluster. In this matching scheme, each item has a utility value that is reciprocal to the support of 

the item. Let SU(/) = Lief utility(i), i.e., SU(/) is the sum of all the utility values of items in the set/ . 

Then the matching score of a transaction T; on an item cluster / C j is: 

For example, transaction T1 of Table 2 has matching value 0.88 and transaction T2 has 0.41. With this match­

ing scheme, two transactions have different matching values whereas they have the same matching value in 

the simple item matching scheme. This matching function favors clustering transactions that match attribute 

values that occur less frequently. 

However, the matching scheme based on item matching is biased with respect to the size of the item clus­

ters. Transactions tend to match smaller item clusters more. Furthermore, this scoring function does not take 

into consideration the association rules of the item clusters. We are currently considering other matching 

schemes based on the association rules within the item clusters. 

Clustering of transactions After meta transactions have been defined (Table 3), based on the matching 

scoring functions, there are several options for clustering original transactions. The first option is to assign 
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IC1 IC2 lC3 lC4 ... [Ck 

Ti m1. 1 m 1.2 m1.3 m1,4 ... m1.k 

T2 m2,1 m2.2 m2.3 m2.4 ... m2.k 

'fJ m3, 1 m3,2 m3_3 m 3.4 ... mJ.k 

T,, m11, I m11.2 m11,3 m n.4 ... m 11,k 

Table 3: Meta transactions with k item clusters. 

each transaction to the item cluster with the best matching value to define a cluster: 

The second option is fuzzy clustering where each transaction is not assigned to a single cluster but assigned 

to multiple clusters with the degree of confidence as matching values. For instance, for a transaction Ti, we 

say that it belongs to C j with confidence of m;,j-

Dimensionality Reduction Yet another option is to use Table 3 as a new data and use any distance or 

probability based clustering algorithms. There are a couple of advantages of this approach. As noted earlier, 

distance-based clustering methods can not handle the mixture of continuous and discrete attribute values well. 

However, the meta transactions consist of continuous attributes only and thus the attribute characteristics 

are uniform and normalization is straightforward. Another advantage of the meta transactions is that the 

attribute space has been reduced dramatically. In meta transactions the number of attributes is the number 

of item clusters which is usually substantially smaller than the original number of attributes. The reduced 

dimensionality provides two advantages. First is that it makes the problem space more dense. Consider a 

supermarket transaction database where the number of attributes correspond to the number of items sold in a 

grocery store. When the transactions are put into the attribute space defined by this database, the space is very 

sparse and none of the existing clustering algorithms can find the clusters very we) L The meta transactions has 

much smaller number of attributes and the same number of transactions. Thus, the attribute space is more 

densely populated with the transactions. This gives a better hope of finding clusters with existing cluster 

algorithms. Second advantage of reduced dimensionality is the computational efficiency. All the existing 

clustering program will benefit because most of them have O(dn)-like complexity. Especially for AutoClass 

which has O(d2n) complexity, the smaller d will improve the computational efficiency immensely. 

Meta Rules An additional advantage of meta transactions defined in the form of Table 3 is that they provide 

a way to find meta-level association rules among different item clusters. Wediscretize the attributes in Table 3 

and find association rules from these meta transactions. The results are association rules among different 

item clusters. Generalized or multi-level association rule discovery algorithms [SA95, HF95] require the 
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hierarchy to be provided explicitly from the user. However, in many real life domains, the hierarchy of items 

may be unavailable or hard to define. Item clusters provide a structure that is discovered from the transactions 

without any user provided information. The association rules among these item clusters provide useful high­

level knowledge. 

5 Experimental Results 

We tested the ability of our item-clustering algorithm to correctly find groups of related items, on data-sets 

arising in many application areas including stock market, voting records, biology, and census. The results 

of these experiments, as well as the applications of these item-clusters on each data-set are described in the 

following subsections. 

We have also compared our results with that of AutoClass whenever it is possible. AutoClass cannot be 

used directly to cluster the items; however, we can transpose the transactions in our data set, such that each 

item now becomes a transaction, and each transaction becomes an item. We chose AutoC/ass for comparison 

because AutoClass can handle data with the mixture of continuous and discrete attributes, where distance or 

similarity measures are difficult to define, and is known for producing good quality clusters. 

