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Abstract

Transit route choice models play a crucial role in determining how passengers in-
teract with the transportation system. The resulting route choice parameters are used
to calibrate demand forecasting models to determine how system alterations and modi-
fications affect transit ridership on a route-level basis. Despite the importance of route
choice calibration, no known model is available that is more recent than 2004. In
order to understand current passengers’ interaction with the modern-day transit sys-
tem, a new method for transit route choice estimation is proposed in which a forward
label-setting schedule-based multi-criterion shortest path algorithm is combined with
an iterative trip elimination methodology. This new methodology yields high quality
transit path choice sets with detailed temporal information on all types of network links
(in-vehicle, walking, and waiting). This increased specificity, in turn, heightens the va-
lidity and accuracy of the route choice model. Passenger information is sampled from
a transit on-board survey containing origin-destination locations, demographic details,
and trip-specific attributes. A multinomial logit model with stop-level path size cor-
rection term is estimated yielding a 67% match rate between the path with the highest
estimated likelihood and the surveyed (taken) transit path. Furthermore, a transfer
penalty of 28.8 minutes was estimated and coefficients’ marginal rates of substitution
are in close alignment to similar values in the literature for both walking and waiting
time. Express routes were found to have a statistically significant negative impact on
path utility for the lowest income thresholds while transitways (light rail, bus rapid
transit, or commuter rail) had a positive associated perception for the highest house-
hold income class. Thus, support is found for the claim that transitways can potentially
attract higher-income “choice” riders to the transit network. The merits and potential
future applications of the new route choice model are analyzed through a case study
investigating the impact of the A Line arterial bus rapid transit route on surrounding
system ridership. The results of this research can be used to improve ridership projec-
tions and highlight areas for policy improvements that could have the largest impact

on retaining and attracting new passengers to the transit system.
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Chapter 1

Introduction

1.1 Background and Motivation

Each day, the average adult brain makes approximately 35,000 conscious choices, just over
one decision every 3 seconds, according to researchers at the University of Cambridge [1].
Of these numerous choices, a significant number are devoted to the realm of transportation.
For example, an individual has to decide, what time am I going to leave for work today?,
Should I drive or take transit?, Which route is quickest?, Do I prefer a quicker or more
scenic route?, as well as many other factors. Understanding the decisions that influence
individuals behavior is critical as such knowledge can be used to improve transportation
systems of the present and future as individuals’ preferences become known.

While relevant in all sectors of the transportation industry, public transportation stands
to gain the most from understanding passengers’ decision making processes. This is particu-
larly true given the number of choices users face in a public transportation (transit) system
as opposed to a highway or car-oriented form of transportation. For auto driven modes,
users have a limited set of choices between continuing straight, turning left, or turning
right at an intersection. In the case of transit, however, users must initially choose which
stop to begin their trip at and which route (of the available routes served by the stop) to
initially board. After this decision is made, the individual must choose whether to stay
on the transit route or transfer at every subsequent stop along the route. If they choose
to get off, the individual is then faced with deciding whether to transfer to another route

or whether to walk to the destination. As illustrated in this vastly simplified overview,
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decision making within a transit system occurs on multiple levels and depends on each of

the previous decisions that were made.

1.2 Problem Statement & Contribution

Despite the importance of understanding transit riders’ decision making process, little at-
tention has been devoted to this issue in the Twin Cities metropolitan region of Minnesota.
In fact, the only mention of such a transit route choice study is from 2004 as part of the
Metropolitan Council’s work on developing a Mode Choice Model based on data from the
year 2000 [2]. As a result, what little research has been done on the topic occurred with
data from one decade before the first regional light rail line (Blue Line) and nearly two
decades before the introduction of the new arterial Bus Rapid Transit (aBRT) line. There-
fore, regardless of the quality of this previous work, it is exceedingly likely that it does not
capture the current transit route choice behavior of the region as higher level of service
modes (Light Rail and aBRT) will draw passengers to them and away from other routes,
fundamentally changing the route choice decision making process individuals employ.

As part of a larger body of research dedicated to multimodal modeling within the Twin
Cities metropolitan region of Minnesota, this research pursues the calibration of an up-to-
date and more specific transit route choice model. Specifically, the relationship between
transit passenger preferences and the way in which they interact with the transit network
will be analyzed in detail. The key question this research asks is whether passengers select
the shortest path (minimizes total travel time), or if individuals subjectively select a path
based on their personal preferences towards path attributes other than the total travel
time. Additionally, this work will investigate whether passengers’ route choice options are
restricted based on limited service coverage across the region, or whether individuals have
a wide variety of “attractive paths” they would consider taking to get to their destination.

Finally, this research will examine if socio-demographic variables influence transit route
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choice and if transitways (light rail, bus rapid transit ,and commuter rail routes) are more
desirable than paths only containing local buses.

In order to address these questions, this report introduces a new multi-criterion schedule
based shortest path (SBSP) algorithm with single trip elimination method which is used
to generate a robust set of between 2-15 attractive path choices for each user. A multi-
nomial logit model is then estimated to compare recorded transit paths from an on-board
transit survey to the attractive paths contained within each user’s choice set. In answering
the questions posed above and creating a robust transit route choice model using a new
and innovative method, this study serves as a benchmark and foundation in the efforts to
improve ridership projections and further inform policy decisions throughout the regional

transit network.

1.3 Thesis Organization

The thesis presented here is divided into five chapters. Chapter Two contains a literature
review outlining the current state of discrete choice modelings. Following the literature
review, Chapter Three outlines the variety of data sources employed in the analysis.
Next, in Chapter Four, the choice set generation research methodology will be provided
connecting the theoretical precedent described in Chapter Two with the regional data sum-
marized in Chapter Three. Chapter Five contains an overview of the discrete choice logit
modeling methodology. After the methodology, the main results of the route choice model
calibration will be presented and analyzed in Chapter Six before being applied to a local
case study in Chapter Seven. Following this analysis, the research and contributions to

the field will be summarized with a conclusion in Chapter Eight.



Chapter 2

Literature Review

Route choice modeling is a critical step in transportation planning and management as it
weighs the relative importance of personal and trip-specific attributes on determining a
user’s selection of a particular transit path from his/her origin to destination. Calibrated
models can be used to project future ridership, the system impacts of adding or removing a
particular route, and in determining what aspects of the trip should be enhanced to attract
existing and potential riders to the transit system.

Transit route choice models can be dissected into 2 key questions and components both

of which have large bodies of related research.

1. What paths (set of transit routes and walking/waiting links) do users consider as
potential options to get from their origin to destination?

2. Which personal and trip attributes are most influential in guiding a user’s decision
making process and with what probability will a user choose any of his/her considered
paths?

2.1 Origin-Destination Estimation

Prior to determining route choice behavior, individuals’ origin and destination locations
must be determined. Despite the appearance of this being a straight-forward problem, a
dichotomy exists within the literature between using passenger surveys or automatic fare
card (AFC) data when estimating transit passengers’ origin and destination locations. The
key distinction between these two methods is that surveys rely on information from the

passenger (which tends to be more precise but expensive to administer) while locations from
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AFC data have to be estimated (less precise but very inexpensive). On the whole, AFC
methods can save millions of dollars in data collection and editing costs while benefiting

from continuously updating data repositories.

2.1.1 AFC Methods

AFC data is collected each time a passenger taps his/her payment card when boarding (and
if required, when alighting) a route. This method, therefore, contains station identification
numbers and the very specific time the passenger entered (or left) the station. Note that
this method does not always record the route that was used. As such, if more than one route
is served by a single tap-in pay station, route level information is missed. Additionally, if
individuals do not need to swipe/tap their card when transferring, intermediary transfer
routes are also not recorded.

Due to the stop-specific nature of this data acquisition system, most studies focus on
analyzing travel behavior that occurs between transit stops and ignore the behavior indi-
viduals exhibit when accessing their first transit stop from their origin or egressing from the
destination stop to their destination location [3—8]. When preforming these type of studies,
it is assumed that a high percentage of riders “return to the destination station of their pre-
vious trip when beginning their next trip [and] end the last trip of their day at the station
where they began their first trip of the day” [7]. Using a trip diary repository, researchers
found that these assumptions were valid for 90% of subway users. Two drawbacks of this
method, however, are that a minimum of two trips a day are needed to derive exit stations
and AFC data does not represent the entire population of transit riders (only 80% in New
York City) [7].

While the AFC approach captures a large percentage of users’ entire daily travel pat-
terns, this wide network-level analysis also restricts the potential utility of these types of
studies. In addressing the time spent walking, waiting, and in-vehicle using AFC data, var-

ious methods are proposed in the literature. One assumption is that walking and waiting
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times are random while in-vehicle time (IVT) is punctual and determined by the tap-in
and tap-out times from the AFC data [3]. Still other researchers [4], however, select origin-
destination (O-D) pairs that only have one effective route between them. This allows them
to eliminate the uncertainty in timings due to the previous uncertainty over which route
was chosen (as described above). In this method, trip travel time is then split into entry
and exit walking times, waiting times, and in-vehicle time. These entry and exit times,
however, only focus on the time from tapping the fare card and walking through the station
to the actual boarding/alighting platform. As a result, these times are only significant in
large METRO systems and, like other previously mentioned studies, this method ignores
the time to reach the individuals first station from their origin and the time from their last
station to destination location.

Many AFC-based studies focus on the O-D locations of passengers, these locations,
however, are often the O-D stops rather than the individuals’ actual origin and destination
locations. In order to address this deficiency, select researchers analyze access walking
distance, and the associated travel behavior, using the AFC tap-in stop location as well as
the fare card’s billing address [6]. This method resulted in over 25% of the sample dataset
having an access distance greater or equal to 2 miles, much larger than is traditionally
observed. As a result, the authors tossed this data from their analysis rationalizing that
with the AFC data set, “it was impossible to distinguish” if the billing address was actually
where the individual walked from when accessing the stop contained within the AFC data.

