
Optimal Estimation and Control of Large Collaborative

Swarms using Random Finite Set Theory

a dissertation
submitted to the faculty of the graduate school

of the university of minnesota

by

Bryce Doerr

in partial fulfillment of the requirements
for the degree of

doctor of philosophy

Richard Linares, Adviser

September 2019

c© Bryce Doerr 2019

Acknowledgements

There are many people I would like to thank for their comments, ideas, and support

to make this work possible. I have been supported by so many who have greatly

contributed to my personal and technical growth. These individuals have allowed me

to progress to be the best person I can be both in and out of the field.

I would like to thank my adviser, Dr. Richard Linares, who introduced me to the

world of research. Dr. Linares has allowed me to make my mark in the research world

with his vast knowledge of the details, and he has provided me with ample room to

independently develop my own research. With the support of Dr. Linares, I was

able to find a unique foothold to solve problems and learn to grow my interests into

passions. I am grateful for the opportunity for growth that Dr. Linares has provided.

I would like to thank my committee, Dr. Peter Seiler, Dr. Demoz Gebre-

Egziabher, and Dr. Andrew Lamperski for the wisdom they have imparted to me.

Their classes piqued my interest into the world of control and estimation, and their

guidance throughout my graduate school journey has motivated me to express the

same type of commitment to others who are on a similar journey. I also thank the

committee for reading and reviewing my dissertation.

I would like to thank Daniel Miller, Lauren Schlenker, Jordan Larson, and Maria

Formiller for reviewing my dissertation drafts.

I would like to acknowledge support from the National Aeronautics and Space

Administration under Contract Number NNX16CP45P issued through the NASA

STTR Program by the Jet Propulsion Laboratory (JPL) and led by Amir Rahmani

at JPL.

There is also a multitude of friends, peers, and mentors I would like to thank. I

i

ii

am grateful for my friends on the UMN Rocket Team including Zach Fox, Hannah

Weiher, Chad Serba, Paul Gross, and many others who have helped me become a

team player, leader, and an innovator to make our team renown throughout collegiate

competitions and industry. I am also grateful for my colleagues and friends from

the UMN UAV Lab including Brian Taylor, Chris Regan, Patipan Pipatpinyopong,

Alex Hrovat, Adhika Lie, and many others who introduced me to the world of flight

control systems and UAVs. I would like to thank my mentors and friends from

NASA Armstrong including Albion Bowers, Oscar Murillo, Manuel Castro, Kelley

Hashemi, Joe Lorenzetti, Jack Toth, Nancy Reyes, Brian Plank, Kassidy McLaughlin,

Lizxandra Flores-Rivera, William Alfano, Alexandra Ocasio, Dhvani Patel, Keenan

Albee, Alexander Chen, and many others who have made my internship experiences

educational, productive, and most importantly fun. I would like to thank my mentors

and friends from AFRL including Christopher Petersen, Andrew Sinclair, Andrew

Harris, Brandi McPherson, Benjamin Grace, and many others who have inspired me

to become a world class researcher in space systems. I would like to thank my mentors

and friends at NASA Goddard including Jim O’Donnell, Paul Mason, Nikesha Davis,

Eric Stoneking, Matt Heron, Asher Smith, and many others who have made my dream

job into an actual dream career. I would like to thank my graduate student friends

including Kerry Sun, Sally Ann Keyes, Siew Peng Mun, Andy Akerson, Jordan Hoyt,

and many others who had to deal with my craziness throughout my journey. I have

made lasting connections with you all, and I am very thankful.

I would like to thank my closest family and friends, for without, I would have not

succeeded. I would like to thank the Chang, Formiller, Nam, and Dale families who

have always supported me through thick and thin. Finally, I would like to thank my

parents, cousins, aunts, uncles, grandparents, and my brother who have pushed me

to be the best person I can be. For all of you, I am forever grateful.

Dedication

To my brother, Ryan

and my parents, Todd and Kyong Doerr

iii

Abstract

Controlling large swarms of robotic agents presents many challenges including, but not

limited to, computational complexity due to a large number of agents, uncertainty

in the functionality of each agent in the swarm, and uncertainty in the swarm’s

configuration. The contributions of this work is to form the Random Finite Set

(RFS) control for large collaborative swarms, decentralize RFS control for individual

agents, and form RFS control using other multi-agent RFS filters.

The state representation of the large swarms with an unknown number of agents

is generalized as an RFS where an RFS is a collection of agent states with no ordering

between individual agents that can randomly change through time. The novelty of

this idea is to generalize the notion of distance using RFS-based distance measures

and “close-the-loop” between an estimating and controlling a swarm RFS. Specifi-

cally, multi-target estimation is determined using the Gaussian Mixture Probability

Hypothesis Density (GM-PHD) filter which processes measurements from an unknown

number of agents with defined spawn, birth, and death rates. RFS control is then

compared for each distributional distance-based cost studied including the Cauchy-

Schwarz, L2
2, and a modified L2

2 divergence using a model predictive control (MPC)

based Quasi-Newton optimization. Next, RFS control and estimation is extended

to MPC via iterative linear quadratic regulator (a variant of differential dynamic

programming) for spacecraft swarms. The swarm is estimated in both cardinality

(number of agents) and state using the GM-PHD filter which provides the estimates

for RFS control. RFS control through ILQR approximates a quadratic value function

from the distributional distance-based cost (i.e. the modified L2
2 divergence) to find

an optimal control solution. This results in an implicit proof for RFS control of large

iv

v

collaborative swarms.

The RFS control formulation assumes that the topology underlying the swarm

control is complete and uses the complete graph in a centralized manner. To gener-

alize the control topology in a localized or decentralized manner, sparse LQR is used

to sparsify the RFS control gain matrix obtained using ILQR. This allows agents to

use information of agents near each other (localized topology) or only the agent’s own

information (decentralized topology) to make a control decision. Sparsity and perfor-

mance for decentralized RFS control are compared for different degrees of localization

in feedback control gains which show that the stability and performance compared

to centralized control do not degrade significantly in providing RFS control for large

collaborative swarms.

The GM-PHD filter is the most basic RFS-based filters used for estimation. Other

RFS-based filters can improve the estimate or provide additional tracking informa-

tion for RFS control by using either the Cardinalized Probability Hypothesis Density

(CPHD) filter or the Generalized labeled Multi-Bernoulli (GLMB) filter, respectively.

The CPHD filter generalizes the GM-PHD filter by jointly propagating a generalized

cardinality distribution as well as the RFS to produce better estimates at high car-

dinality. The GLMB filter incorporates labels into the RFS, thus the GLMB filter

is able to track individual trajectories of agents through time. Both these filters are

propagated in feedback with RFS control for the spacecraft relative motion problem.

Specifically, the MPC-based ILQR is implemented to provide swarm control in a cen-

tralized manner. By using the CPHD and GLMB filters, the cardinality and state

estimates become more accurate for RFS control for large collaborative swarms.

Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.0.1 Challenges . 1

1.0.2 Previous Work . 3

1.0.3 Contributions . 7

2 RFS Control 11

2.1 Random Finite Set Control Problem Formulation 11

2.1.1 Single-Agent Filtering . 11

2.1.2 RFS Formulation . 12

2.1.3 Probability Hypothesis Density (PHD) Filter 14

2.1.4 Gaussian Mixture Model and Control Formulation 16

2.2 Distributional Distance Based-Cost 19

2.2.1 Cauchy-Schwarz Divergence 19

2.2.2 L2
2 Distance . 21

2.2.3 L2
2 Distance with Quadratic Term 23

2.3 Differential Dynamic Programming 25

2.3.1 LQR Finite-Horizon Optimal Control Problem 26

vi

Contents vii

2.3.2 The Differential Dynamic Programming Problem 29

2.4 Receding Horizon Control RFS Theory 36

2.5 Dynamical Models . 38

2.5.1 Acceleration Model . 39

2.5.2 Relative Motion using Clohessy-Wiltshire Equations 39

2.6 Results . 40

2.6.1 Acceleration Model . 41

2.6.2 Clohessy-Wiltshire Relative Motion 48

3 Decentralized Control 52

3.1 Decentralized Control Formulation 53

3.1.1 Sparse LQR Problem . 54

3.1.2 Sparsity-Promoting Optimal Control 56

3.1.3 Alternating Direction Method of Multipliers 57

3.2 Application to RFS Control . 61

3.3 Results . 63

3.3.1 Case 1: Centralized Control 63

3.3.2 Case 2: Localized Control . 64

3.3.3 Case 3: Fully Decentralized Control 65

4 Other Multi-Target Filters for RFS Control of Large Collaborative

Swarms 68

4.1 The Cardinalized Probability Hypothesis Density Filter for RFS Control 70

4.1.1 CPHD Filter Formulation . 70

4.1.2 Gaussian Mixture CPHD Filter Closed Form Recursion 73

4.2 The Generalized Labeled Multi-Bernoulli Filter for RFS Control . . . 77

4.2.1 Notation . 77

4.2.2 GLMB Filter Formulation . 77

Contents viii

4.2.3 Gaussian Mixture GLMB Filter Closed Form Recursion 86

4.3 Results . 95

4.3.1 Case 1: RFS Control using the CPHD Filter 96

4.3.2 Case 2: RFS Control using the GLMB Filter 97

5 Conclusion 101

5.0.1 Future Work . 102

A Modelling and Derivation of the PHD Filter 104

A.1 Integer-valued Random Variables . 105

A.1.1 Probability Generating Functions 107

A.1.2 Cardinality Estimation . 115

A.2 PHD Filter using Point Processes . 121

A.2.1 Introduction to Point Processes 121

A.2.2 Probability Generating Functionals 125

A.2.3 Examples of Point Process and PGFLs 140

A.2.4 PHD Filter Derivation . 144

References 155

List of Tables

3.1 Sparsity vs. Performance for Swarm System 66

ix

List of Figures

1.1 A block diagram of the RFS control and estimation architecture in a

closed-loop. 9

2.1 Surface Plots of the objective function with three distributional distance-

based costs. The current intensity and desired intensity are initialed

at (±3,±3) and (±1,±1) in a square grid, respectively. 21

2.2 Case 1: Figure 2.2a and Figure 2.2c show the controlled trajectories us-

ing the acceleration model and Quasi-Newton MPC. Figure 2.2b shows

the intensity mean responses from the trajectories. 43

2.3 Case 1: 4 Gaussian mixture swarm controlled to four desired Gaussian

mixtures via ILQR. Figure 2.3a shows the trajectories for the swarm

and Figure 2.3b shows the position time history. 44

2.4 Case 2: 4 Gaussian mixture swarm controlled to three desired Gaussian

mixtures via Quasi-Newton MPC. Figure 2.4a shows the trajectories

for the swarm and Figure 2.4b shows the position time history. 45

2.5 Case 2: 4 Gausssian mixture swarm controlled to three desired Gaus-

sian mixtures via ILQR. Figure 2.5a shows the trajectories for the

swarm and Figure 2.5b shows the position time history. 46

x

List of Figures xi

2.6 Case 3: 4 Gaussian mixture swarm controlled to five desired Gaussian

mixtures via Quasi-Newton MPC. Figure 2.6a shows the trajectories

for the swarm and Figure 2.6b shows the position time history. 46

2.7 Case 3: 4 Gaussian mixture swarm controlled to five desired Gaussian

mixtures via ILQR. Figure 2.7a shows the trajectories for the swarm

and Figure 2.7b shows the position time history. 47

2.8 77 Gaussian mixture spacecraft swarm controlled to a rotating star

target via ILQR with perfect information. Figure 2.8a shows the tra-

jectories and Figure 2.8b shows the acceleration for five spacecraft in-

tensities. 49

2.9 77-agent spacecraft swarm controlled to a rotating star target via ILQR

with imperfect information. Figure 2.9a shows the true and estimated

cardinality, Figure 2.9b shows the time history of the true tracks, the

estimated tracks, and overall measurements, and Figure 2.9c shows the

trajectories for the spacecraft agents and targets. 51

3.1 Trajectory and number of non-zeros of control gain K for the central-

ized RFS control case. 65

3.2 Trajectory and number of non-zeros of control gain K for the localized

RFS control case. 66

3.3 Trajectory and number of non-zeros of control gain K for the decen-

tralized RFS control case. 67

3.4 Information graph of the 12 agent swarm for γ = 0, 10−19, and 1 for

Figure 3.4a, Figure 3.4b, and Figure 3.4c, respectively. 67

4.1 A time-history plot example that shows how individual agents are la-

beled. Two agents are birthed at k = 1 and are given unique labels.

An additional agent births at k = 5. 79

List of Figures xii

4.2 77-agent spacecraft swarm controlled to a rotating star target via ILQR

with imperfect information. The CPHD filter is used. Figure 4.3a

shows the true and estimated cardinality, Figure 4.3b shows the time

history of the true tracks, the estimated labelled tracks, and overall

measurements, and Figure 4.3c shows the trajectories for the spacecraft

agents and targets. 98

4.3 16-agent spacecraft swarm controlled to a rotating star target via ILQR

with imperfect information. The GLMB filter is used. Figure 4.3a

shows the true and estimated cardinality, Figure 4.3b shows the time

history of the true tracks, the estimated labelled tracks, and overall

measurements, and Figure 4.3c shows the trajectories for the spacecraft

agents and targets. 100

A.1 Mapping from probability space (Ω,F ,P) to space X for random vari-

able X. 105

A.2 Mapping from probability space (Ω,F ,P) to space X for point process

Φ. 122

Chapter 1

Introduction

Control of large robotic networks or swarms is currently an area of great interest in

controls research. A swarm network is typically comprised of tiny robots programmed

with limited actuators that perform specific tasks in the network formation. For

example, the swarm can use its combined effort to grasp or move in the environment

which can offer better way to meet a goal compared to the abilities of a single agent

(Kube and Zhang, 1993). Specifically, in space applications, swarm control of satellites

and rovers can be used for the exploration of asteroids and other celestial bodies of

interest (Vassev et al., 2008). UAV swarms have also proven to be widely useful in

military applications such as border patrol, search and rescue missions, surveillance,

communication relaying, and the mapping of hostile territory (Ryan et al., 2004). In

reviewing these applications, swarm control of large groups of agents is required.

1.0.1 Challenges

A key challenge that is presented with controlling swarms is the increase in computa-

tional complexity with an increasing number of agents (Rubenstein et al., 2014). As

the state vector size increases in dimensionality for each additional agent added, the

computational complexity increases for the vector. Thus, it can take many hours to

meet the control objectives for swarms consisting of one thousand agents when using

1

Chapter 1. Introduction 2

traditional approaches. Rubenstein et al. (2014) observed that it took 12 hours for

1024 Kilobots to move into a desired formation. These results identify the controller

computation time as a function of the number of agents in the swarm as an important

problem to consider.

Another challenge is the uncertainty of each agent within the system (Lunze,

1992). Swarm systems that involve low-cost individual agents are not expected to

function properly together during the period of control. The behavior of each swarm

agent cannot be accurately described without explicitly analyzing and modeling all

uncertainty. It is difficult to compute heuristically, and it may be computationally

expensive to incorporate. Even under circumstances in which the uncertainty is cor-

rectly described, there may be times that the model is not valid during the swarm

operation. With all these factors, it becomes increasingly difficult to accurately con-

trol swarms while considering the uncertainty of each low-cost agent.

Transmission of information in swarms is an area of concern, especially for low-

cost agents (Lunze, 1992). Every agent may have complete measurement data on

its system, yet it may possess limited knowledge of the other agents in the swarm.

Complications of the overall swarm control objective may occur if the agents have

contradictory goals since each agent may not know the overall state completely. To

mitigate the information limitation, information structure constraints are imposed to

achieve simplicity in the control strategies. Unfortunately, adding information con-

straints may lead to more complex modeling and analysis. For example, in swarm

UAVs, aerial surveillance, tracking, and collision avoidance are all control objectives

the swarm may want to achieve (Ryan et al., 2004). These objectives rely on more

robust data transmission sensors. Depending on the individual UAV’s size, the hard-

ware of the swarm agent is limited on what information can be transmitted between

agents. Thus, adding information constraints might be a necessary task to meet the

control objectives.

Chapter 1. Introduction 3

1.0.2 Previous Work

Changing how the model for the representation and behavior for a swarm state in

space and time has been shown to alleviate the computational complexity of control

methods and solutions (Foderaro et al., 2014; Rudd et al., 2013; Foderaro et al., 2018;

Ferrari et al., 2016; Huang et al., 2006). Previously, the swarm/potential model using

the random finite set (RFS) formalism was used to describe the temporal evolution

of the probabilistic description of the robotic swarm to promote decentralized coordi-

nation (Pace et al., 2013). By using a measure-value recursion of the RFS formalism

for the swarm agents, the swarm dynamics can be determined with computational

efficiency.

Several control techniques have been implemented on swarms to date. With cen-

tralized control, one agent in the swarm computes the overall swarm control and

manages the control execution for individual agents allowing it to oversee the other

agents’ system processes. (Sommerville, 2016). This type of control is the easiest

to implement on a robotic swarm. Unfortunately, centralized control suffers from

two main problems. As the number of agents in the swarm increases, the compu-

tational workload becomes more expensive. This is especially true when the swarm

agents are low-cost. Additionally, centralized control is not robust against individual

agent failures (Mondada et al., 2005). With a thousand low-cost agents present in

a swarm, communication, actuation, and sensing are performed with less reliability.

Thus, centralized control may not be a viable option for these systems.

Another approach that has been studied is the use of decentralized control which

breaks down the centralized control problem into smaller manageable subproblems

which are weakly dependent or independent from each other (Bakule, 2008). An early

method for decentralizing control of swarms is the use of abstracting on the shape

manifold and using Lie groups in the configuration space (Belta and Kumar, 2004).

This was to promote control of cooperative robots using limited communication and

Chapter 1. Introduction 4

sensing of the entire group. Unfortunately, this method is not optimal in trajectory

generation for individual agents and scaling up the number of agents in a varying

environment has not been fully considered.

One improvement to decentralized control methods for swarms that move into

different formations can be achieved through the use of artificial potential functions

(Kim et al., 2006). By varying the potential functions, the authors were able to de-

velop decentralized control strategies that allow for attractive and repulsive properties

for group behavior and motion planning in the swarm. That is, a control solution

was found that avoided local minimums from interactions between varying goals,

obstacles, or other agents in the system. Although this decentralized control using

artificial potential functions is able to converge to different formations, manual tuning

and modifications of the artificial potential functions is necessary for the varying goals

and obstacles in the system. Additionally, the complexity of solving control problems

using artificial potential functions can become more computationally complex as the

number of agents increase in the swarm. A method to alleviate this problem is to

use bifurcation theory in conjunction with artificial potential fields to control dif-

ferent swarm configurations into formation (Sun and Chen, 2018). Computational

complexity using a large number of agents and artificial potential fields is decreased

by adjusting a bifurcation parameter for the equilibrium states.

Probabilistic swarm guidance has also been used to enable swarms to converge

to target distributions (Bandyopadhyay et al., 2014). Probabilistic swarm guidance

controls a swarm density distribution through distributed control so that each agent

determines its own trajectory while the swarm converges to the target distribution.

Distributed control is defined as the reformulation of a control problem as a set of

interdependent subproblems and solving these subproblems (Lunze, 1992). Proba-

bilistic swarm guidance solves issues that involve a large number of agents, also iden-

tified as “computationally complex”, by controlling the swarm density distribution

Chapter 1. Introduction 5

of the agents (Bandyopadhyay et al., 2014). Using optimal transport, convergence

is achieved more rapidly compared to the results of a homogeneous Markov chain

approach. Additionally, the cost function is minimized (Bandyopadhyay et al., 2014;

Açikmeşe and Bayard, 2012; Chattopadhyay and Ray, 2009; Açıkmeşe and Bayard,

2014; Demir et al., 2015). The inhomogeneous Markov chain can be used as an al-

ternative method (Bandyopadhyay et al., 2013; Hadaegh et al., 2016). Similarly to

the homogeneous Markov chain, this method allows agents to move in a decentralized

fashion. However, the algorithm also allows for communication between each agent

to settle at the target destination. Because the algorithms themselves use the swarm

density distribution, these methods are robust to external disturbances. Velocity

field generation for swarm control is a non-optimal decentralized control method for

swarms that synthesizes smooth velocity fields as a function of time and position

(Eren and Açıkmeşe, 2017). With a designated target distribution, the swarm fol-

lows the velocity field using the heat equation to convergence by using local agent

position information to estimate its local density. The advantage of this method is

that the agents facilitate collision avoidance and move in a smoother manner than

the previously mentioned Markov chain approaches (Açikmeşe and Bayard, 2012).

Unfortunately, the use of the heat equation diffuses the agents in a locally uniform

manner to the target density. Therefore, this is a non-optimal method of controlling

the swarm to achieve a target distribution.

The distributed optimal control method is a method that controls multi-agent sys-

tems by modeling the agents as Gaussian mixtures and using an integral cost function

that is optimized to the advection equation (a partial differential equation that con-

tains the dynamical constraint) (Foderaro et al., 2014; Rudd et al., 2013; Foderaro

et al., 2018). The control laws themselves are determined using potential functions

that attract the agent distributions to the desired state and repel the distribution

from obstacles (Reif and Wang, 1999). By minimizing the objective function based

Chapter 1. Introduction 6

on distributions using the necessary conditions of optimality, the optimal control law

is found using the potential function. The distributed optimal control method is

expanded to use the Kullback-Leibler divergence metric using distributions in the

objective function for the use of path planning (Ferrari et al., 2016). This provides

a discovery to a whole class of divergence measures of distributions that can provide

converging optimal control solutions to multi-agent systems.

Model predictive control (MPC) has been heavily studied for nonlinear systems

(Garcia et al., 1989; Mayne et al., 2000) and for applications including spacecraft

maneuvering and attitude control (Camacho et al., 1999; Di Cairano et al., 2012;

Manikonda et al., 1999). Decentralized MPC has also been studied for thousands

of low-cost spacecraft with limited capabilities (Morgan et al., 2013). This method

computes the control input by solving a finite horizon problem. By optimizing over

the present time to some time in the future, a control input is found that accounts

for future consequences. The benefit of this solution is that it decentralizes the

computation and communication required for the swarm system (Morgan et al., 2013).

Consequently, swarms of more than a thousand units can be controlled without being

computationally expensive. This method also decreases the run-time of the finite

horizon optimal control problem that uses convex programming because it reduces

the horizon for the optimization to take place and allows for constraints on each swarm

agent (Morgan et al., 2013). By using this decentralized configuration approach, any

measurement and process uncertainties in the trajectories are accounted for within

the algorithm. Thus, this provides robustness for the swarm while pushing the initial

swarm to its desired state.

Another decentralized approach for controlling swarms is using sequential convex

programming (Morgan et al., 2012). Sequential convex programming uses multiple

iterations to maintain the accuracy of the convex approximations of the constraints

which create more efficient trajectories. Uncertainties in the trajectories are accounted

Chapter 1. Introduction 7

for when the algorithm is tuned. Using sequential convex programming in combina-

tion with MPC in real time provides robustness for the swarm while pushing the

agents to the designated targets. The same authors also used sequential convex pro-

gramming to do target assignment (mapping of agents to targets) and trajectory

generation for varying swarm sizes through time (Morgan et al., 2015). This method

is viable for swarms, but as it will be discussed with RFS control, target assignment

is not necessary.

1.0.3 Contributions

Although these approaches provide a method to control swarm agents, RFS control

for large, low-cost swarms mitigates problems such as computational complexity due

to a large number of agents, uncertainty in the functionality of each agent in the

swarm, and uncertainty in the swarm’s configuration for control (Doerr and Linares,

2018). The contributions of this work is to form the RFS control for large collaborative

swarms, decentralize RFS control for individual agents, and form RFS control using

other multi-agent RFS filters.

RFS Control

The first contribution presented is to generalize the state representation of the control

problem to account for large swarms with an unknown number of the agents (Doerr

and Linares, 2018). This is done by representing the swarm as an RFS, where RFS

is a collection of agent states, with no ordering between individual agents, that can

randomly change through time (Mahler, 2003). Figure 1.1 shows the concept of the

contributed work, where the first moment of the RFS is used as the state, ν, and the

desired RFS swarm configuration is defined by its first moment, νdes. The novelty

of this work is to generalize the notion of distance using RFS-based distance mea-

Chapter 1. Introduction 8

sures and to “close-the-loop” by processing measurements from an unknown number

of agents with defined spawn (B), birth (Γ), and death (D) rates. This multi-target

estimation is determined using the Gaussian Mixture Probability Hypothesis Den-

sity (GM-PHD) filter. Initially, the RFS control is compared for each distributional

distance-based cost using model predictive control (MPC) using a Quasi-Newton op-

timization. Next, RFS control and estimation is extended to MPC via iterative LQR

(ILQR), a variant of differential dynamic programming (DDP), for spacecraft swarms.

In this example, the topology underlying the swarm control is complete and uses the

complete graph in a centralized manner. To obtain a complete graph for RFS control,

the swarm is estimated in both cardinality (number of agents) and state using the

GM-PHD filter. RFS control through ILQR approximates a quadratic value func-

tion from the distributional distance-based cost, and iterates to determine an optimal

control solution. The results combining the PHD filter and ILQR using the RFS

formalism provide implicit proof for RFS control of large collaborative swarms.

Decentralized RFS Control

The second contribution is to generalize the control (information) topology in a local-

ized or decentralized manner using sparsity matrices in control. In the original RFS

control problem, the control topology is assumed to be complete using all the state

information obtained from the GM-PHD filter.

This is centralized control in which the swarm computes the overall swarm con-

trol and manages the control execution for individual agents allowing it to oversee the

other agents’ control processes. In this contribution, the decentralized or localized

RFS control is realized using sparse LQR to sparsify the RFS control gain matrix ob-

tained using ILQR. This allows agents to use local information topology (information

of agents near each other) or a fully decentralized topology (information of the agent’s

own information) to make a control decision. Sparse LQR allows for more stability

Chapter 1. Introduction 9

Figure 1.1: A block diagram of the RFS control and estimation architecture in a
closed-loop.

and less performance degradation than truncating a centralized control matrix may

provide. Sparsity and performance for decentralized RFS control are compared for

different degrees of localization in the feedback control gains which show the viability

for decentralized control for large collaborative swarms.

Other multi-Target Filters for RFS Control of Large Collaborative Swarms

The third contribution to RFS control is the use of multi-agent filters that improve the

RFS estimate of the swarm or provide additional tracking information using either

the Cardinalized Probability Hypothesis Density (CPHD) filter or the Generalized

labeled Multi-Bernoulli (GLMB) filter, respectively.

In the GM-PHD filter, the RFS is assumed to be Poisson distributed. Thus, the

mean and the variance are the same. The mean of the RFS is the total number of

agents. So, as the number of agents increase, the more varied the estimate becomes.

Chapter 1. Introduction 10

The CPHD filter generalizes the GM-PHD filter by jointly propagating the cardinal-

ity distribution as well as the RFS intensity to produce reliable estimates at high

cardinality.

Another problem with the GM-PHD filter is that it cannot label agents it esti-

mates through time (i.e. the filter cannot differentiate between estimated agents as

they evolve through time). Thus, it makes it difficult to correspond an individual

agent’s trajectory with estimated time-history data from the filter. The GLMB filter

alleviates this problem by incorporating labels into the RFS. Thus, the GLMB filter

is able to track individual trajectories through time.

For both the CPHD and the GLMB filter, the RFS estimated is propagated with

the RFS control in feedback for the spacecraft relative motion problem. Specifically,

the MPC-based ILQR is implemented to provide swarm control in a centralized man-

ner. By using the CPHD and GLMB filters, the cardinality and state estimates

become more accurate for RFS control for large collaborative swarms.

Chapter 2

RFS Control

2.1 Random Finite Set Control Problem Formula-

tion

The framework to control swarming agents is to set up a multiple-agent filtering prob-

lem using RFS theory (Mahler, 2003; Vo and Ma, 2006). To formulate the multiple-

agent filtering problem, the single-agent filtering problem is first discussed.

2.1.1 Single-Agent Filtering

When estimating the dynamical system for a single agent, it is usually assumed that

the state space follows a Markov process with a transition density,

fk|k−1 (xk|xk−1) , (2.1)

to move discretely from the previous state xk−1 to the next state at xk. Note that xk

is for a single agent. For generality, the dynamical system is partially observed as a

likelihood function given by

gk (zk|xk) , (2.2)

11

2.1. Random Finite Set Control Problem Formulation 12

where the likelihood function is a probability density of observing the system by

obtaining measurements, zk. By using the observation information from z1:k =

(z1, · · · , zk), the posterior density estimate at a time k is determined using the

Bayesian recursion given by

pk|k−1 (xk|z1:k−1) =

∫
fk|k−1 (xk|xk−1) pk−1 (xk−1|z1:k−1) dxk−1, (2.3a)

pk (xk|z1:k) =
gk (zk|xk) pk|k−1 (xk|z1:k−1)∫
gk (zk|xk) pk|k−1 (xk|z1:k−1) dxk

. (2.3b)

The posterior density contains the measurement update, and the estimate for this

single-agent system can be found using a minimum mean squared error method.

2.1.2 RFS Formulation

The multi-agent problem considers the Bayesian recursion through a RFS formu-

lation with discrete-time dynamics (Vo and Ma, 2006). This theory addresses the

decentralized formulation for each agent in the formation. Each agent has the chal-

lenge of estimating its local formation configuration and designing a control pol-

icy to achieve some local configuration. It is assumed that each agent within the

swarm is identical and that using unique identifiers on each agent is unnecessary.

Using RFS theory, the number of agents and their states is determined from mea-

surements. The agents in the field may die, survive and move into the next state

through dynamics, or appear by spawning or birthing. The number of agents in

the field is denoted by Ntotal(t) and may be randomly varying at each time-step by

the union of the birth (Γk : ∅ → {xi,k,xi+1,k, · · · ,xi+Nbirth,k}), spawn (Bk|k−1 (ζ) :

xi,k−1 →
{
xi,k,xi+1,k, · · · ,xi+Nspawn,k

}
), and surviving (Sk|k−1 (ζ) : xi,k−1 → xi,k)

agents. Death is denoted by Dk (ζ) : xi,k−1 → ∅. Note that xi,k is for the ith swarm

2.1. Random Finite Set Control Problem Formulation 13

agent’s state. This is described by a RFS, Xk, given by

Xk =

 ⋃
ζ∈Xk−1

Sk|k−1 (ζ)

 ∪
 ⋃
ζ∈Xk−1

Bk|k−1 (ζ)

 ∪ Γk. (2.4)

Xk =
{

x1,k,x2,k, · · · ,xNtotal(k),k
}

denotes a realization of the RFS distribution for

agents. The individual RFSs in Eq. (2.4) are assumed to be independent from each

other. For example, any births that occur at any time-step are independent from

any surviving agents. At any time, k, the RFS probability density function can be

written as

p(Xk = {x1,k,x2,k, · · · ,xn,k}) = p(|Xk| = n)p({x1,k,x2,k, · · · ,xn,k} | |Xk| = n). (2.5)

For a generalized observation process, the agents are either detected (Θk (xk) : xi,k →

yi,k), or not detected (Fk (xk) : xi,k → ∅). Clutter or false alarms (Kk : ∅ →

{y1,k,y2,k, · · · ,yNclutter,k}), defined as measurements that do not belong to any agents,

are also present in the set of observations. Note that yi,k is for the ith swarm agent’s

measurement. Therefore, RFS of measurements is described by

Zk = Kk ∪

[⋃
xk∈Xk

Θk (xk)

]
, (2.6)

where the origins of each measurement are not known and unique identifiers are not

necessary. Again, the individual RFSs in Eq. (2.6) are independent of each other, so

measurements and clutter are obtained independently from each other. Single-agent

filtering cannot be applied because measurements cannot be associated with the agent

that generated it. By using the RFS formulation, measurements can be associated to

individual agents in the swarm.

