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Abstract: 

Laminitis is a painful, debilitating disease of the hoof, often resulting in these horses 

being humanely euthanized due to uncontrolled pain.  The most commonly cited cause of 

this life-threatening disease is a clustering of clinical signs resulting from a metabolically 

efficient phenotype, termed equine metabolic syndrome (EMS).  While EMS is a 

commonly diagnosed syndrome, knowledge of the underlining pathophysiology is 

lacking and recommendations for diagnostic criteria are vague and inconsistent.  EMS is 

thought to be complex disease, and identification of its underlying genetic risk factors 

and key gene-by-environment interactions will improve our understanding of EMS 

pathophysiology and allow for early detection of high-risk individuals and intervention 

prior to the onset of laminitis.  We hypothesized that major genetic risk factors leading to 

EMS and laminitis susceptibility are shared across breeds of horses, and that differences 

in the severity and secondary features of the EMS phenotype between breeds, or between 

individuals within a breed, are the result of modifying genetic risk alleles with variable 

frequencies between breeds. 

To test these hypotheses, my PhD thesis has consisted of using phenotype and genotype 

data on 286 Morgan horses and 264 Welsh ponies, two high risk breeds for EMS. 

Phenotype data collected on all horses included: signalment, medical history, laminitis 

status, environmental management (feed, supplements, turnout and exercise regimen), 

and morphometric measurements (body condition score (BCS), wither height, and neck 

and girth circumference).  After an eight hour fast, an oral sugar test (OST) was 

performed using 0.15mg/kg Karo lite corn syrup.  Biochemical measurements included 

baseline insulin, glucose, non-esterified fatty acids (NEFA), triglycerides (TG), 

adiponectin, leptin and ACTH; and measurements 75 minutes after the OST included 

insulin (INS-OST) and glucose (GLU-OST).  For inclusion in the study, each farm had to 

have at least one control and one horse with clinical signs consistent with EMS under the 

same management.  Single nucleotide polymorphism (SNP) genotyping was performed 

on all horses.  Haplotype phasing and genotype imputation up to two million SNPs was 

performed on horses genotyped on lower density arrays using Beagle software.  Quality 

control on the imputed data was performed using the Plink software package.  After 
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genotype pruning, 1,428,337 and 1,158,831 SNPs remained for subsequent analysis in the 

Welsh ponies and Morgan horses, respectively.  

In chapter 2, SNP genotype data from the Welsh ponies and Morgan horses were used to 

estimate the heritability of the nine EMS biochemical measurements.  Heritability (h2
SNP) 

was estimated using a restricted maximum likelihood statistic with the inclusion of 

genetic relationship matrix, which was corrected for linkage disequilibrium (regions of 

the genome which are not independent as they are inherited together).  The confounders 

of age, sex and season were included in the model based on the Akaike information 

criteria.  In the Welsh ponies, seven of the nine biochemical traits had h2
SNP estimates 

with p-values that exceeded the Holm-Bonferroni corrected cut-off as follows: 

triglycerides (0.31), glucose (0.41), NEFA (0.43), INS-OST (0.44), adiponectin (0.49), 

leptin (0.55), and insulin (0.81).  Six of the nine EMS traits in the Morgans had h2
SNP 

estimates with p-values that exceeded the Holm-Bonferroni cutoff as follows: INS-OST 

(0.36), leptin (0.49), GLU-OST (0.57), insulin (0.59), NEFA (0.68), and adiponectin 

(0.91).  Insufficient population size and high trait variability may have limited power to 

obtain statistically significant h2
SNP estimates for ACTH (both breeds), glucose and 

triglycerides in Morgans and GLU-OST in Welsh ponies.  These data provide the first 

concrete evidence of a genetic contribution to key phenotypes associated with EMS and 

demonstrate that continued research for identification of the genetic risk factors for EMS 

phenotypes within and across breeds is warranted. 

Although heritability estimates provide valuable insight on the genetic contribution to a 

trait, they do not provide information on the number of contributing genes, specific genes 

involved, or where these genes are located within the genome.  Genome wide association 

analyses (GWA) use SNP genotype data to identify those key regions of the genome that 

are associated with a trait.  The objectives of chapter 3 were to (i) perform within breed 

GWA to identify significant contributing loci in Welsh ponies and Morgans, and (ii) use 

a meta-analysis approach to identify shared and unique loci between both breeds. For 

each trait, within breed GWA were performed from the imputed SNP genotype data using 

custom code for an improved mixed linear regression analysis.  Prior to analysis, traits 

were adjusted to account for known covariates, with sex and age included as fixed effects 



vi 
 

and farm as a random effect.  GWA meta-analysis was performed with a random effects 

model using the Morgans and Welsh pony GWA summary data from the 688,471 SNPs 

that were shared between breeds.   

To define the boundaries of the region, a pairwise comparison of linkage disequilibrium 

(LD) was calculated for all SNPs within the region.  A custom code was used to identify 

regions where LD for all SNPs dropped below the LD threshold of 0.3 and spanned at 

least 100kb both 5' and 3' to the widest peak of LD within the window, which was used to 

define the boundaries of the ROI.  An LD-region was identified as shared if it was within 

the boundaries of another LD-region and prioritized as described above for the fixed 

regions. Regions were prioritized based on whether they were identified as shared 

between breeds on meta-analysis (high priority), shared across traits (medium priority), 

or found in a single breed but not shared across traits (low priority).  Prioritization 

resulted in 56 high, 26 medium, and 7 low priority genomic regions for a total of 1853 

candidate genes in the Welsh ponies, and 39 high, 8 medium and 9 low priority regions 

for a total of 1167 candidate genes in the Morgan horses.  Meta-analysis identified 65 of 

these regions that were shared across breeds.  These data demonstrate that EMS is a 

polygenic trait with both across breed and breed specific genetic variants. 

In chapter 4, we utilized imputed whole-genome sequencing (WGS) and linear regression 

analysis in order to fine-map selected high priority LD-ROI in both the Morgan horses 

and Welsh ponies.  LD-ROI were fine-mapped if they contained at least 5 SNPs with one 

SNP exceeding the threshold for genome-wide significance.  Five fine-mapped regions 

from each breed were further interrogated for predicted impact using variant annotation.  

Protein-coding genes containing non-coding or coding variants within the fine-mapping 

region were then further prioritized based on known function and biological evidence in 

other species utilizing the PubMed search engine.  A total of 19 positional candidate 

genes were identified as having biological evidence for a role in EMS.  These data 

provide support for the process of fine-mapping GWA ROI by increasing marker density 

and using biological evidence across species to further prioritize candidate genes. 

In chapter 5, a missense mutation in the first exon of HMGA2 was identified as a putative 

functional allele for height and EMS phenotypes in Welsh ponies.  It is well recognized 
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that ponies (short horses) are at high risk for developing EMS; and in humans shorter 

individuals have an increased risk of developing cardiovascular disease, type II diabetes 

and metabolic syndrome.  We hypothesized that genetic loci affecting height in ponies 

have pleiotropic effects on metabolic pathways and increase the susceptibility to EMS. 

Pearson’s correlation coefficient identified an inverse relationship between height and 

baseline insulin (-.26) in the Welsh ponies. Genomic signature of selection analysis was 

performed using a di statistic and identified a ~1.3 megabase region on chromosome 6, 

that was also identified on GWA.  Haplotype analysis using HapQTL confirmed that 

there was a shared ancestral haplotype between height and insulin.  This region 

contributed ~40% of the heritability for height and ~20% of the heritability for insulin.  

HMGA2 was identified as a candidate gene, and sequencing identified a single a 

c.83G>A variant (p.G28E) in HMGA2, previously described in other small stature horse 

breeds.  In our cohort of ponies, the A allele had a frequency of .76, was strongly 

correlated with height (-.75) and was low to moderately correlated with metabolic traits 

including: insulin (.32), insulin after an oral sugar test (.25), non-esterified fatty acids 

(.19) and triglyceride (.22) concentrations.  For this allele, model analysis suggested an 

additive mode of inheritance with height and a recessive mode of inheritance with the 

metabolic traits.  This was the first gene identified as having a pleotropic effect for EMS. 

In conclusion, the results of my thesis are major steps forward in understanding the 

genetic contributions of EMS in two high risk breeds.  Future directions include the 

continued identification of the specific genes and alleles contributing to EMS and could 

include prioritization of the positional candidate genes identified in aim 2 via (1) 

identification of biological candidate genes based on known gene function and evidence 

from other species; (2) use of whole genome sequencing and linear regression analysis to 

fine map regions; (3) use of intermediate phenotypes such as metabolomics or 

transcriptomics to identify shared regions; or (4) network analysis for identification of 

genes within similar, relevant pathways.   
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Chapter 1: Introduction and Literature Review 

Laminitis is a debilitating and often career ending disease of the digital laminae in horses. 

Management of laminitis is one of the greatest challenges in equine practice and many 

horses are euthanized due to uncontrolled pain [1,2].  The most commonly cited cause of 

this life-threatening disease is termed equine metabolic syndrome (EMS), a clustering of 

metabolic disturbances including insulin resistance and derangements in fat metabolism 

[3,4].  Over the past few decades, our understanding of EMS has become more refined; 

however, the etiology, clinical consequences, and underlying pathophysiology of EMS are 

still largely unknown and remain under investigation. 

History of defining the EMS phenotype: 

In the 1980s associations between insulin insensitivity and laminitis in ponies were 

reported [5,6].  However, the term EMS was not coined until 2002 when the parallel 

between human metabolic syndrome (MetS) and what was being observed clinically in 

hyperinsulinemic, obese, laminitic horses was recognized [7].  In humans, MetS has been 

described as a clustering of risk factors leading to an increased risk of cardiovascular 

disease and type II diabetes mellitus [8].  Although several health organizations have 

published their own criteria for the diagnosis of MetS [9-12], in 2009 the International 

Diabetes Federation Task Force published a joint statement defining MetS as an individual 

with three or more of the following five risk factors: hypertension, dysglycemia, 

hypertriglyceridemia, decreased high-density lipoprotein cholesterol, and central obesity 

[8]. 

Shortly following the identification of EMS as a clinical syndrome in horses, several 

observational and experimental studies were published evaluating the EMS phenotype.  

Associations between EMS and insulin dysregulation [13-17], hyperglycemia [15], 

hypertriglyceridemia [13,14,17], elevated non-esterified fatty acids [NEFA] [15], 

hypertension [14,16], alterations in adipokines [15,16] or inflammatory mediators [18], and 

obesity and regional adiposity [13,15,16] were identified.  However, several discrepancies 

defining the key components of EMS were present across the literature, particularly as to 

whether obesity, regional adiposity, hyperglycemia, elevated NEFA and triglycerides were 

consistent with the EMS phenotype [13-16].  These discrepancies likely reflected low 
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sample numbers, differences in diagnostic criteria or assays, as well as unknown variables 

such as between-farm variability, excessive nutrition, seasonal variation, different cohort 

characteristics (different breeds) and exercise regimens [19]. 

To address these issues, a large across-breed study of metabolic phenotypic variation in 

610 horses and ponies, including 5 target breeds (Morgan horse n=293, Welsh Pony n=100, 

Quarter Horse n=59, Arabians n=64, Tennessee Walking Horses n=48), and 46 horses from 

15 other breeds was performed [20]. Data collected included: signalment, history, laminitis 

status, morphometric measurements, body condition score (BCS), exercise regimen, diet 

(total intake and feed analysis of hay, concentrates, and supplements), and biochemical 

measurements including fasting glucose, insulin, ACTH, leptin, adiponectin, triglycerides 

(TG), and NEFA, and insulin and glucose levels 75 minutes after an oral sugar challenge 

(OST- 0.15mg/kg Karo syrup). To minimize environmental confounders, at least one EMS 

suspect and one age-, breed- and gender-matched control were sampled from each farm.  

A multi-level, multivariate, multiple regression model was constructed to assess the 

relationships between the eleven phenotypic responses and 16 individual and 

environmental explanatory variables.   

Key results from this study included: (i) hyperinsulinemia, an exaggerated insulin response 

to OST, low serum adiponectin, and hypertriglyceridemia were the EMS phenotypes most 

strongly associated with laminitis; (ii) genetics (heritability) explained up to 55% of the 

variation in EMS phenotypes; and (iii) certain features of EMS phenotype varied between 

breeds, including fasting insulin, insulin after an OST, and adipokine concentrations.  

Further, TG and NEFA concentrations were higher in ponies than horses [20].  This work 

helped to redefine the EMS phenotype and provided the veterinary community with a better 

understanding of the complexity of this syndrome. 

Current knowledge of EMS phenotype: 

In 2019, the American College of Veterinary Internal Medicine published a revised 

consensus statement which defined EMS as a set of risk factors leading to endocrinopathic 

laminitis and identified the key component of EMS as insulin dysregulation [21].  The 

authors defined insulin dysregulation as derangements in the balanced relationship between 

plasma insulin, glucose and lipids, and could manifest clinically as baseline 
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hyperinsulinemia, an exaggerated or prolonged insulin or glucose response post oral or 

intravenous carbohydrate challenge, tissue insulin resistance, or hypertriglyceridemia [21].  

Although obesity and regional adiposity are associated with EMS, several cases of insulin 

dysregulation have been identified in non-obese horses and this is no longer considered a 

key diagnostic criterion [21].  Further, the distinction between obesity as a risk factor 

versus clinical consequence of EMS are still being parsed out and will be discussed further 

in the Risk Factors section.  Therefore, obesity will be discussed here in relation to 

prevalence and its impact on insulin dysregulation.    

Epidemiology: Despite the relatively high number of horses diagnosed with EMS, there is 

little epidemiological data about the prevalence of this syndrome.  Several studies have 

evaluated the prevalence of components of EMS [22] and reflect the variability between 

EMS phenotypic traits, breeds and geographical regions.  Baseline hyperinsulinemia 

affected 23% and 27% of a population of 300 clinically normal horses in Ohio [23] and 

208 Australian ponies [24], respectively. In these studies, hyperinsulinemia was associated 

with age [23,24], BCS [23], and other metabolic abnormalities including hyperleptinemia 

[24] and hypertriglyceridemia [24].  One study evaluating laminitis cases in a single 

referral hospital in Finland, determined a prevalence of 89% were defined as 

endocrinopathic laminitis, or laminitis induced by derangements in the metabolic system 

including both EMS and pars pituitary intermedia dysfunction (PPID).  Of these cases, 

two-thirds were diagnosed with EMS and pony breeds were overrepresented [4]. 

As in humans, obesity in horses has been characterized as a growing epidemic [25] with 

the prevalence in over conditioned (Henneke BCS of 7) and obese (Henneke BCS≥8) 

horses ranging from 23-51% [26-31].  The highest prevalence of obesity was identified in 

the United States [30] and ponies have been found to have a threefold higher prevalence of 

obesity then horse breeds [28].  In addition, Rocky Mountain horses, Tenness Walking 

horses, Quarter Horses, and mixed breed horses had a higher incidence of obesity when 

compared to Thoroughbreds [30].  Season was also identified to affect obesity prevalence, 

with a higher prevalence at the end of the summer versus the end of the winter in horses 

housed outdoors [26]. Several studies also identified an association between obesity and 

the concurrent presence of regional adiposity (cresty neck) although they were not mutually 
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exclusive [28,30].  Carter et al proposed utilizing a cresty neck score (CNS) as 

measurement of neck crest adiposity, with scores ranging from 0 (no visual or palpable 

crest) to 5 (a crest so large it droops to one side) [32].  Evaluation of the prevalence of 

regional adiposity identified that 8.9% of Pura Raza Español horses had a score of 5 [33] 

and 33% of ponies from the United Kingdom had a score of ≥3/5 [34].  Unfortunately, the 

prevalence of horses with obesity and/or regional adiposity that also have insulin 

dysregulation is unknown. 

Notably, these studies represent a limited picture of EMS components and additional 

studies are required to determine a more precise prevalence of this syndrome.  Specifically, 

studies are needed to determine the prevalence of all the components of EMS, and the rate 

at which these components co-occur within individual horses, the prevalence of obese and 

nonobese horses with insulin dysregulation, and the prevalence within breeds considered 

high risk for EMS.  A better understanding of the frequency of this syndrome is essential 

for determining its full impact on equine health. 

Risk Factors: The identification of disease risk factors is imperative in order to accurately 

assess an individual’s risk for developing a disease, as well as to identify environmental 

modifications that could substantially improve the overall outcome and reduce the severity 

of disease.  Both environmental (diet, exercise, and season) and individual risk factors 

(breed, age, sex, and obesity) have been identified for EMS.   

One of the most recognized risk factors for EMS is breed as specific breeds have a higher 

prevalence of EMS including, Standardbred horses, Morgan horses, Tennessee Walking 

horses, Andalusians, Paso Finos, and Arabians, with pony breeds being considered at the 

highest risk [7,35]. Although most breed predilections have been determined anecdotally 

through clinical observation, several scientific reports have supported difference in 

metabolic profiles between breeds.  As early as the 1980s, published reports concluded that 

ponies were less insulin sensitive then large breed horses [5,36] and that there were distinct 

breed differences in lipid and glucose profiles [37].  Ponies and Andalusians have also been 

found to be less insulin sensitive when compared with Standardbreds; further, Andalusians 

had a lower disposition index indicating that the breed was less compensated for insulin 

resistance then ponies [38]. 
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Metabolic syndrome is thought to be the result of a “metabolically thrifty” genotype, 

resulting in an advantageous adaptation to survive during periods of scarce feed and harsh 

climate conditions in undomesticated horses [39].  However, after the agricultural 

revolution, horses were presented with consistent feed, abundant soluble carbohydrates, 

and a more sedentary lifestyle.  It has been hypothesized that this change in environment 

and diet has shifted advantageous thrifty genotypes to now result in susceptibility to the 

derangements in metabolism associated with EMS and obesity [7,36].  This theory was 

based on the thrifty genotype hypothesis in humans stating that obesity and metabolic 

syndrome are the result of genetic variants which allowed for human ancestors to survive 

during periods of poor nutrition by increasing adipose stores during the reciprocal period 

of food abundance [40].  See the Genetics of Metabolic Syndrome for additional theories 

in humans related to the thrifty genotype hypothesis.   

Therefore, it is not surprising that initially obesity was thought to be the primary cause of 

EMS [3] and was identified as a risk factor in several studies [13,16].  However, this has 

been an inconsistent finding [14] and studies evaluating the effect of obesity and insulin 

dysregulation have had conflicting results [41-44].  In 13 Arabian geldings, dietary-induced 

weight gain over a period of four months led to a compensated insulin resistance with a 

71% decrease in insulin sensitivity and corresponding ~400% increase in the acute insulin 

response to glucose challenge which was maintained up to 5 weeks after conclusion of the 

trial [42].  Notably, there were no significant differences in glucose, NEFA, or TG levels 

in this study [42].  On the other hand, increased weight gain from caloric intake at 200% 

maintenance for one to two years revealed elevated basal insulin levels in horses and 

ponies, as well as increased basal glucose and NEFA levels in ponies [41].  However, all 

values were within the reference range and the results from a combined glucose-insulin test 

(CGIT) were consistent with insulin sensitivity [41].  The findings in the latter study were 

similar to two previous reports which also did not identify a change in insulin sensitivity 

after dietary-induced weight gain [43,44].   Differences in the percentage of non-structural 

carbohydrates (NSC) fed to promote weight gain in these studies might explain the 

discrepancies in findings.  While Carter et al’s study utilized a diet with an NSC content of 

34.7% of dry matter (DM) intake [42], while the remaining three studies had NSC contents 

at <20% of DM intake [41,43,44].   
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Diets high in NSC have been shown to decrease insulin sensitivity when compared to diets 

high in fat or fiber [44-46].  However, improved insulin sensitivity was identified in a group 

of adult and geriatric horses after adaptation to either a high starch (24.5% NSC DM intake) 

or high sugar (22.7% NSC DM intake) diet [47], as well as in a group of horses fed a diet 

containing 1.5g/kg glucose (~30% NSC on DM intake) once daily [48].  Consequently, the 

exact mechanism or threshold of NSC to induce tissue insulin insensitivity is unknown and 

likely reflects unrecognized interactions between insulin, glucose, lipid metabolism, and 

the gastrointestinal microbiome, which is further supported by the recognition of 

metabolically healthy obese phenotypes and metabolically unhealthy thin phenotypes in 

both humans [49] and horses [50,51].   

Therefore, obesity as a risk factor or clinical consequence of EMS is still under debate and 

may represent distinction subtypes of EMS.  Nonetheless, when present, obesity has been 

shown to exacerbate insulin dysregulation [52] and is considered a risk factor for the 

development of endocrinopathic laminitis [4,14,16,53].  Given the link between obesity 

and EMS, it is not surprising nutrition and exercise have also been identified as risk factors 

and will be discussed in further details under the Management section. 

As mentioned above (see Epidemiology), seasonal variation has been identified for the 

prevalence of obesity in horses maintained outdoors, with a higher prevalence in the 

summer versus the winter [26].  This finding may reflect the ancestral adaptation to harsher 

climates and decreased food availability in winter, leading to the metabolic survival 

mechanism of increased fat storage during summer and hypometabolism in the winter [54-

56].  This is further supported by the finding that even after maintaining a constant, 

controlled energy balance in a group of Quarter Horses, leptin, thyroid stimulating 

hormone, and total T4 levels were all found to be greater in the summer compared to the 

winter [57].  Interestingly, pony breeds have been shown to have a higher incidence of 

obesity in the winter versus the spring [58].  This may reflect that, even after domestication, 

ponies have maintained a more stringent metabolically thrifty phenotype with excessively 

suppressed metabolic rates and fat storage [56]. 

Given seasonally adapted changes in metabolic rates, it would be expected that most 

metabolic hormones would show circannual variation; however, a consensus on the effect 
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of season on several EMS components has not been established.  ACTH, an 

adrenocorticotropic hormone, was found to be correlated with several EMS traits [20] but 

the biological significance in EMS has not been established.  ACTH is commonly used to 

rule out pars pituitary intermedia dysfunction (PPID) in cases of insulin dysregulation and 

should be interpreted with caution during periods of stress or pain such as an acute laminitis 

episode.  Notably, ACTH has been repeatedly shown to have circannual variations with 

increased levels in the late summer to early fall in the Northern and Southern hemisphere 

[59-63].  Interesting, geographical region has been found to affect the degree of this 

variation, with regions near the equator (smaller magnitude of change in day length) having 

a decrease in length and magnitude of the dynamic phase [64].   

Findings assessing seasonal variation for EMS traits has been more variable. Several 

studies identified an increase in basal insulin levels and insulin resistance in the fall or 

summer months [14,61,62,65]; however, seasonal variation for glucose and insulin 

dynamics is not a consistent finding [60,66].  In one study, seasonal variation was found to 

be inconsistent, with the effect of season being significant on insulin in the first year but 

was not significantly associated during subsequent sampling of the same population the 

following year [66].  The authors also identified a large within horse and month-to-month 

variation in insulin dynamics [66].  Interestingly, when assessing the effect of season on 

the combined-insulin and glucose tolerance test, seasonal variation was identified for the 

glucose area under the curve and nadir but did not affect the overall interpretation of the 

test [67].  Further, in large breed horses, TG levels were found to be elevated in winter 

months compared to the summer; however, in the same study, TG levels were not affected 

by season in pony breeds although NEFA were found to elevated in the winter in this cohort 

[37].  This was in contrast to later findings in which TG were found to be significantly 

higher in the summer versus the winter in pony breeds [14].  Finally, when comparing 

inflammatory mediators in a group of previously laminitic and non-laminitic ponies, 

seasonal variation was observed for several inflammatory markers including fibrinogen, 

serum amyloid A, haptoglobin and interleukin-4 (IL-4) but was not observed for the anti-

inflammatory marker adiponectin nor for plasma TG levels [58].  Conversely, in a group 

of Finn horses, adiponectin gene expression was found to be upregulated in subcutaneous 

adipose tissue at the end compared to the start of the grazing season [52].  Thus, seasonal 
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variation as a risk factor for EMS traits is variable and likely influenced by differences in 

geographical location and breed variations.  

Age has also been identified as an individual risk factor with older horses having decreased 

insulin sensitivity [24,65,68,69] and lower adiponectin concentrations [70] compared to 

younger horses.  Further, after weight gain, TNFα levels were increased in a group of older 

horses but not in a group of young horses challenged with the same weight gain [71].  The 

effect of sex on EMS is less understood as several studies found that sex was not a risk 

factor for EMS traits [58,65,72], although anecdotally stallions are considered more insulin 

sensitive.  Further, stallions were identified as being 8 times less likely to develop pasture 

associated-laminitis compared to females in a group of 160 ponies [13]; although, sex was 

not considered a risk factor for recurrence of endocrinopathic laminitis in a later study [73].  

Interestingly, sex does appear to influence inflammatory mediators although the effect of 

cytokines on EMS is still being investigated (see Inflammatory Cytokines).  In a group of 

ponies, geldings had a significantly higher concentration of plasma fibrinogen and serum 

amyloid A [58].  TNFα was significantly higher in females in a group of 110 light breed 

horses, whereas both age and being female were found to be associated with higher levels 

of IL-6.  Consequently, neither inflammatory mediator was correlated with BCS or basal 

insulin concentrations although the authors did identify a correlation with serum amyloid 

A [18].   

Although there are discrepancies between these studies, is clear that both environmental 

and individual risk factors affect the expression and severity of the EMS phenotype.  

However, these known risk factors have been shown to only explain 12.9-58.6% of the 

environmental and 9.6-36.3% of the individual variations between EMS phenotypes [20].  

This led to the identification of an association between endocrine disrupting chemicals and 

EMS phenotypes, a previously unknown environmental risk factor [74].  Thus, the 

continued investigation of risk factors is necessary to fully understand the mechanisms 

underlying EMS as well as improving management options.  

Clinical Consequences: Although metabolic syndrome may appear to be a relatively 

benign health concern, in both humans and horses, metabolic syndrome can lead to serious 

medical issues that have a major economic impact.  In humans, individuals with metabolic 
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syndrome are 2 times more likely to develop cardiovascular disease and 4 times more likely 

to develop type II diabetes [8].  Horses with EMS have the highest risk for developing 

laminitis and have an increased risk of vascular dysfunction, reproductive issues, and a 

decreased immune response. 

The development of laminitis is the primary clinical concern of horses with EMS, due to 

the painful and often career ending outcome of this disease. Although laminitis itself is not 

fatal, in the best interest of the patient, the severity and crippling pain often lead to the 

decision for euthanasia [75].  Although there is a plethora of inciting factors which result 

in laminitis, EMS is considered the leading cause [76].  Initially, laminitis associated with 

EMS was termed “pasture-associated laminitis” after a survey from the USDA identified 

that 46% of laminitis cases occurred from horses and ponies housed on lush pasture [77], 

which was later linked with insulin dysregulation [13,16].  The term endocrinopathic 

laminitis was proposed to encompass causes of laminitis due to dysregulation of the 

endocrine system, including EMS and PPID, and accounted for the development of 

laminitis in metabolic horses not housed on pasture [78]. 

Inflammation is a primary component of sepsis-associated laminitis and horses with EMS 

have been found to have higher levels of systemic pro-inflammatory cytokines; however, 

the role of inflammation in endocrinopathic laminitis has been questioned and the term 

endocrinopathic laminopathy has been proposed to reflect this distinct difference [79].  

Histological evaluation of naturally occurring cases and experimentally induced models of 

endocrinopathic laminitis noted minimal neutrophil infiltration into the lamellar tissue 

despite the comparably large number of necrotic and apoptotic cells [76,80-82].  

Immunostaining for calprotectin, a leukocyte marker, was positive in an euglycemic 

hyperinsulinemia clamp (EHC) model of laminitis, but to a lesser extent then what was 

reported in other models of laminitis [80]; further, there was no difference in calprotectin 

staining in ponies fed a high versus low carbohydrate diet [83].  Evaluation of the protein 

expression of inflammatory mediators in lamellar tissue post EHC, noted increased 

expression of toll-like receptor 4 (TLR4) and tumor necrosis factor α (TNFα) in clinical 

cases compared to controls and subclinical cases [84], while another study identified an 

upregulation of lamellar IL-1, IL-6, IL-11, COX-2, and e-selectin mRNA and 
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downregulation of COX-1 in EHC induced laminitis [82].  These reports suggest that the 

inflammation seen in endocrinopathic laminitis is a secondary response, potentially playing 

a role in the progression of disease, but not a primary inciting factor [80,83,84].   

Further, histologically, endocrinopathic laminitis appears to have a different 

pathophysiology when compared to models of inflammatory laminitis; specifically, there 

is lack of global basement membrane separation and neutrophil infiltration [80,85].  In 

cases of experimentally induced exogenous or endogenous hyperinsulinemia, prior to the 

onset of clinical lameness, early disease progression revealed cell death, narrowing, and 

elongation within the secondary epidermal lamina (SEL) [81,86].  Progression of disease 

revealed further elongation and proliferative activity within the SEL as well as 

inflammatory cell infiltration. These changes likely reflect cytoskeleton disruption and 

cellular disorganization, leading to instability of the SEL [81,86].  Similar lesions were 

identified in naturally occurring cases of endocrinopathic laminitis, with marked apoptosis 

and elongation, tapering and fusion of the SEL with hyperkeratinized tissue [76].  One 

distinct difference between experimental and naturally occurring models was the lack of 

miotic cells, which the authors surmised reflected chronicity and cellular differentiation to 

hyperkeratosis [76].   

Further, although the exact mechanism behind the development of endocrinopathic 

laminitis in not understood, experimental and field studies suggest that hyperinsulinemia 

is a primary inciting factor [14,16,73,85,87,88].  Experimental studies using the EHS in 

healthy horses or ponies were able to induce laminitis within 48-72 hours in all treatment 

groups [80,85,87]; however, these experiments required prolonged, supraphysiological 

levels of insulin to maintain euglycemia which may not mimic natural cases of 

endocrinopathic laminitis.  Using intravenous glucose to induce hyperglycemia and 

endogenous hyperinsulinemia, investigators determined that horses in the treatment group, 

although not clinically lame, developed histopathological lesions consistent with laminitis 

and that insulin alone, or in combination with glucose, were inciting factors for 

endocrinopathic laminitis at an insulin toxic threshold of ~200µIU/mL [86].  Further, 

hyperinsulinemia and insulin resistance have been used to predict the development of 

laminitis [14,16], plasma insulin levels were positively correlated with laminitis severity 
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[89,90], and horses and ponies with basal levels of insulin >20µIU/mL had a higher risk of 

a recurrent laminitis episode within two year [73]. 

Several theories have been proposed as to the mechanism behind hyperinsulinemia induced 

laminitis including the activation of insulin-like growth factor 1 (IGF-1) and/or insulin 

receptor isoforms specific to lamellar tissues.  Unlike the insulin receptor, IGF-1 receptor 

is expressed both in lamellar epithelial and endothelial cells [91], can be activated by 

insulin during periods of hyperinsulinemia via the mitogen activated protein kinase 

(MAPK) pathway [92], and IGF-1 induced pathology in cancer cells is similar to what is 

seen histologically in cases of endocrinopathic laminitis, including: increased mitotic rate, 

disruption of the basement membrane and cytoskeletal dysregulation [93,94].  Further, 

IGF-1 receptor was found to be downregulated in the lamellar tissue, without a concurrent 

upregulation in the circulation, of horses with experimentally induced hyperinsulinemia 

[95,96]. Further, two insulin receptor isoforms and hybrid have been identified in the 

lamellar tissue of horses [96].  Therefore, the role of these receptors are intriguing but 

further experiments are required to identify the effect and downstream signaling of 

hyperinsulinemia on both IGF-1 and the insulin receptor isoforms to understand if they 

have a role in laminitis pathology.  

Additional theories include the role of vascular dysfunction; however, whether vascular 

dysfunction is an inciting factor or clinical consequence of endocrinopathic laminitis is still 

under investigation.  Normal blood flow to the horse’s hoof is critical to maintain healthy 

lamellar tissue and is regulated, in part, by the insulin-dependent signaling pathways 

phosphatidylinositol 3-kinase (PI3K; responsible for regulation of vascular glucose 

metabolism and vasodilation via the stimulation of nitric oxide from the vascular 

endothelium) and MAPK pathway (responsible for growth, mitogenesis and 

vasoconstriction via the stimulation of endothelial-1 from the vascular endothelium) 

[97,98].  Hyperinsulinemia has been shown to inhibit the PI3K pathway while 

overstimulating the MAPK pathway [99,100], leading to vasoconstriction or impaired 

vasodilation [91]. This was supported by in vitro experiments of laminar arteries and veins 

which showed vasoconstriction and increased endothelin-1 production [101] and MAPK 

mediated vasoconstriction/impaired vasodilation [102,103] after preincubation with 
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insulin.  Further, laminar vessels from naturally occurring cases of laminitis had reduced 

vasodilation after stimulation with acetylcholine and increased vasoconstriction when 

exposed to phenylephrine compared to controls [104].   

Vascular dysfunction is not limited to the lamellar vessels in horses with EMS.  In vitro 

experiments revealed increased vasoconstriction and impaired vasodilation in the facial 

vasculature of horses with endocrinopathic laminitis [104].  Further, EMS horses and 

ponies were found to have higher resting heart rates then control horses [105,106], and 

EMS ponies had evidence of myocardial hypertrophy [105].  Although hypertension was 

identified in a group of prelaminitic ponies [14], this has not been a consistent finding 

[105,106].  Interestingly, both insulin insensitive and EMS horses subjected to an EHC had 

a limited response to insulin-induced changes in systolic, diastolic or mean blood pressure 

versus controls, with insulin insensitive and EMS horses showing a reduction in blood 

pressure to a lesser extent then controls [106,107].   

Additional clinical consequences include a decreased cell mediated immune response to 

vaccination [108] and subfertility in mares and stallions with EMS [21].  Specifically, 

insulin dysregulation has been linked to altered estrous cycles [109], anovulatory follicles 

[110], and changes in the intrafollicular environment [111].  However, the distinctive, or 

overlapping, roles of EMS versus obesity in infertility have not been parsed out.   

Thus, the clinical consequences of EMS have a major impact on the equine industry, with 

the primary cost occurring as a result of the development of laminitis.  Extensive research 

into endocrinopathic laminitis has suggested that its pathophysiology and etiology are 

distinctly different from other forms of laminitis.  This warrants additional study as a better 

understanding of underlying mechanism may lead to the development of more tailored 

treatment strategies for management of these cases.  Further, although not as extensively 

studied, the additional clinical consequences discussed also impact the equine industry due 

to costs associated with subfertility, increased illness, and decreased performance 

secondary to vascular dysfunction. 

Management: The primary management consideration in horses with EMS is a regimen 

focused on dietary modification and exercise.  Initial studies assessing EMS identified 

obesity and/or regional adiposity as major criteria in classifying horses with EMS 
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[13,15,16].  Not surprisingly, diet and a sedentary lifestyle were identified as risk factors, 

and the mainstay of management focused on promoting weight loss by decreasing caloric 

intake and increasing energy expenditure.  Although obesity is now considered a feature 

and not cause of EMS [21], diet and exercise modifications are still a major step in 

managing the obese EMS horse by improving insulin sensitivity and preventing obesity in 

the nonobese EMS horse.   

Reduction of caloric intake has been shown to promote weight loss and improve insulin 

regulation [112].  Initial recommendations for weight loss include eliminating concentrated 

feeds and treats and limiting total dietary intake to a low NSC hay and ration balancer at 

1.25-1.5% of body mass on DM basis, targeting a weight loss rate of 0.5-1.0% of body 

mass per week [113].  However, weight loss resistant individuals have been described, and 

may require a carefully monitored reduction in feed to as little as 1.0% of body mass on 

DM basis [113].   

Regardless of obesity status, feeding a hay with <10% NSC content is recommended for 

EMS horses to minimize insulin response [114,115].  In order to achieve the desired 

percent of NSC, soaking hay is commonly recommended as this process was shown to 

reduce the total water soluble carbohydrate (WSC) content by 27-50% [116-118] 

depending on the type and cut of hay as well as the time the hay was soaked [116,119].  

Further, horses fed soaked hay had a two-fold greater increase in body weight reduction 

per week compared to previous reports of horses fed the same quality of dry hay, which 

the authors surmised was due to the decreased provision of DM leading to a 23% decrease 

in dietary energy after soaking [113].  Based on the degree of nutrient leeching noted in 

this study, the authors recommended an adjusted pre and post soaking equation to ensure 

the horse is receiving adequate nutrient provisions [118].   

Diurnal variation, season and environmental stresses can lead to pastures rich in NSC 

which has been associated with insulin resistance and peak occurrences of laminitis cases 

[13,120], and transition from pasture to an all-hay diet resulted in improved insulin 

sensitivity in a group of insulin resistant ponies [121].  Further, ponies with moderate or 

severe insulin dysregulation were found to have higher post prandial insulin responses, 

often surpassing the previously proposed toxic threshold of 200 µIu/mL, when compared 
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to ponies with normal insulin regulation [122].  Unfortunately, attempting to limit the 

access to pasture is not a feasible option.  Although, horses housed on pasture can consume 

between 1.5-5.2% of their body weight in 24 hours [123,124], horses with restricted pasture 

access were shown to consume nearly 1% of their body weight during a three-hour grazing 

period [125].  Therefore, as part of initial dietary management, it is recommended that EMS 

horses should be removed from pasture.   

Exercise has also been shown to improve insulin sensitivity in both horse and ponies, but 

these results are inconsistent and likely reflect differences in research methodology, animal 

heterogeneity, and failure to achieve high enough exercise intensity.  A seven-day light 

intensity exercise program improved insulin sensitivity up to nine days after conclusion of 

the exercise program in both obese and lean mares [126].  Similarly, in Standardbred 

horses, a seven-day intense exercise protocol improved insulin sensitivity for up to five 

days after the last exercise session [127]; while the results were maintained for less than 

24 hours in a separate study [128].  Further, after six weeks of moderate-exercise, insulin 

sensitivity was improved in a group of hyperinsulinemic ponies to the same degree as 

ponies which achieved weight loss based exclusively on diet control [129].  This contrasts 

with several studies that did not find an effect on exercise and improved insulin sensitivity.  

The use of a dynamic feeding system for three months in a group of obese ponies resulted 

in a 3.7 fold increase in daily movement and body fat loss of approximately 5% but did not 

improve insulin sensitivity [130].  Further, low intensity exercise for four weeks followed 

by moderate intensity exercise for an additional four weeks resulted in weight loss without 

a concurrent change in insulin sensitivity, leptin, or triglyceride concentrations in a group 

of obese Arabian horses [131].   

Bamford et al evaluated the effect of both diet restriction and low-intensity exercise 

compared to a monotherapy of diet restriction in 24 obese horses and ponies [132].  After 

12 weeks, both groups had similar improvements in adiposity, insulin, leptin and 

adiponectin concentrations; however, the combined group had improved insulin sensitivity 

as well as decreased serum amyloid A concentrations compared to the monotherapy group 

[132].  These results support the use of combined protocols in EMS management and are 

consistent with previous findings identifying an anti-inflammatory benefit to exercise 
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[133]. Further, individually tailored programs which incorporated both diet and exercise 

achieved targeted weight loss and improved insulin sensitivity in client-owned EMS horses 

[134].  Therefore, combined diet and exercise regimens should be considered as a holistic 

approach to EMS management in horses healthy enough to exercise.  Although additional 

studies are required to assess the effect of exercise on insulin sensitivity as well as to 

determine the optimal exercise intensity and duration required to achieve desired results, 

current recommendations are low-to-moderate exercise (heart rate of 130-170 beats per 

minute for a minimum of 30 minutes at least 6 days per week) in EMS, nonlaminitic horses, 

and light intensity exercise (heart rate of 110-150 beats per minute for a minimum of 30 

minutes at least 4 times per week) in previously laminitic EMS horses [21]. 

The addition of pharmaceuticals has also been investigated for the use in EMS 

management. Metformin is a biguanide in which the mechanisms of action in humans 

include (i) inhibiting hepatic gluconeogenesis, (ii) improving tissue insulin sensitivity, (iii) 

delaying the uptake of glucose within the small intestine while increasing enterocyte 

glucose utilization, and (iv) increasing uptake of glucose by adipose tissue and skeletal 

muscle [135].  In horses, pharmacokinetic studies calculated an oral bioavailability of ~7% 

in unfed horses and ~4% in fed horses, which was 10 times lower than the bioavailability 

of metformin in humans [136].  Further, 20-day oral administration at 15mg/kg twice daily 

resulted in a steady state concentration lower then therapeutic concentrations in humans 

[137].  Several studies evaluating the clinical efficacy of metformin in insulin resistant 

ponies and horses identified either no difference in insulin sensitivity [138] or a short term 

improvement which was reduced or mitigated after extended administration of the drug 

[110,139].  However, it has been proposed that despite the low bioavailability, metformin 

concentrates within the intestine, and its local action on enterocytes may provide clinical 

benefit in horses.  Oral administration of 30mg/kg metformin immediately prior to an oral 

glucose challenge, reduced peak glucose and insulin response in horses with 

dexamethasone induced insulin resistance [140].  The authors surmised that even if insulin 

sensitivity is not improved, blunting postprandial insulin responses would decrease peak 

insulin levels and reduce the risk of endocrinopathic laminitis [140]. 
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Although most EMS horses are euthyroid, levothyroxine is still commonly used in EMS 

management regimens based on evidence that supplementation will promote weight loss 

via triiodothyronine (T3) and thyroxine (T4) stimulation of carbohydrate and fat 

metabolism.  Levothyroxine is a synthetic analog of T4, and although pharmacokinetic 

studies are lacking in horses, oral administration has been shown to increase serum levels 

of T3 and T4 in horses.  Oral administration of levothyroxine in increasing doses (24, 48, 

72, and 96mg) at 2-week increments, resulted in elevated levels of total T4 (tT4) that 

exceed the reference range with the exception of the lowest dose [141].  Long-term oral 

administration of 48mg daily for 48 weeks resulted in 1.5-2-fold increase in total T3 (tT3) 

compared to mean baseline values [142].  The largest increase in tT4 levels was observed 

at 16 weeks (5.4-fold increase) compared to 32 (4.0-fold increase) and 48 weeks (3.7-fold 

increase) [142].  Single dose of 240mg or 480mg resulted in mild elevations in tT3 and tT4 

but results remained within the reference interval; however, daily two-week administration 

of 480mg resulted in a marked increase in tT4 values which gradually declined after 

cessation of the trial [143].  These studies reflect that levothyroxine is dose dependent and 

further research is needed to assess dose saturation, tolerance and paradoxical effects of 

this drug in horses.   

Horses administered an increasing dose of levothyroxine over 8 weeks had significant 

decrease in body weight despite free choice access to feed [141].  Further, this group of 

horses had decreased plasma concentrations of TG, total cholesterol, and very low-density 

lipoproteins as well as a two-fold improvement in insulin sensitivity [144].  A moderate 

dose (48mg) of levothyroxine for 12 months resulted in improved insulin sensitivity and 

weight loss [145].  However, the highest percent of weight loss was achieved at week 16 

(autumn with a 10% reduction) versus the conclusion of the trial (summer with a 5% 

reduction).  No control group was included in this study so the effect of weight loss on the 

drug versus other factors such as season and nutrient content of the pasture/forage could 

not be determined [145].  Further, levothyroxine is perceived as safe in horses, as long-

term administration of 48mg levothyroxine daily did not produce behavioral, cardiac, or 

systemic adverse effects [142].  Health complications were also not identified in horses 

administered high doses of levothyroxine [141,143], although one group did note increased 

level of anxiety amongst horses treated at a dose of 96mg daily [141].   Thus, the inclusion 
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of levothyroxine to promote weight loss is an appealing option for both the weight loss 

resistant individual or laminitic horses unable to exercise.   

Thus, the current evidence supports diet and exercise modifications in order to promote 

both weight loss and insulin sensitivity as the mainstay of EMS management.  Management 

strategies including the addition of pharmaceuticals should only be considered in 

conjunction with diet and exercise and not as a replacement.  Additional management 

options have been proposed but currently are not yet commercially available or have little 

scientific evidence for efficacy in horses with EMS, including: magnesium 

supplementation [146], nutraceutical supplementation [147], incretin receptor antagonists 

(discussed further in the Pathophysiology of EMS: Incretins) [148], sodium-glucose 

linked transport-2 inhibitors [149,150], and mesenchymal stem cell therapy [151]. 

Pathophysiology of EMS 

Much of the etiology and pathophysiology of EMS is still incomplete, and current 

knowledge has been extrapolated from evidence in humans and other model species.  Given 

that horses are hindgut fermenters adapted to a high roughage diet, there are likely distinct 

differences between metabolic physiology in horses and other species that could have 

major effects on clinical outcomes and treatment strategies.  This section will outlay the 

current knowledge of metabolic syndrome pathophysiology in humans as well as relevant 

literature in the horse. 

Insulin Dysregulation: Insulin is a peptide hormone with roles in carbohydrate, lipid, and 

protein metabolism.  Insulin dysregulation plays an important role in metabolic syndromes 

and has been defined as disruptions in the interconnected relationships between insulin, 

glucose and lipid metabolism [21].   In normal conditions, insulin is released by β-cells 

from pancreatic islets of Langerhans primarily in response to hyperglycemia, but other 

macronutrients, hormones, and neurotransmitters can also stimulate insulin release [152].  

Pancreatic β-cells act as “glucose sensors,” playing a critical role in glucose homeostatasis 

[153].  Glucose readily crosses the β-cell membrane via high capacity, low affinity glucose 

transporters (GLUT) [154].  Although GLUT2 is the primary β-cell transporter in the 

mouse, GLUT1 and GLUT3 appear to be more important in humans and the horse β-cell 

transporter has yet to be identified [155]. Once within the cell, glucose is phosphorylated 
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by glucokinase (the primary β-cell glucose sensor) to glucose-6-phosphate, initiating 

glycolysis resulting in pyruvate, ATP, and NADH generation [153].  Subsequent closure 

of potassium-ATP-dependent channels, depolarizing the cellular membrane, and activation 

of voltage dependent calcium channels leads to in an influx of intracellular calcium which 

results in insulin secretion via exocytosis [152,153]. In humans and rodent models, insulin 

secretion is biphasic with an initial rapid release followed by a more prolonged but less 

concentrated release [156]; however, it has not been determined as to whether insulin 

release is mono or biphasic in horses [157-159]. 

In the periphery, insulin mediates its effects by binding to insulin receptors located on the 

main target tissues: adipocytes, skeletal muscle, and liver.  This binding activates 

intracellular insulin responsive substrates (IRS) via tyrosine phosphorylation.  These IRS 

are responsible for insulin’s metabolic, vascular and mitogenic effects.  For example, IRS 

activation of the downstream effector pathway phosphatidylinositol 3-kinase (PI3K) 

promotes insulin’s metabolic effects including: the translocation of intracellular glucose 

transporter proteins (GLUT4) to the cell membrane, stimulating lipid and protein synthesis, 

and inhibiting glycogenolysis and hepatic gluconeogenesis [160,161].  Once the glucose 

transporter is translocated to the plasma membrane, glucose is transported into the cell 

where it is phosphorylated to be stored as glycogen or utilized for ATP production.  

Hyperinsulinemia and insulin insensitivity are mainstays of insulin dysregulation.  

Theories for the pathogenesis of this disorder focus on prolonged, sustained diets rich in 

carbohydrates and/or fats leading to a peripheral insulin resistance, which may be a 

consequence of insulin receptor downregulation and/or desensitization, reduction in insulin 

receptor protein levels, inhibition of GLUT4 translocation to the plasma membrane [162], 

or alterations in central neuronal control of regulatory pathways [163].   Experimental 

support for these theories is limited in horses.  However, GLUT4 was recently shown to be 

decreased on the skeletal muscle cell surface in horses with naturally occurring insulin 

resistance without a change in total protein expression [164].  Further, experimentally 

induced hyperinsulinemia in horses led to a decrease in GLUT1, GLUT4, insulin receptors, 

fatty acid transporters and CD36 transcript abundance in adipose tissue [165] (see 

Dyslipidemia for further discussion of fatty acid transporters and CD36).  
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With insulin resistance, as blood glucose levels fail to return to normoglycemia, the 

pancreatic β-cells hyperfunction by increasing insulin secretion via β-cell hypertrophy and 

decreasing β-cell expression of glucokinase while increasing expression of hexokinase, 

shifting the insulin-glucose response curve to the right [166,167].  In addition, in normal 

conditions, the first portal passage through the liver is responsible for 50-60% of insulin 

clearance in humans and up to 70% in horses [168,169]; however, insulin insensitivity 

markedly reduced hepatic insulin clearance across species [169,170], contributing to 

hyperinsulinemia.  Theories for the progression from compensated to decompensated 

insulin resistance include: (i) deterioration of the pancreatic β-cell glucose-sensory 

mechanisms [171], (ii) reduction in the conversion from proinsulin to insulin [172], and 

(iii) β-cell exhaustion and apoptosis [173,174]. 

In horses, hyperinsulinemia and/or an exaggerated response to an oral sugar or IV glucose 

challenge remain the most commonly used tests for diagnosing individuals with EMS [21].  

However, although some studies have found glucose levels in EMS horses to be 

significantly higher than insulin sensitive horses, these levels remain within the reference 

range indicating compensated insulin resistance [46].  Progression to uncompensated 

insulin resistance is rarely reported in horses with few published cases of diabetes mellitus 

[175-177] and an occasional identification of hyperglycemia in individuals apart of larger 

EMS studies [13].  This unique mechanism of maintained compensated insulin resistance 

remains undiscovered and warrants further investigation.  

Incretins: Postprandial stimulation of insulin release via the enteroinsular axis has been 

found to result in a greater insulin response versus intravenous or intraperitoneal glucose 

administration.  This has been deemed the incretin response based on the effects of the 

incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like 

peptide 1 (GLP-1).  While incretin hormones are responsible for 50-70% of postprandial 

insulin release in humans [178,179], their role is likely smaller in horses [180].  Both GLP1 

and GIP’s have primary insulinotrophic roles by binding to G-protein receptors (GLP-1 

receptors and GIP receptors, respectively) on pancreatic beta cells, upregulating proinsulin 

gene expression and stimulating insulin release in a glucose-dependent manner [181].  

Disruption of the incretin effect has been implicated in obesity and insulin dysregulation.  
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This was supported by evidence in the mouse models which showed the disruption of 

Islet1, a transcription factor expressed in incretin producing intestinal cells, resulted in the 

loss GLP-1 and GIP and impaired glucose tolerance to an oral but not intraperitoneal 

challenge [182].  However, the roles of incretins in insulin dysregulation are debatable. 

In humans, postprandial GLP-1 levels have been found to be decreased in insulin 

dysregulated individuals [183-185] and were negatively correlated to body mass index 

[184,186,187].  In a group of 30 horses, both active (aGLP-1) and total (tGLP-1) levels 

were decreased in horses with insulin dysregulation compared to controls [188].  However, 

these results are inconsistent as several studies were unable to identify correlations between 

GLP-1 and severity of glucose intolerance [189-191].  Further, a 2011 meta-analysis 

surmised that reduced GLP-1 concentrations were not a universal characteristic of insulin 

dysregulation and individual factors such as diet, age, NEFA concentrations, and obesity 

were confounding these results [192].   

In horses, breed differences in GLP-1 concentrations were identified in ponies and 

Andalusians, two breeds considered high risk for EMS, which were found to have higher 

GLP-1 and insulin responses compared to Standardbred horses, potentially indicating a risk 

factor for insulin dysregulation [193].  Further, both active (aGLP-1) and total (tGLP-1) 

levels were decreased in horses with insulin dysregulation compared to controls [188].  

However, other studies found that although GLP-1 levels correlated with insulin secretion, 

GLP-1 could not be used to differentiate between insulin dysregulated and insulin sensitive 

horses [122,194].     

Studies evaluating the role of GIP in human metabolic syndrome have had similar 

conflicting findings, with some studies identifying decreased levels or reduced response of 

GIP in individuals with insulin dysregulation and others finding no difference [195-199].  

However, the role of GIP in insulin dysregulation is further complicated by its 

counterintuitive glucagonotropic role.  Unlike GLP-1 which inhibits glucagon release 

[200], GIP has been shown to enhance glucagon release [201] which exacerbates post 

prandial hyperglycemia [202] and may contribute to the development of obesity [203].  

These hypotheses have been supported through studies showing that, when compared to 

thin individuals, obese individuals have higher fasting levels of GIP and increased early 
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phase responses to a meal [204].  Similarly, GIP was positively correlated with body 

condition and cresty neck scores in a population of nine mixed breed ponies [148].  

An “incretin exhaustion,” or impaired incretin insulinotropic potency, has been proposed 

to explain the phenomenon of normal GLP-1 or GIP levels in insulin dysregulated 

individuals [190,205].  This has been supported by a decreased expression of GLP-1R and 

GIPR in diabetic mouse models [206,207].  Further, hyperglycemia has been shown to 

promote endocytosis of both the GIPR and GLP-1R [208].  However, additional research 

is required to support this theory.  Despite the uncertainty behind the roles of GLP-1 and 

GIP, synthetic GLP-1 and drugs targeted at inhibiting dipeptidyl peptidase 4 (DPP4), a 

serine protease that inactivates GIP and GLP-1, have been shown to increase glycemic 

control in humans with metabolic syndrome [209,210], and represent a potential target for 

EMS management [148].   

Dyslipidemia: Fatty acids circulate within the blood bound to albumin as free fatty acids 

(NEFA) or esterified as components of triglyceride, phospholipids, and/or esterified 

cholesterol [211].  Circulating lipoproteins are characterized by central hydrophobic cores 

composed of triglycerides and cholesterol esters and hydrophilic membranes consisting of 

phospholipids, free cholesterol and apolipoproteins, with apolipoproteins serving major 

roles in ensuring the structural stability of the lipoprotein, acting as a ligand for the 

lipoprotein receptor, and activating or inhibiting enzymes involved in lipoprotein 

metabolism [212].  Depending on hydrated density and major lipid content, lipoproteins 

are divided into five classes: high-density lipoproteins (HDL), intermediate-density 

lipoproteins (IDL), low-density lipoproteins (LDL), very-low-density lipoprotein (VLDL), 

and chylomicrons (packaged dietary triglycerides).  In horses, classes of lipoproteins have 

been characterized across breeds with distinct subclasses of lipoproteins and the most 

abundant fraction mainly being HDL [213-215]. Breed differences have also been 

identified, with Shetland ponies having higher triglyceride and VLDL concentrations 

compared to Thoroughbreds [214].  Further, Turkman horses were found to have higher 

concentrations of triglycerides compared to most breeds and higher LDL compared to 

Morgan horses [216]. 
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Fatty acids are derived from dietary uptake or endogenous de novo lipogenesis or lipolysis.  

Insulin is the most potent stimulus for promoting lipogenesis and inhibiting lipolysis, and 

exerts its effect by (i) increasing the cellular uptake of glucose, (ii) activating lipoprotein 

lipase (LPL) in adipose tissue, and (iii) inactivating hormone sensitive lipase through 

phosphodiesterase 3B [217,218].  Glucose also plays a role in lipogenesis by acting as is a 

substrate for fatty acid synthesis via its glycolytic conversion to acetyl CoA, inducing 

expression of lipogenic genes, and stimulating the release of insulin from pancreatic beta 

cells as described above [217].  In concert, insulin induced stimulation of protein 

phosphatase activates acetyl CoA carboxylase converting the glycolytic acetyl CoA to 

malonyl CoA, which is then converted to palmitate by fatty acid synthase [219].  Dietary 

fatty acids and palmitate can be modified to produce multiple lipid species via endogenous 

elongase and desaturase enzymes controlled by the regulatory elements peroxisome 

proliferator-activated receptor alpha (PPARalpha), sterol-regulatory element binding 

protein-1 (SREBP-1), carbohydrate-regulatory element binding protein (ChREBP), and 

MAX-like factor X (MLX) [220].  Further, the family of transcription factors SREBP-1 

and ChREBP also have fundamental roles in regulating the expression of fatty-acid 

synthase, acetyl CoA carboxylase and ATP-citrate lysase [221]. 

Lipid partitioning is important to insulin action, energy balance, and regulation of body 

weight [222], and is predominately mediated by lipoprotein lipase (LPL), which is 

synthesized by the paranchemal cells of  muscle, heart and adipose tissue and bound to 

capillary endothelial by highly charged chains of heparan sulfate proteoglycans and/or 

glycosyl phosphatidylinositol, forming the glycocalyx [223,224].  Insulin is a major 

regulator of LPL activity in adipose tissue and acts by increasing LDL gene transcription 

and regulating its activity through both posttranscriptional and posttranslational 

mechanisms [225]. Insulin further promotes fatty acid uptake by promoting translocation 

of fatty acid transporters to the cell [226] and targeting apolipoprotein B for degradation 

reducing hepatic output of VLDL resulting in the preferential uptake of chylomicrons 

[227].  Glucose increases adipose tissue LPL activity via glycosylation of LPL, essential 

for LPL catalytic activity and secretion [225].  LPL activity is further regulated in a tissue 

specific fashion by several factors including: angiopoietin-like proteins, lipase maturation 

factor, and glycosylphosphatidylinositol HDL binding protein [228,229].  LPL, in 



23 
 

conjunction with its required cofactor apolipoprotein C-II, acts by anchoring the surface of 

chylomicrons or lipoproteins to the endothelium, resulting in hydrolysis of triglycerides 

and release of free fatty acids which can then available to bind to fatty acid transport 

proteins including the fatty acid translocase protein CD36 for cellular uptake [211,223].  

LPL further facilitates the uptake of LDL via interactions with the low-density lipoprotein 

receptors, which is independent of its catalytic activity and in a dose dependent manner 

[230,231].  LDL receptors mediate the uptake of LDL, IDL and chylomicron remnants via 

endocytosis, with LDL receptor expression being controlled by SREBP based on the total 

cholesterol content within the cell. Once the fatty acids are taken up by the tissues, their 

fate is determined by the tissue and activity of hormone sensitive lipase, fatty acyl CoA 

synthase and glycerol-3-phosphate acyltransferase, ultimately, being oxidized or stored as 

neutral lipids. 

Under physiological conditions, circulating fatty acids act as a monitor between insulin and 

hepatic glucose production, with elevations in serum free fatty acid concentration leading 

to impaired hepatic insulin function, decreased hepatic insulin clearance, and increased 

gluconeogenesis [232,233].  Direct inhibition of insulin action by elevated fatty acids 

eliminates the negative feedback on hormone-sensitive lipase, leading to further 

accumulation of triglycerides in the liver and other target tissues and reducing the cellular 

uptake of glucose.  Further, via the Randle cycle, elevated fatty acids levels lead to a shift 

in skeletal muscle preference to oxidize free fatty acids as energy substrates over glucose, 

which is normally responsible for 80% of postprandial glucose utilization, resulting in a 

prolonged hyperglycemia [234,235].  Finally, chronic exposure of the pancreatic beta cells 

to high levels of free fatty acids results in an impaired insulin secretory response to glucose 

[232,233] via NEFA inactivation of the pancreatic transcription factor hepatic nuclear 

factor-1α which suppresses GLUT2 mRNA expression [154,236].   

Given the extensive control mechanisms of insulin and glucose on lipogenesis and 

lipolysis, as well as that of fatty acids on insulin sensitivity and glucose homeostasis, it is 

not surprising that dyslipidemia (elevations in serum NEFA, TG, and phospholipid 

concentrations) and insulin resistance are interrelated.  Dysfunctional adipose tissues, 

either due to adipose hypertrophy from overnutrition or lipodystrophy, have been shown 
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to lead to insulin resistance due to excessive amounts of fatty acids reaching the circulation 

postprandially and during lipolysis and dysregulation of adipokines (aka lipid-induced 

insulin resistance) [237].  The “portal theory” has proposed that lipid-induced insulin 

resistance is the result of increased visceral adipose tissue delivering a higher rate of free 

fatty acids to the liver via the portal vein, which increases hepatic glucose production and 

reduces hepatic insulin clearance, and ultimately leading to hyperinsulinemia [238]. Insulin 

resistance-induced obesity has also been proposed based on evidence in lean at-risk 

individuals (individual with a family history of type 2 diabetes) who had decreased function 

of the insulin receptor kinase activity and reduced plasma membrane insulin receptor 

concentrations on skeletal and/or adipose tissue [239-241].  Further, using a proxy for 

adipose-insulin resistance (calculated as free fatty acids multiplied by baseline insulin), 

adipose insulin resistance was higher in a small group of individuals with metabolic 

syndrome after adjusting for BMI and waist circumference [242].  The role of obesity as a 

risk factor versus clinical consequence of metabolic syndrome has already been discussed; 

regardless, disturbances to fatty acid metabolism are of importance to the pathophysiology 

of metabolic syndrome.     

Notably, specific alterations in fatty acid uptake have also been linked to metabolic 

dysfunction and may be an inciting or contributing cause to elevated circulating levels of 

fatty acids in cases of insulin dysregulation.  In humans, variants within the apolipoprotein 

C-II gene and/or LPL have been shown to lead to hypertriglyceridemia and increased 

plasma levels of chylomicrons [243,244].  Mice deficient in skeletal LPL were shown to 

have hypertriglyceridemia which ultimately leads to insulin resistance and obesity due to 

increased lipid partitioning in other tissues [245].  Interestingly, tissue-specific 

overexpression of LPL in mice skeletal muscle and liver lead to increased stores of 

triglycerides within these tissues but ultimately still resulted in insulin resistance [246]. 

LPL activity has been repeatedly shown to be reduced in humans with poorly regulated 

type II diabetes, and two variants within the LPL gene were associated with 

hypertriglyceridemia and decrease HDL level in 2328 Danish individuals [247].  CD36 

knockout mice have impaired fatty acid uptake [248] and variants within the rodent CD36 

were linked to hyperlipidemia and insulin resistance [249].  Humans with insulin resistance 

have been shown to have an increased protein abundance of skeletal muscle CD36 [250], 
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and insulin-sensitive horses with experimentally induced hyperinsulinemia were identified 

to have reduced CD36 adipose transcription abundance [165].    

In horses, elevated NEFA and TG have been associated with EMS, although not 

consistently across studies.  Treiber, et al and Carter, et al both found significantly 

increased TG levels in EMS ponies and hypertriglyceridemia was identified as a risk factor 

for the development of laminitis [13,16].  Bailey et al identified a seasonal elevation in TG 

levels in ponies with EMS [14], and Frank et al identified a significant elevation in serum 

NEFA concentrations, although there was no difference in serum TG [15].  Interestingly, 

while the former studies were evaluating EMS in pony breeds, the latter study consisted of 

six different large-breed horses possibly reflecting a difference in ponies versus horses.  In 

one study comparing a small group of obese large-breed horses with insulin resistance to 

metabolically healthy horses, the plasma concentration of VLDL and HDL were found to 

be increased in horses with insulin resistance [15].  The elevation in HDL is opposite to 

what is characteristically seen in humans with metabolic syndrome and may reflect the 

absence of plasma cholesteryl ester transfer protein in equids [15]. Using continuous lipid 

profile measurements, subfractions of HDL, specifically HDL3a, were found to be 

significantly lower in healthy horses compared to horses with obesity, laminitis or both 

despite there being no difference in total HDL concentrations, possibly indicating a novel 

method of lipoprotein profiling [215].  Unfortunately, this study did not evaluate metabolic 

status and further studies would need to be performed to determine the utility for EMS 

[215]. 

Inflammatory Cytokines: Evidence supports that a large contribution to the 

pathophysiology of metabolic syndrome is related to the role of adipose tissue in promoting 

chronic, low-grade inflammation.  Adipose tissue is a biologically active endocrine organ 

which secretes a myriad of substances including cytokines, eicosanoids, complement 

proteins, binding proteins, vasoactive factors, and regulators of lipid metabolism which are 

collectively known as adipokines [251] and will be discussed in the subsequent section.  

The exact mechanism behind adipose induced inflammation in metabolic syndrome is 

unknown, but it is proposed that “sick fat” is a result of adipose hypertrophy and 

hyperplasia secondary to excess nutrition leading to endoplasmic reticulum stress or 
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hypoxia from an insufficient blood supply [252,253], which results in macrophage and 

mast cell infiltration and the production of inflammatory mediators [253].  Additional 

hypotheses have proposed that endothelial stress and hyperactive platelets are the primary 

etiology behind adipose tissue inflammation as well as the low-level inflammation 

observed in other tissues [254].  Regardless, the increased production of inflammatory 

mediators has been shown to indirectly and directly contribute or exacerbate insulin 

resistance and dyslipidemia.   The following section will describe the evidence and 

pathophysiology for TNFα, IL-1β, and IL-6 as these are the three cytokines that have been 

most extensively studied for obesity and metabolic syndrome in the horse.  However, it 

should be noted that additional adipocytokines which have evidence as to a contributing 

role in insulin dysregulation include: C-reactive protein (CRP), fibrinogen, resistin, 

monocyte chemoattractant protein-1 (MCP-1), IL-8, WISP1, apelin, angiopoietin 2, 

omentin-1, chermin, dipeptidylpeptidase 4, and plasminogen activator inhibitor-1 (PAI-1)  

[253].   

TNFα was found to be upregulated in mouse models of obesity as early as the 1990s [255] 

and is one of the most thoroughly studied adipocytokines.  It has been shown to promote 

insulin resistance by (i) hindering insulin-stimulated translocation of GLUT4 transporters 

by inducing serine phosphorylation of insulin receptor substrate 1  (IRS-1), resulting in 

docking of PI3K, (ii) terminating insulin action by activating SH-PTPase, which removes 

the tyrosine phosphate groups from IRS-1 and focal adhesion kinase (FAK), and (iii) 

inhibiting insulin receptors via serine/threonine phosphorylation [256].  In addition, 

binding of TNFα receptors results in the activation of NF-κB and c-Jun amino-terminal 

kinase (JNK). JNK further contributes to insulin resistance by phosphorylating and 

inactivating IRS-1 [257].  NF-κB, which is also activated by toll like receptor 4 (TLR4) 

during periods of hyperlipidemia and hyperglycemia, further increases the expression and 

recruitment of inflammatory cytokines to specific tissues, including the pancreatic-β cells 

playing an important proapoptotic role in cytokine induced β-cell death [258].  NF-κB also 

upregulates protein tyrosine phosphatase 1B and suppresses the activation of the suppressor 

of cytokine signaling (SOCS3) in hypothalamic agouti-related proteins, both major 

regulators of insulin and leptin signaling [259,260].  Interestingly, NF-κB may also have a 

protective role against obesity and insulin resistance, as mice overexpressing NF-κB had 
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reduced weight gain and maintained insulin sensitivity after a high-fat diet challenge [261], 

indicating that the positive role of NF-κB may have a crucial tipping point to its 

proinflammatory actions.  

Elevated concentrations of IL-1β and IL-6 have also been associated with obesity and 

insulin resistance [262].  In mice, the release of IL-1β from adipose tissue macrophages 

resulted in the binding of IL-1 receptors on the bone marrow myeloid progenitors, 

stimulating the increased production of monocytes and neutrophils [263].  Further, in vitro 

experiments suggest that IL-1β directly damages pancreatic β cells and inhibits insulin 

production and release [264].  IL-1 β also acts as its own positive feedback mechanism, 

upregulating both itself and IL-1 pancreatic receptors, further exacerbating inflammatory 

induced pancreatic damage [265].  Selectively blocking the trans-signaling pathway of IL-

6 in mouse models of obesity resulted in a reduced number of macrophages in adipose 

tissue, indicating that IL-6 is a strong chemotactic for macrophage recruitment [266].  IL-

6 has also been shown to inhibit adiponectin secretion (see Adipokines) and stimulates the 

synthesis of acute phase protein [267].  IL-6 may also promote insulin resistance by 

reducing the transcription or inducing the phosphorylation of IRS [268]. As with NF-κB, 

it is important to note that IL-6 may also have beneficial effects in preventing obesity and 

insulin resistance, as IL-6 knockout mice develop mature obesity and insulin insensitivity 

[269].  IL-6 has also been shown to activate AMPK which is known insulin sensitizer and 

infusions of IL-6 during EHC resulted in improved insulin sensitivity [270].  

The interrelationship of inflammatory mediators in obesity and insulin dysregulation has 

also been investigated in horses with EMS but remains unclear.  Histological examination 

of adipose tissue in obese, hyperinsulinemic ponies revealed a marked degree of 

hypertrophy [271,272] and macrophage infiltration [271] compared to the adipose tissue 

of obese ponies, indicating adipose dysfunction.  Studies evaluating inflammatory cytokine 

mRNA or protein expression levels have identified significant differences between nuchal 

ligament, abdominal and subcutaneous fat, suggesting that adipose tissue depots have 

unique biological behavior [272-275].  Horses with EMS were found to have marked 

increases in TNFα, IL-1β, and CCL2 in both peri-renal and retroperitoneal fat depots [272], 

and IL-6 was significantly increased in the subcutaneous fat [271].  When comparing 
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insulin sensitive versus insulin insensitive horses, one study concluded that the nuchal 

ligament adipose tissue contributed the most to EMS pro-inflammatory profile, with an 

increased expression of IL-1β and IL6 in insulin resistance horses despite no difference in 

other adipose tissue deports or systemic inflammatory mediators [274].   

Differences in serum cytokine levels have also identified statistically significant 

differences between obese and/or EMS horses but with conflicting results.  In a group of 

110 light breed horses, serum amyloid A concentrations were correlated with BCS and 

baseline insulin concentrations after correcting for age and sex, although correlations were 

not identified for TNFα or IL-6 [18].  Decreased concentrations of TNFα, IL-6, and IL-1 

were identified in obese horses; however, endogenous cytokine levels were not associated 

with insulin levels [276].  These contrasted with several studies which identified (i) higher 

concentrations of TNFα in previously laminitic ponies versus non-laminitic ponies [277], 

(ii) higher concentration of TNFα and IL-6 in a group of obese, hyperinsulinemic ponies 

versus obese ponies [271], and (iii) an inverse association between TNFα and insulin 

sensitivity in 60 mares after adjusting for BCS and percent fat [278].  Interestingly, 

neutrophil oxidative burst activity was found to be markedly increased in obese, 

hyperinsulinemic horses.  However, in the same study peripheral cytokine gene expression 

was lower for IL-1 and IL-6 and there was no difference between groups in cytokine 

response after an inflammatory challenge, potentially reflecting a lack of a direct 

inflammatory response due to obesity and hyperinsulinemia in horses [276].  Thus, the role 

of adipose tissue and inflammatory mediators in insulin dysregulation is still under 

investigation. 

Adipokine Concentrations: Adipokines have both local and systemic effects and function 

as part of a complex set of physiological control systems with roles in regulating energy 

metabolism, cardiovascular functions, reproduction, inflammation and immunity [279]. 

Through the dysregulation of adipokines, adipose tissue contributes to insulin 

dysregulation and the pro-inflammatory state associated with metabolic syndrome via an 

increase in leptin and decrease in adiponectin.   

Leptin, a proinflammatory cytokine, is predominantly produced in adipose tissue with 

circulating levels closely correlating with body mass index, making hyperleptinemia a 
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reliable marker of obesity across species [280].  In horses, hyperleptinemia has been 

associated with measurements of obesity and/or weight gain and has been shown to decline 

with weight loss [18,32,42,132,281-284].  Although the improvement in leptin 

concentrations was not significantly different between 24 obese ponies who were subjected 

to a weight loss regimen of diet or a combination of diet and low-intensity exercising [132], 

in a group of 10 obese horses, weight loss induced by moderate exercise improved plasma 

leptin levels and insulin sensitivity over weight loss induced by diet alone [281].   In a 

population of 127 Andalusian horses with normal basal insulin levels, leptin concentrations 

correlated with BCS and ultrasound measurements of subcutaneous fat at 75% of neck 

length [285].  Interestingly, both adiponectin and leptin were shown to be differentially 

expressed in fat depots with the highest levels of leptin identified in the nuchal ligament 

adipose tissue [273].       

Leptin is coded by the Ob gene which is regulated by a variety of metabolic and 

inflammatory mediators.  The proinflammatory cytokines, TNFα, IL-1β, and IL-6, increase 

gene transcription within adipose tissue [280], and binding of glucocorticoids or 

peroxisome-proliferator-activated receptor-γ to the Ob promoter region increases 

expression of leptin mRNA [279].  Two of leptin’s primary functions are to decrease 

energy intake and increase energy expenditure via the hypothalamic satiety centers.  

Binding to the leptin receptors leads to activation of the Janus kinase (JAK) tyrosine 

kinases which activate the signal transducer and activator of transcription 3 (STAT3) [286].  

The activation of these pathways inhibits the orexigenic factors neuropeptide Y, galanin, 

galanin-like peptide, orexin, and agouti related proteins while stimulating the anorexigenic 

factor α-melanocyte stimulating hormone via activation of pro-opiomelanocortin [287].  

Leptin also serves important roles in angiogenesis, suppression of apoptosis, modulating 

insulin sensitivity and regulation of reproduction, inflammation, and immune functions.  

