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Abstract

Data structured in the form of overlapping or non-overlapping sets are found in a variety
of domains, sometimes explicitly but often subtly. For example, teams, which are of
prime importance in industry and social science studies are sets of individuals; item sets
in pattern mining of customer transactions are sets, and for various types of analysis
in language studies a sentence can be considered as a set or bag of words. Although
building models and inference algorithms for structured data has been an essential task
in the fields of machine learning and statistics, research on set-like data remains less
explored. Relationships between pairs of elements can be modeled as edges in a graph.
However, for modeling relationships that involve all members of a set, hyperedges in
a Hypergraph are more natural representations. Hypergraphs are less known graph-
theoretic structure as compared to graphs. Because of this popularity graphs have been
employed prolifically to model data of all kinds. Little attention is given to the fact
that whether the data is naturally being generated as dyadic interactions or not. We
think that much data is even deliberately converted to a graph for the sake of fitting it
into a graph-based model and destroying the precious information present when it was
originally generated.

This thesis describes analyzing complex group structured data from domains like
social networks, customer transaction data, and general categorical data, via the lens
of Hypergraphs. To do so, we propose the Hypergraph Analytics Framework, under
which we shall be interested in three higher-level questions pertaining to the hypergraph
modeling. Firstly, how to model higher-order hypergraph information and what kind of
lower-order approximations are available or sufficient depending upon the problem at
hand. This question is addressed across the thesis as we employ different hypergraph
models contingent upon the problem at hand.

Secondly, we shall be interested in understanding what kind of inferences are pos-
sible over the hypergraph structure and what kind of probabilities can be learned. For
this, we shall be dissecting the problem of hypergraph inference into various hyperedge
prediction sub-problems and developing inference methods for each of them. We develop
inference methods for both cross-sectional analysis: when we ignore the time informa-
tion about group interactions into account, as well as longitudinal analysis: where we
leverage temporal data. We also develop separate methods for conducting inference over
observed and unobserved regions of the hypergraph structure. This variety of inference
mechanisms on hypergraph structure together constitute the first part of the thesis,
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which we refer to as the Spatial Analysis within our Hypergraph Analytics framework.
Lastly, we are interested in learning what kinds of compression algorithms are possi-

ble for hypergraphs and how effective these techniques are. Here we develop techniques
to compress the hypergraph topology to lower-dimensional latent space. We shall be
chiefly considering hyperedge compression or hyperedge embeddings. We examine two
different embedding approaches. First, is an algebraic approach which leverages leverage
the relationship between hypergraphs and symmetric higher-order tensors. Symmetric
tensor decomposition techniques are then developed to learn embeddings. Second, is
a neural networks based solution which employs auto-encoders regularized by hyper-
graph structure. Together, both these approaches constitute the second part of the
thesis, which we refer to as Spectral Analysis within the proposed Hypergraph Analyt-
ics framework.
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Chapter 1

Introduction

In group-structured data, we have multiple entities related by some form of group rela-

tion, where these groups or set relations can be overlapping or non-overlapping. Such

relationships occur far more frequently in the real world than has usually been studied

(Estrada & Rodriguez-Velazquez, 2005). A variety of domains involve this kind of data,

sometimes explicitly but often subtly. Most noticeable among them are social group

relationships. Rapid growth in the amount and richness of online interactions through

social networking sites such as Facebook and Twitter, from online multiplayer games like

World of Warcraft (Ahmed et al., 2011); and group communication tools such as Skype

and Google Docs, are producing group or team interaction data at an unprecedented

scale. Not to mention, collaboration data of scientific or software teams (Contractor,

2013) and e-mail data containing group communication logs (Klimt & Yang, 2004).

These examples include data on individual characteristics (profile), their connections

(social graph), and behavior (individual and interactions). Analysis of this data using

the latest computational techniques is the rapidly growing area of Computational Social

Science (Lazer et al., 2009).

There are other fields in which modeling relationships between a collection of entities

is crucial as well, and large group-structured datasets are available. Examples include

Natural Language Processing (Bengio & Bengio, 2000), Biology (Klamt et al., 2009a)
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Figure 1.1: Left (a) is a hyperedges representing a collaboration between three authors
and Right (b) we have three dyadic edges representing three different two person col-
laborations. Note the same three individuals are involved in both cases (a) and (b) but
these are two different scenarios.

and E-commerce (Deshpande & Karypis, 2004).

Although building models and inference algorithms for structured data has been

an important task in the fields of machine learning and statistics, research on group

or “set-like” data still remains less explored. Graph theory has been a powerful tool

to model relationships between entities and their properties, and its use for modeling

networks is well established across multiple disciplines. The standard approach has

been to consider dyadic interaction between pairs of vertices, leading to a ’simple graph’

(henceforth called a graph) model of a network of entities and their interactions. While

suitable for many purposes, we believe that a group of entities has an identity of its

own, and should be modeled as such, rather than as a collection of dyadic components.

We shall dwell into this argument in more detail in Section 1.2, but here we describe

the intuition using a simple example. For example, a group of academics A, B, and

C co-authoring a paper is not the same as three papers co-authored by A and B, B

and C, and A and C, respectively. Specifically, the latter fails to model the meeting of

minds of the three academics around an idea (see Figure 1.1). This example illustrates

that the right mathematical object for modeling group interactions is not a graph but

a hypergraph (Berge, 1976; 1984). A hypergraph can be defined as a tuple H = (V,E),
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where V is the set of entities called nodes or vertices in the network and E is the set

of subsets of V , called hyperedges, representing relations between one or more entities

(see Definition 12).

Hypergraphs are less known graph-theoretic structure as compared to graphs. Be-

cause of this popularity graphs have been employed prolifically to model data of all kinds.

Little attention is given to the fact that whether the data is being naturally generated

as dyadic interactions or not. We think that much data is even deliberately converted

to a graph for the sake of fitting it into a graph-based model and destroying the precious

higher-order interaction information present when it was initially generated. Recently,

with the rise of the deep learning era, algorithms catering to higher-order data, specif-

ically in computer vision and NLP, are now being introduced to research communities

that focus on graph-theoretic or algebraic algorithms, with Deep Learning being a uni-

versal language. With this confluence, the need to model higher-order is emerging in the

graph as well as algebraic communities in the form of hypergraphs and their algebraic

representation as tensors. Recent advances in machine learning have opened up avenues

to build models that can capture higher-order information in the structure and train

them using large amounts of data. Therefore, the realization of the presence of these

higher-order structures and the growing need to incorporate this structural information

into the analysis is increasingly important.

In this thesis, we put forth hypergraph based machine learning models while aiming

to capture the higher-order information contained within groups via the hypergraph

model. Together, with the growing need to predict future behavior based on an analysis

of the past, in several group-structured data oriented applications (as described in Sec-

tion 1.1), this creates an exciting opportunity for developing computational techniques

for hypergraph based predictive modeling.

In this chapter, we present the overall vision for the proposed thesis. Specifically, in

Section 1.1, we first describe a number of motivating applications where entities interact

in groups with each other in real-world settings. Next in Section 1.2 we provide an

overview of the major graph based models for groups, eventually leading to the concept
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of hypergraphs and why they are an attractive model for studying the properties of the

motivating applications. Finally, in Section 1.3, we describe the proposed framework

for analysis and prediction over large-scale evolving hypergraphs as well as the thesis

overview.

1.1 Motivating Applications for Hypergraph

Our research on hypergraph predictive modeling is motivated by several real-world appli-

cations that have complex multi-entity interactions. As compared to dyadic (pairwise)

interactions or relationships, groups of entities have more complex interactions, and

they often evolve in complex ways, as illustrated by the following application classes

and their representative examples.

Social networks and media:

The growing popularity of social networks, such as Twitter, is generating tremendous

amounts of data. There are 330 million monthly active users and the average exchange

of tweets per day is noted to be 340 million. Each user account is followed by a group of

several users, who receive any message posted by the user being followed. This following

relationship is dynamic and evolves over time, as the follower-followed relationships

change. Twitter is often used for viral marketing through the social network, where

predicting the information flow through these groups can help optimize the process. In

addition, identifying rumors and/or rumor spreaders can help control an undesirable

phenomenon. We show how Twitter information spread can be modeled as directed

hypergraphs.

Real-world team collaborations and interactions:

The digital era is opening up unprecedented opportunities for collaboration both in

academic network as well as in organizations. An increasing variety of social media-

social networking sites, group communication tools like Google Hangout, Skype, etc., is
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enabling individuals to team up in ways that would not otherwise be possible like join-

ing more teams, working in multiple teams in parallel (Mortensen et al., 2007), working

in distributed (Hinds & Mortensen, 2005) and more diversified (Daspit et al., 2013)

teams. How such self assembling teams and their network evolve over time affects their

productivity (Ancona & Caldwell, 1992) and innovation (Taylor & Greve, 2006) both.

Therefore, predicting the evolution of network of teams (hypergraph) and predicting

performance of these teams (hyperedges), is critical for both organizations as well as

funding agencies for academic research. There are several datasets that are commonly

used for studying such explicit collaborations: U.S. Patent Office (USPTO) collabora-

tion network (Subbian et al., 2013), DBLP (Tang et al., 2007a) and PubMed. At the

same time, there are implicit team interactions, such as referral networks. Consider

a physician referral network, where the patient is referred by a physician to another

for a specific medical reason. Often, these doctors collaborate in teams and under-

standing their team interactions could significantly minimize the overall referral costs

to the insurance company. Consider a scenario, where a team of doctors who form an

implicit team to resolve a particular patient’s medical situation, and where a subset of

them may be out-of-network resulting in significant costs to the insurance companies.

Understanding such subset behaviors in teams is an important problem in healthcare,

especially in the context of accountable care organizations (ACOs) and managed care.

Goal-oriented teamwork in a rapid-response setting:

Rapid-response teams, e.g. firefighters and police units, are long term stable groups

often lasting many years, and people develop deep social bonds. A common practice

activity is to self-organize into a team, e.g. ’action team’, and enter into a competi-

tion, either against other teams, or in a computer simulation. Such activities provide

the opportunity to achieve success, socialize, and improve skills - both individual and

collaborative. Thus, data collected from online team games serves as a large-scale ex-

perimental platform to understand both individual and team interactions.
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Massive multi-player online games and virtual worlds:

Massively multi-player online (MMO) games have shown signicant promise as a crucible

for studying behavioral sciences at a ne granularity. We describe one such game, EVE

Online, as an example. EVE has space-based combat involving ships con-gured with

equipment allowing them to damage, tank, or heal. EVE has an open, sandbox style

of play emphasizing player-versus-player (PvP) combat rather than end-game player-

versus-environment (PvE). The social organization of players in EVE is complex. At a

functional level, EVE contains eets consist-ing of two to several dozen players engaged

in combat or mining tasks. In EVE, players self-assemble into player corporations

for more complex purposes such as PvP combat, claiming sovereignty and con-trol

over remote star systems, and developing supply chains to manufacture complex and

highly protable products. However, player corporations can also ally themselves with

other player corporations and create supra-corporation organizations called alliances.

Alliances may exist to police shared space, protect man-ufacturing centers, or perform

other collective actions. In addition to alliances, corporations can also set standings

for other corporations to indicate the extent to which their members can be trusted or

should be avoided. Thus, EVE provides a very rich domain in which to analyze and

model corporations and alliances as an ecosystem of teams.

Capturing higher-order relations in Knowledge Graphs:

Knowledge graphs (KGs) are multi-relational graphs such as Freebase (Bollacker et al.,

2008), Google Knowledge Graph (goo), ConceptNet (Speer & Havasi, 2012) or Yago

(Suchanek et al., 2007), where each entity of the KG represents an abstract concept or

concrete entity of the world and relationships are predicates that represent facts involv-

ing two of them. These are directed graphs whose nodes correspond to entities and edges

are in the form of triples (head, label, tail), each of which indicates that there exists a

relationship of name label between the entities head and tail. Relationships, however,

can be higher-order or more complex like nested, not necessarily binary. For example,
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“Jacob flew from London to Seattle.” can be modeled in a KG as two independent

binary triples (Jacob, flew from, London) and (Jacob, flew to, Seattle). Instead, a more

informative way would be to model it as a single 4-ary tuple (Jacob, flew, from London,

to Seattle). Need for retention of this higher order information has been realized both

in knowledge extraction (Christensen et al., 2011; Mausam, 2016) and NLP (Kalchbren-

ner et al., 2014) communities. Further, methods to extract such n-ary tuples already

exist (Christensen et al., 2011). We believe hyperedges are an excellent mechanism to

model such higher order relations. Consider the sentence “Early scientists believed that

earth is the center of the universe”, from which we extract the nested relation <Early

scientists, believed,<earth, is the center of, the universe>>. This can be modeled as

two nested directed hyperedges: one with earth as tail node and universe as head node

with is the center of as the type or attribute of the hyperedge; and the second being

a believed -type hyperedge with Early scientists as tail node and earth and universe in

the head set. Such Knowledge Hypergraphs (KHG) can undergo the purification and

completion processes via embedding or link prediction techniques similar to those of

KG (Bordes et al., 2013; Trouillon et al., 2017; Yang et al., 2014), except that in case

of KHG we make use of hyperedge embeddings for predictions. As described in Section

3, these techniques form the core of this proposal.

Customer analysis and recommender systems:

We live in the era of online shopping, which generates massive data about millions of

customers and thousands of products from a large number of categories. For example,

(www.alibaba.com), the world’s largest retailer orchestrated the world’s biggest online

shopping day, with 500 million shoppers within 24 hours, where its own sales reaching

over US$ 38 billion on 11th November, 2019 (ali). Customer behavior is captured by

the baskets (sets) of items bought together. Analyzing customer behavior was one of

the first motivating applications for the field of frequent pattern mining (Agrawal et al.,

1993). Sets of frequently bought items have a higher-order correlation which can be
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leveraged for recommending items to customers while shopping online (Christakopoulou

& Karypis, 2014; Deshpande & Karypis, 2004). From a hypergraph modeling standpoint

– these highly-correlated itemsets can be modeled as hyperedges and the hypergraph

topology can be used as a regularization for the recommendation objective function.

Not only can these higher-order correlations help better recommend individual items

for a given user, but can also be employed for recommending a whole group of items

(slate) – also called as slate recommendation (Ie et al., 2019a;b) within recommendation

literature. Slate recommendation can be used for example, for recommendation of what

to wear for a party, the system can recommend entire sets of items, like a shirt-pant

pair with a jacket along with matching shoes and belt; and there can be multiple such

styling options offered to the customer given his budget. From a hypergraph perspective

these sets of items or slate is nothing but a hyperedge within the hypergraph of item

sets. Further, by assigning probabilities to hyperedges we are essentially solving the

slate recommendation problem. Another related problem is to assign probabilities to

association rules between item sets, as each association rule is a directed hyperedge.

Lastly, predicting how purchase patterns will evolve over time can be naturally modeled

as one of predicting hypergraph evolution.

Text Processing:

Increasing use of Internet has resulted in massive amount of online textual data. An-

alyzing this data is of prime importance to a variety of fields like Marketing: market

research, social media analysis, voice of customer; Business: competitive intelligence,

voice of employees, ; and others. Depending upon the task at hand, different text pro-

cessing techniques may incorporate the structural information in text. For certain tasks

we can consider a sentence or a paragraph as a set of words (hyperedge), rather than

a sequence of words. This is specially true for IR tasks that either require position

invariance with respect to the words or which do not depend on the specific ordering of

words. Such tasks include, but not limited to, Sentiment and Relational Classification
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of sentences, Topic Modeling and Topic Segmentation of a groups of sentences, and

Automatic Text Summarization. All of these are examples of predictive tasks that can

be undertaken using hypergraph as a model of text. Note that treating sentences as sets

of words loses the sequential information within a sentence, but the hypergraph (over-

lapping sets of words) topology as well as the information about sequence of sentences

(sequence of hyperedges) persist.

Biology:

Various kind of biological networks arise across various sub-disciplines as well as applied

field like medicine, bio-informatics, computational biology, etc. Understanding topolog-

ical properties of these networks is a key problem within these disciplines. Graphs

remain the most popular model choice for these networks. However, more often than

not, these networks are more complex than can be captured using graphs. A lot of these

networks have group structured relationships which can be more naturally modeled as

hypergraphs. For example the discipline of phylogenetics deals with studying phloge-

netic trees or networks (Avise, 2006). These networks, also called tree of life, define

relationships between various biological species depending on their common ancestry.

In such networks an ancestor specie relates a set of child species; this group of species

can be considered as a hyperedge and the entire phylogenetic network can be naturally

represented as a hypergraph (Baar et al., 2019). In these trees the parent nodes that are

mode near the leaf species, relate the leaves more strongly as compared to the parents

higher up in the tree. Such information can be encoded as hyperedge weights. See

section 1.2 for a mode detailed example of phylogenetic group data.

Another example are the Protein-protein Interaction (PPI) networks which capture

the physical interaction (transient or stable) between proteins. Proteins play a principle

roles in biological function, their interactions determine molecular and cellular mecha-

nisms, which control healthy and diseased states in organisms (Safari-Alighiarloo et al.,

2014). Knowledge gained from studying these networks can be translated into effective
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diagnostic and therapeutic strategies. However, the methodologies that are adopted,

like TAP (Gagneur et al., 2004; Gavin et al., 2002), to obtain these interactions often

output “protein complexes” which can have more than two interacting proteins. These

protein complexes – which are a set of proteins – can be model more effectively as

hyperedges and the PPI network as hypergraph (Fionda, 2019; Klamt et al., 2009b).

Further, cellular functions within organisms are a synergy of interactions between

various modules within cellular networks (Pereira-Leal et al., 2007). Like PPIs are an

example of cellular networks and protein complexes are modules within PPI. These

modules are dynamic self-assembling functional units that are constantly evolving and

interacting in both intra-modular as well as inter-modular manner (Levy et al., 2008;

Marsh & Teichmann, 2015). Therefore, understanding the evolution of these networks

is key in understanding the cellular functions. Also it is important for understanding

progression of diseases caused by evolution of incorrectly folded proteins for example.

Modeling these modules (like protein complex) as hyperedges and the cellular network

(like PPI network) as hypergraph, we can employ predictive hypergraph models to infer

evolution of these networks.

1.2 Modeling Network of Groups: Graph versus Hyper-

graph

These examples illustrate a broader picture of groups that takes their dynamic nature

into account and views them as part of a complex system of sets and entities operating

as an ecosystem. Groups in such systems have one or more of the following properties:

• The groups and their ecosystems are often large and complex, consisting of a large

number of entities, groups, and interactions. The groups often address highly

complex problems involving a large amount of diverse information.

• The groups interact with each other in a variety of ways, requiring interactions

beyond their core entities and necessitating external linkages to other groups and
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units. Thus groups often combine or link with other groups in coordinated be-

havior. Effects on groups in one part of the ecosystem bleed over onto other

groups.

• The groups evolve over time. Group membership shifts over time, and their bound-

aries may be ill-defined. Some groups may form for limited time and go out of

existence when their collaboration purpose is complete. Entities can move from

one group to another relatively fluidly.

In summary, group interactions involve subsets of entities which are usually inter-

connected and overlapping with one another, and a network perspective is particularly

useful for analyzing them. This leads to our central question: What is a good model

for this network of groups?

But, before we dive into elucidating this question, let us first attempt to abstract

out the different forms of group-structured data that are gathered from the various

real-world applications like the ones discussed in Section 1.1. Records of group interac-

tions can be available both sometimes implicitly otherwise explicitly, and at a various

temporal granularity. We divide the various forms of group data into three different

kinds:

• First, is the group event data and is in the form of logs of group interaction

events. More precisely, consider the set V = {1, 2, ..., n} of n entities and a set of

m groups G = {gi|i ∈ {1, ..,m}, gi ⊆ V }. We define group interaction logs as a set

of tuples L = {(gi, tj) : i ∈ {1, 2, ....m}, j ∈ {1, 2, ...., T}} where the tuple (gi, tj)

implies the group event when the entities of the ith group gi interacted at time tj .

Note that the same group gi can occur at several time instances, and also multiple

different groups can be active at the same time instance tj . Such group event

logs are found, for example, in research publication records containing various

groups of authors publishing different research articles (see Figure 1.2), or different

groups of items purchased as recorded in an item basket transaction database of

11
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some online e-commerce website. Note that such group event logs are not always

explicitly available; for example, in online gaming data (see Figure 1.3), often the

event logs maintained are those of individual player actions. But group events

can be extracted by, for example, looking at all the players that simultaneously

entered the same map at the same level within the game, and further, there might

be chat logs where this group was found communicating (Ahmed et al., 2011).

Another subtlety to mention is that often, the existence of a group is inferred. For

example, in the case of research publication records, what we observe is the record

of a publication tagged with a set of author names. From this record, we infer

or assume that this set of authors must have worked together in the past. And

these past interactions, in the end, culminated in this research publication. This

scenario is in contrast to online gaming data, where we are recording the minute

by minute details of the actions and interactions happening within a team. This

conclusion leads us to another remark that we can observe group events at varying

temporal granularity. In the case of online gaming teams, the granularity is of a

minute, whereas in the instance of research publication, we only observe the final

research outcome: the publication. Such granularity can, therefore, determine our

confidence in how closely is the data portraying the underlying group phenomena.

• Second, is the group relationship data which contains relationship information

between multiple entities. These relationships are often either derived from other

sources like from the group event data itself, which we just described. For example,

if we observe a specific subset of items that are found together in baskets of a large

number of users in an e-commerce website database, we can treat this subset as

a group relationship (see Figure 1.5). We can also associate a weight with this

relationship like the number or percentage of baskets that contain this subset.

These weights reflect the frequency of re-occurrence of a subset and, therefore,

can be used as a degree of belief or trust as to whether the given subset has

a group relationship in reality. Let us take another example: assume we have

14
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the records of individuals who checked-in at various restaurants in a city over a

few months or a year (see Figure 1.4). We can then apply frequent pattern

mining 1 to find out subsets of people who checked-in within a window of, let’s

say one hour, at any particular restaurant. If this set of people happens to be

seen together within a short window of an hour and at various restaurants over

a while, we can say with high certainty that this set of individuals is part of the

same social group in reality as well. The co-location frequency or weight, thus,

acts as a measure of belief.

Frequent patterns within a group event data, however, is not the only way group

relationships can be extracted. In several cases, we can derive both the relation-

ships as well as their weights via domain knowledge itself (see Figure 1.6). For

example, within the home decor domain, the set S1 ={bed, mattress, mattress-

protector}, from a utility perspective, represents a meaningful relationship as the

items in this set are complimentary and are likely to be purchased together. Also,

one can model the weight associated with this set using domain information. For

example, the weight in the case of the set S1 can be a function of the brands

of the three entities in it. Different consumer psychology theories might dictate

if people tend to buy the same brand bed as well as a mattress, or they might

incline for a variety of brands, with the most popular brand for each kind of item

in the set. The more a group like S1 tends to satisfy a particular cognitive theory,

the more weight the weight function should output. Thus, a domain knowledge

derived weight function can model the importance of a relationship. We just gave

an example of an item basket, but such domain-based predetermined relations

and their importance exist in several other domains. Like related set of biological

species based on common ancestry is a key topic in phylogeny (Avise, 2006; Baar

et al., 2019), a sub-discipline within biology (see Figure 1.6); or a related set of

proteins in bio-informatics called protein complexes (Klamt et al., 2009b); or in-

1Remark, extracting frequent patterns (or frequently reoccurring subsets) from a transaction
database, is the central problem studied in a subarea of computer science called frequent pattern mining.
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Figure 1.6: Left are a few example set of products which are related utility or consumer
psychology wise: bed set, an entire women attire including accessories and a set of
pantry items shopped along with pasta. Right is an example from phylogeny in biology.
A phylogenetic network or tree shows relationship between various species based on
genetic or physical characteristics. These trees help us understand how new species
form from common ancestral species. At top right is the entire tree or network. We
zoom in on a small sub-tree shown in the rectangle box. What this particular tree tells
us is that specie BM and specie BS are more closely related to each other than either
specie is to specie RL. The reason is that specie BM and specia BS share a more recent
common ancestor than BM and BS do with specie RL. An ancestor node, therefore,
corresponds to a group relationship, which we extract as a group, as shown in the
bottom right.
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Figure 1.7: This figure illustrates a few example of social category data. Left: Shows
a list of researchers with “data mining” as their research interest. Image displays the
top-10 results from Google Scholar 2 which maintains indexes of researchers with respect
to research categories. Unlike research teams which are highly interactive groups, these
set of researchers are simply interest based groups which might be interacting at all.
Middle: Shows a list of followers of a famous American DJ artist “Kate Simko” on the
music platform called Sound Cloud 3. Again these set of followers might be unaware of
each other but still they are tagged within Kate Simko’s category. Right: Shows a how
a popular or magnetic profile on the famous follow-followee platform called Twitter 4,
attracts thousands or millions of followers. All such set of followers of a popular profile
is an example of category based group.

teracting set of molecules in a macromolecular assembly which is a key component

of supramolecular chemistry (Ariga et al., 2008; Lehn, 1990).

• The third is category data, where we aggregate entities into sets if they have

the same attribute values for one or more essential attributes. A set, in this case,

represents a category and entities present in it are by virtue of their attributes

alone. However, these entities might not be interacting with each other as such.

Notice, this is in contrast with the group relationship data as well as group event

data where a group is derived or observed, primarily, as a meaningful interaction

between a set of entities. For example, a community of all the researchers who

publish at a particular publication venue or belong to a particular sub-discipline
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Figure 1.8: This figure exhibits some examples of category data from the retail prod-
ucts domain. Left: Depicts a few bag images associated with the category “women’s
handbags”. These bags form a group simply because of their association with product
category: women’s handbag. This group of bags is hence, a category group. Middle: A
category group of the brands who produce leather products. Right: Another instance of
category group depicting images of a set of shoes belonging to category: Men’s Shoes.

Figure 1.9: This figure displays a few example species of yeast out of the 1500 or more
known species. All these hundreds of species together form a category group as they are
simply belonging to category: yeast. Apart from the knowledge of this category we do
not know about any meaningful relationship between these yeast species. However, if
we try to bring in information from for example phylogenetic tree between these species,
in that case we have more actual relationship based on ancestry between these species
and we rather treat it as a group relationship data and not category data.
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represents a category (see Figure 1.7). Researchers in such a community might not

be interacting with each other together for a joint group task such as publication.

Such a community is different from research teams working on a publication while

interacting together over some time. Other social community examples are a set of

users who have subscribed to a particular online podcast channel or who follow an

accessible Twitter 5 account. The group of all the metals in the periodic table, or

the various species of yeast (see Figure 1.9) and the product category of women’s

handbags on an e-commerce website (like Amazon 6), can be other examples (see

Figure 1.8).

Remark, although we have provided the above categorization of group data, we

believe that a complete analysis and taxonomy of such data is a significant research

direction that requires an independent research effort. We, therefore, consider building a

general taxonomy for group-structured data, as out of the scope of this thesis. However,

for the specific domain of sociology, we do have developed a taxonomy for social groups

and their hypergraphs. For interested readers we point to Section 2.5 of Chapter 2.

For this thesis and the discussions within it, however, we find the above categorization

suffice enough.

Within the three kinds of group data: group event data, group relationship data and

category data, which we described above, we observe the following different abstractions

for groups.

Definition 1 (Static Groups) Consider a finite set V = {1, 2, ..., n} of n entities.

We call a subset gi ⊆ V of this set a group. We consider and a finite set of m groups

G = {gi|i ∈ {1, ..,m}, gi ⊆ V }. Then the tuple (G,V ) together define a collection of

static groups.

Definition 2 (Weighted Groups) Consider a finite set V = {1, 2, ..., n} of n entities.

We call a subset gi ⊆ V of this set a group. We consider and a finite set of m groups

5www.twitter.com
6www.amazon.com
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G = {gi|i ∈ {1, ..,m}, gi ⊆ V }. We also associate a weight wi for each group gi and a

weight function w(x), ∀x ∈ G, such that wi = w(gi). Then the tuple (G,V,w), define a

collection of weighted groups.

Definition 3 (Temporal Groups) Consider a finite set V = {1, 2, ..., n} of n entities.

We call a subset gi ⊆ V , a group. We consider a finite set of m groups G = {gi|i ∈

{1, ..,m}, gi ⊆ V }. We also consider the temporal activity pattern these groups. We

define a group interaction event when the entities of the ith group gi interacted at time

tj. In terse, we also refer to it as group gi was active at time tj. We then define group

interaction logs as a set of tuples L = {(gi, tj) : i ∈ {1, 2, ....m}, j ∈ {1, 2, ...., T}} where

the tuple (gi, tj) implies the group activity or interaction event. Then the tuple (G,V, L)

together define a collection of temporal groups.

We use the adjective “static” to differentiate static groups from temporal groups,

which are “dynamic” in the sense that their specification includes time (or temporal) in-

formation. Also, notice that weighted groups generalize static groups by adding weights

to each group. Similarly, temporal groups also generalize static groups by adding tem-

poral information about group activity. We can, therefore, also have weighted tem-

poral groups, which generalize all the three above, and given by the specification:

(G,V,w, L).

We think that these four group abstractions are quite appropriately suited for mod-

eling the three types of group data we had described before. For example, the static

groups can easily model the category data, the weighted groups are sufficiently appro-

priate for capturing the weighted group relationship data, and the temporal or weighted

temporal groups are reasonably general and suitable for modeling the dynamic group

event data.

These group abstractions, therefore, clearly define the various group relationship

objects we aim to study and model. We now jump back to answering our central

question: What is a good model for this network of group relationships? As noted

before, Network-based models that employ Graph-theoretic representations have been
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Figure 1.10: Leftmost is a collection of static groups (G,V ) where we have a set of
five entities V = {1, 2, 3, 4, 5} and a collection of three groups: G = {g1, g2, g3} where
g1 = (1, 2, 3, 4), g2 = (1, 2), g3 = (3, 4, 5). We then clique expand each group by making
pairwise link between each pair of entities in that group. All the sets of pairwise links
obtained from each group are then aggregated (i.e. taking union). Each pairwise link
in the aggregate set is treated as a dyadic edge and a simple dyadic graph network, Ng,
is obtained. The entire process of converting static group data, (G,V ), to the clique-
expanded graph, Ng, is called the process of clique expansion. The rightmost figure
highlights this process by indicating which group resulted into which clique within the
final graph.

used, prolifically across disciplines, to capture relationships between entities. We will,

therefore, now consider adopting various objects from graph theory to model the group

abstractions.

Let us consider a collection of static groups (G,V ) where we have a set of five

entities V = {1, 2, 3, 4, 5} and a collection of three groups: G = {g1, g2, g3} where

g1 = (1, 2, 3, 4), g2 = (1, 2), g3 = (3, 4, 5), between them (shown at the leftmost in

Figure 1.10). One chain of thought could be to link each pair of entities if they are

part of one or more groups. Accordingly, in the case of group g1, we connect each

of the six pairs of entities with a link. If we apply the same process to the rest of

the groups and aggregate all the pairwise links, we end up in the network structure

as shown at the rightmost in Figure 1.10. This resulting network is nothing but a

simple undirected graph consisting of the vertex set V and a set of dyadic edges Eg =

{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)}. Each vi ∈ V represents an entity in

the network and each edge ej ∈ E represents a relation between two entities (vertices).
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More formally we define a graph as follows.

Definition 4 Dyadic Graph (or Simple Graph): Formally, an undirected simple

graph can be defined as a tuple Nsg = (V,Eg), where V = {vi}ni=1 is the set of vertices

(vi) and Eg = {ej}mj=1 is the set of dyadic edges ej ⊆ V such that the their cardinality

is two: |ej | = 2 (Berge, 1976).

The entire transition from the set of overlapping groups: (G,V ) (shown leftmost in

Figure 1.1), to the dyadic graph network: Nsg = (V,Eg) (rightmost in Figure 1.1), is

referred to as the process of clique expansion (Agarwal et al., 2006a; Zien et al., 1999).

We formally define, both a clique as well as clique expansion as follows:

Definition 5 Clique: A clique, C, in an undirected graph Nsg = (V,Eg) is a subset of

the vertices, C ⊆ V , such that every two distinct vertices are adjacent. This is equivalent

to the condition that the induced subgraph of Nsg induced by C is a complete graph.

Definition 6 Clique Expansion: Consider a collection of static groups, (G,V ). The

clique expansion algorithm constructs a simple graph Nc = (V,Ec) from this collection of

static groups G(V,E) by replacing each set gi ∈ G with an edge for each pair of vertices

in the set: Ec = {(p, q) : p, q ∈ gi, gi ∈ G}.

This concept of a complete subgraph or “clique” was first used in mathematical

psychology to graph theoretically model a group or clique of people (Luce & Perry,

1949). In our example we model each set g1, g2 and g3, as highlighted in the central

figure in figure 1.10, as a clique and perform a clique expansion of each set. Now let’s

carefully analyze the clique-expanded graph, Nc, in figure 1.1, that we arrive after clique

expansion. We ask ourselves the question: “what all can this graph tell us about the

original collection of static groups from which it is derived”? It is easy to observe

that each edge in the derived graph indicates if the connecting vertices (entities) were

present in at least one group in G. Thus, the only information retained in the graph is

the co-occurrence information viz. if a pair of entities occurred together in any group
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Figure 1.11: This figure gives example of a few different static group datasets that can
result in the same graph after clique expansion. Thus, highlighting the fact that there
is loss of information in the clique expansion process. A lot of group-level information
is lost in transition to a simple dyadic graph.

or not. Any information beyond pairwise interaction is not preserved. Alternatively,

for example, by observing the set of edges (3, 4), (4, 5) and (3, 5) it isn’t straightforward

to tell if these three pairs were three different dyadic groups in the G or were they just

a single group (3, 4, 5). Therefore, there can be several different collections of static

groups that could result in the same graph after clique expansion. This is demonstrated

in Figure 1.11.

But can graphs do better than this? Note, in our example, group entities 1 and 2

have co-occurred twice: once as a part of the group (1, 2, 3, 4) and also independently as

the group (1, 2). We can, therefore, think to incorporate such co-occurrence frequency

information while building the graph. For this purpose, we can use weighted graphs

instead of a simple graph where we can associate a weight with each edge. Weighted
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graphs are defined as follows.

Definition 7 Weighted Dyadic Graph (or Weighted Graph): For a given simple

graph Ng = (V,Eg), we can define an undirected weighted graph as Nwg = (V,Eg, w
g),

where w if a weight function that assigns a scalar weight wi with each edge ei ∈ Eg viz.

wi = wg(ei).

A simple way to incorporate frequency is to assign weight wg(e) of an edge e = (p, q)

as the number of groups in G containing both vertices p and q. This amounts to

the weight function: wg(e) = |{g ∈ G : e ⊆ g}| (see Rodriguez (2002; 2003)). By

capturing this extra information about frequency, the weighted graphs turn out to be

more informative than the simple graphs. Note that this extra information concerning

an edge is not limited to just frequency. In general, the weight can be any function.

Usually, it is some function of the weights associated with groups, like those available

in the weighted group data (see definition 2). Formally, the dyadic edge weights are:

wg(e) = f({w(g) : g ∈ G, e ⊆ g}) where (G,V,w) is the collection of weighted groups.

Various functions f have been employed in the past to convert group data to weighted

graphs. We refer readers to Agarwal et al. (2006a) and the references therein, for

detailed examples of such functions.

We just accomplished two different networks by considering the “entities in group

data as vertices” of simple as well as weighted graphs. We can also consider treating,

not just entities, but also the groups as vertices. Let us again consider our example

collection of static groups (G,V ) where we have a set of five entities V = {1, 2, 3, 4, 5}

and a collection of three groups: G = {g1, g2, g3} where g1 = (1, 2, 3, 4), g2 = (1, 2), g3 =

(3, 4, 5), between them (see Figure 1.12). We treat the three groups as three vertices

and denote this second group-vertex set as Vg = {vg1 , vg2 , vg3}. We then link the entity

vertices in the entity-vertex set V to the group vertices in group-vertex set Vg. We sim-

ply connect an entity vertex to a group vertex if that entity is a part of that group. This

resulting network is nothing but a bipartite graph consisting of a joint vertex set V
⋃
Vg

and the dyadic edges Eb = {(1, vg1), (2, vg1), (3, vg1), (4, vg1), (1, vg2), (2, vg2), (3, vg3),
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Figure 1.12: Leftmost is a collection of static groups (G,V ) where we have a set of five
entities V = {1, 2, 3, 4, 5} and a collection of three groups: G = {g1, g2, g3} where g1 =
(1, 2, 3, 4), g2 = (1, 2), g3 = (3, 4, 5). Each entity is then treated as a vertex, so V becomes
the first vertex set. Also, the three groups as three vertices and we denote this second
group-vertex set as Vg = {vg1 , vg2 , vg3}. We then link the entity vertices in the entity-
vertex set V to the group vertices in group-vertex set Vg. We simply connect an entity
vertex to a group vertex if that entity is a part of that group. This resulting network
is nothing but a bipartite graph consisting of a joint vertex set V

⋃
Vg and the dyadic

edges: Eb = {(1, vg1), (2, vg1), (3, vg1), (4, vg1), (1, vg2), (2, vg2), (3, vg3), (4, vg3), (5, vg3)}.
The entire process of converting static group data, (G,V ), to the star-expanded bipartite
graph, Nb, is called the process of star expansion.
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(4, vg3), (5, vg3)}. More formally we define a bipartite graph as follows:

Definition 8 Bipartite Graph: Formally, an undirected bipartite graph can be defined

as a tuple Nb = (V,Eb). Here, V = (V1∪V2) is the union of two vertex partitions V1 ⊂ V

and V2 = (V \ V1), and Eb = {ej = (uj , vj)}mbj=1 is a set of mb dyadic edges such that

uj ∈ V1 and vj ∈ V2.

This concept of conversion of group data to a bipartite graph is referred as the star

expansion (Zien et al., 1999). For purpose of clarity we formally define this expansion

as follows.

Definition 9 Star Expansion: The star expansion algorithm constructs a bipartite

graph Nb = (Vb, Eb) from a collection of static groups (G,V ). Each entity in set V is

treated as a vertex and therefore, V becomes the first vertex set. Secondly, this algorithm

considers each group gi ∈ G as a vertex vgi as well, resulting into a second vertex set:

Vg = {vgj : gj ∈ G}, such that the complete vertex set is Vb = (V ∪ Vg). Eb is the set

of mb dyadic edges containing an edge from each entity vertex vi ∈ V to a group vertex

vgj ∈ Vg, if vj is an element of group gj ∈ G: Eb = {(vi, vgj ) : vi ∈ V, vgj ∈ Vg, vi ∈ gj}.

Traditionally, such bipartite network models, for example, have been used under

the name affiliation networks, to model relationship between actors or individuals to

events/collectives (like clubs or committees) they have membership in (Wasserman &

Faust, 1994). Bipartite network are also referred to as 2-mode networks, to highlight

that they have two kind of vertices as compared to simple graphs which are, in contrast,

called the 1-mode networks. We now ask ourselves the question: what does a 2-mode or

bipartite graph tells us about the collection static groups from which it is derived, and

how does it compare with the 1-mode simple graph? As we can observe that we have

one group-type vertex dedicated to represent a group and we connect this to each entity-

type vertex representing the entities within this group. This link therefore, models the

relationship of a group to an entity which can have a domain dependent interpretation.

For example in social groups, this link reflects the membership of a member or individual

28



Figure 1.13: Leftmost is a collection of static groups (G,V ) where we have a set of five
entities V = {1, 2, 3, 4, 5} and a collection of three groups: G = {g1, g2, g3} where g1 =
(1, 2, 3, 4), g2 = (1, 2), g3 = (3, 4, 5). Each entity is then treated as a vertex, so V becomes
the first vertex set. Also, the three groups as three vertices and we denote this second
group-vertex set as Vg = {vg1 , vg2 , vg3}. We then link the entity vertices in the entity-
vertex set V to the group vertices in group-vertex set Vg. We simply connect an entity
vertex to a group vertex if that entity is a part of that group. This resulting network is
nothing but a bipartite graph consisting of a joint vertex set V

⋃
Vg and the dyadic

edges Eb = {(1, vg1), (2, vg1), (3, vg1), (4, vg1), (1, vg2), (2, vg2), (3, vg3), (4, vg3), (5, vg3)}.
The entire process of converting static group data, (G,V ), to the star-expanded bi-
partite graph, Nb, is called the process of star expansion.

in a particular group or community. In contrast to simple graphs which model how two

entities are related to each other across various groups, bipartite model captures the

information about how a given entity is related to a particular group, of which it is a

member of, by treating that group as an entity. For example they can be employed to

model the affinity of a member towards its team. Also, note that a simple graph edge

can encode information about “multiple” groups but a bipartite edge has information

pertaining to only a “single” group.

In a similar fashion we can model interaction between groups by treating each group

as a vertex. Let us again consider a collection of static groups (G,V ) where we have a
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set of five entities V = {1, 2, 3, 4, 5} and a collection of three groups: G = {g1, g2, g3}

where g1 = (1, 2, 3, 4), g2 = (1, 2), g3 = (3, 4, 5), between them (shown at the leftmost

in Figure 1.13). We treat the three groups as three vertices and denote this as Vg =

{vg1 , vg2 , vg3}. We then simply construct an edge any two group vertices in group-vertex

set Vg if the corresponding groups have at least on entity in common. This resulting

network is nothing but an intersection (or line) graph of the family of sets defined by

the collection of static groups. This network is the line graph defined by the vertex

set Vg and the dyadic edges El = {(vg1 , vg2), (vg1 , vg3)}. More formally we define an

intersection or line graph as follows:

Definition 10 Intersection or Line Graph: Let F = {S1, ..., Sn} be a family of

finite sets. The intersection or line graph, denoted L(F), is the graph having F as the

vertex set with Si adjacent to Sj if and only if i 6= j and Si ∩ Sj 6= φ. Here, L(·) is the

line graph operator. (McKee & McMorris, 1999)

We name this process of conversion from group data to line or intersection graph as

line expansion; which we formally define as follows:

Definition 11 Line Expansion: The line expansion algorithm constructs a line graph

Nl = (Vg, El) from a collection of static groups (G,V ). This algorithm considers each

group gi ∈ G as a vertex vgi resulting into a vertex set: Vg = {vgj : gj ∈ G}. El is the

set of ml dyadic edges containing an edge between any two group vertex vgi and vgj , if

the groups are intersecting i.e. gi ∩ gj 6= φ.

The line graph is also referred to as the representative graph, and its role in capturing

relationships among groups seems pretty intuitive. Unlike the bipartite graph, which is

useful in modeling the relationship between an entity and a group, an edge in line-graphs

can be used to model the interaction between two groups corresponding to the group

vertices of the edge. For example, in social networks, line graphs can be employed

to model the affinity between two social groups, which can be used to, for example,

predict the likelihood of two groups merging in the future. Also notice that in contrast
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to bipartite networks which contain two kinds of vertices, the line-graph is a dyadic

simple graph.

However, neither the 2-mode or bipartite network nor the line graph, explicitly cap-

ture relations between the vertices themselves, which have to be derived. On the other

hand the derived 1-mode or dyadic graph of entities, as argued before, cannot capture

the coexistence of more than two entities in single relation. Therefore, in a nutshell all

the graph based models which we have describe above have some limitations while trying

to capture the group interactions. This demands for a mathematical structure that can

capture node-to-node, node-to-group, and group-to-group interactions simultaneously.

