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Abstract 

Thermosetting resins are highly crosslinked polymers that exhibit good chemical 

resistance, high thermal stability, and high modulus after curing. While these properties 

render thermosetting resins useful as structural, coatings, adhesives, and insulating 

materials, their high crosslink density causes thermosets to be inherently brittle and prone 

to cracking. Thus, both the academia and industry have made enormous efforts to toughen 

thermosetting resins. To date, liquid rubbers, core-shell rubbers, and block copolymers are 

commercially available as toughening additives for these resins. However, adding 

polymeric tougheners either significantly decreases the resin modulus and glass transition 

temperature (Tg) or requires a high loading level, which complicates the processing due to 

increased viscosity. Researchers have shown that rigid nanoparticles can toughen a resin 

with minimal reduction, or sometimes even an increase, of modulus and Tg. To harness the 

strength of inorganic tougheners, we studied the toughening effects of graphene derivatives, 

which have drawn much attention recently due to their high aspect ratios and outstanding 

mechanical properties. In addition, graphene-based toughener can toughen resin at 

extremely low loading levels, which means it is economically viable for price-driven 

unsaturated polyester (UP) and vinyl ester (VE) resins market. The objective of this thesis 

the to understand the toughening effect of graphene derivatives in resins.  

To achieve this goal, several surface modifications of graphene oxide were developed 

to help disperse GO into the resins. The best performing modified GO (mGO) investigated 

in this work can be homogeneously dispersed into a resin with merely mechanic mixing. 

To simplify the materials handling and further improve the toughener dispersion, a styrene 
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masterbatch route was developed to avoid the freeze-drying step in the mGO synthesis. 

The functionalization of GO was characterized by FTIR, XRD, TGA, and XPS. The 

morphology of mGO aggregates was characterized by TEM, AFM, SEM, and VLM. The 

toughening effect of pristine and modified graphene oxide was tested in both unsaturated 

polyester and vinyl ester resins. The result indicated that GO and its derivatives can 

toughen UP and VE resins at a loading lower than 0.04 wt.%. 

Although, these tougheners are highly efficient in terms of required loading, we found 

that the toughness improvement obtained by adding mGO is insensitive to changes in 

particle-matrix interfacial strength and toughener loading. To better understand this 

behavior, we studied the inorganic filler interference to mGO toughening, and also how the 

toughening effect brought by adding mGO is affected by the physical dimensions of GO 

sheet size and mGO aggregate size. The sizes of various fillers and mGO samples were 

analyzed using SEM. More sophisticated data analysis involving computerized particle 

analysis were also carried out to better characterized the size differences between samples. 

The results show that the toughening effect of mGO is identical to that of other inorganic 

fillers, and this toughening effect is independent of filler mechanical properties.  

Finally, the toughening performance of mGO was tested in glass fiber reinforced 

composites, which is the target product for UP and VE resins. Both the interlaminar 

fracture toughness test and Izod impact test showed no improvement in composite 

toughness after adding mGO. A detailed fractography analysis of failed composite samples 

indicate that the failure happens between the resin and the glass fiber, which means 

increasing the fracture toughness of the resin matrix will not likely show any effect on the 

composite fracture toughness. 



vi 

Table of Contents 

 

Acknowledgements ..................................................................................... i 

Abstract ...................................................................................................... iv 

List of Abbreviations ................................................................................. ix 

List of Tables .............................................................................................. x 

List of Figures ............................................................................................ xi 

Chapter 1 ..................................................................................................... 1 

1.1 Background of research .......................................................................................1 

1.2 Graphene polymer nanocomposites .....................................................................3 

1.2.1 Synthesis of graphene ...................................................................................3 

1.2.2 Functionalization of graphene and graphene oxide ......................................6 

1.2.3 Properties and applications of graphene polymer nanocomposites ............14 

1.3 Toughening of thermosetting resins...................................................................18 

1.3.1 Thermosetting resins are brittle materials ...................................................18 

1.3.2 Methods of UP and VE resin toughening ...................................................21 

1.3.3 Graphene material as a promising toughener in unsaturated polyester 

systems .................................................................................................................27 

1.4 Thesis outline .....................................................................................................28 

Chapter 2 ................................................................................................... 31 

2.1 Introduction ........................................................................................................31 

2.2 Experimental section ..........................................................................................33 

2.2.1 Synthesis of functionalized GO ..................................................................34 

2.2.2 Preparation of resin samples .......................................................................36 

2.2.3 Characterization ..........................................................................................37 

2.3 Results and discussion .......................................................................................39 

2.3.1 Chemical modifications of GO ...................................................................39 

2.3.2 Mechanical Properties of Graphene-toughened UPR .................................45 

2.3.3 Fractography Analysis ................................................................................47 

2.4 Conclusion .........................................................................................................52 

Chapter 3 ................................................................................................... 54 

3.1 Introduction ........................................................................................................54 

3.2 Experimental Procedures ...................................................................................57 



vii 

3.2.1 Synthesis and workup of modified GO .......................................................57 

3.2.2 Preparation of resin composite....................................................................58 

3.2.3 Characterization ..........................................................................................59 

3.3 Results and Discussion ......................................................................................61 

3.3.1 Chemical modification and post-modification work-up of GO ..................61 

3.3.2 Characterization of dispersion quality and mechanical properties of the 

composites............................................................................................................68 

3.3.3 Fractography Analysis ................................................................................74 

3.3.4 Toughening Vinyl Ester (VE) Resin ...........................................................77 

3.4 Conclusion .........................................................................................................79 

Chapter 4 ................................................................................................... 81 

4.1 Introduction ........................................................................................................81 

4.2 Experimental ......................................................................................................83 

4.3 Results and discussion .......................................................................................86 

4.3.1. Characterization of inorganic fillers and graphene-based toughener ........86 

4.3.2.  Effects of filler–mGO interactions on VE resin toughening ....................88 

4.4 Conclusions ......................................................................................................103 

Chapter 5 ................................................................................................. 105 

5.1 Introduction ......................................................................................................105 

5.2 Experimental ....................................................................................................107 

5.3 Results and discussion .....................................................................................111 

5.4 Conclusions .....................................................................................................126 

Chapter 6 ................................................................................................. 128 

6.1 Introduction ......................................................................................................128 

6.2 Experimental ....................................................................................................132 

6.3. Result and discussion ......................................................................................141 

6.3.1 Nanoparticle toughening of unreinforced resins .......................................141 

6.3.2. Nanoparticle toughening of glass fiber reinforced composites ................150 

6.3.3 Toughness translation from resin to composites: ......................................160 

6.4 Conclusion .......................................................................................................165 

Chapter 7 ................................................................................................. 168 

7.1 Introduction ......................................................................................................168 

7.2. Experimental ...................................................................................................170 

7.2.1 Graphene synthesis and characterization ..................................................172 



viii 

7.2.2 Preparation and characterization of graphene/PE composites ..................176 

7.3 Results and discussion .....................................................................................178 

7.3.1. Characterization of FGO sheets ...............................................................179 

7.3.2. Dispersion of FGO in PE .........................................................................181 

7.3.3. Properties of nanocomposites ..................................................................186 

7.4 Conclusions ......................................................................................................192 

Chapter 8 ................................................................................................. 194 

8.1 Summary of modified graphene oxide toughening of unsaturated polyester 

resin and vinyl ester resin ............................................................................................194 

8.2 Outlook ............................................................................................................197 

Bibliography ........................................................................................... 199 

 

  



ix 

List of Abbreviations 

AFM Atomic Force Microscopy ILSS Interlaminar Shear Strength 

ATBN 
Amine-Terminated Butadiene 

Acrylonitrile 
IR Infrared Spectroscopy 

ATRP Atom Transfer Radical Polymerization LLDPE Linear Low-Density PE  

BCP Block Copolymer mGO Modified Graphene Oxide 

CFRP Carbon Fiber-Reinforced Plastic NS Non-Sonicated 

CNT Carbon Nanotube OD Oven-Dried 

CSM Random Chopped Strand Mat OPE Oxidized PE  

CSR Core-Shell Rubber PCC Precipitated Calcium Carbonate  

CT Compact Tension PDMS Polydimethylsiloxane 

CTBN 
Carboxyl-Terminated Butadiene 

Acrylonitrile 
PE Polyethylene 

DCB Dual Cantilever Beam RAFT 
Reversible Addition− Fragmentation 

Chain Transfer 

DCM Dichloromethane RMB Resin Masterbatch 

DDA Dodecylamine  SA 
AEROSIL PDMS-Treated Fumed 

Silica 

DHA Dihexylamine SAED Selected Area Electron Diffraction 

DI Deionized SC CAB-O-SIL Untreated Fumed Silica 

DMA Dynamic Mechanical Analysis SEM Scanning Electron Microscopy 

DMF N,N-Dimethylformamide SMB Styrene Masterbatch 

DSC Differential Scanning Calorimetry TDI 2,4-Toluene diisocyanate 

EMI Electromagnetic Interference TEM Transmission Electron Microscopy 

ESD Electrostatic Discharge  TGA Thermogravimetric Analysis 

FD Freeze-Dried TMI 
3-Isopropenyl-α,α-

dimethylbenzylisocyanate 

FGO Functionalized GO TRG Thermally Reduced GO 

FRP Fiber Reinforced Plastic UP Unsaturated Polyester 

FTIR Fourier-Transform IR UPR Unsaturated Polyester Resin 

GCC Ground Calcium Carbonate VE Vinyl Ester 

GFRP Glass Fiber Reinforced Plastic VER Vinyl Ester Resin 

GNP Graphite Nano-Platelet VLM Visible Light Microscopy 

GO Graphene Oxide XPS X-Ray Photoelectron Spectroscopy 

GPC Gel Permeation Chromatography XRD X-Ray Diffraction 

 

  



x 

List of Tables 

Table 6.1. Viscosity of UPR, UPR with 12C-GO, UPR with CSR, and as-received CSR concentrate       130 

Table 6.2. Mechanical properties of mGO and CSR toughened polyester nanocomposites          143 

Table 6.3. Flexural properties, ILSS, and Izod impact strength of GFRP laminates          151 

Table 7.1. Molecular characteristics of PEs               172 

Table 7.2. Properties of graphene/PE composites              182 

 

  



xi 

List of Figures 

Figure 1.1. Structure of graphene oxide                   6 

Figure 1.2. Diazonium salt functionalization of graphene and subsequent click reaction              7 

Figure 1.3. Synthesis of P3HT-grafted graphene                10 

Figure 1.4. Proposed reaction scheme of isocyanate treatment of GO              11 

Figure 1.5. GO silanization by N-(trimethoxysilylpropyl) ethylenediamine triacetic acid            12 

Figure 1.6. A schematic of thermosets before and after free radical polymerization crosslinking           19 

Figure 1.7. Schematic reactions of forming UP backbone, crosslinking initiation, and cured resin           20 

Figure 1.8. Formation of VE resin prepolymer with bisphenol A diglycidyl ether oligomer and 

(meth)acrylic acid                   21 

Figure 1.9. TEM image of rubber toughened epoxy sectioning, stained with osmium tetroxide           24 

Figure 1.10. AFM phase images of cured neat resin and UP resin containing BCP             26 

Figure 2.1. The dimensions of the compact tension (CT) specimen              37 

Figure 2.2. Infrared spectra of pristine and modified GO samples              40 

Figure 2.3. X-ray diffraction patterns of pristine and modified GO              41 

Figure 2.4. XPS data of pristine and modified GO, and corresponding elemental analysis            42 

Figure 2.5. Thermogravimetric analysis of modified GO               43 

Figure 2.6. TEM and VLM micrographs of TMI-DDA-GO, TMI-GO, and GO             45 

Figure 2.7. Mechanical properties of UPR loaded with pristine and modified GO             47 

Figure 2.8. Definition of different regions on the crack surface               48 

Figure 2.9. SEM fractographs of failed compact tension samples              49 

Figure 2.10. Fractographs of resin/GO or resin/mGO composites with different loading levels                   51 

Figure 3.1. Schematic of post-synthesis processes and sample designations             59 

Figure 3.2. Infrared spectra of pristine GO and dodecylamine-modified GO (mGO)  \         62 

Figure 3.3. X-ray diffraction patterns of pristine GO and modified GO              63 

Figure 3.4. Thermogravimetric analysis of GO and mGO materials              64 

Figure 3.5. X-ray photoelectron spectroscopy data of pristine GO and modified GO            65 

Figure 3.6. XRD patterns and IR spectra of differently processed mGO              66 

Figure 3.7. SEM micrographs of differently processed mGO               67 

Figure 3.8. Photograph of 1.5 mm UP resin plaques prepared by the four different processes           69 

Figure 3.9. VLM micrographs of UP resin composites with differently processed mGO            70 



xii 

Figure 3.10. Particle size distributions of mGO aggregates in different mGO/resin composites                   71 

Figure 3.11. Mechanical properties of UP resin composites with differently processed mGO            73 

Figure 3.12. Mechanical properties of SMB-FD mGO/UP resin composites             74 

Figure 3.13. SEM fractographs of compact tension samples after testing              76 

Figure 3.14. VLM micrograph of VE resin with 0.04 wt.% SMB mGO              77 

Figure 3.15. Mechanical properties of mGO/VE resin SMB composites              78 

Figure 3.16. SEM fractographs of failed compact tension samples              78 

Figure 4.1. Morphology of filler particles                 87 

Figure 4.2. SEM of mGO particles, and TEM image of mGO particles inside resin composite            88 

Figure 4.3. Mechanical properties of VE resin composites with inorganic filler and mGO toughener         90 

Figure 4.4. SEM fractographs of neat VE resin and VE resin with various loadings of mGO and filler       92 

Figure 4.5. Mechanical properties of VE composites with calcium carbonate fillers and mGO toughener   93 

Figure 4.6. SEM fractographs of VE resin with calcium carbonate fillers and mGO toughener           95 

Figure 4.7. TEM micrographs of microtomed calcium carbonate/mGO resin composites            96 

Figure 4.8. Steady shear viscosity of calcium carbonate/VE resin dispersion             97 

Figure 4.9. Mechanical properties of VE composites with fumed silica materials and mGO toughener       98 

Figure 4.10. Steady shear viscosity of VE resin loaded with different fumed silica materials         100 

Figure 4.11. TEM micrographs of microtomed samples of fumed silica (2 pphr) VE resin composites     100 

Figure 4.12. SEM fractographs of VE resin with mGO and fumed silica            102 

Figure 5.1. SEM micrographs of GO samples subject to sonication for different durations          112 

Figure 5.2. AFM Z-plots of GO samples subjected to sonication for different durations          113 

Figure 5.3. Particle size distributions of GO samples that were sonicated for different times         114 

Figure 5.4. Mechanical properties of mGO-toughened UP resins with various GO sizes          116 

Figure 5.5. SEM images of DDA samples made with GO of different sizes           117 

Figure 5.6. A high magnification SEM micrograph of the DDA-30 sample           118 

Figure 5.7. SEM fractographs of neat UP resin, DDA–15, DDA–30, DDA–60, and DDA–120 samples   120 

Figure 5.8. SEM images of TDI-DHA-GO, DDA-GO, and ODA-GO from SMB and TDI-DHA-GO from 

RMB                   121 

Figure 5.9. Mechanical properties of mGO-toughened UP resins with differently modified GO         123 

Figure 5.10. SEM fractographs of TDI-DHA-GO, TDI-DHA-GO from RMB, DDA-GO, and ODA-GO 

samples                   126 

Figure 6.1. Transmission optical micrographs of polyester/GO and polyester/mGO nanocomposites        142 



xiii 

Figure 6.2. Plots of storage modulus and tan δ as a function of temperature           144 

Figure 6.3. SEM fractographs of UPR and UPR composites with 12C-GO, TMI-GO, and CSR         147 

Figure 6.4. SEM fractographs of VER and VER composites with 12C-GO, TMI-GO, and CSR         148 

Figure 6.5. Stress-strain curves of neat and toughened resin specimen            150 

Figure 6.6. Mode I interlaminar fracture toughness of GFRP specimen            155 

Figure 6.7. SEM micrographs of fracture surfaces of UPR CSM laminates after DCB testing         157 

Figure 6.8. SEM micrographs of fracture surfaces of UPR woven laminates after DCB testing         158 

Figure 6.9. SEM micrographs of fracture surfaces of UPR woven laminates after DCB testing         159 

Figure 6.10. The relationship between toughness improvement in FRPs and that in unreinforced resin    162 

Figure 6.11. The relationship between interlaminar fracture toughness and the fracture toughness of resin, 

and correlation between interlaminar fracture toughness and resin ductility           165 

Figure 7.1. Synthesis and schematic structure of FGO              174 

Figure 7.2. Schematic diagram of preparation of graphene/PE nanocomposites           176 

Figure 7.3. TEM micrographs and electron diffraction patterns (insets) of TRG and FGO          179 

Figure 7.4. FT-IR spectra and X-ray diffraction (XRD) patterns of FGO, GO and TRG          180 

Figure 7.5. Optical microscopy images of PE_A with different loadings of TRG and FGO          183 

Figure 7.6. Optical microscopic images of OPE with different loadings of TRG and FGO          184 

Figure 7.7. Optical Microscopic images of LLDPE with different loadings of TRG and FGO         184 

Figure 7.8. Optical microscopic images of LLDPE with 3 wt% TRG and FGO           186 

Figure 7.9. Electrical resistance of FGO/LLDPE composites after different thermal reduction time         189 

Figure 7.10. Surface resistance of LLDPE and PE_A with different FGO concentrations          190 

Figure 7.11. Tensile modulus of graphene/LLDPE, graphene/PE_A and graphene/OPE composites         191 



1 

Chapter 1 

Introduction 

1.1 Background of research 

Synthetic polymers are of key importance in modern society. Ranging from chewing 

gum to spacecrafts, polymers have diverse applications such as structural materials, barrier 

coatings, insulators, adhesives, electrical or optical materials, and so on. But for many 

applications, polymers are not used in their pure forms. Adding a secondary phase to a 

polymer can be advantageous, because it can introduce useful new properties to the final 

product.1 For instance, adding another polymer (polymer blends) may change the 

mechanical properties such as modulus,2 impact strength,3 or elongation at break4 of a 

matrix polymer; adding inorganic fillers can reduce the thermal expansion,5 change the 

rheological properties,6, 7 or improve the thermal/electrical conductivity;8, 9 incorporating 

air produces polymer foams, which are light-weight insulating materials.10 The technique 

of adding a secondary phase to create polymer composites allows people to design polymer 

products with tunable characteristics that can meet the needs for a plethora of scenarios in 

different industries.  

In recent years, polymer scientists and engineers discovered that polymer 

nanocomposites, which contain nano-sized secondary phases, manifest enhanced property 

changes at a much lower filler loading level than conventional composites, owing to a 

drastically increased interfacial area between the filler and the matrix polymer. This is 

because the behavior of the polymer chains can be perturbed by the presence of a different 

material. The perturbed volume is usually of a few nanometers in thickness around the 
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secondary phase. Winey and Vaia calculated that by decreasing the spherical particle size 

from 20 nm to 2 nm, the volume percentage of filler-affected polymer increases from 1.2 

vol.% to about 63 vol.%, assuming a 6-nm thick interface for both cases.1 In addition, 

decreasing the particle size at a constant filler loading level also significantly decreases the 

particle-particle distance in composites, which links to a lowered percolation threshold in 

polymer nanocomposites.11 This is especially useful in situations in which a high volume 

fraction of a secondary phase undermines other properties such as density, or elongation at 

break.12 

Graphene, a two-dimensional layer of sp2 carbon atoms in a honeycomb array, has 

attracted much attention in the past decade because of its superior electrical and thermal 

conductivity, barrier property, as well as high modulus and strength. Due to its small 

thickness of one carbon atom, graphene has a very high theoretical surface area of 2600 

m2/g.13 The union between excellent physical properties and high surface area hints that 

graphene could be a promising nanofiller in polymers. However, achieving good dispersion 

of graphene in a polymer matrix is difficult because graphene has very strong van der 

Waals interactions between multiple graphene layers and very poor compatibility with 

many polymers.14 Surface incompatibility limits the application of graphene-based 

materials in polymer composites. 

In this research, the main objective is to utilize graphene-based materials for 

toughening thermosetting resins. The scope of the thesis includes researching suitable 

chemical modifications for compatibilizing graphene with thermosetting resins, 

developing scalable processing techniques to disperse modified nanofillers into resins, 

studying the factors that may impact the toughening effect, and evaluating the nanofiller 
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toughening effect in fiber-reinforced plastic composite. Aside from that, a conductive 

polymer composite made with reduced graphene oxide is also included as a special topic. 

Various characterization techniques are employed to study the chemical modifications, 

resin composite mechanical properties, and possible mechanisms for fracture toughness 

improvement. 

1.2 Graphene polymer nanocomposites 

1.2.1 Synthesis of graphene 

Despite the great mechanical, electrical, and barrier properties discovered for graphene, 

obtaining these single sheets remains one of the greatest challenges for large scale 

applications. Though direct synthesis of graphene by chemical vaper deposition15-18 or 

unzipping carbon nanotubes and fibers19, 20 has been reported, graphite exfoliation is by far 

the most promising method of producing graphene for polymer composite applications due 

to high process cost and low yield of more direct syntheses. According to the nature of the 

transformation, exfoliation of graphite can be done physically or chemically.  

Physical exfoliation methods include micromechanical exfoliation,21 surfactant 

intercalation-exfoliation,22-25 and sonication.26-28 Micromechanical exfoliation, or the 

“Scotch tape method”, uses clear tape to peel off graphene layers from a graphite crystal, 

and the process is repeated until single layer graphene is obtained. This method produces 

high quality graphene monolayers with few defects and very good electrical performance, 

but it has minimal yield and is hard to scale-up. Surfactant-assisted exfoliation utilizes a 

high-speed shear mixer to cleave graphite, and the exfoliated few-layer graphene sheets are 

simultaneously stabilized by surfactant molecules. It is possible to scale up this process 
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since large industrial shear mixers are available, but the material produced by this method 

is predominantly multilayered and contains large amounts of solvent and surfactant,25 

which is not favorable for subsequent surface modification. Although prolonged sonication 

(460 h) of graphite in N-methylpyrrolidone (the best solvent for graphene) can yield a 1 

mg/mL dispersion,27 both sonication and the centrifugation steps required to remove 

unexfoliated graphite demand high investment and operating cost,28 thus the sonication 

exfoliation process is impractical for large-scale synthesis.  

While physical exfoliation relies on strong external forces to overcome the interaction 

between graphene layers, chemical exfoliation aims at reducing the interlayer van der 

Waals and π-π stacking interactions by creating sp3 carbon defects and changing the local 

conformation of the carbon networks. This will inevitably disrupt the delocalized π orbitals 

on the graphene plane and thus decrease the conductivity, but, since most of the carbon 

network remains intact, the mechanical properties of graphene are to a large extend 

preserved. Chemical exfoliation also introduces copious heteroatom-containing functional 

groups that can be further modified, and it shows a good potential for scale-up.29 Also, the 

weakened interlayer attraction renders the chemically treated graphite easy to exfoliate in 

common organic solvents, which benefits the solvent processing method for preparing 

polymer composite. 

It has been reported that graphene can be simultaneously exfoliated and chemically 

modified using alkali metal intercalation30-31 or electrochemical exfoliation.32 NaK alloy 

intercalated graphite can be used as a reactive intermediate that can react with diazonium 

salts or alkyliodide to covalently attach aryl or alkyl groups to the graphene surface. 

However, this route involves using highly reactive and moisture sensitive NaK alloys; 
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therefore, the scalability and possible modifications are limited. Electrochemical 

exfoliation is usually slow and oxidative, which means it has little advantage over bulk 

oxidation methods.32  

The most promising method so far to mass producing graphene derivatives is to 

functionalize and/or reduce graphene oxide. Graphene oxide (GO) is exfoliated graphite 

oxide, which is generally prepared by oxidizing graphite in a strong acidic environment 

and then exfoliating the layers. Three major methods to oxidize graphite flakes are the 

Brodie’s method, the Staudenmaier’s method, and the Hummers’ method.33 Brodie first 

discovered graphite oxide by oxidizing graphite flakes with potassium perchlorate in 

fuming nitric acid. Staudenmaier changed Brodie’s procedure by adding potassium 

perchlorate in aliquots over time in a nitric-sulfuric acid mixture. In 1958, Hummers 

reported a much safer and faster graphite oxide synthesis using potassium permanganate 

and sodium nitrate to replace potassium perchlorate and nitric acid.34 Since then, Hummers' 

method has been widely used for synthesizing graphite oxide. Recently, Tour et al. 

modified Hummers' method by carrying out the reaction in a sulfuric acid-phosphoric acid 

mixture, which gives highly oxidized graphite with much less emission of toxic gas.35 The 

structure of graphene oxide can be well described by the Klinowski model.36, 37 As shown 

in Figure 1.1, graphene oxide sheets contains hydroxyl and epoxy groups on the basal plane 

and carboxylic acid and ketone groups on the periphery. These oxygen-containing 

functionalities on GO not only stabilize exfoliated GO sheets in various polar solvents, but 

also provide active sites for further covalent chemical modifications.  
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Figure 1.1. Structure of graphene oxide. Hydroxyl and epoxy groups are located on the 

basal plane. Carbonyl and carboxyl groups are located at the edge of the GO sheets. 

As mentioned earlier, it is crucial to compatibilize graphene or GO with a polymer 

matrix to achieve good dispersion of graphene based nanofiller throughout the composite. 

Poorly dispersed graphene not only means an increase in nanomaterials loading in order to 

achieve a desired property, but graphene aggregates could also undermine the structural 

integrity of a composite. The scientific community has expended tremendous efforts to 

developing various surface functionalization methods of graphene/GO. Given the focus of 

this work, only major bulk modifications of graphene or GO are reviewed. However, one 

should not underestimate the importance of surface deposited graphene and its derivatives 

because they have good potential to be utilized in sensors, transistors, and other electronic 

devices.  

1.2.2 Functionalization of graphene and graphene oxide 

Due to the stable structure, direct covalent functionalization of graphene is difficult. 

However, several successful attempts were reported. Aside from the Na-K alloy 

intercalation method discussed above, there are two other classes of covalent reactions that 

can be done on graphene: free radical reaction and dienophile addition.38 The diazonium 

reaction is the most important free radical reaction for functionalizing graphene. Aryl and 
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substituted aryl groups can be covalently bonded to graphene sheets via aryl diazonium salt 

treatment of chemically converted graphene.39-40 Upon heating, diazonium salt loses 

nitrogen and forms aryl free radicals. Then, the reactive free radicals attack the carbon-

carbon double bonds in graphene and attach aromatic functional groups to it. If the attached 

aryl groups have additional functionalities, they can be further modified through an atom 

transfer radical polymerization (ATRP) reaction to introduce polymer chains41 or by click 

chemistry (Figure 1.2) to attach different end groups.42 It should be noted that diazonium 

salts can also be used for modifying GO. Researchers have demonstrated that GO treated 

with diazonium salt has high electrical conductivity after reduction.43 Also, the reaction can 

be done in GO aqueous dispersion, which generates less hazardous waste. This reaction 

provides a good way of attaching poly-aromatic or other complicated organic moieties to 

GO.44, 45
 

 

Figure 1.2. Diazonium salt functionalization of graphene and subsequent click reaction. 

Figure reprinted from ref. 42 with permission. Copyright © 2011, American Chemical 

Society. 
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Dienophiles can also react with graphene by addition. Azomethine ylide forms 

pyrrolidine rings on the graphene surface by 1,3 dipolar cycloaddition to adjacent 

unsaturated carbon pairs.46 Similar reactions can also happen via nitrene addition by using 

azide compounds47 or aryne addition by reacting graphene with a benzyne intermediate.48 

These modifications usually give products that can be well dispersed in organic solvents 

while maintaining a good electrical conductivity. However, the rate of reaction is typically 

very slow and inefficient. Considering the difficulties to obtain well dispersed monolayered 

graphene as the starting material, dienophile routes are not economic for producing 

graphene polymer composites. 

Noncovalent functionalization provides other ways to circumvent the chemical 

inertness of graphene. Due to the strong π-π interactions between graphene and 

macrocyclic/polycyclic compounds, derivatives of pyrene, porphyrin, and phthalocyanine 

are capable of stabilizing graphene sheets in various organic solvents and even water.39, 49 

Pyrene based compounds show a good balance between strong affinity towards graphene 

and versatility for design at molecular level.50, 51 These small molecule modifiers could be 

potentially useful for preparing functionalized graphene for optoelectronic, catalytic, and 

sensing applications. The density of functional groups on directly functionalized graphene 

depends on the degree of exfoliation; thus, all direct surface modifications benefit from 

method improvement of physical exfoliation processes.  

Unlike graphene, graphene oxide contains ample hydroxyl, epoxy and carboxylic acid 

groups on its surfaces, and the rich chemistry of these oxygen-containing moieties enables 

a wide range of modifications to give modified GO tunable physical, chemical, and 

biological properties. Considering that graphite oxide is easier to exfoliate than graphite, 
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GO is therefore a much more versatile starting material for graphene derivatives. In 

addition to the opportunity to introduce new chemically reactive surface groups, GO 

modification often provides a repeatable and flexible way to tune the surface compatibility 

of modified GO in various solvents or polymer matrices. Later, the functionalized GO can 

be reduced to regain some thermal stability and electric conductivity. In the following 

sections, three well established routes for covalent GO functionalization, namely 

esterification/amidation, isocyanate functionalization and silanization, together with 

particle modification, polymer modification, and asymmetrical functionalization strategy, 

will be reviewed briefly. 

Esterification and amidation 

Esterification and amidation of GO can be actualized by reacting hydroxyl or amine 

group-bearing molecules directly with GO or the acyl chloride derivatives of the molecules 

(Figure 1.3). The targets of functionalization are the carboxyl groups at the edges and the 

epoxy groups at the graphene plane (amidation only). Using this method, researchers linked 

amine terminated thiophene oligomers to GO under the catalysis of N,N’-

diisopropylcarbodiimide.52 An esterification functionalization equivalent can be done by 

reacting hydroxyl terminated oligothiophene with SOCl2 treated GO.53 Similarly, polymers 

like poly(ethylene glycol),54 and hydroxyl/amine group containing chromophores, for 

instance porphyrin, fullerene55 and azobenzene,56 can also be attached to GO. 
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Figure 1.3. Synthesis of P3HT-grafted graphene. Image reprinted from ref. 53 with 

permission. Copyright © 2010, American Chemical Society. 

In addition to coupling complex molecules with GO, amidation with alkylamines 

stabilizes GO sheets in nonpolar solvents by introducing long aliphatic chains (10 to 18 

carbon atoms).57-59 Further research indicated that alkylamine functionalized GO also 

disperses well in a polystyrene matrix, with a loading as high as 10 wt%.59 A good 

dispersibility of modified GO in a nonpolar environment is desirable for toughening 

thermosetting polymers, since the curing process reduces matrix polarity.  

Isocyanate functionalization 

Due to the extreme hydrophilic nature of graphite oxide, it exfoliates poorly in organic 

solvents that lack hydrogen bonding.60 These aprotic solvents, unfortunately, are 

oftentimes required for grafting additional moieties. However, isocyanate functionalization 

provides a possibility to exfoliate graphite oxide in polar aprotic solvents.60 It was proposed 

that, hydroxyl groups and carboxyl groups, which contribute to the interlayer hydrogen 

bonding in graphite oxide and lead to good exfoliation in protic solvents,61 can react with 

the isocyanate to form urethane and amide linkages during the functionalization (Figure 

1.4). Thus, the weakening of interlayer interactions and the decrease in surface polarity 
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ensure a good exfoliation of isocyanate treated graphite oxide in organic solvents.60 

Research also showed that aryl isocyanate functionalization can improve the π-π stacking 

interactions between GO and polythiophene,62 which could be advantageous in making 

dye-sensitized solar cells. But diisocyanates, at low concentrations, could link GO sheets 

to produce a 3D network rather than facilitate exfoliation.63 

 

Figure 1.4. Proposed reaction scheme of isocyanate treatment of GO. Figure reprinted 

from ref. 60 with permission. Copyright © 2006, Elsevier. 

Silanization 

Silanization of GO also provides the possibility of attaching various functional groups. 

The most frequently reported precursors for GO silanization are substituted 

trimethoxysilanes64-67 and triethoxysilanes.68, 69 A proposed reaction scheme depicts that 

the hydroxyl oxygen attacks the partially positive silicon atom, and the alkoxy group on 

silicon dissociates to form the final product (Figure 1.5). According to literature, these 

silicon alkoxide derivatives are capable of introducing reactive functionalities such as 

amino groups,68, 69 vinyl groups64 and methacrylate groups65, 66 to the GO surfaces. These 
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functionalities can then bond to thermosetting resins, and consequently improve the 

particle-matrix adhesion. Another advantage of silanization is the relatively low cost of the 

reactants. As a prevailing class of surface modifiers, numerous silicon alkoxides are 

produced in large quantity, which helps control the cost of functionalized GO. 

