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Abstract

Recent advances in high-Reynolds-number turbulence have suggested there is a general self-organization
of coherent structures in the logarithmic and wake regions of boundary layer flows. The organization com-
prises large-scale velocity structures known as uniform momentum zones (UMZs) separated by thin internal
shear layers (ISLs). While the velocity structures have been extensively studied in more specific forms such
as momentum streaks, streamwise rolls, and bulges, the shear layers have received less attention outside the
context of the hairpin packet paradigm. In the present thesis, the universality of this self-organization is eval-
uated using a novel field-scale particle image velocimetry (PIV) experiment in the logarithmic region of the
atmospheric surface layer. The field measurements are validated using collocated sonic anemometry. The
experiment reveals the same organization of UMZs and ISLs occurs for atmospheric flows. The properties of
the UMZs and ISLs are then compared using ten PIV experiments and a direct numerical simulation, which
together span a wide range of surface roughness and three orders of magnitude in Reynolds number. The
UMZs unambiguously scale with the friction velocity and wall-normal distance in the logarithmic region,
regardless of Reynolds number and surface roughness. The scaling behavior is in agreement with Prandtl’s
mixing length theory and Townsend’s attached eddy hypothesis. The results show that the hypothetical eddies
of the logarithmic law of the wall manifest in the structural organization of the flow. Separate analysis focus-
ing on the smaller structures shows that the ISLs and large vortices are both governed by the friction velocity
and Taylor microscale. Preliminary evidence suggests these ISL and vortex scaling behaviors both result
from mutual interaction with the local large-scale UMZs, possibly through a stretching mechanism. Addi-
tional experiments in three dimensions are required to verify the dynamics. The overall findings support the
universality of large-scale structures in the outer region and provide promising clues for better understanding
scale interaction and energy transfer mechanisms.
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Nomenclature

The standard meteorological coordinate system is used in this text. The position in the direction of the
flow (i.e. streamwise position) is given by x, the position transverse to the flow (i.e. spanwise) is y, and the
distance from the wall (i.e. wall-normal position) is z. The flow velocity in the streamwise, spanwise, and
wall-normal directions are given by u, v, andw, respectively. Velocities are decomposed as u = U+u′ where
lowercase (u, v, w) is the total velocity, uppercase (U, V,W ) is the ensemble average, and prime (u′, v′, w′)
is the fluctuation from the mean. In general, lower-case lettering is used for the instantaneous value of a
variable and upper-case lettering is used for the mean. The mean value is also indicated by overbars ( · ) or
angled brackets (〈·〉). Finally, the superscript “+” indicates normalization in viscous units, e.g. x+ = xuτ/ν

or u+ = u/uτ with uτ and ν defined below.
The following non-comprehensive lists provide the abbreviations and notation used most frequently

throughout the thesis text. These definitions also appear at the first usage of each abbreviation or variable. In
a small number of cases, the same notation is used for multiple variables of lesser importance, e.g. pressure
and probability density both given by p. The duplicity in notation does not occur within the same chapter and
the relevant definition is specified where necessary.

Abbreviations

ABL atmospheric boundary layer

AEH attached eddy hypothesis

ASL atmospheric surface layer

DNS direct numerical simulation

FOV field of view

ISL internal shear layer

pdf probability density function

rms root mean square of deviations from the mean

PIV particle image velocimetry

SAFL St. Anthony Falls Laboratory

SLPIV super-large-scale particle image velocimetry

TNTI turbulent/non-turbulent interface

UMZ uniform momentum zone
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Standard notation

ks equivalent sandgrain roughness

L integral length scale

`e characteristic eddy length scale

Reτ friction Reynolds number

Rif flux Richardson number

S mean velocity gradient ∂U/∂z

St Stokes number

T large eddy turnover time scale

ue characteristics eddy velocity scale

urms streamwise root-mean-squared velocity

uη Kolmogorov velocity scale

uτ friction velocity scale

wI interrogation window size for particle image velocimetry

∆x vector spacing in particle image velocimetry fields

zo aerodynamic roughness length

α strain rate

δ average boundary layer thickness

δSL atmospheric surface layer thickness

ε turbulent kinetic energy dissipation rate

η Kolmogorov length scale

κ von Kármán constant

λci swirling strength

λT Taylor microscale (length scale)

ν fluid kinematic viscosity
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ρ fluid density

σ standard deviation

ωy spanwise vorticity

Uniform momentum zone properties

hm, Hm wall-normal thickness (instantaneous, mean)

`m, Lm streamwise length (instantaneous, mean)

Lx streamwise distance contributing to momentum zone detection

um, Um modal velocity (instantaneous, mean)

∆Um velocity difference across the shear layer between adjacent momentum zones (mean)

zm wall-normal midheight

Internal shear layer properties

ui, Ui streamwise advection velocity (instantaneous, mean)

wi,Wi wall-normal advection velocity (instantaneous, mean)

zi wall-normal midheight

δω average thickness (notation following the vorticity thickness)

Spanwise vortex properties

dω, Dω diameter (instantaneous, mean)

uω, Uω streamwise advection velocity (instantaneous, mean)

∆uω,∆Uω azimuthal velocity difference across the vortex diameter (instantaneous, mean)

wω,Wω wall-normal advection velocity (instantaneous, mean)

xω streamwise center position

zω wall-normal center position
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1 Introduction

We are surrounded by turbulence, even if we do not pay much attention to it. More specifically, we live
in a turbulent boundary layer, the lower part of the atmosphere where the wind interacts with the Earth’s
surface. The turbulent air is not readily seen, owing to its transparency, unless it has a visual aid such as a
frosty breath during a frigid Minnesota winter. The seemingly random swirling eddies often used to describe
turbulence are more apparent on water surfaces as depicted in Leonardo da Vinci’s sketch in figure 1.

From da Vinci’s early illustrations of turbulence circa 1500 to the present, scientists have grown to ap-
preciate the importance of turbulent fluids in our lives, where air and water are the most common fluids.
A running example in this text will be the aforementioned atmospheric boundary layer, though turbulent
boundary layers are ubiquitous in environmental and engineering applications including pipeline infrastruc-
ture (Moody 1944), naval shipping (Prandtl & Schlichting 1934), aeronautics (Anderson 2016), river channel
hydraulics (Chow 1959), and marine ecosystems (Thorpe 2005). Just within the ABL example, there are sev-
eral research sub-topics of practical importance. For instance, atmospheric turbulence affects the performance
and lifetime of wind turbine farms (Stevens & Meneveau 2017), imposes non-stationary loads on buildings
and structures (Simiu & Yeo 2019), disperses source pollutants such as car exhaust (Nicholson 1975), and
enhances the exchange of heat and water between the earth surface and the atmosphere (Brutsaert 1982). The
summation of local turbulence effects related to heat, water, and wind contribute to weather and climate at
the regional and global scales (Hartmann 2016).

Having expressed the importance of the turbulent boundary layers, it is now prudent to provide a proper
definition for turbulence, boundary layer and other basic concepts of the research topic. Note that a satisfac-
tory definition of turbulence has eluded scientists for centuries and the definition provided here may be better
classified as a qualitative description. Following these definitions, the research goals are given to introduce
the questions addressed in the remaining chapters of the thesis.

Figure 1. A sketch by Leonardo da Vinci circa 1500 of a water jet flowing into a turbulent pool, from his notebook Codex Leicester
(Laurenza & Kemp 2019).

1



Introduction 2

1.1 What is turbulence?1

Turbulence ultimately results from the physical laws governing the movement of a fluid, which are re-
markably simple given the complexity of the result. One law is the conservation of mass. If the fluid is
incompressible, i.e. if the density ρ is constant as in this research, the conservation law simplifies to the
continuity equation:

∇ · u = 0, (1)

where u is the velocity vector and∇· is the divergence with vector gradient operator∇ and inner product “·”.
Equation (1) states that any flow region must have an equal amount of fluid entering and exiting the region
at a given time. Another law is Newton’s second law of motion F = ma which relates the net force F on
a region “parcel” of fluid to its acceleration a (Newton 1687). Evaluation of the acceleration and internal
forces yields the Navier-Stokes equations (Navier 1821; Stokes 1845):

∂u

∂t
+ (u · ∇)u = − 1

ρ
∇p + ν∇2u + fext. (2)

(I) (II) (III) (IV) (V)

Here, p is the pressure, ν is the kinematic viscosity, and fext is an external force per unit mass. The new
operators are the partial derivative ∂

∂t with respect to time t and the Laplacian∇2. The first term (I) represents
storage of momentum (temporal acceleration), (II) is the advection of momentum (spatial acceleration), (III)
acts to redistribute momentum through the pressure field (distribution of force across a pressure gradient),
(IV) acts to diffuse momentum by viscosity (smooth the velocity differences through viscous shear stresses),
and (V) represents any external forces acting on the fluid including gravity. The viscous term (IV) used here
is specific to Newtonian fluids, and results from Newton’s law of viscosity τ = ρν∇u, where τ is the shear
stress. While the Navier-Stokes equations strictly describe the conservation of momentum within the fluid
continuum, it is conceptually useful to consider each term in the framework of force and acceleration as given
in parentheses above.

From Poisson’s equation relating the pressure to the velocity field, it is known that the pressure and
advective terms (II,III) have similar magnitude. The response of the fluid to an external perturbation (i.e. a
small, disruptive force) then depends on the relative magnitude of the viscous term (IV). Two scenarios are
depicted in the figure 2 cartoon. If the viscous term is greater, the velocity difference imposed by the external
force is dampened faster than it can advect and grow. If the viscosity is too small, the perturbation advects
and grows as an instability. Because the advection is non-linear, the perturbation from the base flow similarly
grows non-linearly, affecting the surrounding flow and eventually leading to unsteady conditions known as
turbulence throughout the flow geometry. From this description, a generic definition for turbulence emerges,

1This section is based on my accumulated knowledge from graduate courses and research texts. The ideas draw most heavily from
the introductory chapters of the textbooks sitting at my desk: Monin & Yaglom (1971); Schlichting & Gersten (1999); Pope (2000);
Davidson (2015). Additional references are cited where appropriate.



Introduction 3

Figure 2. A cartoon of laminar flow streamlines perturbed by an obstacle: (left) the base flow; (middle) perturbed flow remaining
laminar; (right) perturbed flow becoming turbulent.

adapted from Davidson (2015):

Turbulence is the spatially complex distribution of fluid motion that propagates in a non-linear and chaotic
manner, changing in both space and time.

There are certainly more attributes of turbulent flows, but at some point a (admittedly ambiguous) distinction
must be made between a characteristic and a defining feature. Among other characteristics of turbulence,
the fluid velocities are three dimensional and rotational, and the viscosity continuously works to diffuse the
momentum and dissipate the turbulent kinetic energy. Turbulence will decay and the flow re-laminarizes in
the absence of energy supply (Tennekes & Lumley 1972).

Returning to the figure 2 cartoon, the competing terms can be compared using dimensional analysis.
The advective and pressure terms scale as u · ∂u/∂x ∼ u2/` and the viscous term scales as ν ∂2u/∂x2 ∼
νu/`2, where u and ` are a characteristic velocity and length, respectively2. The ratio of the terms yields
the Reynolds number Re = u`/ν, which characterizes the relative importance of advective and diffusive (or
inertial and viscous) effects (Stokes 1851; Reynolds 1883). The flow is turbulent if the Reynolds number
is large (Re � 1) and any small perturbation is present to disrupt the flow. In practice, the vast majority of
flows are turbulent; air and water have low viscosities leading to large Reynolds numbers, and disruptions due
to imperfections (e.g. surface roughness, temperature gradient, unsteady inflow conditions) are ubiquitous
outside of specially designed facilities.

In theory, equations (1) and (2) form a deterministic system. There are four unknown quantities (u, v, w, p)
and four equations (the continuity equation and one Navier-Stokes expression each for x, y, and z directions).
A priori knowledge of the initial conditions and all external forces allows for calculation of future flow fields.
However, the computational resources required to fully resolve any atmospheric flow is well beyond current
capabilities, and more importantly, the initial conditions and external forces are never perfectly known. To
the second point, any infinitesimal error in the initial condition grows non-linearly, quickly making future
predictions inaccurate. For this reason, the instantaneous solution to a turbulent flow is considered chaotic
and unpredictable in practice (Manneville 2010).

2Throughout the text, “∼” means “scales with” such that the two terms have the same order of magnitude.
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To circumvent the chaos, turbulent flows are often treated statistically in an attempt to solve for the mean,
standard deviation, covariance, or other statistics rather than each instantaneous flow realization (Monin &
Yaglom 1971). Most commonly, the Reynolds decomposition treats the mean velocity U and deviations from
the mean u′ separately as u = U+u′ prior to averaging the governing equations (Reynolds 1895). While this
approach has led to many advances in our understanding of turbulence, it also introduces a new problem of
closure: there are always more unknown statistical variables than statistical equations such that the equations
cannot be solved directly. This is due to the dastardly non-linear advective term in equation (2) which creates
a new unknown variable when the equation is Reynolds decomposed and averaged. The workaround to the
closure problem is the aptly named “closure model” which uses a semi-empirical expression to relate two of
the unknown statistics (Boussinesq 1887; Durbin 2018). The model replaces an unknown statistic to close the
system of equations, where experimental data are often used to tune any model parameter(s). This modeling
approach to problems in turbulence motivates the primary question for future expansion of this thesis work:
how can the present results be leveraged to inform and improve turbulence modeling tools?

1.2 What is a boundary layer?

Thankfully, it is easier to define boundary layer than turbulence. Consider the simple case of a fluid
moving parallel to a wall as depicted in the figure 3 cartoon. Friction along the wall exerts a shear stress
τw on the fluid, where τw is a function of the fluid viscosity, velocity U∞ and the surface properties (e.g.
roughness). The wall stress retards the fluid, and in most cases it is valid to assume a no-slip condition where
the fluid at the wall adheres to the surface and does not move relative to it (Schlichting & Gersten 1999).
The wall therefore imposes a velocity difference equal to U∞ between flow at the wall and the unobstructed
flow. From the Navier-Stokes equations, we know the viscosity will diffuse the velocity difference, and thus
the shear stress τ , away from the wall. The result is a distribution of the velocity and shear stress, where the
velocity profile resembles that shown in figure 3. The definition of the boundary layer is directly related to
the region where the effect of viscosity is felt:

The boundary layer is the fluid region near to a surface where the velocity deficit and shear stress are
non-negligible due to the effects of viscosity.

This concept of a boundary layer was first introduced by Ludwig Prandtl (1904) and was slow to gain accep-
tance outside of Prandtl’s research group until the 1920’s (Tani 1977).

Typically, the free-stream condition above the boundary layer is approximately laminar. The flow within
the boundary layer can be either laminar or turbulent based on the Reynolds number and perturbations as
previously discussed, but only turbulent boundary layers are studied here. Specifically, the boundary layers
in the present research have an approximately zero-pressure-gradient free-stream condition, as opposed to
internal flows such as pipe flow that have a positive pressure gradient. The bulk mean velocity difference
“supplies” energy to sustain the turbulence. This flow case is known as shear-driven turbulence.

In addition to the diffusion of momentum by viscosity, in a turbulent boundary layer the vertical motions
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Figure 3. A cartoon of a boundary layer formed by flow over a wall. The boundary layer is the region of thickness δ above the wall
where the wall shear stress τw is felt by the fluid.

also transfer momentum. For instance, when a turbulent motion high in the boundary layer carries a fast-
moving parcel downward into a lower-speed region, the momentum at the new position is increased. The
average transport (flux) of momentum due to turbulence is given by the covariance ρu′w′. The covariance is
always negative because, on average, momentum is transferred downward toward the wall. The momentum
flux is known as the Reynolds shear stress because it is an apparent stress dimensionally consistent with the
viscous shear stress that similarly acts to transfer momentum (Schlichting & Gersten 1999).

Because the velocity and shear stress distributions approach the free-stream condition asymptotically,
it is common to define the boundary layer thickness where the velocity is 99% of the free stream, i.e.
δ = z(U=0.99U∞) with z indicating the distance from the wall. The characteristic velocity for a turbu-
lent boundary layer is the friction velocity uτ ≡

√
τw/ρ corresponding to the average wall shear stress.

Despite having a definition fabricated from dimensional grouping, uτ successfully characterizes turbulent
velocities throughout the boundary layer as will be seen later. Using δ as the characteristic length yields the
friction Reynolds number Reτ ≡ uτδ/ν for boundary layers.

Besides indicating whether a flow is likely to be turbulent, a second useful purpose of the Reynolds
number is to quantify the difference between the largest and smallest turbulent motions. The largest motions
are limited by the flow geometry, in this case δ (Kovasznay et al. 1970), and the smallest are given by the
Kolmogorov length scale η (Kolmogorov 1941). The ratio of these lengths scales with the Reynolds number
as η/δ ∼ Re−3/4τ (Pope 2000), indicating that higher-Reynolds-number flows have a wider range of turbulent
motions.

1.2.1 The atmospheric boundary layer 3

Compared to laboratory boundary layers such as in a wind tunnel, the composition of the atmospheric
boundary layer (ABL) is more complicated. The free stream condition is similar, i.e. the free atmosphere is
characterized by laminar flow or low-level turbulence and negligible average shear stress. However, additional
forces are present within the boundary layer that must be considered in the Navier-Stokes equations. The

3The primary source of information for this section is the textbook by Stull (1988).
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Figure 4. A cartoon of an atmospheric boundary layer formed by wind over the earth’s surface during the day (left) and night (right).

frame of reference for atmospheric flows is the Earth’s surface. The rotation of the Earth about its axis means
the frame of references similarly rotates. The influence of the rotation on the relative wind speed is accounted
for in equation (2) by introducing a Coriolis force (Coriolis 1835).

The second effect of the rotation is the resulting diurnal variation in temperature depicted in the figure 4
cartoon. Gradients in temperature lead to small differences in air density, and thus buoyancy forces. During
the day, the sun heats the Earth’s surface, causing the air near the ground to be warmer and lighter than the air
higher in the atmosphere. The lighter air rises and the denser air falls, leading to vertical mixing and motions
known as convective or buoyancy-driven turbulence and a thermally unstable ABL. The thickness δ grows
throughout the day as the convective motions entrain air from the free atmosphere into the boundary layer.

The opposite temperature gradient occurs at night, when warm and light air is situated above cooler air
near the surface. The net buoyancy acts to resist vertical turbulent motions generated by the shear. The
negative buoyancy results in lower turbulence intensity and a stably stratified boundary layer. The upper
portion of the stable boundary layer is characterized by residual turbulence from the daytime conditions. In
the early morning and late evening there is a short transition period between stable and unstable conditions
when the ABL has a constant temperature profile and is neutrally stratified.

The buoyancy effects are incorporated in the Navier-Stokes equations by allowing the density ρ to be a
function of time and space instead of a constant. Boussinesq (1897) showed that the small density differences
are only significant to the weight difference from the gravitational force, and the density can otherwise be
assumed constant in equation (2). This assumption is known as the Boussinesq approximation.

The lowest portion of the ABL shown in figure 4 is known as the atmospheric surface layer (ASL).
Turbulence generated by shear is primarily concentrated within the surface layer thickness δSL, and the
turbulent motions within the ASL are small enough that Coriolis effects can be neglected (Sutton 1953;
Kaimal & Finnigan 1994). In this research, shear-driven atmospheric turbulence is compared to shear-driven
turbulent boundary layers at the laboratory scale. The appropriate atmospheric outer length scale is therefore
δSL which characterizes the region with high shear, rather than the total depth δ which is strongly dependent
on buoyancy.
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1.3 Coherent structures, eddies, and other terminology

Thus far, the general term turbulent motions has been used to describe the complex movement of a tur-
bulent fluid. Other terminology specific to turbulence research has been avoided because it can have various
meanings depending on the reader (and author). To avoid confusion, important jargon is given below along
with a precise definition and purpose.

The definition of a coherent structure is borrowed and modified from Robinson (1991):

A coherent structure is a spatial region of the flow over which a flow variable (e.g. velocity or vorticity) is
similar to itself relative to the surrounding regions.

The definition is purposely subjective to account for various types of structures and identification methods.
For example, a vortex is a coherent structure characterized by high vorticity and rotation around a central core.
A vortex is prograde if the direction of rotation is consistent with the mean velocity gradient (i.e. negative
vorticity in this study). In the opposite case the vortex is retrograde (positive vorticity). Other coherent
structure types are introduced in §2.2.

The term eddy is reserved for turbulent motions described statistically rather than as instantaneous struc-
tures. For example, the energy spectrum defines the average energy content of eddies at each scale. An
eddy is wall-dependent if it is influenced by the presence of the wall such that its size is a function of its
distance from the wall. Townsend’s (1976) terminology of an “attached” eddy is only used in the context of
the corresponding hypothesis and model.

A boundary layer has a smooth wall if the surface asperities are negligibly small compared to the viscous
length scale ν/uτ , and otherwise it has a rough wall. Following Pope (2000), the outer region of the boundary
layer corresponds to the region where viscosity (for smooth walls) and asperities (for rough walls) have a
negligible direct effect on velocity statistics, thus excluding the near-wall region.

1.4 Research questions

The previous sections have systematically introduced concepts relevant to this thesis entitled Organization

and scaling of coherent structures in the outer region of high-Reynolds-number turbulent boundary layers.
This research uses a series of experiments to investigate velocity fields in turbulent boundary layers ranging
from the laboratory to the atmosphere. For each experiment, I identified coherent structures in the outer
region of the boundary layer and quantified their properties. Through a comparison of the results across
experiments, the thesis explores the following questions:

1. In the absence of buoyancy effects, is the atmospheric surface layer structurally similar to laboratory-
scale boundary layers?

2. If so, what parameters determine the average coherent structure properties?

3. Is there a persistent organization of the structures that relates to overall flow statistics?
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4. Is there a dynamical relationship between the structures that can be inferred from the results?

As previously discussed, a key motivation for these questions is the improvement of turbulence modeling.
If the turbulent flow tends to organize into a specific arrangement of coherent structures with known average
properties, the flow could be represented in a structural model that reflects the known behavior with a reduced
level of complexity compared to flow simulations. Similar existing reduced-order models are summarized in
the subsequent literature review. The remaining chapters of the thesis are as follows:

Chapter 2: Further background on the composition of turbulent boundary layers and a review of previous
literature on coherent structures

Chapter 3: Methodology for and validation of a field experiment in the atmospheric surface layer

Chapter 4: Identification and analysis of coherent structures from the field measurements

Chapter 5: Organization and scaling of velocity structures and their relationship to the mean velocity
profile

Chapter 6: Organization and scaling of vortex structures

Chapter 7: Phenomenological interpretation of the results

Chapter 8: Concluding remarks and avenues for future research



2 Literature review and further background

2.1 The regions of a turbulent boundary layer and related theory

In the introduction, it was said the Reynolds number indicates the separation between the smallest and
largest turbulent scales (see §1.2). The friction Reynolds number Reτ also describes the separation between
the parameters governing the fluid stress at the wall (ν and τw) and the bulk flow geometry (δ). In a smooth
wall turbulent boundary layer, distinct regions emerge based on which of these parameters are of leading-
order importance. Prandtl (1925) first proposed there is a thin layer very near the wall where the viscous
shear stress is primarily responsible for the mean flow behavior, and a relatively larger layer farther from
the wall where the bulk parameters are important. At high Reynolds number (i.e. Reτ & 103), there is
an additional intermediate layer sufficiently far from both boundaries (i.e. z+=zuτ/ν � 1 and z/δ � 1)
such that the direct effects of both ν and δ can be neglected (Schlichting & Gersten 1999; Pope 2000). This
intermediate layer is known as the inertial or logarithmic (log) region. The various regions of a turbulent
boundary layer are shown in figure 5 and are characterized as follows (Pope 2000):

1. Viscous sublayer (z+ / 5). Region closest to the wall where the viscous shear stress governs the flow.
The mean flow is U+ = z+ to first-order accuracy.

2. Buffer layer (5 / z+ / 3Re1/2τ ). Transition region between the viscous sublayer and logarithmic
region where the viscous stress becomes increasingly less important relative to momentum transfer due
to turbulence. Viscosity loses leading-order importance near z+ ≈ 3Re1/2τ (Wei et al. 2005).

3. Logarithmic region (3Re−1/2τ / z/δ / 0.2). Overlap region where direct effects of both ν and δ are
negligible and the logarithmic law holds, discussed further in §2.1.1.

4. Wake region (z/δ ' 0.2). Outermost region specific to boundary layers with a free-stream condition.
The bulk parameters δ and U∞ are relevant in the wake and the velocity can be modeled using a
wake function (Coles 1956; Krug et al. 2017). Present within the wake is the turbulent/non-turbulent
interface (TNTI) separating the boundary layer turbulence from the free-stream flow. The TNTI is
highly convoluted and can instantaneously reach positions as low as z/δ ≈ 0.4 (de Silva et al. 2013;
Chauhan et al. 2014). There is an analogous center-most region in internal pipe and closed channel
flows where the mean pressure gradient is relevant (George 2007).

Importantly, the limits given above for each region are approximate. As demonstrated by the buffer
layer in figure 5, there is a gradual transition between each region as parameters like ν and δ slowly lose
or gain importance, and the region limits are merely general thresholds for when the parameter can/cannot
be neglected. As a result of these transitions and indefinite limits, researchers have proposed additional
intermediate or alternative regions such as the so-called mesolayer (see, e.g., Long & Chen 1981).

9
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Figure 5. Profile of the mean velocity U demonstrating the regions of a turbulent boundary layer. The plotted data are from the
simulation with Reτ = 2 000 by Sillero et al. (2013).

2.1.1 The logarithmic region

Considerable research attention is paid to the log region, despite it occupying less than 20% of the bound-
ary layer. The attention is in part due to a strong theoretical basis for the log region unlike the wake, and
is also because more than half the turbulent kinetic energy production occurs within the logarithmic region
at high Reynolds numbers (Jiménez 2004). A remarkable aspect of the log region is that the large turbulent
energy production P is approximately matched by the dissipation rate ε of turbulent energy into heat. The
log region is considered an equilibrium layer, where net transfer of energy to/from other regions of the flow
is not required to balance the energy budget. In this sense, the local turbulent motions are determined by lo-
cal conditions without significant net influence by non-local transport processes from other parts of the flow
(Townsend 1961).

The remote position of the boundaries (i.e. z+ � 1 and z/δ � 1 as given above) and the negligible net
effect of non-local processes are the basis for deriving the mean flow behavior within the log region. From this
point, dimensional arguments directly derive the equation for the mean velocity (see, e.g., Millikan 1938) and
for the constant Reynolds shear stress profile −u′w′ ≈ u2τ (Townsend 1976). However, the approach shown
here will follow the earliest derivations which instead apply a closure model in the spirit of Boussinesq’s eddy
viscosity (1887). Scaling assumptions by Prandtl (1925) and Theodore von Kármán (1930) led independently
to the same relationship between the shear stress and the velocity gradient:
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τ = ρ`e
2

(
∂U

∂z

)2

. (3)

Here, `e is the so-called mixing length corresponding to the size of hypothetical “eddies” responsible for
momentum transfer (Prandtl 1925). Because the direct effects of the viscous length scale ν/uτ and boundary
layer thickness δ are negligible in this region, the only relevant length scale is the distance from the wall z.
From this scaling, Prandtl (1932) introduced the common form of the mixing length `e = κz, where κ is the
von Kármán constant. Using this mixing length with the approximation τ ≈ τw = ρu2τ applicable for large
Reynolds numbers, equation (3) simplifies to scaling for the mean shear:

∂U

∂z
=
uτ
κz
. (4)

The integral of equation 4 is the so-called logarithmic law of the wall, hereon referred to as the log law:

U+ =
1

κ
ln z+ +A. (5)

The von Kármán constant κ ≈ 0.39 and the smooth-wall constant A ≈ 4.3 are believed to be universal
(Marusic et al. 2013).

The existence and universality of the log law has been questioned at times, usually without regard to the
constraints on equation (5) to high-Reynolds-number flows in the specific region 3Re−1/2τ / z/δ / 0.2.
Prior to the log law derivation, empirical power law relationships U ∼ zm were developed based on Blasius’
friction law (1912), where m ≈ 1/7 was known to depend on the Reynolds number (von Kármán 1930).
Barenblatt (1993) refined this relationship to argue for the superiority of a power law over the log law, but
the power law only performs better above the log region into the wake region (Panton 2002). Above the log
region, the log law must be supplemented by a wake function for boundary layers (Coles 1956) or a pressure
gradient term for internal flows (Luchini 2017). Within the log region, numerous high-Reynolds-number
experiments have shown the log law to be robust (George 2007; Marusic et al. 2013).

In the atmosphere, the logarithmic region is analogous to the surface layer. Under neutrally stratified
conditions, the ASL is characterized by the same logarithmic mean velocity profile as in equation (5) and
the Reynolds shear stress is approximately constant (Kaimal & Finnigan 1994). Under stable and unstable
conditions, the buoyancy effects are accounted for through a stability correction function in the velocity
equations (Monin & Obukhov 1954; Katul et al. 2011).

2.1.2 Townsend’s attached eddy hypothesis and outer layer similarity

In addition to his work on the equilibrium layer discussed above, A. A. Townsend contributed two hy-
potheses in his seminal textbook The Structure of Turbulent Shear Flow (1976) that are worth discussing here.
Townsend’s attached eddy hypothesis (AEH) postulates that the main energetic turbulent eddies in the log re-
gion are directly influenced by the presence of the wall such that the eddy size is proportional to the distance
from the wall and in a sense extends to the wall (Townsend 1976, p. 150). From this, Townsend considered a
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Figure 6. Figure 5.8 of Townsend (1976) showing a double-cone eddy proposed as a possible representative “attached” eddy.

random superposition of eddies, where the size increased with z and the eddy number density decreased with
z in order to satisfy the Reynolds shear stress condition −u′w′ ≈ u2τ . The field of superimposed eddies led
Townsend to logarithmic equations for the profiles of the second-order velocity statistics (variances) which
have been confirmed experimentally (Hultmark et al. 2013; Marusic et al. 2013). While a specific eddy ge-
ometry is not required to derive the variance equations, Townsend originally proposed the double-cone eddy
shown in figure 6 as a potential representative attached eddy. The ambiguity of the phrasing “extends to the
wall” has led some researchers to interpret “attached eddy” somewhat literally (see, e.g. Lozano-Durán et al.

2012), while others have read it to mean that the eddy is influenced by the wall, even if it does not physically
extend to it (Marusic & Monty 2019).