In all of our experiments, we used a locally implemented version of Apriori algorithm [AMS+96] to find 

the association rules and construct the association-rule hypergrapb. We used the average of confidences of 

the association rules as a weight for the corresponding hyperedges. For partitioning the association-rule hy­

pergraph, we used HMETIS [KAKS97]. HMETIS is a multilevel partitioning algorithm that has been shown 

to quickly produce partitions that minimize the sum of the weight of the hyperedges that straddle partitions 

(i.e'., minimize the hyperedge cut). HMETIS produces k-way partitions, where k (i.e., the number of parti­

tions) is specified by the user. The partitions produced by HMETIS are subject to balance constraints that 

restrict the relative size of the various partitions. One of the limitations of HMETIS is that since the number 

of partitions is fixed and it is forced to find partitions that are subject to balanced constraints, it might bisect 

a highly connected partition. As a result, some of the partitions do not satisfy the fitness function described 

in Section 3. For this reason, after getting the partitions produced by HMETIS, we select as item-clusters 

only those partitions that meet the fitness criterion Section 3. We used the simple scoring function described 

in Section 4 for matching transactions against item clusters to construct meta transactions. 

5.1 S&P 500 Stock Data 

Our first data-set consists of the daily activity of the stocks that belong to the S&P500 index. It is well known 

in the financial markets, that during many days stocks belonging to the same industry group tend to trade sim­

ilarly. For example, a group of financial stocks tend to move up or down together depending on the market's 

belief about the health of this particular industry group. For this reason, we used this data set to verify the abil­

ity of our item-clustering algorithm to correctly cluster the various stocks according to their industry group. 

In particular, one transaction in this experiment is one day's S&P500 stock price movements compared to the 
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previous day's closing price. The items in a transaction are company names with either up or down indicator. 

Thus, there is a total of 1000 distinct items (two for each company) and each transaction can have up to 500 

of these items. Note that if in a particular day the price of a stock did not change relative to the previous day, 

then there is no item associated with this stock in that day. Given this transaction definition, an item-cluster 

will be a group of stocks and their relative movement. For example, an item-cluster may contain some stocks 

going up and some stocks going down. 

Our data set consisted of a total of 716 transactions dating from Jan. 1994 to Oct. 1996. We used these 

transactions to find the association rules and construct the association-rule hypergraph. In particular, we 

found the association rules with a support of at least 3% which lead to a hypergraph consisting of 440 vertices 

and 19602 hyperedges. Note that the number of vertices is considerably smaller than the number of distinct 

items in the data-set. This is because some of the stocks do not move very frequently, hence the correspond­

ing items do not have sufficient support. This hypergraph was then partitioned into 40 partitions. Out of these 

40 partitions, only 20 of them satisfy the fitness function. These item-clusters and the industry groups asso­

ciated with the clusters are shown in Table 4. Looking at these 20 clusters we can see that our item-clustering 

algorithm was very successful in grouping together stocks that belong to the same industry group. Out of the 

20 clusters shown in Table 4, the first 16 clusters contain companies belonging to a single industry group. 

For example, our algorithm was able to find technology-, bank-, financial-, and, oil-related stock-clusters. 

The remaining four clusters contain companies that belong to two or three different industry groups. Also, 

it is interesting to see that our clustering algorithm partitioned the technology companies into two groups, 

one consisting mostly of networking and semiconductor companies (item-cluster one and seven). Also note 

that item-cluster 17 contains stocks that are rail- and oil-related that move in the opposite direction. That is, 

it contains rail-related stocks that move up and oil-related stocks that move down. Even though this is not 

an industry group, this cluster corresponds to related moves of the underlying securities (when oil prices go 

down, oil-related stocks go down and rail-related stocks go up, since their profit margins improve). 

We also used AutoClass to find item-clusters. Specifically, each transaction in the transposed data set cor­

responds to an S&P500 stock, and each trading day is an attribute. Each attribute has three possible values: 

stock moved up, down or remain unchanged on that day. We used AutoClass on this transposed data-set to 

cluster the items. AutoClass found only three clusters of stocks. Two of these clusters contain a lot of stocks. 