 

Figure 1.5. GO silanization by N-(trimethoxysilylpropyl) ethylenediamine triacetic acid. 

Figure obtained from ref. 66 with permission. Copyright © 2010 American Chemical 

Society. 

Polymer modification 

Polymer modification of GO receives special attention because it significantly 

increases particle-polymer matrix affinity and forms compact interfaces that facilitate 

stress transfer.70 To attach polymer chains to the GO surfaces, there are two strategies: 

grafting end-functionalized polymer or in-situ polymerization on GO surfaces. In the 

former case, polymers with acid anhydride,71 amine,72 or hydroxyl73 end groups can react 

directly with GO. Alternatively, small molecule surface modifications can add new 

anchoring groups such as amine,74 or alkyne75, 42 to GO, so coupling reactions can be used.  

In-situ synthesized polymer can also be covalently attached by controlled radical 

polymerization. For ATRP reactions, alkyl halide moieties can be attached to the 
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carboxylic acid groups on the edges;76 Chain transfer agents can be introduced for 

reversible addition− fragmentation chain transfer (RAFT) polymerization;77 modifying GO 

with TEMPO derivatives enables nitroxide-mediated radical polymerization.78 All these 

reactions can generate a covalently attached polymer layer on graphene, which stabilizes 

modified GO in matrix polymer. 

Particle modification 

Recently, researchers started to investigate the application of GO modified with 

inorganic particles in polymer composites. It is well known that graphene derivatives 

modified with metal particles have good catalytic activities and can also be used for 

supercapacitor materials,79 but the properties of the composites made with inorganic 

particles/GO hybrids deserve further study. Titania and silica modified GO has been used 

as an additive for anticorrosion coatings,80-82 dielectric media,83 and thermomechanical 

strength enhancer.84 Layered double hydroxide modified GO can be used as flame 

retardance agent in polymer composites.85 Inorganic nanoparticles can be either physically 

attached to GO84 or chemically bonded by silane.82 Nanoparticle decorated GO shows 

better dispersion in epoxy resin, possibly due to the decreased van der Waals interactions 

between GO sheets.80, 81 

Asymmetric surface functionalization 

In the past few years, asymmetrically modified GO or Janus GO has become a hot topic. 

Due to its unique asymmetric structure, Janus GO can be designed to show hydrophilicity 

on one side and hydrophobicity on the other. This amphiphilic feature endows the Janus 

GO with very high adsorption energy at some polar-nonpolar interfaces. Wu et al. reported 

a potentially scalable synthesis of Janus GO by locating and fixing GO sheets at wax-in-
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water Pickering emulsion interfaces.86 Akbari et al. used this method to prepare Janus GO 

with one-side dodecylamine functionalization and made polymer composite films with this 

material. Their result shows the filtration film with Janus GO manifests a significant 

increase in pure water flux compared to the control made with homogeneously modified 

GO.87 Given its unique interface affinity, Janus GO may bring new properties to some of 

the well-researched graphene polymer nanocomposite systems. 

1.2.3 Properties and applications of graphene polymer nanocomposites 

Structural materials 

Graphene-based additive are capable of improving the mechanical properties of a 

polymer matrix. Tensile and flexural moduli, for instance, are known to be affected by 

adding inorganic fillers; therefore, it is not surprising to see an increase in modulus in 

graphene polymer composites.88-90 However, graphene-based filler also improves 

elongation at break and ultimate strength in some of the studies, as graphene particles with 

large aspect ratios can facilitate continuous plastic deformation.90 Fracture toughness is 

another important property of polymeric materials that can be improved by graphene. Since 

this topic is the main research focus of the thesis, it will be discussed in detail later in the 

introduction. 

Aside from the mechanical properties, dimensional stability, thermal stability, and 

glass transition temperature (Tg) are also important for using graphene composites as 

structure materials. When polymers are to be used at elevated temperatures, thermal 

stability and Tg need to be high so that a structural part can retain its mechanical strength. 

Graphene composites provide a solution because they usually show increased thermal 
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stability91-93 and Tg,
94 which is because graphene with strong particle-matrix interfaces 

restricts the polymer chain movement or increases polymer crystallinity. Dimensional 

stability is related to thermal expansion behavior of a polymer, and this becomes important 

when the structural materials are to be cycled in a wide temperature range, for example, 

when used as electronic packaging materials. The thermal expansion coefficient of a 

polymer decreases when graphene oxide is incorporated due to the negative thermal 

expansion coefficient of GO.95, 96 

Electrostatic discharge (ESD) and electromagnetic interference (EMI) shielding 

materials 

ESD materials are conductors, so the charge on a surface of these materials will not 

accumulate. EMI shielding materials are also conductive, so the incident electromagnetic 

wave can induce electrostatic displacement of charge or eddy currents to cancel the incident 

EM fields. Compared to conventional metal-based materials, conductive polymer 

composites have several advantages, such as low weight, flexibility, corrosion resistance, 

and easy processing. Graphene or reduced graphene oxide has a good conductivity and a 

high aspect ratio, thus graphene in polymer composites can reach a percolation threshold 

and become conductive at a relatively lower loading level, compared to conventional 

conductive fillers such as carbon black.92, 97, 98 Usually, the required conductivity for ESD 

materials is between 1012 and 105 Ω per square, and EMI shielding materials have a 

resistivity lower than 105 Ω per square,99 which is within the range of graphene polymer 

composites. Many papers have been published in recent years that investigated the 

performance of graphene polymer composites made with polystyrene, polyurethane, 

polyetherimide, polyvinylidene fluoride, and so on. The results indicate that graphene-
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based materials can achieve good EMI shielding of about 20 dB radiation attenuation.100-

105 Also, graphene additives can function as reinforcing fillers and improve the thermal or 

mechanical performance of a polymer foam or fabric,101 or the composite can be 

engineered to show superhydrophobicity and self-cleaning characteristics.102 Versatile 

graphene polymer composites are, therefore, suitable for multifunctional applications. 

Flame retardance additives 

Graphene based materials have been demonstrated as good flame retardance additives 

in polymers. Although it seems counterintuitive that these combustible carbon materials 

can reduce the flammability of a polymer, researchers find that both the peak heat release 

rate and total heat release during combustion of a polymeric material are decreased when 

a few weight percent of graphene or modified graphene oxide are incorporated.106-111 This 

phenomenon is due to the fact that layered graphene slows down the release of a flammable 

gas from the overheated polymer, facilitating the formation of a char layer on the surface 

of the composite to reduce the heat transfer.106 The char layer also restricts the “dripping” 

of the flammable liquid degradation product from a burning composite.107 Because of the 

high surface area and abundant functional groups on the surface, GO can be modified with 

other flame retardants to achieve better performance. For instance, organophosphorus 

flame retardant 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide can be grafted onto 

GO with poly(glycidyl methacrylate) as the linker;108 GO with synthetic clay particles on 

the surface also shows improved flame retardance;85 GO flame retardant functionalized 

with metal oxide particles reduces toxic gas release.110 The reinforcing effect and 

thermal/electrical conductivity of some graphene derivatives can also be utilized in this 
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flame retardance scenario to create polymer-based coatings, thermal interface materials, or 

EMI shielding packaging with a reduce fire hazard. 

Antibacterial 

Graphene oxide is known for its antibacterial effects. Although, it is still unclear why 

GO prohibits the growth of bacteria, there are a number of hypotheses regarding the 

antimicrobial mechanisms.112-115 These include membrane stress, oxidative stress, electron 

transfer, and wrapping. The size-dependent activity of GO suggests that wrapping is the 

preferred mechanism for large sheet size GO, and membrane stress and oxidative stress are 

the major mechanisms for small sized GO particles.114, 115 The most interesting application 

of GO as an antibacterial agent is its use in polymer composites as antibiofouling 

membranes and antibacterial wound dressing. Various studies have shown that GO sheets 

in many polymer matrices have strong antibacterial effects,116-119 which are useful for 

modifying functional polymeric membranes for water purification, desalination, and gas 

separation.112 Recent publications also suggest that GO-containing hydrogels promote 

wound healing,120, 121 thus these mechanically robust hydrogels could be promising wound 

dressing materials. 

Gas barrier membranes 

Defect-free graphene sheets are impermeable to all gas molecules and can, therefore, 

be used in polymer composites to produce flexible and lightweight gas barriers. Ideally, 

graphene sheets in the composites should be single-layered, have high aspect ratios, and 

should be aligned perpendicular to the gas partial pressure gradient. In such a case, the 

tortuosity of the diffusion pathway and the barrier properties are maximized. However, 

mass production of graphene sheets for barrier materials is still challenging; therefore, in 
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most cases, well exfoliated graphene oxide is used instead.122, 123 Although GO has many 

gas permeable defects on its basal plane, GO is much easier to exfoliate and well dispersed 

in polymer matrices. Considering that GO can be functionalized to improve matrix 

compatibility, which also increases path length for gas diffusion, the overall performance 

of GO-based composite gas barriers is comparable to that of composites made with 

graphene.124 The methods for preparing gas barrier composites include solvent casting,124-

126 in situ polymerization,127 and layer-by-layer self-assembly.128 The layer-by-layer 

method gives the lowest gas permeability among all three methods, possibly due to high 

GO loading and good alignment of the GO sheets. 

Other applications 

There are many other applications of graphene polymer composites that cannot be 

reviewed here due to the limitation of space. These include polymer gas sensors,129 fuel 

cell membranes,130 anticorrosion coatings,131, 132 desalination membranes,133 and so on. The 

ever-growing scope of applications for graphene composites manifests the unique 

characteristics of graphene, which leads to our researching of graphene-based 

thermosetting polymer toughening agents. 

1.3 Toughening of thermosetting resins 

1.3.1 Thermosetting resins are brittle materials 

Thermosetting resins, or thermosets, are highly crosslinked polymer networks that are 

unmeltable and insoluble after curing (Figure 1.6). Common thermosets include epoxy, 

unsaturated polyester, vinyl ester, cyanate ester, polyurethane, phenol-formaldehyde, and 

so on. Thermosets are widely utilized as structural materials, adhesives, coatings or 
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insulating materials in the automotive, aviation, electronic, construction and packaging 

industries.134, 135 Due to a high crosslink density, thermosetting resins are thermally stable, 

chemically inert, and mechanically stiff. But, despite these advantages, thermosets are 

brittle and prone to mechanical failure. This is because high-density crosslinks lock the 

polymer chains in well-defined positions, so that the polymer network cannot deform 

elastically or plastically except at a very low strain. Once the stress passes a critical value, 

the covalent bonds inside a resin will break and rearrange, leading to brittle fracture. 

Consequently, a part made with a thermosetting resin will lose its structural integrity 

quickly once the stress concentrated by a small structural defect passes a critical value. 

This limits the application of thermosetting resins in some areas where anti-fracture and 

anti-fatigue properties are vitally important.134 

 

Figure 1.6. A schematic of thermosets before (left) and after (right) free radical 

polymerization crosslinking. 

Unsaturated polyester (UP) is a thermosetting resin of advantageous chemical 

resistance and low cost, which requires only mild curing conditions.136, 137 Commercially 
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available UP resins are usually sold as reactive diluent (double bond containing solvent 

molecules, e.g., styrene, that can be copolymerized with the resin backbone) solutions of 

polyester prepolymers. The UP prepolymers, or the resin "backbones", are synthesized 

through a condensation reaction between diacid components and diol components. Once 

an initiator is added, the free radical chain-growth copolymerization between the solvent 

and the unsaturated moieties in the polymer backbones will link the linear polymer chains 

together to form a 3-D network (Figure 1.7).  

 

Figure 1.7. Schematic reactions of forming UP backbone (top), crosslinking initiation 

(bottom left), and cured resin (bottom right). 

Vinyl ester (VE) resin is similar to UP resin in that it is also based on an unsaturated 

prepolymer. But in VE resins the prepolymer has an epoxy “core” and unsaturated acrylate 

or methacrylate end groups. Figure 1.8 shows the structure of a common VE prepolymer 

based on bisphenol A diglycidyl ether epoxy. Later, the crosslinking happens when styrene 

copolymerizes with the unsaturated end groups. Compared to UP resins, VE resins offer 

better toughness and corrosion resistance at a slightly higher cost.134 VE resins are therefore 
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more commonly applied in the chemical industry, where the mechanical properties and 

chemical resistance of UP resins are inadequate. 

 

Figure 1.8. Formation of VE resin prepolymer with bisphenol A diglycidyl ether oligomer 

and (meth)acrylic acid.  

UP and VE resins are commonly used resins for making fiber reinforced composite 

parts via sheet molding compounds, bulk molding compounds, and laminates. However, 

like any other thermosets, these resins are severely affected by a poor resistance to crack 

propagation, which limits their use in applications where applied stress is relatively static. 

Since their invention,138 much effort has been made to address the problem of low fracture 

toughness of UP and VE resins. 

1.3.2 Methods of UP and VE resin toughening  

Due to their brittleness, neat UP and VE resins have minimal industrial applications. 

However, the corresponding fiber composites of these resins have good mechanical 

properties, so they are commonly used in industry. Fiber reinforced plastics, or FRPs, are 
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comprised of strong fibers (glass fibers, synthetic wools, etc.) and a resin matrix that binds 

the fibers together. The resin transfers stress to fibers, and the fibers are firmly fixed in the 

resin matrix so that such a composite can withstand the applied load. Common mechanical 

properties, such as tensile strength and modulus, of a FRP are usually dominated by the 

fiber component because of the high fiber content. Thus, FRPs can have high mechanical 

strength that is comparable to metal alloys with a much better corrosion resistance. In 

addition, the invention of sheet molding compounds and bulk molding compounds greatly 

simplifies the building of FRP parts,139 which also benefits the application. Recent research 

on FRP has focused on the substitution or supplement glass fibers with stronger and lighter 

carbon fibers140-142 or natural fibers.143-149 However, stacking fibers with sub-millimeter 

diameters results in a wide distribution of vacancy sizes. Thus, although fiber 

reinforcement significantly enhances the toughness of a resin matrix, the resin rich regions 

inside a FRP are nonetheless prone to craze and cracking, which may lead to structural 

failure.149 This unevenness inside the resin matrix demands a secondary reinforcement to 

toughen the low fiber density areas of the composite. The published toughening methods 

can be put into three major categories, namely rubber toughening, block copolymer (BCP) 

toughening, and inorganic nanofiller toughening. 

In order to quantify the effect of toughening, a unified standard must be established. In 

materials science, critical stress intensity factor and critical strain energy release rate are 

two major criteria for characterizing the fracture toughness of a common material. The 

critical stress intensity factor corresponds to the minimum stress intensity at the crack front 

to propagate an existing crack. The critical strain energy release rate corresponds to the 

energy needed to develop a unit area of crack surface. There are three modes of fracture in 
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solid materials, namely opening, in-plane shearing and out-of-plane shearing. The opening 

fracture mode, or the fracture mode-I, which has a tensile stress normal to the plane of a 

crack, is commonly used to study the fracture behavior. In our work, mode-I critical stress 

intensity factor (KIC) and the mode-I critical strain energy release rate (GIC) are chosen to 

quantify fracture toughness. 

Addition of liquid rubber or core-shell rubber 

The rubber toughening of epoxy resins has been intensively studied, and the toughening 

mechanism is well understood.150-153 Typically, the rubber component is blended into the 

epoxy resin to create a homogeneous polymer mixture before the addition of the amine 

component. The increasing crosslink density, as well as the decreasing matrix polarity, due 

to the step-growth polymerization of epoxy components and amine components, forces the 

previously miscible rubber molecules to phase-separate and form a rubbery secondary 

phase (Figure 1.9). The well distributed micron-sized rubbery phase absorbs mechanical 

energy of impact and crack propagation.152, 153 However, unlike epoxy, liquid rubber has 

poor solubility in UP resins, which affects the toughening.154 To overcome this challenge, 

two rubber modification strategies are generally adopted. 
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Figure 1.9. TEM image of rubber toughened epoxy sectioning, stained with osmium 

tetroxide. The micro-sized rubber domains appear darker in the image. Image reprinted 

from ref. 150 with permission. Copyright © 1993, American Chemical Society. 

Some research has been done to modify the terminal group of liquid rubber molecules. 

Such a method requires the introduction of polar end groups such as diacid anhydride,154 

diacid imide,155 and isocyanate groups.156 These polar and reactive terminal groups help 

the rubber disperse well in the uncured resin and also are able to bond to the UP polymer 

chains for better particle-matrix adhesion. A significant increase of fracture toughness (100% 

increase in KIC) was observed as well as a small decrease in modulus (8–10%)155. However, 

because the polymerization-induced phase separation of the rubbery component depends 

heavily on reaction kinetics, the reproducibility of rubber toughening is problematic.157 A 

similar strategy can be applied to VE resins, and liquid rubber toughened VE resins also 

show decreased modulus and strength.158-160 

Another approach to incorporate rubber in a UP matrix involves the synthesis of core-

shell structured rubber (CSR). CSRs are synthesized through emulsion polymerization. 

Usually, the reaction happens in the dispersion of core particles, and the polymer generated 



25 

in the reaction directly coats the cores. By changing the concentration of monomer, reaction 

temperature, and agitation speed, the thickness of the polymer layer can be tuned. The 

resulting CSR has a layered structure with either rubbery core/glassy shell or glassy 

core/rubbery interlayer/glassy layer configuration.160-162 The rubbery center or interlayer 

serves as a fracture energy absorber, and the glassy layer stabilizes the CSR particles in the 

UP resin. Since the structure of the synthesized CSR is well controlled, the toughening 

effect remains the same under various curing conditions. The cured resin composite 

showed a better fracture toughness with an increase in KIC as high as 60% at the cost of a 

small modulus decrease (4%).161 

Incorporation of block copolymer 

Block copolymer (BCP) toughening has attracted intense interest because it improves 

the optical transparency of the toughened resin, which could be desirable for polymer 

coatings.163 Compared to rubber, BCP tends to form self-assembled nano-sized domains 

(Figure 1.10) during polymerization-induced phase separation,166 which yields a better 

transparency.  

Though successful works on BCP toughening of epoxy have been widely reported, 

publications on BCP modified UP resin are quite scarce. Recent work demonstrated that 

poly[(ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)] block copolymer, or PEO-

b-PPO-b-PEO, enhances the fracture toughness of the UP (40% increase in KIC), but the 

50% reduction in modulus severely limited its application.163 The morphological study on 

PEO-b-PPO-b-PEO modified UP resin showed a micro-phase separation of this BCP with 

PEO blocks anchoring in resin rich domains and PPO blocks separated as the secondary 

phase.164 Subsequent research showed that the poor modulus of PEO-b-PPO-b-PEO 
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toughened resin can be improved by incorporating cellulose microfibers,165 or changing 

the PEO to PPO ratio.167 

 

Figure 1.10. AFM phase images (1 μm × 1 μm) of cured neat resin (a) and UP resin 

containing 5% PEO-b-PPO-b-PEO BCP (b). The top insets show digital images of 1 mm 

thickness resin sheets. The bottom insets correspond to 200 nm × 200 nm AFM images. 

The dark regions show the rubbery domains. Image obtained from ref. 163 with 

permission. Copyright © 2013, American Chemical Society. 

Inorganic nanofiller toughening  

UP resin reinforced with inorganic nanofiller shows a better chemical resistance, 

modulus and impact resistance than resin incorporated with rubber or BCP.168 Experiments 

indicated that KIC of UP resin increases by 60% with 1 vol % loading of 37 nm TiO2 

nanoparticles.169 To facilitate dispersion, functionalization of TiO2 nanoparticles with 3-

(methacryloxy) propyl trimethoxysilane was also studied.170 Similar work using surface-

modified Al2O3 nanoparticle reinforcement demonstrated that organosilane treatment not 

only facilitates dispersion, but the enhanced interfacial adhesion by forming covalent 
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bonding improves the fracture toughness of the filled UP composite.171 The toughening 

mechanism of rigid nanoparticle reinforcement involves crack pinning, crack bifurcation 

and deflection, and micro cracking.172-174 The crack pinning effect, which is unique to resin 

filled with rigid particles,175 can be explained as follows: the particles beyond the crack 

front transfer the built up stress deep into the matrix, so the effective stress intensity at the 

crack front decreases. A higher applied load is needed to propagate such a crack as if the 

crack front is pinned by particles. Large particles also force the crack to split into two 

smaller cracks (bifurcation) or change its direction (deflection), which create additional 

crack surfaces and lower the stress intensity. Since the nanofiller itself concentrates stress 

inside the composite, small cracks could initiate at one particle-matrix interface and 

terminate at another. This internal cracking, or craze, absorbs energy and prevents the 

composite from catastrophic failure.  

1.3.3 Graphene material as a promising toughener in unsaturated polyester systems 

Compared to other materials, graphene has ultra-high strength and large aspect ratios, 

which ensures that the toughening effect is significant even at very low loading levels.176, 

177 Ideally, a minimal amount of single-layered graphene additive should be transparent to 

visible light, rendering graphene a good candidate for resin tougheners. Few-layered 

graphene, or graphite nano-platelets (GNPs), and graphene oxide materials have shown 

great toughening effects in epoxy systems,176-186 with a KIC improvement up to 120% at 

0.489 vol % loading.183 A dramatic increase in anti-fatigue properties (measured in the 

number of cycles of stretch and release towards failure under certain stress loading) of glass 

fiber reinforced epoxy resin with graphene oxide nanofiller has also been reported.182, 185 

The increase in glass transition temperature, Tg, shows good bonding between the graphene 
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sheets and the epoxy matrix, which is also manifested by the enhanced ultimate tensile 

strength and Young's modulus. A fracture mechanism study indicated that 54% area of a 

composite fracture surface shows stress whitening (light scattering from the structural 

defects inside the material), which can be attributed to plastic deformation induced by 

graphene sheets.177 This occurs as the graphene sheets deflect and split the crack front, so 

that more yielding of the resin matrix happens around filler particles. In other literature, 

the toughening effect was attributed to microcrack initiation178 and the increased fracture 

surface area from crack deflection and pinning.181 Previous results187 showed that 

graphene-based materials can toughen a UP resin. The structural similarity between VE 

and UP resin and the widely accepted toughening mechanisms suggest that graphene-based 

material could be a universal toughener for improving mechanical properties of UP and 

VE resins. However, the large aspect ratio of graphene also means it is energetically 

favorable for the graphene sheets dispersed in a solvent to reaggregate, if there is a surface 

energy mismatch between graphene and the solvent. Unfortunately, this is the case in 

graphene/UP resin dispersions since the surface energy of graphene is close to 40 dyn∙cm-

1, which is far above that of styrene (30.7 dyn∙cm-1).188 The aggregation of graphene 

toughener creates resin rich zones, where the crack can propagate freely. To address such 

difficulties, graphene surface modification should be adopted so that new functional groups 

can encourage a stronger interface to a resin matrix to counteract the interlayer π-π stacking 

and van der Waals interactions. 

1.4 Thesis outline 

This thesis focuses on utilizing GO and its derivatives to toughen thermosetting 

polymers. The effect of different surface modifications, processing methods, particle-
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particle interactions, and fiber composite toughening were studied in detail. The thesis also 

includes a study of an rGO/polyolefin conductive composite. 

Chapters 2 describes GO covalent modifications and mGO characterization. GO treated 

by unsaturated isocyanate and dodecylamine shows significant toughening effect in a 

unsaturated polyester resin (UPR) with very low loadings. The detailed mechanical 

analysis of the mGO resin composites shows mGO toughener can toughen resin without 

introducing Tg or modulus reduction. 

Chapter 3 focuses on the development of a styrene masterbatch process to help disperse 

mGO into a resin. This masterbatch route significantly reduces mGO aggregation, and it 

also allows easy dispersion of mGO without sonication treatment. Although fracture 

toughness of the final products shows only a small dependence of dispersion quality, 

flexural strength of the composites is better preserved with well dispersed mGO particles. 

Chapter 4 is about how the presence of inorganic filler particle would influence the 

toughening effect brought by incorporating mGO. Common thermosetting resin fillers 

were studied, and the result suggest that the interference of toughening effect depends on 

the size of the filler particle aggregates. The conclusion in this chapter shed light on the 

origin of the mGO toughening effect. 

Chapter 5 illustrates how the toughening effect of mGO can be altered by changing the 

mGO aggregate size. The result from this chapter indicates that the particle-matrix 

interfacial strength does not affect resin toughening in mGO/UPR system. The maximum 

achievable toughness improvement in an unsaturated polyester resin is independent of 

mGO surface chemistry and loading level. 
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Chapter 6 shows a study about the mGO toughening effect in glass fiber reinforced 

composites (GFRP). The incorporation of mGO does not improve the interlaminar fracture 

toughness of the fiber composites due to poor resin-fiber adhesion in all UPR GFRP 

samples. The interlaminar fracture toughness of UPR GFRP is found to be related to resin 

ductility, rather than the fracture toughness of unreinforced mGO/resin composites. 

Chapter 7 discusses conductive composite made of reduced functionalized GO and 

polyethylene. The result from this chapter shows the advantage and disadvantage of 

optimizing the dispersion of graphene sheets in PE by covalent surface modification. 
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Chapter 2 

Unsaturated Polyester Resin Toughening with Very Low Loadings of 

GO Derivatives 

2.1 Introduction 

Thermosets are widely utilized as structural materials, adhesives, coatings or insulating 

materials in the automotive, aviation, electronics, construction, and packaging 

industries.134, 151 Due to the high crosslink density, thermosetting resins are thermally stable, 

chemically inert, and mechanically stiff. However, despite these advantageous properties, 

thermosets are brittle and prone to mechanical failure. This limits the application of 

thermosetting resins in uses where material fracture toughness and anti-fatigue properties 

are vitally important.134 Much effort has been put into researching and developing 

tougheners that can improve the fracture toughness of thermosets, in particular epoxy resins. 

But for unsaturated polyester resin (UPR), which is a low-cost thermosetting resin with 

advantageous chemical resistance that requires only mild curing conditions,136, 163 the 

toughening results are still far from satisfactory. 

It has been reported that elastomeric tougheners (rubber,154-156 core-shell rubber,157, 161, 

189 block copolymer190, 164-167) are capable of toughening UPR. Generally, they function by 

creating a rubbery secondary phase evenly distributed throughout the resin phase. As the 

crack propagates, these rubbery particles can absorb extra energy by deforming, debonding, 

                                                 
 This chapter was reproduced from Polymer 2017, 110, 149 with permission. © Copyright 2017, Elsevier. 

Mechanical data used in this chapter were collected and processed by Kunwei Liu.  
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cavitating and deflecting cracks. Although they can significantly increase the fracture 

toughness of UPR, there are still a few critical drawbacks. Rubber tougheners tend to 

increase the resin viscosity and therefore make processing more difficult. They also 

decrease the resin modulus, as well as the glass transition temperature.154-157, 161, 164-166, 189, 

190 Block copolymer (BCP) tougheners are able to partially address deficiencies,167 but 

their high loading level and cost make them less economical. 

Another category of tougheners is based on rigid particles. UPR reinforced with 

inorganic nanofillers show better chemical resistance, modulus, and impact resistance than 

resin modified with rubber or BCP.191 It has been reported that nanoparticles of TiO2 and 

Al2O3 can serve as good tougheners in UPR,169-171 and introducing particle matrix bonding 

can further improve toughening.170 Compared to conventional 3D nanoparticles, graphene, 

a 2D one-atom-thick nanomaterial, has a greater potential to be a good toughener, not only 

because its high aspect ratio renders it effective at extremely low loading level, but 

graphene itself possesses excellent mechanical properties. Many studies involving epoxy 

resins have indicated that graphene/graphite nanoplatelets can improve the fracture 

toughness with loading levels less than 1%.176-186, 192 A few publications also show similar 

phenomena in UPR systems.187 Although other techniques of graphite exfoliation have 

been reported, such as direct bulk functionalization,30 mechanical cleaving,21 and 

surfactant-assisted high speed shearing,23, 25, 193, 194 oxidative exfoliation to obtain graphene 

oxide (GO) remains one of the most useful ways to obtain single layer GO/reduced-GO 

derivatives.29 The chemical reactivity of GO due to oxygen-containing moieties on its 

surface provides facile functionalization opportunities. 
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In our research, different methods of GO functionalization were investigated to 

demonstrate how these can improve the fracture toughness of a UPR. With the knowledge 

built up in our previous research on epoxy composites,192 we focused our attention on the 

particle-matrix bonding and surface compatibility of the GO particles with a UP resin. The 

study of UPR-based nanocomposites with extremely low loadings of modified GO (0.04 

wt.%) showed a significant increase in fracture toughness compared to the neat resin. The 

dispersibility of modified GO inside the resin was characterized by transmission electron 

microscopy (TEM) and visible light microscopy (VLM). Without proper surface treatment, 

GO platelets can form major agglomerates inside the resin, which deteriorates the 

homogeneity of the composite and induces structural failure. To address this problem, 3-

isopropenyl-α,α-dimethylbenzylisocyanate (TMI) and dodecylamine (DDA) modifications 

were adopted. The TMI modification introduces the possibility of particle/matrix covalent 

bonding, and the DDA functionalization improves surface compatibility with the resin. 

Combining both modifiers yielded a product that can be easily dispersed in resin without 

sonication and gives an even better toughening result. Low cost, due to remarkably low 

loading levels, combined with better processability, make the GO derivative toughener 

economically viable. Fractography analysis, using scanning electron microscopy (SEM), 

unveiled that crack pinning is the major contributing mechanism of resin toughening in 

these materials.  

2.2 Experimental section 

Sodium nitrate (ACS grade), potassium permanganate (ACS grade), hydrogen peroxide 

(30% solution in water, ACS grade), toluene (HPLC grade), triethylamine (99%), and 

potassium bromide (IR grade) were obtained from Fisher Scientific. N, N'-
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dimethylformamide (99.8%, anhydrous), 3-isopropenyl-α,α-dimethylbenzylisocyanate 

(TMI isocyanate, 95%), 1,4-diazabicyclo[2.2.2] octane (99%), styrene (99%), cobalt(II) 2-

ethylhexanoate solution (65 wt.% in mineral spirits), 4-tert-butylcatechol (98%), and 2-

butanone peroxide (Luperox DDM-9, 35 wt.% in 2,2,4-trimethyl-1,3-pentanediol 

diisobutyrate) were purchased from Sigma-Aldrich. Dodecylamine (DDA, 98%) was 

obtained from Alfa-Aesar, ammonium hydroxide (28–30% in water, ACS grade) and tert-

butanol (99%) from Macron, sulfuric acid (98%, ACS grade) and hydrochloric acid (37%, 

ACS grade) from BDH, and graphite flakes (SP1) from Bay Carbon. Deionized (DI) water 

with a resistivity of 18 MΩ∙cm-2 was produced onsite using a Barnstead purification system. 

The AROPOL 8422 unsaturated polyester resin was provided by Ashland. 

2.2.1 Synthesis of functionalized GO 

Synthesis of GO 

The method of GO synthesis was adapted from Hummers and Offeman’s paper40 with 

small modifications. In a typical synthesis, 2.5 g NaNO3 was dissolved in 115 mL 

concentrated sulfuric acid in an ice bath, and 5 g of graphite was then added to the solution. 

Under moderate stirring, 5 g KMnO4 was added every 10 min for a total of 15 g. The ice 

bath was then replaced by a water bath at room temperature to raise the reaction 

temperature and later absorb excess heat, and the mixture was allowed to react at 35 °C for 

1 h. Later, the water bath was removed, and 230 mL of DI water was added under rapid 

mixing. After stirring for 15 min, the mixture was further diluted to 1 L. The reaction was 

quenched by adding 30% hydrogen peroxide drop-wise until the effervescence stopped, 

and the mixture turned light brown. After overnight sedimentation, the supernatant was 

decanted, and the crude graphite oxide slurry was collected for purification. GO was 
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washed with 0.1 M hydrochloric acid a few times, followed by 5 days of dialysis (Fisher, 

21-152-5 dialysis tubing) against DI water. Purified GO was diluted in DI water, and the 

pH was adjusted to 9 with ammonium hydroxide. The basic GO dispersion was then 

sonicated for 1h in a bath sonicator (Branson 3510). The resulting dispersion was 

centrifuged at 1500 rpm for 10 min to remove poorly oxidized particles before freeze-

drying (Freezemobile, SP Scientific). 

