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PUTTING ECOLOGY BACK INTO OPTIMAL FORAGING THEORY 

Abstract: Optimal foraging theory is one of the most popular areas in modem 
evolutionary biology. In this paper, I outline some of the main ideas of optimal foraging 
theory and describe two basic foraging models in detail. I argue that one of these mod-
els is less interesting than it should be because it does not include realistic assumptions 
about the environment or about the behavior of the forager. Then I describe a model 
that does make explicit behavioral and ecological assumptions. I argue for the use of 
particular, quantitative models and describe an experimental test of one such model. I 
discuss some criticisms of optimal foraging theory and will try to predict what the future 
holds. In particular, I show how optimal foraging theory might help to bridge the gap 
between individual behavior and population biology. 

INTRODUCTION 

For many years ecologists have been interested in the food habits of animals. Their 
question is, How do animals look for and select food? Optimal foraging asks the ques-
tion: How should animals look for and select food? The first papers to ask the question 
in this way were published in 1966.1•2 These and other early papers were mainly about 
optimal diet. An early review of the subject was provided by Schoener,3 and a well-
known account was given by MacArthur,4 who pointed out that as the overall density of 
prey decreases, predators should be less selective in their choice of prey. A consequence 
of this is that predators which compete with each other for prey should show greater 
overlap in their use of prey and should compete more strongly as prey density decreases. 

A great impetus to the study of foraging theory was provided by Chamov,5 - 8 who 
provided an explicitly mathematical theory and used the striking phrase "optimal forag-
ing" to refer to what Schoener3 referred to, perhaps more accurately, as "feeding strate-
gies." A broad view of foraging theory was laid out in an influential review by Pyke, Pul-
liam and Chamov,9 and most experimental work on foraging behavior has been based 
on the ideas contained in this review. Recently, three volumes have been published on 
foraging. Two of these are the proceedings of symposia, one10 held at Harvard Univer-
sity in 1983 and the other11 held at Brown University in 1984. The third volume is a 
monograph by Stephens and Krebs.12 I think that a reader interested in learning about 
optimal foraging theory would do best to begin with the book by Stephens and Krebs, 
which gives an excellent description of foraging models and the strategy of modeling and 



its criticisms, and with Schoener's13 informative, personal history of the early years of 
optimal foraging theory. 
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Early work on foraging theory was basically ecological, and Schoener's historical 
sketch reflects this point of view. More recently, foraging theory has been treated as al-
most exclusively behavioral, and ecological aspects have been neglected. This modem 
view is seen in the monograph by Stephens and Krebs, 12 who seek to understand for-
aging as a behavioral adaptation, with little attention being paid to its ecological con-
text and none to its ecological consequences. In the next section, I will begin by follow-
ing Stephens and Krebs in their treatment of the two basic foraging models, but I will 
present an alternative to one of these models and try to show that foraging theory can 
be ma.de more interesting by paying attention to the ecological context of the behavior. 
The model that I present permits a quantitative treatment of foraging behavior, which is 
more useful than the older, qualitative treatment because it permits the investigation of 
some ecological consequences of foraging behavior. 

OPTIMAL FORAGING MODELS 

In their review of optimal foraging theory, Pyke, Pulliam and Charnov9 described 
four problems that a forager must face: (1) What prey to take, and if prey are distributed 
in patches, (2) What patch types to search; (3) When to leave a patch, and ( 4) How to 
move between patches. Foraging theory may be divided into parts according to which of 
these questions it addresses. Most work on foraging theory has been done on problems 
(1) and (3). The least amount of work has been done on (4), perhaps because it is diffi-
cult to give a realistic, yet tractable, formulation of the problem. Stephens and Krebs12 

have lumped the problems involving choice [(1) and (2)] into one, which they refer to 
as the "prey" problem. They contrast this with the problem involving residence time, 
which they refer to as the "patch" problem. I will describe the basic prey and patch 
models as Stephens and Krebs describe them, and then I will present an alternative to 
the basic patch model. For all the models, an optimal forager is one that maximizes 
its long-term average rate of energy uptake or its long-term average rate of finding prey 
while foraging. 

The prey problem: What types of prey should a forager accept? 

The prey problem is to decide which of several types of prey (indexed by the sub-
script i) the forager should take. The basic prey model assumes: 

( 1) Foragers cannot search for prey and handle prey at the same time. 

(2) Individuals of each prey type are encountered one at a time, at random, indepen-
dently of other types, according to a Poisson process. 



(3) The net energy gain, ei, the handling time, hi, and the encounter rate, Ai, are fixed 
for each type i, and do not depend on the choices that the forager makes. 

( 4) The forager is able to discriminate among prey types perfectly and instantaneously, 
without cost. 

( 5) The forager has complete information about the parameters of the model, but does 
not use information acquired while foraging. 

The basic prey model predicts that: 
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(1) A forager will choose the most profitable prey types, where profitability is measured 
by the ratio e, / h,. 

