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Abstract 

Introduction 

Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutation in the cystic 

fibrosis transmembrane conductance regulator (CFTR), which results in ion dysregulation 

and mucous buildup, most notably in the lungs. Previously a childhood disease, 

advancement in treatment options has greatly improved clinical course leading to longer 

lifespans. This progress has created a need for more sensitive clinical measures and 

personalized medicine options. Exploring genetic modifiers of disease along with response 

to exercise would provide valuable and unique information, contributing to better, more 

personalized assessment and management of disease. 

 

Purpose 

The purpose of this dissertation is two-fold. The first aim was to explore the impact of 

genetic variation at amino acid 663 of the sodium channel epithelial 1 alpha gene 

(SCNN1A) on clinical features of CF. In Study One it was hypothesized that subjects with 

at least one copy of the gain-of-function variant T663 (AT/TT) would have poorer clinical 

outcomes than those homozygous for the wild-type variant A663 (AA). In studies Two and 

Three the primary aim was to examine the clinical value of the six-minute walk test 

(6MWT) and one-minute sit-to-stand test (1STS) in the management of CF. It was 

hypothesized that response to the 6MWT and 1STS would be strongly correlated and 

measures from each test would be associated with clinical outcomes of disease.   

 

Methods 

Thirty-five CF subjects were enrolled and all had at least one copy of the F508del mutation. 

Buccal swabs were collected and samples were analyzed for genetic variation at position 

663 of the SCNN1A gene (AA, AT/TT). The 6MWT and 1STS were performed. 

Continuous monitoring of heart rate (HR) and peripheral blood oxygen saturation (SpO2) 

was taken during exercise testing. The desaturation-distance ratio (DDR) was calculated 

using SpO2 measures and six-minute walk distance (6MWD). Medical charts were 

reviewed for pulmonary function and indicators of disease status.  Depending on 

distribution of data, independent Student’s t-test or Mann Whitney U test was used to 

compare means. Correlations were performed using Spearman test and Fisher’s exact test 

was used to analyze categorical variables. Cox regression was used to assess days to 
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pulmonary exacerbation. All data are presented as mean ± standard deviation unless 

otherwise noted. Significance was set at 0.05.  

 

Results 

There were no statistically significant differences in clinical outcomes between the AA and 

AT/TT genotypes. Clinically relevant observations in regards to lung function over time 

and exercise performance were noted and warrant further research. Further, 6MWD and 

1STS repetitions were significantly correlated but neither outcome correlated with 

measures of pulmonary function. However, DDR was significantly correlated with several 

measures of pulmonary function, suggesting it is a better indicator of lung function than 

6MWD alone. Additionally, those who desaturated during the 1STS (change in SpO2 > 4% 

from rest) had significantly lower lung function compared to those who did not. Neither 

6MWD nor 1STS repetitions was associated with pulmonary exacerbation during follow-

up. Those who experienced a pulmonary exacerbation during follow-up had significantly 

greater DDR compared to those who did not have an exacerbation. 

 

Conclusions  

Variation at position 663 of the SCNN1A gene may modify pulmonary disease in patients 

with CF, though further research is needed. Additionally, the 6MWT and 1STS show 

promise in providing unique and meaningful information about CF disease and, used in 

conjunction with typical 6MWT outcomes, DDR may be a helpful tool in evaluating 

exercise capacity in patients with CF.  
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Chapter 1: Introduction 
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Cystic Fibrosis (CF) is an autosomal recessive disease that occurs in approximately 1 in 3,400 live 

births in those of Northern European descent [1] and is the most lethal genetic disease among 

Caucasians  [2]. CF arises from a defect in the cystic fibrosis transmembrane conductance regulator 

(CFTR) gene, which encodes the CFTR protein [3-5]. The CFTR protein functions primarily as a 

chloride channel and is found in specialized epithelial tissue throughout the body, including the 

lungs, pancreas, and gastrointestinal tract [6, 7]. There are over 2,000 identified CF-causing 

mutations of CFTR with the most common involving a deletion of phenylalanine at residue 508 

(F508del), which causes degradation of mutant CFTR in the endoplasmic reticulum [8, 9]. With 

effectively no CFTR translocated to the plasma membrane cellular processes, including ion 

regulation, innate defense, and inflammatory signaling, are severely disrupted. This leads to one of 

the hallmark feature of CF; lung disease associated with sticky mucous build-up in the respiratory 

tract that leads to chronic bacterial infection and pulmonary exacerbation [10].  

 

Airway epithelial are pseudostratified ciliated cells that encourage movement of mucus and fluid 

across the respiratory tract and aid in providing basic defense against bacterial infection [11]. In 

addition to chloride transport, CFTR acts as an inhibitor of the epithelial sodium channel (ENaC), 

helping to regulate sodium absorption into the cell [12, 13]. In CF, this inhibition of ENaC is absent, 

resulting hyper-absorption of sodium into the epithelia [14, 15]. Hyper-absorption of sodium has 

been shown to cause CF-like disease in transgenic mice overexpressing ENaC, with depleted 

airway surface liquid (ASL) volumes, increased mucous amount and viscosity, and decreased fluid 

clearance being experienced [16]. This inadequate hydration of the lung causes impairments in 

mucociliary clearance leading to recurrent infections, chronic inflammation, airway obstruction, 

and eventual respiratory failure.  

 

ENaC is a heterologous protein containing an alpha, beta and gamma subunit [17, 18]. Although 

all three subunits are important for optimal protein function, the alpha subunit exhibits the greatest 

attenuation in channel activity as demonstrated in alpha-ENaC-knockout mice who die of 

respiratory distress within 40 hours of birth due to their inability to clear amniotic fluid from their 

lungs [19]. In the lungs, ENaC is located on the apical membrane of both type-I and type-II alveolar 

cells and is the rate-limiting step in epithelial sodium absorption [20]. A key player in lung fluid 

clearance, disruption in the amount of ENaC in mice using RNA interference technology was 

shown to reduce basal lung fluid clearance by 30% [21, 22]. Although ENaC is a principal player 

in CF, there is minimal research focused on how genetic variation of the channel may impact 

clinical outcomes and disease progression.  
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Genetic mutation in ENaC is associated with several disease states including 

Pseudohypoaldosteronism Type I (PHA1), which causes impaired salt reabsorption in the distal 

nephron of the kidney and subsequent hypotension [23] and Liddle Syndrome, a gain-of-function 

mutation that causes salt-sensitive hypertension due to increased open channel probability [24]. 

Mutations in ENaC have also been linked to CF-like disease, with several reported cases of rare 

ENaC variants identified in patients with CF-like disease that present with no CFTR mutations [25-

28]. Further, the mouse model of CF lung pathology is achieved by over-expression of the beta 

subunit of ENaC [29]. A common single nucleotide polymorphism (SNP) in ENaC involves a G 

 A at position 663 of the SCNN1A gene, which encodes for the alpha subunit. This SNP results 

in an alanine (A663) to threonine (T663) substitution. Cell studies have demonstrated the T663 

variant has greater channel activity with higher rates of sodium absorption and fluid clearance [30-

32]. Clinically, some studies, but not all, have found that individuals who possess the T663 variant 

have greater incidence of high blood pressure [33, 34] and differ in lung function and exercise 

response compared to those who do not possess the variant [35, 36]. However, it is unclear how 

this SNP may impact clinical outcomes in those with CF. One small study observed that CF patients 

with at least one copy of T663 had significantly lower body weight, body mass index, and baseline 

pulmonary function than those homozygous for A663 [37]. This study was limited by its cross-

sectional design and restricted examination of clinical parameters. It may be that the presence of 

the more active T663 variant leads to heightened sodium hyper-absorption in the CF lung, further 

exacerbating and accelerating disease processes. Given these suggestive, but limited findings, it is 

of interest to better understand how genetic variation in the alpha subunit of ENaC impacts disease 

phenotype in CF.  

 

With improvements in screening techniques and medical care, along with pharmacological 

advancements the average lifespan of CF patients continues to extend. This has led to more years 

with minimal lung disease progression and development of more extra-pulmonary complications, 

creating an urgency to adopt more sensitive and holistic clinical tests. Aerobic capacity is a strong 

and independent predictor of all-cause and disease-specific mortality [38]. This observation has 

been reproduced using a wide variety of testing methods, supporting the robustness of this finding. 

CF patients have impaired aerobic [39] and anaerobic capacity [40], with exercise capacity being 

correlated with lung function in some studies. Peak aerobic capacity is a strong predictor of survival 

in CF patients [41] and is an outcome used in predicting mortality in CF patients awaiting lung 

transplant [42]. It has greater prognostic value overtime than the commonly used clinical marker 
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of lung function decline [43]. Previous research has demonstrated that certain classes of CFTR 

mutations are associated with lower aerobic capacity and more severe clinical presentation, 

showing a link between genotype and clinical outcome [44].  Although maximal cardiopulmonary 

exercise testing (CPET) is the gold-standard for measuring aerobic capacity, it is time consuming 

and requires special equipment and personnel. Submaximal field tests, such as the six minute walk 

test (6MWT) and one-minute sit-to-stand test (1STS), have been correlated with maximal exercise 

tests in healthy and CF patients [45-47] and do not require any special equipment. Results from 

submaximal tests can provide useful clinical data beyond that obtained from lung function tests, 

especially in younger, healthier CF patients. Previous research, looking at exercise testing in 

pediatric and adult CF patients have suggested that outcomes from exercise testing, notably 

peripheral blood oxygen saturation (SpO2) , can provide useful clinical information in addition to 

pulmonary function testing [48-52]. As exercise testing is a known prognostic in CF, providing 

insight into disease beyond traditional clinical measures, it is of interest to further explore exercise 

response and its association with clinical outcomes in patients with CF.   

 

Given the continued advancements in the management of CF, disease presentation and course are 

vastly different from that described in the literature just decades ago. Greater sophistication in 

pharmacological interventions, along with improved screening techniques has resulted in longer 

lifespan and more years of non-progressive lung disease. These exciting developments in the field 

have created the need to develop more personalized and sensitive clinical assessment and 

management options. This dissertation aims to explore the association of genetic variation and 

exercise response with clinical outcomes in CF to better understand how these variables could 

improve monitoring and medical care provided to patients. 

   

Aims and Hypotheses 

Study One: Impact of Genetic Variation of Alpha ENaC on Clinical Presentation in Cystic Fibrosis 

 

Specific Aim: Assess differences in clinical outcomes between those homozygous for the A663 

allele (AA) of the SCNN1A gene and those with at least one copy of the T663 allele (AT/TT) in 

CF subjects.  

 

Hypothesis: Subjects with at least one copy of the more active T663 variant (AT/TT) will have 

poorer clinical outcomes than those who are homozygous for the A663 allele (AA), as heightened 

ENaC activity would enhance sodium hyper-absorption and accelerate lung dehydration. 
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Study Two: Correlation between Six-Minute Walk Test and One Minute Sit-to-Stand Test and 

Clinical Outcomes in Cystic Fibrosis 

 

Specific Aim One: Examine the relationship between physiological parameters and outcomes 

collected during the 6MWT to those collected during the 1STS in CF subjects. 

 

Hypothesis: Physiological parameters and outcomes collected during the 6MWT will be positively 

correlated with those of the 1STS. 

 

Specific Aim Two: Assess the association of the 6MWT and 1STS with pulmonary exacerbation 

during follow-up.  

 

Hypothesis: Outcomes from both the 6MWT and 1STS will be associated with pulmonary 

exacerbation during follow-up. 

 

Study Three: Evaluation of the Desaturation-Distance Ratio in Cystic Fibrosis Patients  

 

Specific Aim: Evaluate the association of the desaturation-distance ratio (DDR) to clinical measures 

in CF subjects.     

 

Hypothesis: DDR will be significantly associated with clinical measures in CF subjects.   

 

  



6 
 

Outline of Dissertation 

Chapter one provides an overview of the dissertation and introduces specific aims and hypotheses. 

 

Chapter two provides an in-depth review of the current literature regarding pathophysiology and 

exercise testing in CF. Information from cell, animal, and human studies is discussed. 

 

Chapter three reports the findings of Study One, which examines the association of genetic 

variation in the SCNN1A gene and clinical outcomes in patients with CF.  

 

Chapter four reports the findings of Study Two, which correlates and compares outcomes obtained 

from the 6MWT and 1STS. The association of these measures with clinical outcomes is also 

explored.  

 

Chapter five reports the findings of Study Three, which examines the association of DDR, a unique 

index obtained from measurements taken during the 6MWT, with clinical outcomes.  

 

Chapter six discusses study limitations. 

 

Chapter seven provides an overall summary of relevant findings, concluding remarks, and future 

directions in the study of genetic modifiers of disease and exercise testing in CF.  

 

Chapter eight provides a list of all references used in the dissertation. 