Synthesis of TMI-functionalized and TMI/dodecylamine-functionalized GO 

To synthesize TMI functionalized GO, 300 mg of the dried GO was dispersed in 75 

mL anhydrous N,N-dimethylformamide (DMF) and then bath sonicated for 1 h. The 

resulting homogenous dispersion was transferred into a 150 mL two-necked round bottom 

flask and purged under nitrogen flow for 2 h with 300 rpm stirring. After that, 3 mL TMI 

isocyanate was injected, and the mixture was allowed to react at 40 °C for 24 h under 

nitrogen. The reaction was quenched by adding 225 mL dry toluene, and the resulting 

mixture was then centrifuged at 3000 rpm for 15 min. The precipitate obtained after 

centrifugation was washed 3 times with toluene and twice with tert-butanol, followed by 

freeze-drying to obtain the final product (TMI-GO).  

For the TMI/dodecylamine functionalization, GO was first treated with a larger amount 

of TMI (2 mL per 100 mg GO) at 60 °C with 1,4-diazabicyclo[2.2.2]octane (5 mg per 100 

mg GO) added as the catalyst. The resulting purified and freeze-dried TMI-functionalized 

GO was redispersed in DMF in the same way as described before (2 mg/mL). The 

dodecylamine was then added (4 mg per 1 mg TMI-GO), and the reaction was kept at 70 °C 

for 24 h while stirring at 300 rpm. The reaction was terminated by pouring the mixture into 

DI water, at which point the functionalized GO flocculated immediately. The crude product 



36 

was collected by centrifugation and purified by 4 washes in dry ethanol and 2 washes in 

DI water. The purified product (TMI-DDA-GO) was freeze dried to obtain it in powder 

form. 

2.2.2 Preparation of resin samples 

The stock AROPOL 8422 UPR was first diluted to 55 wt.% by adding styrene monomer. 

Then, 40 mg 4-tert-butylcatechol (inhibitor) and 100 mg cobalt(II) 2-ethylhexanoate 

solution (promoter) were added per 100 g of resin. To prepare the non-sonicated (NS) 

composite sample, a certain amount of TMI-DDA-GO was added to AROPOL 8422 UP 

resin, and the mixture was stirred with a magnetic stir bar at the maximum speed of the stir 

plate for 3 h to generate a homogenous dispersion. Non-sonicated GO and TMI-GO resin 

dispersions were also prepared, but no composite sample was made due to their poor 

dispersion stability. For the other samples, 2 h of probe sonication (Misonix S-4000, 4 s 

pulse, 2 s pause, 35% amplitude) together with mechanical stirring was used to generate 

the dispersion. The resin dispersions were initiated with 1.25 g 2-butanone peroxide 

(Luperox DDM-9) per 100 g and allowed to react for 10 min with mechanical stirring at a 

moderate speed, followed by 10 min vacuum de-gasing. After the resin was poured into 

the mold, it was left at room temperature for 24 h to allow it to gel before placing it into an 

oven for curing. The curing procedure required heating the fully gelled resin plaque at 

70 °C for 3 h and at 120 °C for an additional 3 h. The resin plaques were then cut into 

specimens for mechanical tests (Figure 2.1). 
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Figure 2.1. The dimensions of the compact tension (CT) specimen. 

2.2.3 Characterization 

Infrared (IR) spectroscopy was performed on a Magna-FTIR 760 spectrometer (Nicolet) 

using KBr pellets of GO and modified GO samples. Powder X-ray diffraction (XRD) 

experiments were performed with a PANalytical X'Pert Pro diffractometer. This instrument 

utilized a Co anode (Kα radiation, 1.79 Å) and X'celerator detector, and it was operated at 

45 kV accelerating voltage with a 40 mA emission current. Thermogravimetric analysis 

(TGA) was carried out under a nitrogen atmosphere using a Netzsch STA 409 

Simultaneous TGA-DSC with ~2.5 mg of sample loaded in an alumina crucible. The ramp 

rate was 10 °C/min, and the heating range was 25 °C to 600 °C. A JEOL 6700 field 

emission scanning electron microscope (SEM) mounted with a tungsten filament source 

was used for imaging. SEM images were taken using an acceleration voltage of 5 kV. All 

SEM samples were coated with 50 Å Pt prior to imaging. A FEI Tecnai T12 transmission 

electron microscope (TEM) with a LaB6 source operating at an acceleration voltage of 120 

kV was used to obtain TEM micrographs. GO and modified GO samples were first 

dispersed in ethanol and then dip coated onto lacey carbon grids (Ted Pella lnc.). The resin 



38 

composite TEM specimens were made using a Leica EM UC6 Ultramicrotome. The visible 

light microscopy (VLM) images were taken on a Nikon Eclipse Ti-e Optical Microscope, 

using 1.5 mm thick fully cured resin plates as specimens. 

Flexural modulus and ultimate flexural strength were determined using an RSA-G2 

solids analyzer (TA Instruments) according to ASTM D790-10.195 The three-point bend 

experiment was performed with a span-to-thickness ratio of 16:1 and a crosshead rate of 1 

mm∙min-1 (0.01 min-1 strain rate). The fracture toughness test was performed using a 

compact tension (CT) method on an Instron 1011 single column system equipped with a 5 

kN load cell per ASTM D5045-99.196 After having been pre-cracked by fresh razor blade 

tapping, all specimens were pulled at 10 mm∙min-1 until complete failure. In a typical test, 

five three-point bend and at least ten CT specimens were tested, and the average was 

reported along with the standard deviation.   

The critical stress intensity factor (KIC) was calculated using equation 2.1, and the 

critical strain energy release rate (GIC) was calculated via equation 2.2.196 
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Here, PC is the critical applied load, B is the specimen thickness, W is the specimen 

width; 𝑎 is the crack length, E is the flexural modulus, and υ is the Poisson’s ratio of UPR, 

which is taken to be 0.39. 
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2.3 Results and discussion 

2.3.1 Chemical modifications of GO 

The successful functionalization of GO with isocyanate/alkylamine was confirmed by 

infrared spectroscopy (Figure 2.2). The spectrum of GO shows a broad band around 3400 

cm-1 corresponding to O–H stretching vibrations of hydrogen-bonded surface hydroxyl 

groups, and other peaks corresponding to the carboxylate C=O stretch at 1721 cm-1, surface 

adsorbed water and a graphitic skeleton stretch at 1623 cm-1,197 a C–OH bending absorption 

at 1399 cm-1, and a C–O stretch at 1072 cm-1.198 After TMI functionalization, new 

absorption peaks appear at 2920 and 2850 cm-1, which correspond to antisymmetric and 

symmetric C–H stretching vibrations and originate from the three methyl groups in the 

TMI molecule. Also, the urethane C=O stretch peak at 1649 cm-1 indicates that TMI is 

bonded to hydroxyl groups on the GO plane. The modification by dodecylamine introduces 

absorption peaks from strong methylene stretches at 2922 and 2850 cm-1, which are typical 

for long alkyl chains. The peaks at 1466 and 723 cm-1 can be assigned as methylene 

scissoring and rocking bands, respectively. The amide N–H stretching peak at 1583 cm-1 

together with the absence of a carboxylate peak indicates successful bonding of amine to 

GO.199 
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Figure 2.2. Infrared spectra of pristine and modified GO samples. 

The interlayer distance between two GO sheets correlates with the readiness for 

exfoliation inside the resin. Thus, a key goal of this research is to increase the interlayer 

distance and reduce the interlayer attraction. Figure 2.3 shows powder X-ray diffraction 

patterns of modified GO materials. It is evident that all functionalization methods increase 

the layer-to-layer distance of GO, which is 8.1 Å. TMI modification increases the d-spacing 

between GO layers only slightly to 9.0 Å, possibly due to the low reactivity of TMI towards 

the GO surface. A significant interlayer expansion (15 Å) was observed in dodecylamine-

treated TMI-GO, which can be attributed to the bulky nature of dodecyl group as well as a 

strong affinity between amine and GO.200 The broad peak around 23.2° 2θ in the XRD 

pattern of TMI-DDA-GO corresponds to an interlayer distance of 4.5 Å, which is the 

commonly observed most intense peak in the pattern of chemically reduced graphene oxide. 

This result indicates that minor reduction of GO also occurs during the reaction, consistent 

with an observed color change of mGO from brown to black after this modification step.200 
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Figure 2.3. X-ray diffraction patterns of pristine and modified GO (Co Kα source). 

To estimate the density of functional groups on GO, X-ray photoelectron spectroscopy 

(XPS) was used to analyze the elemental composition of pristine and modified GO (Figure 

2.4). We assumed that the N in GO was present as an ammonium salt that could be removed 

during isocyanate functionalization. Consequently, the N detected in TMI-GO was 

assumed to originate solely from TMI moieties. Thus, per 100 mol of non-hydrogen atoms 

in TMI-GO, there are 1.12 mol of TMI moieties, which contribute 14.6 mol C and 1.12 

mol O; the remaining 57.2 mol C and 25.6 mol O are attributed to the GO backbone. The 

C:O ratio of GO in TMI-GO was calculated to be 2.23, which is the same as the C:O ratio 

measured in pristine GO (2.23). Assuming GO is completely exfoliated, and it has defect-

free graphene sheets, we obtained a TMI function-group density of 1 per 25.5 C6 rings. To 

estimate the density of dodecyl groups, we assumed that TMI-GO loses neither C nor N 

during the dodecylamine (DDA) modification. This gives a composition of TMI-DDA-GO 

(per 100 mol non-hydrogen atoms, sulfur atoms ignored in calculation) as follows: GO: 

(38.2 mol C, 17.1 mol O), TMI: (9.72 mol C, 0.748 mol O, 0.748 mol N), and DDA: (34.7 
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mol C, 2.89 mol N). The sum of all elements yields 82.6 mol C, 3.64 mol N, and 17.8 mol 

O. The fact that less O was observed by XPS (13.71 atom%) can be explained as a 

consequence of the reduction of GO during dodecylamine functionalization, which is 

consistent with the XRD results (Figure 2.3) and the observed color change from brown to 

black. Therefore, we estimated the density of dodecyl moieties to be 1 per 6.60 C6 rings. 

 

 GO TMI-GO TMI-DDA-GO 

C 66.62 71.74 82.65 

O 29.82 26.70 13.71 

N 2.72 1.12 3.64 

S 0.84 0.44 <0.1 

 

Figure 2.4 XPS data of pristine and modified GO (top), and corresponding elemental 

compositions in atom% (excluding H atoms) from the XPS analyses (bottom).  

One concern of using GO-based nanofillers is their thermal stability. Due to the 

thermodynamically unstable nature of GO, the rapid decomposition, even explosion, of 
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GO can occur when it experiences temperatures above 200 °C.201 Figure 2.5 shows the 

TGA data of GO and modified GO samples. The weight loss before 120 °C is caused 

mainly by losing surface-adsorbed water,201 thus all TGA data were normalized to show 

the weight change beyond this point. The data indicate that TMI modification introduces 

only a limited quantity of functional groups on the GO surface. The rapid mass loss around 

210 °C for TMI-GO corresponds to decomposition of unreacted functionalities on GO. 

Upon treatment with dodecylamine, more oxygen containing groups are converted so the 

mass loss of TMI-DDA-GO appears to be more gradual between 200 °C and 500 °C. The 

lower residual mass also suggests a high density of DDA functional groups in TMI-DDA-

GO.  

 

Figure 2.5. Thermogravimetric analysis of modified GO. Weight normalized to 100% at 

120 °C. 

The TEM and VLM images (Figure 2.6) reveal that the modified GO samples are 

predominately multilayered. Depending on the surface compatibility towards UPR, these 
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GO-based tougheners are present as less-stacked aggregates (dark lines or flakes embedded 

in brighter resin matrix), which are observed in a TMI-DDA-GO resin composite (Figure 

2.6b), or many-layered aggregates (large, high contrast, and irregular dark agglomerates), 

like what is shown in GO (Figure 2.6h) or TMI-GO loaded UPR (Figure 2.6e). According 

to TEM micrographs, these GO aggregates are typically oblong; they are several hundred 

nanometers to a few micrometers long and a few hundred nanometers thick. The 

macroscopic dispersibility of the GO-based materials can be better discerned by optical 

microscopy (Figure 2.6 c, f, i) because well dispersed monolayers or few-layer graphene 

particles give minimal contrast in such circumstances. As shown in Figure 2.6, TMI-DDA-

GO forms small, loose clusters (gray spots) inside the resin; in contrast, TMI-GO appears 

as dark spots with irregular shapes and various sizes, which means TMI-GO has a higher 

tendency to aggregate than TMI-DDA-GO. GO, however, does not exfoliate well in UPR, 

and its macroscopic stacks are present as large particles with distinct boundaries. This 

difference has significance in composite processing since greater effort is required for 

dispersing the nanoparticles into the polymer, and poor dispersion results in reduced 

mechanical properties. 
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Figure 2.6 TEM and VLM micrographs of TMI-DDA-GO (a,b,c), TMI-GO (d,e,f), and 

GO (g,h,i) in ethanol dispersion (a,d,g) and in the resin composite (TEM: b,e,h; VLM: c,f,i). 

2.3.2 Mechanical Properties of Graphene-toughened UPR 

To evaluate the toughening effect of GO-based nanoparticles at very low loading levels, 

fracture toughness of corresponding UPR composites was tested. In this work, values of 

the mode-I critical stress intensity factor (KIC) were measured on compact tension 

specimens, and the critical strain energy release rate (GIC) was calculated using KIC and the 

flexural modulus determined in a three-point bending test (eq. 2). Figure 2.7a, b shows the 
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comparison of KIC and GIC for the neat resin and the resin loaded with different modified 

GO tougheners. The successful toughening of the UPR is well illustrated by a 12–25% 

increase in KIC and an 18–55% improvement in GIC with only 0.02–0.08 wt.% mGO. 

Except for pristine GO, the other GO tougheners have an optimal loading level of 0.04 wt.% 

based on KIC. The rather small increase in KIC in GO-loaded resin suggests that at such low 

loading levels, good dispersion is of key importance. Comparisons of the toughening effect 

between TMI-GO/GO and TMI-DDA-GO/TMI-GO indicate that better particle-matrix 

bonding and surface affinity also help to boost the toughening effect by stabilizing particles 

and preventing macroscopic aggregation. Better dispersion means an increased number of 

GO platelets inside the resin, so the amount of large aggregates decreases (Figure 2.6 c, f, 

i) and the roughness of crack surface increases (Figure 2.9 c, e, g) in the order GO, TMI-

GO and TMI-DDA-GO. The non-sonicated TMI-DDA-GO sample shows an even higher 

toughening effect, which means that the advantage of TMI/dodecylamine functionalization 

lies not only in the ease of composite processing, but also in the performance of the final 

product. Sonication better homogenizes the dispersion, but it also decreases the size of GO 

aggregates (Figure 2.6b, c). A minor reduction in ultimate strength was observed at the 

loading levels studied, which can be explained as nanoparticles acting as stress 

concentrators and structural defects that facilitate the initiation of cracks. This effect 

becomes more obvious in samples with poorly dispersed particles (eg. pristine GO, Figure 

2.7d) than in more uniform composites. Some fluctuation in flexural modulus can be 

attributed to the counteracting factors of the ability of graphene to inhibit crosslinking, 

which decreases the modulus, and to act as a rigid filler, which can increase the modulus. 
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Figure 2.7 Mechanical properties of UPR loaded with pristine and modified GO. "NS" 

denotes non-sonciated samples. (a) KIC, (b) GIC, (c) flexural modulus, and (d) flexural 

strength. 

2.3.3 Fractography Analysis 

According to the speed of crack propagation, the fracture surface of a failed compact 

tension specimen can be divided into two regions: a near precrack region and a fast 

propagation region (Figure 2.8). The near precrack region has a slow propagation rate due 

to the gradual stress build-up behind the precrack (re-initiation). Neat resin shows some 

plastic deformation as thin resin pieces hanging on the “cliffs” (Figure 2.9a), but beyond 

this region, all different crack surfaces quickly join the main crack plane (Figure 2.9b). In 

the modified GO filled resin, a rougher surface with many protrusions and pits is typically 
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observed as well as a larger area of slow propagation. This can be explained as a result of 

rigid GO particles pin the crack front and stopping the crack from growing.153, 202-204 Also, 

a comparison between near precrack regions of different samples suggests that composites 

with better dispersed GO show rougher near-precrack regions. Pristine GO composite 

sample also shows some pulled-out GO platelets on its fracture surface (Figure 2.9c, d), 

which suggests a weak particle-matrix interaction. 

 

Figure 2.8. Definition of different regions on the crack surface. (a) Low magnification 

SEM image of a failed CT specimen; (b) a schematic of the crack surface. 

 



49 

 

Figure 2.9 SEM fractographs of failed compact tension samples. Near precrack (a, c, e, g. 

i) and far beyond precrack (b, d, f, h, j) images taken from neat UPR (a, b), GO/UPR (c, d), 

TMI-GO/UPR (e, f), TMI-DDA-GO/UPR (g, h), and non-sonicated TMI-DDA-GO/UPR 

(i, j). All samples except the neat resin have 0.04 wt.% GO loading. Insets show higher 

magnification images of sample specimens. The nominal propagation direction for all 

fracture surfaces is from the bottom to the top. 
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In the region immediately after the near-precrack zone, a relatively even main crack 

plane forms. The dynamic cracking process is unstoppable in such a brittle matrix, leaving 

a more regular fracture surface with tadpole shaped features on it. The "heads" of these 

features are the places where the GO aggregates were located.203 As the crack propagates, 

GO particles retard the crack, forcing it to go around the particle and rejoin the main plane 

afterwards. This perturbation causes the split crack planes to travel at an angle with each 

other, so an edge forms after the pinning point. Due to this edge effect, these events can be 

identified as white lines parallel to the crack propagation direction in the SEM images. 

Also, the crack may change its direction when it meets a GO sheet but is unable to penetrate 

it. The deflected crack then leaves some irregular crack edges around the GO particles, 

which can be seen as the irregular curves in the SEM images (Figure 2.9). These events 

create additional crack surfaces, which in turn increases the energy required to propagate 

the crack. Like the slow propagation regions, the fast propagation regions show more 

events and rougher surface with better dispersed particles.  

Fractography analysis indicates that the main toughening mechanisms of modified GO 

in UPR are crack pining and crack deflection, which is consistent with the previous 

research on the rigid particle filled resin systems.169, 170 The size difference between GO 

sheets (Figure 2.6) and the surface features (Figure 2.9) indicates GO particles interact with 

the crack in the form of small aggregates. The crack surface changes with varying GO 

content (Figure 2.10). Estimated from the fast propagation region, the number of 

toughening events increases with increasing GO loading. But significant coalescence of 

these events can be observed in the slow propagation region at higher GO content. The 

coalescence of toughening events produces less plastic fracture (judging from the plastic 
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deformation lines between pinning points), thus decreases the toughening effect at 0.08 wt.% 

GO loading. 

 

Figure 2.10. Additional fractographs of resin/GO or resin/mGO composites with different 

particle loading levels and in different regions of the crack surface. All samples are labeled 

as "Toughener-0.0X wt.%-Slow propagation/Fast propagation." "NS" refers to non-

sonicated samples. 
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Figure 2.10. Continued. 

2.4 Conclusion 

Our research demonstrates that GO and its appropriately functionalized derivatives are 

promising materials for toughening of unsaturated polyesters. This type of nano-toughener 

is able to toughen UPR (55% increase in G1C) at a very low loading level around 0.04 wt.%, 

which makes it economically viable in the cost-sensitive UPR market. Chemical 

modifications studied in this work improve the toughening effect by enhancing particle-
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matrix bonding and surface compatibility. More importantly, the TMI/dodecylamine 

functionalization enables easy dispersion of GO into the resin with simple mechanical 

mixing that helps overcome the common processing difficulties of incorporating 2-D 

nanomaterials. 

The study of the toughening mechanism indicates that the GO-based tougheners, in the 

form of small aggregates, work mainly by pinning the crack. Reducing the size of the 

aggregates by probe sonication results in fewer effective toughening events. On the other 

hand, if particles are too highly aggregated, this causes a deterioration of the composite 

properties as it introduces large structural defects. The optimal loading level is around 0.04 

wt.%, and a small reduction of the toughening effect (KIC) is observed by increasing the 

loading beyond the optimum. This phenomenon can be explained as resulting from the 

coalescence of toughening events, which facilitates the crack propagation. 
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Chapter 3 

Modified-Graphene-Oxide-Containing Styrene Masterbatches for 

Thermosets 

3.1 Introduction 

Synthetic polymers are some of the most extensively used materials in modern society 

due to their unparalleled combination of light weight, low cost, and relative ease of 

processing. However, it is very hard to produce polymers that have high strength, modulus, 

and toughness at the same time. Thus, a nanoscale, secondary phase is often introduced to 

reinforce the polymer matrix.205, 206 The resulting material is referred to as a polymer 

nanocomposite. Among different types of composites, graphene–polymer composites have 

attracted enormous attention among researchers because they can possess good thermal 

and electrical conductivity,207 gas barrier properties,207 and thermomechanical properties.13, 

122 However, the performance of graphene nanocomposites is highly dependent on the 

homogeneity of the dispersion.205 Poorly dispersed nanomaterials can have adverse effects 

on the strength of the composite because the nanomaterials can function as structural 

defects.208-210 If the dispersibility of nanomaterials is poor, a higher loading of graphene 

nanomaterials may be needed to achieve certain desired physical properties, which can 

increase the production costs.  

                                                 
 This chapter was reproduced from Ind. Eng. Chem. Res. 2017, 56, 11443 with permission. © Copyright 

2017, American Chemical Society. Mechanical data used in this chapter were collected and processed by 

Kunwei Liu. 
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A good dispersion of nanomaterials in polymer matrices is difficult to obtain. On one 

hand, nanomaterials tend to agglomerate due to their high surface energy.205, 211 On the 

other hand, unlike protic solvents, polymer matrices lack the ability to stabilize 

nanoparticles via repulsive electric forces between particles.212 This is particularly 

problematic for graphene-based materials because of their high aspect ratios. To overcome 

this difficulty, researchers have explored a wide range of covalent and noncovalent surface 

modification techniques.40, 41, 49, 68, 213  

In spite of these challenges, there are a few methods suitable to produce graphene or 

graphene oxide (GO) polymer nanocomposites with good dispersion quality. For 

thermoplastics, solvent casting and melt mixing methods both produce composites with 

very evenly distributed nanofiller.214-218 However, these methods are not applicable for 

thermosets because they either leave residual solvent that could be detrimental to the 

mechanical properties of the final product,207 or cause irreversible hardening (curing) of 

the polymer matrix. In-situ polymerization methods can also produce high quality 

composites. For thermosetting resins, in-situ polymerization is the only viable option. This 

method requires dispersing graphene or its derivatives into resin before curing.  

Typically, when graphene nanosheets are added to a low-viscosity resin prepolymer, 

the low viscosity does not provide high enough shear stress during simple mechanical 

mixing to break down graphene aggregates. Better dispersion of nanofillers in thermosets 

is possible by sonication206 or three-roll milling.219 However, sonicating nanomaterials in 

polymers is difficult and expensive to conduct on a large scale. Three-roll milling provides 

strong shear forces and a good dissipation of heat, but it causes a rapid loss of volatiles, 

which could be problematic. Strong interactions between graphene or GO sheets are a 
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reason that even with powerful dispersing techniques it remains difficult to exfoliate dry 

products in a resin.  

Previous research indicates that graphene oxide derivatives can toughen thermosets at 

very low loading levels.192, 220-225 For example, 0.04 wt.% isocyanate/dodecylamine 

modified GO raised the fracture energy of UP resin by 55%;220 however, freeze-drying and 

probe sonication were used to achieve a good dispersion. These two techniques are costly 

and energy consuming, unfavorable for processing materials at a very large volume. Thus, 

it is imperative to develop new processes that avoid freeze-drying during GO preparation 

and probe sonication during resin formulation while keeping the GO sheets well dispersed 

in a resin phase.  

In this research, we have created a scalable method to prepare styrene monomer 

masterbatches of modified graphene oxide for the fabrication of unsaturated polyester (UP) 

resin and vinyl ester (VE) resin composites. The method features a few simple solvent-

exchange steps with centrifugation at moderate speed for separation. The resulting styrene 

masterbatch contains about 1 wt.% modified GO, and it can be readily incorporated into 

UP or VE resins with simple mechanical mixing. The masterbatch concentration is chosen 

to be around 1% to keep the viscosity low enough for the masterbatch to be pourable. 

Optical microscopy and mechanical properties of resin nanocomposites are the main 

criteria for assessing the quality of dispersions obtained by different processing methods. 

The study shows that composites made with a masterbatch containing modified GO in 

styrene exhibit similar fracture toughness improvements and better flexural strength, 

compared to composites made with freeze-dried or oven-dried powders of modified GO. 
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3.2 Experimental Procedures 

Materials. Styrene (99%), cobalt(II) 2-ethylhexanoate solution (65 wt.% in mineral 

spirits), 4-tert-butylcatechol (98%), and 2-butanone peroxide (Luperox DDM-9, 35 wt.% 

in 2,2,4-trimethyl-1,3-pentanediol diisobutyrate) were purchased from Sigma-Aldrich. 

Dodecylamine (98%) was obtained from Alfa-Aesar, tert-butanol (99%) from Macron, and 

graphene oxide (GO) slurry (2.88 wt.% in water, C:O = 2.4 by XPS as reported by 

Graphenea) from Graphenea. Deionized (DI) water with a resistivity of 18 MΩ∙cm-2 was 

produced onsite using a Barnstead purification system. The AROPOL 8422 unsaturated 

polyester resin and Hetron 922L-25 vinyl ester resin were produced by Ashland Inc. 

3.2.1 Synthesis and workup of modified GO 

GO slurry was diluted to 4 mg/mL with DI water, and the pH of the dispersion was 

adjusted to 9 using 4% aqueous sodium hydroxide solution. After mechanical mixing for 

15 min, the aqueous GO dispersion was sonicated in a bath sonicator (Branson 3800) for 

30 min. One part by volume of the resulting GO dispersion was then rapidly mixed with 

two parts by volume of a solution containing 6 g/L dodecylamine in ethanol. The mixture 

was heated to 70 ˚C and allowed to react for 24 h under stirring. The reaction mixture was 

then centrifuged at 3000 rpm for 15 min to collect the sediment. The crude product was 

washed four times with ethanol and three times with styrene by mixing and centrifugation 

to obtain the final product. Purified dodecyl-GO was redispersed in styrene at 

approximately 1 wt.% by sonicating for 30 min in a bath sonicator to prepare the styrene 

masterbatch (SMB). For comparison, purified dodecyl-GO was also oven-dried at 70 ˚C 

(OD) or freeze-dried at room temperature after washing with tert-butanol (FD) to obtain 
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the corresponding dry form.  

3.2.2 Preparation of resin composite  

AROPOL 8422 UP resin containing 45% styrene was prepared by diluting stock resin 

with styrene. To 100 g diluted resin, 40 mg of 4-tert-butylcatechol inhibitor and 100 mg of 

65% cobalt(II) 2-ethylhexanoate promoter in a solution of mineral spirits were added. 

Hetron 922L-25 VE resin was purchased with promotor and inhibitor already added. For 

OD and FD samples, the desired amount of dry product was directly added to the 

formulated resin. For SMB samples, the amount of styrene added for resin dilution was 

adjusted accordingly to account for the extra styrene present in the masterbatch. All resin 

samples were shear mixed (Eurostar power-b, IKA) in 75 g-batches with a 1” Cowles blade 

at 2000 rpm for 15 min to obtain the dispersions. For comparison, a sample of SMB resin 

dispersion was also probe sonicated (Misonix S-4000, 4 s pulse, 2 s pause, 35% amplitude) 

for 1 h, which is denoted as SMB-S. Due to the extremely low loading levels of mGO, all 

UP resin dispersions have very similar viscosity values around 0.13 Pa·s. All resin 

dispersions (including VE dispersions) were subsequently initiated with 1.25 g 2-butanone 

peroxide (Luperox DDM-9) initiator per 100 g resin and allowed to react for 10 min with 

magnetic stirring at a moderate speed, followed by 10 min de-gasing in vacuum. The 

degassed, initiated resin was poured into a mold made from two 10 mm thick, 200 200 

mm glass plates separated by a 3 mm thick rubber spacer. A 1.5 mm spacer was used to 

prepare samples for the three-point bending test and optical microscopy. The molded resin 

was cured at room temperature for 24 h before post-curing. The post-curing procedure 

included 3 h of heating at 70 °C and 3 h of heating at 120 °C. The fully cured resin plaques 

were milled into specimens according to ASTM D790-10 and ASTM D5045-99. A 
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summary of the different processes and corresponding sample designations can be found 

in Figure 3.1. 

 

Figure 3.1. Schematic of post-synthesis processes and sample designations (r.t. = room 

temperature, mGO = dodecylamine modified graphene oxide).  

3.2.3 Characterization 

Infrared (IR) spectroscopy was performed on a Magna-FTIR 760 spectrometer (Nicolet) 

using KBr pellets of GO and modified GO samples. Powder X-ray diffraction (XRD) 

experiments were performed with a PANalytical X'Pert Pro diffractometer. This instrument 

utilized a Co anode (Kα radiation, 1.79 Å) and X'celerator detector, and it was operated at 

45 kV accelerating voltage with a 40 mA emission current. Thermogravimetric analysis 

(TGA) was carried out under a nitrogen atmosphere using a Netzsch STA 409 simultaneous 

TGA-DSC with ~2.5 mg of sample loaded in an alumina crucible. The ramp rate was 

10 °C/min, and the temperature range was 25 °C to 600 °C. A JEOL 6700 field emission 

scanning electron microscope (SEM) with a tungsten filament source was used for imaging. 

SEM images were taken using an acceleration voltage of 5 kV. All fracture surface SEM 
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samples were coated with 50 Å Pt prior to imaging. Visible light microscopy (VLM) 

images were taken on a Nikon Eclipse Ti-e Optical Microscope in transmission mode, 

using 1.5 mm thick, fully cured resin plates as specimens. 

Flexural modulus and ultimate flexural strength were determined using an RSA-G2 

solids analyzer (TA Instruments) according to ASTM D790-10. The three-point bending 

experiment was performed with a span-to-thickness ratio of 16:1 and a crosshead rate of 1 

mm∙min-1 (0.01 min-1 strain rate). The fracture toughness test was performed using a 

compact tension (CT) method on an Instron 5966 dual-column system equipped with a 500 

N load cell per ASTM D5045-99. After having been pre-cracked by tapping with a fresh 

razor blade, all specimens were pulled at 10 mm∙min-1 until complete failure. In a typical 

test, five three-point bend and at least ten CT specimens were tested, and the average was 

reported along with the standard deviation.   

The critical stress intensity factor (KIC) was calculated using equation 3.1, and the 

critical strain energy release rate (GIC) was calculated via equation 3.2 (ASTM D5045-99). 
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)        (3.2) 

Here, PC is the critical applied load, B is the specimen thickness, W is the specimen 

width; 𝑎 is the precrack length, E is the flexural modulus, and υ is the Poisson’s ratio of 

UPR, which is taken to be 0.39. The precrack was created by tapping a razor blade in the 

machined notch, see Figure 2.8 in Chapter 2. 
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3.3 Results and Discussion 

3.3.1 Chemical modification and post-modification work-up of GO 

The chemical modification of GO with dodecyl groups was carried out to enhance 

surface interactions between the modified GO sheets and the polymer matrix and to 

increase the separation between GO sheets so that mGO would exfoliate more readily upon 

mixing. The dodecylamine modification of GO was confirmed by infrared spectroscopy 

(Figure 3.2). A broad absorption band centered at 3420 cm-1 in both spectra corresponds to 

the O–H stretching vibrations of hydrogen-bonded surface hydroxyl groups.197 Other 

absorption peaks corresponding to the carboxylate C=O stretch at 1722 cm-1, a graphitic 

skeleton stretch at 1576 cm-1, a C–O–C stretch at 1220 cm-1, and a C–O stretch at 1050 cm-

1 in the spectrum of GO can also be found in that of mGO.198 After dodecylamine 

functionalization, new absorption peaks associated with antisymmetric and symmetric C–

H stretching vibrations appear at 2921 cm-1 and 2849 cm-1, which is commonly observed 

for long-chain alkyl groups. The peaks that can be assigned as methylene scissoring and 

rocking absorption bands also appear at 1456 cm-1 and 769 cm-1 respectively.199 The 

decrease in the intensity of the peak associated with the carboxylate C=O stretch and an 

increase in intensity of the amide N–H bending absorption band around 1640 cm-1 indicate 

the formation of an amide bond between GO and dodecylamine. The decrease in the 

intensity of the epoxide stretch absorption, together with a new peak at 1358 cm-1 

corresponding to the amine C–N stretch,199 implies that the ring opening reaction between 

amine and epoxy group also occurred. 
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Figure 3.2. Infrared spectra of pristine GO and dodecylamine-modified GO (mGO). 

