
Exploiting Trade-offs in Memory, Storage, and
Communication Performance and Accuracy in

High-Capacity Computing Systems

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Qianqian Fan

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Prof. David J. Lilja

Prof. Sachin S. Sapatnekar

August, 2019



© Qianqian Fan 2019

ALL RIGHTS RESERVED



Acknowledgements

First, I would like to express my sincere gratitude to my advisors, Prof. David J.

Lilja and Prof. Sachin S. Sapatnekar, for the continuous support of my Ph.D study.

Their patience, guidance and encouragement helped me all the time of research and

overcome challenges. As my incredible advisors, they taught me how to create the big

picture thinking and also pay attention to the detail in real work. They have played an

important role in my educational development, and I feel very fortunate to be associated

with such talented mentors.

Besides my advisors, I would like to thank the rest of my thesis committee: Prof.

Ulya Karpuzcu and Prof. Antonia Zhai, for their insightful comments and suggestions.

I am grateful for the resources from the University of Minnesota Supercomputing In-

stitute and the support from C-SPIN, a Semiconductor Research Corporation program,

and from Nation Science Foundation grant no. CCF-1438286.

I want to thank Zhaoxin, Farhana, Vivek, Cong, Bingzhe, and Amogh for being

not only offering guidance on my research, but also help and advice on my life and

career. Many thanks to Deepashree, Meghna, Masoud, Susmita, Tonmoy, Vidya, Kishor,

Yaobin, Jinfeng, Mohammad, Arvind, and Geraldo for being wonderful labmates as well.

I want to thank my friends Qiannan, Dingyi and Jianjun for the get-togethers and happy

hours. Finally, I would like to thank my husband, Tengtao, without whose support and

constant encouragement, I could not have finished my PhD.

i



Dedication

To my parents and my husband.

ii



Abstract

Error resilient applications are becoming more common in large-scale computing sys-

tems. These types of applications introduce the possibility of balancing cost and perfor-

mance in new ways by trading-off output quality with performance. To exploit this new

opportunity, this thesis introduces three approximation techniques that trade-off the ac-

curacy of memory, storage, and communication for gains in efficiency and performance

in large-scale, high-capacity computing systems.

First, we employ the notion of approximate memory, which exploits the idea that

some memory errors are not only nonfatal, but can be leveraged to enhance power and

performance with minimal loss in quality. The traditional approach for increasing yield

in large memory arrays has been to eliminate all hard errors using repair mechanisms.

However, the cost of these mechanisms can become prohibitive at higher error rates. In-

stead of completely repairing faulty memories, we introduce new approximate memory

repair mechanisms that only partially repair both CMOS DRAMs and STT-MRAMs.

By combining redundant repair with unequal protection, such as skewing the limited

spare elements available for repairing faults towards the k most significant bits, and

a hybrid bit-shuffling and redundant repair scheme, the new mechanisms maintain ex-

cellent output quality while substantially reducing the cost of the repair mechanism,

particularly for increasingly important cluster faults.

Second, we investigate the use of approximate storage, which is defined as cheaper,

lower reliability storage with higher error rates. In the past few years, ever-increasing

amounts of image data have been generated by users globally, and these images are

routinely stored in cold storage systems in compressed formats. Since traditional JPEG-

based schemes that use variable-length coding are extremely sensitive to error, the direct

use of approximate storage results in severe quality degradation. We propose an error-

resilient adaptive-length coding (ALC) scheme that divides all symbols into two classes,

based on their frequency of occurrence, where each class has a fixed-length codeword.

This provides a balance between the reliability of fixed-length coding schemes, which

have a high storage overhead, and the storage-efficiency of Huffman coding schemes,

which show high levels of error on low-reliability storage platforms. Further, we use
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data partitioning to determine which bits are stored in approximate or reliable storage

to lower the overall cost of storage. We show that ALC can be used with general non-

volatile storage, and can substantially reduce the total cost compared to traditional

JPEG-based storage.

Finally, approximate communication as a new opportunity has arisen for improv-

ing the communication efficiency in parallel systems, which can significantly reduce the

amount of communication time by transmitting partial or imprecise messages. Com-

munication overheads in distributed systems constitute a large fraction of the total

execution time, and limit the scalability of applications running on these systems. We

propose a Discrete Cosine Transform (DCT)-based approximate communication scheme

that takes advantage of the error resiliency of several widely-used applications, and im-

proves communication efficiency by substantially reducing message lengths. Our scheme

is implemented into the Message Passing Interface (MPI) library. When evaluated on

several representative MPI applications on a real cluster system, it is shown that our

approximate communication scheme effectively speeds up the total execution time with-

out much loss in quality of the result, even accounting for the computational overhead

required for DCT encoding.

In summary, the partial-repaired memory scheme, error-resilient ALC scheme, and

DCT-based approximate communication scheme are proposed in this thesis and allow

the system to maintain an acceptable output quality while substantially reducing the

cost of the system.
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Chapter 1

Introduction

A growing set of applications that involve social media, machine learning, and scientific

computing gain prominence. A common characteristic of these applications is that an

approximate or less-than-optimal result is sufficient. With these error resilient applica-

tions becoming more popular, a new trade-off between output quality and performance

is introduced. Therefore, approximation research has recently emerged as a promis-

ing approach to the energy-efficient design of systems [1, 4–16]. In this thesis, three

approximation-based techniques are investigated, which trade off accuracy of memory,

storage, and communication for gains in efficiency and performance.

Approximate memory: Several decades of device scaling has substantially reduced

the cost per bit of memories, yet yield loss still remains a significant issue. Furthermore,

process technology is still evolving for emerging memories, such as spin-transfer-torque

magnetic RAMs (STT-MRAMs), which further impacts their yield. Hard errors in

CMOS dynamic RAMs (DRAMs) typically dominate over soft errors [17,18], while the

emerging nature of STT-MRAM technology suggests that process-related hard errors

are more likely than transient retention errors. The traditional approach to handling

memory faults, and thereby improving yield, has been to root them out completely

using various off-line redundancy mechanisms, such as spare rows and columns [19–21].

These repair schemes define yield as the probability that no faults occur [22]. As the

probability of failure increases, though, these conventional redundant repair approaches

will lead to tremendous increases in overhead to repair the memory to 100 percent

correctness.

1
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For a set of emerging applications, a new opportunity has arisen for coping with

errors instead of completely repairing them. We employ the notion of approximate

memory [5], which exploits the idea that some memory errors are not only nonfatal, but

can be leveraged to enhance power and performance with minimal loss in quality [6].

Our work addresses image application for approximate memory evaluation, which shows

inherent error-tolerance.

The economics of memory dictates that the cost of memory increases nonlinearly

with reliability. As a result, memories with few errors are very expensive, and the

cost reduces greatly with higher error rates. We develop an approach to employ these

lower-cost, higher-error memories for image applications.

In our work, we evaluate a set of approximate memory repair mechanisms that only

partially repair memory to reduce the cost of the repair mechanism at the expense

of some loss in output quality. We extend prior conventional memory repair methods

that use limited spare elements to several new schemes, including the k-MSB redundant

repair scheme that skews the redundant repair elements to the first k most significant

bits of a byte, and compressed bit-shuffling which reduces the overhead of prior bit-

shuffling approaches [6] while maintaining comparable quality. We further show that

the bit-shuffling related schemes do not perform well in the presence of row, column, and

cluster faults, which are important in real-world applications [20,23]. We also propose a

new hybrid bit-shuffling and redundant repair scheme. Our work ensures that even these

lower-cost, lower-reliability memories produce results where the quality degradation is

controlled, leading to an opportunity to trade off cost with memory quality.

Approximate storage: Approximation can also enable more effective use of long-

term storage resources [24, 25]. The quantity of image data on cloud-based storage

has skyrocketed in recent years. For example, in 2019 annual trends report, over 1

trillion images were uploaded to the social media for one year [26], a number that

has surely increased since. Furthermore, images are currently stored in most sites at

multiple resolutions to support different devices and contexts, further increasing storage

overheads [27]. These uploads require a significant amount of storage, which can be

expensive. Therefore, cost-effective image storage is an active field of research. In [28],

they reduced the metadata of photo to obtain lower cost storage with higher throughput.

Progressive JPEG with customized encoding parameters for dynamic resizing was used
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to reduce bandwidth and storage overheads in [27]. Recent works applied cheaper,

lower-reliability image and video storage at dramatically lower cost [1, 7–9].

Individual images are typically saved in compressed form in long-term storage rather

than in a raw format where every pixel is stored. Apple is adopting the High Efficiency

Image File (HEIF) format as its new photo format [29], but this format is still only

a small part of the market. Dropbox uses Lepton to re-compress JPEG files, which

replaces the lowest layer of the baseline JPEG compression with a parallelized arithmetic

code (variable-length) to improve speed [30]. The PTC encoding algorithm is used in

[7] for the purpose of approximate storage, which is a seldom-used image format and

has low compression efficiency. To reach our target, the JPEG encoding algorithm is a

good candidate because of its popularity [31] and high compression ratio.

The JPEG standard uses a discrete cosine transform (DCT) and saves the coefficients

of the dominant spatial frequencies using variable-length coding (VLC), a Huffman

coding scheme that further improves compression efficiency [32]. Modern image storage

providers, such as Google Photos, typically re-compress JPEG files to reduce the image

size. While this loses some information, it does so without any perceptual difference [30,

33]. Similarly, when approximate storage is used, the new storage scheme should keep

each encoded image with no visually perceptible loss in quality. However, an error in

compressed image data can change key attributes of the VLC-encoded image, and even

with variable error correction mechanism, can still result in obvious distortions in the

image [1]. Even a single error could completely corrupt part of the image (Fig. 1.1(a)).

The direct use of error-prone low-reliability storage for saving VLC-encoded JPEG

images is thus risky as it can cause unacceptable levels of error. Therefore, despite

their low cost, error-prone storage is not considered viable for storing compressed VLC-

encoded images.

In this work, a novel adaptive-length coding (ALC) scheme is proposed to replace

the error-sensitive Huffman coding in JPEG compression. Our ALC scheme is shown

to be inherently resilient to errors. ALC divides all the symbols into two classes: more

frequently occurring symbols, which are encoded to a shorter fixed length, and more

infrequent symbols that are mapped to a longer fixed length code. Since the codeword

in each class has the same length, ALC is an encoding scheme where every word uses

one of two allowable lengths. This differs from Huffman coding as used in VLC where
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Figure 1.1: (a) VLC-based storage where a single error corrupts the the remaining
blocks of image (b) VLC-based storage with variable error correction mechanism [1]
under a 1% error rate, showing obvious degradation (c) Our ALC-based scheme with
a same percentage of data stored in approximate storage as (b) under a 1% error rate,
showing no visible quality loss.

each symbol could be mapped to a variable length encoding [32]. By limiting the

number of code lengths to two, we obtain the best of both worlds, balancing the error-

resilience of fixed-length encoding with the reduced storage needs of VLC. According

to the statistics of an image, the algorithm adaptively and efficiently adds additional

bits to compensate for the quality loss. We demonstrate that ALC maintains excellent

compression efficiency while improving error resilience inherently. An example result is

shown in Fig. 1.1(c).

The increased error resilience of ALC allows most of the data bits of an image to be

stored in low-cost approximate storage, but some critical parts of the image may still

require reliable storage. We develop a data partitioning scheme that segments the ALC-

encoded data into reliable and approximate storage, minimizing the total cost of storage

with the quality degradation constrained. From source-channel separation theorem [34]

aspect, we can optimize ALC and ECC of storage separately and can simply combine

them in a cascaded manner. In this work, we mainly focus on the compressed image

data instead of other applications with high error resilience [35]. Our scheme can be

implemented for JPEG files recompression as [30], which only replace Huffman coding

with error-resilient ALC compared to conventional JPEG scheme. Furthermore, ALC

scheme is compatible with more sophisticated JPEG techniques, e.g. JPEGmini, which

use image-specific quantization matrix to further improve compression efficiency [36].
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Approximate communication: Nowadays, a growing number of applications are

implemented by using parallel computation on a computer cluster to achieve better

performance. These applications of high-performance computing (HPC) can distribute

computation across many nodes, and each node processes only a part of the total work-

load. During the operation, the work done by each node is not independent, and some

data may have to be transferred among nodes for additional processing and analysis.

The message passing interface (MPI) is a widely used communication protocol for cluster

computation that provides a standard interface for communication [37].

In large-scale parallel systems, efficient communication is a major challenge for scal-

ability [38]. Communication-intensive parallel applications transfer a large amount of

data among nodes of a cluster via an interconnection network. In [2], the fraction of

time spent on communication increased significantly with the number of processors for

representative applications of HPC, as shown in Fig. 1.2. This large communication

overhead limits the scalability of parallel applications.

Figure 1.2: Fraction of time spent in communication as the number of processors increase
for representative high performance computing applications [2].

With the growing popularity of error-resilient applications, a new trade-off between

the quality and speed has been introduced. These error-resilient applications can im-

prove the efficiency of the system while retaining an acceptable level of accuracy. There-

fore, approximate communication [38] has arisen as a new opportunity for improving

the efficiency of communication in parallel systems, which can significantly reduce the

time needed for communication by transmitting partial or imprecise messages.

We propose a DCT-based new approximate communication scheme based on discrete
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cosine transform (DCT) that allows some errors during communication to substantially

reduce overhead. In the proposed scheme, the subband decomposition [39] of the mes-

sage is first used, and the original DCT with length N can be approximately computed

by a half-length DCT. We then propose a fast and recursive DCT with a piecewise-

constant approximation to speed-up processing while maintaining a small space over-

head, especially for long DCT transformations. Moreover, the zero run-length coding

scheme is used to improve the efficiency of compression. Specifically, some applications

have similarities among messages at the same node. Two compression strategies are

used here by making use of this characteristic to take differential analysis: compressing

the entire message, or compressing the difference between the given message and a ref-

erence message. We implemented the DCT-based approximate communication scheme

in the OpenMPI library, compiled the applications using this modified library, and ex-

ecuted them on a real distributed cluster system. Eight representative error-resilient

MPI applications were used to explore the benefits of approximate communication. Sev-

eral parameters can be tuned for each application to achieve its best performance. The

performance of the MPI applications was evaluated on a real cluster system. Compared

with schemes that apply other lossy compression schemes used in HPC applications,

the results show that the DCT-based approximate communication scheme obtained a

significant reduction in the cost of communication time with a smaller overhead in terms

of the time needed for compression. For the communication-intensive applications, it

is shown that our approximate communication scheme effectively speeds up the total

execution time without much loss in quality of the result.

Thesis organization: In this thesis, we have conducted a detailed study of taking

approximation in memory, storage, and communication process. The thesis is organized

as follows:

� Chapter 2 presents a set of related works in these three related areas.

� Chapter 3 details the memory organization and describes fault models for DRAMs

and STT-MRAMs. Next, a set of conventional and approximate repair schemes

are discussed that are evaluated in this work. Finally, an experimental evalua-

tion is conducted, followed by the results to show the cost-quality trade-offs of

approximate memory repair mechanisms for image data.
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� Chapter 4 details the fundamentals and error resilience limitations of JPEG-based

storage schemes. Next, the adaptive-length coding (ALC) scheme and partitioning

data between reliable and approximate storage strategy are discussed.