One has 299 and the other has 137, and none of them contains stocks predominantly from any industry group 

or even a small number of different industry groups. The only interesting item-cluster was the third one which 

contains 26 stocks, all of them corresponding to technology-related companies. From this experiment we see 

that AutoClass is quite ineffective in finding good item-clusters. This is because as we transpose the trans­

actions we dramatically increase the dimensionality of the problem (now it is equal to the number of days). 

Besides producing poor item-clusters, AutoClass also requires much more time than our item-clustering al­

gorithm. It took AutoClass 445 seconds to produce the three item-clusters, whereas our algorithm was able 

to find 20 item-clusters in 121 seconds, which includes the time required to find the association rules, as well 

as the time to construct and partition the association-rule hypergraph. 
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Discovered Item Clusters Industry Group 

APPLIED MATI,.t,, BAY NETWORK.!.. 3 COM.j., CABLETRON SYS.J,, 
I CISCO-I,, DSC COMM.),, HP,l., INTEL-I,, LSI LOGIC.j,, MICRON TECH-I,, Tcclmology l,l. 

NATL SEMI CONDUCT ,I., ORACLE-I,, SGLJ,, SUN,!., TELLABS lNC-1,, TEXAS INST -1. 

APPLE COMP .j,, AUTODESK-I,, ADV MICRO DEVICE.),, ANDREW CORP ,l., 

2 COMPUTER ASSOC.),, CIRC CITY STORES,!., COMPAQ,!., DEC-I,, EMC CORP .j,, Technology 2,l. 

GEN INSTRUMENT ,l., MOTOROLA-!, , MICROSOFT ,l., SCIENTIFIC ATq 

3 FANNIE MAE-I,, FED HOME LOAN.),, MBNA CORP,!., MORGAN STANLEY ,l. Financial,!. 

4 BAKER HUGHESt. DRESSER INDSt, HALLIBURTON HLDt, LOUISIANA LANDt, Oilt 

PHILLIPS PETROt, SCHLUMBERGER t, UNOCAL t 

5 BARRICK GOLDt , ECHO BAY MINESt , HOMESTAKE MINTNGt, Goldt 

NEWMONT MIN IN Gt, PLACER DOME IN ct 
ALCAN ALUMINUM,!., ASARCO INC! , CYPRUS AMAX MIN,j., 

6 INLAND STEEL INC-I,, !NCO LTD,I., NUCOR CORP -1,, PRAXAIR INC.j,, Metal-I. 

REYNOLDS METALS,!., STONE CONTAINER-I., USX US STEEL-I. 

APPLIED MATLt, BAY NETWORKt, 3 COMt, CABLETRON SYSt, 

7 CJSCOt, COMPAQt, HPt , INTELt, LSILOG!Ct, MICRON TECHt, Technologyt 

NATL SEMICONDUCTt, ORACLEt, MOTOROLAt, SUNt , TELLABS INCt, TEXAS INSTt 

AUTODESKt, DSC COMMt, DEct, EMC CORPt, 

8 COMPUTER ASSOCt, GEN INSTRUMENTt. MICROSOfTt, SCIENTIFIC ATLt, Technology t 

SG!t, MERRILL LYNCHt 

BOISE CASCADEt, CHAMPION INTL t , GEORGlA-PACIFict, INTL PAPERt , 

9 JAMES RIVER CORPt , LOUISIANA PACIFict, STONECONTAINERt, TEMPLEINLANDt, Paper/Lumbert 

UNION CAMP CORPt, WEYERHAEUSERt 

10 AMERITECH CPt , BELL ATLANTlct, NYNEX CORPt Regional Bellt 

11 BARRICK GOLD-!., ECHO BAY MINES ,!., HOMESTAKE MINING-I,, Gold-I, 

NEWMONT MINING,I., PLACER DOME INC,!. 

12 BANK BOSTONt, CITICORPt, CHASE MANHAT NEW t , Banlct 

GREAT WEST FlNt , BANC ONE CORPt 

ALCAN ALUMINUMt. ASARCO INCt , CYPRUS AMAX MINt , 

13 INLAND STEELlNCt, INCO LTDt, NUCOR CORPt, PHELPS DODGEt, Mctalt 

REYNOLDS METALSt, USX US STEEL t , ALUM CO AMERICA t, UNION CARBIDEt 

BRWNG FERRJSt, CHRYSLER CORPt, CATERPILLAR INct. 

