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Abstract

The research in this master’s thesis presents an advanced modeling and control

strategy for charging electric vehicle (EV) batteries. The purpose of modeling the

battery incorporating the optimal control mechanism is developing a fast-charging

system for EVs. The thesis starts with a literature survey to find out the latest

EV battery model within an appropriate format of interest. Then, on the selected

battery model, it applies the state-dependent Riccati equation (SDRE) technique to

develop a closed-loop optimal control strategy. For the purpose of optimization, the

battery model aims to track a reference trajectory with a performance index which

is minimizing the quadratic error between a reference and an actual trajectory. To

harness the unified benefits of optimal and intelligent control systems, the thesis also

sheds light upon fuzzy logic by generating a reference trajectory with it. Finally,

to determine the correctness of the modeling, MATLAB simulations for a lithium-

ion (li-ion) battery have been carried out and they display a satisfactory tracking

performance.
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Chapter 1

Introduction

Challenges and opportunities of integrating electric vehicles (EV) with an electric

grid have been of great interest for the past few years. In order to integrate with an

electric grid, a battery model of the EV should have adequate control mechanisms.

In this thesis, optimal control of a battery is a prime focus. For developing the

control mechanism, a closed-loop optimal control strategy is obtained by using the

State-Dependent Riccati Equation (SDRE) technique with performance index to

minimize the quadratic error between the reference and actual trajectories. Before

that, an extensive literature survey was conducted to find a suitable battery model

for EV applications.

1.1 Literature Survey for a Battery Model

Battery modeling means knowing the ins and outs of a battery, for example, know-

ing current, voltage, parameters of that battery. In addition, thousands of models

were considered by different researchers for different purposes. A model can work
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for a suitable purpose, but may not work for a different purpose. At the beginning

of this research, many contemporary models were studied to figure out the best

model for the purpose of this research. First, researchers presents a battery with an

equivalent circuit model that consists of a single voltage source, single series resistor

and a single RC block to express a simulation model of lithium cells [13]. They used

MATLAB design optimization toolbox for performing an estimation of parameters

for the model. Results of the estimation show that the circuit parameters depend

on the state of charge (SOC), average current and temperature. It should be noted

that the parameter estimation app uses a pulse current discharge test on high power

lithium cells. One of the researchers from this research along with other researchers

continued their research and developed a battery model that overcame few weak-

nesses of its predecessor [14]. In this updated battery model which aims to estimate

accurate run-time SOC of a lithium iron phosphate (LFP) cell, cells are renowned

for high intrinsic safety, fast charging and long cycle life. The developed model was a

novel combination of the extended Kalman filtering (EKF) algorithm, two-RC-block

equivalent circuit and traditional coulomb counting method. This novel combination

solved three key shortcomings of the traditional SOC estimation method (coulomb

counting method) and resulted in an efficient estimation method. Next,in [30], a new

electric vehicle battery charging/discharging strategy was discussed in detail. This

new technology consists of bidirectional DC/DC converter. The simulation model of

the charging/discharging was validated using control techniques. The charging and

discharging technique of an EV battery was further elaborated in [2]. A CHAdeMO

(trade name of a quick charging method for battery electric vehicles) protocol based

fast charging technology for EVs was proposed. This simulation-based proposal has

two main parts, which will communicate with each other by CAN bus. The two

main parts are (1) the electric vehicle and its battery management system and (2)

a charging/discharging device emulated by a computer application. The model also
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proposed a data model for both electric vehicle and charging/discharging device to

manage the charging/discharging process according to a power network operator.

An unique method for parameter estimation was proposed in [1]. Electric vehicles

gain wide recognition for their supremacy over fossil-fuel powered vehicles as a more

efficient and sustainable transportation alternative. Battery wear is an important

topic because the model of the battery changes as it ages. To effectively cap-

ture this characteristic, Ahmed, Gazzarri, Onori, Habibi, Jackey, Rzemien, Tjong

& LeSage presented an effective method for offline battery model parameter esti-

mation at various states of health. Three lithium nickel-manganese-cobalt oxide

(LiNiMnCoO2) cells were at temperatures ranging from 35◦C to 40◦C. The model

resulted in look-up tables for equivalent circuit parameters. The results also indi-

cated aging effects demand remodeling of the equivalent circuit as in the beginning

of battery life. The model shows 5 R-C pairs can precisely describe cell dynamics

of a battery cell. Further in [33], Wijewardana, Vepa and Shaheed presented a

suitable, convenient and generic representation of battery dynamics to model any

li-ion rechargeable battery. With application to state of charge (SOC) estimation,

this model included thermal balance of heat generation mechanism, ambient tem-

perature effect, storage effects, cyclic charging, battery internal resistance and SOC

to model a li-ion battery. Next, a thermo-dependent advanced hybrid li-ion battery

model, consisting of empirical and artificial neural network submodels were devel-

oped for a system level analysis of electric vehicle fleet simulation and distributed

energy storage application. Simulation showed this model successfully determined

battery voltage and estimated SOC [20]. In another research, Ramadan, Claude

& Becherif have designed and validated a battery management systems (BMS) for

li-ion batteries. The integration of BMS ensures the sustainable battery operation

of hybrid electric vehicles (HEVs) by correctly measuring battery SOC, state of

health (SOH) and instantaneous power. To design BMS, they developed electri-
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cal battery model and mathematical equations. Then parameters of the battery

were identified using voltage drop measurements. Finally, with the application of

extended kalman filtering (EKF), the SOC of the model was determined [7]. An

important charging/discharging method was presented by a mathematical model

with positive and negative materials of LiyMn2O4 and LixC6 for simulating the

electrochemical behaviors of li-ion batteries. Open circuit voltage, current, SOC

and charging/discharging characteristics of the battery were considered to present

the model. Simulation results showed that the model demonstrates accurate battery

charging/discharging strategies and SOC measurement techniques [11]. Finally, a

parameter based battery is modeled in [4]. This model is actually a modified curve-

fitting version of [19]. Here, parameters VOC , Rseries, Rsec, Csec, Rmin, Cmin, Rhour,

Chour depend on SOC and temperature. A polynomial equation shown in (equation

1.1.1) represent the parameters. Values of all these parameters can be extracted if

the constants a0 through a6 are known. In this paper [4] Experimental values of

these constants are given in a tabular form. Therefore, using values from the table,

parameters can be retrieved properly.

ln(V,R,C) = (a0) + (a1)ln(SOC) + ......+ (a6)ln6(SOC) (1.1.1)

Figure 1.1 shows the model of this circuit. Parameters of this circuit is calculated

Figure 1.1: 3-RC Branched Battery Model
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in different time-scales, for example in minutes, seconds and hours. The objective

of doing this is measuring short and long term transients precisely.

1.2 Statement of the Problem

EV battery models are nonlinear and require controlling techniques that are able to

analyze nonlinear systems. Optimal charging is such a technique which maximizes

the total power that can be delivered to the vehicles while operating within network

limits. Therefore, the scope of this work involves optimal control (also known as

hard control) and soft control (SC) for battery charging for plug-in electric vehicles.

