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Abstract 

In Chapter 1, I present an overview of concepts that underlie the projects discussed in this 

dissertation, primarily the utility of unique DNA barcodes to tag distinct genotypes and 

subsequently link them to phenotypes. Such molecular tagging allowed us to perform multiplexed 

phenotype analysis of thousands of genotypes using next-generation sequencing (NGS) 

technologies. 

 

In Chapter 2, I present 2D Tn-Seq, a massively multiplexed experimental approach to interrogate 

genetic interactions of a microbe at the genome scale. We developed 2D-Tn, a synthetic nested 
transposon that created two orthogonal dimensions of transposon insertions in Escherichia coli, 

with the insertion positions linked by a DNA barcode. A library of Tn5 primary mutants (1st 

dimension) was pooled and the mariner transposons nested within the primary insertions were 

induced to transpose in vivo and create a secondary transposon insertion (2nd dimension) 

independent of the primary mutant location. Because each primary mutant can give rise to 

several secondary mutants, 2D Tn-Seq enabled rapid generation of nearly 100 million double 

mutant lineages within a few weeks. To demonstrate a proof-of-concept that secondary insertion 

locations could be associated with their primary insertion locations, a library of approximately 104 
secondary mutants was created from a pool of approximately 104 primary mutants. The primary 

and secondary insertion locations, and the linking barcodes were identified by short-read NGS. 

Orthogonal insertions that must be present in the same cell were linked by the shared DNA 

barcode. Current iteration of the bioinformatic analysis could associate approximately 7% of the 

secondary insertions to their primary insertion locations, demonstrating that the molecular steps 

work as designed. We expect the method, which was conceived to be portable to most 

eubacteria, to democratize acquisition of exhaustive genetic interaction datasets. 
 

In Chapter 3, I describe the development of a molecular tool that will enable peptide-based 13C 

metabolic flux analysis (MFA) of a mixed population of microbial cells. The plasmid pFluxSeq is a 

synthetic DNA vector designed to express DNA barcodes as heterologous recombinant proteins 

in E. coli strains. The plasmid enabled selection of translatable DNA barcodes that result in stable 

and functional proteins. Recombinant barcode proteins could be separated at high purity from the 

native proteome by dual protein purification tags, suitable for discerning isotope labeling patterns 

by mass spectrometry. A set of E. coli Keio deletion collection mutants that are informative of 
central metabolism were transformed with pFluxSeq to associate their genotypes with unique 

DNA barcodes. This collection can be pooled and used to determine flux maps of all the 

constituent genotypes simultaneously using peptide-based MFA. 
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In Chapter 4, I describe the application of deep mutational scanning to arrayed protein libraries. 

The mCherry fluorescent protein gene was randomly mutated, linked to DNA barcodes, 

expressed in E. coli, and individual colonies of the mutant library were arrayed in 96-well plates to 

build an ordered collection. From a single pool of the library, the genotypes contained within the 

collection were identified en masse by single molecule real time long read NGS. Genotype-linked 

DNA barcodes were associated to the spatial locations of the mutants by orthogonal sample 

pooling and short read NGS, thus associating individual genotypes to their positions in the array. 

Protein fluorescence phenotype was recorded for each mutant by array position, thereby linking 
mutant genotypes to their respective phenotypes. Based on this linking, we explored how 

structural properties of mCherry influence its phenotype, discovering novel amino acid positions 

important for mCherry spectral properties while confirming known mutational hotspots. 

 

In Chapter 5, I present an analysis of dCas9 mediated gene expression interference in E. coli 

using a multiplexed CRISPR library that targets coding sequences genome-wide. The biological 

reproducibility of CRISPR interference screens was investigated through use of DNA barcodes 

that tag and delineate independent colonies sharing a CRISPR guide RNA genotype. Lineage 
replicates multiplexed into a single experiment exhibited greater concordance in fitness compared 

to biological replicates from experiments performed on different days. Further, the efficacy of 

temporally controlled dCas9 expression was studied in the context of its utility in screening the 

same CRISPR library across different conditions. Based on fitness analysis of individual lineages 

of each guide RNA genotype, a case is made for introducing barcodes in otherwise isogenic 

colonies as a means to observe inter-colony variation in growth studies. 
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Chapter 1 

Introduction 

Functional genomics drives a systems understanding of 

biology  

Life as embodied by a self-replicating cell does not arise from the individual functions of the 
constituent cellular components but rather from interactions of those functions with one another 

and with the external environment. This applies even to the simplest theoretical automaton 

ancestor that can be described as alive (Ganti 2003). Thus, to understand the behavior of a living 

cell in its environment, it is necessary to adopt a global view rather than look at the parts in 

isolation. The systems approach to biology involves developing predictive models of biological 

phenomena to understand how individual cellular components lead to emergent behaviors, which 

are complex responses not encoded in the biological parts catalog but which rather arise from the 

amplitude and frequency of spatio-temporal interactions between those parts (Ideker, Galitski, 
and Hood 2001). Predictive accuracy of the model is dependent on the extent of our 

comprehension of the biological system, and it is therefore a requisite that comprehensive 

information be collected on how the manipulation of each component’s function and the 

interactions of those functions affect the system as a whole. Discrepancies between model 

prediction and experimental observation is minimized and eventually resolved by an iterative 

process of refining the model based on hypothesis-driven generation of additional and often new 

types of functional genomic information (Auffray et al. 2003). 

 
Functional genomics is the generation of genotype-phenotype relationships at the genome scale 

using high-throughput methods. It provides the knowledge base for model building in systems 

biology. Functional genomics methods apply the same type of perturbation individually to every 
component of a system in a given level of organization (eg: inactivating genes in a genome) and 

measure the resulting effect on a global parameter (eg: fitness of the organism). These methods 

have been used to acquire data in a highly parallel fashion (i.e. simultaneous measurement of 

physically separated analytes) and increasingly have transitioned towards incorporating 

multiplexing as a core property (i.e. simultaneous measurement of pooled analytes). Multiplexing 
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is desirable because only a single instance of measurement is required to simultaneously collect 

data for all the analytes, which is more cost-effective than parallel measurements. 

Functional genomics methods in bacteria 

The need for functional genomics tools in bacteria 

Kingdom Bacteria constitutes one of the most abundant, widespread, and persistent classes of 

organisms on our planet, found even in hostile subglacial lakes (Bulat 2016) and spacecraft clean 

rooms (Vaishampayan et al. 2013). The importance of bacteria in human health, the environment, 

and industry cannot be understated. Human bodies contain as many or more microbial cells as 

mammalian cells (Sender, Fuchs, and Milo 2016). The vast majority of biochemistry encoded 

within bacterial metabolism is undiscovered and is a key driver of nutrient cycling at the planetary 
scale. However, beyond a few model organisms like Escherichia coli, our knowledge of the 

functional capabilities of bacterial species drops off precipitously. Even for the model organisms, 

the availability of functional genomic tools is limited compared to that of eukaryotic models. While 

we have been cognizant of the need to understand the immense genetic diversity encompassed 

within the bacterial kingdom, only recently are we developing the functional genomics tools 

required to explore in high-throughput the biology of non-model organisms (Wetmore et al. 2015). 

Further, development of tools for bacteria can inform design of similar tools for archaea, a very 
understudied but ecologically essential domain of life that thrives in extreme environments and 

shares several genome features with bacteria (eg: lack of introns, polycistronic) while more 

closely related to eukarya in their biochemical apparatus.  

High-throughput genotype generation 

Creating genome-scale genotype variants is a common starting point for most functional 

genomics assay. Disrupting a gene sequence to cause a loss of gene function is often the 

simplest way to create novel genotypes, and its effects are measurable across several 

phenotypes. For example, disrupting a gene encoding an enzyme relevant in cellular metabolism 

can alter the rate of substrate to biomass conversion, thus affecting the organism’s growth rate 
which is also reflected in changes in the transcriptome, proteome, metabolome, and fluxome. 

Most often, genes are inactivated by transposon driven insertional mutagenesis. Transposons are 

naturally occurring parasitic mobile genetic elements that can insert themselves within a host 

DNA sequence. Several transposons have been engineered into genetic tools that enable facile 

and near-random insertional mutagenesis throughout the target genome (Rubin et al. 1999; 
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Goryshin et al. 2000). Homologous recombination (HR) mediated gene deletion can precisely 

remove a target sequence from the genome, with HR driven by systems native to the organism or 

heterologously introduced (Eg: Lambda red recombination (Datsenko and Wanner 2000)). Often, 

the target gene is replaced with a defined gene cassette for positive selection of the newly 

created strain. While HR driven gene deletions are considered the gold standard in novel 

genotype creation, they are also the most laborious to perform at a genome-wide scale, primarily 

due to the requirement of creating and maintaining each genotype individually. Both transposons 

and gene replacement cassettes can be engineered to carry genetic payloads of interest like 1) 
genes for antibiotic resistance (positive selection for target disruption), 2) transcriptional fusions 

that can identify open reading frames being expressed under a given condition (Eg: β-

galactosidase assay), or 3) outward reading promoters (eg: T7) to drive expression of adjoining 

sequences. More recently, the CRISPR/Cas9 RNA-guided DNA endonuclease system (Jinek et 

al. 2012) has been developed into a formidable genome engineering tool that provides precision 

sequence disruption along with multiplexing capability. While it has seen limited use in 

prokaryotes due to sparsity of native non-homologous end joining (NHEJ) mechanisms, recent 

developments (Garst et al. 2017) point towards a multiplex-capable system that can combine the 
precision of gene replacements with the ease of transposon mutagenesis. Apart from loss-of-

function genotypes, other functional genomics genotypes include transcriptional  repression or 

activation, inducible ORF libraries (Kitagawa et al. 2005) that can either be plasmid borne or 

chromosomally integrated (H. H. Wang et al. 2012), and direct RNA interference based on 

recently discovered Cas13a (Abudayyeh et al. 2017). Within a gene, every single nucleotide can 

be mutated to other bases to create an exhaustive single amino acid variant library of the 

encoded protein (Haller et al. 2016). 

Molecular barcodes tied to genotypes enable highly multiplexed 

phenotyping by next-generation sequencing 

Cost-effective scalability is a highly desired property in any functional genomics method because 

greater the information we can collect about a biological system, the better our representative 

model of that system. A central innovation in increasing the throughput of functional genomics 

experiments has been the concept of sequence barcodes. Although methods for multiplexed 

omics measurements exist with widely varying levels of scalability (Figure 1), the greatest degree 
of multiplexing in phenotype measurement can be achieved by taking advantage of the sequence 

properties of genotype-linked barcodes. This is due to the fact that measurements of nucleotide 

sequences can be performed using massively parallel sequencing (or NGS - next generation 
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sequencing) (Shendure et al. 2017), which is one of the most cost-effective and scalable 

measurement platforms.  

 

Nucleotide barcodes are synthetic sequences of arbitrary length (usually < 50 bases) that are 

used as unique labels for genotypes. Barcode-tagged sequences can also be thought of as 

encased in uniquely identifiable virtual compartments. The barcodes can either be random, 

partially defined or fully defined sequence, and need not encode any biologically relevant 

information. Barcodes have several properties that provide them with powerful utility in high-
throughput experiments (Figure 2A). By tagging an arbitrary genotype with a unique barcode, 

that genotype can be detected in a mixture of genotypes. By counting the number of occurrences 

of the barcode in a mixture, the abundance of the linked genotype can be estimated. The barcode 

can also be transcribed and translated so that it is detectable in the transcriptome (Dixit et al. 

2016; Jaitin et al. 2016) or the proteome (this work, Chapter 3), thus linking the genotype to these 

phenotypes. Lastly, barcodes can be generated at extremely high diversity from a simple 

alphabet, satisfying any complex multiplexing need now or in the future (Figure 2B). For 

example, a random 20 bp DNA barcode synthesized as a degenerate oligonucleotide sequence 
(all 4 bases equally probable at a given position) encompasses 420 unique sequences that can be 

used to tag and distinguish more than 1012 genotypes, while costing less than $5 to synthesize 

(from IDT DNA as of April 2018). 

 

Barcodes linked to genotypes can be used as readouts for phenotypes, thus linking genotypes to 

phenotypes. Use of NGS for such readouts facilitates obtaining highly multiplexed measurements 

of diverse phenotypes. The power of transferring the phenotype measurement from its original 
omic domain to the barcode’s nucleotide domain can be illustrated by the most commonly 

performed functional genomics assay - fitness measurement in loss-of-function genotype 

libraries. Conventional measurement of non-competitive fitness of a mutant genotype relative to 

another genotype (wildtype or mutant) is performed by growing the genotypes separately in 

individual culture tubes and enumerating the colony forming units (CFU) at two different time 

points for each genotype. From the CFU frequencies, relative fitness of a strain can be calculated 

(as described in (Wiser and Lenski 2015)). Systematic deletion libraries in E. coli (Otsuka et al. 

2015) and Saccharomyces cerevisiae (Giaever et al. 2002) incorporate barcodes within the gene 
cassettes that replaced non-essential ORFs in the genomes of these organisms. Every genotype 

in the collection is identifiable by a unique barcode and the entire library is pooled to create a 

single inoculum. The change in frequency of the barcodes (proxy for genotypes) is measured in 

the course of a pooled growth experiment by NGS (Bar-seq (Smith et al. 2009)), and the fitness 

of each genotype is calculated relative to the library or to the wildtype strain (Figure 3). Similarly, 
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Tn-Seq enables en masse measurement of organism fitness for a library of transposon insertion 

mutants (van Opijnen, Bodi, and Camilli 2009). In each mutant, the genome junction adjacent to 

the transposon acts as a barcode that is uniquely mapped to a single location on the reference 

genome. Relative fitness values of the mutant genotypes are calculated from the change in 

frequency of the junction barcodes, as described for Bar-seq. Thus, barcoding genotypes allows 

us to perform NGS based fitness assays on multiplexed libraries. Other notable applications of 

genotype-linked barcodes for phenotype measurement include analyses of genetic interactions 

(Jaffe, Sherlock, and Levy 2017), protein-protein interactions (Yachie et al. 2016; Schlecht et al. 
2017), protein structure - function relationship (Fowler et al. 2010), and lineage tracking (Levy et 

al. 2015). 

Challenges in developing functional genomics tools for 

bacteria 

Several challenges exist in implementing new tools just because of the sheer diversity 

encountered in bacterial species. Assuming we can culture a species of interest axenically in the 

laboratory, the following are some of the basic challenges one can run into when developing high-

throughput tools for the organism. 

 

1. Many species and even strains within a species are recalcitrant to genetic transformation and 
yield very low number of transformants, whether done through natural competence, 

electroporation, or bacterial conjugation. The defense systems (CRISPRs, restriction digestion 

systems) within these species actively recognize and destroy non-self DNA that enters the cell. 

Often, the first step towards performing extensive genetics in non-model bacteria is to either 

create or isolate a mutant strain that has increased tolerance towards introduction of foreign DNA.  

 

2. It is difficult to create a library of targeted gene deletion or replacement genotypes because 
many genome-sequenced species lack NHEJ genome repair systems and homology directed 

recombination often requires long regions of homology of at least few hundred nucleotides. 

However, transposon mutagenesis is a good alternative where we sacrifice precision for speed 

and ease of use in creating loss-of-function genotypes.   

 

3. Some advanced functional genomics methods, like the GIANT-coli system (Typas et al. 2008) 

to study genetic interactions in E. coli, makes use of highly engineered molecular processes that 

cannot be cost-effectively ported to other species or even to other strains of the same species. 
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Given the diversity of bacterial flora, tools developed for one species most likely will not directly 

work in another species and will require customization. Inventing new methods that will report on 

the same phenotypes as in existing methods but are more amenable to customization will drive 

expansion of functional genomics studies to lesser studied but important species. 

 

4. Customization of available functional genomics tools to study non-model organisms can be 

difficult due to the poor performance or unavailability of species-specific equivalents of genetic 

parts used in constructing the tool (eg: antibiotic resistance genes for positive selection of 
transformants, plasmid replicons, promoters for heterologous gene expression etc.). Therefore, it 

is imperative to use genetic parts that tolerate a wide host range and have minimal host 

dependencies. Mobile genetic elements such as transposons and self-transmissible broad host-

range plasmids (Popowska and Krawczyk-Balska 2013) are good sources for such genetic parts.  

 

Extending the palette of functional genomics tools in bacteria was the key motivation in 

developing the tools and methods described in the forthcoming chapters of this work. 
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Figures 

 
Figure 1: Properties of the primary ‘omes’ relevant to functional genomics studies in bacteria.  
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Figure 2: Properties of nucleotide barcode sequences A) Barcodes used as genotype labels are 

distinguished from one another by their identity, frequency, and encoded content. B) The small 

alphabet size of canonical DNA nucleotides is advantageous in generating barcode diversity often 
in excess of current measurement capabilities. 

 

 

 

 

 

 



 

 9 

 
Figure 3: An example for how barcodes enable high-throughput linking of genotype to 

phenotype. In a simple growth study, several genotypes associated with unique barcodes of 

known identity are pooled to perform the experiment. Samples are collected over the course of 

the experiment, subject to NGS library preparation, and 2nd generation sequencing. From the 

sequencing output, the identity and the abundance of the barcodes are ascertained. From this 

data, a fitness phenotype is determined for each barcoded strain. Because the barcode - 

genotype association is known a priori, we can link the phenotypes to the genotypes.  
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Chapter 2 

2D Tn-Seq: Multiplexed Genetic Interaction 
Analysis at the Genome-Scale 
Nagendra Palani*, Steven Bowden*, Hirotada Mori, Igor Libourel 

 

*Equal contribution 

Introduction 
The genes of an organism encode components of a biochemical network which forms the 

underlying basis of cellular life and reproduction. Because connectivity is a fundamental property 

of networks, some components of the biochemical network (and by proxy the encoding genes) 
tend to interact with one another(Jeong et al. 2000). A genetic interaction (GI) is a functional 

relationship between two (or more) genes, where simultaneously disrupting the activity of 

interacting partners results in a phenotype that is significantly different from the phenotype 

predicted from individual disruptions. The interaction is termed negative or positive, depending on 

if the phenotype of the GI is stronger or weaker than expectation (Baryshnikova et al. 2013). The 

search for genetic interactions helps elucidate network structure by identifying parallel routes and 

serial cascades in the metabolic transformation of substrate to biomass (Costanzo et al. 2010). It 
illuminates genetic redundancies that sustain biological robustness(Li, Yuan, and Zhang 2010) 

and reveals synthetically lethal effects when co-inactivation of individually non-essential genes 

leads to loss of cellular viability(Costanzo et al. 2016). GI analysis helps assign function to genes 

of unknown function, a category that applies to greater than 30% of coding sequences in the best 

studied organisms (Gagarinova et al. 2016). It has improved predictive models of metabolism to 

increasingly match in vivo behavior (Szappanos et al. 2011; Ma et al. 2018), and has led to the 

discovery of novel drug targets against debilitating diseases (Farmer et al. 2005) and infectious 

agents (Côté et al. 2016). Thus, experimental determination of GI holds a foundational role in our 
understanding of gene and genome function. 