14 CNF TRAN St. DEERE & cot' FORD MOTOR cot, Motor/Machinery t 

FOSTER WHEELERt. GENERAL MOTORSt. INGERSOLL-RANDt 

CIRC CITY STORESt, DILLARDt, DAYTON HUDSONt, 

15 FED DEPT STRt. GAP IN Ct , JC PENNEY cot . NORDSTROM t' Retail/Department Storcst 

SEARS ROEBUCKt. TJX CO INCt , WAL-MART STORESt 

APPLECOMPt, ADV MICRO DEVICEt, AMGENt, ANDREW CORPt, 

16 BOSTON SCIEN CPt, HARRAHS ENTERt , HUMANA INC INCt, SHARED MED SYSt, Technology/Electronicst 

TEKTRONIX t, UNITED HEALTH CPt , US SURGICAL t 

17 BURL NTHN SANTAt , CSX CORPt, HALLIBURTON HLD,l., HELMERICH PAYNE-!. Railt/Oil-1. 

AMR CORPt , COLUMBWHCAt, COMPUTER SCIENCEt, DELTA AIR LINESt, 

18 GREEN TREEFINt. DISCOVERt. HOME DEPOT INct, MBNA CORPt, Air/Financial/Retail t 

LOWES COMPANIESt , SW AIRUNESt, MORTON INTI..t, PEP BOYSt 

CHRYSLER CORP-I., f-1..EETWOOD ENTR.j,, GENERAL MOTORS,!., HUMANA INC,!., 

19 INGERSOLL-RAND,!. , LOUISIANA PACIF.j,, MERRILL LYNCH,!., Auto/Technology,!. 

NOVELL INC,!., PACCAR INC-I,, TEKTRONJX,I. 

CNFTRANS.j,, CENTEX CORP-I,, GAP INC-I,, HARRAHS ENTER,!., 

20 LOWES COMPANIES-I., SW AIRLINES,!., MCI COMMS CP-1., SEARS ROEBUCK-!., Home Building/Retail/fcchnology .j, 

SHARED MED SYS+, TELE COMM [NC.j,, UNITED HEALTH CP ,1., US SURGICAL+ 

Table 4: Clustering of S&P 500 Stock Data 

1 1 



Rule No. Confidence(%) Meta Association Rules 

1 75.0 {Technology 2,1,} => 
{Technology 1,j,} 

2 100.0 {Technology 2 ,j,, Metal,!,} => 
{Technology 1,j,} 

3 80.0 {Goldt, Technology 2,j,} => 
{Financial,!,} 

4 81.0 {Railt/Oil,j,} => 
{Motor/Machineryt} 

Table 5: Some Examples of the Meta Association Rules Discovered 

We applied the method for computing meta association rules described in Section 4 on the item clusters 

found from the S&P 500 data Some of the rules are shown in Table 5 with their confidence. Rule 1 shows 

that 75% of time when the Technology cluster 2 went down, the Technology cluster I went down. Rule 2, on 

the other hand, shows that every time when the Technology cluster 2 and the Metal cluster went down, the 

Technology cluster 1 went down. These two meta association rules demonstrate the usefulness of the meta 

rules in that two technology clusters tend to move together and when the Technology cluster 2 and the Metal 

cluster moves down together, there is higher chance that the Technology cluster 1 goes down. Rules 3 shows 

that the Gold cluster and the Financial cluster move in opposite directions, which is a widely understood 

market behavior. 

5.2 Congressional Voting Records Database 

The second data set that we experimented with is the Congressional Voting Records Database provided by 

[MM96]. This data set includes 435 transactions each corresponding to one Congressman's vote on 16 key 

issues. Thus, fo r each bill the data set has two different items, one corresponding to YES or NO vote. Our 

goal with this data set was not only to find item-clusters, but also to use these item-clusters to cluster the 

actual transactions. 