The second of Townsend’s hypotheses concerns similarity. Townsend proposed that the influence of the
wall in the fully turbulent region of the boundary layer is limited to the transfer of shear stress away from the
wall. The Reynolds number similarity hypothesis, now known as outer layer similarity, postulates that the
motions in the turbulent outer region depend on the wall stress and flow geometry δ and are independent of
Reynolds number (Townsend 1976, p. 133). The hypothesis has been supported by showing that turbulence
statistics such as the streamwise variance are universal in the outer region of boundary layers when normalized
by uτ and δ (see, e.g., Perry & Abell 1975; Chung et al. 2014).

2.1.3 Rough-wall boundary layers

The discussion so far has focused on the composition of smooth-wall boundary layers. Research on the
effect of surface roughness on boundary layer turbulence began around the same time the log law was first
derived (Nikuradse 1933), and the dynamics of rough-wall turbulence are now understood fairly well. When
the asperities of a rough surface protrude into the buffer layer as shown in figure 7, there are two primary
effects (Jiménez 2004): (i) the roughness disrupts the viscous cycle responsible for drag and momentum
transport in the buffer layer (Jiménez & Moin 1991), and (ii) the roughness geometry induces a form drag on
the flow. In most practical cases, the additional form drag (ii) exceeds the drag reduction (i), thus increasing
the overall drag on the fluid. When the roughness partially disrupts the viscous cycle the surface is considered
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Figure 7. Cartoon comparing a smooth-wall (left) and rough-wall (right) boundary layer near the surface.

transitionally rough, and it is fully rough upon complete disruption which occurs when the roughness height
k extends far into the buffer layer, i.e. k+ & 50 − 100 (Jiménez 2004). The viscous effects are negligible
relative to roughness geometry and form drag in the fully rough regime. In typical atmospheric conditions
with uτ∼O(0.1 m s−1) and ν ≈ 1.5×10−5 m2 s−1, the flow is fully rough if k & 1 cm such that all but the
flattest and smoothest environments are within the fully rough regime.

The turbulence generation in the vicinity of the rough surface is altered by the complex wakes of the
roughness geometry. For example, the disruption of the viscous cycle reduces the streamwise variance near
the surface (Grass 1971), and events bringing high-momentum flow downward to the surface are relatively
more important (Raupach 1981). The region where these direct roughness effects are felt is the roughness

sublayer which replaces the viscous wall region from the smooth-wall case. The extent of the roughness
sublayer is often taken to be proportional to the roughness height, i.e. 5k (Raupach et al. 1991; Flack et al.

2007), though more complex relationships have also been proposed (Mehdi et al. 2013).
Above the roughness sublayer, the additional drag results in a bulk reduction in the velocity known as

the roughness function ∆U shown in figure 7. The roughness function is subtracted from the smooth-wall
constantA, and the mean flow otherwise follows the log law equation. Johann Nikuradse (1933) applied sand
grains of various diameters ks to the walls of a pipe to determine the relationship between ks and ∆U :

∆U+ =
1

κ
ln k+s +A−AFR, (6)

where AFR = 8.5 is the fully rough constant. While the relationship is specific to sand grain surfaces
in fully rough conditions, equation (6) has become a standard benchmark for comparing various roughness
geometries: ∆U+ is determined experimentally for a roughness with size k, and the equivalent ks is calculate
from equation (6). In this sense, ks is the sand grain size required to achieve an equivalent bulk velocity
decrease ∆U+. By subtracting ∆U+ from the right-hand side of equation (5) and rearranging terms, the
velocity can be re-expressed as U+ = κ−1 ln z/ks +AFR. Closely related to this is the standard form of the
log law in micrometeorology (Raupach et al. 1991):

U+ =
1

κ
ln

z

zo
, (7)
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where zo is the aerodynamic roughness length with zo = ks exp (−κAFR) ≈ ks/30 for fully rough condi-
tions. The length zo describes the wall-normal displacement of the mean velocity profile due to roughness,
which is perhaps more meaningful than the equivalent length ks. Values of zo for a variety of land surfaces
are commonly provided in micrometeorolgy literature (Stull 1988; Garratt 1994).

Regarding the turbulence statistics in the logarithmic and wake regions of rough-wall flows, Townsend
(1976) explicitly extended his similarity hypothesis to rough surfaces, where the outer layer turbulence is
independent of k except in its effect on the wall stress. Outer layer similarity for rough surfaces has been con-
firmed by numerous studies using one- and two-point statistics (see, e.g., Perry & Abell 1977; Raupach et al.

1991; Volino et al. 2007; Flack & Schultz 2014; Squire et al. 2016a,b). The most notable evidence against
similarity is from P. Å. Krogstad and co-authors (1992; 1994; 1999) based on mesh and rod-type roughness
experiments. These contrary results are the minority, and my own later results using mesh roughness support
similarity. It is possible the roughness geometry extended into the logarithmic region and directly altered the
turbulence production in the outer region (i.e., k/δ was somewhat too large per Jiménez 2004).

2.2 A brief history of coherent structure research and related models

In the classical description of turbulence put forth by Lewis Richardson (1920), large eddies are gener-
ated at the expense of the mean flow energy (production), and energy is transferred to successively smaller
eddies until the smallest eddies convert the energy into heat via viscosity (dissipation). Over the intervening
decades, a major thrust of turbulence research has investigated the following questions: Beyond hypothetical
eddies, are there specific types of deterministic coherent motions responsible for much of the production and
dissipation of turbulence? What is the relationship between these structures and the turbulence statistics?
The following is a brief and non-comprehensive overview of previous research into these questions, with a
primary focus on boundary layer turbulence.

2.2.1 From the horseshoe vortex to the attached eddy model

There are perhaps no other research trajectories in wall turbulence literature that follow as straight and
continuous a line as the progression from the horseshoe vortex to the attached eddy model. Theodorsen
(1952) first conceptualized the horseshoe vortex shown in figure 8 as a structure consistent with the governing
Navier-Stokes equations. Vortices resembling Theodorsen’s horseshoe were visualized using injected dye
shortly thereafter by (Hama et al. 1957)4. The horseshoe vortex did not otherwise gain wide acceptance
in the 1950’s, as early visualization of boundary layer structures was more focused on low-speed streaks

(Corrsin 1957; Kline & Runstadler 1959; Reiss & Hanratty 1963; Runstadler et al. 1963). The streaks, as
seen in figure 9, are long low-momentum regions in the buffer layer with consistent spanwise spacing of
approximately 100 viscous units (Kline et al. 1967).

4In a remarkable instance of unintended foreshadowing, Hama et al. (1957, p. 393) made the following statement: “To describe
fully-developed turbulence as a system of horse-shoe vortices seems to be straining a concept which is most valuable in the initial stages.”
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Figure 8. Figure 5 of Robinson (1991) depicting the horseshoe vortex conceptualized by Theodorsen (1952).

Figure 9. Figure 10(a) of Kline et al. (1967) showing a photograph of low-speed streaks at wall-normal position z+ = 2.7. The view
is from above the flow, whose mean direction is downward. The streaks are visualized using hydrogen bubbles.

Figure 10. Figure 3(a) of Offen & Kline (1975) depicting their conceptual model in which a horseshoe-type vortex forms from a
“bursting” low-speed streak.
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Figure 11. Figures 2 (left) and 14 (right) of Perry & Chong (1982) depicting their attached eddy model. (left) The representative
Λ-vortex. (right) A symbolic representation of the vortex hierarchy.

Kline & Runstadler (1959) hypothesized that these streaks are separated by streamwise vortices, which
was subsequently confirmed (Praturi & Brodkey 1978; Blackwelder & Eckelmann 1979). These vortices
are now known as quasi-streamwise vortices. The initial prediction that each streamwise vortex had a
counter-rotating pair was contradicted by later studies (Robinson 1991). These vortices are believed to be
responsible for “bursts” where the streamwise vortex draws fluid in the low-momentum streak upward into
a high-momentum region (Kline et al. 1967; Corino & Brodkey 1969). Around this time, several concep-
tual models were introduced to explain the bursting process (Kline et al. 1967; Offen & Kline 1975; Hinze
1975; Smith 1984). In the typical model such as in figure 10, an upward-bursting low-speed streak induces a
streamwise vortex which is subsequently lifted (stretched) by a burst until it resembles the horseshoe vortex
of Theodorsen (1952). In a separate approach using hot-wire anemometry, Klebanoff et al. (1962) identified
hairpin structures similar in shape to the horseshoe, though the authors argued the hairpin to be distinct from
a vortex loop.

The horseshoe vortex concept came to prominence following visualization of structures in flows with
higher Reynolds number than the earlier studies. In particular, Head & Bandyopadhyay (1981) used smoke
to visualize inclined structures in the outer region of the boundary layer which the authors attributed to a series
of hairpin vortices. In contrast to the earlier hairpin definition, Head & Bandyopadhyay (1981) classified the
hairpin as a horseshoe vortex with legs elongated due to the higher Reynolds number. The authors further
noted that the legs of hairpin vortices farthest from the wall may diffuse into each other such that the hairpin
head is the only remaining feature.

Based on the visual evidence of Head & Bandyopadhyay (1981) and their own study (Perry et al. 1981),
Perry & Chong (1982) created a structural model of boundary layer turbulence now known as the attached

eddy model (AEM). The model incorporated a Λ-vortex defined from Biot-Savart law as the representative
eddy following Townsend’s (1976) attached eddy hypothesis. Perry & Chong (1982) populated the boundary
layer with Λ-vortices whose size increased with z and the number density decreased, resulting in a hierarchy
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Figure 12. Figures 1 of Woodcock & Marusic (2015) showing a current representation of the representative attached eddy.

as shown in figure 11. The authors envisaged the vortices to generate at the wall from the low-speed streaks
and streamwise vortices as previously discussed, diffuse outward as the vortex head is stretched, and induce
a low-speed region below the vortex arch.

Since its introduction, the AEM has been occasionally refined based on experimental observations and
theoretical advances such that the current model accurately reproduces second-order statistics (see, e.g., Perry
& Marusic 1995; Marusic 2001; Nickels et al. 2007; Woodcock & Marusic 2015). The representative eddy
has been updated to include a packet of Λ-vortices as shown in figure 12. And while the AEM originated from
a mechanistic argument for near-wall structures, the current model does not explicitly require a generation
mechanism and the vortex packet need not physically extend to the wall (Marusic & Monty 2019). The AEM
provides a useful framework for implementing Townsend’s attached eddy hypothesis and understanding the
importance of “attached” behavior to turbulence statistics. Considering the model’s simplicity and absence
of dynamics, the AEM is meant to be statistically representative and is not intended to provide a complete
picture of every instantaneous feature.

2.2.2 Experimental advances and conflicting evidence on hairpin vortices

Our ability to identify and characterize spatially coherent features of turbulence improved significantly
in the 1980’s due to advances in computational and physical experimental techniques. The first direct nu-
merical simulations (DNS) of boundary layer turbulence occurred in the second half of the decade (Spalart
1986; Kim et al. 1987). In DNS, the flow domain is represented by a volumetric computational grid with
sufficiently small spacing between grid points to directly solve the Navier-Stokes equations and resolve the
smallest turbulent scales η. Due to the computation costs associated with the required number of grid points
N∼Re9/4 (Moin & Mahesh 1998), the simulations to date are limited to moderately-high Reynolds number
Reτ∼O(103) (Lee & Moser 2015).

The particle image velocimetry (PIV) technique was also developed around this time (Adrian 1984, 1991).
For PIV, small tracer particles are introduced to a laboratory flow and images of the flow are taken while the
particles are illuminated by a laser. Typically, cross-correlations are used to estimate the displacement of the
particles between consecutive images and infer the fluid velocity at different points in space (Raffel et al.

2007). Standard PIV is used to estimate two velocity components in a two-dimensional measurement plane
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Figure 13. Figures 6 (left) and 16 (right) of Dennis & Nickels (2011) visualizing coherent structures identified from three-dimensional
stereoscopic PIV. (left) Iso-surfaces showing instantaneous coherent structures. (right) Iso-surfaces of conditionally-averaged structures.

with sample frequency too slow to capture the time evolution of structures (i.e. it is not time-resolved), but
more complex setups allow for PIV measurements to be time-resolved (Vogel & Lauterborn 1988), three-
dimensional (Elsinga et al. 2006), or both (Schmid et al. 2012).

Both DNS and PIV have been used to provide evidence for hairpin vortices, packets of hairpins, and their
statistical signature (Zhou et al. 1999; Adrian et al. 2000b; Christensen & Adrian 2001; Ganapathisubramani
et al. 2003; Lee & Sung 2011; Jodai & Elsinga 2016, among many many others). The clearest visual evidence
for a preponderance of instantaneous hairpin vortices is within the buffer layer of moderate-Reynolds-number
flows (Wu & Moin 2009). The evidence becomes murkier at higher Reynolds numbers and above the buffer
layer into the outer region. Gao et al. (2011) showed that vortex structures with strong rotation statistically

have shape and inclination similar to a hairpin, while weaker vortices have less preference in their orientation.
Consider the identified structures from Dennis & Nickels (2011) shown in figure 13. The instantaneous vortex
structures hardly look like a hairpin, but the conditionally-averaged structures do resemble the hairpin arch.
The figure illustrates two points: (i) the instantaneous fluid rotation often appears disorganized; (ii) a large
number of messy realizations reveals the statistically representative features which are befitting of an arched
vortex packet.

The primary argument against hairpin vortices in the outer region concerns their proposed generation
mechanism. The mechanism assumes the hairpins originate from near-wall streaks and quasi-streamwise
vortices, then are lifted up higher in the boundary layer (Adrian 2007). To date, there is no strong evidence
of buffer layer hairpins consistently migrating upward into the outer region. This idea that the outer flow
structure is dependent on the near-wall features is also contradictory to Townsend’s outer layer similarity.
The near-wall structures in the presence of surface roughness are dependent on the roughness geometry such
that the proposed near-wall hairpin generation is unlikely to be viable. Yet Volino et al. (2007) still identified
the statistical signature of hairpin vortices in the outer region of a rough-wall boundary layer. In a DNS study,
(Mizuno & Jiménez 2013) replaced the viscous wall region with a boundary condition and still achieved the
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theoretical logarithmic behavior. These two results suggest the buffer layer (or roughness sublayer) structures
are unimportant to the outer layer statistics.

My interpretation of the evidence is as follows: hairpin vortices are present in the buffer layer for smooth-
wall conditions, and are particularly evident for low to moderate Reynolds numbers. In the outer region, the
average representative vortex structure shares several statistical features with the hairpin model regardless of
the wall conditions. The generation mechanism for these outer region eddies therefore should consider local
conditions rather than near-wall features.

2.2.3 Velocity and vorticity structures in the logarithmic region

Besides the hairpin vortex, the velocity structures in the log region are also qualitatively similar to near-
wall features. Several studies have identified streaks of coherent streamwise momentum in the log region
that are remarkably similar to the low-speed streaks in the buffer layer (see, e.g., Tomkins & Adrian 2003;
Hwang 2015; Hwang & Sung 2018). These low-momentum streaks have been associated with an instability
and subsequent breakdown similar to bursting in the buffer layer Flores & Jiménez (2010). Despite the buffer
layer analogue, the log region streaks exist independently of the near-wall structures (Flores et al. 2007).
Further, the log region streaks are much larger than their buffer layer counterparts (Jiménez 2013) and the
low-momentum streaks are flanked by high-momentum regions (Dennis & Nickels 2011).

It is likely that the momentum streaks are closely related to the low-speed region underneath the Λ-vortex
packet in the representative attached eddy of figure 12. Consistent with the attached eddy hypothesis, the
streaky structures increase in size with wall-normal distance and are self-similar in their geometry (Hwang
2015; Hwang & Sung 2018). Further, the vorticity accompanying the alternating streaks produces the signa-
ture of the hairpin legs (Tomkins & Adrian 2003).

A more subtle characteristic of the momentum streaks is their weak, diffuse average rotation which forms
a streamwise roller (del Álamo et al. 2006). Figure 14 shows instantaneous and conditionally-averaged
structures from Jiménez (2018) associated with the momentum streaks. Much like the hairpin signature in
the previous figure, the roller is mainly apparent from the conditionally-averaged flow field. Based on the
vectors in figure 14, the low-momentum region is associated with the upward motion of the roller, and the
high-momentum region with the downward motion. The average streamwise roller therefore contributes to
the transfer of momentum in the log region. Jiménez (2018) referred to the iso-surface structures in figure
14 specifically as Q2–Q4 pairs, which are briefly discussed in §2.2.4. The streamwise rollers and Q2–Q4
pairs have the same wall-normal distance scaling are their associated streaks (del Álamo et al. 2006; Jiménez
2018).

There exist larger structures in the log region that have similar geometry to the momentum streaks, but
distinct scaling. Very-large-scale motions (VLSMs) scaling with δ contribute a majority of the turbulent
energy in the log region (Kim & Adrian 1999; Guala et al. 2006). The VLSMs span numerous boundary layer
thicknesses in streamwise length (Hutchins & Marusic 2007a; Smits et al. 2011) and closely resemble the
wall-dependent z-scaled streaky structures (Monty et al. 2007; Lee et al. 2014). The VLSMs often meander
in the spanwise direction, likely due to an instability that leads to their eventual breakdown (Hwang & Cossu
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Figure 14. Figure 18 of Jiménez (2018) visualizing coherent structures identified from DNS. (left) Iso-surfaces showing instantaneous
low-speed (yellow), high-speed (blue), and vortical (red) regions. (right) Iso-surfaces of conditionally-averaged structures and the
associated rotation (arrows).

2010; Kevin et al. 2019). The arrangement of VLSMs is also similar to the wall-dependent streaks: the
low-velocity VLSMs are flanked by high-velocity structures and conditional averaging reveals the signature
of a δ-scaled streamwise roll mode between the velocity structures (Hutchins & Marusic 2005; Marusic &
Hutchins 2008). To my knowledge, there is unfortunately no current consensus on terminology to distinguish
by name the wall-dependent streaks and rolls from their δ-scaled counterparts. In this work, momentum streak

and streamwise roll refer to the wall-dependent structures. How the wall-dependent structures and VLSMs
relate to one another is a subject of ongoing research. For instance, the VLSMs may comprise a series of wall-
dependent structures (Adrian et al. 2000b) where the VLSMs modulate the behavior of the wall-dependent
structures (Hutchins & Marusic 2007b).

To identify the strongly-rotating coherent vortex structures in the log region, researchers often use one of
two methods: (i) apply a threshold of a criterion for rotation (Haller 2005; Chakraborty et al. 2005); or (ii)
fit the local flow field to a vortex model that is consistent with the Navier-Stokes equations, e.g. the Oseen
(1912) or Burgers (1948) model. Both methods have led to similar statistics for the strongly-rotating vortex
cores, where the average core diameter is on the order of ten times the Kolmogorov length scale (Tanahashi
et al. 2004; Herpin et al. 2013; Wei et al. 2014; Jiménez 2018). This diameter is the cross-section of elongated
vortex tubes. The tubes often occur in clusters and are not uniformly distributed in space (Wu & Christensen
2006; Kang et al. 2007; Jiménez 2013). In particular, del Álamo et al. (2006) identified “attached” clusters
of vortices that have the same self-similar size behavior as the momentum streaks.

2.2.4 Momentum transfer events and the issue of Reynolds decomposition

Whereas the horseshoe vortex and velocity streaks were conceived as a coherent structure before they
were related to turbulence statistics, research on momentum transfer events took a somewhat opposite ap-
proach. The importance of the Reynolds shear stress has long been understood, and researchers have since
worked to better understand the turbulent structures leading to the statistic u′w′ (Wallace 2016). Kinematic
momentum transfer events were mentioned earlier in this text: high-momentum fluid moving downward is
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Figure 15. Classification of instantaneous u′w′ events based on quadrants following Wallace et al. (1972). (left) The four quadrants of
the u′−w′ plane and the flow direction relative to the mean for each quadrant. (right) Joint probability contours of u′ and w′ at z/δ =
0.1 based on the DNS results of Sillero et al. (2013).

hereon referred to as a sweep, and low-momentum fluid moving upward is hereon an ejection. In some cases,
sweeps and ejections are related to other structures. For instance, the bursting process of a low-speed streak
is a type of ejection (Kline et al. 1967), and the evolution of a hairpin-shaped vortex involves fluid ejected
from below the arch and swept in from behind (Adrian et al. 2000b).

Following Corino & Brodkey’s (1969) visualization of coherent sweeps and ejections, Wallace et al.

(1972) classified the events statistically using the quadrants of the u′−w′ plane shown in figure 15. As a re-
minder, u′ is the fluctuation from the mean velocity based on Reynolds decomposition u′ = u−U (Reynolds
1895). Conditional statistics allowed researchers to investigate the relative importance of each quadrant (Wal-
lace et al. 1972; Nakagawa & Nezu 1977; Raupach 1981). For example, the probability contours in figure
15 shows that ejections contribute more to the Reynolds shear stress than sweeps at the given wall-normal
position. More recently, spectral analysis has shown that δ-scaled turbulent motions are mostly responsible
for the Reynolds shear stress (Jiménez 1998; Guala et al. 2006; Balakumar & Adrian 2007), which suggests
that sweeps and ejections are either large-scale structures or a large “packet” of smaller-scale structures.

Researchers have used the quadrant classification to identify spatial Q2 and Q4 regions (see, e.g., Lozano-
Durán et al. 2012; Jiménez 2018). For instance, the average streamwise rollers in figure 14 form a Q2–Q4
pair. The quadrant system provides a useful tool for point measurements and statistics, but there is a caveat in
extending the quadrants to coherent structures. In the Reynolds decomposition of a boundary layer velocity
field, the mean shear profile is subtracted. This mean shear results from the net momentum transfer due to
viscosity and turbulence at each wall-normal position, where turbulence effects are dominant at high Reynolds
numbers. In searching for the structures that lead to momentum transfer, why should the net effect of the
momentum transfer be removed? In other words, the fluctuation field distorts the physical flow structures
with a time-averaged statistic resulting from those same structures. The present research instead uses the full
instantaneous velocity fields to identify coherent structures.
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Figure 16. Example of uniform momentum zones (UMZs) based on the Reτ = 17 000 boundary layer PIV data of de Silva et al. (2014).
(a) PIV field where color indicates streamwise velocity u and black lines indicate the UMZ boundaries. (b) Histogram corresponding to
the velocity field, where each local peak is assumed to represent the streamwise momentum of a distinct UMZ.

2.2.5 Uniform momentum zones and internal shear layers

Over the past few decades, a more general classification of coherent structures has emerged for higher-
Reynolds-number boundary layers. The uniform momentum zone (UMZ) introduced by Meinhart & Adrian
(1995) is a spatial region with relatively uniform velocity. Meinhart & Adrian (1995) assessed PIV vector
fields across the entire boundary layer, i.e. an O(δ) measurement field in x and z, and noted the existence of
large regions with uniform momentum relative to the entire flow field. They further observed that instances
of high instantaneous shear ∂u/∂z and vorticity were preferentially concentrated along the boundaries of
the uniform regions (Meinhart & Adrian 1995). The term internal shear layer (ISL) will be used here to
describe these regions of high shear and vorticity, noting that various other names have been introduced in
the literature (Priyadarshana et al. 2007; de Silva et al. 2017). Figure 16(a) identifies the UMZ boundaries in
an example PIV velocity field, and the relative uniformity in color within each bounded region shows visually
the coherence of UMZs.

The quantitative detection of UMZs was introduced by Adrian et al. (2000b), who used histograms of
the streamwise velocity to identify the speeds of each UMZ. Figure 16(b) shows the histogram correspond-
ing to the 16(a) velocity field. The coherent velocity regions lead to numerous PIV vectors with similar u
value such that the UMZs manifest as local peaks in the histogram. The shear region between each UMZ
is characterized by a large velocity gradient across a short distance such that the velocities within the shear
region are represented by a small number of vectors. The ISLs can therefore be approximated as the minima
between each local histogram peak. The UMZ boundaries in figure 16(a) are contours of the local minima in
the histogram.

It is important to acknowledge the term relative in the UMZ definition. Each UMZ is uniform relative to
the surrounding flow, and low-level turbulent fluctuations within the zone are neglected. How much of the
surrounding flow is considered in the detection will impact the identified zones and the extent of neglected
turbulence. This issue is quantified by the streamwise length Lx of the vector field used in the histogram
detection (de Silva et al. 2016). For instance, the length is Lx = 2δ in figure 16. The choice of Lx and its
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effect on the detected UMZs is discussed in the later analysis. If Lx is chosen properly, the variability of u
within the detected UMZs is a small fraction of the overall time-averaged variance (de Silva et al. 2016), and a
majority of the instantaneous shear is aligned with the ISLs (de Silva et al. 2017). In this sense, de Silva et al.

(2016, 2017) showed statistically that the outer region self-organizes into relatively uniform zones separated
by concentrated shear regions.

Beyond the simple existence of UMZs, several studies have related these structures to turbulent behav-
ior in the outer region. Klewicki (2013a) used scaling arguments to show that the organization of UMZs
and ISLs in the log region is consistent with the Navier-Stokes equations for the mean flow. These same
scaling arguments lead to the wall-normal distance scaling and the log law (Klewicki et al. 2009; Klewicki
2013b). de Silva et al. (2017) showed that the average velocity difference across the ISL is proportional to
uτ throughout the boundary layer, and multiple studies showed that the ISL thickness is proportional to the
Taylor microscale λT (Wei et al. 2014; Eisma et al. 2015; de Silva et al. 2017). Assuming the UMZs are
large-scale features whose size is proportional to either δ or the integral length scale L, the ratio of the ISL
and UMZ thicknesses is λT /L ∼ Re−1/2L (Pope 2000). The scale separation between the ISLs and UMZs
therefore increases with Reynolds number, and the segregation of shear and vorticity into thin layers becomes
more apparent. In high-Reynolds-number cases, the arrangement of UMZs and ISLs results in instantaneous
velocity profiles that resemble a step-like function more than a smooth continuous profile (Meinhart & Adrian
1995), and the logarithmic mean velocity is only achieved by averaging many step-like profiles. Recogniz-
ing the potential importance of the UMZ-ISL organization, de Silva et al. (2017) related the organization
statistically to the mean velocity, Chini et al. (2017) proposed a conceptual model for a self-sustaining pro-
cess of UMZs and ISLs, and Bautista et al. (2019) used the organization and scaling arguments to model
instantaneous velocity profiles.

In addition to turbulent boundary layers, UMZs have be identified for closed channel flows (Kwon et al.

2014), pipe flows (Chen et al. 2020), hypersonic boundary layers (Williams et al. 2018), and uniform shear
flows (Vanderwel & Tavoularis 2011). A majority of UMZ studies used a two-dimensional streamwise–wall-
normal measurement plane to detect and characterize the structures, though researchers have also conducted
three-dimensional studies (Chen et al. 2020).

The UMZ coherent structure classification is closely associated with the histogram detection technique (or
alternatively the fuzzy clustering method; Fan et al. 2019). Given the generic definition of UMZs, many of the
coherent structures discussed above are identified as UMZs or ISLs when histogram detection is employed.
The most straightforward example is the relationship between streamwise momentum streaks and UMZs,
where each streak would be detected as a distinct UMZ due to its coherent velocity. UMZs are also related
to “bulges” of coherent velocity in the wake region near the non-turbulent interface (Kovasznay et al. 1970;
Saxton-Fox & McKeon 2017). The connection to sweeps and ejections is less direct. Laskari et al. (2018)
associated the number of UMZs at a given instant to quadrant events; one or two large UMZs were detected
during a relatively long-lived Q4 (sweep-type) events, and numerous UMZs appeared during shorter Q2
(ejection-type) events with increased small-scale turbulent activity. The ISLs are often populated by vortex
cores resembling the heads of a vortex packet or cluster, and the average forward inclination of the ISLs is
consistent with observations of inclined vortex packets (Squire 2017).
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Considering the overlap in these labels, it is perhaps better to treat UMZs and ISLs as two classes of
coherent structures. The UMZ class includes any structures with coherent velocity such as streaks, bulges,
sweeps, and ejections. The ISL class describes coherent regions with concentrated velocity gradient statistics
(e.g. shear, vorticity, strain) such as vortex clusters, and only includes individual Kolmogorov-scale features
as they relate to the larger collective cluster. Whereas the UMZs are critical to the kinematics, the ISLs are
dynamically important. A limitation to this categorization is that UMZs are currently detected based only on
coherence of the streamwise velocity. The detection methodology should be extended to include additional
velocity components, which would distinguish a sweep/ejection from a streak.

2.2.6 Coherent structures and their measurement in atmospheric turbulence

Determining spatial coherence in the atmospheric surface layer requires significant up-scaling of the ex-
perimental facilities and simulations. The most common measurement technique in atmospheric studies is
to use an array of sensors and anemometers mounted to a meteorological tower. Remote sensing instrumen-
tation such as doppler lidar is also common, but the measurements are limited in both spatial and temporal
resolution (Kaimal & Finnigan 1994).

Vertical and spanwise arrays of sonic and hotwire anemometers have been specially constructed in very
flat field environments for the purpose of fundamental boundary layer research at high Reynolds numbers.
At these facilities, measurements are acquired during neutrally stratified conditions and velocity coherence is
inferred from multi-point correlations across the array. Two such facilities are the Surface Layer Turbulence
and Environmental Science Test (SLTEST) site in the salt flats of Utah (Metzger & Klewicki 2001) and the
Qingtu Lake Observation Array (QLOA) on a dry lake bed in western China (Wang & Zheng 2016). At the
SLTEST facility, flow visualization by fog and smoke has also been utilized to observe coherent structures
near the surface (Klewicki et al. 1995; Hommema & Adrian 2003; Morris et al. 2007).

DNS of atmospheric turbulence is not feasible due to the required grid resolution and corresponding
computational cost. In this case, large-eddy simulation (LES) is used to circumvent the required resolution
(Deardorff 1970). In LES, the Navier-Stokes equations are low-pass filtered with a relatively coarse compu-
tational grid to resolve the large-scale turbulence, and a closure model is used to approximate the effect of the
unresolved small scales (Louis 1979; Meneveau & Katz 2000). Simulation of the ASL is viable using LES
due to the reduction in computational cost.