On a similar note, the control sequence is also defined by a RFS in the form

2.1. Random Finite Set Control Problem Formulation 14

Uk =
{

u1,k,u2,k, · · · ,uNtotal(k),k
}

and a RFS probability density given by

p(Uk = {u1,k,u2,k, · · · ,un,k}) = p(|Uk| = n)p({u1,k,u2,k, · · · ,un,k} | |Uk| = n), (2.7)

since the number of the agents in the field to be controlled is also varying.

The random finite set formulation of describing multi-agent states and observa-

tions can be described very similarly to Eq. (2.1) and (2.2), but the RFS states

(Xk) and observations (Zk) are used instead. To determine the multi-agent posterior

density, a multi-agent Bayes recursion is used given by

pk|k−1 (Xk|Z1:k−1) =

∫
fk|k−1 (Xk|Xk−1) pk−1 (Xk−1|Z1:k−1)µs(dXk−1), (2.8a)

pk (Xk|Z1:k) =
gk (Zk|Xk) pk|k−1 (Xk|Z1:k−1)∫

gk (Zk|Xk) pk|k−1 (Xk|Z1:k−1)µs(dXk)
, (2.8b)

where µs is a reference measure on some function F (X). The recursion is compu-

tationally expensive due to multiple integrals, but solutions have been found for a

small number of targets using sequential Monte Carlo (Ma et al., 2006). Fortunately,

a PHD filter approximation provides computational tractability for a larger number

of agents.

2.1.3 Probability Hypothesis Density (PHD) Filter

Instead of propagating the multi-agent posterior density through a multi-agent Bayes

recursion, the Probability Hypothesis Density (PHD) filter propagates the posterior

intensity function. The nonnegative intensity function, v(x), is a first-order statistical

moment of the RFS state that represents the probability of finding an agent in a region

of state space S. The expected number of agents in the region S is the integral of the

2.1. Random Finite Set Control Problem Formulation 15

intensity function given by

E(|X ∩ S|) =

∫
|X ∩ S|P (dX) =

∫
S

v(x)dx, (2.9)

where the expectation represents a RFS X intersecting a region S with a probability

distribution P dependent on X. This gives the total mass or the expected number

of agents of RFS X in a region S. The local maximum in intensity v(x) shows the

highest concentration of expected number of agents which can be used to determine

an estimate for the agents in X at a time-step.

Poisson RFS are fully characterized by their intensities. By assuming the RFS

X is Poisson of the form p(|X| = n) and p({x1,x2, ...,xn} | |X| = n), approximate

solutions can be determined by the PHD filter. Propagation of the PHD can be

determined if the agents are assumed to be independent and identically distributed

with the cardinality of the agent set that is Poisson distributed (Vo and Ma, 2006).

Secondly, it is assumed that the agents’ motion and measurements are independent

of each other. Thirdly, clutter and birth RFSs are assumed to be Poisson RFSs and

clutter is independent from the measurement RFS. Lastly, the time-update multi-

target density pk|k−1 is Poisson, but if there is no spawning and the surviving and birth

RFSs are Poisson, then this assumption is satisfied. It is noted that the assumptions

made by the PHD filter are strong assumptions for swarming robotics. However, this

is a good starting point for an initial proof-of-concept study. The PHD recursion for

a general intensity function, vt(x), is given by

v̄t(x) = b(x) +

∫
ps(ζ)f(x|ζ)v(ζ)dζ +

∫
β(x|ζ)v(ζ)dζ, (2.10a)

where b(x), ps(ζ), and β(x|ζ) are the agents’ birth, survival, and spawn intensity,

f(x|ζ) is the target motion model, and ζ is the previous state respectively (Vo and

Ma, 2006). The bar on v̄t(x) denotes that the PHD has been time-updated. For the

2.1. Random Finite Set Control Problem Formulation 16

measurement update, the equation is given by

vt(x) = (1− pd(x))v̄t(x) +
∑
z∈Zt

pd(x)g(zt|x)v̄t(x)

c(z) +
∫
pd(ζ)g(zt|ζ)v̄t(ζ)dζ

, (2.10b)

where pd(x), g(zt|x), and c(z) are the probability of detection, likelihood function,

and clutter model of the sensor respectively (Vo and Ma, 2006). Note that the

PHD filter given by Eq. (2.10) is more thoroughly derived using finite set statistics

in Appendix A. By using this recursion, the swarm probabilistic description can

be updated. The recursion itself avoids computations that arise from the unknown

relation between agents and its measurements, and that the posterior intensity is a

function of a single agent’s state space. Unfortunately, Eq. (2.10) does not contain a

closed-form solution and the numerical integration suffers from higher computational

time as the state increases due to an increasing number of agents.

2.1.4 Gaussian Mixture Model and Control Formulation

Fortunately, a closed-form solution exists if it is assumed that the survival and de-

tection probabilities are state independent (i.e. ps(x) = ps and pd(x) = pd), and the

intensities of the birth and spawn RFSs are Gaussian mixtures. To formulate the

optimal control problem, the current and desired intensities are

ν̄(x, k) ,

Nf∑
i=1

w
(i)
f N

(
x; mi

f , P
i
f

)
, νb(x, k) + νps(x, k) + νβ(x, k), (2.11)

νdes(x, k) , g(x) ,
Ng∑
i=1

w(i)
g N

(
x; mi

g, P
i
g

)
, (2.12)

2.1. Random Finite Set Control Problem Formulation 17

where w(i) are the weights and N (x; mi, P i) is the probability density function of a

ith multivariate Gaussian distribution with a mean and covariance corresponding to

the peaks and spread of the intensity respectively. Nf and Ng are the total number of

multivariate Gaussian distributions in the current and desired intensities, respectively.

It is assumed that the desired Gaussian mixture intensity, νdes(x, k), is known. Eq.

(2.11) includes the summation of the individual birth (νb(x, k)), spawn (νβ), and

survival (νps(x, k)) Gaussian mixture intensities which simplify to another Gaussian

mixture. Note that closed form solutions using Gaussian mixtures exist for cases

without the state independent assumption. Additionally,
∑Nf

i=1w
(i)
f = Ntotal(t) and∑Ng

i=1 w
(i)
g = N̄total(t) where N̄total(t) is the desired number of agents. The intensity

function ν(x, t) is in terms of the swarm state while νdes(x, t) is in terms of the desired

state. The swarm intensity function can be propagated through updates on the mean

and covariance of the Gaussian mixtures as given by

mi
f,k+1 = Akm

i
f,k +Bku

i
f,k, (2.13)

P i
f,k+1 = AkP

i
f,kA

T
k +Qk, (2.14)

where Qk is process noise. The agents’ states x are incorporated in the mean and

covariance of the Gaussian mixture intensity. Then given the Gaussian mixture in-

tensities assumption, a control variable is calculated for each component uif,k. Addi-

tionally, each Gaussian mixture component represents many agents since the intensity

function integrates to the total number of agents. Note that although linear dynamics

are used, the dynamics can be modeled as a nonlinear function of the state.

Additionally, the measurement update is also closed form given by the intensity

νk(x, k) = f(x) = (1− pd(x))ν̄k(x) +
∑
z∈Zk

Nf∑
j=1

w
(j)
k N

(
x; m

(j)
k|k(z), P

(j)
k|k

)
, (2.15)

2.1. Random Finite Set Control Problem Formulation 18

where

w
(j)
k =

pd(x)w
(j)
f q(j)(z)

K(z) + pd(x)
∑Nf

l=1w
(l)
f q

(l)(z)
, (2.16a)

m
(j)
k|k(z) = m

(j)
f +K(j)

(
z−Hkm

(j)
f

)
, (2.16b)

P
(j)
k|k =

(
I −K(j)Hk

)
P i
f , (2.16c)

K(j) = P i
fH

T
k

(
HkP

i
fH

T
k +Rk

)−1
, (2.16d)

q
(j)
k (z) = N

(
z;Hkm

(j)
f , Rk +HkP

i
fH

T
k

)
, (2.16e)

which follow closely to the Kalman filter measurement update equations.

Each individual swarm agent runs a local PHD observer to estimate the state

of the swarm by modeling the swarm as a distribution. Thus, using RFS theory,

it is assumed that the individual swarm agents form an intensity function that is

a Gaussian mixture intensity in which the means and covariances of the Gaussian

mixture are propagated and controlled. An optimal control problem is set up that

tracks a desired swarm formation by minimizing its control effort in the following

objective function

J(u) =

∫ T

0

u(t)TRu(t) +D(ν(x, t), νdes(x, t))dt, (2.17)

where νdes(x, t) is the desired formation, R is the positive definite control weight

matrix, and u(t) is the control effort for the Gaussian mixture intensities shown in

Eq. (2.13). Both ν(x, t) and νdes(x, t) are defined over the complete state space which

include position and velocity parameters. D(·, ·) is the distance between Gaussian

mixtures which has several closed-form solutions, and it has been used previously to

define an objective function for path planning of multi-agent systems (Ferrari et al.,

2.2. Distributional Distance Based-Cost 19

2016).

The key features for the RFS control problem is that it can allow for a unified

representation for swarming systems. This unified representation is achieved by min-

imizing the RFS objective function, Eq. (2.17), about the swarm intensity statistics

given by Eq. (2.13) and (2.14). Thus, it can handle multi-fidelity swarm localization

and control. The swarm is treated probabilistically and the bulk motion is mod-

eled which allows the theory to handle large numbers of indistinguishable units with

unknown swarm size. This reduces the dimensionality of the state while enabling com-

plex behavior. Naturally, the RFS control problem is formulated to enable complex

decision making through RFS theory.

2.2 Distributional Distance Based-Cost

The control objective for the RFS formulation of agents with an unknown distance

between the intensities is provided by Eq. (2.17). The distance metric can be defined

using several closed-form solutions for Gaussian mixtures. Then, the corresponding

optimal control problem is formulated using several closed-form methods discussed in

the next section.

2.2.1 Cauchy-Schwarz Divergence

The Cauchy-Schwarz divergence is based on the Cauchy-Schwarz inequality for inner

products of RFS, and it is defined for two RFS with intensities f and g given by

DCS(f, g) = − ln

(
〈f, g〉
‖f‖‖g‖

)
, (2.18)

where 〈·, ·〉 is the L2
2 inner product over the RFS intensities. The argument of the

logarithm is non-negative because probability densities are non-negative, and it does

2.2. Distributional Distance Based-Cost 20

not exceed one by the Cauchy-Schwarz inequality. The Cauchy-Schwarz divergence

can be interpreted as an approximation to the Kullback-Leibler divergence but has

a closed-form expression for Gaussian mixtures (Hoang et al., 2015). This is use-

ful for calculating the distance between two-point processes represented by intensity

functions. By substituting the intensities from Eq. (2.15) and Eq. (2.12) for f and

g respectively, the Cauchy-Schwarz divergence between two Poisson point processes

with Gaussian mixture intensities, DCS(f, g), is simplified to

DCS(f, g) =
1

2
ln

 Nf∑
j=1

Nf∑
i=1

w
(j)
f w

(i)
f N (mj

f ; m
i
f , P

i
f + P j

f)


+

1

2
ln

(
Ng∑
j=1

Ng∑
i=1

w(j)
g w(i)

g N (mj
g; m

i
g, P

i
g + P j

g)

)

− ln

 Ng∑
j=1

Nf∑
i=1

w(j)
g w

(i)
f N (mj

g; m
i
f , P

i
g + P j

f)

 .

(2.19)

Note that in the control formulation used, only ν(x, t) is assumed to depend on the

control u. Therefore, the term that depends only on νdes(x, t) is omitted from the

objective function since νdes(x, t) does not depend on u.

Figure 2.1a shows the surface plot using the Cauchy-Schwarz divergence for four

Gaussian mixtures in the swarm at an initial time instance which designates the dis-

tributional distance-based cost of the objective function. The four Gaussian mixtures

start with initial conditions of (±3,±3) in a square grid. The desired intensity is set

as (±1,±1) in a square grid. From the surface plot, each initial intensity has hills

while the desired intensity has valleys. The goal is to minimize the objective function,

thus, an optimization method (e.g. the Quasi-Newton method) determines a control

solution which minimizes the objective. Since the desired intensity in Figure 2.1a is

located at a minimum in the objective surface plot, the optimization method finds a

2.2. Distributional Distance Based-Cost 21

0.5

60

1

50

1.5

40
40

2

30

2.5

20 20

10
0 0

PSfrag replacements

xy

(a) Cauchy-Schwarz
Divergence

-400

60

-200

50

0

40
40

200

30

400

20 20

10
0 0

PSfrag replacements

xy

(b) L2
2 Distance

-500

60

0

500

40

1000

1500

20

50
40

30
200 10

0

PSfrag replacements

x

y

(c) L2
2 + Quadratic Term

Figure 2.1: Surface Plots of the objective function with three distributional distance-
based costs. The current intensity and desired intensity are initialed at (±3,±3) and
(±1,±1) in a square grid, respectively.

control input to move towards that point. The opposite occurs with the hills (current

intensity). The minimization finds a control solution that moves away from the hills,

and thus gives individual current Gaussian mixtures collision avoidance attributes.

Therefore in the minimization of the objective function, each Gaussian mixture will

repel each other while moving towards the desired Gaussian mixtures through time.

Although the Cauchy-Schwarz divergence has a repelling effect, collision avoidance is

not guaranteed, but the distance does encourage collision-reducing trajectory solu-

tions. If the initial intensity is too large compared to the desired intensity, it will take

longer for the four Gaussian mixtures to converge to the desired values or diverge due

to the optimization getting stuck in local minima (the flat plane). Also, the repelling

effect due to the hills are relatively small. Thus, the Cauchy-Schwarz divergence may

not be the fastest converging solution for the objective function minimization.

2.2.2 L2
2 Distance

Alternatively, the distance between two Poisson point processes with Gaussian mix-

ture intensities can be determined by using the L2
2 distance between the intensities.

2.2. Distributional Distance Based-Cost 22

The L2
2 is given by

DL2
2
(f, g) =

∫
(f − g)2 dx = ||f − g||2, (2.20)

where the close-form solution for Gaussian mixture intensities is simplified to

DL2
2
(f, g) =

Nf∑
j=1

Nf∑
i=1

w
(j)
f w

(i)
f N

(
mj

f ; m
i
f , P

i
f + P j

f

)
+

Ng∑
j=1

Ng∑
i=1

w(j)
g w(i)

g N
(
mj

g; m
i
g, P

i
g + P j

g

)
− 2

Ng∑
j=1

Nf∑
i=1

w(j)
g w

(i)
f N

(
mj

g; m
i
f , P

i
g + P j

f

)
.

(2.21)

The L2
2 distance is stationary, i.e. gradients are zero, when intensities f and g are

equal. That is, the cost is minimum when the target g is reached from any intensity

f .

The L2
2 distance follows the property of the Bregman divergence which has an

additional property of convexity (Banerjee et al., 2005). The distance, given by

DF (f, g) = F (f)− F (g)− 〈∇F (g), f − g〉, (2.22)

is convex if F (·) is strictly convex and continuously differentiable on a closed convex

set (Banerjee et al., 2005). A list of strictly convex functions are listed in (Banerjee

et al., 2005). For this work, the squared Euclidean distance F (f) = f 2 was used to

generate the Bregman divergence given by

DF (f, g) = 〈f, f〉+ 〈g, g〉 − 2 〈f, g〉 , (2.23)

which is in the same exact form of Eq. (2.21). Figure 2.1b shows the surface plot

2.2. Distributional Distance Based-Cost 23

using the L2
2 distance for a 4 Gaussian mixture swarm for the same example as the

Cauchy-Schwarz divergence. The initial intensity has more defined hills compared to

the Cauchy-Schwarz divergence. Thus, the initial Gaussian mixtures have a stronger

repelling effect upon one another. Also, the desired Gaussian mixtures have large val-

leys that create a large attraction effect for each initial Gaussian mixture to move to.

Thus, the optimization solution will be faster in the L2
2 distance case. Unfortunately,

the L2
2 distance suffers from a similar issue to the Cauchy-Schwarz divergence. If the

initial conditions increase farther away from the desired intensity, the optimization

may take much longer or get stuck in local minima due to a flat surface away from

the desired intensity.

2.2.3 L2
2 Distance with Quadratic Term

The issue of convergence remains for the L2
2 distance when the initial states are farther

away from the desired intensity. To achieve faster convergence, an additional term is

added to the L2
2 distance to shape the gradient descent through a quadratic term as

given by

DL2
2mod

(f, g) = DL2
2
(f, g)− α

Ng∑
j=1

Nf∑
i=1

w(j)
g w

(i)
f ln

(
N (mj

g; m
i
f , P

i
g + P j

f)
)
, (2.24)

where α is a fixed or changing parameter. Unfortunately, adding the quadratic term

to the L2
2 distance does not make the objective function stationary at f = g. To

alleviate this issue, the α parameter is included with the quadratic term to relax the

contribution of the gradient to the L2
2 stationary point. By substituting Eq. (2.21)

2.2. Distributional Distance Based-Cost 24

into Eq. (2.24), the equation becomes

DL2
2mod

(f, g) =

Nf∑
j=1

Nf∑
i=1

w
(j)
f w

(i)
f N (mj

f ; m
i
f , P

i
f + P j

f)

+

Ng∑
j=1

Ng∑
i=1

w(j)
g w(i)

g N (mj
g; m

i
g, P

i
g + P j

g)

− 2

Ng∑
j=1

Nf∑
i=1

w(j)
g w

(i)
f N (mj

g; m
i
f , P

i
g + P j

f)

− α
Ng∑
j=1

Nf∑
i=1

w(j)
g w

(i)
f ln

(
N (mj

g; m
i
f , P

i
g + P j

f)
)
.

(2.25)

Note that this term is referred as quadratic, although it may be more appropriate to

call it quadratic-like. Figure 2.1c shows the surface plot using Eq. (2.25) for the same

4 Gaussian mixture swarm used in the Cauchy-Schwarz divergence. Compared to the

L2
2 distance, the initial and desired intensities provide the hills and valleys necessary to

obtain convergence. However, as the initial intensity move outwards, the surface map

decreases in a quadratic fashion instead of staying flat. This prevents the optimization

from converging to a local minima. Instead, the additional quadratic term allows

convergence to the desired intensity (global minima). Thus, the optimization can

occur at any point to reach convergence.

Traditional LQR based solutions are not applicable to the minimization of the

objective function, Eq. (2.25), since the L2
2 terms are nonquadratic (Todorov and Li,

2.3. Differential Dynamic Programming 25

2005). The minimization of the objective function in discrete time is

min
uk,k=1,...,T

J(u) =
T∑
k=1

uTkRuk +

Nf∑
j=1

Nf∑
i=1

w
(j)
f,kw

(i)
f,kN (mj

f,k; m
i
f,k, P

i
f,k + P j

f,k)

+

Ng∑
j=1

Ng∑
i=1

w
(j)
g,kw

(i)
g,kN (mj

g,k; m
i
g,k, P

i
g,k + P j

g,k)

− 2

Ng∑
j=1

Nf∑
i=1

w
(j)
g,kw

(i)
f,kN (mj

g,k; m
i
f,k, P

i
g,k + P j

f,k)

− α
Ng∑
j=1

Nf∑
i=1

w
(j)
g,kw

(i)
f,k ln

(
N (mj

g,k; m
i
f,k, P

i
g,k + P j

f,k)
)
,

(2.26)

Subject to : mi
f,k+1 = Akm

i
f,k +Bku

i
f,k,

P i
f,k+1 = AkP

i
f,kA

T
k +Qk,

(2.27)

where uk = [(u1
f,k)

T , · · · , (uNff,k)T]T is the collection of all control variables. There-

fore, control solutions are found by either using DDP where the objective function is

quadratized by taking a Taylor series approximation about a nominal trajectory or us-

ing optimization techniques (e.g. the Quasi-Newton method) where the nonquadratic

objective function is used directly to find an optimal control solution.

2.3 Differential Dynamic Programming

The LQR finite-horizon optimal control is first discussed in Section 2.3.1 in order

to provide the necessary background to approach DDP control for general nonlinear

system dynamics and a nonquadratic objective function discussed in Section 2.3.2.

2.3. Differential Dynamic Programming 26

2.3.1 LQR Finite-Horizon Optimal Control Problem

The linear quadratic regulator problem is defined by a discrete time-varying system

given by

xk+1 = Akxk +Bkuk + gk, (2.28)

where gk is Brownian process noise. For the finite horizon N , the total cost is calcu-

lated from an initial state x0 and using the control sequence U = [uk,uk+1, · · · ,uN−1]

applied to the dynamics given by

J(x0, U) =
N−1∑
k=0

l(xk,uk) + lf (xN), (2.29)

where l(xk,uk) is the running cost and lf (xN) is the terminal cost. The LQR costs

are quadratic given by

l(xk,uk) =
1

2


1

xk

uk


T 

0 qTk rTk

qk Qk Pk

rk Pk Rk




1

xk

uk

 , lf (xN) =
1

2
xTNQNxN + xTNqN ,

(2.30)

where qk, rk, Qk, Rk, and Pk are the running weights (coefficients), and QN and qN

are the terminal weights. The weight matrices, Qk and Rk, are positive definite and

the block matrix

Qk Pk

Pk Rk

 is positive-semidefinite (Inaba and Corke, 2016). The

running and terminal costs are substituted into Eq. (2.29), and due to the symmetry

2.3. Differential Dynamic Programming 27

in the weight matrices, the total cost is simplified to

J(x0, U) =
N−1∑
k=0

xTk qk+uTk rk+
1

2
xTkQkxk+

1

2
uTkRkuk+uTkPkxk+

1

2
xTNQNxN +xTNqN .

(2.31)

The optimal control solution is based on minimizing the cost function in terms of the

control sequence which is given by

U∗(x0) = arg min
U

J(x0, U). (2.32)

To solve for the optimal control solution given by Eq. (2.32), a value iteration method

is used. Value iteration is a method that determines the optimal cost-to-go (value)

starting at the final time-step and moving backwards in time minimizing the control

sequence. The cost-to-go is defined as

J(xk, Uk) =
N−1∑
k

l(xk,uk) + lf (xN), (2.33)

where Uk = [uk,uk+1, · · · ,uN−1]. This is very similar to Eq. (2.29), but the only

difference is that the cost starts from time-step k instead of k = 0. The optimal

cost-to-go is calculated similar to Eq.(2.32) which is

V (xk) = min
Uk

J(xk, Uk). (2.34)

At a time-step k, the optimal cost-to-go function is a quadratic function given by

V (xk) =
1

2
xTk Skxk + xTk sk + ck, (2.35)

2.3. Differential Dynamic Programming 28

where Sk, sk, and ck are computed backwards in time using the value iteration method.

First, the final conditions SN = QN , sN = qN , and cN = c are set. This reduces the

minimization of the entire control sequence to just a minimization over a control input

at a time-step which is the principle of optimality (Bellman et al., 1954). To find the

optimal cost-to-go, the Riccati equations are used to propagate the final conditions

backwards in time given by

Sk = ATk Sk+1Ak+Qk−
(
BT
k Sk+1Ak + P T

k

)T (
BT
k Sk+1Bk +Rk

)−1 (
BT
k Sk+1Ak + P T

k

)
,

(2.36a)

sk = qk + ATk sk+1 + ATk Sk+1gk

−
(
BT
k Sk+1Ak + P T

k

)T (
BT
k Sk+1Bk +Rk

)−1 (
BT
k Sk+1gk +BT

k sk+1 + rk
)
,

(2.36b)

ck = gTk Sk+1gk + 2sTk+1gk + ck+1

−
(
BT
k Sk+1gk +BT

k sk+1 + rk
)T (

BT
k Sk+1Bk +Rk

)−1 (
BT
k Sk+1gk +BT

k sk+1 + rk
)
.

(2.36c)

Using the Ricatti solution, the optimal control policy is in the affine form

uk(xk) = Kkxk + lk, (2.37)

where Kk is the controller given by

Kk = −(Rk +BT
k Sk+1Bk)

−1(BT
k Sk+1Ak + P T

k), (2.38)

2.3. Differential Dynamic Programming 29

and lk is the controller offset given by

lk = −(Rk +BT
k Sk+1Bk)

−1(BT
k Sk+1gk +BT

k sk+1 + rk). (2.39)

This optimal solution to the LQR problem works for linear dynamics and quadratic

cost functions, but unfortunately, the objective function specified for the swarm prob-

lem is nonquadratic. Fortunately, differential dynamic programming can be used for

nonlinear dynamics and nonquadratic local cost functions.

2.3.2 The Differential Dynamic Programming Problem

The DDP approach to solving nonlinear and nonquadratic equations uses a similar

process as the LQR solution, but a second-order approximation of the dynamics and

objective function are obtained for value iteration and the solution is iterated to in-

creasingly get better approximations of the optimal trajectory of the system. Note

that if linear dynamics are used, the iterative linear quadratic regulator (ILQR) for-

mulation is obtained (Tassa et al., 2014; Todorov and Li, 2005). Since the results

are produced by a linear system, both the DDP and ILQR terms can be used inter-

changeably. The following discussion on DDP follows closely to that of Tassa et al.

(2014, 2012). The general nonlinear discrete-time dynamics is given by

xk+1 = f(xk,uk), (2.40)

where the state at the next time-step, xk+1, is a function of the current state, xk, and

control input uk. The cost function is in the form of Eq. (2.29), but the costs are

nonquadratic. The solution to the optimal control problem is Eq. (2.32). Similarly,

the cost-to-go and the optimal cost-to-go function are defined by Eq. (2.33) and Eq.

(2.34) respectively. By setting the terminal condition V (xN) = lf (xN), the priniciple

2.3. Differential Dynamic Programming 30

of optimality is used to minimize over the control at a time-step given by

V (xk) = min
uk

(l(xk,uk) + V (xk+1)) , (2.41)

and solved through time by a backwards pass (value iteration).

Backward Pass

The first step in the backward pass (value iteration) is to determine a value function

that is quadratic. The argument in Eq. (2.41) is taken as a function of small pertur-

bations around the state (δxk) and control input (δuk), and it is quadratized through

a second order Taylor series expansion given by

Q(δx, δu) = l(xk + δxk,uk + δu)k − l(x,u) + V (xk+1 + δxk+1)− V (xk+1),

≈ 1

2


1

δxk

δuk


T 

0 QT
x QT

u

Qx Qxx Qxu

Qu Qux Quu




1

δxk

δuk

 , (2.42)

where Qx, Qu, Qxx, Qxu, and Quu are the running coefficients (weights) of the quadra-

tized value function at a certain time-step. Note, in the standard formulation, the

time-step k is dropped for these equations. Any primes denote the next time-step.

The equations for the running weights are given by

Qx = lx + fTx V
′
x, (2.43a)

Qu = lu + fTu V
′
x, (2.43b)

Qxx = lxx + fTx V
′
xxfx + V ′xfxx, (2.43c)

2.3. Differential Dynamic Programming 31

Quu = luu + fTu V
′
xxfu + V ′xfuu, (2.43d)

Qux = lux + fTu V
′
xxfx + V ′xfux, (2.43e)

where lx, lu, lxx, luu, and lux are the gradients and Hessians of the cost function, fx,

fu, fxx, fuu fux are the gradients and Hessians of the nonlinear dynamics, and V ′x, and

V ′xx are the gradient and Hessian of the value function. For the ILQR formulation, the

gradients and Hessians for an LTV system (which is the model used for RFS control in

Section 2.5) are trivial, but for the DDP formulation, the gradients and Hessians for

the nonlinear dynamics must be computed. By using this quadratic approximation,

the minimum in terms of δu is found using

δu = arg min
δu

Q (δx, δu) = −Q−1
uu (Qu +Quxδx) , (2.44)

which provides local feedback and feed-forward gains of

K = −Q−1
uuQux, (2.45a)

k = −Q−1
uuQu, (2.45b)

respectively. The locally optimal controller is substituted back into Eq. (2.42) to get

the optimal value at a time-step k given by

∆V = −1

2
kTQuuk, (2.46a)

Vx = Qx −KTQuuk, (2.46b)

Vxx = Qxx −KTQuuK, (2.46c)

so the value can be propagated backwards in time to find new locally optimal solutions

to the value function.

2.3. Differential Dynamic Programming 32

Forward Pass

By continually computing the quadratic approximations in Eq. (2.43), local controller

in Eq. (2.45), and the new values in Eq. (2.46) backwards in time from the terminal

condition V (xN) = lf (xN), the updated trajectory can be found through a forward

pass given by

x̂0 = x0, (2.47a)

ûk = uk + kk +Kk (x̂k − xk) , (2.47b)

x̂k+1 = f(x̂k, ûk). (2.47c)

where x̂k and ûk consists of the state and control input at a time-step of the new

trajectory
(
X̂, Û

)
. This composes one iteration of DDP. If the cost of the new

trajectory,
(
X̂, Û

)
, is less than the cost of the old trajectory, (X,U), then X = X̂

and U = Û are set, and the algorithm is ran again until a convergence threshold is

met between the old and new costs.

Regularization via the Levenberg-Marquardt Heuristic

If the cost of the new trajectory is greater than the cost of the old trajectory, the

iteration has not provided a better solution. To circumvent this issue, the Hessian is

regularized. This is called the Levenberg-Marquardt heuristic. The control sequence

that is calculated in DDP is computed like a Newton optimization which uses second

order information (curvature information) on top of the first order information (gra-

dient information) (Liao and Shoemaker, 1992). By including second order curvature

to the update, optimization can occur faster, but this relies on the fact that the Hes-

sian is positive definite and an accurate quadratic model. If the control update is

not improving (for a non-positive definite Hessian and inaccurate quadratic model),

2.3. Differential Dynamic Programming 33

the Levenberg-Marquardt heuristic uses less curvature information and more on the

gradient information. This regularization is added to the Hessian of the control cost

given by

Q̃uu = Quu + µIm, (2.48)

where Q̃uu is the regularized control cost Hessian, µ is the Levenberg-Marquardt

parameter, and Im is the identity matrix that is the size of the control input vector

(Liao and Shoemaker, 1991). This allows for the increase or decrease of curvature

information in the optimization by adding a quadratic cost around the current control

input. Unfortunately, adding this regularization term can have different effects at

different time-steps using the same control perturbation based on a changing fu in

the linearized dynamics. By increasing µ→∞, the k and K gains become very small

due to the Q̃−1
uu term. Therefore, the regularization term is improved by penalizing

the states instead of the control inputs which are given by

Q̃uu = luu + fTu (V ′xx + µIn) fu + V ′xfuu, (2.49a)

Q̃ux = lux + fTu (V ′xx + µIn) fx + V ′xfux, (2.49b)

K = −Q̃−1
uu Q̃ux, (2.49c)

k = −Q̃−1
uuQu, (2.49d)

where In is the identity matrix that is the size of the state vector. The µ parameter is

placed on the state instead of the control input. For this method, the regularization

term is directly incorporated with fu, and the feedback gains, k and K, do not

disappear as µ → ∞. Instead, the new k and K values bring the new trajectory

closer to the old one. For the implementation of the µ term, three requirements

2.3. Differential Dynamic Programming 34

should be followed. If reaching the minimum is accurate, the µ should become zero

in order to obtain faster convergence due to the second order optimization term. If a

non-positive definite Q̃uu is found, the backward pass should be restarted with a larger

µ. The last requirement is that when a µ > 0 is needed, the smallest µ should be

used that allows the Q̃uu to be positive definite. Therefore, more of the second order

information can be used to provide faster convergence than using gradient descent.

