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Abstract

Markov Logic Networks (MLN) [1] have become a de-facto statistical learning and infer-

ence framework to perform efficient and user-friendly analysis on massive data, with many

applications in knowledge base construction [2], data cleaning [3], information extraction [4],

among others. Meanwhile, large-scale spatial data analysis has gained much interest in recent

years due to the need for extracting insights from spatial data. However, analyzing spatial data

using existing solutions typically cannot satisfy the scalability requirement of most applica-

tions as these solutions were not originally designed for the huge amounts of spatial data being

generated at the moment (e.g., there are 10 Million geotagged tweets issued every day [5]). Un-

fortunately, none of these existing solutions exploits the power of the MLN framework to boost

the usability, scalability, and accuracy of spatial analysis applications.

The main goal of this thesis is to provide the first research effort to combine the two worlds

of MLN and spatial data analysis. We address the two main challenges that face any spatial anal-

ysis application when using MLN. The first challenge is how to modify the core processing and

functionalities of MLN to make it aware with the distinguished features and needs of spatial data

and applications. The core of MLN is composed of two main components, namely, grounding

using factor graphs [6,7] and inference using Gibbs sampling [8,9]. The factor graph is used as

the main data structure for learning and inferring the weights of the MLN features, while Gibbs

sampling infers the values of model variables and computes their associated probabilities using

the weighted MLN features. The second challenge is how to efficiently represent spatial analy-

sis problems (e.g., spatial regression [10] and spatial probabilistic graphical modeling [11–13])

using MLN. This requires to find an equivalent first-order logic [14] representation for any input

spatial analysis problem that makes sure that the input problem can be appropriately mapped

and executed using the MLN framework.

This thesis makes the following contributions. First, we present Sya; the first spatial prob-

abilistic knowledge base construction system based on the spatial-aware MLN framework.

We show our spatial extensions to the different MLN layers, including language, grounding

and inference, implemented inside a knowledge base construction application. We then intro-

duce three scalable spatial analysis systems, namely, TurboReg, RegRocket, and Flash, that are

equipped with efficient first-order logic representations for different spatial analysis problems.
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In TurboReg, we provide a scalable framework for employing binary autologistic models in pre-

dicting large-scale spatial phenomena. In RegRocket, we provide an efficient extension for Tur-

boReg to support the multinomial (i.e., categorical) autologistic models. Finally, in Flash, we

show how we can scale up the performance of spatial probabilistic graphical modeling, which

is an important class of spatial data analysis, using MLN. In summary, the research contribu-

tions in this thesis have advanced the state-of-the-art in scalable spatial analysis, by presenting

efficient MLN-based algorithms with strong theoretical foundations.
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Chapter 1

Introduction

1.1 Era of Big Spatial Data and Applications

Recently, there has been a proliferation in the amounts of spatial data produced from several

devices such as smart phones, space telescopes, and medical devices. For example, space tele-

scopes generate up to 150 GB weekly spatial data [15], medical devices produce spatial images

(X-rays) at a rate of 50 PB per year [16], a NASA archive of satellite earth images has more

than 500 TB and is increasing daily by around 25 GB [17], while there are 10 Million geotagged

tweets issued from Twitter every day as 2% of the whole Twitter firehose [18, 19].

Various applications and agencies need to analyze these unprecedented amounts of spa-

tial data [20]. For example, the Blue Brain Project [21] studies the brain’s architectural and

functional principles through modeling brain neurons as spatial data [22]. Epidemiologists use

spatial analysis techniques to identify cancer clusters [23], track infectious disease [24], and

drug addiction [25]. Meteorologists study and simulate climate data through spatial analy-

sis [26–29]. News reporters use geotagged tweets for event detection and analysis [30]. Such

spatial applications raise the ongoing need for efficient spatial-aware data analysis and machine

learning frameworks that allow data scientists and developers to analyze and turn the massive

spatial data into useful insights.

1
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1.2 Markov Logic Networks

The last two decades have witnessed significant efforts from researchers and practitioners world-

wide to develop numerous machine learning and artificial intelligent methods, e.g., deep learn-

ing [31–34]. However, the expertise skills and efforts needed to deploy these methods become

a major blocking factor in having a wide deployment of machine learning and artificial intel-

ligence applications. As a result, Markov Logic Networks (MLN) [1, 35] were recently intro-

duced to reduce this gap. In particular, the MLN framework combines first-order logic [14] with

probabilistic graphical models to efficiently represent statistical learning and inference problems

with few logical rules (e.g., rules with imply and bit-wise AND predicates). With MLN, data

scientists and developers do not need to worry about the underlying machine learning work.

Instead, they will focus their efforts on developing the rules that represent their applications. A

machine learning application that may take thousands of lines of code can be expressed with

just few MLN logic rules. This had a significant impact on the wide deployment of machine

learning techniques in various applications, including knowledge base construction [2, 36, 37],

data cleaning [3], information extraction [4], entity resolution [38], natural language process-

ing [39], genetic analysis [40, 41], among others.

Unfortunately, researchers never take advantage of the recent advances of Markov Logic

Networks (MLN) to boost the usability, scalability, and accuracy of spatial machine learning

tasks (e.g., spatial regression [10]) used in the spatial applications. Furthermore, MLN-based

applications (e.g., knowledge base construction [2]) would miss important results and have

less accuracy when dealing with spatial data. The main reason is that the MLN framework is

oblivious to the spatial data. The only way to support spatial data in MLN is to simply ignore

its distinguished properties (e.g., spatial relationships among objects) and deal with it as non-

spatial data. While this would work to some extent, it will result in a sub-par performance.

1.3 Thesis Contributions

The goal of this thesis is to adopt Markov Logic Networks (MLN) for big spatial data and

applications [42]. To that end, we introduce two orthogonal, but related, research contributions.

The first contribution is injecting the spatial awareness inside the MLN-based techniques and

applications (e.g., knowledge base construction), which will result in a higher accuracy for such



3

applications. The second contribution is taking advantage of the recent advances in MLN to

boost the usability, deployment, scalability, and accuracy of long lasting spatial data analysis

techniques. These two research contributions are briefly described in the rest of this section.

1.3.1 Spatial-aware MLN-based Knowledge Base Construction

Knowledge base construction has been an active area of research over the last two decades

with several system prototypes coming form academia and industry, along with vital applica-

tions. Most recently, knowledge base construction systems employed the idea of Markov Logic

Networks (MLN) to associate each extracted relation with a probability of how confident is

the system that this relation is factual. These systems usually employ two main phases; an

MLN-based grounding phase, which is responsible on how the factual scores correlate with

each others, and an MLN-based inference phase, which is responsible on calculating the final

probability of each extracted relation. DeepDive [2,9,43], an MLN-based system, has emerged

as one of the most popular probabilistic knowledge base construction systems [2, 9, 43], ap-

plied in vital applications like human trafficking [44, 45], geology [46], and paleontology [47].

Unfortunately, probabilistic knowledge base systems do not fully utilize the underlying spatial

information, which results in less accuracy in the factual scores.

In this contribution, we provide a native support for spatial data within Markov Logic Net-

works (MLN), and exploit such support to build a spatial-aware probabilistic knowledge base

construction system, called Sya [59, 60]. First, Sya pushes the spatial awareness inside the in-

ternal data structures and core learning and inference functionalities of MLN. In particular, Sya

implements an efficient spatial variation of the three main modules of MLN, namely, language,

grounding, and inference. Then, Sya extends DeepDive [2, 9, 43] with the proposed spatial-

aware MLN components to generate more accurate knowledge base outputs in case of having

spatial information. Our experimental results, through building two real knowledge bases, have

shown that Sya can achieve 70% higher F1-score on average over DeepDive, while achieving at

least 20% reduction in the execution times.

1.3.2 MLN-based Spatial Data Analysis

Same as Markov Logic Networks (MLN) made it possible for data scientists and developers

to embrace the difficulty of deploying machine learning techniques, we use our spatial-aware
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MLN as a backbone infrastructure to support long lasting spatial analysis techniques that lack

scalability as well as suffer from difficulty of deployment. Specifically, we address the following

two main spatial analysis operations:

• The first operation is autologistic regression, which has been used in various applications

to predict future values from previous data sets [10, 48–54]. To scale up the performance

of autologistic regression, we introduce TurboReg [61], a framework that exploits the

MLN framework to learn the autologistic regression parameters in an accurate and ef-

ficient manner. TurboReg provides an equivalent first-order logic representation to the

dependency relations among neighbors in autologistic models, a long with a theoretical

foundation for such representation. Once this equivalent representation is obtained, the

autologistic model parameters can be easily learned through the powerful MLN frame-

work. Our extensive experiments have shown that TurboReg achieves at least three orders

of magnitude performance gain over the best state-of-the-art existing method while pre-

serving the model accuracy. We further introduce RegRocket [62], an efficient extension

for TurboReg, along with a theoretical foundation, to support the categorical (i.e., multi-

nomial) prediction and predictor variables.

• The second operation is spatial probabilistic graphical modeling, which is an important

class of spatial data analysis that provides efficient probabilistic graphical models for

spatial data [11–13, 55]. This operation has been extensively used in many spatial and

spatio-temporal applications including meteorology [56], flood risk analysis [57], and

environmental science [58]. To scale up the performance of spatial probabilistic graphi-

cal modeling, we introduce Flash [63, 64]; a framework that goes beyond the autologis-

tic regression problem and provides a more generic framework for scalable spatial data

analysis based on MLN. To show the effectiveness of Flash, we provide MLN-based

representations for three popular spatial probabilistic graphical models, namely, spatial

Markov random fields [11], spatial hidden Markov models [12], and spatial Bayesian

networks [13, 55]. We have evaluated Flash, based on three real spatial analysis applica-

tions, and achieved at least two orders of magnitude speed up in learning the modeling

parameters over state-of-the-art computational methods.
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1.4 Thesis Outline

The rest of this thesis focuses on addressing the abovementioned two research contributions.

We summarize the thesis organization as follows:

• Chapter 2 gives a background on the Markov Logic Networks (MLN) framework. It

describes the details of two main MLN components; first-order logic rules and factor

graph representation. It also discusses how to represent any learning or inference problem

using MLN and what are the main assumptions to have a valid representation.

• Chapter 3 introduces Sya [59,60]; the first spatial probabilistic knowledge base construc-

tion system based on MLN.

• Chapter 4 introduces TurboReg [61]; an MLN-based scalable framework for using binary

autologistic regression models in predicting large-scale spatial phenomena.

• Chapter 5 introduces RegRocket [62]; the first scalable framework for building autologis-

tic models with multinomial prediction and predictor variables based on MLN.

• Chapter 6 introduces Flash [63, 64]; a framework that exploits MLN to scale up the

performance of spatial probabilistic graphical modeling.

• Chapter 7 highlights the key contributions of our work and concludes the thesis.



Chapter 2

Preliminaries of Markov Logic
Networks

Markov Logic Networks (MLN) have recently emerged as a powerful framework to efficiently

learn and infer the parameters of data models with complex dependencies and distributions [35,

65, 66]. The MLN framework combines probabilistic graphical models (e.g., factor graphs [7])

with first-order logic [14] to perform probabilistic learning and inference based on logic con-

straints, where logic handles model complexities and probability handles uncertainty. MLN

have been successfully applied in a wide span of data intensive applications including knowl-

edge bases construction (e.g., DeepDive [2,9,43,46], ProbKB [36,67,68], Archimedes [37,69],

Others [4, 65]), machine learning models (e.g., classification [70], data cleaning [3], ontology

matching [71], entity resolution [38], natural language processing [39]), and genetic analy-

sis [40, 41]. The success stories in such applications motivate us to explore MLN in computing

the parameters of models with spatial dependencies such as spatial-aware knowledge bases

(Chapter 3), autologistic regression (Chapter 4 and 5), and spatial probabilistic graphical mod-

eling (Chapter 6). The rest of this chapter provides the details of main MLN components.

2.1 First-order Logic Rules

First-order logic (FOL) predicates [14] (e.g., conjunction, disjunction and implication) are used

to encapsulate the knowledge in MLN. Any FOL formula consists of one or more FOL predi-

cates. For example, causality relationships in MLN are usually represented using the following

6
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FOL formula: P1∧ ...∧Pn =⇒ A, where predicates P1∧ ...∧Pn together define an action A.

FOL allows users to define universal or existential quantifiers in their formulas. For example,

the following two rules represent two FOL formulas:

(∀x)LowSanitation(x) =⇒ Ebola(x) (2.1)

(∀x)Ebola(x) ∧ Close(x, y) =⇒ Ebola(y) (2.2)

where the first formula states that if there is a low sanitation level at location x then this location

has a high risk of Ebola infection, and the second formula states that if the location x has a high

risk of Ebola infection and it is close to another location y then there is a high risk of Ebola

infection at location y as well.

The MLN framework employs FOL formulas to represent the model constraints. In partic-

ular, they adapt a weighted variation of FOL formulas, where each formula is associated with

weight, whether this weight is constant or needs to be learned from the training data. For the

formulas in the above example, the weighted variation used in MLN is as follows:

w1 (∀x)LowSanitation(x) =⇒ Ebola(x) (2.3)

w2 (∀x)Ebola(x) ∧ Close(x, y) =⇒ Ebola(y) (2.4)

The weights associated with FOL formulas indicate the confidence in the knowledge repre-

sented by these formulas. The value of any weight can be any positive value as long as larger

values are assigned to formulas with high confidence. In some implementations, negative values

are used to indicate the negation of the formula. Many efficient logic programming frameworks

have been proposed to generate first-order logic predicates on a large-scale such as DDlog [2],

XLog [72], and fuzzy logic [73].

2.2 Factor Graph Representation

Any MLN model consists of a set of weighted FOL formulas (e.g., Formula 2.3 and 2.4). To

learn the values of weights W = {w1, ..., wh} associated with predicates in these formulas,
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f1: v1 ^ v2 

v1

f1

(a) Logical Predicates (b) Factor Graph

f2: v2 ^ v3 

f3: v1 ^ v3 ^ v4 
v2 v3 v4

f2 f3

Figure 2.1: Translating First-order Logic Predicates into A Factor Graph in MLN.

these MLN predicates are translated into an equivalent probabilistic graphical model, namely

factor graph [7], which hasW as the parameters of its joint probability distribution. By doing

that, the problem of learningW is reduced into the problem of learning the joint distribution of

this factor graph. In general, the factor graph G in MLN consists of the following:

• Variable nodes V which are groundings of the predicates in the FOL formulas based on a

set of constants C = {c1, c2, ...., cn} (i.e., different constants are used to generate differ-

ent instances of the same formula). Each variable node v ∈ V has a binary value depen-

dent on the value of the grounding. As the number of constants and formula groundings

increases, the MLN model grows, but the number of the FOL formulas stays the same.

The following examples show two groundings (i.e., instantiations) for Formula 2.3 when

having two cities (i.e., constants) from Liberia (i.e., x ∈ {Margibi, Bong}).

w1 LowSanitation(Margibi) =⇒ Ebola(Margibi) (2.5)

w1 LowSanitation(Bong) =⇒ Ebola(Bong) (2.6)

• Factor nodes F which connect the variable nodes V whose corresponding predicates ap-

pear in the same MLN formula. There is an edge between any factor node f and each

variable node v that is connected to f .

• Each factor node f ∈ F is associated with a feature. It is 1 if the ground formula is true,

and 0 otherwise. The weight of the feature is the weight of the formula.

Figure 2.1 shows an example of translating three bitwise-AND logical predicates defined

over an example of MLN that has four variables (v1, v2, v3 and v4) into a factor graph.
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Probability Distribution. The full joint distribution of variables V in a factor graph G can be

estimated in terms of the factors F and their weightsW as a log-linear model [35]:

Pr(V = v) =
1

Cons
exp

( h∑
i=1

wifi(v)
)

(2.7)

where Cons is a normalization constant, fi(v) is the value of whether the i-th formula is sat-

isfied or not, and wi is its weight. Scalable optimization techniques have been proposed to

efficiently learn the values of weights W in factor graph, such as gradient descent optimiza-

tion [8, 74, 75]. In such techniques, the joint distribution of variables V is usually estimated

through the conditional probability distribution Pr(V|E) where E is a set of known evidence

variables and V represents the variables whose values are to be determined only.

2.3 Modeling with Markov Logic Networks

Any model can be represented with MLN, only if it has two main properties: (1) the model can

be represented as a set of p binary random variables (corresponding to the MLN variables V =

{v1, ..., vp} (vi ∈ {0, 1})), and (2) the dependencies between model variables can be described

with a set of weighted constraints defined over them (corresponding to the weighted MLN

factors F = {f1, ..., fh}), where the weights of these constraints are the model parameters that

need to be learned. The constraints describe how the values of the random variables correlate

with each other. A model with these two properties can exploit MLN to learn weightsW that

maximize the probability of satisfying model constraints F .

Example. Assume a model of two variables vprof and vteach, where vprof denotes whether a

person is professor or not, and vteach denotes whether a person teaches or not. We can define a

constraint that ”if a person is a professor then she teaches, and vice versa”. This constraint can

be represented as a bitwise-AND predicate vprof ∧ vteach. In this case, the MLN framework

learns a weight w that maximizes the probability of vprof and vteach having the same value (i.e.,

either vprof = 1 and vteach = 1 or vprof = 0 and vteach = 0).



Chapter 3

Sya: Enabling Spatial Awareness
inside Probabilistic Knowledge Base
Construction

3.1 Introduction

Knowledge base construction has been an active area of research over the last two decades with

several system prototypes coming from academia (e.g., [76, 77]) and industry (e.g., [78–80]),

along with many important applications, e.g., web search [81], digital libraries [82], and health

care [83]. The goal of knowledge base construction is to extract factual structured data (i.e.,

knowledge base) from unstructured data sources, e.g., Wikipedia, semantic web, and business

logs. Examples of such facts include “Alice is a spouse of Bob” or “John has Ebola”. Most

recently, the idea of probabilistic (instead of factual) knowledge bases has been proposed, where

each extracted relation is associated with a probability of how the system is confident that this

relation is factual (e.g., see [2, 36, 37, 84]). An example of such probabilistic relations is “Alice

is a spouse of Bob with 80% probability”.

Recently, Markov Logic Networks (MLN) [1] have been a standard tool for building proba-

bilistic knowledge base construction systems. Examples of such systems include DeepDive [2],

ProbKB [36], and Archimedes [37]. In these MLN-based systems, users express the knowledge

base construction logic using a set of first-order logic rules [14]. Then, such rules are processed

10
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Figure 3.1: Factual Scores of EbolaKB Using DeepDive and Sya.

on two steps: 1) grounding, which evaluates the rules to construct a ground factor graph [6] that

encodes the probability distribution of all extracted knowledge base relations; and 2) inference,

which estimates the marginal distribution (i.e., factual score) for each relation. Unfortunately,

current MLN-based knowledge base construction systems do not fully utilize or acknowledge

the importance of the spatial information associated with various entities in extracted relations.

This immediately results in knowledge base relations with less accurate factual scores. To better

illustrate this issue, we provide a real-example from epidemiology.

Example. We used DeepDive [2], a popular MLN-based knowledge base construction

system, to build a knowledge base about Ebola infected counties in Liberia. First, we did feed

DeepDive system with data about sanitation levels [85] in various counties in Liberia, namely

EbolaKB. Figure 3.1(a) shows a table of such information for four counties in Liberia, namely,
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Montserrado, Margibi, Bong, and Gbarpolu. One of these counties, Montserrado, was declared

by United Nations to have a high infection rate, hence marked as 1 (i.e., evidence) in the second

column of the table. The objective is to use DeepDive to find out the marginal probabilities

(i.e., factual scores) that the other three counties would have high infection rate as well or not

(marked as question marks in the table). Hence, we defined the following inference rule R with

two predicates P1 and P2 in DeepDive:

P1: County X has high Ebola infection rate.

P2: Counties X and Y have same sanitation level.

R: If P1 & P2, then Y has high infection rate.

Given that the Montserrado county has a high Ebola infection rate, and it is on the same sanita-

tion level as Margibi, Bong, and Gbarpolu counties, the inference in DeepDive used the input

evidence data to report that Margibi, Bong, and Gbarpolu have high infection rates with factual

scores 0.54, 0.52, and 0.63, respectively (second column in Figure 3.1(b)). Contrasting these

factual scores with the ground truth of infection rate ranges of these four counties that are pro-

vided by the World Health Organization [86] (first column in Figure 3.1(b)), we consider the

factual score of any county is correctly inferred if it is within the corresponding ground truth

infection rate range. Then, by calculating the F1-score (i.e., the harmonic mean of precision and

recall) of correctly inferred counties, DeepDive reported a low score of 0.39. This is mainly due

to the fact that the rule did not acknowledge the spatial proximity of counties and its effect on

the high infection rates. To remedy this issue within DeepDive, we added one more predicate

(P3) and redefined the rule R to be:

P3: Counties X and Y are within 150 mi distance.

R: If P1 & P2 & P3, then Y has high infection rate.

With the new predicate, and feeding DeepDive with the locations of all the four counties per

the map in Figure 3.1(c), DeepDive was able to adapt the factual scores of high Ebola infection

rates in Margibi and Bong to be 0.51 and 0.45, respectively, as they are both within 150 miles

from Montserrado, while reducing the factual score of Gbarpolu to be 0.06 as it is not within

150 miles from Montserrado. This example shows that the location information could signifi-

cantly change the factual score in DeepDive. However, it also shows the obvious limitation of

DeepDive when dealing with spatial predicates (e.g., P3). In particular, DeepDive treats any

predicate as a boolean function, which yields either true or false (i.e., satisfied or not). So,
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although one can define spatial predicates in DeepDive (e.g., P3), internally DeepDive and its

inference engine do not do anything special for spatial predicates. Due to this limitation, Deep-

Dive has missed on the following two major issues: (1) Margibi county is significantly closer to

Montserrado than Bong (Figure 3.1(c)), so, the factual score of Margibi should be significantly

higher than Bong. However, DeepDive gives almost similar scores to both counties as they both

satisfy P3. (2) Gbarpolu is only 160 miles from Montserrado, so, it should still have a good

probability to be similar to Montserrado. However, DeepDive gives it a factual score that is

close to 0 as it does not satisfy P3.

One interesting approach to simulate the spatial awareness in DeepDive is to generate rules

that define the distance as a step function. For example, instead of having one rule R corre-

sponding to the predicate P3, we can define a rule for each distance range (e.g., 10 < distance

< 20, 20 ≤ distance < 30, etc). However, as shown in Section 3.6, this comes with tremendous

latency in the grounding step which makes it impractical to build knowledge bases.

Approach. In this chapter, we present Sya; the first spatial MLN-based knowledge base

construction system. Sya embeds the awareness of spatial relationships inside the grounding

and inference phases of the knowledge base construction. In particular, Sya automatically gen-

erates a probabilistic model [6] that captures both logical and spatial correlations among its

variables. Then, this model is used along with an efficient spatially-equipped statistical infer-

ence technique to infer the factual scores of knowledge base relations. In the above example,

one can use Sya to redefine predicate P3 to be:

P3: The closer County Y to X, the higher its Ebola infection rate.

With running this predicate, Sya was able to report the factual scores of Margibi, Bong, and

Gbarpolu counties to be 0.76, 0.53, and 0.22, respectively. Given our ground truth knowledge,

this result reports F1-score of 0.85, which is more accurate than what we get from DeepDive.

