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ABSTRACT 

Knowledge-Based systems are being used in many applications areas where their 
failures can be costly because of the losses in services, property or even life. To 
ensure their reliability and dependability, it is important that these systems are 
verified and validated before they are deployed. This paper provides perspectives 
on issues and problems that impact the Verification and Validation (V & V) of 
these systems. Some of reasons why V & V of Knowledge_-Based systems is difficult 
are presented. The paper also provides an overview of different techniques and 
tools that have been developed for performing V & V activities. Finally, some of 
the research issues that are relevant for future work in this field are discussed. 

1. INTRODUCTION 

Expert systems (ES) are intelligent computer systems whose problem-solving performance 
would rival or exceed human performance in narrow areas of human endeavor, whereas 
knowledge-based systems (KBS) are computer systems that assist in problem solving. Expert 
systems and knowledge-based systems are among the fruitful spin-offs from artificial 
intelligence. The worldwide expert system expenditures in 1993 totaled $595 million. Today, 
these systems have found their way into many applications such as knowledge publishing, shuttle 
mission experiment planning, crew scheduling, medical diagnosis, computer configuration, 
process control, regulation compliance advising, financial advising and nuclear engineering. 

As these knowledge systems (KS) (We use KS to denote either ES or KBS.) are deployed in 
settings where system failures may result in loss of productivity, decision-making, property, 
business, services, or even life, the reliability and dependability of the systems become important 
[Barker 89, Gupta 91, Tsai 90b]. It is imperative that the systems are thoroughly verified and 
validated before they can be deployed in the field. Verification and Validation (V & V) of KS 
therefore is a key aspect of the development of KS. Many V &V techniques and tools have been 
proposed, developed and implemented [Ayel 91a, Culbert 90, Ginsberg 93, Gupta 91, Hayes­
Roth 94, Lydiard 92, Miller 94, Nazareth 89, O'Keefe 93, O'Leary 94, Plaza 93, Preece 93, 
Zlaterava 94]. 
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As the use of KS in various areas grows, many commercial KS are being developed. Many 
techniques have been applied to the development of these KS and experience has been gained 
about some of the specific issues and problems faced during the development of KS in the 
industry. These issues can be useful in understanding the progress made and the some of the 
shortcomings of existing V & V techniques for KS in the context of industrial environments. 
Table 1 summarizes some surveys about current industrial practice in V & V of KS [Hamilton 91, 
O'Leary 91]. 

Survey Subject Response 

performance 
75% systems were less accurate than expected; 65% systems were less accurate 
than the experts; users, more often than developers, estimated the expert systems as 

criteria 
being less accurate than expected and less accurate than the expert 

requirements 
52% systems did not have documented requirements; 43% systems used prototypes 

definition 
for requirements; 35% said requirements were hard to develop 

development 40% systems followed lifecycle of cyclic model; 22% systems did not follow any 
information lifecycle model; average of 23 person-months to develop 

V & V activities 
Most V & V activities relied on comparison with expected results and expert 

performed 
checking; 59% had domain expert check Knowledge Base (KB); 24% development 
effort was spent on V & V; I 00% users rated V & V of expert system as hard; 27% 
developers said V & V were hard; there was wide range of V & V techniques used 

V&V issues test coverage determination (63%); knowledge validation (60%); real-time 

encountered performance analysis (33%); problem complexity (40%); modularity (27%); 
certification ( 11 % ); understandability ( 10% ); configuration management (20% ); 
validation of Inference Engine (IE) ( 19% ); analysis of certainty factors (86%) 

Table 1. Results of A Survey. 

From table 1, it is apparent that KS share many characteristics with conventional software. The 
lack of well-documented requirements, the use of prototypes as requirements and the absence of 
a well-defined life-cycle model are common to many conventional software development 
environments also. For instance, inconsistencies, incompleteness, and ambiguity in requirements 
specifications have been identified as major sources of bugs in software development [Beizer 
90]. But KS also have certain components such as the IE, and domain knowledge stored in a KB, 
which are not present in conventional software. Thus, while many issues that impact the V&V of 
conventional software such as the lack of requirements documents need to be considered, 
additional issues such as the validation of the IE and its interactions with the KB also need to be 
addressed. This paper presents a perspective on the issues related to the V & V of KS and some of 
their goals. 

2. DEVELOPMENT OF KS 

The development process for a software product specifies how the development tasks are 
decomposed into sub-tasks or phases. It also determines what by-products are used and generated 
during the development process. V & V require checking some properties ( such as internal 
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consistency) of a by-product (such as requirements specification) or a comparison of two by­
products (such as a specification and the code) generated during the development process. Hence 
what constitutes V&V for a software product is closely tied to the software's development 
processes. 

Example development processes include the Waterfall model, Spiral Model, exploratory 
prototyping, and the Object-Oriented paradigm [Pressman 87]. In the Spiral model of 
development, the system is 
developed iteratively in a 
cyclic fashion, with each 
cycle consisting of different 

I. 
2. 
3. 

General Framework for V&V 
Detennination of goals of V & V 
Generation of problems (inputs) to be used by a V&V method 
Generation of expected outcomes (outputs) on the selected problems 

phases such as the 4. Application and Evaluation of problems 
requirements and 
specifications, design, coding and testing. The system is incrementally developed with changes 
made in each cycle of the development. The by-products of following such a process include 
requirement documents, design documents, the code that implements the design, test 
specifications and test suites. One type of binary comparison between two by-products of such a 
process is to check the requirements documents (which can be expressed using different 
techniques including structured models such as data flow diagrams, pseudo-languages such as 
PDL or formal languages such as VDM) against a design document which specifies the 
functional decomposition and data structures and algorithms. Similarly, another binary test can 
be conducted by comparing the design document against the code that implements the design. 