(2) Foragers will be more selective when encounter rates are higher (that is, prey are 
more abundant). 

(3) Whether a particular type of prey will be ta.ken depends only on the abundance of 
more profitable prey; it does not depend on the abundance of the prey in question, 
or the abundance of less profitable prey. 

(4) Prey of a given type should be accepted always or never. There should be no "par-
tial preferences," with the forager taking some, but not all, items encountered of a 
particular prey type. 

Stephens and Krebs12 (following Krebs, Stephens and Sutherland14 ) cite many stud-
ies that test some or all of these predictions of the prey model. Most of these studies are 
classified as giving at least qualitative support to the theory. The most frequently tested 
prediction is that foragers prefer the most profitable prey. It is not surprising that this 
prediction is usually confirmed. 

The patch model: How long should a forager spend in a patch? 

In the patch problem prey are distributed in patches and a forager must decide 
when to leave one patch and go on to another. The basic patch model assumes: 

(1) Searching for patches and searching for prey within patches are mutually exclusive 
activities. 

(2) Patches are encountered at random according to a Poisson process with fixed rate 
A, for each patch type i. 

(3) The time chosen to leave a patch is independent of the forager's experience within 
that patch. 
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(4) For each patch type, i, the net expected energy gain is a fixed, continuous func-
tion, 9i(t), of the time that a forager remains in the patch. For each patch type, 
this function takes value O at time 0, increases initially, and is eventually negatively 
accelerating. 

(5) A forager is assumed to have complete information about the encounter rates Ai 
and the gain functions 9i(t), but no additional information about patch quality is 
obtained while the patch is being searched. 

The optimal foraging strategy for the basic patch model is given by Charnov's8 

"marginal value theorem," which says that the optimal time to remain in patch type i 
is the time ti when the derivative (the "marginal value") of the gain function gHti) = C, 
where C is the highest possible long-term average rate of energy gain. Charnov's theo-
rem is illustrated, for one patch type, in Fig. la. 

(Put Fig. 1 about here.) 

The basic patch model predicts: 

(1) Foragers should stay longer in a patch of a given type when the environment is 
poorer overall, or if travel time between patches is longer. 

(2) A forager should search all patches encountered until the net rate of energy gain in 
the patches is reduced to the same level. 

(3) A forager should take more resources from better patches. 

Again, a large number of studies12,H tend to show qualitative agreement with these 
predictions. By far the most frequently tested prediction is the first-that foragers should 
remain longer in patches when conditions are worse. 

There is a difficulty with Charnov's original marginal value theorem: it assumes 
that the gain function for a particular patch type is a continuous, deterministic func-
tion of time in a patch. For a real predator capturing individual prey, the gain function 
would be discontinuous and stochastic. In one patch, the gain function might look like 
that shown in Fig. lb, where the slope is almost always zero, and the marginal value 
theorem does not apply. Stephens and Krebs12 avoid this difficulty by referring to the 
net ezpected energy gain, thus making the theorem refer to stochastic models. However, 
a more serious problem remains: the marginal value theorem as stated by Stephens and 
Krebs does not specify a rule that a forager can to decide when to leave a patch. 

The trouble with the marginal value theorem is that it is based on the idea of a gain 
function, an idea drawn from economics, illustrated by a schematic figure, and assumed 
to satisfy some general, mathematically convenient assumptions. The gain function is 
given in place of detailed assumptions about how prey are distributed within and among 



patches and how foragers search for prey within patches. It is true that particular as-
sumptions about prey distribution and predator search pattern will yield a particular 
gain function, but different sets of assumptions about prey distribution and search pat-
tern, each calling for a different optimal foraging strategy, can yield the same gain func-
tion. 
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For example, in the original study testing a version of the marginal value theorem, 
Krebs, Ryan and Charnov15 asked which of three rules a forager would use to decide 
when to leave a patch. One rule said that a forager should stay in each patch until a 
particular number of prey are found (the fixed-number rule), another said that a forager 
should stay for a fixed time in each patch (the fixed-time rule), while the third said that 
a forager should leave a patch when a fixed time has been passed without a prey hav-
ing been encountered (the giving-up-time rule). Krebs et al. 15 treated the giving-up-time 
rule as optimal, and interpreted the data as being consistent with this rule, but such a 
strategy would not be considered possible by the version of the marginal value theorem 
described by Stephens and Krebs, 12 which only permits the fixed-time rule. Iwasa, Hi-
gashi and Yamamura16 showed that if search within patches is random, then, depending 
on the distribution of prey within patches, each of the strategies considered by Krebs et 
al. 15 could be best of the three. If all patches contain the same number of prey, then 
the fixed-number rule is best ( the fixed number is not necessarily the number of prey 
originally in each patch); if the number of prey per patch has a Poisson distribution, 
then the fixed-time rule is best, while if the number of prey has a negative binomial dis-
tribution (with small enough parameter k), then the giving-up-time rule is best of the 
three (but not best overall). 