As shown from this review of AFC-related transit behavior studies, the availability of
AFC data makes it a very appealing dataset for this type of study but this methodology

critically neglects access and egress walking components of individuals’ trips.

2.1.2  Transit Survey Methods

As an alternative to AFC data, many studies rely on the use of high resolution surveys which

may include information pertaining to the access/egress walking distances, demographic

6
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information, a list of all routes on an individuals trip, trip preference, and/or detailed trip
information for the route on which the passenger was surveyed [9-11]. While AFC analysis
is the emerging method to gather transit route choice information, survey based approaches
have been traditionally employed.

Chapleau et al., in their workshop presentation at the 8th International Conference on
Survey Methods in Transport, outline the key surveys from which transportation data is
typically extracted [12]. Specifically, the authors denote two key survey areas: (1) house-
hold travel surveys, and (2) on-board transit surveys. Household travel surveys, however,
are inadequate for application to transit planning due to the infrequent administration of
household surveys, insufficient focus on transit trips, and an adequate spatial and temporal
resolution for transit planning [12]. As a result, a predominance of the transit route choice
models in the literature employ research focused on data from transit on-board surveys. In
fact a survey of 52 transit agencies found that 96% conducted on-board surveys between
2002-2004 [13]. These surveys are typically carried out once every 1-4 years and focus on
questions related to who transit users are, where and when they made their trip, and why

they rode transit.

2.2 Choice Set Generation

Regardless of how the transit passenger data is collected, route choice studies must deter-
mine which transit paths (sequence of routes) individuals consider when ultimately choosing
their desired path. This is, perhaps, one of the most crucial steps of route choice gener-
ation as incorrect size or composition of the choice sets can lead to model biases causing
the calibrated route choice parameters to be inaccurate. While this is a straightforward
conceptual question, the literature is divided on the best way to generate this choice set.
Choice set generation can largely be split into two categories—deterministic (where a set

number of choices is generated for a given O-D pair typically using an iterative shortest
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path search), or stochastic (where the choice set is specific to the individual rather than the
O-D pair) [14].

In order to generate deterministic choice sets, several methods have been proposed.
K-shortest Path Algorithms, for example, generate the first “k” number of shortest paths
between a specified O-D pair [15,16]. Within this method, iterative shortest paths can be
generated using link penalty and/or link elimination methods in which the cost of links
within the current shortest path are increased or the link is removed from the network [15].
A second deterministic choice set generation method uses branch and bound techniques
[17,18]. Using this technique, choice sets are found by creating an additional level to a
nested tree structure for each choice an individual faces. The paths within this tree are
terminated /removed if they violate any of the several imposed constraints (i.e. certain
time thresholds are obeyed and a trip after a transfer cannot leave before the person has
arrived at the transfer point). Third, Dial, in his 1971 algorithm, proposes the concept
of “reasonable options” defined as paths in which when traveling from node to node one
always gets further from the origin and closer to the destination [19]. Additional studies
have since proposed other methods by which to define “reasonable” or “attractive” paths
based on time constraints [20].

Within stochastic generation, Freijinger et al. (2009) propose an approach where the
set is generated probabilistically by using a random walk biased towards the shortest path.
Furthermore, Michael Scott Ramming, in his 2001 PhD thesis, introduces a method by

which choice sets are simulated using link costs from different probability distributions [21].

2.3 Discrete Choice Modeling

Regardless of the implementation method, an individuals’ set of paths that he/she considers
as “attractive” are simulated, and from this set, one path must be chosen as the simulated

path taken by the individual. Within the literature, several primary model classes are
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introduced to perform this function.

The first class of models employ multi-nomial logit (MNL) models which compare po-
tential path choices from the choice set and maximize the likelihood of choosing the path
that the passenger actually traversed. Within the logit classification, several sub-methods
are proposed such as C-Logit [22], and Path Size Logit [23] which address shortcomings of
the traditional MNL model when dealing with overlapping paths. The latter two method-
ologies adjust the utility of an overlapping path based on a measure proportional to the
size of the overlapping paths.

To further capture the correlation between alternatives cross-nested logit (CNL) models
are mentioned by Peter Vovsha [24]. The format of this model allows for correlation be-
tween specific choices through grouping the alternatives based on a commonality while also
acknowledging combinations and cross similarities between different nests. For example, in
a traditional nested logit model nests could be created for transitways, local buses, and cars.
In the cross-nested logit model, these distinct nests still exist but now, combinations of the
nests are allowed such that an individual could take a local bus and a transitway. Due
to the structure of cross-nested logit models and the inherent complexity of transit route
choice modeling, the majority of studies employing CNL methods are focused on mode-
choice [24,25] although select studies have also concerned route-choice modeling [26, 27].

An additional class encompasses models derived from the Generalized Extreme Value
(GEV) theorem of McFadden [28]. The fundamental difference between route choice models
in this class and MNL models is that “the similarity among routes is captured in the
structure of the error component of the utility function” [29].

Regardless of the specific model used, several factors were consistently found to be key
determinants in passengers ultimate route choice behavior. In particular, Vande Walle and
Steenberghen (2006) summarize the literature stating that transfers are generally perceived
to have a penalty of between 5-20 minutes while time spent out of the transit vehicle is

perceived as being 1.5-2.3 times higher than in-vehicle time.

9
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After a survey of the existing literature, only a few select studies were found that
employed a schedule based shortest path (SBSP) algorithm in generating a choice set over
which a multinomial logit model would be estimated. Additionally, no studies used a
stop-level path correction term nor combined both SBSP and trip elimination algorithms
when generating choice sets as is presented in this research. As such, this analysis will
further enrich the transit route choice modeling field by expanding upon, and providing an

alternative to existing methodologies.

10



Chapter 3

Data

At the aggregate level, the data employed in this research can broadly be classified into two
categories: passenger-specific information and network configuration data. The following
section will briefly introduce both sources of data including how the data was acquired and

its primary purpose within the transit route choice model.

3.1 Passenger-Specific Data

3.1.1 Metropolitan Council 2016 On Board Survey

Passenger attribute data is extracted from the Metropolitan Council’s “2016 On Board
Survey.” The survey was conducted from April 2016-February 2017 and consists of origin-
destination records for “30,605 transit trips across all regional routes and providers” [30].
These records were garnered through personal interviews using handheld tablets while the
passenger was on board a transit route. The survey was 30 questions in length and provides
sociodemographic characteristics of the user, precise origin and destination locations, as
well as many other attributes. The individual-specific variables utilized in this research are
summarized in Table 3.1.

In order to analyze the most typical and constant travel behavior patterns, several sim-
plifications/reductions are made to the dataset: (1) the time frame for analysis is in the au-
tumn after schools had resumed, (2) only individuals traveling on Tuesdays are considered,
(3) the Tuesday following Labor Day and Halloween, the Tuesday prior to Thanksgiving

Weekend, and the last two Tuesdays of December are removed from the study period to

11
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Table 3.1: 2016 Transit on-board survey variables

Variable (s) Name

Variable Description

1D

Date

Route Surveyed

Transfers_ From

Transfers From  (First, Second, Third, Fourth)
Origin_ Place_ Type, Destination_Place_Type
Origin Lat, Origin Lon

Destination_ Lat, Destination_Lon
Access_Mode, Egress Mode

Transfers To
Transfers. To_ (First, Second, Third, Fourth)
Time_On

Payment_ Method

Fare Type

Trip_ Purpose

Age

Race

Income

Linked Weight Factor

Unique Identifier For Each Passenger

Date survey was conducted

Route survey was conducted on

Number of transfers from origin before being surveyed

Route number for each transfer from the origin before survey

Type of place respondent is coming from (going to) now

Latitude, Longitude coordinates of nearest intersection to origin

Latitude, Longitude coordinates of nearest intersection from destination

Mode of access to (egress from) transit

Number of transfers taken after surveyed route to destination

Route number for each transfer from the surveyed route to destination

One hour range when the respondent boarded the route on which he/she was surveyed
Payment method of the trip (Cash, Card, Pass, Mobile, etc.)

Type of fare paid (Regular, Limited Mobility, Senior, Student/Youth)

Purpose of making trip (Meal, Work, Recreation/Religious, School, Shopping, Errands, Other)
Age of respondent

Race of respondent

Total annual household income of respondent

Estimated number of trips per day between given origin-destination

reduce the irregularities and potential impact from holiday travel. It is rationalized that

Tuesdays have the highest chance of avoiding atypical travel behavior seen at the begin-

ning and ends of the week, while fall is chosen in order to minimize the adverse effects of

weather [31,32]. As such, the specific dates of analysis are September 13th, 20th, and 27th,

October 4th, 11th, 18th, and 25th, November 8th, 15th, and 29th, as well as December 6th,

and December 13th.

Following the selection of the analysis dates, the set of studied passengers are further

filtered to only include individuals whose access and egress links are walked rather than

made by car, bike, or other method. This step is taken in order to ensure that variables not

12
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specific to the transit network are controlled for and identical for all passengers involved.
After all refining measures are performed on the On Board Survey (OBS) data, 2,787
trip records (individual passengers) are left in the sample population. The majority of this
population is white and between the ages of 18 and 34. To gain a greater understanding
of the sample population, several figures and tables are displayed below. The racial spread
seen within the sample population is representative of the entire survey but when compared
to the greater Twin Cities region, it is much more diverse (Table 3.2). Furthermore, the
annual household income for survey respondents is fairly evenly distributed with the ma-
jority of respondents reporting an annual household income of between $25,000-$100,000 as

illustrated in Figure 3.1. Overall, the sample population is 46% female and 54% male.

