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Abstract

The presence of aeroservoelastic effects in the flight dynamics of flexible aircraft

presents significant challenges in terms of performance degradation and instability.

In order to develop control system for such aircraft, an accurate flight dynamics

model is needed. Developing such a model is an multi-disciplinary effort and re-

quires theoretical and experimental knowledge and research. This thesis describes

the development of the flight dynamics model of a small, flexible aircraft. Each

step of the multi-stage process of the development of the flight dynamics model

is described. The steps include designing and conducting vibration experiments

on the aircraft for system identification of the structural dynamics and the devel-

opment of a finite element model based structural model based on the acquired

data. Aerodynamic models are developed and implemented using modifications of

standard vortex and doublet lattice methods. The purpose of the modifications is

to capture the geometric nonlinearity. The effects of these complex phenomena on

the flight dynamics and instability (flutter) are analyzed. Mean axes based flight

dynamics equations are utilized. These subcomponents are implemented in the

simulation software SIMULINK to obtain the flight dynamics model. Flight tests

are conducted to obtain data which is used to update the flight dynamics model

by updating the aerodynamics model of the aircraft. A correction matrices based

approach is used for this purpose. The resulting model has low computational cost

but is capable of capturing complex behavior like geometric nonlinearities and un-

steady aerodynamics. The low computational cost and modularity of the flight

dynamics model makes it ideal for analysis of the effect of various kinds of aero-

dynamics and structural phenomena. For example, the significant effects of the

capturing the geometrically nonlinear aerodynamics on flutter characteristics of

the aircraft are easily evaluated by this model without long, tedious and resource

intensive computations. The model is also suitable for Monte-Carlo analysis to

estimate the effect of various kinds of open-loop and closed-loop uncertainties.
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Chapter 1

Introduction

Long and slender, high aspect ratio wings with flexible airframes are increasingly

being incorporated in the designs of the modern aircraft [1, 2]. Significant weight

reductions are possible using such designs. They achieve higher aerodynamics

efficiency and thus, lead to a reduction in cost of operation including fuel cost.

But, such designs also lead to an increase in the interaction between the structural

dynamics, aerodynamics and the rigid body dynamics of the aircraft. As the

aircraft becomes more flexible, the frequencies of the flexible modes decrease and

approach the frequencies of the rigid body dynamics and the aerodynamics modes.

This gives rise to dynamic coupling between these modes. These modes can also

interact with the control system of the aircraft. Note that both computer based

autopilots and human pilots are prone to such interactions. The phenomena of

these interactions are known as aeroservoelasticity [3, 4]. Research in the field of

aeroservoelasticity involves a multi-disciplinary approach which includes study of

aerodynamics, structural dynamics and control theory [5].

Aeroservoelastic interactions [6] can not only degrade the performance of an

aircraft but they can also lead to instability due to various phenomena like flutter,

divergence and control surface reversal [3, 4]. This implies that design of flutter

suppression control system [7, 8, 9, 10, 11, 12, 13] and aeroservoelastic analysis of

the aircraft [2] are imperative for flexible aircraft. Therefore, a mathematical flight

1



2

dynamics model which is capable of modeling various aeroservoelastic interactions

is required. Such a model can be utilized at various stages of aircraft development.

For example, the model can be used during aircraft design stage to evaluate the

performance of the aircraft or during control design stage to help design and

analyze a flutter suppression control system. This thesis focuses on development

of such a mathematical flight dynamics model of a flexible aircraft. The following

section contains the outline of the thesis describing the process of the development

of the flight dynamics model. Section 1.2 contains the details of the contribution

made by this thesis.

1.1 Outline of the Thesis

The process of developing the flight dynamics model consists of developing the

models for various submodules and integrating them together. The steps of the

development process is outlined here and details are provided in separate chapters.

Chapter 2 provides an overview of the research project including its objec-

tives, challenges faced and the research-through-development approach taken to

achieve its goals. The details of the specific flexible aircraft on which the research

is conducted are also provided. This includes the details of the fabrication process

and geometric and mass properties.

Chapter 3 provides the an overview of the proposed flight dynamics model.

The flight dynamics model involves separate mathematical models for various

subcomponents of the aircraft. An overview of the overall modeling approach and

the interconnection between various subcomponents are described.

Chapter 4 describes the mean axes approach used to obtain the flight dy-

namics equations of the flexible aircraft. The resulting decoupling between the

rigid body and the flexible dynamics of the aircraft by utilizing the mean axes

framework is discussed. The assumptions and the derivation of the equations of

motion are discussed. Calculations of various sensor outputs using the mean axes

approach are also discussed.
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Chapter 5 describes process of the development of the finite element method

(FEM) based structural model, used to compute the deflections (translations and

rotations) of the structure under external loads. The details of the ground vi-

bration test (GVT), the post-processing of the data obtained and the process of

updating the FEM model based on the data are discussed in this chapter.

Chapter 6 provides the details of development of the aerodynamic model. The

model is used to calculate the forces acting on the aircraft due to the airflow around

it. Panel method based models are derived and implemented to calculate the

steady and unsteady aerodynamic forces. The modifications in these methods to

capture the geometrically nonlinear effects on the aerodynamic forces are described

in the chapter.

Chapter 7 describes the implementation of various submodules in the sim-

ulation software SIMULINK to obtain the flight dynamics model. The chapter

includes the linearization and analysis of the flight dynamics and flutter charac-

teristics of the aircraft. Effects of aerodynamic phenomena like the presence of

geometric nonlinearities and unsteady aerodynamics are also analyzed.

Chapter 8 describes the process of comparison and validation of the flight

dynamics model using flight test data. The details of the processing of flight test

data to obtain estimated frequency response and using it to update the flight

dynamics model with a goal to reduce the mismatch between the model and the

data is described.

Chapter 9 provide details of the conclusions drawn from this thesis.

1.2 Contribution of the Thesis

The multi-disciplinary research conducted in this thesis contributes to the field of

aerospace engineering in the following ways.

• Structural Dynamics: Ground vibration test are conducted on a flexible

aircraft. The process of designing and executing the vibration experiments
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for a small flexible aircraft is described in this thesis. This includes the phys-

ical design of the experiment and selection of hardware, input and output

selection and the post-processing of the data. The design of experiment and

the lessons learned can be followed by researchers for their system.

• Aerodynamics: Panel based methods are modified to include complex

phenomena like geometric nonlinearities. These modifications increases the

capability and complexity of the existing methods while keeping the com-

putation cost low. This results in a low cost and relatively easier method to

capture complex aerodynamic behavior instead of using computation fluid

dynamics approaches.

• Flight Dynamics Model: A modular, nonlinear, control oriented flight

dynamics model for a flexible aircraft is developed. The model has several

desirable properties. The nonlinear model has a low computational cost so

that the control system can be implemented and tested quickly at various

stages of control design. A linear model is easily obtained from the nonlinear

model. The linear model is low order to facilitate the process of control

system design. The modular nature of the flight dynamics model makes it

more flexible in terms of analyzing the effect of various phenomena. For

example, the effect of geometric nonlinearity in the aerodynamics can be

easily evaluated by including geometrically linear or geometrically nonlinear

aerodynamic submodule while keeping rest of the model same. This modular

nature and the low computational cost of the model makes it particularly

suitable for Monte Carlo analysis.

• Model Update: Flight tests are conduced to capture data suitable for sys-

tem identification of the aircraft. A basis function based correction method

is utilized to update the panel method based aerodynamics model to update

the flight dynamics model. This process of implementation of this meth-

ods as well as lessons learned is useful for aerospace researchers. The flight
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dynamics model of the flexible aircraft Geri is available for free at [14] and

[15].



Chapter 2

Background

2.1 Introduction

This thesis describes a framework for the development of flight dynamics models

of flexible aircraft. The details of the development of the model for a specific

aircraft, called Geri, are discussed. Geri was built as part of the broader Perfor-

mance Adaptive Aeroelastic Wing (PAAW) project [16]. This chapter provides

an overview of the PAAW project and details of the aircraft Geri. The details

of the PAAW project, its objectives, challenges faced and the research-through-

development approach taken to achieve its goals are described in Section 2.2.

Section 2.3 provides in-depth details of the test aircraft Geri. The fabrication

process, geometric and mass properties and an analysis of the dynamic instability

of the aircraft are discussed.

2.2 PAAW Project

As discussed in Chapter 1, high-aspect ratio, flexible aircraft presents significant

challenges in terms of flight performance and instability due to aeroservoelastic

phenomena. Performance Adaptive Aeroelastic Wing (PAAW) is a NASA Re-

search Announcement (NRA) project which aims to address these challenges [16].

6
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Key objectives of this research program are to enable high aspect ratio, flexible

wings, and to utilize the inherent flexibility of the aircraft to control its shape for

optimized performance across the flight envelope [17].

The PAAW project takes an integrated approach to aircraft design and flight

control to reduce these aeroservoelastic effects. The programs utilizes a research-

through-development approach that emphasizes incremental flight testing. Several

aircraft are fabricated throughout the project keeping particular short term goals

in mind like system identification, autopilot test and flutter suppression control

system development. The first set of aircraft, designated mAEWing1, are intended

to provide initial knowledge and experience [18]. The design of these aircraft are

based on the Body Freedom Flutter (BFF) vehicle. The BFF vehicle was designed

by Lockheed Martin and Air Force Research Laboratory [19, 20] to serve as a test-

bed for aeroservoelastic research. The aircraft has a similar design as the X-56A

test aircraft [21]. The mAEWing1 series of aircraft serve as testbed to develop

modeling, design and flutter suppression capabilities [22]. This thesis focuses on

the development of the flight dynamics model of an aircraft called Geri in the

mAEWing1 series. The details of aircraft Geri are discussed in Section 2.3.

Subsequent aircraft designs scale up the size and complexity to serve as better

representation of full size aircraft. mAEWing2 series of aircraft are fabricated to

serve as a proof of scalability of the aircraft design to a full size aircraft. An air-

craft from mAEWing2 series (during fabrication) and an aircraft from mAEWing1

series are shown in Figure 2.1. mAEWing2 aircraft are also used to validate the

mathematical models [23] and Multidisciplinary Design and Analysis (MDAO)

tools [24] developed so far.

The PAAW project has a large team of researchers from both industry and

academia. The team includes members from Systems Technology, Inc. (STI),

D.K. Schmidt and Associates, CMSoft, Inc., Aurora Flight Sciences, Virginia

Polytechnic Institute and State University (Virginia Tech.), and University of

Minnesota. Researches from Virginia Tech. developed tools for aircraft design

using Multi-Disciplinary Design, Analysis and Optimization (MDAO) methods.
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Figure 2.1: mAEWing1 and mAEWing2 aircraft

Virginia Tech and CMSoft developed high-fidelity models based on computational

fluid dynamics. STI and D.K. Schmidt and Associates focused on developing low

order aircraft models, control system design, system identification and flight test

support. Researches at University of Minnesota focused on the aircraft build,

ground tests, flight tests, control law design and developing medium fidelity flight

dynamics models. Finally, Aurora Flight Sciences and Virginia Tech. contributed

to the work done on extrapolation from the sub-scale tests to full scale as part of

N+3 studies.

2.3 Overview of the Aircraft Geri

This thesis focuses on the developing a medium fidelity flight dynamics model of

the aircraft Geri. Geri is designed and fabricated at the University of Minnesota

as part of the mAEWing1 series of aircraft. The details of the design, build

and tests of the mAEWing1 aircraft are described in [18] and briefly summarized

here. The aircraft was designed using a multi-disciplinary design and optimization

approach [25]. The aircraft has a blended wing-body, flying-wing design as shown

in Figure 2.2. The wings were designed to be removable and easily replaceable.

Several centerbodies and wingsets were built with variations in the design for
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testing purposes. This design choice allows wings of various stiffness to be tested.

It also minimizes risk as the centerbody can be re-used even if the wings have a

structural failure during flight tests.

Figure 2.2: Geri aircraft

2.3.1 Physical Layout

The dimensions of Geri are shown in Figure 2.3. The wings are swept back at an

angle of 22 degrees. The aircraft has a span of 3.05 meters. Winglets have been

added to the wing tips, as shown in Figure 2.2, for directional (yaw) stability. The

centerbody stores the flight computer, batteries, propulsion system, video camera

and an inertial measurement unit (IMU). Accelerometers are located in centerbody

and wings. The internal structure of the aircraft and various component are

described in details next.

Figure 2.4 shows the internal layout of the aircraft. The spars are the main load

carrying structures in the wings, shown in blue in the figure. Stiffness properties

of the spars are critical to flutter characteristics of the aircraft. They span the

entire length of the wings and continue through the wing separation joints to a

rigid structure in the centerbody. The spars are fabricated using several plies of

carbon fiber fabric and epoxy composite over an extruded polystyrene foam core.
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Figure 2.3: Geri planform and dimensions

Tension bolts (not shown) are used to attach the wing to the centerbody.

The on-board electronics are housed in the centerbody. An aerodynamic shell

covers the spar and the centerbody. This shell consists of a low density, ex-

panded polystyrene foam with the appropriate airfoil shape and an outer layer

that combines carbon fiber and fiberglass reinforced epoxy composites. The for-

ward avionics bay houses the flight computers and majority of the flight sensors.

The propulsion system is an electric motor mounted at the trailing edge of the

center chord of the aircraft. A rear bay houses the propulsion battery, power

regulation and a high definition video recorder. The propulsion motor and the

speed controller are housed in a motor mount located near the trailing edge of the

center chord.

Figure 2.5 shows a top-view of Geri with key components labeled. The dom-

inant direction excited by the first flutter mode is vertical, i.e. with motion in

and out of the page for the top-view shown in Figure 2.5. In order to capture

this motion, a total of six accelerometer are mounted on the aircraft such that

their sensitive axis is vertical as well. They are located close to the leading edge

and trailing edge of the centerbody as well as near to the left and right wingtips.

A pitot-static probe is mounted forward of the nose with the pneumatic tubing

routed to the pressure transducers in the avionics bay.

A video camera is attached at the center chord in the centerbody, just forward
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Figure 2.4: Internal layout of Geri

Figure 2.5: Top view of Geri

of the battery bay and the camera recorder is housed in the battery bay. The

camera is aimed at tracking features on the winglets and records video onboard

for post flight analysis. The flight computer used in Geri is a modified version of

the Goldy flight control system [26]. An additional micro-controller is included to

handle much of the sensor communication in order to reduce the overall time delay

in the system. This enables tight latencies with a closed-loop delay of around 20

milliseconds.
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Geri has a total of eight trailing edge control surfaces. Two body flaps are

located in the centerbody, one on the left (denoted ‘L1’) and one on the right (de-

noted ‘R1’). Three control surfaces are located in each wing (left surfaces denoted

‘L2’, ‘L3’ and ‘L4’ and right surfaces denoted ‘R2’, ‘R3’, and ‘R4’). Hobby grade

servo motors are utilized to actuate the control surfaces. These servos are mounted

to the bottom surface of the wings and centerbody using metal brackets. Various

tests were performed to characterize the bandwidth performance, rate limit, and

time delay of the servos. The 3 dB bandwidth of the servo motors, tested with a

±5 degree amplitude, is estimated to be 29.48 Hz. Freeplay is found to be 0.213

degree in the servos. There is an additional 0.25-0.5 degree play in the control

surface linkages. The servo rate limits are approximately 600 degree/sec. The

control surfaces had mechanical deflection limits at approximately ±45 degrees.

2.3.2 Mass and Structural Properties

The mass and the structural properties of the aircraft are described in this sec-

tion. Static and dynamic tests were conducted to obtain these properties. Table

2.1 shows the mass, center of gravity and the moment of inertia of Geri. The

coordinate frame used for these measurements are such that the origin is located

at the nose of the aircraft, the x-axis points in the forward direction, y-axis points

towards the ‘right’ wing and the z-axis points towards the ground (downwards).

The moments of inertia about the CG of the aircraft are tabulated where Ixx

represents the roll inertia, Iyy represents the pitch inertia and Izz represents the

yaw inertia.

Mass x-CG y-CG z-CG Inertia Ixx Inertia Iyy Inertia Izz
(kg) location location location (kg-m2) (kg-m2) (kg-m2)

(m) (m) (m)
6.24 -0.603 0.0 -0.0076 2.739 0.462 3.174

Table 2.1: Mass and inertia properties of Geri

The structural properties of the aircraft play a critical role in determining
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its flight dynamics properties, including flutter characteristics. The structural

properties of Geri are determined by a series of static and dynamic tests. The

details of these static and dynamic tests and the development of a finite element

method based structural model are described in Chapter 5. Key features of the

structural properties are summarized here.

The aircraft exhibits five structural modes under 35 Hz. These are the modes

of the (dry) aircraft at zero airspeed. The aeroelastic modes at different flight

speeds result from these (dry) structural modes interacting with aerodynamic

effects. These modal frequencies and the details of the mode are described in

Table 2.2 while the shapes are shown in Figure 2.6.

Mode number Modal frequency: Hz (rad/s) Mode shape details
1 7.81 (49.07) 1st symmetric bending
2 10.00 (62.83) 1st anti-symmetric torsion
3 14.73 (92.55) 1st symmetric torsion
4 19.72 (123.90) 1st anti-symmetric bending
5 32.44 (203.83) 2nd symmetric bending

Table 2.2: Modal parameters of Geri

For a symmetric aircraft, the vibration modes can be categorized into purely

symmetric and anti-symmetric modes. This separation of the modes can result in

a significant reduction in computational cost for calculation of the natural modes

and frequencies as well as in the resulting dynamic responses of the aircraft. It is

observed that Geri does not exhibit structural symmetry [27]. This loss of sym-

metry is due to small deviations in the manufacturing process for the two wings.

Due to this loss in symmetry, the modes can no longer be classified into purely

symmetric and anti-symmetric modes. Therefore the mode shape descriptions

provided in Table 2.2 as symmetric or anti-symmetric should only be considered

as approximate.

The lowest frequency mode is the first symmetric bending mode at 7.81 Hz.

The corresponding mode shape is shown in the top row of Figure 2.6. In the first

symmetric bending mode the two wing tips are displaced in the same direction
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Figure 2.6: Mode shapes of Geri
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perpendicular to the planform, while the centerbody is displaced in the opposite

direction. The entire structure experiences approximately constant bending and

no torsion. It should be reiterated here that this description is approximate and

the displacement of the two wing tips is not the same due to the presence of

asymmetry in the aircraft.

The second mode is the first anti-symmetric torsion mode at 10.00 Hz. In the

first anti-symmetric torsion mode the two wing tips are twisted in the opposite

directions while the centerbody is not twisted. The third mode is the first sym-

metric torsion mode at 14.73 Hz. In the symmetric torsion mode the two wing tips

are twisted in the same direction while the centerbody is twisted in the opposite

direction. The aircraft does not experience bending in both these torsion modes.

The forth mode is the first anti-symmetric bending mode at 19.72 Hz. In the

first anti-symmetric bending mode the two wing tips are displaced in the opposite

directions perpendicular to the planform while the centerbody is not displaced.

One peak and and one trough is observed in the mode shape creating an ‘S’ shape.

The fifth mode is the second symmetric bending mode at 32.44 Hz. In the second

symmetric bending mode the two wing tips are displaced in the same direction

while the centerbody displaced in the opposite direction. Two peaks are observed

in the mode shape. The aircraft does not experience torsion in modes 4 and 5.