Thus, the form of the optimal rule for a forager to use to decide when to leave a 
patch depends on the distribution of prey within a patch, a fact obscured by treating the 
problem using a general gain function. Further, the rate of energy gain that an optimal 
forager can achieve depends on how prey are distributed in patches. The importance of 
prey distribution is emphasized in Oaten's17 stochastic model, of which the examples 
given by Iwasa et al.16 are special cases. 

Oaten's stochastic model of optimal foraging 

Oaten devised a new patch model in an attempt to demonstrate the importance 
of including more biological details than were found in Charnov's original patch model. 
Oaten's model assumes: 

(1) Prey are found in patches, and the predator knows the distribution of the number of 
prey per patch. 

(2) The predator knows the joint distribution of the capture times, given the number 
of prey in a patch. Patches are superficially similar and of the same size. (That is, 
they are all of one "type," in the terminology of Stephens and Charnov.18 ) 



(3) Prey are not replaced as they are captured. 

( 4) The predator knows the time r that it takes to go from patch to patch. 

(5) The predator decides when to leave a patch based on its knowledge of (1), (2) and 
(4), and its experience in the patch. 

(6) Given a strategy we can calculate 
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R = E(G)/[E(T) + r] (1) 

where 

E( G) = the expected number of prey caught in each patch, 

E(T) = the expected length of time spent in ea.ch patch, and 

R = the long-term average rate of finding prey using the given strategy. 

(7) The predator uses the strategy that maximizes R. 

Oaten's model is very general, and particular predictions follow only from particu-
lar assumptions. The first prediction of the basic patch model (that foragers should re-
main longer in patches when travel time between patches is longer) follows from Oaten's 
model. The basic patch model's third prediction (that foragers should take more prey 
from patches that have more prey) also follows from Oaten's model, if prey are distributed 
at random within a patch. The second prediction of the basic patch model ( that foragers 
should search all patches until the rate of finding prey in each has fallen to the same 
level) does not, in general, follow from Oaten's model. 

The advantage of Oaten's model over the basic patch model is that it permits the 
consideration of patch variability and the use of information obtained while foraging. 
In its first two assumptions, Oaten's model has a place for explicit descriptions of the 
environment and the forager's pattern of search. Oaten's model has the disadvantage of 
being complicated and very difficult to work out in detail. 

McNamara19 has given a general theorem that characterizes the patch-leaving rule 
for Oaten's model. McNamara's theorem is given in terms of a •"potential" function: 

H(t, x) = max[G(t, x, S) - 1 T(t, x, S)], s (2) 

where I is the highest possible long-term average rate of energy gain, and G( t, x, S) and 
T( t, x, S) are the expected net energy obtained and the expected time spent in a patch 
from time t on, respectively, given that the forager has had experience x by time tin a 
patch and Sis some strategy. For Oaten's model, x represents the times at which prey 



have been found, while for an example that I will describe, x is simply the number of 
prey that have been found by time t. McNamara's theorem, which says that an opti-
mal forager should remain in a patch as long as H(t, x) is positive, gives a true state-
ment about patch-leaving rules which may be used in simple cases, and his theorem has 
heuristic value-it emphasizes the point that it is not just the average rate of finding 
prey at any particular time that is important ( as is the case in the stochastic version 
of the marginal value theorem given by Pyke20 or the one by Stephens and Krebs12 ). 
However, McNamara's theorem is difficult to apply in particular cases. Its ma.in use in 
applications is to show that rules found by other methods are actually the best possible. 
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A number of particular cases of Oa.ten's model have been considered. These cases 
involve particular assumptions about how prey are distributed in patches. I will describe 
one example21 which I think is realistic biologically. 

A particular case of Oaten's model 

Assume: 

(1) The number of prey per patch has a negative binomial distribution. The probability 
function of the number of prey per patch may be written as 

(
a + x - 1) ( f3 ) a ( 1 ) :r: f(xla,.8)= x 1+/3 1+/3 

(2) The prey within a patch are distributed randomly (uniformly and independently) 
and search within a patch is systematic. This implies that capture times within a. 
patch will be random. 

(3) 

I use this notation because it is convenient to think about patches as varying in 
quality, with the number of prey in a patch having a Poisson distribution with param-
eter A, but with .:\ itself varying from patch to patch, and having a gamma. distribution. 
That is, 

.Ba Aa-le-,8A 
f(.:\la,.8)= r(a) (4) 

This is a familiar setup for a Bayesian model. 

