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Abstract 

We describe a multi-step approach to facilitate autonomous navigation in snow by small vehicles 

in urban environments, allowing travel only on sidewalks and paved paths. Our objective is to 

have a vehicle autonomously navigate from point A on one urban block to point B on another 

block, crossing from one block to another only at curb-cuts, and stopping when pedestrians get in 

the way. A small mobile platform is first manually driven along the sidewalks to continuously 

record LIDAR and Global Navigation Satellite System (GNSS) data when little to no snow is 

on the ground. Our algorithm automatically post processes the data to generate a labeled 

traversability map. During this automated process, areas such as grass, sidewalks, stationary 

obstacles, roads and curb-cuts are identified. By differentiating between these areas using only 

LIDAR, the vehicle is later able to create a path for travel on only sidewalks or roads and not in 

other areas. 

 

Our localization approach uses an Extended Kalman Filter to fuse the Lightweight and Ground-

Optimized LIDAR Odometry and Mapping (LeGO-LOAM) approach with high accuracy GNSS 

where available, to allow for accurate localization even in areas with poor GNSS, which is often 

the case in cities and areas covered by tree canopy. This localization approach is used during the 

data capture stage, prior to the post-processing stage when labeled segmentation is performed, 

and again during real time autonomous navigation, carried out using the ROS navigation stack. 

 

By using LIDAR odometry combined with GNSS, the robot is able to localize under many 

different weather conditions, including snow and rain, where other algorithms (e.g. AMCL) will 

likely fail. We were able to successfully have the vehicle autonomously plan and navigate a 

1.6km path in an urban snow-covered neighborhood. Our methodology facilitates autonomous 

navigation functionality under most weather conditions including autonomous wheelchair 

navigation. 
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1. Introduction 

There has been much research and progress in the field of unmanned ground vehicles (UGVs). 

From the increasing popularity of autonomous cars to package delivering robots, the potential 

applications seem limitless. However, as much as the developers of UGVs would like you to 

believe, they are far from perfect. Many of these systems begin to fail in inclement weather, 

which is why they are primarily tested in locations with good weather year-round. 

Accurate localization for UGVs in all environments and weather types is a research area 

important in northern climates. High accuracy Global Navigation Satellite System (GNSS) can 

provide centimeter-level position estimation in good quality reception areas. However, 

localization via GNSS is often not enough for most environments, such as urban areas, where tree 

canopy and buildings hinder the quality of reception. To solve this, GNSS is often combined with 

inertial measurement units (INS) [1], [2] or wheel encoders [3], [4] to supplement the localization 

in low quality GNSS areas. However, both INS and wheel encoders are susceptible to drift or slip 

and the localization scheme will fail if the vehicle travels too far between receiving accurate 

GNSS positions. 

Simultaneous localization and mapping (SLAM) [5]  is commonly used for real-time 6 degree-of-

freedom pose estimation. SLAM is either performed using vision based systems [6] or LIDAR 

based systems [7]. Both SLAM and adaptive Monte Carlo localization (AMCL) match the current 

perception of the environment, via LIDAR or vision, to a given environment model or map. No 

matter the system, both SLAM and AMCL algorithms, are prone to limitations. Since SLAM and 

AMCL are based on identifying landmarks in the environment, the accuracy of the pose 

estimation is heavily dependent on these landmarks remaining static. If the environment changes, 

due to snow cover or construction, SLAM and AMCL will likely fail. To make localization more 

robust, SLAM has been fused with other sensors such as GNSS [8], [9] or INS [10]. However, 

these do not solve the underlying constraint of needing a fixed environment, which is not the case 

when there are various levels of snow on the ground. 

LIDAR Odometry takes into account that there is a certain amount of sensor information overlap 

between consecutive LIDAR scans allowing for the pose transformation of the UGV to be 

estimated by matching the adjacent frames. Common LIDAR odometry methods can produce 

adequate pose estimation results [11], [12], However, these are computationally expensive and 

run at lower frame rates or require high powered computers. Shan et al proposed a lightweight 

and ground-optimized LIDAR and mapping method (LeGO-LOAM) [13] that is capable of real-

time 6 degrees-of-freedom pose estimation on low power embedded systems. Due to its 

performance and low power requirements, LeGO-LOAM is used as our localization scheme. 

Wang et al [14] used a convolution neural network (CNN) to fuse vision, GNSS, and IMU to 

create a localization system for UGVs. Despite promising results, our work will consider deep 

learning methods out of scope. 

Localization aside, mapping and understanding the environment of the UGV is important because 

the type of terrain the vehicle is moving on impacts its mobility [15]. When traveling from pt. A 

to pt. B, knowing where features such as roads, sidewalks, grass, and other obstacles are located 

is crucial in making smart decisions and planning a path between the two points. Moras et al [16] 

proposed using LIDAR to create a map of drivable space in real time, however, they do not 

classify the different segments of the ground. Smadja et al [17] use both LIDAR and vision 

systems to segment the ground and label the road as well as identify street signs. The localization 
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schemes in both of these rely solely on GNSS and will fail in low quality reception or GNSS 

denied areas. Ai et al [18]  performs automated and detailed sidewalk assessment using both 

LIDAR and vision. However, their system relies heavily on vision whose performance is highly 

susceptible to lighting and they do not identify other areas of the ground such as roads and grass. 

Shan et al [19] focused on autonomous terrain traversability mapping, including both the 

mapping and classification of the ground whether the vehicle can or cannot travel on it. This is 

not always desired because there are many situations where a vehicle has the physical capability 

to travel somewhere but it shouldn’t. 

Deep learning is becoming an increasingly popular solution for object detection and semantic 

environment segmentation [20] as well as road and road sign detection [21].  However, these 

solutions are typically vision based (as opposed to LIDAR) and perform poorly in weather 

conditions such as rain and snow.  

In this work, we propose a multi-step approach to facilitate autonomous navigation by small 

vehicles in urban environments, allowing travel only on sidewalks and paved paths. Our objective 

is to have a vehicle autonomously navigate from point A on one urban block to point B on 

another block, crossing from one block to another only at curb-cuts, and stopping when 

pedestrians get in the way. A small mobile platform is first manually driven along the sidewalks 

to continuously record LIDAR and GNSS data when little to no snow is on the ground. Our 

algorithm post processes the data to generate a labeled traversability map. During this automated 

process, areas such as grass, sidewalks, stationary obstacles, roads and curb-cuts are identified. 