Challenges. Sya faces two main challenges in the grounding and inference phases, respec-

tively. The grounding challenge is due to considering spatial correlations between all pairs of

random variables associated with knowledge base relations. In case these variables are cate-

gorical with a large number of domain values h, the generated spatial correlations among each

pair of variables will be of quadratic size in the number of domain values (i.e., O(h2)). This

can cause combinatorial explosion problems during the grounding operation [6], and later, the

inference can become intractable. Thus, a pruning strategy is needed to ground only spatial

correlations that will be effective in the inference phase. The inference challenge is the slow
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convergence to accurate factual scores in the presence of having spatial correlations among vari-

ables. In general, existing MLN-based systems require approximate inference techniques such

as Gibbs sampling [8] to efficiently handle large probabilistic models. However, standard Gibbs

sampling techniques depend on sequential updates of variables during sampling, which results

in a significant latency overhead before convergence in case of having spatially-correlated vari-

ables as shown in [87]. Thus, a new efficient variation of Gibbs sampling is needed to handle

these spatial correlations.

Contributions. Our technical contributions in this chapter can be summarized as follows:

• We define Sya architecture, which can be used to extend any existing MLN-based knowl-

edge base construction system and make it support spatial awareness (Section 3.2).

• We extend a popular datalog-like language, namely DDlog [2], with spatial constructs

that allow users to easily express their spatial semantics (Section 3.3).

• We introduce a new spatial variation of the factor graph [6], namely Spatial Factor Graph,

that is equipped with support for spatial correlations among variables. We also provide

an optimization to heuristically prune inactive spatial correlations during grounding. This

allows us to have a quality-scalability trade-off in Sya (Section 3.4).

• We introduce a new variant of Gibbs Sampling, namely Spatial Gibbs Sampling, that

exploits the Conclique [88] concept from spatial statistics to efficiently sample from

spatially-correlated variables. The proposed algorithm is extremely fast and has theo-

retical guarantees of convergence as shown in [87] (Section 3.5).

• We perform an extensive evaluation of Sya with DeepDive [2] through building two real

knowledge bases about the water quality in Texas [89], namely GWDB, and the air pol-

lution in New York city [90], namely NYCCAS. The results show that Sya can achieve

120% and 70% higher F1-scores over DeepDive when building GWDB and NYCCAS,

respectively, with at least 20% reduction in the execution time (Section 3.6).

3.2 Sya Architecture

Figure 3.2 gives the high-level system architecture of Sya. A domain expert would feed Sya

with a set of inference rules, along with input and evidence data. A casual user can either use
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Figure 3.2: Sya System Architecture.

standard querying or visualization APIs to access the produced knowledge base relations with

their factual scores. Internally, Sya is composed of three main modules, language, grounding,

and inference, described briefly below:

Language module. This module extends a high-level declarative language, namely DDlog [2],

with spatial data types (e.g., Point and Polygon), spatial predicates (e.g., Distance and Over-

laps) and spatial UDFs (e.g., spatial objects extraction). This module allows domain experts

to express the spatial semantics in the syntax of defining (1) the schema of database relations

used, and (2) the rules for extracting relations, and correlating them (i.e., inference rules). Once

submitting the DDlog program, this modules checks the syntax correctness and the validity of

used spatial constructs, compiles the program, and forwards it to the grounding module. Details

of the language extensions are described in Section 3.3.

Grounding module. This module receives the set of compiled rules from the Language module.

Then, it evaluates the rules as spatial SQL queries (e.g., spatial join) against input (e.g., text and

database relations) and evidence data. The output is a spatial variation of the factor graph [6]

representing the knowledge base, and is stored in a relational database with spatial data support

(e.g., PostGIS and MySQL Spatial). Details of this module are described in Section 3.4.
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#Schema Declaration

S1: County (id bigint, location point, hasLowSanitation bool).
 

@spatial(exp)

S2: HasEbola? (id bigint, location point).
 

#Derivation Rule

D1: HasEbola(C1, L1) = NULL :- County(C1, L1, -).
 

#Inference Rule

R1: @weight (0.35)

HasEbola(C1, L1) => HasEbola(C2, L2) :- County(C1, L1, -), County(C2, L2, S2)

               [distance(L1, L2) < 150, within(liberia_geom, L1), S2 = true].

Figure 3.3: Example on building EbolaKB using Sya Language.

Inference module. This module is triggered when it is required to estimate the factual scores

(i.e., marginal probabilities) of knowledge base relations (i.e., variables in a factor graph).

The module builds an in-memory pyramid index [91], referred to as In-memory Spatial Fac-

tor Graph Index, that partitions the spatial factor graph variables and correlations into a set of

concliques [88], i.e., groups of non-neighboring spatial variables. Then, a novel Gibbs Sampling

algorithm, referred to as Spatial Gibbs Sampling, is applied on the variables and correlations

within each conclique to infer the factual scores of their corresponding relations. In case there

is an update in the spatial factor graph, the in-memory index is updated through bulk insertion

and deletion, and then the sampler is invoked on the concliques of the updated variables only.

Details of this module are described in Section 3.5.

3.3 The Language Module

Users of MLN-based knowledge base construction systems can use either native first-order

clauses [14] (e.g., as in ProbKB [36], and Archimedes [37]) or high-level datalog-like languages

(e.g., as in DeepDive [2] and SpannerLog [92]) to define the rules of constructing knowledge

bases in a declarative manner. However, datalog-like languages have an advantage over native

first-order rules in the integration with RDBMS engines and the ease of translating the rules

syntax into equivalent SQL queries (details are in Section 3.4).



17

In Sya, instead of providing a completely new language, we choose to extend the DDlog [2]

language, a popular datalog-like language for encoding MLN probability distributions, with

spatial data types, parameters, predicates, and user-defined functions (UDFs) to help users ex-

press the spatial semantics when building knowledge bases. Such spatial extensions conform to

the Open Geospatial Consortium (OGC) standard [93].

Relations and Rules in DDlog. DDlog allows its users to declare typical database relations to

input/output data during the grounding and inference operations. It also supports a special type

of variable relations, ended with a question mark in its declaration, to specify the random vari-

ables that will be used later. For example, the following statement declares a variable relation

Y ?(s) based on a typical input relation Data(s).

Y ?(s) : −Data(s)

The statement defines a different binary random variable (taking either True or False)

in Y ?(s) for each assignment to s in the input relation Data(s). Given variable relations,

DDlog provides the ability to define inference rules that express the correlation among random

variables in these relations. For example, the following weighted inference rule defines one

logical bitwise-AND correlation for each entry in the output of equi-join between the variable

relations X and Y on attribute s.

@weight(0.7) X(r, s) ∧ Y (s) : −Z(r, s)[r = ”a”]

The predicate X(r, s) ∧ Y (s) is the head of the rule, and Z(r, s) is the body atom. The

body of the rule might contain a condition predicate, e.g. [r = ”a”] which filters the entries of

relations based on the values that attribute r can take. The @weight parameter determines the

confidence in the inference rule. Higher weights indicate higher confidence.

We describe the provided extensions by Sya in DDlog relations and rules using the example

program in Figure 3.3, which builds the EbolaKB knowledge base in Section 3.1.

Spatial Data Types. Sya adds four spatial data types, namely, point, rectangle, polygon,

and linestring, to the schema declaration of relations in DDlog. For example, in Figure 3.3,

each of the statements S1 and S2, which declare the input relation County and the variable re-

lation HasEbola, respectively, has one spatial attribute of type point.
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Spatial Variables and Correlation Specification. Sya allows its users to indicate which vari-

ables that we should consider their spatial attributes when inferring the factual scores of the

knowledge base relations. A user can define the @spatial(w) parameter on the schema

declaration of a variable relation to state that all instantiated variables in such relation should

consider spatial correlations among themselves. Note that it is not allowed to annotate a vari-

able relation with @spatial(w), unless it has a spatial attribute (e.g., the HasEbola relation

in Statement S2 in Figure 3.3). The w input in @spatial(w) specifies the type of spatial

weighing function used during the grounding and inference steps (details are in Section 3.4

and 3.5, respectively). This function could be either user-defined in the DDlog program or

built-in in Sya. For example, the type exp in @spatial(exp) specifies an exponential dis-

tance weighing [94] function that is already implemented in Sya.

Spatial Predicates. Sya extends the body of DDlog rules with spatial predicates (e.g., overlaps,

within, and distance) and functions (e.g., union and buffer) to support the evaluation

of spatial queries in the grounding module (details are in Section 3.4). Spatial predicates can

be composed. For example, the inference rule R1 in Figure 3.3, which indicates how neighbor-

ing Ebola infected counties affect each other, is composed of two spatial predicates distance

and within that measure the distance between infected counties (using latitude and longitudes

coordinates), and check whether they are located in Liberia or not, respectively.

Spatial User-defined Functions (UDFs). DDlog is powered with the ability to provide UDFs

to specify feature extraction tasks that rely on integration with external tools (e.g., NLP pre-

processing libraries). For spatial information, the automatic extraction of spatial entities (e.g.,

places) and relations from unstructured data can be challenging for end users. Therefore, Sya

provides ready-to-use UDFs for spatial named entity recognition (NER), and objects extraction

from unstructured text based on the GeoTxt library2.

3.4 The Grounding Module

The knowledge base construction rules represented by either native first-order clauses or datalog-

like languages (as shown in Section 3.3) can be viewed as a template for constructing the proba-

bilistic knowledge base model, which encodes how knowledge base relations are linked to each

other, and how their factual scores are correlated. This model is typically represented by a data
2https://github.com/geovista/GeoTxt
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V1 V2 V3 V4

F1 F2 F3 F4 F5 F6

V1: HasEbola(Montserrado)

V2: HasEbola(Margibi)

V3: HasEbola(Bong)
V4: HasEbola(Gbarpolu)

F1: HasEbola(Montserrado) => HasEbola(Margibi) 
F2: HasEbola(Montserrado) => HasEbola(Bong) 
F3: HasEbola(Margibi) => HasEbola(Montserrado) 
F4: HasEbola(Margibi) => HasEbola(Bong) 
F5: HasEbola(Bong) => HasEbola(Montserrado) 
F6: HasEbola(Bong) => HasEbola(Margibi) 
F7: HasEbola(Bong) => HasEbola(Gbarpolu) 
F8: HasEbola(Gbarpolu) => HasEbola(Bong) 

F7 F8

0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

F9:   �(HasEbola(Montserrado), HasEbola(Margibi)) 
F10: �(HasEbola(Montserrado), HasEbola(Bong)) 

F12: �(HasEbola(Margibi), HasEbola(Bong)) 

F14: �(HasEbola(Bong), HasEbola(Gbarpolu)) 

F11: �(HasEbola(Montserrado), HasEbola(Gbarpolu)) 

F13: �(HasEbola(Margibi), HasEbola(Gbarpolu)) 

V1 V2 V3 V4

F1 F2 F3 F4 F5 F6 F7 F8

0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

F14F13F12F11

(e) Spatial Factor Graph of EbolaKB

(d) Original Factor Graph of EbolaKB

0.71 0.58 0.34 0.7 0.31 0.47

(a) Ground Atoms of HasEbola in EbolaKB

(b) Ground Factors of Rule R1 in EbolaKB

(c) Spatial Factors Defined over HasEbola in EbolaKB

Figure 3.4: Example on Sya Grounding for EbolaKB.

structure, called factor graph [6]. A factor graph is a bipartite graph φ = {V,F} that has two

sets of nodes: (1) a set of random variables V = {v1, v2, ..., vm}, and (2) a set of factors (a.k.a

correlations) F = {f1, f2, ..., fn}, where each factor fi is a function fi(Vi) over a random vec-

tor Vi ⊂ V indicating the correlation among the random variables in Vi. Factors F together

specify a joint probability distribution over all the random variables V in these factors.

Ground Factor Graph. The process of constructing the probabilistic knowledge base model as

a factor graph is called grounding, and the output factor graph is referred to as a ground factor

graph. In this process, we generate a random variable v ∈ V for each possible knowledge

base relation and store it in a variable relation (e.g., HasEbola in Figure 3.3). The generated

random variables are called ground atoms. Figure 3.4(a) shows an example of ground atoms in

the EbolaKB example. We also generate a weighted factor f ∈ F for each possible grounding

of an inference rule (e.g., rule R1 in Figure 3.3) that satisfies the predicates and conditions in

the body of this rule. The generated factors are called ground factors. Figure 3.4(b) shows an
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example of ground factors of rule R1 in the EbolaKB example that satisfy the distance and

within predicates. Figure 3.4(d) depicts an example ground factor graph based on ground

atoms and factors from figures 3.4(a) and 3.4(b), respectively. Each factor is represented by a

square, and has edges with its variables represented by circles. All factors are associated with

the same confidence (i.e., weight) coming from the inference rule.

The joint probability distribution of a ground factor graph can be defined as follows:

P (V = v) =
1

Z

∏
fi∈F

fi(Vi) =
1

Z
exp

( ∑
fi∈F

wfinfi(v)
)

(3.1)

where nfi is the number of true groundings of factor fi in variables assignment v, wfi is the

weight of fi, and Z is the partition function, i.e., normalization constant. Note that the distribu-

tion in Equation 3.1 represents the marginal inference, which is commonly used in the literature

of probabilistic knowledge bases. Another type of inference is maximum a posteriori (MAP),

in which we find the most likely variables assignment, is out of scope of this work.

In this section, we describe how Sya extends the ground factor graph to support spatially-

correlated ground atoms (Section 3.4.1). In addition, we discuss the database support in Sya

for constructing the factor graph in an efficient manner (Section 3.4.2). Finally, we provide an

optimization to prevent the combinatorial explosion that could happen during the grounding of

spatial factor graph (Section 3.4.3).

3.4.1 Spatial Factor Graph

In MLN-based applications, the correlations between variables, which are knowledge base re-

lations in our case, are captured in the factor graph using logical factors such as bitwise-OR

and imply. However, in the case of having variables representing spatial phenomena (e.g., epi-

demiology), logical correlations are not enough to obtain accurate inference scores for these

variables. In fact, ground atoms from the same type of spatial variable tend to have high spatial

correlation among each other (e.g., HasEbola(Margibi) and HasEbola(Bong)). This is one of

the fundamental properties of spatial analysis, where “everything is related to everything else,

but nearby things are more related than distant things” (a.k.a first rule of geography [95]). We

refer to these ground atoms as spatial ground atoms.

A main limitation in using existing inference rules to capture the spatial correlations be-

tween spatial ground atoms is that there is no efficient way to represent the weight of the rule
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as a function of distance between atoms. Existing MLN-based knowledge base systems pro-

vide only two options to specify weights in inference rules. The first option is to fix weights as

constants (e.g., the inference rule R1 in Figure 3.3). However, in this option, we need to have

a separate inference rule for each possible distinct value of distance, which is impractical. For

instance, in the EbolaKB example, we would need to define a new inference rule R2 similar to

R1, but, with weight of 0.5 if the distance between two counties is less than 100, and so on.

The second option is to learn distinct weights for different distance values based on training

data. However, this option requires enough training data to be available for all possible distance

values, which is impractical as well.

In Sya, we introduce a new type of factors, called spatial factors, to capture the spatial

correlations among spatial ground atoms. Such factors are generated for each possible pair of

ground atoms from the same type of spatial variable and assigned proper weights based on the

relative distance among atoms. We first provide a definition for spatial factors over ground

atoms coming from binary spatial variables (Definition 1), then we extend this definition for the

case of categorical variables (Definition 2).

Definition 1 Given two spatial ground atoms vj and vk of a binary spatial variable, and a

spatial weight wd(vj ,vk) based on the distance d(vj , vk) between vj and vk, a spatial factor ρj,k
over vj and vk is a multi-valued function, where

ρj,k =

e
wd(vj,vk) vj = vk

e
−wd(vj,vk) otherwise

(3.2)

As shown in Equation 3.2, spatial factors favor similar values of close ground atoms (i.e.,

spatial clustering), where each factor specifies a unique weight based on the distance between

involved atoms. Generally speaking, spatial correlations can be defined on more than two

grounds. However, we focus only on binary correlations in Sya. The extension to high-order

cases is intuitive as well, but, out of scope of this work.

We propose the spatial factor ρj,k in an exponential form to easily extend the probability

distribution P (V = v) in Equation 3.1 by directly adding the spatial weight wd(vj ,vk) as a new

potential function to the existing ones (i.e.,
∑

fi∈F wfinfi(v)). Formally, given a set of spatial
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factors ρ, we extend the factor graph φ = {V,F} to be a spatial factor graph G = {V, β},
which has the same set of random variables V , and a combined set of non-spatial and spatial

factors β = F ∪ ρ. As a result, the equivalent probability distribution P (V = v) to the spatial

factor graph G becomes:

P (V = v) =
1

Z
exp

( ∑
fi∈F

wfinfi(v)

+
∑
ρj,k∈ρ

wd(vj ,vk)(1vj=vk − 1vj 6=vk)
) (3.3)

where 1vj=vk and 1vj 6=vk are indicator functions. Figure 3.4(e) depicts an example spatial factor

graph for EbolaKB after adding the spatial factors defined over HasEbola atoms.

In Sya, there is no need to define inference rules for the spatial factors. These factors are

automatically generated for variables that are annotated with the @spatial(w) keyword in

their schema declaration, where the input w determines how to calculate the weight wd(vj ,vk).

For example, the type exp in @spatial(exp) defined over statement S2 in Figure 3.3 indi-

cates that wd(vj ,vk) should be calculated using the exponential distance weighing [94] function.

Figure 3.4(c) shows an example of grounding the spatial factors (highlighted with gray) that are

defined over HasEbola variables.

Spatial Factors for Categorical Variables. In case of having knowledge base relations repre-

sented with a categorical variable (i.e., a variable with h possible domain values), the grounding

process generates h instances of the ground atom corresponding to each knowledge base rela-

tion, where each instance indicates whether one possible domain value is selected or not [2].

As a result, we adapt the spatial factor function in Equation 3.2 to be defined over a pair of

instances from two spatial ground atoms as follows:

Definition 2 Given two spatial ground atoms vj and vk of a categorical spatial variable with

h domain values, and a spatial weight wd(vj ,vk) based on the distance d(vj , vk) between vj and

vk, a spatial factor ρj,k(tj , tk) over the instance of vj for domain value tj , namely vj(tj), and
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the instance of vk for domain value tk, namely vk(tk), is a multi-valued function, where

ρj,k(tj , tk) =


e
wd(vj,vk) vj(tj) = vk(tk) = 1, tj = tk

e
−wd(vj,vk) vj(tj) = vk(tk) = 1, tj 6= tk

1 otherwise

(3.4)

Similar to Equation 3.2, Equation 3.4 favors similar domain values of close ground atoms.

In case the value of either vj(tj) or vk(tk) is 0, we refer to ρj,k(tj , tk) as an inactive spatial

factor, because the factor value will be 1 and will not have any effect on the joint probability

distribution. Note that the joint probability distribution can be extended in the categorical case

similar to Equation 3.3. Since we have h instances for each of the two ground atoms vj and vk,

we end up with h2 spatial factors between vj and vk. This results in a combinatorial explosion

problem during the execution of grounding. More details on this issue are in Section 3.4.3.

3.4.2 Rules Translation and Execution

Existing MLN-based knowledge base construction systems (e.g., [2, 36]) efficiently construct

the factor graph by evaluating its corresponding inference rules as SQL queries to exploit the

scalability and efficiency of DBMS execution engines. As a result, Sya provides a spatial rules-

queries translator and a database driver to evaluate the spatial extensions to these rules (shown

in Section 3.3) as spatial SQL queries as well.

Spatial Rules-Queries Translator. Typically, the inference rules are translated into a set of

inner and outer join queries with simple predicates to check (e.g., equality and range checks).

Sya extends this translation process with support for two spatial queries; spatial join and range

query. In case of having a rule with a spatial predicate, e.g., distance, Sya reroutes its trans-

lation into these spatial queries rather than the original join queries. Moreover, Sya provides

two effective optimizations: (1) It supports creating on-fly spatial indices (e.g., R-tree [96] and

GIST [97]) on relations with spatial attributes, making the evaluation of complex predicates

(e.g., overlap) is efficient. (2) It provides a simple heuristic query optimizer that re-orders

the execution of nested spatial queries that come from rules with multiple spatial predicates.

Figure 3.5 shows an example of translating the inference rule R1 from Figure 3.3, which has

two spatial predicates distance and within that are translated into a spatial join and range
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Spatial Join

INSERT INTO R1_Factors (var1, var2, type, weight)

(

    SELECT C1.id AS “var1”, C2.id AS “var2”, "imply", 0.35  

    FROM (

             SELECT * FROM County C0

             WHERE WITHIN (liberia_geom, C0.location)

             ) C1, County C2 

    WHERE DISTANCE (C1.location, C2.location) < 150

                AND C2.hasLowSanitation = true

)

Range

Query

Figure 3.5: Example on Rules Translation in Sya.

query, respectively. Note that, although the distance predicate comes before the within

one in the rule, Sya re-orders their translated queries to have the range query runs before the

spatial join to reduce the number of tuples to be joined.

Integration with Spatial Databases. Sya fully integrates with scalable spatial database en-

gines, e.g., PostGIS, and MySQL Spatial, to execute the translated queries in the grounding

module. Such engines support both spatial and non-spatial queries. Thus, SQL queries corre-

sponding to rules with non-spatial predicates can still be executed on them. In addition, Sya

provides an abstract database driver that supports defining the spatial storage, functions and

query capabilities needed to ground spatial factor graphs. Such abstract can be extended by

users to run their spatial database engine choice inside Sya.

3.4.3 Scaling Up the Grounding of Spatial Factor Graph

The number of spatial factors ρ can easily explode when dealing with categorical variables that

have large domains (i.e., the number of domain values h is large) (details are in Section 3.4.1).

This can significantly affect the scalability of the knowledge base construction process.

As a result, we introduce an optimization for pruning the spatial factors that are more likely

to be inactive based on co-occurrence statistics of their corresponding domain values in the input

evidence data. Basically, for each pair of domain values (i, j) of a spatial categorical variable

v, if these values co-occur with certain probabilities that exceed a pre-defined threshold T in

the evidence input data, then we generate a spatial factor k(i, j) over this pair of values. In case

not passing the threshold T , we ignore all spatial factors defined over this pair of values as they

are considered inactive. Using Bayesian analysis, we estimate the co-occurrence probabilities
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Algorithm 1 Function ACTIVESPATIALFACTORS (SpatialVariables Vs, Domains Ds, Spatial-
Factors ρ, Threshold T )

1: Active← Null
2: for each v ∈ Vs do
3: for each (i, j) ∈ Ds(v)×Ds(v) do
4: if (Pr(i|j) ≥ T ) & (Pr(j|i) ≥ T ) then
5: for each k ∈ ρ(v) do
6: Active← Active ∪ k(i, j)
7: end for
8: end if
9: end for

10: end for
11: return Active

of (i, j) in two parts: P (i|j) and P (j|i), where

P (i|j) = no. of i and j appear together in evidence data
no. of j appers in evidence data

and, similarly,

P (j|i) = no. of i and j appear together in evidence data
no. of i appers in evidence data

Note that the threshold T is application-dependent, and should be tuned by Sya users. We

discuss the effect of T on the performance of Sya, and show its scalability-quality trade-off in

Section 3.6. Algorithm 1 depicts the pseudo code for the proposed optimization.