The specific algorithm is found in (Tassa et al., 2012).

Eq. (2.46) must also be modified based on regularization added in Eq. (2.49a)

(Todorov and Li, 2005). Eq. (2.46) was originally derived using Eqs. (2.42) and

(2.44), but using the new regularized terms in Eq. (2.49a) creates error. Therefore,

the modified values at a time-step k are

∆V =
1

2
kTQuuk + kTQu, (2.50a)

Vx = Qx +KTQuuk +KTQu +QT
uxk, (2.50b)

Vxx = Qxx +KTQuuK +KTQux +QT
uxK. (2.50c)

The regularization terms create a faster and more accurate solution to the backwards

pass of the DDP solution.

Forward Pass Line Search

Regularization of the forward pass can improve convergence and performance of the

DDP algorithm. For linear time-varying systems, one iteration provides a minimal

solution after one iteration. This is not the case for general nonlinear systems. Since

nonlinear systems are approximated by a Taylor series expansion, there may be regions

in the new DDP trajectory that are not valid about the nonlinear model. This may

lead to divergence and have a larger cost function than the old trajectory. To fix

2.3. Differential Dynamic Programming 35

this issue, a backtracking line-search parameter is introduced in the control update

equation given by

ûk = uk + αkk +Kk (x̂k − xk) , (2.51)

where α is set to α = 1 at the start of the forward pass. Then the expected cost

reduction is considered using

∆J(α) = α
N−1∑
k=0

k(k)TQu(k) +
α2

2

N−1∑
k=0

kT (k)Quu(k)k(k). (2.52)

A ratio z is determined using the actual and expected cost reduction given by

z =

(
J(x0, U)− J(x̂0, Û)

)
∆J(α)

, (2.53)

where J(x0, U) and J(x̂0, Û) are the old and new cost respectively. The control

update is accepted if the condition given by

0 < c1 < z, (2.54)

is met where c1 is a parameter set by the user. The c1 is usually set close to zero. If

the condition is not met, the forward pass is restarted with a smaller α value which

means that the new trajectory strayed farther than the system’s region of validity. By

using the α line search parameter, convergence can be achieved for nonlinear systems

by iteratively deceasing α to obtain a cost reduction.

2.4. Receding Horizon Control RFS Theory 36

DDP Summary

An DDP iteration can be summarized in four steps. First, an initial rollout of the

nonlinear dynamics given by Eq. (2.40) is integrated over time for a given control

sequence U . If there is no good initialization of the control sequence, the control

sequence can be set to U = 0. After the initial rollout, the derivatives of the cost

function and nonlinear dynamics used in Eq. (2.43) are found. The derivatives are

used in the third step which is to determine local control solutions using a backward

pass. Using the terminal condition, V (xN) = lf (xN), local control solutions are found

by iterating Eq. (2.43), (2.49), and (2.50) backwards at each time-step. When a non-

positive definite Q̃uu is found, increase the regularization parameter µ and restart the

backward pass. Once a local optimal policy is found, α is set to α = 1, and Eqs.

(2.47c) and (2.52) are propagated forward in time. If the integration diverged or cost

reduction condition in Eq. (2.54) was not met, the forward pass is restarted with a

smaller α.

2.4 Receding Horizon Control RFS Theory

An optimal solution, u, can also be obtained by minimizing the objective, Eq. (2.25),

using MPC or receding horizon control (Morgan et al., 2015). Conceptually, at a

time k, the knowledge of the system model is used to derive a sequence u(k|k),u(k+

1|k),u(k + 2|k), · · · ,u(k + Tp|k) where Tp is the finite prediction horizon from the

current state x(k) (Findeisen and Allgöwer, 2002). With the input sequence, the state

is moved forward in time by the control horizon, Tc; usually one time-step. Then the

same strategy is repeated for time k+ 1. Tp can be chosen to be either small or large.

As Tp increases, the degrees of freedom in the optimization increase which can slow

down the algorithm considerably, even though more of the future reference trajectory

would bring the output closer to the reference. With a smaller Tp, the computation

2.4. Receding Horizon Control RFS Theory 37

time will be faster, but the optimization may be more suboptimal. Thus, the swarm

may not converge to the desired configuration.

For the RFS control formulation, a u that controls the swarm intensities through

their statistics (mean and covariance) is found by minimizing the objective as given by

Eq. (2.26) and (2.27). This can be done by using MPC via the Quasi-Newton method

or DDP. DDP is able to determine an optimal solution for nonlinear equations of

motion and a nonquadratic objective function through an iterative process of finding

the optimal solution involving second-order approximations of the dynamics and the

objective function. The dynamical systems used in the results are linear, thus, DDP

can be formed as its variant, ILQR. For the Quasi-Newton method, the optimal

control input u is found using MATLAB’s fminunc solver (Fletcher, 1980). Note that

MPC via DDP or the Quasi-Newton method are both closed-loop control methods in

terms of the statistics (mean and covariance) of the system. Then, the agents in the

swarm are initialized to the closest Gaussian mixture using the Mahalanobis distance

given by

DM(x,mi
f,k) =

√
(x−mi

f,k)
TP−1(x−mi

f,k), (2.55)

which measures the distance of the agents to the means of the Gaussian mixtures. As

the swarm evolves, this distance determines which agents belong to a given compo-

nent. Agents are controlled according to their placement in each Gaussian mixture

through an open loop method using the DDP or MPC control input obtained for each

Gaussian mixture. Although an open loop method was used, feedback control can be

used if the state estimates are determined from the PHD filter.

MPC and the Quasi-Newton algorithm can handle nonlinearities in the objective

function, and it provides an initial basis in comparing the time-history responses

for RFS control using different distributional distance-based costs. RFS control is

2.5. Dynamical Models 38

extended to MPC with DDP which approximates (quadratizes) the objective function

for value iteration to provide quick and reliable convergence to locally-optimal control

solutions. The RFS control solution is demonstrated on spacecraft swarm relative

motion simulation with and without perfect information combining the GM-PHD

filter and DDP (formed as ILQR) in a closed-loop fashion given in Figure 1.1. In a

single loop, the RFS control is determined from optimizing the objective containing

the distributional distance based cost between the estimate and the desired intensity,

the swarm dynamics are updated with new spawn, birth, or death of agents in the

field, and measurements including clutter are incorporated into the overall system

before a GM-PHD filter estimate is determined for control again. From this RFS-

based architecture, the ability to determine an estimate of the cardinality and states

of the swarm which is used directly for control using ILQR is realized.

2.5 Dynamical Models

To show viability of optimal swarm control via RFS, an acceleration model and a

relative motion model, both linear systems, are used to describe rover and satellite

dynamics, respectively. The dynamic equations of individual agents are used here

to describe the dynamics of the Gaussian mixture components (means) given by the

control objective Eqs. (2.26) and (2.27). Since linear dynamics are used, the DDP

term can be expressed as ILQR.

2.5. Dynamical Models 39

2.5.1 Acceleration Model

On a 2D plane, the linear time-invariant (LTI) system of each agent can be described

by the continuous state and control matrices

Ac =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

 , Bc =


0 0

0 0

1 0

0 1

 , (2.56)

and a state vector x = [x, y, ẋ, ẏ]T . Both x and y are defined to be the 2D positions

of the agent respectively. The Ac and Bc matrices are discretized along a fixed time

interval utilizing a zero-order hold assumption for the control (i.e. control is held

constant over the time-interval). This results in discretized A and B matrices for the

state-space equation,

xk+1 = Axk +Buk. (2.57)

2.5.2 Relative Motion using Clohessy-Wiltshire Equations

For a spacecraft in low Earth orbit, the relative dynamics of each spacecraft (agent),

to a chief spacecraft in circular orbit, is given by the Clohessy-Wiltshire equations

(Curtis, 2013)

ẍ = 3n2x+ 2nẏ + ax, (2.58a)

ÿ = −2nẋ+ ay, (2.58b)

z̈ = −n2z + az, (2.58c)

2.6. Results 40

where x, y, and z are the relative positions in the orbital local-vertical local-horizontal

(LVLH) frame and ax, ay, and az are the accelerations in each axis respectively. The

variable n is defined as the orbital frequency given by

n =

√
µ

a3
, (2.59)

where µ is the standard gravitational parameter and a is the radius of the circular

orbit. The continuous state-space representation is given by

Ac =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0


, Bc =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


, (2.60)

with a state vector x = [x, y, z, ẋ, ẏ, ż] and a control input u = [ax, ay, az]
T . These

equations are discretized similarly to the acceleration model discussed previously.

2.6 Results

Using the acceleration model, which is discretized from Eq. (2.56) to Eq. (2.57), a

4 Gaussian mixture swarm on a 2-D plane is initialized in a square grid where the

mixtures 1, 2, 3, and 4 are defined counterclockwise starting on the first quadrant.

With the 4 Gaussian mixture swarm, three different test cases are implemented to

bring the intensity to the target trajectories and to test the control theory involved

from the control formulation. The first test case compares the L2
2 distance with

varying initial conditions in a square grid with the L2
2 plus quadratic distance with four

2.6. Results 41

desired Gaussian mixtures located at (±1,±1) using Quasi-Newton MPC. An L2
2 plus

quadratic distance comparison is also done using ILQR. The last two cases present

the Quasi-Newton MPC and ILQR control using the L2
2 distance with a quadratic

term and varying desired Gaussian mixtures. For Case 2, three target destinations are

located at (±1,1) and (-1,-1). Lastly, in Case 3, five target destinations are located

at (±1,±1) and (0,0).

Using the results of the acceleration model, control using RFS is also expanded to

satellite relative motion using the Clohessy-Wiltshire Equations. Specifically, the L2
2

plus quadratic distance is used for spacecraft formation flight. A 77 Gaussian mixture

swarm is initialized uniformly random between -1 and 1 on a 2D plane. Assuming

that the spacecraft swarm is at lower Earth orbit, the goal for the spacecraft is to

track a rotating star pattern moving counterclockwise at an orbital frequency of n.

2.6.1 Acceleration Model

Case 1: L2
2 vs. L2

2+Quadratic Term, Four Desired Gaussian Mixtures

For Case 1, four swarm Gaussian mixtures are controlled to move towards the desired

intensity at initial conditions farther away (square grid at (±3,±3)) and closer to

(square grid at (±1.5,±1.5)) the desired intensity as shown by mean responses given

by the black-dashed and red-dotted lines in Figure 2.2b respectively. From the trajec-

tory snapshots given by Figure 2(a1), initial conditions that are far from the desired

intensity do not have a converging control solution. From the surface visualization in

Figure 2.1b, the general plane is flat in areas away from the desired and current states

of the intensities. Therefore, optimization using Quasi-Newton MPC is more difficult

in these flat areas and may not converge to a solution. If the current intensity is

initialized much closer to the desired intensity as shown in Figure 2(a2), the flatness

in the general plane is minimal, and the optimization step in Quasi-Newton MPC

2.6. Results 42

converges to a solution. By using the L2
2 distance, converging control solutions can

only be found for initial conditions and target destinations that are close. For the L2
2

plus quadratic distance, four swarm Gaussian mixtures move towards the four desired

Gaussian mixtures given by the blue-solid lines (mean responses) in Figure 2.2b. Fig-

ure 2.2c shows the trajectory snapshots and final states of each of the swarm Gaussian

mixtures during the simulation. The target destinations are plotted as black x’s. The

red dots are the individual swarm agents that form the Gaussian mixture intensities.

From the figure, all four mixtures converge to the desired mixtures in approximately

0.17 seconds and approximately 0.03 of steady-state error between the mixtures’ po-

sition to the desired intensity. In comparison to only the L2
2 distance, Figure 2.2b

shows that for small distances between the initial state and the desired intensity, the

L2
2 distance is sufficient for state convergence, but as the distance increases, the L2

2

distance diverges away. By adding the quadratic term to L2
2, the optimization step

can directly determine the minimum for the control solution shown in Figure 2.1c.

Therefore, the desired intensity attracts the current swarm intensity at distances that

fail for only L2
2 distance given by Figure 2.2b.

The L2
2 plus quadratic distance is also extended to ILQR. Figure 2.3a shows the

trajectory snapshots and final states of the simulation. All four Gaussian mixtures

converge to the desired intensity in approximately 0.03 seconds and approximately

0.01 of steady-state error as shown in Figure 2.3b. In this figure, the x responses, y

responses, and the desired intensity are given by blue, green, and red lines respectively.

The entire simulation horizon is used to provide the prediction horizon for the ILQR

trajectory. Even with a quadratic approximation of the objective function, ILQR is

able to find control solutions that follow the L2
2 plus quadratic characteristics that

are presented using Quasi-Newton MPC.

2.6. Results 43

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08PSfrag replacements

xx

xx

yy

yy

Time = 0.00 s

Time = 0.00 s

(1) I.C. of (±3,±3)

(2) I.C. of (±1.5,±1.5)

Time = 0.10 s

Time = 0.40 s

Time = 0.40 s

(a) L2
2 Distance Trajectory

0 0.1 0.2 0.3 0.4

0

2

4

0 0.1 0.2 0.3 0.4

0

2

4

0 0.1 0.2 0.3 0.4

-4

-2

0

0 0.1 0.2 0.3 0.4

0

2

4

0 0.1 0.2 0.3 0.4

-4

-2

0

0 0.1 0.2 0.3 0.4

-4

-2

0

0 0.1 0.2 0.3 0.4

0

2

4

0 0.1 0.2 0.3 0.4

-4

-2

0

PSfrag replacements

m
1,
x

m
1,
y

m
2,
x

m
2,
y

m
3,
x

m
3,
y

m
4,
x

m
4,
y

Time (s)Time (s)

Time (s)Time (s)

Time (s)Time (s)

Time (s)Time (s)

(b) L2
2 and L2

2+Quadratic Distance Position
Time History

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

PSfrag replacements

xx

xx

yy

yy

Time = 0.00 s Time = 0.05 s

Time = 0.10 s Time = 0.40 s

(c) L2
2+Quadratic Distance Trajectory

Figure 2.2: Case 1: Figure 2.2a and Figure 2.2c show the controlled trajectories using
the acceleration model and Quasi-Newton MPC. Figure 2.2b shows the intensity mean
responses from the trajectories.

2.6. Results 44

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

PSfrag replacements

xx

xx

yy

yy
Time = 0.00 s Time = 0.01 s

Time = 0.03 s Time = 0.40 s

(a) L2
2+ Quadratic Distance Trajectory

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

2

4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-5

0

5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-4

-2

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-5

0

5

PSfrag replacements

m1,x

m
1

m
2

m
3

m
4

Time (s)

Time (s)

Time (s)

Time (s)

(b) L2
2+Quadratic Distance Position Time

History

Figure 2.3: Case 1: 4 Gaussian mixture swarm controlled to four desired Gaussian
mixtures via ILQR. Figure 2.3a shows the trajectories for the swarm and Figure 2.3b
shows the position time history.

Case 2: Three Desired Gaussian Mixtures

Case 2 illustrates the effect of three desired Gaussian mixtures on the final trajectories

of the four swarm Gaussian mixtures using Quasi-Newton MPC and ILQR. Using

Quasi-Newton MPC, the current swarm intensity converges as given by the position

time-history in Figure 2.4b. The trajectories for mixture 1 and mixture 3 reach their

target, but mixtures 2 and 4 reach the third target with approximately 0.42 and 0.50

of steady-state error with 0.20 and 0.16 seconds of settling time respectively. From

Figure 2.4a, it can be visually shown where the swarm intensity is located relative

to the desired intensity at each time step. The results obtained follow directly from

the RFS control theory using the L2
2 plus quadratic distance term. By using this

L2
2 with a quadratic term in the objective function, the current intensity will attract

towards the desired intensity while repulsing away from each other. This can be seen

in the surface map shown in Figure 2.1c, where the hills are areas of repulsion and

valleys, are areas of attraction. Thus, for Quasi-Newton MPC, mixtures 2 and 4 are

2.6. Results 45

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

0.02

0.04

0.06

0.08

0.1

0.12

PSfrag replacements

xx

xx

yy

yy
Time = 0.00 s Time = 0.05 s

Time = 0.10 s Time = 0.40 s

(a) L2
2+ Quadratic Distance Trajectory

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

2

4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-5

0

5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-4

-2

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-5

0

5

PSfrag replacements

m1,x

m
1

m
2

m
3

m
4

Time (s)

Time (s)

Time (s)

Time (s)

(b) L2
2+Quadratic Distance Position Time

History

Figure 2.4: Case 2: 4 Gaussian mixture swarm controlled to three desired Gaussian
mixtures via Quasi-Newton MPC. Figure 2.4a shows the trajectories for the swarm
and Figure 2.4b shows the position time history.

attracted to the same target, but they stay away from each other. This case is also

extended to ILQR. Figures Figure 2.5a and Figure 2.5b show the trajectory snapshots

and time-history of the same swarm using ILQR. As discussed previously, due to the

approximation of the objective function, the mixtures 2 and 4 converged in 0.03 and

0.15 seconds with approximately 0.01 and 0.42 of steady-state error. By comparing

the time-histories in Figure 2.5b and Figure 2.4b, the fourth intensity using ILQR

follows very similarly to the MPC method. Therefore, there is a degree of accuracy

in the approximation of the objective function to minimize for ILQR that allows the

attraction of individual mixtures to the desired intensity while repulsing away from

each other.

Case 3: Five Desired Gaussian Mixtures

Case 3 shows the effect of five desired Gaussian mixtures with the four swarm Gaus-

sian mixtures using Quasi-Newton MPC and ILQR. Figure 2.6b shows the time his-

2.6. Results 46

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

0.02

0.04

0.06

0.08

0.1

0.12

PSfrag replacements

xx

xx

yy

yy

Time = 0.00 s Time = 0.01 s

Time = 0.03 s Time = 0.40 s

(a) L2
2+ Quadratic Distance Trajectory

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

2

4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-5

0

5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-4

-2

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-5

0

5

PSfrag replacements

m1,x

m
1

m
2

m
3

m
4

Time (s)

Time (s)

Time (s)

Time (s)

(b) L2
2+Quadratic Distance Position Time

History

Figure 2.5: Case 2: 4 Gausssian mixture swarm controlled to three desired Gaussian
mixtures via ILQR. Figure 2.5a shows the trajectories for the swarm and Figure 2.5b
shows the position time history.

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

PSfrag replacements

xx

xx

yy

yy

Time = 0.00 s Time = 0.05 s

Time = 0.10 s Time = 0.40 s

(a) L2
2+ Quadratic Distance Trajectory

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

2

4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-5

0

5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-4

-2

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-5

0

5

PSfrag replacements

m1,x

m
1

m
2

m
3

m
4

Time (s)

Time (s)

Time (s)

Time (s)

(b) L2
2+Quadratic Distance Position Time

History

Figure 2.6: Case 3: 4 Gaussian mixture swarm controlled to five desired Gaussian
mixtures via Quasi-Newton MPC. Figure 2.6a shows the trajectories for the swarm
and Figure 2.6b shows the position time history.

2.6. Results 47

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

PSfrag replacements

xx

xx

yy

yy
Time = 0.00 s Time = 0.01 s

Time = 0.03 s Time = 0.40 s

(a) L2
2+ Quadratic Distance Trajectory

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

2

4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-5

0

5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-4

-2

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-5

0

5

PSfrag replacements

m1,x

m
1

m
2

m
3

m
4

Time (s)

Time (s)

Time (s)

Time (s)

(b) L2
2+Quadratic Distance Position Time

History

Figure 2.7: Case 3: 4 Gaussian mixture swarm controlled to five desired Gaussian
mixtures via ILQR. Figure 2.7a shows the trajectories for the swarm and Figure 2.7b
shows the position time history.

tories for all the mixtures using Quasi-Newton MPC. The trajectory snapshots of

the Gaussian mixtures are visually shown relative to the desired Gaussian mixtures

in Figure 2.6a. From Figure 2.6b, the intensity converges in 0.19 seconds with a

steady state error of approximately 0.17 which follow the theory as expected. Since

the swarm Gaussian mixtures are far from each other, the effects of repulsion are

minimal. Also, the mixtures are attracted to the four desired Gaussian mixtures that

make up a square, but they are also attracted to the desired Gaussian mixture at the

origin. This is due to the minimization of the objective function that has both an L2
2

and a quadratic term where the individual mixtures will attract towards the desired

intensity. Since there is an additional desired Gaussian mixture at the origin, all four

swarm Gaussian mixtures are affected by the origin as they are moving towards the 4

square desired Gaussian mixtures. Thus, compared to Case 1 with only four desired

Gaussian mixtures, the swarm intensity, in this case, will have a steady-state error

due to the attraction to the additional desired Gaussian mixture. ILQR is also used

to show how five desired Gaussian mixtures affect the quadratization of the L2
2 plus

2.6. Results 48

quadratic objective function. Figures Figure 2.7a and Figure 2.7b show the trajectory

snapshots and time-history respectively. The swarm converges in 0.03 seconds and

0.12 of steady-state error. This steady-state error shows the attraction of the desired

Gaussian mixture at the origin which follows directly from results from the L2
2 plus

quadratic distance given by Figure 2.1c.

2.6.2 Clohessy-Wiltshire Relative Motion

Relative Motion with Perfect Information

For the spacecraft relative motion, 77 Gaussian mixtures are birthed at the initial time

from uniformly random initial conditions between -1 and 1 m from the chief satellite

in a circular orbit. This is similar to the setup in (Eren et al., 2018). The goal is to

control the spacecraft into a moving star-shaped pattern. Both the spacecraft and the

rotating star pattern have an orbital frequency of n = 0.00110678 rad/s. It is assumed

that the information received throughout the simulation is perfect. Figure 2.8a shows

the trajectory snapshots of the spacecraft (contours) and the desire Gaussian mixtures

(black x’s) using ILQR and the L2
2 plus quadratic distance. The Gaussian mixtures,

represented by each contour, can be safely assumed to contain a single agent. As time

progresses, the swarm intensities converge quickly into the formation and maintain

the formation for the simulation time of 40 min. Figure 2.8b shows the acceleration

for five spacecraft Gaussian mixtures to stay in the star formation. From these results,

control using RFS can be expanded to physical spacecraft systems and can be used

for moving targets.

Relative Motion with Imperfect Information

Next, the imperfect information (i.e. process, measurement, and clutter noise) is

included in the simulation. In order to control with imperfect information, the GM-

2.6. Results 49

-10 0 10

-10

0

10

-10 0 10

-10

0

10

-10 0 10

-10

0

10

-10 0 10

-10

0

10

0.01

0.02

0.03

0.04

0.05

0.06

PSfrag replacements

x (m)x (m)

x (m)x (m)

y
(m

)

y
(m

)

y
(m

)

y
(m

)

Time = 0 min Time = 15 min

Time = 30 min Time = 40 min

(a) Clohessy-Wiltshire Trajectory Snapshots

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

1

PSfrag replacements

A
cc

el
er

at
io

n
(m

/s2)

Time (min)

(b) Control Input

Figure 2.8: 77 Gaussian mixture spacecraft swarm controlled to a rotating star target
via ILQR with perfect information. Figure 2.8a shows the trajectories and Figure 2.8b
shows the acceleration for five spacecraft intensities.

PHD filter is used in a feedback loop with the RFS control method. The GM-

PHD filter determines the estimates of the intensities which is used for RFS control.

The problem was altered to be more complicated by including differing birth and

death times for the agents. With the addition of imperfect information and the

added complication of changing number of agents, using the GM-PHD filter provides

accurate estimates of the agents through time which allows for RFS control in the

loop. Figure 2.9a shows the cardinality or number of agents in the swarm through

time. The solid line is the true number of agents while the dotted line shows the

estimate at each time-step. At each time-step, the agent estimates are fed through

the RFS control using ILQR to obtain a control input for each agent. Then, the

estimates are controlled and fed back to the GM-PHD filter at the next time-step.

Figure 2.9c shows the snapshots of the controlled agents (black circles) and targets

(green stars) at each time-step. Figure 2.9b shows the time history for the true

agents (solid lines), estimated agents (black dots), and overall measurements (gray

x’s). From Figure 2.9a, as the true agents die or birth initially, estimates of the

occurrence is accurate. As the number of agents increases, the estimates become

2.6. Results 50

less accurate. This is because the GM-PHD filter only uses the first-order statistical

moment to propagate the cardinality information of agents (Mahler, 2007a). The

cardinality distribution is unknown, and it is approximated as a Poisson distribution.

For a Poisson distribution, the mean and variance are equal. Therefore, if there are

a larger number of agents in the field, the corresponding variance of the cardinality

distribution is also higher. Although the estimates are less accurate, the individual

agents are controlled successfully into a star pattern in the presence of imperfect

information. This is shown directly in Figure 2.9c and Figure 2.9b. As agents die

or birth, the control input dies, or births with it, and due to the L2
2 plus quadratic

distance, agents are flexible to move into different parts of the formation.

2.6. Results 51

5 10 15 20 25 30 35 40

0

20

40

60

True

Estimated

PSfrag replacements

Time (min)

Ca
rd

in
al

ity

(a) Cardinality

5 10 15 20 25 30 35 40

-10

0

10 Estimates

True tracks

Measurements

5 10 15 20 25 30 35 40

-10

0

10
PSfrag replacements

Time (min)

Time (min)

x
(m

)
y

(m
)

(b) Time History

-10 0 10

-15

-10

-5

0

5

10

15

-10 0 10

-15

-10

-5

0

5

10

15

-10 0 10

-15

-10

-5

0

5

10

15

-10 0 10

-15

-10

-5

0

5

10

15

-10 0 10

-15

-10

-5

0

5

10

15

-10 0 10

-15

-10

-5

0

5

10

15

PSfrag replacements

Time = 5 min Time = 11 min Time = 19 min

Time = 23 min Time = 29 min Time = 39 min

x (m)x (m)x (m)

x (m)x (m)x (m)

y
(m

)

y
(m

)

y
(m

)

y
(m

)

y
(m

)

y
(m

)

Estimates

True tracks

Measurements

(c) Clohessy-Wiltshire Trajectory Snapshots

Figure 2.9: 77-agent spacecraft swarm controlled to a rotating star target via ILQR
with imperfect information. Figure 2.9a shows the true and estimated cardinality,
Figure 2.9b shows the time history of the true tracks, the estimated tracks, and overall
measurements, and Figure 2.9c shows the trajectories for the spacecraft agents and
targets.

Chapter 3

Decentralized Control

The area of centralized swarm control may work well for small numbers of agents,

but as the size of the swarm increases, various problems arise. Specifically, commu-

nication limitations, computational complexity due to the larger number of agents,

and unknown environmental factors complicate the centralized control problem sig-

nificantly (Bakule, 2008). Thus, it is necessary to break down the centralized control

problem into smaller, more manageable subproblems which are weakly dependent or

independent from each other. This becomes the area of decentralized or localized

control. Decentralized control is able to control agents in a swarm by using different

techniques on the swarm control (information) structure. Two different methods are

of interest for decentralized control. The first area is the development of decentralized

controllers under specific structural constraints (Fardad et al., 2009; Jovanovic, 2010;

Fardad and Jovanović, 2011; Lin et al., 2011). An example of a structural constraint

is sparsity requirements for an agent in the swarm which suggests that it only has

access to the information structure from agents near it. The other area of interest is

the development of decentralized control under communication constraints (delays).

By adding delay and uncertainty into multi-agent systems, control can be degraded.

Convex methods and optimal control have been tools used to develop decentralized

systems that incorporate communication delays (Voulgaris et al., 2003; Bamieh and

52

3.1. Decentralized Control Formulation 53

Voulgaris, 2005).

In the original RFS control problem, the control (information) topology is assumed

to be complete using all the state information obtained from the GM-PHD filter.

This is centralized control in which the swarm computes the overall swarm control

and manages the control execution for individual agents, allowing it to oversee the

other agents’ control processes.

For decentralized RFS control, the control topology is used in a localized or de-

centralized manner using sparse control matrices. The decentralized RFS control is

realized using sparse LQR to sparsify the centralized RFS control gain matrix ob-

tained using ILQR. This allows agents to use local information topology (information

of agents near each other) or a fully decentralized topology (information of the agent’s

own information) to make a control decision. Sparse LQR allows for more stability

and less performance degradation than truncating a centralized control matrix may

provide. Sparsity and performance for decentralized RFS control are compared for

different degrees of localization in the feedback control gains which show the viability

for decentralized control for large collaborative swarms.

3.1 Decentralized Control Formulation

The framework for decentralizing RFS control for swarming agents is to design sparse

control matrices using sparse LQR (Fardad et al., 2011; Lin et al., 2012, 2013). The

following discussion on sparse LQR follows closely to Lin’s work on sparse feedback

gains (Lin et al., 2012).

3.1. Decentralized Control Formulation 54

3.1.1 Sparse LQR Problem

The continuous state-space representation of a linear time-invariant dynamical system

with a structured control design is represented by

ẋ(t) = Acx(t) +Bcu(t) +Bc2d(t), (3.1a)

u(t) = −Fx(t), (3.1b)

where Ac is a continuous state transition matrix, Bc is a continuous control transition

matrix, d(t) is a disturbance or external input for a time t, Bc2 is the disturbance

transition matrix, and F is a state feedback (control) gain dependent on the sparsity

(structural) constraints F ∈ S. A sparsity constraint subspace S is assumed to be

non-empty for all sparsity patterns for controller gains that are stable. For an infinite

horizon LQR, the total cost is quadratic in terms of the state and control given by

J(x(t),u(t)) =

∫ ∞
0

x(t)TQx(t) + u(t)TRu(t), (3.2)

where Q is a positive semi-definite state weight matrix and R is a positive definite

control weight matrix. By plugging in Eq. (3.1) into Eq. (3.2) for control gain F

(Levine and Athans, 1970), the optimal control problem with structural constraints

becomes

min J(F) = trace

(
BT
c2

∫ ∞
0

e(A−BcF)T t
(
Q+ F TRF

)
e(A−BcF)tdtBc2

)
Subject to: F ∈ S.

(3.3)

The objective is to determine a control gain, F ∈ S, that minimizes the LQR cost.

Fortunately, the integral in Eq. (3.3) is bounded for stabilizing F , thus a control

3.1. Decentralized Control Formulation 55

solution can be found using the Lyapunov equation given by

(A−BcF)TP + P (A−BcF) = −(Q+ F TRF), (3.4)

which reduces the J(F) into

J(F) = trace
(
BT
c2P (F)Bc2

)
. (3.5)

The control objective in Eq. (3.3) assumes the sparsity constraints are known before

the optimization takes place, but these constraints may be unknown and appropriate

sparsity patterns for decentralized control must be found. The optimization prob-

lem can be modified to provide a sparsity promoting optimal control solution which

provides the performance and the topology for decentralized control. The sparsity-

promoting optimal control problem is

min J(F) + γg0(F), (3.6a)

g0(F) = nnz(F), (3.6b)

where g0(F) is the number of non-zeros (nnz(·)) for control gain F and γ ≥ 0 is

a scalar weight to penalize g0(F). By including the number of non-zeros in the

control gain F into the control objective directly, sparsity in F is directly promoted

in the optimization of the problem. More zeros (sparsity) in a control gain matrix

corresponds to more localization in the information topology network. The weight γ

follows similarly to how the Q and R matrices penalize x and u, respectively, but γ

penalizes the number of non-zeros in F . For example, when γ >> 0, the number of

non-zeros in F is penalized heavily, thus, γ promotes more localized control. When

γ = 0, no penalization of the control gain takes place, and a standard LQR solution

3.1. Decentralized Control Formulation 56

with a centralized control gain matrix is found.