  

Synthetic Genetic Arrays (SGA) have been the long-standing method for genome-scale search 

for GI and involves robots performing high-throughput mating between two microbial strains 

harboring single mutations to yield a daughter strain that carries both mutations(Typas et al. 
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2008; A. H. Y. Tong et al. 2004). Strains carrying each combination of a double gene knockout 

are individually maintained and assayed for fitness based on colony growth-based image 

analysis(Takeuchi et al. 2014). Even with extensive automation, this approach consumes 

extraordinary time, effort, and material resources because fitness assays done even parallelly do 

not scale well to the reality that the number of GI to be assayed squares with the number of 

genes in an organism. In recent years, techniques to determine strain fitness based on massively 

parallel sequencing have gained traction(van Opijnen, Bodi, and Camilli 2009). These methods 

have been adapted for multiplexed GI analysis by creating transposon mutant libraries in known 
knockout genotypes(Nambi et al. 2015; DeJesus et al. 2017). While a significant improvement 

from mating based parallel assays, transposon-insertion-sequencing based GI analysis required 

maintaining mutant pools for each knockout genotype separately because multiple insertions 

within a single genome couldn’t be associated with each other. Multiplexed and simultaneous 

screening of yeast GI based on DNA barcode sequencing has now been developed(Jaffe, 

Sherlock, and Levy 2017) and recently extended to multiplexed protein-protein interaction 

analysis(Schlecht et al. 2017). This technology requires creating targeted genome-scale gene 

knockouts of yeast in two strains before performing en masse mating of the strains and screening 
for genetic interactions. Application of the method to a chosen microorganism has several 

prerequisites - the ability to create precise gene insertions in the genome, transfer of 

chromosome from one mating strain to another, and precise genomic recombination to link strain 

specific barcodes. CRISPR/Cas9(Jinek et al. 2012) is a recent milestone in genetic tools and can 

be implemented in a broad host range(Jiang et al. 2013) to create multiplexed gene knockouts (Y. 

Tong et al. 2015) or gene expression repression(Peters et al. 2016). However, most bacteria lack 

non-homologous end joining repair mechanisms(Bowater and Doherty 2006) so nuclease active 
Cas9 cannot be used to create gene deletions, and effective gene repression is subject to spatial 

organization of genome and transcriptional activity at a gene locus. Further, combinatorial cloning 

of two guide RNAs for genome-scale GI probing still requires creation of (N*(N-1))/2 clones by 

direct DNA transformation into an organism with N genes, which is technically very challenging. 

  

We aspired to create a scalable genetic system for rapidly creating double KOs that could be 

ported to lesser studied bacterial strains, which would enable us to perform large scale genetic 

interaction screens in non-model organisms of medical and environmental importance. We 
reasoned that transposons would be the ideal tool for building such a system because of their 

broad host range (Wetmore et al. 2015), negligible host factor dependency(Kimura et al. 2016), 

and minimal components required for functioning(Goryshin et al. 2000; Rubin et al. 1999). For 

semantic simplification, we consider a functional inactivation caused by a transposon insertion as 

equivalent to a knockout (KO) although transposon insertions within multidomain proteins act as 
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caveats to this assumption (Goodall et al. 2018). Inspired by multiplexed transposon insertion 

mapping methods like Tn-Seq (van Opijnen, Bodi, and Camilli 2009), TraDIS (Langridge et al. 

2009) etc., we particularly wanted the new genetic method to be compatible with massively 

parallel next generation sequencing (NGS) so that double KOs can be exhaustively assayed 

simultaneously in a cost efficient manner. Based on these design criteria, we have developed 2D 

Tn-Seq (two dimensional Tn-Seq), a method to assay genetic interactions at the genome scale. 

  

We used two orthogonal transposons to create two independent insertions in the chromosome of 
a bacterial cell. The insertions can be of any distance from each other, and either transposon 

inserts into random target locations. It is straightforward to introduce two transposon insertions in 

the same cell to create a double KO. However, preserving the association between two 

transposons originating from the same cell is non-trivial when multiple bacterial colonies of 

random double KOs need to mixed together for NGS library preparation and sequencing. Pooling 

colonies and lysing the cells for DNA extraction breaks the compartmentalization provided by an 

intact cell and also shears the contiguity of the released genomic DNA, thus physically separating 

the two transposon insertions in addition to the mixing with insertion sequences from other 
colonies. To solve this problem, we innovated a DNA barcode-based solution that preserves the 

association of transposons arising from the same cell (Figure 1A). 

  

The heart of the 2D Tn-Seq method is the 2D-Tn transposon, a synthetically assembled linear 

DNA construct in which a barcoded mariner transposon is nested within a Tn5 transposon (Figure 

1B). These two transposon systems are orthogonal, having distinct cognate enzymes and 

recognition sequences. The barcode (20 bp) is composed of randomly synthesized nucleotides 
and each molecule of 2D-Tn is expected to bear a unique barcode (one of 420 combinations). 

First, we create the first dimension of insertional mutants by inserting 2D-Tn into the target 

bacterial genome as a Tn5 transposon (primary mutants) (Figure 1C). The DNA barcode within 

each primary mutant is mapped to the transposon - genome junction by NGS. The primary 

mutants are expanded during cell growth and then, the mariner transposon is induced to jump 

from within the confines of the primary Tn5 insertion into a new, different location within the same 

copy of the genome. Because the mariner transposon inserts itself into a random TA dinucleotide 

in the genome, several thousand unique secondary mutants (second dimension of mutants) are 
created from each primary mutant (Figure 1C). The DNA barcode travels with the mariner 

transposon and therefore, insertion locations of secondary mutants can be associated with their 

primary mutant locations, again by NGS. Positive selection conferred by the independent 

insertion events of the orthogonal transposons ensures that only valid double KOs are selected. 

After several refinements in the molecular process of 2D Tn-Seq, we were able to create up to 
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100 million double KOs (104 primary mutants each giving rise to 104 secondary mutants) in E. coli 

in a single experiment. We have now demonstrated a successful proof of concept where a pool of 

104 secondary mutants were linked to their respective parent primary mutations by means of their 

shared unique barcodes. 

Experimental Procedures 

Bacterial strains & Molecular cloning 
E. coli strain BW38028 (Conway et al. 2014) and its derivative SDB202 (BW38028 ΔhisD::loxP) 

were used in 2D Tn-Seq experiments to create double mutants. SDB202 was constructed by 
Lambda Red mediated recombination (Datsenko and Wanner 2000). Strains BW25141 

(Haldimann and Wanner 2001) and DH10B (New England Biolabs) were used in molecular 

cloning and for method development. Bacteria were grown on LB plates or LB liquid culture, 

supplemented with 50 mg/ml Kanamycin, 17 mg/ml Chloramphenicol, 50 mg/ml Carbenicillin 

(antibiotics from Teknova) as necessary.  

 

Molecular cloning of plasmids was accomplished through GoldenGate cloning (Engler, Kandzia, 

and Marillonnet 2008), using BsaI restriction enzyme and T4 DNA ligase (New England Biolabs). 
The 2D-Tn transposon template plasmid p18117 was constructed using the following parts - 

kanamycin resistance gene cassette from pACYC177 (NEB), Omega interposon from pUT-

miniTn5 Sm/Sp (de Lorenzo et al. 1990), λ attP from pAH63 (Haldimann and Wanner 2001), 

chloramphenicol resistance gene cassette from pACYC184 (NEB), SUMO gene (codon optimized 

for artificial gene synthesis and is a gift from Hideaki Nakayama, Kyoto Sangyo University). 

Plasmid pEB001(Brutinel and Gralnick 2012) was internally renamed to pTnMmeI and served as 

the source of mariner transposase gene. Plasmid pSBFLP (Bowden, Palani, and Libourel 2017) 
carrying the Flp recombinase under an arabinose inducible promoter was used to initiate FRT 

recombination in the 2D-Tn transposon.  

Tn5 transposon mutagenesis 
Linear double stranded DNA flanked by Tn5 mosaic recognition sequences (Tn5 transposon) was 

prepared by PCR (primers NPP632/NPP633BC) using p18117 as template. The transposon was 
cleaned using column clean up kits (Zymo DNA Clean & Concentrator 5) to remove any salts or 

organic contaminants, and then resuspended in molecular biology grade water. Transposon DNA 
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concentration was adjusted to be between 150 - 200 ng/μl. To 1 μl of transposon DNA, 0.5 μl of 

Ez-Tn5 transposase enzyme was added and mixed well. The mixture was incubated at 30 °C for 

at least 2 hours, and 1 μl of the mixture was electroporated into electrocompetent E. coli (1.8 kV). 

Post electroporation, cells were recovered in 1 ml of SOC medium for at least 1 hr at 37 °C before 

being plated onto LB plates with antibiotics and incubated overnight at 30 °C. Insertion locations 

of transposon mutants were mapped either by arbitrary PCR (O’Toole and Kolter 1998) or 

Illumina sequencing. 

Creating 2D Tn-Seq double mutants 
SB202 (pSBFLP) Tn5 primary mutants were scraped off overnight growth plates and 

resuspended in LB + 2% w/v glucose. Cells were mixed by vortexing and then subject to the 

secondary transposition process. Half of the cells were incubated for 1 hr at 30 °C in in LB 2% 

w/v arabinose to induce expression of FLP recombinase and other half was incubated in LB + 2% 

w/v glucose as control to repress the arabinose promoter of FLP recombinase. Each sample was 
split into two, pelleted, and one pellet of each sample was resuspended into M9 minimal media + 

2% w/v rhamnose to induce expression of the mariner transposase. The other pellet was 

resuspended in M9 minimal media + 2% w/v glucose as control to repress the rhamnose 

promoter of mariner transposase. Cells were washed in the respective media once to remove 

traces of LB before resuspension. Cell suspension aliquots were incubated for 24 hours at 30 °C 

for the transposition step on a rotary shaker (250 rpm). During this incubation, there is no cell 

division because the histidine auxotrophic cells were resuspended in minimal media allowing 
mariner transposition to occur in viable but non-dividing cells. Any growth during this period will 

let the mutants that have weak fitness defect to outgrow the mutants with strong fitness defects. 

The cells were then spun down and resuspended in LB + 2% w/v glucose. An equal volume of 

50% v/v glycerol was added, mixed well, and stored at - 80 °C as frozen stock. Cells were later 

thawed, spun down and resuspended in M9 minimal media + 1% the normal concentration of LB 

(0.25 gm per liter). The low percentage of LB media was used to limit colony expansion, and 

thereby reduce the dynamic range of cell numbers in colonies. Cells were then plated on 

standard petri dishes or glass oven plates on solid media made from the same composition, and 
supplemented with chloramphenicol and kanamycin. The plates were incubated at 37 °C for 24 

hours. The 2D-Tn mutants were scraped off cells into LB + 2% w/v glucose and stored as glycerol 

frozen stocks. 
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Promoter trap 
The promoter trap transposon was made by PCR amplification and cloning of only the 

chloramphenicol acetyltransferase ORF and its native ribosome binding site (from plasmid 

pACYC184, NEB using primers NPP431/NPP433) into the mariner transposon of pTnMmeI 

(NPP426/NPP427), resulting in plasmid p3CmPT. The trap transposon was introduced into E. coli 

BW25141 as either a plasmid (BW25141 + p3CmPT) or as an electroporated Tn5 transposon 

(BW25141 - 3CmPT-Tn5) . Colonies from either transformation were selected on kanamycin 

antibiotic and replica plated on chloramphenicol selection to verify that there was no leaky 
resistance arising from the trap. The transposase was supplied in trans from the plasmid pRham-

HisHimarTnp (gift from Hideki Nakayama, Kyoto Sangyo University, Japan) under the tightly 

regulated rhamnose inducible promoter. Strains bearing the transposon either on plasmid or 

chromosome and the transposase plasmid were grown to OD600 = 0.6 at 30 °C, and 2% 

rhamnose was added as inducer. The cultures were further grown for 90 minutes and an aliquot 

of cells was plated on chloramphenicol selection and incubated overnight at 30 °C. Colonies 

arising with resistance to chloramphenicol is due to transposition of the trap into an actively 
transcribed region. 

NGS library preparation for massively parallel mapping of 
transposon junctions 
Over the course of this project, we followed library preparation protocols from (van Opijnen, Bodi, 

and Camilli 2009; Lazinski and Camilli 2013; Langridge et al. 2009) for mapping transposon 

insertion locations. Sequencing of libraries was performed either on Illumina HiSeq 2500 or 

MiSeq at the University of Minnesota Genomics Center. 

NGS Data Analysis 
Tn-Seq sequencing data were obtained as fastq files from the University of Minnesota Genomics 

Center. Sample demultiplexing based on barcodes and adapter trimming were performed using 

bbduk.sh module of JGI BBTools package (https://sourceforge.net/projects/bbmap/). Alignment to 

the reference genome was done with Hisat2 (D. Kim, Langmead, and Salzberg 2015). Bioawk 
(https://github.com/lh3/bioawk) was used to extract transposon insertion positions from SAM 

output file of Hisat2. Simulations and analyses were performed in Matlab (MA). A Monte Carlo 

simulation was performed to calculate the standard deviation associated with fitness when 

expansion factor is varied. For each chosen expansion factor, the mean number of reads per 

mutant per time point was varied from 100 to 1000 in steps of 50. Reads for 105 trials were drawn 
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from a random normal distribution and the fitnesses calculated (as in (van Opijnen, Bodi, and 

Camilli 2009)), from which the standard deviation of fitness was derived. Genome statistics for E. 

coli were calculated in Matlab using the NCBI reference sequence in Genbank format.  

Results 

Electroporation of Tn5 transposome complex creates Tn5 
primary mutants in E. coli 
Delivery of the 2D-Tn transposon to create uniquely barcoded primary mutants required that there 

be no in vivo expansion of the nested transposon construct prior to insertion into the target 

organism. Therefore, we sought a transposon delivery system that could insert an exogenous 

transposon DNA into the bacterial chromosome without the transposon DNA undergoing any form 

of replication before insertion. We attempted to replicate the successful precedent of using in vitro 
assembled transposome complexes to create random insertions in the target organism’s genome 

(Goryshin et al. 2000; Akerley et al. 1998).  Because purified hyperactive Tn5 transposase was 

commercially available (EZ-Tn5 Epicentre Illumina), we chose the Tn5 transposon as the primary 

transposon delivery system. The barcoded 2D transposon construct was generated by PCR, with 

the Tn5 mosaic ends flanking the sequence. This synthetic DNA was incubated with the Ez-Tn5 

transposase and the mixture was electroporated into E. coli, with transposon mutants recovered 

by positive selection for resistance to chloramphenicol. These primary mutants were also 

sensitive to kanamycin, as expected. We confirmed that neither the transposase enzyme nor the 
transposon DNA could lead to antibiotic resistance when transformed individually. The near-

random nature of insertions was confirmed by Illumina sequencing of a library of approximately 

104 Tn5 mutants (Figure 2). It is estimated that the frequency of multiple insertions in the same 

cell is at less than 1% (personal communication from Fred Hyde, Epicentre Biotechnologies). 

Positive selection ensures recombination-based release of 

secondary transposon nested within the primary transposon 
The mariner transposon which will create the secondary insertion is nested within the Tn5 

transposon that created the primary insertion. Having positive selection for the release of the 

mariner transposon is essential to ensure that the mariner transposon is completely removed 

from its initial location, and that any chloramphenicol resistance exhibited by the 2D-Tn double 
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mutant is a result of re-insertion of the mariner transposon at a different genomic locus. We 

initially chose the bacteriophage P1 Cre-Lox system (Wierzbicki et al. 1987) as the recombination 

mechanism and the aminoglycoside phosphotransferase (aph-I) gene (originally from transposon 

Tn903 (Oka, Sugisaki, and Takanami 1981)) conferring resistance to kanamycin as the positive 

selection scheme (Figure 1C). We later switched to the Flp-FRT recombination system from 

Saccharomyces cerevisiae (Senecoff, Rossmeissl, and Cox 1988) because we observed that 

expression of Flp enzyme was better controlled compared to Cre, which caused a high level of 

unintended lox recombination even at baseline leaky gene expression (Buchholz et al. 1996). 
 

We first confirmed that the aph-I protein could tolerate the translational fusion of a single FRT site 

to its N terminus. Next, we constructed a chloramphenicol acetyltransferase (cat) gene flanked by 

two FRT sites that were oriented in the same direction (Figure 3A). We placed this FRT - cat - 

FRT construct between the native promoter and the open reading frame (ORF) of aph-I. We 

performed the initial development and testing of the split aph-I construct on a plasmid. An E. coli 

strain bearing this construct was as sensitive to kanamycin as a naive control strain, thus proving 

that separation of the aph-I ORF from its promoter disrupted expression of the gene. When the 
Flp enzyme was supplied in trans, the bacterial strain gained resistance to kanamycin and 

became sensitive to chloramphenicol. This result indicated that the Flp enzyme performed 

recombination between the FRT sites, resulting in excision of the cat gene and re-joining the aph-

I ORF to its promoter resulting in its expression. We confirmed this hypothesis by PCR 

amplification and Sanger sequencing of the modified aph-I gene before and after Flp-FRT 

recombination. 

 
Spurred on by the positive result of gaining kanamycin resistance post recombination, we 

integrated the construct into E. coli chromosome by Tn5 mutagenesis. When we tried to repeat 

the earlier test of recombination, we found the cells not only did not gain kanamycin resistance 

but also became chloramphenicol sensitive (Figure 3B & C). More perplexing was the fact that 

the chromosomally integrated aph-I construct had undergone successful recombination between 

FRT sites, and the resulting nucleotide sequence of the aph-I was identical to the post-

recombination sequence observed when the gene was carried on a plasmid. Through molecular 

cloning, we constructed a sequence that is identical to the post-recombination aph-I sequence 
and integrated it into the bacterial chromosome (by Tn5 transposition), which resulted in gain of 

kanamycin resistance. Based on these results, we were encountering a case of gene repression 

that was heritable, observed only on the chromosome, and required in vivo recombination to 

manifest. While this problem is a very interesting biological mystery, we focused on finding a 

solution to relieve gene expression rather than investigating the mechanism of repression. 
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After recombination on the chromosome, the modified aph-I ORF is fused to its promoter. The N 

terminus of the resulting protein is comprised of a FRT site translationally fused to the native aph-

I protein. We hypothesized that an unknown secondary structure could be formed by the 

palindromic FRT sequence after in vivo recombination and this could occlude accessibility of the 

5’ end of the gene for transcription or 5’ end of mRNA for translation. We further hypothesized 

that if the 5’ end of the gene is made free of such secondary structures, we might be able to 

recover successful expression of the modified aph-I enzyme. We modified the split aph-I 

construct to incorporate the ORF of SUMO protein at the N-terminus of FRT:aph-I. The SUMO 

protein is noted for its favorable expression and solubility characteristics, and is frequently used 

as a translational fusion to ameliorate heterologous expression of poorly expressed proteins 

(Malakhov et al. 2004). We also moved the start codon from the 5’ end of FRT to the 5’ of SUMO, 

expecting to create a fusion protein that has the SUMO protein at the N-terminus, followed by the 

translated FRT sequence, and the aph-I enzyme at the C-terminus (Figure 3D). We tested the 

new split SUMO - aph-I construct as before, on both a plasmid and integrated into the 

chromosome. Trans supply of Flp enzyme resulted in successful recombination followed by gain 
of kanamycin resistance and sensitivity to chloramphenicol (Figure 3E). With further optimization 

of Flp expression control through careful optimization of the ribosome binding site (Bowden, 

Palani, and Libourel 2017), we had achieved a recombination system that was tightly controlled 

and could be used as a foundation to build the 2D-Tn system. 