However, sometimes it is difficult to identify the intermediate by-products in some KS 
development 
processes. For 
instance, table 1 
shows that 22% of 
systems did not 
follow any lifecycle 
model. In such cases, 
the different phases in 
the development 
processes are not 
clearly defined, 
which makes it 

Verification and Validation according to the IEEE Standard Glossary [IEEE 90] 

Verification: (I) The process of evaluating a system or component to determine 
whether the products of a given phase satisfy the conditions imposed at the start of 
that phase. (2) Formal proof of program correctness. 

Validation: The process of evaluating a system or component during or at the end of 
the development process to determine whether it satisfies specified requirements. 

Verification and validation (V&V): The process of determining whether the 
requirements for a system or component are complete and correct, the products of 
each development phase fulfill the requirements or conditions imposed by the 
previous phase, and the final system or component complies with specified 
requirements. 

difficult to identify by-products of the phases. Table 1 also shows that 52% of systems did not 
have any documented requirements while . 43% systems used prototypes as the requirement 
specifications. Thus in these development processes intermediate by-products are not available 
for performing V&V. Verification activities (which compare the products of each phase against 
the goals set at the start of each phase) are difficult to perform in such cases. Only validation of 
the system against experts or users can be performed in such cases. 
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Another characteristic of KS is that the requirements and specifications for an KS are often 
dynamically changing. An example of a successful production level KS whose requirements are 
continuously changing is XCON [Barker 89]. When requirements or other artifacts are 
dynamically changing it is more difficult to perform V & V on these systems than on systems 
with static artifacts, 
since it is important to 
ensure an artifact's 
internal consistency 
whenever it changes 
before it can be 
compared with the 
other by-products of 
the development 
process. 

Nature Qf faults in development_ life-cycle [Kirani 94aJ .. 
Faults not detected in early phases become progressively more expensive to 
rectify in later phases. 

A fault-prone region (input region that results in failures) may not be uniformly 
distributed across the complete input space. 

Faults in early life-cycle phases may induce a multitude of faults in the final 
program. 

Inconsistency or incompleteness in any phase may result in inconsistent or 
missing rules in the final program. 

Sometimes, there may not be explicit requirements specifications for KS. For example, it is 
argued that the dynamically changing KS prototype should be viewed as its own specification 
within the rapid prototyping paradigm of development. For KS, the availability of an explicit 
requirement and specification corresponds to having a Type I computational theory [Marr 82] for 
the task being performed by the KS. Verification in this case is then reduced to showing that a 
specific implementation is consistent with the computational theory. However, more often than 
not, an explicit computational theory for an KS does not exist. In the absence of a Type I 
computational theory, alternative artifacts such as archived test suites, domain experts or 
literature can be used in lieu of an explicit specification. 

3. WHYISV&VOFKS DIFFICULT? 

Many factors ~ause problems in performing the V & V of KS. Such factors include the different 
knowledge representations, evolving KBs, the large number of rules in KBs and the costs 
involved in test case generation, execution and evaluation: 

3.1 Knowledge Representation Formalisms 

Knowledge in a KB may be represented in terms of different formalisms such as logic (predicate 
or propositional logic), rules, frames, cases, blackboard, generic tasks, object-oriented or 
semantic networks. Sometimes, a single formalism is used, thus resulting in terms such as rule­
based KB or frame-based KB, but hybrid formalisms, such as .the combination of rules with 
frames, or rules with cases, have also become popular. Due to the interaction of multiple 
formalisms, a set of new issues need to be -considered for KB verification. For example, it has 
been demonstrated in that because of the object hierarchy and property inheritance in a hybrid 
KB of rules and objects, new types of anomalies unique to this hybrid representation will arise 
such as additional subsumption cases, and semantic conflict cases. KBs expressed in different 
formalisms or their hybrids are thus prone to different types of anomalies and need to be 
addressed during the V & V process. 
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3.2 Evolving and Large KBs 

KBs represent knowledge in the application domains. Since the application domains in many 
cases are still evolving, the KBs change and become increasingly large. A prominent example is 
the XCON experience where the number of rules has increased from 200 in 1979 to 17000 in 
1989 [Barker 89]. XCON also illustrates 

Relationships between Error, Fault and Failure 
the dynamically changing subject domain According to the IEEE standard terminology of error, 
and the complexity and large size of the fault and failure, errors represent human mistakes which 
system. As the KBs evolve at such a pace, can result in faults in a system. The execution of a faulty 
it becomes difficult for the developer to system produces failures [Musa 87]. A fault (or 
perform verification of the KBs to ensure commonly referred to as bug) may cause a system to fail 

on multiple inputs, but each failure can potentially lead to 
that there are no inconsistencies, the discovery of a new fault. Thus, multiple failures of a 
incompleteness, and redundancies in the system do not necessarily imply that the system has 
KBs. As applications evolve, the multiple faults. '----=------- --- --- ------' specifications, design, code and test cases change. A change in one of these artifacts can cause 
ripples in the others. For instance, a change to the system requirements can cause changes to the 
design, and the code and require new test cases. Configuration control to maintain the versions of 
these artifacts is an important issue when applications evolve. 

3.3 Characteristics of KBs 

KBs have several specific characteristics which give rise to new verification problems. For 
instance, domain knowledge may be attached with confidence factors and/or temporal operators. 
In the presence of confidence factors, an otherwise "less-harmful" case of redundancy may lead 
to serious problems, when each redundant piece of knowledge is utilized multiple times leading 
to erroneous increases in the level of confidence assigned to associated conclusions. Some of the 
other characteristics of KBs that impact their V&V include the different knowledge types (sure 
and heuristic), decomposability of KBs, inclusion vs. exclusion of meta knowledge in a KB, the 
models of a KB (flat vs. hierarchical), and the monotonicity vs. non-monotonicity of KBs. 

3.4 Domain Experts in V & V 

Domain experts can be actively involved in the V & V of KS in several phases such as detection 
of anomalies, analysis of results produced by some automated verifier or to perform necessary 
corrections to a KB [Rousset 88]. Domain experts are especially needed in those systems that do 
not have documented requirements or use the system prototypes as the requirements. However, 
the complexity and size of the KBs often make it hard for domain experts to fully comprehend 
the KBs. Furthermore, even though experts can be used as oracles to generate expected outputs, 
they often disagree with each other and cost of the involvement of these domain experts can be 
an issue. 