3.1.2 Sparsity-Promoting Optimal Control

The function g0(F) is a nonconvex argument in the optimization problem. As a

result, finding the solution involves a brute-force search which becomes intractable.

To circumvent this issue, the g0(F) function is substituted with the L1 norm which

is a nondifferentiable convex function given by

g1(F) = ||F ||1 =
∑
i,j

|Fij|, (3.7)

which gives higher costs to non-zeros elements in F with larger magnitudes (Boyd and

Vandenberghe, 2004). This differs from g0(F) which gives the same cost to all non-

zero elements. Therefore, the L1 norm becomes a convex relaxation of the original

problem, but the original g0(F) can be approximated better or recovered exactly by

using a weighted L1 norm given by

g2(F) =
∑
i,j

Wij|Fij|, (3.8)

where Wij are positive weights. The weights can be used to approximate the L1 norm

closer to g0(F), but if Wij is chosen to be inversely proportional to |Fij| as given by

Wij =

1/|Fij|, if Fij 6= 0,

∞, if Fij = 0,

(3.9)

the weighted L1 norm and g0(F) equate to

∑
i,j

Wij|Fij| = nnz(F). (3.10)

3.1. Decentralized Control Formulation 57

Although the weighted L1 norm is viable to recover g0(F), the weights are dependent

on the unknown feedback gain F . Therefore, an iterative algorithm, the alternating

direction method of multipliers (ADMM), is used which trades off optimal perfor-

mance, J , and sparsity, γ. First, initial centralized control gain, F , with γ = 0 is

inputted into ADMM. Then, γ is increased and the ADMM iterative algorithm is used

in conjunction with F and the previous γ to obtain a sparser F . Once the desired

sparsity is found, the sparsity structure is fixed and the sparse control gain is found

using the structured optimal control problem in Eq. (3.3). The method by which

sparsity structures are identified using ADMM is explained in the next discussion.

3.1.3 Alternating Direction Method of Multipliers

The optimization problem in Eq. (3.6) can be rearranged into a constrained opti-

mization problem

min J(F) + γg(G),

Subject to: F −G = 0,
(3.11)

where G decouples the sparsity cost separately from the performance cost. The

equality constraint F − G = 0 makes Eq. (3.11) equivalent to Eq. (3.3). The

associated augmented Lagrangian to the constrained optimization problem is

Lρ(F,G,Λ) = J(F) + γg(G) + trace(ΛT (F −G)) +
ρ

2
||F −G||2F , (3.12)

where λ is the Langrange multiplier, ρ > 0 is scalar, and || · ||F is the Frobenius

norm. By decoupling J and g, the structures for both J and g can be exploited

using the ADMM algorithm optimization. The ADMM algorithm contains the F -

minimization, G-minimization, and Lagrange multiplier steps in which F and G are

3.1. Decentralized Control Formulation 58

minimized iteratively (Boyd et al., 2011). This is given by

F k+1 = arg min
F
Lρ(F,Gk,Λk), (3.13a)

Gk+1 = arg min
G
Lρ(F k+1, G,Λk), (3.13b)

Λk+1 = Λk + ρ(F k+1 −Gk+1), (3.13c)

and the convergence tolerance

||F k+1 −Gk+1||F ≤ ε and ||Gk+1 −Gk||F ≤ ε. (3.14)

The F -minimization and G-minimization alternate direction in terms of finding the

optimal F and G, respectively, which gives ADMM its namesake. The Lagrange

multiplier update steps with a size ρ which guarantees the feasibility of finding Gk+1

and Λk+1.

For the sparsity-promoting optimization problem, ADMM provides benefits in

the separability and differentiability of the sparsity cost and the performance cost.

When calculating the performance cost using the control gain matrix, the matrix

cannot be separated into individual elements to find optimal solutions. By separating

optimization in the F -minimization and G-minimization steps, the G-minimization

step can be decomposed into subproblems that involve individual elements (scalars)

of the control gain matrix. Therefore, a optimal solution can be found analytically

using either g0(F), g1(F), or g2(F). The other benefit to ADMM is differentiability.

The performance cost is differentiable in terms of the control gain, but the sparsity

cost is non-differentiable as discussed before. By separating the optimization problem

in two steps, gradient descent algorithms can be used for the F -minimization step,

and analytical solutions can be found for the G-minimization step. This is discussed

next.

3.1. Decentralized Control Formulation 59

The F -Minimization Step Solution

The minimization of Eq. (3.13a) can use any descent method. Although gradient

descent or Newton’s methods can be used, the Anderson-Moore descent can converge

faster than gradient descent and is simpler to implement than Newton’s method

(Makila and Toivonen, 1987). From the augmented Lagrangian in Eq. (3.12), an

equivalent optimization problem can be obtained by completing the square given by

minφ(F) = J(F) + (ρ/2)||F − Uk||2F ,

Uk = Gk − (1/ρ)Λk.
(3.15)

Using methods developed in Levine and Athans (1970); Rautert and Sachs (1997),

the necessary conditions for optimality are obtained as

(A−BcF)L+ L(A−BcF)T = −Bc2B
T
c2, (3.16a)

(A−BcF)TP + P (A−BcF) = −(Q+ F TRF), (3.16b)

∇φ(F) = 2RFL+ ρF − 2BT
c PL− ρUk = 0, (3.16c)

where Eqs. (3.16a) and (3.16b) are the controllability and observability grammians,

respectively, and Eq. (3.16c) is the optimality condition for Lp. Anderson-Moore

iteratively solves for Eqs. (3.16a) and (3.16b) for L and P with a fixed F using the

solution to the Lyapunov equations, and then solves F in Eq. (3.16c) with a fixed L

and P using the solution to the Sylvester equation to obtain a new F̄ (Makila and

Toivonen, 1987; Lin et al., 2012). This consists of one iteration for the F-minimization

step. To complete the F-minimization step, a descent direction, F̃ = F̄ − F , is

obtained to allow for convergence to a stationary point on φ. The stationary point φ

is locally convex and provides a local minimum on φ. Note that step-size rules (i.e.

determining s in F +sF̃ using the Armijo rule) can be used to guarantee convergence

3.1. Decentralized Control Formulation 60

to the stationary point (Bertsekas, 2006).

The G-Minimization Step Solution

To find an analytical solution to the G-minimization in Eq. (3.13b), the first step is

to complete the square of Eq. (3.12) with respect to G. This is given by

minφ(G) = γg(G) + (ρ/2)||G− V k||2F ,

V k = (1/ρ)Λk + F k+1.
(3.17)

This equation can be reduced into summation of element-wise components (scalars)

by substituting the g(·) functions from Eqs. (3.6b), (3.7), or (3.8) and solving directly.

The weighted L1 , Eq. (3.8), is a general function for Eq. (3.7) when Wij = 1 and Eq.

(3.6b) when Eq. (3.9), so the objective can be reduced element-wise using a strictly

convex Eq. (3.8) given by

φ(G) =
∑
i,j

(
γWij|Gij|+ (ρ/2)(Gij − V k

ij)
2
)
. (3.18)

Thus, the minimization is

minφij(Gij) = γWij|Gij|+ (ρ/2)(Gij − V k
ij)

2, (3.19)

for each element in G. The unique solution to this problem is

G∗ij =


V k
ij − a, V k

ij ∈ (a,∞),

0, V k
ij ∈ (−a, a),

V k
ij + a, V k

ij ∈ (−∞,−a),

(3.20)

3.2. Application to RFS Control 61

where a = (γ/ρ)Wij is a scalar. This equation is the shrinkage operator (Boyd et al.,

2011), and it is the solution when Eq. (3.7) or (3.8) is substituted. The amount by

which G∗ij is minimized is the parameter a. If γ or Wij is increased, the minimization

becomes more forceful. This occurs similarly by reducing ρ. If Eq. (3.6b) is used, the

G-minimization reduces to

minφij(Gij) = γnnz(Gij) + (ρ/2)(Gij − V k
ij)

2, (3.21)

and has a unique solution given by

G∗ij =

0, |V k
ij | ≤ b,

V k
ij , |V k

ij | > b,

(3.22)

where b =
√

2γ/ρ is a scalar. This is the truncation operator (Lin et al., 2013). By

using any of the g(·) functions, a unique solution for the optimization in Eq. (3.13b)

can be found.

3.2 Application to RFS Control

The theory for using Sparse LQR for decentralized control is formulated in a contin-

uous time representation given by Eqs. (3.1) and (3.2). Unfortunately, RFS control

is formulated in discrete time with a zero-order hold on control. Therefore, a bridge

between the two theories must be found. Previously, sparse feedback gains have been

found in discrete time using non-convex sparsity-promoting penalty functions using

sequential convex optimization (Fardad and Jovanović, 2014), but for this work, a less

computationally intensive and theoretically extensive method is more useful. Work

in discretizing the sparse LQR formulation has been made by high level discussion of

using discrete Lyapunov and Sylvester equations, although no theory or algorithms

3.2. Application to RFS Control 62

have been presented (Verdoljak, 2016). Because discretization of sparse LQR has not

been well documented, a bridge between the discrete RFS control and the continuous

sparse LQR is developed instead.

The discrete state-space representation of a linear time-invariant system with a

zero-order hold on control is represented by

xk+1 = Adxk +Bduk, (3.23a)

uk = −Kxk, (3.23b)

where Ad is the discrete state transition matrix, Bd is the discrete control transition

matrix, and K is a discrete control gain. By substituting Eq. (3.23b) in to Eq.

(3.23a) the discrete state-space equation can be reduced to

xk+1 = Adxk −BdKxk

= (Ad −BdK)xk

= A∗dxk,

(3.24)

where A∗d = Ad − BdK. The conversion from a continuous-time to a discrete-time

state-space is given by

A∗d = expm(A∗cdt), (3.25)

where dt is the discrete time-step and A∗c = Ac−BcF which follows a similar derivation

from Eq. (3.1) where Bc2 = 0 (DeCarlo, 1989). Converting from discrete-time to

continuous-time is the inverse of Eq. (3.25) which uses the matrix logarithm given by

A∗c = logm(A∗d)/dt. (3.26)

3.3. Results 63

The discrete control gain K or the continuous control gain F can be obtained with

F = B+
c (−A∗c + Ac), (3.27a)

K = B+
d (−A∗d + Ad), (3.27b)

where (·)+ is the pseudoinverse. Therefore, the discrete control gain K can be con-

verted to a continuous control gain F for sparse LQR and converted back to a de-

centralized control gain K. Note that the continuous control gain F is a continuous

approximation of the discrete control gain K with a zero-order hold on control. That

is, a discretization error results from approximating the continuous control gain F

from K.

3.3 Results

Decentralized RFS control is implemented using the Clohessy-Wiltshire dynamics

with different sparsity (γ) weights. Specifically, RFS control is implemented using

the L2
2 plus quadratic distance and ILQR. The dynamics model for agents within

the swarm are decoupled from each other, but the distributional distance-based cost

may have coupling between agents. Therefore, an RFS control gain that is found

will be centralized due to coupling in the objective function. Then, the control gain

matrix is decentralized by varying the γ parameter and using sparse LQR. Three

cases with varying γ are implemented to show how changes in information topology

affect performance of the agents in action.

3.3.1 Case 1: Centralized Control

For Case 1, 12 swarm Gaussian mixtures are birthed at the initial time from uniformly

random initial conditions between -1 and 1 m from a chief satellite in a circular orbit.

3.3. Results 64

A γ = 0 is applied to the problem which provides no penalty in the sparsity-promoting

objective. This setup is similar to the Relative Motion with Perfect Information in

Section 2.6.2 but this example uses a 12 agent swarm instead. Again, each contour

is safely assumed to be a single agent. Figure 3.1a shows the trajectory snapshots

of the spacecraft (contours) and the desired Gaussian mixtures (black x’s) using

the aforementioned L2
2 plus quadratic divergence and ILQR control. Through time,

the swarm intensity converges quickly into the rotating star-shaped formation and

maintains the formation for a duration of 40 min. Figure 3.1b shows the number

of non-zeros in the control gain K. The control gain matrix of a single agent under

Clohessy-Wiltshire dynamics is size 3 × 6. Therefore, the size for the control gain

K of the entire 12 agent swarm is (3 · 12) × (6 · 12). With γ = 0, Figure 3.1b has

no elements that are zero. Each sub-block that contains the 3 × 6 sized matrix is

non-zero which totals to 2592 non-zero elements in K. Therefore, each agent in the

swarm requires some control information from all the other agents in the field to take

an action. Figure 3.4a shows the information graph between all the agents. Every

agent in the field requires a signal to take an action, but the signals from agents

further away from each other may provide a minimal control performance boost in

terms of computational power needed. Thus, the control-gain is sparsified to reduce

the complexity of the entire network to take an action.

3.3.2 Case 2: Localized Control

Case 2 illustrates the effect of promoting sparsity with a γ = 10−19 for the same 12

agent problem. With γ = 10−19, the number of non-zeros is penalized in the sparsity-

promoting function in Eq. (3.6). Figure 3.2a shows the trajectory snapshots of the

swarm using localized RFS control. Through time, the swarm intensity converges

almost as quickly into the rotating star-shaped formation for the 40 min duration.

Specifically from Table 3.1, there is only a reduction of 0.01% in performance in terms

3.3. Results 65

-10 0 10

-10

0

10

-10 0 10

-10

0

10

-10 0 10

-10

0

10

-10 0 10

-10

0

10

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

PSfrag replacements

Time = 0 min Time = 15 min

Time = 30 min Time = 40 min

x (m)x (m)

x (m)x (m)

y
(m

)

y
(m

)

y
(m

)

y
(m

)

(a) Trajectory Snapshots

0 10 20 30 40 50 60 70

0

5

10

15

20

25

30

35

PSfrag replacements nz = 2592

(b) Number of Non-Zeros in K

Figure 3.1: Trajectory and number of non-zeros of control gain K for the centralized
RFS control case.

of the centralized performance, the Jc cost, due to localizing the control. Figure 3.2b

shows the number of non-zeros in the control gain K. From the figure, the number

of non-zeros is reduced to 529 which is 20.4% of the number of non-zeros from the

centralized gain, Kc, case in Table 3.1. From Figure 3.2b and Figure 3.4b, the agents

use the control information from agents local to it. As the control gain matrix becomes

more localized, the number of non-zeros in K become increasingly diagonalized with

a smaller spread. This is the inherent nature in decentralizing control using sparse

LQR. The sparsity-promoting penalty function allows for reduction in the control

information needed from individual agents to provide stable localized control with

minimal effects on performance.

3.3.3 Case 3: Fully Decentralized Control

Case 3 shows the effect of promoting sparsity with a larger penalty, γ = 1, for the 12

agent problem. Figure 3.3a shows the trajectory snapshots of the swarm moving in

a fully decentralized manner using RFS control. The swarm intensity converges into

the rotating star-shaped formation for the 40 min duration. Performance-wise, there

3.3. Results 66

-10 0 10

-10

0

10

-10 0 10

-10

0

10

-10 0 10

-10

0

10

-10 0 10

-10

0

10

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

PSfrag replacements

Time = 0 min Time = 15 min

Time = 30 min Time = 40 min

x (m)x (m)

x (m)x (m)

y
(m

)

y
(m

)

y
(m

)

y
(m

)

(a) Trajectory Snapshots

0 10 20 30 40 50 60 70

0

5

10

15

20

25

30

35

PSfrag replacements nz = 529

(b) Number of Non-Zeros in K

Figure 3.2: Trajectory and number of non-zeros of control gain K for the localized
RFS control case.

is only a 0.01% reduction in performance compared to γ = 0 example in Table 3.1.

Figure 3.3b shows the number of non-zeros in the control gain K. The total number

of non-zeros in K is 72 which is 2.8% of γ = 0 in Table 3.1. In this case, the 3×6 sub-

matrices occur directly across the diagonal with no spread. No control information is

collected from other agents in the swarm which is observed in Figure 3.4c. Increasing

the γ weight penalizes the number of non-zeros in K which allows for more localized,

and in this case, a fully decentralized RFS control.

Table 3.1: Sparsity vs. Performance for Swarm System

Localized Decentralized
nnz(K)/nnz(Kc) 20.4% 2.8%
(J − Jc)/Jc 0.01% 0.01%

3.3. Results 67

-10 0 10

-10

0

10

-10 0 10

-10

0

10

-10 0 10

-10

0

10

-10 0 10

-10

0

10

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

PSfrag replacements

Time = 0 min Time = 15 min

Time = 30 min Time = 40 min

x (m)x (m)

x (m)x (m)
y

(m
)

y
(m

)

y
(m

)

y
(m

)

(a) Trajectory Snapshots

0 10 20 30 40 50 60 70

0

5

10

15

20

25

30

35

PSfrag replacements nz = 72

(b) Number of Non-Zeros in K

Figure 3.3: Trajectory and number of non-zeros of control gain K for the decentralized
RFS control case.

-8 -6 -4 -2 0 2 4 6

-8

-6

-4

-2

0

2

4

6

PSfrag replacements

x (m)

y
(m

)

(a) Centralized

-8 -6 -4 -2 0 2 4 6

-8

-6

-4

-2

0

2

4

6

PSfrag replacements

x (m)

y
(m

)

(b) Localized

-8 -6 -4 -2 0 2 4 6

-8

-6

-4

-2

0

2

4

6

PSfrag replacements

x (m)

y
(m

)

(c) Decentralized

Figure 3.4: Information graph of the 12 agent swarm for γ = 0, 10−19, and 1 for
Figure 3.4a, Figure 3.4b, and Figure 3.4c, respectively.

Chapter 4

Other Multi-Target Filters for RFS
Control of Large Collaborative
Swarms

As agents birth, spawn, or die in the swarm, the total number of agents may increase

in the field. Although the GM-PHD filter can determine estimates from agents that

birth, spawn, or die while avoiding explicit data associations between measurements

and agents in a cluttered environment (Mahler, 2003; Goodman et al., 2013), the esti-

mator performance decreases with an increase in cardinality in the swarm (Vo et al.,

2006). The original PHD filter is an approximation of the intractable multi-agent

Bayes filter (Mahler, 2003) in which the RFS intensity is propagated through time to

avoid problems from data association. Although the PHD filter is still intractable to

implement in a closed-form recursion (Pulford, 2005), methods that involve sequen-

tial Monte Carlo and Gaussian mixtures have been presented (Vo et al., 2005; Vo and

Ma, 2006). Specifically, the GM-PHD filter has been implemented in control of large

collaborative swarms (Doerr and Linares, 2018; Doerr et al., 2019), but the GM-PHD

filter itself produces unreliable estimates when the cardinality becomes large.

In the GM-PHD filter, the RFS cardinality is assumed to be Poisson distributed.

Thus, the mean and the variance are the same. The RFS cardinality mean is the

total number of agents, so as the number of agents increase, the more varied the

68

Chapter 4. Other Multi-Target Filters for RFS Control of Large
Collaborative Swarms 69

cardinality estimate becomes. To alleviate this problem, the Poisson distribution on

the RFS cardinality is relaxed and the cardinality distribution itself is propagated

(Mahler, 2006, 2007a). Then similarly to the GM-PHD filter, a closed-form recursion

can be found using Gaussian mixtures. This Cardinalized Probability Hypothesis

Density (CPHD) filter generalizes the GM-PHD filter by jointly propagating the car-

dinality distribution as well as the RFS intensity to produce reliable estimates at high

cardinality.

Another problem with the GM-PHD filter is that it cannot label agents it estimates

through time. The agents in the swarm are indistinguishable at each step in time.

Thus, it makes it difficult to correspond an individual agent’s trajectory with the

estimated time-history data from the filter. The Generalized labeled Multi-Bernoulli

(GLMB) filter alleviates this problem by incorporating labels into the RFS (Mahler,

2007b; Vo and Vo, 2013) on top of estimation that considers clutter, data association,

births, and deaths. Thus, the GLMB is able to track individual trajectories through

time. The GLMB filter also highlights the filter’s exemption from the spooky effect,

an event where the CPHD filter misses an agent trajectory and then shifts the weight

of the undetected trajectory to other detected agents, leading to better performance

of the GLMB filter over the CPHD filter (Franken et al., 2009).

For both the CPHD and the GLMB filter, the RFS estimate is propagated with the

RFS control in feedback for the spacecraft relative motion problem. Specifically, the

MPC-based ILQR is implemented to provide swarm control in a centralized manner.

By using the CPHD and GLMB filters, the cardinality and state estimates become

more accurate for RFS control for large collaborative swarms.

4.1. The Cardinalized Probability Hypothesis Density Filter for
RFS Control 70

4.1 The Cardinalized Probability Hypothesis Den-

sity Filter for RFS Control

4.1.1 CPHD Filter Formulation

Instead of propagating the multi-agent posterior density through a multi-agent Bayes

recursion, the CPHD filter propagates the intensity (or the first-order statistical mo-

ment of the RFS) and the probability distribution for the cardinality forward in time.

The following discussion expands the CPHD filter estimation innovation (Vo et al.,

2006) for RFS control.

The property for the intensity function, which is exactly the same as the GM-PHD

filter, is given by

E(|X ∩ S|) =

∫
S

ν(x)dx, (4.1)

where the expected number of agents in the region S is the integral of the intensity

function, ν(x). In other words, ν(x) is the probability of finding an agent per unit

volume at x. The integral gives the total mass or the expected number of agents

of RFS X in a region S. The RFS is assumed to have agents that are independent

and identically distributed and a general cardinality distribution. This is in contrast

with the GM-PHD filter which assumes a cardinality distribution that is Poisson.

For the CPHD filter, this is called a generalized Poisson RFS (Mahler, 2006, 2007a).

To propagate the intensity, the following assumptions must hold. First, the birth

and surviving RFS intensities are independent of one another. Secondly, the agents’

motion and measurements are independent of each other. Lastly, the clutter intensity

is a generalized Poisson RFS and independent from the measurement intensity. In

this formulation, there is also no spawning. Therefore, between GM-PHD and the

CPHD, the CPHD has no spawning and clutter is assumed to be generalized Poisson.

4.1. The Cardinalized Probability Hypothesis Density Filter for
RFS Control 71

From these assumptions, a general CPHD recursion can be found.

The CPHD time update for the intensity, v(x), and cardinality, p(x), is

v̄k(x) = b(x) +

∫
ps(ζ)f(x|ζ)v(ζ)dζ, (4.2a)

p̄k(n) =
n∑
j=0

pΓ(n− j)Π[v(ζ), p(ζ)](j), (4.2b)

where b(x) is the current birth intensity, ps(ζ) is the probability of survival given

the previous state ζ, f(x|ζ) is the agent motion model given ζ, pΓ is the cardinality

distribution of births, (̄·) denotes a value that has been time-updated, n = Ntotal(t),

and

Π[v, p](j) =
∞∑
l=j

C l
j

〈ps, v〉j〈1− ps, v〉l−j

〈1, v〉l
p(l). (4.3)

The function C l
j is a binomial coefficient given by

C l
j =

l!

j!(l − j)!
, (4.4)

and 〈·, ·〉 is the inner product between two real valued functions α and β given by

〈α, β〉 =

∫
α(x)β(x)dx. (4.5)

The measurement update for the CPHD filter is

vk(x) = (1− pd(x))
Υ1[v̄k(x);Zk]p̄k(n)

〈Υ0[v̄k(x);Zk], p̄k(n)〉
v̄k(x)

+
∑
z∈Zk

ψ(x))
Υ1[v̄k(x);Zk(z)]p̄k
〈Υ0[v̄k(x);Zk], p̄k〉

v̄k(x),
(4.6a)

4.1. The Cardinalized Probability Hypothesis Density Filter for
RFS Control 72

pk(n) =
Υ0[v̄k(x);Zk](n)p̄k(n)

〈Υ0[v̄k(x);Zk], p̄k〉
, (4.6b)

where pd(x) is the current agent detection probability, Zk is the measurement RFS,

and

ψ(x)) =
〈1, κk〉
κk(z)

gk(z|x)pd(x), (4.7a)

Υu
k [v;Z](n) =

min(|Z|,n)∑
j=0

(|Z|−j)!pκ(|Z|−j)P n
j+u

〈1− pd, v〉n−(j+u)

〈1, v〉n
ej(Ξk(v, Z)). (4.7b)

The κk and gk(z|x) in Eq. (4.7a) are the clutter intensity and the current measurement

likelihood of a single agent, respectively. In Eq. (4.7b), pκ is the clutter cardinality

distribution, Ξk(v, Z) = {〈v, ψ〉} : z ∈ Z, and P n
j+u is the permutation coefficient in

the form

P n
j+u =

n!

(n− (j + u))!
. (4.8)

The elementary symmetric function is defined about a finite set Z with the form

ej(Z) =
∑

S⊆Z,|S|=j

∏
ζ∈S

ζ. (4.9)

Note by convention, e0(Z) = 1 and Z is a finite set of real numbers. From both

the time and measurement update equations, both the intensity and the cardinality

distributions are propagated forward to obtain their posterior counterparts. This is

in contrast with the original PHD filter which propagates the RFS through a single

parameter. Therefore, the CPHD is still first order in terms of the multi-agent state,

but it is higher order in the agent number (cardinality). Unfortunately, the CPHD

filter is more complex than the PHD filter due to the cardinality propagation. Also,

the CPHD filter follows the same problem with the PHD filter in which the recursion

4.1. The Cardinalized Probability Hypothesis Density Filter for
RFS Control 73

is intractable because the numerical integration suffers from higher computational

time as the single agent state space X increases due to the increasing number of

agents. But as with the PHD filter, a tractable closed-form solution can be found

using a Gaussian mixture solution.

4.1.2 Gaussian Mixture CPHD Filter Closed Form Recur-

sion

To obtain a closed-form solution to the CPHD filter recursion, the following assump-

tions are made. First, the multi-agent transition, f(x|ζ), and likelihood, gk(z|x),

density are Gaussian distributions given by

f(x|ζ) = N (x;Akζ,Qk), (4.10a)

gk(z|x) = N (z;Hkx, Rk), (4.10b)

whereN (·; m, P) is a Gaussian distribution withm and P as the mean and covariance,

repectively, Ak is the state transition matrix, Qk is the process noise covariance,

Hk is the observation matrix, and Rk is the measurement noise covariance. It is

also assumed that the survival and detection probabilities are state independent (i.e.

ps(x) = ps and pd(x) = pd), and the birth intensity is a Gaussian mixture

νb,k(x) =

Nb,k∑
i=1

w
(i)
b,kN (x; m

(i)
b,k, P

(i)
b,k), (4.11)

where Nb is the number of birth multivariate Gaussian distributions and w(i) is the

weight for the ith multivariate Gaussian distribution.

If the posterior intensity is assumed to be a Gaussian mixture at the previous

4.1. The Cardinalized Probability Hypothesis Density Filter for
RFS Control 74

time-step k − 1 given by

νk−1(x) =

Nf,k−1∑
i=1

w
(i)
k−1N (x; m

(i)
k−1, P

(i)
k−1), (4.12)

the intensity is also a Gaussian mixture after the time-update which is

ν̄k(x) ,

Nf,k∑
i=1

w
(i)
f,kN

(
x; m

(i)
f,k, P

(i)
f,k

)
, νb,k(x) + νps,k(x). (4.13a)

The birth Gaussian mixture is given by Eq. (4.11), and the surviving Gaussian

mixture is given by

νps,k(x) = ps,k

Ns,k−1∑
j=1

w
(j)
k−1N (x; m

(j)
ps,k

, P
(j)
ps,k

), (4.13b)

where Ns,k is the number of surviving Gaussian distributions at a time-step k. The

mean and covariance of the Gaussian mixtures are propagated through time simply

using the dynamics for the swarm system given by

mi
f,k+1 = Akm

i
f,k +Bku

i
f,k, (4.13c)

P i
f,k+1 = AkP

i
f,kA

T
k +Qk. (4.13d)

The predicted cardinality distribution is

p̄k(n) =
n∑
j=0

pΓ,k(n− j)
∞∑
l=j

C l
jpk−1(l)p

(j)
s,k(1− ps,k)

l−j. (4.13e)

From the predicted intensity and cardinality in the time-update, the posterior inten-

4.1. The Cardinalized Probability Hypothesis Density Filter for
RFS Control 75

sity is determined using

νk(x) = f(x) = (1− pd(x))
Υ1[wf,k;Zk]p̄k
〈Υ0[wf,k;Zk], p̄k〉

ν̄k(x)

+
∑
z∈Zk

Nf,k∑
j=1

w
(j)
k (z)N (x; m

(j)
k (z), P

(j)
k),

(4.14a)

pk(n) =
Υ0[wf,k;Zk](n)p̄k(n)

〈Υ0[wf,k;Zk], p̄k〉
, (4.14b)

where

Ψu
k [w, Z](n) =

min(|Z|,n)∑
j=0

(|Z| − j)!pκ,k(|Z| − j)P n
j+u

(1− pd,k)n−(j+u)

〈1,w〉j+u

× ej(Ξk(w, Z)),

(4.15a)

Ξk(w, Z) =
〈1, κk〉
κk(z)

pd,kw
Tqk(z) : z ∈ Z, (4.15b)

wf,k =
[
w

(1)
f,k, . . . , w

(Nf,k)

f,k

]T
, (4.15c)

qk(z) =
[
q

(1)
k (z), . . . , q

(Nf,k)

k (z)
]T
, (4.15d)

q
(j)
k (z) = N (z;Hkm

(j)
f,k, Rk +HkP

(j)
f,kH

T
k), (4.15e)

w
(j)
k (z) = pd,kw

(j)
f,kq

(j)
k (z)

〈Ψ1
k[wf,k, Zk(z)], p̄k〉
〈Ψ0

k[wf,k, Zk], p̄k〉
, (4.15f)

m
(j)
k (z) = m

(j)
f,k +K

(j)
k (z −Hkmf,k), (4.15g)

P
(j)
k = [I −K(j)

k Hk]P
(j)
f,k , (4.15h)

K
(j)
k = P

(j)
f,kH

T
k (HkP

(j)
f,kH

T
k +Rk)

−1. (4.15i)

Therefore, Eqs. (4.13) and (4.15) provide a closed form solution to the CPHD filter

recursion. It can be observed that these equations follow closely to the Kalman

4.1. The Cardinalized Probability Hypothesis Density Filter for
RFS Control 76

filter update equations (Kalman, 1960). Using the time and measurement update

equations, the RFS control objective can be formed using Gaussian mixture intensity

in which the means and covariances of the Gausssian mixture are propagated and

controlled. Similarly to Doerr and Linares (2018); Doerr et al. (2019), the objective

function is formed as

J(u) =
T∑
k=1

uTkRuk +D(ν(x, k), νdes(x, k)), (4.16)

where R is the positive definite control weight matrix, uk is the control effort for

the Gaussian mixture intensity shown in Eq. (4.13c), and νdes(x, k) is the desired

formation given by

νdes(x, k) , g(x) ,
Ng∑
i=1

w(i)
g N

(
x; mi

g, P
i
g

)
. (4.17)

Both ν(x, k) and νdes(x, k) are defined over the complete state space which include

position and velocity parameters. D(·, ·) is the distance between Gaussian mixtures

which has several closed-form solutions discussed in Doerr and Linares (2018); Doerr

et al. (2019), and for this work, the same methodology is implemented to provide

control using RFS theory. Specifically, an MPC based ILQR is implemented using

the L2
2 plus quadratic divergence to estimate and control the large collaborative swarm

simultaneously.

4.2. The Generalized Labeled Multi-Bernoulli Filter for RFS
Control 77

4.2 The Generalized Labeled Multi-Bernoulli Fil-

ter for RFS Control

4.2.1 Notation

For this section, the following notation is used which is slightly different comparatively

with the rest of the text. The state for a single agent is lowercase (i.e. x or x), while

RFSs are uppercase (i.e. X or X). This is the same as with the rest of the text. The

difference between this section and the rest of the text is that bold represents labeled

states or RFSs (i.e. x or X) instead of showing a vector. Spaces are represented as

blackboard bold (i.e. X or Y) and a finite subset of a space X is X .