The upshot of my assumptions (1) and (2) is that if the parameter A is thought of 
as being a random variable with a gamma prior distribution with parameters a and .B, 
and if a. forager has spent time tin a patch and has encountered x prey there, then A 
will have a gamma. posterior distribution with updated parameters a+ x and .B + t. We 
can think of a forager that has found z prey in a patch by time t as finding prey at an 
instantaneous rate of ( a + x )/(.8 + t) at time t. For this example, the number of prey 
found up to a particular time is a sufficient statistic for .:\ at that time, and the optimal 
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patch-leaving rule will consist of a set of times, t(k), such that a forager should leave a 
patch when the patch has been searched completely, or if exactly k prey have been found 
by time t( k ). 

For a given choice of a and /1 for the prey distribution, and travel time T, candi-
date optimal patch-leaving times may be found by dynamic programming. Values, C, 
are guessed for the highest long-term average rate that can be achieved, and strategies 
are found that "try to achieve" these rates. For each of the strategies that is found, 
the expected number of prey found and the expected time in a patch, EG and ET, re-
spectively, can be found, and these values can be used to calculate the rate R( C) = 
EG/(ET + T) that is achieved by the rule. The optimal strategy is the one for which 
R( C) = C, and the optimal rate is the value of C for which R( C) = C. 

For particular choices of a and /1, the points (ET, EG) may be plotted for all guessed 
values of C, and the result will be an analogue of the marginal value theorem. I illus-
trate this in Fig. 2a, for two types of patches, one twice as large as the other, and hav-
ing twice as many prey on average. Both patch types have the same value of a ( a = 
0.5), but /1 = 0.1 for the large patches and /1 = 0.2 for the smaller patches. The op-
timal patch-leaving rules, corresponding to the ET - EG points indicated by aster-
isks in Fig. 2a, are illustrated in Fig. 2b. The optimal rules are qualitatively similar 
for the two patch types, but it can be seen that a forager is slightly more reluctant to 
leave larger patches. [In this particular case, I first found the optimal strategy for the 
case that all patches are large and travel time T = 0.1. For this case, the optimal rate is 
R = 8.07 4, which may be compared with the rate R = 4.545, which would be achieved 
by a "naive" forager that ignored experience within patches and searched each patch 
completely. Having found the value R = 8.074, I used this value to find the strategy that 
"tries to achieve" this rate for the smaller patches.] 

(Put Fig. 2 about here.) 

While there is some difference between the leaving rules for large and small patches 
in the example that I have given, very little would be lost if the forager used the same 
rule in both types. On the other hand, a great deal would be lost if the forager could 
not use information obtained while foraging. If both sizes of patch are equally frequent, 
then an optimal forager can find an average of 8.074 prey per unit time (with T = 0.0660), 
while a forager that does not distinguish between patches of different sizes, but uses the 
same rule for small patches that would be best for large ones, would achieve rate 7.983, 
about 1 % below the maximum rate. On the other hand, a forager that ignores informa-
tion about patch quality obtained while foraging would achieve rate 4.596, about 43% 
below the maximum. In other words, in this case it is much more important to recog-
nize differences among patches of the same size than to recognize the difference between 
patch sizes. While one example does not suffice to show the relative importance of dif-
ferences within and between patch types in general, the important point here is that 
Oaten's model permits the quantitative treatment of this question for particular cases. 
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A quantitative treatment of foraging is important if one wants to investigate the popula-
tion consequences of foraging behavior. 

POPULATION CONSEQUENCES OF FORAGING BEHAVIOR 

Recently biologists have been exhorted to consider the population consequences 
of individual behavior.22•23 There has been little attempt to use foraging theory to un-
derstand population- and community-level phenomena, largely because behavioral ecol-
ogy, of which foraging theory is a. part, has been concerned with lower-level phenomena. 
Since the questions asked by behavioral ecologists have been generally qualitative, it has 
not seemed necessary to develop a quantitative theory, and it is not easy to see how the 
qualitative theory that has been developed is relevant to population ecology. In fact, the 
development of a quantitative foraging theory appropriate to the understanding of pop-
ulation ecology has proceeded quite independently of the development of foraging theory 
within behavioral ecology.16•17•19•24 - 27 

One case in which foraging theory has been applied to population ecology is the 
predator-prey model based on the Lotka-Volterra equations considered by Murdoch and 
Oaten.25 In the usual model, the rates of change of the number of prey, N, and the num-
ber of predators, P, are given by the differential equations: 

dN/dt = aN - bNP, and 
dP/dt = -cP + dNP, (5) 

where a, b, c and d are positive constants. In this model, the amount of predation is 
proportional to the product of the number of predators and the number of prey. That 
is, the rate of finding prey, per predator, is proportional to the number of prey. The 
predator-prey system governed by the Lotka-Volterra equations is neutrally stable, and 
the question arises how these equations can be modified realistically to yield stability. 
Murdoch and Oaten modified these equations to permit the predation rate per predator 
to be a function, R(N), of the number of prey, and they used foraging theory to deter-
mine the form of R( N). The equations become: 

dN/dt = aN - bR(N)P, and 
dP / dt = -cP + dR( N)P. (6) 

For an equilibrium for these equations to be locally stable, the ratio R(N)/N must be 
increasing at the equilibrium. The value of R used in these equations is slightly different 
than that given in expression (2) because the time spent handling prey must be taken 
into account. Thus, we have: 

R(N) = EG/[ET + r + hEG], (7) 

where h is the handling time per prey. 



