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Abstract 

This research investigated comprehensively the effects of genetics on behavioral 

traits, brain structure and function, and their associations in a large cohort of 

monozygotic (MZ) twins, dizygotic (DZ) twins, non-twin siblings (SIB) and non-related 

(NR) individuals (N = 1206, total) provided by the Human Connectome Project (HCP). 

All primary measures available are of the highest quality and quantitatively assessed. 

They include the following for each individual: (a) Measures of behavioral traits in 5 

domains (motor, sensory, cognitive, emotion, and personality); (b) volumes of 70 cortical 

brain areas extracted from high-resolution (0.7 mm isotropic) structural magnetic 

resonance imaging (sMRI) data; (c) resting-state blood oxygenation level dependent 

(BOLD) activity of the same areas extracted from long-duration (1200 volumes), fast-

acquisition (every 0.72 s), high-resolution (2 mm isotropic) functional MRI (fMRI) data; 

and (d) white matter integrity measures (fractional anisotropy [FA] and mean diffusivity 

[MD] for 7 brain regions regions) derived from high angular resolution diffusion imaging 

(HARDI) MRI (dMRI) data at 1.25 mm spatial resolution and very strong magnetic field 

gradients at (100 mT/m). Data extraction and preprocessing was performed using a 

dedicated 704-processor high-performance computer cluster at the Brain Sciences Center 

using Matlab. Univariate and multivariate statistical analyses were carried out in personal 

computers using Matlab and IBM-SPSS (version 24). These analyses include the 

following. (a) Computation of common univariate statistics (mean, variance, etc.); (b) 

computation of intra class correlation (ICC) for each of the 4 genetic groups (MZ, DZ, 

SIB, NR) and its z-transform [zICC = atanh(ICC)] for each primary measure above; (c) 
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analysis of variance (ANOVA) of zICC across genetic groups for each measure; (d) 

computation of heritability using Falconer’s formula; (e) multidimensional scaling 

(MDS) and hierarchical tree clustering (HTC) of this heritability for the different data 

sets (behavioral, sMRI, fMRI, dMRI). These analyses yielded substantial new 

information on the effects of genetics on brain and behavior, and partially elucidated 

underlying associations among the various diverse measures above. To our knowledge, 

this is the first such comprehensive study carried out.   
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Chapter 1 Overview  

Magnetic Resonance Imaging (MRI) is a medical diagnostic technique that creates 

images of the human body using the principle of nuclear magnetic resonance. MRI allows 

for a multifaceted, noninvasive study of the brain structure and function. Neuroimaging 

and genetics are an intersection of two areas of research, aimed at improving the 

understanding of the genetic underpinnings of brain structure, function, and connectivity 

for both the healthy and diseased brain. The advances and availability of the high-quality 

data from the Human Connectome Project (HCP), provides a unique and unprecedented 

opportunity to evaluate genetic effects on a multitude of neural and behavioral measures, 

making it feasible to systematically explore the human connectome. This research 

analyzes three neuroimaging modalities, structural magnetic resonance imaging (sMRI), 

functional magnetic resonance imaging (fMRI), and diffusion magnetic resonance 

imaging (dMRI). In addition to the neuroimaging data, there are large amount of 

behavioral data across 5 domains: motor, sensory, cognition, emotion and personality.  

The HCP participants were grouped into four distinct genetic groups: monozygotic (MZ) 

twins, dizygotic (DZ) twins, siblings (SB) and unrelated participants (NR) in order to 

analyze their neuroimaging and behavioral data. Heritability calculations are conducted 

using Falconer’s formula to estimate the genetic contribution of various behavioral 

measures, structural and functional brain measures, and their association, in order to 

obtain a quantitative estimate of the contribution of heritability.  
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1.1 Organization of dissertation: 

Chapter 1 provides the background information on the concepts used throughout the 

chapters: heritability, twin studies, statistical methods, and neuroimaging techniques.  

Chapter 2 presents Behavior. The measures were collected using reliable and 

validated measures to assess a wide array of functions and behaviors from 5 domains: 

motor, cognition, emotion, personality, and sensory. The 5 domains were used to 

calculate heritability estimates.  

Chapter 3 analyzes dMRI, the images are micro-architectural detail of white matter 

tracts and provides information about white matter integrity. Fractional anisotropy (FA) 

and mean diffusivity (MD) of 7 representative white matter regions will be extracted 

from high-resolution diffusion weighted imaging acquisitions and heritability analysis 

were performed using the 4 genetic groups. 

Chapter 4 is sMRI and is used to study the anatomy and the volume of the brain. 

Volumes of 70 cortical brain areas (35 per hemisphere) were extracted from high 

resolution (0.7 mm isotropic) T1 and T2 weighted scans using the FreeSurfer (FS) 

software package. Participants were grouped into four distinct genetic groups and brain 

volume and heritability analysis was conducted.  

Chapter 5 is fMRI which is used to study connectivity in the brain while the 

participant is lying “at rest” in the scanner. The ARMIA (15,1,1) model is used to pre-

whiten the BOLD signal and the innovations are used quantify the heritability of the 

BOLD signal innovations using the 4 genetic groups.  

Chapter 6 summarizes the result of this multimodal study. 
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1.2 Heritability 

Heritability is a term that can cause confusion because it is both used in common 

everyday speech and also as a technical term in genetics (Visscher et al., 2008). In 

common speech heritability loosely means ‘being heritable’, but as a technical term in 

genetics heritability is a population parameter with exact definitions. Specifically, 

heritability is the proportion of variance in a particular trait or phenotype in a population 

that is due to genetic variation, as opposed to environmental influences (Visscher et al., 

2008). Heritability can range from 0 (no genetic contribution) to 1 (all differences on a 

trait reflect genetic variation). There are two important points of the definition. (1) 

Heritability does not apply to individuals but to variations within a group (or population). 

And (2) the estimate of heritability is not fixed but can change. Differences among 

groups in a range of genetic variation and/or environmental variation will result in 

different estimates of heritability. Thus, heritability of a trait depends critically on the 

environment. Even if two genetically identical populations were considered, if the 

environment were different, then heritability could differ, depending on the magnitude of 

the effect of the environment on the trait. “Although calculating heritability can be 

complex, one fact that can be exploited to calculate heritability is the fact that identical 

twins are on average exactly twice as similar genetically as non-identical twins. Thus, 

allowing a straightforward statistical procedure to estimate the proportion of variability in 

complex outcomes that is associated with causally distant genes (Turkheimer, 2000).” 
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1.2.1 Approaches to calculate heritability - Studies on Twins 

Twin studies are the most powerful approach for investigating the influence of 

genetics and environment on human phenotypes (Jansen, 2015). The classical twin study 

compares phenotypic resemblances of MZ and DZ twins. MZ twins are derived from a 

single fertilized egg, and therefore inherit identical genetic material, while DZ twins 

which are derived from two different fertilized eggs. MZ twins are expected to have the 

greatest similarity since they are genetically identical. DZ twins share on average 50 

percent of their genes (similar to ordinary full siblings) and share childhood environment, 

including in utero environment, to a greater degree than ordinary siblings.  

By comparing the phenotypic expression between MZ twins and DZ twins, the 

extent of genetic and environmental contributions to a phenotype can be established. 

Twin studies divide the genetic and environmental factors into four variances:  additive 

genetic (A), non-additive genetic (D), common environmental (C), and unique 

environmental (E) (Jansen, 2015). Therefore, if additive genetic effects are influencing a 

trait, then MZ twins will resemble each other more on that trait than the DZ twins.  

Similarly, the distribution of certain phenotypes in families with known biological 

relationships (parents, siblings) can help segregate genetic and environmental influences  

(Jansen, 2015) (See ACE model below). 

1.2.2 Calculation of Heritability 

Observed phenotypes (P) of a trait of interest can be partitioned using biologically 

plausible nature–nurture models into a statistical model representing the contribution of 

the unobserved genotype (G) and unobserved environmental factors (E): 
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Phenotype (P) = Genotype (G) + Environment (E)  (1) 

The variance of the observable phenotypes (𝜎𝑃2) can be stated as a sum of unobserved 

variances (𝜎𝐺2 and 𝜎𝐸2): 

𝜎𝑃2 = 𝜎𝐺2 +  𝜎𝐸2     (2) 

Heritability is defined as a ratio of variances, by expressing the proportion of the 

phenotypic variance that can be attributed to variance of genotypic values: broad sense 

heritability (𝐻2) is defined as the proportion of trait variance that is due to all genetic 

factors including dominance and gene interactions 

Heritability (broad sense) = 𝐻2 =  𝜎𝐺2 / 𝜎𝑃2    (3) 

The genetic variance (𝜎𝐺2) can be partitioned into the variance of additive genetic effects 

of breeding values (𝜎𝐴2), dominance (interactions between alleles at the same locus) 

(𝜎𝐷2), and epistatic (interactions between alleles at different loci) (𝜎𝐼2): 

𝜎𝐺2  =  𝜎𝐴2 +  𝜎𝐷2 + 𝜎𝐼2      (4) 

Narrow sense heritability or strict sense heritability,  ℎ2 is defined as the proportion of 

trait variance that is due to additive genetic factors: 

Heritability (narrow or strict sense) = ℎ2 = 𝜎𝐴2 / 𝜎𝑃2  (5) 

1.2.2.1 Heritability ACE Model 

The ACE model is a statistical model widely used in genetics epidemiology and 

behavioral genetics to analyze the results of twin studies. It aims to decompose sources of 

phenotypic variation into three categories: additive genetic variance (A), common 

environmental factors (C), and non-shared environmental factors plus measurement error 

(E). Some assumptions of the ACE model are: that there is no genetic dominance or 
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epistasis, that all genetic effects are additive, and the absence of gene-environment 

interactions. 

 

 

 

 

 

 

 

 

 

 

 

 

𝑟MZ = A + C      𝑟DZ = ½A + C 

Therefore: 𝑟MZ – 𝑟DZ = ½ A and 2(𝑟MZ – 𝑟DZ = ½ A)  

Since heritability is being classified as narrow sense or additive heritability this leads to: 

Falconer’s formula A = h2 = 2(𝑟MZ – 𝑟DZ).  

1.2.2.2 Heritability Falconer Formula 

Falconer’s Formula (Falconer, 1965) is used in twin studies (see section 2.1.1) to 

determine the genetic heritability of a trait based on the difference between intraclass 

correlations (ICC) in MZ twins and DZ twins. Heritability is a statistic that summarizes 

how much of the phenotypic variation in a trait is due to variation in genetic factors. 

Falconer’s formula ℎ2  defines heritability as twice the difference in the intraclass 

correlation of a trait between MZ and DZ twins: 

  ℎ2 = 2(𝐼𝐶𝐶MZ − 𝐼𝐶𝐶DZ)   (6) 

A + C + E 

A + C + E 

A + C  

A + C  
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Twin 1 Twin 2 
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A + C + E 

1/2A 

+ C  
1/2A 

+ C  

DZ Twins 
Twin 1 Twin 2 

1 

1 

1/2A 

+ C  
1/2A 

+ C  

DZ Twins 

Twin 1 Twin 2 

1 

1 

A + C  

A + C  

MZ Twins 

Twin 1 Twin 2 
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The rationale is that any difference between MZ twins must be environmental (non-

genetic), while the difference between DZ twins is both genetic and environmental, so the 

difference between the two is half-genetic. Falconer's formula will be used to calculate 

heritability in brain structure and function, and behavioral domains. 

1.2.3 Heritability in the Brain 

Twin studies can give insight into heritability of brain development, aging, 

morphology and function. The heritability estimates for most brain structures slightly 

increase from to childhood to adulthood (Jansen et al., 2015). 

In a meta-analysis of twin studies published over the past 50 years (1958 – 2012), 

Polderman et al. (2015) researched the heritability of a wide range of human traits on 

more than 14 million twin pairs across 39 different countries. The study reported that not 

one trait had a weighted heritability estimate of zero and thus providing evidence that all 

human traits are heritable (Polderman et al., 2015). The study also found that, for 69% of 

the traits, the twin correlations were consistent with the additive genetic variation model. 

This suggests for many of the complex traits, genetic variants can be distinguished using 

a simple additive (narrow sense) genetic model (equation 5 above).  

  Evidence for genetic influence has been found for behavioral disorders such as 

alcoholism, schizophrenia, Alzheimer’s, autism, attention deficit hyperactivity disorder 

(ADHD) and reading disability (Plomin, 1994).  

1.3 Data Human Connectome Project (HCP) 

The HCP is an NIH-funded project led by Washington University, University of 

Minnesota, and University of Oxford aiming to provide state-of-the-art neuroimaging and 
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non-imaging data. The data provided will enable detailed analysis of genetic influences 

and characterizations of the human brain connectivity and function. The HCP dataset 

provides a unique and unprecedented opportunity to evaluate rigorously and 

comprehensively genetic effects on a multitude of brain, behavioral and cognitive 

measures the data consists of twins and non-twin siblings. 

1.3.1 Population 

The participant population consists of 1206 healthy adults, including twins and 

non-twin siblings, ranging in age of 22 - 37. This allows for an in-depth evaluation of the 

effects of genetics on brain measures and behavior.   

Out of 1206 HCP participants, only the participants had genetically confirmed 

data were selected. This is especially important to have genetically confirmed data for the 

zygosity of the MZ and DZ twins. The exact number used for each modality varies 

depending on the available neuroimaging and behavioral data present for each 

participant. The exact number used for each modality is specified in each chapter. The 

siblings of twins and half siblings are excluded.  

In the SB group there are, within the same family sometimes, 2, 3, 4 or 5 siblings.  

For families with a sibling count of more than 2, a pair is randomly selected for the SB 

group. In the NR group individuals were randomly paired. For each measurement, for the 

SB and NR groups, the ICC was calculated for randomly paired individuals. After 

repeating this process 1001 times, the median ICC was found. 
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Analyses of MZ and DZ pairs will allow estimation of the extent to which 

genotype, shared environment, and non-shared influences contribute to variation in traits 

and brain measures. 

1.3.2 Behavior Data 

A large amount of data, across many behavioral domains, especially for measures 

that have the potential to co-vary in interesting ways (across subjects) with brain 

connectivity and function, were collected for each subject. Standardized behavioral tests 

were used as much as possible to increase the prospects that findings based on the HCP 

data can in the future be related to other large- scale projects comparing brain and 

behavior. 

1.3.3 MRI Data 

Data will be analyzed from 3 MRI acquisitions: sMRI, fMRI, and dMRI. Participants 

were scanned on a customized 3T scanner at Washington University. Papers have been 

published that explicate in detail the instrumentation and image acquisition methods 

(Uğurbil et al., 2013), preprocessing pipelines (Glasser et al., 2013), diffusion imaging 

(Sotiropoulos et al., 2013), resting-state fMRI (Smith et al., 2013), and informatics and 

quality control processes (Marcus et al., 2014). An overall report of HCP’s neuroimaging 

approaches was published in 2016 (Glasser et al., 2016). 