5 



3.5 KS Anomalies 

An anomaly refers to patterns of common faults with respect to certain analysis techniques. 
Different development techniques such as procedural, object-oriented (00) or logic-based, give 
rise to different forms of anomalies. For instance, data flow anomalies are those anomalies 
related to the accessing and updating of data items in a program [Subramanian 94]. Some 
examples of such anomalies are define-define where a variable is updated twice without an in­
between use, or define-kill where a variable where a variable is defined and killed without being 
used. Such anomalies can occur in paradigms where variables are defined and used. Different 
V & V techniques are also needed to detect such anomalies within an application. For instance, 
one example of an anomaly specific to the 00 paradigm is the message flow anomaly, which 
involves two or more methods calling each other repeatedly without performing any useful work. 
Such anomalies are based on sequencing relationships [Kirani 94b] among the methods of 
objects in an application. 

Certain anomalies are specific to KS. For instance, a rule-based KB may have potential 
inconsistencies, incompleteness, circularity or redundancies among the rules in the KB. Another 
example of an anomaly in a KS is the deleterious interactions among good rules, which are 
indigenous to rule sets which reason under uncertainty. When a group of individually correct 
rules interact together to give an erroneous final conclusion, then these rules are acting together 
in a deleterious manner. The cause of such fault stems from the fact that these rules are based on 
uncertainty. 

There has been lack of standardization on classification of KB anomalies. Most of the existing 
verification techniques adopted their own criteria. The definitions of the anomalies in a KB are 
largely given through examples. The work reported in [Chang 90] offers a detailed account on 
verification criteria where three types of criteria, namely structural, logical and semantic criteria 
were delineated. 

3.6 Testing of KS 

Testing of KS is an integral part of the V & V process. The general framework for testing consists 
of the following steps: (1) establishing testing criteria, (2) generating test cases (inputs) and 
expected outcomes on the selected inputs, (3) applying a test method to exercise the software, 
and ( 4) evaluating the test outcomes. Testing in general is a labor-intensive and fault-prone 
process. The difficulties arise from different testing criteria, large input and output spaces and 
legal test cases generation. Another important factor that makes testing difficult is the high costs 
involved in performing these activities: 

Testing Criteria: A testing criterion defines the goal for comparing a system against a 
specification. Several criteria for testing KS such as testability, reliability, safety, completeness, 
consistency, robustness and usability. Different testing criteria will lead to different test cases; 
for instance some test inputs can be used for testing for reliability as well as safety. However, 
testing for reliability checks whether the system conforms to its specifications while testing for 
safety checks whether the system does not cause any harmful effects to its environment. When 
different criteria exist, appropriate selections must be made for performing the testing. 
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Difficulties in generation of test case inputs: A legal test input is a test input that is consistent 
with the input specification in the problem specification. Although a problem specification 
(which is a description of the problem being solved) [Zualkernan 88] may specify what a legal 
test input is, it often does not state how it can be generated. It is difficult to effectively generate a 
large number of test inputs when the problem specification does not specify the definition of a 
legal input. If the problem specification specifies the legality criteria and an oracle ( an oracle can 
be a program or a domain expert) is available it can be used to identify the legal (and illegal) test 
inputs for positive (and negative) testing. Domain literature can also be used to generate the 
inputs for a test case. If domain Literature is used, there is a danger that one can end up with test 
inputs that are not representative of the real problems solved by experts in the field. If there is no 
oracle, it is almost impossible to systematically generate a test input. Table 2 summarizes the 
problems with the generation of test inputs. 

Condition Difficulties 

Problem specification does not specify the legality criteria Difficult 
Problem specification specifies the legality criteria but no oracle Difficult 
is available 
Problem specification specifies the legality criteria and an oracle Less difficult 
is available 

Table 2. Difficulties in generating test inputs for black-box testing . 

Difficulties in generation of test case outputs: Since V & V of an KS requires a large number of 
test cases, generation of expected outputs for a legal input can be expensive. Although experts 
can be used as oracles to generate expected outputs, this can be expensive. Expected outputs can 
also be generated from other sources such as explicit solution specification (which is an 
abstraction of an implemented solution), archived test cases, or domain literature. The generation 
of outputs from these sources, however, will in general be difficult. The difficulties for 
generating expected outputs are summarized in Table 3. 

Condition Difficulties 
Problem specification does not specify the legality criteria Very Difficult 

Problem specification does not but solution specification Difficult but useless for black-box testing 
specifies the legality criteria 
Both problem and solution specifications specify the legality Difficult 
criteria but no oracle is available 
Both problem and solution specifications specify the legality Less Difficult 
criteria and an oracle is available 

Table 3. D1fficult1es m generatmg expected test outputs . 

Input and output spaces for selection of test cases can be huge: The potential input and output 
spaces for KS are large and the criteria for picking the appropriate inputs and output are not 
clear. The sizes of the input space, the output space and the number of possible paths for some 
KS can be estimated by using the data given in [Buchanan 88] (see table 4). As indicated in 
Table 4, for systems that use either a selection method (such as MYCIN and INTERNIST) or the 
construction method (such as XCON, XSEL and XFL), the potential sizes of the input and the 
output spaces for black-box testing are enormous. 
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High costs of testing: 
The cost of a testing 
method not only 
depends on the cost of 
test case 
and the 

generation 
cost of 

evaluation, but also on 
the cost of loss, i.e., the 
cost incurred if a fault 

System # objects #attributes size of input size of the 
space output space 

MYCIN 17 257 3.4 X lQO 6 X 10° 

INTERNIST 571 4100 4.0 X 10Io, 3.1 x 101 

XCON 94 840 3.5 X 10.t, 2.1 X }0.ll0 

XSEL 79 329 5.0 X toL4 -
XFL 74 252 I. 3 X JOL5 -

Table 4. Some Est imates of Parameters of KS [Tsai 93a]. 

is missed. Cost of test case generation consists of cost associated with generation of test inputs 
and expected outputs. Generating expected outputs can be difficult because testing criteria can be 
unclear or due to lack of oracles. Consistency and completeness methods have less cost of 
generation compared with dynamic testing methods (see table 5). 