We used our item-clustering algorithm to find the clusters of votes, by forming and partitioning the association­

rule hypergraph. Our hypergraph partitioning algorithms found three item-clusters that are shown in Table 6. 

With these item-clusters we then clustered the actual transactions. As discussed in Section 4, this was done by 

assigning each transaction to the item-cluster that it matches the most. This lead to three transaction-clusters, 

one for each item-cluster. We evaluated the quality of these transaction-clusters by looking to what extent 

they represent voting records of congressmen belonging to the same party. In particular, for each transaction­

cluster, we counted the number of democrats and republicans that belong to it. These results are shown in Ta­

ble 7. From this table we see that the first cluster represents predominately republican congressmen, whereas 

the other two clusters represent predominately democrat congressmen. 

We also used AutoClass to cluster the voting transactions. As opposed to clustering items, AutoClass can 
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Cluster Voting Items 

adoption-of-the-budget-resolution-NO, physician-fee-freeze-YES, el-salvador-aid-YES 

1 religious-groups-in-schools-YES, anti-satellite-test-ban-NO, aid-to-nicaraguan-contras-NO, 

mx-missile-NO, education-spending-YES, crime-YES, duty-free-exports-NO 

adoption-of-the-budget-resolution-YES, physician~ fee-freeze-NO, el-salvador-a id-NO, 

2 anti-satellite-test-ban-YES, aid-to-nicaraguan-contras-YES, mx-missile-YES, 

education-spending-NO, crime-NO 

handicapped-infants-NO, water-project-cost-sharing-YES, immigration-YES, 

3 synfuels-corporation-cutback-YES, superfund-right-to-sue-YES, 

export-administration-act-sou th-africa -N 0 

Table 6: Clustering of Congressional Voting Items 

Class Cluster 1 Cluster 2 Cluster 3 

Republican 159 7 2 

Democrat 38 216 13 

Table 7: Clustering of Congressional Voting Data Set 

Class Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Republican 0 130 28 2 8 

Democrat 163 22 30 48 4 

Table 8: Clustering of Congressional Voting Data Set by AutoC/ass 
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be used directly to cluster transactions. AutoClass found five clusters, whose quality is shown in Table 8. 

This table shows the number of democrats and republicans that belong to the clusters found by AutoClass. 

As we can see from this table, clusters 1, 2, and 4 are clean clusters, since they correspond to congressmen that 

belong predominately to the same party. However, clusters 3 and 5 are mixed. In particular, cluster 3 is evenly 

divided among democrats and republicans, whereas cluster 5 has eight republicans and four democrats. These 

comparisons show that our method produced clusters that are comparable (if not better) to those of AutoClass 

in quality. 

5.3 Protein Coding Database 

Our next data set arises in molecular biology. Molecular biologists study genes within the cells of organisms 

to determine the metabolic function of the proteins that those genes code for. Faced with a new protein, biol­

ogists have to perform a very laborious and painstaking experimental process to determine the functionality 

of the protein. To rapidly determine the function of many previously unknown genes, biologists quickly gen­

erate short segments of protein-coding sequences ( called expressed sequence tags, or ESTs) and match each 

EST against the sequences of the known proteins, using similarity matching algorithms [AGM+9o, PL88]. 

If the EST clusters are available that are related to each other functionally, then biologists can match the 

new protein against the EST clusters to find those EST clusters that match the protein most closely. At this 

point, the biologists can focus on experimentally verifying the functionalities of the protein represented by 

the matching EST clusters. Hence finding clusters of related ESTs is an important problem. 

Our data set consists of 11,986 transactions and 662 different items. Each transaction corresponds to a 

known protein and each item corresponds to an EST. The transactions for each known protein contains the 

ESTs that are matched with it. We used our method of clustering the ESTs (Le., the items of the data set) by 

forming the association-rule hypergraph and partitioning it. In finding the association rules we used a support 

of0.02%, which essentially created rules that are supported by at least three transactions (i.e., proteins). This 

led to a hypergraph with 407 vertices and 128,082 hyperedges. We used HMETIS to find 40 partitions, out 

of which 39 of them satisfied the fitness criteria. These 39 EST clusters were then given to biologist (the au­

thors of [NRS+9s, scc+9S]) to determine whether or not they are related. Their analysis showed that most 

of the EST clusters found by our algorithm correspond to ESTs that are related. In fact, 17 of the 39 clus­

ters are very good, as each corresponds to a single protein family, whereas most of the remaining clusters 

correspond to three or four different protein families. Furthermore, by looking at the connectivity of each 

sub-hypergraph that corresponds to each one of this second class of clusters, we were able to see that they 

correspond to weakly connected sub-clusters, whose further subdivision will create single-protein clusters. 