 

Chapter nine provides a copy of study consent, parental permission, assent, and data collection 

form.
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Chapter 2: Review of Literature 
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Overview of Cystic Fibrosis  

First described in 1938 [53], Cystic Fibrosis (CF) is an autosomal recessive genetic disease that 

upsets chloride and sodium balance in epithelial tissue, most notably in the lungs, due to 

dysfunctional Cystic Fibrosis transmembrane regulator (CFTR) protein [6, 54]. Mutation of CFTR 

can result in a build-up of mucus in epithelial tissues which increases risk of infection, promotes 

inflammation, leads to nutrient malabsorption, and causes male infertility and pancreatic 

insufficiency [55]. CF is recognized as the most common fatal genetic disease among those of 

Northern European decent [1, 56], with an estimated occurrence of 1 in every 3,200 – 3,400 live 

births [57, 58]. Little was known about the genetics of CF until the 1980’s, when a series of papers 

was published describing the CF gene and its protein product [4, 5, 59]. Using a variety of 

techniques, including gene walking and jumping, the CF gene was mapped to chromosome 7q31 

and a length of DNA encoding a membrane bound protein, CFTR, was described. Additionally,  

in this series of papers, the deletion of a phenylalanine at position 508 (F508del), the most 

prominent mutation of the CFTR gene was first identified and reported in 70% of sample subjects. 

This series of work provided essential beginnings to understanding the complex genetic, 

biochemical, and pathophysiological elements of CF. 

 

There are currently over 2,000 identified mutations of the CFTR gene, with the clinical importance 

not known for the vast majority [60]. With this large number of mutations, Welsh and Smith 

proposed a class system to organize CFTR mutations based on functional defect [61]. Originally 

four classes were proposed but as understanding of mutations has increased two additional 

categories have been added for a total of six mutation classes.  

 

Class I Mutations  

Class 1 mutations are nonsense mutations that result in a premature stop codon that disrupts 

translation and causes rapid degradation of messenger RNA (mRNA) [61]. Rapid degradation of 

mRNA results in little to no detectable quantities of CFTR protein and cell studies have 

demonstrated that transcription levels are consistently less than 10% of wild-type levels [62]. The 

G542X, which is the second most common CF mutation, and the W1282X, the most common 

mutation found in Ashkenazi Jews, are part of this mutation class [63, 64]. Because there is no 

functional CFTR protein present at the apical membrane, chloride ions become impermeable to 

the membrane and sodium is hyper-absorbed [16], greatly upsetting fluid and electrolyte transport 

across the epithelia [9, 63]. This disruption in fluid clearance results in a build-up of mucus that 

clogs the epithelial tissue [65] and dehydrates the lungs [54] creating an environment prone to 
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bacterial infection [66], obstruction of secretions [6], and malabsorption of nutrients [67]. This 

class of mutations is associated with the most severe clinical phenotype. The hallmark feature of 

CF is chronic respiratory ailment due to recurring pulmonary bacterial infection and exacerbation, 

which causes permanent pulmonary damage [68]. Within the respiratory tract, cilia are 

compressed by mucus build-up and their ability to clear particles is extinguished [69], creating a 

breeding group for bacteria, notably pseudomonas aeruginosa [70]. Furthermore, pancreatic 

insufficiency, a condition that disrupts proper food digestion due to lack of pancreatic digestive 

enzymes, is very common in patients with class I mutations [71]. Another common clinical feature 

of this mutation class is the presence of meconium ileus, a fecal obstruction of the bowels due to 

inadequate fetal pancreatic enzyme production and sticky mucus throughout the gastrointestinal 

tract [72]. Mucus build-up in the gastrointestinal tract can also lead to chronic microbial infection, 

with CF patients having diminished growth of healthy gut bacteria [73]. Finally, the vast majority 

of males (98%) and, to a lesser extent, females (50%) demonstrate infertility [74].   

 

Class II Mutations  
Class II mutations include those that result in CFTR misprocessing, as seen in F508del and 

N1303K [61], and results in the absence of functional protein at the apical membrane, leading to 

chloride impermeability [63, 64]. With no functional CFTR protein localized to the apical 

membrane, the protein is unable to perform its job as a chloride channel, resulting in multi-system 

mucus build-up and secretion obstruction [75]. Although the pathway by which CFTR protein is 

not localized to the apical membrane differs between Class I and Class II mutations, the clinical 

outcomes are similar if not identical [76]. As such, Class II mutations demonstrate chronic 

pulmonary infection, reduced pulmonary function, high rates of pancreatic insufficiency, 

malabsorption of nutrients, and infertility [77]. It is important to note that clinical symptoms and 

severity can vary greatly between patients, even with the same mutation, suggesting that additional 

factors such as modifier genes, epigenetics, and environment impact CF phenotype [78, 79]. In 

2015 the first CFTR modulator therapy specifically for individuals with two copies of the F508del 

mutation was approved for use. The combination treatment of ivacaftor, a CFTR potentiator that 

works by increasing channel open probability, and lumacaftor, a CFTR corrector that helps to 

rescue CFTR from degradation and bring it to the cell surface, has been shown to improve lung 

function and body mass index (BMI) while also reducing incidence of pulmonary exacerbation 

[80, 81]. In 2018 an additional CFTR modulator treatment was approved for use in those with two 

copies of the F508del mutation. Similar to ivacaftor-lumacaftor, ivacaftor-tezacaftor is a 

potentiator-corrector combination therapy that works by increasing the number and function of 
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CFTR at the cell surface. Ivacaftor-tezacaftor has been shown to be somewhat more effective than 

ivacaftor-lumacaftor in improving lung function and reducing incidence of pulmonary 

exacerbation, with less reported adverse effects  [82, 83].      

 

Class III Mutations  
Class III mutations produce a mature and stable protein, however channel gating is severally 

disrupted [61]. The third most common CF mutation, G551D, is part of this group [64]. Although 

functioning of the CFTR protein is reduced, Class III mutations do have CFTR present at the 

apical membrane and therefore do not share the same timeline of symptom onset and severity as 

seen in Class I and II mutations [84]. This is demonstrated by lower rates of meconium ileus in 

G551D mutation compared to W1282X (class 1) and F508del (class 2) [85] and trends showing 

later onset of pancreatic insufficiency in G551D mutation [86]. However, bacterial infection and 

chronic inflammation have been demonstrated in mouse models of G551D [87, 88]. The CFTR 

potentiator Ivacaftor is a FDA-approved treatment option for those with the G551D mutation and 

has been shown to increase pulmonary function and other clinical outcomes [89]. In the future 

clinical characteristics of this mutation may resemble milder forms of CF. Clinical severity in 

Class III mutations are dependent on type of channel gating disruption, underscoring the difficulty 

of assigning stringent phenotypes to an entire class of mutations [90].  

 

Class IV Mutations  

Mutations in Class IV are generally located in DNA regions corresponding to transmembrane 

segments and cause issues with conductance and gating [61, 91]. Mutations included in this class 

are R117H, which reduces channel activity, and R334W, which disrupts anion flow by altering 

the current-voltage relationship of CFTR [64]. As Class IV mutations encode a stable protein that 

properly responds to stimuli and, albeit at a lower rate than wild-type, conducts chloride across 

the membrane, the clinical phenotype of this class of mutations is much less severe than the 

previous three classes [76]. Age of diagnosis is higher in these mutations, with some individuals 

having such mild symptoms as to not be diagnosed until late into adulthood [92, 93]. Additionally, 

rates of meconium ileus and pancreatic insufficiency are much lower in R334W when compared 

to F508del (Class II) [92].  

 

Class V Mutations  

Suggested by Zielenski and Tsui in 1995, Class V mutations have reduced protein synthesis and 

lesser amounts of functional CFTR protein compared to wild-type [91]. Mutations in this class 

include those found in the promoter region and amino acid substitutions, such as A455E. This 



11 
 

mutation class is associated with mild forms of CF with functional CFTR protein, capable of 

chloride movement across the membrane, which is properly produced and localized to the 

membrane [94]. Patients with A455E mutation are diagnosed at a later age, have better pulmonary 

function, and have higher rates of pancreatic sufficiency compared to patients with F508del [94, 

95]. 

 

Class VI Mutations  

Class VI was first described in 1999 and includes mutations that impact protein stability through 

acceleration of protein degradation [96]. The mutation Q1412X, is included in this class and is 

properly processed and transported within the cell and is fully functional but unstable with a 

decreased half-life. As mutations in this class produce functional CFTR protein that is localized 

to the membrane, albeit for a shorter time interval than wild-type, the phenotype associated with 

this class is mild [64]. 

 

Pathophysiology of Cystic Fibrosis  

Patients with CF are born with relatively normal lungs [97, 98] but begin experiencing chronic 

pulmonary bacterial infections at a young age which continues throughout life [99, 100]. This 

causes chronic inflammation that eventually leads to permanent pulmonary damage and 

respiratory failure, which accounts for over 90% of CF-related deaths [101]. Airway epithelial are 

pseudostratified ciliated cells that encourage movement of mucus and fluid across the respiratory 

tract and aid in providing basic defense against bacterial infection [11]. The airway surface liquid 

(ASL) serves a defensive role by providing a medium through which cilia can beat while also 

trapping invaders to be expelled during fluid clearance [102, 103]. Maintenance of ASL volume 

at optimal height (~7μm) is imperative to proper cilia and respiratory functioning and is 

maintained through balance between sodium absorption and chloride secretion [14, 54, 101, 104].  

 

The fluid clearance mechanism in CF is disrupted due to defective CFTR protein,  which impacts 

ion regulation in two ways [54]. First, in normal cells, CFTR acts as an inhibitor of the epithelial 

sodium channel (ENaC), helping to regulate sodium absorption into the cell [12, 13]. In CF, this 

inhibition of ENaC is absent, resulting in hyper-absorption of sodium into the epithelia [14, 15]. 

Hyper-absorption of sodium has been shown to cause CF-like pulmonary disease in transgenic 

mice overexpressing the beta subunit of ENaC, with mice having depleted ASL volumes, 

increased viscosity and volume of mucus, and decreased fluid clearance [16]. These findings 

strongly support the contention that the basic physiological defect of CF is caused by ion 



12 
 

imbalance and disrupted fluid clearance. In addition to sodium hyper-absorption, the cAMP 

dependent chloride secretion via CFTR is lost, resulting in impermeability of chloride to the apical 

membrane [9, 105]. The inability to maintain ion balance quickly depletes the ASL and creates a 

dehydrated cell surface that negatively impacts cilia movement [15, 106]. In this dehydrated 

environment the mucus layer becomes thick, containing a greater percent of solids than normal 

cells as seen in samples from murine nasal septal mucosa [107]. Furthermore, with the depletion 

of the ASL, the mucus layer interacts with cell surfaces, forming adhesions and eventually plugs 

surfaces [54, 101]. The mucus layer is further thickened as mucin secretion continues from goblet 

cells. As the mucus layer thickens, oxygen concentration near the cell surface decreases, creating 

a hypoxic environment that is hospitable to a variety of bacterial infections [108].  

 

A highly anaerobic environment in the airways puts CF patients at an increased risk of infection, 

ultimately leading to exacerbation of pulmonary symptoms and permanent lung damage. Two 

mechanisms describe why CF patients are at increased infection risk 1) the lung is unable to clear 

mucus and move infection out of the lung [98] and 2) several bacteria are able to move through 

mucus and adapt to the anaerobic environment [108], which is not true of immune cells which are 

unable to effectively move or function in the thick mucus [109]. Because of the unique respiratory 

environment in CF, a limited range of pathogens are generally cultured including pseudomonas 

aeruginosa and staphylococcus aureus [110]. The primary bacterial infection associated with CF 

is pseudomonas aeruginosa, an infection that proves difficult to eradicate because of its unique 

mucoid formation that protects the bacteria from immune attack [111, 112]. Bacterial infection 

has been shown to begin early in life [100, 113] with the lungs eventually becoming chronically 

infected which results in overproduction of inflammatory markers, exacerbation of respiratory 

symptoms, permanent lung damage, and eventual respiratory failure for the majority of patients 

[98, 112]. 

 

In response to infection, the immune system mounts an attack to clear the pathogen. However, in 

CF patients the inflammatory response is dysfunctional, ineffective, and harmful with excessive 

inflammation and inability to terminate the inflammatory response [55, 114]. Cell cultures have 

demonstrated over-production of inflammatory cytokines in CF cells compared to normal cells 

that have been infected with pseudomonas aeruginosa [115]. A multitude of studies have 

demonstrated increased inflammatory markers in bronchoalveolar lavage (BAL) in patients with 

[116, 117] and without positive culture [99, 100]. Differences in findings may be due to lack of 

study power (with some studies having only 6 people per group), antibiotic use in some but not 
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all subjects, and inconsistency in inflammatory analysis techniques across studies. To help provide 

insight into the debate, animal models have provided valuable information on inflammatory 

patterns in CF. A study by Guilbault et al. (2005) using CFTR knockout mice found that mice 

injected with pseudomonas aeruginosa had greater neutrophil and lower lymphocyte response 

compared to wild-type mice, confirming results found in human studies that CFTR defect is 

associated with a hyper-inflammatory response [118]. Additionally, Kent et al. (1997), showed 

that even in the absence of bacterial infection, CF mice reported elevated neutrophil activation, 

consistent with a heightened inflammatory response regardless of infection [119]. These results 

are supported by another mouse model, where CF mice reported excessive neutrophil activation 

even with sterile lungs, suggesting that an amplified inflammatory response is an inherent trait of 

CF disease [16]. Upregulation of inflammatory pathways, notably NFκB, contribute to permanent 

lung damage by activating transcription factors involved in airway plugging, decreased ciliary 

beating, structural damage to airways, increased sputum production, and further activation of 

inflammatory markers [120]. Permanent lung damage caused by excessive activation of 

inflammatory mediators results in progression of disease and ultimate respiratory failure.   