� Chapter 5 details the MPI-based error-resilient applications and high message

energy compaction of DCT. The DCT-based approximate communication scheme

and differential analysis of messages strategy are proposed.

� Chapter 6 presents a final discussion of the analysis presented in the thesis and

draws the conclusion of the thesis.



Chapter 2

Related Work

Approximate computing is an emerging design approach that is able to exploit the error

tolerance of some applications for gains in performance and efficiency. Approximation

research has explored various fields with different trade-offs [40].

2.1 Approximate memory

Several works have proposed some techniques to present the idea that memory errors

are not only non-fatal, but can be leveraged to enhance power and performance with

minimal loss in quality. Flikker [41] reduces refresh rates in DRAM memories to reduce

energy consumption at the cost of approximate data. By exploring that skewing errors

towards the most significant bit (MSB) of a word tend to be more serious than those

towards the least significant bit (LSB), a recently proposed scheme [6] detects MSB

errors and rotates the bits of a word to store LSBs in these bit positions instead. The

concept of approximate memory has also been applied for non-volatile memories. In [8],

quality-energy tradeoff in STT-RAM is explored to gain some improvement in energy

efficiency by tuning the supply voltage. The density can be improved for a fixed power

budget for a given MLC memory at the cost of approximate writes [5]. In this work,

we focus on the use of redundant memory repair mechanisms to realize approximate

memory with substantially reducing the cost of the repair mechanism, particularly for

increasingly important cluster faults.

8
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2.2 Approximate storage

Recent works applied cheaper, lower-reliability image and video storage at dramatically

lower cost [1,7–9]. This concept has been explored for raw images [9] and client devices

presuming the availability of a high-fidelity copy in the cloud [7]. However, these prior

works do not address the issue of reducing the cost of the long-term storage in the cloud,

which is the subject of our work.

Individual images are typically saved in compressed form in long-term storage and

the JPEG encoding algorithm is a good candidate because of its popularity [31] and

high compression ratio. However, the conventional JPEG is extremely sensitive to error.

To solve this problem, the networking community has proposed a set of techniques for

image transmission over lossy networks to improve the error resilience of image coding.

From the point of view of source coding, to overcome the resynchronization limitation

of VLC, the error resilient entropy coding (EREC) method was proposed in [42]. In this

code, blocks of various lengths are reorganized into fixed-length blocks to prevent error

propagation beyond block boundaries. The approaches in [43–45] adopt the same idea

to improve the error resilience of JPEG by preventing the errors propagating across the

block boundaries. However, this cannot prevent quality degradation within blocks at

the higher error rates seen in low-cost storage. In [46], the embedding and side-match

vector quantization (VQ) is used to conceal the corrupted block, but their discussion

shows that it is challenging for this scheme to achieve acceptable quality degradation

under large error rates. The Hybrid Variable Length Code (HVLC) [47] uses multiple

VLC coding structures to reduce the error propagation distance within one codeword,

but the boundaries of the codeword are based on VLC, and if errors are introduced in

these boundary code bits, the image data can be corrupted.

Channel coding also can be applied intelligently to improve the error resilience. An

error-resilient unequal protection can robustly cope with packet loss in transmission [1,

48]. The Wyner-Ziv Error-Resilient scheme emphasizes protecting the Region of Interest

area in the frame [49]. However, the goal of all these methods localize the error within

blocks or larger segments and to prevent it from impacting the entire bit-stream. As we

stated earlier, the impact of this block-based error on perceptual quality is still large

for purposes of image storage, as shown in Fig. 1.1(b).
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Instead of using VLC, SoftCast [50] compresses data by discarding zero and near-

zero DCT components. The codewords preserve the numerical properties of the original

pixels, so the error resilience of image or video coding can be improved compared to

the VLC-based scheme. Fixed-length coding (FLC) [51] ensures that errors do not

propagate beyond the corrupted codeword, but at a much lower compression efficiency

than VLC. Variable-to-Fixed-length codes, e.g. the Tunstall coding algorithm [52], map

symbols to a fixed number of bits and can also avoid resynchronization issues in VLC.

However, the compression efficiency of Tunstall coding is severely affected by rarely-used

symbols compared with Huffman coding. No existing scheme can overcome the error

sensitivity of VLC with comparable compression efficiency.

2.3 Approximate communication

To improve the efficiency of communication in parallel applications, several works have

proposed some techniques [38] to reduce the total number of messages and the size of

each message.

Reducing total number of messages: Relaxing the data dependency (e.g., read-

after-write data dependency) in parallel applications can help reduce the time needed

for communication among the threads [53]. Thread fusion was used in [54]. It assumes

that the outputs of adjacent threads are similar to one another, and uses the output

of one thread to represent others. To reduce the cost of communication based on more

communication patterns, Paraprox [55] used a subset of values in the input array to

construct an approximate version of the input to reduce communication among nodes.

These strategies apply approximate communication, where the accuracy of the result

is traded for higher speed in parallel applications. However, a non-negligible error is

introduced by directly discarding some communication.

Reducing the size of each message: Compression has been commonly used for re-

ducing the cost of communication by reducing the length of messages. The transmission

time of MPI message increases with message size [56] [57].

By taking advantage of the similarities between spatial and temporal neighbors,

Ref. [58] evaluated a method of lossless compression on a large-scale climate simulation

dataset. Because different compression algorithms deliver varying performance, the
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adaptive compression system [59,60] can adaptively select the compression algorithm to

compress the given message. The selection is based on internal models developed by the

authors or previous experimental results to estimate the compression performance of

different algorithms. However, these dynamic strategies require the collection of a large

volume of performance data for different compression algorithms to build the selection

criteria. Moreover, once the pattern of a message changes, the effectiveness of estima-

tion of these compression algorithms significantly decreases. The lossless compression

algorithm can preserve all information but perfect communication is not necessary for

error-tolerant applications. Lossy compression on messages can perform better in terms

of efficiency of compression to further reduce the cost of communication.

Instead of using replicates to represent messages transmitted by nodes, lossy com-

pression provides an option using the notion of approximate communication. Lossy com-

pression algorithms can be divided into prediction-based compression and transform-

based compression. For prediction-based lossy compression algorithms, ISABELA [61]

applies B-splines curve fitting to predict the sorted input data but its efficiency of com-

pression is limited because each data item has an index to record its position in the

original unsorted input, and this spatial index map occupies a large part of the final

compressed output. SZ [62] uses a multidimensional model to predict the next data point

and designs adaptive error-controlled quantization for each point value. For transform-

based algorithms, ZFP [63] develops an orthogonal block transform-based compression

algorithm to compress 3D floating-point data. Wavelet transformation has also been

applied to HPC applications [64,65]. SSEM [65] first applies 2D wavelet transformation

and compresses only the high-frequency band by quantization to maintain the quality

of the results. These lossy compression algorithms have been evaluated on scientific

data with an emphasis on pointwise compression error between the original and the

reconstructed datasets. Instead of considering point-to-point errors in each message

transmitted through intermediates in MPI applications, we focus on obtaining a final

output of quality comparable to that of the original by using a lossy runtime compression

algorithm.



Chapter 3

Cost-Quality Trade-offs of

Approximate Memory Repair

Mechanisms

In this chapter, we focus on the use of schemes that repair hard errors through the

addition of redundant hardware. As mentioned in Chapter 1, the cost of the conven-

tional redundant repair mechanisms become prohibitive at high error rates to eliminate

all hard errors in memory arrays. Therefore, in addition to evaluating conventional

repair methods, we propose two nonuniform protection techniques to improve the re-

pair efficiency that only partially repair faulty memories [66]. In our work, we consider

two types of memories, CMOS based DRAMs and spin-transfer-torque magnetic RAMs

(STT-MRAMs) in the evaluation.

3.1 Memory organization and fault models

3.1.1 Data array organization

Our memory model is based on the structure in CACTI [3], as depicted in Fig. 3.1.

The memory is organized into multiple identical banks, each of which can be accessed

in parallel, chosen by the bank address input. A bank is composed of multiple identical

subbanks, which are further divided into multiple mats. All mats are activated during an

12
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access, and bits within a word are interleaved across mats. A mat has four subarrays that

share the predecoding and decoding circuitry, and each subarray has its own associated

peripheral circuitry.

Figure 3.1: Organization of the memory array [3].

3.1.2 Fault models

Fault distribution

If λ is the mean number of faults in a memory array of size M , the failure probability

of a bit-cell, Pcell = λ/M . The probability of n failing cells in the array follows the

binomial distribution. This approximation holds for our typical use case where M is

very large and Pcell is small [22]. A sample from this distribution provides the total

number of hard faults in a specific memory array. In our experiments, we allocate this

total number of faults to be single cell failures that affect an isolated cell, or column

failures, row failures, and cluster failures, which affect an entire column, row, and cell

cluster, respectively [67, 68], according to a set probability. We further set the fault

type to a specific functional fault according to a user-specified probability, where the

set of fault types for DRAMs and STT-MRAMs are described in the remainder of this

section.

DRAM fault types

The functional degradations that could be brought about by a DRAM fault fall into

several categories [69]. For stuck-at faults (SAFs), the value in the cell is fixed at logic
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1 or logic 0, while for stuck-open faults (SOFs), the cell is completely inaccessible. In

transition faults (TFs), a rising or falling transition cannot be realized. These faults are

similar to SAFs, but the difference is that the stuck-at logic level is unknown. Coupling

faults may be manifested as inversion faults (CFin), where a transition in one cell will

invert one of its neighbors, idempotent faults (CFid), where a transition in one cell

will set one of its neighbors to a fixed value, or state faults (CFst), where a specific

value in one cell will set one of its neighbors to a fixed value. More comprehensive

fault models [68] can also be applied but they are unlikely to introduce any meaningful

changes for final results.

STT-MRAM fault types

Failures in STT-MRAMs [21] can be classified into persistent errors, which are similar

to hard faults, and transient errors, which are similar to soft errors. We focus here on

persistent errors, primarily those caused by process variations. The behavior of these

errors can be expressed in several ways. Transition faults (TF0/TF1) are write errors

that are caused by insufficient MTJ write current, which prevents a switching event

from being completed. Read disturb faults (RDFs) are caused when the read current is

too high and inadvertently flips the cell value during a read operation. Incorrect read

faults (IRFs) occur when, due to insufficient read sense margin, an incorrect value is

read from the cell based on its sensed value and the response of the sense amplifier.

3.2 Memory repair schemes

3.2.1 Conventional repair schemes

Two-dimensional (2D) redundant repair

Two-dimensional redundant repair, illustrated in Fig. 3.2, involves the insertion of spare

rows and/or columns into a memory array. When a faulty cell is detected, a spare

element may be used to replace it. Note that spare elements have the same failure

probability as the main memory array, and that if the spare element has a fault, it

cannot be used to repair faulty elements in the memory.

Given a fault map within a memory, which is typically obtained using a memory
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test, various algorithms are available to determine how a spare row/column can be used

to replace the row/column in which the fault lies. In our experiments, we apply the

widely used essential spare pivoting (ESP) redundancy analysis algorithm [70] for this

purpose.

Figure 3.2: Two-dimensional redundant repaired memory.

Segmented memory repair

When an entire row (or column) is used to repair a faulty row (column) containing only

one or a small number of faulty cells, a large number of spare rows and columns may be

required to ensure full repair. Further flexibility may be provided by dividing the spare

rows and columns into segments [20], as illustrated In Fig. 3.3. If a memory column has

a single fault in a specific row, then only the segment of a spare column corresponding

to that row is used, and other segments may be deployed to repair other faults.

3.2.2 Repair for approximate memories

The schemes in Section 3.2.1 were originally designed to replace faulty memory cells

with spare functional cells with the goal of achieving full repair with high probabil-

ity. However, for error-tolerant applications, full repair is not necessary and partial

or approximate repair may be adequate. In this section, we present a set of schemes
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Figure 3.3: An example illustrating segmented redundancy for memory repair, where
faults correspond to crossed-out cells.

that can be used to partially repair faults to provide an approximate memory for such

applications.

For image compression applications, we will evaluate these schemes by using the

power signal-to-noise ratio (PSNR) as a quality metric. The key idea of nonuniform

protection is to protect some bits more carefully than others. For example, the role

of higher-order bits is more significant than that of lower-order bits in determining a

quality metric such as PSNR.

Limited spare rows and columns scheme

One extreme end of this partial redundancy continuum corresponds to unprotected mem-

ory with no redundancy whatsoever. This approach has zero overhead and can be ex-

pected to provide the lowest-quality result. At the other extreme is the notion of full

repair, as discussed in Section 3.2.1. This approach will have the best quality, but at

the highest cost. Intermediate points correspond to different cost-quality trade-offs. For

approximate applications, we can limit the number of spare rows and columns of con-

ventional repair schemes to reduce the area and delay overhead in the memory, while

delivering adequate accuracy to maintain the quality metric.
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k-MSB repair scheme

The k-MSB repair scheme hybridizes the redundant repair scheme with the notion

of nonuniform protection. This scheme is based on the observation that the cost of

providing protection increases with the number of bits, but its effectiveness in improving

the system quality metric goes down steeply after the first few bits. Therefore, this

method applies more spare elements to protect the first k MSBs of the byte possibly

even achieving full repair for these bits. A lower level of protection could still be applied

to the LSBs by using some of the spare elements since they may still be vulnerable to

clustered faults. The number of available spare elements is determined by the probability

of the clustered faults. As for the implementation, different threshold values of the ESP

algorithm can be set for different levels of protection. For a low level of protection, a

larger threshold allows the faulty rows, faulty columns, and other types of cluster faults

to be prioritized for repair using these limited spare elements. As we will show, this

scheme can greatly reduce the overhead with minimal quality impact.

Bit-shuffling scheme

Figure 3.4: A schematic of the bit-shuffling scheme for the read operation.

The bit-shuffling scheme was proposed in [6]. Like our k-MSB method, it leverages

the notion that higher-order bits are more critical to a computation than lower-order
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bits. This mechanism rotates the bits in a word in case of a fault to ensure that higher-

order bits are protected. When data is read from or written into memory, it is rotated so

that the higher-order bits are stored in a fault-free location, and the fault is effectively

moved to a lower-order location.

For our image compression application, the length of each item of image data is 1

byte. Given a fault map, if the nth-most significant bit has a fault, then the method uses

a circular shifter to rotate the data to the left by n places as it is stored into memory.

This operation implies that the LSB of this byte is placed into a faulty cell. A variation

of the basic scheme is characterized by a parameter, nFM , which decides the maximum

number of shifts that are permitted. The largest value of a shift is limited to 2nFM − 1,

and therefore the (2nFM − 1) highest-order bits are protected. For a byte, a value of 1,

2, or 3 for nFM corresponds to a shift of up to 1 bit, 3 bits, or 7 bits. A lower value

of nFM reduces the area and delay overheads of the scheme but limits its correction

capability.

Fig. 3.4 illustrates an implementation of this scheme. Here each row contains b

bytes, and there are bnFM columns to the right of the main storage array. For the

image application, this configuration allows each byte to be rotated to preserve the

correctness of its MSB. The MUX at right, below this auxiliary array, chooses the

rotation requirements of the byte of interest within a line, and its select input is the

column address. In this example, nFM = 2, which enables the three MSBs to be

protected. If the second MSB has a fault, then the shift value is two ((10)2). While

storing data, a right-circular shift translates the data by two bits to place the LSB in the

faulty cell, which is shown as the stored value. The figure illustrates a read operation,

where the opposite operation – a left circular shift – is performed to restore the MSB

to its rightful location.

