
Technical Report

Department of Computer Science
University of Minnesota
4-192 EECS Building
200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 97-018

Verification and Validation of
Knowledge-Based Systems

by: W. T. Tsai and
R. Vishnuvajjala

Verification and Validation of Knowledge-Based Systems

W. T. Tsai, R. Vishnuvajjala
Department of Computer Science

University of Minnesota
Minneapolis, MN 55455

D. Zhang
Department of Computer Science

California State University at Sacramento
Sacramento, CA, 95819

ABSTRACT

Knowledge-Based systems are being used in many applications areas where their
failures can be costly because of the losses in services, property or even life. To
ensure their reliability and dependability, it is important that these systems are
verified and validated before they are deployed. This paper provides perspectives
on issues and problems that impact the Verification and Validation (V & V) of
these systems. Some of reasons why V & V of Knowledge_-Based systems is difficult
are presented. The paper also provides an overview of different techniques and
tools that have been developed for performing V & V activities. Finally, some of
the research issues that are relevant for future work in this field are discussed.

1. INTRODUCTION

Expert systems (ES) are intelligent computer systems whose problem-solving performance
would rival or exceed human performance in narrow areas of human endeavor, whereas
knowledge-based systems (KBS) are computer systems that assist in problem solving. Expert
systems and knowledge-based systems are among the fruitful spin-offs from artificial
intelligence. The worldwide expert system expenditures in 1993 totaled $595 million. Today,
these systems have found their way into many applications such as knowledge publishing, shuttle
mission experiment planning, crew scheduling, medical diagnosis, computer configuration,
process control, regulation compliance advising, financial advising and nuclear engineering.

As these knowledge systems (KS) (We use KS to denote either ES or KBS.) are deployed in
settings where system failures may result in loss of productivity, decision-making, property,
business, services, or even life, the reliability and dependability of the systems become important
[Barker 89, Gupta 91, Tsai 90b]. It is imperative that the systems are thoroughly verified and
validated before they can be deployed in the field. Verification and Validation (V & V) of KS
therefore is a key aspect of the development of KS. Many V &V techniques and tools have been
proposed, developed and implemented [Ayel 91a, Culbert 90, Ginsberg 93, Gupta 91, Hayes­
Roth 94, Lydiard 92, Miller 94, Nazareth 89, O'Keefe 93, O'Leary 94, Plaza 93, Preece 93,
Zlaterava 94].

1

As the use of KS in various areas grows, many commercial KS are being developed. Many
techniques have been applied to the development of these KS and experience has been gained
about some of the specific issues and problems faced during the development of KS in the
industry. These issues can be useful in understanding the progress made and the some of the
shortcomings of existing V & V techniques for KS in the context of industrial environments.
Table 1 summarizes some surveys about current industrial practice in V & V of KS [Hamilton 91,
O'Leary 91].

Survey Subject Response

performance
75% systems were less accurate than expected; 65% systems were less accurate
than the experts; users, more often than developers, estimated the expert systems as

criteria
being less accurate than expected and less accurate than the expert

requirements
52% systems did not have documented requirements; 43% systems used prototypes

definition
for requirements; 35% said requirements were hard to develop

development 40% systems followed lifecycle of cyclic model; 22% systems did not follow any
information lifecycle model; average of 23 person-months to develop

V & V activities
Most V & V activities relied on comparison with expected results and expert

performed
checking; 59% had domain expert check Knowledge Base (KB); 24% development
effort was spent on V & V; I 00% users rated V & V of expert system as hard; 27%
developers said V & V were hard; there was wide range of V & V techniques used

V&V issues test coverage determination (63%); knowledge validation (60%); real-time

encountered performance analysis (33%); problem complexity (40%); modularity (27%);
certification (11 %); understandability (10%); configuration management (20%);
validation of Inference Engine (IE) (19%); analysis of certainty factors (86%)

Table 1. Results of A Survey.

From table 1, it is apparent that KS share many characteristics with conventional software. The
lack of well-documented requirements, the use of prototypes as requirements and the absence of
a well-defined life-cycle model are common to many conventional software development
environments also. For instance, inconsistencies, incompleteness, and ambiguity in requirements
specifications have been identified as major sources of bugs in software development [Beizer
90]. But KS also have certain components such as the IE, and domain knowledge stored in a KB,
which are not present in conventional software. Thus, while many issues that impact the V&V of
conventional software such as the lack of requirements documents need to be considered,
additional issues such as the validation of the IE and its interactions with the KB also need to be
addressed. This paper presents a perspective on the issues related to the V & V of KS and some of
their goals.

2. DEVELOPMENT OF KS

The development process for a software product specifies how the development tasks are
decomposed into sub-tasks or phases. It also determines what by-products are used and generated
during the development process. V & V require checking some properties (such as internal

2

consistency) of a by-product (such as requirements specification) or a comparison of two by­
products (such as a specification and the code) generated during the development process. Hence
what constitutes V&V for a software product is closely tied to the software's development
processes.

Example development processes include the Waterfall model, Spiral Model, exploratory
prototyping, and the Object-Oriented paradigm [Pressman 87]. In the Spiral model of
development, the system is
developed iteratively in a
cyclic fashion, with each
cycle consisting of different

I.
2.
3.

General Framework for V&V
Detennination of goals of V & V
Generation of problems (inputs) to be used by a V&V method
Generation of expected outcomes (outputs) on the selected problems

phases such as the 4. Application and Evaluation of problems
requirements and
specifications, design, coding and testing. The system is incrementally developed with changes
made in each cycle of the development. The by-products of following such a process include
requirement documents, design documents, the code that implements the design, test
specifications and test suites. One type of binary comparison between two by-products of such a
process is to check the requirements documents (which can be expressed using different
techniques including structured models such as data flow diagrams, pseudo-languages such as
PDL or formal languages such as VDM) against a design document which specifies the
functional decomposition and data structures and algorithms. Similarly, another binary test can
be conducted by comparing the design document against the code that implements the design.

