
 

 

 

Sustainable Cross-linked Polymers  

 

 

A DISSERTATION 

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL 

OF THE UNIVERSITY OF MINNESOTA 

BY 

 

 

Guilhem Xavier Roger De Hoe 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENT 

FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

 

 

Marc A. Hillmyer, Advisor 

 

 

September 2019 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Guilhem X. R. De Hoe 2019 

 



 

 

i 

Acknowledgments 

This thesis marks an incredible achievement for me, but it would not exist were it not 

for some incredible mentorship along the way. Were you to ask me ten years ago if a Ph.D. 

in Chemistry was in my future, I would have answered that I barely know what a doctoral 

program is, and that even if I did know, chemistry is certainly not my strong suit. In fact, 

exactly ten years ago (September 2009) was the start of my senior year in high school, and 

I was still recovering from the aftershocks of my A.P. Chemistry course in my junior year. 

It is here where my acknowledgements begin, because that experience created a ripple 

effect that has made me into the person I am today.  

In the latter half of my junior year, Mr. Nafrada—endearingly referred to as Narf—

and I had a personal meeting to address my performance in his (notoriously difficult) A. P. 

Chemistry course, which was becoming a steady downward spiral. I am hopefully not 

misquoting, but I believe his exact words were “rise up, De Hoe!” From then until the end 

of the year, improving my almost-failing grade was a grueling adventure that ultimately 

rewarded me with a B; thankfully Narf teaches some organic chemistry near the end, and 

I happened to be decent at that. His recognition of my accomplishment is immortalized in 

a yearbook gathering dust at my parents’ house in California; on one of the blank pages, 

Narf wrote nothing more than “you rose up.” I credit Narf for nucleating my interest in 

chemistry, and without him I may not have chosen it as my undergraduate major. More 

importantly, the values I learned from Narf carried me through my academic career: work 

hard, have integrity, and aim to be your best rather than better than those around you. Thank 

you, Narf, for keeping it real and being a hardass—I will continue to appreciate the struggle 

more than the result. 



 

 

ii 

My undergraduate advisor, Prof. Philip Costanzo, is next in line for acknowledgment. 

He raised me from a research embryo to research tadpole, and then pushed me into the big 

boy pond of graduate school. I value the tenacious support and encouragement he gives his 

students, although I often ask myself how and why he tolerated me for so long. Perhaps it 

was because he could periodically call me “knucklehead” or perhaps it was because I had 

potential; whatever the reason, I am grateful that he persisted because I became well 

prepared for a top tier doctoral program in spite of the fact that I had never been exposed 

to one at my undergraduate institution. Interestingly enough, both Phil and Narf—who, just 

to be clear, do not know each other—were in the habit of endearingly referring to me and 

others as “fools”; I always appreciated the informality but also feel like it kept me humble, 

and humility is one of the most important virtues. From Phil I also learned the importance 

of optimism and momentum; the latter refers to his ability to charge ahead in work and in 

life, or as he would say: “keeping it cranking and moving forward so we can bust it out.” 

(That’s the abridged impression.) Lastly, I thank Phil for his continued support, advice, and 

inspiration. 

At the start of this doctoral program, I was fortunate enough to join the research 

group of Prof. Marc Hillmyer, who has been an incredible mentor. During the past five 

years, I have metamorphosed from research tadpole to independent researcher, and it is 

thanks to Marc that I have been able to perform high quality research that I can call my 

own. Marc was always available to provide feedback or advice when needed, and in general 

he trusted me to be responsible for my research progress. He also gave me plenty of leeway 

to initiate my own projects and collaborations as well as participate in non-research 

activities (conference organizing, outreach, and a student group) that greatly benefitted my 



 

 

iii 

overall professional development. I have appreciated and been inspired by Marc’s 

enthusiasm for science, impeccable communication, and exceptional efficiency. Thank 

you, Marc, for being an exemplary advisor, professor, and individual. 

I am grateful for the wonderful cohort of graduate students and postdocs in the 

Hillmyer group—although the personnel have changed significantly over five years, the 

environment has remained supportive and enjoyable. Dr. Jake Brutman deserves special 

mention because he was my mentor during the early stages of my metamorphosis and he 

remains an invaluable resource and friend. I would also like to highlight (in no particular 

order) a few past and current members of the group who have helped me directly either 

inside or outside of the lab: Prof. Christophe Sinturel, Prof. Madalyn Radlauer, Prof. Philip 

Dirlam, Dr. Luke Kassekert, Dr. Sebla Onbulak, Dr. Thomas Vidil, Dr. Deborah (Debbie) 

Schneiderman, Dr. Luis (Leo) Oquendo, Dr. Gereon Wuu-Yee, Dr. Lindsay Johnson, Dr. 

James Gallagher, Dr. Stacey Saba, Dr. Annabelle Watts, David Goldfeld, Nicholas Hampu, 

and Derek Batiste. David also deserves extra thanks for helping me proofread the 

introductory chapter of this thesis, for being my YouTube co-star, and for lending me his 

car, some mousetraps, and anything else I’ve forgotten. 

I have also been fortunate to work with many talented scientists at the University of 

Minnesota and elsewhere, all of whom have positively influenced me in some way: Prof. 

Geoffrey Coates, Prof. William Dichtel, Prof. Kristopher McNeill, Prof. Thomas Hoye, 

Prof. Christopher Alabi, Dr. Michael Sander, Dr. Michael Zumstein, Dr. Grant Fahnhorst, 

Dr. Emily Hoff, Dr. David Fortman, Dr. Maria Sanford, Dr. Gordon Getzinger, Dr. 

Kyungtae Kim, Rachel Snyder, and Claire Lidston. Further thanks are in order for Dr. 



 

 

iv 

Letitia Yao, David Giles, and Prof. Chris Macosko, each of whom have helped me when I 

was struggling with NMR spectroscopy or rheology. 

I am especially grateful to a few key people who have given me continual 

encouragement during the past several years. First and foremost is my primary source of 

scientific and emotional support for the past few years, Dr. Angelika Neitzel. Next are Dr. 

Aakriti Kharel and Dr. Courtney Elwell, who have been my two graduate school sidekicks 

(or maybe I am their sidekick) since the beginning and have made the Ph.D. journey an 

enjoyable one both on- and off-campus. I must also thank Michael Loeper, who has little 

idea what I really do in lab but is always willing to listen to me rant or help me celebrate 

whenever necessary. Finally, I must thank my family and a few old friends who have 

always been actively supportive even though we are physically separated: Ella Pravetz, 

Alex London, Tristan Kleine, and Molly Burns. 

  



 

 

v 

 

 

 

 

 

 

 

 

 

 

Pour mes parents: Marie-Hélène et Alain 

  



 

 

vi 

Abstract 

Plastics, which are composed of long molecules called polymers, are useful materials 

whose versatility, low cost, and durability has caused their annual production to surpass 

that of most other man-made materials. The manufacturing of plastics is almost exclusively 

dependent on petrochemicals derived from nonrenewable fossil fuels and virtually all 

major plastics today are so durable that they persist long past their functional lifetime, 

resulting in a staggering exponential increase in plastic waste generation. Unfortunately, 

only a small fraction of this waste is collected for value recovery (e.g., recycling and 

incineration) while the majority ends up stagnating in landfills or polluting the 

environment. Certain important subsets of plastics, such as those with cross-linked 

molecular architectures, cannot be recycled at all. Therefore, the sourcing and end-of-life 

landscape for plastics is unsustainable in the long term. One avenue of research which aims 

to provide workable solutions to these problems is the development of new, competitive 

materials which can be sourced from annually renewable feedstocks (i.e., biomass) and/or 

have more sustainable end-of-life fates (e.g., improved capacity for recycling or 

degradation). In this thesis, four projects are presented investigating various aspects of 

sustainable cross-linked plastics. Chapter 1 provides a summary of plastic use and 

sustainable plastic development, with emphasis on cross-linked polymers. Chapter 2 

investigates a component of biodegradability for a commercial mulch film which cross-

links under UV light. Chapters 3 and 4 describe the development of sustainable cross-

linked elastomers, and Chapter 5 comprises a study of potentially recyclable polymers with 

dynamic urethane cross-links. 
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1.1. Plastics as Tools for Humankind 

Since before the development of ancient civilizations, humankind has been adept at 

making tools from natural resources in order to perform complicated tasks that enhance the 

quality of life and prolong the average lifespan. Throughout the societal evolution of our 

species, we have mastered the use of raw materials like stone, minerals, ceramics, metals, 

and even those obtained from living organisms. This last category of materials includes 

plant matter (e.g., wood, fibers, natural rubber), animal parts (e.g., feathers, shells, horns, 

hides) and secretions (e.g., silk, shellac), as well as coal and related substances (e.g., 

bitumen, oil shale, crude oil, and natural gas).1,2 These substances are effectively derived 

from dead organisms—primarily plants—after a long process involving 

biological/bacterial degradation followed by immense heat and pressure in the Earth’s 

crust.3 Their origin from prehistoric living matter coupled with their eventual application 

for the industrial production of common chemicals is the reason that coal, oil shale, 

bitumen, crude oil, and natural gas have been termed fossil fuels. Another relevant term 

that is important to define is petroleum, which literally means rock oil and refers to gaseous, 

liquid, semisolid, and solid hydrocarbons that are found in fossil fuels.4 

Fossil fuels have been in humankind's toolbox for millennia. Bitumen, also known 

as asphalt, was used in construction as a waterproofing agent and mortar by early cultures 

such as the Sumerians and the Babylonians.4 Interestingly, the archaic uses of fossil fuels 

can also be related to different stages of life and death: Ancient Egyptians embalmed 

corpses using cloth permeated with bitumen, eventually also using it to fill the inside of the 

bodies (preservation after death); the Byzantines used so-called Greek fire, an incendiary 

mixture probably containing a petroleum distillate, during naval warfare (a source of 
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death); and Middle Eastern physicians touted curative uses for bitumen obtained from 

mummies (extension of life).4,5 While these uses of fossil fuels were small-scale, there were 

also relatively early reports (ca. 1270 A.D.) by traveling merchant Marco Polo describing 

a commercial petroleum industry in northern Persia; the presence of this early industry can 

presumably be attributed to the use of volatile petroleum substances (i.e., distilled 

fractions) as illuminants.4 It would be several hundred years before the first instance of 

modern commercial petroleum distillation, but the prime motive would remain the same: 

fuel. 

At approximately the same time as the erection of the first modern oil wells (ca. 1840 

to 1860), several inventors were embarking on a quest that would yield the earliest plastics. 

Independently from one another, they began to investigate the chemical modification of 

natural substances. Two American brothers, Charles and Nelson Goodyear, discovered that 

heating sulfur with natural rubber could furnish useful materials with vastly different 

properties: a highly elastic solid if only a few percent of sulfur was used, whereas much 

greater quantities of sulfur resulted in a very hard solid.2,6 In both cases, these materials 

had the peculiar characteristics of retaining their elasticity or stiffness over a wide range of 

temperatures as well as resistance to solvents (i.e., no dissolution). The molecular reasons 

for these characteristics were not understood until much later, but it is worth taking an aside 

to explain these reasons and provide a working definition for the word plastic.  

Plastics are composed of long molecules known as macromolecules or polymers, 

which are chains of repeating chemical units made from small molecules called monomers 

(Figure 1.1A). These polymers generally become malleable with an increase in 

temperature (or the presence of solvent), and thus the term thermoplastic is typically used. 
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However, there also exists polymers that cannot be re-molded once they are shaped due to 

the chemical junctions—also known as chemical cross-links—between separate polymer 

strands (Figure 1.1B); these cross-linked materials are classically referred to as thermosets, 

and the working definition of the word plastic has evolved to include both thermosets and 

thermoplastics. Although they did not necessarily know the full scientific significance of 

their discoveries, Charles and Nelson Goodyear had transformed a thermoplastic—natural 

rubber, or poly(isoprene)—into the first thermosets. The sulfur had reacted with the natural 

rubber and generated chemical junctions between different poly(isoprene) chains, and 

inclusion of more sulfur created a more densely cross-linked and thus much harder rubber 

(Figure 1.1C). The cross-linked nature of both the elastic and hard materials was the 

underlying reason for their remarkable thermal and chemical resistance; heating did not 

significantly affect their dimensional stability or material properties because the chains 

could not move past one another, and immersion in solvent only swelled the network of 

chains rather than dissolved it.  
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Figure 1.1. A) Schematic representation of polymerization. B) Comparison of linear and 
chemically cross-linked polymer architectures. C) Reaction of sulfur with poly(isoprene), 
which yields a cross-linked material. 

Not long after the discoveries regarding natural rubber took place, the development 

of other semi-synthetic plastics continued with chemical modifications of a different 

natural polymer: cellulose. The controlled nitration of cellulose had just been established 

in Europe, and an English inventor named Alexander Parkes found that solutions of 

nitrocellulose—then commonly used in photography—could be evaporated to yield a 

thermoplastic material that he named Parkesine. Parkes is credited with the first attempt of 

the commercial production of a thermoplastic; unfortunately, his venture failed and the 

ultimate victor of nitrocellulose-derived plastics was John Wesley Hyatt, an American 

inventor. Hyatt realized that camphor, a compound obtained from plants, was an effective 

plasticizer for nitrocellulose and was essential for reproducible and profitable material 

production; the manufacture and sale of this plastic, which he termed Celluloid, was a 

commercial success. Besides cross-linked rubber, celluloid, and a few natural materials 

(e.g., shellac), no other plastics were available until 1900, when a new material derived 
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from casein (a milk protein) and formaldehyde was unveiled. This material, known as 

Galalith or Erinoid, is a cross-linked thermoset and the predecessor of the first fully 

synthetic plastic. 

In the 20th century, the fossil fuel and materials industries merged to create a new 

industry which is now inextricable from human life. The beginning of this transition is the 

invention of Bakelite by Leo Baekeland (US patent filed in 1907).7 His creation—a 

thermoset derived from phenol and formaldehyde—drew upon earlier work on aldehyde-

derived resins, but Baekeland was the first to control and modify the phenol-formaldehyde 

reaction such that commercialization was possible.8 Importantly, the modern petroleum 

industry had been growing steadily since the mid-19th century, and its refined products 

(aromatics and olefins) now enabled the production of many petrochemicals that were not 

readily accessible from natural materials. Because formaldehyde and phenol are 

petrochemicals, Bakelite is considered the first fully synthetic plastic, although it bears 

strong structural similarities to a natural polymer called lignin (Figure 1.2). The invention 

and successful commercialization of Bakelite demonstrated the immense potential for 

petrochemicals to be used as feedstocks for something other than fuels: plastics. However, 

it took 20 to 30 more years before the initial industrial production of some of today’s major 

synthetic plastics: poly(styrene), poly(ethylene), poly(methyl methacrylate), and 

poly(vinyl chloride).2 World War II began shortly thereafter and with it came huge demand 

for the aforementioned plastics as well as the development of new plastics like nylon and 

synthetic rubber.2,9 Less than a decade after the war ended in 1945, the fossil fuel-based 

plastics industry was in full swing. Improvements in material quality and cost of production 
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occurred quickly and the mass production of plastics rapidly became a lucrative and 

tangible reality. 

 

Figure 1.2. A) Production of Bakelite from phenol and formaldehyde. B) Molecular 
structure of lignin, a structural component of plants. 

Since these early developments of petrochemical-derived plastics, humankind has 

become inexorably dependent on our plastic tools. We require polymers to perform many 

crucial tasks like keeping our food fresh (i.e., packaging) and our hearts beating (i.e., 

pacemakers). Not only are we leveraging plastics for crucial functions, but we also employ 

plastics as solutions to trivial problems such as altering the aesthetics of clothes (e.g., 

bejeweling jeans) or celebrations (e.g., confetti). It is virtually impossible to imagine a 

developed or developing society without polymers; their low cost, durability, and 

versatility have created a culture permeated with plastic. Nothing emphasizes the reality of 

our global obsession more than the data describing polymer production. The trend is 

exponential and spans across practically every market. The total amount of primary plastics 

produced (i.e., virgin material, including polymer fibers) between 1950 and 2015 has been 

estimated at 7800 million metric tons (Figure 1.3); half of this amount was generated in 
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the last 13 years alone.10 Extrapolating this trend beyond this time period suggests that by 

2050, humankind will have produced over 26,000 Mt of primary plastics.10 

 

Figure 1.3. The time trends in primary plastic production (i.e., not including recycled 
plastic) for various industries; reprinted with permission from AAAS.10 

1.2. The Case for Sustainable Plastic Development 

The extensive and successful use of plastics for both simple and sophisticated tasks 

begs the question: if plastics are so useful, what is there to worry about? There are certainly 

many positive outcomes—people live longer and arguably more comfortably—but these 

come at a severe cost to the environment and the economy. Given the widespread utility of 

plastics, it is certain that human societies will never stray completely from their use. 

However, the current paradigm is short-sighted: the benefits exist while the plastic lasts, 

but when it is no longer performing its function, the plastic is discarded and a new one is 

purchased—repeat ad infinitum. If humans had access to an endless amount of fossil fuels, 

a never-ending supply of energy, and a black hole within which we could dispose of our 
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waste, the current paradigm would be inconsequential. Unfortunately, humankind has not 

been blessed with such fortunate circumstances, and we are instead expending finite 

resources (i.e., fossil fuels), using an increasing amount of energy, and polluting the 

environment. Furthermore, we are losing the inherent value in the majority of scrap plastic 

by not successfully collecting it for energy retrieval or recycling. 

Almost all plastic materials in use today are entirely or in large part derived from 

fossil fuels. Although the majority of fossil fuels are used for transport, electricity, and 

heating, between 4 and 8% of global oil production goes into the sourcing and 

manufacturing of plastics.11,12 This figure will reach 20% by 2050 if the current trends in 

plastics production continue (annual growth of 3.5–3.8%).12 These oil consumption 

statistics do not consider the use of natural gas feedstocks, which further contribute to the 

codependence of the plastics and fossil fuel industries. Humans are becoming ever more 

efficient in the extraction of fossil fuels from the Earth, but these reserves are finite. Only 

0.1% of ancient living matter escaped chemical and biological degradation to become fossil 

fuels, and it is only thanks to the enormously long timeframe between their existence and 

ours that fossil fuels have accumulated in significant quantities.3 Our current society 

therefore consumes this resource—as a carbon source as well as an energy source—much 

faster than it can be adequately replenished, and this approach is unsustainable in the long 

term. Understanding what is meant by sustainable warrants a precise working definition, 

in this case adapted from the United Nations World Commission on Environment and 

Development: sustainability is “meeting the needs of the present without compromising 

the ability to meet those of the future”.13 It appears straightforward that the depletion of a 

finite resource on a faster timescale than its production should be considered unsustainable, 
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but there are some caveats. For example, the adoption of plastics as suitable alternatives to 

heavier materials (e.g., metals) in vehicles has increased fuel efficiency, which offsets (but 

does not neutralize) concerns regarding the sustainability of fossil fuel-based plastics 

production.14,15 

The most important consequence of this growth in production is the immense and 

ever-increasing amount of plastic waste being generated. The average functional lifetime 

of plastics ranges from less than one year in packaging applications to decades in more 

demanding applications like building and construction. In either case, the existence of the 

plastic itself far exceeds the functional lifetime and discarded plastic waste accumulates in 

landfills or in the environment unless it is recycled or destroyed by other means (e.g., 

incineration). The amount of plastic waste that is generated on a global scale is staggering: 

recent estimates reported that 6300 million metric tons (Mt) of plastic have been discarded 

to date—just over three quarters of the amount that has ever been produced (8300 Mt).10 

These enormous quantities are difficult to comprehend; for context, 6300 Mt of plastic 

waste (assuming a conservative average density estimate of 1 g/cm3) would cover the entire 

state of Minnesota with an even layer of plastic 28 meters thick. The exponential increase 

in production unsurprisingly results in a similar trend for waste generation, and 

extrapolation coupled with the assumption that human use patterns remain consistent 

suggests that over 25,000 Mt of plastic waste will have been generated by 2050 (Figure 

1.4).10 Fortunately, the collection of plastics for value recovery, which was virtually 

nonexistent before 1980, has started to gain some momentum in recent years. Regardless, 

the sheer quantity of plastic waste and the accelerating trajectory of plastics production 
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represent daunting challenges that must be addressed to ensure a sustainable future for 

humans and other living organisms. 

 

Figure 1.4. Extrapolated time trends for plastic waste generation and management; 
reprinted with permission from AAAS.10 

Landfilling is the practice of compacting and burying solid waste, which is the 

simplest and cheapest method for waste management.16 The buried waste is not exposed to 

much moisture, oxygen, or light, but there are microorganisms present that can degrade 

cellulose and other natural materials.17 However, virtually all plastic entering this 

environment is too durable to undergo biotic or abiotic degradation processes and 

consequently persists for hundreds to thousands of years.18 Although short-term 

environmental consequences are limited for a well-managed landfill, there can be long-

term consequences including soil and groundwater contamination.11,15 When plastic waste 

is mismanaged, either intentionally or unintentionally, it ends up leaking into terrestrial or 
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marine systems; once introduced, the plastic waste will remain there for similar timescales 

as it would in landfills.19,20 The environmental consequences begin immediately—the 

plastic itself does not degrade quickly, but the ecosystems contaminated with plastic do.  

The three major ecological threats from plastic pollution are entanglement, ingestion, 

and exposure to organic pollutants (i.e., small molecules). Entanglement is particularly 

common in marine environments and can cause animals to drown or die by injury or 

starvation.21 Ingestion can be accidental or intentional, either of which may result in acute 

and/or chronic symptoms which could potentially pass from one animal to another (i.e., up 

the food chain).18 Organic pollutants can leach from plastic waste (e.g., additives or 

residual monomers), but those already present in the environment may also concentrate 

themselves on the surface of the plastic (i.e., partitioning) and present more significant of 

a hazard than when dilute.22 The extent of each of these hazards depends on the size, shape, 

and chemical nature of the plastic, all of which can change over time due to environmental 

weathering (i.e., exposure to solar radiation, heat/cold, moisture, oxygen, mechanical 

forces, and atmospheric contaminants).23 Over time, weathering generates progressively 

smaller particles, increasing the likelihood of ingestion as well as the potential to leach 

and/or concentrate compounds (i.e., by increasing the surface area-to-volume ratio).24,25  

When considered alongside our increasing population and plastic waste generation, 

these end-of-life options—environmental pollution or filling finite landfills—strongly 

suggest that our current paradigm of plastic use and disposal is unsustainable. The plastic 

subject to these fates will persist as worthless and potentially harmful garbage for many 

years to come. There are two main efforts to collect and recover value from plastic: energy 

recovery and recycling. Almost all energy recovery is done by incineration, which is 
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amenable to mixed waste streams and is therefore more easily implemented on a large 

scale.11,26 However, incineration produces harmful gases that must be managed to avoid 

atmospheric pollution and the remaining charred material is classified as hazardous 

waste.27 Recycling avoids both these hazards and is more energy efficient than incineration, 

which does not generate enough energy to outweigh the amount needed to extract raw 

materials and produce more virgin plastic.28 However, recycling requires efficient sorting 

of commingled waste to ensure reprocessing inputs are relatively pure because 

contamination will diminish the material properties and value of the product. Repeated 

reprocessing cycles can also increase the risk of contaminant buildup and degradation of 

the plastic.26,29 For these reasons, recycling is currently performed by blending scrap and 

virgin plastic and thus cannot fully displace virgin plastic production. Overall, the technical 

challenges and energy costs regarding the large-scale development, operation, and 

expansion of recycling and incineration facilities do not currently contend with the ease of 

virgin plastic production and disposal through other means (i.e., domestic landfilling or 

international export).  

The case study that best exemplifies the current global paradigm for plastic 

production and end-of-life is its largest market: packaging. Almost 80 million metric tons 

of plastic packaging are produced each year, virtually all of which comes from petroleum-

derived virgin plastic.12 After the functional lifetime of packaging expires, only 28% enters 

recycling or energy recovery/incineration pipelines while the remaining 72% is destined to 

pollute the environment or arrive at a landfill (Figure 1.5).12 A small fraction of plastic 

that enters the recycling stream is used for further production of similar-value products, 

and the rest is either made into lower-value products or lost during the recycling process. 
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The current landscape for production and disposal is a direct consequence of a shift toward 

single-use plastic packaging. Importantly, this shift has resulted in an annual net loss of 

95% of the material value for packaging, which represents 80–120 billion US dollars lost 

to the global economy.12 Furthermore, there are additional economic penalties to be 

considered regarding the management of plastic waste: litter removal from coastlines costs 

taxpayers hundreds of millions of dollars per year and landfill disposal can cost hundreds 

of dollars per metric ton.27,30 Lastly, the generation of millions of tons of plastic waste will 

not only continue to disrupt animal habitats, but also infringe upon the amount of livable, 

clean space for the increasing human population. 

 

Figure 1.5. A schematic of the global material flow analysis for plastic packaging; used 
with permission from the Ellen MacArthur Foundation.12 

Managing large volumes of domestic plastic waste is such a difficult task that 

developed countries will often export some fraction to other nations for landfilling or 
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recycling, but the global landscape surrounding this industry are changing now more than 

ever. An analysis published in 2014 revealed that on average, U.S. municipal solid waste 

streams contain around 11% plastics by mass.31 However, these figures were reported 

several years before the Chinese government began to limit their importation of scrap 

plastic.32 In 2016 alone, the U.S. exported almost 700,000 tons of plastic waste to China.33 

Just two years later, China banned almost all plastic waste imports, which created a 

financial opportunity—or shifted the burden, depending on your outlook—for other 

countries to acquire unwanted plastic waste; for example, Malaysia became a major 

destination for U.S. plastic waste in 2018.34 However, China’s ban has also set a precedent. 

Malaysia and other southeast Asian countries have quickly realized that the overwhelming 

influx of waste motivates illegal recycling plants to crop up, which diminish the profits of 

legitimate recyclers while damaging the environment by illegally burning, burying, or 

dumping plastic; as a result, these countries are also restricting or banning plastic waste 

imports.35,36 These global shifts in waste management have undoubtedly begun to affect 

U.S. recycling and landfilling practices, and we will likely see an increase in plastic in the 

next thorough analysis of municipal solid waste. 

To maximize the overall economic benefits of plastic use while minimizing the 

negative social and environmental impacts, it is clear we must implement significant, 

widespread changes to shift toward a more sustainable model. This momentum must come 

from both the public and private sectors working together to incentivize a more circular 

lifecycle for plastic, manufacture conventional polymers more sustainably, and develop 

new sophisticated plastics that are robust during application but offer better end-of-life 

options. It is the responsibility of industrial, academic, and governmental researchers to 
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provide the fundamental technological advances required to catalyze this transition toward 

a more sustainable future. In particular, this dissertation will focus on contributions toward 

the design of new cross-linked plastics that can compete with their conventional analogs 

while offering various benefits in the arena of sustainability.  

1.3. Sustainable Material Design 

Designing more sustainable alternatives to conventional plastics is a key step toward 

addressing the concerns of economic and environmental stewardship. Unsurprisingly, this 

thesis is not the first scientific publication that has reported the need for a change in the 

plastics paradigm, and there has (fortunately) been much interest in recent decades in 

developing new plastics and in sustainably producing traditional plastics. It is important to 

provide definitions for three key parameters that can be used to evaluate a material through 

the lens of sustainable design: 1) renewability, 2) recyclability, and 3) degradability.  

Renewability refers to the sourcing of our plastics. As in, how does the material's 

functional lifetime compare to the timescale required to generate the feedstock from which 

the material is sourced? For example, a plastic grocery bag made from poly(ethylene) is 

typically used for days, months, or years, which is much shorter than the millions of years 

required for organic matter to transform into the feedstock for polyethylene (natural gas, 

either pure or as a byproduct of petroleum refining). On this basis, the grocery bag is 

deemed non-renewable. This argument is commonly extended to many other traditional 

plastic products because a majority of them are also derived from fossil fuels and their 

functional lifetime is likely less than a million years.  

Assessing recyclability requires an evaluation of how value can be recovered from 

the plastic product after its functional lifetime. Recycling has traditionally been subdivided 
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by the scientific community into four categories: primary (mechanical), secondary 

(mechanical), tertiary (chemical), and quaternary (energy recovery).11 Both primary and 

secondary recycling involve the processing of scrap plastic, but the products of the former 

are similar in characteristics and value to the original plastic, whereas the products of the 

latter have different characteristics and are lesser in value than the original plastic. For 

these reasons, they are commonly referred to as closed-loop recycling and 

downgrading/downcycling, respectively. Tertiary recycling is commonly referred to as 

chemical or feedstock recycling because its products are basic chemicals or fuels. Lastly, 

quaternary recycling is defined as the retrieval of energy (heat, steam, electricity) from 

scrap plastic by directly using it as a fuel; this is commonly referred to as energy recovery 

and sometimes valorization. 

Degradability also focuses on the ultimate fate of plastic materials but is less 

straightforward to define given the frequency, variability, and context-dependence 

regarding its use (and mis-use) in the scientific literature. To provide an accurate definition, 

we must delineate between chemical and physical changes in the material; only the former 

is typically considered when it comes to the term degradation, whereas deterioration can 

be used for the latter.17 Exposure of plastics to heat, light, microorganisms, oxygen, 

chemicals, and/or mechanical forces can trigger these chemical changes, which in turn 

either diminish the size of polymer chains (i.e., chain scission) or affect their chemical 

composition.17 Although either result has historically been enough to justify the use of the 

word degradation,37,17 recent literature has emphasized that the suggested use of these 

words (degradable, degradation, degradability) is specific to chemical changes that 

progressively decrease the molar mass of polymer chains.38 It is worth noting, however, 



 

 

18 

that a change in the chemical composition of the polymer—for example, from sunlight 

exposure—can render it more susceptible to chain scission processes.23 Finally, whether or 

not a material is degradable depends heavily on its environment, which makes comparison 

across different conditions difficult. As such, degradability must be evaluated with the 

following question: under which conditions can this plastic be degraded, and how quickly? 

Given the wide variety of degradation pathways available to polymers, it is prudent 

to elaborate on and define those most salient to the work presented in this dissertation: 

abiotic and enzymatic hydrolysis. In general, hydrolysis is defined as the rupture of 

covalent bonds in a chemical by reaction with water.39 Typically, this requires the presence 

of electrophilic chemical functionalities that are susceptible to nucleophilic attack by a 

water molecule; a relevant example is the hydrolysis of an ester bond, which produces an 

alcohol and carboxylic acid (Figure 1.6A). The term abiotic hydrolysis can be used if 

biological facilitation is absent;38 however, this process is relatively slow at ambient 

conditions (i.e., neutral pH and low temperatures). Hydrolysis can be accelerated by 

changes in pH, temperature, and/or the presence of certain microorganisms.23,40 In natural 

and engineered environments (i.e., composts), the microorganisms—typically bacteria, 

algae, and/or fungi—will adhere to and colonize the surface of the plastic, then secrete 

extracellular hydrolytic enzymes which degrade the polymer through a process termed 

enzymatic hydrolysis.40,17 Unfortunately, a majority of the most common petroleum-

derived polymers have hydrocarbon backbones (Figure 1.6B) which are not typically 

amenable to hydrolysis without prior modification (e.g., photooxidation).40 
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Figure 1.6. A) The hydrolysis of an ester bond in a polymer backbone under various 
conditions. B) Comparison of a hydrocarbon polymer backbone and a polyester backbone. 

If microorganisms are facilitating the degradation of polymers, the term 

biodegradation can be applied.38 Just as with its more general analogue, claims of 

biodegradability are sometimes misleading, presumptive, or exaggerative. One key 

example is the promotion of oxo-degradable plastics as biodegradable; these are simply 

conventional plastics with additives that accelerate abiotic oxidation of the polymer, 

yielding small fragments that do not readily biodegrade and continue to pose a threat to the 

environment. This and other examples demonstrate why the judicious use of 

biodegradability and related terms (biodegradable, biodegradation) is necessary. As in the 

case of its general analogue, this demands specification of the environmental conditions 

under which biodegradability is being evaluated. Furthermore, microorganisms must be 

present during testing—for example, enzymatic hydrolysis in vitro is not considered a 

direct demonstration of biodegradation. 

Lastly, it is important to elaborate on the possibilities regarding the ultimate fate of 

biodegraded plastic. In the worst-case scenario, the degradation products are themselves 

toxic or persistent and thereby harmful to the environment. A better scenario would be that 

the fragments are water-soluble and can be taken up by the surrounding microorganisms, 
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which then convert the carbon in the degradation products to biomass and small molecules 

such as CO2 under aerobic conditions and/or CH4 under anaerobic conditions (Figure 

1.7).17,38 This process, which is typically concomitant with biodegradation, is known as 

(bio)mineralization. The ideal fate for a biodegradable plastic is that all carbon from the 

original material is mineralized by microorganisms, which is sometimes referred to as 

ultimate biodegradation.38 The rate-limiting step in ultimate biodegradation is typically 

enzymatic degradation; subsequent mineralization (if possible) is often relatively rapid.41 

 

Figure 1.7. A schematic of the ultimate biodegradation process for a plastic: extracellular 
enzymes convert the plastic into smaller, soluble products that can be taken up by the 
microorganism and converted into small molecules and biomass; methane is typically 
produced only when the environment is anaerobic. 

All three aspects of sustainable material design are featured in this dissertation, but 

emphasis is placed on end-of-life options for cross-linked plastics. Chapter 2 focuses 

entirely on enzymatic hydrolysis. Chapter 3 includes emphasis on renewability, tertiary 

recycling, and abiotic hydrolysis. Chapter 4 features enzymatic hydrolysis and has slight 

emphasis on renewability. Chapter 5 is focused entirely on primary recycling. The projects 
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presented in Appendices A, B, and C are motivated to varying degrees by the themes of 

renewability, recyclability, and (ultimate) biodegradability.  

1.4. Improving the sustainability of cross-linked polymers 

Cross-linked polymers comprise ca. 15-20% of plastics produced and are crucial in 

applications such as elastomers, insulation, adhesives, automotive parts, coatings, and 

foams.42 As with almost all types of plastics used today, synthetic cross-linked polymers 

are sourced from petroleum and do not readily degrade in landfills or the environment. In 

addition, the mechanical reprocessing most commonly employed in primary plastics 

recycling is only compatible with thermoplastic materials; primary recycling of cross-

linked polymers is impractical because their structures preclude flow, even at elevated 

temperatures. Their insolubility also prevents solution reprocessing. Although some of 

these materials are down-cycled into lower value products, most thermosets are 

incinerated, sent to landfills, or escape collection and pollute the environment. Still, the 

high strength, thermal stability, and solvent resistance of thermosets renders them essential 

for certain applications, and there is therefore a responsibility to develop technological 

advances that address the challenges in sustainable use of cross-linked polymers. 

Improving the renewability of cross-linked polymers (and even thermoplastics) can 

be done using two approaches: drop-in replacements and new material design. The first 

approach relies on the production of the same (or functionally equivalent) precursors for 

commodity plastics from biomass rather than petroleum or natural gas; these bio-based 

chemicals can be used directly because no modifications to existing manufacturing 

facilities or processes are required.18 The major targets for drop-in replacements are the 

monomers used on the largest scale in the plastics industry: ethylene, propylene, styrene, 
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isoprene, ethylene glycol, and terephthalic acid.43 Fortunately, there have been significant 

advances for several of these chemicals and researchers are continuing to tackle the 

fundamental challenges regarding the scalability and efficiency of the biomass-to-product 

processes.18,43 However, this small list of monomers better represents the thermoplastics 

market than that of common thermosets. Some thermoplastics are converted into 

thermosets (e.g., vulcanization of isoprene), but many mass-produced cross-linked 

polymers—phenolics, aminos, polyesters, silicones, polyurethanes, polyimides, epoxy, 

and more—are not produced from common thermoplastics or their monomers. As such, 

the drop-in replacement strategy should be used for conventional cross-linked polymers if 

possible, otherwise the development of new bio-based materials is necessary. 

Renewable material design requires the sourcing of biomass-derived feedstocks such 

as natural oils, proteins, saccharides, and polyphenols.44 The most appealing of these 

feedstocks are either byproducts from established industries—for example, phenol-

containing cashew nut shell liquid (agricultural industry) or glycerol (biodiesel and soap-

making industries)—or those already present in high abundance such as plant oils, 

cellulose, starch, lignin, and plant proteins.45,46,47  Extensive reviews of thermosets derived 

from renewable resources are already available and generally focus on four main thermoset 

types: phenolics, epoxies, polyurethanes, and polyesters.46,47 The first two of these 

categories typically involve more rigid materials, whereas the latter two describe a range 

of properties from soft foams to flexible elastomers to rigid resins. The work presented in 

Chapter 4 describes the production of cross-linked elastomers derived from 4-

methylcaprolactone, a monomer that could potentially be sourced from either lignin or 

plant oils (Figure 1.8). 
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Figure 1.8. Two feasible synthetic routes for the production of 4-methylcaprolactone 
monomer from renewable resources. 

In addition to renewable feedstocks obtained from physical and chemical 

transformations of biomass, one can genetically engineer microorganisms to produce 

chemicals from their food (e.g., glucose). With sufficient knowledge of the vast array of 

metabolic pathways available to bacteria, algae, and fungi, synthetic routes can be designed 

to target precursors to either established or novel monomers and polymers.48 An important 

consideration when using engineered microorganisms is that the synthetic route can 

leverage both biological and chemical transformations; the biosynthetic production of a 

precursor that can be effectively converted into the desired chemical using simple organic 

reactions is often more desirable than a less efficient, fully-biosynthetic route.48 These 

concepts are related to the work presented in Chapter 3, which involves the preparation of 

cross-linked elastomers from b-methyl-d-valerolactone; this monomer can be produced 

from glucose using a total biosynthetic pathway or a more efficient integrated approach 

involving chemical modification of a biosynthesized precursor, mevalonate (Figure 1.9).49 
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Figure 1.9. The total biosynthetic and integrated approaches reported for the production of 
b-methyl-d-valerolactone from glucose using a strain of engineered bacteria. 

Due to the environmental persistence of virtually all major plastics, another key 

milestone in sustainable plastic development is to design new alternatives that remain 

robust during application yet undergo triggered degradation after disposal. Abiotic 

hydrolysis, biodegradation, and oxo-biodegradation (i.e., oxidation followed by 

biodegradation) are focused on as the main chemical pathways to promote more sustainable 

end-of-life options for plastics (cross-linked or otherwise).50,51 Of these three, 

biodegradation has spurred the most research effort because it is relatively straightforward 

to implement without compromising durability and is amenable to both natural and 

managed systems (i.e., composts and landfills).  

Polymer biodegradability is dictated by a host of interrelated factors other than 

degradation conditions: chemical structure, molar mass, dispersity, degree of branching, 

presence of hydrogen bonding, crystallinity, melting point, storage modulus, 

hydrophobicity, molar mass, and even the surface area of the product it composes.40 The 

degradability of thermosets is therefore expected to be different from thermoplastics 

because the cross-linked architecture affects many of these parameters. Biodegradability 

requires the presence of enzymatically-cleavable chemical bonds along the polymer 

backbone, which typically excludes carbon-carbon bonds except in a few rare cases [e.g., 
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water-soluble poly(vinyl alcohol)].52 Polyamides, polyurethanes, and polycarbonates have 

been shown to be biodegradable to small extents, but the functionalities that are most 

susceptible to enzymatic degradation—the rate-limiting step of biodegradation—are 

glycosidic linkages and ester linkages (Figure 1.10).40 The incorporation of these moieties 

into cross-linked plastics is the best approach to enable the possibility for triggered 

degradation after their use; this concept is demonstrated using polyester materials in 

Chapters 2, 3, and 4. Furthermore, Chapter 2 entails a systematic investigation of the 

correlation between the degree of cross-linking and the enzymatic hydrolyzability. 

 

Figure 1.10. Hydrolyzable chemical bonds that can impart biodegradability to polymers. 
A) a-glycosidic bond, B) b-glycosidic bond, C) ester bond, D) urethane bond, E) carbonate 
bond, and F) amide bond. The bonds shown in blue (A-C) are generally more readily 
hydrolyzable than those shown in red (D-F). 

A separate way to address the end-of-life issues of cross-linked polymers is to 

circumvent their inherently limited options for recycling. One strategy is to optimize the 

recovery of fuels or other chemicals from scrap material (i.e., tertiary recycling). The most 

straightforward technique for tertiary recycling is pyrolysis, wherein large molecules are 

converted into smaller ones at high temperatures (typically >600 °C), such as in petroleum 

cracking. Both thermoplastic and cross-linked polymers are capable of complete 

breakdown via pyrolysis,53,54,55 which yields complex mixtures of potentially valuable 

chemicals. In industry, the mixtures obtained from petroleum cracking are separated; a 
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similar process could be envisioned for recovering high-value chemical feedstocks from 

complex mixtures of waste plastics. While industrial-scale pyrolysis has been 

demonstrated as a reliable method to produce fuel mixtures,56,57 the production of useful 

polymer feedstocks via pyrolysis is not commonly practiced due to the complex, energy-

intensive separations it would require. Plastics that selectively depolymerize to recover 

pure, reusable monomer feedstocks would prevent the need for complex purifications and 

could require less energy (Figure 1.11). 