The ability to classify the ground in an environment, including sidewalks, facilitates appropriate 

decisions during navigation such as giving the robot information where it is acceptable to travel. 

By differentiating between these areas using only LIDAR, the vehicle is later able to create a path 

for travel on only sidewalks or roads and not in other areas, including locations that are covered 

in snow. 

 

Our system uses an Extended Kalman Filter to fuse the Lightweight and Ground-Optimized 

LIDAR Odometry and Mapping (LeGO-LOAM) approach with high accuracy GNSS where 

available, to allow for accurate localization even in areas with poor GNSS, which is often the case 

in cities and areas covered by tree canopy. This localization approach is used during the data 

capture stage, prior to the post-processing stage when labeled segmentation is performed, and 

again during real time autonomous navigation, carried out using the ROS navigation stack.  

 

There is a gap in previous research on robust localization and navigation; it has not been applied 

to poor weather conditions. Dynamic environments, such as snow, construction, growing 

vegetation, cause problems for traditional scan matching localization systems such as AMCL 

[22]. By using LeGO-LOAM combined with GNSS, our robot is able to localize under many 

different weather conditions, including snow and rain, where other algorithms (e.g. AMCL) will 

likely fail. We will describe in this work how we successfully created a system that allows the 

vehicle to autonomously plan and navigate several kilometer-long paths in urban snow covered 

neighborhoods.  A potential application is autonomous wheelchair navigation that could be 

functional under most weather conditions.  

 

1.2 Thesis Organization  

In Section 2 we describe the vehicle platform and hardware used in this research. In Section 3, an 

overview of the neighborhood used as the testing environment is described. The localization 

technique used in this work is outlined in Section 4. In Section 5, the mapping and navigation 
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procedure steps are described and in Section 6 our results are shown. Finally, Section 7 discusses 

our conclusions and potential future work. 

2. Vehicle Platform and Hardware 

This research uses the Husky UGV platform from Clearpath Robotics as a base vehicle for 

mounting hardware and sensors. The Husky comes equipped with four 330 mm diameter wheels 

with rotary encoders. The vehicle has external dimensions of 990 x 670 x 390 mm and has a max 

payload of 75 Kg with a top speed of 1 m/s. In the center of the vehicle is a weatherproof storage 

area where the electronics are stored, such as the computer and WIFI router. Dimensions of the 

Husky vehicle can be seen in Figure 1. 

 

Figure 1 -  Top and Side Husky dimensions [23] 

The on-board computer in the Husky is a Mini-ITX single board computer with 3.6 GHz Intel i7-

770 processor, 16 GB DDR4-2400 RAM, and a 512 GB SSD. The sensors mounted on the 

vehicle for this research are a high accuracy Trimble GNSS antenna and RTK receiver, a 

Velodyne VLP-16 LIDAR, and a Phidgets IMU. The Real-time Kinematic (RTK) GNSS receiver 

and antenna exhibits sub-centimeter accuracy in GNSS areas with good reception [24]. The 

Velodyne LIDAR (VLP-16) has 16 channels with a vertical field of view of -15° to +15° with 

each channel separated by 2° horizontally. There are 1800 LIDAR points returned for each 

channel in the LIDAR which has a maximum measurement range of 100 m. The LIDAR returns 

up to 300,000 points/second [25]. The Phidgets IMU has a 3-axis accelerometer, gyroscope, and 

compass [26]. 

A cell modem provides internet access to the vehicle and allows for the GNSS system to 

wirelessly receive position corrections. An E-Stop receiver is mounted on the outside of the 

vehicle and allows for us to remotely pause the system if needed. 

The hardware mounted on the Husky platform can be seen in Figure 2. 
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Figure 2 – The hardware and sensors mounted on the Husky platform that are used for this research. 

The Husky UGV is a differential drive platform, meaning the wheels on the right side of the 

vehicle rotate in the same direction and at the same velocity as each other and the same can be 

stated about the wheels on the left side. The set of wheels on one side spin independently of the 

wheels on the other side of the vehicle. Differential drive kinematics allows the vehicle to rotate 

about its center without having to travel forward or backward. This varies from Ackerman 

steering in which one axle of the vehicle allows the wheels to rotate and on the other axle the 

wheels are fixed, which is common in many vehicles today [27].  

The vehicle computer runs the Robot Operating System (ROS) for fusion of multiple sensor 

readings and facilitates implementation of custom control and software algorithms. ROS [28] is a 

“collection of tools, libraries, and conventions that aim to simplify the task of creating complex 

and robust robot behavior across a wide variety of robotic platforms”. ROS is a powerful tool that 

allows researchers around the world to collaborate and build off previous work in an easy and 

efficient manner. Clearpath uses ROS to control all of its vehicles and supports its drivers through 

ROS.  ROS allows us to fuse our sensors together (GNSS, LIDAR, IMU) in order to localize and 

create a labeled map, as well as send velocity commands to the motors while traveling. 

3. Testing Environment 

Since the goal of this research is to generate a labeled map of an urban sidewalk environment and 

autonomously localize and travel between two points, a neighborhood was desired that had many 

different characteristics that a vehicle might encounter in the urban world. A neighborhood near 

the University of Minnesota – Twin Cities campus was selected because it satisfied many of the 

desired characteristics which we desired for our research. A table of the desired characteristics 

can be seen in Table 1 and an aerial view of the location obtained from Google Maps can be seen 

in Figure 3. Images showing some unique aspects of the neighborhood can be seen in Figures 4, 

5, and 6. 
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Characteristic Present 

Sidewalks with a boulevard of trees between it and the curb Yes 

Sidewalks with no boulevard between it and the curb Yes 

Sidewalks with curbcuts or no curbcuts at the intersections Yes 

Sidewalks that include driveways Yes 

Sidewalk curbcuts that are perpendicular to the street Yes 

Sidewalks located on non—orthogonal streets Yes 

Sidewalk curbcuts at the intersection corners that are wide enough for entry 

into either of the two adjacent streets  

Yes 

Sidewalks with objects located in the sidewalk, for example parking meters, 

trees, bike racks, which are permanent  

Yes, street signs 

Poor quality sidewalks No 

Sidewalks with nonpermanent objects, such as bicycles obstructing forward 

motion. This may also include a barrier due to a construction zone ahead or 

a pile of snow during the winter. 