Compressed bit-shuffling scheme

The bit-shuffling scheme in [6] was implemented using an additional set of nFM bits for

each line. For the image compression application, the relevant RGB data is only a byte

long, implying the overhead of (b ·nFM ) per line is prohibitive. The discussion in [6] did

not encounter this problem since the word size was substantially larger, which allowed

the overhead to be amortized over a larger number of data bits.
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Figure 3.5: An improved implementation of the bit-shuffling scheme.

To overcome this large overhead, we propose a modification to this bit-shuffling

scheme. In a realistic scenario where the number of faults is not large, most of the

rows and columns will require no correction, implying that the rotation requirements

stored in nFM will be zero in most cases. Therefore, we propose a storage scheme with

a compression rate of 2q where a single shift value is shared by a set of 2q bytes. As

a result, the overhead of storing the rotation bits is reduced from bnFM per line to

(b/2q)nFM . The drawback of this case is that, if there are two faults within a block of

2q words that share a shift value, only one can be corrected.

The hardware implementation of this scheme is illustrated in Fig. 3.5. An additional

array is placed to the left of the memory array, storing the position within the 2q-bit

block of the word that has a fault, if any. As before, its shift value is stored to the

right of the memory array. The column address, minus the bottom q bits, is applied

to the MUXes connected to the Position and Shift Value arrays. The lower order bits

represent the location of the byte within the line. If they match the position for that

line, the corresponding shift value is used to rotate the stored data, if necessary.
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Hybrid bit-shuffling and redundant repair scheme

A major drawback of bit-shuffling-based schemes is that they work well only for isolated

faults. In reality, we may see row, column, or clustered faults [20,23] where faults strike

multiple adjacent cells. The probability of having more than one fault per word is then

greatly increased, even when words are interleaved, and bit-shuffling can be ineffective.

Redundant repair schemes with spare rows or columns are well suited to handle

such errors, however. If there is a row/column error, the entire row/column is replaced.

Therefore, we combine the redundancy and the bit shuffling schemes to maximize the

repair efficiency. A low level of redundant repair protection is applied by using a limited

number of spare elements to repair row, column, or cluster faults. Bit-shuffling is

additionally used to effectively deal with isolated faults. As for the implementation,

the address is sent to a CAM to take redundant repair and shift value part to take

bit-shuffling in parallel, shown in Fig. 3.6. Since this scheme is a combination of these

two schemes, the overhead is the sum of the individual overheads of the two constituent

schemes.

Figure 3.6: Implementation of the hybrid scheme.
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3.3 Area and Delay Overheads

3.3.1 Area model

The area model for each scheme is based on the transistor count of the structure. For

both the 1T1C DRAM and the 1T1MTJ STT-MRAM, the area is proportional to the

transistor count. Note that the MTJ cell is dominated by the access transistor for an

STT-MRAM. Therefore, a similar area model can be used for both memory types.

Figure 3.7: Composition of a mat for redundant repair.

Basic structure

As described in Section 3.1, the memory is eventually divided into several identical

mats, each of which has a grid of 2 × 2 subarrays. Consider a mat with M rows, N

columns with an output width of W , as shown in Fig. 3.7. Each mat consists of [3]:

� A row decoder and wordline drivers with M outputs, with an area cost of 6M ,

corresponding to M NAND gates and M inverters. Note that the cost of the

predecode blocks is negligible.

� The memory array, consisting of M ×N one-transistor cells.

� Two column MUXes, each consisting of N pass transistors and a column decoder

consisting of N NAND gates, for a total cost of 10N .

� W sense amplifiers/drivers, each with 10 transistors, for a cost of 10W .
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Therefore, the total base area of the memory array is 6M +MN + 10N + 10W units.

Area models for various schemes

2D redundant repair The overhead of the 2D redundancy technique is primarily

related to the cost of the spare elements and the required peripheral circuitry, as illus-

trated in Fig. 3.2. After the ESP, or any other algorithm replaces the faulty regions

by a subset of the available spare rows or columns, the address of the replacement is

stored in a content-addressable memory (CAM). When a memory address is applied,

the CAM determines whether the address matches a faulty region. If so, the access is

redirected to the appropriate spare element. A multiplexer, which is omitted from the

figure for simplicity, is used to select from either the main memory array or the spares,

based on the output of the CAM block. The area overhead of the scheme corresponds to

the spare rows/columns, the additional complexity in the column multiplexer, and the

CAM. The W bits in each word are interleaved in memory. For each bit, we consider

a subarray, magnified in Fig. 3.7, of size (M/2) × (N/W ). Since there are 2W such

subarrays in a mat, as shown in the figure, the overhead for redundant repair with m

spare rows and n spare columns is as follows:

� The spare rows require m× (N/W ) cells per subarray, so that for 2W subarrays,

the overhead is 2mN .

� The spare columns require n × (M/2) cells per subarray. Over all of the 2W

subarrays, the total overhead is nMW .

� The reconfiguration addresses are stored in a CAM of size log(M/2) and log(N/W ),

respectively, for the rows and the columns. Since each CAM cell consists of 10

transistors and uses a sense amplifier with 4 transistors, the number of transistors

in the CAM for each subarray is TCAM (m,n) = m × (10 log(M/2) + 4) + n ×
(10 log(N/W ) + 4).

� The MUXes for the spare columns require n pass transistors, for total of 2nW

transistors.

The overhead for this scheme is thus 2mN + nMW + TCAM (m,n) + 2nW units.
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Segmented memory repair For the segmented repair model, if the rows and

columns are both divided into P parts, then the overhead is the same as 2D redundant

repair, except that the cost of the CAM is now P × TCAM (m,n), where TCAM (m,n) is

as defined above.

k-MSB repair For k-MSB repair, the arrays containing k MSBs of the byte use

m spare rows and n spare columns, while other arrays use fewer spare elements, with

mless rows and nless columns. These modifications are made to the first two terms of

2D redundant repair, and the overhead of the CAM is modified to k × TCAM (m,n) +

(W − k)× TCAM (mless, nless).

Bit-shuffling and compressed bit-shuffling The overhead of bit shuffling is

based on the hardware scheme in Fig. 3.4. The compressed bit-shuffling scheme is

parameterized by nFM and the compression rate R, where R is the number of bytes in

a group that share a shift value marker.1 For an M × N mat, M × N/(8R) bytes

have their own shift values with logR bits to locate their position. For the structure in

Fig. 3.5, the transistor overhead is shown below:

� The shift values for a byte need nFM bits of storage and are shared over R bytes.

For M rows and N columns, this results in a total cost of (M ×N/(8R))× nFM .

� The identity of which of the R bytes should be shifted is stored in a small array

with logR bits per group. Its transistor overhead is (M ×N/(8R))× logR.

� (nFM + logR)×N/(8R) pass transistors are required.

� The 8-bit circular shifter has nFM + 1 layers, with 8 MUXes per layer, each with

6 transistors. This leads to a transistor count of 48(nFM + 1).

The total overhead for this scheme is thus (M × N/(8R)) × (nFM + logR) + (nFM +

logR)×N/(8R) + 48(nFM + 1) units.

Hybrid bit-shuffling and redundant repair The overhead can be deduced from

the above discussion, adding the cost of bit-shuffling to the overhead of redundant repair.

1 Note that the degenerate case of R = 1 corresponds to the scheme in [6].
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3.3.2 Delay model

The delay model is based on the delay associated with the CAM, the addressing delay,

the precharge delay, and the cell read-write time. For the 1Gb DDR3 DRAM in [71],

tRCD = 13.91ns and tCL = 13.91ns. Thus, the delay to read from memory is tRCD+tCL,

which includes opening a row-by-row decoder and accessing the memory array and the

active column MUX to get the data out. For the 16Mb STT-MRAM in [72], the read

cycle time is 35ns.

All of the redundant repair schemes – 2D redundant repair, segmented redundant

repair, and k-MSB redundant repair – need a CAM to store the reconfiguration address

for the spare elements. The matchline delay of the CAM is determined by the precharge

and evaluation time [73], where tpre = 2.2REQpreCML, teval = 0.69RMLCML, REQpre is

the equivalent resistance of the precharge transistor, RML is the equivalent resistance

in matchline, and CML is the equivalent capacitance. The delay of the MUX used to

select the data from the spare elements or the main memory array can be estimated

as three FO4 delays. All of the corresponding parameters for the CAM and FO4 come

from CACTI [3] for the DRAMs case and NVsim [74] for the STT-MRAMs to compute

maximum timing overhead (Max delayCAM < 0.2ns,Max delayMUX < 0.1ns).

For the bit-shuffling related schemes, the chief delay overhead is the circular shifter

due to delay in read shift value operation partially overlaps delay in memory read or

write operation. The shifter can be implemented using nFM + 1 MUX layers. For our

case, the maximum value is four MUX layers, giving a total delay of 12 FO4 (< 0.4ns).

Based on maximum timing overhead for various parts of the array, it is clear that,

compared to the original memory access time, the delay overhead of the additional

circuitry is minimal and can be neglected.

3.4 Experimental results

We evaluate the performance of each repair technique for a 128M × 8 banks DDR3

DRAM similar to [71] and a 1M × 16 bit STT-MRAM similar to [72] using the CACTI

memory organization. For each memory type, various faults are injected with the mean

failure rate, Pcell, set to 0.1%, 0.25%, 0.5%, and 0.75%.These failure injection rates are

significantly higher than those typically used in prior memory repair studies since we
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are evaluating error-resilient applications which can use memories that are much more

error-prone and, hence, less expensive. The simulations use 105 Monte Carlo samples

corresponding to the distribution in Section 3.1.2. Each of these samples corresponds

to the total number of faults in a memory array. The probabilities that these faults

map on to row faults, column faults, cluster faults, and single cell faults are set to 1%,

10%, 2%, and 87%, respectively [67]. Once the fault region is fixed for a failure, the

fault type is set to one of options described in Section 3.1.2. For purposes of repair, the

precise type of fault is immaterial since the existence of a fault would trigger the use

of a repair strategy. The impact of the fault on the quality of the JPEG compressed

image does not depend on the type of memory, i.e., DRAM or STT-MRAM, but rather

on the total number of faults and their spatial distribution.

We use the PSNR to measure the quality of the images stored in the memory arrays

as various faults are applied. Our experiments (details omitted due to space limitations)

show that the distribution of the PSNR for the Monte Carlo simulations is always

very tightly spread about the mean so that the variance is negligible. Therefore, it is

sufficient to characterize the PSNR performance results using only the mean values.

To compare the different schemes, we define the quality degradation (measured in dB)

and the percentage quality degradation as the change in PSNR compared to the full

quality image. We evaluate the different schemes by showing the changes in the quality

degradation metric as a function of the area overhead, which is expressed as a percentage

of the total area of an equivalent size memory array with no repair capability plus its

supporting circuitry.

Fig. 3.8 shows the quality-overhead trade-offs for the bit shuffling schemes. Within

each chart, the different bars within a group represent the various cell failure probabil-

ities. The different charts within each column show the results for various compression

rate of compressed bit-shuffling scheme. In reality, the memory arrays have row faults,

column faults, and cluster faults. In this case, the quality degradation goes up signifi-

cantly for all the bit-shuffling schemes. Fig. 3.9 shows the quality-overhead trade-offs for

the hybrid scheme that combines bit-shuffling with redundant repair and uses the term

”H-Compression rate” to represent this hybrid scheme with compressed bit-shuffling.

The four curves correspond to various cell failure probabilities and the points on a

curve represent nFM = 1, 2, 3. For the same nFM , the number of spare elements added
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for redundancy repair vary between the failure probabilities, resulting in different area

overheads. As compression rate increases, the overhead will be reduced with minimal

quality degradation. The hybrid schemes significantly reduce the quality degradation

for cluster faults with only a small increase in overhead compared to only bit-shuffling

schemes. Thus, the following comparisons only include the hybrid schemes.

Figure 3.8: Quality-overhead trade-offs for bit-shuffling with clustered faults and the
points on the x-axis correspond to nFM = 1, 2 and 3.

Figure 3.9: Quality-overhead trade-offs for the hybrid scheme with clustered faults.

Fig. 3.10 compares all approximate memory repair schemes. To provide another

perspective, this figure exchanges the horizontal and vertical axes used in prior graphs.

The x-axis groups various ranges of quality degradation, expressed as a percentage

increase in degradation compared to the perfect memory. The y-axis shows the area

overhead. Each plots shows the results for a different fault probability. These plots allow

a designer to determine the cost of a specific scheme given a maximum allowable quality

degradation or, given a cost budget, to determine the expected quality degradation of

each scheme.

To evaluate the schemes that use limited spare rows and columns, we first choose the
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number of spare rows and columns that are required to ensure full repair over all of the

Monte Carlo samples for 2D redundant repair and segmented repair. This value then is

adjusted from 100% for a fully repaired system to various reduced values, each of which

corresponds to reduced overhead at the cost of some quality degradation. Fig. 3.10 shows

the level of quality degradation for various schemes and the corresponding overhead. In

our simulation, we segment the memory into 2, 4 and 8 blocks and the results show that

the segmented repair scheme works best with only two blocks. This is because, as the

number of segments increases, the number of spare cells goes down, but the number of

high cost CAM cells will increase. However, both the 2D and segmented repair schemes

always have the highest overhead for a given level of quality degradation since these

schemes are not very efficient.

It is clear that the performance of the k-MSB scheme is substantially better than

the 2D and segmented repair schemes providing lower overhead and lower quality degra-

dation, even for k = 1. Furthermore, decreasing k tends to reduce the overhead for a

given level of quality degradation by improving the efficiency, but lower values of k may

be unable to achieve the best quality. The hybrid bit-shuffling with redundant repair

scheme shows the best performance as the probability of a fault increases. However, be-

cause every byte (for no-compression version) needs extra space to store the shift value,

the hybrid scheme has relatively high overhead compared to the other schemes when

the probability of a failure is low. Moreover, the hybrid scheme with compression can

reduce the area overhead with lower quality degradation compared to no compression.

In summary, we find that the k-MSB and hybrid schemes generally provide the best

results across all failure probabilities.

3.5 Conclusion

This chapter has shown how partially repaired memories can be effectively used for

error-resilient image applications. We find that the nature of the fault and the type

of memory matters less than the number and spatial distribution of the faults. For

image compression, the proposed k-MSB and hybrid bit-shuffling and redundant repair

schemes provide large reductions in overhead compared to the fully-repaired case and

prior repair schemes with little quality loss. Our new approaches perform well in the
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presence of row, column, and clustered faults, where the previously proposed basic

bit-shuffling method may experience large quality degradation.
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Figure 3.10: Overhead-quality comparisons of the various approximate memory repair
schemes for different failure probabilities. Missing bars (e.g. k=1 for< 0.3% degradation
under Pcell = 0.1%) show configurations that are impossible to actually build for the
given overhead-degradation combination.