 

Figure 1.11. Depolymerization strategies, such as pyrolysis, solvolysis, hydrolysis, or the 
design of polymers that depolymerize or dissociate under mild conditions, enable 
reprocessing through conversion of polymers to monomers that can be repolymerized to 
products of similar performance. Used with permission.58 

Selective depolymerization at lower temperatures than those required for pyrolysis 

(<200 °C) has been demonstrated for several polymers.59,60,61,62 The most common 

examples are lactone-based polyesters, but poly(phthalaldehyde),63 poly(tetramethylene 

oxide),64 poly(methyl methacrylate),65 certain polycarbonates,66 and poly(trimethylene 
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urethane)67 also depolymerize to regenerate their monomers. Depolymerization is induced 

by heating above the ceiling temperature (Tc), at which the rate of polymerization and 

depolymerization are equal under the prevailing conditions. Typical recovery processes 

yield high-purity monomers, reducing the need for further purification. This strategy is 

applicable to any polymer with an appropriate Tc, and a prime example is presented in 

Chapter 3: high-performance cross-linked elastomers based on poly(β-methyl-δ-

valerolactone) were depolymerized to recover over 90% of the original monomer (Figure 

1.12). 

 

Figure 1.12. Two approaches for the production of chemically recyclable cross-linked 
elastomers based on poly(β-methyl-δ-valerolactone). 

Almost all polymers can be pyrolyzed, but the recovered compounds cannot 

necessarily be used to manufacture similar-value products (i.e., reprocessed). For instance, 

polyesters68,69,70,71 and polyurethanes72,73 are difficult to pyrolyze into useful small-

molecules, but the ester and urethane functional groups of these polymers are still 

susceptible to reactions with nucleophiles such as water or methanol, allowing them to be 

depolymerized to compounds suitable for repolymerization. This strategy is amenable to 

any material in which a hydrolyzable functional group is part of the polymer backbone. 

The most successful application of solvent-assisted depolymerization is the hydrolysis or 

alcoholysis of poly(ethylene terephthalate), a common commodity thermoplastic.68,70,74 
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Although polyurethane foams are traditionally considered non-recyclable, they also can be 

subjected to alcoholysis to obtain various urethane-alcohols that can be used to produce 

materials of similar value.72 The development of efficient catalysts75 and optimization of 

engineering processes could make this strategy practical for the recycling of cross-linked 

polyesters, polyurethanes, polyamides, and polyacetals. 

Another effective approach towards continually reprocessable cross-linked polymers 

is to control the reversible transformation between a cross-linked and uncross-linked state, 

allowing the polymers to flow without complete depolymerization. Thermoreversible 

Diels-Alder (DA) reactions between furans and maleimides (FurMal) are the most 

prominently explored for these applications (Figure 1.13). Several reprocessable FurMal 

polymer networks have been reported since the original patent in 1969,76 and a recent 

comprehensive review indicates that interest in FurMal linkages has by not waned over 

time.77,78,79,80 This interest is due to their ease of access; attractive equilibrium 

thermodynamics; and remarkable tunability via sterics, regiochemistry, and 

diene/dienophile selection.81 Because their formation and dissociation is rapid in 

temperature ranges compatible with many polymer backbones, FurMal linkages have been 

successfully incorporated into networks based on polyolefins, polyesters, polyethers, 

polyurethanes, polyamides, polyoxazolines, polyketones, and polysiloxanes.80 There are 

also several notable examples of FurMal moieties in degradable and/or renewable cross-

linked materials82,83,84,85,86,87 as well as industrially relevant thermosets.78,88,89  
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Figure 1.13. The Diels-Alder and retro-Diels-Alder equilibrium for a furan-maleimide 
(FurMal) linkage. 

The transition from cross-linked and uncross-linked state is accompanied by a 

significant, rapid drop in the viscosity of the material due to the dissociative nature of the 

reversible reaction, which decreases the number of chemical cross-links and causes a loss 

of network integrity at elevated temperature. In the last decade, a separate approach for 

direct recyclability of cross-linked plastics has been developed, whereby dynamic bonds 

that undergo associative exchange reactions are incorporated into polymer networks 

(Figure 1.14).90 The materials retain their cross-link density during recycling because the 

breaking of one chemical junction is simultaneous with the formation of another; 

consequently, the decrease in viscosity at elevated temperature is more gradual than that of 

dynamic materials with dissociative chemistries. Since the seminal publication on 

transesterification-based vitrimers,90 the field has expanded to include many more 

chemistries including disulfide exchange, olefin metathesis, alkoxyamines, imine 

exchange, vinylogous urethane exchange, urea/urethane exchange, siloxane exchange, and 

boronic ester exchange.91,92,93,94,58 In certain cases, these materials demonstrate vitrimer-

like behavior (e.g., they remain insoluble at high temperature and exhibit gradual viscosity 

changes) even though the embedded dynamic chemistry proceeds via dissociative 

intermediates, presumably due to high association constants in the intermediate. The work 

in Chapter 5 demonstrates that the reprocessability of polyester materials with urethane 

cross-links is due to Sn-catalyzed dissociation of the urethane bonds rather than 

O N

O

O

N

O

O

O+ FurMal linkage=



 

 

30 

transesterification, which classifies it—and the polyether-based material used for 

comparison—as vitrimer-like materials (Figure 1.15). 

 

Figure 1.14. Illustration of vitrimer recycling: a fractured cross-linked polymer can be 
directly reprocessed into a similar value material due to dynamic covalent exchange 
reactions within the network. Used with permission.58 

 

Figure 1.15. Cross-linking of polyether or polyester tetraols with diisocyanates, which 
yields materials that with dynamic urethane linkages. Used with permission.95 
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Chapter 2. Photochemical transformation of poly(butylene 

adipate-co-terephthalate) and its effects on enzymatic 

hydrolyzability* 

  

                                                

* Reprinted (adapted) with permission from De Hoe, G. X.; Zumstein, M. T.; Getzinger, G. J.; Rüegsegger, 
I.; Kohler, H.-P. E.; Maurer-Jones, M. A.; Sander, M.; Hillmyer, M. A.; McNeill, K. Photochemical 
transformation of poly(butylene adipate-co-terephthalate) and its effects on enzymatic hydrolyzability. 
Environ. Sci. Technol. 2019, 123, 1432–1441. Copyright © 2019 American Chemical Society. 
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2.1. Abstract 

Biodegradable polyesters are increasingly used to replace conventional, non-

degradable polymers in agricultural applications such as plastic film for mulching. For 

many of these applications, poly(butylene adipate-co-terephthalate) (PBAT) is a promising 

biodegradable material. However, PBAT is also susceptible to photochemical 

transformations. To better understand how photochemistry affects the biodegradability of 

PBAT, we irradiated blown, non-stabilized, transparent PBAT films and studied their 

enzymatic hydrolysis, which is considered the rate-limiting step in polyester 

biodegradation. In parallel, we characterized the irradiated PBAT films by dynamic 

mechanical thermal analysis. The rate of enzymatic PBAT hydrolysis decreased when the 

density of light-induced cross-links within PBAT exceeded a certain threshold. Mass-

spectrometric analysis of the enzymatic hydrolysis products of irradiated PBAT films 

provided evidence for radical-based cross-linking of two terephthalate units that resulted 

in the formation of benzophenone-like molecules. In a proof-of-principle experiment, we 

demonstrated that the addition of photostabilizers to PBAT films mitigated the negative 

effect of UV irradiation on the enzymatic hydrolyzability of PBAT. This work advances 

the understanding of light-induced changes on the enzyme-mediated hydrolysis of 

aliphatic-aromatic polyesters and will therefore have important implications for the 

development of biodegradable plastics. 

2.2. Introduction 

Modern agriculture heavily relies on the use of synthetic polymers in various 

applications. For example, approximately two million metric tons of plastic mulch films 

are used annually around the world.1 As most of these plastic materials are not 
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biodegradable, these agricultural applications of plastics—also referred to as 

plasticulture—facilitate entry of non-degradable polymer materials into environmental 

systems and thus contribute to the accumulation of plastics in the environment.2 

Substituting non-degradable plastics with biodegradable alternatives is a promising 

strategy to mitigate the growing problem of plastic accumulation.3,4,5,6 Polyesters are an 

important class of plastics because they can exhibit high performance while offering the 

potential for biodegradability. Ester bond hydrolysis, which can be catalyzed by 

extracellular microbial esterases,7 is considered the rate-limiting step in the overall 

biodegradation of polyester materials in receiving environments; subsequent microbial 

uptake and utilization of oligomers and monomers formed during hydrolysis are 

comparatively fast.8,9 

Among biodegradable polyesters, the aliphatic-aromatic co-polyester poly(butylene 

adipate-co-terephthalate) (PBAT) is a commercially important material used extensively 

for plastic mulch film.5 Several studies have shown that the ester bonds in PBAT can be 

hydrolyzed by extracellular carboxylesterases from microorganisms that are commonly 

found in terrestrial systems.10,11,12 Cutinases, one particular class of extracellular 

carboxylesterases which hydrolyze cutin on plant surfaces, were particularly effective in 

hydrolyzing PBAT as well as other polyesters containing aromatic units.13,14,15,16,17 We also 

demonstrated that carbon from all monomeric units in PBAT (i.e., butanediol, adipate, and 

terephthalate) was microbially utilized and converted to carbon dioxide and microbial 

biomass during incubation of PBAT films in an agricultural soil.9  

During application, mulch films encounter various weathering processes that alter 

the physicochemical properties of the product. Photochemical weathering of mulch films 
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is particularly important due to the high rate of photo-exposure in the field; for this reason, 

industrial polymer films often contain additives that mitigate photochemical weathering 

(i.e., photostabilizers). While non-irradiated PBAT has been shown to be enzymatically 

hydrolyzable and to undergo biodegradation in soils, the effect of photochemical 

transformations resulting from sunlight exposure on the enzymatic hydrolysis of PBAT 

films remains unclear. Light irradiation of PBAT films, including photostabilized films, 

causes simultaneous cross-linking and cleavage of PBAT chains; these chemical reactions 

therefore result in the formation of both an insoluble polyester network and low molar mass 

PBAT chain fragments within the network.18,19,20,21 Furthermore, light-induced cross-

linking decreased the extent to which PBAT films were microbially utilized (i.e., 

biodegraded) during a 45-day incubation in manure compost.20 

The goal of this study was to systematically assess the effect of UV-light irradiation 

on the enzymatic hydrolyzability of PBAT. To this end, we first irradiated PBAT films 

under controlled laboratory conditions for variable times. To directly assess photochemical 

changes in native PBAT, we chose films without commonly applied photostabilizers. After 

photo-exposure, we monitored the enzymatic hydrolysis of the irradiated PBAT films by a 

cutinase from Fusarium solani (FsC), using both a pH-stat titration approach and and 

approach based on the quantification of released hydrolysis products by total organic 

carbon (TOC) analysis. In parallel, we characterized the irradiated PBAT films using 

dynamic mechanical thermal analysis (DMTA), gel fraction measurements, differential 

scanning calorimetry (DSC), and wide-angle X-ray scattering (WAXS). We then related 

the irradiation-induced changes of PBAT films to their enzymatic hydrolyzability. In a next 

step, we analyzed the products from the enzymatic hydrolysis of PBAT by high-
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performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC-

HRMS) and found mechanistic support for the light-induced cross-linking of PBAT chains. 

Finally, we repeated selected experiments with PBAT films containing a photostabilizer to 

assess the extent to which photostabilization mitigates irradiation-induced changes in 

PBAT hydrolyzability.  

2.3. Materials and Methods 

2.3.1. Polymer and Chemicals.  

Potassium chloride (KCl, product number: P4504), terephthalic acid (185361), 

pyridine (Pyr, 270407), deuterated chloroform (CDCl3, 151823), and hydrochloric acid 

(HCl, 30721) were obtained from Sigma-Aldrich. Chloroform (C/4966/17) and acetonitrile 

(A/0627/17) were obtained from Fisher Chemical. 4-nitroanisole (PNA, 10354-3), 2-(2-

benzotriazolyl)-4-methylphenol (533203), and 4-benzoylbenzoic acid (1240-7) were 

obtained from Aldrich. 1,4-dimethoxybenzene (D0629) was obtained from TCI. Blown 

films of poly(butylene adipate-co-terephthalate) (PBAT) with a thickness of 25 µm were 

provided by BASF SE; these films did not contain any photostabilizers.  

2.3.2. Enzyme.  

Fusarium solani cutinase (FsC, molecular weight: 20.8 kDa, isoelectric point: 8.4, 

both calculated from the RCSB Protein Data Base (PDB) entry 1AGY22 with the pI/MW 

compute tool from expasy23) was obtained from ChiralVision as a solution (concentration 

of FsC of 4.2 mM, as determined from solution absorbance at 280 nm and the molar 

extinction coefficient of FsC of 13610 M-1·cm-1).24 We prepared a stock solution of FsC 
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(4.1 mgFsC·(mL)-1) in a pH 7 buffered solution (3 mM phosphate) and stored aliquots at –

20 °C until used. 

2.3.3. Solutions.  

All solutions were prepared in Milli-Q water (resistivity = 18.2 MW cm; Barnstead 

Nanopure Diamond). 

2.3.4. Solvent Casting of PBAT Films.  

We dissolved PBAT in chloroform to obtain a 0.5 % (w/w) solution. For 

photostabilized films, we added 2-(2-benzotriazolyl)-4-methylphenol (BMP) to the 

solution to a final concentration of 0.0001 % (w/w, BMP/chloroform) and horizontally 

orbit-shook the solution (40 min). To obtain solvent-cast PBAT films, we added 27 mL of 

the solution to a glass petri dish (diameter 9.1 cm) and evaporated the chloroform by 

horizontally orbit-shaking the petri dish at 100 rpm in the fume hood for 14 h. To release 

the film from the petri dish, we dipped the dish into liquid nitrogen and then carefully 

peeled the film from the dish and stored the film in the dark until the hydrolysis 

experiments. 

2.3.5. Irradiation of PBAT Films by UV-light and Sunlight. 

PBAT films were cut into rectangular pieces (dimensions: 7 cm × 14 cm) and fixed 

to cardboard. The cardboard pieces were mounted on the outside of a carousel sample 

holder (diameter: 13 cm) of a Rayonet merry-go-round photoreactor. The films were 

subsequently irradiated with UV light from eight 300 nm bulbs (Rayonet, USA, lamp 

spectrum is shown in Results and Discussion) while the sample holder was continuously 

rotating. We confirmed that the lightbulbs in the photoreactor did not heat the samples 
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enough to expect any thermally induced physicochemical changes in the films (the 

temperature was ≤ 36 °C). After the irradiation, the films were stored in 15 mL plastic 

tubes in the dark until subsequent analyses. In addition to the irradiation experiments 

performed in the Rayonet photoreactor, we performed complementary irradiation 

experiments with natural sunlight. For these studies, blown films of PBAT were cut into 

pieces of 8 x 8 cm. We then stapled these films onto a EUR-palette that was placed at a 

shade-free location on the roof of our institute’s building (the Institute of Biogeochemistry 

and Pollutant Dynamics) in Zurich, Switzerland. At indicated times, we sampled films and 

stored them in the dark until we determined their gel fraction.  

2.3.6. Actinometry.  

To control the intensity of the Rayonet photoreactor, we performed PNA/Pyr-based 

actinometry.25 For a typical actinometry procedure, a borosilicate glass test tube (VWR, 

PYREX, 99445-15) was charged with 10 µL of a PNA solution (10 mM in acetonitrile), 

50 µL of a pyridine solution (100 mM in acetonitrile), and 9.94 mL of Milli-Q water. The 

test tube was then transferred into the carousel sample holder of the photo reactor. The 

remaining positions of the sample holder were filled with test tubes containing water only. 

The irradiation was performed with eight bulbs (maximal light intensity at 300 nm) while 

the carousel was rotating. At specific times during the irradiation, a 150 µL aliquot of the 

PNA/Pyr solution was transferred into an amber vial, which was subsequently stored in the 

dark at 4 °C.  

To determine the concentration of PNA in the irradiated solutions, we used an 

Agilent 1100 Series HPLC equipped with a ZORBAX Eclipse XDB C18 column (4.6 x 

150 mm, Agilent 993967-902), a C18 guard column (4.6 x 12.5 mm, Agilent 820950-926), 
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and a G1314A UV detector (absorbance measured at 316 nm). The aqueous fraction of the 

mobile phase consisted of acetate buffer (30 mM acetate/acetic acid, pH 6.0) containing 

5% (v/v) acetonitrile, while the organic fraction was pure acetonitrile. Throughout the time 

of the experiment (4.5 min), the organic fraction of the mobile phase was constantly held 

at 70%, the flow rate at 1 mL/min. Absorbance peaks were integrated with the Agilent 

OpenLAB CDS ChemStation Edition C.01.05 software. PNA concentrations were 

calculated based on calibration solutions ranging between 1 and 20 µM. 

2.3.7. Quantification of PBAT Hydrolysis by pH-Stat Titration.  

The hydrolyzability of untreated and irradiated PBAT films by FsC was determined 

by pH-stat titration using an assay adapted from Marten et al.26 In brief, circular pieces 

(diameter: 2.3 cm) were punched out of the PBAT films and placed into a thermo-jacketed 

beaker (40 °C) containing 10 mL of a 10 mM KCl solution. The pH of the solution was 

maintained at a constant pH of 7.0 by automated pH-stat titration with a Titrando 907 

(Metrohm) that delivered a KOH solution (15 mM, diluted from a precise Titrisol solution; 

Merck: 1.09918.0001). Following the addition of the circular PBAT pieces into the 

solution, the system was allowed to equilibrate for 24 hours prior to the addition of FsC 

from the stock solution (200 µL; final concentration: 82 µgFsC·mL-1). Given that hydrolysis 

of ester bonds at pH 7 releases an equimolar amount of H+ into solution, the number of 

ester bonds in PBAT that were hydrolyzed by FsC was determined from the number of 

hydroxide ions added to maintain a constant pH. Dividing the number of hydrolyzed ester 

bonds by the total number of ester bonds present in the added amount of PBAT yields the 

percentage of ester bonds cleaved during enzymatic hydrolysis (i.e., OH– added / ester 
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bonds in PBAT (%)). At the end of the experiment, the solution was collected and stored 

at –20 °C. 

2.3.8. Quantification of PBAT Hydrolysis by TOC Measurements.  

Complementary to the pH-stat titration experiments, we used an approach based on 

quantifying the total organic carbon (TOC) of a solution to study the hydrolysis of PBAT 

films. For these experiments, we punched circular film pieces (diameter 2.3 cm) out of the 

blown PBAT films and incubated these pieces at 40 °C in 20 mL glass vials containing 

15 mL of buffer (90 mM potassium phosphate, 10 mM potassium chloride, pH 7.0, filtered 

at 0.22 µm). Incubations were performed in the dark under orbital shaking at 140 rpm. 

Approximately 50 h after the addition of the PBAT films, we added a stock solution of 

Fusarium solani cutinase (300 µL; final concentration: 82 µgFsC/mL). At indicated times 

during the experiment, we took 250 µL of the incubation solution into a 1.5 mL plastic tube 

and stored these aliquots at 4 °C. After all samples had been collected, we centrifuged the 

samples (2000 x g, 3 min) to make sure that PBAT particles that potentially detached from 

the film were collected at the bottom of the tube. Subsequently, we transferred 80 µL from 

the top of the solution into a test tube for TOC measurements, added Milli-Q water to a 

total volume of 8 mL, and measured these solutions with a TOC analyzer (TOC-L, 

Shimadzu). The obtained signal was converted to a TOC concentration employing a 

standard calibration curve (0 to 20 mg C/L) prepared from a TOC standard (Sigma-Aldrich, 

76067). For all experiments monitored by solution TOC analysis, we performed 

background measurements of the incubation medium and enzyme in order to effectively 

subtract out their contribution to the measured carbon content. 
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2.3.9. Liquid Extraction and 1H NMR Analysis of Hydrolysis Products.  

We complemented our HPLC-HRMS-based analysis of the hydrolysis products with 

1H nuclear magnetic resonance (NMR) spectroscopy. Therefore, we thawed the solutions 

that were stored after the pH-stat titration experiments and added a few drops of HCl 

solution (1 M) to 0.75 mL of the solution containing the hydrolysis products (resulting pH 

< 1.5). For the extraction of the hydrolysis products, we added 0.75 mL of deuterated 

chloroform (CDCl3) to the acidified samples and vortexed the resulting mix for 15 s. The 

organic phase was then transferred into a sample tube for the NMR measurement. 

Chloroform addition, vortexing, and transferring of the organic phase were repeated twice. 

For absolute quantification of the hydrolysis products, we added a solution of 1,4-

dimethoxybenzene as an internal standard to our analytes. 1H NMR spectra were acquired 

on a Bruker, Avance III 400 MHz NMR spectrometer equipped with a 5 mm BBFO Z-

Gradient high-resolution probe (relaxation time was set to 15 s). All 1H NMR spectra were 

baseline and phase corrected. The chemical shifts were referenced to the proton of CHCl3 

that is present in CDCl3. 

2.3.10. Identification of PBAT Hydrolysis Products by HPLC-HRMS.  

To identify the predominant enzymatic hydrolysis products from PBAT films, we 

analyzed the solutions from the pH-stat titration experiments by high-performance liquid 

chromatography coupled to high-resolution mass spectrometry (HPLC-HRMS). 

Centrifuged aliquots (20 µL) were separated by gradient elution and reversed phase 

chromatography (Hypersil Gold aQ, 150 x 4.6 mm, 5 µm particles, flow rate = 1 mL·min-

1, thermostatted to 50 °C). The mobile phase consisted of water (aqueous) and methanol 

(organic), both containing 0.1% (v/v) formic acid. The initial solvent mixing ratio was 85% 
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aqueous to 15% organic and was held constant for one minute after sample injection. The 

ratio was subsequently decreased linearly to 5% aqueous and 95% organic over 35 minutes, 

after which it was held constant for 5 minutes. Finally, to prepare for the next sample 

injection, the solvent ratio was re-adjusted to the initial conditions for seven minutes. The 

eluent from the HPLC column was split post-column prior to introduction into the heated 

electrospray ionization (ESI) source of an Orbitrap Exactive high resolution mass 

spectrometer (Thermo Scientific) and into the UV/Vis detector, respectively. Positive and 

negative polarity, high-resolution (R = 25k FWHM at m/z 200, automatic gain control 

target = 106, injection time = 100 ms, m/z range: 100-2000) mass spectra (HRMS) were 

acquired in full-scan and all-ion higher-energy collisional dissociation (HCD, collision 

energy = 30 eV) modes throughout the chromatographic separation. UV/Vis spectra were 

acquired concurrently with a diode array detector. 

2.3.11. Dynamic Mechanical Thermal Analysis.  

Dynamic mechanical thermal analysis (DMTA) was performed using a TA 

Instruments RSA-G2 analyzer (tensile mode). A sinusoidal, oscillatory strain (constant 

frequency) is applied to a sample and the resultant axial force is monitored as a function of 

temperature. This force is converted to a complex modulus (i.e., a measure of the sample’s 

rigidity) by dividing by the cross-sectional area and the applied strain. Ultimately, the 

complex modulus is deconvoluted into the storage modulus E' (in-phase with the 

oscillatory strain, elastic solid-like behavior) and the loss modulus E'' (out-of-phase with 

the oscillatory strain, viscous liquid-like behavior). DMTA therefore gives insight into the 

viscoelastic behavior of polymeric materials as a function of temperature; furthermore, the 

elasticity (i.e., storage modulus) of a cross-linked polymer (above Tg and Tm) is directly 
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related to its cross-link density ne, and therefore this technique can be used to quantify the 

extent of cross-linking in the polymer. The cross-link density can be expressed in terms of 

the average molar mass between cross-links Mx as shown by equation 1, where r denotes 

the density of PBAT (1.25 g·cm-3), R is the ideal gas constant, and T is the temperature in 

Kelvin:27  

𝐸¢	 = 3𝑅𝑇𝜈) =
*+,-
./

          (1) 

The calculated Mx from this equation can reflect the cross-link density corresponding 

to covalent cross-links, physical cross-links (e.g., chain entanglements), or both. Each 

DMTA measurement was performed using rectangular PBAT specimens [0.025 mm (T) x 

ca. 4 mm (W) x ca. 25 mm (L) with a gauge length of ca. 6 mm] which were cut out using 

a razor blade. Due to the thinness of the samples, a specialized method (described below) 

was developed to obtain data in the range of –80 °C to 200 °C without breaking the films. 

 A typical procedure for each DMTA measurement was as follows. The transducer 

was zeroed and tared at room temperature with the oven closed after the stream of nitrogen 

gas (from the liquid nitrogen chamber) equilibrated. A PBAT sample was then loaded in 

the tensile fixtures using a torque wrench (40 cN·m) to ensure that the sample maintained 

continuous contact with the fixtures during the temperature sweep. Liquid nitrogen was 

used to cool the sample to –80 °C, and the axial force was continuously adjusted to 20.0 g 

(sensitivity 1.0 g) to ensure no buckling of the film. The proportional force mode was set 

to force tracking to maintain an axial force that was at least 100% greater than the dynamic 

oscillatory force. The compensate for modulus feature was not used and the adjustment 

time out for the axial force was set to 4.0 s. The minimum axial force was set to 2.0 g and 
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the minimum and maximum oscillatory force were set to 1.0 g and 20.0 g, respectively. 

The strain adjust was set to 30% with minimum and maximum strain values of 0.05% and 

5.0%, respectively. The sample was then heated to 200 °C at a rate of 5 °C·min–1 at an 

angular frequency of 6.28 rad·s–1 (1 Hz). Data acquisition was performed in correlation 

mode with 0.5 delay cycles and 0.5 s of delay time. 

2.3.12. Gel Fraction Measurements.  

Extractions of sol fractions were performed using CHCl3 as the swelling solvent. 

These experiments reveal the mass fraction that is actually incorporated into an insoluble 

polymer network. Although measuring the gel fraction is convenient and common,18,28,29 it 

is a relatively crude way to evaluate the extent of cross-linking present in the sample (as 

shown below). The gel fraction determinations for UV-irradiated samples were performed 

slightly differently than those for sunlight-irradiated samples. For swell tests on UV-

irradiated PBAT, a small amount of sample (ca. 35-40 mg) was placed in a 20 mL vial, 

which was subsequently filled with solvent. The solvent was decanted after 48 h, and the 

swollen sample was then dried under reduced pressure—first at 200 mTorr for 48 h, then 

at 20 mTorr for 48 h—to ensure no solvent remained when the final mass was measured. 

The gel fraction was calculated by taking the ratio of the final mass of the polymer sample 

to the initial mass. The sol fraction was also dried at 20 mTorr for 48 h to confirm closed 

mass balances. For swell tests on sunlight-irradiated PBAT, we first stuffed disposable 

glass Pasteur pipets with glass wool and determined its mass (m1). We then added the 

PBAT film (ca. 12 mg) onto the glass wool and determined its mass (m2). Subsequently, 

we loaded the pipet with chloroform, incubated it at room temperature for 1 h, and pushed 

the chloroform out of the pipet. Then, the pipet was washed three times with chloroform, 
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dried at 70 °C (1 h), and mass its mass (m3) was determined. We calculated the gel fraction 

as (m3-m1)/(m2-m1). 

2.3.13. Differential Scanning Calorimetry.  

DSC was performed on the untreated and irradiated PBAT films using a TA 

Instruments Discovery Series differential scanning calorimeter. Samples subjected to 

calorimetry (ca. 4 mg) were placed in T-Zero hermetic pans and cooled to –80 °C before 

the first and second heating ramp to 250 °C; all temperature sweeps were performed at 10 

°C min-1. We used the Trios software to determine the glass transition temperatures 

(midpoints of each transition) and the melting temperatures (maximum of the endotherm). 

These temperatures were measured using the first heat so as to account for the thermal 

history from the PBAT film processing conditions. 

2.3.14. Wide-angle X-ray Scattering. 

Room-temperature wide-angle x-ray scattering (WAXS) data were collected on the 

Dupont-Northwestern-Dow Collaborative Access Team (DND-CAT) insertion device 

beamline at Sector 5 of the Advanced Photon Source at Argonne National Laboratory, 

using 17 keV X-rays (l = 0.7293 Å) and a sample-to-detector distance of 201.31 mm. 

PBAT films (original thickness 0.025 mm), both untreated and irradiated, were folded to 

generate squares of PBAT with thicknesses of 0.1 mm, which were sandwiched between 

two layers of Kapton tape and mounted to Teflon washers. Each sample was exposed to 

the beam for 5 s; isotropic scattering patterns were azimuthally averaged to give one-

dimensional plots of scattered intensity I as a function of the scattering wavevector q. 

Scattered intensity was calibrated using a glassy carbon standard and q was calibrated using 
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a silicon diffraction grating. The raw scattering data for 2 sheets of Kapton tape was 

subtracted from the raw sample data, which was then corrected for the actual sample 

thickness (i.e., 0.1 mm). 

2.3.15. Size-exclusion Chromatography.  

SEC was performed at 35 °C using an HP/Agilent 1100 series size-exclusion 

chromatograph equipped with a HP 1047A refractive index detector. The mobile phase was 

chloroform (1 mL min-1 flow rate); prior to reaching the detector, the sample passed 

through a PLgel 5 µm guard column before passing through three successive PLgel Mixed 

C columns. We used a 10-point calibration curve generated using EasiCal polystyrene 

standards purchased from Agilent to determine Mn and Đ for untreated PBAT and the sol 

fractions of UV-irradiated PBAT. 

2.4. Results and Discussion 

2.4.1. Properties of Untreated PBAT Films. 

 To investigate the molar mass distribution and thermal properties of the untreated 

PBAT film, we respectively employed size-exclusion chromatography and differential 

scanning calorimetry (Figure 2.1 and Figure 2.2). The size-exclusion chromatography was 

performed using a chloroform mobile phase, and the molar mass distribution was evaluated 

with respect to polystyrene standards; the number average molar mass was determined to 

be 37 kg/mol with a dispersity of 2.2. The differential scanning calorimetry profile for the 

first heating cycle revealed a glass transition temperature at –30 °C as well as a broad 

melting transition containing two maxima at 59 °C and 121 °C. These maxima respectively 

represent the melting of adipate-rich crystallites and terephthalate-rich crystallites.30 We 
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note that the latter of these crystallite types is the one that is predominantly observed by 

wide-angle x-ray scattering (discussed later in the Results and Discussion). Overall, the 

thermal properties and scattering signals are consistent with prior literature reports.30,31,32  

 

Figure 2.1. Differential scanning calorimetry trace of untreated poly(butylene adipate-co-
terephthalate), which shows a glass transition at –30 °C and a broad melting transition 
between 40 °C and 150 °C. 
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Figure 2.2. Size-exclusion chromatography trace (chloroform mobile phase) of untreated 
poly(butylene adipate-co-terephthalate). 

To determine the chemical composition of the PBAT film, we dissolved a small piece 

in CDCl3 and analyzed the solution by 1H NMR spectroscopy (Figure 2.3). We used the 

integrals of the peaks corresponding to the aryl protons (8.1 ppm) and the –OCH2– protons 

of the butanediol unit (4.4 and 4.1 ppm) to determine the ratio of terephthalate units to 

adipate units; The molar ratio of terephthalate (T) to adipate (A) of the PBAT was 0.936 

molT·(molA)-1. 



 

 

56 

 

Figure 2.3. 1H NMR spectrum (CDCl3, 400 MHz) of a poly(butylene adipate-co-
terephthalate) (PBAT) film. The symbols next to the peaks in the spectrum and next to the 
protons in the structural formula depict the peak assignment. 

2.4.2. Irradiation of PBAT Films.  

To study the effect of light-induced photochemical changes in PBAT films on their 

enzymatic hydrolyzability, we irradiated both sides of blown, non-photostabilized, 

transparent PBAT films with UV light (lamp spectrum shown in Figure 2.4) for varying 

times between 6 and 24 hours per side. We performed actinometry experiments with 4-

nitroanisole (PNA) in pyridine-containing solutions to verify constant light intensity in the 

photoreactor (Figure 2.5).25 We found that the first-order rate constants for the 

photochemical degradation of PNA were very similar between experiment 1 (0.0102 min-

1, before film irradiation) and experiment 2 (0.0103 min-1, after film irradiation). These 

results confirmed that the light in the photoreactor had a constant intensity over the course 

of the film irradiations. 
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Figure 2.4. Spectrum emitted by the UV bulbs used in this study as measured with a Jaz 
Spectrometer (Ocean Optics). 

 

Figure 2.5. Logarithmic plot of the photochemical degradation of 4-nitroanisole (PNA) in 
a solution containing pyridine. Experiments 1 (black squares) and 2 (red triangles) were 
performed before and after the irradiations of the polyester films, respectively. Error bars 
represent standard deviations of triplicate measurements. 
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2.4.3. Titration experiments of PBAT films.  

We assessed the hydrolyzability of untreated and irradiated PBAT films by pH-stat 

titration. Titration experiments were conducted in duplicate and showed high 

reproducibility (Figure 2.6 and Figure 2.7).  

 

Figure 2.6. Cumulative number of released protons, relative to the number of ester bonds 
in the poly(butylene adipate-co-terephthalate) (PBAT) films, quantified by automated pH-
stat titration. Each side of the PBAT film was irradiated with UV light for the time indicated 
next to the curve. PBAT films were added to the system at the time indicated by the vertical 
dashed line. Duplicate experiments are shown in the same color. 
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Figure 2.7. Hydrolysis of irradiated poly(butylene adipate-co-terephthalate) (PBAT) films 
by Fusarium solani cutinase (FsC). The plots show the cumulative number of released 
protons, relative to the number of ester bonds in the PBAT film, quantified by automated 
pH-stat titration. PBAT films were irradiated with UV light for the time indicated in each 
panel. FsC was added to the system at the time indicated by the vertical dashed lines. 
Duplicate experiments are depicted in black and grey. 

Figure 2.9a and Figure 2.9b show the titration results for one of the two replicates 

for the different irradiation times. The addition of untreated PBAT films to an enzyme-free 

solution at pH 7 did not result in the decrease of the pH of the solution (Figure 2.6 and 

Figure 2.9a). Conversely, when adding irradiated films to an enzyme-free solution, protons 

were released from the films, as evidenced from the KOH that was titrated to maintain a 

constant pH. We attributed the release of protons from irradiated PBAT films to carboxylic 

acid moieties produced by Norrish-type photochemical reaction mechanisms (Figure 2.8) 
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that have previously been reported for polyesters containing aromatic moieties.20,33,34 For 

all irradiated films, titration rates were highest immediately after the film addition and 

subsequently slowed down and reached a plateau. The cumulative amounts of added KOH, 

and thus the amount of acidity generated by UV-irradiation, increased linearly with 

increasing irradiation time (Figure 2.9c). For films irradiated for the longest time studied 

here (24 h per side), the plateau of released protons corresponded to approximately 6 % of 

the ester bonds in the added PBAT. 

 

Figure 2.8. Photochemical and enzymatic cleavage of chemical bonds in poly(butylene 
adipate-co-terephthalate) (PBAT). 
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Figure 2.9. Results of pH-stat titration experiments at pH 7 and 40 °C on untreated and 
UV-irradiated films of poly(butylene adipate-co-terephthalate) (PBAT). Both sides of the 
films were irradiated with UV light for the time indicated in the legend (panels a. and b.) 
and on the x-axis (panel c.). In all panels the y-axis represents the cumulative amount of 
OH– added relative to the number of ester bonds in the PBAT film; this includes titration 
of carboxylic acids produced by photochemical transformations and by enzymatic 
hydrolysis. a. Initial portion of the pH-stat titration experiments with only PBAT film 
present in the solution. b. The rest of the pH-stat titration experiments, with PBAT and 
Fusarium solani cutinase (FsC) present in the solution. c. The amount of OH– added before 
and 50 h after the addition of FsC (indicated by the arrow at 74 h in panel b). Error bars 
represent ranges of independent duplicates from their means. 

When the release of protons from photochemically produced acids reached a plateau 

(i.e., approximately 24 h after addition of PBAT films), we added Fusarium solani cutinase 

(FsC) to the solution. This enzyme addition resulted in the immediate rapid hydrolysis of 

ester bonds and the subsequent release of protons into the solution (Figure 2.9b and Figure 

2.7). For untreated PBAT films, the cumulative number of cleaved ester bonds increased 

linearly for approximately 70 h before reaching a plateau at values corresponding to 

approximately 70% of the ester bonds in the added PBAT films. Consistent with this high 

extent of ester bond cleavage, the film had disappeared, which provided a visual indication 

of the transformation of untreated PBAT into soluble hydrolysis products. Although 

enzymatic hydrolysis of the untreated PBAT films was extensive, approximately 30% of 

the ester bonds were not cleaved. This incomplete hydrolysis was not due to FsC 

inactivation: re-addition of new FsC solution to the titration solution did not result in a 

significant increase in the cumulative number of hydrolyzed ester bonds (Figure 2.10). 

Taken together, these findings suggest that FsC did not cleave some specific ester bonds in 

the soluble hydrolysis products during the experiment. 
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Figure 2.10. Hydrolysis of an untreated poly(butylene adipate-co-terephthalate) (PBAT) 
film by Fusarium solani cutinase (FsC). The plot shows the cumulative number of released 
protons, relative to the number of ester bonds in the PBAT film, quantified by automated 
pH-stat titration. PBAT film was added at t = 0 h. FsC was added to the system at the times 
indicated by the additional vertical dashed lines at t = 24 h and t = 145 h. 

To identify incompletely hydrolyzed products, we analyzed the solution that 

remained after the pH-stat titration experiments by HPLC-HRMS and 1H NMR 

spectroscopy. The signals observed by HPLC-HRMS were assigned to adipate (A), 

terephthalate (T), and 4-hydroxylbutyl terephthalate (butanediol-terephthalate dyad; BT); 

butanediol (B) was not detected (Figure 2.11). The strong signal detected for BT, which 

contains an ester bond that was not hydrolyzed by FsC, supports the incomplete ester 

hydrolysis measured by automated pH-stat titration. To assess the presence of BT more 

quantitatively, we performed 1H NMR analysis on hydrolysis products isolated by liquid-

liquid extraction (Figure 2.12). The peaks indicative of the hydrolysis products were the 

aryl protons from terephthalate units and protons adjacent to a hydroxyl moiety; the 
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integrals from these peaks (1:0.5:0.5) could be explained by the presence of pure BT or an 

equimolar mix of the terephthalate-butanediol-terephthalate triad (TBT) and butanediol 

(B). Given the likely difference between the partitioning of TBT and B in chloroform, the 

finding that the peak ratio was the same for three consecutive extractions strongly suggests 

that BT was the predominant terephthalate-containing hydrolysis product isolated by 

extraction. We quantified the concentration of terephthalate units by adding 1,4-

dimethoxybenzene as an internal standard. To relate the quantified number of terephthalate 

protons to the number of terephthalate protons that was added to the hydrolysis experiment 

in the form of PBAT, we extrapolated the amounts that we quantified in the three 

consecutive extractions with an exponential decay fit. Extrapolating for 10 extractions 

resulted in a recovery of 86 ± 8 %. These 1H NMR results corroborate the HPLC-HRMS 

analysis and confirm that BT is the predominant terephthalate-containing product of the 

hydrolysis of PBAT by FsC. Thereby, these experiments match the extents of cleaved ester 

bonds we detected by pH-stat titration (Figure 2.9).  