No 

Sidewalks that just end with grass ahead No 

Sidewalks with grass or bushes on either side or grass/bushes only on one 

side  

Yes 

Sidewalks include walkways or stairs to the front door of adjacent homes Yes 

Sidewalks extend directly from a building (e.g. a store front) to the curb No 

Alley with no sidewalks Yes 
Table 1 – List of desired characteristics wanted in a neighborhood for conducting our research. This list was compiled 

to include most scenarios that might be present in urban neighborhoods.  

 

Figure 3 – Bird’s-eye view from Google Maps of test neighborhood. The bounds of the test area are indicated in red 

and the alley ways are indicated by blue arrows. 
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Figure 4 –Intersection of a block with signs placed in the sidewalk path and a grass median shown on the right. 

 

Figure 5- Rounded sidewalk corner in the testing environment. 

 

Figure 6- Sidewalk with retaining wall on one side (left). Alley in testing environment (right). 

Since a major focus of this work is the ability to travel in snow covered terrain, images showing 

the testing environment in the winter are shown below in Figure 7 and Figure 8. Although the 
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vehicle’s ability to travel and follow a path was tested in snow, it is important to note that no 

mapping was conducted under snowy conditions. All mapping was done under good weather 

conditions when no snow is on the ground. 

 

Figure 7- Sidewalks in the testing environment during winter. Complete snow-covered sidewalk (left). Mix of concrete 

and snow (right). 

 

Figure 8- Intersection in the testing environment in the winter. 
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4. Localization Technique 

In this paper, for simplicity, we assume a planar environment. This means that the vehicles pose 

can be satisfied by knowing its X, Y position as well as its yaw (heading). In order to 

autonomously navigate between two points, the vehicle must be able to accurately localize in the 

environment. The localization scheme proposed in this research uses an Extended Kalman Filter 

to fuse together high accuracy GNSS, LIDAR Odometry, and IMU data. The GNSS system 

allows for accurate global localization when there is good enough reception, such as in road 

intersections and clearings in the tree canopy. Global localization allows the vehicle to know 

where it is in the world, in terms of latitude and longitude. This is important when plotting a path 

between two global points in the world as it allows us to define positions in terms of latitude and 

longitude. 

LIDAR Odometry (LeGO-LOAM) provides dead-reckoning localization in low quality GNSS 

areas. These areas include locations under tree canopy, indoors, and areas surrounded by 

buildings. The LIDAR odometry provides localization relative to the most recent accurate GNSS 

position. The IMU provides an initial yaw measurement of the vehicle upon startup. 

The extended Kalman filter (EKF) used is provided by the ROS package robot_localization. 

Robot_localization is an open source collection of state estimation nodes which implement 

nonlinear state estimation for vehicles. The EKF [29] uses an “omnidirectional motion model to 

project the state forward in time, and corrects that projected estimate using perceived sensor 

data”. The inputs and outputs of the EKF, which are constrained to a planar environment, can be 

seen in Figure 9.  

 

Figure 9- EKF inputs and outputs. 

The EKF process provided is a nonlinear dynamic system, with 

𝑥𝑘 = 𝑓(𝑥𝑘−1) + 𝑤𝑘−1 

Where 𝑥𝑘 is the robot’s state at time k, 𝑓 is the nonlinear state transition function, and 𝑤𝑘−1 is the 

normally distributed process noise. Without any assumptions, the state vector x is 12-dimensional 

which consists of the 3D pose and orientation of the vehicle, as well as the respective velocities of 

the pose and orientation. It is important to note that in this work we assume a planar environment, 

which reduces the number of dimensions down to six. When the EKF receives a measurement, it 

is in the form 

 
𝑧𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘 

Where 𝑧𝑘 is the input measurement at time k, h is the nonlinear sensor model mapping the state 

into measurement space, and 𝑣𝑘 is the measurement noise. The initial step of the EKF is called a 
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prediction step that projects the current state of the vehicle and its respective error covariance 

forward in time: 

𝑥𝑘 = 𝑓(𝑥𝑘−1) 

𝑃̂𝑘 = 𝐹𝑃𝑘−1𝐹
𝑇 + 𝑄 

Where 𝑓 is a 3D kinematic model derived from Newtonian mechanics, P is the estimate error 

covariance, F is the Jacobian of 𝑓, and Q is the process noise covariance. Finally, a correction 

step is carried out to update the state vector and covariance matrix [30]. 

4.1 GNSS Specifics 

ROS converts the latitude and longitude coordinates from the receiver to X and Y coordinates in 

the vehicle frame via a provided navsat_transform node in the ROS navigation stack [31]. The 

navsat_transform node allows for quick conversions from GNSS coordinates to cartesian 

coordinates in the vehicle frame. It is assumed that the vehicle starts in a high accuracy GNSS 

location to ensure the vehicle gets a good initial global position estimate. The first high accuracy 

GNSS location the vehicle receives is set as the (0,0) XY position of the vehicle. Any subsequent 

high accuracy GNSS receptions positions are considered relative to this initial start point. A 

covariance matrix is calculated automatically in ROS based on the quality of GNSS reception. 

Before feeding the GNSS data into the EKF, coordinates above a certain covariance threshold are 

filtered out. This stops low accuracy GNSS positions from negatively affecting the localization in 

the EKF. Tests were performed with only low accuracy GNSS and the results will be discussed in 

Section 6.2. 

4.2 LIDAR Odometry Specifics  

LIDAR odometry provides localization estimates relative to a specific pose. That is, ΔX, ΔY, and 

Δyaw are estimated from the starting pose of the vehicle given by the GNSS and IMU. For 

simplicity, a static covariance of 0.01 is set for each pose estimation for LIDAR Odometry before 

it is fed into the EKF. The LIDAR odometry in an urban environment can travel 500 meters 

before the drift reaches above 0.5 meters. LIDAR odometry needs many distinct features for an 

accurate localization estimate, the fewer the features, the faster the drift will accumulate. 

4.3 IMU Specifics  

The heading of the vehicle is needed in order to fully define its pose in a planar environment. 