However, sometimes it is difficult to identify the intermediate by-products in some KS
development
processes. For
instance, table 1
shows that 22% of
systems did not
follow any lifecycle
model. In such cases,
the different phases in
the development
processes are not
clearly defined,
which makes it

Verification and Validation according to the IEEE Standard Glossary [IEEE 90]

Verification: (I) The process of evaluating a system or component to determine
whether the products of a given phase satisfy the conditions imposed at the start of
that phase. (2) Formal proof of program correctness.

Validation: The process of evaluating a system or component during or at the end of
the development process to determine whether it satisfies specified requirements.

Verification and validation (V&V): The process of determining whether the
requirements for a system or component are complete and correct, the products of
each development phase fulfill the requirements or conditions imposed by the
previous phase, and the final system or component complies with specified
requirements.

difficult to identify by-products of the phases. Table 1 also shows that 52% of systems did not
have any documented requirements while . 43% systems used prototypes as the requirement
specifications. Thus in these development processes intermediate by-products are not available
for performing V&V. Verification activities (which compare the products of each phase against
the goals set at the start of each phase) are difficult to perform in such cases. Only validation of
the system against experts or users can be performed in such cases.

3

Another characteristic of KS is that the requirements and specifications for an KS are often
dynamically changing. An example of a successful production level KS whose requirements are
continuously changing is XCON [Barker 89]. When requirements or other artifacts are
dynamically changing it is more difficult to perform V & V on these systems than on systems
with static artifacts,
since it is important to
ensure an artifact's
internal consistency
whenever it changes
before it can be
compared with the
other by-products of
the development
process.

Nature Qf faults in development_ life-cycle [Kirani 94aJ ..
Faults not detected in early phases become progressively more expensive to
rectify in later phases.

A fault-prone region (input region that results in failures) may not be uniformly
distributed across the complete input space.

Faults in early life-cycle phases may induce a multitude of faults in the final
program.

Inconsistency or incompleteness in any phase may result in inconsistent or
missing rules in the final program.

Sometimes, there may not be explicit requirements specifications for KS. For example, it is
argued that the dynamically changing KS prototype should be viewed as its own specification
within the rapid prototyping paradigm of development. For KS, the availability of an explicit
requirement and specification corresponds to having a Type I computational theory [Marr 82] for
the task being performed by the KS. Verification in this case is then reduced to showing that a
specific implementation is consistent with the computational theory. However, more often than
not, an explicit computational theory for an KS does not exist. In the absence of a Type I
computational theory, alternative artifacts such as archived test suites, domain experts or
literature can be used in lieu of an explicit specification.

3. WHYISV&VOFKS DIFFICULT?

Many factors ~ause problems in performing the V & V of KS. Such factors include the different
knowledge representations, evolving KBs, the large number of rules in KBs and the costs
involved in test case generation, execution and evaluation:

3.1 Knowledge Representation Formalisms

Knowledge in a KB may be represented in terms of different formalisms such as logic (predicate
or propositional logic), rules, frames, cases, blackboard, generic tasks, object-oriented or
semantic networks. Sometimes, a single formalism is used, thus resulting in terms such as rule­
based KB or frame-based KB, but hybrid formalisms, such as .the combination of rules with
frames, or rules with cases, have also become popular. Due to the interaction of multiple
formalisms, a set of new issues need to be -considered for KB verification. For example, it has
been demonstrated in that because of the object hierarchy and property inheritance in a hybrid
KB of rules and objects, new types of anomalies unique to this hybrid representation will arise
such as additional subsumption cases, and semantic conflict cases. KBs expressed in different
formalisms or their hybrids are thus prone to different types of anomalies and need to be
addressed during the V & V process.

4

3.2 Evolving and Large KBs

KBs represent knowledge in the application domains. Since the application domains in many
cases are still evolving, the KBs change and become increasingly large. A prominent example is
the XCON experience where the number of rules has increased from 200 in 1979 to 17000 in
1989 [Barker 89]. XCON also illustrates

Relationships between Error, Fault and Failure
the dynamically changing subject domain According to the IEEE standard terminology of error,
and the complexity and large size of the fault and failure, errors represent human mistakes which
system. As the KBs evolve at such a pace, can result in faults in a system. The execution of a faulty
it becomes difficult for the developer to system produces failures [Musa 87]. A fault (or
perform verification of the KBs to ensure commonly referred to as bug) may cause a system to fail

on multiple inputs, but each failure can potentially lead to
that there are no inconsistencies, the discovery of a new fault. Thus, multiple failures of a
incompleteness, and redundancies in the system do not necessarily imply that the system has
KBs. As applications evolve, the multiple faults. '----=------- --- --- ------' specifications, design, code and test cases change. A change in one of these artifacts can cause
ripples in the others. For instance, a change to the system requirements can cause changes to the
design, and the code and require new test cases. Configuration control to maintain the versions of
these artifacts is an important issue when applications evolve.

3.3 Characteristics of KBs

KBs have several specific characteristics which give rise to new verification problems. For
instance, domain knowledge may be attached with confidence factors and/or temporal operators.
In the presence of confidence factors, an otherwise "less-harmful" case of redundancy may lead
to serious problems, when each redundant piece of knowledge is utilized multiple times leading
to erroneous increases in the level of confidence assigned to associated conclusions. Some of the
other characteristics of KBs that impact their V&V include the different knowledge types (sure
and heuristic), decomposability of KBs, inclusion vs. exclusion of meta knowledge in a KB, the
models of a KB (flat vs. hierarchical), and the monotonicity vs. non-monotonicity of KBs.