 

In summary, the basic pathophysiologic defect in CF is dysregulation of ion transport and fluid 

clearance across respiratory epithelia. Hyper-absorption of sodium and impermeability of chloride 

ions across the apical membrane lead to depletion of the ASL and development of a thick mucus 

layer. This mucus layer forms adhesions with the cell surface, and creates an anaerobic environment 

where bacteria, but not immune cells, can reside. This bacterial infection exac erbates the 

inflammatory response, leading to persistent hyper-inflammation that eventually causes lung cell 

damage and death. The associated anatomy and physiology underlying these mechanisms are 

discussed in greater detail below. 

 

Airway Anatomy and Histology 

The primary role of the respiratory system is to bring oxygen into the body while expelling carbon 

dioxide and other waste products. The continuous alveolar surface lining the airways allows the 

lung to maintain a sterile environment necessary for optimal function [121]. Anatomically, the 

pulmonary system is divided into two zones: the upper zone which includes the nose, pharynx, 

and larynx and the lower zone which includes the trachea, bronchi, bronchioles, alveolar ducts 

and alveoli [122, 123]. Functionally, the pulmonary system is divided into the conducting zone, 

which carries air into the lungs and the respiratory zone, where gas exchange takes place [122]. 
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Moving down the pulmonary system, the airways become smaller and the structural and functional 

characteristics alter.  

 

Beginning at the trachea, approximately 21 –23 airway generations are produced through repeated 

dichotomous branching [124]. The conducting zone includes the trachea (generation 0), 

cartilaginous bronchi (through generation 10), and terminal bronchioles (through generation 16) 

[125]. No gas exchange occurs in the conducting zone so the volume of air present is known as 

ventilatory dead space, which on average represents 150 mL in adults [122]. In children, 

ventilatory dead space has been shown to have a linear relationship with height and, as would be 

expected, varies greatly by age [126, 127]. The conducting zone is responsible for sterilizing and 

humidifying inhaled air and for identifying and removing pathogens [125]. The large, 

cartilaginous airways (trachea and bronchi) are lined by ciliated pseudostratified columnar 

epithelium and contain various cell types. The dominant cell type in the lung is the ciliated cell 

accounting for 50-80% of epithelial lining [128, 129]. Ciliated cells contain hair-like structures 

that project from the apical cell surface into the periciliary layer (PCL) [129]. Atop the PCL sits a 

mucus layer that is responsible for trapping particles and defending against infec tion. Together 

these layers make up the ASL [15]. Cilia beat in a coordinated manner and are responsible for 

propelling the ASL along the respiratory tract and play an important role in mucociliary clearance 

[129].  

 

Goblet cells are columnar epithelial cells scattered between ciliated cells. They produce and 

secrete mucins which play a role in innate immunity [130]. In healthy airways the conducting 

airways contain approximately 20% goblet cells but in diseased states, including CF, goblet cell 

hyperplasia is evident with increased secretion of mucins [107]. Submucosal glands are found 

through generation 10 of the airways and contain serous (60%) and mucous (40%) cells and play 

an integral role in mucociliary clearance [131]. Serous cells secrete a mix of anti-inflammatory 

and antioxidant compounds that play a vital role in immunity by helping to defend against 

pathogens while the mucous cells secrete mucins [130, 131]. Particles and pathogens are trapped 

in the mucus layer which is then expelled by the synchronized beating of respiratory cilia. CFTR 

is most highly expressed in serous cells. Also present are basal cells, which are progenitor cells 

that produce new epithelial and goblet cells [132]. To a much lesser extent brush cells, 

chemosensory cells responsible for monitoring the composition of the mucosal lining fluid [133] 

and neuroepithelial cells, whose exact function is yet to be elucidated, are also expressed  [132]. 
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The anatomical and functional properties of the smaller distal airways differ distinctly from the 

larger conducting airways. 

 

The respiratory zone begins at generation 17 as the terminal bronchioles give rise to respiratory 

bronchioles, which are sparse with alveoli, the air-filled sacs where gas exchange occurs. The 

respiratory zone serves as a transition space between the conducting airways and the alveoli [122, 

125]. As the airways narrow the epithelium transitions from pseudostratified in the conducting 

airways to simple columnar epithelium in the respiratory bronchioles [124]. The respiratory 

bronchioles are void of submucosal glands and goblet cells [125] and instead contain club cells, 

secretory cells responsible for producing a surfactant like fluid that contains enzymes and proteins 

to neutralize toxins in the ASL [124, 132, 134].  

 

Respiratory bronchioles divide into alveolar ducts (generations 20-22), which end at the alveolar 

sac (generation 23). Gas exchange occurs within the alveoli. Dead space within the alveoli is 

present on surfaces that receive ventilation but lack adequate perfusion from the pulmonary artery, 

known as alveolar dead space [135]. In healthy airways, alveolar dead space is functionally 

negligible but in certain disease conditions, such as heart failure and acute respiratory distress, 

increased alveolar dead space can occur due to shunt, hemodynamic impairment, and/or an 

exaggerated mismatch in the ratio of ventilation to diffusion. In healthy lungs the structure of the 

alveoli are optimized for gas exchange [135, 136]. The alveolar epithelium is composed of only 

two cell types: simple squamous alveolar epithelia Type I cells and cuboidal alveolar epithelia 

Type II cells [124]. Type I cells line the alveoli as a thin sheet and sit adjacent to the capillary 

network to allow for efficient gas exchange. Additionally, because they contain tight junctions, 

Type I cells help preserve oncotic pressure [124, 132, 137]. Type II alveolar cells can function as 

stem cells from which Type I alveolar cells can arise to allow for repair of damaged tissue [137]. 

Type II cells are not directly involved in gas exchange but secrete pulmonary surfactant, a fluid 

that contains lipids and proteins that defend against pathogens and allow for expansion of alveoli 

while also preventing alveolar collapse during respiration [132, 138]. Type I and Type II cells 

maintain a delicate and necessary barrier between the air-filled alveoli and the fluid-filled 

interstitial space. However, movement of water and ions across this barrier is necessary to allow 

for maintenance and regulation of the ASL, which plays an imperative role in lung function and 

immune defense.        
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Lung epithelia are exposed to an exuberant amount of toxins, pathogens, and irritants every day 

and serve as the first line of defense against these invaders. Mucus traps these particles and moves 

up the respiratory tract, either by ciliary beating or coughing, to the pharynx where the mucus can 

be swallowed [20]. This mucus clearance is the primary defense mechanism protecting the airway 

from invading particles [15]. Effective mucus production and clearance is necessary to ensure 

sterility and proper function of the respiratory system. Cilia are bathed in the PCL which provides 

a medium through which the cilia can beat optimally. Although mucus layer height varies by 

species and technique used, the PCL is estimated to be between 5 and 8 µm deep [139]. The 

interaction between the PCL and mucus layers is described in a “gel-on-brush" model [140], where 

the PCL contains membrane-spanning tethered structures including mucins and 

mucopolysaccharides [139, 141] that form a mesh, referred to as the PCL brush, which prevents 

secreted mucins and pathogens from the mucus layer to enter the PCL [140]. Further, through 

inter-molecular repulsion and maintenance of osmotic pressures, the PCL brush stabilizes the two-

layers to allow for optimal mucus clearance.  

 

The ASL is composed of a multitude of compounds including salt, water, antimicrobial peptides 

and proteins, antioxidants, proteases, protease inhibitors, and mucins, notably the polymeric mucin 

5B and mucin 5AC [124, 142]. The complex organization of the ASL allows for optimal hydration 

and lubrication of the airway epithelia while also allowing for the trapping and removal of 

pathogens [141]. Maintenance of the ASL is essential for proper mucus clearance and the 

composition of ASL can alter in response to infection, irritants, and disease [103, 143]. Defects in 

the mechanisms responsible for lung fluid balance and regulation can alter solute concentration in 

the ASL to cause water to be extracted out of the ASL and effectively dehydrate the airway 

surface, as is seen in CF [107, 140, 143]. This, along with continued secretions from goblet cells, 

causes an increase in the percent solids content in the ASL which creates a thick, sticky mucus. 

The sticky mucus in dehydrated airways results in adhesion of mucins to the airway surface and 

compression of the PCL and cilia causing disruption in mucus clearance, as seen in CF [107] and 

Chronic Obstructive Pulmonary Disease (COPD) [144].  

 

Lung Fluid Balance and Regulation 

As previously stated, the primary function of the human lung is gas exchange which occurs via 

diffusion along the alveolar epithelium between alveolar gas and adjacent capillaries. Fick's first 

law of diffusion states that the rate of diffusion is directly related to surface area and inversely 

related to membrane thickness of the blood-gas barrier [145]. The human lung is well-designed 
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for efficient gas exchange as the surface area of the alveolar epithelium is ~150 m2, representing 

99% of the surface area of the lung [146]. Additionally, the blood-gas barrier is kept thin with the 

capillaries and alveolar epithelium being single-cell-layer structures that are able to maintain 

structural integrity while not impeding gas diffusion. Interstitial fluid surrounds capillaries and 

lung parenchyma and contains a plethora of substances including ions, sugars, and hormones 

[147]. For proper gas exchange to occur it is imperative that the amount of interstitial fluid is 

maintained outside the alveolar space as not to inhibit gas diffusion or flood the alveolus. 

Excessive inflammation, as seen in acute lung injury, congestive heart failure, and other 

inflammatory lung diseases, act to make the endothelial and epithelial lining of the lungs more 

porous which can result in pulmonary edema and respiratory distress [65, 125, 148].  

 

Integrity of the airway epithelium ensures a necessary barrier between the air-filled respiratory 

system and the fluid-filled interstitium to allow for normal lung function. The airway epithelium 

must also allow for the transport of solutes and water to ensure lung fluid balance, which is 

achieved through resoprtive and secretory fluid transport [149]. Movement of ions and water 

across the airway epithelium via transcellular and paracellular routes serves to regulate ASL 

composition and volume [125, 150]. To ensure efficient gas exchange, mucociliary clearance, and 

pathogen defense maintenance of ASL volume (~5-8µm) is critical for lung health and is achieved 

through active ion transport [134, 151-153]. The driving force of ASL volume is solute mass, with 

water moving paracellularly in response to transport of sodium and chloride ions [154]. The 

primary ions responsible for ASL volume are sodium and chloride [101, 123], with potassium and 

bicarbonate playing lesser, regulatory roles. The primary structures involved in the vectoral 

movement of sodium and chloride across the airway epithelium include the epithelial sodium 

channel (ENaC), CFTR, calcium activated chloride channels (CaCC), and solute carrier-26 family 

of anion exchangers (SLC26).   

 

Main Regulators of Ion Transport in Lung 

A primary characteristic of CF is salty sweat, with sweat test results still being used as a gold 

standard diagnostic. Prior to identification of CFTR and understanding of CF pathophysiology, it 

was noted that those with CF had abnormal sodium and chloride transport [14, 155-157]. Epithelial 

cells are polarized and contain a basolateral and apical membrane [158, 159]. The basolateral 

membrane is in contact with the interstitium and is responsible for nutrient uptake and disposal of 

waste. The apical membrane is in contact with the external environment, providing a barrier to 

pathogens [160, 161]. This polarity allows for vectoral movement of ions and fluid across the 
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epithelia via paracellular and transcellular mechanisms [162-164]. Similar to ion and fluid 

regulation mechanisms in the kidney, absorption and secretion of sodium and chloride ions 

regulates hydration of the airway epithelium [165, 166]. Active absorption of sodium through 

ENaC creates an electrochemical gradient that allows for the passive movement of chloride across 

the basolateral membrane and the absorption of water through osmosis [101, 123]. Secretion of 

chloride across the apical membrane is controlled primarily by CFTR [167]. Active transport of 

chloride produces paracellular movement of sodium which causes secretion of water via osmosis  

[168-170].  