2.3.3 Flutter Characteristics

The modes described in the previous section are for the structural dynamics of

the aircraft without any external aerodynamic forces acting on it. These are

called genesis modes. For an aircraft in flight, the aerodynamic forces acting on it

interact with the structural modes and change the dynamics of the aircraft. The

resulting modes are called aeroelastic modes. These aeroelastic modes change

with the velocity of the aircraft.

If the velocity exceeds a critical value, then these modes can go unstable re-

sulting in flutter. The variation of the poles of flight dynamics system of Geri
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with velocity is shown in the root locus plot in Figure 2.7. The first structural

mode changes with velocity and goes unstable at 33.5 m/sec. The frequency of

the mode changes from 49.1 rad/sec at zero airflow velocity to 37.3 rad/sec at the

flutter point. This flutter mode is known as the body freedom flutter mode and is

characterized by the interaction of the short period mode and the first symmetric

bending mode.

Figure 2.7: Flutter characteristics of Geri

The flutter characteristics described above are obtained using the flight dynam-

ics modeling framework presented in this thesis. The specific model is described

Chapter 7 and is updated with flight test data as described in Chapter 8. Figure

2.7 shows the flutter characteristics from the flight test updated model.



Chapter 3

Model Overview

3.1 Introduction

An overview of the proposed flight dynamics model is provided in this chapter.

The flight dynamics model involves separate mathematical models for various

subcomponents of the aircraft. Figure 3.1 describes overall modeling approach

and the interconnection between the subcomponents. The subcomponents include

structural dynamics, aerodynamics, rigid body dynamics, sensors, actuators and

propulsion system [5]. The propulsion and the aerodynamic models are used to

calculate the forces acting on the aircraft in flight. The propulsion force depends

on the throttle input provided by the pilot. The aerodynamic forces depend on

the control input, the rigid body states and flexible states. A mean axes [28] based

approach is taken towards the flight dynamics which results in a decoupling of the

rigid body and structural dynamics. The forces calculated by the aerodynamic

model are used by the rigid body dynamics to calculate the rigid states; and by

the structural dynamics model to calculate the flexible states. The sensor models

are used to calculate the output of various on-board sensors based on the rigid

body and flexible states.

The models of these subcomponents are implemented in the simulation soft-

ware SIMULINK to obtain a six degrees of freedom, nonlinear, flight dynamics

17
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model of the aircraft. The flight dynamics model can be also be linearized at

any trim point to obtain a low order, linear, state-space model. The details of

the model of each subcomponent is described in Section 3.2. The mean axes

frame used to model the interaction between the subcomponents is described in

Section 3.3.

Figure 3.1: Flight dynamics modeling framework

3.2 Subcomponents

3.2.1 Structural Dynamics

This section provides an overview of the structural dynamics model for the flex-

ible aircraft. Details on the development of this structural model are provided

in Chapter 5. The model for this subcomponent describes the dynamics of the

structure under external loads. Specifically, the model inputs are the external
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forces acting on the structure. The model is used to compute the deflections

(translations and rotations) of the structure under these loads. A simple, beam

based, finite element method (FEM) [29] approach is chosen to model the struc-

tural dynamics of Geri. The process of developing the FEM model consists of the

following steps:

1. Initial model: An initial FEM model is created based on the aircraft CAD

model.

2. Static test and FEM update: Simple static tests are used to collect basic

data for the aircraft. This data is used to perform a first update on the FEM

model.

3. Ground vibration tests (GVTs) and FEM update: Dynamic ground

vibration tests were conducted to obtain dynamic structural data for the

Geri aircraft. The data was used for a second update and validation of the

FEM model.

3.2.2 Aerodynamics

The aerodynamic forces acting on the aircraft are modeled using numerical, po-

tential flow based, panel methods. The details of the aerodynamic model are given

in Chapter 6. The steady forces are calculated using the Vortex Lattice Method

(VLM) [30]. The VLM models the aircraft lifting surfaces, e.g. the wings, as

flat plates consisting of discrete horseshoe vortices. A zero normal flow bound-

ary condition is enforced at the collocation point of each panel. The collocation

points are assumed to be at the three-quarter point of the center chord of each

panel. This boundary condition is used to compute the strength of the horseshoe

vortex attached to the panel. Lift and induced drag are calculated based on the

horseshoe vortex strength and flight conditions like airspeed and angle of attack.

The VLM neglects the influence of the panel thickness and the fluid viscosity.
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The unsteady forces are calculated using the Doublet Lattice Method (DLM)

[31, 32, 33]. The DLM also models the lifting surfaces as flat plates like the

VLM. The DLM assumes that the flow is across a harmonically oscillating panel.

Harmonic pressure distribution across the surface is obtained as a solution for

a given flow condition. Thus, the DLM calculates the frequency response for

pressure distribution on an oscillating surface in steady flow. The response from

the DLM is calculated on a grid of frequencies and is typically fit with a rational

function of frequency [34]. This rational function approximation enables time-

domain simulations of the unsteady DLM forces.

3.2.3 Rigid Body Dynamics

Modeling the rigid body dynamics of a flexible aircraft presents with certain chal-

lenges [5]. It is not trivial to define the position and orientation of a flexible aircraft

as it changes its shape in flight due to flexible deflection. A mean axes framework,

described in the next section, is used to model the rigid body dynamics of Geri.

In this framework, the rigid body translational and rotational dynamics can be

described using the position and orientation of the mean axes. This results in six

degrees of freedom, nonlinear equations for rigid body dynamics of the aircraft.

The details of the mean axes frame used to describe the rigid body dynamics are

described in Chapter 4.

3.2.4 Sensors and Actuators

Control inputs are assumed to be symmetric and anti-symmetric deflections of

the four sets of left and right control surfaces as shown in Figure 2.5. A second

order actuator model is used to calculate control surface deflections and velocities

from control input. The aerodynamics forces generated by the control surfaces

are modeled by including calculations of the effect of the nonlinear rotations of

the corresponding panels of the aerodynamic grid. A simple propulsion model is

assumed where the propulsion force is a linear function of the propulsion input.
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The moment generated by the propulsion system is assumed to be zero.

Single axis accelerometers are used to measure the acceleration at six locations

on the aircraft. An Inertial Measurement Unit (IMU) located at the center of

gravity of the dry aircraft is used to measure the orientation of the aircraft. The

sensor output depends on rigid body translation, rigid body rotation and flexible

deflections. A mean-axes based approach is used to obtain the equations of the

sensor output and are described in Section 4.5.

3.3 Mean Axes

The interconnection between the various subcomponents are modeled using the

mean axes approach [5, 28, 35]. The mean axes are a set of floating, body axes.

The position and orientation of these axes follow a specific set of constraints. The

constraints are defined such that the linear and angular momentum relative to

these axes due to flexible deflection is zero [28]. The constraints are equivalent

to a set of dynamic equations for the position and orientation of the mean axes

[36]. Roughly, the position and orientation of the mean axes follow equations of

motion similar to those used for a rigid aircraft. The origin of the axes is always

located at the instantaneous center of mass of the flexible aircraft.

The advantage of using the mean axes is that under the simplifying assump-

tions, the rigid body dynamics and the flexible dynamics become decoupled. The

details of the mean axes approach, including the assumptions and the resulting

equations of motion are described in Chapter 4.

3.4 Validation and Update

The flight dynamics model obtained is updated and validated using flight test

data. The flight tests were conducted with specific excitation inputs suitable

for system identification. The flight test data is processed to obtain the esti-

mated frequency response from the control input to the sensor output. These
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frequency response functions are compared with the corresponding frequency re-

sponse functions from the flight dynamics model. The flight dynamics model is

then modified to minimize the difference between these frequency responses. The

update is performed by correcting the aerodynamic model using the correction

matrices as described in [37]. An optimization routine is employed to obtain the

optimal correction matrices which minimize the difference between the measured

and modeled frequency response functions. The procedure and the results of the

model update are described in Chapter 8.

3.5 Model Capabilities

This section describes the capabilities and advantages of the flight dynamics mod-

eling approach described in this thesis. The aerodynamic and the structural dy-

namic models are linear. But the interaction between them is modeled in such a

way that the resulting flight dynamics model is capable of capturing certain non-

linear behavior of the flexible aircraft. An example of such nonlinear phenomena

is the change in the direction of the local lift with the structural deflection of the

aircraft wings. This phenomena could be categorized as geometric nonlinearity.

The effect of these nonlinear phenomena are analyzed by comparing the nonlinear

simulation model with a model which does not capture these effects.

The model is also capable of including the effect of unsteady aerodynamic

forces. It is particularly suitable for modeling transient flights like changing the

flight path from a straight and level flight to a banked turn.

The modular nature and the low computational cost of the model makes it

particularly suitable for running Monte-Carlo simulations in open-loop configura-

tion to quantify the uncertainty, and in closed-loop configuration to quantify the

robustness of the control system.



Chapter 4

Mean Axes Approach

This chapter describes the mean axes approach used to obtain the flight dynamics

equations of a flexible aircraft. The mean axes frame is a floating, body reference

frame. The frame moves with the aircraft but is not attached to a material point

on it. The translational and rotational motion of the mean axes are governed by

a particular set of constraints as discussed in Section 4.2.1.

The advantage of using the mean axes framework is that under a few simplify-

ing assumptions, it results in a decoupling between the rigid body and the flexible

dynamics of the aircraft. These assumptions and the derivation of the resulting

equations of motion are discussed in Section 4.2 and 4.3. The mean axes con-

straints are equivalent to a set of differential equations that describe the position

and orientation of the mean axes as shown in Section 4.4.

4.1 Introduction

Several flight dynamics modeling approaches have been presented in literature for

flexible aircraft. These approaches usually result in highly nonlinear and compli-

cated flight dynamic equations. Rigid body dynamics and the flexible dynamics

are usually coupled in these cases. These nonlinear, coupled equations require

23
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more computational resources to solve and simulate. The high level of complica-

tion of the resulting flight dynamics equations also presents a challenge from a

systems and control design perspective. Because of the widely different modeling

framework as compared to a conventional, rigid aircraft [38, 39], it is difficult to

extend the extensive amount of intuition developed for rigid aircraft to flexible

aircraft.

The mean axes approach, first described by Milne in the mid-1960s, has been

developed to address these challenges [35]. The mean axes framework has been

modified and extended to obtain the flight dynamics model of flexible aircraft as

described in [28]. The details of the procedure used to obtain the flight dynam-

ics model are described in [5]. The procedure described in the [5, 28] has been

utilized to model the flight dynamics of several aircraft. If the aircraft and the

flight envelope satisfy a set of simplifying assumptions, the mean axes approach

can be utilized to obtain simplified flight dynamics model of a flexible aircraft.

The resulting equations are such that the rigid body dynamics and the flexible

dynamics are decoupled. It should be noted that the external aerodynamic and

gravitational forces that excite the rigid body and flexible dynamics might still

remain coupled. Another advantage of the mean axes approach is that the state

vector of the flight dynamics model is an extension of the state vector of a stan-

dard, rigid aircraft model. This means that majority of the engineering intuition

developed for a rigid aircraft still remains applicable to the flexible aircraft with

slight modifications. Care should be taken to ensure that the mean axes frame-

work is used correctly based on the accuracy of assumptions made in mean axes

formulation. Detailed discussion on various aspects of applicability of the mean

axes framework can be found in [40] and [41].

4.2 Mean Axes

In general, the flight dynamics equations of an aircraft can be obtained by utilizing

any reference frame. Inertial, body fixed or floating reference frames are typically
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chosen. Even though they represent the dynamics of the same aircraft, the re-

sulting equations of motion are different and vary in their complexity depending

on the choice of the reference frame. The mean axes frame is one particular float-

ing reference frame. It moves with the flexible aircraft but is not attached to a

material point on it. The translational and rotational motion of the mean axes

is defined by a set of constraints as described in [5, 28] These constraints are dis-

cussed in Section 4.2.1. It is shown in [42] that the constraints are equivalent to

a set of ordinary differential equations as described in Section 4.4 .

4.2.1 Mean Axes Constraints

The mean axes frame is defined by a set of constraints as described in [5, 28] and

presented here. To describe the mean axes, consider a flexible body in motion.

An infinitesimal element of the flexible body is denoted as dV as shown in the

figure below. An inertial reference frame and a body fixed, mean axes frame are

considered.

O
X

Y

Z

o

xy

z~Ro
dV

~rv

~Rv

Figure 4.1: Undeformed flexible body along with inertial and mean axes

The inertial reference frame has its origin at O and the axes are denoted as

X, Y and Z. Similarly, the mean axes frame has its origin at o and the axes are

denoted as x, y and z. The density of the element is ρ and its volume is denoted

as dV . The position vector of the origin of the mean axes frame with respect to

the inertial frame is denoted by ~Ro. The position vector of the mass element dV

with respect to the mean axes frame is denoted by ~rv and with respect to the
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inertial axes is denoted by ~Rv. The derivative of any vector ~r with respect to the

inertial frame will be denoted as:

d~r

dt

∣∣∣
O

= ~̇r (4.1)

Similarly, the derivative of any vector ~r with respect to the mean axes frame will

be denoted as:

d~r

dt

∣∣∣
o

=
◦
~r (4.2)

The transport theorem will be utilized to relate the two derivatives. The transport

theorem states that:

ṙ =
◦
r + (~Ωo × ~r) (4.3)

where ~Ωo is the angular velocity of the mean axes frame with respect to the inertial

frame. The mean axes are implicitly defined by the following constraints on its

translational and rotational motion [5]:

• The linear momentum due to elastic deformation relative to the mean axes

frame is zero. ∫
V

ρ
◦
~rv dV = 0 (4.4)

• The angular momentum due to elastic deformation relative to the mean axes

frame is zero. ∫
V

~rv × ρ
◦
~rv dV = 0 (4.5)

Note that the derivatives in the constraint equations described above are with

respect to the floating, mean axes frame and not to the inertial frame. It should

also be noted that the mean axes constraints are implicit constraints that describe
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the velocity of the mean axes frame but do not provide explicit position and

orientation of the frame. These implicit constraints and a discussion on their

applicability on flexible aircraft are described in [5, 28].

4.2.2 Practical Mean Axes Constraints

The mean axes constraints as described in Equation 4.4 and 4.5 are nonlinear

equations and difficult to apply practically. These constraints can be simplified

by assuming small flexible deflection. The flexible deflection of the body is shown

in Figure 4.2.

O
X

Y

Z

o

xy

z~Ro
dV

~rv

~uv

~Rv

~δv

Figure 4.2: Deformed flexible body

Here ~uv represents the position vector of the undeformed location of the mass

element, ~δv denotes the flexible deflection of the element. The deflected position

vector of the mass element can be written as a sum of the undeformed position

vector and the flexible deflection as

~rv = ~uv + ~δv (4.6)

It should be noted that as the mean axes frame moves with the flexible body, the

underformed position vector ~uv is a constant. This implies that

◦
~uv = 0 (4.7)
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The translational mean axes constraint described in Equation 4.4 can be writ-

ten in terms of flexible deflection to obtain the first ‘practical mean axes constraint’

as follows: ∫
V

ρ
◦
~rv dV = 0

=⇒
∫
V

ρ
◦
~uv dV +

∫
V

ρ
◦
~δv dV = 0

Substituting Equation 4.7, ∫
V

ρ
◦
~δv dV = 0 (4.8)

The rotational mean axes constraint given in 4.5 can also be simplified as:∫
V

~rv × ρ
◦
~rv dV = 0

=⇒
∫
V

(~uv + ~δv)× ρ(
◦
~uv +

◦
~δv) dV = 0

=⇒
∫
V

(~uv + ~δv)× ρ
◦
~δv dV = 0

Assuming small flexible deflection, the second ‘practical mean axes constraints’ is

obtained: ∫
V

~uv × ρ
◦
~δv dV = 0

(4.9)

Now, it is assumed that the flexible deflection of the body is linear and can

be written in terms of the free vibration modes. The free vibration modes form

a set of orthogonal functions that is used to describe any flexible motion of the

body. Note, that the free vibration modes (without external force) are used to

describe the forced motion of the body. We can write the flexible deflection as
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linear combination of translational free mode shapes (φt)

~δv =
∞∑
i=1

~φti(v)ηi (4.10)

Equation 4.10 is substituted in the practical mean axes Equations 4.8 and 4.9

to obtain the following

∞∑
i=1

dηi
dt

∫
V

ρ~φti(v) dV = 0 (4.11)

∞∑
i=1

dηi
dt

∫
V

~uv × ρ~φti(v) dV = 0 (4.12)

It should be noted that the mean axes constraints focus on the translational

and rotational velocities of the of the axes. This means that the translational posi-

tion and rotational orientation are free parameters that can be chosen arbitrarily.

The mean axes constraint described in Equation 4.4 implies that the origin of the

mean axes lies at a constant distance from the instantaneous center of mass of

the body. To further simplify the calculations, we choose the initial position of

the origin of the mean axis to coincide with the instantaneous center of mass of

the body. With this choice of initial position of the origin of the mean axes and

due to the constraint given in Equation 4.4, it can be concluded that the origin

of the mean axes lies at the instantaneous center of mass of the flexible body at

all times. This results on the following equation∫
V

ρ~rv dV = 0 (4.13)

4.3 Equations of Motion

The equations of motion of a flexible body can be written in the mean axes frame.

This derivation is based on the Lagrangian approach as reviewed in this section.

Additional details can be found in [5, 28]. The Lagrangian approach calculates the



30

equations of motion of a body based on its kinetic energy and potential energy.

The Lagrange’s equations can be written as:

d

dt

[
∂T

∂q̇i

]
− ∂T

∂qi
+
∂P

∂qi
= Qi (4.14)

where T is the kinetic energy of the system, P is the potential energy, qi is the ith

generalized coordinate which represents a particular degree of freedom of the sys-

tem and Qi is the generalized force corresponding to the ith generalized coordinate.

The generalized coordinates are usually the position and velocities corresponding

to various degrees of freedom of the system.

Kinetic energy

To obtain the equations of motion with respect to mean axes, we need to derive

the expressions of kinetic and potential energy and the generalized forces in terms

of the mean axes frame parameters and apply Lagrange’s equations. Consider a

flexible body and mean axes frame as shown in Figure 4.1.