This includes new charging strategy for the battery modelled from principles of

physics and model predictive methods.

1.3 Objective of the Thesis

Development of a nonlinear, finite horizon, closed loop optimal tracking controller

using state dependent Riccati Equation (SDRE). In designing the optimal controller,

state of charge (SOC) will be considered as a state variable. And the optimal

controller will be developed first only with hard control (HC) techniques and second

with a fusion of HC and SC techniques. The performance of the controller will be

judged by its tracking ability of a given trajectory or a reference voltage. In brief,

the output or terminal voltage of an EV battery should follow a given trajectory

(charging profile).
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1.4 Overview of the Thesis

This dissertation is composed of five chapters covering the following topics:

1. Chapter 2 provides a detail discussion on battery modeling. In particular, dis-

cussions on a generic li-ion battery model, 3-RC battery model and a dual RC

battery model is provided in this chapter. In addition, MATLAB simulation

for the generic li-ion model also provided.

2. Chapter 3 starts with a discussion on optimal control and state dependent

Riccati equation (SDRE) technique. Then, it shows the whole procedure of

treating a finite-horizon tracking problem with SDRE technique. Finally, a

discussion on soft control techniques concludes the chapter.

3. Chapter 4 explains the applicability of the simulation results obtained from

MATLAB simulations. At the end of the chapter, it describes ways to improve

the results.

4. Finally, Chapter 5 presents the conclusion of the work with a note on future

improvement scopes.

The summary of the thesis work was also submitted as a manuscript titled,

”Advanced Tracking Strategies for Charging Electric Vehicle Batteries”, authored

by Murtaza Kamal Pasha Khan, Dr. Desineni Subbaram Naidu and Dr. Ona Egbue

for the eleventh Conference on Innovative Smart Grid Technologies (ISGT 2020),

sponsored by the IEEE Power & Energy Society (PES), will be held on Febru-

ary 17-20, 2020 at the Grand Hyatt Washington, Washington DC. This submitted

manuscript is also attached with this thesis in appendix 2.
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Chapter 2

Battery Modeling

2.1 Simple Battery Model

A generic battery model for a dynamic simulation of hybrid electric vehicle is dis-

cussed in [31], the nonlinear battery model is shown in Figure 2.1. This model

consists of a controlled voltage source and an internal resistance. Simulation re-

sults of this easy-to use model is shown in Figure 2.2. This figure illustrates the

performance of a 7.2 volts, 5.4 Ampere-hour li-ion battery model. In the figure,

voltage vs time, current vs time and SOC vs time response of the generic battery is

plotted. Here, temperature effect on battery parameter is neglected and only SOC

is considered as a state variable. The model is plotted in MATLAB with the help

of Simscape Power System toolbox. In figure 2.1, an equation for controlled voltage

source is given. Here, E = no-load voltage (V), E0 = battery constant voltage (V),

K = polarisation voltage (V), Q = battery capacity (Ah),
∫
idt = actual battery

charge (Ah), A= exponential zone amplitude (V), B= exponential zone time con-

stant inverse (Ah)−1, Vbatt= battery voltage (V), R=internal resistance (ohms), and
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Figure 2.1: Nonlinear Battery Model

i=battery current (A).

Figure 2.2: Current, Voltage and SOC of a li-ion Battery
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2.2 Three RC Model

A comparative study on a number of battery models was provided in [22]. A De-

tailed explanation was given on models such as Shepherd model, Randles model

and Thevenin model. Shepherd model is the simplest in terms of the parameter

estimation, however, it has a relative error of more than 10 units when a driv-

ing cycle was applied. The Randles model, even though is good for applications

with voltage variations lower than 5 volts, did not reflect the actual dynamics of a

battery. On the other hand, Thevenin electrical equivalent circuit model (EECM)

showed robustness under fast variations of current and voltage. Second, It has only

a relative error of below 5% when ECE15 drive cycle was applied. In addition, it is

best in reproducing the chemical behaviors of an EV battery. Therefore, thevenin

equivalent circuit is most suitable for EV applications. The model of the circuit is

shown in Figure 2.3.

Figure 2.3: Electric Thevenin Model with 3 RC-Branches

Here, the model includes an internal resistance R0(SOC) parameter, which is a

SOC dependent element. In fact, all the parameters of this model is dependent on

SOC. Elements such as Em represents open circuit voltage and R1,R2, R3, C1,C2,
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(a) R0 (b) R1

(c) R2 (d) R3

Figure 2.4: Parameter Estimations

C3 represent the elements of a bias network. The parameter estimation for this

3-branched model is complicated and requires more look up tables. Figure 2.4 and

Figure 2.5 show the estimated parameter values. Parameters were estimated from

a MATLAB parameter estimation toolbox. These pictorial presentation describes

the parameter values with respect to the full range of SOC (0 to 1). Therefore,

SOC vs voltage or capacitance or resistance are measured for the respective cases.
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(a) Em (b) C1

(c) C2 (d) C3

Figure 2.5: Parameter Estimations(contd.)

2.3 Dual RC Model

A second-order RC (2 RC) (shown in Figure 2.6) EECM with nonlinear dynamic

equations is used to investigate the output or terminal characteristics of a lithium-

ion (li-ion) battery under different charging/discharging and temperature condi-

tions. This dual RC model is considered for its good balance between complexity

and accuracy. The circuit model consists of R0, R1, C1, R2 and C2, where R0 in-

dicates the instantaneous voltage drop of the battery terminal voltage, and the RC
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networks expresses the long-term and short-term transient behavior of the battery

and all the elements are SOC dependent.For this model, the states are two capacitor

voltages and SOC. The capacitor voltages are kept equal because they are equal at

the beginning of the simulation[12]. Dynamic equations of the circuit elements are

given below [9],[25],[29],[28].

VOC(SOC) =− 1.031.exp−35∗SOC + 3.685 + 0.2156 ∗ SOC

− 0.1178 ∗ SOC2 + 0.3201 ∗ SOC3
(2.3.1)

R0(SOC) = −0.1562.exp−24.37∗SOC + 0.07446 (2.3.2)

R1(SOC) = −0.3208.exp−29.14∗SOC + 0.04669 (2.3.3)

C1(SOC) = −752.9exp−13.51∗SOC + 703.6 (2.3.4)

R2(SOC) = −6.603.exp−155.2∗SOC + 0.04984 (2.3.5)

C2(SOC) = −6056.exp−27.12∗SOC + 4475 (2.3.6)
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Figure 2.6: 2-RC Branched Battery Model

2.3.1 Battery State-Space Model

The dynamics of this dual RC model can also be expressed in state-space form, which

is also a desired state dependent coefficient (SDC) form for this battery model. An

appropriate SDC form of a nonlinear model makes it controllable or at least stable.

Hence, expressing it in a SDC form is very crucial for optimal control applications.