Under physiological conditions, high levels of leptin suppress the appetite; however, 

obesity leads to leptin resistance, or the reduced ability for high levels of leptin to regulate 

energy homeostasis, which is selective for leptin’s metabolic functions.  This leads to 

weight gain and anorexic resistance and contributes to several obesity related co-

morbidities including cardiac, renal and vascular dysfunction due to leptin-mediated 
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sympathetic nervous system hyperactivity, decreased nitric oxide generation and increased 

endothelin production [287,288].  In obese horses, evidence for leptin resistance has been 

suggested based on proportionally higher levels of leptin in comparison with BCS, as well 

as a lower anorexic effect in individuals with higher plasma leptin concentrations [289].  

Several pathways for the development of leptin resistance have been described, effecting 

either the transport of leptin into the central nervous system, impaired leptin signal 

transduction on target tissues, downregulation of leptin receptors, or alterations in leptin-

induced downstream signaling mechanisms [287,290].  Normal uptake of leptin into the 

blood brain barrier is due to leptin transporters within the brain capillary epithelium and 

choroid epithelial cells; prolonged hyperleptinemia due to obesity has been proposed to 

lead to saturation of these transports. blunting additional leptin uptake into the central 

nervous system [291].  Increased circulating fatty acids and TNFα has also been shown to 

lead to an over expression of occludin, resulting in the increased cell-to-cell adhesion of 

the hypothalamus tight junctions, inhibiting paracellular transport of leptin into the brain 

[292].  Further, endoplasmic reticulum stress has been shown to markedly reduce leptin-

induced STAT3 activation, hindering the satiety Ob-Rb-STAT3 pathway [293].  

Additional mechanisms which have been proposed include: increased expression of SOC3 

and PTP1B within the hypothalamus and alterations within the hypothalamic 

phosphodiesterase-3B-cAMP and Akt-pathways [294]. 

As discussed in the Management section, weight loss in obese individuals has been shown 

to improve hyperglycemia and insulin sensitivity, and these beneficial results were 

originally thought to be due to the direct effects of decreased adipose mass; however, it has 

been proposed that leptin signaling can influence glucose regulation independent of this 

mechanism [288].  Both in vitro and in vivo mouse studies have provided strong evidence 

that leptin regulates glucose homeostasis via (i) interaction with the agouti-related protein 

neurons which are GABAergic neurons within the central nervous system [295], (ii) the 

adipoinsular axis in which insulin stimulates leptin production in adipose tissue and, in 

turn, leptin inhibits insulin secretion via central and direct actions on pancreatic β-cells 

while promoting hepatic glucose synthesis [296], (iii) inhibition of glucagon secretion 

[297], and (iv) promoting glucose uptake and utilization in skeletal muscle [298].  
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Importantly, the direct versus indirect effects of leptin on target cells or tissues is still 

unclear with conflicting results for many of these mechanisms across studies and are still 

under investigation [288].    

Leptin’s role in the innate and adaptive immune response has also been described.  Leptin 

promotes the activation of neutrophils, monocytes and macrophages, which stimulates the 

production of TNFα and IL-6 [299].  Leptin further upregulates TNFα, IL-6 and IL-10 via 

activation of the P38 and JAK2/STAT3 pathways [300,301] and there is evidence that 

leptin has a role in activation or production of c-reactive proteins [302].    

Given leptin’s correlation with obesity and the controversial role of obesity in metabolic 

syndrome, leptin as a biomarker for insulin dysregulation is still under debate.  In humans, 

leptin levels were positively correlated with HOMA-IR and BMI in young Algerian adults 

with metabolic syndrome [303].  Leptin levels were able to differentiate between obese 

cardiovascular disease patients with or without type II diabetes.  In this population, 

individuals with a concurrent diagnosis of type II diabetes had significantly higher leptin 

levels compared to those with an exclusive diagnosis of cardiovascular disease [304].  

Evaluation of 123 Egyptian patients with metabolic syndrome and 123 controls revealed 

lower adiponectin, higher serum leptin concentrations, and higher leptin: adiponectin ratios 

in individuals with metabolic syndrome; however, the leptin: adiponectin ratios were more 

sensitive, and the authors advocated for its use as an early biomarker for metabolic 

syndrome [305].  In horses, leptin levels have been found to be higher in horses with EMS 

and associated with insulin dysregulation [24,272] and was identified as a risk factor for 

the development of laminitis [16]. However, the role of obesity and insulin dysregulation 

were not parsed out in these studies.  When comparing a group of 15 obese ponies, leptin 

levels were found to be similar in both the insulin resistant and insulin sensitive groups and 

both groups had equivocal improvements in leptin reduction after weight loss [306].    

Adiponectin is produced almost exclusively by mature adipocytes and is one of the most 

highly expressed genes in white adipose tissue [279].  Gene expression of adiponectin is 

regulated by the transcription factors C/Eps, sterol regulatory element binding proteins, 

and PPARy and has been shown to be upregulated during periods of starvation and 

downregulated during periods of overnutrition [307-309].  In contrast to leptin, adiponectin 
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is negatively correlated with BMI/BCS and has been shown to increase with weight loss in 

both humans and horses [132,310].   

One of adiponectin’s primary roles is as an anti-inflammatory adipokine and 

hypoadiponectinemia associated with metabolic syndrome is thought to contribute to its 

proinflammatory state [311].  Adiponectin acts as an anti-inflammatory by inhibiting the 

production of TNFα from macrophages and restricting movement of monocytes into the 

subendothelium by reducing the expression of endothelial cell adhesion molecules [312].  

It also promotes signaling through the endothelial cAMP-PKA-dependent mechanisms 

which prevent the activation of the NF-κB [313] and attenuates hyperglycemia-induced 

production of reactive oxygen species [314].  Further, studies have shown that adiponectin 

stimulates IL-10 production, a potent anti-inflammatory cytokine, and increases the 

production of tissue inhibitor metalloproteionase-1 [315,316].  In contrast, both TNFα and 

IL-6 negatively regulate adiponectin expression [311]. 

Adiponectin also serves a primary role in insulin regulation.  In mouse models, adiponectin 

deficient mice showed insulin resistance, glucose intolerance, and dyslipidemia [317], and 

adiponectin supplementation reestablished insulin sensitivity in KKAy models of 

metabolic syndrome (mice expressing high levels of agouti proteins fed high fat diets) 

[318].  In rhesus monkeys, hypoadiponectinemia was shown to parallel insulin resistance 

prior to the onset of type II diabetes [319].  Proposed mechanisms behind adiponectin 

induced insulin sensitivity includes adiponectin receptor1 (AdipoR1) activation of AMPK 

in skeletal muscle, liver and adipocytes.  Activation of AMPK enhances glucose uptake by 

promoting translocation of the GLUT4 transporter to the cell membrane surface, and fatty 

acid oxidation via the inactivation of acetyl CoA carboxylase [279,320].  Further, binding 

of adiponectin to AdipoR2 enhances the hepatic effect of insulin and inhibits hepatic 

gluconeogenesis, presumably through the AMPK and PPAR-α ligand pathways [321,322].  

Notably, high molecular weight (HMW) adiponectin has been shown to the be the primary 

biologically active protein, representing a more sensitive biomarker for metabolic 

dysfunction over total adiponectin levels [323].  It has been proposed that hyperinsulinemia 

contributes to hypoadiponectinemia by promoting activation of serum reductase which 

triggers the dissociation of HMW adiponectin to low molecular weight adiponectin [324] 
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as well as contributing to adiponectin resistance by reducing the expression of AdipoR1 

and AdipoR2 via the phophoinositide 3 kinase/Fox01 dependent pathways [325]. 

In humans, hypoadiponectinemia has been associated with the development of metabolic 

syndrome and type II diabetes [242,326], and has been observed in a variety of states 

frequently associated with insulin resistance including dyslipidemia, cardiovascular 

disease, and hypertension [320].  It has also been found to be positively correlated with 

HDL and negatively correlated with fasting insulin, LDL, and triglycerides concentrations 

[310,327].  Similarly, in horses, adiponectin levels were highly correlated with insulin 

resistance independent of obesity [283,306].  In a group of large breed horses, adiponectin 

levels were significantly lower in horses supplemented with a diet high in carbohydrates 

compared with those fed a high fat diet, despite both groups showing an increased BCS 

and total fat mass.  The horses fed the cereal based diet also had the largest degree of insulin 

insensitivity, indicating a role for adiponectin in the development of insulin dysregulation 

independent of obesity [48].  Further, low levels of adiponectin in conjunction with 

hyperinsulinemia were found to accurately predict the development of laminitis in a group 

of 446 obese ponies at 1, 2, and 3 years post sampling [328].  These results suggest that 

adiponectin has a distinct role in insulin dysregulation independent of obesity and 

represents a valuable biomarker for insulin dysregulation.   

Thus, the pathophysiology behind EMS is not fully understood but likely due to a 

combination of complex downstream interactions and feedback mechanisms between 

inflammatory mediators, and fatty acid, insulin, and glucose metabolism.     

The Genetics of Metabolic Syndrome 

Population predilections, high familial incidence, and identification of high-impact genetic 

variants in individuals with severe, metabolic phenotypes have all supported the hypothesis 

that metabolic syndrome is a complex trait with a strong genetic basis [329,330].  A 

metabolically thrifty genotype has been hypothesized in the horse, which proposes that 

genetic variations in metabolism allowed for an advantageous adaptation for survival 

during periods of scarce feed and harsh climate conditions in undomesticated horses [39].  

However, after the agricultural revolution, horses were presented with consistent feed, 

abundant soluble carbohydrates, and a more sedentary lifestyle, leading to derangements 
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in metabolism associated with EMS and obesity.  This theory was based on the thrifty 

genotype hypothesis in humans stating that obesity and metabolic syndrome are the result 

of genetic variants which allowed for human ancestors to survive during periods of poor 

nutrition by increasing adipose stores during the reciprocal period of food abundance [40].  

Extension of this hypothesis include the thrifty epigenotype hypothesis which advances the 

notion that all individuals have a thrifty genotype but that variations in phenotype 

expression are due to in utero epigenetic modifications resulting from the influence of 

environmental risk factors [331].  However, the drifty gene hypothesis suggests that genetic 

predisposition to obesity is not the result of positive selection but predominantly due to 

random genetic drift based on current population prevalence of obesity and MetS [332].  

Based on the complexity of mammalian evolution, it is likely that the genetic origins of 

metabolic syndrome are the manifestation of a combination of these hypotheses and 

additional factors including social pressures, pleiotropic effects, and microbial influences 

[333]. 

The identification of the specific alleles underlying metabolic syndrome will allow for a 

better understanding of the fundamental pathogenesis across species. Moreover, the 

promise of precision medicine, or tailored treatment and management regimens based on 

an individual’s unique combination of genetic and environmental risk factors, has 

instigated a drive toward identifying the genetic risk factors of many complex diseases, 

including metabolic syndrome.  However, unlike Mendelian (simple) traits where the 

genetic variation can be explained by a single gene with a well-defined mode of 

inheritance, as a complex trait metabolic syndrome is likely the result of the combination 

of dozens to hundreds of genetic alleles with variable allele frequencies, penetrance, 

environmental influences and gene by environment interaction.  Further, although 

Mendelian diseases are often the consequence of high-impact variants within protein-

coding genes, alleles contributing to complex traits have variable effect sizes and are 

primary non-coding variants that presumably affect gene regulatory elements [334-336].   

Therefore, the identification of the genetic variants of complex traits requires large genetic 

and phenotypic data sets (“big data”) and statistical approaches that can account for the 

numerous variables influencing these traits.  Recent advances in sequencing technology 

have provided researchers the cost-effective, high throughput means required to collect 
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genomics data in a large number of individuals, allowing for the genetic risk factors 

underlying both human and equine metabolic syndromes to start to become unraveled. 

Heritability of Metabolic Syndrome in Humans: Often, one of the first steps in the 

investigation of a complex trait is determining how much genetics is contributing to that 

trait by estimating heritability, which is the percentage of phenotypic variation that can be 

explained by genetics.  Typically, heritability is estimated by calculating narrow sense 

heritability (h2) which is the proportion of additive genetic variance over the total 

phenotypic variance [337].  For example, a trait with an h2 of <20% is considered to have 

low heritability and indicates that other factors such as the environment are having a larger 

impact on that trait; whereas, traits with a moderate (21-40%) to high (>40%) h2 indicate 

that genetics is having a large impact on that trait [338].  This information is imperative for 

justifying the continued investigation of the genetic risk factors of complex traits, as well 

as ensuring the studies are appropriately powered and designed for identification of the 

specific alleles contributing to low, moderately, or highly heritable traits. 

In humans, the heritability of metabolic syndrome has been extensively studied using 

pedigree data, with most studies estimating the heritability of several factors including 

biochemical measurements and/or components of metabolic syndrome such as the 

homeostatic model assessment of insulin resistance (HOMA-IR; proxy for insulin 

resistance [339]) and the metabolic syndrome score [340].  Across studies, the range of 

heritability estimates for MetS as a binary trait (typically defined based on the presence of 

three or more components of MetS) was 0.11-0.38 [341-344], and the ranges for 

quantitative traits were 0.43-0.51 for fasting insulin, 0.14-0.81 for fasting glucose, 0.17-

0.24 for glucose post oral sugar challenge, 0.38-0.48 for HOMA-IR, 0.15-0.29 for MetS 

scores, 0.39-0.68 for BMI, 0.27-0.46 for waste circumference, 0.42-0.62 for total 

cholesterol, 0.42-0.63 for high-density lipoproteins, 0.58 for low-density lipoproteins, 

0.17-0.60 for triglycerides, 0.28-0.55 for leptin, 0.51 for adiponectin, and 0.12-0.38 for 

diastolic and 0.16-0.28 for systolic blood pressure [341-352].  Differences in population 

predilection were supported by Musani et al who calculated the heritability of metabolic 

syndrome from three different study cohorts: the Jackson Heart Study (n=1404 African 

Americans), the Take Off Pounds Sensibly Study (n=1947 Caucasians), and the Princeton 
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Lipid Research Study (n=229 African Americans and 527 Caucasians).  The authors 

reported a separation in heritability estimates by race with larger heritability estimates for 

MetS among African Americans compared with Caucasians.  However, when evaluating 

systolic blood pressure, although African Americans had higher values, the correlation 

coefficients were approximately half of the Caucasians and the h2 was 0.09, indicating 

there was a lower genetic contribution and higher environmental influence for systolic 

blood pressure in this group [353].   

However, it is important to note that although pedigree analysis has been historically used 

for calculating heritability, the estimates have been shown to overestimate h2 as a 

consequence of (i) small populations of highly related individuals often confounded by a 

shared environment; (ii) assortative mating; (iii) pedigree errors; and (iv) ascertainment 

bias (selection of pedigrees that have a high proportion of affected individuals) [354].  

Furthermore, to achieve an unbiased estimate of genetic variance, the data must be 

representative of the general population and include all potential confounders [337].  The 

availability of algorithms to calculate h2 using single nucleotide polymorphism (SNP) 

genotype data has allowed for a more precise estimate of h2 by using data from a large 

group of unrelated individuals across multiple environments [355].   

Comparing both pedigree and SNP based approaches, the MetS score was estimated to 

have a heritability of 0.27-0.34 using a pedigree approach and 0.24-0.25 using a SNP based 

approach in the Ogliastra population; consistent with what would be expected between 

pedigree and SNP based h2 estimates [347].  The authors also calculated the difference 

between SNP based approaches from unrelated versus closely related individuals in two 

separate populations and concluded that the additive genetic variation was a major 

contributor to MetS score but that common sibs-household effects had a moderate impact 

on trait variation, providing further evidence for the bias in estimates amongst closely 

related individuals with shared environments [347].   

Importantly, SNP-based heritability estimates are limited to the genetic variability that can 

be explained by the common SNPs present on the genotyping arrays, but cannot account 

for causal variants that are not inherited together (in linkage disequilibrium) with these 

SNPs; nor can it include other genetic variations contributing to the disease phenotype such 
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as insertions, deletions or copy number variants [356-359].  For example, Vattikuti et al 

used a linear mixed-effects model with SNP data to estimate the heritability of metabolic 

syndrome using data from the Atherosclerosis Risk in Communities and Framingham 

Heart Study.  By comparing the SNP based heritability in both related and unrelated 

individuals, the authors determined that ~40% of h2 was explained by the common SNPs, 

which was a larger percentage than previously identified for metabolic phenotypes.  

Overall, they estimated the heritability of BMI at 0.34, basal glucose at 0.33, basal insulin 

at 0.23, triglycerides at 0.47, high-density lipoproteins at 0.48 and systolic blood pressure 

at 0.30.  These results were consistent with the h2 estimates noted above for the pedigree 

analyses albeit at the lower end of the range for most traits [360].   

Direct comparisons across studies must be taken with caution given that heritability 

estimates are highly dependent on the represented population since the effects of 

environmental variance and additive and non-additive genetic variances are population-

specific, and each study represented differences in ethnic group, study design, diagnostic 

criteria, and pedigree versus SNP based analysis.  However, key points that can be 

extrapolated are that (i) within study populations, several phenotypes were under 

considerable genetic influence (moderately to highly heritable) while other phenotypes 

seemed to be affected by unmeasured nongenetic factors such as the environment (low 

heritability), (ii) differences in heritability estimates between ethnic populations likely 

represents differences in the genetic risk factors and metabolic profiles between these 

groups, and (iii) metabolic syndrome is a complex trait with a large portion of the 

phenotypic variance being explained by genetics.   

It should also be noted that although heritability estimates provide valuable information on 

how much genetics is contributing to a trait, they do not provide information on the number 

of genes involved, the interaction or penetrance of these genes, nor the mode by which 

these genes are inherited.  Therefore, additional analyses are required to identify the 

specific alleles contributing to metabolic syndrome.   

Family-Based Linkage Studies: Genetic linkage analysis has been used to identify broad 

regions of the genome that harbor disease risk alleles in related individuals.  Genetic 

linkage occurs when two loci are transmitted together from parent to offspring more often 
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than expected under independent inheritance and typically extends over large regions of 

the chromosome [361].  The probability that linkage is occurring between two loci can be 

estimated using the recombination fraction.  This calculation is based on the likelihood that 

the segregation between two loci would have been broken during meiosis (the farther two 

loci are from each other on a chromosome, the more likely a recombination event will 

occur between the loci).  Family-based linkage analysis is based on the rationale that if a 

trait is occurring at high frequency within a family, then it is likely that affected individuals 

will share haplotype(s) that are identical by descent in the region(s) harboring the disease-

causing allele [361,362]. Thus, linkage analysis can be used as an initial step in the genetic 

investigation of a trait to find broad, chromosomal regions associated with that trait. 

Linkage analysis has been used to identify numerous loci contributing to MetS and its 

components.  For example, in 2,209 Caucasian individuals representing 507 nuclear 

families, a QTL on chromosome 3 (3q27) was strongly linked to BMI, waist circumference, 

hip circumference, weight, insulin and insulin:glucose ratio.  A second QTL was identified 

on 17p12 linked with plasma leptin concentrations.  Within these QTL were contained the 

biological candidate genes GLUT2 and the Catalytic α polypeptide of PI3K [363].  In 

addition, linkage analysis using data from the National Heart, Lung and Blood Institute 

Family Heart Study (2467 individuals representing 387 three-generation families) 

identified a pleiotropic locus on chromosome 2 that was linked with BMI, waist-to-hip 

ratio, TG, HDL, and HOMA-IR [364].  In a study evaluating 250 German families, a locus 

on chromosome 1 (1p36.13) was linked with a diagnosis of MetS [365].  This region was 

also identified in Mexican Americans with gallbladder disease in which 46% were 

diagnosed with type II diabetes.  After correcting for type II diabetes, this locus was no 

longer significant [366].  Further, in a group of 566 nondiabetic Mexican Americans 

representing 41 extended families, 1p36.13 was linked with body-size adiposity [367], 

providing further support for a metabolic role at this locus.  Additional QTL identified by 

linkage analysis for MetS include: (i) 15q in 707 individuals from the Quebec Family Study 

[368], (ii) chromosome 2q12.1-2q13 in Caucasians and 3q26.1-3q29 in 53 Mexican 

Americans using data from the GENNID Study[369], and (iii) 10p11.2 in 456 Caucasians 

and 1p34.1 for 217 African Americans from HERITAGE family study [370].  
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Although linkage analysis has been successful in identifying loci contributing to MetS, this 

type of analysis has several limitations.  First, linkage analysis identifies significant loci 

but subsequent analyses to discover the specific risk alleles can be hindered by the large 

size of the chromosomal regions shared by family members [371].  Second, this type of 

analysis relies heavily on multigenerational pedigrees with a large number of affected 

individuals, which is often confounded by shared environments, gene-environment 

interactions, and social economic status. Third, linkage studies have been shown to have a 

significant loss of power in the presence of genetic heterogeneity, thus hindering the 

analysis of polygenic complex traits [372].  Finally, risk loci may be family specific and 

not relevant to the general population.  Therefore, although family-linkage studies have 

provided useful information in several genetic loci contributing to MetS, the identification 

of specific risk alleles from this data has been sparse and replication has been limited [373].  

This is likely partially due to differences in case definitions and the fact that, based on the 

time of publication, many studies were using obesity as a primary factor for diagnosing 

MetS. 

Genome-Wide Association Analysis: Genome-wide association analyses (GWA) have been 

used to overcome the limitations in family-based linkage studies by using SNP genotype 

data from a large number of unrelated individuals to identify key regions of the genome 

that harbor risk alleles.  The SNPs present on genotyping arrays are considered common 

(ancestral) SNPs and are typically neutral polymorphisms with no effect on the trait 

studied.  However, these SNPs can be used to tag the causative risk alleles through linkage 

disequilibrium (SNPs which, in the population as a whole, are found on the same haplotype 

more often than expected [361]), generating an association between the region of the 

genome and the trait of interest.   

The underlying rational for GWA is based on the common disease, common variant 

hypothesis, which proposed that a significant proportion of the genetic variation in 

common traits could be explained by allelic variants that are present in more the 1-5% of 

the population [374].  Although the allelic architecture of some diseases follows this 

pattern, most common variants have been found to contribute only a small portion of the 

phenotypic variation in complex diseases, an observation that has been termed the missing 
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heritability [359,375-377].  Several explanations for missing heritability have been 

proposed including (i) insufficient power in GWA to detect variants of small effect, (ii) the 

common disease, rare variant hypothesis which stated that complex traits are highly 

polygenic and affected by a large number of rare variants, (iii) overestimation of 

heritability in twin and family due to confounders such as shared environment or gene-

environment interactions, and (iv) the omnigenic model which states that virtually all active 

genes contribute to complex traits; however, variants with moderate to high effect were 

more likely to be enriched in specific genes or pathways that play a direct role in disease 

whereas the low effect SNPs, contributing the most to heritability, were more likely to be 

spread across the genome and not near genes with disease specific functions [359,375-

377].  However, identification of common risk variants with moderate to large effect, 

despite not explaining all of the heritability of a trait, are still important for understanding 

the underlying pathophysiology of a trait, as well as finding potential therapeutic targets 

that would benefit a larger percentage of individuals.  

Further, an important consideration when assessing the validity of a GWA study is 

replication of results within independent populations.  Mixed linear models are one of the 

most common statistical methods used to perform GWA as they account for population 

stratification and relatedness within the cohort by including a genetic relationship matrix 

(GRM) as a random effect [378,379].  Within these models, each SNP is tested individually 

for an association with the phenotype of interest and significant associations are determined 

after a correction for multiple testing.  However, it has been shown repeatedly that in the 

initial association study, the estimated SNP effect is inflated as only modest correlations 

have been identified between estimated effects sizes from the initial and subsequent 

association analyses of the same trait [380,381].  Many factors have been implicated in 

contributing to this lack of reproducibility including population stratification, unaccounted 

for covariates, phenotypic heterogeneity, selection biases, or the phenomenon known as 

the “winner’s curse” where associations with the strongest effect are overestimated 

typically due to a small population size [382,383].  Notably, it is important to recognize 

that true differences in allele effect size can exist between populations and it is essential to 

assess for differences in populations between the initial and replicate studies [382].  

Therefore, it is imperative that due diligence be met with validation of identified candidate 
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regions and risk alleles prior to the marketing of genetic testing, especially with complex 

traits.    

Despite some of these caveats, over the past few decades, GWA have been used to identify 

thousands of associations between SNPs and complex traits across species [384] and has 

provided important information about the genetic architecture of a trait by identifying the 

number of loci contributing to the trait and estimating their effect size and allele frequencies 

[385].  In humans, GWA has been used to start to identify the genetic contribution of 

metabolic syndrome across multiple populations and environments.  As with heritability, 

studies have defined their outcome variable for metabolic syndrome as a binary trait or 

components of MetS as quantitative traits. Although the extent of GWA articles published 

evaluating individual components of MetS, or those primarily assessing obesity, is beyond 

the scope of this review, several key studies evaluating MetS as an entity or as a 

combination of traits will be discussed.   

A two-stage GWA was performed in a population of Indian Asian men to identify common 

genetic variation for MetS risk.  During stage one, the authors genotyped 2700 individuals 

with MetS, as characterized by the International Diabetes Federation, for 317,000 SNPs.  

Based on results from Bayesian association analyses, 1500 SNPs were chosen to be 

genotyped in an additional 2300 individuals for stage two.  For components of MetS, the 

authors identified two loci associated with HDL metabolism which contained variants 

within cholesteryl ester transfer protein and lipoprotein lipase genes and been previously 

identified as associated with MetS, as well as five novel loci.  However, they did not 

identify regions shared across traits which they concluded indicated little evidence of a 

common genetic basis for MetS traits [386].  This was similar to findings from a study 

evaluating four Finnish cohorts comprising of 2,637 MetS cases and 7,927 controls, in 

which the authors found little evidence for pleiotrophy across traits.  In addition, using a 

GWA meta-analysis, the authors identified a known lipid locus, including the 

APOA1/C3/A4/A5 gene cluster, in all four study samples; serum metabolite analysis further 

supported this region as associated with VLDL, triglycerides, and HDL metabolites.  An 

additional 22 known loci were identified, the majority associated with lipid metabolism.  
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The authors concluded that lipid metabolism pathways have key roles in the genetic 

background of MetS [387].  

The lack of pleiotropic loci identified in these studies contrasted with findings in three later 

studied which could reflect population differences, the limited quantitative traits evaluated 

in the previous studies, how the authors defined a MetS case, or the statistical techniques 

used to analyze the data.  The first study analyzed data from a population of 1,427 Africans 

from Ghana and Nigeria, and then followed-up with 2,475 samples from ARIC study.  The 

authors performed GWA for six metabolic syndrome traits and identified two loci unique 

to individuals of African-ancestry, one of which was considered an at-risk locus and the 

other a protective locus, as well as a non-African specific loci located near KSR2 which 

had a pleiotropic effect on triglycerides and measures of blood pressure [388].  In the 

second study, the authors utilized data from 19,486 European Americans and 6,287 African 

Americans.  To better characterize the clustering of metabolic abnormalities commonly 

associated with MetS, they evaluated six phenotypic domains, which encompassed 19 

quantitative traits, and analysis was performed using a multivariate association approach.  

The authors identified 19 significantly loci of which three were pleiotropic (associated with 

multiple phenotype domains) and located in or near apolipoprotein C1 (APOC1), 

phospholipase C gamma, and BRAP genes [389].  The third study utilized a subset-based 

meta-analysis approach in a population of 15,148 African Americans from the Population 

Architecture using Genomics Epidemiology study.  The investigators identified 1 glucose 

and 4 lipoid loci associated with a diagnosis of MetS, of which three were replicated in a 

population of 5,172 Hispanics and one novel, pleiotophic loci was specific to African 

Americans.  The authors also identified evidence for pleitrophy for APOE, TOMM40, 

TCF7L2, and CETP [390]. 

A multivariate GWA approach was also performed using data from the STAMPEED 

consortium (seven studies comprising 22,161 individuals of European ancestry).  In this 

study, the authors compared every combination of pairwise comparisons between MetS 

components and, for each combination, individuals exceeding National Cholesterol 

Education Program defined thresholds for both traits were considered affected.  Overall, a 

total of 29 common variants were associated with MetS or a pair of traits, with all but two 
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of the bivariate associations including alterations in lipid metabolism.  However, the effect 

of the top 16 SNPs was relatively small and explained ~9% of the variance in triglycerides, 

5.8% of HDL, 3.6% baseline glucose, and 1.4% of systolic blood pressure.  The authors 

concluded that only a small portion of the covariation in traits could be explained by the 

common SNPs, and that the effects of genetic variants on lipid levels were more 

pronounced than for other traits [391]. 

Kong et al utilized GWA to investigate gender-specific loci for MetS and its components 

in a population of 9,932 Korean females.  The authors defined MetS cases based on the 

criteria established by the International Diabetes Foundations, which resulted in 2,276 

cases and 1,692 controls.  GWA identified 14 loci showing moderate association for MetS 

in females but not in males.  The authors also identified female-specific loci for fasting 

glucose concentrations and HDL cholesterol.  This study provided evidence for sex-

specific genetic architecture associated with MetS [392].   

Although GWA studies evaluating MetS have had conflicting results, several consistent 

and key findings indicate: (i) that both common and rare variants contribute to MetS [393], 

(ii) different populations have both shared and unique loci, and (iii) a large number of 

variants are related to lipid metabolism, a result further replicated in GWA meta-analysis 

[394].  This information has been invaluable to understanding how genetics is contributing 

to MetS; however, despite decades of research, the fundamental genetic basis of this 

syndrome is still unknown which is partly due to the complexity of the phenotype, 

discrepancies in phenotype definition, unaccounted for environmental influences, and 

missing heritability.  Unraveling the genes underlying thousands of loci on GWA remains 

one of the principal challenges in complex trait genetics. 

Animal Models in Complex Disease Genetics: Naturally occurring animal models of 

disease can provide valuable insight into the genetic basis of complex traits in both humans 

and animals.  Due to selective breeding, a small number of variants with a large effect size 

are likely contributing to a significant portion of the genetic variance of complex traits.  

For example, in horses four loci explain 83% of the genetic variation in height [395], a 

highly heritable trait with published h2 estimates up to 0.89 [396].  This is in contrast to 

humans where hundreds of genes with small effect control this trait [397].  Further, unlike 
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humans, animal management regimens are often standardized within environments.  For 

example, horses on the same farm are typically fed the same hay, given a fixed daily 

amount of feed, graze the same pastures, and receive a similar level of exercise.  Studies 

including both cases and controls from individuals housed at the same farm will effectively 

help to reduce bias secondary to environmental confounders.  Similarly, animal models 

enable the manipulation of a single environmental variable or group of variables in order 

to parse out specific risk factors of complex diseases [398].  Finally, animal models provide 

a unique opportunity to collect trait-relevant multi-omics datasets on a large number of 

individuals within a single or limited number of visits such as genomic (blood), 

transcriptomic (tissue), metabolomic (serum), and microbiome (feces) data.  Interrogation 

of a trait at multiple levels of the genome provides a powerful tool to identify potential 

causative changes and therapeutic targets [375,399]. 

Therefore, the decreased genetic diversity, controlled environment, and ability to collect 

large scale trait-relevant multi-omics datasets allows for layered genomics study design 

which cannot be recapitulated in humans. Identification of these variants within animal 

populations can be used to translate back to humans and provide a better understanding of 

the pathophysiology in both species, making comparative genomics the most efficient way 

of dissecting the genetic basis of complex traits [400].  The similarities between metabolic 

syndrome in humans and horses make horses an excellent naturally-occurring model of 

MetS and an ideal candidate for further exploring the genetic contribution to metabolic 

syndrome across species. 

Evidence for a Genetic Contribution to EMS: One of the first studies evaluating the genetic 

basis of EMS was published in 2002 by Carter et al [13].  In this study, the authors 

estimated the heritability of pasture-associated laminitis using pedigree data from a single 

herd of 160 pure and crossbred Welsh and Dartmoor ponies.  For this study, the authors 

grouped ponies based on whether they had a previous diagnosis of laminitis, were clinically 

laminitic, or non-laminitic.  A total of 34% of ponies had a diagnosis of laminitis, of which 

there was an 8-fold lower prevalence in mature stallions versus females.  The authors 

concluded that the observed prevalence of laminitis was consistent with the action of 

dominantly expressed gene(s) but with reduced penetrance due to sex-mediated factors, 
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age of onset and epigenetics [13].  Further, in a large, cross-bred population of horses 

evaluating the EMS phenotype, it was identified that a large percentage of the individual 

variation could not be explained by known explanatory variables [20].  The authors utilized 

a multi-level, multi-variate regression modeling to quantify the relative importance of 

environmental and individual factors.  After adjusting for age, breed, gender, obesity, and 

season they determined that only 9.6-36.3% of the variation at the individual level was 

explained by these factors.  The authors hypothesized that individual genetic differences 

were contributing to this unexplained metabolic trait variation [20]. 

A more recent study utilized GWA and haplotype analysis to propose a potential candidate 

allele in the 3’ untranslated region (UTR) of the Family with Sequence Similarity 174 

member A gene (FAM174A) for EMS and endocrinopathic laminitis in Arabian horses 

[401].  In this study, a significant association on chromosome 14 was identified in a 

genome-wide analysis for laminitis status in 64 Arabian horses. Genotypes of a single 

nucleotide polymorphism (SNP), BIEC2-263522 (T>C), correlated with both laminitis 

status and baseline insulin concentrations.  In a second population of Arabian horses 

(n=50), BIEC2-263522 correlated with elevated body condition score (BCS) and modified 

insulin-glucose ratios (MIRG).  FAM174A was identified as a candidate gene and 

sequencing resulted in the identification of a polymorphic guanine homopolymer region in 

the 3’UTR.  The 11G allele was found to be in linkage disequilibrium with the original 

marker SNP and correlated with elevated insulin levels in their first population and BCS 

and MIRG in their second population.  In addition, the 11G allele was found to be present 

in Welsh ponies and Tennessee Walking horses, but absent in Draft, Standardbred, and 

Thoroughbred horses [401].   In a population of Polish Arabian horses, the genotype 

frequency of the BIEC2-263522 SNP was found to be 51.6% for the heterozygous 

genotype and 16.8% for the homozygous variant [402]. However, the estimated SNP effect 

was not provided, significant thresholds were not corrected for multiple testing, and EMS 

phenotype data were unavailable for both the cross-breed and Polish Arabian populations 

preventing the validation of genotype to phenotype correlations in these cohorts. 

Thus, there is evidence that EMS has a genetic component, but the identification of specific 

loci or genetic risk factors for EMS are in its infancy. It is imperative to continue to 
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investigate the specific genes and genetic risk factors for EMS in order to gain a better 

understanding of the root causes of these metabolic abnormalities.  More importantly, 

knowledge of the genetics contributing to EMS will allow for the development of genetic 

tests which would enable veterinarians to evaluate a patient’s risk for developing EMS by 

assessing the number of genetic and environmental risk factors for each individual.  

Understanding of a horse’s risk of EMS will ultimately allow veterinarians to know which 

horses need frequent monitoring and would benefit from early environmental modification, 

as well as those that may not fully respond to environmental management alone (i.e., horses 

with a large number of risk variants or a modest number of variants with a moderate to 

large effect). In addition, this information should be used to guide owners in responsible 

breeding decisions (i.e., not breeding two horses who both have a high genetic risk for 

EMS). 

Hypothesis and Objectives 

Identification of the underlying genetic risk factors and key gene-by-environment 

interactions will improve our understanding of EMS pathophysiology and allow for early 

detection of high-risk individuals and intervention prior to the onset of laminitis.  We 

hypothesize that major genetic risk factors leading to EMS and laminitis susceptibility are 

shared across breeds, and that differences in the severity and secondary features of the 

EMS phenotype between breeds, or between individuals within a breed, are the result of 

modifying genetic risk alleles with variable frequencies between breeds. 

Objective 1: Estimation of the genetic contribution to metabolic traits.  Heritability 

will be estimated using approximately 1,800,000 (1.8M) SNP genotype data from 264 

Welsh ponies and 286 Morgan horses using a restricted maximum likelihood statistic with 

the inclusion of genetic relationship matrix corrected for linkage disequilibrium.  The 

heritability of nine EMS biochemical measurements will be estimated, and for each trait 

the confounders of age, sex and season will be included based on the Akaike information 

criteria.    

Objective 2: Identification of regions of the genome harboring EMS risk alleles.  

Genome-wide association analyses will be performed in a cohort of 264 Welsh ponies and 

286 Morgan horses using approximately 1.8M SNP genotypes to identify loci harboring 
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EMS risk alleles.  Within breed GWA will allow for identification of significant 

quantitative trait loci (QTL) within the Welsh ponies or Morgan horses.  GWAS meta-

analysis using the within breed GWA summary data from the Welsh ponies and Morgan 

horses will be performed to increase power to identify shared alleles of low to moderate 

effect.  QTL will be given a high priority if they are shared between breeds or across EMS 

traits.  

Objective 3: Identification of candidate genes and putative functional alleles 

contributing to EMS.  Whole genome sequencing (WGS) in 19 Welsh ponies and 18 

Morgan horses will be used to impute SNP genotype data from 264 Welsh ponies and 286 

Morgan horses to WGS.  QTL identified as high priority in Objective 2 will be fine mapped 

using linear regression analysis including the fixed effects of age and sex and the random 

effect of farm.  Variant annotation software will be used to interrogate the fine mapped 

regions for putative functional alleles and a literature search will be performed to identify 

biological candidate genes to prioritize alleles for further follow-up.   

Significance 

Identification of EMS risk alleles and gene pathways has the potential to substantially 

expand our knowledge of EMS pathophysiology and will allow us to better predict disease, 

thus improving our ability to detect individuals who would benefit from management 

changes prior to the development of clinical signs, and prior to the development of 

laminitis.  The focused approach, as outlined in this proposal, for using genomic data from 

WP will help us to identify unique loci responsible for metabolic differences between 

breeds (within breed approach), as well as increase our power for identifying major risk 

alleles shared across breeds (across breeds approach with Morgan horses).  

Furthermore, based on the striking similarities between EMS and MetS, the results of this 

study could be used to further validate or identify additional genetic risk variants in other 

species with metabolic derangements, making EMS a naturally occurring polygenic animal 

model for MetS.  In addition, unlike humans with MetS, horses with EMS are not 

hyperglycemic, indicating a sustained, compensated hyperinsulinemic state [17].  

Identification of gene pathways could provide insights into novel treatment of 

uncompensated insulin resistance in humans.   
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Our long-term goal is to construct a genetic and environmental risk model to facilitate 

identification, management changes and early intervention in horses at high risk for 

developing EMS.  
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Chapter 2: Heritability of metabolic traits associated with equine metabolic syndrome in 

Welsh ponies and Morgan horses 

Summary: Equine metabolic syndrome (EMS) is a complex clinical disorder with both 

environmental and genetic factors contributing to EMS phenotypes.  Estimates of 

heritability determine the proportion of variation in a trait that is attributable to genetics.  

The objective of this chapter was to provide heritability estimates for nine metabolic traits 

associated with EMS in two high-risk breeds.  High-density single nucleotide 

polymorphism (SNP) genotype data was used to estimate the heritability (h2
SNP) of nine 

metabolic traits relevant to EMS in a cohort of 264 Welsh ponies and 286 Morgan horses.  

Traits included measurements of insulin, glucose, non-esterified fatty acids (NEFA), 

triglycerides, leptin, adiponectin, ACTH, and glucose (GLU-OST) and insulin (INS-OST) 

post oral sugar challenge.  In Welsh ponies, seven of the nine traits had statistically 

significant h2
SNP estimates that were considered moderately to highly heritable (h2

SNP > 

0.20) including: triglycerides (0.313; SE=0.146), glucose (0.408; SE=0.135), NEFA 

(0.434; SE=0.136), INS-OST (0.440; SE=0.148), adiponectin (0.488; SE=0.143), leptin 

(0.554; SE=0.132) and insulin (0.808; SE=0.108).  In Morgans, six of the nine traits had 

statistically significant h2
SNP estimates that were also determined to be moderately to highly 

heritable including: INS_OST (0.359; SE=0.185), leptin (0.486; SE=0.177), GLU-OST 

(0.566 SE=0.175), insulin (0.592; SE=0.195), NEFA (0.684; SE=0.164), and adiponectin 

(0.913; SE=0.181).  This chapter provides the first concrete evidence of a genetic 

contribution to key phenotypes associated with EMS. Eight of these nine traits had 

moderate to high h2
SNP estimates in this cohort.  These data demonstrate that continued 

research for identification of the genetic risk factors for EMS phenotypes within and across 

breeds is warranted. 

Note: This chapter was previously published in the Equine Veterinary Journal as follows: 

Norton, E.M.; Schultz, N.E.; Rendahl, A.K.; Geor, R.J.; Mickelson, J.R.; McCue, M.E. 

Heritability of metabolic traits associated with equine metabolic syndrome in Welsh ponies 

and Morgan horses. Equine Vet J 2019; 51(4): 475-480.   
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Introduction  

Equine metabolic syndrome (EMS) is a term used to describe an interrelated group of 

metabolic disturbances including hyperinsulinemia, insulin resistance, dyslipidemia, and 

adiposity that often leads to an endocrinopathic laminitis.  Both genetic and environmental 

factors likely play key roles in manifestation of EMS phenotypes.  Support for this 

hypothesis comes from the accumulated evidence of a genetic component for human 

metabolic syndrome (MetS) [403], a clustering of metabolic traits with several similarities 

to EMS [7].  In horses, a dominant pattern of inheritance for pasture-associated laminitis 

has been suggested in a small pedigree of Welsh and Dartmoor ponies from a single farm 

[13].  More recently, FAM174A was identified as a candidate gene for endocrinopathic 

laminitis and insulin dysregulation by a genome wide analysis of DNA markers in a 

population of Arabian horses [401].  Further, acknowledged breed predispositions 

(including ponies, Morgan, Arabian, Peruvian Paso, Andalusian, and Tennessee Walking 

horses), as well as breed-specific differences in metabolic profiles [38,51], supports the 

hypothesis that unique genetic alleles within or across high risk breeds contribute to their 

susceptibility to EMS [404]. 

Determining which components of a disease are heritable increases our basic understanding 

of the condition and is a necessary step towards identifying the specific risk factors and 

developing genetic tests to detect high-risk individuals before they develop clinical disease.  

Heritability is defined as the proportion of variation in a trait that can be explained by an 

individual’s genetics.  Estimates of heritability are typically a measure of narrow sense 

heritability (h2), which is the ratio of the additive genetic effect (i.e., the sum of the effects 

that all contributing genetic variants have on the phenotype) to the total phenotypic 

variation in a trait.  Historically, h2 has been estimated using pedigree data; however, the 

recent availability of high-density single nucleotide polymorphism (SNP) genotype data 

enables h2 to be estimated from a large population of unrelated individuals, resulting in 

“SNP-based heritability” (h2
SNP), eliminating the reliance on accurate pedigree information 

and decreasing ascertainment bias [354,405]. 

The objective of this study was to provide h2
SNP estimates of measures of insulin, glucose, 

adipokines and fat metabolism associated with the EMS phenotype and ACTH, accounting 
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for known covariates such as age, sex and season, in both Morgan horses and Welsh ponies.  

We hypothesized that the h2
SNP estimates per trait would vary, and that traits would be 

mildly to moderately heritable.   

Materials and Methods 

Samples: History, signalment, environmental management, and EMS phenotype data were 

collected on 264 Welsh ponies and 286 Morgans as part of a large cross-breed study 

evaluating the EMS phenotype.  The Welsh pony cohort was obtained from 28 farms 

throughout the United States and included 193 females and 71 males with a mean age of 

11.5 years (age range of 2 to 33 years).  The Morgan cohort was obtained from 31 farms 

throughout the United States and Canada, and included 184 females and 102 males, with a 

mean age of 12.3 years (age range of 2-29 years). Biochemical measurements collected on 

all individuals included insulin (INS) and glucose (GLU) after an 8 hour fast and 75 

minutes post oral sugar challenge (OST) using 0.15ml/kg light Karo Syrup as previously 

described [406].  Additional samples at baseline included: triglycerides (TG), non-

esterified fatty acids (NEFA), adiponectin, leptin, and ACTH. Season at the time of 

sampling was recorded as follows: winter (December-February; n=21Welsh ponies and 54 

Morgans), spring (March-May; n=85 Welsh ponies and 135 Morgans), summer (July-

August; n=132 Welsh ponies and 59 Morgans) or fall (September-November; n=26 Welsh 

ponies and 38 Morgans). See Appendix A for assay details and additional phenotype data.  

Horses with a history or phenotypic appearance of pars pituitary intermedia dysfunction 

were excluded from the study.  This protocol was approved by the University of Minnesota 

Institutional Animal Care and Use Committee. 

Genotype Data: Genomic DNA was isolated from whole blood or hair roots as per 

manufacturer recommendations (Puregene Blood Core Kit, Qiagen).  286 Morgans were 

genotyped on the Illumina EquineSNP50 (50K) BeadChip (54,602 SNPs), 220 Welsh 

ponies were genotyped on the Axiom Equine MCEc670 (670K) array (670,795 SNPs), and 

44 Welsh ponies and 43 Morgans were genotyped on the MCEc2M (2M) array (2,011,826 

SNPs).  Haplotype phasing and genotype imputation was performed for horses genotyped 

on the lower density 50K or 670K arrays by using the high density MCEc2M array data 

and Beagle software [407,408], to yield a total of 1,923,776 SNPs in the Welsh ponies and 
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1,931,327 SNPs in the Morgans for quality control and pruning.  Using data from Morgans 

genotyped on both the 50K and 2M arrays imputation concordance was determined to be 

99.2%.  We have previously shown an imputation concordance of 99.1% from 670K to 2M 

in the Welsh ponies [409].  

Quality control was performed using the PLINK software package [410].  All horses passed 

quality control, including evaluation for discordant sex information and SNP genotyping 

rate (>95%).  Individual SNPs that had a genotyping rate of <90%, a minor allele frequency 

(MAF) of <1.0%, or were outside of Hardy-Weinberg equilibrium, were removed.  After 

genotype pruning and removal of the X-chromosome data, 1,158,831 and 1,428,337 SNPs 

remained for the Morgan and Welsh pony analyses, respectively.  

Heritability Estimates: Biochemical measurements were tested for normality using a 

normal probability plot and Shapiro test. Insulin, INS-OST, TG and ACTH were log-

transformed and NEFA, adiponectin, and leptin were square root transformed to achieve 

normality. Glucose and GLU-OST were not adjusted.  All traits were treated as quantitative 

response variables. 

Covariates for inclusion in the h2
SNP estimates were selected using linear regression models 

with biochemical trait as the response variable and covariates as predictors.  Age, sex and 

season were evaluated as covariates using model selection.  Analysis was performed for all 

possible combinations of covariates, and model selection was based on the lowest value 

for the Akaike information criteria (AIC) (Appendix A: Supplementary Table A1). 

Heritability estimates were obtained via a mixed linear model analysis performed with 

Genome-wide Complex Trait Analysis (GCTA) software [357].  Briefly, GCTA calculates 

h2
SNP by fitting all SNPs simultaneously into the model using a restricted maximum 

likelihood estimation (REML), including a genetic relationship matrix (GRM). The GRM 

accounts for relatedness within the cohort by calculating pairwise comparison of 

relatedness based on the number of alleles two individuals inherit from a shared ancestor.  

For this analysis, the GRM was created using the software program Linkage 

Disequilibrium Adjusted Kinship (LDAK) [411], which adjusts the estimate based on the 

linkage disequilibrium (LD) between SNPs (i.e. an adjustment for lack of SNP 

independence due to SNPs being inherited together) to generate a weighted GRM (wGRM) 
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[411].  Heritability estimates were also calculated with GCTA and a standard GRM, as 

well as using LDAK’s REML algorithm with the wGRM (Appendix A: Supplementary 

Methods).  A Holm-Bonferroni correction was used to adjust for multiple comparisons to 

increase statistical power while minimizing the familywise Type 1 error rate (Appendix 

A: Supplementary Table A2). 

Random subsetting of the data was performed to determine if individuals with close 

relationships unknown to the researchers (cryptically related individuals) were inflating the 

h2
SNP estimate.  Ten percent of the population was randomly removed from the analysis 

using the software program R’s random number generator [412] and h2
SNP estimates were 

calculated using GCTA.  The average h2
SNP and SE from 100 replicates per trait for each 

breed was calculated. 

Results 

Heritability Estimates: The covariate combinations of age, sex and season determined to 

be optimal for h2
SNP estimates per trait in each breed are presented in Table 2.1A.  In the 

Welsh ponies, seven of the nine biochemical traits had h2
SNP estimates with p-values that 

exceeded the Holm-Bonferroni corrected cut-off (Table 2.1B).  From lowest to most highly 

heritable these were: triglycerides (0.313), glucose (0.408), NEFA (0.434), INS-OST 

(0.44), adiponectin (0.488), leptin (0.554), and insulin (0.808).  GLU-OST (0.226) and 

ACTH (0.305) did not meet the Holm-Bonferroni threshold for significance.  

Six of the nine EMS traits in the Morgans had h2
SNP estimates with p-values that exceeded 

the Holm-Bonferroni cutoff (Table 2.1B).  From lowest to most highly heritable these were 

INS-OST (0.359), leptin (0.486), GLU-OST (0.566), insulin (0.592), NEFA (0.684), and 

adiponectin (0.913).  Glucose (0.208), TG (0.273), and ACTH (0.408) had p-values that 

did not meet the threshold for Holm-Bonferroni corrected significance. 

Random Subsetting of the Heritability Estimates: In the Welsh ponies, the differences 

between the mean h2
SNP estimates obtained by randomly subsetting the data 100 times and 

the h2
SNP estimates obtained from the entire cohort were very small (0.009-0.034; Table 

2.2).  There was a larger range (0.002-0.075) between the entire cohort and mean h2
SNP 
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estimates in the Morgans (Table 2.2).  However, the differences between the h2
SNP values 

in the majority of the traits in both breeds were less than 0.025. 

Discussion: 

A thorough understanding of the heritability of a condition enables veterinarians to advise 

their clients on how likely it is that the trait will be passed from parent to offspring.  In this 

study, we calculated h2
SNP estimates for eight biochemical measurements reflective of EMS 

and ACTH in a population of 264 Welsh ponies and 286 Morgans by estimating additive 

genetic variance from high-density SNP genotype data (aka “SNP chip heritability”).  This 

allowed us to overcome many of the biases in pedigree h2 estimates by including 

populations with a large proportion of unrelated individuals sampled across multiple farms 

throughout the United States and Canada.  

Eight of nine traits had h2
SNP estimates that were significant and moderately (0.21-0.40) to 

highly (>0.40) heritable in one or both breeds [338]. Leptin, INS-OST, TG, and ACTH had 

similar estimates across both breeds.  However, glucose, GLU-OST, insulin, NEFA and 

adiponectin had differences in heritability of greater than 30% across breeds.  Given that 

heritability is an estimate of the genetic variation in a trait, and is population specific, it is 

not surprising that we identified breed variation in h2
SNP estimates for five of the nine traits.  

This can be explained by several factors. First, if more risk alleles contribute to a specific 

trait in one breed, it will have a higher heritability estimate.  Second, if a trait or region of 

the genome is highly selected for, specific alleles may become fixed in the population (low 

to zero genetic variability in that region) leading to lower h2
SNP estimate.  Third, although 

a genetic variant may influence a trait across both breeds, if the variant is rare in one breed 

it will not contribute to the overall estimate of h2
SNP. 

We reported h2
SNP estimates calculated in GCTA with the inclusion of the wGRM.  Both 

GCTA and LDAK implement REML for estimating h2
SNP, with differences between the 

algorithms based on assumptions of the effects of LD and MAF on h2
SNP [405,413].  

Without knowing the causal variants underlying these biochemical traits, it is impossible 

to know which method is most appropriate for these data.  Therefore, we compared all 

three methods: GCTA with a standard GRM, GCTA with the wGRM, and LDAK with the 

wGRM (Appendix A) and found very little difference between estimates (Appendix A: 
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Supplementary Table A3), which gives us further confidence in the accuracy of our 

results.  

Previous epidemiological studies have identified age, sex, and environmental management 

as risk factors for EMS [13,18,414], while season has been associated with variation in 

ACTH and glucose and insulin dynamics [61,67].  However, the suggested risk factors are 

not consistent across studies and do not correlate with all of the biochemical traits measured 

in this study, nor has a consensus on the effect of seasonal variation been established 

[48,66].  Some of these differences may be due to study design, populations sampled, or 

the represented geographic regions.  We used AIC values to determine which covariates 

best fit a linear regression model for each biochemical trait in both breeds.  Overall, season 

was included in h2
SNP estimates for eight of the nine traits in both breeds, but inclusion of 

age and sex was more variable between breeds (Table 2.1A).  The differences seen for age 

may reflect the tendency for Welsh ponies to express clinical disease at a younger age, and 

because of the range of ages in our cohort, where we had a larger number of younger Welsh 

ponies (46 ponies between 2 and 4 years old) than younger Morgans (7 horses between 2 

and 4 years old).  Notably, most h2
SNP estimates based on model selection were similar to 

those that included age and sex, or age, sex and season (Appendix A: Supplementary 

Table A4).  Estimates with the largest difference included leptin in the Welsh ponies and 

INS-OST in the Morgan; however, these estimates still overlapped within the range of the 

standard errors.  Given that h2
SNP estimates are population specific, we chose to report the 

estimates which best represented our data and tended to be the more conservative estimates 

for h2
SNP. 

Although several environmental risk factors have been identified for EMS, currently these 

factors only account for a portion of the environmental variation in the EMS phenotype 

[20]. We specifically chose farms in which at least one animal with clinical signs consistent 

with EMS and one normal control could be sampled, and where most horses on the same 

farm had the same management regardless of EMS status; thus, controlling for both known 

and unknown shared environmental factors (Supplemental Methods). Estimating 

heritability across varying environments (farms) avoids bias in the estimates caused by a 

single environment.  When farm was included as a covariate in our analysis, the h2
SNP 



56 
 

estimates were lower and often non-significant (Appendix A: Supplementary Table A4).  

This is likely due to non-independent sampling of horses from farms and excessive parsing 

of data (large number of farms with relatively few numbers of individuals).  However, there 

still may be a small degree of inflation in our h2
SNP estimates due to unaccounted for 

environmental variation. 

Overestimation of h2 can occur due to unaccounted for population substructure, or 

genetically distinct subsets of individuals within a population.  We tested for this in our 

cohort and found some evidence of population substructure (Supplementary Methods and 

Supplementary Table A5).  To further explore this possibility, we subsetted the data by 

randomly removing 10% of the population, and repeated this process 100 times, to 

determine if a few individuals were artificially inflating the h2
SNP estimates.  The trait which 

had a larger difference (difference of 0.075) was ACTH in the Morgan.  However, the mean 

h2
SNP and SE for the remaining traits were similar to those obtained from the full dataset, 

indicating that population substructure or cryptic relatedness had minimal influence on the 

h2
SNP estimates (Table 2.2).   

Across both breeds, h2
SNP for five of the 18 regression models (i.e., nine traits in each 

breed) did not meet a Holm-Bonferroni correction for statistical significance; however, 

h2
SNP for 17 of the 18 regression models had uncorrected p-values of <0.05.  Bonferroni 

corrections are conservative adjustments and can increase the probability of false 

negatives.  Notably, all estimates were significant when including sex and age as a 

covariate (Appendix A: Supplementary Table A4).  Therefore, it is likely that glucose 

(Morgans), TG (Morgans), GLU-OST (Welsh ponies) and ACTH (Welsh ponies) are 

within the appropriate range of h2
SNP estimates for these breeds, and that increasing our 

population size would improve our power to estimate h2
SNP for these traits.  As we have 

previously shown, increasing the population size would also reduce the relatively large 

SE seen with all our estimates, but would not affect the overall h2
SNP estimate [415].  The 

one trait with an unadjusted p-value >0.05 was ACTH in the Morgan, which was also the 

trait that had the largest difference between the original and mean subset value. 

In humans, several published reports have estimated the h2 of traits associated with MetS, 

including insulin (0.09-0.51), glucose (0.10-0.33), GLU-OST (0.16-0.17), TG (0.11-0.60), 
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high-density lipoproteins (0.328-0.63), cholesterol (0.44-0.62), leptin (0.55), adiponectin 

(0.551), and proxy for insulin dysregulation (0.38-0.50) (Appendix A: Supplementary 

Table A6) [341,346,348,352,360,416,417].  Direct comparison between our estimates and 

studies in humans must be taken with caution due to differences in underlying physiology, 

populations, study design, methods for estimating h2, and measurement methods for the 

biochemical parameters.  However, the large range in estimates for the same trait across 

ethnic groups may be analogous to the differences in our estimates between breeds.  

Further, the similarity in h2 estimates for several traits across species lends confidence to 

our estimates. 

Most of our h2
SNP estimates were <0.60, which is consistent with published heritability 

estimates of other complex traits in horses including: recurrent exertional rhabdomyolysis 

(0.34-0.49) [415], osteochondrosis (0.10-0.46) [418,419], and racing performance (0.19-

0.61) [420]. Notably, three h2
SNP estimates in our study were >0.60: insulin (0.80) in the 

Welsh ponies, and NEFA (0.68) and adiponectin (0.91) in the Morgans.  These higher 

estimates are likely due to a small number of variants with a large effect size on each trait, 

which occurs commonly in animals due to selective breeding.  For example, in horses four 

variants explain 83% of the genetic variation in height [395], a highly heritable trait with 

published h2 estimates up to 0.89 [396].  This is in contrast to humans where hundreds of 

genes with small effect control this trait [397]. However, another possibility could be 

inflation of these three estimates due to selection within subpopulations of our cohort. 

Although several of the EMS traits likely have variants of large effect, in combination EMS 

is the result of dozens of variants of small, moderate, and large effect size.  Given the 

complex, interrelated nature of the endocrine system, it is expected that several of these 

variants will also contribute to components outside of EMS.  Therefore, attempting to 

eliminate EMS through breeding is not feasible, nor recommended, as it would have 

undesired consequences including decreasing genetic diversity within breeds.  However, 

the availability of genetic tests would enable veterinarians to evaluate a patient’s risk for 

developing EMS by assessing the number of genetic and environmental risk factors for 

each individual.  Understanding of a horse’s risk of EMS will ultimately allow 

veterinarians to know which horses need frequent monitoring and would benefit from early 
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environmental modification, as well as those that may not fully respond to environmental 

management alone (i.e. horses with a large number of risk variants or a modest number of 

variants with a moderate to large effect). In addition, this information should be used to 

guide owners in responsible breeding decisions (i.e., not breeding two horses who both 

have a high genetic risk for EMS). 

In conclusion, through analysis of high-density SNP genotype data we determined that 

eight measured biochemical traits associated with EMS were moderately to highly heritable 

in both Morgan and Welsh ponies.  Differences in h2
SNP estimates in several traits between 

these two breeds is likely due to differences in risk alleles or the frequency of risk allele 

that are contributing to previously identified breed variability in metabolic traits. The 

results of this study provide the first concrete evidence of the genetic contribution to these 

eight phenotypes and that continued research for identification of the genetic risk factors 

for EMS is warranted. 
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Table 2.1: Covariate selection and heritability (h2
SNP) estimates.  Part A: Summary tables of the covariates selected for each trait based on model 

analysis for the Welsh ponies and Morgans.  Part B: Heritability estimates using GCTA with the wGRM for nine biochemical traits with the selected 

covariates for both breeds.  P-values are adjusted by a Holm-Bonferroni correction (Appendix A: Supplementary Table A2), bolded values were 

<0.05 after correction, bolded p-values listed as <0.05 are those which were less than 0.05 prior to rounding, p-values in red are those which the 

unadjusted p-value was >0.05.  Abbreviations: SE: standard error, GLU-OST: glucose post oral sugar test, INS-OST: insulin post oral sugar test, 

NEFA: non-esterified fatty acids, TG: triglycerides, ADIPON: adiponectin. 

 Age Sex Season   Age Sex Season 

Welsh Ponies  Morgan Horses 

Glucose   X 

 

Glucose  X X 

Glucose-OST   X Glucose-OST  X X 

Insulin X X  Insulin X  X 

Insulin-OST X X X Insulin-OST X  X 

NEFA X  X NEFA  X  

TG X X X TG  X X 

Leptin  X X Leptin  X X 

Adiponectin  X X Adiponectin X  X 

ACTH X  X ACTH X  X 

 Glucose GLU-OST Insulin INS-OST NEFA TG Leptin ADIPON ACTH 

Welsh ponies 

h2
SNP estimate 

SE 

P-Value 

 

0.408 

0.135 

<0.001 

 

0.226 

0.142 

0.05 

 

0.808 

0.108 

<0.001 

 

0.440 

0.148 

<0.001 

 

0.434 

0.136 

<0.001 

 

0.313 

0.146 

0.02 

 

0.554 

0.132 

<0.001 

 

0.488 

0.143 

<0.001 

 

0.305 

0.154 

0.05 

Morgan horses 

h2
SNP estimate 

SE 

P-Value 

 

0.208 

0.172 

0.05 

 

0.565 

0.175 

<0.001 

 

0.592 

0.195 

<0.001 

 

0.359 

0.185 

<0.05 

 

0.684 

0.164 

<0.001 

 

0.273 

0.176 

0.05 

 

0.486 

0.177 

<0.001 

 

0.913 

0.181 

<0.001 

 

0.408 

0.215 

0.06 

A. 

B. 
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 Glucose GLU-OST Insulin INS-OST NEFA TG Leptin ADIPON ACTH 

Welsh ponies 

Mean h2
SNP 

Mean SE 

 

Diff h2
SNP 

 

0.397  

0.147 

 

0.011 

 

0.200 

0.150 

 

0.026 

 

0.817 

0.115 

 

0.009 

 

0.419 

0.16 

 

0.021 

 

0.468 

0.155 

 

0.034 

 

0.302 

0.157 

 

0.011 

 

0.579 

0.148 

 

0.025 

 

0.500 

0.153 

 

0.012 

 

0.281 

0.164 

 

0.018 

Morgan horses 

Mean h2
SNP 

Mean SE 

 

Diff h2
SNP 

 

0.199 

0.192 

 

0.009 

 

0.612 

0.193 

 

0.047 

 

0.630 

0.217 

 

0.038 

 

0.385 

0.208 

 

0.026 

 

0.748 

2.10 

 

0.002 

 

0.294 

0.197 

 

0.021 

 

0.507 

0.196 

 

0.021 

 

0.911 

0.204 

 

0.002 

 

0.333 

0.236 

 

0.075 

 

Table 2.2: Repeated subsetting of heritability (h2
SNP) estimates.  Summary table from random subsetting of the data including: mean heritability 

estimates (mean h2
SNP), mean standard error (SE), and the difference between the mean h2

SNP value and the estimate with the entire cohort (diff 

h2
SNP), for nine biochemical traits in both Morgans and Welsh ponies using GCTA and the wGRM.  Covariates included in the model were based on 

Akaike information criterion values.  Abbreviations: GLU-OST: glucose post oral sugar test, INS-OST: insulin post oral sugar test, NEFA: non-

esterified fatty acids, TG: triglycerides, ADIPON: adiponectin. 
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Chapter 3: Genome-wide association analyses of EMS phenotypes in Welsh ponies and 

Morgan horses. 

Summary: Equine metabolic syndrome (EMS) is thought to be complex trait, yet the 

genetic risk alleles contributing to EMS have yet to be discovered.  Successful genome-

wide association analyses (GWA) identify regions of the genome harboring genetic risk 

alleles.  The objectives of this chapter were to perform within breed GWA to identify 

significant contributing loci in two high risk breeds followed by a meta-analysis to identify 

shared and unique loci between both breeds. GWA was performed for eleven EMS traits 

and identified 130 associated genomic regions in a cohort of 264 Welsh ponies and 142 

associated regions in a cohort of 286 Morgans.  The boundaries of GWA regions were then 

defined based on either a fixed-size or on the breakdown of linkage disequilibrium (LD).  

Approximately 60% of the fixed-size boundaries were found to be larger than the LD 

boundaries.  GWA meta-analysis demonstrated that 65 of the 272 GWA regions were 

shared across breeds.  GWA regions were subsequently prioritized if they were: shared 

between breeds (high priority), shared across traits (high priority), identified in a single 

GWA cohort (medium priority), or shared across traits but no SNPs exceeded the threshold 

for genome-wide significance (low priority).  Prioritization resulted in 56 high priority, 26 

medium priority, and 7 low priority regions, for a total of 1,853 candidate genes in the 

Welsh ponies; and 39 high priority, 8 medium priority, and 9 low priority regions, for a 

total of 1,167 candidate genes in the Morgan horses.  These data clearly support the 

hypothesis that EMS is a polygenic trait with breed-specific risk alleles as well as those 

shared across breeds. 
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Introduction 

Equine metabolic syndrome (EMS) is best described as a clustering of metabolic 

derangements, which often lead to a pasture-associated or endocrinopathic laminitis.  The 

term EMS was coined based on similarities with metabolic syndrome in humans (MetS) 

including: insulin dysregulation, derangements in fat metabolism, regional adiposity and 

alterations in inflammatory mediators.  Both syndromes also share known risk factors 

including age, sex, diet, exercise, and seasonal variation [13,66,67,414,421-423]. 

Although a dominant mode of inheritance for laminitis status was proposed for a small 

group of ponies [13], breed differences in EMS susceptibility, metabolic profiles, and 

clinical severity have led to the more widely applicable, alternative hypothesis that EMS 

is a complex disease, with both environmental and genetic risk factors contributing to 

disease severity.  As a complex trait, it is likely that EMS is the result of a combination of 

genes with variable modes of inheritance, penetrance and effect size [424].  Recently, our 

laboratory provided evidence for this hypothesis through estimation of narrow sense 

heritability in a cohort of Morgan horses and Welsh ponies, where eight of nine metabolic 

measurements were estimated to have low, moderate or high heritability (chapter 2).  

Further, several heritability estimates varied across the two breeds, which provided further 

evidence for breed related differences and was consistent with heritability estimates across 

ethnic groups for MetS. 

Although heritability estimates provide valuable insight on the genetic contribution to a 

trait, they do not provide information on the (i) number of contributing genes, (ii) specific 

genes involved, or (iii) where these genes are located within the genome.  Identification of 

the coding and non-coding variants contributing to a complex trait are important for 

understanding its complete pathophysiology and to gain a better understanding of how 

genes interact or are influenced by the environment.  Further, this information is necessary 

for the development of genetic tests which would allow veterinarians to assess a patient’s 

risk for developing EMS before they show clinical signs, identify horses that need frequent 

monitoring or early environmental modifications, and provide responsible breeding 

recommendations. 
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Genome wide association analyses (GWA) use single nucleotide polymorphism (SNP) 

genotype data to identify regions of the genome that are associated with a trait.  GWA has 

been used and validated across multiple species for both simple and complex traits to 

narrow down the genome to specific regions of interest harboring the risk alleles and can 

provide valuable information about the genetic architecture of a trait.  For example, GWA 

for MetS have led to identification of quantitative trait loci harboring candidate genes in 

several metabolic pathways, including alleles influencing lipoprotein particle size and 

glucose, insulin and lipid homeostasis [425,426].  Further, these studies have identified 

different risk alleles amongst ethnic groups [389]. 

We hypothesized that major genetic risk factors leading to EMS are shared across breeds, 

and that differences in the severity and secondary features of the EMS phenotype between 

breeds, or between individuals within a breed, are the result of modifying genetic risk 

alleles with variable frequencies between breeds.  The first objective of this chapter was to 

perform within breed GWA to identify significant contributing loci in Welsh ponies and 

Morgan horses, two breeds known to be high risk for EMS.  The second objective was to 

use meta-analysis to identify shared and unique loci between both breeds.  

Materials and Methods 

Samples: Horses used in this study were a part of a large, across breeds study evaluating 

the EMS phenotype [20].  From this dataset, 264 Welsh ponies (194 females and 70 males 

with a mean age of 11.7 years) and 287 Morgan horses (184 females and 102 males with a 

mean age of 12.3 years) were included in this analysis.  Samples were collected from 31 

and 28 farms throughout the United States and Canada for the Morgan horses and Welsh 

ponies, respectively. 

Phenotype data collected on all horses included: signalment, medical history, laminitis 

status, environmental management (feed, supplements, turnout and exercise regimen), and 

morphometric measurements (body condition score (BCS), wither height, and neck and 

girth circumference).  After an eight hour fast, an oral sugar test (OST) was performed 

using 0.15mg/kg Karo lite corn syrup as previously described [406].  Biochemical 

measurements at baseline included insulin, glucose, non-esterified fatty acids (NEFA), 
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triglycerides (TG), adiponectin, leptin and ACTH.  Biochemical measurements 75 minutes 

after the OST included insulin (INS-OST) and glucose (GLU-OST).  

For inclusion in the study, each farm had to have at least one control and one horse with 

clinical signs consistent with EMS (including horses with regional adiposity, 

hyperinsulinemia or an exaggerated response to the OST, elevations in TG, and decreased 

levels of adiponectin at the time of sampling) under the same management.  Horses with a 

history or phenotypic appearance of pars pituitary intermedia dysfunction (PPID) were 

excluded from the study.  Previously laminitic was defined as an individual who had been 

diagnosed with pasture-associated or endocrinopathic laminitis by a veterinarian, had 

radiographic evidence of laminitis, or had signs indicative of chronic laminitis observed by 

the researchers at the time of sampling. Horses in which laminitis could have been caused 

by another inciting factor (history of illness, grain-overload, corticosteroid administration 

or PPID), or who had clinically-evident, acute laminitis at the time of sampling, were 

excluded from the study. 

Genotype Data: DNA was isolated from whole blood or hair roots using the Puregene 

Blood Core Kit, (Qiagen) per manufacturer’s instructions.  Genome-wide single nucleotide 

polymorphism (SNP) genotyping was performed on all horses.  Horses were genotyped 

either on the Illumina EquineSNP50 BeadChip (268 Morgan horses), Axiom Equine 

MCEc670 array (220 Welsh ponies), or Axiom Equine MCEc2M array (44 Welsh ponies 

and 43 Morgan horses), containing 54,602 SNPs, 670,795 SNPs, and 2,011,826 SNPs 

across the equine genome including the 31 autosomes and X chromosome, respectively. 

Haplotype phasing and genotype imputation of up to the two million SNPs present on the 

Axiom Equine MCEc2M array was performed on horses genotyped on the two lower 

density arrays using Beagle software [407].  Based on published recommendations, a cross 

breed population of 496 horses genotyped on the MCEc2M array, including the Welsh 

ponies and Morgan horses described above, were used as the reference population [408].  

Imputation concordance was calculated by comparing data from individuals who were 

genotyped on both the low and high-density arrays. Briefly, for the 44 Welsh ponies and 

43 Morgan horses genotyped on the MCEc2M array, genotypes from the MCEc2M array 

were masked down to those found on the Illumina EquineSNP50 BeadChip (Morgan 
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horses) or the MCEc670 array (Welsh ponies). Imputation was performed and the imputed 

genotypes were compared to the masked genotypes to determine genotype concordance. 

Concordance was 99.2% in the Morgan horses and 99.1% in the Welsh ponies.  SNPs that 

did not have 100% concordance were removed from the data, yielding a total of 1,931,327 

SNPs in the Welsh ponies and 1,932,766 SNPs in the Morgan horses. 

Quality control on the imputed data was performed using the Plink software package [410].  

All horses passed quality control, including evaluation for discordant sex information and 

SNP genotyping rate (>95%).  Individual SNPs that had a genotyping rate of <90%, a 

minor allele frequency (MAF) of <1.0% or were outside of Hardy-Weinberg equilibrium 

(p-values <1.0e-05), were removed.  After genotype pruning, 1,428,337 and 1,158,831 

SNPs remained for subsequent analyses in the Welsh ponies and Morgan horses, 

respectively.  Of these, a total 688,471 SNPs were shared between both breeds.  Base pair 

locations for all SNPs were remapped from EquCab2 to EquCab3 using the script from 

Beeson et al [427].   

Welsh Pony Population Structure: The Welsh Pony and Cob Society (http://wpcs.uk.com) 

registers Welsh ponies into six sections based on pedigree, withers height and conformation 

as follows: section A (sire and dam must both be section A, and the pony can be up to 50 

inches for withers height), section B (either sire and dam are both section B or one parent 

can be a section A, and the pony can be up to 58 inches for withers height), section C (at 

least one parent must be C or D and the pony can be up to 54 inches for withers height), 

section D (at least one parent must be C or D and the pony must be over 54 inches for 

withers height), section H (either the sire or dam is a registered Welsh pony, and there are 

no height restrictions) and section P (either sire or dam is at least 50% Welsh pony with no 

height restrictions).  Our cohort included 74 section As, 146 section Bs, 3 section Cs, 15 

section Ds, 19 section Hs, 7 sections Ps, and 10 unknown/unregistered Welsh ponies 

(Appendix B: Supplementary Table B1).  [428].  Principal components analysis (PCA) 

revealed population stratification in the Welsh pony cohort based on clustering of the 

registered sections (Figure 3.1).To account for this population substructure, and avoid 

over-fitting the model, three separate GWA were performed using the full cohort (n=264), 

sections A, B, C and D (n=238) and sections A and B (n=220).  

http://wpcs.uk.com/
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Genome-Wide Association Analyses (GWA): Eleven traits significantly associated with 

EMS including insulin, glucose, adiponectin, leptin, NEFA, TG, ACTH, insulin-OST, 

glucose-OST, and measures of obesity (neck circumference to whither height ratio (NH), 

and girth circumference to whither height ratio (GH)[20] were treated as quantitative 

response variables in the GWA analyses.  Laminitis status was treated as a binary response 

variable.  All quantitative traits were tested for normality using a normal probability plot 

and Shapiro test and adjusted for normality as appropriate.  Adiponectin, leptin, and NEFA 

were square root adjusted and insulin, INS-OST and triglycerides and ACTH were log 

transformed.  Glucose, GLU-OST and NH and GH ratios were normally distributed and 

did not need to be adjusted.  