3.5 The Inference Module

The main objective of the inference step is to estimate the marginal probabilities of variables

(i.e., ground atoms) in the factor graph. In our case, such probabilities are considered the

output factual scores of the knowledge base relations. To perform this step in MLN-based

knowledge base construction systems, approximate inference via Gibbs sampling is commonly

used [8, 37, 98, 99]. However, using existing variations of Gibbs sampling to infer from the

spatial factor graph (i.e., factor graph with spatial factors) is inefficient, because the sampling

nature in these algorithms relies on single-site, or sequential, updates within the same inference

epoch. This, in turn, raises the need for a large number of iterations (i.e., slow convergence)
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to obtain an acceptable output when there are some variables that are spatially-correlated as

shown in [88]. In this section, we provide a new Gibbs sampling algorithm, namely Spatial

Gibbs Sampling, that overcomes this limitation by employing a new combination of efficient

spatial statistics and in-memory access techniques to guarantee the rapid convergence in case of

having spatially-correlated variables.

Main Idea. State-of-the-art parallelized Gibbs sampling algorithms [8, 99] randomly partition

the variables into a set of buckets and then sample these buckets in parallel. Even though

these algorithms will finish the sampling iterations faster than the sequential ones, they may

not converge to an acceptable solution as spatially-dependent variables might run in parallel

(i.e., independent of each other). This will force the sampler to run additional inference epochs

to converge, and hence incur a significant latency overhead. Another solution is to use block-

based Gibbs sampling (e.g., [100]). However, this solution requires joint sampling at each

block, which is computationally-inefficient as well.

In Sya, we devised an approach that combines in-memory spatial partitioning technique,

namely pyramid index [91], with a well-known spatial statistics concept, namely concliques [88],

to heuristically partition the spatial factor graph into a set of spatially-independent partitions.

We refer to this way of partitioning as concliques-based partitioning. The resulting partitions

can be sampled in parallel to each other using standard Gibbs sampling. It is theoretically

proven that concliques-based partitioning makes Gibbs sampler converge faster than traditional

random partitioning [87]. First, we give the details of the pyramid index and concliques con-

cepts used in Sya. Then, we provide an algorithm that exploits such concepts to provide our

proposed spatial Gibbs sampling algorithm.

In-memory Spatial Factor Graph Index. Sya employs an in-memory partial pyramid in-

dex [91] to spatially partition the spatial factor graph. The pyramid index decomposes the

whole space into L locality levels (i.e., pyramid levels), where the space in level l is partitioned

into 4l grid cells. In each cell, Sya stores a pointer-based index to the spatial ground atoms -

along with their connected factors - that have locations contained in the cell’s spatial region. A

spatial ground atom v may contribute to up to L−1 pointer-based indices: one per each locality

level starting from level 1 to the lowest maintained grid cell containing the v’s location. The

root level (Cell 0) of the pyramid has no spatial relationships between atoms. In addition, a

factor node can be duplicated if it is connected to more than one atom at different cells.
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Concliques Index

Locality 0

Locality 1

Locality 2

C0

C1 C2

C3 C4

C5 C6 C7

C8 C9

C10 C11 C12 C13

C14 C15 C16 C17

V1 V2 V3 V4

V9

F1 F2 F3 F4 F5 F6

F7 F8 F9 F10

V5

V2 V3 V4

V9

F4 F5 F6

F9 F10

V5

V1 V2 V4

F1 F2 F3 F4

F7 F8

Q1

Q2

Q3

Q4

C5, C10, C12

C6, C11, C13

C7, C8, C14, 

C16

C9, C15, C17

Figure 3.6: Example on In-memory Pyramid Index of Spatial Factor Graph.

Since the pyramid index is a hierarchical space partitioning technique, it guarantees to com-

pletely cover any given space and allows Sya users to control the size of neighbourhood. A

locality level l acts like a “zoom” level (e.g., city block, entire city). Another advantage of the

pyramid index is its ability to store data in non-leaf cells (i.e., cells that are not at the lowest

pyramid level), which helps in storing the spatial factor graph efficiently at the different pyra-

mid levels. Figure 3.6 shows an example pyramid index of a spatial factor graph. The index is

assumed to have 3 levels only, where there are empty cells due to not having variables contained

in these cells. We show the partitioning details of partial factor graph in cells C1, C6 and C8.

Note that the partial graph at cell C1 is divided into two sub graphs at cells C6 and C8 because

they are children of cell C1. Also, factor node F4 is replicated in both cells C6 and C8 because

it is connected to variables V2 and V4 which are at different cells.

Initially, to build the pyramid, all spatial ground atoms are used to build a complete pyramid

of height L, such that all cells in all L levels are present and contain a partial graph. The initial

height L is chosen according to the level of locality desired. Once the initial build is done, a

merging step is called to scan all cells starting from the lowest level and merge quadrants (i.e.,

four cells with a common parent) into their parent if three of these quadrants are empty. Once

an incremental update is received, Sya performs a sequence of splitting and merging operations
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Algorithm 2 Function SPATIALGIBBSSAMPLING (SpatialFactorGraph G, Instances K,
Epochs E)

1: Ctr← Null /* Sampling Counters */
2: for all v ∈ V do in parallel
3: Ctr[v]← 0
4: e← E

K /* No. of Epochs Per Instance*/
5: P ← BUILDPYRAMIDINDEXOFSPATIALFACTORGRAPH (G)
6: Q← BUILDCONCLIQUESOFPYRAMIDINDEX (P )
7: L← No. of Levels in P
8: while e 6= 0 do
9: for all k ∈ {1, 2, ...,K} do in parallel

10: for all l ∈ {2, 3, ..., L− 1} do serially
11: T ← GETNONEMPTYCELLS (P , l)
12: U ← GETMINCONCLIQUESCOVER (Q, l, T )
13: for all u ∈ U do serially
14: for all t ∈ T ∩ u do in parallel
15: Ctrk[Vt]← RUNSTANDARDGIBBSSAMPLER (Vt, G, Ctrk)

16: Ctr←

K∑
k=1

Ctrk

K , e−−
17: end while
18: for all v ∈ V do in parallel
19: v.Prob← CALCMARGINALPROBABILITY (Ctr, v)

over the pyramid cells, if necessary. A cell is split only if it is over a capacity threshold and

splitting its contents spans at least two children cells.

Concliques-based Partitioning. A conclique is defined as a set of locations such that no two

locations in this set are neighbours [88]. For example, the cells of locality level 2 in Figure 3.6

can be divided into four concliques: Q1 = {C5, C10, C12}, Q2 = {C6, C11, C13}, Q3 =

{C7, C8, C14, C16} and Q4 = {C9, C15, C17}. The main idea behind defining concliques is

ensuring the neighbouring independence between variables in the same conclique set, and hence

these variables can be sampled in parallel. Assume there is a spatial factor graph defined over

the whole cells in the locality level 2 of Figure 3.6. The sampling process over these cells can

be done using four iterations. The first iteration handles concliqueQ1 by initiating three threads

to process C5, C10 and C12 in parallel. In each thread, we sample the variables of its associated

cell sequentially using standard Gibbs sampling. After sampling cells inQ1 is done, the second,

third and fourth iterations can be done sequentially to handle Q2, Q3 and Q4, respectively.
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Algorithm. Algorithm 2 depicts the pseudo code for the spatial Gibbs sampler that takes the

following three inputs: the spatial factor graph G, the number of running instances K that can

run in parallel, and the number of inference iterations E. The algorithm keeps track of the

current counts of sampled values in each variable v ∈ V through variable Ctr, initialized by

zeros. The algorithm then starts by computing the number of inference epochs that can be

handled per each running instance and stores it in variable e. Note that e represents the actual

number of inference epochs that run sequentially because different inference instances execute

in parallel. Each of these inference instances then starts to process one inference epoch in

parallel (i.e., K inference epochs are running simultaneously). Then, the algorithm builds (1) a

pyramid index of the input spatial factor graph, referenced by variable P , and (2) an index of

concliques for each level in the pyramid index, referenced by variable Q (Lines 5 and 6).

In each inference epoch (Lines 10 to 15), the algorithm first traverses each pyramid level

l, and gets the minimum set of concliques U that cover the partial spatial factor graphs in this

level l (Lines 11 to 12). For example, the locality level 2 in Figure 3.6 has two partial graphs at

C6 and C8 cells. Then, the algorithm will return Q2 and Q3 as minimum set of covering con-

cliques. After that, for each conclique u ∈ U , the algorithm processes the non-empty cells (i.e.,

that have partial graphs), associated with u in parallel. In the running example, the algorithm

starts with conclique Q2, which has only cell C6 to process. After finishing Q2, the algorithm

processes Q3 which has only cell C8. At each cell t, the algorithm sequentially samples all

variables in t using a standard Gibbs sampler. In our experiments, we used the variation of

Gibbs sampling inside DeepDive [2] as it is computationally-efficient, easy-to-implement, and

can support incremental statistical inference. Note that by traversing different pyramid levels,

the algorithm might sample the same variable multiple times (i.e., it happens that one variable is

connected with two factors at different locality levels). However, this situation will not harm the

validity of inference results as shown in block-based Gibbs sampling algorithms [100]. In ad-

dition, it will not significantly increase the latency overhead compared to the huge performance

gain achieved from processing the cells in each conclique in parallel.

After all inference instances finish their current inference epoch, we set the values of Ctr

with the average of obtained counts of samples from these instances (Line 16) and then proceed

to another inference epoch with the new counts. We repeat this process e times (Lines 8 to 17),

and then use the final counts of samples to calculate and update the marginal probability of each

variable as in [6](Lines 18 and 19).
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System No. Rels No. Rules No. Vars No. Factors
GWDB 1 11 104K 39.5M
NYCCAS 1 4 34K 233K

Table 3.1: Statistics of KBs Used in Experiments.

Complexity. The complexity of Algorithm 2 can be estimated as O(L|V| + L + (EK )(43)(1 −
(14)

L+1)|V|2) where O(L|V|) is the cost of building the pyramid index (Line 5), O(L) is the

cost of building the concliques in all pyramid levels (Line 6), and O((EK )(43)(1− (14)
L+1)|V|2)

is the cost of applying the Spatial Gibbs Sampling steps (Lines 8 to 19). The complexity can be

approximated to be O(L|V|+ (EK )|V|2). Since the value of V is significantly larger than L, the

complexity can be further approximated to be O((EK )|V|2).

3.6 Experiments

In this section, we experimentally evaluate the quality and scalability of Sya, based on a real

system implementation [60] inside DeepDive [2]. We choose DeepDive as it is one of the most

popular probabilistic knowledge base construction systems, with many success stories in vital

applications (e.g., fighting human trafficking). In addition, DeepDive provides an open-source

implementation for both the grounding and inference phases3. We compare the performance of

Sya with DeepDive while building two real knowledge bases. We also extensively investigate

the quality and convergence of Sya under different system parameters.

3.6.1 Experimental Setup

Datasets. In our experiments, we have built two knowledge base systems, namely GWDB and

NYCCAS, using both Sya and DeepDive. Table 3.1 illustrates the different statistics of these

systems including the number of input database relations (No. of Rels), the number of inference

rules (No. Rules) used to build the knowledge bases, the number of variables (No. Vars) and

factors (No. Factors) in the generated factor graphs. The details of these systems are as follows:

• The GWDB system builds a knowledge base about the water quality in Texas. The input

to this system is the Texas Ground Water Database (GWDB) relation [89], which is col-

lected by Texas Water Development Board (TWDB) about 9831 water wells. It contains
3https://github.com/HazyResearch/deepdive
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Sya Syntax

Well (id bigint, location point, arsenic_ratio double).
 

@spatial(exp)

IsSafe? (id bigint, location point).
 

@weight(0.7)

R1: IsSafe(W1, L1) => IsSafe(W2, L2) :- Well(W1, L1, R1), Well(W2, L2, R2)

               [distance(L1, L2) < 50, R1 < 0.2, R2 < 0.2].

 

DeepDive Syntax

Well (id bigint, loc_x double, loc_y double, arsenic_ratio double).

Distance (id1 bigint, id2 bigint, dist double).
 

function calc_distance over (id1 bigint, loc_x1 double, loc_y1 double,

                                         id2 bigint, loc_x2 double, loc_y2 double)

                                  returns rows like Distance

                                  implementation "udf/calc_distance.py" handles tsj lines.

Distance+= calc_distance (W1, L1_x, L1_y, W2, L2_x, L2_y):- 

                                Well(W1, L1_x, L1_y, -), Well(W2, L2_x, L2_y, -).
 

IsSafe? (id bigint, loc_x double, loc_y double).
 

@weight(0.7)

R1: IsSafe(W1, L1_x, L1_y) => IsSafe(W2, L2_x, L2_y) :- 

          Well(W1, L1_x, L1_y, R1), Well(W2, L2_x, L2_y, R2), Distance(W1, W2, D)               

               [D < 50, R1 < 0.2, R2 < 0.2].

Figure 3.7: Example on a Rule for the GWDB KB in Sya and DeepDive.

information about each well such as location, depth and the concentration of different

elements such as fluoride and arsenic. We developed a program that consists of 11 in-

ference rules that infers the risk of drinking from each well. For example, a certain well

is considered dangerous if the arsenic concentration exceeded a certain threshold defined

by the Environment Protection Agency and its location is near from another risky well.

• The NYCCAS system builds a knowledge base about the air pollution concentrations in

the New York city. The input data is mainly a raster database relation maintained by the

department of Health and Mental Hygiene (DOHMH) [90] about the annual predicated

concentrations for specific elements in the air. Unlike the GWDB system, we developed a

smaller program which has 4 inference rules only that relate different guidelines from the

Environment Protection Agency about the air pollution with the observations from raster
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data. Note that the factor graph statistics for NYCCAS are relatively small compared to

GWDB, and both have one input relation only.

In both systems, ground truth information (i.e., evidence data) is available for all extracted

knowledge base relations. In addition, each variable has binary domain values. We will increase

the number of domain values only when we study the effect of the pruning threshold T .

Rules. To have a fair comparison when building these knowledge bases, we submitted two

equivalent DDlog programs to both Sya and DeepDive. Figure 3.7 shows an example on an

inference rule R1 used to develop the GWDB knowledge base in both Sya and DeepDive. This

rule indicates that the closer a well to another safe well that has low arsenic level, the higher

probability this well becomes safe. As shown in the figure, we used our spatial extensions of

DDlog to express the spatial semantics in Sya rules. In case of DeepDive, we provided an equiv-

alent user-defined function implementation to the basic spatial functions. In the shown example,

we defined the calc distance function that calculates distances between all possible pairs

of wells. All calculated distances are materialized to be used along with the inference rule.

Evaluation Metrics. In all experiments, to measure the scalability, we use the running times

of the grounding and inference phases. To measure the quality of factual scores, we use the

following three metrics:

• Precision (Prec): the number of predicted factual scores that match the ground truth

within 0.1 error (i.e., correctly inferred factual scores), over the total number of factual

scores that will be predicted.

• Recall (Rec): the number of correctly inferred factual scores (calculated similar to Prec),

over the total number of factual scores that should be predicated correctly according to

the input evidence data.

• F1-score: the harmonic mean of precision and recall, which is calculated as:

F1 =
2(Prec ∗Rec)
Prec+Recall

Environment. Both Sya and DeepDive systems are implemented in C++. We run all experi-

ments on a single machine with Ubuntu Linux 14.04. Each machine has 8 quad-core 3.00 GHz

processors, 64GB RAM, and 4TB hard disk. We use the PostgreSQL DBMS [101], and its

spatial extension PostGIS [102], to execute SQL queries.
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Figure 3.8: Comparison of Sya with DeepDive (Precision and Recall).

Parameters. Unless otherwise mentioned, we set the number of inference epochs to 1000, the

input of the @spatial parameter (Section 3.3) to the exponential distance weighing func-

tion [94], and the pruning threshold T to 0.5. In Sya, we built a pyramid index for both Texas

state and New York city. In each index, the number of pyramid levels L is 8, and the locality

level l is the lowest pyramid level (i.e., 8).

3.6.2 Experimental Results

Comparison with DeepDive using Different Datasets

Figure 3.8(a) shows the precision results obtained by Sya and DeepDive while building the

GWDB and NYCCAS knowledge bases. Due to the probabilistic nature of the sampling algo-

rithms, we run all inference rules for both systems 5 times, and after each run, we report the

quality of the system measured by the precision. Then, we average the obtained scores for each

system (we follow the same approach in all precision and recall experiments in our work). As

shown in the figure, Sya outperforms DeepDive significantly with relative precision improve-

ments of more than 53% in both datasets. The main reason behind the impressive performance

of Sya is that the factual scores, in each of the two knowledge bases, have spatial correlations

among each other, which is a common property in all spatial applications. These correlations

were properly utilized inside Sya using the spatial factors, and hence results in more accurate

factual scores. We also notice that the variance between the precision values of Sya in both

datasets is significantly smaller than DeepDive. This verifies our hypothesis that dealing with



34

 0.2

 0.4

 0.6

 0.8

 1

GWDB NYCCAS

Q
u

a
li

ty
 (

F
1

-S
c

o
re

)

Dataset

DeepDive
SYA

(a) Dataset vs. F1-Score

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

D
eepD

ive

SYA
D
eepD

ive

SYA

T
im

e
 i

n
 s

e
c

.

Dataset

Grounding
Inference

NYCCASGWDB

(b) Dataset vs. Exec. Time

Figure 3.9: Comparison of Sya with DeepDive (F1-Score and Execution Time).

spatial predicates as a boolean function, as in DeepDive, leads to inaccurate results. Recall the

EbolaKB example in the introduction, when Gbarpolu county was only 10 miles more than the

cut-off threshold, and yet, it got a score that is close to 0.

Figure 3.8(b) shows the recall results obtained by Sya and DeepDive while building the

GWDB and NYCCAS knowledge bases. For the GWDB knowledge base, we still have the

same conclusion that Sya is better than DeepDive. In this case, the improvement ratio is around

60%. For the NYCCAS knowledge base, we notice that Sya still has higher recall output, yet,

with a small improvement ratio of 9%. This is because the NYCCAS dataset has a significant

amount of its evidence data entries that follow random assignments. This limits the recall of

Sya and makes it close to DeepDive.

Figure 3.9(a) shows the F1-score for both Sya and DeepDive while building the GWDB

and NYCCAS knowledge bases. For the two knowledge bases, Sya were able to significantly

increase the F1-score compared to DeepDive. Specifically, Sya has an F1-score improvement

of 120% and 27% over DeepDive in GWDB and NYCCAS, respectively. We can conclude

from the results of the three quality metrics that the effect of considering the spatial correlations

while inferring the factual scores is huge and can significantly boost the quality of the outputs.

Figure 3.9(b) shows the grounding and inference times for both Sya and DeepDive while

building the GWDB and NYCCAS knowledge bases. As seen in the figure, the grounding time

of Sya is at maximum 15% higher than DeepDive in both datasets due to the additional overhead

of generating spatial factors. We also observe that Sya has at least 30% reduction in the inference
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Figure 3.10: Comparison of Sya with DeepDive using Step Function Rules.

time in both datasets. The main reason behind this performance gain is applying the concliques-

based partitioning in the spatial Gibbs sampling algorithm (Section 3.5), which enables the

parallel sampling for all variables within the same conclique. Note that the grounding and

inference times of both systems are significantly low in NYCCAS compared to GWDB because

of the small size of the factor graph, however, Sya still has the same improvement ratio.

Comparison with DeepDive using Step Function Rules

In this experiment, we compare the performance of Sya with DeepDive while using a step

function in DeepDive to generate a set of inference rules that approximate the spatial effect.

For example, we can use a step function to replace the inference rule R1 in Figure 3.7 by

the following set of range-based rules: Rule R1(1) that defines @weight(0.9) for distance

range 0 ≤ D < 10, Rule R1(2) that defines @weight(0.8) for distance range 10 ≤ D <

20, etc. Note that large weights are associated with small distance values. Figure 3.10(a)

shows the F1-score for both Sya and DeepDive while varying the number of generated step

function rules in DeepDive from 11 to 11k. We report the results for the GWDB knowledge

base only. By increasing the number of generated rules, we obtain more accurate weights to be

associated with the inference rules, and hence achieve better F1-scores. However, as shown in

Figure 3.10(b), this comes with high latency in the grounding phase as the number of generated

SQL queries becomes large as well (i.e., one SQL query per rule). For example, generating

11k step function rules, instead of the original 11 rules of GWDB, requires more than 12 hours
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Figure 3.11: Effect of Pruning Threshold on Quality and Execution Time.

in the grounding phase to obtain 20% less F1-score compared to Sya, which is the best score

achieved by DeepDive in our experiments.

Effect of Pruning Threshold

Figure 3.11(a) shows the effect of changing the pruning threshold T on the precision and recall

of Sya. In this experiment, we report the results of the GWDB knowledge base only. However,

the same findings apply on the NYCCAS dataset. We changed the number of domain values

of the generated relations to be 10 instead of 2. This means that the number of spatial factors

between any pair of relations (i.e., ground atoms) is 100. By ranging the value of T from 0.3 to

0.9, we obtain a trade-off between the precision and recall results. When the value of T is small,

the range of allowed domain values is widened, and hence the recall value becomes higher, and

vice versa. For the precision case, by increasing the value of T , we keep only the spatial factors

that are likely to be effective in capturing the spatial correlation, and hence the probability of

having accurate results becomes higher. This results in higher precision values.

Figure 3.11(b) shows the effect of changing the pruning threshold T on the grounding and

inference times of Sya. Obviously, increasing the value of T results in a less number of spatial

factors to be processed in both grounding and inference phases, and hence the total running time

drops significantly. For example, by changing the value of T from 0.3 to 0.9, the improvement

ratio of total running time becomes 96%. However, this might come with the cost of less recall

results as shown in Figure 3.11(a).
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Figure 3.12: Effect of Inference Epochs on F1-Score and Inference Time.

Effect of Number of Inference Epochs

Figure 3.12(a) shows the effect of changing the number of inference epochs on the quality of

Sya and DeepDive. We report the results for the GWDB knowledge base. We change the

number of epochs from 100 to 100k, while observing the F1-score for both systems. We find

that increasing the number of epochs allows both systems to converge towards more accurate

results, until a threshold. The quality of both systems started to saturate around 1000. Yet,

we find that the difference in quality scores at 10k and 100k compared to 1000 is higher in

DeepDive than Sya. For Sya, the average difference is 0.01. While it becomes 0.04 in case of

DeepDive. Note that Sya is consistently better than DeepDive regardless the number of epochs.

Figure 3.12(b) shows the effect of changing the number of inference epochs on the inference

time, reported in a log-scale, of both Sya and DeepDive. We use the same experiment setup

in Figure 3.12(a). We can observe that Sya is still faster than DeepDive in both small and

large number of epochs, yet, both systems are still within the same order of magnitude. The

improvement ratio of Sya over DeepDive ranges from 20% to 31% at maximum. This confirms

the inference running time results in Figure 3.9(b). We have also tried to re-run the same

experiment with different order of variables in the factor graph. However, we got very similar

numbers. This shows that Gibbs sampler, in both standard and spatial variants, is still very

practical even though it has no guarantees of convergence.
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Figure 3.13: Effect of Incremental Inference and Locality Level.