Arrows mark the 1640 and 1358 cm-1 peak positions discussed in the text. 

Figure 3.3 shows the powder X-ray diffraction patterns of GO and mGO. A significant 

interlayer expansion from 7.7 Å to 14 Å can be observed after functionalization of the GO 

particles. This increase in interlayer distance is attributed to the bulky nature of the dodecyl 

groups and a good coverage of dodecyl groups on the GO sheet surface. The broad peak 

around 24° 2θ in the XRD pattern of mGO, corresponding to an interlayer distance of 4.4 

Å, is the commonly observed most intense peak in the pattern of chemically reduced 

graphene oxide.200 Its presence in the pattern of mGO indicates that reduction of GO 

occurred during the modification and that some reduced graphene layers are closely 

stacked. As a result of partial reduction, the sample color changed from brown for GO to 

black for mGO. 
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Figure 3.3. X-ray diffraction patterns of pristine GO and modified GO (Co Kα source). 

Dodecylamine modification significantly improves the thermal stability of GO. Figure 

3.4 shows the TGA data of GO and mGO samples. Mass loss before 120 °C is caused 

mainly by removal of surface-adsorbed water; therefore, all TGA data were normalized to 

show the mass change beyond this point. The mass loss around 160–200 °C in both samples 

corresponds to decomposition of unreacted oxygen-containing groups on GO; the 

relatively small mass loss observed for mGO in this region suggests that a large fraction of 

these groups were converted during the modification process. The mass loss between 

200 °C and 500 °C can be explained as the gradual loss of physisorbed, weakly bonded 

(epoxy-amine reaction), and strongly bonded (amide formation) dodecylamine. A mass 

loss of more than 40% in this range suggests a high density of dodecyl functional groups 

in mGO, although a fraction of this mass loss may be associated with loss of oxygen and 

carbon from GO during heating.220  
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Figure 3.4. Thermogravimetric analysis of GO and mGO materials. The residual mass was 

normalized to 100% at 120 °C. 

Figure 3.5 shows the XPS data of pristine and modified GO. The difference in nitrogen 

content between mGO and GO was used to estimate the fraction of dodecylamine in mGO. 

On the basis of the nitrogen content of mGO, the dodecylamine functional group accounts 

for about 27% of the total mass of mGO, which is lower than the value of 40% weight loss 

determined by TGA. The latter weight loss may include some loss of oxygen and carbon 

from GO during heating. Comparing the X-ray photoelectron spectroscopy results of GO 

and mGO, GO was reduced during modification. The C:O ratio changed from 2.38:1 to 

5.27:1 (carbon from dodecylamine subtracted) after dodecylamine modification, which 

explains the reduction peak in the XRD pattern of mGO at 24° 2θ that is typically 

associated with chemically reduced GO. 
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Figure 3.5. X-ray photoelectron spectroscopy data of pristine GO and modified GO. The 

number under each peak represents the abundance in atom percent of the corresponding 

element in the sample.  

The different post-synthesis processing methods of mGO have relatively little impact 

on the chemical composition of mGO, as differently processed mGO samples exhibit only 

small differences in their IR spectra and XRD patterns (Figure 3.6). The OD-mGO sample 

gives a slightly broader low-angle peak, which may indicate that the rapid drying process 

causes more disorder inside the aggregates. The additional IR absorption peak at 1159 cm-

1 of the FD-mGO sample corresponds to the C–OH stretching vibration, which originates 

from the hydroxyl groups on the GO surface that cannot be removed by room temperature 

freeze drying. 
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Figure 3.6. (a) XRD patterns and (b) IR spectra of differently processed mGO. 

However, processing conditions have a significant effect on how mGO sheets re-stack. 

To study this effect, all mGO samples were dispersed in dichloromethane with magnetic 

stirring. The resulting particle suspensions were subsequently drop cast onto a silicon wafer 

and dried under dichloromethane atmosphere. The SEM micrographs of the resulting mGO 

samples are shown in Figure 3.7. Compared to SMB-mGO (Figure 3.7c), the FD-mGO 

sample (Figure 3.7a) has a much larger aggregate size and more stacking. Aggregates in 

the OD-mGO sample (Figure 3.7b) are even larger, and the presence of bright lines due to 

edge effects also means that stacking is significantly more pronounced. It should be noted 

that the aggregated mGO particles can break down by sonication in styrene (Figure 3.7d), 

but some large aggregates remain unchanged. 
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Figure 3.7. SEM micrographs of differently processed mGO. (a) FD-mGO, (b) OD-mGO, 

(c) SMB-mGO, (d) FD-mGO sonicated for 30 minutes in styrene. Note the contrast within 

the aggregates (white arrows), which indicates restacking of mGO sheets. Bright lines 

caused by edge effects (yellow arrows) indicate significant aggregation, because in these 

cases, the edges of thick mGO stacks point away from the silicon wafer surface. 
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3.3.2 Characterization of dispersion quality and mechanical properties of the 

composites  

The composite samples were prepared as described in the experimental section. A 

summary of the different nanocomposite processing steps is presented in Figure 3.1. 

Freeze-dried and oven-dried composite samples were synthesized to evaluate the 

effectiveness of freeze-drying to prevent the formation of large aggregates in the resin. A 

comparison between composites made with dried mGO and those made with an 

mGO/styrene masterbatch shows how the drying process affects mGO dispersibility. 

Additional sonication treatment of the mGO masterbatch/resin dispersion was also studied 

to investigate whether sonication can further improve the quality of dispersion by breaking 

down mGO aggregates from the masterbatch. 

Photographs of the nanocomposite resin plaques are shown in Figure 3.8. The 

appearance of the plaques differs significantly, depending on the processing method. The 

OD sample shows the least discoloration, but large aggregates of mGO are apparent even 

to the eye. The FD sample is darker and more uniform; however, aggregates can still be 

seen. Both samples prepared from the mGO/styrene masterbatch (SMB and SMB-S) are 

homogenous and uniformly darkened by the nanoparticles.  
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Figure 3.8. Photograph of 1.5 mm UP resin plaques containing 0.04 wt% mGO and 

prepared by the four different processes outlined in Figure 1.  

The quality of mGO/resin dispersions can be characterized more quantitatively by 

visible light microscopy (VLM). Figure 3.9 shows a comparison of differently processed 

mGO in UP resin. When made into a composite, the oven-dried mGO (Figure 3.9a) formed 

the largest aggregates, some of which were a few tens of micrometers in diameter. A freeze-

drying process reduced the aggregation of mGO, thus the FD sample (Figure 3.9b) shows 

a more uniform distribution of mGO particles with fewer large aggregates. The styrene 

masterbatch process produced a much better dispersion of mGO in the resin, and the size 

of mGO aggregates was further reduced. As indicated by the particle count on the images 

at the same loading level, the number of particles in a composite made with SMB mGO 

(Figure 3.9c) increased significantly compared to that of the OD and FD composites. 

Additional 1 h probe sonication of the SMB mGO/UP dispersion did not further improve 

the quality of the dispersion, as Figure 3.9d looks similar to Figure 3.9c.  
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Figure 3.9. VLM micrographs of UP resin composites with differently processed mGO: 

(a) oven-dried mGO (OD); (b) freeze-dried mGO (FD); (c) styrene masterbatch (SMB); (d) 

styrene masterbatch with additional probe sonication (SMB-S). Particle count in 

particles/104 µm2 is given on each image. All samples are 1.5 mm thick and have an 

identical loading of 0.02 wt.% mGO. 

A plot of size distributions of mGO aggregates in all samples can be found in Figure 

3.10. It should be noted that well dispersed mGO sheets or aggregates that are smaller than 

0.3 µm cannot be detected by VLM due to the Rayleigh limit. If the primary intent of a 

dispersion process is to reduce macroscopic aggregation, any drying step should be avoided 

when mGO is transferred into a resin matrix. The masterbatch process showed the 

advantage of transferring wet graphene nanosheets to the designated resin without any 
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drying step. Also, additional probe sonication is unfavorable, since it adds additional cost 

to the process without further reducing the average size of aggregates to a significant extent.  

 

Figure 3.10. Particle size distributions of mGO aggregates in differently processed 

mGO/resin composites. Trendlines are used only to guide the reader's eyes. The total 

sampling area for each sample is 0.574 mm2. Total counts are 1564, 3425, 7734, and 7291 

for the OD, FD, SMB, and SMB-S samples, respectively. 

While the masterbatch process is potentially applicable to other systems that require 

good dispersion of modified graphene oxide, the focus of this research is to study how the 

quality of dispersion affects the mechanical properties of UP resin composites. A previous 

study indicated that addition of graphene oxide derivatives to UP resin at very low loading 

levels can toughen the matrix significantly,220 so it is important to know how different 

dispersing processes will influence the performance of the final product. To be specific, 

the mode-I critical stress intensity factor (KIC), critical strain energy release rate (GIC), 

flexural modulus (E), and flexural strength (σ) are properties of interest. As shown in 

Figure 3.11a and b, OD and FD mGO composites have slightly higher fracture toughness 
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(KIC) and fracture energy (GIC) than the SMB and SMB-S composites, which suggests that 

the formation of large aggregates may be beneficial for toughening UP composites.226 Due 

to the very low loading levels, the flexural modulus values (Figure 3.11c) for all composite 

samples are very close to one another. The flexural strength, however, shows a strong 

dependence on aggregation size. The OD and FD samples exhibit a larger reduction of 

ultimate strength, compared to the SMB and SMB-S samples. This is because aggregates 

can function as structural defects and concentrate stress for crack initiation.208-210 The 

mechanical properties of SMB and SMB-S composites are very similar, and the same is 

true for the OD and FD samples. Furthermore, additional probe sonication does not 

improve the mechanical performance of composites any further, consistent with what was 

observed by VLM. Because sonication is difficult and expensive for industrial scale 

operations, the masterbatch process is advantageous for replacing sonication processes 

during resin formulation without lowering the quality of dispersion. 
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Figure 3.11. Mechanical properties of UP resin composites with differently processed 

mGO. (a) KIC, (b) GIC, (c) flexural modulus, and (d) flexural strength. 

When a styrene masterbatch is prepared from freeze-dried mGO (SMB-FD), 

aggregation of mGO sheets is partially reduced, as shown in Figure 3.7, but the overall 

mechanical properties of corresponding UP resin composites are very similar to those of 

samples made with FD mGO (Figure 3.12). This implies that any drying step in processing 

modified GO materials should be avoided to prevent further particle aggregation and to 

retain better composite strength. 
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Figure 3.12. Mechanical properties of SMB-FD mGO/UP resin composites. (a) KIC and 

GIC, (b) flexural modulus and flexural strength. 

 

3.3.3 Fractography Analysis 

Fractography analysis can provide useful information about the dispersion of particles 

inside the matrix and how these particles affect the mechanical performance of composites. 

The fracture surface resulting from mode-I cracking can be divided into two regions: a 

near-precrack region and a fast propagation region (Figure 2.8 in Chapter 2). The near-

precrack region has a slow propagation rate due to the gradual stress build-up behind the 

precrack (re-initiation), and the features in this region show how a matrix filled with 

particles responds to the slowly increasing applied stress.174, 227 In general, the contributing 

toughening events in GO toughened resins are crack pinning and crack deflection, which 

appear as tadpole-shaped features and irregular edges in SEM fractographs, respectively. 

Distinctive aggregates and river-like “bright tails” following those aggregates can be 

observed for the OD and FD samples in Figure 3.13a and c, respectively. In contrast, 

patches of surfaces at different heights separated by irregular edges are visible for the SMB 

and SMB-S samples in Figure 3.13e and g, respectively, which implies a change in the 
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toughening mechanism. Although the crack pinning mechanism is predominant in OD and 

FD samples and the crack deflection mechanism predominant in SMB and SMB-S samples, 

all composite fracture surfaces have roughness near the precrack regions (Figure 3.13a, c, 

e, g), which explains the similar KIC values obtained for these samples. Catastrophic failure 

of test specimens happens in the fast propagation region (Figure 3.13b, d, f, h), where the 

growth of cracks can no longer be stopped. This brittle fracture leaves a smooth surface 

with small features of pulled out particles, which is useful for visualizing the particle 

distribution inside a resin matrix. By counting the events on the SEM micrographs in Figure 

3.13, the particle aggregate densities in terms of counts per 10,000 µm2 were estimated to 

be: 10 for the OD sample, 19 for the FD sample, 29 for the SMB sample, and 32 for the 

SMB-S sample. Compared to FD, SMB, and SMB-S samples the OD sample shows a 

significantly lower particle density, which suggests more severe aggregation of mGO 

inside its composite. The trend is similar to that observed by optical microscopy in Figure 

3.9 where the particle density is about 3~4 times that observed by SEM on the fracture 

surfaces. The size of aggregates is also smaller in SMB/SMB-S samples than in OD/FD 

samples, judging from the high magnification SEM micrographs of the fracture surfaces.  
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Figure 3.13. SEM fractographs of compact tension samples after testing: OD (a, b), FD (c, 

d), SMB (e, f), and SMB-S (g, h). Positions in the specimens: near precrack (a, c, e, g), and 

fast propagation region (b, d, e, h). A definition of the different regions on the fracture 

surface is presented in Fig. S9. All samples contain 0.04 wt.% mGO in UP. Crack 

propagation direction: from bottom to top. A corresponding image of the neat resin can be 

found in Figure 2.9 in Chapter 2. 
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3.3.4 Toughening Vinyl Ester (VE) Resin 

Like what was observed in the UP resin, mGO masterbatch can also toughen VE resin. 

The masterbatch prepared in this chapter can be easily mixed into VE resin and achieve 

good dispersion. Figure 3.14 shows an optical micrograph of mGO-VE resin composite, 

which is similar to UP resin composites in terms of dispersion and aggregate size. 

 

Figure 3.14. VLM micrograph of VE resin with 0.04 wt.% SMB mGO. 

Similar increases in fracture toughness were also observed when mGO was 

incorporated in VE composites (Figure 3.15), with peaks in KIC and GIC at an even lower 

loading of 0.02 wt.%. 
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Figure 3.15. Mechanical properties of mGO/VE resin SMB composites. (a) KIC and GIC, 

(b) flexural modulus and flexural strength. 

The features on the fracture surfaces of VE composites made with SMB mGO are 

similar to those observed in UP composites, as shown in Figure 3.16.  

 

Figure 3.16. SEM fractographs of failed compact tension samples: neat VE resin (a, b), 

VE resin with 0.04 wt% mGO prepared by the SMB process (c, d). Positions in the 

specimens: near precrack (a, c), and fast propagation region (b, d). Crack propagation 

direction: from bottom to top. 
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3.4 Conclusion 

A simple dodecylamine functionalization of GO was utilized to synthesize mGO 

compatible with UP and VE resins. The GO modification was confirmed by FTIR, XRD, 

and TGA. This research demonstrates that mGO in the form of a styrene masterbatch can 

be readily incorporated into UP resin by mechanical mixing. Although the preparation of 

the masterbatch itself requires bath sonication, no sonication step is needed for resin 

formulation by the end user. It should be noted that the volume of the masterbatch required 

for processing is significantly less than the volume of resin. VLM images and SEM of 

fracture surfaces show that the size of aggregates is much smaller in masterbatch-derived 

samples than in oven-dried or freeze-dried samples, and no significant difference in 

aggregation was observed before (SMB) and after (SMB-S) additional sonication. This is 

advantageous because sonication treatment is expensive and difficult to carry out for 

processing large volumes of resin dispersions. Although better dispersion does not 

guarantee better fracture toughness, a UP composite with less aggregated mGO shows 

better retention of flexural strength in mechanical tests. Another advantage of incorporating 

mGO directly in a masterbatch is that the dispersed graphene oxide is safer to ship and 

easier to handle during mixing than the dry powder. Freeze-dried mGO offers a slightly 

better toughening effect than SMB mGO, but it is overall not favorable, considering its 

processing cost and the observed flexural strength reduction. Processing is simplest for 

oven-dried mGO albeit at the expense of significant strength reduction, which renders this 

route competitive only when the ultimate strength of the composite is not a concern. The 

study shows the significant effects that different methods used to concentrate and disperse 
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nanoparticles have on resulting properties. This is relevant to many other types of 

nanoparticles. 
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Chapter 4 

Effects of Inorganic Fillers on Toughening of Vinyl Ester Resins by 

Modified Graphene Oxide 

4.1 Introduction 

For thermosetting resins, fracture toughness is a vitally important property.228 

Thermosets are inherently brittle due to their highly crosslinked structure, which means 

that a small crack can lead to catastrophic failure of a resin part. However, increasing the 

resin fracture toughness by reducing the crosslink density is impractical, because this 

would also reduce the stiffness and heat distortion temperature of the resin.229 Thus, a 

toughening agent is often used to increase the fracture toughness of a thermosetting resin. 

Despite the great success of polymeric tougheners, such as reactive liquid rubbers, core-

shell rubbers, and block copolymers, researchers have suggested that inorganic 

nanoparticles could better serve as resin tougheners because they can toughen the matrix 

without reducing its modulus or glass transition temperature (Tg).
169, 170, 191, 230 Among 

inorganic tougheners, graphene-based nanomaterials have received special attention in 

recent years, because they are effective at extremely low loading levels (0.04 wt % or 

lower).192, 220, 221 At such low levels, adding a graphene-based toughener does not increase 

the base resin viscosity, and also keeps modulus and Tg relatively constant.220 These 

characteristics render graphene-based tougheners competitive in cost-driven resin markets. 

                                                 
 This chapter was reproduced from Ind. Eng. Chem. Res. 2018, 57, 4592 with permission. © Copyright 2018, 

American Chemical Society. Mechanical data used in this chapter were collected and processed by Kunwei 

Liu. 
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Unsaturated polyester (UP) resins and vinyl ester (VE) resins are extensively used as 

composite resins for building structural parts in automobiles, marine construction, storage 

tanks, pipelines, and home-building industries.231 They are the most common types of 

thermosetting resins to be used for manufacturing fiber-reinforced plastics, because they 

are inexpensive, easy to process, and exhibit good mechanical stiffness and moderate 

chemical resistance.134 Compared to UP resins, VE resins offer better toughness and 

corrosion resistance at a slightly higher cost.134 Application of VE resins is therefore more 

common in the chemical industry, where the mechanical properties and chemical resistance 

of UP resins are inadequate. Both resins are used mainly for fiber-reinforced structural 

parts; therefore, fracture toughness is of great importance. In addition, whereas some price 

tolerance is associated with high performance engineering plastics, UP or VE resin 

industries tend to place more emphasis on cost control. At low loadings, graphene-based 

tougheners are potentially cost-effective for toughening these resins. 

A few publications have indicated that polymeric tougheners can toughen particle-

filled resins,145, 232 but, to the authors’ knowledge, most research on resin toughening with 

rigid inorganic nanoparticles was done in neat resins. Although removing fillers from a 

resin formulation simplifies the system, fillers can influence the mechanical properties of 

the resin, because these particles can both act as reinforcements and introduce defect sites. 

Thus, it is important to learn how inorganic nanoparticle tougheners, such as graphene-

based tougheners, interact with filler particles in a resin. In addition, fillers are commonly 

found in UP and VE formulations, because they can be used to reduce cost, control 

shrinkage, and adjust viscosity. Therefore, it is particularly worthwhile to investigate the 

interactions between common fillers and graphene toughening agents in UP and VE resins. 
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In this work, the mechanical properties of a VE resin with different fillers were studied 

with and without the presence of modified graphene oxide (mGO) toughener. The results 

indicate that fillers may or may not impact the toughening effect of graphene, depending 

on the size of the fillers or particle aggregates relative to that of mGO particles. 

4.2 Experimental 

Materials 

 Styrene (99%), 2-butanone peroxide (Luperox DDM-9, 35 wt % in 2,2,4-trimethyl-

1,3-pentanediol diisobutyrate), and kaolin clay were purchased from Sigma-Aldrich. 

Dodecylamine (DDA, 98%) was obtained from Alfa-Aesar. Untreated fumed silica (CAB-

O-SIL M-5) and PDMS-treated silica (AEROSIL R 202) were obtained from Cabot Corp. 

and Evonik Corp., respectively. Calcium carbonate samples of different sizes (Ultra-Pflex 

A-16-083-11, precipitated calcium carbonate 70 nm average particle size; Super-Pflex 100 

A-2-201-22, precipitated calcium carbonate 700 nm average particle size; Vicron 15-15 A-

16-042-11, 3.5 µm) were obtained from Specialty Minerals Inc. Deionized (DI) water with 

a resistivity of 18 MΩ∙cm was produced onsite using a Barnstead purification system. The 

Hetron 922L-25 vinyl ester resin was supplied by Ashland Inc. GO in water slurry was 

purchased from Graphenea. 

Synthesis of modified GO 

A detailed procedure for the synthesis of modified GO can be found elsewhere.233 

Briefly, one part by volume of an aqueous dispersion of GO (4 mg/mL) prepared by 

sonication was rapidly mixed with two parts by volume of a solution of 6 g/L dodecylamine 

in ethanol. The mixture was then heated to 70 ̊ C and allowed to react for 24 h under stirring. 
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The crude product was washed 4 times with ethanol and 3 times with styrene by mixing 

and centrifugation to obtain the final product. Purified dodecylamine-modified GO (mGO) 

was redispersed in styrene at approximately 1 wt % with 30 min sonication to prepare the 

styrene masterbatch. 

Preparation of resin composite 

Generally, a small amount of styrene was removed from the as-received VE resin by 

vacuum distillation, and various quantities of styrene were then added back to account for 

the extra styrene from the mGO masterbatch. Dry fillers were added to the VE resin 

afterwards. All resin dispersion samples were shear mixed with a 1” Cowles blade at 2000 

rpm for 15 min (Eurostar power-b, IKA) to obtain a uniform dispersion. Filled resin 

dispersions were subsequently initiated with 1.25 g 2-butanone peroxide initiator per 100 

g resin and allowed to react for 10 min with magnetic stirring at moderate speed, followed 

by 10 min degasing in vacuum. For fumed silica samples, an extra degasing step was added 

prior to initiation. Resin was poured between two 3/16-inch-thick borosilicate glass plates 

clamped over a 3-mm (1.5-mm for flexural modulus/strength testing specimens) diameter 

high temperature silicon rubber cord.  Samples were cured at room temperature for 24 h 

before 4 h of post-curing at 90 °C. For mechanical testing, the fully cured resin plaques 

were cut into test specimens according to ASTM D790-10 and ASTM D5045-99. A 

detailed description of specimen dimensions can be found in our previous publication.7 

Characterization 

A JEOL 6700 field emission scanning electron microscope (SEM) with a tungsten 

filament source was used for imaging. SEM images were taken using an acceleration 
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voltage of 5 kV. For SEM all samples except mGO, were coated with 5 nm Pt prior to 

imaging. A FEI Tecnai T12 transmission electron microscope (TEM) with a LaB6 filament 

operating at an acceleration voltage of 120 kV was used to obtain TEM micrographs. The 

resin composite TEM specimens were made using a Leica EM UC6 ultramicrotome. To 

image mGO by SEM, samples were taken from the masterbatch, dispersed in 

dichloromethane and then dip coated onto a silicon wafer (Ted Pella lnc.). Rheology 

measurements were carried out on a AR-G2 rheometer (TA Instruments) with a parallel 

plate geometry. Samples were sheared between a 40-mm diameter stainless steel upper 

disk and a temperature-controlled Peltier plate. All rheology tests were carried out at 25 °C. 

Flexural modulus and ultimate flexural strength were determined using an RSA-G2 

solids analyzer (TA Instruments) according to ASTM D790-10. The three-point bending 

experiment was performed with a span-to-thickness ratio of 16:1 and a crosshead rate of 1 

mm∙min-1 (0.01 min-1 strain rate). The fracture toughness test was performed using a 

compact tension (CT) method on an Instron 1011 single column system equipped with a 5 

kN load cell according to ASTM D5045-99. After having been pre-cracked by tapping with 

a liquid nitrogen cooled fresh razor blade, all specimens were pulled at 10 mm∙min-1 

crosshead speed until complete failure. In a typical test, five three-point bending and at 

least ten CT specimens were tested, and the average was reported along with the standard 

deviation.   

The critical stress intensity factor (KIC) was calculated using equation 4.1, and the 

critical strain energy release rate (GIC) was calculated via equation 4.2. 
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Here, PC is the critical applied load, B is the specimen thickness, W is the specimen 

width; 𝑎 is the crack length, E is the flexural modulus, and υ is the Poisson’s ratio of the 

VE resin, which is taken to be 0.39. 

4.3 Results and discussion  

4.3.1. Characterization of inorganic fillers and graphene-based toughener 

The morphology of the fillers used in this study is shown in Figure 4.1. The ground 

calcium carbonate sample (GCC, Figure 4.1a) shows a wide distribution of sizes with most 

of the particles measuring around 3–15 µm and a few over 15 µm in length. The 

precipitated calcium carbonate (PCC) samples, PCC-700 (Figure 4.1b) and PCC-70 

(Figure 4.1c), consist of particles with average sizes around 700 nm and 70 nm, 

respectively (see also Figure 4.7 for higher magnification images). The kaolinite sample 

(Figure 4.1d) has typical particle sizes close to those of GCC, but it shows a layered 

structure, which is characteristic for phyllosilicates. CAB-O-SIL untreated fumed silica, 

(SC, Figure 4.1e) and AEROSIL PDMS-treated fumed silica, (SA, Figure 4.1f) samples 

both have primary particle sizes about 15 nm, according to the TEM micrographs. Calcium 

carbonate, kaolinite, and fumed silica were investigated in this research because they are 

frequently used in thermosetting resin formulations, and their differences in particle size 
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and surface polarity were utilized to probe the interference of filler particles with the mGO 

toughening effect in VE resins. 

  

Figure 4.1. Morphology of filler particles. SEM images of (a) ground calcium carbonate 

(GCC); (b) precipitated calcium carbonate, 700 nm (PCC-700); (c) precipitated calcium 

carbonate, 70 nm (PCC-70); and (d) Kaolinite (kaolin). TEM images of (e) untreated fumed 

silica (SC); (f) PDMS-treated fumed silica (SA). The insets show higher magnification 

TEM images of the samples in (e) and (f). 

Figure 4.2a shows the morphology of mGO from a styrene masterbatch that was used 

to prepare the mGO-toughened resin samples. A detailed description of the mGO material 

can be found elsewhere.233 The mGO sample was dispersed in dichloromethane, and then 

drop cast onto a silicon wafer. The wafer was then slowly dried under dichloromethane 

vapor. The contrast inside these particles indicates that some mGO sheets restack (darker 

areas) and aggregate in the styrene masterbatch. The average length of mGO aggregates is 

2.21±0.87 µm, determined by measuring the longest distance between two points on the 

periphery of particles in Figure 4.2. mGO particles of similar sizes were also observed in 
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TEM micrographs of resin composite samples (Figure 4.2b). This implies that no 

noticeable change in lateral dimensions of mGO occured during resin composite 

preparation. 

 

Figure 4.2. SEM image of mGO particles on a silicon wafer (a), and TEM image of mGO 

particles (yellow arrows) inside a microtomed resin composite sample (b). 

4.3.2.  Effects of filler–mGO interactions on VE resin toughening 

Figure 4.3 shows the mechanical properties of VE resin composites containing GCC, 

Kaolin, and mGO as filler/toughener. Because the content of mGO and other fillers is low, 

the change in flexural modulus (Figure 4.3c) and flexural strength (Figure 4.3d) is 

insignificant. In contrast, all composite samples exhibit a fracture toughness improvement 

of 16–24% in KIc, or 27–45% in GIc, compared to the neat resin. It should be noted that the 
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toughening effect of mGO, GCC, and kaolin in VE resin is insensitive to filler content in 

the concentration range studied. A similar phenomenon has also been observed by other 

researchers in inorganic particle/VE resin composites.234, 235 Additional mGO added to 

GCC or kaolin-filled VE resin does not result in any further toughness improvement, which 

may indicate that mGO aggregates and GCC/kaolin particles toughen the VE resin matrix 

via similar mechanisms. This observation implies that the major toughening mechanism in 

VE resin with inorganic particles is crack-deflection, because crack-pinning mechanisms 

would lead to a monotonic increase of fracture toughness with respect to mGO loading,236 

whereas toughening effects based solely on crack-deflection reach a plateau with 

increasing particle number.237   
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Figure 4.3. Mechanical properties of VE resin composites with inorganic filler and mGO 

toughener. (a) KIC, (b) GIC, (c) flexural modulus, and (d) flexural strength. The mGO 

loading level for all filler-containing samples is 0.04 wt %. The notation “pphr” refers to 

parts per hundred resin.  

To better understand the nature of filler interference in toughening processes, the 

fracture surfaces of post-CT test specimens were analyzed using SEM, and the 

corresponding micrographs are shown in Figure 4.4. The introduction of inorganic particles 

significantly roughens the near-precrack region (Figure 2.9 in Chapter 2 shows the 

definition for different regions on a crack surface), which is usually an indication of 

toughness enhancement.181, 203 A rougher fracture surface means that a larger surface area 

is created, which dissipates more energy. In general, some surface features also imply 
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toughening events, such as crack-pinning, crack deflection, multi-cracking, and cavitation, 

that can further dissipate energy. However, in this study, it is found that addition of mGO 

into filler-containing VE resin (Figure 4.4 f, h, j, i) or simply adding mGO to VE resin 

(Figure 4.4 c, d) further increases the fracture surface roughness without changing the 

fracture toughness of the resin composite (Figure 4.4.3 a, c). The fracture surface of 

VE/mGO composites lacks the characteristic “river-like” features generated by crack-

pinning events.233 This again leads to the conclusion that the main toughening mechanism 

in VE/inorganic particle composites is crack-deflection. 
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Figure 4.4. SEM fractographs of (a) neat VE resin; VE resin with (b) 0.02 wt % mGO, (c) 

0.04 wt % mGO, (d) 0.08 wt % mGO; (e) 2 pphr GCC , (g) 5 pphr GCC (ground calcium 

carbonate); (f), (h) 0.04 wt % mGO added to (e) and (g), (i) 2 pphr kaolin, (k) 5 pphr kaolin, 

(j), (l) 0.04 wt % mGO added to (i) and (k). All micrographs were taken in the near-precrack 

region with the crack propagation direction from bottom to top. The insets show more 

extended areas in lower magnification SEM images. 
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To study the dependence of the toughening effect from incorporating mGO toughener 

on filler particle sizes, a set of VE/calcium carbonate samples were investigated along with 

VE/calcium carbonate/mGO composites. As shown in Figure 4.5, all calcium carbonate 

samples exhibit increased toughness compared to the neat resin, with the PCC-700 sample 

being the least improved. This can be understood by the fact that the strongly associated 

calcium carbonate particles in the PCC-70 sample form aggregates that are larger in 

dimension than those in the PCC-700 sample. The morphology difference of different 

calcium carbonate particles inside the VE resin can be observed in both fractographs 

(Figure 4.6) and TEM micrographs (Figure 4.7) of resin composite samples. 

 

Figure 4.5. Mechanical properties of VE resin composites with calcium carbonate fillers 

and mGO toughener. (a) KIC, (b) GIC, (c) flexural modulus, and (d) flexural strength. The 

mGO loading level for all filler-containing samples is 0.04 wt %. 
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The difference in the sizes of the aggregates can be seen in Figure 4.6e and 4.6g. An 

aggregation size can be measured by drawing ellipses around particle clusters and 

averaging the length of major and minor axes. Typically, PCC-700 calcium carbonate 

forms 5–7 µm aggregates of a few particles, and PCC-70 forms larger aggregates (5–15 

µm). The size of different calcium carbonate particles/particle aggregates can be seen in 

Figure 4.6 and 4.7.  GCC itself contains large particles (3–15 µm, see Figure 4.6c) that 

exceed the dimensions of mGO aggregates, so the corresponding VE resin composites also 

show improved toughness due to crack deflection. Because all samples have inorganic 

particle inclusions larger than the aggregate sizes of mGO, the addition of mGO does not 

further improve the fracture toughness of these composites. Both PCC-700 and PCC-70 

composite samples show cavitation around filler particles, which is an indication of poor 

particle-matrix bonding. Because poorly bonded particles can act as defect sites, a lowered 

flexural strength for both composite samples is expected, which is consistent with the 

experimental results (Figure 4.5d).   
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Figure 4.6. SEM fractographs of: (a) neat VE resin, VE resin with (b) 0.04 wt % mGO, (c) 

5 pphr GCC, (e) 5 pphr PCC-700, (g) 5 pphr PCC-70, (d), (f), (h) with 0.04 wt % mGO 

added to (c), (e), and (g). All micrographs were taken in the near-precrack region with the 

crack propagation direction from bottom to top. The insets show more extended areas in 

lower magnification SEM images.  