The cost of test case evaluation is often less than the cost of test case generation because a 
significant portion of test case evaluation can be automated For consistency and completeness 
testing methods cost associated with running a test program on rule base is less than dynamic 
testing methods. 

Cost of loss is the cost incurred if a testing method fails to identify a fault. This cost can be large 
if the software has been deployed and legal issues are involved. The cost ofloss can be reduced if 
the software bugs can be found in a timely manner, in the different phases of the development 
process. 

Analysis of costs based on different factors such as the development phases, the formalisms used, 
the testing techniques 
applied and the bugs 
detected will facilitate 
selection of appropriate 
techniques for testing a 
KS. For instance, 
comparison of the 
random testing 
techniques versus the 
partition testing 
techniques such as 
input/output partitioning 
or path partitioning, or 
comparison of the costs 
involved in performing 

Cost of test case generation Cost of test case 
evaluation 

Consistency and completeness testing methods Illegal attributes 
Data-flow Unreferenced attribute 

Random Missing rule 
Input partition Redundancy rule 
Output partition Conflict rule 
Dynamic-flow Subsumption rule 
Cause-effect Data-flow 

Random 
Input partition 
Output partition 
Cause-effect 
Dynamic-flow 

Table 5 . Testmg methods ordered rn mcreasmg order of costs from top to bottom 
[Kirani 94a). 

the testing early in the development process (for example, performing completeness checks on 
requirements) versus performing tests later in the process (such as functional testing on the code) 
can be useful in determining the techniques that can be effectively applied. 
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In dynamically changing applications such as the KS, regression testing techniques can be used 
whenever the system is changed. Regression testing involves running existing test suites on the 
new system to detect faults. If the domain space is small, then all the test cases can be re­
executed. However, if the system domain space is large and a huge number of test cases exist, 
then it may be expensive to execute all the test cases again when only a small portion of the 
system may have changed or extended. This requires identification of those test cases which will 
verify the modified portions of the system. Generalized program slicing techniques [Huang 96) 
can be used as a mechanism to identify the relevant modified portions of the system. Generalized 
program slicing techniques use some criteria to slice a given system and return only those 
portions of the system which satisfy the slicing criteria. By maintaining traceability links 
between the test suites and the system, only the relevant test cases can be extracted from the 
existing test cases to perform regression testing on the system. 

3. 7 Other Issues 

Some of the other issues that impact the V & V of KS are as follows: 

• Of many V & V criteria, the correctness criterion of a KB has received the most attention in 
KB verification. Other quality requirements of a KB, such as reliability, maintainability, 
reusability, understandability have not been adequately addressed. 

• There is lack of common criteria for evaluating the performance of KB verification tools and 
methods, therefore making it hard to compare the effectiveness of the tools. Recently, 
attempts have been made in [Tsai 90a) to establish a set of standard criteria for evaluating KB 
verification tools. 

4. V&VTECHNIQUES 

V & V techniques of conventional software systems have been discussed in [Beizer 90]. Broadly 
speaking, those techniques can be categorized into two groups: static methods (analysis) and 
dynamic methods (testing). Static methods detect faults by analyzing a complete program, but the 
program is not executed, while dynamic methods require that a program be executed with regard 
to test suites. 

4.1 Static Methods 

Static V & V method.s can have different objectives such as detecting completeness and 
consistency faults and proving the correctness of the programs. Techniques in this category range 
from informal (reading/reviews, inspections and walk:throughs) to semi-formal checks such as 
type-checking performed by compilers, to ~ormal techniques (axiomatic mathematical proofs). 
Some recent attempts include the informal analysis such as the use of checklist approach, the 
formal analysis such as the assertional approach and the object-oriented specification approach. 

4.2 Dynamic Methods 

Dynamic V&V methods require the execution of a system through the use of test suites. Test 
cases can be derived either from a functional or structural viewpoint. In the functional testing, 
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also known as the black-box testing, a program is treated as a black box. The program's 
implementation details do not matter as the focus is on the requirement specifications. The 
structural testing, also known as the white-box testing, constructs the test cases based on the 
implementation details such as the control flow and data flow aspects, source language details, 
and programming styles. Several useful black-box and white-box testing techniques for KS have 
been evaluated in [Kirani 94a]. 

Structural testing: Some of the structural testing techniques include cause-effect graph based 
testing, dynamic flow testing, data-flow testing and path testing [Beizer 90]. For verifying the 
quality properties of a KB, structural testing makes use of the information about the internal 
structure of a KB (e.g., causal relationships among rules). Depending on how the internal 
structures of a KB are modeled, there are different ways of checking KB for anomalies. These 
approaches are summarized in Table 6. 

Approach Description Examples of approaches 

Decision Table Check for ambiguity, redundancy or completeness based on ESC [Cragun 87] 
approach conditions and actions of rules organized in a Decision 

Table. 

Logical approach Conduct some logical operations either directly on a KB or COY ADIS [Rousset 88]. 
an equivalent set oflogic formulas of the KB to derive 
verification results. 

Petri net approach Use Petri nets to models KBs and use analysis techniques PREPARE [Zhang 94]. 
based on Petri nets to verify them. 

Integrity constraint Use metaknowledge, the knowledge about domain compiled [Lafon 91 ]. 
satisfaction in a KB, in verifying the completeness and consistency of a 
approach KB. 

Graph approach Essential idea is to treat the KB as graph generators and to [Wilkins 86]. 
analyze the graphs produced by the generating functions for 
certain criteria to pinpoint anomalies in a KB. 