ẋ(t) = Ax(t) +Bu(t) (2.3.7)

Matrices A and B are SOC dependent. So, A(SOC) is n − by − n state matrix,

B(SOC) is n− by − r control matrix and the control signal u(t) is unconstrained.

Equation 2.3.1 is also a desired SDC form of this system. And the parameters
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A(SOC) and B(SOC) are

A(SOC) =


A11 0 0

0 A22 0

0 0 0


and,

B(SOC) =


B11

B21

B31


where,

A11 =
−1

R1(SOC)C1(SOC)
,

A22 =
−1

R2(SOC)C2(SOC)
,

B11 =
1

C1(SOC)
,

B21 =
1

C2(SOC)
,

and

B31 =
−η
Q
,

Here, η represents coulombic efficiency (energy loss) of the battery. It is assumed 1

for this study . Q, a constant, expresses total capacity or maximum coulomb hours

of a battery. The input u(t) of this circuit is I(t), it is a constant current profile

and it is assumed 1A for this study. The output equation of the battery/terminal
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voltage equation of the battery can be expressed as

y(t) = Vbatt = VOC(SOC)− V1(SOC)− V2(SOC)−R0(SOC).I(t), (2.3.8)

V1 and V2 is calculated by applying Kirchhoff’s law,

V̇1(SOC) =
−V1(SOC)

R1(SOC)C1(SOC)
+

u(t)

C1(SOC)
, (2.3.9)

V̇2(SOC) =
−V2(SOC)

R2(SOC)C2(SOC)
+

u(t)

C2(SOC)
(2.3.10)

So, the state space representation of the battery model is


ẋ1

ẋ2

ẋ

 =


A11 0 0

0 A22 0

0 0 0



x1

x2

x

 +


B11

B21

B31

[
u
]

(2.3.11)

Here, x1 and x2 is the voltage drop across the capacitor and x is the state of

charge (SOC). These three are state variables of the system. Note that, SOC is not

estimated in this work rather it is taken as a state. Therefore, when SDRE is in

effect, SOC changes in each iteration.
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Chapter 3

Hard and Soft Control Techniques

3.1 Optimal Control

Optimal control aims to optimize a plant (process) by finding a control input. To ob-

tain a control input, optimal control minimize or maximize a process by satisfying a

specific performance criterion. The plant should have following three characteristics

in order to be considered as an optimal control problem:

1. A mathematical model of the plant that need to be controlled. The model

generally expressed as a dynamic system with state variables.

2. Description of a performance index such as reaching a target in a minimal

amount of time.

3. Description of boundary conditions or physical constraints needed to exceed

to reach the target.

An optimal control problem generally derived by Pontryagin’s minimum principal

or by Hamilton-Jacobi-Bellman (HJB) equation. In addition, calculus of variation
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plays significant role to obtain a solution for optimal control problems. Examples

of optimal control problems are

1. Reaching moon with minimum fuel expenditure ( Fuel- Optimal Control Sys-

tem). Mathematical model for this system would be a dynamic system of a

spacecraft with associated state variables such velocity, thrust of a rocket.

2. Reaching from point A to point B in minimal time, etc.

3. Some of the areas that can be optimally controlled are biomedical systems,

aerospace systems, automotive systems etc.

A vast majority of these systems are nonlinear and they contain differential terms.

Therefore, an urgent need for nonlinear control systems has increased over the last

decades, which has led to develop nonlinear control system techniques. On such

technique is state dependent Riccati equation (SDRE), which is explained in the

following section.

3.1.1 Fundamentals of SDRE

Emerged from the celebrated algebraic Riccati equation (ARE) [5, 8], SDRE also

referred to as the Frozen Riccati Equation (FRE) which is able to approximate the

solution of a nonlinear system at each instant of time. First, the algorithm trans-

forms a non-linear system into a linear like structure and minimizes a non-quadratic

performance index to a quadratic-like structure. Then it approximates a solution

that depends on solving the algebraic Riccati equation (ARE) for the steady state

value and applies a change of variables procedure [27] to convert a differential Ric-

cati equation (DRE) to a linear differential Lyapunov equation (DLE) [26]. Finally,

the procedure evaluates the coefficients of the resulting equations based on the cur-

rent state values at each time interval and freezes these coefficients from current
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time to the next time step. The Lyapunov equation is solved in a closed form at

each interval during online implementation. The use of Lyapunov-type equations

in solving optimal problems is given in [32].

3.1.2 Applications of SDRE

In the last decade, SDRE become widely renowned among the control commu-

nity for its effectiveness in designing nonlinear feedback controller. Applications

of SDRE method can be found in various areas such as tracking a robotic arm.

Arm motions, made of kinetic energy and potential energy equations are nonlin-

ear. With the help of these nonlinear equations, a nonlinear dynamic system was

constructed and optimal tracking theory was applied. Simulations show a suc-

cessful result as a Two-link finger (thumb) and a three-link finger (index) track a

sinusoidal trajectory[15].Next, in a different research, a combination of the state-

dependent differential Riccati equation technique and Kalman filtering algorithm

gives satisfactory results in designing a controller for wind energy conversion sys-

tem (WECS). Kalman filtering algorithm was used to measure corrupted nonlinear

states of the system[17]. In recent past, in a different work, researchers proposed

a simplified approach for SDRE technique. This approach doesn’t assume SDRE

coefficients constant during the small intervals of the finite horizon period and finds

sub-optimal solution. The novel theory is validated by designing a control for sixth

order variable speed, variable pitch wind energy conversion system[24].

3.2 Finite-Horizon Nonlinear Systems

In this section, the control technique that was applied on the EV battery model

is explained. We are considering a finite horizon non-linear deterministic system.
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The section shows step-by-step, how a nonlinear system can be formed and how to

obtain a solution for the above case.

3.2.1 Statement of the Problem

Suppose, the nonlinear system is,

ẋ(t) = f(x) + g(x)u(t), (3.2.1)

y(t) = h(x), (3.2.2)

where, x is nth state vector, u(t) is rth control vector and y(t) is mth output

vector. The system is transformed to a linear-like structure, which termed as state

dependent coefficient (SDC) form,

ẋ(t) = A(x)x(t) + B(x)u(t), (3.2.3)

y(t) = C(x)x(t), (3.2.4)

where, f(x) = A(x)x(t), B(x)= g(x), and h(x) = C(x)x(t). Here, A(x) is n-by-

n state matrix and B(x) is n-by-r control matrix. The goal is to obtain a state

feedback optimal control of the form u(x,t) = −K(x,t)x(t), which minimizes a cost

function [23] given as,

J(x,u) =
1

2
x′(tf )Fx(tf )+

1

2

∫ tf

t0

[x′(t)Q(x)x(t) + u′(x)R(x)u(x)] dt, (3.2.5)

where, Q(x) is n-by-n dimensional error weighted matrix and R(x) is r-by-r
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dimensional control weighted matrix. In order to keep the closed loop error e(t)

small and error squared non-negative, Q(x) must be a positive semi-definite matrix.