It should be noted that mGO could potentially be adsorbed onto the calcium carbonate 

particles/aggregates, therefore yielding negligible toughness improvement. To test this 

possibility, microtomed resin composite samples and uncured resin dispersions were 

investigated. Figure 4.7 shows the TEM micrographs of the microtomed calcium 
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carbonate/mGO/VE ternary composite. Because of the large particle size of GCC (Figure 

4.7a) and PCC-700 (Figure 4.7b) samples, the microtoming process shatters the filler 

particles, leaving holes and calcium carbonate debris on the specimens. In contrast, 

particles can be readily observed in the PCC-70 specimen (Figure 4.7c) because the particle 

diameter is close to the thickness of the specimen. Both the holes and the slices of particle 

aggregates provide an indication of the dimensions of the filler inclusions inside the resin. 

Due to the contrast difference, it is difficult to see mGO aggregates in the presence of 

calcium carbonate filler. Therefore, higher magnification images of mGO in all three 

samples are also provided in Figure 4.7. From these images, there is no evidence indicating 

that mGO has a strong affinity towards calcium carbonate particles, so it is unlikely that 

the lack of toughening is due to mGO adsorption on the calcium carbonate surfaces.  

 

Figure 4.7. TEM micrographs of microtomed calcium carbonate/mGO resin composites at 

two different magnifications. (a), (d) 5 pphr GCC, (b), (e) 5 pphr PCC-700, (c), (f) 5 pphr 

PCC-70. All samples contain 0.04 wt % mGO.  
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Steady shear tests show that the rheological behavior of all calcium carbonate resin 

dispersions is unaffected by the addition of 0.04 wt.% mGO (Figure 4.8), which implies 

that there is little surface interaction between mGO toughener and the other filler particles. 

The higher viscosity of the PCC-70 resin dispersions at low shear stress indicates weak 

attraction between these small particles, as well as floc formation. As the shear rate 

increases, the flocs break down. As a result, the viscosity at higher shear rates was close to 

that of the other two suspensions. These observations are consistent with the results from 

the fractography and TEM analysis. 

 

Figure 4.8. Steady shear viscosity of calcium carbonate/VE resin dispersion, with (solid 

symbol) or without mGO (hollow symbol). The mGO concentration is 0.04 wt %. 

Differently surface-treated fumed silica samples behave differently with regards to 

resin toughening and filler-mGO interference. As shown in Figure 4.9, PDMS-treated silica 

(SA) significantly toughens the VE resin, but the fracture toughness decreases considerably 
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after mGO addition. In comparison, untreated fumed silica (SC) has no effect on VE resin 

fracture toughness, and the filled resin shows the normal toughness increase that is 

typically seen with mGO. The difference in the toughening effect can be explained as 

follows. The PDMS-treated fumed silica forms large secondary structures when dispersed 

in VE resin, and these particle aggregates are capable of changing the crack propagation 

direction. Untreated silica, however, disperses readily in the VE resin, thus the evenly 

distributed small particles cannot effectively deflect the propagating crack to toughen the 

matrix. Further evidence for the better dispersion of SC in VE resin is the slightly higher 

ultimate flexural strength observed in the SC composite compared to that of the SA 

composite (Figure 4.9d). 

 

Figure 4.9. Mechanical properties of VE resin composites with different fumed silica 

materials and mGO toughener. (a) KIC, (b) GIC, (c) flexural modulus, and (d) flexural 
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strength. The mGO loading level for all filler-containing samples is 0.04 wt %. SC: CAB-

O-SIL fumed silica M-5, untreated; SA: Aerosil fumed silica R202, PDMS treated. 

The formation of a secondary structure for Aerosil fumed silica in VE resin was 

confirmed by rheological tests (Figure 4.10). The viscosity of SA, the PDMS modified 

silica, was strongly shear thinning, dropping by two orders of magnitude with shear stress. 

The significant difference in viscosity at low shear stress indicates that the SA silica attracts 

to each other much more than PCC70 and form a weak network in VE resin238 with a yield 

stress around 3 Pa. The SC sample shows a Newtonian plateau at low shear stress about 

twice the viscosity of VE resin. The slight shear-thinning region at higher shear stress also 

indicates that particles in SC are not simple isolated spheres. Similar viscosities at high 

shear stress mean that the primary sizes of SA and SC silica are quite close to each other. 

Similar to the observations for the calcium carbonate dispersions, SA does not 

preferentially adsorb onto the mGO surface, which explains why the yield stress of SA 

suspensions does not increase with the presence of mGO. In fact, SC also does not interact 

strongly with mGO. Additional TEM images of microtomed composite specimens are 

provided in Figure 4.11. 



100 

 

Figure 4.10. Steady shear viscosity of VE resin loaded with different fumed silica materials, 

with (solid symbol) or without mGO (hollow symbol). 

 

Figure 4.11 TEM micrographs of microtomed samples of different fumed silica (2 pphr) 

VE resin composites. SC: Cabosil fumed silica M-5, untreated; SA: Aerosil fumed silica 

R202, PDMS treated; G: with 0.04 wt % mGO. 
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The difference in particle-crack interactions between the resin sample with SA and that 

with SC can be observed in SEM fractographs shown in Figure 4.12. VE resin with 2 pphr 

Aerosil fumed silica exhibits a rough near-precrack fracture surface with plastic 

deformation features such as blunt edges and irregular surface textures, whereas the resin 

sample made with CAB-O-SIL fumed silica at the same loading level has a rather smooth 

fracture surface that lacks evidence for plastic deformation. After adding mGO to the 

VE/SA sample, features associated with plastic deformation, such as stretched edges and 

smooth bulges, become less apparent, and the new fracture surface texture resembles that 

of a VE/mGO composite. Aggregates of treated fumed silica can still be observed, but the 

network appears to be partially disrupted by mGO sheets, because now there are large areas 

on the fracture surface that show no silica particles. This may be the reason that 

VE/SA/mGO samples exhibit fracture toughness values significantly lower than those of 

the VE/SA composites, but still higher than that of VE/mGO. Silica aggregates are not 

prominent on the fracture surface of VE/SC/mGO sample, and the small clusters of 

untreated silica seem incapable of altering the crack propagation direction. Therefore, the 

fracture toughness of VE/SC/mGO samples is very close to that of the VE/mGO sample.  
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Figure 4.12. SEM fractographs of (a) neat VE resin, VE resin with (b) 0.04 wt % mGO, 

(c) 2 pphr SC, (d) 2 pphr SC and 0.04 wt % mGO, (e) 2 pphr SA, (f) 2 pphr SA and 0.04wt.% 

mGO. All micrographs were taken in the near-precrack region with the crack propagation 

direction from bottom to top. The insets show more extended areas in lower magnification 

SEM images. 

The size effect of the filler particles on thermoset toughening can be explained using 

plastic zone theory. The plastic zone is the volume around the crack tip that deforms 

plastically to relieve the crack tip from forming a stress singularity. Although it is difficult 

to measure the yield stress of a highly crosslinked thermosetting polymer, we can 

nonetheless estimate the size of the plastic zone in the neat resin by using its flexural 
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strength value as the yield stress. According to Irwin’s model, we can use equation 4.3 to 

calculate the plastic zone size in the crack propagation direction:239 

     𝑟𝑝 =
𝐾𝐼𝑐

2

6𝜋𝜎𝑌
2                                                      (4.3) 

Here, rp is the plastic zone radius, KIC is the mode I critical stress intensity factor, σY is 

the yield stress of the polymer, which, in this case, is assumed to be the flexural strength. 

The rp for neat VE resin is calculated to be 2.2 µm. This value implies that inorganic 

inclusions in the resin need to be a few micrometers in size or larger to show a toughening 

effect. Small and well dispersed particles are incapable of transfering stress further outside 

the plastic zone; therefore, no toughening is observed when such particles are incorporated 

in the resin. Particles or particle aggregates inside the resin matrix whose size is comparable 

to the plastic zone size of the neat resin will toughen the VE rein to some extent. The 

composite materials will deviate more from the homogeneous and isotropic assumption if 

the filler size or loading level further increases, therefore, equation 3 may no longer be 

applicable. 

4.4 Conclusions 

Our results show that dodecylamine functionalized GO (mGO) can toughen VE resin 

at a concentration as low as 0.02 wt.%, which agrees with studies that have demonstrated 

mGO toughening in other resin systems such as unsaturated polyester and epoxy.192, 220, 221 

The main toughening mechanism in mGO toughened VE resin is found to be crack 

deflection, which gives a toughness plateau at higher particle concentration. To study how 

common inorganic fillers interact with mGO in resin toughening, three types of filler, 

namely fumed silica, calcium carbonate, and kaolin clay, were investigated. The results 
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indicate that these fillers themselves can provide toughening effects when incorporated in 

VE resin, if the size of the particle or the particle aggregates is comparable to or larger than 

the plastic zone size of the vinyl ester resin (1–3 micrometers). For calcium carbonate 

fillers of different particle sizes between 70 nm and 15 µm, the smallest particles brought 

about the greatest enhancement in fracture toughness, even though these nanoparticles 

formed agglomerates in the resin. For a given particle size, the surface chemistry also has 

an important influence on toughness of a VE resin, as was demonstrated for silica 

nanoparticles: fumed silica significantly toughened the VE resin only if its surface had been 

treated with PDMS. When additional mGO is added to the filler-containing VE resin, the 

change in fracture toughness depends on how the size of the biggest particle aggregates 

changes. If the addition of mGO disrupts the formation of filler aggregates, a decrease in 

toughness can be observed. If the filler particles or aggregates are significantly smaller than 

mGO aggregates, adding mGO will improve the toughness. If the filler aggregates are 

comparable in size with mGO, there will be no change in toughness with additional mGO 

incorporation. This agrees well with plastic zone theory in which the size of plastic zone is 

estimated to be close to the size of mGO sheets. The relative particle/particle aggregation 

sizes of the inorganic filler or toughener to the plastic zone size of the matrix resin 

determines the observed fracture toughness of particle-filled resin composite. This could 

be true for all thermosets. Therefore, care must be taken when inorganic nano-toughener is 

used to toughen filler-containing VE resin systems, and it is important to understand filler–

toughener interactions for inorganic tougheners.  
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Chapter 5 

Effect of Primary Particle Size and Aggregate Size of Modified Graphene 

Oxide on Toughening of Unsaturated Polyester Resin 

5.1 Introduction 

Graphene–polymer nanocomposites have recently become a subject undergoing 

intense study due to their unique properties that include good electrical92, 97, 98, 100 and 

thermal conductivity,240-242 high modulus and strength,88-90 low gas permeability,122, 123 and 

good flame retardancy.107, 108 These properties are directly related to the structure of 

graphene, a single layer of honeycomb-arrayed carbon atoms. The strong covalent 

networks within the graphene plane give it high mechanical strength; the overlapping 

carbon p-orbitals perpendicular to the basal plane result in semi-metallic conductivity; and 

very high aspect ratio leads to a low percolation threshold and effective gas barrier 

properties. Among many applications, ranging from electromagnetic shielding162 to 

corrosion resistive coatings,131 graphene-based materials are used to toughen polymers, 

particularly thermosets.192, 220-222  

Thermosets are highly crosslinked polymers that have high modulus, good corrosion 

resistance, low density compared to metal and concrete, and good processability.134 These 

properties render thermosets very good candidates for light and strong structural materials, 

and, therefore, they are widely used in chemical, transportation, and recreational 

industries.134, 231 However, thermosets are brittle materials that can crack and fail fast once 

                                                 
 Mechanical data used in this chapter were collected and processed by Kunwei Liu. 
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a small damage or defect appears, thus toughening agents are often added. Commercial 

tougheners for thermosets, including liquid rubbers,155 core-shell rubbers,161 and block 

copolymers,167 can significantly improve the fracture toughness of a resin, but an increase 

in viscosity and a decrease in modulus and glass transition temperature are often the trade-

off. Unlike polymeric tougheners, toughening thermosets with graphene derivatives 

usually results in no viscosity change, no modulus reduction, and no Tg reduction of the 

matrix resin, all of which is advantageous.192, 220-222 

Since the first discovery of graphene-toughening of resins, researchers have developed 

many new functionalization processes and optimized composite fabrication processes to 

achieve better toughening of the composites.89, 223, 243 The community generally accepts 

that strong particle–matrix interfaces and better dispersion will increase the fracture 

toughness improvement for resins toughened with inorganic particles, so most surface 

modifications are designed to achieve these goals. But some contradictory results suggest 

that these rules do not always hold true for graphene composites.176, 177, 233, 244 Therefore, it 

is still unclear what can cause a change in the toughening effect. Also, as a high-aspect-

ratio nanomaterial, the lateral dimensions of modified graphene oxide sheets may influence 

the toughening effect, but very few studies on this issue have been carried out. 

To address these questions, graphene oxide (GO) samples with identical chemical 

composition but different sheet sizes were chemically modified and dispersed into an 

unsaturated polyester (UP) resin to prepare polymer composites. The composites were then 

tested for fracture-related mechanical properties to help understand how the size of GO 

particles changes the toughening effect of the corresponding surface-modified GO. In 

addition, three different surface modifications were employed to prepare modified GO 
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samples with the same particles size. These modifications were designed to produce 

different aggregate sizes of mGO in the UP resin to study how different aggregation 

behaviors inside a UP resin are related to different toughening responses with respect to 

mGO loading levels. Scanning electron microcopy-based particle size analysis and 

postmortem fracture surface analysis, in addition to mechanical tests, were used to 

elucidate the toughening mechanisms in various mGO-UP resin composites.  

5.2 Experimental 

Materials 

N,N'-dimethylformamide (DMF, 99.8%, anhydrous), dichloromethane (DCM, 99%),  

2-butanol (99%), cobalt(II) 2-ethylhexanoate solution (65 wt % in mineral spirits), 4-tert-

butylcatechol (98%), styrene (99%), 2-butanone peroxide (Luperox DDM-9, 35 wt % in 

2,2,4-trimethyl-1,3-pentanediol diisobutyrate), 2,4-toluene diisocyanate (TDI, 95%), 

dihexylamine (DHA), and octadecylamine were purchased from Sigma-Aldrich. 

Dodecylamine (DDA, 98%) was obtained from Alfa-Aesar. Deionized (DI) water with a 

resistivity of 18 MΩ∙cm was produced onsite using a Barnstead purification system. The 

AROPOL 8422 unsaturated polyester resin was supplied by Ashland Inc. GO in water 

slurry (about 1.5 wt.%) was purchased from Graphenea. 

Synthesis of modified GO 

The stock GO slurry purchased from Graphenea was diluted to 4 mg/mL by adding DI 

water and then pH was adjusted to 9 using 4 wt % sodium hydroxide solution. The solution 

was then sonicated for 2 h in a bath sonicator (Branson 3510, 135W input power). The 

resulting GO dispersions were used directly for dodecylamine or octadecylamine 
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functionalization or freeze-dried for TDI-dihexylamine functionalization (Freezemobile, 

SP Scientific). 

A detailed procedure for the synthesis of dodecylamine-modified GO can be found 

elsewhere.233 Briefly, one part by volume of an aqueous dispersion of GO (4 mg/mL) 

prepared by sonication was rapidly mixed with two parts by volume of a solution of 6 g/L 

dodecylamine in ethanol. The mixture was then heated to 70 ˚C and allowed to react for 24 

h under stirring. The crude product was washed 4 times with ethanol and 3 times with 

styrene by mixing and centrifugation to obtain the final product. Purified dodecylamine-

modified GO (DDA-GO) was redispersed in styrene at approximately 1 wt % with 30 min 

bath sonication to prepare the styrene masterbatch. 

The octadecylamine modification procedure was similar to that of the dodecylamine 

modification. The GO dispersion was quickly mixed with 6.12 g/L octadecylamine in 2-

butanol at a 1:3 volume ratio. The resulting suspension was heated to 70 ˚C under stirring 

for 24 h. The reaction mixture was then centrifuged to collect the crude product, and the 

product was washed 4 times with ethanol and 3 times with styrene by repeated vortex 

mixing and centrifugation. The final product (ODA-GO) was also dispersed in styrene. 

For TDI-dihexylamine modification, freeze-dried GO was used. In a typical synthesis, 

300 mg of GO was dispersed in 150 mL of anhydrous DMF by bath sonication for 1 h. The 

resulting GO dispersion was purged under dry nitrogen for 1 h. Subsequently, 6 mL of TDI 

was added, and the mixture was heated at 60 ˚C with stirring for 24 h under nitrogen. The 

reaction mixture was cooled to 40 ̊ C, and 12 mL of dihexylamine was added. After another 

24 h reaction at 40 ˚C, the suspension was mixed with diethyl ether at a 1:2 volume ratio. 
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The ether-diluted suspension was centrifuged at 8000 rpm for 1 h to collect the crude 

product as the sediment. Crude modified GO was then purified by washing with styrene 4 

times and redispersing it in styrene (TDI-DHA-GO) to prepare a styrene masterbatch. 

To further suppress aggregation of TDI-DHA-GO, a resin masterbatch was prepared. 

For a typical synthesis, 160 mg of TDI-DHA-GO (12.15 g styrene masterbatch, 1.32 wt %) 

was dispersed in 100 mL of DCM. Then the dispersion was homogenized by probe 

sonication for 15 min (Misonix S-4000, 4 s pulse, 2 s pause, 100% amplitude at 600 W, 

1/4" probe) together with constant mechanical stirring. To this dispersion, 10.5 g of stock 

UP resin (71% UP prepolymer and 29% styrene) in 50 mL DCM was added under vigorous 

stirring. Finally, the mixture was vacuum distilled to remove most of DCM and some 

styrene to obtain the resin masterbatch (RMB) of TDI-DHA-GO. A typical composition of 

this resin masterbatch is consisted of 0.9 wt % modified GO, 41.2 wt % UP prepolymer, 

and 57.9 wt % of styrene.  

Preparation of resin composite  

To prepare formulated AROPOL 8422 UP resin containing 45% styrene, stock resin 

was first diluted with styrene. To 100 g diluted resin, 20 mg of 4-tert-butylcatechol 

inhibitor and 100 mg of 65% cobalt(II) 2-ethylhexanoate promoter solution were added. 

For all DDA-GO and ODA-GO samples, a styrene masterbatch was used to prepare the 

resin dispersion. Thus, the extra styrene contributed by the masterbatch was 

counterbalanced by the corresponding reduction of the amount of styrene added during the 

dilution step. A similar formulation adjustment was made when a resin masterbatch was 

used for preparing TDI-DHA-GO samples. All resin dispersion samples were shear-mixed 
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with a 1” Cowles blade at 2000 rpm for 15 min (Eurostar power-b, IKA) to obtain a uniform 

dispersion. Subsequently, dispersions were initiated with 1.25 g 2-butanone peroxide 

initiator per 100 g resin and allowed to react for 10 min with magnetic stirring at a moderate 

speed, followed by 10 min degasing in vacuum. Resins were then poured into glass molds 

made by sandwiching U-shaped, high temperature silicon rubber cords (3-mm in diameter 

for compact tension specimens, and 1.5-mm for flexural modulus/strength testing 

specimens) between pairs of 3/16-inch-thick borosilicate glass plates. Samples were cured 

at room temperature for 24 h before post-curing for 3 h at 70 °C and 3 h at 120 °C. For 

mechanical testing, fully cured resin plaques were cut into test specimens according to 

ASTM D790-10 and ASTM D5045-99. A detailed description of specimen dimensions can 

be found in our previous publication.220 

Characterization  

A JEOL 6700 field emission scanning electron microscope (SEM) with a tungsten 

filament source was used for imaging. SEM images were taken using an acceleration 

voltage of 5 kV. Fractography samples were coated with 5 nm Pt prior to imaging. GO and 

mGO samples were made by dip coating DCM diluted particle suspensions onto silicon 

wafer chips (Ted Pella lnc.). For GO/mGO particle analysis, Gwyddion245 software was 

used to remove background and scanning artifacts in a SEM micrograph, and Image J246 

was used to binarize the micrographs and analyze the particles. 

Flexural modulus and ultimate flexural strength were determined using an RSA-G2 

solids analyzer (TA Instruments) according to ASTM D790-10. The three-point bending 

experiment was performed with a span-to-thickness ratio of 16:1 and a crosshead rate of 1 
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mm∙min-1 (0.01 min-1 strain rate). The fracture toughness test was performed using a 

compact tension (CT) method on an Instron 5966 single-column system equipped with a 

500 N load cell according to ASTM D5045-99. After having been pre-cracked by tapping 

with a liquid-nitrogen-cooled fresh razor blade, all specimens were pulled at 10 mm∙min-1 

crosshead speed until complete failure. In a typical test, five three-point bending and at 

least ten CT specimens were tested, and the average was reported along with the standard 

deviation.   

The critical stress intensity factor (KIC) was calculated using equation 5.1, and the 

critical strain energy release rate (GIC) was calculated via equation 5.2. 
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GIC = 𝐾IC
2 (
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Here, PC is the critical applied load, B is the specimen thickness, W is the specimen width; 

𝑎 is the crack length, E is the flexural modulus, and υ is the Poisson’s ratio of the VE resin, 

which is taken to be 0.39. 

5.3 Results and discussion  

To study how the sheet size of the precursor GO affects the toughening of mGO, four 

GO samples with different sheet sizes were prepared. Equal portions of GO slurry from an 

identical batch were diluted to 4 mg/mL, and each sample was sonicated in a bath sonicator 

for different time durations. The size of GO sheets was characterized by SEM, and 

representative micrographs are shown in Figure 5.1.  
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Figure 5.1. SEM micrographs of GO samples subject to sonication for different durations: 

(a) 15 min, (b) 30 min, (c) 60 min, and (d) 120 min. 

It is obvious that sonication breaks down GO and reduces its lateral sizes. The lack of 

contrast within and between the irregularly-shaped gray spots in a SEM image hints that 

these spots are single-layered GO. AFM data also indicate that samples sonicated for at 

least 15 min contain predominantly monolayered GO, which means that the GO thickness 

is not a variable in this study. A set of typical AFM data of samples sonicated for 15 min 

and 60 min sonicated samples is presented in Figure 5.2.  
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Figure 5.2. AFM Z-plots of GO samples subjected to sonication for different durations: (a) 

15 min, and (b) 60 min. The profile plots on the right correspond to the data marked in the 

Z-plots with white lines. The observed heights correspond to monolayers of GO. 

To quantitatively analyze the difference between differently sonicated GO samples, 

multiple SEM micrographs were analyzed using software and the distributions of GO sheet 

sizes are presented in Figure 5.3. 
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Figure 5.3. Effect of sonication time on particle size distributions of GO: (a) 15 min, (b) 

30 min, (c) 1 h, and (d) 2 h. (e) Number-averaged and (f) area-averaged particle size with 

respect to sonication time. The particle size limit in this plot is 0.004 μm2 due to the 

resolution of the SEM micrographs. 

As the sonication time becomes longer, the tail of the size distribution curve diminishes, 

and the frequency curve shifts towards smaller sizes. To describe the average sizes of GO 

samples, two values are given here: number-averaged particle area, NA, (5.3a) and area-

averaged particle area, SA (5.3b).  
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∑ 𝑁𝑖𝐴𝑖

∑ 𝑁𝑖
          (5.3a)   

 𝑆𝐴 =
∑ 𝑁𝑖𝐴𝑖

2

∑ 𝑁𝑖𝐴𝑖
   (5.3b) 

Here, N is the number of particles counted, and A is the area of a particle in pixels on 

SEM micrograph. NA shows how sheets break down during sonication, and SA depicts the 

size differences among samples. The plot of area-averaged particle area is provided here 

because the size follows a Γ-distribution and NA underestimates the contribution from large 

particles. 

This analysis shows that NA has a linear relationship with respect to logarithmic 

sonication time, and SA shows an exponential decay with respect to sonication time. This 

is in good agreement with previously published work.247 SA better represents the 

information obtained from the SEM micrographs, because tiny fragments generated by 

sonication contribute much less to the mean. In addition, particles that are much smaller 

than the plastic zone size of the polymer matrix do not show any toughening effect in a 

resin composite. Thus, for the rest of the paper, SA will be used to describe average particle 

sizes. GO samples with different sizes were then modified with dodecylamine, and the 

resulting DDA-GO products were added to UP resin at different loading levels to prepare 

composite samples. This modification was chosen because it can generate a modified GO 

that disperses well in the UP resin. The normalized fracture toughness and flexural strength 

values are plotted in Figure 5.4.  
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Figure 5.4. (a) Fracture toughness values, (b) fracture energy, (c) modulus, (d) flexural 

strength of mGO-toughened UP resins with various GO sizes, normalized to corresponding 

values for the neat resin. All samples are named using the notation “loading in wt %–DDA–

sonication time in minutes.” 

The fracture toughness test shows that the size difference in GO has no direct effect on 

the toughening of DDA-GO. Flexural moduli (Figure 5.4c) of all samples are very close to 

each other due to the low mGO loading level. Consequently, G1C values (Figure 5.4b) of 

these composites follow similar trends as K1C values. Compared to K1C, flexural strength 

is more sensitive to filler particle sizes. Indeed, a small difference in ultimate strength is 

observed when comparing DDA-15 and DDA-120, DDA-120 showing higher values for 

loadings of 0.02 and 0.04 wt %. The observation of similar mechanical properties of DDA-
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120 and DDA-60 samples suggests that the actual mGO particle sizes of these two samples 

may be very close to each other, despite the precursor GO differing in size by a factor of 

almost 16. If this is the case, aggregation of mGO sheets must have occurred, and the actual 

aggregate sizes of DDA-GO samples are insensitive to the starting GO particle size. 

Unfortunately, it is very difficult to directly measure filler aggregate sizes inside a polymer 

composite, especially in a statistically meaningful way. To estimate the aggregate sizes, 

we, therefore, assumed that for particles with identical surface treatment, the aggregate 

sizes in composites are related to the particle sizes in a styrene masterbatch. Thus, a size 

analysis of DDA-GO in a masterbatch was carried out similar to that for pristine GO 

samples, and some representative SEM micrographs are shown in Figure 5.5. 

 

Figure 5.5. SEM images of DDA samples made with GO of different sizes, which had 

been varied by changing sonication times. (a) DDA-GO made with 15-min sonicated GO, 

(b) 30 min, (c) 1 h, and (d) 2 h. 
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The sizes of all DDA-GO samples increased significantly compared to those of the 

precursor GO. The DDA-15 sample has an average particle size of 11.9 μm2, but the 

average sheet size for its precursor was only 3.72 μm2. The particle size of DDA-120 

sample also changed from 0.235 μm2 to 6.92 μm2 after chemical modification. Size 

differences in these two GO samples diminish from about 16 times to about 0.6 times after 

dodecylamine modification, and the contrast within each particle indicates that these 

particles are aggregates of many smaller mGO sheets (Figure 5.6). This result supports the 

hypothesis that surface modification of GO can cause aggregation, and modification 

methods, including post-synthesis processing, have a greater influence on mGO aggregate 

size than does the size of starting materials.  

 

Figure 5.6. A high magnification SEM micrograph of the DDA-30 sample. The aggregate 

in the center is comprised of many smaller mGO sheets. 
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Another strong evidence for similar aggregate sizes in all DDA samples can be seen 

from the SEM fractography analysis of DDA-GO composites. Shown in Figure 5.7 are the 

crack surfaces of failed compact tension samples. According to the nature of crack 

propagation, a fracture surface has two distinctive regions: a near-precrack region, where 

the resting crack front starts to move under stress, and a fast propagation region, where the 

moving crack front becomes unstoppable. A sample micrograph of different areas of a 

crack surface can be found in Figure 2.9 in Chapter 2. These fracture surfaces of composites 

loaded with different DDA-GOs are similar to each other. All near-precrack regions 

(Figure 5.7c, e, g, and i) show crack-deflection events that appear as many small irregular 

fracture surfaces tilted randomly. This is because the crack plane tilts as it encounters a 

randomly oriented graphene particle in the near-precrack region. A crack plane becomes 

hard to perturb in the fast propagation region, and the pits and bulges on a crack surface 

here show where the particles are located and the relative sizes of them. It can be seen from 

Figure 5.7 that both the features on the near-precrack regions and fast propagation regions 

are similar for all DDA samples, which suggests that the mGO aggregate sizes and the 

quality of dispersion are also very close across the series. Fractography analysis shows that 

the aggregate size, not the GO sheet size, is more important in determining the fracture 

toughness of a graphene composite.  
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Figure 5.7. SEM fractographs of (a), (b) neat UP resin, (c), (d) DDA–15, (e), (f) DDA–30, 

(g), (h) DDA–60, (i), (j) DDA–120. Panels (a), (c), (e), (g), and (i) show the near-precrack 

regions, and panels (b), (d), (f), (h), and (j) show the fast propagation region. All 

composites were loaded with 0.04 wt % DDA–GO, and the crack propagation direction is 

from the bottom to the top. 
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To control the aggregate sizes of mGO, two new surface modifications were introduced. 

Compared to dodecylamine modifications, TDI-dihexylamine modification produces GO 

derivatives (TDI-DHA-GO) with less aggregation, and octadecylamine modification yields 

a product (ODA-GO) that aggregates even more inside the UP resin. Because the synthesis 

of TDI-DHA-GO requires freeze-dried GO, the product after purification contains large 

aggregates. Thus, some extra post-synthesis processing steps were added to decrease the 

aggregate size. These include diluting and sonicating the product in dichloromethane, rapid 

mixing with dichloromethane-diluted stock UP resin, and vacuum distillation to fully 

remove dichloromethane and partly remove styrene. The final product is in a resin 

masterbatch, which typically contains 1 wt % mGO. A SEM size comparison of DDA-GO, 

ODA-GO and TDI-DHA-GO samples made with 2-h sonicated GO is shown in Figure 5.8. 

 

Figure 5.8. SEM images of (a) TDI-DHA-GO from a styrene masterbatch, (b) TDI-DHA-

GO from a sonicated DCM suspension, which was used for preparing resin masterbatch, 

(c) DDA-GO from a styrene masterbatch, and (d) ODA-GO from a styrene masterbatch. 

All samples had been sonicated for 2 h. 
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Particle size analysis indicates that the average sizes of TDI-DHA-GO, sonicated TDI-

DHA-GO, DDA-GO, and ODA-GO are 47.7, 2.32, 6.01, and 109 μm2 respectively. It 

should be noted that all chemically modified GO particles are highly aggregated, so the 

size measured in SEM analysis is based on the projections of flattened three-dimensional 

aggregates. The average size of DDA-GO made with 2h sonicated GO differs slightly from 

the value provided in the previous section, because the SEM specimens are made from 

different batches of DDA-GO. Differently modified GO were added to UP resin at different 

loading levels for testing mechanical properties, and values of mechanical properties, 

normalized to the neat resin, are shown in Figure 5.9. 
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Figure 5.9. (a) Fracture toughness (b) fracture energy, (c) modulus, and (d) flexural 

strength values of mGO-toughened UP resins with differently modified GO (sonicated for 

2 h), normalized to corresponding values for the neat resin. All samples are named using 

the notation “loading in wt %–GO modification method”, and RMB refers to “resin 

masterbatch”.  
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The fracture toughness test results indicate that the toughening effect introduced by 

adding graphene derivatives has little dependence on the surface chemistry of mGO, but 

the difference in GO aggregate size affects optimal loading levels of toughener. Modified 

GO samples with larger aggregate sizes, such as TDI-DHA-GO and ODA-GO, show less 

decrease in toughness with higher loading compared to RMB-TDI-DHA-GO and DDA-

GO, which contain much smaller aggregates. All three mGOs show a toughening effect 

even at 0.001 wt % loading, and fracture toughness of all composites except the ODA-GO 

samples improves at first and decreases after an optimum point (0.005 wt %-0.01 wt %) 

with increasing loading level. ODA-GO has the largest aggregate size, thus the optimal 

loading level may fall beyond 0.1 wt %, the highest loading tested. The toughening 

behavior of various mGOs is similar to the size effects of aluminum particles on fracture 

toughness of a polyester composite at high volume ratio.191 In that study, 100 nm aluminum 

particles behave like RMB-TDI-DHA-GO with the optimal loading of 2 wt %. Aluminum 

particles of 3.5 μm and 20 μm in diameter sizes resemble TDI-DHA-GO and ODA-GO in 

terms of toughening. 

In contrast to fracture toughness, the ultimate strength of polymer-mGO composites 

appears to depend on the GO surface chemistry. Both TDI-DHA-GO series show an overall 

improved ultimate strength, and the smaller sized resin masterbatch TDI-DHA-GO 

samples have even better strength. DDA-GO and ODA-GO samples show a decreased 

strength compared to the neat resin, and the strength values are very close to each other. 