Traits measurements were adjusted to account for known confounding covariates using the 

residuals from a linear mixed effects model in the R software program Linear and 

Nonlinear Mixed Effects Models (nlme) with sex and age included as fixed effects and 

farm as a random effect [429].  For each trait, within breed GWA were performed from the 

imputed SNP genotype data using a custom code for an improved mixed linear regression 

analysis [20].  This algorithm utilizes a three-step process, which combines a Bayesian 

Sparse Linear Mixed Model (BSLMM) [430] available in the software program Genome-

wide Efficient Mixed Model Association (GEMMA) [379] and a linear mixed model 

implemented in FaST-LMM [431].  In step one, the genome is divided by chromosome 

and SNPs are placed into 500kb bins.  Based on results from BSLMM, the SNP with the 

highest model frequency and the two adjacent SNPs were chosen to represent the 

corresponding bin.  In step two, a likelihood ratio test was performed to determine if 

inclusion of the top ranked bin as a random effect will improve the null model (model with 

sex and age as fixed effects and farm as a random effect).  If the model was improved, the 

alternative model became the null model and the next highest-ranked bin was tested.  If the 

model was not improved, the bin was discarded, and the next highest-ranked bin was tested 

against the null hypothesis.  After all bins were evaluated, SNPs which improved the model 

were utilized to create the select SNP genetic relationship matrix (GRM).  In step three, all 

imputed SNPs were tested for an effect on the trait using FastLMM with the inclusion of 

the select SNP GRM in place of the standard all-SNP GRM.  For the GWA, the tested SNP, 
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and SNPs within 1Mb of the tested SNP, were removed from the select SNP GRM to avoid 

proximal contamination.  

The number of iterations for the Markov chain Monte Carlo (MCMC) implemented in 

BSLMM has not been previously assessed [20,430], and our initial results with the default 

of 550 thousand (k) iterations with 10k burn-in iterations provided inconsistent results 

across seeds.  Therefore, we took appropriate steps to determine the number of iterations 

for the MCMC to converge and provide consistent results across seeds.  First, to assess the 

concordance of SNPs identified by BSLMM, we performed this step using 10 million (M) 

iterations with 100K burn-in iterations, which was repeated across ten different seeds.  

SNPs with a beta value greater than zero (i.e. the posterior mean for SNPs which were 

estimated to have a large effect on the outcome variable) were extracted from the dataset 

for each seed.  For this subset of SNPs, the intersect between seeds was determined, and 

correlations between gamma values (proportion of iterations that the SNP was estimated 

to have a large effect) were calculated.  For 10M iterations, the total number of SNPs with 

a beta value greater than zero ranged from 486,937 to 497,207 SNPs.  Approximately 50% 

of the SNPs were shared between two seeds, ~13% were shared between four seeds, and 

~3% were shared across all ten seeds.  Pearson’s correlation coefficient between gamma 

values were minimal at <0.01.  Thus, this process was repeated using 20M iterations (200K 

burn-in iterations) and then increasing in 10M and 100k increments up to 100M iterations 

(1M burn-in iterations).  Although SNP concordance improved as the number of iterations 

increased, the gain plateaued after 50M iterations where all SNPs had a beta value greater 

than zero.  In addition, the Pearson’s correlation coefficient for gamma values was still 

poor at 0.20 at 100M iteration.  Computational time was extensive at 30 and 60 days to 

complete the 50M and 100M iterations, respectively, utilizing six processors per node and 

running seeds in parallel [432]. 

Previous studies have averaged the values of MCMC estimates across repeated chains 

[433].  For this analysis the goal was to maximize sensitivity; therefore, using data from 

the 10M iterations, the max gamma value across all ten seeds was chosen to represent each 

SNP in which beta was greater than zero.  These values were then used to choose the most 

influential SNP per 500kb bins (step 1).  To assess the repeatability of these results, this 
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process was repeated using 10 different seeds at 10M iterations and 20M iterations.  

Although differences were present, most hits were shared across all three results 

(Appendix B: Supplementary Table B2).  Thus, to maximize computational efficiency 

and sensitivity, we used the max gamma value across 10 seeds obtained from 10M 

iterations (100K burn-in) and prioritized regions of interest (see Prioritization of GWA 

Regions).  However, validation of this technique and calculation of the sensitivity and 

specificity will require identification of the genetic variants within these regions. 

The threshold for genome wide significance was based on the effective number of 

independent tests (SNPs not in linkage disequilibrium [LD]) as calculated by the Genetic 

Type 1 Error Calculator (GEC) [434].  In the Welsh ponies, this value was 841,750 SNPs, 

resulting in a Bonferroni-corrected threshold for genome wide significance of 5.98 x 10-8.  

For the Morgan horses, the effective number of independent tests was 657,030 SNPs, 

resulting in a Bonferroni corrected threshold for genome wide significance of 7.61 x 10-8.  

The suggestive threshold for both breeds was set at 1.00e-05 [435,436]. 

Meta-Analysis: A GWA meta-analysis was performed with the software program 

METASOFT [437] using the Morgan horse and Welsh pony GWA summary data from the 

688,471 SNPs that were shared between breeds.  Briefly, the METASOFT algorithm uses 

a random effects model which adjusts for heterogeneity between studies by allowing the 

effect size of the alternative allele to vary between populations. Unlike other random 

effects models, where both the null and alternative models assume heterogeneity, 

METASOFT uses a likelihood ratio test that assumes heterogeneity only under the 

alternative model [437].  The effective number of shared SNPs was 306,023 in the Morgan 

horses and 307,349 in the Welsh ponies as calculated by GEC.  For a more conservative p-

value, the threshold for genome wide significance was determined using the effective 

number of SNPs for the Welsh ponies (0.05/307,349) and set at 1.63 x 10-7.  The suggestive 

threshold was set at 1.00 x 10-5 [435,436].  To be considered a region of interest identified 

on meta-analysis (MA-ROI), at least one SNP needed to exceed the threshold for genome-

wide significance. 

Prioritization of GWA Regions and Identification of Positional Candidate Genes: All 

GWA regions where SNPs exceeded the suggestive threshold for significance were 
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reviewed.  To be considered within a single region, consecutive SNPs on the same 

chromosome had to be within 500kb of each other [438,439].  Regions of interest had to 

contain a minimum of five SNPs exceeding the suggestive threshold, with at least one SNP 

exceeding the threshold for genome wide significance. 

Fixed-Size Regions: The boundaries of the fixed region were defined as 500kb 5’ of the 

base pair position of the minimum SNP within the region and 500kb 3’ of the base pair 

position of the maximum SNP [438-443].  A region was identified as shared if it was within 

the boundaries of another region and prioritized as described below.   

LD-Regions: To define the boundaries of the LD region, the software program Plink was 

utilized to calculate the pairwise LD measures for all SNPs within the region [410].  

Window size was set at 1Mb and pairwise calculation for LD with the test SNP was 

performed for all SNPs within the window.  The threshold for SNPs within LD was set at 

greater than 0.3 [441].  A custom code was used to identify regions where LD for all SNPs 

dropped below 0.3 and spanned at least 100kb both 5' and 3' to the widest peak of LD 

within the window, which was used to define the boundaries of the ROI.  If LD did not 

drop for at least 100kb on either side of the LD peak, window size was increased by 1Mb 

until the ROI could be defined.  An LD-region was identified as shared if it was within the 

boundaries of another LD-region and prioritized as described below. 

Prioritization: Regions were prioritized based on whether they were identified as shared 

between breeds on meta-analysis, an ROI, or shared across traits within a single GWA 

cohort (for example, a region shared between insulin and adiponectin in the Morgan 

horses).  The prioritized regions were categorized as high, medium or low priority (Figure 

3.2) as follows: 

• High priority: Region was identified as an MA-ROI or it was shared across traits 

with at least one region being considered an ROI. 

• Medium priority: Region was identified as an ROI in at least one GWA cohort. 

• Low priority: Region was shared across traits, but no regions met the criteria to be 

considered an ROI. 
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• If a region met the criteria for more than one category (for example a region 

identified as a MA-ROI and was also shared across traits but not an ROI) then the 

region was assigned the higher priority level. 

Identification of Positional Candidate Genes: Positional candidate genes were identified 

using the Bioconductor/ R software package biomaRt [444] with EquCab3 as the reference 

genome [445].  Boundaries were based on the fixed and LD-regions as described above.  

Positional candidate genes were defined as all protein coding genes, pseudogenes, and 

RNA genes within the region.  

Results 

GWA Results for Welsh Ponies: Principal components analysis (PCA) revealed population 

stratification in the Welsh pony cohort based on clustering of the registered sections 

(Figure 3.1).  GWA across all twelve traits for the entire Welsh pony cohort (n=264), 

resulted in 130 regions where at least one SNP exceeded the suggestive threshold.  Of these 

regions, 33 were identified as ROI (minimum of five SNPs exceeding the suggestive 

threshold with at least one SNP exceeding the threshold for genome wide significance).  

Specifically, GWA identified 1 ROI for insulin post oral sugar test, 5 ROI for baseline 

insulin, 1 ROI for adiponectin, 2 ROI for leptin, 2 ROI for ACTH, 9 for NH, 8 ROI for 

GH, and 5 ROI for laminitis status.  ROI were not identified for INS-OST, glucose, NEFA, 

or TG (Table 3.1).   

GWA of the adjusted cohort including only section A, B, C and D Welsh ponies (n=238), 

resulted in a total of 139 regions where at least one SNP exceeded the suggestive threshold.  

Of these regions, 23 were identified as ROI as follows: 2 ROI for baseline insulin, 2 ROI 

for NEFA, 1 ROI for adiponectin, 1 ROI for leptin, 5 ROI for NH, 9 ROI for GH, and 3 

ROI for laminitis status.  ROI were not identified for INS- or GLU-OST, glucose, 

triglycerides, or ACTH levels (Table 3.1).   

Additional GWA analysis that included only the section A and B Welsh ponies (n=220) 

resulted in a total of 82 regions where at least one SNP exceeded the suggestive threshold.  

Of these regions, 13 were identified as ROI as follows: 1 ROI for INS-OST, 1 ROI for 

GLU-OST, 2 ROI for baseline insulin, 3 ROI for glucose, 1 ROI for NEFA, 1 ROI for 
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triglycerides, 1 ROI for ACTH, 1 ROI for NH, and 2 ROI for laminitis status (Table 3.1).  

ROI were not identified for adiponectin, leptin, or GH (Table 3.1).   

Across all 12 traits, 38 regions were shared with two of the Welsh pony GWA cohorts and 

5 regions were shared with all three of them.  Fifteen of the 43 shared regions contained at 

least one GWA where the region met the criteria to be considered an ROI (Tables 3.2 and 

3.3).  The 43 shared regions represented 18.91%, 26.57%, and 30.49% of the total regions 

identified in the full cohort, the section A, B, C and D Welsh ponies, and the section A and 

B Welsh ponies, respectively.  Eight regions had an ROI identified in the full cohort 

(24.24% of the total ROI for this cohort), 6 regions had an ROI identified in the section A, 

B, C and D ponies (26.09% of the total ROI for this cohort), and 6 regions had an ROI 

identified in the section A and B ponies (46.15% of the total ROI identified in this cohort).  

For example, analysis of ACTH identified five shared regions.  The region on equine 

chromosome (ECA) 5 was shared across all three cohorts but was only identified as an ROI 

in the GWA of the full cohort (Table 3.3 and Figure 3.3).   

GWA Results for Morgan Horses: GWA across all twelve traits for the Morgan horses, 

identified 142 regions where at least one SNP exceeded the suggestive threshold.  Of these 

regions, 37 ROI were identified including, 1 ROI for INS-OST, 3 ROI for GLU-OST, 1 

ROI for baseline insulin, 2 ROI for glucose, 4 ROI for NEFA, 4 ROI for adiponectin, 3 

ROI for leptin, 3 ROI for ACTH, 5 for NH, 4 for GH, and 7 for laminitis status.  ROI were 

not identified for plasma triglyceride levels (Table 3.1). 

Shared Regions Across Welsh Ponies and Morgan Horses: Identification of the shared 

regions between the Morgan horses and at least one Welsh pony cohort from the boundaries 

of the fixed region obtained from the GWA results identified 1 shared region for laminitis 

status (all ponies), 1 shared region for ACTH (Morgan horses with section A, B, C, and D 

ponies), and 1 shared region for insulin-OST (for Morgan horses with both the section A, 

B, C, and D and section A and B ponies; Figure 3.4).  The boundaries defined by the LD-

region, identified the above shared regions as well as an additional shared region for GH 

on ECA 22 between the Morgan horses and the full Welsh pony cohort. 

Meta-analysis identified all four shared regions, as well as an additional 56 regions and 5 

unique regions (regions not identified in either breed as significant on GWA), for a total of 
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65 shared regions of interest (MA-ROI).  MA-ROI included 2 for INS-OST, 4 for GLU-

OST, 3 for insulin, 2 for glucose, 4 for NEFA, 7 for adiponectin, 5 for leptin, 15 for NH, 8 

for GH, and 12 for laminitis status.  Unique regions were found for INS-OST (1 MA-ROI), 

GLU-OST (1 MA-ROI), and NH (3 MA-ROI).  No MA-ROI were identified for plasma 

triglyceride levels (Table 3.4). 

Of the 56 regions identified on meta-analysis that were only significant in one breed in the 

breed-specific GWA, 30 (22 ROI) were called in at least one Welsh pony cohort and 26 

(20 ROI) were called in the Morgan horses.  Twenty-eight of the MA-ROI contained less 

than 5 SNPs of which 11 were single SNP regions.  Comparison of the results using a fixed 

effects model identified 32 of the 65 MA-ROI and the traditional random effect model 

identified 2 of the 65 MA-ROI (Table 3.4). 

Prioritization of GWA Results and Identification of Positional Candidate Genes Based on 

Fixed-Size Regions in Welsh Ponies: For the full Welsh pony cohort, 78 of the 130 regions 

were eliminated from further prioritization, 35 were categorized as high priority, 12 were 

categorized as medium priority and 5 were categorized as low priority (Tables 3.5 and 

3.6).  For the section A, B, C and D Welsh ponies, 94 of the 139 regions were eliminated 

from further prioritization, 19 were categorized as high priority, 19 were categorized as 

medium priority and 8 were categorized as low priority (Tables 3.5 and 3.7). For the 

section A and B Welsh ponies, 57 of the 82 regions identified on GWA were eliminated 

from further prioritization, 9 were categorized as high priority, 10 were categorized as 

medium priority and 6 were categorized as low priority (Tables 3.5 and 3.8).   

Combining the results from all three Welsh pony cohorts resulted in 114 regions and 1,898 

positional candidate genes with 46 high priority regions containing 890 positional 

candidate genes, 34 medium priority regions containing 719 positional candidate genes, 

and 35 low priority regions containing 289 positional candidate genes.  Accounting for the 

19 shared regions resulted in 91 unique regions and 1,511 positional candidate genes 

(Tables 3.5 and 3.9). 

Prioritization of GWA Results and Identification of Positional Candidate Genes Based on 

Fixed-size Regions in Morgan Horses: For the Morgan horses, 88 of the 142 regions were 

eliminated from further prioritization (Table 3.10).  This resulted in 54 regions being 
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prioritized and 1,104 positional candidate genes with 38 high priority regions containing 

801 positional candidate genes, 8 medium priority regions containing 139 positional 

candidate genes, and 8 low priority regions containing 164 positional candidate genes.  

Accounting for the 10 shared regions resulted in 44 unique regions and 963 positional 

candidate genes (Tables 3.5, 3.10 and 3.11). 

Prioritization of GWA Results and Identification of Positional Candidate Genes Based on 

LD-defined Regions in Welsh Ponies: The boundaries for the regions identified by LD for 

the 130 regions identified on GWA for the full Welsh pony cohort, the 139 regions 

identified on GWA for the Section A, B, C and D Welsh ponies, and the 82 regions 

identified on GWA for the Section A and B Welsh ponies are presented in Tables 3.12, 

3.13, and 3.14, respectively.  Across Welsh pony cohorts, the LD boundaries identified 5 

additional regions shared across traits (ECA1 for adiponectin and INS-OST, ECA5 for 

insulin and leptin, ECA6 for leptin and GH, ECA9 for INS-OST and NEFA, and ECA18 

for insulin and GH) but did not identify six regions as shared across traits that were 

identified with the fixed boundaries (ECA4 for leptin and GH, ECA10 for NH and GH, 

ECA14 for leptin and laminitis status, ECA19 for ACTH and laminitis status, ECA 28 for 

insulin and INS-OST, and ECA28 for adiponectin and leptin).  This resulted in 89 regions 

being prioritized with 56 high priority regions containing 1,567 positional candidate genes, 

26 medium priority regions containing 620 positional candidate genes, and 7 low priority 

regions containing 30 positional candidate genes for a total of 2,217 positional candidate 

genes.  Accounting for the 18 shared regions resulted in 16 unique regions and 1,853 

positional candidate genes (Table 3.15).  

Prioritization of GWA Results and Identification of Positional Candidate Genes Based on 

LD-defined Regions in Morgan Horses: Using the boundaries of the LD-ROI for the 

Morgan horse GWA results identified three additional regions shared across traits (ECA 

21 for triglycerides and adiponectin, ECA 6 for adiponectin and INS-OST, and ECA 19 for 

NH and laminitis status) but did not identify two regions as shared across traits that were 

identified with the fixed boundaries (ECA 20 for adiponectin and insulin and ECA 24 for 

insulin and NEFA).  This resulted in 39 high priority regions containing 1,142 positional 

candidate genes, 8 medium priority regions containing 155 positional candidate genes, and 
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9 low priority regions containing 176 positional candidate genes for a total of 1,473 

positional candidate genes.  Accounting for the 12 shared regions resulted in 1,167 

positional candidate genes (Tables 3.16 and 3.17). 

Discussion 

In this study, we used high density SNP genotype data and GWA in two high risk breeds 

to identify hundreds of regions of the genome contributing to 11 EMS traits. Both fixed 

(500kb) and linkage disequilibrium-based approaches were used to identify the boundaries 

of genomic regions of interest and positional candidate genes within these regions. Within 

breed prioritization of the LD-defined regions resulted in 56 high priority, 26 medium 

priority, and 7 low priority regions, for a total of 1,853 candidate genes in the Welsh ponies; 

and 39 high priority, 8 medium priority, and 9 low priority regions, for a total of 1,167 

candidate genes in the Morgan horses.  Meta-analysis demonstrated that 65 of these regions 

were shared across breeds.  These data support the hypothesis that EMS is a polygenic trait 

with both across breed and breed-specific genetic variants. 

Age and sex were included in our model as fixed effects based on epidemiological studies 

which identified both as risk factors for EMS [18,70].  Season [67,421], diet [13,414], 

exercise [132,414], and endocrine-disrupting chemicals [74] have also been identified as 

environmental risk factors for EMS, but a large percentage of environmental variation has 

yet to be explained [20].  Further, several studies have produced conflicting findings as to 

the effect of season on EMS biochemical measurements [51,66], as well as the long-term 

effect of high non-structural carbohydrate diets on insulin sensitivity [47,48].  Therefore, 

we included farm as a random variable to account for both known and unknown 

environmental risk factors, as well as non-independent sampling of our data (each farm 

was required to have one control and one horse with EMS to be included in the study).  

Selective breeding for traits such as conformation or athletic performance can lead to 

population stratification within breeds [446], and not accounting for this population 

stratification can lead to spurious associations on GWA [428].  For this data, principal 

components analysis revealed population stratification in the Welsh pony cohort based on 

clustering of the registered sections (Figure 3.1).  This was not unexpected as the Welsh 

pony sections are distinct subpopulations based on pedigree and conformation. 



75 
 

Mixed linear models are a common way to account for population stratification and 

relatedness in GWA [378,379].  However, the Welsh ponies presented a unique challenge 

since, although the GRM would account for genetic similarities between Welsh pony 

sections, conformational traits such as height are considered complex traits and therefore 

the GRM would not account for all the phenotypic variation between sections.  On the 

other hand, including both the GRM and section as a covariate would lead to over-fitting 

of the model by accounting for relatedness both as a random effect (GRM) and fixed effect 

(section).  Further, accounting for population stratification by limiting the GWA to specific 

sections of Welsh ponies would reduce power to identify low frequency variants and 

prevent the identification of variants that are fixed within a section.  For example, GWA 

for the full cohort identified an ROI on ECA6 for baseline insulin, which was not identified 

on the GWA for the section A and B ponies (Table 3.3).  The allele frequency for a 

missense mutation in exon 1 of the high mobility AT hook gene (HMGA2) was found to 

be fixed in the section A ponies, 74% in the section B ponies, 3% in the section D ponies, 

and 64% in the section H and P ponies (see chapter 5).  Thus, the frequency for the minor 

allele in the section A and B ponies (n=220) was 15%; whereas, the minor allele frequency 

for the full cohort (n=264), was 22% which was high enough to be detected on that GWA. 

Therefore, to account for population stratification within our Welsh pony cohort while 

maximizing sensitivity to identify genetic variations contributing to EMS both within and 

across sections, we chose to perform the GWA using the full data set and then subset the 

data to the section A, B, C and D ponies, and the section A and B ponies.  Ideally, we 

would have also included the section C and D ponies as a separate GWA cohort but were 

under-powered due to the low number of ponies from these sections represented in our 

population.  Interestingly, less than a third of the GWA regions in the Welsh ponies were 

shared across cohorts (Table 3.3), which provides support for our approach.  However, it 

should be acknowledged that this could also reflect spurious associations.   

Comparison of the regions identified by the fixed and LD based approaches found a total 

of four shared regions between breeds.  This could indicate that breed differences account 

for more of the risk alleles for EMS than previously thought, or that additional regions 

were shared but not identified in one breed on GWA, which can occur for several reasons.  
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First, if the allele frequency of the variant is low in one breed, then it will not be detected 

on that GWA.  Second, the effect of the variant on a trait can vary between breeds.  The 

within breed population sizes were powered to detect variants of moderate to high effect 

but would not find variants of low effect [447,448].  Third, variations in recombination of 

the ancestral chromosome can lead to differences in marker alleles between populations 

[449].  Depending on the markers represented on the genotyping array, the variant may be 

identified in one breed but not the other.  Increasing the power of the study by performing 

across-breed GWA could identify more shared regions between breeds.  However, 

combining data can lead to the inclusion of additional population substructure and 

unknown confounding variables into the model [450].  Further, subpopulations within the 

Welsh pony cohort prevented the feasibility of an across-breeds GWA for our data. 

Meta-analysis uses GWA summary statistics to effectively combine GWA studies, 

increasing the number of individuals within the study and improving the power to find 

unique associations, variants of low effect, and additional shared regions across 

populations [451,452].  Both fixed and random effects models have been used for GWA 

meta-analyses.  Fixed effects models assume the true effect of each risk allele is the same 

across populations; whereas, the random effects model assumes the effect size of the risk 

allele will vary across populations, explicitly modeling the between-study heterogeneity 

often encountered in these studies [452,453].  Surprisingly, random effects models were 

shown to be less powerful than those of the fixed effect models [437,454].  Han et. al. 

proposed that this was due to the assumption of heterogeneity under both the null and 

alternative hypothesis using the traditional random effects model [437].  The authors 

argued that under the null hypothesis the variant would have no effect in either population 

and thus would be a violation of this assumption; they proposed using a likelihood ratio 

test that assumes heterogeneity only under the alternative model which was implemented 

in the software program METSOFT [437].   

We chose to perform the meta-analysis using this algorithm and identified 65 shared 

regions, of which 5 were unique (not identified in either breed specific GWA).  The fixed 

effects model identified 32 of these regions and the traditional random effect model 

identified 2 of these regions, which is consistent what with Han et. al. found for 
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METASOFT [437].  Neither the fixed or traditional random effects models identified 

unique regions for meta-analysis.  However, given the limited number of published studies 

using this algorithm, it is possible that the additional shared regions identified with 

METASOFT represent false positives.  Identification of the causal variants in these regions 

for both breeds will enable studies to validate these results.  Nonetheless, these data show 

the power of meta-analysis to identify additional and unique shared regions across breeds.  

For this analysis, we defined an ROI as a GWA region in which a minimum of five SNPs 

exceeded the suggestive threshold and at least one SNP exceeded the threshold for genome 

wide significance.  ROI accounted for 14-26% of the regions identified on GWA across all 

cohorts.  Of the remaining regions, 25-49% were single SNP regions, 23-41% were regions 

with less than five SNPs, and 7-16% were regions with greater than five SNPs but none 

that exceeded the threshold for genome-wide significance. 

To reduce false positives, regions were prioritized and those not assigned a priority were 

removed.  Regions shared across breeds (MA-ROI) were given high priority, as these 

regions were not breed specific and likely to be found in other high-risk breeds.  Regions 

shared across traits with at least one ROI were also assigned high priority.  Many 

components and downstream effects of the endocrine system are highly interrelated; 

therefore, a variant affecting multiple traits would be expected to have a larger biological 

effect then a variant affecting a single trait.  An ROI identified in one GWA cohort was 

assigned medium priority as these regions were likely breed or section (Welsh pony) 

specific and, based on the power of our study, variants of moderate to high effect.  Finally, 

regions that were not ROI but shared across traits were assigned low priority. Because these 

regions were identified across multiple GWA it is possible that these regions are less likely 

to be false positives and/or that these regions contain variants of low effect. 

Our prioritization removed 61% of the 130 regions for the full Welsh pony cohort, 66% of 

the 139 regions in the section A, B, C and D Welsh ponies, 63% of the 82 regions in the 

section A and B Welsh ponies, and 58% of the 142 regions in the Morgan horses.  Of the 

310 removed regions, 152 (49%) were single SNP regions, 118 (38%) were regions with 

less than five SNPs, and 40 (13%) were regions with greater than or equals to five SNPs 

but no SNPs which exceeded the threshold for genome wide significance.  Given (i) the 
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large percentage of single or low SNP regions that were removed, (ii) the high-density 

genotype data used in these analyses, and (iii) the use of the max gamma value for BSLMM 

(improving sensitivity at the cost of specificity), it is likely most of these regions were false 

positives.  However, we utilized Bonferroni corrected p-values which tend to be more 

conservative corrections [455]; therefore, some of the removed regions may harbor genetic 

variants associated with EMS but represent variants with very low effect or poorly 

annotated regions of the genome (relative decreased number of SNPs is that region).  

Increasing the number of individuals, or represented Welsh pony sections, would improve 

the power of the study to determine which of these regions were true or false positives. 

Markers present on the genotyping arrays are common variants within the population and 

are used on GWA to tag the causal variant if they are in LD [456].  In other words, 

identification of causal variants and positional candidate genes is directly related to the 

region of the genome in LD with the SNP markers identified as significantly associated 

with the trait on GWA.  In order to identify candidate genes, we first used a fixed boundary 

of 500kb 5’ of the SNP identified on GWA with the lowest base pair position and 3’ of the 

SNP with the highest base pair position.  500kb was chosen based on the average distance 

for LD to breakdown to ≤ 0.25 in Thoroughbred horses [440,441,443].  Although LD decay 

varies between horse breeds [442], using the more conservative Thoroughbred estimate 

gave a higher likelihood that we would capture all variants within LD (r2>0.3) of the marker 

SNPs in our cohorts.  From the fixed boundaries, 1,511 and 963 positional candidate genes 

were identified in the Welsh ponies and Morgan horses, respectively.  

Estimates of LD decay are based on the average r2 across chromosomal segments and do 

not represent specific regions of the genome [440,442].  Newer variants or variants within 

regions under selection will have longer LD blocks whereas older/ancestral variants will 

have shorter LD blocks due to longer periods of recombination.  Therefore, using a fixed 

region has the potential to exclude causal variants or to include candidate genes that are 

not in LD with the marker SNPs.  To more precisely call positional candidate genes for 

GWA regions, we calculated LD using the squared correlation coefficients between SNPs.  

SNPs within LD were defined as an r2 >0.3 [441].  Boundaries were identified based on 

gaps of LD, i.e. were all SNPs dropped below 0.3 for a span of 100kb 5’ (defined the start 
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of the LD block) and 3’ (defined the end of LD block) to the widest peak of LD.  Initially, 

a 50kb distance for the LD gap was used based on breed specific LD decay of an r2 < 0.3 

[442].  However, this distance was intractable as large peaks of LD were often identified 

on either side of the LD gaps.  The distance was increased to 100kb and consistently 

identified where regional LD of marker SNPs declined below threshold, with ~70% LD 

gaps being >100kb.    

Across all Welsh pony cohorts, 70% of the boundaries identified by LD were smaller than 

those identified by the fixed region, with an average difference of 645.4kb (range of 11.4kb 

to 1.7Mb); whereas, in the Morgan horses, 57% of the LD boundaries were smaller than 

that of the fixed regions, with an average difference of 566.6 kb (range of 51.5kb to 2.2Mb).  

The large percentage of fixed boundaries likely overestimating the region size is not 

surprising given that the fixed regions were based on data from Thoroughbreds, which have 

one of the highest inbreeding coefficients and LD amongst horse breeds [438,442].  Ponies 

and Morgan horses were identified to have LD similar to Quarter Horses [442], a breed 

with a high level of genetic diversity.  For the remaining regions, the LD boundaries were 

an average of 1.9Mb longer (range of 22.8kb to 9.3Mb) in the Welsh ponies and 1.4Mb 

longer (range of 12.6kb to 8.2Mb) in the Morgan horses then defined by the standard region 

and likely represent regions under selection.  

Further, assessment of LD provided additional information about the regional genetic 

architecture.  For example, ECA4 in the Morgan horses for GH had several SNPs that had 

a second peak of LD after the central peak (Figure 3.5).  Assessment of the reference 

genome identified an inversion corresponding to the location of the second peak.  In 

addition, LD identified regions where SNPs within 500kb of another SNP were not in LD, 

indicating two separate regions.  Conversely, LD also identified regions where SNPs which 

were identified as separate regions were found to be within LD of each other, indicating a 

single region. 

In conclusion, the results of these data provide strong evidence that EMS is a complex, 

polygenic syndrome with dozens of risk alleles contributing to the phenotype.  

Prioritization of the hundreds of regions identified on the GWA of 12 individual traits let 

to the identification of thousands of positional candidate genes.  Further work to narrow 
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down the candidate gene pool could include: (i) identification of biological candidate genes 

based on known gene function and evidence from other species; (ii) use of whole genome 

sequencing and linear regression analysis to fine map regions; (iii) use of intermediate 

phenotypes such as metabolomics or transcriptomics to identify shared regions; or (iv) 

network analysis for identification of genes within similar, relevant pathways.  

Nonetheless, this data was an important first step in the identification of the genetic risk 

alleles associated with EMS. 
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Figure 3.1: Principle components analysis for the Welsh ponies.  The first two principal 

components are plotted on the x-axis (PCA1) and y-axis (PCA2).  Distinct clustering is evident 

across the Welsh pony sections A, B, and D, indicating population substructure.  The two section 

C ponies cluster with the section A (both ponies had a full section A parent) and the section H and 

P ponies are intermixed with the section B and D ponies (see appendix 1 for pedigree information). 
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Figure 3.2: Flow chart of the prioritization of the regions identified on genome-wide 

association analyses (GWA).  Regions were prioritized as high priority if they were identified as 

shared across breeds (MA-ROI) or it was shared across traits with at least one region being 

considered a region of interest (ROI).  Regions were prioritized as medium priority if they were 

identified as an ROI in at least one GWA cohort.  Regions were identified as low priority if they 

were identified as shared across traits, but no regions met the criteria to be considered an ROI.  

Regions which were not shared and were not considered an ROI were removed from further 

analysis. 
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Figure 3.3: Manhattan plots of the genome wide association results for ACTH in (A) full 

Welsh pony cohort, (B) the section A, B, C and D Welsh ponies, and (c) the section A and B 

Welsh ponies.  The equine chromosomes (ECA) are plotted on the x-axis and the -log of the p-

value is plotted on the y-axis.  The blue line indicates the suggestive threshold (1.0e-05) and the 

red line represents the genome-wide significant threshold (5.9e-08).  In all three GWA, the same 

region on ECA5 exceeds the suggestive threshold but is only identified as an ROI in the full cohort 

(A).  

A. 

B. 

C. 
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Figure 3.4: Manhattan plots of the genome wide association results for insulin concentration 

post oral sugar test in (A) Morgan horses, (B) the section A, B, C and D Welsh ponies, and (c) 

the section A and B Welsh ponies.  The equine chromosomes (ECA) are plotted on the x-axis and 

the -log of the p-value is plotted on the y-axis.  The blue line indicates the suggestive threshold 

(1.0e-05) and the red line represents the genome-wide significant threshold (7.61e-08 in the 

Morgans and 5.98e-08 the Welsh ponies).  In all three GWA, the same region on ECA10 exceeds 

the suggestive threshold but is only identified as an ROI in the Morgan horses (A).  However, GWA 

meta-analysis identified this region as shared across both breeds. 

A. 

B. 

C. 
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Figure 3.5: Linkage disequilibrium (LD) for neck-to-height-ratio (NH) on equine chromosome 4 (ECA4) in the Morgan horses.  Base pair 

(bp) positions are on the x-axis and values for the pairwise comparisons of LD (r2) are on the y-axis.  Red horizontal line indicates the threshold for 

LD at an r2 of 0.3.  Individual colors represent the LD for each SNP identified on genome wide association analysis.  The length in bp of the regions 

where the LD dropped below 0.3 for a minimum of 100kg for all SNPs are labeled parallel to the x-axis.  Two peaks were identified with the first 

between bp 51900767-52580849 and the second peak from bp 53099275 to 54002853.  Evaluation of the reference region identified an inversion at 

the position of the second peak. 
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 All Welsh ponies Section ABCD Section AB Morgan Horses 

Trait Regions ROI Regions ROI Regions ROI Regions ROI 

Insulin 15 5 10 2 10 2 12 1 

Insulin-OST 7 0 7 0 6 1 10 1 

Glucose 8 0 7 0 8 3 6 2 

Glucose-OST 5 1 4 0 3 1 6 3 

NEFA 10 0 10 2 11 1 13 4 

TG 3 0 5 0 6 1 4 0 

Adiponectin 2 1 6 1 4 0 17 4 

Leptin 7 2 16 1 3 0 8 3 

ACTH 10 2 10 0 6 1 18 3 

NH 22 9 22 5 6 1 16 5 

GH 23 8 30 9 9 0 14 4 

LAM 18 5 12 3 10 2 18 7 

Total 130 33 139 23 82 13 142 37 

 

Table 3.1: Summed regions for each of the 12 EMS traits from the Welsh pony and Morgan horse genome-wide association analyses (GWA).  Data 

includes the full Welsh pony cohort (n=264), individuals identified by pedigree as section A, B, C or D (n=238), individuals identified by pedigree 

as section A or B (n=220), and the Morgan horses (n=286).  The column listed as ROI (region of interest) indicates that total number of regions 

which met the criteria to be considered an ROI (minimum of five SNPs with at least one SNP exceeding the threshold for genome wide significance).  

Abbreviations: OST: oral sugar test, NH: neck-to-height ratio, GH: girth-to-height ratio, LAM: laminitis status. 

 

  



87 
 

Trait 
All WP & 

Section ABCD 

All WP & 

Section AB 

Section ABCD & 

Section AB 
All Three 

At least one 

ROI 

Insulin 1 1 1 0 3 

Insulin-OST 0 1 3 0 0 

Glucose 1 1 0 0 1 

Glucose-OST 1 0 2 0 1 

NEFA 1 0 5 1 2 

TG 1 0 1 0 0 

Adiponectin 0 0 1 0 0 

Leptin 1 0 0 1 1 

ACTH 1 0 2 2 2 

NH 4 0 0 1 2 

GH 5 0 0 0 2 

LAM 2 2 0 0 1 

Total 18 5 15 5 15 

 

Table 3.2: Summary table of the shared regions across two or three cohorts for each of the 12 EMS traits from the Welsh pony (WP) genome-wide 

association analyses (GWA) including the full cohort (n=264), individuals identified by pedigree as section A, B, C or D (n=238), individuals 

identified by pedigree as section A or B (n=220).  The column listed as at least one ROI (region of interest) indicates that total number of shared 

regions where at least one region met the criteria to be considered an ROI (minimum of five SNPs exceeding the suggestive threshold with at least 

one SNP exceeding the threshold for genome wide significance). 
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Table 3.3: Specific shared regions from the Welsh pony genome-wide association analyses 

   All WP Section ABCD WP Section AB WP 

Trait Chr Total_GWAS Min_SNP Max_SNP Min_SNP Max_SNP Min_SNP Max_SNP 

Insulin 6 2 81074650 81566120 81421330 82660343 - - 

 9 2 - - 58976739 59099678 58477773 60003081 

 15 2 5887873 6278651 - - 5899834 NA 

Insulin-OST 3 2 - - 65320573 NA 65980441 NA 

 6 2 - - 15393073 15402993 15393073 NA 

 8 2 69942950 69982846 - - 69942980 69982846 

 10 2 - - 72158447 72240841 72238960 NA 

Glucose 8 2 81424426 81518794 81284977 81428684 - - 

 29 2 21472582 21475253 - - 21440455 22135257 

Glucose-OST 5 2 - - 66212381 66719700 66618266 66719700 

 23 2 10907371 10951165 10942382 10951165 - - 

 28 2 - - 33915296 NA 33387547 33915296 

NEFA 6 2 76161874 NA 76161874 NA - - 

 7 2 - - 7268673 7382898 7268673 NA 

 7 2 - - 8181330 8243021 7268673 NA 

 9 2 - - 47030376 48595497 47219472 48722431 

 14 2 - - 33871722 NA 33829080 33974280 

 22 3 18575108 NA 18575108 NA 18575108 18594384 

 28 2 - - 33731242 34441427 33819949 33831231 

TG 12 2 32054230 32083040 32072315 32083040 - - 

 20 2 - - 55609506 55705820 55239314 NA 

Adiponectin 22 2 - - 36975989 37058774 37058774 NA 

Leptin 7 2 65773875 65782930 65773875 65782930 - - 

 10 3 865540 883471 856640 883471 871456 NA 

ACTH 1 2 - - 44050526 44285580 43943376 44773532 

 5 3 19628265 20107907 19859591 20010745 19859591 20010745 
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Table 3.3: Specific shared regions from the Welsh pony genome-wide association analyses (cont.) 

   All WP Section ABCD WP Section AB WP 

Trait Chr Total_GWAS Min_SNP Max_SNP Min_SNP Max_SNP Min_SNP Max_SNP 

ACTH (cont) 10 3 78846710 NA 78845710 NA 78703637 78846710 

 19 2 21867680 21871015 21867680 21871015 - - 

 24 2 - - 39069140 NA 38145005 39231598 

NH 4 3 67875816 68337160 68879163 69478180 67379332 69246252 

 4 2 77152103 NA 76199121 77653150 - - 

 4 2 78075875 78460889 76199121 77653150 - - 

 8 2 61139637 61236848 61139637 61177365 - - 

 21 2 20193411 21497651 20193411 21059497 - - 

GH 1 2 119770589 NA 119519666 119549672 - - 

 4 2 68337160 NA 69000484 69423480 - - 

 4 2 84181768 85381459 83940435 85259515 - - 

 20 2 29233068 29537740 29233068 29252036 - - 

 21 2 21387986 21398724 20919577 20922494 - - 

LAM 1 2 49077969 NA 49077969 NA - - 

 2 2 35906741 36414648 36104151 36414648 - - 

 15 2 49986709 50013578 - - 49986709 50013578 

 16 2 65111190 NA - - 64888181 64938437 
 

Table 3.3: Specific shared regions from the Welsh pony (WP) genome-wide association analyses (GWA) including the full cohort (n=264), 

individuals identified by pedigree as section A, B, C or D (n=238) and individuals identified by pedigree as section A or B (n=220).  Bolded values 

are regions which met the criteria for being considered a region of interest (ROI).  Values indicated as NA for the maximum SNP are those in which 

a single SNP exceeded suggestive or genome-wide significant threshold; values indicated as a dash (-) for both minimum and maximum SNP are 

those in which GWA did not identify the region as shared in that cohort.  Highlighted chromosomes (Chr) indicate regions which were shared with 

several traits. 
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Table 3.4: Meta-analysis results for 11 metabolic traits 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs FE Trad_RE 

Insulin 5 A 44104129 45081679 39 4 - - 
 15 A 5887873 6225014 21 2 - - 
 24 A 28804043 29076914 3 2 - - 

Insulin-OST 10 B C E 71620835 72425049 19 4 X - 
 28  38307699 38344594 2 1 - - 

Glucose 4 B F 18053357 18550035 20 1 - - 
 8 D 9289661 9312611 2 1 - - 

Glucose-OST 3 B 55982921 56558742 57 39 X - 
 4 B 27802674 28514796 18 4 X - 
 15  79697363 79717603 3 3 - - 
 28 A 34861664 34868420 2 2 - - 

NEFA 1 B 183532379 184178932 21 15 X - 
 17 B 13355958 14014858 23 1 X - 
 24 D 20975408 NA 1 1 - - 
 30 B 20148173 20205201 10 3 X - 

Adiponectin 2 B 16725632 17531903 25 19 X - 
 4 B 37105938 37523046 6 2 X - 
 6 B 31582345 31708194 17 1 X - 
 6 B 67097628 68036518 16 1 - - 
 18 D 41399862 41533081 9 1 - - 
 18 A 60138400 60241267 10 2 - - 
 20 D 3447045 3609674 10 4 X X 

Leptin 7 A 65731012 65804974 6 3 X - 
 10 C 871456 NA 1 1 - - 
 19 B 48839140 49627683 44 22 X - 
 24 B 28551544 28744981 17 6 - - 

ACTH 1 A 69730886 70257187 4 1 - - 
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Table 3.4: Meta-analysis results for 11 metabolic traits (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs FE Trad_RE 

ACTH (cont.) 1 B 82755708 82879246 10 1 - - 
 3 C D E 41684754 NA 1 1 - - 
 3 B 101236287 101618645 42 24 X - 
 5 B 28822515 29342972 12 3 X - 
 10 C 78846710 NA 1 1 - - 

NH 1  88009187 NA 1 1 - - 
 3  58464229 NA 1 1 - - 
 4 B 51903203 53474757 64 40 - - 
 6 B 63614756 63814984 20 10 - - 
 9  22745020 NA 1 1 - - 
 9 A 33549797 34165892 31 1 - - 
 11 A F 18987272 19176693 10 8 - - 
 14 A 63778931 63876998 7 2 X - 
 19 D 1134701 1139669 2 2 - - 
 19 B 32230245 33643392 55 2 - - 
 20 A 39797561 40162785 7 4 X - 
 20 A 59659997 60403627 11 4 X X 
 21 A 20193411 21256032 18 11 X - 
 24 A 33852631 34812035 36 23 X - 

GH 1 A B E 121484057 121775873 47 19 - - 
 1 A 131512239 131621826 3 3 X - 
 4 A 84181768 85275183 29 11 X - 
 11 A F 18987272 19176693 10 9 X - 
 17 B 32120145 32544617 23 4 X - 
 19 A F 28934939 NA 1 1 - - 
 20 A 63560971 63691145 10 6 - - 
 22 C 40135963 40167502 4 4 X - 
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Table 3.4: Meta-analysis results for 11 metabolic traits (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs FE Trad_RE 

LAM 1 C 49077969 NA 1 1 - - 
 2 A 36104151 36108219 6 6 - - 
 4 B F 17765473 18991639 11 3 - - 
 12 B 29378128 30296509 19 11 X - 
 14 B 88430222 89591967 20 5 - - 
 18 B 31679672 33134556 51 26 X - 
 19 B F 28057756 28417335 5 2 - - 
 19 A 57605404 58429206 36 20 X - 
 22 B C E 3565315 4307679 62 38 X - 
 23 B 12226548 12763020 35 24 X - 
 28 A 9446507 9643240 13 5 X - 

 

Table 3.4: Meta-analysis results for 11 metabolic traits.  To be considered an MA-ROI, at least one SNP had to exceed the threshold for genome-

wide significance (1.6e-07).  Provided is the base pair position of the lowest (Min_SNP) and highest (Max_SNP) SNP, as well as the number of 

SNPs per region which exceeded the suggestive (Sugg_SNPs) and genome-wide significance (Sign_SNPs) threshold. Summary column: region was 

identified as an ROI in the Welsh pony (A) or Morgan horse (B) GWA, region was identified in the Welsh pony (C) or Morgan horse (D) GWA for 

that trait but did not meet the criteria for an ROI, region was also identified as a shared region when analyzing the results of the standard ROI or 

LD-ROI (E), region was shared across two traits in the metanalysis (F) which is also represented by the corresponding highlighted chromosomes 

(Chr).  Regions which were statistically significant using a fixed effects models (FE) or the traditional random effects model (Trad_RE) are indicated 

by an X in the respective columns. 
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  All Welsh ponies Section ABCD Section AB Welsh Pony Final  Morgan Horses 

Trait High Med Low High Med Low High Med Low High Med Low High Med Low 

Insulin 3 3 1 0 2 0 2 1 0 4 4 1 1 1 1 

Insulin-OST 2 0 0 1 0 1 2 1 0 3 1 0 2 0 1 

Glucose 0 1 0 0 0 0 0 3 0 0 3 0 2 0 0 

Glucose-OST 0 1 0 1 0 0 1 0 0 1 1 0 2 1 0 

NEFA 0 0 0 2 0 0 1 1 0 2 0 0 4 1 0 

TG 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 

Adiponectin 1 0 0 0 1 1 0 0 0 1 1 0 6 0 0 

Leptin 3 1 0 2 1 2 1 0 1 3 2 3 3 1 0 

ACTH 3 1 0 4 2 0 1 1 0 6 2 0 4 0 2 

NH 8 1 2 3 3 2 0 0 2 10 4 5 5 2 1 

GH 8 2 2 3 8 2 0 0 2 9 9 5 2 2 2 

LAM 7 2 0 3 2 0 1 2 1 8 6 1 7 0 1 

Total 35 12 5 19 19 8 9 10 6 47 34 16 38 8 8 

Cohort Total 52 46 25 114 54 

 

Table 3.5: Summary table of prioritization of the fixed-sized regions in the Welsh ponies and Morgan horses.  Data includes the full Welsh 

pony cohort (n=264), the section A, B, C and D (n=238), the section A and B Welsh ponies (n=220), the combined Welsh pony data (Welsh 

Pony Final), and the Morgan horses (n=286).  Regions were categorized as high priority (regions found on metanalysis or region was shared with 

another trait and at least one region was considered an ROI), medium priority (region was an ROI in at least on GWA cohort), or low priority (region 

was shared across traits but region was not an ROI).   
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Table 3.6: Prioritization of the GWA results of the full Welsh pony cohort (n=264) based on fixed-sized regions 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

Insulin 1  46119989 NA 1 0 45619989 46619989 3 

  5 H 40632818 41895313 86 4 40132818 42395313 76 

  6 A 82238815 82729921 11 0 81738815 83229921 17 

  8  75410291 75771110 6 0 74910291 76271110 14 

  9  83981022 84014912 6 0 83481022 84514912 49 

  13  14234078 14849603 7 0 13734078 15349603 9 

  13  37700109 37723843 3 1 37200109 38223843 1 

  14  31226680 31583686 4 0 30726680 32083686 14 

  15 A H 5748638 6140956 28 5 5248638 6640956 2 

  15  54081224 54559632 5 1 53581224 55059632 19 

  19  9606463 9637331 4 3 9106463 10137331 3 

  23  46084858 46952228 6 3 45584858 47452228 6 

  24 H 28580621 29056428 15 7 28080621 29556428 6 

  34  38174280 NA 1 0 37674280 38674280 17 

  28 F 38543945 NA 1 0 38043945 39043945 23 

Insulin-OST 1  119102659 119140428 6 0 118602659 119640428 13 

  8 A 73418239 73458142 4 0 72918239 73958142 5 

  9  27879884 NA 1 0 27379884 28379884 13 

  9  28468074 NA 1 0 27968074 28968074 15 

  20  59181583 59182258 2 0 58681583 59682258 5 

  28 F H 39385975 39462810 4 2 38885975 39962810 44 

  31  8856537 8855069 2 0 8356537 9355069 18 

Glucose 3  32093888 32098312 4 0 31593888 32598312 21 

  8 C 84913969 85008392 2 2 84413969 85508392 3 

  15  83778178 NA 1 1 83278178 84278178 14 

  16  86563618 86743699 2 0 86063618 87243699 6 
 22  42270349 42320092 2 0 41770349 42820092 10 
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Table 3.6: Prioritization of the GWA results of the full Welsh pony cohort (n=264) based on fixed-sized regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

 Glucose (cont.) 28  14969841 15045427 2 1 14469841 15545427 6 

 28  33576312 NA 1 0 33076312 34076312 10 

  29 A 22555245 22557916 2 0 22055245 23057916 15 

Glucose-OST 1  185361795 NA 1 0 184861795 185861795 9 

  4  8502301 8522723 4 0 8002301 9022723 10 

  4  40150197 40352671 11 4 39650197 40852671 12 

  7  76975314 NA 1 0 76475314 77475314 41 

  23 C 10182647 10226427 4 2 9682647 10726427 5 

NEFA 4  14831152 14840371 4 0 14331152 15340371 24 

  6  68206430 68512033 2 0 67706430 69012033 36 

  6 C 77102911 NA 1 0 76602911 77602911 6 

  8  11128642 11158885 2 0 10628642 11658885 12 

  8  69737476 NA 1 0 69237476 70237476 11 

  19  1055718 NA 1 1 555718 1555718 11 

  20  8830210 NA 1 0 8330210 9330210 9 

  20  26078001 NA 1 0 25578001 26578001 31 

  22 C 19009107 NA 1 0 18509107 19509107 13 

  31  13902942 NA 1 0 13402942 14402942 6 

TG 1  153409995 153700953 2 0 152909995 154200953 6 

  4  93870436 NA 1 0 93370436 94370436 16 

  12 C 35927778 35956541 4 1 35427778 36456541 45 

Adiponectin 17  61546409 61552964 3 0 61046409 62052964 9 

  18 H 60290699 60393507 10 5 59790699 60893507 12 

Leptin 1  72370796 73160541 31 1 71870796 73660541 12 

  5  43015591 43412260 24 0 42515591 43912260 56 
 7 A H 67955613 67964668 5 4 67455613 68464668 4 

  10 C H 866333 884264 3 1 366333 1384264 14 



96 
 

Table 3.6: Prioritization of the GWA results of the full Welsh pony cohort (n=264) based on fixed-sized regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

 Leptin (cont.) 21 H 22944751 23022779 2 1 22444751 23522779 1 

  26  11291558 NA 1 0 10791558 11791558 36 
 28  36456338 36459615 3 0 35956338 36959615 21 

ACTH 1 A H 70266479 70832972 20 1 69766479 71332972 25 

  5 A 16869826 17349383 30 4 16369826 17849383 3 

  10 H 55658306 56077011 2 1 55158306 56577011 27 

  10 C H 80023665 NA 1 0 79523665 80523665 6 

  18  4529063 NA 1 0 4029063 5029063 18 

  19 C 24243287 24246621 2 0 23743287 24746621 20 

  19  33315383 33342063 4 0 32815383 33842063 11 

  20  63684506 NA 1 0 63184506 64184506 93 

  21  264658 2467359 12 0 -235342 2967359 25 

  25  26250218 NA 1 0 25750218 26750218 22 

NH 1  91537471 91969415 11 0 91037471 92469415 14 

  4  62017772 62060721 2 2 61517772 62560721 6 

  4 C F G 68114618 68576476 2 0 67614618 69076476 6 

  4 C 77390519 NA 1 0 76890519 77890519 14 

  4 C 78314683 78699729 3 1 77814683 79199729 22 

  4  79698145 80390074 14 7 79198145 80890074 8 

  6 F 1019810 1033178 3 0 519810 1533178 7 

  7 E 93233594 93628623 10 6 92733594 94128623 9 

  8 C 64510733 64609130 2 1 64010733 65109130 6 

  8  88125499 88327659 2 1 87625499 88827659 13 

  9 H 33913440 35808721 39 9 33413440 36308721 55 
 11 E H 19050799 19240093 11 8 18550799 19740093 5 

  12  7654801 7676262 2 0 7154801 8176262 18 

  12  15601877 NA 1 0 15101877 16101877 7 
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Table 3.6: Prioritization of the GWA results of the full Welsh pony cohort (n=264) based on fixed-sized regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

NH (cont.) 14 H 63736228 63834285 7 3 63236228 64334285 25 

  20 H 40661395 41066022 10 4 40161395 41566022 3 

  20 E H 60832063 61575820 11 2 60332063 62075820 23 

  21 A E H 20812917 22117426 22 13 20312917 22617426 16 

  24  21429112 21604747 3 0 20929112 22104747 29 

  24 H 33796794 35472785 62 33 33296794 35972785 11 

  27  14461113 14463955 2 0 13961113 14963955 7 

  29  33232105 33233161 2 0 32732105 33733161 20 

GH 1 C 120905261 NA 1 0 120405261 121405261 25 

  1 H 132203667 133711337 30 14 131703667 134211337 12 

  1  150735268 NA 1 0 150235268 151235268 8 

  4  67153317 67163513 2 0 66653317 67663513 5 

  4 C F G 68576476 NA 1 0 68076476 69076476 49 

  4 A H 84285316 85497218 63 33 83785316 85997218 9 

  6 F 1019810 1154034 4 3 519810 1654034 6 

  7 E 93233594 93580126 7 4 92733594 94080126 13 

  9  55626969 55685330 2 0 55126969 56185330 17 

  10  3673095 3673552 2 0 3173095 4173552 3 

  10  32529022 32559811 4 0 32029022 33059811 59 

  11 E H 18827291 19240093 14 9 18327291 19740093 29 

  12  25641997 NA 1 0 25141997 26141997 24 

  15  15062753 15656836 12 4 14562753 16156836 4 

  19 H 31283482 31445588 9 1 30783482 31945588 53 
 20 A 30141925 30449510 12 4 29641925 30949510 6 

  20 H 64731849 64861251 12 7 64231849 65361251 7 

  21 C E 22007711 NA 2 0 21507711 22507711 5 

  22 H 41033715 41065262 4 4 40533715 41565262 6 
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Table 3.6: Prioritization of the GWA results of the full Welsh pony cohort (n=264) based on fixed-sized regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

GH (cont.) 24  18072215 18172937 4 0 17572215 18672937 17 

  25  19485041 NA 1 1 18985041 19985041 7 

  31  17898824 17912707 4 0 17398824 18412707 4 

  31  18700158 18819670 4 0 18200158 19319670 22 

LAM 1 C H 49441032 NA 1 1 48941032 49941032 27 

  2 A H 36123836 36633565 14 11 35623836 37133565 3 

  5  79658109 NA 1 0 79158109 80158109 7 

  7  97437120 97439429 2 0 96937120 97939429 10 

  10  64224504 64281425 2 0 63724504 64781425 16 

  13  27143211 27035221 5 0 26643211 27535221 8 

  14  52578019 52579053 2 0 52078019 53079053 3 

  15 C H 50978261 51005138 3 1 50478261 51505138 7 

  15  64654206 64769743 12 0 64154206 65269743 9 

  16  35123235 35595543 3 0 34623235 36095543 8 

  16 C 66694166 NA 1 0 66194166 67194166 24 

  19  39125743 39626653 11 1 38625743 40126653 24 

  19 H 59885237 61849890 78 35 59385237 62349890 4 

  20 E 62018962 62085163 4 3 61518962 62585163 10 

  22 B 3551367 NA 1 0 3051367 4051367 37 

  25  32816803 32852556 2 0 32316803 33352556 5 

  28 H 10461982 10666731 19 7 9961982 11166731 8 
 31  10611327 10509324 5 3 10111327 11009324 3 

 

Table 3.6: Prioritization of the GWA results of the full Welsh pony cohort (n=264) based on fixed-sized regions.  To be considered an ROI, at 

least five SNP had to exceed the suggestive threshold (1.0e-05) with one SNP exceeding the threshold for genome-wide significance (5.98e-08).  

Provided in the table is the base pair position of the lowest (Min_SNP) and highest (Max_SNP) SNP in the region, the min (Min_Region) and 

maximum (Max_Region) boundaries of the region based on a fixed value of 500Kb 5’ of the Min_SNP and 500Kb 3’ of the Max_SNP, as well as 

the number of SNPs per region which exceeded the suggestive (Sugg_SNPs) and genome-wide significance (Sign_SNPs) threshold. Total_Genes 
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includes all protein-coding, pseudogenes, and RNA genes identified for the region based on EquCab3.  A black box in the summary column indicates 

the region did not meet the criteria to be considered an ROI and was not shared with another GWA cohort or trait.  Letters in the summary column 

represent: (A) region was shared with another Welsh pony cohort and at least one region was considered an ROI, (B) region was shared with the 

Morgans and at least one region was considered an ROI, (C) region was shared with another Welsh pony cohort but neither regions met the criteria 

for an ROI, (D)  region was shared with Morgan but neither regions met the criteria for an ROI, (E) region was shared with another trait in this 

cohort and at least one region was considered an ROI, (F) region was shared with another trait in this cohort but no regions met the criteria for an 

ROI, (G) region was shared across multiple traits in another cohort, (H) region was identified as shared across breeds on metanalysis and was 

considered an MA-ROI.  Highlighted chromosomes (Chr) indicate regions which were shared with several traits. 
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Table 3.7: Prioritization of the GWA results of the section A, B, C and D Welsh ponies based on fixed-sized regions 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

Insulin 1  88317885 NA 1 0 87817885 88817885 2 

  4  16025941 16029966 4 0 15525941 16529966 17 

  6 A 82585066 83826234 32 2 82085066 84326234 26 

  9 A 61021946 61144885 13 3 60521946 61644885 7 

  12  859517 NA 1 0 359517 1359517 14 

  12  5811391 5812573 3 0 5311391 6312573 3 

  17  11193396 11343933 4 0 10693396 11843933 9 

  18  79126354 79216656 3 1 78626354 79716656 10 

  21  34649027 NA 1 0 34149027 35149027 3 

  24  38174280 NA 1 0 37674280 38674280 17 

Insulin-OST 1  176823704 NA 1 0 176323704 177323704 18 

  1  181205641 NA 1 0 180705641 181705641 3 

  3 C 67119398 NA 1 0 66619398 67619398 14 

  5  89878763 NA 1 0 89378763 90378763 9 

  6 C F G 15257536 15267456 3 1 14757536 15767456 12 

  10 B C H 73334761 73417042 3 0 72834761 73917042 6 

  31  5253579 NA 1 0 4753579 5753579 7 

Glucose 2  88732913 88775982 2 0 88232913 89275982 6 

  4  57433023 57463516 2 1 56933023 57963516 20 

  8 C 84774486 84918226 5 0 84274486 85418226 3 

  8  92368897 NA 1 0 91868897 92868897 12 

  15  71112709 NA 1 0 70612709 71612709 10 

  19  8738837 8781089 2 0 8238837 9281089 6 

  29  4401376 4855454 4 1 3901376 5355454 7 

Glucose-OST 5 C 63041759 63549216 12 0 62541759 64049216 16 
 23 C 10217644 10226427 2 0 9717644 10726427 4 
 28  14969841 NA 1 0 14469841 15469841 6 
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Table 3.7: Prioritization of the GWA results of the section A, B, C and D Welsh ponies based on fixed-sized regions (cont.) 

Trait Chr Summary Max_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

Glucose-OST (cont)  28 A E G H 34960948 NA 1 1 34460948 35460948 23 

NEFA 6 C 77102911 NA 1 0 76602911 77602911 6 

  7 C 7744001 7858148 2 0 7244001 8358148 9 

  7 C 8657121 8718823 3 0 8157121 9218823 3 

  9 A 48687570 50301924 74 5 48187570 50801924 32 

  13  3866723 NA 1 0 3366723 4366723 14 

  14 C 33187338 NA 1 0 32687338 33687338 7 

  22 C 19009107 NA 1 0 18509107 19509107 13 

  28 A E G 34777499 35488520 25 6 34277499 35988520 43 

  31  9275456 8325401 9 0 8775456 8825401 0 

  32  21391267 21497776 2 0 20891267 21997776 0 

TG 7  28031826 28039745 2 0 27531826 28539745 22 

  12 C 35945816 35956541 2 0 35445816 36456541 45 

  17  17532266 NA 2 0 17032266 18032266 4 

  17  33912651 NA 1 0 33412651 34412651 5 

  20 C 56719186 56815453 4 1 56219186 57315453 2 

Adiponectin 1  175782149 177072407 32 1 175282149 177572407 23 

  7  75100837 NA 1 0 74600837 75600837 54 

  20  8415408 9139191 5 0 7915408 9639191 19 

  22 C 37875269 37957795 3 0 37375269 38457795 20 

  25  9125953 NA 1 0 8625953 9625953 6 

  28 F 41052952 NA 1 0 40552952 41552952 18 

Leptin 2  87434404 NA 1 0 86934404 87934404 13 
 4 F 48014169 48031048 6 0 47514169 48531048 7 

  6  2348093 2376386 6 1 1848093 2876386 3 
 6  21686436 22141052 9 0 21186436 22641052 10 

  7 A H 67955613 67964668 2 0 67455613 68464668 4 
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Table 3.7: Prioritization of the GWA results of the section A, B, C and D Welsh ponies based on fixed-sized regions (cont.) 

Trait Chr Summary Max_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

Leptin (cont.)  8  87412707 NA 1 0 86912707 87912707 6 

  10 C H 857433 884264 4 0 357433 1384264 14 
 10  83363991 NA 1 0 82863991 83863991 15 

  10  84395615 NA 1 0 83895615 84895615 8 

  11  33592865 NA 1 0 33092865 34092865 40 

  12  25937470 25914980 2 0 25437470 26414980 28 

  13  7690179 NA 1 0 7190179 8190179 30 

  15  24814175 24816607 2 0 24314175 25316607 3 

  16  42665270 NA 1 0 42165270 43165270 14 

  26  11291558 11425566 4 1 10791558 11925566 2 

  28 F 40504716 NA 1 0 40004716 41004716 23 

ACTH 1 A F 44391917 44627074 13 0 43891917 45127074 2 

  3 D 44073772 44105888 8 0 43573772 44605888 6 

  5 A 17101043 17252354 9 0 16601043 17752354 19 

  10 C H 78845710 NA 1 1 78345710 79345710 10 

  15  13711487 NA 1 0 13211487 14211487 11 

  19 C 24243287 24246621 2 0 23743287 24746621 18 

  19 E 37642432 NA 1 0 37142432 38142432 8 

  20 E 60431850 NA 3 0 59931850 60931850 0 

  24 C G 39497717 NA 1 0 38997717 39997717 14 

  30  1302176 1304866 4 0 802176 1804866 13 

NH 1 F 44398249 NA 1 0 43898249 44898249 2 

  3  109783963 NA 1 0 109283963 110283963 11 

  4 A E G 69118549 69714717 17 14 68618549 70214717 7 
 4  72715285 73055056 2 0 72215285 73555056 5 

  4 C G 76437287 77891737 17 0 75937287 78391737 14 

  4 E 83194842 85546563 54 38 82694842 86046563 67 
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Table 3.7: Prioritization of the GWA results of the section A, B, C and D Welsh ponies based on fixed-sized regions (cont.) 

Trait Chr Summary Max_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

NH (cont.)  8 C 64510733 64548459 2 0 64010733 65048459 9 

  14  57777287 NA 1 0 57277287 58277287 6 

  15  44638315 NA 1 3 44138315 45138315 1 
 15  73207370 73338081 5 3 72707370 73838081 13 

  16  19756213 20195426 10 0 19256213 20695426 12 

  16  26012920 NA 1 0 25512920 26512920 8 

  17  36798348 36856368 9 9 36298348 37356368 5 

  18  68917978 NA 1 1 68417978 69417978 5 

  20 F 30160893 NA 1 1 29660893 30660893 42 

  21  6664894 6835706 5 2 6164894 7335706 11 

  21 A F G H 20812917 21679286 4 0 20312917 22179286 19 

  24  8561717 11119679 17 0 8061717 11619679 43 

  24  30419181 30419482 2 0 29919181 30919482 2 

  26  13669849 NA 1 0 13169849 14169849 7 

  29  12571950 12620905 5 0 12071950 13120905 11 

  30  30980395 NA 1 0 30480395 31480395 26 

GH 1  73428660 73434597 2 0 72928660 73934597 2 

  1 C 120654637 120684527 5 0 120154637 121184527 22 

  4 F 46793329 47851529 10 0 46293329 48351529 10 
 4  52253860 NA 1 0 51753860 52753860 9 

  4  61808230 62195564 3 0 61308230 62695564 17 

  4 A E G 69236860 69660028 5 0 68736860 70160028 6 

  4  74331018 76480368 41 7 73831018 76980368 25 
 4  79807650 80390074 12 8 79307650 80890074 22 

  4 A E H 84044345 85375688 34 18 83544345 85875688 56 

  5  20984165 NA 1 0 20484165 21484165 8 

  9  75259988 75263736 2 1 74759988 75763736 10 
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Table 3.7: Prioritization of the GWA results of the section A, B, C and D Welsh ponies based on fixed-sized regions (cont.) 

Trait Chr Summary Max_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

GH (cont.)  10  51267938 NA 1 0 50767938 51767938 9 

  11  15497051 16248131 36 26 14997051 16748131 40 

  13  1235274 531380 29 19 735274 1031380 8 

  14  5739617 6265883 11 0 5239617 6765883 20 

  15  85423316 NA 1 0 84923316 85923316 27 

  16  27103995 28231661 41 11 26603995 28731661 17 

  16  88165628 88202104 5 0 87665628 88702104 10 

  17  167021 NA 1 0 -332979 667021 12 

  17  57101997 NA 1 0 56601997 57601997 8 

  18  70918093 NA 1 0 70418093 71418093 4 

  18  75058371 76075236 26 6 74558371 76575236 31 

  18  80391110 81050756 27 1 79891110 81550756 25 

  20 A F 30141925 30160893 3 1 29641925 30660893 42 

  20 E 60935600 61788330 8 1 60435600 62288330 3 

  21  18238312 18263289 2 0 17738312 18763289 15 

  21 C F G 21539433 21542349 2 0 21039433 22042349 9 

  22  43609456 NA 1 0 43109456 44109456 6 
 24  22090203 22552582 9 0 21590203 23052582 32 

  25  25896326 25897963 2 0 25396326 26397963 16 

LAM 1 C H 49441032 NA 1 0 48941032 49941032 22 

  2  29737934 29777141 17 7 29237934 30277141 33 

  2 A H 36322824 36633565 8 0 35822824 37133565 27 
 11  37530491 37555597 2 0 37030491 38055597 33 

  16  9221468 NA 1 0 8721468 9721468 10 

  17  46013130 46020667 3 0 45513130 46520667 10 

  18  26676637 NA 1 0 26176637 27176637 2 

  19 E 37272294 37328619 15 3 36772294 37828619 10 
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Table 3.7: Prioritization of the GWA results of the section A, B, C and D Welsh ponies based on fixed-sized regions (cont.) 