3.4 Domain Experts in V & V

Domain experts can be actively involved in the V & V of KS in several phases such as detection
of anomalies, analysis of results produced by some automated verifier or to perform necessary
corrections to a KB [Rousset 88]. Domain experts are especially needed in those systems that do
not have documented requirements or use the system prototypes as the requirements. However,
the complexity and size of the KBs often make it hard for domain experts to fully comprehend
the KBs. Furthermore, even though experts can be used as oracles to generate expected outputs,
they often disagree with each other and cost of the involvement of these domain experts can be
an issue.

5

3.5 KS Anomalies

An anomaly refers to patterns of common faults with respect to certain analysis techniques.
Different development techniques such as procedural, object-oriented (00) or logic-based, give
rise to different forms of anomalies. For instance, data flow anomalies are those anomalies
related to the accessing and updating of data items in a program [Subramanian 94]. Some
examples of such anomalies are define-define where a variable is updated twice without an in­
between use, or define-kill where a variable where a variable is defined and killed without being
used. Such anomalies can occur in paradigms where variables are defined and used. Different
V & V techniques are also needed to detect such anomalies within an application. For instance,
one example of an anomaly specific to the 00 paradigm is the message flow anomaly, which
involves two or more methods calling each other repeatedly without performing any useful work.
Such anomalies are based on sequencing relationships [Kirani 94b] among the methods of
objects in an application.

Certain anomalies are specific to KS. For instance, a rule-based KB may have potential
inconsistencies, incompleteness, circularity or redundancies among the rules in the KB. Another
example of an anomaly in a KS is the deleterious interactions among good rules, which are
indigenous to rule sets which reason under uncertainty. When a group of individually correct
rules interact together to give an erroneous final conclusion, then these rules are acting together
in a deleterious manner. The cause of such fault stems from the fact that these rules are based on
uncertainty.

There has been lack of standardization on classification of KB anomalies. Most of the existing
verification techniques adopted their own criteria. The definitions of the anomalies in a KB are
largely given through examples. The work reported in [Chang 90] offers a detailed account on
verification criteria where three types of criteria, namely structural, logical and semantic criteria
were delineated.

3.6 Testing of KS

Testing of KS is an integral part of the V & V process. The general framework for testing consists
of the following steps: (1) establishing testing criteria, (2) generating test cases (inputs) and
expected outcomes on the selected inputs, (3) applying a test method to exercise the software,
and (4) evaluating the test outcomes. Testing in general is a labor-intensive and fault-prone
process. The difficulties arise from different testing criteria, large input and output spaces and
legal test cases generation. Another important factor that makes testing difficult is the high costs
involved in performing these activities:

Testing Criteria: A testing criterion defines the goal for comparing a system against a
specification. Several criteria for testing KS such as testability, reliability, safety, completeness,
consistency, robustness and usability. Different testing criteria will lead to different test cases;
for instance some test inputs can be used for testing for reliability as well as safety. However,
testing for reliability checks whether the system conforms to its specifications while testing for
safety checks whether the system does not cause any harmful effects to its environment. When
different criteria exist, appropriate selections must be made for performing the testing.

6

Difficulties in generation of test case inputs: A legal test input is a test input that is consistent
with the input specification in the problem specification. Although a problem specification
(which is a description of the problem being solved) [Zualkernan 88] may specify what a legal
test input is, it often does not state how it can be generated. It is difficult to effectively generate a
large number of test inputs when the problem specification does not specify the definition of a
legal input. If the problem specification specifies the legality criteria and an oracle (an oracle can
be a program or a domain expert) is available it can be used to identify the legal (and illegal) test
inputs for positive (and negative) testing. Domain literature can also be used to generate the
inputs for a test case. If domain Literature is used, there is a danger that one can end up with test
inputs that are not representative of the real problems solved by experts in the field. If there is no
oracle, it is almost impossible to systematically generate a test input. Table 2 summarizes the
problems with the generation of test inputs.

Condition Difficulties

Problem specification does not specify the legality criteria Difficult
Problem specification specifies the legality criteria but no oracle Difficult
is available
Problem specification specifies the legality criteria and an oracle Less difficult
is available

Table 2. Difficulties in generating test inputs for black-box testing .

Difficulties in generation of test case outputs: Since V & V of an KS requires a large number of
test cases, generation of expected outputs for a legal input can be expensive. Although experts
can be used as oracles to generate expected outputs, this can be expensive. Expected outputs can
also be generated from other sources such as explicit solution specification (which is an
abstraction of an implemented solution), archived test cases, or domain literature. The generation
of outputs from these sources, however, will in general be difficult. The difficulties for
generating expected outputs are summarized in Table 3.

Condition Difficulties
Problem specification does not specify the legality criteria Very Difficult

Problem specification does not but solution specification Difficult but useless for black-box testing
specifies the legality criteria
Both problem and solution specifications specify the legality Difficult
criteria but no oracle is available
Both problem and solution specifications specify the legality Less Difficult
criteria and an oracle is available

Table 3. D1fficult1es m generatmg expected test outputs .

Input and output spaces for selection of test cases can be huge: The potential input and output
spaces for KS are large and the criteria for picking the appropriate inputs and output are not
clear. The sizes of the input space, the output space and the number of possible paths for some
KS can be estimated by using the data given in [Buchanan 88] (see table 4). As indicated in
Table 4, for systems that use either a selection method (such as MYCIN and INTERNIST) or the
construction method (such as XCON, XSEL and XFL), the potential sizes of the input and the
output spaces for black-box testing are enormous.