 

Regulators of Chloride Secretion 

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) 

The CFTR protein is a chloride channel that is found on the apical membrane of epithelial cells 

and is responsible for regulation of ion balance contributing to ASL volume and luminal pH which 

plays an essential role in innate defense [3, 123, 171, 172]. In a series of papers published in 1989 

the gene encoding CFTR was mapped to 7q31.2 [3-5]. The CFTR gene spans a length of 

approximately 189 kb [173], contains 27 exons and encodes a 1480 amino acid protein product, 

referred to as the CFTR protein [174]. The CFTR gene is expressed in specialized epithelial tissue, 

notably the respiratory tract, pancreas, and gastrointestinal tract and has also been found on non-

epithelial cells including cardiac myocytes and skeletal muscle [75, 175-178]. 

 

Defect in the CFTR gene results in dysfunctional CFTR protein to cause CF [9, 179]. In non-CF 

cells, CFTR is processed by the endoplasmic reticulum where it is glycosylated before being sent 

to the Golgi apparatus to complete maturation [180]. CFTR is then translocated to the plasma 

membrane to allow for regulation of ion absorption and secretion. However, in CF cells containing 

the F508del, mutant CFTR is flagged by the endoplasmic reticulum and degraded resulting in no 

CFTR being translocated to the plasma membrane [9, 181]. There is some evidence to suggest the 

possibility of some F508del CFTR making it through posttranslational processing to translocate 

to the plasma membrane [61]. However, to positively impact ASL and mucociliarly clearance 

delivery of functional CFTR to at least 25% of airway epithelial cells appears necessary [182]. 

This has extensive consequences for cell function as CFTR is involved in ion regulation, innate 

defense, and inflammatory signaling [124]. Notably, absence of CFTR results in uninhibited 

ENaC resulting in sodium hyper-absorption, a hallmark feature of CF pathophysiology [12, 183].  
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CFTR is a member of the ATP-binding cassette superfamily of transporters, which all contain a 

hydrophobic domain embedded in the membrane and a hydrophilic domain on which an adenosine 

triphosphate (ATP) binding site is located [184]. This family of transporters is responsible for 

translocating substances across membranes but the CFTR protein is the only transporter in this 

family to act as an ion channel [185, 186]. The protein is composed of two halves, each containing 

six hydrophobic transmembrane α-helices, to form a pore through which ions can pass [172, 179]. 

Additionally, CFTR contains two nuclear binding domains (NBD1 and NBD2), at which ATP 

binding occurs but is only hydrolyzed at the NBD2 domain [179, 187]. Binding of ATP at the 

NBDs determines channel gating and is thought to result in dimerization of NBD1 and NBD2 to 

allow for channel opening and hydrolysis of ATP at NBD2 to cause channel closing [188]. The 

NBD1 domain has been noted to contain more sites of CF-causing mutation, including the F508del 

mutation [187, 189]. The two halves are connected by a charged R-domain which contains 10 

phosphorylation sites for protein kinase A (PKA) and protein kinase C (PKC), which are important 

in opening the CFTR channel [171, 190]. As such, CFTR is a cyclic adenosine monophosphate 

(cAMP) dependent channel where an unphosphorylated R-domain acts as an inhibitor to channel 

opening [191]. Additionally, AMP kinase has been shown to inhibit channel activity, although this 

is not well understood. 

 

In the lung CFTR is expressed in ciliated airway epithelial cells [192] and serous cells of the 

submucosal glands [175]. It conducts anions in preference of nitrate > bromide ≥ chloride > iodide 

> fluroide and also conducts bicarbonate at a rate 1/5 of chloride which is important for 

maintaining ASL pH [193-195]. Notably, acidification of the airways appears to be an inherent 

characteristic of CF and is associated with impaired antibacterial and antimicrobial activity [196, 

197]. Secretion of chloride across the apical membrane requires the active accumulation of 

chloride at the basolateral membrane, which occurs as the Na+K+2Cl- cotransporter (NKCC1) 

utilizes the sodium gradient created by Na+/K+-ATPase to collect chloride ions [124]. 

Additionally, in serous cells, 50-70% of cAMP-dependent chloride accumulation in the basolateral 

membrane occurs by chloride-bicarbonate exchange that is mediated by CFTR [198-200]. 

Secretion of chloride across the apical membrane then drives the passive movement of sodium, 

using the paracellular cation-selective mechanism. Water then follows sodium via osmosis. 

Movement of chloride ions via CFTR is determined by 1.) channel open probability (controlled 

by the PKA pathway) 2.) CFTR density and 3.) single channel conductance. Although to a much 

lesser extent, chloride is also secreted across the apical membrane via CaCC channels and SLC26, 

discussed in further detail below.  
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Calcium Dependent Chloride Channels (CaCC) 

Although chloride movement across the apical membrane is primarily driven by CFTR in human 

airways, calcium-dependent chloride channels (CaCC) are also present. CaCCs are expressed in a 

wide variety of tissues and play a role in many physiological functions including blood pressure 

regulation and fluid secretion [201]. A few CaCCs have been identified in human tissue, most 

notably Anoctamin 1 and 2 (ANO1, ANO2) referred to as transmembrane member 16A and 16B 

(TMEM16A and TMEM16B) in Xenopus, respectively [202, 203]. It is also thought that other 

CaCCs are present and yet-to-be-identified [204]. In response to an increase in intracellular  

calcium, ATP is released and binds to P2Y2 receptors, activating CaCCs to cause chloride 

secretion [205, 206]. P2Y2 purinoceptors interact with extracellular nucleotides to help regulate 

ion transport and contribute to maintenance of ASL volume [15, 207]. Denufosol, an inhaled 

treatment option in CF, is a P2Y2 agonist that improves mucociliary clearance and ciliary beat 

frequency through increased chloride (and subsequent water) secretion. It has been shown to 

increase pulmonary function in patients with CF [208, 209]. Phasic sheer stress, caused by tidal 

breathing, coughing, or exposure to bacteria signals the airway epithelia to release ATP in a dose-

dependent manner. ANO1 and ANO2 have a homodimer structure [210] and contain eight putative 

transmembrane domains and intracellular N- and C-termini [211]. A pore located between 

transmembrane domains 5 and 6 transports chloride and other anions [201, 212]. TMEM16A has 

been shown to play a vital role in mucous transport and clearance, with TMEM16A null mice 

experiencing accumulation of mucous [213] and failure of mucociliary clearance in response to 

cholinergic stimulation [214]. Although the interaction between each is not well understood, 

chloride flow through CaCCs appears to be regulated by a variety of mechanisms including 

permeant anions, intracellular calcium levels, and membrane voltage [201]. Cruz-Rangel et al. 

(2015) suggests that both membrane potential and extracellular chloride concentration determine 

gating speed of CaCCs (slow v. fast) [215]. Regulation of CaCCs occurs most notably through 

alternative splicing but post-translational glycosylation and phosphorylation also modifies CaCC 

activity. The effect of CaCC activity on basal rates of fluid secretion appears to be short lived but 

does impart enough of an effect to increase mucus transport in CF airway cultures [103].  

 

CFTR is a negative regulator of CaCCs, with some evidence to suggest that CaCCs are upregulated 

in CF airways [216] and under pro-inflammatory conditions [203]. Activated CFTR appears to 

interact with TMEM16A to cause inhibition of chloride secretion through CaCCs [217]. Under 
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basal conditions it appears that CaCCs contribution to chloride secretion is minimal, although it 

may be upregulated in disease states.    

 

Solute Carrier – 26 Family of Anion Exchangers (SLC26) 

The Solute Carrier – 26  family of anion exchangers (SLC26) is composed of 10 proteins that 

contain a yet-to-be-identified transmembrane domain that is flanked by C- and N- termini and are 

responsible for transporting a variety of anions including bicarbonate and chloride [218]. The C-

terminus contains a regulatory region, referred to as the sulphate transporter and anti-sigma factor 

antagonist (STAS), which regulates cell expression and protein-protein interaction. Defects in 

protein structure result in tissue-specific disease including defects in transepithelial bicarbonate 

and chloride movement [123]. In the airways, SLC26A4 and SLC26A9 have been shown to be 

expressed in the apical membrane [124]. SLC26A9 specifically has been shown to play an 

important role in lung fluid balance under basal conditions and pro-inflammatory conditions [219, 

220] by acting as a chloride channel. CFTR has been shown to regulate SLC26A9, with F508del 

CFTR preventing SLC26A9 activity, which may occur via interaction of the STAS and R-domain 

of CFTR [220, 221]. Further, Ko et al. (2004) demonstrated that SLC26A9 activity substantially 

increased open probability of CFTR further supporting interaction between the proteins [222]. 

However, further research is needed to fully elucidate the mechanism. SLC26A4 appears to play 

less of a role in ion balance under basal conditions but has been shown to be upregulated under 

pro-inflammatory conditions, a hallmark characteristic in CF disease.   

 

Regulators of Sodium Absorption 

Epithelial Sodium Channel (ENaC) 

The ENaC/DEG superfamily of ion channels is composed of ENaC and acid-sensing ion channels 

(ASIC) and is involved in a variety of functions including regulation of extracellular fluid volume 

and ion balance and thus play an important role in ASL hydration [223, 224]. ENaC is expressed 

on the apical membrane of polarized epithelial cells throughout the body, is selective for sodium, 

and is inhibited by amiloride [225]. A rudimentary description of ENaC structure first appeared 

in 1993 with the cloning of ENaC from rat distal colon [226]. More detailed channel architecture 

was described shortly after, revealing ENaC to contain short cytoplasmic N- and C-termini and 

two transmembrane domains that are connected by a large extracellular loop [18, 227]. ENaC is 

most commonly described as a heterotrimer with three distinct subunits: alpha, beta, and gamma, 

present in a 1:1:1 ratio [18, 223, 228]. Some have reported a heterotetrametric configuration with 

either the addition of another alpha [229, 230] or a separate delta subunit [231], although these are 
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not necessary for channel function. Each main subunit (alpha, beta, and gamma) contributes to 

channel function in a unique way and all three are needed for optimal channel function. That being 

said, the alpha subunit is independently functional, being able to insert into the membrane and 

conduct current in isolation of the other subunits [18]. Each subunit is encoded by a different 

sodium channel epithelial 1 gene (SCNN1): SCNN1A (alpha), SCNN1B (beta), SCNN1G 

(gamma).  

 

Active transport of sodium across the alveolar epithelium is essential in maintaining lung 

hydration. ENaC is the rate-limiting step in the process [20]. Sodium is transported into the cell 

across the apical membrane and pumped out across the basolateral membrane into the interstitial 

fluid via Na+/K+-ATPase to cause osmotic water transport [18, 124]. ENaC is present in the distal 

nephron of the kidney and is responsible for the reabsorption of sodium, playing a vital role in 

blood pressure regulation [165]. Pseudohypoaldosteronism Type I (PHA1), in an autosomal 

dominant disease that results from a loss-of-function mutation in either an ENaC subunit (alpha, 

beta, or gamma) or in the gene encoding the mineralocorticoid receptor (NR3C2) [232]. PHA1 is 

characterized by hypotension due to impaired salt reabsorption in the distal nephron, and increased 

mucociliary clearance in the lungs [23, 233]. Liddle syndrome is a monogenic, salt-sensitive 

hypertension that is caused by mutation in either the beta or gamma subunit of ENaC which results 

in impaired ubiquination and increased open probability of the channel resulting in channel gain-

of-function [24]. This manifests as hypertension, hypokalemia, and reduced aldosterone secretion. 

In the lung, ENaC functions in mucociliarly clearance and maintenance of ASL volume. 

Specifically, the alpha subunit appears to be necessary for proper lung function and survival. Mice 

with complete knockout of alpha ENaC are unable to clear amniotic fluid from their lungs and die 

of respiratory distress within 40 hours of birth [19]. It has been shown that reduced expression of 

alpha ENaC, but not other subunits, increases incidence of pulmonary edema [234] and alpha 

ENaC is necessary for recovery of high-altitude edema [235]. Further, overexpression of the beta 

subunit in mice results in CF-like lung pathology and mice overexpressing all three subunits die 

within 24 hours after birth [29].  

 

Transepithelial sodium absorption is elevated in CF airway epithelia, with CF nasal epithelial cells 

demonstrating enhanced open probability two to three times greater than non-CF cells [236]. 

Excessive saltiness is a hallmark feature of CF and its significance in disease was noted before the 

identification of CFTR and ENaC. Knowles and colleagues noted in 1981 that CF patients had 

increased nasal potential difference and showed a stronger inhibitory response to amiloride (an 
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inhibitor of ENaC) compared to controls, suggesting excessive sodium absorption in CF airway 

epithelium [237]. Further it was demonstrated that nasal potential differences in CF neonates were 

greater than control neonates and inhibition due to amiloride was greater in CF, suggesting an 

innate defect in epithelial sodium transport [157]. Quinton noted in 1983 that excised sweat ducts 

from CF patients demonstrated impermeability to chloride, which resulted in salty sweat [238]. 