Since the initial pose X and Y is given from the GNSS, an IMU with a magnetometer is used get 

the initial yaw of the vehicle. LIDAR Odometry is then used to estimate the Δyaw from the initial 

start position. 

5. Mapping and Navigation Procedure 

This research proposes a multistep approach to mapping and classifying the environment that the 

vehicle is traveling in. These steps include data collection, automated post-processing of data, and 

autonomous navigation between points while traveling only on sidewalks and intersections. It is 

important to note that steps 5.1 and 5.2, data collection and post-processing, are only done once 

while step 5.3, autonomous navigation, can be done repeatedly without have to redo the previous 

steps. An overview of the process flow can be seen below in Figure 10. The post-processing step 
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classifies LIDAR data into regions such as grass, sidewalks, roads, and obstacles and generates a 

labeled segmented map. 

 

 

Figure 10- Process flow for environment mapping and navigation. 

The details for these steps are described below. 

5.1 Data Collection While Manually Steering Vehicle 

The first step towards generating a classified map of the region of interest is collecting the data 

that will be processed to generate such a map. The user steers the vehicle manually via commands 

from a joystick controller or arrows on a keyboard. The user must steer the robot along all the 

sidewalks and alleys that they want the vehicle to be able to travel on autonomously in the future.  

It is important to drive through all the potential destinations to which one may want the vehicle to 

navigate in the future, such as relevant building entrances or bus stops. This data collection is also 

done when there is no snow on the ground. This is so we can better segment the environment in 

section 5.2, since snow can easily cover many distinctive features of objects. 

The data collected in this step comes from the LIDAR, GNSS, and IMU. The LIDAR data is 

three-dimensional information about the environment around the vehicle. The field-of-view 

(FOV) of the LIDAR can be seen in Figure 11 and an example of the 3-D point-cloud returned by 

the LIDAR can be seen in Figure 12. 

 

Figure 11- Side and top views of the field-of-view (FOV) of the VLP-16 LIDAR. Objects within in the FOV are 

returned from the LIDAR in the form of a 3-D pointcloud. 

Data collection while 

manually driving UGV 
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Figure 12- Top down view (left) and side view (right) of one complete LIDAR return scan. This scan consists of 

approximately 30,000 3-D points of the environment around the vehicle. 

The GNSS data is also collected in order to identify where GNSS high-accuracy reception is 

available in the neighborhood. This will be important further down the pipeline when generating 

a path. The IMU data allows for the initial yaw pose estimation. During the mapping procedure, 

the vehicle pose is identified using the localization scheme described in section 4. 

There has been a fair amount of research done regarding autonomous exploration of unknown 

environments. Wang et al [32] propose a method of autonomously exploring an unknown 

environment with the intent of generating an efficient feature-based map. Li et al [33] developed 

a system using ROS for autonomous wheel chair exploration in an indoor environment. Despite 

these achievements, there is a lack of research in autonomous exploration in an urban 

environment that adheres to socially acceptable means of exploration, such as only using 

sidewalks and avoiding driving over grass or other people’s lawns. In addition to this, 

autonomously exploring a neighborhood such as the one proposed in this paper would take much 

longer if it was explored without the assistance of a user steering the vehicle. As a result, this 

work does not attempt to use autonomous exploration and instead we opt for manually steering 

the vehicle to collect the data. 

5.2 Post-Processing of Data 

The second step of the procedure is to automatically analyze the data and create a segmented and 

labeled map of the area of interest from the LIDAR pointcloud. The LIDAR outputs 

approximately 30,000 points per frame and runs at 10 Hz which results in 300,000 3-D points per 

second. Each of these points represent the distance to a point on the surface of objects in the 

environment that the vehicle is in. The LIDAR data points are sent through a custom algorithm 

that allows for the classification of the points into sidewalks, roads, grass, curbs and curb-cuts, 

and obstacles. Obstacles are defined as trees, bike racks, stairs, etc. We broadly classify these 

types of objects together because when traveling between two points, the vehicle just needs to 

know enough to avoid these objects and doesn’t need to know explicitly the type of object it is. 

For example, knowing the distinction between grass and sidewalk may be more important than 

knowing the difference between a lamp-post and a tree. For our application, it is important for the 

robot to drive on sidewalks and not on grass so distinguishing between grass and sidewalk is 

important. However, both the tree and lamp-post represent an object that must be avoided; 

distinguishing between a tree and lamp-post is not as important as their shape. An outline of how 

the vehicle classifies the environment can be seen in Algorithm 1. 
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In Algorithm 1 described below, the slope is taken between two column-wise points. In terms of 

the LIDAR pointcloud, two-column wise points will be in separate channels of the lidar in the 

vertical direction. The grade of the road, in reference to the road curvature, is defined as the 

magnitude of the slope as it rises and falls along its width. Objects such as stairs and retaining 

walls will fall into the category of obstacle in this algorithm. 

 

5.2.1 Sidewalk Segmentation 

Determining where the sidewalk is in the environment is the most crucial aspect of this research. 

It is needed to give the vehicle the ability to travel using the sidewalk and not on the grass. An 

important characteristic about sidewalks is that a quality sidewalk (meaning without major holes, 

cracks, or tree roots) is smooth and flat. This means the LIDAR points falling on the sidewalk 

should return data that has similar elevation with little variation between consecutive points. 

Sidewalks are also typically surrounded by grass, curbs, walls, or vegetation which cause a 

discrete jump in the LIDAR scan. Taking these characteristics into consideration, the sidewalk 

can be extracted from the raw LIDAR scan. An example of the sidewalk LIDAR classification 

result can be seen in Figure 13. 
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Figure 13- Image of a sidewalk (top) and the extracted sidewalk (green) and mapped using LIDAR (bottom image). 

The shadows in the image are shown to highlight the difficulty of using vision in neighborhoods with tree canopy. 

5.2.2 Road Segmentation 

Roads in urban environments are similar to sidewalks in that they are typically smooth. However, 

to differentiate them from sidewalks, roads also have a distinct cross slope to them [34]. The 

cross slope is designed into roads so that the highest point of the road is in the center which 

causes water to drain from the road surface to the street gutters. Urban roads are also often 

surrounded by curbs, meaning the LIDAR scan (when the robot is on a sidewalk) will see an 

elevation jump from the sidewalk down to the road, the road back up to the sidewalk, or both. 