7

High costs of testing:
The cost of a testing
method not only
depends on the cost of
test case
and the

generation
cost of

evaluation, but also on
the cost of loss, i.e., the
cost incurred if a fault

System # objects #attributes size of input size of the
space output space

MYCIN 17 257 3.4 X lQO 6 X 10°

INTERNIST 571 4100 4.0 X 10Io, 3.1 x 101

XCON 94 840 3.5 X 10.t, 2.1 X }0.ll0

XSEL 79 329 5.0 X toL4 -
XFL 74 252 I. 3 X JOL5 -

Table 4. Some Est imates of Parameters of KS [Tsai 93a].

is missed. Cost of test case generation consists of cost associated with generation of test inputs
and expected outputs. Generating expected outputs can be difficult because testing criteria can be
unclear or due to lack of oracles. Consistency and completeness methods have less cost of
generation compared with dynamic testing methods (see table 5).

The cost of test case evaluation is often less than the cost of test case generation because a
significant portion of test case evaluation can be automated For consistency and completeness
testing methods cost associated with running a test program on rule base is less than dynamic
testing methods.

Cost of loss is the cost incurred if a testing method fails to identify a fault. This cost can be large
if the software has been deployed and legal issues are involved. The cost ofloss can be reduced if
the software bugs can be found in a timely manner, in the different phases of the development
process.

Analysis of costs based on different factors such as the development phases, the formalisms used,
the testing techniques
applied and the bugs
detected will facilitate
selection of appropriate
techniques for testing a
KS. For instance,
comparison of the
random testing
techniques versus the
partition testing
techniques such as
input/output partitioning
or path partitioning, or
comparison of the costs
involved in performing

Cost of test case generation Cost of test case
evaluation

Consistency and completeness testing methods Illegal attributes
Data-flow Unreferenced attribute

Random Missing rule
Input partition Redundancy rule
Output partition Conflict rule
Dynamic-flow Subsumption rule
Cause-effect Data-flow

Random
Input partition
Output partition
Cause-effect
Dynamic-flow

Table 5 . Testmg methods ordered rn mcreasmg order of costs from top to bottom
[Kirani 94a).

the testing early in the development process (for example, performing completeness checks on
requirements) versus performing tests later in the process (such as functional testing on the code)
can be useful in determining the techniques that can be effectively applied.

8

In dynamically changing applications such as the KS, regression testing techniques can be used
whenever the system is changed. Regression testing involves running existing test suites on the
new system to detect faults. If the domain space is small, then all the test cases can be re­
executed. However, if the system domain space is large and a huge number of test cases exist,
then it may be expensive to execute all the test cases again when only a small portion of the
system may have changed or extended. This requires identification of those test cases which will
verify the modified portions of the system. Generalized program slicing techniques [Huang 96)
can be used as a mechanism to identify the relevant modified portions of the system. Generalized
program slicing techniques use some criteria to slice a given system and return only those
portions of the system which satisfy the slicing criteria. By maintaining traceability links
between the test suites and the system, only the relevant test cases can be extracted from the
existing test cases to perform regression testing on the system.

3. 7 Other Issues

Some of the other issues that impact the V & V of KS are as follows:

• Of many V & V criteria, the correctness criterion of a KB has received the most attention in
KB verification. Other quality requirements of a KB, such as reliability, maintainability,
reusability, understandability have not been adequately addressed.

• There is lack of common criteria for evaluating the performance of KB verification tools and
methods, therefore making it hard to compare the effectiveness of the tools. Recently,
attempts have been made in [Tsai 90a) to establish a set of standard criteria for evaluating KB
verification tools.

4. V&VTECHNIQUES

V & V techniques of conventional software systems have been discussed in [Beizer 90]. Broadly
speaking, those techniques can be categorized into two groups: static methods (analysis) and
dynamic methods (testing). Static methods detect faults by analyzing a complete program, but the
program is not executed, while dynamic methods require that a program be executed with regard
to test suites.

4.1 Static Methods

Static V & V method.s can have different objectives such as detecting completeness and
consistency faults and proving the correctness of the programs. Techniques in this category range
from informal (reading/reviews, inspections and walk:throughs) to semi-formal checks such as
type-checking performed by compilers, to ~ormal techniques (axiomatic mathematical proofs).
Some recent attempts include the informal analysis such as the use of checklist approach, the
formal analysis such as the assertional approach and the object-oriented specification approach.

4.2 Dynamic Methods

Dynamic V&V methods require the execution of a system through the use of test suites. Test
cases can be derived either from a functional or structural viewpoint. In the functional testing,

9

also known as the black-box testing, a program is treated as a black box. The program's
implementation details do not matter as the focus is on the requirement specifications. The
structural testing, also known as the white-box testing, constructs the test cases based on the
implementation details such as the control flow and data flow aspects, source language details,
and programming styles. Several useful black-box and white-box testing techniques for KS have
been evaluated in [Kirani 94a].

Structural testing: Some of the structural testing techniques include cause-effect graph based
testing, dynamic flow testing, data-flow testing and path testing [Beizer 90]. For verifying the
quality properties of a KB, structural testing makes use of the information about the internal
structure of a KB (e.g., causal relationships among rules). Depending on how the internal
structures of a KB are modeled, there are different ways of checking KB for anomalies. These
approaches are summarized in Table 6.

Approach Description Examples of approaches

Decision Table Check for ambiguity, redundancy or completeness based on ESC [Cragun 87]
approach conditions and actions of rules organized in a Decision

Table.

Logical approach Conduct some logical operations either directly on a KB or COY ADIS [Rousset 88].
an equivalent set oflogic formulas of the KB to derive
verification results.

Petri net approach Use Petri nets to models KBs and use analysis techniques PREPARE [Zhang 94].
based on Petri nets to verify them.

Integrity constraint Use metaknowledge, the knowledge about domain compiled [Lafon 91].
satisfaction in a KB, in verifying the completeness and consistency of a
approach KB.