1.4 Methodology 

Throughout this dissertation there are commonly used statistical methods throughout 

each chapter. If a statistical method is used only for a specific chapter it is discussed in 
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that chapter (example: ARIMA (15,1,1) in Chapter 5 fMRI). Below are the commonly 

used statistical methods across all chapters:  

Intraclass Correlation (ICC). ICC quantifies the agreement between pairs of 

measurements, when the assignment of the pairs is not fixed. It was originally proposed 

by Fisher (1958) and introduced in genetics to quantify the agreement between 

measurements for siblings (Pederson, 1971; Ponzoni & James, 1978; Sedgwick, 2013). 

ICC will be estimated for each one of the 4 genetic groups for each measure and data 

kind using the IBM-SPSS package (one-way random model). 

Falconer’s Formula. Falconer’s Formula (equation 6 above) will be applied to 

determine the narrow-sense, strict genetic heritability of a measure based on the 

difference between ICCs in MZ twins and DZ twins.  

3.1 Statistical analyses of ICC and heritability 

General. ICC and its z-transform zICC will be computed for each measure. 

Negative ICC values will be rejected (Giraudeau,1996). The effects of group on zICC 

across measures and domains will be evaluated using an ANOVA and independent 

samples t-test, as needed. Falconer’s heritability estimates will be calculated for each 

measure. The effects of group and gender will be assessed for positive heritability 

estimates using an ANOVA. 

Multidimensional Scaling (MDS). MDS is a powerful tool to identify relations 

among items in a multidimensional space. It is a dimensionality reduction method used to 

reduce the number of dimensions in a multidimensional data set, typically to two or three 

dimensions. The input to MDS is a proximity (square) matrix, which typically consists of 
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pairwise dissimilarities between items. MDS places the items in a low-dimensional space 

such that the distances between items in this space are as close as possible to their 

corresponding distances in the original space. The derived plot captures arrangements of 

items that share common attributes in the reduced space and thus may reveal associations 

hitherto unsuspected. In this analysis, the nonmetric MDS implemented in the IBM-SPSS 

package will be used. 

Hierarchical Tree Clustering (HTC). HTC is a multivariate method that places items 

in hierarchically organized clusters, forming a tree (dendrogram). HTC assumes the 

presence of a root, which, in this proposal, is the heritability, i.e. that items to be clustered 

are all heritabilities. HTC organizes objects into a dendrogram and clusters are defined by 

removing branches from the dendrogram (Langfelder, Zhang, & Horvath, 2008). The 

hierarchical clustering process looks for pairs of samples that are the most similar. The 

input is a dissimilarity matrix, therefore, the pair that has the lowest dissimilarity is the 

most similar. The point at which the pairs are joined is called a node. This step keeps 

repeating and the dissimilarity is recalculated between each merged pair and other 

samples. The analysis will use between-groups linkage and squared Euclidean distance to 

compute a dendrogram using the IBM-SPSS package. 
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Chapter 2 Behavior 

2.1 Introduction 

The powerful and influential role of genetics in human development is undeniable. 

The imprint of genetics starts at fertilization when the sperm and oocyte fuse together to 

form a new single cell which grows and develops into a unique individual. Genetics has a 

direct role in the heritability of physical traits, diseases and disorders. However, when it 

comes to the heritability of behavioral traits, although genes do not have a direct role, 

they do influence heritability of behavioral traits. A question that is commonly asked in 

the behavioral genetics field is: How much influence does genetics have on human 

behavior? One way the field attempts to answer this question is to separate out an 

individual’s variation into genetic and environmental components by using family, twin 

and adoption studies. Behavioral testing is also used to determine genetic influence. 

Behavioral testing provides valuable data that helps elucidate the brain mechanisms 

underlying a specific behavior and also assesses a participant’s abilities such as 

intelligence (verbal, nonverbal) and cognitive skills (language, reading, memory). By 

using the data collected from behavioral testing, heritability studies can be conducted to 

quantify the effects of genetics.  

The literature shows that all human behavioral traits are heritable to some degree (W. 

Johnson, 2011; Turkheimer, 2000). However, there has not been a comprehensive study 

of a single population across many different behavior domains. Chapter 2 of this 

dissertation uses known genetic relationships and behavioral testing in a young, healthy 
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population to determine the influence of genetics and heritability across five different 

behavioral domains: motor, emotion, personality, sensory and cognition.   

2.1.1 Motor 

Although motor skills such as walking, dexterity, strength and endurance can be 

learned by practicing, some individuals can improve quicker than others, which suggests 

a genetic component. A study conducted by Missitzi et al. in 2013 used the twin model 

(see Chapter 1) to compare differences in MZ and DZ twins to elucidate the relative 

contribution of genes and environment on individual differences in motor control and 

learning.  The study found that for motor control, the correlation for MZ and DZ twins 

were 0.77 and 0.39 respectively. Heritability was estimated to be 0.68.  For motor 

learning, the study found correlations to be 0.58 and 0.19 for MZ and DZ twins 

respectively and heritability to be 0.70. These findings by Missitzi et al. (2013) suggest 

that heredity plays a major part in individual differences in motor control and motor 

learning, making them strongly genetically dependent.  

2.1.2 Emotion 

Emotion is essential to human behavior and central to the everyday human 

experience  because emotional traits measure qualities such as psychological well-being, 

social relationships, stress and efficacy responses (Bevilacqua & Goldman, 2011; Dolan, 

2002). One topic of interest is to how different domains interact with and influence each 

other. For example, emotion exerts a powerful influence on cognition, which is an area of 

interest because it encompasses qualities such as attention, memory, and reasoning 

(Dolan, 2002). Another area of interest is mental disorders where emotional 
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disequilibrium is a common denominator (Bevilacqua & Goldman, 2011).  In terms of 

heritability, emotion is moderately heritable (40-60%) (Bouchard & Loehlin, 2001; 

Bouchard & McGue, 1990) but is also influenced by environment. 

2.1.3 Personality 

Human personality is characterized as inborn traits that influence behavior across 

many situations. Personality can be measured by many factors, and one way of 

scientifically determining personality is the Big Five Factor Model described as follows: 

1. Openness: appreciation for a variety of experiences. 2. Conscientiousness: planning 

rather than being spontaneous. 3. Extraversion: being sociable, energetic and talkative. 4. 

Agreeableness: being kind, sympathetic and happy to help. 5. Neuroticism: inclined to 

worry or be vulnerable or temperamental.  

Jang, Livesley, & Vemon, (1996) studied 123 pairs of MZ twins and 127 pairs of 

DZ twins and determined personality using the Big Five Model. Their results showed 

genetic influence on the five dimensions: neuroticism (0.41), extraversion (0.53), 

openness (0.61), agreeableness (0.41), and conscientiousness (0.44).  Another study using 

twins by Power & Pluess (2015) found that the Big Five personality traits have 

substantially heritable components explaining 40–60% of the variance, although 

identification of associated genetic variants has remained unclear.  

2.1.4 Sensory 

Sensory systems such as vision, hearing, touch, taste, and smell help the brain 

perceive and interpret the physical world around us. In children, difficulty in processing 

and integrating information can overwhelm them and create confusing behavior. 
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Research has shown that sensory traits are heritable, but it is not definite how much.  One 

example of a sensory system is pain. A study conducted by Trost et al. (2015), used MZ 

and DZ twins to examine the genetic, environmental and observed contributions to pain. 

The heritability estimate for pain was found to be 37% (Trost et al., 2015).  

2.1.5 Cognition 

Cognitive functions such as thinking, reading, learning, memory, reason, and 

attention are core brain-based skills that are used to carry out simple and complex tasks. 

Cognitive skills take incoming information and convert it into useful knowledge on a 

daily basis. For example, answering the telephone involves recognition (knowing what a 

telephone is and what it is used for), perception (hearing the ring tone), decision making 

(answering or not to answer), motor skill (lifting the phone and pushing buttons), 

language skills (talking and understanding language), social skills (interacting with 

another human being) (Michelon, 2006). Cognition traits are important in research 

because they are one of the most reliable behavioral traits (Haworth et al., 2010). Another 

reason that cognition traits are important is because they can be used to predict important 

social outcomes such as educational and occupational levels better than other behavioral 

traits (Haworth, 2010). The heritability of cognitive skills increases from childhood to 

adulthood (Briley & Tucker-Drob, 2013; Haworth et al., 2010). Haworth et al. (2010) 

looked at data from six studies containing information from 11,000 twin pairs from four 

countries and found that heritability increased from 41% at adolescence to 66% at young 

adulthood.  

2.2 Heritability Calculations 
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Human behavior traits emerge out of a complex and nonlinear developmental process. 

To understand some of these multifaceted processes, behavior measures are included in 

this study (see Table 2.1) in order to assess a wide range of human functions and abilities. 

The literature review shows that different behavioral traits are heritable across many 

different domains. In a meta-analysis of twin studies published over the past 50 years 

(1958 – 2012), the heritability of a wide range of human traits on more than 14 million 

twin pairs across 39 different countries was studied. The study reported that not one trait 

had a weighted heritability estimate of zero, thus providing evidence that all human traits 

are heritable (Polderman et al., 2015).  The report also found that twin correlations were 

consistent with the additive genetic variation model for the majority of the traits (69%). 

This pattern of twin correlation was consistent for traits in the neurological; ear, nose and 

throat; cardiovascular and ophthalmological domains. When the traits were grouped into 

28 general domains, three of the 28 general trait domains (activities, reproduction, and 

dermatological) were inconsistent with the additive model, while 25 of the 28 general 

domains were consistent. This suggests that for many of the complex behavioral traits 

used in this chapter of the dissertation, genetic variants can be distinguished using an 

additive (narrow sense) genetic model (See Chapter 1).  

2.3 Methods 

2.3.1 Participants 

HCP participants are young healthy adults, age 22 to 37 years, who are free of major 

psychiatric or neurological diseases (Marcus et al., 2014). The full set of inclusion and 

exclusion criteria is detailed in a manuscript published by Van Essen et al. (2013). The 
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final release included 1206 participants; however, since heritability is heavily dependent 

on known genetic relationships (twins, siblings, non-related) (See Chapter 1), only 

participants that were genetically verified were selected for analysis. Participants that 

were not genetically verified were removed from analysis. Participants that are half 

siblings or siblings of twins are also excluded.   

From the 1206 subjects, 1142 (genetically and zygosity verified) subjects were 

selected. In order to determine the heritability,  behavioral data of 1142 participants were 

grouped into the following 4 genetic groups and analyzed: (1) MZ twins (N = 298; 149 

pairs), (2) DZ twins (N = 188; 94 pairs), (3) non-twin SBS (N = 298; 149 pairs; if sibling 

count is more than 2 the pair is randomly selected from the siblings), and (4) NR (N = 76 

(not members of any other group); 38 pairs (randomly paired)).  

2.3.2 Behavioral Measures 

Behavioral measures that were collected (Van Essen et al., 2013) used reliable 

and validated measures to assess a wide array of functions and behaviors within a 

reasonable amount of time (3-4 hours). Quantitative data from the following five domains 

were used. (Non-quantifiable data have been excluded. See Table 2.1 for detailed 

information on individual behavioral traits contained in each domain.)  

1. Motor (M): These measures quantify the participant’s motor strength and skills (N 

= 4). 

2. Cognition (C): These measures cover a wide range of cognitive functions, 

including episodic memory, working memory, executive function, language, and 

speed of cognitive processing (N = 18). The last two measures Self-



18 
 

regulation/Impulsivity (Delay Discounting) and Sustained Attention (Short Penn 

Continuous Performance Test: Percentage) were calculated by averaging the 

measures listed in description in Table 2.1 

3. Emotion (E): These are self-reported measures pertaining to the emotional state 

and outlook of each participant, namely social relationships, psychological well-

being, emotional recognition and stress (N = 24).  

4. Personality (P): These measures come from the 60-item version of the Costa and 

McRae Neuroticism/Extroversion/Openness Five Factor Inventory (NEO-FFI) (N 

= 5).  

5. Sensory (S): These measures cover the following sensory modalities: visual 

activity, contrast, and color, audition, olfaction, pain and taste (N = 5). 

2.3.3 Statistical methods 

See Chapter 1 for details on the statistical methods used in this chapter. 

2.4 Results  

Test scores were analyzed from 56 traits in 5 domains (motor, sensory, cognition, 

emotion, and personality). Specifically, 4 analyses were carried out, as follows. First, the 

ICC and zICC were computed for each genetic group and trait. An ANOVA was 

performed on the zICC with the genetic group as a fixed factor to evaluate differences 

between groups. Second, ℎ2  was computed for each domain to compare heritabilities 

across domains. Third, an MDS analysis was done using median ℎ2  domain values to 

evaluate possible groupings of domain heritabilities. Finally, an HTC analysis was 
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performed on the same heritability data to explore their clustering more explicitly. The 

results found are the following. 

First, the mean zICC differed significantly among groups (P < 10-16, F-test in 

ANOVA) and varied systematically, such that MZ>DZ>SB>NR (Fig. 2.1); all pairwise 

comparisons were statistically significant (P < 0.05).   

  

Fig. 2.1 Mean zICC ± SEM per genetic group 

Participants were also split by gender and the same systematic variation was observed 

(Fig 2.2, 2.3). A specific comparison of the zICC between DZ and SB groups, since those 

pairs share the same amount (50%) of genetic material. The zICC of these groups did not 

differed significantly (P = .123, ANOVA). MZ twins were split by gender and by domain 

groups but they did not differ significantly (Fig 2.4, 2.5). 
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Fig. 2.2 Mean zICC ± SEM per genetic group for males. 

 

 

 

 

 

 

Fig. 2.3 Mean zICC ± SEM per genetic group for females 
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Fig. 2.4 Mean zICC ± SEM for MZ males and females.  

           

 

 

 

Fig. 2.5 Mean zICC ± SEM MZ by gender and domain.  

zICC grouped by gender and domain 

zICC grouped by gender 
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Second,  ℎ2  was computed for each domain to compare heritabilities across 

domains; negative heritabilities were removed. The heritabilities did not differ 

significantly among domains (Fig. 2.6, 2.7, 2.8; P = 0.076, F-test in ANOVA). Overall 

the heritability values for the 5 domains were: Cognition h2 = .405, Emotion h2 = .316, 

Motor h2 = .138, Personality h2 = .444, and Sensory h2= .193. For males the heritability 

values were: Cognition h2 = .483, Emotion h2 = .360, Motor h2 = .294, Personality h2 = 

.364 and Sensory h2= .669. For females the heritability values were: Cognition h2 = .364, 

Emotion h2 = .301, Motor h2 = .132, Personality h2 = .561 and Sensory = .237. When the 

participants were split by gender, the overall pattern was followed by all domains for 

males and females, except in males which had a lower heritability value for personality 

and had a higher heritability value for sensory. One hypothesis could be that that this 

finding reflects the shared neural substrates among the 5 domains.   
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Fig. 2.6 Mean ℎ2  ± SEM per behavioral domain. 