This can be explained by the better compatibilization of TDI-DHA-GO with UP resin, 

which results in a stronger interface that leads to higher ultimate strength. For mGOs with 

identical surface treatment, a smaller aggregate size translates into less strength reduction. 
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ODA and DDA modifications yield similar mGO-matrix interfaces, so the counterbalance 

between fewer particles and larger particle sizes gives ODA-GO similar strength reduction 

compared to DDA-GO.  

To study how the toughening effect changes with mGO loading, SEM fractography 

analysis was performed, and representative fractographs are displayed in Figure 5.10. At 

0.005 wt % loading, the primary toughening effect is crack pinning for all four samples 

shown. The mGO aggregates pin and retard the crack front to increase the critical stress for 

crack propagation. As the stress continues to build up, the crack front finally starts to move 

and is forced to go around the pinning point. The split crack surfaces rejoin after the pinning 

point and form a ridge that appears brighter in the SEM image. At this stage, a rougher 

near-precrack region correlates with higher fracture toughness. As the mGO loading is 

increased to 0.1 wt %, a crack deflection mechanism starts to dominate, so the near-

precrack region becomes chaotic. The roughness-toughness correlation starts to break 

down if this stage is reached. Any further increase in mGO loading leads to toughness 

reduction, which appears on fractographs as diminishing borders between precrack and 

near-precrack regions (Figure 5.10d, f). This toughness reduction can be explained by the 

coalescence of microcracks formed around mGO particles that reduces the toughening 

effect.192 
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Figure 5.10. SEM fractographs from the near-precrack regions of (a), (b) TDI-DHA-GO, 

(c), (d) TDI-DHA-GO from RMB, (e), (f) DDA-GO, (g), (h) ODA-GO. Panels (a), (c), (e), 

and (g) show samples with 0.005 wt % mGO loading, and panels (b), (d), (f), and (h) show 

samples with 0.1 wt % mGO loading. The crack propagation direction is from the bottom 

to the top in all SEM micrographs. 

5.4 Conclusions 

The question how primary particle size and aggregate size of mGO affect toughening 

of a UP resin was addressed using GO modified with three different surface modifiers 
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and reduced to various sizes through sonication. DDA modification was chosen because 

it had previously been demonstrated to improve dispersion in UP resins [28]. TDI-DHA 

was chosen because it can improve GO matrix interactions, while ODA was selected as a 

control sample with extended particle aggregation. The study showed that primary 

particle size had little effect on how mGO toughens a UP resin, but the size of mGO 

aggregates affected how the toughness of mGO-UP composites changed with varying 

mGO loadings. RMB-TDI-DHA-GO and DDA-GO toughened UP resin at optimal 

loading levels of 0.005 to 0.01 wt %, but this toughening effect was lost at a 

concentration above 0.1 wt %. Highly aggregated mGO, such as ODA-GO, produced a 

gradual increase in toughness improvement with increased loading, and appeared to be 

insensitive to loading of toughener beyond 0.02 wt %. GO modified with TDI-DHA or 

DDA showed a toughening effect at very low concentration, about one order of 

magnitude lower than what was reported before.220, 223 This has some advantage if 

transparency of a toughened composite is desired. The lack of response to different GO 

surface chemistry in resin toughening also suggests that the maximum achievable 

toughness for a resin is determined solely by the resin, and this value cannot be changed 

by new GO modification methods or by increasing mGO loading. However, other 

properties, such as dispersibility, processability, and ultimate strength may be influenced 

by surface functionalization of GO.  
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Chapter 6 

Nanoparticles in Glass Fiber-Reinforced Polyester Composites: 

Comparing Toughening Effects of Modified Graphene Oxide and Core-

shell Rubber 

6.1 Introduction 

Thermosetting resins, including epoxy, unsaturated polyester, and vinyl ester, are 

widely used as structural materials, coating, adhesives, and insulation materials.248 These 

thermosetting resins possess properties such as high modulus, high strength, and chemical 

resistance, which are desirable for manufacturing fiber-reinforced plastics (FRPs). 

However, the high crosslink density intrinsic to these thermosetting resins also renders 

them brittle, limiting the applications where fracture toughness is critical. To address this 

weakness, many studies have been dedicated to toughening thermosets. The most common 

toughening method is to incorporate soft, low Tg materials, such as carboxyl-terminated 

butadiene acrylonitrile (CTBN) and amine-terminated butadiene acrylonitrile (ATBN),249-

252 core-shell rubber (CSR),253-256 and block copolymers.221, 257, 258 Rubber modifiers are 

very effective tougheners due to their inherent ductility. The toughening mechanisms of 

rubber modified polymers are cavitation, crack blunting, and rubber induced shear 

yielding.152 It has been reported that rubber tougheners can increase the mode-I fracture 

energy of a resin (GIC) by as much as 3500%.259, 260 However, adding rubber modifiers 

generally results in a reduction of modulus, strength, and glass transition temperature 

                                                 
 The author is responsible for mGO synthesis, the unreinforced resin toughening, and fiber composites 

fracture analysis in this chapter. 
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(Tg).
259, 260 Another strategy to toughen the resin is the utilization of rigid inorganic particles, 

such as silica,261, 262 clay,263, 264 carbon nanotubes,265 graphene or graphene oxide.181, 182, 192, 

222 Crack pinning, crack deflection, and/or matrix-particle debonding have been identified 

as the toughening mechanisms of rigid particles.192 The toughening effect brought by 

adding rigid inorganic particles is typically less pronounced than that of the polymer 

modifiers, but the modulus and Tg are usually improved.  

Graphene and graphene oxide (GO) have attracted a tremendous amount of interest due 

to their exceptional mechanical properties, high specific surface areas, and the high 

electrical conductivity.266 The oxygen-containing functional groups on GO, such as 

epoxide, hydroxyl, and carboxylic acid groups, provide opportunities for a variety of 

chemical modifications. Our previous research demonstrated that thermosetting resins, 

including epoxy and unsaturated polyester resin (UPR), can be toughened by extremely 

low loadings of modified graphene oxide (mGO).192, 220, 221, 223 At such low loading levels, 

incorporation of GO-based tougheners becomes economically attractive. In addition, the 

optically clear resin will still be transparent at low loadings, which is advantageous for FRP 

parts quality inspection. While many other inorganic tougheners or rubber particles 

significantly increase the viscosity of the resin,267, 268 mGO at low loadings does not 

significantly increase the resin viscosity as shown in Table 6.1. In our previous studies, 

ATBN was attached to GO using diisocyanate as the coupling agent, and incorporating 

0.04 wt% of ATBN-modified GO yielded a 240% increase in GIC in epoxy without 

sacrificing modulus, strength, and Tg.
192 We also showed that 0.04 wt% of GO 

functionalized with a combination of 3-isopropenyl-α,α-dimethylbenzylisocyanate and 

dodecylamine (TMI-12C-GO) can increase the GIC of an UPR by as much as 55%.220 The 
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double-bond on isopropenyl-α,α-dimethylbenzylisocyanate (TMI) may introduce covalent 

bonding between GO and the polyester matrix, while the dodecylamine functionalization 

prevents particle aggregation. Recently, we also showed that the toughening performance 

of dodecylamine-modified GO (12C-GO) in UPR or vinyl ester resin (VER) is similar to 

that of TMI-12C-GO.244 The toughening mechanisms in mGO containing resin composites 

were identified to be crack pinning and crack deflection.220  

Table 6.1. Viscosity of UPR, UPR/0.04 wt% 12C-GO mixture, UPR/5 wt% CSR 

mixture, and the as-received CSR concentrate. Viscosity values were obtained at room 

temperature. 

Materials Viscosity (cP)  

Neat UPR 120 

UPR/0.04 wt% 12C-GO 121 

UPR/5 wt% CSR 221 

CSR Concentrate 12,900 

 

As mentioned earlier, one primary application for toughened thermosetting resin is to 

prepare FRPs. FRPs are a very important class of structural materials due to their excellent 

strength-to-weight and modulus-to-weight ratio, leading to their extensive use in the 

aerospace, automotive, sporting goods, marine, and infrastructure industries.269 Despite 

their advantages in stiffness and strength, FRPs are prone to delamination failure, which is 

a process when cracks propagate between the plies of FRPs. To mitigate delamination, 

tougheners such as rubber particles and inorganic particles can be incorporated into the 

matrix to produce FRPs with high mode-I interlaminar fracture toughness. However, FRP 

laminates-based tests are time consuming, and they also require a large amount of materials 

for laminate preparation. Thus, the majority of research papers in this field are focused on 
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toughening the base resin without any fiber. Even though the community generally accepts 

that toughened resin leads to toughened fiber composites, it is still important to understand 

the toughness translation from unreinforced resin to FRPs. To distinguish the fracture 

energy of a toughened resin and interlaminar fracture toughness, we refer to the former as 

GIC_Resin and to the latter as GIC_Comp.   

Many publications describe the toughening translation of epoxy FRPs. It has been 

reported that incorporating CTBN,252, 270, 271 CSR,256, 271, 273 nanosilica,256, 272 a combination 

of CTBN and nano-silica,270, 274 nanoclay,275, 276 carbon black,277-279 carbon nanotubes,280, 

283 graphene, and graphene oxide,284, 285 and halloysite286, 287 in epoxy resin can increase 

GIC_Resin and lead to an increase in GIC_Comp. Despite the much larger production of 

polyester-based FRPs, research focused on improving GIC_Comp of polyester-based FRPs by 

increasing matrix fracture toughness is limited. Miller et al. reported that 6 parts per 

hundred resin (pphr) of ATBN increased the fracture toughness of a very brittle UPR (with 

GIC_Resin around 10 J/m2) by approximately 87%, while the GIC_Comp of the corresponding 

showed 130%–160% enhancement.288 Compston et al. produced VER-based glass fiber 

reinforced plastics (GFRPs) with different matrix toughness and found a 1:1 relationship 

between GIC_Resin and GIC_Comp.
289 A similar extent of GIC_Comp improvement was also 

reported by Burchill et al. in VER/CSR glass fiber woven laminates.290 Kobayashi and 

Kitagawa used 5 wt% and 10 wt% of silicone rubber with a diameter of 2 µm to toughen a 

VER, but the increase in GIC_Comp was not significant.291 Recently, Klingler et al. found 

that adding 2 wt% of CSR with a diameter of 200 nm increased GIC_Resin of a UPR system 

by 64%, but GIC_Comp of the corresponding glass fiber continuous filament mat composites 

only increased by 19%.292 Seyhan et al. found that adding amino-functionalized multiwall 
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carbon nanotubes could increase the GIC_Resin of VER by 8%, but the GIC_Comp remained 

unchanged compared to the neat FRP due to weak fiber-matrix adhesion and non-uniform 

carbon nanotube distribution.234, 293 Carbon nanofibers294 and clay295  were also used to 

increased GIC_Comp of VER-based GFRPs, and the fracture toughness of the resin was not 

reported. 

To the best of our knowledge, there is no publication dedicated to investigating the 

effect of very low loadings of GO in GFRPs yet. We wanted to investigate if the toughening 

effect provided by mGO (TMI-GO and 12C-GO) in polyester resins220, 233 can be translated 

to GFRPs. In addition, very limited literature was found on glass-fiber reinforced polyester 

resin toughened by CSR.289, 290 In this work, we studied the effects of incorporating very 

low loadings ( <0.2 wt%) of mGO and 1 to 5 wt% of CSR on the mechanical properties 

and fracture toughness in two different thermosetting resins, namely, UPR and VER. 

Flexural properties, Izod impact strength, interlaminar shear strength (ILSS), and GIC_Comp 

of GFRPs were measured. The correlation between the GIC_Resin and GIC_Comp is discussed 

in comparison with literature results.   

6.2 Experimental 

Materials 

Sodium hydroxide (NaOH) and 200-proof ethanol were purchased from Fisher 

Scientific. Styrene (99%), dodecylamine (DDA, 98%), N,N-dimethylformamide (98%, 

anhydrous), 3-isopropenyl-α,α-dimethylbenzylisocyanate  (TMI, 95%), 1,4-

diazabicyclo(2.2.2)octane (99%),  cobalt (II) 2-ethylhexanoate solution (65 wt% in mineral 

spirits), 4-tert-butylcatechol (99%), tert-butanol, 2-butanone peroxide solution (Luperox 
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DDM-9, 35 wt% in 2,2,4-trimethyl-1,3-pentanediol diisobutyrate) were obtained from 

Sigma Aldrich. GO was purchased from Graphenea (San Sebastian, Spain). The GO was 

supplied as a concentrated slurry (2.74 wt%) in water. The UPR used in this study was 

Aropol 8422 from Ashland. The Aropol 8422 resin is an orthophthalic polyester resin with 

29 wt% styrene. Hetron 922 vinyl ester resin from Ashland was purchased from Express 

Composites, Inc (Minneapolis, MN), and its styrene content is 45 wt%. Kane Ace MX-020 

core-shell rubber was supplied by Kaneka North America. This CSR is tailored for 

polyester resin, and it was supplied as a 40 wt% concentrate in a free-radical curable 

polyester resin. The particle size of the CSR is approximately 100 nm with a styrene-

butadiene rubber core and a proprietary shell. Frecote 700-NC mold release agent was 

purchased from Henkel. All chemicals were used as received without further purification.  

Two types of fiberglass mats were used in this study. The random chopped strand mats 

(CSM) (13.5 oz/ yd2) were manufactured by ORCA and purchased from Fiberlay (Sarasota, 

FL). The woven roving (17 oz/yd2) mats were purchased from Fibre Glast Developments 

Corp (Brookville, OH). The fiber diameter was between 10 and 15 µm. All the glass fiber 

mats used in this study are compatible with UPR and VER according to the information 

provided by the suppliers.  

Synthesis of modified graphene oxide 

The synthesis of TMI-GO can be found in Chapter 2, except that GO used in Chapter 

2 was synthesized in-house using Hummer’s method, whereas the GO used in this study 

was purchased from Graphenea. To synthesize TMI-GO, 300 mg of freeze-dried GO was 

added into 75 mL of N,N-dimethylformamide, followed by 1 h of bath sonication. 3 mL of 

TMI was added and allowed to react at 40 ˚C for 24 h under nitrogen atmosphere, followed 
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by the addition of 3 mL toluene to quench the reaction. The mixture was then centrifuged 

at 3000 rpm for 15 min, and the sediment was collected and washed 3 times with toluene 

and 2 times with tert-butanol. The TMI-GO powder was obtained by freeze-drying its 

slurry in tert-butanol. 

As described in early chapters, we developed an efficient styrene masterbatch process 

for synthesizing 12C-GO, which allows easy dispersion of 12C-GO into UPR and VER 

without further sonication. To synthesize 12C-GO, the GO slurry was diluted to 4 mg/mL 

with deionized water in a 100 mL flask, then 4% NaOH aqueous solution was added to 

adjust the pH value of the aqueous GO dispersion to 9. The aqueous GO dispersion was 

bath sonicated for 30 min. Dodecylamine was added to ethanol to create a 6 mg/mL 

solution, then 2 parts by volume of dodecylamine/ethanol solution were added to one part 

by volume of GO dispersion. To facilitate the dodecylamine reaction with GO, the mixture 

was heated at 70 ˚C and stirred for 24 h. The reaction mixture was then centrifuged at 3000 

rpm for 15 min, and the sediment was collected. The sediment was washed 4 times with 

ethanol, followed by 3 times of washing with styrene. At every washing step, ethanol or 

styrene was thoroughly mixed with the sediment, followed by centrifugation using the 

above-mentioned condition. Styrene was added to the purified 12C-GO make ~1 wt% 

dispersion, followed by 30 min bath sonication to prepare the masterbatch in styrene. 

Additional details about synthesis and characterization of TMI-GO and 12C-GO can be 

found in our previous publications.220, 233  

Fabrication of nanocomposites 

In a glass jar, TMI-GO powder, 12C-GO styrene masterbatch, or CSR was added into 

Aropol 8422 UPR, followed by the addition of styrene to adjust the total styrene content to 
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45 wt%. In the case of UPR/12C-GO nanocomposites, three toughener loadings were used: 

0.04 wt%, 0.08 wt%, and 0.16 wt%. Since the optimal loading level of mGO was found to 

be 0.04%, unless otherwise specified in this chapter, the loading level of mGO in the 

composites is 0.04 wt%. For UPR/CSR nanocomposites, the total weight of the resin 

includes the weight of added CSR solution. The concentrations of CSR particles used in 

this study were 1 and 5 wt%.  A CSR loading higher than 5 wt% resulted in a significant 

viscosity increase (see Table 6.1).  

For UPR formulation, 0.03 wt% of 4-tert-butylcatechol inhibitor and 0.1 wt% of cobalt 

(II) 2-ethylhexanoate solution (65 wt% in mineral spirits) promoter was added. The mixture 

was rigorously stirred using a 1” Cowles blade at a speed of 2000 rpm for 30 min. Unlike 

the 12C-GO, TMI-GO did not disperse easily in polyester resin. To disperse TMI-GO in 

polyester resin, the TMI-GO/polyester mixture was probe sonicated for 2 h (Misonix S-

4000, 4 s pulse, 2 s pause, 35% intensity) with mechanical stirring. The curing process 

starts with the addition of 1.25 wt% of Luperox DDM-9 free radical initiator, followed by 

10 min of stirring and 10 min of vacuum degassing. The fabrication procedure of VER 

plaques was similar to that of UPR resin plaques, except that the styrene content was 

adjusted to 50 wt% and the as-received VER was already formulated. The amount of 

Luperox DDM-9 initiator added to cure VER was 1.5 wt%. 

Glass molds were prepared by clamping two glass plates with a rubber cord in between, 

and the resin mixture was then poured into the glass molds. Resin plaques with a thickness 

of 1.5 mm and 3 mm were prepared for the flexural tests and compact tension tests, 

respectively. After 24 h of room temperature curing, the UPR plaques were post-cured for 

3 h at 70 ˚C followed by 3 h at 120 ˚C. The VER plaques were post-cured at 90 ˚C for 4 h 
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after 24 h of room temperature curing. The heating and cooling rates were controlled to be 

2 ˚C/min. The temperature during curing was regulated by the Thermo Fisher Scientific 

Heratherm programmable oven. The test specimens were cut from the nanocomposites 

plaques using a milling machine. The dimensions of flexural test specimen were 

approximately 35 mm in length, 3 mm in width, and 1.5 mm in thickness. The compact 

tension specimen were about 15 mm in length, 12 mm in width, and 3 mm in thickness.  

Fabrication of glass fiber-reinforced polyester composites 

In this study, GFRPs were fabricated using a hand lay-up process. For this process, a 

thick glass plate (12.7 mm) coated with mold release agent was used as the substrate. An 

LED light panel was placed under the glass plate so that gas bubbles and voids could be 

easily observed and eliminated during the hand lay-up process. After the resin mixture was 

free-radically initiated and degassed, a portion of the resin was poured onto the glass plate 

and spread evenly using a plastic squeegee; then the first layer of glass fiber mat was placed 

on the glass plate. Additional resin was poured and spread on the glass fiber mat until the 

mat was fully wetted. By gently rolling the lay-up with a grooved aluminum roller, air 

bubbles, voids, and excess resin were removed. These steps were repeated for the 

remaining plies. A 15 μm thick non-perforated Teflon sheet was partially inserted between 

the two center plies to serve as the delamination initiator for the mode I interlaminar 

fracture test. The number of plies for CSM and woven laminates was set to be 4 and 6, 

respectively, in order to keep the thickness of all laminates similar, around 3.2 mm.  The 

curing profile for GFRPs was the same as that of unreinforced polyester nanocomposites, 

except that the heating rate and cooling rate were set to 1 ˚C to minimize residual thermal 

stress. The fiber weight percentage was ~35 wt% for CSM and ~60 wt% for woven 
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laminates. The laminates for mechanical testing were machined to the standard dimensions 

using a waterjet cutter. Dual cantilever beam (DCB) specimens with length of 127 mm and 

width of 25.4 mm were used. The dimension of flexural test specimens were about 127 

mm in length and 12.7 mm in width.  

Material characterization 

The flexural properties of the nanocomposite plaques were determined utilizing an 

RSA-G2 solid analyzer (TA Instruments) according to ASTM D790-10. The flexural tests 

were performed with a span of 25 mm (16:1 span-to-thickness ratio) and a speed of 

1mm/min. At least five specimen were tested, and flexural modulus, flexural strength, and 

ductility (strain at break) of the unreinforced polymer were reported. Dynamic mechanical 

analysis (DMA) was performed using the same flexural fixture with an oscillating strain of 

0.02% at 1 Hz from room temperature to 150 ˚C.  

Compact tension (CT) tests were performed per ASTM D5045-14 to obtain the mode 

I critical stress intensity factor (KIC). CT specimens were machined into the geometry 

specified by ASTM D5045-14, and a liquid nitrogen-cooled razor blade was used create 

the pre-crack. All CT specimens were tested using an Instron 5966 Universal Tester under 

a speed of 10 mm/min. At least 10 specimens were tested for each CT test. The KIC and the 

critical strain energy release rate (GIC) were calculated using Equation 6.1 and Equation 

6.2, respectively: 
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where Pc is the critical load during the CT test, B is the thickness of the specimen, W is the 

width of the specimen, a is the crack length (including notch length and pre-crack length), 

v is the Poisson's ratio, which is assumed to be 0.39,134 and E is the flexural modulus. 

The flexural modulus and strength of GFRPs were measured using an Instron 5966 

Universal Tester under 3-point-bend mode in accordance with ASTM D7264-15. A span-

to-thickness ratio of 32:1 was used to minimize the possibility of interlaminar shear failure. 

To obtain the interlaminar shear strength, short beam shear tests were also carried out per 

ASTM D2355-16 using the same equipment and fixture as the flexural tests but with a 

span-to-thickness ratio of 4:1. The crosshead speed for flexural tests and short-beam shear 

tests was set to 1 mm/min.  

Mode I interlaminar fracture toughness tests were performed according to ASTM 

D5528 utilizing an Instron 5966 Universal Tester. Dual cantilever beam (DCB) specimens 

with a length of 127 mm were used. The length of the Teflon insert was controlled to be 

around 64 mm. The end of the DCB specimens with the Teflon insert was roughened using 

sandpaper to promote adhesion to the piano hinges. A two-part epoxy adhesive was used 

to bond the piano hinges to the end of the specimen. To visualize crack propagation, a thin 

layer of white paint was applied on the side of the specimen, and the first 5 mm from the 

Teflon insert were marked with thin vertical lines every 1 mm, followed by a vertical line 

at every 5 mm interval up to the end of the specimen. The specimen was loaded at a rate 

of 3 mm/min until the crack propagated 3 to 5 mm from the tip of the Teflon insert, and 

then the load was released. The specimen was reloaded using the same speed until the crack 

had propagated for 50 mm. The crack propagation was videotaped using a traveling 

microscope camera while the load vs. crosshead displacement curve was recorded by the 
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Universal Tester. The mode I interlaminar strain energy release rate (GI_Comp) was 

calculated using modified beam theory, as shown in Equation 6.3: 

𝐺𝐼_𝐶𝑜𝑚𝑝 =
3𝑃𝛿

2𝑏(𝑎+|∆|)
                                                 (6.3) 

where: 𝑃 is the load, 𝛿 is the crosshead displacement, 𝑏 is specimen width, 𝑎 is the 

delamination length, and ∆ is the correction factor accounting for the rotation of the beam. 

∆ is determined by plotting the cube root of compliance, √
𝛿

𝑃

3
, as a function of delamination 

length; the best-fit linear relationship is found for such plot, and the intercept on the 

abscissa is the value of ∆.  

Due to the relatively low thickness of the specimens, the large displacement correction 

factor should be applied to Equation 6.3 according to ASTM D5528-13. The large 

displacement correction factor is calculated using Equation 6.4: 
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3
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2
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where t is the sum of the distance from the center of the piano hinge pin (which is 2.5 

mm) and 0.25 times of DCB specimen thickness. After applying the large displacement 

correction factor, the interlaminar strain energy release rate is calculated as shown in 

Equation 6.5: 

𝐺𝐼_𝑐𝑜𝑚𝑝 =
3𝑃𝛿

2𝑏(𝑎+|∆|)
  × 𝐹                                             (6.5) 

The critical strain energy release rate (interlaminar fracture toughness, GIC_Comp) for the 

initiation region and the propagation region were determined as follows: after the 

specimens were pulled until the crack has propagated 3 to 5 mm beyond the tip of the 
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Teflon insert, the load was released and then reapplied. During the second loading cycle, 

the force vs. crosshead displacement curve became nonlinear, and the point at which the 

curve became nonlinear is called the nonlinear point. The load, crosshead displacement, 

crack length, and correctional factors corresponding to the nonlinear point were used to 

calculate the initiation GIC_Comp according to Equation 6.5. As the crack propagated further, 

sudden load drops after certain periods of stable crack propagation were observed. A 

sudden load drop was usually accompanied by a relatively long crack extension. 

Composites made with glass fiber mats generally exhibit this type of “stick-slip” crack 

growth behavior due to the presence of non-uniform interlaminar layer and fiber 

bridging.296, 297 The load at the onset of the sudden load drop, and the crack length after the 

sudden crack extension was used to calculate GIC_Comp in the propagation region according 

to Equation 6.5. The value of GIC at each sudden load drop was calculated and averaged, 

and the average value is the propagation GIC_Comp. 

Izod impact tests were carried out according to ASTM D256-10. Specimens with a 

length of 63.5 mm and a width of 12.7 mm were cut from the 3.2 mm-thick laminates using 

a waterjet cutter, and a 2.54 mm deep notch with a radius of 0.25 mm was generated using 

a single-tooth slitting saw. At least 6 specimens were tested for each laminate. The fracture 

surfaces of failed CT specimens and DCB specimens were analyzed using a JEOL 6700 

field emission scanning electron microscope (SEM). The specimen were coated with 50 Å 

of platinum prior to imaging, and an accelerating voltage of 5kV was used during imaging. 

To evaluate the dispersion of mGO in polyester resin, 1.5 mm-thick cured resin plaques 

were observed in transmission mode using a Nikon Eclipse Ti-e optical microscope. 
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6.3. Result and discussion 

In this chapter, the discussion will be divided into three sub-sections. The first part of 

the discussion presents the results and analysis for graphene-resin composites without glass 

fiber reinforcement, and the second part of the discussion focuses on the toughening of 

GFRPs. The last part will be mainly the translation from resin to GFRPs.  

6.3.1 Nanoparticle toughening of unreinforced resins 

Dispersion of nanoparticles 

GO sheets are mechanically strong, with a modulus of several hundred GPa and a 

strength of above 30 GPa.298 However, these impressive mechanical properties do not 

always translate to the same properties of GO-polymer nanocomposites, especially if the 

nanoparticles aggregate. The goal of functionalizing GO particles with long alkyl chains 

(12C-GO) is to improve dispersion in a resin, and that of adding TMI groups is to introduce 

covalent bonding between polyester matrix and GO. Figure 6.1 shows the transmission 

optical microscopy images of polyester/GO and polyester/mGO composites. Unmodified 

GO was not well exfoliated in the polyester resin, and large aggregates can be observed. 

The size of aggregates of TMI-GO is close to that of unmodified GO. Dodecyl amine 

modification improves particle-matrix compatibility and thus the mGO dispersion, which 

is evident by the smaller aggregate size compared to unmodified GO or TMI-GO. Even 

though the composites were prepared through the same process, the dispersion of 12C-GO 

in VER seemed to be slightly better compared to that of UPR. In Figure 6.1c (UPR/12C-

GO), some GO is aggregated into 10–20 µm diameter particles, while in Figure 6.1d 

(VER/12C-GO), the aggregates are much finer. 
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1 

Figure 6.1. Transmission optical micrographs of polyester/GO and polyester/mGO 

nanocomposites. The loading is 0.04 wt% in all samples. 

Flexural properties and dynamic mechanical analysis (DMA) 

The flexural modulus, flexural strength, and the resin ductility (strain at break during 

flexural testing) of the nanocomposites are shown in Table 6.2. The flexural modulus of 

both UPR and VER resin remains unchanged after adding 0.04 wt% of TMI-GO or 0.04–

0.16 wt% of 12C-GO. Even though GO possesses high modulus, the concentration of mGO 

is too low to show an observable increase in flexural modulus. Adding 5 wt% of CSR 

decreases the flexural modulus of UPR and VER by 20% and 12% respectively, which is 

due to the low modulus of CSR. Figure 6.2 shows the storage modulus and tan δ curves 
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obtained from DMA. Similar to the flexural modulus, the change in storage modulus and 

Tg of polyester/mGO composites after adding 0.04 wt% of mGO is negligible. On the other 

hand, adding CSR decreased the storage modulus of the resin across the entire temperature 

range and shift the glass transition of the composites by 8–10˚C.  

Table 6.2. Mechanical properties of mGO and CSR toughened polyester nanocomposites  

Materials 
K1C  

(MPa m0.5) 

GIC-Resin  

(J/m2) 

Flexural 

Modulus 

(GPa) 

Flexural 

Strength  

(MPa) 

Strain at 

Break (%) 

Tg (˚C)  

(a) 

Neat UPR 0.69 (0.03) 100.3 (10.1) 3.99 (0.03) 136.1 (7.5) 4.1 (0.3) 96 

UPR/0.04 wt% 

12C-GO 

0.84 (0.02) 149.2 (8.3) 4.00 (0.05) 115.4 (3.8) 2.9 (0.1) 95 

UPR/0.08 wt% 

12C-GO 

0.83(0.02) 148.9 (6.2) 3.93 (0.01) 110.2 (3.1) 3.0 (0.1) - 

UPR/0.16 wt% 

12C-GO 

0.83(0.01) 160.1 (4.5) 3.80 (0.03) 82.3 (3.2) 2.1 (0.2) - 

UPR/0.04 wt% 

TMI-GO 

0.74 (0.02) 114.5 (8.3) 4.05 (0.05) 111.0(6.1) 2.9 (0.2) 94 

UPR/1 wt% 

CSR 

0.87 (0.03) 189.4 (11.8) 3.39 (0.04) 76.0(1.5) 2.6 (0.6) - 

UPR/5 wt% 

CSR 

1.19 (0.03) 379.8 (20.8) 3.18 (0.05) 94.5 (1.3) 5.1 (0.7) 86 

Neat VER 0.81 (0.02) 169.9 (6.3) 3.32 (0.03) 135.6 (1.2) 10.3 (1.4) 116 

VER/0.04 wt% 

12C-GO 

0.95 (0.03) 229.2 (16.0) 3.35 (0.08) 135.9 (2.7) 7.2 (0.7) 117 

VER/5 wt% 

CSR 

2.03 (0.05) 1204.4 (54.6) 2.91 (0.02) 100.7 (0.3) 16.9 (2.2) 108 

Values in parenthesis are standard deviations.  

(a) from the peak in tan δ. 
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Figure 6.2. Plots of storage modulus (a, c) and tan δ (b, d) as a function of temperature. 

The loading of mGO is 0.04 wt%, and the loading of CSR is 5 wt%.  

A flexural strength reduction of 15% to 57.3% was observed after adding 0.04 wt% to 

0.16 wt% of 12C-GO or TMI-GO to the UPR. The decrease of flexural strength and resin 

ductility suggests that the mGO aggregates can act as stress concentrators and defects in 

UPR, so higher mGO loading leads to poorer strength of the composites. In contrast, adding 

0.04 wt% of 12C-GO has no negative impact on the flexural strength of VER, which can 

be ascribed to the better dispersion and surface compatibility of 12C-GO in VER when 

compared to URP, as discussed in the previous section.  
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The incorporation of CSR also decreased the flexural strength of UPR and VER 

significantly. The reductions in flexural properties are expected because relatively high 

loadings of low strength rubbery particles are added into the rigid polyester crosslinked 

network. However, at 1 wt% of CSR loading, the flexural strength of the composite 

decreased by about 50% compared to the neat. This is because CSR forms large aggregates 

inside these resins, and the millimeter-sized aggregates became crack initiators in addition 

to structural defects, causing a great reduction in flexural strength. 

Fracture behavior 

The KIC and GIC_Resin values of the unreinforced samples obtained using CT tests are 

presented in Table 6.2. In UPR resin, adding 0.04 wt% of 12C-GO raised the GIC by 49%, 

but adding the same amount of TMI-GO improved the GIC_Resin of neat UPR by only 15%. 

The better toughening provided by 12C-GO can be attributed to the better dispersion of 

12C-GO in UPR. Similar magnitudes of toughness improvement 12C-GO can also be 

observed in VER. Increasing the 12C-GO concentration in UPR to 0.08 wt% and 0.16 wt% 

did not provide any additional increase in fracture toughness compared to 0.04 wt%. 