This is particularly important, since it verified that the association-rule hypergraph is extremely accurate in 

modeling the relations between the various items, and we can easily verify the quality of the clusters by look­

ing at their connectivity. Also, our clustering algor ithm took under five minutes to find the various clusters 

which includes the time required to find the association rules and form the hypergraph. 
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We also used AutoClass to try to find clusters of ESTs by transposing the data set. This transposed data set 

consisted of 662 transactions, one for each EST, and 11,986 items, one for each known protein. On this trans­

posed data set, AutoClass found 25 clusters of which only two of them were good clusters. The remaining 

clusters were extremely poor, as they included a very large number of ESTs (in general the number of related 

ESTs is very small, under ten ESTs). AutoClass found clusters of size 128, 80, 72, 55, and many other clus­

ters of size 20 or greater, all of which were bad mixed clusters. We believe that as in the case of the S&P 500 

data set, AutoClass was unable to successfully cluster the ESTs due to the high dimensionality, and the spar­

sity of the data set. Moreover, the limitations of AutoClass to handle data sets that have high dimensionality 

was also manifested in the amount of time that it required. It took more than 5 hours to find these clusters on 

662 ESTs. Comparing this to our sub-five minute runtime, we see that our item-clustering algorithm is able 

not only to find much better clusters, but it is also faster by roughly two orders of magnitude. 

5.4 Web Document Data 

Our next data set consisted of Web documents and the words that frequently appear in them. Specifically, 

we are interested in finding clusters of related words that tend to appear together in a document. These word 

clusters can then be used to find similar documents from the Web, or potentially serve as a description or 

label for classifying documents [WP97]. 

We collected 87 documents from the Network for Excellence in Manufacturing (NEM Online)1 site. From 

these documents we used a stemming algorithm [Fra92] to find the distinct stems that appear in them. There 

were a total of 5772 distinct word stems. We then constructed 87 transactions (one for each document) such 

that a distinct word stem is in the transaction only if it is contained in the document. These transactions 

formed the data set that we used to cluster the related words together. 

We used our item-clustering algorithm to find word-clusters by constructing the association-rule hyper­

graph and partitioning it. In particular, we found all the association rules with a support of at least 5% (i.e., the 

words must appear in at least five documents), and formed the corresponding hypergraph. This association­

rule hypergraph has 304 vertices and 73793 hyperedges. Note that out of the 5772 distinct word stems, only 

304 survived the association-rule discovery process. The rest of words did not survive because all associa­

tion rules containing these words had support less than the preset threshold. Pruning infrequent word stems 

is actually very important as these words do not appear often enough to characterize documents. Thus, by 

using the association-rule hypergraph we are able to automatically prune non-essential information. This 

hypergraph was then partitioned into 20 partitions all of which passed the fitness criteria. Five of these 

word-clusters are shown in Table 9 and the remaining can be found at http://www.cs.umn.edu/~han/word­

cluster.html. Looking at this table we see that the word clusters found by our algorithm are indeed related. 

For example, cluster 1 includes word stems such as http, internet, site, and web, that clearly correspond to 

web-related information. Similarly, cluster 2 corresponds to computing/electronic related words, cluster 3 

1 http://web.miep.org: 80/miep/index.html 
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

http access act data action 

internet approach busi engineer administrate 

mov comput check includes agenci 

please electron enforc manag complianc 

site goal feder network establish 

web manufactur follow services health 

WW power govern softwar law 

step informate support laws 

page systems nation 

public technologi offic 

wide regulations 

Table 9: Word Clusters using Item Clustering (Note that words are stemmed.) 

corresponds to government-related words, cluster 4 corresponds to software/networking related words, and 

cluster 5 corresponds to legal related words. 

