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Abstract

This work performed for the research describes in this dissertation concerns particle

entrainment in two common particle-fluid flows in nature: 1) bedload transport in rivers,

and 2) debris flows in steep upland regions. The bedload transport work addressed here

concerns height-dependent entrainment from a bed of a channelized flow. Towards this,

we perform distinct element method (DEM) simulations to study the roles of particle

size and fluid flow on the transport rate, bed surface variations, and depth-dependent

particle entrainment. We do so in the context of a theoretical probabilistic formulation

derived to better capture spatial variation in sediment exchange between bed material

load and alluvial deposits (Parker et al. (2000)). Our findings allow us to provide a

link between the longitudinal bedload transport rate with vertical bed surface statistics

and provide closure for a theoretical model designed to model transport and bed-surface

exchange in the presence of bed variabilities. The debris flow erosion work here focuses

on the effect of grain size distribution of a debris flows on the rate of entrainment of bed

material. Towards this, we perform several experiments in a laboratory flume where

we measure the relative roles of inclination angle, bed composition, and average flow

composition on average and instantaneous erosion dynamics. Most significantly, we find

that the infiltration of fine particles into a coarse bed can markedly increase the rate

of erosion. Further, the infiltration rate is maximized for intermediate concentrations

of small particles in the flow. We show this is due to the interplay of two simultaneous

mechanisms: (1) segregation dynamics known as kinetic sieving in the shear flow when

there is sufficient agitation of the coarse particles to allow the small particles to sink

into the bed and (2) correlated interparticle forces which create sufficient agitation

only with an adequately high concentration of coarse particles. In this presentation

we demonstrate how a better understanding of these two processes can contribute to a

better understanding of the “sediment cycle” in earth-surface dynamics.
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Chapter 1

Introduction to the tale of two

erosion processes

Fluid flows carry particles over a wide range of scales in natural settings, from the trans-

port of rain droplets in air and tiny organisms in oceans to spray flows that distribute

a liquid over an area. In some cases, for example, for small particles of low densities,

the particles are carried passively by fluid. In other words, their motion is essentially

identical to the fluid around them. However, in most cases, the particles have their

own complex motion, distinct from surrounding fluid, due to their inertia which prevent

particles to purely follow the motion of fluid. In the latter case, both qualitative and

mathematically quantitative descriptions of their motion requires consideration of each

type of material – minimally fluid and solid – to describe the dynamics of the system.

To describe the macroscopic behavior of the system, in many of these cases, dynamics

at particle scale needs to be determined.

Among many fluid-particle transport in nature, there are two forms of transport,

that despite their considerable impacts on public safety, environmental sustainability,

infrastructures, and landscape evolution, a physics-based understanding of their dynam-

ics is not reached that can describe many phenomena occured within these systems. The

1
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first of these two, is the sediment transport in rivers which affect the environment and

landscape and occurs in the forms of bedload transport, suspended load transport, and

washload transport. Bedload refers to the particles in the rivers that move closely to the

bed surface (often in contact with the bed) in the forms of rolling, sliding, or saltation.

Depends on the flow magnitude in rivers, the size of bedload particles varies but often

is dominated by coarser particls such as gravels and cobbles. Suspended load are those

particles that are mostly not in contact with the bed and carried with surrounding fluid

or big jumps. Bedload and suspended load particles forms the bed material loads. Fi-

nally, the wash-load particles are those very fine particles that are washed by flow and

almost never in contact with the bed and their motion can be described by the motion

of the fluid.

The second type of fluid-particle flows are those gravity-driven flows of boulders,

gravels, and mud down hillslopes often called “Debris Flows”. These massive and rapid

flows of poorly sorted particles originate, usually, from the steep upland regions. The

particles in debris flows vary in size, from microns (e.g. clay and silt) to meters (e.g.

boulders) (Takahashi (2009)). In addition, debris flows can have a significant amount

of organic material. For example, those originated in forested steep can have up to 60%

organic debris (Hungr et al. (2001)) (see Fig. 1.1 for a schematic comparison of these

two transport processes).

At the first glance, these two sediment transport processes may look similar as a

mixture of particles with fluid is transported within a channel. However, there are

certain differences between these two transport processes which distinguish them from

each other. A few of these differences are as follows:

• Material: Debris flows have a high concentration of particles in motion which

can exceed 50 percent while the concentration of particles in bedload transport

is usually less than 10 percent. In addition, the particles involved in bedload

transport are usually narrow in size (e.g. gravel or cobble particles) while debris
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Figure 1.1: Schematic illustration of (a) bedload transport, (b) debris flows. Different inclina-
tion angle is used to emphasize on the slopes these flow occur. Particles are not scaled.

flows have a wide range of particles from clays to boulders.

• Dominant driving force on particles for transport: Debris flows occur on

steep slopes where the main driving force is the gravity while the natural rivers

where the bedload transport occurs have usually a very mild slope (0.01-0.1%).

For this reason, the main driving force on particles in bedload transport is the

fluid force.

• The span of particle movement: Most of the particles transport occurs near

the bed in bedload transport while in debris flows, particles are in motion in the

whole overlying flow, from the bed to the surface of the flow.

• Type of dominant particle movement: Transport of particles in bedload is

highly episodic, especially at low transport stages which are the common condi-

tions in natural rivers. This episodic behavior means the particles have a chance

of entrainment and once they are entrained, they can move for some distance
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downstream before being deposited. This behavior of bedload motions has moti-

vated some researchers to consider the stochastic framework in studying of these

processes because the mean parameter cannot adequately describe the transport.

On the other hand, the motion of particles in debris flows are usually continuous,

which means once they are entrained, they keep their motion until they face some

kind of flow resistance such as the change in slope. Due to this characteristic of de-

bris flows, the stochastic framework is less considered in describing the motion of

particles in flow and instead, researchers use depth-average equations to describe

the dynamics of these flows (Iverson (2012)).

• Rheology of flow over erodible bed materials: The interstitial fluid in bed-

load transport is water while in debris flow is mud due to the high concentration

of clay and silt particles. The interstitial fluid in bedload transport where the con-

centration of particles is low behaves like a Newtonian fluid while in debris flows

where high concentration of particles is common, the interstitial fluid behaves like

non-newtonian fluid. While different models (e.g. Bingham model) are used to

describe the rheology of debris flows, it is believed the interstitial fluid behaves

like a shear-thinning fluid where the viscosity of fluid decreases under shear strain.

This study aims to contribute in providing a physics-based understanding of the

flow dynamics of these two processes. One underlying parameter to understand the

dynamics of these flows, is to understand how the particles erode and becomes part of

these flows. In this regard, the focus of this study is to understand the statistics of the

entrainemnt rate in these flow and the parameters that control this rate.

With this brief introduction of the bedload transport and debris flows, we present

our methodology to study these processes and our results regarding the statistics and

flow dynamics of these processes in the next chapters. In particular, this dissertation is

organized as follows:

• Chapter 2 provide a historic review of the frameworks used by researchers over
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the last few decades to describe the mass balance of bedload particles with the

strength and weakness of each framework.

• Chapter 3 describes the methodology used by author to study the bedload trans-

port. In particular, this chapter presents our Distinct Element Method (DEM) to

simulate the bedload transport.

• Chapter 4 provides the results obtained in this study regarding the statistics of the

bed surface and particle entrainment and how these statistics change for different

size particles and hydraulic conditions.

• Chapter 5 provides a discussion of results presented in chapter 4.

• Chapter 6 provides a historic review of the attempts made by researchers to un-

derstand the particles erosion by debris flows through experimental and in-field

studies.

• Chapter 7 describes the experimental procedure and the methodology used in this

study to investigate the important parameters that control the entrainment rate

of debris flows.

• Chapter 8 presents the results obtained through the experimental studies regarding

the entrainment rate of debris flows. This chapter ends with a discussion of these

results.

• Chapter 9 summarizes the main conclusions of this study and suggest the potential

improvements of this study with future investigations.



Chapter 2

Literature review of mass balance

of sediment in bedload transport

Predicting the evolution of alluvial channels is a significant problem for environmental

restoration and also for adaptation under ever-changing climate conditions. To predict

spatial and temporal evolution of alluvial channels, modelers combine (1) equations ex-

pressing the conservation of mass and momentum of the fluid flow (e.g., Saint-Venant

equations, or similarly well-known representations); (2) equations expressing the con-

servation of mass along the sediment bed surface (e.g., the Exner equation), and (3)

equations expressing a dependence of particle transport on average fluid stress on an al-

luvial bed (e.g,. by Meyer-Peter and Muller (1948); Ashida and Michiue (1972); Wilcock

and Crowe (2003)). This work is concerned with the manner in which we relate spa-

tial gradients in sediment transport with temporal height changes in a sediment bed,

primarily associated with (2) above. For this we turn what is often called “the Exner

Equation,” essentially conservation of sediment mass.

The Exner equation is named after the Austrian physicist, Felix Exner, who proposed

this equation for the first time, through his work on sand dunes. In its simplest form,

assuming uniform particle density and constant solid fraction throughout of the bed,

6
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the Exner equation can be expressed as:

(1− λp)
∂η(x, t)

∂t
= −∂q(x, t)

∂x
(2.1a)

(1− λp)
∂η(x, t)

∂t
= D(x, t)− E(x, t) (2.1b)

Here, q is the volumetric transport rate of sediment per unit width and λp is the bed

porosity. We use x as the direction of average transport, so ∂q/∂x is the spatial gradient

of sediment transport downstream. If negative, then it contributes to a growth in local

bed height, η, over time t (Fig. 2.1(a)). As indicated, the Exner Equation is sometimes

expressed in what is typically called the entrainment form using the difference between

local rates per unit area of deposition D and entrainment E.

While either form provides an extraordinarily efficient way to capture average ele-

vation changes in a sediment bed, neither has the functionality to reflect any variations

associated with grain size distributions, nearly universal in natural rivers. Therefore,

this equation cannot capture a certain phenomena observed in river channels such as

the vertical sorting and bed surface composition (Parker (1991a)). To explain these

phenomena, modellers need to write this equation at particle scale (i.e. averaged over

1 to 2 particle sizes), which prevents an efficient way of modelling these phenomena.

To resolve this problem, Hirano (1971) suggested that the particles’ size distribution

should be divided into several classes and the mass balance be written for each class

separately. The idea of dividing the particle’s size distribution into several classes is first

used by Einstein et al. (1950) to describe the transport rate of sediments. He suggested

that the transport rate of each class of particles in a mixture can be calculated as the

transport rate of that class in a uniform mixture multiplied by the fraction of that class

in the mixture. This assumption, however, does not take into account the effects of

sorting and shielding of fine particles by bigger particles.
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To account for possible sorting of particles in a non-uniform mixture while formulat-

ing the sediment mass conservation, Hirano (1971) introduced into the model framework

a thin layer just below the bedload transport layer, known as ”active” layer (also known

as “mixing” or “exchange” layer in the literature). Hirano’s active layer based model

includes explicit consideration of a finite-thickness (1 - 3 particle sizes in the absence of

bed forms to prevent any formation of vertical pattern) interface layer between parti-

cles in transport and bed deposit. Thus, the bed deposit is divided in two parts: the

interface or active layer and the substrate. In tracking the concentration of one particle

type i (e.g., color only, density, or size), we can write the active-layer version of the

(entrainment form) Exner equation as:

(1− λp)
[
fL,i

∂η

∂t
+ (fa,i − fL,i)

∂La
∂t

+ La
∂fa,i
∂t

]
= Di − Ei (2.2)

La is the active layer thickness (Fig. 2.1(b)); fL,i is the volume fraction of particles

of type i in the active layer at the interface of the active-layer with substrate, and fa,i

is the volume fraction of particles of type i in the active layer. Di and Ei represent

volumetric sediment deposition rate and sediment entrainment rate, respectively, per

unit area. Porosity λp is approximated as uniform from the bottom of the transport

layer and active layer and throughout the substrate. The volume fraction of particles

of type i in the active layer is approximated as uniform.

This model framework tracks entrainment and deposition of a particular grain type i

in substrate-transport exchange translated somewhat through the finite-thickness active

layer. For example, during a depositional period, the grain size characteristics of the

particles in transport do not necessarily equal the characteristic of the top of the bed.

Rather, the characteristics of the sediment transferred to the substrate during deposition

are generally a combination of that in the active and transport layers and are assigned

in a manner that can differ from one model to the next (Ferguson (2003)).
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Figure 2.1: Schematic representation of the bed and the difference between discrete and
continuous models: (a) a representative sketch of a bed, (b) Discrete model with active
layer formulations, and (c) continuous model proposed by Parker et al. (2000).

Since the introduction of this discrete layer framework of sediment mass balance,

it has provided a framework for the community to explain some of the phenomena

observed in nature such as downstream fining in river (e.g. Parker (1991a,b)), the

long-term evolution of a gravel-sand transition (e.g. Ferguson (2003)), sedimentation in

lakes and reservoirs (Cui et al. (2006b,a)) and the prediction of the spatial distribution of

sediment sizes in an alluvial deposit, i.e. the grain size stratigraphy (Ribberink (1987)).

While this framework captures some aspects of grain size segregation and associated

stratification that occur during depositional processes at the associated timescales, it

does not have the capability to account for exchanges that can happen due to grain size

effects with what can be somewhat shorter timescales. An example of this occurs when

smaller particles in a mixture find “pockets” in a bed at a statistically higher rate than

do larger neighboring particles and push the larger particles into transport through a

“squeeze-expulsion” mechanism (Savage and Lun (1988)). The time scale of this process

depends more on the particle dynamics time scales than it does on depositional scales

and thus cannot be fully captured through the active layer model.

Under equilibrium conditions, restrictions of the active-bed layer formalism become

even more apparent. The exchange of sediment among layers can only be associated with

changes in the mean bed elevation. During steady conditions (∂q/∂x = 0, and D = E)
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this framework predicts no exchange at all between substrate, active, and transport

layers (Viparelli et al. (2010a,b)). Also, the discrete representation of the deposit lim-

its entrainment and deposition to the topmost part of the bed. In summary, active

layer-based models cannot account for vertical sediment fluxes associated with bedform

migration, cannot reproduce the infiltration of fine particles in a coarse substrate, fail

to reproduce the fine details of the alluvial stratigraphy and cannot capture tracer and

contaminant dispersal (Blom et al. (2008); Parker (2004); Pelosi et al. (2014)).

To resolve the problems associated with the active layer framework, Armanini (1995)

took a significant step forward and developed a new sediment continuity formulations

without discretizing the bed deposit into several layers. Armanini’s depth-continuous

model considers the instantaneous sediment mass balance at the bed surface for each

class of sediments:

β̃j
∂h

∂t
= −

˜∂qj
∂x

(2.3)

where β̃j represents the instantaneous percentage of class j at the bed surface that

includes any possible porosity of the bed. q̃j represents the instantanous transport rate

of class j. That is, “˜” refers to the instantaneous quantities. h is the instantaneous

bed elevation (see Fig. 2.1). Equation 2.3 neglects the storage of sediments in the

water coloumn; however, Armanini (1995) included the term associated with storage

of sediments in the water column in his formulation but for this study, we assume the

storage of sediments in the water column is negligible.

Armanini (1995) divided each term in equation 2.3 into an average and fluctuating

quantity. Then, he took an ensemble average of the parameters (similar to what is done

for turbulent flows to derive Reynolds Average Navier Stokes (RANS) equations) and

introduced a new term, that he called it a diffusive term, to explains the vertical flux



11

of particles (β′j
∂η′

∂t ).

βj
∂η

∂t
+ β′j

∂η′

∂t
= −∂qj

∂x
(2.4)

Here, η′ = h− η (see Fig. 2.1). He treated the diffusive term using the Boussinesq

diffusive model:

β′j
∂η′

∂t
= εz

∂βj
∂z

(2.5)

where εz is a diffusion coefficient.

Although this model can explain some of the vertical fluxes occurred within the

bed in the small time-scale, this model would predict the uniform distribution of all

particle sizes in the vertical direction in the long time-scale, which is not in agreement

to what has been observed in nature and experimental studies (Blom et al. (2008)).

While the specific model proposed by Armanini (1995) had limitations, the idea of

a depth-continuous model of sediment continuity that he proposed was later used by

Parker et al. (2000) in another form.

Parker et al. (2000) proposed a new continuous framework which they referred to as

“the probabilistic Exner equation”. This new framework captures bed height variations

and erosion / deposition height variations in a probabilistic sense. In comparison with

the “active layer approach”, which models a likelihood of entrainment with depth as a

step function, this probabilistic approach allows the likelihood to vary continuously with

distance in the bed (Fig. 2.1). At the same time, this framework has the capability to

represent and track explicitly the fractions of particles of different sizes as well as other

characteristics. While this framework is both efficient and flexible, there are unresolved
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closure problems we address herein.

We can express the conservation of sediment volume at elevation z in the deposit

for uniform materials in the following form:

(1− λp)pη(x, z, t)
∂η(x, t)

∂t
= pd(x, z, t)×D − pe(x, z, t)× E (2.6)

pη is a height-dependent probability density, essentially, the probability that the

instantaneous (or local) bed elevation is at height z at time t. pd and pe are the prob-

ability densities that account for bed-normal, depth dependent deposition and entrain-

ment rates. This probabilistic form of the Exner equation allows for bedload-substrate

particle exchange below (or above) the average bed surface, common in cases of bed

surface variability associated with roughness, bedforms, etc. (as in Fig. 2.1). In other

words, the bed-normal depth dependences of pd and pe represent expected variability in

deposition and entrainment associated with short term changes of local bed level asso-

ciated with sediment transport processes as particles are alternately plucked from and

deposited into the bed (Figure 2.1). The form allows for segregation in mixtures with

significant spatial variability (bed roughness and bedforms). And the form allows for

bedload-bed exchange under steady state. This framework offers all this without need

to explicitly represent short-term variability. However, for its application to alluvial

problems, the framework needs closure, in other words, functional forms for pd, pe, and

pη.

Wong et al. (2007) took the first significant steps toward testing the probabilistic

framework and deriving expressions for pd, pe, and pη. They performed laboratory

flume experiments using gravel particles of a narrow, lognormal size distribution with

d50 = 7.1 mm and dg = 7.2 mm where d50 is the median particle size and dg is the

geometric mean particle size. They performed experiments under steady state, lower-

regime plane-bed conditions. To find pη, they used a sonar-transducer system to measure
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local time-dependent bed elevations. In doing so, they found that pη follows a Gaussian

distribution whose standard deviation sη depends on bed shear stress τo:

pη(h|η, s2
η) = pη(z̃|0, s2

η) =
1√

2πsη(τ)
exp

[
−1

2

(
z̃

sη(τ)

)2
]

(2.7)

Here, following Wong et al. (2007), z̃ = η − h (see Fig. 2.1(a)). Unfortunately pd

(= pe in steady state conditions) were inaccessible directly due to the opacity of the

particles and associated difficulty of identifying initial particle movement and the asso-

ciated height just prior to that movement. Instead, based in part on depth-dependent

entrainment of tracer particles, Wong et al. (2007) proposed an elevation-specific density

for entrainment from their data:

pd(z̃) =
1

2sη(τ)
exp

(
−|z̃ − z̃e − z̃n|

sη(τ)

)
(2.8a)

pe(z̃) =
1

2sη(τ)
exp

(
−|z̃ − z̃e + z̃n|

sη(τ)

)
(2.8b)

z̃e is an offset Wong et al. (2007) suggested characterizes steady state conditions

(i.e., mobile-bed equilibrium). They proposed that maximum entrainment was likely to

occur just below the average bed surface (z̃e ≥ 0). z̃n an additional offset function that

characterizes non-equilibrium conditions. Their experimental data suggest z̃e = 0.25d50.

Since their experiments involved equilibrium conditions, no value for z̃n was available.

These experimental data provided the confidence that this framework would be ef-

fective in capturing depth-dependent phenomenology in bedload transport conditions.

However, physical experiments to gather the additional data needed to close the equa-

tions are extremely limited. Measurements of bed height such as those performed by
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Wong et al. (2007) are limited to the absolute local surface of particles and cannot

distinguish between moving particles and particles in the bed. Modern techniques such

as index-matched tracking of subsurface particles show promise but at present have not

been performed to address these issues.

In this work, we aim to close the probabilistic Exner equations using computational

simulations based on the distinct element method (DEM). In DEM simulations, we can

track the motion of each particle at every time step and thus can provide robust particle

location and velocity at each time step toward the derivation of local bed height and

elevation-specific erosion and deposition densities. Additionally, since different effects

can be “turned on” and “turned off” in DEM simulations, we can systematically explore

the importance of specific system details, including grain size distribution, grain shape,

average stress on the bed, and turbulent fluctuations. Therefore, in this study, we aim

to, first, conduct computational experiments with similar conditions to the physical

experiments performed by Wong et al. (2007) in terms of grain size distribution and

fluid properties and bed shear stress. Our goal by conducting this first set of experiments

is to, first, validate the form found by Wong et al. (2007) for the bed surface variations

and second, to find a form for the elevation-specific entrainment of particles. Then, this

study aims to extend the first set of experiment to a wider range to include different size

particles and turbulent fluctuations. Through these experiments, we aim to the provide

functional forms for pe and pη to close the probabilistic framework and to find the role

of particles size and turbulent fluctuations on the forms of these parameters.

In the next chapter, we present our simulations set-up including the particle size

distribution and baseline fluid model.



Chapter 3

Computational Experiments

Toward determining how the statistics of bed height and entrainment height vary with

bed shear stress and particle size, we performed extensive computational distinct ele-

ment method (DEM) experiments. DEM was first introduced by Cundall and Strack

(1979) to model systems of particles. Since the introduction this method, it has been

adopted by many researchers in a wide range of application (Zhu et al. (2008)).

In this technique, the motion of each particle in the system is determined with New-

ton’s equation of motion by considering the contact and non-contact forces. Depending

on the application, different forces are considered. For our simulation, we consider three

sets of forces: (1) Those due to contacts with other particles, (2) those associated with

fluid-particle interactions, and (3) body forces (specifically, the weight of each particle).

As such, we can use the following governing equations to describe the translational and

rotational motion of each particle:

mi
dvi
dt

= ΣjF
c
ij + ΣkF

nc
ik + F fi + F gi (3.1a)

Ii
dωi
dt

= ΣjMij (3.1b)

15
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Here i is the subscript for particle i. mi, vi, Ii, ωi are the mass, velocity, moment of

inertia and rotational velocity of particle i respectively. F cij , F
nc
ik , Mij are respectively,

the contact force, non-contact force such as van der Waals and electrostatic forces, and

torque on particle i by particle j or k. F fi and F gi are the fluid and gravitational force

on particle i respectively. Equation 3.1 is a general form for the equation of motion of

a particle among other particles in a fluid.

𝑅𝑖

𝑅𝑗

𝛿𝑛 𝜔𝑗

𝑣𝑗

𝜔𝑖
𝑣𝑖

Figure 3.1: Schematic illustration of two particles in contact with each other with arbitrary
translational and rotational speed.

Several researchers have implemented this technique in studies of bedload transport

to provide more information at particle scale between fluid and particles which cannot

be captured with current experimental facilities. Early models developed for this pur-

pose used relatively simple fluid models to simulate the interactions between fluid and

particles. For example, Jiang and Haff (1993) used a single “slab” or “layer” to model

the fluid flow. In their model, the momentum equation was solved at each time step

for fluid layer by considering only forces due to shear stress and drag forces on parti-

cles. Later, Jiang (1995) took a similar approach but developed a multi-slab model to

account for spatially variable momentum exchange between particles and fluid during

intense bedload transport. McEwan et al. (1999) used the multi-slab model developed
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by Jiang (1995) to study the bedload transports at lower transport stages close to the

critical thresholds.

With these relatively simple models, new information were provided which enhanced

the understanding of the underlying mechanism of bedload transport. For example,

Jiang (1995) found during the intense bedload transport, the shear stress is linearly

proportional to shear rate in the lower sediment layers which leads to an exponential

velocity profile for fluid within these layers. McEwan et al. (1999) found a need to

distinguish between what they called a dynamic roughness, which is a roughness caused

by moving grains, and a static roughness, that is the roughness caused by stationary

grains on the surface, in how they influenced flow and transport rate. Based on this,

they found dynamic roughness contributes more to flow resistance for moderate to high

transport rates while in low transport stages, static roughness plays a significant role.

With further development in computer technology and simulation techniques, re-

searchers implemented more complex fluid models. Schmeeckle and Nelson (2003) ex-

plicitly included mechanisms for representing turbulent fluctuations and shielding of

downstream grains by upstream grains. They performed simulations where in which

they represented their fluid velocities with experimental measurements of fluid over a

mobile bed under a low transport stage. They calculated a modified local fluid velocity

each particle ”experienced” (through a drag force) according to:

Uxr =

(
uxerf

(
Id

5hp

)
+ u′x

)(
1− vxw

ux

)
(3.2)

Here Uxr is the reduced downstream velocity including the mean ,ux, and fluctuating

u′x components, and vxw is the component of the velocity of the wake particle in the

downstream direction. hp is the height of the protrusion of the wake particle above that

of the top of the bed particles and Id is the downstream distance between two particles.