 
Fig. 2.7 Mean ℎ2  ± SEM per behavioral domain for males 
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Fig. 2.8 Mean ℎ2  ± SEM per behavioral domain for females 

Third, the MDS analysis of the behavioral domain heritabilities (Fig. 2.9) revealed a 

separation of the 5 domains in 4 quadrants comprising motor and sensory domains in the 

(upper and lower right quadrant), emotion and cognition (lower left), and personality 

(upper left). The fit of the nonmetric (ordinal) model was excellent (normalized raw 

stress = 0.00004, Dispersion Accounted For = 0.99).  
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Fig. 2.9 MDS of median ℎ2  of the 5 behavioral domains.      

Finally, the grouping and gradient above was confirmed in the HTC dendrogram (Fig. 

2.10), which comprises 2 branches, one containing (motor, sensory) in one branch and in 

2 separate sub-branches, (emotion) in one branch and the other containing (cognition, 

personality) in a single branch. 
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Fig. 2.10 HTC of median ℎ2  of the 5 domains. 

2.5 Discussion  

The relationship between genetics, behavior and heritability is a topic of research 

across many different disciplines such as sociology, education, neuroscience, and politics 

(Toga & Thompson, 2005). The goal of Chapter 2 is to determine the heritability of 

behavioral traits in five domains in a young, healthy population using known genetic 

relationships (twins, siblings).  

The grouping of participants into genetic groups resulted in the zICC differing 

significantly and varying systematically among the groups, such that MZ>DZ>SIB>NR 

for behavioral measurements. This result is expected and consistent with the literature 

Cognition Emotion Motor Personality 

Heritability Behavioral Domains 

Sensory 
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since MZ twins share all genetic effects, while DZ twins share on average 50 % of their 

genetic effects. Siblings also share, on average, 50% of their genetics; however, it is 

expected that they would have lower zICC (and heritability values) because their 

environmental variation is higher compared to twins. The non-related participants are 

expected to be last in terms of similarity since they are not expected to have any genetic 

effects.  

The heritability results are in agreement with the literature: most human behavioral 

traits have some degree of heritability across different domains (W. Johnson, 2011; 

Turkheimer, 2000). The heritabilities did not differ significantly among domains (Fig 2.6-

8). The hypothesis for this result is that heritability relates to brain biology/function 

which is overlapping among the various behavioral domains, all of which share 

converging brain networks. Across the genders there is a pattern of heritability (from 

largest to smallest): cognition, emotion and motor.  

MDS and HTC were used to decipher grouping of the heritabilities based on domain. 

Since the dimensions are not fixed, a reasonable interpretation of the MDS findings (Fig. 

2.9) can be elucidated by splitting the graph by the 2nd dimension. This would position 

motor-sensory on the right side of the graph and cognition-personality on the left side of 

the graph with emotion in the middle. This shows that the relevant gradient extends from 

simple, sensory-motor domains to complex, cognitive-affective domains. This grouping 

of the MDS is further confirmed in the HTC results (Fig. 2.10). For example, a genetic 

interpretation could be that the motor and sensory areas of the brain were influenced by 

the same genetic factor, whereas the cognition, personality and emotion areas were 

influenced by a different genetic factor. Hence, there is an overlap in genes regulating 
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processes of cognition, personality and emotion, while other genes play a role in the 

sensory-motor functioning area (Polderman et al., 2015). 

2.6 Conclusion  

One could argue that it is not possible to detangle the factors involved because of the 

hundreds of genes, circuits and environmental exposures involved in human behavioral 

traits. However, the fact that behavior is genetically driven—i.e., heritable—enables 

genetic approaches to be applied to the variance in behavior even though there are 

differences (Bevilacqua & Goldman, 2011).  Advances in brain imaging and genetics 

have enabled research of genetic and environmental influences on the human brain. It 

empowers researchers to visualize different aspects of brain structure and function. This 

enables researchers to determine which aspects of brain structure and function are 

heritable and to link those features to behavioral and phenotypical traits.  

Domain Subdomain (Measure Name) 

Cognition 

Episodic Memory (Picture Sequence Memory) Executive 

Executive Function/Cognitive Flexibility (Dimensional Change Card Sort) 

Executive Function/Inhibition (Flanker Inhibitory Control and Attention Task) 

Fluid Intelligence (Penn Progressive Matrices: Number Correct) 

Fluid Intelligence (Penn Progressive Matrices: Response Time) 

Language/Reading Decoding (Oral Reading Recognition) 

Language/Vocabulary Comprehension (Picture Vocabulary) 

Processing Speed (Pattern Comparison Processing Speed) 

Spatial Orientation (Penn Line Orientation: Total Number Correct) 

Spatial Orientation (Penn Line Orientation: Total Positions Off for All Trials) 

Spatial Orientation (Penn Line Orientation: Median Reaction Time) 

Sustained Attention (Short Penn Continuous Performance Test: True Positive) 

Sustained Attention (Short Penn Continuous Performance Test: Longest Run of Non-Responses) 

Verbal Episodic Memory (Penn Word Memory Test: Total Number Correct) 

Verbal Episodic Memory (Penn Word Memory Test: Response Time) 

Working Memory (List Sorting) 

Mean Self-regulation/Impulsivity (Delay Discounting) ((DDisc_AUC_200 + DDisc_AUC_40K) / 2) 

Sustained Attention (Short Penn Continuous Performance Test: Percentage) ((SCPT_TP + SCPT_TN) / 

(SCPT_TP + SCPT_TN + SCPT_FP + SCPT_FN) * 100) 

 Emotion Recognition (Penn Emotion Recognition Test: Number of Correct Responses) 

 Emotion Recognition (Penn Emotion Recognition Test: Correct Responses Median Response Time  

  Emotion Recognition (Penn Emotion Recognition Test: Correct Anger Identifications) 

  Emotion Recognition (Penn Emotion Recognition Test: Correct Fear Identifications) 

  Emotion Recognition (Penn Emotion Recognition Test:  Correct Happy Identifications) 

  Emotion Recognition (Penn Emotion Recognition Test: Correct Neutral Identifications) 
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  Emotion Recognition (Penn Emotion Recognition Test: Correct Sad Identifications) 

  Negative Affect (NIH Toolbox Anger-Affect Survey) 

  Negative Affect (NIH Toolbox Anger-Hostility Survey) 

Emotion Negative Affect (NIH Toolbox Anger-Physical Aggression Survey) 

  Negative Affect (NIH Toolbox Fear-Affect Survey) 

  Negative Affect (NIH Toolbox Fear-Somatic Arousal Survey) 

  Negative Affect (NIH Toolbox Sadness Survey) 

  Psychological Well-being (NIH Toolbox General Life Satisfaction Survey) 

  Psychological Well-being (NIH Toolbox Meaning and Purpose Survey) 

  Psychological Well-being (NIH Toolbox Positive Affect Survey) 

  Social Relationships (NIH Toolbox Friendship Survey) 

  Social Relationships (NIH Toolbox Loneliness Survey) 

  Social Relationships (NIH Toolbox Perceived Hostility Survey) 

  Social Relationships (NIH Toolbox Perceived Rejection Survey) 

  Social Relationships (NIH Toolbox Emotional Support Survey) 

  Social Relationships (NIH Toolbox Instrumental Support Survey) 

  Stress and Self Efficacy (NIH Toolbox Perceived Stress Survey) 

  Stress and Self Efficacy (NIH Toolbox Self-Efficacy Survey) 

Motor 

Endurance (2-minute walk test) 

Locomotion (4-meter walk test) 

Dexterity (9-hole Pegboard) 

Strength (Grip Strength Dynamometry) 

Personality 

Five Factor Model NEO-FFI (Agreeableness) 

Five Factor Model NEO-FFI (Openness) 

Five Factor Model NEO-FFI (Conscientiousness) 

Five Factor Model NEO-FFI (Neuroticism) 

Five Factor Model NEO-FFI (Extroversion) 

Sensory Audition (Words in Noise) 

  Olfaction (Odor Identification Test) 

  Pain (Pain Intensity and Interference Surveys) (self-report) 

  Taste (Regional Taste Intensity Test) 

  Contrast Sensitivity (Mars Contrast Sensitivity) 

Table 2.1 of Behavior Measures 

Chapter 3 Diffusion MRI (dMRI) 

3.1 Introduction 

dMRI is a non-invasive neuroimaging technique, that uses existing MRI technology and 

equipment to capture the diffusion of water molecules in images called diffusion 

weighted images (DWI) (Soares et al., 2013). dMRI exhibits extremely high sensitivity to 

water movements in the human body and records the diffusion of water in tissues; this is 

especially useful for brain tissue (Le Bihan and Breton, 1986). The self-diffusion 

coefficient of free water is around 3.0 x 10−9𝑚2𝑠−1  at 37°C (Le Bihan and Iima, 2015). 

In a healthy brain, water diffuses at a slower rate as compared to free water, while 
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malignant brain tissue has an even slower rate of diffusion. dMRI has the capability to 

detect the decrease of water diffusion in ailing brains compared to healthy brain. Thus, by 

measuring the diffusion of water in the brain, researchers can determine the 

characteristics of healthy brain tissue and malignant brain tissue.  

3.2 dMRI for brain studies 

dMRI has been applied to better understand neurodevelopment in several studies from 

neonates through to the 8th decade of life  (Moseley, 2002; Neil et al., 2002). The 

literature reveals that the most established clinical application of dMRI is for detection 

and evaluation of ischemic infracts stroke. The increase in DWI signal in areas of acute 

stroke, relative to unaffected brain, is typically so striking that this finding has been 

referred to as the "lightbulb sign" of acute stroke (Maas and Mukherjee, 2005). Previous 

work on dMRI has studied neurodevelopmental disorders (e.g. autism), neuropsychiatric 

disorders (e.g. schizophrenia, depression) or neurologic disorders (e.g. Parkinson's 

disease) (Snook, et al., 2005), but has limited studies for healthy human brains.  

The limited dMRI studies of healthy brains “have been performed with a variable 

number of subjects and differing age ranges” (Gazes et al., 2016; Snook et al., 2005). It is 

important to have a narrow age range for neuroimaging studies as age can dramatically 

affect the results. For example, in a study of neonates and children, researchers found 

opposite trends in mean diffusivity and anisotropy with age (McKinstry et al., 2002). 

However, even within a narrow age range, brain developmental stages also affect the 

research findings. For example, after 40 years of age, the brain starts to age and decline, 

and this affects research results. Neuroimaging studies demonstrate that the human brain 
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is actively changing and developing (in size, vasculature, and cognition) roughly until 

mid-twenties to mid- thirties (Johnson et al., 2009). Brains that have reached that age 

range are particularly useful for understanding healthy human brains; but, there are 

limited studies of young participants who are free of complicated diseases, making it 

difficult to study the aging process of the normal brain (Sowell, 2004). The 22-to-37-

year-old brains of the HCP population are particularly important to study since at that 

age, the brain is considered a fully developed brain but not an aging brain.  

The HCP dataset is also valuable for its dramatic advances in dMRI imaging 

techniques. The imaging data that results in with improved spatial, temporal and angular 

resolutions. This makes the HCP dataset to date the most comprehensive dataset of 

numbers of young participants whose brains are fully developed and are free of 

complicating diseases to study healthy brain (Shi and Toga, 2017). 

dMRI Principles and Concepts 

dMRI principles and basic concepts have been described and reviewed in the literature at 

length (Le Bihan et al., 2001; Mukherjee, et al., 2008). Diffusion refers to the random 

Brownian motion of molecules in a liquid or gas (Kingsley, 2010). dMRI takes advantage 

of the fact that water molecules have different rates of diffusion in different substances 

(Le Bihan and Breton, 1985).  
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For example, in a liquid that is relatively homogenous such as water, the diffusion rate of 

molecules is the same in every direction (unrestricted) or isotropic (Fig. 3.1). However, in 

biological tissues, the diffusion of water molecules is restricted by tissue boundaries and 

membranes causing diffusion to be restricted or is anisotropic (Fig. 3.1). In the brain, 

water molecules diffuse differently along the tissues depending on its type (GM/WM), 

integrity (healthy or diseased), architecture (round, elongated), and presence of barriers 

(membranes, tumors). Diffusion in WM tends to be more anisotropic compared to GM 

which is usually more isotropic (Pierpaoli et al., 2006). The aim of dMRI and specifically 

diffusion tensor imaging (DTI) is to detect the diffusion of water molecules in WM in 

order to evaluate the microstructural integrity of the WM (Tromp, 2015).  

Figure 3.1 Mukherjee, et al., 2008 Diffusion Tensor MR Imaging and 

Fiber Tractography: Theoretic Underpinnings 
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Based on the assumption that water is always moving (due to Brownian motion) 

and leads to a natural diffusion of water at all times, Basser et al. (1994)  modeled the 

movement of water by an ellipsoid. An ellipsoid is mathematically represented by a 3×3 

symmetric tensor (Soares et al., 2013)(Fig. 3.1).  “The three diagonal elements, Dxx, 

Dyy, Dzz, represent diffusion as measured along each of the principal (x, y and z) axes. 

The six off-diagonal terms (Dxy, Dxz, Dyz, etc.) (Fig 3.1) return the correlation of 

random motions between each pair of principal directions (Elster, 2017).  

The diffusion ellipsoid (Fig 3.2) has three-unit vectors and their corresponding lengths 

(λ1, λ2, and λ3), the eigenvalues 

(Elster, 2017). The eigenvalues of 

the diffusion tensor are either 

parallel (λ1) or perpendicular (λ2, 

λ3) to the white matter tracts. λ2, 

λ3 are not often reported but can 

yield insight into the 

microstructural changes of the tissue. 

The diameter of the ellipsoid approximates the diffusivity of water in that particular 

direction and the major principle axis is oriented in the direction of maximum diffusivity 

(Jellison et al., 2002). For perfect isotropic diffusion, the ellipsoid becomes a sphere with 

λ1 = λ2 = λ3 (Elster, 2017) (Fig 3.2). As diffusion becomes more anisotropic, the 

ellipsoid becomes elongated:  λ1 > λ2 > λ3 (Fig 3.2).  The DTI enables the indirect 

measurement of water movements within each voxel of the brain (Basser et al., 1994) 

providing a unique opportunity for studying WM architecture  (Jellison et al., 2002)  

Figure 3.2 Do Tromp 2016 
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3.3 WM Measurements 

Analysis of dMRI data allows scientists to acquire key measurements to quantify the 

microstructural integrity of the WM. One key measure is fractional anisotropy (FA), 

which describes the preferred direction of diffusion in a given voxel. FA values ranges 

between zero and one. A value of zero means that the diffusion of water molecules is 

unrestricted (isotropic) and free to diffuse in all directions. A value of one means that 

diffusion occurs only along one axis and is fully restricted (anisotropic). 