Table 3.2: Racial distribution comparison between sample population and greater
the Twin Cities

Sample Survey Population Twin Cities Metro Area

White 53 % 7%
Black 27% 10%
Asian 9% ™%
Latino/Hispanic 7% 6%
Native American 4% 1%
Pacific Islander 0% 0%

Note: Twin Cities data extracted from 2013-2017 ACS 5-Year Estimates

13
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Frequency (%)
2

.

Less than $15,000 $15,000-$24,999 $25,000-$34,999 $35,000-$59,999 $60,000-$99,999 $100,000-$149,999 $150,000 - $199,999 $200,000 or more Don't Know/Refuse

Figure 3.1: Annual household income distribution of sample population

Turning toward trip-based summary statistics of the sample population, the majority
(54%) of surveyed transit trips are direct and involve no transfers, 37% have one transfer,
and only 10% of the sample population takes more than 1 transfer. Passengers’ trip purpose
is fairly evenly distributed with only a slightly larger portion using the transit trip as a
means of getting to work or a restaurant (Figure 3.2). Finally, when paying for their transit
trip, passengers appear to have an affinity towards stored value “Go-To” Cards and cash

while the University of Minnesota U-Pass is the most represented pass type (Figure 3.3).

30
|

20

Frequency (%)
15
]

10

[

Work Restaurant Shopping Errands School SociallRec. Other

Figure 3.2: Trip purpose distribution
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Go-To Stored Value Card 37%

Cash 27% Other 2%

Student Pass 3%
College Pass 4%

Free Fare Zone 6%

Weekly/Monthly 6%

| 0,
U-Pass 9% Metro-Pass 6%

Figure 3.3: Payment type distribution

3.2 Network Configuration Data

3.2.1 GTFS Dataset

General Transit Feed Specification (GTFS) is a widely utilized data specification that stan-
dardizes the presentation of public transit data. GTFS data is provided in the form of
several text files each containing information related to one attribute of the transit net-
work: agency, stops, routes, trips, stop-times, and calendar (Table 3.3). Together, these
files provide a detailed and complete representation of the transit network such that one
can determine the precise scheduled arrival of a bus on any route at any given stop. The
entire transit network is comprised of 190 routes (including 84 express routes, 2 light rail

lines, 2 Bus Rapid Transit routes, and one heavy rail route) across 13,579 stops.
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GTFS File

File Contents

agency.txt

Lists the agencies that provide service to the region.

Fields: agency_id, agency_name, agency_ url, ...

calendar.txt

Identifies a set of dates and the day(s) of the week a route with the given service id is in service

Fields: service id, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday,Sunday, Start_Date, End_ Date

calendar_dates.txt

Identifies a set of dates when a service exception occurs for one or more routes

Fields: service id, date, exception_type

routes.txt

Lists all transit routes in region

Fields: route id, agency id, route short name, route long name, route desc, route type, ...

shapes.txt

Defines the visual path a vehicle travels. Consists of connecting a sequence of points

Fields: shape id, shape pt lat, shape pt_lon, shape pt sequence, shape dist traveled,

stop__times.txt

Lists the arrival/departure time of each bus (trip) to a each stop

Fields: trip_id, arrical time, departure_ time, stop_id, stop_ sequence, ...

stops.txt

Lists all the transit stops in the network

Fields: stop_ id, stop_ code, stop_ name, stop_ desc, stop_lat, stop_lon, ...

trips.txt

Lists all transit trips in the network

Fields: route_id, service_id, trip_id, trip_ headsign,direction__id, block_id,shape_ id,wheelchair_accessible

Table 3.3: Information contained within GTFS network

3.2.2  OpenStreetMap Data

While travelers’ in-vehicle movements are captured by the transit network, their out-of-

vehicle movements occur along a walking network. For this study, a walking network is

obtained from the open-source website OpenStreetMap. While the open-source nature of

this database

presents potential for errors, as anyone can edit and alter the map, the key

benefit of this database is the provision of a highly specific sidewalk network. Using this

sidewalk dataset, the Python package OSMnx developed by Geoff Boeing (2017) allows for

the calculation of precise network walking distances (and times) between any two points [33].

16



Chapter 4

Choice Set Generation Methodology

To model and analyze transit users’ route choice behavior, passengers must have a set
of paths from which to choose between. When selecting a path to take, individuals are
unlikely to consider every possible transit option connecting their origin and destination
locations. Some paths may take an exceedingly long time, others may involve large amounts
of waiting, and even more may have numerous transfers. Therefore, when making decisions,
passengers, instead, are only likely to consider a select handful of potential transit paths.
This small number of “attractive” paths are what comprise users’ choice set.

The first step of this research, therefore, lies in generating a choice set of transit paths
for each passenger. The construction of these sets, however, is not a trivial matter. In
fact, choice set generation is arguably the most important, and most difficult component of

formulating a route choice model.

4.1 Access/Egress Link Generation

When conceptualizing users’ route choice, it is easy to become focused on their decisions
only at the level of the transit route. While certainly a crucial element in passengers’
choices, one must also consider their behavior with higher resolution at the level of the
individual transit stop. The stops, as argued by Nassir et al. (2015), are fundamental to
route choice as not all stops are served by the exact same route [34]. Therefore, while an
individual may have a choice between 5 attractive routes at one stop, this choice set could

be reduced to only one or two routes simply by the act of choosing a different stop. In
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4.1. Access/Egress Link Generation

order to maximize the quality or perceived attraction of the routes within an individuals
choice set, the stops accessible to an individual must be carefully considered. If the transit
stops accessible to a user are too narrowly defined, enticing path options may be missed.
If, on the other hand, no restrictive assumptions are made to the stops an individual can
access, his/her choice set will be much too large and lead to inaccurate model results. With
this framework in mind, several principles and restrictions are implemented to restrict the
number of accessible transit stops, thereby filtering the access and egress links used as an

input to the choice set generation algorithm to be described in the next section.

4.1.1 Network vs. Euclidean Distance

The first restrictive measure implemented on the generation of access and egress links is
the use of a network, rather than straight-line (euclidean), walking distance. Throughout
the route choice literature [35,36], euclidean and network distances are often used inter-
changeably as several studies have found a high degree of correlation between the two
methods concluding that the “substitution of one [method] for the other is unlikely to
have a substantial impact on analytic results” [37—40]. The primary drawback of euclidean
methods, however, is that they are focused on roadway networks which are extremely dense
within American metropolitan areas. When turning to less-dense transit networks, walking-
distance scales, and regions with large amounts of lakes, rivers, and uncrossable highways,
however, the literature notes that euclidean and network distances can no longer be used
interchangeably [40,41].

Following this review of the literature, the two methods are tested in the Twin Cities
region where OpenStreetMap sidewalk data is used for the network walking distances. Due
to the high prevalence of rivers and major roads/highways without frequent bridges or other
opportunities to cross, euclidean distance (Fig. 4.1) is an inaccurate estimation of network
distance (Fig. 4.2) in the Twin Cities as shown by the area reachable within 0.25 miles

of the same origin point. Therefore, in order to heighten the walking distance and timing
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4.1. Access/Egress Link Generation

accuracy of the access/egress links, network distances are used in this research.
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Figure 4.1: Euclidean distance Figure 4.2: Network distance

4.1.2 Maximum Distance Thresholds

In addition to using network distances, further restrictions are imposed on the access and
egress links. While the majority of the sample population walks less than 0.3 miles when
accessing or egressing from a transit stop, some individuals walk over 1.5 miles. Given
the decision to use the more computationally expensive network distance method, it is
unreasonable to generate access and egress links for all stops that are within 1.5 miles of
each individuals origin and destination location. Neither, however, is it acceptable to only
include individuals with short access/egress walking links as one assumes that route choice
behavior is fundamentally different for passengers who choose to walk long rather than
short distances. As a result, the decision was made to select walking distance thresholds
for both access and egress links that include 95% of the sample population. In this manner,
computational time can be saved while still including the vast majority of the sample pop-
ulation. The resulting restrictions are thus determined to be 1.1 miles for access distances

and 0.71 miles for egress links as shown in Table 4.1.
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4.2. Schedule Based Shortest Path (SBSP)

Table 4.1: Sample population included by access/egress distance threshold

Percent Population Included Access Distance (Miles) Egress Distance (Miles)

50% 0.29 0.22
75% 0.49 0.40
85% 0.69 0.50
95% 1.10 0.71
100% 1.60 1.75

4.2 Schedule Based Shortest Path (SBSP)

The transit network is not a static entity in space due to the fact that service fluctuates
throughout the course of the day. In order to capture the precise intricacies and timings
of the various transit paths that are available to each passenger, a Schedule-Based Short-
est Path (SBSP) algorithm adapted from the previous work of Khani et al (2015) [42] is

implemented.

4.2.1 SBSP Network Typology

While other approaches such as frequency-based methods use stops and links as the funda-
mental components of their transit network, the SBSP employs nodes and links. Nodes, in
the SBSP algorithm, represent both the physical and temporal location of a transit stop are
identified by a tripID and stopID. In order to transform the transit stops into nodes, one
must create an individual node for each transit vehicle that arrives at an individual stop.
In the regional context of the Twin Cities, this can, perhaps, be best thought of as taking
a single physical stop and creating a node for each departure listed on the NexTrip arrival
screen. Therefore, even if buses from two different routes arrive at a physical stop at the

same time (as shown by the two 10:35 arrivals denoted in yellow in Fig. 4.3) or the same
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4.2. Schedule Based Shortest Path (SBSP)

route serves the individual stop but at different times in the day (as illustrated by the two
arrivals of route 5 denoted in red in Fig. 4.3), individual nodes will be created. Thus, for

this small example, one physical stop expands into a multitude of nodes.
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Figure 4.3: Network transformation from stops to nodes

Each transit link in the SBSP algorithm uniquely connects two of the aforementioned
nodes and can be categorized into one of four sub-types: (1) a walking-transfer link (in
which a transfer is made between two different physical stops and time passes), (2) waiting-
transfer links (in which a transfer is made to a different route at the same physical stop),
(3) in-vehicle transit links, and finally (4) access/egress walking links. With this detailed
categorization, travel time can be more precisely segregated leading to a multi-criterion
approach to the definition of a shortest path, which therefore allows for greater model

flexibility and accuracy.