Both 1H NMR and HPLC-HRMS analyses consistently showed the formation of 

three predominant hydrolysis products: butanediol (B), adipate (A), and 4-hydroxylbutyl 

terephthalate (butanediol-terephthalate dyad; BT) (Figure 2.8). The identification of BT as 

the major terephthalate-containing hydrolysis product explained the incomplete hydrolysis 

of ester bonds in PBAT observed by pH-stat titration. Furthermore, BT accumulation 

implies that the rate of FsC-mediated ester hydrolysis of a B-T-B sequence is rapid for the 

first aryl ester bond and then is strongly decreased for the second aryl ester bond. 
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Figure 2.11. Product identification of the enzymatic hydrolysis of poly(butylene adipate-
co-terephthalate) (PBAT). Top. Base peak chromatograms generated by high-pressure 
liquid chromatography coupled to high-resolution mass spectrometry (HPLC-HRMS) in 
negative mode electrospray ionization (ESI). Curves of independent duplicates (grey and 
black) overlap. Bottom. Full-scan HRMS spectra acquired at the indicated retention times; 
additional information on the molecule assigned to the predominant masses are provided 
in each panel. 
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Figure 2.12. 1H NMR analysis of the products from the enzymatic hydrolysis of untreated 
poly(butylene adipate-co-terephthalate) (PBAT) after liquid-liquid extraction. a. 1H NMR 
spectrum of hydrolysis products and structural formula of the butanediol-terephthalate 
dyad (BT). The symbols depict the assignment of the characteristic protons to the peaks in 
the spectrum. b. Enhanced regions containing the spectral peaks assigned to the 
characteristic protons of BT and their integration values. c. Enhanced regions of two 
spectral peaks assigned to the characteristic protons of BT. Spectra obtained after 
consecutive extractions are shown in different colors. d. Fraction of extracted PBAT-
derived terephthalate for three consecutive extractions of duplicate hydrolysis experiments. 
The lines depict exponential fits for the points. 
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The PBAT films that were irradiated with UV light for 6 h per side were hydrolyzed 

by FsC on similar timescales as the untreated films (Figure 2.7 and Figure 2.9b). 

However, the enzymatic hydrolysis curves of the 6 h UV-irradiated and the untreated 

PBAT films had slightly different shapes. While the hydrolysis rate of untreated films was 

constant for the first 70 h after FsC addition, the hydrolysis rate for the 6 h UV-irradiated 

films was initially higher, but subsequently decreased to rates smaller than for the untreated 

films. We speculate that the high initial rate is a result of the photochemical cleavage of 

some PBAT chains, which produced smaller and thus more hydrolyzable fragments.35 We 

ascribe the subsequent regime with slower hydrolysis to photochemical cross-linking of 

PBAT chains that decreases their flexibility and hence their enzymatic hydrolyzability. 

This explanation is consistent with previous studies, in which chain flexibility was used to 

explain polyester hydrolysis rates.12,36,37,38 Films that were UV-irradiated for 12 h and 

longer per side were hydrolyzed considerably slower than the untreated films. Less than 

5% of ester bonds were enzymatically hydrolyzed in films that were exposed to UV light 

for 24 h per side during incubation with FsC for 50 h.  

As a complementary approach to pH-stat titration, we assessed the enzymatic 

hydrolysis of these PBAT films in batch incubation reactors containing pH-buffered 

solutions; aliquots were removed at various times and their total organic carbon (TOC) 

content was measured to monitor the release of hydrolysis products over time (Figure 

2.13). Although this is a convenient approach, we note that it is more error-prone and less 

time-resolved than the pH-stat titration approach. Nonetheless, these independent 

experiments confirmed the results obtained with the pH-stat titration setup: PBAT films 

that were UV-irradiated for 12 h or more showed significantly decreased enzymatic 
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hydrolysis rates. We also used the TOC-based approach to show that the rate of PBAT 

hydrolysis by FsC did not increase when we doubled the solution concentration of FsC 

(Figure 2.14). Thereby, we demonstrated that for all enzymatic hydrolyses presented 

herein (i.e., pH-stat titrations and incubations coupled to solution TOC analysis) the PBAT 

surfaces were saturated with FsC. 

 

Figure 2.13. Hydrolysis of irradiated poly(butylene adipate-co-terephthalate) (PBAT) 
films by Fusarium solani cutinase (FsC). The plot shows the cumulative amount of organic 
carbon that was released into the solution, relative to the amount of organic carbon in the 
PBAT film initially added to the experiment. We quantified released carbon by total 
organic carbon (TOC) measurements of the hydrolysis solution. PBAT films were 
irradiated on both sides with UV light for the time indicated in the legend. PBAT films and 
FsC were added to the system at the times indicated by the vertical dashed lines at –50 and 
0 h, respectively. Error bars represent the ranges of independent duplicates from their 
means. 
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Figure 2.14. Hydrolysis of poly(butylene adipate-co-terephthalate) (PBAT) films by 
Fusarium solani cutinase (FsC). The plot shows the cumulative amount of carbon that was 
released into the solution, relative to amount of carbon in the PBAT film, quantified by 
total organic carbon (TOC) measurements of the hydrolysis solution. PBAT films and FsC 
were added to the system at the times indicated by the vertical dashed lines at -50 and 0 h, 
respectively. Error bars represent the ranges of independent duplicates from their means. 
Circles, triangles, and inverted triangles represent experiments with different 
concentrations of FsC (i.e., zero, standard concentration used in all experiments of the 
manuscript, and doubled concentration, respectively). 

2.4.4. Characterization of physicochemical properties of untreated and UV-
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First, we investigated the crystallinity of untreated and irradiated films, as 
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PBAT films, we employed two complementary methods: differential scanning calorimetry 

(DSC) and wide-angle x-ray scattering (WAXS). The enthalpy of melting (∆Hm) values 

obtained by DSC are directly related to the % crystallinity of a polymer.41 For the UV-

irradiated films, a quantitative analysis of the melting transition by DSC indicated that there 

was no substantial change in the % crystallinity as compared to untreated PBAT (Figure 

2.15 and Table 2.1). We furthermore note that the DSC measurements revealed that the 

melting temperature Tm for the crystalline domains, which has previously been shown to 

negatively correlate with enzymatic hydrolyzability,12,37,38,39 decreased with increasing UV 

exposure time (Table 2.1). Although the data shown is for the first heat, the same trend 

was observed after erasing the thermal history (i.e., on the second heat). Due to the low % 

crystallinity of commercial PBAT films (e.g., EcoFlex, 11%), there are few crystallites 

present and the network that is formed from UV-irradiation is thus essentially a network 

of randomly oriented chains. In such networks, it has been empirically observed that a 

small degree of cross-linking can drastically reduce the melting temperature (both onset 

and maximum), which has been explained by a change in the entropy of fusion.41 This 

melting point depression trend continues—though not as drastically—as cross-link density 

is increased. 
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Figure 2.15. An overlay of differential scanning calorimetry (DSC) traces of untreated 
PBAT (denoted NT), a dark control (DC), and PBAT irradiated on both sides with UV 
light for the time indicated in the legend (i.e., 6-24 h). Duplicate measurements for the 
irradiated films are shown as solid and dotted lines in the same color (denoted X.1 or X.2, 
where X is the irradiation time in hours). Traces are vertically scaled for clarity. 

Table 2.1. Thermal properties of PBAT samples measured by DSC. 

Sample IDa ∆Hm (J/g)b Tm (°C)c 

NT 29 121 
DC 27 123 
6.1 28 103 
6.2 31 103 
12.1 28 97 
12.2 29 99 
18.1 27 97 
18.2 26 99 
24.1 27 92 
24.2 25 91 

a Nomenclature: untreated PBAT is denoted NT, a dark control is denoted DC, and 
duplicate samples of UV-irradiated are denoted X.1 or X.2, where X is the irradiation time 
in hours. b Enthalpy of melting was determined by integrating the signal produced by the 
melting transition. c The melting temperature was defined as the global maximum of the 
melting transition. 
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We sought to corroborate the DSC results using WAXS. The data obtained by WAXS 

for the untreated and irradiated PBAT samples is in good agreement with the expected 

crystal structure for PBAT: the crystalline domains are dominated by poly(butylene 

terephthalate) (PBT) crystals rather than poly(butylene adipate) crystals. The reported 

values for the triclinic unit cell (a form) of PBT are a = 4.83 Å, b = 5.94 Å, c = 11.59 Å, 

a = 99.7°, b = 115.2°, and g = 110.8°.42 Using very slightly modified values (a = 4.89 Å, 

b = 5.94 Å, c = 11.78 Å, a = 100.3°, b = 115.0°, and g = 111.1°), the experimental data can 

be indexed according to the expected reflections from this unit cell. There is good 

agreement between these reflections and the observed peaks (Figure 2.16). Importantly, 

there was no change in the crystal structure with UV irradiation and very little change in 

the peak intensities, which suggested that the % crystallinity remains constant with 

prolonged UV exposure (Figure 2.17). Based on the DSC and WAXS results, we therefore 

cannot ascribe the observed decrease in enzymatic hydrolyzability with increasing UV-

irradiation to changes in PBAT crystallinity. 
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Figure 2.16. Wide-angle x-ray scattering (WAXS) data of untreated poly(butylene adipate-
co-terephthalate) (PBAT) with Miller indices shown for the expected reflections of the 
triclinic poly(butylene terephthalate) (PBT) unit cell (a form). The parameters used to 
index the peaks were: a = 4.89 Å, b = 5.94 Å, c = 11.78 Å, a = 100.3°, b = 115.0°, and g = 
111.1°. Although poorly developed along the c axis, the peaks corresponding to the a and 
b axis are very distinct (100 and 010, respectively). The underlying broad bump is due to 
scattering from amorphous material. 
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Figure 2.17. Wide-angle x-ray scattering (WAXS) data of untreated poly(butylene adipate-
co-terephthalate) (PBAT) (denoted NT) and PBAT irradiated on each side for the time 
indicated in the legend (6-24 h). The irradiated PBAT curves were vertically shifted to 
align with the NT data at q = 1.432 Å-1. 

Second, we used the commonly employed technique of gel fraction measurements to 

assess the formation of cross-links in polymers. To this end, we determined the chloroform-

soluble and chloroform-insoluble mass fractions of the untreated and the UV-irradiated 

PBAT films (Figure 2.18a and Figure 2.19). These measurements showed that the soluble 

fraction of PBAT films strongly decreased from 1.0 (i.e., fully soluble) for the untreated 

PBAT to less than 0.4 for films that were irradiated for 6 h per side. Additional irradiation 

further decreased the chloroform-soluble fraction—though less drastically—until it 

reached approximately 0.2 for samples that were irradiated for 24 h per side. Taken 
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qualitatively, the swelling experiments confirmed that UV-irradiation induced cross-

linking between chains in PBAT films. Furthermore, the monotonic decrease in the soluble 

fraction with increasing irradiation time suggested that more cross-links were formed with 

increasing UV exposure. As photochemical reactions are limited by the penetration depth 

of the light, we sought to demonstrate whether our procedure (i.e., irradiation on both sides) 

generated cross-links throughout the film. We therefore irradiated samples on one side for 

24 h and compared their chloroform-insoluble (gel) fractions (ca. 0.41) to those of the 24 

h samples shown in Figure 2.18a (ca. 0.84); the finding that one-sided irradiation resulted 

in gel fractions that were approximately half the value measured for samples irradiated on 

both sides is consistent with our supposition that our procedure was successfully generating 

cross-links throughout the films. As these cross-linking events were expected to be 

accompanied by chain scission events, we analyzed the soluble fractions by size-exclusion 

chromatography (SEC); indeed, the SEC results demonstrated that increased irradiation 

time yielded smaller PBAT fragments in the soluble fractions (Figure 2.20).  
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Figure 2.18. Characterization data for untreated and UV-irradiated poly(butylene adipate-
co-terephthalate) (PBAT) films. a. Chloroform-insoluble (gel) and chloroform-soluble 
(sol) fraction of PBAT as a function of UV-irradiation time; error bars represent ranges of 
independent duplicates from their means. b. Representative dynamic mechanical thermal 
analysis curves showing storage modulus (E') as a function of temperature for untreated 
and irradiated films; the inset shows representative molar masses between cross-links (Mx) 
for the irradiated PBAT samples, which were calculated from the plateau storage modulus 
at 150 °C using equation 1. 
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Figure 2.19. Chloroform-insoluble (i.e., gel), chloroform-soluble (i.e., sol) and total (i.e., 
sol+gel) mass fractions of PBAT films that were irradiated on both sides for the time 
indicated on the x-axis. Duplicate experiments are depicted as open and closed symbols in 
the same color. 
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Figure 2.20. An overlay of size-exclusion chromatography (SEC) traces of untreated 
PBAT (denoted NT) and sol fractions from the PBAT samples irradiated with UV light for 
6, 12, 18, and 24 h per side. There is an artifact at ca. 26.5 mL that contributes to the signal; 
it is seen in all traces obtained on this size-exclusion chromatograph. 

Third, we sought to obtain a quantitative measure of the number of cross-links 

formed by UV-irradiation. To this end, we characterized untreated and UV-irradiated 

PBAT films using dynamic mechanical thermal analysis (DMTA). As we heated the 

untreated PBAT film through its melting transition (ca. 110 °C), the storage modulus E' 

dropped precipitously (Figure 2.18b and Figure 2.21). In contrast, heating the irradiated 

PBAT films through their melting transitions resulted in a more gradual drop in E', which 

was afterwards steady throughout the rest of each experiment (Figure 2.18b, Figure 2.21, 

and Figure 2.22). The relatively constant storage modulus above the melting transition for 

the UV-irradiated films confirmed that they were indeed cross-linked, which corroborated 

the qualitative conclusion drawn from the swelling experiments. The storage modulus in 
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this regime can be related to the cross-link density in the PBAT films and thus the average 

molar mass between cross-links Mx, as shown by equation 1. As expected, increasing the 

irradiation time resulted in increasing storage moduli as the samples become more 

extensively cross-linked (Figure 2.18b, Figure 2.21, and Figure 2.22); the calculated Mx  

(using the value of E' at 150 °C) decreased with increasing irradiation time (Figure 2.18b 

and Figure 2.23). The Mx for the sample irradiated for 6 h per side was 14 kg·mol–1, and 

it decreased to 6.2, 3.7, and 2.7 kg·mol-1 for samples irradiated for 12, 18, and 24 h per 

side, respectively. Using an average monomer molar mass of 105 g·mol–1, these Mx values 

respectively correspond to an average number of monomers between cross-links of 

approximately 130, 60, 35, and 26. 

 

Figure 2.21. Dynamic thermal mechanical analysis (DMTA) of irradiated and untreated 
poly(butylene adipate-co-terephthalate) (PBAT) films. DMTA was performed on parts of 
the same film samples used for enzymatic hydrolysis experiments; films were irradiated 
with UV light for the time indicated in the legend (i.e., 6-24 h per side). Duplicate 
measurements for the irradiated films are shown as solid and dotted lines in the same color. 
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Figure 2.22. Enhanced view of the dynamic thermal mechanical analysis (DMTA) of 
irradiated poly(butylene adipate-co-terephthalate) (PBAT) films above their melting 
transition. Both sides of the films were irradiated for the time indicated in the legend (i.e., 
6-24 h). Duplicate measurements for the irradiated films are shown as solid and dotted lines 
in the same color. 

 

Figure 2.23. Graphical depiction of the storage modulus (E') at 150 °C measured by 
dynamic mechanical thermal analysis (DMTA) and the corresponding average molar mass 
between cross-links (Mx) for irradiated poly(butylene adipate-co-terephthalate) (PBAT) 
films. Error bars represent the ranges of independent duplicate measurements from their 
means. 
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2.4.5. Relating enzymatic hydrolyzability to changes in the physicochemical 

properties of PBAT films upon UV-irradiation.  

In Figure 2.24a and Figure 2.24b, we related the changes in the enzymatic 

hydrolyzability to changes in the physicochemical properties of the PBAT films 

determined by swelling experiments and DTMA, respectively. 

The decreases in enzymatic hydrolyzability were not well correlated with changes in 

the sol fraction (Figure 2.24a): although the extent of PBAT hydrolysis by FsC over 50 h 

was comparable for the untreated and the PBAT film UV-irradiated for 6 h per side, the 6 

h of UV irradiation causes the soluble mass fraction to decrease from 1.0 to 0.4 (Figure 

2.18a and Figure 2.24a). This comparison demonstrated that the density of interchain 

cross-links formed within 6 h of UV-irradiation per side was sufficient to render the 

majority of the PBAT insoluble while not significantly impacting the enzymatic 

hydrolyzability; we propose that at this low cross-link density, the overall chain flexibility 

of PBAT remains largely unaffected on the length scales required to access the active site 

of the enzymes. Irradiation for more prolonged periods of time (> 6 h per side) resulted in 

small decreases in the sol fraction yet quite substantial decreases in the extent of ester 

hydrolysis, which strongly suggests the change in sol fraction (i.e., gel content) is not a 

good indicator of the expected change in enzymatic hydrolyzability. 

As compared to gel content, the decrease in enzymatic hydrolyzability of UV-

irradiated PBAT correlated more closely with the average molar mass between cross-links 

determined by DMTA (Figure 2.24b). This linear relationship shows that substantial 

increases in the cross-link density (i.e., decreases in Mx) significantly reduce the enzymatic 

hydrolyzability of PBAT chains, likely due to the reduced probability that these chains will 
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be able to readily enter the active site of FsC. Our findings agree well with the previously 

suggested concept that the enzymatic hydrolysis of polyesters is highly dependent on the 

flexibility of the polyester chains.12,36,37,38 

 

Figure 2.24. a. Correlation between the chloroform-soluble fractions of untreated and 
irradiated PBAT with the percentage of enzymatically hydrolyzed ester bonds 50 h after 
Fusarium solani cutinase (FsC) addition. b. Correlation between the average molar masses 
between cross-links (Mx) for irradiated PBAT with the percentage of enzymatically 
hydrolyzed ester bonds 50 h after FsC addition. In both panels, error bars represent ranges 
of independent duplicates from their means and the UV-irradiation time is specified next 
to each data point. The y-axes are distinct from those in Figure 2.9 because here the 
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contribution of the photochemically-produced acids (i.e., titration before FsC addition) is 
intentionally not considered. 

The data in Figure 2.24b show that hydrolyzability of PBAT by FsC becomes 

impaired at cross-link densities corresponding to Mx values in the range of 14 to 6 kg·mol-

1. In the photoreactors used in this study, Mx values of approximately 6 kg·mol-1 were 

reached when films had been irradiated for 12 h per side. To frame our experimental results 

in a more environmentally-relevant context, we performed natural sunlight exposure 

experiments of PBAT films in Zurich, Switzerland (47° latitude). We collected film 

samples at various time points, determined their chloroform-insoluble mass fractions (i.e., 

gel fractions), and compared the initial rate of gel formation to that of films subjected to 

UV-irradiation in the photoreactor (Figure 2.25). We note that these films were only 

irradiated on one side and that these measurements were performed differently than the gel 

fraction measurements shown above (i.e., in Figure 2.18a, Figure 2.19, and Figure 2.24a). 

As the purpose of these experiments was to ensure that cross-linking is triggered by natural 

sunlight and to provide a comparison between natural and artificial light exposures, we 

considered gel fraction measurements, which can be done much more rapidly than dynamic 

mechanical thermal analyses, to be sufficient. 
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Figure 2.25. Chloroform-insoluble mass (i.e., gel) fractions of PBAT films that were 
irradiated on one side for the time indicated on the x-axes either in the Rayonet 
photoreactor (panel a) or by sunlight (panel b). Error bars represent standard deviations of 
triplicates. Filled circles represent the data points comprising the linear phase of gel 
formation; these data were thus used for the quantitative comparison. 

 During the initial 4 h of irradiation in the photoreactor, the gel fraction of PBAT 

films increased linearly with a slope of 11.4%/h. We compared this rate to the rate of gel 

formation during the first two weeks of the sunlight irradiation experiment (linear phase). 

To frame these measurements in terms of the number of sunny days that would cause 

degrees of cross-linking similar to those caused by UV-irradiation in the photoreactor, we 

used irradiance data that was collected on the roof of the building where the sunlight-

irradiation experiments were performed (Figure 2.26). More specifically, the number of 

sunny days per week was calculated by dividing the integral of the illuminance curves for 

the entire week by the integral of the illuminance curve measurement on June 7 (i.e., an 

almost perfectly sunny day, Figure 2.27). These estimations suggested that a 12 h 

irradiation in the photoreactor corresponds to ~26 sunny days in central Europe in early 

June. 
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Figure 2.26. Illuminance data collected on the roof of our institute’s building (the Institute 
of Biogeochemistry and Pollutant Dynamics) in Zurich Switzerland on June 2015. The 
curve for each day of a week is shown in a different color. The integrals of the curves (over 
the entire week) are provided in the top right corner of each panel. The dates are provided 
on the top left corner of each panel. Data was collected by researchers from the Institute of 
Atmospheric and Climate Science (IAC) at ETH Zurich. 
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Figure 2.27. Illuminance data collected on the roof of our institute’s building (the Institute 
of Biogeochemistry and Pollutant Dynamics) in Zurich Switzerland on June 7, 2015. The 
integral of the curve is provided in the top right corner. Data was collected by researchers 
from the Institute of Atmospheric and Climate Science (IAC) at ETH Zurich. 

In summary, our experiments show that the decrease in enzymatic hydrolyzability of 

UV-irradiated PBAT correlates better to the increase in the cross-link density than to the 

decrease in the soluble PBAT mass fractions. Although swelling experiments provide 

insight as to the mass fraction that is present in a cross-linked state, they do not necessarily 

provide a correlation to how densely cross-linked—and thus how flexible—the polymer 

chains are in the network. For future studies assessing potential effects of photoirradiation 

of polymers on their enzymatic hydrolyzability, we therefore recommend quantifying the 

cross-link density by DMTA. Future research on PBAT-containing films may also assess 

whether light-induced changes in film surface properties or the formation of leachable 

photo-transformation products impact enzymatic hydrolysis. 

2.4.6. HPLC-HRMS Analysis of Cross-linked Hydrolysis Products.  

Given the importance of cross-linking density on enzymatic hydrolyzability, we 
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the enzymatic hydrolysis products of untreated PBAT films to those of films irradiated for 

6 h per side. We found a chromatographic peak (retention time of 26.6 min) that was 

significantly larger among the hydrolysis products from UV-irradiated films than among 

those from untreated PBAT films (Figure 2.28a). Negative-ionization, full-scan HRMS at 

this elution time provided evidence for an [M-H]- ion of C20H18O8 (m/z: exact 385.0929, 

found 385.0932) (Figure 2.28b).  

 

Figure 2.28. Analysis of the enzymatic hydrolysis products of poly(butylene adipate-co-
terephthalate) (PBAT) by high-performance liquid chromatography coupled to high-
resolution mass spectrometry (HPLC-HRMS). a. Base peak chromatograms for untreated 
and irradiated PBAT with peaks assigned to the hydrolysis products adipate (A), 
terephthalate (T), butanediol-adipate dyad (BA), and butanediol-terephthalate dyad (BT). 
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b. and c. Full-scan HRMS (panel b) and higher-energy collisional dissociation (HCD) 
HRMS2 (panel c) of the peak eluting at 26.6 min. d. Proposed structures and fragmentation 
mechanisms for the observed ions in panels b and c. 

Figure 2.28c and Figure 2.28d depict the associated higher-energy collisional 

dissociation (HCD) HRMS2 and proposed structure annotations for the observed product. 

HCD HRMS2 showed neutral losses of CO2 suggestive of terminal carboxylate moieties. 

Furthermore, neutral loss of C5H8O3 to give C19H17O6– (m/z: exact 341.1031, found 

341.1026) was consistent with cleavage of a butanediol benzoate ester. Finally, an intense 

fragment ion was observed with the sum formula C13H9O- (m/z: exact 181.0659, found 

181.0652), which strongly supported the presence of a benzophenone substructure. To 

further support this assignment, we analyzed authentic 4-benzyolybenzoic acid by ESI(-)-

HRMS, which gave the deprotonated pseudo-molecular ion (m/z: exact 225.0557, found 

225.0556) and decarboxylated when treated with HCD to form the same benzophenone 

anion (m/z: exact 181.0659, found 181.0654, data not shown).  

Taken together, these data provided strong evidence for the photochemical 

production of substituted benzophenone cross-links in PBAT films during their irradiation. 

This structure is also consistent with the findings of Kijchavengkul et al., who used Fourier-

transform infrared (FTIR) spectroscopy to show that a signal corresponding to 1,2,4-

trisubstituted benzene becomes increasingly prominent with increasing irradiation time of 

PBAT.18 Based on our results, we propose that the cross-links between chains in PBAT are 

formed by the radical-based mechanism depicted in Figure 2.29. A similar mechanism has 

been proposed for the formation of benzophenone cross-links in terephthalate-containing 

polymers.43 
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Figure 2.29. Proposed molecular mechanism for the photochemical formation of cross-
links between chains in poly(butylene adipate-co-terephthalate) (PBAT). 

2.4.7. Photostabilization of PBAT Films.  

We have demonstrated that extensive photochemical cross-linking of non-

photostabilized PBAT films impairs their enzymatic hydrolyzability. We therefore 

assessed the extent to which photostabilizers added to the PBAT films prevent the decrease 

in enzymatic hydrolyzability. In a proof-of-principle experiment, we solvent-casted PBAT 

films both with and without 2% (w/w) of the photostabilizer 2-(2-benzotriazolyl)-4-

methylphenol (BMP) and studied whether its presence decreased the effect of UV 

irradiation on the enzymatic hydrolysis of PBAT (Figure 2.30). BMP was chosen because 

it is a commonly used photostabilizer for polymeric materials.44,45 We found that FsC-

mediated hydrolysis after UV irradiation (24 h per side) was indeed faster for 

photostabilized films than for those without BMP. Photochemical production of carboxylic 

acids was reduced—but not completely inhibited—by the addition of the photostabilizer to 

the films. Furthermore, enzymatic hydrolysis rates of untreated films were not significantly 

different between photostabilized and non-photostabilized films. These findings 
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demonstrate that the addition of photostabilizers to PBAT films can mitigate 

photochemical transformations while maintaining the hydrolyzability of PBAT by 

extracellular enzymes that may be present in natural soil environments. 

 

Figure 2.30. Hydrolysis of solvent-cast poly(butylene adipate-co-terephthalate) (PBAT) 
films—both irradiated and non-irradiated—by Fusarium solani cutinase (FsC). Both 
panels show the cumulative volume of potassium hydroxide solution that was added to 
keep pH 7 constant. a. Volume added after the addition of the solvent-casted PBAT films 
to the solution (addition is represented by the vertical dashed line at t=0 h). b. Volume 
added after the addition of FsC to the solution (addition is represented by the vertical 
dashed line at t=24 h). For the experiments represented by black and green curves, each 
side of the PBAT films was irradiated with UV light for 24 h. Red and blue curves represent 
dark controls. Films used for experiments represented by red and black curves contained 
2% (w/w) of the photostabilizer 2-(2-benzotriazolyl)-4-methylphenol. Duplicate 
experiments exhibited similar rates, but were not included for the sake of clarity. 

2.4.8. Implications.  

We have demonstrated that UV-irradiation of a non-photostabilized, transparent film 

of PBAT, an aliphatic-aromatic co-polyester, results in cross-links between polyester 

chains that can severely decrease the ability of the film to be enzymatically hydrolyzed, 

which is a key step in polyester biodegradation. Our results highlight the relevance of 

considering photochemical reactions when studying the environmental fate of 
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biodegradable polyesters and the importance of employing photostabilizing additives to 

biodegradable polyesters.46,47 Such additives not only aid in maintaining the desired 

material properties (e.g., preventing embrittlement) during the application of the material 

but also in ensuring that it remains biodegradable after its functional lifetime. 

On a molecular level, we demonstrated that the enzymatic hydrolyzability of 

irradiated films negatively correlated with the density of cross-links formed between 

polyester chains. We attribute this trend to the decreased flexibility of polyester chains in 

a densely cross-linked network and thus the lower probability of polyester chains at the 

sample surface from readily accessing the active site of adsorbed esterases. Our findings 

extend the previously suggested hypothesis that enzymatic hydrolysis of polyesters is 

determined by the degree of flexibility of chains in the polyester: whereas previous work 

showed that crystalline regions in the polyesters have impaired chain flexibility and thus 

enzymatic hydrolyzability, we herein show that extensive cross-linking of polyester chains 

is a second characteristic that restrains chain flexibility and hence impairs enzymatic 

hydrolyzability. 

Lastly, we showed that UV-irradiation results in the formation of benzophenone-

containing structures in PBAT, suggesting that cross-links between PBAT chains are 

formed by a radical mechanism coupling two terephthalate units. We note that 

benzophenone moieties are well-known photosensitizers and that such cross-links may 

accelerate photochemical changes during long term UV exposure of these materials.48,49 

This mechanistic insight will help in assessing the performance of existing photostabilizers 

and guide the development of environmentally friendly photostabilizers for aliphatic-
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aromatic polyesters. In future work, the environmental fate of photostabilizers and the 

formation of coupling products under field conditions need to be assessed.  
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Chapter 3. Renewable, Degradable, and Chemically Recyclable 

Cross-linked Elastomers* 

  

                                                

* Reprinted (adapted) with permission from Brutman, J. P.; De Hoe, G. X.; Schneiderman, D. K.; Le, T.N.; 
Hillmyer, M. A. Renewable, Degradable, and Recyclable Cross-Linked Elastomers. Ind. Eng. Chem. Res. 
2016, 55, 11097–11106. Copyright © 2016 American Chemical Society. 
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3.1. Abstract 

Most commercial elastomers, typified by vulcanized natural rubber, are cross-linked 

polymers and as such cannot easily be reprocessed or recycled. While some are derived 

from renewable resources, the majority are produced from petroleum feedstocks and do 

not easily degrade. In this study, renewable elastomers based on β-methyl-δ-valerolactone 

were produced using two different methodologies: 1) tandem copolymerization/cross-

linking with a bis(6-membered cyclic carbonate) and 2) cross-linking of a linear poly(β-

methyl-δ-valerolactone) homopolymer with a free-radical generator. The mechanical 

properties of these materials were investigated; tensile strengths of up to 12 MPa and 

elongations up to 2000% were observed. Inclusion of a filler (fumed silica) was used to 

enhance the performance of the elastomers without significant loss of elasticity with some 

composites exhibiting tensile strengths nearly double the neat elastomer. Aqueous 

degradation studies indicated that the materials were capable of degradation in acidic and 

basic conditions at 60 °C. Moreover, these cross-linked elastomers can also be chemically 

recycled, yielding monomer in high purity and yield (>91% and 93%, respectively). 

3.2. Introduction 

Cross-linked polymers (CPs) encompass almost a third of the synthetic polymer 

industry and are vital in a wide variety of products including tires, contact lenses, 

elastomers, adhesives, and foams.1 While cross-linking confers a number of advantages, 

including high thermal stability and solvent resistance, this structure also prevents these 

materials from being reprocessed. Postconsumer CPs are consequentially disposed of in 

landfills or by incineration, leading to significant loss of value.1 Additionally, the vast 
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majority of synthetic polymers—including CPs—are petroleum-derived and non-

degradable. Their production and disposal is therefore unsustainable in the long term.  In 

recent years, considerable effort has been devoted to the development of CPs that are 

recyclable, some of which are also renewable.2,3,4,5,6,7,8 

Among the palate of renewable polymers, aliphatic polyesters are particularly 

attractive because they are easily synthesized and in many cases are also biodegradable and 

biocompatible.9,10,11 In numerous previous examples, aliphatic polyesters have been used 

to prepare thermoplastic elastomers (TPEs) that mimic styrenic block polymers in both 

design and performance.12,13,14,15,16,17,18,19,20,21,22 Conveniently, the thermal and mechanical 

properties of these TPEs can be easily tuned by altering the size and composition of the 

discrete polymer blocks. Unfortunately, TPEs typically have poor solvent resistance, low 

thermal stability, and often exhibit significant stress softening (known as the Mullins 

effect).23 Finally, polyester TPEs often require rigorous reaction conditions to ensure 

proper morphology; variations in dispersity and the presence of adventitious initiators can 

result in a dramatic reduction of toughness. 

These issues are often resolved by the use of CPs, as they exhibit both high thermal 

stability and solvent resistance. A number of methods have been developed for cross-

linking polyesters to improve their thermal, physical, and mechanical properties. These 

methodologies frequently employ hydroxy-multifunctional polyesters, or polyesterols, 

such as poly(lactide) (PLA) and poly(ε-caprolactone) (PCL). Polyesterols can be cross-

linked using condensation reactions or further functionalized and subsequently cross-

linked.6,24,25,26,27,28,29,30 As the polyesterols are synthesized by either step growth 

condensation or ring-opening transesterification polymerization (ROTEP), their reactive 
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groups are generally terminal. In theory, the coupling efficiency should not be influenced 

by molar mass; in practice, low molar mass (Mn ≤ 5 kg mol−1 to end group) is often 

necessary to precisely target a balanced stoichiometry for the cross-linking reaction such 

that it reaches high conversion. As a result, the range of accessible molar masses between 

cross-links (Mx) is rather constrained. Improvements in the mechanical properties of CPs 

have been attributed to large Mx values. Most notably, ultimate elongation increases with 

Mx. Furthermore, higher Mx allows entanglements to form, which behave as transient 

physical cross-links; a lower molar mass between entanglements (Me) in the constituent 

polymer will increase the number of physical cross-links, also improving the mechanical 

properties.31 

Other strategies have been developed for polyesters to overcome these deficiencies. 

One method, tandem copolymerization/cross-linking, allows for direct conversion of 

monomers to CPs. Although this approach eliminates processing steps, it comes with its 

own challenges. For example, due to problems with solubility, high concentrations of bis(ε-

caprolactone) cross-linkers (8 to 28 mol%) are often required, rendering it difficult to tune 

the mechanical properties of the CPs in a controlled manner.32,33 Bis(6-membered cyclic 

carbonates) have been utilized at much lower loadings (1 mol%) when copolymerized 

directly with ε-caprolactone (CL), but this system likely suffered from reactivity 

differences as well.34,35 The inclusion of trimethylene carbonate (50 mol%) allowed for 

lower concentrations of cross-linker (0.05 mol%) and resulted in an amorphous material; 

however,  the mechanical properties of the resulting material are poor.  

A second method that has been used to access tunable polyester elastomers is ROTEP 

of alkene-functionalized lactone comonomers with saturated aliphatic lactones (e.g., CL) 
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to produce statistical copolymers.36,37,38 These copolymers can be cross-linked in 

subsequent steps using free radical or thiol-ene click reactions. While the properties of 

these CPs can be easily tuned, the alkene comonomers are often prohibitively expensive 

and/or challenging to synthesize on a large scale.37 Alkene functionalized macrolactones 

are more economical, however, their polymerization may also require the use of enzymatic 

polymerization catalysts, which can be limiting.38 Interestingly, free radical generators are 

capable of cross-linking fully saturated polyesters.34,39,40,41,42 Typically, this involves the 

thermal cross-linking of the polyester with an organic peroxide. Though this allows for 

facile tuning of the mechanical properties, these studies have been confined to high glass 

transition temperature (Tg) and/or semi-crystalline materials, which are not ideal for 

elastomers. In fact, there is a dearth of literature on tough cross-linked amorphous, low Tg 

polyesters; preceding examples have indicated poor tensile properties due to limits on Mx 

dictated by the methodologies used.26,27,43,44 Those with competitive properties generally 

have a Tg that is above –40 °C, limiting the scope of their potential applications.27,33,35 

We have demonstrated that β-methyl-δ-valerolactone (MVL) can be produced 

renewably on a large scale and can be polymerized in the bulk to afford poly(β-methyl-δ-

valerolactone) (PMVL).17 The properties of amorphous PMVL (Tg = −52 °C and Me = 4.3 

kg mol-1) make it an attractive polymer for use in a wide range of applications. For example, 

we have explored the use of PMVL in tough plastics, thermoplastic elastomers, soft 

polyurethane foams, and thermoplastic polyurethanes.17,20,45 Furthermore, PMVL has been 

shown to depolymerize in the presence of catalyst, allowing for controlled recovery of pure 

monomer.45 
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Herein, we report the production cross-linked elastomers prepared from PMVL. We 

use two different synthetic strategies: tandem copolymerization/cross-linking reaction of 

MVL with a bis(6-membered cyclic carbonate) and cross-linking of linear PMVL with a 

free-radical generator. We investigate the impact of synthetic conditions and fumed silica 

incorporation on the mechanical properties of PMVL elastomers. Furthermore, we study 

the degradation of these materials in aqueous media. Finally, we show that these materials 

can be recycled to recover MVL in high purity and yield. 

3.3. Experimental 

3.3.1. Materials. 

All reagents were purchased from Sigma-Aldrich (Milwaukee, WI) and were used as 

received unless otherwise stated. 1,5,7-triazabicyclodec-5-ene (TBD) was purified by 

vacuum sublimation (70 °C, 30 mTorr). Dichloromethane (DCM), tetrahydrofuran (THF), 

and methanol were purchased from Fisher Scientific (Hampton, NH); DCM and THF were 

purified via a GC-SPS-4-CM glass contour 800-L solvent purification system obtained 

from Pure Process Technologies (Nashua, NH). 3-Methyl-1,5-pentanediol was obtained 

from TCI (Portland, OR) and used without further purification. MVL was produced by one 

of two methods as described in previous studies and purified by fractional distillation (3X) 

over calcium hydride (72 °C, 1 Torr).45,46 5,5'-(oxybis(methylene))bis(5-ethyl-1,3-dioxan-

2-one) (B6CC), a bis(6-membered cyclic carbonate), was also produced as described in a 

previous study and recrystallized from THF (3X).7 Aerosil® R 812 was kindly provided 

by Evonik Industries (Parsippany, NJ). Rubber bands were purchased from the University 
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of Minnesota chemistry stockroom; they were manufactured in Thailand for Universal® 

(Deerfield, IL). All glassware was heated to 105 °C overnight prior to use. 

3.3.2. Modified synthesis of MVL from 3-methyl-1,5-pentanediol46 

3-Methyl-1,5-pentanediol (1 L, 974 g, 8.24 mol) and copper chromite (50 g, 0.16 

mol, 2 mol%) were charged into a 2-L 3-neck round bottom flask fitted with a Dean-Stark 

apparatus, a thermometer, and a glass stopper. The apparatus was then attached to a bubbler 

filled with silicon oil. A heating mantle was used to heat the round bottom flask to 240 °C 

under vigorous stirring. The temperature of the reaction rapidly rose to 170 °C, followed 

by collection of water (ca. 5 mL) and an unknown organic liquid (ca. 5 mL). Following 

removal of these impurities, the reaction temperature rose rapidly to ca. 210-220 °C 

followed by evolution of H2 gas. The reaction was allowed to continue for 20 h and then 

cooled. At this time the 1H NMR spectrum of the solution indicated ca. 95% conversion of 

the diol. The crude product, a mixture of MVL monomer and PMVL polymer, was then 

purified by fractional distillation under reduced pressure. 

 First, a forerun was removed (1 Torr, 55-72 °C, 50 g) followed by a second fraction 

(1 Torr, 72-75 °C, 850 g). The higher boiling fraction was a clear, colorless liquid 

containing a minor amount of 4-methyl-3,4,5,6-tetrahydro-2H-pyran-2-ol. The 

concentration of this impurity in MVL was estimated to be ~0.2 mol% using the 1H NMR 

signal corresponding to the methine proton at δ 5.3 ppm. To remove the lactol, the crude 

MVL was stirred with phosphorous pentoxide (5 g) at 120 °C for 12 h; this resulted in the 

dehydration of the lactol impurity and polymerization of the MVL (~60% conversion of 

MVL was observed) presumably with water or lactol as the initiating species.  The solution 

of polymer in monomer was then distilled under the conditions previously described until 
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ca. 10% of the liquid remained in the pot. Analysis of the resulting MVL via 1H NMR 

spectroscopy indicated that it no longer contained any lactol impurity, within the detection 

limit of the instrument used. To obtain high purity monomer, the MVL was then distilled 

two more times under reduced pressure from calcium hydride, each time discarding the 

first 5% of distillation liquid, to yield a clear a colorless liquid (65-75% yield). 

To evaluate the monomer purity, test polymerizations were conducted in the bulk at 

room temperature using 0.1 mol% TBD as a catalyst in the absence of exogenous initiator. 

The molar mass of the resultant polymer is expected to depend on the concentration of 

adventitious initiators which can be roughly estimated via size-exclusion chromatography. 

For this work we classified the MVL as low purity if polymerization results in PMVL with 

Mn < 100 kg/mol, moderate purity if Mn >100 kg/mol, and high purity if Mn > 200 kg/mol. 

The copper chromite residue after the first distillation has been used in up to four successive 

reactions without significant/noticeable decreased in activity. 1H NMR (500 MHz, CDCl3; 

25 °C): δ (ppm) = 4.40 [m, -O-CH2-CH2-, 1H], 4.25 [m, -O-CH2-CH2-, 1H], 2.66 [m, -CO-

CH2-CH(CH3)-, 1H], 2.20 [m, -CO-CH2-CH(CH3)-, 1H], 2.03-2.13 [m, CO-CH2-

CH(CH3)-CH2- and -CO-CH2-CH(CH3)-, 2H], 1.9 [m, -CH(CH3)-CH2-CH2-O, 1H], 1.55 

[m, -CH(CH3)-CH2-CH2-, 1H], 1.05 [d, -CH2-CH(CH3)-CH2-, 3H]. 