Chapter 4

Adaptive-length Coding of Image

Data for Approximate Storage

In this chapter, we focus on placing the image data with adaptive-length coding (ALC)

scheme into approximate storage. ALC can provide a balance between the reliability of

fixed-length coding schemes and the storage-efficiency of Huffman coding schemes [75].

We compare our JPEG-based ALC scheme only with the JPEG-based VLC scheme

in the evaluation. Our target is to place the data into approximate storage, while

maintaining an acceptable quality and compression efficiency.

4.1 Preliminaries and motivation

4.1.1 Cost-reliability trade-offs for approximate storage

There exists a clear trade-off between the cost of a storage device and its reliability.

For instance, inexpensive HDDs have lower reliability than more expensive enterprise-

class devices. As a result, the less expensive devices are typically used in a RAID

configuration to improve the system reliability. There is a similar trade-off for SSD

devices and for other types of storage technologies. Furthermore, we can make other

trade-offs besides reliability and price cost. For example, there is a trade-off between the

cost of adding ECC to a memory system and the resulting reliability. This trade-off has

been used in prior work to build an approximate storage system [1,7]. There also exists

30
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a trade-off in NAND flash technology between the cell storage efficiency (bits/cell) and

reliability [76]. For the emerging STT-MRAM technology, the reliability is related to

the energy required to change the device’s state. A lower energy circuit will provide

lower reliability [8, 9].

The goal of this work is to develop a methodology for storing a compressed image

in approximate storage. We propose a general methodology and presenting the notion

of the trade-off under various cost scenarios. As a result, we assume only two types

of storage - reliable and approximate - that have different cost ratios. The specific

implementation of these two types of storage is beyond the scope of this work.

4.1.2 Fundamentals of JPEG

JPEG is a commonly used technique that employs the discrete cosine transform (DCT)

to perform lossy compression on digital images [77]. The DCT divides an image into a set

of 8×8 pixel frames, converting the sub-image in each frame from the spatial domain into

an 8×8 matrix of coefficients in the frequency domain, corresponding to various spatial

frequencies. The zero-frequency coefficient of the DCT is referred to as its DC term,

which is the average of the pixel values. It provides a baseline value for the encoding.

The remaining elements for the AC terms provide information about the successively

higher frequency components, which represent color changes across the block. Since the

human eye is insensitive to high-frequency spatial variations, a quantization step is used

to divide each coefficient by the non-uniform entry in the quantization matrix (higher

resolution for DC and low-frequency components), and an integer result is stored. As

larger divisors are used at higher frequencies, and DCT coefficients tend to be lower

at high frequencies, many coefficients go to zero. Only nonzero DCT coefficients are

stored, and thus the volume of compressed data is greatly reduced from the raw image.

The original image can be reconstructed from this data with little or no discernible loss

in quality. The entries of the quantization matrix, for a quality factor Q, range from 1

to 100, where a higher number corresponds to higher quality (Q = 90 is widely used).

The quantization matrix for any value of Q can be derived using the procedure in [77]

that is based on standard quantization matrix for Q = 50.

The top left entry in the 8×8 DCT coefficient matrix is the DC coefficient. The DC

coefficients store the basic information for the image, and employ differential coding,
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Figure 4.1: The zigzag pattern that orders the DCT coefficients for storage.

whereby the difference of the DC coefficients between successive blocks is saved. This

enables more compact storage, but allows an error to affect multiple blocks. The re-

maining entries are the AC coefficients. In practice, since the nonzero AC coefficients

tend to cluster near the top left entry of the matrix, the quantized coefficients are stored

in a zigzag sequence, as shown in Fig. 4.1. Then DC and AC coefficients are encoded

separately based on different Huffman tables specified in the JPEG standard [78].

Table 4.1: VLC-encoded AC coefficients in Fig. 4.1.

Nonzero
coefficient

RL
1’s complement
representation

CAT Codeword

2 0 10 2 01 10

-1 2 0 1 11100 0

In VLC, the value of a coefficient is stored using one’s complement representation1

, where the sign is encoded by ensuring that the MSB for a positive [negative] number

is 1 [0]. For example, consider a differentially coded DC coefficient of 5, represented

in one’s complement notation as 101, in Fig. 4.1. Then the category (CAT) of this

coefficient will be encoded based on the Huffman table for the DC coefficient, which

represents the number of bits required to store this value. Therefore, for this example,

CAT = 3, which is translated to 100 after Huffman coding. The encoded DC coefficient

then concatenates these to obtain the codeword 100 101. In VLC, the maximum value

of CAT for DC coefficients is 11 bits.

1 two’s complement representation can also be applied, but it will not introduce any meaningful
changes in the results.
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Table 4.1 encodes the AC coefficient values in Fig. 4.1. The sequence of coefficients

is translated to symbols that encode the run-length (RL) and the category (CAT) of the

coefficient. Here, RL corresponds to the number of zeros preceding the coefficient, e.g.,

for the entry of −1, RL = 2 as it is preceded by two zeros. Each (RL, CAT) symbol is

represented by a variable-length codeword based on Huffman tables, assigning shorter

codes to more common symbols, e.g., in Table 4.1, (RL = 0, CAT = 2) is represented by

the symbol 01. In VLC, RL is limited to 4 bits and CAT to 10 bits for AC coefficients;

in case of larger run-lengths, symbols with (RL = 15, CAT = 0) can be concatenated.

(a) Girlface (b) Peppers

(c) Tiger (d) Bird

(e) Number of bits required to store the DC and AC coefficients using VLC

(f) Distribution of the (RL, CAT) symbols for the AC coefficients

Figure 4.2: A set of sample images and the distribution of the symbols representing
their AC and DC coefficients.



34

For the block in Fig. 4.1, the precise bit string that is stored is a concatenation of

the codewords for the DC coefficient and all AC coefficients in Table 4.1, i.e.,

1001010110111000 . . . 1010

where the ellipsis represents the nonzero coefficients that are not shown in the figure.

The last symbol, 1010, corresponds to end of block (EOB), a unique symbol that in-

dicates the last nonzero coefficient of a block. The EOB symbol acts as a separator

between consecutive blocks.

As shown in Fig. 4.2(e), the storage overhead is dominated by the AC coefficients.

Further, among these AC coefficients, the distribution of the symbols (RL, CAT) is

quite unbalanced. For example, in the images, Girlface, Peppers and the two additional

images Tiger, Bird, from the Imagenet dataset [79], the first 15 symbols can be seen to

cover over 95% of the coefficients, with (0,1), (0,2) and (1,1) corresponding to over half

of all 161 symbols, as shown in Fig. 4.2. This motivates the use of Huffman coding in

VLC, but we will soon see how VLC is sensitive to errors.

4.1.3 Error resilience limitations of JPEG storage schemes

The error tolerance for traditional VLC-encoded JPEG, where the storage scheme uses

a Huffman-based coding algorithm, is quite limited, and even a single error can bring a

dramatic degradation, as illustrated in Fig. 1.1(a). This error occurs due to a misalign-

ment caused by an erroneous symbol, which maps to a keyword with a different (RL,

CAT) value and disrupts symbol boundaries. This creates noisy data in the blocks that

follow. Moreover, some EOB symbols are left undetected, and the image is interpreted

to have fewer blocks, with all-zero coefficients in the last few blocks, causing them to

be black.

One way to avoid such scenarios is to annotate each block with the number of bits

that it contains [43]. This improves the error resilience by reducing the possibility

of error propagation across blocks, but under a larger number of errors, as shown in

Fig. 1.1(b).

Another alternative is to use fixed-length coding (FLC) [51]. Instead of a variable-

length codeword, FLC may use the maximum number of bits for RL (4 bits) and CAT

(10 bits) if coding AC coefficients. For a constant number of CAT bits, it is essential to
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also explicitly store a sign bit since the sign can no longer be inferred from the leading

bit of the data. In other words, to represent signed binary AC coefficients, the sign-

magnitude representation is needed for FLC instead of only using the one’s complement

representation in VLC. This implies that the length of each codeword in FLC can be

4+10+1 = 15 bits. This fixed codeword length allows the boundary between codewords

in this scheme to be determined easily, so that errors no longer propagate to subsequent

codewords, but this potential improvement in error resilience is accompanied by a severe

degradation in compression efficiency. Furthermore, the error resilience may not actually

be improved, since the large increase in the number of storage bits raises the likelihood

of errors that cannot be corrected for.

4.2 Adaptive-length coding

In this section, we propose the adaptive-length coding (ALC) scheme to provide a bal-

ance between the reliability of fixed-length coding schemes and the storage-efficiency

of Huffman coding schemes. The ALC method is described in three steps: symbol

classification for the AC coefficients (Section 4.2.1), adaptation for additional bits (Sec-

tion 4.2.2), and EOB identification (Section 4.2.3).

It is worth noting that the number of AC coefficients significantly exceeds the number

of DC coefficients, as shown in Fig. 4.2(e). Meanwhile, as we will see in Section 4.6.4,

the DC coefficients contain the important characteristics of an image and are not very

tolerant to errors. Therefore, we develop the ALC scheme to compactly store the AC

coefficients while the DC coefficients are still encoded using VLC.

4.2.1 Step 1: Symbol classification

Our ALC scheme places all symbols for the AC coefficients into one of two classes. Class

I corresponds to a shorter fixed codeword length for the most frequent symbols, (0,1),

(0,2), and (1,1). Class II consists of all other symbols, which are encoded using a longer

fixed-length.

The structure of the codewords is summarized in Fig. 4.3. The MSB indicates

whether the symbol belongs to Class I or II. In case of Class I, all of the remaining bits

are used to store the coefficient. For Class II, if RL = 0, the second-MSB is set to 0,
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the third bit is the sign bit, and four bits are used to save the coefficient magnitude. If

RL 6= 0, then the second-MSB is 1, followed by three bits for RL, the sign bit, and 1

bit for the coefficient magnitude. Similar to FLC, the sign-magnitude representation is

used for the AC coefficients in ALC. Next, we justify the choice of the number of bits

used to store RL and the coefficient.

Figure 4.3: Bit assignment for Class I and Class II symbols in the ALC scheme.

Precise representation for Class I

Table 4.2 shows our scheme for uniquely representing Class I codewords using a 4-bit

fixed-length code. For Class I, the MSB is set to 0. The next bit indicates the sign,

and is 0 for a positive value and 1 for a negative value. The last two bits denote the

magnitude of the coefficient. Since the only symbols in Class I are (RL, CAT) = {(0,1),

(0,2), (1,1)}, there are four cases without considering the sign bit, as shown in Table 4.2.

Thus, the magnitude and RL of Class I can be precisely represented using a 2-bit fixed

length field. For comparison, the corresponding VLC codes are shown, which have

similar output length to the ALC codes.

Table 4.2: Encoding Class I in ALC, and a comparison with VLC.

(RL, CAT) Magnitude
ALC Codeword VLC Codeword Output length

Positive Negative Positive Negative ALC VLC

(0, 1) 1 0 0 00 0 1 00 00 1 00 0 4 3

(0, 2)
2 0 0 01 0 1 01 01 10 01 01 4 4
3 0 0 10 0 1 10 01 11 01 00 4 4

(1, 1) 1 0 0 11 0 1 11 1100 1 1100 0 4 5
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Figure 4.4: A histogram of coefficient magnitudes for Class II symbols for a representa-
tive set of images, for RL = 0 and RL 6= 0. The values in the x-axis for each class group
several magnitude values when one more bit is added in the Class II magnitude field.

Approximate representation for Class II

For elements in Class II, Fig. 4.4 shows the distribution of the DCT coefficient magni-

tudes without considering the symbols in Class I. This distribution determines the num-

ber of bits required for Class II. Four representative images are analyzed in Fig. 4.2(a)–

4.2(d), separating the scenarios where RL = 0 and RL 6= 0. All results show the same

trend: when RL 6= 0, CAT is small for almost all possible values, and is larger only when

RL = 0. Thus, finding symbols with large values of both RL and CAT is improbable.

Based on this observation, the use of the fixed bit length for Class II symbols varies

with RL. When RL = 0, all bits are used to store the coefficient, and when RL 6= 0, the

first few bits represent RL while the rest correspond to the coefficient, as illustrated in

Fig. 4.3.
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Selecting the number of bits for RL 6= 0 Table 4.3 examines the symbols that

cannot be represented by three RL bits, i.e., with RL = 1, · · · , 8. Only a small fraction

of symbols have RL > 8 and these tend to have small magnitudes. Thus, for this case,

3 bits are sufficient to represent RL. Any symbols with RL > 8, and all coefficients

beyond this symbol, are discarded with little quality loss.

Table 4.3: Distribution of symbol magnitudes for RL > 8

Girlface Peppers Tiger Bird

Fraction of symbols with RL > 8 1.67% 5.18% 2.83% 0.42%

Distribution of the
coefficient magnitude
in RL > 8 symbols

Magnitude = 0 7.53% 13.29% 7.31% 3.28%
Magnitude = 1 90.75% 86.30% 92.26% 96.72%
Magnitude = 2 1.54% 0.41% 0.24% 0.00%
Magnitude > 2 0.18% 0.00% 0.19% 0.00%

The observation from Table 4.3 can be extended to a larger set of images. Fig. 4.5

shows the distributions generated with 500 images in the dataset [79]. Figure. 4.5(a)

shows that the fraction of symbols that require RL>8 is quite small. Thus, three bits

for RL is sufficient for most situations. In Figure. 4.5(b), only a few parts of the symbols

with RL>8 have magnitude larger than 2, which means the information can be discarded

with little impact on the final results.

Figure 4.5: The distribution of images based on the different percentage of symbols
that cannot be covered by Class II representation for RL (a) Discard the symbols with
RL>8. (b) The discarded symbols with the magnitude larger than 2.
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Selecting the number of bits for the coefficient magnitude According to the

Huffman table for the AC coefficients, the magnitudes can be represented precisely using

10 bits. However, from Fig. 4.4, numbers that use all 10 bits are seldom encountered.

Therefore, we reduce the number of magnitude bits while still covering the vast majority

of scenarios. The figure shows that the distribution of magnitudes for RL = 0 has a

wider spread than for RL 6= 0, but even here, the number of coefficients whose values

exceed 19 is small. Therefore, our ALC encoding represents the magnitude using 4 bits.

Since any value of RL > 8 is treated as an EOB, it is not necessary to store coefficient

values of 0 to store long run lengths, and Class II has no magnitudes of 1 and 2 when

RL = 0. Therefore four bits can be used to store magnitudes ranging from 4 to 19. If

the actual coefficient magnitude exceeds 19, a value of 19 is stored. Similarly, for RL 6=
0, the vast majority of coefficient magnitudes are ≤ 2, so that ALC uses 1 bit to store

coefficients2 of 1 or 2. Coefficient magnitudes of 3 or larger are capped at 2. This is a

large reduction over FLC, which requires 10 bits to represent the coefficient magnitude.

The distribution of these four images are representative and the number of bits

covering most of the scenarios works for a larger set of images. Fig. 4.6 shows the

distributions generated with 500 images in the dataset [79]. When RL=0, most images

have over 90% of the AC coefficients that can be covered by 4 bits for magnitude; when

RL 6=0, most images have over 85% of the AC coefficients that can be covered by 1 bit.

This parameter selection is verified on a larger dataset of images in Section 4.6.