We turn our attention to the mathematical structure called Hypergraphs, which can

easily capture higher-order relationships while incorporating both group and node-level

relations. In a hypergraph, in addition to having edges between pairs of entities, one

can define a hyperedge that links entities that are part of a single group. Figure 1 shows

a hypergraph with five nodes and three hyperedges. For example, three nodes 3, 4, and

5 are linked by a single hyperedge. Let us define hypergraphs more formally.

Definition 12 Hypergraph: Formally, a hypergraph can be defined as a tuple H =

(V,E), where V = {vi}ni=1 is the set of vertices (vi) in the network and E = {ej}mj=1 is

the set of hyperedges: ej ⊆ V . Each ej is called a hyperedge, and represents a relation

between one or more entities (Berge, 1976).

Note: We shall also use Ng interchangeably with H, specially in cases where we are

referring to hypergraph as network of groups.

Hypergraphs, therefore, are a generalization of graphs as well as bipartite graphs

(Berge, 1984), which can have more than two nodes in an edge (rather than simple

graphs where only 2 nodes are part of an edge). Therefore, hypergraphs can easily cap-

ture the coexistence of more than two entities in single relation. With this observation,

we end this subsection and, in the next subsection, detail out the road map of modeling

hypergraph, which is the focus of this thesis.
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Figure 1.14: Thesis diagram describing the Hypergraph Analytics Framework and its
various components; indicating which chapters map to which component of the frame-
work.

1.3 Hypergraph Analytics

In the previous section, we observed that modeling group phenomena entail capturing

the higher-order information encompassed in a group interaction between multiple en-

tities. We then detailed the various possible graph-based networks that we can employ

to model group data – starting from simple graphs to other kinds of graphs. We ended

up with the realization that we have to go beyond simple graphs, which are limited

to pair-wise relations, to capture group phenomena that require modeling higher-order

relations. The higher-order structure that we are most interested in modeling is

the hypergraph, which seems to be naturally suited for modeling group interactions.

This thesis is dedicated to model and study group phenomena from the lens

of Hypergraphs. In order to do so, we propose the Hypergraph Analytics

Framework (see Figure 1.14).

Under this framework, we shall be primarily interested in the following higher-level

32



questions pertaining to the hypergraph modeling.

• What are the various effective models for capturing hypergraphs? Does the choice

of model depends on the problem at hand?

• What kind of inferences are possible over the hypergraph structure? What kind of

probabilities can be learned?

• What kinds of compression algorithms are possible for hypergraphs? How effective

are these techniques?

Although there are several models, but the effective models for capturing hyper-

graphs are still not precise. Different models primarily vary by the amount of higher-

order information they can retain. We split these models into four categories: bipartite

graphs, hasse diagrams, clique expanded graphs, and hypergraphs in their original form

(without any transformation to the previous three categories). A detailed overview of

these categories, along with their data structures, shall be provided in Chapter 2. Vari-

ous problems studied in this thesis shall employ all of these models. Choice of model will

be dictated by the problem at hand. For example, in several cases a lower-order model

approximation would be suffice and in other cases precise higher-order information re-

taining model is recommended. In this manner, across all chapters, we address the first

central question of this thesis: how to model higher-order hypergraph information and

what kind of lower-order approximations are available or sufficient depending upon the

problem at hand.

As listed before, there are two other central questions about hypergraphs, which

this thesis aims to find answers for. First, is that of conducting inference or learning

probabilities over hypergraph structures. Second is that of compressing these higher-

order hypergraph structures to low dimension embedding spaces. We, therefore, have

two parts of this thesis. First part consists of Chapters 3, 4 and 5, which are dedicated

to various kind of inference mechanisms on hypergraph structures. Second part
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consists of Chapters 6 and 7, which are concerned with the hypergraph compression

techniques. We now provide a short overview of these chapters below.

First and foremost, we would like to bring attention to the fact that by hypergraph

structure we are referring to the entire set of possible hyperedges between a given set

of entities. This set encompasses both the observed portion as well as that is not yet

observed portion. Given a past observed data, one can can infer likelihood of both: the

already observed group interactions to again happen in future as well as the probabilities

of the unobserved portion of the hypergraph structure. Ascertaining the probabilities of

observed and unobserved regions of a hypergraph structure, given the past observations,

is what we refer to as the inference on hypergraph structure.

General inference over hypergraph structure is a complex problem. In this thesis

we dissect it into smaller sub-problems which we have tried to answer separately. We

perform the division on two dimensions. First, if the inference is being performed with

or without taking the time information within group interactions into account. In other

words if the inference is performed on temporal groups or static groups. Secondly, we

distinguish on the basis of whether the inference deals with learning probabilities for

observed regions of the hypergraph structure or that of the unobserved regions.

Let us give a more systematic treatment to these divisions, starting by providing

some definitions.

Definition 13 Hypergraph Structure: Given a set of n vertices V = {vi}ni=1, the

hypergraph structure is the tuple (V, S) with set S = {s|s ⊆ V ∧s 6= φ}, which is nothing

but the set of all the not empty subsets of the vertex set V . Notice that |S| = 2n − 1.

Definition 14 Observed Hypergraph Structure: Given a collection of static groups

(G,V ) we treat each entity in set V as a vertex and therefore, V becomes the vertex set.

Let (V, S) be the hypergraph structure associated with this vertex set. We denote by

Si = {sik, ∀k ∈ {1, 2, ..., 2|gi| − 2}} the set of all proper subsets of each group gi ∈ G.

If we consider the union of all subsets of the sets in G along with G itself, i.e., Eo =

{G ∪ (
⋃m
i=1 Si)}, then we have the observed hypergraph structure, (V,Eo).
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Definition 15 Unobserved Hypergraph Structure: Given a collection of static

groups (G,V ) and both the hypergraph ((V, S)) as well as the observed hypergraph

((V,Eo)) structures associated with it, we define the unobserved hypergraph structure

simply as the Eu = {S − Eo}.

Therefore, the hypergraph structure is a union of the two mutually exclusive sets:

the observed and unobserved hypergraph structure; i.e. S = Eo∪Eu and (Eo∩Eu) 6= φ.

To give a complete picture we also define specifically the observed hypergraph.

Definition 16 Observed Hypergraph: Given a collection of static groups (G,V ) we

treat each entity in set V as a vertex and therefore, V becomes the vertex set. For each

set gi ∈ G we associate a hyperedge ei: E = {ei|ei = gi, ∀gi ∈ G}. This results in the

hypergraph H = (V,E), which we refer to as the observed hypergraph.

Notice that observed hypergraph (H) is different from the hypergraph structures, in

fact, E ⊆ Eo. It the most common hypergraph object associated with a group structured

data and often in literature, it is the observed hypergraph that is being modeled. For

simplicity we will use the word hypergraph to refer to this observed hypergraph.

Given this setup i.e. hypergraph and the various hypergraph structures, we divide

the problem of inference on hypergraph structure into sub-problems. As there are two

different kind of hypergraph structures: observed and the unobserved, its natural to

have two different sub-problems. First is that of predicting likelihood of hyperedges in

the observed hypergraph structures – old hyperedge prediction – given the observed

hypergraph. Second is that of assigning probabilities to hyperedges in the unobserved

hypergraph structure – new hyperedge prediction – again given the observed hyper-

graph. Chapter 3 and 4 respectively answer these two questions (see Figure 1.14).

Chapter 3 answers the first question. In this chapter we take the problem of predict-

ing future groups or subgroups given past group interactions. The observed hypergraph

structures is modelled using a simplicial complex and corresponding hasse lattice struc-

ture. A general overview of these models shall be provided in Chapter 2 and details
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in the Chapter 3 itself. Model is evaluated for predicting both previously observed

hyperedges as well as unobserved hyperedges. The evaluation is conducted for various

cardinalities of the hyperedges.

Chapter 4 addressed the second problem of modeling the probabilities of hyperedges

within the unobserved hypergraph structure. The biggest impediment in giving proba-

bilities to the hyperedges in the unobserved hypergraph structure is the size of the later.

Most of the real-world hypergraphs are sparse i.e. m = |E| = O(n) and the maximum

cardinality of observed hyperedges are well bounded i.e. cmax << n. Both these obser-

vations also amount to a sparse observed hypergraph structure i.e. m′ = |Eo| = O(n).

However, the size of unobserved hypergraph structure explodes exponentially with in-

crease in n. To contain this number we require a sampling mechanism that samples

meaningful possible future hyperedges and assigns probability to them. In this chapter

we propose a simple and elegant approach of incremental sampling. Here we sample

a new hyperedge by adding a single vertex to a past observed hyperedge or its sub-

hyperedge. Surprisingly, this sampling statistically seems to be covering a significant

portion of future hyperedges in the datasets we study. We then propose various graph

as well as hypergraph methods which output probability of the sampled hyperedges. We

refer to these algorithms as accretion prediction methods, as they deal with an increase

or accretion of hyperedges by addition of vertices. Given the elementary nature of the

single vertex addition scheme, one can apply it recursively to ascertain probabilities of

even farther (in cardinality sense) hyperedges in the unobserved region. Further, the

algorithm proposed can also be easily generalized to non-incremental addition schemes

i.e. adding more than one vertex at a time.

In summary, Chapter 3 deals with probabilities of past hyperedges repeating or

hyperedge attrition prediction in form of sub-hyperedge prediction. Chapter 4 on the

other hand address the hyperedge accretion prediction. Overall these two chapters

address the hypergraph evolution problem by addressing sub-problems of hyperedge

stability, as well as increase or decrease in cardinality prediction. However, we should

notice that both these chapters are limited to static group data only. Therefore, they
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are performing hypergraph evolution prediction by cross-sectional or static analysis(see

Figure 1.14).

Chapter 5, therefore, extends our study of hypergraph evolution to temporal group

data and performing longitudinal analysis. Time is a crucial information in modeling

evolution of various interactions. Unlike static groups where the focus is limited to

modeling the group structure, modeling temporal groups would require the model to

also capture the time of group interaction apart from the group structure. In this chapter

we model the time as another dimension of a higher-order matrices, also called tensors.

Dimensions other than the time dimension are used to capture the group structure.

This temporal tensor model can then be used for inference over hypergraph structure.

This chapter limits itself to the problem of group or hyperedge repetition prediction.

The inference is performed using algebraic techniques of tensor decomposition. A key

focus of this chapter is to evaluate the performance of hypergraph bases tensors to that

of graph based tensors and thus, performing graph versus hypergraph comparison, for

the task of temporal hyperedge prediction . The tensor decomposition techniques

proposed have the ability to perform not just next time step predictions, but also longer

range forecasting. It is easy to generalise these methods for the case of other hypergraph

structure inferences for both observed and unobserved regions.

Interlacing the Chapters 3, 4 and 5, we reach a complete recipe of modeling and

inference over the hypergraph structure for both cross-sectional and longitudinal anal-

ysis. These chapters together constitute the first part of the thesis. We would like

to take the freedom of calling this part the Spatial Analysis within our Hypergraph

Analytics framework. Here the “space” constitutes the hypergraph structure and the

time dimension.

Second part of thesis, while complimenting the first half, deals with the Spectral

Analysis part of the Hypergraph Analytics framework. In this we deal with techniques

to compress the hypergraph topology to lower dimensional latent space. Separately,

each dimension of this latent space provide a notion of frequency and together these

dimensions provide the entire spectrum. Considering hyperedges as first class citizen,
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we shall be chiefly considering hyperedge compression or hyperedge embeddings. We will

examine two different embedding approaches in Chapters 6 and 7, which together will

comprise the latter half of the thesis (see Figure 1.14).

Chapter 6 develops an algebraic model for hyperedge emebeddings for general (non-

uniform) hypergraphs. We leverage the relationship between uniform hypergraphs and

symmetric higher-order tensors. Given our main focus is embedding hyperedges, then it

becomes crucial to retain the higher-order information contained in them. Making use of

higher-order tensors, therefore, helps us retain the hyperedge-level information directly.

However, uniform hypergraph tensors only consider hyperedges of fixed cardinality. We

generalise this to non-uniform hypergraphs by considering array of tensors of various

cardinalities. We then use tensor decomposition techniques which decompose tensors to

latent factor matrices. These latent factors are the embeddings. As in our case we have

an array of tensors, therefore, we propose a joint decomposition of these tensors along

with hypergraph topology based regularization. Hypergraph tensor decomposition ,

although preserves the hyperedge-level information, but, only outputs vertex embed-

dings. To address this issue we propose the notion of dual higher-order tensors which

work on the hypergraph dual. The proposed joint tensor decomposition on array of dual

tensors then outputs hyperedge embeddings directly. These embeddings are evaluates

using various attribute based hypergraphs as well as simulated hypergraph data. Hy-

peredge embeddings are observed to be performing better than hyperedge embeddings

built by combining vertex embeddings achieved from various graph based baselines.

Chapter 7 revisits the problem of hyperedge embedding, but unlike the batch-

learning based model in the previous chapter, here we consider an online setting. Neural

network-based models are inherently online, and in the past few years, they have shown

tremendous performance on a wide variety of tasks. Hence, we choose neural networks

for our task of learning deep hyperedge embeddings. In general, the literature on

graph embeddings is significantly more than on hypergraph embeddings. Also, un-

til recently, the models for embedding graph structures have been focused more on

techniques other than neural networks. Here we attempt to permeate this gap by de-
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veloping a neural network supported hypergraph embedding methods. Inspired by the

image auto-encoders from computer vision, we consider the hyperedge as the primary

entity to be encoded and develop hyperedge auto-encoders. But unlike the images,

where we use Gaussian noise per pixel to generate noisy image samples, hyperedges are

discrete structures and require a discrete noise. Random discrete noise like salt-pepper

noise might result in entirely unrelated noisy hyperedge samples, which may result in

a non-meaningful training. Instead, we harness the hypergraph structure and use it to

sample noisy hyperedges for a given original hyperedge. We devise a variety of random

walk schemes on the hypergraph structure and generating meaningful noisy hyperedges.

During the evaluation of these embeddings, our focus is three folds. We aim to examine

how the embeddings that use graph topology perform in comparison to those leveraging

the hypergraph structure. Secondly, we aim to study how shallow architectures perform

in the relation of deep auto-encoders. Lastly, we intend to contrast the different noise

generation schemes that we have designed. Hence, we design several experiments to

carry out these evaluations using both real as well as synthetic datasets.
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Chapter 2

Modeling Applications as

Hypergraphs

In the previous chapter we introduced the basic problems this thesis studies and provided

an overview of the over all analysis framework. We also enumerated the various classes of

group structured datasets and defined a set of group data abstractions. Further, we also

introduced some graph models for group data and provided some idea of the conversion

process from group data to graph models. But this introduction was not mathematically

rigorous and lacked use of any mathematical data structures. Therefore, as promised

in Section 1.3, in this chapter we introduce the various models for hypergraphs as

well as the supporting algebraic structures. The variety of models described in here

have variable higher-order information retention capacity, but our discussion in this

chapter would be limited to defining these models algebraically. All these models will

be capitalized in the following chapters of this thesis.

Section 2.1 introduces the concept of hypergraph data and establishes some basic

assumptions as well as hypergraph preliminaries which are followed in rest of this chap-

ter. In Section 2.2 we introduce the various graph-based “proxy” models for hypergraph

data. In the following Section 2.3, we introduce the hypergraph models for hypergraph

data. In both Section 2.2 and 2.3 we provide definition as well as construction of var-
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ious algebraic data structures associated with these models. Next, in Section 2.4 we

describe temporal hypergraphs, their construction from temporal group data as well

the associated algebraic infrastructure. Lastly, Section 2.5 describes the large variety of

real world as well as synthetic hypergraph datasets that has been curated and employed

during the research work within this thesis.

2.1 Preliminaries

2.1.1 Notations

We use non-bold face lower letters – x, y,m, n, ... – to denote scalars. Lower case bold

face letters – u,v,w, ... – to denote vectors; upper case bold face letters – A,H,U, ...

– to denote matrices; upper case bold face calligraphic letters – A,Z,P, ... – to denote

tensors. R and R+ denotes real numbers and positive real numbers respectively. Z and

Z+ denote integers and positive integers, respectively. [n] is the shorthand notation for

the list of integers (1, 2, ..., n).

2.1.2 Group Data as Hypergraph

The main focus of this thesis is to study group structured data. In Section 1.2 we defined

various categories of group data that shall be of interest for us and then defined four

different abstractions. We defined Static Groups and Weighted Groups abstractions (see

Definitions 1 and 2), which do not take into consideration the temporal information.

On the other hand the abstraction of Temporal Groups (see Definition 3) and Weighted

Temporal Groups, which allows for modeling time. In this and the Sections 2.2 and 2.3,

we shall be working with weighted groups. Section 2.4 will focus on the weighted

temporal groups separately.

As a stepping stone for analyzing group structured data, we treat the abstraction

of group data as a hypergraph. First we deal with static groups and more specifically

we treat a weighted groups as a weighted hypergraph. Note that static groups are a
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special case of weighted groups and therefore, models for weighted groups automatically

models static groups as well. We had earlier defined an unweighted hypergraph (see

Definition 12), let us now define a weighted hypergraph.

Definition 17 Weighted Hypergraph: Formally, a weighted hypergraph can be de-

fined as a tuple H = (V,E,w), where V = {vi}ni=1 is the set of vertices (vi) in the

network and E = {ej}mj=1 is the set of hyperedges: ej ⊆ V . Each ej is called a hyper-

edge, and represents a relation between one or more entities. We also associate with

each hyperedge ei, a scalar weight wi, which can be considered as a property of the

relation which that hyperedge represents.

We name this process of conversion from weighted groups to weighted hypergraph

as weighted hypergraph conversion or simply hypergraph conversion; which we formally

define as follows:

Definition 18 Weighted Hypergraph Conversion: The weighted hypergraph con-

version algorithm constructs a hypergraph H from a collection of weighted groups (G,V,w).

This algorithm considers each entity vi as a vertex, resulting into a vertex set V . Then

we consider each group gi ∈ G of weight wi as a weighted hyperedge, resulting into a set

of hyperedges G and w as the weight function for these hyperedges. Together the tuple

(V,G,w) constitute the weighted hypergraph H i.e. H = (V,G,w) where wi = w(gi).

Note: We shall also use Ng interchangeably with H, specially in cases where we are

referring to hypergraph as network of groups.

Once we have performed the conversion of group data to a hypergraph, we shall no

longer be addressing group data in any further discussions. We will be concerned only

to this hypergraph obtained from the conversion.

2.1.3 Hypergraph Preliminaries

In the interest of a more rigorous mathematical treatment while developing the various

models, we shall be gradually introducing a variety of algebraic structures. The first and
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the most basic one is the hypergraph incidence matrix, H; which is defined as follows:

Definition 19 Hypergraph Incidence Matrix: Given an unweighted hypergraph

H = (V,G) or a weighted hypergraph H = (V,G,w), we can associate to it an inci-

dence matrix H ∈ {0, 1}|G|×|V |, where m = |G| is the number of hyperedges and n = |V |

is the number of vertices of the hypergraph. The (gi, vj)-th entry of this matrix is 1 if

j-th vertex is a part of i-th hyperedge i.e. H(gi, vj) = 1 if vj ∈ gi else 0. Each row of

the incidence matrix, therefore, represents a particular hyperedge and its membership.

Definition 20 Hypergraph Weight Matrix: Given a weighted hypergraph H =

(V,G,w), we can associate to it a diagonal matrix, W, of hyperedge weights, such that:

W(g, g) = w(g) , ∀g ∈ G , (2.1)

which we refer to as the hypergraph weight matrix.

To provide a complete picture, we would also describe the Hypergraph Dual and its

incidence matrix. The hypergraph dual is dual of a hypergraph in the sense that if we

reverse the role of vertex and hyperedges in a hypergraph, we achieve its hypergraph

dual. Every hypergraph has a hypergraph dual associated with it. Below we provide

definitions for the both the hypergraph dual as well as the incidence matrix associated

with it.

Definition 21 Hypergraph Dual: The dual of a hypergraph H = (V,G) is a hyper-

graph H∗ = (V ∗, G∗) whose vertices V ∗ = {v∗1, ..., v∗m} correspond to the hyperedges of

H i.e. v∗i = gi and with hyperedges G∗ = {g∗1, ..., g∗n} such that g∗i = {gj |vi ∈ gj , gj ∈

G} (Berge, 1984).

Definition 22 Weighted Hypergraph Dual: Let H∗ = (V ∗, G∗) be the dual of

hypergraph H = (V,G). Then the dual of weighted hypergraph H = (V,G,w) is

H∗ = (V ∗, G∗, w∗), where w∗ is a weight function that assigns a scalar weight w∗i to
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each hyperedge g∗i ∈ G∗. This weight function w∗i can be a function of the weights of

the dual vertices which are hyperedges in the original hypergraph viz. w∗i = w∗(s) where

s = {w(gq1), ..., w(gqk)} and vi ∈ {gq1 , gq2 , ..., gqk}.

Definition 23 Hypergraph Dual Incidence Matrix: Let H∗ = (V ∗, G∗) be the

dual of the unweighted hypergraph H = (V,G) or a weighted hypergraph H = (V,G,w).

We can associate to it an incidence matrix Hdual ∈ {0, 1}|V |×|G| such that Hdual =

Hᵀ (Berge, 1984). Each row of the incidence matrix, therefore, represents a particular

vertex and the hyperedges incident on it.

Degrees of a Hypergraph

We can associate different kinds of degrees to a hypergraph. There are three basic

degree: vertex degree, hyperedge degree and hyperedge cardinality; which we define as

follows.

Definition 24 Vertex Degree: Given an unweighted hypergraph H = (V,G), we de-

fine degree d(v) of a vertex v as the number of hyperedges incident on this vertex:

d(v) =
∑
gi∈G

H(gi, v) (2.2)

Dv is the diagonal matrix consisting of vertex degrees viz. Dv(i, i) = d(vi), ∀i ∈ [n].

Definition 25 Weighted Vertex Degree: Given an weighted hypergraph H = (V,G,w),

we define degree d(v) of a vertex v as sum of the weights of the hyperedges incident on

this vertex:

d(v) =
∑
gi∈G

(H(gi, v) · w(gi)) (2.3)

Dv is the diagonal matrix consisting of vertex degrees viz. Dv(i, i) = d(vi), ∀i ∈ [n].

Note that we are using the same notations d(·) and Dv for both weighted as well as

unweighted vertex degree; depending on the context it will be clear.
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Definition 26 Hyperedge Hyperdegree: Assume we are given an unweighted hyper-

graph H = (V,G). Let us define the set Gg associated with a hyperedge g such that:

Gg = {e|e ∩ g 6= ∅, e ⊂ G, e 6= g} (2.4)

set of all the incident hyperedges. Hyperedge degree d(g) of a hyperedge g is then defined

as the cardinality of this set:

ψ(g) = |Gg| (2.5)

Ψe is the diagonal matrix consisting of vertex degrees viz. Ψe(j, j) = d(ej),∀j ∈ [m].

Definition 27 Weighted Hyperedge Hyperdegree: Assume we are given an weighted

hypergraph H = (V,G,w). Let us define the set Gg associated with a hyperedge g such

that:

Gg = {e|e ∩ g 6= ∅, e ⊂ G, e 6= g} (2.6)

set of all the incident hyperedges. Hyperedge degree d(g) of a hyperedge g is then defined

as the sum of the weights of the hyperedges in the set Gg:

ψ(g) =
∑
e∈Gg

w(e) (2.7)

Ψe is the diagonal matrix consisting of vertex degrees viz. Ψe(j, j) = d(ej),∀j ∈ [m].

Note that we are using the same notations ψ(·) and Ψe for both weighted as well as

unweighted hyperdegree degree; depending on the context it will be clear. Also to be

succinct we shall be using “hyperdegree” to refer to hyperedge hyperdegree.

Definition 28 Hyperedge Degree or Cardinality: Given an unweighted hypergraph

H = (V,G), we define the cardinality c(g) of a hyperedge g as the count of the number

of vertices inside the hyperedge:

c(g) = |g| =
∑
v∈V

H(g, v) (2.8)
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De is the diagonal matrix consisting of vertex degrees viz. De(j, j) = c(ej),∀j ∈ [m].

2.2 Graph based Hypergraph Models

The first category of models we would consider are the graph-based models. Note that we

had already introduced these models in Section 1.2, where we considered the conversion

of group data into these graph models. However, there the treatment was less rigorous

and more focused on discussing the degree of higher-order information retention across

these variety of graph based models. Here we address it by providing a proper algebraic

treatment. As agreed in Section 2.1.2, for all the following discussion, we shall assume

that the original group data is already translated to a hypergraph. Also all the models

considered in this section are static and not incorporate any temporal information.

2.2.1 Clique Expanded Graph

We first consider the graph model based on the process of clique expansion (see Def. 6)

which we had earlier described in Section 1.2. This process converts a group data into

simple dyadic graph (see Def. 4) by connecting each pair of elements for each of the

groups and then aggregating them. We revisit this process and analyse it in a more

structured manner and generalise it for both weighted and unweighted hypergraphs.

We therefore, redefine the clique expansion process by defining the adjacency matrix of

associated with the output simple graph.

Definition 29 Clique Expanded Graph (CE Graph): Consider an unweighted hy-

pergraph H = (V,G) or a weighted hypergraph H = (V,G,w). Let us define a matrix

J = HᵀH − Dv. Then we define the adjacency matrix of the clique expanded simple

graph, Ac ∈ {0, 1}|V |×|V |, as:

Ac(vi, vj) =


1 if J(vi, vj) > 0

0 otherwise

(2.9)
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This is the adjacency matrix associated with the clique expanded simple graph Nc =

(V,Ec) (see Def. 6).

This vanilla clique expanded graph very well defines the basic clique-expanded topol-

ogy but it discreetly disregards the an information pertaining to hyperedge weights. In

order to incorporate this we turn our attention back to weighted graphs which we had

defined in last chapter (see Def. 7) corresponding to simple graphs obtained via clique

expansion. There we had briefly also described some weighting schemes. Here we reex-

amine those as well as more schemes to assign weights to the CE Graph. Interestingly,

several studies on hypergraphs are essentially work using the same underlying CE graph

and only differ in how they assign weights to its edges. So these methods, which we

describe below, claim to study hypergraphs but actually they work on a graph based

approximation or proxy.

Each method provides a scheme to give weights to edges of the CE graph and

associate an adjacency matrix to the resulting Weighted CE graph (WCE graph). Note,

unlike the CE graph these adjacency matrices are weighted as the graph is weighted.

For the purpose of clarity we again define a weighted graph from clique expansion.

Definition 30 Weighted Clique Expanded Graph (WCE Graph): For a given

CE graph Nc = (V,Ec), we can define an undirected weighted CE graph as Nwc =

(V,Ec, w
c), where wc is a weight function that assigns a scalar weight wcij to each edge

(vi, vj) ∈ Ec viz. wcij = wc(vi, vj). The adjacency matrix of this graph is, Awc ∈

R|V |×|V |, as:

Awc(vi, vj) = wcij . (2.10)

Further, we will also associate a graph Laplacian matrix for a given CE or WCE

graph. The graph Laplacian is the discrete analog of the Laplace-Beltrami operator on

compact Riemannian manifolds (Belkin & Niyogi, 2001; Chung et al., 1986; Rosenberg,

1997). We will be making use these Laplacians in various machine learning models in

the following chapters. There are different kinds of graph Lapacians (Chung & Graham,
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1997) but we shall restrict ourselves to normalized Laplacian matrix. It is defined based

on the graph adjacency matrix as follows:

Lwc = (I−Dc
v
−1/2AwcD

c
v
−1/2) , (2.11)

where Dc
v is the diagonal matrix containing the vertex degrees which are defined as:

dc(vi) =
∑
vj∈V

Awc(vi, vj) , (2.12)

which is simply the i-th row sum of the adjacency matrix Awc. Equations 2.10

and 2.15 define the template for the weighted CE graph but does not provided any

definition for the edge weights. Now we will describe various kind of WCE graphs

which vary by the different intuitive manners they assign weights to CE edges. For

each graph we will provide the adjacency matrix and also the associated normalized

Laplacian. Notice that a WCE graph builds upon a CE graph which can be obtained

from either a weighted or an unweighted original hypergraph. So in a nutshell we can

still achieve a weighted CE graph irrespective of whether the orginal hypergraph was

weighted or not.

Definition 31 Rodŕıguez WCE graph (Rodriguez, 2002; 2003): Consider a

weighted CE graph , Nr = (V,Er, w
r) for given unweighted hypergraph H = (V,G).

A simple scheme would be to assign weight wcij as the number of hyperedges common

between the vertices vi and vj viz.:

wcij =
∑
g∈G

H(g, vi)H(g, vj) , (2.13)

which amounts to the following adjacency matrix:

Ar = HᵀIH = HᵀH , (2.14)
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where I highlights that we take each hyperedge’s weight as one viz. unweighted hyper-

graph. The normalized Rodŕıguez Laplacian is:

Lr = (I−Dr
v
−1/2ArD

r
v
−1/2) , (2.15)

where Dr
v is the diagonal matrix containing the vertex degrees which are defined

(analogous to Eq. 2.12) as:

dr(vi) =
∑
vj∈V

Ar(vi, vj)

=
∑
vj∈V

∑
g∈G

H(g, vi)H(g, vj)

=
∑
g∈G

H(g, vi)
∑
vj∈V

H(g, vj) =
∑
g∈G

H(g, vi)De(g, g) ,

which amounts to:

Dr
v = HᵀDe . (2.16)

Then, Nr is the Rodŕıguez WCE graph with the adjacency matrix Ar and the nor-

malized Lapacian Lr.

Another intuitive scheme could be to assign WCE edge weights with fractional con-

tribution from each common hyperedge being inversely proportional to the hyperedge

weight. This would result to what is referred in literature as Bolla WCE graph, which

is described next.

Definition 32 Bolla WCE graph (Bolla, 1993): Consider a weighted CE graph ,

No = (V,Eo, w
o) for given unweighted hypergraph H = (V,G). A simple scheme would

be to assign weight wcij as the sum of the weights of the hyperedges common between the
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vertices vi and vj viz.:

wcij =
∑
g∈G

H(g, vi) · (1/c(g)) ·H(g, vj) , (2.17)

which amounts to the following adjacency matrix:

Ao = HᵀDe
−1H , (2.18)

where De
−1 highlights that we may assume each hyperedge’s weight as inverse of its

cardinality even though the hypergraph we are considering is unweighted hypergraph.

The normalized Bolla’s Laplacian is:

Lr = (I−Do
v
−1/2AoDo

v
−1/2)

= (I−Dv
−1/2AoDv

−1/2) ,

where Do
v is the diagonal matrix containing the vertex degrees which are defined

(analogous to Eq. 2.12) as:

do(vi) =
∑
vj∈V

Ar(vi, vj)

=
∑
vj∈V

∑
g∈G

H(g, vi)(1/c(g))H(g, vj)

=
∑
g∈G

H(g, vi)(1/c(g))
∑
vj∈V

H(g, vj)

=
∑
g∈G

H(g, vi)(1/c(g))c(g)

=
∑
g∈G

H(g, vi) = Dv(vi, vi) ,

which amounts to this nice property:

Do
v = Dv . (2.19)
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Notice that Dv is the hypergraph vertex degree matrix and that this hypergraph is

unweighted. Given the above setting, the graph No is the Bolla WCE graph with the

adjacency matrix Ao and the normalized Lapacian Lo.

Both the Rodŕıguez and Bolla WCE graphs start with an unweighted hypergraph.

However, one can consider a setting where the original hypergraph is weighted. In this

case, one simple scheme to design weight of a WCE graph edge would be to simple

aggregate the weights of the hyperedges common between the edge’s vertices. This

setting is the most standard clique expansion setting. In most literature when CE

or WCE graphs are being discussed, they are de facto referring to this strategy: an

initial weighted hypergraph and hyperedge weight summation as the weight generation

scheme during WCE. However, we refer it to as Gibson WCE graph as it was first used

by Gibson et al. (2000). We define it more formally below.

Definition 33 Gibson WCE graph (Gibson et al., 2000): Consider a weighted

CE graph , Ns = (V,Es, w
s) for given weighted hypergraph H = (V,G,w). A simple

scheme would be to assign weight wcij as the aggregate of inverse of the cardinalities of

all the hyperedges common between the vertices vi and vj viz.:

wsij =
∑
g∈G

H(g, vi) · w(g) ·H(g, vj) , (2.20)

which amounts to the following adjacency matrix:

As = HᵀWH , (2.21)

where W is the hypergraph weight matrix (see Eq. 64). The normalized Gibsons’s Lapla-

cian is:

Ls = (I−Ds
v
−1/2AsD

s
v
−1/2) (2.22)

= (I−Dv
−1/2AsDv

−1/2) , (2.23)
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where Ds
v is the diagonal matrix containing the vertex degrees which are defined (anal-

ogous to Eq. 2.12) as:

ds(vi) =
∑
vj∈V

As(vi, vj)

=
∑
vj∈V

∑
g∈G

H(g, vi)(w(g))H(g, vj)

=
∑
g∈G

H(g, vi)(w(g))
∑
vj∈V

H(g, vj)

=
∑
g∈G

H(g, vi)w(g)c(g)

=
∑
g∈G

H(g, vi) ·W(g, g) ·De(g, g) ,

which amounts to this nice property:

Ds
v = HᵀWDe . (2.24)

Given the above setting, the graph Ns is the Gibson WCE graph with the adjacency

matrix As and the normalized Laplacian Ls.

To summarize, in this subsection we formalize the clique expansion of a hypergraph

by associating the tuple containing the adjacency matrix and the Laplacian to the

resulting clique expanded graph viz. [Awc,Lwc]. Both the original hypergraph and

the resulting clique expanded graph can be weighted or unweighted. Depending on

the scheme to assign weights to Awc, we arrive at variety of WCE graphs. We have

provide examples of three of the most popular WCE graphs. If the original hypergraph

is assumed unweighted, then the two choice of weights, Equations 2.13 and 2.17, result

in the Rodrıguez and Bolla WCE graphs, [Ar,Lr] and [Ao,Lo], respectively. On the

contrary, if we starti with a weighted hypergraph and asuume the weighting scheme

in Equatrion 2.20, we arrive at the Gibson WCE graph viz. [As,Ls]. Lastly, its is

important to note that WCE graph, Nwc = (V,Ec, w
c), itself generalizes the unweighted
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CE graph, Nc = (V,Ec), when we assign each edge’s weight in WCE as one:

wcij = Awc(vi, vj) = 1 = Ac(vi, vj) , ∀(vi, vj) ∈ Ec (2.25)

and the Laplacian for the CE graph becomes:

Lc = (I−Dc
v
−1/2AcD

c
v
−1/2) . (2.26)

2.2.2 Star Expanded Graph

In this subsection we consider the graph model based on the process of star expansion

(see Def. 9) which we had earlier described in Section 1.2. This process converts a

group data into a bipartite graph (see Def. 8). It does so by considering groups and

entities both as vertices and then connecting each group vertex to all the entity vertices

corresponding to the entities which are member of that group. We revisit this process

and analyse it in a more structured manner and generalise it for both weighted and

unweighted hypergraphs. We therefore, redefine the star expansion process by defining

the adjacency matrix of associated with the output unweighted bipartite graph.

Definition 34 Star Expanded Graph (SE Graph): Consider an unweighted hyper-

graph H = (V,G) or a weighted hypergraph H = (V,G,w). We consider each hyperedge

as a vertex resulting into a second vertex set Vg = {vgj : gj ∈ G}. Let us then consider

a bipartite graph Nb = (Vb, Eb), where Vb = (V ∪ Vg) and Eb as the membership edges

between hyperedge vertices and its member vertices viz.:

Eb = {(vi, vgj ) : vi ∈ V, vgj ∈ Vg, vi ∈ gj} . (2.27)

The adjacency matrix of this bipartite graph, Ab ∈ {0, 1}(|V |+|E|)×(|V |+|E|), is defined in
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terms of the incidence matrix (H) of the hypergraph H, as:

Ab =

0|V | HT

H 0|E|

 (2.28)

We also associate an incidence matrix, Hb ∈ {0, 1}|Eb|×(|V |+|E|).

Hb(ek, vi) = Hb(ek, vgj ) =


1 if ek = (vi, vgj ) ∈ Eb

0 otherwise .

(2.29)

This bipartite graph Nb = (V,Eb), defined by the matrices Ab and Hb, constitute the

star expansion (SE) graph defined previously (see Def. 9).

Analogous to clique expansion (see Equation 2.15), we shall also associate a normal-

ized Laplacian matrix based on the SE graph adjacency matrix as follows:

Lb = (I−Db
v
−1/2

AbDb
v
−1/2

) , (2.30)

where Db
v is the diagonal matrix containing the vertex degrees for the two sets of vertices

in Vb, defined as:

db(vi) =
∑

vgj∈Vg

Awc(vgj , vi)

=
∑

vgj∈Vg

H(vgj , vi)

= d(vi)
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db(vgj ) =
∑
vi∈V

Awc(vgj , vi)

=
∑
vi∈V

H(vgj , vi)

= c(gj) ,

and

Db
v =

Dv 0|V |

0|E| De

 (2.31)

which is simply the i-th row sum of the adjacency matrix Ab and Dv, De are

diagonal degree matrices of the hypergraph H. Equations 2.28 and 2.30, therefore,

define the unweighted SE graph. We can analogously define a weighted SE graph as

follows.

Definition 35 Weighted Star Expanded Graph (WSE Graph): Given a weighted

hypergraph H = (V,G,w), consider a weighted bipartite graph Nb = (Vb, Eb, w
b), where

Vb = (V ∪Vg) and Eb as the membership edges between hyperedge vertices and its member

vertices viz.:

Eb = {(vi, vgj ) : vi ∈ V, vgj ∈ Vg, vi ∈ gj} . (2.32)

Also let Wb ∈ R|E|×|V | be the weight matrix with elements Wb(vgi , vi) = wb(vgi , vi).

Then the weighted adjacency matrix of this bipartite graph, Awb ∈ R(|V |+|E|)×(|V |+|E|),

is defined in terms of the incidence matrix (H) of the hypergraph H and weight matrix

Wb, as:

Awb =

 0|V | WT
b H

HWb 0|E|

 (2.33)

The associated incidence matrix, Hwb ∈ {0, 1}|Eb|×(|V |+|E|) remains same as in the

unweighted SE case viz. Hwb = Hb. This bipartite graph Nwb = (V,Eb, w
b), defined by

the matrices Awb and Hwb, constitute the weighted star expansion (SE) graph.

Analogous to SE graph (see Equation 2.30), we shall also associate a normalized

55



Laplacian matrix. Note, like in the case of CE graphs, we will use the same notations

db(·) and Db
v for vertex degrees of both weighted SE as well as unweighted SE graphs;

depending on the context it will be clear.

Based on the WSE graph adjacency matrix, we define the Laplacian as follows:

Lwb = (I−Db
v
−1/2

AwbDb
v
−1/2

) , (2.34)

where Db
v is the diagonal matrix containing the vertex degrees for the two sets of vertices

in Vb, defined as:

(Db
v)V (vi) = db(vi) =

∑
vgj∈Vg

Awb(vgj , vi)

=
∑

vgj∈Vg

H(vgj , vi) ·Wb(vgj , vi)

(Db
v)Vg(vgj ) = db(vgj ) =

∑
vi∈V

Awb(vgj , vi)

=
∑
vi∈V

H(vgj , vi) ·Wb(vgj , vi)

and

Db
v =

(Db
v)V 0|V |

0|E| (Db
v)Vg

 (2.35)

which is simply the i-th row sum of the adjacency Awb and [(Db
v)V , (Db

v)Vg ] are

diagonal degree matrices for the two sets of vertices in the bipartite graph, [V, Vb],

respectively. One important point to note is that WSE graph generalize SE graph

and that if we take wb(vgj , vi) = 1,∀(vgj , vi) ∈ Eb, they become identical. Further,

Equations 2.33 and 2.34 define a general template for the weighted SE graph but does
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not provided any definition for the edge weights. Next we provide a couple of most

popular weight assignment schemes. First we describe the most standard scheme, which

is to assign scaled hyperedge weights (Zien et al., 1999)–formally:

Definition 36 Zien Weighted Star Expanded (WSE) Graph (Zien et al., 1999):

Given a weighted hypergraph H = (V,G,w) and the corresponding WSE graph Nb =

(Vb, Eb, w
b). Consider the wb function:

Wzn
b (vgi , vi) = wb(vgi , vi) = w(gi)/c(gi) , (2.36)

where the bipartite edge is given a fraction of the hyperedge weight based on hyperedge’s

cardinality. Interestingly, in this case the degrees of the hyperedge vertices is simply the

hyperedge cardinalities viz.:

(Db
v)Vg(vgj ) = db(vgj ) =

∑
vi∈V

Awb(vgj , vi)

=
∑
vi∈V

H(vgj , vi) ·Wb(vgj , vi)

= w(gi)/c(gi) ·
( ∑
vi∈V

H(vgj , vi)

)
=
(
w(gi)/c(gi)

)
·
(
c(gi)

)
= w(gi),

therefore, (Db
v)Vg = De. This WSE graph Nb with the weight matrix Wzn

b constitute a

Zien WSE graph.

Another method of WSE edge weighting scheme could be to simply assigning the

weight of hyperedge as the weight of its star expanded children bipartite edges. This

weighting was used by Zhou et al. (2006b) and its explicit connection to bipartite graphs

was highlighted by Agarwal et al. (2006b). We describe it formally now.
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Definition 37 Zhou Weighted Star Expanded (WSE) Graph (Zhou et al.,

2006b): Given a weighted hypergraph H = (V,G,w) and the corresponding WSE graph

Nz = (Vz, Ez, w
z). Consider the wz function:

Wz
b(vgi , vi) = wb(vgi , vi) = w(gi) , (2.37)

where the bipartite edge weight is simply its parent hyperedge weight. This basically

results in the following WSE adjacency martix:

Az =

0|V | HTW

HW 0|E|

 , (2.38)

where W is the diagonal matrix of hyperedge weights and the following degrees:

dz(vi) =
∑

vgj∈Vg

Az(vgj , vi)

=
∑

vgj∈Vg

H(vgj , vi) ·Wb(vgj , vi)

=
∑

vgj∈Vg

H(vgj , vi) · w(gi)

= d(vi)

dz(vgj ) = db(vgj ) =
∑
vi∈V

Az(vgj , vi)

=
∑
vi∈V

H(vgj , vi) ·Wb(vgj , vi)

=
∑
vi∈V

H(vgj , vi) · w(gj)

= w(gj) ·
( ∑
vi∈V

H(vgj , vi)

)
= w(gj) · c(gj)
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and the degree matrix Dz
v

Dz
v =

Dv 0|V |

0|E| WDe

 (2.39)

This WSE graph Nz with the weight matrix Wz
b constitute a Zhou WSE graph. Based

on the WSE graph adjacency matrix, we define the Zhou’s WCE Laplacian as follows:

Lz = (I−Dz
v
−1/2AzD

z
v
−1/2) . (2.40)

The Laplacian studied by Zhou et al. (2006b), although based on the Zhou’s WSE

Laplacian, Lz that we just described, is only based on the eigenvectors associated with

only the subset of vertices V and not the entire Vz. This connection was established

by Agarwal et al. (2006a) and this Laplacian based only on the vertices V is popularly

known as the hypergraph Laplacian, Lh, which we define as follows.