4.2.2 GLMB Filter Formulation

For the formulation of the GLMB filter, labeled RFSs are explored which follow

closely to the discussion in Vo et al. (2014). As discussed in the previous chapter, a

RFS is a set of random length that contains values that are random and un-ordered.

Unfortunately, the identity of each value in the set cannot be determined as the RFS

evolves through time. To mitigate this problem, labeled RFSs are introduced which

incorporate the agent identity (label) into the RFS as it evolves through time. This

label is chosen from a discrete countable space, L = {αi : i ∈ N}, where αi is a

distinct value in a N space of positive integers. A label l ∈ L is added to the state

x ∈ X for each agent, therefore, the swarm is a finite set of X×L. This provides each

agent a label, but to track an agent through time, the labels must be distinct. Thus,

a distinct label indicator, ∆(X), is introduced. If L(x, l) = l is the projection from

L : X× L→ L, the RFS X has distinct labels if and only if the cardinality for both

4.2. The Generalized Labeled Multi-Bernoulli Filter for RFS
Control 78

the labels, L(X) = {L(x) : x ∈ X}, and X are the same. This is given by

∆(X) , δ|X|(|(X)|) = 1, (4.18)

where δ|X|(|(X)|) is given by the form

δY (X) =

1, if X = Y,

0, if X 6= Y.

(4.19)

To obtain an unlabeled RFS, the labels are discarded. Thus, the cardinality distri-

bution is the same for both the labeled and unlabeled variety of RFSs.

The labeled RFS is identified by the label l = (k, i) where k is the birth of an

agent at a discrete time and i ∈ N is an ascending index starting at one for agents

birthing at the same time. This example is given by Figure 4.1. Initially, two agents

birth at k = 1. Since multiple agents birth at the same time, an additional ascending

index is included. Then another agent births at k = 5. From the three agents,

the tracks can be determined due to their unique labels. Also to note is that the

labels from L0:k−1 and L0:k are disjoint. In the previous chapter, the PHD filter

assumes that the RFS X can be propagated using the intensity function instead of

using an intractable multi-agent Bayes recursion directly (Vo and Ma, 2006). With

the PHD filter, the intensity is propagated with a Poisson distribution assumption on

the cardinality. The cardinality distribution was generalized using the CPHD filter

to obtain better estimates (Vo et al., 2006). For the GLMB filter, a solution can

be found using the multi-agent Bayes recursion by using generalized labeled multi-

Bernoulli distributions directly. The multi-agent Bayes filter is propagated using a

4.2. The Generalized Labeled Multi-Bernoulli Filter for RFS
Control 79

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

PSfrag replacements

Multi-Agent States

St
at

e-
Sp

ac
e

Time

Track (1,1)
Track (1,2)
Track (5,1)

Figure 4.1: A time-history plot example that shows how individual agents are labeled.
Two agents are birthed at k = 1 and are given unique labels. An additional agent
births at k = 5.

4.2. The Generalized Labeled Multi-Bernoulli Filter for RFS
Control 80

time-update and measurement update given by

πk|k−1(Xk) =

∫
fk|k−1(Xk|Xk−1)πk−1(Xk−1|Zk−1)δXk−1, (4.20a)

πk(Xk|Zk) =
πk|k−1(Xk)gk(Zk|Xk)∫
πk|k−1(X)gk(Zk|X)δX

, (4.20b)

in which the set integral has the form

∫
f(X)δX =

∞∑
i=0

1

i!

∫
f(x1, . . . ,xi)d(x1, . . . ,xi). (4.21)

A Bernoulli RFS X has the distribution

π(X) =

1− r, X = ∅,

rp(x), X = {x},
(4.22)

where a RFS exists in the state-space with a probability r ∈ (0, 1) and distributed

with probability p(x) over X or is empty with probability 1 − r. A multi-Bernoulli

RFS is just the union of independent Bernoulli RFSs given by X = ∪Mi=1X
(i) where

i = 1, . . . ,M is the number of Bernoulli RFSs. Again the parameters for each RFS,

X(i), exists in the state-space with a probability r(i) ∈ (0, 1) and a distribution p(x)(i).

The probability density function for a multi-Bernoulli is

π(X = x1, . . . , xn) =
M∏
i=1

(1− r(i))
∑

1≤j1 6=···6=jn≤M

n∏
i=1

r(ji)p(ji)(xi)

1− r(ji)
. (4.23)

In order to simplify the notation of the GLMB recursion, for the rest of this chapter,

the time-step k is omited (i.e. π = πk, π̄ = πk|k−1, g = gk, and f = fk|k−1).

First, the multi-agent motion model, f(·), in Eq.(4.20) needs be found. From

the previous time-step k − 1 to the current time-step k, each agent has a survival

4.2. The Generalized Labeled Multi-Bernoulli Filter for RFS
Control 81

probability of ps(x, l) and evolves through its dynamics f(xk|xk−1, lk−1)δlk−1
(lk) or it

dies with a probability 1− ps(x, l). Also, birthed agents have the probability of

fb(Y) = ∆(Y)wb(L(Y))[pb]
Y, (4.24)

where the parameters wb and pb are provided parameters for the birth probability

density fb and [pb]
Y has the form

[h]X =
∏
x∈X

h(x). (4.25)

Note that h is a real-valued function where [h]∅ = 1. For the birth probability density,

note that fb(Y) = 0 for any y with L(y) 6∈ B. For propagation of the agents to the

next time-step, it is assumed that surviving agents are independent from births and

that agents evolve independently from each other. Therefore, the multi-agent model

is

f((Xk|Xk−1)) = fps(Xk ∩ (X× L))fb(Xk − (X× L)), (4.26)

where L = L0:k−1 and

fps(W|X) = ∆(W)∆(X)1L(X)(L(W))[Φ(W; ·)]X, (4.27a)

Φ(W;x, l) =

ps(x, l)f(xk|xk−1, lk−1), if (xk, lk−1) ∈W,

1− ps(x, l), if l 6∈ L(W).

(4.27b)

which is the superposition of the surviving and birthed agents. The inclusion function,

4.2. The Generalized Labeled Multi-Bernoulli Filter for RFS
Control 82

1L(X)(L(W)), has the form

1Y (X) =

1, if X ⊆ Y,

0, otherwise.

(4.28)

From the multi-agent Bayes recursion in Eq. (4.20), the measurement likelihood

function must also be found. Given an RFS X for a time-step k, each agent is either

detected (pd(x, l)) or not detected (1−pd(x, l)). A measurement, z, is obtained with a

likelihood (g(z|x, l)) if the agent is detected. Thus, a measurement RFS Z is obtained

from all the detected agents and any clutter obtained defined by an intensity function

κ. While conditioned on X, by assuming that clutter and detections are independent

from each other and detections are independent, the measurement likelihood is given

by

g(Z|X) = e−〈κ,1〉κZ
∑

θ∈Θ(L(X))

[ψz(·; θ)]X, (4.29)

where

ψZ(x, l; θ) =


pd(x,l)g(zθ(l)|z,l)

κ(zθ(l))
, if θ(l) > 0,

1− pd(x, l), if θ(l) = 0.

(4.30)

The inner product in Eq. (4.29) has the form

〈f, g〉 =

∫
f(x)g(x)dx. (4.31)

The function θ(l) is an association map that represents how labeled tracks correspond

to the measurements generated. For example, a track l corresponds to a measurement

generated from zθ(l) ∈ Z.

4.2. The Generalized Labeled Multi-Bernoulli Filter for RFS
Control 83

Finally, the solution to the multi-agent Bayes filter can be found using the GLMB

distribution given by

π(X) = ∆(X)
∑
ξ∈Ξ

w(ξ)(L(X))[p(ξ)]X, (4.32)

where Ξ is a discrete index set, and the weights and probabilities follow

∑
L⊆L

∑
ξ∈C

w(ξ)(L(L)) = 1, (4.33a)

∫
p(ξ)(x, l)dx = 1, (4.33b)

with a discrete label space L. The GLMB can be understood by a multi-agent ex-

ponential mixture. It includes a weight term that depends on the labels of the RFS

state, w(ξ)(L(X)), and it contains an RFS exponential which depends on the RFS

state, [p(ξ)]X. Note that an individual state and label pair (x, l) is not statistically

independent in a GLMB. From the GLMB, the intensity function and cardinality

distribution can be determined (Vo and Vo, 2013). The intensity function for the

unlabeled GLMB is

v(x) =
∑
ξ∈Ξ

∑
l∈L

p(ξ)(x, l)
∑
L⊆L

1L(l)w(ξ)(L), (4.34)

and the cardinality distribution is

p(n) =
∑

L∈Fn(L)

∑
ξ∈Ξ

w(ξ)(L). (4.35)

The Bayes filter recursion is closed under the GLMB (Vo and Vo, 2013), but the

numerical implementation is unknown. But, a numerical implementation can be found

using an alternate form called the δ−GLMB. The probability density distribution

4.2. The Generalized Labeled Multi-Bernoulli Filter for RFS
Control 84

using this alternate form is

π(X) =
∑

(I,ξ)∈F(L)×Ξ

w(I,ξ)δI(L(X))[p(ξ)]X, (4.36)

using the identity

w(ξ)(J) =
∑

I∈F(L)

w(ξ)(I)δi(J), (4.37)

since the components for summation are non-zero if and only if I = J . At a time-

step, each I ∈ F(L) serves as a set of labeled tracks born, wξ is the weight of the

hypothesis, ξ is the set of track labels, and p(·, l) is the probability density of a state

in track l ∈ I. By allowing the w(I,ξ) = w(ξ)(I), a numerical implementation can be

found.

Assuming the density of δ−GLMB at the previous time-step, k − 1, is given by

Eq. (4.36), the time-update for the multi-agent Bayes filter is

π̄(Xk) = ∆(Xk)
∑

(Ik,ξ)∈F(Lk)×Ξ

w
(Ik,ξ)
k δIk(L(Xk))[p

(ξ)
k]Xk , (4.38a)

where

w
(Ik,ξ)
k = w(ξ)

ps (Ik ∩ L)wb(Ik ∩ B), (4.38b)

w(ξ)
ps (L) = [η(ξ)

ps]L
∑
I⊇L

[1− η(ξ)
ps]I−Lw(I,ξ), (4.38c)

η(ξ)
ps (l) = 〈ps(·, l), p(ξ)(·, l)〉, (4.38d)

p
(ξ)
k (x, l) = 1L(l)p(ξ)

s (x, l) + 1B(l)pb(x, l), (4.38e)

4.2. The Generalized Labeled Multi-Bernoulli Filter for RFS
Control 85

p(ξ)
s (x, l) =

〈ps(·, l)f(x|·, l), p(ξ)(·, l)〉
η

(ξ)
ps (l)

. (4.38f)

The association history, ξ, is used for indexing while the label set I is used directly

in the time-update. After the time-update, the posterior estimate can be determined

by a measurement update using the multi-agent Bayes filter given by

π(Xk|Zk) = ∆(Xk)
∑

(I,ξ)∈F(L)×Ξ

∑
θ∈Θ(I)

w(I,ξ,θ)(Zk)δI(L(Xk)))[p
(ξ,θ)(·|Zk)]Xk , (4.39a)

where the subset of association maps, Θ(I), has a domain on the labeled set I, and

w(I,ξ,θ)(Z) ∝ w(I,ξ)[η
(ξ,θ)
Z]I , (4.39b)

η
(ξ,θ)
Z (l) = 〈p(ξ)(·, l), ψZ(·, l; θ)〉, (4.39c)

p(ξ,θ)(x, l|Z) =
p(ξ)(x, l)ψZ(x, l; θ)

η
(ξ,θ)
Z (l)

. (4.39d)

From both the time and measurement update, the δ−GLMB recursion is parameter-

ized by {w(I,ξ), p(ξ) : (I, ξ ∈ F(L) × Ξ}. Unfortunately, the number of hypotheses,

{I(h), ξ(h), w(I(h),ξ(h)), p(ξ(h))}Hh=1 increases exponentially through time, so it is necessary

to reduce the size of the parameter set by truncating (discarding) hypotheses that

are unimportant (low weight) and keeping hypotheses that are high weight for prop-

agation. Otherwise, if all the hypotheses are used, the GLMB recursion can become

intractable. A solution to determining a tractable implementation of the GLMB filter

is found by applying the K-shortest paths or ranked optimal assignment algorithms

with a Gaussian mixture assumption.

4.2. The Generalized Labeled Multi-Bernoulli Filter for RFS
Control 86

4.2.3 Gaussian Mixture GLMB Filter Closed Form Recur-

sion

Time Update using K-Shortest Paths

A tractable implementation of the δ−GLMB recursion can be found by truncating

unimportant hypotheses from the recursion at each time-step. The time-update in

Eq. (4.38a) becomes more computationally intensive from summing all the supersets

of L using Eq. (4.38c). From Vo and Vo (2013), Eq. (4.38a) can be expressed as

π̄(Xk) = ∆(Xk)
∑

(I,ξ)∈F(L)×Ξ

w(I,ξ)
∑

J∈F(I)

[η(ξ)
ps]J [1− η(ξ)

ps]I−J

×

 ∑
L∈F(B)

wb(L)δJ∪L(L(Xk))[p
(ξ)
k]Xk

 .

(4.40)

From this equation, the time-updated hypothesis, (J ∪ L, ξ) : J ⊆ I, L ⊆ B, with

weights w
(I,ξ)
ps (J)wb(L), is generated from the previous hypothesis, (I, ξ), with weight

w(I,ξ). The weight w
(I,ξ)
ps (J) has the form

w(I,ξ)
ps (J) = w(I,ξ)[η(ξ)

ps]J [1− η(ξ)
ps]I−J . (4.41)

The predicted J ∪ L is a label set that contains the union (in which the label sets

are disjoint) between the surviving label set J and the birth label set L with weights

w
(I,ξ)
ps (J) and wb(L), respectively. Therefore, the space for birth labels, B, does not

contain any surviving labels. The double sum over J and L can be truncated by

separately truncating the sums individually since J∪L has a weight that is a product,

w
(I,ξ)
ps (J)wb(L).

4.2. The Generalized Labeled Multi-Bernoulli Filter for RFS
Control 87

The surviving label set, J ⊆ I in Eq. (4.41) can be reworked as

w(I,ξ)
ps (J) = w(I,ξ)[1− η(ξ)

ps]I

[
η

(ξ)
ps

1− η(ξ)
ps

]J
, (4.42)

for a given hypothesis I, ξ. The goal is to generate surviving labels in a non-increasing

order of the term
[

η
(ξ)
ps

1−η(ξ)ps

]J
, thus the largest weighted survival set are determined with-

out computing all the hypothesis weights. By using the K-shortest path algorithm,

the largest weights can be found and truncation can occur to reduce computations.

A cost vector given by

C(I,ξ) = [C(I,ξ)(l1), . . . , C(I,ξ)(l|L|)], (4.43)

is defined where |I| is the number of labels and the cost of the individual node lj ∈ I

is

C(I,ξ)(lj) = − ln

[
η

(ξ)
ps (lj)

1− η(ξ)
ps (lj)

]
. (4.44)

The cost vector is ordered in decreasing order, and the distance between lj and lj′ is

d(lj, lj′) =

C
(I,ξ)(lj′), if j′ > j,

∞, else.

(4.45)

The total path distance (total cost) between the start (PS) and the end (PE) that

4.2. The Generalized Labeled Multi-Bernoulli Filter for RFS
Control 88

moves through the node set J ⊆ I is

∑
l∈J

C(I,ξ)(l) = −
∑
l∈J

ln

[
η

(ξ)
ps (l)

1− η(ξ)
ps (l)

]

= − ln

(η
(ξ)
ps (l)

1− η(ξ)
ps (l)

)J
. (4.46)

The problem can also be defined similarly with agent births. By defining births as a

labeled multi-Bernoulli model given by

wb(L) =
∏
l∈B

(1− r(l)
b)
∏
l∈L

1B(l)r
(l)
b

1− r(l)
b

, (4.47a)

pb(x, l) = p
(l)
b (x), (4.47b)

the K-shortest path cost vector is Cb = [Cb(l1), . . . , Cb(l|B|)] with a node cost about lj

is

Cb(lj) = − ln

[
r

(lj)
b

1− r(lj)
b

]
, (4.48)

where |B| is the number of births. This provides sets of B with the largest birth

weights or lowest path costs. The shortest path between PS and PE is J∗ ⊆ I which

gives the largest
(

η
(ξ)
ps (l)

1−η(ξ)ps (l)

)J∗
and the shortest distance

∑
l∈J∗ C

(I,xi)(l). Specifically,

an enumeration of the shortest distance is found in non-decreasing order which corre-

sponds to the enumeration of surviving label set J ⊆ I with non-increasing weights.

Note that when comparing the survival weights with the birth weights, the birth

components are much smaller and may be discarded by the filter. To mitigate this

problem, a larger number of birth components may be necessary to retain the birth

hypotheses. The K-shortest path is a known solution to the combinatorial prob-

4.2. The Generalized Labeled Multi-Bernoulli Filter for RFS
Control 89

lem given the start and end of a weighted network (Eppstein, 1998). Specifically,

the Bellman-Ford algorithm is used since the nodes are negative (Christofides et al.,

1981).

The cost function for the K-shortest path for the time-update can be computed

by assuming a Gaussian mixture for the multi-agent model. Thus, the survival prob-

abilities are state independent (i.e. ps(x, l) = Ps), and the multi-agent transition,

f(xk|x, l) = N (xk;Ax,Q), is Gaussian distributed where A is the state transition

matrix, Q is the process noise covariance, and the single agent state x transitions to

xk at the next time-step. The single agent density, p(ξ)(·, l), is a Gaussian mixture

given by

p(ξ)(·, l) =

J(ξ)(l)∑
i=1

w
(ξ)
i (l)N (x;m

(ξ)
i , P

(ξ)
i (l)), (4.49)

where J (ξ)(l) is the number of tracks, and m
(ξ)
i and P

(ξ)
i (l) are the mean and covariance

of the track. Also, the birth density, p
(l)
b (x), is a Gaussian mixture with a similar form

to Eq. (4.49). From this assumption, the time-update parameters from Eq. (4.38d)

and (4.38e) become

η(ξ)
ps (l) = ps, (4.50a)

p
(ξ)
k (x, l) = 1L(l)

J(ξ)(l)∑
i=1

w
(ξ)
i (l)N (x;m

(ξ)
ps,i

(l), P
(ξ)
ps,i

(l)) + 1B(l)p
(l)
b (x), (4.50b)

where

m
(ξ)
ps,i

(l) = Am
(ξ)
i (l) +Bu

(ξ)
i (l), (4.51a)

P
(ξ)
ps,i

(l) = Q+ FP
(ξ)
i (l)F T . (4.51b)

4.2. The Generalized Labeled Multi-Bernoulli Filter for RFS
Control 90

The term B is the control transition matrix and u
(ξ)
i (l) is the control input for the

track. Note if the time-update parameters are dependent on label l, the survival

probability is ps = ps(l), the state transition matrix is F = F (l), and the process

noise matrix is Q = Q(l). From these equations, truncation using K-shortest paths is

solved by evaluating Eq. (4.44) and the time-update is determined with a Gaussian

mixture assumption.

Measurement Update using Rank Optimal Assignment

In the measurement weight update given by Eq. (4.39b), every hypothesis, from the

time-update with weight w(I,ξ), is updated to form a set of hypotheses with weight

w(I,ξ,θ)(Z). If a set of association maps, θ ∈ Θ(I), is produced in descending order of

[η
(ξ,θ)
Z]I , for a given (I, ξ), the largest set of weights is chosen without solving for every

single new hypothesis. Through an optimal assignment problem, the unimportant

hypotheses can be truncated.

An assignment matrix S, size |I| × |Z|, can be represented by the number of

measurements, |Z|, and the number of labels, |I|, which consists of binary entries

that add up to 1 for both rows and columns. For example, by letting i ∈ {1, . . . , |I|}

and j ∈ {1, . . . , |Z|}, Si,j = 1 if the jth measurement and li track correspond, that

is, θ(li) = j. If row i is all zero, the track with li is not detected. If the column j is

all zero, the measurement zj is false. A cost matrix can be formed for the S matrix

given by

C
(I,ξ)
Z =


C1,1 · · · C1,|Z|

...
. . .

...

C|I|,1 · · · C|I|,|Z|

 , (4.52)

4.2. The Generalized Labeled Multi-Bernoulli Filter for RFS
Control 91

where the individual cost of the assignment between zj and li is

Ci,j = − ln

(
〈p(ξ)(·, li), pd(·, li)g(zj|·, li)〉
〈p(ξ)(·, li), 1− pd(·, li)〉κ(zj)

)
. (4.53)

The total cost of the assignment is given by the Frobenius inner product given by

tr(STC
(I,ξ)
Z) =

|I|∑
i=1

|Z|∑
j=1

Ci,jSi,j. (4.54)

For the updated measurement weight given by Eq. (4.39b), the cost of the association

map, θ, can be included in [η
(ξ,θ)
Z]I by

[η
(ξ,θ)
Z]I = exp

(
−tr(STC

(I,ξ)
Z)

)
, (4.55)

with the substitution of Eq. (4.30) and (4.54). The goal is to determine the optimal

assignment matrix S∗ which minimizes tr(STC
(I,ξ)
Z). Specifically, an enumeration of

the lowest cost assignment matrices are found in non-decreasing order which corre-

sponds to the enumeration of the association map, θ in an order with non-increasing

[η
(ξ,θ)
Z]I (Murthy, 1968).

The cost function for the optimal assignment problem for the measurement up-

date can be computed directly using a Gaussian mixture assumption for the model.

For the measurement update, the Gaussian mixture detection probabilities are state

independent (i.e. pd(x, l) = pd), and the measurement likelihood function is Gaussian

distributed (i.e. g(z|x, l) = N (z;Hx,R)) where the Gaussian N (·;m,P) has a mean

m, and a covariance P . The quantities H and R are the observation matrix and

the measurement noise covariance, respectively. Each agent has a Gaussian mixture

4.2. The Generalized Labeled Multi-Bernoulli Filter for RFS
Control 92

density given by Eq. (4.49). From this assumption, the cost function is

Ci,j = −ln

(
pd
∑J(ξ)(li)

k=1 w
(ξ)
k (li)q

(ξ)
k (zj; li)

(1− pd)κ(zj)

)
, (4.56)

and Eqs. (4.39c) and (4.39d) become

η
(ξ,θ)
Z (l) =

J(ξ)(l)∑
i=1

w
(ξ,θ)
Z,i (l), (4.57a)

p(ξ,θ)(x, l|Z) =

J(ξ)(l)∑
i=1

w
(ξ,θ)
Z,i (l)

η
(ξ,θ)
Z (l)

N (x;m
(ξ,θ)
Z,i , P

(ξ,θ)
i (l)), (4.57b)

where

w
(ξ,θ)
Z,i (l) = w

(ξ)
i (l)


pdq

(ξ)
i (zθ(l);l)

κ(zθ(l))
, if θ(l) > 0,

(1− pd), if θ(l) = 0,

(4.57c)

q
(ξ)
i (Z; l) = N (z;Hm

(ξ)
i (l), HP

(ξ)
i (l)HT +R), (4.57d)

m
(ξ,θ)
Z,i (l) =

m
ξ
i (l) +K

(ξ,θ)
i (l)(zθ(l) −Hm(ξ)

i (l)), if θ(l) > 0,

mξ
i (l), if θ(l) = 0,

(4.57e)

P
(ξ,θ)
i (l) = [I −K(ξ,θ)

i (l)H]P
(ξ)
i (l), (4.57f)

K
(ξ,θ)
i (l) =

P
(ξ)
i (l)HT [HP

(ξ)
i (l)HT +R]−1, if θ(l) > 0,

0, if θ(l) = 0.

(4.57g)

Note if the measurement update parameters are dependent on the label, l, the prob-

ability of detection is pd = pd(l), the observation matrix is H = H(l), and the

measurement noise covariance is R = R(l). From these equations, the truncation

using rank optimal assignment is solved and the measurement update is determined

4.2. The Generalized Labeled Multi-Bernoulli Filter for RFS
Control 93

using the Gaussian mixture assumption.

Truncation of Hypotheses

Truncating for both the time and measurement update is very similar although two

different optimization methods (K-shortest paths and ranked optimal assignment) are

used. For hypotheses, H, the time update is

π̄(h)(Xk) =
H∑
h=1

π̄(h)(Xk), (4.58a)

where

π̄(h)(Xk) =
∑
J⊆I(h)

∑
L⊆B

w(I(h),ξ(ξ))
ps (J)wb(L)δJ∪L(L(Xk))

[
p

(ξ(h))
k

]Xk

, (4.58b)

and the measurement update is

π(Xk|Zk) =
H∑
h=1

π(h)(Xk|Zk), (4.59a)

where

π(h)(Xk|Zk) = ∆(Xk)

|Θ(I(h))|∑
j=1

w(h,j)δI(h)(L(Xk))
[
p(h,j)

]Xk
(4.59b)

w(h,j) = w(I(h),ξ(h),θ(h,j))(Zk), (4.59c)

p(h,j) = p(ξ(h),θ(h,j))(·|Zk), (4.59d)

where the optimization is solved for h = 1, . . . , H to obtain truncated hypotheses with

the largest weights. For the time-update, K-shortest path solution is implemented

on the survival and birth costs, C(I(h),ξ(h)) and Cb, to obtain truncated hypotheses

4.2. The Generalized Labeled Multi-Bernoulli Filter for RFS
Control 94

J (h,j) : j = 1, . . . , Kh and L(d) : d = 1, . . . , Kb, respectively. Both K(h) and Kb are

subsets of the largest survival and birth weights which are user chosen and dependent

on the problem itself. By increasing H+Kb, there is an increase in computational cost

to running the filter. For the measurement update, the ranked optimal assignment

problem is solved on the cost, C
(I(h),ξ(h))
Z , for each hypothesis to obtain θ(h,j) : j =

1, . . . , T (h). The T (h) is a subset of the largest weights for the association map which

again are user defined and dependent on the problem itself. Similarly to the time-

update, by increasing T , there is a T-fold increase in the computational complexity

of the problem. The truncated versions for the time and measurement update are

given by

ˆ̄π
(h)
k (Xk) = ∆(Xk)

K(h)∑
j=1

Kb∑
d=1

w
(h,j,d)
sb δJ(h,j)∪L(d)(L(Xk))

[
p

(h)
k

]Xk

, (4.60a)

where

w
(h,j,d)
sb = w(I(h),ξ(h))

ps (J (h,j))wb(L
(d)), (4.60b)

p
(h)
k = p

(ξ(h))
k , (4.60c)

and

π̂(h)(Xk|Zk) = ∆(Xk)
T (h)∑
j=1

w(h,j)δI(h)(L(Xk))
[
p(h,j)

]Xk
, (4.61)

respectively. The (̂·) denotes that the time and measurement update have been trun-

cated.

4.3. Results 95

Control Objective using the GLMB Filter

By using a Gaussian mixture assumption and by truncating unimportant hypothe-

ses, a closed form solution to the GLMB filter recursion is found with Eqs. (4.60)

and (4.61). Using the time and measurement update equations, the RFS control

objective is formed with a Gaussian mixture assumption on the single agent densi-

ties given by Eq. (4.49). This is substituted into the unlabeled intensity function

given by Eq. (4.34) to provide a distributional distance-based objective between

the current intensity, ν(x, k) , f(x), and the desired intensity, νdes(x, k) , g(x) ,∑Ng
i=1 w

(i)
g N

(
x; mi

g, P
i
g

)
, given by

J(u) =
T∑
k=1

uTkRuk +D(ν(x, k), νdes(x, k)), (4.62)

where R is the positive definite control weight matrix and uk is the control effort for

the Gaussian mixture shown in Eq. (4.51a). Note that the objective function includes

the time-step parameter k. The filter equations provide a recursion from one time-step

k to the next. To make the filter and control objective consistent, all the equations

have the time-step, k (e.g. Eq. (4.34) is supplemented with k to form v(x, k)). For

this work, an MPC based ILQR is implemented using the L2
2 plus quadratic divergence

to estimate and control the large collaborative swarm simultaneously.

4.3 Results

RFS control is implemented using the Clohessy-Wiltshire dynamics in feedback with

either the CPHD or GLMB filter. Note that imperfect information (i.e. process,

measurement, and clutter noise) is included in the simulation. To complicate the

problem even more, differing birth and death times for the agents are also simulated.

Additionally, RFS control is implemented using the L2
2 plus quadratic distance and

4.3. Results 96

MPC-based ILQR. The first case involves control of a 77-agent swarm using the

CPHD filter. The second case involves control of a 16-agent swarm involving the

GLMB filter. The goal for each case is to track a rotating star pattern moving in a

counterclockwise motion with a orbital frequency of n = 0.00110678 rad/s. With the

addition of imperfect information and the added complication of changing number of

agents, using the CPHD and GLMB filters provide accurate estimates of the agents

through time which allows for RFS control in-the-loop.

4.3.1 Case 1: RFS Control using the CPHD Filter

Case 1 illustrates the use of the CPHD filter in conjunction with RFS control for

a 77-agent swarm. In this case, the agents are birthed at different time intervals

from a uniformly random initial condition between -1 and 1 m from a chief satellite

in a circular orbit. Figure 4.2a shows the cardinality of the swarm as agents die or

birth through time. The estimated cardinality (dotted line) follows the true cardi-

nality (solid line) as agents die or birth very accurately. Compared to the cardinality

from the GM-PHD filter, the CPHD filter has a more accurate cardinality estimate

as the number of agents are increased in the swarm. This is because the CPHD

filter propagates a general cardinality distribution through time instead of assuming

a cardinality distribution that is Poisson distributed. Although this increases the

computational complexity of the CPHD filter in relation to the GM-PHD filter, the

state and cardinality estimates become more accurate for RFS control, especially for

large collaborative swarms. Figure 4.2c shows the snapshots of the controlled agents

(black circles) and targets (green stars) at each time-step. As agents birth or die

at each time-step, the agents move and maintain the rotating star formation. Note

that at 39 min, agents are still converging into the star formation because new agents

have birthed between -1 and 1 m from the origin at 38 min. Thus, all agents that

have settled before time = 38 min may have to move to allow the birthed agents

4.3. Results 97

to move into the formation. Figure 4.2b shows the time history for the true agents

(solid lines), estimated agents (black dots), and overall measurements (gray x’s). The

CPHD filter is able to detect the agents in motion and successfully provide estimates

for RFS control.

4.3.2 Case 2: RFS Control using the GLMB Filter

For case 2, 16 agents are birthed at different time intervals from a uniformly random

initial condition between -1 and 1 m from a chief satellite in a circular orbit. Fig-

ure 4.3a shows the cardinality in the swarm through time. The solid and dotted lines

show the true and estimated cardinality, respectively. Throughout the simulation, it

can be observed that six agents die which is considered in the cardinality and state

estimate of the swarm. These estimates are fed through the RFS control using ILQR

to obtain a control input for each surviving agent. Figure 4.3c shows the snapshots of

the controlled agents (black circles) and targets (green stars) at each time-step. Fig-

ure 4.3b shows the time history for the the true agents (solid lines), estimated agents

that are labelled (colored dots), and overall measurements (gray x’s). This figure

shows the benefits of the GLMB filter. With the GLMB filter, an individual agent’s

track (time history) can be determined separately from other agents in the swarm.