When they incorporated this locally defined velocity in the equation of motion in their
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DEM simulations, they found their simulations follow the transport relation of Luque

and Van Beek (1976).

Drake and Calantoni (2001) considered the bedload transport at intense transport

stages, often called sheet flows, in coastal regions where the flow is typically bidirectional

and oscillating rather than the unidirectional flow of rivers. To model the transport, they

used multi-layers of fluid which exchange momentum via eddy viscosity. Each layer of

the fluid exerts drag, buoyancy, added mass and pressure gradient force on the particles

within them. Their model was fully coupled which means the particles influence the

motion of fluid layers by exerting the equal and opposite force on them. Like the most

of DEM simulations for bedload transport, they neglect the lift and Magnus forces.

More recently researchers have used more complex models for fluid phase to provide

a more realistic simulations of bedload transport. Most of these studies have considered

a discrete description for solid phase and a continuous description for fluid phase (La-

grange/Euler). For example, Ji et al. (2013) studied the influence of turbulent coherent

structures on particles entrainment by using the direct numerical simulation (DNS) of

turbulent flow combined with discrete element method to model the particle motion.

Maurin et al. (2015) used the same framework, Lagrangian description for the solid phase

and Eulerian description for the fluid phase, to propose a model for studying steady

bedload transport. They used DEM to model the solid phase and spatially averaged

two-phase Navier-Stokes equations to model the fluid phase. Schmeeckle (2014) numer-

ically investigated the transport of sand particles by combining a turbulence-resolving

large eddy simulations (LES) with DEM. In this simulation Schmeeckle (2014) results

showed a similar relationship to that of Meyer-Peter and Muller (1948) relationships

modified by Wong and Parker (2006), specifically: q∗ = 3.97(τ∗ − 0.0495)1.5. Here, q∗

is the normalized transport rate as we define later in Eq 4.2, and τ∗ is the normalized

bed shear stress.

More the focus of Schmeeckle (2014) paper of DEM simulations with a fully coupled

LES fluid model was on the bed roughness which is a measure of frictional resistance
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that the flowing water experiences. His study indicates the bed roughness increases as

the bed transport rate increases. He also found the peak of transport rate occurs near

the bed surface where a large number of particles are in motion with relatively small

velocity. This result illustrates the transport rate is governed more by the number of

particles in motion rather than the velocity of particles which is in agreement with other

studies (Roseberry et al. (2012); Ancey (2010)).

All these works show the strength of the DEM technique in studying of the bedload

transport. Therefore, we use this technique to simulate the bedload transport in this

study. We introduce our DEM details in the next section.

3.1 Our DEM details

Our DEM simulations are built on an in-house DEM model developed first by Hill and

Tan (2017). This model uses a one-way coupling between the particles and fluid and

considers the most important forces relevant to the bedload transport, in most ways

similar to the framework introduced by Schmeeckle and Nelson (2003). We chose this

framework for its relative simplicity in the baseline representation of fluid, particles, and

fluid-particle interactions. This then allowed us to study how varying this framework

affected the outcome of the transport results in a systematic way.

For completeness we describe the framework we use in detail here and point out

deviations from the model of Schmeeckle and Nelson (2003) when they arise.

3.1.1 The equation of motion for our DEM simulations

Similar to Schmeeckle and Nelson (2003), at each time step we calculate the force ~Fp,k

on each particle k according to:

~Fp,k = ~Fc,k + ~Fg,k + ~Fb,k + ~Fm,k + ~Fd,k (3.3)
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~Fc,k refers to the net contact forces which equals to the sum of all forces exerted by

the other particles that are touching particle k, and requires further discussion as we

do shortly in Section 3.1.2.

~Fg,k refers to the gravity force on particle k:

~Fg,k = ρp,k∀p,k~g (3.4)

where ρp,k is the mass density of the particle k, ∀p,k is the particle volume and ~g

represents the gravitational acceleration.

~Fb,k refers to the buoyancy force on particle k:

~Fb,k = ρf∀p,k~g (3.5)

where ρf is the fluid density.

~Fm,k refers to the added mass force on particle k:

~Fm,k = ρf∀p,kcm
d~up,k
dt

(3.6)

where cm is the added mass coefficient and ~up,k is the particle velocity. To calculate

the added mass force, we use cm = 0.5 as suggested by Batchelor (1976) and Drake and

Calantoni (2001), though we note Jiang and Haff (1993) following Landau and Lifshitz

(1987) assumed cm = 0.2.
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~Fd,k refers to the drag force on particle k:

~Fd,k =
1

2
ρfcdAk|~urel,p|~urel,p (3.7)

where Ak = πd2
p,k/4 is the central cross-sectional area of particle k, ~urel,k is a relative

particle velocity, similar to that of the particle relative compared to that of the fluid as

we detail in section 3.1.3, and cd is the drag coefficient that is a function of a particle

Reynolds number (Res) as suggested by Drake and Calantoni (2001):

cd = 24Res
−1 + 4Res

−0.5 + 0.4 (3.8a)

Res = |~urel|dp/ν (3.8b)

where ν is the kinematic viscosity of fluid and given in table 3.1.

Table 3.1: Summary of fluid and particle properties. The properties of particles are
chosen similar to those reported for granite particles.

Property Magnitude

fluid density ρf 1000 kg/m3

fluid kinematic viscosity νf 10−6m2/s

particle density ρp 2650 kg/m3

particle elastic modulus Ep 29 GPa

particle Poisson’s ration νp 0.2



22

3.1.2 Interparticle contact force model

The manner in which we represent interparticle interactions is the way in which our

baseline framework differs the most from that of Schmeeckle and Nelson (2003). While

they used the forces on hard spheres to represent interparticle forces, we used a frame-

work that explicitly represents particle properties as we summarize here. We model the

interparticle contact forces, Fc, using the Hertz-Mindlin contact theory with a damping

component specified by Tsuji et al. (1992) and Coulomb sliding friction. To calculate

~Fc on each particle, we sum over all interparticle contacts; Each interparticle contact

force is calculated in terms of normal and tangential components:

Fn = −knδn3/2 − ηnδn
1
4 δ̇n (3.9a)

Ft = min[−ktδn
1
2 δt − ηtδn

1
4 δ̇t,−µFnδt/|δt|] (3.9b)

As is standard in such a mechanistic model (e.g., see Tsuji et al. (1992)), Fn and

Ft are considered in the normal and tangential directions relative to the interparticle

contact plane, whereas δn and δt are model deformations in these normal and tangential

directions, represented computationally as overlapping regions. Here and throughout

the dissertation, q̇ represents temporal derivatives in any variable q. kn and kt are

stiffness factors, and ηn and ηt represent damping factors, all of which can be calculated

based on particles properties such as particle size, mass, Young’s moduli, and etc. Tables

3.2 define the contact parameters (i.e. ηn and ηt) in terms of the particle properties.

α in Table 3.2 is 0.07 for a coefficient of restitution ∼ 0.9 according to Tsuji et al.

(1992). Table 3.2 defines the contact parameters based on particles effective character-

istics which these effective parameters are defined in 3.3 for two particles.
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Table 3.2: Expressions for contact parameters of our DEM model.

Contact Parameter Expression

kn
4
3

√
ReffEeff

kt 8
√
ReffGeff

ηn α
√
meffkn

ηt α
√
meffkt

Table 3.3: Expressions for effective parameters used in defining the contact parameters.

Effective Parameter Expression

Reff

(
1
R1

+ 1
R2

)−1

Eeff

(
1−ν21
E1

+
1−ν22
E2

)−1

Geff

(
2(1+ν1)(2−ν1)

E1
+ 2(1+ν2)(2−ν2

E2

)−1

meff

(
1
m1

+ 1
m2

)−1

3.1.3 Fluid models

The foundational fluid model used in this study is based on the model used by Hill

and Tan (2017) ,in this, we also differ from Schmeeckle and Nelson (2003) who used

experimentally measured velocities for their simulation results. In this model, the rep-

resentation of bed shear stress τo relies on the well-known expression for what is known

as the “log-law of the wall,” a mathematical expression of the average stream-wise fluid

velocity profile uf,x(z) observed under steady turbulent conditions (see Fig. 3.2:

uf,x(z) =
uτ
κ
ln
( z
z0

)
(3.10a)

z0 = ks/30 = 3.5d50/30 (3.10b)
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In this equation, uτ ≡
√
τo/ρf is the shear velocity, κ = 0.41 is the von Karman

constant, and z0 is the position at which the fluid velocity is zero (uf,x(z0) = 0). As

relatively common, we define z0 in terms of a roughness coefficient, ks, that scales with

a representative particle diameter (e.g., Pope (2001), Schlichting and Gersten (2016),

Van Rijn (1982)). We dynamically locate the position at which uf,x(z) = 0 so that the

distance between the bed surface and the zero-fluid-velocity plane is z1 = 2d50, as we

discuss in Section 3.2.

The fluid model used by Hill and Tan (2017) neglected the turbulent fluctuations and

assumed the fluid velocity in the y− and z− directions are zero. In this study, we use the

same fluid model proposed by Hill and Tan (2017) for many of the simulations, although,

we introduce the turbulent fluctuations into our simulations later to understand the

role of these fluctuations on the bed surface statistics. We explain our fluid model that

consider the turbulent fluctuations in the simulations in section 4.3, but for now we

focus on explaining the relatively simple fluid model used in this study without any

consideration of turbulent fluctuations.

z𝑧0 = 𝑘𝑠/30
𝑧1 = 2𝑑50

 𝑢𝑓,𝑥

Bed Surface (  𝑧 = 0)

Roughened base

 𝑧

Figure 3.2: Sketch of flow velocity profile of the simulated bedload transport.

Since, we neglect the velocity fluctuations for this fluid model, we assume the fluid

velocity in the y− and z− directions are zero and we model the relative velocity in these

two directions between the particles and the fluid, which are used to calculate the added
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mass and drag forces, as the negative velocity of the particles. urel,y = −up,y;urel,z =

−up,z. While we limit ourselves to one-way coupling for the work described here, we

include some shielding effect from upstream particles that theoretically influences the

drag force experienced by each particle in the downstream. We use the experimentally-

derived relationship proposed by Schmeeckle and Nelson (2003):

urel,x = [uf,x(zc)− up,x]× erf

(
ld − hp

5hp

)
(3.11)

In this equation, uf,x(zc) is the fluid velocity from Eq. 3.10a (Fig. 3.2) at a particular

particle center zc, up,x is the downstream particle velocity, ld is the downstream distance

between the center of the particle of concern and its first upstream neighbor, and hp is

the height difference between the topmost part of the two particles.

3.2 Computational Experiment Procedure

To initialize each computational experiment, we first provide a channel bed with a

certain length and width and sufficiently high so that the particles never encounter the

top boundary. We design our channel beds to have a periodic boundary condition in

downstream (−x) and cross-stream(−y) directions which means if a particle exits the

channel in these directions, it will enter the channel from the other side. By performing

various simulations to determine our results were not size limited (see Section 4.1), we

designed our channel for the results reported in this study to be about 50 × d50 long

and 12× d50 wide.

After preparing the channel bed, we introduce the particles into our simulations.

We put 3000 particles (for most of the simulations reported in this study) in a crystal

arrangement and assign a random size to each particle. However, we limit the random

sizes to follow a narrow log-normal distribution. After arranging the particles, we release
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them to drop on the channel bed due to the gravity force. While, we drop the particles,

the forces are limited to gravity and contact forces. Figure 3.3 shows the particles before

releasing and after settling on the bed.

y
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Figure 3.3: Schematic representation of simulated particle in 3D (top row) and 2D
(bottom row) for (a) before dropping, and (b) after particles are settled down.

After giving sufficient time to the particles to settle down, we affix the particles

touching the base of the channel to this bottom surface to create a rough base and

reduce sliding between the particles and the channel base that would otherwise occur.

For similar simulations in terms of the particle size, d50, we use the same initialized

bed to minimize additional uncertainties that might be introduced by local variations

in bed roughnesses. Once the particles in this roughened bottom bed are fixed in place,

we “turn on” the fluid forces.

Part of simulating the fluid forces involves positioning the velocity profile (uf,x(z),

the log-law in Eq. 3.10a), requiring us to determine the location of the bed surface
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(z = z0 + z1 in Fig. 3.2). Towards this, we first divide the particle data from the

simulated flume (i.e., the computational domain) into five rectangular columns, each

the full width of the flume (12 × d50) and 10 × d50 long. Then, we determine the top

of the highest particle in each column, calculate the average of all five, and set this to

be the location of z = z0 + z1 for the fluid velocity profile. Once we have initiated the

fluid velocity, at every time step we calculate all interparticle and fluid forces on each

particle, as noted in Eq. 3.3.

After the initiation of fluid flow, the particles on the surface start to move, primarily

by rolling and also by hopping. As the particles move intermittently, the top surface

can change, and we dynamically adjust the vertical position of the velocity profile ac-

cordingly using the top surface of each particle whose velocity is smaller than that of

the fluid velocity corresponding to the location of its center. After the system reaches

a steady state , we continue the simulations for an additional 20 seconds and report on

transport rate, bed height statistics, and entrainment statistics over this time period.

3.3 Time Steps and Numerical Integration

To track the location and movement of each particle through our simulations, we calcu-

late the translational and rotational acceleration of each particle based on the sum of all

forces and moments on it,at each time step. We integrate these accelerations using the

fourth-order Runge-Kutta method (Chapra et al. (2010)) at each time step to update

each particle’s translational and rotational positions and velocities throughout the sim-

ulation. The fourth-order Runge-Kutta provides a more precise approximation of the

particle’s motion from one time-step to another. This method, in general, is written as

follows:
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yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4)h (3.12a)

k1 = f (xi, yi) (3.12b)

k2 = f

(
xi +

1

2
h, yi +

1

2
k1h

)
(3.12c)

k3 = f

(
xi +

1

2
h, yi +

1

2
k2h

)
(3.12d)

k4 = f (xi + h, yi + k3h) (3.12e)

where h is the time step. For the simulations of this study, y can be the position a

particle, its translational or rotational velocity. For example, if y is assumed to be the

position of the particle, then the k parameters are the velocity of the particle at each

increment of time-steps and defined in Eq. 3.12.

For this study, each computational time step is approximately 5µs. To save compu-

tational time and space, we do not output the particle locations and velocities at each

time step but instead we output these information every 10,000 time steps i.e., every

50ms which we found is sufficient to provide the details of the transport.

With this introduction of our DEM model, we present our results regarding the

bed surface and particle entrainment statistics obtained from DEM simulations in the

next chapter. Next chapter is divided in 3 sections: the first section present the results

for one particle size distribution with d50 and with shear stress conditions similar to

to that of Wong et al. (2007) to understand if the simple fluid model presented in

this chapter provides similar statistical results as those of Wong et al. (2007). Then,

we extend our simulations to include more particle sizes to understand the role of the

particle sizes on the statistical paramters of the bed, however, still all the simulations

are performed on uni-modal particle sizes and not mixtures. Finally, to understand

the role of the turbulent fluctuations on the bed surface statistics, we introduce the
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turbulent fluctuations into our DEM model through random walk processes.



Chapter 4

Results of bedload transport

In this chapter, we present our results on bed surface statistics and entrainment height

statistics for simulated bedload transport. We organize the results along three distinct

topics. The first section focuses on the results from set of parameters that follow those

of the bedload experiments of Wong et al. (2007). In the second section, we report the

results from three sets of simulations with three specific grain sizes designed to check

whether the results are dependent on particle size. In the last section we report how

the additions of velocity fluctuations influence the results.

4.1 One Narrow Size Distribution

We performed nine computational DEM experiments with similar conditions to the

physical experiments performed by Wong et al. (2007) in terms of grain and fluid prop-

erties (Table 3.1) and bed shear stress (Table 4.1). We used these baseline experiments

to design our simulations to determine how shear stress on an alluvial deposit influ-

ences the statistics of bed height and entrainment height. At the same time using the

proximity of these carefully designed controlled experiments provides a reliable control

against which we can validate our simulations.

We designed our grain size distribution to follow a narrow log-normal distribution

30



31

with median particle size, d50 = 7.1 mm, geometric mean particle size, dg = 7.2 mm,

and geometric standard deviation, σg = 1.2, simialr to the physical experiments of Wong

et al. (2007). We designed our shear stress conditions to be similar to that of Wong

et al. (2007); specifically we varied our bottom shear stress τo so that the Shields number

(τ∗ = τo/((ρs−ρf )gd50)) ranged from τ∗ = 0.0757 to 0.1193 (Table 4.1). We set gravity

g =9.81 m/s2.

For most of the simulations we performed for this first set of results (Table 4.1), we

used 3000 particles, resulting in a bed with the height of approximately 5 d50. We found

this to be a sufficient number of particles (and bed height) so that the results were not

affected by this relatively small height (e.g., as compared with runs of 10,000 particles

and 15,000 particles in runs 3a and 3b in Table 4.1, respectively).

Table 4.1: Computational flow and bed parameters for d50 particles.

Run Bed thickness τ∗ ks z1 q∗ η(mm)

1 ∼ 5d50 0.1193 3.5d50 2d50 0.050 36.38

2 ∼ 5d50 0.1052 3.5d50 2d50 0.029 36.86

3 ∼ 5d50 0.1044 3.5d50 2d50 0.033 36.83

3a ∼ 16d50 0.1044 3.5d50 2d50 0.033 113.13

3b ∼ 25d50 0.1044 3.5d50 2d50 0.033 168.17

4 ∼ 5d50 0.0915 3.5d50 2d50 0.022 36.38

5 ∼ 5d50 0.0908 3.5d50 2d50 0.020 36.14

6 ∼ 5d50 0.0844 3.5d50 2d50 0.016 36.17

7 ∼ 5d50 0.0757 3.5d50 2d50 0.012 36.18
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4.1.1 Transport rate

We calculate a spatially-averaged near-instantaneous unit transport rate qti at each

output timestep ti according to:

qti =

∑N
p=1 ∀pup,x(ti)

bed area
(4.1)

In this equation, up,x(ti) is the velocity of particles p at output time step ti in the

downstream direction (if t is the simulation time in seconds after the water is “turned

on”, ti = t∗20); ∀p is the volume of that particle, N is the number of particles (N = 3000

for most of the results reported here), and the bed area for most of the data reported

in this section is 350 mm × 85 mm, or ≈ 50 d50 × 12 d50. As is common, we non-

dimensionalize our transport rate according to:

q∗ =
q√

(s− 1)gd50d50

(4.2)

often referred to as the Einstein number. Typical for systems in bedload trans-

port, there is a high temporal variability in the transport rate (Fig. 4.1(a)). So, for

comparison with experiments, we define the average dimensionless transport rate from

t = ts = 2.5 s to time T = t− ts as q∗T :

q∗T =

∑ti=(T+ts)×20
ti=ts×20 q∗ti
T × 20

(4.3)

In this form, T and ts are both expressed in units of seconds, and the factor of 20

that appears throughout is associated with our output rate (and thus available data) of
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20 per second. Based on data such as those plotted in Fig. 4.1(a, inset), we used T = 20

as a sufficiently long time to average the fluctuations for clear results. Henceforth, we

use q∗ ≡ q∗20 to represent a statistically steady average unit transport rate for each

system. Yet, we calculated the uncertainty involves in measuring q∗ over the course of

our simulations and plot on Fig. 4.2 for each bed shear stress. As clear in this figure,

the uncertainty that is involved in the average values of transport rates measured in

this study is one order of magnitude smaller than the average values.
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Figure 4.1: The conditions required to perform statistical analyses of bed surface: (a) shows
the time needed to reach steady state conditions. The inset shows the average transport rate
starting just after reaching steady state to time T after reaching steady state. The error-bar in
the inset shows the standard deviation of transport variations for 20 seconds after reaching the
steady state conditions. (b) shows the minimum channel length required to eliminate the effect
of channel size on the transport rate. q∗ represents the average transport rate for 20 seconds after
reaching the steady state for τ∗ = 0.0908. The error bars represents the uncertainty involved in
the calculations of q∗ which we calculate as the standard deviation of transport variations for
20 seconds after steady-state conditions.

To compare our transport data with those previously published for similar systems,

we note that for a number of well-known bedload transport relations (e.g., Meyer-Peter

and Muller (1948); Luque and Van Beek (1976)) including the experiments after which
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our simulations were designed, q∗ scales roughly as τ∗1.5:

q∗ = aq × (τ∗ − τ∗c )1.5 (4.4)
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Figure 4.2: Standard deviation of transport rate time series for 20 seconds after reaching
steady-state conditions, ts = 2.5s.

Here, τ∗c is an empirically determined reference stress below which the transport

rate is negligible. To compare our results to these published relationships, we calculate

the linearized least squares fit of Eq. 4.4 to our data. Fig. 4.3(a) demonstrates that

our data are well-fit by this equation when aq ≈ 2.59 and τ∗c ≈ 0.051. Our results

are particularly close to those from the physical experiments by Wong et al. (2007)

after which we patterned our simulations (Fig.4.3(b) and caption). We note that the

simulations performed by Schmeeckle and Nelson (2003), after which we designed part of

the details of our simulations, are similar to the Luque and Van Beek (1976) relationship

plotted in Fig. 4.3(b). On the other hand, the results from simulations of Schmeeckle

(2014) are closer to those of Meyer-Peter and Muller (1948) plotted in Fig. 4.3(b).
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Figure 4.3: a) Our data for q∗2/3 plotted vs. τ∗ (solid circles) and a linearized least squares
fit of Eq. 4.4 (line) to those data [aq,τ

∗
c ]=[2.59, 0.051]. Vertical dashed line: the reference

Shields stress calculated using the Brownlie equation: 0.22Re−0.6
p + 0.06 × 10(−7.7Re−0.6

p ). b)
q∗ plotted vs. τ∗ for our data (q∗sim) (solid circles) and the fit from (a) (solid line) compared
with other previously proposed relationships. q∗wpdbb is the fit proposed by Wong et al. (2007),
[aq,τ

∗
c ]=[2.66, 0.0549]; q∗mpm is from the well-known transport model proposed by Meyer-Peter

and Muller (1948), [aq,τ
∗
c ]=[3.97, 0.0495], modified by Wong and Parker (2006); q∗flv is the

transport model proposed by Luque and Van Beek (1976), [aq,τ
∗
c ]=[5.7, 0.06].

4.1.2 Bed surface statistics

To calculate the bed surface and entrainment statistics, we need to quantitatively dis-

tinguish between “bed particles” and “entrained particles”. Many particles may be

only slightly [ jiggling] or rocking in a way that one would not normally identify them

as entrained, so it is not sufficient to use a distinction of zero or non-zero velocity to

determine which we would consider part of the bed, and which we would consider part

of the flow. For our work, we consider theoretical forms of average particle velocity in

bedload transport, from Bagnold (1956) and Bridge and Dominic (1984) (and references

within):

up,a = au × (uτ − uτc) (4.5)
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Here, uτ ≡
√
τ0/ρ is typically called the shear velocity, and uτc ≡

√
τc/ρ is a

reference shear velocity. As Bridge and Dominic (1984) discussed, au is a coefficient

that researchers typically treat as constant and, depending on the study, have found

typical values ranging 8.5 (e.g., Bagnold (1956)) to 14 (e.g., Abbott and Francis (1977)).

Bridge and Dominic (1984) proposes this variation is due to the fact that the average

value of au should vary with hydraulic conditions.

In this dissertation we use Eq. 4.5 to provide us with a way to quantitatively dis-

tinguish between bed particles and entrained particles that varies with stress. To find

out an appropriate value of au for the purpose of this study, we try different threshold

velocities defined as:

uth,n ≡ n× (uτ − uτc) (4.6)

where n represents a coefficient similar to au in Eq. 4.5. We choose a value for

au somewhat arbitrarily based on computational results as we present shortly. We

consider a particle is stationary and therefore part of the bed at a particular time if its

downstream velocity is less than uth,n

Toward calculating the bed surface variability, we divide the channel into 150 sub-

sections (each a column of cross-sectional area ≈ 14 mm × 14 mm ≈ 2 d50 × 2 d50).

For the jth column, at each time step ti we record the top of the upper-most stationary

particle (whose downstream velocity was less than uth): ztop,i,j . We defined the averaged

bed surface height η as the arithmetic mean of those (600,000) values and calculated

what might be considered an effective bed roughness as the standard deviation of the

bed surface variations.