For the same purpose, the other requirements should be fulfilled, such as terminal

cost weighted matrix F (also n-by-n dimensional) should be symmetric and positive

semi-definite and the control weighted matrix, R(x) must be a symmetric positive

definite matrix. x′(t)Q(x)x(t) is a measure of state accuracy and u′(x)R(x)u(x) is

a measure of control effort.

3.2.2 Finite-Horizon Tracking for Deterministic Nonlinear

Systems

Consider the given nonlinear state-dependent system (3.2.3) and (3.2.4) and z(t) is

the desired output or trajectory. The goal is to eliminate the closed-loop error by

minimizing the given cost function

J(x,u) =
1

2
x′(tf )Fx(tf ) +

1

2

∫ tf

t0

[x′(t)Q(x)e(t) + u′(x)R(x)u(x)] dt, (3.2.6)

where the closed-loop error e(t) = z(t)− y(t).

3.2.3 Solution for Finite-Horizon Tracking Problem

The optimal closed-loop control input is given as

u(x) = −R−1B′(x)[P(x)x− g(x)] (3.2.7)

where P(x), is symmetric and positive-definite, and is the solution of the differ-
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ential Riccati equation (SDRE) that is given by

−Ṗ(x) = P(x)A(x) + A′(x)P(x)−P(x)B(x)R−1B′(x)P(x) + C′(x)Q(x)C(x)

(3.2.8)

with the final condition

P(x, tf ) = C′(tf )FC(tf ) (3.2.9)

and g(x) is a solution of the state-dependent non-homogeneous VDE which has

the form

ġ(x) = −[A(x)−B(x)R−1(x)B′(x)P(x)]′g(x)−C′(x)Q(x)z(x) (3.2.10)

with the final condition

g(x, tf ) = C′(tf )Fz(tf ) (3.2.11)

The optimal state law of the nonlinear closed-loop optimal tracking state-dependent

system can be obtained as

ẋ(t) = [A(x)−B(x)R−1(x)B′(x)P(x)]x(t) + B(x)R−1(x)B′(x)g(x) (3.2.12)

Similarly, an approximate analytic solution was developed based on the algebraic

Riccati equation (ARE) to solve the differential Riccati equation (SDRE). The fol-

lowing procedure presents the steps of the solution for the finite-horizon differential
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(SDRE) tracking problem[16]:

1. Calculating the steady state value Pss(x) from an algebraic Riccati equation

(ARE)

Pss(x)A(x) + A′(x)Pss(x)−Pss(x)B(x)R−1(x)B′(x)Pss(x) + Q(x) = 0

(3.2.13)

2. Applying a change-of-variables procedure and assuming

K(x, t) = [P(x, t)−Pss(x)]−1 (3.2.14)

3. Calculating the closed-loop matrix Acl(x) as

Acl(x) = A(x)−B(x)R−1B′(x)Pss(x) (3.2.15)

4. Calculating D by solving the algebraic Lyapunov equation (ALE) [10]

AclD + DA′cl −BR
−1

B′ =0 (3.2.16)

5. Solving the differential Lyapunov equation (DLE)

K̇(x, t) = K(x, t)A′cl(x) + Acl(x)K(x,t)−B(x)R−1B′(x) (3.2.17)
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The solution of (3.2.17), as shown by [3], is given by

K(x, t) = eAcl(t−tf )(K(x,tf )−D)eAcl
′(t−tf ) + D (3.2.18)

6. Applying a change-of-variables procedure to obtain P(x, t) as

P(x, t) = K−1(x, t) + Pss(t) (3.2.19)

Calculating the steady state value gss(x) from the equation

gss(x) = [A(x)−B(x)R−1(x)B′(x)Pss(x)]′−1C′(x)Q(x)z(x) (3.2.20)

7. Applying a change-of-variables procedure and assume

Kg(x, t) = [g(x, t)− gss(x)] (3.2.21)

8. Solving the differential equation

K̇g(x, t) = −[A(x)−B(x)R−1(x)B′(x)P(x, t)]′Kg(x, t) (3.2.22)

The solution of (3.2.22) can be found as

Kg(x, t) = e−(A−BR−1B′P)′(t−tf )[g(x, tf )− gss(x)] (3.2.23)
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9. Applying a change-of-variables procedure and obtain g(x, t)

g(x, t) = Kg(x, t) + gss(x) (3.2.24)

10. Thus, the optimal control input u(x, t) is

u(x, t) = −R−1(x)B′(x)[P(x, t)x(t)− g(x, t)] (3.2.25)

Figure 3.1: Flow Chart for Finite-Horizon Tracking with SDRE

Flow-chart in Figure 3.1 explains the whole procedure. The algorithm for finding
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the control input u(x, t) starts from an initial time, t = t0 and iterates until a final

time, t = tf . In each iteration or in each time step ∆t, the system goes through

the 7 steps that are already descried. Generally, a final time denotes the time until

when simulation should stop.

3.3 Soft Control Techniques

Rapid development in the field of soft control techniques had been seen in recent

years. It is also called intelligent control systems. An intelligent control system

is necessary for a very accurate modeling of a complex nonlinear system. Because

it offers a reduction in modeling error with the help of control algorithms such

as neural networks and fuzzy systems, it can model a controller when the system

dynamic is not even properly known. So, fusion of soft control and hybrid control

is extremely useful to model a very accurate control system [21], [6]. A fuzzy logic

based controller for parallel hybrid electric vehicle was proposed by Khoucha and

Benbouzid and Kheloui (2010). The PHEV required driving torque was generated

by both ICE and induction motor (IM). They have used SOC of batteries and

desired driving torque to design the controller with a view to reducing carbon-di-

oxide emission and fuel economy [18].

A fusion of SC and HC control technique is used here to design a hybrid con-

troller. The reference trajectory is generated from a S-type fuzzy membership func-

tion (MF). Then properly choosing values of Q and R and with applying the SDRE

technique, a controller is designed.

26



Figure 3.2: S-Type MF

3.3.1 Fuzzy Logic

The paper titled ”Fuzzy Sets” [34] initiated fuzzy mathematics, a branch of math-

ematics that deals with vague, unclear and uncertainty of information. The uncer-

tainty ranges from absolute true to absolute false. Fuzzy logic uses membership

functions to characterize fuzziness of a variable. Out of six membership functions,

S-type MF is chosen for designing a hybrid controller. A basic S-type function is

shown in Figure 3.2.It shows a relationship between two variables. At the beginning,

y coordinate has a smaller value and at the end, it steadies to a bigger coordinate.

This scenario can be think of an EV battery charging, if SOC is considered at x-

axis and battery voltage is considered at y-axis. The EV will come to the charging

station with a low SOC value and will leave the station with a high SOC value.

f(x, a, c) =
1

1 + exp−a(x−c)
(3.3.1)
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Chapter 4

MATLAB Simulation Results

This chapter discusses the simulation results. First, a nonlinear finite horizon track-

ing SDRE algorithm was compiled in MATLAB and then three reference voltages

were chosen as reference voltages. The three reference voltages are

1. constant 5 volts for developing a controller with optimal control (Hard control,

HC) techniques.