We also used AutoClass to find word-clusters by first transposing the data set. In this transposed data 

set, there are a total of 5772 transactions and 87 distinct items. AutoClass found 35 word clusters that in­

clude several very large clusters (each containing over 200 words). The five smallest (and also better) clus­

ters are shown in Table 10 and the remaining clusters can be found at http://www.cs.umn.edu/~hanlword­

cluster.html. Looking at this table, we see that the word-clusters found by AutoClass are quite poor. In fact, 

we cannot see any obvious relation among the most of the words of each cluster. In contrast, the word-clusters 

found by our algorithm are considerably better and we can easily identify the type of documents that they de­

scribe. It is also interesting to note that the first cluster found by our algorithm (the web-related words) are 

equally dispersed among the word-clusters found by AutoClass. The poor performance of AutoClass is par­

ticularly surprising since the dimensionality of the data set is relatively small ( only 87 distinct items) and 

there are a relatively small number of transactions. 

5.5 US Census Database 

Finally, to test the scalability of our item-clustering algorithm on a large data set we used the Adult Database 

[MM96], which is a subset of US Census data. This database has 48,842 transactions, 6 continuous and 8 

discrete attributes. One transaction corresponds to one person's census data information. The continuous 

attributes were discretized based on the schemes proposed in (SA96] in the preprocessing step. This dis­

cretization of the continues attributes, increased the total number of items from 14 to 108. 

We constructed the association-rule hypergraph by finding all association rules that have a support of at 

least 0.1%, which lead to a hypergraph with 108 vertices and 541 hyperedges. After partitioning this hy­

pergraph into 10 clusters, and eliminating the ones that did not satisfy the fitness criteria, we obtained the 9 

item-clusters shown in Table 11. Looking at this table we see that our algorithm was successful in group-
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Cluster I Cluster 2 Cluster 3 Cluster 4 Cluster 5 

copyright adopt comprehens concern court comell effort congress affirm 

design efficientli held agent doc amend amendments employ engineer 

found hr html documents appeals formerli appear equal home 

intemate http hyper juli list meet news homepag house 

object librari mov apr notificate onlin organize ii iii 

offices please nov pac own pages implementate legisl 

procedur programm patents recent people portions legislate mail 

automaticalli reserv register sites publications sections major name 

resist bas bear tac select server nbsp page 

basic WW timeout topics servers structur rerpresentatives section 

bookmarks changes trademark user technic uscod senat send 

com uspto word version visit thomas bills 

web wclcom track trade 

center central webmast action 

Table 10: Word Clusters using AutoC/ass 

ing together items (i.e., census attributes as well as sub-intervals of the continues attributes) that are highly 

related. For example, cluster 2 represents a class of people with low education and/or immigrant from Mex­

ico, cluster 3 represents a class of people who are very young with high school degree (possibly attending 

colleges) and working less than 40 hours per week (possibly working only part time). Cluster 4 represents 

a class of people who are old (possibly retired) with low education. Cluster 9 represents a class of people 

who are young and have low-paying jobs. On the other hand, Cluster 6 represents a class of people who are 

in their mid 30's to S0's with bachelors or masters degree, working as managers or professionals. Cluster 8 

represents a class of people who are in their mid 40's to 60's with professional degree and with capital gains 

of 15K. 

This data set has the largest number of transactions compared to the previous data sets. Nevertheless, 

our algorithm was able to produce the above clusters in only 110 seconds. In particular, it took Apriori 56 

seconds to find the association rules, and we were able to construct and partition the hypergraph in only 54 

seconds. Thus, our algorithm scales very nicely with increasing data set size. The main reason for this is that 

we operate on the actual data set only for finding the association rules. Once these rules have been found, we 

then operate only on the association-rule hypergraph, whose size is independent of the number of transactions 

in the data set. 

6 Conclusion and Future Works 

In this paper, we have presented clustering of items based on the association rules and the applications of the 

discovered item clusters in different areas. The modeling of association rules using hypergraph and partition­

ing the association rule hypergraph leads to an efficient method of finding item clusters. The item clusters in 

tum can be used to cluster transactions, used to reduce the dimensionality of the clustering problem, or used 

to find meta association rules among different item clusters. 