For a visualization of how the standard deviation varies with shear stress, we define
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Figure 4.4: Schematic representation of simulated particles in 3D (top row) and 2D (bottom
row) to illustrate the effect of changing au on the threshold velocity described in the text. The
dependence of moving particles number on the threshold velocity: a) ubd < uth,5, b) ubd < uth,2,
c) ubd < uth,1. Here ubd is the velocity of bed particles. Arrows show the flow direction.

a variance of each bed height as z̃(xj , yk, ti) ≡ η − ztop(xj , yk, ti). Then we divide these

data into 10 bins of equal width (∆z̃) ranging from the lowest to highest values of z̃

throughout each experiment. We normalize these binned data and then plot them in

Fig. 4.5 for three representative simulations of different shear stresses for four different

threshold velocities. From these plots, we can see that, while not perfect in all cases, a

Gaussian distribution fits the data well, as suggested by analogous experimental data

of Wong et al. (2007).

Similar to the results of Wong et al. (2007), the bed roughness of our simulation

data increases with increasing bed shear stress (τ0), for all different threshold velocities.

We plot the standard deviation of the bed heights (sη) normalized by d50 (ŝη = sη/d50)

versus Shields stress (τ∗) in Fig. 4.6, for all different threshold velocities. As clear in

Fig. 4.6, the bed surface roughness, ŝη, increases with the bed shear stress; however,

the rate of increase is less noticeable for smaller threshold velocities uth,1 and uth,2.

We note at this point we found no noticeable differences in the bed surface variations

when we double and triple the bed height (as in Run 3 compared with Run 3a and 3b),

so we focus on analyzing the results only for the 3000 particle simulations for the rest
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Figure 4.5: Three representatives of probability density distribution of bed height variations
for three different threshold velocity. Filled circles represent the simulation data while the solid
line represents the Gaussian fitting curve, pη(z̃|0, s2η). Table 2 shows the standard deviation of
all the computational experiments designed for this study.

of this dissertation.

4.1.3 Particle entrainment statistics

For a quantitative measure of the entrainment height statistics for our data, we first

need to define what we identify as an entrainment event, that is, a “conversion” of

a bed particle to an entrained particle. Since a particle is not typically considered

entrained if it moves only a short distance, especially if the movement is limited to

shaking or rocking, we base a quantitative definition on a minimum distance that a
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Figure 4.6: The standard deviation of the bed height variations against the Shields stress for
different threshold velocities, uth,n where n = 1, 2, 5, 10.

particle must travel in a certain amount of time before we consider it to be entrained.

What constitutes a minimal distance to be considered entrained in a general sense is

debatable and warrants discussion beyond the scope of this study. For our purpose, we

consider a particle entrained if it travels at an average speed greater than uth for 10

time-step or 0.05 seconds. In other words, its minimum displacement once entrained is:

δrmin = uthδt (4.7)

where δt = 0.05s. For each entrainment event defined in this way, we use the vertical

position of these particles relative to the mean bed height, z̃, prior to their entrainment

for entrainment height statistics. We bin these data and normalize them as we did for

the bed height data and plot the distributions for three representative shear stresses of

different threshold velocities in Fig. 4.7. For an analytical expression of the probability

of entrainment heights, we consider two, the exponential form previously suggested (Eq.

2.8b) and a general Gaussian fit:
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pe,exp(z̃|z̃e, s2
η) =

1

2sη(τ)
exp

[
−|z̃ − z̃e|

sη(τ)

]
(4.8a)

pe,gau(z̃|z̃e, s2
e) =

1√
2πse(τ)

exp

[
−1

2

(
z̃ − z̃e
se(τ)

)2
]

(4.8b)
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Figure 4.7: Three representative of entrainment height distributions. Filled circles represent
the simulation data; the solid line represents a Gaussian fitting curve, pe(z̃|z̃e, s2e) (Eq. 4.8b),
and the dashed line represents an exponential fitting curve, pe(z̃|z̃e, s2η), suggested by Wong
et al. (2007), (Eq. 4.8a). Table 2 shows the fitting parameters of these distributions.

In Eqs. 4.8, sη is the standard deviation of the bed height likely to increase with
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increasing bed shear stress as suggested by Wong et al. (2007); z̃e is an offset char-

acterizing the position at which the maximum entrainment occurs, and se is the (bed

shear stress dependent) standard deviation of the entrainment heights about the mean

entrainment height.
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Figure 4.8: Statistics of particles entrainment height distribution against the Shields stress
for different threshold velocities: a) shows the standard deviation of the entrainment height
distributions, ŝe, b) shows the peak entrainment height , ˆ̃ze.

For all simulations, we found pe well-fit by Guassian distributions; not so well-fit

by the exponential form (Eqs. 2.8b and 4.8a). Further, unlike that suggested by the

exponential form, our fitted value of se appears to be independent of bed stress within

the range we investigate. Fig. 4.8a shows se data stay constant with changing the bed

shear stress except for a few data points for threshold velocity uth,10. On the other

hand, we found the maximum entrainment occurs above the mean bed height and its

distance from the mean bed height,z̃e, to increase with bed shear stress (Fig. 4.8b),

which is in contrast to what proposed by Wong et al. (2007).

After investigating the effect of choosing different threshold parameters n for the

threshold velocity uth,n (Eq. 4.6) on the bed surface statistics, we found all the threshold

velocities, excluding uth,10 are capable of producing consistent results (Fig. 4.5, 4.6, 4.7).
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Figure 4.9: Power law fitting model for standard deviation of bed height variation against
shields stress. Filled circles represents the calculated standard deviation from the simulations.
Solid line represents our fitting model with aη = 0.84 and bη = 0.29 while the dashed line
represents the fitting model suggested by Wong et al. (2007) with aη = 3.09 and bη = 0.56

We chose n=5 as the threshold velocity coefficient for the rest of this study (Eq. 4.9)

because of the apparent independence of the results to the choice of this value near n=5

and also because this is closer to the range reported by Bridge and Dominic (1984) (Eq.

4.5). So, for the rest of this study, we use this to identify a particle as moving or part

of the bed. In other words, a particle would be considered effectively stationary and

therefore part of the bed at a particular time if its downstream velocity is less than a

threshold value equal to:

uth,5 ≡ 5× (uτ − uτc) (4.9)

Using this threshold velocity, we fit a power law relationship between the standard

deviation of the bed surface variations, ŝη, and the shields stress, τ∗ − τ∗c :

ŝη,fit = aη(τ
∗ − τ∗c )bη (4.10)
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−2ŝη,fit

Figure 4.10: Normalized peak entrainment height, ˆ̃ze, and the normalized bed surface standard
deviation, ŝη, as a function of excess Shields stress. Error bars show the standard deviation of
entrainment height distribution, se in Eq. 4.8b and table 4.2. ŝη,fit is our power law fitting
model for the bed surface standard deviations, Eq. 4.10 and Fig. 4.6.

where τ∗c is the reference Shields stress derived from the transport data (Eq. 4.4).

This form is not unlike that suggested by the experimental data of Wong et al. (2007).

On the other hand, our fit coefficients aη ≈ 0.8 and bη ≈ 0.3 are somewhat different

than the experimental results of Wong et al. (2007) (see Fig. 4.9), as we discuss in more

details in Chapter 5.

Furthermore, we plot the normalized peak entrainment height of particles, ˆ̃ze =

z̃e/d50 using the threshold velocity defined in Eq. 4.9 with the corresponding ŝη values

versus the the shields stress, τ∗ − τ∗c , in Fig. 4.10.

Figure 4.10 shows the peak entrainment height scales with the bed surface roughness

and occurs approximately 2 × ŝη above the mean bed height. We discuss the implica-

tions of this result in Chapter 5. Table 4.2 summarizes the results of the bed surface

statistics calculated using the threshold velocity defined in Eq. 4.9.
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Table 4.2: Summary of statistical analyses of bed surface for 7 computational experi-
ments of this study.

Run τ∗ ŝη ˆ̃ze for pe,gau ŝe ˆ̃ze for pe,exp

1 0.1193 0.393 -0.71 0.255 -0.79

2 0.1052 0.353 -0.77 0.276 -0.71

3 0.1044 0.374 -0.73 0.254 -0.74

4 0.0915 0.340 -0.70 0.238 -0.70

5 0.0908 0.330 -0.69 0.270 -0.67

6 0.0844 0.311 -0.62 0.254 -0.65

7 0.0757 0.296 -0.46 0.281 -0.60

4.2 Three Narrow Size Distributions

This section involves the extension of the research described in the previous section to

our investigation of the sensitivity of our results to the absolute size of the particles

keeping everything else constant. In this regard, we use the same DEM model in the

previous section, in particular the same flow model (Fig. 3.2), to simulate the bedload

transport of three different particle sizes with the median size of d50 = 4.12 mm, 7.1

mm, and 12 mm and with ρs= 2650 kg/m3. More information about each particle size

(e.g. geometric mean particle size and geometric standard deviation) are given in Table

4.3. To minimize the crystallization in the bed, we allow the particle size distribution to

vary by approximately 10%, as described in Table 4.3. We note that we scale everything

about our model with particle size. That is, the coefficients in the contact force model

scale with particle size; the parameters in the log-law fluid model scale with particle

size, and the size of the model flume scales with particle size.”

For each particle size, we simulated the bedload transport for 12 different bed shear
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Table 4.3: Particle size statistics.

d50 (mm) dg (mm) σg Size range (mm)

4.12 4.10 1.21 [2.08 - 6.20]

7.1 7.2 1.2 [4.82 - 9.60]

12 11.92 1.12 [9.50 - 14.5]

stresses as detailed in table 4.4. The channel size for each particle size distribution is

about 50×d50 long and 12×d50 wide as we found in the previous section is the minimum

size to produce results independent of channel size.

Table 4.4: Computational flow and bed parameters for different size particles.

Run d50(mm) τ∗ ks z1 q∗ η(mm)

1 (4.12,7.1,12) 0.1330 3.5d50 2d50 (0.054,0.053,0.068) (21.71,36.64,60.10)

2 (4.12,7.1,12) 0.1250 3.5d50 2d50 (0.053,0.043,0.057) (21.74,36.64,59.57)

3 (4.12,7.1,12) 0.1193 3.5d50 2d50 (0.047,0.041,0.048) (21.67,36.68,59.31)

4 (4.12,7.1,12) 0.1052 3.5d50 2d50 (0.044,0.032,0.037) (21.70,36.43,58.99)

5 (4.12,7.1,12) 0.1044 3.5d50 2d50 (0.039,0.033,0.037) (21.67,36.62,58.95)

6 (4.12,7.1,12) 0.0960 3.5d50 2d50 (0.032,0.029,0.030) (21.53,36.66,58.70)

7 (4.12,7.1,12) 0.0915 3.5d50 2d50 (0.033,0.022,0.037) (21.66,36.47,58.48)

8 (4.12,7.1,12) 0.0908 3.5d50 2d50 (0.027,0.023,0.025) (21.59,36.43,58.60)

9 (4.12,7.1,12) 0.0880 3.5d50 2d50 (0.026,0.020,0.021) (21.54,36.56,58.52)

10 (4.12,7.1,12) 0.0844 3.5d50 2d50 (0.021,0.015,0.017) (21.52,36.51,58.52)

11 (4.12,7.1,12) 0.0757 3.5d50 2d50 (0.016,0.010,0.011) (21.49,36.41,58.33)

12 (4.12,7.1,12) 0.0710 3.5d50 2d50 (0.013,0.010,0.007) (21.48,36.52,58.41)

For the rest of this section, similar to the previous section, we first present our results

regarding the transport rate of particles. Then, we present the results associated with

the bed surface and particle entrainment height distributions.
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4.2.1 Transport rate

We calculated the transport rate for each set of the simulations using Eq. 4.1 and non-

dimesnsionalize it using Eq. 4.2
(
q∗ = q√

(s−1)gd50d50

)
. Fig. 4.11 shows the time series

of transport rate of two representatives (τ∗ = 0.125 and τ∗ = 0.0915) for each particle

size.
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Figure 4.11: Time series of transport rate for two representatives (the gray line is for τ∗ = 0.125
and the black line is for τ∗ = 0.0915) for each particle size. (a) shows the time series for
d50 = 4.12mm particles size, (b) shows the time series for d50 = 7.1mm particles size, and
(c) shows the time series for d50 = 12mm particles size. For each figure, the inset shows the
average transport rate starting just after reaching the steady state conditions to time T after
reaching the steady state. The error-bar shows the standard deviation of transport variations
for 20 seconds after reaching the steady state conditions.

To find the transport rate model parameters (aq and τ∗c in Eq. 4.4) of each particle

size, we follow the same procedure for all three particles we outlined in section 4.1. That

is, we calculate the linearized least square fit of q ∗2/3 vs τ∗ (See Fig. 4.12 and Table.

4.5).

The small values of error in our fitting (RMSE values in Tab. 4.5) is promising

to accept that our data fit well with linearized least square. In addition, we found a

systematic changes in the coefficients of fitting (aq and τ∗c ) among different size particles

(See Fig. 4.12b and c). In particular, both aq and τ∗c increases as the size of the particles

increases. These variations harken back to the variety of bedload transport relationships

previously proposed for much wider ranges of conditions, as we mentioned briefly in
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Figure 4.12: Linear least square fitting to transport data against the dimensionless bed shear
stress, τ∗, to find the parameters of our transport model, q∗ = aq× (τ∗−τ∗c )1.5, for each particle
size.

the context of simulation results of Schmeeckle and colleagues (Schmeeckle and Nelson

(2003); Schmeeckle (2014)). We discuss this in a bit more detail in Chapter 5.

In any case, for the results regarding the bed surface statistics that we report in this

section, we use the values of fitting parameters in Table. 4.5.
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Figure 4.13: Linear least square fitting to transport data against the dimensionless bed shear
stress, τ∗, to find the parameters of the transport model, q∗ = aq × (τ∗ − τ∗c )1.5, that fits to the
transport rate of all three different size particles, [aq, τ

∗
c ] = [1.66, 0.041].

Table 4.5: Computational flow and bed parameters. Last column gives the root mean
square error (RMSE) of the linear fittings shown in Fig. 4.12.

d50 (mm) aq τ∗c RMSE

4.12 1.77 0.0284 0.0063

7.1 1.88 0.0396 0.0054

12 2.84 0.0504 0.0034

4.2.2 Bed surface statistics

Here we investigate the effect of grain size on the bed surface variability results. To do

so, we calculate the bed surface distribution of different size particles using the same

procedure explained in section 4.1.2. In particular, to calculate the bed surface statistics,

we use Eq. 4.9 to distinguish between the moving and the bed particles. Then, we divide

the channel into 150 subsections (each a column of cross-sectional area ≈ 2 d50 × 2 d50)
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and use the same procedure in 4.1.2 to calculate the bed surface distributions. We plot

this distribution for three representative simulations for each particle size in Fig. 4.14.
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Figure 4.14: Three representatives of probability density distribution of bed height variations
for each particle size. Filled circles represent the simulation data while the solid line repre-
sents the Gaussian fitting curve, pη(z̃|0, s2η). Table 4.6 shows the standard deviation of all the
computational experiments designed for this section.

Figure 4.14 presents the probability distribution of the bed surface height for several

cases. From this figure we can see that, as for the d50 =7.1 mm particles, for all the

different particle systems the width increases with model shear stress. We can also

see that the width increases for any particular shear stress as we increase the typical

particle size in the mixture (top to bottom in Fig. 4.14). To investigate the quantitative

dependence of particle size on the standard deviation of bed surface variations, we
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normalize the standard deviation by the median particle size, ŝη = sη/d50, and plot

these normalized values against the Shields stress, τ∗. We plot all systems together

in Fig. 4.15 and then do so in Fig. 4.16 with a separately fitted exponential function

for each system of particles. In Fig. 4.17, we plot the normalized sη values of each

particle size against the excess shields stress. We fit a power law relationship between

the ŝη = sη/d50 and τ∗ − τ∗c (Eq. 3.10b) and found the fitting coefficient of this unique

power law relation (aη = 0.83 and bη = 0.28) are similar to that for the d50 = 7.1 mm

particles alone. We discuss this more in next chapter.

0.05 0.1 0.15

τ
∗

0.2

0.3

0.4

ŝ
η

d50 = 4.12mm

d50 = 7.1mm

d50 = 12mm

d50 = 4.12mmfit

d50 = 7.1mmfit

d50 = 12mmfit

Figure 4.15: The standard deviation of the bed height variations against the Shields stress
for particles of different size.

In the next section, we present the results regarding the entrainment statistics of

different size particles to understand if these statistics, similar to the bed surface statis-

tics, are only a function of hydraulic conditions when normalized by the median particle

size.

4.2.3 Particle entrainment statistics

To determine the statistics of particle entrainment height for each particle size, we follow

the definition of entrainment event used in section 4.1.3 (Eq. 4.7) to detect if a particle
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Figure 4.16: Power law fitting model for standard deviation of bed height variation, ŝη, against
shields stress (τ∗): (a) for small size particles, d50 = 4.12mm, with fitting parameters aη = 1.18
and bη = 0.47, (b) for medium size particles, d50 = 7.1mm, with fitting parameters aη = 1.25
and bη = 0.53, (c) for big size particles, d50 = 12mm, with fitting parameters aη = 0.98 and
bη = 0.44. Filled circles represents the calculated standard deviation from the simulations and
solid line represents our fitting model.

is entrained. Then, following the same procedure described in 4.1.3, we calculate the

entrainment height distribution of each particle size for different bed shear stresses.

Figure 4.18 shows the entrainment height distributions for three representative shear

stresses for each particle size. Similar to what we found in the section 4.1, Fig. 4.18

shows the entrainment height distribution (pe) well fit by Gaussian distribution for all

the particle sizes and the peak of the entrainment occurs above the average bed height.

Again, as is true of the standard deviation of the bed variations (Fig. 4.14), we found

that the statistics of the entrainment height distribution depends on both the particle

size distribution and hydraulic conditions (Fig. 4.18).

We calculate and plot the normalized peak entrainment height, ˆ̃ze = z̃e/d50, in Fig.

4.19 for each particle size.

Fig. 4.19 shows the peak entrainment height, ˆ̃ze, scales similarly with the bed

surface roughness, ŝη, for d50 = 4.12mm and d50 = 7.1mm particles; However, the

peak entrainment height of larger particles, d50 = 12mm, shows deviation from this

relationship. Instead, we note that the peak entrainment height of d50 = 12mm particles

scales with the bed surface roughness, however, it scales as ˆ̃ze = 1.5 × ŝη instead of

ˆ̃ze = 2× ŝη (See Fig. 4.20).
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ŝη,fit

Figure 4.17: Power law fitting model for standard deviation of bed height variation against
excess shields stress (τ∗ − τ∗c ) where τ∗c is given in table 4.5 for each size. Solid line represents
our fitting model with aη = 0.83 and bη = 0.28.

We note, similar to the previous section, the standard deviation of the entrainment

height distributions, for all the different size particles, are bed stress independent (i.e.

see Fig. 4.18) and for this reason we did not present these here; however, we include their

values for each particle size and bed shear stress in Tab. 4.6. This table summarizes the

results of this section regarding the bed surface and entrainment height distributions.

All the results presented to this point are for cases where we neglect the turbulent

fluctuations. However, to understand the role of turbulent fluctuations on the bed

surface statistics, we present the results for cases where we have turbulent fluctuations

in the next section.
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Figure 4.18: Three representative of entrainment height distributions for each particle size.
Filled circles represent the simulation data; the solid line represents a Gaussian fitting curve,
pe(z̃|z̃e, s2e) (Eq. 4.8b), and the dashed line represents an exponential fitting curve, pe(z̃|z̃e, s2η),
suggested by Wong et al. (2007), (Eq. 4.8a). Table 2 shows the fitting parameters of these
distributions.

4.3 Turbulence

In this section we investigate the sensitivity of our results to (1) the presence of turbulent-

like velocity fluctuations and (2) some of the statistics of the velocity fluctuations them-

selves. Towards this goal, we use 4 different fluid models in this study. These fluid

models are relatively simple compare to current advanced fluid models, for example

that use large eddy simulations for the fluid and two-way coupling between fluid and
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−2ŝη,f it

0 0.05 0.1 0.15

τ
∗
− τ

∗

c

-2

-1.5

-1

-0.5

0

ŝ
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Figure 4.19: Normalized peak entrainment height, ˆ̃ze, and the normalized bed surface standard
deviation, ŝη, as a function of the excess Shields stress for a) d50 = 4.12mm, b) d50 = 7.1mm,
c) d50 = 12mm. Error bars show the standard deviation of the entrainment height distribution,
ŝe. ŝη,fit is the power law fitting specifically for each particle size, Fig. 4.16. Fitted values are
included in Table 4.6.
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Figure 4.20: Normalized peak entrainment height, ˆ̃ze, and the normalized bed surface standard
deviation, ŝη, as a function of the excess Shields stress for d50 = 12mm. Error bars show the
standard deviation of the entrainment height distribution, ŝe. ŝη,fit is the power law fitting (Eq.
4.8b and Table 4.6.

particles. In fact, our goal in using these fluid models, rather than reproduce, as well

as possible, every detail in the field, is to isolate systematically some of these details to

discover their influence on the outcomes.

In addition to our first steady fluid velocity model, in this section we present three
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Table 4.6: Summary of statistical analyses of bed surface for 3 different particle sizes
and 12 different hydraulic conditions .

Run d50(mm) τ∗ ŝη ˆ̃ze ŝe

1 (4.12,7.1,12) 0.1330 (0.45,0.43,0.39) (-0.84,-0.77,-0.51) (0.29,0.28,0.22)

2 (4.12,7.1,12) 0.1250 (0.46,0.41,0.37) (-0.79,-0.75,-0.57) (0.29,0.26,0.21)

3 (4.12,7.1,12) 0.1193 (0.44,0.40,0.40) (-0.81,-0.78,-0.60) (0.30,0.25,0.22)

4 (4.12,7.1,12) 0.1052 (0.42,0.39,0.40) (-0.76,-0.70,-0.57) (0.30,0.26,0.22)

5 (4.12,7.1,12) 0.1044 (0.41,0.38,0.37) (-0.82,-0.70,-0.57) (0.30,0.25,0.21)

6 (4.12,7.1,12) 0.0960 (0.39,0.35,0.36) (-0.75,-0.68,-0.54) (0.29,0.25,0.22)

7 (4.12,7.1,12) 0.0915 (0.39,0.35,0.35) (-0.73,-0.68,-0.53) (0.29,0.25,0.23)

8 (4.12,7.1,12) 0.0908 (0.38,0.36,0.35) (-0.73,-0.69,-0.52) (0.28,0.27,0.23)

9 (4.12,7.1,12) 0.0880 (0.39,0.35,0.34) (-0.75,-0.66,-0.51) (0.31,0.27,0.23)

10 (4.12,7.1,12) 0.0844 (0.37,0.33,0.33) (-0.80,-0.64,-0.49) (0.30,0.26,0.22)

11 (4.12,7.1,12) 0.0757 (0.35,0.31,0.31) (-0.66,-0.61,-0.46) (0.29,0.26,0.25)

12 (4.12,7.1,12) 0.0710 (0.35,0.30,0.29) (-0.66,-0.55,-0.38) (0.30,0.27,0.25)

models that incorporate representative velocity fluctuations into our simple DEM model

to do so. Then we present the results to help us understand the relative role of turbulent

fluctuations and average flow velocity in our bed surface statistics.

4.3.1 Fluid Models

In this section, we describe the four fluid models we use in this study to investigate the

relative role of the average flow velocity and turbulent fluctuations on the bed surface

statistics and sediment transport rate.

We start by introducing basic notation we will use in the framework of what is

commonly called Reynolds decomposition:

uf = uf + u′f (4.11)



56

where uf is a local and instantaneous fluid velocity, uf is an average fluid velocity

and u′f is the difference between the two, what we refer to (as is common) as a “velocity

fluctuatio”. Through theoretical formulations and experimental validations, researchers

have developed expressions for each of the term on the right hand side of equation 4.11,

which we use for our fluid models. We introduced the logarithmic form for the velocity

profile in Chapter 3 (Eq. 3.10aa). We maintain this form for uf for all four models.

For the form of the fluctuations, we first consider how the standard deviation of the

mean fluctuation magnitude varies with height above the bed surface. Several forms

have been proposed (Nakagawa et al. (1975); Nezu and Nakagawa (1993); Ghesemi et al.

(2019); Nikora (2005)).

For the velocity fluctuations, researchers have proposed different expressions for

turbulent intensities over gravel-bed rivers. Nakagawa et al. (1975) proposed a power

law relation for turbulent intensities in the streamwise direction using the log-law of the

wall for the energy equilibrium region in the following form:

√
u

′2
f

uτ
= B(z/H)−1/6(1− z/H)1/3 (4.12)

where u′f is the velocity fluctuations in the streamwise direction, uτ is the shear

velocity, z is the distance from the zero-plane velocity, and H is the flow depth. Later,

Nezu and Nakagawa (1993) proposed an exponential function to scale the turbulent

intensities in downstream, vertical and cross-stream directions. Using the turbulent

energy equation (G = ε+TD+PD+VD, where G is turbulent energy generation, ε is the

total energy dissipation, TD is the turbulent energy diffusion, PD is the pressure energy

diffusion, and VD is the viscous diffusion) and k − ε turbulence model and neglecting
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the viscous term, they proposed semi-theoretical exponential relations for the turbulence

intensities:

√
u

′2
f

uτ
= Duexp(−z/H) (4.13a)√

v2′
f

uτ
= Dvexp(−z/H) (4.13b)√

w
′2
f

uτ
= Dwexp(−z/H) (4.13c)

where v′ and w′ are the velocity fluctuations in the vertical and cross-stream direc-

tions, respectively. Du, Dv, and Dw are constants and found empirically to be 2.3, 1.63,

and 1.27 (Nezu and Nakagawa (1993)).