2. constant 12 volts for developing a controller with optimal control (Hard con-

trol, HC) techniques.

3. A reference voltage with the help of a fuzzy membership function for devel-

oping a controller with hybrid control (fusion of HC and SC) techniques.
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4.1 Results for a Constant Voltage of 5 Volts

Consider, weighted matrices as

Q =


1016 1014 1014

1014 1016 1014

1014 1014 1016


and

R =
[
313000

]
;

The value of these weighted matrices plays a very important role, especially in track-

ing problems, where the goal of output is to follow a certain reference trajectory.

Without a proper set of weighted matrix, usually there is always a deviation be-

tween the trajectories. Therefore, value of Q and R were chosen by trial and error

process to achieve a best tracking scenario.

A constant 5-volts curve was selected as a charging profile. The profile was

successfully tracked by the terminal voltage of the dual RC battery. The tracking

controller had the terminal voltage settle to 5 volts before an initial spike, which

occurred at the beginning of simulation and lasted for a few milliseconds. Figure 4.1

illustrates the tracking scenario obtained from a MATLAB simulation. In Figure

4.1(a) the deviation between the two curves is very negligible. Generally, error is

calculated by this formula error = reference− terminal. Needless to say that this

scenario is also depicted in Figure 4.1(b).
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(a) Desired & Actual Trajectories for 5V Tracking (b) Errors In 5V Tracking

Figure 4.1: Performance of 5V Tracking

4.2 Results for a Constant Voltage of 12 Volts

Again, the weighted matrices were chosen in a same way. Their values are-

Q =


1016 1014 1014

1014 1016 1014

1014 1014 1016


and

R =
[
5160000

]
;

A constant 12-volts curve was considered as a reference voltage. After the ephemeral

overshoot the terminal voltage curve nearly caught up with the reference voltage.

Figure 4.2 shows the simulation of first three seconds. In this time period, differ-

ence between the trajectories is little larger. However, the terminal voltage caught

up with the reference voltage and showed a good tracking performance for the re-

maining 7 seconds. MATLAB simulation for tracking a 12 volt constant curve is
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Figure 4.2: Initial Settling Time for 12V Tracking

illustrated in Figure 4.3(a) and 4.3(b). The error for this case is measured in a same

way explained before.

4.3 Results with a Soft Control Technique

Consider, weighted matrices as

Q =


1011.3 755.3 755.3

755.3 1011.3 755.3

755.3 755.3 1011.3

 ∗ 1.3540
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(a) Desired & Actual Trajectories for 12V
TRACKING

(b) Errors In 12V Tracking

Figure 4.3: Performance of 12V Tracking

and

R =
[
291580

]
;

The developed hybrid controller exhibited a significant tracking performance. The

controller had the terminal voltage track a given trajectory, which was generated

from a S-type fuzzy membership function. The trajectory started from a low value

and gradually reached to 12V. The terminal voltage, with some errors tracked the

reference voltage in a same way. The associated errors are small in margin and

may be reduced with tuning the values of weighted matrices, Q and R. MATLAB

simulation illustrates the tracking performance in Figure 4.4(a) and the associated

tracking error is shown in the Figure 4.4(b).
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(a) Tracking a Fuzzy Function (b) Associated Errors

Figure 4.4: Performance of Hybrid Control Tracking
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Chapter 5

Conclusion and Future Work

5.1 Discussion and Conclusion

The tracking results suggest that a good tracking performance has been obtained

overall. This control unit can be deployed in EVs for achieving smoother charging.

Based on this work, a manuscript was also submitted for an IEEE conference. The

title of the manuscript is ”Advanced Tracking Strategies for Charging Electric Vehi-

cle Batteries”. The manuscript was prepared for the upcoming eleventh Conference

on Innovative Smart Grid Technologies (ISGT 2020), sponsored by the IEEE Power

Energy Society (PES), will be held on February 17-20, 2020 at the Grand Hyatt

Washington, Washington DC.

5.2 Future Work

Since successful tracking was possible with 2-RC battery model this research can

be continued to accomplish the following goals:
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1. Finding an advanced finite-horizon nonlinear tracking strategy for a 3-RC

Thevenin battery model. For its robustness, fast variation ability, a Thevenin

model is most suitable for EV applications. Therefore, with SDRE technique,

a SOC dependent tracking strategy development is one of the prime concerns.

2. The main idea behind fusin of hard and soft control technique is capturing

the best features of a control mechanism. A fusion of hard and soft control

technique with a 3-RC Thevenin model will be an one of its kind with ensuring

maximum tracking ability hence producing optimal charging.
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Appendix 1

Appendix 1 present MATLAB codes that were used in this thesis.
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Codes for 5V tracking

1 clc ;

2 c l e a r v a r s ;

3 x = [ 0 . 0 3 ; 0 . 0 3 ; 0 . 0 2 ] ;

4 Q = [10ˆ16 10ˆ14 10ˆ14 ; 10ˆ14 10ˆ16 10ˆ14 ; 10ˆ14 10ˆ14

1 0 ˆ 1 6 ] ;

5 R = 313000;

6 % C=[1 0 0;0 1 0;0 0 1 ] ;

7 t f =10;

8 Cuse=1;

9 F=eye (3 ) ;

10 Ptf = 1∗eye (3 ) ;

11 Zt f = [ 0 ; 0 ; 0 ] ;

12 % g t f=C’∗F∗Z t f ;

13 g t f=F∗Zt f ;

14 t = 0 ;

15 h=1;

16 de l t a = 0 . 0 0 1 ;

17 while ( t <t f )

18

19

20 I (h) =1;

21

22 Voc=−1.031∗exp(−35∗(x (3 ) ) ) +3.685+0.2156∗(x (3 ) ) −0.1178∗(x (3 ) )

ˆ2+0.321∗(x (3 ) ) ˆ3 ;

23 Rs=0.1562∗exp(−24.37∗(x (3 ) ) ) +0.07446;

24 R1=0.3208∗exp(−29.14∗(x (3 ) ) ) +0.04669;
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25 C1=−752.9∗exp(−13.51∗(x (3 ) ) ) +703.6;

26 R2=6.603∗exp(−155.2∗(x (3 ) ) ) +0.04984;

27 C2=−6056.6∗exp(−27.12∗(x (3 ) ) ) +4475;

28 de s i r ed1 (h) =5;

29 a11=−1/(R1∗C1) ;

30 a22=−1/(R2∗C2) ;

31 A = [ a11 0 0 ; 0 a22 0 ; 0 0 0 ] ;

32

33 B=[(1/C1) (1/C2) −1/(Cuse ∗3600) ] ’ ;

34 Pss = −care (−A,B,Q,R) ;

35

36 Ktf = inv ( Ptf−Pss ) ;

37 E= B∗ inv (R)∗B ’ ;

38 Acl = A − E∗Pss ;

39 D = lyap ( Acl ,−E) ;

40 z = [ de s i r ed1 (h) ; d e s i r ed1 (h) ; 0 ] ;