In vivo mobilization of mariner transposon leads to 

secondary transposon mutants 
We sought to mobilize the mariner transposon from within the primary insertion into a new 

random genomic site to create the second gene inactivation. To confirm that the mariner 

transposon can be mobilized in vivo, we designed a promoter trap system. This synthetic 

transposon, illustrated in Figure 4A, was designed to confer positive chloramphenicol selection 

when it inserted into or near an active promoter or expressed geneic region on the chromosome. 

Chloramphenicol resistant colonies were obtained from the strain carrying the trap on a plasmid 
but not in the strain with the trap inserted in the chromosome. 

 

The creation of chloramphenicol resistant colonies by a plasmid-launched mariner transposon 

promoter trap provided two key results. First, it was possible to mobilize the mariner transposon 

from a known location to a random chromosomal location within the same cell, thus validating the 
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feasibility of in vivo secondary mutant creation. Second was the observation that the transposon 

trap was functional when placed on a plasmid, but not from the chromosome. We hypothesized 

that because the mariner transposon moves by a cut-and-paste mechanism, it might create a 

double stranded break (DSB) when it is cut from its source location. It is thought that E. coli 

performs DSB repair almost exclusively through RecA mediated homologous recombination 

(Wilson, Topper, and Palmbos 2003). Because the recA gene was deleted from the E. coli strain 

used in this experiment, it precludes the use of sister copies of the chromosomes for homology-

directed repair (E. coli has genome copy number > 1 during exponential growth, thus containing 
sister chromosomes (Nordström and Dasgupta 2006)).  An inability of the strain to repair the 

transposon induced DSB could lead to lethality. Based on this hypothesis, we chose to focus on 

modifying the sequence of operations that could lead to successful secondary insertional 

mutagenesis without damaging the bacterial genome with DSBs. 

 

Our initial idea was to induce secondary transposition followed by recombination at the launch 

location to remove any additional copies of the transposon from sister chromosomes. Based on 

the promoter trap results, we inverted the order of operations to first induce the recombination 
followed by transposition. The recombination will excise a circular DNA molecule from the 

chromosomal location of the primary insertion without causing lethality to the strain (similar to 

(Gohl et al. 2011)). The excised minicircle could then act as the source for mariner transposon 

mobilization. We could readily implement this inverted induction scheme using the existing 

molecular constructs. Still, we chose to include an origin of replication (oriR6K) within the FRT 

recombination sites so that the excised DNA can replicate as a plasmid in the strain BW25141 

that expresses the pir gene. The reasoning behind this inclusion was two-fold. After FRT 
recombination, the excised plasmid was purified and verified to ensure that the molecule was of 

the expected size. Second, the replication origin conferred the ability to tune the availability of the 

transposon source for a period of time suitable for the transposase to perform the transposition. 

The R6K origin was conditionally replicated in the presence of the pir protein (Shafferman and 

Helinski 1983; Rakowski and Filutowicz 2013) supplied in trans, and the suppression of pir 

expression could be used as a switch to turn off R6K ori replication. However, later optimization 

of the 2D Tn-Seq molecular construct rendered the transposition process efficient enough to not 

require the conditional origin of replication (Figure 5). 
 

We validated the scheme of first performing recombination followed by transposition by 

successfully creating secondary mutants from a library of primary insertion locations. We were 

able to isolate several secondary mutants resistant to both chloramphenicol and kanamycin and 

determined the insertion locations. Mapping the insertion junctions by Sanger sequencing 
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revealed that the mariner insertions were indeed true positives that were inserted in the 

chromosome. This confirmed that in vivo transpositions can be achieved from a chromosomal 

launch site when preceded by site-specific recombination as outlined in Figure 5. 

Secondary transposon mutagenesis from a single genomic 

location leads to random insertions 
We sought to verify that we can create transposon insertions that are randomly distributed across 

the genome during secondary transposon mutagenesis. Demonstrating the randomness of 

secondary transposition is foundational to the utility of 2D Tn-Seq because the presence of 

insertional hot spots or cold spots would prevent genome-wide sampling of secondary insertions, 

thus potentially failing to reveal significant interactions in the GI analysis. To perform this 

validation, we used the CRIM site-specific integration system (Haldimann and Wanner 2001) to 

precisely introduce the 2D-Tn construct in the E. coli chromosome at a known location, the 
intergenically located attB site of λ phage integration (Landy and Ross 1977). The mariner 

transposon was mobilized from this single genomic location to create transposon insertions 

mutants throughout the genome. We generated a library of approximately 300,000 mariner 

transposon mutants and performed Illumina sequencing to locate the transposon insertion 

positions. While most essential genes did not contain insertions, chromatin structure and DNA-

protein interactions can influence accessibility of a target site for insertion. Therefore, we couldn’t 

confidently confirm that there were no hot or cold spots. However, we were able to locate 

insertions throughout the genome (Figure 6), thus validating the use of in vivo mobilized 
secondary transposition. 

2D Tn-Seq Proof of Concept 
Having independently verified that we can create random insertions in the primary & secondary 

dimensions using Tn5 & mariner transposons respectively, we aimed to demonstrate a small-
scale but complete implementation of the 2D Tn-Seq method. We created a barcoded 2D-Tn 

construct, and introduced it into the E. coli genome by means of Tn5 transposition to create 

approximately 104 primary mutants, whose insertion locations were mapped by NGS. Then, we 

pooled the primary mutants and induced the transposition of the mariner transposon. Double 

mutants were selected on antibiotic supplemented solid growth media and approximately 104 

double mutants were pooled for NGS analysis of secondary transposon insertion locations. Three 

NGS libraries were constructed, sequenced, and analyzed:   
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1. A mapping library was made from the primary mutant pool to map Tn5 transposon 

chromosome junctions. For each primary insertion, a unique DNA barcode (Tn5 barcode) 

contained within the Tn5 transposon was linked to the primary insertion location.  

2. A library was made from the primary mutant pool to link the Tn5 barcode to the Mariner 

barcode. 

3. A mapping library was made from the secondary mutant pool to map mariner transposon 

chromosome junctions. For all secondary insertions arising from the same primary mutant, a 

single unique DNA barcode (Mariner barcode) contained within the mariner transposon was 
linked to the secondary transposon insertion location. 

 

The insertion locations of the orthogonal transposons within each double mutant colony were 

linked together by the association between barcodes of the orthogonal transposons (Figure 7), 

with a success rate of 7% for the current iteration of the bioinformatic analysis. The low 

association rate needs to be improved significantly to make 2D Tn-Seq useful. This can be 

achieved by 1) increasing the depth of sequencing 2) allowing for mismatches in barcode 

sequences so that sequencing errors are tolerated 3) use long-read sequencing to directly map 
the mariner barcode to the Tn5 transposon junction and avoid the use of linking step (Tn5 

barcode to mariner barcode).  

 

With this proof-of-concept, we were able to confirm that the 2D Tn-Seq method was indeed able 

to create and link two random transposon insertions in the chromosome of a bacterial cell. 

Design parameters for a genome-scale 2D Tn-Seq 
experiment 
We demonstrated that the individual steps of the 2D Tn-Seq technique perform as expected, and 

that we are able to use two orthogonal transposons to create random double insertions in the E. 

coli bacterial genome. Because 2D Tn-Seq allows us to create double mutants at the genome-

scale, we wanted to establish parameters for experiments intended to measure genetic 

interactions within the 2D transposon mutant library. A typical experiment would involve 
1. Creating an arbitrary number of 2D transposon double mutants. 

2. Pooling the mutants into a library. 

3. Conducting a growth experiment under a specified environmental condition 

4. Sampling the library at two or more time points 
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5. Preparation of Tn-Seq NGS libraries from the collected samples followed by massively parallel 

sequencing. 

 

We addressed the following questions regarding the design of experiment.  

1. How many primary and secondary mutants are required to get genome wide coverage of 

genetic interactions? 

The E. coli genome is 4.64 Mb in size, of which 88% has been annotated as protein coding 

sequences. The remaining 12% is composed of intergenic regions and genes for non-coding 
RNA. The average size of a gene in E. coli is 931 bases. For data redundancy, we prefer to 

sample each gene at least twice for both primary & secondary insertions. Thus for genome-scale 

coverage, we need to obtain one insertion approximately every 465 bases necessitating at least 

104 insertions per dimension, necessitating approximately 100 million 2D Tn-Seq double mutant 

colonies to be generated (104 primary insertions each of which gives rise to 104 secondary 

insertions). The Tn5 transposon does not have a strong target sequence preference (Green et al. 

2012) unlike the mariner transposon which almost exclusively inserts into a TA dinucleotide 

(Akerley et al. 1998; Rubin et al. 1999). Therefore, we can expect 104 random primary insertions 
to be created by electroporating the Tn5 transposome complex. While the mariner transposon 

insertion within a sequence is dependent on the presence of a TA position, the E. coli genome 

contains 212024 TA sites in total at a distance of one every 14 bases (geometric mean of 

distances between TA positions). Therefore, we expect that every coding sequence in the 

genome is theoretically accessible for the mariner transposon to create secondary insertions. 

 

2. What is the influence of expansion factor on the accuracy of calculated mutant fitness and the 

associated cost of sequencing? 

When performing a growth experiment to measure fitness of transposon mutants, we collect cells 

from an initial time point t1 and a later time point t2. After we perform NGS on these samples, we 

can calculate the relative abundance and therefore, the fitness of each transposon mutant 

present in the inoculum library. A key value used in calculating fitness of each mutant is the 

expansion factor (van Opijnen, Bodi, and Camilli 2009), defined as 

 

	𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛	𝑓𝑎𝑐𝑡𝑜𝑟	 = 	
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑒𝑙𝑙𝑠	𝑝𝑒𝑟	𝑢𝑛𝑖𝑡	𝑣𝑜𝑙𝑢𝑚𝑒	𝑓𝑟𝑜𝑚	𝑡2
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑒𝑙𝑙𝑠	𝑝𝑒𝑟	𝑢𝑛𝑖𝑡	𝑣𝑜𝑙𝑢𝑚𝑒	𝑓𝑟𝑜𝑚	𝑡1 

 
The relationship between expansion factor, the number of sequencing reads acquired per mutant 

per timepoint, and the accuracy of the calculated fitness value was explored by Monte Carlo 

sampling-based simulation. We find from Figure 8 that for a given number of sequencing reads, 
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expansion factor is inversely proportional to the standard deviation associated with the calculated 

fitness. While a higher expansion factor is preferable to minimize sequencing cost (i.e. number of 

reads required), it also increases the dynamic range between the library members. 

	𝐷𝑦𝑛𝑎𝑚𝑖𝑐	𝑟𝑎𝑛𝑔𝑒	𝑜𝑓	𝑎	𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	 = 	
𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒	𝑜𝑓	𝑚𝑜𝑠𝑡	𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑	𝑚𝑢𝑡𝑎𝑛𝑡
𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒	𝑜𝑓	𝑙𝑒𝑎𝑠𝑡	𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑	𝑚𝑢𝑡𝑎𝑛𝑡 

 
The consequence of increased dynamic range is that at an economically feasible sequencing 
read depth, we would be unable to detect slow growing double mutants that carry strong negative 

genetic interactions, which are most informative of the underlying genetic network architecture 

(Babu et al. 2011). A low expansion factor preserves a narrow dynamic range but increases the 

sequencing read depth required to minimize the error associated with the double mutant fitness. 

An estimate of sequencing cost for a genome-scale 2D Tn-Seq study is provided based on the 

Illumina NovaSeq which currently (Q1 2018) has the lowest cost per Gb of sequence data 

(product information from Illumina Inc). 
 

Sequencing cost =  

	
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑢𝑡𝑎𝑛𝑡𝑠	 ∗ 	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑎𝑑𝑠	𝑝𝑒𝑟	𝑚𝑢𝑡𝑎𝑛𝑡	 ∗ 	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡𝑠	 ∗ 	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑓𝑙𝑜𝑤𝑐𝑒𝑙𝑙

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑎𝑑𝑠	𝑝𝑒𝑟	𝑓𝑙𝑜𝑤𝑐𝑒𝑙𝑙  

 
An S4 flowcell for NovaSeq produces an output of 8 - 10 billion single end reads at a read length 

of 150 bp, costing approximately $50,000. To calculate fitness for subsequent GI analysis, we 

need to collect data from 2 timepoints of the growth experiment involving a library of 100 million 

mutants. Assuming an expansion factor of 5 (which is neither too high nor too low, for reasons 
stated previously), we require at least 300 reads per mutant per timepoint to limit the standard 

deviation associated with calculated fitness under 5%. Using these values, we arrive at a 

sequencing-only cost of between $375,000 to $300,000. While this value is expected to be at 

least an order of magnitude lower than the prevailing method based on synthetic genetic arrays, 

2D Tn-Seq is still a dedicated undertaking that requires careful planning. 

Discussion 
The maturity of massively parallel genome sequencing technology over the last decade has led to 

an ever-expanding universe of genes and their encoded biochemical functions available for our 

purview (Shendure et al. 2017). Generating high-quality finished microbial genomes from even 

unculturable and exotic ‘microbial dark matter’ has now become a routine pursuit (Hug et al. 

2016; Mukherjee et al. 2017). This sea of genetic information however sorely contrasts against 
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the sparsity of functional genomic data that we have managed to muster for model microbes. 

With the invention of 2D Tn-Seq, we expect to accelerate acquisition of GI data. 

 

2D Tn-Seq offers several advantages over the state of the art. It is designed to be portable to 

other bacteria of importance, and every molecular component (transposon, recombinase, 

antibiotic selection) can be customized to organism specific versions. This enables genetic 

interaction studies in clinically and environmentally relevant microbes. The method accelerates 

the comprehensive screening of genetic interaction libraries. In our target E. coli lab strain, we 
could create 100 million double mutants within weeks whereas the only published comprehensive 

GI search effort to date has spanned nearly a decade (Costanzo et al. 2016). 2D Tn-Seq 

drastically minimizes the labor and resources compared to synthetic genetic arrays. Once the 2D-

Tn library has been created, standard GI experiments are similar to a Tn-Seq growth experiment 

and can be done with the same setup and in the same timeframe. The ability to quickly create 

comprehensive double mutant libraries also affords disposability of these libraries - multiple 

environmental conditions can be assayed, thereby uncovering condition-specific interactions.  

 
The molecular underpinnings of 2D Tn-Seq could be modified and expanded to new functional 

genomics applications. Similar to the Slingshot tool available for mammalian mutagenesis (Kong 

et al. 2010), the in vivo secondary transposition system can be used as a generalized 

mutagenesis tool to create insertions at high densities. We have implemented a proof of concept 

for this technique, which we have named Saturation Tn-Seq, by generating approximately 6 

million mariner transposon mutants (unpublished) that were mobilized from a single CRIM 

integration (Haldimann and Wanner 2001) at the λ attB site of E. coli. The method is expected to 
saturate most non-essential TA positions with insertions, thereby revealing gene essentiality at 

very high resolution. We can elevate 2D Tn-Seq from the genetic interactions domain to that of 

Protein - Protein Interactions (PPI) by installing outward reading bait and prey fusion proteins 

onto the orthogonal transposons. Insertions into coding sequences will create bait & prey proteins 

that can be selected for interactions. The 2D Tn-Seq method may also serve as an inspiration to 

modify the aforementioned Slingshot method into a powerful system of creating double insertions 

in mammalian cell lines. CRISPRs have taken the vanguard in mammalian GI analysis (Shen et 

al. 2017a) but transposon insertions could be used as promoter traps that only target interactions 
between expressed genes, thus generating data dense genetic interaction maps. A corollary 

experiment would be incorporating inducible outward reading promoters within insertions so that 

gain-of-function analyses can be performed on cryptic sequences. 
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2D Tn-Seq was invented with the goal of democratizing and accelerating genome-scale genetic 

interaction studies so that any microbial genetics lab can adopt this technology to probe the gene 

interaction network of their preferred model organism, while substantially reducing the resources 

currently required for such an undertaking. The method is also set to take advantage of the falling 

costs of NGS (Check Hayden 2014). We trust that our successful proof-of-concept of 2D Tn-Seq 

will enable its adoption towards expediting a functional understanding of microbial genomes. 
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Figures 
 

 

 
Figure 1: 2D Tn-Seq design and workflow. A) Locations of two independent transposon 

insertions in a genome can be linked if a barcode encoding the identity of one transposon 

insertion can be placed within a second transposon insertion. B) Molecular design of the 2D-Tn 

transposon. Tn5 & Himar indicate the inverted terminal repeats of the Tn5 & mariner transposon 
respectively. FRT sites oriented in the same direction are recognized by Flp recombinase leading 

to excision of the FRT-enclosed sequence. The mariner transposase is expressed from a tightly 

regulated, rhamnose inducible promoter. cat and kan are genes conferring resistance to 

chloramphenicol & kanamycin antibiotics. C) Steps in 2D Tn-Seq. Primary mutants are created, 
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followed by Flp mediated excision of the enclosed secondary transposon. Induction of mariner 

transposase leads to creation of secondary insertions. The DNA barcode moves from the primary 

insertion location to secondary insertion location. The two locations are linked by the shared 

barcode. NGS1 & NGS2 are transposon insertion sequencing NGS libraries that provide the 

barcode - transposon junction information.   
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Figure 2: Tn5 transposition for creating primary mutants A) The Tn5 transposon consists of 

blunt-ended linear DNA that has 19 bp mosaic inverted terminal repeats (ITR) at its ends. The 

transposon is incubated with purified hyperactive Tn5 transposase (Ez-Tn5, Epicentre Biotech) in 

vitro without any magnesium ions present. Two molecules of the transposase bind to the mosaic 

ITR to form a stable transposome complex. When this complex is electroporated into bacterial 

cells, the transposase binds to Mg2+ available in vivo and inserts the transposon DNA into the 

bacterial DNA. After insertion, the transposase is dislodged and the nicks at the insertion site are 
repaired by the host DNA repair system. Insertion of the Tn5 transposon results in a 9 bp 

duplication of the insertion site on either side of the transposon. B) Polar plot of E. coli 

chromosome showing number of Tn5 insertions grouped into 360 bins, each of size 12900 bp. A 
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library of approximately 104 Tn5 mutants was generated in E. coli by transposome 

electroporation, and the insertion sites mapped by transposon insertion sequencing. The plot 

shows that Tn5 insertions occur throughout the E. coli genome. 
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Figure 3: Positive selection for recombination and mariner transposon release A) Design of 

the molecular construct that was expected to confer kanamycin resistance post Flp 

recombination. Flp acts on FRT sites oriented in the same direction, resulting in excision of a 

mini-circle containing the mariner transposon and leaving an aph-I fusion gene at the primary 

insertion site. B) Agarose gel analysis of PCR product from primary insertion site of Tn5 mutants 
after induction of Flp recombinase. Amplicons were generated by amplification between the pKan 

promoter and the Kan ORF. Lane 1 is PCR amplicon from control strain in which Flp was not 

induced. Lanes 2 - 6 are PCR amplicons from individual primary mutants post recombination. No 

kanamycin resistance was observed even with successful recombination. Colonies for this test 

were recovered in LB media without any selection and replica plated for chloramphenicol 

sensitivity to ensure that colonies had undergone recombination. C) Expected translational fusion 
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of the FRT-aph-I gene fusion. FRT is underlined and the coding sequence of aph-I is highlighted 

in red. Sequence of this post-recombination fusion gene was verified by Sanger sequencing of 

colonies tested in fig 3B.  D) Post-recombination kanamycin resistance was recovered by 

introducing the SUMO protein at the N-terminus of the FRT-aph-I fusion protein, moving the 

translational start to SUMO. E) Bacterial spot tests show that Kanamycin resistance arising from 

FRT recombination on the chromosome is tightly regulated and is gained by almost 100% of the 

cells with Flp induction, along with a noticeable decrease in chloramphenicol resistance post 

recombination. 
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Figure 4: Promoter trap system to test in vivo mariner transposition. A) The trap has an 

inward oriented, promoter-less chloramphenicol acetyltransferase ORF contained within the 
mariner transposon. Chloramphenicol resistance is gained when the trap inserts into or near an 

expressed gene after the mariner transposase is supplied in trans. Trap transposition was 

observed only when launched from a plasmid and not from a genomic insertion. 