Graph approach Essential idea is to treat the KB as graph generators and to [Wilkins 86].
analyze the graphs produced by the generating functions for
certain criteria to pinpoint anomalies in a KB.

Syntactic Relies on analyzing the syntactic properties of a KB to detect COVER [Preece 93].
inspection potential errors.
approach

Incoherence Based on the notion of coherence. Verification of a KB is to [Aye! 91b].
detection approach detect incoherence in it.

Incidence matrix Based on representing a rule-based KB in terms of incidence [Botten 92].
approach matrices and checking for anomalies through matrix

multiplications and comparisons

Table 6. A summary of Structural Testmg methods.

Functional testing: Functional testing is based on program specification and not on its
implementation details. Some of the functional testing methods include random testing and
partition testing (input and output). In random testing, test cases are selected randomly. They are
efficient at detecting faults at a low cost and are useful when a fault-prone region is uniformly
distributed across the input space. Partition testing involves selecting test cases from partitions of

input or output spaces. Test cases based on partitions are effective when a program has a non­
unifonn fault prone region. In case of KS, their specific characteristics need to be considered for
performing functional testing. Functional testing of a KB can be based on the specification of a
functional description of a KB. When provided with some initial condition (e.g., aggregations of
initial facts), a KB will respond accordingly to produce some results (e.g., aggregations of
derived facts). Functional testing methods can be used to detect anomalies from aberrations of
such predefined input-output patterns. Table 7 summarizes some of the functional testing
methods that have been developed for KS.

Approach Description Examples of
approaches

Machine Leaming The essential idea of machine learning based approach is to generate [De Raedt 91].
approach examples from the given KB by using some learning strategies; and

confirm the examples to verify its correctness.

Assumption-based
This approach stems from the idea of truth maintenance system of de [Ginsberg 88].

truth maintenance
Kleer.

system (A TMS)
approach

Relational Based on the concepts of attribute space (which represents a union of [Marathe 89].
approach domain of all attributes used in rules of a KB) and defining rules as

functions on the attribute space. Verifying the KB amounts to detecting
certain relations between the rule functions.

Refmement This approach identifies potential errors in a KB through a case database [Ginsberg 85].
approach {which represents a set of cases with known conclusions}, statistical

concepts and heuristics [Ginsberg 85]. It also provides suggestions for
appropriate rule modification.

Table 7. A summary of Functional Testing Methods.

5. TOOLS FOR KS V & V

In this section we summarize the features of some of the tools that have been developed for V & V
of KS. The TEIRESIAS program was the first attempt to automate the rule base debugging
process. It was designed as part of the debugging facilities of MYCIN, the infectious blood
disease consultation system. By using TEIRESIAS as a tool, the expert could judge whether or
not MYCIN's diagnosis is correct, track down the faults in the knowledge base that resulted in an
incorrect conclusion, and alter, add, or delete rules to fix errors.

The ONCOCIN rule checker is a knowledge· base verification program for ONCOCIN, a KS for
oncology protocol management. This program is different from the TEIRESIAS program in that
rules were examined as they were entered into the system. The format of the rules consists of
action parameter, context, condition, action, and classification. To check for inconsistencies and
incompleteness, a table is made which consists of all possible combinations of condition
parameter values and their corresponding action (conclusion) parameter values. Conflict,
redundancy, subsumption, and missing rules are detected by examining the table.

11

CLINT COVADIS COVER IN-DEPTH KRUST MELODIA PREPARE SACCO

language/ Prolog Lisp Prolog&C Comm. Lisp Sun- Pa~cal C SACKO

environment. Sun Sun Sun-41300 Sun-41260 31280 IBM 3090 DEC 3100 OL

workst. workst.

knowledge predicate production predicate predicate frames proposit. predicate predicat

representation logic rules logic logic logic logic e
logic

KB model flat flat flat hierarchical flat flat flat flat

domain depend. depend. independ. independ. depend. depend. independ. depend.

dependency

approach machine logical syntactic KB- refineme logical petri net & incohere

learning inspection reduction nt pattern nee
recog. detectio

n

dependence no yes no no no no no no
of IE

participation yes yes no DO no no no no
of expert in
detection

handling of no no DO yes no no no no
certainty
factors

use of no yes yes no no no yes yes
heuristics in
detection

detection (d) de d only d only d only de donly d only de
vs. detection
& correction
(de)

types of in consist. inconsist. redundancy, inconsist. , inconsist. inconsist., inconsist., incohere
anomalies ambivalence, redundancy, redundanc redundancy, nee
detectable circularity, circularity, y, hidden circularity,

deficiency useless KB theorems incomplete.
objects

size of KB NIA up to 200 up to 550 up to 334 up to 200 up to up to 500 NIA
tested rules rules rules rules 10562 rules

rules

computation NIA NIA exponential exponential 200 rules 10562 exponential NIA

time
worst case worst case < 31 rules< 6 worst case
550 rules< 334 rules< minutes minutes 500 rules<
3.5 hours 20 hours I minute

reference [De Raedt [Rousset [Preece 93) [Meseguer [Craw [Charles [Zhang 93] [Aye!
91J 88) 93] 91) 91] 91b]

Table 8. Features of some KB venfiers.

The CHECK is a rule base verification program [Nguyen 87] for LES, the Lockheed ES shell. It
is claimed to be an extension of the ONCOCIN 's rule checker. It differs from the ONCOCIN 's
rule checker in that CHECK is applied to the entire set of rules rather than just subsets of the

12

rules. In addition to the types of faults the ONCOCIN's rule checker detects, CHECK includes
the detection of several extra types of faults , such as circular rules, unnecessary if conditions, and
unreachable conclusions.