Syntactic Relies on analyzing the syntactic properties of a KB to detect COVER [Preece 93]. 
inspection potential errors. 
approach 

Incoherence Based on the notion of coherence. Verification of a KB is to [Aye! 91b]. 
detection approach detect incoherence in it. 

Incidence matrix Based on representing a rule-based KB in terms of incidence [Botten 92]. 
approach matrices and checking for anomalies through matrix 

multiplications and comparisons 

Table 6. A summary of Structural Testmg methods. 

Functional testing: Functional testing is based on program specification and not on its 
implementation details. Some of the functional testing methods include random testing and 
partition testing (input and output). In random testing, test cases are selected randomly. They are 
efficient at detecting faults at a low cost and are useful when a fault-prone region is uniformly 
distributed across the input space. Partition testing involves selecting test cases from partitions of 



input or output spaces. Test cases based on partitions are effective when a program has a non­
unifonn fault prone region. In case of KS, their specific characteristics need to be considered for 
performing functional testing. Functional testing of a KB can be based on the specification of a 
functional description of a KB. When provided with some initial condition (e.g., aggregations of 
initial facts), a KB will respond accordingly to produce some results (e.g., aggregations of 
derived facts). Functional testing methods can be used to detect anomalies from aberrations of 
such predefined input-output patterns. Table 7 summarizes some of the functional testing 
methods that have been developed for KS. 

Approach Description Examples of 
approaches 

Machine Leaming The essential idea of machine learning based approach is to generate [De Raedt 91]. 
approach examples from the given KB by using some learning strategies; and 

confirm the examples to verify its correctness. 

Assumption-based 
This approach stems from the idea of truth maintenance system of de [Ginsberg 88]. 

truth maintenance 
Kleer. 

system (A TMS) 
approach 

Relational Based on the concepts of attribute space (which represents a union of [Marathe 89]. 
approach domain of all attributes used in rules of a KB) and defining rules as 

functions on the attribute space. Verifying the KB amounts to detecting 
certain relations between the rule functions. 

Refmement This approach identifies potential errors in a KB through a case database [Ginsberg 85]. 
approach {which represents a set of cases with known conclusions}, statistical 

concepts and heuristics [Ginsberg 85]. It also provides suggestions for 
appropriate rule modification. 

Table 7. A summary of Functional Testing Methods. 

5. TOOLS FOR KS V & V 

In this section we summarize the features of some of the tools that have been developed for V & V 
of KS. The TEIRESIAS program was the first attempt to automate the rule base debugging 
process. It was designed as part of the debugging facilities of MYCIN, the infectious blood 
disease consultation system. By using TEIRESIAS as a tool, the expert could judge whether or 
not MYCIN's diagnosis is correct, track down the faults in the knowledge base that resulted in an 
incorrect conclusion, and alter, add, or delete rules to fix errors. 

The ONCOCIN rule checker is a knowledge· base verification program for ONCOCIN, a KS for 
oncology protocol management. This program is different from the TEIRESIAS program in that 
rules were examined as they were entered into the system. The format of the rules consists of 
action parameter, context, condition, action, and classification. To check for inconsistencies and 
incompleteness, a table is made which consists of all possible combinations of condition 
parameter values and their corresponding action (conclusion) parameter values. Conflict, 
redundancy, subsumption, and missing rules are detected by examining the table. 
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CLINT COVADIS COVER IN-DEPTH KRUST MELODIA PREPARE SACCO 

language/ Prolog Lisp Prolog&C Comm. Lisp Sun- Pa~cal C SACKO 

environment. Sun Sun Sun-41300 Sun-41260 31280 IBM 3090 DEC 3100 OL 

workst. workst. 

knowledge predicate production predicate predicate frames proposit. predicate predicat 

representation logic rules logic logic logic logic e 
logic 

KB model flat flat flat hierarchical flat flat flat flat 

domain depend. depend. independ. independ. depend. depend. independ. depend. 

dependency 

approach machine logical syntactic KB- refineme logical petri net & incohere 

learning inspection reduction nt pattern nee 
recog. detectio 

n 

dependence no yes no no no no no no 
of IE 

participation yes yes no DO no no no no 
of expert in 
detection 

handling of no no DO yes no no no no 
certainty 
factors 

use of no yes yes no no no yes yes 
heuristics in 
detection 

detection ( d) de d only d only d only de donly d only de 
vs. detection 
& correction 
(de) 

types of in consist. inconsist. redundancy, inconsist. , inconsist. inconsist., inconsist., incohere 
anomalies ambivalence, redundancy, redundanc redundancy, nee 
detectable circularity, circularity, y, hidden circularity, 

deficiency useless KB theorems incomplete. 
objects 

size of KB NIA up to 200 up to 550 up to 334 up to 200 up to up to 500 NIA 
tested rules rules rules rules 10562 rules 

rules 

computation NIA NIA exponential exponential 200 rules 10562 exponential NIA 

time 
worst case worst case < 31 rules< 6 worst case 
550 rules< 334 rules< minutes minutes 500 rules< 
3.5 hours 20 hours I minute 

reference [De Raedt [Rousset [Preece 93) [Meseguer [Craw [Charles [Zhang 93] [Aye! 
91J 88) 93] 91) 91] 91b] 

Table 8. Features of some KB venfiers. 

The CHECK is a rule base verification program [Nguyen 87] for LES, the Lockheed ES shell. It 
is claimed to be an extension of the ONCOCIN 's rule checker. It differs from the ONCOCIN 's 
rule checker in that CHECK is applied to the entire set of rules rather than just subsets of the 
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rules. In addition to the types of faults the ONCOCIN's rule checker detects, CHECK includes 
the detection of several extra types of faults , such as circular rules, unnecessary if conditions, and 
unreachable conclusions. 