 

 33 

 
Figure 5: Bacterial growth assays for individual steps of 2D Tn-Seq. Serially diluted cell 

suspensions were spotted on to media plates. Primary mutants (Tn5 transposon insertions) were 

resistant to chloramphenicol and sensitive to kanamycin. Induction of Flp mediated recombination 

results in cells gaining kanamycin resistance. 24 hours after induction of mariner transposase, a 
significant number of cells resistant to both antibiotics (double mutants) are observed. We 

estimated that ~ 10% of cells that were subject to Flp recombinase and mariner transposase 

inductions were converted into double mutants. 
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Figure 6: Fraction of TA dinucleotide positions accessed by in vivo mariner mobilization. 
A) Distribution of TA sites in the E. coli genome. TA positions were identified from the MG1655 

reference genome and histogram binned into 360 bins, each of size 12900 bases. Average 

number of TA sites per bin is 588 as indicated by the red circle. B) Fraction of TA sites occupied 
by mariner transposon insertion in a library of approx. 3 x 105 mutants. The red circle is the 

average fraction occupied by mariner insertions throughout the genome (value = 0.36) for this 

library. The arrow at the top is the first base of the genome as indicated in the reference genome 

(NCBI U00096). λ indicates the position of the lambda phage attB integration site. Ori is the origin 

of replication. Bin boundaries are identical for both plots. 
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Figure 7: Association of secondary daughter insertions to primary parent insertions. 
Approximately 104 2D Tn-Seq mutants were analyzed to map the mariner insertion locations to 

the Tn5 locations. 727 associations could be mapped between primary and secondary insertions, 
of which 77 of the associations are shown in this Circos plot (Krzywinski et al. 2009) as arcs 

connecting genome positions, with the originating color representing Tn5 insertions and ending 

color representing mariner insertions. The 12 o'clock position on the plot is the +1 position of the 

reference genome. 

 



 

 36 

 
Figure 8: Effect of expansion factor and NGS read depth on the standard deviation 
associated with mutant fitness. The accuracy of fitness value calculated for a mutant is 

affected by the expansion factor (length of growth experiment) and sequencing read depth 

(primary cost of 2D Tn-Seq). For a given number of reads (sequencing budget), lower expansion 

leads to higher uncertainty in the measured fitness value whereas higher expansion leads to 
dropout of slow growing mutants. 
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Tables 
 

Oligonucleotide name Sequence 

SDBMN360 (to introduce 2D-Tn 
barcode) 

TTTTTTGGTCTCNGCTTTNNNNGCAGACCGGGGTCTTA
TCATCCAACCTGTTA TGGCAGAAATGACGGGAATTAG 

SDBMN214 (to introduce 2D-Tn 
barcode) 

TTTTTTGGTCTCNAAGCTNNNNNNNNNNNNNNNNNNNN 
GGTTATGCAGCGGAAAAGGA 

NPP632 /5Phos/ CTGTCTCTTATACACATCT 
GAAGATGCGTGATCTGATCCTTCAACTC 

NPP633BC  /5Phos/ CTGTCTCTTATACACATCT NNNNNNNNNN 
GACACATGGCATGGATGAACTATACAAAGC 

NPP426 NNNNGGTCTCN CCAT 
CCCGCTCAGAAGAACTCGTCAAG 

NPP427 NNNNGGTCTCN 
TCATCCAACCTGTTATGTGGCGCGGTATTATCC 

NPP431 NNNNGGTCTCN ATGG CGGTCACACTGCTTCCGGTAG 

NPP433 NNNNGGTCTCN ATGATAAGTCCCCGGTCT 
CAGGAGCTAAGGAAGCTAAAATGGAG 

 
Table 1: List of oligonucleotides used in this study 
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Chapter 3 

Synthetic Proteins for Peptide based 13C 

Metabolic Flux Analysis 
Nagendra Palani, Steve Bowden, Igor Libourel 

Introduction 
Metabolic flux analysis (MFA) estimates the rates of reactions or fluxes within a biological system 

to measure a temporally precise phenotype. Fluxes are the most sensitive reporters of cellular 
environment and its response to external perturbation, and are held constant at metabolic steady 

state. MFA is often performed with 13C isotope labeling of input substrate and measuring the 

resulting distribution of labeled carbon in cellular metabolites at steady state. These 

measurements can be obtained using gas chromatography - mass spectrometry (GC-MS) from 

proteinogenic amino acids (Dauner and Sauer 2000), and by nuclear magnetic resonance (NMR) 

from carbon-based cellular metabolites (Teixeira et al. 2008) . Atom transitions from labeled 

substrate to different metabolites are iteratively simulated on a core metabolic network, with the 
fluxes of the metabolic network adjusted in each iteration as an optimization problem 

(Antoniewicz, Kelleher, and Stephanopoulos 2007). The set of simulated fluxes that reproduce 

the experimental labeling patterns are then considered to the fluxes that should have existed 

during the experimental condition of the biological system under study. 13C MFA thus reveals the 

kinetics of a metabolic network at steady state, thereby providing a deterministic framework for 

predicting metabolic phenotype using tools like flux balance analysis (Chen et al. 2011). 

 

Conventional analysis of amino acid labeling requires total protein extraction and hydrolysis to 
yield free amino acids that are derivatized before being injected into the GC-MS. However, 

hydrolysis of a protein results in loss of protein primary sequence identity, which can be used to 

identify the spatial location of the protein if that protein has a spatially identifiable expression 

signature. Thus, flux maps of organelles or individual members of a microbial community cannot 

be performed in a straightforward manner. In genetically pliable organisms, 13C MFA can be 

simplified by expressing an innocuous recombinant protein, purifying this protein, and analysing 

the constituent amino acids to create a flux map which is comparable to that created from total 

protein hydrolysis (Shaikh et al. 2008). This method can be extended to estimate compartment-
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specific flux maps by targeting an array of recombinant genes to different organelles and 

performing purifications to individually isolate each recombinant protein for GC-MS analysis. Still, 

current 13C MFA methods are not amenable for multiplexing i.e. simultaneous analysis of several 

thousand samples similar to genomics methods like RNA-seq (Islam et al. 2011) or Tn-Seq (van 

Opijnen, Bodi, and Camilli 2009). 

 

Explosive growth of massively parallel sequencing has resulted in a smorgasbord of functional 

genomics tools. For a growing number of microorganisms and mammalian cells, several genome-
scale libraries are available that enable multiplexed assessments of phenotypes. Examples for 

these libraries are targeted (Baba et al. 2006) or transposon mutants (Jacobs et al. 2003), gene 

overexpression clones (Kitagawa et al. 2005), and fluorescent protein fusions to native genes for 

imaging & high-throughput cell biology (Taniguchi et al. 2010). The CRISPR/Cas9 system has 

been established as generalized genome targeting system, and modules are now available for 

creating gene knockouts (Sanjana, Shalem, and Zhang 2014), gene activations and repressions 

(Konermann et al. 2015; Bikard et al. 2013), epigenetic changes (Liu et al. 2016), and targeted 

mutations in coding sequences (Komor et al. 2016). Multiplexed analysis of several thousand 
library members is made possible by sequencing the Cas9 guide RNA library (T. Wang et al. 

2014) or by sequencing randomized barcodes associated with gRNA (Dixit et al. 2016). 

Combining 13C MFA with these functional genomics tools will promote a heightened level of 

understanding cellular function, but current MFA methods that rely on proteolysis are not 

amenable to multiplexing on a scale comparable to that of genomics tools. 

 

A notable technical advance in experimental flux determination has been the invention of peptide 
based metabolic flux analysis (Mandy et al. 2014; Ghosh et al. 2014). Here, isotopically labeled 

proteins are not hydrolyzed into amino acids but digested by a protease into smaller 

oligopeptides. The peptides are then analyzed in a high-resolution orbitrap mass spectrometer 

and flux estimates are fitted to the observed peptide mass distributions (Allen et al. 2014). The 

technology is still maturing, but it is a promising tool that can be applied to a wide range of flux 

analysis applications like compartmentalized flux maps (example: organelles & microbial 

communities), cell-cycle resolved flux maps, and performing flux analysis from mass 

spectrometry imaging.  
 

We wanted to take advantage of the plethora of functional genomics resources available for 

bacteria by using our experience in peptide-based 13C MFA to create genome-scale libraries that 

are suitable for simultaneous and cost-effective metabolic phenotyping. To make this concept 

feasible, we conceived a strategy to tag individual members of the library with unique DNA 
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barcodes and track these members at the protein level through translated peptide barcodes. The 

peptide barcodes can also encode flux information if the library is grown to metabolic steady state 

on an isotope-labeled substrate. Because we have already established methods to fit fluxes to 

peptide labeling patterns, we should be able to resolve steady state flux maps for each library 

member that expresses a unique peptide barcode from its DNA barcode. 

 

To realise this method, named FluxSeq, we designed and assembled a plasmid vector for the 

Escherichia coli gene deletion library (Baba et al. 2006) to express a synthetic flux reporter 
protein. The reporter protein includes a 31 amino acid peptide that is encoded by a semi-random 

DNA barcode cloned into the vector. The identity of the DNA barcode, the translated peptide 

barcode and its association to the host genotype was linked by amplicon sequencing of the DNA 

barcode. The library members can be pooled, grown together on a labeled substrate, and the 

synthetic reporter proteins purified from the pool. The peptide barcodes within the reporter 

proteins are then analysed in an orbitrap mass spectrometer to collect the peptide mass 

distributions that can be used for MFA. We addressed the following challenges to construct a 

functional FluxSeq vector: an inducible expression system that could function in the presence of 
glucose; developing a method to select for soluble synthetic proteins; incorporating affinity 

purification tags that will help us isolate intact proteins. We were able to successfully demonstrate 

that the FluxSeq vector performs according to its design criteria. 

Experimental Procedures 

Molecular Cloning 

Plasmid cloning was done in the Escherichia coli strain BW25141 (Datsenko and Wanner 2000). 

Transformed strains were selected on LB medium (Difco) supplemented with 50 µg/ml 

carbenicillin or 50 µg/ml kanamycin (Teknova). Selection of strains expressing the reporter 

protein was done on 17 µg/ml chloramphenicol (Sigma). Specific Keio collection mutants were 

grown on LB plates or liquid medium supplemented with 50 µg/ml kanamycin. After 
transformation with plasmids expressing the reporter protein, Keio strains were selected on plates 

containing both carbenicillin and chloramphenicol. Liquid and plate cultures of bacteria were 

grown at 37 ℃ unless specified otherwise. 

 

Plasmid cloning was done using either Gibson cloning (Gibson et al. 2008) or Goldengate cloning 

(Engler, Kandzia, and Marillonnet 2008). Primers (Table 1) were ordered from IDT DNA (IA) or 
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Life Technologies (CA). Chloramphenicol acetyltransferase gene from pACYC184 (NEB, MA) 

(primers NPP500/NPP501) was cloned as a gene fusion to His-SUMO and replaced the Tn5 

transposase gene (primers NPP498/499) in the plasmid pRham-HA-Tn5Tnp (gift from Hideaki 

Nakayama, Kyoto University) to yield plasmid pHSCat. Plasmid pCuminBB (gift from Claudia 

Schmidt-Dannert, University of Minnesota, St. Paul) was PCR amplified as two fragments 

(NPP674/675 & NPP676/677) and ligated to remove BsaI sites in the plasmid, resulting in 

pCuminBB-NoBsaI. The His-SUMO-CAT open reading frame from pHSCat was PCR amplified 

(NPP686/687) and cloned as a fusion with mCherry gene (primers NPP688/689 and pRham-
mCherryBC template) into pCuminBB-NoBsaI (NPP684/685) under the cumene inducible 

promoter (Choi et al. 2010) to yield the plasmid pHSRFPCat. The Strep Tag II sequence (Schmidt 

and Skerra 2007) was appended in-frame to the C-terminus of CAT gene by amplifying 

pHSRFPCat (NPP694/695) and self-ligating to create plasmid pFluxSeq-RFP. To generate a 

plasmid library encoding peptide barcodes (pFluxSeq - Figure 1), pFluxSeq-RFP was amplified 

with primers (NPP700/701) and self-ligated to replace the mCherry sequence with the peptide 

barcode sequence. The peptide barcodes were incorporated as reduced representation semi-

degenerate codons in the oligoprimers (Table 2 - designed using (Halweg-Edwards et al. 2016)). 
The ligation mixture was then transformed into strain BW25113 and Keio mutants by 

electroporation (Electroporation condition: 1 mm cuvette, 200 Ohm, 25 µF, 1.4 kV on a Bio-Rad 

GenePulser).  

 

Post transformation, cells were recovered in 1 ml of SOC medium for 1 hour. Cells that were to 

be selected for expression of functional reporter proteins (library of pFluxSeq) were plated on LB 

plates that contained 1 mM cumene (Isopropylbenzene / (1-methylethyl)benzene from Sigma 
Aldrich) in addition to antibiotics. 

Protein Expression 

Protein expression studies were done with strains BW25141 (pFluxSeq-RFP), 

BW25113(pFluxSeq-RFP), BW25141(pFluxSeq), and BW25113 (pFluxSeq). An identical protein 

expression protocol was followed for all strains. Cells from either colonies or frozen stocks were 

inoculated into a 4 ml LB liquid culture with appropriate antibiotics. After overnight growth, the cell 

suspension was diluted and inoculated into a flask of 100 ml LB liquid medium to yield a starting 

OD600 of 0.1. The culture medium was supplemented with carbenicillin to keep the plasmids 

under selection. The flask was shaken at 250 rpm. 100 µl of 1 mM cumene prepared in 100% 
ethanol was added to the flask when OD600 reached 0.3. Cells were grown until OD600 of 1.0 was 

reached. The cells were then harvested and spun down in disposable centrifuge tubes (15 ml or 
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50 ml) at 5000 g. The supernatant was discarded and the cell pellet was frozen at -20 °C until 

required.  

Protein Purification 

The cell pellet was lysed in B-Per Complete Bacterial Protein Extraction reagent (ThermoFisher) 

following manufacturer’s protocol (5 ml of reagent per gram of wet cell pellet). After incubation to 

lyse the cells, the suspension was centrifuged at 7000 g and the supernatant collected for further 

analysis. The recombinant protein was purified first using a Ni-NTA resin (Sigma) that binds the 

His-tag, and then using streptactin resin (IBA Bioscience) that binds to the strep tag following the 

recommended protocol (https://www.iba-
lifesciences.com/tl_files/uploads/bilder/produkte/streptag/Downloads/Manual%20Double-tag.pdf - 

Pages included in Appendix). Both purifications were done in gravity flow columns at 4 °C on the 

same day.  Whenever required after His-tag purification, the eluted protein was incubated with 

SUMO Protease (LifeSensors, Inc.) for 30 minutes at 30 °C before proceeding with the Strep-tag 

purification. After the two purification steps, the eluted protein was concentrated and the elution 

buffer exchanged to phosphate buffered saline (pH 7.4) using an Amicon Ultra-4 (10 KDa cutoff) 

centrifugal filter (Millipore). 

 
Whole cell lysates and purified proteins were analysed by polyacrylamide gel electrophoresis 

(PAGE). Samples were mixed with 0.1% SDS and Laemmli buffer (Bio-Rad), placed in boiling 

water for 5 minutes, and loaded onto 12% gels (Mini-PROTEAN TGX precast, Bio-Rad). Gels 

were run in tris-glycine-SDS buffer at 180 V for appropriate time, followed by staining in 

Coomassie Brilliant Blue R250 (Sigma) for visualization. 

pFluxSeq library of Keio knockout strains 

Specific strains of the E. coli Keio deletion collection (Table 3) were obtained from the Coli 

Genetics Stock Center (New Haven, CT), and electrocompetent cells prepared for each strain. 
After transformation with pFluxSeq, colonies were selected on LB plates supplemented with 

cumene, chloramphenicol, and carbenicillin. Eight colonies were picked for each strain and 

arrayed onto columns of 96-well plates. The colonies were grown overnight in LB liquid medium 

supplemented with carbenicillin and kanamycin, and frozen stocks were made for storage at -80 

°C. To create a pooled library for protein expression and peptide based 13C MFA studies, freezer 

stock was thawed and cultures inoculated into fresh 96-well plates containing LB liquid + 
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antibiotics. The culture was grown overnight and the cells from across the wells were pooled into 

a single aliquot. 

Barcode sequence in the plasmid within each strain was mapped to plate well position by pooling 

samples similar to (Gohl et al. 2014), and preparing Illumina-sequencing compatible amplicon 

libraries from the five resulting pools (done by Steve Bowden). Plasmid was purified (Sigma 

GenElute) from each pool and a two-step PCR protocol was followed to first enrich the barcode 

sequences and then uniquely index the libraries (FluxSeqBC & Nextera primers in Table 1). The 

resulting libraries were checked on a Bioanalyzer (Agilent) for size and sequenced on a HiSeq 
2500 125 bp paired end run to a read depth of approximately 1 million reads per library. Paired 

end reads were merged, filtered, and trimmed using BBTools (BBMap - Bushnell B. - 

sourceforge.net/projects/bbmap/), clustered with CD-HIT (Fu et al. 2012) and the DNA barcodes 

analysed in Matlab (Mathworks). 

Results 

Design & functional verification of pFluxSeq plasmid 

Primary components of the FluxSeq vector required for expression and purification of the reporter 

protein were a glucose-independent promoter, an antibiotic resistance protein that will retain its 

function when fused to another peptide sequence, small purification tags that will facilitate in vitro 

protein purification and also not interfere with the function of the fusion protein, and a peptide 
barcode sequence that can encode sufficient diversity to be used with practically large library 

sizes. 

 

The cumene inducible expression system is non-native to E. coli and no host factors are required 

for gene expression repression, allowing for strong expression even in the presence of glucose. 