This can be seen in Figure 14. 

 

Figure 14- Example of LIDAR data from a cross-section of road in the testing environment. The distinct curvature of 

the road LIDAR points can be seen (red) as well as the presence of the curbs as indicated by the discrete height jumps 

in the LIDAR scan. 

curb 

curb 
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5.2.3 Grass Segmentation 

Unlike sidewalks and roads, LIDAR points that fall on grass are noisy. The blades of grass create 

a high standard deviation of consecutive points that allow for easy classification in comparison to 

roads and sidewalks. An example of the road LIDAR classification can be seen in Figure 15. 

 

Figure 15- Image of grass (top) and the extracted grass (red) and mapped using automated processing of the LIDAR 

pointcloud (bottom). 

It is important to note that the top section of grass in Figure 15 shows a thinner strip of grass than 

is apparent in the aerial image. This is because there is a steep slope in these yards that is not 

shown in the aerial image, as a result the algorithm does not classify the LIDAR points as grass 

when the slope is too steep. 

5.2.4 Curb and Curb-cut Segmentation 

Curbs are associated with the break in elevation between the road and sidewalk or grass median. 

In a typical urban neighborhood, sidewalks are positioned higher in elevation than roads. There 

are two common scenarios, the first one is where there is a sidewalk, a curb, then a road. The 

second being where there is sidewalk then a grass median, then the curb, then the road. Curb cuts 

are detected when the sidewalk merges with the road.  

5.2.5 Sidewalk GNSS Centerline Generation 

For the robot to travel only on sidewalks, the centerlines of the sidewalks must be known in order 

to generate a path using the sidewalks. More specifically, the GNSS coordinates of the sidewalk 

centerline are desired. The first step to find the sidewalk centerline is to extract the sidewalk 

directly in front of the robot from the first (or the lowest in elevation) channel of the LIDAR, as 

shown in Figure 16. 
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Figure 16- Top down view of a LIDAR scan and section of the scan used for the centerline generation shown in red. 

The noisy LIDAR points on the bottom right side of the figure is due to the LIDAR sensing vegetation in a garden.  

The midpoint of this sidewalk scan is archived, and a new centerline point is found as the robot 

moves forward. Every 1 meter, all the centerline points that were archived for the past 1 meter are 

all averaged and the X and Y points (which are the output of the EKF), which are relative to the 

starting pose, are saved as the centerline midpoints for that section of sidewalk. This midpoint is 

then converted using the ROS navigation stack to a latitude and longitude coordinate. A visual of 

this process can be seen in Figure 17. 

 

Figure 17- Process to calculate the sidewalk centerlines. 

5.2.6 Locations with High Accuracy GNSS 

Areas with good GNSS reception in the neighborhood are recorded and mapped during the initial 

data collection. This is important information for several reasons. If the vehicle localization using 

LIDAR odometry were to drift too much while it is traveling, one can divert to the nearest area 

with good GNSS reception in order to zero it’s error. During path planning, a path can also be 

generated so that if the vehicle knows it will be traveling for too long in an area relying solely on 

LIDAR Odometry and an unacceptable amount of drift will likely occur, the path can be modified 

to navigate to a known area with good GNSS reception to ‘check-in’ and reduce the localization 
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error, and then continue on the rest of the path to the final destination. However, this functionality 

is not used in this research because in the testing environment all paths currently generated 

happen to cross through a high accuracy GNSS zone, such as those located at identified 

intersections.  

5.3 Path Planning and Navigation 

Now that the environment has been mapped, the system knows where there is grass, sidewalks, 

roads, curb-cuts, and obstacles. This information is used to create a path from pt. A to pt. B using 

only sidewalks and curb-cuts to cross intersections. The sidewalk centerline points and Google 

Maps API [35] are then used to plan the path in an efficient way. 

The Google Maps API is used to plot an initial GNSS coordinate path between the origin and 

destination positions. An advantage of using the Google Maps API is the capability to use 

landmarks such as street names or addresses directly instead of knowing exact coordinates of the 

locations to which you want the vehicle to travel. However, Google Maps API will plot a GNSS 

‘breadcrumb’ path that lies on the road centerlines and not on the sidewalks. A visual of an 

example path plotted via Google Maps can be seen in Figure 18. 

 

Figure 18- Example of 2 Google Maps path alternatives between origin and destination points.  

The road centerline GNSS points can be modified to handle sidewalks and can be shifted over to 

the appropriate sidewalk centerlines. To apply corrections to the initial path, generated by the 
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Google Maps API, the path is overlaid onto the previously generated segmented map. The GNSS 

coordinates from the road are shifted to the sidewalk centerlines (Section 5.2.5) and curbcuts. 

Algorithm 2 (described below) will find the closest sidewalk / curb-cut entry / departure points to 

the initial path determined with the road centerlines.  

 

Given a destination coordinate, the vehicle will likely have several different valid path options to 

take to travel to the destination. The goal of our path planner is to take the shortest route possible. 

In order to reduce the number of paths down to one, a straight line is projected from pt. A to pt. B 

as seen in 

 

Figure 19. This line helps us pick one side of the street to favor over the other (if needed). The 

distances between all the possible sidewalk centerline nodes and the line drawn between pt. A and 

pt. B are calculated and the sum of these distances for the different path options are found. The 

set of sidewalk centerlines that are closest to the line provide a single solution for the path 
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between the points.  This path is shown in 

 

Figure 19. 

 

Figure 19- Line drawn between pt. A and pt. B assisting in path generation (left). The GNSS road centerlines (from 

Google Maps API) are shifted to the sidewalk (right).  

Now that a path has been generated between two points using only sidewalks and curb-cuts at 

intersections, the vehicle has the ability to autonomously navigate the path using the ROS 

navigation stack. The ROS Navigation stack allows for path following by generating the velocity 

and heading needed for the robot in order to follow and stay on the path. The velocity and 

heading are then converted to motor commands to control the wheels on the Husky via a ROS 

package [36] provided by Clearpath Robotics. The ROS Navigation stack also provides 

functionalities such as obstacle avoidance using LIDAR scans to avoid people and pets while 

traveling. 