However, as mentioned previously, an undesirable decrease in flexural strength was 

observed.  A plateau in GIC_Resin improvement in polyester resin after adding rigid fillers 

was also found by Grishchuk et al. in VER/organoclay (from 0.25 wt% to 5 wt% 

organoclay)235 and Seyhan et al. in polyester/carbon nanotube nanocomposites (from 0.05 

wt% to 0.3 wt%).234 After taking the values of fracture toughness and flexural strength at 

various 12C-GO concentrations into consideration, 0.04 wt% loading of mGO seemed to 

be the optimal loading level. The improvement in fracture toughness after adding 0.04 wt% 

of mGO in polyester is comparable to polyester resin toughened by other inorganic fillers 
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at low concentrations (around or below 1 wt%) such as aluminum particles,191 silane treated 

alumina particles,171 and organoclay,235, 299 but lower than that of resin toughened by 

inorganic fillers at much higher loading (2 wt% to 5 wt%).  Adding 5% CSR increases the 

GIC_Resin values by 280% for UPR and 600% for VER. These values are comparable to what 

was reported in the literature for toughening UPR and VER with CSR or liquid rubber.160, 

161, 300, 301  

Fracture surface analysis 

Figure 6.3 and Figure 6.4 contain SEM images of the near-precrack regions (a 

definition is given in Figure 2.8 in Chapter 2) of failed CT specimens. Our previous work 

demonstrated that adding small amount of mGO improved toughness by crack deflection 

and crack pinning mechanisms.192, 220 These toughening mechanisms are also used here to 

explain the fracture surface features. When the crack encounters GO, the crack tends to be 

deflected by these rigid particles, forcing the crack to go around the particles before 

rejoining the main crack plane, and this creates an uneven fracture surface as shown in the 

SEM images. The UPR/TMI-GO specimen showed increased surface roughness compared 

to the neat UPR specimen, and some GO aggregates ranging from 10 to 40 µm in size can 

be seen. The fracture surfaces of 12C-GO composites are even rougher than those of the 

UPR/TMI-GO specimens. The rougher topology can be attributed to the better dispersion 

of 12C-GO in the UPR matrix, leading to more crack deflection events.  
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Figure 6.3. SEM micrographs of the fracture surfaces of UPR (a) neat resin and composites 

with (b) 0.04 wt% 12C-GO (c) 0.04 wt% TMI-GO (arrow indicates GO particle aggregates), 

and (d) 5wt% CSR (the arrow indicates aggregation of CSR particles). 
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Figure 6.4. SEM micrographs of the fracture surfaces of VER a) neat and with b) 0.04 wt% 

12C-GO, and c) 5 wt% CSR; d) is a magnification of c) The arrow indicates aggregation 

of CSR particles. 

For polyester/CSR nanocomposites, the fracture surface is even rougher than those of 

polyester/mGO nanocomposites, and the fracture surface is covered with circular voids. 

These voids are likely caused by CSR shell/matrix debonding.255 The typical diameter of 

these circular pits is around 100 nm, which agrees with the CSR particle size given by the 

supplier. Thus, cavitation is the main toughening mechanism in CSR toughened UPR 

composites. As shown in Table 6.2, the toughening effect of CSR particles is more 

pronounced in the more ductile VER resin, which agrees well with what was reported by 

Arias et al.302  
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To illustrate the difference in toughening performance of mGO and CSR, the stress-

strain curves of mGO and CSR toughened UPR and VER are compared in Figure 6.5, and 

the strain at break values are also given in Table 6.2. The neat UPR specimen broke without 

yielding, while the VER specimen showed a typical yielding behavior. As discussed earlier, 

the incorporation of mGO has an adverse effect on the resin ductility (strain at break) of 

the resin, while the modulus was unaffected. The incorporation of CSR softens both resins, 

and induces more yielding in VER. In rubber-toughened thermosets, the major mechanisms 

are localized shear yielding of the matrix around the rubber particles and rubber particle 

cavitation.152, 303, 304 The process of rubber cavitation relieves the tri-axial stress and 

promote large-scale plastic deformation of the matrix.305 The lack of ability for the UPR to 

yield limited the large-scale matrix deformation even when the tri-axial stress was relieved, 

thus the toughening effect of CSR in UPR was much lower than that of VER. It is also 

important to note that CSR particles aggregated slightly in the resin, as indicated by arrows 

in Figure 6.3d and Figure 6.4d.  
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Figure 6.5. (a): Stress-strain curves of neat UPR and toughened resin specimen; and (b) 

stress-strain curves of neat VER and toughened resin specimen. 

To summarize, incorporating 0.04 wt% of 12C-GO yields 49% and 35% increase in 

fracture toughness for UPR and VER, without lowering Tg and modulus. On the other hand, 

adding 5 wt% of CSR particles to UPR and VER increases the resin fracture toughness by 

280% and 600%, respectively, but significant decreases in modulus and Tg were observed.  

6.3.2. Nanoparticle toughening of glass fiber reinforced composites 

Flexural properties 

Table 6.3 summarizes the flexural properties, interlaminar shear strength (ILSS), and 

Izod impact strength of all GFRP samples. The flexural modulus and strength of the GFRPs 

with toughening agent are very close to that of the neat GFPRs, regardless of toughener 

type, resin type, and fiber architecture. Although adding mGO decreased the flexural 

strength of UPR plaques (see Table 6.2), and CSR reduced both flexural modulus and 

strength significantly in UPR and VER, these properties of GFRPs remain unaffected 

because flexural properties of GFRPs are generally dominated by the glass fibers. Only the 
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UPR/CSR woven laminate showed much lower flexural strength than the neat UPR woven 

laminates. This unexpected low flexural strength of UPR/CSR woven laminates may be 

attributed to uneven dispersion of CSR in UPR.  

Table 6.3. Flexural properties, interlaminar shear strength, and Izod impact strength of 

glass fiber- reinforced polyester laminates.  

Fiber 

Architecture 

Matrix 

Materials 

Flexural 

Modulus 

(GPa) 

Flexural 

Strength 

(MPa) 

Interlaminar 

Shear Strength 

(MPa) 

Izod 

Impact 

Strength 

(kJ/m2) 

Chopped 

Strand Mats 

(CSM) 

Neat UPR 9.8 (0.3) 216.9 (14.7) 39.6 (1.7) 0.86 (0.08) 

UPR/TMI-GO 10.3 (0.1) 198.3 (12.0) 34.9 (2.1) 0.99 (0.10) 

UPR/12C-GO 10.0 (0.2) 222.9 (12.5) 32.7 (0.7) 1.00 (0.09) 

UPR/CSR 10.0 (0.2) 209.2 (5.1) 29.0 (0.9) 1.24 (0.14) 

Woven 

Roving 

Neat UPR 20.6 (0.4) 511.2 (22.5) 42.8 (2.1) 2.90 (0.37) 

UPR/TMI-GO 21.6 (0.6) 478.0 (11.8) 32.8 (1.4) 3.22 (0.50) 

UPR/12C-GO 19.9 (0.7) 474.0 (13.7) 41.9 (1.4) 2.58 (0.34) 

UPR/CSR 19.7 (0.5) 432.1 (27.0) 25.1 (1.3) 2.85 (0.48) 

Neat VER 19.8 (0.7) 511.6 (19.8) 58.2 (3.5)  2.22 (0.26) 

VER/12C-GO 19.1 (0.5) 481.8 (11.4) 54.8 (2.8) 2.03 (0.25) 

VER/CSR 20.9 (0.4) 526.3 (12.8) 46.3 (4.5) 2.52 (0.53) 

Values in parenthesis are standard deviations. All mGOs added at 0.04 wt%, CSR at 5 wt% 

based on resin.  

Resin content is 65 wt% in CSM and 40 wt% in woven roving laminates.   

 

Interlaminar shear strength  

None of the tougheners used in this study improved the ILSS of the GFRPs. Generally, 

an increase in ILSS of GFRPs is related to an enhanced fiber-matrix interface, which can 

be obtained by silane modification306-308 or electrochemical oxidation309 of fibers. The lack 

of ILSS improvement for the tougheners used in this study can be understood as both CSR 
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and mGO lack functional groups that can bond to the glass fiber or change the fiber-matrix 

interface.  

However, adding CSR caused a significant decrease in ILSS for all fiber architectures 

and resin types. The decrease in ILSS caused by the incorporation of rubber toughener can 

be attributed to the reduction of matrix stiffness and strength.310 Similar to our observation, 

a decrease of ILSS was reported by Ozdemir et al. in nano carboxylic acrylonitrile 

butadiene rubber and nano acrylonitrile butadiene rubber (particles size: 50–150 nm) 

toughened carbon fiber-reinforced epoxy composites (CFRP).311 In addition, Kim et al. 

found that carboxyl-terminated acrylonitrile rubber (CTBN) reduced ILSS in a high resin 

content CFRP.311 Pantano et al. evaluated ILSS for vinyl ester/glass fiber composites with 

different GIC_Resin (ranging from 160 J/m2 to 1970 J/m2) and found that ILSS was inversely 

proportional to GIC_Resin, although no detailed explanation was presented.312  

UPR CSM laminates with mGO also showed a decrease in ILSS compared to the 

corresponding neat resin laminates, and this reduction may be attributed to the 

incompatibility between the mGO and the binders on CSM. It is also possible that the high 

resin content in CSM laminates played a role in the reduction of ILSS because mGO 

reduced the flexural strength of UPR. UPR/TMI-GO and UPR/12C-GO CSM laminates 

have similar ILSS values, indicating that both types of chemical functionalization of GO 

have a similar effect on the fiber-matrix interface. In the woven laminates, the UPR/TMI-

GO displayed significantly lower ILSS than the neat laminates, while the UPR/12C-GO 

CSM laminate has a similar value compared to the neat laminate. The difference may be 

due to the better dispersibility of 12C-GO compared to TMI-GO in UPR. For the woven 
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laminates, the VER laminates possessed higher ILSS values than UPR laminates, which 

suggests that the VER has a better fiber-matrix interfacial adhesion compared to UPR.  

Izod impact strength 

The mGO toughened GFRPs showed no significant improvement or degradation of 

Izod impact strength when compared to the neat GFRPs in this study. This result implies 

that the mGO does not affect the fiber-matrix interface, and the extremely low loadings of 

mGO are not able to change the impact behavior of GFRPs. The CSR increased Izod impact 

strength of the UPR CSM laminate by 43%, while no improvement of Izod impact strength 

was observed in UPR and VER woven laminates. Carvelli et al. reported similar findings 

that their carbon plain weave reinforced epoxy composites modified with carboxylated 

nitrile-butadiene rubber nanoparticles showed little difference compared to the unmodified 

composites in impact strength.313  

It is interesting to observe that even though VER has higher ductility and higher 

fracture toughness than UPR (see Table 6.2), the Izod impact strength of UPR woven 

laminates is similar to that of VER woven laminates. Gaggar et al. found that the Izod 

impact strength is independent of matrix ductility (fracture toughness of resin was not 

provided) in epoxy/CSM laminates.314 Schrauwen et al. compared the falling weight 

impact test results of woven laminates and stitched laminates made with a brittle UPR and 

a toughened VER and concluded that the fiber architecture plays a major role in the impact 

resistance of composites, while the matrix ductility showed no clear effect.315  

The difference of toughening effects of CSR in CSM and woven laminates can be 

attributed to the different fiber architectures of GFRPs and resin content between these two 
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fiber architectures. In this study, the value of impact strength of the neat UPR woven 

laminates is 3.4 times higher than that of neat UPR CSM laminates, and this result suggests 

that in woven laminates, the fiber bundles perpendicular to crack propagation direction 

consume most of the impact energy by fiber breakage. Therefore, the matrix has little 

influence on the impact resistance of woven laminates. On the other hand, in CSM 

laminates, there are regions where fibers are parallel or nearly parallel to the crack direction; 

in these regions, fibers provide little resistance to crack propagation while the matrix 

consumes most of the impact energy. As a result, the matrix plays a larger role in impact 

resistance in CSM laminates compared to the woven laminates. Moreover, the resin content 

of CSM laminates and woven laminates were about 65 wt% and 40 wt%, respectively. In 

short, the larger influence of matrix in CSM laminates, combined with the higher resin 

content, improved Izod impact strength of UPR/CSR CSM laminates when compared to 

the neat UPR CSM laminates.  

Mode-I interlaminar fracture toughness 

 Figure 6.6 summarizes the mode I interlaminar fracture toughness values obtained 

from DCB tests. In all laminates, the initiation GIC_Comp is lower than the propagation 

GIC_Comp. The region close to the Teflon crack starter is generally considered as resin-rich. 

In this region, the deformation and fracture of the matrix consumed most of the energy.316 

When the crack extends beyond the initial resin-rich region, additional toughening is 

provided by the fiber reinforcement. This fiber-based toughening includes fiber bridging, 

fiber debonding, and fiber fracture, which can dissipate additional energy.317 UPR 

laminates toughened by mGO or CSR showed no significant change in either initiation 

GIC_Comp or propagation GIC_Comp compared to the neat UPR laminates. GIC_Comp values for 
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UPR woven laminates did not change in the 12C-GO loading range from 0.04 wt% to 0.16 

wt% (Figure 6.6b). This trend is consistent with those in UPR/mGO nanocomposites 

without fiber reinforcement. Adding mGO also did not increase the GIC_Comp of VER woven 

laminates, while 5 wt% of CSR produced a 33% increase in GIC_Comp (see Figure 6.6d). 

 

Figure 6.6. Mode I interlaminar fracture toughness of GFRP specimen. Except for samples 

in (b), the loading level of mGOs is 0.04 wt%, and the loading for CSR is 5 wt%. 

The SEM fractographs of the DCB specimen are shown in Figures 6.7–6.9. The 

opposing surfaces of fractured DCB specimens are very different: one surface is covered 

mostly by fibers, while the opposite surface is predominantly resin. In all SEM micrographs, 

the separation of fibers from resin is very clean, suggesting that the fiber-matrix bonding 

is very weak. For the fibers parallel to the fracture surface, large gaps can be seen between 
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the resin and fibers, especially for UPR laminates, which is another sign for weak fiber-

matrix interactions. The SEM images for VER laminates also show large areas of bare 

fibers; but in some regions, the matrix adheres to the fiber strongly (Figure 6.9), implying 

that the VER GFRP has a better fiber-matrix adhesion compared to UPR GFRP.  
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Figure 6.7. SEM micrographs of fracture surfaces of UPR CSM laminates after DCB 

testing. Images (d) and (e) are UPR/CSR images of chopped strand mats laminates at 

different magnifications. The loading level of mGOs is 0.04 wt%, and the loading for CSR 

is 5 wt%. 
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Figure 6.8. SEM micrographs of fracture surfaces of UPR woven laminates after DCB 

testing. Images (d), (e), and (f) are images UPR/CSR woven laminates at different 

magnifications. The loading level of mGOs is 0.04 wt%, and the loading for CSR is 5 wt%. 
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Figure 6.9. SEM micrographs of fracture surfaces of UPR woven laminates after DCB 

testing. Images (d) and (e) are images VER/CSR woven laminates at different 

magnifications. The loading level of mGOs is 0.04 wt%, and the loading for CSR is 5 wt%. 

For the GFRPs containing CSR, the fracture surface of the resin was rougher than that 

of the neat or mGO modified matrix owing to the additional toughening mechanisms 
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offered by rubber particles. CSR was not able to provide GIC_Comp enhancement in the UPR 

laminates with either CSM or woven roving as the fiber constructions. However, as 

mentioned above, CSR was able to increase the initiation GIC_Comp and propagation 

GIC_Comp of the VER woven laminates by 50% and 33%, respectively. The difference of 

toughening effects may be explained by the difference in fiber-matrix adhesion, and the 

degree of cavitation and matrix yielding around the rubber particles. When comparing 

Figure 6.8f (UPR/CSR woven roving) and Figure 6.9e (VER/CSR woven roving), the VER 

matrix has a better adhesion to the glass fibers. It is possible that CSR acted as a 

“compatibilizing agent” between the VER and the glass fibers and improved the fiber-

matrix adhesion.252, 288 In addition, the voids are more deformed in the VER matrix, while 

in UPR the voids remained nearly circular in shape; this difference can be ascribed to the 

higher degree of CSR particle cavitation and local matrix yielding in the VER matrix. Even 

though CSR particles have partially cavitated in the VER laminates, the toughening effect 

exhibits a very poor translation from resin to GFRPs, where a 600% increase in GIC_Resin of 

VER led to only a 50% enhancement in initiation GIC_Comp and a 33% enhancement in 

propagation GIC_Comp.  

6.3.3 Toughness translation from resin to composites: 

The lack of GIC_Comp improvement, especially in the UPR laminates, encouraged us to 

compare our results to those found in the literature. The relative improvement in fracture 

toughness after adding tougheners over the unmodified counterparts can be represented by 

improvement ratios. The toughness improvement ratio of FRPs (IC) and the toughness 

improvement of resin (IR) after adding the tougheners can be defined as the following: 
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𝐼𝐶 = 𝑇𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝐹𝑅𝑃𝑠 =
 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛 𝐺𝐼𝐶_𝐶𝑜𝑚𝑝  𝑜𝑓 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑟𝑒𝑠𝑖𝑛

𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛 𝐺𝐼𝐶_𝐶𝑜𝑚𝑝 𝑜𝑓 𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑟𝑒𝑠𝑖𝑛
   

(6.6) 

𝐼𝑅 =  𝑇𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑟𝑒𝑠𝑖𝑛 =
 𝐺𝐼𝐶_𝑅𝑒𝑠𝑖𝑛  𝑜𝑓 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑟𝑒𝑠𝑖𝑛

𝐺𝐼𝐶_𝑅𝑒𝑠𝑖𝑛  𝑜𝑓 𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑟𝑒𝑠𝑖𝑛
                 

(6.7) 

The plot of IC and IR for the data compiled from the literature and the data for the woven 

laminates in this paper are shown in Figure 6.10. The slopes in this plot indicate the 

toughness transfer from resin to FRPs. Most of the data in literature fall within the area 

between slope of 1 and slope of 0.25 lines. The UPR/CSR and VER/CSR woven laminates 

presented in this paper are very close to or below the slope of 0.25, indicating relatively 

poor toughness transfer compared to the rest of the literature, which is mainly due to the 

weak fiber-matrix interface.  
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Figure 6.10. The relationship between toughness improvement ratio of FRPs and the 

toughness improvement ratio of the resin after adding tougheners. The references and data 

associated with this plot can be found at.318 The data for woven laminates in the present 

paper is also plotted. Data above the blue horizontal line indicates that the GIC_Comp is 

improved by adding tougheners. 

The initiation GIC_Comp is strongly influenced by matrix-fiber interface strength.319 As 

bonding strength between matrix and fiber increases, the crack has a higher tendency to 

propagate through the matrix, resulting in high initiation GIC_Comp values.319 The SEM in 

the previous section showed that laminates with mGO did not enhance the fiber-matrix 

interfacial adhesion of both UPR and VER. This can explain why the initiation GIC_Comp for 

the laminate with mGO did not increase significantly compared to the neat laminates. The 

TMI and 12C function groups do not react with the functional groups on the fiber sizing, 

thus even though the matrices were toughened by mGO, the weak fiber-matrix interface 
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encourages the crack propagates at the interface instead of through the resin.  Comparing 

Figure 6.8 with Figure 6.9, the VER laminates have slightly better interfacial adhesion 

compared to the UPR laminates. The interfacial adhesion of VER/CSR woven laminate is 

even better than that of neat VER laminate, while adding CSR into UPR laminate did not 

improve interfacial adhesion. Based on the SEM images, the fiber-matrix interfacial 

adhesion can be qualitatively ranked as follows, with the corresponding initiation GIC_Comp 

values in the pretenses: VER/CSR (787 J/m2) > neat VER (518 J/m2) = VER/12C-GO (526 

J/m2) > all UPR laminates (340 – 373 J/m2). The initiation GIC_Comp values correlate well 

with interfacial adhesion.  

In this chapter, the toughness improvement ratio (IC) of VER/CSR woven laminate is 

1.5, which is less than those typically found in epoxy laminates modified with inorganic or 

rubber tougheners. The low IC value may be attributed to the large extent of interfacial 

failures of GFRPs. The SEM images in Figure 6.9c and 9d revealed that only some areas 

have good fiber-matrix adhesion, while the majority of the fibers were bare or with a large 

gap between resin and fibers.  By comparing the SEM images in this study to those in 

references,252, 256, 271-274 it is obvious that the interfacial adhesion between epoxy and fiber 

reinforcements is better than the polyester/glass interface in this study, as evident by larger 

amount of residual resin adhere to the fibers. In addition, polyester resins generally have 

higher volumetric shrinkage than epoxy resins upon crosslinking,320 and the residual stress 

caused by shrinkage may also negatively impact the fiber-matrix interfacial adhesion 

and/or the interlaminar fracture toughness.321 To the best of our knowledge, no one has 

addressed the effect of shrinkage to interfacial bonding and interlaminar fracture toughness 

experimentally.  
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Even though the initiation GIC_Comp showed a very weak correlation to GIC_Resin in this 

study (see Figure 6.11a), we have found a better correlation between GIC_Comp and resin 

ductility, which is shown in Figure 6.11b. As mentioned in the previous section, adding 

mGO decreased the ductility of the polyester resin. Interestingly, CSR did not increase the 

ductility of UPR even though the fracture toughness of the UPR increased dramatically 

after adding CSR, indicating that CSR did not introduce extensive shear yielding in UPR 

resin. As depicted in Figure 6.11b, all UPR laminates showed similar GIC_Comp values and 

similar resin ductility values. Because CSR can introduce shear yielding in VER, the 

ductility of VER was increased. A high resin ductility increases the degree of matrix shear 

yielding, crack tip blunting, and stress redistribution caused by non-linear deformation of 

the matrix, thus, the GIC_Comp increased with increasing resin ductility.322, 323  

The importance of resin ductility in the interlaminar fracture toughness was also 

reported by Jordan et al. 323 However, in Jordan’s study, the fracture toughness of the resin 

correlated well with resin ductility. A strong dependence of GIC_Comp on resin ductility was 

also reported by Yan et al. in epoxy toughened by liquid rubber or CSR.271 In Yan’s study, 

even though epoxy toughened by 15 wt% of CSR showed 400% higher GIC_Resin value 

compared to epoxy toughened by the same amount of CTBN, the epoxy/CTBN specimen 

showed 350% higher resin ductility and 65% higher GIC_Comp than the epoxy/CSR specimen. 

Although many examples have been reported in the literature of enhancing GIC_Comp of 

fiber-reinforced epoxy composites using rubber particles or rigid inorganic particles, 

increasing the interlaminar fracture toughness of polyester resins, especially UPR, remains 

a difficult task. 
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Figure 6.11. (a): The relationship between interlaminar fracture toughness (GIC_Comp) of 

woven laminates at the initiation region and the fracture toughness of resin (GIC_Resin); and 

(b) Correlation between mode-I interlaminar fracture toughness (GIC_Comp) of woven 

laminate at the initiation region and resin ductility. 

6.4 Conclusion 

The mechanical properties of unsaturated polyester resin (UPR) and vinyl ester resin 

(VER) toughened with modified graphene oxide (mGO) or core-shell rubber (CSR) were 

measured. We then investigated whether this toughness translated to glass fiber-reinforced 

polyester composites (GFRPs) fabricated using the toughened resin. The following 

conclusions can be made: 

(1) Incorporating very low loadings (0.04 wt%) of TMI-GO and 12C-GO, and 5 wt% 

of CSR can increase the fracture toughness of UPR and VER. Adding 12C-GO increased 

the fracture toughness of UPR and VER by 49% and 35%, but TMI-GO shows much less 

toughening effect in the resins. This is because 12C-GO disperses better in the polyester 

matrix. Increasing the loading of 12C-GO in the polyester resin beyond 0.04 wt% did not 

provide additional toughening effects. The flexural modulus and glass transition 
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temperatures of the nanocomposites were unaffected by the addition of mGO. The flexural 

strength was decreased by 15% in the UPR/12C-GO nanocomposites, but no strength 

reduction was observed in VER/12C-GO nanocomposites. The toughening mechanisms in 

mGO/resin composites are crack pinning and crack deflection. On the other hand, 5 wt% 

of CSR enhanced fracture toughness of the UPR and VER by 280% and 600%, respectively, 

but the flexural modulus, flexural strength, and glass transition temperature were decreased. 

The toughening mechanisms are associated with rubber cavitation, rubber/matrix 

debonding, and matrix shear yielding.  

(2) The flexural properties of the GFRPs made with mGO or CSR toughened polyester 

matrices did not improve compared to the GFRPs with unmodified resin. Even though 12C-

GO showed a better dispersion and provided more fracture toughness enhancement in UPR 

compared to TMI-GO, the toughening performance of these two types of mGO in GFRPs 

was not differentiable. In the UPR chopped strand mats (CSM) laminates, mGO did not 

increase the Izod impact strength, but CSR enhanced the Izod impact strength by 44%. 

This enhancement can be ascribed to the random fiber orientation in the CSM laminates 

allowing the matrix to play a larger role in impact energy consumption. In woven laminates, 

Izod impact strength of both the UPR and VER was not affected by the incorporation of 

either mGO or CSR. In woven roving fiber construction, the Izod impact strength was 

mainly controlled by the fiber. No improvement, and in some cases, reductions in 

interlaminar shear strength were observed.  

(3) The enhancement of the fracture toughness in polyester resins (GIC_Resin) showed 

very poor translation to the mode-I interlaminar fracture toughness (GIC_Comp) in GFRPs, 

and the improvement in GIC_Comp after adding tougheners was less than what was observed 
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in the epoxy resin based FRPs. We attribute this to weak fiber-matrix interfacial adhesion. 

SEM images of fracture surfaces revealed that the fibers that were pulled out of the resin 

have little residual resin sticking to them, which is indicative of weak fiber-matrix adhesion. 

The very low loadings of mGO did not increase GIC_Comp, regardless of resin type and fiber 

architecture. Even 5 wt% loading CSR, which increased the fracture toughness of polyester 

resin significantly (280% for UPR and 600% for VER), was not able to enhance GIC_Comp 

of UPR laminates and only increased the initiation GIC_Comp and propagation GIC_Comp of 

VER woven laminate by 50% and 33%, respectively. The increase in GIC_Comp for 

VER/CSR woven laminate can be attributed to the enhanced fiber-matrix adhesion due to 

the additional of CSR, and the ability of CSR to introduce matrix shear deformation, and 

possibly crack tip blunting and stress redistribution.  

The correlation between GIC_Comp and GIC_Resin is very weak compared to the literature 

values for epoxy fiber-reinforced composites, especially for the UPR laminates. On the 

other hand, the correlation between GIC_Comp and resin ductility is strong. Because of the 

weak fiber-matrix bonding in the polyester/glass fiber composite systems, the crack 

preferentially propagated through the fiber-matrix interface; as a result, toughening the 

matrix alone is a not very effective method for increasing GIC_Comp in polyester/glass-fiber 

composite systems. The fiber-matrix interface must be improved in order to realize the 

benefit of a toughened matrix and maximize the interlaminar fracture toughness of 

polyester/glass fiber composite systems. 
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Chapter 7 

Graphene-polyethylene Nanocomposites: Effect of Graphene 

Functionalization 

7.1 Introduction 

Electrically conductive composites composed of polymers and conducting fillers have 

been broadly studied over the past few decades.13, 266, 324 These materials can be employed 

as antistatic or electromagnetic shielding materials to avoid damage to electronics by 

electrostatic discharge or electromagnetic interference. Polyethylene (PE) is a low-cost, 

general-purpose polymer which shows good mechanical properties and high chemical 

resistance. It can be used for numerous applications, for example, as a packaging material 

for electronics, if it is modified to have enhanced electrical conductivity. 

Conventional conductive fillers are usually micrometer-scale metal powders or 

carbonaceous materials such as carbon black. In order to reach the percolation threshold 

with these fillers, the filler content needs to be as high as 10–50 wt%.325, 326 Such high filler 

loading results in poor mechanical properties and processing difficulties of the composites, 

and the sloughed-off carbon black particles could contaminate electronics. Unlike 

traditional polymer composites, which contain micron-scale fillers, polymer composites 

made with well dispersed carbon nanotubes (CNTs) offer a fascinating solution to the 

aforementioned problems. CNTs have high aspect ratios and excellent electrical 

                                                 
 This chapter was reproduced from Polymer 2016, 104, 1 with permission. © Copyright 2016, Elsevier. The 

author is responsible for the mGO design and synthesis, and the characterization of graphene and mGO. 
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conductivity, which facilitate the formation of conducting networks in a composite. 

Therefore, an insulating polymer can be converted to a conducting composite at a CNT 

content as low as 0.5 wt%.327-330 Many distinctive properties of CNTs, such as electrical, 

thermal, optical and damping properties along with their excellent mechanical properties 

can translate to the composites, so CNT/polymer composites can find their applications in 

chemical sensing, electrical and thermal management, photoemission, electromagnetic 

absorption and energy storage.325, 331, 332 However, owing to the low yield and high cost of 

the production and purification of CNTs, commercial application of CNT-based 

conducting composites is still limited. In addition, difficulties of dispersing CNTs into 

polymers and flow-induced orientation during processing remain challenging problems.325, 

327, 330 

Graphene has attracted much attention due to its high aspect ratio, and desirable 

mechanical, electrical, and thermal properties.13, 266, 324 Bulk production of graphene sheets 

from graphite oxide based on a chemical method may prove to be cheaper than production 

of CNTs.333-335 These unique attributes make graphene promising for applications in many 

technological areas, such as thermally and electrically conducting composites, reinforced 

polymer composites, electronic circuits, and transparent and flexible electrodes for displays. 

13, 266, 324  

One challenge in creating graphene/polyethylene composites is that the low polarity of 

polyethylene leads to poor dispersion of graphene.336, 337 To overcome this difficulty, we 

started with graphite oxide, which can be produced from graphite using strong oxidizing 

conditions.34 Graphite oxide has ample covalently-attached hydroxyl, epoxy, carbonyl and 

carboxyl groups on its surface, which makes it hydrophilic and easily swellable in water. 
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The exfoliated graphite oxide is graphene oxide, and it has structural similarity with 

graphene, except some defects and surface oxygen-containing groups. Graphene oxide 

(GO) is not electrically conductive, but conductivity can be partially restored by heating it 

at relatively low temperatures.338, 339 The functional groups of GO provide means for 

covalent functionalization,33 and subsequently allows for improving GO dispersion in 

various polymers. 

Here we report the processing and properties of PE nanocomposites made with 

functionalized GO (FGO). Methylstyrene moieties and 18-carbon alkyl chains were 

attached to GO via urethane linkages and amide bond formation, respectively. The alkyl 

chains and methylstyrene moieties lower the GO polarity and help FGO to be exfoliated 

and disperse better in PE. Linear low-density PE (LLDPE), relatively high-density PE 

(PE_A), and oxidized PE (OPE) were selected as polymer matrices. Dispersion of FGO in 

LLDPE, PE_A, and OPE was compared to that of the unfunctionalized GO and thermally 

reduced GO (TRG). We characterized these composites using optical microscopy, 

conductivity measurements, and mechanical tests. We compared the conductivity of the 

FGO nanocomposites before and after reduction to determine the efficiency of thermal 

treatment at moderate temperatures. 

7.2. Experimental 

Materials 

PE_A was obtained from Sigma-Aldrich (product # 428108). It is a random copolymer 

containing 5–10 wt% hexene co-monomer. LLDPE, provided by Dow Chemicals, is a 

linear low-density PE copolymer of ethylene and octene (ENGAGE™ 8200 CAS 26221-
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73-8). OPE was purchased from Honeywell. It is an oxidized PE with 3.3 wt% oxygen 

content (A-C® 656, oxidized PE homopolymer). Molecular characteristics of PE_A, 

LLDPE and OPE, including number averaged molecular weight (Mn), polydispersity index 

(PDI), viscosity, density, melting point, composition and crystallinity are summarized in 

Table 7.1. Mn values of three different PE samples were measured via gel permeation 

chromatography (GPC, PL-GPC 220 High Temperature Chromatograph) using 

trichlorobenzene as the eluent at 135 ˚C. TRG in this study was produced by rapid thermal 

reduction of graphite oxide,337 and it was kindly provided by Vorbeck Materials. Sodium 

nitrate (ACS grade), potassium permanganate (ACS grade), hydrogen peroxide (30% 

solution in water, ACS grade), toluene (HPLC grade), and potassium bromide (IR grade) 

were obtained from Fisher Scientific. Octadecylamine (98%), N,N-dimethylformamide 

(anhydrous, 99.8%), 3-isopropenyl-α,α-dimethylbenzylisocyanate (TMI, 95%), 1,2-

dichlorobenzene (ReagentPlus® Grade) and 1,4-diazabicyclo[2.2.2] octane (99%), were 

purchased from Sigma-Aldrich. Ammonium hydroxide (28-30% in water, ACS grade) and 

tert-butanol (99%) were purchased from Macron. Sulfuric acid (98%, ACS grade) and 

hydrochloric acid (37%, ACS grade) were purchased from BDH. Graphite flakes (SP1 

grade) were sourced from Bay Carbon. Deionized (DI) water with a resistivity of 18 

MΩ∙cm-2 was produced onsite using a Barnstead purification system. 
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Table 7.1. Molecular characteristics of PEs.  