A number of coherent structures have been identified in the ASL through a combination of field exper-
iments and LES. Fog visualization by Klewicki et al. (1995) in the buffer layer at the quasi-smooth-wall
SLTEST facility revealed near-wall low-speed streaks matching the viscous behavior of the near-wall streaks
in lower-Reynolds-number flows. In the log region, the large-scale streaks of alternating low- and high-
momentum fluid have been identified using sensor arrays (Wilczak & Tillman 1980; Hutchins et al. 2012),
doppler lidar (Träumner et al. 2015), and LES (Salesky & Anderson 2018). In an approach similar to fig-
ure 14, Foster et al. (2006) used conditional statistics with LES to show these alternating streaks are part of
streamwise rolls with a corresponding sweep and ejection. These rolls are distinct from the convective rolls
observed to span the entire atmospheric boundary layer (Etling & Brown 1993). In another LES study, (Lin
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et al. 1996) observed regions of high vorticity along the shear interfaces separating sweeps and ejections.
There has been similar success in the search for hairpin characteristics. Hutchins et al. (2012) used veloc-

ity correlations to identify the statistical signature of hairpin vortices up to 30 meters above the surface. Flow
visualization at the SLTEST facility revealed the presence of forward-inclined ramp-like structures (Hom-
mema & Adrian 2003) consistent with a vortex packet. These structures share the same broad characteristics
as hairpin packets – namely their forward inclination – without necessarily distinguishing individual vor-
tices. The statistical consequence of ramp-like structures is an inclined two-point correlation. The observed
inclination angle in the neutrally-stratified ASL (Guala et al. 2011; Hutchins et al. 2012) matches lower-
Reynolds-number flows in both smooth- and rough-wall conditions (Ganapathisubramani et al. 2005; Guala
et al. 2012; Squire et al. 2016a). As buoyancy becomes increasingly important in thermally unstable condi-
tions, the inclination angle increases (Chauhan et al. 2013; Liu et al. 2017) and buoyancy forces modulate
the long momentum streaks until they are eventually replaced by short convective cells (Salesky et al. 2017;
Salesky & Anderson 2018).

The studies described here seem to confirm that the ASL is populated by the same streaks, rolls, sweeps,
ejections, and inclined vortical structures as laboratory flows, at least in conditions where the turbulence
is shear-driven. The ASL appears structurally similar to lower-Reynolds-number flows, suggesting similar
turbulence production mechanisms are occurring at the larger scale. Note the current focus is canonical
boundary layer turbulence, and turbulence phenomena related specifically to meteorology and weather-scale
patterns are not discussed here.

2.2.7 A possible universal organization of structures

The final literature topic to discuss is the recent advances in isotropic turbulence research. Unlike bound-
ary layer turbulence which has a directionality due to the mean velocity and shear, isotropic turbulence has
no preferential orientation and turbulent statistics are the same in any direction. Based on Kolmogorov’s
1941 theory, in high-Reynolds-number flow the small turbulent motions are not influenced by the boundary
conditions or forcings and behave in a universal and isotropic manner. In this regard, isotropic turbulence
research is relevant to the small-scale features in boundary layer flows. The validity of universal small-scale
isotropy for high-order statistics is the subject of numerous studies (see, e.g., Warhaft 2009, and references
therein), and is not discussed here.

Consistent with the boundary layer case, the velocity gradients in isotropic turbulence are concentrated
in thin regions. Figure 17 shows DNS results of Ishihara et al. (2009) where the velocity gradient statistics
(dissipation and enstrophy, in this case) are clustered and intermittent. Several studies have observed the
clustering of worm-like vortex tubes (see, e.g., She et al. 1990; Moisy & Jiménez 2004), where the core
diameter of the tubes is proportional to the Kolmogorov length scale (Jiménez et al. 1993). The length of the
tubes and the cluster is proportional to the integral length scale (Jiménez et al. 1993; Ishihara et al. 2009), as
is the distance between clusters (Ishihara et al. 2013).

The intense vortex tubes primarily reside within thin shear layers whose thickness is proportional to the
Taylor microscale (Ishihara et al. 2013; Elsinga et al. 2017). Several researchers have suggested the shear
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Figure 17. Figure 4 of Ishihara et al. (2009) showing a cross-section of DNS in isotropic turbulence. The (a) dissipation rate and (b)
enstrophy fields demonstrate the clustering of small-scale turbulence into thin, sparse regions.

layers roll-up into vorticity sheets due to a Kelvin-Helmholtz instability (Ruetsch & Maxey 1992; Vincent &
Meneguzzi 1994; Passot et al. 1995). In particular, Pirozzoli (2012) showed the average flow field away from
the vortex tube core is consistent with vorticity sheets, but the existence of these sheets is a subject of debate
(Davidson 2015).

Based on these observations, the organization of clustered vortex tubes into intermittent shear layers has
been proposed as an important component of small-scale dynamics (Hunt et al. 2010; Elsinga & Marusic
2010; Ishihara et al. 2013; Hunt et al. 2014; Elsinga et al. 2017). The organization is consistent with in-
termittency principles, where the clustering of strong velocity gradients leads to heavy-tailed probability
distributions which influences high-order statistics (She & Leveque 1994; Sreenivasan & Antonia 1997). The
same organization is present in boundary layer turbulence, where the ISLs represent the concentrated velocity
gradients, and the UMZs are the separation between clusters. These findings suggest a possible universal self-
organization of structures. Yet caution must be taken in interpreting the similarity in organized intermittency
as a similarity in dynamics. In shear flows such as a boundary layer, the preferential direction and persistence
of the ISLs in the presence of the mean flow leads to vortices which span the entire ISL, and these larger
vortices are not present in the isotropic case (da Silva & Taveira 2010). The thesis results pertaining to the
interaction of UMZs and ISLs therefore may not be entirely relevant to every turbulent flow case, despite the
similarities.



3 Atmospheric surface layer measurements
using particle image velocimetry

Chapter 3 comprises an edited version of sections 2 and 3 of the article below, published in the Journal of

Fluid Mechanics, © Cambridge University Press 2018. Please cite the published article when referencing
content in this chapter.

Heisel, M., Dasari, T., Liu, Y., Hong, J., Coletti, F., and Guala, M. (2018). The spatial structure of the
logarithmic region in very-high-Reynolds-number rough wall turbulent boundary layers. J. Fluid Mech.
857, pp. 704-747. https://doi.org/10.1017/jfm.2018.759.

3.1 Methodology

Previous attempts to characterize ASL turbulence using flow imaging, discussed in §2.2.6, include seed-
ing the flow with artificial smoke or fog (Hommema & Adrian 2003; Morris et al. 2007). In these experi-
ments, the concentrated particle regions were close to ground level (within 1-2 m) where the particles were
introduced, thus limiting the imaging field to a small fraction of the surface layer depth. In a major advance-
ment of field-scale PIV, Jiarong Hong and colleagues exploited the frigid Minnesota winters by using natural
snowfall as the seeding particles (Hong et al. 2014).

Using natural snow has numerous advantages over artificial seeding (Toloui et al. 2014): (i) there is no
economic or environmental cost; (ii) no machinery or structures are required to introduce the seeding parti-
cles, thus avoiding intrusive flow obstructions; (iii) natural snow is well-distributed throughout the boundary
layer, greatly expanding the viable measurement domain in space and time; (iv) the crystal structure of
snowflakes results in strong scattering of light in multiple directions (Kokhanovsky & Zege 2004), reducing
the required power of the illumination source. Points (iii) and (iv) are particularly important, as they allow
for the traditional laser to be replaced by a searchlight and snowflakes can be illuminated more than 100 m
above the light source (Dasari et al. 2019).

Owing to the unprecedented size of the imaging field, the snow-driven measurements are known as super-

large-scale particle image velocimetry (SLPIV). Since the method was first validated (Toloui et al. 2014), a
majority of the SLPIV studies have characterized the inflow or wake of the utility-scale wind turbine located
at the field site described later in §3.1.1 (Hong et al. 2014; Dasari et al. 2019; Abraham et al. 2019; Abraham
& Hong 2020; Li et al. 2020). However, in the experiment described here, SLPIV was used to measure
turbulence in the ASL far from any influence of the turbine. The following sections provide experimental
details related to the field site, the experimental setup, and the data processing. The justification for using
snowflakes as seeding particles is discussed last.
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Figure 18. Google Earth aerial satellite image of the Eolos field site with enhanced brightness and contrast. Adapted from Figure 1(a)
of Heisel et al. (2018).

3.1.1 Eolos field site

The SLPIV experiment took place at the University of Minnesota Eolos Wind Research Field Station in
Rosemount, Minnesota. The field deployment occurred early morning 11 December 2016 between 00:30
and 02:00 central standard time. The area surrounding the measurement site is primarily flat farmland with
trees and sparse two-story buildings farther away. At the time of the deployment, the farmland was harvested
such that the soil was overturned and short, cut vegetation protruded through the snow cover. The roughness
of the overturned soil was evident through the shallow snow cover. The primary wind direction during the
deployment was from east to west. Upwind of the measurement location, there was a shallow ditch with
shrubs 100 m away followed by 1 km of flat farmland. The approximate height of the shrubs was less than
1 m. A meteorological (met) tower was situated 17 m downwind of the imaging field. Aside from the met
tower, the nearest downstream obstruction was a row of trees 200 m away. The utility-scale wind turbine was
more than 100 m north of the image field, transverse to the mean wind direction. An aerial view of the site is
shown in figure 18.

The position of the imaging field was selected to be collocated with the met tower to supplement and
validate the SLPIV results. The 130 m tall met tower has three CSAT3 sonic anemometers (heights z = 10,
30, and 80 m) and six cup-and-vane anemometers (heights z = 7, 27, 52, 77, 102, and 126 m). The sonic
anemometers measure velocity in three directions as well as temperature at 20 Hz. The 1 Hz cup-and-vane
anemometers are each paired with temperature and relative humidity sensors. The met tower measurements
are time-stamped and uploaded approximately in real time to an online database.

3.1.2 Experimental setup

The SLPIV experimental apparatus includes equipment to generate a sheet of light for illuminating
snowflakes, and a camera to capture images. The position of the light sheet and camera are indicated in
the figure 18 aerial image, and the setup for the light sheet is shown in figure 19. The light source was a
5 kW xenon arc lamp searchlight powered by a 6 kW portable generator. The searchlight beam projected
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Figure 19. Schematic of the super-large-scale PIV (SLPIV) imaging field upwind of the meteorological (met) tower. Adapted from
Figure 1(c) of Heisel et al. (2018).

horizontally, then was reflected upward from a convex aluminum panel. The curvature of the convex panel
can be adjusted to create a tall and narrow light sheet or a broad and short sheet. A broader sheet was favored
for the experiment to capture a wider field of view (FOV), while still reaching a measurement height close to
20 m above the surface. The light beam was 0.3 m thick at the searchlight, and broadened to approximately
0.4 m thick through the imaging field. The light sheet width (in x) also increased with height (in z), creating
a non-rectangular imaging field as seen in figure 19. The light sheet was positioned upwind of the met tower
and was oriented with the anticipated mean wind direction based on weather forecasts and current conditions
measured by the met tower.

To capture the illuminated snowflakes with the desired FOV, the camera was positioned at a standoff
distance of 46 m and tilted upward 12◦ from the horizontal. The Nikon D600 CMOS camera was equipped
with a 50 mm Nikon lens to acquire full HD (2.1 megapixel) images at a 30 Hz frame rate. Three image sets
were captured, each approximately 15 minutes in duration. An example raw image frame is shown in figure
20(a).

The camera height, inclination, and standoff distance determined the center of the FOV, namely its height
and its object distance from the camera. The magnification and corresponding pixel resolution at the FOV
center were calculated using the object distance and the thin lens formula, yielding a 17 mm pixel−1 resolu-
tion. The pixel resolution is related to the magnification through the camera sensor resolution. Due to the
inclination of the camera, the object distance from the camera to the light sheet increased with increasing
height, resulting in non-uniform magnification and resolution values. The FOV extent was determined based
on the known FOV center position and the resolution gradient throughout the FOV. Following Toloui et al.

(2014), the images were corrected to achieve a uniform 17 mm pixel−1 resolution with the FOV center as the
anchored reference point. The pixel resolution and the FOV height was confirmed using a reference object
with a known size and position at the FOV bottom. Despite the confirmation, the estimated uncertainty in the
calibrated resolution is 0.7 mm pixel−1, assuming conservative uncertainties of 2 m in the camera standoff
distance and 1◦ in the measured tilt angle.
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Figure 20. Example SLPIV image field: (a) raw image; (b) image after cropping, masking, and background subtraction; (c) velocity
vector field, where a bulk velocity is subtracted to visualize the turbulent motions.

3.1.3 Data processing

Following the magnification correction of the raw images, the images were pre-processed using minimum
intensity background subtraction and were masked to exclude non-illuminated areas, resulting in filtered
images such as in figure 20(b). To estimate velocities between two consecutive frames, cross-correlations on
the filtered images were computed using an iterative adaptive correlation scheme (Nemes et al. 2015). The
scheme used an in-house algorithm on the St. Anthony Falls Laboratory (SAFL) performance computing
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Figure 21. Demonstration of the peak-locking effect on estimated SLPIV velocities: histograms of measured streamwise velocities (a)
before and (b) after histogram equalization to correct for peak locking.

cluster. The interrogation window size for the correlation code was 64 × 64 pixels in the first pass and
32 × 32 pixels in the second pass. A final window deformation pass was performed to improve accuracy of
the detected correlation peaks (Scarano 2001). In all passes, a 50% overlap of the windows was employed.
Figure 20(b) shows the window sizes with respect to the FOV. Outlier vectors were detected and replaced
using the criteria of Westerweel & Scarano (2005). To exclude regions where the percent of rejected vectors
exceeded 10%, the field of view was cropped to the extents shown in figure 20(c). An example velocity field
is shown in figure 20.

The resulting velocity vectors exhibited moderate peak locking. This effect occurs when the PIV corre-
lation peak is very narrow, i.e. the peak is much higher at a given pixel displacement than at neighboring
values. The routine to estimate the sub-pixel displacement – a Gaussian fit in the peak neighborhood in this
case – then strongly favors the peak value, and the pixel displacements are biased towards integer values
(Westerweel 1997). The effect of peak locking is evident from the histogram of all velocity values shown
in figure 21(a) where u is biased towards specific values. Peak locking typically occurs when the imaged
particles occupy a small number of pixels, e.g. less than two pixels across the particle diameter, but the
particles appear to be larger in the figure 20(b) example. Nevertheless, peak locking effects can be mitigated
in post-processing using histogram equalization (Roth & Katz 2001). The procedure assumes the correct
distribution of sub-pixel displacements is uniform, and maps the observed biased displacements onto the uni-
form distribution. The equalization was performed separately for each position in the vector field (Hearst &
Ganapathisubramani 2015), resulting in the corrected histogram in figure 21(b).

From the pixel resolution, final window size in pixels, and percent overlap of windows, the window size
was wI =0.54 m and the spacing between velocity vectors was ∆x = 0.27 m. With a surface layer depth
δSL∼O(100 m), the spatial resolution relative to outer units was ∆x/δSL∼O(10−3). This resolution is finer
than previous field studies using met-mounted anemometers, and is also an improvement compared to many
previous laboratory studies.

Considering separately the 0.7 mm pixel−1 resolution uncertainty and a nominal pixel displacement un-
certainty of 0.2 pixels, the roughly-estimated measurement uncertainty for each velocity vector was 0.1 m s−1.
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The statistical uncertainty was estimated using 95% confidence bounds, and the total uncertainty was calcu-
lated as the magnitude of the measurement and statistical uncertainties. Uncertainty ranges for parameters
such as uτ are discussed later in the text and reflected in figures using error bars.

The SLPIV results yielded a non-zero mean wall-normal velocity due to the settling velocity of the snow
Ws. The true mean wall-normal velocity was assumed to be zero such that the measured mean velocity was
equal to the settling velocity Wpiv = Ws ≈ 1.3 m s−1. Instantaneous velocities were decomposed from the
settling velocity as w(x, z) = wpiv(x, z) −Ws(z) and the resulting velocities were treated as the turbulent
fluctuations. The validity of this decomposition is discussed below.

3.1.4 Snowflakes as flow tracers

The primary assumption regarding the seeding particles in PIV is that the particles instantaneously re-
spond to flow accelerations. If this is true, the particle velocity is the same as the flow velocity, and measure-
ments of particle movement by PIV provide an accurate representation of the flow. If the particle has finite
mass, the particle inertia results in a slower response time to the flow accelerations, and there is a discrepancy
between the particle and local flow velocities. The suitability of a particle for seeding a PIV experiment is
given by the Stokes number Stη = τp/τη , where τp is the particle response time and τη is the Kolmogorov
time scale corresponding to the shortest time between turbulent flow accelerations. When Stη � 1, the
particle responds to a flow acceleration and equilibrates with the flow velocity well before the next turbulent
fluctuation, and the particle is a “faithful” tracer of the turbulent fluctuations (Raffel et al. 2007).

It is therefore important to estimate the response time τp of the snowflakes, which are hereafter referred
to as “snow particles” or simply “particles”. The standard estimate for the response time of inertial particles
is the Stokes drag relationship with a correction for finite particle Reynolds number Rep = WsDp/ν, where
Dp is the particle diameter. The corrected formula is τp = ρpD

2
p/18µ(1 + 0.15Re0.687p ), where ρp is the

particle density and µ is the dynamic viscosity of air (Crowe et al. 1998). The snow particle properties Dp

and ρp vary significantly depending on meteorological conditions which affect the snow crystal shape and
growth (Nakaya 1954), and must be characterized based on the specific deployment conditions. The snow
crystal shape and size was identified using the digital in-line holography system detailed in Nemes et al.

(2017). Based on 196 particle samples captured by the holography and fresh snow samples from the ground
for verification, the observed particles were individual ice crystals in the shape of plates. The hexagonal prism
is the most basic ice crystal structure, and these prisms form plates when the preferential growth direction
favors the hexagonal face (Pruppacher & Klett 1997). Plates occur when temperatures are within the range
–9◦ to –22◦ C (Pruppacher & Klett 1997), which is consistent with the surface air temperature –10◦ to –11◦

C measured by the met tower during the deployment. The average size of the particles included the face
diameter Dp = 0.61 mm and the thickness Hp = 0.25 mm.

The snow particle density could not be measured directly with the experimental setup, and an empirical
model was used to estimate the bulk density. Most existing density models follow a power law relationship
ρp = aDb

p, where a = 100 to 200, b = –0.9 to –1, the unit for Dp is mm, and the unit for ρp is kg m−3

(Brandes et al. 2007). Using the suggested values for a and b from three recent references, the estimated bulk
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density of the particles was ρp = 167, 213, or 281 kg m−3 (Heymsfield et al. 2004; Thompson et al. 2008;
Brandes et al. 2007, respectively). The true density was assumed to be within the range of these estimates,
and the limits were used to approximate the uncertainty bounds as ρp = 167 to 281 kg m−3.

Based on the measured Ws from the SLPIV, measured Dp from the holography, and estimated ρp range
from empirical models, the particle Reynolds number was response time was Rep ≈ 62 and the response
time range was τp ≈ 0.056 to 0.095 s. Note that the drag correction assumes a solid spherical particle.
This assumption can underestimate the snow particle drag and overestimate the response time (Nemes et al.

2017). It was also assumed the hexagonal face was always normal to the flow such that the projected area
was maximized, thus maximizing τp. In the absence of a more accurate drag coefficient estimate, these
assumptions were used with the corrected drag formula above and the resulting τp is considered conservative.

From the met tower measurements discussed later, the Kolmogorov time scale in the field conditions
was τη∼O(0.01 s). The resulting Stoke number Stη∼O(1–10) is overly penalizing because the SLPIV
interrogation windows did not resolve the Kolmogorov scales. The smallest flow time scale captured by
each interrogation window is given by the time for a fluctuation to travel across the window. The relevant
SLPIV time scale was τf = wI/σu, where σu = 0.6 m s−1 was the maximum measured streamwise root-
mean-square (rms) velocity characterizing the turbulent fluctuations. The limiting measurement time scale
was therefore τf = 0.9 s. The corresponding particle Stokes number range was St = τp/τf = 0.06 to 0.11,
making the snow particles reasonable tracers for the selected interrogation window size. However, inertial
effects are non-negligible for St∼O(0.1). While the largest turbulent motions are well captured by the snow
particles as evidenced by the agreement with met tower measurements presented in §3.3, the particles likely
cannot trace the most intense acceleration events, specifically small vortices with strongly rotating cores.

Besides the response time, the effect of gravity poses an additional concern for the inertial snow particles.
The simplified equation for the particle motion is given by ∂up/∂t = (u−up)/τp− (1− ρ/ρp)g, where up
is the particle velocity, u is the local flow velocity, and g is the gravitational constant (Adrian & Westerweel
2011). The simplified expression already neglects numerous force terms such as lift from the full governing
equation (Maxey & Riley 1983), which may be important for non-spherical inertial snow particles. The
specific assumption regarding gravity is that the effect of g in the above expression is uncoupled from the
drag force of the flow field such that the mean fall speed Ws can simply be subtracted from the results. It is
already known that the flow turbulence can enhance the gravitational settling (Nemes et al. 2017; Petersen
et al. 2019), and the question of whether the gravity force affects the particle fluctuations is not trivial.
Finally, it is assumed the snow particles do not affect the turbulent motions, i.e. one-way coupling. The
volume fraction of snow particles has been estimated as O(10−7) for other SLPIV deployments (M. Guala,
private communication), which is within the regime where the one-way coupling assumption should be valid
(Elghobashi 1994).

While the snow particles make these measurements possible, many inertial effects cannot be quantified
here and are instead neglected. Considering also the known limitations posed by terms such as the Stokes
number, care must be taken in interpreting any SLPIV result as an effect of turbulence rather than of particle
inertia. Results and trends presented in this thesis are either validated against direct met tower measurements
or are shown to be consistent with laboratory-scale experiments and previous literature findings.



Atmospheric surface layer measurements using particle image velocimetry 34

Table I. Overview of meteorological conditions during the three SLPIV measurement periods: average wind speed U and direction β at
z = 10 m, and the local flux Richardson number Rif for the listed heights. Adapted from Table 1 of Heisel et al. (2018).

start time duration U β thermal stability: Rif

data set [CST] [min] [m s−1] [◦] z = 10 m z = 30 m z = 80 m

1 2016-12-11 00:31 13 4.1 74 -0.01 0.05 0.24
2 2016-12-11 01:00 15 4.5 72 -0.01 0.06 0.29
3 2016-12-11 01:29 15 4.7 77 -0.01 0.03 0.17

3.2 Meteorological conditions

The goal of the experiment was to study the ASL as a canonical high-Reynolds-number boundary layer.
Here, “canonical” means standard flow conditions, such that the field results can be objectively compared with
previous studies. Requirements for canonical conditions include stationary (constant) mean wind conditions,
negligible buoyancy effects, and no external forcings unique to the field site. The last condition is achieved
at the Eolos field site, as the Coriolis parameter can be neglected within the surface layer and the roughness
of the farmland is similar across a long distance upstream of the measurements. The first two conditions,
however, are harder to achieve as the mean wind conditions frequently vary due to weather and buoyancy
forces are often present during the diurnal temperature cycle. The average meteorological conditions for each
of the three SLPIV data acquisition periods are given in table I. The wind conditions and thermal stability for
these periods are discussed in greater detail in the following subsections.

3.2.1 Mean wind conditions

The mean wind conditions varied throughout the experimental deployment, both in the wind direction
and speed. A time series of the average meteorological conditions for the night of the field deployment is
provided in figure 22. The wind direction in figure 22(a), measured by a cup and vane anemometer at z = 7 m,
was aligned with the light sheet at the onset of the deployment, but changes in the mean conditions led to an
offset from the light sheet during the three SLPIV data acquisition periods. With the light sheet oriented at 90°
(clockwise from north), the average wind directions listed in table I corresponded to an average misalignment
of 16°, 18°, and 13° for the three respective SLPIV data periods.

The misalignment of the mean flow and the light sheet can create out-of-plane effects in the PIV corre-
lation. If illuminated particles frequently disappear between consecutive frames because they travel out of
the illuminated area, the correlation peaks and the signal-to-noise ratio both decrease (Raffel et al. 2007).
Considering here the second SLPIV data set which has the highest misalignment, the mean wind speed and
direction listed in table I result in an average 1.4 m s−1 out-of-plane velocity. Based on the 0.4 m thickness
of the light sheet and 30 Hz sampling rate of the camera, the mean expected residence time of particles in
the light sheet was 8 frames. The snow particles entering and exiting the light sheet plane from the mean
out-of-plane motion did not significantly impact the correlations because a majority of particles remained in
the plane for numerous frames.
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Figure 22. Extended time series of meteorological conditions as measured by met tower sensors. (a) 1-minute moving average wind
direction β relative to the light sheet orientation, measured at z = 7 m. (b) Virtual potential temperature θv space-time contour. (c)
Horizontal wind speed U space-time contour. The three SLPIV data periods are indicated by the numbered boxes. The contour plots in
(b) and (c) were interpolated from 10-minute moving averages at the six measurements altitudes shown in the vertical axes. The blue
dashed lines in (b) and (c) represent the top height of the SLPIV imaging field. Adapted from Figure 2 of Heisel et al. (2018).

To calculate velocity statistics presented in §3.3, I rotated the met tower measurements into the mean
wind direction for each data period. I also projected the SLPIV streamwise velocity statistics onto the mean
wind direction to compensate for the misaligned light sheet. The projection followed the standard coordinate
rotation formula

upiv = u⊥ cosβrel − v⊥ sinβrel, (8)

where “⊥” indicates the coordinate system aligned with the mean wind and βrel is the light sheet misalign-
ment. For the mean velocity, the spanwise component was V⊥ = 0 by definition of the coordinate system, and
U⊥ could be estimated directly. As an example, the compensation for SLPIV data set 2 was an approximate
5% increase: U⊥ = Upiv/cos 18° = 1.05Upiv . For instantaneous vector fields, v⊥ 6= 0 and u⊥ cannot be
estimated directly from equation (8). Rather than attempt any projection with an assumed spanwise velocity,
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Figure 23. Convergence of first- and second-order velocity statistics for the three SLPIV data set periods. The statistics are based on
sonic anemometer measurements at z = 10 m projected onto the mean wind direction. (a) The mean velocity U . (b) The streamwise
variance u′u′. (c) The wall-normal variancew′w′. (d) The Reynolds shear stress−u′w′. Adapted from Figure 3 of Heisel et al. (2018).

the analysis in chapter 4 was based on the original light sheet orientation. The misalignment may lead to
underestimated streamwise velocity statistics by up to 5% and this effect was incorporated into the estimated
uncertainties.

Variations in the mean wind condition can lead to unconverged statistics. Velocity statistics will continue
to change if the mean conditions are changing (i.e. non-stationarity). Figure 23 depicts the statistical conver-
gence for the three SLPIV data periods using sonic anemometer measurements at z = 10 m. The statistics at
a given time t were calculated as the average up to that time, e.g. U(t) = 1

t

∫ t
u(t∗) dt∗ where t∗ is a dummy

variable for time. The mean velocities in figure 23(a) increased slowly towards the end of the period, most
noticeably for sets 2 and 3, which indicates slowly-varying wind conditions. To account for the increasing
mean, the streamwise velocity fluctuations of the met tower and SLPIV data were calculated by subtracting a
linear slope from the velocity series rather than a single time-averaged mean.

Velocity statistics, particularly higher-order turbulent quantities, will also be unconverged if an insuffi-
cient number of the largest turbulent events are recorded. Statistical convergence of the velocity variances,
based on the linear detrending, are shown in figure 23(b-d). The streamwise and wall-normal variances in
23(b,c) are relatively well converged. The effect of large-scale motions on the Reynolds shear stress is vis-
ible in 23(d), where the average value for −u′w′ is still fluctuating after 10 minutes. The very-large-scale
motions contributing to the turbulent stresses have streamwise extent up to 5δ (Smits et al. 2011), which
corresponds to an approximate two minute turnover time based on the mean wind speed and δSL∼O(100 m).
This turnover time is consistent with the variations in figure 23(d), which may be due to intense sweep events
increasing the average u′w′, followed by a gradual decrease in the average before the next large sweep. While
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the shear stress data do not appear fully converged due to the limited number of these events, the changes in
−u′w′ for data set 1 are less than 4% in the final two minutes of the acquisition period.

3.2.2 Thermal stability

As discussed in §1.2.1, temperature differences lead to density differences and corresponding buoyancy
forces in the atmosphere that either promote vertical air movement (positive buoyancy, thermally unstable)
or act against the movement (negative buoyancy, stably stratified). Because the forces are due to gravity, the
buoyancy only acts directly on the vertical velocity component in the Navier-Stokes equations, which here is
the wall-normal component w. After applying the Reynolds decomposition, the Navier-Stokes equation for
w can be premultiplied by w′ and averaged to reveal the statistical terms that contribute to the wall-normal
velocity variance w′w′. The resulting budget equation for the wall-normal variance includes the buoyancy
term

B =
g

θv
w′θ′v. (9)

where θv is the virtual potential temperature. The buoyancy term directly results from the density fluctuations
ρ′, but density is difficult to measure experimentally. The virtual potential temperature is the temperature
that dry air at standard atmospheric pressure must have to equal the density of air described by a given
temperature, moisture content, and pressure. Removing the effects of moisture and pressure allows for θv to
be directly related to ρ through the ideal gas law as ρ′/ρ = −θ′v/θv (Stull 1988). The temperature, which is
relatively easy to measure, then replaces density in equation (9). The heat flux w′θ′v describes the extent to
which the temperature fluctuations enhance (positive correlation w′θ′v > 0) or suppress (negative correlation)
the wall-normal movement.

Same as the wall-normal component, the Navier-Stokes equation for u can be premultiplied by u′ to derive
the budget equation for the streamwise velocity variance. The equation includes the previously mentioned
shear production term

P = −u′w′ ∂U
∂z

. (10)

While the buoyancy and mean shear production statistics arise from different velocity components, they are
related through the mean turbulent kinetic energy TKE = 1

2 (u′u′ + v′v′ + w′w′). The relative importance
of buoyancy and shear production to the turbulent kinetic energy is expressed by the dimensionless flux
Richardson number Rif , which is simply the ratio of B and P :

Rif =

g

θv
w′θ′v

u′w′
∂U

∂z

, (11)

where the negative sign from the shear production is dropped by convention (Stull 1988). Each term in
equation (11) can be estimated from the Eolos met tower measurements aside from the mean shear ∂U/∂z
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which requires multiple anemometers positioned close together to approximate the gradient. The shear can
instead be assumed to follow equation (4) for the neutrally stratified log region. For surface measurements,
e.g. at z = 10 m, if ∂U/∂z = uτ/κz and u′w′ ≈ −u2τ are substituted into equation (11), the flux Richardson
number is then equivalent to the Monin-Obukhov stability parameter ζ = z/Lo, where Lo is the Obukhov
length Lo = −u3τθv/κgw′θ′v (Monin & Obukhov 1954).