Effect of Incremental Inference and Locality Level

Figure 3.13(a) shows the effect of supporting the incremental inference on the performance of

both Sya and DeepDive while building the GWDB knowledge base. In this experiment, we start

with applying the inference on the whole factor graph nodes. Then, we gradually change the

values of some nodes (i.e., query nodes), and calculate the corresponding average time to finish

the inference over these changed nodes. We vary the number of changed nodes from 1 to 20.

As we can see, the incremental inference in Sya takes 40% less time than DeepDive to finish the

whole queries. Since most of the changed nodes are spatially-correlated from the application

nature, Sya has a better chance to rapidly converge more than DeepDive. This is because of the

spatial support that Sya injects in the Gibbs sampling approach.

Figure 3.13(b) shows the quality of Sya in building GWDB and NYCCAS knowledge bases

while varying the locality level (i.e., pyramid level) from 1 to 8. In general, both cases show

that the F1-score of Sya increases when it uses more localized pyramid cells. However, the

localization has more influence on GWDB than NYCCAS. This behaviour further verifies that

just providing precise locality level, while fixing other parameters, could result in higher quality

factual scores for the output knowledge bases.
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Figure 3.14: Quality of Spatial Gibbs Sampling with Different Datasets.

Quality of Spatial Gibbs Sampling

In this experiment, we directly compare the quality of our proposed spatial Gibbs sampling with

the state-of-the-art Gibbs sampling [8, 99], that has been used inside DeepDive, while varying

the sampling time from 10 to 10k seconds. For each sampling algorithm, we measure the quality

using the Kullback-Leibler (KL) divergence [103] between the estimated marginal probabilities

using this algorithm and the true marginal probabilities provided by the ground truth. Fig-

ures 3.14(a) and 3.14(b) show the average KL divergence values for both sampling algorithms

while building the GWDB and NYCCAS knowledge bases, respectively. Our proposed sam-

pling achieves at least 49% and 41% less divergence values in the GWDB and NYCCAS cases,

respectively, compared to the basic Gibbs sampling. This confirms the superiority of Sya in the

inference quality results that have been shown in Figure 3.12(a).

3.7 Related Work

• Traditional Knowledge Base Construction Systems. There is a wide array of knowl-

edge base construction systems that are capable of extracting structured facts and re-

lations. Such systems can be broadly categorized into two categories: rule-based sys-

tems (e.g., expert rules [79, 80, 104] and crowdsourcing rules [76, 78, 105]), and ma-

chine learning-based systems (e.g., classification [106–114], maximum-a-posteriori mod-

els [84, 115, 116], probabilistic graphical models [117–119], Markov Logic Networks
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(MLN) [2, 9, 36, 37, 43, 120], and deep learning [121]). We refer to these as “tradi-

tional” systems. The closest of these systems considering spatial attributes are [77], [122]

and [123], which augment facts with their location information (e.g., “lives at” attribute).

However, no traditional system has exploited the location information between entities or

facts during the construction. Sya, conversely, is the first MLN-based knowledge base

construction system that considers such relationships to improve the knowledge base

quality. Recent research has focused on extracting special types of facts, such as sub-

jective [124] and exceptional [125] facts. However, this line of research is out of the

scope of our work.

• Geo-Knowledge Bases. Recent knowledge base systems have been proposed to ex-

tract facts about spatial entities (e.g., lakes) from Volunteered Geographic Information

(VGI) [126] along with Semantic Geospatial Web [127] (see [128] for a comprehen-

sive survey). For example, LinkedGeoData [129] assocaiates the spatial entities in the

widely-used OpenStreetMap [130] dataset with their corresponding facts that exist in

DBpedia [76]. In addition, a recent work has been focusing on the problem of entity

alignment between knowledge bases with a special focus on spatial entities [131]. How-

ever, extracting and maintaining facts about spatial entities is a vastly different problem

than we study in this chapter. In Sya, we extract a knowledge base of generic facts, yet,

we exploit the spatial information, if any, to improve the output quality.

• Knowledge Base Construction Languages. A knowledge base construction system

needs a high-level language that allows users to provide schema declaration and constuc-

tion logic rules. Existing languages are based on either object-oriented (e.g., UIMA [132],

GATE [133]), reasoning (e.g., [134]), or datalog languages (e.g., DDlog [2], XLog [72],

Lixto [135]). Datalog languages are considered the most popular amongst others in the

literature because: (1) Datalog supports expressing horn clauses, which are the building

blocks of inference rules, in a declarative way, and (2) Datalog syntax can be easily trans-

lated into SQL-like one, which makes it easy to be integrated with DBMS. Unfortunately,

these languages do not support expressing spatial data types and predicates.

• Inference Techniques. The inference task uses a probabilistic inference algorithm to

compute the factual score (i.e., probability) associated with generated relations. Exist-

ing inference algorithms in knowledge base construction systems are based on either



41

Gibbs sampling [8, 9], Markov chain Monte Carlo (MCMC) [7, 37, 66, 98, 136], belief

propagation [137], lifted inference [138], or specialized algorithms of Markov Logic Net-

work [4,139]. Sya provides a new variant of Gibbs sampling that adapts Concliques-based

partitioning [88]. In our work, we show that the proposed variant is able to achieve high

quality in the knowledge base construction process.

3.8 Conclusions

In this chaper, we introduced Sya, a full-fledged system that provides a native support for ex-

ploiting spatial relationships during the MLN-based knowledge base construction process. We

introduced several extensions and optimization to provide the efficiency and scalability of the

grounding and inference phases when dealing with spatially-correlated knowledge base rela-

tions. We also studied the trade-off between the inference quality and runtime of Sya. We also

showed that Sya can significantly outperform the state-of-the-art MLN-based knowledge base

construction systems in terms of accuracy and efficiency. In addition, Sya can be easily used to

extend any of these systems to make it support spatial awareness.



Chapter 4

TurboReg: A Framework for Scaling
Up Spatial Logistic Regression Models

4.1 Introduction

Predicting the presence or absence of spatial phenomena in a certain geographical area is a cru-

cial task in many scientific domains (e.g., Earth observations [140, 141], Epidemiology [142–

144], Ecology [145, 146], Agriculture [147, 148] and Management [149]). For example, or-

nithologists would need to predict the presence or absence of a certain bird species across a

certain area [150]. Meteorologists would need to predict the hurricane or tornado boundaries.

Epidemiologist would need to understand the spread of diseases across various areas in the

world. Typically, this is done by dividing the geographical space (e.g., the whole world) by

a two-dimensional grid, where each grid cell is represented with a binary variable (i.e., takes

either 0 or 1) indicating the presence or absence of the spatial phenomena in that grid cell, and

a set of predictor variables (i.e., features) that help predicting the value of this binary variable.

Then, the prediction problem at any grid cell is formulated as: Given a set of predictors defined

over this cell along with a set of observed or predicted values at neighbouring cells, predict the

value of the binary variable at this cell.

A common approach to solve the prediction problem is to build a standard logistic regression

model [151, 152] that uses a logistic function to predict the value of each grid cell based on

the values of predictors in the same grid cell. However, standard logistic regression models

are deemed inappropriate for predicting spatial phenomena as they assume that neighboring

42
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locations are completely independent of each other. This is definitely not the case for spatial

phenomena as neighboring locations tend to systematically affect each other [95].

As a result, spatial variants of logistic regression models (a.k.a., autologistic regression)

were proposed to take into account the spatial dependence between neighboring grid cells [10,

11,49]. However, existing methods for autologistic regression (e.g., see [10,48,52,53]) are pro-

hibitively computationally expensive for large grid data, e.g., fine-grained satellite images [140,

153], and large spatial epidemiology datasets [154]. For example, it could take about week

to infer the autologistic model parameters using training data of only few gigabytes [10]. As a

means of dealing with such scalability issues, existing techniques tend to sacrifice their accuracy

through two simplified strategies: (1) Use only a small sample of the available training data, and

(2) Only allow individual pairwise dependency between neighboring cells. For example, if a

prediction cell variable C1 depends on two neighboring cells C2 and C3, then current meth-

ods assume that cell C1 depends on each of them individually, and hence define two pairwise

dependency relations (C1, C2) and (C1, C3). Both approaches lead to significant inaccuracy

and invalidate the use of autologistic regression for predicting spatial phenomena of current

applications with large-scale training data sets.

In this chapter, we introduce TurboReg; a scalable framework for using autologistic models

in predicting large-scale spatial phenomena. TurboReg does not need to sample training data

sets. It can support prediction over grids of 85000 cells in 10 seconds. Moreover, TurboReg

allows its users to define high degrees of dependency relations among neighbors, which opens

the opportunity for capturing more precise spatial dependencies in regression. For example,

for the case where a prediction cell variable C1 depends on two neighboring cells C2 and C3,

TurboReg is scalable enough to be able to define a ternary dependency relation (C1, C2, C3),

which gives much higher accuracy than having two independent binary relations.

TurboReg exploits Markov Logic Networks (MLN) [35] (a scalable statistical inference and

learning framework) to learn the autologistic regression parameters in an accurate and efficient

manner. Then, TurboReg aims to provide an equivalent first-order logic [14] representation to

dependency relations among neighbors in autologistic models. This is necessary to accurately

express the autologistic models using MLN. Since we focus on binary prediction variables,

TurboReg transforms each neighboring dependency relation into a predicate with bitwise-AND

operation on all variables involved in this relation. For example, a ternary dependency relation

between neighboring variablesC1,C2 andC3 is transformed toC1∧C2∧C3. This simple logical
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transformation allows non-expert users to express the dependency relations within autologistic

models in a simple way without needing to specify complex models in a tedious detail.

TurboReg proposes an efficient framework that learns the autologistic model parameters

over MLN in a distributed manner. It employs a spatially-indexed learning graph structure,

namely factor graph [7], along with an efficient weights optimization technique based on gradi-

ent descent optimization [75]. TurboReg represents the MLN bitwise-AND predicates using the

spatially-indexed factor graph. Then, TurboReg runs multiple instances of learning algorithms

in parallel, where each instance handles the learning process over exactly one factor graph parti-

tion. At the end, the obtained results from all learning instances are merged together to provide

the final autologistic model parameters. Using the proposed framework, TurboReg converges to

the optimal model parameters faster than the existing computational methods by at least three

orders of magnitude while preserving the same parameters accuracy.

We experimentally evaluate TurboReg using a real dataset of the daily distribution of bird

species [150], and a synthetic dataset about the crime types in Minneapolis, MN area. For

each dataset, we compare the accuracy and scalability of the built autologistic models using

TurboReg and a state-of-the-art open-source autologistic model computational method, namely

ngspatial [51]. Our experimental evaluation shows that TurboReg is scalable to large-scale au-

tologistic models compared to the existing techniques, while preserving high-level of accuracy

in estimating the model parameters.

The rest of this chapter is organized as follows: Section 4.2 gives a brief background of

autologistic regression models. Section 4.3 describes how autologistic regression is modeled

using MLN. Section 4.4 gives an overview of TurboReg. Section 4.5 describes how the first-

order logic predicates are generated for autologistic models. Section 4.6 provides details about

the spatially-indexed factor graph structure. Section 4.7 illustrates the details of the weights

learning phase. Section 4.8 provides an experimental analysis of TurboReg. Section 4.9 covers

the related work to TurboReg, while Section 4.10 concludes the chapter.

4.2 Preliminaries of Autologistic Regression

This section provides a brief background along with a running example of the autologistic re-

gression models. It also discusses our assumptions in TurboReg.
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Figure 4.1: An Example on Autologistic Regression.

Autologistic regression builds a regression model that predicts the value of a binary ran-

dom variable (i.e., prediction variable that takes either 0 or 1) at a certain location based

on a set of predictors (i.e., features that help in the prediction process) at the same location

and a set of observed predictions from variables at neighbouring locations (i.e., spatial depen-

dence). Formally, autologistic regression models assume a set of n binary prediction variables

Z = {z1, ..., zn} (i.e., zi ∈ {0, 1}) at n locations L = {l1, ..., ln}, and a set of m predictor

variables X (i) = {x1(i), ..., xm(i)} where the value of each predictor variable xj(i) is a func-

tion of location li (e.g., a predicator about the existence of water which could have a different

value for each location), and each location li has a set of neighbouring locations Ni. Given

a specific location li, the conditional probability of prediction variable zi given the values of

current predictor variables X and the neighbouring prediction variables ZNi can be estimated

as follows [10, 11]:

log
Pr(zi = 1 | X (i),ZNi)
Pr(zi = 0 | X (i),ZNi)

=

m∑
j=1

βjxj(i) + η
∑
k∈Ni

zk (4.1)

where the weights β = {β1, ..., βm} and η form the model parameters θ = {β, η}. The ob-

jective of our work is to learn the values of θ from previous observations (i.e., training data)

of predictions and predictors at locations L, in a scalable and efficient manner. Note that the
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Figure 4.2: An Equivalent MLN Representation to An Autologistic Regression Model (logical
predicates and their factor graph).

values of θ are shared among the whole locations L.

Assumptions. In general, predictor variablesX can be either binary, categorical, or continuous.

However, we focus only on binary predictors (i.e., xm(i) ∈ {0, 1}). The extension to categorical

and continuous cases is intuitive as well, but, out of scope of TurboReg.

Example. Figure 4.1 shows a numerical example of autologistic regression. In this example, we

have a 4 x 4 grid (i.e., 16 cells), where each cell li has a prediction variable zi and two predictor

variables x1(i) and x2(i). The model parameters β1 and β2 are trained by observations from

all locations except l14 which is unknown (i.e., needs to be predicted). The example also shows

the calculations to predict the value of z14 using the learned parameters.

4.3 Autologistic Regression via Markov Logic Networks

In this section, we describe how the MLN framework is exploited to efficiently solve the autol-

ogistic regression problem. We start by discussing an MLN-based model for the basic autolo-

gistic regression (Section 4.3.1), and providing its theoretical foundation (Section 4.3.2). Then,

we extend this MLN-based model in case of more complicated scenarios (Section 4.3.3).
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4.3.1 MLN-based Autologistic Models

To represent an autologistic model using MLN, the model should have the two main properties

mentioned in Section 2.3. Obviously, the first property is satisfied because all prediction and

predictor variables (i.e., Z and X ) are already binary. However, to achieve the second prop-

erty, the model is required to have a set of equivalent constraints (i.e., logical predicates) that

capture the autologistic regression semantics. As shown in Equation 4.1, there are two types of

regression terms: (1) predictor-based terms {βjxj(i) | j = 1, ..,m} where m is the number

of predictors at any location li, and (2) neighbour-based terms {ηzk | k ∈ Ni} where Ni is

the set of neighbours at location li. TurboReg provides an equivalent weighted first-order logic

predicate to each regression term, either predictor-based or neighbour-based, that preserves the

semantic of autologistic regression and can be represented with MLN as well. For each predic-

tion variable zi at location li, each predictor-based regression term βjxj(i) has an equivalent

bitwise-AND predicate defined over zi and xj(i) (i.e., zi∧xj(i)) with weight βj . Similarly, each

neighbour-based regression term ηzk has an equivalent bitwise-AND predicate defined over zi
and zk (i.e., zi ∧ zk) with weight η. The theoretical foundation of the proposed MLN-based

autologistic model is described in the Section 4.3.2.

Note that, using the proposed model, the autologistic regression parameters θ = {β, η}
are translated into a set of weights W of MLN constraints (i.e., proposed equivalent bitwise-

AND predicates), and hence learning the autologistic model parameters θ becomes equivalent

to learning the values ofW in MLN (See Section 2.2).

Example. Figure 4.2 shows an example of translating an autologistic regression model with

one predictor variable x1 (i.e., log
Pr(zi=1|X ,ZNi )
Pr(zi=0|X ,ZNi )

= β1x1(i) + η
∑

k∈Ni zk) into an equivalent

MLN. The model is built for a 4-cells grid, where the neighbourhoodNi of any cell li is assumed

to be cells that share edges with li (i.e., first-order neighbourhood). The model is first translated

into a set of 8 bitwise-AND predicates with two weights β1 and η. Then, these predicates

are translated into a factor graph which can be used to learn the weights β1 and η. Note that

duplicate predicates that come from neighbouring variables are removed to avoid redundancy

(e.g., the neighbouring variables z1 and z2 have two equivalent z1 ∧ z2 and z2 ∧ z1 neighbour-

based predicates, respectively, however, we keep only one of them).
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4.3.2 Theoretical Foundation of TurboReg using MLN

Theorem 1 Given an autologistic model with a set of n prediction variables Z = {z1, ..., zn}
defined over n locations L = {l1, ..., ln}, a set of m weighted predictor variables βX (i) =

{β1x1(i), ..., βmxm(i)} at each location i and neighbouring weight η, there is an equivalent

Markov Logic Network (MLN) to this model, if and only if: (1) each predictor-based regression

term βjxj(i) at location li has an equivalent bitwise-AND predicate zi ∧ xj(i) with weight βj .

(2) each neighbour-based regression term ηzk at location li has an equivalent bitwise-AND

predicate zi ∧ zk with weight η.

Proof. Assume a model that consists of n + nm binary random variables V = {Z,X} =

{z1, ..., zn, x1(1), ..., xm(n)}. In addition, assume a set of constraints F = {F1, ..., Fn} are

defined over variables V , where constraints Fi at location li consist of two subsets of constraints:

• a set of m bitwise-AND predicates {zi ∧ xj(i) | j = 1, ...,m} with β weights (each

predicate corresponds to a predictor-based regression term).

• a set of si bitwise-AND predicates {zi ∧ zk | k ∈ Ni} with η weight (each predicate

corresponds to a neighbour-based regression term) where si is the size of neighbouring

locations Ni of location li.

Based on these assumptions, the model satisfies the two main properties in Section 2.3 that

are needed to represent it using MLN, and hence its joint probability distribution over V is

estimated using Equation 2.7.

Since Z and X are binary random variables, the evaluation of any bitwise-AND predicate

over them can be represented as a mathematical multiplication (i.e., the value of zi ∧ xj(i) is

zixj(i) and the value of zi ∧ zk is zizk). As a result, the joint probability distribution of V from

Equation 2.7 becomes as follows:

Pr(V = v) = Pr(Z,X ) = 1

C
exp

( n∑
i=1

m∑
j=1

βjzixj(i) + η

n∑
i=1

∑
k∈Ni

zizk

)
(4.2)

Based on Equation 4.2, the conditional probability distribution of any prediction variable zi
at location li given the predictor variables X (i) at li and its neighbouring prediction variables

ZNi can be estimated as:
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Pr(zi = 1 | X (i),ZNi) =
1

C
exp

( m∑
j=1

βjzixj(i) + η
∑
k∈Ni

zizk

)
(4.3)

By substituting with possible values of zi (i.e., either 1 or 0) in Equation 4.3, we can obtain

the ratio between the conditional probabilities of zi = 1 and zi = 0 as follows:

Pr(zi = 1 | X (i),ZNi)
Pr(zi = 0 | X (i),ZNi)

=
exp

(
1×

∑m
j=1 βjxj(i) + 1× η

∑
k∈Ni zk

)
exp

(
0×

∑m
j=1 βjxj(i) + 0× η

∑
k∈Ni zk

)
=

exp
(∑m

j=1 βjxj(i) + η
∑

k∈Ni zk

)
exp

(
0
)

= exp
( m∑
j=1

βjxj(i) + η
∑
k∈Ni

zk

)
(4.4)

By taking the log value of both LHS and RHS of Equation 4.4, we obtain the autologistic

model defined in Equation 4.1. This means that the assumed model at the beginning, which can

be represented with MLN, is equivalent to the basic autologistic model.

4.3.3 Generalized Autologistic Models

Some applications assume models with more generalized neighbour-based regression terms

{ηG(zk1 , ..., zkd) | k1, ..., kd ∈ Ni} (i.e., complex spatial dependence), where the regression

term has a function defined over neighbouring prediction variables G(zk1 , ..., zkd), and not just

their sum as in Equation 4.1 (e.g., Ecology [155] and Mineral Exploration [156]).

Existing methods can not compute autologistic models with generalized regression terms

because of their prohibitively expensive computations, such as high-order matrix multiplica-

tions [10]. In contrast, the MLN-based autologistic model can be easily extended to find an

equivalent combination of first-order logic predicates [14] for any generalized regression term,

as long as the function G(zk1 , ..., zkd) holds logical semantics. For example, if prediction vari-

able z1 at location l1 has a generalized regression function G(z2, z3) over neighbours z2 and z3
which constraints the value of z1 to be 1 only if both values of z2 and z3 are 1 at the same time,
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Figure 4.3: TurboReg System Architecture.

then TurboReg would translate this into an equivalent bitwise-AND predicate z1 ∧ z2 ∧ z3. As

another example, if G(z2, z3) constraints the value of z1 to be 1 only if the either z2 or z3 is 1,

then it can be translated into a predicate z1 ∧ (z2 ∨ z3) that has a combination of bitwise-AND

and bitwise-OR. Our experiments show that handling generalized regression terms using the

MLN-based model increases the learning accuracy while not affecting the scalability perfor-

mance (See Section 4.8).

4.4 Overview of TurboReg

Figure 4.3 depicts the system architecture of TurboReg. It includes three main modules, namely,

MLN Transformer, Factor Graph Constructor, and Weights Learner, described as follows:

MLN Transformer. This module receives the autologistic regression model from any Tur-

boReg user and generates a set of bitwise-AND predicates of an equivalent MLN. It employs an

efficient logic programming framework, called DDlog [2], to produce predicates in a scalable

manner. Details are in Section 4.5.

Factor Graph Constructor. This module prepares the input for the Weights Learner module

by building a spatially-indexed factor graph out of the generated bitwise-AND predicates. The

factor graph is partitioned using a flat grid index, where each grid cell has a graph index for its

factor graph part. Details are in Section 4.6.
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Weights Learner. This is the main module in TurboReg which efficiently learns the weights

that are encoded in the spatially-indexed factor graphs. These weights represent the autologis-

tic model parameters. It takes the built factor graph along with learning configurations (e.g.,

number of learning epochs) as input, and produces the final values of weights θ = {β, η}. In

this module, TurboReg provides a scalable variation of gradient descent [75] technique, that is

highly optimized for learning the autologistic model parameters. Details are in Section 4.7.

4.5 MLN Transformer

The first step in TurboReg is to generate a set of equivalent logical predicates for the different re-

gression terms in the autologistic model. However, this step is challenging if : (1) the model has

a large number of prediction variables Z (i.e., large 2-dimensional grid) and/or predictor vari-

ables X (e.g., large number of synthetic features), which results in generating a large number

of neighbour-based and predictor-based predicates at the end. (2) the model has very compli-

cated generalized regression terms, which are translated into predicates with large number of

combinations of first-order logic symbols (e.g., bitwise-AND, bitwise-OR, and imply).

To remedy this challenge, TurboReg uses DDlog [2], an DBMS-based logic programming

framework, to generate equivalent predicates for any autologistic model in a scalable manner.

DDlog takes advantage of the scalability provided by DBMS when generating large number or

combinations of predicates. It provides users with a high-level declarative language to express

logical predicates using few template rules. These rules are then translated into SQL queries

and applied against database relations of variables (e.g., Z and X ) to instantiate the actual set

of predicates. DDlog has been widely adopted in many applications due to its usability and

efficiency (e.g., knowledge bases [2] and data cleaning [3]).