𝐹𝐴 =  
 √(𝜆1 −  𝜆2 )2  + (𝜆2 −  𝜆3 )2  + (𝜆3 −  𝜆1 )2  

√2 √𝜆1
2 +  𝜆2

2 +  𝜆3
2

 

Another key measurement is mean diffusivity (MD), which is the average of the three 

eigenvalues and correspond to the molecular diffusion rate (lower values mean low 

diffusivity) (Soares et al., 2013) 

𝑀𝐷 =  
𝜆1 +  𝜆2 +  𝜆3 

3
 

Together FA and MD help researchers determine the flow of water and infer the shape of 

the brain’s WM. Thus, allowing researchers to study the different connections of the 

brain and approximate the microstructural integrity of WM. Figure 3.3 is an example of a 

brain image with the DTI fit. The colors show the direction of water diffusion; red means 

that the diffusion direction is in the left-right direction, green indicates anterior-posterior 

direction, and blue superior-inferior direction (Do Tromp, 2016). 
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Figure 3.3 Examples of a T1 anatomical, fractional anisotropy (FA), and red-green-blue 

(RGB) colored FA image source: http://www.diffusion-imaging.com 

 

3.4 Heritability of WM integrity 

WM integrity is highly heritable (Shen et al., 2014). A study conducted by Chiang 

et al. (2011), found that WM integrity in the left splenium of the corpus callosum, and the 

right inferior longitudinal fasciculus (ILF)/inferior fronto-occipital fasciculus (IFO), was 

significantly more heritable in the adolescents than in adults. They found in adolescents 

that genetic factors attributed to 70–80% of the variation in FA, while in adults, only 30–

40% was attributable.  Kochunov et al. (2010) performed heritability and genetic analyses 

for the 10 major cerebral WM tracts in healthy individuals (182 males/285 females; 

average age 47.9 ± 13.5 years; age range: 19–85 years). They found significant 

heritability for FA (h2 = 0.52 ± 0.11; p = 10−7) and radial (h2 = 0.37 ± 0.14; p = 0.001) 

measures, while axial measurements were not significantly heritable (h2 = 0.09 ± 0.12; p 

= 0.20). Kochunov et al. (2016) conducted another study using an Amish population, 

with large family pedigrees and high environmental homogeneity, to study heritability 

measures from the corpus callosum (CC). They found high heritability of FA (h2=0.67) 

http://www.diffusion-imaging.com/
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and radial diffusivity (h2=0.72). The same group did another study of heritability of FA 

using a subset of 481 HCP participants and found high heritability (h2=0.53-0.90) of 

eleven major WM tracts (Kochunov et al., 2015). By comparing the heritability values of 

different populations, the group found similarities in regional heritability which suggests 

that the additive genetic contribution to WM structure is consistent across populations.  

3.5 Methods  

3.5.1 Subjects  

A total of 819 participants were used to make the following 4 different genetic groups 

to determine the heritability and associations of the WM data: (1) MZ twins (N = 268; 

134 pairs), (2) DZ twins (N = 144;72 pairs), (3) non-twin SB (N = 315; 144 pairs), and 

(4) NR (N = 92, not members of any other group) 46 randomly paired). See Chapter 1 

more details for the inclusion and exclusion criteria.  

3.5.2 Diffusion data collection and preprocessing 

  Diffusion data was collected at Washington University St Louis using a 

customized Siemens 3 T scanner with a 100mT/m maximum gradient strength and a 32-

channel head coil (Uğurbil et al., 2013). Diffusion data were collected using a Stejskal-

Tanner (monopolar) diffusion-encoding scheme a single-shot, single refocusing spin- 

echo, echo-planar imaging sequence with very high resolution 1.25 mm isotropic spatial 

resolution (TE/TR=89.5/5520ms, FOV=210×180mm). The WU-Minn consortium, 

decided to use the high-angular resolution diffusion imaging (HARDI) approach (Tuch et 

al., 2005) and modified to incorporate multiple shells of b values (Sotiropoulos et al., 

2013). Three gradient tables of 90 diffusion-weighted directions and six b=0 images each 
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were collected with right-to-left and left-to-right phase encoding polarities for each of the 

three diffusion weightings (b=1000, 2000, and 3000 s/mm2). The total imaging time for 

collection of diffusion data was about 1 hour (6 runs each approximately 9 minutes and 

50 seconds).  

3.5.3 HCP Diffusion pipeline 

The diffusion preprocessing pipeline normalizes the b0 image intensity across 

runs; corrects for EPI distortions, eddy-current-induced distortions, and subject motion; 

corrects for gradient-nonlinearities; registers the diffusion data with the structural; brings 

it into 1.25mm structural space; and masks the data with the final brain mask (Glasser et 

al., 2013; Sotiropoulos et al., 2013). 

3.5.4 Diffusion processing pipeline 

1. Basic preprocessing: Intensity normalization across runs, preparation for later 

modules. 2. ‘TOPUP’ algorithm for EPI distortion correction. 3. ‘EDDY’ algorithm for 

eddy current and motion correction. 4. Gradient nonlinearity correction, calculation of 

gradient b-value/b-vector deviation. 5. Registration of mean b0 to native volume T1w 

with FLIRT BBR +bb register and transformation of diffusion data, gradient deviation, 

and gradient directions to 1.25mm structural space. Brain mask based on FreeSurfer 

segmentation. [Source HCP Reference Manual] 

3.5.5 DTI processing for extracting FA values 

FA maps were obtained by the fitting diffusion tensor model using FSL-FDT 

toolkit (Behrens et al., 2003). The data were then processed using FSL's tract-based 

spatial statistics (TBSS; http://fsl.fmrib.ox.ac.uk/ fsl/fslwiki/TBSS) analytic method 
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(Smith et al., 2006). These co-registered FA maps were averaged to produce a mean FA 

map. The volume of this mean FA skeleton above threshold FA = 0.2 was then used to 

create a skeleton mask, in order to exclude minor tracts, non-white matter regions, and 

areas of possible misalignment. The skeletonized white matter was extracted and the 

region of interest (ROIs) FA values were calculated. The tract-wise ROIs were created 

using the stereotaxic white matter atlas based on DTI in an ICBM (International 

Consortium for Brain Mapping) template (Mori et al., 2008). FA values were calculated 

for 4 major white matter groups (Mori et al., 2008) (ROIs Table 3-1).  

 Four WM Groups 
ROI Name 

ROI 

Short 

association fibers 

cingulum cingulate gyrus CCG 

cingulum hippocampus CH 

external capsule EC 

Fornix FB 

sagittal stratum SS 

superior fronto occipital 

fasciculus 
SFOF 

superior longitudinal 

fasciculus 
SLF 

uncinated fasciculus UF 

commissural fibers 

body of corpus callosum BCC 

genu of corpus callosum GCC 

splenium of corpus callosum SCC 

tapetum TA 

projection fibers anterior corona radiata ACR 
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anterior limb of internal 

capsule 
ALIC 

cerebral peduncle CP 

posterior corona radiata PCR 

posterior limb of internal 

capsule 
PLIC 

posterior thalamic radiation PTR 

retrolenticular of internal 

capsule 
RIC 

superior corona radiata SCR 

tracts in brainstem 

corticalspinal tract CT 

inferior cerebellar IC 

medial lemniscus ML 

middle cerebellar peduncle MCP 

pontine crossing tract part of 

MCP 
PCMCP 

superior cerebral peduncle SCP 

 

 

 

Table 3.1 (Above) Regions of interest (ROIs) examined as defined by the 

stereotaxic white matter atlas (Mori et al., 2008). 
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Figure 3.5 WM ROIs ICBM-DTI-81 white-matter labels atlas (Mori et al., 2008)  

 

3.6 Statistical methods 

See Chapter 1 for details on the statistical methods used in this chapter. 

Figure 3.4 White matter areas and fibers (Pearson Education 2010) 
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3.7 Results  

Data were analyzed by grouping WM areas into four groups (association fibers, 

commissural fibers, projection fibers, and tracts in the brain stem based on Mori et al. 

atlas (2008) (Table 3-1). Four analyses were carried out: first, the ICC and zICC were 

computed for each genetic group and WM areas. An ANOVA was carried out on zICC 

with group as a fixed factor to evaluate differences between groups. Second, ℎ2  was 

computed for each area to compare heritabilities across areas. Third, MDS analysis was 

done using ℎ2  domain values to evaluate possible groupings of WM heritabilities. 

Finally, the HTC analysis was performed on the same heritability data to explore their 

clustering more explicitly. The results found are discussed in the following section. 

First, zICC differed significantly among groups (p < .05, F-test in ANOVA) and 

varied systematically, such that MZ>DZ>SB>NR for FA (Fig. 3.6) and MD (Fig. 3.7). 

This general arrangement is as expected and consistent with literature reviews as MZ are 

the most genetically similar followed by DZ, SB and NR as the least similar group. A 

specific comparison was carried out for zICC between DZ and SB groups, since those 

pairs on average share the same amount (50%) of genetic material. The zICC of these 

groups differed highly significantly for FA measures (p = 0.029, ANOVA). This finding 

indicates a lesser role of genetic factors in the phenotypic variance of SB compared to 

DZ. The zICC was not significant between DZ and SB for MD (p = .153). The MZ zICC 

were grouped for FA and MD by gender; the zICC of these groups did differed 

significantly (p < 0.05) (Fig 3.8). 
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Figure 3.6 FA zICC ± SEM per genetic group. 

 

 
 

Figure 3.7 MD zICC ± SEM per genetic group. 
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Figure 3.8 zICC of FA and MD of MZ twins by gender  

 

Second, FA and MD heritabilities differed significantly between all areas (Fig. 3

.9-10) (p < .05) except for between commissural and projection fibers (p > .05). This 

finding may reflect the shared fibers that among the commissural and projection fibers. In 

examining the heritability of FA association fibers (h2 = .77) were the most heritable 

followed by tracts in brain stem fibers (h2 = .69), projection fibers (h2 = .64), and 

commissural fibers (h2 = .62). In examining the heritability of MD of the groups we have 

identified that tracts in the brainstem (h2 = .84) had the highest heritability, followed by 

projections fibers (h2 = .82), association fibers (h2 = .81) and finally commissural fibers 

(h2 = .79).  
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Third, the MDS analysis of FA heritabilities (Fig. 3.11) revealed a separation of the 

heritabilities into 3 quadrants comprising commissural fibers and projection fibers (upper 

left quadrant), association fibers (upper right), and tracts in the brain stem (lower left). 

The MDS analysis of the MD heritabilities (Fig. 3.12) revealed a separation of the 4 areas 

domains in 4 quadrants comprising commissural fibers (upper left quadrant), tracts in the 

brain stem (upper right), association fibers (lower left) and projection fibers (lower right).  

Figure 3.9 FA of ℎ2  per 

white matter parcellation 

map (Mori et al., 2008). 

 

Figure 3.10 MD of 

ℎ2  per white matter 

parcellation map 

(Mori et al., 2008) 
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Figure 3.11 FA MDS of ℎ2  of the four white matter groups. 

 

 

Figure 3.12 MD MDS of ℎ2  of the four white matter groups. 
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Finally, the grouping and gradient for FA was confirmed in the HTC dendrogram 

(Fig. 3.13), which comprises 2 branches, one containing (commissural fibers, projection 

fibers) and (tracts in the brain stem) in 2 separate sub-branches, and the other containing 

(association fibers) in a single branch. The grouping and gradient for MD was also confirmed 

in the HTC dendrogram (Fig. 3.14), which comprises 2 branches, one containing (association 

fibers, commissural fibers) and the other containing (projection fibers, tracts in the brainstem 

in 2 separate sub-branches.  

 

 

commissural  

fibers 
projection  

fibers 

tracts in 

brainstem 

association  

fibers 

Heritability FA 

association  

fibers 

commissural  

fibers 
projection  

fibers 

tracts in  

brainstem 

Heritability MD 

Figure 3.13 FA HTC of ℎ2  of the four WM areas. 

Figure 3.14 MD HTC of ℎ2  of the four WM areas. 
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3.8 Discussion 

The goal of Chapter 3 is to determine the heritability of WM regions of the healthy 

brain using known genetic relationships (twins, siblings) and key WM measurements, 

fractional anisotropy (FA) and mean diffusivity (MD). 

The grouping of participants into genetic groups resulted in the zICC differing 

significantly and systematically among the groups, such that MZ>DZ>SB>NR for both 

FA and MD measurements. The results found are consistent with the literature since MZ 

twins share all genetic effects, while DZ twins share on average 50 % genetic effects. 

Siblings also share on average 50 % of their genetics; however, it is expected that they 

would have lower zICC (and heritability values) because their environmental variation is 

higher compared to twins. The non-related participants are last in terms of zICC since 

they are not expected to have any common genetic effects.  

To calculate heritability we used the classical Falconer Formula (Falconer, 1965) and 

grouped WM areas of the brain into 4 groups based on (Mori et al., 2008) atlas: 

association fibers, projection fibers, commissural fibers, and tracts of the brain stem.  

FA, a measure obtained from DTI data, is highly sensitive to microstructural changes. 

It can be used to examine differences of brain structural integrity(Alexander et al., 2007a) 

and to describe heritability. The FA heritability of the regions were identified in the 

current study as the following (from most heritable to lowest): association fibers, tracts in 

brain stem, projection fibers, and commissural fibers. Although the commissural fibers 

had the lowest heritability of the four areas, the heritability value of 0.6 is considered a 

reasonably high heritability value considering that heritability value of traits usually 

range from 0.3 to 0.6 (Carey, 2001).  This suggests a high consistency of additive genetic 
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contribution to FA values in WM regions of the brain. HTC and MDS were used to 

decipher grouping of the heritabilities based on areas. Results showed commissural fibers 

and projection fibers in the same quadrant, association fibers in another quadrant, and 

tracts of the brain stem as a separate quadrant. A possible explanation for this result is 

that commissural fibers and projection fibers connect different parts of the brain. 

Commissural fibers are axons that connect the two hemispheres of the brain, and 

projection fibers connect each region to other parts of the brain or to the spinal cord 

(Standring, 2005). In contrast, the association fibers connect regions within the same 

hemisphere of the brain (Standring, 2005). 

MD is another measure obtained from DTI data that is used to examine differences of 

brain structural integrity (Clark, 2011) and can also be used to decipher heritability. 

Examination of the heritabilities of the ROIs, using MD as the measurement, shows that 

tracts in the brainstem had the highest heritability, followed by projections fibers, 

association fibers and finally commissural fibers. Similar to the FA results for 

heritability, the MD results show the commissural fibers had the lowest heritability of the 

four areas; however, their heritability value of 0.799 is considered a high heritability 

value considering that heritability values for traits usually range from 0.3 to 0.6 (Carey, 

2001). The MDS analysis of the MD heritabilities revealed a separation of the areas into 

4 quadrants.  However, since the dimensions are not fixed for MDS, HTC can give 

insight into the grouping of the areas. HTC revealed commissural fibers and association 

fibers in one branch, and projection fibers and tracts in the brain stem in another branch. 