Sample code Mn
a 

g/mol 

PDI Viscosity 

Pa∙s 

Densityd 

g/mL 

Tm
e ˚C Compositiond Crystallinityf 

PE from 

Aldrich 

9600 5.6 200b 0.93 122 Hexene 0.49 

(PE_A) 
  

70c 
  

5-10 wt% 
 

EG8200 from 

Dow 

42000 3.0 7300b 0.87 65 Octene 0.16 

(LLDPE) 
  

1200c 
  

7.3 wt% 
 

Oxidized PE 

from 

Honeywell 

450 10.2 1.0b 0.92 92 Oxygen 0.29 

(OPE) 
  

0.8c 
  

3.3 wt% 
 

a GPC, trichlorobenzene, RI detector, PS standards 
b at 140 ˚C. 
c at 210 ˚C 
d Data provided by supplier 
e DSC, second heating, 10 ˚C /min 
f Determined by dividing the heat of fusion by 293 J/g 

 

7.2.1 Graphene synthesis and characterization 

Synthesis of GO 

The method of GO synthesis was adapted from Hummers' method34 with modifications. 

In a typical synthesis, 2.5 g NaNO3 was dissolved in 115mL concentrated sulfuric acid in 

an ice bath, and 5 g of graphite was then added to the solution. Under moderate stirring, 5 

g KMnO4 was added every 10 min during 30 min for 15 g total (includes 10 min stirring 

after last addition). The ice bath was then replaced by a room temperature water bath, and 

the mixture was allowed to react at 35 ˚C for 1 h. Later, 230 mL of DI water was added to 

the reaction mixture and the temperature increased to 80 ˚C. After stirring for 15 min, the 

mixture was further diluted to 1 L. The reaction was quenched by adding hydrogen 

peroxide dropwise until the effervescence stopped and the mixture turned light brown. 
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After overnight sedimentation, 600 mL of the supernatant was decanted, and the rest of the 

mixture was divided into eight portions for purification. 

To purify the GO, 40 mL of DI water was added to each portion with 1.5 mL 

concentrated hydrochloric acid. After stirring and shaking inside the centrifuge tube, the 

GO was spun down (Marathon 8 k) at 3000 rpm for 15 min. This procedure was repeated 

for a total of 10 times to remove metal ions and sulfate ions (no precipitation in 0.1 M 

BaCl2). The resulting material was then dialyzed against DI water with cellulose dialysis 

tubing (Fisherbrand, MWCO: 6000-8000) until no precipitate was observed upon mixing 

the dialyzing solvent with 0.1 M silver nitrate solution. The GO was then redispersed in DI 

water and neutralized with ammonium hydroxide. After 1 h sonication in a bath sonicator 

(Branson 3510 ultrasonic cleaner, Emerson Electric Co.), the GO dispersion was 

centrifuged at 1500 rpm for 10 min to remove any poorly oxidized graphite. The 

supernatant was collected as the GO stock solution (2 mg/mL). Later, the stock solution 

was freeze-dried (Freezemobile, SP Scientific) to obtain the solid GO for further 

modification. 

Synthesis of TMI/octadecylamine-functionalized GO (FGO) 

To synthesize functionalized GO, 300 mg of the dried GO was dispersed in 75 mL 

anhydrous N,N-dimethylformamide (DMF) and then sonicated in a bath sonicator (Branson 

3510) for 1 h. The resulting homogenous dispersion was transferred into a 150 mL two-

necked round bottom flask and 1,4-diazabicyclo[2.2.2] octane (DABCO, 5 mg per 100 mg 

GO) was added as the catalyst. The dispersion was purged under nitrogen flow for 2 h with 

300 rpm stirring. After that, 6 mL of 3-isopropenyl-α,α-dimethylbenzylisocyanate (TMI) 
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was injected and the mixture was allowed to react at 60 ˚C for 24 h under nitrogen. The 

reaction was quenched by adding 225 mL dry toluene, and the resulting mixture was then 

centrifuged at 3000 rpm for 15 min. The precipitate from the centrifugation was washed 3 

times with toluene and twice with tert-butanol followed by freeze drying to obtain the 

intermediate product (TMI-GO). 

The resulting TMI functionalized GO was redispersed in DMF in the same way as 

described before (2 mg/mL). The octadecylamine was then added (4 mg per 1 mg GO) and 

the reaction was kept at 70 ˚C for 24 h while stirring at 300 rpm. The reaction was 

terminated by pouring the mixture into ethanol, and the functionalized GO flocculated 

immediately. The crude product was collected by centrifugation and purified by 4 washes 

in dry ethanol and 2 washes in DI water. The purified product, TMI-octadecyl-GO, referred 

to hereafter as FGO, was freeze dried to obtain a powder. Figure 7.1 illustrates the steps of 

the FGO synthesis.  
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Figure 7.1. Synthesis and schematic structure of FGO. 

Characterization 

The viscosity of PE was measured using parallel-plate frequency sweep tests at 140 ˚C 

and 210 ˚C with an ARES rheometer (TA instrument). The melting point and degree of 

crystallinity of PE were determined by differential scanning calorimetry (DSC, TA 

Instruments Q1000) using TA Universal Analysis software. 4.0–6.0 mg of PE was loaded 

into hermetic aluminum pans. The scanning procedure was performed from 40 ˚C to 150 

˚C with a heating/cooling rate of 10 ˚C/min. Crystallinity was calculated by dividing the 

heat of fusion obtained from integrating the area of the melting endothermic peak by 293 

J/g,340 the heat of the fusion for a 100% crystalline PE. 
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Transmission infrared (IR) spectra of GO, FGO and TRG were obtained using a 

Fourier-transform-IR (FT-IR) spectrometer (Magna-FTIR 760, Nicolet). The spectra were 

collected from 4000 cm-1 to 400 cm-1. Powder X-ray diffraction (XRD) experiments were 

performed with a PANalytical X'Pert Pro diffractometer. This instrument utilized a Co 

anode (Kα radiation, 1.79 Å) and X'celerator detector, and it was operated at 45 kV 

accelerating voltage with a 40 mA emission current. Transmission electron microscopy 

(TEM, FEI Tecnai T12) images were obtained to survey the sizes and morphologies of the 

FGO and TRG sheets. Each sample was stirred in ethanol and sonicated with a bath 

sonicator for 5 min. Lacey carbon TEM grids were dipped into the dispersions and allowed 

to air-dry before imaging. 

 

 

7.2.2 Preparation and characterization of graphene/PE composites 

Preparation of PE nanocomposites 

Graphene/PE nanocomposites were prepared by solvent blending three GO samples 

(untreated GO, FGO and TRG) with three PE samples (PE_A, LLDPE, and OPE) using 

1,2-dichlorobenzene (DCB) as the solvent. Up to 50 mg of graphene was added to 10 mL 

of DCB and stirred for 48 h at room temperature. About 1.0 g of PE solid was then added, 

and the mixture was heated in an oil bath at ~130 ˚C for at least 2 h. Graphene/PE mixtures 

in DCB were then cast on glass plates to prepare composite films. After the film casting, 

solvent removal continued for at least 48 h at room temperature and another 72 h in a 
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vacuum oven (24 ˚C, 5 mbar). These films were annealed at 210 ˚C in an oven for up to 1 

h. Figure 7.2 shows the steps of the dispersion process. 

 

Figure 7.2. Schematic diagram of preparation of graphene/PE nanocomposites. 

 

 

Characterization of nanocomposites 

Optical microscopy was applied to investigate the dispersion of graphene in PE. 

Approximately 1 mg of composite was loaded between two glass slides placed in an oven 

at 130 ˚C for 2 min which caused it to melt. It was then compressed to a thickness of about 

100 μm measured with a digital micrometer (Mitutoyo). Optical microscopy images were 

taken (Eclipse Ti, Nikon), and these images were binarized to create black and white 

images using ImageJ software. Tensile moduli of the composites were measured with an 

RSA-G2 rheometer (TA instruments). Composite samples were cut to rectangular strips 4–

6 mm in width, then clamped between two film fixtures of the rheometer. The displacement 
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rate of the fixtures was 0.01 mm/s, and the modulus was evaluated based on the slopes of 

stress-strain curves from 0.05 to 0.25% strain. 

Surface resistance was measured using an 11-probe meter (PRS-801, Prostat). The 

conductivity was reported as the geometric mean which was estimated based on 3 to 4 

different spots of on a sample film. Crystallinity was measured using differential scanning 

calorimetry (DSC, Q1000 TA Instruments) by heating a sample at 10 ˚C/min from room 

temperature to 200 ˚C. 

7.3 Results and discussion 

The properties of polymer nanocomposites depend strongly on how well nano-fillers 

are dispersed in the polymer matrix. However, in our case, the surface energy mismatch 

between PE and graphene have made effective dispersion of graphene difficult without 

compatibilization. To solve this problem, we resort to chemically functionalizing GO to 

improve dispersion. The hydroxyl and epoxide groups on GO are sites for attaching 

functional groups like methylstyrene and alkane. We covalently attached methylstyrene 

moieties by reacting TMI isocyanate with hydroxyl and carboxy groups to form urethane 

and amide linkages and 18-carbon alkyl chains via epoxy ring-opening addition with 

octadecylamine. TMI modification helps exfoliation of GO sheets in the organic solvent, 

which benefits the subsequent octadecyl functionalization. Also, the unsaturated moiety in 

TMI molecules may be able to bond to PE chains at elevated temperature to improve the 

particle-matrix adhesion. The long alkyl chains attached to GO sheets can increase the 

hydrophobicity of GO, leading to better compatibilization with PE. 
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7.3.1. Characterization of FGO sheets 

TEM images indicate that the ultrathin sheets of TRG and FGO have paper-like 

structures (Figure 7.3a and b). In general, TRG shows more wrinkles than FGO. This has 

been attributed to the thermal reduction process rapidly generates gas with the elimination 

of oxygen, which separates the graphene layers.341, 342 Unlike functional groups such as 

hydroxyls or carboxyls, epoxy groups generate strain on the C-C bond of the three-

membered epoxide ring. When several epoxy groups line up, the sheet can form a kink that 

partially releases this strain energy and makes this configuration energetically favored. 

Amine functionalization releases the above-mentioned strain by breaking the epoxy rings, 

and thus a less wrinkled but more stacked structure should form after modification. The 

selected area electron diffraction (SAED) patterns of FGO show only weak and diffuse 

rings, indicating that the FGO particle is multilayered. The diffraction spots of TRG 

suggest that it consists of single or a few layers, in agreement with the observed wrinkled 

morphology. 

 

Figure 7.3. TEM micrographs and electron diffraction patterns (insets) of (a) TRG and 

(b) FGO. 
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The functionalization of GO was confirmed by IR spectroscopy (Figure 7.4a). The 

absorption peaks at 2920 and 2850 cm-1 in FGO represent the antisymmetric and symmetric 

stretching vibrations, respectively, of methylene groups in the long alkyl chains grafted 

onto GO.199 The corresponding methylene scissoring and rocking bands appear at 1460 and 

721 cm-1, respectively. Absorptions due to amide C=O stretching and amide N-H bending 

vibrations at 1650 and 1580 cm-1, respectively, and the absence of the carboxylate peak 

that was present in the original GO (1721 cm-1), confirm the amide linkage between the 

long-chain alkyl amine and the GO surface. Peaks at 1105 and 1070 cm-1 in the FGO 

spectrum can be ascribed to mixed skeletal modes of C-C and C–O bonds in GO.198, 199 The 

peak at 1236 cm-1 is attributed to epoxide groups and that at 1370 cm-1 to bending of C–

OH phenolic groups in GO.198 

 

Figure 7.4. (a) Transmission FT-IR absorbance spectra of FGO, GO and TRG. (b) X-ray 

diffraction (XRD) patterns of FGO, GO and TRG. 
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The presence of these absorption peaks indicates that not all available oxygen groups 

on GO have been utilized in the functionalization process. Because of the relatively low 

density of TMI functional groups on the FGO, as well as the overlapping of its 

characteristic absorption peaks with those of alkyl groups and GO, we cannot observe IR 

absorptions corresponding to TMI in the spectrum. A broad peak between 3700 and 3000 

cm-1, which is apparent in all three spectra, arises from the stretching vibration of OH 

groups of water molecules adsorbed on GO. 

The structural change in FGO was observed by X-ray diffraction as shown in Fig. 4b. 

Upon functionalization, the (001) diffraction peak of GO located at ~13˚ 2θ shifts to ~5˚ 

2θ, indicating an increase of the interlayer spacing from ~0.72 nm to ~1.61 nm due to the 

incorporation of long alkyl functional groups. TRG does not display any prominent 

diffraction peaks in the range of 4˚ to 20˚ 2θ due to more complete exfoliation, in agreement 

with previous characterization of TRG.337 The lack of X-ray diffraction peaks signifies loss 

of the periodic order in GO layer exfoliation and agrees with the TEM observation of one 

or a few layers in TRG. 

7.3.2. Dispersion of FGO in PE 

In addition to the thermodynamic compatibility of filler sheets with polymers, 

processing has a substantial impact on the dispersion and properties of graphene reinforced 

polymer composites. Due to the intrinsic low surface compatibility between PE and 

graphene, hindered polymer chain diffusion and compressive flow fields in high viscosity 

polymer melts may result in macroscopic aggregation in melt-compounded samples.337 
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Therefore, solution blending was employed in this study as it facilitated material transport 

in low viscosity solvents.207, 337  

The crystallinity of FGO/PE nanocomposites was obtained from DSC analysis. The 

degree of crystallization slightly decreased at 3wt % FGO loading in PE compared to pure 

PE (Table 7.2). We speculate that the large amount of FGO and its good dispersion 

significantly hinders the diffusion of polymer chains to the growing crystallites.  

Table 7.2. Properties of graphene/PE composites. 

Matrix Loading (wt%) Surface resistance (Ohm) Tensile modulus (MPa) 

 FGO   
PE_A 0 3.10 × 1012 145.0 ± 39.9 

 1 1.78 × 109 120.1 ± 25.5 

 3 1.89 × 107 146.6 ± 2.8 

 5 7.19 × 104 480.4 ± 56.3 

LLDPE 0 4.80 × 1011 5.5 ± 0.9 

 1 1.14 × 1012 6.9 ± 0.4 

 3 1.19 × 106 27.4 ± 1.1 

 5 5.20 × 105 70.3 ± 7.7 

OPE 0 2.47 × 1013 61.6 ± 7.7 

 1 1.09 × 1013 58.8 ±1.8 

 3 7.44 × 1012 72.5 ± 32.1 

 5 9.42 × 109 117.2 ± 20.5 

 TRG   
PE_A 0 3.10 × 1012 145.5 ± 39.9 

 1 2.78 × 1013 240.3 ± 21.3 

 3 9.46 × 1012 307.7 ± 35.7 

 5 1.30 × 1013 392.0 ± 53.0 

LLDPE 0 4.80× 1011 5.4 ± 0.9 

 1 1.10 × 1013 9.1 ± 0.5 

 3 2.32 × 1013 16.1 ± 2.9 

 5 1.30 × 1013 18.6 ± 3.8 

OPE 0 2.47 × 1013 61.6 ± 7.7 

 1 9.14 × 1012 50.0 ± 12.8 

 3 1.49 × 1013 50.9 ± 2.9 

 5 1.63 × 1013 33.0 ± 11.9 

 GO   
PE_A 0 3.10 × 1012 145.5 ± 39.9 

 5 2.02 × 1013 266.0 ± 53.0 

LLDPE 0 4.80× 1011 5.4 ± 0.9 

 5 1.93 × 1012 46.5 ± 3.8 

OPE 0 2.47 × 1013 61.6 ± 7.7 

 5 1.26 × 1013 46.7 ± 11.9 

All samples were measured after 1 h annealing. 
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Optical microscopic images of the different composites reveal the morphology of FGO 

and TRG dispersed in different PE matrices. Images of PE_A films containing TRG and 

FGO with 1 and 3 wt% are shown in Figure 7.5. The morphology of 1 wt% TRG in the 

PE_A matrix can be described as partially exfoliated with significant occurrence of 

graphene aggregation (Figure 7.5a). The strong segregation of 3 wt% TRG from PE_A is 

clearly observed (Figure 7.5b). Apparent localization of TRG aggregates signifies phase 

separation due to intrinsic incompatibility. However, macroscopic distribution of FGO is 

significantly improved in PE_A (Figure 7.5c and d). Enhanced FGO dispersion was also 

found in LLDPE and OPE matrices (see Figure 7.6 and 7.7). The functionalization of GO 

appears to be critical for the generation of evenly distributed graphene in polyethylene. 

Figure 7.8a and b compare the dispersion of LLDPE with 3 wt% of TRG and FGO, 

respectively, after adjusting the color threshold. From images like these, relative dispersion 

indices were calculated.  

 

 



184 

 

Figure 7.5. Optical microscopy images of PE_A with (a) 1 wt% TRG, (b) 3 wt% TRG, (c) 

1 wt% FGO, and (d) 3 wt% FGO. 

 

Figure 7.6. Optical microscopic images of OPE with (a) 1 wt% TRG, (b) 3 wt% TRG, (c) 

1 wt% FGO and (d) 3 wt% FGO. 
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Figure 7.7. Optical Microscopic images of LLDPE with (a) 1 wt% TRG, (b) 3 wt% TRG, 

(c) 1 wt% FGO and (d) 3 wt% FGO. 

The dispersion index results, defined as the area occupied with the filler divided by 

total area, are shown in Figure 7.8c. A high index indicates a more homogeneous dispersion 

because the fillers uniformly cover the whole surface of the microscopic samples. Judging 

from these thresholded images, FGO is well dispersed throughout all PE matrices. In 

contrast, TRG is not homogeneously dispersed into PE, leading to a comparatively low 

dispersion index. This verifies the compatibilization of the FGO/PE blends by GO 

functionalization. In addition, OPE and LLDPE seem to lead to better dispersion with TRG 

and FGO than PE_A. The effect of different PEs on dispersion and on electrical 

conductivity does not coincide because the specific properties of PE also can affect the 

electrical conductivity of the composites. The relation between morphological difference 

and differences in electrical conductivity are described in the next section. 
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Figure 7.8. Optical microscopic images of LLDPE with (a) 3 wt% TRG and (b) 3 wt% 

FGO. Images were thresholded using ImageJ. (c) Relative dispersion index of 1 wt% and 

3 wt% of TRG and FGO in PEs. Values are scaled to FG) with PE-A. 

7.3.3. Properties of nanocomposites 

PE can become electrically conductive and mechanically more robust by graphene 

reinforcement. Results of electrical resistance and tensile modulus measurements are 

summarized in Table 7.2. 
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Electrical conductivity 

The surface resistance of 3 wt% FGO, TRG, and GO in PE after 1 h annealing is 

compared in a Figure 7.9. Even at the same filler concentration, the surface resistance 

differs considerably depending on graphene and PE compatibility. FGO composites with 

PE_A and LLDPE revealed substantially improved electrical conductivity. Figure 7.9b and 

c summarize surface resistance of composites as a function of graphene loading. While 

TRG/PE composites do not become electrically conductive up to 5 wt% of TRG, FGO 

incorporation into PE_A or LLDPE leads to a great decrease in electrical resistance. A 

negative influence of PE oxidation on conductivity was detected from FGO/OPE 

composites. Electrical conduction pathways are formed via the formation of graphene 

networks in the polymer matrix. Dispersion of graphene in PE inferred from conductivity 

enhancement generally correlated with the morphological characterization by optical 

microscopy seen in Figure 7.8. However, even with seemingly better dispersion from 

optical images (Figure 7.8c and Figure 7.6) the decrease in resistance for FGO in OPE was 

only observed above 3 wt%. This is likely due to the abundant oxidized groups on PE 

hindering the electron transport through graphene sheets in the composites.343, 344 

Effect of thermal reduction on electrical conductivity 

The most economical route to produce large quantities of graphene sheets for polymer 

composites appears to be reducing exfoliated GO.333-335, 339 The oxidation step in GO 

synthesis gives rise to the loss of electric conductivity, thus a reduction has to be performed 

to recover conductivity in PE/graphene nanocomposites. Different approaches, such as 

thermal treatment,345-348 chemical reduction,347 and UV irradiation349, 350 have been 
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employed to reduce GO. In this study, thermal reduction was achieved in-situ by heating 

the nanocomposites. Generally, temperatures above 600 ˚C are needed to perform optimal 

thermal reduction.345-347 However, the practical temperature of in-situ thermal reduction is 

restricted by the degradation temperature of polymers.347 Hence, simple thermal reduction 

of the FGO sheets dispersed in PE at moderate temperature, 210 ˚C, was employed to 

partially reduce FGO and to obtain reasonable electrical conductivity without any damage 

to the functional grafts on FGO or the PE matrices. In order to identify the time required 

for thermal reduction, FGO/LLDPE samples were treated at 210 ˚C for 5 min, 30 min, and 

1 h (Figure 7.9). The reduction of GO started to occur even after only 5 min, leading to the 

restoration of electrical conductivity of FGO/LLDPE composites. As the annealing time 

increased, the electrical conductivity of GO in PE matrix improved further until 1 h. In case 

of 5 wt% FGO, 5 min reduction was already enough to obtain good electrical conductivity 

in FGO/LLPDPE composites. As the annealing time increased, the electrical conductivity 

of the composites improved further until 1 h. Therefore, 1 h annealing was selected as the 

condition of GO reduction for the composites.  
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Figure 7.9. Electrical resistance of FGO/LLDPE composites after different thermal 

reduction time.  

Figure 7.10 shows the surface resistance of FGO/LLDPE and FGO/PE_A with 

different FGO concentration. There was no change in the as-cast samples but an obvious 

decrease in resistance after 1 h annealing at 210 ˚C. The dramatic change in electrical 

conductivity was achieved at an FGO content of 3 wt% because at this loading FGO 

reached a percolation threshold through uniform dispersion within the PE matrix. The high 

viscosity of the polymer matrix surrounding FGO helped to prevent reaggregation of 

reduced FGO in the composites.345, 351 
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Figure 7.10. Surface resistance of (a) LLDPE and (b) PE_A with different FGO 

concentrations, comparing as-cast samples with those that had been annealed for 1 h 

Tensile modulus 

Mechanical properties of the PE polymers in this study were improved considerably 

via dispersion of graphene. At the same graphene concentration (5 wt%), the tensile moduli 

depend on the compatibility between the filler and matrices (Table 7.2). Tensile moduli 

were enhanced significantly by blending with FGO in all types of PE. The highest modulus 

was achieved with the FGO/PE_A composite (480 MPa). TRG and GO showed less 

increase in all PE's and even a slight modulus decrease with OPE. Tensile moduli 

normalized by modulus E0 of unfilled PE are plotted in Figure 7.11.  
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Figure 7.11. Tensile modulus of (a) graphene/LLDPE composites, (b) graphene/PE_A 

composites and (c) graphene/OPE composites. 

Graphene/LLDPE and graphene/PE_A composites show an overall uniform increase 

in accordance with the graphene composition, whereas the trend is less uniform for the PE 

composite with GO. Particularly, GO does not show any consistent increase in the 

normalized tensile moduli with graphene concentration in all PEs due to the poor dispersion 

in PE. Another point to note is that, although all graphene/graphene derivatives show a 
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good dispersion in OPE, none of the graphene-based nanomaterial shows significant effect 

on composite modulus. We attribute this result to the relatively low molecular weight, low 

viscosity (shown in Table 7.1), and the presence of ample oxygen-containing groups of 

OPE. These factors determine that the OPE composites will phase-separate and form co-

continuous structure which graphene-rich and graphene-poor domains. 

7.4 Conclusions 

In this study, we dispersed GO, TRG, and FGO into three PEs: linear low density 

LLDPE, high density PE_A, and an oxidized PE (OPE) via solvent blending. Dispersion 

of GO can be difficult in highly hydrophobic and non-polar matrices such as PE. In order 

to improve particle-matrix compatibility, GO was functionalized with 18-carbon alkyl 

chains and TMI moieties. This FGO was blended into the PE matrices and composite films 

were obtained by casting from the solution. Graphene/ PE composites were also produced 

from a thermally reduced GO (TRG) and unfunctionalized GO using solvent blending. At 

the same loading, nanocomposite properties strongly depend on the quality of filler 

dispersion. Visual observation of cast films indicates that FGO disperses more 

homogeneously in PE than GO or TRG in the same matrices. 

A simple thermal treatment of the FGO nanocomposites at moderate temperature (210 

˚C) following solvent casting resulted in greatly enhanced electrical conductivity in these 

composites. We achieved a surface resistance of a composite lower than 105 Ω at an FGO 

content of 5 wt%. This thermal treatment yielded an improvement similar to what was 

observed for poly(methyl methacrylate)/GO347 and TRG/PE nanocomposites.337 This 

simple process recovered electrical conductivity at a moderate temperature without any 
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additional environmental control such as nitrogen atmosphere. Its effectiveness in 

conductivity recovery also appeared to be comparable to chemical reduction with 

hydrazine.347 

Regardless of PE types, FGO increases the tensile modulus of PE more effectively than 

that of TRG. The modulus increased 12 times for LLDPE and 3 times for PE_A with 5 wt% 

FGO. Enhancements in electrical conductivity and tensile modulus are more pronounced 

for FGO/ LLDPE and FGO/PE_A composites than for FGO/OPE. We attribute this result 

to the oxidization of PE which hinders the electron transfer through graphene sheets, even 

though the oxide groups of OPE help the graphene disperse well in PE matrices. 
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Chapter 8 

Summary and Outlook 

8.1 Summary of modified graphene oxide toughening of unsaturated polyester resin 

and vinyl ester resin 

Generalizing from all previous chapters in this thesis, our research has demonstrated 

that modified graphene oxide can be used to toughen unsaturated polyester and vinyl ester 

resins. Due to their high aspect ratios, mGO-based tougheners show significant toughening 

effects at extremely low loading levels of 0.002 wt.% to 0.04 wt.%. This type of nano-

toughener is able to increase the fracture toughness (KIC) of an UPR by up to 25 % and that 

of a VER by up to 26 %. The low required loading level also influences other aspects of 

mGO toughners. First, it ensures that mGO is economically viable in the cost-sensitive 

UPR and VER markets, considering the production cost of mGO is still formidable for 

most composite additive applications. Second, useful resin properties will not significantly 

degrade after adding such small amounts of mGO. Since these resins are often used as 

structural materials, it is not acceptable to have a large reduction in modulus and glass 

transition temperature when a toughener is added. Our experiments proved that adding 

mGO barely changes these properties, which is in stark contrast to incorporating polymeric 

tougheners such as reactive liquid rubber. In addition, unlike the sharp viscosity increase 

observed in resins with polymeric tougheners (which require about 5 wt.% loading), the 

viscosity of uncured resins does not change when mGO is used as the toughener. This is 

an advantage because low resin viscosity is required for building large parts with vacuum 

assisted resin transfer molding (VARTM). 
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The low loading requirement is linked with the improved dispersion of mGO in resin 

matrices. Like other applications, such as improving composite conductivity, toughening 

of thermosetting resins benefits from a good dispersion of mGO, which can be achieved 

by GO surface modification and processing optimization. For surface functionalization, we 

developed dodecylamine, octadecylamine, TMI-dedecylamine, and TDI-dihexylamine 

modifications. With these modifications, the surface of mGO can be engineered to be 

compatible with resin, thus mGO can be dispersed well into resin without sonication. 

Moreover, TMI moieties, which can introduce particle–matrix covalent bonding, were also 

successfully attached to GO surface to help enhance interfacial interaction. For processing 

optimization, we developed both a styrene masterbatch route and a reactive resin 

masterbatch route. The results show that these processing techniques help further suppress 

mGO aggregation during composite synthesis, which leads to fewer structural defects and 

better retention of composite flexural strength. In addition, using a mGO masterbatch 

instead of dry powder reduces inhalation risk and simplifies materials handling. 

Although improvement in dispersion minimizes the adverse effect of strength reduction, 

it does not show a significant influence on the toughening effect. It is shown in this thesis 

that primary particle size of GO or mGO has little influence on toughening, which is not 

surprising because mGO tends to form aggregates in resin. Therefore, unlike many 

schematics in published papers, it is the interaction between the mGO aggregates and a 

propagating crack front that determines the toughening effect. To study how the 

aggregation behavior of different mGOs affects toughening, three different surface 

modifications were employed. The result indicates that mGO that does not tend to 

aggregate during curing has a much lower optimal loading level of 0.005 wt.%. But, if the 
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mGO loading becomes higher than the optimum, the resin fracture toughness will decrease 

sharply. The mGO that has high tendency to aggregate (ODA-GO) during matrix curing 

shows a delayed optimum when the loading increases, but the fracture toughness plateaus 

afterwards. This size-dependent toughening behavior resembles typical inorganic filler 

toughened UPR. The toughening effect of mGO in UPR composites lacks response to 

differences in particle-matrix interfacial strength. This can be readily seen when comparing 

the toughening result of TDI-DHA-GO and that of DDA-GO or ODA-GO. The lacks 

response of toughening effect to different GO surface chemistry suggests that the 

maximum achievable toughness for a resin is determined solely by the resin, and this value 

cannot be changed by new GO modification methods or by increasing mGO loading. 

When adding mGO to a resin that contains inorganic filler, the toughening effect of 

mGO depends on the particle size or aggregate size of the inorganic filler. As is well known 

that some inorganic fillers themselves can provide toughening effects when incorporated. 

If the size of the inorganic particle aggregates is comparable to or larger than the plastic 

zone size of the matrix resin, adding mGO will not further improve the fracture toughness. 

If the addition of mGO disrupts the formation of large-scale secondary structure of filler 

particles, a decrease in toughness can be observed. If the filler particles or aggregates are 

significantly smaller than mGO aggregates, adding mGO will improve the toughness. This 

observation agrees well with plastic zone theory in which the size of plastic zone is 

estimated to be close to the size of mGO sheets. Thus, the toughening effect provided by 

any inorganic particles, including mGO, is independent of the materials properties of the 

particles. The effectiveness of mGO in toughening stems from its large aspect ratio.  
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Glass-fiber-reinforced composites made with mGO-toughened resin show little 

toughness improvement over similar composites made with neat resin. The fractography 

analysis of failed GFRPs indicates that the fiber composite fracture is a result of fiber-resin 

interfacial failure, thus fracture toughness improvement in resin will not translate to a 

toughened composite. Instead, we found a correlation between GFRP fracture toughness 

and resin ductility. Incorporating inorganic particles into UPR and VER slightly reduces 

resin ductility, therefore no toughness improvement can be observed. To produce 

toughening effects in UPR or VER based GFRPs, a better designed fiber-resin interface is 

a prerequisite. 

8.2 Outlook 

The study of mGO toughening of UPR and VER leads to the conclusion that mGO 

alone will not likely to be a practical toughening agent for this proposed market. However, 

a collaborative study on synergistic toughening of epoxy with mGO and block copolymers 

yielded a very promising result. In this study Dr. Tuoqi Li and I prepared a series of epoxy 

composites with tunable crosslink density and incorporated both mGO and a PEO-b-PEP 

block copolymer to study the fracture toughness improvement. It is interesting that, by 

adding 5 wt.% BCP and 0.04 wt.% mGO, the GIC of this ternary composite becomes 17 

times higher than the neat resin, which is more than the sum of individual toughening 

contributions (13 times increase in GIC). A detailed analysis of this composite showed that 

there is no association between mGO and BCP, and the modulus and Tg of the composite 

is very close to that of the neat resin. This discovery offered us a new opportunity for 

designing resins with both high modulus and high toughness. We propose that mGO in this 

case transduces the stress around the crack tip deeper into the resin, which promotes BCP 
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micelle caviation in a large composite volume. This finding opens new possibilities for 

mGO to be a synergistic toughening additive, which may potentially solve the issue of 

modulus and Tg reduction when a polymeric toughener is used. It will be beneficial to know 

how mGO changes the toughening effect of commercially available products, such as 

liquid rubber and CSR. Also, by studying the mechanism of this synergy, we can better 

design new functionalization and processing techniques for mGO to maximize the 

toughening effect.  
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