While the robot is following the ‘breadcrumb’ path, the vehicle’s pose is identified using the 

localization scheme of combining high accuracy GNSS and LIDAR Odometry described earlier 

in section 4. In its current state, the path planner only allows the vehicle to cross the road at 

intersections, however, with minor modifications the vehicle could cross the road using other 

curbcuts such as driveways. 
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6. Results 

In order to quantify the accuracy of the system and see how well it performed, the results are 

divided into to two sections: the mapping results and the localization results.  

6.1 Evaluation of Segmented Map 

The automatically generated segmented map of the environment, described in section 5, needs to 

be compared to a ‘ground truth’ to quantify the accuracy of the map. Since no map already exists, 

a ‘ground truth’ map was created by using an aerial orthorectified image of the neighborhood [37] 

and manually edited to add the proper labels. The raw orthorectified image can be seen in Figure 

20 and the manually labeled image can be seen in Figure 21. The segmented map automatically 

generated in this project was converted from a 3D pointcloud down to a 2D image and then 

overlaid and compared to the orthorectified image to generate a measure of accuracy. The 2D 

pointcloud image and the image overlay can be seen in Figure 22 and Figure 23, respectively. 

Since sidewalks are the most important aspect of the segmentation, only accuracy results for the 

sidewalks will be discussed below.  

 

Figure 20- Orthorectified aerial image.  

 

Sidewalk / Alley 

Road 
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Figure 21- Manually labeled orthorectified image. Sidewalks, alleys, driveways, and curbcuts are all labeled sidewalk. 

 

Figure 22- 2D pointcloud of segmented sidewalk overlaid on the orthorectified image. 

 

Figure 23- Sidewalk 2D pointcloud overlaid on manually labeled orthorectified image. These two images are stored as 

separate layers for evaluation purposes. 

In Figure 22 and Figure 23, one can see that at intersections there are green pointcloud data 

indicating a sidewalk where there is actually a road. The reason for this is that while crossing the 

intersection, our requirements for a road (curb, drop in elevation) fail when the vehicle is actually 

on the road. As a result, the system is programmed to classify these points as a “sidewalk” even 

though that is not the case. However, this is not an issue because in most cases it is acceptable for 

the vehicle to consider intersections and crosswalks as “sidewalks”. As a result, in the sidewalk 

classification results below, these ‘sidewalk’ points are not considered for pixel comparison. It is 

important to note that at this time the vehicle is not programmed to actively take into account 

traffic when crossing an intersection and will attempt to cross the street regardless of cars and 

pedestrians that may be on the road. Instead, the user supervising pauses the vehicle when there is 

traffic on the road.  

To evaluate the accuracy, the true positive (TP) and false positive (FP) for the sidewalk is 

calculated. This was done by a pixel comparison between the two images using MATLAB. The 

pixels that are classified as a sidewalk by the LIDAR are checked with the manually labeled 

image to see if it is a correct classification or a false classification.  The results can be seen in 

Table 2. 
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Classification TP FP 

Sidewalk 91.46% 8.54% 
Table 2- Table showing accuracy of automatic classification of the sidewalks.  

The sidewalk was 91.46% accurately classified and 8.54% falsely classified as sidewalk.  Leaves 

and grass growing through the cracks in sidewalks accounted for much of the false classification. 

6.2 Localization Results 

To test the accuracy of the localization system, a ‘ground truth’ is needed. The high accuracy 

GNSS system described in section 4.1 was used to survey areas in the neighborhood where high 

accuracy results were available. This can only be done in GNSS areas with good reception, and 

since a majority of the area is covered in tree canopy or overshadowed by buildings, there were 

only 7 consistent locations in the neighborhood that were identified that could be accurately 

surveyed. These locations are indicated on the map in Figure 24. 

 

Figure 24- The areas of good reception GNSS (yellow) that were surveyed indicated on an image of the neighborhood.  

 To validate the accuracy in the areas with good GNSS reception, the vehicle was driven to each 

location with known high quality GNSS reception (clearings, intersections) and parked. GNSS 

coordinates were recorded over a one minute span. One minute was experimentally found to be 

enough time to get an accurate estimation of the true latitude and longitude. The GNSS 

coordinates were then converted to Universal Transverse Mercator (UTM) coordinates, which is 

in meters, and averaged over that period of time to generate a ‘ground truth’ latitude and 

longitude. The accuracy of the GNSS position at these locations was found by calculating the 

circular error probable (CEP). The CEP is a measure of the median error radius of all the location 

points recorded and allows us to quantify the quality of the GNSS signal at these locations. A 

scatter plot showing the results of the GNSS latitude and longitude readings over a one minute 

period and the CEP error circle for location 1 is shown in Figure 25.  
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Figure 25- Plot of GNSS coordinates converted to Universal Transverse Mercator (UTM) coordinates in meters to 

show how the absolute position estimate varies over a one minute period of time in a GNSS zone with good RTK 

reception. The red circle shows the GNSS circle error probable (CEP) which is 0.0068 meters.  

As the robot travels between two points and passes through these surveyed areas, we compare the 

estimated position of the vehicle from the localization scheme EKF to the true value as it passes 

through the surveyed area. The localization results were recorded for two runs. The first run was 

conducted during the summertime under clear sky conditions and no snow on the ground while 

the second run was conducted during winter under cloudy conditions with fresh snow cover on 

the ground. 

A table showing the CEP GNSS quality values for all 7 locations as well as the total distance 

from the start (location 1) that the vehicle traveled as it reached the respective location and the 

recorded error for both the summer and winter runs can be seen in Table 3. The vehicle was given 

these 7 waypoints as consecutive destinations to which to navigate. The vehicle was also given 5 

other intermediate waypoints to travel through, shown as red circles in Figure 26. These 

additional waypoints were needed in order to have the vehicle travel on most of the sidewalks in 

the neighborhood. The system automatically generated a path between the 7 high accuracy GNSS 

locations and 5 waypoints using the path generator described in Section 5.3 and autonomously 

traveled starting at location 1 through all subsequent locations until location 7 was reached. This 

explains why the path seems convoluted. Our objective was to travel between all these locations 

and create a longer path within the neighborhood for testing and evaluation. Once a location is 

reached, the error is calculated by finding the distance between where the vehicle thinks it is in 

the world, via the localization scheme described in Section 4, and the true location that was 

surveyed. The vehicle then travels to the next subsequent location. For example, once the vehicle 

reaches location 2, the error is calculated between actual and expected coordinates, then the 

vehicle continues to location 3 (adding on to the previous path between location 1 to location 2). 