Example. Figure 4.4 shows an example of using DDlog to express the bitwise-AND predicates

of the autologistic model in Figure 4.2. DDlog has two types of syntax; schema declaration and

derivation rules. Schema declaration defines the relational schema of variables that appear in

predicates. For example, prediction variablesZ and predictor variablesX are stored in relations

z? and x?, respectively, where any row in each relation corresponds to one variable and stores

its location ID and its to-be-predicted value in attributes id and value, respectively.

Note that variable relations are differentiated from normal relations with a question mark at

the end of their names. Derivation rules are considered templates to instantiate predicates. In
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#Schema Declaration

z?(@key id bigint, value numeric).

x?(@key id bigint, value numeric).

neighbor(id1 bigint, id2 bigint).

#Derivation Rules

z(id) ^ x(id):- z(id).

z(id1) ^ z(id2) :- neighbor(id1, id2)

Figure 4.4: Example of Using DDlog to Generate Bitwise-AND Predicates for An Autologistic
Regression Model.

this example, the first derivation rule is a template for bitwise-AND predicates coming from the

predictor-based regression terms (i.e., f1, f4, f6 and f8 in Figure 4.2), where the body of rule

(i.e., right side after symbol ”:-”) specifies that a predicate is defined over any z and x only if

they have same location id (i.e., selection criteria). During execution, this rule is translated into

a hash join between relations z and x with selection predicate over id. Similarly, the second

derivation rule is a template for predicates corresponding to the neighbour-based regression

terms (i.e., f2, f3, f5 and f7 in Figure 4.2), where a predicate is defined for each individual pair

of neighbouring predication variables.

4.6 Factor Graph Constructor

Figure 4.5 depicts the organization of a spatially-indexed factor graph for the predicates that are

generated in Figure 4.2. The index is composed of two main layers, namely, neighbourhood

layer and graph layer, described as follows:

4.6.1 Neighbourhood Index Layer

The neighbourhood index layer is basically a two-dimensional index on the given factor graph.

There is already a rich literature on two-dimensional index structures, classified into two cat-

egories: Data-partitioning index structures (e.g., R-tree [96]) that partition the data over the

index and space-partitioning index structures (e.g., Quadtrees [157]) that partition the space.

In TurboReg, we decided to go with the Grid Index [158] as an example of the space-

partitioning data structures because it aligns with the nature of spatial phenomena that are pre-

dicted over grids. Having said this, TurboReg can accommodate other two-dimensional index

structures as a replacement of our grid index. Each grid cell in the neighbourhood layer keeps
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a graph index for its factor graph part. Figure 4.5 gives an example of a neighbourhood index

layer as a 2-cells grid (i.e., C1 and C2), where C1 contains the factor graph part corresponding

to predicates in locations l1 and l3, and C2 holds predicates in locations l2 and l4. TurboReg

takes the grid resolution as input from the user.

4.6.2 Graph Index Layer

Each cell in the two-dimensional neighbourhood grid points to two indexes of variables and

predicates. Together, these two indexes form the factor graph part in this cell.

Variables Index. This index contains all predication and predictor variables that exist in the

grid cell. Each node in the index corresponds to one variable, and points to a list that has three

types of information (1) location as a first element in list, (2) value (i.e., 1 or 0) as a second

element in the list and (3) predicates that this variable appear in, which are stored as a set of

pairs in the rest of list. Each pair consists of a pointer to a predicate in the predicates index, and

its associated weight. Figure 4.5 shows the details of variable z1 in the variables index.

Predicates Index. This index contains all predicates that defined over variables in this grid

cell. Each node in the index corresponds to one predicate and has a list of pointers to variables

that appear in this predicate. Figure 4.5 shows the details of predicate f6 in the predicates

index. Note that we replicate predicates that have variables in two different grid cells (e.g., f7
is duplicated in C1 and C2 because it has variable z3 ∈ C1 and z4 ∈ C2).

4.7 Weights Learner

This is the most important module in TurboReg, which takes the spatially-indexed factor graph

along with learning configurations from user and returns the final weights θ = {β, η} of the

autologistic model. The main idea is to incrementally converge to weights that maximize the

satisfaction of bitwise-AND predicates represented in the factor graph. For example, if the pred-

icate zi ∧ xi is satisfied, then the current value of its weight η should be rewarded (i.e., should

be increased), otherwise should be punished (i.e., should be decreased). To that end, we adapt

a technique that punishs and rewards weights using gradient descent optimization [75]. To test

satisfaction of any bitwise-AND predicate in autologistic regression, we suggest to substitute in

Equation 4.1 with the values of variables that appear in the predicate along with its weight. The

details of algorithms that implement this idea are described below.
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LEARNWEIGHTS Algorithm. Algorithm 3 depicts the pseudo code for our scalable weights

learner that takes the following four inputs: the spatially-partitioned factor graph C, the number

of learning instances S that can run in parallel, the number of learning iterations E needed

to converge to the final values of weights, and the step size α which is a specific parameter

for the optimization algorithm 4 that will be described later. The algorithm keeps track of the

current best values of weights through variables: β and η, initialized by random values. The

algorithm then starts by computing the number of learning epochs that can be handled per each

learning instance and stores it in variable e. Note that e represents the actual number of learning

epochs that run sequentially because different learning instances execute in parallel. Each of

these learning instances then starts to process one learning epoch in parallel (i.e., S learning

epochs are running simultaneously). In such learning epoch, we learn an optimal instance of

weights βs and ηs, where these values are incrementally learned from variables in factor graph

using UPDATEWEIGHTS function (Line 9 in Algorithm 3)(details of this function are described

in Algorithm 4). To reduce the learning latency, we process the variables from different factor

graph partitions in parallel (Lines 5 to 10 in Algorithm 3). After all learning instances finish

their current learning epoch, we set the values of β and η with the average of the obtained

weights from these instances and then proceed to another learning epoch with the new weights.

We repeat this process e times and then return the final values of weights.
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Algorithm 3 Function LEARNWEIGHTS (FactorGraphCells C, LearningInstances S,
LearningEpochs E, StepSize α)

1: β ← Random, η← Random
2: e← E

S /* Num. of Learning Epochs Per Instance*/
3: while e 6= 0 do
4: for all s ∈ {1, 2, ..., S} do in parallel
5: for all c ∈ C do in parallel
6: Vc← Variables index in cell c
7: Pc← Predicates index in cell c
8: for each vi ∈ Vc do
9: UPDATEWEIGHTS (vi, Vc, Pc, α) (Algorithm 4)

10: end for
11: β ←

∑S
s=1 βs
S , η←

∑S
s=1 ηs
S

12: e−−
13: end while
14: return β and η

UPDATEWEIGHTS Algorithm. Algorithm 4 gives the pseudo code for our weights optimizer

that applies gradient descent optimization [75] technique to incrementally update the values of

weights given a certain variable vi (either prediction or predictor). The main idea is to pun-

ish or reward current weights based on their performance in correctly estimating the prediction

value zi at location li where variable vi belongs to. The algorithm takes the following inputs; a

variable vi, the variables V and predicates P indexes in the grid cell containing vi (i.e., graph in-

dex), and a step size α that controls the amount of punishing/rewarding during the optimization

process. The algorithm keeps track of the current status of whether weights need to be punished

or rewarded weights through variable g, where it takes either 1 in case of rewarding or −1 in

case of punishing, and is initialized by 1. The algorithm starts by estimating the prediction ẑi
at location li that contains vi using Equation 4.1. If the estimation ẑi never matches the ob-

served prediction value zi from training data, then we set the status g to −1 (i.e., the associated

weight with current variable vi needs to be punished), otherwise the status remains rewarding.

In case vi is a predictor variable xj(i), we only update its associated weight βj by evaluating

the gradient descent equation using current values of g and α (Line 7 in Algorithm 4) and jump

to the end of algorithm. In case vi is the prediction variable zi itself, we apply gradient descent

optimization on all weights β associated with its predictors (Lines 9 to 11 in Algorithm 4), and

on weight η associated with neighbouring predicates (Lines 14 to 24 in Algorithm 4) as well.
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Algorithm 4 Function UPDATEWEIGHTS (Variable vi, VariablesIndex V , PredicatesIndex P ,
StepSize α)

1: li← V[vi].location, g← 1 /* Gradient Value */
2: ẑi← Prediction at li using β and η (Equation 4.1)
3: if V[vi].value 6= ẑi then
4: g← -1
5: end if
6: if vi is any predictor variable xj(i) ∈ X (i) then
7: βj ← βj + α g /* Gradient Descent on βj*/
8: else
9: for each βj ∈ β do

10: βj ← βj + α g /* Gradient Descent on βj*/
11: end for
12: end if
13: if vi is prediction variable zi then
14: for each p ∈ P[vi] do
15: if p is a neighbour-based predicate then
16: ẑk ← Prediction at neighbour lk in p using β and η
17: if V[vk].value 6= ẑk then
18: g← -1
19: else
20: g← 1
21: end if
22: η← η + α g /* Gradient Descent on η */
23: end if
24: end for
25: end if

Complexity. The complexity of the aforementioned algorithms can be estimated asO(ES
(n2+nm)

C )

where n is number of predictions, m is number of predictors, C is number of factor graph par-

titions, E is number of learning epochs and S is number of learning instances. This complexity

can be further approximated to be O(ES
(n2)
C ). Note that we assume having SC working threads

to process C factor graph partitions in each of the S learning instances in parallel.

4.8 Experiments

In this section, we experimentally evaluate the accuracy and scalability of TurboReg in building

autologistic models (i.e., learning their weights). We compare the performance of TurboReg
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(a) Ebird Data (b) MNCrime Data

Figure 4.6: Datasets Used in TurboReg Experiments.

with ngspatial [51], a state-of-the-art open-source package for autologistic model implementa-

tions. Specifically, we compare our performance with the most accurate algorithm in ngspatial

that employs bayesian inference using Markov Chain Monte Carlo (MCMC) [10]. We ex-

tensively investigate the accuracy and scalability of both systems under different parameters

including grid sizes, learning epochs, and neighbourhood structures.

4.8.1 Experimental Setup

Datasets. All experiments are based on the following two grid datasets:

• Ebird dataset [150], which is a real dataset of the daily distribution of a certain bird

species, namely Barn Swallow, over North America. Each grid cell holds a predication

of the bird existence in the cell or not. Figure 4.6(a) shows the Ebird data distribution,

where blue dots refer to cells with bird existence. We generate eight versions of this

dataset with different grid sizes, ranging from 250 to 84000 cells, to be used during most

of our experiments. This dataset has three binary predictors including whether number

of bird observers high or not, whether the observing duration is long or not, and whether

observers cover large spatial area or not.

• MNCrimes dataset, which is a synthetic dataset about predicting the existence of bike
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theft crime in 87 neighborhoods in Minneapolis. Figure 4.6(b) shows the MNCrimes data

distribution, where red and green cells refer to the crime existence and non-existence, re-

spectively. This grid is constructed based on three public datasets about Minneapolis

neighbourhoods [159], census [160] and crime incidents [159]. It also uses the informa-

tion about other 11 crime types as binary predictors.

In both Ebird and MNCrimes datasets, we randomly select 15% of the grid cells as testing

data, and use the rest 85% for training. We use Ebird dataset in all experiments, except the

experiment in the last Figure 4.10(b) which uses MNCrimes dataset.

Parameters. Unless otherwise mentioned, Table 4.1 shows the default settings of both Ebird

and MNCrimes datasets. Note that we use small number of grid cells as a default value, because

the ngspatial technique fails in large cases. However, we have standalone experiments to show

the scalability of TurboReg with large number of grid cells. Table 4.2 also shows the default

learning configurations that are used with TurboReg and ngspatial. In most of experiments, we

run two variations of our system: the basic TurboReg that has pairwise neighbourhood rela-

tionships (i.e., neighbourhood degree of 1), and another generalized variation with 8-ary neigh-

bourhood relationships (i.e., neighbourhood degree of 8), referred to as G-TurboReg-8 (See

Section 4.3.3). In G-TurboReg-8, each predication has a bitwise-AND predicate over the whole

8 neighbours surrounding it. In case of ngspatial, we set the default standard deviation α of any

bayesian prior distributions with the recommended value 1000 as in their documentation [51].

Environment. We run all experiments on a single machine with Ubuntu Linux 14.04. Each

machine has 8 quad-core 3.00 GHz processors, 64GB RAM, and 4TB hard disk.

Metrics. In all experiments, we use the total running time of learning weights as a scalability

evaluation metric, and the ratio of correctly predicted cells to the total number of test cells as an

accuracy evaluation metric.

4.8.2 Experimental Results

Effect of Grid Size

In this section, we compare the performance, both scalability and accuracy, of basic TurboReg

and G-TurboReg-8 with ngspatial, while having five different sizes of prediction grids.

Figure 4.7(a) shows the running time for each algorithm while scaling the grid size from
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Parameter Default Value
Grid Training Size (Ebird) 860 Cells
Grid Testing Size (Ebird) 140 Cells
Number of Predictors (Ebird) 3
Grid Training Size (MNCrimes) 72 Cells
Grid Testing Size (MNCrimes) 12 Cells
Number of Predictors (MNCrimes) 11

Table 4.1: Dataset-specific Parameters.

Parameter Default Value
Learning Epochs E 1000
Neighbourhood Degree D 1, 8
Step Size α (TurboReg) 0.001
Number of Threads (TurboReg) 7
Factor Graph Partitions (TurboReg) 200
Standard Deviation σ (ngspatial) 1000

Table 4.2: Learning-specific Parameters.
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Figure 4.7: Effect of Grid Size on Scalability and Accuracy.

250 to 84k cells. For the five grid sizes, both TurboReg and G-TurboReg-8 were able to signifi-

cantly reduce the running time compared to ngspatial. Specifically, both TurboReg variants and

ngspatial have an average running time of 6 seconds and 6 hours, respectively. This means that

TurboReg has at least three orders of magnitude reduction in the running time over ngspatial.

The poor performance of ngspatial comes from two reasons: (1) although ngspatial relies on
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Figure 4.8: Effect of Number of Learning Epochs on Scalability and Accuracy.

parallel processing in its sampling, prior estimation and parameters optimization steps, it runs

a centralized approximate Bayesian inference algorithm [10]. In contrast, TurboReg is a fully

distributed framework. (2) ngspatial requires estimating a prior distribution for each predictor

variable, and hence it suffers from a huge latency before starting the actual learning process.

Note that the ngspatial curve in Figure 4.7(a) is incomplete after a grid size of 3.5k cells be-

cause of a failure in satisfying the memory requirements needed for its internal computations.

The running times of TurboReg and G-TurboReg-8 are almost identical, except with grid sizes

larger than 21k cells which have 13 seconds average difference. This shows that TurboReg is

efficient when scaling up the grid size regardless of the neighbourhood degree.

Figure 4.7(b) shows the accuracy for each algorithm while using the same grid sizes in

Figure 4.7(a). In this experiment, we divide the cells in each grid into training and testing sets,

where we randomly select 15% of cells for testing and keep the rest for training. We repeat

this process 5 times and then average the accuracy results (we follow the same approach in the

whole accuracy experiments in our work). As can be seen in the figure, G-TurboReg-8 has the

same accuracy achieved by ngspatial, while basic TurboReg is at maximum 20% less accurate

than both of them on average. The reason for that is the basic TurboReg captures less accurate

neighbourhood dependencies than G-TurboReg-8. Note that the ngspatial curve is incomplete

for grids with sizes more than 3.5k cells as in Figure 4.7(a).
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Effect of Learning Epochs

In this section, we evaluate the performance, both scalability and accuracy, of basic TurboReg

and G-TurboReg-8 with ngspatial, while having four different values of learning epochs. In the

following experiments, we fix the grid size to be 1k cells.

Figure 4.8(a) shows the running time for the different algorithms while changing the number

of epochs from 100 to 100k. Both basic TurboReg and G-TurboReg-8 significantly outperform

ngspatial. They are at least 2 orders of magnitude faster than ngspatial. This is because of

the parallel processing of learning epochs in TurboReg compared to the sequential learning in

ngspatial. The results of ngspatial are incomplete after 10k epochs because its learning process

requires saving huge intermediate state. In contrast, TurboReg never needs an intermediate state

because it updates the model weights in place using the gradient descent optimization technique

(See Algorithm 4). The figure also shows that the running times of TurboReg and G-TurboReg-

8 are identical and never depend on the neighbourhood degree. This confirms the complexity

estimation of the weights learning algorithm in Section 4.7.

Figure 4.8(b) shows the accuracy of the different algorithms given the same setup in Fig-

ure 4.8(a). This experiment shows an interesting observation that both TurboReg and ngspatial

can rapidly converge to their optimal values of weights (i.e., number of learning epochs less

than 100). This is because ngspatial provides a good estimate to the prior of its predication and

predictor variables, which makes the convergence process faster. In case of TurboReg, the rapid

convergence happens because weights are shared among all locations which makes their val-

ues updated multiple times using the gradient descent optimization in each epoch. As a result,

TurboReg just needs small number of epochs for weights convergence.

Effect of Neighbourhood Degree

In this section, we evaluate the performance, both scalability and accuracy, of basic TurboReg

and two generalized variations G-TurboReg-8 and G-TurboReg-4, while scaling up the grid

size. Unlike G-TurboReg-8, G-TurboReg-4 considers neighbourhood degree of 4, in which

each location prediction depends on neighbours that share edges with this location only.

Figure 4.9(a) depicts the performance for each algorithm while using the same grid sizes in

Figure 4.7(a). The results of this experiment confirm the previous ones we have shown in Fig-

ure 4.7(a). Increasing the neighbourhood degree leads to producing less number of predicates,
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Figure 4.9: Effect of Neighbourhood Degree on Scalability and Accuracy.

and hence less number of factor graph nodes to process, which makes the weights learning pro-

cess faster. In this experiment, the performance of different algorithms are almost similar in

case of small grid sizes (i.e., the average accuracy difference between the three algorithms is

less than 0.1 seconds). However, the difference becomes significant in case of large grid sizes

(average of 16 seconds difference for grid size of 84k cells).

Figure 4.9(b) shows the accuracy of TurboReg, G-TurboReg-4 and G-TurboReg-8 using the

same setup of grid sizes. As we can see, the accuracy of TurboReg is 9% less accurate than

both G-TurboReg-4 and G-TurboReg-8. Note that G-TurboReg-4 and G-TurboReg-8 almost

have the same accuracy. This is a spatial case for the Ebird dataset because we observe that

the significant information between neighbourhoods with degrees 8 and 4 is very little, which

makes the accuracy in the two cases are pretty similar.

Effect of Number of Threads and Hybrid Neighbourhood Degrees

Figure 4.10(a) shows the effect of increasing the number of threads from 1 to 8 on TurboReg

and G-TurboReg-8. These threads are used to parallelize the work in the weights learner module

of TurboReg. As expected, the performance of both algorithms linearly improves. For example,

the running time of TurboReg using 8 threads is 2 times faster than using 1 thread. This shows

the ability of autologistic to scale up with system threads.

Figure 4.10(b) shows the accuracy of both autologistic and ngspatial in case of having hy-

brid neighbourhood degrees (i.e., each location has a different neighbourhood degree). In this
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experiment, we use the MNCrimes dataset which consists of locations with 1 to 9 neighbour-

hood degrees. We compare the basic TurboReg that runs pairwise neighbouring depdencies,

G-TurboReg-H that runs adaptive neighbourhood dependencies, and ngspatial. We find that the

accuracy of G-TurboReg-H is higher than TurboReg with 12% and ngspatial with 29%.

4.9 Related Work

In this section, we first provide an overview of the existing theoretical and computational models

of autologistic regression. Then, we briefly mention other related spatial regression models.

• Autologistic Theoretical Models. There are two main theoretical models of autologistic

regression: (1) Traditional model [11] simply estimates the logistic function of the pred-

ication probability at any location as a linear combination of predictors at this location

and the predictions of its neighbours. However, this model biases its prediction to the

presence case (i.e., predicted value is 1) in case of sparse training data. (2) Centered

model [49] is similar to the traditional model, however, the model parameters are nor-

malized to avoid the biased cases. This adds more complexity when learning the model

parameters. TurboReg is the first framework to implement those models on a large-scale
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without sacrificing the accuracy of learned model parameters. Recent research has pro-

posed an extension for spatio-temporal autologistic models [54, 161] (and centered vari-

ants [53, 162]), which incorporates the temporal dependence between predictions at the

same location. However, this line of research is out of the scope of this work.

• Autologistic Computational Methods. A wide array of techniques that are capable of

learning the autologistic model parameters on a small scale (see [10, 163] for a com-

prehensive survey, and [51] for open-source implementations). Learning the autolo-

gistic model parameters is much harder than learning the parameters of classical non-

spatial regression models due to the spatial dependence effect. Thus, the techniques

are categorized into three main categories based on their methods of approximation to

the original parameters distributions: Pseudo likelihood estimation [48, 54](and centered

variants [10]), Monte Carlo likelihood estimation [50](and centered variants [10, 54]),

Bayesian inference estimation [52, 164] (and centered variants [51, 54]). TurboReg, con-

versely, is the first technique to apply large-scale Markov Chain Monte Carlo estimation

to learn the autologistic model parameters.

• Other Spatial Regression Models. Autologistic models belong to the class of non-

Gaussian spatial modelling [165], in which the spatial dependence between predictions is

conditionally modelled through direct neighbours. However, there are three other classes:

(1) linear spatial models [165], (2) spatial generalized linear models [166] and (3) Gaus-

sian Markov random field models [167], that encode the spatial dependence through a

distance-based covariance matrix. This matrix defines how much the prediction in one

location is affected by predictions in all other locations based on their relative distances.

Another main difference is that autologistic models focus on binary predictions, while

other classes are mainly developed for continuous and categorical predictions.

4.10 Conclusions

This chapter introduced TurboReg, a scalable framework for building spatial logistic regression

models (a.k.a autologistic models) to predict spatial binary data. TurboReg provides an effi-

cient modeling for the autologistic regression problem using Markov Logic Networks (MLN),
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which is a scalable statistical learning framework. TurboReg employs first-order logic predi-

cates, a spatially-partitioned factor graph data structure, and an efficient gradient descent-based

optimization technique to learn the autologistic model parameters. Experimental analysis using

real and synthetic data sets shows that TurboReg achieves at least three orders of magnitude

performance gain over existing state-of-the-art techniques while preserving the same accuracy.



Chapter 5

RegRocket: Scalable Multinomial
Autologistic Regression Using Markov
Logic Networks

5.1 Introduction

Autologistic regression [10, 11, 49] is an important statistical tool for predicting and analysing

spatial phenomena in many scientific domains (e.g., Earth observations [140, 141], Epidemi-

ology [142–144], Ecology [145, 146], Agriculture [147, 148], Archeology [168] and Manage-

ment [149, 164]). Unlike standard logistic regression [151, 152] that assumes predictions of

spatial phenomena over neighbouring locations are completely independent of each other, au-

tologistic regression (See Section 4.2) takes into account the spatial dependence between neigh-

bouring locations while building and running the prediction model (i.e., neighbouring locations

tend to systematically affect each other [95]).