 

Due to the large extracellular domain and asymmetric configuration of subunits, ENaC is able to 

sense and respond to a variety of stimuli including pH, mechanical forces, proteases, ions, acidic 

phospholipids and palmitoylation to allow for multiple regulatory pathways [124, 223, 225]. The 

extracellular region of each subunit contains a cysteine rich area that is made up of three distinct 

domains: knuckle, finger, and thumb whose interactions define channel activity [239]. ENaC 

activity is impacted by 1. channel number, 2. channel open probability, and 3. degree of channel 

recruitment. Unlike other members of the ENaC/DEG family, ENaC is constitutively active and 

is regulated by both intra- and extra-cellular factors [224]. For ENaC to be mature and maximally 

activated it must undergo proteolytic processing with immature, unprocessed ENaC channels 

described as “near-silent” channels that can be activated in response to proteolysis [240]. 

 

Regulation of ENaC by CFTR 

CFTR serves as an inhibitor of ENaC, although the precise mechanisms have yet to be elucidated. 

ENaC is expressed on the apical membrane of epithelial cells and is responsible for transport of 

sodium across the apical membrane [223]. It plays an important role in the pathophysiology of 

CF. In the airways, activation of CFTR is associated with inhibition of ENaC [183, 241-244] 

although this is not the case in sweat ducts where CFTR increases ENaC activity [245]. Early 

studies demonstrated regulation is achieved through alteration of PKA-mediated channel open 

probability [241, 243], which is thought to occur via proteolytic cleavage of extracellular loops in 

the alpha and gamma subunits (cleaved = high open probability) [246]. The proportion of cleaved 

(active) ENaC activity has been shown to be higher in cells from CF compared to non-CF airways 

[247]. Further, Rubenstein et al. (2011) demonstrated that expression of wild-type CFTR in 

Xenopus oocytes regulated ENaC surface expression whereas F508del CFTR did not [248]. The 

results from this study suggest that regulation of ENaC by CFTR impacts expression and 

trafficking of ENaC, with wild-type CFTR demonstrating reduced ENaC expression compared to 

F508del CFTR. Further, Kunzelman et al. (1997), used transformed Xenopus oocytes to 

demonstrate protein-protein interaction between the alpha subunit of ENaC and the R-domain of 

CFTR [244]. These findings suggest that downregulation of ENaC by CFTR is due to interaction 
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of the C terminus of the alpha subunit with the R domain of CFTR. However, Ji et al. (2000) 

demonstrated that the carboxyl-terminus of the beta subunit was required for regulation of ENaC 

by CFTR, with the amino terminus of the gamma subunit also playing an important role [249]. 

Others have suggested that ENaC is sensitive to chloride concentration which can inhibit ENaC 

gating by 1.) direct inhibition and 2.) enhancing ENaC self-inhibition [250, 251]. Chloride 

residues have been identified on both beta and gamma subunits and serve as the predominant 

inhibitory sites [252]. It is likely that multiple mechanisms influence the regulation of ENaC by 

CFTR and their interactions are yet-to-be realized.    

 

Regulation of ENaC by Proteolysis and Self-Inhibition 

Both alpha and gamma subunits contain inhibitory peptide tracts that, when cleaved, allow for 

channel activation [253]. Proteolysis of these inhibitory tracts by serine proteases activate the 

channel by altering the interaction of the thumb and finger domains to allow for greater open 

probability and greater activation of near-silent channels [246, 253, 254]. Chronic inflammation 

can promote hyper-absoprtion of sodium by excessive cleaving, and thus activation of ENaC. 

Indeed, increased proteolysis of the alpha subunit has been shown in CF patients to cause 

activation of near-silent ENaC channels and increased sodium absorption [255]. This is consistent 

with findings that CF nasal epithelia have higher rates of amiloride-sensitive sodium reabsorption 

than non-CF epithelia. Absence of proteolytic processing has been shown to dramatically reduce 

channel activity and enhance sodium self-inhibition, a negative feedback where channel activity 

is reduced in the presence of high intracellular sodium concentration [256]. 

 

ENaC demonstrates sodium self-inhibition, where the open probability is inhibited in the presence 

of high extracellular sodium [256, 257]. Sodium binding sites are present in the extracellular 

region and are sensitive to proteolytic processes as evidenced by the amelioration of sodium self-

inhibition in ENaC channels that have been cleaved [258, 259]. Mutations in the thumb domain 

of alpha are associated with disruption in sodium self-inhibition with most mutations enhancing 

self-inhibition, causing decreased channel function. One study found that deletion of the thumb 

domain in alpha or gamma subunits results in reduced sodium self-inhibition response, leading to 

increased open probability of the channel [239]. Additionally, the protein short-palate lung and 

nasal epithelial clone 1 (SPLUNC1), which is found in the airway lumen, has been shown to be 

an allosteric modulator of ENaC, inhibiting channel function by binding to the beta subunit [260]. 

This induces dissociation of the subunits and tags the alpha and gamma subunits for lysosomal 

degradation. 
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Regulation of ENaC by Beta-2-Adrenergic Receptor (β2AR) 

The Beta-2-Adrenergic Receptor (β2AR) subtype is found in the smooth muscle of the respiratory 

system [261, 262] and is responsible for smooth muscle relaxation, resulting in airway dilation 

and reduction in airflow resistance [263]. Additionally, β2ARs mediate fluid clearance in the lung 

by regulating active sodium transport into epithelial cells to maintain lung fluid balance [264]. 

Once bound to an endogenous (i.e. epinephrine) or exogenous (i.e. albuterol) agent binding of Gs 

protein causes a stimulatory response. In this pathway, after dissociation of Gα from the receptor 

and the Gβγ dimer, the βγ-subunit interacts with the enzyme adenylyl cyclase, which catalyzes the 

conversion of ATP to cAMP and pyrophosphate, effectively increasing the intracellular 

concentration of cAMP [265, 266]. In this pathway, cAMP is responsible for activating protein 

kinase A (PKA) by causing dissociation of PKA’s regulatory and catalytic subunits [267, 268]. 

Increased PKA in turn increases ENaC activity via increases in channel open probability [243] 

and/or channel number [264]. Further, overexpression of β2ARs has been show to accelerate fluid 

clearance [269], supporting the regulatory role of β2ARs on ENaC.  

 

Regulation of ENaC by Inflammatory Pathways 

Chronic and excessive inflammation, as seen in CF, can cause severe and permanent damage to 

lung tissue. Additionally, increased cytokine levels are associated with pulmonary edema and 

acute respiratory distress [270]. ENaC has been shown to be regulated by a variety of cytokines 

including tumor necrosis factor alpha (TNF-α), which has been shown to decrease alpha and 

gamma subunit mRNA levels while also reducing channel current [271]. Interleukin 1 beta (IL-

1β) has been shown to directly influence ENaC by downregulating mRNA expression, membrane 

protein, and channel current, potentially through a p38 mitogen-activated protein kinase (MAPK) 

dependent pathway [272]. One proposed mechanism for inhibition of ENaC in response to 

cytokines is the disruption of the serum glucocorticoid regulated kinase 1 (SGK1) pathway. The 

ubiquitin E3 ligase Nedd4-2 inhibits ENaC expression by binding to PPxY motifs in ENaC, 

initiating retrieval of the channel from the plasma membrane to be sent to lysosomes or 

proteasomes [165]. This regulatory process is dependent on the SGK1 pathway, which has been 

shown to directly activate ENaC and is inhibited by the inflammatory pathway nuclear factor 

kappa-light-chain-enhancer of activated B cells (NFkB) [273]. Nedd4-2 knockout mice show 

pathological sodium transport due to sodium hyper-absorption, with one study demonstrating salt-

sensitive hypertension [274] and another describing CF-like lung disease [275]. Oxidative stress 

has also been shown to inhibit alpha ENaC activity with one study demonstrating a dose-
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dependent reduction in alpha ENaC transcription in response to hydrogen peroxide through 

inhibition of the promotor region [276]. Bacterial infection and chronic inflammation are hallmark 

features of CF and a cornerstone of disease physiology. Bacterial infection has been shown to 

suppress alpha ENaC expression with mice infected with the bacteria Pseudomonas aeruginosa, 

a common and clinically concerning infection in CF, having reduced ENaC activity compared to 

wild-type mice [271]. It appears that an inflammatory or oxidative environment, regardless of 

specific compound, has a direct effect on ENaC function [277].    

 

In addition to extracellular regulators, ENaC has been shown to be regulated by a set of 

intracellular factors. The mechanical force of shear stress, achieved in the lung through breathing, 

has been shown to activate ENaC channels in a dose-dependent manner by increasing channel 

open probability [278]. Additionally, the acidic phosphatidylinositol 4,5 bisphoaphate (PIP2) and 

phosphatidylinositol 3,4,5, triphosphate (PIP3) have been shown to regulate ENaC by increasing 

channel open probability [279]. This is achieved by directly binding to the channel to cause a 

conformational change at the channel gate. Further, the beta and gamma subunits have been shown 

to contain Cys-palmitoylated residues, a reversible post-translational modification involving the 

attachment of a palmitate to cytoplasmic Cys residues to cause alteration in protein conformation 

and interaction [280]. Absence of Cys-palmitoylated sites show reduced channel activity through 

the mechanisms of enhanced sodium self-inhibition and reduced channel open probability. Due to 

the large number of extra- and intra-cellular factors that impact ENaC activity, regulation of the 

channel is complex and likely redundant and further work is needed to better understand how these 

factors interact to influence channel activity. 

 

Pharmacological Targets of ENaC  

As ENaC plays a central role in the pathophysiology of CF and is independent of CFTR, there has 

been much interest in ENaC as a therapeutic target. Previous attempts to effectively inhibit ENaC 

in CF have been unsuccessful [281]. Original efforts focused on using amiloride, a pyrazinoyl 

guanidine compound, and its derivatives to directly inhibit ENaC but due to its short half-life and 

rapid clearance from the lung it proved to be an ineffective therapeutic option [282, 283]. 

Additionally, because ENaC is present throughout the body (most notably in the kidney), a 

multitude of off-target effects have been reported including hyperkalemia, disruption of water 

transport, and arrhythmia [284, 285].  
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Indirect inhibition through targeting regulators of ENaC, primarily channel-activating protease 

(CAP) inhibitors, has been little more successful. CAP inhibitors interact with proteases, including 

prostasin and furin, to interfere with proteolysis of ENaC subunits to inhibit ENaC [286, 287]. 

Phase II clinical trials showed that patients receiving the drug camostat, a serine protease inhibitor, 

had reduced sodium transport as measured by transepithelial nasal potential difference assays, 

though adverse events were reported [286].  

 

Even with set-backs in the development of ENaC inhibitors, ENaC continues to be perceived as a 

worthy therapeutic target in the management of CF, especially since a CFTR-independent 

intervention would benefit all CF patients, regardless of CFTR mutation class. Several ongoing 

preclinical trials continue to pursue direct and indirect inhibition of ENaC. These early trials have 

shown promise in demonstrating greater lung specificity, limited off-target interactions, and 

longer effect time [284, 288]. Although encouraging, additional time and research is needed to 

develop viable pharmacological ENaC inhibitors that can effectively be used in the management 

of CF.   

 

Functional Polymorphisms in ENaC 

Individuals with the same disease-causing mutation of CF can have very different clinical 

presentation and disease course. Although some of this variation in phenotype may be explained 

by environmental factors, such as medication regiment and treatment adherence [289], the vast 

continuum of CF phenotype suggests a complex, integrated role of modifier genes [290, 291]. As 

ENaC plays a central role in lung function and CF pathophysiology functional polymorphisms in 

this channel, specifically the alpha subunit, likely impact disease status and outcome.  

 

Several studies have shown association of rare polymorphisms in ENaC with CF-like disease, 

even in the absence of CFTR mutation [25-28]. These findings support the contention that genetic 

variation in ENaC may contribute to symptoms and progression of CF lung disease. Conversely, 

a small study examining genetic modifiers contributing to long-term non-progressive lung disease 

in CF found that 80% of subjects had rare ENaC variants even though they were all homozygous 

for the F508del mutation, one of the more severe CF-causing mutations [292]. However, these 

studies looked at rare or never described ENaC polymorphisms and do not necessarily provide 

insight into clinical variation of disease in the broader CF community. Examination of known, 

common polymorphisms of ENaC would provide this information. As such, it is of interest to 
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explore the effect that a single nucleotide polymorphism (SNP) at amino acid 663 has on clinical 

outcome in patients with CF.  

 

The SCNN1A gene encodes the alpha subunit of ENaC and is located at 12p13.31 [293]. It 

contains 14 exons and is expressed throughout the body, most heavily in the kidney and lung 

[294]. Located in exon 13 of the SCNN1A gene, a region that is not well conserved across species, 

a G  A SNP at amino acid 663 results in an alanine to threonine substitution [31]. Cell studies 

demonstrate A663T to be a gain-of-function polymorphism with increased channel activity due to 

greater surface expression, suggesting the polymorphism impacts cell trafficking and activation 

of near-silent channels [30-32]. Further, it has been associated with hypertension, although this 

appears to be population dependent [33, 34]. Reports of allele frequency varies between 

populations. The frequency of the A663 allele was found to be 0.58-0.64 in Japanese subjects [34], 

0.15 in African American subjects [33], and 0.49 in Caucasian subjects [295]. Additionally, one 

study reported a frequency of the A663 variant in a sample of homozygous F508del patients to be 

70.8% [28].  