This is advantageous compared to widely used sugar inducible expression systems like that of 

arabinose or rhamnose because the presence of glucose represses metabolism of other sugars 

(Aidelberg et al. 2014). Also, the small molecule cumene is readily diffusible across the cell 
membrane and does not require any active import mechanism like that required for sugars, 

leading to more uniform protein expression across the population. Other small-molecule inducible 

expression systems like the Tet promoter compare unfavorably to the cumene induction system 

due to the high cost of inducer (example: Anhydrotetracycline). Testing the cumene induction 

system confirmed that induction of protein expression was rapid (< 1 hour), and uniform (Figure 

2A). 
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To select functional reporter proteins, the peptide barcodes were fused with a protein conferring 

antibiotic resistance. This selection scheme ensured that only those reporter proteins that were 

soluble and functionally active were represented in the FluxSeq libraries. Solubility is a key 

prerequisite because expressed heterologous proteins could potentially affect cellular function as 

aggregated inclusion bodies. Further, ensuring solubility enables efficient and uniform extraction 

of the reporter proteins from the library of cells. Two candidate proteins were considered for the 

selection scheme - Chloramphenicol acetyltransferase (conferring resistance to chloramphenicol) 
and beta-lactamase (conferring resistance to β-lactams like ampicillin and carbenicillin). CAT is 

expressed in the cytoplasm and has been used as a selection mechanism for protein solubility 

(Maxwell et al. 1999). β-lactamase can tolerate C-terminus protein fusions, and is exported to the 

periplasm, potentially simplifying the cell lysis step of the protein purification protocol. When 

expressed under a tightly controlled Tet promoter, CAT displayed very low background 

expression and was functional with both N- and C- terminii fusions. Therefore, CAT was chosen 

as the selection system for soluble peptide barcodes. To enhance the solubility of CAT-peptide 

barcode construct, the SUMO protein solubility tag was fused to the N-terminus of CAT. The 
SUMO tag is small (~ 110 amino acids), demonstrated to enhance protein folding, and can be 

scarlessly cleaved by treatment with the SUMO protease (Marblestone et al. 2006). Other 

solubilization tags like the Maltose Binding Protein (MBP) or Glutathione-S-transferase are much 

larger in size compared to SUMO protein, and the MBP gene was prone to rearrangements and 

deletions in attempts to clone it into a high copy plasmid. 

 

The inclusion of protein purification tags was guided by the need for non-intrusive tags that could 
bind to inexpensive resins. The 6x-His tag (6 amino acids) and the Strep tag (8 amino acids) 

satisfied the design criteria and yielded highly enriched reporter protein when purified using the 

recommended resins (Figures 2D & 3). 

Optimization of protein expression and purification using 

pFluxSeq-RFP 

The pFluxSeq-RFP vector was used to test and improve protein expression and purification 

protocols. The striking color of the mCherry protein was used as a visual guide in these 

experiments. Induction of synthetic reporter protein expression with cumene resulted in cells 

accumulating mCherry in as little as 2 hours, with the cell culture showing a strong magenta color 

by 6 hours. When cells were spun down, the color of the cell pellet was uniform (Figure 2A) 
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indicating that all the cells in the culture were expressing the heterologous protein, unlike the 

multimodal expression often observed with the sugar inducible promoters that require active 

transport of the inducer molecule into the cell (Siegele and Hu 1997). After cell lysis and 

centrifugation, the lysis supernatant retained the magenta color of mCherry indicating that the 

recombinant protein had been released from the lysed cells. However, the lysis pellet also 

retained mCherry color, indicating that some cells were either not lysed or there were some 

recombinant mCherry proteins bound to the cell debris. The lysis supernatant was first run 

through the Ni-NTA column for the His tag to bind. The magenta color of mCherry was retained 
on the column resin (Figure 2B) whereas the supernatant flow-through and subsequent washes 

were all colorless indicating that the recombinant protein was strongly bound to the resin and 

there was not any leaching during the wash steps. The Ni-NTA column eluate was intensely 

colored, and the column resin returned to its original color after elution. This confirmed that any 

recombinant protein bound to the resin was completely eluted. Performing the Strep tag 

purification with the eluate resulted in similar results - the recombinant protein was bound to the 

streptactin resin (Figure 2C), while the flow-through and wash solutions were colorless. Elution 

from the streptactin resin was complete, with the resin returning to its colorless state after elution. 
 

PAGE analysis of fractions (Figure 2D) from each step of the dual purification protocol showed 

that the most of the cellular protein in the lysis supernatant had been washed away in the His tag 

purification step. There was almost no background cellular protein that could be detected after the 

streptactin column wash step. While some degradation of the synthetic reporter protein was 

observed in PAGE, the discrete bands observed indicated that the synthetic protein was breaking 

at specific locations. The fragmentation of the full-length protein most probably happened during 
sample preparation for PAGE because if there was protein fragmentation before or during the 

purification process, the flow-through and wash solutions would have retained some of the 

magenta color of mCherry and there would also be protein bands for these samples in the 

polyacrylamide gel. The results from these experiments with pFluxSeq-RFP show that the 

synthetic reporter protein can be isolated in high purity and yield for downstream mass 

spectrometry analysis. 

Protein expression from pFluxSeq and purification yields 

highly pure synthetic reporter protein 

Strain BW25113 transformed with a library of pFluxSeq plasmid was used for testing synthetic 

reporter protein expression in the target genotype. Expression of the reporter protein and 
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subsequent purification using protocols identical to those followed for pFluxSeq-RFP (Section 

3.3) resulted in isolation of recombinant protein at the expected size of approximately 45 KDa 

(Figure 3). Unlike the mCherry version, the synthetic protein with peptide barcodes did not show 

any fragmentation during sample preparation for PAGE, suggesting that the large size and the 

folding requirements of the individual components of the mCherry version might have made it 

prone to fragmentation at specific locations. 

Sequencing of DNA barcodes verifies that peptide barcodes 

match design criteria 

In silico translation of DNA barcode sequences obtained by Illumina amplicon sequencing 

produced a list of peptide barcode sequences. A sequence logo (Figure 4) generated from the 
peptide barcodes was used to identify the salient features common to all the barcodes. Synthesis 

and cloning fidelity of the barcodes was confirmed from the observation that for each position in 

the barcode, only the amino acids encoded by the designated codon were present. There does 

not seem to be any major bias in amino acid frequencies at a given position, which is to be 

expected since the compressed codons are non-redundant, encoding multiple amino acids at 

equal frequency. Any slight change in amino acid frequency for the same codon at multiple 

positions would have arisen from the nucleotide incorporation biases inherent in oligonucleotide 

synthesis. 

 
The peptide barcode was designed to yield 3 fragments of ~ 10 amino acids each when 
subjected to a tryptic digest. Thus, the terminal amino acid of each fragment was either a lysine 

or arginine, matching the cleavage preference of trypsin. The constant sequence (WSG) in the 

middle of the sequence and contained with fragment 2 was formed by the nucleotide sequences 

used to clone the barcodes. The consistency of this sequence shows that only error-free PCR 

products were able to successfully ligate during the cloning of pFluxSeq. The near-equal 

distribution of amino acids at each position validates the assumption that these barcodes can 

encode a level of diversity exceeding currently feasible methods for evaluating functional 

genomics libraries. 

Discussion 
We find it desirable to perform multiplexed peptide based 13C MFA on functional genomics 
libraries to accelerate our understanding of how genes affect metabolism. To accomplish this 
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goal, we needed a biopolymer barcoding system that could uniquely be associated with host 

genotypes and tracked in a multiplexed fashion as both nucleic acids and polypeptides. We 

constructed a plasmid vector pFluxSeq as the molecular tool to enable multiplexed peptide-based 

MFA. The vector is functional in E. coli and expresses a synthetic flux reporter protein from a 

small-molecule inducible non-native promoter. pFluxSeq is designed to accept an in-frame DNA 

barcode library within the flux reporter gene, and expression of the gene results in production of a 

library of heterologous proteins that contain peptide barcodes translated from the DNA barcode 

library. The synthetic peptide barcode sequences retain their association to the host genotypes, 
and act as reporters for amino acid isotope labeling patterns when the cell library is grown on a 

labeled substrate, thus allowing multiplexed MFA. 

 

We incorporated several components into the design of the flux reporter protein to simplify the 

process of extracting the protein from cells. We included a solubilization domain and a selection 

system to retain only those library members that express and fold correctly. We included affinity 

purification tags at either end of the protein to be used with a double purification protocol that will 

retain only full-length protein molecules. The orthogonal purification steps also yield the flux 
reporter protein at high purity with negligible or no native proteome contamination, thus 

simplifying sample preparation for mass spectrometry. Lastly, the peptide barcodes were 

designed to yield fragments of a size ideal for orbitrap MS analysis and can report labeling 

information on all 20 amino acids, thereby contributing to the increased accuracy of any flux maps 

generated. 

 

While pFluxSeq is designed to be used as a tool for peptide-based MFA, the vector can be ported 
to other protein expression applications. The peptide barcode sequence can be replaced with a 

library of protein sequence variants to select for soluble variants. The double purification system 

will yield only full-length intact variants so sequences prone to targeted endoproteolytic cleavage 

or post-lysis fragmentation can be excluded. After purification, the accessory polypeptide 

sequences can be cleaved with targeted proteases like SUMO protease and enterokinase to 

release the unfettered variant protein. This protein molecule can then be used for functional 

assays or for crystallographic purposes. The cumene induction system supports regulated protein 

expression in non-model organisms (Kaczmarczyk, Vorholt, and Francez-Charlot 2013) and the 
components of the flux reporter protein can function without host dependencies, thereby 

expanding the utility of pFluxSeq vector to a wide range of bacteria. 
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Figures 

 
Figure 1: Map of pFluxSeq plasmid The synthetic reporter protein has the 6xHis tag at the N-

terminus and Strep tag at the C-terminus. Successive purifications using these tags enable 

recovery of full length protein. Translational fusion of peptide barcodes to chloramphenicol 

acetyltransferase enables selection for soluble proteins. SUMO fusion enhances solubility and 

also acts as a site for SUMO protease cleavage. The CymR repressor binds to the Cym operator 

region to block RNA polymerase transcription, and is released when bound to exogenously added 
cumene.   
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Figure 2: Protein expression and purification of the mCherry fusion protein The vector 

pFluxSeq-RFP, in which the fluorescent protein mCherry is present instead of the peptide 

barcode, was transformed into E. coli BW25141. This strain was used to visually monitor and 

optimize the protein expression and purification protocols. The strain was grown in a flask and 

synthetic reporter protein expression induced by addition of cumene. A) Cell pellets exhibit vivid 
color from mCherry protein expression after 6 hours of induction. B) Recombinant mCherry fusion 

protein is bound by the His tag to the Ni-NTA resin. C) Protein eluted from the Ni-NTA column is 

bound by the Strep tag to the streptactin resin. D) Samples from each step of the dual purification 

process were analyzed by PAGE. Elutions from the His tag and Strep tag bound columns 

resulted in highly pure recombinant protein isolate. The boxed bands correspond to the full-length 

protein (68.2 KDa) and the smaller bands correspond to cleavage products. The mCherry fusion 

protein was sensitive to the sample preparation steps of PAGE and was subject to some 

degradation, as indicated by the other bands in the elution product lanes whose sizes add up to 
that of the full-length protein. 
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Figure 3: Purification of pFluxSeq synthetic reporter protein with peptide barcode The 

plasmid pFluxSeq was transformed into BW25113, and approx. 100 colonies were pooled to form 

a library. The pool was grown in a flask and synthetic reporter protein expression was induced for 

6 hours. After dual purification steps, the samples were analyzed by PAGE. For the Strep Elution 

lane, protein at 1/3rd of the concentration from the His Elution was loaded. The single strong 
band in the Strep Elution column corresponds to the expected size of the reporter protein 

containing the peptide barcode (~ 45 KDa), thereby indicating high purity of the protein isolate. 
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Figure 4: Sequence Logo of peptide barcodes present in the Keio (pFluxSeq) strains DNA 

barcodes were extracted from Illumina sequencing data and translated to amino acid sequences. 

The resulting peptide barcodes were aligned and the sequence logo was generated to verify that 

for each codon position, the appropriate amino acids encoded by the compressed codons were 
present at similar abundance. Digestion with trypsin should cleave the barcode at lysine(K) and 

arginine(R) amino acids and yield 3 peptide fragments suited for orbitrap MS analysis. The 

peptide barcodes incorporated into pFluxSeq encompass a sequence diversity of 2.5 x 1017 

variants.  
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Tables 
 

Oligonucleotide 
Name 

Sequence 

NPP498 CATACCACCAATCTGCTCACGATGTG 

NPP499 CCACCGCTGAGCAATAACTAGCATA 

NPP500 CACATCGTGAGCAGATTGGTGGTATGGAGAAAAAAATCACTGGAT
ATACCACCGTTGATATATC 

NPP501 TATGCTAGTTATTGCTCAGCGGTGGGCTTATTATCACTTATTCAGG
CGTAGCACC 

NPP674 NNNGGTCTCN GGAAGT CGCGGTATCATTGCAGCACTG 

NPP675 NNNGGTCTCN TGTTTC CATTGCGCGCTCTGCCTGTGTT 

NPP676 NNNGGTCTCN AACA CAGGGCAAGTTGATTGCAGCG 

NPP677 NNNGGTCTCN TTCC ACGCTCACCGGCTCCAGATTTA 

NPP684 NNNGGTCTCNAAACGATCCCTCCTTCGTTCATAATACAAAC 

NPP685 NNNGGTCTCNGGGCGGGGCGTGACCTCGAGGCCCAAGGTTTAAA
G 

NPP686 NNNGGTCTCNCAAGGAGAAAAAAATCACTGGATATACCACC 

NPP687 NNNGGTCTCNCCATACCACCAATCTGCTCACGAT 

NPP688 NNNGGTCTCNATGGTGAGCAAGGGCGAGGA 

NPP689 NNNGGTCTCNCTTGTACAGCTCGTCCATGCC 
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NPP694 NNNNGGTCTCN 
GGTGGCTCCAAGCAGACGCCCCGCCCTGCCACTCATC 

NPP695 NNNNGGTCTCN CACCCGCAGTTCGAGAAG 
TGACCTCGAGGCCCAAGGTTTAAAGC 

NPP700 NNNNGGTCTCN CTGA CCA CRB CRB WTS GWW YTT GWW CRB 
GWW CRB CRB WTS CRB GWW GCH 
ACCACCAATCTGCTCACGATGT 

NPP701 NNNNGGTCTCN  TCAGGA DGC SAW DGC SAW CGY VYG WWC 
VYG DGC VYG SAW SAW WWC DGC AAR 
GAACAGTACGAACGCGCCGA 

FluxSeqBC_Fwd CGTCGGCAGCGTCAGATGTGTATAAGAGACAG 
ATCGTGAGCAGATTGGTGGT 

FluxSeqBC_Fwd GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG 
GCGCGTTCGTACTGTTC 

Nextera_Fwd AATGATACGGCGACCACCGAGATCTACAC [i5] 
TCGTCGGCAGCGTC 

Nextera_Rev CAAGCAGAAGACGGCATACGAGAT [i7] GTCTCGTGGGCTCGG 

 
Table 1: List of oligonucleotides used in this study 
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Table 2: Expansion of compressed codons Semi-degenerate compressed codons were used 

in designing the DNA barcodes of pFluxSeq. Each compressed codon encodes several amino 

acids at equal frequency. Lysine(K) and Arginine(R) act as sites of trypsin cleavage and were not 

included in the codon scheme. The codon for Tryptophan(W) could not be fit into the compressed 

codon sets and was included separately in the DNA barcode.  

 



 

 55 

  
Table 3: List of strains transformed with the vector pFluxSeq Strains with specific gene 

knock-outs were transformed with the pFluxSeq vector for peptide based metabolic flux analysis. 

Except the wildtype, strains were knockouts of genes either coding for central metabolism 

enzymes or transcription factors. Some knockouts have prior published 13C MFA based flux 

maps. 
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Chapter 4  

Deep Mutational Scanning of Phenotype Arrays 
Nagendra Palani*, Daryl Gohl, Archana Deshpande, Kenneth Beckman, Igor Libourel* 

 

* equal contribution 

Introduction 
Deep mutational scanning (DMS) has harnessed the power of massively parallel sequencing to 

introduce a systems view of the protein genotype-phenotype relationship (Fowler et al. 2010). 

Simultaneously assaying several thousand amino-acid variants of a protein has been 

transformational in our ability to construe how structure determines function (Starita et al. 2013; 
Jin et al. 2015; Haddox, Dingens, and Bloom 2016; Bandaru et al. 2017). Even with DMS still in 

its infancy, it promises to revolutionize the functional characterization of poorly characterized 

proteins. The method has so far relied on phenotypes linked to genotypes to assay protein 

function through selection. This requirement limits its utility to only those proteins for which a 

selection scheme is available. Thus, in cases where the measured phenotype is uncoupled from 

organismal fitness, a new strategy for linking phenotype to genotype is required. 

 

Our work extends the applicability of DMS to proteins that cannot easily be selected for. We have 
devised a workflow that applies established genomics methods to phenotype screening arrays in 

order to resolve a protein’s structure - function connection. We create a protein variant library by 

transforming a mutagenised plasmid library into a bacterial expression system. Bacterial colonies 

are arrayed in a standard format (96 well microtiter plates) and mutants are rapidly screened 

using available chromometric or chromatographic assays, which enables the method to be readily 

adapted to existing array-based functional assays. Significant effort has been invested by the 

enzyme engineering community to develop plate based high-throughput assays that are sensitive 
and make use of optimized phenotyping workflows. Our method is able to take advantage of such 

existing assays to provide rich functional information and can generate structure - function 

mapping even from archival stocks of gene variant libraries. 
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As a proof of concept, we created an aminoacid variant library of the mCherry fluorescent protein 

(Shaner et al. 2004) and analyzed how its primary structure affects its fluorescence emission and 

intensity. A plasmid borne mCherry gene was mutated by error-prone PCR and transformed into 

an E. coli based regulated protein expression system. 9402 bacterial colonies were arrayed in 96-

well plate format, and position-linked spectral phenotyping of mutants was obtained using 

confocal microscopy. While cell sorters have been employed to bin mutants into groups of shared 

fluorometric phenotype, the number of bins available with current technology is limited and subtle 

variation in phenotype is not differentiated (Sarkisyan et al. 2016). The genotype of each variant 
protein in the array was resolved using barcode sequencing of orthogonal sample pools and 

single molecule real time (SMRT) sequencing to link barcodes to mCherry sequences. We 

analyzed the mutational scan data using a linear model composed of several protein properties 

including aminoacid orientation, change in free energy, and aminoacid conservation. 

 

Before the advent of DMS, experimental annotation of functional residues in a mechanistically 

poorly understood protein was a non-trivial pursuit. Exhaustive characterization of phenotypically 

plastic residues was almost intractable. Catalytic sites are often assigned based on sequence 
motif similarities to well-studied proteins of known function, and often require site saturation 

mutagenesis studies to confirm bioinformatic predictions. Our linear-modeling based approach to 

analysing mutational scan data of phenotype arrays allows empirical evaluation of functional 

predictions. Using our approach of linking genotype and phenotype information, we were able to 

identify the outsized functional contribution of several residues in mCherry, including the 

chromophore and other previously highlighted residues without any a priori information (Shu et al. 

2006).  