However, myriad applications require the autologistic regression model to be built over large

multinomial (i.e., categorical) spatial data. Examples of these applications include multinomial

brain [169] and satellite images [170] analysis. In these applications, the prediction and/or

predictor variables in the regression model are multinomial, which means that the value of any

variable comes from a set of possible values (i.e., domain values). However, existing methods

for autologistic regression (e.g., see [10, 48, 52, 53]) are specifically designed for autologistic

66
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models with binary prediction and predictor variables (i.e., each variable takes either 0 or 1)

only, and hence are not applicable for the multinomial case [163].

In this chapter, we introduce RegRocket; the first scalable framework for building autolo-

gistic models with multinomial prediction and predictor variables. RegRocket does not need

to sample training data sets. It can support the prediction over grids of 1 million cells in few

minutes. RegRocket is the successor of TurboReg [61] (See Chapter 4), from which it is distin-

guished by: (1) Providing a new MLN representation along with its theoretical foundation for

multinomial autologistic models, unlike TurboReg that considers binary autologistic regression

models only. The MLN representation of RegRocket can be considered as a generalization of

its counterpart in TurboReg. (2) Adapting the weights learner module of TurboReg to efficiently

implement the new MLN representation of the multinomial case. (3) Providing experimental

study of the different system settings in terms of running time, and prediction accuracy while

employing the MLN-based multinomial autologistic models.

We experimentally evaluate RegRocket using two real datasets of the daily distribution of

bird species [150], and the land cover distribution of Minnesota, USA [171, 172]. We com-

pare the accuracy and scalability of the built autologistic regression models over each dataset

using the basic RegRocket and two generalized variations of RegRocket, that consider higher

neighbouring interactions between predictions, with a state-of-the-art open-source autologis-

tic model computational method, namely ngspatial [51]. Our experimental evaluation shows

that RegRocket is scalable to large-scale autologistic models, while achieving a high-level of

accuracy in estimating the model parameters.

The rest of this chapter is organized as follows: Section 5.2 gives a brief background of

multinomial autologistic models. Section 5.3 describes how multinomial autologistic regres-

sion is modeled using MLN. Section 5.4 illustrates the details of the weights learning module

for the categorical (i.e., multinomial) case. Section 5.5 provides the experimental analysis of

RegRocket. Finally, Section 5.6 concludes the chapter.
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Figure 5.1: An Example on Multinomial Autologistic Regression.

5.2 Preliminaries of Multinomial Autologistic Regression

Binary autologistic models (See Section 4.2) can be extended to the case of multinomial (i.e.,

categorical) predictions and predictors. In this case, each prediction variable zi has r pos-

sible outcomes Dzi = {λ1, λ2, ..., λr}, and each predictor variable xj(i) has q possible do-

main values Dxj(i) = {t1, t2, ..., tq}. Since the variables are not binary, the model specified

in Equation 4.1 is no longer valid for the multinomial case. Our approach to obtain the ap-

propriate model for a prediction variable with r possible outcomes is to build r − 1 inde-

pendent binary models, in which one outcome is chosen as a pivot and then the other r − 1

outcomes are separately regressed against the pivot outcome. Eventually, the probability of

predicting the pivot outcome is calculated based on these built r − 1 binary models (i.e.,

1 −
∑

λ 6=p Pr(outcome is λ) where p is the pivot outcome). Such approach is already im-

plemented in classical multinomial logistic regression [173–175], yet, without considering the

spatial dependence (i.e., neighbour-based regression terms).

In the generated binary models, each multinomial prediction variable zi will be represented

with r binary random variables {zi(λ) ∈ {0, 1} | λ ∈ Dzi}, where zi(λ) indicates whether the

prediction value at location li is λ or not. In addition, each multinomial predictor xj(i) will be

represented as a set of (r − 1)q binary random variables {xλ,tj (i) | λ ∈ Dzi − {p}, t ∈ Dxj(i)},
where λ is a non-pivot outcome to be predicted at location li and t is a possible domain value

of xj(i). The variable xλ,tj (i) represents a binary predictor (i.e., {xλ,tj (i) ∈ {0, 1}) in the
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autologistic regression model that is built for the binary prediction variable zi(λ). Assuming the

pivot outcome of prediction variable zi is λr, the r − 1 conditional probabilities corresponding

to zi given the values of current predictor variables X and the neighbouring prediction variables

ZNi can be estimated as follows:



log
Pr(zi(λ1)=1|X (i),ZNi )
Pr(zi(λr)=1|X (i),ZNi )

=
m∑
j=1

∑
t∈Dxj(i)

βλ1,tj xλ1,tj (i) +
∑
k∈Ni

∑
s∈Dzk

ηλ1,szk(s)

log
Pr(zi(λ2)=1|X (i),ZNi )
Pr(zi(λr)=1|X (i),ZNi )

=
m∑
j=1

∑
t∈Dxj(i)

βλ2,tj xλ2,tj (i) +
∑
k∈Ni

∑
s∈Dzk

ηλ2,szk(s)

...

log
Pr(zi(λr−1)=1|X (i),ZNi )
Pr(zi(λr)=1|X (i),ZNi )

=
m∑
j=1

∑
t∈Dxj(i)

β
λr−1,t
j x

λr−1,t
j (i) +

∑
k∈Ni

∑
s∈Dzk

ηλr−1,szk(s)

(5.1)

As shown in Equation 5.1, each binary predictor xλ,tj (i) is associated with one weight βλ,tj .

Moreover, in contrast to Equation 4.1 which has one weight η for the whole neighbour-based

regression terms, the multinomial autologistic model defines a weight ηλ,s for each possible pair

of variables (zi(λ), zk(s)), where zi(λ) and zk(s) correspond to the predictions of a non-pivot

outcome λ at location li (i.e., λ ∈ Dzi − {p}) and any outcome s at each neighbouring location

k ∈ Ni (i.e., s ∈ Dzk ). The main reason for having multiple η weights is to capture more

precise spatial dependencies among neighbouring predictions compared to the one weight in

traditional binary models. The objective of our work is to build multinomial autologistic mod-

els that achieve both high prediction accuracy and low running time by learning the values of

model parameters θ = {β, η}, where β = {βλ1,t11 , ..., β
λr−1,tq
m } and η = {ηλ1,λ1 , ..., ηλr−1,λr},

from previous observations (i.e., training data) of predictions and predictors at locations L, in

a scalable and efficient manner. Note that the total number of weights to be learned in β and η

are mq(r − 1) and r(r − 1), respectively.

Assumptions. In general, prediction and predictor variables can be either binary, multinomial,

or continuous. However, we focus only on multinomial variables. The binary case has been

discussed in Chapter 4, and the extension to continuous case is out of scope of this thesis.

Example. Figure 5.1 shows a numerical example of multinomial autologistic regression. In
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Figure 5.2: An Equivalent MLN Representation to A Multinomial Autologistic Model (logical
predicates and their factor graph).

this example, we have a 4 x 4 grid (i.e., 16 cells), where each cell li has a prediction vari-

able zi with three possible outcomes (i.e., Dzi = {0, 1, 2}), and one binary predictor vari-

able x1(i) (i.e., Dx1(i) = {0, 1}). Assuming the prediction outcome 0 as pivot, each loca-

tion i has 3 binary prediction variables {zi(0), zi(1), zi(2)}, and 4 binary predictor variables

{x1,01 (i), x2,01 (i), x1,11 (i), x2,11 (i)}. As a result, we have 4 predictor-based and 6 neighbour-based

weights. These weights are trained by the observations from all locations except l14 which is

unknown (i.e., needs to be predicted). The example also shows the calculations to predict the

value of z14 using the learned regression parameters. The probabilities of the three possible out-

comes of zi are first calculated, and then the outcome corresponding to the highest probability

is selected as the prediction value.

5.3 Multinomial Autologistic Regression via Markov Logic Networks

In this section, we describe how the MLN framework is exploited to efficiently solve the multi-

nomial autologistic regression problem. In particular, we discuss the MLN-based model for the

basic multinomial autologistic regression, along with its theoretical foundation (Section 5.3.1).
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To represent a multinomial autologistic model using MLN, RegRocket extends the MLN-

based binary autologistic model in TurboReg [61] (Section 4.3.1) to support the multinomial

case. TurboReg represents all binary autologistic regression terms, whether predictor-based

or neighbour-based, as a set of weighted bitwise-AND logical predicates (i.e., weighted MLN

constraints). In RegRocket, we follow the same approach of mapping from regression terms

to logical predicates, however, with two main modifications. The first modification is to ap-

ply this mapping on each regression term defined in the r − 1 binary regression models of

the multinomial case (Equation 5.1). For each prediction variable zi(λ) corresponding to a

non-pivot possible outcome λ at location li, each predictor-based regression term βλ,tj xλ,tj (i)

has an equivalent bitwise-AND predicate defined over zi(λ) and xλ,tj (i) (i.e., zi(λ) ∧ xλ,tj (i))

with weight βλ,tj . Similarly, each neighbour-based regression term ηλ,szk(s) has an equivalent

bitwise-AND predicate defined over zi(λ) and zk(s) with weight ηλ,s. Recall that all prediction

and predictor variables in Equation 5.1 are binary, and hence, it is valid to provide equivalent

logical predicates to them. The second modification is to define a constant predicate of value 1

and weight 0 for any prediction variable zi(p) corresponding to a pivot outcome p at location

li. The theoretical foundation of the proposed MLN-based multinomial autologistic model is

described in Section 5.3.1. Note that, using the proposed model, the autologistic regression pa-

rameters θ = {β, η} are translated into a set of weightsW of MLN constraints (i.e., proposed

equivalent bitwise-AND predicates), and hence learning the autologistic model parameters θ

becomes equivalent to learning the values ofW in MLN (See Section 2.2).

Example. Figure 5.2 shows an example of translating a multinomial autologistic regression

model into an equivalent MLN. This example defines a model with multinomial prediction

of 3 possible outcomes {0, 1, 2} (i.e., three binary prediction variables {zi(0), zi(1), zi(2)} at

each location li) where the pivot outcome is 0, and one multinomial predictor of 2 domain

values {0, 1} (i.e., four binary predictor variables {x1,01 (i), x2,01 (i), x1,11 (i), x2,11 (i)} at each lo-

cation li). The model is built for two neighbouring locations {l1, l2}. We first translate the

autologistic model into a set of 16 bitwise-AND predicates and 2 constant predicates along

with 4 predictor-based weights β1 = {β1,01 , β2,01 , β1,11 , β2,11 } and 6 neighbour-based weights

η = {η1,0, η1,1, η1,2, η2,0, η2,1, η2,2}. Then, these predicates are translated into a factor graph

which can be used to learn the weights β1 and η. Note that duplicate predicates that come

from neighbouring variables are removed to avoid redundancy (e.g., the neighbouring variables
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z1(2) and z2(2) have two equivalent z1(2) ∧ z2(2) and z2(2) ∧ z1(2) neighbour-based predi-

cates, respectively, however, we keep only one of them). Note that we follow the generalization

approach discussed in (Section 4.3.3) to extend this MLN-based model in case of more compli-

cated multinomial autologistic regression scenarios.

5.3.1 Theoretical Foundation of RegRocket using MLN

Theorem 2 Given an autologistic model defined over n locations L = {l1, ..., ln} with

• n multinomial prediction variables Z = {z1, ..., zn}, each has r possible outcomes

Dzi = {λ1, ..., λr}, and are represented with a set of nr binary variables {z1(λ1), ..., zn(λr)},

• m weighted multinomial predictor variables X (i) = {x1(i), ..., xm(i)} at each location

i, each has q possible domain values Dxj(i) = {t1, ..., tq}, and are represented with a set

of mq(r − 1) weighted binary variables {βλ1,11 xλ1,11 (i), ..., β
λr−1,q
m x

λr−1,q
m (i)}, where λr

is a pivot outcome of any multinomial prediction zi, and

• r(r − 1) neighbouring weights η = {ηλ1,λ1 , ..., ηλr−1,λr}

there is an equivalent Markov Logic Network (MLN) to this autologistic model, if and only if:

• each predictor-based regression term βλ,tj xλ,tj (i) at location li has an equivalent bitwise-

AND predicate zi(λ) ∧ xλ,tj (i) with weight βλ,tj , where λ is not a pivot outcome (i.e.,

λ 6= λr).

• each neighbour-based regression term ηλ,szk(s) at location li has an equivalent bitwise-

AND predicate zi(λ) ∧ zk(s) with weight ηλ,s, where λ is not a pivot outcome (i.e.,

λ 6= λr).

• each prediction variable zi(λr) at location li is associated with a constant predicate of

value 1 and weight 0.

Proof. Based on the conditional probabilities of multinomial autologistic model in Equation 5.1,

the probability of predicting any possible non-pivot outcome λ (i.e., λ 6= λr) at location li given

the predictor variablesX (i) at li and the neighbouring prediction variablesZNi can be estimated

as shown in following equation:
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Pr(zi(λ) = 1 | φi) = Pr(zi(λr) = 1 | φi) exp
( m∑
j=1

∑
t∈Dxj(i)

βλ,tj xλ,tj (i)+
∑
k∈Ni

∑
s∈Dzk

ηλ,szk(s)
)

(5.2)

where φi = {X (i),ZNi}. As a result, the probability of predicting the pivot outcome λr at

location li can be calculated as follows:

Pr(zi(λr) = 1 | φi) = 1−
∑

λ∈Dzi ,λ 6=λr

Pr(zi(λ) = 1 | φi)

= 1−
∑

λ∈Dzi ,λ 6=λr

Pr(zi(λr) = 1 | φi) exp
( m∑
j=1

∑
t∈Dxj(i)

βλ,tj xλ,tj (i) +
∑
k∈Ni

∑
s∈Dzk

ηλ,szk(s)
)

=
1

1 +
∑

λ∈Dzi ,λ 6=λr
exp

( m∑
j=1

∑
t∈Dxj(i)

βλ,tj xλ,tj (i) +
∑
k∈Ni

∑
s∈Dzk

ηλ,szk(s)
)

(5.3)

From equations 5.2 and 5.3, the probability distribution of any outcome prediction zi(λ) is

expressed as follows:

Pr(zi(λ) = 1 | φi) =



exp

(
m∑
j=1

∑
t∈Dxj(i)

βλ,tj xλ,tj (i)+
∑
k∈Ni

∑
s∈Dzk

ηλ,szk(s)

)
1+

∑
h∈Dzi ,h6=λr

exp

(
m∑
j=1

∑
t∈Dxj(i)

βh,tj xh,tj (i)+
∑
k∈Ni

∑
s∈Dzk

ηh,szk(s)

) λ 6= λr

1

1+
∑

h∈Dzi ,h6=λr
exp

(
m∑
j=1

∑
t∈Dxj(i)

βh,tj xh,tj (i)+
∑
k∈Ni

∑
s∈Dzk

ηh,szk(s)

) λ = λr

(5.4)

Now, assume a model that consists of nr + nmq(r − 1) binary random variables V =

{Z,X} = {z1(λ1), ..., zn(λr), xλ1,11 (i), ..., x
λr−1,q
m (i)}, coming from nr prediction and nmq(r−

1) predictor variables over all locations L. In addition, in case λ 6= λr, assume a set of con-

straints F = {F1, ..., Fn} are defined over variables V , where constraints Fi at location li

consist of two subsets of constraints:

• The first subset consists of mq(r − 1) bitwise-AND predicates zi(λ) ∧ xλ,tj (i) with β
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weights (each predicate corresponds to a predictor-based regression term).

• The second subset consists of r(r − 1)si bitwise-AND predicates zi(λ) ∧ zk(s) with η

weights (each corresponds to a neighbour-based regression term) where si is the size of

neighbouring locations Ni of location li.

Finally, in case λ = λr at each location li, assume one constant predicate of value 1 with

weight 0. Based on these assumptions, the model satisfies the two main properties in Section 2.3

that are needed to represent it using MLN, and hence its joint probability distribution over V is

estimated based on Equation 2.7 as follows:

Pr(Z,X ) =



1
C exp

( n∑
i=1

m∑
j=1

∑
(λ,t)∈Dzi×Dxj(i)

βλ,tj fλ,t(zi(λ), x
λ,t
j (i))

+
n∑
i=1

∑
k∈Ni

∑
(λ,s)∈Dzi×Dzk

ηλ,sfλ,s(zi(λ), zk(s))
)

λ 6= λr

1
C λ = λr

(5.5)

where fλ,t(.) and fλ,s(.) represent functions to evaluate the bitwise-AND predicates zi(λ) ∧
xλ,tj (i) and zi(λ) ∧ zk(s), respectively, and return either 1 or 0 as output. Note that in the

case of pivot outcome λr, we have a constant predicate of value 1 with weight 0, and hence its

probability becomes 1
C exp(0(1)) = 1

C , where C is the normalization constant of the model.

Based on Equation 5.5, the conditional probability distribution of any prediction variable

zi(λ) at location li given the predictor variables X (i) at li and its neighbouring prediction

variables ZNi (i.e., φi = {X (i),ZNi}) can be estimated as:

Pr(zi(λ) = 1 | φi) =



1
C exp

( m∑
j=1

∑
t∈Dxj(i)

βλ,tj fλ,t(1, x
λ,t
j (i))

+
∑
k∈Ni

∑
s∈Dzk

ηλ,sfλ,s(1, zk(s))
)

λ 6= λr

1
C λ = λr

(5.6)

where the normalization constant C is calculated over all possible outcomes of zi, to ensure the
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probability value of any outcome ∈ [0, 1], as follows:

C =
[ ∑
h∈Dzi ,h 6=λr

exp
( m∑
j=1

∑
t∈Dxj(i)

βh,tj fh,t(1, x
h,t
j (i))+

∑
k∈Ni

∑
s∈Dzk

ηh,sfh,s(1, zk(s))
)]

+exp(0)

= 1 +
∑

h∈Dzi ,h6=λr

exp
( m∑
j=1

∑
t∈Dxj(i)

βh,tj fh,t(1, x
h,t
j (i)) +

∑
k∈Ni

∑
s∈Dzk

ηh,sfh,s(1, zk(s))
)

Since all variables are binary, the evaluation of fλ,t and fλ,s can be represented as a mathe-

matical multiplication (i.e., the value of fλ,t(1, x
λ,t
j (i)) is xλ,tj (i) and the value of fλ,s(1, zk(s))

is zk(s)). As a result, the joint probability distribution of zi(λ) from Equation 5.6 becomes:

Pr(zi(λ) = 1 | φi) =



exp

(
m∑
j=1

∑
t∈Dxj(i)

βλ,tj xλ,tj (i)+
∑
k∈Ni

∑
s∈Dzk

ηλ,szk(s)

)
1+

∑
h∈Dzi ,h6=λr

exp

(
m∑
j=1

∑
t∈Dxj(i)

βh,tj xh,tj (i)+
∑
k∈Ni

∑
s∈Dzk

ηh,szk(s)

) λ 6= λr

1

1+
∑

h∈Dzi ,h6=λr
exp

(
m∑
j=1

∑
t∈Dxj(i)

βh,tj xh,tj (i)+
∑
k∈Ni

∑
s∈Dzk

ηh,szk(s)

) λ = λr

(5.7)

which is the same probability distribution of the autologistic model defined in Equation 5.4.

This means that the assumed model at the beginning, which can be represented with MLN, is

equivalent to the multinomial autologistic model.

5.4 Weights Learner

This is the most important module in RegRocket, which takes the spatially-indexed factor graph,

similar to TurboReg (See Section 4.6), along with learning configurations from the user and

returns the final weights θ = {β, η} of the multinomial autologistic model.

Main Idea. A typical solution to efficiently learn the unknown weightsW of any MLN model

is to provide an approximate log-likelihood function for the full joint probability distribution in

Equation 2.7 as follows [74]:

logPr(V = v) =

h∑
i=1

wifi(v)− logC (5.8)



76

Equation 5.8 provides an objective function to optimize when learning the weights W of

the model. As shown in [74], we can estimate the gradient of any weight wi as follows:

∂

∂wi
logPr(V = v) = fi(v)− E[fi(v)] (5.9)

where E[fi(v)] is the expected value of whether the i-th constraint (i.e., predicate) is satisfied

or not. Equation 5.9 can direct how to incrementally converge to the weights that maximize the

satisfaction of the MLN model. For example, by applying Equation 5.9 on the training data,

if the gradient value of weight wi is positive, then the current assignment of variables in fi(v)

increases the satisfaction of the MLN model, and hence the corresponding weight wi should be

rewarded (i.e., should be increased), otherwise it should be punished (i.e., should be decreased).

However, estimating the value of E[fi(v)] is known to be computationally-expensive in MLN

models and requires approximate inference algorithms [74, 176].

As a result, instead of contrasting the satisfied value of the i-th predicate fi(v) against its

expectation valueE[fi(v)] (Equation 5.9), RegRocket contrasts the estimated prediction value of

the autologistic model (Equation 5.1) where this predicate belongs to against the corresponding

observed prediction from the training data. This approximation has been shown in a recent

MLN-based application [2] to converge to the weights that maximize the satisfaction of the

MLN model as long as there is no predicate whose observed value is unknown in the training

data, which is the case of our regression models. In addition, this approximation is efficient-to-

compute as the prediction is estimated by a direct substitution in Equation 5.1 (i.e., no need for

approximate inference algorithms). As an example, to estimate the gradient value of the weight

βλ,tj of the predicate zi(λ) ∧ xλ,tj (i), RegRocket uses the following two items: (1) the estimated

prediction value ẑi(λv) based on the current value of xλ,tj (i), and (2) the observed value of

zi(λv) from the training data. If the estimated prediction ẑi(λv) is similar to the observed

prediction zi(λv), then the weight βλ,tj should be rewarded, otherwise it should be punished.

To that end, we adapt a variation of the weights learner in TurboReg (Section 4.7) that pun-

ishes and rewards the weights of the MLN-based multinomial autologistic regression. Specif-

ically, we provide a more efficient UPDATEWEIGHTS algorithm for the categorical case as

described below. Note that we use the same LEARNWEIGHTS algorithm (Algorithm 3) that has

been shown in Section 4.7.

UPDATEWEIGHTS Algorithm. Algorithm 5 gives the pseudo code for our weights optimizer
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that applies the gradient descent optimization [75] technique to incrementally update the values

of weights given a certain variable v (either non-pivot prediction or predictor) from the training

data. Assume the outcome that appears in v is λv. Similarly, in case v is a predictor variable, as-

sume the possible domain value in v is tv. The main idea is to punish or reward current weights

based on their performance in correctly estimating the prediction value zi(λv) at location li
where the variable v belongs to.

The algorithm takes the following inputs: a variable v that belongs to the training data, the

variables V and predicates P indexes in the grid cell containing v (i.e., graph index), and a step

size α that controls the amount of punishing/rewarding during the optimization process. The

algorithm keeps track of the current status of whether weights need to be punished or rewarded

through a variable g, where it takes either 1 in case of rewarding or−1 in case of punishing, and

is initialized by 1. The algorithm starts by estimating the prediction ẑi(λv) at location li that

contains v based on the current values of β and η using Equation 5.1. If the estimation ẑi(λv)

never matches the observed prediction value from the training data, then we set the status g

to −1 (i.e., the associated weight with current variable v needs to be punished), otherwise

the status remains rewarding. In case v is a predictor variable xλv ,tvj (i), we only update its

associated weight βλv ,tvj by evaluating the gradient descent equation using the current values of

g and α (Line 8 in Algorithm 5) and jump to the end of algorithm. In case v is the prediction

variable zi(λv) itself, we apply the gradient descent optimization on all weights β associated

with its predictors (Lines 10 to 12 in Algorithm 5), and on all weights η associated with the

neighbouring predicates (Lines 15 to 25 in Algorithm 5) as well.