EVA (Expert systems Validation Associate) is an integrated set of tools for validating KS
[Chang 90]. Its goal is to include all the necessary generic tools for validation of any KS
developed in any expert system shell for any problem domain. Several tools such as structure
checker and logic checker have been designed to detect anomalies of a particular nature.

KB-REDUCER, a verifier based on KB-reduction approach, is capable of detecting
inconsistencies and redundancies. It has been used to analyze several KB of up to 3 70 rules in
size. The worst case time complexity in generating environments may be exponential.

A list of some recently developed tools is shown in Table 8, along with their features. In addition
to the effort made by the researchers, vendors have developed and integrated V & V tools and
utilities for their own expert system shells (e.g., CRSV for CLIPS and Automatic Validation
function for EXSYS).

6. RESEARCH ISSUES

There is a spectrum of research issues in KS V & V, some currently being studied, some yet to be
investigated.

More experimental data on effectiveness of different KS verification approaches are
needed: Comparative study is needed on existing KS V&V approaches using veridical systems
to determine what approach is effective for detecting which type(s) of anomalies as well as for
determining the costs involved and the scalability of the techniques. Veridical systems represent
systems that are deployed in the field and provide realistic data about the size and complexity of
systems in the field. Research using veridical systems can help find real issues in V & V of KS.
Usefulness of any technique will be validated by their application to veridical systems.

Effectiveness under different contexts: Experiments need to be performed to determine the
strengths and weaknesses of different techniques used under different contexts. For instance,
experiments needs to be performed to determine which technique would be most effective for
rule-based systems versus frame-based systems, or which technique can be used for systems
developed using the spiral development paradigm versus the 00 paradigms. Some of the other
issues that need to be considered are the lifecycle phases in which a technique is effective, the
representation formalisms and the cost-effectiveness of the techniques.

One technique called life-cycle mutation testing (LCMT) can be useful for evaluating testing
methods for a KS at each phase of the development process [Kirani 94a]. In this technique,
intentional faults called mutants are introduced one at a time into a program, and a testing
method to be evaluated is applied to the program. If the testing method fails to identify the
failures resulting from a mutation, the mutant is said to be live. Otherwise, the mutant is
considered killed. A test method's adequacy is determined by the number of mutants it is able to
kill. In LCMT, a mutant is introduced in all by-products of development such as problem
specification, solution specification, high-level design and the implementation code. The LCMT
study was conducted on a diagnostic VLSI manufacturing ES called MAPS. MAPS is based on

13

authentic reasoning methods of an expert with 12 years of experience and it performed better
than another expert with seven years of experience. By injecting different faults at different
phases of the development process, the study performed an analysis of the performance and cost­
effectiveness of various testing methods in different phases of the development process. For
instance, the study found that black-box testing methods killed more mutants in initial life-cycle
phases compared with the implementation phase. Further studies focusing on the effectiveness of
verification approaches considering other factors such as the knowledge representations and the
size of the KBs are needed.

Evaluation of costs of V & V methods: Issues regarding V & V costs need to be researched further.
Costs associated with V & V depend on many factors. For instance, it is not clear what the relative
costs will be in detecting or failing to detect a fault using a static technique (such as inspections)
versus using a dynamic technique (such as some black-box testing). Such an analysis can be
useful in determining which technique should be used under various circumstances.

Scaling up of techniques and tools. Many tools and techniques have been mainly tested on KBs
that are fairly small in size (e.g., hundreds or thousands rules in a rule-based KB). More data are
needed about the effectiveness and efficiency of these tools when applied to large KBs. Systems
with large KBs are not far fetched and many have already been on the horizon.

Focus on entire system, not just the KB: Many existing V & V tools deal mainly with the
correctness aspect of a KB, but there are many other components in a KS, such as the IE, the
explanation module, the knowledge acquisition module, the communication module and various
other interfaces. A fault in any of these components can potentially lead to a failure in the KS.
Therefore, support is needed for V & V of each of these components as well as the entire system.

Incorporate V & V into development processes: The focus on most existing KS V & V
approaches is to detect and correct all types of anomalies at the end of KS development process,
i.e., the coding stage. Little effort is made to reduce the chances of introducing anomalies into
KS at earlier phases. For instance, techniques that test the completeness and consistency of
software specifications [Tsai 93b] can be used to detect anomalies in the specification phase.
V & V techniques need to be integrated with the KS development processes.

Standards. There is a need for standardizing terminology and definitions of anomalies.

Theoretic foundations. We need to establish some formal semantics for KB anomalies. There
has been effort in this direction [Rushby 88, Rushby 89].

Agent-based applications: The growth of Internet and the World Wide Web has led to an
explosion in computer-based tasks and services, and the technology of software agents. Agents
are computer programs that make autonomous decisions based on the data received from
agencies and support common tasks such as_ filtering of news and mail, scheduling of meetings,
and selection of music. As the popularity of agent-based applications grows, verification of their
behavior becomes critical to avoid failures. Research into V & V techniques needs to address the
special characteristics of agent-based applications, such as testing techniques for programs
involving large number of distributed autonomous agents.

Software reliability models: Software reliability has been a subject for research for
conventional software for many years, however, software reliability models have not received

14

great attention yet [Bastani 90]. Software reliability models can be used to estimate mean time
between software failures and is essential for safety-critical applications such as nuclear reactor
control, where failures can be costly leading to loss of property or life. These models can indicate
when the V &V activities have been adequately performed.

ACKNOWLEDGEMENTS

We would like to express our sincere thanks to Dr. Imran Zualkeman and Dr. Shekhar Kirani
who have collaborated with us for several years in related areas.

[Aye! 91a]

[Aye! 91b]

[Barker 89]

[Bastani 90)

[Beizer 90)

[Botten 92]

[Buchanan 88]

[Chang 90]

[Charles 91]

[Cragun 87]

[Craw91]

[Culbert 90]

[De Raedt 91]

REFERENCES

M. Aye! and J.P. Laurent (Eds.), Validation, Verification and Test of Knowledge-Based
Systems, John Wiley & Sons, Chichester, 1991.