The position of the infinitesimal mass element with respect to the inertial

frame can be written as

~Rv = ~Ro + ~rv (4.15)

Therefore, the velocity of the mass element with respect to the inertial frame is

given by:

~̇Rv = ~̇Ro + ~̇rv

= ~̇Ro +
◦
~rv + (~Ωo × ~rv)

(4.16)
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The total kinetic energy of the system can be written as:

T =
1

2

∫
V

ρ( ~̇Rv · ~̇Rv)dV

=
1

2

∫
V

ρ
(
~̇Ro +

◦
~rv + (~Ωo × ~rv)

)
·
(
~̇Ro +

◦
~rv + (~Ωo × ~rv)

)
dV

(4.17)

Equation 4.17 can be simplified to obtain the following equation:

T =
1

2

∫
V

ρ
(
~̇Ro · ~̇Ro +

◦
~rv ·

◦
~rv + (~Ωo × ~rv) · (~Ωo × ~rv)+

2
(
~̇Ro ·

◦
~rv +

◦
~rv · (~Ωo × ~rv) + ~̇Ro · (~Ωv × ~rv)

))
dV

(4.18)

The expression for kinetic energy can be further simplified using the mean axes

constraints as defined in Equations 4.4 and 4.5. The third term drops out as

1

2

∫
V

2ρ( ~̇Ro ·
◦
~rv) dV = ~̇Ro ·

∫
V

ρ
◦
~rv dV = 0

Similarly, the fourth term drops out with the application of circular shift property

of the scalar triple product as shown in the equation below:

1

2

∫
V

2ρ(
◦
~rv · (~Ωo × ~rv)) dV = ~Ωo ·

∫
V

(~rv × ρ
◦
~rv) dV = 0

The resulting expression for the kinetic energy is:

T =
1

2

∫
V

ρ
(
~̇Ro · ~̇Ro +

◦
~rv ·

◦
~rv + (~Ωo × ~rv) · (~Ωo × ~rv)+

2 ~̇Ro · (~Ωo × ~rv)
)
dV

(4.19)

The choice of the origin of the mean axes described in Equation 4.13 results

in further simplification in the expression for kinetic energy. The last term in
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Equation 4.19 becomes

1

2

∫
V

2ρ
(
~̇Ro · (~Ωo × ~rv)

)
dV = ~Ωo ·

(∫
V

ρ(~rv × ~̇Ro)dV

)
The integral expression is given by:(∫

V

ρ~rv dV

)
× ~̇Ro = 0

Therefore, the last term vanishes and the expression for the kinetic energy becomes

T =
1

2

∫
V

ρ
(
~̇Ro · ~̇Ro +

◦
~rv ·

◦
~rv + (~Ωo × ~rv) · (~Ωo × ~rv)

)
dV (4.20)

This expression in Equation 4.20 can be broken down to represent the total

kinetic energy as a sum of translational and rotational kinetic energy and vibra-

tional kinetic energy as follows:

T =
1

2

∫
V

ρ
(
~̇Ro · ~̇Ro +

◦
~rv ·

◦
~rv + (~Ωo × ~rv) · (~Ωo × ~rv)

)
dV

=
1

2
M( ~̇Ro · ~̇Ro) +

1

2

∫
V

ρ(
◦
~rv ·

◦
~rv)dV +

1

2
~ΩT
o [I]~Ωo

(4.21)

where M is the total mass of the body and I is the instantaneous inertia tensor of

the body with respect to the origin of the mean axes. It can be seen that the total

kinetic energy of the body as described in Equation 4.21 is the sum of the rigid

body translational kinetic energy, the kinetic energy of the body due to flexible

motion with respect to the axes and rigid body rotational kinetic energy. Thus,

it can be observed that the mean axes constraints lead to a separation between

the rigid body and flexible kinetic energy.

Finally, we use the practical mean axes constraint given in Equation 4.11 to
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further simplify the second term in the kinetic energy expression in Equation 4.21.

1

2

∫
V

ρ(
◦
~rv ·

◦
~rv)dV =

1

2

∫
V

ρ(
◦
~δv ·

◦
~δv)dV

=
1

2

∫
V

ρ

(( ∞∑
i=1

~φti
dηi
dt

)
·
( ∞∑
i=1

~φti
dηi
dt

))
dV

(4.22)

As the translational free vibration modes are orthogonal to each other, the

following expression is true:∫
V

~φti · ~φtjρ dV := 0 if i 6= j (4.23)

Thus, the Equation 4.22 can be written as:

1

2

∫
V

ρ

(( ∞∑
i=1

~φti
dηi
dt

)
·
( ∞∑
i=1

~φti
dηi
dt

))
dV =

1

2

∞∑
i=1

(dηi
dt

)2 ∫
V

~φti · ~φtiρ dV︸ ︷︷ ︸
Mi

(4.24)

where Mi is the generalized mass for ith mode. The final expression of kinetic

energy is

T =
1

2
M( ~̇Ro · ~̇Ro) +

1

2

∞∑
i=1

(dηi
dt

)2
Mi +

1

2
~ΩT
o [I]~Ωo (4.25)

Potential energy

The potential energy of the system can be written as a sum of elastic potential

energy and gravitational potential energy as:

P = Pg + Pe (4.26)

The gravitational potential energy is given by:

Pg = −
∫
V

~Rv · ~gρ dV (4.27)
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This can be simplified as follows

Pg = −(~Ro · ~g)

∫
V

ρ dV︸ ︷︷ ︸
=M

− ~g ·
∫
V

ρ~rv dV︸ ︷︷ ︸
=0

= −(~Ro · ~g)M (4.28)

The elastic potential energy is calculated using D’Alembert’s principle. For the

given flexible body, the elastic potential energy is

Pe = −1

2

∫
V

◦◦
~δv · ~δvρ dV (4.29)

Using Equation 4.10 and 4.29, the elastic potential energy can be written as:

Pe =
1

2

∞∑
i=1

ω2
i η

2
iMi (4.30)

where ωi is the modal frequency of ith mode and ηi is the modal deflection coor-

dinate for ith mode. Thus, the total potential energy is

P = Pg + Pe

= ~Ro · ~gM +
1

2

∞∑
i=1

ω2
i η

2
iMi

(4.31)

Generalized coordinates

The Lagrange’s approach to deriving the equations of motions require the use of

generalized coordinates. These generalized coordinates are chosen as translational

position of the mean axes frame and the Euler angles describing the rotational

orientation of the mean axes frame. The modal deflection coordinate ηi are also

chosen as the generalized coordinates. The details of these generalized coordinates

are discussed next.
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Consider the components of the ~Ro in the mean axes frame.

~Ro = xî+ yĵ + zk̂ (4.32)

The translational velocity of mean axes position can also be written in terms of

its components in the mean axes frame as:

~̇Ro = Uî+ V ĵ +Wk̂ (4.33)

The angular velocity of the mean axes can similarly be written in terms of its

components as:

~Ωo = p̂i+ qĵ + rk̂ (4.34)

These components can be written in terms of Euler angles (φ, θ, ψ) and their

derivatives as follows.

p = φ̇− ψ̇ sin θ (4.35a)

q = ψ̇ cos θ sinφ+ θ̇ cosφ (4.35b)

r = ˙psi cos θ cosφ− θ̇ sinφ (4.35c)

The relationship between the translational and the angular velocities are

U = ẋ+ qz − ry (4.36a)

V = ẏ + rx− pz (4.36b)

W = ż + py − qx (4.36c)

The kinetic and the potential energies can be written in terms of these generalized
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coordinates.

T =
1

2
M(U2 + V 2 +W 2) +

1

2

[
p q r

]
[I]


p

q

r

+
1

2

∞∑
i=1

Miη̇
2
i (4.37)

P = ~Ro · ~gM +
1

2

∞∑
i=1

ω2
i η

2
iMi (4.38)

The equations of motion are derived using Lagrange’s approach shown in Equation

4.14. The resulting equations of motion are described below.

Translational equations :

M [U̇ − rV + qW + g sin θ] = Qx (4.39a)

M [V̇ − pW + uU − g sinφ cos θ] = Qy (4.39b)

M [Ẇ − qU + pV − g cosφ cos θ] = Qw (4.39c)

where Qx, Qy and Qz are the generalized forces with respect to the x, y and z

generalized coordinates. These generalized forces are described in Chapter 6.

Rotational equations :

Ixxṗ− (Iyy − Izz)qr + Ixy(pr − q̇)− Ixz(pq + ṙ) + Iyz(r
2 − q2) = Qφ (4.40a)

Iyy q̇ − (Izz − Ixx)pr + Iyz(pq − ṙ)− Ixy(qr + ṗ) + Ixz(p
2 − r2) = Qθ (4.40b)

Izz ṙ − (Ixx − Iyy)pq + Ixz(qr − ṗ)− Iyz(pr + q̇) + Ixy(q
2 − p2) = Qψ (4.40c)

where Qφ, Qθ and Qψ are the generalized forces for φ, θ and ψ generalized coor-

dinates.

Flexible equations :

The equations of motion obtained using the generalized coordinates ηi describe
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the flexible dynamics for each flexible mode.

η̈i + ω2
i ηi =

Qηi

Mi

for i = 1, 2, 3, · · · (4.41)

Usually, only the first few modes are included in the flight dynamics model and

the higher order flexible modes are discarded.

4.4 Explicit Equations of Mean Axes

The mean axes constraints described in Equations 4.5 and 4.5 are a set of implicit

constraints that describe the motion of the mean axes frame. These constraints

cannot be used to calculate the position and orientation of the mean axes frame

explicitly. [42] provides an equivalent derivation of the mean axes framework using

newtonian mechanics. An important result described in [42] is that the mean axes

constraints uniquely define the equations of motion of the frame up to an arbitrary

but constant rotation of the frame. These equivalent equations of motion of the

mean axes are:

• Translation:

M~̈ro = ~Fext (4.42)

with the initial conditions

~ro(0) =
1

M

∫
V

ρ~rv(0)dV

~̇ro(0) =
1

M

∫
V

ρ~̇rv(0)dV

where Fext = total external forces acting on the aircraft.
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• Rotation:

d(I~Ωo)

dt
= Mext

(4.43)

with the initial condition:

~ω0 = I−1(0) (4.44)

where Mext = total external moment acting on the aircraft, I is the instan-

taneous moment of inertia of the body with respect to the mean axes.

These results show that the equations of motion in the mean axes framework

are essentially an extension of the well known rigid body equations for a flexible

body.

4.5 Sensor Equations

An aircraft is usually fitted with various on-board sensors which are utilized for

navigation and flight control systems as well as any flutter suppression control

system. The flight dynamics equations can be used to calculate the output of

these sensors. As the mean axes framework is used to model the flight dynamics

of the flexible aircraft, the output of the on-board sensors are also calculated using

the mean axes approach as described in this section.

Consider Figure 4.3 where the on-board sensor is denoted by S. The blue dot

represents the undeflected position of the sensor and the red dot represents the

deflected position.
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Figure 4.3: Sensors on a deformed flexible body

The output of two types of sensors are described below.

4.5.1 Accelerometer

An accelerometer measures the acceleration at a particular location on the air-

craft. The accelerometer could be single-axis or multi-axis. A multi-axis ac-

celerometer measures the inertial acceleration in all three directions while a single

axis accelerometer is restricted to the inertial acceleration measurement along one

particular axis. The complete inertial acceleration vector with three degrees of

freedom is calculated next.

The inertial acceleration of the sensor S can be denoted by ~̈Rv. The position

vectors are related as:

~Rs = ~Ro + ~us + ~δs (4.45)

The velocity in the inertial frame can be obtained as:

~̇Rs = ~̇Ro + ~̇us + ~̇δs

= ~̇Ro + [
◦
~us + (Ωo × ~us)] + [

◦
~δs + (Ωo × ~δs)]

= ~̇Ro + (Ωo × ~us) +
◦
~δs + (Ωo × ~δs)

(4.46)
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The acceleration at the sensor location in the inertial frame can be obtained as:

~̈Rs = ~̈Ro + (Ω̇o × ~us) + (Ωo × (
◦
~us + (Ωo × ~us))

+
◦◦
~δs + (Ωo ×

◦
~δ) + (Ω̇o × ~δs) + (Ωo × (

◦
~δs + (Ωo × ~δs)))

= ~̈Ro + (Ω̇o × (~us + ~δs)) + (Ωo × (Ωo × (~us + ~δs)) +
◦◦
~δs + 2(Ωo ×

◦
~δ)

(4.47)

The measured acceleration can be written in terms of the mean axes frame pa-

rameters and modal deflections as follows:

~̈Rs = ~̈Ro + (Ω̇o × (~us +
∞∑
i=1

~φtiηi))

+ (Ωo × (Ωo × (~us +
∞∑
i=1

~φtiηi)) +
∞∑
i=1

~φtiη̈i + 2(Ωo ×
∞∑
i=1

~φtiη̇i)

(4.48)

where ~φti is the translational part of the ith mode shape and ηi is the ith modal

deflection coordinate.

4.5.2 Inertial Measurement Unit

An Inertial Measurement Unit (IMU) is a sensor which measures the angular

velocity. The output of the IMU sensor can be written as a sum of the angular

velocity of the mean axes frame and the angular velocity due to flexible deflection

as:

~Ωs = Ωo +
∞∑
i=1

~φriη̇i (4.49)

where ~φri is the translational part of the ith mode shape and ηi is the ith modal

deflection coordinate.



Chapter 5

Structural Model

This chapter describes the structural model for the flexible aircraft Geri. The

structural model is developed using the Finite Element Method (FEM) [29]. The

model describes the dynamics of the structure under external loads. The inputs

of the model are the external forces acting on the structure. The model is used to

compute the deflections (translations and rotations) of the structure under these

loads. The structural model is a subcomponent of the flight dynamics model of

the flexible aircraft. It interacts with the aerodynamic model which calculates

the forces acting on the aircraft based on its deflected shape. Details of the

development of the FEM model are provided in the remainder of this chapter.

There are several possible methodologies for modeling the structural dynam-

ics of a flexible aircraft. The choice of the methodology depends on the aircraft

in question and the flight regime. For example, High-Altitude Long-Endurance

(HALE) aircraft usually have very high aspect ratio, flexible wings. These aircraft

exhibit large deflections during flight [43]. These large deflection cannot be rep-

resented by a simple linear displacement function and a nonlinear representation

is required. This type of nonlinearity is known as structural geometric nonlinear-

ity. Structural geometric nonlinearity plays a significant role for HALE aircraft

and needs to be taken into account in the structural dynamics model. A flexi-

ble aircraft can also exhibit material nonlinearity if the deflection does not follow

41
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the proportional stress-strain relationship [44]. If the material nonlinearities are

significant, then the structural dynamics needs to take them into account as well

[45, 46].

For any chosen framework, the level of detail and the complexity of the model

also need to be chosen. For example, the wings of a flexible aircraft can be mod-

eled as an equivalent Euler-Bernoulli beam attached to a stiff center body [47].

Such a model is computationally inexpensive and is capable of calculation of sim-

ple parameters like tip deflection and the first few vibration frequencies. Such

models do not contain sufficient details to calculate high frequency mode shapes

or structural deflections at arbitrary points on the aircraft. The complexity of

beam based models can be increased by incorporating nonlinear beam elements

[48]. On the other hand, models with extremely high fidelity and complexity

can be obtained by incorporating highly nonlinear, computational structural me-

chanics based methods [43, 49]. These models are more accurate but they are

computationally expensive. The order of these models can be reduced to obtain

control oriented models [50].

Several factors were considered when selecting a suitable structural dynamic

model framework for the flexible aircraft Geri. Geri is part of a series of flexible

aircraft fabricated for the PAAW project called mAEWing1 [18]. These aircraft

share the same outer mold line and aerodynamics properties but have slightly

varying structural properties. The previous aircraft in the mAEWing1 series ex-

hibit a tip deflection of around 10% of the wingspan in a typical flight test. This

is considered to be within the scope of a geometrically linear structural model.

Static stiffness tests were also conducted on the wings of Geri. The wings were

found to exhibit a proportional stress-strain relationship. This implies that ma-

terial nonlinearity does not play a significant role in the structural dynamics and

can be ignored.

Based on these factors, a beam-based finite element structural model is con-

sidered suitable for the aircraft Geri. To develop the FEM based model, the

complete structure is discretized into simpler elements [29]. These elements are



43

interconnected at finite number of points, called nodes, common to two or more

elements. Equations for each element are formulated separately and then com-

bined to obtain the equations for the complete structure. This results in a set of

simultaneous algebraic equations. Therefore, the FEM discretizes the structure

to approximate the (infinite dimensional) partial differential equation with a set

of finite dimensional ordinary differential equations. The FEM-based structural

model for Geri was constructed as follows:

1. Initial model: An initial FEM model was created based on the aircraft

CAD model. The details of the initial finite element model are discussed in

Section 5.1.

2. Static test and FEM update: Simple static tests were conducted and

the collected data was used to perform a first update on the FEM model.

• Static test: Static tests were conducted to estimate the mass, inertia

and stiffness properties for the aircraft. These included tests to measure

the mass, center of gravity, moment of inertia, and stiffness of spar and

wings. These tests are described further in Section 5.2.1.

• FEM update: The estimated properties of the aircraft were used to

update the FEM model. The details of the update procedure of the

initial FEM model using the static test results are described in section

5.2.2.

3. Ground vibration tests (GVT) and FEM update: Several ground

vibration tests were conducted to obtain dynamic structural data for the

aircraft. The test data was used for a second update and validation of the

FEM model.

• GVT: setup: The setup of the experiment is described in Section 5.3.1.

• GVT: procedure: The procedure of the experiment and data acqui-

sition is described in Section 5.3.2.
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• GVT: Post-processing: The experimental data is acquired in the

form of time domain, force and acceleration signals. The time domain

data is processed to obtain frequency domain parameters like mode

shapes and modal frequencies. Two post-processing methods are de-

scribed in Section 5.4

• FEM update: The experimental modal parameters are used to update

the FEM model to obtain the final structural dynamic model of the

aircraft. The details of FEM update are provided in Section 5.5.

5.1 Initial Model

An initial FEM model was created for Geri by a team at Virginia Tech using data

from a CAD model of the aircraft. The model was based on simple, beam-rod

based elements as shown in Figure 5.1. The details of the development of the

model are provided in [51]. This section briefly summarizes the key features of

this initial FEM model.

Figure 5.1: Finite element model of Geri

The centerbody of the aircraft was fabricated by encompassing a rib-based

structure with low density expanded polystyrene foam. The foam was covered

with a combination of carbon fiber and fiberglass reinforced epoxy composites.
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The forward avionics bay of the centerbody houses the avionics including the

flight computers and a majority of the sensors, e.g. the pitot-static transducers.

The rear bay houses the propulsion battery, power regulation and a high definition

video recorder. The centerbody of the aircraft was modeled as a rod in the initial

FEM model. The mass of the foam and the cover fabric were modeled as a

uniformly distributed mass along the rod. The electronic components located in

the centerbody were modeled as point masses. As the propulsion battery occupies

a significant volume, it was modeled as a point mass/inertia with moments of

inertia about its local x and y axes.

The rectangular solid spars are the main load carrying structures in the aircraft

wings. The spars were fabricated from a foam core with 3-layer carbon fiber

laminate reinforcements surrounding the core. The spars have a uniform cross-

section and are assumed to have uniform stiffness and mass properties. The spars

were fabricated to have specific stiffness properties based on the desired design

of the aircraft. The properties were updated after manufacturing based on static

tests conducted on the bare spars as described in the following subsection. Simple

beam elements were used to model the spar in the FEM model.

The foam and the cover fabric on the wings provide additional stiffness. The

foam and the cover fabric were also modeled as a beam elements, separate from

the beam elements for the solid spar. The beam elements modeling the foam and

the cover fabric share the same nodes with the beams modeling the spar. The

elastic axis and the center of gravity axis of the beam elements modeling the spar

were considered to lie on the centerline of the spar. The spar centerline was also

considered the elastic axis of the complete wings. For the beam elements modeling

the wing foam and the cover fabric, the stiffness properties were considered to be

varying along the wing span. The center of gravity (CG) axis of these beams did

not coincide with the elastic axis of the wings. Therefore, additional distributed

mass moments of inertia due to the offset between the CG axis and the elastic

axis were included in the model.