EVA (Expert systems Validation Associate) is an integrated set of tools for validating KS 
[Chang 90]. Its goal is to include all the necessary generic tools for validation of any KS 
developed in any expert system shell for any problem domain. Several tools such as structure 
checker and logic checker have been designed to detect anomalies of a particular nature. 

KB-REDUCER, a verifier based on KB-reduction approach, is capable of detecting 
inconsistencies and redundancies. It has been used to analyze several KB of up to 3 70 rules in 
size. The worst case time complexity in generating environments may be exponential. 

A list of some recently developed tools is shown in Table 8, along with their features. In addition 
to the effort made by the researchers, vendors have developed and integrated V & V tools and 
utilities for their own expert system shells ( e.g., CRSV for CLIPS and Automatic Validation 
function for EXSYS). 

6. RESEARCH ISSUES 

There is a spectrum of research issues in KS V & V, some currently being studied, some yet to be 
investigated. 

More experimental data on effectiveness of different KS verification approaches are 
needed: Comparative study is needed on existing KS V&V approaches using veridical systems 
to determine what approach is effective for detecting which type( s) of anomalies as well as for 
determining the costs involved and the scalability of the techniques. Veridical systems represent 
systems that are deployed in the field and provide realistic data about the size and complexity of 
systems in the field. Research using veridical systems can help find real issues in V & V of KS. 
Usefulness of any technique will be validated by their application to veridical systems. 

Effectiveness under different contexts: Experiments need to be performed to determine the 
strengths and weaknesses of different techniques used under different contexts. For instance, 
experiments needs to be performed to determine which technique would be most effective for 
rule-based systems versus frame-based systems, or which technique can be used for systems 
developed using the spiral development paradigm versus the 00 paradigms. Some of the other 
issues that need to be considered are the lifecycle phases in which a technique is effective, the 
representation formalisms and the cost-effectiveness of the techniques. 

One technique called life-cycle mutation testing (LCMT) can be useful for evaluating testing 
methods for a KS at each phase of the development process [Kirani 94a]. In this technique, 
intentional faults called mutants are introduced one at a time into a program, and a testing 
method to be evaluated is applied to the program. If the testing method fails to identify the 
failures resulting from a mutation, the mutant is said to be live. Otherwise, the mutant is 
considered killed. A test method's adequacy is determined by the number of mutants it is able to 
kill. In LCMT, a mutant is introduced in all by-products of development such as problem 
specification, solution specification, high-level design and the implementation code. The LCMT 
study was conducted on a diagnostic VLSI manufacturing ES called MAPS. MAPS is based on 
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authentic reasoning methods of an expert with 12 years of experience and it performed better 
than another expert with seven years of experience. By injecting different faults at different 
phases of the development process, the study performed an analysis of the performance and cost­
effectiveness of various testing methods in different phases of the development process. For 
instance, the study found that black-box testing methods killed more mutants in initial life-cycle 
phases compared with the implementation phase. Further studies focusing on the effectiveness of 
verification approaches considering other factors such as the knowledge representations and the 
size of the KBs are needed. 

Evaluation of costs of V & V methods: Issues regarding V & V costs need to be researched further. 
Costs associated with V & V depend on many factors. For instance, it is not clear what the relative 
costs will be in detecting or failing to detect a fault using a static technique (such as inspections) 
versus using a dynamic technique (such as some black-box testing). Such an analysis can be 
useful in determining which technique should be used under various circumstances. 

Scaling up of techniques and tools. Many tools and techniques have been mainly tested on KBs 
that are fairly small in size (e.g., hundreds or thousands rules in a rule-based KB). More data are 
needed about the effectiveness and efficiency of these tools when applied to large KBs. Systems 
with large KBs are not far fetched and many have already been on the horizon. 

Focus on entire system, not just the KB: Many existing V & V tools deal mainly with the 
correctness aspect of a KB, but there are many other components in a KS, such as the IE, the 
explanation module, the knowledge acquisition module, the communication module and various 
other interfaces. A fault in any of these components can potentially lead to a failure in the KS. 
Therefore, support is needed for V & V of each of these components as well as the entire system. 

Incorporate V & V into development processes: The focus on most existing KS V & V 
approaches is to detect and correct all types of anomalies at the end of KS development process, 
i.e., the coding stage. Little effort is made to reduce the chances of introducing anomalies into 
KS at earlier phases. For instance, techniques that test the completeness and consistency of 
software specifications [Tsai 93b] can be used to detect anomalies in the specification phase. 
V & V techniques need to be integrated with the KS development processes. 

Standards. There is a need for standardizing terminology and definitions of anomalies. 

Theoretic foundations. We need to establish some formal semantics for KB anomalies. There 
has been effort in this direction [Rushby 88, Rushby 89]. 

Agent-based applications: The growth of Internet and the World Wide Web has led to an 
explosion in computer-based tasks and services, and the technology of software agents. Agents 
are computer programs that make autonomous decisions based on the data received from 
agencies and support common tasks such as_ filtering of news and mail, scheduling of meetings, 
and selection of music. As the popularity of agent-based applications grows, verification of their 
behavior becomes critical to avoid failures. Research into V & V techniques needs to address the 
special characteristics of agent-based applications, such as testing techniques for programs 
involving large number of distributed autonomous agents. 

Software reliability models: Software reliability has been a subject for research for 
conventional software for many years, however, software reliability models have not received 
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great attention yet [Bastani 90]. Software reliability models can be used to estimate mean time 
between software failures and is essential for safety-critical applications such as nuclear reactor 
control, where failures can be costly leading to loss of property or life. These models can indicate 
when the V &V activities have been adequately performed. 

ACKNOWLEDGEMENTS 

We would like to express our sincere thanks to Dr. Imran Zualkeman and Dr. Shekhar Kirani 
who have collaborated with us for several years in related areas. 