Using essentially the same assumptions as in Oaten's17 subsequent model, except for 
the assumption that foragers are optimal, Murdoch and Oaten25 assumed that prey are 
distributed in patches, and that search within patches is random. They assumed that 
predators use the giving-up-time rule with a particular, rather short, giving-up time. 
Then they specified the prey distributions within patches, letting these distributions 
change in specified ways as the overall prey population, N, changed. They assumed that 
prey distribution is either Poisson or negative binomial, and they varied the prey distri-
butions in patches in three ways: (1) for the Poisson distribution, parameter>. is propor-
tional to N, while for the negative binomial distribution, (2) the parameter k (o: in my 
notation) is held constant, or (3) k is proportional to N. In each case, there is a range 
of values of N for which a stable equlibrium is possible if handling time is small enough. 
Murdoch and Oaten's treatment of foraging theory has the disadvantage that the giving-
up-time rule is not the optimal strategy for either of the types of prey distribution con-
sidered, and the giving-up time chosen is not the best among all giving-up times for the 
particular cases examined. Thus, their results might be explained by saying that their 
model only seemed to be stabilized by foraging behavior because the foraging strategies 
considered are inefficient, and that the ratio R( N) / N seemed to increase because the 
foraging strategy considered, is less inefficient at higher prey densities. 

I have done some calculations using the same model as Murdoch and Oaten25 , but 
I assume that the forager uses the strategy that is optimal at equlibrium, and that this 
same strategy is used for prey densities around the optimum. In Fig. 3, I have consid-
ered cases (2) and (3) of Murdoch and Oaten, and the ratio R(N)/N is plotted against 
N for single examples for each of these two cases, for travel times h = 0 and h = 0.05. It 
is seen that the equlibrium can be stable if the negative binomial parmeter k is held con-
stant (and if travel time is small), but not if k is proportional to N. H prey distribution 
is Poisson, the best that can be hoped for is neutral stability because the optimal strat-
egy is to stay in each patch for a fixed time, and the number of prey found during that 
time will be proportional to overall prey density. 

(Put Fig. 3 about here.) 

By using optimal foraging theory, I find that stability is possible with Murdoch and 
Oaten's model, but that the conditions for stability are more limited than those sug-
gested by Murdoch and Oaten. My calculations, and those of Murdoch and Oaten, show 
that foraging behavior might contribute to the stability of a predator-prey system under 
certain conditions, and that these conditions involve how the predator forages, how the 
prey are distributed in patches, and how the prey distribution changes with overall prey 
density. While some ·of this is obvious, I do not think that it has been reported that the 
stability of a predator-prey system depends on the pattern of change of prey distribu-
tion with changes of prey density. This is a qualitative observation, but it results from a 
quantitative treatment of foraging theory. 

A conclusion similar to mine holds for a "phenomenological" host-parasitoid model 
considered by May,28 who assumed that the probability that a given host a.voids attack 
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can be represented by the zero term of a negative binomial distribution. May showed 
that the system will be stable if the degree of aggregation of attack is great enough ( that 
is, the negative binomial parameter, k, is small enough). While May does not mention 
the fact, the stability of his model depends not only on the degree of aggregation of at-
tack, but also on the way this degree of aggregation varies with parasitoid density. Has-
sell and May22 interpreted the aggregation of attack in terms of aggregation of hosts, 
but Chesson and Murdoch29 showed that the important thing for the stability of host-
parasitoid systems such as that considered by Hassell and May24 is aggregation of attack 
and not aggregation of hosts. I think that an important contribution of the models of 
Murdoch and Oaten, and of Hassell and May, is that they are not just models of popu-
lation dynamics, but they include expressions that depend on the behavior of individual 
animals. One of the goals of optimal foraging theory should be to develop quantitative 
models that will permit the evaluation of the expressions contained in these models of 
population dynamics. 

CRITICISMS AND TESTS OF OPTIMAL FORAGING THEORY 

Optimal foraging theory has received strong criticism, 30•31 some of which is intended 
to discredit the whole subject. The strongest-or fiercest-criticisms have been answered,12 •32 

and I do not think that the assertion that optimal foraging theory is "a complete waste 
of time" 31 can be sustained. Such extreme criticism can best be answered by asking 
whether optimal foraging theory has been of any practical use to those interested in un-
derstanding animals' food habits. The answer to this is clearly, "yes." The question of 
how useful is foraging theory remains, but the most extreme critics of the theory have 
not asked this question. The developers of optimal foraging theory have not been inter-
ested in applications, so the theory is not as useful as it could be. Most criticisms of the 
theory have been concerned with the philosophy of modeling and methodological issues. 
A number of critical views of optimal foraging theory are listed by Schoener.3 