This identification is useful in providing specific control to an agent instead of relying

on the Mahalanobis distance to compare an agent to the closest Gaussian mixture

(estimate). Although obtaining track information is valuable for control of swarms,

the GLMB filter becomes more computationally intensive as the number of agents

increase in the swarm. The multi-agent Bayes filter recursion using the GLMB distri-

bution is closed form but the number of hypotheses increases exponentially through

time. The fix for this is to truncate the hypotheses that are unimportant by set-

ting user-defined limits in the birth (Kb), survival (K(h)), and measurement update

hypotheses (T (h)), but as the number of agents increase, these limits also have to

4.3. Results 98

5 10 15 20 25 30 35 40

0

20

40

60

True

Estimated

PSfrag replacements

Time (min)

Ca
rd

in
al

ity

(a) Cardinality

5 10 15 20 25 30 35 40

-10

0

10 Estimates

True tracks

Measurements

5 10 15 20 25 30 35 40

-10

0

10
PSfrag replacements

Time (min)

Time (min)

x
(m

)
y

(m
)

(b) Time History

-10 0 10

-15

-10

-5

0

5

10

15

-10 0 10

-15

-10

-5

0

5

10

15

-10 0 10

-15

-10

-5

0

5

10

15

-10 0 10

-15

-10

-5

0

5

10

15

-10 0 10

-15

-10

-5

0

5

10

15

-10 0 10

-15

-10

-5

0

5

10

15

PSfrag replacements

Time = 5 min Time = 11 min Time = 19 min

Time = 23 min Time = 29 min Time = 39 min

x (m)x (m)x (m)

x (m)x (m)x (m)

y
(m

)

y
(m

)

y
(m

)

y
(m

)

y
(m

)

y
(m

)

Estimates

True tracks

Measurements

(c) Clohessy-Wiltshire Trajectory Snapshots

Figure 4.2: 77-agent spacecraft swarm controlled to a rotating star target via ILQR
with imperfect information. The CPHD filter is used. Figure 4.3a shows the true
and estimated cardinality, Figure 4.3b shows the time history of the true tracks,
the estimated labelled tracks, and overall measurements, and Figure 4.3c shows the
trajectories for the spacecraft agents and targets.

4.3. Results 99

be increased to obtain an accurate estimate. Thus, less hypotheses are truncated

which leads to higher computational complexity. For this reason, a 16-agent swarm

is simulated since a 77-agent swarm becomes computationally intractable for finding

accurate estimates. Even with this shortcoming for large swarms, the GLMB filter

works very well in determining state, cardinality, and track estimates for swarm sizes

that do not become computationally intractable.

4.3. Results 100

5 10 15 20 25 30 35 40

0

5

10

15

True

Estimated

PSfrag replacements

Time (min)

Ca
rd

in
al

ity

(a) Cardinality

5 10 15 20 25 30 35 40

-10

0

10

5 10 15 20 25 30 35 40

-10

0

10 Estimates

True tracks

Measurements

PSfrag replacements

Time (min)

Time (min)

x
(m

)
y

(m
)

(b) Time History

-10 0 10

-15

-10

-5

0

5

10

15

-10 0 10

-15

-10

-5

0

5

10

15

-10 0 10

-15

-10

-5

0

5

10

15

-10 0 10

-15

-10

-5

0

5

10

15

-10 0 10

-15

-10

-5

0

5

10

15

-10 0 10

-15

-10

-5

0

5

10

15

PSfrag replacements

Time = 5 min Time = 11 min Time = 19 min

Time = 23 min Time = 29 min Time = 39 min

x (m)x (m)x (m)

x (m)x (m)x (m)

y
(m

)

y
(m

)

y
(m

)

y
(m

)

y
(m

)

y
(m

)

Estimates

True tracks

Measurements

(c) Clohessy-Wiltshire Trajectory Snapshots

Figure 4.3: 16-agent spacecraft swarm controlled to a rotating star target via ILQR
with imperfect information. The GLMB filter is used. Figure 4.3a shows the true
and estimated cardinality, Figure 4.3b shows the time history of the true tracks,
the estimated labelled tracks, and overall measurements, and Figure 4.3c shows the
trajectories for the spacecraft agents and targets.

Chapter 5

Conclusion

The objective of this work is to formulate the multi-target estimation and control

background for large collaborative swarms. Multi-target estimation using the GM-

PHD, CPHD, and GLMB filters and optimal control (i.e. ILQR or a Quasi-Newton

optimization) are combined using RFS theory. RFS control is also decentralized by

considering sparse control gain matrices obtained from sparse LQR.

By setting up the problem using information divergence to define the distance

between the swarm RFS and the desired distribution, an optimal control problem is

found that tracks a linear system with a nonquadratic objective function through the

use of Quasi-Newton MPC and ILQR. Specifically, minimizing the L2
2 plus quadratic

distance provides control solutions which converges to a desired intensity. It also

provides collision-reducing trajectory solutions. In consideration of agents that birth

or spawn through time, the GM-PHD filter is used to determine accurate estimates of

the multi-agent swarm problem. RFS control and the GM-PHD filter are combined

for control of a large number of Gaussian mixtures and rotating targets. This allows

for a converging RFS control solution of variable swarm size.

To provide better estimates for cardinality, the CPHD filter is implemented in

conjunction with RFS control. By propagating a general cardinality distribution

rather than a Poisson distribution assumption, cardinality and state estimates become

101

Chapter 5. Conclusion 102

more accurate as the number of agents in the swarm increase. The GLMB filter and

RFS control are also combined which accounts for the labels of each agent. With

each agent labelled, individual trajectories of each agent can be determined. Thus, by

using RFS control and the GLMB filter, an individual agent’s track can be determined

separately from others in the swarm and be provided specific control instructions. In

other words, specific agents can be controlled using the labelling information of the

GLMB filter.

It is assumed through these results that the control topology is complete and

it is used in a centralized manner. To provide a control topology that is localized

or decentralized, sparse control gain matrices are obtained by sparsifying the RFS

control gain matrix using sparse LQR. This allows agents to use local information

topology or fully decentralized topology to drive an agent to a target.

In conclusion, by using a RFS-based architecture, the ability to estimate the

cardinality and states of the swarm for control is realized. Thus, applications in

scientific exploration, communication relaying, self-assembly, and surveillance become

tangible by using RFS theory and optimal control for a large number of collaborative

swarms.

5.0.1 Future Work

The results presented using RFS control show an implicit proof of the method’s

stability and optimality for control of collaborative swarms. Future work will entail

theoretical proofs into the stability and optimality of the RFS control formulation

to show these properties without the results directly. Also, this work provides RFS

control using both centralized and decentralized control methods. These methods are

planned to be expanded to hardware systems (i.e. UAVs and robots) to show the

viability of the RFS control theory to swarms of such systems.

Lastly, future work will include exploration into the tensor train decomposition.

Chapter 5. Conclusion 103

For large collaborative swarms, the state-space becomes larger as the cardinality in-

creases. This becomes a problem for optimal control methods due to the curse of

dimensionality. For example, ILQR uses both gradient and Hessian state information

to approximate a quadratic cost for optimization, but this information becomes ex-

ponentially larger as the state increases. Tensor train decomposition allows for the

reduction of these vectors to provide computationally easier and faster problems to

solve. Thus, RFS control using tensor train decomposition is expected to be compu-

tationally faster than its normal matrix and vector counterpart.

Appendix A

Modelling and Derivation of the
PHD Filter

In the development of multi-target estimation using RFSs, the PHD filter can be

modeled and derived more intensively by using general terminology through point

processes. From Mahler (2006), the PHD filter consists of random finite sets, multi-

target densities, and set integrals. These are specific quantities that pertain to general

terminology of point processes that consist of sequences of points, probability mea-

sures, probability densities, and measure-theoretical integrals. The RFS is equivalent

to a simple point process and higher-order moments can be more easily described

by measure-theoretical integrals as opposed to set integrals. Thus, the PHD filter in

Eq. (2.10) can be derived by the use of point processes. Appendix A.1 provides an

introduction to estimating the cardinality for a swarm using integer-valued random

variables and probability generating functions (PGFs). Appendix A.2 extends this

theory to point processes and probability generating functionals (PGFLs) to derive

the PHD filter. For more discussion in point processes, see the extensive review pre-

sented by Daley and Vere-Jones (2003, 2007). The following derivation of the PHD

filter using point processes follows closely to that of Houssineau et al. (2013) and

lecture notes based off of Clark et al. (2016).

104

A.1. Integer-valued Random Variables 105

(a) (b)

Figure A.1: Mapping from probability space (Ω,F ,P) to space X for random variable
X.

A.1 Integer-valued Random Variables

The number of agents in a swarm are represented by an integer-valued random vari-

able X in which each agent is counted by an integer and the cardinality is unknown.

The random variable maps between a probability space (Ω,F ,P) and a set of non-

negative integers N given by Figure A.1a. Ω is the outcome space which contains all

the possible outcomes regarding the random experiment, F is a subset of space Ω

and is considered the σ−algebra on Ω, and P is the probability measure. Individual

outcomes are denoted as wi and individual realizations of N are n. The quantity

X−1(n) represents the collection of all possible wi that leads to the realization n

given in Figure A.1b. The probability measure P measures the size of X−1(n), thus

n becomes more likely to be chosen when sampling from X. The equation

pX(n) = P(X−1(n)), (A.1)

gives the probability (likelihood) of choosing n when X is sampled. This is defined

by the event X = n. This probability has the property of

∑
n≥0

pX(n) =
∑
n≥0

P(X−1(n)) = 1, (A.2)

A.1. Integer-valued Random Variables 106

which ensures that the probability of all possible outcomes is equal to 1. pX(n) in

this case is a cardinality probability which describes the swarm with n agents.

The representation or behaviorial description of X is found by defining the random

variable’s moments. The kth order non-factorial, µ
(k)
X , and factorial, α

(k)
X , moments

of X about integer k ≥ 0 are

µ
(k)
X = E[X(k)] =

∑
n≥0

pX(n)n(k), (A.3a)

α
(k)
X = E[X(X − 1) . . . (X − k + 1)] =

∑
n≥k

pX(n)n(n− 1) . . . (n− k + 1). (A.3b)

The non-factorial moments are used to determine the central moments. For a random

variable X, the variance can formed from the central moment given by

varX = µ
(2)
X −

(
µ

(1)
X

)2

. (A.4)

This describes the distance or spread of realizations about the average value of X,

µ
(1)
X . Similarly, the joint moment between random variables X and Y is formed as

covX,Y = µ
(1)
XY − µ

(1)
X µ

(1)
Y . (A.5)

For the factorial moment, the first order is used to provide the mean value of X given

by

µX =
∑
n≥0

pX(n)n = µ
(1)
X = α

(1)
X . (A.6)

The cardinality distribution is a set of cardinality probabilities {px(n)}n≥0 which

characterizes the entirety of X, but may be unavailable or intractable to estimate

through time. For a multi-target estimation problem, the variables are updated with

A.1. Integer-valued Random Variables 107

new measurements. Thus, random variables that describe the cardinality are also

updated. This update is difficult to describe, so consequently, another representation

must be found using probability generating functions.

A.1.1 Probability Generating Functions

The generating function G is a function which is generated by a sequence of real

numbers. For a sequence of real numbers, (un)n≥0, the generating function G is

G(s) =
∑
n≥0

unS
n, (A.7)

where s ∈ R+ and the sum is finite. The generating function relates a set of non-

negative real numbers R+ → R. The random variable X with cardinality distribution

{px(n)}n≥0 can be substituted into the equation to produce the PGF GX given by

the expectation

GX(s) = E[sX]

=
∑
n≥0

pX(n)sn.
(A.8)

By using probabilities in the generating function, the test variable s is constrained

from 0 ≤ s ≤ 1. By setting s to 0 and 1, two properties of PGFs are given by

GX(0) =
∑
n≥0

pX(n)0n = pX(0), (A.9a)

GX(1) =
∑
n≥0

pX(n)1n =
∑
n≥0

pX(n) = 1. (A.9b)

For s = 0, the cardinality probability pX(0) is extracted from the PGF. For s = 1,

the PGF sums to 1.

A.1. Integer-valued Random Variables 108

For multi-target estimation, joint random variables must also be studied. For

example, a random variable that consists of measurements can be determined given by

the number of agents in the field. Thus, a joint PGF GZ,X is given by the expectation

GZ,X(t, s) =
∑
m,n≥0

pZ(m)pX(n)tmsn

=

(∑
m≥0

pZ(m)tm

)(∑
n≥0

pX(n)sn

)

= GZ(t)GX(s),

(A.10)

where t is the test variable for random variable Z. Several properties coincide to

manipulate PGFs into other forms.

The derivative can be obtained from a PGF since PGFs are real-valued functions.

For a function f with R→ R, the derivative is given by

f ′(x) = lim
ε→0

f(x+ ε)− f(x)

ε
, (A.11)

evaluated at x ∈ R for small ε ∈ R. The properties for a function f and g are

sum: (f + g)′(x) = f ′(x) + g′(x), (A.12a)

product: (f · g)′(x) = f ′(x)g(x) + f(x)g′(x), (A.12b)

power: (fm)′(x) = mfm−1(x)f ′(x), (A.12c)

chain: (f ◦ g)′(x) = g′(x)f ′(g(x)). (A.12d)

It is also useful to know the properties of using an exponential function with a PGF

as it can provide tractable and implementable solutions to the cardinality estimation

A.1. Integer-valued Random Variables 109

problem. The properties include

ordinary differentiation: exp′(x) = exp(x), (A.13a)

chain: (exp ◦f)′(x) = f ′(x)(exp ◦f)(x), (A.13b)

Taylor expansion: exp(x) =
∑
n≥0

exp(n)(0)

n!
x(0) =

∑
n≥0

x(n)

n!
. (A.13c)

With these properties for a function f , differentiation can be applied directly on the

PGF. For a random variable X and a PGF GX , the goal is to determine the cardinality

distribution {px(n)}n≥0. The derivatives for GX are given by

GX(s) =
∑
n≥0

pX(n)sn, (A.14a)

G′X(s) =
∑
n≥0

pX(n)(sn)′ =
∑
n≥1

pX(n)nsn−1, (A.14b)

G
(2)
X (s) =

∑
n≥1

pX(n)n(sn−1)′ =
∑
n≥2

pX(n)n(n− 1)sn−2, (A.14c)

G
(k)
X (s) =

∑
n≥k

pX(n)n(n− 1) . . . (n− k + 1)sn−k

=
∑
n≥k

pX(n)
n(n− 1) . . . (n− k + 1)(n− k) . . . 1

(n− k) . . . 1
sn−k

=
∑
n≥k

pX(n)
n!

(n− k)!
sn−k.

(A.14d)

By substituting s = 0 or s = 1 into Eq. (A.14d), the kth derivative simplifies to

G
(k)
X (0) =

∑
n≥k

pX(n)
n!

(n− k)!
0n−k = pX(k)

k!

(k − k)!
= k!pX(k), (A.15a)

G
(k)
X (1) =

∑
n≥k

pX(n)n(n− 1) . . . (n− k + 1) = α
(k)
X . (A.15b)

A.1. Integer-valued Random Variables 110

Thus, the cardinality probability and the factorial moment can be directly extracted

from the derivatives of the PGF for s = 0 or s = 1. By knowing the PGF GX , the

full characterization of the random variable is known by computing the cardinality

distribution directly. These equations are given by

pX(k) =
G

(k)
X (0)

k!
, (A.16a)

µx = α
(1)
X = G′X(1). (A.16b)

Similarly, a derivation using joint random variables, X and Z, can also occur using

joint PGFs assuming Z = m. This PGF, GZ=m,X(s) is determined directly from a

general PGF GZ,X given by

GZ=m,X(s) =
∑
n≥0

pZ,X(m,n)sn

=
1

m!

dm

dtm
GZ,X(t, s)|t=0.

(A.17)

Then, it can be differentiated with respect to s to produce the cardinality probability

{pZ,X(m,n)}m,n≥0 using Eqs. (A.14d) and (A.15a).

Similar to random variables, operations can also occur with PGFs. The first op-

eration of discussion is marginalization. For the joint behavior of random variables Z

and X, the behavior of one random variable can be determined directly by marginal-

ization. For example, to find the behavior of Z from the joint behavior of Z and

X, the joint behavior is marginalized (integrated or summed) over all the possible

realizations of X given by

∀m ∈ N, pZ(m) =
∑
n≥0

pZ,X(m,n). (A.18)

Marginalization works similarly with PGFs. For the joint PGF in Eq. (A.10), the

A.1. Integer-valued Random Variables 111

PGF for Z is determined by marginializing over X. The test variable is set to s = 1

and the joint PGF can be simplified given by

GZ,X(t, 1) =
∑
m,n≥0

pZ,X(m,n)tm1n

=
∑
m≥0

(∑
n≥0

pZ,X(m,n)

)
tm

=
∑
m≥0

pZ(m)tm

= GZ(t).

(A.19)

The operation using sums of two realizations of random variables X + Y = Z is

also of interest for PGFs for scenarios where X and Y are independent. The PGF of

Z in terms of X and Y is given by

GZ(s) = E[sZ]

= E[sX+Y]

= E[sXsY]

= E[sX]E[sY]

= GX(s)GY (s),

(A.20)

if X and Y are independent. If they are not independent, Eq. (A.20) results in

GZ(s) = E[sXsY].

One last operation of interest is known as branching, or a special kind of de-

pendence between X and Y . For a realization m of parent random variable Y , the

daughter random variable X will have a superposition of m identical but indepen-

dent random variables T . This is directly related to the spawning of agents. The

parent random variable spawns a number of agents in the daughter random variable

following some transition described by T . Suppose that the PGFs for the parent and

A.1. Integer-valued Random Variables 112

transitional random variable Y and T are known by GY and GT , respectively. The

goal is to describe X in terms of these variables. The PGF for the joint behavior

between X and Y is

GY,X(t, s) =
∑
m,n≥0

pY,X(m,n)tmSn

=
∑
m,n≥0

pY (m)pX|Y (n|m)tmsn

=
∑
m≥0

pY (m)

(∑
n≥0

pX|Y (n|m)sn

)
tm

=
∑
m≥0

pY (m)GX|Y (s|m)tm,

(A.21)

where GX|Y (s|m) is the conditional PGF of X given the realization of Y . If Y = m,

X|Y is the superposition of m copies that are independent of the transitional random

variable T . This results in

GX|Y (s|m) = (GT (s))m. (A.22)

By substituting Eq. (A.22) into Eq. (A.21), the joint PGF becomes

GY,X(t, s) =
∑
m≥0

pY (m)(GT (s))mtm

=
∑
m≥0

pY (m)(tGT (s))m

= GY (tGT (s)).

(A.23)

This describes the joint behavior between dependencies of X and Y . To obtain the

A.1. Integer-valued Random Variables 113

description of X, marginalization is applied about Y which is given by

GX(s) = GY,X(1, s)

= GY (GT (s)).
(A.24)

Examples of Random Variables and PGFs

With the basics of random variables and PGFs, families of these quantities are dis-

cussed which is used directly in multi-target filtering.

The first of these random variables is a Bernoulli random variable X which has a

parameter 0 ≤ p ≤ 1 defined by

X =

0, if 1− p,

1, if p.

(A.25)

The parameter p is the probability that an event 1 will occur. This is used in single

random experiments that asks a yes/no question or a coin flip. The PGF GX is

constructed using Eq. (A.8) given by

GX(s) =
∑
n≥0

pX(n)sn

= pX(0) + pX(1)s =
∑
n≥2

pX(n)sn

= 1− p+ ps.

(A.26)

For multi-target tracking, the Bernoulli random variable depicts the agent survival

or agent detection.

The other random variable of interest is the Poisson random variable X with a

A.1. Integer-valued Random Variables 114

parameter λX ≥ 0 defined by

∀n ≥ 0, X = n, pX(n) = exp(−λX)
λnX
n!
. (A.27)

The parameter λX is the average number of events per interval, and it is considered a

rate parameter. It is used for modelling the number of times an event occurs for some

particular space or time interval. From Eq. (A.8), the PGF for a Poisson distribution

is

GX(s) =
∑
n≥0

pX(n)sn

=
∑
n≥0

exp(−λX)
λnX
n!
sn

= exp(−λX)
∑
n≥0

(λXs)
n

n!
,

(A.28)

and by using a Taylor expansion, Eq. (A.13c), the equation simplifies to

GX(s) = exp(−λX) exp(λXs)

= exp(λX(s− 1)).
(A.29)

The mean can be determined directly by Eq. (A.16b) which results in

µX = G′X(s)|s=1

= (exp(λX(s− 1)))′|s=1

= λX exp(λX(s− 1))|s=1

= λX exp(λX(1− 1))

= λX .

(A.30)

The mean of a Poisson distribution is just λX . Also, the varX is λX using a similar

A.1. Integer-valued Random Variables 115

derivation for variance. For multi-agent filtering, the Poisson distribution is attractive

since it allows for tractability in filtering recursions.

A.1.2 Cardinality Estimation

With the introduction to random variables and PGFS, these tools can be used to

derive a cardinality estimator from a multi-target Bayesian estimation perspective

which consists of time-update and measurement update steps. The goal is to estimate

and propagate the mean number of agents through time by observing measurements.

Note that this derivation estimates only the number of agents and not the state of

each agent. The construction of the problem consists of relating X, the agents after

the time-update, with Y , the agents before the time-update, and relating X|Z from

X where Z contains the current measurements and X|Z contains the measurement

updated agent estimate. The other part of this problem consists of extracting infor-

mation (i.e. µX , µY , and µX|Z) from differentiation of the PGFs to determine the

cardinality estimates. Both of these steps take in assumptions on the physical envi-

ronment that the agents are set in. Thus, a proper set-up is required to determine

the best estimates from the filter.

For the time-update (prediction step), it is assumed that the agents are indepen-

dent of each other, each agent survives with probability ps or dies with probability

1−ps, and agents birth independently from the surviving agents on the field. For the

time-update, the survival random variable Xs is a Bernoulli random variable with a

parameter ps given by

Gs(s) = 1− ps + pss. (A.31)

The number of surviving agents is denoted by Xsur which occurs by branching the

A.1. Integer-valued Random Variables 116

parent random variable Y with the transition random variable Xs given by

Gsur(s) = GY (Gs(s)). (A.32)

The time-updated number of agents is described by X which is the union (sum) of

the surviving agents and birthed agents given by

GX(s) = Gsur(s)Gb(s). (A.33)

Therefore, the predicted PGF for the cardinality is

GX(s) = GY (1− ps + pss)Gb(s). (A.34)

This PGF provides the entire description of agents as they birth or survive to the

next time-step without computing each agent’s individual cardinality probability.

For the measurement update, it is assumed that measurements are independently

measured from each other, an agent is detected with a probability pd from a single

measurement or it is not detected with a probability 1−pd, and any clutter measure-

ments are obtained independently from target measurements. For the measurement

update, the observation random variable Zobs is a Bernoulli random variable with a

parameter pd given by

Gobs(t) = 1− pd + pdt. (A.35)

The number of agent measurements is denoted by Ztar which occurs by branching the

parent random variable X with the transition random variable Zobs given by

GZtar,X(t, s) = GX(sGobs(t)). (A.36)

A.1. Integer-valued Random Variables 117

The joint PGF of measured agents is the sum of the measurements and clutter given

by

GZ,X(t, s) = GZtar,X(t, s)Gc(t). (A.37)

Therefore, the measurement updated PGF for the cardinality is

GZ,X(t, s) = GX(s(1− pd + pdt))Gc(t). (A.38)

With the measurement update PGF, the goal is to estimate the number of agents

conditioned on Z = m. By using Bayes’ rule given by

pX|Z(n|m) =
pZ,X(m,n)

pZ(m)
, (A.39)

a posterior probability of X = n agents on the field given Z = m measurements

can be found using the joint probability of X = n agents and Z = m measurements

and the probability of Z = m measurements. Bayes’ rule can be manipulated by

multiplying sn on both sides and summing up all realizations of X given by

∑
n≥0

pX|Z(n|m)sn =

∑
n≥0 pZ,X(m,n)sn

pZ(m)
. (A.40)

By substituting Eqs. (A.17), (A.8), and (A.16a) into Eq. (A.40), the equation reduces

to

GX|Z(s|m) =
GZ=m,X(s)

pZ(m)

=
1
m!

dm

dtm
GZ,X(t, s)|t=0

1
m!
G

(m)
Z (0)

.

(A.41)

A.1. Integer-valued Random Variables 118

The denominator can be expanded out to all possible agents using Eq. (A.19) to

GX|Z(s|m) =
dm

dtm
GZ,X(t, s)|t=0

dm

dtm
GZ,X(t, 1)|t=0

(A.42)

where GZ,X(t, s) = GX(s(1 − pd + pdt))Gc(t). These PGFs can be exploited using

differentiation to obtain the cardinality estimates directly.

For the time-update, µX is determined by Eq. (A.16b) about GX given by

µX = G′X(s)|s=1. (A.43)

By substituting Eq. (A.34), the equation simplifies to

µX = (GY (1− ps + pss)Gb(s))′|s=1. (A.44)

The derivative is solved using the product rule given by Eq. (A.12b) which reduces

to

µX = (GY (1− ps + pss))
′|s=1Gb(s)|s=1 +GY (1− ps + pss)|s=1G ′b(s)|s=1. (A.45)

By using chain rule, Eq. (A.12d), the equation becomes

µX = (1− ps + pss)
′|s=1G

′
Y (1− ps + pss)|s=1Gb(1) +GY (1)G′b(1)

= psG
′
Y (1)Gb(1) +GY (1)G′b(1).

(A.46)

By using the property when the test variable s = 1 given by Eq. (A.9b) and the PGF

derivative property given by Eq. (A.16b), the mean reduces to

µX = psG
′
Y (1) +G′b(1)

= psµY + µb.
(A.47)

A.1. Integer-valued Random Variables 119

This provides a direct time update without assuming anything about the prior car-

dinality or birth cardinality.

For the measurement update, the derivative of GX|Z(·|m) is

µX|Z=m = G′X|Z(s|m)|s=1. (A.48)

By substituting Eq. (A.42), the equation becomes

µX|Z=m =
dm+1

dsdtm
GZ,X(t, s)|t=0,s=1

dm

dtm
GZ,X(t, 1)|t=0

(A.49)

The equation from Eq. (A.49) becomes intractable without any assumptions on the

predicted cardinality X or the clutter. But, if the predicted cardinality, X, and

clutter, Zc, are Poisson distributed, tractable solutions can be determined using Eq.

(A.29). This becomes

GZ,X(t, s) = GX(s(1− pd + pdt))Gc(t)

= exp(µX(s(1− pd + pdt)− 1)) exp(µc(t− 1))

= exp(µX(s(1− pd + pdt)− 1) + µc(t− 1)).

(A.50)

With the exponential form, the equation can be simplified using Eq. (A.13b) yielding

d

dt
GZ,X(t, s) =

d

dt
exp(µX(s(1− pd + pdt)− 1) + µc(t− 1))

=
d

dt
(µX(s(1− pd + pdt)− 1) + µc(t− 1)) exp(µX(s(1− pd + pdt)− 1)

+ µc(t− 1))

= (µXspd + µc) exp(µX(s(1− pd + pdt)− 1) + µc(t− 1)).

(A.51)

A.1. Integer-valued Random Variables 120

The term in front of the exponential is independent of t, therefore the mth derivative

of the joint PGF with respect to t is

dm

dtm
GZ,X(t, s) = (µXspd + µc)

m exp(µX(s(1− pd + pdt)− 1) + µc(t− 1)). (A.52)

The numerator in Eq. (A.49) requires the differentiation of Eq. (A.52) with respect

to s using Eq. (A.12b). This becomes

dm+1

dsdtm
GZ,X(t, s) =

d

ds
((µXspd + µc)

m) exp(µX(s(1− pd + pdt)− 1) + µc(t− 1))

+ (µXspd + µc)
m d

ds
exp(µX(s(1− pd + pdt)− 1) + µc(t− 1)).

(A.53)

The first term and second term can be simplified with Eqs. (A.12c) and (A.13b),

repectively. This is given by

dm+1

dsdtm
GZ,X(t, s) = m(µXspd + µc)

m−1µXpd exp(µX(s(1− pd + pdt)− 1) + µc(t− 1))

+ (µXspd + µc)
mµX(1− pd + pdt) exp (µX(s(1− pd + pdt)− 1)

+µc(t− 1)) .

(A.54)

Then the quantities in Eqs. (A.54) and (A.52) are substituted into Eq. (A.49) with

s = 1 and t = 0 to obtain the estimated cardinality result

µX|Z=m = m
µXpd

µXspd + µc
+ µX(1− pd + pdt)

= m
µXpd

µXpd + µc
+ µX(1− pd).

(A.55)

A.2. PHD Filter using Point Processes 121

Thus, the estimated cardinality is obtained using

µX = psµY + µb, (A.56a)

µX|Z=m = m
µXpd

µXpd + µc
+ µX(1− pd). (A.56b)

A.2 PHD Filter using Point Processes

The methodology is extended to a full PHD filter formulation which estimates both

the cardinality and state estimates of agents in the swarm. Specifically, point pro-

cesses are introduced in conjunction with probability generating functionals (PGFLs)

to derive the PHD filter equations directly.

A.2.1 Introduction to Point Processes

For a number of agents in an environment, the cardinality and the individual states

(i.e. position and velocity) for each agent are unknown. The description of the swarm

can be described as a random finite set or more generally as a point process Φ. A

point process is a random variable where the size of the sequence and elements within

are both random realizations. The agent state space is X ⊆ Rdx where dx is the agent

state vector size. The measurements, z, produced from the system have a state space

Z ⊆ Rdz where dz is the measurement vector size.

The point process, Φ, maps between a probability space (Ω,F ,P) and the space

X = ∪k≥0X
k. This relation is given by Figure A.2a. The outcomes wi can be as-

sociated to realizations φ. Φ−1(dφ) represents the collection of all possible wi that

achieves a realization in the neighborhood of φ with components dφ given in Fig-

ure A.2b. The probability measure P measures the size of Φ−1(dφ), thus, dφ becomes

more likely to be chosen when sampling from Φ. The point process probability is

A.2. PHD Filter using Point Processes 122

(a) (b)

Figure A.2: Mapping from probability space (Ω,F ,P) to space X for point process
Φ.

given by

PΦ(dφ) = P(Φ−1(dφ)), (A.57)

which gives the likelihood of choosing dφ when Φ is sampled. Specifically, PΦ(dφ)

is the probability that the swarm, described by Φ, has n agents and the ith agent

in dφ = d(x1, . . . , xn) is localized in the neighborhood dxi. When the probability

distribution is integrated about the sequence of points in X, the result becomes 1

which ensures that PΦ is a probability measure. This is given by

∫
X
PΦ(dφ) =

∫
X
P(Φ−1(dφ)) = 1. (A.58)

By comparing point processes to integer-valued random variables, both have very

similar attributes. A property of point processes of importance is that the proba-

bility distributions are defined by symmetric functions. That is, any arrangements

of a realization will occur with equal probability and is exemplified by the example

of Pφ(d(x1, x2, x3)) = Pφ(d(x3, x2, x1)). Also point process realizations may have se-

quences of points that are point-wise distinct. This is a simple point process, and

this property is assumed throughout the literature.