4.2.2  SBSP Algorithm

Using an individual’s origin and destination coordinates provided by the on-board survey, a
“Dijkstra’s shortest path” label setting path algorithm is implemented using the schedule-

based time-dependent transit network.
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4.2. Schedule Based Shortest Path (SBSP)

First, a list of possible access and egress links (connecting the origin and destination
to the transit network respectively) are created using the passengers’ origin/destination
coordinates and a network distance that is within the distance thresholds described above.
Following the initial loading of the transit & passenger data as well as the access/egress
links, each node is initialized with two labels (I; and p;). The label /; indicates the length
of time a passenger has traveled to reach the specified node while p; denotes the last node
the passenger was at.

Following the initialization step, the algorithm iteratively selects the node with mini-
mum time label (I;), removes it from the selection list (S), and updates all nodes that are
connected to the current node and have a larger time label than the sum of the selected
node and the time to traverse the link connecting the two nodes. This label setting process
continues until all nodes have been scanned (S is empty). As soon as the selection list is
empty, the algorithm, beginning at the destination node, uses the predecessor labels (p;)
to trace the shortest time path back to the origin. After reversing the order of this path,
the shortest path between the passenger’s origin and destination is printed and the algo-
rithm terminates once all passengers have been processed. The following logic details the

algorithm steps of this traditional SBSP process.

Notation

U Set of all passengers

N Set of all nodes

{; Time label of node i

S Selection list of nodes

S Previously selected nodes list
A Set of all links

a;r Link connecting nodes i and k

t;r Time to traverse link connecting nodes i and k
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4.2. Schedule Based Shortest Path (SBSP)

Algorithm 1 SBSP Path Generation

1: for u; in U do

2:

© ®

10:
11:

12:
13:
14:
15:
16:
17:

Inputs:
Create N and A
Norigins Ndest <— Survey Data

Create access & egress links for u; and add to A
Initialize:
li — o0
lorigin 0
Pi <— @
DPorigin +— -1
S+ {N}
S+ {}
for n; € N do
if n; has minimum /; then
Select the node n; as current node.
Remove n; from S and add it to S

for All links a;; emanating from current node n; do
if [, > l; + t;;, then
I, =t +
Pk =1y

if L={} ORL={N} then
Continue
else
Return to Line 3
Start at nges: and record subsequent predecessor nodes (p;) until origin (nerigin)
Reverse list order to obtain the shortest path between the n4pigin and nges for u;

SBSP Path Generation: Algorithm Example

In order to more easily understand the specific steps of the algorithm above, a simple

example is provided describing how the SBSP algorithm is used on the sample network

shown in Figure 4.4 for one passenger whose origin is located at node one. The sample

network contains 4 nodes (numbered 1-4), 1 walking link (W3), and 3 in-vehicle links (V'1,

V2,V 4) where the link travel times are listed adjacent to the respective link.

Figure 4.4a shows the initialization stage of the algorithm, while Figure 4.4b and Figure
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4.3. Trip Elimination Sub-Algorithm

Link: V1 Fred: NULL Pred:0 Link: V1 Pred: Nod Labd 0 Link: V1
tp=5 tiz=5 i tp=5

Link: V2 H Link: V2
ts =4 ts =4

Link: V4
Node 4 tys =4 Node 4

tys =4 Node 4

L‘.V».( x Label : x
Pred: NULL Pred: NULL

Pred : Noded

(a) Initialize (b) Update Nodes 2 & 3 (c) Update Node 4

Figure 4.4: Example algorithmic labeling of nodes and links

4.4c illustrate the remaining steps of the algorithm resulting in a shortest path traveled from
the origin to destination by traversing Node 1 — Node 3 — Node 4. Due to the network
representation composed of detailed nodes and links, this shortest path includes walking
(W3) and in-vehicle links (V4), and for the actual Twin Cities network this shortest path

would also include waiting links.

4.3 Trip Elimination Sub-Algorithm

As previously mentioned, passenger route choice behavior can only be analyzed and mod-
eled if the transit user in question actually has a choice between attractive transit paths
connecting his or her origin and destination locations. In its current state, however, the
SBSP algorithm only produces a single path per person. Therefore, an additional module is
added to the SBSP algorithm whose purpose is to iteratively generate additional attractive
paths following the logic below.

In order to produce additional attractive paths for each user, the transit network, over
which the SBSP is run, must fundamentally be altered as without this change, the algorithm
will never produce more than one unique path. This sub-algorithm component, therefore,
alters the transit network input to the SBSP algorithm by taking an individual’s shortest

path and removing, one at a time, each transit trip (and all associated nodes and links)
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4.3. Trip Elimination Sub-Algorithm

from the transit network before reiterating the body of the SBSP described in the previous
sub-section. In this manner, the network will have fundamentally been altered forcing the
next generated path to be different than the original “shortest” path. The trips of each
newly generated path will be added to a nested tree structure as children of the excluded
trip (parent). Therefore, each time a new path is generated from an existing path, the
excluded trips are all the trips excluded when generating the existing path as well as one of
the trips on the existing path. The tree structure is defined as shown in Figure 4.5, adopted
from Adrian Mejia [43].

Level 0
Ancestor / Parent/
Level 1
Descendent / Child
Height Depth
Level 2

Siblings

Figure 4.5: Tree structure terminology
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4.3. Trip Elimination Sub-Algorithm

Algorithm 2 SBSP With Trip Elimination

1: Inputs:

Create N and A (Including Access,Egress,Origin, and Dest)
List of All Trips
Sample Survey Population

2: for passenger in passengerList do

3:
4:

10:
11:
12:
13:

14:
15:

16:
17:
18:
19:
20:

21:
22:

23:
24:
25:
26:
27:

previousPathList = ()
newPathList = ()

run SBSP Code to output shortestPath > Generate passengers’ first path
append shortest Path to previousPathList

for initialTripl D in shortest Path do > Each trip on SP is tree root
create ancestor tree with initialTripI D as root

for selectedPath in previousPathList do: > Generate subsequent paths
for tripID in selected Path do
excludedTripList < ()
Load Complete (Un-Filtered) GTFS Network
append tripl D to excludedTripList

for ancestorTrip of tripID do > Also exclude ancestor trips
append ancestorTrip to excludedTripList

for excludedTrip in excludedTripList do > Filter GTFS Network
exclude nodes and links on excludedT'rip
exclude excludedT'rip from list of network trips
run SBSP code with filtered GTFS network
append newPath to newPathList

for newTripI D in newPath do > Append new child trip
append newTripl D as new child to excludedT'rip

if number of desired unique paths is reached then
PASS

else
previousPathList < newPathList
loop back to line 9
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4.3. Trip Elimination Sub-Algorithm

SBSP With Trip Elimination: Algorithm Example

Due to the inherently nested and looped structure of this new algorithm an example is
provided to further clarify the algorithm steps. In this example, a single individual’s choice
set will be generated. In visualizing the steps of the trip elimination choice set generation,
the brown home icon is the origin, the red flag symbol is the destination, and the other red

geometric shapes correspond to boarding and alighting locations as defined in the legend

of Figure 4.6a.

ROUTE 11
ROUTE 5

ROUTE 18

ROUTE 4

@) Origin

@® Initial Boarding Stop
Alight First Route Stop

¢ Board Second Route Stop

B Final Alighting Stop

* ) Destination

(a) Shortest path (b) Exclude Route 11 (c) Exclude Route 4

Figure 4.6: Example choice set generation with trip elimination

Figure 4.6a, illustrates the results of the traditional SBSP algorithm (Lines 1-6 in the

SBSP With Trip Elimination Algorithm) where no trip information is excluded from the
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4.3. Trip Elimination Sub-Algorithm

algorithm. In this case, the shortest (quickest) path between the selected passenger’s home
and destination location is to board Route 4 — Route 11 with a transfer in downtown
Minneapolis. Next, as detailed in lines 7-8 of the algorithm, an ancestor tree is created for
each trip component on the shortest path. Through subsequent iterations of the algorithm,
each of these tree structures will be filled with descendant nodes. Due to the fact that
the shortest path has two trips (Route 4 and Route 11), lines 9-22 will be iterated over
twice—once for each of the corresponding trip ID’s.

Figure 4.6b, illustrates the results of algorithm lines 9-22 when the selected tripI D
corresponds to the Route 11 trip. In this case, the Route 11 trip is added to the list
of trips to exclude from the transit network (line 13). Because this is the first level of
trip eliminations, there are no parent trips to exclude (lines 14-15) and as a result, the
algorithm moves to lines 16-22 at which point all nodes, links, and trips associated with the
specific Route 11 tripl D are excluded from the GTFS transit network. Then, in line 19, the
body of the SBSP code described in Algorithm 1 is run again this time using this filtered
transit network to produce a new attractive path which is the quickest path available to the
passenger in the filtered network. As shown in Figure 4.6b this new attractive path results
in the passenger boarding Route 4 at the same stop as the initial shortest path, transferring
downtown and taking Route 5 to his/her destination. The trips on this new path are then
added (lines 21-22) as “child” trips of the original shortest-path trip that was excluded.