 

Variation at amino acid 663 has been shown to impact lung function in healthy individuals with 

one study demonstrating a greater percent increase in lung diffusion, suggesting higher lung fluid 

clearance, and greater decrease in systemic vascular resistance in response to exercise in those 

homozygous for the A663 variant (AA) [35]. Additionally, in response to albuterol, a β2AR 

agonist, those homozygous for A663 (AA) had a greater reduction in exhaled sodium, a marker of 

lung fluid clearance, compared to those with at least one copy of T663 (AT/TT), which showed 

no change in exhaled sodium in response to albuterol [36]. Taken together, these results are 

contrary to what would be expected given results from culture studies indicating that T663 is more 

active than A663 and therefore it would be expected that those with the T663 would have greater 

lung fluid clearance.  

 

However, the A663T polymorphism may impact those with CF in a manner different than healthy 

individuals, as suggested in a small study which found individuals with at least one copy of T663 

(AT/TT) had significantly lower body weight, body mass index, and baseline pulmonary function 

than those homozygous for A663 (AA) [37]. It was postulated that poorer clinical measures in the 

T group (AT/TT) may be due to more active ENaC to cause a drier lung and subsequently reduce 

mucus clearance. Given the suggestive but inconclusive findings in the literature it is of interest 
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to better understand how genetic variation in the alpha subunit of ENaC impacts disease phenotype 

in CF patients.  

 

Exercise in Cystic Fibrosis 

The hallmark feature of CF is lung disease associated with sticky mucous build-up in the 

respiratory tract which leads to chronic bacterial infection and eventual respiratory failure [10]. 

However, due to the ubiquitous nature of CFTR, several other organs are also negatively impacted 

including the pancreas [296], gastrointestinal tract [297], and cardiovascular system [298]. As the 

lifespan of CF patients continues to improve [299] extra-pulmonary complications have become 

more clinically significant, creating an urgency to adopt more holistic clinical tests.  

 

Impairment of Cardiovascular Function in CF 

Cardiovascular function is attenuated in CF, with reported right ventricular (RV) [300, 301] and 

left ventricular (LV) [302, 303] dysfunction, increased vessel stiffness [304], and impaired cardiac 

response to exercise [52, 304, 305]. Cardiovascular disruption appears to be an inherent 

characteristic of CF disease, as opposed to a by-product of pulmonary distress [300, 306]. Recent 

data has suggested that cardiac output is impaired in patients with CF at rest and exercise, even in 

those with mild lung disease [52, 305, 307, 308]. This may be due to abnormal cardiac function 

[302, 303, 306] and/or impaired stroke volume (SV) [307, 309] that is seen in CF patients. Cardiac 

CFTR has been shown to be involved in regulation of contraction rate and contractility, with CF 

mice demonstrating increased fractional shortening, decreased contraction time, and decreased 

diastolic function [310-312]. Increased myocardial contractility and contraction rate may lead to 

undesirable cardiac remodeling such as pathological ventricular hypertrophy [311]. Those with 

CF have been shown to have dysfunction of the RV [300, 301, 306, 313] and LV [302, 303] along 

with impairment of central and peripheral hemodynamics [304, 305], which all contribute to lower 

SV via decreased preload and increased afterload, effectively attenuating cardiac output.  

 

Sympathetic control of vascular tone is mediated through agonist binding of α and β adrenergic 

receptors [314]. In healthy individuals, the normal exercise response (increases in heart rate, 

cardiac output and blood pressure) occur due to a dose-dependent increase in epinephrine, a β2AR 

substrate [315, 316] and attenuation of sympathetic vasoconstrictor response through decreased 

sensitivity of αARs [317, 318].  Binding of norepinephrine to αARs results in calcium influx to 

cause vasoconstriction [319, 320], while binding of epinephrine to β2AR results in calcium 

movement out of the cell to cause vasodilation [321]. Dysfunction of sympathetic response have 
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been described in CF patients, with attenuated sensitivity to β2AR stimulation and heightened 

reactivity to αAR stimulation being reported [322, 323]. This imbalance of sympathetic tone has 

been shown to lead to attenuated vasodilatory response to β2AR stimulation in CF patients [308, 

324, 325] and likely contributes to diminished vascular reactivity.  

 

CF patients have been shown to have decreased arterial compliance, decreased arterial lumen 

diameter, decreased blood pressure, and endothelial dysfunction [304, 310, 311, 326-329]. 

Although complete understanding of the mechanisms behind these observations have yet to be 

elucidated, there is evidence to suggest that CFTR mutation results in autonomic dysregulation, 

endothelial/smooth muscle dysfunction, and augmented inflammatory state may play a role in 

vascular function in CF patients. Systemic inflammation and presence of reactive oxygen species 

is recognized as a contributor to cardiovascular disease (CVD), with increased apoptosis and tissue 

damage occurring in this pathological state [330]. In a study by Hull et al. (2013), which examined 

augmentation index (AIx, a measure of arterial stiffness) before and after two weeks of antibiotic 

treatment in adults with CF, AIx and C-reactive protein were lower after treatment suggesting that 

systemic inflammation may impact vascular function [327]. Another study found that greater 

inflammation was correlated with poorer pulmonary function and higher pulmonary artery 

pressure in children and adults with CF [331]. As systemic inflammation is recognized as a 

conditional risk factor for CVD [332], it seems reasonable to consider chronic inflammation as a 

mechanism explaining vascular function in CF. However, at this point in time there is not enough 

evidence to confidently state that chronic inflammation leads to vascular dysfunction in CF. These 

cardiovascular aspects of disease are noteworthy and directly impact long-term, overall patient 

health. However, current clinical evaluation does not address this aspect of disease. Exercise 

testing is an important clinical tool as it allows a holistic assessment of the cardiopulmonary 

system and provides information on how well body systems function together.    

 

Exercise Testing in CF 

The positive, far-reaching effects of exercise are well described in the literature and the importance 

of regular physical activity has been promoted since ancient times [333]. Exercise has been shown 

to be an important part of management of CF disease, with individuals who partake in regular 

physical activity demonstrating improved aerobic capacity and respiratory muscle endurance, 

reduced rates of pulmonary function decline, healthier anthropometric measures, better measures 

of lipid and glucose metabolism, reduced rates of antibiotic treatment, and greater quality of life 
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[334-337]. Exercise has been shown to aid in sputum clearance with regular activity associated 

with greater ease and amount of sputum clearance [338-340]. 

 

Maximal uptake and utilization of oxygen (VO2max) is a strong and independent predictor of death 

and lung transplant in patients with CF and provides meaningfully and exclusive information not 

encompassed in pulmonary function testing [41, 43, 341-343]. In children with mild-to-moderate 

CF disease, greater aerobic capacity was associated with longer time free of pulmonary 

exacerbation requiring hospitalization [344]. This is significant as pulmonary exacerbations result 

in permanent lung damage and are a marker of worsening pulmonary disease. One large, multi-

center study found that those with the highest VO2 and ventilatory efficiency (VE/VCO2, a 

measure of how well the lungs are able to meet metabolic demand) at peak exercise had the 

greatest survival after 10 years and determined who is at highest risk for event [342]. Additionally, 

VE/VCO2 was associated with death/lung transplant, showing that additional measures special to 

exercise testing may provide insight into disease progression and prognosis [341]. This study also 

identified a high-risk disease group characterized by poor lung function, reduced exercise 

capacity, and poor nutrition status. In a study of 95 children that stratified F508del heterozygotes 

by class of their second CFTR mutation aerobic and anaerobic capacity differed significantly 

between classes with those with Class I or II mutation (the most severe) having lower aerobic and 

anaerobic capacity than those in the Classes II, IV or V (less severe) [44]. This observation 

occurred even though no differences in forced expiratory volume in one second (FEV1-

%predicted) were appreciated between the groups, suggesting that functional measurements 

provide insight into body functions different than that of traditional pulmonary function testing.  

 

Exercise testing is a powerful clinical measure as it provides unique assessment of the integration 

of multiple body systems including pulmonary, cardiovascular, skeletal muscle, and metabolic 

that cannot be measured through assessment of each system independently [345]. Aerobic capacity 

(as measured by both maximal and sub-maximal efforts) is a significant and independent predictor 

of morbidity and mortality in both healthy and diseased states, including CF [38, 41] and exercise 

testing is now recognized as clinically useful for a variety of diseases including heart failure, 

pulmonary hypertension, interstitial lung disease, and CF [346]. As such, annual exercise testing 

in CF patients is recommended in the United Kingdom, Australia, and New Zealand [337, 347]. 

Although a variety of exercise tests exist, the gold-standard maximal, incremental 

cardiopulmonary exercise test (CPET), performed on either a bike or treadmill involves the 

measurement of breathed gases to determine VO2max, carbon dioxide production (VCO2), along 
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with other ventilatory measures [345]. Attenuated aerobic capacity can occur due to reduction in 

maximal heart rate, maximal stroke volume, and/or maximal arterial oxygen concentration or an 

increase in resting mixed venous oxygen content. As mentioned previously, dysregulation of the 

cardiovascular system appears to be an inherent piece of CF disease, with lower stroke volume 

and stiff vessels being observed. Further, individuals with CF have greater dead space than healthy 

individuals due to damaged lung tissue, which becomes more pronounced in response to exercise. 

Oxygen exchange is not supported in areas of dead space, thus those with CF, especially those 

with more progressive disease, have reduced ability to increase alveolar ventilation [348]. As such, 

the cost of exercise is greater for those with CF as they must work harder (higher ventilation rate) 

to make-up for inefficient gas-exchange. These physiological features of CF are evidenced by the 

noted lower aerobic and anaerobic capacity compared to non-CF individuals [349-351].  

  

Although CPET is the gold-standard to determine exercise capacity, the equipment, time, and staff 

required do not make it feasible for most clinics [352]. As CF patients are prone to infection, 

special and extensive precautions are taken as part of infection control. As such, performing CPET 

on CF patients would require disposal of the pneumotachographs and special cleaning of the 

sampling lines used for ventilatory gas analyses, adding additional costs and time [348]. To 

accommodate these restrictions, field tests can be utilized to measure aerobic capacity without the 

need for trained staff and special equipment [353]. The six-minute walk test (6MWT) and one-

minute sit-to-stand test (1STS) are field tests that require minimal equipment, are easy to 

administer, and are safe to perform over a range of disease severity.  

 

The 6MWT is a well-used, practical exercise test that only requires a 30-meter hallway to perform 

[354]. The 6MWT is routinely used to measure response to medical intervention, assess functional 

capacity, and determine eligibility for transplant. Outcomes of the 6MWT (six-minute walk 

distance, 6MWD) have been shown to be strongly and significantly correlated with VO2max in a 

variety of patients, including CF [355-357]. Further, test results have been shown to be valid and 

reliable in CF [358, 359], and have also been shown to be correlated with radiological measures 

of lung disease [360]. 6MWD has also been shown to have prognostic ability, with reduced 

distance covered associated with lung transplant and death over 7- [49] and 12-year periods [51]. 

Additionally, one study in CF youth found that 6MWD predicted risk of hospitalization over a 

five-year period, with patients with greater 6MWD having reduced risk of hospitalization [48]. Of 

note, desaturation during 6MWT has also been demonstrated to be a clinically useful outcome in 

patients with CF, even in the absence of 6MWD impairment [51, 361]. The 6MWT is an easy to 
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administer, clinically meaningful test that can be used in the CF population to assess functional 

capacity and exercise tolerance. 

 

Although the 6MWT requires minimal equipment, some clinics may lack a 30-meter hallway in 

which to administer the test. Again, as CF protocol requires stringent infection control procedures, 

a functional capacity test that can be performed in the same space as a clinical exam is desirable. 

The 1STS requires only the use of a standard, armless chair and can be performed in a clinic room 

or at a patient’s home. The 1STS involves repetitions of alternating sitting to standing for one-

minute with the primary outcome being number of sit-stand repetitions [46]. Outcomes from the 

1STS have been correlated with 6MWD in healthy individuals [362] and with VO2max in COPD 

and CF patients [46, 47]. The 1STS is a useful measure of functional capacity that can be utilized 

in a clinic room or at a patient’s home to provide unique insight into disease state.     

 

Exercise capacity is a powerful measurement in healthy and diseased populations and is a known 

prognostic in patients with CF. The outcomes measured by exercise testing provide meaningful 

clinical information into disease state by providing insight into whole body function that goes 

beyond pulmonary function testing. As such, exercise testing is a relevant and important tool in 

the evaluation of CF. 
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Chapter 3: Study One - Impact of Genetic Variation of Alpha 

ENaC on Clinical Presentation in Cystic Fibrosis 
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Synopsis  

 

Background: Cystic Fibrosis (CF) patients demonstrate extensive variability in clinical 

presentation and course even in the presence of the same disease causing genotype, suggesting the 

role of modifier genes. In CF, the epithelial sodium channel (ENaC) is over active, resulting in 

sodium hyper-absorption and dehydration of the airways. As ENaC plays a crucial role in CF lung 

disease the purpose of this study was to examine the association of genetic variation in the alpha 

subunit of ENaC with clinical features of the disease.    