Trait Chr Summary Max_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

 LAM (cont.) 20  48609221 NA 1 0 48109221 49109221 15 

  23  4297964 4341498 5 0 3797964 4841498 8 

  27  4129106 NA 1 0 3629106 4629106 10 

  30  12607858 13128439 15 9 12107858 13628439 15 

 

Table 3.7: Prioritization of the GWA results of the section A, B, C and D Welsh ponies (n=238) based on fixed-sized regions.  To be considered 

an ROI, at least five SNP had to exceed the suggestive threshold (1.0e-05) with one SNP exceeding the threshold for genome-wide significance 

(5.98e-08).  Provided in the table is the base pair position of the lowest (Min_SNP) and highest (Max_SNP) SNP in the region, the min (Min_Region) 

and maximum (Max_Region) boundaries of the region based on a fixed value of 500Kb 5’ of the Min_SNP and 500Kb 3’ of the Max_SNP, as well 

as the number of SNPs per region which exceeded the suggestive (Sugg_SNPs) and genome-wide significance (Sign_SNPs) threshold. Total_Genes 

includes all protein-coding, pseudogenes, and RNA genes identified for the region based on EquCab3.  A black box in the summary column indicates 

the region did not meet the criteria to be considered an ROI and was not shared with another GWA cohort or trait.  Letters in the summary column 

represent: (A) region was shared with another Welsh pony cohort and at least one region was considered an ROI, (B) region was shared with the 

Morgans and at least one region was considered an ROI, (C) region was shared with another Welsh pony cohort but neither regions met the criteria 

for an ROI, (D)  region was shared with Morgan but neither regions met the criteria for an ROI, (E) region was shared with another trait in this 

cohort and at least one region was considered an ROI, (F) region was shared with another trait in this cohort but no regions met the criteria for an 

ROI, (G) region was shared across multiple traits in another cohort, (H) region was identified as shared across breeds on metanalysis and was 

considered an MA-ROI.  Highlighted chromosomes (Chr) indicate regions which were shared with several traits. 
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Table 3.8: Prioritization of the GWA results of the section A and B Welsh ponies based on fixed-sized regions 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

Insulin 4  4672416 NA 1 0 4172416 5172416 4 
 8 E 71911322 73187367 71 48 71411322 73687367 30 
 9 A 60513208 62048722 21 6 60013208 62548722 14 
 10  72007185 72019609 2 0 71507185 72519609 8 
 11  20890216 NA 1 0 20390216 21390216 53 
 14  44171754 NA 1 0 43671754 44671754 9 
 15 A H 5760603 NA 1 0 5260603 6260603 2 
 16  85072895 85226499 2 0 84572895 85726499 23 
 18  27406051 27434219 3 0 26906051 27934219 12 
 21  37151683 NA 1 0 36651683 37651683 4 

Insulin-OST 3 C 67827963 NA 1 0 67327963 68327963 15 
 6 C 15257536 NA 1 0 14757536 15757536 12 
 8 E 73418276 73458142 3 0 72918276 73958142 5 
 9  51694853 52360209 26 1 51194853 52860209 7 
 10 B C H 73415161 NA 1 0 72915161 73915161 6 
 23  33075103 NA 2 0 32575103 33575103 8 

Glucose 2  78104573 NA 1 0 77604573 78604573 13 
 4  91598735 91632300 3 0 91098735 92132300 6 
 5  60653615 61066511 3 1 60153615 61566511 5 
 8  89457249 90171577 19 3 88957249 90671577 5 
 14  6606837 6628311 4 3 6106837 7128311 13 
 17  79020897 79997119 21 4 78520897 80497119 33 
 29 A 22523122 23217070 6 5 22023122 23717070 22 
 31  7659497 7654406 3 0 7159497 8154406 7 

Glucose-OST 5 C 63447777 63549216 3 0 62947777 64049216 8 
 16  86361940 NA 1 1 85861940 86861940 6 
 28 A E H 34434081 34960948 5 1 33934081 35460948 32 
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Table 3.8: Prioritization of the GWA results of the section A and B Welsh ponies based on fixed-sized regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

NEFA 5  17682899 NA 1 0 17182899 18182899 12 
 6  74667806 74721945 4 0 74167806 75221945 61 
 7  5590146 NA 1 0 5090146 6090146 42 
 7 C 7744001 NA 1 0 7244001 8244001 8 
 7  90384141 90387298 2 0 89884141 90887298 9 
 9 A 48876850 50428786 66 10 48376850 50928786 29 
 14 C 33144705 33289979 13 0 32644705 33789979 8 
 18  21325941 22264264 2 0 20825941 22764264 10 
 20  31639261 NA 1 0 31139261 32139261 20 
 22 C 19009107 19028315 2 0 18509107 19528315 14 
 28 A E G 34865969 34877252 7 0 34365969 35377252 16 

TG 1  47645272 NA 1 0 47145272 48145272 1 
 2  98328483 NA 1 0 97828483 98828483 3 
 4  88686448 NA 1 0 88186448 89186448 12 
 7  26533379 26635921 7 1 26033379 27135921 26 
 9  73409149 73438018 4 0 72909149 73938018 11 
 20 C 56347955 NA 1 0 55847955 56847955 4 

Adiponectin 8  5894342 NA 1 0 5394342 6394342 20 
 18  39196722 NA 1 0 38696722 39696722 9 
 20  26633993 NA 1 0 26133993 27133993 41 
 22 C 37957795 NA 1 1 37457795 38457795 19 

Leptin 10 C H 872249 NA 1 0 372249 1372249 14 
 14 F 60295756 NA 1 0 59795756 60795756 6 
 17  5633648 NA 1 1 5133648 6133648 6 

ACTH 1 A 44284734 45133993 30 1 43784734 45633993 5 
 5  17101043 17252354 4 0 16601043 17752354 19 
 10 C H 79880592 80023665 2 1 79380592 80523665 27 
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Table 3.8: Prioritization of the GWA results of the section A and B Welsh ponies based on fixed-sized regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

ACTH (cont.) 11  58160240 NA 1 0 57660240 58660240 29 
 20  8331002 8355327 7 0 7831002 8855327 16 
 24 C G 38516095 39660384 23 0 38016095 40160384 34 

NH 1  9347701 NA 1 0 8847701 9847701 13 
 3  69624972 NA 1 0 69124972 70124972 6 
 4 A G 67618110 69482711 14 3 67118110 69982711 16 
 10 F 10827320 NA 1 0 10327320 11327320 47 
 14  73473354 NA 1 0 72973354 73973354 11 
 21 F 23990259 24995726 2 0 23490259 25495726 19 

GH 1  166271712 NA 1 0 165771712 166771712 7 
 10 F 11229405 NA 1 0 10729405 11729405 37 
 10  70502635 70536766 2 1 70002635 71036766 13 
 12  20064456 NA 1 0 19564456 20564456 19 
 17  27064422 NA 1 0 26564422 27564422 8 
 21 F 23776930 23991948 5 0 23276930 24491948 14 
 24  49764166 NA 1 0 49264166 50264166 0 
 22  23930066 NA 1 0 23430066 24430066 26 
 25  15030393 NA 1 0 14530393 15530393 13 

LAM 3  77977500 NA 1 0 77477500 78477500 21 
 8  45552432 NA 1 0 45052432 46052432 4 
 10  15374259 15988198 15 2 14874259 16488198 73 
 13  24882636 25740597 8 2 24382636 26240597 32 
 14 F 58930834 59667233 4 0 58430834 60167233 15 
 15 C H 50978261 51005138 3 1 50478261 51505138 3 
 16 C 66471008 66521264 2 0 65971008 67021264 9 
 18  15365144 NA 1 0 14865144 15865144 4 
 19  54249861 54263396 4 0 53749861 54763396 5 



109 
 

Table 3.8: Prioritization of the GWA results of the section A and B Welsh ponies based on fixed-sized regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

LAM (cont.) 20  43136147 43150142 3 0 42636147 43650142 39 

 

Table 3.8: Prioritization of the GWA results of the section A and B Welsh ponies (n=220) based on fixed-sized regions.  To be considered an 

ROI, at least five SNP had to exceed the suggestive threshold (1.0e-05) with one SNP exceeding the threshold for genome-wide significance (5.98e-

08).  Provided in the table is the base pair position of the lowest (Min_SNP) and highest (Max_SNP) SNP in the region, the min (Min_ROI) and 

maximum (Max_ROI) boundaries of the region based on a fixed value of 500Kb 5’ of the Min_SNP and 500Kb 3’ of the Max_SNP, as well as the 

number of SNPs per region which exceeded the suggestive (Sugg_SNPs) and genome-wide significance (Sign_SNPs) threshold. The total number 

of genes includes all protein-coding genes, pseudogenes, and RNA genes identified for region based on EquCab3.  A black box in the summary 

column indicates the region did not meet the criteria to be considered an ROI and was not shared with another GWA cohort or trait.  Letters in the 

summary column represent: (A) region was shared with another Welsh pony cohort GWA and at least one region was considered an ROI, (B) region 

was shared with the Morgan GWA and at least one region was considered an ROI, (C) region was shared with another Welsh pony cohort GWA but 

no regions met the criteria for an ROI, (D)  region was shared with Morgan GWA but no regions met the criteria for an ROI, (E) region was shared 

with another trait in this GWA cohort and at least one region was considered an ROI, (F) region was shared with another trait in this GWA cohort 

but no regions met the criteria for an ROI, (G) region was shared across multiple traits in another GWA cohort, (H) region was identified as shared 

across breeds on metanalysis and was considered a MA-ROI.  Highlighted chromosomes (Chr) indicate regions which were shared with several 

traits. 
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Table 3.9: High Priority Regions Welsh ponies based on fixed-sized regions 

Trait Chr Min_Region Max_Region Protein_Coding Pseudogenes RNA_Genes Total_Genes 

Insulin 5 40132818 42395313 67 0 9 76 
 8 71411322 73687367 16 0 14 30 
 15 5248638 6640956 0 0 2 2 
 24 28080621 29556428 0 0 6 6 

Insulin-OST 8 72918276 73958142 1 0 4 5 
 10 72834761 73917042 5 1 0 6 
 28 38885975 39962810 42 0 2 44 

Glucose-OST 28 33934081 35460948 26 0 6 32 

NEFA 9 48187570 50801924 19 0 13 32 
 28 34277499 35988520 34 0 9 43 

Adiponectin 18 59790699 60893507 8 0 4 12 

Leptin 7 67455613 68464668 4 0 0 4 
 10 366333 1384264 2 0 12 14 
 21 22444751 23522779 2 0 5 7 

ACTH 1 69766479 71332972 10 0 11 21 
 3 43573772 44605888 2 1 3 6 
 10 55158306 56577011 2 0 1 3 
 10 79380592 80523665 20 0 7 27 
 19 37142432 38142432 7 0 1 8 
 20 59931850 60931850 0 0 0 0 

NH 4 68618549 70214717 5 0 2 7 
 4 82694842 86046563 47 1 19 67 
 7 92733594 94128623 2 0 5 7 
 9 33413440 36308721 6 0 7 13 
 11 18550799 19740093 51 1 3 55 
 14 63236228 64334285 2 0 5 7 
 20 40161395 41566022 14 0 11 25 
 20 60332063 62075820 1 0 2 3 
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Table 3.9: High Priority Regions Welsh ponies based on fixed-sized regions (cont.) 

Trait Chr Min_Region Max_Region Protein_Coding Pseudogenes RNA_Genes Total_Genes 

NH (cont.) 21 20312917 22617426 4 0 19 23 
 24 33296794 35972785 26 0 3 29 

GH 1 131703667 134211337 17 0 8 25 
 4 68736860 70160028 5 0 1 6 
 4 83544345 85997218 39 1 17 57 
 7 92733594 94080126 2 0 4 6 
 11 18327291 19740093 55 1 3 59 
 19 30783482 31945588 4 0 0 4 
 20 60435600 62288330 1 0 2 3 
 20 64231849 65361251 3 0 3 6 
 22 40533715 41565262 1 0 4 5 

LAM 1 48941032 49941032 6 0 16 22 
 2 35623836 37133565 20 0 7 27 
 15 50478261 51505138 2 0 1 3 
 19 36772294 37828619 10 0 0 10 
 19 59385237 62349890 17 1 6 24 
 20 61518962 62585163 2 0 2 4 
 22 3051367 4051367 5 0 5 10 
 28 9961982 11166731 4 0 1 5 

Total    618 7 265 890 
        

Medium Priority Regions Welsh ponies based on fixed-sized regions 

Trait Chr Min_Region Max_Region Protein_Coding Pseudogenes RNA_Genes Total_Genes 

Insulin 6 82085066 84326234 11 0 15 26 
 9 60013208 62548722 4 0 10 14 
 15 53581224 55059632 7 0 12 19 
 23 45584858 47452228 1 0 5 6 

Insulin-OST 9 51194853 52860209 4 0 3 7 
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Table 3.9: Medium Priority Regions Welsh ponies based on fixed-sized regions (cont.) 

Trait Chr Min_Region Max_Region Protein_Coding Pseudogenes RNA_Genes Total_Genes 

Glucose 8 88957249 90671577 2 0 3 5 

Glucose (cont.) 17 78520897 80497119 21 0 12 33 
 29 22023122 23717070 16 0 6 22 

Glucose-OST 4 39650197 40852671 6 0 6 12 

TG 7 26033379 27135921 24 0 2 26 

Adiponectin 1 175282149 177572407 12 0 11 23 

Leptin 1 71870796 73660541 9 0 3 12 
 6 1848093 2876386 2 0 1 3 

ACTH 1 43784734 45633993 2 0 3 5 
 5 16369826 17849383 19 0 6 25 

NH 4 79198145 80890074 14 0 8 22 
 15 72707370 73838081 7 0 6 13 
 17 36298348 37356368 1 0 4 5 
 21 6164894 7335706 4 0 7 11 

GH 4 73831018 76980368 13 0 12 25 
 4 79307650 80890074 14 0 8 22 
 11 14997051 16748131 34 0 6 40 
 13 735274 1031380 6 0 2 8 
 15 14562753 16156836 15 0 9 24 
 16 26603995 28731661 14 0 3 17 
 18 74558371 76575236 26 0 5 31 
 18 79891110 81550756 13 0 12 25 
 20 29641925 30949510 45 0 8 53 

LAM 2 29237934 30277141 30 0 3 33 
 10 14874259 16488198 64 0 9 73 
 13 24382636 26240597 29 0 3 32 
 19 38625743 40126653 23 0 1 24 
 30 12107858 13628439 7 0 8 15 
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Table 3.9: Medium Priority Regions Welsh ponies based on fixed-sized regions (cont.) 

Trait Chr Min_Region Max_Region Protein_Coding Pseudogenes RNA_Genes Total_Genes 

LAM (cont.) 31 10111327 11009324 4 0 4 8 

Total    503 0 216 719 
        

Low Priority Regions Welsh ponies based on fixed-sized regions 

Trait Chr Min_Region Max_Region Protein_Coding Pseudogenes RNA_Genes Total_Genes 

Insulin 28 38043945 39043945 18 0 5 23 

Adiponectin 28 40552952 41552952 14 0 4 18 

Leptin 4 47514169 48531048 3 0 4 7 
 14 59795756 60795756 5 0 1 6 
 28 40004716 41004716 17 0 6 23 

NH 1 43898249 44898249 1 0 1 2 
 6 519810 1533178 6 0 2 8 
 10 10327320 11327320 42 2 3 47 
 20 29660893 30660893 36 0 6 42 
 21 23490259 25495726 16 0 3 19 

GH 4 46293329 48351529 3 0 7 10 
 6 519810 1654034 6 0 3 9 
 10 10729405 11729405 34 0 3 37 
 21 21039433 22042349 3 0 6 9 
 21 23276930 24491948 12 0 2 14 

LAM 14 58430834 60167233 9 0 6 15 

Total    225 2 62 289 
 

Table 3.9: Final prioritization of the GWA results of the Welsh pony cohorts based on fixed-sized regions.  Regions were categorized as high 

priority (regions found on metanalysis or was shared with another trait and considered an ROI), medium priority (region was identified as an ROI 

in at least one GWA), or low priority (region was shared with across traits but region was not an ROI).  Final region boundaries of the region were 

defined as 500Kb 5’ of the lowest SNP (Min_ROI) and 500Kb 3’ of the highest (Max_ROI) SNP across relevant GWA data.  The total number of 

genes includes all protein-coding genes, pseudogenes, and RNA genes identified for region based on EquCab3.  Shared regions across prioritized 

traits are indicated by highlighted chromosomes.  
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Table 3.10: Prioritization of the GWA results of Morgan horses based on fixed-sized regions 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

Insulin 2  117366086 117410894 5 1 116866086 117910894 9 
 3  115316619 115326166 4 0 114816619 115826166 12 
 4  97370223 NA 1 0 96870223 97870223 30 
 5  88722709 NA 2 0 88222709 89222709 6 
 8  36946690 NA 1 0 36446690 37446690 13 
 8  62414695 62422169 3 0 61914695 62922169 5 
 10  54997568 55022644 3 0 54497568 55522644 1 
 18  38197723 NA 1 0 37697723 38697723 7 
 19  20841248 NA 1 0 20341248 21341248 17 
 20 F 4635861 4702640 7 0 4135861 5202640 16 
 24 F H 21134897 NA 1 0 20634897 21634897 14 
 26  39653507 NA 1 0 39153507 40153507 22 

Insulin-OST 2  22468309 22541921 4 1 21968309 23041921 16 
 2  51548258 51661415 7 0 51048258 52161415 33 
 4 E 28373202 NA 1 0 27873202 28873202 2 
 4  57780431 57786154 2 0 57280431 58286154 15 
 6  32931767 33694226 2 0 32431767 34194226 30 
 8  10116471 NA 1 0 9616471 10616471 17 
 10 B H 71996093 73613162 50 5 71496093 74113162 17 
 11 F 18848207 19009809 7 0 18348207 19509809 47 
 20  51914168 NA 1 0 51414168 52414168 22 
 21  20781491 NA 1 0 20281491 21281491 12 

Glucose 4 E H 17981325 18477651 33 11 17481325 18977651 9 
 8 H 11530408 12159746 5 1 11030408 12659746 18 
 16  42711571 NA 1 0 42211571 43211571 15 
 28  36615983 NA 1 0 36115983 37115983 34 
 29  9494870 NA 1 0 8994870 9994870 14 
 31  21504871 NA 1 0 21004871 22004871 9 
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Table 3.10: Prioritization of the GWA results of Morgan horses based on fixed-sized regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

Glucose-OST 2  62607747 NA 1 0 62107747 63107747 11 

  3 H 56674808 58220254 85 53 56174808 58720254 19 
 4 E H 27505119 28710128 39 4 27005119 29210128 8 
 14  28998387 29000329 2 0 28498387 29500329 24 
 25  18872032 NA 1 0 18372032 19372032 23 
 26  22407530 23379414 23 2 21907530 23879414 6 

NEFA 1  166669064 166888483 3 0 166169064 167388483 8 
 1 H 185892360 186617146 25 15 185392360 187117146 37 
 2  106012533 106052266 6 1 105512533 106552266 16 
 7  86986401 87004808 3 0 86486401 87504808 4 
 9  76549280 76571642 3 0 76049280 77071642 13 
 15  66056425 NA 1 0 65556425 66556425 12 
 17 H 13427110 14189583 14 1 12927110 14689583 6 
 18  7685942 9565563 44 0 7185942 10065563 18 
 19  48235446 NA 1 0 47735446 48735446 21 
 24 F H 20381260 20888104 2 1 19881260 21388104 32 
 24  45325106 45675218 5 0 44825106 46175218 28 
 30  6239856 6258423 5 0 5739856 6758423 9 
 30 H 20974703 21044590 11 4 20474703 21544590 3 

TG 1  126407798 127401777 6 0 125907798 127901777 32 
 10  65383517 NA 1 0 64883517 65883517 6 
 20  52368013 52589211 4 1 51868013 53089211 9 
 21  49201984 49202284 2 0 48701984 49702284 2 

Adiponectin 1  129650721 129653375 2 0 129150721 130153375 18 
 1  138037003 NA 1 0 137537003 138537003 8 
 2 H 16747148 17739125 38 27 16247148 18239125 50 
 4 H 36557672 38544490 54 4 36057672 39044490 35 
 6 H 32601529 32727370 19 1 32101529 33227370 15 
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Table 3.10: Prioritization of the GWA results of Morgan horses based on fixed-sized regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

Adiponectin (cont) 6 H 67997807 69847785 68 6 67497807 70347785 82 
 7  21524454 21986901 14 0 21024454 22486901 26 
 7  32963159 32963459 2 0 32463159 33463459 37 
 8  3347264 3419299 6 0 2847264 3919299 26 
 15  21830373 21834175 2 0 21330373 22334175 4 
 15  66865469 66893151 4 0 66365469 67393151 8 
 18 F H 41448414 NA 1 1 40948414 41948414 10 
 18  49705278 49893633 7 0 49205278 50393633 28 
 19  25833383 25859655 2 0 25333383 26359655 14 
 20 F H 3734902 3954772 12 0 3234902 4454772 16 
 20  1882774 NA 1 0 1382774 2382774 11 
 21  49478363 NA 1 0 48978363 49978363 1 

Leptin 1  130957068 131062691 3 0 130457068 131562691 11 
 4 E 52373692 52614368 22 0 51873692 53114368 14 
 6  38446793 NA 1 0 37946793 38946793 21 
 8  8682147 NA 1 0 8182147 9182147 37 
 19 H 51360775 53132722 57 27 50860775 53632722 26 
 21  16547954 16608200 3 0 16047954 17108200 8 
 24 H 27275709 29038412 65 14 26775709 29538412 10 
 25  27438558 27907420 14 2 26938558 28407420 31 

ACTH 1 E H 83546191 83734040 17 4 83046191 84234040 23 
 3 D H 43335201 44116411 13 0 42835201 44616411 10 
 3 H 103056163 103438726 49 34 102556163 103938726 8 
 5 H 25785666 27061038 32 10 25285666 27561038 26 
 10  67992633 67997136 2 0 67492633 68497136 12 
 10  70528773 NA 1 0 70028773 71028773 12 
 11 F 18728679 18904099 4 0 18228679 19404099 44 
 11  52897545 53669056 32 0 52397545 54169056 24 
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Table 3.10: Prioritization of the GWA results of Morgan horses based on fixed-sized regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

ACTH (cont.) 13  25806289 NA 1 0 25306289 26306289 15 
 16  31200001 NA 1 0 30700001 31700001 13 
 18 F 41392781 NA 1 0 40892781 41892781 10 
 20  29056288 NA 1 0 28556288 29556288 45 
 21  11112604 NA 1 0 10612604 11612604 11 
 21  24436227 24439739 3 0 23936227 24939739 12 
 25  13299542 NA 1 0 12799542 13799542 15 
 25  14989527 NA 1 0 14489527 15489527 13 
 31  16965044 17737242 4 0 16465044 18237242 30 

NH 1 F 78493587 79782621 37 0 77993587 80282621 20 
 1 E 82958480 83232130 10 0 82458480 83732130 15 
 2  93824111 93833011 2 0 93324111 94333011 3 
 4 E H 52076906 53659651 149 110 51576906 54159651 22 
 5  59796357 60233277 10 0 59296357 60733277 7 
 5  65804297 65824216 3 0 65304297 66324216 3 
 6 H 64502443 65350057 44 12 64002443 65850057 17 
 8  29756282 NA 1 0 29256282 30256282 7 
 9  49062306 49078134 2 0 48562306 49578134 8 
 14  74532493 NA 1 0 74032493 75032493 9 
 18  2306238 NA 1 0 1806238 2806238 7 
 19 H 1188889 1197320 3 2 688889 1697320 10 
 19 H 34421059 36247260 102 23 33921059 36747260 48 
 19  46479290 47156982 5 1 45979290 47656982 25 
 21  4745903 NA 1 0 4245903 5245903 31 
 24  42026470 42450741 9 1 41526470 42950741 23 

GH 1 F 79175507 79234421 5 0 78675507 79734421 9 
 1  109778420 109819993 4 0 109278420 110319993 13 
 1 H 122383349 123036781 71 31 121883349 123536781 20 
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Table 3.10: Prioritization of the GWA results of Morgan horses based on fixed-sized regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

GH (cont.) 2  85183513 86093522 21 10 84683513 86593522 14 
 4  3032922 NA 1 1 2532922 3532922 7 
 6 F 3139850 3453652 2 0 2639850 3953652 10 
 6  6272129 6335115 8 0 5772129 6835115 27 
 6  15729023 16202020 8 0 15229023 16702020 16 
 7  26684853 26701040 6 0 26184853 27201040 28 
 8  63557829 NA 1 0 63057829 64057829 9 
 17 H 32020513 33031579 39 2 31520513 33531579 6 
 18  2423391 NA 1 0 1923391 2923391 9 
 22  45719751 48733979 2 0 45219751 49233979 70 
 29  19108245 19432974 7 2 18608245 19932974 15 

LAM 2  66192812 NA 1 1 65692812 66692812 11 
 3  3294278 NA 1 0 2794278 3794278 10 
 4 E H 17509325 19295909 52 4 17009325 19795909 18 
 6 F 3466933 NA 1 0 2966933 3966933 8 
 6  79661858 NA 1 0 79161858 80161858 4 
 8  59199626 60121756 24 0 58699626 60621756 21 
 12 H 33127411 34414133 53 27 32627411 34914133 54 
 14  66311023 66688404 15 0 65811023 67188404 7 
 14 H 88975206 90135630 48 9 88475206 90635630 37 
 16  64556111 NA 1 0 64056111 65056111 8 
 16  74667638 NA 1 0 74167638 75167638 21 
 18 H 31710749 33317633 65 33 31210749 33817633 18 
 19 H 30133826 NA 51 3 29633826 30633826 6 
 22 B H 3616445 4853827 75 45 3116445 5353827 21 
 22  13852015 NA 1 0 13352015 14352015 11 
 22  23806850 NA 1 0 23306850 24306850 25 
 23 H 11116499 12515439 51 46 10616499 13015439 19 
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Table 3.10: Prioritization of the GWA results of Morgan horses based on fixed-sized regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

LAM (cont.) 31  6804894 NA 1 0 6304894 7304894 3 

 

Table 3.10: Prioritization of the GWA results of Morgan horses based on fixed-sized regions (n=296).  To be considered an ROI, at least five 

SNP had to exceed the suggestive threshold (1.0e-05) with one SNP exceeding the threshold for genome-wide significance (5.98e-08).  Provided in 

the table is the base pair position of the lowest (Min_SNP) and highest (Max_SNP) SNP in the region, the min (Min_ROI) and maximum (Max_ROI) 

boundaries of the region based on a fixed value of 500Kb 5’ of the Min_SNP and 500Kb 3’ of the Max_SNP, as well as the number of SNPs per 

region which exceeded the suggestive (Sugg_SNPs) and genome-wide significance (Sign_SNPs) threshold. The total number of genes includes all 

protein-coding genes, pseudogenes, and RNA genes identified for region based on EquCab3.  A black box in the summary column indicates the 

region did not meet the criteria to be considered an ROI and was not shared with one or more Welsh pony cohorts or trait.  Letters in the summary 

column represent: (B) region was shared with one or more Welsh pony GWA cohorts and at least one region was considered an ROI, (D)  region 

was shared with one or more Welsh pony GWA cohort but no regions met the criteria for an ROI, (E) region was shared with another trait in the 

Morgan GWA and at least one region was considered an ROI, (F) region was shared with another trait in the Morgan GWA but no regions met the 

criteria for an ROI, (H) region was identified as shared across breeds on metanalysis and was considered a MA-ROI.  Highlighted chromosomes 

(Chr) indicate regions which were shared with several traits. 
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Table 3.11: High Priority Regions Morgan horses based on fixed-sized regions 

Trait Chr Min_Region Max_Region Protein_Coding Pseudogenes RNA_Genes Total_Genes 

Insulin 24 20634897 21634897 11 0 3 14 

Insulin-OST 4 27873202 28873202 2 0 0 2 
 10 71496093 74113162 11 1 5 17 

Glucose 4 17481325 18977651 6 0 3 9 
 8 11030408 12659746 9 0 9 18 

Glucose-OST 3 56174808 58720254 12 0 7 19 
 4 27005119 29210128 5 0 3 8 

NEFA 1 185392360 187117146 24 0 13 37 
 17 12927110 14689583 4 0 2 6 
 24 19881260 21388104 28 0 4 32 
 30 20474703 21544590 1 0 2 3 

Adiponectin 2 16247148 18239125 26 1 23 50 
 4 36057672 39044490 28 0 7 35 
 6 32101529 33227370 9 0 6 15 
 6 67497807 70347785 77 0 5 82 
 18 40948414 41948414 4 0 6 10 
 20 3234902 4454772 12 0 4 16 

Leptin 4 51873692 53114368 6 0 8 14 
 19 50860775 53632722 13 0 13 26 
 24 26775709 29538412 0 0 10 10 

ACTH 1 83046191 84234040 17 1 5 23 
 3 42835201 44616411 2 1 7 10 
 3 102556163 103938726 3 0 5 8 
 5 25285666 27561038 12 0 14 26 

NH 1 82458480 83732130 10 0 5 15 
 4 51576906 54159651 10 0 12 22 
 6 64002443 65850057 9 0 8 17 
 19 688889 1697320 5 1 4 10 



121 
 

Table 3.11: High Priority Regions Morgan horses based on fixed-sized regions (cont.) 

Trait Chr Min_Region Max_Region Protein_Coding Pseudogenes RNA_Genes Total_Genes 

NH (cont.) 19 33921059 36747260 40 0 8 48 

GH 1 121883349 123536781 19 0 1 20 
 17 31520513 33531579 2 1 3 6 

LAM 4 17009325 19795909 8 1 9 18 
 12 32627411 34914133 31 0 23 54 
 14 88475206 90635630 23 0 14 37 
 18 31210749 33817633 11 0 7 18 
 19 29633826 30633826 6 0 0 6 
 22 3116445 5353827 12 0 9 21 
 23 10616499 13015439 4 0 15 19 

Total    512 7 282 801 
        

Medium Priority Regions Morgan horses based on fixed-sized regions 

Trait Chr Min_Region Max_Region Protein_Coding Pseudogenes RNA_Genes Total_Genes 

Insulin 2 116866086 117910894 6 0 3 9 

Glucose-OST 26 21907530 23879414 0 0 6 6 

NEFA 2 105512533 106552266 13 0 3 16 

Leptin 25 26938558 28407420 29 1 1 31 

NH 19 45979290 47656982 22 0 3 25 
 24 41526470 42950741 15 0 8 23 

GH 2 84683513 86593522 8 0 6 14 
 29 18608245 19932974 13 0 2 15 

Total    106 1 32 139 
        

Low Priority Regions Morgan horses based on fixed-sized regions 

Trait Chr Min_Region Max_Region Protein_Coding Pseudogenes RNA_Genes Total_Genes 

Insulin 20 4135861 5202640 9 0 7 16 

Insulin-OST 11 18348207 19509809 44 1 2 47 
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Table 3.11: Low Priority Regions Morgan horses based on fixed-sized regions (cont) 

Trait Chr Min_Region Max_Region Protein_Coding Pseudogenes RNA_Genes Total_Genes 

ACTH 11 18228679 19404099 42 1 1 44 
 18 40892781 41892781 4 0 6 10 

NH 1 77993587 80282621 8 0 12 20 

GH 1 78675507 79734421 5 0 4 9 
 6 2639850 3953652 4 0 6 10 

LAM 6 2966933 3966933 4 0 4 8 

Total    120 2 42 164 

 

Table 3.11: Final prioritization of the GWA results for the Morgan horses based on fixed-sized regions.  Regions were categorized as high 

priority (regions found on metanalysis or was shared with another trait and considered an ROI), medium priority (region was identified as an ROI 

in at least one GWA), or low priority (region was shared with across traits but region was not an ROI).  Final region boundaries of the region were 

defined as 500Kb 5’ of the lowest SNP (Min_ROI) and 500Kb 3’ of the highest (Max_ROI) SNP across relevant GWA data.  The total number of 

genes includes all protein-coding genes, pseudogenes, and RNA genes identified for region based on EquCab3.  Shared regions across prioritized 

traits are indicated by highlighted chromosomes. 
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Table 3.12: Prioritization of the GWA results of the full Welsh pony cohort based on LD-defined regions 

Trait Chr Summary Min_SNP Max_SN Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

Insulin 1  46119989 NA 1 0 46069989 46169989 0 

  5 E H 40632818 41895313 86 4 35409104 44806458 306 

  6 A 82238815 82729921 11 0 81685572 83066256 17 

  8 A 75410291 75771110 6 0 74768024 76080554 13 

  9  83981022 84014912 6 0 83924785 84136547 11 

  13  14234078 14849603 7 0 12830836 16025943 19 

  13  37700109 37723843 3 1 37642362 37732522 0 

  14  31226680 31583686 4 0 31004830 31595632 5 

  15 A H 5748638 6140956 28 5 5748377 6612684 1 

  15  54081224 54559632 5 1 54076168 54634446 5 

  19  9606463 9637331 4 3 9604680 9680011 0 

  23  46084858 46952228 6 3 45940500 46233500 2 

  24 H 28580621 29056428 15 7 28451012 29887250 6 

  34  38174280 NA 1 0 38124280 38224280 0 

  28  38543945 NA 1 0 38493945 38593945 4 

Insulin-OST 1  119102659 119140428 6 0 117422338 119310838 17 

  8 C 73418239 73458142 4 0 73223448 73648399 2 

  9  27879884 NA 1 0 27829884 27929884 1 

  9  28468074 NA 1 0 28418074 28518074 3 

  20  59181583 59182258 2 0 59165490 59819879 5 

  28 H 39385975 39462810 4 2 39322188 39488807 9 

  31  8856537 8855069 2 0 8487501 9386141 16 

Glucose 3  32093888 32098312 4 0 32038651 32100834 2 

  8 C 84913969 85008392 2 2 84907297 85013865 0 
 15 H 83778178 NA 1 1 83728178 83828178 2 
 16  86563618 86743699 2 0 86419997 87063084 3 
 22  42270349 42320092 2 0 42222066 42357143 2 
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Table 3.12: Prioritization of the GWA results of the full Welsh pony cohort based on LD-defined regions (cont.) 

Trait Chr Summary Min_SNP Max_SN Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

Glucose (cont.) 28  14969841 15045427 2 1 14968044 15079576 0 
 28  33576312 NA 1 0 33526312 33626312 1 

  29 A 22555245 22557916 2 0 22420947 22764383 9 

Glucose-OST 1  185361795 NA 1 0 185311795 185411795 2 

  4  8502301 8522723 4 0 8380352 8750255 5 

  4  40150197 40352671 11 4 40143954 40782593 9 

  7  76975314 NA 1 0 76925314 77025314 5 

  23 C 10182647 10226427 4 2 9741040 10226824 2 

NEFA 4  14831152 14840371 4 0 14262252 15798579 40 

  6  68206430 68512033 2 0 67662851 69169794 39 

  6 C 77102911 NA 1 0 77052911 77152911 1 

  8  11128642 11158885 2 0 10809267 11158996 5 

  8  69737476 NA 1 0 69687476 69787476 1 

  19 H 1055718 NA 1 1 1005718 1105718 2 

  20  8830210 NA 1 0 8780210 8880210 1 

  20  26078001 NA 1 0 26028001 26128001 15 

  22 C 19009107 NA 1 0 18959107 19059107 1 

  31  13902942 NA 1 0 13852942 13952942 0 

TG 1  153409995 153700953 2 0 152034119 154351987 11 

  4  93870436 NA 1 0 93820436 93920436 3 

  12 C 35927778 35956541 4 1 35859835 36313678 13 

Adiponectin 17  61546409 61552964 3 NA 61267646 61749127 7 

  18 H 60290699 60393507 10 5 60060215 61349045 13 

Leptin 1  72370796 73160541 31 1 71902092 78569116 57 

  5 E 43015591 43412260 24 NA 39751797 50431769 239 
 7 A H 67955613 67964668 5 4 67910114 68117086 1 

  10 C H 866333 884264 3 1 692055 956048 4 
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Table 3.12: Prioritization of the GWA results of the full Welsh pony cohort based on LD-defined regions (cont.) 

Trait Chr Summary Min_SNP Max_SN Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

Leptin (cont.)  21 E H NA NA 2 1 22940681 23516697 1 

  26  11291558 NA 1 NA 11241558 11341558 1 
 28  36456338 36459615 3 NA 36070224 36467537 15 

ACTH 1 H 70266479 70832972 20 1 69558737 70960589 23 

  5 A 16869826 17349383 30 4 16534115 18234765 26 

  10 H 55658306 56077011 2 1 55060512 56255134 2 

  10 C H 80023665 NA 1 0 79973665 80073665 6 

  18  4529063 NA 1 0 4479063 4579063 1 

  19 C 24243287 24246621 2 0 24226051 24312494 6 

  19  33315383 33342063 4 0 33290960 33465193 4 

  20  63684506 NA 1 0 63634506 63734506 1 

  21  264658 2467359 12 0 -566031 5646555 188 

  25  26250218 NA 1 0 26200218 26300218 5 

NH 1  91537471 91969415 11 0 91257387 92299877 13 

  4  62017772 62060721 2 2 61306607 62232293 14 

  4 A F G 68114618 68576476 2 0 67588953 69039376 6 

  4  77390519 NA 1 0 77340519 77440519 1 

  4  78314683 78699729 3 1 77300209 79809543 26 
 4 A 79698145 80390074 14 7 77298241 81186565 40 

  6 F 1019810 1033178 3 0 903258 1451922 2 

  7 E 93233594 93628623 10 6 93176991 93628686 1 
 8 C 64510733 64609130 2 1 64277141 64856816 5 

  8  88125499 88327659 2 1 87999710 88892517 5 

  9 H 33913440 35808721 39 9 32632235 37587269 18 
 11 E H 19050799 19240093 11 8 18342117 19876247 60 

  12  7654801 7676262 2 0 7314424 7786773 1 

  12  15601877 NA 1 0 15551877 15651877 1 



126 
 

Table 3.12: Prioritization of the GWA results of the full Welsh pony cohort based on LD-defined regions (cont.) 

Trait Chr Summary Min_SNP Max_SN Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

NH (cont.)   14 H 63736228 63834285 7 3 63702522 63847210 2 

  20 H 40661395 41066022 10 4 40244007 41210876 14 

  20 H 60832063 61575820 11 2 60723014 61735694 2 
 21 A E H 20812917 22117426 22 13 19515280 23543447 33 

  24  21429112 21604747 3 0 20723403 21637158 13 

  24 H 33796794 35472785 62 33 31843480 36758215 57 

  27  14461113 14463955 2 NA 14185003 14663824 6 

  29  33232105 33233161 2 NA 32443212 34147999 11 

GH 1 C 120905261 NA 1 0 120855261 120955261 3 

  1 H 132203667 133711337 30 14 132184772 133716124 16 

  1  150735268 NA 1 0 150685268 150785268 1 

  4  67153317 67163513 2 0 67079978 67434976 4 

  4 F 68576476 NA 1 0 68526476 68626476 1 

  4 A H 84285316 85497218 63 33 81804323 85719241 69 

  6 F 1019810 1154034 4 3 903258 1734708 5 
 7 E 93233594 93580126 7 4 93191676 93628672 1 

  9  55626969 55685330 2 0 55565458 56169206 9 

  10  3673095 3673552 2 0 3671537 3801071 0 

  10  32529022 32559811 4 0 32333094 33276546 2 
 11 E H 18827291 19240093 14 9 18613895 19317536 26 

  12  25641997 NA 1 NA 25591997 25691997 2 

  15  15062753 15656836 12 4 13131438 16662645 55 

  19 H 31283482 31445588 9 1 31204596 31799125 0 
 20 A 30141925 30449510 12 4 29486630 30976763 62 

  20 H 64731849 64861251 12 7 64722427 65336095 4 

  21 E H 22007711 NA 2 0 21957711 22057711 1 

  22 H 41033715 41065262 4 4 41032889 41066045 0 
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Table 3.12: Prioritization of the GWA results of the full Welsh pony cohort based on on LD-defined regions (cont.) 

Trait Chr Summary Min_SNP Max_SN Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

GH (cont.)  24  18072215 18172937 4 0 18024756 18508703 2 

  25 H 19485041 NA 1 1 19435041 19535041 4 

  31  17898824 17912707 4 0 17847583 18148648 2 

  31  18700158 18819670 4 0 18685559 18858145 1 

LAM 1 C H 49441032 NA 1 1 49391032 49491032 1 

  2 A H 36123836 36633565 14 11 35909634 36665473 13 

  5  79658109 NA 1 0 79608109 79708109 1 

  7  97437120 97439429 2 0 97415193 97521397 0 

  10  64224504 64281425 2 0 64224315 64303766 1 

  13  27143211 27035221 5 0 27081260 27274065 2 

  14  52578019 52579053 2 0 52549348 52667915 2 

  15 C H 50978261 51005138 3 1 50973563 51006110 0 

 15  64654206 64769743 12 0 64265615 65947460 16 

  16  35123235 35595543 3 0 35116321 35769589 6 

  16 C 66694166 NA 1 0 66644166 66744166 1 

  19  39125743 39626653 11 1 37990377 39825664 27 

  19 H 59885237 61849890 78 35 57082025 62825378 59 
 20  62018962 62085163 4 3 61971048 62085845 1 

  22 D 3551367 NA 1 0 3501367 3601367 1 

  25  32816803 32852556 2 0 32681105 32892597 7 

  28 H 10461982 10666731 19 7 9990892 10844823 4 
 31  10611327 10509324 5 3 10611124 10918134 3 

 

Table 3.12: Prioritization of the GWA results of the full Welsh pony cohort (n=264) based on LD-defined regions.  To be considered an ROI, 

at least five SNP had to exceed the suggestive threshold (1.0e-05) with one SNP exceeding the threshold for genome-wide significance (5.98e-08).  

Provided in the table is the base pair position of the lowest (Min_SNP) and highest (Max_SNP) SNP in the region, the min (Min_Region) and 

maximum (Max_Region) boundaries of the region based on LD, as well as the number of SNPs per region which exceeded the suggestive 
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(Sugg_SNPs) and genome-wide significance (Sign_SNPs) threshold. Total_Genes includes all protein-coding genes, pseudogenes, and RNA genes 

identified for region based on EquCab3.  A black box in the summary column indicates the region did not meet the criteria to be considered an ROI 

and was not shared with another GWA cohort or trait.  Letters in the summary column represent: (A) region was shared with another Welsh pony 

cohort GWA and at least one region was considered an ROI, (B) region was shared with the Morgan GWA and at least one region was considered 

an ROI, (C) region was shared with another Welsh pony cohort GWA but no regions met the criteria for an ROI, (D)  region was shared with Morgan 

GWA but no regions met the criteria for an ROI, (E) region was shared with another trait in this GWA cohort and at least one region was considered 

an ROI, (F) region was shared with another trait in this GWA cohort but no regions met the criteria for an ROI, (G) region was shared across multiple 

traits in another GWA cohort, (H) region was identified as shared across breeds on metanalysis and was considered a MA-ROI.  Highlighted 

chromosomes (Chr) indicate regions which were shared with several traits. 
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Table 3.13: Prioritization of the GWA results of section A, B, C and D Welsh ponies based on LD-defined regions 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

Insulin 1  88317885 NA 1 0 88267885 88367885 0 

  4  16025941 16029966 4 0 15938986 16180572 4 

  6 A 82585066 83826234 32 2 80572788 83599194 37 

  9 A 61021946 61144885 13 3 58372873 61241976 19 

  12  859517 NA 1 0 809517 909517 2 

  12  5811391 5812573 3 0 5254445 6105807 3 

  17  11193396 11343933 4 0 10851587 11442936 3 

  18 E 79126354 79216656 3 1 78720858 79634082 6 

  21  34649027 NA 1 0 34599027 34699027 0 

  24  38174280 NA 1 0 38124280 38224280 2 

Insulin-OST 1 E 176823704 NA 1 0 176773704 176873704 1 

  1  181205641 NA 1 0 181155641 181255641 0 

  3  67119398 NA 1 0 67069398 67169398 2 

  5  89878763 NA 1 0 89828763 89928763 2 

  6 C 15257536 15267456 3 1 15328522 15802598 5 

  10 B C H 73334761 73417042 3 0 71967783 72438937 3 

  31  5253579 NA 1 0 5203579 5303579 2 

Glucose 2  88732913 88775982 2 0 87700669 88704605 7 

  4  57433023 57463516 2 1 56762597 57781825 21 

  8 C 84774486 84918226 5 0 81206774 81830595 2 

  8 A 92368897 NA 1 0 92318897 92418897 2 

  15  71112709 NA 1 0 71062709 71162709 2 

  19  8738837 8781089 2 0 6175910 6939325 4 

  29  4401376 4855454 4 1 3141136 3956266 3 

Glucose-OST 5 C 63041759 63549216 12 0 64707107 68397655 30 
 23 C 10217644 10226427 2 0 10729234 11001562 0 
 28  14969841 NA 1 0 14919841 15019841 0 
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Table 3.13: Prioritization of the GWA results of section A, B, C and D Welsh ponies based on LD-defined regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

Glucose-OST (cont) 28 A E G H 34960948 NA 1 1 34910948 35010948 4 

NEFA 6 C 77102911 NA 1 0 77052911 77152911 1 

  7 C 7744001 7858148 2 0 7084283 7235090 1 

  7  8657121 8718823 3 0 7794692 8979276 3 

  9 A 48687570 50301924 74 5 43402596 51140717 71 

  13  3866723 NA 1 0 3816723 3916723 2 

  14 C 33187338 NA 1 0 33137338 33237338 1 

  22 C 19009107 NA 1 0 18959107 19059107 1 

  28 A E G 34777499 35488520 25 6 32909542 35703535 76 

  31  9275456 8325401 9 0 9225456 9325456 2 

  32  21391267 21497776 2 0 20203883 21904415 0 

TG 7  28031826 28039745 2 0 27130249 27583217 6 

  12 C 35945816 35956541 2 0 31936287 32490177 17 

  17  17532266 NA 2 0 17482266 17582266 2 

  17  33912651 NA 1 0 33862651 33962651 1 

  20  56719186 56815453 4 1 53870768 56991611 21 

Adiponectin 1 E 175782149 177072407 32 1 171861236 178270042 49 

  7  75100837 NA 1 0 75050837 75150837 7 

  20  8415408 9139191 5 0 6054702 11308877 65 

  22 C 37875269 37957795 3 0 36564923 37148074 9 

  25  9125953 NA 1 0 9075953 9175953 1 

  28  41052952 NA 1 0 41002952 41102952 1 

Leptin 2  87434404 NA 1 0 87384404 87484404 1 
 4 F 48014169 48031048 6 0 47052514 48193459 6 

  6  2348093 2376386 6 1 488137 4012580 25 

  6  21686436 22141052 9 0 21323668 22378607 6 

  7 A H 67955613 67964668 2 0 65678376 65985348 2 
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Table 3.13: Prioritization of the GWA results of section A, B, C and D Welsh ponies based on LD-defined regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

Leptin (cont.)  8  87412707 NA 1 0 87362707 87462707 1 

  10 C H 857433 884264 4 0 809627 1068890 5 

  10  83363991 NA 1 0 83313991 83413991 1 

  10  84395615 NA 1 0 84345615 84445615 2 

  11  33592865 NA 1 0 33542865 33642865 7 

  12  25937470 25914980 2 0 22339448 2294098 0 

  13  7690179 NA 1 0 7640179 7740179 3 

  15  24814175 24816607 2 0 23820813 24351119 3 

  16  42665270 NA 1 0 42615270 42715270 1 

  26  11291558 11425566 4 1 10695805 10988327 1 

  28  40504716 NA 1 NA 40454716 40554716 0 

ACTH 1 A F 44391917 44627074 13 0 43064008 44872306 7 

  3 D 44073772 44105888 8 0 41547556 43484146 9 

  5 A 17101043 17252354 9 0 18357723 21333724 36 

  10 C H 78845710 NA 1 1 78795710 78895710 3 

  15  13711487 NA 1 0 13661487 13761487 1 

  19 C 24243287 24246621 2 0 21800444 22098695 7 

  19  37642432 NA 1 0 37592432 37692432 2 

  20 E 60431850 NA 3 0 60381850 60481850 0 

  24 C 39497717 NA 1 0 39447717 39547717 0 

  30  1302176 1304866 4 0 962895 1567967 8 

NH 1 F 44398249 NA 1 0 44348249 44448249 0 

  3  109783963 NA 1 0 109733963 109833963 1 

  4 A E G 69118549 69714717 17 14 68425678 69636837 6 
 4  72715285 73055056 2 0 72321830 72867956 2 

  4 C 76437287 77891737 17 0 73229449 79629933 56 

  4 E 83194842 85546563 54 38 83144842 83244842 1 
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Table 3.13: Prioritization of the GWA results of section A, B, C and D Welsh ponies based on LD-defined regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

 NH (cont.) 8 C 64510733 64548459 2 0 60856045 61415070 6 

  14  57777287 NA 1 0 57727287 57827287 1 

  15  44638315 NA 1 3 44588315 44688315 0 

  15  73207370 73338081 5 3 73033562 73478127 3 

  16  19756213 20195426 10 0 17609338 19833772 15 

  16  26012920 NA 1 0 25962920 26062920 0 

  17  36798348 36856368 9 9 36704887 37121452 0 

  18  68917978 NA 1 1 68867978 68967978 1 

  20 F 30160893 NA 1 1 30110893 30210893 1 

  21  6664894 6835706 5 2 5280993 6396786 8 

  21 A F H 20812917 21679286 4 0 20606675 21752563 9 

  24  8561717 11119679 17 0 4971965 15097475 125 

  24  30419181 30419482 2 0 30330777 30578714 0 

  26  13669849 NA 1 0 13619849 13719849 0 

  29  12571950 12620905 5 0 10813364 11907852 14 

  30  30980395 NA 1 0 30930395 31030395 5 

GH 1  73428660 73434597 2 0 72506297 72913313 1 

  1 C 120654637 120684527 5 0 119265228 119651584 9 

  4 F 46793329 47851529 10 0 47576773 47975728 4 
 4  52253860 NA 1 0 52203860 52303860 1 

  4  61808230 62195564 3 0 61460640 62542569 11 

  4 E 69236860 69660028 5 0 68425678 69636837 6 

  4  74331018 76480368 41 7 70026254 81648125 95 

  4  79807650 80390074 12 8 80015281 81132522 9 

  4 A E H 84044345 85375688 34 18 82570011 86366835 75 

  5  20984165 NA 1 0 20934165 21034165 2 

  9  75259988 75263736 2 1 73067974 73332751 3 
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Table 3.13: Prioritization of the GWA results of section A, B, C and D Welsh ponies based on LD-defined regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

GH (cont.)  10  51267938 NA 1 0 51217938 51317938 1 

  11  15497051 16248131 36 26 15414337 16451463 25 

  13  1235274 531380 29 19 4097503 6272661 18 

  14  5739617 6265883 11 0 6039980 7464225 18 

  15  85423316 NA 1 0 85373316 85473316 2 

  16  27103995 28231661 41 11 25105634 30681811 44 

  16  88165628 88202104 5 0 85453703 87408801 25 

  17  167021 NA 1 0 117021 217021 2 

  17  57101997 NA 1 0 57051997 57151997 2 

  18  70918093 NA 1 0 70868093 70968093 0 

  18  75058371 76075236 26 6 74790214 76353283 23 

  18 E 80391110 81050756 27 1 79527484 81467661 25 

  20 A F 30141925 30160893 3 1 28634038 30114993 64 

  20 E 60935600 61788330 8 1 59464566 61015217 3 

  21  18238312 18263289 2 0 17104955 18679882 20 

  21 F 21539433 21542349 2 0 20611963 21174919 6 

  22  43609456 NA 1 0 43559456 43659456 0 
 24  22090203 22552582 9 0 21281696 23226701 36 

  25  25896326 25897963 2 0 23582383 26321736 50 

LAM 1 C H 49441032 NA 1 0 49391032 49491032 1 

  2  29737934 29777141 17 7 29447761 29803535 8 

  2 A H 36322824 36633565 8 0 35880861 36496556 12 
 11  37530491 37555597 2 0 36920316 37335219 15 

  16  9221468 NA 1 0 9171468 9271468 1 

  17  46013130 46020667 3 0 46036409 46209083 3 

  18  26676637 NA 1 0 26626637 26726637 1 

  19  37272294 37328619 15 3 34513667 34812456 4 
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Table 3.13: Prioritization of the GWA results of section A, B, C and D Welsh ponies based on LD-defined regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

LAM (cont.)  20  48609221 NA 1 0 48559221 48659221 3 

  23  4297964 4341498 5 0 3933380 4310086 5 

  27  4129106 NA 1 0 4079106 4179106 1 

  30  12607858 13128439 15 9 11660801 12736188 12 
 

Table 3.13: Prioritization of the GWA results of section A, B, C and D Welsh ponies (n=238) based on LD-defined regions.  To be considered 

an ROI, at least five SNP had to exceed the suggestive threshold (1.0e-05) with one SNP exceeding the threshold for genome-wide significance 

(5.98e-08).  Provided in the table is the base pair position of the lowest (Min_SNP) and highest (Max_SNP) SNP in the region, the min (Min_Region) 

and maximum (Max_Region) boundaries of the region based on LD, as well as the number of SNPs per region which exceeded the suggestive 

(Sugg_SNPs) and genome-wide significance (Sign_SNPs) threshold. Total_Genes includes all protein-coding genes, pseudogenes, and RNA genes 

based on EquCab3. Black box in the summary column indicates the region did not meet the criteria to be considered an ROI and was not shared with 

another GWA cohort or trait.  Letters in the summary column represent: (A) region was shared with another Welsh pony cohort and at least one 

region was considered an ROI, (B) region was shared with the Morgans and at least one region was considered an ROI, (C) region was shared with 

another Welsh pony cohort but no regions met the criteria for an ROI, (D)  region was shared with Morgan but no regions met the criteria for an 

ROI, (E) region was shared with another trait in this cohort and at least one region was considered an ROI, (F) region was shared with another trait 

in this cohort but no regions met the criteria for an ROI, (G) region was shared across multiple traits in another cohort, (H) region was identified as 

shared across breeds on metanalysis and was considered a MA-ROI.  Highlighted chromosomes (Chr) indicate regions which were shared with 

several traits. 
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Table 3.14: Prioritization of the GWA results of section A and B Welsh ponies based on LD-defined regions 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

Insulin 4  4672416 NA 1 0 4622416 4722416 1 

  8 A E 71911322 73187367 71 48 69350844 75906595 55 

  9 A 60513208 62048722 21 6 60380309 63287617 19 

  10  72007185 72019609 2 0 71920915 72410422 5 

  11  20890216 NA 1 0 20840216 20940216 9 

  14  44171754 NA 1 0 44121754 44221754 2 

  15 A H 5760603 NA 1 0 5710603 5810603 2 

  16  85072895 85226499 2 0 84940660 85543835 12 

  18  27406051 27434219 3 0 27257163 27649509 10 

  21  37151683 NA 1 0 37101683 37201683 2 

Insulin-OST 3  67827963 NA 1 0 67777963 67877963 3 

  6 C 15257536 NA 1 0 15207536 15307536 2 

  8 C E 73418276 73458142 3 0 73173455 73699198 2 

  9  51694853 52360209 26 1 51519922 52222979 2 

  10 B C H 73415161 NA 1 0 73365161 73465161 2 

  23  33075103 NA 2 0 33025103 33125103 1 

Glucose 2  78104573 NA 1 0 78054573 78154573 0 

  4  91598735 91632300 3 0 91430847 91770165 2 

  5  60653615 61066511 3 1 58829349 61396408 8 

  8 A 89457249 90171577 19 3 86176351 93189207 41 

  14  6606837 6628311 4 3 6496358 6828698 4 

  17  79020897 79997119 21 4 78895931 80077759 22 

  29 A 22523122 23217070 6 5 22370951 22609138 5 

  31  7659497 7654406 3 0 7278750 7741436 2 

Glucose-OST 5 C 63447777 63549216 3 0 62823019 64472035 13 

  16  86361940 NA 1 1 86311940 86411940 1 
 28 A E G H 34434081 34960948 5 1 34271949 35138699 9 
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Table 3.14: Prioritization of the GWA results of section A and B Welsh ponies based on LD-defined regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

NEFA 5  17682899 NA 1 0 17632899 17732899 2 
 6  74667806 74721945 4 0 74462718 75137224 42 

  7  5590146 NA 1 0 5540146 5640146 5 

  7 C 7744001 NA 1 0 7694001 7794001 1 

  7  90384141 90387298 2 0 90103889 90535803 6 

  9 A 48876850 50428786 66 10 48031329 51265805 37 

  14 C 33144705 33289979 13 0 32851327 33404045 5 

  18  21325941 22264264 2 0 20477464 22315518 9 

  20  31639261 NA 1 0 31589261 31689261 2 

  22 C 19009107 19028315 2 0 17869740 19275273 17 

  28 A E G 34865969 34877252 7 0 34727198 35029308 5 

TG 1  47645272 NA 1 0 47595272 47695272 0 

  2  98328483 NA 1 0 98278483 98378483 1 

  4  88686448 NA 1 0 88636448 88736448 1 

  7  26533379 26635921 7 1 26358820 26960566 21 

  9  73409149 73438018 4 0 72531878 73855746 15 

  20  56347955 NA 1 0 56297955 56397955 1 

Adiponectin 8  5894342 NA 1 0 5844342 5944342 2 

  18  39196722 NA 1 0 39146722 39246722 1 

  20  26633993 NA 1 0 26583993 26683993 1 

  22 C 37957795 NA 1 1 37907795 38007795 1 

Leptin 10 C H 872249 NA 1 0 822249 922249 1 

  14  60295756 NA 1 0 60245756 60345756 1 

  17  5633648 NA 1 1 5583648 5683648 1 

ACTH 1 A 44284734 45133993 30 1 42944403 45232767 9 
 5  17101043 17252354 4 0 16484006 18102564 25 

  10 C H 79880592 80023665 2 1 79691144 80306613 25 
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Table 3.14: Prioritization of the GWA results of section A and B Welsh ponies based on LD-defined regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

ACTH (cont.)  11  58160240 NA 1 0 58110240 58210240 5 

  20  8331002 8355327 7 0 8092967 8599500 7 
 24 C 38516095 39660384 23 0 38361711 40099306 28 

NH 1  9347701 NA 1 0 9297701 9397701 1 

  3  69624972 NA 1 0 69574972 69674972 1 

  4 A 67618110 69482711 14 3 67130904 69873296 16 

  10  10827320 NA 1 0 10777320 10877320 3 

  14  73473354 NA 1 0 73423354 73523354 0 

  21 F 23990259 24995726 2 0 23600027 25046226 16 

GH 1  166271712 NA 1 0 166221712 166321712 1 

  10  11229405 NA 1 0 11179405 11279405 9 

  10  70502635 70536766 2 1 69524859 70587090 6 

  12  20064456 NA 1 0 20014456 20114456 1 

  17  27064422 NA 1 0 27014422 27114422 2 

  21 F 23776930 23991948 5 0 23171361 24411682 12 

  24  49764166 NA 1 0 49714166 49814166 0 

  22  23930066 NA 1 0 23880066 23980066 2 

  25  15030393 NA 1 0 14980393 15080393 2 

LAM 3  77977500 NA 1 0 77927500 78027500 3 

  8  45552432 NA 1 0 45502432 45602432 1 

  10  15374259 15988198 15 2 14730688 16165003 66 

  13  24882636 25740597 8 2 24242621 26399066 36 

  14  58930834 59667233 4 0 58326568 60185720 17 

  15 C H 50978261 51005138 3 1 50923563 51056110 0 
 16 C 66471008 66521264 2 0 66309711 66691345 5 

  18  15365144 NA 1 0 15315144 15415144 1 

  19  54249861 54263396 4 0 54026036 54315136 2 
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Table 3.14: Prioritization of the GWA results of section A and B Welsh ponies based on LD-defined regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

LAM (cont.)  20  43136147 43150142 3 0 43086126 43312141 9 

 

Table 3.14: Prioritization of the GWA results of section A and B Welsh ponies (n=220) based on LD-defined regions.  To be considered an 

ROI, at least five SNP had to exceed the suggestive threshold (1.0e-05) with one SNP exceeding the threshold for genome-wide significance (5.98e-

08).  Provided in the table is the base pair position of the lowest (Min_SNP) and highest (Max_SNP) SNP in the region, the min (Min_ROI) and 

maximum (Max_ROI) boundaries of the region based on LD, as well as the number of SNPs per region which exceeded the suggestive (Sugg_SNPs) 

and genome-wide significance (Sign_SNPs) threshold. The total number of genes includes all protein-coding genes, pseudogenes, and RNA genes 

based on EquCab3. Black box in the summary column indicates the region did not meet the criteria to be considered an ROI and was not shared with 

another GWA cohort or trait.  Letters in the summary column represent: (A) region was shared with another Welsh pony cohort GWA and at least 

one region was considered an ROI, (B) region was shared with the Morgan GWA and at least one region was considered an ROI, (C) region was 

shared with another Welsh pony cohort GWA but no regions met the criteria for an ROI, (D)  region was shared with Morgan GWA but no regions 

met the criteria for an ROI, (E) region was shared with another trait in this GWA cohort and at least one region was considered an ROI, (F) region 

was shared with another trait in this GWA cohort but no regions met the criteria for an ROI, (G) region was shared across multiple traits in another 

GWA cohort, (H) region was identified as shared across breeds on metanalysis and was considered a MA-ROI.  Highlighted chromosomes (Chr) 

indicate regions which were shared with several traits. 
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Table 3.15: High Priority Region in Welsh ponies based on LD-defined regions 

Trait Chr Min_Region Max_Region Protein_Coding Pseudogenes RNA_Genes Total_Genes 

Insulin 5 35409104 44806458 267 1 38 306 
 8 69350844 75906595 32 0 23 55 
 15 5748377 6612684 0 0 1 1 
 18 78720858 79634082 2 0 4 6 
 24 28451012 29887250 2 0 4 6 

Insulin-OST 1 176773704 176873704 0 0 1 1 
 8 73173455 73699198 1 0 1 2 
 10 71967783 72438937 3 0 0 3 
 28 39322188 39488807 8 0 1 9 

Glucose 15 83728178 83828178 2 0 0 2 

Glucose-OST 28 34271949 35138699 9 0 0 9 

Adiponectin 1 171861236 178270042 25 0 24 49 
 18 60060215 61349045 7 0 6 13 

Leptin 5 39751797 50431769 207 0 32 239 
 6 488137 4012580 15 0 10 25 
 7 65678376 68117086 1 0 2 3 
 10 692055 1068890 0 0 5 5 
 21 22940681 23516697 1 0 0 1 

NEFA 19 1005718 1105718 2 0 0 2 
 28 32909542 35703535 65 0 11 76 

ACTH 1 42944403 45232767 5 0 4 9 
 1 69558737 70960589 7 0 16 23 
 10 55060512 56255134 1 0 1 2 
 10 78795710 80306613 20 0 5 25 
 20 60381850 60481850 0 0 0 0 

NH 4 67130904 69873296 8 0 8 16 
 4 77298241 81186565 24 1 15 40 
 4 83144842 83244842 1 0 0 1 
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Table 3.15: High Priority Region in Welsh Ponies based on LD-defined regions (cont.) 

Trait Chr Min_Region Max_Region Protein_Coding Pseudogenes RNA_Genes Total_Genes 

NH (cont.) 7 93176991 93628686 0 0 1 1 
 9 32632235 37587269 10 0 8 18 
 11 18342117 19876247 55 1 4 60 
 14 63702522 63847210 0 0 2 2 
 20 40244007 41210876 3 0 11 14 
 20 60723014 61735694 0 0 2 2 
 21 5280993 6396786 2 0 6 8 
 21 19515280 25046226 22 0 27 49 
 24 31843480 36758215 47 0 10 57 

GH 1 132184772 133716124 9 0 7 16 
 4 68425678 69636837 5 0 1 6 
 4 70026254 81648125 49 1 45 95 
 4 82570011 86366835 49 1 25 75 
 7 93191676 93628672 0 0 1 1 
 11 15414337 16451463 24 0 1 25 
 11 18613895 19317536 26 0 0 26 
 18 79527484 81467661 13 0 12 25 
 19 31204596 31799125 0 0 0 0 
 20 29486630 30976763 54 0 8 62 
 20 59464566 61015217 1 0 2 3 
 20 64722427 65336095 1 0 3 4 
 21 20611963 22057711 3 0 4 7 
 22 41032889 41066045 0 0 0 0 
 25 19435041 19535041 4 0 0 4 

LAM 1 49391032 49491032 0 0 1 1 
 2 35880861 36665473 8 0 6 14 
 19 57082025 62825378 42 1 16 59 
 28 9990892 10844823 4 0 0 4 
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Table 3.15: High Priority Regions in Welsh ponies based on LD-defined regions (cont.) 

Trait Chr Min_Region Max_Region Protein_Coding Pseudogenes RNA_Genes Total_Genes 

Total    1146 6 415 1567 
        

Medium Priority Regions in Welsh ponies based on LD-defined regions 

Trait Chr Min_Region Max_Region Protein_Coding Pseudogenes RNA_Genes Total_Genes 

Insulin 6 80572788 83599194 17 0 20 37 
 9 60380309 63287617 7 0 12 19 
 15 54076168 54634446 2 0 3 5 
 23 45940500 46233500 0 0 2 2 

Insulin-OST 9 51519922 52222979 1 0 1 2 

Glucose 8 86176351 93189207 22 0 19 41 
 17 78895931 80077759 13 0 9 22 
 29 22370951 22764383 7 0 2 9 

Glucose-OST 4 40143954 40782593 5 0 4 9 

Leptin 1 71902092 78569116 34 0 23 57 

NEFA 9 43402596 51140717 48 0 23 71 

TG 7 26358820 26960566 19 0 2 21 

ACTH 5 16534115 18234765 22 0 4 26 

NH 15 73033562 73478127 1 0 2 3 
 17 36704887 37121452 0 0 0 0 

GH 13 4097503 6272661 8 0 10 18 
 15 13131438 16662645 42 1 12 55 
 16 25105634 30681811 31 1 12 44 
 18 74790214 76353283 21 0 2 23 

LAM 2 29447761 29803535 7 0 1 8 
 10 14730688 16165003 56 0 10 66 
 13 24242621 26399066 32 0 4 36 
 19 34513667 34812456 4 0 0 4 
 19 37990377 39825664 23 0 4 27 
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Table 3.15: Medium Priority Regions in Welsh ponies based on LD-defined regions (cont.) 

Trait Chr Min_Region Max_Region Protein_Coding Pseudogenes RNA_Genes Total_Genes 

LAM (cont.) 30 11660801 12736188 7 0 5 12 
 31 10611124 10918134 2 0 1 3 

Total    431 2 187 620 
        

Low Priority Regions in Welsh ponies based on LD-defined regions 

Trait Chr Min_Region Max_Region Protein_Coding Pseudogenes RNA_Genes Total_Genes 

Leptin 4 47052514 48193459 3 0 3 6 

NH 1 44348249 44448249 0 0 0 0 
 6 903258 1451922 1 0 1 2 
 20 30110893 30210893 1 0 0 1 

GH 4 47576773 47975728 1 0 3 4 
 6 903258 1734708 2 0 3 5 
 21 23171361 24411682 10 0 2 12 

Total    18 0 12 30 

 

Table 3.15: Final boundaries of the regions based on LD and positional candidate genes of the prioritization GWA results for the Welsh 

ponies.  Regions were categorized as high priority (regions found on metanalysis OR region was shared with another trait), medium priority (region 

was an ROI in at least one Welsh pony cohort but was not shared), or low priority (region was shared across traits but region was not an ROI).  Final 

region boundaries of the region were based on LD-ROI and are indicated by the lowest base pair position (Min_ROI) and the highest base pair 

position (Max_ROI).  The total number of genes includes all protein-coding genes, pseudogenes, and RNA genes identified for region based on 

EquCab3.  Shared regions across prioritized traits are indicated by highlighted chromosomes. 
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Table 3.16: Prioritization of the GWA results of the Morgan horses based on LD-defined regions 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

Insulin 2   117366086 117410894 5 1 117310352 117579882 4 

  3   115316619 115326166 4 0 114849263 115698498 10 

  4   97370223 NA 1 0 97370223 97420223 3 

  5   88722709 NA 2 0 88722709 88772709 1 

  8   36946690 NA 1 0 36946690 36996690 2 

  8   62414695 62422169 3 0 61953438 62651012 5 

  10   54997568 55022644 3 0 54821584 55225831 0 

  18   38197723 NA 1 0 38197723 38247723 0 

  19   20841248 NA 1 0 20841248 20891248 2 

  20   4635861 4702640 7 0 4544080 5465175 12 

  24 H 21134897 NA 1 0 21134897 21184897 1 

  26   39653507 NA 1 0 39653507 39703507 2 

Insulin-OST 2   22468309 22541921 4 1 21941652 22859290 15 

  2   51548258 51661415 7 0 51173763 52005569 27 

  4 E 28373202 NA 1 0 28373202 28423202 0 

  4   57780431 57786154 2 0 57533782 57927057 9 

  6 E 32931767 33694226 2 0 32751552 34029749 22 

  8   10116471 NA 1 0 10116471 10166471 3 

  10 B H 71996093 73613162 50 5 71666607 73534053 12 

  11 F 18848207 19009809 7 0 18355073 19629302 53 

  20   51914168 NA 1 0 51914168 51964168 1 

  21   20781491 NA 1 0 20781491 20831491 1 

Glucose 4 E H 17981325 18477651 33 11 17239374 19043831 11 

  8   11530408 12159746 5 1 11193683 12404572 17 

 16   42711571 NA 1 0 42711571 42761571 1 
 28   36615983 NA 1 0 36615983 36665983 2 
 29   9494870 NA 1 0 9494870 9544870 2 
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Table 3.16: Prioritization of the GWA results of the Morgan horses based on LD-defined regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

Glucose (cont.)  31   21504871 NA 1 0 21504871 21554871 0 

Glucose-OST 2   62607747 NA 1 0 62607747 62657747 1 

  3 H 56674808 58220254 85 53 55746338 58085997 21 

  4 E H 27505119 28710128 39 4 26695616 29116058 9 

  14   28998387 29000329 2 0 28709052 29055844 9 

  25   18872032 NA 1 0 18872032 18922032 3 

  26   22407530 23379414 23 2 21572162 23496516 5 

NEFA 1   166669064 166888483 3 0 166406343 167009561 6 

  1 H 185892360 186617146 25 15 184859013 187238015 41 

  2   106012533 106052266 6 1 105664825 106542344 13 

  7   86986401 87004808 3 0 86924655 87232954 1 

  9   76549280 76571642 3 0 75789603 77130495 17 

  15   66056425 NA 1 0 66056425 66106425 0 

  17   13427110 14189583 14 1 12653835 14464765 6 

  18   7685942 9565563 44 0 8293585 9790956 13 

  19   48235446 NA 1 0 48235446 48285446 2 

  24 H 20381260 20888104 2 1 20287835 20973401 16 

  24   45325106 45675218 5 0 44139172 47064880 72 

  30   6239856 6258423 5 0 5851204 6743672 9 

  30 H 20974703 21044590 11 4 20915473 21380977 0 

TG 1   126407798 127401777 6 0 126542590 128810519 46 

  10   65383517 NA 1 0 65383517 65433517 1 

  20   52368013 52589211 4 1 52145954 52997964 5 
 21 F 49201984 49202284 2 0 48839667 49489807 2 

Adiponectin 1   129650721 129653375 2 0 129419765 130122651 9 
 1   138037003 NA 1 0 138037003 138087003 1 

  2 H 16747148 17739125 38 27 16362904 18105119 42 
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Table 3.16: Prioritization of the GWA results of the Morgan horses based on LD-defined regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

Adiponectin (con)  4 H 36557672 38544490 54 4 34723398 39321960 47 

  6 E H 32601529 32727370 19 1 32486287 32841880 7 

 6 E H 67997807 69847785 68 6 64297403 71493047 191 

  7   21524454 21986901 14 0 19621101 22583950 53 

  7   32963159 32963459 2 0 32448807 33202795 29 

  8   3347264 3419299 6 0 2972877 3485969 18 

  15   21830373 21834175 2 0 21702151 21904600 1 

  15   66865469 66893151 4 0 66810113 66986537 2 

  18 F H 41448414 NA 1 1 41448414 41498414 1 

  18   49705278 49893633 7 0 48222088 50189162 36 

  19   25833383 25859655 2 0 25269042 26285152 16 

  20 H 3734902 3954772 12 0 3649052 4325872 11 

  20   1882774 NA 1 0 1882774 1932774 2 

  21 F 49478363 NA 1 0 49478363 49528363 1 

Leptin 1   130957068 131062691 3 0 130419659 131677667 14 

  4 E 52373692 52614368 22 0 51590680 52810437 9 

  6   38446793 NA 1 0 38446793 38496793 3 

  8   8682147 NA 1 0 8682147 8732147 2 
 19 H 51360775 53132722 57 27 51286493 53959028 21 

  21   16547954 16608200 3 0 14655783 16880737 21 

  24 H 27275709 29038412 65 14 25564765 29384679 21 
 25   27438558 27907420 14 2 26217071 29045128 65 

ACTH 1 E H 83546191 83734040 17 4 82700933 84269783 24 

  3 D H 43335201 44116411 13 0 42674448 44422013 10 
 3 H 103056163 103438726 49 34 102944842 103801021 6 

  5 H 25785666 27061038 32 10 25378878 27689002 28 

  10   67992633 67997136 2 0 67173693 68509748 16 
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Table 3.16: Prioritization of the GWA results of the Morgan horses based on LD-defined regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

ACTH (cont.) 10   70528773 NA 1 0 70528773 70578773 0 

  11 F 18728679 18904099 4 0 17711712 19910206 80 

  11   52897545 53669056 32 0 52809863 54320401 18 

  13   25806289 NA 1 0 25806289 25856289 3 

  16   31200001 NA 1 0 31200001 31250001 1 

  18 F 41392781 NA 1 0 41392781 41442781 1 

  20   29056288 NA 1 0 29056288 29106288 3 

  21   11112604 NA 1 0 11112604 11162604 0 

  21   24436227 24439739 3 0 23458912 25104737 16 

  25   13299542 NA 1 0 13299542 13349542 0 

  25   14989527 NA 1 0 14989527 15039527 1 

  31   16965044 17737242 4 0 16852976 17943693 21 

NH 1 F 78493587 79782621 37 0 78152399 80485573 21 

  1 E 82958480 83232130 10 0 82097718 83618523 20 

  2   93824111 93833011 2 0 93612698 93999072 2 
 4 E H 52076906 53659651 149 110 52024470 54237747 20 

  5   59796357 60233277 10 0 59986780 60283685 1 

  5   65804297 65824216 3 0 65300990 66750795 4 

  6 E H 64502443 65350057 44 12 60410647 70570773 172 
 8   29756282 NA 1 0 29756282 29806282 0 

  9   49062306 49078134 2 0 47678054 55125332 61 

  14   74532493 NA 1 0 74532493 74582493 1 
 18   2306238 NA 1 0 2306238 2356238 0 

  19 H 1188889 1197320 3 2 661978 1345372 6 

  19 E H 34421059 36247260 102 23 32962795 37391949 73 

  19   46479290 47156982 5 1 46345791 47243745 16 

  21   4745903 NA 1 0 4745903 4795903 0 
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Table 3.16: Prioritization of the GWA results of the Morgan horses based on LD-defined regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

NH (cont.)  24   42026470 42450741 9 1 41516893 42504006 13 

GH 1 F 79175507 79234421 5 0 79092549 79839480 7 

  1   109778420 109819993 4 0 108645695 110793330 27 

  1 B H 122383349 123036781 71 31 120644115 124691346 56 
 2   85183513 86093522 20 10 84295572 88599903 36 

  4   3032922 NA 1 1 3032922 3082922 1 

  6 F 3139850 3453652 2 0 2318331 3601991 10 

  6   6272129 6335115 8 0 6143412 6435255 8 

  6   15729023 16202020 8 0 14200808 18578117 55 

  7   26684853 26701040 6 0 26591740 26974624 18 

  8   63557829 NA 1 0 63557829 63607829 0 

  17 H 32020513 33031579 39 2 31806060 33720086 7 

  18   2423391 NA 1 0 2423391 2473391 1 

  22   45719751 48733979 2 0 48299638 49204093 12 

  29   19108245 19432974 7 2 19255639 19488768 3 

LAM 2   66192812 NA 1 1 66192812 66242812 1 

  3   3294278 NA 1 0 3294278 3344278 2 
 4 E H 17509325 19295909 52 4 17301415 19812653 16 

  6 F 3466933 NA 1 0 3466933 3516933 1 

  6   79661858 NA 1 0 79661858 79711858 1 

  8   59199626 60121756 24 0 59149588 60266527 9 
 12 H 33127411 34414133 53 27 32885278 34800986 45 

  14   66311023 66688404 15 0 65014422 67256851 8 

  14 H 88975206 90135630 48 9 87916190 91602875 58 

  16   64556111 NA 1 0 64556111 64606111 0 

  16   74667638 NA 1 0 74667638 74717638 2 

  18 H 31710749 33317633 65 33 30095266 35177011 36 
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Table 3.16: Prioritization of the GWA results of the Morgan horses based on LD-defined regions (cont.) 