After this process has been completed for the exclusion of the Route 11 trip, the algo-
rithm re-loads the GTFS network in its entirety (line 12) before, in line 13, excluding Route
4 (the remaining tripI D on the original shortest path in Figure 4.6a). Again, because this
is the first level of trip eliminations, there are no parent trips to exclude (lines 14-15) so the
algorithm moves to lines 16-22 and excludes all nodes, links, and trips associated with the
the Route 4 tripl D resulting in the new attractive path Route 18 — Route 5 (Fig. 4.6¢).

At the conclusion of this phase, the algorithm moves to lines 23-27, finds that the desired

number of unique paths has not been reached, sets the previousPathList to include only
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4.3. Trip Elimination Sub-Algorithm

the two new paths generated from lines 16-22, and returns to line 9 having completed the
first level of trip eliminations. This path generation (lines 9-27) will continue for a given
passenger until a specified number of unique paths has been reached at which point the
algorithm will move on to the next passenger.

The resulting paths within the example passenger’s choice set after one level of trip
elimination, described above, are illustrated in Figure 4.7a. Arrows indicate which trip
(listed as a route number for simplicity) has been excluded in order to generate the new path.
If a second level of trip elimination were to have been described for the passenger above,
two trips would have been excluded for each iteration: one from the initially shortest path,
and a second from the newly generated paths found from the previous level of elimination.
The resulting choice set and the corresponding trips (displayed as routes) eliminated to
obtain a specific path are visualized in Figure 4.7b which only differs from Figure 4.7a in

the bottom row of paths as it is a iterative progression.

Initially Shortest Path

4->11

Exclude
Route 11

Exclude
Route 4

New Shortest Path

18 -->H

New Shortest Path

4 -->5

(a) Path tree after first elimination level

Exclude
Route 11

Exclude
Route 4

Initially Shortest Path
4->11

New Shortest Path

18 -->5

New Shortest Path

4-->5

Route 4

4 te 18 F:‘:: ute 5 Route 1" ute 4 F;w:e“k Route 5
New Shortest Path New Shortest Path New Shortest Path New Shortest Path
6-->5 6-->22 18 -->22 4-->22
(b) Path tree after second elimination level

Figure 4.7: Trip elimination path tree
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4.4. Constraints, Assumptions, and Data Preprocessing

4.4 Constraints, Assumptions, and Data Preprocessing

In addition to the restrictions placed on the access and egress walking links as previously
mentioned in Section 4.1, several additional assumptions and preprocessing-measures must

be made before running the aforementioned algorithm.

4.4.1 Preferred Departure Time (PDT) Assumptions

The most significant assumption deals with individuals’ preferred departure time (PDT)
from their origin. Within the 2016 On Board Survey, a PDT was not given. What is
provided, instead, is a one hour timeframe in which the passenger was surveyed. This time
range, however, is problematic for two reasons: first, it is not specified to single-minute
resolution, and second, the time range is not necessarily when the passenger left the origin,
but rather when he/she was surveyed.

To address the first issue, an additional constraint is placed upon the SBSP algorithm
to allow for a pseudo-initial wait time of up to one hour. In practice, the algorithm sets
the PDT to be the first minute of the surveyed time window and then scans all departing
routes a passenger could reach within one hour that successfully connect to the passenger’s
destination. Following the termination of the algorithm, the pseudo-access wait time is set
to zero and if multiple identical paths exist, only one of these paths is kept in the choice set.
For example, if the surveyed range was 2:00 p.m.-3:00 p.m., the algorithm would set the
PDT equal to 2:00 p.m. but find any valid trips that depart between 2:00 p.m. and 3:00
p.m. and are within the maximum allowable access walking distance (1.1 miles). Then, for
instance, if a valid trip were found that departed at 2:45 p.m. the passenger’s access wait
time is set to zero minutes rather than the the difference in time between 2:45 p.m. and
the time at which the passenger arrived at the stop after departing his/her origin at 2:00
p-m. Actual access wait time is then calculated using the method described in the next

sub-section (Section 4.4.2).
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4.4. Constraints, Assumptions, and Data Preprocessing

Of the two issues related to PDT estimation, the second issue (provision of surveyed
time range rather than first route boarding time), is particularly troubling as it is possible
that an individual could be surveyed on a route other than the first route on his or her
trip. Without correction, this issue would thus have led to inaccurate PDT estimations.
In order to translate this surveyed time into a PDT, the sum of the average unlinked in-
vehicle time (IVT) and the average transfer time is subtracted from the surveyed time. This
fixed time adjustment is then used as a proxy for the average time associated with walking
and transferring from each additional route. Thus, 23.2 minutes are subtracted from the

surveyed time window for each transfer that occurred before the surveyed route.

4.4.2 Access Waiting Time Calculations

Given that the PDT is estimated rather than directly extracted from survey responses,
time spent waiting at the boarding bus stop of the initial route also has to be estimated.
The method of estimation follows the headway-based procedure described by Fan and

Machemehl (2009) and formulated in Equation 4.1 [44].
AccessWaitTime = min (0.5 x Headway, 2.28 + 0.29 x Headway, 13.3) (4.1)

This piece-wise equation is based on the assumption that passengers arrive at random for
short headways (given in minutes) and strategically coordinate their arrival at bus stops
served by routes with longer headways. In order to best capture the fluctuating nature
of route headways throughout the day, headways are calculated as the time between the
simulated first route taken and the next bus of that same route. If the simulated bus is the
last of its route for the day, the difference in time between the preceding and simulated bus

is used as the headway.
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4.4.3 SBSP Algorithm Constraints and Parameters

In order to best capture passenger behavior, an additional set of algorithm parameters and
constraints are introduced (Table 4.2). A total time threshold (160% of the shortest path’s
travel time) was implemented to make sure all paths are seen as “reasonably attractive” to
the passenger. For example, if a passengers shortest total travel time is 10 minutes, he/she
would consider trips with total times of 16 or less minutes. The 160% threshold percentage
is chosen to include 95% of the current passenger set. Walking speed is assumed to be
3 miles per hour and is used to calculated walking link times. In regards to the transfer
distance threshold it is assumed, given the fact that the vast majority of the system is
composed of high-stop density local-bus routes, that individuals transfer at the stop on
their current route that is closest to their next boarding stop which, more often than not, is
directly across the street. Finally, it is assumed, based on values within the literature, that
individuals associate a 15 minute disutility for each transfer they take and that they will

not consider transferring if they have to wait for more than 20 minutes for the next route.

Table 4.2: Algorithm constraints

Parameter Constraint
Transfer Distance < 0.1 miles
Access(Egress) Walk < 1.1 (0.72) miles

Assumed Transfer Penalty 15 min

Transfer Wait Time < 20 min
Walking Speed 3 mph
Path Length < 160 % Shortest Path Time
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Chapter 5

Logit Model Methodology and Formulation

Following the generation of a set of attractive path choices for each passenger within the
sample population, logit models are estimated using version 0.2.2 of the PyLogit estimation
tool [45]. In performing the logit estimations, 70% of the passengers are used as the train-
ing dataset and the remaining 30% are used as the testing dataset. Two types of model
structures are considered: Multinomial Logit (MNL), and Mixed MNL. The Mixed MNL
model is tested in order to determine the significance of variation in parameter perception
amongst individuals. In this formulation, the parameters are treated as normal random
variables and the logit function is formulated in the same form as is described below in

Equation 5.1.

5.1 Path Overlap Correction Factor

One of the key features of the MNL model is the assumption of independence of irrelevant
alternatives (ITA). This assumption states that when individuals are asked to choose from
a set of alternatives, the likelihood of them picking one choice over another should not
depend on an additional alternative. In other words, it is assumed that the choices are
not correlated. Unfortunately, in the case of the transit route choice problem, many of the
path choices can be, in fact, correlated. In particular, it is often the case that two routes
traverse the same exact stretch of roadway and are only different in their route number. As
a result of this potential correlation, a path-size correction term, described by Tan et al.

(2015), is introduced to the model (16). The MNL formulation with an overlapping path
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size correction factor is described by Equation 5.1,

. eV;.'n"FBPSPSin
P(i|Cy) = SV ARaTS), (5.1)
jecn
where:
P(i|C,) = Probability of taking path i given choice set C for person n
Vins Vin = Utilities for path i and j for person n respectively

PSiy, PSj, = Path-size correction for path i and j in choice set C,, respectively
Bps = Estimated coefficient for the path size correction term.

The path size correction term, as defined by Tan et al. (2015) [46] and adapted for stop

overlap rather than link overlap, is shown in Equation 5.2,

PSw=Y" %ln(z 555) (5.2)

sel’; Jj€cn
where:

I'; = Set of all stops for path i
N; = Total number of stops served by path i
ds; = 1 if stop s is on path j and 0 otherwise.

While the path size correction term is typically calculated based on link length, for
transit, it is reasoned that stops are more indicative of the actual overlap experienced by
passengers. For example, when comparing bus rapid transit (BRT) service with local bus
service, the paths may overlap for a long stretch of distance but only share a small number of
actual stops due to the wider stop spacing present in BRT networks. Additionally, Nassir et

al. (2015) argue that modeling at the stop level is more consistent with the decision transit
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5.1. Path Overlap Correction Factor

users typically make [34]. Therefore, it is at the stop level that overlapping becomes most
critical. Due to the path size correction term formulation within the MNL formulation, it
is expected that Spg will be negative in value indicating that increased path overlap leads

to smaller relative utilities for each path.
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Chapter 6

Results and Discussion

6.1 Overview of Passenger and Network Features

The analyzed network contains a total of 487,045 nodes and 2,949,325 links (not counting

access/egress links which are generated on a per person basis). A more detailed glance into

the network structure is portrayed in Table 6.1.