M. Aye! and J.P. Laurent, "SACCO-SYCOJET: Two Different Ways of Verifying Knowledge­
Based Systems", In Validation, Verification and Test of Knowledge-Based Systems, M. Aye!
and J.P. Laurent (Eds.), John Wiley & Sons, Chichester, 1991, pp. 63-76.

V.E. Barker, D.E. O'Connor, J. Bachant and E. Soloway, "Expert Systems for Configuration at
Digital: XCON and Beyond", Communications of ACM, Vol. 32, No. 3, 1989, pp. 298-318.

F. B. Bastani and I. R. Chen, "Assessment of Reliability of AI Programs", in Proc. of IEEE
Conference on Tools for Al, 1990, pp. 753-759.

B. Beizer, Software Testing Techniques, Van Nostrand Reinhold, New York, 1990.

N. Botten, "Complex Knowledge Base Verification Using Matrices", In Lecture Notes in
Artificial Intelligence, F. Belli and F .J. Radermacher (Eds.), Springer-Verlag, Berlin, 1992, pp.
225-235.

B.G. Buchanan, "Al as an experimental science", In Aspects of Artificial Intelligence, J.E.Fetzer
(Ed.), Kluwer Academic Publishing, 1988, pp. 209-250.

C.L. Chang, J.B. Combs and R.A. Stachowitz, "A Report on the Expert Systems Validation
Associate (EVA)", Expert Systems with Applications, Vol. I, 1990, pp. 217-230.

E. Charles and 0. Dubois, "MELODIA: Logical Methods for Checking Knowledge Bases", In
Validation, Verification and Test of Knowledge-Based Systems, M. Aye! and J.P. Laurent
(Eds.), John Wiley & Sons, Chichester, 1991, pp. 95-105.

B.J. Cragun and H.J. Steudel, "A Decision-Table-Based Processor for Checking Completeness
and Consistency in Rule-Based Expert Systems", International Journal of Man-Machine
Studies, Vol. 26, 1987, pp. 633-648.

S. Craw, "Judging Knowledge Base Quality", In Validation, Verification and Test of
Knowledge-Based Systems, M. Ayel and J.P. Laurent (Eds.), John Wiley & Sons, Chichester,
1991, pp. 207-219.

C. Culbert (Ed.), Special Issue:• Verification and Validation of Knowledge-Based Systems,
Expert Systems with Applications, Vol. I, No. 3, 1990.

L. De Raedt, G. Sablon and M. Bruynooghe, "Using Interactive Concept Leaming for
Knowledge-base Validation and Verification", In Validation, Verification and Test of
Knowledge-Based Systems, M. Ayel and J.P. Laurent (Eds.), John Wiley & Sons, Chichester,
1991, pp. 177-190.

15

[Ginsberg 85] A. Ginsberg, S. Weiss and P. Politakis, "SEEK2: A Generalized Approach to Automatic
Knowledge Base Refinement", In Proc. of lntemational Joint Conference on Al, 1985, pp. 367-
374.

[Ginsberg 88] A. Ginsberg, "Knowledge-Base Reduction: A New Approach to Checking Knowledge Bases
for Inconsistency and Redundancy", In Proc. of Seventh National Conference on AI, I 988, pp.
585-589.

(Ginsberg 93] A. Ginsberg and K. Williamson, "Inconsistency and Redundancy Checking for Quasi-First­
Order-Logic Knowledge Bases", International Journal of Expert Systems, Vol. 6, No. 3, 1993,
pp. 321-340.

[Gupta 91] U.G. Gupta (Ed.), Validating and Verifying Knowledge-Based Systems, IEEE Computer Society
Press, Los Alamitos CA, 1991.

(Hamilton 91] D. Hamilton, K. Kelley and C. Culbert, "State-of-the-Practice in Knowledge-Based System
Verification and Validation", Expert Systems with Applications, Vol. 3, 1991, pp. 403-410.

[Hayes-Roth 94] F. Hayes-Roth and N. Jacobstein, "The State of Knowledge-Based Systems", Communications
of ACM, Vol. 37, No. 3, 1994, pp. 27-39.

[Huang 96] H. Huang, W.T.Tsai, and S. Subramanian, "Generalized Program Slicing for Software
Maintenance", In Proc. Of Software Engineering and Knowledge Engineering, 1996, pp. 261-
268.

[IEEE 90] IEEE Standard 610.12-1990, IEEE Glossary of Software Engineering Terminology, 1990.

[Kirani 94a] S. Kirani, I.A. Zaulkeman and W.T. Tsai, "Evaluation of Expert System Testing Methods",
Communications of the ACM, Vol. 37, No. 11, 1994, pp. 71-81.

[Kirani 94b] S. Kirani and W.T. Tsai, "Specification and Verification of Object-Oriented Programs",
Technical Report, Computer Science Department, 1994.

[Lafon 91] P. Lafon, "A Descriptive Model of Predicates for Verifying Production Systems", in Validation,
Verification and Test of Knowledge-Based Systems, M. Aye! and J.P. Laurent (Eds.), John
Wiley & Sons, Chichester, 1991, pp. 149- 162.

[Lydiard 92] T.J. Lydiard, "Overview of Current Practice and Research Initiatives for the Verification and
Validation ofKBS", The Knowledge Engineering Review, Vol. 7, No. 2, 1992, pp. 101-113.

[Marathe 89] H. Marathe, T.K. Ma and C.C. Liu, "An Algorithm for Identification of Relations among
Rules", In Proc. ofIEEE International Workshop on Tools for Al, 1989, pp. 360-366.