The ASL is considered near-neutrally stratified with negligible buoyancy effects when B � P such that
the magnitude of Rif or ζ are small, e.g. |ζ| . 0.1 (Högström et al. 2002). The convective, thermally
unstable ASL corresponds to negative Rif values, and the stably stratified ASL corresponds to positive Rif .
Turbulent energy production in thermally stable conditions is sustained in the ASL until negative buoyancy
matches shear production, i.e. Rif ≈ 1, and above this point the flow may be laminar (Stull 1988).

The met tower measurements were used to estimate Rif during the SLPIV deployment. The virtual
potential temperature θv was calculated using 1 Hz temperature, pressure, and relative humidity measure-
ments. The pressure and relative humidity were required to convert the measured temperature θ to the virtual
potential temperature θv based on ideal gas and partial pressure laws (Stull 1988). Because the virtual tem-
perature conversion was only possible for the 1 Hz measurements, the heat flux was approximated as w′θ′

using detrended 20 Hz sonic anemometer measurements. The momentum flux u′w′ was also estimated with
the sonic anemometer data. Lastly, the previously described shear assumption ∂U/∂z = uτ/κz was applied.
Determination of uτ is described in §3.3.

The estimatedRif values at the three sonic anemometer heights are given in table I. For each data period,
the Rif values near the surface were small and buoyancy was negligible compared to the strong shear pro-
duction, but at higher elevations, e.g. z = 80 m, the flow was stably stratified. The Rif values are consistent
with the potential temperature θv space-time contour in figure 22(b). The stability conditions at the surface
were near-neutral where the temperature gradient ∂θv/∂z was flatter. The gradient was increasingly negative
at higher elevations where Rif values indicated increased stability.

The Rif (z) trends in table I appear consistent between the three data periods, but the effects of stability
were not equal. The space-time contour of wind speed in figure 22(b) shows an extended period of relatively
constant (low-pass filtered) wind speed at the second measurement height (z = 27 m) between 23:00 and
01:00 local time. The wind speed increased significantly beginning at 01:00. Very long motions with a period
of 45 to 60 minutes are apparent in the contours throughout the remainder of the morning. These motions
were likely waves associated with stably stratified flows (Mahrt 2014). The waves appear to have propagated
down below the top of the SLPIV imaging field during data sets 2 and 3, and they may have modulated the
near-surface turbulence. The velocity profiles are next analyzed to assess whether the SLPIV measurements
were affected by the weakly stable stratification.
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Table II. Scaling parameters for the Eolos field site during the three SLPIV data acquisition periods. Adapted from Table 2 of Heisel
et al. (2018).

uτ ν/uτ η δSL zo ks
data set symbol [m s−1] [mm] [mm] [m] [m] [m] k+s ∆U+ Reτ

1 ◦ 0.30±0.03 0.042 0.7±0.2 70–200 0.04 1.2 29 000 22.1 1.7−4.7×106

2 × 0.32±0.03 0.039 0.7±0.2 70–200 0.04 1.2 31 000 22.3 1.8−5.1×106

3 + 0.33±0.03 0.038 0.7±0.2 70–200 0.04 1.2 32 000 22.4 1.8−5.3×106

3.3 Measurement validation

3.3.1 Site parameterization

The methods used to calculate the velocity statistics, described in the previous sections, are summarized
here: the mean snow settling speed was subtracted from the SLPIV vertical velocities, the velocities were
linearly detrended to estimate the turbulent fluctuations, and the streamwise statistics were projected onto the
mean wind direction. The compensated velocity profiles were used to estimate separate values of the friction
velocity uτ for each data set. The values of uτ were determined manually by collapsing the velocity profiles
of the three sets and aligning the slope of the mean velocity with the theoretical log law slope κ−1 given in
equation (5). The determination of uτ also considered the theoretical Reynolds shear stress peak−u′w′+max ≈
1. A least squares fit of the profiles was not employed to define uτ due to the fact that multiple profiles and
conditions were considered simultaneously. The resulting values are given in table II. The estimated 10%
uncertainty bounds for uτ includes the experimental and convergence uncertainty for −u′w′max.

With uτ defined for each data set, a single value for the aerodynamic roughness length zo (ks) was
determined. Because the conditions are well within the fully rough regime, zo and ks depended only on the
surface geometry and did not change between data sets. The length zo was calculated using a non-linear
least squares fit of all the mean velocity data points up to z = 70 m to achieve alignment with the log law
formulation in equation (7). The estimated aerodynamic roughness length for the Eolos site was zo = 0.04 m,
which is within the expected range zo = 0.01 to 0.05 m for farmland (Stull 1988; Garratt 1994). Because
the snow cover was shallow and had not concealed the underlying roughness, the surface asperities from the
overturned soil accounted for some of the aerodynamic roughness. The roughness zo therefore corresponded
to a combination of the asperities and protruding vegetation, where the vegetation was consistent with early
wheat of roughness height k = 0.4 m (Raupach et al. 1991). The equivalent sand grain roughness was then
calculated as ks ≈ 30zo ≈ 1.2 m, and the roughness function ∆U+ was estimated from equation (6).

To evaluate the smallest flow scale, i.e. the Kolmogorov length scale η ≡ (ν3/ε)1/4, the turbulent energy
dissipation rate ε must first be approximated. A common assumption for the log region is an equilibrium
between shear production and dissipation ε ≈ P , and in the log region the production follows the theoretical
form P = −u′w′(∂U/∂z) = u2τ (uτ/κz) = u3τ/κz for high-Reynolds-number boundary layers. This leads
to the Kolmogorov length scale estimate η = (κzν3/u3τ )1/4. For the SLPIV field of view z = 3 to 18 m, the
estimate yields η ≈ 0.7±0.2 mm.
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The largest flow scale given by the surface layer depth δSL was generally unknown for the Eolos field
site. The mean velocity profile deviated strongly from the expected log law behavior near z = 70 m, which is
why the log law was not fitted above 70 m for determining uτ and zo. The mean velocity profiles are shown
in figure 24 and are discussed in greater detail in the following subsection. The surface layer definition is in
some ways analogous to the log region of a conventional boundary layer, such that a conservative estimate
for the depth is δmin ≈ 70 m where the logarithmic behavior ends. However, the departure from the log law
may have been due to the stable stratification at higher elevations. Alternatively, the depth can be estimated
following the traditional laboratory definition using the free stream condition. The free-stream velocity was
not reached by the top of the met tower (z = 130 m) based on the mean velocity profiles in figure 24, and
I chose a nominal maximum estimate δmax ≈ 200 m. A more accurate estimation of δSL is not feasible
without additional velocity measurements above the met tower. The Reynolds number range resulting from
the δSL limits is Reτ ≈ 2−5×106, which is comparable to other atmospheric studies (Kunkel & Marusic
2006; Hutchins et al. 2012; Wang & Zheng 2016). The Reτ values, in addition to the other parameters
discussed above, are listed in table II.

3.3.2 Velocity profiles

The compensated mean velocity profiles for the three data sets, normalized in viscous units following the
log law form in equation (5), are shown in figure 24(a). Included for reference are velocity profiles from
rough-wall laboratory studies (Krogstad et al. 1992; Schultz & Flack 2007; Flack et al. 2007; Squire et al.

2016b; Morrill-Winter et al. 2017) as well as atmospheric studies at the SLTEST (Kunkel & Marusic 2006;
Hutchins et al. 2012) and QLOA (Wang & Zheng 2016) facilities. Additional atmospheric measurements
from other met-mounted anemometer studies (Clarke et al. 1971; Tieleman 2008) are also included. The
displacement of each profile from the smooth wall reference line is given by the roughness function ∆U+ as
previously discussed.

The Eolos profiles exhibit the expected log-linear increase in mean velocity up to approximately z = 70 m.
The log-linear range was captured by the SLPIV (blue markers), sonic anemometers (magenta) and cup and
vane anemometers (green). The upper limit of the range is somewhat arbitrary due to the low spatial resolution
of the met tower. There was close agreement in the mean velocity estimate between the SLPIV and sonic data
at z = 10 m. The higher velocity from the cup and vane measurements at z = 7 m was likely overestimated
based on the discrepancy with both the nearest SLPIV and sonic estimates.

The fully rough flow cases shown in figure 24(a), including the Eolos data, are re-plotted in figure 24(b)
following the standard meteorological log law form in equation (7). Only the fully rough cases are included,
for which zo can be calculated directly from the ks values reported in the cited literature. The collapse of the
experimental data along the theoretical line validates the values of uτ and zo for both the Eolos data and the
cited studies.

The variance profiles for the three Eolos data sets are shown in figure 25 with the same literature com-
parison as the mean velocity profiles. The expected log-linear decrease in streamwise variance is observed
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Figure 24. Mean velocity profiles for the three SLPIV data sets compared with selected results of laboratory (gray symbols) and
atmospheric (black symbols) studies. The wall-normal position is normalized using (a) viscous wall units and (b) the aerodynamic
roughness length. Reference lines in (a) for smooth wall (– –), transition to fully rough (——), and the present data (· · · ) have slope
κ−1. Symbols for the SLPIV (blue), sonic (magenta), and cup (green) data are defined in table I. Every fourth SLPIV data point is
shown for clarity. Adapted from Figure 4 of Heisel et al. (2018).

beginning at z = 5.5 m (z+=2.2×105). Together with the agreement between the Eolos mean velocity pro-
files and equation (5) up to z = 70 m, the log-linear behavior of u′u′

+
suggests a log region from z = 5.5

to 70 m. The region below 5.5 m is assumed to be the roughness sublayer. The data points in the sublayer
are shown with transparency in figures 24 and 25. The extent of the roughness sublayer exceeds somewhat
the 5k ≈ 2 m limit suggested by Flack et al. (2007), but the sublayer height likely depends on the specific
roughness geometry and the agreement is reasonable considering the disparity in flow scales between the
present work and the cited study.

The SLPIV data do not capture a near-wall streamwise variance peak in figure 25(a). However, the
near-wall peak would have been below the field of view, and the peak was very likely not present due to
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Figure 25. Turbulent velocity profiles for the three SLPIV data sets and selected literature results. (a) The streamwise variance u′u′
+

.
(b) The wall-normal variance w′w′

+
. (c) The Reynolds shear stress u′w′

+
. Literature symbols are defined in the figure 24 legend.

Symbols for the SLPIV (blue) and sonic (magenta) data are defined in table I. Every fourth SLPIV data point is shown for clarity.
Transparent points are within the estimated roughness sublayer. Adapted from Figure 5 of Heisel et al. (2018).

destruction of the near-wall turbulence cycle by the roughness elements (Grass 1971). The peak values
in each variance profile are otherwise in agreement with previous literature. In particular, the streamwise
variance in figure 25(a) and wall-normal variance in 25(b) are consistent with other field measurements.
Further, the SLPIV streamwise rms velocity σu was within 6% of the sonic anemometer measurements at
z = 10 m. The difference between the SLPIV and sonic results was much greater for the wall-normal
rms velocity. For the first Eolos data set, the σw measured by the sonic anemometer was 27% lower than
the SLPIV result. This discrepancy is likely responsible for the similar large difference in the Reynolds
shear stress in figure 25(c). Based on the agreement of the SLPIV wall-normal variance peak w′w′

+ ≈
1.25 with previous literature, I assume the error was primarily in the sonic anemometry result. Multiple
studies have demonstrated scenarios leading to underestimates and errors in the vertical velocity measured by
sonic anemometers. These scenarios include non-orthogonality of the anemometer (Frank et al. 2013), flow
distortion from the met tower mast mount (Grant & Watkins 1989), and a combination of snow precipitation
and icing conditions (Makkonen et al. 2001). The last explanation is the most probable, considering the
weather conditions during measurement.
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3.4 Canonical or not?

Ideally, the variances in figure 25 would be plotted as z/δ and the outer region results would collapse
with the rough-wall literature in accordance with Townsend’s outer layer similarity. Unfortunately, the lack
of an accurate δSL estimate and the effect of stable stratification on the turbulence statistics prevent such a
collapse. The stability effects are most apparent in the sharp decline of the Reynolds shear stress in figure
25(c). The decline begins well below the uncertainty range of the surface layer depth δSL = 70 to 200 m,
and the mean velocity continues to follows a logarithmic trend up to 70 m.

A second explanation for the Reynolds shear stress decrease follows Hunt & Carlotti (2001) and Drobinski
et al. (2004). In their argument, the surface layer is further separated into two sublayers: a near-wall region
where turbulent motions interact directly with the wall (i.e. the “attached” eddies) and an upper region
where top-down turbulent motions are “detached” from the wall. The extent of the near-wall region predicted
by Hunt & Carlotti (2001) depends on the roughness, and for the Eolos field site roughness the prediction
matches well with the observations.

A likely possibility is that both explanations have merit. The partitioning of the boundary layer into a
near-neutral, shear-dominated region close to the ground and a stably stratified upper region is qualitatively
similar to the classification by Hunt & Carlotti (2001). Top-down motions from the stable upper region,
including the waves observed in figure 22(c), may have sporadically interacted with the shear-driven region.
This possible top-down interaction may have created the stability effects near the top of the SLPIV imaging
field, which were stronger than the local stability parameter would indicate (i.e. Rif = 0.05 at z = 30 m).
A final possibility is that the SLPIV measurement noise was greater near the top of the field of view, which
may explain some of the covariance decrease.

Regardless of the cause, the Reynolds shear stress statistics begin to depart from the theoretical log region
profile above z = 11 m. Below z = 11 m and above the roughness sublayer, the mean velocity and variance
statistics follow the canonical behavior for the log region. This region is therefore the focus of the analysis in
chapter 4. The remainder of the analysis uses only data set 1 (circles). The steadiest meteorological conditions
occurred during set 1 with respect to the wind direction in figure 22(a), the potential thermal stability effects
in figure 22(c), and the converged wind speed in figure 23(a). Further, the velocity variance profiles for set
1 in figure 25 exhibited the least variability near the top of the SLPIV field (z+≈5×105). Data set 1 was
therefore inferred to most closely represent a canonical rough-wall boundary layer.



4 Detection of coherent structures in the surface
layer

Chapter 4 comprises an edited version of sections 4 through 7 of the article below, published in the Journal

of Fluid Mechanics, © Cambridge University Press 2018. Please cite the published article when referencing
content in this chapter.

Heisel, M., Dasari, T., Liu, Y., Hong, J., Coletti, F., and Guala, M. (2018). The spatial structure of the
logarithmic region in very-high-Reynolds-number rough wall turbulent boundary layers. J. Fluid Mech.
857, pp. 704-747. https://doi.org/10.1017/jfm.2018.759.

4.1 Hairpin-like packet signature

Before assessing the coherent structures in the ASL in the framework of uniform momentum zones and
internal shear layers, it is worth investigating other structural features seen in previous laboratory-scale PIV
studies. In particular, this section presents evidence of the hairpin packet signature in the rough-wall ASL.

4.1.1 Visual evidence

I used the instantaneous SLPIV vector fields to identify possible hairpin-like structures. An example
realization from data set 1 is shown in figure 26(a). To highlight the spanwise vortices and make their
circular core apparent, a bulk advective velocity Uc approximately equal to the local velocity of the vortices
was subtracted from the SLPIV field. The resulting vector field shares the same signatures of hairpin vortices
as the visualizations in figures 10 and 11 of Adrian et al. (2000b): (i) the spanwise vortices are at the head
of a shear layer and both are advected at the same speed; (ii) the shear layer has a forward inclination of
approximately 35° above horizontal; (iii) the shear layer separates an ejection event from below and a sweep
event from above. To more clearly identify the cores of the vortex heads, figure 26(b) shows a color plot of
the two-dimensional swirling strength λci (Adrian et al. 2000a), where the sign of λci is based on the out-of-
plane vorticity ωy . The regions of negatively-signed swirl indicate prograde vortices rotating in a direction
consistent with the mean shear, i.e. clockwise in the figure 26 reference frame.

Given the presence of multiple vortex heads along the single shear layer, the signature resembles the
hairpin vortex packet rather than the individual hairpin vortex. This signature has previously been observed
for rough-wall boundary layers in laboratory studies (see, e.g., Volino et al. 2007; Hong et al. 2011). Despite
the striking similarities between the vortex structure in figure 26 and a hairpin packet, the visualization is
limited to the two-dimensional x−z plane, and the three-dimensional shape of the vortex tubes is unknown.
Additionally, the example was certainly “cherry-picked”, and most instances did not have a clear hairpin
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Figure 26. Realization of a vortex structure having the signature of a hairpin-like packet with four vortex heads along an inclined shear
layer. (a) Sweep and ejection regions on either side of the shear layer. (b) Identification of the vortex cores by the swirling strength λci.
(c) Zones of uniform momentum separated by the shear layer. (d) Histogram of streamwise velocities for vectors within the dashed box
of (c). The quiver plot reference frames in (a) and (c) use the advective velocityWc = −1 m s−1 and the listed Uc. The shear layer line
in (a-c) is a contour of u = 3.75 m s−1, the minimum occurrence velocity between the histogram peaks in (d). Adapted from Figure 6
of Heisel et al. (2018).
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signature. Nevertheless, the example provides anecdotal evidence of an inclined vortex structure extending
up to z = 12 m that shares features similar to a hairpin packet and the representative attached Λ-packet
eddy. The influence of these inclined shear layer events on overall statistics is investigated in the following
subsection.

In a generalized description of the velocity signature in figure 26(a), the shear layer separates two regions
of distinct momentum, leading to the UMZ-ISL classification introduced by (Meinhart & Adrian 1995). The
UMZs are more visually apparent when a new advective velocity Uc equal to the speed of lower momentum
region is subtracted from the flow field. The vector field resulting from this new Uc value is shown in
figure 26(c). The vector field clearly shows a low- and high-momentum region below and above the shear
layer, respectively. As discussed in §2.2.5, the presence of UMZs is shown statistically using histograms
of the streamwise velocities in the vector field as seen in figure 26(d). To avoid selection bias in the non-
rectangular SLPIV field, I limited the vectors contributing to the histogram to the rectangular area outlined by
the dashed box in figure 26(c). The contour for the shear layer in figure 26(a-c) is represented statistically by
the minimum in the histogram at u = 3.75 m s−1. The presence of a signature for both a hairpin-like packet
and a UMZ in the figure 26 realization highlights the effect of the reference frame on the classification of
the structure. It is therefore important to recognize the overlap in the definition of hairpin-type packets and
UMZs when interpreting structures in instantaneous velocity fields.

In figure 26 and many later figures, I chose to present the distances x and z dimensionally rather than
normalized by δSL or ν/uτ . This choice hopefully allows the reader to appreciate the extreme physical scale
of these turbulent features compared to previous laboratory studies. Further, the correct scaling parameter is
likely the wall-normal distance z. The vortex structure in figure 26 reaches heights far from both the rough
wall (z+∼105, z/k≈30) and the top of the ASL (z/δSL∼0.1) such that z is the relevant length scale in
accordance with theory for the log region.

4.1.2 Statistical evidence

As discussed in §2.2.6, the signature of inclined shear layers and ramp-like structures is apparent from
the shape of the two-point correlation. The correlation is a statistical measure of velocity coherence, and the
two-point correlation is inclined if the statistically relevant coherent velocity structures are similarly inclined.
The present analysis is specifically for correlations of the streamwise velocity. For a given reference height
zref , the two-point correlation ρuu is defined at each height z and streamwise separation distance rx as

ρuu(rx, z, zref ) =
〈u′(x, zref )u′(x+ rx, z)〉

σu(zref )σu(z)
, (12)

where the brackets 〈·〉 indicate the average correlation across each x position at the reference height. The
correlation definition uses the fluctuations u′, such that the mean shear is absent from the reference frame
for the statistic. The inclination of ρuu is therefore not strictly representative of the average structure shape,
but the result provides a qualitative assessment of the inclines structures. An alternative is to calculate the
fluctuations in equation (12) as u8(z) = u(z) − U(zref ) to avoid subtraction of the mean shear. Figure 27
compares a sample correlation map ρuu resulting from the standard and alternative fluctuation definitions. In
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Figure 27. Comparison of two methods for calculating the two-point correlations of the streamwise velocity ρuu at reference height
zref = 10 m: (a) fluctuations for equation (12) calculated by standard Reynolds decomposition u′(z) = u(z)−U(z); (b) fluctuations
calculated relative to the reference height u8(z) = u(z)− U(zref ).

both cases, the well-correlated regions are elongated along the streamwise direction and inclined at a shallow
angle from the horizontal, indicative of the statistical persistence of the ramp-like structures in the flow. For
u8 in figure 27(b), the structure inclination is more apparent across larger height differences |zref − z| where
the effect of subtracting the mean shear is greater, particularly above the reference height. Additionally, the
correlation values decrease faster across height differences such that the correlation aspect ratio becomes
more elongated in the streamwise direction.

I calculated the ρuu correlation maps for each reference height within the SLPIV field using the traditional
fluctuation definition. While the u8 results are revealing, the use of u′ allows for a direct comparison with
previous studies in the literature. Further, the alternative definition u8 introduces mathematical inconsistencies
in the normalization of the correlation. The correlation contours resulting from equation (12) are shown in
figure 28 for four reference heights. To determine the inclination angle γ of the spatial correlation, I fitted
ellipses to each contour (using finer contour intervals than shown in figure 28), identified the major axis edge
points for each ellipse, and used a least-squares linear fit to form a line through all the major axis points. A
similar method was employed by Volino et al. (2007). The contour fit was only applied to the correlation
range ρuu = 0.6 to 1. The line resulting from the linear fit and the angle γ are included in figure 28. The
inclination angle γ ≈ 12° at lower positions (zref = 4 and 8 m) is in excellent agreement with the 10 to 15°
range observed in numerous literature (see, e.g., Adrian et al. 2000b; Christensen & Adrian 2001; Dennis
& Nickels 2011; Guala et al. 2011; Liu et al. 2017). This agreement further confirms that the signature of
ramp-like structures is qualitatively similar, at least in the inclination, across a range of scales independent of
surface roughness (Volino et al. 2007; Guala et al. 2012; Squire et al. 2016a).

Towards the top of the SLPIV field, e.g. at zref = 12 m and 16 m in figure 28(c-d), the elongated
shape of the correlations is maintained, but the estimated inclination angle is smaller. Volino et al. (2007)
observed a similar flattening in their outer region (z/δ > 0.7) entirely above the log region, but other studies
found an increase in γ with increasing z (Dennis & Nickels 2011; Hutchins et al. 2012; Squire et al. 2016a)
due to a bulging of the structures (Kovasznay et al. 1970; Dennis & Nickels 2011). The discrepancy of the
SLPIV findings with the latter studies may be due to methodology. In Hutchins et al. (2012) and Squire et al.

(2016a), the inclination of higher positions was estimated from the shape of low-correlation contour lines
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Figure 28. Two-point correlations of the streamwise velocity ρuu for the four reference heights indicated by the dotted lines: (a)
zref = 4 m, (b) zref = 8 m, (c) zref = 12 m, and (d) zref = 16 m. The blue line indicates the inclination angle γ of the contours.
Contour lines start at ρuu = 0.9 and decrease in intervals of 0.1. Adapted from Figure 7 of Heisel et al. (2018).

conditional to a zref nearer the wall (see e.g. figure 11 of Hutchins et al. 2012). In figure 11 of Dennis &
Nickels (2011), a higher local zref was used, but the increased inclination is mainly apparent from the tails of
the correlation contours away from the reference point. Considering the positive correlations extend multiple
surface layer thicknesses in the streamwise direction (Hutchins et al. 2012; Wang & Zheng 2016), the SLPIV
field is restricted relative to the correlation and there is likely not sufficient separation distance across the field
of view to capture the statistical signature of the bulged structures.

To further investigate the flattening of the correlation contours at the top of the SLPIV field, the wall-
normal profile of the inclination angle is given in figure 29. The error bars for each inclination angle represents
the 95% confidence interval of the fitted slope. These error bars are likely underestimated, as other sources of
uncertainty from the correlation calculations are difficult to quantify and carry forward to the uncertainty of
the final result. For example, the ellipse fit was only applied to contours completely enclosed within the field
of view. For higher zref , many of the contours extended above the field limit and the γ estimate was based
primarily on the highest ρuu region which may have been less inclined than the lower correlation regions.

A more physical explanation for the decreased inclination is modulation of the inclined structures by
the negative buoyancy. The stratification limits the vertical motions and interactions between different wall-
normal regions, leading to more layered, flatter structures. The decrease in inclination has been observed
previously for stably stratified turbulence (Sullivan et al. 2016; Liu et al. 2017). Particularly similar to the
present results, Chauhan et al. (2013) noted a decrease in the inclination away from the surface in stable
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Figure 29. Wall-normal profile of the two-point correlation inclination angle γ. The dotted lines correspond to the limits of the region
exhibiting canonical log layer behavior. Adapted from Figure 19 of Heisel et al. (2018).

conditions, and a positive inclination relatively close to the surface where the shear production was highest.
The decrease in u′w′ and γ within the same region, i.e. z ' 11 m, indicates the increased influence of
negative buoyancy to be the likeliest reason for the trend in the two-point correlations.

4.2 Uniform momentum zones

I now return the the UMZ classification. While the hairpin-like vortex packets and ramp-like structures
have a statistical signature, their presence is not apparent in every realization of the flow. The generalized
definition of the UMZs in figure 26(c,d) make it possible to extend the UMZ detection to entire data set and
systematically characterize the coherent velocity structures in the surface layer.

4.2.1 Histogram construction

Detecting UMZs as local peaks in the velocity histogram via an algorithm, as opposed to visually, requires
statistically converged histograms. Limiting the histogram contributions to a rectangular field as shown in
figure 26(c) results in 8 (streamwise) columns which span the 59 (vertical) rows of the vector field. A
single frame is not sufficient to properly converge the histogram as seen in figure 26(d). To improve the
convergence, and to track the properties of UMZs across time, I extended the two-dimensional representation
in figures 26(c,d) across consecutive SLPIV frames. Specifically, I combined the 8 central columns in the
field of view across 15 SLPIV frames to construct each histogram. The number of vectors contributing to
each histogram was therefore 8×59×15≈7×103, which is a similar value to previous studies (de Silva et al.

2016; Laskari et al. 2018). The histogram space-time (x, z, t) contributions are visualized in figure 30(a): the
full SLPIV field in space-time (dotted lines) is reduced to a 15-frame rectangular prism (thick black lines).
The resulting histogram is shown in figure 30(b).

Aside from convergence, another consideration is the scale of the detected velocity regions. The issues of
convergence and scale are both addressed by the choice of the parameter Lx introduced in §2.2.5. Unfortu-
nately, distinguishing the two effects is not trivial. For Lx much smaller than most of the velocity structures,
the limiting factor is convergence of the peaks for the existing structures. However, when Lx is larger than
some of the structures, multiple regions with different momentum contribute to the histogram, which can
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Figure 30. Illustration of the vector field contributions to the histograms used to detect UMZs. (a) Dotted lines representing the full
SLPIV field in space (x−z) and time (frames) reduced to a 15-frame rectangular prism (thick black lines). (b) Histogram of the u
values within the 15-frame rectangular prism in (a). (c) Histogram of u from a single frame and column, scaled in inner wall units.
(d) Histogram of u from 550 frames, scaled in outer wall units. The three histograms begin at the same SLPIV frame. The conversion
from frames to streamwise extent is Lx = UB(frames/fs) where UB ≈ 4 m s−1 was the bulk mean velocity and fs = 30 Hz was the
sampling frequency. Adapted from Figure 8 of Heisel et al. (2018).

mask the smallest local peaks. In this case, a smoother histogram may be due the low-pass filtering effect of
Lx in addition to improved convergence.

To assess the scaling of Lx for the SLPIV results, the frame extent must be converted to an equivalent
streamwise length. The temporal extent of the 15-frame histogram contributions was 0.5 s. Using Taylor’s
frozen turbulence hypothesis, the streamwise spatial extent can be approximated by multiplying this time
to the bulk mean velocity UB ≈ 4 m s−1, yielding Lx ≈ 0.5UB ≈ 2 m. The streamwise extent can be
normalized as Lx/δSL ≈ 0.03 or L+

x ≈ 45 000. If Lx were limited to a single SLPIV column and frame, i.e.
the shortest possible value for the SLPIV data, the resulting length L+

x ≈ 3 000 is comparable to the value
L+
x = 2 000 suggested by de Silva et al. (2016). The corresponding histogram is shown in figure 30(c). The

histograms in figures 30(b,c) exhibit the same general shape and high probability velocity regions, but the
short extent does not allow statistical convergence of the zones and automated peak detection. Increasing Lx
to scale instead with δSL results in the figure 30(d) histogram based on 550 SLPIV frames. The low velocity
modes seen in figure 30(b) are no longer apparent due to the contribution of many structures with slightly
different momentum to the histogram. Considering the changes in the modal velocities, Lx should be small
compared to the boundary layer depth to avoid filtering all but the largest zones, in agreement with de Silva
et al. (2016).

The value L+
x = 2 000 proposed by de Silva et al. (2016) was intended to detect the long momentum

streaks in the buffer layer whose extent is approximately 1 000 ν/uτ , in addition to larger structures in the
log and wake regions. The viscous-scaled streaks are not relevant to fully rough flow. This is demonstrated by
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the qualitative similarity of the two histograms in figure 30(b,c), despite a factor of 15 difference in Lx. Later
results indicate the more relevant length scale for the UMZs in the log region is the wall-normal distance z.
When normalized by z, the chosen extent is Lx/z ∼ 0.1 to 1 throughout the SLPIV field of view.

In addition to the 15-frame temporal extent, further smoothing is introduced by including the 8 central
columns in each frame as opposed to a more simple two-dimensional z−t plane. I included the multi-
ple columns to improve convergence without increasing too much the temporal extent. The inclusion and
smoothing is at the expense of the smallest measurable UMZs whose histogram peak may be eliminated.
The smoothing and convergence effects induced by the choice of Lx represent the primary uncertainty in the
UMZ analysis. Sensitivity analysis of Lx and the histogram parameters yielded up to 30% changes in the
calculated average UMZ streamwise extent based on a 2 000 frame sample. The analysis included halving the
span to 7 frames (i.e. halving Lx) and doubling the span to 30 frames. The range ±30% is used to represent
uncertainty in later UMZ results.

Besides the frame span, another important consideration for the histogram construction is the bin width.
I selected a bin width of 0.1 m s−1, which is the same as the experimental uncertainty in the velocity vectors.
The bin width results in approximately 30 bins per histogram. The normalized bin width is 0.33uτ , which
is comparable to the 0.5uτ width employed by Laskari et al. (2018). de Silva et al. (2017) showed the
streamwise velocity difference between vertically adjacent UMZs to be one to two times uτ . This jump
corresponds approximately to the velocity difference between modes in the histogram. The normalized bin
width 0.33uτ is therefore small enough to allow for the average mode-to-mode velocity difference to be
separated by multiple histogram bins. As a result, adjacent UMZs appear as distinct modes in the histogram.