4.2.2 Step 2: Adaptation per image

The basic ALC scheme described above combines the spirit of the Huffman coding

scheme in VLC with the error-resilience of FLC. However, if used directly, only using

the few bits in Section 4.2.1 to represent the magnitude of Class II is not enough and

it can lead to a significant degradation of the image quality.

To better understand the reason, we study the average magnitudes of all the blocks

in a representative image, Girlface, (other images show similar overall trends) for each

AC frequency band. Fig. 4.7 presents a color-coded map of these magnitudes for each

2 When RL=1, the magnitude representation can be extended to encode 2 or 3 since (RL,
CAT)=(1,1) is already encoded in Class I.
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(a) RL=0 (b) RL6=0

Figure 4.6: The distribution of images based on the different percentage of AC coeffi-
cients can be covered by Class II representation for magnitude.

Figure 4.7: The average AC coefficient magnitudes, over all frames, of all the blocks in
Girlface. A lighter color represents a higher magnitude.

element in the 8×8 coefficient matrix. The figure indicates that larger-magnitude co-

efficients are located near the beginning of the zigzag storage sequence. In particular,

the first few lower-frequency elements of the sequence have larger coefficients with more

important information than higher-frequency components. For instance, we can see

that there is an important AC frequency band whose average value is about 20, but this

results in an overflow in our basic ALC scheme, which only allows a maximum four bits

to store a coefficient.

We alter the basic scheme to improve quality by selectively adding extra bits to the

codewords of Class II located in lower-frequency positions, which allows storing these
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high magnitude coefficients more precisely. In order to develop a computationally sim-

ple methodology, the number of additional bits and the number of codewords with these

additional bits are the same for all blocks in one image. Therefore, adding one more

bit can result in a large change in output length. To ensure high compression efficiency,

rather than choosing a worst-case value over all images, we employ image-specific adap-

tation, where the number of additional bits is chosen based on the characteristics of a

specific image.

Figure 4.8: The impact of using different methods to decide the number of bits to be
added to the first T AC codewords.

The number of additional bits required to precisely represent the first T AC code-

words is determined by all block samples from an image, where T is an optimization
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Figure 4.9: The impact of using different number of blocks to decide the number of bits
to be added to the first T AC codewords.

parameter, in the zigzag pattern based on this data. We choose only the first T AC

codewords because the AC codewords near the end of the block normally have lower

magnitudes. Then we find the maximum and median values of the required additional

bits among all block samples. If we use the Structural Similarity Index (SSIM) [80] as

the quality metric (defined in Eq. (4.3) in Section 4.5.3), in the absence of error, we

find that using the maximum value of the required number of additional bits provides

the best quality, but at highest overhead (because this value may be rare). Another

alternative is to use the median value, which has relatively low overhead, but this still

results in large quality degradation, as illustrated in Fig. 4.8.

We find that using median value + α × (max value −median value) provides an

effective trade-off between the goal of reducing the overhead while delivering adequate

quality, where α can be set to any value from 0 to 1. Fig. 4.8 shows the results for

α = 0.25 and α = 0.5. In our experiments, α = 0.25 is used.

Moreover, as shown in Fig. 4.8, the effectiveness in improving the quality goes down

steeply after the first few codewords. Thus, in our experiments, we only test the value

of T from 0 to 10 to satisfy different quality requirements.

Considering the high correlation of content among adjacent blocks, we uniformly

select a subset of the blocks from an image and determine the number of additional bits

required to precisely represent the first T AC codewords. From Fig. 4.9, it can be seen

that once a subset of the blocks are sampled, a representative value of T can be chosen.
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The red dot shows the SSIM value when 25% of the blocks are chosen, and empirically

this is seen to be a safe threshold. In principle, this also depends on the order in which

the blocks are sampled, but our experiments find the 25% threshold to be safe.

4.2.3 Step 3: EOB identification

In the ALC scheme, since the codeword lengths are fixed, we do not use the EOB

symbol, described in Section 4.1.2. Instead, for each block, we record the number of

codewords in the block for block alignment. Fig. 4.10 shows the number of blocks with

up to k codewords, for various values of k along the x-axis. This indicates that if we

limit the number of codewords in each block to 32, over 95% of all blocks can be covered.

Therefore, we choose to use 5 bits to record the number of codewords in a block. If

the number of codewords is larger than 32, the higher coefficients are discarded, and we

empirically observe that this results in minimal quality degradation.

Figure 4.10: The cumulative distribution function of the number of codewords in each
block.

Note that recording the number of codewords can prevent errors propagating to

other blocks. For example, a bit flip in the RL field could shift the coefficients to an

incorrect frequency band. However, since we store the number of codewords per block,

and each codeword has a known length, such an error can be limited to the block and

will not corrupt subsequent blocks.
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4.3 Partitioning data between reliable and approximate

storage

The image data is partitioned into two parts, one into reliable storage and the other

into the approximate storage. An error in the more important data, such as the DC

coefficients, could cause a critical failure. Consequently, this data is placed in the reliable

storage using the conventional VLC coding. Critical data for the AC coefficients, such

as the number of codewords in each block, also are placed in reliable storage. However,

the remaining AC coefficient data, which requires a large number of bits, can be placed

in the less expensive approximate storage. The decision to place specific data into the

reliable or approximate storage areas is based on the quality requirement and the cost

of the approximate storage relative to the reliable storage.

Figure 4.11: The sequence of data partitioning patterns based on the importance order
of bits in Class I and Class II, where the blue and white bits are stored in reliable and
approximate storage, respectively.

Fig. 4.11 shows ten different patterns that partition data bits between reliable and

approximate storage. As we go from the first to the tenth pattern, the quality of the

image will improve, at the cost of increased storage costs. In our approach, the final

data partitioning pattern between reliable and approximate storage is determined by
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sequentially trying the patterns in Fig. 4.11 until the quality requirement is met. Once

the pattern has been determined, it will be applied to all codewords in Class I and Class

II. To restore an image, we have to access both reliable and approximate storage to get

the bits of each codeword according to the data partitioning pattern.

Typically, the MSBs of a codeword are more likely to be placed in reliable storage,

and the ten patterns successively place larger numbers of MSBs in Class I and Class II

in reliable storage. The precise sequence is obtained based on the importance order of

bits in Class I and Class II, which have different impacts on output quality, as tested

on the sample images, Girlface, Peppers, Tiger and Bird. For example, if we want to

generate the second pattern, one more bit should be added in reliable storage compared

with the first pattern. As shown in Fig. 4.12, there are two cases: one is placing the

first two MSBs in Class I and MSB in Class II in reliable storage for all codewords;

the other is placing the MSB in Class I and the first two MSBs in Class II in reliable

storage. Under a given error rate (1% error rate is used in this work), the case with

higher quality will be chosen as the second pattern. The sequence of data partitioning

patterns is derived following this process.

(a) For Class I (b) For Class II

Figure 4.12: The two cases for geneating the second pattern: one more bit should be
added in reliable storage, either for Class I or for Class II, compared with the first
pattern.

For data partitioning patterns, we assume the length of codewords in Class II are

fixed to simplify the complexity. As explained in Section 4.2.2, only the first few code-

words have variable length due to additional bits. The lengths of the codewords are

adaptively changed for different images. Thus, the data partitioning patterns should

be varied for different codewords and images. The data partitioning process will be

less complicated if we assume the lengths of all codewords are fixed. Ignoring these
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additional bits in the data partitioning pattern will lead to always placing them in ap-

proximate storage. However, the errors that occur in these additional bits have a small

impact on the final results, since these additional bits are used to compensate for the

least significant bits of the magnitude. Therefore, it is likely to put these additional bits

in approximate storage and our simplification for the length of codewords is acceptable.

4.4 The impact of dividing the symbols into more classes

If we divide the symbols into three classes and have three fixed lengths as shown in

Figure. 4.13(a): Class I corresponds to the shortest fixed codeword length for the most

frequent symbols, (0,1), (0,2), and (1,1); Class II corresponds to the middle fixed code-

word length for the following most frequent symbol (0,3) and a part of symbol (0,4);

Class III consists of all other symbols, which are encoded using a longer fixed-length.

We optimize the number of bits when using these three classes in the same manner as

the previous sections. For Class I, the encoding process is the same as Table II. For

class II, the three bits for the magnitude can use 000 111 to represent the values from 4

to 11. For class III, when RL=0, the four bits can be used to store magnitudes ranging

from 12 to 27. If the actual coefficient magnitude exceeds 27, the value 27 is stored.

When RL 6=0, the process is the same as the case with two classes.

However, if we compare the three-class scheme with the two-class scheme in the

previous section, the improvement is quite limited. First, one more bit is required for

class identification. In our methodology, the bit for class identification of a codeword

is always placed in reliable storage to make sure the size of the codeword is always

known accurately. Therefore, the amount of reliable storage needed to store the class

identification bits increases as more classes are used. Second, adding the additional

class for symbol (0,3) and a part of symbol (0,4) comes at the expense of adding one

more bit for the other symbols in Class III. Fig. 4.13(b) shows that the distribution of

images with different improvements in the total number of bits. The x-axis represents

the improvement of the number of bits compared with using only the two-class scheme.

It shows that the benefit of adding the additional class to reduce the total number of

bits is very limited.

Considering that we obtain good improvement with only two fixed lengths, and that
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Figure 4.13: (a) Bit assignment for three-class scheme (b)The distribution of images
with different improvement in the total number of bits.

adding more classes will not produce a large benefit, especially for low-cost ratio, we

see that there is no benefit in using three or more lengths.

4.5 Evaluation methodology

To evaluate the performance of ALC-based storage compared to traditional JPEG-

based storage, the following error injection and error correction models for storage are

developed and the criteria for the quality of the result and the storage cost are also

described.

4.5.1 Error model

The data array organization is based on the structure in NAND Flash memories and is

a reasonable representation for a storage system built from any technology. A logical
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page is the smallest addressable unit for reading and writing, and each page is typically

made up of a main area for data and a spare area for ECC [81].

We apply an error model based on [82] where the errors are randomly distributed in

one page, which follows the random bit-error characteristics of NAND Flash memory. If

the error rate of a storage bit-cell is p, then the probability that n cells fail in a storage

array with size M follows the binomial distribution:

P (N = n) =

(
M

n

)
pn (1− p)M−n (4.1)

4.5.2 Protection of error correction codes

Bose-Chaudhuri-Hocquenghem (BCH) codes are commonly used in storage [82] because

they are efficient in correcting single-bit errors. If the BCH error correction capability

is t bits, and the number of failed cells is n, which follows the distribution in Eq. (4.1),

then the failure probability of error correction can be defined as:

P (n > t) =

M∑
n=t+1

(
M

n

)
pn (1− p)M−n (4.2)

The BCH scheme can construct a code with length 2m−1, which includes data bits and

parity bits, over the Galois Field GF (2m). The number of parity bits required for BCH

can be computed as mt with error correction capability t [83]. In our case, the errors

can occur in both data bits and parity bits with the same error rate, p.

4.5.3 Evaluation criteria

The quality of the image retrieved from the storage system, and the total cost in bits of

the storage system, are used to compare the different coding schemes. In our evaluation,

SSIM is used to measure the quality of the decompressed images. The SSIM is an index

measuring the structural similarity between two images. It is a well-known objective

image quality metric [84] [85]and is defined as

SSIM (x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(4.3)

where µx is the average of x, µy is the average of y, σxy is the covariance of x and y, σ2
x

is the variance of x, σ2
y is the variance of y, c1 and c2 are two variables to stabilize the
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division with a weak denominator. It is valued between -1 and 1. When two images are

nearly identical, their SSIM is close to 1 [80]. The baseline image for comparison is a

conventional JPEG-compressed image with a quality factor of Q = 90, which we denote

as SSIMQ90 . If the quality of the image using our scheme is given by SSIMimage, then

the percentage degradation is:

Quality Degradation =
SSIMQ90

− SSIMimage

SSIMQ90

× 100% (4.4)

Our evaluation places a user-specified limit on the maximum acceptable percentage

quality degradation. Image data is stored in both inexpensive approximate storage and

more expensive reliable storage. Therefore, Ctotal, the total cost of storing data, is the

sum of the total cost associated with reliable and approximate storage. The cost of each

of these components can be defined as the product of the cost per bit and the number

of bits used in this type of storage. In other words, if we store Nr (Na) data bits and

Er (Ea) ECC bits in reliable (approximate) storage, then the total cost is given by:

(Nr + Er)× Cbit
r + (Na + Ea)× Cbit

a (4.5)

where Cbit
r and Cbit

a are, respectively, the cost per bit for reliable and approximate

storage. Since our objective is to minimize Eq. (4.5), it is the relative cost between

these components that is important, and therefore this minimization is equivalent to

minimizing the function:

Ctotal = (Nr + Er) + (Na + Ea)× r (4.6)

where the cost ratio r can be defined as

r =
Cbit
a

Cbit
r

(4.7)

We now consider the cost of various types of image storage schemes:

Conventional VLC-based JPEG image storage method: This uses VLC to store

Huffman-coded compressed JPEG images. The high sensitivity to error (demonstrated

in Fig. 1.1) implies that all data must be stored in reliable storage, i.e., Na = Ea = 0,

and Er is determined by the number of BCH protection bits that are used.
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Our basic approximate storage scheme: We use ALC encoding to enhance the

error-resilience of data stored in approximate memory. This implies that Nr is relatively

small and most of the stored image data corresponds to Na. Specifically, the bits stored

in reliable storage correspond to:

� The number of additional bits and the number of codewords with these additional

bits, which are the same for all blocks.

� The DC coefficients, stored using VLC.

� Five bits per block that represent the number of symbols in the block, as described

in Section 4.2.3.

� Critical data for the AC coefficients, as described in Section 4.3.

For a given image with cost Ctotal,image, we define the percentage cost improvement

relative to the Ctotal,Q90 , the cost of conventional VLC-based JPEG image storage with

Q = 90 as:

Cost Improvement =
Ctotal,Q90

− Ctotal,image

Ctotal,Q90

× 100% (4.8)

4.6 Experimental results

We evaluate the performance of the proposed ALC algorithm using the basic structure

of a generic NAND flash memory [81]. The main area of a page contains 2KB data

and it will be further split into four subpages. Each subpage contains 4096 bits of data.

ECC is applied to each subpage. The organization of a page is depicted in Fig. 4.14.

The four subpages are continuous in a page and their corresponding ECC parity bits

are located in spare area at the end.

The error rate, p, of reliable storage is 10−6 and the common storage industry re-

liability requirement corrects bit errors to reach a failure probability of 10−15 [86]. To

satisfy this reliability requirement, eq. (4.2) indicates that we need an error correction

capability of t = 4. In our experiments, we evaluate approximate storage at error rates

of p = 0.1%, 0.5%, 1% and 1.5%. These error rates are much higher than normal storage
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Figure 4.14: Organization of a page with the large page divided into small subpages to
better implement ECC.

as our scheme investigates the use of low-cost, low-reliability storage in order to reduce

the overall cost. If the approximate storage tries to reach 10−15 failure probability by

using ECC, the number of required parity bits becomes prohibitive. For example, when

e = 1%, there is a 10−15 probability that the number of bit flips will be greater than

123 based on Eq. (4.2). In other words, we should set the error correction capability

parameter to t = 123 to ensure the reliability of approximate storage. Based on Sec-

tion 4.5.2, for each 4096 bits of data (GF (213) and m = 13), 123×13 = 1599 parity bits

are required, corresponding to an overhead of 39% for ECC (i.e., 71% efficiency). In

contrast, for the same value of e, in our method, reliable storage requires 52 parity bits,

with an overhead of 1% (i.e., 99% efficiency). At a cost ratio of r = 0.9, our unreliable

storage requires no ECC bits for this error rate, and thus has an overhead of 0% (i.e.,

100% efficiency); when r = 0.3, the overhead is 12% (i.e., 89.5% efficiency).