A possible explanation for this result is that commissural fibers and association fibers 
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based on anatomy (Fig 3.4) share considerable areas of fiber crossing, while projection 

fibers and tracts of the brainstem connect different parts of the brain. 

The heritability results do not imply that the same genes are responsible for the 

similar patterns of heritability found using the measures; instead they provide a reliable 

phenotype for discovery of genetic factors that affect cerebral WM structure and integrity 

(Kochunov, 2015). The heritability results of FA and MD show similar patterns of 

heritability except for association fibers. If association fibers are excluded, then both 

measures follow the pattern of, tracts of the brain stem having the highest heritability, 

followed by projection fibers and commissural fibers. Association fibers connect areas 

within the same hemisphere allowing distinct cortical areas to "associate" with one 

another. In contrast, tracts in the brain stem, projection fibers and commissural fibers are 

axons that connect different parts of the brain (Standring, 2005).  The MDS results for 

both measures are open to interpretation; however, the HTC can give some insight into 

how to interpret the results. The HTC results show different groupings for FA and MD 

measurements. A key question that is often posed in the field is how to relate and 

interpret the two measures extracted from diffusion images to their biology. Many 

research studies primarily focus on FA; however, that may not be enough to characterize 

the tissue changes (Alexander et al., 2007) or heritability. Using both measurements (FA 

and MD) may help to better understand how the diffusion tensor is changing; thus, 

leading to a better understanding of heritability values. For example, Madden et al. 

(2012), found a pattern of decreased FA values and increased MD values in the CC areas 

of the ageing brain. The biological interpretation of this pattern is a loss/disruption of 



 
 

50 
 

both axons and myelin. By understanding the patterns of FA and MD heritabilities in a 

young health population gives a blue print of patterns healthy brain measurements and 

heritability of those measurements.  
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Chapter 4 Structural MRI (sMRI) 

4.1 Introduction 

Structural magnetic resonance imaging (sMRI) is a non-invasive neuroimaging 

technique that has become the standard measure for routine examination of the brain 

(Symms, 2004). sMRI offers superb anatomical detail, high sensitivity to pathological 

changes and great border visualization of human brain’s GM, WM and cerebral spinal 

fluid (CSF) (Symms, 2004). sMRI quantifies and evaluates different areas of the brain 

(size, location) thus determining the overall integrity of the brain.  In recent years, sMRI, 

has been rapidly expanding into a neuroimaging tool to investigation not only brain 

structure but also to investigate of the genetics of brain structure (Winterer et al., 2005). 

4.2 sMRI Principles and Concepts 

sMRI provides neuroimaging data to describe the anatomical structure (size, 

shape, and integrity) of the GM and WM of the brain. GM contains cell bodies (neurons) 

while WM, is mainly composed of long-range nerve fibers (myelinated axons); the 

different composition of tissue, causes a different MRI signal in GM and WM. An MRI 

pulse sequence is a programmed set of changing magnetic gradients and radiofrequency; 

combinations of these pulse sequence parameters affect tissue contrast and spatial 

resolution. For example, modifications to common pulse sequence parameters such as 

repetition time (TR) and echo time (TE) emphasize different aspects of brain tissue 

resulting in anatomical images that emphasize contrast between GM and WM. T1-

weighted and T2-weighted are the most common MR images produced with variation to 

the pulse sequence parameters. T1-weighted images are produced by using short TE and 
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short TR times while T2-weighted with long TR and long TE. T1 images contrast 

between GM (dark gray) and WM (lighter gray) tissues, while CSF is void of signal 

(black). Fat, such as lipids in the myelinated white matter, appears bright.  T1-weighted 

imaging offers good contrast between GM, WM and CSF, and it is used most frequently 

used to quantitatively study of brain morphology, especially of individual brain structures 

(Keller & Roberts, 2009). T2-weighted images show contrast between CSF (bright) and 

brain tissue (dark). Some T2 sequences demonstrate additional contrast between GM 

(lighter gray) and WM (darker gray). T2-weighted images are commonly used for 

quantification of intracranial volume (ICV), due to the signal intensity of CSF in the T2 

sequence permits a more straightforward way to quantify CSF (Keller & Roberts, 2009).  

Fig 4.1- T1 weighted image source: http://fmri.ucsd.edu/Howto/3T/structure. 

Fig 4.2 - T2 weighted imaged source: http://fmri.ucsd.edu/Howto/3T/structure  
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4.3 Heritability of sMRI (Brain Volume) 

Heritability of human brain volume has a wide range heritability estimates and less 

studied in young healthy adults compared to middle age to older populations.  

The lobes (temporal, frontal, parietal, and occipital) of the brain are related to 

different brain functions such as, movement, memory, spatial awareness, sensory, visual 

processing center, perception and emotion (Ribas, 2010). The additive heritability 

estimates for the lobes are the following: temporal lobe 74.3%, frontal lobe 68.6%, 

parietal lobe 72.7% and occipital lobe 60.3% (Blokland et al., 2012; Brun et al., 2009).  

Other studies reported similar additive genetic estimates:  54% for total frontal, 47% for 

total parietal lobes (Geschwind et al., 2002). Lukies et al. (2017) found that genetic 

effects strongly determine lobar volumes for the frontal (86.7%), temporal (92.3%), 

parietal (86.5%) and occipital (64.3%) lobes. 

Genetic influence on the human cortical areas was investigated by Wen et al. 

(2016), who reported a heritability range from approximately 0 (caudal anterior-cingulate 

cortex) to 0.67 (precentral gyrus, insula cortex).  

4.4 Methods 

4.4.1 Subjects 

Out of 1206 HCP participants, 1113 participants have sMRI acquisitions. Of those 

participants with imaging data, 1053 participants had genetically confirmed family 

relations. Siblings of twins are excluded. Additionally, 33 participants are excluded from 

analysis because the estimated ICV was not accurate. Of those participants that have 

genetically confirmed, and good quality data consists of the following: 260 (130 pairs) 



 
 

54 
 

MZ twins, 148 (74 pairs) DZ twins, 317 participants out of 134 families are siblings, and 

101 are unpaired twins or unrelated individuals. The following 4 groups of participants 

were studied by pairing the individuals of: (1) MZ twins (MZ); (2) DZ twins (DZ); (3) 

siblings (SB) and (4) unrelated individuals (NR). 

In the SB group there are, within the same family sometimes, 2, 3, 4 or 5 siblings.  

For families with a sibling count of more than 2, a pair is randomly selected making 134 

pairs out of 268 selected siblings for SB group. In the NR group 101 individuals were 

randomly paired in 50 pairs. For each ROI, for SB and NR groups, the ICC was 

calculated for randomly paired individuals. After repeating this process 1001 times, the 

median ICC was found. 

4.4.2 sMRI  data collection 

sMRI data were collected at Washington University St. Louis using a customized 

Siemens 3 T scanner. The structural scans include a pair of T1-weighted and a pair of T2-

weighted images, acquired at high resolution of 0.7 mm (compared to the standard 1 mm 

resolution) (Glasser et al., 2013) 

4.4.3 sMRI  data preprocessing  

sMRI data is processed by three structural pipelines: PreFreeSurfer Pipeline, 

FreeSurfer Pipeline and PostFreeSurfer Pipeline with the aim to provide high quality 

volume and surface data. The software used for the sMRI pipelines are freely available 

from the FSL  (Jenkinson et al., 2012) and FreeSurfer (Dale et al., 1999) and Connectome 
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Workbench (Marcus et al., 2014) image analysis suites. The pipelines are described 

below.  

4.4.3.1 sMRI PreFreeSurfer pipeline 

The main goals of the first structural pipeline, PreFreeSurfer, are to produce an 

undistorted “native” structural volume space for each subject, align the T1w and T2w 

images, perform a B1 (bias field) correction, and register the subject’s native structural 

volume space to MNI space. Hence, there are two volume spaces in HCP data: 1) The 

subject’s undistorted native volume space which is the best approximation of the 

subject’s physical brain. 2) Standard MNI space that is useful for comparisons across 

subjects and studies (1200 HCP  Release Reference Manual, 2017). 

4.4.3.2 sMRI FreeSurfer pipeline 

The FreeSurfer pipeline is based on FreeSurfer 5.3.0-HCP and was modified to 

capitalize on HCP’s high-resolution data. The main goals of the second pipeline are to 

segment the volume into predefined structures, reconstruct cortical surfaces, and perform 

FreeSurfer’s folding-based surface registration to their surface atlas (fsaverage) (1200 

HCP  Release Reference Manual) 

4.4.3.3 sMRI PostFreeSurfer pipeline 

The final structural pipeline, PostFreeSurfer, produces all of the GIFTI surface 

and auxiliary files necessary for viewing the data in Connectome Workbench, performs 

individual surface registration using cortical folding surface features and the MSM 

algorithm (MSMSulc), down sampling registered surfaces for connectivity analysis, 
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creating the final brain mask, and creating myelin maps. (1200 HCP  Release Reference 

Manual, 2017). 

4.4.4 FreeSurfer 

FreeSurfer is a software package for the analysis and visualization of structural 

and functional neuroimaging data. FreeSurfer provides a full processing for structural 

MRI data; technical details of these procedures are described in detail in prior 

publications (Dale et al., 1999; Fischl & Dale, 2000; Fischl et al., 2004). Briefly, this 

processing includes: 

• Skull stripping, B1 bias field correction, and GM- WM segmentation 

• Reconstruction of cortical surface models (GM-WM boundary surface and pial 

surface) 

• Labeling of regions on the cortical surface, as well as subcortical brain structures 

• Nonlinear registration of the cortical surface of an individual with a stereotaxic 

atlas 

4.4.5 Desikan Atlas 

 The Desikan-Killiany atlas (Desikan et al., 2006) parcellation scheme labels 

cortical sulci and gyri into 68 and 2 hippocampi (35 for each hemisphere) ROIs. In the 

volume-based stream, the 70 regions are automatically labeled in left and right 

hemispheres are averaged for a total of 35 ROIs.  Volumes were calculated for the major 

lobes: frontal, occipital, parietal, and temporal, by grouping the 35 ROIs into their 

respective lobes.  A list of the ROIs used to calculate heritability is shown in Table 4.1. 
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4.4.6 Inter-individual variability 

Participants are compared by regional volumes; however, it is likely that the 

individuals with larger structures have larger brains and individuals with smaller 

structures have smaller brains. To account this variability among individuals, the regional 

brain volume is normalized and expressed as the percent of the ICV it occupies 

(Voevodskaya et al., 2014; Whitwell et al., 2009). Estimated Total Intracranial Volume 

(eTIV) is generated by FreeSurfer and used to estimate the ICV. Cortical volume 

measures from the left and right hemisphere were averaged and the mean brain volume 

was expressed as the percent of the ICV. The calculated percent of cortical areas is a 

unitless value between 0 and 100. 

4.4.7 Removing extreme values from data 

Extreme values are excluded from analysis by specifying the numerical criteria that 

define extremes (Tukey 1977). First, we calculate the interquartile range (IQR=Q3 - 

Q1=H3-H1) as the difference between 75 percentile, Q3, and 25 percentiles, Q1, called 

Tukey’s Hinges. The values for Q1 – 3×IQR and Q3 + 3×IQR are the "upper and lower 

fences" that identify the "reasonable" values from the extreme values. The values that lie 

outside the outer fences are considered extreme values and are removed. All data that 

were inside the outer fences were included into analysis. 

4.4.8 Statistical methods 

See Chapter 1 for details on the statistical methods used in this chapter.  
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4.5 Results 

First, zICC differed significantly among groups (p < .05, F-test in ANOVA) and 

varied systematically, such that MZ>DZ>SB>NR for lobe volumes (Fig. 4.3) and 

Desikan (cortical) (Fig. 4.4) ROI volumes. This general arrangement is as expected and 

consistent with literature reviews as MZ are the most genetically similar followed by DZ, 

SBs and NR as the least similar group. A specific comparison was carried out for zICC 

between DZ and SBs groups, since those pairs on average share the same amount (50%) 

of genetic material; however, the zICC was not significantly different for lobe volumes 

and Desikan ROI volumes (p > .05) between DZ and SBs groups. However, comparison 

of brain groups showed that overall mean zICCs were higher for lobar volumes (Fig. 4.3), 

lower for the ROIs (Fig. 4.4). 

 
 

 

 

 

Figure 4.3 Volume Lobes zICC ± SEM per genetic group. 

 

NR 
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Figure 4.4 Volume Desikan zICC ± SEM per genetic group. 

 

Figure 4.5 zICC of twins grouped by gender and lobes 



 
 

60 
 

Frontal Lobe 

 ℎ𝑏
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Inferiorparietal 0.316 

Insula 0.332 

Posterior 

cingulate 0.378 

Supramarginal 0.392 

Isthmus 

cingulate 0.682 

Occiptal Lobe ℎ𝑏
2 

Pericalcarine 0.152 

Lingual 0.308 

Cuneus 0.41 

Lateral 

occipital 0.552 

Temporal 

Lobe ℎ𝑏
2 

Transverse 

temporal 0.088 

Temporal pole 0.226 

bankssts 0.282 

fusiform 0.288 

Para hippo 

campal 0.296 

Superior 

temporal 0.316 

entorhinal 0.524 

Inferior 

temporal 0.616 

Hippocampus 0.714 

Middle 

temporal 0.758 

 

Table 4.1 Desikan ROIs and ℎ2  values  
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Second, a t-test was performed on the Desikan area heritabilities which yielded a 

significant result (table 4.1, Fig. 4.6) (p < .05). In examining the heritability of the 

Desikan areas, the results show that most Desikan areas have some degree of heritability. 

The middle temporal (h2 = 0.758) had the highest heritability and the transverse temporal 

had the lowest heritability (h2 = 0.088) for the temporal lobe. The isthmus cingulate (h2 = 

0.682) highest for the heritability while the precuneus had the lowest heritability (h2 = 

0.01) for the parietal lobe.  The lateral occipital (h2 = 0.552) had the highest heritability 

while pericalcarine (h2 = 0.152) had lowest heritability for occipital lobe. The pars 

orbitalis (h2 = 0.566) had the highest heritability while rostral middle frontal (h2 = 0.076) 

had lowest heritability for frontal lobe. 

Figure 4.6 Desikan ROIs and ℎ2  values  
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A t-test was also performed on the four lobes area heritabilities which yielded a 

significant result (Fig. 4.6) (p < .05). In examining the heritability of the lobes, the 

temporal lobe (h2 = 0.73) was the most heritable, followed by frontal lobe (h2 = 0.5), 

parietal lobe (h2 = 0.46) and occipital lobe (h2 = 0.44) (Fig. 4.7).   

0.5 

0.46 

0.73 

0.44 

Figure 4.7 Lobes ℎ2  values 
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Third, the MDS analysis of lobular heritabilities (Fig. 4.8) revealed a separation 

of the heritabilities into 3 quadrants comprising occipital and parietal lobe (upper left 

quadrant), temporal lobe (upper right), and frontal lobe (lower left).  