These views are of three types: ( 1) Optimal foraging theory says that animals for-
age optimally, in some sense, and any evidence to the contrary is accommodated by 
adding ad hoc hypotheses to change the model, or the sense in which foraging is to be 
optimal. This view sees foraging theorists insisting, "foraging is optimal," and keeping to 
this form even if they have to change the meaning. I do not think that this view of opti-
mal foraging theory is a correct one because, as Stephens and Krebs 12 say, the assump-
tion of optimality is not under test. While optimal foraging theorists are not guilty of 
the sin of ad hocery, I think that they do suffer from an excessive fear of being accused 
of it. If anything, they are too wiwilling to modify their ideas and think them through 
again when they are found to be wrong. 

(2) The problems faced by foragers are too complicated to be represented by sim-
ple models, and even if this were not true, we would still not know what these problems 
are. I think that there is some validity to this view. It is less likely to apply to the qual-
itative models descibed by Stephens and Krebs than to the quantitative models that I 
prefer. I think that it is important to consider a variety of models, and to fit the models 
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to the known facts. It certainly is unlikely that a single, simple, inflexible model will fit 
all cases. I think that working out the details of optimal foraging theory will be difficult 
in any case, but the question is whether it is impossible. I do not know what the answer 
is-the thing is to try. 

(3) Optimal foraging theory has been tested and shown to be incorrect. (Or, it has 
been shown to be correct, and is of no further interest.) The strongest criticism and the 
most vigorous defense of optimal foraging theory are both based on the interpretation of 
experimental tests of the theory. The difference of opinion is based on the fact that sup-
porters of optimal foraging theory take the confirmation of general, qualitative predic-
tions as evidence that the theory is correct, while opponents take the refutation of spe-
cific, quantitative predictions as evidence that the theory is false. For example, Stephens 
and Krebs 12 point to scores of tests that show that foragers tend to prefer the most 
profitable prey as evidence that the theory is correct, while Gray 30 points to evidence 
that foragers show "partial preferences" as evidence that the theory is incorrect. 

Two issues are raised by tests of optimal foraging theory: whether or not the as-
sumptions of the model are general, and whether the predictions are qualitative or quan-
titative. There is some confusion over what is meant by generality. Models which do 
not refer explicitly to particular cases, such as the basic prey model which I have de-
scribed above, are sometimes thought of as "general," even though their assumptions 
may be so restrictive that they hold for few, if any, cases. Truly general models apply 
to more cases, but they generate fewer, and less specific, predictions. Neither the basic 
prey model nor the basic patch model refer to particular cases-they are general in that 
way-but this does not mean that they are truly general. The basic prey model assumes 
that foragers are omniscient, and can discriminate among prey types instantaneously, 
and without mistakes. These assumptions are clearly too strong to apply to any case. 
That is, in a mathematical sense, this model is vacuous. The fa.ct that one prediction 
tends to be confirmed-that foragers should prefer the most profitable prey-happens 
because this prediction would also follow from weaker, more realistic assumptions. That 
another prediction fails-that foragers should never show partial preferences-happens 
because the prediction follows from one particular, unrealistic assumption: that discrimi-
nation is perfect, but it would not follow if this assumption were relaxed. 

The other issue is whether one wants qualitative or quantitative predictions. Stephens 
and Krebs 12 take experiments showing that foraging behavior is better than random 
as evidence in favor of optimal foraging theory, while Gray 30 takes evidence showing 
that foraging is not perfect as evidence that foraging is not optimal. I think that we can 
safely say that the behavior of foragers is better than random and less than perfect. It 
is unreasonable to expect foraging behavior to be perfect, but we might expect some-
thing better than statistically significant non-randomness. It would be good to be able 
to measure the efficiency of foraging quantitatively, to see whether behavior was closer to 
randomness or to perfection. Such measurement is possible in an experiment performed 
by Lima. 
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Lima's test of an example of Oaten's model 

While there have been many experiments testing the predictions of the basic patch 
model, I know of only two good published tests of Oaten's model. Both of these were 
done by Lima.33 •34 I will describe one of these experiments, which not only provides a 
test of a stochastic foraging model but which also illustrates the difference between com-
paring the observed behavior with optimal behavior and comparing the observed payoff 
with the optimal payoff. 