  

Methods: Thirty-five subjects were enrolled in the study. All subjects had at least one copy of the 

F508del mutation. Buccal swabs were collected and samples were analyzed for genetic variation at 

position 663 of the SCNN1A gene (AA, AT/TT). The six-minute walk test (6MWT) and one-

minute sit-to-stand test (1STS) were performed to assess functional capacity. Medical charts were 

reviewed for resting vitals, pulmonary function, and indicators of disease status.  

 

Results: Twenty-one subjects were in the A group (AA) and 14 subjects were in the T group 

(AT/TT). No statistically significant differences were found between clinical outcomes of interest 

and genotype group. We did note clinically relevant observations suggesting the A group may have 

better preserved lung FEV1%-predicted overtime and better performance on exercise tests, though 

further study is needed.   

 

Conclusions: Variation at position 663 of the SCNN1A gene may modify pulmonary disease in 

patients with CF. Additional research is needed to determine the magnitude of the effect and the 

complexities of how this variation impacts disease course and presentation.  

 

Keywords: F508del, epithelial sodium channel, SCNN1A, single nucleotide polymorphism, 

genetic variation, pulmonary function 
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Introduction 

 

Hydrated airways are an essential component of proper and efficient lung function, requiring tight 

regulation of lung fluid balance. To ensure efficient gas exchange, mucociliary clearance, and 

pathogen defense maintenance of airway surface liquid (ASL) volume is critical for lung health 

[134, 151-153]. Airway epithelia closely regulate ASL volume by way of ion-mediated transport 

[104]. Human airway epithelia contain epithelial sodium channels (ENaC) to mediate sodium 

absorption into the cell and express cystic fibrosis transmembrane regulator (CFTR), to secrete 

chloride out of the cell [153, 226, 363, 364]. Balance between sodium absorption and 

chloride secretion results in efficient fluid clearance across the membrane which allows ASL height 

to be maintained [14, 54]   

 

Cystic Fibrosis (CF) is an autosomal recessive genetic disease and is recognized as the most 

common fatal genetic disease among those of Northern European decent [1, 56], with an estimated 

occurrence of 1 in every 3,200-3,400 live births [57, 58]. CF is caused by mutation of the CFTR 

gene which causes misfolding of the CFTR protein [3, 9]. In the lung CFTR is expressed in ciliated 

airway epithelial cells [192], serous cells of the submucosal glands [175], and pulmonary alveolar 

Type 1 [365] and Type 2 [366] cells. In addition to being the primary driver of chloride movement 

in the cell, CFTR also regulates a variety of other cell functions including inhibiting ENaC [171, 

172]. The most common CF causing mutation is deletion of a phenylalanine at position 508 of the 

CFTR gene (F508del) which results in the absence of functional protein at the apical membrane 

[63, 64]. With no functional CFTR protein, chloride ions become impermeable to the membrane 

and sodium is hyper-absorbed through an uninhibited ENaC [16], greatly upsetting fluid and 

electrolyte transport across the epithelia [9, 63]. This disruption in fluid clearance results in a build-

up of mucus that clogs epithelial tissue [65] and dehydrates the lungs [54], creating an environment 

prone to bacterial infection [66]. This in turn causes chronic inflammation that eventually leads to 

permanent pulmonary damage and respiratory failure, which account for over 90% of CF related 

deaths [153]. There are more than 2,000 identified mutations of the CFTR gene that demonstrate a 

wide range of clinical presentations [60]. Even so, clinical symptoms and severity can vary greatly 

between patients with the same disease-causing CFTR mutation, suggesting that additional factors 

such as modifier genes, epigenetics, and environment may impact CF phenotype [78, 79].  

 

ENaC is an amiloride-sensitive sodium channel that is expressed on the apical membrane of 

polarized epithelial cells throughout the body and is the rate-limiting step in epithelial sodium 
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absorption [225]. It is most commonly described as a heterotrimer with three main subunits (alpha, 

beta, and gamma) that are present in a 1:1:1 ratio [18, 223, 279]. Some have reported a 

heterotetrametric configuration with either the addition of another alpha [229] or a separate delta 

subunit [231], although these additional subunits are not necessary for channel function. Each 

subunit (alpha, beta, and gamma) contributes to channel function in a unique way and all are needed 

for optimal channel function. The alpha subunit, encoded by the SCNN1A gene, has been shown 

to be independently functional, being able to insert into the membrane and conduct current in 

isolation of the other subunits [18]. The alpha subunit appears to be necessary for proper lung 

function and survival, as evidenced by alpha-ENaC knockout mice being unable to clear amniotic 

fluid from their lungs and dying of respiratory distress within 40 hours of birth [19]. Additionally, 

previous work has shown that reduced expression of alpha ENaC, but not other subunits, increases 

incidence of pulmonary edema [234].  

 

Polymorphisms in ENaC have been shown to be associated with CF-like disease, even in the 

absence of CFTR mutation, suggesting the importance of genetic variation in ENaC in relation to 

pulmonary disease [25-28]. In a small sample of CF patients homozygous for the F508del mutation 

who had long-term non-progressive disease, 80% of patients had rare variants of ENaC [292]. 

Additionally, overexpression of the beta subunit of ENaC is used to model CF-like lung pathology 

in mice and overexpression of all ENaC subunits results in death within 24 hours [29]. These 

findings support the role that genetic variation in ENaC have in propagating symptoms of 

CF. Located in exon 13 of the SCNN1A gene a G  A at amino acid 663 results in an alanine to 

threonine substitution. Cell studies demonstrate A663T to be a gain-of-function polymorphism 

with increased channel activity due to greater surface expression [30, 31] and some in-vivo studies 

have suggested the T663 variant is associated with high blood pressure and reduced lung function 

in otherwise healthy individuals [33, 35].  

 

Previous studies on genetic variation in ENaC in CF have focused on identifying rare variants or 

variants that have not been previously described so do not necessarily provide insight into clinical 

variation of disease within the broader CF community. As such, it is of interest to explore what 

effect a common, gain-of-function single nucleotide polymorphism (SNP) has on clinical outcomes 

in patients with CF. The purpose of the present study was to assess differences in clinical 

characteristics and markers of disease between those homozygous for the A663 allele (AA) and 

those with at least one copy of the T663 allele (AT/TT). As greater ENaC activity would contribute 

to greater lung fluid clearance and accelerated lung dehydration in CF it is hypothesized that those 
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with at least one copy of the more active T663 variant (AT/TT) would have poorer clinical 

presentation than CF patients who are homozygous for the A663 variant (AA).   

 

Methods 

 
Study Population 

This study was approved by the Institutional Review Board at the University of Minnesota 

(IRB#00000972). Consent was obtained by all subjects aged 18 years and older and parental 

permission and assent were obtained for all subjects 7 – 17 years prior to study procedures. Subjects 

were recruited via listserv email that is maintained by the Minnesota Cystic Fibrosis Center. 

Individuals were eligible for study participation if they had a confirmed diagnosis of CF by chloride 

sweat test (>60 mmol) and/or genetic testing, had at least one copy of the F508del mutation, and 

were between the ages of 7 and 64 years. Patients were excluded if they had a history of 

cardiovascular or inflammatory disease, had previously had a lung transplant, or had experienced 

a change in medication or antibiotic use within the four weeks prior to study participation.  

 

Clinical Markers 

Subject medical records were queried for demographics, anthropometrics, pulmonary function, 

hospitalization, antibiotic use, pulmonary exacerbation, bacterial infection of the respiratory tract 

and bacterial drug-resistance. Lung function was assessed during regularly scheduled clinic visits 

according to American Thoracic Society guidelines and standards [367]. Forced vital capacity 

(FVC), forced expiratory volume in one second (FEV1), ratio of forced expiratory volume in one 

second to forced vital capacity (FEV1/FVC), and forced expiratory flow 25 to 75% of FVC (FEF25-

75%) were recorded. All results are expressed in %-predicted.   

 

Antibiotic use is expressed as days of treatment. Days of treatment was calculated by summing the 

days of treatment for each antibiotic prescribed (if two antibiotics were prescribed on the same day 

this counted as two days of treatment). Pulmonary exacerbation was determined based on provider 

notes and discharge diagnosis, regardless of antibiotic prescription. Hospitalizations were included 

if they related to pulmonary symptoms of disease and were recorded as a count (number of instances 

per patient) and total days. Cultures were assessed for bacterial growth and drug resistance, when 

available, as well as for pseudomonas aeruginosa and staphylococcus aureus. Bacterial infection 

was defined as chronic if at least 50% of cultures were positive in the last year. Bacterial infection 
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was defined as multi-drug resistant (MDR) if a bacterial strain was resistant to at least one antibiotic 

from three or more antibiotic categories [368]. 

Genetic Analysis  

Buccal swabs were collected for assessment of amino acid at position 663 of the SCNN1A gene. 

The inside of each cheek was swabbed and the swab was immediately placed in a stabilizing buffer 

(50mM Tris, pH 8.0; 50mM  EDTA; 25mM  Sucrose; 100mM  NaCl; 1 % SDS) and kept at room 

temperature until analysis. Samples were evaluated by the University of Arizona Genetics Core 

Laboratory using a Taqman SNP assay for rs#2228576. Initial DNA quantification was performed 

using PicoGreen (Life Technologies). Pre-validated primers and probe sets for TaqMan Allelic 

Discrimination Assay were obtained from Thermo Fisher Scientific. Using TaqMan Universal PCR 

Master Mix, No AmpEraseR UNG (Thermo Fisher Scientific), reactions were run with 10ng of 

DNA and 1X Assay Mix. Real-Time PCR (Applied Biosystems, Model: 7900) was performed with 

cycling conditions set to 95oC for 10 minutes followed by fifty cycles of 92oC for 15 seconds and 

60oC for 1 minute. Genotyper software (SDS system, version 2.3) was used to analyze samples. 

Subjects were grouped according to amino acid at position 663 of SCNN1A. Due to low sample 

size in the TT group (n=2), those with at least one copy of the T allele (AT/TT) were included in 

the T group. Those homozygous for the A allele (AA) represent the A group.  

 

Functional Capacity Testing 

Subjects performed the six-minute walk test (6MWT) and 1-minute sit-to-stand (1STS) at time of 

enrollment. The order of tests was randomized and patients were given enough rest time between 

tests to return to resting vitals before starting the next test.  

 

Six-Minute Walk Test 

The 6MWT was performed according to American Thoracic Society guidelines [369]. Using 

standardized language, subjects were instructed to walk as far as possible during the test time, 

which took place in an enclosed, 30-meter hallway. They were assured they could stop at any time 

during the test and could stop the test at any time. Subjects were given standard encouragements 

during the test. Test procedures were demonstrated by the researcher and an opportunity to practice 

directions was given prior to the start of the test to reduce learning effect. Heart rate (HR) and 

peripheral blood oxygen saturation (SpO2) were evaluated at rest, during, and immediately post-

test via a blue-tooth enabled finger probe (Masimo MightStat, Masimo Corp., Irvine, CA, USA).  
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One-Minute Sit-to-Stand Test 

The 1STS was performed according to previously described methods using a standard 48cm 

armless chair [370]. The subject started in a seated position with knees and hips flexed as close to 

90o as possible with feet hip width apart and hands on hips. Subjects were instructed to perform as 

many self-paced sit-to-stand repetitions as possible during the test. To be counted as a repetition 

on the stand portion, knees had to be entirely straightened, and the buttocks had to make contact 

with the chair on the sit portion. Test procedures were demonstrated by the researcher and an 

opportunity to practice a few repetitions was given prior to the start of the test to reduce learning 

effect. HR and SpO2 were evaluated at rest and immediately post-test.  

 

Statistical Analysis 

Statistical analyses were performed using SPSS (Version 23, IBM Corp., Armonk, NY). 

Continuous variables were assessed for normality using Shapiro-Wilk test. For normally distributed 

data, Student’s t-test was performed to compare means between genotype groups, and Mann 

Whitney U test was used to compare means for non-normally distributed data. All continuous data 

are presented as mean±standard deviation unless otherwise noted. Fisher’s exact test was used to 

analyze categorical variables. All categorical data is presented as frequency (%) Significance was 

set at 0.05. 