[Aye! 91a] 

[Aye! 91b] 

[Barker 89] 

[Bastani 90) 

[Beizer 90) 

[Botten 92] 

[Buchanan 88] 

[Chang 90] 

[Charles 91] 

[Cragun 87] 

[Craw91] 

[Culbert 90] 

[De Raedt 91] 

REFERENCES 

M. Aye! and J.P. Laurent (Eds.), Validation, Verification and Test of Knowledge-Based 
Systems, John Wiley & Sons, Chichester, 1991. 

M. Aye! and J.P. Laurent, "SACCO-SYCOJET: Two Different Ways of Verifying Knowledge­
Based Systems", In Validation, Verification and Test of Knowledge-Based Systems, M. Aye! 
and J.P. Laurent (Eds.), John Wiley & Sons, Chichester, 1991, pp. 63-76. 

V.E. Barker, D.E. O'Connor, J. Bachant and E. Soloway, "Expert Systems for Configuration at 
Digital: XCON and Beyond", Communications of ACM, Vol. 32, No. 3, 1989, pp. 298-318. 

F. B. Bastani and I. R. Chen, "Assessment of Reliability of AI Programs", in Proc. of IEEE 
Conference on Tools for Al, 1990, pp. 753-759. 

B. Beizer, Software Testing Techniques, Van Nostrand Reinhold, New York, 1990. 

N. Botten, "Complex Knowledge Base Verification Using Matrices", In Lecture Notes in 
Artificial Intelligence, F. Belli and F .J. Radermacher (Eds.), Springer-Verlag, Berlin, 1992, pp. 
225-235. 

B.G. Buchanan, "Al as an experimental science", In Aspects of Artificial Intelligence, J.E.Fetzer 
(Ed.), Kluwer Academic Publishing, 1988, pp. 209-250. 

C.L. Chang, J.B. Combs and R.A. Stachowitz, "A Report on the Expert Systems Validation 
Associate (EVA)", Expert Systems with Applications, Vol. I, 1990, pp. 217-230. 

E. Charles and 0. Dubois, "MELODIA: Logical Methods for Checking Knowledge Bases", In 
Validation, Verification and Test of Knowledge-Based Systems, M. Aye! and J.P. Laurent 
(Eds.), John Wiley & Sons, Chichester, 1991, pp. 95-105. 

B.J. Cragun and H.J. Steudel, "A Decision-Table-Based Processor for Checking Completeness 
and Consistency in Rule-Based Expert Systems", International Journal of Man-Machine 
Studies, Vol. 26, 1987, pp. 633-648. 

S. Craw, "Judging Knowledge Base Quality", In Validation, Verification and Test of 
Knowledge-Based Systems, M. Ayel and J.P. Laurent (Eds.), John Wiley & Sons, Chichester, 
1991, pp. 207-219. 

C. Culbert (Ed.), Special Issue:• Verification and Validation of Knowledge-Based Systems, 
Expert Systems with Applications, Vol. I, No. 3, 1990. 

L. De Raedt, G. Sablon and M. Bruynooghe, "Using Interactive Concept Leaming for 
Knowledge-base Validation and Verification", In Validation, Verification and Test of 
Knowledge-Based Systems, M. Ayel and J.P. Laurent (Eds.), John Wiley & Sons, Chichester, 
1991, pp. 177-190. 

15 



[Ginsberg 85] A. Ginsberg, S. Weiss and P. Politakis, "SEEK2: A Generalized Approach to Automatic 
Knowledge Base Refinement", In Proc. of lntemational Joint Conference on Al, 1985, pp. 367-
374. 

[Ginsberg 88] A. Ginsberg, "Knowledge-Base Reduction: A New Approach to Checking Knowledge Bases 
for Inconsistency and Redundancy", In Proc. of Seventh National Conference on AI, I 988, pp. 
585-589. 

(Ginsberg 93] A. Ginsberg and K. Williamson, "Inconsistency and Redundancy Checking for Quasi-First­
Order-Logic Knowledge Bases", International Journal of Expert Systems, Vol. 6, No. 3, 1993, 
pp. 321-340. 

[Gupta 91] U.G. Gupta (Ed.), Validating and Verifying Knowledge-Based Systems, IEEE Computer Society 
Press, Los Alamitos CA, 1991. 

(Hamilton 91] D. Hamilton, K. Kelley and C. Culbert, "State-of-the-Practice in Knowledge-Based System 
Verification and Validation", Expert Systems with Applications, Vol. 3, 1991, pp. 403-410. 

[Hayes-Roth 94] F. Hayes-Roth and N. Jacobstein, "The State of Knowledge-Based Systems", Communications 
of ACM, Vol. 37, No. 3, 1994, pp. 27-39. 

[Huang 96] H. Huang, W.T.Tsai, and S. Subramanian, "Generalized Program Slicing for Software 
Maintenance", In Proc. Of Software Engineering and Knowledge Engineering, 1996, pp. 261-
268. 

[IEEE 90] IEEE Standard 610.12-1990, IEEE Glossary of Software Engineering Terminology, 1990. 

[Kirani 94a] S. Kirani, I.A. Zaulkeman and W.T. Tsai, "Evaluation of Expert System Testing Methods", 
Communications of the ACM, Vol. 37, No. 11, 1994, pp. 71-81. 

[Kirani 94b] S. Kirani and W.T. Tsai, "Specification and Verification of Object-Oriented Programs", 
Technical Report, Computer Science Department, 1994. 

[Lafon 91] P. Lafon, "A Descriptive Model of Predicates for Verifying Production Systems", in Validation, 
Verification and Test of Knowledge-Based Systems, M. Aye! and J.P. Laurent (Eds.), John 
Wiley & Sons, Chichester, 1991, pp. 149- 162. 

[Lydiard 92] T.J. Lydiard, "Overview of Current Practice and Research Initiatives for the Verification and 
Validation ofKBS", The Knowledge Engineering Review, Vol. 7, No. 2, 1992, pp. 101-113. 

[Marathe 89] H. Marathe, T.K. Ma and C.C. Liu, "An Algorithm for Identification of Relations among 
Rules", In Proc. ofIEEE International Workshop on Tools for Al, 1989, pp. 360-366. 