Definition 38 Zhou Proxy Hypergraph Laplacian (Agarwal et al., 2006a; Zhou

et al., 2006b): Given a Zhou WSE hypergraph Nz = (Vz, Ez, w
z)., the normalized

Laplacian associated with it can be written as follows:

Lz = (I−Dz
v
−1/2AzD

z
v
−1/2)

= I−

Dv
−1/2 0|V |

0|E| (WDe)−1/2

0|V | HTW

HW 0|E|

Dv
−1/2 0|V |

0|E| (WDe)−1/2


=

 I −Dv
−1/2HTW1/2De

−1/2

−De
−1/2HW1/2Dv

−1/2 I


Now if we consider the eigenvalue problem for this matrix, Lz, with eigenvectors,

xT = [xV ,xVg ], then Agarwal et al. (2006a) show that the eigen-equation for only the

V ’s eigenvectors is:

(
I−D

−1/2
v HTWD−1e HD

−1/2
v

)
xV = λxV . (2.41)
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Then the following matrix, Lhyp ∈ R|V |×|V |, is popularly called the hypergraph Lapla-

cian because of its resemblance with the simple graph Laplacian:

Lhyp = I−D
−1/2
v HTWD−1e HD

−1/2
v . (2.42)

We also refer to Lhyp as the “proxy” hypergraph Laplacian as it models only the

vertex-vertex relationship and is not higher-order, somethings we had pointed out pre-

viously on various occasions. Interestingly, the underlying graph of the hypergraph

Laplacian is also a CE graph. Therefore, this hypergraph Laplacian also becomes a

cornerstone for the relationship between the clique and star expansions as studied in

detail, again, by Agarwal et al. (2006a). Further, Zhou et al. (2006b) also associate an

adjacency matrix with a hypergraph as:

Ahyp = (HTWeH−Dv) , (2.43)

which we refer to as the proxy hypergraph adjacency matrix.

In analogy with proxy hypergraph Laplacian we just defined, we also define the

dual hypergraph Laplacian. Remember in dual hypergraph the role of vertices and

hyperedges are interchanged. The dual an incidence matrix is Hdual ∈ {0, 1}|V |×|G|

such that Hdual = Hᵀ (see Def. 23).

Definition 39 Proxy Hypergraph Dual Laplacian: We define the dual hypergraph

Laplacian Ldual ∈ R|G|×|G|:

Ldual = I−D
−1/2
e HWvD−1v HTD

−1/2
e , (2.44)

where Wv is a diagonal matrix containing the weights of each vertex and De is a

diagonal matrix containing the degree of each hyperedge.

For the purpose of the work presented in this thesis, we assume no weights on the

nodes and take Wv = I. Analogously, we also associate an adjacency matrix with a
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hypergraph dual as:

Adual = (Hdual
TWvHdual −De) = (HWvHT −De) , (2.45)

which we refer to as the proxy dual adjacency matrix.

2.2.3 Line Graphs of Hypergraphs

In this subsection we consider the graph model based on the process of line expansion

(see Def. 11) which we had earlier described in Section 1.2. This process converts a

group data into a line graph (see Def. 10). It does so by considering groups as vertices

and then connecting two groups by an edge if they have entities in common. We

revisit this process and analyse it in a more structured manner and generalise it for

both weighted and unweighted hypergraphs. We therefore, redefine the line expansion

process by defining the adjacency matrix of associated with the output unweighted line

graph.

Definition 40 Line Expanded Graph (Line or LE Graph): Consider an un-

weighted hypergraph H = (V,G) or a weighted hypergraph H = (V,G,w). Let us define

a matrix J = HHᵀ − De. Then we define the adjacency matrix of the line expanded

simple graph, Al ∈ {0, 1}|G|×|G|, as:

Al(vgi , vgj ) =


1 if J(vgi , vgj ) > 0

0 otherwise

(2.46)

This is the adjacency matrix associated with the line expanded simple graph Nl = (Vg, El)

where Vg = {vgj : gj ∈ G} (see Def. 11).

Analogous to clique expansion (see Equation 2.15), we shall also associate a normal-

ized Laplacian matrix based on the LE graph adjacency matrix as follows:

Ll = (I−Dl
v
−1/2

AlD
l
v
−1/2

) , (2.47)
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where Dc
v is the diagonal matrix containing the vertex degrees which are defined as:

dl(vgi) =
∑
vgj∈G

Al(vgi , vgj ) , = ψ(gi) (2.48)

which is simply the i-th row sum of the adjacency matrix Al and is equivalent to the

hyperedge hyperdegree, ψ(·) (see Definition 26). Equations 2.46 and 2.47, therefore,

define the unweighted LE graph. We can analogously define a weighted LE graph as

follows.

Definition 41 Weighted Line Expanded Graph (WLE Graph): For a given LE

graph Nl = (V,El) from a hypergraph H = (V,G), we can define an undirected weighted

LE graph as Nwl = (V,El, w
l), where wl is a weight function that assigns a scalar weight

wlij to each edge (vgi , vgj ) ∈ El viz. wlij = wl(vgi , vgj ). The adjacency matrix of this

graph is, Awl ∈ R|G|×|G|, as:

Awl(vgi , vgj ) = wlij . (2.49)

Further, we will also associate a normalized Laplacian matrix for a given WLE graph:

Lwl = (I−Dl
v
−1/2

AwlD
l
v
−1/2

) , (2.50)

where Dl
v is the diagonal matrix containing the vertex degrees which are defined as:

dl(vgi) =
∑
vgj∈G

Awl(vgi , vgj ) , (2.51)

which is simply the i-th row sum of the adjacency matrix Awl. One important point

to note is that WLE graph generalize LE graph and that if we take wlij = 1, ∀i, j ∈ [|G|],

they become identical. Further, Equations 2.49 and 2.54 define the template for the

weighted LE graph but does not provided any definition for the edge weights. Next

we provide a couple of most popular weight assignment schemes. First we describe the
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most standard scheme, which is to assign weights as the number of vertices common

between the pair of hyperedges –formally:

Definition 42 Weighted Intersection Graph (WI Graph): Given a unweighted

hypergraph H = (V,G) and the corresponding WLE graph Nwl = (Vl, El, w
l). We

define a weighted Intersection graph as a WLE graph with the adjacency matrix, Ain ∈

R|G|×|G|, as:

Ain(vgi , vgi) = wl(vgi , vgj ) = |gi ∩ gi| , (2.52)

where the intersection graph edge is given weight based on intersection of hyperedges

corresponding to the two hyperedge vertices. This also amounts to the following simple

matrix formula:

Ain = HHᵀ −De . (2.53)

The normalized Laplacian matrix for a given WI graph:

Lwl = (I−Din
v
−1/2

AinDin
v
−1/2

) , (2.54)

where Din
v is the diagonal matrix containing the vertex degrees which are defined as:

din(vgi) =
∑
vgj∈G

Ain(vgi , vgj )

=
∑
vgj∈G

|gi ∩ gi|

≤ c(gi)ψ(gi) ,

in other words,

Din
v ≤ DeΨe . (2.55)

There can be other WLE edge weighting scheme that also take into account the

cardinality as well as the weights of hyperedges. Some examples are as follows. We can
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use mean of the proportions of the two hyperedge’s intersection viz.

Ain(vgi , vgi) = wl(vgi , vgj ) =
1

2

(
|gi ∩ gi|
c(gi)

+
|gi ∩ gi|
c(gj)

)
. (2.56)

Rather than taking mean, the same can be proportioned by the hyperedge weights as

well, resulting to:

Ain(vgi , vgi) = wl(vgi , vgj ) =

(
|gi ∩ gi| · w(gi)

c(gi)
+
|gi ∩ gi| · w(gj)

c(gj)

)
. (2.57)

2.2.4 Hasse Diagrams

Several studies related to group data involve modeling of not just groups (hyperedges)

but also subgroups (subhyperedges) (Moore et al., 2012; Ramanathan et al., 2011;

Sharma et al., 2017). In the graph based models discussed till now, we have not con-

sidered subhyperedges (subsets of hyperedges). In this section we will introduce the

concept of simplicial complex as well as the Hasse Diagram associated with it. These

structures are able to model subhyperedges along with hyperedges and vertices.

Simplicial complex are a specialization of hypergraphs (Munkres, 1984) (Figure 2.1),

in which additionally each hyperedge has the subset closure property, i.e., each subset of

hyperedge (subhyperedge) is also a valid hyperedge. First let us define a subhyperedge

and a simplicial complex for a given hypergraph. As in the previous sections, we assume

that the original group data has been already translated to a hypergraph.

Definition 43 Subhyperedge: Consider a given a unweighted hypergraph H = (V,G)

or weighted hypergraph H = (V,G,w). For a given hyperedge g ∈ G, we define a

subhyperedge, s, as a proper subset of hyperedge g, viz.

s ⊂ g s.t. (s 6= φ) ∧ (s 6= g) . (2.58)

Definition 44 Abstract Simplicial Complex (SC): Consider a given a unweighted

hypergraph H = (V,G). We denote by Si = {sik, ∀k ∈ {1, 2, ..., 2|gi| − 2}} the set of all
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proper subsets of each hyperedge gi ∈ G. If we consider the union of all subsets of the

hyperedges in G along with G itself, i.e., C = {G∪(
⋃m
i=1 Si)}, then we have a (abstract)

simplicial complex C and each element c ∈ C is a simplex which represents a hyperedge

or subhyperedge.

The simplicial complex corresponding to a hypergraph basically appends the sub-

hyperedge (equivalently subgroup in group data) information in the hypergraph by

enumerating the subhyperedges. Therefore, SC model is a hypergraph model enabled

with subhyperedges. To demarcate the transition from original hypergraph, H to the

SC, C, we shall also classify the simplices in SC into two groups. First, we simply have

the set of hyperedges, G in original hypergraph which are a subset of SC, C, by Defini-

tion 44, viz. G ⊂ C. Next we define the set containing the simplices or subhyperedges

in C that were never observed in the original hypergraph H, viz.,

Cs = {c|(c ∈ C) ∧ (c 6∈ G)} = (C −G) , (2.59)

and to summarize:

C = G ∪ Cs . (2.60)

To give a concrete example, see Figure 2.1, C = {C1, ...., C19}, G = {g1, g2, g3} =

{C6, C19, C18} and Cs = (C −G).

Next we also classify the simplices in SC one the basis of their cardinality.

Definition 45 Rank and Anti-rank of Simplicial Complex: We define Kmax or

r(C) as the rank of the simplicial complex, C, as follows:

Kmax = r(C) = max
c∈C

|c| , (2.61)

and define Kmin or s(C) as the anti-rank of the simplicial complex, C, as:

Kmin = s(C) = min
c∈C
|c| . (2.62)
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Figure 2.1: Example illustrating a network of groups hypergraph (left) as a simplicial
complex (right) and as a Hasse diagram (middle) corresponding to the simplicial com-
plex, for a scenario where the actors {1,2,3,4,5} have collaborated in the past as groups:
g1 = {1, 2}, g2 = {1, 2, 3, 4} and g3 = {3, 4, 5}.

Definition 46 Dimension of Simplicial Complex: For a simplex (or (sub)-hyperedge)

α ∈ C we define its dimension as dim(α) = |α|−1. If Kmax is the maximum cardinality

of any simplex in C (i.e. rank(C)) then (Kmax − 1) is the maximum dimension of any

simplex in C or simply the dimension of C.

Definition 47 Set of k-cardinality simplices: Given a simplicial complex C, the

set of simplices of cardinality k within the simplicial complex C are defined by the set:

πk = {σ|σ ∈ C ∧ |σ| = k},∀k ∈ {1, ...,Kmax} , (2.63)

where Kmax is the rank of the simplicial complex, C

Thus far we have only provided definitions for the abstract simplicial complex but

we have yet to develop a model to capture it. As this section is dedicated to graph

based models, we here develop a graph based model to capture the SC. For this purpose

we treat each simplex in the SC as a vertex of a graph and connect any two vertices

the simplices or subhyperedges they represent have an intersection and a cardinality

difference of exactly one. The resulting graph is called the Hasse Diagram (HD) or Hasse

Lattice of the original simplicial complex (Sharma et al., 2017; Zax, 2012). Further,

analogous to other proxy graph expansion schemes in previous subsections, we refer

this process of conversion from SC to HD as Hasse Expansion (HE), where HD is
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synonymous to HE graph. We define it more formally as follows.

Definition 48 Hasse Expanded (HE) Graph (Hasse Diagram) (Sharma et al.,

2017): Consider an unweighted hypergraph H = (V,G) and its simplicial complex C.

We then define a simple graph called Hasse diagram, Nh = (Vh, Eh), over the vertex set

Vh = {vcj : cj ∈ C} and with a set of undirected edges:

Eh = {(vci , vcj ) ∪ (vcj , vci)|(vci , vcj ∈ Vh) ∧ (ci ⊂ cj) ∧ (|ci| = |cj | − 1)} (2.64)

. The level in the diagram (Figure 2.1) determines the poset relation. Then we define

the adjacency matrix of the Hasse expanded simple graph, Ah ∈ {0, 1}|C|×|C|, as:

Ah(vci , vcj ) =


1 if (ci ⊂ cj) ∧ (|ci| = |cj | − 1)

1 if (cj ⊂ ci) ∧ (|cj | = |ci| − 1)

0 otherwise .

(2.65)

Analogous to clique expansion (see Equation 2.15), we shall also associate a normal-

ized Laplacian matrix based on the HE graph adjacency matrix as follows:

Lh = (I−Dh
v
−1/2

AhDh
v
−1/2

) , (2.66)

where Dh
v is the diagonal matrix containing the vertex degrees which are defined as:

dh(vgi) =
∑
vcj∈C

Ah(vci , vcj ) , (2.67)

which is simply the i-th row sum of the adjacency matrix Ah. Equations 2.65 and 2.66,

therefore, define the unweighted HE graph. One important point to notice is that the

topology of Hasse diagram is dependent on the cardinality constraint in Equation 2.64.

These cardinality constraint intersection edges of the HD are crucial for modeling and

therefore, often its better to leave these edges unweighted. Weighted edges might in-
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terfere with the degree of enforcement of the cardinality constraint. However, a more

appropriate model is using weights over vertices rather than weighted edges. We there-

fore, next describe weighted HD with vertex weights. These weighted HD can be de-

rived from both weighted as well as unweighted hypergraph or SC. Let us first define a

weighted simplicial complex.

Definition 49 Weighted Simplicial Complex (WSC) (Sharma et al., 2017):

Consider an unweighted hypergraph H = (V,G) or a weighted hypergraph H = (V,G,w).

Let C be the simplicial complex associated with H. If we also associate a weight wx(c) ∈

R,∀c ∈ C, then we attain a Weighted Simplicial Complex, ♦ = (C,wx).

Next, based on WSC we can define its Weighted Hasse Daigram as follows:

Definition 50 Weighted Hasse Diagram (WHD) (Sharma et al., 2017): Con-

sider an unweighted hypergraph H = (V,G) or a weighted hypergraph H = (V,G,w).

Let ♦ = (C,wx) be the weighted simplicial complex associated with H. Also let Nh =

(Vh, Eh) be the unweighted Hasse diagram associated with the SC, C. The we define a

weighted Hasse diagram for the weighted SC, ♦, as Nwh = (Vh, Eh, wh) such that each

vertex of HD gets weight of the corresponding simplex it represent in the WSC:

wh(vci) = wx(ci) . (2.68)

Again nether of the above definitions for WSC or WHD describe any weight assign-

ment scheme. Here we provide example of an intuitive approach for assigning weights

given a general weighted HG. It is also applicable for unweighted HG by assuming unit

weights for the hyperedges. Let us first define a function that maps hyperedges G with

simplex in Cs. Each c ∈ Cs also has a set of groups Q(c) ⊆ G, of which it is a subgroup

of, viz.:.

Q(c) = {x|(x ∈ G) ∧ (c ⊂ x)} . (2.69)

We then define our weight function wx which gives the weights to all the simplices or

(sub)hyperedges in C, given the hyperedges G and their weight function w, as follows:
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wx(c) =


w(c) +

 ∑
x∈Q(c)

w(x)

 when c ∈ G

∑
x∈Q(c)

w(x) when c ∈ Cs

(2.70)

In words, for a hyperedge in the original hypergraph, H, we simply take its weight, w(c),

and also add the weights of the hyperedges it is a subset of. In the case of subhyperedge

(which is not a hyperedge itself) we simply add the counts of the hyperedges it is a

subset of. For example, Sharma et al. (2017) use the the number of times a hyperedge

has been observed in the group data as its weight, w(c), and then develop a WSC model

using the simplex weighting scheme in Equation 2.70.

2.3 Hypergraph Models

In the last Section 2.2 we discussed various graph-based models for hypergraph rep-

resenting group data. All these graph “proxy” models although partly capture some

relationships pertaining to group data like node-node, node-group or group-group rela-

tions, but either fail to capture them simultaneously. We had noted this observation as

the conclusion of Section 1.2. Further, more importantly they do not model the joint

interaction of nodes within a hyperedge. In fact all these proxy graph techniques try

to approximate hyperedge or set-level information with dyadic edge-level information,

resulting in loss of information.

In this section, we will develop models that capture hypergraph, unlike the previous

section’s proxy approaches, in a more head on fashion. Proxy graph methods use two

dimensional affinity matrices to capture dyadic edge-level information, on similar lines

to capture higher-order (hyperedge-level) information we employ higher-order affinity

matrices called tensors.

In fact, we leverage the knowledge that a k-way tensor can be used to represent a k-

uniform hypergraph (Cooper & Dutle, 2012); and to capture hypergraphs in a principled
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manner. This fact was first employed in the computer vision community by Shashua

et al. (2006). Before defining our model, let us first provide some basic definitions.

Definition 51 Rank and Anti-rank of Hypergraph (Berge, 1984): We define

Kmax or r(C) as the rank of the hypergraph, H = (V,G), as follows:

Kmax = r(H) = max
g∈G

c(g) , (2.71)

and define Kmin or s(C) as the anti-rank of the simplicial complex, C, as:

Kmin = s(H) = min
g∈G

c(g) . (2.72)

Definition 52 k-uniform hypergraph (k-graph) (Berge, 1984): A hypergraph

H = (V,G) is k-uniform if each hyperedge has cardinality k, viz.:

c(g) = k , ∀g ∈ G . (2.73)

It can also be defined by the following condition using the hypergraph ranks:

r(H) = s(H) . (2.74)

Definition 53 Symmetric Tensor (Comon et al., 2008): A (cubical) tensor A

over a set S of dimension n and order k is a collection of nk elements ap1,p2,..,pk ∈ S

where pj ∈ [n]. A cubical tensor is said to be symmetric if entries which use the same

index sets are the same. That is A is symmetric if:

ap1,p2,..,pk = apσ(1),pσ(2),..,pσ(k) , ∀σ ∈ Sk , (2.75)

where Sk is the symmetric group on [k].

With the basic definitions in place, let us now define the hypergraph model using

tensors. We start with first uniform hypergraph model, and then later generalize it for
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non-uniform (or general) hypergraphs.

Definition 54 Uniform Hypergraph Tensor (UHT): Consider a weighted k-uniform

hypergraph or k-graph, Hk = (V k, Gk, wk). Corresponding to this k-uniform hypergraph,

we can define a kth order n-dimensional symmetric tensor Ak
hyp = (ap1,p2,..,pk) ∈ R[k,n]

whose elements are as follows:

ap1,p2,..,pk =


wk(gi) for {vp1 , vp2 , ..., vpk} ∈ gi ∈ Gk

0 otherwise ,
(2.76)

where |gi| = k, ∀i ∈ {1, ..., |Gk|}. We refer to this tensor Ak
hyp as k-uniform hypergraph

tensor.

Note that symmetry here implies that the value of element ap1,p2,..,pk is invariant

under any permutation of its indices (p1, p2, .., pk). Therefore, for any given hyperedge

gi ∈ G, we initialize all the indices in the tensor Ak
hyp which correspond to any permu-

tation of its vertices, viz., pσ(1), pσ(2), .., pσ(k) , ∀σ ∈ Sk, with the hyperedge’s weight,

wk(gi). There are various choices of weights possible. If we take wk(gi) = 1, then the

resulting hypergraph tensor, Ak
hyp, is nothing but a higher-order adjacency matrix, also

called adjacency hypermatrix. This is also the unweighted hypergraph case where all

hyperedge are assigned unit weight. A special case of this adjacency hypermatrix is the

normalized adjacency hypermatrix (Cooper & Dutle, 2012) where have the following

weighting scheme:

wk(gi) =
1

(k − 1)!
(2.77)

is used. For any other weights, derived from domain for example, these hypergraph

tensors are also referred to as affinity hypermatrices or affinity tensors of the hyper-

graph (Ghoshdastidar & Dukkipati, 2016; Shashua et al., 2006).

Following Ballard et al. (2011), we also define the lexicographically ordered index
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set for hyperedges:

Pk =
{
p|p = (p1, p2, .., pk) where {vp1 , vp2 , ..., vpk} ∈ gi,

∀gi ∈ G s.t. |gi| = k and p1 < p2 < ... < pk
}

.
(2.78)

Each index, p, in the index set, Pk, uniquely represent all the tensor indices associ-

ated with a given hyperedge. For example for a hyperedge gi = (v4, v7, v9), the index

is p = (4, 7, 9), which represents the tensor indices: {(4, 7, 9), (4, 9, 7), (7, 4, 9), (7, 9, 4),

(9, 4, 7), (9, 7, 4)}, all of which correspond to the entries in the tensor, A3
hyp, initialized

for the hyperedge gi = (v4, v7, v9). Notice that Pk contains unique (non-repetitive)

indexes as there is only a single p corresponding to each of the different hyperedges

gi ∈ Gk. Consequently, we have |Pk| = |Gk|.

Uniform Hypergraph Tensor, as defined in Definition 54, therefore, defines a model

for uniform hypergraph using symmetric tensors. We now generalize it for non-uniform

(general) hypergraphs. For that we first define a partial hypergraph.

Definition 55 Partial Hypergraph (Berge, 1984): Given a hypergraph H = (V,G)

consider a set J ⊂ G. Then we can define another hypergraph H ′ = (V ′, J), where V ′

is:

V ′ = {v|v ∈ V ∧ (∃ e ∈ J | v ∈ e)} . (2.79)

This hypergraph H ′ is called the partial hypergraph generated by the set J .

Definition 56 k-Uniform Partial Hypergraph (or k-partial): Given a hyper-

graph H = (V,G) consider the set of all hyperedges of cardinality k viz. a set Gk ⊂ G

such that c(g) = k , ∀g ∈ Gk. Then we obtain a partial hypergraph Hk = (V k, Gk)

generated by the hyperedge set Gk, which is also a k-graph. We call this hypergraph Hk

as the k-Uniform Partial Hypergraph or k-partial of the original hypergraph H.

With the above definitions in place, we now define the general (non-uniform) hyper-

graph model in terms of tensors.
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Figure 2.2: Thesis diagram describing the conversion of a hypergraph, H = (V,G) to
its hypergraph tensor model Ahyp. The setup is as follows:

• V = {1, 2, 3, 4, 5, 6, 7, 8}

• G = {g1, g2, g3, g4, g5}

• A2
hyp with P2 = {(7, 8)}

• A3
hyp with P3 = {(2, 7, 8), (1, 2, 3)}

• A4
hyp with P4 = {(3, 4, 5, 6), (2, 3, 5, 7)}
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Definition 57 Non-uniform Hypergraph Tensor (HT) model: We have a

weighted hypergraph H = (V,G,w) with rank, Kmax, and anti-rank, Kmin. Consider

the set of k-partial hypergraphs for k = (Kmin, ...,Kmax) as (HKmin , ..,Hk, ..,HKmax).

It is easy to see that H = (HKmin∪··∪Hk∪ ··∪HKmax). weighted k-uniform hypergraph

or k-graph, Hk = (V k, Gk, wk). Taking together the collection of uniform hypergraph

tensors, corresponding to these k-partial hypergraphs, viz. Ahyp = (AKmin
hyp , · · ·,AKmax

hyp ),

constitutes the Non-uniform (General) Hypergraph Tensor Model. Consequently, we

also have the collection of ordered index sets: P = (PKmin , · · ·,PKmax), associated to it.

As far as weights are concerned, a point to clarify is that:

wk(g) = w(g) ∀ g ∈ G , (2.80)

which amounts from the fact that the weight function, w, is applicable to the entire set

G which is also the union of all the k-partial hyperedges, viz. G = (GKmin ∪ · · ∪Gk ∪

· ·∪GKmax). We illustrate the conversion of a hypergraph to a hypergraph tensor model

using a toy example in Figure 2.2.

Note on higher-order information retention:

If we compare the tensor-based hypergraph models to the graph-based methods from

previous section, it is easy to observe why tensor-based techniques are more effective in

retaining higher-order information. Notice that a k-partial hypergraph tensor, Ak
hyp ∈

R[n,k], has the capability to model all the
(
n
k

)
hyperedges. Graph, or 2-graph, based

methods, on the other hand are limited to the the A2
hyp ∈ R[n,2] adjacency matrix, or 2-

uniform HT space. In order to fit into this space, they require an approximation step like

the various expansion methods (see Definitions 29, 34, 40, etc.). However, tensor-based

models, as proposed in this section, have the capacity of directly representing hyperedges

without any information destroying procedure like the various expansions described in

last section. Therefore, hyperedge-level higher-order information gets easily retained in

the higher-order tensors. On similar lines we can also attempt to retain information at
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the level of dual hyperedges. Like the hyperedge-level information encodes the various

vertices that jointly form a hyperedge, a dual-hyperedge-level information encodes which

all hyperedges a vertex is common to or is simultaneously a member of. We therefore,

propose another tensor object corresponding to the dual hypergraph in order to retain

this complementary higher-order information within dual hyperedges.

Dual Hypergraph Models

Similar to hypergraph tensors, proposed previously, we can also define a dual (hyper-

graph) tensor, corresponding to hypergraph dual where the roles of nodes and hyperedges

are interchanged. We consider all the hyperedges in the hypergraph dual that are of

cardinality k. This basically corresponds to all the vertices in the original hypergraph

which have a degree of k, i.e., they are part of exactly k hyperedges in the original hy-

pergraph. Corresponding to this k-uniform hypergraph dual, we can define a kth order

m-dimensional symmetric dual tensor Ak
dual = (aq1,q2,..,qk) ∈ R[k,m] whose elements are

initialized as follows:

aq1,q2,..,qk = 1 (2.81)

where {gq1 , gq2 , ..., gqk} 3 vj and d(vj) = k, ∀j ∈ {1, ..., n}. Note that this tensor is

also symmetric and rest all the elements in the tensor are zeros. Again, we define

the lexicographically ordered index set for dual hyperedges (vertices in the original

hypegraph):

Qk =
{
q|q = (q1, q2, .., qk) where vj ∈ {gq1 , gq2 , ..., gqk},

∀vj ∈ V s.t. |d(vj)| = k and q1 < q2 < ... < qk
}

.
(2.82)

Again, notice that Qk contains unique (non-repetitive) indexes as there is only a single q

corresponding to each of the different dual hyperedge (vertex in the original hypergraph)

i.e. vi ∈ V . Consequently, we have |Qk| = |{vi : d(vi) = k}|.

Finally, the entire collection of dual tensors, Adual = {Ak
dual} , along with their index

sets {Qk}, ∀k ∈ {dmin, .., dmax} (dmin and dmax are the maximum and the minimum
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Figure 2.3: Thesis diagram describing the conversion of a hypergraph, H = (V,G) to
its dual hypergraph, Hdual = (Vdual, Gdual). The setup is as follows:

••••• V = {1, 2, 3, 4, 5, 6, 7, 8}

• G = {g1, g2, g3, g4, g5}

• Vdual = {g1, g2, g3, g4, g5}

• Gdual = {gd1 , gd2 , gd3 , gd4 , gd5 , gd6 , gd7 , gd8}
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Figure 2.4: Thesis diagram describing the conversion of a hypergraph, H = (V,G) to
its dual tensor model Adual. The setup is as follows:

••••• Vdual = {g1, g2, g3, g4, g5}

• Gdual = {gd1 , gd2 , gd3 , gd4 , gd5 , gd6 , gd7 , gd8}

• A2
dual, P

2 = {(2, 3), (4, 5)}

• A3
dual, P

3 = {(1, 2, 3), (1, 3, 4), (3, 4, 5)}

77



vertex degree in the original hypergraph), constitutes the dual hypergraph tensor model.

Definition 58 Non-uniform Dual Tensor (DT) model: We have a hypergraph

H = (V,G) with vertex degrees ranging from dmin to dmax. Correspondingly, we also

have a dual hypergraph H∗ = (G,V ) with cardinalities ranging from dmin to dmax. Con-

sider the set of d-partial dual hypergraphs for d = (dmin, ..., dmax) as ((H∗)dmin , .., (H∗)d,

.., (H∗)dmax). It is easy to see that H∗ = ((H∗)dmin ∪ · · ∪(H∗)d∪ · · ∪(H∗)dmax). Taking

together the collection of uniform dual tensors, corresponding to these d-partial dual

hypergraphs, viz. Adual = (Admin
dual , · · ·,A

dmax
dual ), constitutes the Non-uniform (General)

Dual Tensor Model. Consequently, we also have the collection of ordered index sets:

Q = (Qdmin , · · ·,Qdmax), associated to it.

Using a toy example we illustrate the conversion of a hypergraph to its hypergraph

dual (see Figure 2.3) and then the conversion from this dual to it dual tensor model is

shown in Figure 2.4.

2.4 Temporal Hypergraph Models

In Section 1.2 we defined various categories of group data that shall be of interest for

us and then defined four different abstractions. In previous sections of this chapter,

we have developed hypergraph models for only the static groups: Unweighted Static

Groups and Weighted Groups abstractions (see Definitions 1 and 2). However, these

abstractions do not take into consideration the temporal information. On the other hand

the dynamic abstractions, namely, Temporal Groups (see Definition 3) and Weighted

Temporal Groups, model time information as well. In this we shall focus on developing

hypergraph models for these dynamic or temporal groups. First let us define temporal

weighted groups which generalize the temporal groups.

Definition 59 (Temporal Weighted Groups) Consider a finite set V = {1, 2, ..., n}

of n entities. We call a subset gi ⊆ V , a group. We consider a finite set of m groups G =

{gi|i ∈ {1, ..,m}, gi ⊆ V }. We also consider the temporal activity pattern these groups.
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We define a group interaction event when the entities of the ith group gi interacted at

time tj. In terse, we also refer to it as group gi was active at time tj. We then define

group interaction logs as a set of tuples L = {(gi, tj) : i ∈ {1, 2, ....m}, j ∈ {1, 2, ...., T}}

where the tuple (gi, tj) implies the group activity or interaction event. We also have a

weight associated with each active group gi at time tj given by fw(gi, tj) where fw(·, ·)

is the temporal group weighting function. Then the tuple (G,V, L, fw) together define a

collection of temporal weighted groups.

Like with static groups, for analyzing group structured data, we treat the temporal

group abstractions as a hypergraph as well. First we define a temporal hypergraph.

Definition 60 Temporal Hypergraph: Consider a time duration of [0, (δ + 1) ∗ T ],

which we divide into various snapshot windows of equal size, δ. Snapshot with index t

refers to a time period: (δ∗(t−1), δ∗t). Now consider a set of n vertices V = {v1, ..., vn}.

We can define a temporal hypergraph, H , as a collection of static hypergraphs for each

snapshot, viz. H = (H(1), · · ·, H(T )), where H(t) = (V (t), G(t), w(t)) is the (static) hy-

pergraph corresponding to the snapshot t. Here, V (t) ⊆ V and G(t) is a set of hyperedges

where each hyperedge ej ∈ G(t) is also ej ⊆ V (t). We also associate with each hyperedge

ej, a scalar weight w(t)j = w(t)(ej). Further, nt = |V (t)| ≤ n and mt = |G(t)| ≤ m are

the number of vertices and hyperedges in hypergraph for the snapshot t.

We name the process of conversion from temporal groups to temporal hypergraph

as temporal hypergraph conversion, which we formally define as follows:

Definition 61 Temporal Hypergraph Conversion: The temporal hypergraph con-

version algorithm constructs a temporal hypergraph H from a collection of temporal

weighted groups (G,V, L, fw). This algorithm considers each entity vi as a vertex, result-

ing into a vertex set V . We then construct a static hypergraph H(t) = (V (t), G(t), w(t))
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for each snapshot t by using the group logs that occurred in that snapshot, viz.,

G(t) = {g|(g, t) ∈ L} (2.83)

V (t) = {v|v ∈ g, g ∈ E(t)} (2.84)

w(t)j = w(t)(gj) = fw(gj , t) . (2.85)

After the conversion for each snapshot t ∈ [1, T ], we achieve the collection of static

hypergraphs for each snapshot, viz. H = (H(1), · · ·, H(T )).

We can also convert a temporal hypergraph to a static hypergraph using the con-

version defined below.

Definition 62 Temporal to Static Hypergraph Conversion: Consider a temporal

hypergraph H = (H(1), · · ·, H(T )), where H(t) = (V (t), G(t), w(t)) is the (static) hy-

pergraph corresponding to the snapshot t. We can associate to it a static hypergraph

H = (V,G,w) such that:

G = {G(1) ∪ · · · · ∪ G(T )} (2.86)

V = {V (1) ∪ · · · · ∪ V (T )} (2.87)

wj = f
(
w(1)(gj), · · ·, w(T )(gj)

)
(2.88)

where f(·) is some function which outputs a scalar weight for a given group given its

weights across all snapshots. In short we can also write:

H = H(1) ∪ · · · · ∪ H(T ) (2.89)

Once we have performed the conversion of temporal group data to a hypergraph, we

shall no longer be addressing group data in any further discussions. We will be concerned

only to this hypergraph obtained from the conversion. Like the static case, for temporal

data also we will introduce algebraic structures pertaining to temporal hypergraph. One
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of the major obstacle in modeling temporal data is to capture time along with topology.

In order to capture this extra time dimension, we turn our attention again to tensors,

which are multidimensional, or N-way, array (Pearson & Zhang, 2012) and has proven

to capture multi-dimensional data effectively (Bader & Kolda, 2007). For example,

Tensors allow to handle time as a separate dimension. This provides more flexibility

to creatively manipulate the temporal dimension. Moreover, the temporal patterns can

be captured using tensors to predict future patterns rather than just immediate future.

Recently tensors have already proved effective in predicting temporal link prediction

by Dunlavy et al. (2011). This has encouraged us to capture hypergraphs as well as

their proxy graphs using tensors where the initial dimensions capture the hypergraph

topology and the last dimension captures the temporal information.

We will now gradually visit the various algebraic objects we had developed for static

hypergraphs from previous section and try to generalize them to tensor-based tempo-

ral hypergraph objects. We shall start with the most basic one hypergraph incidence

matrix, H, and generalize it to incidence tensor.

Definition 63 Hypergraph Incidence Tensor: Consider a temporal hypergraph H =

(H(1), · · ·, H(T )), where H(t) = (V (t), G(t), w(t)) is the (static) hypergraph correspond-

ing to the snapshot t. We can associate to it an incidence tensors H ∈ {0, 1}m×n×T ,

where m = |{G(1) ∪ · · ∪G(T )}| is the total number of hyperedges across snapshots and

n = |{V (1) ∪ · · ∪V (T )}| is the number of vertices of the hypergraph. The (gi, vj , t)-th

entry of this tensor is 1 if j-th vertex is a part of i-th hyperedge in snapshot t i.e.

H(gi, vj , t) =


1 vj ∈ gi, gi ∈ G(t)

0 otherwise ,
(2.90)

Each t-th snapsot slice, H(:, :, t), of the incidence tensor, therefore, represents the

incidence matrix of a the hypergraph snapshot H(t) padded with zero rows and columns

in order to make the dimensions of each snapshot slice same (m× n).

81



Definition 64 Hypergraph Weight Tensor: Consider a temporal hypergraph H =

(H(1), · · ·, H(T )), where H(t) = (V (t), G(t), w(t)) is the (static) hypergraph corresponding

to the snapshot t. We can associate to it a hyperedge weight tensor, W ∈ Rm×m×T ,

whose each snapshot is a diagonal, such that:

W(g, g, t) = w(t)(g) , ∀g ∈ G . (2.91)

2.4.1 Temporal Graphs for Hypergraphs

In Section 2.2 we had developed various graph-based proxy hypergraph models. We

had proposed four possible expansions of the original hypergraph resulting into four

different graphs: Clique, Bipartite, Line and Hasse Diagrams. Here we generalize these

graphs to temporal graphs. In order to do so we reconsider the four weighted adjacency

matrices which define these proxy graphs: Awc, Awb, Awl and Ah. We will generalize

these matrices to tensors by adding the time dimension.

Again consider a temporal hypergraph H = (H(1), · · ·, H(T )), where each H(t) =

(V (t), G(t), w(t)) is the (static) hypergraph corresponding to the snapshot t. Also let

H = (V,G,w) be the static hypergraph associated to this temporal hypergraph, H .

Further, to reiterate nt = |V (t)|, mt = |G(t)|, n = |V | and m = |G|.

Given the above setup, we start with the weighted clique expanded graph (WCE-

graph) and define a Temporal Adjacency Tensor, Twc ∈ Rn×n×T as follows:

Twc(vi, vj , t) =


A

(t)
wc(vi, vj) vi, vj ∈ V (t)

c

0 vi, vj /∈ V (t)
c ,

(2.92)

where A
(t)
wc ∈ Rnt×nt is the adjacency matrix of the WCE-graph, N

(t)
c = (V

(t)
c , G

(t)
c ,

wc(t)), for the t-th snapshot’s static hypergraph H(t). We then have, Nc = (N
(1)
c , · ·

·, N (T )
c ), as the Temporal WCE graph corresponding to the temporal hypergraph H

and has the temporal adjacency tensor, Twc, associated to it.

Next we consider the weighted star expanded graph (WSE-graph) and define a
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temporal adjacency tensor, Twb ∈ R(m+n)×(m+n)×T as follows:

Twb(vgi , vj , t) =


A

(t)
wb(vgi , vj) vgi , vj ∈ V

(t)
b

0 vgi , vj /∈ V
(t)
b ,

(2.93)

where A
(t)
wb ∈ R(mt+nt)×(mt+nt) is the adjacency matrix of the WSE-graph, N

(t)
b =

(V
(t)
b , G

(t)
b , w

b
(t)), for the t-th snapshot’s static hypergraph H(t). We then have, Nb =

(N
(1)
b , ···, N (T )

b ), as the Temporal WSE graph corresponding to the temporal hypergraph

H and has the temporal adjacency tensor, Twb, associated to it.

Next we consider the weighted line expanded graph (WLE-graph) and define a tem-

poral adjacency tensor, Twl ∈ Rm×m×T as follows:

Twl(vgi , vgj , t) =


A

(t)
wl(vgi , vgj ) vgi , vgj ∈ V

(t)
l

0 vgi , vgj /∈ V
(t)
l ,

(2.94)

where A
(t)
wl ∈ Rmt×mt is the adjacency matrix of the WLE-graph, N

(t)
l = (V

(t)
l , G

(t)
l ,

wl(t)), for the t-th snapshot’s static hypergraph H(t). We then have, Nl = (N
(1)
l , · ·

·, N (T )
l ), as the Temporal WLE graph corresponding to the temporal hypergraph H

and has the temporal adjacency tensor, Twl, associated to it.

Next we consider the Hasse expanded graph (HE-graph). Let, N
(t)
h = (V

(t)
h , G

(t)
h ),

be the HE-graph for the t-th snapshot’s static hypergraph H(t). We then have, Nh =

(N
(1)
h , · · ·, N (T )

h ), as the Temporal HE graph corresponding to the temporal hypergraph

H . We also define the static HE graph, Nh = (Vh, Gh) corresponding to the temporal

HE-graph, such that Gh = {G(1)
h ∪· ·∪ G

(T )
h } and Vh = {V (1)

h ∪· ·∪ V (T )
h }. Let nh = |Vh|

and nht = |V (t)
h |.

Given this setup we can define a temporal adjacency tensor, Th ∈ Rnh×nh×T , corre-

sponding to the HE-graph as follows:

Th(vi, vj , t) =


A

(t)
h (vi, vj) vi, vj ∈ V (t)

h

0 vi, vj /∈ V (t)
h ,

(2.95)
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where A
(t)
h ∈ Rnht ×nht is the adjacency matrix of the HE-graph, N

(t)
h .

2.4.2 Temporal Hypergraphs

In Section 2.3 we had developed symmetric tensors based hypergraph models, both for

uniform as well as general non-uniform hypergraphs. We had proposed hypergraph

tensors for hypergraph as well as its dual. Here we generalize these hypergraph models

to temporal hypergraphs. In order to do so we reconsider hypergraph tensor, Ahyp and

its dual Adual. We will further generalize these tensors to temporal tensors by adding

the time dimension.

Definition 65 Temporal Nonuniform Hypergraph Tensor (THT) model: Con-

sider a temporal hypergraph H = (H(1), · · ·, H(T )), where H(t) = (V (t), G(t), w(t)) is

the (static) hypergraph corresponding to the snapshot t. Also let H = (V,G,w) be

the static hypergraph associated to this temporal hypergraph, H . Further, to reiterate

nt = |V (t)|, mt = |G(t)|, n = |V | and m = |G|. Also for the t-th snapshot con-

sider the Non-uniform Hypergraph Tensor Model, A
(t)
hyp, which is a collection of uniform

hypergraph tensors, corresponding to the k-partial hypergraphs for t-th snapshot, viz.

A
(t)
hyp = (A

Kt
min(t)

hyp , · · ·,AKt
max(t)

hyp ). Here the rank, Kt
max, and anti-rank, Kt

min are depen-

dent on the snapshot index t.

Given this setup we can define a Temporal Non-uniform Hypergraph Tensor Model,

Thyp = (TKminhyp , · · ·,TKmaxhyp ), where Kmin and Kmax are the rank and anti-ranks of H (the

static hypergraph associated with the temporal hypergraph). Here, Tk
hyp = (ap1,p2,..,pk,t) ∈

R[k,n]×T , is a symmetric tensor for all except along its last temporal dimension and is
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initialized as follows:

ap1,p2,..,pk,t =


A

k(t)
hyp(vp1 , ··, vpk) vp1 , ··, vpk ∈ V k(t) ∧ k ∈ [Kt

min,K
t
max]

0 otherwise .

=


wk(t)(gi) for {vp1 , vp2 , ..., vpk} ∈ gi ∈ Gk(t)

0 otherwise ,

where wk(t) is the weight function associated with Hk(t) = (V k(t), Gk(t), wk(t)), which is

the k-partial hypergraph for H(t). Lastly, we also have the collection of ordered index sets

for all the snapshots: Ptemp = (P(1), · · ·,P(T )), where P(t) is the ordered set associated

to A
(t)
hyp.

Similarly, we can also generalize the hypergraph dual tensor (defined in Section 2.3)

to a temporal setting.