Trait Chr Summary Min_SNP Max_SNP Sugg_SNPs Sign_SNPs Min_Region Max_Region Total_Genes 

 LAM (cont.) 19 H 30133826 NA 51 3 30133826 30183826 2 

  22 B H 3616445 4853827 75 45 2843476 5225020 23 

  22   13852015 NA 1 0 13852015 13902015 0 

  22   23806850 NA 1 0 23806850 23856850 1 

  23 H 11116499 12515439 51 46 7656404 12984095 34 
 31   6804894 NA 1 0 6804894 6854894 1 

 

Table 3.16: Prioritization of the GWA results of the Morgan horses based on LD-defined regions.  To be considered an ROI, at least five SNP 

had to exceed the suggestive threshold (1.0e-05) with one SNP exceeding the threshold for genome-wide significance (7.61e-08).  Provided in the 

table is the base pair position of the lowest (Min_SNP) and highest (Max_SNP) SNP in the region, the min (Min_Region) and maximum 

(Max_Region) boundaries of the region based on LD, as well as the number of SNPs per region which exceeded the suggestive (Sugg_SNPs) and 

genome-wide significance (Sign_SNPs) threshold. The total number of genes includes all protein-coding genes, pseudogenes, and RNA genes based 

on EquCab3. Black box in the summary column indicates the region did not meet the criteria to be considered an ROI, was not significant on 

metanalysis and was not shared with another or trait.  Letters in the summary column represent: (B) region was shared with one or more Welsh pony 

cohorts and at least one region was considered an ROI, (D)  region was shared with one or more Welsh pony cohorts but no regions met the criteria 

for an ROI, (E) region was shared with another trait in the Morgan horses and at least one region was considered an ROI, (F) region was shared with 

another trait in the Morgan horses but no regions met the criteria for an ROI, (H) region was identified as shared across breeds on metanalysis and 

was considered an MA-ROI. Highlighted chromosomes (Chr) indicate regions which were shared with several traits. 
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Table 3.17: High Priority Regions in Morgan horses based on LD-defined regions 

Trait Chr Min_Region Max_Region Protein_Coding Pseudogenes RNA_Genes Total_Genes 

Insulin 24 21134897 21184897 1 0 0 1 

Insulin-OST 4 28373202 28423202 0 0 0 0 

  6 32751552 34029749 12 0 10 22 

  10 71666607 73534053 6 1 5 12 

Glucose 4 17239374 19043831 6 0 5 11 

  8 11193683 12404572 8 0 9 17 

Glucose-OST 3 55746338 58085997 15 0 6 21 

  4 26695616 29116058 5 0 4 9 

NEFA 1 184859013 187238015 24 0 17 41 

  17 12653835 14464765 4 0 2 6 

  24 20287835 20973401 15 0 1 16 

  30 20915473 21380977 0 0 0 0 

Adiponectin 2 16362904 18105119 21 0 21 42 

  4 34723398 39321960 36 1 10 47 

  6 32486287 32841880 3 0 4 7 

  6 64297403 71493047 168 1 22 191 

  18 41448414 41498414 0 0 1 1 

  20 3649052 4325872 8 0 3 11 

Leptin 4 51590680 52810437 4 0 5 9 

  19 51286493 53959028 7 0 14 21 

  24 25564765 29384679 7 0 14 21 

ACTH 1 82700933 84269783 18 1 5 24 

  3 42674448 44422013 2 1 7 10 
 3 102944842 103801021 2 0 4 6 
 5 25378878 27689002 12 0 16 28 

NH 1 82097718 83618523 14 0 6 20 

  4 52024470 54237747 8 0 12 20 
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Table 3.17: High Priority Regions in Morgan horses based on LD-defined regions (cont.) 

Trait Chr Min_Region Max_Region Protein_Coding Pseudogenes RNA_Genes Total_Genes 

NH (cont.)  6 60410647 70570773 144 2 26 172 

  19 661978 1345372 4 1 1 6 

  19 32962795 37391949 53 1 19 73 

GH 1 120644115 124691346 36 0 20 56 

  17 31806060 33720086 3 1 3 7 

LAM 4 17301415 19812653 8 1 7 16 

  12 32885278 34800986 29 0 16 45 

  14 87916190 91602875 32 0 26 58 

  18 30095266 35177011 23 0 13 36 

  19 30133826 30183826 2 0 0 2 

  22 2843476 5225020 13 0 10 23 

  23 7656404 12984095 11 0 23 34 

Total    764 11 367 1142 

        

Medium Priority Regions in Morgan horses based on LD-defined regions 

Trait Chr Min_Region Max_Region Protein_Coding Pseudogenes RNA_Genes Total_Genes 

Insulin 2 117310352 117579882 2 0 2 4 

Glucose_OST 26 21572162 23496516 0 0 5 5 

NEFA 2 105664825 106542344 10 0 3 13 

Leptin 25 26217071 29045128 59 2 4 65 

NH 19 46345791 47243745 15 0 1 16 
 24 41516893 42504006 8 0 5 13 

GH 2 84295572 88599903 22 0 14 36 
 29 19255639 19488768 3 0 0 3 

Total    119 2 34 155 
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Table 3.17: Low Priority Regions in Morgan horses based on LD-defined regions (cont.) 

Trait Chr Min_Region Max_Region Protein_Coding Pseudogenes RNA_Genes Total_Genes 

Insulin_OST 11 18355073 19629302 50 1 2 53 

TG 21 48839667 49489807 1 0 1 2 

Adiponectin 21 49478363 49528363 1 0 0 1 

ACTH 11 17711712 19910206 67 1 12 80 

  18 41392781 41442781 0 0 1 1 

NH 1 78152399 80485573 9 0 12 21 

GH 1 79092549 79839480 2 0 5 7 

  6 2318331 3601991 5 0 5 10 

LAM 6 3466933 3516933 0 0 1 1 

Total    135 2 39 176 

 

Table 3.17: Final boundaries of the regions based on LD and positional candidate genes of the prioritization GWA results for the Morgan 

horses.  Regions were categorized as high priority (regions found on metanalysis OR region was shared with another trait), medium priority (region 

was an ROI in the Morgan horses but was not shared), or low priority (region was shared across traits but region was not an ROI).  Final region 

boundaries of the region were based on LD-ROI and are indicated by the lowest base pair position (Min_ROI) and the highest base pair position 

(Max_ROI).  The total number of genes includes all protein-coding genes, pseudogenes, and RNA genes identified for region based on EquCab3.  

Shared regions across prioritized traits are indicated by highlighted chromosomes. 
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Chapter 4: Fine-mapping high priority LD-ROI from genome-wide association 

analyses using imputed whole genome sequencing 

Summary: Fine-mapping of genome-wide associated regions seeks to refine the genomic 

localization of causal variants through statistical analyses, bioinformatics, or functional 

methods, with the main goal of differentiating between the causal variants and those merely 

correlated with the causal variant.  The objectives of this chapter were to fine-map selected 

high priority ROI by increasing the marker density for association analysis and to 

interrogate positional candidate genes for putative functional alleles based on predicted 

impact from variant annotation and biological effect based on evidence in other species.  

We utilized imputed whole-genome sequencing (WGS) and linear regression analysis in 

order to fine-map selected high priority LD-ROI in both the Morgan horses and Welsh 

ponies.  Five fine-mapped regions from each breed were further interrogated for predicted 

impact using variant annotation.  All variants which exceeded the threshold for genome-

wide significance mapped to non-coding regions of the genome, with 66.7% of the 

significantly associated SNPs being intronic, 17.0% intergenic and 10.3% within lncRNA.  

We further evaluated positional candidate genes with exonic variants in our fine-mapped 

region with a p-value <0.05 (i.e. “sub-threshold”).  Protein-coding genes containing non-

coding or coding variants within the fine-mapping region were then further prioritized 

based on known function and biological evidence in other species utilizing the PubMed 

search engine.  A total of 19 positional candidate genes were identified as having biological 

evidence for a role in EMS including: SSTR1, SEC23A, FBXO33, MIA2, EIF3D, CSF2B, 

IFT27, ACE, TACO1, ABCA13, NKAIN2, BBX, XXYLT1, BDH1, NCKAP5L, GPD1, 

LIAA1, METTL7A, SCL11A2.  These data provide intriguing biological evidence for the 

role of several coding genes in the pathogenesis of EMS.   
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Introduction: 

Equine metabolic syndrome (EMS) is a clustering of risk factors leading to laminitis with 

the key component being insulin dysregulation, manifesting as baseline hyperinsulinemia, 

an exaggerated or prolonged insulin or glucose response post carbohydrate challenge, 

tissue insulin resistance, or dyslipidemia [21].  In chapter 2, we provided the first concrete 

evidence that EMS is a complex trait with a strong genetic basis.  In chapter 3, we utilized 

genome-wide association analyses (GWA) with single nucleotide polymorphism (SNP) 

genotype data to identify high priority regions of interest (ROI) harboring the risk alleles 

associated with EMS phenotypes in both Welsh ponies and Morgan horses, two breeds 

considered high risk for this syndrome.  Although these results provided valuable 

information about the genetic architecture of EMS by identifying the number of loci 

contributing to EMS, estimating their effect size and allele frequencies, and providing 

evidence that risk alleles are both shared and unique across breeds, they do not identify the 

specific risk alleles contributing to EMS. 

Fine-mapping of GWA regions seeks to refine the genomic localization of causal variants 

through statistical analyses, bioinformatics, or functional methods, with the main goal of 

differentiating between the causal variants and those merely correlated with the causal 

variant [457].  One of the key principles of fine-mapping is that all variants within the 

region must be represented in order to capture the causal variant.  Thus, increasing marker 

density is essential for accurately fine-mapping a region with genotype imputation being 

considered a cost-effective and precise method to achieve this goal [457,458]. 

The first objective of this chapter was to fine-map selected high priority ROI identified 

from GWA in chapter 3 by increasing the marker density for association analysis within 

these regions through the use of imputed whole genome sequencing (WGS).  The second 

objective was to interrogate positional candidate genes for putative functional alleles based 

on predicted impact from variant annotation and biological effect based on evidence in 

other species.  

Material and Methods 
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Samples: Horses used in this study were a part of a large, across breeds study evaluating 

the EMS phenotype [20].  From this dataset, 264 Welsh ponies (194 females and 70 males 

with a mean age of 11.7 years) and 286 Morgan horses (184 females and 102 males with a 

mean age of 12.3 years) were included in this analysis.  Samples were collected from 31 

and 28 farms throughout the United States and Canada for the Morgan horses and Welsh 

ponies, respectively. 

Phenotype data collected on all horses included: signalment, medical history, laminitis 

status, environmental management (feed, supplements, turnout and exercise regimen), and 

morphometric measurements (body condition score (BCS), wither height, and neck and 

girth circumference).  After an eight hour fast, an oral sugar test (OST) was performed 

using 0.15mg/kg Karo lite corn syrup as previously described [406].  Biochemical 

measurements at baseline included insulin, glucose, non-esterified fatty acids (NEFA), 

triglycerides (TG), adiponectin, leptin and ACTH.  Biochemical measurements 75 minutes 

after the OST included insulin (INS-OST) and glucose (GLU-OST).  

For inclusion in the study, each farm had to have at least one control and one horse with 

clinical signs consistent with EMS (including horses with regional adiposity, 

hyperinsulinemia or an exaggerated response to the OST, elevations in TG, and decreased 

levels of adiponectin at the time of sampling) under the same management.  Horses with a 

history or phenotypic appearance of pars pituitary intermedia dysfunction (PPID) were 

excluded from the study.  The category of previously laminitic was defined as a horse who 

had been diagnosed with pasture-associated or endocrinopathic laminitis by a veterinarian, 

had radiographic evidence of laminitis, or had laminitis rings or clinical signs of laminitis 

as the time of sampling.  Horses in which laminitis could have been caused by another 

inciting factor (history of illness, grain-overload, corticosteroid administration or PPID), 

or who were clinical for acute laminitis at the time of sampling, were also excluded from 

the study. 

Whole Genome Sequencing: DNA was isolated from whole blood or hair roots using the 

Puregene Blood Core Kit, (Qiagen) per manufacturer’s instructions.  19 Welsh ponies and 

18 Morgan horses, representing both insulin sensitive and insulin dysregulated horses 

(individuals with a history of laminitis and at the breed-specific upper range for the EMS 



155 
 

biochemical measurements baseline insulin, insulin concentrations post oral sugar 

challenge, or triglycerides, or breed-specific lower range for adiponectin concentrations) 

were chosen for WGS (Tables 4.1 and 4.2).  DNA samples were submitted for WGS at 

the University of Minnesota Genomics Center using an Ilumina HighSeq 2500 sequencer 

for 100 base pair paired-end sequencing, with an average read coverage of 6-12X over the 

2.7Gb of the equine genome per sample.  Quality control, processing and mapping of reads 

to EquCab3, the reference genome at the time of this analysis, was performed using the 

PALEOMIX pipeline [459].  Briefly, this pipeline utilizes the AdapterRemoval software 

tool for initial quality control and processing of the raw reads, Burrows Wheeler alignment 

(BWA-MEM) software to map processed reads to the reference genome, SAMtools and 

Picard tools for quality and duplicate filtering, and GATK’s Indel Realigner for local re-

alignment around small insertions and deletions [459].  Insertions, deletions, and SNPs 

were called for both breeds using multi-sample variant detection in three variant calling 

software programs: Platypus [460], HaplotypeCaller [461], and Samtools [462].  Variants 

were filtered to remove those called exclusively in one program, yielding a total of 

19,722,966 variants in the final VCF. 

SNP Genotype Data: Genome-wide single nucleotide polymorphism (SNP) genotyping 

was performed with horses genotyped either on the Illumina EquineSNP50 BeadChip (54K 

array) containing 54,602 SNPs, the Axiom Equine MCEc670 array (670K array) 

containing 670,795 SNPs, or the Axiom Equine MCEc2M array (2M array) containing 

2,011,826 SNPs across the equine genome including the 31 autosomes and X 

chromosomes.  For the Morgan horses, 40 individuals were genotyped on the 2M array and 

246 individuals were genotyped on the 54K array of which 18 horses also had WGS.  For 

the Welsh ponies, 44 ponies were genotyped on the 2M array, of which 6 ponies also had 

WGS, and 220 ponies were genotyped on the 670K array, of which 12 were also sequenced 

for WGS.  Base pair locations for all SNP data were remapped from EquCab2 to EquCab3 

using the script from Beeson et. al. [427]. 

Imputation to WGS: Haplotype phasing and genotype imputation up to WGS was 

performed on horses genotyped on the SNP arrays using Beagle software [407].  Based on 

published recommendations, WGS data from the 19 Welsh ponies (one horse with 
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suspected PPID was included in the reference population for imputation but removed for 

subsequent analyses) and 18 Morgan horses were combined for a cross breed reference 

population [408].  Prior to phasing, quality control was performed to remove variants with 

a genotyping rate of <90%, non-biallelic SNPs, insertions and deletions, and variants 

mapping to chromosomes unknown yielding a total of 16,056,906 variants in the reference 

population.  Within breed imputation of data from the 2M arrays were performed followed 

by imputation of the 670K array and then the 54K array, using the following protocol (see 

Figure 4.1):  

(i) For horses with both WGS and genotype data from the SNP array being imputed 

(test file), 5 (2M array) or 10 individuals (lower density arrays) were randomly 

chosen to be removed from the reference file in order to test for concordance.  The 

remaining duplicated individuals were excluded from the test file. 

(ii) For SNPs arrays in which individuals did not have concurrent WGS, 5 (2M array) 

or 10 individuals (lower density arrays) were randomly selected from the WGS data 

to be masked down to variants present on the SNP array. 

(iii) Imputation of the test file was completed using Beagle software [407]. 

(iv) Imputation concordance was calculated as the percentage of calls that matched 

between the reference and imputed files.   

(v) The test and reference files were merged together and all SNPs which did not 

achieve 100% concordance were removed from the final reference file.  At this 

point, the reference file contained the WGS and imputed data which was then used 

for imputation of the next SNP array. 

After imputation of all three genotyping arrays, the final file contained 264 Welsh ponies 

and 286 Morgan horses with a total of 12,787,473 variants.  This file was parsed by breed 

and quality control was performed to remove non-informative SNPs and SNPs with a minor 

allele frequency <0.01, yielding 6,098,487 SNPs in the Morgan horses and 6,695,837 in 

the Welsh ponies.  Variants for each breed were annotated using the software program 

SnpEff [463]. 

Fine Mapping ROI: Selected high priority ROI in the Welsh ponies and Morgan horses 

identified in chapter 3 were chosen for fine mapping with boundaries of the ROI defined 
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by the breakdown of linkage disequilibrium (LD-ROI; see chapter 3 for further details).  

LD-ROI were selected for additional fine-mapping if the region contained at least 5 SNPs 

with one SNP exceeding the threshold for genome-wide significance providing an initial 

list of fine-mapped LD-ROI (Tables 4.3 and 4.4).  Linear regression analysis was 

performed with the EMS phenotypic trait as the outcome variable, the subset of imputed 

WGS SNPs for the LD-ROI as the response variables, sex and age as fixed effects, and 

farm as a random effect.  For these analyses, eleven traits significantly associated with 

EMS [20] were treated as quantitative response variables in this including: insulin, glucose, 

adiponectin, leptin, NEFA, TG, ACTH, insulin-OST, glucose-OST, and measures of 

obesity (neck circumference to whither height ratio (NH), and girth circumference to 

whither height ratio (GH).  Laminitis status was treated as a binary response variable.  

Threshold for significance was determined using the Genetic Type 1 Error Calculator 

[434], which calculated a Bonferroni corrected p-value based on the effective number of 

SNPs for the ROI (Tables 4.3 and 4.4). 

Based on the results of the linear regression, five LD-ROI for the Welsh ponies and five 

LD-ROI for the Morgan horses were chosen for further analysis (Table 4.5).  Regions were 

chosen for this additional analysis if the region contained one or more SNPs that exceeded 

the threshold for genome-wide significance, appeared to have clear delineation between 

baseline SNPs and those that exceeded the threshold, and regions where significant SNPs 

appeared to be tightly clustered. Regions were fine-mapped based on the base pair position 

of SNPs which exceeded the threshold for genome-wide significance and variants in the 

region were interrogated for predicted effect based on the results of variant annotation.  

Positional candidate genes were identified using the Ensembl genome browser with 

EquCab3 as the reference genome and investigated for predicted biological effect and 

evidence across species by performing a literature search using the PubMed search engine 

with the gene identifier and key words: obesity, metabolic, metabolism, diabetes, fat, and 

the EMS trait of interest.   

Results 

WGS: EMS phenotypic data for Welsh ponies and Morgan horses selected for whole 

genome sequencing is presented in Tables 4.1 and 4.2, respectively.  In the Welsh ponies, 
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9 horses had a history of laminitis, 4 had insulin concentrations above one-standard 

deviation from the breed-specific mean (10.9µIU/mL; SD: 17.2), 7 had INS-OST 

concentrations above one-standard deviation from the breed-specific mean (36.2µIU/mL; 

SD: 45.4), 5 had triglyceride concentrations above one-standard deviation from the breed-

specific mean (28.0.mg/dL; SD: 34.8), and 6 horses had adiponectin concentrations less 

than one standard deviation from the breed-specific mean (6.9µg/mL; SD: 5.5).  One 

laminitic pony met the criteria for all four biochemical measurements, three laminitic 

ponies met three of the four criteria, three laminitic ponies met two of the four criteria, and 

one non-laminitic pony met two of the four criteria for biochemical measurements.  

Notably, all 9 laminitic horses would have been diagnosed with insulin dysregulation based 

on published criteria of insulin concentrations >45µIU/mL post oral sugar test [21] (Table 

4.1). 

In the Morgan horses, seven horses had a history of laminitis, seven had insulin 

concentrations above one-standard deviation from the breed-specific mean (8.5µIU/mL; 

SD: 8.9), five had insulin-OST concentrations above one-standard deviation from the 

breed-specific mean (33.2µIU/mL; SD: 59.7), three had triglyceride concentrations above 

one-standard deviation from the breed-specific mean (25.0.mg/dL; SD: 16.4), and nine 

horses had adiponectin concentrations less than one standard deviation from the breed-

specific mean (5.0µg/mL; SD: 3.0).  One laminitic horse met the criteria for all four 

biochemical measurements, four laminitic horses met three of the four criteria, and three 

laminitic horses met two of the four criteria for biochemical measurements.  Notably, all 

seven laminitic horses and one non-laminitic horse would have been diagnosed with insulin 

dysregulation based on published criteria of insulin concentrations >45µU/mL post oral 

sugar test [21] (Table 4.2).  

The number of WGS reads, average read length, number unique reads which mapped to 

nuclear genome, and average sequencing depth for each individual with WGS is presented 

in Appendix C: Supplemental Table C1 and Supplemental Table C2. 

Variant Annotation for Imputed WGS: In the Welsh ponies, 6,695,837 variants were 

annotated using the software program SnpEff.  On average, there was one variant every 

359 bases, with a genome effective length of 2.4 billion base pairs, and a 
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transitions/transversions ratio of 2.09.  The largest percentage of variants were identified 

in introns (65.2%) or intergenic (19.9%) regions of the genome, and 1.4% of the variants 

were identified in exons.  The majority of the variants were predicted to be modifiers 

(99.11%), followed by those with a low (0.56%), moderate (0.32%) or high impact 

(0.008%).  Of those with a predicted impact, 56.7% were called as silent mutations, 43% 

missense mutations, and 0.28% nonsense mutations.   

In the Morgan horses, 6,098,487 variants were annotated using the software program 

SnpEff.  On average, there was 1 variant every 395 bases, with a genome effective length 

of 2.4 billion base pairs, and a transitions/transversions ratio of 2.08.  The largest 

percentage of variants were identified in introns (65.4%) or intergenic (20%) regions of the 

genome, and 1.4% of the variants were identified in exons.  The majority of the variants 

were predicted to be modifiers (99.13%), followed by those with a low (0.55%), moderate 

(0.32%) or high impact (0.007%).  Of those with a predicted impact, 57.1% were called 

silent mutations, 42.6% missense mutations, and 0.28% nonsense mutations.   

Fine Mapping Welsh Pony ROI: In the Welsh ponies, 41 LD-ROI were fine-mapped with 

the imputed WGS with the results summarized in Table 4.3.  Of these regions, 26 included 

SNPs which exceeded the threshold for genome-wide significance on regression analysis 

and five were chosen for additional follow-up Table 4.5.   

1. Adiponectin concentrations on chromosome (ECA) 1: This region spanned ~6.4 

megabases (Mb) and included 20,024 SNPs (3,837 effective SNPs) from base pair 

positions 171,861,236 to 178,270,042.  Of these SNPs, 117 exceeded the calculated 

threshold for genome-wide significance of <1.3e-05 and were between base pair 

positions 175,155,905 to 177,764,563.  Within the fine mapped region of 175,000,000 

to 178,000,000 base pairs, there were 14 long noncoding RNAs (lncRNAs), 1 small 

nuclear RNA (snRNA), and 16 protein coding genes.  Significantly associated SNPs 

were either intergenic (35.9%), intronic, intragenic, upstream or downstream from 3 

pseudogenes, a lncRNA (LOC111769213) or the protein coding genes: paired box 9 

(PAX9), solute carrier family 25 member 2 (SLC25A2), tetratricopeptide repeat domain 

6 (TTC6), somatostatin receptor 1 (SSTR1), SEC23 homolog A/coat complex II 

component (SEC23A), gem nuclear organelle associated protein 2 (GEMIN2), MIA 
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SH3 domain ER export factor 2 (MIA2), and F-box protein 33 (FBX033) (Figure 4.2 

and Table 4.6).  A total of 20 low impact, 26 moderate impact, and one high impact 

variant were identified in the fine-mapped region, of which 16 had p-values <0.05 and 

are listed in Table 4.6. 

2. Leptin concentrations on ECA7: This region spanned ~1.4Mb and included 7,144 SNPs 

(3,966 effective SNPs) from base pair positions 65,678,376 to 68,117,086.  Of these 

SNPs, 46 exceeded the calculated threshold for genome-wide significance of <1.3e-05 

and were between base pair positions 67,940,623 to 67,971,228.  All significantly 

associated SNPs were located in the introns of the protein coding gene teneurin 

transmembrane 4 (TENM4) (Figure 4.3 and Table 4.7).  Seven variants with a 

predicted low impact were identified in the TENM4 gene, of which one SNP had a p-

value of <0.05 and is listed in Table 4.7.   

3. GLU-OST and NEFA concentrations on ECA28: The shared region between GLU-OST 

and NEFA spanned ~866.8 kilobases (kb) and included the entire region for GLU-OST, 

which included 2,036 SNPs (415 effective SNPs) from base pair positions 34,271,949 

to 35,138,699.  Of these, 85 SNPs exceeded the threshold for genome wide significance 

of 1.2e-04 and were between base pair positions 34,368,987 to 35,136,611.  

Significantly associated SNPs were either intergenic (4.7%), or intronic, upstream, 

downstream, or within the 3’UTR of the protein coding genes: RNA binding fox-1 

homolog 2 (RBFOX2), FAD dependent oxidoreductase domain containing 2 

(FOXRED2), eukaryotic translational initiation factor 3 subunit D (EIF3D), or calcium 

voltage-gated channel auxiliary subunit gamma 2 (CACNG2).  Within the fine-mapped 

region of 34,350,000 to 35,007,000 there were nine protein coding gene, one lncRNA, 

and two pseudogenes (Figure 4.4 and Table 4.8).  A total of four low impact and one 

moderate impact variants were identified in the fine-mapped region, of which one low 

impact variant within the lncRNA (LOC11177109) had p-values <0.05 and is listed in 

Table 4.8.   

For NEFA concentrations, this region spanned ~2.8Mb and included 6,227 SNPs 

(1,282 effective SNPs) from base pair positions 32,90,9542 to 35,703,535.  Of these, 

30 SNPs exceeded the calculated threshold for genome-wide significance of <3.9e-05 

and were between base pair positions 33,271,314 to 35,288,863.  Based on the fine-
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mapped region for GLU-OST, the four significant SNP between base pair positions 

3,3271,314 to 3,4102,222 were excluded.  Statistically associated SNPs were intergenic 

(19.2%), intronic or downstream of the protein coding genes: RBFOX2 and neutrophil 

cytosolic factor 4 (NCF4) (Figure 4.5 and Table 4.9).  Within the fine-mapped region 

between base pairs 34,050,000 to 35,350,000, there were nine low impact, six moderate 

impact, and one low impact variants, of which 10 had a p-value of <0.05 and are listed 

in Table 4.9. 

4. GH ratio on ECA11: This region spanned ~1.0Mb and included 20,156 SNPs (1,077 

effective SNPs) from base pair positions 15,414,337 to 16,451,463.  Of these SNPs, 19 

exceeded the calculated threshold for genome-wide significance of <4.6e-05 and were 

between base pair positions 15,700,606 to 16,403,791.  Statistically significant SNPs 

were within the intron, 3’ UTR, upstream, or downstream from the protein coding 

genes: mitogen-activated protein kinase kinase kinase 3 (MAP3K3), translational 

activator of cytochrome C oxidase 1 (TACO1), DDBI and CUL4 associated factor 7 

(DCAF7), angiotensin I converting enzyme (ACE), and membrane associated ring-CH-

type finger 10 (MARCH10) (Figure 4.6 and Table 4.10).  Within the fine-mapped 

region between base pair positions 15,680,000 to 16,430,000, there were 10 protein 

coding genes and one lncRNA.  A total of nine variants within this region were 

predicted to have a moderate impact and 11 variants were predicted to have a low 

impact, of which six SNPs had a p-value of <0.05 and are listed in Table 4.10.   

5. ACTH concentrations on ECA 1: This region spanned ~1.4Mb and included 3,940 

SNPs (652 effective SNPs) from base pair positions 69,558,737 to 70,960,589.  Of 

these SNPs, nine exceeded the calculated threshold for genome-wide significance of 

<7.6e-05 and were between base pair positions 70,264,921 to 70,272,614.  All 

significantly associated SNPs were intergenic (Figure 4.7 and Table 4.11).  Within the 

LD-ROI, there were nine lncRNA, two rRNA, and seven protein coding genes.  A total 

of four variants within this region were predicted to have a moderate impact and three 

variants were predicted to have a low impact, of which zero variants had a p-value of 

<0.05. 

Fine Mapping Morgan ROI: In the Morgan horses, 25 LD-ROI were fine mapped with the 

imputed WGS with the results summarized in Table 4.4.  Of these regions, 18 included 
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SNPs which exceeded the threshold for genome-wide significance on regression analysis 

and five were chosen for additional follow-up (Table 4.5). 

1. Laminitis status and basal glucose concentrations on ECA4: The shared region 

between laminitis status and basal glucose concentrations spanned ~1.7Mb from base 

pair positions 17,301,415 to 19,043,831.  For laminitis status, this region spanned ~2.5 

Mb and included 9,251 SNPs (5,032 effective SNPs) from base pair positions 

17,301,415 to 19,812,653.  Of these, 25 SNPs exceeded the calculated threshold for 

genome wide significance of <9.94e-06 and were between base pair positions 

17,436,000 to 18,650,000.  Within this region of the genome, there were five protein 

coding genes, two lncRNA, and one snRNA.  Significantly associated SNPs were 

intergenic (2.7%) or located within the introns of the protein-coding genes: tensin3 

(TNS3), polycystin 1 like 1 (PDK1L1), HUS1 checkpoint clamp component (HUS1), 

or ATP-binding cassette transporter A13 (ABCA13) (Figure 4.8 and Table 4.12).   

For basal glucose concentrations, this region spanned ~1.8Mb and contained 6,495 

SNPs (3,156 effective SNPs) from base pair position 17,239,374 to 19,043,831.  Of 

these SNPs, one SNP exceeded the calculated threshold for genome-wide significance 

of <1.6e-05 and was located within intron of the protein-coding gene ABCA13 (Figure 

4.9 and Table 4.13).  A total of 15 low impact and 15 moderate impact variants were 

identified in the ABCA13 gene, of which three had p-values <0.05 and are listed in 

Table 4.13. 

2. INS-OST on ECA10:  This region spanned ~1.9Mb and included 4,784 SNPs (1,827 

effective SNPs) from base pair positions 71,666,607 to 73,534,053.  Of these SNPs, 18 

exceeded the calculated threshold for genome-wide significance of <2.74e-05 and were 

between base pair positions 72,939,355 to 72,945,989.  All significantly associated 

SNPs were located within a single intron of the protein coding gene sodium/potassium 

transporting ATPase interacting 2 (NKAIN2) (Figure 4.10 and Table 4.14).  No variant 

with a predicted low, moderate, or high impact were identified in the NKAIN2 gene. 

3. Leptin concentrations on ECA19:  This region spanned ~2.6Mb and included 8,454 

SNPs (3,631 effective SNPs) from base pair positions 51,386,493 to 53,959,028.  Of 

these SNPs, 35 exceeded the calculated threshold for genome-wide significance of 

<1.3e-05 and were between base pair positions 51,727,537 to 52,286,046.  Within the 



163 
 

fine mapped region of 51,580,000 to 52,450,000 base pairs, there were seven 

pseudogenes, two lncRNAs and two protein coding genes.  Significantly associated 

SNPs were either intergenic (34.3%), intronic, intragenic, or downstream from 2 

pseudogenes, a lncRNA (LOC111769112) or the protein coding gene Bobby sox 

homolog (BBX) (Figure 4.11 and Table 4.15).  No exonic variants were identified in 

the protein coding genes within the fine-mapped region. 

4. NH concentrations on ECA19:  This region spanned ~4.4Mb and included 10,479 SNPs 

(5,321 effective SNPs) from base pair positions 32,962,795 to 37,391,949.  Of these 

SNPs, 16 exceeded the calculated threshold for genome-wide significance of <9.4e-06 

and were between base pair positions 33,7007,27 to 35,859,978.  Within the fine 

mapped region of 33,400,000 to 35,900,000 base pairs, there were eleven lncRNAs, 

one miscRNA and 31 protein coding genes.  Significantly associated SNPs were either 

intergenic, intronic, intragenic, or upstream from one lncRNA (LOC111769074) or the 

protein coding genes: leucine rich repeat containing 15 (LRRC15), ATPase 13A3 

(ATP13A3), and xyloside xylosyltransferase 1 (XXYLT1) (Figure 4.12 and Table 4.16).  

Within the fine-mapped region, 46 exonic or splice site variants were identified in 

protein-coding genes, of which 30 were predicted have a low impact and 16 were 

predicted to have a moderate impact; 12 of these variants had p-values <0.05 and are 

listed in Table 4.16. 

5. Adiponectin concentrations on ECA6: This region spanned ~7.2Mb and included 

17,106 SNPs (8,812 effective SNPs) from base pair positions 64,297,403 to 

71,493,047.  One intergenic SNP exceeded the calculated threshold for genome-wide 

significance of <5.7e-06 (Figure 4.13 and Table 4.17).  Within the fine mapped region 

of 68,250,000 to 70,001,000 base pairs, there were 38 protein coding genes and one 

lncRNA; 48 exon or splice site variates were identified in protein-coding genes, of 

which 46 were predicted have a low impact, 21 were predicted to have a moderate 

impact, and one was predicted to have a high impact; 20 of these variants had p-values 

<0.05 and are listed in Table 4.17. 

Discussion 
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We fine-mapped ten regions of interest identified on GWA using imputed WGS and linear 

regression analysis.  Within these regions, variants were identified within several positional 

candidate genes which were further prioritized based on known functional effect and 

biological evidence in other species utilizing the PubMed search engine.   

Biologic Evidence for Candidate Genes. 

Adiponectin concentrations on ECA1 in Welsh ponies: This region contained a number of 

protein-coding genes with either intronic or exonic variants (Table 4.6).  SSTR1 is a G 

protein-coupled membrane receptor for somatostatin which has been shown to be 

differentially expressed in the presence or absence of adipocytokines [464].  Somatostatin 

is neuropeptide which is primarily known for its role in inhibiting the secretion of 

hormones such as insulin, growth hormone, glucagon, and cortisol, but it has also been 

shown to inhibit circulating levels of adiponectin and leptin in lean, healthy males [465].  

Interestingly, infusions of somatostatin decreased circulating levels of adiponectin in 

obsess individuals while leptin levels remained unchanged [466].  Although the mechanism 

underlying somatostatin’s inhibitory effect on adiponectin is unknown, activation of 

somatostatin receptors has been proposed [466].  In our cohort, 1 genome-wide significant 

variant was identified downstream of SSTR1 (Table 4.6).  SEC23A encodes a component 

of the coat protein complex II-coated vesicles that transports secretory proteins from the 

endoplasmic reticulum to the Golgi apparatus.  In GWA, a variant in SEC23A was found 

to be associated with decreased vitamin D concentrations in a population of ~79,000 

individuals of European ancestry [467].  Interestingly, numerous studies have suggested a 

role for low vitamin D3 levels in the development of MetS although the exact mechanism 

is unknown [468-471].  Additionally, vitamin D has been correlated with adipokines and 

it was suggested that there is a connected mechanism between vitamin D and adiponectin 

binding proteins [472].  In the Welsh ponies, 5 genome-wide significant variants were 

identified in the intron of SEC23A (Table 4.6).  Variants in FBXO33 were associated with 

concentrations of advanced glycation end-products, which have been found to elevated in 

individuals with hyperglycemia and diabetic complications [473].  In the Welsh ponies 11 

intronic variants were identified which exceed the threshold for genome-wide significance 

(Table 4.6).  MIA2 was identified as part of a chimeric protein TANGO1-like (TAL1) 



165 
 

which interacts with apolipoprotein B (ApoB), a protein involved in the metabolism of 

lipids (see chapter 1), and TAL1 is required for the recruitment of ApoB-containing lipid 

particles to the endoplasmic reticulum [474].  However, no direct association with 

adiponectin, obesity or metabolic syndrome has been identified for MIA2.  In our cohort, 

17 intronic, 8 downstream, and one variant in the 5’ UTR which was predicted to cause the 

gain of a start codon (low impact) exceeded the threshold for genome wide significance for 

MIA2.  In addition, one missense mutation (moderate impact) was identified in exon 3 of 

MIA2 (p-value=1.54e-02) (Table 4.6). 

Leptin concentrations on ECA7 in Welsh ponies: Within this region, significantly 

associated SNPs were located with the intron of TENM4.  TENM4 encodes a gene that has 

an essential role in establishing proper neuronal connectivity during development and a 

causal variant for essential tremors has been identified [475].  TENM4 has been associated 

with Schizophrenia [476] and prostate cancer [477].  A role of TENM in leptin, fatty acid 

metabolism, obesity, diabetes, or metabolic syndrome has not been established.  In the 

Welsh ponies, 46 TENM intronic variants exceeded the threshold for genome-wide 

significance, and a splice site variant (low impact) was identified between exon 3 and 4 

with a p-value of 4.06e-03 (Table 4.7).  

GLU-OST and NEFA concentrations on ECA28 in Welsh ponies: Based on the boundaries 

of the LD-ROI, this region on ECA28 was identified as shared between GLU-OST and 

NEFA concentrations.  Given the more precisely fine-mapped region for GLU-OST, the 

region between 34,350,000 to 35,007,000 was further evaluated.  EIF3D encodes the 

largest-subunit of one of the most complex translation initiation factors and is required for 

the initiation of protein synthesis of several mRNA via assistance in the recruitment of 

ribosomes to the mRNA [478].  Using transcriptomics, proteomics and metabolomic 

profiling, it was identified that cells lacking EIF3D were unable to synthesize components 

of the mitochondrial electron transport chain, leading to a shift in energy balance with 

increased glucose uptake, upregulation of glycolytic enzymes, and fermentation of carbon 

sources, suggesting a role for EIF3D in glucose metabolism [479].  Further, in models of 

gall bladder cancer, EIF3D was shown to activate PI3K/AKT signaling by blocking the 

degradation of the G-protein coupled receptor kinase 2 (GRK2).  As discussed in chapter 
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1, the PI3K/AKT signaling pathway is essential for glucose homeostasis and lipid 

metabolism [480], and GRK2 has been suggested to have a relevant role in insulin 

resistance and obesity [481]; providing evidence for a role for EIF3D in both glucose 

homeostasis and fatty acid metabolism.  In the Welsh ponies, 8 intronic SNPs in EIF3D 

exceeded the threshold for genome-wide significance for GLU-OST concentrations (Table 

4.8).  In addition, protein coding genes with a predicted functional impact in the association 

analysis for NEFA concentrations (Table 4.9) include: one splice site variant in intron 3-4 

and one synonymous variant in exon 14 (p-values=2.43e-02; both with a predicted low 

impact) of CSF2B which was previously found to be correlated with BMI and upregulated 

in the subcutaneous white adipose tissue of obese individuals [482], and a missense variant 

(p-value=7.13e-03; predicted moderate impact) in exon 2 of IFT27 which encodes a protein 

that is a core component of the intraflagellar transport, and mouse knockout models of this 

gene results in an obese phenotype secondary to alterations in ciliary function [483].  

GH ratio on ECA11 in Welsh ponies: ACE encodes a zinc metallopeptidase which is 

involved in the conversion of angiotensin I into the biologically active peptide angiotensin 

II, which acts on the central nervous system to regulate renal sympathetic nerve activity, 

renal function, and blood pressure.  High levels of angiotensin II have been proposed to 

play a key role in glucose and insulin regulation and studies have shown an increased risk 

of diabetes [484].  In a population of Native Americans, significant genetic associations 

were identified between a variant in ACE and insulin resistance and fasting 

hyperinsulinemia [485].  Further, large-scale studies across multiple populations have 

identified associations between alleles within the ACE gene and obesity, metabolic 

syndrome and type II diabetes in patients with and without hypertension [486-489]; 

however, a few studies have found no difference between the prevalence of an ACE 

insertion/deletion dimorphism in patients with type II diabetes versus controls 

[484,490,491].  Nonetheless, this gene is an intriguing biological candidate gene and 

warrants further investigation.  In the Welsh ponies, two intronic and two upstream variants 

were identified in ACE.  Further, 1 missense mutation (predicted moderate impact) was 

identified in exon 15 with a p-value of 1.11e-02 (Table 4.10).  In addition, TACO1 encodes 

a mitochondrial protein that functions as a translational activator of cytochrome c oxidase 

1.  In mice, this protein was one of several mitochondrial proteins that were upregulated in 
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obese mice fed a Western diet, as well as in obese mice who exercised on a wheel over 

those that were sedentary, indicating a role for mitochondrial proteins in obesity and 

promoting skeletal muscle health during exercise-induced weight loss [492].  In the Welsh 

ponies, two intronic and one upstream variant were identified in TACO1.  Further, 1 5’UTR 

variant with a premature start codon (p-value=6.71e-03) and one synonymous mutation in 

exon 15 (p-value=5.62e-04; both predicted low impact variants) were identified for TACO1 

(Table 4.10). 

ACTH on ECA 1 in the Welsh ponies: The region was not assessed for biological candidate 

genes given that all significantly associated SNPs were intergenic and no exonic SNPs 

within the full LD-ROI had a p-value of <0.05 (Table 4.11).   

Basal glucose concentrations and laminitis status on ECA4 in Morgan horses: Based on 

the boundaries of the LD-ROI, this region on ECA4 was identified as shared between basal 

glucose concentrations and laminitis status.  Given the more precisely fine-mapped region 

for glucose concentrations, ABCA13 was identified as a candidate gene.  In our cohort, 

ABCA13 intronic variants were identified in the Morgan horses for glucose concentration 

(one SNP; Table 4.12) and laminitis status (10 SNPs; Table 4.13).  In the horse, ABCA13 

has 62 exons and is associated with 5,097 variant alleles based on data from dbSNP, 

including the 2 synonymous variants in exon 34 and 46, the one missense variant in exon 

42, and seven of the 11 intronic variants we identified (Tables 4.12 and 4.13).  Further, our 

missense variant had a SIFT score of 1.0, indicating a well-tolerated amino acid 

substitution.  Although the function of ABCA13 has yet to be elucidated, it belongs to a 

subfamily of cell-membrane transporters with known roles in lipid metabolism [493].  

ABCA1 has been studied for its role in metabolic syndrome based on its known role in 

regulating high-density lipoprotein biogenesis, very-low-density lipoprotein production, 

and triglyceride lipolysis, [494].  Studies utilizing mouse models have identified that 

ABCA1 has an important role in (i) β-cell insulin secretion and cholesterol homeostasis 

[495], (ii) adipocyte lipid metabolism and body weight [496], and (iii) GLUT4 trafficking 

and glucose uptake in skeletal muscle [497].  Less is known about the role of ABCA13 

although it has been linked to autism [498] and Schwachman-Diamond syndrome, a rare 

genetic disorder affecting the bone marrow, skeletal muscles, and pancreatic tissue [499].  
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Thus, additional investigation is required to determine if ABCA13 has a role in metabolic 

syndrome and the impact of the variants that we identified. 

INS-OST on ECA10: A total of 18 SNPs exceeded our threshold for genome-wide 

significance for this region, all of which were intronic SNP within the protein-coding gene 

NKAIN2 (Table 4.14).  This gene is a transmembrane protein that interacts with the β 

subunit of the sodium/potassium transporting ATPase; however, the role of this gene is not 

well established but is thought to be primarily involved in neuronal development and 

function [500].  This was supported by initial studies which linked variants in NKAIN2 

with mental disorders such as Schizophrenia and depression [501,502].  In addition, 

evidence suggests that NKAIN2 acts as tumor suppressor [503], with down regulation or 

loss of function mutations associated with prostate cancer [504].  However, recent studies 

have also suggested a role for NKAIN2 in obesity and lipid metabolism.  Using longitudinal 

exome-wide association analysis, NKAIN2 was identified as one of three novel SNPs 

associated with body mass index in a population of Japanese subjects [505].  In addition, 

investigators found evidence that SNPs within NKAIN2 were interacting between total fat 

intake to influence the variation of low-density lipoproteins [506].  Thus, the role of 

NKAIN2 is still being investigated and a specific biological function in glucose and insulin 

homeostasis has not been identified. 

Leptin concentrations on ECA19 in Morgan horses: There is currently no literature 

available on the pseudogenes or lncRNA identified with statistically significant variants in 

this region (Table 4.15).  The protein coding gene BBX is a member of a superfamily of 

high-mobility group of architectural transcription factors, which are responsible for 

transcription, replication and DNA repair [507].  Specifically, BBX belongs to the family 

of high-mobility group box (HMGB) which bind, bridge, and loop DNA for transcription 

[508].  There is limited information about the function of BBX; however, variants in high-

mobility AT-hook 2 (HMGA2) has been associated with metabolic syndrome in humans 

and correlated with metabolic phenotypes in Welsh ponies (see Chapter 5).  Thus, 

members of this superfamily warrant further investigation.  In the Morgan horses, three 

downstream and nine intronic variants were identified in this gene (Table 4.15). 
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NH concentrations on ECA19 in Morgan horses: This region contained a number of 

protein-coding genes with either intronic or exonic variants (Table 4.16).  Of these genes, 

XXYLT1 has been associated with obesity and BDHI has a known function in fatty acid and 

ketone production.  XXYLT1 is an integral membrane protein and belong to the GT8 family 

of glycosyltransferases and has been shown to have an essential role in glucose biology via 

targeting Notch proteins [509].  This gene was also found to be in one of seven potentially 

pleiotropic loci associated with osteoporosis and obesity in humans [510].  In our cohort, 

11 intronic SNPs were identified in XXYLT1 which exceed the threshold for genome-wide 

significance (Table 4.16).  BDHI gene belongs to a family of dehydrogenase/reductases 

enzymes and encodes a homotetrameric lipid-requiring enzyme of the mitochondrial 

membrane. BDHI is responsible for beige fat differentiation [511] and has a role in 

mitochondrial production of ketone bodies during fatty acid catabolism via the reduction 

of acetoacetate to beta-hydroxy butyrate.  In a mouse model of type II diabetes and diabetic 

cardiomyopathy, BDHI, HMGCS2, and PDK4 were found to be upregulated in response to 

PPAR-γ activation secondary to obesity [512].  Upregulation of all three ketogenic 

enzymes correlated with obesity, lipotoxity and cardiac dysfunction [512].  In the Morgan 

horses, one synonymous variant was identified in exon 7 of this gene which had a p-value 

of 3.59e-02 (Table 4.16).  Given that NH ratio is a measurement of obesity, these genes 

were considered as biological candidate genes.   

Adiponectin concentrations on ECA6 in Morgan horses: This region contained a single 

intergenic SNP which exceeded the threshold for genome-wide significance and 20 exonic 

variants within protein coding genes that had a p-value of <0.05 which were further 

assessed for biological function (Table 4.17).  NCK-associated protein 5 like (NCKAP5L) 

has an important role in regulating microtubule organization and stabilization and causal 

variants have been identified for Retinitis Pigmentosa.  In a study evaluation differential 

gene expression in tissue from obese individuals, NCKAP5L was found to be upregulated 

in adipose tissue and downregulated in the blood and was located within 1Mb of a known 

obesity susceptibility SNP, providing evidence for a novel candidate gene for obesity 

[513].  In the Morgan horses, one synonymous variant (low impact) was identified in exon 

1 with a p-value of 3.80e-02 (Table 4.17).  Glycerol-3-phosphate dehydrogenase 1 (GPD1) 

is a member of the NAD-dependent glycerol-3-phospate dehydrogenase family and plays 
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a critical role in carbohydrate and lipid metabolism.  The enzyme is responsible for 

catalyzing the reversible conversion of NADH to glycerol-3-phospate and NAD+, as well 

as facilitating the movement of glycerol from the cytosol to the mitochondria.  Mutations 

in this gene are the cause of transient infantile hypertriglyceridemia, and decreased 

concentrations have been reported in insulin-resistant individuals [514].  Comparison of 

adipose tissue depots showed decreased expression of lipoprotein lipase, adiponectin, and 

GPD1 in omental fat which was accentuated in the presence of glucose intolerance [515].  

Similarly, investigation of adipose tissue dysfunction secondary to insulin-resistance 

revealed that GPD1 served as a canonical marker of adipogenesis, and both adiponectin 

and GPD1 correlated with decreased expression of ErbB1 [516], potentially indicating a 

direct link between adiponectin and GPD1 in insulin resistance.  In our cohort one missense 

variant (moderate impact) was identified in exon 1 of GPD1 with a p-value of 3.51e-02 

(Table 4.17).  Several genes with variants identified in this fine-mapped region have been 

associated with lipid metabolism although are not directly related to adiponectin, obesity 

or metabolic syndrome.  Variants in LIMA1 have been found to lower low-density 

lipoprotein-cholesterol levels and inhibiting gastrointestinal cholesterol absorption [517], 

microRNAs have been shown to target METTL7A during lipid droplet formation 

suggesting that these micoRNAs may act as a biomarker for obesity or MetS [518], and the 

non-heme transporter SLC11A2 has been shown to be upregulated in the intestinal cell of 

obese patients with type II diabetes potentially explaining the elevated iron levels in many 

of these patients [519].  In the Morgan horses we identified missense variants (moderate 

impact) in exon 1 of LIMA1 (p-value=3.17e-02), exon 2 of METTL7A (p-value=3.17e-02), 

and exon 12 of SLC11A2 (p-value=2.97e-02; Table 4.17)  Finally, aquaporin 6 (AQP6) 

belongs to a family of membrane water channels which are involved in water/salt 

homestasis, exocrine fluid secretion and epidermal hydration [520].  Mouse knockout 

models of AQP7, an aquaglyceroporin expressed in adipocytes, have been shown to have 

increased fat mass and adipocyte hypetrophy, indicating an essential role for plasma 

membrane glycerol permeability in adipose glycerol and triglyceride accumulation [521].  

AQP7 and APQ9, an aquaporin important for hepatic glycerol uptake, have both been 

suggested as metabolic regulator in diabetes and obesity [522].  Less is known about the 

function of APQ6 but based on sequence similarities it belongs to the subfamily of 
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orthodox aquaporins which are mainly selective for the transfer of water across the plasma 

membrane, and a role for this subfamily in metabolic syndrome or obesity has not been 

established [523].  In our cohort, we identified a premature start codon in the 5’UTR (low 

impact; p-value=3.17e-02) of this gene (Table 4.17).  Hence, this region contains several 

positional candidate genes with the top biological candidate genes being GPD1 and 

NCKAP5L. 

Non-Coding Variants and Future Directions 

Notably, all variants which exceeded the threshold for genome-wide significance mapped 

to non-coding regions of the genome, with 66.7% of the significantly associated SNPs 

being intronic, 17.0% intergenic (including the entire fine-mapped region for ACTH on 

ECA1 in the Welsh ponies) and 10.3% within lncRNA.  Consistent with what we found, 

in human association studies ~90% of the phenotype-associated SNPs were found to 

intergenic or within the introns, promoters, or 5’ or 3’ UTR of coding genes or small non-

coding RNAs [524-527].  This could be explained by several factors.  First, association 

studies using WGS follow the same principals of GWA indicating that the statistical power 

to detect sample size is dependent on (i) sample size, (ii) effect size of the causal variant, 

(iii) the allele frequency of the causal variant, and (iv) the LD between correlated and causal 

variants [528].  Therefore, the causal variant may not have reached statistical significance 

in our population but was tagged by variants within LD of the causal variant.  Based on the 

conservative Bonferroni correction imposed on most association studies, several studies 

using multi-omics data have shown that the causal variant does not reach the set threshold 

for significance but are rather “sub-threshold” [529].  In order to capture potential causal 

variants within protein-coding genes, we further evaluated positional candidate genes with 

exonic variants in our fine-mapped region with a p-value <0.05.   

Second, the causal variant may not have been represented in our population.  The principles 

of fine-mapping requires a complete catalog of all variants in the associated region in order 

to capture the causal variant, which is highly dependent on accurate genotyping or 

imputation of the region [458]. For our analysis, we imputed SNP array data to WGS from 

a reference population of 19 Welsh ponies and 18 Morgan horses.  The reference 

population was chosen to be representative of both insulin sensitive and insulin 
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dysregulated horses; however, complex traits are highly polygenic, and each individual 

likely has a unique combination of risk alleles, indicating that not all causal variants may 

be present in our reference population.  Further, imputation is a statistical best guess of 

missing genotypes with an error rate of ~2-6% [530].  In order to minimize imputation 

errors, we calculated concordance on individuals with both WGS and SNP array data or 

we masked down individuals from WGS to the SNP array, and SNPs without 100% 

concordance were excluded.  Evaluation of the percentage of intergenic, intronic, and 

exonic variants and the transition/transversion ratios for the within breed variant annotation 

was also consistent with what we would expect for WGS [531,532].  However, there is still 

a chance that an undetected error would lead to a missed causal variant.  In addition, 

mapping of WGS is dependent on the quality of the reference genome.  We utilized 

EquCab3, released in 2018, which improved the count of non-N bases from 2.33 Gb in 

EquCab2 to 2.41 Gb in EquCab3 [445].  However, this still indicates that the reference 

genome is not fully annotated and contains region that cannot be mapped by our WGS.  

Finally, a limitation of Beagle software is that it does not impute copy number variants, 

small insertions/deletions (indels), or tri-allelic SNPs, and so these variants were not 

represented in our analyses. Therefore, a complete investigation of these types of variants 

in the entire cohort of Welsh Ponies and Morgan horses was not possible using imputation. 

In future these variant types will be further evaluated by performing cytogenetic analysis 

or genotyping our population using array comparative genomic hybridization.  Although 

the relative impact of indels and copy number variants on complex traits has not been 

thoroughly invested, it has been proposed that they account for a portion of the missing 

heritability in GWA studies [533].  In a study evaluating gene expression, 17.7% of the 

total genetic variation in gene expression was captured by copy number variants [534], and 

copy number variants have been associated with several neurological complex diseases 

including Schizophrenia [535].  Further, the evaluation of 89 trait associated loci including 

1,319 SNPs and 88 indels revealed that indels were the most likely causal variant in seven 

loci [536].  Thus, causal variants due to one of these variants would not have been 

represented in our analyses but could have a functional effect on EMS.    

Third, the causal variant resides within the non-coding region of the genome with 

functional consequences on protein-coding genes.  Interestingly, assessment of 21 human 
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tissues associated with 392 diseases revealed that 85% of the transcript blocks contained 

novel, non-coding transcripts [537].  Although these regions were originally thought of as 

non-essential DNA, projects such as the Encyclopedia of DNA Elements (ENCODE) and 

Functional Annotation of the Animal Genomes (FAANG) have provided a large dataset of 

experimental evidence for a functional role of non-coding regulatory elements [524-

527,538,539].  Further, evaluation of association studies has shown that statistically 

significant variants are enriched within regulator sequencing including enhancer elements, 

DNase hypersensitivity regions and chromatin marks [526,540,541].  Specifically, intronic 

variants have been shown to have a functional effect by activating abhorrent splice sites, 

creating a novel acceptor or donor splice site, altering splicing regulatory elements, or 

disrupting transcription regulatory motifs and non-coding RNA genes [542], and over 180 

deep intronic pathogenic variants have been identified for 77 different disease [542].  In 

addition, lncRNAs are defined as non-protein coding transcripts with greater than 200 

nucleotides that structurally resemble mRNA [543], and it has been estimated that 54% of 

lncRNAs are located in intergenic regions [544].  Long noncoding RNAs have roles in 

epigenetic regulation, chromosome-imprinting, cell-cycle control and cell apoptosis [545] 

and recent studies have implicated them in the pathophysiology and pathogenesis of 

endocrine, reproduction, metabolic, immune, nervous and cardiovascular diseases [546].  

Thus, the functional effect of the non-coding variants in our analyses requires further 

investigation. 

However, prioritization of non-coding variants poses a more difficult challenge then 

protein-coding-regions.  Human studies have relied on publicly available data to prioritize 

causal variants by identifying those which overlap with accessible chromatin, transcription 

factor binding, or histone marks associated with regulatory activity [244].  However, there 

is a large gap in knowledge of the function of these regions in horses.  FAANG seeks to 

provide this resource to the animal genetics community but this is a large, multi-

collaborative project and data release has been slow.  Further, across species non-coding 

regions pose a challenge in deciphering their biological effect due to interactions with both 

proximal and distal protein-coding genes [547].  Analysis of trait-relevant, multi-omics 

data (for example genomic and transcriptomic data) may provide the means necessary to 

identify the targets of non-coding variants [526].   
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In summary, this chapter provided intriguing biological evidence for the role of multiple 

coding genes in the pathogenesis of EMS but did not conclusively identify the causal 

variants and additional follow-up is required.  Several methods could be utilized to further 

interrogate our regions for both protein-coding and non-coding causal variants.  First, 

interrogation of the allele frequency of the variants identified in this chapter in a large 

database of mixed-breed horses would allow for the assessment of the frequency of these 

variants in healthy horses.  Given that EMS can manifest at an older age, of particular 

interest would be assessment in breeds considered low-risk for EMS such as the Quarter 

Horse or Thoroughbred.  Identification of variants at low frequency in these breeds would 

allow for the prioritization of specific biological candidate genes for interrogation through 

Sanger sequencing.  Second, haplotype analysis can be utilized to find shared ancestral 

haplotypes to further fine-map the LD-ROI, prioritize variants, and identify additional 

horses for whole-genome or Sanger sequencing.  Third, development of a custom high-

throughput genotyping assay would allow for the validation of imputed genotypes as well 

as assessment of the statistically significant coding and non-coding variants in an 

independent population of Welsh ponies and Morgan horses phenotyped for EMS.   

Importantly, the 10 regions described here for variant annotation and assessment of 

biological candidate genes were chosen if the fine-mapped region contained one or more 

SNPs that exceeded the threshold for genome-wide significance, appeared to have clear 

delineation between baseline SNPs and those that exceeded the threshold, and where 

significantly associated SNPs appeared to be tightly clustered.  However, this only 

provided a criterion for initial analysis and does not exclude the remaining high priority 

LD-ROI.  Therefore, future directions also include interrogation of the remaining high 

priority LD-ROI as well as fine-mapping the medium and low priority LD-ROI. 
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Figure 4.1: Imputation of SNP genotyping arrays to whole genome sequencing.  Imputation 

concordance was determined from individuals which were genotyped for WGS and on the 

corresponding SNP array or masked down from WGS to the SNP array.  SNPs without 100% 

concordance were removed and the imputed horses were added to the reference genome.  *For the 

Welsh ponies genotyped on the 670K array, 584,301 SNPs mapped to EquCab3; SNPs which were 

noninformative or mapped to chromosome unknown were excluded when masking down horses 

from WGS. 

Reference File: WGS 

Welsh ponies=19 and Morgan horses=18 

Total variants: 19,722,966 

 

Reference File: WGS 

Welsh ponies=19 and Morgan horses=18 

Total variants: 16,056,906 

Quality Control  

(Excluded Variants) 

Genotyping rate <90%: 2,303,533 

 >biallelic and INDELS: 1,258,366 

Chromosomes unknown: 104,161 

Reference File: Imputed WGS 

Welsh ponies=57 and Morgan horses=58 

Total variants: 14,882,434 

 

Reference File: Imputed WGS 

Welsh ponies=57 and Morgan horses=18 

Total variants: 15,227,424 

 

Test File: MNEc2M  

Welsh Ponies=38 

Total Variants: 1,926,025 

Mapped EquCab3: 1,820,349 

Imputation Concordance: 98.97% 

Excluded Variants = 829,482 

 

 

 Test File: MNEc2M  

Morgan horses=40 

Total Variants: 1,931,327 

Mapped EquCab3: 1,820,349 

Imputation Concordance: 99.47% 

Excluded Variants = 344,990 

 

 

 Test File: 670K Array  

Welsh ponies=207 

Total variants: 609,105 

Mapped to EquCab3: 484,227* 

Imputation Concordance: 99.84% 

Excluded Variants = 538,195 

 

 

 

Reference File: Imputed WGS 

Welsh ponies=264 and Morgan horses=58 

Total variants: 14,344,239 

 

Test File: 54K Array  

Morgan horses=228 

Total variants: 54,602 

Mapped to EquCab3: 49,250 

Imputation Concordance: 98.67% 

Excluded Variants = 1,556,766 

 

 

 

Final File: Imputed WGS 

Welsh ponies=264 and Morgan horses=286 

Total variants: 12,787,473 
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Figure 4.2: Fine-mapped region for adiponectin concentrations on chromosome 1 in the 

Welsh ponies.  (A) Manhattan plot of the full LD-ROI identified on GWA from base pair positions 

171861236 to 178270042, with base pair positions on the x-axis and the -log10 of the p-value on 

the y-axis.  Red line represents the threshold for genome significance set at <1.3e-05, of which 117 

SNPs exceeded this threshold.  (B) Manhattan plot of the fine-mapped LD-ROI from base pair 

positions 175000000 to 179000000.  Aligning the Ensembl genome browser identified statistically 

significant variants in protein-coding genes including PAX9, SLC25A2, TTC6, ABCA13, SSTR1, 

SEC23A, GEMIN2, MIA2, and FBX033.  

A. 

B. 
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Figure 4.3: Fine-mapped region for leptin concentrations on ECA7 in the Welsh ponies.  (A) 

Manhattan plot of the full LD-ROI identified on GWA from base pair positions 65678376 to 

68117086, with base pair positions on the x-axis and the -log10 of the p-value on the y-axis.  Red 

line represents the threshold for genome significance set at <1.3e-05, of which 46 SNPs exceeded 

this threshold.  (B) Manhattan plot of the fine-mapped LD-ROI from base pair positions 67940000 

to 67973000.  Aligning the Ensembl genome browser revealed that all statistically significant 

variants were in a single protein-coding gene, TENM4.  

A. 

B. 
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Figure 4.4: Fine-mapped region for glucose concentrations post oral sugar test on ECA28 in 

the Welsh ponies.  (A) Manhattan plot of the full LD-ROI identified on GWA from base pair 

positions 34271949 to 35138699, with base pair positions on the x-axis and the -log10 of the p-

value on the y-axis.  Red line represents the threshold for genome significance set at <1.2e-04, of 

which 85 SNPs exceeded this threshold.  (B) Manhattan plot of the fine-mapped LD-ROI from base 

pair positions 34350000 to 35007000.  Aligning the Ensembl genome browser revealed that 

statistically significant variants were in the protein-coding gene RBFOX, FOXRED2, EIF3D, or 

CACNG2. 

 

A. 

B. 
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Figure 4.5: Fine-mapped region for glucose concentrations post oral sugar test on ECA28 in 

the Welsh ponies.  (A) Manhattan plot of the full LD-ROI identified on GWA from base pair 

positions 32909542 to 35703535, with base pair positions on the x-axis and the -log10 of the p-

value on the y-axis.  Red line represents the threshold for genome significance set at <3.9e-05, of 

which 30 SNPs exceeded this threshold.  (B) Manhattan plot of the fine-mapped LD-ROI from base 

pair positions 34050000 to 35350000.  Aligning the Ensembl genome browser revealed that 

statistically significant variants were in the protein-coding gene RBFOX2 and NCF4.  The red box 

around the base pair positions indicates the shared fine-mapped region for glucose concentrations 

post oral sugar test (see Figure 4.4). 

A. 

B. 
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Figure 4.6: Fine-mapped region for glucose concentrations post oral sugar test on ECA28 in 

the Welsh ponies.  (A) Manhattan plot of the full LD-ROI identified on GWA from base pair 

positions 15414337 to 16451463, with base pair positions on the x-axis and the -log10 of the p-

value on the y-axis.  Red line represents the threshold for genome significance set at <4.6e-05, of 

which 19 SNPs exceeded this threshold.  (B) Manhattan plot of the fine-mapped LD-ROI from base 

pair positions 15700606 to 16403791.  Aligning the Ensembl genome browser revealed that 

statistically significant variants were in the protein-coding gene MAP3K, TACO1, DCAF7, ACE, 

and MARCH10.   

A. 

B. 
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Figure 4.7: Fine-mapped region for ACTH concentrations ECA1 in the Welsh ponies.  (A) 

Manhattan plot of the full LD-ROI identified on GWA from base pair positions 15414337 to 

16451463, with base pair positions on the x-axis and the -log10 of the p-value on the y-axis.  Red 

line represents the threshold for genome significance set at <4.6e-05, of which 19 SNPs exceeded 

this threshold.  (B) Manhattan plot of the fine-mapped LD-ROI.  Aligning the Ensembl genome 

browser revealed that statistically significant variants were all intergenic.   
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Figure 4.8: Fine-mapped region for laminitis status on chromosome 4 in the Morgan 

horses.  (A) Manhattan plot of the full LD-ROI identified on GWA from base pair positions 

17307352 to 19812647, with base pair positions on the x-axis and the -log10 of the p-value 

on the y-axis.  Red line represents the threshold for genome significance set at <9.9e-06, 

of which 25 SNPs exceeded this threshold.  (B) Manhattan plot of the fine-mapped LD-

ROI from base pair positions 17415000 to 18650000.  Aligning the Ensembl genome 

browser identified statistically significant variants in protein-coding genes including TNS3, 

PKD1L1, and HUS1, ABCA13.  The red box around ABCA13 marks the approximate region 

for significant SNP for glucose concentrations on ECA4 SNPs (see Figure 4.9). 

A. 

B. 
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Figure 4.9: Fine-mapped region for basal glucose concentrations on ECA4 in the Morgan 

horses.  (A) Manhattan plot of the full LD-ROI identified on GWA from base pair positions 

17239374 to 19043831, with base pair positions on the x-axis and the -log10 of the p-value on the 

y-axis.  Red line represents the threshold for genome significance set at <1.5e-04, of which 64 

SNPs exceeded this threshold.  (B) Manhattan plot of the fine-mapped LD-ROI from base pair 

positions 18320000 to 18390000.  Aligning the Ensembl genome browser revealed that all 

statistically significant variants were in a single protein-coding gene, ABCA13. 

A. 

B. 
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Figure 4.10: Fine-mapped region for insulin concentrations post oral sugar test on ECA10 in 

the Morgan horses.  (A) Manhattan plot of the full LD-ROI identified on GWA from base pair 

positions 71666607 to 73534053, with base pair positions on the x-axis and the -log10 of the p-

value on the y-axis.  Red line represents the threshold for genome significance set at <2.7e-05, of 

which 18 SNPs exceeded this threshold.  (B) Manhattan plot of the fine-mapped LD-ROI from base 

pair positions 72936000 to 72946700.  Aligning the Ensembl genome browser revealed that all 

statistically significant variants were in an intron of a single protein-coding gene, NKAIN2. 

A. 

B. 
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Figure 4.11: Fine-mapped region for leptin concentrations on ECA19 in the Morgan horses.  

(A) Manhattan plot of the full LD-ROI identified on GWA from base pair positions 51386493 to 

53959028, with base pair positions on the x-axis and the -log10 of the p-value on the y-axis.  Red 

line represents the threshold for genome significance set at < 1.3e-05, of which 35 SNPs exceeded 

this threshold.  (B) Manhattan plot of the fine-mapped LD-ROI from base pair positions 51580000 

to 52450000.  Aligning the Ensembl genome browser revealed that all statistically significant 

variants were intergenic, and intragenic, intronic, or downstream of 2 pseudogenes, 1 lncRNA, and 

the protein coding gene BBX. 

A. 

B. 
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Figure 4.12: Fine-mapped region for NH ratios on ECA19 in the Morgan horses.  (A) 

Manhattan plot of the full LD-ROI identified on GWA from base pair positions 32962795 to 

37391949, with base pair positions on the x-axis and the -log10 of the p-value on the y-axis.  Red 

line represents the threshold for genome significance set at < 9.4e-06, of which 16 SNPs exceeded 

this threshold.  (B) Manhattan plot of the fine-mapped LD-ROI from base pair positions 33400000 

to 35900000.  Aligning the Ensembl genome browser revealed that all statistically significant 

variants were intergenic, and intragenic, intronic, or upstream of 1 lncRNA, and the protein coding 

genes LRRC15, ATP13A3, and XXYLT1. 
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Figure 4.13: Fine-mapped region for adiponectin concentrations on ECA6 in the Morgan 

horses.  (A) Manhattan plot of the full LD-ROI identified on GWA from base pair positions 

64297403 to 71493047, with base pair positions on the x-axis and the -log10 of the p-value on the 

y-axis.  Red line represents the threshold for genome significance set at <5.7e-06, of which 1 SNP 

exceeded this threshold.  (B) Manhattan plot of the fine-mapped LD-ROI from base pair positions 

68250000 to 70001000.  Aligning the Ensembl genome browser revealed that the statistically 

significant variant was intergenic. 
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Table 4.1: EMS phenotypic data for Welsh ponies chosen for whole-genome sequencing 

EMS_ID 
Laminitis 

Status 

Basal Insulin 

(µIU/mL) 

Insulin-OST 

(µIU/mL) 

Triglycerides 

(mg/dL) 

Adiponectin 

(µg/mL) 

Mean (sd)  10.9 (17.2) 36.2 (45.4) 28.0 (34.8) 6.9 (5.5) 

EMS_28 n 34.7 84.2 46.8 1.8 

EMS_363 y 12.4 49.3 119.3 0.4 

EMS_369 n 2.8 15.94 41.4 3.3 

EMS_373 n 4.3 13.0 64.7 2.8 

EMS_376 y 14.4 107.6 241.0 2.7 

EMS_457 y 119.9 142.9 32.3 0.5 

EMS_657 n 7.2 9.1 0.7 4.7 

EMS_676 n 10.0 11.3 1.7 11.4 

EMS_697 n 1.5 9.7 13.4 7.3 

EMS_699 y 22.0 246.4 69.7 0.06 

EMS_737 n 1.5 4.2 4.9 8.5 

EMS_738 y 28.1 300.0 40.9 0.5 

EMS_739 y 218.3 308.0 72.5 0.6 

EMS_765 n 4.9 4.1 8.3 37 

EMS_790 y 26.0 153.4 25.3 1.3 

EMS_794 n 2.3 20.3 3.4 23.4 

EMS_812 n 6.1 12.2 15.1 32 

EMS_820 n 7.5 8.8 1.3 8.4 

 

Table 4.1: EMS phenotypic data for Welsh ponies chosen for whole-genome sequencing.  

Ponies were chosen to represent both insulin sensitive and insulin dysregulated horses 

(individuals with a history of laminitis and at the breed-specific upper range for the EMS 

biochemical measurements baseline insulin, insulin concentrations post oral sugar 

challenge, or triglycerides, and breed-specific lower range for adiponectin concentrations.  

Breed-specific ranges are provided for each biochemical measurement.  Abbreviations: 

Insulin-OST: insulin concentrations post oral sugar test. 

 

 

  



189 
 

Table 4.2: EMS phenotypic data for Morgan horses with whole-genome sequencing 

EMS_ID 
Laminitis 

Status 

Basal Insulin 

(µIU/mL) 

Insulin-OST 

(µIU/mL) 

Triglycerides 

(mg/dL) 

Adiponectin 

(µg/mL) 

Mean (sd)  8.5 (8.9) 33.2 (59.2) 25.0 (16.4) 5.0 (3.0) 

EMS_9 n 1.5 2.2 8.1 1.1 

EMS_49 n 8.9 12.9 11.9 14.9 

EMS_50 n 1.5 4.5 16.7 4.4 

EMS_91 y 37.7 665.9 36.8 0.2 

EMS_93 y 102.2 587.1 41.5 0.3 

EMS_134 y 33.4 200.7 22.7 3.5 

EMS_246 y 19.9 87.9 54.1 0.9 

EMS_259 n 1.5 1.5 6.6 4.3 

EMS_265 n 1.5 8.3 15.2 3.9 

EMS_279 n 4.9 11.9 35.3 0.6 

EMS_333 y 38.3 73.3 27.9 1.4 

EMS_336 n 12 7.6 29.5 6.4 

EMS_355 y 12.0 71.6 26.9 1.4 

EMS_395 y 14.0 136.5 66.2 0.5 

EMS_479 n 1.5 11.8 15.7 3.9 

EMS_595 y 32.4 81.6 29.4 2.7 

EMS_605 n 2.8 3.1 21.7 4.1 

EMS_611 y 18.3 104.3 36.9 0.8 

 

Table 4.2: EMS phenotypic data for Morgan horses chosen for whole-genome sequencing.  

Horses were chosen to represent both insulin sensitive and insulin dysregulated horses 

(individuals with a history of laminitis and at the breed-specific upper range for the EMS 

biochemical measurements baseline insulin, insulin concentrations post oral sugar 

challenge, or triglycerides, and breed-specific lower range for adiponectin concentrations.  

Breed-specific ranges are provided for each biochemical measurement.  Abbreviations: 

Insulin-OST: insulin concentrations post oral sugar test. 
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Table 4.3: Fine mapped high priority LD-ROI in the Welsh ponies 

Trait Chr Min_ROI Max_ROI Total_SNPs Effective_SNPs Threshold Sign_SNPs 

Insulin 5 35409104 44806458 16554 11488 4.35E-06 5 
 8 69350844 75906595 21228 10497 4.76E-06 1 
 15 5748377 6612684 1269 579 8.64E-05 0 
 24 28451012 29887250 4942 935 5.35E-05 5 

INS_OST 28 39322188 39488807 371 75 6.67E-04 15 

GLU_OST 28 34271949 35138699 2036 415 1.20E-04 85 

Adiponectin 1 171861236 178270042 20024 3837 1.30E-05 118 
 18 60060215 61349045 3679 2237 2.24E-05 27 

Leptin 5 39751797 50431769 22829 12790 3.91E-06 0 
 6 488137 4012580 11480 6191 8.08E-06 9 
 7 65678376 68117086 7144 3966 1.26E-05 45 

NEFA 28 32909542 35703535 6227 1282 3.90E-05 30 

ACTH 1 42944403 45232767 8200 1507 3.32E-05 17 
 1 69558737 70960589 3940 652 7.67E-05 9 

NH 4 67130904 69873296 9602 5077 9.85E-06 0 
 4 77298241 81186565 13726 7639 6.55E-06 1 
 4 83144842 83244842 263 167 2.99E-04 0 
 7 93176991 93628686 2839 1869 2.68E-05 0 
 9 32632235 37587269 16280 8508 5.88E-06 47 
 11 18342117 19876247 2130 1222 4.09E-05 0 
 14 63702522 63847210 457 291 1.72E-04 0 
 20 40244007 41210876 2859 1518 3.29E-05 0 
 20 60723014 61735694 5132 2566 1.95E-05 1 
 21 5280993 6396786 3039 1568 3.19E-05 0 
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Table 4.3: Fine mapped high priority LD-ROI in the Welsh ponies (cont.) 