3.3.3. Synthesis of a cyclic carbonate cross-linked PMVL (CC) 

Under a nitrogen atmosphere, MVL (7.00 g, 61.4 mmol, high purity) was charged 

into a 20-mL scintillation vial along with varying amounts of B6CC (46 to 371 mg, 0.15 

to 1.23 mmol, 0.25 to 2 mol% to MVL) and 1,4-benzenedimethanol (BDM, 0 to 19 mg, 0 

to 0.14 mmol). The mixture was stirred until completely homogenous, then a solution of 

TBD in DCM (100 mg/mL, 85 μL solution, TBD = 0.1 mol% relative to MVL) was injected 
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using a gastight syringe. The polymerization solution was allowed to stir for ca.10 s and 

then poured into a Pyrex® petri dish (inner diameter = 90 mm). The contents of petri dish 

were allowed to cure overnight at room temperature under nitrogen (ca. 20 h) to ensure 

maximum conversion. The resulting elastomer was then removed from the dish and a 1 M 

solution of acetic anhydride and triethylamine in DCM (0.35 to 1.40 mL, ca. 5 eq relative 

to hydroxyl moieties or TBD if no BDM was used) was dripped over the top of the film 

via a syringe. The elastomer was allowed to sit in air for another 20 h and then placed in 

an oven under reduced pressure at 80–90 °C for 48 h to remove DCM, acetic anhydride, 

triethylamine, and residual MVL monomer. This process afforded a clear, colorless, and 

odorless cross-linked PMVL film (88 to 91% mass yield). Samples prepared using this 

method are named as CC-X-Y, where X and Y represent the mol% B6CC and the theoretical 

molar mass (kg mol–1) if no cross-linking were to occur, respectively. For example, a 

sample with 1.00 mol% B6CC and a theoretical molar mass of 100 kg/mol based on the 

amount of BDM added (assuming 100% monomer conversion and no cross-linker added) 

would be denoted CC-1.00-100. 

3.3.4. Synthesis of MVL homopolymer 

Under a nitrogen atmosphere, MVL (100.00 g, 875 mmol, moderate purity) was 

charged into a 1-L round bottom flask with a Teflon® coated magnetic stir bar. A solution 

of TBD in DCM (1.22 mL, 100 mg TBD/mL DCM, 0.1 mol% TBD to MVL) was added 

to the monomer, then the flask was sealed with a rubber septum and the mixture was stirred 

for 16 hours. Following this, a 1 M benzoic acid solution in DCM was added (9 mL, 10 eq. 

benzoic acid to TBD) and the polymer solution was diluted with additional DCM to ca. 

500 mL. Once the polymer was fully dissolved, the solution was precipitated into methanol 
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(5 L), then dried over a stream of nitrogen for 2 days, dried under vacuum at room 

temperature for 3 days, and finally dried in an oven under reduced pressure at 60–70 °C 

for 2 days. The resulting PMVL was a highly viscous, clear and, colorless (85-88% yield). 

1H NMR (500 MHz, CDCl3; 25 °C): δ (ppm) = 4.13 [m, -O-CH2-CH2-, 2H], 2.34 [m, -CO-

CH2-CH(CH3)-, 1H], 2.20 [m, -CO-CH2-CH(CH3)-, 1H], 2.10 [m, -CH2-CH(CH3)-CH2-, 

1H] 1.72 [m, -CH(CH3)-CH2-CH2-, 1H], 1.55 [m, m, -CH(CH3)-CH2-CH2-, 1H], 1.00 [d, -

CH2-CH(CH3)-CH2-, 3H]. RI-SEC (CHCl3): Mn = 162 kg mol−1, Ð = 1.29. DSC: Tg = –52 

°C. TGA: Td (5% mass loss, Air) = 240 °C. 

3.3.5. Production of peroxide cross-linked PMVL (PC) and PC-fumed silica 

composities (PC-FS) 

PMVL homopolymer (2.00 g) and benzoyl peroxide (BPO, 20 to 100 mg, 1 to 5 wt%) 

were loaded into a twin-screw extruder (DSM Xplore 5 mL micro compounder; Geleen, 

Netherlands) at 70 °C (10 h half-life for BPO) and allowed to mix for 10 min before 

extruding a grayish yellow material (ca. 80% recovery). Composites were also prepared 

with 10, 20, or 30 wt% fumed silica (FS) fed into the extruder (2 wt% BPO relative to 

PMVL was used for all composites), yielding a colorless and translucent material. The 

homogenous polymer mixture was placed in a 5 cm (W) × 5 cm (L) × 0.05 cm (T) 

aluminum mold that was placed between two 12 cm x 12 cm aluminum plates with a thin 

Teflon® sheet (0.05 mm thick) over each plate. This was then placed in a press mold 

(Wabash MPI; Wabash, IN) at 150 °C and 3 tons of pressure for 10 min and rapidly cooled 

to room temperature over 5 min, affording a translucent, grayish yellow elastomer. In the 

presence of FS, the materials appeared colorless and translucent. Samples are named as 

PC-Z-FSQ where Z represents the wt% BPO relative to PMVL and Q represents wt% FS 
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fed into the extruder. For instance, a sample with 1 wt% BPO and 0 wt% FS would be 

denoted PC-1.0-FS0. 

3.3.6. Depolymerization of CC-0.50-100 or PC-2.0-FS0 

CC-0.50-100 or PC-2.0-FS0 (ca. 1.00 g cut into small pieces), stannous octoate (1 

drop, ca. 20 mg), and pentaerythritol ethoxylate (1 drop, ca. 20 mg, Mn = 797 g/mol) were 

placed in a 10-mL round bottom flask equipped with a simple vacuum distillation 

apparatus. The mixture was heated to 150 °C overnight at 1 Torr, yielding a clear and 

colorless liquid (91% recovery for CC-0.50-100 and 93% for PC-2.0-FS0 after a mass 

correction for cross-linker was performed). The 1H NMR spectrum of the distillate was 

identical to that of pure MVL. 

3.3.7. Characterization Methods6 

1H NMR spectroscopy was performed on a 500 MHz Bruker Avance III HD with 

SampleXpress spectrometer (Billerica, MA). Solutions were prepared in 99.8% CDCl3 

(Cambridge Isotope Laboratories). All spectra were acquired at 20 °C with 64 scans and a 

2 s delay. Chemical shifts are reported in ppm with respect to CHCl3 (7.26 ppm). 

Uniaxial tensile testing and hysteresis measurements were conducted using dogbone-

shaped tensile bars (ca. 0.5 mm (T) × 3 mm (W) × 25 mm (L) and a gauge length of 14 

mm for PC samples or 0.5 mm (T) × 5 mm × 38 mm (L) and a gauge length of 22 mm for 

CC samples). The samples were aged for 48 hours at 25 °C in a desiccator prior to testing. 

Tensile measurements were performed on a Shimadzu Autograph AGS-X Series tensile 

tester (Columbia, MD) at 25 °C with a uniaxial extension rate of 50 mm min-1. Young’s 

modulus (E) values were calculated using the Trapezium software by taking the slope of 
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the stress-strain curve from 0 to 10% strain. Reported values are the average and standard 

deviations of five replicates from the same sample. Twenty cycles were performed during 

hysteresis measurements to 67% strain at 50 mm min-1 and the energy loss was calculated 

by subtracting the area under the curve of the contraction from the area under the curve of 

the extension in each cycle. The residual strain was taken as the point at which the return 

cycle reached its minimum stress. All graphical representation of hysteresis data was 

smoothed using a 100-point adjacent-averaging smoothing function in Origin® data 

analysis software in order to remove noise. 

Dynamic mechanical thermal analysis (DMTA) was performed on a TA Instruments 

RSA-G2 analyzer (New Castle, DE) using dog bone shape films (ca. 0.5 mm (T) × 3 mm 

(W) × 25 mm (L) and a gauge length of 14 mm). DMTA experiments were conducted in 

tension film mode, where the axial force was first adjusted to 0.2 N of tension (sensitivity 

of 0.01 N) to ensure no buckling of the sample. The proportional force mode was set to 

force tracking to ensure that the axial force was at least 100% greater than the dynamic 

oscillatory force. The strain adjust was then set to 30% with a minimum strain of 0.05%, a 

maximum strain of 5%, and a maximum force of 0.2 N in order to prevent the sample from 

going out of the specified strain range. A temperature ramp was then performed from –70 

°C to 200 °C at a rate of 5 °C min-1, with an oscillating strain of 0.05% and an angular 

frequency of 6.28 rad s-1. The Tg was calculated from the maximum value of the loss 

modulus. The effective molar mass between cross-links (Mx,eff), which consists of 

contributions from cross-links and entanglements, was calculated using the storage 

modulus (E’) at 25 °C and equation 1.  
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𝐸1(𝑇) = 3𝐺′(𝑇) = 3𝑅𝑇𝜈) =
*+,-
./,788

     (1) 

Where E’ and G’ are the storage and shear modulus respectively, R is the universal gas 

constant, T refers to the absolute temperature in the rubbery region (ca. 298 K), νe is the 

cross-link density, and ρ is the density of PMVL17 (ca. 1.1 g cm-3). 

Differential scanning calorimetry (DSC) was conducted on a TA Instruments 

Discovery DSC (New Castle, DE). The instrument was calibrated using an indium 

standard. All samples were prepared using T-Zero hermetic pans (ca. 5 mg) under a N2 

purge of 50 mL min-1. The samples were initially cooled to –80 °C and then heated to 100 

°C at 10 °C min-1. The samples were then cooled back to –80 °C at 10 °C min-1 and heated 

again to 100 °C at the same rate. Values for Tg were acquired at the mid-point of each 

transition in the second heating curve using the Trios® software. Thermogravimetric 

analysis (TGA) was performed on a TA Instruments Q500 (New Castle, DE) under air at 

a heating rate of 10 °C/min to 550 °C. A typical sample size was between 8-15 mg. 

Solvent extraction experiments were performed by placing a small amount of cross-

linked polymer (ca. 20 to 100 mg) into a 20-mL vial filled with DCM. The vial was then 

closed and stirred for 48 h before removing the solvent by gravity filtration. The recovered 

sample was dried under reduced pressure for 48 h at 20 mTorr, after which the sample was 

weighed and the gel percent was determined. 

The hydrolytic degradation of the elastomers was investigated in accelerated 

conditions using 1 M aqueous solutions of NaOH or HCl at 60 °C as well as in biologically 

relevant conditions by using an aqueous phosphate-buffered saline (PBS, pH = 7.4) 

solution at 37 °C. Nine replicates of each cross-linked polymer sample were prepared (50 
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mg each). The replicates were immersed in triplicate in the aforementioned aqueous 

solutions in separate 20-mL scintillation vials and heated to their respective temperatures. 

The insoluble mass was recorded after removing each sample from the solution and patting 

it dry with a Kimwipe™, after which the sample was re-immersed in the same solution. 

Solutions were checked weekly with litmus paper to ensure their pH remained stable; none 

of the solutions showed pH variance by this method. The data presented in the plots of 

insoluble mass % (percentage of original mass) over time includes the averages and 

standard deviations of the triplicate samples in their respective medium. 

Refractive index size exclusion chromatography (RI-SEC) was performed on an 

HP/Agilent 1100 series SEC at 35 °C using three successive PLgel Mixed C Columns and 

a PLgel 5 μm guard column with an HP 1047A RI detector (Santa Clara, CA). CHCl3 was 

used as the mobile phase with an elution rate of 1 mL min-1. The Mn and Đ were determined 

based on a 10-point calibration curve using EasiCal™ polystyrene standards purchased 

from Agilent. 

3.4. Results and Discussion 

We first investigated PMVL elastomers synthesized using a tandem methodology 

(Figure 3.1). A bis(6-membered cyclic carbonate) was chosen as a cross-linker due to its 

high solubility in neat MVL, and also because it was anticipated that MVL and B6CC 

would have similar reactivity. The equilibrium monomer concentration of MVL is 90% at 

room temperature, thus we removed residual monomer post-polymerization prior to testing 

the material properties.17  
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Figure 3.1. Synthesis of Cross-linked PMVLs. 

As PMVL is able to depolymerize in the presence of catalyst, we scanned a variety 

of methodologies to deactivate TBD so that any residual monomer could be removed under 

reduced pressure and the material could operate at elevated temperatures without 

uncontrollable depolymerization. Guanidine-based organocatalysts are most commonly 

deactivated using a large excess of benzoic acid, yet we observed that the excess benzoic 

acid sublimed under vacuum and that the films depolymerized in these conditions. We posit 

that there remained an acid adduct of TBD that was capable of depolymerizing PMVL, as 

similar acid adducts of organocatalysts are capable of transesterification.47 Additionally, 

deactivation of TBD through exposure to air generally took up to two weeks at ambient 

conditions, suggesting that diffusion of oxygen and carbon dioxide into the polymer is 

slow. 

Therefore, we developed a method to convert the hydroxyl end-groups of PMVL to 

acetate groups; we suspected that acetylation chemistries would also deactivate the residual 

TBD. To accomplish this, we applied a solution of acetic anhydride and triethylamine in 
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DCM (5 equivalents with respect to hydroxyl moieties or TBD if no added initiator was 

added) to the surface of the film. After allowing the solution to diffuse through the film for 

20 h, we subjected the material to reduced pressure to remove residual monomer. We found 

that this could be accomplished with mild heating (80 to 90 °C) without significant 

depolymerization. We observed that this end-capping strategy also increased the 

decomposition temperature of the polymers by 10–15 °C when compared with CC samples 

in which we deactivated TBD with two weeks of air exposure. The significant increase in 

the decomposition temperature can be attributed to the lack of hydroxyl groups, which are 

required for depolymerization of PMVL to occur via an “unzipping” mechanism. The 

amount of cross-linker did not appear to affect the mass recovery after excess monomer 

removal, nor was there a significant difference in their decomposition temperatures. On the 

other hand, the yield of an elastomer produced with no initiator was significantly lower 

(76%), likely owing to a slower polymerization rate; if the polymerization had been 

allowed to proceed, it is possible that a higher conversion could have been obtained. This 

indicates that some initiator is necessary to attain high monomer conversion in a reasonable 

period of time. 

Once the monomer removal protocol was established, two sets of CC samples were 

investigated. At a fixed ratio of MVL to added BDM initiator (specifically, 876:1), we first 

varied the concentration of B6CC from 0.25 to 2.0 mol% relative to MVL. All of the 

materials with B6CC concentrations greater than or equal to 0.25 mol% gelled within 10 

min. To ensure conversion of MVL monomer reached equilibrium, the films were allowed 

to cure overnight (ca. 20 h). After monomer removal, extraction experiments revealed high 

gel percentages that increased slightly with cross-linker content (Table 3.1). Next, we fixed 
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the ratio of MVL to B6CC (specifically at 100:1) and varied the amount of added initiator.  

No clear trend in gel percentage was observed when the concentration of initiator was 

varied. Furthermore, the Tg of all the materials was between –47 and –49 °C compared to 

–52 °C for PMVL homopolymer, implying that the molecular structure and amount of 

cross-linker did not significantly contribute to the thermal properties of the material.  

Table 3.1. Tandem Cross-linking of PMVL with B6CC. 

CC-X-Ya Yield 
(%)b 

Gel 
%c 

E’ 
(MPa)c 

Mx,eff (kg 
mol−1)c,d 

Mx,theo (kg 
mol−)c,e 

Tg,DMTA 

(°C)c,f 
Tg,DSC 

(°C)c,h 
Td 

(°C)c,i 

CC-0.25-100 88 89 1.2 6.8 40 –49 –48 274 
CC-0.50-100 91 95 1.8 4.5 21 –48 –48 262 
CC-0.75-100 89 98 1.9 4.3 13 –48 –47 266 
CC-1.0-100 89 99 2.1 3.9 10 –48 –48 269 
CC-2.0-100 89 100 2.7 3.0 5.1 –47 –46 269 
CC-1.0-NIg 76 98 2.8 2.9 10 –47 –47 268 
CC-1.0-50 88 97 1.8 4.5 10 –48 –47 262 
CC-1.0-75 89 96 1.6 5.1 10 –48 –47 263 
CC-1.0-150 89 99 2.2 3.7 10 –48 –47 266 
CC-1.0-200 89 100 1.7 4.8 10 –48 –47 262 

a X is the mol% B6CC to MVL and Y is the theoretical Mn (kg mol–1) assuming no cross-
linker was added and 100% monomer conversion. b Recovery of mass after heating in a 
vacuum oven for 48 h at 80 °C. c Determined at 25 °C after removing residual monomer.  
d Determined using E’ from DMTA in equation 1. e Calculated by dividing the mass of the 
polymer recovered by the moles of B6CC and assuming no contribution from 
entanglements. f Calculated from the maximum of the loss modulus. g NI stands for no 
initiator; Mn in the presence of no B6CC with high purity monomer is >200 kg mol−1 
relative to polystyrene standards in RI-SEC with CHCl3 as the mobile phase. h Taken on 
the second heating ramp at a rate of 10 °C min-1. i Taken under air, defined as the 
temperature at which 5% mass loss is observed.  

With the materials in hand, we sought to determine their tensile properties and 

compare them to those of a conventional elastomer, specifically vulcanized natural rubber 

(generic rubber band, Universal®, Deerfield, IL). Remarkably, CC-0.25-100 and CC-0.50-

100 both exhibited significantly higher tensile strength and elongation than rubber bands 
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as well as a substantial strain hardening effect (Figure 3.2). Interestingly, CC-0.75-100 

and CC-1.00-100 both showed uniaxial extension properties very similar to that of a rubber 

band, although their tensile strength drops significantly compared to the samples with 

lower cross-linker content. A second batch of analogous materials exhibited nearly 

identical properties, indicating this behavior is reproducible. As expected, increasing the 

amount of cross-linker resulted in a reduction of the strain at break while slightly increasing 

Young’s modulus (Figure 3.3 and Table 3.2). However, there was no clear correlation 

between cross-linker content and ultimate tensile strength (Figure 3.3 and Table 3.2). 

Cross-linked rubbers often show a maximum in tensile strengths at intermediate cross-link 

densities which would initially explain this trend.48 However, the increase in tensile 

strength for CC-2.0-100 does not correlate, suggesting other undeterminable factors may 

be involved. 
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Figure 3.2. A) Representative tensile data for CC elastomers cross-linked with varying 
amounts of B6CC and keeping BDM constant. B) Representative hysteresis data for a 
cross-linked elastomer (CC-1.0-100). 
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Figure 3.3. Tensile properties of PC while varying mol% of B6CC. The amount of initiator 
was kept at a constant amount such that Mn,theo of PMVL would be 100 kg/mol if 100% 
conversion were achieved and no cross-linking occurred. A) Stress at break, B) strain at 
break, and C) Young’s modulus. 
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Table 3.2. Tensile properties of CC materials. 

CC-X-Ya Stress at break 
(MPa) 

Strain at break 
(%) 

Young's modulus 
(MPa)b 

CC-0.25-100 4.9 ± 0.9 1800 ± 100 0.80 ± 0.07 
CC-0.50-100 7 ± 1 1200 ± 90 1.0 ± 0.2 
CC-0.75-100 3.6 ± 0.4 530 ± 20 1.5 ± 0.2 
CC-1.0-100 3.1 ± 0.7 360 ± 30 1.9 ± 0.3 
CC-2.0-100 6.9 ± 0.6 270 ± 9 2.5 ± 0.1 
CC-1.0-NIc 4 ± 1 350 ± 40 1.9 ± 0.1 
CC-1.00-50 1.8 ± 0.1 300 ± 20 1.5 ± 0.3 
CC-1.0-75 1.5 ± 0.2 220 ± 40 1.4 ± 0.1 

CC-1.0-150 4 ± 1 390 ± 50 1.8 ± 0.2 
CC-1.0-200 5 ± 1 390 ± 40 2.1 ± 0.3 

a X is the mol% B6CC added and Y is the theoretical Mn (kg mol–1) assuming no cross-
linker was added. b Calculated from the slope of the stress-strain data from 0-10% strain. 
c NI stands for no initiator; Mn in the presence of no B6CC with high purity monomer is 
>200 kg mol−1. 

Hysteresis experiments revealed that the energy loss and residual strain per cycle 

decreased monotonically with B6CC content, with the sample containing 2.0 mol% B6CC 

exhibiting the least amount of hysteresis loss over 20 cycles (Figure 3.2, Figure 3.4, and 

Table 3.3). The results obtained via DMTA indicated a similar trend in the stiffness of the 

elastomers; samples with more cross-linker exhibited a higher plateau modulus (Figure 

3.5). Samples with the least amount of cross-linker displayed a slightly negative sloping 

plateau modulus at temperatures above the Tg. This effect is likely due to dangling chain 

ends as this phenomenon has been seen previously in materials with high levels of this 

network defect.49 The effective molar mass between cross-links (Mx,eff) of the materials 

was much lower than expected (Table 3.1); as the Me of linear PMVL is 4.3 kg/mol, this 

result is likely due to inherent entanglements contributing to Mx,eff.50 Therefore, it is also 

possible that the relaxation of transient entanglements within the network are also 
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contributing to the negatively sloping modulus exhibited by samples with low cross-linker 

content. 

Table 3.3. Hysteresis energy loss and residual strain in CC and PC elastomers. 

 Energy Loss (%)a Residual Strain (%) b 
Sample Name Cycle 1 Cycle 2 Cycle 20 Cycle 1 Cycle 2 Cycle 20 
CC-0.25-100 51 46 53 6.8 8.7 17 
CC-0.50-100 31 25 25 2.4 3.7 8.3 
CC-0.75-100 19 14 12 4.9 6.4 9.2 
CC-1.00-100 15 10 9.3 2.6 3.3 5.3 
CC-2.00-100 7.9 4.9 4.0 0.9 1.9 2.2 
CC-1.00-NI 19 14 12 1.9 6.1 10 
CC-1.00-50 9.3 6.4 5.9 0.8 1.9 3.1 
CC-1.00-75 9.9 6.6 5.7 0.1 0.5 2.4 

CC-1.00-150 12 7.7 5.8 2.1 3.6 6.9 
CC-1.00-200 13 8.0 5.8 1.4 2.8 6.8 
PC-1.0-FS0 41 34 36 7.2 10 16 
PC-2.0-FS0 22 16 15 4.1 5.4 8.5 
PC-3.0-FS0 14 10 8.5 2.3 3.5 4.5 
PC-4.0-FS0 11 6.7 5.8 2.1 2.9 3.5 
PC-5.0-FS0 6.5 3.6 3.4 0.6 0.7 1.1 
PC-2.0-FS10 21 16 15 3.3 4.1 6.3 
PC-2.0-FS20 28 21 20 3.4 4.3 7.5 
PC-2.0-FS30 43 32 20 5.0 6.9 11 
Rubber Band 21 9.5 7.4 0.1 0.20 1.1 

a Calculated by dividing the area under the contraction by the area under the extension. 
b Determined as the point at which the contraction reaches a plateau stress. 
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Figure 3.4. Cycles 1, 2, and 20 of the hysteresis of CC while varying B6CC. The amount 
of initiator was kept at a constant amount such that Mn,theo of PMVL would be 100 kg/mol 
if 100% conversion were achieved in the absence of cross-linker. The hysteresis of a rubber 
band is also shown. Samples were stretched at a rate of 50 mm min-1. 
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Figure 3.5. DMTA of CC while varying the mol% of B6CC. The amount of initiator was 

kept at a constant amount such that Mn,theo of PMVL would be 100 kg/mol if 100% 

conversion were achieved and no cross-linking occurred. A) Storage modulus (E’) and B) 

loss modulus (E”). Samples were measured from –70 to 200 °C at a strain rate of 0.05% 

and a frequency of 1 Hz. 

We next tested the set of materials prepared at fixed B6CC content with varying 

amounts of initiator. Uniaxial extension tests revealed that increasing the amount of 

initiator caused the material to lose significant toughness (Table 3.2, Figure 3.6, and 

Figure 3.7), though no significant change in hysteresis loss was observed (Figure 3.8 and 

Table 3.3). We hypothesize that the loss of toughness is due to an increase in network 

defects from a higher amount of active initiation sites; network defects can cause a 

significant reduction in mechanical properties because the applied stress will be localized 

rather than equally divided among the strands in the network.30 Furthermore, the absence 

of initiator did not produce a more desirable material, thus, the addition of some initiator 

is preferred to obtain higher mass recovery after monomer removal high conversion of 

monomer.  
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Figure 3.6. Representative tensile data showing the influence of varying amounts of BDM, 
while keeping B6CC constant, on tensile properties. 
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Figure 3.7. Tensile properties of CC while varying target Mn while keeping mol% of B6CC 
fixed. Target Mn is determined by calculating the theoretical Mn of the polymer assuming 
no cross-linker were added and 100% conversion of monomer. A) Stress at break, B) strain 
at break, and C) Young’s modulus. 
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Figure 3.8. Cycles 1, 2, and 20 of the hysteresis of CC while varying amount of BDM and 
keeping a constant 1 mol% B6CC. Samples were stretched at a rate of 50 mm min-1. 
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Neglecting the impact of reactivity ratio differences, if the ratio of MVL to BDM is 

fixed, Mx should increase with a decreasing amount of B6CC in the initial feed because 

less tetrafunctional junctions will be formed. On the other hand, Mx should not vary 

significantly if the ratio of MVL to BDM is varied as BDM is difunctional and will not 

introduce cross-link junctions. Indeed, the plateau modulus and Mx,eff increase as the 

amount of B6CC is decreased, whereas no clear trend is seen when varying the amount of 

BDM (Figure 3.9 and Table 3.1). 

 

Figure 3.9. DMTA of CC while varying the initiator loading and maintaining a 1 mol% 
B6CC. A) Storage modulus (E’) and B) loss modulus (E”). Samples were measured from 
–70 to 200 °C at a strain rate of 0.05% and a frequency of 1 Hz. 

In addition to the tandem copolymerization/cross-linking strategy, we also explored 

a sequential approach where linear PMVL homopolymer was synthesized and cross-linked 

using a free radical generator (Figure 3.1). This was accomplished by melt blending linear 

PMVL with BPO in a twin-screw extruder at 70 °C and cured in a press mold at 150 °C. 

We fixed the initial molar mass of the PMVL prepolymer (Mn = 162 kg mol–1) and varied 

the mass percent of BPO in the blend. In some cases, we also added a hydrophobic fumed 
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silica filler (Aerosil® R 812). The characteristics of these samples and blends are 

summarized in Table 3.4. 

Table 3.4. Post-polymerization Cross-linking of PMVL with BPO. 

PC-Z-FSQa Gel % FS 
(%) 

E’ at 25 °C 
(MPa) 

Mx,eff (kg 
mol–1)b 

Tg DMTA 
(°C) c 

Tg DSC 

(°C)d 
Td (°C)e 

PC-1.0-FS0 76 0 1.4 5.8 –50 –50 264 
PC-2.0-FS0 93 0 1.7 4.8 –49 –50 244 
PC-3.0-FS0 95 0 1.8 4.5 –50 –49 246 
PC-4.0-FS0 96 0 2.1 3.9 –50 –49 242 
PC-5.0-FS0 97 0 2.1 3.9 –49 –48 241 

PC-2.0-FS10 96 9 2.4 3.4 –49 –50 256 
PC-2.0-FS20 95 16 2.9 2.8 –50 –51 259 
PC-2.0-FS30 95 25 5.0 1.6 –48 –51 256 

aZ is the wt% BPO with respect to PMVL and FSQ is the wt% fumed silica added with 
respect to PMVL; all samples produced with 162 kg mol–1 PMVL relative to polystyrene 
standards in RI-SEC with CHCl3 as the mobile phase.  bCalculated using E’ from DMTA 
in equation 1. cDetermined from the maximum of the loss modulus from DMTA. dTaken 
on the second heating ramp at a rate of 10 °C min-1. eTaken under air, defined as the 
temperature at which 5% mass loss is observed. 

To our knowledge, the exact mechanism by which saturated polyesters cross-link in 

the presence of radicals has not been studied. Hermans and Eyk suggest that the reaction 

of cyclohexane with BPO produces carbon radicals capable of a variety of reactions, most 

commonly resulting in dimers and other oligomers.51 The tertiary carbon within the 

backbone of PMVL is the most stable position for carbon radicals, and thus, we assume 

that the longer-lived radicals at the tertiary carbons allow for a more efficient reaction than 

at the methylene units along the backbone. Indeed, the PC elastomers exhibited higher gel 

fractions when compared to PCL cross-linked with BPO, which contains no tertiary 

carbons.41  
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The reaction of PMVL with BPO did not afford a high degree of cross-linking at 0.1 and 
0.5 wt% of BPO. PC elastomers prepared with 2 and 3 wt% BPO exhibited very desirable 
tensile properties (Figure 3.10, Figure 3.11, and  

Table 3.5) and outperformed all CC samples. At BPO loadings of 4 and 5 wt%, the 

materials began to drastically lose toughness, exhibiting significant decreases in tensile 

strength and elongation; furthermore, these samples no longer exhibited significant strain 

hardening. Indeed, this phenomenon has previously been observed with vulcanized rubber 

and has been attributed to variations in the viscoelastic properties of the material rather 

than a reduction in its inherent strength.48 However, Smith and Chu posit that no simple 

correlation can be attributed to this occurrence as tensile failure depends on a variety of 

factors.52 All of the PC samples exhibited a grayish yellow discoloration. We surmise that 

the yellow discoloration in the absence of FS is due to slight oxidative degradation while 

the gray discoloration is due to impurities attained in the extruder. Indeed, samples 

prepared by solvent casting in DCM also had a yellow discoloration, however, no gray 

discoloration was observed. No significant difference in mechanical or thermal properties 

were observed between samples prepared by solvent casting and extrusion. 
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Figure 3.10. A) Representative tensile data for PC elastomers and a commercially 
available generic rubber band. The 1 wt% BPO sample (black line) begins to tear near the 
grip above 1500% strain, making the observable tensile strength at break lower than its 
actual value. B) Tensile data for PC-FS composites prepared with 2 wt% BPO relative to 
the mass of PMVL. 
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Figure 3.11. Tensile properties of PC while varying wt% of BPO: A) Stress at break, B) 
strain at break, and C) Young’s modulus. 
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Table 3.5. Tensile properties of PC and PC-FS materials. 

PC-Z-FSQa Stress at break 
(MPa) 

Strain at break 
(%) 

Young's modulus 
(MPa)a 

PC-1.0-FS0 6 ± 1 2000 ± 100 1.13 ± 0.07 
PC-2.0-FS0 12 ± 2 1400 ± 100 1.40 ± 0.08 
PC-3.0-FS0 10 ± 4 1170 ± 80 1.44 ± 0.06 
PC-4.0-FS0 4 ± 2 700 ± 200 1.56 ± 0.04 
PC-5.0-FS0 2.4 ± 0.7 400 ± 100 1.9 ± 0.1 

PC-2.0-FS10 18 ± 2 1300 ± 80 1.7 ± 0.2 
PC-2.0-FS20 19 ± 2 1400 ± 100 1.8 ± 0.3 
PC-2.0-FS30 22 ± 5 1400 ± 100 2.2 ± 0.2 

a Z is the wt% BPO with respect to PMVL and FSQ is the wt% fumed silica added with 
respect to PMVL; all samples produced with 162 kg mol–1 PMVL relative to polystyrene 
standards in RI-SEC with CHCl3 as the mobile phase.  b Calculated from the slope of the 
stress-strain data from 0-10% strain. 

Similarly to the CC elastomers, the radically cross-linked materials exhibited higher 

plateau moduli and better hysteresis recovery when the loading of BPO was increased 

(Figure 3.12, Figure 3.13, Table 3.3, and Table 3.4). At low BPO loading, we also 

observe a negatively sloping plateau modulus, similar to CC samples with low B6CC 

loading, which we attributed dangling chain ends49 and the relaxation of transient 

entanglements within the network. The large increase in tensile strength from CC to PC 

was not entirely expected. We hypothesize that the difference in reactivity ratios between 

MVL and B6CC may have resulted in more network defects and a less uniform distribution 

of cross-links than in the PC elastomers. The radicals formed in the production of PC 

samples should theoretically have an equal probability of reacting with each repeat unit, 

which would result in a more uniform distribution of cross-links. As previously discussed, 

an applied force is more evenly dispersed in materials with evenly distributed cross-links, 
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than in those with more network defects; as a result, the more uniform materials should be 

significantly stronger.30 

 

Figure 3.12. DMTA of PC while varying BPO wt%. A) E’ and B) E”. Samples were 
measured from –70 to 200 °C at a strain rate of 0.05% and a frequency of 1 Hz. 
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Figure 3.13. Cycles 1, 2, and 20 of the hysteresis of PC while varying the amount of BPO 
as well as a rubber band. Samples were stretched at a rate of 50 mm min-1. 
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In an attempt to further improve the properties of the PMVL elastomers and to reduce 

the total cost of the elastomer, we prepared composites containing fumed silica, Aerosil® 

R 812.53 We recently demonstrated that this FS could be homogenously dispersed in cross-

linked hydrogenated polyolefins and also impart dramatic improvements in the mechanical 

properties.54 Although we also attempted to produce filler reinforced materials using both 

the tandem cross-linking strategy, we observed that TBD catalyst used for the 

copolymerization reaction was intolerant of the FS.  However, we found that FS reinforced 

elastomers could easily be prepared using the sequential radical melt blending route. For 

all samples, the BPO loading was fixed at 2 wt% with respect to PMVL, and blends 

containing 10 to 30 wt% FS were prepared. The TGA data indicated that in all cases the 

incorporation of FS into the polymer matrix during twin-screw extrusion was slightly lower 

than the feed amount (Table 3.4). Since the TGA of Aerosil® R 812 exhibited no mass 

loss up to 550 °C, we believe this minor discrepancy is due to inefficient extrusion rather 

than FS degradation, loss of water, or volatile small molecules adsorbed to the surface of 

the filler. 

As expected, the mechanical properties of the PC elastomers improved dramatically when 
blended with FS (Figure 3.10, Figure 3.14, and  

Table 3.5). The tensile strengths of the composites were improved by 50 to 83% 

relative to the neat elastomer and the elongation at break remained nearly constant at all 

filler loadings. Furthermore, the Young’s modulus increased from 1.4 to 2.2 MPa when 25 

wt% FS was incorporated. This significant stiffening effect from the FS was also observed 

by DMTA; the plateau modulus rose from 1.7 to 5.0 MPa when 25 wt% FS was 

incorporated (Figure 3.15 and Table 3.4). As we anticipated, increasing the amount of FS 
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filler also increased the extent of the Mullins effect observed during hysteresis (Figure 

3.16 and Table 3.3). Even at 9 wt% incorporation of FS, the appearance of the resulting 

elastomer was colorless and translucent in contrast to the samples in the absence of FS 

which were a grayish yellow color. It is likely that the FS behaves as a white dye in the 

materials. 
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Figure 3.14. Tensile properties of PC-FS composites. A) Stress at break, B) strain at break, 
and C) Young’s modulus. 
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Figure 3.15. DMTA of PC-FS composites. A) E’ and B) E”. Samples were measured from 
–70 to 200 °C at a strain rate of 0.05% and a frequency of 1 Hz. 
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Figure 3.16. Cycles 1, 2, and 30 of the hysteresis of PC-FS composites. All samples 
contained 2 wt% BPO with respect to PMVL. Hysteresis of a rubber band is also shown. 
Samples were stretched at a rate of 50 mm min-1. 



 

 

137 

To demonstrate the recyclability of the PMVL elastomers, we determined the 

percentage of monomer that was recoverable via chemical depolymerization of CC-0.50-

100 and PC-2.0-FS0. While CC materials should be easily depolymerizable, the backbones 

of the PC materials are chemically altered by the radical cross-linking reaction. We were 

therefore unsure as to whether the covalent linkages formed during the radical reactions 

would inhibit the depolymerization. To facilitate MVL recovery via depolymerization, we 

added stannous octoate and pentaerythritol ethoxylate (a high boiling tetraol) to the 

elastomers and heated them to 150 °C overnight under vacuum. Both CC and PC 

elastomers were both capable of depolymerization. We were able to recover 91% of pure 

MVL from CC-0.50-100 and 93% from PC-2.0-FS0 (Figure 3.17). 

 

Figure 3.17. 1H NMR in CDCl3 of pure MVL and MVL recovered from the 
depolymerization of CC-0.50-100 and PC-2.0-FS0. 
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Finally, we investigated the hydrolytic degradation of the elastomers in aqueous 

media. Samples were placed in PBS (pH = 7.4), 1 M hydrochloric acid, and 1 M sodium 

hydroxide (Figure 3.18). The elastomers proved to be resilient to degradation in PBS 

solutions at physiological conditions (37 °C) and in acidic solutions at room temperature, 

though PC-2.0-FS0 exhibited slight degradation in the basic solutions at room temperature. 

The poor hydrolytic degradability is likely due to the hydrophobic nature of the materials. 

Increasing the temperature to 60 °C dramatically improved the degradation of the samples 

in both acid and base. As hydrochloric acid can behave as a polymerization catalyst for 

MVL, it is also capable of depolymerizing PMVL at elevated temperature and therefore, 

capable of degrading the samples. We hypothesize that the increased temperature improved 

the penetration of polar moieties into the network, allowing accelerated basic degradation 

of PC-2.0-FS0. Interestingly, CC-0.50-100 appeared to be highly resistant to the basic 

solution, even at 60 °C; this is somewhat counterintuitive given that esters are easily 

cleaved in the presence of hydroxide ions. The Young’s modulus, plateau modulus, and 

gel content of PC-2.0-FS0 and CCP-0.50-100 are almost identical, suggesting that either 

the carbonate moieties lend chemical resistance or that peroxide cross-linking may alter 

the chemical structure of PMVL in a way that leaves it more susceptible to degradation in 

basic conditions.  
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Figure 3.18. Degradation studies of CC-0.50-100 and PC-2.0-FS0 in aqueous PBS (37 °C), 
1 M hydrochloric acid (aqueous), and 1 M sodium hydroxide (aqueous). Samples were 
studied at A) room temperature (excluding PBS buffer) and at B) 60 °C. Degradation was 
not performed in PBS buffer at 60 °C as we sought to mimic physiological conditions. 

3.5. Conclusions 

We have demonstrated that elastomers with a wide range of mechanical properties 

can be produced from PMVL. Tandem and radical cross-linking methodologies can both 

be successfully implemented depending on the desired processing conditions and 
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physical/mechanical properties of the material. The mechanical properties of the reported 

materials were far superior to similar low Tg, amorphous polyester elastomers reported in 

the literature, and the toughness could be improved further by incorporating FS. The 

Young’s modulus and tensile strength were improved by 57% and 83%, respectively, 

without sacrificing the elongation at break by incorporating up to 25 wt% FS in PC. 

Furthermore, PC-FS materials were produced with similar tensile strength and elongation 

at break compared to synthetically challenging thermoplastic elastomers based on MVL 

and lactide.17 The ability to produce tough composite elastomers facilely with PC will 

greatly improve its viability as a commodity rubber. Moreover, the recyclability of CC and 

PC was successfully demonstrated, as they were both able to depolymerize in the presence 

of catalyst to provide up to 93% recovery of MVL. Finally, both polymers showed the 

ability to degrade under acidic conditions at 60 °C, while only PC was capable of 

degradation in basic conditions; this apparent degradation is promising towards the 

sustainability of these materials. 
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Chapter 4. Sustainable Polyester Elastomers from Lactones: 

Synthesis, Properties, and Enzymatic Hydrolyzability* 

  

                                                

* Reprinted (adapted) with permission from De Hoe, G. X.; Zumstein, M. T.; Tiegs, B. J.; Brutman, J. P.; 
McNeill, K.; Sander, M.; Coates, G. W.; Hillmyer, M A. Sustainable Polyester Elastomers from Lactones: 
Synthesis, Properties, and Enzymatic Hydrolyzability. J. Am. Chem. Soc. 2018, 140, 963-973. Copyright © 
2018 American Chemical Society. 
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4.1. Abstract 

Chemically cross-linked elastomers are an important class of polymeric materials 

with excellent temperature and solvent resistance. However, nearly all elastomers are 

petroleum-derived and persist in the environment or in landfills long after they are 

discarded; this work strives to address these issues by demonstrating the synthesis of 

renewable, enzymatically hydrolyzable, and mechanically competitive polyester 

elastomers. The elastomers described were synthesized using a novel bis(b-lactone) cross-

linker and star-shaped, hydroxyl-terminated poly(g-methyl-e-caprolactone). Using model 

compounds, we determined that the bis(b-lactone) cross-linker undergoes acyl bond 

cleavage to afford b-hydroxyesters at the junctions. The mechanical properties of the cross-

linked materials were tunable and competitive with a commodity rubber band. 