Therefore, only weak ECC protection is applied to approximate storage. If the num-

ber of errors is beyond the ECC error correction capability, all the errors in this subpage

cannot be corrected. For traditional SSD, once this situation happens, the operating

system will be notified that these data are corrupted. However, in our approximate

storage scheme, we allow errors to happen and the operating system does not need to

be notified [7]. Therefore, for approximate storage, various values of t for BCH map

to different failure probabilities of each subpage, as shown in Fig. 4.15, which is gen-

erated using Eq. (4.1) and Eq. (4.2). The weak ECC protection results in a higher

failure probability than high-reliability storage. For example, when e = 0.5%, a choice

of t = 20 can correct 40% of the errors in the subpages successfully. For different cost

ratios, r, defined in Eq. (4.7), the capability t is varied to find the minimum total cost,

as described in Section 4.5.2.
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Figure 4.15: Failure probability of error correction for different error rates, p, as a
function of the error correction capability, t.

Our simulations inject errors into 500 image samples from the Imagenet dataset [79].

The resolutions of these image samples range from 1600 × 520 to 144 × 144. Since we

used the images Girlface, Peppers, Tiger and Bird to set the parameters of the ALC

scheme, for a fair evaluation, these images are excluded from the set of 500 images that

are used in our evaluation.

We compare our JPEG-based ALC scheme only with the JPEG-based VLC scheme

in the evaluation. Our objective is to place the data into approximate storage, while

maintaining an acceptable quality and compression efficiency. Thus, our objective is

fundamentally different from prior methods described in Chapter 1, such as [9], which

stores raw images (instead of JPEG), or [7], which uses the relatively rarely-used PTC

compression format. Moreover, the impact of the block-based errors is large when

techniques such as [1] [42–49], described in Chapter 2, are used. Therefore, only

traditional JPEG and JPEG with a reduced Q [27] are compared in this section.

4.6.1 Quality degradation of ALC algorithm

Inherent quality degradation

As illustrated in Section 4.2, ALC-based storage results in inherent quality degradation

due to approximations in representation and the impact of some discarded coefficients.

Fig. 4.16(a) shows the distribution of quality degradation for the above set of 500 images,

considering only ALC-inherent information loss. We also show the quality in terms of

peak signal-to-noise ratio (PSNR) as the comparison for the SSIM degradation results, as
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shown in Fig. 4.16(b). In the absence of errors, we use median value+α×(max value−
median value) with α = 0.25 to find the additional bits and apply it to the first T = 10

AC codewords to achieve the minimum degradation for each image. This is the largest

value in our experiments, as described in Section 4.2.2. The figures indicate that the

image quality histograms for these images are concentrated around the small values

of the degradation metric or large value for PSNR, so that the ALC algorithm can

effectively maintain most of the information for each image.

Figure 4.16: The distributions of ALC inherent quality degradation based on SSIM and
based on PSNR caused only by the approximate representation for 500 different images.

Quality degradation for various error locations

Additionally, for the same number of errors caused by approximate storage and a fixed

data partition between reliable and approximate storage, we perform 104 Monte Carlo

samples on one randomly selected image (other images show similar results). The

difference between the samples is in the error locations, which are randomly distributed.

In our simulation, we use the expected value of the number of errors with 1% error rate,

so that the number of errors in each sample is fixed. Each sample uses the original

image and the errors will be randomly distributed again. The quality degradation for

each sample will be computed and we get the histograms of these degradation values,

as shown in Fig. 4.17. The quality degradation of these samples are seen to vary within

a small range, as shown in Fig. 4.17. Therefore, unlike traditional VLC-encoded JPEG,

the ALC algorithm is less sensitive to the location of the errors that occur in less

important data. In other words, the quality degradation of an image in ALC can be

controlled.
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Figure 4.17: The distributions of 104 Monte Carlo samples on one image with different
error locations caused by approximate storage.

Visual output of ALC scheme

Fig. 4.18 shows the results of using the ALC scheme to store the Girlface image under

a 1% error rate. The three images correspond to different data partitions between

reliable and approximate storage, resulting in different levels of quality degradation, as

computed using Eq. (4.4), of approximately 5%, 10% and 20%. The values of PSNR

also decrease for the larger degradation and the quality performance in terms of PSNR

shows the same trend compared with SSIM. Therefore, only SSIM degradation is shown

in the following parts. It can be seen from the figures that the errors in the former two

cases are barely discernible. Even for the latter case, due to the built-in error-resilience

of ALC, the errors affect the quality only in a localized manner instead of affecting the

image globally, as in the VLC cases shown in Fig. 1.1. As the degradation increases,

more obvious errors appear in the image, as shown in the zoomed-in details. For our

other test images, Peppers, Tiger and Bird, the quality degradation results (not shown

here) are similar, leading to the conclusion that a quality degradation of at most 10%

is acceptable.

Compatibility with various quantization table JPEG techniques

More sophisticated JPEG techniques have been proposed, that use image-specific quan-

tization tables [36] or that directly reduce the quality factor Q of the quantization

table [27] to achieve further compression efficiency. Our ALC-based scheme is orthog-

onal to these techniques. Fig. 4.19 shows the quality degradation of ALC and JPEG
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Figure 4.18: Visual output of the ALC scheme using 1% error injection under different
quality degradations in the original form (upper) and zoomed in on the details (lower).
Due to space constraints, the upper row of figures is shrunk from the original size of
the image. However, the errors can be observed at original size and more obvious errors
occur in the figures with larger quality degradation.

schemes for various quality factor Q of the quantization table. These results show the

average value of all 500 images from the dataset. For each image, the number of bits for

the ALC scheme is constrained to be nearly the same but no larger than JPEG-based

scheme. Our goal in this section is to quantify the quality degradation caused by quanti-

zation, and therefore, the impact of errors in approximate storage is not considered. For

large quality factor Q, the ALC scheme has greater quality degradation than JPEG due

to approximations in representation of the values. However, thanks to the additional

bits adaptively added to compensate for quality loss, the degradation of JPEG can be

followed by the ALC scheme closely. As the quality factor Q decreases, the limited

length of codewords for the ALC scheme can cover most situations and the degradation

of the ALC scheme is dominated by the quantization. Therefore, the number of bits

for ALC-encoded images can be further reduced by decreasing the quality factor, as is

done with JPEG.
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Figure 4.19: Quality degradation for ALC scheme and JPEG with the same number of
bits.

4.6.2 Impact of the error rate on ALC-based storage

For the case of a mainstream non-volatile storage technology, at different error rates,

p, in approximate storage, Fig. 4.20 shows the number of bits is placed in reliable

and approximate storage using the ALC algorithm and JPEG with a same quality

degradation. The results are generated based on a representative image out of the

500 evaluated testcases in Imagenet. Other images show similar trends. Due to the

sensitivity of VLC to errors, all of the data for JPEG must be saved in reliable storage.

Thus, the number of bits for JPEG is independent of the error rates in approximate

storage and remains constant for all cases.

Figure 4.20: Number of bits in reliable and approximate storage for the ALC scheme,
as compared with VLC-encoded JPEG using reliable storage.
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We use a stacked bar chart to show the different fraction of the number of bits in these

two schemes with various colors, where Er +Nr correspond to the total number of bits

in reliable storage, and Ea+Na correspond to the bits in approximate storage. For each

subfigure, the left stacked bar represents our ALC scheme and the right one represents

the JPEG scheme. With a degradation specification of 10%, evaluated according to

Eq. (4.4), the total number of bits for our ALC-based scheme is nearly the same as

JPEG at r = 0.9 and not more than 11% compared with JPEG in the worst case at

r = 0.3. Moreover, the increase for the total number of bits is caused by Ea for the

low-cost ratio r = 0.3 scenario.

When cost ratio r is large, for example r = 0.9, it is difficult to obtain a cost benefit

for the weak ECC in the approximate storage compared to directly placing the data

in reliable storage. Therefore, the limited or even no ECC is applied when r is large.

For different error rates, the various data partitioning patterns are used to satisfy the

quality requirement instead of changing the capability of the weak ECC. As the error

rate decreases along the x-axis, the total number of bits stays nearly the same and

the percentage of bits that can be placed in reliable storage decreases from 68.0% at

e = 1.5% to 29.9% at e = 0.1%, as shown in Fig. 4.20.

When the cost ratio r is small, for example r = 0.3, the weak ECC protection

allows fewer data to placed in reliable storage and the large cost difference between

approximate storage and reliable storage can compensate for the cost of the parity bits

for the weak ECC. As shown in Fig. 4.20(b), for different error rates, the number of

bits placed in reliable storage remains the same, using only the first data partitioning

pattern defined in Section 4.3. As the error rate decreases, the number of parity bits

required for the weak ECC decreases, so the number of bits placed in the approximate

storage decreases.

4.6.3 Impact of the cost ratio r on ALC-based storage

For any non-volatile memory technology, the relationship between the error rate, p,

and the cost ratio, r, are strongly context-dependent. Even for the same type of storage

technology, this relationship may vary from manufacturer to manufacturer, or from year

to year. Meanwhile, the target of our paper is providing a methodology to allow the

image to be compressed and placed in approximate storage. To preserve the generality of
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the approach and to provide a clear view of the landscape, we do not use the specific cost

ratio or price, so that anyone can use any ratio when implementing our methodology.

Therefore, rather than using a fixed function that maps p to r, we evaluate the proposed

ALC-based storage scheme for general non-volatile solid-state storage by conducting a

sweep of the value of the cost ratio, r, for different error rates, p.

Figure 4.21: Cost improvement for various values of r and p for the ALC scheme (left).
The right graph expands the range from 10−1 to 10−5.

Using the original JPEG scheme as the baseline, Fig. 4.21 shows the cost improve-

ment for our approach compared to the VLC-based JPEG approach that uses a reduced

Q value, which has a similar concept in [27]. In both cases, the quality degradation
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is constrained to be under 5% (Fig. 4.21(a)) and 10% (Fig. 4.21(b)). The results show

the average of all 500 images from the Imagenet dataset. We sweep the value of r from

1 to 0 and also zoom in on the range from 10−1 to 10−5 to show the details for these

smaller possible values. The dashed green line represents the conventional JPEG scheme

with the adaptively reduced Q factor. The remaining lines show the ALC scheme with

different error rates, p.

The JPEG version with a reduced Q value lowers the cost compared to the baseline

due to its reduced storage requirements. This improvement is independent of r and p

since all data are placed in reliable storage. When the degradation is constrained to

be less than 5% and 10%, the results of reducing the Q value in the JPEG encoding

changes the texture of the image, as shown in Fig. 4.22, but the image stills appears

acceptable. The other test images, Girlface and Peppers, show similar results and are

not included here due to space limitations.

For our ALC-based storage scheme, when r is large, there is no advantage compared

to using JPEG with a smaller Q value since the data volume is similar or even larger

than the reduced-Q JPEG case. However, as the cost ratio, r, gets smaller, the benefit

of using approximate storage increases due to its lower cost, as shown in Fig. 4.21(a)

and Fig. 4.21(b).

Section 4.6.2 showed that, when r is close to 1, there is no advantage to partitioning

the data between reliable and approximate memory since they cost about the same.

When r is close to 0, the weak ECC protection in the approximate storage allows the

first pattern of data partitioning for any error rate, which means that the number of

bits placed in reliable storage is fixed. When the cost of the approximate storage is very

low relative to the reliable storage, the total cost of the storage system is dominated by

the number of bits in reliable storage. Therefore, the cost improvement converges as r

approaches 0 so that all of the curves for the different error rates nearly coincide with

each other in Fig. 4.21.

4.6.4 Limit to ALC-based storage

According to the analysis in Section 4.6.3, when the cost ratio is small, the entire cost

of the storage system is dominated by the number of bits stored in reliable storage,

which contains all of the DC coefficients, the block information, and critical data for
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(a) Q = 85, 4.61% degradation

(b) Q = 75, 9.61% degradation

Figure 4.22: Visual output of the JPEG encoded images with variousQ factor reductions
showing different quality degradations (Eq. (4.4)) in the original form (upper) and
zoomed in on the details (lower). There is a slight degradation from (a) to (b), but
both are acceptable.

the AC coefficients. For each image, the block information is fixed. When the cost ratio

is small, the first pattern of data partitioning is always used, which fixes the critical

data for the AC coefficients. To further reduce the cost, the only thing we can do is

decrease the number of bits used to store the DC coefficients in the reliable storage.

In our case, all DC coefficients are still stored in reliable storage encoded using VLC,

but the total number of bits allocated to the DC coefficients is decreased by reducing

the resolution of the values. This requires a custom quantization matrix in which only

the first entry (1, 1) is changed to a larger value compared to the default matrix. If

we increase only the first entry while keeping the other entries the same as the Q = 90

matrix, the quality will degrade and the number of bits used to store the DC coefficients
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Figure 4.23: Impact of the value of the first entry of the quantization matrix on the
image quality and the number of bits for the DC coefficients.

will decrease, as shown in Fig. 4.23. The first entry in the default quantization matrix

with Q = 90 is 3, so the simulation starts from 3. This point has no quality degradation

and requires the largest number of bits to store the DC coefficients. This figure shows

that, when the value of the first entry increases to 16, the quality degrades less than

2% for all four images, while the number of bits decreases at least 34%. Fig. 4.24 shows

that, when the first entry is 16, the visual output maintains an acceptable quality with

only limited texture loss.

We conclude, directly increasing the size of the first entry of the quantization table

to decrease the total number of bits used for the DC coefficients can further improve

the cost of the ALC encoding.

4.7 Conclusion

This chapter has introduced a new adaptive-length coding (ALC) algorithm that can be

used to reduce the cost of a long-term “cold storage” system for image data by taking

advantage of low cost memory devices that can have extremely high bit error rates. The

ALC scheme partitions the bits used to store the encoded image into two classes – the

most significant data that needs to be highly reliable, and the less important data that

can tolerate some errors. Due to the built-in error-resilience of the ALC scheme, the

errors that occur in the less important data, which is placed in low-cost approximate
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Figure 4.24: The visual output for changing the first entry of the Q = 90 quantization
matrix to 16.

storage, affects the quality of the retrieved image in only a localized manner so that

any changes in the images due to errors are barely discernible. Furthermore, when the

difference in cost between the reliable storage and the unreliable (approximate) storage

is large, the fraction of each encoded block that should be placed in the approximate

storage depends on the error rate of the memory and the quality degradation limit

desired by the user. Finally, the cost improvement of the ALC encoding increases as

the cost ratio reduces and, when larger quality degradation can be tolerated, ALC can

achieve even greater cost benefits.