Table 6.1: Network composition

Network Feature

Count

Stops

Trips

Nodes

In-Vehicle Links
Waiting Transfer Links

Walking Transfer Links

13,579
9,211
487,045
478,063
468,373

2,002,889

After the initial filtering of the survey data to only include passengers with walk ac-

cess/egress links and who made their journey on the specified Tuesday’s, the initial passen-

ger dataset contains 2,754 passengers. Following the completion of the choice set generation

and filtering to include only passengers who had at least two paths, 1,938 passengers, or

70.5% of the original dataset, have a choice set that successfully includes the actual surveyed

path that the individual took. This dataset is then further filtered to only include passen-

gers who have at least two paths with a total travel time less than 160% of the shortest
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6.1. Overview of Passenger and Network Features

total time path (as described in the restriction parameters above). After this final filtering
1,724 passengers remained in the sample population with the average person having 3.1
attractive paths to choose from (Figure 6.1). Given that only 214 passengers (11%) did not
have more than two attractive alternatives, it can be concluded that Twin Cities transit
users almost always have multiple options to consider when selecting a path to reach their

destination.

Frequency
I
o
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Number of Unique Paths per Passenger

Figure 6.1: Choice set size per passenger histogram

One hallmark of this research is that the sample dataset, even after the aforementioned
filtering, is extremely representative of the total transit rider population. When comparing
the racial composition of the sample dataset to the full population, all races/ethnicities
were within 1% of the entire surveyed population except for whites (+ 3.4 percentage points
from total population) and Asians (+ 1.7 percentage points). Females comprise 45.5% of
the sample population, only 2.7 percentage points lower than the population average, and
all age categories are represented to within 5% of their actual occurrences within the total
population.

Prior to examining the results of the multinomial logit (MNL) model, the paths actually
taken by the transit passengers (as recorded in the survey) are studied. From an aggregate
analysis of these surveyed paths, as compared with the other paths within an individuals

choice set, broad qualitative conclusions can be drawn about riders’ behavior that can be
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6.1. Overview of Passenger and Network Features

supported (or contradicted) by the logit results.

On average, the sampled passengers’ surveyed (taken) path has a mean total travel time
of 40.3 minutes, 16.2 minutes walking, 5.4 minutes waiting, and 22.2 minutes in a transit
vehicle. Additionally, there is a fairly strong aversion to transfers as 66.37% of passengers’
actual paths have no transfers, 27.7% have one transfer, 1.7% have 2 transfers, and only 1
person out of 1,724 sample passengers transfers three times.

Five attributes are created for each passenger indicating if the individuals’ surveyed
(taken) path followed a particular strategy, when compared to the other attractive paths

in the simulated choice set (Table 6.2).

Table 6.2: Surveyed (taken) path strategy frequency

Surveyed Path Strategy Percent of Sample Population
Minimum # of Transfers 86.0%
Minimum Wait Time 49.5%
Minimum Total Time 46.4%
Minimum Walking Time 39.6%
Minimum In-Vehicle Time 26.7%

Minimum in ALL of the above 5 categories 7.3%

From this aggregation, it appears that the number of transfers is the most critical factor
involved in deciding which path to take as 86% of the sample population are surveyed on
a path that has the minimum number of transfers. Furthermore, the minimum walk time
appears to be a weaker predictor of route choice than waiting time (39.6% versus 49.5%). As
a result, it is expected that the transfer penalty will be quite large and that the magnitude
of the logit model coefficients (all of which are expected to be negative) will be largest for

the wait time followed by walk time, and then in-vehicle time.
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6.2. Multinomial Logit Results

6.2 Multinomial Logit Results

Both traditional MNL models and mixed logit models are tested on the training dataset
(defined as a random 70% of the sample passenger set) with varying interactions and com-
binations between the variables listed below. The mixed logit models, in which parameters
are assumed to be normally distributed, however, are found to not improve the model fit
in comparison with MNL models. Due to this lack of improvement and the greater simplic-
ity of the MNL models, only the MNL model results will be presented. After comparing
many MNL models, the two best models (chosen as having the lowest Bayesian information
criteria (BIC) value and highest McFadden’s rho-squared value) are presented where all

presented variables are statistically significant. The considered variables are as follows:

e Path Size Correction Factor

o Route Type (Transitway, Express Bus, Local Bus)

e Number of Transfers per Path

e Categorical Annual Household Income

o Race

¢ Gender

o Timing Parameters (IVT, Access\Egress Walk Time, Access Wait Time)

o Trip Purpose (Work, School, Shopping, Meal, Other).

6.2.1 Expanded MNL Model Results

The model results presented in Table 6.3, encompass all significant variables and their in-
teractions from the list of variables above. Given the number of observations in the sample
training dataset (1,207), the MNL model’s adjusted rho-squared value of 0.423 is relatively
large. When analyzing the marginal rate of substitution column, in which all parameter

coeflicients have been normalized to the scheduled non-transitway IVT coefficient, several
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6.2. Multinomial Logit Results

interesting conclusions can be extracted. First, passengers perceive 41 seconds (0.687 min-
utes) on board a transitway route as the equivalent of 1 minute on a non-transitway route
indicating that Twin Cities transit passengers have a preference towards transitway routes
when given the choice. Additionally, given the marginal rates of substitution for walking
and waiting time, passengers perceive 2.65 minutes of non-transitway in-vehicle time (IVT)
as one minute of waiting time at their initial boarding stop, 2.77 minutes IVT as 1 minute
of egress walking, and 1.65 minutes IVT as 1 minute of access walking time. An interesting
takeaway from this comparison is that individuals are more likely (1.6 times) to walk a
greater distance when accessing their initial transit route, then they are when walking from

the alighting stop on their last transit route to their final destination.

Table 6.3: Expanded MNL coefficient (beta) values and marginal rate of substi-
tution w.r.t. non-transitway in-vehicle time

Marginal Rate of Substitution

Parameter Coefficient  Std. Error ~Confidence Interval (95%)
(With Respect to Hours of IVT)

Non-Transitway IVT (Hours) -6.436 0.597 [-7.655, -5.316] 1.000
Transitway IVT (Hours) -4.458 0.736 [-5.901, -3.014] 0.687
Access Walk Time (Hours) -10.712 0.692 [-12.069, -9.355] 1.652
Egress Walk Time (Hours) -17.938 0.886 [-19.675, -16.202] 2.766
Access Wait Time (Hours) -17.210 1.616 [-20.378, -14.042] 2.654

# of Transfers per Path -2.766 0.153 [-3.065, 2.466] 0.426 (25.6 min penalty)

Stop Overlap Correction -0.646 0.226 [-1.087, -0.202] —

Transitway: Access Walk Time (Hours) 2.013 0.740 [0.563, 3.463] -0.310
Transitway: Annual HH Income >$150,000 2.310 1.073 [0.208, 4.412] -0.356
Express: Annual HH Income <$35,000 -1.655 0.423 [-2.484, -0.825] 0.255
Express: Annual HH Income $35,000-$60,000 -2.470 0.635 [-3.715, -1.224] 0.381

Number of Observations 1,207 (70% of Sample Population)
Initial Log-Likelihood -1,755.6
Final Log-Likelihood -1,001.9
BIC 2,082.0

Adjusted p? 0.423
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Due to the fact that all marginal rates of substitution for the time-related parameters
are not 1.0 (with respect to non-transitway IVT), it is apparent that all time components
are not perceived equally as individuals’ appear more likely to choose alternative paths with
longer in-vehicle times in order to minimize the time spent walking and waiting for transit
vehicles. The marginal rates of substitution in Table 6.3, are found to be in close alignment
with the respective values published by other scholars [47]. Furthermore, after converting
the marginal rate of substitution for the number of transfers in a path to minutes, it is
determined that a transfer is perceived to cost approximately 25.6 minutes of in-vehicle
time. While this value is at the high end of other values reported in the literature [47],
most of which are centered between 5 and 20 minutes, this behavior appears to accurately
capture regional behavior as two thirds of the sample population takes a path with no
transfers and 86% of the population follow a route choice strategy that minimizes their
total number of transfers. Additionally, the average trip headway (minutes between buses
of the same route) for the entire transit network is 22.8 minutes. Therefore, if an individual
misses his/her connecting route he/she, on average, must wait an additional 22.8 minutes.
As a result, a transfer penalty of 25.6 minutes appears to potentially address the nearly
23 minute cost associated with the chance of missing the transfer as well as the actual
inconvenience of having to make the transfer itself.

Beyond the time-related parameters, several interesting takeaways can be noted. First,
one must remember that only significant parameters are included in the model so param-
eters missing from the model (such as Transitway: Annual HH Income $35,000-$60,000)
are insignificant and are therefore assumed to have a coefficient value of 0. With this
framework in mind, the coefficient values are compared amongst the categorical interac-
tion parameters. Due to the fact that the “Transitway: Access Walk Time” coefficient is
positive, transit passengers prefer to walk further from their origin to their initial transit
route if this increased walking time results in a transitway anywhere along their path. In

other words, access walking is perceived less negatively if the passenger can then ride on a
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transitway. When comparing the interaction between route type and individuals’ annual
household income, it is apparent that the highest income earners perceive transitways the
most positively while low income individuals have a negative association with express routes
(given that all other income categories are insignificant and therefore have a coefficient value
of 0 while low income groups have a negative coefficient). However, within the two lowest
income categories ( <$35,000 and $35,000-$60,000), the relative disutility of express routes
decreases for individuals in the lowest income category (<$35,000). One potential expla-
nation for this variance is that many of the passengers in the lowest income category may
receive discounted fares on express buses if traveling outside peak rush hours ($0.75 rather
than $2.25). This reduced fare may, therefore, make express buses more favorable for the

lowest-income individuals.