Finally, the grouping and gradient for lobes was confirmed in the HTC dendrogram 

(Fig. 4.9), which comprises 2 branches, one containing (parietal, occipital and frontal 

lobe) and the other branch containing the temporal lobe.  

 

Figure 4.8 MDS of Lobes ℎ2  values 
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4.6 Discussion 

The goal of Chapter 4 is to determine the heritability of structural brain volumes of 

the healthy brain using known genetic relationships (twins, siblings) in different regions 

of the brain using the Desikan atlas.   

The grouping of participants into genetic groups resulted in the zICC differing 

significantly and systematically varying among the groups, such that MZ>DZ>SB>NR 

for the lobes and Desikan areas. This revealed the expected pattern of genetic influence 

for a heritable trait, since MZ twins share all genetic effects, while DZ twins share on 

average 50 % genetic effects. Siblings also share on average 50 % of their genetics; 

however, it is expected that they would have lower zICC (and heritability values) because 

Occipital 

Lobe 
Parietal 

Lobe 

Frontal 

Lobe 
Temporal 

Lobe 

Heritability Lobes 

Figure 4.9 HTC of Lobes ℎ2  values 
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their environmental variation is higher compared to twins. The non-related participants 

are expected to be last in terms of similarity since they are not expected to have any 

genetic effects. All participant groups, except for the NR groups, showed a pattern of 

decreasing ICC with overall decreasing volume of brain regions from the larger lobe 

volumes to the smaller cortical ROIs.  

To calculate the heritability of brain volumes, cortex was parcellated into 35 ROIs 

based on the Desikan-Killiany atlas (Desikan et al. 2006) parcellation scheme. The results 

show that most Desikan areas have some degree of heritability (table 4.1). Heritability 

values were not calculated for the caudal anterior-cingulate cortex, frontal pole and pars 

opercularis since the ICC value or heritability was negative. The middle temporal area (h2 

= 0.758) in the temporal lobe was the most heritable while by precuneus (h2 = .01) in the 

parietal lobe was the lowest (Table 4.1, Fig. 4.5). Genetic influence on the human cortical 

areas was investigated by Wen et al. (2016), who reported a heritability range from ~0 

(caudal anterior-cingulate cortex) to 0.67 (precentral gyrus, insula cortex).  

Heritability was also calculated for the four major lobes:  frontal, occipital, parietal, 

and temporal. The heritability findings for the four lobes in this dissertation are the 

following: frontal lobe (50%), temporal lobe (73%), parietal lobe (46%) and occipital 

lobe (44%). These results have similar heritability pattern to Lukies et al. (2017) 86.7%, 

92.3%, 86.5%, 64.3%; Geschwind et al. (2002) 54%, 46%, 47% 28%; and Panizzon et al. 

(2009) 85%, 86%, 82%, 48% for the same four lobes respectively. These three studies 

and the results from this dissertation found that the occipital lobe had the weakest genetic 

contribution of the four lobes. 
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Differences in heritability estimates found in this dissertation and previous studies 

mentioned may be due to a number of factors. There are methodological differences like 

sample sizes, different ages of participants, or solely twin participants. The previous 

studies used different ethnicities in their study population and the age trends toward 

middle to advanced age. Therefore, the differences observed in heritability compared to 

previous studies may reflect ethnic variation. An immense advantage of this study is that 

it involved a young healthy population with an age range of 22- 37 (Van Essen et al., 

2013). This may explain some of the differences since heritability of brain volume has 

been observed to vary with age (Batouli et al., 2014; Pfefferbaum et al., 2000). Having a 

young healthy population with a narrow age range gives an excellent blueprint of 

heritability values for this particular age range.  

Another difference and significant advantage of this dataset compared to others is the 

high-resolution MRI T1-weighted scans with voxel dimensions of 0.7 x 0.7 x 0.7 mm 

while standard T1- weighted acquisition dimensions are 1 x 1 x 1 mm. Other notable 

differences are: (1) the quality of the dataset used, (2) the study design that includes not 

only twins, but also siblings, and unrelated individuals, and (3) wide range of brain areas.  

Since the HTC and MDS analysis were performed on a single dissimilarity matrix, 

the two dimensions are not fixed, this leaving the grouping of the lobe heritabilities open 

to interpretation.  By splitting the graph by the second-dimension results in the frontal, 

parietal and occipital lobes to be in a single dimension. One possible explanation for this 

result is that the heritability of the lobes follows the anatomical and spatial positioning of 

the lobes (Fig 4.6, 4.7). 
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The actual extent of genetic influence on brain structures and volumes is likely to 

vary spatially across the brain. A plausible developmental hypothesis could be that the 

earliest-maturing brain regions have structural volumes that are more genetically 

influenced. However, because human brain development is structurally and functionally a 

nonlinear process, regions within a lobe have different maturation patterns. Therefore, 

another plausible developmental hypothesis could be that, the brain regions that are 

developing and maturing slowly are regions under constant genetic influence. For 

example, the temporal lobe resulted in the highest heritability amongst the four lobes. It is 

also one of the last lobes to mature fully; however, certain areas of the temporal lobe such 

as the medial aspects of the inferior temporal lobe mature early and do not change much 

thereafter (Gogtay et al., 2004). A similar pattern is found for the frontal lobe which had 

the second highest heritability. The parietal and occipital lobes are the lobes with lower 

and similar heritability values. This result could be because parts of the brain associated 

with more basic functions matured early (Gogtay et al., 2004) and the heritability of brain 

volume changes (lowers) over time (Pfefferbaum et al., 2000). 
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Chapter 5 Functional MRI (fMRI) 

5.1 Introduction 

Functional magnetic resonance imaging (fMRI), based on the same technology as 

MRI (See Chapter 1), has revolutionized neuroscience over the past decade due to its 

unprecedented capability to non-invasively and safely image the brain with excellent 

spatial and good temporal resolution (Poldrack et al., 1996).  fMRI is one of the more 

recently developed forms of neuroimaging but the idea underpinning the technique builds 

on a long history of knowledge about the brain. From the 1890s, it has been known that 

more active areas of the brain receive more oxygenated blood (Roy CS, 1890). In 1990 

Ogawa et al. made a key scientific finding by determining that changes in blood oxygen 

levels caused the magnetic resonance imaging properties to change i.e., that the fMRI 

image varied with the level of oxygenation in blood. Since oxygen is used up by active 

neurons, a pivotal discovery was made that fMRI could distinguish neurons that were 

functionally active from those that were relatively inactive thus, initiating the remarkable 

possibility of studying brain function in humans.  

Since fMRI gives detailed images of brain activity, it can be used to determine 

precisely which parts of the brain are handling critical functions such as thought, speech, 

vision, movement and sensation  (Mayfield, 2018). This is a key difference and 

advantage of fMRI compared to sMRI (Chapter 4) and dMRI (chapter 3) which, although 

are unique and have their own advantages, are static anatomical structural images of the 

brain and are not used to study activation and functional changes of the brain.   
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Brain development is heavily influenced by genetic factors; family or twin studies 

indicate that brain structure and function are heritable to some extent. Advances in 

modern neuroimaging, such as fMRI in combination with genetics allow neuroscientists 

to investigate genetic and environmental factors that influence human brain structure and 

function (Park et al., 2013). This emerging field (neuroimaging and genetics/genomics) 

has been made possible by recent technological advances in genetics and neuroimaging 

methods and have numerous applications in medicine and neuroscience (Fritsch et al., 

2015).  

5.2 fMRI Heritability 

The human brain, formed by a complex network of interconnected brain regions, 

is influenced by genetics; however, the extent of that influence is not yet known, but can 

be investigated using twin studies and fMRI (Heuvel et al., 2013). Heritability (See 

Chapter 1) of several structural and functional aspects of the brain are known to be highly 

heritable with measures varying between 0.42 and 0.60 (Glahn et al., 2010; Peper et al., 

2009; Thompson et al., 2013). Compared to brain structure (Chapter 4), heritability 

studies of brain function are scarce and reveal a lower heritability estimate (~40 %) 

(Jansen et al., 2015). Large MRI consortia, such as the HCP, are an important component 

to explaining heritability due to its statistical powers, which will eventually lead to more 

information about brain functioning and heritability (Jansen, 2015).  
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5.2.1 fMRI Heritability in the Literature 

A 2013 study conducted by Heuvel et al. used 12-year-old Dutch twins (n = 21 

MZ, and 22 DZ twin pairs) to study heritability of whole brain connectivity during early 

brain development. In contrast to the findings in adult twins (0.60), the heritability 

estimates in the 12-year-old Dutch twins were lower (0.42). This may suggest an increase 

in genetic control during aging and the existence of a set of genes shaping the global 

architecture of functional brain communication during early brain development (Heuvel 

et al, 2013). 

Glahn et al. (2010) published heritability estimates for connectivity using 

independent component analysis (ICA) a multivariate decomposition method in 333 

individuals. The group calculated heritability for the default mode connectivity (DMC), a 

large-scale brain network of interacting brain regions that are highly correlated and 

distinct from other networks in the brain (Buckner et al., 2008). The heritability was 

estimated to be 0.424. The gray matter density from within this brain region was also 

heritable (h2 = 0.327). However, the genetic correlation between functional connectivity 

and gray matter density was non-significant (ρg = 0.077, p = 0.836), suggesting that 

different genes may influence structure and function or that there is a lack of power to 

detect genetic overlap (Thompson, 2013).  

Another manuscript balanced different graph theory-based parameters to 

maximize “communication efficiency” while minimizing “connection cost” (Fornito et 

al., 2011). They measured spontaneous fluctuations of the BOLD signal using fMRI 

imaging in healthy twins (16 monozygotic pairs and 13 dizygotic pairs) to characterize 
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cost-efficient properties of brain network functional connectivity between 1041 distinct 

cortical regions. At the global network level, 60% of the interindividual variance in cost-

efficiency of cortical functional networks was attributable to additive genetic effects, 

suggesting substantial heritability. De-composing this global network effect in the 0.09–

0.18 Hz range indicated that genetic influences were not distributed homogeneously 

throughout the cortex, and regional heritability estimates (bilateral posterior cingulate and 

medial prefrontal cortices, dorsolateral prefrontal and superior parietal cortices, and 

lateral temporal and inferomedial occipital regions) ranged from <0.10 to 0.81 (0.51 

median). 

One research group, Adhikari et al. (2018), studied two datasets, collected ten 

years apart to determine if they could detect genetic influences on resting state 

connectivity. The results showed that between 20–40% of the inter-subject variance in 

functional connectivity within functional networks was under genetic control. The pattern 

of heritability was similar between two cohorts, which were collected using very different 

imaging protocols and sample designs. Together, these findings strongly suggest that 

resting state connectivity is under a moderate genetic control and this heritability can be 

detected (Adhikari, 2018). 

To quantify neural interactions in local cortical networks, (Christova and 

Georgopoulos, 2018), quantified the interactions in six cortical areas of 854 individuals 

from the HCP. Each time series was pre-whitened with an autoregressive integrative 

moving average (ARIMA) model (Box and Jenkins 1976) of orders (P = 15, d = 1, q = 1) 

(Christova et al., 2011). They found that the strength of zero-lag correlation between pre-
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whitened, BOLD fMRI time series decreased (rate of decrease, b) with distance as a 

power law. For twins, the rate of decrease was significantly correlated between 

monozygotic twins, less so between dizygotic twins or nontwin siblings, and not at all in 

nonrelated individuals. Using Falconer’s formula, heritability was calculated as h = 

0.188.  

5.3 fMRI BOLD Signal Brief History and Background 

5.3.1 fMRI BOLD Signal 

Ogawa et al. (1990) were the first to report the BOLD contrast in the rat brain. In 

1992, three studies were the first to explore the BOLD contrast in humans:  Kwong et al., 

Ogawa et al., and Bandettini et al. (Ugurbil, 2004). The changes in blood flow are 

repeatedly captured by the MRI scanner at hundreds of thousands of locations, creating a 

time series of brain images with the ability to deduce oxygenation changes in brain over 

time. By generating a map of blood flow and consequently functional brain activity, 

fMRI helps researchers pinpoint areas of the brain that are most active, providing insight 

into the inner workings of the human brain (Hart et al., 2017).   

The BOLD signal measures the ratio of oxygenated to deoxygenated hemoglobin 

in the blood. Hemoglobin has different magnetic properties and produces different local 

magnetic fields depending on the state hemoglobin exists in: 1) diamagnetic when 

oxygenated (oxyhemoglobin) or 2) paramagnetic when deoxygenated (deoxyhemoglobin) 

(Pauling, 1936).  Oxyhemoglobin has no unpaired electrons and is diamagnetic (repelled 

by a magnetic field), while deoxyhemoglobin is formed when oxygen is released, 
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exposing its iron core and thus becomes strongly paramagnetic (attracted by a magnetic 

field). Oxyhemoglobin increases the MR signal and deoxyhemoglobin suppresses the MR 

signal; as the concentration of deoxyhemoglobin decreases, the fMRI signal increases 

(Wager & Lindquist, 2015). The BOLD signal detects these small changes in magnetic 

properties of blood caused by metabolic and vascular responses to neuronal activity (Faro 

et al., 2010). As neural activity increases so does the metabolic demand for oxygen and 

nutrients. 

 

Figure 5-1 Elster, Allen D. 2019 MRIquestions 

The changes in the MR signal are triggered by an instantaneous neuronal activity known 

as the hemodynamic response function (HRF).  As oxygen is extracted from the blood, 

the hemoglobin becomes paramagnetic and can lead to a decrease in BOLD signal 

(“initial dip”).  Following a ∼2 sec delay (Ogawa et al., 1990), the BOLD signal will start 

to gradually increase due to an over compensation in blood flow (oxyhemoglobin) and 

will reach its peak a in BOLD signal 4-6 seconds following activation. After reaching its 

peak, the BOLD signal plateaus after 6–12 seconds and returns to the baseline, typically 
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undershooting slightly. This post-stimulus undershoot is due to a combination of reduced 

blood flow and increased blood volume.  

 

Figure 5-2 Kornak J, 2011 HRF 

It is important to note that BOLD signal does not directly measure neuronal activity, 

rather it measures the metabolic demands (oxygen consumption) of active neurons 

(Wager & Lindquist, 2015). Since the BOLD signal can indirectly measure neuronal 

activity, rsfMRI can be used measure the functional connectivity of the brain at resting 

state (Hart, 2017) and adheres to the principle that ‘brain regions that are wired together, 

fire together.’  