The hinge bolt for the connection between the body flaps and the centerbody
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were modeled as a spring element with a large spring stiffness. The attachments

connecting the wing with the centerbody were also modeled as beams. The control

surfaces on the wings were modeled as lumped point masses. Extra nodes were

created at the locations of the accelerometers used for ground vibration tests

described in the next section.

The mass properties of the initial FEM model are described in Table 5.1. The

modal frequencies obtained from the model are described in Table 5.2.

Mass x-CG location Inertia Ixx Inertia Iyy
(kg) (m) (kg-m2) (kg-m2)
6.24 -0.609 2.816 0.466

Table 5.1: Mass and inertia properties of initial FEM model

Mode number Modal frequency: Hz (rad/s)
1 8.00 (50.26)
2 13.20 (82.93)
3 16.70 (104.93)
4 19.38 (121.77)
5 31.40 (197.29)

Table 5.2: Modal frequencies from initial FEM model

5.2 Static Tests and FEM Update

Usually, some discrepancy is found between the initial, design based finite ele-

ment model and the structural dynamics of the aircraft. The sources of these

discrepancies include incorrect modeling of specific elements like joints and welds,

model order errors such as presence of structural nonlinearities [44] in the aircraft

and model parameter errors such as incorrect quantification of material properties

[51].

An inaccuracy in the structural model will cause a discrepancy between the
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predictions from the model and the flexible response of the aircraft. The inaccu-

racy in the structural model will translate to inaccuracy in flight dynamics model.

Such an inaccuracy induces an error in the flight dynamics model predictions in-

cluding critical predictions like flutter speed and flutter frequency. Therefore, the

finite element model needs to be validated and, if required, corrected to match

with the structural dynamics of the aircraft. This process correcting the FEM

model is known as finite element model updating [52].

The initial FEM model is based on the data from a CAD model of Geri. Next,

static tests are conducted on the fabricated aircraft to obtain estimates of the

mass and stiffness properties of the actual structure. These test are described in

details in [18] and are summarized in Section 5.2.1. The initial FEM model is

updated based on the static test data. The updated FEM model is described in

Section 5.2.2.

5.2.1 Static Tests

Mass of the components and complete aircraft were estimated by placing them

on a scale that had been calibrated with a known mass. Center of gravity was

estimated via simple balancing and measuring with respect to a local datum. The

balance test was typically performed with a simple fulcrum. In the case of the

complete aircraft, custom fixtures were fabricated to assist in the balancing test.

The same fixtures were used in the moment of inertia (MOI) testing ensuring a

consistent datum scheme. Pendulum swings were used to estimate the MOI of

both the centerbody and the complete aircraft. A bifilar pendulum tests, with

the aircraft mounted horizontally as shown in Figure 5.2, was used to estimate

the yaw MOI.

Time taken for 20 oscillations was measured and yaw moment of inertia was

estimated based on time of oscillation of the pendulum. Similarly, to estimate

the roll moment of inertia, the aircraft was mounted vertically, with nose pointing

upward, forming a bifilar pendulum. The pitch moment of inertia was estimated
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Figure 5.2: Bifilar pendulum test setup

using a compound pendulum setup where the aircraft was mounted vertically, with

nose pointing downwards. Products of inertia, e.g. Ixy, were expected to be small

for this aircraft due to symmetry is mass distribution and were not measured.

The results of the mass and inertia tests conducted on Geri are shown in

Table 5.3. The coordinate frame used for the center of gravity (CG) location is

shown in Figure 2.2. The moments of inertia about the CG of the aircraft are

tabulated where Ixx represents the roll inertia, Iyy represents the pitch inertia and

Izz represents the yaw inertia.

x-CG y-CG z-CG
Mass location location location Inertia Ixx Inertia Iyy Inertia Izz
(kg) (m) (m) (m) (kg-m2) (kg-m2) (kg-m2)
6.24 -0.603 0.0 -0.0076 2.739 0.462 3.174

Table 5.3: Mass and inertia properties of Geri
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The material properties of the foam used in the wings were not available during

the design phase. Also, due to manufacturing variability, significant variations

in material properties had been observed in the past for the fabricated wings.

Therefore, static tests were conducted on the spar and the wings of Geri to obtain

a better estimate of the stiffness properties of these components. Separate tests

were conducted on the spars and the wings to estimate the stiffness provided the

foam and the cover fabric in the wings.

A simplified diagram of the test setup is shown in Figure 5.3 (taken from [18]

with approval for re-use). The static tests were conducted by creating a cantilever

constraint on the inboard end of the spar/wing. The structure was loaded with

a series of weights. The weights (P ) were placed on top of the structure and

then hung via a light support rod offset from the center. A three axis precision

inclinometer was placed on top of the test structure near the tip. The inclinometer

was used to measure the bending (θ) and twist (φ) angles for each test weight.

The Euler-Bernoulli beam bending theory was used to estimate the bending and

torsional stiffness (EI and GJ) using Equations 5.1.

EI =
Pl2

2θ

GJ =
Pld

φ

(5.1)

The results of the static tests conducted on the spars are shown in Table 5.4.

It can be seen that the two spars have similar bending stiffness (EI) and masses.

But, there is significant difference between their torsional stiffness values (GJ).

This results indicates that the two spars have slightly different properties due to

manufacturing variability.

Similar tests were conducted on the complete wings of Geri as well. The

complete wings consists of the spar surrounded by the foam core, cover fabric and

includes the control surfaces and the servo motors. The results are described in

Table 5.5. It can be seen that the stiffness properties of the left and right wings
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Figure 5.3: Static test set-up

Spar Mass (kg) EI (N-m2) GJ (N-m2)
Left spar 0.356 119.29 96.08

Right spar 0.352 119.47 86.18

Table 5.4: Static test results for spars

differ due to manufacturing variability causing and asymmetry in the aircraft.

Spar Mass (kg) EI (N-m2) GJ (N-m2)
Left wing 1.392 359.29 299.34

Right wing 1.381 304.75 261.89

Table 5.5: Static test results for wings

5.2.2 FEM Update

The initial FEM model was updated based on the results of the static tests. The

asymmetry in the aircraft properties was not taken into account at this step and

a symmetric FEM model is assumed. It was decided that the dynamic test results

would serve as a better indication of the effects of asymmetry in the aircraft and
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asymmetry could be introduced at a later stage. An optimization based update

procedure is employed to update the FEM model and is described in [51].

The mass properties of the updated FEM model are shown in Table 5.6 along

with the corresponding values form the static test results. It can be seen that the

mass properties of the updated FEM model matches with the measured values.

Mass x-CG location Inertia Ixx Inertia Iyy
(kg) (m) (kg-m2) (kg-m2)

Initial FEM model 6.24 -0.609 2.816 0.466
Static Test 6.24 -0.603 2.739 0.462

Updated FEM model 6.25 -0.603 2.640 0.464

Table 5.6: Mass and inertia properties of updated FEM model

The modal frequencies of the updated FEM model are described in Table 5.7.

Figure 5.4 show the mode shapes from the updated FEM model.

Mode
number

Modal frequency
- Initial Model:
Hz (rad/s)

Modal frequency
- Updated
model: Hz
(rad/s)

Mode shape - Updated
model

1 8.00 (50.26) 7.95 (49.95) 1st symmetric bending
2 13.20 (82.93) 12.5 (78.53) 1st anti-symmetric torsion
3 16.70 (104.93) 15.9 (99.90) 1st symmetric torsion
4 19.38 (121.77) 18.7 (117.49) 1st anti-symmetric bending
5 31.40 (197.29) 31.5 (197.92) 2nd anti-symmetric torsion

Table 5.7: Modal frequencies from updated FEM model

5.3 Ground Vibration Test

After updating and validating the FEM model with the static test data, it was

compared with the structural dynamics data of the aircraft. Ground vibration

tests (GVT) were conducted to obtain the structural dynamics data from the air-

craft. This data was then processed to obtain modal parameters like mode shapes
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Figure 5.4: Mode shapes from updated FEM model
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and modal frequencies. The identified modal parameters were compared with the

predicted values from the FEM model to validate it. As the modal parameters

predicted by the model were found to be different from the experimental values,

the FEM model was updated again [47, 51].

Several considerations go into designing the experiment such as the excitation

signal, location of the excitation points and sensors, type of the support to the

aircraft, attachment types and data acquisition system requirements [53]. The

details of experimental setup and the procedure are described in Section 5.3.1

and 5.3.2 respectively. Similar ground vibration tests have been conducted for

other aircraft in mAEWing1 series [54] and for the body freedom flutter aircraft

[55]. Post-processing of the experimental data to obtain modal parameters using

two different methods is explained in Section 5.4. Section 5.5 discusses the FEM

model update using GVT data.

5.3.1 Experimental Setup

The goal of GVT was to obtain structural dynamics data from the aircraft. To ob-

tain such data the aircraft was excited by applying an external force as input. The

accelerations of the aircraft at several points were considered as the output. Both

input force and output acceleration data were measured using a data acquisition

system.

The experimental setup of the ground vibration test is shown in Figure 5.5.

The aircraft was suspended from a wooden frame which provides a rigid support to

the test setup. A flexible spring was used to suspend the aircraft and was attached

to the center of gravity (CG) of the aircraft using a metallic hook. This allowed

the aircraft to remain approximately horizontal during the test. The spring was

chosen to be of sufficiently low stiffness of 130 Newton/meter so that the aircraft

experiences free-free vibration conditions [56]. The mass of the aircraft is 6.24 Kg

which implies that the the natural frequency of the mass-spring oscillation was

0.72 Hz. This was well below the lowest modal frequency of the aircraft of around
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8 Hz. Thus, the mass-spring oscillation was well separated from the flexible modes

in the frequency domain and did not interfere with the identification of the flexible

modes.

Figure 5.5: Ground vibration test setup

The excitation force was provided using an Unholz-Dickie, model 20 electro-

dynamic shaker. The shaker is capable of generating more than 1100 Newtons

force and has a frequency range of 1-5000 Hz. The shaker transmitted the force

to the aircraft using a stinger mechanism as shown in the right part of Figure 5.5.

The stinger was used as the transmission mechanism so that only the component

of the force perpendicular to the planform was transmitted. This is important

for a complex structure like a flexible aircraft because transverse forces might in-

terfere with the excitation of a particular mode of interest. A force transducer

was attached between the other end of the stinger and the aircraft. With this

arrangement, the force transducer measured the exact force being transmitted to

the aircraft via the stinger. This means that the shaker dynamics need not be

modeled and taken into account. Using a stinger also ensures the force was trans-

mitted only in the single axis measurable by the single axis force transducer. Hot

glue was chosen to affix the force transducer to the aircraft so that the surface of
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the aircraft did not get damaged while conducting the test.

Two excitation locations were chosen for the ground vibration test. First point

was a symmetric excitation point close to the trailing edge on the longitudinal axis

and the second was an asymmetric point close to the body flap. The excitation

locations are labeled in figure. 5.6. The excitation points were chosen carefully so

that all the symmetric and anti-symmetric bending and torsion modes are excited

during the test. Accelerations were measured at twenty eight locations shown in

Figure 5.6.

Figure 5.6: GVT input and output locations

5.3.2 Experiment Procedure

To vibrate the aircraft, a chirp signal was provided to the shaker as described in

the equation below.

I(t) = A sin

(∫ t

0

(
ω(τ)× τ

)
dτ

)
(5.2)

where the amplitude is A, frequency at time τ is ω(τ) = ω0 + τ
T

(ωf − ω0), initial

frequency is ω0 = 3 Hz, final frequency is ωf = 35 Hz and the total duration of

the signal is T = 120 seconds.

The frequency of the signal is increased linearly with time from 3 Hz to 35
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Hz while the amplitude is kept constant. The amplitude is chosen such that the

enough vibrational energy is imparted into the aircraft without exceeding the

limits of the shaker. The exact value of the amplitude does not matter. A long

duration of 120 seconds is chosen to ensure that sufficient excitation is provided

to each frequency. The chirp input to the shaker is plotted in Figure 5.7 for the

first 10 seconds.

Figure 5.7: Chirp input to shaker for a duration of 10 seconds

The electrodynamic shaker generated force according to the shaker dynamics

and the force was transmitted to the aircraft via a stinger. The force generated by

the shaker was usually not proportional to the input provided due to the presence

of shaker dynamics. The force transducer between the stinger and the aircraft

measured the exact force transmitted to the aircraft. The force measured for one

of the tests is shown in Figure 5.8. The difference between the input to the shaker,

which had a constant magnitude, and the force transmitted to the aircraft can be

clearly observed.

Only two accelerometers were available for the ground vibration tests to mea-

sure output at twenty eight locations. Therefore, the ground vibration test were

conducted fourteen times for each excitation location. The accelerometers were

moved to different sensor locations between each test. The acceleration measured

for one of the tests is shown in Figure 5.9. This procedure was followed for both

the excitation locations. Thus, finally two sets of data are collected, one for each

excitation location. Each set contains one force and twenty eight acceleration
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Figure 5.8: Force measured by the transducer

signals.

Figure 5.9: Acceleration measured by the accelerometer

A data acquisition (DAQ) system was used to collect the data during the

ground vibration tests. The data acquisition system consisted of the NI-9269 sig-

nal output module to generate the chirp signal. NI-9229 voltage input module was

used to log the measurement from the force transducer and two accelerometers.

A sampling frequency of 2000 Hz was used, which was higher than the required

nyquist frequency. These two modules are mounted on a NI cDAQ-9178 chassis.

The software MATLAB was used to interface with the DAQ using the data acqui-

sition system toolbox. The data is utilized for identification of modal parameters

of the aircraft as described in the next section. The data from the GVT can also

be used for other purposes like real time shape estimation of the aircraft [57].
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5.4 Modal Identification

The data obtained from the GVT is in the form of time series signals consisting

of input forces and output accelerations for each excitation location. The time

domain data was processed to obtain frequency domain modal parameters. The

modal parameters are the mode shapes and modal frequencies. These parameters

were later utilized for the update and validation of the finite element model as

discussed in Section 5.5.

Two different methods were employed to obtain these modal parameters from

the time domain data. The first method, known as the quadrature response

method, is described in Section 5.4.1. The second method is the Curve Fitting

Frequency Domain Decomposition (CFDD) method and it is described in Section

5.4.2.

5.4.1 Quadrature Response Method

Consider the time series data collected for a single excitation location and 28

output locations. The data was collected in fourteen tests with accelerations

measured at two locations in each test. The total duration of each experiment

was T = 120 sec and data was collected using a sampling time of 5 × 10−4 sec

(corresponding to 2000 Hz). Let {tk, fi(tk), ai(tk)}Ntk=1 denote the time, force, and

acceleration measurements for a single input/output pair where Nt = 240001.

There are 28 such pairs, i.e, i = 1, . . . , 28. 1

The input force and output accelerometer signals are converted to frequency

domain via the Fast Fourier Transform (FFT) using the MATLAB command fft.

The time domain force and accelerometer signals are padded with trailing zeros

to obtain signals of length Nf = 262144 where Nf is the next power of 2 after

Nt. This is done to improve the performance of the FFT algorithm. The FFT

is computed on the frequency grid ωk = (2000 × k
Nf

) Hz for k = 0, . . . ,
Nf
2

. This

1As noted previously the accelerations were measured at two points at a time but the same
fi is applied for all the measurements in a set.
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yields frequency domain data {ωk, Fi(jωk), Ai(jωk)}Nωk=0 for i = 1, . . . , 28 where

Nω =
Nf
2

= 131072. The frequency response function for the ith input/output

pair is given by:

Gi(jωk) :=
Ai(jωk)

Fi(jωk)
(5.3)

This yields frequency response functions {Gi(jωk)}Nwk=0 for i = 1, . . . , 28 for one

excitation point and the twenty eight measurement locations shown in Figure 5.6.

Note that the frequency response functions are complex and contain both real and

imaginary parts.

The modal frequencies were identified using a peak-picking approach. Let G

denote the dynamics from one input excitation location to the 28 output mea-

surement locations. The frequency response function is a 28 × 1 vector with the

ith entry estimated as given in Equation 5.3. The maximum singular value of G

at each frequency is given by:

σ̄(G(jω)) :=

√√√√ 28∑
i=1

|Gi(jω)|2 (5.4)

The quadrature response method estimates the modal frequencies from a plot of

σ̄(G(jω)) vs. ω. This is called a sigma-plot of G. Modal frequencies are identified

by peaks on this sigma-plot. The frequency range for this analysis was limited to 3

Hz to 35 Hz, according to the frequency range of chirp excitation provided during

GVT. The sigma plots for the symmetric and asymmetric excitation locations are

shown in Figure 5.10. The modal frequencies identified by the peaks in the plots

are shown in Table 5.8.

The mode shapes are identified using the procedure by Stahle and Forlifer [58].

To motivate their procedure, first consider a single degree of freedom system with
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Figure 5.10: Sigma-plots for the frequency response with symmetric (top) and
asymmetric (bottom) excitation locations

structural damping. The transfer function of such a system is given by:

G(s) =
Cω2

n

s2 + 2ζωns+ ω2
n

(5.5)

where C is the zero frequency gain (DC gain), ζ is the damping coefficient and

ωn is the modal frequency of the system. The frequency response of this system

can be written as:

G(jω) =
Cω2

n

(ω2
n − ω2) + j (2ζωnω)

(5.6)

If the damping is small then the peak response occurs at ω ≈ ωn. Note that the
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Mode #
Symmetric Asymmetric

Mode shapes
Hz (rad/s) Hz (rad/s)

1 7.90 (49.63) 7.95 (49.95) 1st symmetric bending
2 9.20 (57.80) 9.20 (57.80) -
3 16.09 (101.09); 16.25 (102.10) 1st symmetric torsion
4 18.54 (116.49) 18.71 (117.56) 1st anti-symmetric bending
5 31.25 (196.35) 31.26 (197.41) 2nd symmetric bending

Table 5.8: Peak frequencies identified by sigma plot

response at ω = ωn is purely imaginary.

G(jωn) = −j C
2ζ

(5.7)

The coefficient of the imaginary part of the response is known as quadrature

response and is denoted by Quad(G(jω)). Equation 5.7 shows that the response

is purely imaginary at ω = ωn. Thus for lightly damped systems, the peak gain

of G and peak quadrature both occurs at ω ≈ ωn. The peak quadrature response

(accounting for sign) is given by:

P = Quad(G(jωn)) = − C
2ζ

(5.8)

The frequency response function can be written in term of the peak quadrature

response:

G(jω) = P
−2ζω2

n

(ω2
n − ω2) + j (2ζωnω)

(5.9)

The response can then be split into its real and imaginary parts as follows:

G(jω) = P

[
−2ζ ω

ωn

(
1− ω2

ω2
n

)(
1− ω2

ω2
n

)2
+
(
2ζ ω

ωn

)2 + j
(2ζ)2 ω

ωn(
1− ω2

ω2
n

)2
+
(
2ζ ω

ωn

)2
]

(5.10)
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The quadrature response can be written as

Quad(G(jω)) = P

[
(2ζ)2 ω

ωn(
1− ω2

ω2
n

)2
+
(
2ζ ω

ωn

)2
]

(5.11)

Thus, it can be concluded that for a single degree of freedom system with low

structural damping, the response at resonance is purely imaginary and can be

calculated as P = − C
2ζ

.