Another scaling method for the turbulent intensities rooted in the spectral scaling.

Perry et al. (1986, 1987) proposed the following relation for the streamwise direction

of turbulent energy by integrating the spectral energy density of turbulent flow over all

wave-numbers and neglecting the viscous region in the following form:

u
′2
f

u2
τ

= B −A(log z/H)− C(z+)−1/2 (4.14)

where A and C are universal constants, and B is a large-scale characteristic constant.

The first term on the right hand side of equation 4.14 is for the first region of spectrum

which is associated with the largest eddies within the turbulent flows or where the energy

production exists. The second term is associated with the intermediate eddies where

energy production and cascade energy transfer co-exists. The third term is associated

with relatively small eddies that correspond to the ”Kolomogorov” region and z+ =
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zuτ/ν. Several researchers (i.e. Nikora (2005); Ghasemi (2016); Ghesemi et al. (2019))

have used this form because of its more inclusive representation of the different forms

of the fluctuations in the different regions of the flow.

For simplicity for our study, we use the expressions proposed by Nezu and Nakagawa

(1993) (Eq. 4.13) to model turbulent fluctuations through a random processes. In

particular, for this fluid model, we introduce the velocity fluctuations in the downstream

and vertical directions by the following equations:

u′(t) = ru

√
u

′2
f (4.15a)

w′(t) = rw

√
w

′2
f (4.15b)

where ru and rw are random numbers that we choose in a manner from one of three

ways, as described below, under the subheadings ”Fluid model 2, Fluid model 3, and

Fluid model 4”.

For the results we report here, we include only fluctuations in the vertical and stream-

wise direction. We neglect the fluctuations in the spanwise direction as Ghasemi (2016)

found the effects of these fluctuations considerably smaller than those in the normal and

downstream directions (i.e. (u′fv
′
f ) and (v′fw

′
f ) are about an order of magnitude smaller

than (u′fw
′
f )).

Fluid model 1: no fluctuations

The first fluid models used in this study has already been described in detail in Chapter

3 and used for the results in the earlier sections of this chapter. As we mentioned in

Chapter 3, turbulent flows over gravel beds, the downstream velocity profile is closely

described by a logarithmic relationship. For the rest of the simulations, we still use this

relationship for uf .
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Fluid model 2: fluctuations with uniform distribution

To investigate the role of turbulent fluctuations on the bed surface statistics and trans-

port rate, we first consider the form of the average fluctuation magnitude as it varies

with height above the bed. We introduce these velocity fluctuations into our fluid models

through random processes that follow the expressions proposed for these fluctuations.

For the second fluid model we added fluctuations in the simplest manner possible.

We chose ru and rw (Eqs. ??) for each time step from a uniform distribution between

-0.5 and 0.5.

Fluid model 3: fluctuations with normal distribution

This fluid model is similar to fluid model 2 except that the random numbers ru and rw are

chosen from a standard Gaussian distribution. We note here that this may be a more

appropriate baseline model for the fluctuations based on the Central-Limit Theorem

(Pope (2001)). Specifically, the Central-Limit Theorem states that when independent

random variables are added, their properly normalized sum tends toward a normal

distribution even if the original variables themselves are not normally distributed. For

the case of turbulent flows, it means if we repeat an experiment N times and record the

velocity at a particular location and time and take an ensemble average, the ensemble

average (which itself is a random number) should follow a Gaussian distribution as N

tends to infinity.

Since all the computational experiments reported in this study are simulated in

FORTRAN, we cannot generate Gaussian distributions from the default built-in func-

tions. Instead, we generate the Gaussian distributions by, first, generating a several

random numbers that follow uniform distributions. Then, we transform these random

numbers to comprise two sets of standard Gaussian distributions and select the random

variables ru and rw from these new generated distributions.
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Fluid model 4: correlated fluctuations with normal distribution

Fluid model 4 uses a Gaussian distribution from which to choose ru and rw (like model

3), and it forces them to be correlated in the same manner shown to be important for

sediment transport under certain circumstances (McLean et al. (1994)).

Fluid models 2 and 3 consider the turbulent fluctuations, however, these models

introduce the fluctuations without providing any correlations between them. We provide

correlations between the random numbers, ru and rw by selecting them from a standard

bi-variate Gaussian distribution:

f(ru, rw) =
1√
2π
exp

(
−r

2
u

2

)
1√

2π
√

1− γ2
uw

exp

[
(rw − γuwru)2

2(1− γ2
uw)

]
(4.16)

Here f(ru, rw) represents the probability density function of the bi-variate Gaussian

distribution with mean and covariance matrix as:

µ =

∣∣∣∣∣∣µu = 0

µw = 0

∣∣∣∣∣∣ (4.17a)

Σ =

∣∣∣∣∣∣ σ
2
u = 1 γuwσuσw

γuwσuσw σ2
w = 1

∣∣∣∣∣∣ (4.17b)

Here, µu, µw, σu, and σw are the mean and standard deviation of ru and rw random

variables. γuw represents the cross-correlation between ru and rw. For the results we

present here, we use the following equation (Yeganeh et al. (2000); Yeganeh-Bakhtiary

et al. (2009)):

γuw =
u′fw

′
f√

u′2
√
w′2

(4.18)
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Here, (u′fw
′
f ) often called the Reynolds shear stress and is related to other dynamic

variables according to (Nezu and Nakagawa (1993)):

τ(z) = −ρfu′fw′f + ν
∂uf
∂z

(4.19a)

τ(z) = ρfu
2
τ (1− z/H) (4.19b)

Here, τ(z) is the total shear stress at height z above the bed. ρf is the fluid density,

ν is the fluid kinematic viscosity, and
∂uf
∂z represents the instantaneous shear rate.

Re-arranging the Eq. ??, we can determine the Reynolds shear stress by the follow-

ing equation:

−u′fw′f = ν
∂uf
∂z
− u2

τ (1− z/H) (4.20)

A combination of equations 4.13, 4.18, and 4.20 leads to the following relationship

for the cross-correlation, γuw.

γuw =

ν
u2τ

∂uf
∂z − (1− z/H)

(2.3)(1.27)exp(−2z/H)
(4.21)

To generate bi-variate Gaussian distribution in FORTRAN, we follow the steps we

took to develop the random numbers for Model 3 by first generating two Gaussian

distributions. Then, to provide a correlation between these two series of Gaussian
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distributions, we need to calculate the eigenvalues and eigenvectors of the covariance

matrix of f(ru, rw), which vary by z, and used the following equation to transform a

pair of uncorrelated random numbers (ru, rw) to correlated random numbers (r′u, r′w):

r′ = λ1/2Φr (4.22)

where r′ is the transformed random number, λ is the diagonal matrix made up of

the eigenvalues of covariance matrix, Φ is the matrix of eigenvectors and r is the original

random number. Schematic representation of our step by step method in generating

turbulence fluctuations is shown in figure 4.21.

4.3.2 Computational Experiments

To investigate the role of turbulent fluctuations on the bed surface statistics, entrain-

ment height and transport characteristics, we perform several computational experi-

ments using the fluid models introduced in the previous section. We perform the sim-

ulations on only one particle size distribution with median particle size, d50 = 7.1mm,

that we use in section 4.1 to compare directly with results from Wong et al. (2007).

Similar to the previous section, we simulated the bedload transport for 12 different bed

shear stresses, ranging from τ∗ = 0.071 to τ∗ = 0.133, for each fluid model (Tab. 4.7).

Table 4.7: Computational flow parameters for investigating the role of turbulent fluc-
tuations on the bed surface statistics.

Set Name FluidModel τ∗ ks z1 H(cm)

F1-Z2d 1 0.071 - 0.1330 3.5d50 2.00d50 N/A

F2-Z2d 2 0.071 - 0.1330 3.5d50 2.00d50 10

F3-Z2d 3 0.071 - 0.1330 3.5d50 2.00d50 10

F4-Z2d 4 0.071 - 0.1330 3.5d50 2.00d50 10
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Figure 4.21: A flow chart to show step by step our methodology in generating correlated
turbulent fluctuations.
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Similar to the previous sections, in the next section, we first present the results

regarding the transport rate of particles. Then, we present the bed surface and entrain-

ment height statistics of each set of the simulations for the rest of this section.

4.3.3 Transport rate

Following the same procedure from previous sections, we calculate the transport rate

for each simulations using Eq. 4.1 and normalize it using Eq. 4.2. The channel size for

all the simulations reported in this section, as in section 4.1, is equal to 350 mm long

and 85 mm wide.

Fig. 4.22 shows the transport rate time series of two representative simulations

(τ∗ = 0.0915, 0.125) from each fluid model.

As clear in Fig. 4.22, the transport rate increases in the presence of turbulent

fluctuations (especially for fluid model 3 and 4). This finding is in agreement to many

studies that have shown the role of near bed turbulence on an increase in sediment

transport rate (Grass (1983); Nelson et al. (1995); Sumer et al. (2003)).

To find the parameters of our transport rate model, similar to the previous sections,

we assume the normalized transport rate, q∗, scales roughly with the bed shear stress

as: q∗ ∼ τ ∗1.5 and fit a linearized least square model between q ∗2/3 and τ∗.

Fig. 4.23 shows q ∗2/3 against τ∗ with a linearized least square fit to each fluid model.

The error bars in this figure show the variations in the average value for transport rate

for 20 seconds of simulations under steady-state conditions for two representatives of

fluid model 1 and 4. These error bars are the same as those shown in the insets of Fig.

4.22. Table 4.8 shows the coefficient of fitting for each fluid model. We note that, the

reference shear stress decreases when we introduce the turbulent fluctuations, , while

the slope is similar for all.

In the next section, we present the results regarding the bed surface variations and

the influence of turbulent fluctuations on these variations.
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Figure 4.22: Time series of transport rate for two representative simulations for a) F1-Z2d
model, b) F2-Z2d model, c) F3-Z2d model, and d) F4-Z2d model. The bed shear stress for
black line is τ∗ = 0.0915 and for gray line is τ∗ = 0.125. The inset in each plot shows the
average transport rate starting just after reaching the steady state to time T after reaching
steady state. The error-bar in the inset shows the standard deviation of transport variations for
20 seconds after reaching the steady state conditions.

4.3.4 Bed surface statistics

In this section, we present the bed surface distribution for different fluid models. To

calculate these distributions, we follow the procedure explained in the previous sections.

We plot a representative of bed surface distribution for each fluid model in Fig. 4.24.

Fig. 4.24 shows the bed surface variations still follow the Gaussian distribution in

the presence of turbulent fluctuations. In addition, it shows the variations, (sη), of

these distributions depends slightly on the presence of the turbulent fluctuations (i.e.

compare plot (a) with plot (d) where plot (d) has a slightly wider distribution). We
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Figure 4.23: Linear least square fitting to transport data, q ∗2/3 against the dimensionless bed
shear stress, τ∗, to find the parameters of the transport model, q∗ = aq × (τ∗ − τ∗c )1.5, (Eq/
4.4. The error bars show the variations in the average transport rate over 20 seconds of the
simulations.

Table 4.8: Transport parameters for different fluid model.

Set name Fluid model z1 aq τ∗c

F1-Z2d 1 2d50 1.87 0.040

F2-Z2d 2 2d50 1.86 0.025

F3-Z2d 3 2d50 2.21 0.020

F4-Z2d 4 2d50 1.96 0.017

not here that this variation seems significantly less than that due to the change in bed

shear stress we investigated. (i.e. compare Fig. 4.24 with Fig. 4.5). We discuss this

more in Chapter 5.

We plot the standard deviation of the bed surface variations at each bed shear stress

for each fluid model and plot the normalized values (ŝη = sη/d50) versus Shields stress

on Fig. 4.25.

Fig. 4.25 shows the manner in which the magnitude of the bed surface variations

at the same bed shear stress depends on the presence of turbulent fluctuations. Similar
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Figure 4.24: A representative (τ∗ = 0.1044) of probability density distribution of bed height
variations for each fluid model: (a) F1-Z2d, (b) F2-Z2d, (c) F3-Z2d, and (d) F4-Z2d. Filled
circles represent the simulation data while the solid line represents the Gaussian fitting curve,
pη(z̃|0, s2η).

to the section 4.2, we fit a power law relation between ŝη and τ∗ and plot in Fig. 4.26.

Despite the differences between the ŝη values in Fig. 4.25, the fittings in Fig. 4.26

does not reveal any systematic changes between different fluid model at first glance. we

discuss this more in Chapter 5,

In previous section, we found the normalized standard deviation of the bed surface

variations (ŝη) for different size particles follows a similar trend when plotted against

the excess Shields stress, τ∗− τ∗c . To find out if this is true in the presence of turbulent

fluctuations, we fit a power law relation between the ŝη values and τ∗ − τ∗c and plot in

Fig. 4.27. Surprisingly, Fig. 4.27 shows a similar power law relation found in previous

sections for the cases without the presence of turbulence. This is an interesting finding

as it indicates the only important factor in determining the bed surface variations is the
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Figure 4.25: Standard deviation of bed surface variations for different fluid models as a function
of the Shields stress.

excess Shields stress.

4.3.5 Particle entrainment statistics

The results of previous sections showed that the entrainment height distribution fol-

lows a Gaussian distribution and its first moment of statistics scales with the standard

deviation of the bed surface height. To understand if these are true in the presence

of turbulent-like fluctuations, we follow the procedure described in previous sections

to calculate the entrainment height distributions for the each fluid model presented in

this section. In particular, we use the definition of entrainment event (Eq. 4.9) to de-

tect the entrained particles. Then, we record their vertical location, just prior to their

entrainment. Using this information, we calculate the entrainment height distribution

followed the procedure described in details before. Fig. 4.28 shows this distribution for

a representative (τ∗ = 0.1044) of each fluid model.

As clear in Fig. 4.28, the entrainment height distributions, still, follow a Gaussian

distribution in the presence of turbulent fluctuations. However, the standard devia-

tion of the entrainment height distributions, se, increases in the presence of turbulent
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Figure 4.26: Power law fitting model for standard deviation of bed height variations, ŝη, against
Shields stress (τ∗): (a) for model fluid 1 with fitting parameters aη = 1.27 and bη = 0.54, (b) for
model fluid 2 with fitting parameters aη = 1.19 and bη = 0.51, (c) for model fluid 3 with fitting
parameters aη = 1.29 and bη = 0.5, (d) for model fluid 4 with fitting parameters aη = 1.37 and
bη = 0.52, .

fluctuations. We plot the standard deviation of the entrainment height distribution for

each fluid model as a function of the Shields stress in Fig. 4.29. This figure shows

the standard deviation of entrainment height distribution is bigger in the presence of

turbulence; yet, similar to the previous results, they are independent of bed shear stress

regardless of the presence or absence of turbulence.

To investigate the effect of turbulent fluctuations on the peak entrainment height

and to understand if this height still scales with the standard deviation of the bed

surface height in the presence of turbulent fluctuations, we calculate the first moment
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Figure 4.27: Power law fitting model for standard deviation of bed height variation against
excess Shields stress (τ∗ − τ∗c ) where τ∗c is given in table 4.8 for each fluid model. Solid line
represents our fitting model with aη = 0.83 and bη = 0.29.

of the entrainment height distribution (which represent the peak entrainment height

location) and plot in Fig. 4.30 for each fluid model.

Similar to the results of the entrainment height statistics in the previous sections,

Fig. 4.30 shows the peak entrainment height depends on the bed shear stress and

increases as the bed shear stress increases. More suprisingly is that the normalized

peak entrainment height, ˆ̃ze still scales with the normalized bed surface roughness, ŝη,

in the presence of turbulent fluctuations as: ˆ̃ze ∼ 2× ŝη.

The consistency of our results between the bed surface roughness and peak en-

trainment height, regardless of the presence of turbulent fluctuations is surprising and

promising that there may be a link between the vertical statistics of the bed and lon-

gitudinal transport rate of particles. We will discuss the possibility of the existence of

this link in the next chapter.

We end this chapter by summarizing the results of this section in table 4.9.
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Figure 4.28: A representative of entrainment height distributions for a) F1-Z2d simulations, b)
F2-Z2d simulations, c) F3-Z2d simulations, and d) F2-Z2d simulations. Filled circles represent
the simulation data; the solid line represents a Gaussian fitting curve, pe(z̃|z̃e, s2e) (Eq. 4.8b),
and the dashed line represents an exponential fitting curve, pe(z̃|z̃e, s2η), suggested by Wong
et al. (2007), (Eq. 4.8a).
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−ŝη
ˆ̃ze
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height distribution.
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Table 4.9: Summary of statistical analyses of bed surface for 12 different hydraulic
conditions with different fluid models .

Run Fluid Model τ∗ ŝη ˆ̃ze

1 (1,2,3,4) 0.1330 (0.43,0.43,0.48,0.47) (-0.77,-0.81,-0.87,-0.96)

2 (1,2,3,4) 0.1250 (0.41,0.41,0.45,0.46) (-0.75,-0.77,-0.85,-0.96)

3 (1,2,3,4) 0.1193 (0.40,0.40,0.43,0.45) (-0.78,-0.82,-0.88,-0.91)

4 (1,2,3,4) 0.1052 (0.39,0.38,0.42,0.43) (-0.70,-0.76,-0.77,-0.92)

5 (1,2,3,4) 0.1044 (0.38,0.38,0.42,0.42) (-0.70,-0.78,-0.77,-0.81)

6 (1,2,3,4) 0.0960 (0.35,0.37,0.40,0.40) (-0.68,-0.71,-0.81,-0.78)

7 (1,2,3,4) 0.0915 (0.35,0.35,0.39,0.38) (-0.68,-0.68,-0.78,-0.82)

8 (1,2,3,4) 0.0908 (0.36,0.36,0.39,0.39) (-0.69,-0.74,-0.73,-0.83)

9 (1,2,3,4) 0.0880 (0.35,0.35,0.37,0.38) (-0.66,-0.70,-0.74,-0.76)

10 (1,2,3,4) 0.0844 (0.33,0.34,0.38,0.38) (-0.64,-0.70,-0.77,-0.78)

11 (1,2,3,4) 0.0757 (0.31,0.31,0.36,0.35) (-0.61,-0.65,-0.75,-0.76)

12 (1,2,3,4) 0.0710 (0.30,0.31,0.34,0.34) (-0.55,-0.60,-0.77,-0.72)



Chapter 5

Discussion of Bedload

Simulations

We divide this chapter into three sections. In the first section, we discuss the results

presented in the previous section and their implications on providing a better under-

standing of bedload transport. While mostly beyond the scope of our dissertation, we

start by revisiting the similarities and differences in the transport relationships from

our data compared to those found from other experiments and simulations. Then we

return to the focus of our dissertation to understand how our results provide insights

into the inter-relationship between shear stress, bed height variability, and entrain-

ment/deposition heights are interrelated. Specifically, in this section we provide insight

about the statistics of the location of the exchange between particles in the bed and

particles in transport. In the last section we consider the origin of the different transport

magnitudes among our different models for turbulence. In particular, as we discuss, we

hypothesize that our results from the simulations using fluid model four overestimate

the transport rate. To help with this, we perform additional simulations in which we

vary what we might call the ”height” of the average velocity profile.

74
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5.1 Review and discussion of transport results

We open up the discussion by first discussing our results on a narrow size particle

distribution with d50 = 7.1 mm (Section. 4.1). We found, despite its simplicity, our DEM

model for bedload transport in section 4.1 reproduces transport behaviors measured in

physical systems remarkably well, particularly those which Wong et al. (2007) obtained

from laboratory experiments with similar parameters. While, the difference between our

reference shear stress and and those reported by Wong et al. (2007) or Brownlie (1983)

is small, we think our smaller reference shear stress could be due to the different particle

shapes as spherical particles can be dislodged more easily from a bed than aspherical

angular particles closer to that used in laboratory experiments, for example, by Wong

et al. (2007). We propose that these similarities in the context of the relative simplicity

of our simulations give strength to a strategy of using them, not only for the statistical

analysis we detail in this study, but also for details of the physics behind a variety of

these and other transport behaviors. Using such a simple model as the simulation we

describe in section 4.1, we can turn on and off a variety of *phenomenology* ranging

from turbulent fluctuations in the fluid to asphericity and irregularity in particles shapes

and sizes.

While largely beyond the scope of this dissertation, we briefly consider the simi-

larities and differences between our simulation transport results and those from other

researchers, beyond those of Wong et al. (2007). As we discuss herein, we hypothesize

the difference between simulation and experimental conditions is responsible for the dif-

ferences in the results and we discuss a few cases to highlight these specific differences.

We first consider simulation results from Schmeeckle and colleagues (Schmeeckle and

Nelson (2003); Schmeeckle (2014)). We focus on these as the 2003 work was among the

first to integrate a fluid model with discrete element techniques to represent individual

particle movement. Further, the fluid part of our DEM model was in large part inspired

by the work described in Schmeeckle and Nelson (2003). Yet the results Schmeeckle
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Table 5.1: Comparison of different transport model found by several researchers through
their experimental studies or computational simulations: q∗ = aq × (τ∗ - τ∗c ).

Experiment/simulation aq τ∗c

This study 2.59 0.051

Luque and Van Beek (1976) 5.7 0.06

Meyer-Peter and Muller (1948); Wong and Parker (2006) 3.97 0.0495

Wong et al. (2007) 2.66 0.0549

and Nelson (2003) obtained generally indicated a larger transport rate for a particular

shear stress (i.e., line 2 in Table 5.1) where they used the relationship found by Luque

and Van Beek (1976) for 3.3 mm gravel particles to compare with their data. We note

that while our fluid model is analogous to that of Schmeeckle and Nelson (2003), our

particle model is not. Our model falls under the category of a “soft sphere” DEM model

where the time steps in the simulation are sufficiently short that each particle contact is

simulated over many time steps allowing for a representative model deformation of the

particles. The model of Schmeeckle and Nelson (2003) falls under the category of a “hard

sphere” DEM model where each particle contacts is represented with a single time step

during which momentum is conserved, and loss of energy is represented relatively simply.

These model frameworks can predict significantly different transport rates. While hard

sphere models are less computationally expensive, they are typically no longer used for

these dense flows because of the importance of enduring contact dynamics in these high

solid fraction particulate systems.

Schmeeckle (2014) developed completely new simulations for the second work which

represented interparticle contacts using a soft sphere model. In this work, Schmeeckle

(2014) compared his model results to those from the predictions of Meyer-Peter and

Muller (Meyer-Peter and Muller (1948)) modified by Wong and Parker (2006), (line 3 in

Table 5.1) which seemed to compare well. In this case, we note four significant differences

with the framework that beg consideration for their potential independent contributions
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to transport rate and transport dynamics. (1) The representation of the fluid dynamics

includes consideration of large eddies, i.e., it uses large eddy simulation (LES) techniques

to capture more spatially and temporally rich dynamics. This is more complex than we

use in even our most complicated representation of velocity fluctuations (model 4). (2)

The coupling between particle dynamics and fluid dynamics is two-way. That is, the

local fluid velocity influences the particle momenta (via drag and other forces like static

pressure), and the local particle velocity influences the local fluid momentum. (3) The

simulation conditions were somewhat different in a number of respects. The particles

in Schmeeckle (2014) simulations are sand-sized, (0.5 mm), significantly smaller than

our particles, also primarily at significantly higher shear stresses, under which bedforms

were part of the dynamics, and (4) The particle properties were not represented in a

completely straightforward way. As is not uncommon, the hardness was reduced by

several orders of magnitude which speeds up the simulation processes as it requires

fewer time steps per interaction. We believe that more than one of these differences in

model details give rise to the differences in model results and deserve further intensive

investigation.

Additionally, we consider questions of measured bedload differences under one more

category. Specifically, we consider the two models with which Schmeeckle and colleagues

(Schmeeckle and Nelson (2003); Schmeeckle (2014)) compare their results based on

experimental data and the results from their data are somewhat different than those

from ours. These are from Luque and Van Beek (1976) and Meyer-Peter and Muller

(1948) that modified by Wong and Parker (2006). One more thing we note involves

the value of the critical shear stress as it depends on particle size in our results. As

discussed, the small error in our fitting is promising. However, the differences in τ∗c

between our three size particles is considerable. From the modified Brownlie diagram

and by calculating the particle Reynolds number, Rep, for our simulations, we expected

to see a smaller differences in τ∗c among our three sizes particles. To address these issues,

we first refer back to a comment made by Wong et al. (2007) in the paper detailing the



78

experiments and results they obtained in the flume of 7.1 mm particles. They stated,

their equation of transport (Line 4 of Table ??) “is not proposed as a new universal

predictor of the volume bed load transport rate of uniform gravel under lower-regime

plane-bed equilibrium conditions. Rather, it serves as a baseline relation to analyze

tracer displacement.” Similarly, we do not view our results for sediment transport in

the form of a proposal for a new relationship.