[Marr 82] D. Marr, Vision, W.H. Freeman, N.Y., N.Y., 1982. 

[Meseguer 93] P. Meseguer and A. Verdaguer, "Verification of Multi-Level Rule-Based Expert Systems: 
Theory and Practice", International Journal of Expert Systems, Vol. 6, No. 2, 1993, pp. 163-
192. . 

[Miller 94] L.A. Miller, "Recommended Guidelines for V&V of Various Kinds of Systems at Various 
Lifecycle Phases", In Proc. Of AAAl-94 Workshop on Validation and Verification of 
Knowledge-Based Systems, 1994, pp. 1-9. 

[Musa 87] J. Musa, A. Iannino and K. Okumoto, Software Reliability: Measurement, Prediction, 
Application, McGraw-Hill, New-York, 1987. 

[Nazareth 89] D.L. Nazareth, "Issues in the Verification of Knowledge in Rule-Based Systems", International 
Journal of Man-Machine Studies, Vol. 30, 1989, pp. 255-271. 

[Nguyen 87] T.A. Nguyen, W.A. Perkins, T.J. Laffey and D. Pecora, "Knowledge Base Verification", Al 
Magazine, Vol. 8, 1987, pp. 69-75. 

[O'Keefe 93] R.M. O'Keefe and D.E. O'Leary, "Expert System Verification and Validation: A Survey and 
Tutorial", Artificial Intelligence Review, Vol. 7, 1993, pp. 3-42. 

16 



[O'Leary 91] D.E. O'Leary, "Design, Development and Validation of Expert Systems: A Survey of 
Developers", In Validation, Verification and Test of Knowledge-Based Systems, M . Aye! and 
J.P. Laurent (Eds.), John Wiley & Sons, Chichester, I 991, pp. 3-19. 

[O'Leary 94] D.E. O' Leary (Ed.), "Special Issue: Verification and Validation of Intelligent Systems: Five 
Years of AAAI Workshops", International Journal of Intelligent Systems, Vol. 9, No. 8-9, 
1994. 

[Plaza 93] E. Plaza (Ed.), "Validation and Verification of Knowledge-based Systems", IEEE Expert, Vol. 
8, 1993, pp. 45-81. 

[Preece 92] A. Preece, R. Shinghal and A. Batarekh, "Verifying Expert Systems: A Logical Framework and 
A Practical Tool", Expert Systems with Applications, Vol. 5, No. 2-3, 1992, pp. 421-436. 

[Preece 93] A. Preece and C. Suen (Eds.), Special Issues: Verification and Validation of Knowledge-Based 
Systems, International Journal of Expert Systems, Vol. 6, No. 2-3, 1993. 

{Pressman 87] R. S. Pressman, Software Engineering: A Practitioner's Approach, McGraw-Hill, New York, 
1987. 

[Rousset 88] M.C. Rousset, "On the Consistency of Knowledge Bases: the COVADIS System", In Proc. of 
Eighth European Conference on AI, 1988, pp. 79-84. 

[Rushby 88] J. Rushby, "Quality Measures and Assurance for AI Software", NASA Contractor Report 4187, 
October 1988. 

[Rushby 89] J. Rushby, "Formal Verification of Al Software", NASA Contractor Report 181827, February 
1989. 

[Subramanian 94] S. Subramanian, W.T.Tsai and S.Kirani, "Hierarchical Data Flow Analysis for 00 programs", 
Journal of Object-Oriented Programming, Vol. 7, No. 2, 1994, pp. 36-46. 

[Tsai 90a] W. T. Tsai and I.A. Zualkeman, "Towards a Unified Framework for Testing Expert Systems", 
In Proc. of International Conference on Software Engineering and Knowledge Engineering, 
1990. 

[Tsai 90b] W. T. Tsai, K. Heisler, D. Volovik, and I. A. Zualkeman, "AI and Software Engineering: A 
clash of cultures?", In Computers for Artificial Intelligence Processing, B. W. Wah and C. V. 
Ramamoorthy (Eds.), John Wiley and Sons, N. Y., 1990. 

(Tsai 93a] W.T. Tsai, I.A. Zualkernan and S. Kirani, "Pragmatic Testing Methods for Expert Systems", 
international Journal of Al Tools, Vol.2, No.2, 1993, pp.181-217. 

[Tsai 93b] W. T. Tsai, W. Xie, I. A. Zualkeman, and S. K. Musukula, "A Framework for Systematic 
Testing of Software Specifications", In Proc, of International Conference on Software 
Engineering and Knowledge Engineering, 1993, pp. 380-387. 

[Wilkins 86] D.C. Wilkins and B.G. Buchanan, "On Debugging Rule Sets When Reasoning under 
Uncertainty", In Proc. of Fourth National Conference on AI, 1986, pp. 448-454. 

[Zhang 93] D. Zhang and D. Nguyen, "A Tool for Knowledge Base Verification", In Advanced Series on 
Artificial Intelligence, Vol.2: Knowledge Engineering Shells-Systems and Techniques, N. 
Bourbakis (Ed.), World Scientific Publishers, 1993, pp. 455-486. 

[Zhang 94] D. Zhang and D. Nguyen, "P~PARE: A Tool for Knowledge Base Verification", IEEE 
Transactions on Knowledge and Data Engineering, Vol. 6, No. 6, 1994, pp. 983-989. 

[Zlatereva 94] N. Zlatareva and A. Preece, "State of the Art in Automated Validation of Knowledge-Based 
Systems", Expert Systems with Applications, Vol. 7, No. 2, 1994, pp. 151-167. 

[Zualkeman 88] l. A. Zualkeman, W. T. Tsai, P. E. Johnson, J. H. Moller, "Utility of Knowledge-Level 
Specifications", In Proc. of 4th Annual Artificial Intelligence & Advanced Computer 
Technology Conference, 1988, pp. 79-85. 

17 


	Blank Page