4.2.2 Tracking methodology

The following description provides a brief overview of the methodology employed to identify momentum
zones using the histograms and track the UMZs in time. Local peaks in a given histogram were considered as
distinct UMZ modes by a peak detection algorithm based on a calibrated set of parameters. The parameters
included the minimum distance between two peaks (2 bins), the minimum peak height (0.05), and minimum
peak prominence (0.05), where the prominence is the height difference between the peak and its neighboring
minima. Importantly, the height and prominence parameters require the histograms to be normalized as
probability density functions (pdfs) with integral equal to unity. Similar parameter values were used by
Laskari et al. (2018). From the detected peaks, the modal velocities um were determined using a local three-
point Gaussian fit of the peaks, and the edge velocities were determined using a three-point parabolic fit
of the minima between peaks. The example histogram in figure 31(a) shows the detected modes and edge
velocities.

To determine the edge height, the 8-column streamwise velocity time series was reduced to the central
(fifth) column, resulting in a z−t velocity series at the center x position. The UMZ edge location within the
velocity field was estimated from a contour of the detected edge velocity, and the edge z position at a given
time twas taken as the height of the contour at that time. The detected edge heights are shown in figure 31(b),
where the given time t =2.5 s is the the center of the frame span. The bottom and top edge heights were
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Figure 31. Demonstration of the UMZ tracking methodology. (a) Histogram of u values with the detected modal velocities um (◦) and
zone edge velocities (×). (b) Color plot of u in space z and time t, including the 15-frame histogram span (bounded by the dashed lines)
and contours of the edge velocities from (a) used to detect the edge heights for t = 2.5 s. (c) UMZ velocities um in time where the
histogram in (a) corresponds to t = 2.5 s. (d) Definitions of zone average midheight zm, total time duration tm, wall-normal thickness
hm, and height-dependent length `m(z) = umtm(z). Blue markers in each plot indicate attributes associated with the zone featured
in (d). Adapted from Figure 9 of Heisel et al. (2018).

assigned to each modal velocity by matching the um values with the mean of the streamwise velocity vectors
between each edge height (including the bottom and top of the field). The mode and edge detection was
repeated by shifting forward one frame and computing the new histogram. Because the frame shift between
histograms was shorter than the 15-frame span of the histogram construction, there was overlap in the vectors
contributing to consecutive histograms. The effect of the vector overlap is quantified using the frame span
sensitivity analysis discussed above.

Following the calculation of modal velocities and edge heights for every frame, the UMZs were tracked
temporally using a nearest-neighbor routine, resulting in the tracked zone speeds in figure 31(c). The algo-
rithm connected UMZ modes between frames if the modal velocity difference was less than 1.5 bin widths.
The duration of the connected UMZ modes defines the extent of the zone. UMZs lasting only one frame
were considered short-lived and were removed (Laskari et al. 2018). The boundaries of each remaining UMZ
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were converted from scattered bottom and top heights to an enclosed shape as shown in figure 31(d). The
velocity vectors belonging to each zone are those within the UMZ boundaries. Properties computed for each
UMZ include those defined in figure 31(d): the average midheight zm, total time duration tm, wall-normal
thickness hm, and height-dependent streamwise length `m(z) = umtm(z). The height, thickness, and du-
ration properties are based on the position of the UMZ boundaries in the z−t plane. The use of Taylor’s
frozen turbulence hypothesis to convert the time duration to streamwise length is justified here due to the fact
that each UMZ moves with a uniform velocity by definition. However, the hypothesis still assumes “frozen”
turbulence where the structures do not evolve in time, which may underestimate the length if the entire UMZ
did not pass through the SLPIV field prior to its breakup.

More than 1 300 UMZs were identified from the tracking routine. Figure 32 provides results of the UMZ
edge tracking routine for two 5-second sample periods. The interfaces align well with the shear identified in
figure 32(c,d) and the vortices based on swirling strength in figure 32(e,f ). However, the inherent requirement
for a substantial number of velocity vectors in a given zone to manifest a histogram peak is apparent in two
ways. First, it results in the inability to detect zones only partially in the field of view. For instance, the high
shear at the bottom of the field in figure 32(d) indicates a potential shear layer, but insufficient vectors are
present to detect the UMZ that likely appears just below the field of view. Second, an emerging zone may not
immediately correspond to a histogram peak. When the zone is detected in these cases, the vertical extent of
the UMZ is already substantial, leading to an apparent vertical front edge. This can be seen for both samples
in figure 32(a,b) near z = 10 m and t = 2.5 s. The result of these limitations in the tracking methodology
are potentially biased statistics near the top and bottom of the field as well as underestimated durations for
certain UMZs to the favor of the surrounding zones. In consideration of the field edge effects, later figures
and discussion of wall-normal UMZ trends clearly acknowledge the regions where bias is observed. The
results are interpreted using only the central region of the field where the statistics are most reliable.

In addition to the visual samples, the efficacy of the tracking methodology can be assessed by measur-
ing the uniformity of each UMZ. I used the rms of the velocity vectors σm in a given UMZ to represent
the uniformity. Figure 33 shows the average σm in intervals of z, where the appropriate interval for each
UMZ was based on its midheight zm. The overall time-averaged rms profiles are also shown for reference.
The relatively low turbulence levels within the UMZs confirm the uniformity of the zones. The streamwise
velocity deviations σm(u) are 20% to 40% of the time-averaged rms profile and the wall-normal deviations
σm(w) are 40% to 60%. The decrease for σm(w) is appreciable considering the w velocity is not consid-
ered in the UMZ detection, and demonstrates the correlation between u and w at the scale of the UMZs. I
assume the w uniformity would be further improved by detecting each UMZ as a region with coherent u and
w values simultaneously. Note also that the estimates for σm include the vectors along the UMZ edges that
were within the thickness of the shear layers. These shear layer vectors likely have higher deviations than the
UMZ interior such that the estimated uniformity is conservative.
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Figure 32. Temporally tracked UMZ edges in the z−t plane for two example 5-second periods (a,b) overlaid on streamwise velocity
color plots, (c,d) overlaid on instantaneous shear color plots, and (e,f ) overlaid on swirling strength color plots. Adapted from Figure 10
of Heisel et al. (2018).
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Figure 33. Binned averages of the velocity standard deviation σm in each UMZ (circles) compared with the time-averaged rms velocity
profiles (lines) for (a) the streamwise velocities u and (b) the wall-normal velocities w. The bins are based on the UMZ midheight zm.
Adapted from Figure 11 of Heisel et al. (2018).

4.2.3 Length statistics

The tracking described above yielded an estimated total streamwise length `m for each UMZ. The prob-
ability distribution of `m is shown in figure 34(a,b). The bins used to estimate the distribution are spaced
logarithmically to better capture the probability tail. The tail follows a power law relationship as shown by
the fit in figure 34(b). The bin spacing here results in a −2 power law exponent, while the linear bins used
in the original analysis predicted a −2.2 exponent. In either case, the exponent indicates the mean value
for `m is statistically well-defined. The longest tracked event, `m = 160 m, is on the order of δSL. This
extent is consistent with the longest UMZs tracked by Laskari et al. (2018) and approaches the range of very-
large-scale motions (VLSMs) identified using turbulence spectra in the logarithmic layer (see, e.g., Guala
et al. 2006; Balakumar & Adrian 2007; Smits et al. 2011). Hutchins & Marusic (2007a) identified longer,
meandering superstructures over 20δ in length using a spanwise array of point measurements. Consistent
with Laskari et al. (2018), I note the possibility that the tracked UMZs may be part of larger structures: if
a tracked UMZ were to meander, the UMZ could be lost, then reappear as a new UMZ due to the lack of
spanwise measurements.

A quantitative analysis of the longest UMZs is precluded by the discussed limitations in defining the
UMZ length, namely the underestimated duration of emerging zones, the application of Taylor’s hypothesis,
and the inability to follow meandering structures. While there may be a link between the longest zones and
VLSMs, UMZs with length `m & δSL are rare and represent 0.5% of the tracked zones. The majority of
tracked UMZs have length `m . 0.1δSL. The maximum size of UMZs may be bounded by δSL scaling, but
the average UMZ does not appear to by influenced by δSL in the present measurements.

A profile of the height-dependent average UMZ length Lm(z) is shown in figure 34(c). The average
Lm(z) = 〈`m(z)〉 was determined from the contributions of each zone at a given height such as the example
in figure 31(d). The profile exhibits a wall-normal dependence up to approximately z = 11 m, above which
the zone length is relatively constant. The increase of UMZ length with height is in agreement with theoretical
scaling for the log region and is discussed further in §4.5. The behavior above z = 11 m is consistent with
the two-point correlation results and the influence of stable stratification. The errors bars in figure 34(c)
correspond to the forementioned sensitivity analysis based on changing Lx by a factor of two. Importantly,
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Figure 34. Statistics of the UMZ streamwise length `m = umtm. (a) Histogram of `m. (b) The same histogram in log-log scale with
a power law fit to the distribution tail. (c) Profile of the average height-dependent length Lm(z) with every second data point shown for
clarity. The dotted lines correspond to the limits of the region exhibiting canonical log layer behavior. See figure 31(d) for definitions of
tm and `m(z). Adapted from Figure 12 of Heisel et al. (2018).

varying Lx affects neither the wall-normal dependency nor the conclusions drawn from the trends. Changes
in Lm(z) due to the choice of Lx were approximately uniform across all heights.

4.3 Internal shear layers

In the previous section, I referred to the tracked points between zones as UMZ edges. Hereon, I assume the
tracked edges correspond to the midheights of internal shear layers (ISLs), and adopt the latter terminology.
Previous studies have shown the ISLs to carry a majority of the instantaneous shear (see, e.g., Adrian et al.

2000b; Eisma et al. 2015; de Silva et al. 2017), which is consistent with the visual evidence from the SLPIV
data in figure 32(c,d).

To evaluate the statistical properties of the ISLs, I followed the same conditional averaging procedure
as de Silva et al. (2017). For each tracked point, the reference frame was adjusted relative to the ISL mid-
height zi and statistics were compiled as functions of the wall-normal distance from the ISL, i.e. z−zi and
〈u−ui〉. Figure 35(a) shows an example UMZ edge contour with the nearest SLPIV vectors (blue dots) and
the neighboring coordinates (black dots) used to represent the ISL reference frame. The ISLs were condi-
tionally sampled before computing the averaged velocity profiles. To avoid offsetting effects, shear layers
with high-speed UMZs below low-speed UMZs, e.g. the ISL at zi ≈ 10 m for frames 4 and 5 in figure 35(a),
were excluded from the averaging. These “inverted” shear layers represented 14% of all ISLs. Instantaneous
ISL profiles were also excluded if there was another shear layer within 5∆z in the same frame. Approxi-
mately 20% of the remaining profiles were excluded based on this condition such that 69% of the overall
interfaces were used for the analysis. Figure 35(b) shows the resulting conditionally-averaged streamwise
velocity profile relative to the ISL.

The parameter ∆Um, shown as a blue line in figure 34(b), describes the average streamwise velocity
difference across the ISL between adjacent UMZs. Figure 35(c) compares the normalized value of ∆Um
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Figure 35. Demonstration of the internal shear layer (ISL) conditional profile following Figure 7 of de Silva et al. (2017). (a) Color plot
sample of u with tracked UMZ edges (blue lines), SLPIV vectors located at the ISL midheight zi (blue dots), and vector coordinates
surrounding the ISL (black dots). (b) Streamwise velocity profile in the frame relative to the ISL midheight zi and velocity ui, averaged
for all tracked edges. The profile indicates the maximum shear ∂〈u−ui〉/∂z|max (magenta line slope) and average streamwise velocity
difference ∆Um (blue line length) used to calculate the interface thickness δω . (c) Average difference ∆Um normalized by uτ ,
following Figure 13(a) of de Silva et al. (2017). Closed squares in (c) correspond to de Silva et al. (2017) and the blue circle corresponds
to the SLPIV results. Adapted from Figure 14 of Heisel et al. (2018).

from the SLPIV data with the experimental results of de Silva et al. (2017), where the vertical axis is the
deficit in momentum from the free stream U∞. To normalize the velocities, I used the uτ value from table II
and a nominal estimate U∞ = 6.6 m s−1 which is the mean velocity at the top of the met tower (z = 130 m).
The momentum deficit corresponds to a wall-normal position z approximately in the center of the SLPIV
field, and the vertical error bars represent the estimated momentum deficits at the top and bottom of the
field. The close agreement for ∆U+

m in figure 35(c) confirms the velocity difference across the shear layers is
∆Um∼O(uτ ) as suggested by de Silva et al. (2017). Binning the conditional profiles based on wall-normal
distance revealed ∆Um to decrease slowly with increasing wall-normal distance. The wall-normal trend is
investigated further in chapter 5.

Following Brown & Roshko (1974) and de Silva et al. (2017), I assumed the average ISL acts as a shear
mixing layer to calculate the ISL thickness δω as

δω =
∆Um

∂〈u− ui〉/∂z|max
, (13)

where ∂〈u−ui〉/∂z|max is the maximum shear at the center of the ISL. Each element of equation (13)
is demonstrated in figure 35(b), including the average interface thickness δω ≈ 0.85 m. To assess the effect
of SLPIV spatial resolution on the ISL results, I reanalyzed a subset of the SLPIV images using coarser
resolution, i.e. 64×64 and 128×128 pixel interrogation window size as opposed to 32×32 pixels. I then
repeated the UMZ tracking and conditional ISL profiles to compare the results. The estimate of ∆Um relies
on the conditional profile away from the shear layer and was insensitive to the resolution, suggesting the ∆Um
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results are robust. However, the maximum shear ∂〈u−ui〉/∂z|max is susceptible to the spatial resolution
within the shear layer and decreases for coarser resolutions. The SLPIV results for δω are therefore not
reliable. The influence of resolution on the ISL thickness is investigated further in chapter 6.

4.4 Vortex structures

The visualization at the beginning of this chapter in figure 26(b) showed strongly rotating vortex cores
associated with the shear layer separating UMZs. Here, “strong” is a qualitative term indicating the local
values associated with rotation, i.e. vorticity ω and swirling strength λci, are high relative to their mean. In
this section I discuss properties of these prograde vortex cores to demonstrate their relationship to UMZs and
ISLs.

4.4.1 Tracking vortex events

The vortex events were tracked in the same space-time plane (x, z, t) as the UMZs, except the entire
SPLIV field was used to identify vortices as opposed to the rectangular prism for UMZs. In this chapter,
I identified vortices based on values of the swirling strength λci in the vector field (see, e.g., Adrian et al.

2000a) as previously shown in figure 26(b). To discriminate vortex cores from the background flow field,
I applied a high-pass cutoff threshold λthr = 0.55 s−1. The choice of λthr is discussed further in 4.4.2.
Contiguous regions above the threshold in the three-dimensional spatio-temporal domain were identified as a
vortex event if the region extended for at least 8 frames, i.e. 0.25 s. The temporal (frame) filter was required
to exclude measurement noise which was enhanced in the derivative calculation. The combination of the
cutoff threshold, temporal filtering, and SLPIV spatial resolution limit the focus of the tracking procedure to
relatively large, persistent vortex events. Almost 4 000 vortex events in SLPIV data set 1 were identified as
a result of the tracking. An example of detected vortices for the same frame as figure 26 is given in figure
36(a) and isosurfaces of tracked vortices in time are shown in 36(b).

For each frame in an identified vortex event, the vortex area Aω was estimated based on the region
within the contours of the threshold λthr. The vortex center was then calculated as the geometric centroid
of the region weighted by the swirling strength values. Using the vortex area, the characteristic size was
determined assuming the vortex was circular. The equivalent radius of the vortex in each frame is defined as
rω =

√
Aω/π and the equivalent diameter dω is twice the radius. Figure 36(a) provides an example of the

threshold contours, detected centroid position, and equivalent diameter.
To assess the circularity of the vortices, I defined a shape factor SF based on the SLPIV vectors associated

with the vortex. The value for SF is the ratio of vortex vectors within rω of the centroid to the total number
of vectors in the vortex. For SF=1, all vortex vectors are enclosed by the equivalent radius such that the
centroid and rω fully characterize the vortex size. In figure 36(a), the green dashed circles representing
rω match closely with the vortex outlines. Figure 36(c) shows the average shape factor in intervals of the
diameter. The high SF value regardless of dω indicates the equivalent diameter is representative of the
vortex size.
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Figure 36. Demonstration of the vortex event tracking methodology. (a) Color plot of the swirling strength λci for an example velocity
field. The color plot is overlaid with contours of the cutoff threshold λthr (black lines), tracked vortex centroids (green dots), and
circular representations of the equivalent diameter dω (green dashed circles). (b) Isosurfaces of tracked prograde (blue) and retrograde
(red) vortices for a two-second sample time period. (c) Average shape factor SF for intervals of the vortex diameter. (d) Average
diameter Dω of prograde (◦) and retrograde (×) vortices in intervals of the vortex centroid height zω with ±20% uncertainty bounds.
Adapted from Figure 20 of Heisel et al. (2018).
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Figure 37. Average vortex diameter Dω as a function of the detection threshold λthr for a 2 000 frame sample, where the filled data
marker indicates the λthr value used for the full analysis and the shaded region is within ±20% of Dω at the filled marker. Adapted
from Figure 20(d) of Heisel et al. (2018).

The average prograde vortex diameter Dω is shown in figure 36(d) as a function of the vortex position
zω . The size of the large vortex cores appears to be independent of wall-normal distance within the field of
view. The prograde vortices have a thicker probability tail and slightly larger average size than the retrograde
vortices. The error bars represent the sensitivity of the vortex diameter to the cutoff threshold. Note that the
sensitivity uncertainty is small compared to the effect of spatial resolution. Given the expected vortex core
size is Dω∼O(10η)∼O(10 mm) (Herpin et al. 2013), the SLPIV data cannot resolve most of the small-scale
vortices. Vortices smaller than 0.5 m (800η) are either not detected within the vector field, or are augmented
by the averaging of the velocity across each interrogation window. Similar to the δω statistic, Dω is not
reliable for the SLPIV data, and no conclusions on vortex size are made here. Chapter 6 analyzes vortex size
behavior using experimental data with higher spatial resolution.

4.4.2 Threshold sensitivity

As there is no universal physics-based cutoff threshold value for identifying vortices, the choice of λthr is
somewhat arbitrary. To test how the cutoff value affects the results, the vortex tracking procedure was repeated
across a range of λthr values for a 2 000 frame sample of the SLPIV data. The average diameter in the tested
range is shown in figure 37. The vortex size is only weakly sensitive to λthr across an order of magnitude
such that selecting any of the thresholds in the range would not change the general results. Decreasing λthr
by 70% or increasing λthr by 100% results in less than 20% change in the equivalent diameter (represented
by the shaded region in figure 37). I used ±20% as a nominal estimate of the uncertainty in dω due to the
choice of λthr, noting again that spatial resolution is the leading cause of uncertainty for the size results.

Previous studies have used a percentage of the maximum λci (Ganapathisubramani et al. 2006) and a
factor of the rms swirling strength (Wu & Christensen 2006) as the cutoff threshold. For the SLPIV results,
the only effect of these choices is to change the number of detected vortex events. The results are similarly
insensitive to the detection method. There were no appreciable differences in vortex statistics using the Γ2

function to detect vortex cores, where the Γ2 function is the relation of strain and rotation such that the cutoff
threshold has a physical basis (Graftieaux et al. 2001).

The velocity gradients used to calculate λci (and all other derivatives for the ASL analysis) were estimated
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Figure 38. The proximity of tracked vortices to tracked UMZ edges. (a) An example of UMZ edges (black lines), prograde vortex
centroids (blue dots), and vortex areas based on the equivalent radii (blue circles). The vortex proximity ∆ω is the shortest distance from
the centroid to the nearest UMZ edge. (b,c) Cumulative distribution functions (cdfs) of ∆ω for prograde (◦) and retrograde (×) vortices
normalized by its own radius rω and the average UMZ thickness Hm, respectively. Adapted from Figure 13 of Heisel et al. (2018).

using a second-order accurate central difference scheme. The order of the scheme has a filtering effect:
higher order numerical difference formulas are calculated using a larger neighborhood of vectors around the
given point which results in a smoothing of the λci estimate. The second-order accurate scheme uses a 3×3
neighborhood to estimate λci.

4.4.3 Proximity of vortices to shear layers

The primary reason for tracking vortex events was to relate their position to the internal shear layers. The
position statistics are less sensitive than the vortex size to the spatial resolution effects, except in the selection
bias where only the strongest vortex events are detected. Figures 26(b) and 32(e,f) suggest that the strongest
prograde vortices were collocated with the internal shear layers. The outputs of the tracking procedure de-
scribed above include the vortex centroid position in space (xω ,zω) and time (tω) and the equivalent radius
rω of each vortex. Because the tracked UMZ edges are at a single streamwise location x, the vortex centroid
values were narrowed to include only the centroid height zω and time tω when the vortex crossed the center
x position, yielding approximately 800 events. I then calculated the shortest path distance from each vortex
centroid to the nearest tracked UMZ edge in the streamwise-wall-normal plane. I refer to this distance as
the proximity ∆ω . The local mean velocity U(z=zω) was used with Taylor’s hypothesis to convert the time
difference to streamwise distance in the z−t plane. An example of the vortex proximity is shown in figure
38(a).

The cumulative distributions of ∆ω in figures 38(b,c) normalize the proximity by the vortex equivalent
radius rω and average UMZ thickness Hm, respectively. More than 60% of prograde vortices are within their
own radius of the nearest UMZ edge such that a majority of tracked vortices overlap with an internal shear
layer. The proximity ∆ω is also small relative to the zone thickness, with more than 60% of vortices within
0.1Hm of the nearest shear layer. Note that outliers such as the vortex at the bottom of figure 24(a) are in
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part due to the inability of the UMZ tracking procedure to detect shear layers along the bottom of the field,
leading to long distribution tails (5% occurrence of ∆ω > 5rω).

In contrast, the proximity of retrograde vortices is uniformly distributed, as indicated by the linear trends
in each cdf. The lack of an observed relationship between the locations of the retrograde vortices and shear
layers shows that the proximity of prograde vortices is a robust result and not an artifact of the methodology.
Therefore, in addition to the ISLs carrying a majority of the instantaneous shear (de Silva et al. 2017), figure
38 shows the strong prograde vortices to primarily reside within these layers. While this result is unsurprising,
I am not aware of any previous studies providing statistical evidence such as the ∆ω distributions.

4.5 Results in the context of Townsend’s attached eddies

To this point in the chapter, I have provided evidence showing the structural organization of the log
region in the fully rough, high-Reynolds-number ASL to be qualitatively similar to laboratory-scale flows.
The UMZ-ISL organization is apparent in both cases, where the flow is populated by thin regions of strong
local shear and rotation separating relatively larger regions of uniform momentum (Meinhart & Adrian 1995;
de Silva et al. 2016). Instantaneous realizations of these features show their relation to the signature of
inclined hairpin-type packets and ramp-like structures. The Λ-vortex packet, a specific variant of the hairpin
packet discussed in §2.2.1, is currently used as the representative eddy in model applications of Townsend’s
attached eddy hypothesis (AEH). In this section, I further explore the interconnectedness of the UMZ-ISL
organization, the representative attached eddy, and the principles of the AEH.

The AEH, summarized in §2.1.2, leads to three primary average properties of the main eddies responsible
for the velocity statistics in the log region: (i) the eddy size increases proportionally with the distance from
the wall to eddy center; (ii) the population density of eddies is inversely proportional with the distance from
the wall; (iii) the characteristic eddy velocity is uτ . The first property is the direct result of the hypothesis,
and the last two properties are required to meet the condition u′w′ = u2τ . Additional requirements exist for
the eddy behavior close to the wall (relative to the eddy size) in order to satisfy the wall boundary conditions
(Townsend 1976). The size and velocity scaling of the eddies is consistent with the mixing length model of
Prandtl (1932) and arguments leading to the log law in equation (5).

In the UMZ-ISL classification, the characteristic structure size and velocity are Lm (or Hm) and ∆Um,
respectively. Figure 35 already demonstrated that the characteristic velocity ∆Um is proportional to the
friction velocity uτ . Figure 39 provides the number density and size of tracked UMZs and tracked vortices as
a function of wall-normal distance z. The number density N in figure 39(a) is the number of unique tracked
zones or vortices occurring at each position z normalized as a probability. The definition for N used here is
equivalent to a pdf of zm or zω . The number density exhibits a near-linear decrease with increasing z for both
UMZs and vortices in the canonical log region above the roughness sublayer and below the region where
thermal stability effects are felt. Assuming each UMZ is separated in the streamwise direction by a shear
layer where the vortices primarily reside, the number density of UMZs and vortices should be similar. This
is confirmed by the agreement in the canonical region of the two distributions in figure 39(a) which result
from independent tracking methodologies. The linear decrease in number density of spanwise vortices is in
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Figure 39. Comparison of UMZ (open circles) and vortex (closed circles) properties as a function of wall-normal distance: (a) the
number densityN and (b) the characteristic UMZ length Lm and vortex sizeDω . The dotted lines correspond to the approximate limits
of the region exhibiting canonical behavior. Error bars for Dω are included, but do not exceed the marker size. Adapted from Figure 15
of Heisel et al. (2018).

agreement with previous studies (Wu & Christensen 2006; Herpin et al. 2013).
The characteristic sizes of UMZs and vortices, provided in previous figures, are shown together in figure

39(b). Whereas the vortices appear to be smaller-scale features relatively independent of the wall-normal
distance, the UMZ length Lm increases with z. The departure from canonical behavior above z ≈ 11 m is
consistent with the two-point correlation results and the Reynolds shear stress profile. The UMZs occupy a
majority of the field above z ≈ 11 m, leading to a relatively constant average lengthLm. There are fewer shear
layers and correspondingly fewer vortices in this region. With longer zones with limited vertical motion and
fewer shear layers, the structures become statistically flatter and the Reynolds shear stress decreases. Within
the canonical region below z ≈ 11 m, figure 39 demonstrate that the UMZs share the three main properties
of attached eddies describe above; the trends of velocity, number density, and size are all in agreement with
the AEH.

By the AEH, the population of the main attached eddies corresponds directly to the velocity mean and
variance profiles. If UMZs are the representative eddy in physical space, the tracked UMZ properties should
also relate closely to the profiles for the mean U and rms σu. The previous UMZ tracking procedure provided
the modal velocities um and edge locations of UMZs in a single z−t plane. I used these properties to create
an artificial velocity signal by assigning each vector index the um value of the UMZ to which the vector
belonged. The resulting signal, the stepwise function shown in figure 40(a), contains no information relating
to the shear layers except for the velocity jump between zones. The UMZ signal works similarly to a low-
pass filter such that large-scale trends equal to and greater than the UMZ duration are captured. The mean
profile of the UMZ signal in figure 40(b) matches closely with the SLPIV profile, except for the bottom and
top of the image field where the tracking methodology is biased as previously discussed. Previous studies on
UMZs have found similar agreement with the mean velocity (de Silva et al. 2017; Bautista et al. 2019). The
streamwise turbulence in figure 40(c) is fairly well represented, though the energy is overestimated by the
UMZ signal at lower heights (due to excluding the relatively smoother transitions across the zone interfaces)
and underestimated at higher z values (due to excluding fluctuations within zones).
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Figure 40. A comparison of the SLPIV signal (circles) with an artificial velocity signal based on UMZ modal velocities um (lines). (a)
A 5-second sample time signal at z = 10 m. (b) The streamwise mean velocity profile. (c) The streamwise rms velocity profile. The
dotted lines correspond to the approximate limits of the region exhibiting canonical behavior. Adapted from Figure 16 of Heisel et al.
(2018).

Qualitatively, figure 40(c) demonstrates that the UMZs, along with larger-scale motions, govern the vari-
ance in the streamwise velocity. The variance profile, realized in the passing of successive UMZs, confirms
the importance of the UMZ passing frequency (which scales with z, consistent with the length and number
density) and the velocity jump between zones (which scales with uτ ). The UMZs are therefore related to the
representative attached eddy in terms of both their average properties and their contribution to the velocity
statistics.

While the UMZs are kinematically important, they lack the dynamics such as vorticity necessary to fully
describe the evolution of structures and the generation of new ones. To capture both the flow statistics and
dynamics, the representative eddy must include both the UMZ and corresponding ISL. Additionally, based
on the shape of the two-point correlation, the average ISL must have a forward inclination. These features
of the combined UMZ and ISL are compatible with the basic framework of the hairpin-type packet structure.
de Silva et al. (2016) specifically showed that a synthetic velocity field created from Λ-vortex packet can
reproduce the UMZ properties measured by their experiments.

An intriguing question moving forward is which perspective to take: are the shear layers separated by
uniform flow regions, or are the uniform regions separated by shear interfaces? The more useful perspective
depends on the generation mechanism of this organization, which has not been proven. Like many other
complex systems, the answer is probably similarly complex, where the UMZs and ISLs act on each other and
are in some way both responsible for generating new structures.



5 Uniform momentum zones and
the mean velocity profile

Chapter 5 comprises an edited version of the article below, published in the Journal of Fluid Mechanics,
© Cambridge University Press 2020. Please cite the published article when referencing content in this chapter.

Heisel, M., de Silva, C. M., Hutchins, N., Marusic, I., and Guala, M. (2020). On the mixing length eddies
and logarithmic mean velocity profile in wall turbulence. J. Fluid Mech. 887, pp. R1. https://doi.org/10.
1017/jfm.2020.23.

5.1 The unanswered question

The results in chapter 4 and previous studies (de Silva et al. 2017; Bautista et al. 2019) have demonstrated
a relationship between the UMZs and the mean velocity profile, where an ensemble of many UMZs and ISLs
with varying wall-normal position leads to the continuous function U(z). The specific evidence in §4.5
suggests the UMZs scale with uτ and z in the log region, and are related to representative attached eddies
whose population is consistent with the mean velocity and variance profiles (Townsend 1976). The scaling
is not unique to UMZs, and many studies have identified wall-normal distance scaling using various analysis
methods. Examples include detection of regions with coherent velocity fluctuations such as momentum
streaks (Hwang 2015; Hwang & Sung 2018) and Q2–Q4 pairs (Lozano-Durán et al. 2012; Jiménez 2018),
analysis of vortex clusters (del Álamo et al. 2006), modal decomposition (Cheng et al. 2019), and resolvent
analysis (Sharma & McKeon 2013; Sharma et al. 2017). These results are not mutually exclusive. For
instance, the histogram signature of a UMZ is consistent with streaks and rolls as previously discussed and
also with resolvent modes (Saxton-Fox & McKeon 2017; McKeon 2019). In a generalization, the community
of wall turbulence researchers uses different experimental methods5 and conceptual frameworks to works
towards an improved understanding of the same problem. Despite the collective research efforts, an important
question remains unanswered: beyond scaling behavior, what are the exact properties of the flow structures
leading to the mean velocity profile, and are these properties universal across a range of flow conditions?