This can be easily extended to a system with multiple outputs and multiple

modes. The response of ith output can be written as:

Quad(Gi(jω)) =
M∑
m=1

Pi,m
(2ζm)2 ω

ωm

(1− ω2

ω2
m

) + j (2ζm
ω
ωm

)
(5.12)

where a subscript m denotes quantities corresponding to the mth mode and M is

the total number of modes. Equation 5.12 states that the quadrature response at

ith output is a linear combination of peak quadrature responses Pi,m due to each

individual mode. Quad(Gi(jω)) are measured during GVT, ωm are obtained from

the sigma plot and a constant modal damping can be assumed for all the modes.

The mode shape for mode m is given by the vector vm := [P1,m, . . . , P28,m].

All quantities in Equation 5.12 are known except for the entries of this vectors.

Specifically, evaluating Equation 5.12 at the mth modal frequency ωm yields a

set of algebraic equations of the form Avm = b where b is the 28 × 1 vector of

quadrature responses at ωm. This set of algebraic equations can be solved for the

mode shape vector vm associated with mode m. These steps can be repeated for

each desired mode shape.

This procedure is applied to the frequency response functions calculated from

the GVT data. The procedure described above includes one modification to

smooth the data. Specifically, the experimental quadrature response is noisy.

Thus the Matlab command fitfrd is first used to fit each of the 28 experimen-

tal frequency responses. An example of this fitting for one frequency response
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function is shown in Figure 5.11. This fitting smoothes the data and improves

the quality of the estimated mode shapes. Equation 5.12 is used to calculate the

mode shapes from the fitted transfer functions. The resulting mode shapes are

shown in Figure 5.12 for both symmetric and asymmetric GVT.

Figure 5.11: Frequency response function fit

5.4.2 Curve-Fitting Frequency Domain Decomposition

The second approach is known as Curve-fitting Frequency Domain Decomposi-

tion (CFDD). Classical approach of peak-picking from the power-spectral density

diagram for identification of modal parameters [59] works reasonably well for well-

separated modes. But, if the modes are closely spaced, the results can become

biased [60]. The quadrature response method, described in the previous section,

uses the method proposed by the Stahle and Forlifer [58] to correct for the effect

of closely spaced modes for the calculation of mode shapes.

It has also been shown that the autospectra of the output signals do not

provide sufficient information for the estimation of modal parameters [61]. The

cross-spectra magnitude, phase and coherence also play a major role. Refs. [60,

62] proposed the use of the Singular Value Decomposition (SVD) of the power

spectral-density matrix to address these issues. Specific details of the CFDD
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Figure 5.12: Mode shapes from symmetric (Left) and asymmetric (Right) data
using quadrature response method
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method and its application on extraction of modal parameters estimation from

flight test data can be found in [61] and [63]

The modal identification using CFDD method was conducted by the researchers

at Systems Technology Inc. and the results are shown in Table 5.9.

Mode # Symmetric Asymmetric Mode Shape
Hz (rad/s) Hz (rad/s)

1 7.90 (49.64) 7.94 (49.89) 1st symmetric bending
2 9.10 (57.17) 9.19 (57.74) -
3 16.09 (101.10); 16.25 (102.10) 1st symmetric torsion
4 18.55 (116.55) 18.69 (117.43) 1st anti-symmetric bending
5 31.22 (196.16) 31.31 (197.72) 2nd symmetric bending

Table 5.9: Modal frequencies identified by CFDD method

5.4.3 Identified Modal Parameters

The quadrature response and the CFDD methods are applied to the symmetric

and asymmetric GVT data. It can be seen that the results of the two methods

differ slightly for some modes. For any particular mode, one of the two results is

picked based on the level of excitation and clarity of the identified mode shape.

Table 5.10 show the method picked for each modes.

It can be observed that the second mode with a frequency of around 9.2 Hz

does not correspond to any expected mode shape. It is concluded that the effect

of the asymmetry in the model is significant and this results in the splitting of the

1st symmetric bending mode into two different mode. Therefore, asymmetry was

included in the next FEM update discussed in Section 5.5.

5.5 FEM Update

The modal parameters obtained from the ground vibration test were compared

to the finite element model of Geri. It was observed that frequencies of the FEM
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Mode #
Frequency

Mode shape Method used
Hz (rad/s)

1 7.95 (49.64) 1st symmetric bending
Quadrature response:

Asymmetric
2 9.20 (57.80) Not identified Not identified

3 16.1 (101.10) 1st symmetric torsion
Quadrature response:

Symmetric

4 18.54 (116.55) 1st anti-symmetric bending
Quadrature response:

Symmetric

5 31.25 (196.16) 2nd symmetric bending
CFDD:

Symmetric

Table 5.10: Final identified frequencies and modes

model were different from the GVT results. A comparison of the previous FEM

model results and the GVT results are shown in Table 5.11.

Mode #
GVT Frequency FEM Frequency

Mode Shape
Hz (rad/s) Hz (rad/s)

1 7.95 (49.95) 7.95 (49.95) 1st symmetric bending
2 9.20 (57.80) 12.5 (78.53) Not identified
3 16.1 (101.10) 15.9 (99.90) 1st symmetric torsion
4 18.54 (116.55) 18.7 (117.49) 1st anti-symmetric bending
5 31.25 (196.16) 31.5 (197.92) 2nd symmetric bending

Table 5.11: Modal frequencies from GVT and FEM model updated using static
test

Therefore, the FEM model was updated based on the GVT data. The FEM

updated was conducted by researches at Virginia Polytechnic Institute and State

University with support from the team at University of Minnesota. An sucompo-

nent based optimization procedure is employed to update the FEM model with

GVT data. The details of the update procedure and optimization results are

given in [51, 64, 65] and [27]. The GVT results suggested that the aircraft ex-

hibits significant asymmetry. Therefore, the symmetry constraint was removed

while updating the FEM model. The results of the model update on the mass
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and structural properties of the aircraft are discussed below.

The mass properties of the updated FEM model are shown in Table 5.12 along

with the corresponding values from the previous FEM update. It can be seen that

the mass properties did not change significantly.

FEM Model
Mass x-CG location Inertia Ixx Inertia Iyy
(kg) (m) (kg-m2) (kg-m2)

Updated using static test 6.25 -0.603 2.640 0.464
Updated using dynamic test 6.26 -0.603 2.648 0.463

Table 5.12: Mass and inertia properties of updated FEM model

The modal frequencies of the updated FEM model are described in Table 5.13.

The modal frequencies show appreciable changes while the mode shape remained

the same qualitatively. Figure 5.13 show the mode shapes from the updated FEM

model.

Mode #
Static test updated Dynamic test updated

Mode shape
Hz (rad/s) Hz (rad/s)

1 7.95 (49.95) 7.81 (49.07) 1st symmetric bending
2 12.5 (78.53) 10.0 (62.83) 1st anti-symmetric torsion
3 15.9 (99.90) 14.73 (92.55) 1st symmetric torsion
4 18.7 (117.49) 19.72 (123.90) 1st anti-symmetric bending
5 31.5 (197.92) 32.44 (203.83) 2nd anti-symmetric torsion

Table 5.13: Modal frequencies from static and dynamic test updated FEM model
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Figure 5.13: Mode shapes from updated FEM model



Chapter 6

Aerodynamic Model

The aerodynamic model is an essential subcomponent of the flight dynamics model

of an aircraft. It is used to calculate the forces acting on the aircraft due to the

airflow around it. Modeling the aerodynamic forces generated on a flexible aircraft

is significantly more challenging than a rigid aircraft. This is because the flexible

aircraft changes its shape during flight, thus, changing its aerodynamic properties.

This chapter describes the panel method based models used to calculate the steady

and unsteady aerodynamic forces acting on the aircraft. These panel methods are

further modified to capture the geometrically nonlinear effects on the aerodynamic

forces due to the flexibility of the aircraft.

6.1 Introduction

The Navier-Stokes equations [66] are a set of partial differential equations which

form the basis of all fluid flows. The interaction of the flow with any surface or

body is captured by the boundary condition of the equations. The Navier-Stokes

equations can also be used to calculate the forces generated on any such surface or

body interacting with the flow. The general form of the Navier-Stokes equations

include the compressibility and viscosity effects on the fluid flow.

In general, the fluid dynamics described by the Navier-Stokes equations are

69
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highly nonlinear. This is known as aerodynamic nonlinearity. If the flow can be

assumed to be incompressible and non-viscous, the equations can be simplified.

For example, the fluid flow around a low speed UAV operating in standard atmo-

spheric conditions can be assumed to be incompressible and non-viscous. Such

flow are aerodynamically linear. Potential flow theory is used to model the flow

under these simplifying assumptions.

An important characteristic of the aerodynamics of a flexible aircraft is that

the aerodynamic properties are time varying. Specifically, as the shape of the

flexible aircraft changes during flight with time, its aerodynamic properties and

the airflow around the aircraft change with time as well. Therefore, both steady

and unsteady aerodynamics forces are generated on the aircraft. The change in

flow characteristics takes place in a finite amount of time and is not instantaneous.

This lag needs to be taken into account in the unsteady aerodynamic model. For

a flexible aircraft, the relationship between the changes in the aircraft jig shape

and the changes in the aerodynamic properties is nonlinear. This phenomena is

another source of nonlinearity in the aerodynamic model known as geometric non-

linearity. It should be noted that the geometric nonlinearity due to the flexibility

of the aircraft is different from the previously described aerodynamic nonlinearity

which is present in both rigid and flexible aircraft in general.

There are several well known methods that can be used model the steady and

the unsteady aerodynamics of a flexible aircraft [34, 67, 68]. For example, Compu-

tational Fluid Dynamics (CFD) based methods can be used where the equations

of the fluid flow are implemented numerically by discretizing the flow domain [66].

Similarly, Computational Structural Dynamics (CSD) based models can capture

the structural dynamics of a flexible aircraft. CFD and CSD models can be com-

bined to calculated the flexible deflection and the time varying aerodynamic forces

on a flexible aircraft. These methods are usually resource intensive but produce

high fidelity results. CFD-CSD methods yield models with a large number of

states, which makes them unsuitable for control-oriented aeroelastic modeling.

On the other hand, simple potential flow based methods like strip theory have
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low computational cost but produce low fidelity results. The accuracy of these

low fidelity methods improve for specific cases like high aspect ratio, slender wing

aircraft [69].

The focus of this work is to obtain a control-oriented model for the flight dy-

namics of a flexible, low-speed UAV. For this application, a reasonably accurate

model can be obtained even if the aerodynamic nonlinearities are ignored. Po-

tential flow based panel methods are suitable for modeling the aerodynamics of

the aircraft in this case. These methods are capable of handling fairly complex

geometry including swept back wings, movable control surfaces and winglets etc.

These methods are also capable of capturing the effect of tip vortices and the

wake. The vortex lattice method (VLM) [66] is a panel method used to model

the steady aerodynamic forces while the double lattice method (DLM) [31] is used

to model the unsteady aerodynamic forces. The disadvantage of these potential

based panel methods compared to high fidelity CFD based methods is that they

are not capable of modeling the parasitic drag. This implies that these meth-

ods are not suitable for analysis of the performance of an aircraft. However,

these methods can model the induced drag which is important for flight dynamics

modeling and flutter analysis. As the work presented here focuses of the control

oriented flight dynamics of a flexible aircraft and not on performance assessment,

the panel methods are considered suitable.

The panel based methods used to model the aerodynamics of the flexible air-

craft are described next. A basic description of the vortex lattice method used

to model the steady aerodynamic forces is given in Section 6.2. The VLM is fur-

ther modified to include the geometrically nonlinear effects of the flexibility of the

aircraft. These modifications are discussed in Section 6.3. The doublet lattice

method used to model the unsteady aerodynamic forces is described in Section

6.4.
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6.2 Vortex Lattice Method

The Vortex Lattice Method (VLM) is a numerical, panel based method used to

model the steady aerodynamic forces on a collection of lifting surface. Modeling

a lifting surface (or a collection of surfaces) in a fluid flow using the VLM involves

the following steps [68].

1. The surfaces are divided into a lattice of trapezoidal panels. The two parallel

edges of the panels should be aligned with the direction of the fluid flow.

2. A horseshoe vortex of unknown strength is placed on each panel with bound

section of the vortex on the 1/4 chord line.

3. The 3/4th point of the middle chord of the panel is considered as the col-

location point for the panel. Zero normal flow boundary conditions are

satisfied on these collocation points. The strengths of the horseshoe vortices

are determined by the satisfying the boundary condition equations.

4. The force acting on each panel is calculated based on the strength of the

horseshoe vortices and external flow properties.

These steps are demonstrated for a simple, swept-back lifting surface. The

surface is shown in Figure 6.1. The surface is immersed in free stream flow with

a constant velocity of V∞ at an angle of attack α as shown in Figure 6.2. Sideslip

is not considered in this example, i.e. β = 0.

The first step in the VLM implementation is to divide the surface into trape-

zoidal panels as shown in Figure 6.3. The two parallel edges of each trapezoid

must be aligned with free stream flow direction as shown.

The second step in the VLM is to attach a horseshoe vortex of unknown

strength to each panel. One such horseshoe vortex is shown in Figure 6.4. The

horseshoe vortex is attached to the panel at the quarter-chord line. Specifically,

the chord at any span location on the panel is a straight line connecting the leading

to the trailing edge at that span. The quarter-chord line is the locus of the 1/4th
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Figure 6.1: Example lifting surface

V∞

α

Figure 6.2: Lifting surface in a free stream flow

Figure 6.3: Discretization of surface into trapezoidal panels

location of all the chords of the panel. Note that for a trapezoidal panel, this is a

straight line. The unbounded parts of vortices are assumed to be parallel to the
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left and right edges of the panel. Similar horseshoe vortices are placed on all the

panels. Note that, in general, different panels can have different orientations.

Figure 6.4: Horseshoe vortices

The third step of the VLM is to satisfy the zero normal flow boundary condition

at the collocation points of the panels to calculate the strength of the horseshoe

vortices. This step involves the calculation of the induced velocity due to the

horseshoe vortices at the collocation points. The collocation point for each panel

is located at the center (midpoint) of the 3/4th chord line for the panel. The Biot-

Savart law is utilized for this computation. The law is explained in the appendix

of this chapter in Section 6.5.1. It can be used to calculate the velocity induced

by a horseshoe vortex at any point, as described in Equation 6.44.

The specific application of Equation 6.44 for the given aerodynamic grid is

briefly summarized here. Consider the horseshoe vortex corresponding to the nth

panel as shown in Figure 6.5. The strength of the vortex is denoted as Tn. The

vector ~rn denotes the bound part of the horseshoe vortex. Magnitude of ~rn is

the length of the bound part of the vortex and its direction is aligned with the

direction of the vortex. The center of the bound part of the horseshoe vortex for

the nth panel is denoted as An. The collocation point of the mth panel is denoted

as Cm.

The velocity induced by this horseshoe vortex at the collocation point Cm of
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Tn

Cm

x

y
z

~rn

An

Figure 6.5: Collocation point Cm of panel m and the horseshoe vortex on panel
n

the mth panel can be written as follows:

~Vm,n = ~Qm,n Tn (6.1)

Note that all the vectors are represented in the coordinate system shown in Figure

6.5. Equation 6.1 is applied to compute the induced velocity at the collocation

point of mth panel due to all the P vortices as:

~Vind,m =
P∑
n=1

~Qm,nTn (6.2)

Equation 6.2 can be used to compute the component of the induced velocity

normal to the panel as shown in Equation 6.3.

wind,m = n̂m · ~Vind,m.

=

p∑
n=1

(n̂m · ~Qm,n) Tn
(6.3)

where n̂m is the normal vector to the panel surface. Next, we define the scalar

Dm,n as:

Dm,n = n̂m · ~Qm,n (6.4)
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Thus, Equation 6.3 can be written as a scalar equation:

wind,m =

p∑
n=1

Dm,n Tn (6.5)

Similarly, the normal velocity at the collocation point due to external free stream

flow can be written as:

wext,m = n̂m · ~V∞ (6.6)

where ~V∞ is the freestream flow velocity expressed in the coordinate system shown

in Figure 6.5.

The total normal flow at the collocation point of the mth panel comprises of the

normal flow due to the free stream and induced flow due to the horseshoe vortices.

Using equations 6.5 and 6.6, the total normal flow velocity at the collocation point

can be written as:

wm = wext,m + wind,m

= wext,m +
P∑
n=1

Dm,nTn = 0
(6.7)

Equation 6.7 can be stacked for all the panels to obtain the matrix equation

w = wext + wind

= wext +DT = 0
(6.8)

where w, wext and wind are P -by-1 vectors containing the total, external and

induced normalwash at the P panels, D is a P -by-P matrix whose elements are

Dm,n and T is a P -by-1 vector containing the strength of the horseshoe vortices
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of the P panels. Thus, the strength of the vortices can be calculated as:

T =
[
−D−1

]
wext

= [AIC]wext
(6.9)

Here, we denote the matrix [−D−1] as the Aerodynamic Influence Coefficient

(AIC) matrix. The AIC matrix is a property of the geometry of the aircraft

and is used for calculation of the aerodynamic forces based on the external flow

conditions as described next.

The fourth step is to calculate the force generated on each panel. Kutta-

Joukowski theorem is utilized for this step and is described in the appendix of

this chapter in Section 6.5.2. Using the theorem, the force generated on the nth

panel can be written as:

~Fn = ρTn (~V∞ × ~rn) (6.10)

Note that any force generated on the the two semi-infinite vortices cancel each

other. Therefore, only the finite section of the vortex is taken into account in this

step. This finite section is described by the vector ~rn in Figure 6.5.

For the simple example of a planar wing discussed here, the resulting force lies

in the z direction i.e normal to the surface. Therefore, the z component of the

force can be written as a scalar equation as:

Fz,n = ρ (~V∞ × ~rn)z Tn (6.11)

Not that (~V∞×~rm)z is the scalar z component of the vector (~V∞×~rm). Equation

6.11 can be stacked for all the panels as

Fz = Mz T (6.12)

where, Fz is a P -by-1 vector of the z component of the forces on acting on the
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panel, Mz is a P -by-P diagonal matrix whose nth diagonal element is ρ (~V∞×~rn)z.

This formulation can be easily extended to a non-planar lifting surface where Fx

and Fy can be included in Equation 6.12.

Equation 6.9 and 6.12 can be combined to write the panel forces in terms of

the AIC matrix and external normalwash.

Fz =
(
Mz[AIC]

)
wext (6.13)

Thus, it can be seen that the vortex lattice method can be used to calculate the

aerodynamic forces based on external flow conditions and the panel orientations

as wext is a P -by-1 vector whose mth element is n̂m · V∞.

The process of calculating aerodynamic forces using the vortex lattice method

is summarized in Figure 6.6. For a given aerodynamic grid, the external normal-

wash wext is calculated using the external flow parameters and panel orientations.

The AIC matrix is computed based on the geometry of the aircraft. The AIC

matrix is used to calculate the strength of the horseshoe vortices T . The vortex

strengths are then used to calculate the forces acting on the panels.