6.2.2 Simplified MNL Model Results

A simplified MNL model (Table 6.4) is estimated in addition to the expanded model (Table
6.3) in order to have an accurate model that can more easily be input into transit assignment
models. Despite the reduction in the number of parameters, this simplified model still has
a relatively large adjusted rho-squared value of 0.415.

Comparing the marginal rates of substitution between the expanded and simplified
models, one finds that they are, for the most part, in close approximation with one another.
In fact, the only parameters with a change in marginal rate of substitution greater than
0.2 are the Transitway IVT and Access Wait Time. In the simplified model, transitway
IVT has a smaller relative marginal rate of substitution while the associated value with the
access wait time parameter is higher. In other words, passengers described by the simplified
model have a more positive perception of transitways and a more negative association with
waiting at their initial boarding stop. Additionally, the transfer penalty per transfer is 2.2
minutes larger than in the expanded model.

Overall, however, the differences between the models are minute and so the simplified
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6.3. Sample Logit Results Visualized

Table 6.4: Simplified MNL coefficient (beta) values and marginal rate of substi-
tution results

Marginal Rate of Substitution

Parameter Coefficient  Std. Error Confidence Interval (95%)
(With Respect to Hours of IVT)
Non-Transitway IVT (Hours) — -5.867 0.547 [-6.939, -4.796] 1.000
Transitway IVT (Hours) -2.187 0.613 [-3.388, -0.986] 0.373
Access Walk Time (Hours) -10.246 0.651 [-11.523, -8.970] 1.746
Egress Walk Time (Hours) -16.971 0.849 [-18.635, -15.308] 2.893
Access Wait Time (Hours) -18.227 1.577 [-21.318, -15.135] 3.107
# of Transfers per Path -2.814 0.152 [-3.113, -2.516] 0.480 (28.8 min penalty)
Stop Overlap Correction 0.779 0.221 [-1.213, -0.345]

Number of Observations 1,207 (70% of Sample Population)
Initial Log-Likelihood -1,755.6
Final Log-Likelihood -1,019.3
BIC 2,088.0

Adjusted p?> 0.415

model is used henceforth. A fairly high degree of matching between the simulated path and
the passengers’ surveyed path is found when using the simplified estimated multinomial
logit model and applying in to the testing dataset (remaining 30% of the total sample
passenger set). In particular, the average simulated probability of the chosen path was
53.4%. Additionally, the simulated path with highest probability matched the surveyed
path for 66.5% of the sample passengers indicating that the model is “correct” nearly two

thirds of the time.

6.3 Sample Logit Results Visualized

In order to best illustrate the importance these calibrated route choice parameters have
on simulating passengers route choice behavior, recall the example choice set from Figure

4.7b. This example passenger is traveling from his/her home location near uptown to
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6.3. Sample Logit Results Visualized

a destination in North Minneapolis and is presented with 7 potential paths (Fig.6.2 and
Table 6.5). Without the route choice parameters and a conceptual understanding of how
the passenger makes decisions, there is no way to ascertain which of the paths in Figure
6.2 is most attractive to the passenger. Only after applying the route choice parameters
and simulating the path likelihood does the passengers’ choice making behavior become

apparent.
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Figure 6.2: Sample choice set mapped

As listed in Table 6.5, the most attractive alternative path (and thus the path the
passenger was assigned to) is “Alternative A.” While the total travel time of this path is
not markedly different from the other alternatives, and, in fact, is approximately average
in length, the true difference between the chosen alternative and all other paths lies in the
walking and waiting components of the trip. Hearkening back to the route choice model

(Table 6.4), the largest marginal rates of substitution, and therefore the time components
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6.3. Sample Logit Results Visualized

the passenger seeks to minimize most are, in order, access wait time, egress walk time,
and then access walk time. Returning to Table 6.5, any alternatives with long access wait
times and non-zero egress walk times can be eliminated. This criteria therefore leaves only
Alternatives A and B remaining between which the largest differentiator is that Alternative
A has an access walk time that is half that of Alternative B. In this rough example, the
route choice parameters and their relative value compared with one another can, therefore,
quickly give order to a choice set and conceptually illustrate how path probabilities are

calculated.

Table 6.5: Sample choice set probability table

Alternative Attractive Path  Prob. Total Time (Min.) Access Walk (Min.) Access Wait (Min.) IVT (Min.) TR Wait Time (Min.) Egress Walk (Min.)

A 4 =22 63.2% 64 10 4 31 19 0
B 6 — 22 19.6% 65 20 3 31 11 0
C 18 — 22 5.5% 73 6 11 40 16 0
D 4—=5 5.3% 64 10 4 32 10 7
E 4 =11 4.4% 58 10 4 32 2 10
F 6—5 1.6% 64 20 3 32 2 7
G 18 =5 0.4% 70 6 9 41 7 7
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Chapter 7

Model Application Case Study

Route choice parameter coefficients form the backbone of transit ridership projections.
Therefore, now that these parameters have been estimated for the current state of the
regional transportation network (including the addition of the light rail, commuter rail, and
bus rapid transit lines since 2000), transit ridership projections with increased accuracy can
be performed. The key benefit of performing these transit assignments is that the route
choice parameters are calibrated to the route choice behavior from the Twin Cities rather
than adopting fixed values from other cities.

To illustrate the value of the calibrated route choice parameters, the Flexible Assignment
and Simulation Tool for Transit and Intermodal Passengers (FAST-TrIPs) model developed
by Alireza Khani (2013) [48] will be implemented to ascertain the ridership impact the
introduction of the A Line arterial Bus Rapid Transit (aBRT) route had on ridership on all

routes across the Twin Cities region.

7.1 Assignment Methodology

7.1.1 Demand Scaling

Similar to the SBSP algorithm described in the route choice methodology above, the FAST-
TrIPs model requires origin and destination locations as well as the GTFS transit network
data. Unlike the SBSP methodology, however, this assignment methodology requires an
input demand file for all transit riders in the metro region. Thus, while a sample of ap-

proximately 2,000 passengers is used for the route choice calibration this input number of
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passengers is scaled up to be nearly 212,000. The input demand is again taken from the
2016 On-Board survey records for passengers that have access/egress links that are walked
rather than traversed by any other mode. Within the on-board survey, each individual
record (passenger) has an associated linked weight factor which estimates “the number of
trips per day” that are made between the origin and destination location. As such, the input
demand file for the FAST-TrIPs model was generated by creating a number of duplicate
passengers (same origin and destination coordinates) equal to the linked weight factor. In
order to avoid overloading individual routes and to provide a more accurate and smooth
demand function with respect to the time of day, each of the duplicate origin-destination
passengers was randomly assigned a preferred departure time (PDT) within 1 hour of the
PDT of the base passenger contained within the survey record. The result (Fig. 7.1) is a

fairly typical demand distribution plot with peaks in the morning and evening rush hours.
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Figure 7.1: Preferred departure time probability distribution

47



7.1. Assignment Methodology

7.1.2 K Means Spatial Demand Clustering

Aside from the demand profile, the only other significant departure from the SBSP method-
ology lies in the method by which the access and egress links were generated for the FAST-
TrIPs algorithm. Due to the small number of passengers (2,000) in the SBSP sample pop-
ulation, access and egress links were generated connecting each passenger’s unique origin
and destination to the transit network. Unfortunately, due to the much larger number of
passengers that are input to the FAST-TrIPs model, replicating the method for producing
access and egress links at a latitude-longitude level is not feasible as this simulation would
have taken 27 days to complete.

While transportation analysis zones (TAZs)—geographic units usually consisting of one
or more census blocks, block groups, or census tracts—are often used as a proxy by which to
categorize transportation demand, such a method is fraught with problems in the context
of Twin Cities transit assignment. In practice, TAZ methodology most frequently assigns
the location of all individuals contained within the zone to all be artificially placed at
the center of the zone. As a result, the number of origin and destination locations is
drastically reduced becoming a function of the zones rather than the number of sampled
passengers. While this may seem like the perfect solution to the problem of access/egress
link generation for increased demand, this method is best suited for auto rather than transit-
based trips. The reason this method is inapplicable to the transit route choice context is the
inherent inaccuracy in this method’s walking distance calculations as measured from the
TAZ centroid. As described in Section 6.1, individuals have a strong aversion to walking
relative to in-vehicle time. Therefore, in order to minimize walking distances, the transit
assignment model will most likely assign the passenger to the closest stop to the TAZ
centroid.

As shown in Figure 7.2, due to the short distance between local bus stops (small purple

dots), local bus stops have a much higher likelihood of being the closest stop to the TAZ
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TAZ

Centroid

Figure 7.2: Incorrect passenger assignment due to TAZ centroid methodology

centroid when compared with BRT stops (large purple circles) which have larger stop spac-
ing. As a result, although passengers have a higher relative utility for transitways (BRT,
LRT, and Commuter Rail), the assignment algorithm is more likely to assign passengers
to local routes when using a TAZ method to create access and egress links. This incorrect
assignment is especially prevalent considering that TAZ boundaries (shown as black lines in
Figure 7.2) often are drawn down the middle of key local streets and arterials which contain
a high percentage of the fixed route transit service in the Twin Cities region.

Clearly, a method must be implemented to generate access and egress links that com-
bines the increased accuracy of origin/destination locations, as found in the route choice
calibration method, with the fast computational times of the TAZ approach. The proposed
method that accomplishes both goals and produces higher accuracy passenger assignment
is a spatial clustering approach.

When researching the existing literature on spatial clustering methodologies, two pri-
mary clustering methodologies can be found based on the inputs they require. The first

clustering methodology relies on a maximum intra-cluster distance threshold between points
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while the second method relies only on a total number of clusters to create. Within the con-
text of origin and destination clustering, however, the distance threshold method does not
produce high-resolution clusters. Instead, because there are so many origin and destination
locations within the downtown regions, these methods create many clusters in the suburbs
while only generating one cluster for the downtown area because each of the downtown
points are within the maximum distance threshold of at least one other downtown point.
Due to this over-aggregation in downtown areas, the method used for this case study is K
Means Clustering in which the total number of desired clusters is input.