Furthermore, the elastomers demonstrated high thermal stability and a low glass transition 

(–50 °C), indicating a wide range of use temperatures. The polyester networks were also 

subjected to enzymatic hydrolysis experiments to investigate the potential for these 

materials to biodegrade in natural environments. We found that they readily hydrolyzed at 

neutral pH and environmentally relevant temperatures (2–40 °C); complete hydrolysis was 

achieved in all cases at temperature-dependent rates. The results presented in this work 

exemplify the development of high performance yet sustainable alternatives to 

conventional elastomers. 
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4.2. Introduction 

Enhanced thermal stability and solvent resistance has facilitated the use of 

chemically cross-linked polymers (CCPs) in a range of applications including coatings, 

tires, contact lenses, elastomers, adhesives, and foams. However, there are two major 

environmental concerns regarding these materials: nearly all CCPs are derived from 

petroleum, a non-renewable resource, and they typically do not biodegrade on reasonable 

timescales. Furthermore, the chemical junctions in these polymer networks preclude 

traditional recycling strategies, which leads to one of the following typical outcomes after 

use: 1) down-cycling into a lower-value materials, 2) incineration for energy capture, 3) 

disposal in a landfill, or 4) release into the environment.1 All compare unfavorably with 

primary recycling from a value standpoint, and detrimental environmental consequences 

accompany incineration, landfilling, and release.2,3 Although the hazards associated with 

incineration and landfilling are minimized by establishing controls and regulations, it is 

difficult to mitigate the detrimental effects of plastic released into the environment. Plastic 

waste poses multiple hazards to ecosystems such as ingestion and entanglement risk for 

animals, leaching of contaminants, and concentration of organic pollutants.4 Furthermore, 

the hydrocarbon-based backbones in plastics are relatively resilient to chemical 

degradation in natural systems, either by microorganisms and their enzymes (i.e., 

biodegradation) or by abiotic transformations (e.g., photo-oxidation and non-enzymatic 

hydrolysis). The extremely slow environmental degradation of these materials—cross-

linked or not—coupled with the relatively short use time of many plastics has led to an 

alarming and continuously increasing amount of plastic waste in the environment.3,5 It is 

therefore crucial to continue developing competitive yet biodegradable alternatives to 
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commercial CCPs, as biodegradable materials will reduce the costs of waste management 

and the accumulation of waste in the environment.6 

Aliphatic polyesters with properties ranging from rigid thermosets to flexible 

elastomers have been studied as sustainable alternatives to non-biodegradable 

CCPs.7,8,9,10,11,12,13,14 The inherent susceptibility of ester linkages to hydrolysis can facilitate 

polyester biodegradation. It is often assumed that accelerated hydrolysis of a cross-linked 

polyester under alkaline and high temperature conditions (e.g., 1 M NaOH at 60 °C) or 

simply the mere presence of ester bonds in the network can substantiate the claim that the 

material is biodegradable. However, not every polyester will readily degrade in the 

environment; biodegradability is heavily dependent on the conditions (e.g., pH, 

temperature, presence of oxygen), characteristics of the bulk polymer (e.g., crystallinity, 

hydrophobicity), the microorganisms present and the competence of their extracellular 

esterases, as well as the ability of the microorganisms to assimilate and metabolize the 

hydrolysis products.6,15 The most important of these considerations is the presence of 

efficient extracellular microbial esterases, as the hydrolysis of ester bonds is expected to 

be the rate-limiting step of polyester biodegradation. 

In addition to their potential for biodegradability, polyester materials can be made 

more sustainable if they are obtained from renewable feedstocks. Many bio-sourced 

precursors can be used to synthesize cross-linked polyesters, such as carboxylic acid, 

epoxide, and alcohol monomers10,16 and/or lactone monomers.17 If using lactones, low 

dispersity (Đ) polyesterols of a desired number-average molar mass (Mn) can be 

synthesized and cross-linked in situ,9,11,18,19,20 after modification,8,21,22,23,24,25,26 or post-
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polymerization without modification.9,12,13,27,28 We have previously demonstrated that high 

performance CCPs can be synthesized from a renewable lactone, b-methyl-d-

valerolactone, but the relatively low ring strain of this monomer led to practical difficulties 

due to residual monomer at equilibrium.9,29 To overcome this issue, we more recently 

reported that high performance thermoplastic elastomers could be synthesized using g-

methyl-e-caprolactone (MCL),30 a 7-membered lactone that reaches near quantitative 

conversion at equilibrium and could potentially be sourced from para-cresol or para-

cymene, both of which can be obtained from biomass.31,32,33 

In this work, we used potentially bio-based lactones to synthesize polyester 

elastomers that are mechanically competitive with a commercial CCP and can be readily 

hydrolyzed by extracellular esterases. We employed ring-opening polymerization (ROP) 

of MCL to generate prepolymers that are cross-linked without modification by using a 

novel bis(b-lactone) type cross-linker. The motivation for bis(b-lactone) cross-linkers 

stems from their high ring strain and potential to be derived from biomass. b-lactones can 

undergo two mechanisms of ring-opening in the presence of various initiators and catalysts: 

carboxylate generation via alkyl-oxygen cleavage or alkoxide generation via acyl-oxygen 

cleavage.34 The polymerization of monofunctional b-lactones has been well studied,34,35 

but to our knowledge, the use of multifunctional b-lactones in polymers has only been 

reported once in 1979.36 This is likely a result of the practical difficulties associated with 

the traditional ring-closing and [2+2] cycloaddition syntheses of b-lactones. However, 

recent developments in catalysis have enabled a relatively facile route to b-lactones from 

epoxides via carbon monoxide insertion.37 This approach greatly increases access to a 
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broad array of b-lactone monomers, including those derived from renewable resources. 

The bis(b-lactone) cross-linker we employ could be obtained by carbonylation of the 

diepoxide from 1,5-hexadiene, which itself can be formed by deoxygenation of suberic 

acid from seed oil.38 Besides dienes, we envision that multifunctional epoxides can be 

prepared using epichlorohydrin from glycerol39 and various bio-based alcohols;40,41,42 

subsequent carbonylation of these epoxide precursors would give access to a novel class 

of bis(lactone) type cross-linkers. 

We employed commercially relevant stannous octoate (SnOct2) as the catalyst for 

prepolymer synthesis as well as cross-linking; despite the widespread use of this catalyst 

for ROP of lactones, there are few reports of SnOct2-catalyzed ROP for b-lactones due to 

poor polymerization control.43,44,45 Though impractical for polymerization of b-lactones, 

SnOct2 was successful at facilitating the ring opening of b-lactones during cross-linking. 

Using model compound studies, we demonstrate that the SnOct2-catalyzed ring-opening 

proceeds via an acyl-oxygen cleavage mechanism. Furthermore, we show that the resultant 

elastomers have high thermal stability and tunable mechanical properties. The mechanical 

properties of industrially-relevant cross-linked elastomers (i.e., those based on 

polyisoprene, polybutadiene, polyisobutylene, and polysiloxanes) strongly depend on the 

cross-link density and the filler used to toughen them (if any). We therefore selected a 

common polyisoprene-based elastomer (i.e., a rubber band) as a representative high-

performance elastomer and compared its elastic performance with that of our polyester 

elastomers. Lastly, we investigated the susceptibility of our elastomers to enzymatic 
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hydrolysis at conditions that are environmentally relevant and found that these new 

materials show great promise as biodegradable elastomers. 

4.3. Experimental 

4.3.1. Materials.  

All reagents were used as received unless otherwise indicated. Dichloromethane 

(DCM), ethyl acetate, hexanes, and anhydrous tetrahydrofuran (THF) were purchased from 

Fisher Scientific, whereas methanol was purchased from Sigma-Aldrich. THF was purified 

by passing through two neutral alumina-packed columns followed by a third column 

packed with activated 4Å molecular sieves under nitrogen pressure, and was degassed by 

three freeze-pump-thaw cycles prior to use. All other solvents were reagent grade or better 

and used as received. Bis(tetrahydrofuran)-meso-tetra(4-chlorophenyl)porphyrinato 

aluminum tetracarbonyl cobaltate, [ClTPPAl(THF)2]+[Co(CO)4]−, was synthesized as 

previously reported.46 Carbon monoxide (Airgas, 99.99% minimum purity) was used as 

received. Carbonylation reactions were performed in a 100-mL Parr Series 4560 Mini 

Bench Top Reactor. Because carbon monoxide is a highly toxic gas, all carbonylation 

reactions were performed in a well-ventilated fume hood equipped with a CO sensor. 

SnOct2 used for polymerization and the model compound study (see below) was purified 

by triple distillation under high vacuum and argon (50-100 mTorr and 130-150 °C) and 

was stored under nitrogen atmosphere. The SnOct2 used for elastomer synthesis was 

purchased from Alfa Aesar (96%) and was stored in a refrigerator after being placed under 

vacuum for 1 week to remove residual 2-ethylhexanoic acid. The deuterium-labeled 

solvents used for NMR spectroscopy, CDCl3 (99.8% with 0.05 vol % tetramethylsilane 
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(TMS) as reference standard) and D2O (99.9% with 0.75 wt. % 3-(trimethylsilyl)propionic-

2,2,3,3-d4 acid, sodium salt (TSP) as reference standard), were purchased from Cambridge 

Isotope Laboratories and Sigma-Aldrich respectively. Rubber bands were manufactured in 

Thailand for Universal (product number UNV00432) and purchased from the University 

of Minnesota chemistry stockroom. 

4.3.2. Synthesis of bis(b-lactone) Cross-linker (4,4’-(ethane-1,2-diyl)bis(oxetan-2-

one)).  

In a nitrogen glove box, a 20 mL glass vial equipped with a Teflon-coated magnetic 

stir bar was charged with 96.4 mg (0.088 mmol, 2.0 mol %) of 

[ClTPPAl(THF)2]+[Co(CO)4]− and tetrahydrofuran (4.4 mL). The vial and a 100-mL Parr 

stainless steel high-pressure reactor were placed in the glove box freezer at –30 °C to cool 

for 30 minutes. In the absence of CO, isomerization of the epoxide to ketone products can 

be minimized by keeping the temperature of the reactor below 0 °C.47 Chilled (also –30 °C 

for 30 minutes) 1,2,5,6-diepoxyhexane (506 mg, 4.4 mmol) was then added to the vial. 

After adding a cap with a Teflon-coated septum pierced with an 18 G needle, which 

prevented the reaction solvent from refluxing into the reactor chamber, the vial was placed 

quickly into the high-pressure reactor. The reactor was subsequently sealed, taken out of 

the glove box, placed in a well-ventilated hood, and pressurized with carbon monoxide 

(900 psi). The reactor was then heated to 60 °C in an oil bath and the reaction mixture 

stirred for six hours. The reactor was cooled on dry ice for 10 minutes and carefully vented 

in a fume hood. The crude reaction mixture was purified on a plug of silica (300 mL) using 

50% ethyl acetate in hexanes to 100% ethyl acetate. After removing solvent by rotary 

evaporation, the crystalline product was dissolved in ~10 mL of tetrahydrofuran and 
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precipitated into hexanes (~150 mL). After cooling in a freezer (-10 °C), the product was 

collected by filtration and then dried in vacuo to afford 4,4’-(ethane-1,2-diyl)bis(oxetan-2-

one) (0.513 g, 68%) as a white powder. The melting point was measured by differential 

scanning calorimetry to be approximately 80 °C (determined by the onset in the melting 

endotherm). The product was a mixture of racemic and meso isomers as evidenced by 8 

peaks in the 13C NMR spectrum. 1H NMR (500 MHz, CDCl3, Figure 4.1): d 4.61–4.54 (m, 

2H), 3.59 (ddd, J = 16.4, 5.8, 1.4 Hz, 2H), 3.16 (dt, J = 16.4, 4.4 Hz, 2H), 2.08–1.89 (m, 

4H). 13C NMR (125 MHz, CDCl3, Figure 4.2): d 167.61, 167.53, 70.55, 70.05, 43.37, 

43.15, 31.05, 30.28. High resolution mass spectrometry (ESI-TOF) m/z: Calculated for 

C8H10O4Na+ 193.0471; Found 193.0477. ATR-FTIR (neat, Figure 4.3): 2967, 2916, 2851, 

1873, 1799 (strong), 1440, 1408, 1387, 1301, 1283, 1239, 1209, 1196, 1133, 1096, 1083, 

1030, 1002, 946, 848, 823, 798, 783, 702, 567, 536, 511 cm-1. 
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Figure 4.1. 1H NMR spectrum (500 MHz, CDCl3) of the bis(b-lactone) cross-linker; a 
blank of the NMR solvent is overlaid to show that two impurities in the bis(b-lactone) 
spectrum are from the NMR solvent. 
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Figure 4.2. 13C NMR spectrum (125 MHz, CDCl3) of the bis(b-lactone) cross-linker; the 
racemic and meso isomers produce 4 peaks each. 
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Figure 4.3. IR spectrum (neat) of the bis(b-lactone) cross-linker, with an inset showing the 
distinctive strained carbonyl stretching frequency at 1799 cm-1. 

4.3.3. Synthesis of b-Valerolactone (4-ethyl-oxetan-2-one).  

Carbonylation of 1-butene oxide was performed using previously reported 

procedures.48 The crude product was purified by distillation over calcium hydride (ca. 1.7 

torr, 55-57 °C). 1H NMR (500 MHz, CDCl3, Figure 4.4): d 4.47–4.43 (m, 1H), 3.48 (dd, J 

= 16.3, 5.8 Hz, 1H), 3.05 (dd, J = 16.3, 4.3 Hz, 1H), 1.92–1.74 (m, 2H), 1.00 (t, J = 7.4 

Hz). 
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Figure 4.4. 1H NMR spectrum (500 MHz, CDCl3) of the b-valerolactone used for the 
model compound study. 

4.3.4. Large Scale Synthesis of g-Methyl-e-caprolactone (MCL) Monomer.  

This monomer was synthesized via the Baeyer-Villiger oxidation of g-methyl 

cyclohexanone (MC). Small-scale synthesis (approx. 100 g MC) was achieved using 

previously reported procedures,30 but this reaction was also performed on a large scale 

(approx. 1 kg MC). First, a 15 gallon (38 L, HxD = 26.25”x14”) HDPE drum with half of 

the top sawn off was placed in a 17 gallon tub (HxD = 22”x16”) and tethered to the fume 

hood lab frame kit via a string. A stainless-steel siphon hand pump was screwed into the 

threaded opening opposite the sawed-off opening. The drum was then charged with 2.407 
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kg of meta-chloroperoxybenzoic acid (mCPBA, ≥77%, 10.7 mol, 1.1 eq.) and DCM (22 

L). The solution was stirred with a stainless-steel mechanical stirrer through the top 

opening until the mCPBA dissolved, after which an ice/salt bath was prepared in the gallon 

tub. The solution was allowed to cool to 5 ºC as a 4 L separatory funnel was charged with 

a solution of g-methylcyclohexanone (1.103 kg, 9.8 mol, 1 eq.) in 2 L of DCM. Evaporation 

of DCM was observed in the reaction vessel and thus another 2 L of DCM was added. 

Once the solution reached 5 °C, the g-methylcyclohexanone solution was added dropwise 

over the course of an hour (exact time: 59 m 30 s). After the addition was complete (final 

temperature: 11 °C), the temperature was allowed to rise to 21 °C over the course of the 

next hour by allowing the ice to melt. The reaction mixture was analyzed by 1H NMR 

spectroscopy over the course of the next 2 h 45 m and a maximum conversion of 

approximately 90% was attained before filtration began (Figure 4.5). 

 

Figure 4.5. Plot indicating the progress of Baeyer-Villiger oxidation over time for the 
large-scale reaction (1 kg ketone); this is in contrast to the 99% conversion observed after 
1 h on a smaller scale (100 g ketone). The conversion was measured via integration of 1H 
NMR spectra of aliquots, specifically using the –CH2–C(O)–signals for the ketone starting 
material and the lactone product. 
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Once reaction progress plateaued at 90% conversion, the heterogeneous reaction 

mixture (the meta-chlorobenzoic acid has low solubility in DCM) was siphoned using the 

pump into a tabletop Buchner funnel connected to another 15-gallon HDPE drum fitted 

with a vacuum adaptor. Once all the filtrate was collected, the drum pump was switched to 

the receiving drum and used to pump the filtrate into large (4 or 6 L) Erlenmeyer flasks. 

The filtrate was concentrated via rotary evaporation and filtered in 1-2 L amounts until the 

majority of meta-chlorobenzoic acid and DCM is removed (23 L of DCM was stored for 

re-use). Each portion of crude g-methyl-e-caprolactone was then combined (total of ca. 1-

1.5 L), washed with 10% aqueous Na2SO3 (3 x 500 mL), brine (1 x 500 mL), dried over 

MgSO4, and filtered through Celite. The crude product was then transferred to a 2 L round 

bottom flask and stirred over CaH2 for 48 h. Finally, the crude product was fractionally 

distilled over CaH2 (1 Torr, 80-100 °C), stirred over CaH2 again, and then redistilled once 

more in the same manner to afford pure g-methyl-e-caprolactone in 60 % yield. 1H NMR 

(500 MHz, CDCl3, Figure 4.6): d 4.28 (ddd, J = 12.9, 5.8, 1.9 Hz, 1H), 4.19 (dd, J = 12.9, 

10.4 Hz, 1H), 2.69–2.59 (m, 2H), 1.96–1.86 (m, 2H), 1.78 (m, 1H), 1.51 (dtd, J = 15.4, 

10.8, 1.6 Hz, 1H), 1.34 (dtd, J = 14.1, 11.4, 2.7 Hz, 1H), 1.00 (d, J = 6.7 Hz, 3H).  
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Figure 4.6. 1H NMR spectrum (500 MHz, CDCl3) of g-methyl-e-caprolactone after 
distillation; approximately 1 mol% g-methyl-cyclohexanone is present. 

4.3.5. Synthesis of Star-shaped Hydroxyl-terminated Poly(g-methyl-e-caprolactone) 

(PMCL).  

In a typical polymerization, a 50-mL pressure vessel was loaded with MCL (20.0 g, 

156 mmol) and pentaerythritol (137 mg, 1.01 mmol) under inert atmosphere. A stock 

solution of SnOct2 was prepared in toluene and added (90 µL stock solution, 12.7 mg, 31.2 

µmol SnOct2) to the pressure vessel. A Teflon-coated magnetic stir bar was added to the 

pressure vessel, which was subsequently sealed, removed from inert atmosphere, and 

placed in a pre-heated silicone oil bath. The polymerization was allowed to proceed for 2 
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h at 160 °C; by the end of the reaction, the contents were still clear but had a slight yellow 

tinge, and the viscosity had increased drastically such that the stir bar was not stirring 

effectively. DCM was added to approximately double the volume in the pressure vessel 

and the crude PMCL was dissolved overnight. PMCL was then precipitated from DCM 

twice—first into methanol, then using hexanes—and consolidated into a tared jar. The pure 

polymer was then dried under a stream of nitrogen gas for 24 h before being placed in a 

vacuum oven, where it was dried under vacuum for 2 days. The temperature in the vacuum 

oven was then elevated to 60 °C and the polymer was dried under vacuum for 2 more days. 

Typical conversions of monomer were greater than 98% and typical yields were greater 

than or equal to 90%. The pure polymers were analyzed via 1H NMR, 13C NMR, and FTIR 

spectroscopy (analyses for representative polymer shown in Figure 4.7, Figure 4.8, and 

Figure 4.9), SEC (Figure 4.10 and Table 4.1), TGA, and DSC. 1H NMR (500 MHz, 

CDCl3, Figure 4.7): d 4.13–4.08 (m, 172H), 3.75–3.64 (m, 8H), 2.36–2.29 (m, 173H), 

1.71–1.44 (m, 444H), 0.92 (d, J = 6.6 Hz, 258H). 13C NMR (125 MHz, CDCl3, Figure 

4.8): d 173.89, 62.77, 35.38, 32.05, 31.92, 29.73, 19.18. ATR-FTIR (neat, Figure 4.9): 

2958, 2928, 2873, 1729, 1459, 1421, 1382, 1340, 1253, 1166, 1100, 1052, 965, 774 cm-1. 
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Figure 4.7. 1H NMR spectrum (500 MHz, CDCl3) of star-shaped hydroxyl-terminated 
PMCL of target Mn = 10 kg/mol (i.e., prepolymer for CE-11) after purification, with an 
inset showing the signal corresponding to the end group. The CH2 signals for the 
pentaerythritol core overlap with the signal denoted “a”. 
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Figure 4.8. 13C NMR spectrum (125 MHz, CDCl3) of star-shaped hydroxyl-terminated 
PMCL of target Mn = 10 kg/mol (i.e., prepolymer for CE-11) after purification. 
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Figure 4.9. IR spectrum (neat) of star-shaped hydroxyl-terminated PMCL of target Mn = 
10 kg/mol (i.e., prepolymer for CE-11) after purification. 
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Figure 4.10. SEC traces of star-shaped PMCL of various molar masses used to produce 
the cross-linked elastomers (denoted CE-X, where X is the prepolymer molar mass 
calculated used 1H NMR spectroscopy). 

Table 4.1. Molar mass characterization of PMCL samples used for elastomers. 

Prepolymer for Mn (kg/mol)a Mn (kg/mol)b Đb 
CE-32 31.5 52.8 1.30 
CE-22 22.4 36.2 1.29 
CE-11 11.2 17.6 1.23 

aCalculated using end-group analysis via 1H NMR spectroscopy in CDCl3, specifically 
using the integrations corresponding to the protons adjacent to the hydroxyl end group and 
adjacent to the carbonyl in each repeat unit. bMeasured using size-exclusion 
chromatography in CHCl3 by comparison to polystyrene standards.  

4.3.6. Synthesis of Star-shaped Carboxylic-acid-terminated PMCL.  

The same procedure as above was performed except for the following modification. 

After polymerization, the pressure vessel was returned to the glovebox to add succinic 

anhydride (606 mg, 6.06 mmol, 1.5 eq. relative to polymer end groups) to the crude 

polymer. The pressure vessel was then closed, taken out of the glovebox, and placed back 

in the oil bath for 1 h. After this time, the crude polymer was purified as described above 
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and analyzed by 1H NMR spectroscopy. 1H NMR (500 MHz, CDCl3, Figure 4.11. 1H NMR 

spectrum (500 MHz, CDCl3) of star-shaped carboxylic acid-terminated PMCL of target Mn 

= 10 kg/mol after purification, with an inset showing the signal corresponding to the end 

group. The CH2 signals for the pentaerythritol core overlap with the signal denoted “a”.): 

d 4.14–4.06 (m, 168H), 2.68–2.61 (m, 16H), 2.37–2.25 (m, 165H), 1.72–1.42 (m, 415H), 

0.92 (d, J = 6.5 Hz, 249H). 

 

Figure 4.11. 1H NMR spectrum (500 MHz, CDCl3) of star-shaped carboxylic acid-
terminated PMCL of target Mn = 10 kg/mol after purification, with an inset showing the 
signal corresponding to the end group. The CH2 signals for the pentaerythritol core overlap 
with the signal denoted “a”. 
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4.3.7. Preparation of Cross-linked Polyester Elastomers (CEs).  

To produce the elastomers that were used for all experiments, star-shaped PMCL (4.0 

g) of Mn = 11, 22, or 32 kg/mol was dissolved in DCM (4 mL) in a 20-mL vial using a 

small Teflon-coated magnetic stir bar. To each vial, bis(b-lactone) cross-linker was added 

such that the PMCL end group to b-lactone ratio was 1.0 to 1.5 (180, 91, and 65 mg 

respectively). Next, SnOct2 was added (100 mg/mL stock solution in DCM) in amounts 

corresponding to 2.5 mol% with respect to the PMCL end groups (15, 7, and 5 mg 

respectively). After stirring for 30 seconds, the homogenous mixture was poured into 

aluminum weigh pans (7 cm diameter). A small amount of DCM (1-2 mL) was used to 

finish the transfer, and the solvent cast mixtures were put under a stream of nitrogen gas 

for 24 h to evaporate solvent. Though we tested several solvents for this procedure—

tetrahydrofuran, acetone, and dichloromethane—we found that only dichloromethane 

effectively solubilized all components without deactivating the SnOct2. After drying, the 

pans were put in a pre-heated oven (120 °C) under nitrogen atmosphere for 24 h. The 

resultant films were ca. 1 mm thick, clear, colorless, and almost completely free of visible 

defects. The notation of the films is CE-X, where X represents the Mn of the PMCL used to 

make the film. Each film was characterized using swell tests, DSC, TGA, DMTA, tensile 

testing, and ATR-FTIR. Small scale films were produced using 0.5 g of PMCL using the 

same procedure but were only characterized via swell tests. 

4.3.8. Model Compound Study.  

Under inert atmosphere, a 2-mL amber vial with a rubber septum cap was charged 

with three reagents in the following order: SnOct2 (57 mg, 14 µmol, 0.025 eq.), b-
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valerolactone (502 mg, 5.0 mmol, 0.91 eq.), and benzyl alcohol (595 mg, 5.5 mmol, 1.0 

eq.). The homogenous mixture (ca. 0.5 mL) was sampled for later analysis, tightly sealed, 

and placed in a pre-heated heating block element on a hot plate at 120 °C. Aliquots were 

removed at various time points (0.25, 0.5, 1, 2, 4, and 24 h) and immediately cooled to 

below room temperature. Each aliquot was then analyzed by GC-MS, ATR-FTIR 

spectroscopy, and 1H NMR spectroscopy. 

4.3.9. Characterization.  

The NMR spectroscopy data for MCL, PMCL, the bis(b-lactone) cross-linker, and 

the model study were obtained at the University of Minnesota using a 500 MHz Bruker 

Avance III HD spectrometer with a SampleXpress auto-sampler. The NMR spectroscopy 

data for the hydrolysis products was obtained at ETH Zurich using a 400 MHz Bruker 

Avance III spectrometer. All spectra were analyzed using the iNMR software. The Fourier 

transform infrared (FTIR) spectra were obtained on a Bruker Alpha Platinum spectrometer 

equipped with a diamond crystal in attenuated total reflection (ATR) mode at a resolution 

of 4 cm-1, and 32 scans were obtained for each spectrum. High resolution mass 

spectrometry data for the bis(b-lactone) cross-linker was obtained using a Bruker BioTOF 

II instrument in electrospray ionization (ESI) mode with poly(ethylene glycol) added as an 

internal standard and calibrant. Gas chromatography mass spectrometry (GC-MS) data for 

the model compound study was obtained using an Agilent 6890N Network GC system 

equipped with a 7683 Series injector and auto-sampler; the electron impact (70 eV) mass 

spectroscopy detector for this system was an Agilent 5975 MSD equipped with an Agilent 

HP-5 column (0.25 µm film thickness, 30 m long, 0.32 mm inner diameter). The GC-MS 
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method used the following sequence: 5 min hold at 35 °C, temperature ramp at 20 °C min-

1 to 250 °C, and 2.25 min hold at 250 °C. Size exclusion chromatography (SEC) data for 

hydroxyl-terminated PMCL was obtained at 35 °C using an HP/Agilent 1100 series size-

exclusion chromatograph equipped with a HP 1047A refractive index detector. The mobile 

phase was chloroform (1 mL min-1 flow rate); prior to reaching the detector, the sample 

passed through a PLgel 5 µm guard column before passing through three successive PLgel 

Mixed C columns. The Mn and Đ for each polymer was determined using a 10-point 

calibration curve generated using EasiCal polystyrene standards purchased from Agilent. 

Thermal characterization data was obtained using a TA Instruments Discovery Series 

differential scanning calorimeter and thermogravimetric analysis was performed on a TA 

Instruments Q500 Analyzer. Samples subjected to calorimetry (ca. 5 mg) were placed in 

T-Zero hermetic pans and cooled to –90 °C before the first and second heating ramp to 150 

°C; all temperature sweeps were performed at 10 °C min-1 and under nitrogen atmosphere. 

During the first heat, the samples were held at 150 °C for 60 seconds to erase any thermal 

history. The glass transition temperature was taken as the midpoint of the transition using 

the Trios software. Thermogravimetric analysis was performed on all samples (ca. 10 mg) 

at 10 °C min-1 under nitrogen or air to 500 °C. 

Extractions of sol fractions (i.e., swell tests) were performed using DCM. A small 

amount of each cross-linked sample (ca. 50-100 mg) was immersed in DCM for 48 h before 

the solvent was decanted. The swollen sample was then dried in a vacuum oven for 48 h 

before the final mass was measured. The gel fraction was calculated by taking the ratio of 

the final mass to the initial mass. 
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A Shimadzu Autograph AGS-X series instrument was used to conduct uniaxial 

extension and hysteresis measurements at room temperature with dogbone-shaped 

specimens [ca. 1 mm (T) x 2.5 mm (W) x 27 mm (L) with a gauge length of ca. 15 mm]. 

For both measurements, metal grips were used and the test speed was set to a ramp rate of 

50 mm min-1. The data obtained were analyzed using the Trapezium software. The 

extension to break tests were performed with 5 replicates per CE sample and the values 

reported are averages and standard deviations for each set. The Young’s modulus was 

calculated by taking the slope of the stress-strain curve from 0-10% strain. For hysteresis 

tests, one dogbone from each CE sample was subjected to cyclical loading (67% strain) 

and unloading for 20 cycles. The hysteresis energy loss per cycle was calculated by 

subtracting the area of the unloading curve from that of the loading curve, whereas the 

tensile set per cycle was determined from the residual strain present when the unloading 

cycle afforded zero stress. 

Dynamic mechanical thermal analysis (DMTA) was performed using a TA 

Instruments RSA-G2 analyzer with dogbone-shaped specimens (same dimensions as 

above) in a tensile geometry. Liquid nitrogen was used to cool the sample to –90 °C and 

the axial force was continuously adjusted to 0.00 N (sensitivity 0.01 N) while the sample 

was cooling. After equilibration, the axial force was adjusted to 0.20 N of tension 

(sensitivity 0.01 N) to ensure no buckling of the sample. The proportional force mode was 

set to force tracking to maintain an axial force that was at least 100% greater than the 

dynamic oscillatory force. The strain adjust was set to 30% with minimum and maximum 

strain values of 0.05% and 10% and minimum and maximum forces of 0.01 N and 0.2 N, 

respectively; these settings prevented the sample from going outside the specified strain 
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range. The sample was then heated to 200 °C at a rate of 5 °C min-1 with an oscillating 

strain of 0.05% at an angular frequency of 6.28 rad s-1 (1 Hz). The Tg was determined using 

the maximum value in tan d, which is defined as the ratio of the loss modulus (E”) to the 

storage modulus (E’). The effective molar mass between cross-links Mx,eff was calculated 

using eq 1: 

𝐸1(𝑇) = 3𝐺1(𝑇) = 3𝑅𝑇𝜈) =
*+,-
.9,:;;

    (1) 

where E’ and G’ denote the storage modulus under tension and shear, respectively, R is the 

universal gas constant, T denotes the absolute temperature in the rubbery plateau region, ve 

is the effective cross-link density, and r is the density of the CE samples (approx. 1.065 g 

cm-3 as measured by a density gradient column). 

Shear rheology was performed on a TA Instruments Rheometric Series ARES 

Classic using 8 mm diameter parallel plates under a nitrogen atmosphere. Prior to 

performing frequency sweeps, a strain sweep was performed from 0.1% to 10% and a linear 

response in the signal was observed. The PMCL sample was then equilibrated at the desired 

temperature for 10 minutes before performing a frequency sweep from 0.01 to 100 rad/s at 

an oscillating strain of 1.0%. Each sweep was performed at one of the following 

temperatures: 10, 0, –10, –20, –30, –40, and –50 °C. Time-temperature superposition was 

then used to generate a master curve (reference temperature of 273 K) and the entanglement 

molar mass Me was determined from the plateau modulus GN’ using eq 2: 

𝑀= =
+,-
>?
@       (2) 
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where r is the density of the PMCL (assumed to be 1.065 g cm-3), T denotes the absolute 

temperature, and R is the universal gas constant. The plateau modulus was defined as the 

shear storage modulus at the minimum of tan d.  

4.3.10. Enzyme Solutions for Polyester Enzymatic Hydrolysis Experiments.  

The enzymatic hydrolysis experiments were performed with a cutinase from 

Fusarium solani (FsC, Mw = 20.8 kg/mol and pI = 8.4 as calculated from the sequence 

entry 1AGY49 in the RCSB protein data bank (PDB) using the pI/MW compute tool from 

ExPASy50) that was obtained as a solution from ChiralVision (product number Novozym 

51032). The cutinase concentration of the obtained solution was determined to be 4.24 ± 

0.16 mM (mean ± standard deviation for triplicate measurement) by absorbance 

measurements at 280 nm using a molar extinction coefficient of 13610 M-1 cm-1.51 The 

obtained solution was diluted to a final cutinase concentration of 4.1 mg FsC/mL using 10 

mM KCl prepared with Milli-Q H2O (resistivity = 18.2 MW cm, Barnstead NANOpure 

Diamond); aliquots of the dilute solution were stored in 2 mL Eppendorf tubes in a freezer 

at –20 °C and thawed before use. In between experiments, the thawed enzyme solutions 

were kept in a 5 °C refrigerator and were not used if more than one week had passed since 

thawing.  

4.3.11. Aqueous Solutions for pH-Stat Titrations and Batch Reactors. 

Two solutions were prepared in Milli-Q H2O with 10 mM of KCl as background 

electrolyte: one for the pH-stat titrations and one for the batch reactors coupled to total 

organic carbon (TOC) analysis (see section below). The solution used in titration 

experiments additionally contained a small amount of phosphate buffer (0.067 mM) to 
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facilitate adjustment of the initial solution pH at the start of each experiment close to the 

desired pH value of 7.0; the effect of buffer on the extent of hydrolysis was considered 

negligible because the amount of phosphate present corresponded to less than 0.1 mol% of 

the acid produced from complete hydrolysis. The solution used for hydrolysis experiments 

coupled to solution TOC analysis contained a higher phosphate buffer concentration (340 

mM, pH 7.1) to keep the pH close to 7.0 over the course of the hydrolysis; the final pH 

values for all incubations were between 6.8 and 6.9. 

4.3.12. Polyester Elastomer Enzymatic Hydrolysis Experiments 

A Titrando 907 (Metrohm) and the Tiamo 2.5 software were used for automated pH-

stat titration experiments with a KOH solution (approx. 30 mM) as the titrant. The exact 

titrant concentration was determined before and after each experiment by titrating a citric 

acid solution (10 mM, initial pH of approx. 2.5). This experimental setup was used at 

temperatures between 20 and 40 °C. Hydrolysis at lower temperatures (≤ 20 °C) was 

studied in batch systems using repeated solution TOC analysis.  A circular die cut (4.3 mm 

inner diameter) was used to punch out discs of polyester elastomer for either experimental 

set-up; this cutting procedure resulted in high reproducibility in the surface area between 

experiments. Based on the dimensions of the die cut and the thicknesses of the polyester 

films, the surface areas present in a pH-stat titration and a batch reactor experiment were 

85 ± 1 mm2 and 86 ± 1 mm2 (mean ± standard deviation), respectively. Due to the high 

reproducibility in the first set of titrations performed in triplicate (i.e., CE-22 at 40 °C) as 

well as time constraints due to the sample throughput (only two titrations could be run in 

parallel), all subsequent experiments were performed in duplicate. 
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For a typical pH-stat titration experiment, 10 mL of enzyme-free solution was 

pipette-transferred into a water-jacketed 25-mL glass vessel sitting atop a stir plate. A stir 

bar was added and the temperature was equilibrated. A circular Teflon sheet was taped 

over the vessel to form a lid, and pre-cut holes in the Teflon were used to position the pH 

probe, buret line for KOH delivery from the titrator, nitrogen gas line, and temperature 

probe in the solution. The Teflon cap and the nitrogen gas line served to minimize artifacts 

from carbon dioxide in-gassing (explained in the section below). Data collection was then 

started and two discs of elastomer were submerged in the solution. The solution was left to 

stir for approximately 24 h before enzyme addition to monitor the background titration rate 

(no FsC present) for data correction (see section below). Freshly thawed cutinase solution 

(193 µL, see above) was then added using a micropipette ([FsC]0 = 78 µg/mL) and 

subsequent hydrolysis was monitored by KOH addition. During hydrolysis, the pH remains 

constant because the carboxylic acid moieties created via ester hydrolysis are neutralized; 

the amount of titrant used therefore corresponds to the number of esters hydrolyzed, and 

this number can be compared to the expected ester content based on the sample mass and 

the structure of the repeat unit. 

For a hydrolysis experiment monitored by TOC analysis, 10 mL of enzyme-free 

solution was pipette-transferred into a batch reactor (i.e., a 20-mL amber glass vial). Two 

elastomer discs were added and the reactor was placed in either a temperature-controlled 

incubator with a shaking unit (a Kühner AG LT-W or a Kühner AG ISF1-X for 10 °C and 

20 °C experiments, respectively) or in a refrigerator (Electrolux ZFX31401WA) equipped 

with a stir plate (for 2 °C experiments). The incubations were sampled twice (2 and 7 day 

time points) before enzyme addition on day 7. Sampled aliquots were 0.5 mL and were 



 

 

176 

transferred into 2 mL Eppendorf tubes using a micropipette. The aliquots were stored in a 

freezer and thawed before TOC analysis. The TOC measurements were conducted on 80 

µL aliquots that were collected from each batch reactor at various time points; this volume 

was diluted with Milli-Q water to a final volume of 8 mL, mixed well, and analyzed on a 

Shimadzu TOC-L analyzer. The TOC content in each sample was determined using a 

standard calibration curve (0 to 100 mg C/L) that was obtained by analyzing solutions made 

from a TOC standard (Sigma-Aldrich, product number 76067). The data obtained from 

TOC analysis (mg C/L) was compared to the expected mass of carbon in the added 

elastomer to calculate the extent of hydrolysis. The temperature around the batch reactors 

was monitored every few days using a thermocouple (Digi-Sense Type K), and the exact 

temperatures of each chamber and the fridge were recorded over a 24 h period using 

Thermochron iButton devices (DS1921 and DS1922). 

After terminating each hydrolysis experiment, a small portion of the solution was 

transferred into a glass vial and evaporated at 105 °C in an oven. The solid, white, 

seemingly crystalline residue (i.e., the major hydrolysis product) was then reconstituted in 

D2O (0.75 wt% TSP) for subsequent analysis by 1H and 13C NMR spectroscopy. We 

verified that the elevated temperature did not change the hydrolysis product observed by 

NMR spectroscopy by instead employing either freeze-drying or evaporation at 60 °C to 

remove solvent; the obtained spectra were indistinguishable from those obtained after 

evaporation at 105 °C. 
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4.3.13. Titration Controls and Data Correction. 

Preliminary results at pH 7 demonstrated significant amounts of base titrated over 

experimentally relevant timespans (several days) without polymer or enzyme present. This 

observation was attributed to the equilibrium of CO2 dissolving in solution to form carbonic 

acid, which was continually titrated because the equilibrium pH lies below 7. To mitigate 

this effect, a Teflon sheet was formed into a lid and holes were cut out to allow for the pH 

probe, temperature probe, buret, and nitrogen gas line. The nitrogen gas stream in the 

headspace was kept at a constant, low pressure throughout the experiment to displace and 

inhibit further introduction of CO2. Furthermore, the nitrogen gas was run through two 

sealed flasks before reaching the vessel; the first was used to bubble the gas through water 

and saturate it, whereas the second was empty and served to catch any condensation. 

With all these controls in place, the rate of titration attributed to CO2 ingassing was 

minimized to two orders of magnitude less than the enzymatic hydrolysis rate. To 

demonstrate this comparison, the first titration was allowed to run for 24 h before adding 

polymer. The addition of polymer causes a negligible change in the titration rate observed 

in the absence of polymer and enzyme, whereas the subsequent addition of enzyme 

increases the titration rate by a factor of 25 (Figure 4.12). The contributions of ingassing 

and non-enzymatic hydrolysis to the observed enzymatic hydrolysis rate were 3% and 1%, 

respectively. The initial slope was therefore used to correct the hydrolysis data obtained 

(Figure 4.13). The contribution of non-enzymatic hydrolysis was thereafter considered 

negligible, and the slopes used for the correction of all subsequent data corresponds to the 

titration rate observed with polymer and solution (no enzyme) over ca. 24 h. 
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Figure 4.12. The first 60 h during the first titration experiment with CE-22 elastomer at 
pH 7 and 40 °C; polymer was added to the solution at 24 h (dashed line) and enzyme was 
added after 51 h (dotted line). The initial titration rate observed in the absence of polymer 
and enzyme is low, and addition of polymer results in a negligible change in the titration 
rate, indicating that non-enzymatic hydrolysis is insignificant. The subsequent addition of 
enzyme at ca. 50 h increases the titration rate by two orders of magnitude. 