Rather, we view them in the context of a baseline from which we derive other

parameters. We were motivated to use the data from the Wong et al. (2007) paper to

make sure our results are physically reasonable by using a closely aligned experiment.

We note that the experiments on which Luque and Van Beek (1976) and Meyer-Peter

and Muller (1948) are based are significantly more varied than ours. In that context we

suggest that if we were able to consider a subset of their data that were taken under

similar conditions to those of Wong et al. (2007), they would also align closely with our

simulation results. While we find these similarities and differences intriguing they fall

beyond the scope of the thesis, we are planning further investigation in the near future.

5.2 Review and discussion of bed height and entrainment

height statistics

We now turn to the details of the statistical analysis of our bed surface and entrainment

height variability obtained in the previous chapter for different hydraulic conditions and

particle sizes. Similar to the results of Wong et al. (2007), we found that the bed surface

height variability was well-represented by a Gaussian distribution function, regardless

of the particle size, the presence or absence of turbulent fluctuations. The normalized

standard deviation of the local bed height about the mean, ŝη, increased with bed shear

stress for all the simulations performed on different size particles and different fluid

models. This dependence took the form of a power law dependence on excess Shields

stress (τ∗ − τ∗c ) as did that of the experiments by Wong et al. (2007). As suggested by
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Wong et al. (2007), the maximum probability of entrainment height did not coincide

with the average bed surface in our simulations. However, we found a unique relation

between ŝη and τ∗ − τ∗c for all simulations on different size particles and different fluid

models, ŝη = 0.83(τ∗ − τ∗c )0.29 (Fig. 5.1) that is somewhat a weaker dependence than

that of Wong et al. (2007) (whose data suggested that ŝη = 3.09(τ∗ − τ∗c )0.56). This is

true both in terms of the multiplier and the power (Fig. 4.9 and the fitted coefficients

to Eq. 4.10). In other words, experimental standard deviation of the local bed height

increased at a much higher rate than it did in our simulations.

We propose that the differences in the bed-stress-dependence of the bed surface

variations found in this study and that reported by Wong et al. (2007) is two-fold.

Firstly, particle shape arguably plays a significant role in many transport issues and

we propose it plays a role in bed variability as well. Specifically, bed height variability

of a bed of spherical particles is due primarily to relative bed surface particle location

alone, while in bed comprised of aspherical particles, bed surface variability may be due

to both particle height and particle orientation of the topmost particles. The second

effect may be associated with differences in measurement techniques. The bed height

measurements by Wong et al. (2007) were obtained using measurements of the topmost

particle throughout their experiments, which likely includes at least some of the moving

particles. This is different than our bed height simulation, in which our bed height

measurements are based only on the top surface of the particles in the bed, with some

assumptions of how the bed itself is defined. New simulations with aspherical particles

can help us investigate the measurement differences and to test our hypotheses about

the underlying source(s).

We were somewhat startled to note that our relationship between ŝη and τ∗ − τ∗c
was independent of particle size and turbulence fluctuation, that it is essentially the

same for all conditions in this report. This suggests that the only controlling parameter

in shaping the bed surface variations is the extra stress by the flow after the initiation

of the particles motion. The turbulence and particles shape affect the reference shear
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stress, yet, at the same excess Shields stress, the bed surface variations is similar for all

unimodal mixtures when normalized by particle size.
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Figure 5.1: The normalized standard deviation of the bed surface variations plotted against
the excess Shields stress.

Our entrainment height results provide what we feel is one of the most significant

insights from this work regarding the characterization of the bed surface statistics. Be-

fore discussing these, we would like to note that these are the first measured results

of entrainment height variability, as, because of limited experimental techniques of the

period, Wong et al. (2007) could only suggest, not measure, the experimental entrain-

ment height variability. So it is not surprising that some of our results are significantly

different from the form expected by Wong et al. (2007).

We highlight four significant results: (i) Our results agreed with those by Wong

et al. (2007) in that the maximum probability of entrainment height did not coincide

with the average bed surface in our simulations; (ii) In contrast with proposals of Wong

et al. (2007), we found that the elevation at which the peak entrainment probability

occurs is above the average bed height, in contrast of the suggestions by Wong et al.
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Figure 5.2: The normalized peak entrainment height, ˆ̃ze, and normalized bed surface standard
deviation, ŝη plotted against the excess Shields stress for a) 4.12 mm particles with fluid model
1, b) 7.1 mm particles with fluid model 1, c) 12 mm particles with fluid model 1, d) 7.1 mm
particles with fluid model 2, e) 7.1 mm particles with fluid model 3, f) 7.1 mm particles with
fluid model 4.

(2007) that this maximum is likely below the average bed surface (in Eq. 2.8b), and

(iii) We note that the entrainment height variability was well-represented by a Gaussian

distribution function (Fig. 4.7) whose standard deviation (ŝe = se/d50) does not vary

monotonically with τ0.

(iv) Perhaps most significantly, the elevation at which the peak entrainment proba-

bility occurs (z̃e) increases with increasing excess Shields stress, similar to the standard

deviation of bed variability in Eq. 4.10. In fact, the location of maximum entrainment

scales with standard deviation of bed variability |z̃e| ∼ α× sη (Fig. 5.2). This result is

promising in providing predictions of likely particle entrainment locations by knowing

the hydraulic conditions. This makes intuitive sense as, effectively, the location from

which particles are being “plucked” increases with the height of maximum protrusion

of the bed into the flow. The alternative way to justify this finding is by considering
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a bed with a uniform porosity and a flat surface (sη = 0). For this bed surface, we

expect to have the maximum particle entrainment at the bed surface, or at mean bed

height as the most particles are exposed to the highest fluid velocity at that point, We

suspect that the details will vary significantly in a bimodal mixture of a different sizes

and/or densities in a way that helps explain some of the segregation phenomenology

that remains apparently contradictory to established models in mixtures of different

density particles (Viparelli et al. (2015)).

For different sized particles where we properly normalized the conditions and the

outputs, we note that particle size did not affect the bed surface variations in terms

of the standard deviation of bed height Fig. 4.15. On the other hand, we found dif-

ferences in the normalized sη values for the different sized particles. This difference is

considerable between the d50 = 12.0 mm particles and the other two size distributions.

We hypothesize this difference may be associated with the differences in τ∗c between

the different particle sizes. In other words, the standard deviation of the bed surface

variations should be a function of the excess Shields stress, τ∗ − τ∗c , instead of just the

Shields stress, τ∗.

Possible reasons for this behavior of the peak entrainment height can be related to

the inertia of the large particles, our choice of threshold velocity, or the reference bed

shear stress we find from linear least square fitting to our data. This issue is still under

investigation. Yet, it is still noteworthy that the peak entrainment height scales with

the bed surface roughness and not a constant.



83

5.3 Distinctions among simulations including velocity fluc-

tuations in bedload transport

5.3.1 Model Validations

As discussed in the previous section, we model the fluid velocities using the “log law of

the wall” for the average fluid velocity (Eq. 3.10a), and the proposed expressions for

turbulent intensities in the downstream and vertical directions (Eq. 4.13). Since we

model the velocity fluctuations as random processes, we found it necessary to check if

the fluctuations follow the expressions of interest (Eq. 4.13, 4.20). To do so, we plotted

the turbulent intensities from our DEM simulations along with the expression proposed

by Nezu and Nakagawa (1993) (Eq. 4.13) in figure 5.3 for a representative (τ∗ = 0.1044)

of fluid model 2-4.
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Figure 5.3: Validations of our model turbulent fluctuations against the expressions proposed
by Nezu and Nakagawa (1993) for: a) downstream turbulent intensity, (b) vertical turbulent
intensity.

Figure 5.3 shows clearly that our fluid models 3 and 4, in which we drew our fluctua-

tions from a normal distribution of numbers, correctly introduced turbulent fluctuations

into our simulations in a way that followed the expression proposed by Nezu and Nak-

agawa (1993) (for the height dependence of average fluctuation magnitudes). However,
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our results from fluid model 2, in which we introduced random numbers from a uniform

distribution, shows deviation from the expressions of turbulent intensities. We suspect

that this might be due to the fact that the turbulent field is a random field character-

ized by normal distributions based on the Central-Limit-Theorem. In other words, if

the flow velocity is measured at a specific time and location in the turbulent flow over

many repetitions, then the ensemble average of the measured velocities is a random

variable with a normal distributions.
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Figure 5.4: Validations of our models capability in introducing the Reynolds stresses similar
to what proposed in the literature (Eq. 4.20).

In addition to turbulent intensities, we plot the Reynolds stress for the fluid models

2 to 4 in Fig. 5.4. Figure 5.4 shows that we correctly correlate the fluctuations in

downstream and vertical directions for fluid model 4 as the Reynolds stress calculated

from the simulations for this fluid model follows the expression of the Reynolds stress

(Eq. 4.20). As expected, the turbulent fluctuations in fluid model 2 and 3 are not

correlated and therefore the Reynolds stress for these models are approximately zero

when averaged over sufficient time.

Figure 5.3 and 5.4 clearly show that our fluid models 3 and 4 satisfy our expec-

tations regarding the turbulent intensities and Reynolds stress. Fluid model 2 shows
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deviation from our expectations, however, we included the results from this fluid model

for completion.

5.3.2 Importance of baseline depth parameter for velocity fluctuation

results

Our simulations using fluid model 3 and 4 provided overestimated transport rate com-

pare to what reported in the literature for 7.1 mm particles and, in particular, to the

results of the experimental studies of Wong et al. (2007). Therefore, we perform extra

simulations using fluid model 4; however, we shift the zero velocity plane (z1) upward

to reduce the fluid velocity at the bed surface to decrease the particles transport rate

which subsequently, results in a decrease in the reference bed shear stress. In particular,

we perform three more simulation sets with different z1 locations (Tab. 5.2).

Table 5.2: Computational flow parameters for investigating the role of zero velocity
plane on the transport rate of particles using fluid model 4.

Set Name Fluid Model τ∗ ks z1 H (cm)

F4-Z2d 4 0.071 - 0.1330 3.5d50 2.00d50 10

F4-Z1.9d 4 0.071 - 0.1330 3.5d50 1.90d50 10

F4-Z1.8d 4 0.071 - 0.1330 3.5d50 1.80d50 10

F4-Z1.75d 4 0.071 - 0.1330 3.5d50 1.75d50 10

In a similar procedure we followed to present the results in the previous chapter,

we first calculated the normalized transport rate, q∗, of these new simulations. Fig.

5.5 shows the transport rate of two representatives (τ∗ = 0.0915, 0.125, similar to the

representatives in Fig. 5.5) over time. As clear in Fig. 5.5, shifting the z1 values upward

results in a decrease in the transport rate of particles.

We perform a similar linearized least square fit to these new simulations (F4-1.9d,

F4-1.8d, and F4-1.75d) as we did for the other simulations in the previous chapter to

find the parameters of the transport rate model (See Fig. 5.6 and Tab. 5.3). Our
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Figure 5.5: Time series of transport rate of two representative simulations for a) F4-Z2d model,
b) F4-Z1.9d model, c) F4-Z1.8d model, and d) F4-Z1.75d model. The bed shear stress for black
line is τ∗ = 0.0915 and for gray line is τ∗ = 0.125. The inset in each plot shows the average
transport rate starting just after reaching the steady state to time T after reaching steady state.
The error-bar in the inset shows the standard deviation of transport variations for 20 seconds
after reaching the steady state conditions.

results show a similar transport rate between F1-Z2d and F4-Z1.8d models, where in

the first case we have no turbulent fluctuations and in the latter one, we have turbulent

fluctuations but the zero velocity plane is closer to the average bed surface.

Table 5.3 shows the reference bed shear stress is the same for F4-Z1.75d and F4-Z1.8d

models, however, the coefficient aq is different. The coefficient aq shows the sensitivity

of transport rate on changing the bed shear stress. In other words, a higher aq results in

a higher rate of increase in transport rate associated with increases in bed shear stress.

We note this is apparent in the measurements shown in Fig. 5.6 in which the transport
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Figure 5.6: Linear least square fitting to transport data against the dimensionless bed shear
stress, τ∗, to find the parameters of our transport model, q∗ = aq × (τ∗− τ∗c )1.5, for fluid model
4 but with different z1 values.

rates of F4-Z1.8d and F4-Z1.75d are close to each other at small bed shear stresses and

deviate from each other at higher bed shear stresses.

Table 5.3: Transport parameters for different zero velocity planes of fluid model 4.

Set Name Fluid Model z1 aq τ∗c

F4-Z2d 4 2d50 1.96 0.017

F4-Z1.9d 4 1.9d50 2.03 0.035

F4-Z1.8d 4 1.8d50 1.73 0.043

F4-1.75d 4 1.75d50 1.35 0.043

To investigate the role of the location of zero velocity plane on the bed surface

variations, we calculate the bed surface distribution of these new simulations using the

procedure detailed in the previous chapter and plot a representative of each case on Fig.

5.7.

Fig. 5.7 shows the location of the zero velocity plane, z1, also affects the bed surface

variabilities (i.e. compare the distribution of plot (a) which is for F4-Z2d and plot (d)
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Figure 5.7: A representative (τ∗ = 0.1044) of probability density distribution of bed height
variations for each fluid model: (a) F4-Z2d, (b) F4-Z1.9d, (c) F4-Z1.8d, and (d) F4-Z1.75d.
Filled circles represent the simulation data while the solid line represents the Gaussian fitting
curve, pη(z̃|0, s2η).

which is for F4-Z1.75d). These results indicate the distribution is wider for a lower

zero-velocity depth. To investigate this further, we calculate the normalized standard

deviation of the bed surface variations of these simulations and plot on Fig. 5.8 versus

both Shields stress and excess Shields stress.

Fig. 5.8a shows a systematic variations in the magnitude of ŝη values with the

location of zero velocity plane, when plotted as a function of Shields stress. As clear

in this figure, shifting the zero velocity plane upward, which results in a decrease in

the average flow velocity at the bed surface, results in a decrease in the bed surface

standard deviation.

We plot the ŝη of these simulations against the excess Shields stress on Fig. 5.8b. We

found a similar power law relation for these new simulations with the same coefficients
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ŝη,sim = 0.83(τ ∗ − τ
∗

c )
0.29

Figure 5.8: Standard deviation of bed surface variations for fluid model 4 , where turbulent
fluctuations are introduced from a bi-variate Gaussian distribution, but with different zero-
velocity plane locations, a) against the Shields stress, b) against the excess Shields stress.

as to what found before for other simulations.

Next, as we did for our results in the previous chapter, we calculate the entrainment

height distribution of these new simulations and plot a representative from each in Fig.

5.9. This figure shows that the location of the zero velocity plane or the average flow

velocity also affects the standard deviation of the entrainment height distribution. This

is particularly true for the initial shift from 2d to 1.9d (Fig. 5.9(a) to (b)). However, the

sensitivity decreases as the zero velocity plane shifts upward (Fig. 5.9(c) to (d)). We note

that this accentuates the relationship we mentioned in the previous chapter between the

presence of turbulent-like fluctuations and a widening of the pe(z) distributions.

One of our significant finding in the previous chapter was the relation between

the peak entrainment height and the the surface standard deviation (|z̃e| ∼ α × sη).

To understand if this relation applies to these new simulations, we calculate the peak

entrainment height of these new simulations and plot them along with the bed surface

standard deviation on Fig. 5.10. This figure shows the peak entrainment height, still,

scales with the bed surface standard deviation.
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Figure 5.9: A representative (τ∗ = 0.1044) of entrainment height distributions for a) F4-Z2d
simulations, b) F4-Z1.9d simulations, c) F4-Z1.8d simulations, and d) F4-Z1.75d simulations.
Filled circles represent the simulation data; the solid line represents a Gaussian fitting curve,
pe(z̃|z̃e, s2e) (Eq. 4.8b), and the dashed line represents an exponential fitting curve, pe(z̃|z̃e, s2η),
suggested by Wong et al. (2007), (Eq. 4.8a).

The results of this section support the main findings of the previous chapter. How-

ever, the significance of these new simulations is to provide results with the same refer-

ence shear stress that would help us to better compare the role of turbulent fluctuations

with the average flow velocity on the exchange of the bed with the bedload.
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Figure 5.10: Normalized peak entrainment height, ˆ̃ze, and normalized bed surface standard
deviation, ŝη as a function of excess Shields stress for a) F4-Z2d model, b) F4-Z1.9d model,
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entrainment height distribution.



Chapter 6

Background on studies of erosion

rates by debris flows

The second class of eroding flows we examine in this thesis involves debris flows. Debris

flows in the context of geomorphological flows are massive movers of sediment – boul-

ders, gravel, and sand- and clay-sized particles – from mountainous regions and steep

hillslopes to foothills, valleys, and river channels below (Jakob et al. (2005)). Along the

way, they pose significant hazards to infrastructure and human life, and they determine

important details of river channel dynamics to which they supply a substantial amount

of sediment. There is significant evidence that changing land use and climate change are

increasing debris flow magnitude and frequency which accelerate the need to understand

their dynamics (e.g., Stoffel and Beniston (2006); Jakob and Friele (2010); Jomelli et al.

(2009)).

Much of our understanding of debris-flow processes is drawn from experimental

studies (i.e. Papa et al. (2004); Egashira et al. (2001); Iverson et al. (2011); Farin et al.

(2014); Mangeney et al. (2010); Papa et al. (2004)) and limited natural examples (i.e.

Berti et al. (2000); Berger et al. (2011); McCoy et al. (2012)). The significant hazard of

bouldery debris flows limits the active measurement of erosion rates by natural debris

92
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flows. Additionally, the wide range of grain size along with the limited understanding

of the possibly unique contribution of the different sized particles to the dynamics of

the debris flows has limited confidence in experimental measurements (Iverson (1997,

2003)). Notably, with recent advancement in computational powers, simulations of

debris flows are being considered to provide more information at particle-scale (Zhao

(2014)). However, these simulations are still limited due to the difficulties in simulating

of a large number of particles with current computational power.

Thus much of our community understanding of erosion by debris flows has been

developed in the context of continuum-like sediment transport models, such as ideas of

an “excess shear stress” suggested by Takahashi (2009). In turn, predictions from these

model frameworks have been fit by the relatively limited available data, such as, in the

Takahashi (2009) framework, a minimum angle before sufficient stress forces entrain-

ment. It is already evident that the success of the results are situation-dependent. It is

likely that changing environmental conditions, such as rainfall frequency and magnitude,

and variable particle properties limit effectiveness of empirical models based primarily

on field debris flows.

A solution to this problem may lie in a more physics-based understanding of the

manner in which debris flow composition, interstitial fluid composition, and particles

which can vary from one debris flow to the next can affect debris flow behaviors. Un-

derstanding the mechanisms that control the rate at which a particular debris flow

entrains particles and grows in size is important for predicting their hazard (Godt and

Coe (2007)).

In this Chapter of this dissertation, we review some of the studies performed to

provide an understanding of the parameters that control the entrainment rate of debris

flows. Then, we describe new experimental work whose methodology and results provide

a foundation to better understand effects of variable particle size distributions in a debris

flow on its erosion of loose bed materials.
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6.1 Field-scale observations of debris flow entrainment

Much of our intuition of debris flow entrainment has historically been obtained from

observations of landscape evolution associated with natural debris flows. After a debris

flow is initiated, inspection of the steepest part of the canyons indicates that at the

steepest slopes, debris flows entrain most loose sediment in their paths and incise into the

bedrock itself (e.g. Wieczorek et al. (2000); Stock and Dietrich (2006);). At intermediate

slopes debris flows no longer scour down to bedrock, but they typically continue to

entrain debris from the channel bed causing granular flows increase considerably in size

(e.g., Revellino et al. (2004); Hungr et al. (2001)).

This study concerns with the dynamics of the entrainment process when the flow

is not supply limited. Rather, the rate of entrainment is governed by the flow and/or

material in the bed. Many physical factors influence debris flow entrainment rates under

these conditions. In most cases, these have been categorized into one of two mechanisms:

(1) an applied shear stress by the flow on the bed that has the potential to accelerate

the material into motion and (2) internal forces or stresses within the bed that resist the

movement of bed materials into the flow (e.g., Takahashi (2009); Hungr et al. (2001)).

In other words, the rapid loading associated with debris flows can entrain particles by

increasing the shear loading of the material at the same time it can reduce the internal

stress or even induce a liquefaction of the bed material, leading to erosion.

Monitoring stations around the world have produced data that have increased our

understanding of key factors in debris flow entrainment. Notably, these include stations

in active debris flow sites such as Acquabona Creek in the Dolomites in the Italian East-

ern Alps (Berti et al. (2000)); Illgraben channel in the Swiss Alps (Berger et al. (2011));

Chalk Cliffs study basin in the Sawatch Range, Colorado, USA (McCoy et al. (2012)).

Berti et al. (2000) used flow height sensors, load cells, and fluid pore pressure sensors

buried in the channel bed to understand entrainment dynamics in the Italian Eastern
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Alps. Their data indicated that the scour rate was proportional to local slope gradi-

ent. Berger et al. (2011) used a progressive erodible daisy-chained sensor in conjunction

with dynamic load cells measuring downslope and normal stresses, pore pressure sen-

sors video monitors in moderately moist debris flows along the Illgraben channel in a

temperate-humid region in the Swiss Alps. They found that entrainment rate increases

with both average and fluctuating stresses, and demonstrated that the fluctuations and

entrainment rate particularly well-correlated with the highly fluctuating granular front.

McCoy et al. (2012) used a comparable situ sensor network to measure related quantities

in the Chalk Cliffs study basin of Colorado for dry-to-saturated flows in the typically

semi-arid conditions. They found a strong correlation between entrainment and bed-

sediment moisture content by comparing time-averaged entrainment rates across all six

(dry and saturated) flows. In contrast to the findings of Berger et al. (2011), McCoy

et al. (2012) found negligible correlations between stress fluctuations and sediment en-

trainment, perhaps because of a different in the nature of the debris flows. The Chalk

Cliffs measurements indicated shallow stress fluctuation penetration depths into the

bed. These field studies have demonstrated the importance of bed inclination, moisture

level, and dynamics such as shear stress and bed fluctuations. However, investigating

the effects of grain size distribution of the debris flow, or of the erodible material, on

erosion dynamics is difficult due to the difficulty of systematically isolating the effect of

grain sizes, interstitial fluid properties and other factors from one another.

6.2 Laboratory scale experiments of erosion dynamics

Laboratory investigations can isolate the effects of particle properties, changing inter-

stitial fluid properties, slopes and other parameters from one another. Egashira et al.

(2001), Papa et al. (2004), and Haas and Woerkom (2016) reported experiments in a

laboratory flume designed to study the effect of changing relative size of the particles in
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the flow and the bed. Egashira et al. (2001); Papa et al. (2004) both used millimeter-

sized particles (from ∼ 2 mm to 10 mm) in an experimental flume with an adjustable

angle. The flume was designed with a “weir” at the bottom, allowing these researchers

to fill the bottom of the downstream end of the flume with particles and provide an

erodible bed at a lower angle of inclination. Papa et al. (2004) showed that, for these

systems, if both bed and flow particles are of the same size distribution, erosion rates de-

crease monotonically with increasing particle size. Egashira et al. (2001) demonstrated

that, using smaller or equal-sized particles in the flow, the net erosion rate increases

with decreasing bed particle size. Egashira et al. (2001); Papa et al. (2004) predicted

theoretically that net erosion rate should scale as dflow/dbed, i.e,. the smaller the bed

particles relative to the particles in the flow, the larger the erosion rates.

More recently a significant body of experimental erosion rate research has been

performed in the University of Minnesota Complex Particle Flows Laboratory that

forms the foundation of the work described in this chapter. Briefly, the work covers four

topical areas: (1) laboratory flume design, (2) particle tracking studies of debris flows of

narrow grain size distributions, (3) particle scale analysis of bed aging phenomenology

for debris flows of narrow grain size distributions, and (4) Effect of viscosity.