Trait Chr Min_ROI Max_ROI Total_SNPs Effective_SNPs Threshold Sign_SNPs 

NH (cont.) 21 19515280 25046226 15288 8217 6.08E-06 23 
 24 31843480 36758218 11834 2330 2.15E-05 440 

GH 1 132184772 133716124 4316 919 5.44E-05 1 
 4 70026254 81648125 39176 21899 2.28E-06 113 
 4 82570011 86366835 7965 4571 1.09E-05 7 
 7 93191676 93628672 2690 1819 2.75E-05 2 
 11 15414337 16451463 2056 1077 4.64E-05 19 
 11 18613895 19317536 1001 510 9.80E-05 0 
 18 79527484 81467661 5322 2904 1.72E-05 0 
 19 31204596 31799125 1297 587 8.52E-05 0 
 20 29486630 30976763 12762 4304 1.16E-05 6 
 20 59464566 61015217 5688 3500 1.43E-05 0 
 20 64722427 65336095 2754 1540 3.25E-05 0 
 22 41032889 41066045 95 30 1.67E-03 0 

LAM 2 35880861 36665473 1790 1033 4.84E-05 21 
 19 57082025 62825378 15385 7954 6.29E-06 125 
 28 9990892 10844823 2749 498 1.00E-04 8 

 

Table 4.3: Fine mapped high priority LD-ROI in the Welsh ponies.  Boundaries of the ROI were based on the breakdown of LD and are listed 

as the minimum SNP within (Min-ROI) and the maximum SNP (Max-ROI) within the region. The total number of SNP within the boundary, 

effective number of SNPs based on GEC, calculated Bonferroni corrected p-value for genome-wide significance (Threshold), and the total number 

of SNPs which exceeded that threshold (Sign_SNPs) are also listed in the table.  Highlighted chromosomes (Chr) indicate regions which were shared 

with several traits. 
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Table 4.4: Fine mapped high priority LD-ROI in the Morgan horses 

Trait Chr Min_ROI Max_ROI Total_SNPs Effective_SNPs Threshold Sign_SNPs 

INS-OST 10 71666607 73534053 4784 1827 2.74E-05 18 

Glucose 4 17239374 19043831 6495 3156 1.58E-05 1 

GLU-OST 3 55746338 58085997 4878 2474 2.02E-05 243 

NEFA 1 184859013 187238015 5744 3045 1.64E-05 0 

Adiponectin 2 16362904 18105119 3768 1936 2.58E-05 319 
 4 34723398 39321960 9623 4353 1.15E-05 16 
 6 32486287 32841880 547 167 2.99E-04 2 
 6 64297403 71493047 17106 8812 5.67E-06 1 

Leptin 19 51286493 53959028 8454 3631 1.38E-05 35 
 24 25564765 29384679 11462 2104 2.38E-05 0 

ACTH 1 82700933 84269783 3265 585 8.55E-05 1 
 3 102944842 103801021 3179 1815 2.75E-05 0 
 5 25378878 27689002 7546 3507 1.43E-05 0 

NH 4 52024470 54237747 4057 2534 1.97E-05 0 
 6 60410647 70570773 26417 13697 3.65E-06 1 
 19 32962795 37391949 10479 5321 9.40E-06 16 

GH 1 120644115 124691346 6147 1205 4.15E-05 31 
 17 31806060 33720086 4769 1754 2.85E-05 0 

LAM 4 17301415 19812653 9251 5032 9.94E-06 27 
 12 32885279 34800986 4977 1358 3.68E-05 65 
 14 87916190 91602875 10056 5294 9.44E-06 38 
 18 30095266 35177011 11381 5767 8.67E-06 28 
 19 30133826 30183826 140 112 4.46E-04 0 
 22 2843476 5225020 6828 3351 1.49E-05 336 
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Table 4.4: Fine mapped high priority LD-ROI in the Morgan horses.  Boundaries of the ROI were based on the breakdown of LD and are listed 

as the minimum SNP within (Min-ROI) and the maximum SNP (Max-ROI) within the region. The total number of SNP within the boundary, 

effective number of SNPs based on GEC, calculated Bonferroni corrected p-value for genome-wide significance (Threshold), and the total number 

of SNPs which exceeded that threshold (Sign_SNPs) are also listed in the table.  Highlighted chromosomes (Chr) indicate regions which were shared 

with several traits. 

 

 

 

 

Table 4.4: Fine mapped high priority LD-ROI in the Morgan horses (cont.) 

Trait Chr Min_ROI Max_ROI Total_SNPs Effective_SNPs Threshold Sign_SNPs 

LAM (cont.) 23 7656404 12984095 14284 3368 1.48E-05 42 
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Table 4.5: Selected fine-mapped high-priority LD-ROI for Welsh ponies and Morgan horses.  Boundaries of the ROI were based on the 

breakdown of LD and are listed as the minimum SNP within (Min-ROI) and the maximum SNP (Max-ROI) within the region.  For regions shared 

between traits, the smaller region size is listed.  Fine-mapped boundaries (Min_FMap and Max_FMap) were based on the SNPs which exceeded the 

threshold for genome-wide significant.  Candidate genes with a biological functional effect are listed under the Candidate Genes column.   

  

Table 4.5: Selected fine-mapped high-priority LD-ROI for Welsh ponies 

Trait Chr Min_ROI Max_ROI Min_FMap Max_FMap Candidate Genes 

Adiponectin 1 171861236 178270042 175000000 178000000 
SSTR1, SEC23A, FBX033, 

MIA2 

Leptin 7 65678376 68117086 67940000 67973000 None 

GLU-OST/NEFA 28 34271949 35138699 34350000 35007000 EIF3D, CSF2B, IFT27 

GH 11 15414337 16451463 15680000 16430000 ACE, TACO1 

ACTH 1 69558737 70960589 70264921 70272614 None 

       

Selected fine-mapped high-priority LD-ROI for Morgan horses 

Trait Chr Min_ROI Max_ROI Min_FMap Max_FMap  

Glucose/ LAM 4 17239374 19043831 18320000 18390000 ABCA13 

Insulin-OST 10 71666607 73534053 72936000 72946700 NKAIN2 

Leptin 19 51286493 53959028 51580000 52450000 BBX 

NH 19 32962795 37391949 33400000 35900000 XXYLT1, BDHI 

Adiponectin 6 64297403 71493047 68250000 70001000 
NCKAP5L, GPD1, LIMA1, 

METTL7A, SLC11A2, AQP6 
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Table 4.6: SNPs which exceed the threshold for genome-wide significance 

Pos REF ALT MAF Beta SE P-Value Gene Loc Impact 

175126635 A T 0.14 -0.59 0.12 2.88E-06 PAX9 UpStrm Modifier 

175126651 G C 0.13 -0.57 0.13 9.40E-06 PAX9 UpStrm Modifier 

175129265 A G 0.14 -0.56 0.12 6.06E-06 PAX9 UpStrm Modifier 

175155905 G T 0.25 0.51 0.09 1.89E-08 SLC25A21 Intron Modifier 

175176688 T G 0.13 -0.6 0.13 1.05E-05 SLC25A21 Intron Modifier 

175984052 C T 0.18 -0.47 0.11 1.25E-05 TTC6 Intron Modifier 

176040706 T C 0.18 -0.47 0.11 1.11E-05 TTC6 Intron Modifier 

176041751 C T 0.12 -0.67 0.13 8.14E-07 TTC6 Intron Modifier 

176045167 G C 0.12 -0.64 0.13 2.23E-06 TTC6 Intron Modifier 

176047376 G A 0.12 -0.64 0.13 2.23E-06 TTC6 Intron Modifier 

176052940 C T 0.11 -0.69 0.13 4.80E-07 TTC6 Intron Modifier 

176053778 T C 0.11 -0.72 0.13 1.59E-07 TTC6 Intron Modifier 

176090641 T C 0.25 0.43 0.1 8.82E-06 TTC6 Intron Modifier 

176092018 G A 0.11 -0.72 0.13 9.22E-08 TTC6 Intron Modifier 

176194157 A G 0.16 -0.56 0.12 1.91E-06 NA Intergenic Modifier 

176195007 C T 0.11 -0.68 0.13 7.02E-07 NA Intergenic Modifier 

176196276 G A 0.12 -0.65 0.13 1.96E-06 NA Intergenic Modifier 

176228400 G A 0.12 -0.68 0.13 5.83E-07 NA Intergenic Modifier 

176229098 G A 0.12 -0.65 0.13 1.60E-06 NA Intergenic Modifier 

176229728 T C 0.12 -0.65 0.13 1.60E-06 NA Intergenic Modifier 

176230514 G A 0.12 -0.68 0.13 5.83E-07 NA Intergenic Modifier 

176254487 A C 0.14 -0.55 0.12 1.12E-05 NA Intergenic Modifier 

176310938 C T 0.12 -0.64 0.13 2.04E-06 NA Intergenic Modifier 

176311729 C A 0.12 -0.65 0.13 1.60E-06 NA Intergenic Modifier 

176329655 T G 0.12 -0.65 0.13 1.60E-06 NA Intergenic Modifier 

176334101 T A 0.12 -0.65 0.13 1.60E-06 Pseudo DwnStrm Modifier 

176335046 G A 0.12 -0.65 0.13 1.60E-06 Pseudo DwnStrm Modifier 

176337932 T G 0.12 -0.65 0.13 1.60E-06 Pseudo DwnStrm Modifier 

176338697 T C 0.12 -0.66 0.13 4.26E-07 lncRNA Intragenic Modifier 

176339665 T C 0.12 -0.68 0.13 5.83E-07 lncRNA Intragenic Modifier 

176340926 G A 0.11 -0.67 0.13 1.24E-06 Pseudo Intron Modifier 

176341057 A G 0.12 -0.65 0.13 1.60E-06 Pseudo Intron Modifier 

176400716 A G 0.11 -0.68 0.14 2.02E-06 NA Intergenic Modifier 

176432691 G A 0.11 -0.68 0.13 4.52E-07 NA Intergenic Modifier 

176457823 G C 0.11 -0.64 0.14 9.79E-06 SSTR1 DwnStrm Modifier 

176464170 G A 0.1 -0.65 0.14 1.15E-05 NA Intergenic Modifier 

176477297 C T 0.12 -0.75 0.13 2.22E-08 NA Intergenic Modifier 

176477415 A G 0.12 -0.75 0.13 2.22E-08 NA Intergenic Modifier 

176524969 T C 0.12 -0.72 0.13 7.07E-08 Pseudo DwnStrm Modifier 
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Table 4.6: SNPs which exceed the threshold for genome-wide significance (cont.) 

Pos REF ALT MAF Beta SE P-Value Gene Loc Impact 

176971726 C G 0.12 -0.67 0.13 2.86E-07 NA Intergenic Modifier 

176989550 A G 0.11 -0.67 0.13 8.63E-07 NA Intergenic Modifier 

176992467 C T 0.11 -0.7 0.13 2.99E-07 NA Intergenic Modifier 

177043601 C A 0.11 -0.65 0.13 2.26E-06 SEC23A Intron Modifier 

177044101 T A 0.11 -0.65 0.13 2.26E-06 SEC23A Intron Modifier 

177044819 C T 0.11 -0.62 0.13 5.97E-06 SEC23A Intron Modifier 

177049977 C T 0.11 -0.6 0.14 1.23E-05 SEC23A Intron Modifier 

177050619 T C 0.11 -0.63 0.14 4.79E-06 SEC23A Intron Modifier 

177072407 A G 0.11 -0.74 0.14 1.02E-07 GEMIN2 UpStrm Modifier 

177152727 T C 0.11 -0.66 0.14 2.07E-06 MIA2 5'UTRSC Low 

177157052 A G 0.11 -0.63 0.14 5.55E-06 MIA2 Intron Modifier 

177164043 A G 0.11 -0.7 0.14 4.43E-07 MIA2 Intron Modifier 

177177259 T C 0.12 -0.66 0.13 1.58E-06 MIA2 Intron Modifier 

177177547 T G 0.12 -0.66 0.13 1.58E-06 MIA2 Intron Modifier 

177178441 G C 0.11 -0.69 0.13 5.64E-07 MIA2 Intron Modifier 

177178529 C T 0.12 -0.73 0.13 5.15E-08 MIA2 Intron Modifier 

177178901 C T 0.11 -0.63 0.14 5.55E-06 MIA2 Intron Modifier 

177180240 G T 0.11 -0.66 0.14 1.90E-06 MIA2 Intron Modifier 

177180649 T G 0.11 -0.63 0.14 5.06E-06 MIA2 Intron Modifier 

177188749 T C 0.11 -0.7 0.14 6.91E-07 MIA2 Intron Modifier 

177189044 C T 0.11 -0.63 0.14 7.82E-06 MIA2 Intron Modifier 

177200973 C T 0.11 -0.63 0.14 7.82E-06 MIA2 Intron Modifier 

177208086 C G 0.15 -0.53 0.12 9.00E-06 MIA2 Intron Modifier 

177208493 G A 0.11 -0.61 0.14 1.08E-05 MIA2 Intron Modifier 

177212329 C T 0.12 -0.61 0.13 3.58E-06 MIA2 Intron Modifier 

177219468 A C 0.15 -0.55 0.12 4.12E-06 MIA2 Intron Modifier 

177223031 G C 0.16 -0.51 0.11 1.22E-05 MIA2 Intron Modifier 

177234592 G A 0.12 -0.66 0.13 1.58E-06 MIA2 DwnStrm Modifier 

177238090 T C 0.11 -0.69 0.13 5.64E-07 MIA2 DwnStrm Modifier 

177241306 A G 0.11 -0.69 0.13 5.64E-07 MIA2 DwnStrm Modifier 

177241680 A G 0.15 -0.59 0.12 6.98E-07 MIA2 DwnStrm Modifier 

177242008 C T 0.12 -0.7 0.13 1.44E-07 MIA2 DwnStrm Modifier 

177244749 T G 0.12 -0.66 0.13 1.58E-06 MIA2 DwnStrm Modifier 

177244871 C T 0.12 -0.61 0.13 6.57E-06 MIA2 DwnStrm Modifier 

177244882 T A 0.12 -0.61 0.13 6.57E-06 MIA2 DwnStrm Modifier 

177268812 C A 0.12 -0.66 0.13 5.77E-07 FBXO33 Intron Modifier 

177271487 T C 0.12 -0.62 0.13 5.61E-06 FBXO33 Intron Modifier 

177272600 T C 0.12 -0.58 0.13 1.22E-05 FBXO33 Intron Modifier 

177273743 A G 0.12 -0.64 0.13 1.55E-06 FBXO33 Intron Modifier 
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Table 4.6: SNPs which exceed the threshold for genome-wide significance (cont.) 

Pos REF ALT MAF Beta SE P-Value Gene Loc Impact 

177275526 A G 0.16 -0.54 0.12 4.47E-06 FBXO33 Intron Modifier 

177276009 C T 0.16 -0.61 0.11 1.37E-07 FBXO33 Intron Modifier 

177279813 A G 0.12 -0.62 0.13 5.61E-06 FBXO33 Intron Modifier 

177283592 G A 0.16 -0.54 0.12 4.47E-06 FBXO33 Intron Modifier 

177284558 G A 0.16 -0.54 0.12 4.47E-06 FBXO33 Intron Modifier 

177296572 A G 0.11 -0.69 0.14 8.76E-07 FBXO33 Intron Modifier 

177297230 T A 0.12 -0.66 0.13 1.58E-06 FBXO33 Intron Modifier 

177446902 G A 0.13 -0.6 0.13 5.98E-06 NA Intergenic Modifier 

177461338 G A 0.13 -0.6 0.13 5.98E-06 NA Intergenic Modifier 

177476511 C T 0.11 -0.63 0.14 7.55E-06 NA Intergenic Modifier 

177478669 C T 0.11 -0.67 0.14 1.88E-06 NA Intergenic Modifier 

177479850 C T 0.11 -0.61 0.14 1.05E-05 NA Intergenic Modifier 

177480793 G T 0.11 -0.61 0.14 1.05E-05 NA Intergenic Modifier 

177577158 C T 0.15 -0.56 0.12 2.97E-06 NA Intergenic Modifier 

177577662 T C 0.15 -0.57 0.12 4.88E-06 NA Intergenic Modifier 

177585901 G A 0.16 -0.56 0.12 4.26E-06 NA Intergenic Modifier 

177588448 C G 0.15 -0.55 0.12 6.85E-06 NA Intergenic Modifier 

177589015 C G 0.14 -0.56 0.12 5.23E-06 NA Intergenic Modifier 

177590852 C T 0.09 -0.67 0.15 9.33E-06 NA Intergenic Modifier 

177591148 C G 0.14 -0.54 0.12 1.25E-05 NA Intergenic Modifier 

177592325 T G 0.15 -0.54 0.12 1.08E-05 NA Intergenic Modifier 

177592444 A G 0.14 -0.59 0.12 2.02E-06 NA Intergenic Modifier 

177592456 T C 0.15 -0.55 0.12 8.74E-06 NA Intergenic Modifier 

177592747 G A 0.15 -0.57 0.12 4.18E-06 NA Intergenic Modifier 

177593097 G A 0.14 -0.57 0.12 4.24E-06 NA Intergenic Modifier 

177593426 C T 0.15 -0.57 0.12 1.94E-06 NA Intergenic Modifier 

177593432 T C 0.15 -0.6 0.12 6.15E-07 NA Intergenic Modifier 

177593843 A T 0.14 -0.55 0.12 1.06E-05 NA Intergenic Modifier 

177800543 T G 0.15 -0.59 0.12 2.53E-06 NA Intergenic Modifier 

177806688 A G 0.15 -0.55 0.12 1.27E-05 NA Intergenic Modifier 

177808650 T C 0.15 -0.53 0.12 1.23E-05 NA Intergenic Modifier 

177952363 A G 0.18 0.49 0.11 1.12E-05 Pseudo Intron Modifier 

177953647 A T 0.21 0.46 0.1 8.51E-06 Pseudo Intron Modifier 

177954557 G A 0.22 0.48 0.1 2.80E-06 Pseudo Intron Modifier 

177954891 C G 0.21 -0.51 0.1 1.95E-06 Pseudo Intron Modifier 

177960815 A G 0.21 0.48 0.1 7.70E-06 Pseudo Intron Modifier 

177961297 C T 0.21 0.52 0.1 8.37E-07 Pseudo Intron Modifier 

177966158 A G 0.21 0.49 0.1 3.86E-06 Pseudo Intron Modifier 

177970858 T C 0.21 0.55 0.1 2.13E-07 Pseudo Intron Modifier 
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Table 4.6: Fine-mapped coding SNPs with a p-value <0.05 

Pos REF ALT MAF Beta SE P-Value Gene Effect Impact 

175683703 C G 0.16 0.29 0.11 1.06E-02 MIPOL1 Miss Moderate 

175683752 A G 0.16 0.29 0.11 1.06E-02 MIPOL1 Miss Moderate 

175683836 A C 0.14 0.27 0.11 1.74E-02 MIPOL1 Miss Moderate 

175683840 G C 0.14 0.27 0.11 1.74E-02 MIPOL1 Miss Moderate 

175899508 A G 0.44 0.25 0.09 3.43E-03 MIPOL1 Miss Moderate 

176036945 T G 0.41 -0.26 0.08 1.90E-03 TTC6 Miss Moderate 

176037039 C T 0.02 0.71 0.35 4.35E-02 TTC6 Miss Moderate 

176059721 C T 0.48 0.24 0.08 4.69E-03 TTC6 Synon Low 

176080766 A G 0.07 0.36 0.18 4.50E-02 TTC6 Miss Moderate 

176086066 C T 0.29 0.3 0.09 8.57E-04 TTC6 Miss Moderate 

176092396 A G 0.07 0.39 0.17 2.47E-02 TTC6 Miss Moderate 

176117140 C T 0.29 -0.24 0.09 1.13E-02 TTC6 Synon Low 

176146547 C T 0.5 -0.19 0.09 2.74E-02 TTC6 Synon Low 

177083177 A G 0.07 0.38 0.15 1.34E-02 GEMIN2 Miss Moderate 

177167367 A G 0.04 0.51 0.21 1.54E-02 MIA2 Miss Moderate 

 

Table 4.6: Summary table for SNPs which exceeded the threshold for genome-wide 

significance, and fine-mapped coding SNPs with a predicted low, moderate, or high impact 

(genome-wide significance>p-value <0.05) for the adiponectin concentrations on chromosome 

1 in the Welsh ponies.  The table includes base pair position (Pos) of the SNP, reference allele 

(REF), alternative allele (ALT), minor allele frequency (MAF), predicted SNP effect (beta), 

standard error (SE), P-value, and location of the SNP (Loc) or predicted annotated effect (Effect), 

and the predicted impact based on SnpEff. Additional abbreviations: lncRNA (long noncoding 

RNA), Pseudo (pseudogene), UpStm (upstream), DwnStrm (downstream), Synon (synonymous), 

Miss (missense), 5’UTRSG (gain of a 5’ UTR premature start codon). 
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Table 4.7: SNPs which exceed the threshold for genome-wide significance 

Pos REF ALT MAF Beta SE P-Value Gene Loc Impact 

67940623 T G 0.36 -0.33 0.07 2.67E-06 TENM4 Intron Modifier 

67955613 C A 0.45 -0.33 0.07 1.08E-06 TENM4 Intron Modifier 

67956000 G A 0.46 -0.32 0.07 2.81E-06 TENM4 Intron Modifier 

67956021 G A 0.44 0.33 0.07 1.33E-06 TENM4 Intron Modifier 

67956267 T G 0.46 -0.34 0.07 1.38E-06 TENM4 Intron Modifier 

67956386 A G 0.44 0.34 0.07 6.65E-07 TENM4 Intron Modifier 

67956667 G A 0.46 -0.31 0.07 4.90E-06 TENM4 Intron Modifier 

67957167 G T 0.45 -0.33 0.07 1.96E-06 TENM4 Intron Modifier 

67957813 G A 0.45 -0.33 0.07 1.43E-06 TENM4 Intron Modifier 

67957957 C G 0.45 -0.32 0.07 4.84E-06 TENM4 Intron Modifier 

67958411 G A 0.44 -0.37 0.07 1.11E-07 TENM4 Intron Modifier 

67958767 G A 0.45 -0.33 0.07 1.28E-06 TENM4 Intron Modifier 

67958804 G C 0.44 -0.35 0.07 4.97E-07 TENM4 Intron Modifier 

67959095 G A 0.45 -0.35 0.07 5.54E-07 TENM4 Intron Modifier 

67960089 A C 0.46 -0.35 0.07 4.78E-07 TENM4 Intron Modifier 

67960134 G A 0.45 -0.36 0.07 1.93E-07 TENM4 Intron Modifier 

67960495 C T 0.46 -0.35 0.07 5.20E-07 TENM4 Intron Modifier 

67961971 T G 0.46 -0.34 0.07 6.16E-07 TENM4 Intron Modifier 

67962121 A C 0.44 0.35 0.07 3.22E-07 TENM4 Intron Modifier 

67962164 G A 0.44 -0.34 0.07 8.01E-07 TENM4 Intron Modifier 

67962184 C G 0.45 -0.35 0.07 3.90E-07 TENM4 Intron Modifier 

67962366 G A 0.45 -0.36 0.07 1.41E-07 TENM4 Intron Modifier 

67962419 C G 0.45 -0.37 0.07 1.06E-07 TENM4 Intron Modifier 

67964359 C A 0.31 -0.32 0.07 5.53E-06 TENM4 Intron Modifier 

67964429 G A 0.47 -0.35 0.07 2.96E-07 TENM4 Intron Modifier 

67965165 G A 0.44 -0.35 0.07 3.33E-07 TENM4 Intron Modifier 

67965588 G A 0.43 -0.36 0.07 7.08E-08 TENM4 Intron Modifier 

67966006 C T 0.45 -0.32 0.07 3.48E-06 TENM4 Intron Modifier 

67966058 G T 0.44 -0.34 0.07 4.50E-07 TENM4 Intron Modifier 

67967062 G A 0.46 -0.35 0.07 4.38E-07 TENM4 Intron Modifier 

67967364 C T 0.46 -0.34 0.07 5.13E-07 TENM4 Intron Modifier 

67967431 G A 0.46 -0.35 0.07 2.60E-07 TENM4 Intron Modifier 

67969434 C T 0.46 -0.32 0.07 2.31E-06 TENM4 Intron Modifier 

67969982 T C 0.46 -0.32 0.07 5.70E-06 TENM4 Intron Modifier 

67970467 A G 0.46 -0.33 0.07 2.25E-06 TENM4 Intron Modifier 

67970470 T C 0.46 -0.32 0.07 4.38E-06 TENM4 Intron Modifier 

67970496 A G 0.45 -0.31 0.07 5.39E-06 TENM4 Intron Modifier 

67970505 T C 0.46 -0.31 0.07 6.34E-06 TENM4 Intron Modifier 

67970532 A T 0.44 -0.32 0.07 3.71E-06 TENM4 Intron Modifier 
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Table 4.7: SNPs which exceed the threshold for genome-wide significance (cont.) 

Pos REF ALT MAF Beta SE P-Value Gene Loc Impact 

67970581 G A 0.44 -0.31 0.07 1.23E-05 TENM4 Intron Modifier 

67970792 T C 0.45 -0.34 0.07 8.29E-07 TENM4 Intron Modifier 

67970877 G A 0.44 -0.35 0.07 4.39E-07 TENM4 Intron Modifier 

67970907 A T 0.46 -0.34 0.07 6.63E-07 TENM4 Intron Modifier 

67971020 G C 0.43 -0.37 0.07 5.55E-08 TENM4 Intron Modifier 

67971042 G A 0.44 -0.36 0.07 1.71E-07 TENM4 Intron Modifier 

67971228 C T 0.46 -0.32 0.07 1.82E-06 TENM4 Intron Modifier 
          

Fine-mapped coding SNPs with a p-value <0.05 

Pos REF ALT MAF Beta SE P-Value Gene Effect Impact 

67610664 T C 0.05 -0.43 0.15 4.06E-03 TENM4 SS Low 

 

Table 4.7: Summary table for SNPs which exceeded the threshold for genome-wide 

significance, and fine-mapped coding SNPs with a predicted low, moderate, or high impact 

(genome-wide significance>p-value <0.05) for leptin concentrations on chromosome 7 in the 

Welsh ponies.  The table includes base pair position (Pos) of the SNP, reference allele (REF), 

alternative allele (ALT), minor allele frequency (MAF), predicted SNP effect (beta), standard error 

(SE), P-value, and location of the SNP (Loc) or predicted annotated effect (Effect), and the 

predicted impact based on SnpEff. Additional abbreviations: SS (splice site variant). 
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Table 4.8: SNPs which exceed the threshold for genome-wide significance 

Pos REF ALT MAF Beta SE P-Value Gene Loc Impact 

34358987 A G 0.11 -11.31 2.69 3.77E-05 RBFOX2 Intron Modifier 

34360156 T C 0.12 -11.22 2.52 1.43E-05 RBFOX2 Intron Modifier 

34372193 T G 0.12 -10.49 2.67 1.14E-04 RBFOX2 Intron Modifier 

34416581 G A 0.17 -8.79 2.2 8.80E-05 RBFOX2 Intron Modifier 

34418871 C T 0.17 -8.6 2.19 1.15E-04 RBFOX2 Intron Modifier 

34420571 C T 0.17 -8.96 2.25 9.15E-05 RBFOX2 Intron Modifier 

34425365 T G 0.21 -9.54 2.06 6.25E-06 RBFOX2 UpStrm Modifier 

34425522 G C 0.21 -8.85 2.05 2.43E-05 RBFOX2 UpStrm Modifier 

34427465 T C 0.2 -8.73 2.06 3.42E-05 RBFOX2 Intron Modifier 

34427606 A C 0.2 -8.69 2.06 3.79E-05 RBFOX2 Intron Modifier 

34428714 T C 0.16 -8.92 2.25 1.05E-04 RBFOX2 Intron Modifier 

34431090 A G 0.22 -11 1.89 2.08E-08 RBFOX2 Intron Modifier 

34432082 C A 0.22 -10.96 1.89 2.28E-08 RBFOX2 Intron Modifier 

34432531 C T 0.17 -8.96 2.25 9.15E-05 RBFOX2 Intron Modifier 

34434081 T C 0.22 -10.43 1.87 7.54E-08 RBFOX2 Intron Modifier 

34436070 A G 0.22 -10.51 1.87 6.03E-08 RBFOX2 Intron Modifier 

34436211 C T 0.22 -10.37 1.87 9.22E-08 RBFOX2 Intron Modifier 

34436355 G A 0.13 -11.75 2.32 9.24E-07 RBFOX2 Intron Modifier 

34436762 T C 0.13 -10.96 2.39 7.87E-06 RBFOX2 Intron Modifier 

34437058 G A 0.14 -11.67 2.23 4.25E-07 RBFOX2 Intron Modifier 

34438111 G A 0.14 -9.33 2.35 9.53E-05 RBFOX2 Intron Modifier 

34442061 G A 0.17 8.62 2.2 1.19E-04 RBFOX2 Intron Modifier 

34445159 A G 0.02 -26.06 5.92 1.73E-05 RBFOX2 Intron Modifier 

34446378 C T 0.07 -12.54 3.18 1.11E-04 RBFOX2 Intron Modifier 

34447894 T C 0.06 -13.64 3.4 8.38E-05 RBFOX2 Intron Modifier 

34453800 C T 0.16 -8.91 2.26 1.12E-04 RBFOX2 Intron Modifier 

34454204 C G 0.17 -8.96 2.25 9.15E-05 RBFOX2 Intron Modifier 

34457285 C A 0.16 -8.92 2.25 1.05E-04 RBFOX2 Intron Modifier 

34457663 T C 0.16 -8.92 2.25 1.04E-04 RBFOX2 Intron Modifier 

34460259 G A 0.15 -11.86 2.19 1.65E-07 RBFOX2 Intron Modifier 

34462545 A G 0.17 -9.13 2.2 4.92E-05 RBFOX2 Intron Modifier 

34464387 C A 0.15 -11.86 2.19 1.65E-07 RBFOX2 Intron Modifier 

34475212 G T 0.19 -8.64 2.16 8.69E-05 RBFOX2 Intron Modifier 

34475515 G A 0.19 -9.03 2.11 2.88E-05 RBFOX2 Intron Modifier 

34475901 A G 0.19 -9.3 2.19 3.18E-05 RBFOX2 Intron Modifier 

34476507 T C 0.18 -8.81 2.23 1.05E-04 RBFOX2 Intron Modifier 

34478054 T C 0.17 -9 2.2 6.20E-05 RBFOX2 Intron Modifier 

34480902 C G 0.16 -9.07 2.27 8.70E-05 RBFOX2 Intron Modifier 

34482095 A G 0.16 8.9 2.27 1.20E-04 RBFOX2 Intron Modifier 
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Table 4.8: SNPs which exceed the threshold for genome-wide significance (cont.) 

Pos REF ALT MAF Beta SE P-Value Gene Loc Impact 

34486721 A G 0.16 8.93 2.27 1.14E-04 RBFOX2 UpStrm Modifier 

34493686 A G 0.16 9.37 2.27 5.25E-05 RBFOX2 Intron Modifier 

34494511 T G 0.16 8.9 2.27 1.20E-04 RBFOX2 Intron Modifier 

34498254 T G 0.17 9.21 2.24 5.80E-05 RBFOX2 Intron Modifier 

34499635 C G 0.13 -11.06 2.32 3.39E-06 RBFOX2 Intron Modifier 

34507888 A G 0.16 -9.54 2.27 3.74E-05 RBFOX2 Intron Modifier 

34511355 A G 0.16 -9.11 2.26 7.65E-05 RBFOX2 Intron Modifier 

34512244 C T 0.13 -11.06 2.32 3.39E-06 RBFOX2 Intron Modifier 

34521603 C T 0.16 9.1 2.21 5.47E-05 RBFOX2 Intron Modifier 

34529874 T C 0.14 -10.76 2.31 5.80E-06 RBFOX2 Intron Modifier 

34534466 C G 0.16 -9.19 2.25 6.33E-05 RBFOX2 Intron Modifier 

34548667 G T 0.16 -9.06 2.27 9.02E-05 Pseudo UpStrm Modifier 

34586132 T C 0.13 -11.06 2.32 3.39E-06 NA Intergenic Modifier 

34589999 C T 0.14 -10.44 2.27 7.29E-06 NA Intergenic Modifier 

34595199 A G 0.14 -11.07 2.29 2.71E-06 Pseudo DwnStrm Modifier 

34602058 G A 0.16 10.57 2.24 4.29E-06 Pseudo DwnStrm Modifier 

34603017 C T 0.14 -11.06 2.24 1.69E-06 Pseudo Intron Modifier 

34603686 C G 0.2 8.26 2.06 8.44E-05 Pseudo Intragenic Modifier 

34605110 A G 0.11 -11.31 2.44 6.25E-06 Pseudo Intron Modifier 

34930591 T A 0.09 -15.19 2.83 2.10E-07 NA Intergenic Modifier 

34935008 T G 0.09 -14.75 2.81 3.77E-07 FOXRED2 DwnStrm Modifier 

34935996 T G 0.09 -15.19 2.83 2.10E-07 FOXRED2 DwnStrm Modifier 

34936212 A C 0.09 -14.75 2.81 3.77E-07 FOXRED2 DwnStrm Modifier 

34937389 C T 0.09 -14.1 2.86 1.69E-06 FOXRED2 DwnStrm Modifier 

34937614 C G 0.09 -14.75 2.81 3.77E-07 FOXRED2 DwnStrm Modifier 

34938154 T C 0.09 -14.75 2.81 3.77E-07 FOXRED2 3'UTR Modifier 

34938425 T C 0.09 -14.75 2.81 3.77E-07 FOXRED2 3'UTR Modifier 

34953396 T C 0.09 -15.19 2.83 2.10E-07 FOXRED2 UpStrm Modifier 

34953715 T A 0.08 -14.54 2.88 9.82E-07 FOXRED2 UpStrm Modifier 

34953977 A G 0.08 -14.54 2.88 9.82E-07 FOXRED2 UpStrm Modifier 

34960948 C A 0.09 -15.17 2.8 1.62E-07 EIF3D Intron Modifier 

34961593 C T 0.08 -15.58 2.86 1.40E-07 EIF3D Intron Modifier 

34961984 T A 0.09 -16 2.77 2.83E-08 EIF3D Intron Modifier 

34963692 C T 0.09 -14.52 2.79 4.41E-07 EIF3D Intron Modifier 

34964715 A G 0.09 -15.19 2.83 2.10E-07 EIF3D Intron Modifier 

34965892 A G 0.09 -15.27 2.83 1.80E-07 EIF3D Intron Modifier 

34965910 A G 0.09 -15.27 2.83 1.80E-07 EIF3D Intron Modifier 

34966194 G T 0.08 -15.74 2.85 9.64E-08 EIF3D Intron Modifier 

34979591 T C 0.09 -14.51 2.85 7.85E-07 NA Intergenic Modifier 
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Table 4.8: SNPs which exceed the threshold for genome-wide significance (cont.) 

Pos REF ALT MAF Beta SE P-Value Gene Loc Impact 

34993332 G C 0.15 -9.7 2.32 4.33E-05 CACNG2 DwnStrm Modifier 

34993431 A C 0.15 -9.92 2.3 2.42E-05 CACNG2 DwnStrm Modifier 

34993538 T C 0.15 -9.92 2.3 2.42E-05 CACNG2 DwnStrm Modifier 

34993712 C T 0.15 -10.23 2.3 1.40E-05 CACNG2 DwnStrm Modifier 

34993878 T C 0.15 -10 2.33 2.71E-05 CACNG2 DwnStrm Modifier 

35003752 C T 0.06 -16.86 3.42 1.64E-06 CACNG2 Intron Modifier 

35136611 T C 0.03 -18.67 4.2 1.41E-05 NA Intergenic Modifier 
          

Fine-mapped SNPs with predicted low, moderate or high impact and p-value <0.05 

Pos REF ALT MAF Beta SE P-Value Gene Effect Impact 

34728950 A G 0.21 5.58 2.12 8.99E-03 lncRNA SS Low 

 

Table 4.8: Summary table for SNPs which exceeded the threshold for genome-wide 

significance, and fine-mapped coding SNPs with a predicted low, moderate, or high impact 

(genome-wide significance>p-value <0.05) for glucose concentrations post oral sugar test on 

chromosome 28 in the Welsh ponies.  The table includes base pair position (Pos) of the SNP, 

reference allele (REF), alternative allele (ALT), minor allele frequency (MAF), predicted SNP 

effect (beta), standard error (SE), P-value, and location of the SNP (Loc) or predicted annotated 

effect (Effect), and the predicted impact based on SnpEff. Additional abbreviations: SS (splice site 

variant), DwnStrm (downstream), UpStrm (upstream), pseudo (pseudogene), lncRNA (long non-

coding RNA). 
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Table 4.9: SNPs which exceed the threshold for genome-wide significance 

Pos REF ALT MAF Beta SE P-Value Gene Loc Impact 

34432243 T C 0.04 0.18 0.04 5.31E-06 RBFOX2 Intron Modifier 

34434781 G T 0.04 0.18 0.04 5.31E-06 RBFOX2 Intron Modifier 

34434985 T C 0.04 0.14 0.03 3.14E-05 RBFOX2 Intron Modifier 

34445042 C T 0.04 0.16 0.04 1.08E-05 RBFOX2 Intron Modifier 

34446271 A T 0.04 0.17 0.04 1.89E-06 RBFOX2 Intron Modifier 

34449423 T A 0.04 -0.18 0.04 8.84E-06 RBFOX2 Intron Modifier 

34465152 G A 0.04 0.17 0.04 4.26E-06 RBFOX2 Intron Modifier 

34466939 A C 0.04 0.19 0.04 1.26E-06 RBFOX2 Intron Modifier 

34852931 C T 0.03 -0.2 0.04 4.87E-06 NA Intergenic Modifier 

34876505 C T 0.22 -0.08 0.02 8.48E-06 Pseudo DwnStrm Modifier 

34876660 C T 0.23 -0.08 0.02 1.88E-05 Pseudo DwnStrm Modifier 

34876768 A C 0.22 -0.08 0.02 3.83E-06 Pseudo DwnStrm Modifier 

34876773 G A 0.22 -0.09 0.02 3.33E-06 Pseudo DwnStrm Modifier 

34877001 C T 0.22 -0.08 0.02 9.92E-06 Pseudo DwnStrm Modifier 

34877033 A G 0.22 -0.08 0.02 2.29E-05 Pseudo DwnStrm Modifier 

34877252 C A 0.23 -0.08 0.02 6.69E-06 Pseudo DwnStrm Modifier 

34877400 G A 0.23 -0.08 0.02 6.27E-06 Pseudo DwnStrm Modifier 

34877681 T C 0.22 -0.08 0.02 7.52E-06 Pseudo DwnStrm Modifier 

34877683 G T 0.22 -0.08 0.02 7.52E-06 Pseudo DwnStrm Modifier 

34877723 G T 0.22 -0.08 0.02 6.72E-06 Pseudo DwnStrm Modifier 

35274846 A C 0.5 -0.06 0.01 3.74E-05 NCF4 DwnStrm Modifier 

35287243 C A 0.47 -0.06 0.01 2.12E-05 NA Intergenic Modifier 

35288833 G A 0.46 0.06 0.01 2.39E-05 NA Intergenic Modifier 

35288838 A G 0.46 0.06 0.01 2.39E-05 NA Intergenic Modifier 

35288863 G A 0.46 0.06 0.01 2.95E-05 NA Intergenic Modifier 
          

Fine-mapped coding SNPs with a p-value <0.05 

Pos REF ALT MAF Beta SE P-Value Gene Effect Impact 

34284858 C T 0.06 0.08 0.03 7.45E-03 RBFOX2 Miss Moderate 

34702062 G A 0.01 -0.17 0.06 5.92E-03 Pseudo Synon Low 

34728950 A G 0.2 -0.05 0.02 1.97E-02 Pseudo SS Low 

34922478 C T 0.11 -0.08 0.02 1.64E-04 TXN2 Miss Moderate 

35164349 C T 0.11 0.06 0.02 7.13E-03 IFT27 Miss Moderate 

35326823 T C 0.08 0.06 0.03 2.43E-02 CSF2RB SS Low 

35337318 A G 0.08 0.06 0.03 2.43E-02 CSF2RB Synon Low 

35349453 G T 0.07 0.07 0.03 1.18E-02 Pseudo Miss Moderate 

35349461 C A 0.07 0.07 0.03 1.18E-02 Pseudo Synon Low 

35349463 C G 0.07 0.07 0.03 1.18E-02 Pseudo Miss Moderate 
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Table 4.9: Summary table for SNPs which exceeded the threshold for genome-wide 

significance, and fine-mapped coding SNPs with a predicted low, moderate, or high impact 

(genome-wide significance>p-value <0.05) for NEFA concentrations on chromosome 28 in the 

Welsh ponies.  The table includes base pair position (Pos) of the SNP, reference allele (REF), 

alternative allele (ALT), minor allele frequency (MAF), predicted SNP effect (beta), standard error 

(SE), P-value, and location of the SNP (Loc) or predicted annotated effect (Effect), and the 

predicted impact based on SnpEff. Additional abbreviations: SS (splice site variant), DwnStrm 

(downstream), UpStrm (upstream), pseudo (pseudogene), lncRNA (long non-coding RNA). 
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Table 4.10: SNPs which exceed the threshold for genome-wide significance 

Pos REF ALT MAF Beta SE P-Value Gene Loc Impact 

15700606 A C 0.12 -0.04 0.01 1.96E-05 MAP3K3 Intron Modifier 

15700819 A G 0.23 -0.03 0.01 2.30E-06 MAP3K3 Intron Modifier 

15706236 A G 0.22 -0.03 0.01 3.73E-05 MAP3K3 Intron Modifier 

15714161 T G 0.26 -0.03 0.01 1.30E-05 MAP3K3 UpStrm Modifier 

15719310 C T 0.13 -0.04 0.01 4.34E-05 TACO1 Intron Modifier 

15722574 C G 0.12 -0.04 0.01 3.40E-05 TACO1 Intron Modifier 

15729021 C A 0.15 -0.04 0.01 2.06E-05 TACO1 UpStrm Modifier 

15729719 G A 0.18 -0.03 0.01 2.68E-05 DCAF7 DwnStrm Modifier 

15730062 C T 0.16 -0.03 0.01 4.23E-05 DCAF7 3'UTR Modifier 

15731895 A G 0.16 -0.04 0.01 4.09E-06 DCAF7 3'UTR Modifier 

15732366 G A 0.16 -0.03 0.01 3.58E-05 DCAF7 3'UTR Modifier 

15748734 G A 0.18 -0.03 0.01 3.96E-05 DCAF7 Intron Modifier 

15753271 T C 0.08 -0.05 0.01 4.24E-05 Pseudo UpStrm Modifier 

15805251 A G 0.07 -0.05 0.01 2.42E-05 ACE Intron Modifier 

15818270 C T 0.08 -0.05 0.01 3.46E-05 ACE UpStrm Modifier 

15818753 G T 0.08 -0.05 0.01 4.25E-05 ACE UpStrm Modifier 

15821295 C T 0.08 -0.05 0.01 3.46E-05 ACE Intron Modifier 

16393525 G A 0.37 -0.03 0.01 3.22E-05 MARCH10 Intron Modifier 

16403791 G A 0.04 -0.06 0.01 4.04E-05 MARCH10 Intron Modifier 
          

Fine-mapped SNPs with predicted low, moderate or high impact and p-value <0.05 

Pos REF ALT MAF Beta SE P-Value Gene Effect Impact 

15720639 G T 0.12 -0.03 0.01 5.62E-04 TACO1 Synon Low 

15724068 C A 0.21 0.02 0.01 6.71E-03 TACO1 5'UTRSC Low 

15738303 A G 0.12 -0.03 0.01 4.93E-04 DCAF7 Synon Low 

15792415 G A 0.21 0.02 0.01 4.81E-03 lncRNA Missen Moderate 

15816181 C T 0.21 0.02 0.01 1.11E-02 ACE Missen Moderate 

16375354 G C 0.06 -0.03 0.01 2.39E-02 MARCH10 Missen Moderate 

 

Table 4.10: Summary table for SNPs which exceeded the threshold for genome-wide 

significance, and fine-mapped coding SNPs with a predicted low, moderate, or high impact 

(genome-wide significance>p-value <0.05) for GH ratios on chromosome 11 in the Welsh 

ponies.  The table includes base pair position (Pos) of the SNP, reference allele (REF), alternative 

allele (ALT), minor allele frequency (MAF), predicted SNP effect (beta), standard error (SE), P-

value, and location of the SNP (Loc) or predicted annotated effect (Effect), and the predicted impact 

based on SnpEff. Additional abbreviations: Synon (synonymous), DwnStrm (downstream), 

UpStrm (upstream), pseudo (pseudogene), 5’UTRSC (start codon gained in the 5’UTR), lncRNA 

(long non-coding RNA). 
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Table 4.11: SNPs which exceed the threshold for genome-wide significance 

Pos REF ALT MAF Beta SE P-Value Gene Loc Impact 

70264921 C T 0.01 -0.34 0.08 6.35E-05 NA Intergenic Modifier 

70264929 C A 0.01 -0.34 0.08 6.35E-05 NA Intergenic Modifier 

70264944 T C 0.01 -0.34 0.08 6.35E-05 NA Intergenic Modifier 

70266067 A G 0.04 -0.19 0.05 3.34E-05 NA Intergenic Modifier 

70269910 G A 0.01 -0.36 0.08 1.29E-05 NA Intergenic Modifier 

70271957 G A 0.02 -0.32 0.06 5.30E-07 NA Intergenic Modifier 

70272029 T C 0.01 -0.39 0.07 3.76E-07 NA Intergenic Modifier 

70272056 A G 0.01 -0.44 0.08 1.10E-07 NA Intergenic Modifier 

70272614 C T 0.01 -0.4 0.07 1.17E-07 NA Intergenic Modifier 

 

Table 4.11: Summary table for SNPs which exceeded the threshold for genome-wide 

significance for ACTH concentrations on chromosome 1 in the Welsh ponies.  The table 

includes base pair position (Pos) of the SNP, reference allele (REF), alternative allele (ALT), minor 

allele frequency (MAF), predicted SNP effect (beta), standard error (SE), P-value, and location of 

the SNP (Loc) or predicted annotated effect (Effect), and the predicted impact based on SnpEff.  
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Table 4.12: SNPs which exceed the threshold for genome-wide significance 

Pos REF ALT MAF Beta SE P-Value Gene Loc Impact 

17432232 C G 0.05 -0.31 0.06 3.73E-06 TNS3 Intron Modifier 

17432748 A G 0.05 -0.38 0.06 2.70E-09 TNS3 Intron Modifier 

17433141 T C 0.05 -0.35 0.06 4.09E-08 TNS3 Intron Modifier 

17433169 C A 0.05 -0.38 0.06 2.70E-09 TNS3 Intron Modifier 

17433355 A C 0.05 -0.38 0.06 2.70E-09 TNS3 Intron Modifier 

17433659 C T 0.05 -0.38 0.06 9.72E-09 TNS3 Intron Modifier 

17468270 C T 0.01 -0.56 0.12 2.72E-06 TNS3 Intron Modifier 

17468271 G A 0.01 -0.56 0.12 2.72E-06 TNS3 Intron Modifier 

17775545 C T 0.02 -0.61 0.11 1.80E-07 NA Intergenic Modifier 

17775671 G T 0.02 -0.54 0.11 1.36E-06 NA Intergenic Modifier 

17870617 T C 0.01 -0.67 0.14 4.77E-06 PKD1L1 Intron Modifier 

17987269 C T 0.06 -0.28 0.06 4.60E-06 HUS1 Intron Modifier 

18003883 G C 0.01 -0.71 0.13 1.20E-07 HUS1 Intron Modifier 

18006786 A G 0.05 -0.28 0.06 8.69E-06 HUS1 Intron Modifier 

18365634 C T 0.02 -0.44 0.09 2.67E-06 ABCA13 Intron Modifier 

18397812 C T 0.01 -0.53 0.12 7.54E-06 ABCA13 Intron Modifier 

18397878 T A 0.01 -0.66 0.14 3.91E-06 ABCA13 Intron Modifier 

18416711 G A 0.02 -0.53 0.11 1.96E-06 ABCA13 Intron Modifier 

18416725 A G 0.02 -0.42 0.09 9.72E-06 ABCA13 Intron Modifier 

18416750 C T 0.02 -0.61 0.11 2.29E-07 ABCA13 Intron Modifier 

18416778 T C 0.01 -0.69 0.13 2.78E-07 ABCA13 Intron Modifier 

18416783 C T 0.01 -0.69 0.13 2.78E-07 ABCA13 Intron Modifier 

18416785 A T 0.01 -0.69 0.13 2.78E-07 ABCA13 Intron Modifier 

18429150 C T 0.02 -0.48 0.09 1.33E-07 ABCA13 Intron Modifier 

18623692 G A 0.01 -0.68 0.14 2.35E-06 NA Intergenic Modifier 

 

Table 4.12: Summary table for SNPs which exceeded the threshold for genome-wide 

significance for the laminitis status on chromosome 4 in the Morgan horses.  The table includes 

base pair position (Pos) of the SNP, reference allele (REF), alternative allele (ALT), minor allele 

frequency (MAF), predicted SNP effect (beta), standard error (SE), P-value, gene, location of the 

SNP with the gene (Loc), and the predicted impact based on SnpEff. 
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Table 4.13: SNPs which exceed the threshold for genome-wide significance 

Pos REF ALT MAF Beta SE P-Value Gene Loc Impact 

18383787 G A 0.37 -3.79 0.85 1.24E-05 ABCA13 Intron Modifier 

          

Fine-mapped coding SNPs with a p-value <0.05 

Pos REF ALT MAF Beta SE P-Value Gene Effect Impact 

18331252 G A 0.24 -1.97 0.91 3.19E-02 ABCA13 Synon Low 

18375205 T G 0.43 -3.00 0.75 8.33E-05 ABCA13 Miss Moderate 

18430202 A G 0.23 2.72 0.99 6.27E-03 ABCA13 Synon Low 

 

Table 4.13: Summary table for SNPs which exceeded the threshold for genome-wide 

significance, and fine-mapped coding SNPs with a predicted low, moderate, or high impact 

(genome-wide significance>p-value <0.05) for basal glucose concentrations on chromosome 4 

in the Morgan horses.  The table includes base pair position (Pos) of the SNP, reference allele 

(REF), alternative allele (ALT), minor allele frequency (MAF), predicted SNP effect (beta), 

standard error (SE), P-value, and location of the SNP (Loc) or predicted annotated effect (Effect), 

and the predicted impact based on SnpEff. Additional abbreviations: Synon (synonymous), Miss 

(missense). 
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Table 4.14: SNPs which exceed the threshold for genome-wide significance 

Pos REF ALT MAF Beta SE P-Value Gene Loc Impact 

72939355 G A 0.14 -0.24 0.06 2.57E-05 NKAIN2 Intron Modifier 

72939516 A G 0.14 -0.24 0.06 2.57E-05 NKAIN2 Intron Modifier 

72940303 C G 0.14 -0.23 0.05 2.40E-05 NKAIN2 Intron Modifier 

72940339 G A 0.14 -0.23 0.05 2.40E-05 NKAIN2 Intron Modifier 

72940340 C G 0.14 -0.23 0.05 2.40E-05 NKAIN2 Intron Modifier 

72941231 T C 0.14 -0.24 0.06 2.57E-05 NKAIN2 Intron Modifier 

72941505 C T 0.14 -0.24 0.06 2.57E-05 NKAIN2 Intron Modifier 

72941924 A G 0.13 -0.24 0.06 1.72E-05 NKAIN2 Intron Modifier 

72942177 A G 0.14 -0.24 0.06 2.57E-05 NKAIN2 Intron Modifier 

72942533 A C 0.13 -0.24 0.06 1.72E-05 NKAIN2 Intron Modifier 

72942549 A T 0.13 -0.24 0.06 1.72E-05 NKAIN2 Intron Modifier 

72942931 A G 0.14 -0.24 0.06 2.57E-05 NKAIN2 Intron Modifier 

72943273 T G 0.14 -0.24 0.06 2.57E-05 NKAIN2 Intron Modifier 

72943314 G C 0.14 -0.24 0.06 2.57E-05 NKAIN2 Intron Modifier 

72944804 T C 0.14 -0.24 0.06 2.57E-05 NKAIN2 Intron Modifier 

72945110 G A 0.13 -0.24 0.06 2.45E-05 NKAIN2 Intron Modifier 

72945590 C T 0.13 -0.24 0.06 2.55E-05 NKAIN2 Intron Modifier 

72945989 A G 0.13 -0.24 0.06 1.71E-05 NKAIN2 Intron Modifier 

 

Table 4.14: Summary table for SNPs which exceeded the threshold for genome-wide 

significance for the insulin concentrations post oral sugar test on chromosome 10 in the 

Morgan horses.  The table includes base pair position (Pos) of the SNP, reference allele (REF), 

alternative allele (ALT), minor allele frequency (MAF), predicted SNP effect (beta), standard error 

(SE), P-value, location of the SNP (Loc), and the predicted impact based on SnpEff. 
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Table 4.15: SNPs which exceed the threshold for genome-wide significance 

Pos REF ALT MAF Beta SE P-Value Gene Loc Impact 

51727537 C T 0.24 0.33 0.07 1.05E-05 Pseudo DwnStrm Modifier 

51747148 A G 0.27 0.32 0.07 1.28E-05 Pseudo Intron Modifier 

51773433 T C 0.23 0.35 0.08 1.17E-05 NA Intergenic Modifier 

51786669 T C 0.23 0.34 0.08 1.26E-05 NA Intergenic Modifier 

51794467 C T 0.24 0.35 0.08 5.80E-06 BBX DwnStrm Modifier 

51794919 C T 0.24 0.35 0.08 5.80E-06 BBX DwnStrm Modifier 

51795524 C T 0.24 0.35 0.08 5.65E-06 BBX DwnStrm Modifier 

51808173 C T 0.24 0.34 0.08 1.26E-05 BBX Intron Modifier 

51812726 G C 0.26 0.33 0.07 9.94E-06 BBX Intron Modifier 

51812764 T C 0.24 0.34 0.07 9.81E-06 BBX Intron Modifier 

51813012 T C 0.24 0.34 0.08 1.23E-05 BBX Intron Modifier 

51844819 C T 0.22 0.38 0.08 1.32E-06 BBX Intron Modifier 

51855182 C T 0.23 0.37 0.08 2.12E-06 BBX Intron Modifier 

51857193 G A 0.24 0.35 0.07 5.33E-06 BBX Intron Modifier 

51863941 G T 0.22 0.37 0.08 2.93E-06 BBX Intron Modifier 

51867026 C T 0.22 0.36 0.08 5.00E-06 BBX Intron Modifier 

52084834 T C 0.23 0.35 0.08 7.74E-06 NA Intergenic Modifier 

52086447 A C 0.24 0.36 0.07 1.66E-06 Pseudo DwnStrm Modifier 

52088943 C A 0.23 0.37 0.08 2.38E-06 Pseudo DwnStrm Modifier 

52089422 A G 0.24 0.35 0.07 5.46E-06 Pseudo DwnStrm Modifier 

52217527 G C 0.25 0.33 0.07 1.37E-05 NA Intergenic Modifier 

52220209 A G 0.25 0.33 0.08 1.37E-05 NA Intergenic Modifier 

52224928 C T 0.25 0.33 0.08 1.37E-05 NA Intergenic Modifier 

52230428 T C 0.25 0.33 0.07 1.37E-05 NA Intergenic Modifier 

52245971 G A 0.25 0.33 0.07 1.37E-05 NA Intergenic Modifier 

52256174 T C 0.31 0.32 0.07 7.03E-06 NA Intergenic Modifier 

52256653 T C 0.25 0.34 0.07 1.08E-05 NA Intergenic Modifier 

52259907 T C 0.26 0.34 0.07 1.16E-05 NA Intergenic Modifier 

52263173 G C 0.26 0.33 0.07 1.13E-05 NA Intergenic Modifier 

52280838 G A 0.3 0.35 0.07 5.60E-07 lncRNA Intragenic Modifier 

52281253 C T 0.27 0.34 0.07 4.58E-06 lncRNA Intragenic Modifier 

52282507 T C 0.27 0.34 0.07 8.58E-06 lncRNA Intragenic Modifier 

52285378 A G 0.26 0.33 0.07 1.30E-05 lncRNA Intragenic Modifier 

52285633 A G 0.29 0.33 0.07 8.62E-06 lncRNA Intragenic Modifier 

52286046 G A 0.31 0.35 0.07 1.01E-06 lncRNA Intragenic Modifier 
 

Table 4.15: Summary table for SNPs which exceeded the threshold for genome-wide 

significance for leptin concentrations on chromosome 19 in the Morgan horses.  The table 

includes base pair position (Pos) of the SNP, reference allele (REF), alternative allele (ALT), minor 

allele frequency (MAF), predicted SNP effect (beta), standard error (SE), P-value, location of the 

SNP (Loc), and the predicted impact based on SnpEff.  Abbreviations: Pseudo (pseudogene). 
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Table 4.16: SNPs which exceed the threshold for genome-wide significance 

Pos REF ALT MAF Beta SE P-Value Gene Loc Impact 

33700727 C T 0.46 -0.02 0.004 6.66E-06 LRRC15 Intron Modifier 

33784070 C T 0.47 0.02 0.004 4.92E-06 ATP13A3 Intron Modifier 

33844975 A C 0.44 -0.02 0.003 4.78E-06 NA Inter Modifier 

34340681 A G 0.44 -0.02 0.004 5.80E-06 XXYLT1 Intron Modifier 

34341048 A T 0.44 -0.02 0.004 4.27E-06 XXYLT1 Intron Modifier 

34341306 T C 0.44 -0.02 0.004 5.71E-06 XXYLT1 Intron Modifier 

34341456 A G 0.44 -0.02 0.004 2.02E-06 XXYLT1 Intron Modifier 

34341665 T C 0.44 -0.02 0.004 7.60E-06 XXYLT1 Intron Modifier 

34342290 C T 0.44 -0.02 0.004 3.72E-06 XXYLT1 Intron Modifier 

34342611 T C 0.44 -0.02 0.004 2.23E-06 XXYLT1 Intron Modifier 

34343879 A G 0.43 -0.02 0.004 4.94E-06 XXYLT1 Intron Modifier 

34344609 C T 0.43 -0.02 0.004 3.33E-06 XXYLT1 Intron Modifier 

34345207 T C 0.44 -0.02 0.004 6.57E-06 XXYLT1 Intron Modifier 

34394019 G A 0.44 -0.02 0.004 7.22E-06 XXYLT1 Intron Modifier 

35859476 A C 0.28 -0.02 0.004 8.33E-06 lncRNA UpStrm Modifier 

35859978 G A 0.27 -0.02 0.004 6.22E-06 lncRNA UpStrm Modifier 

 

 

Table 4.16: Summary table for SNPs which exceeded the threshold for genome-wide 

significance, and fine-mapped coding SNPs with a predicted low, moderate, or high impact 

(genome-wide significance>p-value <0.05) for NH ratios on chromosome 19 in the Morgan 

horses.  The table includes base pair position (Pos) of the SNP, reference allele (REF), alternative 

allele (ALT), minor allele frequency (MAF), predicted SNP effect (beta), standard error (SE), P-

value, and location of the SNP (Loc) or predicted annotated effect (Effect), and the predicted impact 

based on SnpEff. Abbreviations: Synon (synonymous), Miss (missense), SS (splice site). 

Fine-mapped coding SNPs a p-value <0.05 

Pos REF ALT MAF Beta SE P-Value Gene Effect Impact 

33698983 A T 0.43 -0.01 0.004 3.76E-05 LRRC15 Miss Moderate 

33698984 G A 0.43 -0.02 0.004 2.19E-05 LRRC15 Miss Moderate 

33699121 C A 0.44 -0.01 0.004 5.72E-05 LRRC15 Miss Moderate 

33771781 C T 0.42 -0.01 0.004 8.39E-05 ATP13A3 Miss Moderate 

33777160 C T 0.5 -0.01 0.004 2.59E-04 ATP13A3 SS Low 

33829571 T C 0.29 -0.01 0.004 1.71E-02 id701397 SS Low 

33913963 C T 0.47 0.01 0.004 1.84E-02 TMEM44 Miss Moderate 

34449322 T C 0.1 0.02 0.01 3.06E-03 XXYLT1 Miss Moderate 

34503919 C A 0.08 0.01 0.01 3.17E-02 ACAP2 SS Low 

34820819 T C 0.13 0.01 0.005 3.59E-02 BDH1 Synon Low 

35007250 C T 0.03 0.02 0.01 2.37E-02 DLG1 Synon Low 

35675562 T C 0.25 -0.01 0.004 1.51E-04 WDR53 Synon Low 
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Table 4.17: SNPs which exceed the threshold for genome-wide significance 

Pos REF ALT MAF Beta SE P-Value Gene Loc Impact 

68755362 G A 0.03 -0.78 0.16 1.47E-06 NA Intergenic Modifier 
          

Fine-mapped coding SNPs with a p-value <0.05 

Pos REF ALT MAF Beta SE P-Value Gene Effect Impact 

68349618 G A 0.16 0.15 0.07 3.80E-02 NCKAP5L Synon Low 

68506154 T C 0.01 -0.51 0.24 3.17E-02 AQP6 5'UTRSG Low 

68582345 C A 0.02 -0.54 0.22 1.74E-02 ASIC1 5'UTRSG Low 

68608591 T C 0.16 0.15 0.07 3.51E-02 GPD1 Miss Moderate 

68666697 T G 0.01 -0.51 0.24 3.17E-02 LIMA1 Miss Moderate 

69123184 C T 0.2 -0.14 0.07 4.79E-02 DIP2B Synon Low 

69269736 C G 0.01 -0.51 0.24 3.17E-02 METTL7A Miss Moderate 

69321213 T C 0.26 0.15 0.06 1.45E-02 SLC11A2 Miss Moderate 

69324290 G A 0.22 -0.14 0.06 2.97E-02 SLC11A2 Synon Low 

69351495 G C 0.29 0.16 0.06 8.77E-03 LETMD1 5'UTRSG Low 

69390944 C T 0.01 -0.51 0.24 3.17E-02 TFCP2 Synon Low 

69420938 G A 0.01 -0.51 0.24 3.17E-02 TFCP2 Miss Moderate 

69444682 C T 0.01 -0.51 0.24 3.17E-02 POU6F1 Synon Low 

69512915 C T 0.02 -0.44 0.21 3.86E-02 BIN2 Miss Low 

69649233 C T 0.16 0.15 0.07 4.95E-02 SLC4A8 Synon Low 

69649251 A G 0.04 -0.39 0.14 5.80E-03 SLC4A8 Synon Low 

69667716 T G 0.02 -0.5 0.16 2.73E-03 SLC4A8 Synon Low 

69671998 G A 0.16 0.17 0.07 2.31E-02 SLC4A8 SSDonor High 

69867709 C T 0.48 0.14 0.06 1.25E-02 SCN8A Synon Low 

69899012 C G 0.16 0.15 0.07 4.57E-02 SCN8A Synon Low 

 

Table 4.17: Summary table for SNPs which exceeded the threshold for genome-wide 

significance, and fine-mapped coding SNPs with a predicted low, moderate, or high impact 

(genome-wide significance>p-value <0.05) for the adiponectin concentration on chromosome 

6 in the Morgan horses.  The table includes base pair position (Pos) of the SNP, reference allele 

(REF), alternative allele (ALT), minor allele frequency (MAF), predicted SNP effect (beta), 

standard error (SE), P-value, location of the SNP (Loc) or predicted annotated effect (Effect), and 

the predicted impact based on SnpEff. Abbreviations: Synon (synonymous), Miss (missense), SS 

(splice site), SSDonor (splice site donor variant), 5’UTRSG (gain of a 5’ UTR premature start 

codon). 
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Chapter 5: Evaluation of an HMGA2 variant for pleiotropic effects on height and metabolic traits 

in ponies 

Summary: Ponies are highly susceptible to metabolic derangements including hyperinsulinemia, 

insulin resistance and adiposity. We hypothesized that genetic loci affecting height in ponies have 

pleiotropic effects on metabolic pathways and increase the susceptibility to equine metabolic 

syndrome (EMS). Correlations between height and metabolic traits were assessed by Pearson's 

correlation coefficients and identified an inverse relationship between height and baseline insulin 

(-0.26) in ponies in a cohort of 294 Welsh ponies phenotyped for EMS.  Using SNP genotype data 

from 264 Welsh ponies, genomic signature of selection and association analyses for both height 

and insulin identified the same ~1.3 megabase region on chromosome 6 that contained a shared 

ancestral haplotype between these traits.  The ROI contributed ~40% of the heritability for height 

and ~20% of the heritability for insulin.  HMGA2 was identified as a candidate gene, and Sanger 

sequencing detected a c.83G>A (p.G28E) variant associated with height in Shetland ponies.  In 

our cohort of ponies, the A allele had a frequency of 0.76, was strongly correlated with height (-

0.75) and was low to moderately correlated with metabolic traits including: insulin (0.32), insulin 

after an oral sugar test (0.25), non-esterified fatty acids (0.19) and triglyceride (0.22) 

concentrations.  This is the first report of a gene with a pleotropic effect for EMS and provided 

evidence for the underlying cause of the unique metabolic profiles and increased EMS 

susceptibility in ponies. 

Note: This chapter was previously published in the Journal of Veterinary Internal Medicine as 

follows: Norton, E.M.; Avila, F, Schultz, N.E.; Mickelson, J.R., Geor, R.J.; McCue, M.E. 

Evaluation of an HMGA2 variant for pleiotropic effects on height and metabolic traits in ponies. 

J Vet Intern Med 2019; 33(2): 942-952.   
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Introduction 

Equine metabolic syndrome (EMS) describes a clustering of metabolic disturbances including 

insulin dysregulation (hyperinsulinemia and/or insulin resistance) and dyslipidemia (elevated 

triglyceride low-density lipoprotein concentrations), and generalized obesity and/or regional 

adiposity (e.g. nuchal ligament, tail head).[3,4]  EMS is an important health concern as affected 

horses and ponies are predisposed to laminitis. 

Ponies (individuals with a wither height less than 58 inches) are more insulin insensitive then large 

breed horses,[36] and metabolic comparisons across breeds have consistently found ponies to be 

amongst the more insulin resistant groups.[38,51]  Unlike many large breed horses, after 

domestication ponies have maintained a metabolically thrifty phenotype with seasonally-adaptive 

changes including suppressed metabolic rates and excessive fat storage.[56]  However, the 

mechanisms underlying ponies’ unique metabolic profiles and greater EMS susceptibility have not 

been identified.  

A relationship between individuals of short stature and an increased risk of chronic disease has 

been well described in humans.[548-550]  In particular, there are significant associations between 

height and the risk of developing Type 2 diabetes or metabolic syndrome (MetS),[551-556] with 

measured metabolic abnormalities more severe in shorter individuals.[551,552,557,558]  Many 

negative correlations between height and specific derangements of the endocrine system include: 

obesity,[557,559,560] regional adiposity,[555] elevated triglycerides,[552,561] impaired glucose 

tolerance post oral sugar test,[558,562] and insulin resistance.[551-553,557]  Several underlying 

mechanisms for these associations have been proposed, including a poor uterine environment, 

impaired nutrition, adverse social circumstances, and genetic factors.[551,563-566] The role of 

genetic factors is supported by the identification of pleiotropic effect between variants within the 

promoter of the GAD2 gene and low birth weight, decreased length, impaired insulin secretion, 

and early onset obesity,[567]  as well as associations between single nucleotide polymorphisms 

(SNPs) in the LMNA gene with short stature and elevated triglycerides, and obesity and increased 

waist circumference.[568] 
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We hypothesize that loci affecting height could also have pleiotropic effects on metabolic 

pathways in horses and ponies and increase the risk for EMS.  Here we use genomic tools to 

identify a chromosomal locus associated with both height and fasting insulin concentrations in 

Welsh Ponies and demonstrate that a probable functional mutation in the high mobility group AT-

hook 2 (HMGA2) gene is contributing to both height and metabolic traits. 

Material and Methods 

Samples: 294 Welsh ponies (213 females and 81 males) from 32 farms within the United States 

were included in the study, with ages ranging from 2 to 33 years (mean age of 11.7 years). As a 

breed, Welsh ponies are divided into six sections based on pedigree and height (Appendix D: 

Supplemental Table D1), which were represented in our cohort as follows: section A (n=74), 

section B (n=146), section C (n=3), section D (n=15), section H or P (n=26), and unregistered 

Welsh ponies (n=10). 529 individuals from four large-breed horses: Quarter horses (n=59), 

Arabians (n=64), Tennessee Walking horses (n=48), and Morgan horses (n=293); as well as 65 

horses of other pure or mixed breeds, were also collected. These samples were obtained from farms 

throughout North America and represented 300 females and 229 males with an age range of 2 to 

33 years old (mean age of 13 years). 

Phenotype Data: Signalment, medical history, height at the withers, and biochemical 

measurements at baseline and after an oral sugar test (OST), were collected on all individuals. 

Baseline measurements and assays included: glucose (YSI 2300 STAT Plus glucose and lactate 

analyzer), insulin (Siemen’s TKIN1 Insulin Coat-A-Count Kit), ACTH (Siemen’s LKAC1 ACTH 

kits), leptin (Millipore Sigma’s XL-85K Multi-Species Leptin RIA), adiponectin (Millipore 

Sigma’s EZHMWA-64K Human High Molecular Weight Adiponectin ELISA), triglycerides 

(Millipore Sigma’s TR0100 Serum Triglyceride Determination kit), and non-esterified fatty acids 

(NEFA; Wako Diagnostics’ HR Series NEFA kit).  OST measurements comprised insulin (INS-

OST) and glucose (GLU-OST) levels 75 minutes after oral administration of 0.15mg/kg Karo lite 

corn syrup. 

Genotype Data: Genomic DNA was isolated from whole blood or hair roots per manufacturer 

recommendations (Puregene Blood Core Kit, Qiagen).  Welsh ponies were genotyped with either 
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the Axiom Equine MCEc670 (n=220 Welsh ponies) or MCEc2M (n=44 Welsh ponies) genotyping 

arrays, containing 670,805 SNP markers and 2,011,826 SNP markers [409], respectively.  For the 

Welsh ponies not genotyped on the MCEc2M array, Beagle software [407,569] was used to 

perform genotype imputation and haplotype phasing, using an across-breed reference population 

of 516 horses of 14 different breeds, yielding a total of 1,931,311 SNPs. 

Quality control (QC) measures were performed on the genotyping data using the PLINK software 

package.[410]  This included SNP and individual missingness and genotyping rates, discordant 

sex information and abnormally high heterozygosity (≥3 standard deviations from the mean). All 

individuals passed QC and were kept in the study cohort. Individual SNPs with a genotyping 

success rate <90%, minor allele frequency <1.0%, or outside Hardy Weinberg equilibrium were 

pruned, leaving a total of 1,511,302 SNPs for subsequent analysis. 

FST Based Statistic: Genomic regions of breed-specific population differentiation were identified 

in the Welsh ponies using SNP data from the 44 individuals genotyped on the MCEc2M.  

Calculation of the di statistic was performed using non-overlapping 10 kilobase (kb) windows 

across the 31 equine autosomes with a custom Python script 

(https://github.com/schae234/PonyTools) based on work previously described.[439,570]  The di 

statistic detects locus-specific deviation in allele frequencies for the test population relative to the 

genome-wide average of pairwise FST summed across populations. The background population 

contained 463 individuals from 16 different breeds (Appendix D: Supplemental Table D2).  

Significant di windows were those corresponding to the top 0.1% of the empirical distribution and 

were considered regions of interest (ROI) for putative signatures of selection.  Two or more 

contiguous significant di windows were considered as a single ROI. 

Association Analysis: Association analysis for equine chromosome 6 (ECA6; total of 56,246 

SNPs) was performed using imputed SNP genotype data from 264 Welsh ponies.  Height and EMS 

traits were treated as quantitative phenotypes.  Association analysis was performed using custom 

code for a mixed linear regression model that included a random polygenic term determined from 

a genomic relationship matrix calculated from select trait associated SNPs, random herd effect, 

and fixed covariates sex and age.[20] Analysis utilized a combination of the Bayesian Sparse 

Linear Mixed Model (BSLMM),[430] available in the software program Genome-wide Efficient 

https://github.com/schae234/PonyTools
https://github.com/schae234/PonyTools
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Mixed Model Association (GEMMA), [379] and a linear mixed model implemented in FaST-

LMM[431] (additional description provided in Appendix D: Supplemental Methods).  