There are two general categories of fMRIs acquired by the MRI scanner: 1) task-

based fMRI (tfMRI) - participants who are given a particular task to perform while in the 

scanner and 2) resting state fMRI (rsfMRI) - participants who are resting in the scanner 

(no task to perform). rsfMRI provides insight into the naturally occurring unprompted 

activity that is within the brain, which subsequently promotes communication across 

regions (Douet et al., 2014). For this dissertation chapter only rsfMRI is considered. 
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5.3.2 fMRI Data Analysis – ARIMA Model 

ARIMA modeling is a method used for predicting variables, by using the 

information obtained from the data itself to forecast its trend by regression on its past 

values. However, fMRI BOLD time series data typically has some autocorrelation 

(values that are influenced by previous values) and are considered non-stationary data 

(i.e. have parameters/ trends such as means, variances and autocovariances that change 

over time). It is essential that such data be rendered stationary so that statistical 

parameters of interest do not vary along the time series; otherwise, calculations derived 

from the time series analysis, can be misleading and lead to spurious results due to the 

reflection of  both the internal properties of the series and any ‘true’ relation between the 

two series (Christova et al., 2011). To avoid this mishap, the time series data are pre-

whitened using the ARIMA model (see below) to remove such effects.  

Pre-whitening for the time series data is typically accomplished by applying the 

Autoregressive (AR) Integrative (I) Moving Average (MA) model (ARIMA) (Box and 

Jenkins, 1976). An ARIMA model is concisely described as (p, d, q) orders, where p 

denotes the AR orders (the dependence on past values of the series or number of AR lags 

in the model), d denotes the I orders (the number times a variable is differenced to 

become stationary), and q denotes the MA orders (the dependence on the past values of 

random shocks or the number of MA lags in the model) (Christova et al., 2011).  

In ARIMA modeling, the integration (I) component is addressed first, followed by 

the AR and MA components (i.e. model orders). The raw BOLD time series data (figure 

5.3-4 top) shows that the BOLD values vary with time (trends, or autocorrelated). The 
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integration of the data transforms and renders the non-stationary and autocorrelated data 

as stationary and non-autocorrelated, i.e. convert it to white noise - hence the term ‘pre-

whitening’. After the differencing (integration, ‘I’) of the data, the ARMA model can be 

applied. 

The ARMA model has two steps (Fig 5.3-4):  

1) The first step, after the removal of the trends, is to identify and select the 

model. The main tool for model identification is the autocorrelation (ACF) 

and partial autocorrelation functions (PACF). Based on the data time series 

plot and the shape of ACF and PACF, a tentative model is suggested. 

Typically, the model is started with (p = 0, d = 1, q = 0), which involves first-

order differencing. For the HCP fMRI data, differencing was not enough as 

shown in figure 5.3-4 (middle). The ACF of the (p = 0, d = 1, q = 0) 

innovations still contain autocorrelations.  

2) The second step involves the model parameter estimation by using an 

estimation function to optimize the values. This stage involves computations 

that are implemented to yield the coefficients for the AR and MA lags. 

Typical diagnostic checking of the model involves plotting the residuals, their 

ACF and PACF, to ensure that the AR and MA coefficients are within bounds 

of stationarity. The model is evaluated through iterative refining the model 

until the data has been rendered stationary and non-autocorrelated. After an 

extensive and iterative investigation yielded an ARIMA model of p = 15, d = 

1, q = 1, or (15, 1, 1) figure 5.3-4 (bottom). The aim of the modeling is not to 
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model the time series perfectly, but rather sufficiently enough to ensure that 

the series obtained are stationary and non-autocorrelated.  

 
 

 

 
 

 

 
 

 
Figure 5.3 Raw, Differenced, ARIMA (15,1,1) 
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Figure 5.4 Autocorrelations Raw, Differenced, ARIMA (15,1,1) 
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5.4 Methods 

5.4.1 Subjects 

The following 4 groups of participants were studied by pairing the individuals 

with available fMRI data: (1) 246 (123 pairs) MZ twins (MZ); (2) 144 DZ (72 pairs) 

twins (DZ); (3) 324 (162 pairs) siblings (SB) and (4) 125 (64 pairs) unrelated individuals 

(NR). See Chapter 1 for more details. 

5.4.2 fMRI data collection and preprocessing 

fMRI data were collected at Washington University St. Louis using a customized 

Siemens 3T scanner. The structural scans include T1-weighted and T2-weighted images, 

acquired at high resolution of 0.7 mm (compared to the standard 1 mm resolution) 

(Glasser et al., 2013). fMRI data were acquired in approximately 15 minutes. Within each 

session, oblique axial acquisitions alternated between phase encoding in a right-to-left 

(RL) direction in one run and phase encoding in a left-to-right (LR) direction in the other 

run (HCP Ref Manual 1200 Feb 2017). Resting state images were collected using a 

gradient-echo echo planar imaging (EPI) sequence with the following parameters: 

TR=720 m/s, TE=33.1 m/s, flip angle=52 degrees, FOV=208×180 mm (RO×PE), 

matrix=104×90 (RO×PE), 2.0 mm isotropic voxels, 72 axial slices, and multiband 

factor=8. The HCP’s main pipeline, fMRISurface, was implemented on the fMRI datasets 

for preprocessing. This pipeline removes spatial distortions, realigns volumes to 

compensate for subject motion, and registers the fMRI data to the structural MRI.  The 
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standard volume-based analyses of the fMRI data can proceed from the output of this 

pipeline (HCP Ref Manual 1200). 

5.4.4 fMRI extracting values 

 For each subject, 1200 functional images were acquired continuously, yielding a 

sequence of 1200 BOLD signal values per voxel. The number of voxels in a region of 

interest (ROI) varies according to the size of an ROI. For example, larger ROIs such as 

the post central has approximately 1800 voxels, compared to a smaller ROI, such as the 

frontal pole, with approximately 30 voxels. The BOLD time series data were extracted 

from fMRI data using Matlab (R2016b, Mathworks, Natick, MA, USA). The ARIMA 

(15,1,1) model was applied to the data (See section fMRI Data Analysis – ARIMA), thus 

removing the sixteen images of the 1200 images, leaving 1184 pre-whitened BOLD 

values per voxel, henceforth referred to as innovations. After removing outlier voxels 

(coefficient of variation of no more than 5% (Christova et. al, 2001)), all the remaining 

voxels in the whole brain of each subject, are grouped into different ROIs based on the 

Desikan atlas (Desikan et al., 2006) parcellation scheme described below. 

5.4.5 Desikan-Killiany Atlas 

 The Desikan-Killiany atlas parcellation scheme, labels the cortical sulci and gyri 

of the brain into 68 (34 for the left hemisphere and 34 for the right hemisphere) ROIs. 

These ROIs are automatically calculated and labeled for each subject (as opposed to 

calculated by group or hand labeled).  
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5.4.6 Statistical methods 

5.4.6.1 General Methods 

 See Chapter 1 for details on the general statistical methods used in this chapter. 

5.4.6.2 Specific to this Chapter 

The statistical methods specific to this chapter are: 1) average standard deviation of 

the standard deviations of all the innovations for a particular ROI (PASD) and 2) 

correlations between the average of the innovations for each ROI (PAC) for a total of 

2278 correlations. Details are described below. 

 

 

 

 

The PASD is calculated by taking the standard deviations of the innovations at each 

voxel (1184 time points). Then all the standard deviations for the voxels were averaged to 

find the average standard deviation of the innovations for that ROI. The 68 ROIs are then 

grouped into brain groups based on the four brain lobes (frontal lobe, occipital lobe, 

parietal lobe and temporal lobe). Then the general statistical methods described in 

Chapter 1 were implemented.  

The PAC is calculated for each ROI by averaging the innovations across the time 

series, and then calculating correlations between each ROI for a total of 2278 correlations 

Figure 5.5 Schematic diagram of statistical methods PASD and PAC 
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per subject.  The ICC value for the 2278 correlations was calculated (see Chapter 1) and 

then grouped into one of these 3 brain groups based on anatomy: homotopic, ispsiLR, and 

heterotopic. In the homotopic brain group, correlations were calculated between the 

average innovations of the ROIs in the left hemisphere with average innovations of the 

same ROI in the right hemisphere (ex: precentral gyrus left with precentral gyrus right). 

In the ipsi lateral (ipsiLR) brain groups correlations were calculated between the average 

innovations of all possible combinations of ROI pairs that are located in the same 

hemisphere. For the heterotopic brain group, correlations were calculated between the 

average innovations of a ROI located in one hemisphere (for example: left) and the 

average innovations of a ROI located the opposite hemisphere (for example: right), 

excluding the homotopic pair.  

5.5 Results 

5.5.1 Results: PASD 

First, zICC differed significantly among groups (p < .05, F-test in ANOVA) and 

varied systematically, such that MZ>SB>DZ>NR (Fig. 5.5) for the standard deviations of 

the innovations. For PASD the ziCC of the SB were slightly higher (zICC = .24) than and 

DZ (zICC = .21) group. These two groups are very similar since they on average share 

about 50% of their genetics. This general arrangement is consistent with literature 

reviews as MZ are the most genetically similar and the NR group is the least similar 

group. 
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Figure 5.6 PASD zICC ± SEM per genetic group.    

 

PASD 

Figure 5.7 zICC by gender and brain group 
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In order to determine if gender influences mean SD of innovations the zICC was also 

grouped by gender and by brain lobes but it was not found to be significant (p < .05, F-

test in ANOVA) (Fig. 5.7). 

Second, heritability (See Chapter 1) was calculated for each ROI after averaging 

the ICC for the left and right hemisphere areas for a total of 34 ROIs. If heritabilities 

were found to be negative or greater than one they were excluded. In examining the 

heritability of the Desikan areas, the results show that about half of the Desikan areas 

have some degree of heritability. A t-test was performed on the Desikan area heritabilities 

which yielded a significant result (table 5.1) (p < .05). For the temporal lobe the 

entorhinal (h2 = .97) had the highest heritability while the transverse temporal had the 

lowest heritability (h2 = 0.26). For the parietal lobe the posterior cingulate (h2 = 0.72) 

highest heritability while the supramarginal had the lowest heritability (h2 = 0.22) value. 

For the frontal lobe the pars orbitalis (h2 = 0.90) had the highest heritability while medial 

orbito frontal (h2 = 0.62) had the lowest. And finally, the occipital lobe was excluded 

from analysis because the heritability values (four ROIs) were negative or greater than 

one. 
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Frontal Lobe 𝒉𝒃
𝟐 

medial orbito 

frontal 

0.619 

precentral 0.628 

lateral orbito 

frontal 

0.684 

rostral anterior 

cingulate 

0.688 

paracentral 0.793 

parsorbitalis 0.903 

Parietal Lobe 𝒉𝒃
𝟐 

supramarginal 0.218 

postcentral 0.256 

inferior 

parietal 

0.481 

superior 

parietal 

0.586 

precuneus 0.651 

posterior 

cingulate 

0.718 

Temporal 

Lobe 
𝒉𝒃

𝟐 

transverse 

temporal 

0.264 

bankssts 0.356 

para 

hippocampal 

0.900 

entorhinal 0.968 

 

 

The heritability values for ROIs were also averaged and grouped into lobes. In 

examining the heritability of the lobes, the frontal lobe (h2 = 0.72) was the most heritable, 

followed by temporal lobe (h2 = 0.62), and parietal lobe (h2 = 0.49) (Fig. 5.7).  A t-test 

was also performed on the three lobes area heritabilities which yielded a significant result 

(Fig. 5.8) (p < .05).    

Table 5.1 Desikan ROIs and heritability (ℎ2 ) 
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Third, the MDS analysis of lobular heritabilities (Fig. 5.9) revealed a separation 

of the heritabilities into 3 quadrants comprising frontal lobe (upper left quadrant), parietal 

lobe (upper right), and temporal lobe (lower left).  

 

 
 

0.72 

0.49 

0.62 

NA 

Figure 5.9 MDS of Lobes and heritability (ℎ2 ) 

Figure 5.8 Lobes and heritability (ℎ2 ) 
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Finally, the grouping and gradient for lobes was confirmed in the HTC dendrogram 

(Fig. 5.10), which comprises 2 branches, one branch containing the temporal and the 

frontal lobe, and the second branch contained the parietal lobe.  

 

 
 

 

5.5.2 Results: PAC 

The results for the PAC show that the zICC differed significantly among the genetic 

groups (p < .05, F-test in ANOVA) and varied systematically, such that 

MZ>DZ>SB>NR (Fig. 5.11) for the correlations. A specific comparison was carried out 

for zICC between DZ and SBs groups, since those pairs on average share the same 

amount (50%) of genetic material; the zICC was found to be significantly different (p < 

.05) between DZ and SBs groups.   

 

Frontal Lobe Parietal Lobe Temporal Lobe 

Figure 5.10 HTC of Lobes ℎ2  values 
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zICC correlation values were also distinguished for each genetic group and the three 

brain groups (Figure 5.12). The values varied systematically, such that MZ>DZ>SB>NR 

for the grouping of the correlations for each brain group, except for the homotopic brain 

group in the DZ group which was lower than the SB group. 

Figure 5.11 zICC of PAC per genetic group 
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The gender analysis for the PAC was analyzed by using MZ twins and found to 

be significant (p <.05) (Figure 5.13).When gender and the three brain groups were 

analyzed for the MZ twins, the homotopic brain group was found not to be significant (p 

> .05), while the ipsiLR and heterotopic brain group were found to be significant (p < 

.05) (Figure 5.14). 

Figure 5.12 zICC of PAC by homotopic brain per genetic group 
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Heritability was calculated (Figure 5.15) using the ICC of PAC as a measurement. 

Heritability was highest in the homotopic group (h2 = .209), followed by the heterotopic 

group (h2 = .065), and then by the ipsiLR group (h2 = .0355). 

Figure 5.13 zICC of the 2278 PAC by gender 

Figure 5.14 zICC of PAC by homotopic brain group and gender 
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Third, the MDS analysis of brain group heritabilities (Fig. 5.16) revealed a 

separation of the heritabilities into 3 quadrants comprising ipsiLR (upper left quadrant), 

homotopic (upper right), and heterotopic (lower left).  

 
 

 

Figure 5.15 Heritability of brain groups 

 

Figure 5.16 MDS of Brain Groups ℎ𝑏
2 values 
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Finally, the grouping and gradient for lobes was confirmed in the HTC dendrogram 

(Fig. 5.17), which comprises 2 branches, one branch containing the heterotopic and 

ipsiLR group, and the second branch contained the homotopic group.  

 
 

 

 

 

5.6 Discussion 

The goal of Chapter 5 is to determine the heritability of healthy brain regions using 

the BOLD signal innovations and known genetic relationships. This was accomplished by 

pre-whitening the BOLD time series data for each participant by using the ARIMA 

(15,1,1) model, computing the PASD and PAC, and then grouping the calculations into 

their respective brain and genetic groups.  