 

Figure 4.13. The first titration experiment with CE-22 elastomer at pH 7 and 40 °C, 
demonstrating the data correction for the entire pH-stat titration curve. 
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4.3.14. Non-enzymatic Hydrolysis Control in Phosphate Buffer. 

  The non-enzymatic degradation of the elastomers was also investigated by 

incubating CE samples in phosphate buffered saline (PBS, 1 M, pH = 7.4) at room 

temperature and 37 °C. Three replicates of each CE sample were used (ca. 50 mg each); 

each replicate was immersed in 20 mL of the aqueous PBS solution in separate scintillation 

vials and either left at room temperature or heated to 37 °C. The insoluble mass was 

recorded after removing each sample from the solution and patting it dry with a 

Kimwipe™, after which the sample was re-immersed in the same solution. Solutions were 

checked weekly with litmus paper to ensure their pH remained stable; none of the solutions 

showed pH variance by this method. The data presented in the plots of insoluble mass % 

(percentage of original mass) over time includes the averages and standard deviations of 

the triplicate samples at each temperature (Figure 4.14). No mass loss was observed over 

ca. 15 days at either temperature, which strongly supports the conclusion that hydrolysis 

of CE samples is very slow when enzymes are absent. 
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Figure 4.14. Gravimetric analyses of the CE samples in phosphate buffered saline (1 M, 
pH = 7.4) for ca. 15 days at (a) room temperature and (b) 37 °C. The negligible change in 
the insoluble mass over this time period supports that non-enzymatic hydrolysis is very 
slow. 
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4.4. Results and Discussion 

4.4.1. Synthesis of Polyester Elastomers and Investigation of Stannous Octoate 

Catalyzed b-Lactone Ring-Opening. 

Industrial-scale Baeyer-Villiger oxidation is typically performed with organic 

peracids, which is a robust and effective approach for synthesizing lactones.52 We 

employed this approach to convert g-methyl-cyclohexanone to MCL on both the small and 

large laboratory scale (up to 1 kg). With MCL in hand, we prepared a series of hydroxyl-

terminated, star-shaped poly(g-methyl-e-caprolactone) (PMCL) with varying molar mass 

by SnOct2-catalyzed ring-opening transesterification polymerization with a pentaerythritol 

initiator (Figure 4.15). Solvent casted mixtures of these PMCLs, the bis(b-lactone) cross-

linker (0 to 5 eq. b-lactone to OH), and SnOct2 were heated overnight to afford cross-linked 

polyester networks (Figure 4.15).  
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Figure 4.15. Hydroxyl-terminated star-shaped poly(g-methyl-e-caprolactone) (PMCL) 
was synthesized via ring-opening polymerization of g-methyl-e-caprolactone using 
stannous octoate (SnOct2) as a transesterification catalyst. The star polymers were then 
cross-linked using a bis(b-lactone) monomer and SnOct2 to afford polyester networks. 

The degree of cross-linking was evaluated by swelling the films in DCM and 

extracting the soluble (sol) fraction. The gel fraction increased from 0 to 0.92 as the ratio 

of b-lactone to hydroxyl groups (i.e., the amount of cross-linker for a given mass of 

polymer) was increased from 0 to 1. Furthermore, use of excess bis(b-lactone) resulted in 

gel fractions greater than 0.90 (Figure 4.16 and Table 4.2); this suggested that the cross-

linking proceeded by ring-opening of the lactones to generate reactive b-hydroxyesters, 

similar to a chain-growth mechanism rather than one that relies on addition reactions, 

which are less tolerant to deviations from ideal stoichiometry. When holding the 
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stoichiometric ratio constant (2.0 b-lactones per hydroxyl), we found that the gel fraction 

decreased when the molar mass of PMCL used was more than 30 kg/mol (Figure 4.16 and 

Table 4.2). Although gel fractions of 0.80 were achieved with 41 kg/mol PMCL on a small 

scale, later attempts to scale the synthesis were unsuccessful in yielding cross-linked 

polyester over 24 h. Increasing the reaction time to 72 h did not result in any measurable 

gel fraction despite further b-lactone ring-opening detected by IR spectroscopy (i.e., 

decreasing signal for b-lactone carbonyl stretch, Figure 4.17); we therefore attributed the 

low cross-linking efficiency to a significant decrease in the rate of reaction due to the low 

concentration of hydroxyl end-groups present in a given amount of high Mn prepolymer. 

No significant cross-linking was observed in the absence of catalyst and/or when the end-

groups of the prepolymer were modified to carboxylic acids (Table 4.2). The success of 

cross-linking under these conditions (i.e., 120 °C for 24 h) was thus found to rely on the 

presence of hydroxyl end-groups, SnOct2, and prepolymer Mn less than or equal to 30 

kg/mol. Although we could not analyze the chemical junctions of the insoluble networks, 

we hypothesized that SnOct2 facilitated ring-opening of the b-lactone by the hydroxyl end-

groups to generate reactive b-hydroxyesters.  
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Figure 4.16. Plots of gel fraction as a function of (a.) the number of b-lactones per 
hydroxyl end-group of PMCL and (b.) the molar mass of the PMCL at a constant 2.0 b-
lactones per hydroxyl. The experiment shown at left was performed two times (open and 
closed circles), and the results imply that the cross-linking is not governed by simple A4 + 
B2 step growth statistics. The statistical approach developed by Flory and Stockmayer 
predicts that gelation should be impossible for an A4 + B2 system (i.e., star-PMCL and 
bis(b-lactone) respectively) when the stoichiometric ratio of A and B groups r drops under 
0.33, as the critical extent of conversion rc for gelation exceeds 1.0 at this value. In this 
case, values of r ≤ 0.33 corresponds to b-lactone to hydroxyl ratios of ≥ 3. No precipitous 
drop in the gel fraction was observed experimentally at b-lactone to hydroxyl ratios ≥ 3, 
which suggested that the cross-linking was not governed by simple A4 + B2 step-growth 
statistics. 
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Table 4.2. Small-scale cross-linking PMCL experiments with bis(b-lactone). 

Mn (kg/mol)a Đb EGc Lac:EGc SnOct2 
mol %e 

Gel 
fractionf 

12.6 1.26 OH 0.0 2.5 0.000 
12.6 1.26 OH 0.5 2.5 0.540 
12.6 1.26 OH 1.0 2.5 0.924 
12.6 1.26 OH 1.5 2.5 0.959 
12.6 1.26 OH 2.0 2.5 0.962 
12.6 1.26 OH 2.5 2.5 0.977 
12.6 1.26 OH 2.0 0.0 0.000 
11.2 1.23 OH 0.0 2.5 0.000 
11.2 1.23 OH 0.5 2.5 0.586 
11.2 1.23 OH 1.0 2.5 0.933 
11.2 1.23 OH 1.5 2.5 0.971 
11.2 1.23 OH 2.0 2.5 0.982 
11.2 1.23 OH 2.5 2.5 0.982 
11.2 1.23 OH 3.0 2.5 0.979 
11.2 1.23 OH 4.0 2.5 0.946 
11.2 1.23 OH 5.0 2.5 0.912 
11.2 1.23 OH 2.0 2.5 0.992 
22.4 1.29 OH 2.0 2.5 0.962 
31.5 1.30 OH 2.0 2.5 0.966 
41.4 1.38 OH 2.0 2.5 0.787 
54.0 1.40 OH 2.0 2.5 0.000 
11.1 – COOH 2.0 2.5 0.000 
11.1 – COOH 2.0 0.0 0.000 

a Calculated using end-group analysis via 1H NMR spectroscopy in CDCl3, specifically 
using the integrations corresponding to the protons adjacent to the hydroxyl end group and 
adjacent to the carbonyl in each repeat unit. b Measured using size-exclusion 
chromatography in CHCl3 by comparison to polystyrene standards. c EG denotes end 
group; the COOH terminated PMCL was made by adding succinic anhydride after 
polymerization (one-pot, sequential addition). d The number of b-lactones per end group of 
the pre-polymer. e This mol % is based on the moles of pre-polymer end-groups present 
(i.e., 4 times the moles of pre-polymer). f Measured using dichloromethane as the swelling 
solvent. 
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Figure 4.17. An overlay of IR spectra of reaction mixture (4 g scale) containing PMCL 
(41 kg/mol), bis(b-lactone) (1.5 b-lactones per hydroxyl), and SnOct2 (2.5 mol% with 
respect to hydroxyl end-groups of PMCL) after several periods of heating the mixture for 
24 h at 120 °C. The decreasing intensity of the b-lactone carbonyl stretch at 1830 cm-1 
indicates that more b-lactones are ring-opening as the reaction time is increased, but after 
72 h the product after 72 h was still fully soluble (i.e., not cross-linked). 

We tested our hypothesis by performing a model compound study with benzyl 

alcohol (1.0 equiv) and b-valerolactone (0.9 equiv). These compounds were reacted in the 

presence of SnOct2 (0.025 equiv) and monitored over 24 h at 120 °C; aliquots were 

removed periodically and analyzed using GC-MS, 1H NMR spectroscopy, and ATR-FTIR 

spectroscopy. Although we hypothesized that ring-opening would occur via acyl-oxygen 

scission, several other products were possible due to dehydration at elevated temperature 

or ring-opening by alkyl-oxygen scission (Figure 4.18). 
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Figure 4.18. Model compound study and expected products. The major products obtained 
from the reaction of benzyl alcohol and b-valerolactone after 24 hours were unimer and 
dimer, accompanied by some minor dehydration products. 

The disappearance of the carbonyl peak at approximately 1820 cm-1 from the strained 

b-lactone and the appearance of a carbonyl peak at 1730 cm-1 from the ring-opened product 

indicated that all of the b-lactone ring opened to yield aliphatic ester bonds; no evidence 

of alkyl-oxygen scission or substantial dehydration is apparent in the ATR-FTIR spectra, 

and the O–H stretching frequency remained relatively unchanged (Figure 4.19 and Figure 

4.20). Monitoring the reaction progress by GC-MS supported corroborated the ATR-FTIR 

spectroscopy finding that the initial reaction mixture contained primarily unreacted benzyl 
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alcohol and b-valerolactone (Figure 4.21, Figure 4.22, and Figure 4.23). Upon heating 

for 30 min, the starting materials were partially converted into two major products; after 

24 h of heating, the presence of residual benzyl alcohol and two additional minor products 

were observed (Figure 4.24 and Figure 4.25). The mass spectrum of all products exhibited 

a peak at 91.1 m/z, which is characteristic of a tropylium cation and indicated that benzyl 

groups were present in each structure (Figure 4.26, Figure 4.27, Figure 4.28, and Figure 

4.29). 

 

Figure 4.19. Overlay of IR spectra for three time points during the SnOct2-catalyzed 
reaction of benzyl alcohol and b-valerolactone. 
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Figure 4.20. Enhanced sections of the IR spectra for three time points during the SnOct2-
catalyzed reaction of benzyl alcohol and b-valerolactone; the presence of a hydroxyl 
remains throughout the reaction (a.) and the b-lactone ring opens to form an ester (b.) 

 

Figure 4.21. Overlay of gas chromatographs for the initial time point of the model study 
and the two reactants: benzyl alcohol and b-valerolactone. A minute amount of product is 
present in the reactant mixture prior to heating, as evidenced by the small peak at a retention 
time of 11.6 minutes. 
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Figure 4.22. The extracted mass spectrum for the peak in the gas chromatograph of the b-
valerolactone; the peak labeled in the inset is likely the molecular ion peak. 
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Figure 4.23. The extracted mass spectrum for the peak in the gas chromatograph of benzyl 
alcohol. 
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Figure 4.24. Overlay of gas chromatographs for three time points during the SnOct2-
catalyzed reaction of benzyl alcohol and b-valerolactone. 

 

Figure 4.25. Enhanced section of the gas chromatograph for the 24 h time point of the 
model study, showing two minor peaks flanking the major peak at a retention time of 11.6 
minutes. 
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Figure 4.26. The extracted mass spectrum for the peak at a retention time of 11.1 minutes 
in the gas chromatograph of the 24 h time point. This spectrum likely corresponds to the 
dehydration product for the unimer formed by the reaction of benzyl alcohol with one b-
valerolactone. 
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Figure 4.27. The extracted mass spectrum for the peak at a retention time of 11.6 minutes 
in the gas chromatograph of the 24 h time point; this mass spectrum is likely the unimer 
formed by the reaction of benzyl alcohol with one b-valerolactone. The inset shows the 
signals that likely correspond to the molecular ion peak (theoretical m/z of 208.11) and the 
molecular ion after a loss of H2O. 
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Figure 4.28. The extracted mass spectrum for the peak at a retention time of 11.8 minutes 
in the gas chromatograph of the 24 h time point. This spectrum likely corresponds to the 
dehydration product for the dimer; however, no significantly distinct peak for the molecular 
ion is observed at the expected m/z of 290.15 amu. 
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Figure 4.29. The extracted mass spectrum for the peak at a retention time of 14.4 minutes 
in the gas chromatograph of the 24 h time point. This spectrum likely corresponds to the 
dimer formed by the reaction of benzyl alcohol with two b-valerolactone molecules; 
however, no significantly distinct peak for the molecular ion is observed at the expected 
m/z of 308.16 amu. 

The presence of residual benzyl alcohol at 24 h was corroborated by 1H NMR 

spectroscopy, and the two major products were identified as the unimer and dimer from 

one or two b-lactone ring-opening events (Figure 4.30, Figure 4.31, Figure 4.32, and 

Figure 4.33). Additionally, there was no detectable signal for benzyl ether protons, which 

further confirmed that only acyl-oxygen scission was occurring in the presence of SnOct2. 

The protons in the dimer had similar chemical environments to the unimer, which 

significantly complicated the 1H NMR spectra for the products at longer reaction times. 
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Although the methyl and a-CH2 proton resonances in each acyl-oxygen scission product 

overlapped significantly, the other protons had distinct enough chemical environments 

such that the peaks corresponding to the unimer could be integrated separately to those 

corresponding to the dimer, which allowed for determination of their molar ratio (Figure 

4.34, 2:1 unimer:dimer). Remarkably, the reaction was left at 120 °C for 24 h but only very 

small amounts of dehydration products were observed at equilibrium (Figure 4.35). The 

two minor peaks in the gas chromatogram of the 24 h aliquot were therefore attributed to 

the dehydration products arising from the unimer and dimer. Thus, the results of this model 

compound study supported our hypothesis that the SnOct2-catalyzed cross-linking with the 

bis(b-lactone) yielded reactive b-hydroxyesters at the junctions between star-shaped 

PMCL. Although SnOct2 has been deemed non-toxic and was effective for our purposes, 

more environmentally benign (organo)catalysts could be used for polymerization and 

cross-linking. 
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Figure 4.30. Overlay of 1H NMR spectra showing the disappearance of the b-valerolactone 
peaks and the appearance of the unimer and dimer peaks. 
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Figure 4.31. The full 1H NMR spectrum (500 MHz, CDCl3) for the first model study time 
point (0 min). The red asterisks (*) designate peaks that can be wholly or partially attributed 
to the SnOct2 catalyst (determined by comparison to a spectrum of SnOct2 in CDCl3). 
Though not labeled on the figure, the broad OH peak from the benzyl alcohol is present 
between 1.7 and 2.7 ppm. The integrations match well for the peaks that do not overlap 
with the OH signal or the SnOct2 signals. The insets show peaks relevant to the unimer, 
which is present in small amounts after mixing the components together. In fact, the J-
values for the unimer a-CH2 signals (c’) are 16.4, 9.1, and 3.1 Hz; this last value matches 
exactly with the first and only coupling constant that can be confidently extracted from the 
peak for the b’ proton. 
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Figure 4.32. The full 1H NMR spectrum (500 MHz, CDCl3) for the second model study 
time point (30 min). The red asterisks (*) designate peaks that can be wholly or partially 
attributed to the SnOct2 catalyst (determined by comparison to a spectrum of SnOct2 in 
CDCl3). Though not labeled on the figure, the broad OH peak is present between 2.4 and 
3.4 ppm (not the same at 0 min). The insets show peaks relevant to the unimer and dimer; 
it is clear that the doublet of doublets around 2.5 ppm are the same a-CH2 signals observed 
at 0 min, which are now higher intensity but slightly complicated by the underlying peaks 
from the small amount of dimer present. 
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Figure 4.33. The full 1H NMR spectrum (500 MHz, CDCl3) for the last model study time 
point (24 h), with insets showing peaks relevant to the unimer and dimer. The red asterisks 
(*) designate peaks that can be wholly or partially attributed to the SnOct2 catalyst 
(determined by comparison to a spectrum of SnOct2 in CDCl3). Though not labeled on the 
figure, the broad OH peak is present between 2.4 and 3.4 ppm (similar for 30 min time 
point). The green section signs (§) denote peaks attributed to the dehydration products. 
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Figure 4.34. 1H NMR spectrum (500 MHz, CDCl3) of the model compound study at 24 h, 
which shows the signals for the protons of BnOH, unimer, and dimer. The peak at 5.24 
ppm (denoted b’’) is specific for the dimer. All other peaks exist in pairs, and the ratio of 
the integration areas indicates that the unimer and dimer are present in a 2 to 1 ratio. The 
integration area of the aryl protons is equal to what is expected for the ratio of the three 
species; a total benzyl proton peak area of 5 (a + a’ + a”) should correspond to an aryl 
proton peak area of 12.5. Furthermore, the peak area for the BnOH benzyl protons (denoted 
a) is in good agreement with the residual amount expected after 5.5 mmoles of BnOH reacts 
with 5 mmoles of b-valerolactone to afford a 2 to 1 ratio of unimer to dimer. After 3.75 
mmoles of lactone is converted to unimer—leaving 2.25 mmoles of BnOH—the remaining 
lactone reacts with unimer to yield 1.25 mmoles of dimer. The resultant molar ratio of 
BnOH:unimer:dimer is 2.25:2.50:1.25, and the integration area for BnOH is therefore 
expected to be roughly the same as that of unimer, which agrees well with the 1H NMR 
spectrum. 
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Figure 4.35. 1H NMR spectrum (500 MHz, CDCl3) of the model compound study at 24 h, 
which shows the methyl and alkene protons for the dehydration products. Using the 
integration areas for the alkene proton signals most downfield (total area = 1.245) and the 
aryl proton signals, it was determined that the dehydration products comprise only 3 mol% 
of the total amount of products present. 

4.4.2. Thermal and Mechanical Characterization of Polyester Elastomers. 

With some insight as to the identity of the cross-links, film preparation was scaled 

up to afford enough material for an investigation of the thermal and mechanical properties 

as well as the enzymatic hydrolyzabilities. The resultant elastomers were clear, colorless, 

and had high gel fractions (Figure 4.36 and Table 4.3). The disappearance of the b-lactone 

carbonyl stretching frequency at 1830 cm-1 was used as a measure of cross-linking progress 

(Figure 4.37, Figure 4.38, and Figure 4.39). The samples were subjected to thermal 

characterization by differential scanning calorimetry and thermogravimetric analysis. The 
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glass transition temperatures of the elastomers were all approximately –55 °C, a few 

degrees higher than the prepolymers (Figure 4.40). The 5% mass loss temperatures in air 

for all elastomers were greater than 200 °C, similar to the prepolymers (Figure 4.41, Table 

4.3, and Table 4.4). 

 

Figure 4.36. Picture of cross-linked elastomers after peeling them out of the aluminum 
pans. From left to right: CE-11, CE-22, CE-32, where the number after CE represents the 
pre-polymer molar mass. 
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Figure 4.37. IR spectra (neat) of solvent-casted pre-polymer, catalyst, and cross-linker 
before and after heating; the inset shows the disappearance of the b-lactone stretching 
frequency after cross-linking. The elastomer produced in this case was CE-11. 
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Figure 4.38. IR spectra (neat) of solvent-casted pre-polymer, catalyst, and cross-linker 
before and after heating; the inset shows the disappearance of the b-lactone stretching 
frequency after cross-linking. The elastomer produced in this case was CE-22. 
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Figure 4.39. IR spectra (neat) of solvent-casted pre-polymer, catalyst, and cross-linker 
before and after heating; the inset shows the disappearance of the b-lactone stretching 
frequency after cross-linking. The elastomer produced in this case was CE-32. 
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Figure 4.40. An overlay of the second heating ramps obtained via differential scanning 
calorimetry for the pre-polymers and respective cross-linked elastomers; there is a small 
increase in the glass transition temperature after cross-linking. Curves are vertically shifted 
for clarity. 
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Figure 4.41. TGA traces of the prepolymers for (a.) CE-11 (b.) CE-22, (c.) CE-32 and (d.) 
cross-linked polyester elastomers under air atmosphere. 

Table 4.3. Thermal properties and gel fractions for cross-linked elastomers. 

Elastomera Tg (°C)b Tg (°C)c Td,5% (°C)d Gel fraction e 
CE-32 –57 –54 259 0.994 
CE-22 –57 –53 256 0.997 
CE-11 –54 –50 235 0.989 

aThe notation of the films is CE-X, where X represents the Mn of the PMCL used to make 
the film. bMeasured using differential scanning calorimetry; the reported value is taken 
from the second heat. cMeasured using dynamic mechanical thermal analysis; the reported 
value is taken from the maximum in tan d. dMeasured using thermogravimetric analysis in 
an air atmosphere. eMeasured using swell tests with dichloromethane. 
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Table 4.4. Thermal properties of PMCL samples used for elastomers. 

Prepolymer for Tg (°C)a Td,1% (°C)b Td,5% (°C)b Td,1% (°C)c Td,5% (°C)c 
CE-32 –61 242 271 223 255 
CE-22 –63 237 268 220 248 
CE-11 –62 269 296 233 260 

aMeasured using differential scanning calorimetry; the reported value is taken from the 
second heat. bMeasured using thermogravimetric analysis in a nitrogen atmosphere. 
cMeasured using thermogravimetric analysis in air. 

Each elastomer was subjected to dynamic mechanical thermal analysis and the 

storage and loss moduli were monitored as a function of temperature from –90 to 200 °C 

in a tensile geometry; except during the glass transition, the storage modulus was greater 

than the loss modulus over the entire temperature range, which provided further evidence 

that the elastomers were indeed chemically cross-linked (Figure 4.42, Figure 4.43, and 

Figure 4.44). For all elastomers, the rubbery plateau moduli were relatively constant 

throughout the temperature sweep, which indicated that the mechanical integrity of the 

network was maintained.  
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Figure 4.42. Dynamic mechanical thermal analysis of CE-11. 

 

Figure 4.43. Dynamic mechanical thermal analysis of CE-22. 
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Figure 4.44. Dynamic mechanical thermal analysis of CE-32. 

A comparison of all three elastomers revealed that the rubbery plateau moduli 

(denoted EN’) were within 1 MPa of one another (Figure 4.45). This is not what one would 

expect if EN’ were dictated by the molar mass between chemical cross-links Mx, which 

increased by roughly a factor of three from CE-11 to CE-32 (Table 4.5). Instead, EN’ was 

related to the effective molar mass between cross-links Mx,eff (see equation 1 in 

experimental), which includes contributions from transient cross-links such as 

entanglements. Shear rheology measurements were performed on the star-shaped PMCL 

(Figure 4.46, Figure 4.47, and Figure 4.48). Based on the obtained data, we calculated an 

entanglement molar mass Me (see equation 2 in experimental) of 4.6 kg/mol. The critical 

molar mass Mc characterizes the actual molar mass where entanglements are observed in 

rheological tests, and is typically a factor of 2–3 times the Me.53 The theoretical Mx for CE-

11 was 5.6 kg/mol, which was too small to expect a substantial amount of entanglements 
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in the CE-11 network. By comparison, the theoretical Mx values for CE-22 and CE-32 were 

large enough that entanglements could have been present between cross-links. Indeed, the 

calculated values for Mx,eff of CE-22 and CE-32 were respectively 3.8 and 4.1 kg/mol 

(Table 4.5), which correspond more closely with the Me of PMCL than with the theoretical 

Mx. The lack of a strong trend in Mx,eff indicated that the mechanical properties at low 

strains were primarily dictated by the inherent entanglements in the network rather than by 

the chemical cross-links.  

 

Figure 4.45. An overlay of the storage modulus curves for the three polyester elastomers 

of varying chemical cross-link density, where CE-X denotes the cross-linked elastomer 

made with a prepolymer of molar mass X. 

  



 

 

214 

Table 4.5. Theoretical and measured parameters for elastomers. 

Elastomera Mn 
(kg/mol)b 

Marm 
(kg/mol)b 

Mx 
(kg/mol)c 

EN’ 
(MPa)d 

Mx,eff 
(kg/mol)e 

CE-32 31.5 7.9 15.8 1.90 4.1 
CE-22 22.4 5.6 11.2 2.05 3.8 
CE-11 11.2 2.8 5.6 2.14 3.7 

aThe notation of the films is CE-X, where X represents the Mn of the PMCL used to make 
the film. bMolar masses determined by end-group analysis via 1H NMR spectroscopy and 
correspond to pre-polymer. cTheoretical molar mass between chemical cross-link junctions 
if each arm of the pre-polymer was joined to another during cross-linking (i.e., Mx = 2Marm). 
dValue at 21.5 °C from dynamic mechanical thermal analysis of cross-linked elastomers. 
eCalculated from equation 1 in the main text using a density of 1.065 g cm-1 and a 
temperature of 21.5 °C 

 

Figure 4.46. Master curve for star-shaped hydroxyl-terminated PMCL of Mn = 31.5 kg/mol 
(i.e., prepolymer for CE-32) obtained using time-temperature superposition; shift factors 
were obtained by shifting tan d. 
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Figure 4.47. Time-temperature superposition of tan d for star-shaped hydroxyl-terminated 
PMCL of Mn = 31.5 kg/mol (i.e., prepolymer for CE-32). 

 

Figure 4.48. William-Landel-Ferry fitting of the shift factors obtained via time-
temperature superposition of tan d for star-shaped hydroxyl-terminated PMCL of Mn = 31.5 
kg/mol (i.e., prepolymer for CE-32). 
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Linear and cyclical tensile tests were performed to investigate the elastic 

performance of the elastomers; vulcanized natural rubber (i.e., a rubber band) was also 

tested as a benchmark for tensile performance of a commercially available CCP (Figure 

4.49). The Young’s modulus E of each elastomer was determined from the slope of the 

stress-strain curve in the linear viscoelastic regime (i.e., low strain behavior); all three 

elastomers had moduli in the range of 1.6 to 2.0 MPa, which was in good agreement with 

the results obtained via dynamic mechanical thermal analysis (Table 4.6). However, 

distinct trends arose in both the ultimate tensile strength, sb, and the ultimate elongation, 

eb, as the samples were stretched to their breaking point. Materials with a larger Mx were 

able to stretch to higher strain values before failure. Furthermore, the change to positive 

curvature observed in the stress-strain curve of CE-32 indicated that the Mx was large 

enough to enable strain hardening, which resulted in a significant improvement in the sb. 

The CE-32 elastomer outperformed the rubber band with respect to ultimate tensile 

strength and elongation; however, the Young’s modulus of the rubber band was 

approximately 3 MPa, which was higher than all three CE samples. This was expected, as 

rubber bands are composite materials with hard filler particles—usually clay—that 

increase the rigidity and lower the water permeability of the vulcanized natural rubber.54 

We have previously reported that fumed silica filler can be incorporated into polyester 

elastomers with a very similar chemical structure as those presented here,9 and we believe 

the same strategy could be applied to increase the sb and E of MCL-based elastomers. 
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Figure 4.49. (a.) An overlay of representative uniaxial extension tensile testing data for a 
conventional rubber band (RB) and three elastomers of varying cross-link density, where 
CE-X denotes the cross-linked elastomer made with a prepolymer of molar mass X. (b.) An 
overlay of the first and twentieth cycles (dark and light shades, respectively) of cyclical 
uniaxial extension tensile tests for the RB and CE-32 (black and blue, respectively). 
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Table 4.6. Tensile testing data for elastomers. 

Elastomera Young’s Modulus 
(MPa)b,c 

Stress at Break 
(MPa)c 

Strain at Break 
(%)c 

CE-32 1.6 ± 0.4 6 ± 1 900 ± 100 
CE-22 1.77 ± 0.07 1.7 ± 0.3 290 ± 80 
CE-11 2.0 ± 0.6 1.0 ± 0.1 90 ± 20 

aThe notation of the films is CE-X, where X represents the Mn of the PMCL used to make 
the film. bObtained between 0-10 % strain. cValues shown are average ± standard 
deviations for 5 or more replicates. 

Cyclical deformation across all CE samples indicated that the hysteresis energy loss 

and the tensile set per cycle both decreased when going from CE-32 to CE-11 (Figure 4.50 

and Figure 4.51). The rubber band was also tested and compared to the highest performing 

elastomer, CE-32. The hysteresis energy loss of the rubber band was significantly larger 

during the first cycle but compared well with the CE-32 elastomer for all subsequent cycles. 

CE-32 also exhibited very low tensile deformation (approximately 6% on 20th cycle) but 

still higher than that of the rubber band for all cycles.  

 

Figure 4.50. An overlay of hysteresis energy loss during 20 cycles of tensile testing for a 
conventional rubber band (RB) and the cross-linked polyester elastomers. The last data 
point for CE-11is missing because the material broke during the last cycle. 
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Figure 4.51. An overlay of the tensile set (i.e., % strain at zero stress) during 20 cycles of 
tensile testing for a conventional rubber band (RB) and the cross-linked polyester 
elastomers. The last data point for CE-11is missing because the material broke during the 
last cycle. 

4.4.3. Investigation of the Enzymatic Hydrolysis of Polyester Elastomers. 

We then set our sights toward the enzymatic hydrolyzabilities of these elastomers. 

The first and overall rate-limiting step of polyester biodegradation in natural systems is 

expected to be polyester hydrolysis.55 While non-enzymatic hydrolysis may be slow, 

extracellular esterases secreted by naturally-occurring microorganisms colonizing the 

polyesters can largely facilitate hydrolysis. During this process, the esterases cleave the 

polyesters into smaller, water-soluble oligomers and monomers that can subsequently be 

taken up and utilized by microorganisms, resulting in the conversion of polyester carbon 

to CO2 and microbial biomass.15,55 Providing proof of enzymatic hydrolyzability of a 

polyester in a model system using naturally-occurring esterases strongly supports that these 

materials will also undergo enzymatic hydrolysis in the environment.  

For our enzymatic hydrolysis experiments, we chose a model cutinase from 
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Fusarium solani, a filamentous fungus. While the natural substrate for Fusarium solani 

cutinase (FsC) is cutin, FsC has also been found to hydrolyze a variety of polyesters 

including poly(caprolactone),56 poly(ethylene terephthalate),57 and poly(butylene 

adipate).58 To study complete enzymatic hydrolysis within reasonable experimental 

timescales, we used elevated FsC concentrations that resulted in polyester surface-limited 

and enzyme-saturated conditions. We used two complementary techniques to monitor 

hydrolysis: pH-stat titration to quantify the number of carboxylic acids formed during 

polyester hydrolysis and batch reaction vessels coupled to solution TOC analysis to 

quantify soluble hydrolysis products. We performed our experiments at pH 7 and 

temperatures between 2 and 40 °C to simulate conditions found in natural soils. 

The first set of pH-stat titrations (CE-22, 40 °C) were performed in triplicate and 

demonstrated that hydrolysis experiments were highly reproducible; all subsequent 

experiments were therefore performed in duplicate. CE-11, CE-22, and CE-32 were each 

subjected to pH-stat titration experiments at 40 °C wherein the FsC was added at least 24 

hours after the elastomers were placed in solution (Figure 4.52). The pH was stable without 

base addition over this 24 h period, which demonstrated that non-enzymatic (i.e., abiotic) 

hydrolysis of the elastomers was negligible. For all CE samples, the addition of the enzyme 

immediately resulted in base titration due to the hydrolysis of ester bonds in the elastomer. 

The titration progressed at a relatively linear rate until the hydrolyzed ester bonds 

approached 100% (after approximately 3.5 days). We demonstrated in a separate 

experiment that the rate was proportional to the surface area of elastomer (Figure 4.53). 

Although it has been previously shown that increases in surface area—and therefore 

accelerated hydrolysis—can be detected during the enzymatic hydrolysis of polymer thin 
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films,59,60,61,62,63 the constant slopes of the hydrolysis curves for CE samples indicated that 

there were no appreciable increases in the surface areas throughout the experiments. 

Furthermore, the similarity in the hydrolysis rates between all CE samples suggested that 

the polymer chains in each network were equally accessible to FsC regardless of the Mx, 

which in these cases ranged from 6 to 16 kg/mol (Table 4.7). The hydrolysis curves began 

to plateau as the available substrate was depleted; these final stages of hydrolysis were 

concomitant with visual observations of pitting and near complete disappearance of the CE 

samples. For all CE samples, the plateau occurred at approximately 100% of esters 

hydrolyzed (with an average and standard deviation of 97 ± 4%), which indicated that the 

primary hydrolysis product was monomeric. Indeed, the analysis of the hydrolysis products 

by 1H and 13C NMR spectroscopy was consistent with the 6-hydroxy-4-methylhexanoic 

acid expected from full hydrolysis of PMCL (Figure 4.54, Figure 4.55, Figure 4.56, 

Figure 4.57, Figure 4.58, and Figure 4.59).  
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Figure 4.52. Hydrolysis curves for the polyester elastomers (CE-11, CE-22, and CE-32) 
by Fusarium solani cutinase (FsC) at 40 °C and pH 7 as measured by pH-stat titration. The 
curves are horizontally offset such that FsC addition occurs at t = 0 h. Experiments were 
run in triplicates (CE-22) or duplicates (CE-11 and CE-32). 
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Figure 4.53. Control experiment at 30 °C and pH 7 demonstrating that the pH-stat titrations 
performed in this work are at enzyme saturation conditions and the hydrolysis rate is 
proportional to the surface area. The rate does not change upon the addition of more 
enzyme, but it does change when one of the two discs is removed from or returned to the 
solution. 

Table 4.7. Hydrolysis rates and esters hydrolyzed for each elastomer at pH 7 and 40 °C. 

Elastomer 
Mass 
Used 
(mg) 

Total 
Esters 
(µmol) 

Surface 
Area 

(mm2) 

Rate 
(µmol esters h-1)a 

Average Rate 
(µmol esters h-1) 

CE-32 37.84 296.3 86.2 4.86 4.71 CE-32 38.90 304.6 87.3 4.57 
CE-22 38.81 304.2 86.7 4.62 

4.56 CE-22 36.03 282.4 85.8 4.36 
CE-22 37.55 294.4 86.6 4.67 
CE-11 36.45 299.8 85.7 4.50 4.55 CE-11 36.52 300.4 85.8 4.61 

a Obtained from 0 to 50% hydrolysis as measured by pH-stat titration. 
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Figure 4.54. 1H NMR spectrum (400 MHz, D2O) of the dissolved solid in the degradation 
solution of CE-11; the peaks corresponding to the major hydrolysis product are indicated 
as well as those from propylene glycol (PG), which is a stabilizer used in enzyme solutions 
(see Figure 4.56 and Figure 4.57). 
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Figure 4.55. 13C NMR spectrum (100 MHz, D2O) of the dissolved solid in the degradation 
solution of CE-11; the peaks corresponding to the major hydrolysis product are indicated 
as well as those from propylene glycol (PG). 
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Figure 4.56. 1H NMR spectrum (400 MHz, D2O) of the dissolved solid in the degradation 
solution of CE-11 overlaid with the spectrum for the Fusarium solani cutinase solution; 
the peaks for the propylene glycol stabilizer are indicated. 
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Figure 4.57. 1H NMR COSY spectrum (400 MHz, D2O) of the dissolved solid in the 
degradation solution of CE-11; the propylene glycol peaks are indicated. Although there 
are other small cross-peaks that could belong to minor hydrolysis products, is difficult to 
determine their structure as some peaks are overlapping with those of the major hydrolysis 
product. 
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Figure 4.58. 13C NMR spectra (100 MHz, D2O) overlay showing a consistent major 
hydrolysis product for all elastomers and both methods: pH-stat titrations and buffered 
incubations. The spectra are standardized to 3-(trimethylsilyl)propanoate-2,2,3,3-d4 (TSP). 
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Figure 4.59. 13C NMR spectra (100 MHz, D2O) overlay comparing various methods of 
removing the water prior to NMR analysis of the solid residue of CE-22 degradation 
solution; side products are not formed during evaporation at elevated temperature. The 
spectra are standardized to 3-(trimethylsilyl)propanoate-2,2,3,3-d4 (TSP). 

We also investigated enzymatic hydrolysis at more environmentally relevant 

temperatures, specifically between 30 and 2 °C. Although pH-stat titration was used to 

monitor hydrolysis at 30 and 20 °C, the slow hydrolysis at temperatures lower than 20 °C 

made the use of pH-stat titration impractical. Thus, hydrolysis experiments at 2, 10, and 20 

°C were conducted in batch vessels coupled to repeated solution TOC analysis. As there 

was high reproducibility and good agreement in the observed hydrolysis rates of the 

different CE samples at 40 °C, only CE-22 was used for the variable temperature hydrolysis 
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experiments (Figure 4.60). The pH-stat titration data indicated that complete hydrolysis 

was achieved in 5.5 and 10 days after enzyme addition at 30 and 20 °C, respectively. For 

all temperatures, the extent of hydrolysis was 98 ± 2% (average ± standard deviation), 

which was in very good agreement with the titration results obtained at 40 °C. 

In the cases of hydrolysis monitored by TOC analysis, the lack of any appreciable 

dissolved organic carbon (ca. 1% of added elastomer carbon) after one week of incubation 

without FsC indicated that both non-enzymatic (abiotic) hydrolysis of the elastomers and 

leaching of water-soluble organic compounds from the elastomers were negligible, the 

latter of which would not necessarily be observable via pH-stat titration (Figure 4.61). Just 

as in pH-stat titration, the addition of enzyme resulted in the immediate formation of 

soluble hydrolysis products, which resulted in relatively linear evolution of TOC over time 

until the substrate was depleted. TOC analyses of the solutions containing polyester and 

enzyme indicated complete hydrolysis in 16, 28, or 53 days after enzyme addition at 20, 

10, and 2 °C respectively. The final TOC concentrations in each batch reactor were in very 

good agreement with the expected carbon contents if all of the added elastomer was 

converted into soluble monomers; the TOC content was 100 ± 2% (average ± standard 

deviation) of the TOC expected for complete hydrolysis). We speculate that the 

discrepancy between the TOC analysis data and pH-stat titration data at 20 °C (16 days 

versus 10 days) was due to the presence of a significant amount of phosphate buffer (340 

mM) in the batch reactors, which was necessary to keep the pH close to 7. The increased 

ionic strength of the solution likely resulted in a lower enzyme activity.64,65 More 

importantly from an environmental fate perspective, complete hydrolysis was achieved on 

a reasonable timescale even at the lowest tested temperature of 2 °C. This finding strongly 
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suggests that the investigated elastomers would undergo complete enzymatic hydrolysis in 

natural systems such as soils as well as engineered systems such as landfills. Many previous 

investigations on the enzymatic hydrolysis of polyesters have shown that the presence of 

crystalline domains typically slows down hydrolysis;57,59,60,61 the amorphous nature of the 

polyester elastomers presented here enabled facile and complete hydrolysis over a wide 

range of temperatures.  
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Figure 4.60. (a.) Hydrolysis curves for CE-22 with Fusarium solani cutinase (FsC) as 
measured by pH-stat titration at various temperatures and pH 7. The curves are horizontally 
offset such that FsC addition occurs at t = 0 h. (b.) Evolution of total organic carbon (% of 
added elastomer) during the hydrolysis of CE-22 by FsC at various temperatures and pH 
7. The error bars represent standard deviations for three technical replicates per sample. 
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Figure 4.61. An enhanced section of the TOC analyses, demonstrating the carbon content 
at day 2 and day 5 for each batch reactor. For all samples, the carbon content in the solution 
did not increase from the first data point to the second, indicating that there is no detectable 
non-enzymatic hydrolysis over this time period. We ascribe the measured carbon (1%) to 
leaching of low-molecular weight compounds from the elastomer. 

4.5. Conclusion. 

We have demonstrated that MCL can be used to produce well-defined, star-shaped 

polyesters with hydroxyl end groups, which can react with a novel bis(b-lactone) monomer 

in the presence of SnOct2 to afford cross-linked elastomers. Through soluble model 

compound studies, we determined that the SnOct2-catalyzed ring-opening of b-

valerolactone with benzyl alcohol proceeds via acyl-oxygen cleavage to generate b-

hydroxyesters. Over 24 h, these moieties did not undergo substantial dehydration, and we 

therefore concluded that the junctions between the arms of the star-polymers in the 

insoluble network were b-hydroxyesters. The mechanical properties of the elastomer were 
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tuned by changing the molar mass of the star-polymer used to prepare the network. 