This is continued until location 7 is reached. The paths taken between several example location 

can be seen in Figure 26.  
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Figure 26- The paths taken by the vehicle between indicated locations shown in light blue. High accuracy GNSS 

locations shown as yellow circles and intermediate waypoints shown as red circles. (A) The path taken between 

location 1 and location 2. (B) The path taken between location 1 and location 4 (traveling through locations 2 and 3). 

(C) The path taken between location 1 and location 7.  

Location GNSS CEP 

Accuracy [m] 

Distance 

Traveled [m] 

Summer Error 

[m] 

Winter Error 

[m] 

1 0.0068 0 0.004 0.012 

2 0.0045 186 0.051 0.056 

3 0.0044 352 0.032 0.102 

4 0.0063 470 0.059 0.062 

5 0.0041 832 0.080 0.077 

(A) 

(B) 

(C) 
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6 0.0036 1333 0.125 0.089 

7 0.0049 1615 0.041 0.113 
Table 3- Table showing the accuracy of the localization results for 6 different paths. There is no path associated with 

location 1.   

The average error of the localization system is 0.056 m in the summer and 0.073 m in the winter 

with snow on the ground. This metric was chosen to evaluate the localization system as opposed 

to the Success weighted by Path Length (SPL) measure proposed by Anderson et al [38] because 

in our case the shortest path between two points is not always the best path. In the above Table 3, 

in order to calculate the error, the true latitude and longitude of each respective point is converted 

to X Y coordinates in the vehicle frame. As the vehicle passes through the location, the estimated 

X Y position from the EKF is compared to the true X Y location, and the error is calculated as the 

difference. Additionally, the distance traveled is the total distance the vehicle has moved from the 

start of the path (location 1). The locations in Table 3 are all locations with good GNSS reception, 

and as a result, it is likely that the vehicle will correct its position estimate as it travels through 

these points. The error of the position estimate before and after the vehicle travels through the 

respective points, both in summer and winter, can be seen in Table 4. 

Location Summer – Error 

Before [m] 

Summer – 

Error After [m] 

Winter – Error 

Before [m] 

Winter – Error 

After [m] 

1 - - - - 

2 0.051 0.016 0.056 0.017 

3 0.032 0.012 0.102 0.032 

4 0.059 0.018 0.062 0.013 

5 0.080 0.021 0.077 0.015 

6 0.125 0.029 0.089 0.022 

7 0.041 0.012 0.113 0.029 
Table 4- Table showing the position estimate correction as the vehicle travels through the high accuracy GNSS 

locations. Location 1 is the starting point.  

To demonstrate the system traveling a longer distance without feeding it waypoints or correction 

locations, such as in Figure 26 above, the vehicle was given a destination point 500 meters away 

to navigate to in the winter. The locations of the start and destination locations as well as the path 

taken between the locations can be seen in Figure 27. On the particular day of this experiment the 

end location of the path turned out to be in a high accuracy GNSS location, which allowed for the 

localization error accumulated while traveling the path to be estimated based off where the 

localization scheme believed the vehicle to be and where the GNSS receiver indicated that it was. 

This localization error was found to be 0.016 meters. For this particular path, the vehicle did 

travel through locations 6 and 7 (Figure 24) so corrections based on the high accuracy GNSS 

were likely made in the localization scheme, however this path was not deliberate.  The vehicle 

crossed two streets while traveling this path and each time the operator supervising the vehicle 

had to make sure the streets were safe to cross, as the vehicle was not monitoring for traffic.  
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Figure 27- Path of the vehicle (red) traveling between two locations in the neighborhood. For labeled streets and 

sidewalks refer to Figure 21. 

As a check to determine if the proposed localization scheme performs better than just by using the 

LIDAR odometry alone, the vehicle was driven from location 1 to location 3 (Figure 24) without 

any GNSS data fed into the EKF (aside from using GNSS for initial localization) during the 

summer time. Since there is no GNSS information available to the EKF, there will be no GNSS 

corrections and the localization scheme will rely solely on the LIDAR odometry while traveling 

between the two points. The path taken by the vehicle can be seen in Figure 28. 

 

Figure 28- Path of the vehicle (red) traveling between two locations in the neighborhood without any active GNSS 

input to the EKF. 

The error at the end of this 350 meter path was 0.153 meters. This is worse than the 0.032 meter 

error the vehicle incurred while traveling through location 3 during the summer time with GNSS 

actively being fed into the EKF (Table 3). This gives us confidence that fusing together the high 

accuracy GNSS together with the LIDAR odometry does in fact provide us with better 

localization accuracy. It is important to note that the accuracy of the LIDAR odometry is a 

function of the number of distinctive features visible to the LIDAR in the nearby environment. 
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This neighborhood provides many distinct features for the LIDAR to process, however, some 

parts of the neighborhood may provide more distinctive features than others and we can expect 

the accuracy of the LIDAR odometry to vary slightly because of this. 

6.3 Assumptions and Limitations 

A major assumption in this research is that the vehicle starts in a high accuracy GNSS location. 

This constraint can also be resolved by creating high quality LIDAR based landmarks which 

allow the robot to localize accurately instead of relying on only GNSS. Also, it is assumed that 

the sidewalks are of reasonably good quality and are not covered in grass or leaves when 

collecting the initial data. 

Some scenarios where the proposed system may encounter problems are during heavy snowfall or 

rainfall. The system relies on LIDAR when no GNSS is available and LIDAR data quality 

deteriorates under these weather conditions. The LIDAR odometry may also drift significantly 

due to lack of features in the area (as would be the case next to an open field) or finding too many 

similar features between the high accuracy GNSS locations. This latter situation of too many 

“similar” features was identified when we were operating on the university campus next to a 

building with many identical window frames adjacent to the robots path. As a result, the drift may 

cause the robot to veer off the sidewalk before it can correct for the error with GNSS. This 

scenario is highly unlikely in a residential neighborhood. 