41 KK = expm( Acl ∗( t−t f ) ) ∗( Ktf−D)∗expm( Acl ’ ∗ ( t−t f ) ) +D;

42 Pe = inv (KK) + Pss ;

43 % g s s = −inv (A − B∗( inv (R) )∗B’∗Pe) ’∗C’∗Q∗ z ;

44 gs s = −inv (A − B∗( inv (R) )∗B’∗Pe) ’∗Q∗z ;

45 AA = A − B∗ inv (R)∗B’∗Pe ;

46 BB = B∗ inv (R)∗B ’ ;

47 Kg = expm( (A−AA) ’∗ ( t−t f ) ) ∗( gt f−gs s ) ;

48 ge = gss + Kg ;

49 xdot = AA∗x + BB∗ge ;

50

51 c o n t r o l u = −inv (R)∗B’ ∗ ( Pe∗x − ge ) ;
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52 s t a t e 1 (h)=x (1) ;

53 s t a t e 2 (h)=x (2) ;

54 output (h)=Voc−s t a t e 1 (h)−s t a t e 2 (h)−Rs∗ I (h) ;

55

56

57 d c (h) = c o n t r o l u (1 ) ;

58 error (h) = de s i r ed1 (h) − output (h) ;

59

60 x =x+de l t a ∗xdot ;

61 h=h+1

62 t = t + de l t a ;

63

64 h end = h ;

65

66

67 end

68

69

70 t = ( 0 : d e l t a : t f ) ;

71 i f ( t f<5 | | t f >18)

72 t = ( de l t a : d e l t a : t f ) ;

73 end

74 % Optimal Contro l

75 f igure ; box ; hold on ; grid on ;

76 xlabel ( ’Time [ s ec ] ’ ) ; ylabel ( ’ Optimal Control ’ )

77 % a x i s ( [ 0 10 −10ˆ132 0 ] )

78 plot ( t , d c , ’ LineWidth ’ , 3 )
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79

80 f igure

81 plot ( t , I , ’ g ’ , ’ Linewidth ’ , 3 )

82 t i t l e ( ’ Input Current ’ )

83 xlabel ( ’ time ’ )

84 grid on

85

86

87 f igure ; box ; hold on ; grid on ;

88 t i t l e ( ’ Battery Terminal Voltage f o r 2RC c i r c u i t ’ )

89 xlabel ( ’Time [ s ec ] ’ ) ; ylabel ( ’ Optimal State ’ ) ;

90 plot ( t , output , ’b ’ , ’ Linewidth ’ , 3 )

91 plot ( t , des i r ed1 , ’ r ’ , ’ LineWidth ’ , 3 ) ;

92

93 f igure ; box ; hold on ; grid on ;

94 t i t l e ( ’ 2RC−5V ’ )

95 xlabel ( ’Time [ s ec ] ’ ) ; ylabel ( ’ Tracking Error ’ ) ;

96 plot ( t , error , ’m’ , ’ LineWidth ’ , 3 )
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Codes for 12V tracking

1 clc ;

2 c l e a r v a r s ;

3 x = [ 0 ; 0 ; 0 ] ;

4 % Q = [10ˆ15 .9 0 0 ; 0 10ˆ15.9 0 ; 0 0 1 0 ˆ 1 5 . 9 ] ; % 3−by−3

5 % Q = [10ˆ−9 10ˆ−9 10ˆ−9; 10ˆ−9 10ˆ−9 10ˆ−9; 10ˆ−9 10ˆ−9

10ˆ−9];

6 Q = [10ˆ16 10ˆ14 10ˆ14 ; 10ˆ14 10ˆ16 10ˆ14 ; 10ˆ14 10ˆ14

1 0 ˆ 1 6 ] ;

7

8 % R=1e10 ;

9 R = 516∗10000;

10

11

12 t f =10;

13 Cuse=1;

14 F=eye (3 ) ;

15 Ptf = 1∗eye (3 ) ;

16 Zt f = [ 0 ; 0 ; 0 ] ;

17 g t f=F∗Zt f ;

18 t = 0 ;

19 h=1;

20 de l t a = 0 . 0 0 1 ;

21 while ( t <t f )

22

23

24 % I ( h )=square (2∗ p i ∗ ( 0 . 2 5 ) ∗ t ) ;
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25 I (h) =5;

26

27

28 Voc=−1.031∗exp(−35∗(x (3 ) ) ) +3.685+0.2156∗(x (3 ) ) −0.1178∗(x (3 ) )

ˆ2+0.321∗(x (3 ) ) ˆ3 ;

29 Rs=0.1562∗exp(−24.37∗(x (3 ) ) ) +0.07446;

30 R1=0.3208∗exp(−29.14∗(x (3 ) ) ) +0.04669;

31 C1=−752.9∗exp(−13.51∗(x (3 ) ) ) +703.6;

32 R2=6.603∗exp(−155.2∗(x (3 ) ) ) +0.04984;

33 C2=−6056.6∗exp(−27.12∗(x (3 ) ) ) +4475;

34 d e s i r e d (h) =12;

35 % d e s i r e d 1 ( h )=square (2∗ p i ∗ ( 0 . 2 5 ) ∗ t ) ;

36

37 a11=−1/(R1∗C1) ;

38 a22=−1/(R2∗C2) ;

39 A = [ a11 0 0 ; 0 a22 0 ; 0 0 0 ] ; % 3−by−3 A( x ) f o r Uzun Model

40 % A = [(−1/(R1∗C1) ) 0;0 (−1/(R2∗C2) ) ; ] ; % 2−by

−2 A( x ) f o r Uzun Model

41 % A=−A;

42 B=[(1/C1) (1/C2) −1/(1∗3600) ] ’ ; % 3−by−1 B( x ) f o r Uzun Model

43

44 Pss = −care (−A,B,Q,R) ;

45

46 % [K,P, e ] = l q r (A,B,Q,R) ;

47 % Pss = P;

48 %

49 Ktf = inv ( Ptf−Pss ) ;
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50 E= B∗ inv (R)∗B ’ ;

51 Acl = A − E∗Pss ;

52 D = lyap ( Acl ,−E) ;

53 z = [ d e s i r e d (h) ; d e s i r e d (h) ; 0 ] ;

54 %

55 KK = expm( Acl ∗( t−t f ) ) ∗( Ktf−D)∗expm( Acl ’ ∗ ( t−t f ) ) +D;

56 % Z t f = [ 0 ; 0 ; 0 ] ;

57 % g t f=C’∗F∗Z t f ;

58 Pe = inv (KK) + Pss ;

59 % g s s = −inv (A − B∗( inv (R) )∗B’∗Pe) ’∗C’∗Q∗ z ;

60 gs s = −inv (A − B∗( inv (R) )∗B’∗Pe) ’∗Q∗z ;