Lima observed the foraging behavior of free-living Downy Woodpeckers foraging on 
60 artificial "trees," which were wooden dowels, each having 24 holes drilled in six rings 
of four holes each. "Prey" (pieces of sunflower seeds) were placed in some of the holes, 
and all of the holes were covered with pieces of tape. In each experiment, some of the 
trees were left with all the holes empty, while the other (''full") trees had prey in a fixed 
number of holes, which were chosen at random. Foraging was observed to be systematic 
among and within trees. Typically, a bird would search each tree beginning at the low-
est holes and proceeding to the top, with all, or nearly all, of the holes being searched 
if prey were found in the first few holes. If no prey were found in the first few holes 
searched, then the bird abandoned the tree. If one assumes that the birds search all the 
holes in a tree in which some prey are found, then the optimal strategy is to search a 
fixed number of holes, k, in each tree, to leave if no prey have been found, and to stay 
until the end if any prey have been found. If the value of k is too large, then a bird will 
tend to stay too long in empty patches, while if k is too small a bird will be too likely 
to leave patches that are really full. If full patches contain exactly n prey, and if propor-
tion a of all patches are full, then the rate of finding prey (per hole searched) is given by 
R(k) = EG/[ET + r], where 

ET= k + (24- k)a[l - (
24

: k);(~)],and 

EG = an[l - (
24

: k)1(:
4)1. (8) 

I have calculated EG and ET for the case that "full" patches haven - 12 prey, and 
a = 0.4, using the value r = 4, roughly obtained from the data for travel time, and I 
plot R( k) against k as the upper histogram in Fig. 4. The observed frequencies of leav-
ing empty trees after having searched exactly k empty holes in Lima's experiment are 
plotted as the bottom histogram in of Fig. 4. One way of interpreting this distribution 
of k values is to imagine that the birds are using rules of the type: Jearch exactly k hole., 
in each tree; if no prey have been found leave; otherwise remain until all the holes have 
been searched-but the value of k used varies randomly from tree to tree. That is, assume 
that the forager uses a mixture of pure strategies. Then the expected payoff for such a 
mixed strategy can be estimated by averaging the payoffs, R( k ), over the observed dis-
tribution of k. This average rate is plotted as the dotted line in Fig. 4, where it can 
be compared with solid lines above and below it. The upper line represents the high-
est possible value of R( k ), corresponding to k = 3 here, and the lower line corresponds 



to a "naive" strategy in which a bird ignores experience in a tree and searches all holes 
[R = na/(24 + T) = 0.1714]. 

(Put Fig. 4 about here.) 
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The birds in Lima's experiment showed variability in the strategy they used-that 
is, the k value-under the same experimental conditions. One way to interpret this vari-
ability of behavior is as a deviation from optimality. The magnitude of this deviation 
might be measured by the coefficient of variation of the observed k values [u / µ = 0.4284]. 
Since the mean value of k is not the optimum value, it might be better to use the mean 
squared-error divided by the optimum value of k. This ratio would be 0.5228. This mea-
sure represents a fairly large relative deviation of behavior from the optimum, but a 
comparison of the average payoff with the optimum [0.2859 vs. 0.2953] shows a very 
small relative difference [3.2%]. This reveals an important point: it is not how much 
behavior differs from the optimum that is important, but how much the results of the 
behavior differ from the optimum. This point is not seen by using qualitative models. 

THE FUTURE OF OPTIMAL FORAGING THEORY 

Foraging theory has shed light on the food habits of animals, for example, by draw-
ing attention to handling time as a. factor affecting the profitability of prey. Most zool-
ogists have been less interested in whether the theory is true than in the insight that is 
gained by considering the assumptions of the models. Optimal foraging theory offers the 
prestige of an explicitly mathematical formulation and the attraction of language taken 
from economics, but these apparent advantages are balanced by the loss of biological in-
sight when economic assumptions replace ecological ones. 

I think that an increasing amount of experimental work on foraging animals will 
focus attention on particular cases. I hope that this will force theorists to pay more at-
tention to particular cases, and this will include paying more attention to the ecological 
context of foraging. Details revealed by experiments will suggest new theoretical ques-
tions, which will enrich the theory-if theorists pay attention. One detail that is im-
portant in patch models is the question of how a forager knows it has reached the end 
of a patch. This question does not arise if foraging is assumed to be random, as is of-
ten done, or if search is assumed to be systematic a.nd the forager knows when it has 
reached the end of a patch, as I assume.26 However, Baum35 has shown in an experiment 
with pigeons that foraging may be systematic but not complete, resulting in a sudden, 
but unsignalled, decrease in the rate of finding prey. An animal using such a pattern of 
search has the problem of deciding when the rate of finding prey changes. Another pos-
sibility is that patches are large, but that foragers are chased out at some random time 
(Cowie's "door slamming" hypothesis).36 As far as I know, these last two cases have not 
been treated theoretically. Another important detail is the question of whether patches 
are revisited during a bout of foraging. In Oaten's model, it is assumed that there are 
many patches and they are not revisited, but in some experiments, patches can be revis-
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ited. In these cases, a different theory is required, perhaps one extending the beginning 
ma.de by Krebs, Kacelnik and Taylor37 with their two-armed bandit model. 