Normalwash AIC Mz

V∞, n̂m wext T Fz

Figure 6.6: Calculation of panel forces using VLM

6.3 Modifications of VLM Formulation

The previous section described a basic, well-known implementation for the vortex

lattice method. The VLM formulation has been applied extensively for rigid body

flight dynamics. However, the formulation is linear and ignores both aerodynamic

and geometric nonlinearities. This section describes two modifications to this basic

implementation to account for: i) geometric nonlinearities, and ii) higher fidelity

aerodynamic calculations, e.g. the use of local velocity for force calculation instead
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of the freestream velocity V∞. The second modification is needed for induced drag

calculation. The first modification is new and is a contribution of this thesis. The

second modification is known but typically not implemented. The higher fidelity

aerodynamics (as provided by modification ii) is required for the inclusion of the

geometric nonlinearities (modification i). These modifications enable a deeper

study of the flight dynamics and flutter characteristics of low-speed speed UAV.

A study of the effects of including these phenomena on flight dynamics model and

flutter characteristics of the flexible aircraft Geri is presented later in Chapter 7.

The first step of the implementation of the VLM is discretization of the lifting

surfaces into panels. This step is not modified and remains the same as described

in the previous section. The aircraft Geri is discretized into 888 panels. The top

view and the side view of discretized surfaces are shown in Figure 6.7

Figure 6.7: Discretization of Aircraft Geri

The second step is to attach horseshoe vortices of unknown strength to the

aerodynamic panels. This step remains unchanged as well. The third step of VLM

involves satisfying the zero normal flow boundary condition at the collocation

points of the panels. The total normal flow at the collocation points are calculated

as the sum of the normalwash due to external freestream flow and the normalwash

induced by the horseshoe vortices.

The normalwash due to external flow for the basic VLM formulation has been

described in Equation 6.6 in the previous section. The external flow observed by

each panel was assumed to be freestream flow velocity ~V∞. This can be modified
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to take into account the flow due to rotation of the aircraft, flexible deflection and

flexible velocity. Therefore, instead of ~V∞ in Equation 6.6, we use the following

for the external flow velocity on mth panel.

~Vext,m = ~V∞ − ~ωb × (~rm,c + ~rm,f )− ~̇rm,f (6.14)

were ~Vext,m is the total velocity at the collocation point of the mth panel, ~ωb is the

angular velocity of the mean axes, ~rm,c is the position vector of the collocation

point of the mth panel in the undeformed position from the CG of the undeformed

aircraft, ~rm,f and ~̇rm,f are the flexible deflection and velocity of the mth panel in

the mean axes. The flexible deflections and velocities can be written in terms of

flexible mode shapes and modal deflections as:

~rm,f =

nmodes∑
k=1

~φtransm,k ηk (6.15)

~̇rm,f =

nmodes∑
k=1

~φtransm,k η̇k (6.16)

where nmodes is the number of structural modes included in the model, ~φtrans
m,k is a 3-

by-1 vector containing the deflections of the translational degrees of freedom along

the x, y and z axes of the mth panel for the kth mode shape, ηk is modal deflection

vector for kth mode. The mode shapes and modal deflections are described in

Chapter 5. These equations essentially express the flexible deflection and flexible

velocity of the aircraft as a superposition of nmodes structural modes.

Another aspect of flexible aircraft is that the panel orientations change as the

aircraft deforms. This changes the direction of the normal vector of the panels.

Control surface deflections also cause a change in the normal vectors of the panels

corresponding to those surfaces. The effect of the flexible deflections and control

surface deflections are taken into account separately.

The flexible deflections are assumed to be small and can be described as a

superposition of nmodes structural modes. Therefore, the dependence of the normal
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vectors on the flexible deflection can be assumed to be linear. The normal vector

of the mth panel for the deformed aircraft can be calculated as:

n̂flex,m = n̂m,0 +

nmodes∑
k=1

~Nm,k ηk (6.17)

where n̂m,0 is the 3-by-1 normal vector of the mth panel in for the undeformed

aircraft, ~Nm,k is a 3-by-1 vector which describes the change in the normal vector

of the mth panel due to the kth mode and ηk is the modal deflection of kth mode.

~Nm,k can be calculated as the cross product of the rotational degrees of freedom

of the kth mode shape and the undeformed normal vector of the mth panel as:

~Nm,k = ~φrot
m,k × n̂m0 (6.18)

where ~φrot
m,k is a 3-by-1 vector containing the deflections of the rotational degrees

of freedom along the x, y and z axes of the mth panel for the kth mode shape.

~φrot
m,k = [φx, φy, φz]

′
m,k (6.19)

The normal vectors of the panels corresponding to the control surfaces rotate

due to control surface deflections. This control surface deflection angle cannot be

assumed to be small. The normal vectors of these panels are calculated using a

rotation matrix. The rotation matrix for the ith control surface can be calculated

as shown in Equation 6.20. Note that the rotation matrix is a nonlinear function

of the control surface deflection angle.

Ri =


Ci + u2i,x(1− Ci) ui,xui,y(1− Ci)− ui,zSi ui,xui,z(1− Ci) + ui,ySi

ui,yui,x(1− Ci) + ui,zSi Ci + u2i,y(1− Ci) ui,yui,z(1− Ci)− ui,xSi
ui,zui,x(1− Ci)− ui,ySi ui,zui,y(1− Ci) + ui,xSi Ci + u2i,z(1− Ci)


(6.20)
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where the deflection the ith control surface is denoted as θi, cosine of θi is denoted

as Ci, sine of θi is denoted as Si and the direction cosines of the axis of rotation

for the ith control surface is denoted as [ui,x, ui,y, ui,z]
′. It should be noted that

only the normal vectors of the panels which belong to the control surfaces are

modified. Therefore, the resulting normal vectors can be calculated as:

n̂m =

Ri n̂m,flex if m ∈ panels of ith control surface

n̂m,flex if m /∈ panels of any control surface
(6.21)

where n̂m,flex is the normal vector of mth panel as defined in Equation 6.17.

The normalwash due to external flow at each panel can be obtain by taking the

dot product of the external flow velocity at the collocation point and the deformed

normal vector. Equation 6.14 and 6.21 are used to obtain the normalwash due to

external flow.

wext,m = n̂m · ~Vext,m (6.22)

Note that Equation 6.22 describe the modifications to the Equation 6.6 for the

basic VLM formulation described in the previous section.

For the previous formulation, the velocity induced at the mth panel due to the

horseshoe vortices has been described in Equation 6.2. This expression remains

the same for the current VLM formulation. The induced normalwash calculation,

which utilizes the normal vector of the panel, is shown in Equation 6.3. For a

flexible aircraft, the normal vector changes with the control surface deflections

and flexible deflections of the aircraft as described in Equation 6.21. The induced

normalwash for a flexible aircraft can be calculated based on these equations.

Substituting Equation 6.21 in Equation 6.3, the following equation is obtained:



83

wind,m =



∑P
n=1

(
Ri (n̂m0 +

∑nmodes
k=1

~Nm,k ηk) · ~Qm,n

)
Tn if m ∈ panels of

ith control surface∑P
n=1

(
(n̂m0 +

∑nmodes
k=1

~Nm,k ηk) · ~Qm,n

)
Tn if m /∈ panels of

any control surface

(6.23)

Note that wind,m has a linear dependence on the strength of the vortices Tn. We

define a scalar Dm,n(θ, η), similar to Equation 6.4, as:

Dm,n(θ, η) =



Ri (n̂m0 +
∑nmodes

k=1
~Nm,k ηk) · ~Qm,n if m ∈ panels of

ith control surface

(n̂m0 +
∑nmodes

k=1
~Nm,k ηk) · ~Qm,n if m /∈ panels of

any control surface

(6.24)

It should be noted that Dm,n(θ, η) explicitly depends on the rotation matrices for

the control surfaces which, in turn, depend on the control surface deflections θ.

They also depends on the modal flexible deflections (η) explicitly. The induced

normalwash at the collocation point of the mth panel can be written in terms of

Dm,n(θ, η), similar to the Equation 6.5.

wind,m =
P∑
n=1

Dm,n(θ, η) Tn (6.25)

The zero normal flow boundary condition is satisfied at the collocation point of
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the mth panel. The total normalwash is calculated using Equations 6.22 and 6.25.

wm = wext,m + wind,m

= wext,m +
P∑
n=1

Dm,n(θ, η)Tn = 0
(6.26)

Equation 6.26 can be stacked for all the panels to obtain

w = wext + wind

= wext +D(θ, η)T = 0
(6.27)

where w, wext and wind are P -by-1 vectors containing the total, external and

induced normalwash at the P panels, D(θ, η) is a P -by-P matrix whose elements

are Dm,n(θ, η) and T is a P -by-1 vector containing the strength of the horseshoe

vortices of the P panels. Equation 6.27 is similar to Equation 6.8 for the previous

formulation.

Following the similar procedure as Equation 6.9, vortex strengths can be cal-

culated.

T = [−D(θ, η)−1]wext

= [AIC(θ, η)]wext
(6.28)

The AIC(θ, η) matrix depend on θ and η due to the dependence of Dm,n(θ, η)

on these parameters. If the number of panels which correspond to the control

surfaces are small as compared to the total number of panels on the aircraft, the

dependence of the AIC matrix on θ can be ignored to obtain Equation 6.29.

T = [AIC(η)]wext (6.29)

It should be noted that the control surface deflections still significantly affect

Equation 6.29 as wext are a function of n̂m which, in turn, depend on θ as shown

in Equation 6.21.
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The fourth step is to calculate the force generated on each panel. As before,

the Kutta-Joukowski theorem is utilized for this step. Aerodynamic forces acting

on the panels depend on the flow velocity experienced by the finite part of the

horseshoe vortices. In the previous formulation, this velocity was assumed to be

the freestream velocity V∞ as described in Equation 6.10. The formulation is mod-

ified to use the local flow velocity experienced by each vortex for the calculation

of panel force instead. The local flow velocity can be written as a sum of external

flow and flow due to horseshoe vortices

~Va,n =
(
~V∞ − ~ωb × (~rn,a + ~rn,f )− ~̇rn,f

)
+

P∑
l=1

~Qa,lTl (6.30)

where ~Va,n is the total velocity at the center of the bound vortex line of the nth

panel i.e at the point An in Figure 6.5 , ~rn,a is the position vector of the center

of the bound vortex of the nth panel in the undeformed position, ~Qa,l is obtained

by applying the Biot-Savart law (Equation 6.44) to obtain the induced velocity at

the point An due the the horseshoe matrix at lth panel.

The force generated on the nth panel can be written as

~Fn = ρTn (~Va,n × ~rn,flex) (6.31)

where ~rn,flex is the vector describing the finite part of the vortex in the deformed

position. Calculation of ~rn,flex is similar to the calculation of normal vector for

the deformed aircraft as shown in Equation 6.17

~rn,flex = r̂n +

nmodes∑
k=1

~Nn,k ηk (6.32)

Note, this modified VLM formulation calculates the aerodynamic forces in all

three direction, not just perpendicular to the lifting surface. The formulation

is capable of capturing a change in the overall direction of the panel forces and

therefore, induced drag can be calculated. The panel forces can then be used to



86

calculate the total forces and moments acting on the entire aircraft to be utilized

in the flight dynamics model. The details of the implementation of this modified

VLM formulation on the flexible aircraft Geri are described in Chapter 7.

6.4 Doublet Lattice Method

The previous section (Section 6.2) describes the Vortex Lattice Method (VLM)

used to calculate steady forces acting on a collection of lifting surfaces. This

section describes the basics of the Doublet Lattice Method (DLM) [31]. It is a

panel based method used to calculate the unsteady forces on the lifting surface.

Like VLM, it is capable of modeling the aerodynamics of multiple lifting surfaces

with different orientations.

The DLM is frequency domain, panel method based on potential flow theory

[31]. The method assumes the lifting surface is undergoing harmonic oscillations

in a steady airflow. The potential flow is linear. Therefore, the pressure dis-

tribution on the lifting surface is also harmonic and has the same frequency as

the oscillation frequency of the surface. The DLM calculates the frequency re-

sponse from the oscillation of the surface to the pressure distribution. It should

be noted that the assumptions behind the DLM do not allow for geometrically

nonlinear aerodynamics. Therefore, only geometrically linear aerodynamic model

is considered in this thesis.

The implementation of the DLM for a set of lifting surfaces is similar to the

implementation of VLM. The surface is divided into trapezoidal panels as shown

in Figure 6.3. The two parallel edges of each trapezoid must be aligned with the

direction of the free stream flow. Next a doublet line is attached to the quarter

chord line of each panel. This doublet line shown in Figure 6.8. Note that unlike

VLM, the doublet is not in the shape of a horseshoe in this case.

Next, the normalwashes are calculated at the collocation points. The colloca-

tion points are chosen at the midpoint of the 3/4 chord as before. The normalwash

induced at the collocation point of the mth panel due to the doublet of the nth
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Figure 6.8: Doublet line at quarter chord

panel is given by the following equation:

wm,n =
cn
8π

∫ L/2

−L/2
K(xm, ym, ξn(l), σn(l), ω, V∞)∆pndl (6.33)

where, wmn is the complex induced normalwash at mth panel due to the doublet

line on the nth panel, cn is the chord length of the nth panel, K is the Kernel

function which relates the complex normalwash to the complex pressure difference,

xm and ym are the coordinates of the collocation point of the mth panel, ξn and σn

are the coordinates along the doublet line of the nth panel, ω is the frequency of

oscillation of the lifting surface, V∞ is the free stream velocity, ∆pn is the complex

pressure difference across the doublet line on the nth panel. The Kernel function

K is described in [31]. A more detailed description including the derivation are

given in [32].

Equation 6.33 can be used to evaluate the normalwash at the mth collocation

point due to doublets at all P panels.

wind,m =
P∑
n=1

Dm,n∆pn (6.34)

Dm,n =
cn
8π

∫ L/2

−L/2
K(xm, ym, ξn(l), σn(l), ω, V∞)dl (6.35)
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Here wind,m is the induced normalwash at the collocation point of mth panel, Dm,n
is a calculated using Equation 6.33 and ∆pn is the pressure difference across nth

panel. Note that Equation 6.34 is similar to Equation 6.5 obtained for VLM.

The expression for Dm,n depends on the the free stream velocity and oscillation

frequency. The calculation can be simplified as it can be written as a function of

a single parameter κ, known as reduced frequency.

κ =
ωc̄

2V∞
(6.36)

where c̄ is the reference chord. Equation 6.34 can be stacked for the panels to

obtain the matrix equation

wind = D(κ)∆p (6.37)

where wind is a P element vector containing the complex normalwash for all P

panels, D(κ) is a P -by-P matrix whose elements are Dm,n and p is a P -by-1 vector

containing the pressure differences of all panels.

wind can be calculated by satisfying the zero normal boundary flow condition

at the collocation points.

w = wext + wind = 0

=⇒ wind = −wext
(6.38)

where wext is a P -by-1 vector containing the normalwash due to external flow.

It depends on the orientation of the lifting surface and external flow conditions.

Calculation of wext has been described previously in Equations 6.6 - 6.8. Finally,

the pressure at each panel can be calculated as

∆p =
[
−D(κ)−1

]
wext (6.39)

Here, we denote the matrix [−D(κ)−1] as the Aerodynamic Influence Coefficient

(AIC) matrix. It should be noted that for DLM, the AIC matrix is defined between

the pressure and the normalwash while for VLM, it is defined between the vortex
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strength and the normalwash as described in Equation 6.9.

Thus, the AIC matrix for a particular reduced frequency κ can be obtained

using the formulation described above. But for the calculation of unsteady aero-

dynamic forces, the AIC matrix for any general value of κ might be needed.

Therefore, in order to calculation the AIC matrix for any value of κ, a rational

function of κ is fit to a set of 7 AIC matrices. These 7 AIC matrices are calculated

for κ ∈ {0.0469, 0.0938, 0.188, 0.375, 0.750, 1.50, 3.00}. These AIC matrices are fit

with a rational function of the following form:

AIC(κ) = A0 + A1κ+B1
κ

(κ+ b1)
+B2

κ

(κ+ b2)
(6.40)

where b1 = 0.11 and b2 = 0.22 are the assumed lag poles. The unknown matrices

A0, A1, B1, B2 are calculated by solving the least square problem based in the

linear equation shown in Equation 6.40. Note that A0 is the steady part of the

AIC matrix. As the VLM is a much better method to calculate the steady part

of the aerodynamic forces, A0 part of the AIC matrix is replaced with VLM

calculation. Thus, purely unsteady part of the AIC matrix can be written as:

AIC(κ)unsteady = A1κ+B1
κ

(κ+ b1)
+B2

κ

(κ+ b2)
(6.41)

The process of calculating aerodynamic forces using the doublet lattice method

is similar to the vortex lattice method. For a given aerodynamic grid, the external

normalwash wext is calculated using the external flow parameters like V∞ and

α in frequency domain. The purely unsetady AIC matrix is computed by first

computing the κ and then using the rational function described in Equation 6.41.

The AIC matrix is used to compute the resulting pressure in frequency domain.

Once the pressure at each panel is known the resulting forces are calculated and

summed with the forces calculated by the steady aerodynamic model.

The resulting forces from the steady and unsteady aerodynamic models de-

scribed in this chapter can then be used for calculation of the flight dynamics
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and flutter characteristics of the aircraft. The details of the implementation of

the flight dynamics model, a study of the effects of unsteady forces and geometric

nonlinearity and resulting flutter characteristics are discussed in the next chapter.

6.5 Appendix

6.5.1 Biot-Savart Law

Biot-Savart law [68, 30] is used to calculate the flow due to a vortex element at

any location. Consider an infinitesimal filament of a line vortex of strength T ,

denoted by ~dl as shown in Figure 6.9. The filament has a length of | ~dl| and is

aligned to the direction of ~dl. The flow velocity due to the vortex element at a

point P with a position vector ~r is given by Equation 6.42.

~dl

P

~r

T

Figure 6.9: Biot-Savart law

d~Vp =
T
2π

~dl × ~r
|~r|3

(6.42)

The Biot-Savart law can be used to calculate the induced flow velocity due to

a horseshoe vortex. Consider a horseshoe vortex of strength T as shown in Figure

6.10. The two vertices of the horseshoe are denoted as A and B, and the point at

which the velocity is calculated is denoted as C. The coordinates of A,B and C

are (xa, ya, za), (xb, yb, zb) and (xc, yc, zc) respectively. The position vectors of C
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with respect of A and B are denoted by ~r1 and ~r2 and position vector of B with

respect to A is denoted by ~r0. The induced velocity due to an infinitesimal vortex

line element is calculated and the result is integrated to obtain the induced flow

due to the entire horseshoe vortex. The resulting flow is a sum of flow due to

the bound part and the two semi-infinite parts of the horseshoe vortex as shown

in Equation 6.43. For simplicity, it is assumed that the semi-infinite part of the

vortices are aligned with the x-axis.

T

A

B

Cx

y

z

~r1

~r2

~r0

Figure 6.10: Velocity due to a horseshoe vortex

~Vc =
T
4π

~r1 × ~r2
|~r1 × ~r2|

[
~r0.

~r1
|~r1|
− ~r0.

~r2
|~r2|

]
+
T
4π

[
(zc − za)ĵ + (ya − yc)k̂
(zc − za)2 + (ya − yc)2

][
1 +

xc − xa√
(xc − xa)2 + (yc − ya)2 + (zc − za)2

]
− T

4π

[
(zc − zb)ĵ + (yb − yc)k̂
(zc − zb)2 + (yb − yc)2

][
1 +

xc − xb√
(xc − xb)2 + (yc − yb)2 + (zc − zb)2

]
(6.43)

Equation 6.43 can be written in a compressed form as:

~Vc = ~Q(A,B,C) T (6.44)
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6.5.2 Kutta-Joukowski Theorem

Kutta-Joukowski theorem states that the force generated by a segment of vortex

line of length vector ~l and strength T is given by the following relation.