Complexity. The complexity of the two aforementioned algorithms can be estimated as

O(
E

S

(n2r2 + nrmq(r − 1))

C
)

where nr is the number of prediction variables, mq(r− 1) is the number of predictor variables,

C is the number of factor graph partitions, E is the number of learning epochs and S is the

number of learning instances. This complexity can be further approximated to be O(ES
(n2r2)
C ).

Note that we assume having SC working threads to process C factor graph partitions in each

of the S learning instances in parallel.
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(a) MNLandCover Dataset (b) Ebird Dataset

Figure 5.3: Datasets Used in RegRocket Experiments.

5.5 Experiments

In this section, we experimentally evaluate the accuracy and scalability of RegRocket in building

multinomial autologistic models (i.e., learning their weights). To the best of our knowledge,

RegRocket is the first end-to-end system that supports multinomial autologistic regression. As

a result, we compare the performance of RegRocket with multinomial models built on top of a

state-of-the-art binary autologistic regression package, namely ngspatial [51]. Specifically, we

compare our performance with multinomial models built on top of the most accurate algorithm

in ngspatial that employs Bayesian inference using Markov Chain Monte Carlo (MCMC) [10].

In addition, we extensively investigate the performance of different variations of RegRocket

under different parameters including grid size, learning epoch, optimization step size, factor

graph partitioning and parallelism.

5.5.1 Experimental Setup

Datasets

All experiments in this section are based on the following two grid datasets:

• MNLandCover dataset, which represents the land cover distribution in Minnesota state

and is compiled from the USGS National Land Cover [171] and Multi-Resolution Land



79

Cover Consortium [172] data repositories. Figure 5.3(a) depicts the land cover distribu-

tion in Minnesota, where each grid cell is either crops (yellow color), forest (green color)

or others (blue color). Thus, we generate a multinomial (i.e., categorical) prediction vari-

able at each grid cell, where each variable takes one of these three possible values. As

shown in a recent study [177], the land cover prediction is influenced by three factors;

the elevation and slope of the ground as well as the distance to nearby roads. Based on

this study, we also generate three multinomial predictors corresponding to these factors

based on the elevation [178] and transportation [179] datasets of Minnesota at each grid

cell. Each predictor takes one value out of 11 possible values. We generate six versions

of this dataset with different grid sizes, ranging from 1000 to 1 million cells, to be used

during most of our experiments.

• Ebird dataset [150], which is a real dataset of the daily distribution of a certain bird

species, namely Barn Swallow, over North America. Each grid cell holds a predication

of the bird existence in the cell or not (i.e., binary prediction). Figure 5.3(b) shows the

Ebird data distribution, where blue dots refer to cells with bird existence. We generate

six versions of this dataset with different grid sizes, ranging from 250 to 84000 cells, to

be used during most of our experiments. This dataset has three multinomial predictors at

each grid cell including bird observers, observing duration, and the spatial area covered

by observers. Each predictor takes one value out of 3 possible values.

Parameters

Unless otherwise mentioned, Table 5.1 shows the settings of both MNLandCover and Ebird

datasets. We select the 250k and 84k variations of MNLandCover and Ebird, receptively, to be

used by default. In each dataset, we divide the cells in each grid into training and testing sets,

where we randomly select 20% of cells for testing and keep the rest for training. All training and

testing cells have ground truth predictions (i.e., no missing values). During the testing phase,

we use the following three inputs to perform the prediction at any testing cell: (1) the learned

regression model parameters, (2) the values of the predictors at this cell, and (3) the ground

truth predictions at the neighbours of this cell.

Table 5.2 also shows the default learning configurations that are used with RegRocket. In

most of the experiments, we run three variations of our system: the basic RegRocket that has
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pairwise neighbourhood relationships (i.e., neighbourhood degree of 1), and other two general-

ized variations with 4-ary and 8-ary neighbourhood relationships (i.e., neighbourhood degrees

of 4 and 8), referred to as RegRocket-4 and RegRocket-8, respectively (See Section 4.3.3). In

RegRocket-4, each predication has a bitwise-AND predicate over the vertical and horizontal

neighbours surrounding it (i.e., neighbours that share edges with this location only). Similarly,

in RegRocket-8, each predication has a bitwise-AND predicate over the whole 8 neighbours

(i.e., neighbours that share points with this location). Note that the neighbourhood relationships

are pre-specified and fixed during both the training and testing phases.

Tables 5.3 and 5.4 show the total number of predicates that are generated for both datasets

when using the basic RegRocket, RegRocket-4 and RegRocket-8 during our experiments.

Environment

We run all experiments on a single machine with Ubuntu Linux 14.04, 8 quad-core 3.00 GHz

processors, 64GB RAM, and 4TB hard disk.

Metrics

We use the total running time of learning weights as a scalability evaluation metric. To measure

the model accuracy, we use the following three metrics to evaluate the prediction quality of each

outcome λ (i.e., category):

• Precision (Prec.): the number of correctly predicted cells with the outcome λ over the

total number of predicted cells with the outcome λ.

• Recall (Rec.): the number of correctly predicted cells with the outcome λ over the total

number of testing cells that are actually labelled with λ from the ground truth.

• F1-score (F1): the harmonic mean of precision and recall for the outcome λ as:

2× (Prec.×Rec.)
Prec.+Rec.

To handle the multinomial case, we calculate these three metrics for each outcome, and then

report the average of each metric over the total number of outcomes.
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Parameter MNLandCover
Dataset

Ebird Dataset

Grid Training Size 200000 cells 67200 cells
Grid Testing Size 50000 cells 16800 cells
Number of Predictors 3 3
Number of Possible Predictor Values 11 3
Number of Possible Prediction Values 3 2

Table 5.1: Default Dataset-specific Parameters.

Parameter Default Value
Learning Epochs E 1000
Neighbourhood Degree D 1, 4, 8
Step Size α 0.001
Number of Threads 7
Factor Graph Partitions C 200

Table 5.2: Default Learning-specific Parameters.

Grid Size RegRocket RegRocket-4 RegRocket-8

1k 70k 66.8k 66.7k

4k 280k 267.7k 267.4k

15k 1.05m 1m 998.5k

60k 4.2m 4m 3.9m

250k 17.5m 16.7m 16.5m

1m 70m 66.9m 66.7m

Table 5.3: Number of Predicates for the MNLandCover dataset.

Grid Size RegRocket RegRocket-4 RegRocket-8

250 3.2k 2.4k 2.3k

1k 13k 9.8k 9.7k

3.5k 45.5k 34.7k 34.5k

5k 65k 49.7k 49.4k

21k 273k 209k 208.7k

84k 1.09m 838.8k 837.6k

Table 5.4: Number of Predicates for the Ebird dataset.
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5.5.2 Experimental Results

Effect of Grid Size

In this section, we compare the performance, both accuracy and scalability, of basic RegRocket

and two generalized variations RegRocket-8 and RegRocket-4 with ngspatial, while scaling up

the prediction grid size. In each experiment, either accuracy or scalability, we report the average

of 5 different runs (we follow the same approach in all the experiments in our work).

Tables 5.5 and 5.6 show the precision, recall and F1-score values for each algorithm while

scaling the grid size from 1k to 1 million cells in case of MNLandCover dataset, and from 250

to 84k cells in case of Ebird one, respectively. In all grid sizes, RegRocket and its variants

RegRocket-8 and RegRocket-4 were able to significantly achieve better precision, recall and F1-

score results than ngspatial. Specifically, in both datasets, RegRocket variants have an average

precision of 0.87, recall of 0.92, and F1-score of 0.85, while ngspatial has an average preci-

sion of 0.56, recall of 0.79, and F1-score of 0.62. This indicates the efficiency of RegRocket

in representing multinomial autologistic regression models. Note that the ngspatial results are

incomplete after a grid size of 15k cells in case of the MNLandCover dataset, and 3.5k cells in

case of the Ebird one, because of a failure in satisfying the memory requirements needed for

its internal computations. We can also observe that the F1-score achieved by any RegRocket

variation in both datasets is at least 0.65, which happens in the MNLandCover dataset with 1k

cells, and can reach up to 0.95 at some cases. In general, the accuracy for small datasets tend

to be lower than large ones due to the small number of grid cells used to train the model. As

we can see from the table, the basic RegRocket has at maximum 20% lower F1-score than both

RegRocket-4 and RegRocket-8. The reason for that is the basic RegRocket captures less accurate

neighbourhood dependencies than both of them. Note that RegRocket-4 and RegRocket-8 have

very close accuracy results in some cases. This happens when the significant information be-

tween neighbourhoods with degrees 8 and 4 is very little, which makes the accuracy in the two

cases are pretty similar.

Figures 5.4(a) and 5.4(b) depict the running time performance of each algorithm while using

the same grid sizes in tables 5.5 and 5.6. We can observe that the three RegRocket variants and

ngspatial have an average running time of 14 minutes and 8 hours, respectively. This means that

RegRocket is at least 34 times faster than ngspatial. The poor performance of ngspatial comes
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Grid Size Metric ngspatial RegRocket RegRocket-4 RegRocket-8

Prec. 0.498 0.746 0.872 0.731
1k Rec. 0.491 0.757 0.837 0.763

F1 0.476 0.653 0.708 0.683
Prec. 0.667 0.803 0.808 0.933

4k Rec. 0.601 0.834 0.856 0.871
F1 0.606 0.742 0.704 0.782
Prec. 0.671 0.804 0.906 0.962

15k Rec. 0.741 0.832 0.898 0.903
F1 0.635 0.721 0.841 0.834
Prec. N/A 0.822 0.913 0.976

60k Rec. N/A 0.821 0.919 0.919
F1 N/A 0.678 0.736 0.798
Prec. N/A 0.864 0.932 0.967

250k Rec. N/A 0.893 0.912 0.915
F1 N/A 0.839 0.781 0.806
Prec. N/A 0.878 0.929 0.961

1m Rec. N/A 0.908 0.931 0.895
F1 N/A 0.859 0.868 0.873

Table 5.5: Effect of Grid Size on Accuracy for the MNLandCover dataset.
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Figure 5.4: Effect of Grid Size on Scalability.

from two reasons: (1) although ngspatial relies on parallel processing in its sampling, prior esti-

mation and parameters optimization steps, it runs a centralized approximate Bayesian inference

algorithm [10]. In contrast, RegRocket is a fully distributed framework. (2) ngspatial requires
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Grid Size Metric ngspatial RegRocket RegRocket-4 RegRocket-8

Prec. 0.551 0.846 0.847 0.858
250 Rec. 0.951 0.966 0.976 0.985

F1 0.698 0.902 0.907 0.917
Prec. 0.503 0.801 0.876 0.883

1k Rec. 0.981 0.986 0.965 0.961
F1 0.665 0.884 0.918 0.921
Prec. 0.477 0.865 0.916 0.901

3.5k Rec. 0.977 0.991 0.992 0.985
F1 0.641 0.924 0.952 0.941
Prec. N/A 0.885 0.875 0.912

5k Rec. N/A 0.984 0.986 0.984
F1 N/A 0.932 0.927 0.947
Prec. N/A 0.864 0.866 0.895

21k Rec. N/A 0.984 0.991 0.991
F1 N/A 0.921 0.924 0.941
Prec. N/A 0.889 0.929 0.919

84k Rec. N/A 0.991 0.993 0.991
F1 N/A 0.937 0.956 0.954

Table 5.6: Effect of Grid Size on Accuracy for the Ebird dataset.

estimating a prior distribution for each predictor variable, and hence it suffers from a huge la-

tency before starting the actual learning process. Note that the ngspatial curve is incomplete for

grids with sizes more than 15k cells in case of the MNLandCover dataset, and 3.5k cells in case

of the Ebird one as in tables 5.5 and 5.6. We also find that in case of datasets with large grids

(e.g., 1 million cells in the MNLandCover dataset), both RegRocket-4 and RegRocket-8 achieve

lower latency overhead than basic RegRocket. For example, at 1 million case, RegRocket-4 and

RegRocket-8 variations are two times faster on average. This is because increasing the neigh-

bourhood degree leads to producing less number of predicates (See tables 5.3 and 5.4), and

hence less number of factor graph nodes to process, which makes the weights learning process

faster. In this experiment, the performance of the three RegRocket variations are almost similar

in case of small grid sizes (i.e., the average accuracy difference between the three variations is

less than 20 seconds). However, the difference becomes significant in the case of large grid sizes

(average of 600 seconds difference for grid size of 1 million cells). This shows that RegRocket

is efficient when scaling up the grid size regardless of the neighbourhood degree. Note that both

figures 5.4(a) and 5.4(b) follow a log-scale.
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Num. of Epochs Metric RegRocket RegRocket-4 RegRocket-8

Prec. 0.815 0.883 0.906
100 Rec. 0.845 0.864 0.854

F1 0.772 0.732 0.715
Prec. 0.864 0.932 0.967

1000 Rec. 0.893 0.912 0.915
F1 0.839 0.781 0.806
Prec. 0.881 0.931 0.966

10k Rec. 0.866 0.909 0.915
F1 0.826 0.785 0.795

Table 5.7: Effect of Learning Epochs on Accuracy for the MNLandCover dataset.

Num. of Epochs Metric RegRocket RegRocket-4 RegRocket-8

Prec. 0.849 0.899 0.909
100 Rec. 0.845 0.835 0.825

F1 0.847 0.866 0.865
Prec. 0.889 0.929 0.919

1000 Rec. 0.991 0.993 0.991
F1 0.937 0.961 0.954
Prec. 0.909 0.919 0.919

10k Rec. 0.925 0.935 0.995
F1 0.917 0.927 0.955

Table 5.8: Effect of Learning Epochs on Accuracy for the Ebird dataset.

Effect of Learning Epochs E

In this section, we evaluate the performance, both accuracy and scalability, of basic RegRocket,

RegRocket-4 and RegRocket-8, while having three different values of learning epochs. In the

following experiments, we fix the grid size in both datasets to the default values.

Tables 5.7 and 5.8 show the values of accuracy metrics for the three variations of RegRocket

while changing the number of epochs from 100 to 10k. The results show an interesting obser-

vation that all variations of RegRocket can rapidly converge to their optimal values of weights

(i.e., number of learning epochs 1000 only). The rapid convergence happens because weights

are shared among all locations which makes their values updated multiple times using the gra-

dient descent optimization in each epoch. As a result, RegRocket just needs a small number

of epochs for weights convergence. In general, basic RegRocket needed a higher number of
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Figure 5.5: Effect of Learning Epochs on Scalability.

epochs (i.e., 10k), compared to RegRocket-4 and RegRocket-8, to achieve higher accuracy. This

matches our performance hint that generalized variations such as RegRocket-4 and RegRocket-8

could be more efficient than the basic RegRocket.

Figures 5.5(a) and 5.5(b) show the running time for the different variations given the same

setup in tables 5.7 and 5.8. In general, RegRocket with all variations is extremely efficient be-

cause of the parallel processing of learning epochs in RegRocket. However, we observe that

RegRocket-8 significantly outperforms RegRocket-4 and RegRocket. It is at least 40% and 25%

faster than both of them in the MNLandCover and Ebird datasets, respectively. Note that Fig-

ure 5.5(a) follows a log-scale, but Figure 5.5(b) is not.

Effect of Optimization Step Size α

In this section, we evaluate the performance, both accuracy and scalability, of the different vari-

ations of RegRocket while varying the value of the step size α that is used during the execution

of gradient decent optimization. We use the same datasets used in the previous experiments.

Tables 5.9 and 5.10 depict the effect of increasing the value of step size from 0.0001 to

0.1. In general, the accuracy of all RegRocket variations decreases by increasing the step size

in both datasets. We also observe that the highest prediction accuracy tends to saturate in most

cases at value 0.001. The main reason behind this is that large step sizes lead to large updates

while optimizing the weights and hence they cannot smoothly converge to the optimal values.
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Step Size Metric RegRocket RegRocket-4 RegRocket-8

Prec. 0.829 0.921 0.966
0.0001 Rec. 0.816 0.789 0.915

F1 0.782 0.825 0.875
Prec. 0.864 0.932 0.967

0.001 Rec. 0.893 0.912 0.915
F1 0.839 0.781 0.806
Prec. 0.819 0.871 0.926

0.01 Rec. 0.806 0.838 0.875
F1 0.756 0.745 0.795
Prec. 0.779 0.861 0.916

0.1 Rec. 0.766 0.828 0.865
F1 0.676 0.745 0.785

Table 5.9: Effect of Optimization Step Size on Accuracy for the MNLandCover dataset.

Step Size Metric RegRocket RegRocket-4 RegRocket-8

Prec. 0.914 0.909 0.929
0.0001 Rec. 0.993 0.998 0.995

F1 0.952 0.951 0.961
Prec. 0.889 0.929 0.919

0.001 Rec. 0.991 0.993 0.991
F1 0.937 0.956 0.954
Prec. 0.879 0.909 0.899

0.01 Rec. 0.985 0.985 0.985
F1 0.929 0.945 0.941
Prec. 0.779 0.884 0.879

0.1 Rec. 0.985 0.895 0.895
F1 0.871 0.889 0.887

Table 5.10: Effect of Optimization Step Size on Accuracy for the Ebird dataset.

We conclude that the step size should be kept relatively small on average in RegRocket. How-

ever, this comes with higher latency as in figures 5.6(a) and 5.6(b) that show the corresponding

running times. For example, decreasing the step size from 0.01 to 0.001 in the MNLandCover

dataset incurs 26% additional latency overhead while running RegRocket-4.
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Figure 5.6: Effect of Optimization Step Size on Scalability.

Num. of Partitions Metric RegRocket RegRocket-4 RegRocket-8

Prec. 0.945 0.962 0.971
50 Rec. 0.894 0.931 0.912

F1 0.852 0.877 0.914
Prec. 0.913 0.954 0.961

100 Rec. 0.891 0.923 0.931
F1 0.843 0.812 0.861
Prec. 0.864 0.932 0.967

200 Rec. 0.893 0.912 0.915
F1 0.839 0.781 0.806
Prec. 0.782 0.812 0.815

300 Rec. 0.734 0.831 0.821
F1 0.689 0.701 0.712

Table 5.11: Effect of Number of Factor Graph Partitions on Accuracy for the MNLandCover
dataset.

Effect of Number of Factor Graph Partitions C

In this section, we evaluate the performance, both accuracy and scalability, of the different

variations of RegRocket while varying the number of factor graph partitions C from 50 to 300.

We use the same datasets used in the previous experiments with the default configurations.

Tables 5.11 and 5.12 show the effect of increasing the number of factor graph partitions

on the precision, recall and F1-score values. We observe that the F1-score values decrease

when increasing the number of partitions because the number of predicates that are replicated
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Num. of Partitions Metric RegRocket RegRocket-4 RegRocket-8

Prec. 0.967 0.944 0.968
50 Rec. 0.992 0.991 0.982

F1 0.979 0.967 0.975
Prec. 0.923 0.941 0.937

100 Rec. 0.971 0.981 0.983
F1 0.946 0.961 0.959
Prec. 0.889 0.929 0.919

200 Rec. 0.991 0.993 0.991
F1 0.937 0.959 0.953
Prec. 0.674 0.789 0.792

300 Rec. 0.782 0.712 0.812
F1 0.724 0.748 0.802

Table 5.12: Effect of Number of Factor Graph Partitions on Accuracy for the Ebird dataset.
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Figure 5.7: Effect of Number of Factor Graph Partitions on Scalability.

among partitions increases. This results in more iterations to update the weights as in shown in

Algorithm 5 (Lines 15 to 25), which makes the weights suffer from an over-fitting issue, and

hence the accuracy decreases. For example, in both datasets, when increasing the number of

partitions from 200 to 300, the F1-scores in case of RegRocket, RegRocket-8 and RegRocket-4

decrease by 17%, 10% and 11%, respectively, on average.

Figures 5.7(a) and 5.7(b) depict the running time for the different variations of RegRocket

given the same setup in tables 5.11 and 5.12. Increasing the number of partitions leads to more

parallelism, and hence the running time starts to decrease. However, increasing the number of
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Figure 5.8: Effect of Number of Threads on Scalability.

partitions after a certain threshold (e.g., 200) makes the running time overhead to handle the

predicates replication significant, and hence the whole running time slightly increases again.

For example, in both datasets, the average F1-score decrease is 30% in all variations when

changing the number of partitions from 100 to 200. After that, the F1-score starts to increase

due to the replication overhead. In our experiments, we choose the number of partitions to be

200 in order to balance between the accuracy and the running time.

Effect of Number of Threads

Figures 5.8(a) and 5.8(b) show the effect of increasing the number of threads from 1 to 8 on the

three variations of RegRocket for both datasets. These threads are used to parallelize the work

in the weights learner module of RegRocket. As expected, the performance of all variations

significantly improves by increasing the number of threads. For example, the running time

of the basic RegRocket using 8 threads is at least 4 times faster than using 1 thread in the

MNLandCover dataset. This shows the ability of RegRocket to scale up with system threads.

Note that the performance difference between 7 and 8 threads is almost the same because all

cores are exploited in both cases.
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5.6 Conclusions

This chapter presented RegRocket, a scalable framework for building multinomial autologis-

tic regression models to predict spatial categorical data. RegRocket focuses on the autologis-

tic models that consist of prediction and predictor variables with unordered categories. Re-

gRocket provides an efficient modeling for the multinomial autologistic regression problem

using Markov Logic Networks (MLN), which is a scalable statistical learning framework. Re-

gRocket employs an efficient gradient descent-based optimization technique to learn the autol-

ogistic model parameters. Experimental analysis using real data sets shows that RegRocket is

scalable and provides accurate capturing for the multinomial autologistic regression problem.
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Algorithm 5 Function UPDATEWEIGHTS (Variable v, VariablesIndex V , PredicatesIndex P ,
StepSize α)

1: if v is not a prediction variable for a pivot outcome, and belongs to the training data then
2: li← V[v].location, g← 1 /* Gradient Value */
3: ẑi(λv)← Prediction of outcome λv at li using β and η (Equation 5.1)
4: if V[v].value 6= ẑi(λv) then
5: g← -1
6: end if
7: if v is any predictor variable xλv ,tvj (i) ∈ X (i) then
8: βλv ,tvj ← βλv ,tvj + α g /* Gradient Descent on βλv ,tvj */
9: else

10: for each βλv ,tvj ∈ β do
11: βλv ,tvj ← βλv ,tvj + α g /* Gradient Descent on βλv ,tvj */
12: end for
13: end if
14: if v is prediction variable zi(λv) then
15: for each p ∈ P[v] do
16: if p is a neighbour-based predicate then
17: ẑk(sp)← Prediction of outcome sp at neighbour lk in p using β and η
18: if V[vk].value 6= ẑk(sp) then
19: g← -1
20: else
21: g← 1
22: end if
23: ηλv ,sp ← ηλv ,sp + α g /* Gradient Descent on ηλv ,sp */
24: end if
25: end for
26: end if
27: end if



Chapter 6

Flash: Scalable Spatial Data Analysis
Using Markov Logic Networks

6.1 Introduction

Spatial data analysis has grabbed significant attention from both industry and academia (see [180]

for a comprehensive survey). The main objective is to extract insights and useful patterns from

spatial data (e.g., satellite images [15], geotagged tweets [5]). Spatial data analysis has been

employed in many crucial applications in different domains (e.g., public health [142, 181, 182],

transportation [183,184], environmental science [185–187], climatology [188–190], market an-

alytics [191], and biology [192]). For example, environmentalists analyze geotagged tweets

to predict the people who might need help during disasters [193]. Epidemiologists use spatial

analysis techniques to identify cancer clusters [23]. As a result, researchers and practitioners

worldwide have released many spatial analysis systems and libraries. Examples of these sys-

tems include GeoDa [94], spBayes [194], GDAL [195], PySAL [196], ngspatial [51], CrimeS-

tat [197], ESRI ArcGIS [198] (see [180, 199] for a comprehensive survey).