These properties, referred to here as the average eddy size `e and velocity ue, are at the heart of models
for the mean velocity profile. The closure model in equation (3) with ue = uτ and `e = κz is one of the
earliest derivations of the log law (Prandtl 1932). Townsend (1976) used similar eddy properties to derive
the velocity profiles. The scaling of these hypothetical eddies is well supported, yet the exact eddy properties
have not been shown experimentally, e.g. the constant C in `e = Cz is assumed. Further, the universality of
C has not been demonstrated for a range of Reynolds number and surface conditions.

5Each method is like a different pair of goggles that filters your view to a certain perspective, as my advisor would say.
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Rather than observe the eddy properties directly (which is admittedly difficult), previous approaches have
estimated the properties working backward from the mean velocity profile. The proportionality constant κ in
the mixing length model `e = κz was first estimated from mean velocity measurements (von Kármán 1930).
The measurements more specifically apply then to the model ratio ue/`e, but the constant κ was attributed
solely to `e (Prandtl 1932), perhaps for simplicity. The mixing length `e = κz is often used as a length scale
in empirical meteorological models (Stull 1988) despite no direct estimate of `e. In a similar approach, L’vov
et al. (2008) used experimental velocity profiles to fit an eddy model for the entire outer region, where the
model transitioned from `e ∝ z in the log region to `e ∝ δ in the wake and included a Reynolds number
dependency.

The previous works cited above relating UMZs and the mean velocity have their own set of limitations.
de Silva et al. (2017) used their detected UMZ edge statistics to estimate the average velocity jump ∆Um

as a function of z and probability distributions of the jump locations. The velocity profile modeled from
the jump positions and intensities matched well with the measured mean velocity (de Silva et al. 2017), but
the model assumed a fixed number of UMZs and did not quantify the size properties. Bautista et al. (2019)
developed a similar model for instantaneous streamwise velocity profiles. The average characteristic velocity
∆Um ≈ φcuτ and thickness Hm ≈ z/φc of the UMZs in the log region were determined from scaling of the
averaged Navier-Stokes equations. Similar to previous eddy models, the so-called Fife similarity parameter
φc = κ−1/2 ≈ 1.62 was estimated from fits of experimental velocity profiles rather than direct observation
of the UMZs (Klewicki 2013b). The probability distributions for the UMZ parameters were assumed to be
Gaussian, and the distribution standard deviations were adjusted by trail and error until the resulting average
model profile matched experimental velocity profiles (Bautista et al. 2019).

Given the limitations of the previous studies, this chapter evaluates the properties of UMZs across a
variety of flow conditions, with an emphasis on high-Reynolds-number, zero-pressure-gradient boundary
layers. The specific properties of interest are the average velocity difference ∆Um and thickness Hm within
the log region, i.e. above the viscous (or roughness) sublayer and below z . 0.15δ. The goal of the analysis
is to provide a systematic description of the UMZ properties in order to reconcile the structural composition
of UMZs with previous eddy models and the derivation of the log law of the wall.

5.2 Methodology

The central aspect of the analysis was to detect UMZs for a range of flow conditions and compare the
results. The most valuable dataset for the comparative analysis is the SLPIV measurements in the ASL,
which has significantly larger surface roughness (k+s ), Reynolds number (Reτ ), and scale separation than
any laboratory-scale boundary layer. At the laboratory scale, I conducted new PIV experiments in the wind
tunnel at St. Anthony Falls Laboratory (SAFL). My advisor and I also established a collaboration with
the fluid mechanics research group at the University of Melbourne to extend the range of the laboratory-
scale conditions. I visited their research group in 2019 to access and analyze previous PIV experimental data.
Lastly, I downloaded instantaneous velocity fields from a direct numerical simulation (DNS) of a Reτ ≈ 2 000
boundary layer whose data are publicly available (Sillero et al. 2013). The experiments provide a uniquely
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Table III. Experimental DNS and PIV datasets used in the comparison of uniform momentum zone (UMZ) properties. In addition to
the SLPIV case at the Eolos field site, PIV measurements were conducted in the St. Anthony Falls Laboratory (SAFL) wind tunnel at
the University of Minnesota and High Reynolds Number Boundary Layer Wind Tunnel (HRNBLWT) at the University of Melbourne.

Dataset Label Symbol Facility Reτ k+s Source

direct numerical simulation DNS ∗ computation 2 000 – Sillero et al. (2013)
smooth wall sw1 × SAFL 3 800 – Heisel et al. (2020)
smooth wall sw2 + SAFL 4 700 – Heisel et al. (2020)
smooth wall sw3 © HRNBLWT 6 600 – de Silva et al. (2014)
smooth wall sw4 � HRNBLWT 12 000 – de Silva et al. (2014)
smooth wall sw5 ♦ HRNBLWT 17 000 – de Silva et al. (2014)

mesh roughness m1 4 SAFL 10 100 430 Heisel et al. (2020)
mesh roughness m2 5 SAFL 13 900 620 Heisel et al. (2020)

sandpaper roughness sp1 B HRNBLWT 12 000 64 Squire et al. (2016a)
sandpaper roughness sp2 C HRNBLWT 18 000 104 Squire et al. (2016a)

atmospheric surface layer ASL • Eolos O(106) 30 000 Heisel et al. (2018)

large range of both Reynolds number Reτ∼O(103−106) and surface roughness k+s ∼O(100−104), where
ks∼1 corresponds to hydraulically smooth conditions (Jiménez 2004). Details of the ASL measurements are
provided in chapters 3 and 4. The remaining previous and new experiments are discussed in the subsections
below.

5.2.1 Previous experiments

I accessed the streamwise velocity data for seven previously published boundary layer experiments which
were performed under approximately zero-pressure-gradient conditions. The experiments are summarized in
table III. The case with the lowest Reynolds number is from the DNS experiment of Sillero et al. (2013).
Two-dimensional slices in the streamwise–wall-normal (x−z) plane were extracted from the DNS results to
match the measurement plane of the remaining PIV experiments. Three of the smooth-wall and the two sand-
paper roughness cases are based on large-field-of-view PIV measurements from the High Reynolds Number
Boundary Layer Wind Tunnel (HRNBLWT) at the University of Melbourne, which were previously pub-
lished by de Silva et al. (2013, 2014) and Squire et al. (2016a). Further details on the measurements can be
found in the references cited in table III.

5.2.2 New experiments

To complement the existing databases, new PIV measurements were acquired for two smooth wall and
two woven wire mesh roughness cases in the boundary layer wind tunnel at SAFL. The test section of
the closed-loop wind tunnel is 16 m downstream of the contraction and has cross-sectional dimensions of
1.7×1.7 m2 under approximately zero-pressure-gradient conditions. For the rough-wall cases, the test sec-
tion and entire 16 m fetch were covered with woven wire mesh. The mesh had 3 mm wire diameter and
25 mm opening size, i.e. distance between wires, resulting in equivalent sand grain roughness ks = 17 mm.



Uniform momentum zones and the mean velocity profile 68

Table IV. Additional details and dimensional flow parameters for the new PIV measurements from the SAFL wind tunnel.

U∞ uτ δ ks w+
I

Dataset Label Symbol [m s−1] [m s−1] [mm] [mm] (wIuτ/ν)

smooth wall sw1 × 7.1 0.27 220 – 26
smooth wall sw2 + 10.1 0.37 200 – 36

mesh roughness m1 4 7.1 0.39 400 17 38
mesh roughness m2 5 10.1 0.56 390 17 55

Because the mesh cases were in fully rough conditions, the roughness ks was estimated using equation (6)
and a fit to the mean velocity profile.

I used the previous wire mesh experiment by Flack et al. (2007) to predict a priori the relationship be-
tween the mesh dimensions and the roughness sublayer extent. I selected the mesh size to maximize the
roughness length scale ks while maintaining a roughness sublayer less than 50% of the log region extent.
These conditions allow for maximum separation between the roughness and viscous length scales as quanti-
fied by the roughness Reynolds number k+s , while also preventing the roughness from modifying turbulent
energy generation in the log region to an extent where outer layer similarity does not hold (Jiménez 2004).

Cross-hotwire anemometer measurements of the full boundary layer profile were used to estimate flow
parameters such as δ. The Dantec cross-wire probes were aligned to measure the u and w velocities simul-
taneously. The probes were connected to an A.A. Lab anemometer system. The anemometer system was
calibrated using a separate temperature-controlled calibration box with laminar flow output. The temperature
of the box was fixed to the same temperature as the wind tunnel which also has temperature controls for
both the floor and free stream. The calibration box was operated for a series of flow velocities and angles to
establish calibration points spanning the range of expected instantaneous velocity measurements. After cal-
ibration, the probes were mounted to a motorized traverse to acquire the velocity measurements at different
wall-normal positions. Measurements were acquired at 10 kHz for 240 seconds.

The PIV setup in the tunnel test section included a Big Sky 532 nm Nd:YAG double-pulsed laser oriented
in the streamwise–wall-normal plane, a TSI Powerview 4 MP camera, and TSI Insight 4G synchronizer and
acquisition software. Atomized olive oil was used as tracer particles for the flow imaging. The field of view
was limited to the lowest 25% of the boundary layer in the rough-wall case where δ ≈ 400 mm (50% in the
smooth-wall case where δ ≈ 200 mm) to enhance the spatial resolution in the logarithmic region. A total
of 10 000 image pairs were captured for each of two smooth-wall cases and two rough-wall cases. For the
rough-wall cases, 5 000 image pairs were captured for two planes within the roughness pattern. Velocities
were calculated from the image pairs using the same in-house cross-correlation code employed for the SLPIV
measurements. The code performed two passes, with a final interrogation window size of 24 by 24 pixels and
50% window overlap. An overview of the scaling parameters for the new measurements is provided in table
IV. Wall-normal profiles of the velocity statistics for the new and previous experiments are shown in figure
41.
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Figure 41. Velocity profiles for the datasets used in the comparison of UMZ properties: (a) mean streamwise velocity; (a) streamwise
variance; (c) wall-normal variance; (d) Reynolds shear stress. Data symbols correspond to the experimental datasets in table III and the
line in (a) is the log law for smooth wall conditions. Data symbols are shown with logarithmic spacing for clarity. Adapted from Figure
1 of Heisel et al. (2020).

5.2.3 Detection of uniform momentum zones

I detected UMZs using the same histrogram method detailed in §4.2.1. Owing to the inclusion of new
datasets, the streamwise length Lx of the vector fields used for each histogram is revisited here. The lowest
wall-normal position reported in later results is fixed to z = 0.05δ in order to exclude most of the roughness
sublayer in the rough-wall cases, and because some of the PIV experiments did not measure nearer to the
wall. The position z = 0.05δ is also the approximate start of the log region for the DNS case with the
lowest Reynolds number. The aspect ratio of the streamwise extent and wall-normal position of wall-attached
structures is between 10 and 15 (Baars et al. 2017) such that the average length of structures at z = 0.05δ is
approximately 0.5δ. I selected the length Lx = 0.1δ to be short enough for smaller-than-average structures to
manifest distinct peaks in the histograms, while also large enough to yield statistically converged histograms
in the dataset with the coarsest resolution. The sensitivity of the results to the choice of Lx is discussed in
§5.2.4. The other change to the histogram detection was an increase in the bin width from 0.33uτ to 0.5uτ .
The new bin width is still smaller than the average velocity difference ∆Um, and the corresponding decrease
in number of bins improved the histogram statistical convergence.

I reanalyzed the SLPIV vector data using the new histogram parameters with δSL ≈ 70 m, and detected
UMZs and their edges for the remaining experimental datasets using the same parameters. Many of the
experimental datasets measured the entire boundary layer thickness, and therefore included PIV vectors in
the free-stream flow. Because the extent of free-stream vectors in each PIV field can influence the height of
the UMZ peaks in the normalized histogram, the free-stream vectors must be excluded from the histogram
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detection (de Silva et al. 2016). I detected the TNTI separating the boundary layer turbulence from the free-
stream region using a threshold of the local kinetic energy. I tuned the threshold for each dataset following the
suggested procedure in Chauhan et al. (2014). Figure 42(a,b) shows an example vector field and histogram
with the free-stream region above the TNTI excluded. As before, the internal shear layers were located using
isocontours of the histogram minima ui. Figure 42(c) shows the shear layers between the detected UMZs,
where the velocity throughout each UMZ is represented by its modal velocity um.

As discussed in §2.2.5, the scale separation between the ISL thickness δω∼O(λT ) and the UMZ thick-
ness Hm∼O(L) increases with Reynolds number, and the shear layers are thin (i.e. small δω/δ) for high-
Reynolds-number flows. In the log region of the present lab-scale datasets, the ISLs cover up to approximately
15% of the measurement area, and the interior of UMZs covers the remaining 85%. The UMZ coverage is
greater for the ASL case. Here, I consider the UMZ and its corresponding ISL to be a single unit that defines
the representative eddy. The thickness of the UMZ interior and the ISL are combined in a single parameter
hm which is the wall-normal distance between the center of adjacent ISLs. Combining the thicknesses does
not affect the conclusions of the study. In this approximation, the low-amplitude turbulence within the UMZ
interior is also neglected, and the velocity difference ∆um is assumed to occur instantaneously, as opposed
to occurring across the Taylor microscale-thickness of the ISL.

Figure 42(d) shows an instantaneous velocity profile overlaid with the detected UMZ signature. The pro-
file highlights the organization of relatively uniform regions separated by sharp velocity jumps, demonstrated
by the agreement between the UMZ approximation and the measured velocity. An ensemble of these instan-
taneous step-like profiles leads to the mean velocity profile also shown in figure 42(d). The mean profile is
well captured by the UMZ approximation given by Um.

The analysis yielded instantaneous UMZs profiles for every column in every PIV frame. From these
profiles I compiled at least 106 instantaneous hm values for each dataset. To evaluate the thickness as a
function of the wall-normal distance, I calculated ensemble averages of hm in intervals of z/δ, where the
UMZ midheight zm was used to determine the z/δ interval for each UMZ.

I calculated the velocity difference ∆Um following the same conditional averaging procedure as in §4.3.
Similar to hm, the velocity profiles relative to the detected ISL were compiled for each ISL in every PIV
column and frame. However, the conditional averaging does not allow for instantaneous estimates ∆um.
Based on the ISL wall-normal position, the profiles were sorted using the same z/δ intervals as for hm. For
each interval, the relative profiles were ensemble averaged and ∆Um was computed using linear fits to the
average profile in the same manner as before. The conditional averaging did not discriminate between internal
shear layers and the TNTI such that the TNTI behavior contributes to ∆Um, particularly as z/δ approaches
one.

5.2.4 Sensitivity analysis

To assess the sensitivity of the results to the choice ofLx, I calculated UMZ thickness statistics for a range
of Lx using a small sample of each dataset. Figure 43 plots the average UMZ thickness Hm,log within the
log region as a function of Lx. The thickness Hm increases moderately with Lx due to the exclusion of the
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Figure 42. Example detection of UMZs from experiment “sw5” in table III. (a) Streamwise velocity field u(x, z). (b) Histogram of the
vectors in (a) with the detected modes um and minima ui. (c) Estimated UMZ field including internal shear layers corresponding to ui
(black lines) and the turbulent/non-turbulent interface (red line). (d) Instantaneous and time-averaged profiles of u (blue lines) and um
(black lines/markers). Adapted from Figure 2 of Heisel et al. (2020).
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Figure 43. Average UMZ thickness Hm,log in the log region as a function of the detection parameter Lx, where Lx = 0.1δ is the
value used for later results. Data symbols correspond to the experimental datasets in table III. Adapted from Figure 3 of Heisel et al.
(2020).

smallest structures by the filtering effect discussed in §4.2.1. The difference between the ASL and laboratory-
scale datasets for larger Lx may be due to the underestimated size of the largest UMZs exceeding the spatially
limited field of view in the SLPIV measurements. Considering the orders-of-magnitude difference in Hm,
the agreement of results across datasets is minimally affected and the conclusions drawn from the later results
do not change within the range of Lx shown. Figure 43 therefore shows Lx = 0.1δ to be appropriate for
studying Hm in the range of z/δ presented here, both in terms of the scaling parameter and the proportional
constant.

I also compared the UMZ results with an alternative detection method for a single dataset. I detected the
position of the shear layers directly from the PIV fields using a high-pass cutoff threshold of the instantaneous
shear ∂u/∂z. I selected the threshold to be a factor of the height-dependent rms value for ∂u/∂z. The UMZ
thicknesses hm were the wall-normal distances between the midheight of detected shear regions. Using a
threshold equal to the shear rms, the resulting Hm(z) statistics were both qualitatively and quantitatively
similar to the histogram detection results. However, changing the threshold to a different factor of the rms
had a similar effect on the results as the Lx parameter, where a higher factor detected fewer shear regions and
increased the average UMZ thickness. The findings presented here are therefore not specific to the histogram
detection method.

5.3 Average momentum zone properties and the mean shear

Wall-normal profiles of the average UMZ properties are shown in figure 44. The approximately continu-
ous ensemble-averaged UMZ profiles result from variability in the UMZ size, velocity, and position through-
out the averaging period. The stochastic behavior of the shear layer position was studied in de Silva et al.

(2017), and variability in the UMZ size is addressed later in the next section. As seen in figure 44(a,b), the
UMZ characteristic velocity ∆Um scales unambiguously with the friction velocity uτ . The result agrees with
the log law formulation and highlights uτ as the relevant turbulent velocity scale across the entire boundary
layer. The observed moderate decrease from ∆Um ≈ 1.8uτ in the log region to ∆Um ≈ uτ near the edge
of the boundary layer compliments previous laboratory-scale results for ISLs and the TNTI (Chauhan et al.
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Figure 44. Profiles of average UMZ properties in the log region. (a) Velocity difference ∆Um between adjacent UMZs. (b) Same as
(a), but for the entire boundary layer thickness. (c) Thickness Hm of UMZs. (d) Comparison of UMZ properties with the mean shear
scaling uτ/κz. Data symbols correspond to the experimental datasets in table III and the blue line is the average. Adapted from Figure
4 of Heisel et al. (2020).

2014; de Silva et al. 2017), and the present work extends the uτ scaling to a wider range of Reynolds number
and surface roughness.

The consistent uτ scaling of coherent structure characteristic velocities seems reasonable from a statis-
tical approach (what other velocity scale should matter?), but it is worth considering the result in terms of
phenomenology. Recalling the definition uτ ≡

√
τw/ρ from dimensional grouping, how does the wall shear

stress manifest itself as a local velocity ∆Um within (and between) coherent structures? How do the features
far from the wall, particularly the TNTI, “know” uτ? I do not have the answers to these questions, though
perhaps the latter question is related to interdependence. The bulk velocity difference across the boundary
layer (U∞) is fixed. If the log region and sublayer structures follow uτ scaling, the remaining velocity differ-
ence becomes related to uτ in some form. This is a variation on the bottom-up mechanism where the velocity
information near the wall is propagated throughout the boundary layer, possibly through the pressure field,
even if the physical structures do not all originate at the wall.

Returning to the results, the average UMZ thickness Hm is given in figure 44(c). The agreement across
datasets with wall-normal distance scaling shows z to be the appropriate length scale for UMZs in the log
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region. To emphasize the success of the normalization, note that the dimensional range represented in figure
44(c) is Hm = 0.0065 to 6.3 m. Based on the observed functional dependence Hm ∝ zm in this region,
the UMZs exhibit the wall-dependent behavior predicted by the mixing length model and the attached eddy
hypothesis. Any differences between the smooth- and rough-wall profiles are within the uncertainty of the
results.

Figures 44(a-c) highlight the similarity of UMZs relative to the log law scaling parameters uτ and z across
a three order-of-magnitude range in Reynolds number. In figure 44(d), the mean shear ∂U/∂z is estimated
from the average UMZ properties ∆Um/Hm and is compared with the shear scaling argument uτ/κz. The
values near unity demonstrate the fundamental interdependence of the UMZ properties and the shear scaling
parameters in the log region, where the distribution of UMZs relates directly to the mean velocity gradient as
∆Um/Hm ≈ uτ/κz.

Before proceeding further, I would like to wax philosophical on the chicken-and-egg question of wall
turbulence: which came first, the structures or the mean shear? Following the above discussion on uτ , the
only fixed velocity condition for every flow realization is the net velocity difference across the entire boundary
layer. The UMZ results so far have shown that the boundary layer self-organizes at each instant into relatively
uniform flow regions and relatively intense shear layers to accommodate the velocity difference. The mean
shear is not present or “felt” in each of these instances. It is rather a statistical quantity resulting from an
ensemble of many realizations of this self-organization. Figure 44(d) is consistent with this argument: the
mean shear matches the behavior of the ensemble of many UMZs and ISLs. In this sense, the structures
lead to the mean shear, and the mean shear and mean velocity profile describe the net result of the average
structure.

Within the log region, the behavior of the average structure is governed by the theoretical scal-
ing parameters uτ and z, regardless of Reynolds number or surface rougness. The findings provide
experimental evidence that the hypothetical eddies assumed in Prandtl’s mixing length model and
Townsend’s attached eddy hypothesis have a well-defined and persistent physical representation in
the layered structure of boundary layer turbulence. The log law is successful because the eddy scaling
behavior and complete Reynolds number similarity assumed in derivations of the law are correct, and
the present work shows that this behavior is exhibited in realizations of the UMZ-ISL organization. As
this is a critical point of the thesis, I again note here that the UMZ-ISL organization is in many ways compat-
ible with other structures such as momentum streaks and hairpin-type packets. The advantage of the UMZ
classification is that it allows for a generalized framework to systematically quantify the velocity organization
at every measured realization of the flow.

Assuming the UMZ and its associated ISL are the representative eddy, the average UMZ properties can
be compared to previous model predictions. The results in figure 44(a,c) suggest ue/uτ and `e/z may both
be weakly dependent on the wall-normal position within the log region. This may be an effect of finite
Reynolds number, or an artifact of the detection methodology. The average properties in the log region are
∆U+

m = 1.73±0.13 andHm/z = 0.74±0.07, where the uncertainty is represented by one standard deviation
of all the data point in figure 44, noting that additional uncertainty exists in the Lx sensitivity. These values
are approximately twice the mixing length model ue = uτ and `e = κz (Prandtl 1932), and are closer to
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Figure 45. Example compilation of UMZ thickness statistics for the probability analysis. (a) The statistics at a given position z (blue
line) include every thickness hm where the UMZ intersects with z. (b) Probability densities of hm(z) at three wall-normal positions
from the DNS dataset. Adapted from Figure 5 of Heisel et al. (2020).

the more recent predictions ue = 1.62uτ and `e = 0.62z used in the model by (Bautista et al. 2019). The
difference between the UMZ size Hm ≈ 0.74z and the common mixing length definition `e = κz is not
surprising considering κ originates from mean velocity measurements as previously discussed. The results
provide a reminder that the coefficient κ is specifically associated with the ratio uτ/z and it therefore does
not quantify the precise size of energy-containing turbulent motions as is assumed by the definition `e = κz.
Nevertheless, the UMZs and the hypothetical mixing length eddies both result in the same mean shear scaling
and κ value in figure 44(d), and lead to the same log law of the wall in equation (5).

5.4 Momentum zone probability distributions

Thus far, the focus has been on the average UMZ properties. However, the probability distributions of
∆um and hm are also important, especially for high-order statistics beyond a simple mean value. Only the
average value ∆Um is provided by the calculation of the velocity difference, and the present section is limited
to analysis of the UMZ thickness.

The previous shear scaling comparison in figure 44 required the use of a single representative height for
each UMZ, i.e. the midheight hm(zm). In a probability analysis, however, the influence of large UMZs
extending to the near-wall region would be diminished by confining the UMZ to a single height zm farther
from the wall. To avoid this bias, I calculated the height-dependent probability statistics using a new selection
criterion on the original hm values. At a given wall-normal position z, the thickness statistic hm(z) includes
every UMZ which reaches the position z as depicted in figure 45(a). The statistics are repeated for all z.
Examples of hm(z) pdfs at three z positions for the DNS dataset are shown in figure 45(b).

The shape of the sample pdfs in figure 45(b) resemble a log-normal distribution. A detailed analysis of the
pdf shape type was not conducted to fit the distribution definitively, and a distribution with a similar general
shape such as gamma may be more correct. However, unlike the Gaussian distribution assumed by Bautista
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Figure 46. Probability density functions (pdfs) of UMZ thickness hm(z) for every dataset where the field of view extended to z = δ.
(a) Separate pdfs for different wall-normal positions z indicated by the line color. (b) Joint pdfs of hm and z, where the dashed line
represents hm(z) = z. Columns correspond to the indicated experiments.

et al. (2019), the hm distribution is skewed, positive-definite, and has a heavier tail.
Figure 46 shows the resulting probability distributions of hm(z) for the datasets where the field of view

included the full boundary layer thickness. The distributions could not be calculated for the datasets with a
more limited field of view because the true extent of UMZs exceeding the field of view is not known. The
plots in figure 46(a) suggest that the distribution tail is always limited by hm . δ regardless of position z,
which is expected. At any position, the largest structures are limited in size by the outer boundary condition δ.
However, for small z/δ in the log region, these δ-scaled structures are rarely occurring such that the influence
of δ on the mean behavior is small. As the wall-normal distance increases, the outer condition δ limits the
size of an increasing proportion of the identified structures. The behavior of the probability tail may explain
the decreasing trend in figure 44(c), where hm/z decreases slowly with z as δ becomes increasingly relevant.

The joint probabilities of hm and z in figure 46(b) more clearly shows the departure from wall-dependent
behavior in the log region to outer (δ) scaling in the wake region. The small differences between cases are
likely due to differences in the experimental measurement resolution and variability in the detection process.
The consistent trend across datasets is that the most probable UMZ thickness follows hm(z) = z up to
z/δ ≈ 0.5, above which the probability distribution transitions to being independent of wall-normal distance
as δ becomes the primary length scale. The probability analysis reveals the competing influence of multiple
scales, in this case z and δ. In the next chapter, a similar probabilistic approach is used to reveal scaling
behavior that is not apparent simply from the mean value.



6 Vortex cores and internal shear layers

Preliminary analysis of vortices using the SLPIV data in §4.4 demonstrated that the strong prograde vortex
cores primarily appear within the internal shear layers. In this chapter, I use the same suite of experimental
datasets as the UMZ analysis to compare the properties of the vortex cores across a wide range of Reynolds
number and surface conditions. The goal of the analysis is to identify commonalities between the vortex and
ISL behavior to better understand how they relate to each other.

The experimental datasets used in chapter 5 are summarized again in table V. Additional information
pertinent to the vortex and shear layer analysis is provided in the new table, namely the measurement spatial
resolution. For the DNS experiment from Sillero et al. (2013), the resolution given in table V corresponds
to the streamwise grid spacing; the wall-normal spacing was non-uniform, with higher resolution nearer to
the wall in order to fully resolve all flow scales. The HRNBLWT PIV experiments from the University of
Melbourne in chapter 5 used a large-field-of-view camera configuration to capture an extensive streamwise
distance (de Silva et al. 2014). The same flow conditions were also captured with a high-resolution tower
configuration (Squire et al. 2016a). The tower PIV data are used in this chapter because the focus is now
smaller-scale structures. The sandpaper surface roughness PIV experiments are included in the shear layer
findings, but excluded from the vortex results presented here. These datasets were analyzed, but issues with
the vectors fields and vortex detection led to unreliable statistics. As a reminder, the velocity profiles for the
experimental datasets are plotted together in figure 41.

6.1 Parameterizing the small scales

Assessing the behavior of the small turbulent features requires accurate estimates of the possible gov-
erning parameters. The relevant parameters include the Kolmogorov microscales: length η ≡ (ν3/ε)1/4,
velocity uη ≡ (νε)1/4, and time τη ≡ (ν/ε)1/2 (Pope 2000). These scales define the smallest turbulent
fluctuations, as motions smaller than the Kolmogorov scale are dominated by viscosity.

By their definition, estimating the Kolmogorov microscales requires knowledge of the energy dissipation
rate ε, which is difficult to measure directly. Various estimation methods for ε were used depending on the
dataset. For the ASL dataset, the measurement resolution of both the SLPIV and the sonic anemometer
were coarse relative to the Kolmogorov scales. The dissipation was therefore estimated using a scaling
argument ε ≈ u3τ/κz. The argument is based on an assumption of energy equilibrium in the log region
as discussed in 3.3.1. The scaling parameters for the HRNBLWT datasets were provided in the transfer of
data during the collaboration with the University of Melbourne. Using hotwire anemometer measurements,
the dissipation had been estimated as ε ≈ 15ν〈(∂u/∂x)2〉 which assumes locally isotropic conditions (Pope
2000). I calculated the SAFL dataset parameters also using hotwire anemometry measurements. I estimated
ε based on the turbulent energy density in the inertial subrange using the longitudinal second-order structure
function D11(r) = 〈[u(x + r) − u(x)]2〉, where I converted the hotwire temporal series to x with Taylor’s

77
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Table V. Spatial resolution for the experimental datasets introduced in table 4. In this chapter, the HRNBLWT measurements are
from the high-resolution tower configuration, as opposed to the large-field-of-view configuration in chapter 5. The comparison of the
interrogation window size wI with the Kolmogorov length scale η and Taylor microscale λT uses the average η and λT values within
the approximated log region. The vector spacing is ∆x = wI for the DNS case and ∆x = wI/2 for the PIV data. Further measurement
details are given in Sillero et al. (2013) for the DNS, Squire et al. (2016a) for HRNBLWT, §5.2.2 for SAFL, and chapter 3 for Eolos.