~F = ρT ( ~V∞ ×~l ) (6.45)



Chapter 7

Flight Dynamics Model

A brief overview of the flight dynamics modeling procedure was given in Chap-

ter 3. Various subcomponents of the flight dynamics model like the mean axes

framework, the structural dynamics model and the aerodynamics model have been

described in Chapter 4, 5 and 6 respectively. These submodules and the inter-

connection between them are implemented in the simulation software SIMULINK

to obtain the flight dynamics model. This chapter describes the details of this

implementation for the flexible aircraft Geri. The flight dynamics model of Geri is

available at [14] and [15] for free. The resulting flight dynamics model is analyzed

and conclusions are drawn about the dependence of the flutter characteristics of

the aircraft on various aerodynamic phenomena like the presence of geometric

nonlinearities and unsteady aerodynamics.

The details of the implementation of the submodules in SIMULINK are given

in Section 7.1. The resulting nonlinear flight dynamics model is demonstrated

using a simple example. The nonlinear flight dynamics model is then linearized

to obtain a control oriented state space model of the flexible aircraft. An array

of linearized models for varying flight speeds are obtained and utilized to analyze

the flutter characteristics of the aircraft. Section 7.2 contains the details of the

nonlinear and linearized flight dynamics model. It also contains the analysis of

flutter characteristics of the aircraft. Next, the effect of the presence of geometric
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nonlinearities and unsteady aerodynamics on the flight dynamics model are ana-

lyzed. The details of this analysis, including the effect on flutter characteristics is

described in Section 7.3.

7.1 Implementation in SIMULINK

The basic framework of the flight dynamics model was described in Figure 3.1 in

Chapter 3. The framework, repeated below in Figure 7.1, shows all the submodules

and the interconnection between them. The throttle command and the control

surface commands are the inputs to the model. The propulsion model is used to

calculate propulsion force and moment acting on the aircraft based on the throttle

command. The control surface commands are used by the actuator model to

calculate the control surface deflection and velocity. These are utilized by the

aerodynamics model, along with the flexible states and rigid states, to calculate

the forces acting on each panel of the aerodynamic grid of the aircraft. The flexible

states consist of the modal deflections and modal velocities. The rigid body states

are the linear velocities and the rotational orientation and velocities of the mean

axes. The resulting forces on the aircraft are utilized by the rigid body dynamics

and flexible dynamics to calculate the rigid body and flexible states. The sensor

model is used to calculate the output of various sensors on the aircraft.

This framework is implemented in the simulation software SIMULINK as

shown in Figure 7.2 to obtain the nonlinear flight dynamics model. The envi-

ronment block in the figure contains the atmospheric model to calculate the air

density. For the present work, the density is assumed to be constant at 1.225

kg/m3. The details of various elements of the SIMULINK implementation are

described next.
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Figure 7.1: Modeling framework

Figure 7.2: SIMULINK implementation
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Inputs:

The inputs to the SIMULINK model are throttle and mixed control surface com-

mands. The throttle command assumed to be in a range of 0 to 100 where a value

of 0 corresponds to no throttle and a values of 100 corresponds to full throttle.

The propulsion model, described later, uses the throttle command to calculate the

resulting propulsion forces and moments generated by the electric motor mounted

on Geri.

The mixed control surface input commands consists of a total of eight in-

puts. The inputs are the symmetric and asymmetric control surface deflection

commands for four pair of control surfaces as shown in Figure 2.5. For example,

the first mixed control surface input, Sym1, corresponds to an equal deflection

command to “L1” and “R1” control surfaces.

CS Mixing and Model:

The actuator model is used to calculate the resulting control surface deflections

and velocities from the mixed control surface commands. The two steps involved

in this calculation are described next.

First, the individual control surface commands are calculated from the mixed

control surface commands. The implementation of this calculation is shown in

Figure 7.3. This calculation is implemented in the CS Mixing and Model block in

the SIMULINK implementation.
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Figure 7.3: Control surface mixing

Next, a second order actuator model is implemented for the calculation of the

actual control surface deflections and velocities using the individual control surface

commands. The model is identified experimentally by providing chirp input to

the actuator [18]. The transfer function of the actuator model is:

96710

s2 + 840s+ 96710
(7.1)

The implementation of the actuator model is shown in Figure 7.4. This implemen-

tation resides in the CS Mixing and Model block in SIMULINK implementation

as well.
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Figure 7.4: Actuator model

Forces and Moments:

The Force and Moment block is implemented to calculate the three types of forces

and their resulting moments acting on the aircraft: propulsion forces, aerodynamic

forces and gravitational forces. The block is also used to output the total forces,

total moments and flexible modal forces, to be utilized by the other submodules.

Propulsion Model:

The propulsion model utilizes the throttle command to calculate the propulsive

forces and moments. A simple propulsion model is utilized where the propulsion

force is proportional to the throttle input. The maximum force generated by

the motor is obtained from experiments conducted on the propulsion motor. A

throttle value of 100 corresponds to the maximum thrust of 28.9 Newtons. The

propulsion force is assumed to be oriented along the root chord of the aircraft. It

generates no moments about the center of mass of the aircraft. The propulsion

model is shown in Figure 7.5.
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Figure 7.5: Propulsion model

Gravitation Model:

The gravitation force is calculated in the inertial frame as ~Fg = −mgk̂I where k̂I

is the unit vector along the z direction of the inertial reference frame. Note that

the gravitation force acts in the −z direction in the inertial frame. As the flight

dynamics model utilizes the body fixed, mean axes frame; the components of the

gravitational force along the mean axes are calculated. The direction cosine ma-

trix (DCM) describing the transformation between the mean axes frame and the

inertial frame is utilized for this calculation. The DCM is calculated based on the

Euler angles describing the orientation of the mean axes frame. The gravitation

model is shown in Figure 7.6.

Figure 7.6: Gravitation model

Steady Aerodynamic model:

The aerodynamic model has been described in Chapter 6. The details of the

steady aerodynamic model, which is a vortex lattice method modified to include
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the geometric nonlinearities and to improve the fidelity, are described in Section

6.3. The implementation of the modified VLM based aerodynamic model is shown

in Figure 7.7.

The block labeled N hat calculates the normal vector of each panel using equa-

tion 6.17. This is described in Figure 7.8. Here the matrix labeled Nhat eta all is

a 3P -by-(nmodes+1) sized matrix. It contains the 3 components of n̂m,0 for all the

P panels as its first column and three components of ~Nm,k for all the P panels as

its (k + 1)th column. The details of this block are shown in Figure 7.8.

Figure 7.7: Steady aerodynamic model
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Figure 7.8: Normal vector calculation

Similarly, the block labeled Total wash implements Equation 6.14. This is

shown in Figure 7.9. The Normal Wash block calculates the normal wash on

the panels by taking the dot product of the total wash vectors with the normal

vectors. This calculation was described in Equation 6.22.

Figure 7.9: Total wash calculation

Next, the strength of the horseshoe vortices are calculated. In order to cal-

culate the vortex strengths, Equation 6.29 needs to be implemented. The imple-

mentation requires calculation of AIC(η) at each time step. The AIC matrix is a
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P -by-P matrix where P is the number of panels on the aircraft. For the aircraft

Geri P is 888. Therefore, the calculation of AIC(η) using Equation 6.29 at each

time step of the simulation is resource intensive. Therefore, an approximation

of AIC(η) is obtained as described in the appendix in Section 7.4.1. The linear

approximation of the AIC(η) matrix is:

[AIC(η)] = [AIC]0 +

nmodes∑
k=1

[Ak]ηk (7.2)

where [AIC(ηk)] is the P -by-P AIC matrix for the deformed aircraft, [AIC]0 is

the P -by-P nominal AIC matrix for the undeformed aircraft and [Ak] is P -by-P

matrix describing the dependence of the AIC matrix on the kth flexible mode. Ak

is calculated using the Taylor series as derived in the appendix in Section 7.4.1 in

Eqution 7.11.

The block labeled ‘Vortex Strength’ first calculates the AIC matrix using Equa-

tion 7.2 and then calculates the strengths of the horseshoe vortices. The block

labeled ‘Panel Forces Calculation’, shown in Figure 7.10 obtains the aerodynamic

force acting on each panel using the Biot-Savart law described in Section 6.5.1.

Figure 7.10: Panel force calculation

Finally, the total forces and moments acting on the aircraft are calculation in



103

block as shown in Figure 7.11.

Figure 7.11: Total forces and moments calculation

Unsteady Aerodynamic model:

The unsteady aerodynamic model has been described in Chapter 6 in Section

6.4. The implementation of unsteady aerodynamic model is shown in Figure

7.12. The first two blocks in the figure are used to calculate the ‘normal wash

derivative’, which is in turn used by the ‘Normal Force’ block to calculate the

reduced frequency κ as described in Equation 6.36. The ‘Normal Force’ block also

implements Equation 6.41 to calculate the AIC matrix and the resulting unsteady

aerodynamic forces. The unsteady forces are summed up with the steady forces

to obtain the total aerodynamic forces and moments.
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Figure 7.12: Unsteady force calculation

Flight mechanics:

The external forces acting on the aircraft are utilized by the mean axes framework

based equations of motion. These equations of motion have been described in

Chapter 4 in Equations 4.39, 4.40 and 4.41. The implementation is shown in

Figure 7.13.

Figure 7.13: Equations of motion

Sensor outputs:

The equations for the accelerometer and IMU sensors have been described in

Section 4.5. These equations are implemented as shown in Figure 7.14 and 7.15.
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Figure 7.14: Accelerometer output

Figure 7.15: IMU output

7.2 Results from Flight Dynamics Model

The SIMULINK implementation described in the previous section results in a

simulation model of the flexible aircraft Geri. The simulation model can also be

thought of a the mathematical nonlinear flight dynamics model of the aircraft.

The model can be used in an open loop configuration where the control inputs are
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provided by the user. For example, for a manual flight where the inputs provided

by the pilot are logged, the model can used to simulate the flight by giving the same

inputs to the model. The model can also be used in the closed loop configuration

by implementing the flight controller (including any flutter suppression controller)

in the SIMULINK model itself.

The flight dynamics model is capable of modeling various flight conditions

including steady and transient flights. Steady flight conditions include straight

and level flight, steady turn at a constant bank angle, steady climb or descent,

spiral climb and descent etc. The in-built trim functionality of SIMULINK can

be used to trim the aircraft for these steady flight conditions. For example, the

trim function is used to calculate the control surface deflections required for a

30 degree bank flight at 23 m/s. Transient flights can also be modeled by the

flight dynamics model presented in this thesis. An example of transient flight

is when the aircraft switches from one steady flight condition to another steady

flight condition. For example, a straight and level flight to a banked turn.

The simulation model is extremely modular in the sense that various aerody-

namic and structural phenomena can be switched on or off easily by the user.

These phenomena include number of flexible modes, unsteady aerodynamics, ge-

ometrically nonlinear effects like change in direction of the local lift with flexible

deflection of the aircraft, dependence of the AIC matrix on the flexibility etc. This

capability can be used to study the properties of the aircraft in a deeper level and

develop an understanding of underlying dynamics of the aircraft. The results of

these simulations can be used for control system design or the next iterations of

aircraft design.

7.2.1 Nonlinear Simulation

A simple test case is used to demonstrate the nonlinear flight dynamics model in

the open loop configuration. Straight and level flight is considered at two different

flight speeds of 23 m/s and 28 m/s. The trimming functionality is used to trim
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the aircraft at an angle of attack of 1.87 and 1.15 degrees respectively for 23 m/s

and 28 m/s case. Next, a doublet input is provided to the ailerons i.e L2, R2

control surfaces. The control surfaces are shown in Figure 2.5. The commanded

input to ailerons are shown in Figure 7.16.

Figure 7.16: Command to ‘L2’ and ‘R2’ the control surfaces

The open loop response of the Euler angles to the doublet aileron input is

shown in Figure 7.17. This example is specially useful to study the transient

response of the model. Note that without a controller, the aircraft is mildly

unstable and, therefore, the outputs drift over time.

The response of the modal deflections (η1 and η2) and velocities (dη1
dt

and dη2
dt

)

of the first two flexible modes are shown in Figure 7.18 and 7.19. It can be clearly

observed that the flexible response is higher for the 28 m/s case even though same

input is given to the aircraft. As expected, as the aircraft velocity increases and

comes closer to the flutter speed, the margin of stability decreases. This leads

to larger flexible deflections for a given input. If the aircraft velocity increases
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and becomes equal to the flutter velocity, the flexible deflections increase without

bounds and result in a catastrophic failure of the aircraft.

Figure 7.17: Response to doublet aileron input

Figure 7.18: Response of first flexible mode to doublet aileron input
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Figure 7.19: Response of second flexible mode to doublet aileron input

7.2.2 Trimming and Linearized Model

The nonlinear model can be linearized for any steady flight condition to obtain

a low order, state space model of the aircraft for any trim condition. For ex-

ample, the nonlinear model based on steady aerodynamic model with geometric

nonlinearity is linearized for a 23 m/sec straight and level flight. This results in

a 36 state linear model. The states of the models are the body frame velocity of

the aircraft, Euler angles, angular velocities, modal deflections and velocities for

the five included modes, control surface positions and velocities for eight control

surfaces. Different models can be obtained for different flight conditions and for

different aerodynamic models.

To demonstrate this, a linear model is obtained at 23 m/s straight and level

flight. The frequency response from elevator i.e L3 and R3 control surfaces to the

pitch rate of the mean axes is shown in Figure 7.20.
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Figure 7.20: Frequency response from elevator to pitch rate

The response of elevator to the flexible deflections η1 and η2 are shown in

Figure 7.21

Figure 7.21: Frequency response from elevator to first flexible mode
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7.2.3 Linear Flutter Analysis

The liner models can be used to obtain the flutter characteristics of the aircraft.

The nonlinear model can be linearized for a range of flight velocities for straight

and level flight. The poles of these linear models can be plotted in the S-plane.

The flight velocities at which the poles cross from the left half plane to the right

half plane, i.e cross the imaginary axis, are the flutter velocities of the aircraft. The

aircraft becomes unstable if the flight velocity is higher than the minimum of these

flutter velocities. The frequency of the poles at the imaginary axis corresponds to

the flutter frequencies of the aircraft for the particular modes.

This analysis is conducted for a range of 20-40 m/sec straight and level flight.

The results of the analysis is shown in Figure 7.22. It can be seen that the flutter

velocity with a geometrically nonlinear, steady aerodynamic model is 30.5 m/sec.

The flutter frequency is 6.05 Hz.

Figure 7.22: Flutter characteristics: Geometrically nonlinear model
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7.3 Effect of Unsteady and Nonlinear Aerody-

namics

In this section, the effect of various aerodynamic phenomena are studied. First

the effect of geometrically nonlinear aerodynamics is studied by comparing it with

models based on geometrically linear aerodynamics. The poles plot flight dy-

namics model with geometrically nonlinear, steady aerodynamics has been shown

before in Figure 7.22. Similar plot is obtained for flight dynamics model with

geometrically linear, steady aerodynamics. The flutter frequency for this type of

model is 32.5 m/sec. This is 2 m/sec over the prediction from the model with ge-

ometrically nonlinear aerodynamic model. Therefore, it can be concluded that the

flight dynamics model without geometrically nonlinear aerodynamic model under-

predicts the instability in the flight dynamics by a significant amount. The flutter

frequency is 6.06 Hz.

Figure 7.23: Flutter characteristics: Geometrically linear model

The effect of including the unsteady aerodynamics is also studied. The doublet
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lattice method (DLM) used to model the unsteady aerodynamics has 2 lag poles

for each panel. As Geri has P = 888 panels, the linear model obtained for this

case has more than 2P = 1776 poles. The poles plot for a velocity range of

20 − 40 m/s is shown in Figure 7.24. It can be seen that the flight dynamics

models with unsteady aerodynamics have very similar poles to that of the models

with steady aerodynamics. The plot also show the lag poles on the real axis

which were not present for the models with steady aerodynamics. Therefore, it

is concluded that the unsteady aerodynamics is not important for obtaining the

flutter characteristics of the aircraft Geri. Note that this analysis is specific to

the aircraft Geri and can not be used to draw conclusions about the importance

of unsteady aerodynamics for other aircraft.

Figure 7.24: Flutter characteristics: Geometrically linear model with unsteady

aerodynamics
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7.4 Appendix

7.4.1 Approximation of AIC Matrix

This section derives the derivation of the relationship between the the AIC matrix

and modal deflections as shown in Equation 7.2 using the assumption of small

flexible deflection. Consider Equation 6.1 describing the relationship between the

strength of all the horseshoe vortices and the total induced velocity at the mth

panel. This equation can be stacked for all the panels and all three axes as follows:

Vind,x1

Vind,y1

Vind,z1

Vind,x2

Vind,y2
...

Vind,zP


=



Qx1,1 Qx1,2 · · · Qx1,P

Qy1,1 Qy1,2 · · · Qy1,P

Qz1,1 Qz1,2 · · · Qz1,P

Qx2,1 Qx2,2 · · · Qx2,P

Qy2,1 Qy2,2 · · · Qy2,P

...
...

. . .
...

QzP,1 QzP,2 · · · QzP,P




T1
T1
...

TP

 (7.3)

This can be equivalently written as:

Vind = QT (7.4)

where Vind is a 3P -by-1 vector, Q is a 3P -by-P matrix and T is a P -by-1 vector.

Now consider the P -by-3P block diagonal matrix N consisting of direction

cosines of the normal vectors as

Nv =


nx1 ny1 nz1 0 0 0 · · · 0 0 0

0 0 0 nx2 ny2 nz2 · · · 0 0 0
...

...
...

...
...

...
. . .

...
...

...

0 0 0 0 0 0 · · · nxP nyP nzP

 (7.5)

Using Equation 6.3,7.4,7.5 and the fact that wind is the stacked version of
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wind,m, the following equation is obtained:

wind = NvVind

= NvQT
(7.6)

Now, using Equation 6.8, 6.9 and 7.6, it can be concluded that

[AIC(η)] = (−NvQ)−1 (7.7)

Note that the AIC matrix depends on the modal deflection η because normal

vectors depend on η.

Now, we can expand the expression of the AIC matrix in Equation 7.7. First,

using Equation 6.17,

Nv = Nv,0 +

nmodes∑
k=1

Nv,kηk (7.8)

where Nv, Nv,0 and Nv,k are 3P -by-P stacked block diagonal matrices correspond-

ing to n̂m,flex, n̂m0 and ~Nm,k and have similar structure as shown for Nv in Equa-

tion 7.5. Combining Equations 7.7 and 7.8, we obtain the expression for AIC

matrix as:

[AIC(η)] =

(
−
(
Nv,0 +

nmodes∑
k=1

Nv,kηk

)
Q

)−1
=

(
−Nv,0Q−

nmodes∑
k=1

Nv,kηkQ

)−1 (7.9)

In order to simplify Equation 7.9, consider the following argument.