Maki (2018) performed several experimental tests to study the dependence of debris

flows erosion on the channel slope and particle size distributions. To do so, she performed

experiments on dry mixtures, to remove any effects due to interstitial fluid, in a built-

in flume designed by Hill et al. (2013). However, the unique features of their flume

(same flume is used in this study) allows the investigation of the effect of inclination

angle, interstitial fluid, the pore fluid pressure and particle size distributions on the

debris flow erosion rate under a controlled procedure. Similar to the bedload transport

that researchers developed expressions relating the transport rate to the excess Shields

stress, Maki (2018) suggested that the net erosion of materials depends on the difference

between the bed inclination angle and the neutral angle, the angle where the net erosion

is zero.
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The experimental work of Maki (2018) investigated the dependence of net erosion on

the particle size distributions with minimum investigation of these dynamics at particle-

size scale. To build on this, Moberly (2015) performed experiments on unimodal dry

mixtures with a high speed camera to capture flow dynamics at 1000 frames per seconds.

To measure the dynamics at particles scale and to relate these with the erosion behavior

of the flow, Moberly (2015) developed an algorithm to analyze the images captured by

high speed camera through three steps: (1) locating and tracking particles; (2) calcu-

lating the solid fraction and velocities profiles; and (3) use the information calculated in

step 2 to determine the erosion, erosion rate and the forces that may be driving forces of

the entrainment. These three steps are the foundation of image analyses performed in

this study. The results of Moberly (2015) showed a positive relation between the erosion

rate and granular temperature but no dependence was found between the erosion rate

and shear stress.

Longjas et al. (2016) studied the structures within the bed that may resist or help

the erosion rate by the debris flows. Their results showed that repeated flows on a bed,

weaken the underlying structures within the bed; Therefore results in an increase in the

erosion rate of materials by the flow.

Mullenbach (2018) performed experimental studies on the same flume used by Maki

(2018); Moberly (2015), to understand the role of the interstitial fluid on erosion rate

behavior of debris flows. To systematically investigate the role of the interstitial fluid on

erosion rate, he used a viscous Newtonian fluid. He varied the viscosity of the interstitial

fluid from one experiment to the next (µ = 1 to 62 centipose). His results showed that

the presence of the interstitial fluid, in general, lower the neutral angle; however, he

found no changes in the neutral angle by changing the viscosity of the interstitial fluid.

His results showed a correlation between the erosion rate with excess pore fluid pressure.

Pore fluid pressure is defined as the pressure of fluid that filled the pores and is usually

represented by the hydrostatic pressure (P = ρfghcos(θ)). Excess pore fluid pressure

refers to times when the pore pressure exceeds that due to the weight of the fluid.
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Mullenbach (2018) concluded that the additional erosion he measured under cases of

excess pore pressure is dud to a decrease in the normal stresses borne by the particles

that reduces the resistance of the bed to erosion Iverson et al. (2010).

While laboratory bench-scale results are compelling, we recognize here that typical

laboratory experiments such as these suffer the risk of scale-limiting issues, particu-

larly when it comes to particle-fluid flows [e.g., Iverson (1997)]. The well-known United

States Geological Survey (USGS) flume [Iverson et al. (2010)] provides some best ele-

ments of both worlds – those of laboratory experiments and field measurements. At 95

m long and 2 m wide, it is sufficiently big to minimize scaling issues of smaller labora-

tory experiments. Yet because of its relatively simple (rectangular) channel geometry

and detailed instrumentation, it provides a setting that allows for systematic studies

primarily only possible in relatively small laboratory flumes. Using these facilities, re-

searchers have been able to isolate a number of important dynamics of debris flows

[e.g., Iverson et al. (2010)]. Notably, Iverson et al. (2011) and Reid et al. (2011) tested

the effect of changing volumetric water content of the bed on relative erosion of that

bed by a debris flow. To do so, they varied water content from ∼ 15% to 30% holding

all else constant, including the particles in the bed and flow, i.e., mostly gravel and

sand with a small percentage of finer particles. They demonstrated that bed moisture

plays an indisputable role in entrainment: the more moisture in the bed, the higher

the measured entrainments rates. Further, they showed that higher entrainment rates

associated with the higher bed moistures were strongly correlated with higher mobility

rates of the debris flows.

With this brief review of historical attempts to understand the dynamic of debris

flows, and especially the entrainment rate of materials, , we note that the affect of

grain size distribution on erosion rate still remains largely unknown. Thus, in this

dissertation, we address work to understand the influence of grain size dependence of

an initial debris flow on its erosion of materials in the bed over which it flows. To

help provide a foundation for these studies, we focus on bimodal mixtures in the initial
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debris flow and use dry particles for the results described here. In the next Chapter,

we present the methodology we use to investigate the entrainment rate of debris flows

as it depends on certain aspects of the grain size distribution in bimodal mixtures.



Chapter 7

Experimental debris flow design

and analysis methodology

The experiments described herein were performed in our laboratory flume (Fig. 7.1)

designed by Hill et al. (2013); Maki (2018) and fabricated by the University of Minnesota

College of Science and Engineering (CSE) machine shop, specifically to study erosion

and deposition by an experimental channelized debris flows. Previous students have

described the functionality and details of the flume over the last decade (Maki (2018);

Moberly (2015); Mullenbach (2018)) to which a number of modifications have been

made over the years. For completion and for an up-to-date picture of the experimental

conditions under which we performed this work, we also provide a detailed description

in this chapter.

7.1 Experimental details

7.1.1 Experimental flume, materials, and equipment

The channel of the flume is approximately 3 m long × 0.08 m wide. The inclination

angle of the flume (φ) is adjustable from approximately 0◦ to 40◦. The upslope ∼ 1.8

100
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m of the flume channel has a rigid rough bed and is approximately 1.8 m long × 0.15

m deep × 0.08 m wide. Three release gates are installed along this section of the flume

at 0.38 m, 1.12 m, and 1.84 m from the upstream end. The bed is roughened from 1.12

mm to the end of this upslope region using sandpaper of ∼ 1mm roughness elements.

For the experiments we report here, we used the central release gate at 1.12 m from

the upstream end. (Similar results were found using release gates at 0.38 m from the

upstream end as detailed in (Moberly (2015)). The downslope ∼ 1.3 m of the flume

has a false bottom, without which is ∼ 1.3 m long ∼ 0.70 m tall × 0.15 m high. Both

ends of the erodible bed chamber are bounded by a wire mesh of spacing ∼ 0.5 mm up

to the height of the bottom of the rigid bed (0.15 m high). A ramp installed between

the bottom of the rigid bed and the bottom of the erodible bed chamber (inclined ∼

30◦ from the bed) minimizes the scour that, prior to its installation, occurred at the

upstream end of the erodible bed. Since installation, the scour is almost non-existent,

and did not appear to affect the results we present here.

Figure 7.1: Sketch of laboratory flume (not to scale).

For our experimental debris flows and bed material over which they flowed, we used

unimodal and bimodal systems of near-spherical zirconium silicate beads (density of

4100 kg/m3 and diameters of 2.0 mm and 0.8 mm). We dyed the smaller particles blue
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using Sharpie ink to enhance differentiation of the two constituents when used together

in an experiment. To simplify the experiments for this work, we used only one type

of bead in the bed at the beginning of each experiment and used uniform or bimodal

systems in the supply, or initial debris flow, of the same material as the particles in the

bed.

For each experiment, we used three primary pieces of measurement equipment: a

digital level (Husky R© accurate to the nearest 0.1◦), a digital scale (with a resolution

of one gram), and a high speed camera (Photron Fastcam SA3, capable of 1000 x 1000

resolution at 1000 framese per second). Before and after each experiment, we made two

relatively simple measurements of relevance here: (1) We determined the inclination

angle of the flume, φ, using a digital level placed on the base of the flume, as we inclined

the flume. (2) We collected mass measurements of the particles using a digital scale. In

addition, we captured high speed videos of the experiments using a high speed camera.

We present the algorithm used to analyze the images captured by these cameras in the

next section.

7.1.2 Experimental procedure

To prepare each experiment, we reset the bed with the flume in a horizontal position,

such that φ ≈ 0◦ and apply anti-static spray to the flume walls. We place a predeter-

mined mass and mixture of particles in a position upslope of the closed gate to act as

the initial debris flow for our experiment. The shape of the conglomerate of particles

placed here is similar from one experiment to the next, though, using this release gate,

we observe little-to-no difference in net erosion when this was changed (Moberly (2015)).

Next, we place an amount of particles in the erodible bed chamber predetermined to fill

the chamber to the top. We use a flat rectangular plastic piece to scree the bed, that

is, to gently smooth the top of the erodible bed in a way that flattens the surface while

minimizing disturbance to the bed beyond the top layer of beads. After this, we incline

the flume to a predetermined angle and then secure the flume in place.
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To initiate each experiment, we open the gate to allow the initial debris flow material

to flow downstream. As the initial debris flow travels over the roughened rigid section of

the flume, the particles accelerate, become agitated and spread out due to the interpar-

ticle interactions. Once the energized particles reach the stationary erodible bed, they

collide with and mobilize initially stationary particles. These mobilized particles, once

energized, become part of the energized shearing collisional flow and subsequently mobi-

lize lower, initially stationary particle in the bed. An apparent non-material boundary

between moving and stationary particles descends for some time, depending on the ex-

perimental conditions. Then, the process reverses. The bottom-most moving particles

slow and stop due to “drag” forces from the particles below them and insufficient mo-

bilizing interactions from the particles above. Next, the particles slightly higher in the

bed slow to a stop and so on, until the non-material boundary between moving and

stationary particles comes to a rest at the top of the bed. Over the duration of an

experiment, the bed may increase in height and mass, decrease in height and mass, or

return to its original value, depending on the conditions. That is, at the end of each

particular experiment: (1) all or some of the initial debris flow may have deposited on

the bed, more so than is eroded, so it finishes with an increased height; (2) some of the

bed material may have left the flume, more so than is left behind by the original debris

flow, so it finishes with a lower height, or (3) the initial debris flow material that never

leaves the flume may be exactly balanced by the bed material that is eroded and leaves

the flume, so that the bed finishes with the same height at which it started

During each experiment, we monitor the flow, entrainment, and deposition dynamics

primarily using one high speed camera. After flow ceases, we weigh the particle that

exited the flume during the experiment to calculate a net mass eroded from the bed,

and we analyze the digital images to measure the local quasi-instantaneous entrainment

rate.
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7.2 Image Processing and Analyses

To monitor the dynamics of debris flows and in particular, the erosion rate and its

driving forces, we need to precisely locate and track the movements of particles over

the course of the experiments. We found algorithms used previously (Moberly (2015);

Mullenbach (2018)) did not provide sufficient particle location for the different sized

and shaded particles necessary for the mixtures tracked for this thesis. To improve the

tracking, we developed an improved algorithm to detect the particles and track their

motion from one image to another.

7.2.1 Particle Locating and Tracking

To locate the particles, we first improve the image quality for the ease of particle locating.

To do so, we apply a high-pass and low-pass filtering on each frame captured by the

high-speed camera. We perform high-pass filtering with a Gaussian filter to sharpen

the image which increase the contrast between the bright and dark pixels. This helps

differentiate the particles from each other and also from the image background. We also

apply a low-pass filtering with a box blur filter to suppress the noise at small scales.

We perform these filtering steps by performing a convolution of the original image

with mathematical representations of these filters. To demonstrate how this type of

the convolution works, we consider the 3 × 3 matrix in Fig. 7.2, an arbitrarily chosen

sharpening matrix (or kernel). We use similar sharpening kernels to emphasize the

differences between adjacent pixels. As an example, of how this works, we consider it in

the context of a sample (small) 10 by 10 pixel image, where the greyscale is represented

by a number proportional to its brightness (see Fig. 7.3). We perform the convolution

by operating on each entry of the matrix except the border entries in Fig. 7.3). We

do so by first conceptually overlying the convolution kernel on the image matrix with

its center on a particular pixel and the rest of the convolution kernel entries on the

surrounding image pixels. Then we multiply each entry of the convolution kernel with
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the image pixel over which it lies. Finally, we sum these products and replace the central

image pixel of this operation with that sum of the products. We perform this operation

on each entry of the original matrix and replace it with the modified entries for all but

the edge pixels. For a particular example, we consider applying the sharpening kernel

on the highlighted pixel in Fig. 7.3:

0 -1 0

-1 5 -1

0 -1 0

Figure 7.2: An example of sharpen kernel with the size of 3 × 3 to filter the images captured
by the camera.

((0)(34) + (−1)(43) + (0)(49) + (−1)(39) + (5)(46)

+(−1)(46) + (0)(39) + (−1)(46) + (0)(46)) = 56
(7.1)

Fig. 7.2 shows a convolution kernel with a size of 3. For the purpose of the image

processing for this study, we choose the size of our high-pass and low-pass kernels to be

the same as the size of the particles in pixels. For the bimodal cases, we use the size of

small particles to set the size of the convolution kernels.

After filtering the images, we use the filtered images to locate the particles. Moberly

(2015); Mullenbach (2018) used the local brightness maxima algorithm to estimate the

center of each particles. In particular, the algorithm they use first identifies the pixels

that are brighter than their adjacent neighbors and sets the other pixels to zero. Then,

on a domain that correspond to the size a particle, it picks up the brightest pixel among

the selected bright pixels and estimates it as the center of the particle. Finally, using the
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34 43 49 43 38 33 25 17 12 9

39 46 46 48 48 41 36 30 20 9

39 46 46 50 51 49 45 35 23 11

46 53 57 61 60 56 51 43 33 19

52 51 62 64 64 58 54 47 38 28

50 56 61 67 71 63 55 48 41 32

50 55 62 63 65 61 51 46 41 32

53 57 57 61 61 58 51 44 36 29

48 54 57 60 58 56 49 44 38 26

44 49 55 60 57 55 50 40 41 24

Figure 7.3: An Image with arbitrary pixel points to understand the convolution matrix on an
image.

estimated locations, their algorithm calculates a more precise location of the particles’

center by calculating the weighted average brightness of the pixels around the estimated

location. These calculations are similar to the calculations of mass centroid except that

instead of mass, the brightness of the pixels are used.

While the procedure above works well in identifying the particles in a unimodal

system, its capabilities is limited in bimodal mixtures. The problem arises from choosing

an appropriate size of domain. Setting the size of domain to the size of coarse particles

(2 mm particles) leads to neglecting some of the fine particles (0.8 mm particles) in the

image. Yet, setting the size of domain to the size of fine particles leads to detecting

multiple bright spots on coarse particles. While we could pick these out by eye and

distinguish them one at a time, we would not be able to perform much analysis because

of the intensive time we would need to do so.

To resolve this problem, we combined the local brightness maxima algorithm with

a built-in function in MATLAB called “imfindcricles”. This function uses the Circular

Hough Transform (CHT) algorithm to find circular objects in an image. To do so, this

algorithm, first, detects the pixels with highest brightness gradients. The algorithm

treats these pixels as representatives of the circular object perimeter. Then, each of
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these detected pixels are assumed to be a center of a circle with a known radius of R.

The algorithm finds the center of the true circle by finding the point or pixel that is

shared with most the of other circles. Figure 7.4 shows schematic representation of this

process.

Figure 7.4: Schematic illustration of how circular Hough transform algorithm works. Black
dots are the points on the perimeter of the real circular object that are the center of dashed line
circles. The center of the real circle (solid line circle) is identified by finding the point that is
shared most between the dashed line circles (red point).

The CHT algorithm in the context of our particle location methods is as follows.

“imfindcricles” function in MATLAB has several options which can be specified by the

user. Specifically, we can specify the radius of the circular objects we are looking for in

the image. In addition, we can specify the sensitivity of the method in a manner that,

by trial and error, leads to detection of more circles in the image.

To detect all the fine and coarse particles of dry experiments, we perform the convo-

lution algorithm described above with the domain size roughly equal to the size of fine
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particles. As we mentioned above, this presents us with locations of all the fine particles

in the image; at the same time, it presents us with multiple center locations for each

coarse particle. To remove these mistakenly assigned spots on the coarse particles, we

use the “imfindcricles” function. We set the input radius to be the same as the radius of

the coarse particles. This way, we detect all the coarse particles in the image. We then

computationally compare the two sets of particle locations and use the approximate size

of the coarse particles to remove the multiple centers assigned to them in the first step.

Finally, we are left with fine particles that are detected using the local brightness max-

ima and coarse particles that are detected using the “imfindcricles” function. Figure

7.5 shows an example from an image we took during a bimodal experiment with located

fine and coarse particles with this procedure.

(a) (b) (c)

Figure 7.5: An illustration of the steps to find the fine and coarse particles in an image to
minimize the noise detection. (a) shows the raw image from the high speed camera; (b) shows
the coarse particles detected using the ”imfindcircle” function in MATLAB, (c) shows all fine and
coarse particles that are detected. Coarse particles are detected using ”imfindcircle” function
and fine particles are detected using the local brightness maxima algorrithm.

After locating the particles in all the frames, we calculate their displacement from
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one frame to next by minimizing the distance. We use a nearest neighbor algorithm

which finds the closest particle in the next frame to a specific particle in the current

frame and considers the differences between these two positions as the displacement of

that specific particle between two frames. Using the particles displacement information,

we can calculate the velocity field of the flow which we explain in the next section.

7.2.2 Fields of Concentration, Velocity, and Velocity Fluctuations

To study the erosion rate and understand its driving forces, we need to have the informa-

tion regarding the particles’ density and the flow velocities. To obtain this information,

we first divide each image into several horizontal bins that are parallel to the bottom

of the flume. For experiments on unimodal mixtures, we choose the thickness of each

bins in a manner to have 21 bins per particles diameter. For bimodal mixtures and to

have the uniform thickness of bins, we choose the thickness of each bins in a manner to

have 20 bins per coarse particles’ diameter and 8 bins per fine particles’ diameter.

Using the information obtained from the previous section by locating and tracking

the particles, we find the bin that associates with center of each particles. We calculate

the volume of the particle and its velocity within that bin. We do the same for the other

bins that contain a portion of that particle by calculating the volume of a disk shown

schematically in figure 7.6 according to:

∀ =

∫ y+dy/2

y−dy/2
π
(
R2 − y2

)
dy (7.2)

Equation 7.2 approximates the center of each particle as perfectly aligned on the

center of the bin that is associated with the central part of the particle. However, more

generally, the center of the particle we calculate from the image processing algorithm

does not align perfectly on the center of the bin as shown schematically in figure 7.7.

To resolve this issue, we consider the distance between the center of the particle and its
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Figure 7.6: Schematic representation of a sphere and a representative disk on it. dy is equal to
the thickness of the bins.

corresponding bin and calculate volume of each disk by the following equation which is

the modified form of Eq. 7.2:

offd

Particle’s center

bin’s center

Figure 7.7: Schematic representation of a misalignment between the particle’s center and bin’s
center.

∀ =

∫ y+dy/2−offd

y−dy/2−offd
π
(
R2 − y2

)
dy (7.3)
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where offd is the difference between the center of the particle and the bin.

After performing these calculations for all the particles in each frame, we calculate

the average solid fraction in each bin as (Hill et al. (2003); Moberly (2015); Mullenbach

(2018)):

f(y) = fBy = ΣiΣb∀bi/(Nt∀B) (7.4)

where f(y) is the solid fraction at the vertical location, y; By refers to the bin which

centered at y; ∀B is the volume of the bin; ∀bi is the volume of the portion of particle b

that falls within bin By in image i. To reduce the noise associated with instantaneous

calculations, we time-average the calculations over several images and Nt refers to this

number of images. The results of Moberly (2015) have shown that averaging over 50

images would be a sufficient number to remove the noise but not the details of the flow

dynamics.

After calculating the solid fraction of each bin, we calculate the average streamwise

and vertical velocity of each bin, over 50 images, from the information we obtained

about their displacement in our tracking algorithm:

u(y) = uBy =
ΣiΣb∀bi × ubi

ΣiΣb∀bi
(7.5a)

v(y) = vBy =
ΣiΣb∀bi × vbi

ΣiΣb∀bi
(7.5b)
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where u(y) and v(y) are the average streamwise and vertical velocity of the bin

centered at y and averaged over 50 images. ubi and vbi are the instantaneous streamwise

and vertical velocities of particle b in image i, respectively.

For the experiments on the bimodal mixtures, we do the above calculations for each

particle size. Then, we add the solid fraction of fine and coarse particles in each bin to

calculate the total flow solid fraction. To calculate the total flow velocities, we calculate

the weighted average of these velocities from fine and coarse particles:

fmix(y) = ff (y) + fc(y) (7.6a)

umix(y) =
ff (y)× uf (y) + fc(y)× uc(y)

ff (y) + fc(y)
(7.6b)

vmix(y) =
ff (y)× vf (y) + fc(y)× vc(y)

ff (y) + fc(y)
(7.6c)

where fmix, umix, and vmix are the mixture solid fraction, streamwise and vertical

velocity at y, respectively. The subscripts “f ′′ and “c′′ stand for “fine” and “coarse”

particles, respectively.

Figure 7.8 shows a snapshot of an experiment the flow at 2.5 seconds after we

initiate the experiment with an initial debris flow of 0.8 mm particles of a bed of 2.0

mm particles. Figures 7.8(b) and 7.8(c) provide the corresponding concentration and

streamwise velocity profiles at that instance for fine and coarse particles and the mixture

throughout the depth of the system. We note that our calculations for streamwise

velocity of fine particles include noisiness, specifically for the parts deep in the bed

where the concentration of fine particles are negligible. Because the noisiness is greatest

in the depth, where the small particle concentration is low, the contribution of these

noises on the velocity profile of the mixture is negligible. This allow us to use our

image processing algorithms for the experiments we performed in this study. However,
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improving our algorithms for particles locating and tracking is a work in progress.
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Figure 7.8: Illustration of profiles calculation for bimodal mixtures. (a) shows a snapshot of
the flow at 2.5 seconds after initiation of the flow for the experiment with 100 % fine particles
in the supply. (b) shows the concentration profile of fine, coarse and mixture. (c) shows the
streamwise velocity profile of fine, coarse and mixture.

7.2.3 Flow Dynamics Calculations

For a qualitative measurement of the entrainment rate of bed materials by debris flows,

we need to define an interface that distinguishes flowing layer from the erodible bed.

The changes in the location of this interface indicates the growth rate of debris flows by

entraining materials. To determine this interface which from now we call it entrainment

height, we compare the downstream velocity of each bin, calculated in the previous

section, with a critical velocity, ucrit. We define a bin is part of the flow if its downstream

velocity is greater than the critical velocity.

Other researchers (i.e. Hill et al. (2003); Gioia et al. (2006); Frey and Church (2011);
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Forterre and Pouliquen (2008); Mangeney et al. (2007, 2010)) have shown that the

velocity of particles in deep layers of flow decays exponentially with depth. Therefore,

setting the critical velocity to zero is not a reasonable choice. In addition, the particles

deep in the bed may assigned a very small velocity due to either shakes of the fume or

our particles’ locating procedure. Therefore, for this study, we choose ucrit = 0.01 m/s.

To determine the entrainment height, we fit a linearized least squared to the logarithmic

values of the downstream velocity (See Fig. 7.9):

ybot,fit,j(uj) = mj ln(uj(y)) + bj (7.7)

where mj and bj are the fitting coefficients determined from the least square method

for each average set, j. After finding these coefficients, we can determine the entrainment

height:

Hent = mj ln(0.01) + bj (7.8)

Using this way of determining the entrainment height, we can track the changes in

this height during the course of our experimental tests. In addition, we can determine

the changes in this height with time, which we refer to as entrainment rate (ė) here and

henceforth. We calculate this rate by calculating the changes in the entrainment height

over a specified time interval:

ė = −∆H

∆t
(7.9)
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(a) (b) (c)

H

Figure 7.9: Illustration of our methodology in determining the entrainment height. (a) shows
the detected fine and coarse particles, b) shows the mixture velocity profile of the flow at an
instantaneous time, and the entrainment height (H) which is measured from the bottom of the
channel to the interface between the flowing layer and the erodible bed. c) shows the linearized
least square fitting between the natural log of the velocity data for mixtures and the height.

Here, ∆H is the change in entrainment height over time interval ∆t. The negative

sign came from the fact that we define the entrainment rate as positive when the en-

trainment height decreases. To calculate the entrainment rate in this study at each time

step, we choose the entrainment height values for four time steps before and after the

current time step. Fig. 7.10 illustrates our methodology in determining the entrainment

rate.

In addition to using the tracking data to calculate an entrainment height and its

changes over time, we use the data to calculate potential driving forces for these changes.

Previous studies (Berger et al. (2011); Berti et al. (2000); Moberly (2015); Mullenbach

(2018)) have suggested different factors such as shear stress and granular temperature

of the flowing layer control the changes in entrainment height. We note that in other
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Figure 7.10: The changes in entrainment height over time. The slope of these changes indicates
the entrainment rate.

contexts, issues of segregation and infiltration related to mixed grain sizes play a role

in sediment entrainment and transport (Dudill et al. (2017)). We investigate some of

these effects in the context of changing grain size distribution as we describe in more

detail in the next chapter.