Experimental Procedures 

Error-prone mutagenesis of mCherry 

The leucine/isoleucine auxotroph E. coli strain DH10B (New England Biolabs) was used for 

cloning and expression of mutagenized mCherry plasmids. Transformed strains were selected on 

LB medium (Difco) + 50 µg/ml Kanamycin (Teknova). The mCherry open reading frame was PCR 
amplified (primers mCherry_Fwd / mCherry_Rev1,2, or 3) from plasmid pRSET-B-mCherry (gift 

from Brett Barney, University of Minnesota) with Taq polymerase (Lucigen), supplemented with 

three concentrations of MnCl2 to obtain an average of one, two, and three mutations per mCherry 

sequence. Separately, the transformation vector backbone was amplified from pRham-HA-
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Tn5Tnp (gift from Hideaki Nakayama, Kyoto University) using the high-fidelity Q5 polymerase 

(NEB) and primers pRham_Inv_Fwd + pRham_Inv_Rev (primer sequences provided in table 1). 

The vector features the rhamnose regulated rhaBAD promoter from E. coli, with a pBR322 origin 

of replication and a Kanamycin antibiotic resistance cassette. During PCR amplification, each 

amplicon was tagged with a unique barcode consisting of 17 bp degenerate nucleotides in the 

reverse primer. The PCR products were cleaned with a PCR cleanup kit (Zymo Research) and 

quantified using a Nanodrop (ThermoFisher Scientific). The vector and barcoded-mCherry insert 

were Goldengate ligated (Engler, Kandzia, and Marillonnet 2008) for fifteen cycles using BsaI, 
DpnI restriction enzymes and T4 DNA ligase to obtain the pRham-mCherryBC plasmid library. 

The library was cleaned up with the PCR cleanup kit and 1 µl of the library was subsequently 

used for transformation into 25 µl of electro-competent DH10B cells (Electroporation condition: 1 

mm cuvette, 200 Ohm, 25 µF, 1.8 kV on a Bio-Rad GenePulser). Transformed cells were 

recovered in SOC for 1 hour at 37 ˚C before plating on LB + Kanamycin to obtain approximately 

100 colonies per standard 100 mm petridish. Plates were incubated at 37 ˚C overnight and stored 

at 4 ˚C until colonies were picked. Colonies were picked by hand using sterile toothpicks and 

arrayed into 96 well plates containing LB + Kanamycin. 33 plates were allotted for mutants of 
each of the three MnCl2 concentrations. The plates were sealed with a Breathe-easy membrane 

(Sigma) and incubated overnight at 37 ˚C. An equal volume of 50% v/v glycerol was added, 

mixed, resealed with an aluminum seal and stored at -80 ˚C. In total, 9402 colonies were picked. 

Imaging of mCherry strains 

Clones for fluorescence imaging were inoculated from frozen stock in 150 µl of M9 medium with 

2% w/v rhamnose replacing glucose and supplemented with 50 mg/ml leucine and isoleucine. 

Plates were sealed with sealing membrane and incubated at 37 ˚C on a plate shaker for 18 h. 

Membranes were removed prior to imaging to complete mCherry protein maturation by exposure 

to oxygen. Plates were resealed and fluorescence emission spectra were collected on a Nikon A1 

confocal microscope using an automated stage. mCherry was excited at 488 nm and emission 

spectra were recorded between 500 and 690 nm. 

Orthogonal sample pooling and sequencing for spatial 

tagging of barcodes 

An orthogonal sample pooling approach conceptually similar to (Chi et al. 2014) was undertaken 

to map the unique 17 bp barcode associated with each mCherry strain to its spatial location 
(Plate – Row – Column coordinates). The strains were pooled by rows, columns, and plates and 
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plasmids extracted from each pool (Qiagen Plasmid miniprep kit). The 99 plates were processed 

in two batches of 50 and 49 respectively, resulting in 139 pools in total. The purified plasmid 

pools were then subjected to two rounds of PCR to prepare the barcodes for Illumina sequencing. 

In the 1st round, primers ProMut-seq_F / ProMut-seq_R were used to amplify the barcode 

sequence. In the 2nd round, Illumina index primers (Nextera_Fwd / Nextera_Rev) were used to 

dual-index PCR products from the 1st round with a pool specific tag. The sequencing libraries 

were quantified, mixed, and sequenced on an Illumina MiSeq using a 50 bp single-end run. 

Bioinformatic processing of the sequence data resulted in 87% of the strains being uniquely 
mapped to a well. 

Single molecule sequencing of mCherry clones 

The purified plasmids used for barcode mapping were combined into a single sample. The 

mCherry ORFs including the downstream 17 bp barcodes were PCR amplified (951 bp) and 
sequenced on a Pacific Biosciences RSII instrument at the Mayo Clinic, Rochester. Subreads 

from 240-minute movies of two SMRTcells were combined, and the CCS2 (Circular Consensus 

Sequencing, version 2 – Pacific Biosciences, CA) algorithm was used to obtain a consensus 

sequence for each productive zero mode waveguide (ZMW) from respective sub-reads. The 

algorithm was set to require at least 5 sub-reads, 90% output sequence quality and 920 bp length 

of the output sequence. The output BAM file was imported into Galaxy 

(https://galaxy.msi.umn.edu) and converted into a multi-fasta sequence file using BAMtools 
(Barnett et al. 2011). A single consensus sequence was derived from the ZMW consensus 

sequences that shared the same barcode. The list of barcodes derived from Illumina mapping 

was searched against the PacBio output file through a local instance of BLAST+ (blastn) 

(Camacho et al. 2009). The output contained a mapping of PacBio subject entries that matched 

against the Illumina barcode query entries. For each barcode, sequences from at least two 

independent ZMWs were required for further processing. Multiple sequence alignment (MSA) of 

sequences sharing a barcode was performed on a local instance of CLUSTALW (Larkin et al. 

2007). The reference mCherry sequence was included within each cluster when performing the 
MSA. Each aligned cluster was imported into Matlab, and a custom weighted plurality algorithm 

was used to call a consensus nucleotide at each position, with the reference sequence being 

assigned half the weight compared to a PacBio sequence to ensure that the output consensus 

could be called at each position. 

Data visualization and statistical analysis 
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Data handling and analysis was performed with custom Matlab (Mathworks, MA) scripts. 

Regression analysis was performed on log transformed fluorescent intensities, following visual 

inspection showing that fluorescence of wild-type clones was close to lognormal (but failed the 

Lilliefors test). A subset of clones <1% had no detectable fluorescence, which prompted the use 

of both ordinary and robust linear regression to confirm that observations held both with and 

without the inclusion of outliers.  

 

Emission spectrum quantification 

For calibration purposes, fluorescent emission spectra were collected from (i) wells filled with 

media (ii) a dilution series of DH10B cells, and (iii) a dilution series of DH10B cells transformed 

with wild type mCherry. After characterization of media fluorescence, spectra from untransformed 

DH10B cells were characterized and corrected for media fluorescence using nonlinear fitting. The 
same process was repeated to characterize mCherry fluorescence whilst correcting for media 

and cellular fluorescence. The three spectra thus determined were used to fit each of the error-

prone PCR amplified clones, thereby determining both backgrounds and relative fluorescence 

intensity (RFI) simultaneously. Note that unlike taking the maximum fluorescence at a given 

wavelength, fitting the entire spectrum is fairly insensitive to small spectral shifts or changes in 

spectral kurtosis. 

Results 
The mCherry fluorescent protein was previously evolved using directed evolution under strong 

mutagenic conditions and stringent selection (Shaner et al. 2004; Campbell et al. 2002; Baird, 
Zacharias, and Tsien 2000; Bevis and Glick 2002). The recent history of very strong selection 

therefore provides us with an interesting opportunity to investigate genotypic plasticity and 

functional robustness of a protein after aggressive directed evolution. To investigate the genetic 

underpinning of mCherry’s function, we generated 9402 mutants by transforming E. coli DH10B 

with a plasmid containing a barcoded copy of an error-prone PCR amplified mCherry gene. 

Individual clones were arrayed in 96 well plates, and an emission spectrum of each clone was 

collected using an excitation wavelength of 488 nm. In parallel, a pool of all clones was PacBio-

sequenced to collect high-fidelity full-length genotypes of the phenotyped wells. To connect the 
phenotypes to genotypes, wells were pooled by plate, row, and column, and DNA was extracted 

from each pool. Using barcode sequencing, the barcodes existing in each of the pools were 
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determined. Barcodes that uniquely existed in a single combination of plate, row, and column 

pools were used to map a genotype to a phenotype (Figure 1). 

Genetic coverage of the mutant screen 

The majority (69%) of the clones encoded full length protein sequences and could be uniquely 

spatially addressed post-sequencing (Table 2). 29% of the clones were single nonsynonymous 

mutants, 14% contained at least two point mutations, and 4% of the wild type AA sequences 

contained at least one synonymous mutation. The genotypes were consistent with the previously 

observed bias of nucleotide transitions in error prone PCR (Lin-Goerke, Robbins, and Burczak 

1997). The resulting amino acid mutations covered 20% of all possible AA transitions. Note that 
most AA transitions require more than a single nucleotide change and were therefore not 

accessible through error-prone PCR. For only two positions no transitions were found and for 

95% of the AA positions, at least three unique AA transitions were observed. 

Single amino acid substitutions rarely change emission 

spectrum 

The emission spectra collected for all mutants revealed that very few spectra deviated from wild-

type. Deviation from wild-type was detected using the residuum of the scaled spectrum to the 

wild-type spectrum. The cutoff for detection was manually tuned to minimize false positive 

inclusion of clones with wild-type amino acid sequences. Using this approach, 71 spectra were 

identified as altered (Supplementary Figure 1), 49 of which were sequenced with a false 

discovery rate of 6%. Visual inspection showed that no spectra showed a leading shoulder shifted 

to a longer wavelength. Two mutants showed mild spectral broadening to longer wavelengths, the 
vast majority of the altered spectra showed mild shifts to shorter wavelengths, and seven spectra 

showed an identical strong shift to a shorter wavelength (Figure 2). Inspection of the amino acid 

sequences of this last group revealed that they all had the M66T transition in common. Residue 

66 is part of the chromophore, and its influence on the emission spectrum was characterized 

previously (Shu et al. 2006). The two spectra broadened to a longer wavelength also shared the 

same genetic cause (F14Y), indicating that both distinct phenotypes were caused by a single 

amino acid transition. The mild phenotypic shifts towards shorter wavelengths were caused by a 

variety of transitions that were observed in altered spectra at least twice including in known 
(V195M, Q213A) and unknown (F65A, V73I, H75F, L83K, F91A, M150K, V187I, L199I) effector 

sites. However, changes were small and intensities of all mutants were reduced. Interestingly, 
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two mutants were found containing two of the above transitions. Both mutants (34K:91L:213L and 

65A:73I) showed an additive spectral shift, but 34K:91L:213L (Figure 3A, B) also had twice the 

intensity of 213L single mutants, suggesting that the 91L mutation stabilizes the 213L transition 

since 34K is a transition of an external residue with no associated phenotype (Figure 3C, D). 

Overall, we observed spectral shift in only 11 out of the 236 amino acid positions other than those 

forming the chromophore, and most AA positions were limited to a single viable transition.  

Internal amino acid mutations diminish fluorescence 

To investigate the relative importance of AA residues of the mCherry protein, relative 

fluorescence intensities (RFI) of single AA mutants were averaged per position (Figure 4A). 

Scaling the log change in fluorescence from wild-type by accounting for the severity of the AA 

residue change using the BLOSUM62 substitution matrix reduced the variance by 15%, 

suggesting that the differential effect of AA substitution can partially be explained by the extent of 
functional redundancy of AA residues. A false color rendering of the RFIs onto the mCherry 

protein structure (Figure 4B) revealed that mutations in internal amino acid residues almost 

always reduced, and often diminished, fluorescence. In contrast, permutations of externally 

directed amino acids barely affected fluorescence. 

Linear model of mCherry specific data reveals regions of 

significance for protein fluorescence 

To investigate which parts of the mCherry protein were most significant for protein function, a 

linear model comprised of  local free energy changes (ddG) (Pires, Ascher, and Blundell 2014), 

residue orientation (Shu et al. 2006), BLOSUM62 amino acid substitution (Henikoff and Henikoff 

1992), and residue positions important for surface interactions (Wall, Socolich, and Ranganathan 

2000) was developed. Orientation of amino acids explained 33% of the observed intensity 

variance whereas ddG or BLOSUM62 amino acid substitution accounted for 12% and 15% 
respectively. Visual inspection of a false-color rendering of the residuals on the mCherry protein 

structure (Figure 5) revealed that the chromophore and the amino acids that it interacted with 

constituted the largest stretch of over-predicted RFI, confirming that alteration of active site 

residues was particularly detrimental to protein function. We further observed that the majority of 

under-predicted AA residues fell into three classes: (i) residues that were oriented on the surface 

of the protein, (ii) residues that were in tight turns of a β-sheet. Over-predicted RFI correctly 

identified individual AAs and protein regions of significance that were previously reported (Shu et 
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al. 2006). For proteins that have not been studied in detail, such information may be of great help 

in finding catalytic centers or regulatory domains.    

Discussion 
Using deep mutational scanning for arrayed protein libraries, we have uncovered several novel 

residues that are not near the active site of the mCherry protein and might influence protein 

function structurally, if not biochemically. In contrast to genetic characterization of pre-selected 

phenotypes, parallel characterization reveals protein regions of little importance in addition to 
amino acid residues of outsized significance. For instance, although only a small set of amino 

acids was known to result in spectral changes of red fluorescent proteins (Shaner et al. 2004), 

our analysis demonstrated that this was not because of the modest scope of the AA transitions 

that were scanned during directed evolution, but a consequence of the rarity of spectral changes 

resulting from mutations. Such information could be valuable in protein engineering efforts that 

might then employ targeted mutational strategies for modifying protein function. 

Error-prone PCR is a simple method to generate mutants but it does not effectively sample all 

possible single mutations at every position. However, technical advances in creating defined and 
saturating single-mutant libraries (Starita et al. 2015; Haller et al. 2016) will enable near-

exhaustive probing of the effect of every amino acid substitution for each residue position. Thus, 

deep mutational scanning of an average protein of length 300 amino acids can achieved by 

generating a library of approximately 20,000 single mutants (~209 96-well plates) that has a 97% 

probability of being complete (Firth and Patrick 2005). Our strategy of tagging mutant ORFs with 

short barcodes allows one to take advantage of more concise sample pooling schemes (Gohl et 

al. 2014) for large libraries, and recent innovation in single molecule long read sequencing 
(Goodwin, McPherson, and McCombie 2016) allows obtaining high-quality full length sequences 

of gene-length libraries without the need for haplotype phasing, an essential step in assembling 

gene sequences from short read sequencing (Stapleton et al. 2016). Other applications for 

empirical determination of amino acid functional importance would be in understanding structure-

function relationships in de novo designed proteins, and in promiscuous enzymes. Deep 

mutational scanning of phenotype arrays is a flexible and generalized workflow that enables 

linking protein function to its underlying structure. 
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Figures 

 
 
Figure 1: Workflow to link fluorescent protein structure to function. mCherry gene amplified 

by error-prone PCR was cloned into a barcoded expression vector backbone and transformed 

into E. coli DH10B. Position linked phenotyping was performed by measuring emission spectra of 

plate-arrayed colonies excited by 488 nm laser on an automated stage confocal microscope. In 

the parallel linking step, colonies were pooled in an orthogonal scheme, and the barcodes from 

each pool was amplified as an Illumina sequencing library. Pool libraries were sequenced on a 
MiSeq, and the barcodes were resolved to their plate positions. Genotyping was performed 

concurrently by single molecule sequencing of the contiguous mCherry – Barcode fragment 

library derived from a single pool of all colonies. Barcodes associated genotype to position, and 

position linked phenotype to genotype, thus resolving a structure – function map for mCherry. 
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Figure 2: Identification of mCherry residue positions that influence fluorescence emission 
spectrum Structure – function mapping for mCherry identified residue positions which when 

mutated cause significant spectral shifts. Several residues marked in blue predominantly lead to 

blue-shifted spectra when mutated whereas very few residues (in red) lead to red-shifts. Mutating 

the chromophore (magenta) can either increase or decrease the peak emission wavelength 

depending on the amino acid transition. (B) Examples for amino acid transitions at select residue 
positions leading to spectral shifts. 

 

 

 



 

 66 

 
 
Figure 3: Additive contribution of individual mutations to a phenotype shift From the 

phenotype data, we identified a mutant (P85A2) whose peak emission was blue-shifted while 

retaining intensity similar to wildtype. (A) Normalized emission spectrum is compared to the best-

fit wildtype spectrum. (B) Strain P85A2 was plated from frozen stock and the strain phenotype 

was clearly blue-shifted compared to wildtype. (C) Genotype of P85A2 includes three mutations – 

F91L & Q213L with sidechains interacting with the hydrophobic core of the β-barrel, and mutation 
E34K with sidechain exposed to the environment. (D) Individual emission spectra of the 

constituent mutants were compared to the spectra of P85A2 and wildtype. E34K does not seem 
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to have a role in effecting phenotype change whereas Q213L & F91L induce smaller phenotype 

shifts that would need to be additive to achieve the phenotype of P85A2.  
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Figure 4: Phenotype severity of mutations in mCherry (A) Heatmap showing the fold change 
in fluorescent intensity corresponding to each observed amino acid transition indicates that most 

amino acid transitions negligibly affect emission intensity. (B) Mean fold change in fluorescence 

intensity per position was plotted on the mCherry structure (PDB:2H5Q), revealing that residue 

positions with sidechains internal to β-barrel were highly influential in determining mCherry 

brightness. Residue positions colored white had no effect on intensity when mutated whereas 

blue shaded positions had the maximum effect. The chromophore is shaded in magenta. Note 

that fluorescent intensity was not corrected for variation in protein abundance. 
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Figure 5: Predicting residue positions that affect phenotype A linear model was constructed 

to explore the combined contributions of ddG, BLOSUM62, spatial orientation and surface 

interaction of residues towards predicting phenotype. Residuals from the model were plotted on 

the mCherry structure in false color, where red is under-predicted and blue is over-predicted 

relative fluorescent intensity (RFI) respectively. In addition to the chromophore, residues in blue 
have over-predicted RFI corresponding to current knowledge that these positions are highly 

influential in determining mCherry phenotype. 
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Supplementary Figures 
 

 

 
 

S1: Spectra classification of mutants Emission spectra of mutants were grouped and overlaid 

on the wildtype spectrum (dashed line). Most mutants do not exhibit shift in spectrum (red), 

whereas any shift observed is predominantly towards the lower wavelengths (cyan). Very rarely, 

red-shifted spectrums occur (magenta). 
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Tables 
 

Primer Name Sequence 

mCherry_Fwd NNNNGGTCTCN TATGGTGAGCAAGGGCGAGGAGG 

mCherry_Rev1 

 

mCherry_Rev2 
 

mCherry_Rev3 

 

NNNGGTCTCN GTGGT 

GGAGAAGGTGGCAGCAGCCAACTCAGCTTC 

 
NNNGGTCTCN GTGGT TTATAAC 

GTGGCAGCAGCCAACTCAGCTTC 

 

NNNGGTCTCN GTGGT CCACAAT 

GTGGCAGCAGCCAACTCAGCTTC 

pRham_Inv_Fwd NNNNGGTCTCNCATATGTATATCTCCTTCTTATAGTTAAACAAA

ATTATTTCTAGAGG 

pRham_Inv_Rev NNNGGTCTCN CCAC NNN NNN NNN NNN NNN NN CATATG 

GCAGTTATTGGTGCCCTTAAACG 

ProMut-seq_F TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTGAGTTGG

CTGCTGCCAC 

ProMut-seq_R GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGCACCAA

TAACTGCCATATG 

Nextera_Fwd AATGATACGGCGACCACCGAGATCTACAC [i5] 

TCGTCGGCAGCGTC 

Nextera_Rev CAAGCAGAAGACGGCATACGAGAT [i7] GTCTCGTGGGCTCGG 

 
Table 1 List of oligonucleotides used in this study. All oligonucleotides were ordered from IDT 

DNA (IA). 
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Data Processing step Value 
% of colonies 

picked 

Number of colonies picked 9402 100.00 

Unambiguous barcodes mapped to wells 8187 87.08 

Barcodes after cleanup 

(duplicates/template) 8150 86.68 

Barcodes mapped to PacBio sequences 7767 82.61 

Sequences that had >= 2 independent 

reads 7013 74.59 

Sequences with ORFs (minimum 95% 

length of mCherry) 6638 70.60 

Sequences with ORFs exactly matching 

mCherry size (236aa) 6531 69.46 

 
Table 2 Amount of usable data at each stage of bioinformatic processing of sequencing data.  
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Chapter 5 

Genome-scale CRISPR Interference in 
Escherichia coli 
Nagendra Palani, Igor Libourel 
 

Introduction 
Transient control of gene expression in a microorganism allows us to probe the dynamic 

responses of its metabolism. Suppressing or activating transcription of a gene from its baseline 

expression during the growth period can inform us on how organismal fitness is affected by 

perturbations to the transcriptome. Until recently, conducting RNA interference or gene 
repression screens (Y. Ji et al. 2001; Meng et al. 2012) in prokaryotes occupied a niche due to 

lack of precision tools like shRNA libraries that are available for eukaryotes (Bernards, 

Brummelkamp, and Beijersbergen 2006). With the development of programmable CRISPR-based 

methods, microbial systems biology is now poised for growth in the functional genomics arena. 