Dataset Symbol Facility Reτ k+s w+
I wI/η wI/λT

direct numerical simulation ∗ computation 2 000 – 6.3 1.9 0.06
smooth wall × SAFL 3 800 – 26 6.1 0.20
smooth wall + SAFL 4 700 – 36 8.4 0.22
smooth wall © HRNBLWT 6 600 – 7.6 1.8 0.05
smooth wall � HRNBLWT 12 300 – 14 2.8 0.06
smooth wall ♦ HRNBLWT 17 000 – 20 3.7 0.08

mesh roughness 4 SAFL 10 100 430 38 7.8 0.18
mesh roughness 5 SAFL 13 900 620 55 10 0.22

sandpaper roughness B HRNBLWT 12 100 64 15 2.9 0.07
sandpaper roughness C HRNBLWT 18 400 104 19 3.3 0.06

atmospheric surface layer • Eolos O(106) 30 000 6,400 800 4

hypothesis. Specifically, the method estimates ε from the theoretical inertial subrange expression D11(r) =

Cε2/3r2/3, where C ≈ 1.9 is a universal constant and the inertial subrange is identified by premultiplying
D11 by r−2/3 (Saddoughi & Veeravalli 1994). I estimated the dissipation for the DNS dataset using the
same structure function method with the streamwise signals u(x). The viscosity ν was known based on the
temperature for each experiment, and the calculation of the Kolmogorov microscales was straightforward
following the estimation of ε.

A second parameter worth considering is the Taylor microscale λT , an intermediate length scale. Previous
studies have shown the average shear layer thickness is proportional to λT (Eisma et al. 2015; de Silva et al.

2017). The definition of the Taylor microscale is statistical, and there is not a robust physical interpretation
of λT in turbulence theory. The meaning of the Taylor microscale is discussed further in chapter 7. As with ε,
there are multiple methods for calculating λT . The direct equation for the transverse Taylor microscale, based
on the autocorrelation function, is λT =

√
u2rms/〈(∂u/∂x)2〉 (Pope 2000), where urms is the streamwise

rms velocity. I calculated λT using this equation for the DNS and Melbourne datasets. As before, hotwire
measurements were used rather than the PIV data for parameterizing the wind tunnel cases. The cross-hotwire
anemometers used in the SAFL wind tunnel have a substantial control volume relative to the Kolmogorov
scales. As the velocity derivative statistic in the λT definition is governed by the dissipative scales, the cross-
wire underestimated the derivative rms term. The preferred method for the SAFL cases was therefore to
assume local isotropy and estimate λT from the expression ε = 15νu2rms/λ

2
T , which combines the λT and

ε expressions to circumvent the derivative term. The dissipation, calculated from inertial subrange statistics
at scales larger than the derivative rms, is not subject to the same underestimation. The field measurements
were also too coarse to resolve the velocity derivative statistic and the same isotropic expression as the SAFL
cases was instead employed. Using the previous ε estimate yielded the Taylor microscale λT ≈ 13 cm in the
ASL case.
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Figure 47. Wall-normal profile of the functional relationship between the Taylor microscale λT , integral length scale L, and Reynolds
number ReL. Values are shown only in intervals of 0.025δ for clarity. Data symbols correspond to the experimental datasets in table V.

The yet larger motions correspond to the integral scales. These scales are important in the context of the
Taylor microscale because of their close functional dependence, i.e. λT∼LRe−1/2L where L is the integral
length scale. Here, I used the streamwise velocity parameter urms to estimate the integral scales. Specifically,
I calculated the integral length scale as L = u3rms/ε and the turnover time as T = u2rms/ε. The turnover time
is related to the classical energy cascade timescale (Pope 2000) and is distinct from the integral time scale
L/U . The integral Reynolds number is ReL = urmsL/ν. The relationship between λT and L is shown in
figure 47. The proportional coefficient, i.e. the vertical axis value, is approximately constant throughout the
majority of the outer region within each case. The SAFL and ASL cases are excluded from figure 47 because
the estimation methods described above yield the trivial ratio

√
15 ≈ 3.87 regardless of the measurements.

The value close to
√

15 for the DNS case supports the assumption of local isotropy used in the other cases,
except for far into the wake region.

The possible relevance of multiple parameters for vortices and ISLs is a consequence of the multi-scale
dynamics of turbulence. The Kolmogorov- and integral-scaled motions do not evolve in isolation from one
another, and are in fact connected through energy transfer processes and so-called scale interaction. Statistics
resulting from these properties may therefore have a signature behavior at multiple scales. In these cases, the
mean statistic may not tell the whole story, so to speak, or the mean may not even have any relevance. The
following analysis therefore focuses primarily on probability distributions, and only resorts to mean statistics
when necessary.

6.2 The model vortex and detection algorithm

The previous vortex analysis for the ASL case in §4.4 successfuly demonstrated that the strong prograde
vortices primarily occur within the internal shear layers. However, the analysis was limited by the subjec-
tivity of the cutoff threshold, in addition to the SLPIV spatial resolution. Here, in the comparison of vortex
properties across flow conditions, a model vortex is preferred. Parameters such as the size and velocity of the
vortex are determined by fitting the local vector field to a vortex model defined by these parameters. Previous
studies used the following model vortex in cylindrical coordinates (Carlier & Stanislas 2005; Herpin et al.

2013):
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u = uω +
Γ

2πr

[
1− exp

(
− r

2

r2ω

)]
eθ, (14)

where uω is the advection velocity of the vortex, Γ is the circulation, r is the radial distance from the vortex
center, rω is the vortex radius, and eθ is the unit vector in the azimuthal direction. The model incorporates
Biot-Savart law for the velocity induced by a vortex line, i.e. uθ ∝ Γ/2πr. Equation (14) is based on the
Oseen vortex model (1912), which is consistent with the Navier-Stokes equations in its three-dimensional
definition. The difference between this Oseen model and the Burgers vortex (1948) is that the Oseen model
does not consider any radial velocity or vortex stretching in the axial direction.

In the original vortex definition by Oseen (1912), the radius is given by the term rω = 2
√
νt, where the

radius is zero at time t=0 and the vortex grows in time via viscous diffusion. The radius rω is inferred to be
the location of the maximum azimuthal velocity. In the vortex model by Burgers (1948), the radius is given by
rω = 2

√
ν/α, where α is the strain rate. Rather than growing in time, the Burgers vortex size is steady due to

a balance between outward diffusion and inward radial velocity induced by the vortex stretching mechanism
(Burgers 1948). This distinction between the two models becomes important for interpreting the later results.

I conducted the vortex detection using the Oseen model in equation (14) following the procedure of
Herpin et al. (2013), which is summarized here. I identified possible vortex cores based on vector regions
where λci > 1.5λrms. This threshold introduces selection bias on the vortices, but the threshold is not applied
in the later model fit. Based on a test using one dataset, changing the threshold factor from 1.5x to 2x or 2.5x
resulted in the detection of fewer vortices, but resulted in no statistically significant changes to the vortex
properties. A notable deviation to the original procedure was to apply a Gaussian filter to the wind tunnel
PIV fields prior to vortex detection. The filter removed small-scale noise in the gradients which significantly
improved the performance of the fitting algorithm. The selected size of the Gaussian filter, i.e. its standard
deviation, corresponded to approximately 2η in the log region for each case. The filter was not applied to the
DNS or SLPIV vector fields.

I used the properties of the core region as initial guesses for the six vortex model parameters: the center
position given by xω and zω , the advection velocity components uω and wω , the circulation Γ, and the radius
rω . The initial value for Γ was calculated from the core area and out-of-plane vorticity ωy within the core
region. Based on the initial guesses for rω , xω , and zω , I extracted the local velocity vector field within 2rω
of the vortex center. I then fitted the extracted vector field to equation (14) using the initial guesses and a non-
linear least-squares fitting algorithm. The algorithm outputted values for the six model parameters defined
above that resulted in a model vortex most closely matching the vector field within and around the vortex
core. An example vector field and closest model fit are shown in figure 48(a).

In some cases, the fitted radius was much larger than the initial guess. To ensure an accurate fit, I wrote a
condition in the fitting algorithm to extract a larger vector field around the vortex and repeat the model fit if
the fitted radius was more than twice the initial guess. I also only saved the vortex properties if the following
criteria were met:

1. The R-squared value of the model vortex fit exceeded 0.5.

2. The vortex did not overlap with the field of view limits.
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Figure 48. Example of a model Oseen vortex fitted to a velocity vector field following the methodology of Herpin et al. (2013).
(a) Comparison of measured velocities (black vectors) with the closest Oseen model (red vectors) whose radius is indicated by the red
circle. (b) Notation for the diameter dω and velocity difference ∆uω across the diameter of the fitted model vortex.

3. The fitted vortex center was close to the initial guess center, i.e. within one vortex radius. This condition
prevented the vortex fit from converging to a separate nearby core.

The detection algorithm was conducted for all experimental datasets in table V, including a re-analysis of
the vortices in the ASL case. Besides the advection velocity, the characteristic velocity of each vortex is the
maximum azimuthal velocity difference ∆uω across the vortex. This velocity, shown in figure 48(b), is twice
the azimuthal velocity at the edge of the vortex r = rω due to axisymmetry and the definition of the radius.
From equation (14), the velocity is therefore ∆uω = 1

πΓr−1ω
(
1− e−1

)
.

6.2.1 Sources of uncertainty

As with the previous chapters, the spatial resolution provides a source of error and limits the detection of
the motions finer than the measurement grid. One benefit of focusing the analysis on probability distributions
rather than mean statistics is that the resolution effects are easier to recognize and account for: the distribution
behavior at the smallest sizes is the least reliable, and conclusions are drawn only from the other regions of
the distribution.

I conducted extensive analysis on the effect of the grid spacing ∆x. The findings are summarized here
rather than presented in full detail. The average vortex properties Dω and ∆Uω are both sensitive to the
experimental resolution. Downscaling the resolution with a low-pass filter increases the average values as
expected. The downscaling did not influence the conclusions of the probability analysis except for very
coarse effective resolutions where ∆x & λT such that the shear layers were represented by one or fewer
points.

This coarsened resolution is similar to the SLPIV measurements. The SLPIV vortex properties are there-
fore not used to make any new interpretations. However, the SLPIV vortex velocity statistics are found to be
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consistent with the other cases, and are included for comparison. The correct velocity behavior of the vortices
may be captured by the SLPIV vector field due to either smoothing effects or inertia of the snow particles.
The strong vortices likely ejected the larger snow particles through centrifugal acceleration. If these ejected
particles still exhibited the azimuthal velocity behavior of the vortex, the effect of the particles would be to
enlarge the vortex footprint to an area captured by the SLPIV grid.

Finally, an important limitation of fitting a model vortex is selection bias: the algorithm only accepts
vortices that resemble the form of the model. Despite this, a large number of Oseen-type vortices were
found in every case. Approximately 22 000 Oseen vortices were accepted for the SLPIV case, and more than
100 000 were accepted for every other dataset. Recalling that the algorithm considers the flow field in the
neighborhood of the vortex, the smallest detected vortices in each case are fitted based on the flow outside the
vortex moreso than inside. The flow outside the vortex model is non-zero and slowly decays with increasing
radial distance in equation (14). These small vortices match the Oseen model external to the vortex core, but
it cannot also be said that the interior core necessarily matches the model.

6.3 Vortex size

For this analysis, the vortex size is presented as the diameter dω . The probability distributions of dω for
prograde vortices in each experimental dataset are shown in figure 49. To improve the statistical convergence
of the probability tails, I used logarithmic spacing for the histogram binning intervals. The proper normaliza-
tion of the histogram as a pdf is then achieved by dividing the value of each bin by its respective bin width
and the total number of occurrences in the histogram. Logarithmic bin intervals are also used in later figures
where the horizontal axis is shown with logarithmic scaling. Six orders of probability magnitude are observed
with the large number of detected vortices.

Most previous literature studies have described the vortex size distribution mode, i.e. the most probable
size, in terms of the Kolmogorov scale η. The mode for the DNS case is approximately 10η, which is be-
tween the values 8–10η observed by Tanahashi et al. (2004) and 12–13η by Herpin et al. (2013). However,
it is not clear from a comparison across datasets which scaling parameter is appropriate for describing the
mode. There is a range of diameter mode 10–20η in figure 49(a) and 0.3–0.4λT in figure 49(c). The ob-
served range for both normalizations may be due, to some extent, to variability in the measurements across
PIV experiments. Based on the parameter ratio in figure 47, the most probable detected vortex size was ap-
proximately LRe−1/2L for each case except for the SLPIV measurements whose spatial resolution was coarser
than the mode. It is perhaps worth noting that the most probable size is O(LRe−1/2L ) for each case based on
the parameter ratio in figure 47, except for the SLPIV measurements whose spatial resolution was coarser
than the mode.

Regarding the distribution shape, Herpin et al. (2013) showed that the size probability approximately
follows a log-normal distribution with a somewhat thicker tail than expected. The figure 49 distributions are
consistent with these findings. With logarithmic axes, the log-normal probability p should follow a second-
order polynomial of the form ln(p) = −a ln(x)2 + b ln(x) + c, where the coefficients are determined by the
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Figure 49. Probability distributions of diameter dω for all prograde vortices in the outer region: (a,b) normalized by the Kolmogorov
lengthscale η; (c,d) normalized by the Taylor microscale λT . The right-hand side pdfs (b,d) show the distribution tails re-scaled to
achieve area unity under each tail. Data symbols correspond to the experimental datasets in table V.

distribution mean and standard deviation6. However, the tail deviates from the second-order behavior and
approximates a linear function consistent with a power law.

The probability tails shown in figure 49(b,d) are the regions to the right of the dashed lines in 49(a,c). The
pdfs in figure 49(b,d) are re-scaled to achieve area unity under the tail region. The re-scaling is equivalent
to a conditional pdf, i.e. p(dω | dω>λT ), which allows for a comparison of the tail shape across cases. The
power law distribution is given by p(dω) ∝ d−md

ω , where md ≈ 6−7 is the linear slope in figure 49(b,d).
The relevant scaling parameter cannot be determined by the shape of the power law, as md is independent of
the normalization. The slope is the same for the ASL case, and also does not vary with wall-normal position.

6Specifically, a = 1/2σ2, b = (µ/σ2− 1) and c = −µ2/2σ2− ln(σ
√

2π), where µ and σ are the respective mean and standard
deviation of ln(x). I derived this by taking the logarithm of the log-normal distribution.
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Figure 50. Probability distributions of the strain rate α determining the vortex diameter dω =
√

8ν/α: (a) normalized by the Kol-
mogorv time scale τη =

√
ν/ε; (b) normalized by the turnover time scale T = u2rms/ε. Data shown are for the DNS case in intervals

of the local integral Reynolds number ReL determined by the wall-normal position of the vortex.

One potentially meaningful aspect of the tail is that the largest vortices have size O(λT ) in every case, noting
the larger ASL vortices likely result from artificial augmentation by the resolution and snow particles. While
the tail may not be an exact power law, the very steep slope md ≈ 6−7 and limit O(λT ) indicate the largest
vortices are confined by the same scaling that describes the internal shear layer thickness.

Figure 49 provides promising results regarding the possible influence of λT on the size of the largest
vortices. However, a trend in the probability mode cannot be discerned across the experiments. Further, there
is only a weak Reynolds dependence η/λT ∼ Re−1/4L such that the limited separation between η and λT in
laboratory experiments makes it difficult to distinguish scaling trends. I therefore turn to the strain rate α =

16ν/d2ω for the DNS case only. The Reynolds dependence is amplified for the strain rate, and a comparison
within the computational experiment has reduced uncertainty. Figure 50 shows probability distributions of
α for intervals of ReL. I determined the ReL interval for a given vortex based on the vortex position zω and
the local mean values for urms and L at the same wall-normal position. Here, the relevant parameters for
comparison are the Kolmogorov time scale τη =

√
ν/ε and turnover time scale T = L/urms. Inserting these

time scales into the expression dω ∼
√
νt returns the Kolmogorov length scale √ντη = (ν3/ε)1/4 = η and

Taylor microscale
√
νT = L/

√
ReL ∼ λT .

In figure 50(a) with τη normalization, there is a clear Reynolds number trend in the mode and left shoulder
of the distribution. When the strain is instead normalized by T in figure 50(b), the Reynolds number trend is
accounted for, the position of the mode is αT∼O(1), and there is strong agreement across the range of ReL
represented. Note that grouping the strain statistics in intervals of z/δ rather than ReL is less successful due
to the non-monotonic profile of ReL(z). The results suggest that the size of the detected Oseen-type vortices
in the outer region is better described by λT than η in both the probability mode and large-diameter tail. This
result is interpreted in the context of turbulence phenomenology in chapter 7.

Similar to the pdfs for dω , the pdf shape for α in figure 50 resembles a log-normal distribution with overly
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thick tails. Given the relationship dω = 4
√
ν/α, and assuming the strain pdf is log-normal, the diameter pdf

is also log-normal. This is a derived distribution resulting from several lines of math not included here7.

6.4 Vortex velocity

Specifically discussed here is the azimuthal velocity difference ∆uω across the vortex diameter. The ad-
vection of vortices is discussed in the next section. The velocity probability distributions for prograde vortices
are shown in figure 51 using the same format as the diameter pdfs. The distributions again contain several
decades of probability which facilitates characterization of the shape. Unlike the size statistics, the velocity
distributions are shown with linear scaling of the horizontal axis. The probability tails are consistently linear
in this plotted format, indicative of an exponential probability function8 p ∝ exp(−∆uω/mu). There is
scatter in the velocity mode in terms of both uη in figure 51(a) and uτ in 51(c), which again may be due to
variability in the experiment apparatus. Note the mode position in terms of uτ likely changes moderately
with wall-normal position, based on later findings.

As seen in figure 51(b,d), the friction velocity also yields better agreement across cases in the probability
tail slope. The uτ agreement extends to the ASL case as well, providing strong evidence for the friction
velocity scaling. The tail slope in figure 51 is given as 1/mu rather than the reciprocal because the mean
of an exponential distribution is defined by mu. However, the pdf is not fully exponential as indicated by
the presence of the mode, and the mean in this case is larger than mu. While it does not exactly describe
the mean for this study, mu is the most relevant parameter for the distribution and is critical to the central
moment statistics. Hereon I refer to mu as a shape parameter for the distribution. I used a linear fit on the
pdf tails to estimate mu for each dataset. In addition the pdfs shown in figure 51 which include the vortices
throughout the outer region, I also estimated mu for vortices in intervals of the wall-normal position based
on the vortex center zω . The resulting parameter values are shown in figure 52.

The shape parameter increases with Reynolds number Reτ when normalized by uη , and is approximately
constant across three decades of Reτ when normalized by uτ . This again supports the uτ scaling for the
probability tail suggested visually in figure 51, both in the mode position and the tail shape. Similar to the
analysis for dω , it is not easy to distinguish the relevant scaling across a small Reynolds number range. To
demonstrate the weak Reynolds number dependence, I assume here that uτ and δ are the same order as the
integral scales. This is a fair assumption given urms and the large scale motions are described in terms
of uτ and δ, respectively, in the outer region. The Kolmogorov and outer length scales are then related as
η/δ ∼ Re−3/4τ , which comes from the same expression with L and ReL (Pope 2000). Given η = ν/uη and
δ = νReτ/uτ by the definitions of Reη and Reτ , respectively, the velocity scales are related as uτ/uη ∼
Re1/4τ . Figure 51(a) supports this relationship, where the shape parameter exhibits the same weak Reynolds
number dependence mu/uη ∼ Re1/4τ .

7Footnote version of derived distributions: given dω = f(α) = 4
√
nν/α and the pdf pα(α), the derived distribution is pd(dω) =

pα(f−1(dω))|∂f−1(dω)/∂dω |, where f−1(dω) is the inverse function relateing α to dω . From this expression, for the given function
it can be shown that if pα is log-normal, pd is also log-normal, and the distribution parameters are related as µd = 1

2
(ln(16ν) − µα)

and σd = 1
2
σα, where µ and σ are defined in the previous footnote.

8Taking the logarithm of both sides yields the linear form ln(p) = −∆uω/mu shown in figure 51.
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Figure 51. Probability distributions of velocity ∆uω for all prograde vortices: (a,b) normalized by the Kolmogorov velocity uη ; (c,d)
normalized by the friction velocity uτ . The right-hand side pdfs (b,d) show the distribution tails re-scaled to achieve area unity under
each tail. Data symbols correspond to the experimental datasets in table V.
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Figure 52. The shape parameter mu describing the exponential relationship p ∝ exp(−∆uω/mu) of the vortex azimuthal velocity
distribution tail: (a,b) as a function of Reτ when normalized by uη and uτ , respectively; (c) wall-normal profile normalized by uτ . Data
symbols correspond to the experimental datasets in table V.
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Figure 53. (a) Joint probability distribution p(dω ,∆uω) of vortex diameter dω and azimuthal velocity difference ∆uω for the
Reτ = 3 800 smooth wall case. (b) The same joint distribution normalized by the individual pdfs. The normalized distribution indicates
the probability relative to if the two variables were independent. The dotted black lines in (b) correspond to normalized probability equal
to one and the solid lines correspond to the modes of the individual probabilities p(dω) and p(∆uω).

In figure 51(c), mu decreases moderately with increasing wall-normal distance. The trend matches the
behavior of the velocity difference ∆Um across internal shear layers. The value for ∆Um, shown in figure 44
in the previous chapter, is approximately twicemu throughout the boundary layer, with the same wall-normal
dependence. Given mu represents an underestimated value of the statistical mean ∆Uω for the modified
exponential distributions in figure 51, the vortex azimuthal velocity ∆Uω follows the same scaling and is
quantitatively similar to the shear layer velocity ∆Um.

Another aspect of the azimuthal velocity ∆uω is its correlation with the vortex size dω in addition to the
circulation Γ. These properties are related through the functional dependence ∆uω ∝ Γd−1ω . The circulation
is also related to the total vorticity within the area of the vortex core: Γ ∝ ωd2ω . Combined with the first
dependence, this yields an expected relationship where the vortex velocity and size are positively correlated
rather than inversely related. The correlation is apparent through the joint probability distribution p(dω,∆uω)

of vortex diameter and velocity. An example distribution for the Reτ = 3 800 smooth wall case of table V
is shown in figure 53(a). The inclination of the joint probability contours suggests the two parameters are
positive correlated.

A more quantitative test requires comparison of the joint probability with the independent case. If dω
and ∆uω are statistically independent (uncorrelated), then the joint probability reduces to p(dω,∆uω) =

p(dω)p(∆uω) throughout the range of size and velocity. The ratio of the joint probability and the independent
case is plotted in figure 53(b). Red regions where the ratio exceeds unity indicate greater probability than
if the variables were independent, and blue regions less than unity indicate lower probability. The positive
correlation is confirmed by figure 53(b): smaller vortices are more likely to have lower velocity, and larger
vortices have higher velocity.
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The positive correlation is itself neither surprising nor particularly revealing. The more interesting result is
the presence of four distinct probability regions. The division of the four regions corresponds approximately
to the modes of the individual pdfs indicated by the solid black lines in figure 53(b) : dω ≈ 0.3λT (10η)

and ∆uω ≈ 1.2uτ (6η). Here, I infer these modes to represent transition points between the Kolmogorov-
and intermediate-scaled vortices. The probability modes then represent a combination of larger-than-average
Kolmogorov-scaled vortices and smaller-than-average intermediate-scaled vortices. Mixed-scale vortices,
e.g. with dω > 0.3λT and ∆uω < 6uη , correspond closely with the blue regions where the probability
becomes negligibly small. The smallest vortices are thus Kolmogorov-scaled in both their size and velocity.
Additionally, the probability tails in the previous figures are closely related through the joint probability in
figure 53, where a vortex whose size is within the diameter distribution tail will very likely have a character-
istic velocity within the exponential tail. Note that this joint probability behavior was exhibited by the other
experimental datasets, but only one case is shown and discussed here for brevity.

6.5 Vortex advection

The vortex advection velocity (uω ,wω) describes the bulk movement of the vortex core. The advection
was estimated from the Oseen model fit, and is likely closely related to the average of the velocity vectors
in the vortex vicinity that contribute to the fitting procedure. The advection estimate is therefore inferred,
rather than observed from the vortex core trajectory across multiple instances in time. For the wall-normal
component wω , I subtracted the local mean W (zω) from the advection velocity. The SLPIV measurements
are affected by the snow settling speed, and the laboratory-scale cases have a weak non-zero W (z) profile
based on the growth of the boundary layer along the streamwise direction. The advection is less susceptible to
spatial resolution effects such that the mean statistics are more reliable than for the vortex size and azimuthal
velocity. The mean values are presented first, followed by probability statistics.

To construct profiles of the average vortex advection velocity, I calculated the average values for uω and
wω in intervals of z/δ. I chose the corresponding interval for each vortex based on the wall-normal position
of its center zω . The resulting advection velocity profiles are shown in figure 54. Throughout the outer region,
the streamwise advection in figure 54(a) is approximately 1 to 2% slower than the local time-averaged mean
velocity, including for the ASL case. Approaching the wall, the advection transitions to being faster than the
mean velocity.

The wall-normal advection is weakly positive throughout the boundary layer outer region in figure 54(a),
but transitions to net downward motions approaching the wall. The observed trend is not an artifact of sub-
tracting the mean W ; the subtraction reduces Wω by approximately 50% in the outer region. The streamwise
and wall-normal advection results are both remarkably consistent with trends in the Reynolds shear stress
balance: ejection-type events (u′<U,w′>0) contribute more to the Reynolds shear stress in the buffer layer
and roughness sublayer, whereas sweep-type events (u′>U,w′<0) are relatively more important throughout
the outer region (Raupach 1981). This result suggests a connection between the vortex core advection and
Reynolds shear stress events.
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Figure 54. Profiles of average prograde vortex advection velocity: (a) streamwise advection Uω relative to the time-averaged mean
U(zω) at the vortex wall-normal position zω ; (b) wall-normal advection Wω . Data symbols correspond to the experimental datasets in
table V.

The resemblance of the advection statistics to the turbulents shear stresses is further seen in joint proba-
bilities of uω and wω . The joint pdfs for each case in table V are provided in figure 55. The vortex events
contributing to the joint pdfs are limited to those within the log region of each boundary layer. The resulting
joint distributions have the same shape as joint pdfs of u′ and w′ (see, e.g., figure 15). Consistent with the
mean advection, the figure 55 distributions are stretched farther into the second quadrant corresponding to
ejections than the fourth quadrant for sweeps. This behavior matches the observations of Raupach (1981),
where the most intense stress events away from the wall are more likely to be ejections than sweeps.

While figures 54 and 55 suggest a relationship between the strong vortices and the stress events, the exact
nature of the relationship is not provided by the present results. My interpretation, based to some extent on
speculation, is provided in chapter 7.

6.6 Internal shear layer size and advection

Certain attributes of the internal shear layers have already been presented. Namely, the uτ scaling of
the velocity difference ∆Um across shear layers was demonstrated in §5.3. The detection of these ISLs and
the conditioning of statistics relative to the interface position zi were previously detailed in §4.3 and §5.2.3.
For the extended ISL analysis in this section, I used the same detected shear regions from the UMZ study in
chapter 5. The only difference is that here the high-resolution tower PIV results are presented rather than the
large-field-of-view measurements.

Following the same format as figure 35, the conditionally averaged shear layer profiles for each exper-
imental dataset are shown in figure 56. The ASL case is excluded here because the limited SLPIV spatial
resolution does not allow for a proper comparison with the laboratory-scale flows. Figure 56 shows that the
Taylor microscale provides the best agreement across flow conditions in describing the overall layer thick-
ness, as suggested by previous studies (Eisma et al. 2015; de Silva et al. 2017). I note here that the shear
layer may have a central, Kolmogorov-scaled core region that is not captured in these experiments (Chini
et al. 2017).

One method of calculating the average ISL thickness δω was previously given in equation (13). As
discussed in §4.3, the estimate of δω using the maximum velocity gradient within the layer ∂〈u−ui〉/∂z|max
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Figure 55. Joint probability of vortex advection velocities uω and wω for every experimental dataset in table V. The vortex events are
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Figure 56. Average streamwise velocity profile relative to the shear layer velocity ui and midheight zi: (a) normalized by the viscous
length ν/uτ ; (b) normalized by the Kolmogorov length η; (c) normalized by the Taylor microscale λT . Data symbols correspond to the
experimental datasets in table V.
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Figure 57. Estimated average thickness δω of internal shear layers normalized by λT : (a,b) as a function of grid spacing where δω is
estimated from (a) the maximum gradient within the interface ∂〈u−ui〉/∂z|max and (b) the thickness across the velocity jump ∆Um;
(c) wall-normal profile using the method in (b). Data symbols correspond to the experimental datasets in table V.

is susceptible to the spatial resolution. The gradient reaches its maximum at the center of the layer and quickly
decreases away from the center. The observed maximum therefore depends strongly on the spacing of the
grid points ∆x in the vicinity of the layer center where the derivative is estimated. The effect of resolution
is demonstrated in figure 57(a), which shows the calculated thickness δω as a function of the grid spacing
∆x. As expected, the calculated thickness increases for coarser resolutions that measure a smaller maximum
shear.

The thickness can more simply be estimated as the distance across which the velocity difference ∆Um

occurs (Eisma et al. 2015). In addition to being less sensitive to measurement resolution, this estimate is more
representative of the overall shear layer. The velocity thickness ∆Um is determined independently based on
the flow external to the layer as depicted in figure 35(b). I therefore considered δω in this estimation to be
the wall-normal distance spanning the velocity range representing ∆Um. The resulting δω values are shown
in figure 57(b). This simpler method removes the spatial resolution trend in δω , but only for datasets where
the resolution was finer than the ISL thickness. In other words, the method using the distance across ∆Um is
preferred for datasets with ∆x . 0.1λT , but for coarser resolution such as the SLPIV data the δω value will
be overestimated regardless of the method.

The wall-normal profiles of δω calculated using the average gradient are shown in figure 57(c). The
thickness, when normalized by λT , is constant throughout the boundary layer with a value between 0.3-
0.5λT , which is in close agreement with the observed thickness δω ≈ 0.4λT from Eisma et al. (2015) and
δω ≈ 0.5λT from de Silva et al. (2017). In terms of the integral scales, the average thickness is close to
LRe−1/2L , and is similar to the mode of the pdf for dω/λT . The scatter between datasets is likely within the
combined uncertainty of δω and λT and the residual effects of spatial resolution. There is no apparent trend in
either the Reynolds number or the surface roughness. Ebner et al. (2016) proposed that significant roughness
may affect the thickness of the shear layers and the overall organization of UMZs. However, the required
roughness in terms of ks/δ for this effect to occur may be too great to maintain outer layer similarity.
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Figure 58. Wall-normal profile of the average shear layer advection within the log region: (a) streamwise advection Ui relative to the
time-averaged mean U(zi) at the shear layer height zi; (b) wall-normal advection Wi. Data symbols correspond to the experimental
datasets in table V.