Chapter 8

Experimental findings of the

dependence of debris flow erosion

rates on particle size

We divide this chapter into four parts. In the first part, we present our results re-

garding the net eroded mass measured from our experiments on unimodal and bimodal

mixtures. Specifically, this includes the experiments and results obtained concerning the

dependence of total net erosion on (1) the grain size in the bed and flow in single-sized

particle systems and (2) the grain size distribution of the initial debris flow, our “supply

composition” in bimodal mixtures at the flume and bed angle of inclination equal to

the neutral angle of the bed material.

In the second part, we present the results of how the time-dependent near-instantaneous

erosion rate depends on the initial debris flow or “supply composition,” when the orig-

inal bed material is kept the same from one experiment to the next.

In the third part we discuss the results of the time-dependent erosion rate in the

context of hypothesized controls over the erosion rate. We do this in the context of our

grain-sized dependent particle tracking and image analyses procedure.

117
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We conclude the chapter with a brief discussion of the results and the strengths and

weaknesses of this framework.

8.1 Macroscopic analyses of net eroded mass by debris

flows

8.1.1 Combined roles of bed angle of inclination and material

To understand the roles of combined bed-supply materials and the angle of bed inclina-

tion for our set of particles on the erosion of bed materials by debris flows, we performed

what we call “uniform particle experiments.” For these experiments, all particles (in the

initial debris flow and in the bed) were the same and we varied the inclination angle

from one experiment to the next.

For the first set of experiments, we performed several experiments, as detailed in

Table. 8.1, on different inclination angles for each particle size. For each experiments,

we calculate the normalized net mass eroded:

m̂e =
mout −minitial

minitial
(8.1)

Here, m̂e is the normalized net eroded mass, mout is the mass exited the flume, and

minitial is the initial debris flow mass. A positive value of m̂e indicates that the flow is

net erosional which means the total mass of particles that leaves the flume by the end

of the experiment is more than what supplied by the initial debris flow. In a similar

way, a negative value of m̂e indicates that the flow is net depositional, that is, once all

flow has stopped, less mass leaves the bed than was supplied by the initial debris flow.

We use a linearized least squares fit to determine a straight line that represents the

relationship between the m̂e,fit and φ data.
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Table 8.1: Particle properties and input parameters for uniform particle experiments.

Experiment ρ(kg/m3) d (mm) minitial(kg) mbed(kg) φ(deg)

1 4100 0.8 6.6 17.1 22.5

2 4100 0.8 6.6 17.1 23.5

3 4100 0.8 6.6 17.1 24.5

4 4100 0.8 6.6 17.1 25.0

5 4100 0.8 6.6 17.1 25.5

6 4100 2.0 6.6 17.1 24.0

7 4100 2.0 6.6 17.1 25.0

8 4100 2.0 6.6 17.1 25.5

9 4100 2.0 6.6 17.1 26.0

10 4100 2.0 6.6 17.1 27.0

m̂e,fit =
∆m̂e,fit

∆φ
× (φfit − φn) (8.2)

where
∆m̂e,fit

∆φ and φn are fitting parameters. We provide values for these parameters

in table 8.3 and discuss the significance of those parameters in Section 8.4.

8.1.2 Effects of initial debris flow concentration

We performed a second set of experiments where we maintained a constant bed com-

position and bed inclination and varied the composition of the initial debris flow (or

“supply”) from one experiment to the next. We performed five sets of experiments using

an initial bed comprised only of 2.0 mm particles and another five sets of experiments

using an initial bed comprised only of 0.8 mm particles. where the bed was uniformly

composed of one size particles but the percentage of finer and coarser particles in supply
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Figure 8.1: Net eroded mass as a function of bed inclination, φ. (a) total mass discharged
from the system, mout, (b) normalized net mass out, m̂e = mout−minitial

minitial
. The lines represent

linearized least square fit lines, Eq. 8.2.

was varied. We performed both sets of experiments with the bed inclined at the angle

at which, in Section 8.4.1 we demonstrated that there was no net erosion. We used

an inclination angle of approximately 26◦ for the experiments with a bed composed of

coarse particles, and approximately 23.5◦ for the experiments on a bed composed of

finer particles.

We performed several “mixture erosion experiments” for each of the two types of

particles, for which we varied the percentage of fine and coarse particles in the initial

flow as detailed in table 8.2. The fine bed particles (db = 0.8 mm) was not stable under

the same conditions, thus for these we performed the experiment using a somewhat

lower angle than that at which we achieved stability (φ = 23.5◦ < 24.9◦ = φn). Fig.

8.2 shows the normalized net eroded mass as a function of % fine particles in the initial

flow.

The results from the “mixture erosion experiments” presented in Fig. 8.2 shows that,

when the bed was comprised only of 2.0 mm particles, we found the total net eroded mass

decreases with increasing fraction of fine particles in the initial debris flow, or supply.
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Table 8.2: Input parameters for mixture erosion experiments.

Experiment db(mm) ds,c(mm) ds,f (mm) φ(deg) % fines in initial flow

1 0.8 2 0.8 23.5 0

2 0.8 2 0.8 23.5 25

3 0.8 2 0.8 23.5 50

4 0.8 2 0.8 23.5 75

5 0.8 2 0.8 23.5 100

6 2 2 0.8 26.0 0

7 2 2 0.8 26.0 25

8 2 2 0.8 26.0 50

9 2 2 0.8 26.0 75

10 2 2 0.8 26.0 100

In contrast, when the bed composed only of fine particles, we found no systematic

changes in the total net eroded mass as we change the percentage of coarse particles

in the supply. We note that the results for the 2.0 mm and 0.8 mm particle evaluated

individually varies a bit more. One might expect that the normalized net erosion of one

component should be proportional to its representation in the initial flow. However, for

the bed composed of coarse particles, the normalized net eroded mass of fine particles

decreases with increase of fine particles, while the normalized net eroded mass of the

coarse particles is relatively flat. In the case of bed composed of fine particles, the

normalized net eroded mass of the fine particles increases slightly overall, while the

normalized net eroded mass of coarse particles increases with decreasing representation

of coarse particles in the initial debris flow.

In the next section, we analyzed some of the experiments presented in this section

through our image analyses algorithm to provide a better understanding of underlying

mechanisms at particle-scale that leads to the results presented in this section.
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Figure 8.2: Normalized net eroded mass for each component and total as a function of con-
centration of the fine particles in the supply. (a) shows the normalized net eroded mass for bed
composed of coarse particles, (b) shows the normalized net eroded mass for bed composed of
fine particles.

8.2 Instantaneous particle-scale measurements of dynam-

ics associated with debris flow erosion

Towards understanding the driving forces of erosion rate at particle-scale, we choose a

subset of the experiments we described in the previous section to analyze in more detail.

In particular, we choose the experiments we performed on a bed composed of coarse

particles only (experiments 6 through 10 in Table 8.2) . In this section we consider the

dynamics of the erosion rates and potential drivers as they vary with concentration of

fine particles in the initial debris flow.

We start by considering the entrainment height (the interface between the station-

ary bed and flowing layer) and entrainment rate as they vary with time for these five

experiments. These two parameters are introduced before in section 7.2.3. Figure 8.3a

shows the entrainment height (H −H0 where H0 is the initial bed height) as it varies

in time for five different concentrations of fine particles in the initial debris flows.

All of the experiments exhibit decreasing bed height as a function of time for the
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dense flow first impinges on the bed (≈ 1 s to 1.5 s following the time at which the

dense flow impinges on the bed). As seen in this figure, the entrainment height drops

sharply in the beginning of the experiments when we have 50 to 75 percent by mass fine

particles in the supply. Figure 8.3b shows the entrainment rates of these experiments

over the course of each test in which we can associate the initial drop in the entrainment

height with an initial positive entrainment rate.
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Figure 8.3: Time series of (a) entrainment height, (b) entrainment rate. H0 is the entrainment
height at the initial time.

For additional information on these results, we consider the velocities and concen-

trations. For a few examples, we provide these results, along with a snapshot, for three

experiments: that with 25% fine particles in the initial debris flow (Fig.8.4); that with

75% fine particles in the initial debris flow (Fig.8.5), and that with 100% fine particles

in the initial debris flow (Fig.8.6).

When we compare these three sets of snapshots with one another, we notice a few

obvious similarities and differences among these three experiments.

• For all cases the state of the particles in the snapshots indicate a more energetic

flow at 1 seconds after the impinging of the dense flow on the bed than at 2 seconds
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Figure 8.4: (a) A snapshot of flow at 1 seconds after the start of flow for experiment with 25 %
fine particles in the supply. Green line shows the entrainment height (the interface between the
flowing layer and stationary bed). (b) shows the concentration profile for fine, coarse, and their
combination. (c) shows the downstream velocity profiles of fine, coarse and their combination.
(d-f) shows the snapshot, concentration profiles, and downstream velocity profiles, respectively,
for 2 seconds after the start of the flow.

after initiation.

• The relative locations of the fine particles and coarse particles indicate that the

fine particles infiltrate more into the bed for the experiment with 75% fines in the

supply compared to the other two experiments. We note the 75% case is the case

with an intermediate percentage of fines in the initial debris flow compared with
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Figure 8.5: (a) A snapshot of flow at 1 seconds after the start of flow for experiment with 75 %
fine particles in the supply. Green line shows the entrainment height (the interface between the
flowing layer and stationary bed). (b) shows the concentration profile for fine, coarse, and their
combination. (c) shows the downstream velocity profiles of fine, coarse and their combination.
(d-f) shows the snapshot, concentration profiles, and downstream velocity profiles, respectively,
for 2 seconds after the start of the flow.

the other two we compare here.

When we compare these three sets of concentration profiles and velocity profiles

with one another other, a few more details emerge.

• The flow velocity for all three experiments is higher at 1 seconds after the initiation

of the experiment compare to the velocity at 2 seconds after the initiation. This
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Figure 8.6: (a) A snapshot of flow at 1 seconds after the start of flow for experiment with 100 %
fine particles in the supply. Green line shows the entrainment height (the interface between the
flowing layer and stationary bed). (b) shows the concentration profile for fine, coarse, and their
combination. (c) shows the downstream velocity profiles of fine, coarse and their combination.
(d-f) shows the snapshot, concentration profiles, and downstream velocity profiles, respectively,
for 2 seconds after the start of the flow.

is in agreement with the snapshots that show a more energetic flow at 1 seconds

after the initiation of the flow.

• The concentration profiles support the general picture provided by the snapshots,

that fine particles infiltrates more into the bed for the experiment with 75% fines

in the supply compare to the other two experiment where we have more or less
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fine particles in the supply.

• Only for the experiment with 75% fines in the initial debris flow, the bottom of

the fine particles appears to reach the location of the entrainment height. In other

words, the fine particles are able to reach the point at which the flowing particles

interact with relatively stationary particles.

• Only for the experiment with 100% fine particles in the initial debris flow, the

interface between moving particles and the bed never penetrates into a region of

high concentration of large particles. That is, during these relatively early times

in the experiment, the entrainment height remains near the interface between the

fine and coarse particles.

8.3 Other macroscopic fields and their influence on erosion

rates

In this section, we explore the dependence of erosion rate on two factors proposed

by other researchers. In particular (since the effect of interstitial fluid is negligible in

our experiments), we consider the average shear stresses and granular temperature as

described in the following sections to consider whether these parameters influence the

erosion rate in our experiments.

8.3.1 Shear stress

We calculate the average shear stress due to the weight of particles in the flowing layer

on the interface between the flowing layer and stationary bed:

τ = ρsfghsin(θ) (8.3)
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Figure 8.7: (a) A snapshot of flow at 3 seconds after the start of flow for experiment with 75 %
fine particles in the supply. Green line shows the entrainment height (the interface between the
flowing layer and stationary bed). (b) shows the concentration profile for fine, coarse, and their
combination. (c) shows the downstream velocity profiles of fine, coarse and their combination.
(d-f) shows the snapshot, concentration profiles, and downstream velocity profiles, respectively,
for 4 seconds after the start of the flow.

Figure 8.10 shows the average shear stress over the course of experiments for each

tests. This figure shows the average shear stress, in general, increases as the amount of

fine particles in the supply decreases. We know from Eq. 8.3 that the magnitude of the

shear stress depends on the thickness of the flowing layer. Therefore, we conclude that

the flow thickness increases as the percentage of fine particles in the supply decreases.

To understand if the shear stress (or similarly the flow thickness) controls the erosion
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Figure 8.8: (a) A snapshot of flow at 3 seconds after the start of flow for experiment with 100 %
fine particles in the supply. Green line shows the entrainment height (the interface between the
flowing layer and stationary bed). (b) shows the concentration profile for fine, coarse, and their
combination. (c) shows the downstream velocity profiles of fine, coarse and their combination.
(d-f) shows the snapshot, concentration profiles, and downstream velocity profiles, respectively,
for 4 seconds after the start of the flow.

rate, we plot the erosion rate versus shear stress on the inset of Fig. 8.10. As clear

in this figure, there is not a significant correlations between the shear stress and the

erosion rate. Specifically, we notice that the range of changes in erosion rate is similar

for two cases: 100 % fines in the supply and 0 % fines in the supply. However, in the

latter cases the range of changes in shear stress is about 3 times larger than the other

case. Therefore, we think that other factors rather than the shear stress should control
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Figure 8.9: (a) A snapshot of flow at 3 seconds after the start of flow for experiment with 25 %
fine particles in the supply. Green line shows the entrainment height (the interface between the
flowing layer and stationary bed). (b) shows the concentration profile for fine, coarse, and their
combination. (c) shows the downstream velocity profiles of fine, coarse and their combination.
(d-f) shows the snapshot, concentration profiles, and downstream velocity profiles, respectively,
for 4 seconds after the start of the flow.

the erosion rate. In the next section, we investigate the dependence of the erosion rate

on granular temperature.
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Figure 8.10: Plot of average shear stress (τ) through time on the interface between the flowing
layer and stationary bed. The inset shows the plot of erosion rate vs average shear stress for
the course of the experiment.

8.3.2 Granular temperature

We calculate the average granular temperature for the dense flowing layer based on

velocity variations near the interface between the bed and the dense flowing layer.

We start with the instantaneous and local velocity vectors calculated throughout

the experiment and also the near-instantaneous velocity fields calculated according to

Equation 7.5. We then calculate profiles of the correlations of the velocity fluctuations

according to the following equations:

σu(y) = σuBy =
ΣiΣb∀bi × (ubi − uBy)× (ubi − uBy)

(Nt∀B)
(8.4a)

σv(y) = σvBy =
ΣiΣb∀bi × (vbi − vBy)× (vbi − vBy)

(Nt∀B)
(8.4b)
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We calculate a “granular temperature” according to the sum of these velocity vari-

ations for the dense flowing layer:

T =

y=htop∑
y=H

ρsf(y) (σu(y) + σv(y))

htop −H
(8.5)

In this equation, H is the entrainment height, and htop is the top of the flowing layer.

Figure 8.11 shows the plot of average granular temperature over time for each of

the experiments. In contrast to the plot of average shear stress, there is no system-

atic variations between the average granular temperature with the percentages of fine

particles in the supply. Instead, the granular temperature is highest, at early stages of

the flow, for experiments that have 25 and 50 percent of fine particles in the supply.

To understand if the granular temperature determines the erosion behavior of the flow

observed before in Fig. 8.3b, we plot these two parameters against each other on the

inset of Fig. 8.11. The inset shows no clear dependence between the erosion rate and

granular temperature except, perhaps, at very early times.

Previous studies by Longjas and Hill (2020); Moberly (2015) shows a correlation

between the granular temperature and erosion rate at early stages of the flow. To

investigate if the same positive correlation exist for the experiments of this study, we

plot the erosion rate versus granular temperature for the early stages of the flow (from

0.5 seconds to 1.5 seconds). As we can see from Fig. 8.12, there is a slightly positive

correlation between the granular temperature and shear rate at early stages of the flow,

except the experiment with 100% fines in the supply that shows a negative correlation

between these two at early stages of the flow.
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Figure 8.11: Plot of average granular temperature (T ) through time for the dense flowing layer.
The inset shows the plot of erosion rate vs average granular temperature for the course of the
experiment.

8.4 Discussion of Debris Flow Results

We note that there are a number of similarities in the results we present here and

previous results obtained in this flume (e.g., by Maki (2018) and Moberly (2015)). The

ways in which our results differ provide important insights to experimental debris flow

as we discuss here.

8.4.1 Dependence of erosion on bed angle

Similar to the results of Hill et al. (2013); Maki (2018), Fig. 8.1 demonstrates that the

total net erosion in our experiments increases linearly with the inclination angle, φ. The

linearity of these results is independent of bed material (compared with the Maki (2018)

that used glass particles for her experiments, while we used denser zirconium silicate
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Figure 8.12: Plot of erosion rate (ė) for early stages of the flow (0.5 - 1.5 seconds) against the
average granular temperature.

particles). On the other hand, we recall (from Chapter 6) that Maki (2018) recorded

an erosion dependence that increased with large particles in the initial debris flow, or

supply, regardless of whether there were large or small particles in the bed. This is in

contrast with our results for the small-particle bed, where the dependence of net total

erosion on concentration of large particles was ambiguous.

We hypothesize that the difference lies in certain particle properties as they manifest

in natural angles of the two types of particles in the two different mixtures. We follow

the example of Hill et al. (2013); Maki (2018) and assign the fit parameter φn to the

neutral angle for a particular system of particles. It is essentially the flume inclination

angle at which the net erosion for a particular system of particles is equal to zero (i.e.,

mout − ms = 0). The neutral angle is analogous to what Egashira et al. (2001) and

Papa et al. (2004) call “the equilibrium angle”. Similar to our use of this term, these

groups defined this equilibrium, or neutral, angle as the angle at which an erodible bed

slope will adjust to when debris flows pass over the erodible bed. The fitted slopes of

our linear least squares fits
∆m̂e,fit

∆φ represents a measure of the sensitivity of the erosion
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to the deviation of the angle of inclination from the neutral angle (φ− φn). Since this

value is larger for the coarser particles, we suspect the variability of this slope from one

system to the next is due to a variability of relative roughness of the particles, another

surface property, or a relative asphericity of the particles. Although investigating of

this, is beyond the scope of this paper, it is likely important in the context of natural

particles that differ more significantly in shape and surface properties and is the topic

of future work.

Table 8.3: Fit parameters for uniform particle experiments.

d (mm) φn(deg) ∆z̃e,fit/∆φ R2

0.8 24.9 0.41 0.996

2.0 26.0 0.46 0.985

We note that for the glass spheres used by Hill et al. (2013); Maki (2018) in their

experiments, they found that the neutral angle for the two types of particles and also

their 50’/50 mixture was strikingly similar. In contrast, we found that the neutral angles

of our zirconium silicate particles differed from one another with statistical significance.

Specifically, the neutral angle of the fine particles is smaller (by just over 1o as shown

in Table 8.3) than the coarse particle neutral angle that emphasizes on the role of the

bed slope in determining the erosion or deposition patterns of debris flows (Conway

et al. (2010)). We hypothesize that this affects the erosion rates of different beds as we

discuss in the next section.

8.4.2 Dependence of erosion on composition of initial debris flow

The previous section presented arguments for the differences in total net erosion on

coarse particle content in the debris flow from one bed material to the next. Two things

are left in question. First: In three out of the four cases discussed here the net total

erosion increases with higher concentrations of large particles in the flow (specifically,

two from Hill et al. (2013); Maki (2018) and the one over the coarse bed discussed
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herein). Second, the instantaneous erosion rates appear to be somewhat less systemat-

ically dependent on the large particle fraction in the initial debris flow. Perhaps even

more surprisingly, the highest and lowest erosion rates (and deposition rates) do not

scale monotonically with concentration of the large particles in the initial debris flow.

In this section we consider the first issue. For insight into why the net total erosion

increases systematically with increasing large particles in most cases, we consider the

potential of collisional energy transfer between chains of large particles compared with

small and large particle mixtures. Similar to the concept of “jamming”, we hypothesize

that increasingly long chains of large particles in contact increases the efficiency of their

effect on particles in lower layers. We follow this hypothesis with another in which we

hypothesize that increasing fractions of large particles increase the effective impact of

the coarse particles with their size, increasing increasing their capability to dislodge

other particles.

On the other hand, we did not find a systematic relation between the amount of

coarse particles in the supply with net eroded mass when we used a bed composed with

fine particles. We hypothesize that a bulk effect drives this, related to the deposition of

the coarse particles on the bed inclined lower than its own φn, as discussed in details in

subsection 8.4.1.

For the second question, that of the variation of instantaneous erosion rates with

coarse particles in the supply, we turn back to the instantaneous data and images in

Section 8.3 to understand.

8.4.3 Effects of instantaneous measures of flow on bed erosion rates

Perhaps the most striking detail of these results is the apparent non-monotonic behavior

with changing fine particle concentration in the supply. Despite the results of net eroded

mass shown in Fig. 8.2 that shows a decrease in net eroded mass with decreasing amount

of coarse particles in the supply when the bed composed of coarse particles, we found

different behaviors in a smaller time intervals. Specifically, the net eroded mass is higher
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for 75 % fine particle in the supply at early stages of the flow (Fig. 8.13).
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Figure 8.13: Time series of (a) entrainment height, (b) entrainment rate for the experiment
with 75 % fine particles in the supply.

The observation of the instantaneous flow conditions at early stages of the flow with

75 % fine particles in the supply (Fig. 8.5) shows the infiltration of these fine particles

into the coarse bed once the flow actively shearing the erodible bed. However, our

observations did not show the same magnitude of the fine particles infiltration into the

bed when we have more (Fig. 8.6) or less (Fig. 8.4) fine particles in the supply. We

hypothesize the balance of two parameters control the infiltration of fine into the coarse

particles bed: (1) enough fine particles in the supply to infiltrate into the bed before

carrying out by the flow (2) coarse particles in the supply to provide enough shear

rate at the bed surface to open up spaces to let the fine particles to infiltrate, a process

which is known as kinetic sieving. The experiment with 75 % fine particles in the supply

meets both of these two criteria as it has enough coarse particles in the flow to provide

a sufficient shear rate as well as enough fine particles to infiltrate once the shear rate is

provided at the bed surface. However, these two criteria are not met at the same time

for the other two experiments that we showed in Figs. 8.4 and 8.6 (25 and 100 percent
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fine particles in the supply). In particular, for the experiment with 25 % fine particles

in the supply, there are enough coarse particles to provide a sufficient shear rate at the

bed surface but there are not enough fine particles that can infiltrate into the bed. For

the experiment with 100 % fine particles in the supply, there are enough fine particles

in the supply; but there are not enough coarse particles to provide a sufficient shear

rate at the bed surface.

To explain in more detail the high erosion rate at the beginning of the flow for 75 %

fine particles in the supply (Fig. 8.13) is related to the infiltration of fine particles in the

coarse bed. Studies of bedlaod transport have shown an increase in transport rate by

addition of fine particles in the flow (Hill et al. (2017); Venditti et al. (2010); Yohannes

and Hill (2010)). In the context of granular system, this increase in transport can be

explained differently. Specifically, for the experiments of this study where the effects of

interstitial fluid (air) is negligible, the flow dynamics and entrainment are solely depends

on particles interaction. Previous studies along with our observations of recorded videos

of the experiments show that a coarse particle on a coarse erodible bed dislodges easier

if the flow contain particles of similar size or larger. Once a coarse particle at the

bed surface entrains, an open space is created for fine particles to infiltrate. Based

on our observations, two reasons can lead to an increase in erosion of particles by the

infiltration of fine particles into the bed: (1) segregation in which the coarse particles

are tend to move towards the bed surface; (2) filling up the spaces that results in

deposition of a coarse particles at a higher elevation. These infiltration may change

the bed structure, in particular the force chain between the bed particles. Additionally,

complex inter-particle interactions including segregation, and disparate momentum and

energy exchange may play a role.

Finally we also note here that not only the 75% mixture has the highest entrainment

rate at the beginning but slightly later, the same mixture has the highest deposition

rate. We noticed that fine particles keeps infiltrating into the bed as long as the previous

two criteria meets: (1) sufficient amount of fine particles to infiltrate; (2) sufficient
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magnitude of shear rate at the interface between the flowing layer and erodible bed.

When any of these two criteria disappeared, fine particles stop infiltrating. If the amount

of fine particles exceeds the capacity of available voids in the bed, fine particles start

to make a layer between the top of the flow layer and coarse particles (Fig. 8.7). We

noticed once this layer starts to develop, the flow starts to decelerate. We believe the

explanation for this flow behavior is due to two factors. First, the layers made of fine

particles tends to reach an equilibrium condition that is the their neutral angle. This

results in slowing down the coarse particles on top of the flow layer as they now moves

on a slope that is smaller than their neutral angle. Once the coarse particles are slowed

down, they start to slow down the layers below them. As the contact interface between

a coarse particle flowing on top of fine particles is high, the friction forces slow down

the motion of fine particle furthermore. Ultimately, this results in a sharp increase in

entrainemnt height (Fig. 8.3).