 

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) form a bacterial immune 

system and act as a defense against parasitic mobile elements like bacteriophages and broad-
range transmissible plasmids (Barrangou et al. 2007). In combination with the Cas9 RNA-guided 

DNA endonuclease protein, transcribed CRISPR forms a ribonucleoprotein complex that 

recognizes and cleaves non-self DNA entering a bacterial cell. Immunity against intruders is 

remembered by capturing a segment of the invading genome sequence and incorporating it as a 

CRISPR within the host chromosome. Thus, CRISPRs act as records of memory for specific 

sequences. The first mechanistically explained CRISPR/Cas9 system was from Streptococcus 

pyogenes (Jinek et al. 2012, 2014; Sternberg et al. 2014; Anders et al. 2014), and was quickly 

developed into a genome editing tool when it was discovered that any arbitrary DNA sequence 
containing a Cas9 specific protospacer motif could be targeted for nuclease activity by co-

expressing a non-coding CRISPR guide RNA (gRNA) whose sequence matched the target DNA 

(Cong et al. 2013). Heterologous reconstitution of the SpCas9/CRISPR complex within cells 

allowed precise gene deletion and creation of knockout strains.  
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The ease of designing and synthesizing CRISPR guide sequences for Cas9 targeting has led to 

an explosion of genome engineering applications in mammalian systems. While the native Cas9 

protein has endonuclease activity and creates precise double stranded breaks in the genome 

leading to gene disruptions, the nuclease-deactivated dCas9 protein which only binds to the 

target sequence without cutting it has been the basis of a plethora of applications. Fusion of 

specific protein domains to dCas9 has allowed us to target these proteins to a specific sequence, 

resulting in methods for gene repression (Qi et al. 2013), gene activation (Gilbert et al. 2013), 

epigenetic modifications (Hilton et al. 2015), base modifications (Komor et al. 2016) etc. The 
CRISPR gRNA determines the genotype of the cell in which it is present, and can also serve as 

the source of NGS-based phenotype readout. gRNAs are designed to be unique to avoid 

targeting multiple sites and thus they serve as unique barcodes that differentiate the genotypes in 

a pool, making pooled phenotype analysis of CRISPR libraries feasible. Using microarray 

synthesized oligonucleotide libraries encoding for CRISPR gRNA, (d)Cas9 based screens have 

been performed at the genome-scale targeting every single gene in several metazoan genomes 

(T. Wang et al. 2014; Shalem et al. 2014). Further, CRISPRs are naturally present as an array of 

sequences in bacteria and this property extends to synthetic CRISPR systems, enabling 
multiplexed and combinatorial targeting in functional genomic screens (Shen et al. 2017b). 

 

While it has become routine to conduct large-scale CRISPR based screens in mammalian cell 

lines, bacterial versions of such screens are not yet mainstream. CRISPRs have the potential to 

accelerate functional genomics and systems biology studies in microbes thanks to their ease of 

design and use. However, applying Cas9 based gene disruption to bacteria is not straightforward 

because most bacteria do not have a non-homologous end joining mechanism for DNA repair 
(Shuman and Glickman 2007). Targeting Cas9 to a chromosomal segment causes a double 

stranded break that can be lethal unless a homologous repair mechanism, native or 

heterologous, is triggered along with providing a homologous sequence as repair template (Jiang 

et al. 2013). The practical difficulties of this requirement hinder the use of Cas9 for creating 

genome-scale gene deletion libraries in bacteria. The dCas9 version however has facilitated 

multiplexed gene repression (Qi et al. 2013; Peters et al. 2016). Although engineered 

transposons are widely used to quickly create gene inactivation libraries, they cannot be used to 

transiently suppress expression. At present, CRISPR based mechanisms are the only feasible 
way to perform microbial gene repression screens at the genome scale. A defining advantage of 

CRISPR guided RNA interference (CRISPRi) over gene deletion is that a gene essential for 

survival can be repressed at any stage of growth, using inducible expression systems, to observe 

the consequence of depleting the functional molecule (RNA or protein) encoded by that gene. In 
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addition, the compactness of the components required for CRISPRi targeting make the system 

portable to most bacteria that can be transformed with an exogenous plasmid (W. Ji et al. 2014).  

 

CRISPR-driven repression of gene expression works by recruiting dCas9 to the target gene 

sequence, where the bound dCas9 occludes the movement of RNA polymerase thus preventing 

mRNA synthesis. Several concerns arise regarding the performance of genome-scale CRISPRi 

screens. If gene repression leads to reduced organismal fitness, then it can impose a strong 

pressure to select for mutants that have either deactivated the suppression system or introduced 
compensatory mutations. Replicate experiments done on different days can introduce variability 

in fitness measurements because of differences introduced by stochasticity in the expression of 

CRISPRi components. We sought to address these concerns in a CRISPR/dCas9 repression 

screen in Escherichia coli. We wanted to find out from the genome-scale repression screen if we 

can detect 1) the frequency of escape from repression by a genotype under selection and 2) 

variability in repression across biological replicates for the same genotype. To accurately 

measure fitness phenotypes resulting from CRISPRi repression, we constructed a genome-scale 

gene repression library using a pooled oligolibrary coding for guide RNA targets. To address 
within-sample variability, each gRNA was combined with gRNA associated lineage barcodes 

(GLBs) that uniquely tagged independent colonies of the same genotype, thus conferring the 

ability to record the fitness phenotypes of isogenic lineages in addition to the bulk fitness of that 

genotype. We then asked if any outliers within the lineages could be identified and removed to 

reduce the errors associated with fitness measurements. Lastly, we also explored the 

effectiveness and utility of transient repression compared to constitutive CRISPRi.  

Experimental Procedures 
E. coli strain DH5a was used for plasmid cloning and genome-scale gene repression 

experiments. For molecular cloning, bacterial cells were grown on LB plates containing 17 μg/ml 
Chloramphenicol, 50 μg/ml Kanamycin, or 50 μg/ml Carbenicillin antibiotics (Teknova) as 

appropriate. 

gRNA library design 

DNA sequences encoding guide RNA expression were designed computationally using Matlab 

(Mathworks) and synthesized as an oligo library (CustomArray Inc, WA). The E. coli MG1655 

genome (NCBI nucleotide sequence U00096) was used as reference to design the CRISPRi 
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gRNA library. For each coding sequence in the reference genome, a single guide RNA was 

identified for synthesis as follows. Nucleotide sequence spanning -30 to +150 was extracted from 

each CDS with the first base of the start codon set to +1. Within this sequence, all subsequences 

of length 30 and starting with the dinucleotide CC (antisense of the Cas9 protospacer motif NGG) 

were identified and 15 bases at the 5’ end (5’ - N4-N19) compared against the reference genome 

using BLAST (Camacho et al. 2009). Sequences that had secondary matches of at least 13 out of 

the 15 base query were discarded. Valid sequences closest to the +1 position of CDS were 

retained, and further screened to ensure that the potential gRNA oligos did not contain the BsaI 
restriction site (GGTCTCN^NNNN). The selected gRNA oligos were reverse-complemented to 

target the non-template strand of the CDS, based on published research demonstrating increased 

gene repression when compared to targeting the template strand (Qi et al. 2013; Bikard et al. 

2013). The oligos were then tagged with primer targeting sites for PCR amplification of the 

synthesized pool and BsaI restriction sites for cloning the amplified library into a plasmid vector. A 

control set of synthetic gRNA without any targets in the reference genome was also included in 

the oligolibrary to serve as the baseline when calculating fitness for gRNA with valid targets. In 

total, gRNA for 4153 coding sequence targets and 4 synthetic control sequences were 
synthesized.  

Oligolibrary cloning 

A two-plasmid system was developed to perform the genome-wide gene repression screen. The 

plasmid pdCas9-bacteria was a gift from Stanley Qi (Addgene plasmid # 44249). This is a p15 ori 

based plasmid expressing the deactivated Streptococcus pyogenes Cas9 nuclease (dCas9) 

under the Tet-inducible promoter. Plasmid pTra-crRNA is a pBR322 ori based plasmid that was 

the target vector for cloning in the guide RNA library. pTra-crRNA was assembled as follows. 

DNA sequence encoding constitutively expressed S. pyogenes tracrRNA and the constitutive 
guide RNA expression promoter (from Addgene plasmid #46569) was ordered as a gBlock from 

IDT DNA (sequence in Appendix). The plasmid pRham-mCherry (this work, Chapter 4) was used 

as template to amplify the Kanamycin + pBR322 ori fragment using primers NPP420/NPP421. 

The amplified fragment and the gBlock DNA fragment were assembled into pTra-crRNA by 

Gibson cloning.  

 

To prepare the oligo library for cloning into pTra-crRNA, the single-stranded library was converted 

into dsDNA and PCR amplified using primers NPP260/NPP261 (PCR conditions: Q5 polymerase, 
Annealing at 69 °C for 10 s, Extension at 72 °C for 15 s, 10 cycles). The β-lactamase gene 

fragment from pBAMI-GFP was amplified using primers NPP342/NPP397. A 12 bp degenerate 
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sequence is included within the primer NPP342 and serves as a DNA barcode (diversity - 412 

variations) that can distinguish bacterial colonies that carry the same guide RNA. The gRNA 

library, the barcoded β-lactamase fragment and the pTra-crRNA plasmid were mixed equimolarly 

and treated with BsaI restriction enzyme & T4 ligase to perform Goldengate cloning. After the 

restriction digestion - ligation reaction, the enzymes were heat-inactivated and the reaction 

product was cleaned by drop dialysis (https://www.neb.com/protocols/2013/09/16/drop-dialysis). 

The cleaned product (plasmid pCRISPR) was concentrated approximately ten-fold using a 

centrifugal vacuum concentrator (Speedvac, ThermoFisher Scientific). The gRNA plasmid library 
was then electroporated into electrocompetent E. coli DH5a strain already harboring the pdCas9-

bacteria plasmid (100 ng of plasmid library per transformation) (Figure 1A). After 1 hour of post-

transformation recovery at 37 °C, cells were plated on M9 minimal media plates containing 

chloramphenicol & carbenicillin antibiotics to select for both plasmids. In addition, some of the 

plates were supplemented with 1 μM anhydrotetracycline (aTc) to induce expression of dCas9 to 

mimic constitutive expression of dCas9. Cells were grown overnight at 37 °C, pooled, and frozen 

as glycerol stocks at -80 °C. Approximately 50,000 colonies were generated for each growth 

condition (with and without aTc supplement). 

Bioreactor experiments 

E. coli libraries containing the CRISPRi plasmids were aerobically grown in bioreactors (New 

Brunswick Bioflo 110) controlled by custom software (Burdge and Libourel 2014). Libraries from 

frozen stock were thawed, washed once in M9 medium, re-suspended in M9 medium, and 

injected into the bioreactor. Enough bacterial cells were inoculated to get an initial OD600 of 0.02. 

Libraries were grown in M9 minimal medium or M9 + 2% Casamino acids medium. Libraries 

constitutively expressing dCas9 were supplemented with 1 μM aTc throughout the duration of the 

growth experiment, whereas libraries subjected to timed induction of dCas9 were supplemented 
with 1 μM aTc when OD600 of the culture reached 0.05. Biological duplicates were performed for 

all growth experiments with at least a 3-day interval between replicate experiments. Cultures 

were grown in 700 ml of medium. Temperature and pH were maintained at 37 °C and 7.0 

throughout the duration of the experiment by PI (proportional - integral) negative feedback 

controllers. Oxygen availability for aerobic respiration was maintained at atmospheric oxygen 

level (~ 21%) by pumping in filtered air and monitored by a dissolved O2 sensor. When O2 

demand due to cellular respiration exceeded oxygen supply in air, 100% oxygen was released 

into the bioreactor from a compressed O2 tank by an automated valve on a negative feedback 
loop. Aeration and mixing was facilitated by a PI feedback controlled impeller running at 250 rpm. 

Density of the culture was continually monitored by a spectrophotometer (Spectronic 20D+) set to 
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measure absorbance at 600 nm, using an inline sampling system driven by a peristaltic pump. 

Cell samples were collected at time points t1 (OD600 = 0.2) and t2 (OD600 = 0.8) under sterile 

condition using the sampling port, taking advantage of the positive pressure inside the bioreactor. 

Equal cell numbers were collected from each time point and spun down in a refrigerated 

centrifuge at 5000 g. Cell pellets were frozen at -20 °C until plasmid extraction.  

Illumina sequencing library preparation 

Plasmids were extracted (Sigma Genelute) from frozen cell pellets corresponding to each time 

point for every growth condition. Oligonucleotides NPPS_CR_FU001-014 were individually mixed 

with NPPS_CR_FD006_v2 equimolarly to 10 μM, heated to 95 °C for 2 minutes and then allowed 
to cool to room temperature to form double stranded DNA adapters. 100 ng of the purified 

plasmid was mixed with 2 μl of the adapter and subjected to a restriction digestion (NheI + SpeI) - 

ligation (T4 DNA ligase) reaction. The reaction mixture was cycled between 37 °C for 5 minutes 

and 21 °C for 5 minutes for 15 cycles. After the digestion - ligation reaction, the enzymes in the 

mixture were heat inactivated and the reaction product was cleaned using a PCR clean-up kit 

(Zymo DNA Clean & Concentrator-5). 20 ng of the adapter-ligated linearized plasmid was used 

as PCR template to amplify and enrich the gRNA + random barcode region (NPP252 / 

NPPS_CR_RX001-RX003). After the enrichment PCR, the libraries were cleaned (Zymo DNA 
Clean & Concentrator-5) and subjected to a second round of PCR (NPP252/NPP254) to add the 

Illumina TruSeq flowcell primer sequences to the ends of the libraries. All oligonucleotides 

sequences are provided in Table 1. The PCR products were once again cleaned and individually 

quantified for mass and library size, after which the libraries were pooled together equimolarly for 

sequencing. The pooled library was sequenced on an Illumina HiSeq 2500 high output run set to 

125 bp read length and paired-end mode at the University of Minnesota Genomics Center.  

Data Analysis 

Sequencing data obtained as fastq files was demultiplexed using sample-specific barcodes and 
sequencing adapters were trimmed (bbduk module from JGI BBTools). Reads containing 

CRISPR gRNA sequences were matched against a reference file of designed gRNA using blastn 

module from BLAST+ suite. For each growth condition and time point, the read counts for each 

valid gRNA sequence was calculated. Data was imported into Matlab for all further analyses. 

Independent colonies containing the same gRNA were distinguished by the random barcode 

sequence and treated as replicates. Read counts were normalized per library before fitness 

values were calculated. 
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where Ft1 and Ft2 are the frequencies of a given genotype at the two timepoints, Wt1 and Wt2 are 

the frequencies of the control gRNA, and d is the expansion factor (van Opijnen, Bodi, and Camilli 

2009). Fitness for a genotype was calculated relative to the strain carrying the control gRNA that 

did not have any targets on the chromosome. Lineage specific fitness was calculated for 

individual barcodes of a gRNA from the t1 and t2 read counts for each lineage. Bulk fitness for a 

gRNA genotype (i.e. fitness of a genotype without considering lineages) was calculated as above, 

with F = ∑ fi where fi is the read frequency of each lineage for a given gRNA. For a gRNA, 

standard deviation from mean fitness of the lineages was calculated from the individual lineage 
fitnesses. The error associated with the measurement of bulk fitness (i.e. the standard deviation) 

was calculated analytically using the error propagation equation 
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where the Ft1 and Ft2 are the partial derivatives of the fitness equation.  
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Outliers in barcode lineages were identified using ‘isoutlier’ function in Matlab. A lineage is 

considered outlier if its fitness is more than 3 scaled median absolute deviations away from the 

median fitness of lineages of a gRNA. E. coli gene essentiality data was downloaded from Ecocyc 

database (Keseler et al. 2017).  
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Results 

Representation in cloned gRNA library varies with dCas9 

induction 

Guide RNA plasmid libraries were created in E. coli under two conditions - either in the presence 

of aTc which induced dCas9 expression (+aTc library), or without the inducer (-aTc library) 

(Figure 1B). Presence of the inducer from the moment of plating the transformed cells causes 

continuous induction of dCas9, leading to constitutive repression (CR) of target genes in the +aTc 

library. The -aTc library was grown in bioreactors under different media conditions and gene 

repression was enabled by addition of the inducer at a predetermined cell density (Timed 
Repression: TR; Timed Repression - Rich media: TR-Rich; No Repression: NR). The CR growth 

condition had the lowest number of unique gRNA recovered after growth experiments because 

gRNA-targeted repression is active even during initial colony growth (Figure 2). One would expect 

that the NR growth condition has the best representation of recovered gRNA because dCas9 was 

not induced at all and this holds true. TR gRNAs are better represented compared to CR because 

repression is functional for only a few generations and this might not sufficient to deplete cells 

targeted for essential genes to below detectable levels. TR-Rich is the second best represented 

condition because many essential genes in TR will be non-essential under the rich media 
condition. In conditions in which dCas9 was expressed (CR, TR, TR-Rich), there was high 

concordance in the number of targeted genes present in both biological replicates. The number of 

genes uniquely present in one replicate of a growth condition but not in the other was less than 

1% of the genes present in common between the replicates. Overall, 3410 genes were 

represented across all conditions and replicates. 

gRNAs can be tagged with barcodes post oligo library 

synthesis to track individual lineages (colonies) of a gRNA 

To track lineages arising from independent colonies of the same gRNA genotype, it was 

necessary to tag the gRNA coding sequences with barcodes after oligolibrary synthesis. This 
tagging of gRNA associated lineage barcodes (GLB) was done during the plasmid cloning step 

(Figure 1A). The median number of barcodes per gRNA and the distribution of barcode numbers 

across the gRNAs were very similar across the conditions tested (Figure 3), except for the more 

extreme outliers observed in CR. This could be due to artifacts in PCR amplification or barcode 
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ligation (note that the +aTc and -aTc libraries were created separately). For most gRNAs, the 

number of functional lineages as recovered by NGS was consistent between replicates for a 

given condition (Figure 4). This indicated that there wasn’t a widespread dropout or fluctuation in 

the number of lineages during the growth experiments, attesting to the biological reproducibility of 

target gRNA function. 