While there are a great number of theoretical ideas about foraging that need devel-
oping and testing, I do not think that it is necessary to conduct any more tests of the 
basic prey and patch models which I have described. I think that we can safely say that 
foragers offered different types of prey will tend to prefer the most profitable, and for-
agers searching for prey in patches will tend to be more reluctant to leave patches when 
the travel time between patches is longer. I think we can say that animals forage non-
randomly, but not perfectly. The question is, can we say more? For example, can we say 
how good foraging is? We can do so in some cases, as Lima's experiment shows, but to 
do so we need particular, quantitative models. Foraging behavior is not only of interest 
to people who study the behavior of individual animals, but it also important in under-
standing larger-scale ecological questions like competition within and between species 
and predator-prey relations. A quantitative theory is necessary if we want to apply op-
timal foraging theory to the study of these higher-level questions. In the predator-prey 
model of Murdoch and Oaten 25 which I described earlier, there is an explicit expression 
for the predation rate as a function of prey numbers. As I showed, optimal foraging the-
ory can be used to test whether the conditions for stability are met in this model. One 
of the points which emerged from this examination is that whether or not the system 
can be stabilized by optimal foraging depends on how prey distribution varies with vary-
ing prey numbers. This point can be seen only be looking at different particular cases. 

In their discussion of the uses of optimal foraging theory Stephens and Krebs12 

mention the ecological consequences of foraging, but they conclude that the time has 
not yet come for the study of such problems because more testing of the models is nec-
essary. I think that this conclusion is wrong on two counts. First, there is no need to do 
further tests of the generally stated, qualitative models whose truth Stephens and Krebs 
are concerned with. Second, by paying attention to the consequences of foraging, we can 
see that a quite different sort of foraging theory is needed, one that pays attention to 
particular cases and is able to treat them quantitatively. Foraging theorists should ask 
the question: What good does it do to know that (some) animals forage (approximately) 
optimally? That is, if the theory is as close to correct as can reasonably be hoped, how 
can this fact be used? If one has a theory that makes particular assumptions about the 
environment, and that makes quantitative predictions about the foraging rate, then this 
theory may be used to study the population consequences of foraging. I think that what 
we need to do is put ecology back into optimal foraging theory by paying more attention 
to the context of foraging and its consequences. 
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FIGURE 1 a) Cha:rnov's marginal value theorem for one patch type. The solid line rep-
resents the net energy gain, g(t), as a function of time in a patch. The dotted tangent 
line from the point ( -T, 0) touches the gain function when the patch residence time 
equals to, its optimal value. At this point the derivative of the gain function, g'(to) [its 
"marginal value"], equals the maximum possible long-term average rate of energy gain. 
b) The ga.in function for a forager that finds discrete prey [which here a.re found at times 
t = 0.1,0.3 and 0.7]. In this case, the derivative of the gain function is almost always 
zero, and Charnov's marginal value theorem does not apply. .... 
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FIGURE 2 a) An analogue of the marginal value theorem for two patch types, one twice 
as large as the other, and tending to have twice as many prey. In this case, the expected 
number of prey found per patch, E( G), is plotted against the expected time per patch, 
E(T), for a number of candidate optimal strategies. The dotted lines are the tangent 
lines to the ET - EG curves with slope R = 8.074. b) The optimal patch-leaving rules 
are of the form: leave a patch at time t( k) if exactly le prey have been found by that 
time. Asterisks indicate stopping points for smaller patches, x's for larger patches. For 
both patch types, a forager should leave a patch when it has been searched completely 
[t = 0.5 for small patches, t = 1.0 for large patches]. Notice that an optimal forager 
should be slightly more reluctant to leave larger patches. For each patch type, the num-
ber of prey per patch has a negative binomial distribution. 
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FIGURE 3 R(N)/N, the relative per predator rate of finding prey, plotted against the 
overall number of prey N. The forager is assumed to use the foraging strategy illustrated 
in Fig. 2b [x's], which is optimal for a systematic forager when prey distribution is neg-
ative binomial with a = 0.5 and /J = 0.1, and travel time is,,. = 0.1. As prey numbers 
change, the prey distribution is assumed to change in one of two ways: the negative bi-
nomial parameter k [my a] remains constant [solid line], or k is proportional to N [bro-
ken line]. The system equilibrium will be stable if R(N)/N is increasing at equlibrium. 
It is seen that the equilibrium having prey density averaging 5 per patch [for which case 
the optimal strategy is used] will be stable if k is constant and handling time h = 0. 
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FIGURE 4 Rate of finding prey, R(k), plotted against k, the number of empty holes 
searched before leaving a tree in Lima's experiment with Downy Woodpeckers. The up-
per, open histogram represents R(k), while the lower, solid histogram represents the ob-
served distribution of k. Solid horizontal lines represent the rates of finding prey that 
would be achieved by a "naive" forager [which searches every patch completely, R = 
0.1714], and an optimal forager [k = 3, R(3) = 0.2953]. The dotted horizontal line rep-
resents the achieved rate [R = 0.2859], calculated by averaging the R(k) values shown in 
the upper histogram, over the distribution shown in the lower histogram. 
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