Our experiments indicate that clustering of items and transactions based on the association rules holds 
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Cluster 1 native-country: China, India, Japan, Philippines,Sou1h,Taiwan,Vietnam occupation: Tech-suppon 

race: Asian-Pac-Islander 

Cluster 2 native-country: Mexico education: I st-4th,5th-6th,7th-8th,9th 

education-num: 2- 5 

Cluster 3 age: 17.0---23.5 hours-per-week: 1.0-35.5 

education: HS-grad,Sorne-college cducation-nurn: 9-10 

marital-status: Divorced occupation: Adrn-clerical,Other-service,Sales 

relationship: Own-child,Unmarried race: Black 

Cluster 4 age: 62.5-91.0 relationship: Other-relative 

education: IOth,l lth education-num: 6-7 

marital-status: Separated.Widowed occupation: Craft-repair 

fnlwgt: 145414.0---158686.5, 206429.0-2197 1 l .5, 237109.5- 289433.0 

Cluster 5 age: 50.5- 57.5 workclass: State-gov 

hours-per-week: 60.5- 100.0 fnlwgt: 39446.0-6571 1.0, 117830.0---130880.5 

education: Assoo-voc, Doctorate education-nurn: II , 16 

Cluster 6 age: 37.5-39.5, 41.5-45.5, 47.5- 50.5 workclass: Local-gov,Self-emp-not-inc 

hours-per-week: 40.5-45.5, 49.5-50.5 fnlwgt: 91710.0---106659.0 

education: Bachelors, Masters education-nurn: 13-14 

occupation: Exec-rnanagerial,Prof-specialty relationship: Wife 

Cluster7 age: 31.5- 37.5, 39.5-41.5 workclass: Federal-gov 

hours-per-week: 35.5- 39.5, 50.5-59.5 occupation: Prote<::tive-serv 

education: Assoc-acdrn education-num: 12 

fnlwgt: !69538.0---178384.0, 187726.0-206429.0, 329073.5- 379773.0 

Cluster 8 age: 45.5-47.5, 57 .5-62.5 workclass: Self-crnp-inc 

capital-gain: 15022.0-15427.5 hours-per-week: 59.5-60.5 

fnlwgt: 6571 1.0---9 1710.0, !78384.0---187726 0, 2:89433.0--329073.5 education: Prof-school 

cducation-num: 15 

Cluster 9 age: 25.5-27.5 hours-per-week: 45.5-49.5 

fnlwgt: 158686.5-169538.0, 2l9711.5- 237 109.5 education: 12th 

occupation: Handlers-cleaners ,Machi ne-op-i nspct, Transport-moving education-nurn: 8 

Table 11 : Item Clusters of Adult Database 
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great promise. Our experiments with stock-market data and congressional voting data show that this cluster­

ing scheme is able to successfully group items that belong to the same group. The clustering of the congres­

sional voting data using discovered item clusters show that this method is quite effective in finding clusters 

of transactions that correspond to either democrat or republican voting patterns. We have also found clus­

ters of segments of protein-coding sequences from protein coding database using our item clustering method. 

The discovered clusters of protein-coding sequences share the same functionality and thus are very valuable 

to biologist for determining functionality of new proteins. Our experiments with Web documents show that 

clustering of related words produced by our item clustering method is much more effective than that produced 

by AutoClass, and our method is much faster. 

In our ongoing research, we are investigating ways to improve the modeling such that the relationship 

among items are more accurately captured in the hypergraph. More specifically, we are evaluating different 

weight functions for the hypergraph edges. We are also working on to improve the hypergraph partitioner 

HMETIS such that the number of partitions can be determined automatically by evaluating fitness of the 

partitions. In the construction of meta transactions using discovered item clusters, we are evaluating different 

matching schemes that can be used in matching transactions against item clusters. 

Our algorithm for constructing clusters of items can be used in many ways other than discussed in this 

paper. For example, discovered clusters can be used for improving accuracy, efficiency and robustness of 

classification algorithm, and for detecting deviations. It also appears possible to find interesting high confi­

dence association rules that have very low support using discovered item clusters. 
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