Existing spatial analysis solutions suffer from two main issues. First, they can not scale

beyond implementing prototypes over small spatial datasets (e.g., see [51, 55]) (scalability is-

sue). The scalability challenge is mainly because these solutions were not originally designed

for the huge amounts of spatial data being generated at the moment (e.g., there are 10 Million

geotagged tweets issued every day [5]). Second, these solutions are specifically tailored for

domain-specific applications (e.g., a spatial hidden Markov model for animal tracking [200],

93
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and a statistical learning approach for crime analysis [197]) (non-generic issue). As a result,

to employ a spatial analysis technique in a new application, a developer/user would need to

re-implement and optimize such technique at the application layer. This is inconvenient for a

non-expert application developer who might not be quite familiar with efficient implementations

of spatial data analysis techniques.

In this chapter, we present Flash; a framework for generic and scalable spatial data analysis.

Flash achieves orders of magnitudes scalability gain over existing solutions while preserving the

same accuracy. It focuses on building a major class of spatial analysis techniques, called spatial

probabilistic graphical modeling (SPGM), which uses probability distributions and graphical

representations (e.g., spatial Bayesian networks [201]) to describe spatial phenomena and make

predictions about them [180]. SPGM has many applications including health care [12], risk

analysis [57], and environmental science [58].

Flash exploits the Markov Logic Networks (MLN) framework [1] to express SPGM with

logical semantics, and allow developers to implement their applications using a set of rules

instead of thousands of lines of code. To support scalability, Flash translates the generated

MLN rules of any SPGM application into SQL queries using a grounding technique from [36],

and then executes these queries inside scalable database engines (e.g., PostgreSQL). In addition,

Flash provides spatial variations of the RDBMS-based learning and inference algorithms of

MLN [66] to perform scalable SPGM predictions (e.g., predictions over probabilistic models

with millions of nodes). Using Flash, a myriad of spatial applications can be built without the

need to worry about the underlying SPGM computation. To show the effectiveness of Flash,

we use it to provide the MLN-based representation of three popular SPGM models including

spatial Markov random fields (SMRF) [11], spatial hidden Markov models (SHMM) [12] and

spatial Bayesian networks (SBN) [55].

We experimentally evaluate Flash by building three spatial analysis applications, where

Flash is used to implement their underlying SPGM: (1) Bird monitoring: an application that

uses spatial Markov random fields (SMRF) to predict the existence of a specific bird species,

namely Barn Swallow, over North America. This application uses Ebird dataset [150] con-

taining more than 360 Million bird observations at 84K location cells. (2) Safety analysis: an

application that uses spatial hidden Markov models (SHMM) to determine the safety level at

different locations based on the reported incidents. As a case study, we assess the safety in

Chicago based on its official crime data repository [202], that has around 7 Million reported
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incidents. (3) Land use change tracking: an application that uses spatial Bayesian networks

(SBN) to analyze where the change in land use is most likely to occur. This application uses

a grid dataset containing one Million cells of land cover distribution over Minnesota state, and

is compiled from national land cover data repository [171]. For each application, we com-

pare the accuracy and scalability of the built SPGM models using Flash and the state-of-the-art

computational methods, where we show the efficiency of Flash in building SPGM models.

The rest of this chapter is organized as follows: Section 6.2 gives an overview of the Flash

architecture. Section 6.3 describes the MLN-based implementations of SMRF, SHMM and

SBN models as case studies for Flash. Section 6.4 provides an experimental evaluation of

Flash. Finally, Section 6.5 concludes the chapter.

6.2 Flash Overview

Figure 6.1 depicts the system architecture of Flash. It has two types of users; administrator

and client. An administrator should have expertise with both MLN and SPGM to provide

user-defined functions for transforming spatial graphical models into a set of first-order logical

rules [14]. A client can be either application developer or casual user. She can build the SPGM

of any application by specifying some settings as input. The built model will be stored in a

relational database (e.g., PostgreSQL) as a factor graph [7]. A client can also issue learning and

prediction queries over the built models. Learning queries can fit the parameters of a specific

model to input application data (e.g., hidden Markov model parameters). Prediction queries can

answer relevant questions about the model (e.g., what is the probability of a specific event to

happen?). As depicted in Figure 6.1, Flash consists of the following four main modules:

MLN Transformation. For any SPGM input, this module is responsible on generating an

equivalent set of weighted rules containing logical predicates (e.g., bitwise-AND, and imply).

These weights represent the original SPGM parameters. The generated rules follow the syntax

of an efficient Datalog-like logic programming framework, called DDlog [2]. Flash chooses

DDlog because of its DBMS-friendly schema declaration and rules syntax that can be efficiently

processed during the model building module. Currently, Flash supports transformation for three

spatial graphical models; spatial Markov random fields (SMRF) [11], spatial hidden Markov

models (SHMM) [12], and spatial Bayesian networks (SBN) [55] (Details are in Section 6.3).
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Figure 6.1: Flash System Overview.

Model Building. The generated logical rules from the MLN transformation module are con-

sidered templates for constructing factor graphs [7]. As a result, Flash adapts a scalable factor

graph grounding technique from [36] to efficiently translate these rules into SQL queries, and

then apply such queries on the input application data to obtain the final output that is equivalent

to the SPGM input.

Inference Engine. Flash evaluates the prediction queries using Gibbs sampling-based infer-

ence algorithms over factor graphs [66]. However, such algorithms perform sequential sampling

over the factor graph nodes which results in slow convergence to the inference answer in case

these nodes have spatial dependencies as in SPGM applications [88]. To overcome this limi-

tation, Flash employs a variation of Gibbs Sampling that exploits a concliques-based traversal

pattern [88] to efficiently sample spatially-dependent nodes. A conclique is a set of nodes such

that no two nodes in this set are spatially neighbours. The main idea behind defining concliques
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Figure 6.2: SMRF, SHMM, and SBN Representations in Flash.

is ensuring the neighbouring independence between nodes in the same conclique set, and hence

these nodes can be sampled in parallel.

Learning Engine. Flash employs a pseudo-likelihood learning algorithm to learn any unknown

weights of the generated MLN rules (i.e., SPGM parameters) from the factor graph. This al-

gorithm repeatedly uses the proposed spatial variation of Gibbs sampling-based inference algo-

rithm in the inference engine to compute the gradient of the SPGM pseudo-likelihood and then

determine the weights using an efficient gradient descent optimization technique.

6.3 Case Studies in Flash

Flash supports the implementation of three common spatial graphical models; spatial Markov

random fields (SMRF) [11], spatial hidden Markov models (SHMM) [12], and spatial Bayesian

networks (SBN) [55], as case studies. Figure 6.2 gives toy examples on the logical represen-

tation of these three models in Flash, where each model is defined over 4-cells grid, and the

neighborhood of any cell l is assumed to be the cells that share edges with l only.
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6.3.1 Spatial Markov Random Field (SMRF)

Spatial Markov random fields (SMRFs) are powerful and important tools for modeling spatial

data and building analysis applications. They have been widely used in different areas of spatial

statistics [161, 165, 167]. As with many other areas of statistics, a major challenge for spatial

analysts is dealing with massive data sets. This is particularly problematic for SMRFs due to the

need for matrix operations that involve very large matrices can be computationally prohibitive,

specially in the case of Gaussian processes. Existing approaches tried to solve the scalability

issues in two categories. The first category focused on developing fast matrix computations that

exploit the sparsity of matrices in SMRF models (e.g., [203, 204]). However, utilizing sparsity

does not seem to be among the more promising strategies as it does not fit the dense data

cases. The second category introduced fast likelihood approximations for the Gaussian-based

SMRF models (e.g., [205, 206]). However, this category is not generic enough to capture other

arbitrary SMRF models (i.e., the interactions between random variables in the SMRF model are

not captured with multivariate Gaussian distributions).

In contrast to these existing approaches, Flash provides a scalable approach for SMRF

models by introducing a first-order logic representation, where there is an equivalent weighted

bitwise-AND predicate for each pair of connected variables. In this case, the predicates’ weights

correspond to the SMRF parameters that need to be learned. Figure 6.2(a) shows a small SMRF

model with a prediction Pl and feature Fl at each cell l. Each prediction Pl has undirected

edges with feature Fl at this cell and each neighboring prediction variable. For example, P2 is

connected with feature F2 and neighbors P1 and P4.

6.3.2 Spatial Hidden Markov Models (SHMM)

The hidden Markov model (HMM) is a doubly embedded stochastic method based on proba-

bility theory, which can be used in a sequence labeling problem. It describes the process of

randomly generating non-observable state sequences from a hidden Markov chain and generat-

ing an observation from each state to produce an observable sequence. In spatial hidden Markov

model (SHMM), the sequences are generated on spatially-correlated random variables.

While all existing SHMM solutions are innovative, they face severe scalability issues when

dealing with big spatial data. The scalability challenge is mainly because these solutions were

not originally designed for the big data era or to exploit new high performance computing
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environments [207]. In contrast, Flash scales up the performance of SHMM by providing an

equivalent MLN representation, where any state/state or observation/state pair is mapped to

a weighted imply predicate, and the resulting weights correspond to the SHMM parameters.

Figure 6.2(b) shows a small SHMM model with a hidden state Pl and observation Ol variables

at each cell l. Each observation Ol has a directed edge to state Pl at this cell. In addition,

SHMM imposes an ordered spatial dependence among neighboring locations, where it uses

z-curve ordering technique to build a sequence that preserves the spatial dependence between

prediction variables (e.g., P1 has a directed edge to P2, and P2 has another one to P3, etc).

6.3.3 Spatial Bayesian Networks (SBN)

Numerous applications model the probability of an input event to occur based on other causal

events that have spatial dependencies with the input event. These applications include mete-

orology [56], risk analysis [57, 208], and environmental science [58, 209–211]. For example,

wildlife managers determine the success probability of a certain conservation plan based on

events about the distribution of animal species in neighboring locations [211]. Business ana-

lysts forecast the budget and likely costs of water infrastructure networks based on failure events

in water mains at neighboring sites [208]. A typical solution to model the causal dependencies

between events in all these applications is to employ spatial Bayesian networks (a.k.a spatial

Bayesian belief networks) [13, 212]. These networks are directed probabilistic graphs whose

nodes represent variables corresponding to events over neighboring locations, and the edges

represent the casual relationships between these variables. For example, two events ”rain” and

”flood” at neighboring locations x and y, respectively, can be represented as two random vari-

ables, where the rain variable is a cause (i.e., parent node in the graph) for the flood variable.

Existing solutions of spatial Bayesian networks can not scale beyond implementing pro-

totypes over small spatial and spatio-temporal datasets [13, 55]. Meanwhile, Markov Logic

Networks (MLN) are recently used to scale up the performance of classical Bayesian networks

that do not consider spatial dependencies between random variables (e.g., Bayesian Logic Net-

works [213] and ProbCog [214]).

In Flash, we exploit Markov Logic Networks (MLN) to represent the SBN models. Flash

provides an equivalent weighted combination of bitwise-OR and negation predicates for each

causality relation (i.e., directed edge). The weights of these predicates are calculated from the

input prior probabilities of SBN. Figure 6.2(c) shows a small SBN model with a prediction
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variable Pl at each cell l which is affected directly by a status variable Cl and indirectly by a

feature variable Fl (i.e., Fl has a direct edge to Cl). In addition, each prediction Pl is affected

by the status variables at the neighboring cells.

6.4 Experiments

In this section, we experimentally evaluate the accuracy and scalability of Flash in building

SPGM models for three spatial analysis applications. In these applications, we compare the

performance of Flash with ngspatial [51], shmm [200], and bnspatial [55] tools when building

SMRF [11], SHMM [12], and SBN [55] models, respectively.

6.4.1 Experimental Setup

Applications. The details of the three applications, along with their datasets, used in our exper-

iments are described as follows:

• Bird Monitoring. This application predicts the existence of a bird species across a certain

area. Ornithologists model this problem using SMRF [51] as shown in [215], where

the area is divided by a two-dimensional grid. Each grid cell holds a binary prediction

variable indicating the presence or absence of the bird at this cell, and a set of feature

variables that help predicting the value of this prediction variable. Then, the prediction at

any cell is determined based on the values of feature variables at this cell along with a set

of predicted or observed values at neighbouring cells. As a case study, we use the daily

distribution of a certain bird species, namely Barn Swallow, from Ebird dataset [150],

which contains more than 360 Million observations collected over North America. We

define a grid of 84K cells, and map each observation to one cell. Then, we build the

SMRF-based prediction model of the bird existence at cells with no observations.

• Safety Analysis. The objective of this application is to infer the safety level (e.g., low,

medium and high) at a bunch of neighbouring locations simultaneously based on re-

ported incidents at these locations. This application has been usually represented with

SHMM [12] as shown in [216], where the safety level at each location is considered

a hidden state to be predicted and the reported incident at this location is an observation

that affects the prediction value. As a case study, we use the official Chicago crime dataset
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Figure 6.3: Effect of Grid Size on Scalability and Accuracy for SMRF Model.

repository [202], which contains around 7 Million reported incidents (i.e., observations)

over 500K grid locations.

• Land Use Change Tracking. The objective of this application is to determine whether

there will be a change in the land use or not. For example, the land in a location l could

be suitable for agriculture, however, given certain factors (e.g., crowded neighbourhoods),

it is expected to be for human use soon. We model this application as SBN problem. As

a case study, we use a grid dataset containing one Million cells of land cover distribution

over Minnesota state, and is compiled from national land cover data repository [171].

In each application, we randomly select 15% of the grid cells of its input data as testing

data, and use the rest 85% for training any SPGM model.

Environment. We run all experiments on a single machine with Ubuntu Linux 14.04. Each

machine has 8 quad-core 3.00 GHz processors, 64GB RAM, and 4TB hard disk.

Metrics. In all experiments, we use the total running time of learning the parameters of any

SPGM model as a scalability evaluation metric, and the ratio of correctly predicted cells using

the learned model to the total number of test cells as an accuracy evaluation metric.
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6.4.2 Experimental Results

Study of SMRF Scalability and Accuracy

In this section, we compare the performance, both scalability and accuracy, of Flash with ngspa-

tial [51], when learning and using the SMRF models that are built for five different sizes of Ebird

grid data (Bird Monitoring Application).

Figure 6.3(a) shows the running time for each algorithm to learn the SMRF parameters

while scaling the grid size from 250 to 84k cells. For the five grid sizes, Flash was able to

significantly reduce the running time compared to ngspatial. Specifically, Flash and ngspatial

have an average running time of 4.7 seconds and 5.5 hours, respectively. This means that Flash

has at least three orders of magnitude reduction in the running time over ngspatial. Note that

the ngspatial curve in Figure 6.3(a) is incomplete after a grid size of 3.5k cells because of a

failure in satisfying the memory requirements needed for its internal computations. In contrast,

the running times for Flash are complete. This shows the Flash efficiency when scaling up the

grid size regardless of the model specified.

Figure 6.3(b) shows the accuracy for each algorithm while using the same grid sizes in

Figure 6.3(a). As mentioned before, we divide the cells in each grid into training and testing

sets, where we randomly select 15% of cells for testing and keep the rest for training. We repeat

this process 5 times and then average the accuracy results (we follow the same approach in the

whole accuracy experiments in our work). As can be seen in the figure, Flash has almost the

same accuracy achieved by ngspatial at small grid sizes, while it is slightly more accurate (4%

more) than ngspatial at the grid size of 3.5k cells. Note that the ngspatial curve is incomplete

for grids with sizes more than 3.5k cells as in Figure 6.3(a).

Study of SHMM Scalability and Accuracy

In this section, we compare the performance, both scalability and accuracy, of Flash with

shmm [200], when learning and using the SHMM models that are built for five different sizes

of Chicago crime grid data (Safety Analysis Application).

Figure 6.4(a) shows the running time for each algorithm while scaling the grid size from

50 to 500k cells. We can observe from the results that Flash has an average three orders of

magnitude less running time than shmm. In contrast to ngspatial in Figure 6.3(a), shmm is more

scalable to relatively large grid sizes (e.g., 50k cells), but, still can not complete the running for

huge grid sizes like 500k cells.
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Figure 6.5: Effect of Grid Size on Scalability and Accuracy for SBN Model.

Figure 6.4(b) shows the prediction accuracy for each algorithm while using the same grid

sizes in Figure 6.4(a). We observe that Flash is consistently more accurate than shmm at all

grid sizes, however, Flash has larger improvement ratio when the grid size becomes larger (the

improvement ratio can reach to 18%). Note that the shmm curve is also incomplete for the grid

with 500k cells as in Figure 6.4(a).
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Study of SBN Scalability and Accuracy

In this section, we compare the performance, both scalability and accuracy, of Flash with bnspa-

tial [55], when learning and using the SBN models that are built for six different sizes of Min-

nesota land use data (Land Use Tracking Application).

Figure 6.5(a) shows the running time for each algorithm while scaling the grid size from 1k

to 1 million cells. In general, Flash is much faster than bnspatial in all cases, however the ratio

of improvement in case of SBN is less than its counterpart in SHMM. We observe from the

results that Flash has at least two orders of magnitude less running times than bnspatial. The

running times of Flash range from 0.6 sec (minimum value) to 20 hours (maximum value).

Figure 6.5(b) shows the accuracy for each algorithm while using the same grid sizes in

Figure 6.5(a). As shown in the figure, Flash does not improve so much over the accuracy already

obtained by bnspatial. In general, the main objective of Flash is to speed up the computation

steps of SPGM models, while keeping the same accuracy obtained by the best state-of-the-art

techniques or increasing it, if possible.

6.5 Conclusions

The current explosion in spatial data raises the need for efficient spatial analysis tools to ex-

tract useful information from such data. In this chapter, we present Flash; a framework for

scalable spatial data analysis, with a special focus on spatial probabilistic graphical modeling

(SPGM), based on Markov Logic Networks (MLN). The main idea is to express any SPGM

application as a set of first-order logical rules (i.e., declarative logical rules) that are compatible

with MLN, and then execute these rules using spatial-aware statistical learning and inference

algorithms. To show Flash effectiveness, we built three popular SPGMs: spatial Markov ran-

dom fields (SMRF) [11], spatial hidden Markov models (SHMM) [12] and spatial Bayesian

networks (SBN) [55]. Experimental evidence, based on three real spatial analysis applications,

shows that Flash has at least two orders of magnitude speed up in learning the SPGM model

parameters over state-of-the-art techniques.



Chapter 7

Conclusion

Spatial data has become ubiquitous everywhere, e.g., GPS data, satellite images, medical data,

with increasingly sheer sizes. This raises the need for efficient spatial machine learning and

analysis solutions to extract useful insights from such data. Meanwhile, Markov Logic Net-

works (MLN) have emerged as a powerful framework for building usable and scalable machine

learning tools. Unfortunately, the MLN framework is ill-equipped for spatial applications be-

cause it ignores the distinguished spatial data characteristics. In this thesis, we showed how we

adopt the MLN framework for big spatial data and applications. In particular, we focused on

two orthogonal, but related, research directions.

The first research direction is to provide a native support for spatial data inside the MLN-

based applications, and hence leads to a higher accuracy for such applications. As a case study,

we introduced Sya (Chapter 3); the first spatial probabilistic knowledge base construction sys-

tem. Sya injects the awareness of spatial relationships inside the MLN grounding and inference

phases, which are the pillars of the knowledge base construction process, and hence results in

a better knowledge base output. In particular, Sya generates a probabilistic model that captures

both logical and spatial correlations among knowledge base relations. It provides a simple

spatial high-level language, a spatial variation of factor graph, a spatial rules-query translator,

and a spatially-equipped statistical inference technique to infer the factual scores of knowledge

base relations. In addition, Sya provides an optimization that ensures scalable grounding and

inference for large-scale knowledge bases. Experimental evidence, based on building two real

knowledge bases with spatial nature, shows that Sya can achieve 70% higher F1-score on av-

erage over the state-of-the-art DeepDive system, while achieving at least 20% reduction in the

execution times of grounding and inference phases.

105
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The second research direction is to exploit the MLN framework to scale up the performance

of core spatial data analysis operations. In this direction, we proposed efficient MLN-based

solutions for two important operations; autologistic regression (Chapter 4 and 5) and spatial

probabilistic graphical modeling (Chapter 6), as follows:

• Autologistic regression is one of the most popular statistical tools to predict spatial phe-

nomena in several applications including epidemic diseases detection, species occurrence

prediction, earth observation and business management. In general, autologistic regres-

sion divides the space into a two-dimensional grid, where the prediction is performed

at each cell in the grid. The prediction at any location is based on a set of predictors

(i.e., features) at this location and predictions from neighboring locations. In this thesis,

we address the problem of building efficient autologistic models with both binary and

multinomial (i.e., categorical) prediction and predictor variables. Unfortunately, existing

methods to build autologistic models are computationally expensive and do not scale up

for large-scale grid data (e.g., fine-grained satellite images). Therefore, we introduced

TurboReg and RegRocket, which are MLN-based systems to scale up the performance

of binary and multinomial autologistic regression, respectively. These systems consider

both the accuracy and efficiency aspects when learning the regression model parameters.

They provide an equivalent representation of the prediction and predictor variables using

MLN where the dependencies between these variables are transformed into first-order

logic predicates. Then, they employ an efficient framework that learns the model pa-

rameters from the MLN representation in a distributed manner. Extensive experimental

results based on two large real datasets show that RegRocket can build multinomial autol-

ogistic models, in minutes (i.e., almost three orders of magnitude faster than the best of

existing techniques), for 1 million grid cells with 0.85 average F1-score.

• Spatial probabilistic graphical modeling is a crucial operation in many spatial analysis

applications (e.g., meteorology, and environmental science). However, existing tools are

neither generic nor scalable when dealing with big spatial data. Therefore, we intro-

duced Flash; a framework for generic and scalable spatial data analysis. Flash exploits

the expressiveness of MLN to represent the spatial probabilistic graphical models as a

set of declarative logical rules. In addition, it provides spatial variations of the scalable
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RDBMS-based learning and inference techniques of MLN to efficiently perform predic-

tions. We have employed Flash to provide the MLN-based representation of three pop-

ular SPGM models including spatial Markov random fields (SMRF) [11], spatial hidden

Markov models (SHMM) [12] and spatial Bayesian networks (SBN) [55]. Experimen-

tal evidence, based on three real spatial analysis applications, shows that Flash has at

least two orders of magnitude speed up in learning the SPGM model parameters over

state-of-the-art computational methods.
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