Definition 66 Temporal Nonuniform Dual Tensor (TDT) model: Consider

a temporal hypergraph H = (H(1), · · ·, H(T )), where H(t) = (V (t), G(t), w(t)) is the

(static) hypergraph corresponding to the snapshot t. Also let H = (V,G,w) be the static

hypergraph associated to this temporal hypergraph, H . Further, to reiterate nt = |V (t)|,

mt = |G(t)|, n = |V | and m = |G|. Also for the t-th snapshot consider the Non-uniform

Dual Tensor Model, A
(t)
dual, which is a collection of uniform dual tensors, corresponding

to the d-partial dual hypergraphs for t-th snapshot, viz. A
(t)
dual = (A

dtmin(1)
dual , · · ·,Adtmax(T )

dual ).

Here cardinalities of the hypergraph dual, (H(t))∗, or vice versa degrees of the hypergraph,

H(t), are ranging from dtmin to dtmax and are dependent on the snapshot index t.

Given this setup we can define a Temporal Non-uniform Dual Tensor Model, Tdual =

(Tdmindual , · · ·,T
dmax
dual ), where dmin and dmax are the rank and anti-ranks of H∗ (the static

hypergraph dual associated with the temporal hypergraph). Here, Tk
dual = (aq1,q2,..,qk,t) ∈

R[k,m]×T , is a symmetric tensor for all except along its last temporal dimension and is

85



initialized as follows:

aq1,q2,..,qk,t =


A

k(t)
dual(gq1 , ··, gqk) gq1 , ··, gqk ∈ G(t) ∧ k ∈ [dtmin, d

t
max]

0 otherwise .

=


1 for vi ∈ {gq1 , gq2 , ..., gqk} , vi ∈ V (t) , d(vi) = k

0 otherwise .

Lastly, we also have the collection of ordered index sets for all the snapshots: Qtemp =

(Q(1), · · ·,Q(T )), where Q(t) is the ordered set associated to A
(t)
dual.

2.5 Hypergraph Structured Datasets

In the previous sections of this chapter we have focused on the various hypergraph

models that are available to capture the various groups abstractions that we had dis-

cussed in Section 1.2. In this section we describe the variety of datasets that were

employed as well as curated during the research work conducted for this thesis. We

divide these datasets into three main categories. First, are those datasets that are de-

rived from the observations of real-world groups interactions. Next section focuses on

providing an overview of how these data sets were curated and their basic statistics.

Second category is that of attribute derived groups, where the groups are derived on

the basis of their features. This we describe in Section 2.5.2. Lastly, in Section 2.5.3,

we expound on the synthetic datasets and the various techniques for generating them.

All these datasets are publicly available at University of Minnesota’s, MESH project

website (http://mesh.cs.umn.edu).

2.5.1 Real-world Group Interaction based Hypergraph Data

One of foremost motivations for this thesis has been the understanding of social inter-

actions and therefore, we have primarily focused on social group datasets.

With the advent of high-speed internet, collaborations are no longer restricted by
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physical proximity and this internet generated online space has allowed for new types

of group interactions more than ever before. A group of individuals, irrespective of

their demographics or location, can perform a task online. This task might be writing

software code (Contractor, 2013) (or a Wikipedia article or a Google Doc) by a group

of coders (or editors), or can be a business meeting involving video chat with colleagues

(using services like Skype or Zoom), or it can even be a group of player playing online

multi-player games (Ahmed et al., 2011) like World of Warcraft. More importantly, these

technologies offer minute-by-minute traces of group interactions over extended periods of

time, providing information about both the structure and content of relationships. This

includes data on individual characteristics (profile), their connections (social graph) and

behavior (individual and interactions). Analysis of this data using latest computational

techniques is the rapidly growing area of Computational Social Science (Lazer et al.,

2009).

Understanding the dynamics of such small (social) groups is of increasing research

interest in various sub-disciplines in the social sciences (Poole et al., 2004). Moreover,

this research has applications such as optimizing performance of human groups (Boh

et al., 2007; Cheney et al., 2010; Lungeanu et al., 2014) measured by metrics such

as “collective intelligence” (Woolley et al., 2010). Social groups are broadly divided

into small groups and large groups. A key difference between large groups and small

groups is that membership in the former is largely based on identity, i.e. a member

identifying himself with the group. In contrast, a small group is defined principally

by the (regular) interaction between group members, often driven by some purpose,

professional or personal. Moreover, small group formation motives and communication

processes, which are task centered, are very different from those involved in building

friendship ties in a friendship network or joining a community, e.g., joining a news

interest group, being part of a Facebook community, subscribing to a YouTube channel,

or publishing within a particular research discipline. Lastly, well-defined small groups,

in contrast with large groups, typically have size ≤ 20.

We shall be dealing mostly with small groups data but we have also assorted several
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large group data sets as well. We have also further subdivided the small group datasets

into various genre based on domain defined categories. We refer each genre of a par-

ticular small group as a “subgroup”. Further, we refer to large groups as communities

and the large group dataset as community dataset. In nutshell, we have three kinds

of group datasets: small group datasets, subgroup datasets and community datasets.

In the following three subsections we describe each of these datasets along with their

collection procedures.

Small Group Datasets

These datasets are listed in Table 2.1 and described in detail in Table 2.2. Sub-genre

of small groups are described in Table 2.3 Due to the task specific nature, there is

high social interaction between people in small groups. We further divide the datasets

according to the nature of their tasks.

Research Collaboration Datasets First kind of small group datasets that we con-

sider are extracted from the publicly available research publication records. These

datasets reveal the collaboration between coauthors who constantly interact and work

together to publish their research. We construct a hypergraph network where the indi-

vidual authors are considered nodes and the group of coauthors of a research paper is

considered as a hyperedge. The publishing date of a research paper is used to generate

temporal statistics. Hence, different instances of the same hyperedge means multiple

publications over time. Along with temporal information of a group these datasets also

provide their field of research which further help us to generate subhypergraphs based

on their fields to evaluate the differences in their properties. We now describe in detail

each of the research publication datasets employed in this study.

ArXiv : It is a repository of electronic prints of scientific publications. ArXiv1 hosts

literature from various scientific fields including Physics, Mathematics and Computer

Science. We build the dataset by scraping information such as date, title, authors list

1https://arxiv.org/
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and subject id’s of publications from 1992 to 2018 for each scientific field. We consider

that the authors of a publication must have interacted and collaborated, thus act as

a small group and constitute a hyperedge. In this chapter we study publications from

20xx to 20yy and extracted zzzz papers from which we generated xxx authors and yyy

hyperedges. Along with the complete hypergraph which contains publications of all the

fields, we also extract the subhypergraphs based on the scientific field of the publication.

DBLP : DBLP (Tang et al., 2008) is a computer science bibliography which provides

a comprehensive list of research papers published in computer science conferences. For

our experiments we extracted v.10 dataset2. Dataset contains list of published papers

where each paper is in JSON schema which contains title, authors, publication venue,

year, number of citations, references and abstract of that paper. In this chapter we

study the publications from 20xx to 20yy and extracted zzzz papers from which we

generated xxx authors and yyy hyperedges. We further divide the complete hypergraph

of computer science into sub-hypergraphs. The sub-hypergraphs consists of the sub-

fields of Computer Science like Machine Learning, Software Engineering, Computer

Security etc. The dataset does not explicitly provide the sub-field of a paper. To obtain

it we maintain lists3 of the main venues(conferences) of each major sub-field in computer

science. Each paper is allocated to its sub-field based on its publication venue.

Pubmed : PubMed provides MEDLINE database which comprises references and

abstracts on medicine, nursing, dentistry, health care systems, and preclinical sciences.

We used Entrez Programming Utilities which is a public API to access PubMed. The

data can also be directly downloaded from NCBI4. For our experiments we scraped the

complete Pubmed data from 1900 to 2018. However, in this chapter we study data from

20xx to 20yy and extracted zzzz papers from which we generated xxx authors and yyy

hyperedges. The API provides a comprehensive list of subcategories such as Anatomy,

Communicable Diseases, Ethics etc. and lists the venues(conferences and journals)

2https://www.aminer.cn/citation
3https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng
4https://www.ncbi.nlm.nih.gov/
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associated with them. Each research paper contains information of its publishing venue

which is used with this list to further divide the complete biomedical dataset into sub-

hypergraphs of each subcategory.

US Patent : The United States Patent and Trademark Office is an agency in the

U.S. Department of Commerce that issues patents to inventors and businesses for their

inventions. They provide USPatent5 dataset comprising detailed information on U.S.

patents granted between January 1963 and December 1999. In this chapter we study

patents from 20xx to 20yy and extracted zzzz papers from which we generated xxx

authors and yyy hyperedges. Patents are further divided into six main technological

categories such as Computers and Communications, Drugs and Medical, Electrical and

Electronics, Chemical, Mechanical and Others. The dataset contains the category in-

formation of each patent, which can be understood from subcategories.txt present at

the website. We further construct sub-hypergraphs based on these categories.

Group Communication Datasets The priniciple activity of groups is to exchange

information and ideas collectively in order to make decisions. Nowadays people use

such online messaging and email services which have overcome the physical barrier to

constantly communicate with multiple people over large distances. We use such publicly

available group communication datasets to construct hypergraph network where each

user is represented using a node. Each email or group chat is considered to be an idea

discussed between the sender and the multiple receivers, therefore all the users linked

to it are considered as a hyperedge. The email or message sent date is used to generate

temporal statistics. Different instances of the same hyperedge signifies multiple emails

and message exchanges between the same group of people over time. We have discussed

each group communication datasets below in detail.

Enron Email : It is a corpus created by collecting email communication data be-

tween 158 senior management employees of Enron Corporation. The data was acquired

by Federal Energy Regulatory Commission during the investigation of company’s col-

5https://data.nber.org/patents/
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lapse and made publicly available afterwards.[[Give Dataset description]]

Eu-mail : The dataset is a collection of emails between members of a European

research institution, where each email address has been anonymized and it is represented

by a node (Leskovec et al., 2007). The original data source only contains (sender,

receiver, timestamp) tuples, where timestamps are recorded at 1-second resolution. All

the members involved in an email exchange form a hyperedge. The dataset consists of

1005 nodes and 25148 hyperedges.

Manufacturing Company Email : It is an internal e-mail communication be-

tween employees of a mid-sized manufacturing company (Michalski et al., 2011). The

email addresses have been anonymized and are represented by nodes. Tthe email com-

munication covers a time period of nine full months of 2010 starting from 2010-01-01

to 2010-09-30. Multiple recipients of the same e-mail are represented as separate rows

without distinguishing the recipient type. The sender and the receivers of an email

communication form a hyperedge.

Online Collaboration Space Datasets With the advent of cloud services and col-

laboration platforms, it has become trivial for teams of users to collaborate online. Such

resources allow users to work remotely on the same projects and documents for long

period of time, which indicates high amount of interaction among team members. We

build the hypergraph network using publicly available as well as acquired[how to write

this properly] online collaboration datasets, where each team member is represented by

a node. We however don’t consider whole team to be a hyperedge because generally

teams consist of highly interactive small groups. We discuss small group extraction for

each online collaboration dataset below.

Github: Often called the social networking site for programmers, Github is a code

sharing and publishing platform where programmers commit(edit) changes to the files of

a repository(project directory). For our experiments we use a publicly available Github

Commit dataset6 containing timestamped commit information on 16M repositories. The

6https://data.world/vmarkovtsev/452-m-commits-on-github
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data is in json format, where key represents a repository and value contains a list of

commits on that repository. For each repository we construct a time series of its commits

by programmers. We then use a density based data clustering algorithm DBSCAN to

form groups of programmers who commit in small intervals. We make an assumption

that people who commit close to each other must be interacting in a group and thus

form a hyperedge. In this chapter we study data from 20xx to 20yy and extracted zzzz

papers from which we generated xxx authors and yyy hyperedges.

Gaming Collaboration Massively Multiplayer Online Games (MMOG) typically

allows from hundreds to thousands players at the same time to play the same game.

These games generally divide gamers in teams/guilds to collaborate and perform specific

tasks. Such games provide real time audio chatting and visual aids to locate your team

members, cooperate and complete the objectives. Due to the high social interaction

involved between team members during the game, a team acts as a small group and

represented by a hyperedge. The gaming collaboration datasets that we use for our

experiments are proprietary in nature, and are not freely available for general public

usage.

Everquest II : It is a proprietary dataset containing anonymized user log data of

EQ II players collected over a period of 27 months. EQ II enables social interaction

with other players through grouping and the creation of guilds. Player interaction is

encouraged by integrated voice chat, a built-in mail system, global chat channels, and a

global marketplace. EQ II supports guild formation by introducing special tasks, guild

oriented quests and experience points. Such activities are used to extract collaborative

small groups (Ahmed et al., 2014), represented by hyperedges.

KingSoft : We acquired Chevaliers Romance III (CR3) MMOG data, a role playing

game, from a leading digital gaming company in China, Kingsoft. It allow players to

choose from eight character class archetypes with distinct complementary skills and

abilities which provides a basis for in game collaboration (Lu et al., 2014). Players

socially interact with each other in form of guild systems, which are represented using
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hyperedges.

Movie Collaboration Dataset The cast and crew members of a movie work together

to create a movie. As observed, usually it takes months to make a movie, throughout

that time period cast members work together, regularly as a small group. Each cast

member is represented by a node and the complete cast of a movie forms a hyperedge.

We use the following publicly available movie collaboration datasets for our research.

IMDB : IMDB7 is one of the largest movie rating and review platforms. It’s an

online database of information related to films including cast, production crew and

personal biographies, plot summaries. We extract movie title, release date and genre

information from basics.tsv and crew members from principals.tsv. Movies typically

have genre information which is further used to contruct sub-hypergraphs of each genre.

UCI Movie Dataset : It’s a movie rating dataset8 collected by DEC Systems

Research Center over a period of 18 months. After preprocessing we consider 2,465

movies with genre information to construct sub-hypergraphs based on each genre.

Human Group Movement Datasets Emergence of location based social network-

ing platform has enabled us to analyze social and spatial properties of users who live

in close proximity to each other. Such platforms allow users to check in at places in

their local vicinity, either through a dedicated mobile application or through a website.

Users are able to see who is nearby and who has been there before. These platforms

allow registered users to connect with their existing friends and also meet with new

people based on the places they check-in. For our research we try to find small groups

of users who check-in together frequently. We call such small groups, hyperedges. We

use publicly available check in data from various platforms discussed below.

Gowalla : It is a location-based social networking website where users share their

locations by checking-in. Each line of the dataset consists of a user id, location id and

timestamp of check-in. We use a sliding window of two hours to cluster users into a

7https://datasets.imdbws.com/
8https://archive.ics.uci.edu/ml/datasets/Movie
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group if they have same location id. We then use FP-Growth algorithm to extract group

of users who check-in together more than the minimum threshold. We assume that if a

certain number of people check-in together at the same locations then they must know

each other. These users are called nodes and their group is a hyperedge.

Community Datasets

Table 2.4 and Table 2.5 describe the community datasets. Individuals explicitly join

communities that organize around specific topics, interests, and affiliations. These in-

dividuals do not show high level of interaction within the community as compared to

small groups. We further divide the datasets based on the nature of their formation.

Interest based Communities Social Media platforms allow its users to create and

maintain their profiles and form connections with other users in the form of friendships

or by following them. Users build connections and form groups or circles with like

minded people who pursue similar interests through interaction. Due to the limited

interaction between users in a group, these groups show properties of a community. We

consider such user-defined groups which have more than 2 nodes as communities. All

the following dataset have been extracted from SNAP.

Livejournal : It is a Russian social networking service where user lists another user

as friend. Users can find or create a community according to their interests. Anyone

who joins a community can make posts to it as they would on a regular journal. We

use community dataset, where each line in the dataset represents a community (Yang

& Leskovec, 2015).

Friendster : Before 2015, Friendster was a social networking website, where users

could share videos, photos, messages and blogs with other members. It allowed users to

form functional groups to which other users then join to construct virtual communities.

Each row in the dataset is a community which is represented by a hyperedge (Yang &

Leskovec, 2015).

Orkut : It was a social networking site owned and operated by Google where users
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Table 2.1: Small Group Datasets Details

Dataset Name Group Activity
/ Type

Hyperedges Group Vertices Actor

Pubmed Research
Publication

8323170 Group of
Researches

4775501 Researcher

USPatent Patent
Publicaiton

1050965 Group of
Researches

1012236 Researcher

DBLP Research
Publication

697954 Group of
Researches

694150 Researcher

ArXiv Research
Publication

849722 Group of
Researches

878663 Researcher

EQ2 Online Game
Task

11240- Group of Game
Players

10933- Game Player

Kingsoft Online Game
Task

969896 Group of Game
Players

64310 Game Player

Enron Email
Communication

3016- Group of
Members in an

Email
Communication

184- Member of
Organization

EU Mail Email
Communication

25148 Group of
Members in an

Email
Communication

1005 Member of
Organization

Manufacturing
Company Email

Email
Communication

5685 Group of
Members in an

Email
Communication

167 Member of
Organization

Apache Code Editing 80910- Codes Editing
Same Software

Code

3360- Software Coder

Github Code Editing 1145227 Codes Editing
Same Software

Code

1942330 Software Coder

IMDB Movie Making 2934033 Movie Making
Group

3350792 Movie Actors

UCI Movie
Dataset

Movie Making 2463 Movie Making
Group

3544 Movie Actors

Gowalla Human Group
Movement

110121 Group Check-in 23580 Individual
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Table 2.4: Community Datasets

Dataset Name Group Activity
/ Type

Hyperedges Group Vertices Actor

LiveJournal Interest Group 576120 Group of Individuals Sharing
interest in Journalism

1147948 Individual

Friendster Interest Group 1500380 Group of Individuals Sharing
interest in Blogs

7944949 Individual

Orkut Interest Group 11065973 Group of Individuals Sharing
posts in Social Media

2322299 Individual

Youtube Interest Group 14870 Group of Individuals Sharing
interest in Online YouTube

Videos

52675 Individual

Deezer HR Interest Group 84 Group of Individuals
following music of same genre

54573 Individual

Deezer HU Interest Group 84 Group of Individuals
following music of same genre

47538 Individual

Deezer RO Interest Group 84 Group of Individuals
following music of same genre

41773 Individual

DBLP Research
Community

13423 Researchers who published in
same journal/conference

260998 Individual

EVE Corporation
Network

Company
Employees

16386- Employees of the same
corporation

52675- Individual

- -

Google Plus
Circles

Ego Network 463 People in the social circle of
the user

23591 Individual

Facebook Circles Ego Network 191 People in the social circle of
the user

2884 Individual

Twitter Circles Ego Network 3632 People in the social circle of
the user

22964 Individual

Twitter Followers User’s followers 70065 Group of individuals who
follow a user

70097 Follower

Google Plus
Followers

User’s followers 123 Group of individuals who
follow a user

193235 Follower

Bitcoin Alpha Ratee’s raters 2774 Group of individuals who
rate a user

3286 Rater

EVE mentor
network

Mentee’s of a
Mentor

44253 Group of individuals who
were mentored by a mentor

77094 Mentee

Wikipedia Candidate’s
voters

2379 Group of voters who voted
for a candidate

6110 Voter
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Table 2.5: Community Datasets Description

Dataset
Name

Group
Activity /

Type

Number
of Entities

Number
of Com-
munities

Community Description

LiveJournal Interest
Group

1147948 576120 Livejournal allows users to find and join or create a new
community according to their interests. Each community is

represented by a hyperedge.

Friendster Interest
Group

7944949 1500380 It allowed users to form groups which then other users can
join to construct virtual communities to share multimedia

content. Such groups are represented by a hyperedge.

Orkut Interest
Group

2322299 11065973 Group of Individuals Sharing posts in Social Media

Youtube Interest
Group

52675 14870 Group of Individuals Sharing posts in Social Media

Deezer HR,
HU, RO

Interest
Group

54573,
47538,
41773

84 Each song is mapped to a genre which is used to compile
the preferred genre list of a user through the liked song

list. A group of users following a genre acts as a
community, which is represented as a hyperedge.

DBLP Research
Community

260998 13423 Researchers who published in same journal/conference
become a part of the community based on publishing

venue. We use such communities to construct hyperedges.

EVE Cor-
poration
Network

Company
Employees

52675- 16386- Employees of the same corporation form community by
association. Each community is represented by a

hyperedge.

Google
Plus Circles

Ego
Network

23591 463 It allows users to manually categorize their friends into
social circles. Each user can maintain multiple circles.

Each of these circles acts as a hyperedge.

Facebook
Circles

Ego
Network

2884 191 The dataset is made after a survey of 10 users, who were
manually asked to identify all the circles to which their

friends belonged. These circles are used to construct
hyperedges.

Twitter
Circles

Ego
Network

22964 3632 Twitter allows its users to maintain lists comprising
persons, organisations, celebrities, news media, etc. Such

lists are represented using hyperedges.

Google
Plus

Followers

User’s
followers

193235 123 Google Plus allowed its users to follow other users, such
that each user has a list followers. We use these lists to

construct hyperedges.

Twitter
Followers

User’s
followers

70097 70065 Group of individuals who follow a user form a follower list
with respect to that user. We use these lists to construct

hyperedges.

Bitcoin
Alpha

Ratee’s
raters

3286 2774 It allow user’s to rate each other to show trust/distrust.
For every user we consider all the people who rated them

with positive trust value, to be in a single community,
which can be represented by a hyperedge.

EVE
mentor
network

Mentee’s of
a Mentor

77094 44253 Group of individuals who were mentored by a mentor are
represented using a hyperedge.

Wikipedia Candidate’s
voters

6110 2379 Group of voters who voted for a candidate are represented
by a hyperedge.
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could connect to each other. It allowed users to form communities that organize around

specific topics, interests, and affiliations which other users explicitly join and share

content Feld (1981).

Youtube : It is a video sharing platform where users upload, watch, like and sub-

scribe to the videos. It allows users to form groups which other users can then sub-

scribe (Mislove et al., 2007).

Deezer : Deezer is a French online music streaming service which allows users to

connect and form friendships. It contains friendship networks of users from 3 European

countries. The dataset is in json format where the key represents user ID and the value

represents a set of user’s prefereend genres. Users show a personal interest when they

like a song. Each song is mapped to a genre which is used to compile the prefererred

genre list of a user through the liked song list. Therefore, a group of users following a

genre is an interest based group, hence a community. From the dataset we extract 84

communties from the 84 distinct genres for 3 countries.

Affiliation based Communities : Individuals form groups based on being affiliated

with a community for eg: researchers publishing in a journals, people working in a

company. They might not have high intra community interactions but they form groups

based on their association with the community.

DBLP : DBLP is a computer science bibliography which provides a comprehensive

list of research papers in computer science. Communities in a scientific domain cor-

respond to people working in common fields of science. However, publication venues

serve as good proxies for scientific areas ?. Although the authors who published on the

same venue might not have collaborated with each other but they show their affinity

for the the venue and therefore form a community. Each line in the dataset represents

a community of users.

EVE dataset : It is a corporation employee dataset, where employees belonging to

the same corporation form a community by association.

Google Plus: It was a social network owned by Google. Google plus allows users to
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follow each other and group different types of relationships into Circles. We construct

two different hypergraphs from the dataset. First, we construct a hypergraph from its

follower followee network, wherein we assume that all the users following a user forms

a community w.r.t. that user. Second, the user aggregate other users in his/her circle

which constitutes a community.

Facebook : It is a social networking where users mutually connect with each other

and declare their frienship. Each user has a friend list which contains all of his/her

friends. We assume such list to be a community w.r.t. that user.

Twitter : It is a microblogging and social networking service on which users post

and interact with messages known as ”tweets”. It allows users to follow other users.

Each user has a ”following” list which maintains the list of all the others users which

it follows. We extract follower list for each user using this dataset and consider it a

community.

Follower Followee network : Such networks allow people to follow each other. We

assume that all the people following a person form a community with respect to the

followee.

Bitcoin Alpha : It is a peer-to-peer payment network where people trade in cryp-

tocurrencies, by broadcasting digitally signed messages to the network. Since cryptocur-

rency traders are anonymous, there is a need to maintain a record of users’ reputation

to prevent transactions with fraudulent and risky users. They allow users to rate other

users in a scale of -10 (total distrust) to +10 (total trust). A postive rating signifies

that the user is willing to do a transaction with rated user in future. For every user

we consider all the people who rated them with positive trust value to be in a single

community.

Wikipedia : Its an online encyclopedia editted collaboratively by a community of

volunteer editors. It is maintained by group of administrators with some additional

access. An election is held in order for a user to become an administrator, where

wikipedia community votes and decides who to promote to adminship. All the volunteers

101



Data Hyperedges Vertices Max. Avg. Max. Avg.
(m) (n) Cardinality Cardinality Vertex Degree Vertex Degree

zoo 101 15 10 6.53 83 44
voter 432 16 13 7.91 272 213.69

autism-child 291 14 13 7.46 217 155
autism-adolo 103 14 12 7.59 82 55.86
autism-adult 681 14 13 5.81 504 282.5

synthetic 7020 80 6 3.3 330 290.3

Table 2.6: Hypergraph Statistics for various Datasets

who vote for a particular volunteer forms his community. The network contains all the

Wikipedia voting data from the inception of Wikipedia till January 2008.

2.5.2 Attribute derived Hypergraph Data

We consider both real-world as well as synthetic datasets. For the former, we make

use of five popular real-world datasets from the UCI Machine Learning Repository

(http://archive.ics.uci.edu/ml). The five selected datasets have data points whose fea-

ture vectors contain mostly boolean-valued features. (From each of the datasets, we

removed the very few non-boolean valued features.) We then consider each data point

(sample) as a hyperedge with features as vertices. All the features (vertices) which have

value one for a given sample (hyperedge) are considered vertices of this sample hyper-

edge. In short, we treat the data matrix (sample-feature mapping) as the hypergraph

incidence matrix (hyperedge-vertex mapping). Below we describe the five datasets:

1. zoo: In this dataset, there are several animals each described with a set of boolean

attributes like, for example, does it have a feather, or is it airborne. There are

several classes of animals, and the aim is to classify animals correctly into its class.

2. voter: In this, the aim is to classify congressman as democrat versus republican

based on 16 key votes, where each vote is boolean (yea or nay). Each congressmen’s

hyperedge contains only “yay” vertices.

3. autism-child, autism-adolo, autism-adult: These three datasets contain psy-

chological evaluation on a cohort of children, adolescents, and adults, respectively,
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for classification into having ASD disorder or not. Attributes are boolean item

responses to behavioral questions. We treat each item (psychological evaluation

question) as a vertex, and with each positively responded item (vertex) becomes

part of the corresponding individual’s hyperedge.

2.5.3 Synthetic Hypergraph Data

For generating synthetic hypergraphs, we employ the recently proposed hypergraph

stochastic block-model (hSBM) (Ghoshdastidar & Dukkipati, 2015) which are gener-

alization of the traditional stochastic graph model to a hypergraph setting. This model

is fairly straightforward. Here we describe a slightly augmented process as we need

labels for hyperedges (rather than partition labels for vertices in hSBM). We start with

a set of vertices and divide them into two equal sets (we restrict ourselves to only

two vertex partitions but can be easily extended for more). We then randomly gener-

ate hyperedges between any vertices with probability pinter and within vertices in the

same partition with probability pintra. In order to generate clusters or communities

one chooses pinter < pintra, resulting in more dense connections within each partition

rather than across partitions. For a given cardinality c, we set our probability vector

p(c) = [pinter, pintra] = [5, 40]·(log n/n(c−1)), where n is the number of vertices and order

O(K · log n/n(c−1)) is recommended to realize sparse regime i.e. O(n log n) hyperedges.

The particular value of constant K is chosen to realize not too sparse hypergraphs and

a sufficiently high number of higher-order hyperedges. We realize 25 hypergraphs using

the above process with roughly 15n log n to 25n log n hyperedges. For our experiments

we restrict to [2, 6] cardinality hyperedges (average statistics shown in Table 2.6). We

then label hyperedges into three different classes: those consisting of only vertices from

first vertex partition, those from an only second partition, and those with a mix of

vertices from both partitions. The aim, in this case, is to solve this 3-class classification

problem.
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Chapter 3

Group Stability and Attrition

Prediction: A Cross-sectional

Analysis

This chapter serves as the entry point to the first part of this thesis. In this and the

next two chapters, we study hypergraph inference mechanisms. Specifically this chapter

addresses the problem of old hyperedge prediction by dividing it into two sub-problems

of group stability prediction and group attrition prediction.

We start by again motivating that the study of small collaborations or teams is an

important endeavor both in industry and academia. The social phenomena responsible

for formation or evolution of such small groups is quite different from those for dyadic

relations like friendship or large size guilds (or communities). In small groups when

social actors collaborate for various tasks over time, the actors common across collab-

orations act as bridges which connect groups into a network of groups. Evolution of

groups is affected by this network structure. Building appropriate models for this net-

work is an important problem in the study of group evolution. This work focuses on the

problem of group recurrence prediction. In order to overcome the shortcomings of two

traditional group network modeling approaches: hypergraph and simplicial complex, we
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propose a hybrid approach: Weighted Simplicial Complex (WSC). We develop a Hasse

diagram based framework to study WSCs and build several predictive models for group

recurrence based on this approach. Our results demonstrate the effectiveness of our

approach.

Next Section 3.1 introduces and motivates the problem, followed by preliminaries

and problem statement in Section 3.2. We discuss the problem formulation and the

methodology in Section 3.3. Section 3.4.2 is dedicated to the various experimental

evaluations conducted and describes the various datasets employed, which is followed

by the the conclusion.

3.1 Introduction

With the advent of high-speed internet, collaborations are no longer restricted by phys-

ical proximity. A group of individuals, irrespective of their demographics or location,

can perform a task online. This task might be writing software code (or a Wikipedia

article or a Google Doc) by a group of coders (or editors), or can be a business meeting

involving video chat with colleagues or collaborations in writing paper (Sharma et al.,

2014; Simmons et al., 2016; Singhal et al., 2016a;b) or teaming up in online games (Roy

et al., 2017; Sharma & Srivastava, 2017; Singhal et al., 2013b). Understanding the

dynamics of such small (social) groups is of increasing research interest in various sub-

disciplines in the social sciences (Poole et al., 2004), and is of interest to applications

that require high efficiency in the performance of human groups (Lungeanu et al., 2014;

Singhal et al., 2014b).

This chapter addresses the problem of group evolution, with specific focus on un-

derstanding the causal factors driving the evolution. The overall objective is to build a

model that can predict how a group will evolve in the future, based on its history. One

aspect of special interest is group recurrence, which can be stated thus: Which group(s)

(or its subgroup(s)) among the groups observed so far, will continue to function as a

group, i.e. perform some task again in the near future?
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Prior studies have demonstrated the significance of recurrence in network structure

(see (Zuckerman, 2004) and references therein). Most work on group evolution in social

networks focuses on the evolution of arbitrary size communities or groups (Patil et al.,

2013b). The sizes of these groups are usually large and the boundaries of the community

depends on the definition of membership used. In this chapter we study well-defined

small groups which typically have size ≤ 20. A key difference between large groups

and small groups is that membership in the former is largely based on identity, i.e.

a member identifying himself with the group. In contrast, a small group is defined

principally by the (regular) interaction between group members, often driven by some

purpose, professional or personal. The focus of this paper is to study the evolution

of small groups and, in contrast to classical social science literature, the objective is to

build models that can predict future behavior, with the final goal of identifying potential

causal mechanisms for small group evolution.

In contrast to prior work, we highlight the distinct nature of small groups and de-

velop models inspired from social science theories of small groups (Poole et al., 2004).

A group can be formed depending on the requirement (fiat teams) or a set of actors

can make an autonomous decision to work together (self assembly (Contractor, 2013)).

In either case, individuals find it easier to work with familiar actors (Lungeanu et al.,

2014), making frequency of activity by a group an important metric. Also, over time,

actors build new relationships while working in different groups. A shared collaboration

history is therefore created, where the same individuals are part of multiple groups, act-

ing as bridges between groups, and resulting in a network of groups (NOG) (Figure ??).

This is the network perspective of small groups (Monge & Contractor, 2003) where

the network of groups plays a central role in the group formation process. Moreover,

group formation motives and group communication processes, which are task centered,

are very different from those involved in building friendship ties in a friendship network

or joining a community, e.g., joining a news interest group, being part of a Facebook

community, subscribing to a Youtube channel, or publishing within a particular re-

search discipline (Singhal & Srivastava, 2014; Singhal et al., 2013a; 2017). Recently,
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some attempts have been made to model networks as higher order relational struc-

tures such as simplicial complexes (Moore et al., 2012; Ramanathan et al., 2011) and

hypergraphs (Sharma et al., 2014; 2015). A hypergraph is a generalized graph where

edges, now called hyperdges, instead of representing a relationship between a pair of

vertices, represent a relationship between a set of vertices. If the relationship holds

for every subset of the hyperedge, the hypergraph is called a simplicial complex. Al-

though hypergraphs are more general, if the problem or the data has a special structure

then simplicial complexes are more appropriate. For the group recurrence problem, we

need to predict recurrence of not just observed groups but also the subgroups. Thus,

simplicial complexes are more applicable to our problem

For the group recurrence problem we also want our model to capture any prior

knowledge associated with each group or subgroup that might indicate cohesion among

group members, or the context associated with the group. We use the concept of a

weighted simplicial complex, which is a simplicial complex where each simplex has a

prior weight associated with it. We develop several schemes to generate these prior

weights, modeling different prior knowledge scenarios.

We observe that a simplicial complex, from a frequent pattern mining perspec-

tive (Aggarwal & Han, 2014), is the trivial set of all the frequent patterns of frequency

equal to one, mined from the transactions database of hyperedges. This motivates the

use of a Hasse diagram (Figure ??) (Skiena, 1990) (similar to enumeration trees in

pattern mining) as a graph representation for the simplicial complex. If we associate

a weight with each node (representing simplicies) of the Hasse diagram it represents a

weighted simplicial complex. We hypothesize that the topology of these groups plays a

critical role in how past occurrences influence future occurrences of other (sub)groups.

Using the Hasse diagram, we apply a modification of the HyperPrior algorithm (Tian

et al., 2009), for generating label diffusion-based machine learning models, as well as

develop hierarchical label spreading algorithms for recurrence prediction. These al-

gorithms make use of the weighted simplicial complex topology while exchanging the

occurrence information between the subgroup nodes in the Hasse diagram. Our ex-

107



perimental analysis, conducted using the DBLP and EverQuest II datasets, shows the

efficacy of the techniques developed. The main contributions of this study are:

• We present machine learning models to predict recurrence of already observed

groups, which takes into account the higher order topology.

• We present a Hasse diagram-based framework to study simplicial complexes, hy-

pergraphs, and frequent pattern mining in a unified manner.

• We show that frequent patterns can be considered as topological entities, with

relationships between them guided by higher-order topological properties. To the

best of our knowledge this has not been done before.

Figure 3.1: Example illustrating a network of groups hypergraph (left) as a simplicial
complex (right) and as a Hasse diagram (middle) corresponding to the simplicial com-
plex, for a scenario where the actors {1,2,3,4,5} have collaberated in the past as groups:
g1 = {1, 2}, g2 = {1, 2, 3, 4} and g3 = {3, 4, 5}.

3.2 Problem Statement and Preliminaries

3.2.1 Models for Network of Groups

Although we had defined models in detain in Chapter 2, we again provide prelimi-

naries for convenient reading, and also, the notations employed in this chapter might

be more simplified for the discussion within this chapter. We have a set of n actors

V = {v1, v2, ..., vn}. A subset of these actors can form a group. We have a collection
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of m such groups observed in the past, denoted by G = {g1, g2, ..., gm} where gi ⊆ V

represents the ith group. The cardinality ci = |gi| of a group is the number of actors

in it. We let R(g) denote the number of times group g ∈ G has occurred. The net-

work of groups can be modeled as a hypergraph (Berge & Minieka, 1973) H = (V,G)

where the observed groups G are the hyperedges over the vertex set V of actors. We

denote by Si = {sik,∀k ∈ {1, 2, ..., 2|gi| − 2}} the set of all proper subsets of each group

gi ∈ G. If we consider the union of all subsets of the sets in G along with G itself,

i.e., C = {G ∪ (
⋃m
i=1 Si)}, then we have a (abstract) simplicial complex C and each

element c ∈ C is a simplex which represents a group or subgroup. If we also associate

a weight W (c) ∈ R, ∀c ∈ C, then we attain a weighted simplicial complex ♦ = (C,W ).

For convenience we also define the set containing the subgroups in C that were never

observed in the past, i.e., Cs = {c|(c ∈ C)∧ (c 6∈ G)} = (C−G). Each c ∈ Cs also has a

set of groups Q(c) ⊆ G, of which it is a subgroup of, i.e., Q(c) = {x|(x ∈ G)∧ (c ⊂ x)}.

We define an occurrence function O which gives the occurrence count to all the groups

in C as follows:

O(c) =


R(c) +

 ∑
x∈Q(c)

R(x)

 when c ∈ G

∑
x∈Q(c)

R(x) when c ∈ Cs

(3.1)

In words, for an observed group we simply take the number of times it has occurred,

R(c), and also add the counts of the groups it has been a subset of. In the case of

subgroups (those groups that haven’t occurred in the past) we simply add the counts

of the groups it has been a subset of. For a simplex (or (sub)group) α ∈ C we define

its dimension as dim(α) = |α| − 1. If Kmax is the maximum cardinality of any simplex

in C then (Kmax − 1) is the maximum dimension of any simplex in C or simply the

dimension of C.

The set of simplices of cardinality k within the simplicial complex C are defined by

the set: πk = {σ|σ ∈ C ∧ |σ| = k},∀k ∈ {1, ...,Kmax}. For the example in Figure 3.1,

C = {C1, ...., C19}, G = {g1, g2, g3} = {C6, C19, C18} and Cs = (C −G).

We also define a Hasse diagram, Nh, for the simplicial complex C. The level in
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the diagram (Figure 3.1) determines the poset relation. We use the undirected graph

derived from the Hasse diagram Nh over the vertex set V (Nh) = C and with a set of

undirected edges E(Nh) = {(x, y)∪ (y, x)|(x, y ∈ V (Nh))∧ (y ⊂ x)∧ (|y| = |x| − 1)}. In

the case of a weighted simplicial complex ♦ = (C,W ), we associate with each vertex the

weight of the corresponding simplex it represents, i.e., W (v),∀v ∈ V (Nh). Note, we can

also associate a weight with the edges but in this study we assume all edges have a unit

weight. We denote Ah to be the adjacency matrix of size (|C|×|C|) associated with the

Hasse diagram graph Nh. This process of representing a hypergraph as a Hasse diagram

is also referred to as the Hasse expansion, which we had discussed in detail in §2.2.4,

Def. 48.

3.2.2 Problem Statement

We are interested in prediction of groups formed by two processes: group recurrence

and subgroup recurrence. In group recurrence, a group gi ∈ G, called a recurring group,

observed in the past can again occur in the future. Our first problem is to predict a

score for each of the groups in G. This score reflects the possibility of the given group

occurring again in the future. In subgroup recurrence, a group ci ∈ Cs which has never

been observed as a group in the past, might occur in the future. We refer to such groups

as recurring subgroups. Our second problem is to predict a score for each of the groups

in Cs, which reflects its possibility to be formed in future. We restrict ourselves to

the prediction of only the recurring groups and subgroups and not groups composed of

entirely new actors.

3.3 Methods

In this section, we first enumerate several ways of assigning prior weights. We then

describe three different methods (along with several variants) to solve the problems

described in the previous section. Each method models the tendency of a given group

to be formed in the near future by assigning a score S(c) to each group in c ∈ C,
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returning a final vector of scores S. The first method uses a simple group count-based

approach and the next two methods consider the hierarchical structure of the higher

order topology within the Hasse diagram.

3.3.1 Schemes for assigning initial weights

Several studies on small groups have shown that social actors tend to collaborate with

actors with whom they have already developed strong working relationships (Lungeanu

et al., 2014) and that repeated ties within a group positively affect its performance (Con-

tractor, 2013). There are a number of ways to assign a prior weight to represent the

strength of the relationships between group members. Kapoor et al. (Kapoor et al.,

2013) defined several weights for the problem of node centrality, of which we utilize two.

The first, shown in (3.2), corresponds to a frequency-based definition and simply counts

the number of times a group has performed some task together. The second, shown

in (3.3), enforces that the average attachment of any two individuals (or the attention

span of a member towards each other member) in a group decreases in proportion to

the size of the group.

W(c) = O(c),∀c ∈ C (3.2) W(c) =
log(O(c)) + 1

|c|
,∀c ∈ C (3.3)

The weights in (3.2) and (3.3) initialize all groups (observed) as well as subgroups

(unobserved), i.e., all the simplices. We, therefore, also design slightly different variants

where we only initialize the observed groups, which emphasizes the hypergraph model

of the network:

W(c) =

O(c) if c ∈ G

0 if c ∈ Cs

(3.4) W(c) =


log(O(c)) + 1

|c|
if c ∈ G

0 if c ∈ Cs

(3.5)

In the following sections we will define several algorithms which will use these four

initialization schemes. We will use the suffixes: Simp-C, Simp-W, Hyp-C, and Hyp-

W to refer to the initializations in (3.2)-(3.5), respectively.
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3.3.2 Count Based Scores (CBS)

We build the first set of scores using only the occurrence information available. For this

we simply take the score vector S as the weight defined in (3.2) and (3.3), denoted the

CBS-C score and CBS-W score, respectively. The CBS-C score, gives each group

a value which is determined by the number of times the group members have worked

together in past. Whereas, CBS-W assigns score based upon the cohesion among the

group members.

3.3.3 Hasse Diagram based Models

CBS scores utilize counts of group recurrences, wherein each group was considered in

isolation but do not consider the network of groups. This network encodes information

about the observed groups, the unobserved groups, and the topological relations between

them. Occurrences of a group affect the probability of other groups in the network

to collaborate in the future. We develop two approaches applied to a Hasse diagram

representation of a weighted simplicial complex to capture the local and global relational

information.

Algorithm 1 GetHDSScores (Nh,y,Kmax, α)

f ← y, C ← V (Nh) #
Get the simplicial complex corresponding to the Hasse diagram
for k = Kmax − 1 to 1 do

for all c ∈ πk do

f(c)← f(c) + α

( ∑
x∈(Q(c)∩πk+1)

y(x)

)
end for
return f

end for

3.3.4 Hasse diagram spread-based scores (HDS Scores)

This class of methods is based upon the intuition that observed groups in the Hasse

diagram influence the subgroups below it in the hierarchy. Influence spread can happen

in a variety of ways. There are several possible counter-intuitive group phenomena.
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We model these in a holistic fashion by spreading scores over the Hasse diagram. We

propose that if we observe a node gi in the Hasse diagram then it spreads its score (si)

down the hierarchy. It can send the same, more, or less of its score to its children. In

general, it can send αsi (α ≥ 0) score to its children. These children update their scores

and spread the score down the hierarchy recursively. This is shown in Algorithm 1. We

initialize the algorithm using the vectors (y = W) in equations (3.2)-(3.5) to get four

different scores, S = GetHDSScores(T,y,Kmax, α), which we denote as HDSSimp-C,

HDSSimp-W, HDSHyp-C and HDSHyp-W, respectively.

3.3.5 Hasse diagram diffusion-based scores:

The spread-based scores are local in the sense that the final score of a node is only

determined by its initial score and the scores of its parent(s). But, in general, the

nodes representing groups in the network are connected by many pathways. Therefore,

it is reasonable to assume that a potential group may be affected by occurrence of

non-parent groups in the network. In order to take into account this structure of the

entire Hasse diagram, we apply a modification of the graph label propagation algorithm

HyperPrior (Tian et al., 2009).