The projection measure P
(n)
Φ characterizes the probability distribution PΦ for n ≥

A.2. PHD Filter using Point Processes 123

0, and the nth-order projection is defined on Xn for n ≥ 1. The projection measure

provides both the point process probability of n points and the probability distribution

of the n points, but the projection measures are not probability measures. The

probability of an empty point process is given by P
(0)
Φ . The cardinality distribution

of a point process is given by

ρΦ(n) =

∫
Xn

P
(n)
Φ (d(x1, . . . , xn)), (A.59)

for n ≥ 0. The probability ρΦ(n) is the probability that a realization φ about Φ has

a sequence with n points. Due to the symmetry of PΦ, P
(n)
Φ is also symmetric. Thus,

Janossy measures are introduced with group projection measure information over all

possible arrangement of points. The nth order Janossy measure about Φ, J
(n)
Φ , is

defined by

J
(n)
Φ (B1 × · · · ×Bn) =

∑
σ(n)

P
(n)
Φ (Bσ1 × · · · ×Bσn)

= n!P
(n)
Φ ((B1 × · · · ×Bn)),

(A.60)

for n ≥ 0. The term Bi is a region of X with 1 ≤ i ≤ n and σ(n) is a set of

all arrangements (permutations) of 1, . . . , n. The rate of change of PΦ over a unit

volume of state space is given by density pΦ(x1, . . . , xn). This can be roughly defined

as the probability that Φ = (x1, . . . , xn). Similarly, both P
(n)
Φ and J

(n)
Φ have the

densities p
(n)
Φ and j

(n)
Φ , respectively.

For the probability PΦ, a set integral formulation can be obtained to describe a

A.2. PHD Filter using Point Processes 124

point process. By assuming that f is a function on X , the set integral of f and PΦ is

PΦ(f) =

∫
X
f(φ)PΦ(dφ)

=

∫
X
f(φ)pΦ(φ)dφ

=
∑
n≥0

∫
Xn

f(x1, . . . , xn)P
(n)
Φ (d(x1, . . . , xn))

=
∑
n≥0

∫
Xn

f(x1, . . . , xn)p
(n)
Φ (x1, . . . , xn)dx1 . . . dxn

=
∑
n≥0

1

n!

∫
Xn

f(x1, . . . , xn)J
(n)
Φ (d(x1, . . . , xn))

=
∑
n≥0

1

n!

∫
Xn

f(x1, . . . , xn)j
(n)
Φ (x1, . . . , xn)dx1 . . . dxn.

(A.61)

Note that although a set integral formulation using densities is used, the properties

of point processes can be obtained with a measure-theoretic formulation as well.

Specifically, measure-theoretic integrals can easily describe higher-order moments,

but to simplify the derivation, the use of probabilities and set integrals are used

instead. Set integrals also have a compact expression for multi-target filtering, but

they do not have the properties of measure-theoretic integrals.

Just like with random variables, the full knowledge is usually not available for

multi-target estimation. Thus, a limited description of point processes has to be

provided by its moment measures or densities. Both the factorial and non-factorial

moments are defined for point processes, but they take more work to derive. For

the PHD filter, only the first-order moment density or intensity, µΦ, is necessary for

derivation. The intensity, µΦ(x), is defined as the density of the average number

of agents with state x per unit volume. This is roughly the density of the average

A.2. PHD Filter using Point Processes 125

number of agents with state x. The intensity function is given by

µΦ(x) =

∫
X

(∑
xi∈φ

δx(xi)

)
pΦ(φ)dφ

=
∑
n≥1

∑
Xn

(
n∑
i=1

δx(xi)

)
p

(n)
Φ (x1, . . . , xn)dx1 . . . dxn,

(A.62)

which considers all realizations about Φ for each agent with state x. δx(·) is the Dirac

delta function, and the equation can be simplified to

µΦ(x) =
∑
k≥1

∫
Xk−1

(
n∑
i=1

pΦ(n)(x1, . . . , xi, . . . , xn−1)

)
dx1 . . . dxn−1

=
∑
n≥1

∑
Xn−1

np
(n)
Φ (x, x1, . . . , xn−1)dx1 . . . dxn−1

=
∑
n≥0

(n+ 1)

∫
Xn

p
(n+1)
Φ (x, x1, . . . , xn)dx1 . . . dxn

(A.63)

which shows that the intensity function contains all realizations of Φ that consider x

which is marginalized over all feasible cardinalities and the rest of the feasible states.

Just as with random variables, probability densities of point processes are unavailable

or become intractable to propagate, so another representation must be found using

probability generating functionals.

A.2.2 Probability Generating Functionals

A generating functional is defined as a mapping of G about a function h on X with

X → R+ to R. In other words, a functional is a function of a sequence of functions

where (un)n≥0 : Xn → R+. The functional G is given by

G(h) =
∑
n≥0

∫
Xn

(
n∏
i=1

h(xi)

)
uk(x1, . . . , xn)dx1 . . . dxn, (A.64)

A.2. PHD Filter using Point Processes 126

about any h : X → R+ and sequence (un)n≥0 that makes the resultant finite. The

point process, Φ, with a density pΦ can be substituted into the functional to produce

the PGFL, GΦ(h), given by

GΦ(h) = E

[∏
x∈Φ

h(x)

]

=

∫
X

(∏
x∈Φ

h(x)

)
pΦ(φ)dφ

=
∑
n≥0

∫
Xn

(
n∏
i=1

h(xi)

)
p

(n)
Φ (x1, . . . , xn)dx1 . . . dxn.

(A.65)

The generating sequence is a probability density which restricts the value for the

test function h to h : X → [0 1]. This is very similar to the generating function

for a random variable in which the test variable s is a real number constrained from

0 ≤ s ≤ 1 while the test function hmaps the space X to [0 1]. This mapping includes

the sum over all possible cardinalities and adds the component which integrates over

all of the individual agents’ states. Similar to PGFs, PGFLs have the properties

GΦ(0) =
∑
n≥0

∫
Xn

(
n∏
i=1

0

)
p

(n)
Φ (x1, . . . , xn)dx1 . . . dxn = ρΦ(0), (A.66a)

GΦ(1) =
∑
n≥0

∫
Xn

(
n∏
i=1

1

)
p

(n)
Φ (x1, . . . , xn)dx1 . . . dxn = 1. (A.66b)

For mapping h : x ∈ X → 0, the cardinality probability ρΦ(0) is extracted which

corresponds to the the probability of no agents in the field. For mapping h : x ∈

X→ 0, the PGFL becomes 1.

Just like with random variables for multi-target estimation, the joint behavior of

point processes must also be studied. For example, a point process that consists of

a measurement configuration can be found given the configuration of agents on the

A.2. PHD Filter using Point Processes 127

field. Thus, a joint PGFL GΞ,Φ for two point processes is given by

GΞ,Φ(g, h) = E

[(∏
z∈Ξ

g(z)

)(∏
x∈Φ

h(x)

)]

=

∫
Z

∫
X

(∏
z∈Ξ

g(z)

)(∏
x∈Φ

h(x)

)
pΞ,Φ(ξ, φ)dξdφ,

(A.67)

where g is the test function for Ξ and pΞ,Φ(ξ, φ) is the joint probability density per

unit volume at ξ and φ. This is roughly the joint probability of Ξ = ξ and Φ = φ. If

the point processes Ξ and Φ are independent, the joint PGFL simplifies to

GΞ,Φ(g, h) =

∫
Z

∫
X

(∏
z∈Ξ

g(z)

)(∏
x∈Φ

h(x)

)
pΞ(ξ)pΦ(φ)dξdφ

=

(∫
Z

(∏
z∈Ξ

g(z)

)
pΞ(ξ)dξ

)(∫
X

(∏
x∈Φ

h(x)

)
pΦ(φ)dφ

)
= GΞ(g)GΦ(h),

(A.68)

where pΞ,Φ(ξ, φ) = pΞ(ξ)pΦ(φ). With PGFLs, several properties coincide to manipu-

late the PGFLs into other forms.

The derivative for a functional F at h is given by

F ′(h) = lim
η→0

F (h+ η)− F (h)

η
, (A.69)

where η : X → [0 1] has the same form as h. Unfortunately, the convergence of η

to 0 and division by η are not well defined. However, an alternative method exists to

obtain the functional derivative. The chain derivative of F is given by

δF (h; η) = lim
n→∞

F (h+ εnηn)− f(h)

εn
(A.70)

which is evaluated at h and in the direction of η where h, η : X → R+. The se-

A.2. PHD Filter using Point Processes 128

quence of {ηn}n≥0 converges to η while the positive real number sequence {εn}n≥0

converges to 0. Note that a functional derivative contains the dependencies h and

η, i.e. δF (h; η), while an ordinary derivative is notated as f ′(x). Other than the

generating functional given by Eq. (A.64), other functionals are of importance for

the multi-target estimation problem. One example is

F (h) =

∫
h(x)dx, (A.71)

which integrates the test function h over the state space X. These have values that

are R. Another example are transformations of a function into another form in the

space of real-valued functions given by

F (h)(·) = [h(·)]2. (A.72)

This transformation squares the real-valued function, and (·) denotes a real-valued

function. The functionals in Eqs. (A.71) and (A.72) produce derivatives that are a

real number or real-valued function, repectively. Note that when a functional deriva-

tive of Eq. (A.72) is taken, δF (h; η) is a function evaluated at x ∈ X and becomes

δF (h; η)(x). To make the notation clearer, a simplified notation is given by

δF (h(x); η) = δF (h; η)(x). (A.73)

The functional derivative and ordinary derivative are related by substituting a real-

A.2. PHD Filter using Point Processes 129

valued function f at a ∈ R and direction b ∈ R into Eq. (A.70) given by

δf(a; b) = lim
n→∞

f(a+ εnbn)− f(a)

εn

= lim
n→∞

bn
f(a+ εnbn)− f(a)

εnbn

= b lim
ε→0

f(a+ ε)− f(a)

ε

= bf ′(a).

(A.74)

If b = 1, the equation reduces to

δf(a; 1) = f ′(a), (A.75)

which relates the ordinary derivative to the functional derivative. The functional

derivatives contains properties that are useful in deriving other quantities. For func-

tionals, F and G, these properties are given by

sum: δ(F +G)(h; η) = δF (h; η) + δG(h; η), (A.76a)

product: δ(F ·G)(h; η) = δF (h; η)G(h) + F (h)δG(h; η), (A.76b)

chain: δ(F ◦G)(h; η) = δF (G(h); δG(h; η)). (A.76c)

It is also necessary to obtain higher-order derivations of chain differentiation. Origi-

nally, Di Bruno (1857) established a formula for higher-order chain differentials which

can be used directly with functionals (Clark and Houssineau, 2013; Clark et al., 2015).

Specifically, the 2nd order chain differential is used which is given by

δ2(F ◦G)(h; η1, η2) = δF (G(h); δ2G(h; η1, η2))

+ δ2F (G(h); δG(h; η1), δG(h; η2)).
(A.77)

A.2. PHD Filter using Point Processes 130

It is also useful to know the differentiation of several other PGFLs to derive the multi-

target estimation problem. For a functional Fx such as Fx(h) = h(x), where x ∈ X is

a fixed point, the goal is to differentiate the functional that describes a single agent

in the state x with a probability of 1. By substituting into Eq. (A.70), the functional

derivative is given by

δFx(h; η) = lim
n→∞

Fx(h+ εnηn)− Fx(h)

εn

= lim
n→∞

h(x) + εnηn(x)− h(x)

εn

= lim
n→∞

ηn(x)

= η(x).

(A.78)

So the functional derivative reduces to

δ(h(x); η) = η(x). (A.79)

Note that this is a shorthand notation of a more rigorous notation given by

δ(· → ·(x))(h; η) = η(x). (A.80)

The resultant functional derivative is a real number. It is also informative to obtain

the same resultant using a different real test function. Specifically, an identity function

A.2. PHD Filter using Point Processes 131

can be used to obtain the same result. This is given by

δFid(h; η) = lim
n→∞

Fid(h+ εnηn)− Fid(h)

εn

= lim
n→∞

h+ εnηn − h
εn

= lim
n→∞

ηn

= η.

(A.81)

So for any x ∈ X,

δFid(h; η)(x) = η(x)

= δ(h(x); η).
(A.82)

The functional derivative result in Eq. (A.79) is generalized by expanding the expres-

sion to

δ((h(x))k; η) = kη(x)(h(x))k−1

= δ(· → (·(x))k)(h; η).
(A.83)

Another functional of interest is F (h) =
∫
h(x)f(x)dx about space X. If it is

assumed that
∫
f(x)dx = 1, the functional F can be a PGFL that describes a single

agent with a state of probability 1 and distributed about f . By substituting into Eq.

A.2. PHD Filter using Point Processes 132

(A.70), the functional derivative is

δF (h; η) = lim
n→∞

F (h+ εnηn − F (h)

εn

= lim
n→∞

∫
(h(x) + εnηn(x))f(x)dx−

∫
h(x)f(x)dx

εn

= lim
n→∞

∫
h(x)f(x)dx+ εn

∫
ηn(x)f(x)dx−

∫
h(x)f(x)dx

εn

= lim
n→∞

∫
ηn(x)f(x)dx

=

∫
η(x)f(x)dx,

(A.84)

thus,

δ

(∫
h(x)f(x)dx; η

)
=

∫
η(x)f(x)dx

= δ

(
· →

∫
·(x)f(x)dx

)
(h; η).

(A.85)

It can be observed from the functional derivative that the functional F : h →∫
h(x)f(x)dx shows up directly.

An additional functional to consider is F (h) =
∫
G(h|x)f(x)dx about space X

and functional G. If it is assumed that
∫
f(x)dx = 1, the functional F can be a

PGFL that describes a point process that is marginalized about all possible x’s for

an agent and G can be a PGFL of a point process that depends on an agent state.

A.2. PHD Filter using Point Processes 133

By substituting into Eq. (A.70), the functional derivative is

δF (h; η) = lim
n→∞

F (h+ εnηn − F (h)

εn

= lim
n→∞

∫
G(h+ εnηn|x)f(x)dx−

∫
G(h|x)f(x)dx

εn

=

∫
lim
n→∞

G(h+ εnηn|x)−G(h|x)

εn
f(x)dx

=

∫
δG(h|x; η)f(x)dx

= F (δG(h|·; η)),

(A.86)

thus,

δ

(∫
G(h|x)f(x)dx; η

)
=

∫
δG(h|x; η)f(x)dx

= δ

(
· →

∫
G(·|x)f(x)dx

)
(h; η).

(A.87)

The functional derivative in Eq. (A.87) has an integral which does not depend on the

test function h. Thus, the derivative δ and the integral can be rearranged to form

the functional derivative

δ

(∫
X
G(h|φ)f(φ)dφ; η

)
=

∫
X
δG(h|φ; η)f(φ)dφ

= δ

(
· →

∫
X
G(·|φ)f(φ)dφ

)
(h; η).

(A.88)

One last functional of interest is the exponential. The exponential, just like with

the derivation of the multi-target cardinality estimator, is used considerably due to

the simple nature of taking the derivative. By comparing the relation between the

functional and ordinary derivations in Eq. (A.74) and the exponential derivative in

A.2. PHD Filter using Point Processes 134

Eq. (A.13a), the functional derivative for an exponential is given by

δ exp(a; b) = b exp(a). (A.89)

The exponential functional can also be substituted into the chain rule for functionals,

Eq. (A.76c), with a corresponding general functional F given by

δ(exp ◦F)(h; η) = δF (h; η)(exp ◦F)(h). (A.90)

In comparison to the ordinary chain rule using the exponential, Eq. (A.13b), the

exponential functional chain rule is very similar in form. Another useful property can

be obtained by assuming that F is an identity functional, Fid(h) = h. By substituting

into Eq. (A.90) and using the property obtained in Eq. (A.82), the expression

simplifies to

δ exp(h(x); η) = δ exp(h; η)(x)

= δ(exp ◦Fid)(h; η)(x)

= δFid(h; η)(x)(exp ◦Fid)(h)(x)

= η(x) exp(h(x))

(A.91)

With these properties for a functional, differentiation can be applied directly on the

PGFL. For a point process Φ and a PGFL GΦ, the goal is to determine the informa-

tion needed, i.e. probability density pΦ(x), for multi-target estimation. Similar to

determining the mean and variance from PGFs, a similar derivation can be found for

PGFLs. First, the goal is to differentiate GΦ about δx given by

δGΦ(h; δx) = δ

(∑
n≥0

∫
Xn

(
n∏
i=1

h(xi)

)
p

(n)
Φ (x1, . . . , xn)dx1 . . . dxn; δx

)
. (A.92)

A.2. PHD Filter using Point Processes 135

The rearrangement of the derivative and integral can be applied directly to the ex-

pression from Eq. (A.88) which becomes

δGΦ(h; δx) =
∑
n≥1

∫
Xn

δ

((
n∏
i=1

h(xi)

)
; δx

)
p

(n)
Φ (x1, . . . , xn)dx1 . . . dxn, (A.93)

which can be simplified further by using the product rule, Eq. (A.76b), to obtain

δGΦ(h; δx) =
∑
n≥1

∫
Xn

(
n∑
i=1

δ(h(xi); δx)

[∏
j 6=i

h(xj)

])
p

(n)
Φ (x1, . . . , xn)dx1 . . . dxn.

(A.94)

By using Eq. (A.79), the expression is simplified to the general form

δGΦ(h; δx) =
∑
n≥1

∫
Xn

(
n∑
i=1

δx(xi)

[∏
j 6=i

h(xj)

])
p

(n)
Φ (x1, . . . , xn)dx1 . . . dxn

=
∑
n≥1

∫
Xn−1

n∑
i=1

(∏
j 6=i

h(xj)

)

× p(n)
Φ (x1, . . . , x, . . . , xn)dx1 . . . dxi−1dxi+1 . . . dxn

=
∑
n≥1

∫
Xn−1

n

(
n−1∏
i=1

h(xi)

)
p

(n)
Φ (x, x1, . . . , xn−1)dx1 . . . dxn−1

=
∑
n≥1

n

∫
Xn−1

(
n−1∏
i=1

h(xi)

)
p

(n)
Φ (x, x1, . . . , xn−1)dx1 . . . dxn−1

=
∑
n≥0

(n+ 1)

∫
Xn

(
n∏
i=1

h(xi)

)
p

(n+1)
Φ (x, x1, . . . , xn)dx1 . . . dxn.

(A.95)

Similar to PGFs, the functional derivative of the PGFL can be evaluated at h = 0

A.2. PHD Filter using Point Processes 136

and h = 1 given by

δGΦ(h; δx)|h=0 =
∑
n≥0

(n+ 1)

∫
Xn

(
n∏
i=1

0

)
p

(n+1)
Φ (x, x1, . . . , xn)dx1 . . . dxn

= p
(1)
Φ (x),

(A.96a)

δGΦ(h; δx)|h=1 =
∑
n≥0

(n+ 1)

∫
Xn

(
n∏
i=1

1

)
p

(n+1)
Φ (x, x1, . . . , xn)dx1 . . . dxn

=
∑
n≥0

(n+ 1)

∫
Xn

p
(n+1)
Φ (x, x1, . . . , xn)dx1 . . . dxn

= µΦ(x).

(A.96b)

Higher order differentiation of Eq. (A.95) evaluated at h = 0 will yield a probabil-

ity density calculated at a set of a desired size. Higher order differentiation of Eq.

(A.95) evaluated at h = 1 yields factorial moment densities which is not used in this

derivation. Thus, the PGFL GΦ provides a full characterization of the point process

Φ given by

p
(k)
Φ (x1, . . . , xk) =

1

k!
δkGΦ(h; δx1 , . . . , δxk)|h=0 =

j
(k)
Φ (x1, . . . , xn)

k!
, (A.97a)

µΦ(x) = δGΦ(h; δx)|h=1, (A.97b)

which follows Eq. (A.16) very similarly.

Another necessary tool to derive the multi-target PHD filter using point processes

is Campbell’s theorem. The goal in this theorem is to evaluate a real-valued function

f on space X for each point x ∈ φ. That is, the goal is to find the expected value of

A.2. PHD Filter using Point Processes 137

f about Φ. This equation is given by

E

[∑
x∈φ

f(x)

]
=
∑
n≥1

∫
Xn

(
n∑
i=1

f(xi)

)
p

(n)
Φ (x1, . . . , xn)dx1 . . . dxn

=
∑
n≥1

(
n∑
i=1

∫
Xn

f(xi)p
(n)
Φ (x1, . . . , xn)dx1 . . . dxn

)
,

(A.98)

and since pΦ is symmetrical

E

[∑
x∈φ

f(x)

]
=
∑
n≥1

n

∫
Xn

f(x1)p
(n)
Φ (x1, . . . , xn)dx1 . . . dxn

=

∫
f(x)

(∑
n≥1

n

∫
Xn−1

p
(n)
Φ (x, x1, . . . , xn−1)dx1 . . . dxn−1

)
dx

=

∫
f(x)

(∑
n≥0

(n+ 1)

∫
Xn

p
(n+1)
Φ (x, x1, . . . , xn)dx1 . . . dxn

)
dx.

(A.99)

Then, Eq. (A.96b) can be substituted into the expression to obtain

E

[∑
x∈φ

f(x)

]
=

∫
f(x)µΦ(x)dx =

∫
X

(∑
x∈φ

f(x)

)
pΦ(φ)dφ. (A.100)

This expressions shows that evaluating f at each x ∈ X times the average number of

agents at x is identical to evaluating f at each agent x ∈ φ over all realizations of Φ.

This reduces the sequence of points of X to a smaller space X.

Differentiation of joint PGFLs can also occur. The PGFL that describes the joint

behavior of Ξ and Φ, where Ξ has the realization ξ = (z1, . . . , zm), is

GΞ=ξ,Φ(h) =

∫
X

(∏
x∈φ

h(x)

)
pΞ,Φ(ξ, φ)dφ

=
1

m!
δmGΞ,Φ(g, h; δz1 , . . . , δzm)|g=0,

(A.101)

A.2. PHD Filter using Point Processes 138

which is derived from Eqs. (A.65) and (A.96). Note that points z relate to g over an

observation space Z while points x, y relate to h over a state space X.

Just like with PGFs, operations can also occur with PGFLs. The first operation

of discussion is marginalization between two joint point processes Ξ and Φ. The goal

is to obtain the behavior of Ξ by marginalizing or integrating the joint behavior over

Φ. This is given by

∀ξ ∈ Z, pΞ(ξ) =

∫
X
pΞ,Φ(ξ, φ)dφ. (A.102)

Thus, for a known joint PGFL, GΞ,Φ, the PGFL GΞ(g) is found by a marginalization

given by

GΞ,Φ(g, 1) =

∫
Z

∫
X

(∏
z∈ξ

g(z)

)(∏
x∈φ

1

)
pΞ,Φ(ξ, φ)dξdφ

=

∫
Z

(∏
z∈ξ

g(z)

)(∫
X
pΞ,Φ(ξ, φ)dφ

)
dξ

=

∫
Z

(∏
z∈ξ

g(z)

)
pΞ(ξ)dξ

= GΞ(g).

(A.103)

The operation that involves the superposition of point processes is also of interest

for PGFLs for scenarios where Φ1 and Φ2 are independent. If Ξ is the union of point

A.2. PHD Filter using Point Processes 139

processes, Φ1 and Φ2, the superposition of the two point process can be formed by

GΞ(h) = E

[∏
x∈Ξ

h(x)

]

= E

[∏
x∈Φ1∪Φ2

h(x)

]

= E

[∏
x1∈Φ1

h(x)
∏
x2∈Φ2

h(x)

]

= E

[∏
x1∈Φ1

h(x)

]
E

[∏
x2∈Φ2

h(x)

]

= GΦ1(h)GΦ2(h)

(A.104)

using Eq. (A.65). To go from the third to the fourth step, Φ1 and Φ2 are assumed to

be independent of each other.

One last operation of interest is branching which is a special kind of dependence

between Ξ and Φ. For a realization ξ = (z1, . . . , zm) of parent process Ξ, the daughter

process Φ will have a superposition m but with an independent point process Υ|zi.

This operation is very similar to the spawning description for PGFs. Suppose that

the PGFLs for the parent, Ξ and transitional process, Υ|·, are known, and the goal

is to describe the daughter process Φ. The PGFL that describes the joint behavior is

GΞ,Φ(g, h) =

∫
Z

∫
X

(∏
z∈ξ

g(z)

)(∏
x∈φ

h(x)

)
pΞ,Φ(ξ, φ)dξdφ

=

∫
Z

∫
X

(∏
z∈ξ

g(z)

)(∏
x∈φ

h(x)

)
pΞ(ξ)pΦ|Ξ(φ|ξ)dξdφ

=

∫
Z

(∏
z∈ξ

g(z)

)(∫
X

(∏
x∈φ

h(x)

)
pΦ|Ξ(φ|ξ)dφ

)
pΞ(ξ)dξ

=

∫
Z

(∏
z∈ξ

g(z)

)
GΦ|Ξ(h|ξ)pΞ(ξ)dξ,

(A.105)

A.2. PHD Filter using Point Processes 140

where GΦ|Ξ(h|ξ) is the conditional PGFL of Φ given the realization Ξ = ξ. With the

realization Ξ = ξ, Φ|Ξ is a superposition of |ξ| independent Υ|zi : zi ∈ ξ. So,

GΦ|Ξ(h|ξ) =
∏
z∈ξ

GΥ(h|z). (A.106)

The superposition relation is substituted into Eq. (A.105) to obtain

GΞ,Φ(g, h) =

∫
Z

(∏
z∈ξ

g(z)

)(∏
z∈ξ

GΥ(h|z)

)
pΞ(ξ)dξ

=

∫
Z

(∏
z∈ξ

g(z)GΥ(h|z)

)
pΞ(ξ)dξ

= GΞ(gGΥ(h|·)).

(A.107)

This reduces the joint behavior of two point processes in terms of conditional PGFLs

and transitional point processes. Branching is used to derive the measurement update

for the PHD filter, and it is in a similar form to the PGF branching behavior given

in Eq. (A.23). To obtain the description of Φ, marginalization is used about Ξ which

is given by

GΦ(h) = GΞ,Φ(1, h)

= GΞ(GΥ(h|·)).
(A.108)

A.2.3 Examples of Point Process and PGFLs

With the basics of point processes and PGFLs, families of these quantities are dis-

cussed which is used directly in multi-target filtering.

The first of these point processes is a Bernoulli point process Φ which has a

parameter 0 ≤ p ≤ 1 and a spatial distribution s :
∫
s(x)dx = 1. The Bernoulli point

A.2. PHD Filter using Point Processes 141

process is given by

Φ =

∅, if 1− p,

x, if ps(x),

(A.109)

and it describes a case in which there is an agent in the environment with a state

distributed about s or a case in which there is no agent in the environment. Thus, it

can describe the behavior of an individual agent or a measurement. The associated

PGFL for a Bernoulli point process is given by

GΦ(h) =
∑
n≥0

∫
Xn

(
n∏
i=1

h(xi)

)
p

(n)
Φ (x1, . . . , xn)dx1 . . . dxn

= p
(0)
Φ (∅) +

∫
h(x)p

(1)
Φ (x)dx

+
∑
n≥2

∫
Xn

(
n∏
i=1

h(xi)

)
p

(n)
Φ (x1, . . . , xn)dx1 . . . dxn

= 1− p+ p

∫
h(x)s(x)dx,

(A.110)

where p
(0)
Φ (∅) = 1− p, p(1)

Φ (x) = ps(x), and p
(n)
Φ (x1, . . . , xn) = 0 in the second step.

The Poisson point process is also used in the derivation of the PHD filter. The

Poisson point process, Φ, is defined by a parameter λ ≥ 0 and spatial distribution s

given by

∀n ≥ 0, |Φ| = n, pΦ = exp(−λ)
λn

n!
, (A.111)

where the agent states are independently and identically distributed about s. It is

used for modeling a population in which the number of elements is Poisson distributed.

The point patterns produce spatial randomness by using a spatial distribution that

A.2. PHD Filter using Point Processes 142

is uniform over the state space. The PGFL for a point process is given by

GΦ(h) =

∫
X

(∏
x∈φ

h(x)

)
pΦ(φ)dφ

=
∑
n≥0

∫
Xn

(
n∏
i=1

h(xi)

)
exp(−λ)

λn

n!

(
n∏
i=1

s(xi)

)
dx1 . . . dxn

= exp(−λ)
∑
n≥0

λn

n!

∫
Xn

(
n∏
i=1

h(xi)s(xi)

)

= exp(−λ)
∑
n≥0

λn

n!

(∫
h(x)s(x)dx

)n
= exp(−λ)

∑
n≥0

(
λ
∫
h(x)s(x)dx

)n
n!

.

(A.112)

Then using the exponential Taylor expansion in Eq. (A.13c), the expression simplifies

to

GΦ(h) = exp (−λ) exp

(
λ

∫
h(x)s(x)dx

)
= exp

(
λ(

∫
h(x)s(x)dx− 1)

)
.

(A.113)

As discussed with Poisson random variables, the PGFL of a Poisson point process

is an exponential, thus, it can be differentiated easily and produce tractable filtering

recursions. Specifically, the first moment density can be obtained for some point

y ∈ X by differentiating the PGFL with Eq. (A.97b) given by

µΦ(y) = δGΦ(h; δy)|h=1

= δ

(
exp

(
λ

(∫
h(x)s(x)dx− 1

))
; δy

)∣∣∣∣
h=1

.
(A.114)

A.2. PHD Filter using Point Processes 143

The chain rule in Eq. (A.90) is used which reduces the equation to

µΦ(y) = δ

(
λ

(∫
h(x)s(x)dx− 1

)
; δy

)
exp

(
λ

(∫
h(x)s(x)dx− 1

))∣∣∣∣
h=1

= λδ

(∫
h(x)s(x)dx; δy

)∣∣∣∣
h=1

exp

(
λ

(∫
s(x)dx− 1

))
= λδ

(∫
h(x)s(x)dx; δy

)
|h=1.

(A.115)

This expression can be simplified further using Eq. (A.85) which becomes

µΦ(y) = λ

∫
δy(x)s(x)dx

= λs(y).

(A.116)

Thus, the Poisson point process intensity (first moment density) is the spatial distri-

bution times the Poisson rate which fully characterizes the Poisson point process Φ.

If the intensity µΦ is known, the parameters λ and s(·) can be found by

λ =

∫
µΦ(x)dx, (A.117a)

s(·) = λ−1µΦ(·). (A.117b)

Also the PGFL can be expressed by the intensity using Eqs. (A.113) and (A.117)

given by

GΦ(h) = exp

(∫
(h(x)− 1)µΦ(x)dx

)
, (A.118)

in which µΦ is propagated by the PHD filter and is useful for deriving the PHD filter

equations.

A.2. PHD Filter using Point Processes 144

A.2.4 PHD Filter Derivation

With the introduction to point processes and PGFLs, these tools can be used to derive

the PHD filter to estimate the number of agents in the swarm and their states. The

goal is to estimate and propagate the mean number of agents and their states through

time by observing measurements. The construction of the problem consists of relating

Φ, the agents after the time-update, from Ψ, the agents before the time-update, and

relating Φ|Ξ from X where Ξ contains the current measurements and X|Z contains

the measurement updated agent estimate. The other part of this problem consists

of extracting information (i.e. µΦ, µΨ, and µΦ|Ξ) from differentiation of the PGFLs

to determine the PHD estimates. Both of these steps take in assumptions about the

physical environment that the agents interact with. Thus, a proper set-up is required

to obtain the best estimates from the filter.

For the time-update, it is assumed that the agents are independent of each other,

each agent with state x ∈ X survives and evolves with probability ps(x) to a new

state y ∈ X according to distribution m(y|x) or dies with probability, 1− ps(x), and

agents birth independently from the surviving agents with point process Φb and Gb.

The survival point process Φs is a Bernoulli point process with a survival parameter

ps(x) and spatial distribution m(·|x) given by

Gs(h|·) = 1− ps(·) + ps(s)

∫
h(y)m(y|·)dy. (A.119)

Comparing the PGF in Eq. (A.31) to the PGFL in Eq. (A.119), the PGFL con-

siders the spatial distribution (the states) of the surviving agents in the formulation.