Although all elastomers demonstrated a very wide operating temperature range (–50 to 200 

°C), the elastomer prepared with PMCL of Mn = 32 kg/mol demonstrated tensile properties 

that were competitive with a commercial rubber band. Enzymatic hydrolysis, the rate-

limiting step in polyester biodegradation, of the elastomers was investigated at pH 7 and 

monitored using pH-stat titration or solution TOC analysis. With titration experiments, we 

showed that all CE samples hydrolyzed with similar rates. To further approach 

environmental conditions, hydrolysis was investigated at lower temperatures. Remarkably, 

the samples fully hydrolyzed at all temperatures (i.e., from 2 to 40 °C) and the primary 

hydrolysis product in each case was confirmed to be 6-hydroxy-4-methylhexanoic acid 

from the PMCL chains. The implications of these results for renewable CCPs are 

promising: lignin and various bio-based multifunctional epoxides could potentially be 

transformed into an easily polymerizable monomer and a versatile class of cross-linkers, 

respectively. These building blocks could then be used to make useful materials whose 

mechanical properties can be tuned without compromising their susceptibility to enzymatic 

hydrolysis. The materials investigated here are promising candidates as renewable and 

biodegradable alternatives to commercially available elastomers; as such, we expect future 

efforts to overcome the remaining challenges regarding the sustainability of MCL-based 

elastomers, namely by developing and optimizing the conversion of biomass to MCL using 

green chemistry principles.66,67,68 
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Chapter 5. Mechanistic Study of Stress Relaxation in Urethane-

Containing Polymer Networks.* 

  

                                                

* Reprinted (adapted) with permission from Brutman, J. P.; Fortman, D. J.; De Hoe, G. X.; Dichtel, W. R.; 
Hillmyer M. A. A Mechanistic Study of Stress Relaxation in Urethane-Containing Polymer Networks. J. 
Phys. Chem. B 2019, 123, 1432–1441. Copyright © 2019 American Chemical Society. 
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5.1. Abstract 

Cross-linked polymers are used in many commercial products and are traditionally 

incapable of recycling via melt reprocessing. Recently, tough and reprocessable cross-

linked polymers have been realized by incorporating cross-links that undergo associative 

exchange reactions, such as transesterification, at elevated temperatures. Here we 

investigate how cross-linked polymers containing urethane linkages relax stress under 

similar conditions, which enables their reprocessing. Materials based on hydroxyl-

terminated star-shaped poly(ethylene oxide) and poly((±)-lactide) were cross-linked with 

methylene diphenyldiisocyanate in the presence of stannous octoate catalyst. Polymers 

with lower plateau moduli exhibit faster rates of relaxation. Reactions of model urethanes 

suggest that exchange occurs through tin-mediated exchange of the urethanes that does not 

require free hydroxyl groups. Furthermore, samples were incapable of elevated 

temperature dissolution in a low polarity solvent (1,2,4-trichlorobenzene) but readily 

dissolved in a high polarity aprotic solvent (DMSO, 24 to 48 h). These findings indicate 

that urethane linkages, which are straightforward to incorporate, impart dynamic character 

to polymer networks of diverse chemical composition, possibly through a urethane 

reversion mechanism. 

5.2. Introduction 

Cross-linked polymer networks are prevalent in adhesives, composites, and other 

durable products. Unlike thermoplastics, traditional cross-linked polymer networks are 

effectively irreparable, cannot be reshaped, and are non-recyclable through traditional 

means. Many studies have explored their reprocessing by incorporating dynamic cross-

links.1,2,3,4,5,6 Early examples relied on thermally reversible moieties such as Diels-Alder 
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cycloadducts, which allowed the materials to depolymerize and be reformed in a new 

shape.7,8 Although this approach represented a significant conceptual advance in the 

reprocessing of cross-linked polymers, the materials often exhibited poor thermal stability 

and solvent resistance, which limited their potential applications.9 

A new class of reprocessable polymer networks, termed vitrimers,10,11,12 feature 

cross-links that typically undergo exchange through associative rather than dissociative 

processes. Vitrimers maintain their cross-linked nature at elevated temperature and/or in 

the presence of solvents, as demonstrated for polyester epoxy resins containing a Zn(II) 

transesterification catalyst.10,13,14 The cured resins were capable of reprocessing and 

injection molding at 280 °C; however, they only swelled in hot solvent (180 °C) rather than 

dissolving, as is typical for cross-linked polymers. The temperature dependence of the 

viscosity of vitrimers is gradual and follows an Arrhenius relationship, which differs from 

the typical Williams-Landel-Ferry response observed for thermoplastics. This strong glass-

forming behavior confers a topology freezing transition temperature (Tv) when it occurs 

above or at the Tg. Below Tv the vitrimer behaves as a traditional thermoset, and above Tv 

the cross-links undergo dynamic exchange reactions that give rise to thermally activated 

stress relaxation. 

Vitrimers and vitrimer-like materials have been developed based on dynamic 

chemistries including alkene metathesis,15,16 hindered urea exchange,17,18, 

disulfide/polysulfide metathesis,19,20,21,22 thiol-disulfide exchange,23 vinylogous urethane 

exchange,24,25 transcarbamoylation,26,27 siloxane equilibrium,28,29 and boronic ester 

exchange.30,31,32 We previously reported reprocessable materials based on poly((±)-lactide) 

(PLA) cross-linked with a diisocyanate in the presence of stannous octoate catalyst.33 We 
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initially hypothesized that transesterification caused stress relaxation (Figure 5.1A) and 

that the high concentration of ester functionalities in the PLA backbone was responsible 

for the rapid stress relaxation and efficient reprocessability of these materials. However, 

the Arrhenius activation energy (Ea) for stress relaxation (150 kJ mol-1) was much higher 

than that determined for PLA transesterification (80 kJ mol-1),34 which indicated that other 

stress relaxation mechanisms were more likely. We later showed that cross-linked 

polyhydroxyurethanes relax stress through hydroxyl-urethane exchange (e.g., 

transcarbamoylation, Figure 5.1B),26,27 suggesting that the urethane linkages might also be 

responsible for stress relaxation in the PLA networks. Furthermore, stress relaxation of 

polyurethane networks lacking free hydroxyl groups, which are required for 

transcarbamoylation, was reported by Tobolsky in the 1950s and was hypothesized to occur 

via urethane reversion (Figure 5.1C).35,36 Exploiting the dynamic nature of urethane bonds 

has recently become a promising approach for reshaping polyurethane networks, although 

mechanistic aspects of these processes are not entirely clear. For example, Zheng, et al. 

hypothesized that urethanes were responsible for stress relaxation in polyurethane 

elastomers in the presence of dibutyltin dilaurate.37 Yan, et al. further studied the tin-

mediated relaxation of polyurethanes and showed preliminary results indicating that this 

behavior can be correlated to reprocessability of cross-linked polyurethanes.38,39 Additional 

work by Zheng, et al. demonstrated that networks based on N-aryl urethanes relax stress at 

elevated temperatures even in the absence of an external catalyst,40 although no explicit 

evidence for urethane reversion was presented in any of these systems. Yang and Urban 

postulated that repair of cross-linked polyurethanes occurs through the generation of 

amines upon mechanical failure, which react further with urethanes to form ureas.41 
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Although modest changes in the Raman and IR spectra were consistent with this 

hypothesis, more definitive characterization was not obtained. Considering these findings, 

a robust understanding of the mechanisms of stress relaxation for urethane-containing 

polymer networks has not yet been established. 

 

Figure 5.1. Proposed relaxation mechanisms for urethane cross-linked PLA: A) 
transesterification, B) transcarbamoylation, and C) urethane reversion. 

Here we investigate the thermally activated stress relaxation of urethane-containing 

polymer networks as a function of temperature, catalyst content, and polymer structure. 

The similarity of Ea values for stress relaxation of PLA- and poly(ethylene oxide) (PEO)-

based polymers cross-linked with aryl isocyanates indicates that urethane bonds are the 

dynamic linkages in both networks and further suggests that transesterification-based 

relaxation is negligible in PLA-derived urethane networks. Exchange studies of urethane 

model compounds at elevated temperature provide further insight into the mechanism 

responsible for stress relaxation. Variable-temperature NMR spectroscopy and polymer 

swelling experiments are consistent with urethane reversion being the predominant 

mechanism of stress relaxation in polymer networks cross-linked by N-aryl urethanes.  
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5.3. Experimental  

5.3.1. Materials 

 All reagents were purchased from Sigma-Aldrich (Milwaukee, WI) and were used 

as received unless otherwise stated. All glassware was heated to 105 °C overnight prior to 

use unless otherwise specified. (±)-Lactide was kindly provided by Altasorb (Piedmont, 

SC) and used as received. Stannous octoate [Sn(Oct)2] was purified by vacuum distillation 

(3x, ~130-150 °C, ca. 30-50 mTorr argon). Dichloromethane (DCM) and methanol were 

purchased from Fisher Scientific (Hampton, NH); DCM was purified via a GC-SPS-4-CM 

glass contour 800-L solvent purification system obtained from Pure Process Technologies 

(Nashua, NH). 4-Arm hydroxyl-terminated PLA and urethane cross-linked PLA were 

synthesized using a literature procedure; the number average molar mass (Mn) of the 

prepolymer was determined by 1H NMR spectroscopy.33 Urethane cross-linked PEO was 

synthesized under the same conditions as the PLA samples using commercially available 

pentaerythritol ethoxylate (Mn ~ 797 g mol-1). PLA and PEO samples are respectively 

denoted PLA-X-Y and PEO-X-Y, where X is the Mn of the prepolymer (kg mol-1) and Y is 

the cross-linker used: either methylene diphenyl diisocyanate (MDI) or poly(methylene 

diphenyl diisocyanate) (PMDI). In some cases, a sample was swelled in methanol (see 

characterization methods section) or contains no catalyst, denoted by SM and NC at the 

end of the sample name, respectively.  

5.3.2. Synthesis of Epoxide Cross-linked Poly(4-methylcaprolactone) 

 The 4-methylcaprolactone monomer was synthesized using a literature procedure.42 

Sn(Oct)2 (4 mg, 0.025 mol%) was dissolved in toluene (ca. 0.1 mL) and charged in a 
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pressure vessel, along with 4-methylcaprolactone (5 g, 39 mmol) and pentaerythritol (0.073 

g, 0.54 mmol). The reaction mixture was heated to 160 °C for 3 h, then succinic anhydride 

(0.3 g, 3 mmol) was added under N2 and stirred for 1 h. The mixture was cooled, dissolved 

using DCM, and then precipitated into methanol (ca. 10 times volume of product solution). 

The crude polymer was again dissolved in DCM and reprecipitated in hexanes (ca. 10 times 

volume of product solution). The resulting carboxylic acid-terminated poly(4-

methylcaprolactone) (P4MCL) was dried under N2 for 24 h, then dried under vacuum (20 

mTorr) at 60 °C for 72 h; the isolated yield was 76%. 1H NMR (500 MHz, CDCl3; 25 °C): 

δ (ppm) = 4.20-4.01 (m, 158 H), 2.64 (m, 16 H), 2.42-2.23 (m, 150 H), 1.74-1.39 (m, 390 

H), 0.97-0.87 (m, 240 H). Mn = 10.1 kg mol-1. DSC: Tg = –60 °C. 

 P4MCL (1.52 g, 1.0 eq. COOH groups), triglycidyl isocyanurate (64 mg, 1.0 eq. 

epoxide groups), and Sn(Oct)2 (6 mg, 2.5 mol% to COOH groups) were dissolved in DCM. 

The solution was poured into a polypropylene container and allowed to sit for 24 h before 

heating under N2 at 120 °C for 3 h. The gel percent of the resultant epoxide cross-linked 

P4MCL network was 95%. 

5.3.3. Representative Synthesis of N-H Model Compounds 

To a flame-dried round-bottom flask under nitrogen atmosphere was added alcohol 

(16.8 mmol) and anhydrous tetrahydrofuran (20 mL). A solution of Sn(Oct)2 (130 mg, 0.34 

mmol, 2 mol%) dissolved in anhydrous tetrahydrofuran (1 mL) was added, followed by 

addition of isocyanate (16.8 mmol) using a syringe. The resulting solution was stirred at 

room temperature for 24 h, and solvent was removed at reduced pressure to yield a white 

solid. The crude solid was chromatographed on silica gel in 20% ethyl acetate/hexanes to 

yield the product. 
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N-phenyl-O-octyl urethane: White solid, 82% yield. 1H NMR (400 MHz, CDCl3) δ 

7.38 (d, J = 8.0 Hz, 2H), 7.35-7.23 (m, 2H), 7.05 (tt, J = 7.1, 1.2 Hz, 1H), 6.56 (br s, 1H), 

4.16 (t, J = 6.7 Hz, 2H), 1.71-1.63 (m, 2H), 1.43-1.23 (m, 10H), 0.89 (t, J = 7.8 Hz, 3H). 

13C NMR (100 MHz, CDCl3) δ 153.7, 138.0, 128.9, 123.2, 118.5, 65.4, 31.7, 29.19, 29.15, 

28.9, 25.8, 22.6, 14.0. IR (neat, ATR) 3304, 2956, 2920, 2853, 1698, 1599, 1544, 1444, 

1236, 1055, 747 cm-1. 

N-tolyl-O-decyl urethane: White solid, 85% yield. 1H NMR (400 MHz, CDCl3) δ 

7.28-7.22 (m, 2H), 7.10 (d, J = 8.3 Hz, 2H), 6.49 (br s, 1H), 4.14 (t, J = 6.7 Hz, 2H), 2.30 

(s, 3H), 1.72-1.60 (m, 2H), 1.44-1.24 (m, 14H), 0.92-0.84 (m, 3H). 13C NMR (100 MHz, 

CDCl3) δ 153.8, 135.4, 132.8, 129.4, 118.7, 65.3, 31.9, 29.51, 29.50, 29.27, 29.25, 28.9, 

25.8, 22.6, 20.7, 14.1. IR (neat, ATR) 3327, 2919, 2851, 1696, 1596, 1531, 1314, 1235, 

1071, 814 cm-1. 

N-tolyl-O-(triethyleneglycol monomethyl ether) urethane: Colorless oil, 57% yield. 

1H NMR (400 MHz, CDCl3) δ 7.25 (d, J = 8.6 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 6.73 (br 

s, 1H), 4.35-4.28 (m, 2H), 3.78-3.71 (m, 2H), 3.73-3.62 (m, 6H), 3.59-3.52 (m, 2H), 3.38 

(s, 3H), 2.30 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 153.5, 135.3, 132.7, 129.3, 118.7, 

71.8, 70.42, 70.41, 70.40, 69.3, 63.9, 58.8, 20.6. IR (neat, ATR) 3306, 2873, 1727/1709, 

1599, 1530, 1315, 1222, 1207, 1102, 1069, 816 cm-1. 

5.3.4. Representative Synthesis of N-CH3 Model Compounds 

To a flame-dried round-bottom flask under nitrogen atmosphere was added urethane 

(4 mmol) and anhydrous dimethylformamide (15 mL). The mixture was cooled in an ice 

bath, and sodium hydride (192 mg, 8.0 mmol, 320 mg dispersion in mineral oil) was added, 

resulting in gas evolution. The resulting mixture was stirred for 10 minutes, then 
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iodomethane (1.419 g, 10 mmol, 0.62 mL) was added using a syringe. The resulting 

mixture was stirred at room temperature for 18 h, then diluted with water (150 mL). This 

solution was extracted with diethyl ether (200 mL), which was washed with water (2 x 150 

mL), dried over MgSO4, and filtered. Solvent was removed at reduced pressure to yield a 

colorless oil. The crude oil was chromatographed on silica gel using 10% ethyl 

acetate/hexanes to yield the product as a colorless oil. 

N-methyl-N-phenyl-O-octyl urethane: Colorless oil, 65% yield. 1H NMR (400 MHz, 

CDCl3) δ 7.34 (m, 2H), 7.27-7.15 (m, 3H), 4.09 (t, J = 6.7 Hz, 2H), 3.30 (s, 3H), 1.63-1.53 

(m, 2H), 1.33-1.22 (m, 10H), 0.88 (t, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 

155.7, 143.4, 128.7, 125.8, 125.6, 65.8, 37.5, 31.7, 29.11, 29.08, 28.8, 25.8, 22.6, 14.0. IR 

(neat, ATR) 2925, 2855, 1703, 1598, 1498, 1346, 1154, 695 cm-1. 

N-methyl-N-tolyl-O-decyl urethane: Colorless oil, 55% yield. 1H NMR (400 MHz, 

CDCl3) δ 7.18-7.07 (m, 4H), 4.08 (t, J = 6.7 Hz, 2H), 3.27 (s, 3H), 2.34 (s, 3H), 1.64-1.54 

(m, 2H), 1.35-1.23 (m, 14H), 0.89 (t, J = 6.9 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 155.9, 

140.8, 135.6, 129.3, 125.6, 65.8, 37.7, 31.9, 29.5, 29.4, 29.3, 29.1, 28.9, 25.8, 22.6, 20.9, 

14.0. IR (neat, ATR) 2923, 2854, 1703, 1515, 1343, 1155, 1111, 820, 768 cm-1. 

5.3.5. Model Alcohol-Urethane Exchange Reaction analyzed by GC-MS Analysis 

To a vial was added Sn(Oct)2 (11.9 mg, 0.03 mmol, 2.5 mol% to urethane), N-phenyl-

O-octyl urethane (293 mg, 1.17 mmol), 1-decanol (1.86 g, 11.7 mmol), and 

triphenylmethane (27.0 mg, 0.11 mmol) as an internal standard. The resulting mixture was 

heated and stirred in a preheated oil bath. Aliquots were removed using a syringe at various 

time points, diluted with DCM, and subjected to GC-MS analysis. Concentrations of the 

transcarbamoylation product N-phenyl-O-decyl urethane could not be determined 
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quantitatively due to partial decomposition of the urethanes on the GC column at 

temperatures required to sufficiently volatilize them. 

5.3.6. Model Alcohol-Urethane Exchange Reaction analyzed by NMR Spectroscopy 

To a vial was added Sn(Oct)2 (11.6 mg, 0.03 mmol, 2.5 mol% to urethane), N-tolyl-

O-(triethyleneglycol monomethyl ether) urethane (340 mg, 1.14 mmol), and 1-decanol 

(1.81 g, 11.4 mmol). The resulting mixture was then heated and stirred in a preheated oil 

bath. Aliquots of ca. 10 mg were removed using a syringe at various time points, dissolved 

in CDCl3 (containing 10.0 mg/mL tribromobenzene as an external standard) to a 

concentration of 50.0 mg/mL, and analyzed by 1H NMR spectroscopy (the -CH2O- peaks 

of the starting material and transcarbamoylation product are distinct). Concentrations of 

the transcarbamoylation product N-tolyl-O-decyl urethane could not be determined 

quantitatively due to overlap of the product resonance at ca. 4.1 ppm with a side product 

(the calculated amount of product formed is greater than the amount of starting material 

lost; running the reaction to high conversion clearly shows an overlapping resonance 

convoluting the product peak). 

5.3.7. Model Urethane-Urethane Crossover Reaction 

To a vial was added Sn(Oct)2 (23.9 mg, 0.059 mmol, 2.5 mol% to urethane), N-

phenyl-O-octyl urethane (294 mg, 1.18 mmol), N-tolyl-O-decyl urethane (344 mg, 1.18 

mmol), and triphenylmethane (30.5 mg, 0.12 mmol) as an internal standard. The resulting 

mixture was heated and stirred in an oil bath preheated to the desired temperature. Aliquots 

were removed using a syringe at various time points, diluted with DCM, and subjected to 

GC-MS analysis. Concentrations of the urethane exchange product N-phenyl-O-decyl 
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urethane could not be determined quantitatively due to partial decomposition of the 

urethanes on the GC column at temperatures required to sufficiently volatilize them.  

5.3.8. Synthesis of Diethyl Urethane Adduct of MDI 

To a round-bottom flask was added MDI (10 g, 40 mmol), ethanol (9.3 mL, 160 

mmol) and DCM (10 mL) under stirring. Once the solution was homogenous, it was cooled 

to 0 °C and Sn(Oct)2 (0.81 g, 2 mmol, 2.5 mol% to –NCO) in DCM (10 mL) was added. 

After 10 min at 0 °C, the solution was left at room temperature for 20 h before concentrating 

by rotary evaporation and drying under high vacuum (~20 mTorr) for 48 h. The crude 

product was then dissolved in dimethylformamide (ca. 20 mL) and precipitated into 

deionized water (ca. 200 mL) yielding a yellow solid that was dried under vacuum (20 

mTorr) for 48 h (quantitative yield). 1H NMR (500 MHz, DMSO-d6): δ 9.52 (s, 2H), 7.38 

(d, 4H), 7.10 (d, 4H), 4.12 (q, 4H), 3.79 (s, 2H), 1.24 (t, 6H). 13C NMR (125 MHz, DMSO-

d6): δ 154, 138, 136, 129, 119, 60, 40, 15. 

5.3.9. Characterization Methods26,33,43 

NMR spectroscopy was performed on a 500 MHz Bruker Avance III HD with 

SampleXpress spectrometer (Billerica, MA) or an Agilent DD MR-400 400 MHz 

spectrometer. Solutions were prepared in 99.8% CDCl3 (Cambridge Isotope Laboratories). 

All NMR spectra were acquired at 20 °C with at least 16 scans and a 1 s delay unless 

otherwise specified. Chemical shifts are reported in ppm with respect to residual CHCl3 

(7.26 ppm). Variable temperature (VT) NMR was performed on a 500 MHz Bruker III at 

100 °C and 140 °C. DMSO-d6 (Cambridge Isotope Laboratories, 99.9%) was purified by 

distillation over CaH2. The solution for VT-NMR was prepared and sealed in a high-
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pressure NMR tube under N2. The same solution was allowed to equilibrate at the desired 

temperature for 10 min before acquiring the 1H NMR and 13C NMR spectra. 

FT-IR was performed on a Bruker Alpha Platinum with a single reflection diamond 

ATR head or a Thermo Nicolet iS10 equipped with a ZnSe ATR attachment. Spectra were 

obtained from 400 to 4000 cm-1 using a minimum of 16 scans. For each spectrum, the 

transmission intensity data were normalized with respect to the carbonyl stretch. 

Gas chromatography/electron impact mass spectrometry (GC-MS) was performed 

on an Agilent 6890N Network GC System with a JEOL JMS-GCmate II Mass 

Spectrometer (magnetic sector). Triphenylmethane was used as an internal standard. 

Dynamic mechanical thermal analysis (DMTA) was performed on a TA Instruments 

RSA-G2 analyzer (New Castle, DE) using dog bone shaped films (ca. 0.5 mm (T) × 3 mm 

(W) × 25 mm (L) and a gauge length of 14 mm). DMTA experiments were conducted in 

tension film mode, where the axial force was first adjusted to 0.2 N of tension (sensitivity 

of 0.01 N) to ensure no buckling of the sample. The proportional force mode was set to 

force tracking to ensure that the axial force was at least 100% greater than the dynamic 

oscillatory force. The strain adjust was then set to 30% with a minimum strain of 0.05%, a 

maximum strain of 5%, and a maximum force of 0.2 N to prevent the sample from going 

out of the specified strain range. A temperature ramp was then performed from –50 °C to 

200 °C at a rate of 5 °C min-1, with an oscillating strain of 0.05% and an angular frequency 

of 6.28 rad s-1. PLA samples required a higher starting temperature (25 to 35 °C) due to 

transducer overload in the brittle regime. The glass transition temperature (Tg) was 

determined from the maximum value of the loss modulus. The cross-link density (νe) and 
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the molar mass between cross-links (Mx) were calculated using the storage modulus (E′) at 

100 °C and equation 1. 

𝐸1(𝑇) = 3𝐺′(𝑇) = 3𝑅𝑇𝜈) =
*+,-
./

    (1) 

Where G’ is the storage modulus under shear, R is the universal gas constant, T refers 

to the absolute temperature in the rubbery region (ca. 373 K) and ρ is the density of PLA 

(1.25 g cm-3) or PEO (1.13 g cm-3). 

The stress-relaxation analysis (SRA) experiments were performed under strain 

control at a specified temperature (110-170 °C depending on the sample). The samples 

were allowed to equilibrate at this temperature for approximately 10 minutes, after which 

the axial force was then adjusted to 0 N with a sensitivity of 0.05 N. Each sample was then 

subjected to an instantaneous 5% strain. The stress decay was monitored while maintaining 

a constant strain (5%) until the stress relaxation modulus had relaxed to 37% (1/e) of its 

initial value. The characteristic relaxation time (τ*), or the time required for the modulus 

to reach 37% (1/e) of its initial value, was measured three times in succession for each 

sample at each temperature. These points were then plotted versus 1/T and fit to the 

Arrhenius relationship in equation 2. 

𝜏∗(𝑇) = 	 𝜏C𝑒EF/,-     (2) 

Where τ0 is the characteristic relaxation time at infinite T, Ea is the activation energy 

of stress relaxation (kJ mol-1), R is the universal gas constant, and T is the temperature in 

K at which SRA was performed. 

The Tv is defined as the point at which a material exhibits a viscosity of 1012 Pa s, 

also known as the liquid to solid transition viscosity (ηv).44,45,46 Using Maxwell’s relation 
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(equation 3)47 and the E′ measured by DMTA at 100 °C, the τ* at Tv (𝜏H∗) was determined 

for each sample. The Arrhenius fit for each sample was then extrapolated to the 

corresponding 𝜏H∗ to determine Tv. 

𝜂H =
J
*
𝐸′ ∗ 𝜏H∗      (3) 

Differential scanning calorimetry (DSC) was conducted on a TA Instruments 

Discovery DSC (New Castle, DE). The instrument was calibrated using an indium 

standard. All samples (ca. 3–7 mg) were analyzed using T-Zero hermetic pans under a N2 

purge of 50 mL min-1. The samples were initially cooled to –80 °C and then heated to 150 

°C at 10 °C min-1. After a 1-minute isotherm, the samples were then cooled to –80 °C at 

10 °C min-1 and heated again to 150 °C at the same rate. Values for Tg were acquired at the 

midpoint of each transition in the second heating curve using the Trios® software. 

Thermogravimetric analysis (TGA) was performed on a TA Instruments Q500 (New 

Castle, DE) under air at a heating rate of 10 °C/min from room temperature to 550 °C. A 

typical sample size was between 8-15 mg. 

Solvent extraction experiments were performed by placing a small amount of cross-

linked polymer (ca. 20 to 100 mg) into a 20-mL vial filled with DCM or MeOH. The vial 

was then closed and stirred for 48 h before removing the solvent by gravity filtration. The 

recovered sample was dried under reduced pressure for 48 h at 20 mTorr, after which the 

sample was weighed and the gel percent was determined. A high temperature swell test 

was also performed with PEO-0.8-MDI (with and without catalyst) submerged in 1,2,4-

trichlorobenzene (TCB) or anhydrous dimethylsulfoxide (DMSO) at 140 °C for 7 days or 

until full dissolution. 



 

 

254 

 Trace Sn analysis was performed by Chemical Solutions Ltd. using inductively 

coupled plasma mass spectrometry (ICP-MS) after microwave digestion of the samples. 

Five samples were subjected to trace Sn analysis: PEO-0.8-PMDI (0.44 wt% Sn), PEO-

0.8-MDI (0.54 wt% Sn), PEO-0.8-PMDI-SM (0.96 wt% Sn), PEO-0.8-MDI-SM (0.52 

wt% Sn), and PEO-0.8-MDI-NC (0.000053 wt% Sn). 

5.4. Results and Discussion 

In our previous study of urethane cross-linked PLA,33 the Ea of stress relaxation (150 

kJ mol-1) was far higher than that reported for Sn(Oct)2-catalyzed transesterification in a 

PLA melt (80 kJ mol-1).34 To further investigate, we substituted the PLA component with 

PEO; if transesterification reactions are the dominant mechanism of stress relaxation, then 

PEO-based materials would exhibit distinctly different stress relaxation behavior due to the 

lack of ester linkages in PEO. Urethane cross-linked PEO materials were prepared using 

similar conditions to those used for urethane cross-linked PLA (Figure 5.2).33 The 

commercially available PEO prepolymer was combined with MDI (NCO functionality of 

2, 0.75 NCO groups per OH group) and Sn(Oct)2 (2.5 mol% relative to initial OH groups) 

to afford cross-linked networks. The cross-link density of the PEO-based materials was 

varied by using PMDI (average NCO functionality of 3.2, 0.75 NCO groups per OH group) 

as an alternate cross-linker. The NCO:OH ratio was chosen in order to maintain 

consistency between this study and our previous study.33 To directly compare these 

materials with PLA-based polymers, we prepared hydroxyl-terminated, star-shaped PLA 

prepolymers with Mn of 1.0, 3.8, and 10 kg mol-1 and cross-linked them under the same 

conditions as those used for the PEO prepolymers (Figure 5.2). Some PEO-based samples 
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were swelled in methanol (MeOH) after curing to study the effect of alcohol treatment on 

stress relaxation. Similarly, a control PEO-based sample was prepared without catalyst. 

 

Figure 5.2. Synthesis of urethane cross-linked PEOs and PLAs. The bracketed 
representation for MDI and PMDI is used to show that PMDI is a mixture of regioisomers 
and oligomers with an average functionality of 3.2 isocyanate groups, or an average Mn ~ 
400 g/mol. 

DMTA of the PEO-based materials exhibited a plateau modulus of 3.7 MPa for the 

MDI-based materials and a modulus of 6.6 MPa for those prepared with PMDI, indicating 

that the higher isocyanate functionality of PMDI increased the cross-link density as 

expected (Figure 5.3 and Table 5.1). During the DMTA experiment, an increase in the 

modulus of the materials with catalyst was observed above 150 °C. After cooling the 

samples back to room temperature, we subjected them to a second DMTA experiment and 

found that the plateau moduli had increased slightly (Figure 5.4). These increases in the 

moduli are likely the outcome of further cross-linking at ≥ 150 °C. By comparison with the 

DMTA data for materials without catalyst and those swollen in MeOH, it is apparent that 

the presence of catalyst was necessary to observe further cross-linking at high temperature. 

Varying the Mn of the PLA prepolymer affected the plateau modulus as expected: higher 

Mn prepolymers yielded less densely cross-linked materials and thus lower plateau moduli. 
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We attributed the similar plateau moduli of PLA-3.8-MDI and PLA-10-MDI to the 

presence of trapped entanglements, which became more prevalent as the prepolymer Mn 

was increased (Figure 5.3 and Table 5.1); the molar mass between entanglements (Me) for 

PLA is 4 kg mol-1 and the critical molar mass (Mc) at which entanglements are 

experimentally observed for PLA is 9 kg mol-1,48 which is consistent with the Mx of 8.9 kg 

mol-1 determined for these samples.  

 

Figure 5.3. DMTA of urethane cross-linked PEO and PLA samples; the dashed lines are 
for samples after being soaked in methanol (SM) and dried under vacuum, whereas the 
dotted line is for the control sample with no catalyst (NC). The analysis was run at 1 Hz 
with an oscillation strain of 0.05%. PLA samples were tested below 150 °C to avoid 
thermal decomposition and higher initial temperatures to avoid transducer overload in the 
glassy regime. 
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Table 5.1. Mechanical and thermal data of urethane cross-linked PEOs and PLAs. 

Samplea Gel 
%b 

E′ 
(MPa)c 

υe × 104 
(mol 

mL-1)d 

Mx  
(kg 

mol-1)d 

Tg 
(°C)e 

Tg 
(°C)f 

Td,5%
(°C)g 

Ea  
(kJ  

mol-1)h 

Tv 
(°C)i 

PEO-0.8-
PMDI 99 6.6 7.1 1.6 3 1 303 142 ± 11 83 

PEO-0.8-
MDI 100 3.7 4.0 2.8 -1 -3 294 139 ± 5 76 

PLA-1-
MDI 99 2.4 2.6 4.8 63 55 189 155 ± 5 67 

PLA-3.8-
MDI 99 1.3 1.4 8.9 54 55 188 153 ± 3 56 

PLA-10-
MDI 99 1.3 1.4 8.9 53 53 202 165 ± 3 59 

PEO-0.8-
PMDI-

SM 
100 6.6 7.1 1.6 0 -1 299 127 ± 31 108 

PEO-0.8-
MDI-SM 100 4.2 4.5 2.5 0 -4 293 87 ± 27 81 

PEO-0.8-
MDI-NC 95 3.5 3.8 3 -10 -14 309 102 ± 37 91 

aSamples are named as prepolymer type-molar mass (kg mol-1)-cross-linker used. SM 
denotes the samples swelled in methanol, and NC denotes the sample made without 
catalyst. bDetermined as the ratio of the dry mass after a swell test to the mass before the 
swell test multiplied by 100. cDetermined at 100 °C. dDetermined using equation 1. 
eDefined as the temperature where the maximum of the loss modulus (E′′) occurs in 
DMTA. fMeasured by DSC after erasing the thermal history at 150 °C for 1 min, cooling 
to –80 °C, and back to 150 °C at a rate 10 °C min-1. gDetermined by heating from 20 °C to 
550 °C under air at 10 °C min-1. hDetermined from the Arrhenius fit from SRA (equation 
2). Standard error as determined by Origin® software is shown with these values. 
iDetermined by extrapolating the Arrhenius fit from SRA to 𝜏H∗ for each individual sample, 
which is determined using equation 3. 
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Figure 5.4. Multiple DMTA experiments of PEO-based samples containing 2.5 mol % 
Sn(Oct)2. An increase in storage modulus is observed above 150 ºC during the first heating 
(solid lines); this increased modulus is present during the second heating (dashed lines), 
suggesting that irreversible cross-linking occurs in the presence of catalyst during the first 
heating. 

SRA of the PEO-based materials revealed stress relaxation similar to PLA-based 

materials (Figure 5.5A), suggesting that urethanes—not esters—are the dominant 

functional groups contributing to stress relaxation. These findings are further consistent 

with the remarkably slow stress relaxation observed for an aliphatic polyester network 

containing Sn(Oct)2 but no urethanes (epoxide cross-linked poly(4-methylcaprolactone), 

Figure 5.6). Furthermore, the lack of significant transesterification observed in poly(4-

methylcaprolactone) and PLA-based materials is in agreement with a recently reported 

model compound study using Sn(Oct)2; transesterification between benzyl alcohol and a 

b-lactone was rapid at 120 °C, but no linear transesterification with the resultant products 

was observed after 24 hours.42  
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Figure 5.5. A) SRA for PEO- and PLA-based materials at 130 °C and 5% strain; the 
experiments were stopped once the sample reached 1/e (37%) of the initial stress relaxation 
modulus (G0). B) Arrhenius analyses of the characteristic relaxation times for each sample; 
three experiments at each temperature are plotted. Dashed lines are for samples that were 
swelled in MeOH and the dotted line is for the sample prepared with no catalyst. 

 

Figure 5.6. Stress relaxation analyses of epoxide cross-linked poly(4-methylcaprolactone) 
(EC-P4MCL) containing Sn(Oct)2 at three separate temperatures, as compared to the 
stress-relaxation of urethane cross-linked PLA at 120 °C. 
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The characteristic relaxation times (τ*) for PEO and PLA-based materials at various 

temperatures were fitted to an Arrhenius model (equation 2), from which an Ea of stress 

relaxation was extracted (Figure 5.5B and Table 5.1). The Ea did not vary significantly 

between the PEO- and PLA-based materials containing Sn(Oct)2 (the range was 139–165 

kJ mol-1, consistent with our previous work), providing further evidence that the urethane 

functionality dominates the stress relaxation behavior in all cases. FT-IR spectra of all 

materials before and after SRA are indistinguishable from one another, indicating that the 

functional groups in the networks are stable at the elevated temperatures employed in this 

study (Figure 5.7, Figure 5.8, and Figure 5.9). Explicitly, we see no formation of common 

by-products seen in polyurethanes, such as allophanates, ureas, biurets, and isocyanurates. 

 

Figure 5.7. FT-IR spectra before and after stress relaxation analysis (SRA) at various 
temperatures on A) PEO-0.8-MDI and B) PEO-0.8-PMDI. 
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Figure 5.8. FT-IR spectra before and after stress relaxation analysis (SRA) at various 
temperatures on A) PLA-1.0-MDI B) PLA-3.8-MDI, and C) PLA-10-MDI. 
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Figure 5.9. FT-IR spectra before and after stress relaxation analysis (SRA) at various 
temperatures on A) PEO-0.8-MDI-SM, B) PEO-0.8-PMDI-SM, and C) PEO-0.8-MDI-
NC. 

While the Ea values were similar across all polymers studied, the rates of relaxation 

differed significantly depending on the structure of the networks. Relaxation rates 

increased dramatically with decreasing plateau modulus (Figure 5.10A), which is 

consistent with previous studies performed on polyester vitrimers.49 Based on 

stoichiometry, PEO-0.8-PMDI and PEO-0.8-MDI have nearly identical residual hydroxyl 

group concentrations ([OH]res); however, the slower stress relaxation behavior of PEO-0.8-

PMDI suggested that the modulus influenced the relaxation rate more strongly than the 
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[OH]res (Figure 5.10). Likewise, PLA-3.8-MDI and PLA-10-MDI had similar plateau 

moduli and vastly different [OH]res values, yet their rates of stress relaxation were 

essentially identical (Figure 5.10). Although it is difficult to completely decouple the 

influence of E′ and [OH]res on the stress relaxation rate, it is apparent that across all 

samples—both in this work and our previous study—the modulus has a stronger influence 

on the relaxation rate than the residual hydroxyl concentration.33 Furthermore, samples 

with a lower plateau modulus had a lower urethane concentration. We speculate that 

relaxation is more rapid at lower cross-link density due to the increased ability for reactive 

groups to diffuse within the network; in addition, each urethane reversion has a 

proportionally greater effect on the reduction of overall cross-link density for networks 

with lower cross-link density as compared to those with higher cross-link density.  

 

Figure 5.10. Plots of characteristic relaxation time (τ*) at 130 °C as a function of A) storage 
modulus (E′) at 130 °C and B) [OH]res, which was estimated from the cross-linking reaction 
stoichiometry. The values of [OH]res are also shown in A) using the color that corresponds 
to each material. 

In our previous studies with PLA-based materials, we found that urethane-based 

stress relaxation occurred more rapidly in the presence of Sn(Oct)2;33 however, we did not 

determine an Ea for stress relaxation in the absence of Sn(Oct)2. Therefore, we investigated 



 

 

264 

the stress relaxation of PEO-based materials prepared without catalyst as well as catalyst-

containing materials that had been swelled in MeOH. The rate of relaxation was 

approximately 30 times slower in the absence of Sn(Oct)2 (Figure 5.5B, dotted line), 

indicating that the presence of tin greatly facilitates stress relaxation. We observed similar 

slow relaxation behavior in the samples swelled in MeOH (PEO-0.8-MDI-SM and PEO-

0.8-PMDI-SM, Figure 5.5B, dashed lines). Although we initially hypothesized that MeOH 

treatment would completely remove the catalyst, the Sn contents of samples pre- and post-

swelling were evaluated by ICP-MS and determined to be between 0.4 and 1 wt%, which 

indicated that Sn was not effectively removed by swelling the samples in MeOH. The Sn 

content of a sample prepared without catalyst was negligible (< 1 ppm). Therefore, the 

ICP-MS and SRA results suggest that swelling in excess MeOH possibly deactivates the 

Sn(Oct)2 catalyst towards urethane exchange rather than removing it. However, the origin 

of slowed stress relaxation after the MeOH treatment remains an open question. For the 

MeOH-treated and catalyst-free samples, the τ* values increased significantly after each 

successive run at a given temperature, resulting in large errors for the calculated activation 

energies. There were no evident changes in the FT-IR spectra before and after SRA for 

these samples as well as no significant mass loss observed before 290 °C (Figure 5.9 and 

Figure 5.11). However, SRA resulted in discoloration of the samples, and we suspect that 

the inconsistent stress relaxation behavior between successive runs was at least partially 

due to decomposition of the reactive functionalities or formation of additional non-dynamic 

cross-links. The multiple processes contributing to stress relaxation in the absence of active 

tin species convolute the comparison of the measured activation energies between MeOH-

treated and catalyst-free samples and those with Sn(Oct)2 present. 
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Figure 5.11. TGA traces of the polymer networks used in this study. 