Each vertex (group) is initialized with a label, which encodes prior information about

the recurring tendency of that node. These labels (information) then diffuse (exchange

information) via random-walks through the Hasse diagram network structure. After

the random-walks stabilize, the final label for each vertex is the score indicating its

recurrence possibility. The final label at a given vertex represents the chances that a

random walk originating from other nodes ends at this vertex. Hence, this score is a

combination of both the group’s initial tendency to occur plus an adjustment based on

the knowledge from other groups in the network, i.e., the random walk outcomes. This

adjustment models a network guided similarity between the vertex and the other nodes.

Vertices that are near in the network should end up receiving similar labels/scores.

More formally, let y be the vector of initial labels for the vertices in the Hasse
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diagram Nh with incidence matrix Ah. Vector y is initialized by any of the weights in

(3.2)-(3.5). As in a graph-based learning task, we learn the final label (score) vector f

by taking into account the competing aims of similar labels for vertices connected by

an edge in the Hasse diagram and of similar labels between the initial and final vectors.

We capture these competing aims in the following cost minimization objective:

min
f

fTLhf + β‖f − y‖2 (3.6)

where, Lh = I−Dh
v
−1/2

AhDh
v
−1/2

is the normalized Hasse Laplacian (see (2.66)) and

Dh
v is a diagonal matrix consisting of the vertex degrees (see (2.67)). The first term in

(3.6) is a smoothing term which ensures that vertices (groups) sharing an edge (having

common group members) have similar scores. This term therefore, enforces the Hasse

diagram structure while learning the labels. The second term measures the difference

between the given initial labels and the final vertex scores. It can be shown (Zhou

et al., 2004) that the solution to (3.6) is equivalent to the solution of the following

linear system:

f∗ = (1− µ)(I− µθ)−1y, (3.7)

where µ = 1/(1 + β), θ = Dh
v
−1/2

AhDh
v
−1/2

, and f∗ is the vector of final labels of

the group nodes. Note that, f∗(c) is the aggregate tendency S(c) of a group c ∈ C to

reoccur. Therefore, we have: S = f∗.

Similar to spread-based scores, we denote the scores here by the following notations:

HDDSimp-C, HDDSimp-W, HDDHyp-C, and HDDHyp-W when intialized us-

ing (3.2)-(3.5). Our aim is to predict a score for the recurring groups (i.e., g ∈ G) and

recurring subgroups (i.e., c ∈ Cs). For each of the methods above, we get a final vector

that contains the scores for all the groups. We partition the vector S into two vectors

Srg and Srs of sizes |G| and |Cs|, respectively, such that Srg(c) = S(c),∀c ∈ G and

Srs(c) = S(c),∀c ∈ Cs. In summary, we obtain three score vectors Srs, Srg and S for
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each of the above methods.

3.4 Experimental Analysis

3.4.1 Dataset and Statistics

Datasets: The first dataset we apply our methods to is a massive multiplayer online

role-playing game (MMORPG) dataset obtained from the Sony’s EverQuest II (EQ II)

game (www.everquest2.com). The game provides an online environment where multiple

players can log in and collaborate in groups to perform various quests and missions. The

server logs from this game, provided by Sony, were used to extract group interactions.

Here, we treat a set of players performing a task or mission as a group in the EQ II

network. The EQ II data contains logs for 21 weeks of data for training and testing.

We divide them into seven training/testing splits, each of which has a two-week long

training period followed by a one-week testing period.

The second dataset is the DBLP dataset (obtained from www.aminer.org) containing

computer science publications from 1930-2015. The set of co-authors on a paper form a

group in the DBLP network. Note that in both EQII and DBLP networks, the groups

can perform multiple game tasks or co-author multiple papers. We make eleven train-

test splits as follows: (1992 − 95/96 − 98), (1993 − 95/96 − 98), (1993 − 95/96 − 99),

(1991 − 97/98 − 10), (1997 − 00/01 − 03), (1998 − 00/01 − 03), (1998 − 00/01 − 04),

(2002− 05/06− 08), (2003− 05/06− 08), (2003− 05/06− 09) and (2001− 07/08− 10)

; following the format: (train period start year−train period end year/ test period start

year−test period end year). These splits were designed to observe the effect of varying

training and testing period lengths as well as varying the entire train/test evaluation

period. We have evaluated other variations of period lengths and other decades in the

DBLP data, but in this chapter we limit our discussion to the train/test periods we just

described.

Statistics: Recall that we have two kinds of groups: (1) recurring groups that are

observed in training and observed again in testing and (2) recurring subgroups that are
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Table 3.1: Recurrence Statistics of the various Train/Test Periods
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EQ II 3051 2215 81.67 18.33 1775 1219 67.92 32.08 88.93 11.07

Avg. 84.06 15.94 74.01 25.99 90.51 9.49

DBLP 677K 640K 40 60 549K 433K 12.06 87.94 84.53 15.47

Avg. 34.73 65.27 11.65 88.35 81.17 18.83

Table 3.2: Different Dimension Face Recurrence Statistics
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EQ II Splits DBLP Splits

Simplex
Dimension

RG+RS
(Exact)

RG+RS
(New Vertices)

RG+RS
(Exact)

RG+RS
(New Vertices)

≥ 1 15.57 21.25 15.70 21.43 4.63 3.09 6.28 4.20
≥ 2 8.97 12.72 9.02 12.80 2.78 1.79 3.41 2.19

RS (Exact) RS (New Vertices) RS (Exact) RS (New Vertices)

≥ 1 0.70 0.71 0.76 0.77 1.70 0.89 3.08 1.61
≥ 2 0.20 0.23 0.25 0.29 0.76 0.38 1.24 0.63

RG (Exact) RG (New Vertices) RG (Exact) RG (New Vertices)

≥ 1 57.18 20.55 57.50 20.66 14.89 2.21 17.53 2.60
≥ 2 45.68 12.49 45.77 12.51 10.02 1.41 11.17 1.57
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observed in testing but are only observed as a subgroup of some group that occurred in

training. We shall refer to the former set as RG, the latter set as RS, and the combined

set as (RG+RS). Table 3.1 contains several statistics for (RG+RS). However, due to

space constraints, we only show statistics for the last split from each dataset, as well

as the average statistics across the splits. In Table 3.1, an actor in the testing phase

is considered “old” if it was observed in the training period, otherwise it is considered

“new”. Note that for any group with new actors in the testing phase, we can only test

whether the subgroup with old actors is a recurring group or subgroup from the training

period. These statistics are based on the distinct groups from the testing and training

periods, so as to avoid any bias from the multiplicity of certain group interactions. We

observe that on an average around 90% of the EQ II network groups and around 81% of

the DBLP network groups formed in the test period contain at least one old actor. Only

within these groups can we possibly search for recurring groups or subgroups. Note,

74% of the EQ II groups and around 12% of DBLP groups in testing period are exact

recurrences and included in the set RG. This demonstrates that the recurring group

process is more common in the EQ II network, whereas the recurring subgroup process

is the more common feature in the DBLP network.

In Table 3.2, we record the statistics of the groups in training that recur in testing

and of the groups in testing that are recurring groups or subgroups. We only consider

groups of size ≤ 6 (i.e., faces of dimension ≤ 5) and also omit vertex recurrences since

those are reported in Table 3.1.

For dimensions ≥ 1, the set RG+RS accounts for 20% of the testing groups in the

EQ II network and 3− 4% in the DBLP network. For dimensions ≥ 2, the set RG+RS

accounts for approximately 12% of the testing groups in the EQ II network and only 2%

in the DBLP network. These subtle observations indicate that GR and SR processes

are responsible for a significant portion of future formed groups. Therefore, modeling

these processes is an important step towards higher order link prediction.
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3.4.2 Evaluation Methodology and Experimental Setup

We evaluate the performance of these methods as classifiers using the area under the

curve (AUC) statistic of the receiver operating characteristics (ROC) (Van Trees, 1968).

Using the three score vectors as the model output we calculated AUC scores for two

sets of prediction test scenarios. The first set includes the exact occurrences found in

the testing period (referred to as “(Exact)”) and the other set includes occurrences

found with new vertices in the testing period (referred to as “(New Vertices)”). The

following six scenarios are considered for each set:

1. RG+RS(v): Predicting both recurring groups and subgroups that are dyadic

edges or other higher order faces. Note that for any group with new actors in the

testing phase, we can only test whether the subgroup with old actors is a recurring

group or subgroup from the training period.

2. RG+RS(v+e): Predicting both recurring groups and subgroups that are only

triangles or other higher order faces. We only consider groups of size ≤ 6 and also

omit vertex recurrences since those are reported in Table 3.1.

3. RS(v): Predicting only recurring subgroups that are edges or other higher order

faces.

4. RS(v+e): Predicting only recurring subgroups that are triangles or other higher

order faces.

5. RG(v): Predicting only recurring groups that are edges or other higher order

faces.

6. RG(v+e): Predicting only recurring groups that are triangles or other higher

order faces.

The optimal parameters were chosen for each split separately via grid search on

the following parameter space: α = {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1, 2, 5, 10, 20} and µ =
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Table 3.3: AUC Scores for EQ II and DBLP

EQ II

Exact New Vertices

Method RG+RS
(v)

RG+RS
(v+e)

RS (v) RS
(v+e)

RG (v) RG
(v+e)

RG+RS
(v)

RG+RS
(v+e)

RS (v) RS
(v+e)

RG (v) RG
(v+e)

HDDHyp-W 0.96 0.98 0.67 0.87 0.79 0.83 0.96 0.97 0.68 0.86 0.79 0.83

HDDHyp-C 0.96 0.98 0.63 0.78 0.83 0.87 0.96 0.98 0.64 0.78 0.82 0.86

HDDSimp-W 0.83 0.81 0.63 0.67 0.78 0.81 0.83 0.81 0.62 0.64 0.78 0.81

HDDSimp-C 0.78 0.75 0.52 0.6 0.83 0.86 0.78 0.75 0.52 0.59 0.83 0.85

CBS-W 0.77 0.68 0.6 0.54 0.78 0.81 0.76 0.68 0.59 0.5 0.78 0.81

CBS-C 0.76 0.72 0.5 0.49 0.82 0.85 0.76 0.72 0.5 0.47 0.82 0.85

HDSHyp-W 0.96 0.97 0.65 0.71 0.79 0.82 0.96 0.97 0.65 0.7 0.79 0.82

HDSSimp-W 0.7 0.59 0.58 0.52 0.76 0.8 0.7 0.59 0.58 0.48 0.76 0.8

HDSHyp-C 0.95 0.97 0.58 0.63 0.83 0.86 0.95 0.97 0.59 0.63 0.82 0.86

HDSSimp-C 0.68 0.61 0.49 0.48 0.82 0.85 0.67 0.6 0.48 0.44 0.82 0.85

DBLP

HDDHyp-W 0.9 0.89 0.8 0.78 0.69 0.68 0.82 0.85 0.73 0.72 0.7 0.68

HDDHyp-C 0.89 0.89 0.79 0.78 0.69 0.68 0.82 0.85 0.73 0.72 0.69 0.68

HDDSimp-W 0.77 0.79 0.73 0.73 0.7 0.69 0.77 0.77 0.74 0.71 0.71 0.69

HDDSimp-C 0.75 0.76 0.71 0.72 0.71 0.7 0.74 0.74 0.73 0.7 0.72 0.7

CBS-W 0.67 0.64 0.65 0.61 0.69 0.66 0.69 0.64 0.7 0.63 0.7 0.66

CBS-C 0.65 0.63 0.59 0.58 0.64 0.62 0.65 0.62 0.63 0.59 0.65 0.62

HDSHyp-W 0.89 0.88 0.75 0.73 0.69 0.66 0.82 0.84 0.73 0.7 0.7 0.66

HDSSimp-W 0.59 0.53 0.6 0.54 0.69 0.66 0.63 0.55 0.67 0.57 0.7 0.66

HDSHyp-C 0.88 0.87 0.72 0.71 0.64 0.62 0.8 0.83 0.68 0.67 0.65 0.62

HDSSimp-C 0.49 0.43 0.5 0.47 0.64 0.61 0.54 0.46 0.57 0.51 0.65 0.62

{10−7, 10−6, 10−5, 10−4, 10−3, 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99}. All the Hasse diagrams

considered in the above methods have un-weighted edges.

3.4.3 Results and Discussion

We compare the twelve different AUC scores, described in the prior section, for the

ten methods developed in this paper. Results are reported in Table 3.3 for the EQ

II and DBLP data. We have three different kinds of scores: CBS (Section 3.3.2),

HDS (Section 3.3.4) and HDD (Section 3.3.5). Both the CBS-W and CBS-C scores

are only count based and don’t take into account any topological relationship between

groups. On the other hand, the HDS and HDD methods take into account topology by

exchanging information locally and globally, respectively. One of our main hypotheses

is that topological structure affects the group recurrence behavior. We are also unaware

of any methods for small group recurrence and therefore chose CBS-W and CBS-C

scores as our baseline. Note, as described in Section 3.3.1, all the three genre of methods

can be either count based (referred using suffix -C), or cohesion metric based (denoted
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by suffix -W). The count based variants do not take into account the cardinality of the

(sub)groups whereas the cohesion metrics are cardinality based.

Effect of Topology: We observe from Table 3.3 (the best scores are highlighted in

bold) that the Hasse diagram-based methods consistently outperform the count-based

methods. This supports our hypothesis that Hasse diagram-based methods, which take

into account topology, indeed, are more informative about the group recurrence process.

We also compare the methods against four criteria: (a) How do the prediction

methods fare for recurring subgroups as compared to recurring groups?; (b) How well

do the methods predict at dimensions of dyadic edges and above, i.e., the -(v) cases,

compared with how well they predict at dimensions of triadic groups and above, i.e., the

-(v+e) cases?; (c) How well do the methods predict the “Exact” occurrences versus the

“New Vertices” occurrences?; and (d) How do the count-based “-C” methods compare

with the cohesion-based “-W” methods?

We observe that in order to predict recurring subgroups, HDDHyp-W outperforms

all other methods whether the subgroup was an “exact” occurrence or a “new vertices”

occurrence in testing. This suggests that exchange of information from the groups

observed in the past to the groups not observed in the past via the Hasse diagram

topology and the global-based label diffusion process is more crucial for influencing the

appearance of subgroups not observed in the past. In fact, the poor accuracy of the

HDDSimp methods indicates that weights placed on (possibly unobserved) subgroups

of observed groups used as prior information cause bias and hurt the predictive power of

the model. Given that HDDHyp-W is initialized using the cohesion weights in (4), the

normalization of counts only on the prior observed group occurrences in the diagram is

important for recurring subgroup prediction. Moreover, the performance of predicting

triangles or higher order groups (RS(v+e)) is higher for the EQ II data and comparable

for the DBLP data to that of predicting dyadic edges or higher (RS(v)) across all HDD

methods, implying the important role played by the Hasse diagram structure for higher

order group prediction.

On the other hand for recurring group prediction the count-based methods, which

120



inclu HDDHyp-C and HDDSimp-C performed best, suggesting that the likelihood

of recurrence of already-observed groups is determined more by the simple counts of past

concurrences. The count-based HDS methods also give results comparable with that

of the HDD methods. This implies that even the local spread of count information is

sufficient for recurring group predictions. These -Simp-based methods using (1), which

take into account the subgroup counts of the groups that occurred in training, provide

good results, suggesting that the unobserved subgroups have an important influence on

the potential of groups to re-occur.

Finally, we note that across both the datasets and across all the twelve experiments,

the HDD methods generally perform better than or as good as HDS methods. Further

results and details shall be made available in a future technical report.

3.5 Conclusions

We consider the problem of predicting small group evolution and focus on the sub-

problem on group and subgroup recurrence. We highlight two important group recur-

rence processes and capture them using weighted simplicial complexes. We use a Hasse

diagram corresponding to the simplicial complex as a graph whose nodes correspond

to subgroups in the complex. We then build semi-supervised models on top of this

graph for group recurrence prediction. We have shown that frequent patterns like small

groups can be considered as topological entities, with relationships between them guided

by higher order topological properties.
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Chapter 4

Group Accretion Prediction: A

Cross-sectional Analysis

This chapter revisits the problem of group evolution. But unlike the previous chapter,

this chapter addresses the problem of new hyperedge prediction by dividing it into two

sub-problems of group accretion prediction and subgroup accretion prediction.

We start by again motivating that Small Group evolution has been of central im-

portance in social sciences and also in the industry for understanding dynamics of team

formation. While most of research works studying groups deal at a macro level with

evolution of arbitrary size communities, in this chapter we restrict ourselves to study-

ing evolution of small group (size ≤ 20) which is governed by contrasting sociological

phenomenon. Given a previous history of group collaboration between a set of actors,

we address the problem of predicting likely future group collaborations. Unfortunately,

predicting groups requires choosing from
(
n
r

)
possibilities (where r is group size and

n is total number of actors), which becomes computationally intractable as group size

increases. However, our statistical analysis of a real world dataset has shown that two

processes: an external actor joining an existing group (incremental accretion (IA)) or

collaborating with a subset of actors of an exiting group (subgroup accretion (SA)), are

largely responsible for future group formation. This helps to drastically reduce the
(
n
r

)
122



possibilities. We therefore, model the attachment of a group for different actors outside

this group. In this chapter, we have built three topology based prediction models to

study these phenomena. The performance of these models is evaluated using extensive

experiments over DBLP dataset. Our prediction results shows that the proposed models

are significantly useful for future group predictions both for IA and SA.

The rest of the chapter is as follows. Next Section 4.1 introduces and motivates the

problem, section 4.2 is for the related work, section 4.3 describes the problem state-

ment, section 4.4 describes the topology based methods, in section 4.5 the experiments

conducted are described and results are discussed, followed by conclusion in section 4.6.

4.1 Introduction

Study of small groups has been an important endeavor in a large number of disci-

plines like psychology, sociology, communication and information science for past 50

years (Poole et al., 2004). Advent of globalization has lead to changing nature of groups

or teams in industry leading to increasing interest in studying their dynamics (Cheney

et al., 2010). Large part of the research in the field of Organization Science is ded-

icated to study effective ways to build teams by combining employee expertise (Boh

et al., 2007). With the rising number of large interdisciplinary scientific teams (Wagner

et al., 2011), understanding drivers affecting their success is of key importance for sci-

ence funding agencies while selecting team of scientists (Lungeanu et al., 2014). Other

real life applications include building emergency response teams for natural disasters

management, automation of team selection for military operations and self-organizing

open-software teams (Hahn et al., 2008). While such studies are important, the ever

increasing availability of online “group” interaction data for example, social networking

sites like Facebook or Twitter, group communication tools like Skype, Google Hangout,

Google Docs, Massive Online multi-player games (MMOGs) such as World of Warcraft,

etc., makes such studies even more realistic. In scientific research, such dataset have

been used to study group dynamics for benefit of both industry and academia (Contrac-
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tor, 2013). Similarly, user labeled groups of research artifacts such as research datasets

have been studied in detail (Singhal et al., 2014a).

Figure 4.1: Example illustrating incremental accretion and subgroup accretion processes.
Set {A,B,C} is a group and X is an external actor.

Several studies in the past have analyzed the usefulness of various features used

for membership prediction in communities (Kang et al., 2013; Patil et al., 2012; 2013a;

Sharara et al., 2012). Also, some works have focused on group membership dynam-

ics by simulating how individual join or leave a group (alv, 2011; Ahmad et al., 2011;

Johnson et al., 2009), while such studies have not developed prediction models. Objec-

tive of our work is to focus on the task of actual future group prediction in contrast

to feature analysis or simulation based studies. Moreover, most past works on group

evolution in social networks primarily deal with evolution of arbitrary size communities

or groups (Chen et al., 2008; Patil et al., 2013b; Sharara et al., 2009). These sizes are

usually large and the boundaries of community depend on the definition of membership

employed (Spiliopoulou, 2011). In this work we are interested in well defined small

groups (size ≤ 20) like research collaborations or teams (Beebe & Masterson, 2009)

also called as Bona fide groups (Putnam & Stohl, 2012) in sociology. Also these small

groups are self assembling (Contractor, 2013) where members leave or join groups au-

tonomously and the motivation or theories for group formation is much different from

the large communities (Poole et al., 2004). Moreover, these groups are connected by
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the social network of actors, resulting in group ties or network of groups (Monge &

Contractor, 2003) (see Figure 4.2), which plays central role in group formation process.

We focus on group accretion which is a subset of the group evolution. Group accre-

tion is the process of size increment in groups by addition of more members. More

specifically we define two subproblems: incremental accretion and subgroup accretion.

In the first problem, given a group of size=x, we predict the likelihood of one more

member being absorbed in it, to yield a size=(x + 1) incremental group (Figure 4.1).

The subgroup accretion is the problem of incremental accretion on all the (2x− 2) sub-

groups of a given group to yield prediction scores of (2x − 2) new incremental groups

(Figure 4.1). Intuition behind choice of these problems is that, given a past history of

group collaborations, a large percentage of groups in future are formed through these

two processes. Our aim finally is to build models that predict future groups that are

likely to be formed using these two mechanisms. This work therefore, is an initial step

towards a more general higher order group prediction problem.

Figure 4.2: Example illustrating network of groups (left) and the corresponding network
of actors (right) where {1,2,3,4,5,6} are the actors

In this chapter we assume that the groups are not isolated but rather interact with

each other through network of groups and group members make individual decisions

to collaborate or not (self assembly). We therefore, model the attachment of a group

(group) to an actor (node) outside it. Topology based dyadic link prediction (DLP)

methods have proven successful in capturing node to node attachment. Guided by

both, DLP methods and sociology theories of small groups we have proposed three

different methods. First, method is an extension of the popular path enumerating Katz
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method (Katz, 1953). Second, is a network alignment based supervised method. With a

philosophy similar to Katz, it captures the inter-group communication cycles, which are

theoretically hypothesized more appropriate, rather than paths. Lastly, we also propose

a label propagation based method where the random walks are guided by the network

of groups (a hypergraph (Berge & Minieka, 1973; Sharma et al., 2014)). Based on the

extensive set of experiments it turns out our models are able to effectively predict future

groups formed by both IA and SA processes.

Now we summarize the key points of this research paper:

• We highlight an important observation that a large chunk of future groups are

formed by two different accretion processes from the past groups.

• We have focused on the evolution of small groups and defined new problems for

small group accretion.

• We have developed three topology based methods, guided by social theories, to

address these problems in a novel manner.

• We have therefore, presented an overall new incremental approach to address the

less addressed and intriguing problem of higher order link prediction.

4.2 Related Works

Social Group Evolution There is a vast body of literature regarding community evo-

lution (Spiliopoulou, 2011) and more general network evolution (Aggarwal & Subbian,

2014) in social networks. Definition of community in all these works varies drastically

producing from small groups to size as large as hundreds or thousands. Therefore, they

take a macroscopic view while answering the questions of how to detect communities

and how they evolve over time. Though, recently there have been some works which

zoom in and try to understand the evolution from the perspective of individual actors

and their relationship with other actor group.
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Among them the first category of works focus on building models which can simu-

late the group formation tasks like leaving, joining or switching between groups (alv,

2011; Ahmad et al., 2011; Johnson et al., 2009). Alvari et. al. (Alvari et al., 2011)

provide a game theoretic community/group detection model where the actors in the

social network are rational agents performing these tasks while maximizing their utility.

Same authors extend their work for evolutionary setting (Alvari et al.) and apply to

MMOGs (alv, 2011). MMOG guild formation is also studied as stochastic processes

in both network (Ahmad et al., 2011) and network-less settings (Johnson et al., 2009).

Our work, rather than simulation, focuses on predicting the exact groups that might

occur in future.

Second category deals with analysis of various characteristics of groups (like diversity,

cohesion, stability, type, etc.) and their correlation with different factors (size, member

properties, etc.) (Chen et al., 2008; Chung et al., 2014).

Third category of papers are devoted to extracting features of different kinds like

network, actor, group or communication content and pose the problem of group mem-

bership prediction as a classification task. For instance, Patil et al. have done feature

extraction for group attrition (Patil et al., 2013b), group stability (Patil et al., 2013a)

as well as group destruction (Patil et al., 2012). It differs from our work as they focus

on understanding the importance of various features rather than prediction of groups.

In a series of papers from Sharara et al. have stressed on the idea of loyalty (affinity) of

actor towards different groups and its longitudinal changes (Sharara et al., 2009). This

idea has been extended for deducing important actors by using group semantics (like di-

versity) (Sharara et al., 2012) and applied to analysis of guilds in MOMGs (Kang et al.,

2013). Both, Patil et al. and Sharara et al. model actor’s attachment or loyalty for

different groups whereas we model the opposite: tendency of a group to absorb different

actors. Moreover, both of them primarily deal with large communities like conferences

in DBLP data. We are specifically focused on predicting small cohesive groups or teams

(like a small group of researcher working on a publication in DBLP) where different

social phenomenon are at play. We rather treat the problem as extension of DLP to
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higher order (group) prediction.

Social Sciences Naturally occurring small groups are called Bona Fide Groups (Put-

nam & Stohl, 2012), which are the focus of this paper. A good reference for small group

theories can be found in Poole et al. (2004). Plethora of research deals with application

of small group dynamics for understanding teams (Boh et al., 2007). Network perspec-

tive of teams has been a new development in the past decade. Various studies like Oh et.

al. (Lungeanu et al., 2014; Oh et al., 2004) stress the importance of network structure

in determining team performance. More recent research has focused on self-assembling

teams in which members autonomously leave or join teams (Contractor, 2013; Lungeanu

et al., 2014).

Link Prediction Due to space constraint we point out some key surveys and papers

for DLP. An overview of link prediction in general complex network is by Lü & Zhou

(2011) and more specifically for social network we refer to Al Hasan & Zaki (2011).

We have generalized topology based methods like Katz (1953) (Katz, 1953), proven

successful for social networks (Liben-Nowell & Kleinberg, 2007), for higher order links.

For network alignment based link prediction we refer Flannick (2008) and Xie et al.

(2012).

4.3 Problems and Preliminaries

4.3.1 Problem Definition

In this chapter we consider the scenario where we have a set of individuals or social

actors. These actors self assemble themselves into groups to perform tasks at hand or

gather for an event. A group therefore, is a subset of all the actors. Membership of a

group can change over time. An actor can leave or join a group, resulting in changes in

group membership. When two actors work or gather together in the same group they

develop social tie. These social ties therefore, become the edges in the social network

of actors (NOA). Moreover, the actors that are the part of multiple groups act as

ties between groups resulting in a network of groups (NOG) (as we had mentioned in

128



introduction). Given a past history of groups formed our problem is to predict groups

that are likely to form in future by two different evolutionary processes described as

follows. Given a group, it can absorb an actor outside this group to form a new group

in future. This process is called incremental accretion (IA) and the group formed by this

process is called incremental group (IG) (Figure 4.1). In the second process, rather than

all the members of a given group, only a subset of them absorb an actor outside the group

to form another group. This process is subgroup accretion (SA) and the corresponding

group formed is called subincremental group (SG) (Figure 4.1). Note that it is possible

that SG and/or IG might have been previously observed or not observed in history. We

therefore restrict ourselves to predict only the IG and SG type groups formed by IA

and SA processes respectively by assigning prediction scores to them.

An example of such a scenario is collaborations among authors to work on pub-

lication. As authors write papers they develop social relations with each other. As

authors works in multiple research collaborations they become intermediates between

these different research collaborations. Related example can be open-source software

development teams.

4.3.2 Problem Statement

Although we had defined models in detain in Chapter 2, we again provide prelimi-

naries for convenient reading, and also, the notations employed in this chapter might

be more simplified for the discussion within this chapter. We have a set of n actors

V = {v1, v2, ..., vn}. A subset of these actors form a group. We have a collection of m

such groups observed in past, denoted by G = {g1, g2, ..., gm} where gi ⊆ V represents

the ith group. Cardinality ci = |gi| of a group is the number of actors part of it. We

have two networks. First, NOG is a hypergraph (Berge & Minieka, 1973) represented

as a set Ng = (V,G) with G as the hyperedges over the vertex set V . We also have

an incidence matrix H for Ng of size (|G| × |E|) with elements defined as H(g, v) = 1

if v ∈ g else 0. Second, NOA is a Clique Expanded (CE) graph, Na = (V,E) where
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E = {e1, .., ew} are the dyadic edges defined over vertex set V (see Def. 29). Adjacency

matrix Ac of size (|V | × |V |) for Na has elements Ac(p, q) = 1 for (p, q) ∈ V such that

∃i, {p, q} ⊆ gi else 0.

In IA, a group gi ∈ G can absorb an actor a ∈ {V − gi} to produce gai = {gi ∪ a}.

Let gini = {gai }a∈{V−gi} be the set of all the IGs for ith group. Our aim therefore, in IA

problem is to predict a score to each of the IGs in set gini ∀i ∈ {1, 2, ..,m}.

Considering the second case of SA problem. We define a proper subgroup of gi as

si ⊂ gi where si 6= φ. A subgroup si can absorb an actor a ∈ {V − si} to produce

sai = {si ∪ a}. Let gsai = {sai }a∈{V−si} be the set of all the SGs for ith group. Our

aim therefore, in SA problem is to predict a score to each of the SGs in set gsai ∀i ∈

{1, 2, ..,m}.

4.4 Methods

In this section we describe three methods to solve the problems described in the previous

section. Each method models the affinity of a given group towards an actor outside the

group in different ways. As pointed out earlier, these methods are inspired from the

existing dyadic link prediction (DLP) techniques as well as sociology theories. Success

of topology based DLP methods encouraged us to focus on topology derived methods.

First, method is a generalization of unsupervised path counting based DLP methods to

predict the IGs and SGs. The second approach, is a semi-supervised learning based on

network alignment algorithms (Flannick, 2008). It captures the cycles that pass through

both the given group and the rest of graph. The third approach, uses a semi-supervised

hypergraph label propagation approach. Each of these methods provide a score S(i, j)

between ith group and jth actor, representing the similarity or affinity between them.

4.4.1 Generalized Katz Score (GKS)

Among the similarity score based methods in DLP, methods based on counting ensemble

of paths have been most successful. More specifically Katz (1953) (Katz, 1953) measure

130



Figure 4.3: Example illustrating different networks used in BRWS for a sample group
J consisting of actors {a, b, c, d}. Box 1 and Box 2 shows the NOG and NOA around
Group J actors. In Box 3, we have the 3 network: group clique network (blue), the outer
network (red) and bipartite inter network (green). Adjacency matrices used in BRWS
are at bottom. Box 4 and Box 5 are example of some cycles of different maximum path
length involving actor e. These example cycles (along with other cycles not shown) are
used in BRWS to calculate scored of the black dotted edges from group members to
actor e. Note for top cycle in box 5 has path length of 2 over outer network and 1 over
clique network. However, these lengths are vice versa for the bottom cycle.
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has been shown to outperform all other similarity scores (Liben-Nowell & Kleinberg,

2007). Given the NOA graph Na the Katz Score (KS) between any two nodes i and j

is defined as:

K(i, j) =
∞∑
l=1

βl|paths(l)i,j | (4.1)

where K is (|V | × |V |) size matrix containing KS for different pair of vertices, |paths(l)i,j |

is number of l length paths between the nodes i and j, and β ∈ (0, 1) is parameter that

controls the extent to which long paths are penalized. From a sociology perspective

number of path between any two nodes capture their social proximity. For example

two scientists, in a co-authorship network, who are close to each other in this network,

should have many common colleagues or are in similar social circles. Therefore, they

are more likely to collaborate. Also smaller length paths reflect greater proximity and

are more important, hence, are less penalized or contribute more. In matrix terms it is

calculated as:

K =
∞∑
l=1

βlAc
l (4.2)

where Ac is the adjacency matrix for Na. Success of this subtle KS method has en-

couraged us to generalize it to capture the affinity of a group for an actor outside it.

We therefore, define the Generalized Katz Score (GKS) between ithgroup and jthactor

node as follows:

S(i, j) =
1

c

∑
p∈gi

∞∑
l=1

βl|paths(l)p,j | =
1

c

∑
p∈gi

K(p, j) (4.3)

where gi is the ithgroup of cardinality c. This score is the average proximity, measured

as KS, of different actors within the group to a given external actor. For higher order

groups the proportion of the group members close to an external individual is more

relevant. Therefore, taking average is intuitive, as it tells that on an average how close

is this external individual to the given group. It captures the chances he might get

absorbed in this group by taking into account the size of group.
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4.4.2 Bi-random Walk Score (BRWS)

GKS makes use of the communication paths to measure the affinity of the each group

members to a person outside the group separately. In this section, we model the scenario

when outside individual is know by multiple members of the group. Consider the group

J (blue color) in Figure 4.3 with four actors {a,b,c,d} in it. Let us take the external

actor e for whom we wish to observe affinity with J. We can observe that e has a direct

link only with the member a. But, b has a direct link with a neighbor f of e. Though,

there is no direct relation between b and e, but they have an indirect link through actors

both internal (a) as well as external (f ) to the group. To quantify the affinity between

b and e, quantification process should be guided by both these internal and external

links. We model this intuition in a holistic way by capturing the cycles like {a → b → f

→ e → a}. Instead of simply counting, we use these cycles to learn the affinity of group

member to an external actor. We cast this scenario as an alignment problem (Flannick,

2008) where the nodes within group have to be aligned with external nodes. One of

the recently proposed algorithm, by Xie et al. (Xie et al., 2012), for global network

alignment fits very well to our problem with the following modifications.

Again consider the group in Figure 4.3. We take the clique network of the group and

the network outside the group and place them apart as shown in box 3 of Figure 4.3.

Next we consider three different networks. First network is the group clique network

with adjacency matrix Agc of size (c × c). Second network is the network outside this

group with adjacency matrix Aog of size ((n− c)× (n− c)). Third network is the inter-

network which connects group member nodes to nodes external to group. Its adjacency

matrix is X of size (c × (n − c)). Our aim is to learn the matrix R whose each entry

R(p, q) contains the affinity score for between the pth group member and the qth actor

among the external actor nodes. We define a regularization framework, same as Xie

et. al. (Xie et al., 2012), over the above three networks. The objective function for
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minimization is:

min
R

α
∑
u,v,i,j

(Agc ⊗Aog)(i,u),(j,v)(R(i, u)−R(j, v))2

+ (1− α)
∑
i,u

(R(i, u)−X(i, u))2 (4.4)

where Agc⊗Aog is the Kronecker product of Agc and Aog. Each (Agc⊗Aog)(i,u),(j,v)

is 1 if Agc(i, j) = 1 and Aog(u, v) = 1, in other words ith and jth group members are

linked (which should always be true as group is a clique) and uth and vth external actors

are also linked, otherwise 0. The first term in the objective aligns group member i with

external actor u and group member j with external actor v, if (i, j) are neighbors and

(u, v) are also linked. This term therefore, enforces smoothness over R. The second term

is a regularization term that uses prior knowledge (like a and e are already connected in

our example) stored in X. α ∈ (0, 1] controls the trade-off between these two competing

constraints. As proposed by Xie et. al., the most efficient method to minimize is by the

following random-walks based recursive model:

R = αAgcRAog + (1− α)X (4.5)

The first term on the right hand side in the tth recursive step becomes At
gcRAt

og. This

term mimics a random walks across the group network, inter network and the outer

network. For t = 1 it represents cycles with group network path and outer network

path length at most 1 as shown in Figure 4.3. In general in tth step it captures cycles

with path of length at most t in both clique and outer network. Notice the decay factor

α penalizes the larger path length cycles recursively. For further algorithmic details we

request to refer to Xie et al. (2012).

In their paper Xie et al. (2012) have provided various versions of Bi-random Walk

algorithm. In our work we use the sequential version BiRW seq (Algorithm 2). Input

for the algorithm are: the group network adjacency matrix Agc, the inter network
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matrix I, outer network matrix Aog, the decay parameter α, and lg and lo are the

maximum path length allowed while generating cycles in the group and outer networks

respectively. While generating cycles BiRW seq does a random-walk on the group

network followed by a random-walk on outer network sequentially in each step. In line

3 the algorithm takes a random-walk over the group clique if the length of the path in

the group network is still less than lg . A second step is taken on the outer network if

path on the outer network covered till now is less than lo (line 6). In our implementation

both lg and lo are taken as 4. On reaching maximum path lengths on both networks R

is returned.

Algorithm 2 BiRW seq(Agc, I, Aog, α, lg ,lo)

1: R0 = I
sum(I)

2: for all t = 1 to max{lg, lr} do
3: if t ≤ lg then
4: Rtgroup = αAgcR

t−1 + (1− α)I
5: end if
6: if t ≤ lo then
7: Rt = αRtgroupAog + (1− α)I
8: end if
9: end for

10: return (R)

Let Ri represent the learned R for the group gi. Then the affinity of group gi for

jth external actor is:

S(i, j) =
1

c

c∑
p=1

Ri(p, q) (4.6)

where q is the index in outer network Aog for ith actor in original NOA (Ac). We

therefore, learned affinity S(i, j), for ith group and external actor, supervised using the

existing connection of the group members to outer actor network.

4.4.3 Group Label Propagation Score (GLPS)

In the previous sections we developed methods that capture paths and cycles over

the NOA but does not takes into account the NOG. In this section we develop label
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propagation based score which takes into account the hypergraph structure of the NOG.

Intuitively, we start by giving some initial labels only to the members of a given ith group

gi. These labels then diffuse by random-walks through the hypergraph structure of the

NOG. Once the random-walks stabilize, the final label for each external vertex is treated

as its affinity score for the given group. The final label at a given external actor vertex

represents the chances a random walk originating from group member nodes might end

up at this vertex. Therefore, modeling a network guided similarity between the group

and the external actor.

To realize the above label diffusion as a hypergraph-based learning task. Let y be the

vector of initial labels to the vertices of the NOG hypergraph Ng(V,G) with incidence

matrix H. For a “given” group gi we have y(v) = 1 if v ∈ gi else y(v) = 0. We learn

the final label vector f . In order to take into account the hypergraph structure we want

that the members (vertices) within “any” group (hyperedge) finally get same labels.

Also we want the vertices of “given” group retain their initial labels. We capture these

aims in the following cost minimization objective:

min
f

1

2

∑
g∈G

∑
u,v∈g

w(g)H(g, u)H(g, v)

δ(g)

(
f(u)√
d(u)

− f(v)√
d(v)

)2

+ µ‖f − y‖2 (4.7)

where, w is vector whose entries contain hyperedges weights, d is vector containing ver-

tex degrees such that for as vertex v: d(v) =
∑

g∈G|v∈g w(g) and δ is vector containing

hyperedge degrees such that for an edge g: δ(g) =
∑

v∈V H(g, v). The first term is a

smoothing term which makes sure that vertices within the same hyperedge have the

same scores. So the more number of common hyperedges they are part of the more

similar their score becomes. For example if two authors (vertex) have written several

papers (hyperedge) together then they are more similar and should be assigned same

scores. This term therefore, enforces the hypergraph structure while learning labels.

The second term measures the difference between the given labels and the final vertex
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scores. The parameter µ then controls the degree of diffusion. In more compact matrix

representation:

min
f

fTLhypf + µ‖f − y‖2 (4.8)

where,

Lhyp = I−D
−1/2
v HTWD−1e HD

−1/2
v (4.9)

is the normalized proxy hypergraph Laplacian (see 38; Zhou et al. (2006b)), where

De and Dv are diagonal matrices consisting of hyperedges and vertex degrees, with

(|G| × |G|) and (|V | × |V |) sizes, respectively. W is the (|G| × |G|) diagonal matrix

containing weights of hyperedges. It is easy to show that the solution to equation 4.8

is equivalent to solving the following linear system:

f∗i = (1− α)(I− αθ)−1y, (4.10)

where α = 1/(1 + µ), θ = D
−1/2
v HTWD−1e HD

−1/2
v and f∗i is the final label vector

learned for the ith group (Zhou et al., 2006b). The jth entry in f∗i quantifies the affinity

between of ith group for the jth actor. Therefore, we have:

S(i, j) = f∗i (j). (4.11)

Since, our aim is to predict a score for each of the IGs gini (or SGs gsai ) for all

i ∈ {1, ....,m}. We treat the affinity of group gi for jth actor (S(i, j)) as the score

which reflects the possibility of IG gai ∈ gini (actor a is vj) being formed in future. In

summary, the prediction score for gai (where a is vj) is taken as S(i, j). In fact we

also assign S(i, j) as the score for SG sai , same as that for IG gai . Note that one can

build more complicated scores, eg: weighted by the size of subgroup, etc. But for this

study we restrict ourselves to this simplified scenario. In experimentation section we

shall further discuss how to get the ranked list of most likely future groups using these

prediction scores.
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Table 4.1: Splits with fixed boundary year

Boundary Yr Split No. Train Test

1995 A.1 1992-95 (4 yrs) 1996-98 (3 yrs)

1995 A.2 1993-95 (3 yrs) 1996-98 (3 yrs)

1995 A.3 1993-95 (3 yrs) 1996-99(4 yrs)

2000 A.4 1997-00 (4 yrs) 2001-03 (3 yrs)

2000 A.5 1998-00 (3 yrs) 2001-03 (3 yrs)

2000 A.6 1998-00 (3 yrs) 2001-04 (4 yrs)

2005 A.7 2002-05 (4 yrs) 2006-08 (3 yrs)

2005 A.8 2003-05 (3 yrs) 2006-08 (3 yrs)

2005 A.9 2003-05 (3 yrs) 2006-09 (4 yrs)

2007 Main Split 2003-07 (5 yrs) 2008-10 (3 yrs)

4.5 Experimental Analysis

In the following the first section describes the dataset statistics. Second section is about

evaluation metrics used followed by experiments and analysis in third section.

4.5.1 Dataset and Statistics

In this chapter we have used the popular DBLP dataset (publicly available at (Tang

et al., 2007b)) and extracted all the publication from years 1930-2011 for top 10 venues,

as listed in http://academic.research.microsoft.com/, each for 22 different sub-

fields of computer science (total 220 top venues). Here we analyze some interesting

statistical properties of this dataset which has motivated this research. Each publication

is written by a group of authors and the same group can write multiple publications

as well. For both, statistics and experiments we have divided the dataset into various

training and test periods (splits) as shown in the Tables 4.1. In Table 4.1, each row is

a split with a fixed end year of training set (boundary year). Table 4.2 contains the

statistics for (sub)incremental groups present in “test” period of different splits. In

Table 4.2 we refer an actor or group as old if it has been observed in training else we
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Table 4.2: Incremental Statistics of Testing Periods for the Splits in Table 4.1
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use new. Note in case a group has written multiple papers in a train or test period it is

counted only once. We observe that on an average around 20% of the groups formed in

test period contain no new authors (old actor groups (OAG)). Out of these upto approx

20% are incremental groups (IGs) formed by IA process. Moreover, around 80% of these

IGs are new and never observed in training. Also, we notice that approx 70% of the

groups (with no new author (OAG)) are subincremental groups (SGs) formed by SA. All

these percentages are highlighted in the Table 4.2. These subtle observations indicate

that IA and SA processes are responsible for a large portion of the OAGs formed in

future. Therefore, modeling these processes is an important step towards higher order

link prediction. Constrained by space limit we have not shown SG statistics (except for

the main split in Table 4.2). Also the number of actors per split roughly range from

30K to 100K (> 100K in main split) and there are 10K to 30K groups in “training”

period across various splits.