[Marr 82] D. Marr, Vision, W.H. Freeman, N.Y., N.Y., 1982.

[Meseguer 93] P. Meseguer and A. Verdaguer, "Verification of Multi-Level Rule-Based Expert Systems:
Theory and Practice", International Journal of Expert Systems, Vol. 6, No. 2, 1993, pp. 163-
192. .

[Miller 94] L.A. Miller, "Recommended Guidelines for V&V of Various Kinds of Systems at Various
Lifecycle Phases", In Proc. Of AAAl-94 Workshop on Validation and Verification of
Knowledge-Based Systems, 1994, pp. 1-9.

[Musa 87] J. Musa, A. Iannino and K. Okumoto, Software Reliability: Measurement, Prediction,
Application, McGraw-Hill, New-York, 1987.

[Nazareth 89] D.L. Nazareth, "Issues in the Verification of Knowledge in Rule-Based Systems", International
Journal of Man-Machine Studies, Vol. 30, 1989, pp. 255-271.

[Nguyen 87] T.A. Nguyen, W.A. Perkins, T.J. Laffey and D. Pecora, "Knowledge Base Verification", Al
Magazine, Vol. 8, 1987, pp. 69-75.

[O'Keefe 93] R.M. O'Keefe and D.E. O'Leary, "Expert System Verification and Validation: A Survey and
Tutorial", Artificial Intelligence Review, Vol. 7, 1993, pp. 3-42.

16

[O'Leary 91] D.E. O'Leary, "Design, Development and Validation of Expert Systems: A Survey of
Developers", In Validation, Verification and Test of Knowledge-Based Systems, M . Aye! and
J.P. Laurent (Eds.), John Wiley & Sons, Chichester, I 991, pp. 3-19.

[O'Leary 94] D.E. O' Leary (Ed.), "Special Issue: Verification and Validation of Intelligent Systems: Five
Years of AAAI Workshops", International Journal of Intelligent Systems, Vol. 9, No. 8-9,
1994.

[Plaza 93] E. Plaza (Ed.), "Validation and Verification of Knowledge-based Systems", IEEE Expert, Vol.
8, 1993, pp. 45-81.

[Preece 92] A. Preece, R. Shinghal and A. Batarekh, "Verifying Expert Systems: A Logical Framework and
A Practical Tool", Expert Systems with Applications, Vol. 5, No. 2-3, 1992, pp. 421-436.

[Preece 93] A. Preece and C. Suen (Eds.), Special Issues: Verification and Validation of Knowledge-Based
Systems, International Journal of Expert Systems, Vol. 6, No. 2-3, 1993.

{Pressman 87] R. S. Pressman, Software Engineering: A Practitioner's Approach, McGraw-Hill, New York,
1987.

[Rousset 88] M.C. Rousset, "On the Consistency of Knowledge Bases: the COVADIS System", In Proc. of
Eighth European Conference on AI, 1988, pp. 79-84.

[Rushby 88] J. Rushby, "Quality Measures and Assurance for AI Software", NASA Contractor Report 4187,
October 1988.

[Rushby 89] J. Rushby, "Formal Verification of Al Software", NASA Contractor Report 181827, February
1989.

[Subramanian 94] S. Subramanian, W.T.Tsai and S.Kirani, "Hierarchical Data Flow Analysis for 00 programs",
Journal of Object-Oriented Programming, Vol. 7, No. 2, 1994, pp. 36-46.

[Tsai 90a] W. T. Tsai and I.A. Zualkeman, "Towards a Unified Framework for Testing Expert Systems",
In Proc. of International Conference on Software Engineering and Knowledge Engineering,
1990.

[Tsai 90b] W. T. Tsai, K. Heisler, D. Volovik, and I. A. Zualkeman, "AI and Software Engineering: A
clash of cultures?", In Computers for Artificial Intelligence Processing, B. W. Wah and C. V.
Ramamoorthy (Eds.), John Wiley and Sons, N. Y., 1990.

(Tsai 93a] W.T. Tsai, I.A. Zualkernan and S. Kirani, "Pragmatic Testing Methods for Expert Systems",
international Journal of Al Tools, Vol.2, No.2, 1993, pp.181-217.

[Tsai 93b] W. T. Tsai, W. Xie, I. A. Zualkeman, and S. K. Musukula, "A Framework for Systematic
Testing of Software Specifications", In Proc, of International Conference on Software
Engineering and Knowledge Engineering, 1993, pp. 380-387.

[Wilkins 86] D.C. Wilkins and B.G. Buchanan, "On Debugging Rule Sets When Reasoning under
Uncertainty", In Proc. of Fourth National Conference on AI, 1986, pp. 448-454.

[Zhang 93] D. Zhang and D. Nguyen, "A Tool for Knowledge Base Verification", In Advanced Series on
Artificial Intelligence, Vol.2: Knowledge Engineering Shells-Systems and Techniques, N.
Bourbakis (Ed.), World Scientific Publishers, 1993, pp. 455-486.

[Zhang 94] D. Zhang and D. Nguyen, "P~PARE: A Tool for Knowledge Base Verification", IEEE
Transactions on Knowledge and Data Engineering, Vol. 6, No. 6, 1994, pp. 983-989.

[Zlatereva 94] N. Zlatareva and A. Preece, "State of the Art in Automated Validation of Knowledge-Based
Systems", Expert Systems with Applications, Vol. 7, No. 2, 1994, pp. 151-167.

[Zualkeman 88] l. A. Zualkeman, W. T. Tsai, P. E. Johnson, J. H. Moller, "Utility of Knowledge-Level
Specifications", In Proc. of 4th Annual Artificial Intelligence & Advanced Computer
Technology Conference, 1988, pp. 79-85.

17

	Blank Page