Specifically, the spatial distribution is dependent on the previous state x, thus the

point process Gs is dependent on the prior states. The surviving agents are denoted

by a point process Φsur which occurs by branching the parent point process Ψ with

A.2. PHD Filter using Point Processes 145

the transition point process Φs given by

Gsur(h) = GΨ(Gs(h|·)). (A.120)

The time-updated agents are described by Ψ which is the superposition of the sur-

viving and birthed agents given by

GΦ(h) = Gsur(h)Gb(h). (A.121)

Therefore, the predicted PGFL for the PHD filter is

GΦ(h) = GΨ

(
1− ps(·) + ps(·)

∫
h(y)m(y|·)dy

)
Gb(h) (A.122)

which provides the entire description of agents as they birth or survive to the next

time-step without computing each agent’s individual probability pΦ(φ) : φ ∈ X .

For the measurement update, it is assumed that measurements are independently

measured from each other, an agent with state x ∈ X is detected with a probability

pd(x) from a single measurement z ∈ Z according to distribution l(z|x) or it is not

detected with a probability 1 − pd(x), and any clutter measurements (with point

process Ξc and PGFL Gc) are obtained independently from agent measurements.

The observation point process Ξobs|x is a Bernoulli point process with a detection

parameter pd(x) and a spatial distribution l(·|x) given by

Gobs(g|·) = 1− pd(·) + pd(·)
∫
g(z)l(z|·)dz. (A.123)

The agent measurement point process is denoted by Ξtar which occurs by branching

A.2. PHD Filter using Point Processes 146

the parent point process Φ with the transition point process Ξobs given by

GΞtar,Φ(g, h) = GΦ(hGobs(g|·)). (A.124)

The joint PGFL of measured agents is the superposition of the measurements and

clutter given by

GΞ,Φ(g, h) = GΞtar,Φ(g, h)Gc(g), (A.125)

therefore, by substituting Eqs. (A.123) and (A.124) into the expression, the joint

PGFL becomes

GΞ,Φ(g, h) = GΦ

(
h(1− pd(·) + pd(·)

∫
g(z)l(z|·)dz)

)
Gc(g). (A.126)

With the measurement update PGFL, the goal is to estimate the agent state and

cardinality conditioned on Ξ = Z where Z = (z1, . . . , zm) is the measurement set. By

using Bayes’ rule given by

pΦ|Ξ(φ|Z) =
pΞ,Φ(Z, φ)

pΞ(Z)
, (A.127)

a posterior probability of Φ = φ agents given Ξ = Z measurements can be found using

the joint probability of Φ = φ agents and Ξ = Z measurement and the probability of

Ξ = Z measurements. Bayes’ rule can be manipulated by multiplying
∏

x∈φ h(x) on

both sides and integrating up all realizations of Φ given by

∫
X

(∏
x∈φ

h(x)

)
pΦ|Ξ(φ)dφ =

∫
X

(∏
x∈φ h(x)

)
pΞ,Φ(Z,Φ)dφ

pΞ(Z)
. (A.128)

By substituting Eqs. (A.65), and (A.101) into Eq. (A.128), the expression is reduced

A.2. PHD Filter using Point Processes 147

to

GΦ|Ξ(h|Z) =
GΞ=Z,Φ(h)

pΞ(Z)
, (A.129)

which can be simplified further using Eqs. (A.101) and (A.97a) to become

GΦ|Ξ(h|Z) =
1
m!
δmGΞ,Φ(g, h; δz1 , . . . , δzm)|g=0

1
m!
δmGΞ(g; δz1 , . . . δzm)|g=0

, (A.130)

where GΞ,Φ(g, h) = GΦ

(
h(1− pd(·) + pd(·)

∫
g(z)l(z|·)dz)

)
Gc(g). This is the measure-

ment update for the PGFL, and these PGFLS can be exploited using differentiation

to obtain the PHD filter estimates directly.

For the time-update, µΦ is determined by Eq. (A.97b) about GΦ given by

µΦ(x) = δGΦ(h; δx)|h=1. (A.131)

By substituting Eq. (A.122) and using the product rule in Eq. (A.76b), the equation

simplifies to

µΦ(x) = δ(GΨ(Gs(h|·))Gb(h); δx)|h=1

= δ(GΨ(Gs(h|·)); δx)|h=1Gb(h)|h=1 + GΨ(Gs(h|·))|h=1δGb(h; δx)|h=1

= δ(GΨ(Gs(h|·)); δx)|h=1 + δGb(h; δx)|h=1,

(A.132)

where Gb(h)|h=1 = Gb(1) = 1 and GΨ(Gs(h|·))|h=1 = GΨ(Gs(1|·)) = GΨ(1) = 1. By

using the relationship between the intensity and the first functional derivative in Eq.

(A.97b), the equation becomes

µΦ(x) = δ(GΨ(Gs(h|·)); δx)|h=1 + µb(x). (A.133)

To obtain a form for δ(GΨ(Gs(h|·)); δx)|h=1, Campbell’s theorem in Eq. (A.100) can

A.2. PHD Filter using Point Processes 148

be used. Note although Campbell’s theorem is used for a general form of Ψ, if Ψ were

assumed Poisson, Eq. (A.90) which is a special case for chain rule using exponentials

can be used.

The definition for the PGFL for δ(GΨ(Gs(h|·)); δx)|h=1 is given by

δ(GΨ(Gs(h|·)); δx)|h=1 = δ

(∫
X

(∏
x̄∈φ

Gs(h|x̄)

)
pΦ(φ)dφ; δx

)∣∣∣∣∣
h=1

, (A.134)

using Eq. (A.65), and the derivative and integral can be rearranged using Eq. (A.88)

to

δ(GΨ(Gs(h|·)); δx)|h=1 =

∫
X
δ

(∏
x̄∈φ

Gs(h|x̄); δx

)∣∣∣∣∣
h=1

pΦ(φ)dφ. (A.135)

Next, the product rule is used to expand the expression given by

δ(GΨ(Gs(h|·)); δx)|h=1 =

∫
X

∑
x̄∈φ

(
δGs(h|x̄; δx)|h=1

∏
x̄∈φ

Gs(h|x̄)|h=1

)
pΦ(φ)dφ

=

∫
X

(∑
x̄∈φ

δGs(h|x̄; δx)|h=1

)
pΦ(φ)dφ,

(A.136)

where Gs(h|x̄)|h=1 = Gs(1|x̄) = 1. Since the inner functional Gs is a simple Bernoulli

process, the inner functional can be reduced to

δGs(h|x̄; δx)|h=1 = δ

(
1− ps(x̄) + ps(x̄)

∫
h(y)m(y|x̄)dy; δx

)∣∣∣∣
h=1

= ps(x̄)δ

(∫
h(y)m(y|x̄)dy; δx

)∣∣∣∣
h=1

,

(A.137)

A.2. PHD Filter using Point Processes 149

and simplified further using Eq. (A.85) to

δGs(h|x̄; δx)|h=1 = ps(x̄)

∫
δx(y)m(y|x̄)dy

= ps(x̄)m(x|x̄).

(A.138)

By substituting Eq. (A.138) back into Eq. (A.136), the equation yields a Campbell’s

theorem form given by

δ(GΨ(Gs(h|·)); δx)|h=1 =

∫
X

(∑
x̄∈φ

ps(x̄)m(x|x̄)

)
pΨ(φ)dφ, (A.139)

which can be reduced using Campbell’s theorem, Eq. (A.100), to obtain

δ(GΨ(Gs(h|·)); δx)|h=1 =

∫
ps(x̄)m(x|x̄)µΨ(x̄)dx̄. (A.140)

Thus, the time-update intensity recursion for the PHD filter can be extracted by

substituting Eq. (A.140) into Eq. (A.133) to yield

µΦ(x) =

∫
ps(x̄)m(x|x̄)µΨ(x̄)dx̄+ µb(x). (A.141)

This provides a direct time-update without assuming anything about the model of Ψ

or Φb.

For the measurement update, the goal is to derive the intensity of the posterior

agents given by

µΦ|Ξ(x|Z) = δGΦ|Ξ(h|Z)|h=1. (A.142)

This follows a similar derivation to finding the posterior using PGFs. By substituting

A.2. PHD Filter using Point Processes 150

Eq. (A.130) into the expression, the equation becomes

µΦ|Ξ(x|Z) =
δm+1GΞ,Φ(g, h; δz1 , . . . , δzm , δx)|g=0,h=1

δmGΞ,Φ(g, 1; δz1,...,δzm)|g=0

. (A.143)

The equation from Eq. (A.143) becomes intractable without any assumptions on the

predicted Φ or the clutter. But, if the predicted agents, Φ, and clutter, Zc, are Poisson

processes, tractable solutions can be determined using Eq. (A.118). This becomes

GΞ,Φ = GΦ

(
h(1− pd(·) + pd(·)

∫
g(z)l(z|·)dz

)
Gc(g)

= exp

(∫
(h(y)(1− pd(y) + pd(y)

∫
g(z)l(z|y)dz)− 1)µΦ(y)dy

)
× exp

(∫
(g(z)− 1)µc(z)dz

)
= exp

(∫
(h(y)(1− pd(y) + pd(y)

∫
g(z)l(z|y)dz)− 1)µΦ(y)dy

+

∫
(g(z)− 1)µc(z)dz

)
= exp (F (g, h)) ,

(A.144)

with an inner functional given by

F (g, h) =

∫ [
h(y)(1− pd(y) + pd(y)

∫
g(z)l(z|y)dz)− 1

]
µΦ(y)dy

+

∫
[g(z)− 1]µc(z)dz.

(A.145)

With the exponential form, the equation can be simplified using Eq. (A.90) to

δGΞ,Φ(g, h; δz1) = δ (exp (F (g, h)) ; δz1)

= δF (g, h; δz1) exp (F (g, h)) .
(A.146)

For δF (g, h; δz1), the integral and the differential can be rearranged and differentiated

A.2. PHD Filter using Point Processes 151

using Eqs. (A.87) and (A.85), respectively, to obtain

δF (g, h; δz1) =

∫
h(y)pd(y)δ

(∫
g(z)l(z|y)dz; δz1

)
µΦ(y)dy

+ δ

(∫
g(z)µc(z)dz; δz1

)
=

∫
h(y)pd(y)

(∫
δz1(z)l(z|y)dz

)
µΦ(y)dy +

∫
δz1(z)µc(z)dz

=

∫
h(y)pd(y)l(z1|y)µΦ(y)dy + µc(z1).

(A.147)

Therefore, the first-order functional derivative is

δGΞ,Φ(g, h; δz1) =

[∫
h(y)pd(y)l(z1|y)µΦ(y)dy + µc(z1)

]
exp(F (g, h)). (A.148)

The term in front of the exponential is independent of g, so the mth derivative of the

joint PGFL with respect to g is

δmGΞ,Φ(g, h; δz1 , . . . , δzm) =
m∏
i=1

[∫
h(y)pd(y)l(zi|y)µΦ(y)dy + µc(zi)

]
exp(F (g, h)).

(A.149)

The next step is to differentiate the expression with respect to h to obtain the nu-

A.2. PHD Filter using Point Processes 152

merator in Eq. (A.130). First, the product rule, Eq. (A.76b), is used to get

δm+1GΞ,Φ(g, h; δz1 , . . . , δzm , δx)

=
m∑
i=1

[
δ

(∫
h(y)pd(y)l(zi|y)µΦ(y)dy + µc(zi); δx

)
m∏
j=1
j 6=i

[∫
h(y)pd(y)l(zj|y)µΦ(y)dy + µc(zj)

]]
exp(F (g, h))

+
m∏
i=1

[∫
h(y)pd(y)l(zi|y)µΦ(y)dy + µc(zi)

]
δ(exp(F (g, h)), δx),

(A.150)

and then Eq. (A.85) is used for the first term and Eq. (A.90) is used for the second

term to obtain

δm+1GΞ,Φ(g, h; δz1 , . . . , δzm , δx)

=
m∑
i=1

[∫
δx(y)pd(y)l(zi|y)µΦ(y)dy

m∏
j=1
j 6=i

[∫
h(y)pd(y)l(zj|y)µΦ(y)dy + µc(zj)

]]
exp(F (g, h))

+
m∏
i=1

[∫
h(y)pd(y)l(zi|y)µΦ(y)dy + µc(zi)

]
δF (g, h; δx) exp(F (g, h))

=
m∑
i=1

pd(x)l(zi|x)µΦ(x)
m∏
j=1
j 6=i

[∫
h(y)pd(y)l(zj|y)µΦ(y)dy + µc(zj)

] exp(F (g, h))

+
m∏
i=1

[∫
h(y)pd(y)l(zi|y)µΦ(y)dy + µc(zi)

]
δF (g, h; δx) exp(F (g, h)).

(A.151)

A.2. PHD Filter using Point Processes 153

The δF (g, h; δx) term can be simplified using Eq. (A.85) to

δF (g, h; δx) =

∫
δx(y)

(
1− pd(y) + pd(y)

∫
g(z)l(z|y)dz

)
µΦ(y)dy

=

(
1− pd(x) + pd(x)

∫
g(z)l(z|x)dz

)
µΦ(x).

(A.152)

Then, substituting the expression back into Eq. (A.151) is

δm+1GΞ,Φ(g, h; δz1 , . . . , δzm , δx)

=
m∑
i=1

pd(x)l(zi|x)µΦ(x)
m∏
j=1
j 6=i

[∫
h(y)pd(y)l(zj|y)µΦ(y)dy + µc(zj)

] exp(F (g, h))

+
m∏
i=1

[∫
h(y)pd(y)l(zi|y)µΦ(y)dy + µc(zi)

]
×
(

1− pd(x) + pd(x)

∫
g(z)l(z|x)dz

)
µΦ(x) exp(F (g, h)).

(A.153)

The last step is to divide the numerator, Eq. (A.153), by the denominator, Eq.

(A.149) given by

δm+1GΞ,Φ(g, h; δz1 , . . . , δzm , δx)

δmGΞ,Φ(g, h; δz1 , . . . , δzm)
=

n∑
i=1

pd(x)l(zi|x)µΦ(x)∫
h(y)pd(y)l(zi|y)µΦ(y)dy + µc(zi)

+

(
1− pd(x) + pd(x)

∫
g(z)l(z|x)dz

)
µΦ(x),

(A.154)

and set h = 1 and g = 0 to form the general measurement update equation for the

PHD filter given by

µΦ|Ξ(x|Z) =
∑
z∈Z

pd(x)l(z|x)µΦ(x)∫
pd(y)l(z|y)µΦ(y)dy + µc(z)

+ (1− pd(x))µΦ(x). (A.155)

A.2. PHD Filter using Point Processes 154

Thus, the PHD filter recursion for the time and measurement updates are given by

µΦ(x) = µb(x) +

∫
ps(x̄)m(x|x̄)µΨ(x̄)dx̄, (A.156a)

µΦ|Ξ(x|Z) = (1− pd(x))µΦ(x) +
∑
z∈Z

pd(x)l(z|x)µΦ(x)∫
pd(y)l(z|y)µΦ(y)dy + µc(z)

, (A.156b)

which follow the structure of the cardinality estimator derived from random variables,

Eq. (A.56), and follows directly to Eq. (2.10) in the main text. This derivation does

not include spawning, but it can also be included as well.

References

Açikmeşe, B. and Bayard, D. S. (2012). A markov chain approach to probabilistic

swarm guidance. In 2012 American Control Conference (ACC), pages 6300–6307.

IEEE.

Açıkmeşe, B. and Bayard, D. S. (2014). Probabilistic swarm guidance for collaborative

autonomous agents. In 2014 American control conference, pages 477–482. IEEE.

Bakule, L. (2008). Decentralized control: An overview. Annual reviews in control,

32(1):87–98.

Bamieh, B. and Voulgaris, P. G. (2005). A convex characterization of distributed

control problems in spatially invariant systems with communication constraints.

Systems & control letters, 54(6):575–583.

Bandyopadhyay, S., Chung, S.-J., and Hadaegh, F. Y. (2013). Inhomogeneous markov

chain approach to probabilistic swarm guidance algorithm. In 5th Int. Conf. Space-

craft Formation Flying Missions and Technologies.

Bandyopadhyay, S., Chung, S.-J., and Hadaegh, F. Y. (2014). Probabilistic swarm

guidance using optimal transport. In 2014 IEEE Conference on Control Applica-

tions (CCA), pages 498–505. IEEE.

Banerjee, A., Merugu, S., Dhillon, I. S., and Ghosh, J. (2005). Clustering with

bregman divergences. Journal of machine learning research, 6(Oct):1705–1749.

155

References 156

Bellman, R. et al. (1954). The theory of dynamic programming. Bulletin of the

American Mathematical Society, 60(6):503–515.

Belta, C. and Kumar, V. (2004). Abstraction and control for groups of robots. IEEE

Transactions on robotics, 20(5):865–875.

Bertsekas, D. (2006). Nonlinear programming, athena scientific, 1999. REFER EN-

CIAS BIBLIOGR AFICAS, 89.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al. (2011). Distributed

optimization and statistical learning via the alternating direction method of mul-

tipliers. Foundations and Trends R© in Machine learning, 3(1):1–122.

Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge university

press.

Camacho, E. F., Bordons, C., and Johnson, M. (1999). Model predictive control.

advanced textbooks in control and signal processing.

Chattopadhyay, I. and Ray, A. (2009). Supervised self-organization of homogeneous

swarms using ergodic projections of markov chains. IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), 39(6):1505–1515.

Christofides, N., Mingozzi, A., and Toth, P. (1981). Exact algorithms for the vehicle

routing problem, based on spanning tree and shortest path relaxations. Mathemat-

ical programming, 20(1):255–282.

Clark, D., Delande, E., and Houssineau, J. (2016). Basic concepts for multi-object

estimation lecture notes. Heriot-Watt University.

Clark, D. E. and Houssineau, J. (2013). Faa di bruno’s formula for chain differentials.

arXiv preprint arXiv:1310.2833.

References 157

Clark, D. E., Houssineau, J., and Delande, E. D. (2015). A few calculus rules for

chain differentials. arXiv preprint arXiv:1506.08626.

Curtis, H. D. (2013). Orbital mechanics for engineering students. Butterworth-

Heinemann.

Daley, D. J. and Vere-Jones, D. (2003). An introduction to the theory of point

processes. vol. i. probability and its applications.

Daley, D. J. and Vere-Jones, D. (2007). An introduction to the theory of point pro-

cesses: volume II: general theory and structure. Springer Science & Business Media.

DeCarlo, R. A. (1989). Linear systems: A state variable approach with numerical

implementation. Prentice-Hall, Inc.

Demir, N., Eren, U., and Açıkmeşe, B. (2015). Decentralized probabilistic density con-

trol of autonomous swarms with safety constraints. Autonomous Robots, 39(4):537–

554.

Di Bruno, F. F. (1857). Note sur une nouvelle formule de calcul différentiel. Quarterly

J. Pure Appl. Math, 1(359-360):12.

Di Cairano, S., Park, H., and Kolmanovsky, I. (2012). Model predictive control

approach for guidance of spacecraft rendezvous and proximity maneuvering. Inter-

national Journal of Robust and Nonlinear Control, 22(12):1398–1427.

Doerr, B. and Linares, R. (2018). Control of large swarms via random finite set

theory. In 2018 Annual American Control Conference (ACC), pages 2904–2909.

IEEE.

Doerr, B., Linares, R., Zhu, P., and Ferrari, S. (2019). Random finite set theory

and optimal control of large spacecraft swarms. In 2019 Space Flight Mechanics

Meeting, pages 3729–3732.

References 158

Eppstein, D. (1998). Finding the k shortest paths. SIAM Journal on computing,

28(2):652–673.

Eren, U. and Açıkmeşe, B. (2017). Velocity field generation for density control

of swarms using heat equation and smoothing kernels. IFAC-PapersOnLine,

50(1):9405–9411.

Eren, U., Demirer, N., and Açıkmeşe, B. (2018). Density-based feedback control for

earth orbiting swarms via velocity fields. IFAC-PapersOnLine, 51(12):44–49.

Fardad, M. and Jovanović, M. R. (2011). Design of optimal controllers for spatially

invariant systems with finite communication speed. Automatica, 47(5):880–889.

Fardad, M. and Jovanović, M. R. (2014). On the design of optimal structured and

sparse feedback gains via sequential convex programming. In 2014 American Con-

trol Conference, pages 2426–2431. IEEE.

Fardad, M., Lin, F., and Jovanović, M. R. (2009). On the optimal design of struc-

tured feedback gains for interconnected systems. In Proceedings of the 48h IEEE

Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese

Control Conference, pages 978–983. IEEE.

Fardad, M., Lin, F., and Jovanović, M. R. (2011). Sparsity-promoting optimal control

for a class of distributed systems. In Proceedings of the 2011 American Control

Conference, pages 2050–2055. IEEE.

Ferrari, S., Foderaro, G., Zhu, P., and Wettergren, T. A. (2016). Distributed opti-

mal control of multiscale dynamical systems: a tutorial. IEEE Control Systems

Magazine, 36(2):102–116.

Findeisen, R. and Allgöwer, F. (2002). An introduction to nonlinear model predictive

References 159

control. In 21st Benelux meeting on systems and control, volume 11, pages 119–141.

Technische Universiteit Eindhoven Veldhoven Eindhoven, The Netherlands.

Fletcher, R. (1980). Practical Methods Of Optimization: Vol. 1 Unconstrained Opti-

mization. John Wiley & Sons.

Foderaro, G., Ferrari, S., and Wettergren, T. A. (2014). Distributed optimal control

for multi-agent trajectory optimization. Automatica, 50(1):149–154.

Foderaro, G., Zhu, P., Wei, H., Wettergren, T. A., and Ferrari, S. (2018). Distributed

optimal control of sensor networks for dynamic target tracking. IEEE Transactions

on Control of Network Systems, 5(1):142–153.

Franken, D., Schmidt, M., and Ulmke, M. (2009). “spooky action at a distance” in the

cardinalized probability hypothesis density filter. IEEE Transactions on Aerospace

and Electronic Systems, 45(4):1657–1664.

Garcia, C. E., Prett, D. M., and Morari, M. (1989). Model predictive control: theory

and practicea survey. Automatica, 25(3):335–348.

Goodman, I. R., Mahler, R. P., and Nguyen, H. T. (2013). Mathematics of data

fusion, volume 37. Springer Science & Business Media.

Hadaegh, F. Y., Chung, S.-J., and Manohara, H. M. (2016). On development of 100-

gram-class spacecraft for swarm applications. IEEE Systems Journal, 10(2):673–

684.

Hoang, H. G., Vo, B.-N., Vo, B.-T., and Mahler, R. (2015). The cauchy–schwarz

divergence for poisson point processes. IEEE Transactions on Information Theory,

61(8):4475–4485.

References 160

Houssineau, J., Delande, E., and Clark, D. (2013). Notes of the summer school on

finite set statistics. arXiv preprint arXiv:1308.2586.

Huang, M., Malhamé, R. P., Caines, P. E., et al. (2006). Large population stochastic

dynamic games: closed-loop mckean-vlasov systems and the nash certainty equiv-

alence principle. Communications in Information & Systems, 6(3):221–252.

Inaba, M. and Corke, P. (2016). Robotics Research: The 16th International Sympo-

sium ISRR, volume 114. Springer.

Jovanovic, M. R. (2010). On the optimality of localised distributed controllers. In-

ternational Journal of Systems, Control and Communications, 2(1-3):82–99.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.

Journal of basic Engineering, 82(1):35–45.

Kim, D. H., Wang, H., and Shin, S. (2006). Decentralized control of autonomous

swarm systems using artificial potential functions: Analytical design guidelines.

Journal of Intelligent and Robotic Systems, 45(4):369–394.

Kube, C. R. and Zhang, H. (1993). Collective robotics: From social insects to robots.

Adaptive behavior, 2(2):189–218.

Levine, W. and Athans, M. (1970). On the determination of the optimal constant

output feedback gains for linear multivariable systems. IEEE Transactions on

Automatic control, 15(1):44–48.

Liao, L.-Z. and Shoemaker, C. A. (1991). Convergence in unconstrained discrete-

time differential dynamic programming. IEEE Transactions on Automatic Control,

36(6):692–706.

References 161

Liao, L.-z. and Shoemaker, C. A. (1992). Advantages of differential dynamic program-

ming over newton’s method for discrete-time optimal control problems. Technical

report, Cornell University.

Lin, F., Fardad, M., and Jovanovic, M. R. (2011). Augmented lagrangian approach to

design of structured optimal state feedback gains. IEEE Transactions on Automatic

Control, 56(12):2923–2929.

Lin, F., Fardad, M., and Jovanović, M. R. (2012). Sparse feedback synthesis via the

alternating direction method of multipliers. In 2012 American Control Conference

(ACC), pages 4765–4770. IEEE.

Lin, F., Fardad, M., and Jovanović, M. R. (2013). Design of optimal sparse feedback

gains via the alternating direction method of multipliers. IEEE Transactions on

Automatic Control, 58(9):2426–2431.

Lunze, J. (1992). Feedback control of large-scale systems. Prentice Hall New York.

Ma, W.-K., Vo, B.-N., Singh, S. S., and Baddeley, A. (2006). Tracking an unknown

time-varying number of speakers using tdoa measurements: A random finite set

approach. IEEE Transactions on Signal Processing, 54(9):3291–3304.

Mahler, R. (2006). A theory of phd filters of higher order in target number. In Signal

Processing, Sensor Fusion, and Target Recognition XV, volume 6235, page 62350K.

International Society for Optics and Photonics.

Mahler, R. (2007a). Phd filters of higher order in target number. IEEE Transactions

on Aerospace and Electronic systems, 43(4):1523–1543.

Mahler, R. P. (2003). Multitarget bayes filtering via first-order multitarget moments.

IEEE Transactions on Aerospace and Electronic systems, 39(4):1152–1178.

References 162

Mahler, R. P. (2007b). Statistical multisource-multitarget information fusion, volume

685. Artech House Norwood, MA.

Makila, P. and Toivonen, H. (1987). Computational methods for parametric lq

problems–a survey. IEEE Transactions on Automatic Control, 32(8):658–671.

Manikonda, V., Arambel, P., Gopinathan, M., Mehra, R., and Hadaegh, F. (1999).

A model predictive control-based approach for spacecraft formation keeping and

attitude control. In Proceedings of the 1999 American Control Conference (Cat.

No. 99CH36251), volume 6, pages 4258–4262. IEEE.

Mayne, D. Q., Rawlings, J. B., Rao, C. V., and Scokaert, P. O. (2000). Constrained

model predictive control: Stability and optimality. Automatica, 36(6):789–814.

Mondada, F., Gambardella, L. M., Floreano, D., Nolfi, S., Deneuborg, J.-L., and

Dorigo, M. (2005). The cooperation of swarm-bots: Physical interactions in collec-

tive robotics. IEEE Robotics & Automation Magazine, 12(2):21–28.

Morgan, D., Chung, S.-J., and Hadaegh, F. (2012). Spacecraft swarm guidance using

a sequence of decentralized convex optimizations. In AIAA/AAS Astrodynamics

Specialist Conference, page 4583.

Morgan, D., Chung, S.-J., and Hadaegh, F. Y. (2013). Decentralized model predictive

control of swarms of spacecraft using sequential convex programming. Advances in

the Astronautical Sciences, (148):1–20.

Morgan, D., Chung, S.-J., and Hadaegh, F. Y. (2015). Swarm assignment and trajec-

tory optimization using variable-swarm, distributed auction assignment and model

predictive control. In AIAA guidance, navigation, and control conference, page

0599.

References 163

Murthy, K. G. (1968). An algorithm for ranking all the assignments in order of

increasing costs. Operations research, 16(3):682–687.

Pace, M., Birattari, M., and Dorigo, M. (2013). The swarm/potential model: Mod-

eling robotics swarms with measure-valued recursions associated to random finite

sets. IEEE Transactions on Robotics, page submitted.

Pulford, G. (2005). Taxonomy of multiple target tracking methods. IEE Proceedings-

Radar, Sonar and Navigation, 152(5):291–304.

Rautert, T. and Sachs, E. W. (1997). Computational design of optimal output feed-

back controllers. SIAM Journal on Optimization, 7(3):837–852.

Reif, J. H. and Wang, H. (1999). Social potential fields: A distributed behavioral

control for autonomous robots. Robotics and Autonomous Systems, 27(3):171–194.

Rubenstein, M., Cornejo, A., and Nagpal, R. (2014). Programmable self-assembly in

a thousand-robot swarm. Science, 345(6198):795–799.

Rudd, K., Foderaro, G., and Ferrari, S. (2013). A generalized reduced gradient

method for the optimal control of multiscale dynamical systems. In 52nd IEEE

Conference on Decision and Control, pages 3857–3863. IEEE.

Ryan, A., Zennaro, M., Howell, A., Sengupta, R., and Hedrick, J. K. (2004). An

overview of emerging results in cooperative uav control. In 2004 43rd IEEE Con-

ference on Decision and Control (CDC)(IEEE Cat. No. 04CH37601), volume 1,

pages 602–607. IEEE.

Sommerville, I. (2016). Software Engineering GE. Pearson Australia Pty Limited.

Sun, J. and Chen, H. (2018). A decentralized and autonomous control architecture

for large-scale spacecraft swarm using artificial potential field and bifurcation dy-

namics. In 2018 AIAA Guidance, Navigation, and Control Conference, page 1860.

References 164

Tassa, Y., Erez, T., and Todorov, E. (2012). Synthesis and stabilization of complex

behaviors through online trajectory optimization. In 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 4906–4913. IEEE.

Tassa, Y., Mansard, N., and Todorov, E. (2014). Control-limited differential dynamic

programming. In 2014 IEEE International Conference on Robotics and Automation

(ICRA), pages 1168–1175. IEEE.

Todorov, E. and Li, W. (2005). A generalized iterative lqg method for locally-optimal

feedback control of constrained nonlinear stochastic systems. In Proceedings of the

2005, American Control Conference, 2005., pages 300–306. IEEE.

Vassev, E., Hinchey, M., and Paquet, J. (2008). Towards an assl specification model

for nasa swarm-based exploration missions. In Proceedings of the 2008 ACM sym-

posium on Applied computing, pages 1652–1657. ACM.

Verdoljak, R. (2016). Application of sparse feedback control strategies to civil struc-

tures.

Vo, B.-N. and Ma, W.-K. (2006). The gaussian mixture probability hypothesis density

filter. IEEE Transactions on signal processing, 54(11):4091–4104.

Vo, B.-N., Singh, S., and Doucet, A. (2005). Sequential monte carlo methods for

multitarget filtering with random finite sets. IEEE Transactions on Aerospace and

electronic systems, 41(4):1224–1245.

Vo, B.-N., Vo, B.-T., and Phung, D. (2014). Labeled random finite sets and the bayes

multi-target tracking filter. IEEE Transactions on Signal Processing, 62(24):6554–

6567.

Vo, B.-T. and Vo, B.-N. (2013). Labeled random finite sets and multi-object conjugate

priors. IEEE Transactions on Signal Processing, 61(13):3460–3475.

References 165

Vo, B.-T., Vo, B.-N., and Cantoni, A. (2006). The cardinalized probability hypoth-

esis density filter for linear gaussian multi-target models. In 2006 40th Annual

Conference on Information Sciences and Systems, pages 681–686. IEEE.

Voulgaris, P. G., Bianchini, G., and Bamieh, B. (2003). Optimal h2 controllers for

spatially invariant systems with delayed communication requirements. Systems &

control letters, 50(5):347–361.