4.5.2 Evaluation Methodology and Experimental Setup

In this section we describe two different kinds of metrics, global and per-group. The

performance of the proposed approaches is evaluated using the training (2004-07) and

testing period (2008-10) of main split in Table 4.1. The statistics of main split are

shown at bottom of Table 4.2. For the groups in the training period, each method:

GKS, BRWS and GLPS, was run to output the scores for all IGs (gini ) and all SGs (gsai )

for each group (i ∈ {1, ....,m}). Now consider the whole set containing all the IGs for

all groups. As there might be many repeating IGs we shall only consider unique IGs

while taking the maximum score among all the repeating IGs. We sort this unique set

of IGs by their scores and get the highest scoring top-Ntop IGs. We do the exact same

thing for SG case and get top-Ntop SGs. Out of these top-Ntop groups (IG or SG) the

performance over test set (2008-10) is compared using the following metrics:

Precision@Ntop (IA) =

Number of groups correctly predicted
using IA process from top-Ntop list

Ntop
(4.12)
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Recall@Ntop (IA) =

Number of collaborations correctly predicted
using IA process from top-Ntop list

# of actual IA generated groups
(4.13)

Precision@Ntop (SA) =

Number of groups correctly predicted
using SA process from top-Ntop list

Ntop
(4.14)

Recall@Ntop (SA) =

Number of collaborations correctly predicted
using SA process from top-Ntop list

# of actual SA generated groups
(4.15)

The above global metrics (equations 4.12 to 4.15) capture overall predictions across

all groups. But often times we are more interested in understanding the future of a

single group and how it will evolve in future. For this case we simply sort IGs gini (or

SGs gsai ) by their scores in descending order, to get the top-Ng
top IGs (or SGs) for each

ith group. Therefore, for this case we define the following metrics:

ithGroupPrecision@Ng
top (IA) =

Number of groups correctly
predicted by IA of ith group

from top-Ng
top list

Ng
top

(4.16)

ithGroupRecall@Ng
top (IA) =

Number of groups correctly
predicted by IA of ith group

from top-Ng
top list

# of actual IA generated
groups from the ith group

(4.17)

for each ith group and take average of these metrics to derive the following average

metrics:

AvgPrecision@Ng
top (IA) =

Sum of ithGroupPrecision@Ng
top (IA)

for all groups in training set

Total # of groups in training set
(4.18)

AvgRecall@Ng
top (IA) =

Sum of ithGroupRecall@Ng
top (IA)

for all groups in training set

Total # of groups in training set
(4.19)

We refer to the metrics in equations 4.18 to 4.19 as the per-group metrics. Metrics

analogous to equation 4.16 to 4.19: ithGroupPrecision@Ng
top (SA), ithGroupRecall@Ng

top

(SA), AvgPrecision@Ng
top (SA) and AvgRecall@Ng

top (SA), are defined for the SA case

as well.

All the three methods GKS, BRWS and GLPS were implemented in MATLAB. For

GKS, BRWS and GLPS the parameters β = {0.1, 0.3, 0.5, 0.7, 0.9}, α = {0.1, 0.2, 0.4, 0.5,
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0.6, 0.8, 0.9}, and µ = {0.1, 0.3, 0.5, 0.7, 0.9}, respectively, were tested. Using 10-fold

cross-validation the following best values were observed: {β = 0.5, α = 0.6, µ = 0.1}

for global metrics and {β = 0.5, α = 0.6, µ = 0.5} for per-group metrics. All the hy-

pergraphs and graphs considered in any of the methods are all unweighted and l ≤ 4

is only considered in GKS. Experiments were run using Intel Core i7 (2.8 GHz) CPU

with 4 GB RAM.

4.5.3 Results and Discussion

In this section we discuss the results obtained using both, the global and the per-

group metrics, for the main split. Note that we omit the results from other splits due

to space constraints and moreover, they showed results very similar to the main split.

Our GKS method simply extends Katz (1953) (Katz, 1953) (which is among the most

successful DLP methods (Liben-Nowell & Kleinberg, 2007)). We therefore, consider

GKS as a strong baseline for our evaluation. We would also like to mention that we

had explored a number of matrix factorization (MF) based DLP methods (Al Hasan

& Zaki, 2011) like MF, Non-Negative MF, SVD, Tri-MF and their variants with (or

without) network regularization and sparsity constraints. But all of them performed

trivially in comparison to our methods, so we don’t include them.

We now discuss the results for per-group and global metrics. Notice that in per-

group scenario we inspect each group individually and compare its affinity for different

actors outside it. Therefore, in this case our comparison is between various “actors”

to ascertain which actors are more likely to join a given group. Whereas in case of

global metrics we try to compare scores of different “groups” (IG or SG) and tell which

are more likely to occur in future. Keeping this in mind let us first consider the per-

group metrics results in Table 4.3 for Ng
top = 100. We observe that both GLPS and

BRWS outperforms GKS (baseline) consistently for both IA and SA cases. Notice

that both GLPS and BRWS are semi-supervised algorithms, with former supervised

by the hypergraph structure and the later learns possible cyclic connections from the
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existing connections between a group with outside actors. In contrast, GKS which

simply works on path enumeration based similarity calculation and lacks supervision

performs bad. The good performance of GLPS and BRWS suggests that both: (1)

hypergraph structure (i.e. how groups as composite entities are connected to each

other and therefore, also to the groups in which an external actor participates?) (2)

cycles passing through group and an external actor node (i.e. which all group members

an external actor knows and through which communication cycles?). Similar, trend is

observed in results for global metrics shown in Table 4.4 for Ntot = 10000. Again, GLPS

and BRWS perform better than GKS. However, in this case GLPS does better than

BRWS in SA scenario. A possible explanation lies in the fact that GLPS keeps the

group as well as subgroup structure intact using the hypergraph model. As an example

if we have observed a group P containing actors {x, y, z, w} and also its subgroup Q

with actors {x, y, z}. While evaluating group P, BRWS will not consider the existence

of the P’s subgroup Q as it models the NOA not NOG. Whereas, GLPS models NOG

and keep both group as well as subgroup information intact in the hypergraph laplacian

of the NOG. This attribute of GLPS, to capture subgroups within other groups, helps

it to outperform in SA, where this distinction between groups and its subgroups is quiet

critical.

Another point to mention is the low values for global metrics and precision in case of

per group metrics. The reason for this is due to the inherent difficulty of the problem at

hand. The number of groups formed by (sub)incremental accretion processes (positives

occurrence), though a considerable portion of groups in testing period, are much smaller

than the total possibilities. Given a group of size r and n as the total number of

actors (> 100K in main split) in the network. There are PIA = (n − r) and PSA =

{(2r − 2) × (n − r)}, number of IGs and SGs possible respectively, from the given

group. The large number of actors n(≈ 105) makes PIA(≈ 105) large and PSA(≈ 106)

(restricting to group size rmax ≤ 6), even much larger, in worst case. Even though,

PIA < PSA but the number of IGs formed in test period on an average is much

lesser (20%) as compared to (70%) of SGs ( 4.5.1). Due to this, in case of per group
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Table 4.3: Main Split per-group metrics results

GKS GLPS BRWS

AvgPrecision@100 (IA) 0.0210 0.0349 0.0355

AvgRecall@100 (IA) 0.3176 0.6034 0.6050

AvgPrecision@100 (SA) 0.0198 0.0266 0.0271

AvgRecall@100 (SA) 0.2616 0.5149 0.5135

Table 4.4: Main Split global metrics results

GKS GLPS BRWS

Precision@10000 (IA) 0.0020 0.0075 0.0134

Recall@10000 (IA) 0.0144 0.0538 0.0962

Precision@10000 (SA) 0.0052 0.0666 0.0327

Recall@10000 (SA) 0.0098 0.125 0.0614

metric, chances of finding a positive occurrences within Ng
tot = 100 groups out of PIA

or PSA possibilities, is quiet challenging task. This explains low precision in per group

scenario. Global metric scenario is even worse. Assume m (around 30K in main split)

groups and let us say, for approximation purpose, all are of size r. Then there are

GIA = {m × PIA} ≈ 109 and GSA = {m × PSA } ≈ 1010 number of total IGs and

SGs possible (assuming rmax ≤ 6, m ≈ 104 and n ≈ 105). In case of global metric

finding all positive occurrences within just Ntot = 104 groups out of the huge GIA

and GSA possibilities explains the low global precision scores. (Note above is a rough

worst approximation in which we have restricted rmax ≤ 6 for illustration. In depth

discussion will involve actual group cardinality distribution which we leave due to space

limitations.) However, there are a limited number of IA and SA generated groups. We

can therefore, hope to cover a significant portion of them within top ranked groups.

This makes recall more important measure for us and it attains significantly high values

as compared to precision at least for the per group metrics. However, in case of global

metrics the number of possibilities are huge, resulting in low values for recall as well.
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4.6 Conclusions

In this work we have addressed the problem of evolution of Small Groups while high-

lighting its differences with the general problem of community evolution. We found

statistically that two group accretion processes are behind the formation of a large

percentage of future groups given past history of group collaborations. We have built

different models that capture these two processes while being motivated from differ-

ent theories from social science. We treat the problem of future group prediction as

a higher-order link prediction task and have developed three topology based methods.

Extensive experiments carried out using DBLP dataset show that our methods give

good results while predicting future groups.
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Chapter 5

Group Evolution: A Longitudinal

Analysis

This chapter revisits the problem of group evolution. But unlike the previous two

chapters, this chapter takes time into account and addresses the problem of temporal

hyperedge prediction by leveraging higher-order algebraic object called tensors.

We start by again motivating that the need for multi-actor collaborations is increas-

ingly visible in various fields of social sciences together with the increase in availability of

group (multi-actor) communication data like research collaboration data, emails among

groups in an organization, etc. Hypergraphs are natural structures used to effectively

capture multi-actor interactions which conventional dyadic graphs fail to capture. This

work aims to empirically evaluate the hypothesis that hypergraphs preserve the infor-

mation that simple (dyadic) graphs are likely to destroy. For demonstrating this we

have addressed the problem of predicting when collaborations become active by model-

ing the collaboration network as hypergraph. The problem of predicting future activity

in a multi-actor collaboration is therefore treated as the problem of predicting activity

over a hyperedge. Given that the higher order edge prediction is an inherently hard

problem, in this work we restrict ourselves to predict when a hyperedge (collaboration)

that has already been observed in past will become active again. We propose a novel
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use of hyperincidence temporal tensors and incidence temporal tensors to capture time

varying hypergraphs and graphs respectively. Through this common platform of tensor

based modeling we quantitatively compare the performance of the hypergraphs based

approach with the conventional dyadic graph based approach. Our experiments us-

ing author collaboration network from the DBLP dataset show that hypergraphs are

the better representation of group activity. Our results demonstrate strength of hy-

pergraphs to predict higher order collaborations (size>4) which is very difficult using

dyadic graphs. Moreover, while predicting collaborations of size>2 hypergraphs in most

cases provide better results with an average improvement of approx. 45% in F-Score

for different group sizes ∈ {3, 4, 5, 6, 7} (Figure 6). Furthermore, we find that using the

tensor based modeling hypergraphs outperform graphs both theoretically in storage and

time complexity as well as 2x to 20x faster than graphs in practice.

The rest of the chapter is as follows. Next section 5.1 introduces and motivates the

problem, section 5.2 is for the related work, section 5.3 describes the problem statement,

section 5.4 explains the hypothesis, section 5.5 describes the topology based methods, in

section 5.6 the experiments conducted are described and results are discussed, followed

by conclusion in section 5.7.

5.1 Introduction

The problem of understanding group dynamics is central to the field of social sciences.

Moreover, the increasing use of internet has led to an exponential increase in amount

of online group interaction data. As examples, social networking sites like Facebook

or Twitter, group communication tools like Skype, Google Hangout, Google Docs and

Massive Online multi-player games such as World of Warcraft, are generating social

group data at a massive scale. These social datasets provides minute by minute account

of various group activities along with the structure and the content of these relationships

(?).

In the domain of social science, a lot of studies have been conducted to understand
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Figure 5.1: Hypergraph
Figure 5.2: Bipartite graph of hyper-
graph in Figure 5.1

how groups form, their static as well as dynamic attributes and structures, and how

they evolve over time (Coleman, 1988). Research collaborations in scientific community

are an excellent example of group activities in which individuals of various expertise

collaborate to solve a research problem. Collaboration networks from scientific research

community have been extensively used for studying team dynamics (Barabâsi et al.,

2002; Katz & Martin, 1997; Newman, 2001). Group dynamics has plethora of real life

applications for example in building emergency response teams for natural disasters

management, automation of team selection for military operations, etc. Therefore,

developing computational models which leverage the humongous group data available

to study group level phenomenon is of key importance.

The above examples reveal that there can be multiple overlapping collaborations

which form a network of collaborations. Modeling such collaborations in dynamic set-

tings where relationship between actors is evolving over time is a challenging task.

Unfortunately, most of the prior research in social network analysis deals with dyadic

interactions or small well-defined groups (Putnam & Stohl, 1996) rather than at the

group level. There are some studies that have dealt with group interactions by collaps-

ing the group into dyadic links (Newman, 2001) and therefore, fail to keep the group

level information intact. Ghoshal et. al. (Ghoshal et al., 2009) have used tripartite

graphs which captures folksonomy data but is too restrictive to capture variable size

social collaborations. Guimera et al. (Guimerà et al., 2005) attempts to model group

using node and group attributes which can explain the network structure but fails to

deal with individual group evolution.
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Hypergraphs are generalization of graphs as well as bipartite graphs (Berge, 1984),

which can have more than two node in an edge (rather than simple graphs where only 2

nodes are part of an edge). Therefore, hypergraphs can easily capture the coexistence of

more than two entities in a single relation. They have been proposed by Estrada et al.

(Estrada & Rodriguez-Velazquez, 2005) for modeling complex networks. Figure 1 shows

a hypergraph with five nodes and three edges. However, effective models for capturing

hypergraphs are still not clear. We split these models into three categories: bipartite

graphs, clique expanded graphs and hypergraphs in their original form (without any

transformation to the previous two categories).

Literature is abundant with works that use bipartite network models (Dhillon, 2001;

Lind et al., 2005; Zha et al., 2001) but bipartite graphs have rarely been used to capture

groups (Faust, 1997; Hayes & Gutierrez, 2004; Newman et al., 2002). Bipartite graphs

can also be used for capturing hypergraphs with one set of nodes as the hyperedges

and the other as a set of vertices of the hypergraph (Figure 2). We make use of the

interesting fact that biadjacency matrix for bipartite representation of hypergraph and

the incidence matrix of a hypergraph are exactly the same (Asratian, 1998; Zykov, 1974).

This means that for example the incidence matrix of hypergraph in Figure 1 and the

bi-adjacency matrix of its corresponding bipartite graph model in Figure 2 are exactly

the same. The tensor model we have proposed in this chapter makes use of incidence

matrix representation of hypergraph and therefore, our model incorporates the bipartite

graph model as well.

Apart from bipartite graphs, another model is the graph structure corresponding

a hypergraph obtained by the process of clique expansion (Zien et al., 1999) of each

hyperedge. Several clique expansion based methods have been proposed in recent years

(Agarwal et al., 2006b; Pu & Faltings, 2012). In their interesting finding, Agarwal et

al.(Agarwal et al., 2006b) have shown the theoretical equivalence of several hypergraph

based spectral methods to corresponding clique expansion based graph methods. We

show that though not for all problems, but rather certain class of problems where

the group information needs to remain intact, hypergraphs are likely to give better
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results. Hyperedge activity prediction is one such problem that we are addressing.

Our hypergraph tensor model when empirically compared with the corresponding clique

expanded graph’s tensor model, is shown to outperform both in accuracy and space/time

complexity.

Although a lot of work done has been done regarding mathematical formulation of

hypergraphs in past (Berge, 1984; Berge & Minieka, 1973) as well as recently (Pearson

& Zhang, 2012; Xie & Chang, 2013), interest in predictive hypergraph models for real

world applications have caught interest recently (Agarwal et al., 2006b; Zhou et al.,

2006a). But most of these predictive models (Bu et al., 2010; Pu & Faltings, 2013; Tian

et al., 2009) (see related works) transform the problem into an equivalent graph problem

by using various transforming mechanisms (Agarwal et al., 2006b; Pu & Faltings, 2012;

Zhou et al., 2006a). Also there are several non-predictive works like (Klamt et al., 2009b;

Taramasco et al., 2010) which are only interested in statistics of the network modelled

as hypergraph. Only recently work by (Xu et al., 2013) attempts to capture the group

(hyperedge) information in an intact manner while designing a predictive model. They

propose a non-temporal feature-embedding based technique to capture latent features

of variable size hyperedges. They formulate the problem of hyperedge prediction as the

task of telling whether a given hyperedge in the test set will occur or not. However,

this differs from our problem formulation as we predict the top-n hyperedge list after

ranking all the hyperedges that have been observed in past. We therefore, have not

chosen to compare our work with (Xu et al., 2013).

In order to capture the time varying hypergraphs and graphs we propose a novel

application of tensor in the form of incidence or hyper-incidence tensors. We have used

research collaborations where a set of authors (actors) collaborate for research. Each of

these collaboration results in a publication and each of these publications represents an

instance of this collaboration occurring. This means that the same collaboration might

show activity recurrently resulting in multiple publications. Each of these collaboration

is then modeled as a hyperedge in a hypergraph whose each vertex represent an actor.

Therefore, given a previous history of the collaborations we predict the likelihood of
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collaborations getting active again in next time cycle using a supervised approach for

hyperedge activity prediction. Our results show that graphs give significantly lower F-

Score for higher order groups of size= {4, 5, 6, 7} in comparison to hypergraph for most of

the cases. In predicting collaborations (hyperedges) higher than size two i.e. more than

two entities, hypergraphs in most cases provide better results with an average increase

of approx. 45% in F-Score for different sizes ∈ {3, 4, 5, 6, 7} (Figure 6). Furthermore,

hypergraphs outperform graphs in terms of both space and time complexity. We verify

this through our experiments that tensor models for hypergraphs are approximately

2x to 20x faster than graphs for various phases of the approach proposed. The main

contributions of the paper are summarized as follows:

• We show a quantitative comparison between graphs and hypergraphs from an

applications perspective.

• We propose a novel application of tensors to capture time varying hypergraphs.

• We have also proposed a novel method of predicting activity of collaborations of

higher order using the proposed tensor model of hypergraph.

• We show that hypergraph representation is more accurate with less space and time

complexity using DBLP dataset.

5.2 Related Work

Hypergraphs can easily capture the higher-order relationships while incorporating

both group and node level attributes. Moreover, research has shown that several social,

biological, ecological and technological systems can be better modeled using hypergraphs

than using dyadic proxies (Estrada & Rodriguez-Velazquez, 2005). There is an abundant

literature of hypergraph theory in past (Berge, 1984; Berge & Minieka, 1973; Zykov,

1974) and many work in the spectral theory of hypergraphs recently (Pearson & Zhang,

2012; Xie & Chang, 2013). The past decade has also seen an increasing interest for
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hypergraphs in machine learning community (Tian et al., 2009; Zhou et al., 2006a).

Hypergraphs have been used to model complex networks in different fields including

biology (Klamt et al., 2009b), databases (Fagin, 1983b) and data mining (Han et al.,

1998). In the domain of social sciences, Kapoor et a.l (Kapoor et al., 2013) have

proposed centrality metrics for weighted hypergraphs. Tramasco et al. (Taramasco

et al., 2010) propose hypergraphs based metrics to evaluate various hypotheses, both

semantic and structural, regarding team formation. (Michoel & Nachtergaele, 2012)

have used hypergraphs for community detection. (Xu et al., 2013) is a recent work on

hyperedge prediction which they formulate in a different way than the ranking based

approach proposed in our paper. They address the problem of predicting if a given

test hyperedge (or group) will occur or not. For this they develop a feature-embedding

technique which leverages upon observed as well as latent social features in a non-

temporal setting.

Clique Expanded Graphs Agarwal et al. show theoretically that several unsu-

pervised and supervised spectral methods for hypergraphs are convertible to equivalent

graph learning methods (Agarwal et al., 2006b). They propose two: star expansion and

clique expansion, graph constructions for hypergraphs and suggest that their associated

laplacians can be studied for studying their corresponding hypergraph. But their work

lack in empirical testing. Zhou et al. (2006a) propose hypergraph transformation into a

graph using Normalized Hypergraph Cut. In a recent work, Pu & Faltings (2012) pro-

pose a hyperedge expansion based semi-supervised learning algorithm for hypergraphs

that is less sensitive to hyperedge sizes. There are several studies which apply these

hyperedge/clique expansion (Agarwal et al., 2006b; Zhou et al., 2006a) based methods

for learning over hypergraph (Bu et al., 2010; Pu & Faltings, 2013; Tian et al., 2009).

Bipartite Graphs is a well-established area of mathematics with a huge body

of work with numerous mathematical applications (Asratian, 1998). Hypergraphs are

also shown to generalize bipartite graphs (Berge, 1984). In context of social networks

Newman et al. (2002) have proposed a random graph model for bipartite affiliation

networks. Guillaume & Latapy (2004) show that all complex networks can be viewed as
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bipartite structures. In machine learning community bipartite graph partitioning has

been used for data clustering (Dhillon, 2001; Lind et al., 2005; Zha et al., 2001). Hayes

& Gutierrez (2004) have proposed bipartite RDF graphs and show its advantages over

the general RDF graphs based approach.

5.3 Hyperedge Prediction Problems and Preliminaries

In this section we describe how higher order collaboration activity prediction can be

mapped to hyperedge activity prediction problem.

5.3.1 Problem Statement

In this chapter we have used research collaborations where a set of authors (actors)

collaborate for research. Each of these collaboration results in a publication and each

of these publications represents an instance of this collaboration occurring. This means

that the same collaboration might show activity recurrently resulting in multiple pub-

lications. Each of these collaboration is then modeled as a hyperedge in a hypergraph

whose each vertex represent an actor. The problem of collaboration activity prediction

then boils down to the problem of predicting activity over a hyperedge. Therefore,

given a previous history of the collaborations we predict the likelihood of collaborations

getting active again in next time cycle. We call this problem as the old edge predic-

tion problem or hyperedge activity prediction. From now onwards we will use old edge

prediction problem or hyperedge activity prediction or simply, hyperedge prediction

interchangeably.

5.3.2 Problem Definition

Although we had defined models in detain in Chapter 2, we again provide preliminaries

for convenient reading, and also, the notations employed in this chapter might be more

simplified for the discussion within this chapter. Let V = {v1, v2, ...., vn} be a set of

vertices (actors). We represent the hypergraph of collaborations using Ng = (V,G)
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with H is the incidence matrix of hypergraph which we term as hyper-incidence matrix.

This matrix H represent the set of hyperedges (collaborations) G = {h1, h2, ...., hmh}

where each hyperedge hk = {vhk1 , ..., vhk|hk|} ⊆ V . Size of H is therefore, (mh × n)

and we call sk as the cardinality (No. of vertices inside hk) of the hyperedge hk i.e.

sk = |hk|. Populating this matrix’s entries will be discussed in Section 4. We divide

time into small snapshots (of size w as shown in Figure 4) with t as its index. N
(t)
c is

the number of publications occurred in snapshot t and there are T number of snapshots

in past. H(t) therefore represents the hyper-incidence matrix for snapshot t. Important

thing is that mh are the number of distinct collaborations (hyperedges) in the past

(i.e. all previous snapshots). We denote the ith publication in the tth snapshot by c
(t)
i ,

∀i = {1, 2, ..., N (t)
c }. Each of this publication c

(t)
i represents the occurrance of some

collaboration (hyperedge) hk within the snapshot t. A mapping function φ(x) (many-

to-one) is defined which returns the collaboration (hyperedge) represented by a given

publication such that φ(c
(t)
i ) = hk, ∀k ∈ {1, ....,mh}.

The problem of old link prediction is now defined as follows: Given a past history of

collaborations Chist = {c(t)}Tt=1 (where c(t) = {c(t)i }
Nt
c

i=1) our goal for the problem of old

link prediction is to predict the likelihood of future occurrence of each of the hyperedges

hk ∀k ∈ {1, ....,mh} (i.e. collaborations already observed in past).

5.4 Hypothesis

We claim that modeling social collaborations or interactions as hypergraph is likely to

conserve a lot of information that is destroyed when modeled as dyadic graphs. Let us

take the example in Figure 3, a collaboration of authors A,B and C produced couple

of publications in a time window of ten years. We aim to predict future likelihood

P(A,B,C) of this collaboration A,B,C reoccurring or getting active in next time cycle.

For hyperedge representation we see that the collaboration A,B,C occurs 2 times in 10

years. Therefore, using a naive frequency based prediction over time, P1(A,B,C)= 2/10

is the likelihood using hyperedge representation. Whereas, on splitting the hyperedge
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Figure 5.3: Toy Example showing of two publications published by collaboration (A,
B, C) in year=2 and year=8 with their hyperedge (top) and clique of dyadic edges
(bottom) representation.

as cliques of dyadic links, P(A,B) = P(B,C) = P(A,C) = (2/10). Assuming the dyadic

edge occurrences as independent events, P2(A,B,C) = P(A,B)x P(B,C) x P(A,C) =

(2/10)x(2/10)x(2/10) = (8/1000), is the likelihood using dyadic representation. This is

less than what we got from hyperedge prediction (P1). This simple example exhibits

the loss of information we are discussing in this chapter. Hypergraph simply keeps the

joint probability information intact. Clique expansion destroy the information in ways

similar to this toy example.
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Figure 5.4: A tensor representation of the temporal information (snapshot size=w).
Each snapshot data is fed in the corresponding hyper-incidence matrix.

5.5 Proposed Approach

This section describes the approach used to capture the above intuition and build a

platform to conduct comparative analysis between graphs and hypergraphs. This section

is divided into two sections. In the first section the hypergraph modeling using tensors

is explained and the next section described the supervised hyperedge prediction.

5.5.1 Collaboration Modeling

Tensor and Incidence matrix representations

A tensor is a multidimensional, or N-way, array (Pearson & Zhang, 2012) and has
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proven to capture multi-dimensional data effectively (Bader & Kolda, 2007). For exam-

ple Tensors allow to handle time as a separate dimension. This provides more flexibility

to creatively manipulate the temporal dimension. Moreover, the temporal patterns can

be captured using tensors to predict future patterns rather than just immediate future.

Recently tensors have already proved effective in predicting temporal link prediction

by Dunlavy et al. (2011). This has encouraged us to capture hypergraphs and graphs

using 3-way tensors where the first two dimensions capture the hypergraph or graph

incidence matrix and the third dimension captures the temporal information. Keeping

the same incidence matrix representation for both graph and hypergraph allows having

a parity comparison between the two models. We denote the tensor for graph and hy-

pergraph using Hg (incidence tensor) and H (hyper-incidence tensor) which represent

array of the snapshots of incidence or the hyper-incidence matrix respectively (Figure

4). Snapshot t refers to a time period: (w ∗ (t− 1), w ∗ t).

Similar to hypergraph we represent graph as Nc = (V,Ec) where the graph incidence

matrix is Hg represent the set of edges Ec = {e1, e2, ...., emg}. Each edge contains a

pair of vertices i.e. ek = {veki , v
ek
j } ⊆ V (subsection 5.5.1 below describes the method to

obtain these edges). For the snapshot t we represent incidence matrix for graph as H
(t)
g

and use H(t) for the hyper-incidence matrix. Here, H
(t)
g has the dimension (mg × n)

where mg is the number of distinct dyadic edges between any two actors that have been

observed uptil current time. Similarly, the dimension of H(t) is (mh × n) where mh is

the number of distinct multi-actor collaborations (hyperedges) between the actors that

are observed till now. Note that in H
(t)
g and H(t) only information of publications in

snapshot t is stored but they have same dimension for all values of t.

Therefore, Hg(:, :, t) = H
(t)
g and H(:, :, t) = H(t) both representing array of snap-

shots of respective incidence matrices. Dimension of Hg finally becomes mg × n × T

and H becomes mh × n× T dimensional.

Loading Tensors Next step is to extract effective modeling information from his-

torical publication data Chist and feed it into both the graph and hypergraph tensors.

The following couple of subsections describe this process for graphs and hypergraphs
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Algorithm 3 PREDICT-COLLAB(Chist, isHypergraph)

1: H tensor (size mh × n× T ) initialized to all zeros.
2: Hg tensor (size mg × n× T ) initialized to all zeros.
3: if isHypergraph then
4: for c(t) ∈ Chist do
5: for c

(t)
i ∈ c(t) do

6: Find k s.t. φ(ci) ≡ hk
7: for j s.t. vj ∈ {vhk1 , ..., vhk|hk|} = hk do

8: H(k, j, t) = H(k, j, t) + 1
sk

9: end for
10: end for
11: end for
12: Sh = BUILD-SIMILARITY-MATRIX (H, mh, n)
13: return HYPERGRAPH-PROB-VECTOR (Sh, mh, n)
14: else
15: for c(t) ∈ Chist do
16: for c

(t)
i ∈ c(t) do

17: Find k s.t. φ(ci) ≡ hk
18: sk is the cardinality of hyperedge hk.
19: for Each of the

(
sk
2

)
dyadic links, dp of the hyperedge hk as a clique. do

20: Find k′ s.t. dyadic edge dp represents the same subset as ci

21: for j s.t. vj ∈ {v
dp
1 , v

dp
2 } = dp do

22: Hg(k′, j, t) = Hg(k′, j, t) + 1
sk

23: end for
24: end for
25: end for
26: end for
27: Sg = BUILD-SIMILARITY-MATRIX (Hg, mg, n)
28: return GRAPH-PROB-VECTOR (Sg, mg, n)
29: end if
30: return

Algorithm 4 BUILD-SIMILARITY-MATRIX (Z, n,Nb)

1: S similarity matrix of size n×Nb initialized with all zeros.
2: K is the number of components.
3: [λ; A,B,C] = CP-ALS(Z)
4: for k ∈ {1, 2, ...,K} do
5: S = S + λkγkakb>k
6: end for
7: return S
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Algorithm 5 HYPERGRAPH-PROB-VECTOR (Sh, mh, n)

1: ph is the probability vector for hyperedge likelihood of length mh initialized to all
one.

2: for i ∈ {1, 2, ...,mh} do
3: for p s.t. vp ∈ hi do
4: ph(i) = ph(i) ∗ Sh(i, p)
5: end for
6: end for
7: return ph

separately. We are using the following terms interchangeably: hyperedge and collabo-

ration, occurrence of hyperedge and publication; and vertex and actor.

Hypergraph Case (Line (3-11) of Algorithm 1): All hyper-incidence matrices

H(t) ∀t have the same dimension and thus, the same number, mh, of unique hyperedges.

Each one of these hyperedges hk ∀k ∈ {1, 2, ...,mh} represent a unique collaboration

between a subset of actors (vertices) i.e. hk ⊆ V . For each of the publication c
(t)
i ∈ ct

for i = {1, 2, ..., N (t)
c } find the k ∈ {1, 2, ...,mh} such that c

(t)
i represents the same subset

of vertices as hk i.e. φ(c
(t)
i ) ≡ hk. For this index k of the hyperedge, the tensor is filled

as H(k, j, t) = mk
sk

where j is the index of each vertex which is the part of the hyperedge

hk, sk is the cardinality of the hyperedge hk and mk is the multiplicity of the hyperedge

hk. Multiplicity is calculated as the log (No. of times hk occurred in t), in other words

how many times a particular collaboration published some work in snapshot t. This

process captures the weight of the hyperedge hk in the hypergraph tensor. The weight

of the hyperedge is modeled as (mksk ), as this definition of hyperedge weights is shown

to give the best results by Kapoor et al. (2013). This whole process is repeated for all

the time snapshots.

Graph Case (Line (14-25) of Algorithm 1): In case of graph also the graph-

incidence matrices H
(t)
g ∀t have the same dimension and same number, mg, of unique

edges. Each of these edges gk represent a unique set (dyadic collaboration) between

two vertices (actors), gk = {vgki , v
gk
j } ⊆ V . For each publication c

(t)
i ∈ ct for i =

{1, 2, ..., N (t)
c } find the k ∈ {1, ....,mh} such that φ(c

(t)
i ) ≡ hk. This hyperedge hk is
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broken in to
(
sk
2

)
dyadic edges and let us denote each of the dyadic link by dp. For each

of the dp find the index k
′ ∈ {1, 2, ...,mg} for which the dp represents the same edge as

gk. For this index k
′

the tensor is filled as Hg(k
′
, j, t) = mk

sk
where j is the index of each

vertex which is the part of the edge dp, sk is the cardinality of the hyperedge hk and

mk is the multiplicity of the hyperedge hk. Thus we model the weight of dyadic link of

the clique same as the weight of the original hyperedge (Kapoor et al., 2013). Again,

this whole process is repeated for all the time snapshots.

5.5.2 Decomposing the tensors (Algorithm 2)

Next step in the process is to decompose the tensors (loaded in the previous section).

These decomposed factors are used in next section for doing collaboration prediction.

The method proposed in this chapter for decomposition is inspired by CP Scoring using

Heuristic (CPH) method of Dunlavy et al. (2011) which has already proven successful for

dyadic link prediction. This method exploits the well known CANDECOMP/PARAFAC

(CP) (Kolda & Bader, 2009a) tensor decomposition which is analogous to Singular Value

Decomposition (SVD) (Golub & Reinsch, 1970) and it converts a tensor into sum of

rank one tensors. Given a three dimensional tensor XXX with size Ja × Jb × Jc its CP

decomposition is given by:

XXX ≈
F∑
f=1

λfaf ◦ bf ◦ cf (5.1)

where λf ∈ R+, af ∈ RJa , bf ∈ RJb , and cf ∈ RJc . Each of the products λfaf ◦

bf ◦ cf is called the components whereas af , bf and cf are called the factors of the

decomposition. Note that though af = bf = cf = 1 but these factors are not orthogonal

to each other as it is the case in SVD. Also λf is the weight for the f th component. CP

decomposition gives a unique solution (i.e. its components are unique), unlike other

tensor decomposition methods, resulting in an attractive method for prediction as the

factors can be used directly (Dunlavy et al., 2011). Note that matrices A, B and C

contain the factors af ,bf and cf as column vectors.
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Algorithm 6 GRAPH-PROB-VECTOR (Sg, mg, n)

1: pg is the probability vector for edge likelihood of length mg initialized to all one.
2: for i ∈ {1, 2, ...,mg} do
3: si is the cardinality of hyperedge hi.
4: for Each of the

(
si
2

)
dyadic links dp, of the hyperedge hi as a clique. do

5: for p s.t. vp ∈ dp do
6: pg(i) = pg(i) ∗ Sg(i, p)
7: end for
8: end for
9: end for

10: return pg

Based upon CPH the similarity between the object i and j is contained in a similarity

matrix S as the entry at (i, j). This matrix is defined as follows:

S =

K∑
k=1

γkλkakb>k (5.2)

where

γk =
1

Tbuf

 T∑
t=T−Tbuf+1

ck(t)

 (5.3)

akb>k for the component k basically represent the similarity between the object pairs

in the kth component. Let the similarity matrix for graph be Sg (from decomposition of

Hg) and for hypergraph be Sh (from decomposition of H). Compression over Tbuf num-

ber of past years (buffer) captures the intuition that only the recent past publications

are relevant for prediction.

5.5.3 Predicting Collaborations

In this step the similarity matrices Sg and Sh are used for predicting the edges or

hyperedges. Interpretation of the similarity matrix in our approach is as follows. Sg(i, j)

is the likelihood of the ith dyadic edge occurring in future and also contains vertex j.

Similarly, for case of hypergraph Sh(i, j) is the likelihood of the ith hyperedge along

with vertex j inside it. In short after the tensor decomposition (and the subsequent
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compression along time dimension) our method outputs a similarity value for all the

actors for each collaboration indicating how likely each of these actors can start working

with this collaboration.
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Figure 5.5: Log-Log Plot depicting No. of publications over different sizes of collabora-
tion

Hypergraph Case (Algorithm 3):

If the reassurance of ith hyperedge reoccurs and also contain jth vertex is an event.

Assuming that all these events for a particular ith hyperedge for each of the vertices are

independent the probability of ith hyperedge reoccurs is defined as:

ph(i) =
∏
p∈hk

Sh(i, p) (5.4)

Graph Case (Algorithm 4):
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Similarly, in case of graphs the probability of ith edge reoccurring in future is:

qg(i) =
∏
p∈gk

Sg(i, p) (5.5)

The probability of ith hyperedge reoccurring using the dyadic edge probabilities is:

pg(i) =
∏
q∈D

qg(q) =
∏
q∈D

∏
p∈gk

Sg(q, p) (5.6)

where D is the set of dyadic edges that are contained in the clique representation of

the ith hyperedge. Another thing to mention is that apart from multiplying the Sg(q, p)

in equation 5, other operators like max, min and addition were tried, but resulted in

trivially bad results for graphs. Therefore, we avoid these operators in this study.

The outcome of this whole process (Section 4) is these two vectors: pg and ph . The

ith values of pg and ph are the likelihood of collaboration represented by the ith hyper-

edge occurring in future as outputted by graph and hyperegraph models respectively.

These vectors are used to generate the top-N list as detailed in the Section 5.

5.6 Experimental Analysis

In this section we discuss the experimental setup used to evaluate the performance

of the proposed approach. First section describes the dataset, data preprocessing and

experimental setup. In the second section, we discuss the various experiments conducted

and their analysis.

5.6.1 Dataset and Experimental Setup

We have evaluated the performance of the proposed approach using the popular DBLP

dataset (publicly available at (Tang et al., 2007a)) containing publications from years

1930-2011. For the experiments the dataset is divided into training and test periods

(splits) as shown in the Table 1 and Table 2. As shown in Table 1 the splits are designed
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with constant training period but variable testing periods. Table 2 contains splits with

variable training periods and fixed length testing periods. Table 3 provides the statistics

of the training and test set. It provides the total sum of edge counts across all the splits

in two different ranges of splits: Split A.1 to A.5 and Split B.1 to B.5 as mentioned.

However, only the No. of training and No. of old edges are useful statistics about the

data for the proposed experiments.

The distribution Figure 5.5 is a log-log plot showing the distribution of publication

counts of various collaboration sizes for different 5 year time periods of DBLP dataset.

We observe that the distribution (Figure 5.5) across the different intervals follow a

similar pattern. This shows that splits that were designed are equivalent as far as

conducting experiments is concerned and no bias is involved.

As a preprocessing step, all the single author papers were removed since they do not

capture relationships between authors.

For the CP Decomposition (CP-ALS) (that is required for Algorithm 1) Tensor

Toolbox (Bader & Kolda, 2007) is used. To find the parameter K for the CP-ALS

algorithm we use the ensemble method approach proposed by Dunlavy et al Dunlavy

et al. (2011) with K = {20, 40, ...200}. Also the parameter Tbuf = 3 years is taken

(Dunlavy et al., 2011). We have used the term graph and dyadic graph interchangeably.
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Figure 5.6: Experiment A: (a) AvgF-Score@100 (b) AvgF-Score@1000
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Figure 5.7: Experiment B (Variable Training Size): (a) AvgF-Score@100 (b) AvgF-
Score@1000
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5.6.2 Evaluation

In this section four experiments are described that evaluate our proposed approach and

provide comparative analysis between dyadic and hypergraphs models. Each of the ex-

periment below is conducted using some of the splits. The training period of each split

is used to train the dyadic Graph or Hypergraph models using Algorithm 1. Also each

snapshot is of size one year (i.e. one time slice of both tensor contains collaborations

from 1 year). The algorithm is run for both graph and hypergraph case to return the

edge (Pg) and hyperedge probability (Ph) vectors. These probability vector contains

likelihood values for collaborations of different sizes. Each vector is sorted in descending

order and the list of top-N elements for each size is extracted. Out of these top-N ele-

ments the performance for each size collaboration over test set (old test edges in Table

3) is compared using the following metrics:

Precision@N (Size-h) =

# of size ’h’ collaborations
correctly predicted

from size ’h’ top-N list

N
(5.7)

Recall@N (Size-h) =

# of size ’h’ collaborations
correctly predicted

from size ’h’ top-N list

# of actual size ’h’
collaborations

(5.8)

AvgPrecision@N (Size-h) =

Sum of Precision@N (Size-h)
for all splits

Total # of splits
(5.9)

AvgRecall@N (Size-h) =

Sum of Recall@N (Size-h)
for all splits

Total # of splits
(5.10)

AvgF-Score@N (Size-h) =

2 * AvgPrecision@N (Size-h)
* AvgRecall@N (Size-h)

AvgPrecision@N (Size-h)
+ AvgRecall@N (Size-h)

(5.11)

This study considers collaborations of size = {2, 3, 4, 5, 6, 7} as we are interested

only in higher order collaborations (size=2 is used in the analysis as the trivial dyadic
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case). AverageF-Score@N and AverageF-Score@N are used in the experiments only

for collaborations of size = {3, 4, 5} across all the splits (over which the experiment is

conducted). Collaboration of size = {6, 7} the number of predictions are much less as

compared to size = {3, 4, 5} case. Therefore, for these cases all the predictions (rather

than top-N) are used using the following metrics:

Precision (Size-h) =

# of size ’h’ collaborations
correctly predicted

Total # of size ’h’
predicted

(5.12)

Recall (Size-h) =

# of size ’h’ collaborations
correctly predicted

# of actual size ’h’
collaborations

(5.13)

AvgPrecision (Size-h) =

Sum of Precision (Size-h)
for all splits

Total # of splits
(5.14)

AvgRecall (Size-h) =

Sum of Recall (Size-h)
for all splits

Total # of splits
(5.15)

AvgF-Score (Size-h) =

2 * AvgPrecision (Size-h)
* AvgRecall (Size-h)

AvgPrecision (Size-h)
+ AvgRecall (Size-h)

(5.16)

In the expriments below AverageF-Score (Size-h) is used as a metric to evaluate

the collaboration of size = {6, 7} across all the splits (over which the experiment is

conducted).

Experiment A

This experiment is conducted over the splits A.1 to A.5 for a fixed test period of

3 years (i.e. from Table 1 column 2 are the training periods and column 3 are the

corresponding testing periods). AvgF-Score@100 and AvgF-Score@1000 are shown in

the Figure 6 (a),(b) for size = {3, 4, 5}. As shown in Figure 6(a),(b) for size= 3, graphs

perform comparably with hypergraphs however for size= 4 prediction using hypergraphs

show approx. 150% and 40% increase in F-Score for @100 and @1000 cases respectively.

For size>5 Figure 6(a) and Figure 6(b) are identical showing the AvgF-Score. For

167



size>5 graphs show similar trends as for size= 4 with performance degrading as size

increases. As shown in figure 6(a) the F-Score for hypergraph perform better with an

increase ranging from 25% for size= 5 to almost 100% for size= 7. This indicates that

Hypergraphs maintain the higher order group information intact. However, owing to the

limited training set for higher order (size> 6) collaborations hypergraph performance is

reduced.