Let M be a given P -by-P matrix and η a scalar with η ∗ ρ(M) < 1. Define the

function

f : RP×P → RP×P : f(η) := (I + ηM)−1 = I − ηM + η2M2 − η3M3 + ....
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This can be shown by simply multiplying both sides by (I+ηM). The sum on the

right converges based on the assumption η ∗ ρ(M) < 1. Thus, the linear Taylor

series expansion is:

(I − eta ∗M)−1 ≈ I − η ∗M

Next consider the case where A and B be given P -by-P matrices and η a small

scalar. Assume A to be non-singular. Define the function

f : RP×P → RP×P : f(η) := (A+ ηB)−1

Then the linear Taylor series expansion (using the fact above) is

(A+ ηB)−1 = A−1 ∗ (I + ηB ∗ A−1)−1

≈ A−1 ∗ [I − ηB ∗ A−1]

= A−1 − ηA−1BA−1
(7.10)

The approximation described by Equation 7.10 can be applied to Equation 7.9 to

obtain the linear approximation the AIC matrix which depends upon the flexible

deflections ηk as follows:

[AIC(η)] = (−Nv,0Q)−1 − (−Nv,0Q)−1
(
−

nmodes∑
k=1

Nv,k

)
(−Nv,0Q)−1ηk

= [AIC]0 +

nmodes∑
k=1

[Ak]ηk

(7.11)



Chapter 8

Flight Test Update

The flight dynamics model described in this thesis combines various subcompo-

nents including structural dynamics, aerodynamics and the mean-axis based flight

dynamics. This mathematical model is compared and validated against actual

flight data. The model is also updated to reduce any mismatch with the flight

data. This chapter describes the process of comparison, validation and update of

the flight dynamics model based on flight test data of the aircraft Geri.

8.1 Introduction

The mathematical model of the flight dynamics of the aircraft Geri is described

in Chapter 7. The model combines various submodules like structural dynamics,

aerodynamics and mean axes based flight dynamics. Various approximations have

been made while developing the flight dynamics model. For example, the steady

and unsteady aerodynamic models are developed using panel methods. These

methods assume that the lifting surfaces are flat and they ignore any aerody-

namic nonlinearities. Therefore, such a mathematical model which is derived by

employing various approximations should be validated against data obtained from

the real system. Moreover, the model must be updated if significant differences

are observed in comparison to data collected from the actual system. Several

117
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methods are available to update a flight dynamics model.

The submodules used to obtain the flight dynamics model were derived based

on different approximations. For example, the flight dynamics equations based

on the mean axes approach are derived from theory while making reasonable as-

sumptions of small flexible deflections of the aircraft. This makes the mean axes

based equations accurate. Therefore, a high level of confidence can be assigned to

the equations. The structural model is based on the finite element method which

is a linear model. This structural model has been separately updated using exper-

imental data obtained from ground vibration tests. Therefore, a higher level of

confidence can be assigned to the updated structural model as well. On the other

hand, the panel method based aerodynamics model assumes the lifting surfaces

to be flat. It also ignores the aerodynamic nonlinearities. Therefore, the aero-

dynamic model has the least amount of confidence. Updating the aerodynamics

model would be a reasonable approach to update the final flight dynamics model.

There are several approaches available to update aerodynamic models. One

such approach based on correction matrices was proposed by Rodden in [37]. This

approach is specially suitable for updating a panel method based aerodynamic

model. This is because the panel methods output an AIC matrix that can be

corrected based on pre-multiplicative and post-multiplicative matrices 1. As the

AIC matrix is independent of the flight conditions like aircraft velocity, the same

corrective matrices can be utilized to update the model for different operating

conditions.

Section 8.2 describes the various flight tests conducted on the aircraft for

the purpose of flight dynamics identification. The details of the methodology

implemented to update the flight dynamics model is described in Section 8.3.

The updated model is analyzed and compared with the initial model in Section

8.4. The section also contains flutter predictions from the updated model.

1Note that post-multiplicative matrix multiplies on the input of the AIC matrix and pre-
multiplicative matrix multiples on the output of the AIC matrix
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8.2 Summary of Flight Tests

Several flights were conducted on the aircraft Geri for various purposes [13, 70].

Each flight consisted of several smaller flight tests, carried out for a brief period of

time during the flight. Five of these flight tests focused on system identification.

Orthogonal multi-sine and chirp inputs were provided to the control surface inputs

for the system identification flight tests. The details of these five flight tests are

given in Table 8.1.

Various input and output signals were logged during these flight tests. The

input signals consist of various symmetric and asymmetric signals to the control

surfaces. For example, the same orthogonal multi-sine signal was injected at L4

and R4 control surfaces during flight test-1. This input is labeled as Sym-4 in

Table 8.1. The measurements made by various sensors on the aircraft were logged

as outputs. These sensors include six accelerometers placed close to the leading

edge and trailing edge in the two wings and the centerbody of the aircraft. The

orientation measurements made by the inertial measurement unit (IMU) located

in the centerbody of the aircraft are also logged as outputs. Both input and output

signals were recorded with a sample rate of 151 Hz.

Flight Test Airspeed (m/s) Test time (s) Input details
1 23 [635, 647] OMS to Sym-4 input
2 23 [692.5, 704.9] OMS to Sym-3 and Sym-4 inputs
3 23 [633.1, 645.2] OMS to Sym-1 and Sym-4 inputs
4 20 [928.5, 940.6] OMS to Sym-3 and Sym-4 inputs
5 23 [304.8, 323.5] Chirp to Asym-4 input

Table 8.1: Flight tests used for model update and validation

The time domain signal of the Sym-4 input for flight test-1 is shown for a

duration of 2 seconds in Figure 8.1. The frequency content of this input signal is

shown in Figure 8.2. It can be seen that the signal excites frequencies of up to

around 120 rad/sec. The time domain signal of the acceleration measurement by

the accelerometer located at the left wing close to the leading edge is shown in
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Figure 8.3.

Figure 8.1: Signal to symmetric L4, R4 input

Figure 8.2: Frequency content of input signal for flight test-1

8.3 Model Update Procedure

8.3.1 Flight Test Data Analysis

The data obtained from the flight tests is in time domain. Frequency response

functions are approximated from the time domain data. Numerical computing

software MATLAB is utilized for this analysis. The function etfe provided by
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Figure 8.3: Acceleration output at left wing

the system identification toolbox of MATLAB is used for this purpose. Using this

function, frequency response functions are obtained from the relevant inputs to all

the available outputs at 512 points in the frequency range of 0 to 100 rad/sec. A

hamming window with a frequency resolution of π/80 is utilized to smoothen the

spectral estimates. Figure 8.4 shows the estimated frequency response function

from the Sym-4 input to the left wing forward accelerometer output for flight

test-1. Note that the frequency response function is a complex valued function

and has both magnitude and phase. Similar responses are obtained from the other

flight tests as well.

8.3.2 Correction Matrices

The method of using correction matrices for updating the aerodynamic model

suggested by [37] is utilized to obtain the updated flight dynamics model. The

aerodynamic model is corrected by modifying the AIC matrix calculated by the

aerodynamic model. The AIC matrix is modified by pre and post-multiplying by

correction matrices. This yields the following modified form for Equation 7.2:

[AIC(η)] = [Cpre][AIC]0[Cpost] +

nmodes∑
k=1

[Cpre][Ak][Cpost]ηk (8.1)
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Figure 8.4: Estimated frequency response from Sym-4 input to left wing forward
accelerometer output for using flight test-1 data

where [AIC] is a P -by-P matrix calculated by the aerodynamic model, [Cpre] and

[Cpost] are P -by-P correction matrices.

The pre-multiplicative correction matrix is equivalent to correcting the vortex

strength on the aerodynamic panels as calculated by the panel methods. This di-

rectly corrects the aerodynamic forces acting on the panels. A post-multiplicative

correction matrix corrects the normalwash as seen by the panels. This normal-

wash is utilized by the aerodynamic model to calculate the aerodynamic forces. In

other words, a pre-multiplicative matrix corrects the output of the aerodynamic

model while a post-multiplication corrects the input to the aerodynamic model.

The aerodynamic grid for the aircraft Geri has P = 888 panels. This makes

the total number of free parameters of the two correction matrices to be 2P 2 =

1577088. Identifying such a large number of parameters from the flight test data

is virtually impossible. Fortunately, the number of parameters can be drastically

reduced by using a few simple approximations. First, it is assumed that both the

correction matrices are diagonal. A diagonal post-multiplicative correction matrix

implies that same correction is applied to the relationship from the downwash of a

particular panel to the vortex strength of all the other panels. Similarly, a diagonal

pre-multiplicative correction matrix implies that same correction is applied to the



123

relationship from the downwash of all the panels to the vortex strength of a

particular panel. This approximation reduces the number of free parameters from

2P 2 = 1577088 to 2P = 1776.

The number of free parameters in the correction matrices formulation is fur-

ther reduced using basis functions for correction matrices. For example, the ith

diagonal element of the pre-multiplicative correction matrix is written as a sum

of polynomial basis functions as:

[Cpre]{i,i} =1 + a1 + a2x+ a3x
2 + a4y

2 + a5x
3+

a6xy
2 + a7x

4 + a8x
2y2 + a9y

4
(8.2)

where aj is the coefficient of the jth basis function, x and y are the x and y

coordinates of the centroid of the ith panel in the coordinate system located at

the center of gravity of the undeformed aircraft. The x-axis points towards the tail

of the aircraft and y-axis towards the right wing. Note that when these coefficients

are zero i.e ai = 0 for i ∈ {1 : 9}, the correction matrix [Cpre] becomes identity

matrix. This means that no correction is made. Similarly, the post-multiplicative

correction matrix can be written in terms of the basis functions as:

[Cpost]{i,i} =1 + b1 + b2x+ b3x
2 + b4y

2 + b5x
3+

b6xy
2 + b7x

4 + b8x
2y2 + b9y

4
(8.3)

The use of these basis functions reduce the number of unknown parameters to 18.

8.3.3 Parameter Identification

To update the flight dynamics model, a gray box approach is utilized. The flight

dynamics model is parameterized. The parameters are then identified by mini-

mizing the difference between the frequency responses identified from the flight

test data and the model.

The correction matrices have been parameterized with eighteen parameters

as described in the previous section. Apart from these eighteen parameters, two
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more parameters are included in the flight dynamics update procedure. The first

parameter relates to the time delay added to the flight dynamics model. The

expression for this time delay is

Td(s) = e−
(1+τd)s

fs (8.4)

where fs is the sampling frequency of the flight test data. Note that if the value of

the parameter τd is zero, a nominal time delay of 1 sample time is employed. This

time delay captures any transmission delays present in the onboard computer,

sensor modules and data acquisition system.

The second parameter is the damping of the first flexible mode. The damping

of the flexible modes were not identified using the GVT data and the first modal

damping was assumed to be 0.02. The new damping for the first flexible mode

can be written as

ζ1 = 0.02× (1 + ζu) (8.5)

Note that if the value of the parameter ζu is zero, the damping of the first flex-

ible mode is at the nominal value of 0.02. Thus, the flight dynamics model is

parameterized by a total of twenty unknown parameters.

An optimization routine based on trust region algorithm [71] is implemented

using the MATLAB function fmincon. The cost function is based on the square

of the difference in magnitude in the frequency responses identified from the flight

test data and the flight dynamics model. This difference is summed up for a set

of frequencies (F ) for all considered input-output pairs (IO) and for all relevant

flight tests (FT ) to obtain the cost function. The optimization problem can be

written as follows:

P ∗u = arg min
Pu∈S

∑
FT

∑
IO

∑
ω∈F

(
|Hf (ω)−Hm(ω, Pu)|2

)
(8.6)

where Pu is the 20-by-1 vector containing the update parameters, S is set of allow-

able values for the parameters, F is the set of frequencies at which the frequency
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responses are evaluated, Hf (ω) is the complex frequency response identified from

the flight test data and Hm(ω, Pu) is the complex frequency response obtained

from the flight dynamics model for the given parameter vector Pu. Note that the

flight dynamics model depends on the selected parameter vector Pu and this has

been explicitly denoted in the frequency response by Hm(ω, Pu). Also note that

this optimization is non-convex and fmincon is not guaranteed to find a global op-

timum. Hence, we will only seek a local optimum which improves on the baseline

(nominal) parameter values.

Parameter Constraint Initial Value Optimized Value
a1 −10 ≤ a1 ≤ 10 0 0.133
a2 −10 ≤ a2 ≤ 10 0 −0.486
a3 −10 ≤ a3 ≤ 10 0 0.661
a4 −10 ≤ a4 ≤ 10 0 −0.040
a5 −10 ≤ a5 ≤ 10 0 2.702
a6 −10 ≤ a6 ≤ 10 0 −0.368
a7 −10 ≤ a7 ≤ 10 0 0.946
a8 −10 ≤ a8 ≤ 10 0 0.071
a9 −10 ≤ a9 ≤ 10 0 −0.109
b1 −10 ≤ b1 ≤ 10 0 −0.654
b2 −10 ≤ b2 ≤ 10 0 0.566
b3 −10 ≤ b3 ≤ 10 0 −1.309
b4 −10 ≤ b4 ≤ 10 0 0.173
b5 −10 ≤ b5 ≤ 10 0 −0.705
b6 −10 ≤ b6 ≤ 10 0 0.726
b7 −10 ≤ b7 ≤ 10 0 0.256
b8 −10 ≤ b8 ≤ 10 0 0.113
b9 −10 ≤ b9 ≤ 10 0 0.461
τd 0 ≤ τd ≤ 5 0 0.847
ζu −1 ≤ ζu ≤ 2 0 0.622

Table 8.2: Parameters for model udpated

For the optimization, the objective is evaluated on a set F of 1000 logarith-

mically spaced points in the range of 5 rad/sec to 100 rad/sec. The flight tests
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utilized for the model update are given in Table 8.1. The inputs are listed in the

the table as well. For symmetric inputs, all 6 accelerometers measurements and

the pitch rate measurement from the IMU located in the centerbody are included.

For asymmetric inputs, measurements from the four accelerometers located on the

wings and the roll rate measurement from the IMU are included. The details of

the parameters and the constraints are given in Table 8.2.

8.4 Updated Flight Dynamics Model

The correction parameters obtained from the flight dynamics model are indepen-

dent of the flight conditions. Thus, updated flight dynamics model for any flight

condition can be derived easily using the same parameters. Figure 8.5 shows the

comparison between the frequency response of the updated flight dynamics model

with the nominal (before update) and identified frequency response from the flight

tests.

Figure 8.5: Frequency response comparison of updated model, nominal model and
flight test

It can be seen that the frequency response of the updated model has a better
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match with the frequency response from the flight dynamics model as compared

to the nominal model. The cost function reduced by 45% as a result of the

optimization. The frequency response and the flutter prediction from the updated

model are analyzed in the next section. The updated models can be linearized to

obtain state space models at increasing flight speeds. Flutter characteristics can

be identified from the poles of the state space models.

Figure 8.6: Flutter analysis from updated model

Figure 8.6 shows the plot for various flight speeds. The flutter speed is identi-

fied as 33.5 m/s from the updated flight dynamics model compared 30.5 m/s for

the nominal model (before update). It should be noted that the identified flutter

speed of 33.5 m/s is quite close to the prediction from another flight dynamics

model of the aircraft based on aerodynamic coefficients which is updated with

flight test data as well [63].
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8.5 Validation

The updated flight dynamic model described in the previous section needs to be

validated to ensure that the model update procedure did not suffer from overfit-

ting. In order to conduct the validation, a flight test data which has not been

used for model updated is utilized. A flight test data from a flight at 20 m/s is

used. Note that the model update was conducted using flight tests at 23 m/s.

Using a different flight speed for validation also ensures that the extrapolation of

the model update procedure to different flight speeds is also validated.

The same cost function as Equation 8.6 is utilized for validation. The frequency

responses for the flight at 20 m/s is shown below in Figure 8.7. It can be seen

that the frequency response from the updated flight dynamics model is closer to

the identified frequency response from the flight test data. A 20 % reduction is

observed in the cost function for this case as well.

Figure 8.7: Model update validation using flight at 20 m/s

Thus, it can be concluded that the model has been successfully updated and

validated using various flight test data.



Chapter 9

Concluding Remarks

This chapter contains the closing remarks on the overall research and the results of

the research in this thesis. The work presented here opens up several avenues for

future research. Some possible future research based on this thesis are discussed

in this chapter.

9.1 Conclusions

A medium fidelity flight dynamics model of the flexible aircraft Geri is developed.

Geri is one of the mAEWing1 series of aircraft developed under the Performance

Adaptive Aeroelastic Wing (PAAW) project. The mean axes approach is utilized

for the development of the flight dynamics model as it decouples the flexible

structural modes from the rigid body modes. Various submodules of the flight

dynamics model are developed separately and combined in the simulation software

SIMULINK to obtain the flight dynamics model. The steps to develop these

submodules and the lesson learned are discussed in details in this thesis.

The submodule of structural dynamics model of the aircraft is developed based

on Finite Element Method approach. Ground vibration tests are conducted to

obtain data to update the structural model. Similarly, the aerodynamic model

is developed by modifying and implementing a panel-based model. The vortex

129
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lattice method is used to model the steady aerodynamics while the doublet lattice

method is used for unsteady aerodynamics. Modifications are made to the VLM

method to capture the geometrically nonlinear aerodynamics effects on the flight

dynamics model. These effects are evaluated and it is concluded that modeling the

geometric nonlinearity is essential to capture the accurate flutter characteristics.

For Geri, including geometric nonlinearity in aerodynamics results in a 2 m/sec

decrease in the flutter velocity estimation. The presence of unsteady aerodynamics

has minimal effect on the flutter characteristic.

Flight test data is used to identify the frequency response from various con-

trol surface inputs to sensors outputs. The frequency responses from the flight

dynamics model are compared with the responses identified from flight data. The

flight dynamics model is parameterized using the correction matrices approach to

update the aerodynamics model. Basis functions are used to reduce the number

of free parameters to 20. An optimization is posed and solved for (locally) optimal

values of the parameters which reduces the difference between the two frequency

responses. Thus, an updated flight dynamics model is obtained and analyzed.

The flutter velocity of the updated model is found to be 33.5 m/s which matches

with the prediction from other higher fidelity methods. The updated model is val-

idated using a separate flight test data at a different speed. The flight dynamics

model of Geri is available at [14] and [15] for free.

9.2 Future Work

The low cost and modularity of the model makes it suitable for analysis of the

effects of various kinds of phenomena. Individual subcomponent of the flight

dynamics model can be easily changed to conduct one parameter at a time anal-

ysis to quantify the effects of a particular aerodynamic or structural phenomena.

The effect of geometric nonlinearity and unsteady aerodynamics has been already

discussed in this thesis. Similar analysis can be done to quantify the effect of

other phenomena like structural nonlinearity, more accurate plate based FEM
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model, more advanced unsteady aerodynamics model like ‘Unsteady Vortex Lat-

tice Method’ (UVLM) etc.

The low computational cost of the model also makes it amenable towards

Monte-Carlo analysis to quantify the uncertainty of open loop model. For exam-

ple, Monte-Carlo simulations can be used to obtain a set of linear models based on

the uncertainty in the first symmetric bending mode shape. This set of models can

be used can be used to design robust flutter control systems for the identified un-

structured uncertainty. Similar approach can be used to analyze the uncertainty

in various parameters like mode shapes, modal frequencies and aerodynamic prop-

erties. Monte-Carlo analysis can be used to demonstrate the robustness of close

loop models with respect to these kinds of uncertainties as well.
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