Chapter 9

Summary and Future Work

To summarize: in this dissertation we investigated the characteristics of particles en-

trainment in two important environmental particle-fluid flows; 1) Bedload transport in

rivers, 2) Debris flows in steep upland regions. In a number of ways, the dynamics have

similarities in their natural settings. However, the methodology and focus of each in

this dissertation are distinct. In this final chapter, we first review the major activities

and conclusions. Then we conclude this work by presenting what we see as the next

major potential for advancements in these areas.

9.1 Summary of bedload erosion activities and results

Towards studying the bedload transport in rivers, we used Distinct Element Method

(DEM) simulations to investigate the behavior of height-dependent entrainment statis-

tics under steady state conditions. We used physics-based interparticle force laws and

established drag relationships to represent fluid forces on the particles. Moreover, our

particle size distributions followed published experimental work, specifically, the log-

normal gravel particle size distribution of experiments performed by Wong et al. (2007);

Hill et al. (2017). For a subset of the simulations, we included model turbulent-like veloc-

ity fluctuations using a random processes where the turbulent intensities and Reynolds

140
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stress followed physical measurements summarized by Nezu and Nakagawa (1993).

We represented turbulence in a few different ways to study the effects of turbulence

fluctuations compared to average turbulence stresses:

1. In two sets of simulations we represented turbulence only through its affect on

the form of the average velocity profile and associated average local drag forces

on particles. We consider the design of these computational experiments in three

contexts:

• The first set of computational experiments was modeled with a grain size

distribution associated with well-established and detailed laboratory flume

experiments (Wong et al. (2007))

• The second set of experiments were designed to investigate the effect of grain

size on the statistics of bed height variations in entrainment statistics of

bedload transport. The parameters were chosen in based on the results from

a single size and scaling considerations.

2. For the rest of the simulations we used the same size distribution as from the Wong

et al. (2007) experiments and varied the representation of turbulence. Specifically,

we included the magnitude of the stress through the shape of an averaged velocity

profile in addition to fluctuations in velocities normal to the bed and downstream.

We investigated three variation of the form of these fluctuations:

• Turbulence with uncorrelated normal and downstream fluctuations of evenly

distributed magnitudes about their local mean (uniform distribution)

• Turbulence with uncorrelated normal and downstream fluctuations of nor-

mally distributed magnitudes about their local mean (Gaussian distribution)

• Turbulence with correlated normal and downstream fluctuations of normally

distributed magnitudes about their local mean (bi-variate Gaussian distribu-

tion)
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3. Turbulence with correlated normal and downstream fluctuations where similar

to the last case mentioned above, but with the additional consideration of the

location of the “zero velocity plane” where the model fluid velocity and velocity

fluctuations vanish

In the experiments designed with a grain size distribution and range of bed stresses

similar to previously published experiments (Wong et al. (2007)) we found a number of

encouraging results that suggested the simulations reasonably represent physical trans-

port processes:

1. The fitted bed “reference” or “excess” shear stress scales with the median grain

size as suggested by existing experimental results reported by others (i.e.Meyer-

Peter and Muller (1948); Ashida and Michiue (1972); Wong et al. (2007)

2. All the simulations, with or without turbulence fluctuations, reproduced the same

power law relations between the bed transport rate and the fitted bed “reference”

or “excess” shear stress reported by others (i.e.Meyer-Peter and Muller (1948);

Ashida and Michiue (1972); Wong et al. (2007)): q∗ ∼ (τ∗ − τ∗c )3/2

3. All the simulations, with or without turbulence fluctuations, reproduced bed

height statistics, that is, that are well-represented by a Gaussian distribution.

4. The width of that distribution, represented by the standard deviation about the

mean bed height, increases with excess bed shear stress. That is, it increases with

bed shear stress with or without the presence of model turbulence fluctuations

and scales with both.

Additionally, we presented some unique observations, presently only attainable through

simulations such as these, that could give insight to larger scale river reach models. If

incorporated, they could be tested by comparing predictions from these models with

larger-scale measurements of transport and stratigraphy. Regardless, these provide
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physical insight for our understanding of these phenomena and guidance for instrumen-

talists and modelers alike:

1. All of the simulations exhibited a strong relationship between local bed height and

entrainment height statistics. While specific relationships were hypothesized by

Wong et al. (2007), as we discuss, they are not capable of producing the details

possible in our simulations that are required for closing the probablistic model.

Speifically:

• The entrainment height distribution, similar to the local bed height distri-

bution, follows a normal distribution about the peak entrainment height.

• The peak entrainment height increases with the standard deviation of the

bed height about its average: z̃e ≈ 2 × sη above the average bed height for

all runs.

• Unlike the standard deviation of the bed height, sη, the standard deviation

of the entrainment height se about its mean height z̃e shows no correlation

with the Shields stress or turbulence fluctuations.

2. Our (fitted) reference shear stress we found depended on a number of specific

model variables:

• The presence of the turbulent fluctuations. Specifically, the presence of tur-

bulent fluctuations increases the transport rate and results in a drop in the

reference shear stress needed to initiate the transport, analogous to that ex-

perimentally shown by Lajeunesses and colleagues (Malverti et al. (2008);

Lajeunesse et al. (2010)).

• The location of zero velocity plane where the fluid velocity goes to zero. We

note this is well-defined for the case of a log-law near an impermeable bed,

various forms have been proposed for a sediment bed. In physical cases, it is
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likely dependent on some measure of pore size via the grain size distribution,

but we had little physical investigation to support specific relationships.

Finally, the results of these simulations allowed us to provide a link between the

longitudinal transport rate and vertical bed surface statistics discussed in the phe-

nomenological model development in Chapter 5.

9.2 Summary of debris erosion activities and results

Towards studying the particle entrainment mechanism in debris flows, we conducted

experimental studies to investigate the effect of changing the fraction of large particles

in a bimodal grain size distribution in an initial debris flow on the net erosion of the

bed over which it flows. To isolate the effects of interstitial fluid, we performed the

“dry experiments” or air as an interstitial fluid. In particular, we performed two sets of

distinct experiments:

1. A set of unimodal experiments on an erodible bed that is composed of either coarse

particles (2 mm particles) or fine particles (0.8 mm particles).

2. A set of experiments that we called the bimodal experiments in this study that we

used bimodal mixtures of particles in the supply but unimodal mixture of particles

in the erodible bed.

The set of unimodal experiments were used to determine the neutral angle of the

two size particles used in this study. The neutral angle found in these experiments

are then used to conduct the experiments at that angle but with a bimodal mixture of

particles in the supply. By conducting these experiments and through our observations

and analyses, we found:

• The neutral angle for coarse particles are higher than fine particles. This indi-

cates, at the same inclination angle, coarse particles behaves more stable and less

erosional compare to the fine particles.
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• The flow composition plays an important role in determining the erosion rate

behaviors. We found the infiltration of fine particles into the course bed increases

the erosion rates. Our observations suggested two conditions that are required

for this infiltration to happen: (1) sufficient amount of fine particles in the flow;

(2) sufficient amount of shear rate at the bed surface to provide a space for fine

particles to infiltrate.

• While the infiltration of fine particles into the course bed can increase the erosion

rate in a short run; it can have opposite effects on the long run when the amount

of fine particles suppress the available voids in the bed. Once this happens, the

additional fine particles make a layer within the flowing layer, above the coarse

bed surface and below the coarse particles in the flow that are pushed to the top

of the flow due to segregation. Once this layer of fine particles is made between

the two layers of coarse particles; it decelerates the flow.

• Despite the role of the bed composition on erosion rates, we found no correlations

between the erosion rate with the average shear stress or granular temperature,

except at early stages where the granular temperature and erosion rates are slightly

correlated.

9.3 Future research directions

These two sets of fundamental research set the foundation for further such investigations

into relationships that better predict entrainment in bedload and debris flow systems.

There are a few details that first would be satisfying to settle in these relatively

basic frameworks. For the bedload transport systems here are a few details we would

suggest future researchers address:

• Our DEM model uses one-way coupling only between the fluid and particles and

neglects the influences of particles on fluid velocity. It would be informative to
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determine whether this is a reasonable first order approximation or a lowered local

or global velocity would be better in modeling real physical systems.

• Our DEM model neglects details of non-sphericity and larger scale roughness in

the particles. These may prove to be first order effects that faster computational

speed would provide relatively simple means for investigation

• Our DEM model neglects effects of fine clay and silt particles and biofilms that

are likely present in real systems and may play a first order role in transport of

these systems.

Additionally, we consider how this probablistic entrainment model can inform a

physics-based model for bedload transport as discussed in Chapter 5. However, further

studies are needed to validate and extend this link into a broader range that could in-

clude: 1) a more accurate representation of the flow field in computational experiments,

2) a mixture of particles with different size distribution. The latter case may reveal

new insights that can be used to provide a more physics-based formulations of mixture

transport rate instead of the hiding factor considerations as are common currently in

predicting the mixture transport rate.

In regards to debris flow studies, we suggest the following directions for future stud-

ies:

• Prior to conducting any new experiments to capture different aspects of flow dy-

namics and to provide a better understanding of the erosion rate by debris flows,

there is a need to revise the algorithms used in this study for particle locating

and tracking. Although our particle locating and tracking algorithm serves well

for the purpose of this study, yet there are a few areas that this algorithm needs

to be improved:

1. Our algorithm works well in detecting fine and coarse particles; yet there

is some level of noise involved in this particle locating where it erroneously
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“detects” fine particles in the areas where there are no fine particles (Fig.

7.8). Possible solutions to this issue may be found by (1) a set up of the

experiment where the lightening spread uniformly over area that high speed

camera captures, (2) a better image filtering to remove the noise (e.g, due

to a few small imperfections on the flume walls) and to better differentiate

the fine and coarse particles from one another other, (3) train the machine

to detect the particles instead of using the local brightness maxima and the

built-in function imfindcircle.

2. We suspect that the reason why we found no significant correlations between

the granular temperature and erosion rate may be related to our particle

tracking algorithm. We used the nearest neighbor algorithm to track the

particles. Despite the simplicity of this algorithm, it serves well for our

purpose in many cases. However, we found that this algorithm fails to track

the particles accurately in some cases. To resolve this issue, we examined a

more sophisticated algorithms for particle tracking (such as 3 frames (3MA)

and 4 frames (4MA) algorithms Ouellette et al. (2006)). These algorithms

assumes the constant velocity or acceleration between the two consecutive

frames. For example, 3 frames algorithm uses 3 frames at each time to

track the particles; the first two frames are used to estimate the particles

velocity and using the estimated velocity, they estimate the particles location

in the third frame and finds the closest particle to that estimated location.

Our investigations show that these algorithms are not yet capable the of

solving the issues with our particle tracking. Therefore, a new and improved

algorithm is needed and is currently under investigation.

• New experiments on dry mixtures can be performed to not only have mixtures in

the supply but also in the erodible bed.
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• New experiments with non-Newtonian interstitial fluid can be performed to pro-

vide insights on how more complex rheology of interstitial fluid affects the particles

entrainment under the naturally varied loading conditions.

Although this study investigated the particles erosion under controlled and specific

conditions (i.e. steady state lower region plane bed for bedload transport and bimodal

mixtures with minimum effects of interstitial fluid for debris flows), the findings of

this can provide a basic physical understanding of these two particle-fluid systems and

extended to the more complex situations. For example, the results of this study for bed-

load transport can be used to provide a better understanding and prediction of pollutant

transport and diffusion in rivers, a better design of hydraulic structures by consider-

ing the local scour and ultimately a better understanding of various geomorphological

phenomena observed in nature such as vertical and downstream segregation.
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V. Jomelli, D. Brunstein, M. Déqué, M. Vrac, and D. Grancher. Impacts of future

climatic change (2070–2099) on the potential occurrence of debris flows: a case study

in the massif des ecrins (french alps). Climatic Change, 97(1-2):171–191, 2009.

E. Lajeunesse, L. Malverti, and F. Charru. Bed load transport in turbulent flow at

the grain scale: Experiments and modeling. Journal of Geophysical Research: Earth

Surface, 115(F4), 2010.

L. Landau and E. Lifshitz. Fluid mechanics. 1987. Course of Theoretical Physics, 1987.

A. Longjas and K. M. Hill. Evolution of bed fabric from repeated experimental debris

flows. 2020.

A. Longjas, J. Mullenbach, and K. M. Hill. Experimental studies of increased bed

fragility induced by evolving bed fabric associated with repeated debris flows. In

AGU Fall Meeting Abstracts, 2016.

R. F. Luque and R. Van Beek. Erosion and transport of bed-load sediment. Journal of

hydraulic research, 14(2):127–144, 1976.

L. Maki. Laboratory debris flow experiments: A study of erosion. 2018.

L. Malverti, E. Lajeunesse, and F. Métivier. Small is beautiful: Upscaling from mi-

croscale laminar to natural turbulent rivers. Journal of Geophysical Research: Earth

Surface, 113(F4), 2008.

A. Mangeney, L. Tsimring, D. Volfson, I. S. Aranson, and F. Bouchut. Avalanche

mobility induced by the presence of an erodible bed and associated entrainment.

Geophysical Research Letters, 34(22), 2007.



155

A. Mangeney, O. Roche, O. Hungr, N. Mangold, G. Faccanoni, and A. Lucas. Erosion

and mobility in granular collapse over sloping beds. Journal of Geophysical Research:

Earth Surface, 115(F3), 2010.

R. Maurin, J. Chauchat, B. Chareyre, and P. Frey. A minimal coupled fluid-discrete

element model for bedload transport. Physics of Fluids, 27(11):113302, 2015.

S. McCoy, J. W. Kean, J. A. Coe, G. Tucker, D. M. Staley, and T. Wasklewicz. Sediment

entrainment by debris flows: In situ measurements from the headwaters of a steep

catchment. Journal of Geophysical Research: Earth Surface, 117(F3), 2012.

I. McEwan, B. Jefcoate, and B. Willetts. The grain-fluid interaction as a self-stabilizing

mechanism in fluvial bed load transport. Sedimentology, 46(3):407–416, 1999.

S. McLean, J. Nelson, and S. Wolfe. Turbulence structure over two-dimensional bed

forms: Implications for sediment transport. Journal of Geophysical Research: Oceans,

99(C6):12729–12747, 1994.

E. Meyer-Peter and R. Muller. Formulas for bed-load transport. In Proceedings of

the 2nd meeting of the International Association for Hydraulic Structures Research,

pages 39–64. Stockholm, Sweden: International Association for Hydraulic Structures

Research., 1948.

D. Moberly. Laboratory experiments investigating entrainment by debris flows. 2015.

J. Mullenbach. Experimental studies of the influence of the properties of the matrix of

a debris flow on its erosional behavior. 2018.

H. Nakagawa, I. Nezu, and H. Ueda. Turbulence of open channel flow over smooth and

rough beds. In Proceedings of the Japan Society of Civil Engineers, volume 1975,

pages 155–168. Japan Society of Civil Engineers, 1975.



156

J. M. Nelson, R. L. Shreve, S. R. McLean, and T. G. Drake. Role of near-bed turbulence

structure in bed load transport and bed form mechanics. Water resources research,

31(8):2071–2086, 1995.

I. Nezu and H. Nakagawa. Turbulence in open channels. IAHR/AIRH Monograph.

Balkema, Rotterdam, The Netherlands, 1993.

V. Nikora. Flow turbulence over mobile gravel-bed: spectral scaling and coherent struc-

tures. Acta Geophysica Polonica, 53(4):539, 2005.

N. T. Ouellette, H. Xu, and E. Bodenschatz. A quantitative study of three-dimensional

lagrangian particle tracking algorithms. Experiments in Fluids, 40(2):301–313, 2006.

M. Papa, S. Egashira, and T. Itoh. Critical conditions of bed sediment entrainment due

to debris flow. Natural Hazards and Earth System Sciences, 4(3):469–474, 2004.

G. Parker. Selective sorting and abrasion of river gravel. i: Theory. Journal of Hy-

draulic Engineering, 117(2):131–147, 1991a. doi: 10.1061/(ASCE)0733-9429(1991)

117:2(131).

G. Parker. Selective sorting and abrasion of river gravel. ii: Applications. Journal of

Hydraulic Engineering, 117(2):150–171, 1991b. doi: 10.1061/(ASCE)0733-9429(1991)

117:2(150).

G. Parker. 1d sediment transport morphodynamics with applications to

rivers and turbidity currents. E-book available from http://vtchl. uiuc.

edu/people/parkerg/morphodynamics e-book. htm (last accessed 23 February 2010),

2004.

G. Parker, C. Paola, and S. Leclair. Probabilistic exner sediment continuity equation

for mixtures with no active layer. Journal of Hydraulic Engineering, 126(11):818–826,

2000. doi: 10.1061/(ASCE)0733-9429(2000)126:11(818).



157

A. Pelosi, G. Parker, R. Schumer, and H.-B. Ma. Exner-based master equation for

transport and dispersion of river pebble tracers: Derivation, asymptotic forms, and

quantification of nonlocal vertical dispersion. Journal of Geophysical Research: Earth

Surface, 119(9):1818–1832, 2014. doi: 10.1002/2014JF003130.

A. Perry, S. Henbest, and M. Chong. A theoretical and experimental study of wall

turbulence. Journal of Fluid Mechanics, 165:163–199, 1986.

A. Perry, K. Lim, and S. Henbest. An experimental study of the turbulence structure

in smooth-and rough-wall boundary layers. Journal of Fluid Mechanics, 177:437–466,

1987.

S. B. Pope. Turbulent flows, 2001.

M. E. Reid, R. M. Iverson, M. Logan, R. G. LaHusen, J. W. Godt, and J. P. Griswold.

Entrainment of bed sediment by debris flows: results from large-scale experiments. In

Fifth International Conference on Debris-flow Hazards Mitigation, Mechanics, Pre-

diction and Assessment, edited by: R. Genevois, Hamilton, DL, and Prestinizi, A.,

Casa Editrice Universita La Sapienza, Rome, pages 367–374. Citeseer, 2011.

P. Revellino, O. Hungr, F. M. Guadagno, and S. G. Evans. Velocity and runout simula-

tion of destructive debris flows and debris avalanches in pyroclastic deposits, campania

region, italy. Environmental Geology, 45(3):295–311, 2004.

J. S. Ribberink. Mathematical modelling of one-dimensional morphological changes in

rivers with non-uniform sediment. 1987.

J. C. Roseberry, M. W. Schmeeckle, and D. J. Furbish. A probabilistic description of

the bed load sediment flux: 2. particle activity and motions. Journal of Geophysical

Research: Earth Surface, 117(F3), 2012.

S. Savage and C. Lun. Particle size segregation in inclined chute flow of dry cohesionless

granular solids. Journal of Fluid Mechanics, 189:311–335, 1988.



158

H. Schlichting and K. Gersten. Boundary-layer theory. Springer, 2016.

M. W. Schmeeckle. Numerical simulation of turbulence and sediment transport of

medium sand. Journal of Geophysical Research: Earth Surface, 119(6):1240–1262,

2014.

M. W. Schmeeckle and J. M. Nelson. Direct numerical simulation of bedload transport

using a local, dynamic boundary condition. Sedimentology, 50(2):279–301, 2003. doi:

10.1046/j.1365-3091.2003.00555.x.

J. D. Stock and W. E. Dietrich. Erosion of steepland valleys by debris flows. Geological

Society of America Bulletin, 118(9-10):1125–1148, 2006.

M. Stoffel and M. Beniston. On the incidence of debris flows from the early little ice

age to a future greenhouse climate: a case study from the swiss alps. Geophysical

Research Letters, 33(16), 2006.

B. M. Sumer, L. H. Chua, N.-S. Cheng, and J. Fredsøe. Influence of turbulence on bed

load sediment transport. Journal of Hydraulic Engineering, 129(8):585–596, 2003.

T. Takahashi. A review of japanese debris flow research. International Journal of

Erosion Control Engineering, 2(1):1–14, 2009.

Y. Tsuji, T. Tanaka, and T. Ishida. Lagrangian numerical simulation of plug flow of

cohesionless particles in a horizontal pipe. Powder technology, 71(3):239–250, 1992.

doi: 10.1016/0032-5910(92)88030-L.

L. C. Van Rijn. Equivalent roughness of alluvial bed. Journal of the Hydraulics Division,

108(10):1215–1218, 1982.

J. Venditti, W. Dietrich, P. Nelson, M. Wydzga, J. Fadde, and L. Sklar. Mobilization of

coarse surface layers in gravel-bedded rivers by finer gravel bed load. Water Resources

Research, 46(7), 2010.



159

E. Viparelli, R. Haydel, M. Salvaro, P. R. Wilcock, and G. Parker. River morphodynam-

ics with creation/consumption of grain size stratigraphy 1: laboratory experiments.

Journal of Hydraulic Research, 48(6):715–726, 2010a. doi: 10.1080/00221686.2010.

515383.

E. Viparelli, O. E. Sequeiros, A. Cantelli, P. R. Wilcock, and G. Parker. River morpho-

dynamics with creation/consumption of grain size stratigraphy 2: numerical model.

Journal of Hydraulic Research, 48(6):727–741, 2010b. doi: 10.1080/00221686.2010.

526759.

E. Viparelli, L. Solari, and K. Hill. Downstream lightening and upward heavying:

Experiments with sediments differing in density. Sedimentology, 62(5):1384–1407,

2015.

G. Wieczorek, B. Morgan, and R. Campbell. Debris-flow hazards in the blue ridge of

central virginia. Environmental & Engineering Geoscience, 6(1):3–23, 2000.

P. R. Wilcock and J. C. Crowe. Surface-based transport model for mixed-size sediment.

Journal of Hydraulic Engineering, 129(2):120–128, 2003.

M. Wong and G. Parker. Reanalysis and correction of bed-load relation of meyer-peter

and müller using their own database. Journal of Hydraulic Engineering, 132(11):

1159–1168, 2006.

M. Wong, G. Parker, P. DeVries, T. M. Brown, and S. J. Burges. Experiments on dis-

persion of tracer stones under lower-regime plane-bed equilibrium bed load transport.

Water Resources Research, 43, 2007. doi: 10.1029/2006WR005172.

A. Yeganeh, H. Gotoh, and T. Sakai. Applicability of euler-lagrange coupling

multiphase-flow model to bed-load transport under high bottom shear. Journal of

Hydraulic Research, 38(5):389–398, 2000.



160

A. Yeganeh-Bakhtiary, B. Shabani, H. Gotoh, and S. S. Wang. A three-dimensional

distinct element model for bed-load transport. Journal of Hydraulic Research, 47(2):

203–212, 2009.

B. Yohannes and K. M. Hill. Rheology of dense granular mixtures: Particle-size distri-

butions, boundary conditions, and collisional time scales. Physical Review E, 82(6):

061301, 2010.

T. Zhao. Investigation of Landslide-induced Debris Flows by the DEM and CFD. PhD

thesis, University of Oxford, 2014.

H. Zhu, Z. Zhou, R. Yang, and A. Yu. Discrete particle simulation of particulate systems:

a review of major applications and findings. Chemical Engineering Science, 63(23):

5728–5770, 2008.


	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction to the tale of two erosion processes
	Literature review of mass balance of sediment in bedload transport
	Computational Experiments
	Our DEM details
	The equation of motion for our DEM simulations
	Interparticle contact force model
	Fluid models

	Computational Experiment Procedure
	Time Steps and Numerical Integration

	Results of bedload transport
	One Narrow Size Distribution
	Transport rate
	Bed surface statistics
	Particle entrainment statistics

	Three Narrow Size Distributions
	Transport rate
	Bed surface statistics
	Particle entrainment statistics

	Turbulence
	Fluid Models
	Computational Experiments
	Transport rate
	Bed surface statistics
	Particle entrainment statistics


	Discussion of Bedload Simulations 
	Review and discussion of transport results
	Review and discussion of bed height and entrainment height statistics
	Distinctions among simulations including velocity fluctuations in bedload transport
	Model Validations
	Importance of baseline depth parameter for velocity fluctuation results


	Background on studies of erosion rates by debris flows
	Field-scale observations of debris flow entrainment
	Laboratory scale experiments of erosion dynamics

	Experimental debris flow design and analysis methodology
	Experimental details
	Experimental flume, materials, and equipment
	Experimental procedure

	Image Processing and Analyses
	Particle Locating and Tracking
	Fields of Concentration, Velocity, and Velocity Fluctuations
	Flow Dynamics Calculations


	Experimental findings of the dependence of debris flow erosion rates on particle size
	Macroscopic analyses of net eroded mass by debris flows
	Combined roles of bed angle of inclination and material
	Effects of initial debris flow concentration

	Instantaneous particle-scale measurements of dynamics associated with debris flow erosion
	Other macroscopic fields and their influence on erosion rates
	Shear stress
	Granular temperature

	Discussion of Debris Flow Results
	Dependence of erosion on bed angle
	Dependence of erosion on composition of initial debris flow
	Effects of instantaneous measures of flow on bed erosion rates


	Summary and Future Work
	Summary of bedload erosion activities and results
	Summary of debris erosion activities and results
	Future research directions

	References