Experiment B

This experiment compares the prediction power of the two models: graph and hy-

pergraphs, when trained over variable size training periods. The time period splits used

in this case are B.1 to B.5 (which has fixed test period of 3 years) over training period

size from 3 to 5 years as show in the Table 2. For size= {3, 4, 5} AvgF-Score@100/1000

and AveragrF-Score for size> 5 curves for different training periods are shown in Figure

7(a),(b). As shown in Fig 7(a),(b) the F-Score curves for graph model are always lower

than hypergraph curves for all size collaborations. Another interesting thing to note

is that green curves of hypergraph are above pink and pink is above maroon for most

sizes in both Figure 7(a),(b). Similar case is there for graphs (blue above red and red

above grey). Thus, increasing the training period in several cases results in decrease in

prediction power for both graphs and hypergraphs. This shows that the information

about past can act as a noise and thus, decrease prediction accuracy.

Experiment C

To get further confidence in the prediction power of hypergraphs we ran experiments

with predictions over variable testing periods from three to five years using the splits

A.1 to A.5 (Table 1) and fixed training period size= 5 years. For size = {3, 4, 5} the

AvgF-Score@100 and AvgF-Scorel@1000 curves for different testing periods are shown

in Figure 8(a),(b). As shown in Figure 8(a),(b), for size = {3, 4} the graph model (curves

colored blue, red and gray) is comparable to the green, pink and maroon curves (which

represent hypergraph). However at higher order collaborations hypergraph outperform

graphs (as inferred from the AvgF-Scores for size >= 5 shown in Figure 8(a),(b)).

Experiment D
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Figure 5.8: Experiment C (Variable Test Size): (a) AvgF-Score@100 and (b) AvgF-
Score@1000
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This experiment analyzes the trivial case of predicting dyadic links. This experiment

consists of three sub-experiments with the following testing and training combinations:

A.1-A.5 with training of size = 5 years and test period size= 4 years (Case 1); B.1-B.4

with training period size = 4 years and test period size = 3 years (Case 2); and last,

training using B.1-B.4 with training period of 3 years and testing using A.1-A.4 with

test period size = 4 years (Case 3). These cases evaluate the dyadic link prediction

under various combination of test and training periods. Results of this experiment are

shown in the Figure 9(a),(b). It is clearly visible that the maroon bars (hypergraph)

for different sub-experiments (Case 1 to 3) are always aslightly higher than blue bars

(graphs). This shows that the performance of graphs and hypergraphs is comparable.

Although, graphs are themselves sufficiently capture the information needed to predict

dyadic links, the proposed tensor model for hypergraph is robust even to predict dyadic

links.

5.7 Conclusion and Future Work

In this work we highlight the increasing need to model higher order structures such as

groups in online social networks. Hypergraphs are proposed as a natural and highly

generalized tool for capturing higher order groups. We show that hypergraphs preserve

group information which dyadic graph representation is likely to loose. Therefore, prob-

lems that require the group information intact are inclined to be better captured using

hypergraphs. We have taken one such problem of higher order collaboration activity

prediction and formulated it as a hyperedge activity prediction problem. Further, we

propose a novel approach using hyperincidence temporal tensors and graph incidence

temporal tensors to effectively capture hypergraphs and graphs respectively. We show

that tensors are an excellent way to capture temporal hypergraphs since they perform

much better in predicting collaborations of size greater than three (in general higher or-

der hyperedges) in comparison to the dyadic graph representation. Hypergraphs in most

cases provide better results with an average increase of approx. 45% in F-Score for differ-
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ent sizes ∈ {3, 4, 5, 6, 7} (Figure 6). Moreover, it also turns out that the hyper-incidence

tensor model is robust for dyadic edge prediction as well. Furthermore, space/time com-

plexity of hypergraph approach is much lower than graphs, both in theory and practice.
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Chapter 6

Hypergraph Embeddings using

Symmetric Tensor Decomposition

This chapter serves as the entry point to the second part of this thesis. We dedicated

the previous three chapters to develop various hypergraph inference mechanisms. In

this and the next chapter, we shift gears and study hypergraph compression techniques.

We start by again motivating that data structured in the form of overlapping or

non-overlapping sets is found in a variety of domains, sometimes explicitly but often

subtly. For example, teams, which are of prime importance in social science studies,

are “sets of individuals”; “item sets” in pattern mining are sets, and for various types

of analysis in language studies a sentence can be considered as a “set or bag of words”.

Although building models and inference algorithms for structured data has been an

essential task in the fields of machine learning and statistics, research on “set-like” data

remains less explored. Relationships between pairs of elements can be modeled as edges

in a graph. However, for modeling relationships that involve all members of a set, a

hyperedge is a more natural representation. In this part of the thesis, we focus on the

problem of embedding hyperedges in a hypergraph (a network of overlapping sets) to a

low dimensional vector space. We propose a tensor-based algebraic model that captures

the hypergraph structure in a principled manner (without losing set-level information)
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and, more importantly, is for general non-uniform hypergraphs. Our central focus is to:

(a) highlight the connection between hypergraphs (topology) and tensors (algebra) and

(b) squarely compare graphs versus hypergraphs. Our hypergraph tensor decomposition

method outperforms graph (or graph proxies for hypergraph) based spectral baselines on

real-world as well as synthetic datasets. We, therefore, argue that the proposed methods

are more generic methods suitable for hypergraphs (and therefore also for graphs) that

preserve accuracy and efficiency.

Next Section 6.1 introduces and motivates the problem, followed by preliminaries in

Section 6.2. We discuss the problem formulation and the tensor based approach in Sec-

tion 6.3. Section 6.4 is dedicated to the various experimental evaluations conducted and

describes the various datasets employed. Finally, we have Section 6.5, which providing

literature review, followed by the the conclusion.

6.1 Introduction

In group structured data we have multiple entities related by some form of group rela-

tionships. Such data is more abundantly found in the real world than has been usually

studied (Estrada & Rodriguez-Velazquez, 2005). In social networks domain, team data

from massive online multi-player games (Ahmed et al., 2011) such as World of Warcraft,

group communication tools such as Skype and Google Docs and research collabora-

tions (pub; Subbian et al., 2013). There are other fields in which structural relationships

between entities is important as well, and large datasets capturing them exist. Examples

include Natural Language Processing (Bengio & Bengio, 2000), Biology (Hwang et al.,

2008; Klamt et al., 2009a), e-commerce (Christakopoulou & Karypis, 2014; Deshpande

& Karypis, 2004) and Chemistry (Bartholomay, 1960). Figure 6.1 shows such examples

for networks of groups, sentences and item-sets.

Hypergraph (Berge, 1984), which is a generalization of graphs, is a popular model to

naturally capture higher-order relationships between sets of objects (Figure 6.1) (Estrada

& Rodriguez-Velazquez, 2005). Within machine learning, algorithms guided by the
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Figure 6.1: “Set-like” hypergraph structures from various domains

structure of such higher order networks (Zhou et al., 2006b) have found applications in

a variety of domains (Gao et al., 2013; Li & Li, 2013; Sharma et al., 2015; 2017; Tian

et al., 2009).

Often is it useful to embed nodes of graph to low dimensional vector space (by a pro-

cess referred to as graph embedding) as these embeddings can employed predictive tasks

pertaining to nodes (like node classification). In this chapter we focus on learning hyper-

graph embeddings, which involves not just learning node embeddings but also hyperedge

embeddings for a given hypergraph. However, unlike graphs (see (Cai et al., 2017)),

learning node embeddings for hypergraph have been less explored and we are unaware

of any work that considers hyperedge embeddings. In this chapter, we propose method

which (1) learn hypergraph embeddings directly, (2) leverage the hypergraph topology

and (3) not loose the hyperedge-level joint information. These learned embeddings can

then be employed by a supervised or semi-supervised algorithm to perform various pre-

dictive tasks pertaining to nodes as well as hyperedges. Example of hyperedge tasks

can be for example performance prediction of a team (set of individuals) engaged in

a collaborative task or classification of individuals in a cohort for some psychological

evaluation by embedding their response vectors (set of “positive” responses).

Most of the past methods learn node embeddings for hypergraphs by extending tra-

ditional graph embedding methods for hypergraph setting (Hwang et al., 2008; Zhou

et al., 2006b). However, as debated by Agarwal et al. (2006a), such representations
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can be learned by constructing graphs, which are proxies for the hypergraph structure.

However, these proxy graphs for a given hypergraph are not without merit as observed

in some recently theoretical studies (Ghoshdastidar & Dukkipati, 2015; 2016). In this

work, we highlight that a k-way tensor represents a k-uniform hypergraph (Qi, 2005)

and in order to capture hypergraphs in a principled manner any statistical algorithm

should work at the level of tensors and not matrices which only model dyadic affinities.

This fact was first leveraged in computer vision community by Shashua et. al. (Shashua

et al., 2006) where they perform image segmentation using higher-order affinity tensor

decomposition and point to its connection with uniform hypergraphs. In this work we

leverage these observations to design node embeddings for general (non-uniform) hyper-

graphs based on joint decomposition of various cardinality hypergraph tensors. Further,

we also introduce the concept of dual tensors for obtaining the hyperedge embeddings

directly. As one of the central focus of this work is to squarely compare graphs versus

hypergraphs, we compare our method with graph (or graph proxies for hypergraph)

based spectral baselines. Proposed hypergraph tensor decomposition outperforms base-

lines on several real-world as well as synthetic datasets. The main contributions of this

work are as follows:

• We propose a general hypergraph tensor decomposition method designed for gen-

eral hypergraphs (containing different cardinality hyperedges) unlike simple uni-

form hypergraph tensor decomposition, which is restricted to fixed cardinality

hyperedges (i.e. uniform hypergraph). We are unaware of any such works or

applications employing this approach.

• We propose the novel concept of a dual tensor, corresponding to the hypergraph

dual that allows us to get a hyperedge embedding directly.

• We provide an empirical comparison between graphs and general hypergraphs in

a principled manner using the statistical algorithms proposed.
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6.2 Preliminaries

Although we had defined models in detain in Chapter 2, we again provide preliminaries

for convenient reading, and also, the notations employed in this chapter might be more

simplified for the discussion within this chapter. We consider the scenario where we have

a collection of elements. These elements can represent individual actors in case of social

groups or words in sentences or items in item-sets within a transaction database. In other

words a social group or a sentence or an item-set are sets which contain these elements.

Let V = {v1, v2, ..., vn} represents n elements and we have m different sets defined over

these elements, denoted by G = {g1, g2, ..., gm}, where gi ⊆ V represents the ith set. The

cardinality |gi| represents the number of elements in the set. Also each set gi ∈ G has

an occurrence number R(gi), which denotes the number of times it has occurred. Such

overlapping or non-overlapping sets can be modeled as a hypergraph (Berge, 1984),

where the nodes and hyperedges, represent the elements and sets, respectively. This

hypergraph is represented as Ng = (V,G) with G as the collection of hyperedges over the

nodes V . The incidence matrix H ∈ {0, 1}|G|×|V | for Ng represents the presence of nodes

in different hyperedges with H(gi, v) = 1 if v ∈ gi else 0. We also define degree d(v) of a

vertex v as the number of hyperedges incident on this vertex i.e. d(v) =
∑

gi∈G H(gi, v).

Problem Statement: Given this setting, our goal is to learn the mapping φ : G→

Rd from hyperedges to feature representations (i.e., embeddings) that can be used to

build predictive models involving sets. Here d is a parameter specifying the number of

dimensions of the embedding vector. Equivalently, φ can be thought of as a look-up

matrix of size |G| × d, where |G| is the total number of sets or hyperedges.

6.3 Methodology

In this section we develop tensor (higher-order matrix) based linear algebraic methods

that learn node as well as hyperedge embedding by taking into account the joint prob-

ability over a hyperedge. The idea behind using tensors is that they retain the set-level
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information contained in a hypergraph, unlike the proxy graphs (corresponding to hy-

pergraphs) based techniques (used as baselines in our experiments), which approximate

hyperedge or set-level information with dyadic edge-level information. As noted before

this idea of tensor based higher-order affinity retention was first highlighted in a statis-

tical setting by Shashua et al. (2006). After which, we argue it has largely remained

unnoticed, more specifically in context of hypergraphs. The following proposition from

combinatorial probability puts this argument more formally.

Proposition 1 Given a set of random variables X1, ...Xc (c ≥ 2), and H(.) as the

information entropy, we have (Chung et al., 1986, p. 34):

H(X1, ..., Xc) ≤
( 1

c− 1

) ∑
(i,j)⊆2[c]

H(Xi, Xj) (6.1)

Therefore, the joint probability distribution over c cardinality hyperedges is more in-

formative (lower entropy) than the sum total of information attained from probability

distributions over each of the
(
c
2

)
dyadic edges.

Although tensors can retain higher order information, most research to date has

focused on uniform hypergraphs using symmetric tensors. We propose an approach

which is principally suited for general hypergraph structured data using higher-order

tensors. For a given hypergraph we can extract a sub-hypergraph that only consists

of the hyperedges with cardinality k. This sub-hypergraph is a k-uniform hypergraph

or k-graph (Cooper & Dutle, 2012). Corresponding to this k-uniform hypergraph, we

can define a kth order n-dimensional symmetric tensor (Qi, 2005) Ak
hyp = (ap1,p2,..,pk) ∈

R[k,n] whose elements are as follows:

ap1,p2,..,pk = R(gi) (6.2)

where {vp1 , vp2 , ..., vpk} ∈ gi and |gi| = k, ∀i ∈ {1, ...,m}. Note that symmetry here

implies that the value of element ap1,p2,..,pk is invariant under any permutation of its

indices (p1, p2, .., pk). Rest of the elements in the tensor are zeros. We also define the
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lexicographically ordered index set for hyperedges:

Pk =
{
p|p = (p1, p2, .., pk) where {vp1 , vp2 , ..., vpk} ∈ gi,

∀gi ∈ G s.t. |gi| = k and p1 < p2 < ... < pk
}
,

(6.3)

and we have different sets {Pk}∀k ∈ {cmin, .., cmax} (cmin and cmax are the maximum

and the minimum hyperedge cardinality in the given hypergraph). Notice that Pk

contains unique (non-repetitive) indexes as there is only a single p corresponding to

each of the different hyperedges gi ∈ G. Consequently, we have |Pk| = |{gi : |gi| = k}|.

In a similar manner we can also define a dual tensor, corresponding to hypergraph

dual where the roles of nodes and hyperedges are interchanged. We consider all the

hyperedges in the hypergraph dual that are of cardinality k. This basically corresponds

to all the vertices in the original hypergraph which have a degree of k, i.e., they are

part of exactly k hyperedges in the original hypergraph. Corresponding to this k-

uniform hypergraph dual, we can define a kth order m-dimensional symmetric dual

tensor Ak
dual = (aq1,q2,..,qk) ∈ R[k,m] whose elements are initialized as follows:

aq1,q2,..,qk = 1 (6.4)

where {gq1 , gq2 , ..., gqk} 3 vj and d(vj) = k, ∀j ∈ {1, ..., n}. Note that this tensor is

also symmetric and rest all the elements in the tensor are zeros. Again, we define

the lexicographically ordered index set for dual hyperedges (vertices in the original

hypegraph):

Qk =
{
q|q = (q1, q2, .., qk) where vj ∈ {gq1 , gq2 , ..., gqk},

∀vj ∈ V s.t. |d(vj)| = k and q1 < q2 < ... < qk
}
,

(6.5)

and we have different sets {Qk}∀k ∈ {dmin, .., dmax} (dmin and dmax are the maximum

and the minimum vertex degree in the original hypergraph). Again, notice that Qk

contains unique (non-repetitive) indexes as there is only a single q corresponding to
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each of the different dual hyperedge (vertex in the original hypergraph) i.e. vi ∈ V .

Consequently, we have |Qk| = |{vi : d(vi) = k}|.

To realize our aim of learning node or hyperedge embeddings we perform Symmetric

Tensor Decomposition (Comon et al., 2008), in a manner similar to Kolda (2015), but

jointly across different cardinality hypergraph tensors (for node embeddings) or dual

tensors (for hyperedge embeddings). Specifically, for the hyperedge embeddings we

consider the following optimization formulation:

f(λ,Z) =

α2∑
k=α1

∥∥∥Ak
dual −Mk

∥∥∥2 =

α2∑
k=α1

k!

(∑
q∈Qk

(
akq −Mk

q

)2)
(6.6)

where,

Mk =
d∑
r=1

λr(zr ⊗ zr ⊗ ...⊗ zr︸ ︷︷ ︸
k times

) ≡
d∑
r=1

λrz
⊗k
r (6.7)

with ⊗ is the Kronecker product (generalized outer product, ref. Bader & Kolda (2007)),

zr ∈ Rm, λr ∈ R, Z ∈ Rm×d with Z(:, r) = zr and akq is the aq1,q2,..,qk entry of Ak
dual.

Given the dual tensors Ak
dual, ∀k ∈ {α1, .., α2} (α1 and α2 are the minimum and max-

imum cardinalities considered for the dual hyperedges), Equation 6.6 aims to learn

symmetric decomposition Mk with Z as the matrix containing d-dimensional embed-

dings for the m hyperedges. Notice that the embeddings in Z are shared across the

different order (k) decompositions Mk. Furthermore, although there are k! entries for

each k cardinality hyperedge in the dual tensor Ak
dual, however, the summation in Equa-

tion 6.6 is performed over only the unique set of indexes in Qk. This helps us escape the

actual construction of the complete dual tensors (Ak
dual) which otherwise may result in

exponential space explosion. This idea of using only unique index sets (Qk) has been

leveraged by both Kolda et. al. (Ballard et al., 2011; Kolda, 2015) as well as by Shashua

et al. (2006) in form of semi-norms.
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We highlight that (z⊗kr )q = zq1rzq2r · · · zqkr with zqpr = Z(qp, r) ∈ R. Also let:

δq =
(
akq −Mk

q

)
=
(
akq −

d∑
r=1

λr(z
⊗k
r )q

)
(6.8)

Then the gradients for Equation 6.6 are given by:

∂f(λ,Z)

∂λr
= −2

α2∑
k=α1

k!
∑
q∈Qk

δq(z⊗kr )q (6.9)

∂f(λ,Z)

∂zjr
= −2

α2∑
k=α1

k!λr

∑
q∈Qk

δq (zq1r · · · zqs−1rzqs+1r · · · zqkr) , (6.10)

where, j = qs ∈ {q1, ··, qk}. Furthermore, following Kolda (2015) we add the fol-

lowing penalty to address the scaling ambiguity by enforcing the following penalty and

gradient:

pγ(Z) = γ

d∑
r=1

(zr
ᵀzr − 1)2 ,

∂pγ
∂zr

= 4γ(zr
ᵀzr − 1)zr (6.11)

Another important issue that requires attention is that the optimization function

f(λ,Z) only considers dual hyperedges of cardinalities within {α1, .., α2}. As we will

discuss in section ??, due to scalability reasons most likely {α1, .., α2} ⊂ {cmin, ..., cmax}.

Given this setting, it is therefore, possible that some hyperedges (in the original hyper-

graph) might not contain any vertex which has degree in the range {α1, .., α2}. Such

hyperedges will then suffer from the cold start issue and to remedy that we leverage the

auxiliary information in the form of the hypergraph structure. We therefore, introduce

the following penalty and gradient:

pη(Z) = η
d∑
r=1

zᵀrLdualzr ,
∂pη
∂zr

= 2ηLdualzr (6.12)

where Ldual is the dual hypergraph Laplacian (see detail in Chapter 2). This topology
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smoothing constraint allows the diffusion of latent embeddings from the not cold-start

vertices to nearby cold-start vertices, in order for the later to achieve meaningful non-

zero embeddings. Notice that the above Laplacian contains the entire hypergraph dual

structure, therefore, allowing information exchange (1) across different cardinality hy-

peredges and (2) also between hyperedges that are not suffering from cold start. It

would be interesting to develop other Laplacians that (a) only affect the embeddings of

the cold-start hyperedges, (b) only allow hyperedges of same cardinality to affect each

others embeddings and (c) employ hasse diagram based Laplacian Sharma et al. (2017)

which explicitly models the cardinality hierarchy.

Putting it all together, the complete optimization objective function is:

ftot(λ,Z) = f(λ,Z) + pγ(Z) + pη(Z) (6.13)

where the choice of γ is the weight of the penalty on the norm of the columns of Z

and the choice of η determines the penalty on the extent of smoothness (similarity)

between the embeddings of hyperedges within neighborhood of each other. We call the

algorithm that optimizes the above objective (Equation 6.13) as Hypergraph-Tensor-

Decomposition (HTD) (Algorithm 7).

Algorithm 7 HTD (d,m, α1, α2, γ, η,A
k
dual∀k ∈ {α1, .., α2},Ldual)

1: randomly initialize Z ∈ Rm×d and λ ∈ Rd
2: repeat
3: for r = 1 to d do
4: Update λr using Equation 6.9
5: for j = 1 to m do
6: Update zjr using Equation 6.10
7: end for
8: Update zr using Equation 6.11
9: Update zr using Equation 6.12

10: end for
11: until fit criteria achieved or max. # of iterations exceeded
12: return Z

Notice that till now we have described the process of learning hyperedge embeddings.
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The same process can also be used for vertex embedding same algorithm 7 can be used

to get the vertex embeddings, by calling:

HTD(d, n, β1, β2, γ, η,A
k
hyp∀k ∈ {β1, .., β2},Lhyp) . (6.14)

Parameters β1, β2 are the limits for the hyperedge cardinalities considered in Equa-

tion 6.6 and Lhyp is the hypergraph laplacian (see Chapter 2). We shall jointly refer to

the embeddings achieved for nodes and hyperedges via the above tensor decomposition

techniques as t2v. Lastly, we would like to highlight that the tensors that we have

employed are super-symmetric and hence able to capture distribution over sets rather

than sequence. But in general we can employ a k-way tensor which is not symmetric to

even capture sequence. In this sense tensors are more general purpose.

6.4 Experiments

6.4.1 Dataset Description

In this chapter, we consider both real-world as well as synthetic datasets. For the former,

we make use of five popular real-world datasets from the UCI Machine Learning Repos-

itory (http://archive.ics.uci.edu/ml). The five selected datasets have data points whose

feature vectors contain mostly boolean-valued features. (From each of the datasets, we

removed the very few non-boolean valued features.) We then consider each data point

(sample) as a hyperedge with features as vertices. All the features (vertices) which have

value one for a given sample (hyperedge) are considered vertices of this sample hyper-

edge. In short, we treat the data matrix (sample-feature mapping) as the hypergraph

incidence matrix (hyperedge-vertex mapping). Below we describe the five datasets:

1. zoo: In this dataset, there are several animals each described with a set of boolean

attributes like, for example, does it have a feather, or is it airborne. There are

several classes of animals, and the aim is to classify animals correctly into its class.
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Data Hyperedges Vertices Max. Avg.
(m) (n) Cardinality Cardinality

zoo 101 15 10 6.53
voter 432 16 13 7.91

autism-child 291 14 13 7.46
autism-adolo 103 14 12 7.59
autism-adult 681 14 13 5.81

synthetic 7020 80 6 3.3

Table 6.1: Hypergraph Statistics for various Datasets

2. voter: In this, the aim is to classify congressman as democrat versus republican

based on 16 key votes, where each vote is boolean (yea or nay). Each congressmen’s

hyperedge contains only “yay” vertices.

3. autism-child, autism-adolo, autism-adult: These three datasets contain psy-

chological evaluation on a cohort of children, adolescents, and adults, respectively,

for classification into having ASD disorder or not. Attributes are boolean item

responses to behavioral questions. We treat each item (psychological evaluation

question) as a vertex, and with each positively responded item (vertex) becomes

part of the corresponding individual’s hyperedge.

For generating synthetic hypergraphs, we employ the recently proposed hyper-

graph stochastic block-model (hSBM) (Ghoshdastidar & Dukkipati, 2015) which are

generalization of the traditional stochastic graph model to a hypergraph setting. This

model is fairly straightforward. Here we describe a slightly augmented process as we

need labels for hyperedges (rather than partition labels for vertices in hSBM). We start

with a set of vertices and divide them into two equal sets (we restrict ourselves to only

two vertex partitions but can be easily extended for more). We then randomly gener-

ate hyperedges between any vertices with probability pinter and within vertices in the

same partition with probability pintra. In order to generate clusters or communities

one chooses pinter < pintra, resulting in more dense connections within each partition

rather than across partitions. For a given cardinality c, we set our probability vector
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p(c) = [pinter, pintra] = [5, 40]·(log n/n(c−1)), where n is the number of vertices and order

O(K · log n/n(c−1)) is recommended to realize sparse regime i.e. O(n log n) hyperedges.

The particular value of constant K is chosen to realize not too sparse hypergraphs and

a sufficiently high number of higher-order hyperedges. We realize 25 hypergraphs using

the above process with roughly 15n log n to 25n log n hyperedges. For our experiments

we restrict to [2, 6] cardinality hyperedges (average statistics shown in Table 6.1). We

then label hyperedges into three different classes: those consisting of only vertices from

first vertex partition, those from an only second partition, and those with a mix of

vertices from both partitions. The aim, in this case, is to solve this 3-class classification

problem.

6.4.2 Evaluation Methodology and Experimental Setup

Methods Compared

We compare hyperedge embeddings obtained from our proposed method with several

baselines. Both the baseline, as well as proposed approaches, can output hyperedge

embeddings in two different ways:

1. Each method can directly output hyperedge embeddings. Our proposed approach

gives direct hyperedge embedding using the dual tensor as the input. We refer

to these embeddings as t2v-dual. Similarly, we have two baselines that give

hyperedge embeddings directly via eigenvalue decomposition of line graph Lapla-

cian (2.47) (herein e2v-line) and that of proxy dual hypergraph Laplacian (2.44)

(herein e2v-dual). Refer to Chapter 2 for details with regards to these Laplacians.

2. We can use these methods to output vertex embeddings first and then combine the

vertex embeddings of the vertices within a hyperedge. We evaluate only two kinds

of combinations - summing the vertex embeddings (sum) or taking the mean of

vertex embeddings (mean). (Note the later is hyperedge cardinality dependent.)

We refer hyperedge embeddings obtained from our proposed approach in this
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manner by first obtaining vertex embeddings via decomposing hypergraph tensor,

as t2v. Similarly, for the two baselines, we can first obtain vertex embeddings

via eigenvalue decomposition of graph Laplacian (Gibson WCE graph (2.22)) and

proxy hypergraph Laplacian (2.42), which can then be combined to get hyperedge

embeddings referred to as e2v and e2v-hyp, respectively. Refer Chapter 2 for

details with regards to these Laplacians.

We therefore, have two different comparisons. First is between embeddings obtained

from e2v-line and e2v-dual with t2v-dual embeddings. Second, is between e2v and

e2v-hyp with t2v. The later comparison happens further separately for both sum and

mean combining strategies.

Evaluation Tasks and Setup

As described in Section 6.4.1, each dataset has a hypergraph and a corresponding clas-

sification task associated with it. We first obtain the hyperedge embeddings for the

various datasets. The hyper-parameters specific to the proposed tensor method (γ and

η) were determined using grid searches over the search spaces: γ = [0.01, 0.5, 5] and

η = [0.01, 0.5, 5, 10]. Also the cardinality inputs α1 = β1 = 2 and α2 = β2 = 10.

Further, the hyper-parameter of dimension (d) which is common to all the methods is

determined by grid search over: d = [8, 16, 32, 64]. 5-fold cross-validation was used to

determine all the best hyperparameters.

The obtained hyperedge embeddings for a given dataset are utilized for the hyper-

edge classification task associated with the dataset. For each classification task, we

perform several evaluation runs. In each run, we randomly choose 30% of hyperedges

as the test set and train logistic regression classifier using the remaining 70% train-

ing hyperedges. We chose the Area Under Curve (AUC) as the evaluation metric (the

higher, the better). We take average AUC score across five runs as the final AUC. We

performed Logistic regression with l2-norm regularization whose hyper-parameter was

chosen by 5-fold cross-validation using a grid search.
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Eigen Decomp. Tensor Decomp.

Dataset Embed. Combination graph proxy hyp. hyp. tensor
(e2v) (e2v-hyp) (t2v)

Node Embed Sum 0.42 0.40 0.83
Node Embed Average 0.60 0.40 0.83

Zoo line graph proxy dual dual tensor
(e2v-line) (e2v-dual) (t2v-dual)

Only Hyperedge Embed 0.52 0.60 0.80

Eigen Decomp. Tensor Decomp.

Dataset Embed. Combination graph proxy hyp. hyp. tensor
(e2v) (e2v-hyp) (t2v)

Node Embed Sum 0.94 0.94 0.96
Node Embed Average 0.94 0.94 0.96

Voter line graph proxy dual dual tensor
(e2v-line) (e2v-dual) (t2v-dual)

Only Hyperedge Embed 0.94 0.93 0.96

Eigen Decomp. Tensor Decomp.

Dataset Embed. Combination graph proxy hyp. hyp. tensor
(e2v) (e2v-hyp) (t2v)

Node Embed Sum 0.98 0.98 0.99
Node Embed Average 0.73 0.71 0.72

Autism line graph proxy dual dual tensor
Child (e2v-line) (e2v-dual) (t2v-dual)

Only Hyperedge Embed 0.97 0.96 0.95

Eigen Decomp. Tensor Decomp.

Dataset Embed. Combination graph proxy hyp. hyp. tensor
(e2v) (e2v-hyp) (t2v)

Node Embed Sum 0.89 0.91 0.96
Node Embed Average 0.65 0.65 0.76

Autism line graph proxy dual dual tensor
Adolescent (e2v-line) (e2v-dual) (t2v-dual)

Only Hyperedge Embed 0.86 0.88 0.89

Eigen Decomp. Tensor Decomp.

Dataset Embed. Combination graph proxy hyp. hyp. tensor
(e2v) (e2v-hyp) (t2v)

Node Embed Sum 0.99 1.00 1.00
Node Embed Average 0.75 0.76 0.80

Autism line graph proxy dual dual tensor
Adult (e2v-line) (e2v-dual) (t2v-dual)

Only Hyperedge Embed 0.98 0.98 0.96

Eigen Decomp. Tensor Decomp.

Dataset Embed. Combination graph proxy hyp. hyp. tensor
(e2v) (e2v-hyp) (t2v)

Node Embed Sum 0.94 0.94 0.99
Node Embed Average 0.52 0.56 0.99

Synthetic line graph proxy dual dual tensor
(e2v-line) (e2v-dual) (t2v-dual)

Only Hyperedge Embed 0.94 0.94 0.94

Table 6.2: Classification AUC Scores of tensor methods compared to baselines
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6.4.3 Results and Discussion

As detailed in prior section 6.4.1, for each dataset we have two different sets of com-

parison based on two different ways of obtaining hyperedge embedding: (a) directly

obtaining hyperedge embeddings or (b) obtained by aggregating (sum or mean) vertex

embeddings. For case (a) we compare t2v-dual versus e2v-line/e2v-dual and for case

(b) compare t2v versus e2v/e2v-hyp. Results are reported in Table 6.2 for various

datasets. We refer to methods with t2v- prefix jointly as “t2v- methods”. Similarly,

“e2v- methods” for all methods with e2v- prefix.

One of our central hypothesis is that embeddings obtained from methods which try

to retain the higher-order information within hypergraphs are better than those methods

which do not. We observe from Table 6.2 (the best scores for each row are highlighted in

bold) that tensor-based methods (t2v- methods) consistently outperform graph-based

methods (e2v- methods), if not worse. This observation supports our hypothesis that

tensor-based models, which preserve the joint information within a hyperedge, indeed,

are better models for hypergraph representations.

Also while comparing between the two vertex-embedding aggregation functions: sum

and average, we observe (see “sum” and “average” rows in Table 6.2 across e2v, e2v-

hyp and t2v) that in most of the cases hyperedge-embeddings obtained via summation

of vertex-embeddings, perform better and in some cases those obtained via averaging are

performing poorly, especially for e2v (like synthetic and autism datasets). Although,

summation based aggregation function is performing better in several cases, in a couple

of cases, like voter and zoo datasets, its not the case. This observation highlights the

fact that the choice of aggregation function is itself a hyper-parameter, which requires

tuning in the case of vertex-embedding based methods and a critical drawback. Direct

hyperedge-embedding methods, on the other hand, are not subject to any such choices.

Lastly, we note that summation based t2v is consistently at least as good as t2v-

dual, except for autism-adolo and synthetic datasets where it outperforms. Notice that

t2v employs hypergraph tensors, and the number of non-zeros in them is proportional
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to the number of hyperedges and t2v-dual uses dual-tensor whose non-zeros are pro-

portional to the number of vertices. Given that in all of our datasets, the number of

hyperedges is much more than the number of vertices, the dual-tensor becomes very

sparse and possibly explains the relatively weaker performance of t2v-dual. (Remark :

But we still might choose to prefer t2v-dual because of the criticism we mentioned in

the last paragraph.)

We also note that the difference between t2v- methods and the e2v- methods is not

always similar. For example, this difference is much higher in the zoo dataset as com-

pared to others. Observations such as this and the one described in the last paragraph,

points us to several intuitive questions like what kinds of datasets and their hypergraph

properties (avg. degree, size, and others) affect the choice of method? Or when would

we prefer working using graph methods, and tensor methods might be overkill? Or

employ dual-tensor versus hypergraph-tensor? These questions require both theoretical

understanding as well as extensive experimentation using a larger variety of data, and

hence, we would like to take this as a separate future work. The focus of this work is

to introduce higher-order information retaining methodology.

6.5 Related Works

Hypergraphs were studied rigorously by Berge (1976; 1984) as a generalization of

graphs and directed hypergraphs have been introduced by Bretto (2013). Hypergraph

were argued for the first time as a model to naturally capture higher-order relationships

between sets of objects across variety of domains by Estrada & Rodriguez-Velazquez

(2005). Hypergraphs have been used to model complex networks in different fields in-

cluding biology (Klamt et al., 2009a), databases (Fagin, 1983a) and data mining (Han

et al., 1997; Zhou et al., 2007). Within machine learning, algorithms guided by the

structure of hypergraph were introduced by Zhou et al. (2006b) and have found appli-

cations in a variety of domains (Gao et al., 2013; Li & Li, 2013; Sharma et al., 2015;

2017; Tian et al., 2009). Simplicial complex (Munkres, 1984) based view of hypergraph
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using hasse lattice (Skiena, 1990) within machine learning has recently been proposed

by Sharma et al. (2017).

Representation learning (RL) (Bengio et al., 2013) focuses on learning features

(geometry) of the data (topology). Machine learning algorithms make use of these fea-

tures for prediction. Traditionally these features are readily available within the data-set

or are engineered manually. However, this is often a tedious and human labor-intensive

process. RL addresses this issue by learning features (or representations) automatically

in a task-dependent supervised or a task-independent unsupervised manner.

Node Representations in Graph: Traditionally unsupervised node embedding learn-

ing has been dong using latent models like matrix factorization (Ahmed et al., 2013)

or by community detection (Tang & Liu, 2011) based techniques for networks (Belkin

& Niyogi, 2001; Cox & Cox, 2000; Roweis & Saul, 2000; Tenenbaum et al., 2000). In

each case there is a vector of features learned for a node, each of whose entries reflects

node’s association with some latent dimension or a network community. More recently,

there has been a revived interest in graph embedding in form of context oriented tech-

niques (Grover & Leskovec, 2016a; Perozzi et al., 2014; Tang et al., 2015b). These tech-

niques are inspired by recent unsupervised RL methods in NLP (Le & Mikolov, 2014;

Mikolov et al., 2013) where word embeddings are learned that are similar to words in

a given neighborhood or context. These techniques differ in the manner they generate

this context as well as in the objective which they optimize. Also there are supervised

algorithms learn embeddings which are optimal for the specific task at hand. This re-

sults in high accuracy but incurs significant computational cost for training. Recently,

several supervised learning algorithms have been proposed for network analysis (Tian

et al., 2014; Xiaoyi et al., 2013) and for text networks in a semi-supervised setting (Tang

et al., 2015a). Finally, we refer readers to a very recent and comprehensive survey on

graph embedding methods by Cai et al. (2017).

Node Representations in Hypergraph: Learning embeddings for nodes within a hy-

pergraph while incorporating the hypergraph topology using proxy graphs is introduced

by Zhou et al. (2006b). Using graph proxy destroys the hyperedge-level joint informa-
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tion and thus, incur loss of information. Also, Agarwal et al. (2006a) squarely criticize

that such representations can be learned by constructing graphs, which are proxies for

the hypergraph structure. However, these proxy graphs for a given hypergraph are

not without merit as observed in some recently theoretical studies (Ghoshdastidar &

Dukkipati, 2015; 2016).

Set Representations: RL for sets using neural networks has been proposed recently

(Vinyals et al., 2016), where a memory network is used to compose features sequentially

but in an order invariant manner. In their very recent paper, Rezatofighi et al. (2016)

have tried to answer this set ordering issue by the use of random set theory. However,

they do not consider embedding but focus on learning set-level probabilities. More im-

portantly, both of these works, do not consider the hypergraph structure of overlapping

sets which is the main focus of this paper.

Tensors For comprehensive view of tensors, tensor decomposition as well as applica-

tions we refer to the survey by Kolda & Bader (2009b). The connection between k-way

tensor and k-uniform hypergraph eigen values was established by Qi (2005). The use of

k-way symmetric tensor and their non-negative decomposition for uniform hypergraph

partitioning was first introduced by Shashua et al. (2006). But they are again restricted

to uniform hypergraphs.

6.6 Conclusion

In this chapter we have proposed a tensor-based algebraic method to generate higher-

order representations for both hyperedges (representing sets of nodes) and hypergraph

nodes (that also take into account the hypergraph structure). While introducing a new

idea of a dual tensors corresponding to the hypergraph dual, we develop a novel approach

of using factors from joint decomposition of k-way tensors corresponding to k-uniform

sub-hypergraphs, as generic node & hyperedge representations. We show that that our

method outperforms several graph based baselines in terms of accuracy. We therefore,

argue that our proposed tensor methods are principally suited for hypergraphs (and

therefore also for graphs) while maintaining accuracy and efficiency.
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Chapter 7

Hyperedge2vec: Hyperedge

Representations using Deep

Learning

In this chapter, we revisit the problem of hyperedge embedding, but unlike the batch-

learning based model in the previous chapter, here we consider an online setting. In-

spired by image embeddings methods from computer vision, we treat hyperedge as the

prime entity to be encoded. We develop deep neural networks based auto-encoders that

are trained in an online fashion. Regularization is a crucial ingredient for the successful

training of auto-encoders. We use de-noising based regularization where we propose an

interesting noise generation schemes which take into account the hypergraph structure.

Learned hyperedge representations are then evaluated using various datasets and tasks.

Next Section 7.1 introduces and motivates the problem, followed by preliminaries

in Section 7.2. We discuss the problem formulation and the neural network based

approach in Section 7.3. Section 7.4 is dedicated to the various experimental evaluations

conducted and describes the various datasets employed. Finally, we have Section 7.5,

which providing literature review, followed by the the conclusion.
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7.1 Introduction

In the last chapter, we had introduced the problem of hyperedge embedding, but unlike

the batch-learning based model in the previous chapter, here we consider an online

setting. As we have stated several times previously that one of the main objects while

modeling hypergraph is to preserve the higher-order information as much as possible. To

restate, by higher-order, we mean the hyperedge-level contextual information. For the

purpose of preserving this information, in the previous chapter, we had employed higher-

order tensors which represent the hypergraph structure mathematically and principally

capture the hyperedge context. In this chapter, we seek to capture this hyperedge-level

information by leveraging the property of neural networks to approximate arbitrarily

complex functions. But unlike the intuitive and interpretative notion of higher-order

adjacency tensor, in the case of neural networks, we have a black-box model built using

a series of non-linear layers. Although black-box models, neural network approaches in

the past few years, they have shown tremendous performance on a wide variety of tasks.

Further, neural network-based models are inherently trained in an online fashion, which

makes them suitable for application where we have new data coming in real-time. Hence,

we choose neural networks for our task of learning deep hyperedge embeddings.

In general, the literature on graph embeddings is significantly more than on hyper-

graph embeddings. Also, until recently, the models for embedding graph structures have

been focused more on techniques other than neural networks (Grover & Leskovec, 2016a;

Perozzi et al., 2014; Tang et al., 2015b). Those that are based on neural networks are

of mainly two kinds. One is based on the generalization of the recurrent neural network

(RNN) for graph data (Gori et al.; Li et al., 2015; Scarselli et al., 2009). Second, line of

research generalizes of convolutional neural networks (CNN) to a graph setting (Atwood

& Towsley, 2015; Bruna et al., 2013; Defferrard et al., 2016). However, all of these works

on graph-based neural networks, which we described so far, are designed for graphs and

aim to either learn node embeddings or designed for tasks that require the entire graph’s

embedding. In fact, we are unaware of any work within large-scale network analysis that
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considers embeddings at the hyperedge-level. In contrast, in the natural language pro-

cessing (NLP) literature, methods for learning embeddings for higher-order “sequential”

structures like sentences and paragraphs have been proposed (Kalchbrenner et al., 2014;

Le & Mikolov, 2014). Also recently, there has been an interest in modeling “set-like”

structures within the deep-learning community (Rezatofighi et al., 2016; Vinyals et al.,

2016). However, they do not consider the hypergraph structure between the sets, and

therefore, do not model hypergraphs in a principled manner. Here we attempt to perme-

ate this gap by developing a neural network supported hypergraph embedding methods.

We emphasize that in regular graphs, edges are not as impressive as nodes, since they

always connect only two nodes, and therefore a focus on nodes is justified. However,

given that hyperedges can have vastly varying degrees, they are as interesting and vital as

nodes, and thus should be treated firsts class objects. We aim to fill this research gap by

directly learning representations for hyperedges while taking into account the topological

connectivity between the various hyperedges in a hypergraph.

Inspired by the image auto-encoders from computer vision, we consider the hyper-

edge as the primary entity to be encoded and develop hyperedge auto-encoders. But

unlike the images, where we use Gaussian noise per pixel to generate noisy image sam-

ples, hyperedges are discrete structures and require a discrete noise. Random discrete

noise like salt-pepper noise might result in entirely unrelated noisy hyperedge samples,

which may result in a non-meaningful training. Instead, we harness the hypergraph

structure and use it to sample noisy hyperedges for a given original hyperedge. We

devise a variety of random walk schemes on the hypergraph structure and generating

meaningful noisy hyperedges. During the evaluation of these embeddings, our focus is

three folds. We aim to examine how the embeddings that use graph topology perform

in comparison to those leveraging the hypergraph structure. Secondly, we aim to study

how shallow architectures perform in the relation of deep auto-encoders. Lastly, we

intend to contrast the different noise generation schemes that we have designed. Hence,

we design several experiments to carry out these evaluations using both real as well as

synthetic datasets.
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7.2 Preliminaries

Although we had defined models in detain in Chapter 2, we again provide preliminaries

for convenient reading, and also, the notations employed in this chapter might be more

simplified for the discussion within this chapter. Here we consider the scenario where

we have a collection of elements. These elements can represent individual actors in

case of social groups or words in sentences or items in item-sets within a transaction

database. In other words a social group or a sentence or an item-set are sets which

contain these elements. Let V = {v1, v2, ..., vn} represents n elements and we have m

different sets defined over these elements, denoted by G = {g1, g2, ..., gm}, where gi ⊆ V

represents the ith set. The cardinality |gi| represents the number of elements in the

set. Also each set gi ∈ G has an occurrence number R(gi), which denotes the number

of times it has occurred. Such overlapping or non-overlapping sets can be modeled as

a hypergraph (Berge, 1984), where the nodes and hyperedges, represent the elements

and sets, respectively. This hypergraph is represented as Ng = (V,G) with G as the

collection of hyperedges over the nodes V . The incidence matrix H ∈ {0, 1}|G|×|V | for

Ng represents the presence of nodes in different hyperedges with H(gi, v) = 1 if v ∈ gi

else 0. We also define degree d(v) of a vertex v as the number of hyperedges incident

on this vertex i.e. d(v) =
∑

gi∈G H(gi, v).