To further understand the exchange reactions of urethanes and the effects of hydroxyl 

groups on these processes, we studied the behavior of urethane-containing model 

compounds at elevated temperature. In the presence of excess 1-decanol and Sn(Oct)2 (2.5 

mol% with respect to urethane) at 150 °C, N-phenyl-O-octyl urethane reacts to yield the 

O-decyl urethane at a much slower rate compared to the timescale of the stress relaxation 

(Figure 5.12A). We therefore analyzed the reaction between two discrete urethanes in the 

absence of exogenous alcohol (Figure 5.12B). Under these conditions, the formation of 

crossover products is observed more quickly and at timescales more similar to stress 

relaxation, suggesting that urethane reversion—not alcohol-induced associative 
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exchange—is the dominant exchange mechanism (Figure 5.12B). Furthermore, when two 

discrete urethanes are heated in the presence of exogenous alcohol, only exchange with the 

free alcohol was observed (at a similar rate to urethane-hydroxyl exchange) (Figure 

5.13A). These results indicate that excess free alcohols trap the isocyanate intermediates 

that would otherwise enable urethane-urethane exchange. However, the free alcohols also 

slow the rate of exchange by coordinating to the Sn atoms, thereby attenuating their ability 

to catalyze urethane exchange. Decreasing the concentration of free alcohol in this model 

exchange reactions leads to a recovery of the reactivity, consistent with this interpretation 

(Figure 5.14). These findings are consistent with the slower stress relaxation observed for 

the MeOH-treated samples—although Sn atoms are still present, the rates of relaxation are 

similar to the catalyst-free material. 
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Figure 5.12. GC-MS of model compound studies. A) Urethane-hydroxyl exchange 
conducted at 150 °C for 4 h (10 OH groups per urethane) and B) Urethane-urethane 
exchange performed at 150 °C for 2 h (equimolar in both urethanes). Peak intensities are 
normalized to triphenylmethane (retention time = 13.7 min). Relative area percentages of 
each compound are shown and while qualitatively significant, compound degradation on 
the GC column prevented quantitative determination. 
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Figure 5.13. Model compound studies. A) Urethane-urethane-hydroxyl exchange 
performed for 2 h at 150 °C (equimolar –OH to both urethanes) and B) urethane-urethane 
exchange with N-methylated urethanes conducted at 150 °C for 4 h (equimolar in both 
urethanes). Peak intensities are normalized to triphenylmethane (retention time = 13.7 
min). Relative percentages of each compound are shown and while qualitatively 
significant, compound degradation on the GC column (>270 °C) prevented a quantitative 
determination of the product distributions; the degradation temperature of N-aryl-O-alkyl 
urethanes are typically around 200 °C.50,51 
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Figure 5.14. Urethane-urethane exchange in the presence of different amounts of 
additional free alcohol, performed with 2.5 mol% Sn(Oct)2 to total urethane at 150 ºC for 
2 h. Large concentrations of dodecanol (0.50 and 0.15 equivalents) inhibit urethane-
urethane exchange, and only small amounts of products 7 and 8 are observed. With low 
concentrations of free dodecanol (0.05 eq), significant urethane-urethane exchange is 
observed to generate products 5 and 6. 

A urethane-urethane crossover experiment was also conducted on analogous N-

methylated urethanes to explore the possibility of a distinct metathesis mechanism (Figure 

5.13B), as N,N-disubstituted urethanes are incapable of reversion.26,52 Neither exchange 

products nor byproducts were observed, again supporting a dissociative, urethane exchange 
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mechanism in the non-methylated urethanes. Unfortunately, the GC-MS results for all 

model studies were not amenable to quantitative reaction rate determination due to partial 

decomposition on the GC column (see Figure 5.13 for more information). Attempts to use 

1H NMR spectroscopy as an alternative method to quantitatively determine the rate of 

reaction of a free alcohol with a model urethane were complicated by side reactions (Figure 

5.15). 

 

Figure 5.15. 1H NMR spectra of the neat reaction between N-tolyl-O-(triethyleneglycol 
monomethyl ether) urethane and decanol at 180 °C. The reaction was allowed to proceed 
for the specified amount of time and then an aliquot was removed for analysis. The reaction 
progress was monitored by the protons of the O-methylene unit, whose peaks are shown 
above. Each spectrum was normalized to an external standard, 1,3,5-tribromobenzene. The 
signals from an undesired byproduct overlapped with peak 2 and compromised the 
determination of an Ea for this reaction by skewing the amount of product towards higher 
values. This byproduct is not consistent with typical side reactions that occur with 
urethanes, as the 1H NMR spectrum does not indicate the formation of ureas and 
allophanates/biurets, whose N-aryl N-H peaks usually appear at ~8.5 and ~10.9 ppm in 
CDCl3, respectively.53,54,55 
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Although it appeared that a urethane reversion pathway was operative in these 

systems, this mechanism was inconsistent with the insolubility of these networks in TCB 

at 140 °C.33 Other reprocessable cross-linked polymers based on reversible reactions, such 

as Diels-Alder cycloadditions, are capable of full dissolution at elevated temperatures.9 

Therefore, we posited that the low polarity of TCB was not appropriate for dissolving the 

polymers, but that a polar aprotic solvent such as DMSO could favor dissolution. Indeed, 

all three variations of PEO-0.8-MDI as well as PLA-1.0-MDI were insoluble in TCB but 

dissolved fully in anhydrous DMSO at elevated temperature (Figure 5.16 and Figure 

5.17). Model urethane-urethane exchange studies performed with addition of DMSO and 

TCB show very similar reactivity, suggesting that the samples dissolve in DMSO due to 

the increased swellability or solubility of the samples in DMSO, rather than a significant 

difference in the reactivity of the urethane functional groups (Figure 5.18). The samples 

swelled in TCB were dried under vacuum and analyzed using FT-IR spectroscopy. While 

there were some minor detectable differences, no significant change in the carbonyl 

resonances were observed despite substantial discoloration (Figure 5.19). In contrast to 

our expectations based on rates of stress relaxation, the samples treated with MeOH 

dissolved in DMSO significantly faster (24 h) than samples with (36 h) and without catalyst 

(48 h to be mostly dissolved, 96 h for complete dissolution). We hypothesize that the 

additional alcohols in the MeOH-treated samples result in a net loss of cross-links during 

the swelling experiment. 
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Figure 5.16. High temperature (140 °C) dissolution studies with PEO-0.8-MDI, PEO-0.8-
MDI-SM, or PEO-0.8-MDI-NC in anhydrous DMSO and TCB. Samples are denser than 
DMSO, though less dense than TCB, explaining the difference in location in the pressure 
vessels. Eventually, the samples discolor, making them easier to visualize in the solvent. 
Both samples with Sn(II) are completely dissolved within 36 h for DMSO; the sample 
without Sn(II) catalyst takes 4 days to fully dissolve. Meanwhile, the three materials swell 
in TCB but do not eventually dissolve, even after 7 days. 
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Figure 5.17. High temperature (140 °C) dissolution studies with PLA-1.0-MDI in 
anhydrous DMSO (top) and TCB (bottom). Samples are denser than DMSO, though less 
dense than TCB, explaining the difference in location in the pressure vessels. In DMSO, 
the sample turned clear and was still intact at 15 minutes, had fully dissolved after 1 hour, 
and the solution had discolored after 20 h. Meanwhile, the sample swelled and discolored 
in TCB but did not dissolve. 
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Figure 5.18. Urethane-urethane exchange in the presence of different solvents, performed 
with 2.5 mol% Sn(Oct)2 to total urethane at 150 ºC for 2 hours. Similar results are obtained 
performing the reaction at a concentration of 1 M total urethane in both DMSO and TCB, 
suggesting that solvent does not significantly affect the urethane-urethane exchange. 
Omission of catalyst also prevents exchange. 
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Figure 5.19. FT-IR spectra of urethane cross-linked samples before and after swelling in 
TCB for 7 or 8 days at 140 °C: A) PEO-based samples prepared with catalyst, B) PEO-
based samples prepared without catalyst, and C) PLA-based sample prepared with catalyst. 
Swelled samples were dried for 48 h under vacuum (ca. 30 mTorr) before the spectra were 
obtained. 

As DMSO was capable of completely dissolving the PEO-based samples, we sought 

to directly detect the formation of the isocyanate intermediates. We acquired a 13C NMR 

spectrum of the diethyl urethane adduct of MDI in DMSO-d6 at 25, 100, and 140 °C 

(Figure 5.20). No peaks were observed in the 13C NMR spectrum that corresponded to the 

isocyanate, suggesting that the equilibrium was significantly shifted toward the urethane at 
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these temperatures. A 1H NMR spectrum showed only an upfield shift of the N–H peak 

due to loss of hydrogen bonding (Figure 5.21), further indicating that the isocyanate 

concentration at these temperatures is below the detection limit of NMR spectroscopy. The 

fact that urethane is strongly favored at equilibrium is consistent with the Arrhenius-type 

dependence of stress relaxation, as the cross-links never dissociate to the degree required 

to cause a rapid drop in viscosity. 

 

Figure 5.20. 13C VT-NMR spectra (125 MHz, DMSO-d6) of MDI and the diethyl urethane 
adduct of MDI; concentrations of approximately 100 mg mL-1 were used to achieve better 
signal to noise. The diethyl urethane solution was under N2 atmosphere and contained 
Sn(Oct)2 (2.5 mol% to urethanes); the solution was allowed to equilibrate at the desired 
temperature for 10 min before 128 scans were collected. 
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Figure 5.21. 1H VT-NMR spectra (500 MHz, DMSO-d6) of MDI and the diethyl urethane 
of MDI in. The same solutions from 13C VT-NMR were utilized for this experiment (100 
mg mL-1). The diethyl urethane solution was under N2 atmosphere and contained 2.5 mol% 
Sn(Oct)2 to urethanes; the solution was allowed to equilibrate at the desired temperature 
for 10 min before 16 scans were collected. 

We sought other evidence for a reversion mechanism by indirectly detecting 

isocyanate-derived species upon removal of alcohol. A mixture of the diethyl urethane 

adduct of MDI and Sn(Oct)2 (2.5 mol% to urethane) was heated in a distillation apparatus 

to drive the formation of MDI by removal of ethanol. We found that no ethanol was 

recovered after 24 h at 140 °C or 150 °C; at 160 °C, however, some ethanol was recovered 
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(18% of the theoretical amount) and we observed an insoluble brown solid in the 

distillation pot. The FT-IR spectrum of the solid indicated the presence of isocyanurate 

moieties (1509, 1411, and 1171 cm-1, Figure 5.22),56 which is consistent with the 

formation of isocyanates followed by trimerization to isocyanurates during alcohol 

removal. This experiment confirmed that the isocyanate species was transient at 

temperatures relevant to stress relaxation (140-150 °C) and is consistent with a reversion-

based mechanism. 

 

Figure 5.22. FT-IR spectra of the diethyl carbamate of methylene diphenyl diisocyanate 
(DCMDI) before and after heating at 140 °C for 24 h, then 150 °C for 24 h, and finally 160 
°C for 24 h. 

On the basis of SRA, model reactions, and literature precedent,51,57 we propose two 

potential mechanisms of stress relaxation in these materials (Figure 5.23). In the presence 

of exogenous alcohol, the mechanism in Figure 5.23A would predominate. Low 
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conversion observed in the hydroxyl-urethane exchange model reactions (10 OH groups 

per urethane) and low relaxation rates in the MeOH-treated samples may arise from the 

coordination of the Sn(II) metal center by alcohols, inhibiting its ability to catalyze 

urethane reversion. However, rates would increase as the [OH] decreases, which is 

consistent with the fast urethane-urethane exchange observed in the absence of exogenous 

alcohol. Furthermore, because the [OH]res in the cross-linked materials is low, inhibition 

of the Sn(II) centers by excess alcohol is less likely to occur. Meanwhile, in the absence of 

exogenous alcohol, urethanes can more freely bind to the catalytic Sn(II) center, allowing 

for full reversion and subsequently, fast exchange (Figure 5.23B). This mechanism is 

consistent with previous observations of polyurethane stress relaxation both in the 

presence37,38 and absence35,36,40 of tin catalysts. 

 

Figure 5.23. Proposed stress relaxation mechanisms of A) hydroxyl-urethane exchange 
(urethane reversion and reaction with a new hydroxyl) and B) urethane-urethane exchange 
(urethane reversion and recombination). 
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5.5. Conclusions 

We demonstrate that PEO- and PLA-based networks with urethane cross-links are 

capable of stress relaxation at elevated temperature, likely by urethane reversion. The 

modulus of the materials is apparently the principal factor controlling the relaxation time, 

as samples with lower moduli relax more quickly. Although an increase in the 

concentration of residual hydroxyl moieties slightly lowers the Ea of stress relaxation, the 

[OH]res in these materials does not affect the overall rate of relaxation as significantly as 

the storage modulus, suggesting that reversion is the primary mechanism for urethane 

exchange. Urethane reversion is further supported by model compound studies, in which 

rapid urethane exchange is observed in the absence of free hydroxyl groups and only when 

the urethane contains an N-H as opposed to N-Me. Furthermore, the alcohol-based 

inhibition of Sn(Oct)2 catalyst is apparent in samples treated with MeOH as well as model 

compound reactions performed in large excess of exogenous alcohol. While we were 

unable to observe the presence of isocyanates using NMR spectroscopy at elevated 

temperatures, generation of isocyanurate moieties after distillation of ethanol from the 

diethyl urethane adduct of MDI provides further evidence for the formation of isocyanate 

intermediates. These studies yield insight into the vitrimer-like behavior of polyurethane 

networks at elevated temperatures and suggest that further investigations of the 

reprocessability of commercially ubiquitous cross-linked polyurethanes will be a beneficial 

approach to their recycling. 
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Appendix A. Rigid, Reprocessable Polyester Networks with 

Imine Cross-links 

A.1. Introduction 

There are many examples of thermosets which leverage dynamic covalent chemistry 

to circumvent the problem that plagues thermoset recycling: network architectures 

preclude dissolution and flow at elevated temperatures. Many dynamic bonds have been 

explored (described briefly in Chapter 1), but few reports focus on improving the 

sustainable characteristics of the networks. We identified the alternating copolymerization 

of epoxides and cyclic anhydrides as an excellent platform for the synthesis of polyesters 

with chemical handles which could be used for cross-linking post-polymerization.1,2,3 In 

particular, vanillin glycidyl ether (VGE) was chosen as a bio-based monomer which would 

ultimately be used to create polyesters with pendant aldehydes; these prepolymers could 

then be reacted with multifunctional amines to yield imine cross-linked networks (Figure 

A.1.). The networks would be reprocessable due to imine exchange but also potentially 

biodegradable by virtue of the ester bonds present.  

 

Figure A.1. Scheme depicting the production and cross-linking of polyesters with pendant 
aldehydes, which are incorporated using vanillin glycidyl ether (VGE). 
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Imine exchange can be catalyzed by small amounts of residual primary amine (from 

the equilibrium of imine formation)4,5,6,7 and therefore does require addition of an 

exogenous metal catalyst. Omission of added catalysts is convenient synthetically but also 

avoids potential issues which can hinder long-term reprocessability of dynamic materials 

with embedded catalysts (i.e., leaching or deactivation). Previous reprocessable imine-

linked materials include small molecule networks,8,9,10,11,12,13 PEG and chitosan-based 

hydrogels,14,15,16 polythiophene-derived materials,17 or polyacrylate18 or PMDS imine-

linked networks.19 To the best of our knowledge, no high-Tg polyester imine crosslinked 

networks have been reported to date. The broad monomer scope available to our selected 

polymerization platform allows for tunability of the bio-based content and various physical 

properties such as the glass transition temperature. Among the list of available monomers, 

tricyclic anhydrides and epoxides containing aromatic or cyclic functionalities have been 

shown to yield high glass transition polymers and are accessible from bio-based and/or 

petroleum-derived precursors. Herein, we present initial work on reprocessable imine-

crosslinked polyester networks derived from high-Tg prepolymers made from tricyclic 

anhydrides, vanillin glycidyl ether, and epoxide comonomers. 

A.2. Summary of Initial Work 

We chose to first investigate the CPMA/PO/VGE system because CPMA and PO are 

easily purchased and polymerized (Figure A.2.). After initial successes with material 

synthesis—indeed, reacting prepolymer and diamine afforded insoluble yet reprocessable 

materials—we sought to systematically vary the VGE content in the polymer and 

determine whether or not we could tune the dynamic behavior. Initial results were 

promising: lower %VGE resulted in slower stress-relaxation without changing the 
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activation energy. However, we found that reproducing this trend was unsuccessful. 

Ultimately, it seems systems with ca. 15, 25, 40 mol% VGE seem to relax stress at similar 

rate with similar activation energies. In reproducing the ca. 15, 25, 40 mol% VGE samples, 

we also found that the gel fraction of samples with < 40 %VGE is close to zero, indicating 

that you need significant VGE incorporation to get an insoluble network. 

 

Figure A.2. Scheme depicting the production and cross-linking of polyesters derived from 
propylene oxide (PO), the tricyclic anhydride derived from cyclopentadiene and maleic 
anhydride (CPMA), and vanillin glycidyl ether (VGE). 

The results obtained using CPMA/PO/VGE-based networks were also consistent 

with experiments involving other epoxide/anhydride systems (Figure A.3.); these systems 

have > 40% VGE and can reproducibly afford a gel fraction closer to 1. Although TMA 

and PCA-containing polymers afford insoluble materials with characteristic imine signals 
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activation energies of ca. 70-80 kJ/mol. Furthermore, the reprocessable materials only have 

a high gel fraction (i.e., approaching 1) if the VGA content is ≥ 40 mol%.  

 

Figure A.3. Scheme depicting the various monomer systems used to make prepolymers 
including: A) PO, VGE, and the tricyclic anhydride derived from a-phellandrene and 
citraconic anhydride (PCA), B) PO, VGE, and the tricyclic anhydride derived a-terpinene 
and maleic anhydride (TMA), and C) VGE, TMA, and guaiacol glycidyl ether (GGE). 

To compare our activation energies for the polymeric systems with a model system, 

we performed small-molecule exchange studies and monitored the results by 1H NMR 

spectroscopy. We found that the imine exchange was so rapid that the kinetics had to be 
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segmental motion is limiting flow at high T. 
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Appendix B. Mineralization of Poly(4-methylcaprolactone) 

Elastomers 

B.1. Introduction 

The enzymatic hydrolysis experiments described in Chapter 4 showed great promise 

toward the ultimate biodegradation of elastomers derived from poly(4-

methylcaprolactone). These results were obtained in vitro with purified enzymes, and thus 

can only be considered a successful demonstration of potential for biodegradation. 

Therefore, the next steps to provide a solid case for the biodegradability of poly(4-

methylcaprolactone) would be to monitor the degradation of the materials in systems where 

microorganisms are present, such as natural soils or composts. 

Typically, biodegradation experiments which assess mineralization (defined in 

Chapter 1) are performed using respirometric techniques: CO2 evolution or O2 

consumption by microorganisms.1 The former provides a direct measurement of the carbon 

which leaves the system by virtue of microbial activity, whereas the latter provides an 

indirect measure of mineralization. Neither of these techniques provides a direct 

measurement of the proportion of carbon which remains as the analyte (i.e., residual 

material) versus the carbon which has been assimilated into the microorganism (i.e., 

biomass); it is therefore not possible to provide closed mass balances on the carbon 

introduced to the system.2,3 Furthermore, significant error is introduced if the analyte 

mineralizes slowly because there are other sources of organic matter in the soils which are 

also being mineralized concurrently.4 
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The methods which are being used to circumvent these challenges involve 

isotopically-labeled substrates, typically using 14C or 13C-enriched (macro)molecules.1,2,3 

Of these two, the use of 13C-enriched analytes is preferred because they are not radioactive.3 

The amount of 13CO2 formed is therefore strictly from polymer mineralization and is 

independent from that of soil organic matter. The 13CO2 can be measured using gas 

chromatography coupled to mass spectrometry or cavity ring down spectroscopy.3 

Furthermore, the remaining 13C in the system can be investigated by soil combustion (for 

residual analyte) and extraction or microscopy techniques (for assimilated biomass).3 The 

use of 13C-labeled substrates therefore provides a promising approach to systematic 

investigations of ultimate biodegradation across different soil types and microorganisms; 

furthermore, these labels can be placed at specific positions in the analyte to determine 

which carbon atoms are more readily mineralized. 

We sought to build upon our previous work by investigating the ultimate 

biodegradation of poly(4-methylcaprolactone)-based materials using the 13C-labeling 

approach. Our previous studies were performed in the absence of microorganisms, which 

allowed us to isolate and characterize the enzymatic hydrolysis products by NMR 

spectroscopy; we found that all of the poly(4-methylcaprolactone)-based elastomers were 

degraded into the monomeric subunit: 6-hydroxy-4-methylhexanoic acid. Given these 

findings, we designed synthetic routes to two 13C-labeled variants of 6-hydroxy-4-

methylhexanoic acid in order to probe the mineralization of the carbon atoms at multiple 

positions. The substrates will then be placed in incubation vessels containing natural soils, 

and the evolution of 13CO2 will be measured by cavity ring down spectroscopy (Figure 

B.1). We opted to focus on the monomeric substrate rather than 13C-labeled polymer for 
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two reasons: 1) the desired overall 13C-enrichment of the analyte could be easily tuned by 

mixing pure 12C-variant with varying amounts of 13C-variant, and 2) extra 

(co)polymerization steps were avoided. 

 

Figure B.1. The mineralization of two 13C-labeled variants of 6-hydroxy-4-
methylhexanoic acid; the 12C-variant is mixed with the 13C-variant to achieve the desired 
overall 13C-enrichment for the analyte. 

B.2. Synthesis of Isotopically-labeled 6-hydroxy-4-methylhexanoic acid 

The mineralization of carbon in the substrate is expected to proceed more rapidly for 

carbon atoms that are readily amenable to metabolic pathways within the microorganism, 

such as those adjacent to the ester bond. Therefore, the first target 13C-labeled compound 

was 1a, and the proposed synthetic routes employed a Grignard reaction with 13CO2 to 

install the isotopic label (Figure B.2). As Grignard reagents will readily deprotonate 

hydroxyl groups, a tetrahydropyranyl ether was used and would be removed after the 

installation of the carboxylic acid. The starting material, 3-methyl-1,5-pentanediol (MPD), 

is commercially available. 

 

Figure B.2. Proposed scheme for the synthesis of 13C-labeled 6-hydroxy-4-
methylhexanoic acid 
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For the bromination and protection steps, we presumed that the separation of mono- 

and di-brominated products would be slightly more difficult than mono- and di-protected 

products and therefore elected to pursue route A. The protection was performed using 3,4-

dihydropyran and catalytic tosic acid in dry ether at room temperature; this reaction 

provided mono-protected product (mTHP) in 47% yield after purification via column 

chromatography. Bromination was achieved using an Appel reaction and the mono-

protected alkyl bromide (mTHPBr) was obtained in 75% yield. The Grignard reaction was 

to be performed with 13C-enriched CO2, but this reagent is expensive and thus trial runs 

were performed using bone dry CO2 gas; conversion of the alkyl bromide to the Grignard 

reagent was repeatedly successful but its reaction with the CO2 to achieve the carboxylate 

failed in our hands. A trial was also done with a tert-butyl-dimethyl-silyl-protected alkyl 

bromide (mTBDMSBr); again, Grignard reagent formation was observed but 

carboxylation was unsuccessful (Figure B.3). Therefore, a new synthetic route was 

proposed which employed nucleophilic substitution of the bromide with a cyano group; 

conversion to the carboxylic acid could then be done under basic or acidic conditions 

(Figure B.4). 

 

Figure B.3. Scheme depicting the two alkyl bromides which were unsuccessfully 
converted into 6-hydroxy-4-methylhexanoic acid (1b). 
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Figure B.4. Proposed scheme for the synthesis of 13C-labeled 6-hydroxy-4-
methylhexanoic acid using isotopically enriched potassium cyanide. 

Again, due to the high cost of isotopically enriched substances, each reaction was 
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1a and 1b were purified using column chromatography. A summary of the reaction 

conditions and isolated yields of all compounds is shown below in Figure B.5.  
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Figure B.5. A summary of the reactions and associated yields for the synthesis of 1a and 
1b. 
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spectroscopy results are consistent with the expected resonances from 1a and 1b (Figure 

B.8, Figure B.9, Figure B.10, Figure B.11, Figure B.12, and Figure B.13). Due to the 

high isotopic enrichment at the carbonyl position of 1a, trace amounts of lactone and 

putative dimer are also visible (see insets in Figure B.11); the signals at ca. 176 and ca. 

174 ppm agree well with carbonyl (ester) signals observed in separate analyses of 4-

methylcaprolactone and poly(4-methylcaprolactone), respectively. A purity analysis using 

quantitative 1H-NMR spectroscopy in CDCl3 with an internal standard (dimethyl sulfone) 

indicated that both compounds were ≥ 95% pure by mass (Figure B.14 and Figure B.15). 
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Figure B.6. IR spectroscopy of 1a (top) and 1b (bottom). Selected signals for 1a: 3296, 
2928, 2874, 1663, and 1055 cm–1. Selected signals for 1b: 3296, 2928, 2874, 1703, and 
1055 cm–1. 
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Figure B.7. Gas chromatography results for purified 1a (top) and 1b (bottom).  
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Figure B.8. 1H NMR spectrum (500 MHz) of 1a in CDCl3: δ 3.76-3.66 (m, 2H), 2.45-2.31 
(m, 2H), 1.77-1.69 (m, 1H), 1.67-1.56 (m, J = 6.1 Hz, 2H), 1.51-1.40 (m, 2H), 0.93 (d, J = 
6.5 Hz, 3H). 
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Figure B.9. 1H NMR spectrum (500 MHz) of 1b in CDCl3: δ 3.76-3.66 (m, 2H), 2.32-2.44 
(m, 2H), 1.76-1.69 (m, 1H), 1.67-1.56 (m, J = 6.1 Hz, 2H), 1.50-1.40 (m, 2H), 0.93 (d, J = 
6.5 Hz, 3H). 
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Figure B.10. 13C NMR spectrum (125 MHz) of 1a in CDCl3: δ 179.2, 60.7, 39.24, 39.26, 
31.84, 31.82, 31.43, 31.42, 31.39, 31.38, 28.96, 28.93, 19.28. 

 

Figure B.11. 13C NMR spectrum (125 MHz) of 1a in CDCl3 with insets: δ 179.2, 60.7, 
39.24, 39.26, 31.84, 31.82, 31.43, 31.42, 31.39, 31.38, 28.96, 28.93, 19.28. 
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Figure B.12. 13C NMR spectrum (125 MHz) of 1b in CDCl3: δ 179.2, 60.8, 39.3, 31.60, 
31.43, 28.96, 19.28. 

 

Figure B.13. 13C NMR spectrum (125 MHz) of 1b in CDCl3 with insets: δ 179.2, 60.8, 
39.3, 31.60, 31.43, 28.96, 19.28. 
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Figure B.14. 1H NMR spectrum (500 MHz) of 1a and dimethyl sulfone in CDCl3; both 
integrations include 13C satellites and purity calculations indicate that 1a is ≥ 94.8% pure. 

 

Figure B.15. 1H NMR spectrum (500 MHz) of 1b and dimethyl sulfone in CDCl3; both 
integrations include 13C satellites and purity calculations indicate that 1b is ≥ 95.6% pure. 
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B.3. Future Work 

To perform the mineralization experiments using cavity ring down spectroscopy, an 

overall 13C-enrichment of 3-5% is optimal. On its own, 1a has an overall 13C-enrichment 

of ~15% because one position is 99% enriched and the other six positions correspond to 

natural abundance (1.1%); therefore, compound 1a must be “diluted” with 1b in order to 

lower the overall 13C-enrichment. These compounds are very viscous oils and difficult to 

mix in their pure form, but their solubility in water will allow for stock solutions to be 

made, mixed in the appropriate properties, and ultimately distributed throughout soils 

collected from the environment. The evolution of 13CO2 will then be monitored and used 

to calculate the extent of mineralization over time. An analogous set of experiments using 

commercially available 13C-labeled lactic acid (mixed with pure 12C lactic acid) will likely 

be performed as a benchmark for the mineralization of 6-hydroxy-4-methylhexanoic acid. 

Once the mineralization data for these compounds is obtained, the next 13C-labeled 

6-hydroxy-4-methylhexanoic acid variant must be synthesized; a proposed route is shown 

below in Figure B.16. The mineralization of this variant is of great interest because the 

methyl position should be least accessible to the microorganisms; significant 

mineralization would therefore provide a solid foundation for the case that poly(4-

methylcaprolactone)-based plastics are fully biodegradable. The next demonstration of 

ultimate biodegradability would require the preparation of 13C-enriched poly(4-

methylcaprolactone), presumably through (co)condensation or ring-opening 

(co)polymerization of 13C/12C 6-hydroxy-4-methylhexanoic acid or 4-methylcaprolactone, 

respectively. 
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Figure B.16. Proposed scheme for the synthesis of 13C-labeled 6-hydroxy-4-
methylhexanoic acid from isotopically enriched 4-methylcresol. 
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Appendix C. Poly(4-methylcaprolactone) Elastomers from 

Bis(anhydride) Cross-linkers 

C.1. Introduction 

The poly(4-methylcaprolactone)-based elastomers described in Chapter 4 

demonstrated outstanding mechanical properties and have therefore inspired work aimed 

at improving upon the sustainable characteristics of the materials. In particular, the use of 

stannous octoate (SnOct2) for prepolymer synthesis and for cross-linking is non-ideal. 

Though SnOct2 is FDA-approved for use in food packaging materials,1,2 the general use of 

SnOct2 (and other organotin catalysts) should be avoided in sustainable material design 

because of cytotoxicity concerns.3,4,5,6,7 The elemental analysis in Chapter 5 demonstrates 

that removal of SnOct2 from cross-linked materials is quite difficult; in fact, the persistence 

of organotin compounds in purified polyesters has also been reported by others.8 Therefore, 

it is desirable to develop synthetic strategies which exclude SnOct2 entirely (if possible). 

Many organocatalysts and Brønsted acid catalysts have been shown to effectively facilitate 

the ring-opening polymerization of cyclic esters;9,10,11,12,13,14 furthermore, anhydrides can 

react readily with hydroxyl moieties at elevated temperature without exogenous catalyst.15 

Herein, we present initial work that demonstrates the feasibility for bis(anhydrides) to 

cross-link poly(4-methylcaprolactone) made using SnOct2 or diphenylphosphoric acid 

(DPP), a Brønsted acid catalyst. 

C.2. Poly(4-methylcaprolactone) Elastomers Made Using Bis(anhydrides) 

The early work for this project was done using poly(4-methylcaprolactone) (PMCL) 

tetraols similar to those employed in Chapter 4, hence the use of SnOct2 mentioned above; 
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the tetraol prepolymers used for large scale films had molar masses of 10.7, 21, 31.2, and 

41.4 kg/mol (by 1H NMR end group analysis) with dispersities of 1.19, 1.22, 1.26, and 

1.38, respectively (by chloroform SEC with respect to polystyrene standards). The later 

work for this project was done using poly(4-methylcaprolactone) triols made using DPP. 

Both sets of polymers were purified by repeated precipitation (once in methanol, once in 

hexanes). Although it was presumed that the precipitation in methanol removes the 

catalysts, the methanol-swelled materials in Chapter 5 (and the references provided in 

Appendix A) indicate that there is likely residual tin catalyst embedded in the polymer. 

However, the maximum gel fractions for cross-linked materials obtained using either 

SnOct2-derived or DPP-derived prepolymers were similar (ca. 0.95), which can be 

interpreted one of two ways: 1) there is also residual DPP in the prepolymers after repeated 

precipitation, and it is catalyzing cross-linking to the same extent as the residual SnOct2, 

or 2) there is no residual DPP and thus the residual tin in the SnOct2-derived prepolymers 

is not significantly catalyzing the cross-linking process.  

Initially, the bis(anhydride) being explored was made using the same carbonylation 

approach presented for the bis(b-lactone) synthesis in Chapter 4, except with two 

equivalents of carbon monoxide per epoxide rather than one (i.e., double carbonylation, 

Figure C.1).16 An important practical note about the bis(anhydride) 1 is that its solubility 

is much different than that of the corresponding bis(b-lactone); the latter is soluble in 

dichloromethane (DCM), tetrahydrofuran (THF), and acetone whereas the former is only 

soluble in THF and acetone. All of these solvents solubilize the prepolymer, though it is 

most soluble is DCM and least soluble in acetone. 
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Figure C.1. Scheme for the production of bis(anhydride) cross-linker 1 via double 
carbonylation of the corresponding epoxide. 

Small-scale films of PMCL tetraol and 1 were solvent cast in THF and heated to 120 

°C for 24 h, which yielded optically clear elastomers. As with the bis(b-lactone) elastomers 

in Chapter 4, the elastomers derived using 1 also had glass transitions similar to the 

prepolymer (–60 °C by differential scanning calorimetry). To investigate the parameter 

space that would be available for scale-up, two series of films were made: 1) constant 

prepolymer Mn (11 kg/mol) and variable amounts of cross-linker, and 2) constant amount 

of cross-linker (targeted at stoichiometric equivalence between anhydride and hydroxyl 

groups) and variable prepolymer Mn. The gel fractions of these films were evaluated in 

DCM and subsequently compared to those presented in Chapter 4.  

Varying the amount of cross-linker for a given mass of PMCL produced a trend 

wherein a maximum in gel fraction was observed at stoichiometric equivalence, which is 

much different than that which is obtained for cross-linking with the bis(b-lactone) (Figure 

C.2). The underlying reason for this difference is that the reaction of an anhydride and a 

hydroxyl group produces a carboxylic acid that is likely unreactive toward further reaction 

with another anhydride; by contrast, the reaction of a b-lactone with a hydroxyl group 

produces a b-hydroxyl which can react with another b-lactone. Therefore, the most 

successful conditions for the bis(anhydride) system are those of stoichiometric 

equivalence, just as with any step-growth polymerization. Furthermore, statistical gelation 
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theory can be used to predict the stoichiometry at which the reaction will fail entirely; these 

conditions are obtained when the critical extent of conversion (rcrit) is greater than or equal 

to unity.17 Varying the prepolymer molar mass for the bis(anhydride) system produced a 

gel fraction trend very similar to that observed for the bis(b-lactone) system: optimal cross-

linking was observed with molar masses ≤ 30 kg/mol. It is unclear why the datum 

corresponding to a prepolymer molar mass of ca. 54 kg/mol is so different across both 

systems.   

  

Figure C.2. Gel fractions evaluated in DCM for films made from 1 and PMCL tetraols: 
(left) varying the amount of 1 (i.e., stoichiometry) using 11 kg/mol PMCL, (right) varying 
the prepolymer molar mass while maintaining stoichiometric equivalence. The 
bis(anhydride) results are shown in red and compared to the bis(b-lactone) results from 
Chapter 4, which are shown in blue. 

Film preparation was then scaled up using prepolymers of molar mass ≤ 41 kg/mol 

with amounts of 1 corresponding to stoichiometric equivalence. Just as with the bis(b-

lactone), bis(anhydride) cross-linking could be easily visualized by infrared (IR) 

spectroscopy (Figure C.3); even though there was only a small amount of 1 present (≤ 5 

wt%), the disappearance of signals arising from the anhydride was diagnostic of ring-



 

 

339 

opening (i.e., cross-linking). However, there was one practical issue which had not 

previously been encountered with the bis(b-lactone) system: the films were much more 

difficult to remove from the aluminum weigh pans in which they were made. Switching to 

Teflon dishes helped somewhat, but unpredictable dewetting and the presence of small 

trapped bubbles were unfortunately observed. The films were still optically clear in all 

cases and all but the one produced from 41 kg/mol prepolymer had high gel fractions (> 

0.95).  

 

Figure C.3. IR spectroscopy of the bis(anhydride) films prepared on large scale; the 
indicated molar mass is for the PMCL prepolymer, solid lines represent the mixture before 
heating, and dotted lines represent the cross-linked materials (i.e., after heating). The large 
signal at ca. 1735 cm–1 is from the aliphatic esters present in PMCL whereas the signals at 
1785 cm–1 and 1860 cm–1 correspond to the bis(anhydride). 

In spite of the practical issues mentioned above, enough usable material was made 

for the purposes of mechanical testing. First, dynamic mechanical thermal analyses 

(DMTA) were performed in tension mode to probe the rigidity as a function of temperature. 

Materials made using 1 demonstrated stable plateau moduli between the glass transition 
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and the upper testing temperature (Figure C.4). Across the samples, the change in plateau 

modulus was not significant enough to be caused primarily by the difference in chemical 

cross-link density, similar to the results observed for the bis(b-lactone) system (see 

discussion in Section 4.4.2). 

 

Figure C.4. DMTA (0.05% – 5% strain, 1 Hz, 5 °C/min) of the bis(anhydride) films 
prepared on large scale; the indicated molar mass is for the PMCL prepolymer. 

The tensile properties until material failure were then evaluated and compared with 

the bis(b-lactone) system (Figure C.5). Unsurprisingly, the bis(anhydride) films exhibited 

classic elastomeric behavior. Across both systems, materials made with ~10 kg/mol PMCL 

and ~30 kg/mol had essentially identical Young’s moduli, strain at break, and stress at 

break values. However, the bis(anhydride) material made with ~22 kg/mol far 

outperformed its bis(b-lactone) analogue with respect to stress and strain at break; the 

reason for this discrepancy is unclear. Regardless, these findings collectively demonstrate 
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that high-performance materials can be obtained using catalyst-free cross-linking 

conditions by employing a bis(anhydride) instead of a bis(b-lactone) compound. 

 

Figure C.5. Results obtained from tensile testing (50 mm/min) of the bis(anhydride) films 
prepared on large scale. The bis(anhydride) results are shown in red and compared to the 
bis(b-lactone) results from Chapter 4, which are shown in blue. 

In the second phase of this project, both components were changed: PMCL triols 

were made using DPP-catalyzed ring-opening polymerization, and a slew of commercially 

available bis(anhydrides) were screened as potential candidates for elastomer synthesis. 

Four bis(anhydrides) were purchased and their solubilities in relevant organic solvents (i.e., 
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those that can dissolve PMCL) were tested (Figure C.6). Unfortunately, the solubility of 

compounds 2, 3, and 4 was very poor in THF, which was the solvent previously used to 

homogenize PMCL and cross-linker.  

 

Figure C.6. Four commercially available bis(anhydrides) and a qualitative assessment of 
their solubility in the three organic solvents which dissolve PMCL. 

The first cross-linker investigated was 5 and analogous sets of films were made in 

dry THF and dry acetone to test if similar gel fractions would be obtained with either 

solvent. Blankets of inert gas were used throughout film preparation (i.e., homogenization, 

evaporation, and heating) to avoid significant introduction of atmospheric moisture. As 

before, the amount of cross-linker was varied to probe the association between 

stoichiometry and successful gel formation (Figure C.7) From these results, it appeared 

that the choice of solvent for casting did not significantly affect the observed trend in gel 

fraction, which agreed nicely with the predictions made using statistical gelation theory. 

Gel fractions were evaluated in THF because DCM was found to artificially skew the 

results toward higher gel fraction, presumably because excess cross-linker (and perhaps 

chemically-modified polymer) was not soluble in DCM (Figure C.7). 
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Figure C.7. left) Gel fractions evaluated in THF for films made from 5 and PMCL triols 
using acetone or THF for solvent casting. (right) A comparison of the gel fractions 
evaluated in THF (gray) versus the gel fractions evaluated in DCM (black) for films made 
from 5 and PMCL triols using acetone or THF for solvent casting. Note that the data in 
grey in the right figure is the same as the data shown in the left figure. 

Based on the results with 5, it seemed that acetone would be suitable for the 

preparation of cross-linked PMCL using 4 and 2. Therefore, a series of films was made 

wherein the molar mass of prepolymer and the stoichiometry was varied for all three cross-

linkers (excluding the variable stoichiometry series already performed for 5). Though all 

solutions of bis(anhydride) and PMCL were initially homogenous and clear, evaporation 

under inert gas caused 2—and to a lesser extent, 4—to precipitate and settle at the bottom 

of the vials. Unsurprisingly, all cross-linking with 2 failed. Cross-linking with 4 was non-

negligible but unsatisfactory as compared to results obtained with 5 (Figure C.8). Similar 

to prior results, the choice of solvent for film casting with 5 did not significantly affect the 

observed gel fractions. The low solubility of 2 and 4 in the prepolymer (compared to 5) 

evidently makes the use of these bis(anhydrides) impossible going forward. Future work 
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will therefore focus on the scale-up of PMCL films made using 5 as well as subsequent 

thermal and mechanical characterization. 

 

Figure C.8. (left) Gel fractions evaluated in THF for films made from 5 or 4 and PMCL 
triols using acetone or THF for solvent casting. Note that the data for 5 is the same as in 
the previous figure. (right) Gel fractions evaluated in THF for films made from 5 or 4 and 
PMCL triols with variable molar mass using acetone or THF for solvent casting. 
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