For each detected ISL, I used the velocity vector closest to the shear layer midpoint as the representative
advection velocity. This inference is similar to the vortex analysis in that the advection is estimated from
the local flow field and is not directly observed from the shear layer evolution. As before, I subtracted the
weak mean wall-normal velocityW from the wall-normal advection. Following the same format as figure 54,
profiles of the average streamwise Ui and wall-normal Wi advection velocity of the shear layers are plotted
in figure 58. The profiles are focused within the log region of the boundary layer. The shear layer advection
matches the behavior of the vortex cores: the layers advect somewhat slower than the time-averaged mean,
and there is a weak mean upward advection. This consistency suggests that the possible relationship between
the turbulent shear stress events and the vortex advection can be extended to include the ISLs.

The deficit in streamwise advection is greater for the shear layers than the vortices, particularly for the
mesh roughness and ASL cases. The deficit increases with surface roughness k+s , indicating a possible effect
of roughness. However, this trend was not exhibited by the vortex cores, and additional work is required to
confirm and interpret any such trends.

6.7 Where are all the Kolmogorov-scaled vortices?

In the present analysis, the most probable vortex size in figure 49 is in good agreement with the average
ISL thickness in figure 57. The strain rate distribution in figure 50 suggests the local integral scales are
relevant to the vortex behavior, and the most probable vortex azimuthal velocity corresponds to the friction
velocity. From this, the governing parameters for the vortex size and velocity seem to be intermediate scales
λT and uτ , respectively, rather than the Kolmogorov scales. However, I must consider the methodology as
a possible explanation for the general absence of a small-scale (Komogorov) signature on the probability
statistics.

The most likely culprit for masking the smallest vortices is the definition of the vortex size. Specifically,
the Oseen model assumes the azimuthal velocity reaches a maximum at the radius of the vortex core, then
decreases with increasing outward radial distance. This radius may work well for vortices isolated in an
otherwise uniform flow field, but these vortices are clustered within thin shear layers (see, e.g., §4.4). A strong
velocity gradient is present across the Taylor-microscale thickness of these ISLs. It is possible that many of
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the smallest spanwise vortices within the ISLs are not well fit by the Oseen model because the background
velocity gradient is contrary to the assumed decreasing azimuthal velocity external to the vortices. In this
sense, the Oseen model may be most useful for detecting vortical motions that span the majority of the ISL
thickness, which is consistent with the results of my vortex analysis. This possibility is also consistent with
the findings of da Silva & Taveira (2010), who found large vortices spanning the TNTI thickness and separate,
smaller Kolmogorov-scaled worm-like vortices.

The radius definition employed here is not unique to a model Oseen or Burgers vortex. Tanahashi et al.

(2004) found a similar vortex size distribution with mode 8–10η by using the same radius definition without
imposing a model. A new radius definition may be required to detect and characterize the smallest vortices
within the shear layers. I leave this task to another intrepid researcher, however, as my focus is on the rela-
tionship between the ISLs and vortical motions. I have already demonstrated that many spanwise, prograde
vortices within the boundary layer have similar characteristic size, velocity, and advection to ISLs. The
important message here regarding the Kolmogorov-scaled vortices is that they likely were present but not
detected due to the methodology. The present finding are therefore specific to vortices well-described by the
Oseen model. Depending on how you choose to define a vortex, the probability distributions for the vortex
properties in this chapter may be missing information at the smallest scales.



7 Phenomenological interpretation of the results

To this point, I have attempted to avoid speculative claims regarding the experimental results. I have
been saving such speculations for the present chapter, in which I untether myself from the chains of scientific
rigor and the peer-review process to offer my unproven opinions9. As such, chapter 7 should be read as a
speculative discussion of the results rather than a robust extension of the findings.

The scientific opinions contained here relate mostly to the vortex and shear layer dynamics studied in
chapter 6. The UMZ scaling results in chapter 5 are more robust, and a discussion of these results was already
included in §5.3. The earlier chapters, for the most part, developed the foundation for the all-important UMZ
and vortex scaling analyses.

7.1 The interaction of momentum zones and shear layers

One of the most revealing results of the previous chapter is the influence of the turnover time scale T on
the strain rate α associated with the vortex size, see e.g. figure 50(b). Coupled with the importance of uτ to
the vortex azimuthal velocity, the results suggest the local large-scale motions determine the properties of the
smaller vortical motions. Assuming the large-scale motions are represented by the UMZs, there must be an
important dynamic relationship between the UMZs, the ISLs, and the vortices.

The possible nature of the scale interactions is already provided by the Burgers vortex model (1948). In
the model, the local flow field around the vortex induces an extensional strain which acts to stretch the vortex.
The stretching induces inward radial flow from outside the vortex by continuity. The radial flow balances the
outward growth of the vortex by viscous diffusion, providing a steady solution for the state of the vortex tube.
The same principle can be applied to a sheet such as the internal shear layers, rather than a tube. Applying this
stretching model to the UMZ and ISLs, the UMZs impose a strain rate α on the ISLs that leads to stretching
in the spanwise direction and net flow from the UMZs into the shear layers and vortices.

There is a limited extent to which the strain and stretching mechanism can be proven with the current
experimental observations. The net flow into the vortices and ISLs can (and will) be supported using the
measurements in the x−z plane. However, the axial stretching and strain rate α, both in the spanwise direc-
tion, cannot be identified. I assume here that there is a consistent aspect ratio between the streamwise and
spanwise large-scale parameters. By this assumption, the spanwise equivalent of the turnover time scale is
proportional to the streamwise component such that the streamwise value can be used as a proxy. Figure 50(b)
already demonstrated the assumption to be reasonable, where the streamwise turnover time T describes well
the strain rate of the spanwise vortices. Owing to these assumptions and limitations, the evidence provided
here is supportive of the stretching mechanism rather than definitive proof.

9These chains are normally beneficial, but you cannot fault me for turning to dramatic phrasing in the one research document where
I have the freedom to do so.
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Figure 59. Average velocity profiles demonstrating the net flow inward towards the vortices and shear layers. (a) Radial velocity ur(r)
relative to the prograde vortex center, normalized by its radius rω and the turnover time scale T . (b) Wall-normal velocity w relative
to the shear layer velocity wi and midheight zi, normalized by the Taylor microscale λT and the friction velocity uτ . Data symbols
correspond to the experimental datasets in table V.

For each tracked vortex in every dataset, I used the local flow field around the fitted vortex center to
compile a profile of the radial velocity component ur(r) as a function of radial distance r from the vortex
center. To average the profile across all vortices, I normalized r by the vortex radius rω such that r/rω = 1
always corresponded to the edge of each vortex core. The average radial profile of ur is provided in figure
59(a) for every dataset. Note that the Oseen vortex model used to detect the vortices assumes ur(r) = 0, and
any deviations from zero thus indicate robust behavior that overcomes the imposed model. The average radial
velocity is close to zero within the vortex core, i.e. r/rω < 1, and follows an approximately linear trend of
increasingly negative flow outside the core. There is generally good agreement across datasets, including the
ASL case, with ur normalized by rω/T . Assuming 1/T is representative of the strain rate α as suggested by
figure 50(b), the linear trend outside the vortices in figure 59(a) is consistent with the profile ur(r) = −αr
predicted by the Burgers vortex. The result confirms that the flow field around the vortex on average moves
towards the vortex core at a speed proportional to the integral strain rate 1/T . The overall shape of the profile
may in part be due to the fitted model, and should be confirmed using an independent method.

To assess the net flow relative to the ISLs, I computed the same conditionally averaged shear layer profiles
as in figure 56, except here I used the wall-normal velocity component w. The average profile of w relative
to the ISL midpoint is shown in figure 59(b). The best agreement across datasets was achieved using the
same normalization parameters as for the streamwise velocity case: λT for the relative position z−zi and
uτ for the relative velocity w−wi. In the ISL reference frame, the average flow above the ISL is moving
down into the shear layer (w<wi) and the flow below the is move up into the shear layer (w>wi). Within the
ISL, i.e. |z−zi| / 0.25λT , the profile is approximately linear which is consistent with the predicted profile
w−wi = −α(z−zi).

The normalization of the velocity w−wi by the strain parameter λT /T yielded relatively less agreement
across experimental datasets compared to uτ . There may be multiple processes resulting in the figure 59(b)
profile such that straining mechanism does not govern the scaling of the average velocity. For instance, I
showed in §6.6 that the ISLs have a net positive wall-normal velocity Wi, see e.g. figure 58(b). The average



Phenomenological interpretation of the results 96

0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1

Figure 60. Wall-normal profile of the strain rate scaling argument for local UMZs α(z) = ∆Um/Hm. The value is normalized by the
turnover time scale T which represents the most probable vortex strain rate from the chapter 6 analysis. Data symbols correspond to the
experimental datasets in table V.

relative velocity 〈w−wi〉 may therefore be a combined result of the ISL advection Wi associated with shear
stress events and the local compressive flow W into the ISL. For most of the datasets, the average value of
the strain parameter λT /T in the log region is approximately half the average value of Wi, and the ratio
decreases for increasing Reynolds number.

A notable deviation in figure 59(b) is the center-most region of the profile for the DNS case. The DNS
profile has a center layer approximately 3η thick where the wall-normal velocity is uniform. The velocity
profile is asymmetrical outside the center, i.e. there is a larger velocity difference above the center than
below. I assumed this central layer was not resolved by the remaining experimental datasets, and offset the
DNS profile center to match the bulk velocity difference outside the ISL. The result suggests a possible core
region of the ISL scaling with η (Chini et al. 2017).

I have demonstrated in figures 50 and 59 that the relevant strain rate α for the large vortices is connected
to the turnover time scale T . The further connection to the UMZs has thus far been through the assumption
that the UMZ properties are consistent with the turnover time and other integral-scale parameters. Using
the average UMZ profiles in figure 44, I constructed a presumed average strain rate α(z) = ∆Um/Hm

corresponding to the UMZs. A comparison of this UMZ strain rate with the turnover time scale in the log
region is shown in figure 60. The profile is relatively flat throughout the log region, and there is reasonable
agreement across all experimental datasets. The profile suggests there is a proportional relationship between
the UMZ properties and the turnover time, such that it is reasonable to assume the T -scaled strain field acting
on the ISLs and vortices corresponds to the UMZs.

In addition to linking the UMZ properties to the integral scales, figure 44 also implies a connection
between the average shear and the strain field acting on the smaller structures. Based on the result in figure
44(d), the UMZ strain rate is approximately equivalent to the average shear S = ∂u/∂z ≈ ∆Um/Hm. This
connection provides a means to potentially infer the properties of the intermediate-scale structures governed
by α simply by knowing the mean velocity profile. The implication for the UMZ-ISL organization is that
the UMZ flow states both lead to the mean velocity profile and also impose a strain field that governs the
evolution of structures within the ISLs.

This proposed interaction between the UMZs and ISLs is depicted in the figure 61 cartoon. The average
UMZ and ISL properties observed experimentally are shown in the left-side panel. The properties of the
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Figure 61. Cartoon depicting the proposed dynamic relationship between UMZs and ISLs. (left) The scaling of the UMZ-ISL orga-
nization observed experimentally. (upper right) An idealized two-dimensional ISL populated by vortex tubes and bounded by UMZs
resembling streamwise rolls and alternating momentum streaks. (lower right) UMZ-ISL interactions in the y−z plane: spanwise motion
of the rolls leads to axial strain and stretching, which induces flow into the shear layer that counters the diffusive growth.

uniform flow regions are determined by the global geometry and boundary conditions, i.e. size dependent on
z and/or δ and velocity difference dependent on uτ . While I do not know the genesis of the UMZs (there may
indeed be more than one mechanism), the independence of the UMZ properties from the ISL behavior makes
it difficult to imagine that the shear layers are responsible for directly initiating UMZs. As for the origin of
the ISLs, it is reasonable to expect the interaction of two UMZs with different momentum to initiate a shear
layer that develops vortex structures through a shear instability and vortex roll-up mechanism (Sreenivasan
et al. 1989). It is possible that the spanwise vortices detected in chapter 6 correspond to these roll-up vortex
structures, given the conspicuous absence of Kolmogorov-scaled vortices from the results.

The observed δ-scaled streamwise extent of the UMZs and ISLs indicate these features are relatively
long-lived. Yet the ISLs exhibit a generally consistent thickness, suggesting the state of the shear layers
is usually steady and the thickness does not grow indefinitely. These anecdotal observations are consistent
with the steady conditions afforded by the stretching mechanism depicted in the lower-right panel of figure
61. The inward flow ur ∝ −αr and diffusive growth dω ∝

√
ν/α based on an assumed UMZ strain field

α ∼ 1/T ∼ ∆Um/Hm are both supported here by experimental evidence.
The assumed strain field requires the UMZs to have a diverging spanwise velocity component to exert a
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tensile stress on the shear regions. This requirement is fulfilled if the UMZs have a weak streamwise rotation
similar to the behavior of streamwise rolls depicted in figure 14. Previous studies discussed in §2.2 support
the existence of self-similar streamwise rolls throughout the log region including for atmospheric flows (see,
e.g., Foster et al. 2006; Jiménez 2018). These rolls are associated with alternating high- and low-momentum
streaks (Dennis & Nickels 2011; Smits et al. 2011; Hutchins et al. 2012), whose signature tends to be longer
than the rolls (Jiménez 2018). The velocity structures related to the UMZs are depicted in the upper-right
panel of figure 61. The depiction is similar to the self-sustaining mechanism proposed by Chini et al. (2017)
involving ISLs and streamwise rolls.

The vortex stretching mechanism has been applied to isotropic turbulence for several decades (Taylor
1937, 1938). However, to my knowledge, its application in boundary layer flows has primarily been for
transition to turbulence (Stuart 1965; Orszag & Patera 1983). Further proof of axial (spanwise) stretching in
high-Reynolds-number turbulence is required to support my speculations.

The idealized cartoon in figure 61 is an incomplete description of the structural organization of boundary
layer turbulence. The average long-lived ISL is inclined (Squire 2017) and exhibits fractal behavior (de Silva
et al. 2017). Further, the depiction lacks three-dimensionality. It is possible the downward rotation of a
streamwise roll below an ISL draws a vortex tube downward. This vortex tube behavior is consistent with the
partial hairpin arches and legs that are common in outer region turbulence (Dennis & Nickels 2011), which
could explain the success of the Λ-eddy packet as a representative eddy. Lastly, the proposed stretching only
provides a local mechanism to sustain an individual ISL. It does not explain the generation of new structures.

The final connection to be made here is between the ISLs and intense Reynolds shear stress events.
The advection results for ISLs and vortices in chapter 6 are consistent with observed Reynolds shear stress
behavior: the correlation of streamwise and wall-normal advection is dominated by sweep- and ejection-type
events, and on average ejections are favored (Raupach 1981). I do not believe the advected shear layers
represent directly the sweep and ejection events, as the majority of the Reynolds shear stress corresponds to
large-scale motions. Rather, I find it more likely that the Reynolds shear stress events correspond to large,
relatively uniform regions moving in the wall-normal direction, particularly for sweep events. Following
my previous speculation, shear layers are initiated along the interface of these regions. The uniform regions
advect the shear layers and embedded vortices in the same wall-normal direction such that the ISL and vortex
statistics carry the signature of the shear stress events.

7.2 The Taylor microscale

Perhaps the most confounding parameter in turbulence, to me at least, is the Taylor microscale λT . While
λT corresponds statistically to several features in turbulence, its physical representation is more elusive. I
compiled here my various notes on λT and formulated a physical definition that most closely matches the
present findings for boundary layer turbulence. The following is a list of various relationships and descriptions
for λT I have come across:

1. The original definition given by G. I. Taylor λT =
√
u2rms/〈(∂u/∂x)2〉, which he described as the
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“average size of the smallest eddies responsible for the dissipation of energy” (Taylor 1935).

2. The size of the most well-correlated eddies, from the parabolic fit of the autocorrelation function which
is mathematically related to number 1 and was included in the original definition.

3. An intermediate length scale between L and η, where λT /L ∼ Re
−1/2
L , η/λT ∼ Re

−1/2
λ , and λT ∼

η2/3L1/3 (Pope 2000).

4. The mean frequency of zero crossings in a fluctuating signal, mathematically related to number 1
(Liepmann 1949; Sreenivasan et al. 1983).

5. The scale approximately separating the inertial subrange from the dissipative motions in the spectrum
of turbulence (Cava et al. 2012).

6. The approximate thickness of shear layers in isotropic turbulence (Ishihara et al. 2009; Elsinga et al.

2017), the TNTI in jet turbulence (da Silva & Taveira 2010), the TNTI in boundary layer turbulence
(Chauhan et al. 2014), and internal shear layers (Eisma et al. 2015; de Silva et al. 2017).

7. The largest length scale at which the viscosity affects turbulent vortices10 (da Silva et al. 2014).

In the present work, λT was defined using item #1 above. The value corresponds to thickness δω of the
ISLs in figure 57 across a wide range of Reynolds number and surface roughness, in accordance with item
#6. The largest vortices in figure 49 consistently correspond to dω ≈ λT . Following item #7 and figure 61,
these sizes are directly affected by the viscosity through the diffusion relationship δω ∼ dω ∼

√
ν/α. Given

the viscosity is important for motions smaller than λT , it is reasonable for these motions to correspond to the
scales where energy is directly dissipated into heat through viscosity (item #5). The appropriate strain rate
is due to the local UMZ properties which correspond to the turnover time scale T . Using α = 1/T in the
diffusion relation above yields δω ∼

√
ν/α ∼ LRe−1/2L which is consistent with item #3. These observations

leads to a description of λT that combines several of the items above:

The Taylor microscale in boundary layer turbulence is a statistical parameter describing the thickness of the
largest shear and vorticity structures that are strongly affected by viscosity. The microscale is governed by
the mutual interaction of these structures with local integral-scale velocity structures.

By this definition, λT is a dynamically important parameter, even for high-Reynolds-number cases such
as in the ASL. However, λT is often difficult to estimate in atmospheric flows unless high-frequency (fs ≥
50 Hz) sonic anemometers are available. The ability to predict the Taylor microscale a priori would be useful
in both field studies with limited measurement resolution and in determining the mesh spacing for high-
resolution LES experiments. The previously discussed connection between the strain rate α and the average
shear S provides a method to estimate the microscale as λT ∼

√
νS. In the log region of neutrally stratified

conditions, this relationship simplifies to λT ∼
√
νuτ/z. The accuracy of this relationship and the extent to

which it applies for convective and stably stratified flows are topics of future research.

10This is similar to the definition currently given on Wikipedia.
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7.3 A thought on the incremental energy cascade

In an attempt to invoke even more clichés of turbulence research, I now enter the topic of the turbulent
energy cascade. The concept of the cascade, briefly introduced in §2.2, was first proposed by Richardson
(1920), though the term cascade is attributed to Onsager (1949). In the classical view of the cascade, the
energy of the largest eddies is transferred to incrementally smaller eddies until the energy is dissipated into
heat through viscosity. The concept is succinctly summarized in Richardson’s short poem (1922, p. 66):

Big whirls have little whorls,
which feed on their velocity.
And little whorls have lesser whorls
and so on to viscosity.

The cascade was formalized by Kolmogorov (1941), who used a similarity hypothesis to predict the self-
similar power law behavior of the energy spectrum E and structure function D in the inertial subrange. The
spectrum E quantifies the energy density of velocity fluctations in Fourier space, D quantifies the velocity
difference as a function of separation in physical space, and the two can be related through the correlation
function11. Kolmogorov’s 1941 hypothesis predicted E ∼ k−5/3 where k is the wavenumber and r ∼ D2/3

for the second-order structure function whose definition is given in §6.1. These predictions have been well
borne out in experiments, as shown in the example streamwise spectrum E11 and second-order structure
function D11 in figure 62. Note the spectrum is plotted as a function of the streamwise linear wavelength
Λx = 1/kx. The incremental cascade is often inferred from these slopes, where there is a self-similar decrease
in energy content for decreasing eddy size. The approximate boundaries for the inertial subrange are related
to λT and L as seen in figure 62. In the log region, the upper limit is often expressed as u3τ/ε (Davidson &
Krogstad 2014) or a factor of the wall-normal distance z (Saddoughi & Veeravalli 1994; de Silva et al. 2015).

Outside the inertial subrange, there has been considerable success in attributing the shape of E11 and
D11 to the behavior of coherent structures. The so-called production range above the inertial subrange is
characterized by E11 ∼ k−1x (Tchen 1953) and D11 ∼ ln rx (Davidson et al. 2006). These functional forms
in the production range are only apparent for high Reynolds numbers (Nickels et al. 2005), and the sample
case in figure 62 has insufficient Reτ to observe a distinct, extended production range. The production range
behavior is the result of wall-dependent or “attached” structures scaling with z such as UMZs or Λ-eddy
packets (Perry et al. 1986). The largest structures scale in size with the outer condition δ and are considered
“inactive” in terms of their contribution to the mean shear and production (Townsend 1976). At the other end
of the spectrum, scales smaller than the inertial subrange are characterized by high dissipation and enstrophy
(Davidson 2015). This region represents vortical motions and other structures governed by viscosity which
directly dissipate energy into heat, causing a sharp change in E11.

The structures associated with the inertial subrange and energy cascade are more of a mystery, based on
my incomplete knowledge of the literature. The cascade has been attributed to or associated with several pro-
cesses including vortex stretching (Taylor 1937), fractal behavior (Sreenivasan 1991), rapid distortion (Hunt

11Specifically, E11 = 1
2π

∫
ρ11(r)e−ikrdr and D11 = 2σ2[1− ρ11(r)] following a few assumptions.
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Figure 62. Scale-dependent turbulent energy based on (a) the streamwise velocity spectrumE11 as a function of streamwise wavelength
Λx and (b) second-order streamwise structure function D11 as a function of streamwise separation rx. The coherent structures associ-
ated with each scaling region are given in (b), where the inertial subrange structures are not well understood. From hotwire measurement
for the Reτ = 10 100 mesh roughness case at z= 0.15δ.

et al. 2014), and strain self-amplification (Carbone & Bragg 2020), to name a few. Most of these examples
are directly related to the strain field. Perhaps controversially, I propose separating the energy cascade from
the inertial subrange power law behavior, or at least avoiding an assumption of mutual inclusivity. The iner-
tial subrange in D11 contains no information relating to how energy is transferred to smaller scales. Rather,
E11 as a statistic describes the contribution of each wavelength (or separation distance for D11) to the overall
velocity variations. Given the intermittency and clustering of the strongest velocity gradients into thin shear
layers, it is likely the properties of these shear layers are critical to the distribution of velocity difference
captured by E11 and D11. In this sense, these statistics help to answer the following question: what is the
physical spacing between the shear layers, i.e. how many of these layers, on average, are present within a
given distance?

Experimental evidence, both here and in previous studies, suggests the shear layers in boundary layer
turbulence have average thickness λT and length L (de Silva et al. 2017), where the latter corresponds to
the size of the velocity structures bounding the shear layers. In the structural representation of the energy
spectrum, these average properties seem to constitute a gap within the inertial subrange. However, the shear
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Figure 63. Color plot of streamwise velocity isolating a single internal shear layer. The black contour lines are the approximate limits
of the shear region. From PIV measurements for the Reτ = 12 300 smooth wall case. The axes are scaled such that a 1:1 aspect ratio is
maintained.

layers do not form along a straight path, and instead their shape exhibits fractal-like behavior, which has
been a subtopic of turbulence research for some time (Mandelbrot 1974; Sreenivasan 1991; Meneveau &
Sreenivasan 1991). The average fractal dimension increases with wall-normal position (de Silva et al. 2017),
perhaps due to increasing time scale of the structure. Consider the example internal shear layer in figure 63,
where the streamwise extent shown is one integral length x = L. The shear layer is significantly thicker
on the left side of the figure, where it may be connected to the spanwise edge of a velocity structure that
only partially extends into the measurement plane. The signal u(x, z=0.1δ) passes through the same shear
layer numerous times within one integral length, and the separation distance between crossings are generally
within the inertial subrange λT < x < L. Each of these crossing produces a significant velocity gradient that
contributes to the scale-dependent E11 and D11 statistics. I therefore believe the convoluted internal shear
layers where the velocity gradients are concentrated may be important to the self-similar power law of the
inertial subrange.

These shear layer crossings do not directly reflect the down-scale energy transfer, but the fractal geometry
may be a consequence of the transfer. This topic, and small-scale dynamics in general, are not my area
of expertise. The possible connection between the energy transfer and the shear layer geometry warrants
future research, hopefully in collaboration with researchers who have greater knowledge on the subject.
Nevertheless, the results in §7.1 suggest the coherent structures associated with the energy cascade are related
to the UMZ-ISL self-organization. The local strain field around each ISL leads to energy transfer from the
relatively uniform velocity structures into the shear layer. The small-scale structures embedded within the
shear layer, e.g. vortices and possibly other viscous structures such as dissipation sheets, then do the work of
directly dissipating the energy. This turbulent energy pathway is diagrammed in figure 64.

Previous studies have proposed similar structures to be related to the cascade in the log region, specifi-
cally streamwise rolls (Q2–Q4 pairs) and a corresponding vortex cluster (Flores & Jiménez 2010; Jiménez
2012). The rolls contribute to UMZs as depicted in figure 61, and the vortex cluster is qualitatively similar
to the ISLs with embedded vortices. In this framework, the interior of UMZs lack the little whorls described
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Figure 64. Diagram of turbulent energy transfer across scales using the streamwise velocity spectrumE11 from figure 62. The classical
description involves transfer to incrementally smaller eddies. The present results suggest a direct transfer from large-scale velocity
structures to shear regions of thickness O(λT ) and length O(L).

in Richardson’s poem, which does not account for the intermittent nature of the turbulence organization.
Tsinober (2001) previously pointed out that a more accurate poetic description is given by Betchov (1976).
Betchov’s words below (1976, p. 845) are certainly better aligned with the present observations and the
phenomenology proposed in this chapter:

Big whirls lack smaller whirls,
to feed on their velocity.
They crash and form the finest curls
permitted by viscosity.

One necessary clarification is that these ‘finest curls’, i.e. internal shear layers and embedded vortices, are
long-lived features in boundary layer flows. The evidence here suggests the longevity is facilitated by strain
and possibly stretching. In other words: the whirls strain, the curls stretch, and develop sinuosity.



8 Concluding remarks

Congratulations, we made it! We endured a snowy blizzard and overcame a mountain of clichés. Readers
who have skipped ahead to this point will not be rewarded with an exhaustive summary. Rather, the primary
focus of this conclusion is an outlook on future research efforts.

The present thesis used extensively the UMZ framework introduced by Meinhart & Adrian (1995), which
identifies the organization of the boundary layer outer region into large-scale velocity structures and thin
shear layers. The main utility of the framework, in my opinion, is its ability to comprehensively detect the
properties of this organization. Indeed, the comparison of UMZ properties across a range of flow conditions
in chapter 5 revealed the connection between the structural organization and the mean velocity profile. Yet the
current framework is unable to detect certain details such as axial strain, which may be critical to the dynamic
interaction of UMZs and ISLs based on my interpretation in figure 61. In this regard, a logical progression of
UMZ analysis is to extend the detection of UMZs beyond u structures in the x−z plane to additional velocity
components and in three dimensions. Previous works have already established the relationship between
UMZs and hairpin-type packets (Adrian et al. 2000b), bulges (Saxton-Fox & McKeon 2017), momentum
streaks (Hwang & Sung 2018), and shear stress events (Laskari et al. 2018). Extending the UMZ detection
to additional velocity components will provide a more quantitative connection to streamwise rolls, sweeps,
and ejections. With additional details, we may also learn that certain UMZ structures, especially in the wake
region, are not well described by any current structural classification.

Given current experimental capabilities, analysis of UMZs in three dimensions will likely be limited to
numerical simulations (see, e.g., Chen et al. 2020). The Reynolds number is then limited to the moderate
values afforded by DNS, i.e. Reτ∼O(103), unless it is demonstrated that LES can properly resolve the
internal shear layer dynamics. Studying the UMZ-ISL organization in three dimensions is necessary for
further exploring the possible scale interactions identified in chapter 7. Fortunately, these interactions appear
to be independent of Reynolds number based on the range of cases studied here, where the results using the
DNS of Sillero et al. (2013) are in agreement with the higher-Reynolds-number experiments.

The second utility of the UMZ-ISL framework, and perhaps the more important for practical advance-
ments, is reduced-order modeling. The analysis of de Silva et al. (2016) and in chapter 4 showed the UMZ-
ISL organization to be statistically robust: turbulence within the detected UMZs is small, and a majority of
the shear and vortices are aligned with the detected ISLs. Statistics can then be approximated using only
information on the UMZ size and velocity and ISL size. The approximation is reasonably successful for
velocity statistics governed primarily by large-scale features (Bautista et al. 2019), but would underestimate
velocity gradient statistics which are associated with the dissipative scales. A reduced-order UMZ represen-
tation of turbulence is therefore more useful as a kinematic model similar to the AEM (Marusic & Monty
2019). The stochastic properties of the UMZs and ISLs presented in this thesis can be used to improve the
predictions of the existing AEM and UMZ models.
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For such a model to be of practical use in atmospheric sciences, the effect of buoyancy on coherent struc-
tures and the UMZ-ISL organization must be understood. Qualitatively, the UMZs become shorter (in x)
and more inclined under increasingly positive buoyancy as convective cells form (Salesky et al. 2017). For
negative buoyancy in stably stratified flows, the shear layers become less inclined, but the primary turbulence
generation is still by shear production (Sullivan et al. 2016; Shah & Bou-Zeid 2014). A more quantitative
analysis of the changes in the UMZ and ISL properties for each thermal stability case is warranted. Observing
how buoyancy effects lead to changes in the structural organization and subsequent changes in the velocity
profiles could provide a better phenomenological understanding of empirical similarity equations (Monin &
Obukhov 1954) for which the theoretical basis is limited (Katul et al. 2011). A stochastic approach to describ-
ing the structural organization of atmospheric turbulence could also have implications for many atmospheric
models, which typically use mean parameterization that does not account for the full range of flow states.

While the modeling aspect of the work is left as a long-term research goal, the prospect at least seems
feasible. In neutrally stratified conditions, the present thesis provides convincing evidence that the organiza-
tion of outer region structures is universal in accordance with Townsend’s similarity hypothesis (1976). The
apparent universality makes it possible to extend a structural model to any flow conditions so long as the
appropriate parameters are known. If scaling behavior can be attributed to caring, the large-scale velocity
structures only care about the wall shear stress (uτ ) and their position within the flow geometry (z/δ), and
the shear layers likely only care about the local large-scale properties. This personification may seem unsci-
entific, but for me it is the only natural conclusion to a close five-year companionship with boundary layer
turbulence.
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Jiménez, J. (2018). Coherent structures in wall-bounded turbulence. J. Fluid Mech., 842, P1.
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