The system does not actively monitor traffic at intersections and as a result is not aware of 

oncoming vehicles when crossing the intersection. The reason for this was that we had to limit the 

scope of our project given time constraints. To add the functionality of monitoring traffic at 

intersections, the LIDAR on the vehicle can be programmed to detect vehicles, bikes, and other 

pedestrians on the roads. An algorithm could be designed to identify the flow of the traffic in the 

street and determine if the intersection is clear of any oncoming vehicles. This information could 

be used to autonomously pause the robot while crossing intersections to avoid the risk of 

collisions. 

Generating localization results in a snowy neighborhood proved challenging. The issues 

encountered in the winter may have nothing to do with the sensors or the vehicle, but rather can 

involve piles of snow blocking sidewalks and leaving no viable path for the vehicle to travel. An 

example of a pile of snow blocking a curbcut that would normally allow the vehicle to get onto a 

sidewalk is shown in Figure 29.  
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Figure 29- The vehicle encountering a pile of snow it is not able to travel through on a curbcut. The shadows show the 

difficulty traditional computer vision would encounter in urban neighborhoods.  

The quality of snow removal on sidewalks and streets varies highly among neighborhoods and 

households. This is due to the fact that many households are responsible for the removal of snow 

on the sidewalks in front of their house. Some people do a good job removing the snow while 

others may not do it at all. This, in addition to snow plows creating snow piles that block many 

curbcuts, provides for a challenging environment when it come to sidewalk path planning and 

navigation in snowy environments. Clearly the local jurisdiction or neighbors need to ensure that 

the curbcuts are also cleared of snow and not just the sidewalks. 

7. Conclusions and Future Work 

In conclusion, we developed a system that can automatically localize by fusing high accuracy 

GNSS and LIDAR Odometry and created an algorithm that can automatically detect and label 

important ground features such as sidewalks, roads, grass, curb-cuts when there is little to no 

snow on the ground. By using this information, the robot can travel from pt. A to pt. B using only 

sidewalks and curb-cuts. This work utilizes Google Maps API to provide the advantage of being 

able to use street names. The API automatically generates a path along road centerlines between 

the two points, which then can be modified for sidewalks. We have shown that the system can be 

used to travel under most weather conditions even when the sidewalks are covered in snow (as 

long as the snow does not block travel). We have not tested the system in heavy snowfall; this 

will likely be a problem. Vision is intentionally not being used in this research, thus our system is 

not typically affected by snow cover.  

We achieved an accuracy rating of 91.46% true positives for mapping sidewalks and an average 

error for the localization scheme of 0.056 meters in the summer and 0.073 meters in the winter 

for paths as long as 1.5 Km. We showed that the proposed localization scheme provided better 
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accuracy than relying solely on LIDAR odometry by achieving 0.032 meters of error compared to 

0.153 meters moving between locations 1 and 3. Although there is less tree canopy above the 

vehicle in the winter, likely resulting in better GNSS reception throughout the path, the average 

error was slightly worse than in the summer. This may be attributed to the snow covering some 

features that LIDAR odometry uses for localization. Better sidewalk classification can be 

achieved by further research into understanding how to filter out vegetation in LIDAR scans, 

however, the accuracy achieved in our project has proven to be sufficient for sidewalk navigation 

of UGVs in urban environments with or without snow cover. The level of localization accuracy 

achieved in this project is necessary for navigation on sidewalks, especially in the case of 

autonomous wheelchair navigation. If the accuracy were any worse, the vehicle would likely 

begin traveling on grass or vegetation next to the sidewalk and miss the curb cuts. For accurate 

navigation of wheelchairs on sidewalks, RTK GNSS is currently needed as uncorrected GNSS 

will not provide the accuracy required to stay on the sidewalk and reach its destination address. 

However, with new GNSS satellites being launched every year, high accuracy GNSS will likely 

be available without the need for RTK within the next few years. 

Table 5 below summarizes the capabilities of the system developed here. 

The system is able to: 

• Automatically localize using LIDAR odometry fused with GNSS even when the 

availability of high accuracy GNSS is limited to a few areas 

• Automatically detect and label important ground features, such as: 

- Sidewalks 

- Roads 

- Grass 

- Curb-cuts 

• Automatically develop a map of sidewalk centerlines by manually steering vehicle 

along sidewalks 

• Autonomously travel from point A to point B in an urban neighborhood using only 

sidewalks, paved alleys and curb cuts under most weather conditions 

• Take advantage of street names and paths using Google Maps API 

• Allow for more rigorous sidewalk assessment, as needed 

• Handle heavy shadow due to bright sunlight in the summer or winter 
Table 5- Summary of system capabilities. 

Future work should explore the introduction of LIDAR landmarks for localization estimation in 

case the LIDAR odometry drifts in-between high accuracy GNSS locations. LIDAR landmarks 

could also remove the limitation of needing high accuracy GNSS for initial position estimate as 

the landmarks could provide this information instead.  

The automatically generated segmented map can also be used for in-depth sidewalk assessment of 

parameters such as pavement quality, grade and width. This can also be updated over time as new 

data is collected. Introducing a high accuracy IMU into the localization scheme and actively 

feeding its data into the EKF (as opposed to just using it for initial heading as we do) may 

improve the localization accuracy and as such is desired. We chose not to actively feed the IMU 

data into the EKF because we achieved sufficiently good results without it. Implementing the 

hardware on an actual wheelchair would be a major milestone for this technology.  

For longer term consideration, developing a system that would allow travel on the side of the road 

where there are no sidewalks would facilitate wheelchair travel in the suburbs where there are 
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fewer sidewalks present. Furthermore, although this project has been focused on urban sidewalks, 

the methods described here (minus the use of the Google Maps API) can just as well be adapted 

to applications requiring autonomous travel on a network of unpaved pathways in a park or forest, 

as long as the destination can be uniquely identified and located. 

Finally, another application of this technology is the autonomous removal of snow from 

sidewalks. Most urban centers expect that homeowners remove snow from the sidewalks in front 

of their properties. Many do not comply (as can be seen from examples described earlier). The 

result is that persons with disabilities are often stuck at home and cannot make their way to 

nearby stores or to public transit. Furthermore, cities located in northern climates often do not 

have a maintenance budget sufficient to clear snow from both the roads and the sidewalks. 

Snowplowing of the sidewalks by small autonomous vehicles may be the answer. 

And let us not forget that in addition to sidewalks, this technology can be expanded to clearing 

out snow from larger areas, such as a plaza on a university campus or a city center. 
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