The threshold for genome wide significance was based on the effective number of independent 

tests for the entire genome (i.e., SNPs, after correction for linkage disequilibrium [LD]), as 

calculated using the Genetic Type 1 Error Calculator.[434]  The effective number of independent 

tests was 841,750 resulting in a Bonferroni-corrected threshold for genome wide significance of 

5.9e-08. 

Estimation of Heritability: SNP chip heritability (h2
SNP) for height in Welsh ponies was calculated 

from the imputed SNP genotype data (n=264) with the software program Linkage Disequilibrium 

Adjusted Kinship (LDAK),[411,413] including age, sex and section as covariates.  Two separate 

techniques were used to estimate the genetic variance explained by our ROI.  First, we used 

genomic partitioning as previously described.[413,571] The second technique fit the top SNPs 

from the association analysis as covariates in the analysis using LDAK's --top-preds function.  

Random subsetting of the data was performed in order to test the effect of a few cryptically related 

individuals on the h2
SNP estimates (Appendix D: Supplemental Methods). 

Haplotype Analysis: Local haplotype sharing within the Welsh ponies used for association analysis 

(n=264) was calculated from the hapQTL program (http://www.haplotype.org) with default 

settings.[572]  This approach relies on a statistical model for LD to infer ancestral haplotypes and 

their frequencies at each SNP marker for individuals within a population.  For each analysis one 

expectation maximization run was used with 50 steps (-w 50), 3 upper clusters (-C 3), 10 lower 

clusters (-c 10), and with a prior LD length of .5 centiMorgan (-mg 200). Based on 

recommendations from Xu and Guan (2014), contiguous SNPs with -log10 Bayes factor (BF) >4 

were considered significant ROI, and orphan signals were removed from the analysis.  BF values 

were calculated for each of the 56,740 SNPs on ECA6 using height and baseline insulin as 

quantitative phenotypes. 

HMGA2 and IRAK3 Reconstruction and Sequencing: PCR primers were designed for all exons 

within two candidate genes, HMGA2 and interleukin 2 receptor associated kinase 3 (IRAK3), using 

the Primer3 software.[573] Genomic sequences for primer design were retrieved using the 
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National Center for Biotechnology Information (NCBI) Gene tool 

(https://www.ncbi.nlm.nih.gov/gene); base pair (bp) position of equine exons were confirmed with 

NCBI’s Nucleotide BLAST tool (https://blast.ncbi.nlm.nih.gov/) against the human genome. In 

some cases, the newly assembled EquCab3 version of the equine genome was queried using a local 

BLAST tool to confirm exon sequence identity. Details of all HMGA2 and IRAK3 exons, as well 

as the PCR primer sequences, are presented in Appendix D: Supplemental Table D3 and D4. 

Genomic DNA from a panel of 56 individuals from 6 different breeds (6 Morgan horses, 6 Arabian 

horses, 6 Tennessee Walking horses, 12 Quarter horses, 3 Miniature horses, and 18 Welsh ponies) 

was amplified by standard PCR. The resulting products were submitted to the University of 

Minnesota Genomics Center for Sanger sequencing after enzymatic cleanup using the ExoSAP-

IT™ PCR Product Cleanup Reagent (Thermo Fisher Scientific, Waltham, MA). Sequencing 

results were then analyzed, processed and aligned using the Sequencher software version 5.1 (Gene 

Codes Corporation, Ann Arbor, MI). 

HMGA2 Exon 1 Variant Genotyping: Two methods were employed to genotype the HMGA2 exon 

1 mutation (HMGA2 (c.83G>A) identified by Frischknecht, et al.[574]  In the first method, 

standard PCR primers were designed to flank and Sanger sequence this exon (Appendix D: 

Supplemental Table D3) in 438 horses, including 150 ponies and 288 large breed horses.  In the 

second method, a TaqMan SNP genotyping assay using the Bio-Rad CFX96 Real-Time System 

was designed as previously described [575] and per manufacturer’s recommendations.  Results 

were analyzed with BioRad’s CFX Manager Software version 3.1 (see Appendix D: 

Supplemental Methods for a full description of this assay).  Genotypes for this variant using the 

second genotyping assay were obtained for an additional 144 Welsh ponies and 241 large breed 

horses. 

Statistical Analyses: Statistics were performed using functions within the software package 

R.[412]  Metabolic traits were tested for normality using a normal probability plot and a Shapiro 

test; traits were log or square root transformed when appropriate.  Correlations between height and 

EMS traits (insulin, INS-OST, glucose, GLU-OST, NEFA, triglycerides, leptin, adiponectin) and 

ACTH, were calculated using a Pearson’s correlation coefficient.  After adjusting for multiple 

testing using a Bonferroni correction (0.05/9), a p-value of <0.0056 was considered significant.  
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Analyses were performed as follows: all horses (n=824), Welsh ponies (n=294), all large breed 

horses (n=529), Quarter horses (n=59), Arabian horses (n=64), Morgan horses (n=293), and 

Tennessee Walking horses (n=48).  Correlations between genotype for the HMGA2 c83G>A 

variant and EMS traits, ACTH or height were calculated for the Welsh ponies (n=294) using 

Pearson’s correlation coefficient and a Bonferroni corrected p-value (0.05/10; <0.005). 

Least-square means were calculated with EMS traits, ACTH or height as the outcome variable, 

genotype as the response variable, and age and sex as predictors.  The R statistical software 

package Linear and Nonlinear Mixed Effects Models (nlme) [576] fit the linear model using 

generalized least squares.  The R statistical software package Least-Square Means (lsmeans) [577] 

was used to calculate the predicted marginal means and pair-wise comparisons. 

Model comparison for modes of inheritance between the HMGA2 c.83G>A variant and traits were 

performed using an ANOVA for an additive, dominant and recessive model.  The p-values of the 

f-statistic were compared across all three models.  The R statistical software package 

SNPassoc[578] was used to calculate the Akaike information criterion (AIC) and p-value between 

additive, recessive, dominant, and co-dominant models.  Model selection was based on the lowest 

AIC values; however, models with less than 10 units difference between them were considered 

indistinguishable.   

Results: 

Correlations Between Height, EMS Traits, and ACTH: Correlation analyses between height and 

biochemical traits in the entire cohort (n=823), revealed statistically significant inverse 

correlations for insulin (-0.12), glucose (-0.11), , adiponectin (-0.23) and ACTH (-0.12); while 

positive correlations with height were found for triglycerides (0.14) and leptin (0.12) (Table 5.1). 

No statistically significant correlations between any of the traits and height were identified in the 

large breed horses as a whole (n=529), or within any individual breed (Table 5.1). However, within 

the Welsh pony population (n=294), a statistically significant inverse correlation with height was 

identified for insulin (-0.26), with the correlation coefficient between height and insulin higher 

than in the entire population (Table 5.1), indicating that the pony population was predominately 

driving the association observed for this trait in the full cohort. 
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FST-Based Statistic to Detect Signatures of Selection: 212,208 non-overlapping, 10kb windows 

across all 31 equine autosomes were analyzed in the Welsh pony cohort, with an average of 8.2 

(+/- 3.2) SNPs per window.  A total of 212 windows were within the top 0.1% of the empirical 

distribution of di values, which in turn represented 134 ROI.  Among the significant di windows, 

50 (24%) were located on ECA6 and corresponded to eight separate ROI (Figure 5.1).  One of 

these ECA6 ROI comprised 42 (20%) of the total significant di windows and spanned an ~782kb 

segment.  Based on EquCab2, the equine reference genome available at the time of this analysis, 

this segment ranged from bp positions 81,003,617 to 81,785,414 (Appendix D: Supplemental 

Figure D1).  The other seven significant ROIs on ECA6 were derived from singleton di windows, 

located at least one megabase (Mb) apart. 162 other significant di windows were distributed 

throughout all autosomes, except chromosomes 12, 16, 19, 30 and 31. 

Association Analysis: For the Welsh pony cohort, p-values for 142 SNPs on ECA6 associated with 

height exceeded the threshold for genome-wide significance (Figure 5.2A).  Based on EquCab2, 

all 142 SNPs were within the same ~1.3Mb region and included SNPs from bp position 80,501,273 

to 81,808,008.  For insulin, p-values for 58 SNPs on ECA6 exceeded the threshold for genome-

wide significance and included SNPs from bp position 80,639,787 to 81,651,604 (Figure 5.2B).  

Significant SNPs within this ROI were not identified for any of the other EMS traits or ACTH. 

Heritability and Genetic Variation:  The h2
SNP for height in the Welsh ponies was 0.87 (SD = 

0.084).  Using genomic partitioning for height, the percent of the genetic variation contributed by 

the ROI (SNPs from bp position 80,501,273 to 81,808,008) on ECA6 was 0.34 (SD = 0.083); i.e., 

39% of the total h2
SNP.  The top SNPs from association analysis were included in the h2

SNP model 

as covariates to estimate the contribution of these SNPs to height in ponies. The 142 SNPs on 

ECA6 that exceeded the threshold for genome wide significance on association analysis were 

pruned at an LD of >.8 to avoid over fitting the h2
SNP model, leaving 42 SNPs for analysis. The 

percent of genetic variation contributed by these 42 SNPs was estimated to be 0.41, i.e., 47% of 

the total h2
SNP.  After random subsetting of the data, the resultant mean values for h2

SNP were not 

significantly different from the original estimates above as follows: .89 (SD = 0.087) for the overall 

h2
SNP estimate of height, 0.38 (SD = 0.087) for genomic partitioning at the ROI, and 0.45 using the 

top SNPs from association analysis as covariates. 
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Within this cohort, we previously showed that baseline insulin had a h2
SNP of 0.81 (SD=0.11), with 

a mean h2
SNP of 0.82 (mean SE: 0.12) after random subsetting.[579]  In this analysis, the h2

SNP 

explained by genomic partitioning was 0.19 (SD=0.086), or 24% of the total h2
SNP for baseline 

insulin.  Of the 58 significant SNPs found on association analysis, 13 remained in our analysis 

after pruning for LD.  Including these SNPs as top-predictors, the percent of genetic variation 

contributed by these SNPs was 0.13, or 16% of the total h2
SNP.  After random subsetting the data, 

the mean h2
SNP for genomic partitioning at the ROI was 0.20 (SD = 0.086) and 0.14 using the top 

SNPs approach. 

Haplotype Analyses for Height and Baseline Insulin: Nearly 40% (23,058) of all (56,740) ECA6 

SNPs had a BF value >4 when analyzing height as the trait of interest.  107 SNPs had the highest 

BF values (>30) and were within the range of bp positions 81,012,766 to 81,782,298 (Figure 

5.3A).  Evaluation of all 652 SNPs within and flanking 1kb of the ROIs identified by association 

analysis and di statistic (SNPs from 80,499,826 to 81,809,066 bp), showed that all SNPs exceeded 

the BF value threshold, with values ranging from 4.17 to 40.12 (Figure 5.3A).  When analyzing 

haplotypes using baseline insulin as the trait of interest, 290 SNPs on ECA6 had a BF value >4, 

which included 171 of the 652 SNPs comprising the ROI.  The haplotypes consisted of two 

predominant regions where 46 SNPs were within bp positions 81,161,980 to 81,288,528 and 71 

SNPs were within bp positions 81,381,221 to 81,583,507 (Figure 5.3B).  The latter region also 

contained the SNPs with the highest BF values for the entire analysis (maximum BF of 7.5).  

HapQTL did not identify haplotypes on ECA6 for any of the other traits. 

Candidate Gene Identification, Sequencing and Genotyping: The ROI identified in this study from 

association analysis and di statistics (ECA6: 80,499,826-81,809,066) was further analyzed for 

positional candidate genes.  Using NCBI and the Ensembl genome browser with EquCab2 as the 

reference genome, a total of 16 positional candidate genes were identified, comprising three RNA 

genes, two pseudogenes, and 11 protein coding genes (Figure 5.3C).  A search of the PubMed 

literature database for known biological function and relevance in other species resulted in the 

prioritization of HMGA2 and IRAK3 as biological positional candidate genes.  HMGA2 was the 

only protein-coding gene within the smaller 81,161,980 - 81,583,507 region fine mapped by 

haplotype analysis. 
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The HMGA2 c.83G>A variant in exon 1 reported by Frischnecht et al[574] was identified in our 

56 horse multi-breed cohort (6 Morgan horses, 6 Arabian horses, 6 Tennessee Walking horses, 12 

Quarter horses, 3 Miniature horses, and 18 Welsh ponies); however, no additional HMGA2 or 

IRAK3 exonic variants were detected. All individuals (n=823) were then genotyped for the 

HMGA2 c83G>A variant. In the Welsh pony (n=294) cohort, the A allele frequency was 0.76 and 

the G allele frequency was 0.24 (Table 5.2). The HMGA2 A allele frequencies across the sex 

sections of the Welsh pony present in our population were 1.0 for section A, 0.74 for section B, 

0.83 for section C, 0.03 for section D, and 0.64 for section H/P (Table 5.2, Appendix D: 

Supplemental Table D1). In the large breed horses (n=529), there were only five horses 

heterozygous for the HMGA2 A allele (2 Tennessee Walking horses, 1 Morgan horse, 1 Mustang, 

and 1 Kentucky Mountain horse); resulting in an overall A allele frequency of 0.005. 

Correlations Between HMGA2 Genotype, EMS Traits, and ACTH: Correlation analyses between 

HMGA2 genotype and the measured traits were performed in Welsh ponies.  A negative (-0.75; 

95%CI: -0.80 to -0.70; p-value <0.001) correlation was identified between the A allele and height.  

Pairwise comparisons of the least square means of height and HMGA2 genotype revealed 

statistically significant differences between all three genotypes (Figure 5.4A).  Although the 

ANOVA f-statistic did not differentiate between the three possible modes of inheritance, an 

additive model was favored over recessive and dominant based on AIC (Appendix D: 

Supplemental Table D5).   

Positive correlations with p-values <0.005 were also identified between the HMGA2 A allele and 

four of the nine measured EMS traits in the ponies: including insulin (0.32; 95%CI: 0.21 to 0.42), 

INS-OST (0.25; 95%CI: 0.14 to 0.35), NEFA (0.19; 95%CI: 0.075 to 0.30), and triglycerides 

(0.22; 95% CI: 0.10 to 0.32).  Correlations for traits that were not statistically significant included: 

glucose, GLU-OST, leptin, adiponectin, and ACTH.  Pairwise comparisons for insulin, INS-OST, 

and triglycerides revealed that the predicted marginal means for the A/A genotype were 

statistically different (p-value < 0.001) from both the G/G and G/A genotypes, but that the 

predicted marginal means for the G/G and G/A genotypes were not statistically different from each 

other, suggesting recessives model of inheritance for these measurements (Figures 5.4B, 5.4C and 

5.4D).  Although the p-values for the F-statistic linear regression modeling slightly favored 

recessive models for insulin, INS-OST and NEFA, the AIC values showed minimal separation 
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between additive and recessive models for all four biochemical measurements (Appendix D: 

Supplemental Table D5).  Pairwise comparisons between the marginal means and genotype for 

NEFA also revealed statistically significant differences between the A/A and G/A genotypes 

(Figure 5.4E). 

Discussion: 

It is well recognized that ponies are at high risk for developing EMS; however, the mechanisms 

underlying this increased susceptibility, and the roles that genetic factors might play, are not 

understood.  In this study we demonstrated that baseline insulin values, a major component of the 

EMS phenotype, were correlated to height in Welsh ponies.  Using complementary genome-wide 

analysis methods with high-density SNP genotype data, we identified and fine-mapped a locus on 

ECA6 associated with both of these traits in Welsh ponies, which we estimated to be contributing 

~40% and ~20% of the total h2
SNP for height and insulin, respectively.  The positional candidate 

genes HMGA2 and IRAK3 were prioritized based on known biological function and evidence in 

other species.  Sequencing of the promoters, coding exons and flanking intronic regions revealed 

only a c.83G>A variant (p.G28E) in HMGA2, previously described in other small stature horse 

breeds.[574]  Correlations between HMGA2 genotype and critical metabolic measures of EMS in 

the Welsh ponies suggested a previously unrecognized pleiotropic effect of this locus and its 

candidate HMGA2 functional variant.  

Similar to what has been found in humans, an inverse correlation between height and five EMS 

measurements (insulin, glucose, triglycerides, leptin, and adiponectin) as well as ACTH were 

found in the large cohort of horses and Welsh ponies.  However, we determined that the ponies 

were predominately driving the correlations in this cohort for baseline insulin, as statistically 

significant correlations were not identified for any of the four other individual breeds.  This led us 

to investigate whether genetic loci for height, EMS measures, and ACTH in Welsh ponies could 

be one and the same.   

High-density SNP genotype data enabled us to use an FST-based approach (di) to detect regions of 

low heterogeneity that exist due to selection for a phenotype, as well as identify genomic regions 

containing variants associated with both height and insulin on ECA6. We identified several breed-
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specific loci undergoing selection in the Welsh pony; however, the region with the highest number 

of significant di windows, as well as those at the top of the empirical distribution, was a ~782kb 

segment on ECA6 that was within the boundaries of the 1.3Mb ROI identified by association 

analysis.  Although the di statistic is blinded to phenotype, given the extensive breeding selection 

for short stature in ponies and the overlapping results with the association analysis, we surmised 

that selection for height was responsible for this genomic signature.  Based on our cohort and the 

high heritability of height and baseline insulin, our association analysis had adequate power to 

identify alleles with moderate to high effect size [580] and readily detected the ECA6 locus in 

Welsh ponies for both traits.   

With genomic partitioning, we estimated that the ROI (ECA6: 80,499,826-81,809,066) 

contributed to 39% of the genetic variation for height, and 24% for baseline insulin.  However, 

this approach leads to inclusion of SNPs that were top predictors from association analysis, 

violating the effect size assumption when using a restricted estimated maximum likelihood 

analysis.  Thus, we also performed a top predictors approach after pruning for highly correlated 

SNPs that resulted in an estimate of genomic contribution of 47% for height and 16% for baseline 

insulin. Although these estimates were not performed in an independent population, and can lead 

to over fitting of the data, it does suggest that the ECA6 locus is contributing ~40% of the genetic 

variation of height and ~20% for baseline insulin in our population. Unaccounted for population 

stratification or cryptic relatedness can lead to overestimation of h2
SNP.  However, the mean h2

SNP 

estimates and standard deviations after randomly subsetting the data did not significantly differ 

from the original estimates, indicating that population substructure or cryptic relatedness was not 

significantly biasing our estimates (Appendix D: Supplemental Methods).  

We identified a haplotype block that spanned the entire height ROI on ECA6 found by association 

analysis, while haplotype blocks in the same region for baseline insulin contained distinct major 

and minor peaks.  This likely reflects differences in variant effect size, non-shared factors affecting 

the traits, and selection for height.  We showed that 39-47% of the genetic variance in height could 

be explained by our ROI on ECA6; thus, the locus has a large effect on height in ponies.  In 

contrast, the effect on insulin is smaller at 21-25% of the genetic variation.  This is consistent with 

the results from the Pearson’s correlation between height and insulin which was -0.26, indicating 

that not all the variation in insulin could be explained by its relationship to height with non-shared 
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factors present between the traits.  Finally, short stature has been strongly selected for in ponies 

through extensive breeding; however, hyperinsulinemia is not a desirable trait.  The long haplotype 

on height likely reflects extensive hitchhiking secondary to selective breeding for that trait.   Thus, 

haplotype analysis allowed us to fine map our ROI for height and insulin to bp positions: 

81,161,980-81,583,507, where HMGA2 was the only annotated coding gene.   

The HMGA2 protein interacts with AT-rich regions of DNA through three DNA binding domains 

(AT hooks).  This interaction alters the chromatin structure and promotes protein-protein 

interactions necessary for assembly and stabilization of the enhanceosome during initiation of 

transcription.[581] HMGA2’s main functional role is thought to be in cellular proliferation and 

differentiation, which has been supported by the numerous studies in humans linking HMGA2 with 

height.[582-588] The HMGA2 locus was also identified as being one of four loci explaining 83% 

of the genetic variation of height in horses, and one of six loci explaining 46-52.5% of the genetic 

variation of height in dogs.[395,589]  Further, knockout mouse models for HMGA2 result in a 

lean, pygmy phenotype;[590] whereas, gain of function mutations of this gene led to gigantism, 

excessive fat formation and lipomatosis in both mice and humans.[591,592]  In addition to the 

alterations in fat metabolism noted above, HMGA2 has been associated with other causes of 

metabolic derangements, particularly type II diabetes in humans.[593]  Voight et al. hypothesized 

that an HMGA2 variant was likely affecting insulin levels independent of an obesity driven 

mechanism.[593]  Since then, both genome-wide association and meta-analyses have replicated 

this result.[594-596]  The only HMGA2 variant found in our panel of 48 horses was a missense 

mutation (c.83G>A) in exon 1, which was previously described as associated with decreased 

height in Shetland and other pony breeds.[574]  The variant, with its glycine to glutamate 

substitution at residue 28, is predicted to affect the first AT hook, and the authors demonstrated 

that the mutant nucleotide sequence had decreased binding affinity for DNA.  This is further 

evidence supporting the likely functional impact of this mutation. 

In our pony cohort, the HMGA2 variant had an allele frequency of 0.76, was distributed across the 

sections of the Welsh Pony breed consistent with their height distribution, was negatively 

correlated (-0.75) with height, and its effect was explained by an additive model of inheritance in 

the entire population of ponies.  We also identified a negative correlation for the A allele with four 
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EMS traits, including insulin, NEFA, INS-OST and triglycerides.  This provides evidence that 

HMGA2 is having an effect on EMS traits beyond modulating height.  

Notably, pairwise comparisons of NEFA between genotypes revealed that, although there was a 

statistical difference between the A/A and G/A genotypes, there was not a difference between 

either of the homozygous genotypes.  This is most likely due to the large 95% confidence intervals 

identified when assessing the least square means for genotype and NEFA concentrations in the 

ponies, particularly those with the G/G genotype (Figure 5.4E).  Pairwise comparisons between 

the least squared means for genotype and insulin, INS-OST, and triglycerides suggested a recessive 

model of inheritance; however, model analyses were unable to differentiate between an additive 

or recessive model. The lack of distinction is likely due to the large variation within EMS traits, 

as well as bias due to unequal sampling amongst our ponies, as our cohort only included three 

section Cs and 15 section Ds.  Therefore, inclusion of more samples from these sections would 

likely improve our power to differentiate between an additive and recessive model. 

IRAK3 was included as a biological candidate gene due to evidence in other species and its close 

proximity to the fine mapped ROI.  IRAK3 is down-regulated in individuals with obesity and 

metabolic syndrome, and is thought to be a key inhibitor of inflammation during metabolic 

derangements.[597]  Further, IRAK3 mutant mouse phenotypes include reduced body size, 

decreased femur diameter and abnormal bone morphology [598], as well as impaired glucose 

tolerance [599].  We sequenced the IRAK3 gene in our sample panel of horses but did not find any 

variants.  Although a predicted miRNA (MIR763) was within our refined ROI, its function is 

unknown and does not have any associated orthologues. 

In conclusion, through genome-wide analyses we identified an allele for a known height gene, 

HMGA2, as contributing to both height and several EMS traits in a cohort of Welsh ponies.  

Additional functional analysis would determine if the HMGA2 mutation has a pleiotropic effect 

on these traits, or if another unidentified variant within our ROI independently contributes to the 

EMS traits and has been inadvertently selected for due to genomic hitchhiking.  Although this 

study focused on Welsh ponies, the HMGA2 variant has been corelated with height in other pony 

breeds; thus, it is likely that this variant is also having an effect on metabolic traits in these 

individuals, as supported by the correlation analysis with the addition of three Shetland, two 
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Hackney, and three British Riding ponies to our cohort (Appendix D: Supplemental Table D7).  

Moreover, although height was not correlated with EMS traits in the large breed horses in this 

study, this does not rule out stature as contributing to these traits in that population.  In humans, 

leg length-to-torso ratios are consistently correlated with metabolic traits over total height [552].  

Therefore, length-to-torso ratios in large breed horses might reveal a correlation not identified in 

this analysis.  These data are a major step forward towards understanding genetic influences on 

EMS that could also have implications for improving equine health and understanding contributors 

to MetS. 
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Figure 5.1 Genome-wide di values for Welsh Ponies. Each di value is plotted on the y-axis and 

each autosome is shown on the x axis in alternating colors. Each dot represents a 10 kb window. 

The red horizontal line represents the top 0.1% of the empirical distribution of di values. One region 

of interest on equine chromosome 6 (ECA6) spanned ~782kb segment, ranging from 81,003,617 

to 81,785,414 bp.   
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Figure 5.2: Plot of the association analysis for equine chromosome 6 (ECA6) in 264 Welsh 

ponies (WP).  The base pair positions for chromosome 6 are plotted along the x-axis and the –log10 

of the p-values are plotted on the y-axis.  Individual circles represent single SNPs.  A red line marks 

the thresholds for genome wide significance.  (A) Results obtained in WP for height. Significant 

associations were noted on ECA6 with SNPs between 80,501,273 and 81,808,008 bp.  (B) Results 

obtained in WP for baseline insulin.  Significant associations were noted on ECA6 with SNPs 

between 80,639,787 to 81,651,604 bp. 
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Figure 5.3.  Fine-scale structure of the region of interest on equine chromosome 6 (ECA6). 

Regions of interest (ROI) identified from the results of the association analysis and di statistic were 

used for haplotype analysis for both height (A) and baseline insulin values (B) in Welsh ponies.  

Bayes Factor values above the red horizontal line are considered significant and represent an 

ancestral haplotype. Shared ancestral haplotypes between both traits are most predominant from 

base pair positions 81,161,980 to 81,288,528 and 81,381,221 to 81,583,507. Aligning the NCBI 

genome browser for the ROI identified HMGA (red circle) as a coding gene within the shared 

haplotype. IRAK3 was also identified as a candidate gene based on proximity and biological data. 
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Figure 5.4: Least-square mean estimates and 95% confidence intervals for the HMGA2 c.83G>A variant and various phenotypes in a 

population of 294 Welsh ponies.  Height (A), insulin (B), INS-OST (C), triglycerides (D), and NEFA (E). 
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Breed INS INS-OST GLU GLU-OST NEFA TG LEPTIN ADIPON ACTH 

All 

Horses 

n=823 

-0.12 

(-0.19,-0.05) 

p=<0.001 

-0.035 

(-0.11,0.04) 

p=0.34 

-0.11 

(-0.18,-0.04) 

p=0.002 

-0.07 

(-0.14,0.003) 

p=0.006 

-0.07 

(-0.14,0.01) 

p=0.053 

0.14 

(0.07,0.21) 

p=<0.001 

0.12 

(0.05,0.19) 

p=<0.001 

-0.23 

(-0.29,-0.16) 

p=<0.001 

-0.12 

(-0.18,-0.04) 

p=.0015 

Welsh 

ponies 

n=294 

-0.26 

(-0.36,-0.15) 

p=<0.001 

-0.10 

(-0.21,-0.02) 

p=0.12 

-0.07 

(-0.18,0.05) 

p=0.25 

0.08 

(-0.03,0.20) 

p=0.02 

-0.13 

(-0.24,-0.01) 

p=0.03 

-0.12 

(-0.23,-0.04) 

p=0.04 

-0.07 

(-0.18,0.04) 

p=0.23 

0.06 

(-0.06,0.17) 

p=0.35 

-0.12 

(-0.23,0.005) 

p=0.05 

Large 

Breed 

n=529 

-0.02 

(-0.11,0.06) 

p=0.59 

-0.07 

(-0.16,0.02) 

p=0.15 

0.02 

(-0.07,0.10) 

p=0.72 

-0.007 

(-0.10,0.09) 

p=0.89 

0.12 

(0.03,0.20) 

p=0.008 

-0.001 

(-0.09,0.09) 

p=0.98 

-0.06 

(-.014,0.03) 

p=0.18 

-0.05 

(-0.13,0.04) 

p=0.29 

0.03 

(-0.06,0.11) 

p=0.55 

Morgans 

n=293 

-0.11 

(-0.22, 0.0) 

p=0.05 

-0.13 

(-0.24,0.01) 

p=0.03 

0.002 

(-0.11,0.12) 

p=0.98 

-0.10 

(-0.21,0.02) 

p=0.12 

0.07 

(-0.05,0.18) 

p=0.25 

-0.06 

(-0.18,0.05) 

p=0.28 

-0.06 

(-0.17,0.06) 

p=0.32 

-0.003 

(-0.12,0.11) 

p=0.95 

-0.05 

(-0.16,0.07) 

p=.43 

QH 

n=59 

0.19 

(-0.07,0.43) 

p=0.14 

0.24 

(-0.10,0.52) 

p=0.16 

0.12 

(-0.14,0.36) 

p=0.38 

0.17 

(-0.16,0.47) 

p=0.31 

0.25 

(-0.01,0.47) 

p=0.06 

0.13 

(-0.13,0.37) 

p=0.33 

-0.005 

(-0.26,0.25) 

p=0.97 

-0.08 

(-0.33,0.18) 

p=0.55 

0.25 

(-0.07,0.48) 

p=0.06 

TWH 

n=48 

0.23 

(-0.06,0.48) 

p=0.12 

0.08 

(-0.28,0.42) 

p=0.66 

0.14 

(-0.15,0.41) 

p=0.35 

0.13 

(-0.23,0.46) 

p=0.47 

-0.12 

(-0.39,0.17) 

p=0.41 

-0.08 

(-0.36,0.17) 

p=0.60 

0.04 

(-0.26,0.32) 

p=0.81 

-0.17 

(-0.43,0.12) 

p=0.25 

-0.08 

(-0.35,0.21) 

p=0.61 

Arabians 

n=64 

-0.31 

(-0.51,-0.06) 

p=0.02 

-0.25 

(-0.05,0.02) 

p=0.07 

-0.19 

(-.042,0.06) 

p=0.14 

0.01 

(-0.26,0.28)  

p=0.94 

0.12 

(-0.13,0.36) 

p=0.34 

-0.21 

(-0.44,0.04) 

p=0.10 

-0.12 

(-0.36,0.13) 

p=0.36 

0.02 

(-0.23,0.27) 

p=0.89 

-0.12 

(-0.04,0.13) 

p=0.34 

 

Table 5.1: Correlations between height and biochemical traits across breeds.  Pearson’s correlation coefficients, 95% confidence intervals and 

p-values for height, eight EMS biochemical traits, and ACTH across breeds of horses.  All traits were corrected for age and sex prior to analysis.  

Significant p-values (<.0056) are in bolded text. Abbreviations: INS = insulin, INS-OST = insulin after an oral sugar test, GLU = glucose, GLU-

OST, glucose after an oral sugar test, NEFA = non-esterified fatty acids, TG = triglycerides, ADIPON = Adiponectin, QH = Quarter horses, TWH= 

Tennessee Walking Horses.  
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Breed n G/G (WT) G/A (HET) A/A (MUT) A Allele 

Frequency 

G Allele 

Frequency 

Welsh ponies 

Section A 

Section B 

Section C 

Section D 

Section H 

Unregistered 

294 

78 

150 

3 

15 

37 

11 

30 

 

8 

 

14 

8 

80 

 

62 

1 

1 

11 

5 

184 

78 

80 

2 

 

18 

6 

0.76 

1.00 

0.74 

0.83 

0.03 

0.64 

0.77 

0.24 

0.00 

0.26 

0.17 

0.97 

0.37 

0.23 

All large breed horses 530 525 5  0.005 0.995 

Morgan horses 293 292 1  0.002 0.998 

Quarter horses 59 59    1.00 

Tennessee Walking horses 48 46 2  0.021 0.98 

Arabians 64 64    1.00 

Other large breed horses 66 64 2  0.015 0.985 

 

Table 5.2: Genotyping results for the HMGA2 c.83G>A variant in Welsh ponies and large breed horses.  Results are also shown for specific 

breeds including: sections of Welsh ponies, Morgan horses, Quarter horses, Tennessee Walking horse, and Arabians.   Allele frequencies are provided 

for the G (wild type) and A (mutant) allele. Abbreviations: WT: Homozygous for the wild type allele, HET=Heterozygote, MUT=Homozygous for 

the mutant allele. 
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Chapter 6: Conclusions and Future Directions 

The term equine metabolic syndrome (EMS) was coined in 2002 when the parallels 

between human metabolic syndrome (MetS) and what was being observed clinically in 

hyperinsulinemic, obese, laminitic horses was recognized [7]. Over the past few decades, 

the working understanding of EMS has become more refined and the clinical overlap 

between species more pronounced.  In both species, metabolic syndrome can manifest as 

baseline hyperinsulinemia, an exaggerated or prolonged insulin or glucose response post 

carbohydrate challenge, tissue insulin resistance, dyslipidemia, and alterations in 

adipokines and inflammatory cytokines.  Further, metabolic syndrome can lead to serious 

medical issues that have a major economic impact [8,21], with EMS being the leading 

cause of laminitis [21] and humans with MetS being 2 and 4 times more likely to develop 

cardiovascular disease and diabetes mellitus, respectively [8]. 

Breed predilections and familial incidence have provided the initial evidence that EMS is 

a complex trait with a strong genetic basis, but after nearly two decades the genetic risk 

factors contributing to EMS have remained undiscovered.  The identification of risk alleles 

and gene pathways underlying EMS will allow for a better understanding of the 

fundamental pathogenesis of the syndrome.  Moreover, the promise of a genetic test that 

can be used to identify high risk horses before they develop clinical signs and laminitis has 

instigated a drive toward identifying the genetic risk factors of EMS.  Further, the 

similarities between metabolic syndrome in humans and horses make horses an excellent 

naturally-occurring model of MetS and an ideal candidate for further exploring the genetic 

contribution to metabolic syndrome across species. 

In order to move toward the identification of the specific genes or alleles contributing to 

EMS, the objectives of this thesis were to: (i) estimate the genetic contribution to EMS 

metabolic traits, (ii) identify regions of the genome harboring EMS risk alleles, and (iii) 

identify the candidate genes and putative functional alleles contributing to EMS. 

Chapter Summaries and Conclusions 

In chapter 2, we provided the first concrete evidence of a genetic contribution to EMS, 

quantifying the genetic contribution to nine traits that comprise the EMS phenotype.  We 
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used high-density SNP genotype data to estimate the heritability (h2
SNP) of nine 

biochemical traits in a cohort of 264 Welsh ponies and 286 Morgan horses with a restricted 

estimated maximum likelihood statistic.  In Welsh ponies, seven of the nine traits had 

statistically significant h2
SNP estimates that were considered moderately to highly heritable 

(h2
SNP > 0.20) including: triglycerides (0.313; SE=0.146), glucose (0.408; SE=0.135), 

NEFA (0.434; SE=0.136), INS-OST (0.440; SE=0.148), adiponectin (0.488; SE=0.143), 

leptin (0.554; SE=0.132) and insulin (0.808; SE=0.108).  In Morgan horses, six of the nine 

traits had statistically significant h2
SNP estimates that were also determined to be 

moderately to highly heritable including: INS-OST (0.359; SE=0.185), leptin (0.486; 

SE=0.177), GLU-OST (0.566 SE=0.175), insulin (0.592; SE=0.195), NEFA (0.684; 

SE=0.164), and adiponectin (0.913; SE=0.181).  These results are the first to indicate that 

EMS biochemical traits are moderately to highly heritable.  We hypothesize that 

differences in h2
SNP estimates in several traits between these two breeds is likely due to 

differences in risk alleles or the frequency of risk alleles that are contributing to previously 

identified breed variability in metabolic traits.  

In chapter 3, we provided strong evidence that EMS is a complex, polygenic syndrome 

with dozens of risk alleles contributing to the phenotype.  Using high-density SNP 

genotype data, genome-association analyses (GWA) was performed for twelve EMS 

relevant traits using a custom code for a linear mixed model in a cohort of 264 Welsh 

ponies and 286 Morgan horses.  Regions were defined as consecutive SNPs within 500kb 

of each other on the same chromosome.  GWA identified up to 139 associated regions in 

the Welsh ponies and 142 associated regions in the Morgan horses.  The boundaries of 

GWA regions were defined based on a fixed-size (500kb 5’ to the minimum SNP and 3’ 

to the maximum SNP) or based on the breakdown of linkage disequilibrium (LD).  

Approximately 60% of the fixed-size boundaries were found to be larger than the LD 

boundaries and likely indicates that our fixed-size boundaries were overestimating the 

region size and including candidate genes that were not in LD with the marker SNP.  For 

the remaining regions, the LD boundaries were on average >1Mb longer then the fixed-

size region, likely indicating regions in which the fixed-size boundaries were 

underestimating the region size and excluding candidate genes which could include the 
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causal variant.  These data indicate that identification of breed and locus-specific LD is 

imperative to precisely identifying positional candidate genes. 

GWA meta-analysis using a random effects model was performed in order to identify 

GWA regions shared between breeds.  Meta-analysis uses GWA summary statistics to 

effectively combine GWA studies, increasing the number of individuals within the study 

and improving the power to find unique associations, variants of low effect, and additional 

shared regions across populations Meta-analysis demonstrated that 65 of the 272 regions 

were shared across breeds.  These data support that EMS risk alleles are shared across 

breed as well as breed-specific. 

In order to reduce false positives, GWA regions were prioritized as regions of interest 

(ROI) if they contained a minimum of five SNPs that exceeded the suggestive threshold 

and at least one SNP that exceeded the threshold for genome wide significance.  Regions 

shared across breeds (based on meta-analysis) were given high priority, as these regions 

were not breed specific and likely to be found in other high-risk breeds.  Regions shared 

across traits with at least one ROI were also assigned high priority, as a variant affecting 

multiple traits would be expected to have a larger biological effect then a variant affecting 

a single trait.  An ROI identified in one GWA cohort was assigned medium priority as these 

regions were likely breed or section (Welsh pony) specific and, based on the power of our 

study, variants of moderate to high effect.  Finally, regions that were not ROI but shared 

across traits were assigned low priority.  Within breed prioritization of the LD-defined 

regions resulted in 56 high priority, 26 medium priority, and 7 low priority regions, for a 

total of 1,853 candidate genes in the Welsh ponies; and 39 high priority, 8 medium priority, 

and 9 low priority regions, for a total of 1,167 candidate genes in the Morgan horses.  These 

data clearly support the hypothesis that EMS is a polygenic trait. 

In chapter 4, we provided intriguing biological evidence for the role of several coding genes 

in the pathogenesis of EMS.  We utilized imputed whole-genome sequencing (WGS) and 

linear regression analysis in order to fine-map selected high priority LD-ROI in both the 

Morgan horses and Welsh ponies.  LD-ROI were fine-mapped if they contained at least 5 

SNPs with one SNP exceeding the threshold for genome-wide significance.  Five fine-

mapped regions from each breed were further interrogated for predicted impact using 
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variant annotation.  First, all variants which exceeded the threshold for genome-wide 

significance mapped to non-coding regions of the genome, with 66.7% of the significantly 

associated SNPs being intronic, 17.0% intergenic and 10.3% within lncRNA.  Second, in 

order to capture potential causal variants within protein-coding genes, we further evaluated 

positional candidate genes with exonic variants in our fine-mapped region with a p-value 

<0.05 (i.e. “sub-threshold”).  Protein-coding genes containing non-coding or coding 

variants within the fine-mapping region were then further prioritized based on known 

function and biological evidence in other species utilizing the PubMed search engine.  A 

total of 19 positional candidate genes were identified as having biological evidence for a 

role in EMS including: SSTR1, SEC23A, FBXO33, MIA2, EIF3D, CSF2B, IFT27, ACE, 

TACO1, ABCA13, NKAIN2, BBX, XXYLT1, BDH1, NCKAP5L, GPD1, LIAA1, METTL7A, 

SCL11A2.  These data provide support for the process of fine-mapping GWA ROI by 

increasing marker density and using biological evidence across species to further prioritize 

candidate genes. 

In chapter 5, we provided the first report of a gene with a pleotropic effect for EMS and 

provided evidence for the underlying cause of the unique metabolic profiles and increased 

EMS susceptibility in ponies. Pearson’s correlation coefficient identified an inverse 

relationship between height and baseline insulin in a cohort of 264 Welsh ponies. Genome-

wide association analyses of height and insulin revealed the same ~1.3 Mb region on 

chromosome 6, which was also identified using a di statistic for genomic signatures of 

selection.  Haplotype analysis confirmed that there was a shared ancestral haplotype 

between height and insulin.  The high mobility group AT-hook (HMGA2) was identified 

as a candidate gene, and sequencing identified a single a c.83G>A variant (p.G28E) in 

HMGA2, previously described in other small stature horse breeds [574].  In the EMS cohort 

of ponies, the A allele had a frequency of .76, was strongly correlated with height (-.75) 

and was low to moderately correlated with metabolic traits including: insulin (.32), insulin 

after an oral sugar test (.25), non-esterified fatty acids (.19) and triglyceride (.22) 

concentrations.  For this allele, model analysis suggested an additive mode of inheritance 

with height and a recessive mode of inheritance with the metabolic traits.  In humans, a 

relationship between individuals of short stature and an increased risk of metabolic 
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syndrome has been well described.  Thus, these data also provide that first phase of using 

EMS as a model for translational genomics for MetS. 

In conclusion, we have provided strong evidence supporting our hypotheses that many 

traits that comprise the EMS phenotype are moderately to highly heritable, that major 

genetic risk factors leading to EMS and laminitis susceptibility are shared across breeds of 

horses, and that differences exist in the severity and secondary features of the EMS 

phenotype between breeds, or between individuals within a breed.  We further hypothesize 

that such breed differences are the result of modifying genetic risk alleles with variable 

frequencies between breeds. 

Future Directions 

The results described in this thesis are major steps forward in understanding the genetic 

contributions of EMS in two high risk breeds, but still only represents a small piece of a 

very large puzzle.  Thus, additional work is required to continue to unravel the risk alleles 

contributing to EMS. 

In chapter 4, we provided intriguing biological evidence for the role of multiple coding 

genes in the pathogenesis of EMS but did not conclusively identify the causal variants.  

Several methods could be utilized to further interrogate our regions for both protein-coding 

and non-coding causal variants.  First, interrogation of the allele frequency of the variants 

identified in chapter 4 in a large database of mixed-breed horses would allow for the 

assessment of the frequency of these variants in healthy horses.  Given that EMS can 

manifest at an older age, of particular interest would be assessment in breeds considered 

low-risk for EMS such as the Quarter Horse or Thoroughbred.  Identification of variants at 

low frequency in these breeds would allow for the prioritization of specific biological 

candidate genes for interrogation through Sanger sequencing.  Second, haplotype analysis 

can be utilized to find shared ancestral haplotypes to further fine-map the LD-ROI, 

prioritize variants, and identify additional horses for whole-genome or Sanger sequencing.  

Third, development of a custom genotyping assay would allow for the validation of 

imputed genotypes as well as assessment of the statistically significant coding and non-

coding variants in an independent population of Welsh ponies and Morgan horses 

phenotyped for EMS. 
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In chapter 3, we identified hundreds of regions of the genome associated with EMS relevant 

traits in both Welsh ponies and Morgan horses; however, this likely only explains a small 

fraction of the genetic variance for EMS.  Several factors have been proposed to contribute 

to the missing heritability in GWA studies, including study power, stringent thresholds for 

genome-wide significance, exclusion of rare variants, and the omnigenic hypothesis (see 

chapter 1 for further discussion about the missing heritability in GWA), which could all 

contribute to underestimation of associated loci in our analysis.  In addition, we utilized a 

prioritization method in order to select GWA region for analysis, which could have further 

excluded regions of the genome containing EMS risk alleles.  This method also gave a 

lower ranking to several interesting GWA associated regions.  For example, the region on 

chromosome 6 harboring the HMGA2 EMS risk allele in Welsh ponies (see chapter 5) was 

given a medium priority and was not in the initial fine-mapping of high priority LD-ROI 

as described.  Further, the genetic loci identified in our GWA does not explain the genetic 

variation across all breeds. As noted throughout this thesis, there are several breeds 

considered high risk for EMS, of which most will likely have breed-specific risk alleles.  

Therefore, future directions include (i) assessment of the medium and low priority regions, 

(ii) increasing population size in both breeds with a more equal representation of Welsh 

pony sections in order to improve the power for variant detection, and (iii) expanding these 

analyses into other high-risk breeds.   

However, given the complexity of the EMS phenotype and the high percentage of 

associated SNPs located in non-coding regions of the genome, an integrated, trait-relevant 

multi-omics interrogation of the EMS phenotype will be required to fully investigate the 

genetic contribution to this syndrome.  The rational for this approach lies in the fact that 

alleles can exert their effects through alterations in gene (transcriptome) or protein 

(proteome) expression, regulation, or function, which manifest through alterations in 

metabolic pathways and functions (metabolomics).  Thus, each type of omics data provides 

a list of differences associated with a disease, but only represents one layer of the genetic 

effect and is typically limited to correlations versus causation [399].  By interrogating a 

trait with multiple levels of the genome as intermediate phenotypes, or molecular traits that 

are precursors for the “endpoint of interest”, such as trait characteristics or clinical 

measurements, multi-omics datasets can be used as powerful tools to unravel the causative 
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changes and therapeutic targets of complex traits [375,399].  For example, transcriptomic 

intermediate phenotypes are the closest to the genome.  Risk alleles within a gene’s 

regulatory regions (promoter, untranslated regions) or regulatory elements (transcription 

factors, microRNA) can alter a gene’s expression.  Therefore, alterations in the 

transcriptome reflect the downstream effect of genome variants on gene regulatory 

mechanisms and can be used to uncover pathways targeting the phenome.  However, risk 

alleles that alter protein function or regulation may not be directly reflected by changes in 

gene expression but can manifest by alterations in the metabolome, which lie in the closest 

proximity to the phenome.  Therefore, the metabolome provides insight into the metabolic 

effect of trait-associated genetic variants [600] and has been used to co-map and refine 

regions of the genome [601] based on their closer proximity to the phenome. 

Therefore, bridging the connections across multiple omics datasets constitutes a powerful 

approach to explaining the relationship between genotype and phenotype, and leveraging 

these data has the potential to the lead to the identification of dozens of genetic risk alleles 

for EMS and provide valuable insight into its molecular pathophysiology.  The following 

plan proposes a workflow for using multi-omics data from the cohort presented in this 

thesis.  (i) Relationships between the genome, metabolome and phenome: The serum 

metabolome of the 286 Morgans and 264 Welsh ponies can be quantified using liquid or 

gas chromatography coupled to mass spectrometry. These data can then be used to 

determine which metabolites are statistically associated with EMS clinical phenotypes.  

Due to the complexity of the EMS phenotype, analyses would need to be performed with 

EMS traits as quantitative response variables, relative abundance of the metabolites as 

predictor variables, age and sex as fixed effects, and environment as a random effect.  

Genetic risk loci for metabolites can also be identified by within-breed genome-wide 

association, and statistically significant regions on GWA will be assessed to determine if 

they co-map with within-breed GWA regions identified previously for EMS traits.  Co-

mapped regions could be interrogated using imputed whole genome sequencing and 

haplotype analysis for genetic variant and candidate gene discovery.  (ii) Relationships 

between the transcriptome, phenome, and genome:  Muscle and fat biopsies from selected 

Morgans and Welsh ponies phenotype for EMS could be collected in order to assess 

differential gene expression in these tissues using RNA-seq. Regression-based mediation 
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analysis could be used to assess the effect of the SNP GWA regions of interest and gene 

expression data.  (iii) Relationship between the genome, transcriptome and metabolome: 

Evaluation of metabolomic and transcriptomic co-expression networks could also be 

analyzed for network interactions. Assessment of network locality could identify positional 

candidate genes that are proportionally more connected to genes locally (candidate genes 

from GWA) than they are globally (all genes in the network).  

In conclusion, the continued investigation into the genetic risk factors contributing to EMS 

is necessary in order to gain a better understanding of the pathophysiology of this syndrome 

as well identify enough risk alleles to create a validated genetic test.  Given that this thesis 

has proven that EMS is a polygenic disease, a genetic test assessing a single risk allele or 

locus will provide limited information regarding overall disease risk.  Instead, genetic 

testing would require a genotyping array containing several risk loci of high, moderate and 

low impact.  In addition, the array would need to be representative of risk loci that are 

shared across high risk breeds as well as those that are breed-specific   Ideally, variants 

present on the genotyping array would explain at least half of the genetic variation of EMS 

across breeds but the number of variants on the array is ultimately a function of the 

predictive power of the variants. 
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Appendix A: Chapter 2 Supplemental Materials 

Supplemental Methods 

Phenotype Data: Information collected on all individuals included morphometric, 

environmental and biochemical measurements.  Morphometric measurements included 

body condition score, height, length, neck circumference, and girth circumference.  

Environmental management included diet (amount and type of hay, grain, pelleted feed, 

supplements, hours on pasture per day, and complete dietary analysis) and exercise 

regimen (daily hours in a stall, turnout and forced exercise).  Biochemical measurements 

included insulin (INS) and glucose (GLU) after an 8 hour fast and 75 minutes post oral 

sugar challenge (OST) using 0.15ml/kg light Karo Syrup as previously described [406].  

Additional samples taken at baseline included: triglycerides (TG), non-esterified fatty acids 

(NEFA), adiponectin, leptin and ACTH.   

Biochemical Measurements Assay 

Insulin and INS-OST Siemen’s TKIN1 Insulin Coat-A-Count Kit 

Glucose and GLU-OST YSI 2300 STAT Plus glucose and lactate analyzer 

Triglycerides 
Millipore Sigma’s TR0100 Serum Triglyceride 

Determination kit 

NEFA Wako Diagnostics’ HR Series NEFA kit 

Adiponectin 
Millipore Sigma’s EZHMWA-64K Human High Molecular 

Weight Adiponectin ELISA 

Leptin Millipore Sigma’s XL-85K Multi-Species Leptin RIA 

ACTH Siemen’s LKAC1 ACTH kits 

 

Horses with a history of laminitis were defined as individuals that had previously been 

diagnosed with laminitis by a veterinarian, had radiographic changes consistent with 

laminitis, or had laminitic rings at the time of sampling.  Horses that had signs of acute, 

active laminitis (i.e. pain, lameness) at the time of sampling were excluded from the study. 

Horses with a history of laminitis that could be contributed to an inciting factor other the 

EMS (such as horses with a history of endotoxemia, grain overload, trauma, support limb 
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laminitis, corticosteroid administration, or pars pituitary intermedia dysfunction) were 

excluded from the study.  A total of 58 WP and 43 Morgan horses had a history of laminitis.  

Horses with a previous diagnosis of EMS were defined as individuals that had previously 

been diagnosed with EMS by a veterinarian, although diagnostic criteria varied between 

veterinarians.  For inclusion in the study, each farm had to have at least one control and 

one horse with clinical signs consistent with EMS under the same management.  Clinical 

signs consistent with EMS included horses with regional adiposity, hyperinsulinemia or an 

exaggerated response to the OST, elevations in TG, and decreased levels of adiponectin at 

the time of sampling.   Horses with a history or phenotypic appearance of pars pituitary 

intermedia dysfunction (hirsutism, polyuria/polydipsia, muscle wasting) or elevated ACTH 

values (based on seasonal reference ranges) were excluded from the study.   

Heritability Estimates Using Different Methods: In the main text, we reported h2
SNP 

estimates calculated in GCTA with the inclusion of the wGRM.  A REML based approach 

was chosen due to its published use estimating h2
SNP in hundreds of traits [413], versatility 

for use with domestic animal data [602-604], and evidence showing that it is more powerful 

when analyzing quantitative data as compared to a Haseman-Elston regression [405].  In 

addition to GCTA and the wGRM, heritability estimates were also calculated with GCTA 

and the standard GRM (computed in GCTA), as well as using LDAK’s REML algorithm 

with the wGRM.  For GCTA, the default settings were used for analysis.  For LDAK, the 

addition of --decay YES and --half-life 100 was included in constructing the wGRM to 

account for the high structure and LD in horse genotype data.  We also used an alpha value 

of -0.25 (--power -0.25) as recommended by Speed et al to allow the average h2
SNP to vary 

with MAF [413]. 

Assessment of Bias Due to Population Substructure: To determine if population 

substructure was inflating the h2
SNP estimates, we split the genome into two groups of 

approximately equivalent numbers of SNPs to see if individuals shared more of their 

genome than what would be expected by chance [605].  The first group contained SNPs 

from autosomes 1 through 12, with a total of 723,378 SNPs in the WP and 588,093 SNPs 

in the Morgan.  The second group contained SNPs from autosomes 13 through 31, with a 

total of 704,959 SNPs in the WP and 570,738 SNPs in the Morgan.  For each trait, separate 
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h2
SNP estimates were calculated for each group using GCTA with a wGRM comprised only 

of the SNPs within their respective groups.  The difference between the summed estimates 

of both groups and the total h2
SNP estimate from inclusion of all SNPs was calculated to 

determine if population substructure was causing inflation of the h2
SNP estimate.  Based on 

the high LD in horses, we set a cutoff of a difference greater than 0.05 for indication of 

population substructure and inflation of the h2
SNP estimates. 

Results: 

Heritability Estimates Using Different Methods: In the main text, we reported h2
SNP 

estimates calculated in GCTA with the inclusion of the wGRM.  However, we also 

compared three methods: GCTA with standard GRM, GCTA with the wGRM, and LDAK 

with the wGRM.  The results of all three methods are shown in Supplementary Table A3.  

In general, the three methods produced very similar estimates of h2
SNP.  The exception was 

ACTH in the Morgans; however, this estimate was still with the range of the SE.  

Assessment of Bias Due to Population Substructure: We tested for the presence of 

population substructure by comparing the difference between the summed h2
SNP estimates 

obtained from splitting the genome into two sections and the original estimate from the full 

data set. Higher differences between the two calculations indicate that individuals within 

the population are more genetically similar across chromosomes than what is expected by 

chance.  Across both breeds, the differences between the summed values for the split SNP 

dataset and the h2
SNP estimates using the full SNP data set ranged from 0.001-0.095 

(Supplemental Table A5).  Based on our cutoff, both adiponectin (summed h2
SNP of 0.818 

with a difference of 0.095) and NEFA (summed h2
SNP of 0.831 with a difference of 0.085) 

in the Morgans had a difference that suggested potential inflation of the h2
SNP estimates.  

The remaining 16 models (of 18 models, i.e., 9 traits in each breed) had differences less 

than 0.05, indicating that inflation due to population substructure was unlikely. 
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Supplemental Table A1: Table of Akaike information criterion (AIC) values obtained after fitting the covariates to a linear regression 

model.  AIC values were obtained for each of the nine biochemical traits and a combination of four potential confounding covariates in each breed. 

Values in red were the minimal AIC values for the respective column.  Covariates form the models with the minimum AIC values were used in 

subsequent SNP-based heritability estimates.  Abbreviations: GLU-OST: glucose post oral sugar test, INS-OST: insulin post oral sugar test, NEFA: 

non-esterified fatty acids, TG: triglycerides, ADIPON: adiponectin. 

  

 Glucose GLU-OST Insulin INS-OST NEFA TG Leptin ADIPON ACTH 

Welsh ponies 

No Covariates 2022.83 2174.85 194.06 301.86 -191.55 326.78 675.08 2567.95 -20.13 

Age 2024.69 2176.48 188.45 290.59 -193.72 327.44 677.06 2565.70 -51.97 

Sex 2024.59 2176.34 187.21 296.74 -189.99 313.62 669.05 2554.63 -18.82 

Season 1976.98 2161.71 196.85 287.41 -237.78 287.45 674.54 2561.84 -51.36 

Age and Sex 2026.36 2177.76 184.11 288.38 -191.80 311.60 670.88 2554.74 -50.04 

Age and Season 1978.95 2163.51 191.10 276.82 -240.37 287.68 676.54 2559.60 -94.16 

Sex and Season 1978.36 2162.90 190.38 282.51 -236.28 276.59 667.51 2550.46 -49.41 

Age, Sex, Season 1980.36 2164.50 187.15 274.73 -238.45 274.06 669.17 2550.48 -93.46 

Morgan horses 

No Covariates 2078.92 2284.92 235.73 326.86 -145.08 -24.92 681.06 585.13 -65.13 

Age 2078.37 2286.83 230.37 323.71 -143.15 -23.57 682.66 584.61 -100.03 

Sex 2078.49 2282.70 237.65 328.58 -145.77 -27.39 673.77 586.62 -64.50 

Season 2075.88 2260.96 201.09 296.53 -140.99 -31.93 649.68 582.34 -128.28 

Age and Sex 2078.17 2284.65 232.19 325.25 -143.81 -26.22 675.54 586.21 -100.54 

Age and Season 2076.33 2262.96 196.17 292.75 -139.10 -31.33 651.27 581.71 -172.37 

Sex and Season 2075.29 2260.69 202.31 298.24 -141.37 -38.29 634.74 582.75 -126.29 

Age, Sex, Season 2075.95 2262.67 197.62 294.61 -139.43 -38.18 636.60 582.33 -170.68 
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Supplemental Table A2: Unadjusted and Holm-Bonferroni adjusted p-values for heritability (h2
SNP) estimates in Welsh ponies and Morgan 

horses.  The unadjusted p-values from the h2
SNP estimates in the Welsh ponies and Morgan horses were ranked from lowest to highest.  Holm-

Bonferroni adjusted p-values were calculated as follows: P-value*(9-rank+1).    Adjusted p-values that were significant (those in bold) were less 

than the 0.05.  Adjusted p-values which are shown at two significant figures are those where the threshold for <0.05 cutoff required clarification 

from rounding and were represented in the manuscript as <0.05.  

 

  

 Welsh Ponies Morgan Horses 

Rank Unadjusted P-Values Adjusted P-Values Unadjusted P-values Adjusted P-Values 

1 1.36e-13 <0.001 1.66e-07 <0.001 

2 3.14e-07 <0.001 1.94e-07 <0.001 

3 1.75e-05 <0.001 9.50e-05 <0.001 

4 1.60e-04 <0.001 1.16e-04 <0.001 

5 3.95e-04 <0.001 7.77e-04 <0.001 

6 4.63e-04 <0.001 1.16e-02 0.046 

7 7.75e-03 0.02 1.78e-02 0.053 

8 2.70e-02 0.054 2.61e-02 0.053 

9 3.45e-02 0.054 5.68e-02 0.057 
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Supplemental Table A3: Summary table of heritability (h2
SNP) estimates using three methods.  Table presents h2

SNP, standard error (SE) and p-

values for nine biochemical traits in both Morgan horses and Welsh ponies using GCTA with the standard GRM, GCTA with the linkage 

disequilibrium corrected GRM (wGRM) and LDAK with the wGRM.  Covariates included in the model were based on AIC values.  P-values are 

adjusted by a Holm-Bonferroni correction, those in bold were <0.05, and those in red had an unadjusted p-value of >0.05.  Abbreviations: GLU-

OST: glucose post oral sugar test, INS-OST: insulin post oral sugar test, NEFA: non-esterified fatty acids, TG: triglycerides, ADIPON: adiponectin  

 Glucose GLU-OST Insulin INS-OST NEFA TG Leptin ADIPON ACTH 

Welsh ponies 

GCTA GRM 

h2
SNP estimate 

SE 

P-Value 

 

0.402 

0.129 

<0.001 

 

0.225 

0.136 

<0.05 

 

0.778 

0.106 

<0.001 

 

0.447 

0.137 

<0.001 

 

0.434 

0.136 

<0.001 

 

0.303 

0.139 

0.02 

 

0.554 

0.132 

<0.001 

 

0.465 

0.138 

<0.001 

 

0.300 

0.149 

<0.05 

GCTA wGRM 

h2
SNP estimate 

SE 

P-Value 

 

0.408 

0.135 

<0.001 

 

0.226 

0.142 

0.05 

 

0.808 

0.108 

<0.001 

 

0.440 

0.148 

<0.001 

 

0.434 

0.136 

<0.001 

 

0.313 

0.146 

0.02 

 

0.554 

0.132 

<0.001 

 

0.488 

0.143 

<0.001 

 

0.305 

0.154 

0.05 

LDAK wGRM 

h2
SNP estimate 

SE 

P-Value 

 

0.408 

0.135 

<0.001 

 

0.226 

0.142 

0.05 

 

0.808 

0.108 

<0.001 

 

0.428 

0.147 

<0.001 

 

0.467 

0.141 

<0.001 

 

0.316 

0.145 

0.02 

 

0.573 

0.138 

<0.001 

 

0.488 

0.143 

<0.001 

 

0.303 

0.154 

0.05 

Morgan horses 

GCTA GRM 

h2
SNP estimate 

SE 

P-Value 

 

0.174 

0.153 

0.2 

 

0.510 

0.155 

<0.001 

 

0.547 

0.170 

<0.001 

 

0.331 

0.164 

0.04 

 

0.684 

0.164 

<0.001 

 

0.242 

0.157 

0.08 

 

0.442 

0.155 

<0.001 

 

0.841 

0.156 

<0.001 

 

0.316 

0.193 

0.2 

GCTA wGRM 

h2
SNP estimate 

SE 

P-Value 

 

0.208 

0.172 

0.05 

 

0.565 

0.175 

<0.001 

 

0.592 

0.195 

<0.001 

 

0.359 

0.185 

<0.05 

 

0.746 

0.188 

<0.001 

 

0.273 

0.176 

0.05 

 

0.486 

0.177 

<0.001 

 

0.913 

0.181 

<0.001 

 

0.408 

0.215 

0.06 

LDAK wGRM 

h2
SNP estimate 

SE 

P-Value 

 

0.208 

0.172 

0.05 

 

0.565 

0.175 

<0.001 

 

0.592 

0.195 

<0.001 

 

0.359 

0.185 

<0.05 

 

0.746 

0.188 

<0.001 

 

0.273 

0.176 

0.05 

 

0.486 

0.177 

<0.001 

 

0.913 

0.181 

<0.001 

 

0.408 

0.215 

0.06 
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Supplemental Table A4: Comparison of heritability (h2
SNP ) estimates of nine biochemical traits in the Welsh ponies and Morgans with the 

inclusion of different covariates.  Heritability estimates were performed in GCTA with the linkage disequilibrium corrected GRM (wGRM).  P-

values are adjusted by a Holm-Bonferroni correction bolded values were <0.05 after correction. P-values in red are those which the unadjusted p-

value was >0.05.  Abbreviations: GLU-OST: glucose post oral sugar test, INS-OST: insulin post oral sugar test, NEFA: non-esterified fatty acids, 

TG: triglycerides, ADIPON: adiponectin, SE: standard error.  

 Glucose GLU-OST Insulin INS-OST NEFA TG Leptin ADIPON ACTH 

Welsh ponies 

Age and Sex 

h2
SNP estimate 

SE 

P-Value 

 

0.537 

0.127 

<0.001 

 

0.300 

0.137 

0.004 

 

0.808 

0.108 

<0.001 

 

0.463 

0.143 

<0.001 

 

0.560 

0.116 

<0.001 

 

0.445 

0.124 

<0.001 

 

0.477 

0.139 

<0.001 

 

0.454 

0.135 

<0.001 

 

0.510 

0.129 

<0.001 

Age, Sex, Farm 

h2
SNP estimate 

SE 

P-Value 

 

0.229 

0.161 

0.4 

 

0.00 

0.157 

>0.9 

 

0.367 

0.175 

0.1 

 

0.125 

0.180 

>0.9 

 

0.160 

0.162 

0.8 

 

0.667 

0.154 

>0.9 

 

0.363 

0.162 

0.05 

 

0.099 

0.178 

>0.9 

 

0.274 

0.178 

0.4 

Age, Sex, Season 

h2
SNP estimate 

SE 

P-Value 

 

0.427 

0.136 

0.001 

 

0.241 

0.145 

0.06 

 

0.827 

0.106 

<0.001 

 

0.440 

0.148 

0.002 

 

0.466 

0.142 

<0.001 

 

0.313 

0.146 

0.02 

 

0.612 

0.136 

<0.001 

 

0.488 

0.143 

<0.001 

 

0.298 

0.154 

0.06 

Morgan horses 

Age and Sex 

h2
SNP estimate 

SE 

P-Value 

 

0.285 

0.163 

0.01 

 

0.634 

0.179 

<0.001 

 

0.776 

0.180 

<0.001 

 

0.463 

0.186 

0.006 

 

0.743 

0.189 

<0.001 

 

0.391 

0.180 

0.009 

 

0.671 

0.173 

<0.001 

 

0.920 

0.181 

<0.001 

 

0.575 

0.213 

0.009 

Age, Sex, Farm 

h2
SNP estimate 

SE 

P-Value 

 

0.00 

0.253 

>0.9 

 

0.198 

0.227 

0.9 

 

0.574 

0.225 

0.03 

 

0.432 

0.212 

0.05 

 

0.00 

0.248 

>0.9 

 

0.212 

0.242 

0.9 

 

0.199 

0.228 

0.9 

 

0.992 

0.198 

0.001 

 

0.666 

0.225 

0.03 

Age, Sex, Season 

h2
SNP estimate 

SE 

P-Value 

 

0.219 

0.173 

0.1 

 

0.568 

0.175 

<0.001 

 

0.589 

0.195 

0.004 

 

0.459 

0.185 

<0.05 

 

0.750 

0.188 

<0.001 

 

0.293 

0.177 

0.05 

 

0.485 

0.173 

<0.001 

 

0.916 

0.182 

<0.001 

 

0.413 

0.216 

0.1 
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Supplemental Table A5: Assessment of bias due to population substructure. Heritability (h2
SNP) estimates when splitting the genome into two 

sections, with section 1 including chromosomes 1-11 and section 2 including chromosomes 13-31.  Covariates included in the analysis were based 

on the model analyses of Table 1 and Supplementary Table 1.  The Table provides the individual section h2
SNP estimates, the sum of h2

SNP estimates 

for both sections, and the difference between the summed value and that original h2
SNP estimate that used the full data set.  Heritability was calculated 

using GCTA and the linkage disequilibrium corrected GRM (wGRM). .  Abbreviations: GLU: glucose, GLU-OST: glucose post oral sugar test, INS: 

insulin, INS-OST: insulin post oral sugar test, NEFA: non-esterified fatty acids, TG: triglycerides, ADIPON: adiponectin, SE: standard error 
 

 

 GLU GLU-OST INS INS-OST NEFA TG Leptin ADIPON ACTH 

Welsh ponies 

Sum h2
SNP estimates 

Section1 h2
SNP 

Section 2 h2
SNP 

 

Diff h2
SNP estimates 

 

0.417 

0.264 

0.153 

 

0.009 

 

0.229 

0.165 

0.064 

 

0.003 

 

0.817 

0.282 

0.536 

 

0.009 

 

0.456 

0.00 

0.456 

 

0.016 

 

0.478 

0.108 

0.370 

 

0.044 

 

0.323 

0.106 

0.217 

 

0.010 

 

0.578 

0.177 

0.402 

 

0.024 

 

0.510 

0.00 

0.510 

 

0.022 

 

0.298 

0.278 

0.020 

 

0.007 

Morgan horses 

Sum h2
SNP estimates 

Section1 h2
SNP 

Section 2 h2
SNP 

 

Diff h2
SNP estimates 

 

0.215 

0.00 

0.215 

 

0.007 

 

0.611 

0.00 

0.611 

 

0.046 

 

0.603 

0.292 

0.313 

 

0.011 

 

0.373 

0.110 

0.263 

 

0.014 

 

0.831 

0.032 

0.799 

 

0.085 

 

0.274 

0.165 

0.109 

 

0.001 

 

0.502 

0.229 

0.273 

 

0.016 

 

0.818 

0.00 

0.818 

 

0.095 

 

0.400 

0.138 

0.262 

 

0.008 
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Response 

Variable 

Human h2 

Estimates 

Human h2
SNP Estimates Horse h2

SNP 

Estimates 

Glucose 0.14-0.81 0.33 0.21-0.41 

Insulin 0.43-0.51 0.23 0.59-0.81 

Insulin Sensitivity 

Glucose-OST 0.17-0.24 - 0.23-0.57 

Insulin-OST - - 0.36-0.44 

HOMA-IR 0.38-0.48 - - 

Dyslipidemia 

NEFA - - 0.43-0.75 

Triglycerides 0.17-0.60 0.47 0.27-31 

Total cholesterol 0.42-0.62 - - 

HDL 0.42-0.63 0.48 - 

LDL 0.58 - - 

Measures Obesity 

BMI 0.39-0.68 0.34 - 

WC 0.27-0.46 - - 

Adipokines 

Leptin 0.28-0.55 - 0.49-0.55 

Adiponectin 0.51 - 0.49-0.91 

Other 

MetS 0.11-0.38 - - 

MetS Score 0.15-0.34 0.24-0.25 - 

Systolic BP 0.16-0.28 0.30 - 

Diastolic BP 0.12-0.38 - - 

 

Supplemental Table A6: Comparison of narrow-sense heritability estimates for metabolic 

syndrome in humans and horses using a pedigree based (h2) or SNP based (h2
SNP) analysis.  

Abbreviations: OST (oral sugar test), HOMA-IR (homeostatic models assessment of insulin 

resistance), NEFA (non-esterified fatty acids), HDL (high density lipoproteins), LDL (low-density 

lipoproteins), BMI (body mass index), WC (waste circumference), MetS (metabolic syndrome as 

a binary trait and typically defined as the presence of three or more components of MetS), BP 

(blood pressure). 
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Appendix B: Chapter 3 Supplemental Materials  

Welsh Pony Section Sire Dam 

6229 B B B 

6230 B B B 

6231 B B B 

6234 B B B 

6235 B B B 

6236 B B B 

6280 B B B 

6281 B B B 

6333 B B A 

6334 H A H (0.5B_0.5Arab) 

6362 A A A 

6427 B B Inactive 

6509 NA - - 

6510 NA - - 

6548 B B A 

6549 B B A 

6564 A A A 

6566 A A A 

6567 NA - - 

6568 A A A 

6569 A A A 

6572 A A A 

6573 NA - - 

6574 NA - - 

6575 A A A 

6575 A A A 

6576 A A A 

6578 A A A 

6579 B B B 

6580 B B B 

6581 B B B 

6582 B B B 

6583 A A A 

6584 P Arab H (0.5B_0.25A_0.25TB) 

6585 NA - - 

6586 P Arab H (0.5B_0.25A_0.25TB) 

6587 B B B 

6603 NA - - 

6604 A A A 
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Welsh Pony Section Sire Dam 

6605 A A A 

6606 D D D 

6607 A A A 

6608 A A A 

6611 A A A 

6612 B B B 

6635 B B B 

6636 B B B 

6637 D D D 

6638 B B B 

6639 B B B 

6640 B B B 

6641 B B B 

6642 B B B 

6643 B B B 

6644 B B B 

6660 B Inactive Inactive 

6661 B B B 

6678 NA - - 

6690 B A B 

6691 B B B 

6692 B B B 

6693 B B B 

6694 B B B 

6695 B B B 

6696 B B B 

6697 B B B 

6698 B B B 

6699 NA - - 

6700 B B B 

6701 B B B 

6702 B B B 

6703 B B B 

6704 B B B 

6705 B B B 

6706 B B B 

6707 B B B 

6708 B B B 

6709 B B B 

6710 B B B 
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Welsh Pony Section Sire Dam 

6711 B B B 

6712 B B B 

6713 B B B 

6714 B B B 

6715 A A A 

6716 B B B 

6718 A A A 

6719 B B B 

6720 B B B 

6741 H A Unknown 

6742 H A Unknown 

7661 B B B 

7662 B B B 

7663 A A A 

7664 C C Inactive 

7665 B B B 

7666 D D D 

7667 D D D 

7668 B B B 

7669 B B B 

7670 B B B 

7671 B B B 

7672 A A A 

7673 A A A 

7674 A A A 

7675 A A A 

7676 D D D 

7677 B B B 

7678 B B B 

7679 B B B 

7680 B B B 

7681 B Inactive Inactive 

7682 B B B 

7683 B Inactive Inactive 

7684 B B B 

7685 B B B 

7686 H B H (0.5A_0.5WB) 

7688 B B B 

7689 A A A 

7690 A A A 



 

302 
 

Welsh Pony Section Sire Dam 

7691 A A A 

7692 A A A 

7693 A A A 

7694 A A A 

7695 A A A 

7696 A A A 

7697 A A A 

7698 A A A 

7699 A A A 

7700 A A A 

7701 D D D 

7702 A A A 

7703 C A C 

7704 A A A 

7705 A A A 

7706 A A A 

7707 A A A 

7708 A A A 

7709 A A A 

7710 B B B 

7711 A A A 

7712 A A A 

7713 A A A 

7714 B B B 

7716 B B B 

7719 B B Inactive 

7720 B B B 

7721 B B B 

7722 A A A 

7723 H H (0.5B_0.5TB) B 

7724 B B B 

7725 H B Unknown 

7726 P H** H** 

7729 H B H (0.5A_0.5TB) 

7730 P H* H** 

7735 P H* H (0.5B_0.5Unknown) 

7737 P H* H (0.5B_0.25A_0.25TB) 

7739 P H* H (0.5B_0.5Unknown) 

7740 H H* B 

7741 A A A 
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Welsh Pony Section Sire Dam 

7743 C A D 

7744 H B H (0.5A_0.5QH) 

7745 D D D 

7746 D D D 

7747 D D D 

7748 B B B 

7749 D D D 

7750 B B B 

7751 B B B 

7752 B B B 

7753 D D C 

7754 D D D 

7755 D D D 

7756 D Inactive Inactive 

7757 B B B 

7758 B B B 

7759 B B B 

7760 B B B 

7761 B B B 

7762 B B B 

7763 A A A 

7765 A A A 

7766 A A A 

7767 B B B 

7768 B B B 

7769 B B B 

7770 A A A 

7771 A A A 

7772 B B B 

7773 B B B 

7774 D D D 

7775 B B B 

7776 B B A 

7777 B B B 

7778 B B B 

7779 A A A 

7780 B B B 

7782 B A B 

7783 B A B 

7784 H A H (0.5B_0.5BRP) 
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Welsh Pony Section Sire Dam 

7785 A A A 

7786 A A A 

7787 A A A 

7788 A A A 

7789 A A A 

7790 A A A 

7791 A A A 

7792 A A A 

7793 A A A 

7794 A A A 

7795 B B B 

7796 A A A 

7797 A A A 

7798 A A A 

7799 A A A 

7801 H A Inactive 

7802 A A A 

7803 A A A 

7804 A A A 

7805 A A A 

7806 A A A 

7807 B B B 

7808 B B B 

7809 B B B 

7810 B B B 

7811 B B B 

7812 B B B 

7813 B B B 

7814 B Inactive Inactive 

7815 B B B 

7816 B B B 

7817 B B B 

7818 B B B 

7819 B B B 

7820 B B B 

7821 B B B 

7822 A A A 

7823 B B B 

7824 B B B 

7829 B B B 
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Welsh Pony Section Sire Dam 

7831 B B B 

7832 B B B 

7833 B B B 

7834 B B B 

7835 B B B 

7836 B B B 

7837 B B B 

7838 B B B 

7839 B B B 

7840 B B B 

7841 B B B 

7842 B B B 

7843 B B B 

7844 B B B 

7845 B B B 

7846 B B B 

7847 B B B 

7848 B B B 

7849 B B B 

7850 B B B 

7851 B B B 

7852 B B B 

7853 B B B 

7854 B B B 

7855 B B B 

 

Supplemental Table B1: Pedigree information for the 264 Welsh ponies sequenced on one of 

three SNP chip arrays.  The column labeled at “Section” represents the section for the Welsh 

ponies in this study, followed by the Sire’s section and the Dam’s section.  Inactive indicates a sire 

or dam which were no longer active in the database and registered section was not available.  NA 

represents a study Welsh pony which was unregistered or in which the pedigree information was 

unavailable.  Unknown indicates a pedigree for a sire or dam which could no longer be traced.  For 

the dam or sire listed as a section H, additional breed information was provided if available.     