GLBs enable lineage-specific fitness analysis and act as 

internal replicates to uncover inconsistencies in growth 

experiments 

Fitness for a gRNA genotype was calculated in two ways. First, for each barcoded lineage of a 

gRNA, fitness was calculated based on the frequencies of the lineage at t1 & t2. The individual 

fitness value of each lineage was averaged to find the mean barcode fitness (MBF) for each 
gRNA. Next, the barcodes were ignored and the read frequencies at t1 & t2 for each gRNA (i.e. 

sum of lineage frequencies for a gRNA) were used to calculate the bulk fitness (BF) of the gRNA. 

We compared MBF and BF for a replicate and also between replicates of a growth condition to 

check for correlations (Figure 5) We found that MBF and BF were almost identical for a given 

replicate (Pearson’s ⍴ > 0.99). However, between replicates, there was a positive but weaker 

correlation in the fitness values. Both MBF and BF had similar correlation values in pairwise 

comparisons between replicates. The weaker correlation could be due to stochasticity in the 

various components of the experimental system, since we performed the replicate experiments to 

be as identical as possible. 

 

The error associated with the fitness measurement or the standard deviation (SD) on fitness was 
explored to examine how consistently the independent lineages of a gRNA reported on the 

fitness. There was a very weak negative correlation between barcode lineage SD (LSD) and SD 

estimated for the bulk fitness (BSD) for a given replicate. Variation in fitness values between 

lineages of a genotype can be due to biological stochasticity and measurement noise. As it is 

determined from observation, LSD captures this variation and is a better validation of fitness 

compared to BSD which can only be estimated from the bulk frequencies of genotypes. Indeed, 

there was a weak positive correlation in LSD between replicates. 
  

For a given gRNA, fitness of some lineages can be outliers due to several reasons: selection 

pressure relieving the repression of dCas9, a stochastic change in expression strength of another 

gene that unexpectedly alleviates fitness, noise and biased in the molecular methods for NGS 
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etc. gRNA that had at least 10 lineages were considered for lineage outlier analysis. 

Approximately 30% of the genes that were analyzed per replicate had at least one outlier that 

could be removed (Figure 6A). In some cases, the removal of an outlier lineage produced a 

drastic change in the fitness (MBF) calculated for the gRNA (Figure 6B). Corrected MBF of a 

gRNA after removal of outlier lineages was predominantly within 0.05 units of initial MBF (Figure 

7) 

Timed Repression has a weaker effect on fitness compared 

to Constitutive Repression 

In timed repression, gRNA that target essential genes can be included in the library without 

affecting the phenotype. After expansion of these genotypes without any gene repression, dCas9 
can be induced to repress the target gene and the subsequent drop in fitness observed. Such an 

assay is useful to confirm if a gene is indeed essential and affects the organism’s fitness.  In 

transposon screens, essentiality is inferred rather than confirmed because inactivating an 

essential gene makes the strain unviable, resulting in no colonies. 

 

Gene fitnesses (mean fitness of lineages) were compared between TR and CR conditions to 

check if they were comparable between the two repression schemes (Figure 8). A significant 

number of essential genes were detected in the TR condition but not in the CR condition, 
indicating that constitutive repression of essential genes leads to unviable cells. Further, the 

essential genes detected in TR but not in CR spanned the full range in fitness. The period of 

repression could be insufficient to fully negate the essential gene activity i.e. enough time might 

not be available to completely repress the transcription of the targeted gene and deplete the gene 

products by RNA and protein turnover to have a strong negative effect on the phenotype. Non-

essential genes that were in the low fitness range (arbitrarily defined as < 0.5) had a higher 

fitness value in TR compared to CR. Overall, timed repression had a weaker effect on fitness but 
can be a useful strategy to directly confirm gene essentiality, particularly if more samples are 

collected during a longer repression period. In such an experiment, the depletion of gRNA 

targeting essential genes can be experimentally tracked. 
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Timed Repression enables assessing the same library under 

multiple media conditions 

Timed repression enables assaying the same starter library under multiple conditions, allowing 

testing of conditional gene essentiality (where a gene essential in one condition is non-essential 

in another). Studying conditional essentiality is labor-intensive in cases of constitutively repressed 

CRISPRi, transposon mutagenesis, and targeted gene deletion, as the strain libraries need to be 

created anew for each condition that is being tested. Timed repression combined with phenotype 

microarrays (Bochner, Gadzinski, and Panomitros 2001) can trivially determine conditional gene 

essentiality across a wide range of growth substrates using the same starting library of 

genotypes. 
 

Gene representation was compared between TR and TR-Rich conditions. Genes that play a role 

in biosynthesis were depleted in TR minimal media but present in TR-Rich (Table 2). Nearly 1/3rd 

of the genes that were present only in TR-Rich had been identified as essential, and another 1/3rd 

had been identified as ambiguous (deletions that could not be confirmed for removal of gene  

(Yamamoto et al. 2009)).  

Discussion 
CRISPR-based interference screens are a new paradigm in bacterial transcriptome control. There 

is no prior technology available in bacteria that works at a similar scale, and thus there is no 
established baseline for comparison of CRISPRi performance. Using gRNA associated linear 

barcodes, we were able to quantify the variability in CRISPRi effectiveness within isogenic 

strains. We could also uncover lineages whose fitness values were outliers compared to the rest 

of the lineages for a gRNA and remove these outliers for more accurate fitness measurements. 

 

Because CRISPRi is a repression system that doesn’t permanently disrupt a target gene, we 

expect both gRNA design and properties of the target gene (expression strength, genomic 

location) to influence the efficiency of repression. This is analogous to Tn-Seq, where insertions 
in different locations within a gene can produce different fitness phenotypes (Yang et al. 2014; 

Goodall et al. 2018). We designed only one gRNA per gene due to limitations of the synthesis 

technology we used to manufacture our oligo library. To improve the accuracy of fitness 

measurements and minimize variation in repression efficiency, one can design multiple gRNA 

that tile the entirety of a gene sequence (Tianmin Wang et al. 2017). 
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CRISPRi is a very flexible assay for exploring gene function. The number of targets probed by the 

assay can be easily varied from a single gene to the genome-scale, all while being amenable to 

phenotyping by NGS. Unlike transposon mutagenesis, CRISPRi can be focused on specific sets 

of gene targets that are of interest. It is trivial to target only the genes of a biochemical subsystem 

like lipid metabolism or secondary metabolite biosynthesis. Desired subsets of gRNA can be 

amplified from a pooled genome-wide gRNA oligo library by using the principles of dial-out PCR 

(Schwartz, Lee, and Shendure 2012), enabling exquisite customization and rapid creation of 
CRISPRi libraries. Of great interest is the targeting of essential genes during cell growth. 

Insertional or targeted mutations in essential genes lead to cell death, resulting in these genes 

not being represented in functional genomics studies. However, essential genes are of significant 

interest precisely because of their essentiality. Past efforts to resolve this catch-22 situation relied 

on introducing a plasmid-borne copy of the essential gene into the organism, and then deleting 

the chromosomal copy by recombination. Either plasmid replication or essential gene induction 

was made conditional. This complicated process is highly simplified by CRISPRi, where 1) 

essential genes are targeted in the same way as any non-essential gene, 2) temporal control is 
available over gene repression 3) degree of repression can be tuned by controlling the 

expression of dCas9. CRISPRi is singularly useful in probing gene essentiality in less studied 

organisms (Peters et al. 2016). Because CRISPRi can target sequences with precision, it is 

highly suited for repressing genes encoding small ncRNAs and mini-protein, targets which are 

small enough to escape transposon insertions. In this study, we explored the use of CRISPRi 

libraries for single gene repression. CRISPRi can be expanded to study genetic interactions by 

cloning two or more gRNA as an array. This approach works best for probing small gene sets for 
genetic interactions as performing a genome-scale GI screen can be technically challenging (as 

there is a requirement to create (N*(N-1))/2 unique colonies by direct transformation in an 

organism with N genes).  

 

In addition to the widely used dCas9 from Streptococcus pyogenes, orthogonal versions are now 

available that exhibit different PAM requirements which are useful in organisms with skewed 

genome base composition (Esvelt et al. 2013). Other types of sequence-guided genome editing 

tools are also gaining traction. Cpf1 is an RNA-guided DNA endonuclease that requires only the 
gRNA for its function, foregoing the additional noncoding RNA required by Cas9 (Zetsche et al. 

2015; S. K. Kim et al. 2017). Such compactness would be an advantage in CRISPRi experiments 

where strong selection is present against the activity of the CRISPRi components. A more 

notable discovery is that of Cas13a (C2C2), which is an RNA-guided RNA nuclease that can be 

used for direct RNA knockdowns (Abudayyeh et al. 2017). These advances make CRISPRi a 



 

 85 

powerful tool with wide application. CRISPRi is more targeted than transposons and more cost-

effective than targeted deletion libraries, thus meriting serious consideration for functional 

genomics screens. We have shown that barcodes for lineage analysis improve quality of 

CRISPRi measurement, and inducible expression of dCas9 provides temporal flexibility in 

expression control. We expect that the innovations explored here will enhance the value of 

CRISPRi as a functional genomics tool in microbiological studies. 
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Figures 

 
Figure 1: CRISPRi library creation and growth experiments A) gRNA for genome-wide 

targeting were synthesized as an oligolibrary and cloned en masse in combination with DNA 
barcodes into a plasmid vector. The ligated plasmid library was transformed into E. coli DH5α: 

(pdcas9-bacteria) by electroporation. B) Transformed bacteria were plated either in the presence 

or absence of anhydrotetracycline to obtain libraries that had constitutively repression (+aTc) or 

had no repression (-aTc) activity respectively. Libraries were then grown in an environment-

controlled bioreactor under different media and dCas9 induction conditions, with cell samples 

collected at two points for NGS based fitness analysis. 
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Figure 2: CRISPR gRNA identified across growth conditions To compare the performance of 

CRISPRi across replicates and experiments, it was necessary that a substantial number of gRNA 

were identified by NGS across all libraries. R1 and R2 indicate biological replicates. Replicates of 

constitutive repression had the least number of shared gRNA sequences. They also were missing 

the most gRNA compared to other conditions. As expected, more gRNA were identified in the 

timed repression condition compared to constitutive repression, and a similar trend was observed 

when rich media was compared to minimal media. The low number of unique gRNA present in 

one replicate but not in the other (less than 1%) indicated that the replicates would be useful for 
further comparative analysis. 
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Figure 3: Distribution of gRNA associated lineage barcodes across experiments The 

median number of barcodes recovered per gRNA is fairly consistent across experiments (box 

plot), even if the constitutive repression library has more extreme outliers. Also, the shape of the 

probability density distribution shows that there are very few gRNA with abnormally high numbers 
of barcodes associated with them. The variation in barcodes per gRNA could be due to variation 

in gRNA abundance within the PCR amplified oligolibrary used for cloning.  
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Figure 4: GLB concordance across replicates For each gRNA that was detected in both 
replicates of a condition, the number of barcodes recovered in replicate 1 was plotted against the 

number of barcodes recovered in replicate 2. Each hexagonal bin in the plot is an intersection of 

points of the two axes (scatter plot) and is shaded by the count of gRNA that have the same 

intersection point (histogram). It is apparent from the figure that for most gRNA, a similar number 

of barcodes are recovered between replicates. Any deviation could be due to sampling issues 

during growth experiments or NGS data (reads containing a particular barcode) that was 

discarded due to sequence errors.  
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Figure 5: Fitness and standard deviation correlation between biological replicates Within a 

replicate, bulk fitness and mean barcode fitness for a gRNA are very highly correlated, indicating 

that gRNA fitness derived as the average of barcode fitness is almost identical to the 

conventionally calculated gRNA fitness. Between-replicate correlations of either bulk or barcode 

derived fitness are positive but less strong which could be due to variations introduced by 

stochasticity on the days the experiments were performed, even if the experiments were 

replicated accurately as humanly possible. There is a slight negative correlation between bulk SD 
and barcode SD within a replicate. While the bulk SD is analytically estimated from gRNA 

frequencies at each sampling timepoint, the barcode SD is calculated from the observed fitnesses 

of barcodes for every gRNA and is therefore expected to more accurately reflect the error 

associated with fitness measurements. This is supported by the weak positive correlation of 

barcode SD between replicates. 
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Figure 6: Analysis for outlier lineages Genotypes that had at least 10 lineages were analyzed 
for outliers in calculated fitness. A) Approximately 30% of the genotypes analyzed contained 

outliers that could be removed. R1 & R2 are replicates 1 & 2. B) Example analysis: The minD 

gRNA in Constitutive Repression condition - Replicate 1 had 12 lineages. However, one lineage 

was a clear outlier with a negative fitness value, resulting from t2 < t1. The higher reads in t1 or 

the lower reads in t2 could have been due to PCR or NGS errors. Removing the outlier 

substantially changes the fitness of the genotype. This analysis would not have been possible 

with bulk fitness measurement, thus reporting an incorrect phenotype for this genotype. 
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Figure 7: Histogram of change in fitness after removal of outlier lineages The histograms 
show how the corrected mean barcode fitness (cMBF) changed with respect to MBF after 

removing lineages with anomalous fitness values. Most of the changes were within 0.05 units of 

the MBF value. 
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Figure 8: Comparison of Timed Repression to Constitutive Repression For each gRNA 

genotype detected in TR or CR condition, fitness (mean fitness of barcoded lineages) was 

compared between the two conditions. If a gRNA was not detected in one of the conditions, then 

the fitness value for that genotype was set to 0 in that condition. The axes of the scatter plots are 
fitness values. A substantial number of gRNA for essential genes are detected in TR whereas 

these are not found in the CR (see y-intercept in the plots). Further, for the essential genes 

detected in TR but not in CR, the fitness values span a wide range. This indicates that the period 

of timed repression was not sufficient to completely deplete the essential gene’s activity. The 

axes limits were chosen to display the most informative part of the figures. 
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Tables 
 

Oligonucleotide Name Sequence 

NPP260 CTTGGTCAGACGAGTGCATGG 

NPP261 GACCGGCAATCTCTTCCTGG 

NPP342 NNNGGTCTCN GCTGTTTTGAATGGTCCCAAAAC 
NNNN NNNN NNNN 
TTCAGCACACTGAGACTTGTTGAG 

NPP397 NNNNGGTCTCN TCTG 
GGATACACCAAGGAAAGTCTACACGAAC C 

NPP420 GTCTAAAGTATGCGTCGCGGCATG GTCTCN CAG 
ATTCAGGACGAGCCTCAGACTC 

NPP421 CGGGATATGGGGCTCCTTTAGCGAC 
GCTGAATTGTGGTGGACGAATTCTC 

NPPS_CR_FU001 - 
NPPS_CR_FU014 
 
 
 

CCCTACACGACGCTCTTCCGATCT X YYYY 
GCCACCTTAACACGCGATGAG 
 
where X YYYY is  
NN AGCC 
NNN GCCT 
NNNN CGAG 
NNNNN TTAC 
NNN TAGA 
NNN GCAA 
NN GAAT 
N ACAT 
NN GTCG 
NNN ATGT 
NNNN ATTG 
N CGCA 
NN TGCG 
NNN CCTA 

NPPS_CR_FD006_v2 /5Phos/CTAGCTCATCGCGTGTTAAGGTGGC  

NPPS_CR_RX001 
 
 
NPPS_CR_RX002 
 
 
NPPS_CR_RX003 

GAGTTCAGACGTGTGCTCTTCCGATCT NN 
CTCAACAAGTCTCAGTGTGCTG 
 
GAGTTCAGACGTGTGCTCTTCCGATCT NNN 
CTCAACAAGTCTCAGTGTGCTG 
 
GAGTTCAGACGTGTGCTCTTCCGATCT NNNN 
CTCAACAAGTCTCAGTGTGCTG 
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NPP252 AATGATACGGCGACCACCGAGATCTACACTCTTTC
CCTACACGACGCTCTTCCGATCT 

NPP254 CAAGCAGAAGACGGCATACGAGAT CCGAGAT 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT 

 
Table 1: List of oligonucleotides used in this study 
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Non-essential Essential Ambiguous 

ampD murC lpd 

mhpR dapD bioA 

yajC tsf bioF 

cstA lpxH bioD 

pgm lnt aroD 

sucA ftsK hisC 

sucB aroA hisB 

aspC msbA hisF 

putA lpxK yfaD 

rssB asnS aroC 

hns murJ nadB 

tyrR fabG cysN 

nudB thrS cysH 

preA gapA cysJ 

ccmD dapE lysA 

cysK rplS serA 

cysW pgk metC 

cysU rpoD argG 

cysP nusA aroE 

purN folP panM 

srlE rpmA pitA 

rppH lptB ilvE 

rdgB degS ilvD 

folB tsaC metE 

ptsN fmt rfaH 

aroK rpsH rhaB 

waaF yidC pfkA 
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ilvN glmU serB 

ilvB murI  

ivbL rpoB  

yidR rpoC  

trxA   

thiC   

cysQ   

 
Table 2: Genes identified in TR-Rich but not in TR (minimal media).  
 

Appendix 
 
Sequence of synthesized DNA fragment (gBlock from IDT) encoding tracrRNA and promoter for 
gRNA 
 
GTCGCTAAAGGAGCCCCATATCCCGTTACTATAAGCCTATTGAGTATTTCTTATCCATTTTTGCCTCCTAA
AATAAAAAGTTTAAATTAAATCCATAATGAGTTTGATGATTTCAATAATAGTTTTAATGACCTCCGAAATT
AGTTTAATATGCTTTAATTTTTCTTTTTCAAAATATCTCTTCAAAAAATATTACCCAATACTTAATAATAA
ATAGATTATAACACAAAATTCTTTTAAAAAGTAGTTTATTTTGTTATCATTCTATAGTATTAAGTATTGTT
TTATGGCTGATAAATTTCTTTGAATTTCTCCTTGATTATTTGTTATAAAAGTTATAAAATAATCTTGTTGG
AACCATTCAAAACAGCATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGT
CGGTGCTTTTTTTGATACTTCTATTCTACTCTGAGTATATTTTAGATGAAGATTATTTCTTAATAACTAAA
AATATGGTATAATACTCTTAATAAATGCAGTAATACAGGGGCTTTTCAAGACTGAAGTCTAGCTGAGACAA
ATAGTGCGATTACGAAATTTTTTAGACAAAAATAGTCTACGAGGTTTTAGAGCTATGCTGTTTTGAATGGT
CCCAAAACTGAGACCAGTCTCGGAAGCGTCTAAAGTATGCGTCGCGGCATG 
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