Problem Statement: Given this setting, our goal is to learn the mapping φ : G→

Rd from hyperedges to feature representations (i.e., embeddings) that can be used to

build predictive models involving sets. Here d is a parameter specifying the number of

dimensions of the embedding vector. Equivalently, φ can be thought of as a look-up

matrix of size |G| × d, where |G| is the total number of sets or hyperedges.

7.3 Methodology

In this section, we describe the overall methodology and approach to learn hyperedge

embeddings using neural networks. We start, in Subsection 7.3.1, by describing the
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neural network-based autoencoders – specifically the denoising autoencoders which rely

on “denoising” regularization scheme. Next, in Subsection 7.3.2, we describe the for-

mulation of the hyperedge compression problem as training autoencoders and develop

meaningful noise generation schemes for hypergraphs.

7.3.1 Denoising Autoencoders

An autoencoder (Bengio et al., 2009) takes an input vector x ∈ [0, 1]n and maps it to a

latent representation z ∈ [0, 1]d. This is typically done using an affine mapping followed

by a non-linearity (more so when the input, like in our case, is binary (Vincent et al.,

2010)): z = fθ(x) = σ(Wx + b), with parameters θ = {W,b}. Here, σ is a sigmoid

function defined as σ(x) = 1/(1 + e−x), W is a Rn×d weight matrix and b is the offset.

This latent representation is then used to reconstruct a vector y = gθ′(z) = σ(W′z + b′),

in the input space, y ∈ [0, 1]n with parameters θ′ = {W′,b′}. The mappings fθ and

gθ′ are referred to as the encoder and decoder, respectively. Figure 7.1 displays this

process diagrammatically. The representation y is learned by minimizing the following

reconstruction error:

θ∗, θ′∗ = arg min
θ∗,θ′∗

1

m

m∑
i=1

L(xi, zi) = arg min
θ∗,θ′∗

1

m

m∑
i=1

L(xi, gθ′(fθ(xi)) (7.1)

where L is a loss function, which in case of binary or bit probabilities is often chosen as

the cross-entropy loss:

L(x, z) =

n∑
j=1

[x(j) log z(j) + (1− x(j)) log(1− z(j))] (7.2)

In their paper, Vincent et al. Vincent et al. (2010) have shown that minimizing

reconstruction amounts to maximizing the lower bound on the mutual information be-

tween input x and the representation y. However, they have further argued (Vincent

et al. (2008)) that y retaining information about input x is insufficient. They further,

propose the idea that the learned representation should be able to recover (denoising)
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Figure 7.1: Example depicting a neural network based Auto-encoder with single hidden
layer (which outputs the embedding).

the original input even after being trained with corrupted input (adding noise). They

generate the corrupted input (x̃), using a stochastic mapping q(x̃|x). Choice of noise

is usually either Gaussian for real inputs and Salt-and-pepper noise for discrete inputs.

The denoising autoencoder then learns the representation for each input, x, same as

Equation 7.1, but with the following modified loss function: L(x(i), gθ′(fθ(x̃(i)))).

7.3.2 Hasse Denoising Autoencoder

We leverage the denoising autoencoder for learning representation for hyperedges by

treating each hyperedge as the object to be encoded. We shall be using the terms

hyperedge representation or hyperedge embedding interchangeably, to refer to the hy-

peredge encodings obtained from the autoencoder. Training data for a given hypergraph

consists of pairs of noisy and original hyperedges. We consider an ith hyperedge as its

binary vector representation: ei = H(i, :) (where ei ∈ [0, 1]n, ei(j) = 1 if vj ∈ ei else 0).

For a given hyperedge, ei, which we refer to as the original hyperedge, we can generate

a noisy hyperedge, ẽi. The pair, (ẽi, ei), therefore, constitutes a single training data

point. The denoising autoencoder then learns its weights, (gθ′ , fθ), while minimizing

the following loss for a given training data point (ẽi, ei): L(ei, gθ′(fθ(ẽi))).
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So far, so good; however, we still have to figure out an effective strategy for generating

noisy hyperedges. The hyperedge ei) is a discreet data and therefore, Gaussian noise,

which is the usual choice for real inputs, is not an option. We require some form of

discrete noise. One way is to flip (change 0 to 1 and vice versa) a few randomly chosen

components of the ei) binary vector to generate a noisy vector ẽi. Notice the size of

ei) vector for each hyperedge is n, which is the number of vertices in the hypergraph.

In most natural hypergraphs, especially social networks, n can be quiet high ranging

from thousands to millions or even billions (like Facebook, for example). Therefore,

randomly using a discrete noise like salt-and-pepper, might not be reasonable, as there

is a large number of possible permutations (as size n is large) and not all of them are

related. Random addition of 1s or deletion of existing 1s from ei, amounts to randomly

adding or deleting vertices to the hyperedge ei. This might end up in noisy hyperedges

that are completely unrelated to the given original hyperedge (ei). For example, users

(nodes) in a social network from completely different regions of the network suddenly

form a group (hyperedge). Such anomalous scenarios rarely happen in practice, and

social groups evolve gradually via simple processes (Sharma et al., 2015; 2017).

Rather, we take advantage of the hypergraph structure to guide us in generating this

noise systematically. A hypergraph can be defined by its corresponding hasse diagram

or lattice (see Def. 44; (Sharma et al., 2017)). Remember, in a Hasse diagram is

a graph whose nodes are either hyperedges (which have been observed in the past)

or their subsets, and the connections are based on common node membership while

adhering to cardinality hierarchy. See Figure 7.2) for an example hypergraph (top-

left) and corresponding Hasse lattice (top-middle). Hasse diagram, therefore, offers

an opportunity to use graph sampling techniques like random walk, to sample noisy

hyperedges in a meaningful manner. For an original hyperedge (ei), we consider the sub-

lattice consisting of only those hyperedges that are at a distance h from it in the complete

lattice. On this sub-lattice, we sample r hyperedges (nodes in sub-lattice) by performing

random walk starting at the given hyperedge’s node. For example (see Figure 7.2),

for the node corresponding to the hyperedge e3 = (A,B), we obtain the sub-lattice
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(top-right corner) which only contains nodes at a distance h = 2, from e3 node. Our

stochastic mapping q(ẽi|ei) is therefore, a random walk on the sub-lattice of hyperedge

(ei) containing hyperedges at distance h from it. Intuitively, the hyperedges coming

within a reasonable distance should affect each other’s representations and should have

more similar representations.

Note that in the toy example of Figure 7.2, we only extract the sub-lattice only

from the observed region of the Complete Hasse Lattice (as indicated in the top-middle

diagram). For example a hyperedge e4 = {B,C,D,E} is in the not observed region,

yet seems like a hyperedge which is related to all the three hyperedges (e1, e2, e3) and

therefore, can perfectly serve as a noisy hyperedge for all three original hyperedges.

Unfortunately, the Hasse diagram only represents the observed region of the complete

Hasse lattice, and therefore, a random walk based sampling on it misses hyperedges like

e4, which, although a good candidate for noise, but occurs in the unobserved region of the

complete Hasse lattice. We, therefore, design a strategy that is capable of sampling both

observed as well as the unobserved region of the complete Hasse lattice. To do so, we

perform random walk on the weighted clique expanded (WCE) graph, Awc (see Def. 30),

of the hypergraph and generate noise hyperedges from the random walk sampled nodes.

Although the random walk is performed on the WCE graph, the noisy hyperedges are

sampled from the complete Hasse lattice. We, therefore, refer to the noise generation

process as Hasse Noise Generator, and it is described in the Algorithm 8.

We start by initializing an empty list in which we will add the training data points

(see line 1). Line 2-21, is the main loop where we iterate over each hyperedge e ∈ E(Ng)

in the given hypergraph, Ng, in order to generate noisy hyperedges ẽ. Starting from

the given hyperedge, e, we perform p1 random walks in lines 4-11 and aggregate all

the nodes visited across the walks in the list Q. For each random walk we pick a start

vertex, v ∈ e from the given hyperedge, e, either randomly or in proportion to the

degree, d(v) of the vertex v (see lines 5-9), depending on the parameter o. Starting with

this initial vertex we perform a random walk on the WCE graph, Awc. Sitting on some

vertex the random-walker chooses a neighbor vertex in proportion to the edge weights
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given by the weighted adjacency matrix Awc. Walker then hops to the chosen vertex if

total hops in the current walk are less than the parameter p2 and the chosen vertex is

not greater than the maximum distance, p2, from the initial vertex v. After hopping to

the new vertex the walker applies the same logic recursively and eventually returning a

list of vertices visited by it. This simple procedure is executed by the randomWalk()

function in line 10. Using the list of vertices, Q, sampled via random walks, we generate

r noisy hyperedges for the hyperedge e (see lines 12-20). We first decide a cardinality

c from the set of input cardinalities c and their distribution vector cp. We sample a

cardinality c ∈ c in proportion to cp(c). We then randomly pick c different vertices from

the list Q as the noisy hyperedge ẽ. Note that Q can have repeated occurrences of the

same vertex as it might have been visited multiple times during the p1 random walks.

Therefore, Q carries the information about the topology and those vertices that are in

vicinity of hyperedge e are more frequent in Q. We might want to ignore this frequency

information by taking the set of unique vertices, unique(Q) in list Q. Parameter q

dictates this choice (see lines 14-18). In the end we have r training data points (ẽ, e) for

a given hyperedge e. All these data points are added into the training data list Tr (see

line 19). Note that the same training data point (ẽ, e) might occur multiple times in

Tr and this frequency shall also represent in topological relatedness of the hyperedges,

ẽ and e.

7.4 Experiments

7.4.1 Dataset Description

Similar to Chapter 6, in this chapter, we consider the same set of real-world as well as

synthetic datasets. For the ease of reading, we are reiterating the dataset description.

We make use of five popular real-world datasets from the UCI Machine Learning Repos-

itory (http://archive.ics.uci.edu/ml). The five selected datasets have data points whose

feature vectors contain mostly boolean-valued features. (From each of the datasets, we

removed the very few non-boolean valued features.) We then consider each data point
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Algorithm 8 Hasse Noise Generator (Awc, Ng, c, cp, o, p1, p2, p3, q, r)

1: Tr ← emptyList()
2: for e ∈ E(Ng) do
3: Q← emptyList()
4: for j = 1 to p1 do
5: if o ={randomly} then
6: Pick a vertex v ∈ e randomly
7: else if o ={degree} then
8: Pick a vertex v ∈ e in proportion to degree
9: end if

10: Q← Q+ randomWalk(Awc, p2, p3)
11: end for
12: for k = 1 to r do
13: Sample a cardinality c ∈ c using the cardinality distribution vector cp
14: if q ={unique} then
15: ẽ← Choose c vertices from unique(Q) without repetition
16: else if q ={frequency} then
17: ẽ← Choose c vertices from Q without repetition
18: end if
19: Tr ← Tr ∪ (ẽ, e)
20: end for
21: end for
22: return Tr
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Data Hyperedges Vertices Max. Avg.
(m) (n) Cardinality Cardinality

zoo 101 15 10 6.53
voter 432 16 13 7.91

autism-child 291 14 13 7.46
autism-adolo 103 14 12 7.59
autism-adult 681 14 13 5.81

Table 7.1: Hypergraph Statistics for various Datasets

(sample) as a hyperedge with features as vertices. All the features (vertices) which have

value one for a given sample (hyperedge) are considered vertices of this sample hyper-

edge. In short, we treat the data matrix (sample-feature mapping) as the hypergraph

incidence matrix (hyperedge-vertex mapping). Below we describe the five datasets:

1. zoo: In this dataset, there are several animals each described with a set of boolean

attributes like, for example, does it have a feather, or is it airborne. There are

several classes of animals, and the aim is to classify animals correctly into its class.

2. voter: In this, the aim is to classify congressman as democrat versus republican

based on 16 key votes, where each vote is boolean (yea or nay). Each congressmen’s

hyperedge contains only “yay” vertices.

3. autism-child, autism-adolo, autism-adult: These three datasets contain psy-

chological evaluation on a cohort of children, adolescents, and adults, respectively,

for classification into having ASD disorder or not. Attributes are boolean item

responses to behavioral questions. We treat each item (psychological evaluation

question) as a vertex, and with each positively responded item (vertex) becomes

part of the corresponding individual’s hyperedge.

202



7.4.2 Evaluation Methodology and Experimental Setup

Methods Compared

We compare hyperedge embeddings obtained from our proposed method with several

baselines. Both the baseline, as well as proposed approaches, can output hyperedge

embeddings in two different ways:

1. Each method can directly output hyperedge embeddings. Our proposed approach

gives direct hyperedge embedding when trained using training data generated

from the original hypergraph. We refer to these embeddings as hyperedge2vec

or in short h2v. Similarly, we have two baselines that give hyperedge embeddings

directly via eigenvalue decomposition of line graph Laplacian (2.47) (herein e2v-

line) and that of proxy dual hypergraph Laplacian (2.44) (herein e2v-dual).

Refer to Chapter 2 for details with regards to these Laplacians. We also employ a

recently popular node embedding method based on random walks and skip-gram

model called node2vec (Grover & Leskovec, 2016b). We use node2vec on the line

graph to obtain hyperedge embeddings directly, which we refer herein n2v-line.

2. We can use these methods to output vertex embeddings first and then combine the

vertex embeddings of the vertices within a hyperedge. We evaluate only two kinds

of combinations - summing the vertex embeddings (sum) or taking the mean of

vertex embeddings (mean). (Note the later is hyperedge cardinality dependent.)

We refer hyperedge embeddings obtained from our proposed approach in this

manner by first obtaining vertex embeddings via training using training data gen-

erated via dual hypergraph, as h2v-dual. Similarly, for the two baselines, we can

first obtain vertex embeddings via eigenvalue decomposition of graph Laplacian

(Gibson WCE graph (2.22)) and proxy hypergraph Laplacian (2.42), which can

then be combined to get hyperedge embeddings referred to as e2v and e2v-hyp,

respectively. Refer Chapter 2 for details with regards to these Laplacians. Also

we use node2vec on the Gibson WCE adjacency matrix (2.21) to obtain vertex
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embeddings, which we aggregate to obtain hyperedge embeddings, herein referred

to as n2v.

We therefore, have two different comparisons. First is between embeddings obtained

from e2v-line, e2v-dual and n2v-line with h2v embeddings. Second, is between e2v,

e2v-hyp and n2v with h2v-dual. The later comparison happens further separately

for both sum and mean combining strategies.

Evaluation Tasks and Setup

As described in Section 7.4.1, each dataset has a hypergraph and a corresponding clas-

sification task associated with it. We first obtain the hyperedge embeddings for the

various datasets. There are two sets of hyper-parameters, one associated with the noise

generation, and the other set is the autoencoder hyper-parameters.

Noise Setup: The hyper-parameters specific to noise generation (see Algorithm 8)

are the following along with their search spaces– (1) number of noisy hyperedges for a

given original hyperedge: r = [5, 10, 15, 25, 50], (2) initial node is picked randomly or in

proportion to its degree: o = {randomly, degree}, (3) total number number of walks:

p1 = [5, 10, 15, 20], (4) walk length (including the initial node): p2 = [2, 3, 4, 5, 6, 7]

and lastly, (5) whether to use node visited frequency to sample it for noisy hyperedge:

q = {unique, frequency}. Grid search was used to find the best parameters. Noise

generation also requires two more hyper-parameters: set of cardinalities to sample for

noisy hyperedge (c) and the corresponding sampling probabilities (cp). These can be

either made fixed or can be derived from data. We use the cardinality distribution of

each dataset to ascertain c, cp, while constraining minimum cardinality of at least two

(c ≥ 2, ∀c ∈ c).

Autoencoder Setup: The hyper-parameters specific to the proposed autoencoder

method includes the learning rate (δ), batch size (bs), number of training epochs (ep) and

regularization parameter (β) for l2-regularization on neural networks weights. These pa-

rameters were tuned via grid search over following search space: δ = [0.01, 0.001, 0.0001],
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bs = [10, 100], ep = [20, 50, 100] and β = [0.01, 0.5, 1, 5, 10]. Again, grid search was

performed to fine tune these parameters. The proposed neural network method was

implemented using TensorFlow API (Abadi et al., 2015), and the optimizer used for

training the neural-net was Adam (Kingma & Ba, 2014).

Embedding Dimensions: Further, the hyper-parameter of embedding dimension

(d) which is common to all the graph-based baselines is determined by grid search over:

d = [8, 16, 32, 64]. For the auto-encoder method (h2v) we consider three scenarios:

(1) single hidden layer (L1) of dimension d = d1; (2) two hidden layers (L1 & L2) of

dimensions d1, d2 and we concatenate these embedding to get a single d = d1 + d2 size

embedding; and (3) two hidden layers (L1 & L2) of dimensions d1, d2 and we use the

output of L2 (d = d2 dimension) as the embedding. We found the best settings with

the grid search over: d1 = [8, 16, 32, 64] and d2 = [8, 16, 32, 64].

Evaluation Task: The obtained hyperedge embeddings for a given dataset are

utilized for the hyperedge classification task associated with the dataset. For each clas-

sification task, we perform several evaluation runs. In each run, we randomly choose

30% of hyperedges as the test set and train logistic regression classifier using the remain-

ing 70% training hyperedges. We chose the Area Under Curve (AUC) as the evaluation

metric (the higher, the better). We take the average AUC score across five runs as

the final AUC. We performed Logistic regression with l2-norm regularization whose

hyper-parameter was chosen by 5-fold cross-validation using a grid search.

7.4.3 Results and Discussion

As detailed in prior section 7.4.2, for each dataset we have two different sets of com-

parison based on two different ways of obtaining hyperedge embedding: (a) directly

obtaining hyperedge embeddings or (b) obtained by aggregating (sum or mean) vertex

embeddings. For case (a) we compare hyperedge2vec or h2v versus e2v-line/e2v-

dual/n2v-line and for case (b) compare hyperedge2vec-dual or h2v-dual versus

e2v/e2v-hyp/n2v. Results are reported in Table 7.2 for various datasets. We refer

to methods with “h2v-” prefix jointly as “h2v- methods”. Similarly, “e2v- methods”
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Eigen Decomp. Node2vec Autoencoder

Dataset Embed. Combination graph proxy hyp. graph dual
(e2v) (e2v-hyp) (n2v) (h2v)

Node Embed Sum 0.42 0.40 0.71 0.63
Node Embed Average 0.60 0.40 0.65 0.76

Zoo line graph proxy dual line graph hypergraph
(e2v-line) (e2v-dual) (n2v-line) (h2v)

Only Hyperedge Embed 0.52 0.60 0.43 0.73

Eigen Decomp. Node2vec Autoencoder

Dataset Embed. Combination graph proxy hyp. graph dual
(e2v) (e2v-hyp) (n2v) (h2v)

Node Embed Sum 0.94 0.94 0.95 0.96
Node Embed Average 0.94 0.94 0.93 0.96

Voter line graph proxy dual line graph hypergraph
(e2v-line) (e2v-dual) (n2v-line) (h2v)

Only Hyperedge Embed 0.94 0.93 0.87 0.96

Eigen Decomp. Node2vec Autoencoder

Dataset Embed. Combination graph proxy hyp. graph dual
(e2v) (e2v-hyp) (n2v) (h2v)

Node Embed Sum 0.98 0.98 0.97 1.00
Node Embed Average 0.73 0.71 0.66 0.72

Autism line graph proxy dual line graph hypergraph
Child (e2v-line) (e2v-dual) (n2v-line) (h2v)

Only Hyperedge Embed 0.97 0.96 0.47 0.97

Eigen Decomp. Node2vec Autoencoder

Dataset Embed. Combination graph proxy hyp. graph dual
(e2v) (e2v-hyp) (n2v) (h2v)

Node Embed Sum 0.89 0.91 0.85 0.95
Node Embed Average 0.65 0.65 0.67 0.77

Autism line graph proxy dual line graph hypergraph
Adoloscent (e2v-line) (e2v-dual) (n2v-line) (h2v)

Only Hyperedge Embed 0.86 0.88 0.52 0.89

Eigen Decomp. Node2vec Autoencoder

Dataset Embed. Combination graph proxy hyp. graph dual
(e2v) (e2v-hyp) (n2v) (h2v)

Node Embed Sum 0.99 1.00 0.99 1.00
Node Embed Average 0.75 0.76 0.77 0.80

Autism line graph proxy dual line graph hypergraph
Adult (e2v-line) (e2v-dual) (n2v-line) (h2v)

Only Hyperedge Embed 0.98 0.98 0.74 1.00

Table 7.2: Classification AUC Scores of Hyperedge2vec compared to baselines
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and “n2v- methods” for all methods with “e2v-” and “n2v-” prefix, respectively.

One of our central hypothesis is that embeddings obtained from methods which try

to retain the higher-order information within hypergraphs are better than those methods

which do not. We observe from Table 7.2 (the best scores for each row are highlighted in

bold) that in case of direct hyperedge embeddings as well as node embedding summation

cases, autoencoder-based methods (h2v- methods) consistently outperform graph-based

methods (e2v- methods), if not worse. This shows that the non-linearity in autoencoder-

based models is, indeed, successfully able to encode and preserve the hyperedge-level

contextual information.

Also while comparing between the two vertex-embedding aggregation functions: sum

and average, we observe (see “sum” and “average” rows in Table 7.2 across e2v, e2v-

hyp and h2v) that in most of the cases hyperedge-embeddings obtained via summation

of vertex-embeddings, perform better and in some cases those obtained via averaging

are performing poorly, especially for e2v as well as autoencoder methods (like autism

datasets). This observation again highlights the fact, a critical drawback which we

had also encountered in Chapter 6, that the choice of aggregation function in the case

of vertex-embedding is not clear. Direct hyperedge-embedding methods, on the other

hand, are not subject to any such choices.

Lastly, we note that the tensor-based methods in the previous chapter, suffer from

sparsity issues like when the number of vertices is much less than hyperedges, and

also allow for a limited width of cardinality spectrum. This is not the case with the

autoencoder methods proposed in this chapter. Autoencoders are robust and can handle

any cardinality hyperedges in the original hypergraph, as well as it’s dual. Therefore,

it’s free from degree and cardinality distributions.

However, there is no free lunch. The main challenge in the case of autoencoder

methods is the design of an effective noisy hyperedge sampling strategy. Although,

the strategy proposed in Algorithm 8, is relatively general and tunes parameters like

cardinality distribution cp according to the dataset. But there are several other random

walk parameters like the length of the walk, choice of the initial node in a hyperedge, and
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the maximum distance of the walk, that needs knowledge of the topology of hypergraph

data. This leads to several intuitive questions like what kinds of datasets and their

hypergraph properties (avg. degree, size, and others) affect the choice of noise strategy?

Also, in several cases, we find the graph-based methods performing close to autoencoder

methods. Therefore, a natural question would we prefer working using graph methods,

and autoencoder methods might be overkill? It’s worth mentioning that training neural

networks can often be cumbersome, especially with several hyper-parameters to tune

and various architectural choices.

These questions require both theoretical understanding as well as extensive experi-

mentation using an enormous variety of data, and hence, we would like to take this as

a separate future work. The focus of this work is to introduce higher-order information

retaining methodology by leveraging the non-linearity of neural networks to model the

higher-order information within hypergraphs.

7.5 Related Works

Traditional unsupervised graph embedding methods such as spectral clustering for

graphs (Belkin et al., 2006; Zhou et al., 2004; Zhu et al., 2003) have been extended

to hypergraphs (Zhou et al., 2006b). However, these embeddings focus on learning rep-

resentations for nodes, and not for hyperedges. Agarwal et al. (2006a) has criticized

that such representations can be learned by constructing graphs, which are proxies for

the hypergraph structure. Recently, the focus has shifted to learn node-embeddings via

methods inspired by skip-gram model Le & Mikolov (2014). Attempts along these lines

(Grover & Leskovec, 2016a; Perozzi et al., 2014; Tang et al., 2015b) argues that language

models have a ready-made context in the form of sentences or paragraphs to train the

model, which are not available in networks, and therefore, they propose different ways

to generate this context via random-walks. By contrast, we focus on networks where

the context is already present, e.g., collaboration networks where collaborative teams

are hyperedges or language hyper-networks where sentences are hyperedges.
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Another famous line of work is based on neural networks for graph-structured data.

Within this one stream is based on recurrent neural network (RNN) generalization

for graph data (Gori et al.; Scarselli et al., 2009) which was simplified recently Li et al.

(2015). Other stream is based on generalization of convolutional neural networks (CNN)

to a graph setting (Bruna et al., 2013) which has recently been extend to Defferrard

et al. (2016) fast localized convolution. Atwood & Towsley (2015) proposed a diffusion

based CNN but their approach is O(n2) in complexity. Another interesting work is that

of Niepert et al. (2016), where they are inspired by the original image convolutions

itself and convert the graph into sequences for 1-D convolutions. Until recently these

CNN-based approaches were not scalable for a large-scale network setting, which some

recent has alleviated by Kipf & Welling (2016) where they apply it to a semi-supervised

setting on large scale graphs.

However, all these works on graph-based neural networks, which we described so far,

are designed for graphs and aim to either learn node embeddings or designed for tasks

that require the entire graph’s embedding. We are unaware of any work within large-

scale network analysis that considers embeddings at the hyperedge-level. In contrast, in

the natural language processing (NLP) literature, methods for learning embeddings for

higher-order “sequential” structures like sentences and paragraphs have been proposed

(Kalchbrenner et al., 2014; Le & Mikolov, 2014). Also recently, there has been an interest

in modeling “set-like” structures within the deep-learning community (Rezatofighi et al.,

2016; Vinyals et al., 2016). However, they do not consider the hypergraph structure

between the sets, and therefore, do not model hypergraphs in a principled manner.

7.6 Conclusion

This chapter revisits the problem of hyperedge embedding, but unlike the tensor-based

interpretable model in the previous chapter, here we tried to capture this hyperedge-

level information by leveraging the property of neural networks to approximate arbi-

trarily complex functions. Inspired by the image auto-encoders from computer vision,
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we consider the hyperedge as the primary entity to be encoded and develop de-noising

hyperedge auto-encoders. We harness the hypergraph structure and use it to sample

meaningful noisy hyperedges for a given original hyperedge. We show that our method

outperforms several graph-based baselines in terms of accuracy. This shows that the

combination of hypergraph based noise and non-linearity in autoencoder-based mod-

els is, indeed, successfully able to encode and preserve the hyperedge-level contextual

information.
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Chapter 8

Summary

This thesis proposed the Hypergraph Analytics Framework, under which we have

modeled group structured data as well as studied group phenomena from the lens of

Hypergraphs. In Chapter 1, we started by providing a taxonomy for group-structured

data and develop a set of group abstractions for them, which clearly defined the various

group relationship objects we aim to study and model. We then moved to the important

task of analyzing as well as proposing various categories of hypergraph models for these

group abstractions. A detailed overview of these categories, along with their data struc-

tures, was provided in Chapter 2. Different models primarily vary by the amount of

higher-order information they can retain. Various problems studied in this thesis have

employed these models, where the choice of model has been dictated by the type of

group data as well as the problem at hand. In particular, we dealt with two core classes

of problems pertaining to hypergraphs. First, is that of spatial analysis: conducting

inference or learning probabilities over hypergraph structures. This was taken up in the

first part of the thesis consisting of Chapters 3, 4 and 5, which are dedicated to various

kind of inference mechanisms on hypergraph structures. Second is that of spec-

tral analysis: compressing these higher-order hypergraph structures to low dimension

embedding spaces. This was the second part of thesis consisting of Chapters 6 and 7,

which are concerned with the hypergraph compression techniques.
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In the first half, we performed the Spatial Analysis of the hypergraph by dividing

the problem of inference on the hypergraph structure into sub-problems. First was that

of predicting the likelihood of hyperedges in the observed hypergraph structures – old

hyperedge prediction – given the observed hypergraph. This problem was addressed

in Chapter 3 where the observed hypergraph structures is modelled using a simpli-

cial complex and corresponding Hasse lattice structure. Second was that of assigning

probabilities to hyperedges in the unobserved hypergraph structure – new hyperedge

prediction – again given the observed hypergraph. Chapter 4 addressed this second

problem by employing a simple and elegant approach to incremental sampling of new hy-

peredges. Various graph, as well as hypergraph model based accretion prediction meth-

ods, are proposed, which output probability of the sampled hyperedges. Overall these

two chapters address the hypergraph evolution problem by addressing sub-problems of

hyperedge stability, as well as increase or decrease in cardinality prediction. However,

both these chapters are limited to static group data only and, therefore, are perform-

ing hypergraph evolution prediction by cross-sectional analysis. Chapter 5, therefore,

extends our study of hypergraph evolution to temporal group data and performed lon-

gitudinal analysis. Here, temporal groups were modeled using higher-order matrices,

also called tensors, which can model time as another dimension. The task of temporal

hyperedge prediction was then carried out using tensor decomposition techniques.

Overall, interlacing the Chapters 3, 4 and 5, we reach a complete recipe of modeling

and inference over the hypergraph structure for both cross-sectional and longitudinal

analysis.

The second part of the thesis, while complimenting the first half, dealt with the

Spectral Analysis of hypergraph by developing techniques to compress the hypergraph

topology to lower-dimensional latent space. Considering hyperedges as first-class citi-

zens, we have chiefly considered hyperedge compression or hyperedge embeddings. We

examined two different embedding approaches in Chapters 6 and 7. In Chapter 6 we

developed an algebraic model for hyperedge embeddings for general (non-uniform) hy-

pergraphs. Higher-order symmetric tensors are used in order to retain the hyperedge-
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level information directly, and the idea of joint decomposition of various cardinality

tensors is introduced to learn embeddings. The notion of dual tensors is also proposed

in order to obtain hyperedge embeddings directly. Chapter 7 revisited the problem of

hyperedge embedding, but unlike the interpretable tensor models in the Chapter 6, we

considered neural network-based black-box models with the promise of non-linearity in

neural networks to capture the hyperedge context information. Inspired by the image

auto-encoders from computer vision, we developed hyperedge denoising auto-encoders,

which harness the Hasse diagram of the hypergraph to sample meaningful noisy hyper-

edges. The proposed hyperedge embeddings, in both Chapters 6 and 7, are observed to

be performing better than those obtained from various graph-based baselines.

213



Chapter 9

Future Directions

Several exciting ideas have naturally emerged from the research conducted within this

thesis. Some are extensions of the work presented in the thesis to special cases, of which

some research is under progression. Also, some are newer ideas that have appeared and

require a separate investigation. In this chapter, we would take a moment to point out

some of these valuable future perspectives.

Hyperedge Prediction

In the first half of the thesis, we focused on the problem of hyperedge prediction. We

proposed various hypergraph based topological or algebraic methods for addressing

this problem. Some of these methods, especially those we encountered in Chapter 3,

were based on a learning hyperedge probability scores based on semi-supervised learn-

ing. The algorithms developed to diffuse the scores from the observed (sub)hyperedges

nodes in the Hasse diagram to the unobserved (sub)hyperedge nodes. We observe an

overwhelming similarity in this setup to that of language models based on smoothing

techniques (Chen & Goodman, 1999). Each c-cardinality (sub)hyperedge correspond

to c-gram in text data, and the aim is to ascertain the probabilities of c-grams gave

the frequency of occurrence. The difference is that the c-grams are sequences, unlike

(sub)hyperedges, which are sets. Therefore, we have already started working on ideas
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for generalizing the ideas of sequence-based language models to the sets in the hyper-

graph. We refer to this generalization as Hasse smoothing which where we leverage the

smoothing techniques and apply them to the hierarchy dictated by the Hasse diagram.

Here we would be interested in how the interpretable smoothing approaches contrast

with diffusion-based semi-supervised approaches, which we have developed, with regards

to performance.

Methods we have developed so far in the first half of the thesis Chapters 3-5 can be

used to predict hyperedges (and their subhyperedges) present in the input hypergraph.

The biggest hurdle in predicting the general hyperedges is enumerating them and in-

cluding them in the input hypergraph of the hyperedge prediction algorithm. The more

groups we enumerate, the larger the input hypergraph, which requires more memory

and also affects the run-time.

One way to address this is by developing a clever hyperedge sampling technique that

enumerated the most relevant hyperedges, which are, in some sense, the best candidates

worthy of assigning probability or, in other terms, have a strong potential of becoming

a future group. We have already seen a sampling strategy that we had devised in

Chapter 7 in the form of the Hasse based noisy hyperedge generation. However, we think

that hyperedge sampling is an essential direction with much potential to be pursued as

a research project in its own right.

Once we have the enumerated hyperedges, we do not necessarily have to work using

algorithms that use the entire input hypergraph in memory. We can think of two dif-

ferent ways to go about this. First is working with vertex embeddings, and developing

functions that aggregate the vertex embeddings to output hyperedge probability. This

was the primary motivation for the hypergraph compression techniques developed in the

second half of the thesis. In this work, we have employed some basic vertex embedding

aggregation functions like averaging, summation, or entropy. However, we think that

exploring more functions and possibly developing algorithms that learn such functions

automatically, is a critical analysis direction which requires an independent effort. The

second approach can be combining use functions that combine the edge level probabili-
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ties to output hyperedge level probabilities. When it comes to distribution and exciting

options, explore the use of the rich copula theory (Nelsen, 2007) where the joint distribu-

tion is achieved from marginal distributions via copulas. In our setting, it would amount

to treating the edge probabilities as marginals and the hyperedge probabilities as the

higher-order joint probabilities achieved via gelling the marginals via copula functions.

Although explicit enumeration via sampling is one way, we think a more holistic

approach is where the algorithm inherently prunes the search space and restricts the

search to the most promising regions of the lattice. Search space pruning is prevalent

in machine learning and statistics, where feature selection is performed using sparsity

inducing norms that prune the high dimensional feature space (Hastie et al., 2015).

Specifically, we are interested in structured norms that induce sparsity concerning any

previous structural information available via domain knowledge or present in data (Je-

natton et al., 2011). For example, group lasso norm selects either all or none of the

features from a given predefined set of overlapping or non-overlapping groups (Yuan

& Lin, 2006). In our group evolution problem, we have the rich hypergraph structure,

which can be leveraged for inducing sparsity and selecting the most informative regions

in the hasse lattice. Notice that unlike feature selection, which is the primary objective

of most sparse techniques, we would aim to select groups/clusters of vertices among

which future groups are most likely to be formed. We have to perform this constrained

search while learning the probabilities for the group. For this, we treat that learning

probability of a k size group as the task of k-way tensor completion (Qi, 2005). Note

that these sparsity norms, we just mentioned, have been applied as constraints (reg-

ularization) to the various supervised learning cost objectives like matrix completion

(Kim et al., 2012) and recently to tensor completion tasks (Tomioka & Suzuki, 2013).

We would, therefore, like to develop algorithms that perform k-way tensor completion

regularized by novel sparsity norms guided by the hypergraph/hasse lattice structure,

to perform the constrained search.

Although the hyperedge prediction models proposed in the first part of this thesis

are primarily topology-based or algebraic, there can be other kinds of models that
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do not directly use the topology or use it in part along with other techniques. In

group data from domains where the entities themselves are intelligent agents like social

groups, one can build models where the hypergraph topology is an outcome of the

group interactions of individual agents. In such a scenario, one can leverage advanced

techniques like reinforcement learning (Sutton & Barto, 2018). It would be interesting

to model the social group formation as an outcome of a joint decision between a set

of agents and also based on the group-level as well as agent-level rewards. In the case

of groups, the games are that of group-level cooperation between agents and ideas of

cooperative game theory (Chalkiadakis et al., 2011) start coming into the picture. But

the most exciting aspect for us would be to explore the dynamics of the properties of

the emerging hypergraph topology as well as if/how to leverage the new hypergraph

topology to design the actions or rewards.

In this thesis, we have restricted ourselves to undirected hypergraphs. A self-evident

and significant direction would be to generalize the methodology developed in this work

to directed hypergraphs. We think that at the theoretical level, some of the methods

for undirected hypergraphs might generalize to directed hypergraphs, but the kind of

applications that motivate the use of directed hypergraphs are very different from those

for the undirected case. Therefore, building machine learning models for directed hyper-

graphs necessitates an independent research route. Here, we present a research problem

involving directed hypergraphs that we are currently investigating. The problem of

finding dominant content flow trends and predicting flow in networks is vital in the

context of online social, communication (Mori et al., 2005), and multimedia networks.

Typically such kinds of flows are studied in terms of node-to-node information flow. We

want to generalize this to a setting where information flow is happening at the level of

social groups or teams. Examples include email communication where the sender sends

an email to multiple participants; a research collaboration happening between a group

of researchers such that part of the group is learning or getting influenced on a topic or

idea which the other part of the group who might be more specialized in that topic or

worked on that idea before. Such kind of influence spread within groups can be modeled
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as a directed hyperedge. A directed hyper-path then represents a flow of information

between groups over the path. We aim to leverage this model to address two subprob-

lems. First, modeling group information flow in terms of directed hypergraphs offers

the opportunity to build hypergraph mining algorithms to mine such group information

flow hyperpaths, studying their properties, and characterizing them. Another problem

is to predict the evolution of this information flow hyperpaths. For this, we aim to

leverage the fact that hyper-path evolution is similar to a sequence prediction problem

given past sub-sequence and use Recurrent Neural Networks (RNN) (Elman, 1990) to

model variable-length sequential information.

Hypergraph Emebeddings

In the second part of the thesis, we performed the spectral analysis of the hypergraphs

where our focus was to develop methods to learn embeddings for both vertices as well

as hyperedges while preserving both local hyperedge-level information as well as global

hypergraph topology information. In Chapter 6, we developed two separate algorithms

of hypergraph tensor decomposition and dual tensor decomposition that output vertex

and hyperedge embeddings, respectively. However, we learn each embedding separately.

It would be worthwhile to perform simultaneous dual and hypergraph tensor decom-

position and possibly also to learn the mapping between the hyperedge and vertex

embeddings.

The methods developed in Chapter 6 leverage the connection between hypergraph

and symmetric tensors and build tensor decomposition based embeddings techniques

that perform successfully on real data. Spectral hypergraph theory (Cooper & Dutle,

2012) was the primary motivation for the leveraged connection, so, it would be worth-

while to perform a more in-depth analysis via this connection by studying the relation-

ship of the obtained embeddings to spectral properties of adjacency tensors or topo-

logical properties of the hypergraph. It would also be of interest to understand the

relationship between the embeddings and those obtained via another object that we
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have not yet explored: the higher-order tensor Laplacians (Qi, 2014).

In Chapter 7, inspired by image autoencoders, we developed autoencoder for hy-

peredges, providing a principled treatment to hyperedges. The denoising autoencoders

that we have proposed have fully-connected dense layers. However, if the data has a

spatial structure, then convolutional neural networks (CNN) are suggested which ex-

ploit spatially local correlation by enforcing a sparse local connectivity pattern between

neurons of adjacent layers: each neuron is connected to only a small region of the input

volume. CNNs have also been successfully used within image autoencoders (Makhzani

& Frey, 2015), deconvolutional networks (Zeiler et al., 2010) and convolutional pre-

dictive sparse decomposition (PSD) (Kavukcuoglu et al., 2010; Sermanet et al., 2013).

Inspired from these image-based convolutional autoencoders and leveraging the recently

proposed graph convolutional networks (Bruna et al., 2013; Defferrard et al., 2016; Kipf

& Welling, 2016) we propose the idea of hyperedge convolutional autoencoder. It would

be interesting to see the performance of these hyperedge convolutional autoencoders,

to those of the Hasse denoising autoencoder we have proposed in this thesis. We are

currently pursuing this investigation.

Also, we notice that noisy hyperedge generation is a critical component of the au-

toencoder proposed in Chapter 7. It would also be worthwhile to develop other kinds of

noise generation schemes, possibly with larger sampled context and studying properties

of noise across different kinds of datasets and their impact on performance.

The hyperedge autoencoder proposed in Chapter 7 has a strong resemblance to

the emerging area of metric learning (Kulis et al., 2013) as both techniques aim at

learning embeddings and also develop a variety of schemes to prepare training and

testing samples, which in our case correspond to the noisy and original hyperedges.

However, metric learning uses cost functions based on the embeddings vectors, unlike

the denoising loss function. Nonetheless, the resemblance is encouraging enough to

perform a proper investigation about this connection.
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Theoretical Investigations

The central message of this thesis is that the importance of hypergraph resides in their

ability to represent the hyperedge-level functions. If the task requires modeling such

functions, then hypergraphs can be leveraged. Also, a good model for hypergraph is

the one that maximizes the retention of the hyperedge-level function. One of the core

outcomes of this thesis is the intuitive realization that although the hyperedge-level

functions are of prime importance, their importance is so far as to their relation to

vertex-level functions. One of the invaluable to pursue direction would then be to see

how the mapping of these functions are inter-related across the variety of data and tasks.

An incessant intuition is that the variation in hyperedge-level function is similar or in

accordance with the vertex-level function. In such cases, hypergraphs might not be a

suitable model, versus a case where the hyperedge-level function is very different than

the vertex-level function. All this analysis involving the study of vertex and hyperedge

level functions, thus, demands a strong and independent research investigation.

Intuitively, the above discussion also seems to lead to the idea of generalizing the sig-

nal processing over graphs (Hammond et al., 2011; Shuman et al., 2013) to hypergraphs

and designing of wavelets over hypergraphs rather than graph wavelets (Rustamov &

Guibas, 2013). There is a dearth of literature in either of these directions and are promis-

ing for future research. For example, theoretically, convolution for graph (Hammond

et al., 2011) is based on the spectrum of graph Laplacian, which operates on func-

tion over vertices. Operators that measures variations on functions defined on p-sized

subsets (hyperedges) of the vertex set are the higher-order Laplacians (Forman, 2003)

which operate on what is called in discrete differential geometry as p-forms (Rosenberg,

1997). Unlike the proxy graphs pointed in Chapter 2, these higher-order Laplacians

model the hypergraph in a true sense. Following the lines of Hammond et al. (2011), we

would, therefore, like to take the endeavor of modeling wavelets on hypergraphs based

on spectral hypergraph theory (which has gotten reasonably advanced in past decade

or so, see (Cooper & Dutle, 2012; Qi, 2005)). Further, build convolutions that convolve
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measures at hyperedge-level and employ them to develop more robust algorithms for

hyperedge prediction.

Another useful direction would also be to develop synthetic labeled data where the

hyperedge and vertex labels are related in various ways. Such datasets would be crucial

for analyzing functions or signals over hypergraph. A good starting point would be the

ideas such as hypergraph stochastic block models (Ghoshdastidar & Dukkipati, 2015),

which generalize the graph stochastic block models to hypergraph. However, they still

focus on vertex functions in a hypergraph setting as their focus is vertex partitioning.

It would be intriguing to develop and analyze synthetic data based on both hyperedge

labels and vertex labels.
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