61 AA = A − B∗ inv (R)∗B’∗Pe ;

62 BB = B∗ inv (R)∗B ’ ;

63 Kg = expm( (A−AA) ’∗ ( t−t f ) ) ∗( gt f−gs s ) ;

64 ge = gss + Kg ;

65 xdot = AA∗x + BB∗ge ;

66

67

68 c o n t r o l u = −inv (R)∗B’ ∗ ( Pe∗x − ge ) ;

69 s t a t e 1 (h)=x (1) ;

70 s t a t e 2 (h)=x (2) ;

71 output (h)=Voc−s t a t e 1 (h)−s t a t e 2 (h)−Rs∗ I (h) ;

72

73

74 d c (h) = c o n t r o l u (1 ) ;

75 error (h) = d e s i r e d (h) − output (h) ;

76
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77 x =x+de l t a ∗xdot ;

78 h=h+1

79 t = t + de l t a ;

80

81 h end = h ;

82

83

84 end

85

86

87 t = ( 0 : d e l t a : t f ) ;

88 i f ( t f<5 | | t f >18)

89 t = ( de l t a : d e l t a : t f ) ;

90 end

91

92 % p l o t ( t , d e s i r e d )

93

94 % f i g u r e

95 % p l o t ( t , I , ’ g ’ , ’ Linewidth ’ , 3 )

96 % t i t l e ( ’ Input Current ’ )

97 % x l a b e l ( ’ time ’ )

98 % y l a b e l ( ’ Current (A) ’ )

99 % g r i d on

100 %

101 % f i g u r e

102 % p l o t ( t , des i red , ’ b ’ , ’ Linewidth ’ , 3 )

103 % t i t l e ( ’ Desired Trajectory ’ )
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104 % x l a b e l ( ’ time ’ )

105 % y l a b e l ( ’ Vol tage (V) ’)

106 % g r i d on

107 %

108 % % Optimal Contro l

109 f igure ; box ; hold on ; grid on ;

110 xlabel ( ’Time [ s ec ] ’ ) ; ylabel ( ’ Optimal Control ’ )

111 % a x i s ( [ 0 10 −10ˆ132 0 ] )

112 plot ( t , d c , ’ LineWidth ’ , 3 )

113

114 f igure ; box ; hold on ; grid on ;

115 t i t l e ( ’ Battery Terminal Voltage f o r 2 RC c i r c u i t ’ )

116 xlabel ( ’Time [ s ec ] ’ ) ; ylabel ( ’ Optimal Output ’ ) ;

117 plot ( t , output , ’b ’ , ’ Linewidth ’ , 3 )

118 plot ( t , de s i r ed , ’ r ’ , ’ LineWidth ’ , 3 ) ;

119

120

121

122 f igure ; box ; hold on ; grid on ;

123 t i t l e ( ’ Battery Terminal Voltage f o r 2 RC c i r c u i t ’ )

124 xlabel ( ’Time [ s ec ] ’ ) ; ylabel ( ’ Optimal Output ’ ) ;

125 axis ( [ 0 1 −15 1 5 ] )

126 % p l o t ( t , output , t , des i red , ’ LineWidth ’ , 3 ) ;

127 plot ( t , output , ’b ’ , ’ Linewidth ’ , 3 )

128 plot ( t , de s i r ed , ’ r ’ , ’ LineWidth ’ , 3 ) ;

129

130 f igure ; box ; hold on ; grid on ;
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131 t i t l e ( ’ Battery Terminal Voltage f o r 2 RC c i r c u i t ’ )

132 xlabel ( ’Time [ s ec ] ’ ) ; ylabel ( ’ Optimal Output ’ ) ;

133 axis ( [ 0 3 −15 1 5 ] )

134 % p l o t ( t , output , t , des i red , ’ LineWidth ’ , 3 ) ;

135 plot ( t , output , ’b ’ , ’ Linewidth ’ , 3 )

136 plot ( t , de s i r ed , ’ r ’ , ’ LineWidth ’ , 3 ) ;

137

138 f igure ; box ; hold on ; grid on ;

139 t i t l e ( ’ Battery Terminal Voltage f o r 2 RC c i r c u i t ’ )

140 xlabel ( ’Time [ s ec ] ’ ) ; ylabel ( ’ Optimal Output ’ ) ;

141 axis ( [ 1 3 −15 1 5 ] )

142 % p l o t ( t , output , t , des i red , ’ LineWidth ’ , 3 ) ;

143 plot ( t , output , ’b ’ , ’ Linewidth ’ , 3 )

144 plot ( t , de s i r ed , ’ r ’ , ’ LineWidth ’ , 3 ) ;

145

146 f igure ; box ; hold on ; grid on ;

147 xlabel ( ’Time [ s ec ] ’ ) ; ylabel ( ’ Tracking Error ’ ) ;

148 t i t l e ( ’ Terminal vo l tage−12V ’ )

149 % % a x i s ( [ 0 10 −10ˆ132 0 ] )

150 % p l o t ( t ( 1 : 1 0 ) , e r ror ( 1 : 1 0 ) , ’m− . ’ , ’ LineWidth ’ , 3 ) ;

151 plot ( t , error , ’m’ , ’ LineWidth ’ , 3 )

152

153 mean( error )

154

155 % f i g u r e ; box ; ho ld on ; g r i d on ;

156 % x l a b e l ( ’ Time [ sec ] ’ ) ; y l a b e l ( ’ Tracking Error ’ ) ;

157 % % % a x i s ( [ 0 10 −10ˆ132 0 ] )
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158 % % p l o t ( t ( 1 : 1 0 ) , e r ror ( 1 : 1 0 ) , ’m− . ’ , ’ LineWidth ’ , 3 ) ;

159 % p l o t ( t , error , ’m’ , ’ LineWidth ’ , 3 )
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Codes for 12V fuzzy control technique

1 clc ;

2 c l e a r v a r s ;

3 x = [ 0 . 0 3 ; 0 . 0 3 ; 0 . 3 ] ;

4 % Q = 4∗ [10ˆ11.3 75ˆ5.3 7 5 ˆ 5 . 3 ; 75ˆ5.3 10ˆ11.3 7 5 ˆ 5 . 3 ;

75ˆ5.3 75ˆ5.3 1 0 ˆ 1 1 . 3 ] ; %l o c k e d p a i r a

5 % R = 0.856∗456342; %l o c k e d p a i r a

6 Q = 27 .45∗ [ 1 0ˆ11 . 3 75ˆ5 .3 7 5 ˆ 5 . 3 ; 75ˆ5 .3 10ˆ11.3 7 5 ˆ 5 . 3 ;

75ˆ5 .3 75ˆ5 .3 1 0 ˆ 1 1 . 3 ]∗ 0 . 0 3 ;

7 R = 0.433∗678904 ;

8 % C=[1 0 0;0 1 0;0 0 1 ] ;

9 t f =10;