The results provide evidence that pre-whitening the fMRI data using the ARIMA 

(15,1,1) model is an important step to determine the true association between time series 

Figure 5.17 HTC of Brain Groups ℎ𝑏
2 values 

Homotopic Heterotopic IpsiLR 
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because fMRI BOLD time series data is typically considered as autocorrelated and non-

stationary data. Without correcting for this, the true association between the time series is 

undetermined and might lead to spurious results due to the reflection of the internal 

properties of the series. To avoid this, the time series data are pre-whitened using the 

ARIMA (15,1,1) model to remove such effects. In addition to the pre-whitened BOLD 

signal, this chapter uses the results of the pre-whiten BOLD signal, the innovations 

(variations), to calculate two measurements, PASD and PAC, to determine heritability. 

Several studies of neuroscience have examined the properties and unique functions of 

variance to understand and predict several important phenomena (Faisal et al., 2008; 

Garrett et al., 2010; Grady and Garrett, 2014). This research takes advantage of the true 

associations of the pre-whiten BOLD signal and the innovations of the BOLD signal to 

calculate heritability may reveal novel brain-related effects not previously considered in 

fMRI research.   

The finding provide evidence that the zICC for both PASD and PAC measurements 

varied systematically, such that MZ>DZ>SB>NR. This pattern of genetic influence for a 

heritable trait is expected, since MZ twins share all genetic effects, while DZ twins share 

on average 50 % genetic effects. Siblings also share on average 50 % of their genetics; 

however, it is expected that they would have lower zICC (and heritability values) because 

their environmental variation is higher compared to twins. The non-related participants 

are expected to be last in terms of similarity since they are not expected to have any 

genetic effects.  
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When zICC of PASD for monozygotic twins were grouped by gender it was found 

not to be significant; the measurements were also grouped by gender and brain lobes, but 

it was also found not to be significant. Using the zICC of PASD to calculate heritability, 

show that about half of the Desikan areas have some degree of heritability (table 5.1). 

The parsorbitalis (h2 = 0.903) in the frontal lobe was the most heritable while by 

supramarginal (h2 = .218) in the parietal lobe was the lowest (Table 5.1, Fig. 5.4). The 

heritability findings for the lobes in this dissertation are the following: frontal lobe (72%), 

temporal lobe (62%), and parietal lobe (49%). This suggests out of the lobes the frontal 

lobe is under the most genetic influence. The grouping of the heritabilities (MDS) of the 

lobes into three separate quadrants show a similar pattern to their anatomical position in 

the brain.  

The zICC values of PAC were grouped into three different brain groups and varied 

systematically for each genetic group, except for the homotopic brain group in the DZ 

group which was lower than the SB group. The homotopic group has the highest zICC 

value among the three brain groups, for all genetic groups, expect the DZ group which 

the ipsi and heterotopic group was higher than the homotopic group. The zICC 

correlations for the NR group were very similar and didn’t have much variation 

compared to the other genetic groups.   

The zICC of PAC for MZ twins were grouped by gender for the 2278 zICC 

correlations and found to be significant. When gender and the three brain groups were 

analyzed for the MZ twins, the homotopic brain group was found not to be significant, 

while the ipsiLR and heterotopic brain group were found to be significant. 
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Using the zICC of PAC as a measurement to calculate heritability, showed 

heritability highest in the homotopic group (h2 = 21%), followed by the heterotopic group 

(h2 = 6.5 %), and then in the ipsiLR group (h2 = 3.6%). The grouping of the brain 

heritabilities using HTC found the heterotopic and ipsiLR grouping together and the 

homotopic grouped separately. These findings show an overall trend of heritability that 

reflect the varying density of anatomical connectivity; extensive across the homotopic 

areas and sparse across heterotopic areas. 

The research presents evidence that using the ARIMA (15,1,1) model to pre-whiten 

the BOLD time series data and using the innovations of the BOLD signal to calculate two 

measurements, PASD and PAC, has a genetic component due to the systematic variation 

for MZ, DZ, SB and NR, genetic groups. Using innovation-based measures to calculate 

heritability may reveal novel brain-related effects not previously considered in fMRI 

research.  
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Chapter 6 Summary 

MRI allows for a multifaceted, noninvasive study of the brain structure and function. 

The advances and availability of data from the high-quality Human Connectome Project 

(HCP) provides a unique and unprecedented opportunity to evaluate genetic effects on a 

multitude of neural and behavioral measures and thus allowing researchers to 

systematically explore the human connectome.  This research analyzes three 

neuroimaging modalities (sMRI, rfMRI, dMRI) as well as the large amount of behavioral 

data, to estimate the genetic contribution of each, by looking at 4 genetic groups in MZ 

twins, DZ twins, siblings (SB) and unrelated participants (NR).  

6.1 Behavior Summary  

The relationship between genetics, behavior and heritability is a topic of interest 

across many different disciplines (Toga & Thompson, 2005). The goal of Chapter 2 is to 

determine the heritability of behavioral traits in five domains (motor, cognition, emotion, 

personality and sensory) in a young, healthy population using known genetic 

relationships (twins, siblings).  

The grouping of participants into genetic groups resulted in the zICC differing 

significantly and varying systematically among the groups, such that MZ>DZ>SIB>NR 

for behavioral measurements overall.  

The heritability results are in agreement with the literature: most human behavioral 

traits have some degree of heritability across different domains (W. Johnson, 2011; 

Turkheimer, 2000). The heritabilities did not differ significantly among domains.  
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MDS and HTC were used to decipher grouping of the heritabilities based on domain. 

A reasonable interpretation of the MDS findings can be achieved by splitting the graph 

by the 2nd dimension. This would position motor-sensory on the right side of the graph 

and cognition-personality on the left side of the graph with emotion in the middle. This 

grouping of the MDS is further confirmed in the HTC results. 

6.2 dMRI Summary 

The goal of Chapter 3 is to determine the heritability of white matter (WM) regions of 

the healthy brain using known genetic relationships and key measurements, fractional 

anisotropy (FA) and mean diffusivity (MD).  

The results show that grouping of participants into genetic groups resulted in the 

zICC differing significantly and systematically among the groups, such that 

MZ>DZ>SB>NR for both FA and MD measurements.  

Heritability was calculated by grouping the WM areas of the brain into 4 groups 

based on (Mori et al., 2008) atlas and are as follows (from most heritable to lowest): for 

FA, association fibers, tracts in brain stem, projection fibers, and commissural fibers and 

for MD, the tracts in the brainstem, projections fibers, association fibers and finally 

commissural fibers. For both FA and MD, results show the commissural fibers had the 

lowest heritability of the four areas; however, their heritability value of .60 and 0.79 

respectively is considered a high heritability value.  

HTC and MDS were used to decipher grouping of the heritabilities based on areas. 

For FA, results showed commissural fibers and projection fibers in the same quadrant, 

association fibers in another quadrant, and tracts of the brain stem as a separate quadrant. 
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The MDS analysis of the MD heritabilities revealed a separation of the areas into 4 

quadrants. For both the measurements the association fibers and the tracts of the brain 

stem were in opposite quadrants, while for FA commissural fibers and projection fibers in 

the same quadrant but in the MD, they were in opposite quadrants.  

6.3 sMRI Summary 

The goal of Chapter 4 is to determine the heritability of structural brain volumes of 

the healthy brain using known genetic relationships in 35 different regions of the brain 

using the Desikan atlas and the four major lobes. 

The grouping of participants into genetic groups resulted in the zICC differing 

significantly and systematically varying among the groups, such that MZ>DZ>SB>NR 

for the lobes and Desikan areas. All participant groups, except for the NR groups, showed 

a pattern of decreasing ICC with overall decreasing volume of brain regions from the 

larger lobe volumes to the smaller cortical ROIs.  

The heritability results show that most Desikan areas have some degree of 

heritability.  The heritability findings for the four lobes in this dissertation are the 

following: frontal lobe (50%), temporal lobe (73%), parietal lobe (46%) and occipital 

lobe (44%).  

The HTC results can give insight on how to split the MDS graph; splitting the graph 

by the second-dimension results in the frontal, parietal and occipital lobes to be in a 

single dimension. One possible explanation for this result is that the heritability of the 

lobes follows the anatomical and spatial positioning of the lobes. The actual extent of 

genetic influence on brain structures and volumes is likely to vary spatially across the 
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brain. A plausible developmental hypothesis could be that the earliest-maturing brain 

regions have structural volumes that are more genetically influenced. 

6.4 fMRI Summary 

The goal of Chapter 5 is to determine the heritability of healthy brain regions using 

the BOLD signal innovations and known genetic relationships. This was accomplished by 

pre-whitening the BOLD time series data for each participant by using the ARIMA 

(15,1,1) model, computing the pre-whiten average standard deviation (PASD) and pre-

whiten average correlation (PAC), and then grouping the calculations into their respective 

brain and genetic groups.  

The finding provide evidence that the zICC for both PASD and PAC measurements 

varied systematically, such that MZ>DZ>SB>NR. When zICC of PASD for monozygotic 

twins were grouped by gender it was found not to be significant; the measurements were 

also grouped by gender and brain lobes, but it was also found not to be significant.  

Using the zICC of PASD to calculate heritability reveals that about half of the 

Desikan areas have some degree of heritability. The heritability findings for the lobes in 

this dissertation are the following: frontal lobe (72%), temporal lobe (62%), and parietal 

lobe (49%). This suggests out of the lobes the frontal lobe is under the most genetic 

influence. The grouping of the heritabilities (MDS) of the lobes into three separate 

quadrants show a similar pattern to their anatomical position in the brain.  

The zICC values of PAC were grouped into three different brain groups and varied 

systematically for each genetic group, except for the homotopic brain group in the DZ 

group which was lower than the SB group. The zICC correlations for the NR group were 
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very similar and didn’t have much variation compared to the other genetic groups, since 

they are expected to be zero or close to zero.   

Using the zICC of PAC as a measurement to calculate heritability, showed 

heritability highest in the homotopic group (h2 = 21%), followed by the heterotopic group 

(h2 = 6.5 %), and then in the ipsiLR group (h2 = 3.6%). These findings show an overall 

trend of heritability that reflect the varying density of anatomical connectivity; extensive 

across the homotopic areas and sparse across heterotopic areas. 

6.5 Gender Summary 

Analyses were carried out in each chapter to assess possible differences between 

males and females. In the behavior data (chapter 2), the zICC varied systemically for men 

and women and, when grouped by domain, there was nearly no difference between the 

genders. In chapter 3 (dMRI) zICC of MZ twins were grouped by gender for FA and 

MD; the zICCs of these groups did differed significantly. In chapter 4 (sMRI) the zICCs 

of MZ twins were grouped by gender and differed significantly. However, when the 

zICCs were grouped by gender and lobes, these did not differ significantly. In Chapter 5 

(fMRI) the zICC of PASD were grouped by gender and found to be significant; however, 

when grouped by gender and by brain lobes, it was not found to be significant. Also, 

from chapter 5, when using the zICC of the PAC of MZ twins grouped by gender, was 

found to be significant. However, when gender and the three brain groups were analyzed, 

the homotopic brain group was found not to be significant, while the ipsiLR and 

heterotopic brain group were found to be significant.  
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ICC describes how strongly the units in the same group resemble each other. If the 

MZ female ICC is higher than the MZ male that means higher similarities between 

female MZ twins in comparison with MZ male twins. 

It is interesting to note that for the brain measures (sMRI, dMRI, fMRI), even though 

there is a difference between men and women overall, the difference is not significant 

when grouped into brain areas or lobes. Also, the overall zICC values, across behavioral 

domains, for men and women are very similar. It is interesting to note, that even though 

there is a significant difference between men and women for the brain measures across 

the domains, it does not reflect a difference in the behavior domain.   

6.6 Main contributions and findings 

This dissertation includes three MRI modalities, sMRI, dMRI and fMRI. This is a 

significant contribution since most studies evaluate only one modality, such as sMRI or 

fMRI. In order to compare the heritability measures of different characteristics of brain 

structure and function, it is important to contrast heritability measures across imaging 

modalities within the same twin populations (Jansen, 2015). The insights from 

heritability studies aid the understanding of individual differences in brain structure and 

function.  

The zICC across all domains and measures varied systematically such that 

MZ>DZ>SB>NR. This general arrangement is as anticipated since MZ twins are 

genetically identical compared to DZ, which are on average 50 percent similar.  A 

specific comparison concerns the difference of zICC between DZ and SB groups, since 

those pairs share the same amount (50%) of genetic material. Overall across most 
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measures and domains this difference was not significant. ICC for non-related 

participants is zero or close to zero since they do not share any genetic material. 

The heritability for the behavioral domains in chapter 2 ranged from (from highest to 

lowest): personality, cognition, emotion, sensory, motor. The heritability measures from 

chapter 3 in FA and MD overall had very high heritability, suggesting a high consistency 

of additive genetic contribution to FA values in WM regions of the brain. The sMRI 

heritability results show that most Desikan areas have some degree of heritability. The 

heritability findings for the four lobes in this dissertation are the found (highest to 

lowest): temporal, frontal, parietal lobe and occipital lobe. The results from this 

dissertation found that the occipital lobe had the weakest genetic contribution of the four 

lobes. In chapter 5 residuals, of pre-whitened fMRI BOLD signal with ARIMA (15,1,1), 

called innovations are used to calculate their SD (PASD) and correlations between them 

(PAC). The heritability of these parameters were calculated.  

A significant advantage of this dissertation is the state-of-the-art high-resolution 

dataset provided by the HCP. For sMRI the high-resolution MRI T1-weighted scans with 

voxel dimensions of 0.7 x 0.7 x 0.7 mm compared to e standard T1- weighted acquisition 

dimensions of 1 x 1 x 1 mm. fMRI resting-state activity of the same areas extracted from 

long-duration (1200 volumes), fast-acquisition (every 0.72 s), high-resolution (2 mm 

isotropic). dMRI white matter integrity measures at 1.25 mm spatial resolution and very 

strong magnetic field gradients at (100 mT/m). 

Another major advantage of this study is that it involved a young healthy adult 

population with an age range of 22- 37. Currently, most studies using MRI to study 



 
 

108 
 

heritability have been used to study diseased brains with few studies covering the healthy 

brain. This age range was specifically chosen because it’s an age range that is considered 

a fully developed adult brain, but not an aging brain or a developing brain.  

6.7 Conclusion 

Multimodal neuroimaging is becoming more common in neuroscientific research 

and in clinical applications. Through the combined efforts of the community, many 

technical limitations have been overcome and solved; however, with the overwhelming 

amount of complex and heterogeneous neuroimaging data, there needs to be clear 

examination and analysis of the data. This research analyzes a large amount of behavioral 

data and three neuroimaging modalities: sMRI, rfMRI, and dMRI. In order to estimate 

the genetic contribution of each modality, the participants were divided into 4 genetic 

groups in monozygotic twins, dizygotic twins, siblings and unrelated participants. This 

research study uses the neuroimaging and behavioral data of young, healthy, adult 

population with a narrow age range. This is a valuable study for identification of an 

overall blue print of the young healthy adult brain. The insights from heritability studies 

aid the understanding of differences in brain structure and function. Thus, providing an 

overall excellent blue print for heritability values in a young healthy population across 

multimodal neuroimaging techniques.  
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