K Means clustering first creates “k” number of unique cluster points. Then, the algo-
rithm determines measures the distance between the demand location and each of the k
cluster points before assigning the demand location to the nearest cluster point. After all
locations have been assigned to a cluster point, the algorithm re-calculates the location of
the cluster point (hereafter referred to as the cluster centroid) to be the average position of
all locations within that cluster. This process continues until no centroid changes position

after recalculation.
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Figure 7.3: K Means clustered locations overlaid with TAZ grid
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The results of the K Means clustering of passengers’ origin and destination location
are shown in Figure 7.3 for a section of Snelling Avenue North. This figure depicts the
traditional TAZ grid overlaid above the demand locations (colored circles). Additionally,
TAZ 5 (boundaries highlighted in pink) is the same central TAZ shown in Figure 7.2.
Comparing these two figures one can see that there is, indeed, a large number of demand
locations near the centroid of the old TAZ (as shown by the off-yellow color). However,
the large pockets of demand to the southwest and northwest corners of TAZ 5 (orange
and dark brown respectively) now are assigned a cluster (rather than TAZ) centroid that
is almost exactly at where their true location lies rather than being removed by at least
three city blocks. As a result, the transit assignment for these individuals, and the greater
metropolitan region as a whole, is in much closer agreement with the actual paths these
passengers were surveyed on.

In order to determine the validity and accuracy of the K Means clustering method, the
ensuing transit assignment results for the full 2016 demand were compared with the Transit
Stops Boardings and Alightings data from 2016 provided by the Metropolitan council and
uploaded on the Minnesota Geospatial Commons (https://gisdata.mn.gov/dataset/
us-mn-state-metc-trans-stop-boardings-alightings). When analyzing the average
weekday ridership on select transitway routes (Blue Line, Green Line, and A Line), it was
found that the average values from the Geospatial Commons were 9-12% higher than the
corresponding values reported on the Metro Transit website (https://www.metrotransit.
org/metro-transit-ridership-tops-826-million-in-2016). As a result, the average
weekday ridership on these three routes was fixed as the value reported on the Metro Transit
website. It should be noted, however, that it is unknown whether the other non-transitway
routes are similarly overestimated in the Minnesota Geospatial Commons data used for the
methodology validation shown in Figure 7.4.

All routes with over 1,000 daily riders are included within this figure with the average

weekday ridership simulated by the route choice transit assignment model on the x-axis
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Average Weekday Ridership Comparison
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Figure 7.4: Comparison between simulated and realized daily route ridership

and the corresponding reported Geospatial Commons data on the y-axis. Additionally,
route number labels have been provided for any routes that deviate by more than 15% from
the “actual” ridership. Perfect agreement between the modeled ridership and Geospatial
Commons data would be realized if all points fell along the diagonal line. From this figure,
it is apparent that the majority of routes, including the A Line (denoted as Route 921)
are in close approximation with the actual weekday ridership observed in 2016. The two
significant outliers, even with the demand location clustering methodology, however, are the
Blue Line (Route 901) and Green Line (Route 902). At present, the best explanation for this

significant deviation is that the positive relative utility associated with rail transitways is
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not fully encompassed within the model. When including the two light rail lines, the fitted
linear regression line’s slope between simulated and actual ridership is 0.75 (where 1.00
would indicate perfect agreement on average) while the slope value is 0.86 when excluding
the light rail lines. As a result, it appears that the route choice model with K Means
clustering assigns transit demand fairly precisely for all routes except the Blue and Green
Lines.

While the under-simulation of the light rail lines remains an ongoing investigation, when
comparing the transit ridership before and after the introduction of the A Line service, the
methodology will be the same. Therefore, because the relative ridership changes between
the two time periods is being investigated, rather than absolute numbers, this inconsistency

will not cause inaccurate results.

7.1.3 Ridership Comparison Methodology

When comparing ridership changes before and after A Line implementation, the only
methodological change that was necessary was a change in the transit network GTFS files.
As a result, for both the transit assignment before and after the introduction of the A Line,
the same aforementioned route choice model parameters and input demand were used, with
just the A Line trip, stop, and stop time information removed from the network files. For
easy visualization of ridership changes between the two time periods at both the regional,
route, and stop levels, an interactive R Shiny application was created. Additionally, com-

parisons were made only for routes that existed in both time periods.

7.2 Case Study Results

Using the R Shiny application and the output load profiles generated for the before and
after A Line time periods several conclusions can be made. First, as shown in Table 7.1,
only six routes had a daily ridership change in magnitude of greater than 4% of the ridership

levels from before the A Line. Of these routes, Route 84 (the route that the A Line was
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largely designed to supplement) saw the greatest decrease in average daily ridership—falling
by nearly 90%. Furthermore, only one route across the entire metro region (excluding the
A Line as it did not exist in both time periods) saw an increase in daily ridership greater
than 5%. This route, Route 32, travels east-west from the northern terminus of the A Line
(Rosedale) to Robbinsdale.

This ridership increase may therefore signify that the increased service quality associated
with the A Line has helped to facilitate a marginal increase in east-west connections that
were not present before the A Line. Using the exact same demand size and locations
between the two time periods (therefore excluding the impacts of induced demand), this
case study has indicated, through use of the new route choice model parameters, that the
A Line has had a significant impact on the ridership as riders from the nearest and most

parallel routes have transitioned from their previous route to the A Line.

Table 7.1: Average weekday ridership change due to A Line service

Route Number Route Description Daily % Change Daily Count Change
84 Rosedale - Snelling - Sibley Plaza -89% -1,585

87 UMN St. Paul-Cleveland-Highland -19% -285

65 Dale Street-County Rd B-Rosedale -10% -118

74 46th St.-Randolph-W 7th St.-Sunray -6% -302

67 W Minnehaha-Raymond Station-Franklin Ave -4% -113

32 Robbinsdale-Lowry Ave-Rosedale +5% +95
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Chapter 8

Conclusion and Contributions

The primary aim of this research was to create a new route choice model for the Twin
Cities metropolitan region that included all the new routes and transitways introduced in
the last two decades. In creating this model, a new choice set generation methodology
was proposed that systematically generated choice sets of between 2 and 15 attractive
paths for each passenger by iteratively excluding previous paths’ trip components from the
transit network. Using these choice sets, a multinomial logit estimation model with path
size correction factor was used to maximize the likelihood that the simulated transit path
matched the actual path taken by each passenger.

On-board transit survey data was used to generate a preferred origin departure time,
precise origin and destination coordinates, the actual path taken by the passenger, and the
passenger specific demographic and trip purpose information. In addition to being the first
known transit route choice model to encompass transitways in the region, a major contribu-
tion of this study resides in the choice set generation method. This research demonstrated
that by including an iterative trip elimination method embedded in the schedule based
shortest path algorithm, a more robust and complete choice set can be generated without
having to continuously alter input parameters.

A second aim of this analysis was to ascertain which attributes (both network specific
and passenger specific) had the strongest influence on a passengers’ choice of a transit
path and if passengers chose the shortest (quickest) path. Based on the results of the
multinomial logit model, it can be concluded that passengers do not perceive the passage

of time uniformly with only 46% of passengers taking the shortest path. More specifically,
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passengers perceive the relative disutility of waiting to be three times larger than local bus
in-vehicle time. Additionally, the relative disutility of local bus in-vehicle time is nearly three
times that of transitway in-vehicle time and Twin Cities passengers associate a penalty of
nearly 29 minutes with each transfer. This strong aversion to transfers is further evidenced
based on the observation that when selecting a path from a set of attractive paths, nearly
90% of the population chooses a path with the minimum number of transfers.

Together, the route choice parameter results allow for heightened accuracy and under-
standing of transit riders within the Twin Cities. By using existing route-level average
weekday ridership counts as a baseline comparison, the previously mentioned route choice
parameters have been used to calibrate transit assignment models. Specifically, as illus-
trated with the A Line case study (Section 7), the coefficient values and relationships
amongst the variables relating to the different components of time can be used to fur-
ther improve the precision and validity of ridership projections and to highlight the impact

service additions (or subtractions) can have on system-wide ridership.

8.1 Future Work

Future avenues of work to be pursued are the inclusion of a transfer reliability factor as
well as an analysis on the perception of transit delays at both the stop and route level and
the subsequent impacts on transit route choice. Furthermore, a cross-nested logit model
could be created and compared with the multinomial logit model. Additionally, further
sensitivity analysis could be conducted on the trade-off between the number of K Means
demand clusters and the computational time to determine the number of clusters that
yields the best results. While time-intensive, an additional direction for future work could
center around the iterative regeneration of choice sets. Specifically, the entire procedure of
generating a choice set for each passenger and then estimating the route choice behavior

with a MNL model could be iterated over where, for each new iteration, the time-related
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route choice coefficient inputs to the choice set generation algorithm would be set as the
previous iterations’ MNL parameters. Through this iterative, but very time intensive,
procedure, one could examine if the model converged to a “best” set of estimated route
choice parameters.

While many interesting and exciting avenues exist for future research, the main con-
tributions of this research can currently best be summarized as creating a new choice set
generation method and path size overlap factor calculation as well as implementing a route
choice model that describes both traditional local and express routes as well as the imple-
mentation of transitways in the years since 2000. The results of this research, therefore,
provide a glimpse into the numerous transportation decisions individuals make every day.
By increasing our understanding of these decisions, transit systems and policy can, there-
fore, be better tailored to meet the needs and desires of passengers both in the present and

future.
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