The target of our paper is providing a methodology to allow the image to be stored in

a compressed format and placed in approximate storage. Thus, we develop a new error

resilient coding scheme. In this work, we examine only the fundamental idea instead of

addressing system-level issues. Our objective is to make it clear that there is a viable

trade-off between storage cost and image quality. Details of the implementation are

specific to the precise storage scheme used and involve many subtleties beyond what

can be considered in a single paper. These system-level concerns are a topic for future

work.



Chapter 5

DCT-based Approximate

Communication to Improve MPI

Performance in Parallel Clusters

In this chapter, we study several representative MPI-based error-resilient applications.

The DCT-based approximate communication scheme is described in this chapter. To

compute the DCT coefficients more efficiently, subband decomposition and a fast recur-

sive DCT with piecewise-constant approximation scheme are proposed [87]. We exploit

the error tolerance of these MPI-based applications to improve communication efficiency

by substantially reducing message lengths on a real cluster system.

5.1 MPI-based error-resilient applications

Approximate communication can be applied to error-resilient applications for speedup

while maintaining the accuracy of the output at an acceptable level. In our study, eight

representative MPI-based error-resilient applications were used for the evaluation of the

proposed method. These applications spanned different domains: physical simulation,

machine learning, and image processing. Their computing tasks either did not aim at

an exact numerical answer or they had inherent resilience to output error. Table 5.1

summarizes these applications. The definitions of the evaluation metrics in Table 5.1

63
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are shown below:

Table 5.1: Summary of applications.

Application Description Input Evaluation Metric
FE [88] Finite element method 3003 for length of 3D Relative residual norm

LULESH [89]
Unstructured Lagrange explicit

shock hydrodynamics
303 for length of mesh Mean relative difference

KNN [90] K-nearest neighbors classification Skin segmentation dataset Similarity of predicted labels

BP [91]
Backpropagation neural

network learning
CMU face image dataset Accuracy of test cases

Sweep3D [92]
Models a wavefront propagating

communication pattern
1003 for length of mesh

Mean value range-based
relative difference

Halo3D [92]
Models nearest neighbor
communication pattern

1003 for length of mesh
Mean value range-based

relative difference
Edge [79] Edge detection in image 1200× 800 images Structural similarity index
Blur [93] Image blur filter 11500× 11500 images Structural similarity index

For FE, an iterative method is used for solving the linear equation Ax = b. The error

tolerance of the results is defined by the user as a stopping criterion for the iterative

process. In this study, the error tolerance was based on the relative residual norm and

defined as ‖rj‖2 / ‖r0‖2, where rj = b−Axj of the jth iteration.

For LULESH, the final origin energy and the three measures of symmetry were

calculated after the simulation [89]. The mean relative difference was compared with

these variables using the non-compression scheme.

For KNN, similarity can be defined as nsame/ntotal, where nsame is the number of the

test cases with the same predicted labels generated by the approximate communication

scheme and the non-compression scheme, and ntotal is the total number of test cases.

For BP, the accuracy is defined as ncorrect/ntotal, where ncorrect is the number of the

test cases with correct recognition, and ntotal is the total number of test cases.

For Sweep3D and Halo3D, the value-range-based relative difference can be defined as

ei = (xi− x̃i)/(xmax−xmin), where xi is the original value and x̃i are the reconstructed

data. xmax and xmin are the maximum and minimum values in the original data. In our

evaluation, the average value E of ei was used as error metric for these two applications.

For Edge and Blur, the SSIM [80] was used to measure the quality of the results,

which is defined in Equation (4.3) in Section 4.5.

When using MPI, the messages are passed between computing nodes as arrays of

data. The type of data can be double, int, char and so on. The patterns of the

messages in these applications were impacted by their own algorithms or the input
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Figure 5.1: Representative messages extracted from various applications (upper one in
each subfigure) and energy compaction for various transform-based compression meth-
ods with different applications (lower one in each subfigure).

data, which showed different levels of randomness. The first row of each subfigure

in Fig. 5.1 shows a representative part of the message extracted from the different

applications. In these subfigures, the x-axis represents the index of this data array and

the y-axis represents the corresponding value of the data. For example, the pattern

of FE application has a non-random characteristic and is visibly periodic, as shown

in Fig. 5.1(a). This characteristic of the message pattern allows the transform-based

compression algorithm to compress the message efficiently. For BP application, its

pattern exhibits a more random characteristic, as shown in Fig. 5.1 (d). The non-

random characteristic of the message pattern can be exploited, and more details are

discussed in the next section.
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5.2 Message energy compaction of DCT

In signal processing, the energy of a message is measured by the sums of squares of the

coefficients in the frequency domain, defined as

E =
N∑

n=0

|X (n)|2 (5.1)

where X(n) is the frequency domain transform of message x(k) with length N . When

the messages of an application have a non-random pattern as shown in Section 5.1,

transform-based compression algorithms can maintain as much message energy as pos-

sible with few coefficients. Only a part of coefficients in the frequency domain is used to

represent a message to implement compression. Using coefficients with higher message

energy can yield more accurate results compared with the original message.

The DCT compression algorithm delivers higher energy compaction than other com-

pression algorithms. Our target in applying transform-based compression is to use few

coefficients to represent as much information regarding a message as possible. In other

words, most of the energy in a message is concentrated in a few coefficients. DCT is

the best choice of transformation algorithm for this among such competitors as discrete

wavelet transform (e.g., Haar wavelet), discrete Hartley transform (DHT), fast Fourier

transform (FFT), and the Walsh–Hadamard transform (WHT).

In the second row of Fig. 5.1, we apply the above compression algorithms to repre-

sentative messages extracted from the MPI-based applications listed in Table 5.1. The

x-axis represents the number of coefficients expressed as a percentage. These coefficients

are sorted in descending order based on their absolute values. A larger absolute value

of a coefficient in the frequency domain represent higher energy of a message, as shown

in Equation (5.1). Therefore, using the first n of the largest coefficients to represent

a message can effectively capture a large fraction of the message energy. The y-axis

represents the energy of the message. Compared to energy compaction using the same

number of coefficients, the results show that the DCT can pack the energy of the spatial

sequence into as fewer frequency coefficients than other compression algorithms. For

instance, in Fig. 5.1(a), only 1% of the coefficients can represent 95% of the energy of

a message using the DCT.

Some applications have highly random message patterns that cannot be effectively
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compressed by using a transform-based compression algorithm. For example, 45% of the

coefficients were required to represent 95% of the message energy in the BP application

as shown in Fig. 5.1(d). Our approximate communication scheme is not a good choice

for this type of message pattern. The number of coefficients used to represent high-level

message energy can thus be used as a criterion to decide whether to use our scheme.

As illustrated in Algorithm 1, a message is extracted from the application and, if it can

represent sufficiently large energy (Ei ≥ θe) using a small number of DCT coefficients

(i/n ≤ θn), our proposed scheme is a good candidate for approximate communication,

where θn and θe are empirically determined threshold values.

Algorithm 1: Selection Algorithm for Proposed Scheme

Input: M and n: message and message length;
θn: number of coefficient thresholds; θe:energy threshold;
Output: flags: Decision on selection of our scheme;
compute DCT coefficients CM of M ;
initial CL = Φ; flags = 0; i = 1;
while i/n ≤ θn do

push the ith largest coefficient of CM to CL;
compute the message energy Ei using CL;
if (Ei ≥ θe) then

flags = 1; break;
end
i = i+ 1;

end
return flags;

5.3 DCT-based approximate communication scheme

For the conventional DCT algorithm, the nth DCT coefficient of a sequence x(k) with

length N is defined as

X (n) =

N−1∑
k=0

x (k) cos
(
π (2k + 1)

n

2N

)
(5.2)

where n ranges from 0 to N − 1. To develop the runtime compression of MPI messages

among nodes, low time overheads for compression and decompression are necessary.
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We propose the DCT-based approximate communication scheme in three steps: a sub-

band decomposition of the message (Section 5.3.1), fast recursive DCT with piecewise-

constant approximation (Section 5.3.2), and zero run-length coding (Section 5.3.3). The

proposed approximate communication scheme can pack the energy of the message into a

few coefficients while substantially reducing the time needed for compression compared

with the conventional DCT for large messages.

5.3.1 Subband decomposition

The subband decomposition of a message [39] can be applied to the message compression

to reduce the time overhead in the first step. Fig. 5.2 shows the absolute value of

coefficients of the DCT in a representative message of a FE application generated by

the conventional DCT. As shown in Fig. 5.2, the lower-frequency band concentrates

coefficients with larger absolute values. Based on the definition in Equation (5.1), it

is reasonable to assume that most energy of the message is located in the first half of

the coefficients belonging to the lower frequency. Once a message satisfies the above

assumptions, subband decomposition can be used on it while slightly sacrificing the

quality of the result. In Section 5.3.2, Fig. 5.5 further shows that our DCT-based

approximate communication scheme with subband decomposition has a limited impact

on the energy of the message for most applications that we evaluated.

Figure 5.2: The absolute value of DCT coefficients generated by the conventional DCT
scheme.
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To implement subband decomposition, sequence x(k) with length N can be decom-

posed into a low-frequency band xL(k) and a high-frequency band xH(k), given by

xL(k) =
1

2
(x (2k) + x (2k + 1))

xH(k) =
1

2
(x (2k)− x (2k + 1))

where k ranges from 0 to N/2−1 . Based on the derivation in [39], when n varies from

N/2 to N , X(n) = 0; when n varies from 0 to N/2 − 1, the DCT coefficients can be

approximately defined by

X(n) ≈ 2cos
( πn

2N

) N
2
−1∑

k=0

xL(k)cos
(
π(2n+ 1)

n

N

)
= 2cos

( πn
2N

)
XL(n)

(5.3)

The original DCT algorithm with length N (X(n)) can be approximately computed by

using DCT (XL(n)) of length only N/2, which reduces the complexity of the algorithm

by half. Moreover, this approximation based on subband decomposition can be used

repeatedly to achieve N/4 subband-approximate DCT and narrower subband DCTs. To

maintain an acceptable quality of results, N/2 subband-approximate DCT was applied

here.

In the proposed DCT-based approximate communication scheme, xL(k) is first com-

puted based on the original sequence x(k). The fast recursive DCT with piecewise-

constant approximation described in Section 5.3.2 is then used to compute XL(n). Fi-

nally, X(n) can be obtained based on Equation (5.3). Moreover, to reduce the compu-

tational complexity of this process, the piecewise-constant approximation is applied to

item 2cos(πn/2N), as described in Section 5.3.2.

5.3.2 Fast recursive DCT with piecewise-constant approximation

To compute XL(n) efficiently as described in Section 5.3.1, a fast recursive DCT with

piecewise-constant approximation scheme is proposed here.

While not computing the DCT exactly, approximations of it can provide meaningful

estimations at low complexity to reduce the time overhead. Different techniques of

DCT approximations have been considered, such as the integer DCT [94] [95], signed
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DCT [96], and rounded DCT [97] [98]. The approximate DCT transform matrix needs

to be computed and stored in advance for them. When they are applied to a small

length of the DCT, e.g., eight-point DCT, the size of the matrix occupies a negligibly

small amount of space. However, the fast approximate DCT for the long message is

required because nearly no time can be saved by compressing a small message for MPI

communication. Thus, the threshold to apply compression here was set to 4 KB, as was

used in [60]. Moreover, the lengths of the messages are likely not the same, so that it is

hard to prepare the DCT transform matrix for these various lengths in advance. A fast

recursive DCT compression algorithm combined with piecewise-constant approximation

is proposed to speed-up the DCT process with a small space overhead, especially for

long DCT transformations.

The recursive DCT algorithm [99] is used as basis for our proposed scheme. It is a fast

1D exact DCT algorithm that uses fewer arithmetic operations than the conventional

DCT. The recursive DCT provides stable generalization for longer DCTs and a simple

format of the transformation compared with other fast DCT algorithms [100] [101]. In

the recursive DCT algorithm [99], the DCT coefficients can be divided into even and

odd parts, for n from 0 to N/2− 1,

X(2n) = G(n) (5.4)

X(2n+ 1) = H(n)−X(2n− 1), (X(1) = H(0)/2) (5.5)

where G(n) and H(n) are the DCT coefficients of g(k) and h(k), respectively. For k

from 0 to N/2− 1, g(k) and h(k) are defined as

g(k) = x(k) + x(N − 1− k) (5.6)

h(k) = q(k)× (x(k)− x(N − 1− k)) (5.7)

where q(k) is defined as

q(k) = 2cos

(
(2k + 1)π

2N

)
(5.8)

The computation of the DCT coefficients is now decomposed into two half-length DCT

computations.

Fig. 5.3 shows the process of the recursive DCT algorithm. The left part of the

figure represents the sequence in a different recursive call and the right part represents
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the DCT coefficients of the sequence on the same line. The input to the algorithm

is x(k) and the output is X(n). As shown in Fig. 5.3, the half-length sequences g(k)

and h(k) are first computed based on the original sequence x(k). This process can be

further divided until the length of the sequence reaches one, shown as the last line in

the left part of Fig. 5.3. Based on the definition of the DCT in Equation (5.2), the DCT

coefficient is equal to the original value of the sequence if the sequence contains only

one point. Therefore, the DCT coefficients of all one-point sequences in the last line

are available. Based on Equations (5.4) (5.5), the DCT coefficients can be computed

recursively from bottom to top until the target X(n) with length N is reached. In

this process, we assume that the length of the input sequence is always a power of two

number. Otherwise, zero padding is applied at the end of the message.

Figure 5.3: Process of the recursive DCT algorithm.

In the recursive DCT algorithm, the calculation of h(k) (including q(k)) requires

multiplication, which takes the most time in the algorithm [99]. The target of our scheme

is to replace the multiplication operations by bit operations and additions/subtractions

to reduce the compression overhead.

Piecewise-constant approximation can be applied to q(k) defined in Equations (5.8)

to achieve null multiplicative complexity in the computation of q(k). We first analyze

a simple format of q(k) as cos(απ) with range of α from 0 to 0.5, as shown by the blue

line in Fig. 5.4. In this example, the outputs of the function can be only 1, 1/2, and

0 after piecewise-constant approximation, as shown by the red line in Fig. 5.4. The

boundaries of the interval are th1 and th2, and can be computed by the middle-point

values 3/4 and 1/4. Because this is a monotonic function for this range of α, we can

get the approximate output based on the value of α.
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Figure 5.4: Applying piecewise-constant approximation to a cosine function.

Similarly, we can easily know the output of q(k) after piecewise-constant approxi-

mation by checking only the value of k. Let α = (2k + 1)/(2N), and we know that k

ranges from 0 to N/2−1. The threshold values of α, th1, and th2, are easy to compute,

and those of k can be computed based on the relation k = α×N − 0.5.

Furthermore, we can eliminate the multiplication during the process by using α to

compute the threshold of k based on the relation k = α × N − 0.5. The threshold is

approximated by dyadic values because they can be implemented by bit operations and

additions/subtractions. For example, we can compute th1 as 0.23 in Fig. 5.4, and it can

be approximately represented as 1/4− 1/32 + 1/128, where divisions by a power of two

numbers can be also performed by bit operations.

We use more pieces for the output value of the cosine function to generate more

accurate results. The possible output values are 0, 1/16, 2/16, ... , 15/16, and 1. Their

thresholds of α, the corresponding approximate versions, and their absolute differences

are listed as α Thr., Approx., and Diff columns, respectively, in Table 5.2.