Abbreviations: QH: Quarter horse, BRP: British Riding Pony, Arab: Arabian, WB: Warmblood, 

TB: Thoroughbred 

* 0.6875B_0.125TB_0.125Arab_0.0625Unknown 

**0.5B_0.25A_0.25Unknown 
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10M Iterations  

Seeds 1-10 

10M Iterations 

 Seeds 11-20 

20M Iterations 

 Seeds 1-10 

30M Iterations 

 Seeds 1-10 

CHR SNPs_Sugg SNPs_Sign SNPs_Sugg SNPs_Sign SNPs_Sugg SNPs_Sign SNPs_Sugg SNPs_Sign 

1 2 0 NA NA NA NA NA NA 

1 1 0 NA NA 1 0 4 0 

2 38 27 5 1 32 2 5 1 

3 NA NA NA NA 1 NA   

4 54 4 25 2 3 0 5 2 

6 68 4 8 1 11 2 11 2 

7 14 0 10 0 5 0 8 1 

8 6 0 NA NA NA NA NA NA 

9 NA NA 2 0 NA NA NA NA 

14 NA NA NA NA 1 0 NA NA 

15 6 1 5 1 5 2 12 1 

16 NA NA NA NA 2 0 NA NA 

18 NA NA 1 0 NA NA NA NA 

19 NA NA NA NA NA NA 3 0 

20 NA NA NA NA NA NA 1 0 

22 NA NA NA NA 4 0 NA NA 

23 NA NA 11 0 NA NA NA NA 

24 NA NA 4 1 16 0 NA NA 
 

Supplemental Table B2: Repeatability across results for the Bayesian sparse linear mixed model (BSLMM) using the max gamma values 

from 10 million (M) iterations with seeds 1-10, 10M iterations with seeds 11-20, 20M iterations with seeds 1-10, and 30M iterations with 

seeds 1-10 for adiponectin concentrations in the Morgan horses.  Regions which are highlighted in yellow indicate those which would have been 

identified as a region of interest (contained a minimum of five SNPs exceeding the suggestive threshold, with at least one SNP exceeding the 

threshold for genome wide significance).  Abbreviations: SNPs_Sugg (total number of SNPs which exceeded the suggested threshold for genome-

wide significance), SNPs_Sign (total number of SNPs which exceed the threshold for genome-wide significance) 
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Appendix C: Chapter 4 Supplemental Materials 

Supplemental Table C1: Whole Genome Sequencing for Welsh ponies 

EMS_ID Total Reads 
Average 

Read Length 
Average Sequencing 

Depth (nuclear) 

Hits Unique Reads 

(nuclear) 

EMS_28 94749945 128.9 156238380 7.9 

EMS_363 79493183 129.2 125604533 6.7 

EMS_369 67904285 102.2 109771004 4.5 

EMS_373 66358100 102.3 92834439 3.7 

EMS_376 131590489 104.6 203593797 8.5 

EMS_457 76025659 129.6 114078968 5.8 

EMS_657 91515978 129.1 150994191 7.7 

EMS_676 80877817 129.1 131351193 6.7 

EMS_697 86085735 129.0 142069679 7.2 

EMS_699 86881548 129.0 143257878 7.3 

EMS_737 84172015 129.3 134460983 6.8 

EMS_738 88063255 129.1 144871377 7.4 

EMS_739 86795272 129.0 144293851 7.3 

EMS_765 85901668 129.0 141878173 7.2 

EMS_790 77984605 129.2 126556755 6.4 

EMS_794 82227090 129.3 131739979 6.7 

EMS_812 79792809 129.4 125624597 6.4 

EMS_820 84065313 129.1 138711729 7.0 

 

Supplemental Table C1: Whole genome sequencing summary data for Welsh ponies.   
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Supplemental Table C2: Whole Genome Sequencing for Morgan horses 

EMS_ID Total Reads 
Average 

Read Length 
Average Sequencing 

Depth (nuclear) 

Hits Unique Reads 

(nuclear) 

EMS_9 81065821 97.5 117315572 4.6 

EMS_49 148929760 100.3 236828180 9.4 

EMS_50 87056999 97.9 127080299 5.0 

EMS_91 81214822 99.6 112563159 4.5 

EMS_93 104266887 103.5 143919132 6.0 

EMS_134 97948336 100.1 139507318 5.6 

EMS_246 106345544 101.0 142200305 5.8 

EMS_259 104530622 100.2 153194262 6.2 

EMS_265 104915827 100.6 149865399 6.0 

EMS_279 195023299 105.7 274671254 11.7 

EMS_333 191762166 105.0 292455094 12.2 

EMS_336 208434711 99.7 302521708 12.1 

EMS_355 169999656 101.0 269295263 10.8 

EMS_395 85216006 96.6 127846307 4.9 

EMS_479 84377490 97.3 120207175 4.7 

EMS_595 213209544 104.0 330204194 13.7 

EMS_605 86507364 97.9 128299775 5.0 

EMS_611 105409660 101.3 154462677 6.3 

 

Supplemental Table C2: Whole genome sequencing summary data for Morgan horses.   
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Appendix D: Chapter 5 Supplemental Methods: 

Description for GWAS Custom Code: A Bayesian Sparse Linear Mixed Model (BSLMM) 

[430], available in the software program Genome-wide Efficient Mixed Model Association 

(GEMMA) [379], was used to rank SNPs based on the number of times in 10 million 

iterations that a SNP was estimated to have a large effect.  This step was repeated 10 times 

and the maximum beta-value for each SNP was used for final ranking.  Chromosomes were 

then divided into 500KB segments, and the top and two adjacent SNPs were kept within 

each segment.  These SNPs were then used to build the select SNP GRM based on a 

stepwise feature selection, where each SNP was kept only if it is determined that it 

significantly improves the null model, which included both random and fixed effects.  If a 

SNP was selected, inclusion of that SNP becomes the new null model for testing of the 

next SNP.  Once the select SNP GRM was built, a linear mixed model, using the software 

program FaST-LMM [431], was performed with the select SNP GRM in place of the full 

GRM.  FaST-LMM’s algorithm tests each SNP individually for an effect on the phenotype 

using a maximum likelihood estimation [431].   SNPs within 1MB of the tested SNP were 

excluded from the select GRM to avoid double fitting of the model.   

Description of LDAK software analyses: A full description of LDAK and the analyses 

available is available in Speed, et. al. [411,413].  Briefly, LDAK's algorithm uses restricted 

maximum likelihood to estimate the variance explained by all SNPs for a given phenotype.  

Unlike other mixed linear models available to estimate h2, LDAK incorporates an LD 

weighted genetic relationship matrix (LD-GRM) and a scaling factor to account for the 

effect of minor allele frequency on h2.  The main output file includes the h2 estimate, 

standard deviation (SD), log likelihood of the estimate, and the p-value for the log 

likelihood.  For genomic partitioning, the LD-GRM is comprised only of SNPs from the 

specified region; h2 is then estimated from this subset of SNPs.  For our analysis, we 

utilized our ROI identified on GWAS and di statistic, and included age, sex and section as 

covariates.  The top predictors approach fit the top SNPs from the GWAS as covariates in 

the analysis using LDAK's --top-preds function.  The output from this analysis includes the 

genetic variance explained by the top predictors, the genetic variance explained by the 
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remainder of the SNPs, and then the sum of these values as the overall estimate of 

heritability.  A SD is not provided for the top predictors. 

Description of Random Sub-setting of Data: We also performed random sub-setting of the 

data by removing 10% of the population using the software package R’s random number 

generator without replacement.[412]  LD-GRMs were constructed from the reduced cohort 

and heritability estimates were calculated for total heritability, genomic partitioning of our 

ROI, and with the top ECA6 SNPs from the GWAS as covariates.  This process was 

repeated 100 times and the average of all heritability estimates and SD were calculated and 

compared with the original estimates. 

Description of TaqMan SNP Genotyping assay: A TaqMan SNP genotyping assay was 

utilized to efficiently genotype individuals for the HMGA2 c.83G>A variant.  Forward 

(CTTCAGCCCAGGGACAAC) and reverse (AAGCAGCAGCAAGTCAGT) PCR 

primers were designed to produce an 80 base pair amplicon that included the HMGA 

c.83G>A variant.  Locked nucleic acid (LNA) probes, with a 5’ fluorescent reporter dye 

and 3’ quencher, were designed for allelic discrimination between the G allele 

(5HEX/AG+A+GA+G+G+ACG/3IABkFQ) and the A allele (56-

FAM/AG+A+GA+G+A+A+CGC/3IABkFQ) as shown below. 

GGCGGACTCGGGGCGGCTGAGGCCAGCGGCTGCAGCGGCGGTAGCGGCGGC

GGCGGCGGGAGGCAGGATGAGCGCACGCGGTGAGGGCGCCGGGCAGCCGTC

CACTTCAGCCCAGGGACAACCTGCCGCCCCGGCGCCTCAGAAGAGAGG/AA

CGCGGCCGACCCAGGAAGCAGCAGCAAGTCAGTACGCGGGCGGGGTGGGG

GCACCAGCCCGCCTCCGCGCCCTCCGCGAAGGCCCGGCCACGCGCGGCCCCG

AGCGCGGGAGCCGGGTCGCCGCGCGCCGCCCGCCGGCCGGAGGCGGG 

Supplemental Methods Figure 1: HMGA2 sequence approximately 150 bp 5' and 3' of 

the c.83G>A variant.  The forward primer is indicated by green text and the reverse primer 

is indicated in red text.  Orange text indicates sequence targeted by the florescent-tagged 

LNA probes. 

Reaction components and volumes for each reaction were as follows: 5µL of 5ng/uL DNA 

template, 1µL forward primer, 1 µL reverse primer, 0.1 µL HEX probe, 0.1µL FAM probe, 
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5µL PrimeTime® Gene Expression Master Mix, 4µL betaine and 3µL molecular biology 

grade water for a final volume of 19.2µL.  Final cycling protocol was as follows: Cycle 1 

(1 repeat): 950C for 3 minutes.  Cycle 2 (40 repeats): step 1: 950C for 5 seconds and step 

2: 610C for 30 seconds. 
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Supplemental Figure D1. Local di values for the equine chromosome 6 (ECA6) segment 

analyzed further in this study. Each di value is plotted on the y axis and the ECA6 position in bp 

is shown on the x axis.  



 

313 
 

 

Supplemental Figure D2: Least-square mean estimates and 95% confidence intervals for height or EMS phenotypes and section in a 

population of 283 registered Welsh ponies adjusting for both age and sex.  Height (A), insulin (B), INS-OST (C), triglycerides (D), and NEFA 

(E).  Abbreviations: INS-OST = insulin after an oral sugar test, NEFA = non-esterified fatty acids. 
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Section Pedigree Height Requirements 

A A X A Up to 12.2 hands (50 in) 

B AXB or BXB Up to 14.2 hands (58 in) 

C At least one C or D parent Up to 13.2 hands (54 in) 

D At least one C or D parent Over 13.2 hands (54 in) 

H 
At least one registered 

purebred Welsh parent 
No height limit 

P 
At least one registered half 

Welsh parent 
No height limit 

 

Supplemental Table D1: Breed requirements for Welsh pony sections based on pedigree and 

height requirements.  
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Breed 
Number of 

Individuals 

Yakutian 9 

Welsh Pony 44 

Warmblood 18 

Thoroughbred 25 

Standardbred 40 

Przewalski 13 

Morgan 61 

Maremmano 22 

Lusitano 21 

Icelandic 18 

Hanoverian 8 

French Trotter 21 

Franchese Montagne 30 

Belgian 22 

Arabian 36 

Quarter Horse 75 

Total 463 

 

Supplemental Table D2: Reference population used for the calculation of di. 
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Exon EquCab2 EquCab3 HMGA2 Horse Exon Sequence Forward Primer Reverse Primer BP 

1 N/A 
80374152 - 

80374262 

ATGAGCGCACGCGGTGAGG

GCGCCGGGCAGCCGTCCACT

TCAGCCCAGGGACAACCTGC

CGCCCCGGCGCCTCAGAAGA

GAGGACGCGGCCGACCCAG

GAAGCAGCAGCAA 

CTCGTCCTCCAGCCCTATC 

 

CGTGCACAATAGCGAAAGT

C 

 

491 

2 

81392745 

- 

81392831 

80376870 - 

80376956 

GAGCCAACCGGTGAGCCCTC

TCCTAAGAGACCCAGGGGAA

GACCCAAAGGCAGCAAAAA

CAAGAGTCCCTCCAAAGCAG

CTCAAAAG 

GTTCCAACCCTTCTGTCGA

G 
ACTGGGTTTTGCAGTAGTCA 623 

3 

81402791 

- 

81402841 

80386916 - 

80386966 

AAAGCAGAAGCCACTGGAG

AAAAACGGCCAAGAGGCAG

ACCTAGGAAATGG 

AAACGGGGCAGAGGAAT

CTA 

GAGCGTCTCCTGGAAAGAA

C 
458 

4 

81503615 

- 

81503647 

80487792 - 

80487824 

CCACAACAAGTCGTTCAGAA

GAAGCCTGCTCAG 

GACCATGTATAAACACCC

TTTAACC 

GGTTTTTAATCACACAACCA

CAG 
383 

5 

81515174 

- 

81515221 

80499351 - 

80499398 

GACAATGTTGCCTTGCCTGG

GAAAGACCATCTAGGCAATC

TTATGTGTCTACTACTCTTTA

TAAATGCTGCTTGA 

GCAGAACCTGCTGGAGTC

AC 

TGTGGGCAAGTGAATAATT

G 
398 

 

Supplemental Table D3: PCR primers for Sanger sequencing and annotation for HMGA2 exon sequencing.  Based on poor annotation of the 

HMGA2 gene in EquCab2 reference genome, we did a full reconstruction of the gene.  Notably, Ensembl has this gene positioned for the horse at 

equine chromosome 6 (ECA6): 81,197,462-81,402,841 in contrast to NCBI position at ECA6: 81,389,151-81,518,054.  Neither assembly included 

the ~1.4 kilobases annotated by Frishchknecht et al, including exon 1 and the 5’ UTR (GenBank: LN8490000.1).  Based on our annotation of exons 

2-5, the NCBI position appears more accurate and corresponds with the most predominant peak identified in the haplotype analysis for baseline 

insulin (ECA6: 81,381,221-81,583,507).  Base pair locations for EquCab2 and EquCab3 are also provided.   
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Supplemental Table D4: PCR primers and annotation for IRAK3 exon sequencing. 
Exon EquCab2 EquCab3 IRAK3 Horse Exon Sequence Forward Primer Reverse Primer BP 

1 N/A 
80681675 - 

80681889 

AATTTCCGCGGTTGTGTAACTGCCCCCCG

CGGGCGCGCAGCGGCCTGGCCTCGCCTCC

CTCCTCCACCGGGCCCTGCTCTCCGGCGG

CAGAGCTATGGCCTGGGCGGCAGCGGCG

GGCAGCGGCGGGGCCCGCGGCCAGCTCT

CGGCGCACACGCTCCTCTTCGACCTGCCT

CCCGTGCTGCTGGGCGAGCTCTGCGCCGT

CCTGGACAGCTGCGACGGCGCGCTCGGCT

GGCGCCGCCTCGGTGAGTGCGCCCGGGCG

GGCGGGGGCTCCGCGCACGCTCCGTGCCC

CCCGCGCCGGGGGTCGCTCCACCGGCCCC

AGGACTGGGGCCTCCGCGCACGCTCCGTG

CGCCCCGCGCCGTGCTGGGGCCGCTCCGC

CCGTTCCTGGACCGAGTCTCCGTG 

AATTTCCGCGGTTGTG

TAAC 

CACGGAGACTCGGTCC

AG 
399 

2 
81711764 - 

81711955 

80696010 - 

80696192 

GCGGAGCGACTTTCAAGCAGCTGGCTGGA

TGTTCGTCACATTGAAAAGTATGTAGACC

AAGGGAAAAGTGGAACGAGAGAATTGCT

TTGGTCCTGGGCACAGAAAAACAAGACC

ATCGGTGACCTTTTACAGATCCTCCAGGA

GATGGGGCATCATCGAGCTATCCATTTAA

TTACAAACCATGGTAAACAC                                                

GTTGTCACTGCCTCCG

ATC 

AAGTTTGGCAAGAAG

GAAGGA 
580 

3 
81720696 - 

81720760 

80704941 - 

80705005 

GAGCAGCCTTGAATCCTTCAGAGCAGAGT

CACCTGGGAGATGGATTTCCAAGCATGTT

ACCCAAG 

TTCAATGGAAATGACA

CTGAGC 

TCCTGAATCCCCAACT

AAACA 
372 

4 
81721655 - 

81721709 

80705900 - 

80705954 

GAAACAACCAATGTCACAGTGGATAATGT

TCTTATTCCTAAACATAATGAAAAAG 

AGAGTTGGTATGGAA

GCCTT 

CACCCATCAGAACCAT

GTGT 
437 

5 
81722977 - 

81723128 

80707222 - 

80707373 

GAATATTGTTTAAACCTTCTATCAGCTTTC

AAAACATCACAGAAGGAACCAAAAATTT

CCACAAAGACTTCCTAATTGGAGAAGGG

GAGATTTTTGAGGTGTACAGAGTGGAGAT

CCAAAACCGAACGTATGCCGTTAAATTAT

TTAAACAG 

GCTCTCCTGACTTTCC

ACTG 

TCAGTCATTTCTCCAG

TCACC 
451 

6 
81726877 - 

81726941 

80711122 - 

80711186 

GAGAAAAAAATGCAATGTAAGCAACAAT

GGAAGAGCTTTTTATCTGAGCTTGAAGTT

TTACTACT 

AGCGGTGGTTCTGATT

GTTT 

AGGAATATACCAAGG

CAGATGT 
418 
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Supplemental Table 4 (cont): PCR primers and annotation for IRAK3 exon sequencing 

Exon EquCab2 EquCab3 IRAK3 Horse Exon Sequence Forward Primer Reverse Primer BP 

7 
81731400 - 

81731514 

80715645 - 

80715759 

GTTTCATCATCCAAACATTCTGGAGTTGGCTGCA

TATTTTACAGAGAGTGACAAGTTCTGCCTGGTTT

ATCCGTATATGAGAAATGGGTCCCTTTTTGACAG

ACTGCAGTGTGTA  

AATCTGTGTCACG

TGTCTGG 

GTCCTCTGCTTTCTTG

GGAA 
418 

8 
81732314 - 

81732432 

80716559 - 

80716677 

GGTAACACAGCCCCGCTCTCTTGGCACATTCGAA

TCAGTATCTTAATAGGAGCGTGCAAGGCCATCC

AGTATTTGCACAACATCGAGCCGTGCTCAGTTGT

CTGTGGCAGCATCTCCAG  

AGGTCGTCAGTA

GTAGAGGA 

AGAGTTCTTCACACGA

GCAC 
406 

9 
81745387 - 

81745585 

80729635 - 

80729833 

TGCAAACATACTTTTGGATGATCAGTTTCAACCC

AAACTAACTGATTTTGCCGTGGCGCACTTCCGAC

CCCACCTTGAACACCAGCACTGCACCATCAGCGT

GACCGGCTGCAACAGGAAACACCTGTGGTACAT

GCCCGAGGAGTACGTCAGGCAGGGCAGACTCAC

CGTCAAAACCGACGTCTACAGCTTTGGGATT 

GCTCTAGTTCGTG

GAAAATTGC 

TTTATATTTTATTGCTT

GACTGACTGC 
384 

10 
81745841 - 

81745903 

80730089 - 

80730151 

GTAATCATGGAAGTTCTGACAGGTTGTAAAGTG

GTGTTGGATGAGCCAAAGCACATCCAGCTG 

TGCAGTCAGTCA

AGCAATAAA 

ATTTTCTGTGGTGCCT

GGTT 
661 

11 
81745992 - 

81746156 

80730240 - 

80730404 

AGGGATCTTCTTATGGAATTGATGGAAAAGAGA

GGCCTTGATTCATGTCTCTCATATCTAGATAAGA

AAGTGTGTCCCTGTCCTCGGAATTTCTCTGCCAA

GCTGTTCTCTTTGGCGGGCCAGTGTGCTGCAACA

CGGGCCAAGTTGAGACCATCGATGGATGAA 

TGCAGTCAGTCA

AGCAATAAA 

ATTTTCTGTGGTGCCT

GGTT 
661 
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Exon EquCab2 EquCab3 IRAK3 Horse Exon Sequence Forward Primer Reverse Primer BP 

12 
81748556 - 

81749029 

80732804 - 

80733277 

GTCCTGACCGTTCTTGAGAGCACTCCGGCCAGCT

TGTATTTTGCTGAAGACCCTCCCGCCTCACTGAA

GTCCTTCAGGTGTCCTTCTCCTCTGTTCTTGGACA

ACGTACCAAGTATTCCAGTGGAAAATGATGAAA

ACCAGAATAACTCTTCCCTGCCTCCTGATAAAGC

TTGGAGAAAAGAGAGAATGACTCAGAAAATTCC

CTTTGAATGTAGCCAGTCTGAGGTGACGTTTCTG

GGCTTTGAGAGAAAGACAGGGAGTCAGAGAAAT

GAGGATGCTTGCAACATACCCAGTTCTTCTTGTG

AAAAGAGTTGGTCTCCAAAGGATGCAGCTCCAT

CCCAGGACTCCAGCACCTGTGGTGTGACTATGG

ACCCTTCTGCAGAAGCTCTGGGCCAGTCTTACAG

GAGCAGGCCAATGGAGATTAGCTGGTCTTCTGA

ATTTTCCTGGAATGAATGTGAAGAGTACAAAAA

GGAG 

GCTCAGGGACCA

TGTTTCTC 

ATTTCTAAGCCACCCC

GTTT 
770 

Supplemental Table 4 (cont): PCR primers and annotation for IRAK3 exon sequencing.
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Supplemental Table D5: ANOVA results and Akaike information criterion (AIC) values for 

models of inheritance between the HMGA2 c.83G>A variant and height and the four EMS 

traits significantly correlated with genotype.  ANOVA results and AIC values for models of 

inheritance between the HMGA2 c.83G>A variant and height and the four EMS traits significantly 

correlated with genotype.  Deciding values are highlighted in red. For height, an additive model 

was the best fit model (lowest AIC).  For the EMS traits, p-value for the f-statistic slightly favored 

the recessive model but the AIC could not differentiate between a recessive and additive 

model.   For example, the AIC for the recessive insulin model was 249.2 and 251.2 for the additive 

model, which can be interpreted as the additive model being 0.36 [exp^((249.2-251.2)/2)] times as 

likely as the recessive model, concluding that there is insufficient information to support picking 

either model.  Abbreviations: INS-OST = insulin post oral sugar test, NEFA = non-esterified fatty 

acids. 

Test Height Insulin INS-OST NEFA Triglycerides 

ANOVA 

F-statistic 

Additive 

-3.78 

SE=0.21 

p=<2.2e-16 

F=<2.2e-16 

0.18 

SE=0.031 

p=7.8e-09 

F=1.3e-10 

0.18 

SE=0.038 

p=1.9e-06 

F=1.2e-09 

0.043 

SE=0.014 

p=2.1e-03 

F=7.1e-04 

0.14 

SE=0.038 

p=2.0e-04 

F=9.2e-08 

ANOVA 

F-statistic 

Recessive 

-4.89 

SE=0.317 

p=<2.2e-16 

F=<2.2e-16 

0.28 

SE=0.043 

p=4.9e-10 

F=8.8e-12 

0.28 

SE=0.052 

p=1.3e-07 

F=9.3e-11 

0.074 

SE=0.020 

p=1.7e-04 

F=8.7e-05 

0.20 

SE=0.053 

p=2.0e-04 

F=9.3e-08 

ANOVA 

F-statistic 

Dominant 

-6.21 

SE=0.56 

p=<2.2e-16 

F=<2.2e-16 

0.213 

SE=0.071 

p=2.8e-03 

F=1.9e-05 

0.19 

SE=0.085 

p=0.024 

F=6.3e-05 

0.029 

SE=0.031 

p=0.034 

F=0.042 

0.20 

SE=0.085 

p=0.018 

F=5.1e-05 

AIC 

Additive 
1403.8 251.2 343.4 -229 373 

AIC 

Recessive 
1443 249.2 341.1 -230.3 371.7 

AIC 

Dominant 
1521.3 279.5 364.5 -216.9 390 

AIC 

Co-

Dominant 

1584.9 267.2 352.3 -220.7 389.9 
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Axiom MCEc2M SNP ID 
EquCab2 BP 

Location 

EquCab3 BP 

Location 
Di 

Height 

Assoc. 

Insulin 

Assoc. 

MNEc.2.6.80499826.PC 80499826 81667046    

MNEc.2.6.80501042.PC 80501042 81668273    

MNEc.2.6.80501273.PC 80501273 81668520  X  

MNEc.2.6.80502406.PC 80502406 81669653    

MNEc.2.6.80503522.PC 80503522 81670789    

MNEc.2.6.80503614.PC 80503614 81670881    

MNEc.2.6.80503671.PC 80503671 81670938    

MNEc.2.6.80504332.PC 80504332 81671599    

MNEc.2.6.80504637.PC 80504637 81671904    

MNEc.2.6.80504799.PC 80504799 81672066    

MNEc.2.6.80505411.PC 80505411 81672678    

MNEc.2.6.80509032.PC 80509032 81676297    

MNEc.2.6.80512076.PC 80512076 81679341    

MNEc.2.6.80512513.PC 80512513 81679778    

MNEc.2.6.80513598.PC 80513598 81680863    

MNEc.2.6.80515954.PC 80515954 81683219    

MNEc.2.6.80516105.PC 80516105 81683370    

MNEc.2.6.80516221.PC 80516221 81683486    

MNEc.2.6.80518479.PC 80518479 81685747    

MNEc.2.6.80518512.PC 80518512 81685780    

MNEc.2.6.80518693.PC 80518693 81685961    

MNEc.2.6.80520101.PC 80520101 81687369  X  

MNEc.2.6.80521407.PC 80521407 81688626    

MNEc.2.6.80522351.PC 80522351 81689570  X  

MNEc.2.6.80523773.PC 80523773 81690992    

MNEc.2.6.80527094.PC 80527094 81694313  X  

MNEc.2.6.80527223.PC 80527223 81694442    

MNEc.2.6.80527481.PC 80527481 81694700    

MNEc.2.6.80533180.PC 80533180 81700398    

MNEc.2.6.80533647.PC 80533647 81700865    

MNEc.2.6.80544097.PC 80544097 81711319    

MNEc.2.6.80545253.PC 80545253 81712475    

MNEc.2.6.80545309.PC 80545309 81712531    

MNEc.2.6.80548131.PC 80548131 81715353    

MNEc.2.6.80554792.PC 80554792 81722014    

MNEc.2.6.80555907.PC 80555907 81723129    

MNEc.2.6.80557468.PC 80557468 81724690    

MNEc.2.6.80564229.PC 80564229 81731412    

MNEc.2.6.80567345.PC 80567345 81734532    

MNEc.2.6.80567618.PC 80567618 81734805    

MNEc.2.6.80568218.PC 80568218 81735405    

MNEc.2.6.80569235.PC 80569235 81736422    

MNEc.2.6.80569293.PC 80569293 81736480    

MNEc.2.6.80569852.PC 80569852 81737039    

MNEc.2.6.80570298.PC 80570298 81737485  X  

MNEc.2.6.80572371.PC 80572371 81739554    

MNEc.2.6.80572584.PC 80572584 81739767    

MNEc.2.6.80574750.PC 80574750 81741935    

MNEc.2.6.80574793.PC 80574793 81741978    

MNEc.2.6.80575672.PC 80575672 81742857    

MNEc.2.6.80576028.PC 80576028 81743213    
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Axiom MCEc2M SNP ID 
EquCab2 BP 

Location 

EquCab3 BP 

Location 
Di 

Height 

Assoc. 

Insulin 

Assoc. 

MNEc.2.6.80579951 80579951 81747136    

MNEc.2.6.80580074.PC 80580074 81747259    

MNEc.2.6.80580136.PC 80580136 81747321    

MNEc.2.6.80580526.PC 80580526 81747711    

MNEc.2.6.80580756.PC 80580756 81747941    

MNEc.2.6.80582308.PC 80582308 81749493    

MNEc.2.6.80582595.PC 80582595 81749780    

MNEc.2.6.80585781.PC 80585781 81752969    

MNEc.2.6.80586564.PC 80586564 81753752    

MNEc.2.6.80587550.PC 80587550 81754738    

MNEc.2.6.80592143.PC 80592143 81759332    

MNEc.2.6.80592392.PC 80592392 81759581    

MNEc.2.6.80597639.PC 80597639 81764830    

MNEc.2.6.80597710.PC 80597710 81764901    

MNEc.2.6.80598790.PC 80598790 81765981    

MNEc.2.6.80599081.PC 80599081 81766272    

MNEc.2.6.80599420.PC 80599420 81766612    

MNEc.2.6.80602873.PC 80602873 81770065    

MNEc.2.6.80605857.PC 80605857 81773049  X  

MNEc.2.6.80608356.PC 80608356 81775548    

MNEc.2.6.80609214.PC 80609214 81776406    

MNEc.2.6.80613296.PC 80613296 81780489    

MNEc.2.6.80613431.PC 80613431 81780624    

MNEc.2.6.80617709.PC 80617709 81784902    

MNEc.2.6.80619822.PC 80619822 81787015    

MNEc.2.6.80620304.PC 80620304 81787497    

MNEc.2.6.80620478.PC 80620478 81787671    

MNEc.2.6.80620792 80620792 81787985    

MNEc.2.6.80621253.PC 80621253 81788446    

MNEc.2.6.80621281.PC 80621281 81788474    

MNEc.2.6.80622121.PC 80622121 81789314    

MNEc.2.6.80622788.PC 80622788 81789981    

MNEc.2.6.80623531.PC 80623531 81790724    

MNEc.2.6.80625415.PC 80625415 81792608    

MNEc.2.6.80625991.PC 80625991 81793184    

MNEc.2.6.80627668.PC 80627668 81794861    

MNEc.2.6.80628078.PC 80628078 81795271    

MNEc.2.6.80634102.PC 80634102 81801300  X  

MNEc.2.6.80635142.PC 80635142 81802340    

MNEc.2.6.80636041.PC 80636041 81803239  X  

MNEc.2.6.80636779.PC 80636779 81803977    

MNEc.2.6.80639056.PC 80639056 81806255    

MNEc.2.6.80639161.PC 80639161 81806360    

MNEc.2.6.80639787. 80639787 81806986  X X 

MNEc.2.6.80639984.PC 80639984 81807183    

MNEc.2.6.80640275.PC 80640275 81807474    

MNEc.2.6.80642478.PC 80642478 81809677    

MNEc.2.6.80648966.PC 80648966 81816165    

MNEc.2.6.80649778.PC 80649778 81816951    

MNEc.2.6.80651081.PC 80651081 81818254    

MNEc.2.6.80651346.PC 80651346 81818519    
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Axiom MCEc2M SNP ID 
EquCab2 BP 

Location 

EquCab3 BP 

Location 
Di 

Height 

Assoc. 

Insulin 

Assoc. 

MNEc.2.6.80654729.PC 80654729 81821902    

MNEc.2.6.80655300.PC 80655300 81822473    

MNEc.2.6.80656692.PC 80656692 81823865  X  

MNEc.2.6.80657480.PC 80657480 81824653    

MNEc.2.6.80658576.PC 80658576 81825749  X  

MNEc.2.6.80659413.PC 80659413 81826586    

MNEc.2.6.80659646.PC 80659646 81826819    

MNEc.2.6.80659981.PC 80659981 81827154    

MNEc.2.6.80660228.PC 80660228 81827401    

MNEc.2.6.80663069.PC 80663069 81830242    

MNEc.2.6.80666273.PC 80666273 81833447    

MNEc.2.6.80666491.PC 80666491 81833665    

MNEc.2.6.80670901.PC 80670901 81838075    

MNEc.2.6.80672874.PC 80672874 81840048    

MNEc.2.6.80674503.PC 80674503 81841677    

MNEc.2.6.80678320.PC 80678320 81845492    

MNEc.2.6.80681512.PC 80681512 81848686    

MNEc.2.6.80684153.PC 80684153 81851327    

MNEc.2.6.80686536.PC 80686536 81853710    

MNEc.2.6.80686702.PC 80686702 81853876    

MNEc.2.6.80688324.PC 80688324 81855498  X  

MNEc.2.6.80692551.PC 80692551 81859725    

MNEc.2.6.80694638.PC 80694638 81861812    

MNEc.2.6.80694729.PC 80694729 81861903    

MNEc.2.6.80697067.PC 80697067 81864242    

MNEc.2.6.80697327.PC 80697327 81864502    

MNEc.2.6.80700969.PC 80700969 81868144    

MNEc.2.6.80701317.PC 80701317 81868492    

MNEc.2.6.80701518.PC 80701518 81868693  X  

MNEc.2.6.80702649.PC 80702649 81869824    

MNEc.2.6.80703890.PC 80703890 81871065    

MNEc.2.6.80708442.PC 80708442 81875617    

MNEc.2.6.80710843.PC 80710843 81878018    

MNEc.2.6.80714065.PC 80714065 81881240    

MNEc.2.6.80715143.PC 80715143 81882318    

MNEc.2.6.80719193.PC 80719193 81886368    

MNEc.2.6.80722266.PC 80722266 81889441    

MNEc.2.6.80722564.PC 80722564 81889739    

MNEc.2.6.80722978.PC 80722978 81890153    

MNEc.2.6.80724746.PC 80724746 81891921    

MNEc.2.6.80728189.PC 80728189 81895365    

MNEc.2.6.80728297.PC 80728297 81895473    

MNEc.2.6.80729934.PC 80729934 81897110    

MNEc.2.6.80732384.PC 80732384 81899560    

MNEc.2.6.80733830.PC 80733830 81901006    

MNEc.2.6.80736496.PC 80736496 81903675    

MNEc.2.6.80740274.PC 80740274 81907453    

MNEc.2.6.80740392.PC 80740392 81907571    

MNEc.2.6.80742798.PC 80742798 81909977    

MNEc.2.6.80742855.PC 80742855 81910034    

MNEc.2.6.80744646.PC 80744646 81911825    
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Axiom MCEc2M SNP ID 
EquCab2 BP 

Location 

EquCab3 BP 

Location 
Di 

Height 

Assoc. 

Insulin 

Assoc. 

MNEc.2.6.80745841 80745841 81913021    

MNEc.2.6.80746678.PC 80746678 81913858    

MNEc.2.6.80747017.PC 80747017 81914197    

MNEc.2.6.80753124.PC 80753124 81920304    

MNEc.2.6.80753306. 80753306 81920486    

MNEc.2.6.80756605.PC 80756605 81923785    

MNEc.2.6.80756667.PC 80756667 81923847    

MNEc.2.6.80758159.PC 80758159 81925341    

MNEc.2.6.80758193.PC 80758193 81925375    

MNEc.2.6.80759692.PC 80759692 81926874    

MNEc.2.6.80763018.PC 80763018 81930200    

MNEc.2.6.80763384.PC 80763384 81930566    

MNEc.2.6.80763601.PC 80763601 81930783    

MNEc.2.6.80763751.PC 80763751 81930933    

MNEc.2.6.80766863.PC 80766863 81934045    

MNEc.2.6.80767981.PC 80767981 81935160    

MNEc.2.6.80768143.PC 80768143 81935322    

MNEc.2.6.80770476.PC 80770476 81937655    

MNEc.2.6.80772574.PC 80772574 81939753    

MNEc.2.6.80773747.PC 80773747 81940926    

MNEc.2.6.80783645.PC 80783645 81950822    

MNEc.2.6.80784128.PC 80784128 81951305  X  

MNEc.2.6.80785871.PC 80785871 81953011    

MNEc.2.6.80786333.PC 80786333 81953473    

MNEc.2.6.80787590.PC 80787590 81954730    

MNEc.2.6.80787822.PC 80787822 81954962    

MNEc.2.6.80790795.PC 80790795 81957936    

MNEc.2.6.80792111. 80792111 81959252    

MNEc.2.6.80792181. 80792181 81959322    

MNEc.2.6.80793324.PC 80793324 81960465    

MNEc.2.6.80794944.PC 80794944 81962085    

MNEc.2.6.80795347.PC 80795347 81962488   X 

MNEc.2.6.80795503.PC 80795503 81962644    

MNEc.2.6.80796963.PC 80796963 81964104    

MNEc.2.6.80797343.PC 80797343 81964484    

MNEc.2.6.80801661.PC 80801661 81968699    

MNEc.2.6.80802867.PC 80802867 81969905    

MNEc.2.6.80806293.PC 80806293 81973331    

MNEc.2.6.80806580.PC 80806580 81973618  X  

MNEc.2.6.80807204.PC 80807204 81974242    

MNEc.2.6.80815186.PC 80815186 81982237    

MNEc.2.6.80815571.PC 80815571 81982623    

MNEc.2.6.80817011.PC 80817011 81984046    

MNEc.2.6.80818111.PC 80818111 81985146    

MNEc.2.6.80819060.PC 80819060 81986095    

MNEc.2.6.80820491.PC 80820491 81987526    

MNEc.2.6.80821993.PC 80821993 81989028    

MNEc.2.6.80824601.PC 80824601 81991636  X  

MNEc.2.6.80830385.PC 80830385 81997419    

MNEc.2.6.80830446.PC 80830446 81997480    

MNEc.2.6.80831282.PC 80831282 81998316    
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Axiom MCEc2M SNP ID 
EquCab2 BP 

Location 

EquCab3 BP 

Location 
Di 

Height 

Assoc. 

Insulin 

Assoc. 

MNEc.2.6.80832084.PC 80832084 81999118   X 

MNEc.2.6.80832207.PC 80832207 81999241    

MNEc.2.6.80833819.PC 80833819 82000854    

MNEc.2.6.80834462.PC 80834462 82001497    

MNEc.2.6.80834740.PC 80834740 82001775  X  

MNEc.2.6.80837012.PC 80837012 82004048    

MNEc.2.6.80837085.PC 80837085 82004121    

MNEc.2.6.80842128.PC 80842128 82009162    

MNEc.2.6.80842603.PC 80842603 82009637    

MNEc.2.6.80844424.PC 80844424 82011458  X  

MNEc.2.6.80844664.PC 80844664 82011698  X  

MNEc.2.6.80846341.PC 80846341 82013375   X 

MNEc.2.6.80846756.PC 80846756 82013790    

MNEc.2.6.80848712.PC 80848712 82015746  X  

MNEc.2.6.80849310.PC 80849310 82016344    

MNEc.2.6.80849467.PC 80849467 82016501    

MNEc.2.6.80850749.PC 80850749 82017783    

MNEc.2.6.80851196 80851196 82018230    

MNEc.2.6.80855422.PC 80855422 82022458    

MNEc.2.6.80859332.PC 80859332 82026311    

MNEc.2.6.80859678.PC 80859678 82026657    

MNEc.2.6.80861680.PC 80861680 82028659    

MNEc.2.6.80862656.PC 80862656 82029635    

MNEc.2.6.80863356.PC 80863356 82030335   X 

MNEc.2.6.80864497.PC 80864497 82031476    

MNEc.2.6.80865169.PC 80865169 82032148    

MNEc.2.6.80865774.PC 80865774 82032753  X  

MNEc.2.6.80865916.PC 80865916 82032895    

MNEc.2.6.80867332.PC 80867332 82034311    

MNEc.2.6.80867552.PC 80867552 82034531    

MNEc.2.6.80868281.PC 80868281 82035260    

MNEc.2.6.80868393.PC 80868393 82035372    

MNEc.2.6.80870148.PC 80870148 NA    

MNEc.2.6.80871158.PC 80871158 NA    

MNEc.2.6.80872239.PC 80872239 NA    

MNEc.2.6.80873525.PC 80873525 82037961    

MNEc.2.6.80877589.PC 80877589 82042029    

MNEc.2.6.80879383.PC 80879383 82043822    

MNEc.2.6.80879864.PC 80879864 82044303    

MNEc.2.6.80883323.PC 80883323 82047762    

MNEc.2.6.80885397.PC 80885397 82049836   X 

MNEc.2.6.80887049.PC 80887049 82051488    

MNEc.2.6.80889551.PC 80889551 82053990    

MNEc.2.6.80890927.PC 80890927 82055366    

MNEc.2.6.80891737.PC 80891737 82056176    

MNEc.2.6.80893186.PC 80893186 82057625    

MNEc.2.6.80893468.PC 80893468 82057907    

MNEc.2.6.80900288.PC 80900288 82064728    

MNEc.2.6.80902137.PC 80902137 82066602    

MNEc.2.6.80902997.PC 80902997 82067462    

MNEc.2.6.80903581.PC 80903581 82068046    
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Axiom MCEc2M SNP ID 
EquCab2 BP 

Location 

EquCab3 BP 

Location 
Di 

Height 

Assoc. 

Insulin 

Assoc. 

MNEc.2.6.80907156.PC 80907156 82071589    

MNEc.2.6.80911139.PC 80911139 82075571    

MNEc.2.6.80915201.PC 80915201 82079633    

MNEc.2.6.80915493.PC 80915493 82079925    

MNEc.2.6.80915581.PC 80915581 82080013  X  

MNEc.2.6.80917882.PC 80917882 82082314    

MNEc.2.6.80919604.PC 80919604 82084036   X 

MNEc.2.6.80919807.PC 80919807 82084239    

MNEc.2.6.80920347. 80920347 82084779    

MNEc.2.6.80926065.PC 80926065 82090497    

MNEc.2.6.80928463.PC 80928463 82092895    

MNEc.2.6.80929172.PC 80929172 82093604    

MNEc.2.6.80931312.PC 80931312 82095763    

MNEc.2.6.80933091.PC 80933091 82097541    

MNEc.2.6.80933683.PC 80933683 82098133    

MNEc.2.6.80933998.PC 80933998 82098448    

MNEc.2.6.80935302.PC 80935302 82099752    

MNEc.2.6.80935813.PC 80935813 82100263  X  

MNEc.2.6.80937306.PC 80937306 82101756    

MNEc.2.6.80939857.PC 80939857 82104307    

MNEc.2.6.80940129.PC 80940129 82104579    

MNEc.2.6.80942635.PC 80942635 82107085    

MNEc.2.6.80944105.PC 80944105 82108555    

MNEc.2.6.80945451.PC 80945451 82109901    

MNEc.2.6.80948795.PC 80948795 82113239    

MNEc.2.6.80948817.PC 80948817 82113261    

MNEc.2.6.80950340.PC 80950340 82114784   X 

MNEc.2.6.80958104.PC 80958104 82122537    

MNEc.2.6.80958180.PC 80958180 82122613    

MNEc.2.6.80959050.PC 80959050 82123482    

MNEc.2.6.80960411.PC 80960411 82124573    

MNEc.2.6.80960850.PC 80960850 82125012    

MNEc.2.6.80961489.PC 80961489 82125651  X  

MNEc.2.6.80964432.PC 80964432 82128595  X  

MNEc.2.6.80968716.PC 80968716 82132880    

MNEc.2.6.80969726.PC 80969726 82133890    

MNEc.2.6.80971088.PC 80971088 82135252  X  

MNEc.2.6.80971929.PC 80971929 82136093    

MNEc.2.6.80976137.PC 80976137 82140301  X  

MNEc.2.6.80976600.PC 80976600 82140764    

MNEc.2.6.80976721.PC 80976721 82140885    

MNEc.2.6.80977285.PC 80977285 82141449    

MNEc.2.6.80977751.PC 80977751 82141915    

MNEc.2.6.80979433.PC 80979433 82143597    

MNEc.2.6.80980590.PC 80980590 82144754    

MNEc.2.6.80981134.PC 80981134 82145298    

MNEc.2.6.80981470.PC 80981470 82145634    

MNEc.2.6.80981691.PC 80981691 82145855    

MNEc.2.6.80984945.PC 80984945 82149109    

MNEc.2.6.80985350.PC 80985350 82149514    

MNEc.2.6.80987560.PC 80987560 82151724    
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MNEc.2.6.80988998.PC 80988998 82153162    

MNEc.2.6.80989356.PC 80989356 82153520 X   

MNEc.2.6.80994247.PC 80994247 82158411 X   

MNEc.2.6.81000288.PC 81000288 82164452 X X  

MNEc.2.6.81001292. 81001292 82165456 X   

MNEc.2.6.81001824.PC 81001824 82165988 X X  

MNEc.2.6.81004640.PC 81004640 82168804 X X  

MNEc.2.6.81004787. 81004787 82168951 X   

MNEc.2.6.81004845.PC 81004845 82169009 X   

MNEc.2.6.81005329.PC 81005329 82169493 X   

MNEc.2.6.81011612.PC 81011612 82175776  X  

MNEc.2.6.81011857.PC 81011857 82176021    

MNEc.2.6.81012766.PC 81012766 82176930    

MNEc.2.6.81014209.PC 81014209 82178374    

MNEc.2.6.81018173.PC 81018173 82182338    

MNEc.2.6.81024712.PC 81024712 82188877    

MNEc.2.6.81028211.PC 81028211 82192376    

MNEc.2.6.81028417.PC 81028417 82192582    

MNEc.2.6.81029280.PC 81029280 82193445    

MNEc.2.6.81030458.PC 81030458 82194623    

MNEc.2.6.81040675.PC 81040675 82204840    

MNEc.2.6.81040813.PC 81040813 82204978    

MNEc.2.6.81040860.PC 81040860 82205025  X  

MNEc.2.6.81041470.PC 81041470 82205635    

MNEc.2.6.81041826.PC 81041826 82205991    

MNEc.2.6.81044828.PC 81044828 82208993    

MNEc.2.6.81046539.PC 81046539 82210704    

MNEc.2.6.81047385.PC 81047385 82211550    

MNEc.2.6.81048067.PC 81048067 82212232    

MNEc.2.6.81050533.PC 81050533 82214698    

MNEc.2.6.81053351.PC 81053351 82217515    

MNEc.2.6.81056567.PC 81056567 82220731    

MNEc.2.6.81057502.PC 81057502 82221666    

MNEc.2.6.81060020.PC 81060020 82224184    

MNEc.2.6.81066572.PC 81066572 82230736  X X 

MNEc.2.6.81072276.PC 81072276 82236440    

MNEc.2.6.81074062.PC 81074062 82238227    

MNEc.2.6.81074150.PC 81074150 82238315    

MNEc.2.6.81074374.PC 81074374 82238539  X  

MNEc.2.6.81074650.PC 81074650 82238815  X  

MNEc.2.6.81077322.PC 81077322 82241487    

MNEc.2.6.81082719.PC 81082719 82246884  X  

MNEc.2.6.81084493.PC 81084493 82248658    

MNEc.2.6.81084746.PC 81084746 82248911    

MNEc.2.6.81085399.PC 81085399 82249564  X X 

MNEc.2.6.81086049.PC 81086049 82250226    

MNEc.2.6.81088906.PC 81088906 82253083    

MNEc.2.6.81089958.PC 81089958 82254135  X X 

MNEc.2.6.81091853.PC 81091853 82256030    

MNEc.2.6.81092504.PC 81092504 82256681    

MNEc.2.6.81095746.PC 81095746 82269987   X 
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MNEc.2.6.81092730.PC 81092730 82256907    

MNEc.2.6.81096691.PC 81096691 82260932    

MNEc.2.6.81097039.PC 81097039 82261280  X  

MNEc.2.6.81099063. 81099063 82263304   X 

MNEc.2.6.81100715.PC 81100715 82264956    

MNEc.2.6.81101410.PC 81101410 82265651  X X 

MNEc.2.6.81105042.PC 81105042 82269283    

MNEc.2.6.81107367.PC 81107367 82271611    

MNEc.2.6.81107765.PC 81107765 82272009    

MNEc.2.6.81108269.PC 81108269 82272513 X   

MNEc.2.6.81110483.PC 81110483 82274730 X   

MNEc.2.6.81111923.PC 81111923 82276170 X   

MNEc.2.6.81113370.PC 81113370 82277617 X   

MNEc.2.6.81114838.PC 81114838 82279085 X   

MNEc.2.6.81116592.PC 81116592 82280839 X   

MNEc.2.6.81116663.PC 81116663 82280910 X X  

MNEc.2.6.81117653.PC 81117653 82281900 X   

MNEc.2.6.81127246.PC 81127246 82291777 X   

MNEc.2.6.81131003.PC 81131003 82295534 X X  

MNEc.2.6.81132667.PC 81132667 82297198 X   

MNEc.2.6.81138611.PC 81138611 82303142 X   

MNEc.2.6.81145454.PC 81145454 82309986 X   

MNEc.2.6.81146607.PC 81146607 82311139 X   

MNEc.2.6.81147917.PC 81147917 82312449 X X  

MNEc.2.6.81148466.PC 81148466 82312998 X   

MNEc.2.6.81148841.PC 81148841 82313373 X   

MNEc.2.6.81149038.PC 81149038 82313570 X X  

MNEc.2.6.81150141.PC 81150141 82314673 X   

MNEc.2.6.81150674.PC 81150674 82315206 X   

MNEc.2.6.81150862.PC 81150862 82315394 X   

MNEc.2.6.81151323.PC 81151323 82315855 X X  

MNEc.2.6.81152002.PC 81152002 82316534 X X  

MNEc.2.6.81152832.PC 81152832 82317364 X   

MNEc.2.6.81154362.PC 81154362 82318894 X   

MNEc.2.6.81155025.PC 81155025 82319557 X X  

MNEc.2.6.81155688.PC 81155688 82320220 X   

MNEc.2.6.81155869.PC 81155869 82320401 X X  

MNEc.2.6.81156390.PC 81156390 82320922 X   

MNEc.2.6.81156975.PC 81156975 82321507 X   

MNEc.2.6.81157724.PC 81157724 82322256 X   

MNEc.2.6.81159639.PC 81159639 82324171    

MNEc.2.6.81160030.PC 81160030 82324562    

MNEc.2.6.81161980.PC 81161980 82326512    

MNEc.2.6.81167162.PC 81167162 82331694  X  

MNEc.2.6.81168395.PC 81168395 82332927    

MNEc.2.6.81168833.PC 81168833 82333365 X X  

MNEc.2.6.81171121.PC 81171121 82335653 X X  

MNEc.2.6.81175201.PC 81175201 82339734 X X  

MNEc.2.6.81176493. 81176493 82341026 X   

MNEc.2.6.81176653. 81176653 82341186 X   

MNEc.2.6.81176905.PC 81176905 82341438 X   
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MNEc.2.6.81181575.PC 81181575 82346108 X   

MNEc.2.6.81183704.PC 81183704 82348237  X  

MNEc.2.6.81185362.PC 81185362 82349895  X  

MNEc.2.6.81193866.PC 81193866 82358399    

MNEc.2.6.81196676.PC 81196676 82361209  X  

MNEc.2.6.81197672.PC 81197672 82362205    

MNEc.2.6.81198310.PC 81198310 82362843  X  

MNEc.2.6.81198765.PC 81198765 82363298    

MNEc.2.6.81199128.PC 81199128 82363661    

MNEc.2.6.81199762.PC 81199762 82364295    

MNEc.2.6.81200192.PC 81200192 82364725    

MNEc.2.6.81200578.PC 81200578 82365111  X  

MNEc.2.6.81200658.PC 81200658 82365191    

MNEc.2.6.81200913.PC 81200913 82365446    

MNEc.2.6.81201314.PC 81201314 82365847    

MNEc.2.6.81201348.PC 81201348 82365881  X  

MNEc.2.6.81201373.PC 81201373 82365906    

MNEc.2.6.81203959.PC 81203959 82368492  X  

MNEc.2.6.81205065.PC 81205065 82369598    

MNEc.2.6.81205686.PC 81205686 82370219    

MNEc.2.6.81210715.PC 81210715 82375248    

MNEc.2.6.81213956.PC 81213956 82378489    

MNEc.2.6.81215555.PC 81215555 82380088  X  

MNEc.2.6.81216957. 81216957 82381490  X  

MNEc.2.6.81218021.PC 81218021 82382554    

MNEc.2.6.81218092.PC 81218092 82382625    

MNEc.2.6.81218897.PC 81218897 82383430    

MNEc.2.6.81224318.PC 81224318 82388851    

MNEc.2.6.81227730.PC 81227730 82392263 X   

MNEc.2.6.81231288.PC 81231288 82395821 X   

MNEc.2.6.81231316.PC 81231316 82395849 X   

MNEc.2.6.81235378.PC 81235378 82399911 X X  

MNEc.2.6.81236569.PC 81236569 82401102 X X  

MNEc.2.6.81237287.PC 81237287 82401820 X X  

MNEc.2.6.81242767.PC 81242767 82407300    

MNEc.2.6.81242979.PC 81242979 82407512    

MNEc.2.6.81245868.PC 81245868 82410401    

MNEc.2.6.81246188.PC 81246188 82410721    

MNEc.2.6.81250359.PC 81250359 82414892  X  

MNEc.2.6.81250799.PC 81250799 82415332  X  

MNEc.2.6.81252426.PC 81252426 82416959    

MNEc.2.6.81254844.PC 81254844 82419377    

MNEc.2.6.81257395.PC 81257395 82421926    

MNEc.2.6.81260218.PC 81260218 82424749    

MNEc.2.6.81260989.PC 81260989 82425520  X  

MNEc.2.6.81261983.PC 81261983 82426514    

MNEc.2.6.81263291.PC 81263291 82427823    

MNEc.2.6.81264617.PC 81264617 82429149    

MNEc.2.6.81265503.PC 81265503 82430033    

MNEc.2.6.81265743.PC 81265743 82430273    

MNEc.2.6.81265835.PC 81265835 82430365  X  
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MNEc.2.6.81274342.PC 81274342 82438510 X X  

MNEc.2.6.81275539.PC 81275539 82439707 X  X 

MNEc.2.6.81275716.PC 81275716 82439884 X   

MNEc.2.6.81280716.PC 81280716 82444884 X   

MNEc.2.6.81286888.PC 81286888 82451056 X X  

MNEc.2.6.81288528.PC 81288528 82452696 X X  

MNEc.2.6.81291848.PC 81291848 82456016 X  X 

MNEc.2.6.81293583.PC 81293583 82457751 X X  

MNEc.2.6.81300883.PC 81300883 82465051 X   

MNEc.2.6.81305201.PC 81305201 82469369    

MNEc.2.6.81307622.PC 81307622 82471790 X   

MNEc.2.6.81308993.PC 81308993 82473161 X   

MNEc.2.6.81309029.PC 81309029 82473197 X X  

MNEc.2.6.81309194.PC 81309194 82473362 X X  

MNEc.2.6.81309349.PC 81309349 82473517 X X X 

MNEc.2.6.81310074.PC 81310074 82474242 X   

MNEc.2.6.81312462.PC 81312462 82476630 X   

MNEc.2.6.81312691.PC 81312691 82476859 X   

MNEc.2.6.81312805.PC 81312805 82476973 X   

MNEc.2.6.81313479.PC 81313479 82477647 X X  

MNEc.2.6.81320405.PC 81320405 82484592 X X  

MNEc.2.6.81322229.PC 81322229 82486416 X X X 

MNEc.2.6.81329646.PC 81329646 82493449 X   

MNEc.2.6.81333137.PC 81333137 82496940  X  

MNEc.2.6.81333372.PC 81333372 82497175   X 

MNEc.2.6.81340647.PC 81340647 82504450 X X  

MNEc.2.6.81340998.PC 81340998 80204801 X  X 

MNEc.2.6.81342894.PC 81342894 82506697 X   

MNEc.2.6.81344532.PC 81344532 82508335 X  X 

MNEc.2.6.81348453.PC 81348453 82512256 X  X 

MNEc.2.6.81347830.PC 81347830 82511633 X   

MNEc.2.6.81347974.PC 81347974 82511777 X   

MNEc.2.6.81352276.PC 81352276 82516073 X   

MNEc.2.6.81354701.PC 81354701 82518498    

MNEc.2.6.81356993.PC 81356993 82520790  X  

MNEc.2.6.81358887.PC 81358887 82522684    

MNEc.2.6.81361483.PC 81361483 82525280 X X  

MNEc.2.6.81361520.PC 81361520 82525317 X   

MNEc.2.6.81365395.PC 81365395 82529192 X X  

MNEc.2.6.81367697.PC 81367697 82531494 X   

MNEc.2.6.81368345.PC 81368345 82532142 X X  

MNEc.2.6.81381221.PC 81381221 82545021 X X  

MNEc.2.6.81382533.PC 81382533 82546333 X  X 

MNEc.2.6.81392217.PC 81392217 82555953 X   

MNEc.2.6.81392910.PC 81392910 82556646  X  

MNEc.2.6.81396654.PC 81396654 82560390    

MNEc.2.6.81398600.PC 81398600 82562336    

MNEc.2.6.81400279.PC 81400279 82564015  X X 

MNEc.2.6.81405725.PC 81405725 82569461 X X X 

MNEc.2.6.81407183.PC 81407183 82570919 X X  

MNEc.2.6.81408708.PC 81408708 82572444 X   
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MNEc.2.6.81409678.PC 81409678 82573414 X   

MNEc.2.6.81411449.PC 81411449 82575185 X X  

MNEc.2.6.81413254.PC 81413254 82576990 X X X 

MNEc.2.6.81414435.PC 81414435 82578171 X   

MNEc.2.6.81415276.PC 81415276 82579013 X   

MNEc.2.6.81417632. 81417632 82581369 X   

MNEc.2.6.81421330.PC 81421330 82585066 X X X 

MNEc.2.6.81431568.PC 81431568 82595304 X  X 

MNEc.2.6.81432131.PC 81432131 82595867 X  X 

MNEc.2.6.81434058.PC 81434058 82597794 X X  

MNEc.2.6.81440665.PC 81440665 82604401 X X  

MNEc.2.6.81441526.PC 81441526 82605262 X   

MNEc.2.6.81443295.PC 81443295 82607030 X  X 

MNEc.2.6.81446353.PC 81446353 82610088 X  X 

MNEc.2.6.81451782. 81451782 82615517 X X X 

MNEc.2.6.81458759.PC 81458759 82622494 X X X 

MNEc.2.6.81463114.PC 81463114 82626849 X X X 

MNEc.2.6.81468176.PC 81468176 82631911 X   

MNEc.2.6.81469661.PC 81469661 82633396 X   

MNEc.2.6.81468256.PC 81468256 82631991 X  X 

MNEc.2.6.81471494.PC 81471494 82635229 X   

MNEc.2.6.81473575.PC 81473575 82637310 X  X 

MNEc.2.6.81474930.PC 81474930 82638665 X X  

MNEc.2.6.81475049.PC 81475049 82638784 X X  

MNEc.2.6.81476437.PC 81476437 82640172 X X X 

MNEc.2.6.81481065.PC 81481065 82644800   X 

MNEc.2.6.81482862.PC 81482862 82646597    

MNEc.2.6.81488131.PC 81488131 82651920  X  

MNEc.2.6.81490123.PC 81490123 82653915 X X X 

MNEc.2.6.81492423.PC 81492423 82656215 X X X 

MNEc.2.6.81494335.PC 81494335 82658127 X X  

MNEc.2.6.81497380.PC 81497380 82661169 X X X 

MNEc.2.6.81498052.PC 81498052 82661841 X X  

MNEc.2.6.81503348.PC 81503348 82667137 X   

MNEc.2.6.81503730.PC 81503730 82667518 X  X 

MNEc.2.6.81505709.PC 81505709 82669497 X X X 

MNEc.2.6.81506349.PC 81506349 82670137 X   

MNEc.2.6.81507212.PC 81507212 82671000 X X X 

MNEc.2.6.81507310.PC 81507310 82671098 X X X 

MNEc.2.6.81508624.PC 81508624 82672412 X   

MNEc.2.6.81509429. 81509429 82673217 X   

MNEc.2.6.81510788.PC 81510788 82674576 X   

MNEc.2.6.81514907.PC 81514907 82678695 X X X 

MNEc.2.6.81516706. 81516706 82680494 X X  

MNEc.2.6.81521876.PC 81521876 82685665 X X  

MNEc.2.6.81523773.PC 81523773 82687562 X X X 

MNEc.2.6.81523837.PC 81523837 82687626 X  X 

MNEc.2.6.81526828.PC 81526828 82690617 X X X 

MNEc.2.6.81527285.PC 81527285 82691074 X   

MNEc.2.6.81528014.PC 81528014 82691803 X X  

MNEc.2.6.81532654.PC 81532654 82696455 X  X 
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MNEc.2.6.81533130.PC 81533130 82696931 X X  

MNEc.2.6.81533415.PC 81533415 82697216 X X X 

MNEc.2.6.81533975.PC 81533975 82697776 X X X 

MNEc.2.6.81535308.PC 81535308 82699109 X   

MNEc.2.6.81536480.PC 81536480 82700281 X X  

MNEc.2.6.81536796.PC 81536796 82700597 X   

MNEc.2.6.81541746.PC 81541746 82705547  X  

MNEc.2.6.81551984.PC 81551984 82715786 X X  

MNEc.2.6.81553061.PC 81553061 82716863 X  X 

MNEc.2.6.81554945.PC 81554945 82718747 X   

MNEc.2.6.81557294. 81557294 82721096 X X X 

MNEc.2.6.81558781.PC 81558781 82722583 X   

MNEc.2.6.81560279.PC 81560279 82724081 X   

MNEc.2.6.81566120.PC 81566120 82729921 X X  

MNEc.2.6.81568749.PC 81568749 82732548 X X X 

MNEc.2.6.81575176.PC 81575176 82738976 X   

MNEc.2.6.81575713.PC 81575713 82739513 X X  

MNEc.2.6.81576419.PC 81576419 82740219 X   

MNEc.2.6.81576767.PC 81576767 82740567 X   

MNEc.2.6.81577868.PC 81577868 82741668 X   

MNEc.2.6.81583349.PC 81583349 82747149    

MNEc.2.6.81583507.PC 81583507 82747307    

MNEc.2.6.81585047.PC 81585047 82748847    

MNEc.2.6.81589592.PC 81589592 82753392 X   

MNEc.2.6.81590012.PC 81590012 82753812 X   

MNEc.2.6.81591558.PC 81591558 82755358 X X  

MNEc.2.6.81591919.PC 81591919 82755719 X   

MNEc.2.6.81600981.PC 81600981 82764783 X   

MNEc.2.6.81602184.PC 81602184 82765986 X   

MNEc.2.6.81602630. 81602630 82766432 X   

MNEc.2.6.81602938.PC 81602938 82766740 X X  

MNEc.2.6.81603378.PC 81603378 82767180 X   

MNEc.2.6.81605181.PC 81605181 82768983 X X  

MNEc.2.6.81605475.PC 81605475 82769277 X   

MNEc.2.6.81612750.PC 81612750 82776553 X   

MNEc.2.6.81614184.PC 81614184 82777987 X   

MNEc.2.6.81614934.PC 81614934 82778737 X   

MNEc.2.6.81615849.PC 81615849 82779652 X X  

MNEc.2.6.81624548.PC 81624548 82788363 X   

MNEc.2.6.81625635.PC 81625635 82789450 X   

MNEc.2.6.81626239.PC 81626239 82790054 X X  

MNEc.2.6.81634717.PC 81634717 82798532 X X  

MNEc.2.6.81635994.PC 81635994 82799809 X   

MNEc.2.6.81637171.PC 81637171 82800986 X   

MNEc.2.6.81643314. 81643314 82807129 X  X 

MNEc.2.6.81647854.PC 81647854 82811669 X   

MNEc.2.6.81649941.PC 81649941 82813756 X   

MNEc.2.6.81653476.PC 81653476 82817291   X 

MNEc.2.6.81663656.PC 81663656 82827472    

MNEc.2.6.81664538.PC 81664538 82828354    

MNEc.2.6.81666343.PC 81666343 82830159  X  
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MNEc.2.6.81666520.PC 81666520 82830336    

MNEc.2.6.81669670.PC 81669670 82833486  X  

MNEc.2.6.81671214.PC 81671214 82835030 X   

MNEc.2.6.81694523.PC 81694523 82858459 X   

MNEc.2.6.81695495.PC 81695495 82859431 X X  

MNEc.2.6.81695968.PC 81695968 82859904 X   

MNEc.2.6.81696642.PC 81696642 82860578 X   

MNEc.2.6.81700931.PC 81700931 82864787    

MNEc.2.6.81703726.PC 81703726 82867582    

MNEc.2.6.81705123.PC 81705123 82868979    

MNEc.2.6.81707385.PC 81707385 82871241 X X  

MNEc.2.6.81710589.PC 81710589 82874445 X   

MNEc.2.6.81711770.PC 81711770 82875626 X   

MNEc.2.6.81715109.PC 81715109 82878965 X   

MNEc.2.6.81720090.PC 81720090 82883946 X   

MNEc.2.6.81722649.PC 81722649 82886505 X X  

MNEc.2.6.81722944.PC 81722944 82886800 X   

MNEc.2.6.81725228.PC 81725228 82889084 X   

MNEc.2.6.81727663.PC 81727663 82891519 X   

MNEc.2.6.81728172.PC 81728172 82892028 X   

MNEc.2.6.81735717.PC 81735717 82899573 X   

MNEc.2.6.81740361.PC 81740361 82904217 X   

MNEc.2.6.81742978.PC 81742978 82906837 X   

MNEc.2.6.81749291.PC 81749291 82913150 X   

MNEc.2.6.81752110.PC 81752110 82915969 X X  

MNEc.2.6.81753106.PC 81753106 82916923 X   

MNEc.2.6.81753656.PC 81753656 82917473 X   

MNEc.2.6.81755922.PC 81755922 82919739 X X  

MNEc.2.6.81759471.PC 81759471 82923288 X   

MNEc.2.6.81764808.PC 81764808 82928625 X   

MNEc.2.6.81764849.PC 81764849 82928666 X X  

MNEc.2.6.81766028.PC 81766028 82929796 X   

MNEc.2.6.81774220.PC 81774220 82937922 X   

MNEc.2.6.81774286.PC 81774286 82937988 X   

MNEc.2.6.81777995.PC 81777995 82941697 X   

MNEc.2.6.81780992.PC 81780992 82944695 X X  

MNEc.2.6.81782298.PC 81782298 82946001 X   

MNEc.2.6.81784570.PC 81784570 82948273 X   

MNEc.2.6.81785714.PC 81785714 82949417 X   

MNEc.2.6.81788701.PC 81788701 82952403 X   

MNEc.2.6.81789212.PC 81789212 82952914 X   

MNEc.2.6.81791707.PC 81791707 82955409    

MNEc.2.6.81793853.PC 81793853 82957368    

MNEc.2.6.81795218.PC 81795218 82958733    

MNEc.2.6.81795964.PC 81795964 82959479    

MNEc.2.6.81796099.PC 81796099 82959614    

MNEc.2.6.81799715.PC 81799715 82963230    

MNEc.2.6.81801026.PC 81801026 82964541    

MNEc.2.6.81802027.PC 81802027 82965542    

MNEc.2.6.81802264.PC 81802264 82965779    

MNEc.2.6.81804903.PC 81804903 82968419    
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MNEc.2.6.81806445.PC 81806445 82969961    

MNEc.2.6.81808008.PC 81808008 82971523  X  

MNEc.2.6.81809066.PC 81809066 82972582    

 

Supplemental Table D6: EquCab2 and EquCab3 base pair (bp) position for SNPs on the 

Axiom MCEc2M within the region of interest on equine chromosome 6 (ECA6) bp positions 

80,499,826-81,809,066.  SNPs (presented by their Axiom MCEc2M SNP ID) within the entire 

region of interest were remapped to EquCab3.[427]  EquCab3 coordinates were not provided for 

three SNPs as they did not have probes that mapped uniquely to EquCab3.  SNPs which exceeded 

the threshold for genome wide significance on association analysis (Assoc) for height and baseline 

insulin are indicated by an X.  Significant di windows are based on the average base pair position 

within a 10Kb window of SNPs.  SNPs marked with an X represent 5Kb upstream and 5Kb 

downstream of the base pair location. 
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Breed INS INS-OST GLU GLU-OST NEFA TG LEPTIN ADIPON ACTH 

All 

Horses 

n=830 

-0.15 

(-0.21,-0.08) 

p=<0.001 

-0.05 

(-0.13,0.02) 

p=0.15 

-0.14 

(-0.21,-0.08) 

p=<0.001 

-0.10 

(-0.18,-0.03) 

p=0.01 

-0.06 

(-0.13,0.01) 

p=0.07 

0.12 

(0.06,0.19) 

p=<0.001 

0.12 

(0.05,0.18) 

p=<0.001 

-0.22 

(-0.21,0.15) 

p=<0.001 

-0.13 

(-0.19,-0.06) 

p=<0.001 

Ponies 

n=301 

-0.33 

(-0.42,-0.29) 

p=<0.001 

-0.15 

(-0.26,-0.04) 

p=0.01 

-0.14 

(-0.25,-0.03) 

p=0.015 

-0.02 

(-0.13,0.1) 

p=0.75 

-0.12 

(-0.23,0.0) 

p=0.04 

-0.14 

(-0.09,-0.03) 

p=0.013 

-0.09 

(-0.20,-0.02) 

p=0.12 

-0.07 

(-0.05,-0.18) 

p=0.24 

-.013 

(-0.24,-0.02) 

p=0.02 

 

Supplemental Table D7: Correlations between height and biochemical traits with the addition of seven ponies.  Pearson’s correlation 

coefficients were repeated with the inclusion of seven ponies representing three Shetland ponies, two Hackney ponies, and three British Riding 

ponies.  Presented in the table are: Pearson's correlation coefficients, 95% confidence intervals and p-values for height, eight EMS biochemical 

traits, and ACTH for the entire cohort as well as just the ponies.  All traits were corrected for age and sex prior to analysis.  Significant p-values 

(<.0056) are in bolded text.  Abbreviations: INS = insulin, INS-OST = insulin post oral sugar test, GLU = glucose, GLU-OST = glucose post oral 

sugar test, NEFA = non-esterified fatty acids, TG = triglycerides, ADIPON = adiponectin. 

 