10 Cuse=1;

11 F=eye (3 ) ;

12 Ptf = 10∗eye (3 ) ;

13 Zt f = [ 0 ; 0 ; 0 ] ;

14 % g t f=C’∗F∗Z t f ;

15 g t f=F∗Zt f ;

16 t = 0 ;

17 h=1;

18 de l t a = 0 . 1 ;

19 while ( t <t f )

20

21

22 I (h) =5;

23

24 Voc=−1.031∗exp(−35∗(x (3 ) ) ) +3.685+0.2156∗(x (3 ) ) −0.1178∗(x (3 ) )
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ˆ2+0.321∗(x (3 ) ) ˆ3 ;

25 Rs=0.1562∗exp(−24.37∗(x (3 ) ) ) +0.07446;

26 R1=0.3208∗exp(−29.14∗(x (3 ) ) ) +0.04669;

27 C1=−752.9∗exp(−13.51∗(x (3 ) ) ) +703.6;

28 R2=6.603∗exp(−155.2∗(x (3 ) ) ) +0.04984;

29 C2=−6056.6∗exp(−27.12∗(x (3 ) ) ) +4475;

30

31

32 % d e s i r e d 1 ( h ) =5;

33 r e f=s igmf ( t , [ 1 1 . 0 0 0 1 ] ) ;

34 % r e f=sigmf ( t , [ 3 5 ] ) ;

35 r e f =12∗ r e f ;

36 de s i r ed1 (h)=r e f ;

37

38

39 a11=−1/(R1∗C1) ;

40 a22=−1/(R2∗C2) ;

41 A = [ a11 0 0 ; 0 a22 0 ; 0 0 0 ] ;

42

43 B=[(1/C1) (1/C2) −1/(Cuse ∗3600) ] ’ ;

44 Pss = −care (−A,B,Q,R) ;

45 Ktf = inv ( Ptf−Pss ) ;

46 E= B∗ inv (R)∗B ’ ;

47 Acl = A − E∗Pss ;

48 D = lyap ( Acl ,−E) ;

49 z = [ de s i r ed1 (h) ; d e s i r ed1 (h) ; 0 ] ;

50 KK = expm( Acl ∗( t−t f ) ) ∗( Ktf−D)∗expm( Acl ’ ∗ ( t−t f ) ) +D;
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51 Pe = inv (KK) + Pss ;

52 gs s = −inv (A − B∗( inv (R) )∗B’∗Pe) ’∗Q∗z ;

53 AA = A − B∗ inv (R)∗B’∗Pe ;

54 BB = B∗ inv (R)∗B ’ ;

55 Kg = expm( (A−AA) ’∗ ( t−t f ) ) ∗( gt f−gs s ) ;

56 ge = gss + Kg ;

57 xdot = AA∗x + BB∗ge ;

58 c o n t r o l u = −inv (R)∗B’ ∗ ( Pe∗x − ge ) ;

59 s t a t e 1 (h)=x (1) ;

60 s t a t e 2 (h)=x (2) ;

61 output (h)=Voc−s t a t e 1 (h)−s t a t e 2 (h)−Rs∗ I (h) ;

62 d c (h) = c o n t r o l u (1 ) ;

63 error (h) = de s i r ed1 (h) − output (h) ;

64 x =x+de l t a ∗xdot ;

65 h=h+1

66 t = t + de l t a ;

67 h end = h ;

68

69

70 end

71

72

73 t = ( 0 : d e l t a : t f ) ;

74 i f ( t f<5 | | t f >18)

75 t = ( de l t a : d e l t a : t f ) ;

76 end

77 % Optimal Contro l
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78 % f i g u r e ; box ; ho ld on ; g r i d on ;

79 % x l a b e l ( ’ Time [ sec ] ’ ) ; y l a b e l ( ’ Optimal Control ’ )

80 % % a x i s ( [ 0 10 −10ˆ132 0 ] )

81 % p l o t ( t , d c , ’ LineWidth ’ , 3 )

82 %

83 % f i g u r e

84 % p l o t ( t , I , ’ g ’ , ’ Linewidth ’ , 3 )

85 % t i t l e ( ’ Input Current ’ )

86 % x l a b e l ( ’ time ’ )

87 % g r i d on

88

89

90 f igure ; box ; hold on ; grid on ;

91 t i t l e ( ’ Battery Terminal Voltage f o r 2RC c i r c u i t ’ )

92 xlabel ( ’Time [ s ec ] ’ ) ; ylabel ( ’ Optimal State ’ ) ;

93 plot ( t , output , ’b ’ , ’ Linewidth ’ , 3 )

94 plot ( t , des i r ed1 , ’ g ’ , ’ LineWidth ’ , 3 ) ;

95

96 f igure ; box ; hold on ; grid on ;

97 t i t l e ( ’ 2RC−12V ’ )

98 xlabel ( ’Time [ s ec ] ’ ) ; ylabel ( ’ Tracking Error ’ ) ;

99 plot ( t , error , ’ r ’ , ’ LineWidth ’ , 3 )

100 mean( error )
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Appendix 2

Appendix 2 presents a manuscript that was submitted at a Conference on Innovative

Smart Grid Technologies (ISGT 2020), sponsored by the IEEE Power Energy So-

ciety (PES), will be held on February 17-20, 2020 at the Grand Hyatt Washington,

Washington DC. The title of the manuscript is Advanced Tracking Strategies

for Charging Electric Vehicle Batteries. The manuscript was authored by-

(1) Murtaza Kamal Pasha Khan, Dept. of Electrical Engineering, University of

Minnesota Duluth, Duluth, USA. (2) D. Subbaram Naidu, Fellow, IEEE, Dept. of

Electrical Engineering, University of Minnesota Duluth, Duluth, USA and (3) Ona

Egbue, PhD, CPEM, Dept. of Informatics and Engineering Systems, University of

South Carolina Upstate, Spartanburg, USA.
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[29] Miguel Rodŕıguez Asensio. Modelling and state estimation of batteries. 2016.

71



[30] Zhe Ci Tang, Chun Lin Guo, and Dong Ming Jia. Analysis of electric vehicle

battery charging and discharging. In Applied Mechanics and Materials, volume

556, pages 1879–1883. Trans Tech Publ, 2014.

[31] Olivier Tremblay, Louis-A Dessaint, and Abdel-Illah Dekkiche. A generic bat-

tery model for the dynamic simulation of hybrid electric vehicles. In 2007 IEEE

Vehicle Power and Propulsion Conference, pages 284–289. Ieee, 2007.

[32] L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, and T. Roh. Pos-

itive Polynomials in Control, volume 312, chapter Interior-point methods for

semidefinite programming problems derived from the KYP lemma, pages 195–

238. D. Henrion and A. Garulli, Eds. Berlin, Germany: Springer Verlag, 2005.

[33] S Wijewardana, R Vepa, and MH Shaheed. Dynamic battery cell model and

state of charge estimation. Journal of Power Sources, 308:109–120, 2016.

[34] Lotfi A Zadeh. Fuzzy sets, information and control. vol, 8:338–353, 1965.

72