Table 5.2: Configuration of the approximate threshold format.

α Thr. Approx. Diff α Thr. Approx. Diff

0.0798 1
16 + 1

64 0.0017 0.3447 1
2 −

1
8 −

1
32 0.0010

0.1389 1
8 + 1

64 0.0017 0.3668 1
2 −

1
8 −

1
128 0.0004

0.1803 1
4 −

1
16 −

1
128 0.0007 0.3883 1

2 −
1
8 + 1

64 0.0023
0.2146 1

4 −
1
32 −

1
128 0.0036 0.4093 1

2 −
1
8 + 1

32 0.0030
0.2447 1

4 −
1

128 0.0025 0.4298 1
2 −

1
16 −

1
128 0.0001

0.2721 1
4 + 1

32 −
1

128 0.0013 0.4501 1
2 −

1
16 + 1

64 0.0031
0.2976 1

4 + 1
16 −

1
64 0.0008 0.4701 1

2 −
1
32 0.0014

0.3217 1
4 + 1

16 + 1
128 0.0014 0.4901 1

2 −
1

128 0.0021

Given the piecewise-constant values of q(k), h(k) can also achieve null multiplicative



73

complexity because one of h(k)’s multipliers (q(k)) can be represented using bit oper-

ations. As mentioned above, the possible output values of q(k) here are 0, 2 × 1/16,

2×2/16, ... , 2×15/16, and 2. They can all be represented by a set of dyadic values as 0,

1/8, 1/4, ... , 2−1/8, and 2. Considering that multiplication by a power of two numbers

can be performed by bit operations, the multiplication in h(k) can be eliminated. The

same approximate version of the thresholds listed in Table 5.2 can be applied to item

2cos(πn/2N) of Equation (5.3) in the subband decomposition process.

Table 5.3 shows the difference between the conventional DCT and our proposed

DCT scheme based on the total time needed for the compression and decompression

processes. The results are the average values of the time overhead in the FE application

with various input sizes. The time increased for larger input sizes, which generated

longer messages. Moreover, the proposed DCT reduced the time needed substantially

compared with the conventional DCT.

Table 5.3: Reduction in the time needed for compression between the conventional DCT
and the proposed scheme.

Size 2003 3003 4003 4503 5003 5503

Speedup 101.18 239.06 350.70 563.74 675.85 571.12

For all applications except for that of the BP, the proposed DCT scheme maintained

the good energy compaction characteristics of the DCT. Fig. 5.5 shows the comparison of

energy compaction for conventional exact DCT and the proposed DCT schemes with FE

application and BP application. The x-axis and y-axis are the same as in Fig. 5.1, and

represent the number of coefficients and the energy of the message, respectively. For FE

application, proposed scheme was prevented from reaching 100% signal energy mainly

because some high-frequency coefficients were discarded, as shown in Fig. 5.1(a). For

these error-resilient applications, the transmission of the exact message or maintaining

100% signal energy is not necessary. Other applications except for BP (Fig. 5.1(b))

show the similar trends.

5.3.3 Zero run-length coding (RLC)

As a consequence of the message, only a few coefficients are maintained after DCT

compression, and contain most of the energy of the message. The value of the remaining
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Figure 5.5: Comparison of message energy compaction between conventional exact DCT
and the proposed DCT schemes.

coefficients is set to zero, and there are a large number of consecutive zero coefficients in

a message. We exploit this by run-length coding the consecutive zeros to achieve high

compression efficiency, as shown in Fig. 5.6. We encode each non-zero coefficient by

pair first and the number of consecutive zeros preceding that coefficient, followed by the

coefficient itself. Consecutive zeros with a maximum run length of 255 are represented

using an eight-bit number. The non-zero coefficients and zero run-length values are

then arranged in two parts in the output message, a data part and a run-length part,

as shown in Fig. 5.6.

Figure 5.6: Example of the zero run-length scheme. The input message contains the
coefficients after DCT compression and the output message contains data and the zero
run-length parts.

5.4 Differential analysis of messages

For some applications, there are similarities among messages in the same node. For

example, in two consecutive iterations of the FE application, the changes in messages

to be transmitted to other nodes were not large. Therefore, most differences between
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Figure 5.7: Overview of the proposed strategy between sender node and receiver node.
The orange dashed lines and gray solid lines represent two methods of compression.

a given message and the previous message were small. Instead of transmitting the

entire message, the difference can be applied to compression and transmitted over the

network [102]. An overview of the proposed strategy is shown in Fig. 5.7 and the details

are given below.

This diagram can be divided into three parts: a sender node part that generates the

message and sends it, as shown in the yellow area; a receiver node part that demands

the message from the sender node, as shown in the green area; and the MPI that is the

interface used to transfer the message, represented by the red area in the middle.

For the sender side, the mean value range-based relative difference D is computed

based on the given message x and recorded data rd, defined as

D =
1
N

∑N
k=0 |x(k)− rd(k)|
xmax − xmin

where xmax and xmin are based on the given message x and N is its length. D is com-

pared with the threshold and determines the content to be compressed. The definition

of the recorded data rd is shown in the following paragraph.

For the transmission of the first message, there are no recorded data, and we can

directly set D to be higher than the threshold. The full message is compressed and

maintains high message energy to maintain high quality of the message. This message

updates the recorded data to be used as future message reference as shown in Fig. 5.7

using the dashed orange lines. For the next message in the following iteration, D is

computed. If D is lower than the threshold, which means that the recorded data can

be a good baseline for the given message, only the difference x − rd is compressed.

In this process, the requirement of message energy in compression is relaxed, which

allows for fewer coefficients to be transmitted over the network as shown in Fig. 5.7
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using the solid gray lines. An additional flag is used to indicate the content of the

compression. Therefore, based on differential analysis, the recorded data are updated

with high quality only in case of full message compression.

At the receiver, the message is first decompressed. A flag then indicates whether the

received message is a full message or only a difference message. If it is a full message,

it is used to update the recorded data and the receiving process concludes. Otherwise,

the reference in the recorded data needs to be added back to this difference data to get

the final message.

Once an application starts the process of differential analysis, we can count the

number of times the difference D is higher than the threshold. For the first several

iterations, if D is always higher than the threshold, we can use this as a criterion to

determine if an application has no similarities among messages. In later iterations, the

original message is directly compressed without any differential analysis.

5.5 Experimental results

We evaluated our DCT-based approximate communication scheme on a distributed

HP Linux cluster [103] with up to 360 nodes consisting of Intel Haswell E5-2680v3

processors and this system provided 711 Tflop/s of peak performance. Other lossy

compression-based approximate communication schemes that have been used in HPC-

related applications were also implemented for comparison. These state-of-the-art lossy

compression algorithms were SZ [62], ZFP [63], and SSEM [65]. In the implementation of

SSEM, quantization was applied to both low- and high-frequency bands instead of only

to the latter to achieve better compression efficiency. All lossy compression algorithms

were directly applied to OpenMPI implementation. The eight MPI-based error-resilient

applications—FE, LULESH, KNN, BP, Blur, Edge, Sweep3D, and Halo3D—described

in Section 5.1 were used to evaluate the impact of approximate communication on

performance. This section compares the reduction in total execution time induced by

our proposed scheme and the other schemes on the applications. The communication

time, which included compression overhead, was further analyzed. Finally, approximate

communication with differential analysis is evaluated for some applications.
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5.5.1 Speedup of total execution time

The goal of approximate communication is to reduce the total time needed to execute

an application. We evaluated the speedup of total execution time compared with that

in the non-compression scheme. It is defined as Tnoncomp/Tapp, where Tnoncomp is the

total execution time using the non-compression scheme, which does not feature compres-

sion and decompression processes. Tapp is the total execution time using approximate

communication.

Figure 5.8: The reduction in total execution time for varying number of processors.

Fig. 5.8 shows the reduction in execution time for varying number of processors.

The x-axis represents the different numbers of processors and the y-axis represents the

reduction in total execution time compared with the original non-compression scheme.

The various colored lines represent the results for different lossy compression schemes.

All approximate communication schemes with different lossy algorithms maintained the

same accuracy, the evaluation matrix for which is defined in Table 5.1. Specifically, the

relative residual norm of FE was 10−5; the mean relative difference of LULESH was less

than 10%; the accuracy of KNN and BP was 90%; the mean value range-based relative

difference between Sweep3D and Halo3D was no greater than 10%; and the SSIM of
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Blur and Edge, defined in Equation (4.3), was maintained at 0.9.

Our DCT-based approximate communication scheme outperformed all other lossy

compression schemes on most applications (except on the BP application), and achieved

a speedup as high as 6.5x compared with the original non-compression scheme. SSEM

was second best, and used the other commonly used transform-based method: wavelet

transformation. Details of the evaluation of our scheme are described in Sections 5.5.2

and Sections 5.5.3.

5.5.2 Communication and compression overhead

The compression-based approximate communication algorithm is intended to reduce the

overhead incurred by the time needed for communication. However, the compression

produced an overhead as well. Therefore, the target of the approximate communication

is then to reduce the overhead due to communication and compression. The proposed

scheme strikes a good balance between the overhead in time incurred due to compression

and a reduction in communication by substantially reducing the size of messages.

The execution times needed for communication and compression in all applications

are illustrated in Fig. 5.9. Each bar in the figure for each application represents a lossy

compression algorithm or non-compression scheme. It shows the communication and

compression overhead (including decompression time) in orange and gray, respectively.

All results were generated using 256 processors. The total execution time of an appli-

cation can be divided into computation time, communication time, and compression

overhead. For a given application, we maintained the same computation time for all

compression algorithms and the non-compression scheme for better comparison. All

schemes with different lossy algorithms maintained the same accuracy as described in

Section 5.5.1.

As shown in the results in Fig. 5.9, the bottleneck of ZFP and SZ was the large over-

head due to the time taken for compression. The communication time was positively

correlated with the length of the message. The compression ratio of the SSEM-based

approximate communication scheme was limited compared with other schemes. There-

fore, the reduction in communication in the SSEM scheme was not as substantial as in

the others. The low compression overhead and good compression ratio of the proposed

DCT-based approximate communication scheme helped it record the shortest execution
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Figure 5.9: The execution times for communication and compression for various lossy
compression algorithms on different applications.

time on most applications. On the BP application, the prediction-based compression

algorithm SZ delivered better performance than the other three transform-based com-

pression algorithms because of highly random messages in this application, as seen in

Fig. 5.1(d). It was challenging to compress this message in the frequency domain with

few coefficients.

5.5.3 Fraction of execution time used for communication

The large fraction of communication overhead in the total execution time limits the

scalability of parallel applications. Therefore, reducing the fraction of communication

is also an aspect we concerned for approximate communication.

The fraction of each part of the total execution time for all MPI applications is

shown in Fig. 5.10. The percentage-stacked column charts are used to represent the
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fraction of total execution time. The x-axis represents four scenarios with different

numbers of processors. For each scenario, the results of five schemes—our proposed

scheme, non-compression, SSEM, SZ, and ZFP—are listed from left to right. As shown

in Fig. 5.10, the fraction of communication increased in the non-compression scheme

as it used a large number of processors for all applications. Considering the results for

speedup given in Fig. 5.8, for applications with larger communication fractions, e.g.,

Edge, approximate communication achieved higher speedup with the same or even a

smaller reduction in communication.

Figure 5.10: The fraction of total execution time spent on computing, communicating,
and compressing as the number of processors was varied.
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Our scheme can significantly reduce computation time by reducing more time needed

for communication than the other lossy compression schemes. For Sweep3D with 256

processors, the percentage of total execution time devoted to communication decreased

from 59% to 23%, where this time included the computational overhead required to

compress the messages. Therefore, our DCT-based approximate communication scheme

can significantly reduce communication and effectively improve the scalability.

5.5.4 Approximate communication with differential analysis

As described in Section 5.4, differential analysis of messages can be used in some appli-

cations. In this section, finite element and image blur applications were used to evaluate

this strategy.

For FE application, Fig. 5.11 shows the total execution time for different values of

error tolerance based on the relative residual norm. In FE, the result became more

accurate with increasing number of iterations, but also took longer to execute. We

continued running the application and recorded the execution times for different relative

residual norms. The results were generated with 256 processors at an input size of

3003. When a large error can be tolerated, e.g. 10−5, the DCT-based approximate

communication reduced total execution time compared with that in the non-compression

scheme. However, the approximate communication lost its advantage once a strict

error tolerance was applied, e.g. 10−11. Moreover, because of the similarity among

the messages, the benefit in terms of reducing time is greater when using differential

analysis.

For Blur application, Fig. 5.12 shows the performance of the proposed scheme with

and without differential analysis based on SSIM and execution time. The size of the

original image was 11500×11500, and thus only part of the image is shown in Fig. 5.12.

The execution times of the proposed scheme with and without differential analysis were

maintained. The value of SSIM with differential analysis was higher and yielded results

of better quality. Therefore, the differential analysis strategy can be used in certain

applications.
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Figure 5.11: The total execution times for different requirements of the relative residual
norm for various compression schemes with FE application.

Figure 5.12: Visual output and execution time of DCT-based approximate communica-
tion scheme with and without differential analysis for Blur application.

5.6 Conclusion

In this chapter, we proposed a DCT-based approximate communication scheme to re-

duce communication overhead. The proposed compression scheme provides a better

balance between compression speed and compression ratio compared than state-of-the-

art lossy compression schemes for non-random message patterns, and can significantly

reduce communication time without a considerable loss in the quality of the result,

particularly for applications with large communication overhead.



Chapter 6

Conclusion

This thesis has developed novel techniques for the use of approximate memory, approxi-

mate storage, and approximate communication. By relaxing the need for a fully precise

result, an approximate strategy shows great promise for implementing energy-efficient

and error-tolerant systems. This thesis has reviewed several representative error-resilient

applications for evaluation and all of the strategies we proposed trade off accuracy of

results for gains in performance and efficiency for different components of the system.

For approximate memory repair mechanisms, we evaluated conventional redundant

repair schemes and proposed new nonuniform protection-based repair schemes. In this

thesis, our comprehensive models of the area and delay overheads of each approach are

listed. The tradeoff relation between area overhead and quality degradation is explored

under different error rates.

For approximate image data storage, adaptive-length coding of image data is pro-

posed in this thesis to replace the error-sensitive Huffman coding in JPEG compression.

ALC can overcome the error sensitivity of VLC with comparable compression efficiency.

Therefore, it can be used as a methodology for storing a compressed image in approxi-

mate storage.

For approximate communication in a parallel cluster, we presented a new DCT-

based approximate scheme by reducing the length of the messages in communication.

To develop the runtime compression of MPI message among nodes, low time overhead

of compression and decompression process are necessary. The proposed scheme in this

thesis provides a good balance between the speed of the compression process and the
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compression ratio compared with existing lossy compression schemes used in HPC ap-

plications.

In summary, in this thesis, we mainly focus on the new approximation techniques

that trade-off the accuracy of memory, storage, and communication for gains in efficiency

and performance in large-scale, high-capacity computing systems. The partial-repaired

memory scheme, error-resilient ALC scheme, and DCT-based approximate communi-

cation scheme are proposed in this thesis and enhance the performance of the system

while delivering adequate accuracy.
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