 

To model repeated measures of pulmonary function (FVC%-predicted, FEV1%-predicted, 

FEV1/FVC%, and FEF25-75%%-predicted), linear mixed models (LMM) were constructed using 

individual subjects and age as random factors and ENaC group as the fixed factor. This approach 

was selected to account for the variability in number of measurements per subject, time between 

measurements, and clustering of individual subject data. Restricted maximum likelihood method 

was used to estimate model parameters and covariance type was set to unstructured. The estimated 

fixed effects, 95% confidence interval, and p-value for ENaC group are presented. Percentiles were 

calculated for age at time of pulmonary function testing and the lower and upper 10% of age at 

time of pulmonary function testing was trimmed for analysis. This was done to account for the lack 

of data from multiple patients at the extremes of our inclusion ages. Thus the LMM represents 75% 

of the available pulmonary data and 83% of patients (age range: 13.12 - 41.98 years).   

 

Results 

Thirty-five participants were enrolled in the study (19 females, 16 males; mean age = 30.2±13.1 

years) and all were included in analysis. Of these, 27 completed the 6MWT to standard (6 were 
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unable due to clinic space restraints, 2 due to illness on day of visit) and 22 completed the 1STS 

test (8 were pediatric patients, 3 due to clinic space restraints, 2 due to illness on day of visit). 

Subject characteristics are summarized in Table 1. Subjects were relatively healthy with a mean 

FEV1%-predicted of 84.3±22.7%-predicted and body-mass index (BMI) of 22.9±4.5 kg/m2 on the 

day of study visit. All subjects identified as non-Hispanic Caucasian. Twenty subjects (57.1%) 

were homozygous for the F508del mutation in CFTR and 20 subjects (57.1%) were on CFTR 

modulator therapy at time of enrollment. All but one subject had pancreatic insufficiency and 15 

(42.9%) had CF-related Diabetes (CFRD). Twenty-nine (82.9%) subjects had confirmed history of 

pseudomonas aeruginosa, with 22 subjects (62.9%) having at least one positive culture for 

pseudomonas aeruginosa in the previous two years. 

 

Twenty-one subjects were homozygous for the A allele at amino acid 663 of the SCNN1A gene 

while 14 subjects had at least one copy of the T allele (AT, n=10; TT, n=2) (Table 2). In this sample, 

the A663 variant was more common than the T663 variant (77.1% v. 22.9%). Clinical outcomes 

were compared between groups and are depicted in Tables 3. There were no statistically significant 

differences between the A and T group on the clinical outcomes of interest. However, there were 

some clinically relevant findings worth noting. First, the A group demonstrated better exercise 

performance on both the 6MWT (580.8±85.8 v. 554.6±59.1, p=0.39), and completed more 

repetitions during the 1STS (57.7±14.5 v. 50.3±9.0, p=0.19) compared to the T group. This is worth 

noting as the minimal clinical important difference for each test has been found to be 30 meters and 

3-5 repetitions, respectively [371]. Further, the T group had a non-significant but higher percentage 

of females (71.4% v. 42.9%) and lower frequency of CFRD (35.7% v. 52.4%) compared to the A 

group. The A group had greater days of antibiotic treatment in the year of enrollment (468.9±327.3 

v. 350.9±261.9), number of hospitalizations (0.43±0.6 v. 0.07±0.3), and number of hospital days 

(3.5±7.9 v. 0.36±1.3) compared to the T group, but again these differences did not reach 

significance (p > 0.05). There was no significant differences in frequency of bacterial infection or 

MDR infection between groups. 

 

Pulmonary data for all subjects, divided by ENaC group, are depicted in Figure 1. Results from the 

LMM are depicted in Table 4. No statistically significant differences in pulmonary function 

overtime were seen between groups. It is worth noting that the A group had an FEV1%-predicted 

estimate of 6.02±1.05% and FEF25-75%%-predicted estimate of 7.85±12.21%, which are clinically 

relevant spreads in pulmonary function overtime and warrants further research.  As evidenced by 

the large confidence intervals, the variability in pulmonary function measures may have been too 
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great to detect differences between groups with the sample size. Larger study is needed to better 

define and understand these initial findings.    

 

Discussion  

There were no statistically significant differences in clinical outcomes of interest between those 

who had at least one copy of threonine (AT/TT) at position 663 of the SCNN1A gene compared to 

those with two copies of alanine (AA). Not statistically, but potentially clinically relevant, it was 

observed that 1) over time, those in the A group may maintain better pulmonary function than those 

in the T group and 2) those in the A group had better exercise performance on both the 6MWT and 

1STS. Taken together, these findings provide preliminary data to suggest genetic variation at 

position 663 of the SCNN1A may modify pulmonary disease in CF. Further study is warranted to 

expand on these initial findings. 

 

In the lung, the maintenance and regulation of ASL volume is imperative to proper respiratory 

functioning and is achieved by way of ion-mediated transport [54, 104]. Human airway epithelia 

express ENaC to mediate sodium absorption [153, 226, 364] and CFTR to mediate 

chloride secretion [363], which together work to maintain ion balance and allow for efficient fluid 

clearance and maintenance of ASL volume [14, 54].  In CF, this fluid clearance mechanism is 

disrupted due to defective CFTR protein, which results in sodium hyper-absorption through ENaC 

[15, 54]. As ENaC plays a central role in lung function and CF pathophysiology, functional 

polymorphisms in this channel may impact disease presentation and status.  

 

ENaC is a constitutively active channel and is regulated by both intra- and extra-cellular factors, 

including inhibition by CFTR [250]. Channel activity is impacted by channel number, channel open 

probability, and degree of channel recruitment. For ENaC to be maximally activated it must 

undergo proteolytic processing. Unprocessed ENaC channels are described as “near-silent” 

channels located in the plasma membrane and are not active until they have undergone 

proteolysis [240]. The SCNN1A gene encodes the alpha subunit of ENaC and is expressed 

throughout the body, most heavily in the kidney and lung. Located in exon 13 of the SCNN1A 

gene, a GA SNP at amino acid 663 results in an alanine to threonine substitution. Cell studies 

demonstrate A663T to be a gain-of-function polymorphism with increased channel activity due to 

greater surface expression, likely due to activation of near-silent channels [30-32].  
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Results from cell studies suggest that presence of T663 would cause greater sodium absorption into 

the cell, leading to ion disequilibrium and disease. Indeed, it has been observed that those with 

T663 have a higher risk of hypertension [33], although others have found no difference in risk 

between groups [34, 372]. A meta-analysis examining the role of T663 in hypertension found that 

in North American samples (Caucasian and African American), T663 was associated with greater 

risk of hypertension but not in Southeast Asian samples, suggesting the impact of this 

polymorphism on disease is population dependent [8].  

 

These sparse and inconclusive results are mirrored by those found when examining the impact of 

the A663T polymorphism in lung function and CF disease. In healthy individuals, variation at 

amino acid 663 has been shown to impact lung function, with one study demonstrating a greater 

percent increase in lung diffusion (marker of lung fluid clearance) and greater decrease in systemic 

vascular resistance in response to exercise in those homozygous for A663 [35]. Additionally, in 

response to albuterol, those homozygous for A663 had a greater reduction in exhaled sodium, a 

marker of lung fluid clearance, compared to those with at least one copy of T663, which showed 

no change in exhaled sodium in response to albuterol [36]. Taken together, these results suggest 

that A663, not T663, is associated with greater lung fluid clearance in healthy individuals, opposite 

of findings observed in cell studies. As CF lungs differ considerably from non-CF lungs, the A663T 

polymorphism may impact those with CF in a manner different than healthy individuals. One small 

study found that CF individuals in the T group had significantly lower body weight, body mass 

index, and baseline pulmonary function (FVC%-predicted, FEV1%-predicted, and FEF50%-

predicted) than those in the A group, suggesting that A663 contributes to better health in CF 

subjects [37]. There were not any difference in body weight or BMI between groups in this sample 

but did observe better, though not statistically significant, pulmonary function across time in the A 

group. Additionally, this study found no difference between the groups in response to maximal 

exercise testing, similar to the current findings of functional capacity. Though in our sample the 

difference in performance between the two groups may be clinically relevant even though statistical 

significance was not demonstrated, supporting the need to expanded research on the topic.   

   

It was observed a discrepancy in allele frequency between this sample and those found in previous 

studies. Reports of allele frequency is known to vary between populations with the frequency of 

the A663 allele reported 0.58-0.64 in Asian subjects [34], 0.15 in African American subjects [33], 

and 0.49 in Caucasian subjects [295]. These previously reported frequencies are smaller than the 

current observed frequency of 77.1%, which is similar to other reports in CF patients [28, 37]. The 
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frequency of the TT genotype seems especially sparse in light of previous reports, suggesting that 

there may be a connection between mutations causing CF and variation at position 663, although 

there does not appear to be anything in the literature to support this reasoning. It may be that 

individuals homozygous for the T variant experience a more severe disease progression that was 

not observe in this study due to survivor bias. Further research is needed to better examine and 

understand the mechanisms behind this observation. 

 

This study has several limitations. First, patients self-identified, which may have resulted in a 

selection bias. This could have led to healthier patients being more likely to participate in the study, 

which included functional capacity testing, than those with more severe disease. Second, the sample 

size was smaller than desired, especially given the spread in the data, causing the analysis to be 

under powered to detect any differences in pulmonary function between groups that might actually 

exist. Further, there was an inability to fully examine differences between each genotype (AA, AT, 

TT) due to only having two subjects with the TT genotype. It may be that heterozygotes have 

different clinical profiles than their homozygous counterparts. Further research is needed to better 

address this question. 

 

Conclusion 

There was no detectable differences in clinical markers of CF disease between A663 and T663 of 

the SCNN1A gene. Though not statistically significant, clinically relevant observations of 

potentially preserved lung function overtime and better exercise performance were noted and 

warrants further research. The results suggest that variation at position 663 of the SCNN1A gene 

may modify pulmonary disease in patients with CF, though further research is needed to better 

understand the magnitude of effect and the complexities of how this variation impacts disease 

course and presentation. Additionally, the allelic frequency of T663 was well below that reported 

in previous studies in non-CF populations, suggesting that distribution of allelic frequency may 

differ between CF and non-CF populations. Further research is needed to explore these questions. 
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Table Legend 

 

Table 1. Subject Clinical Characteristics 
 

Table 2. Allele frequency at position 663 of SCNN1A gene 

 

Table 3. Comparison of Clinical Outcomes between Genotypes 

Table 4: Estimated Fixed Effect of AA Genotype on Measures of Pulmonary Function as 

determined by linear mixed models 
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Table 1: Subject Clinical Characteristics 

 
Variable Mean ± SD Range 

Age (years) 30.2 ± 13.1 7.0 – 60.4 

Height (cm) 164.4 ± 14.4 125.6 - 185.4 

Weight (kg) 63.6 ± 19.3 23.8 – 104.0 

BMI (kg/m2) 22.9 ± 4.5 15.1 - 37.0 
Diagnosis Age (months) 3.2 ± 8.5 0 - 41.5 

Resting SpO2 (%) 97.0 ± 1.6 93 – 100 

Resting HR (beats per minute) 86.2 ± 12.6 58- 122 

Systolic Blood Pressure (mmHg) 118.8 ± 13.4 90 – 146 

Diastolic Blood Pressure (mmHg) 76.4 ± 8.1 62- 100 
6MWD (m) 570.1 ± 75.9 405-766 

1STS repetitions 54.8 ± 12.9 23-82 

Annual of antibiotic treatment (days) 421.7 ± 304.5 0 – 1097 

Annual exacerbations (count) 1.0 ± 1.2 0-6 

Annual hospitalizations (count) 0.29 ± 0.52 0 – 2 
Annual hospital days 2.26 ± 6.20 0 – 35 

 Frequency (%)  

Female 19 (54.3)  

F508del homozygous 20 (57.1)  
CFRD 15 (42.9)  

pseudomonas aeruginosa (previous two years) 22 (62.9)  

staphylococcus aureus (previous two years) 22 (62.9)  

Chronic pseudomonas aeruginosa 15 (42.9)  

Chronic staphylococcus aureus 14 (40.0)  
MDR pseudomonas aeruginosa 14 (60.0)  

MDR staphylococcus aureus 5 (14.3)  

Modulator Therapy 20 (57.1)  
BMI = body mass index; SpO2 = peripheral blood oxygen saturation; HR = heart rate; 6MWD = six minute walk distance;  

1STS = one-minute sit-to-stand test; CFRD = Cystic Fibrosis related diabetes; MDR = multi-drug resistant  
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Table 2: Allele frequency at position 663 of SCNN1A gene  

 
Genotype Frequency (%) Allele Allele frequency (%) 

AA 21 (60.0) A 54 (77.1) 

AT 12 (34.0) T 16 (22.9) 

TT 2 (5.7) Total 70 (100) 
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Table 3: Comparison of Clinical Outcomes between Genotypes  
Variable Genotype Mean ± SD Range p-value 

Age (years) AA 31.9 ±12.2 9.1 - 60.4 0.36 

AT/TT 27.7 ± 14.4 7.0 – 45.0 

Height (cm) AA 167.4 ± 10.9 139.0 - 185.4 0.17 

AT/TT 159.9 ± 17.90 125.6 - 182.2 

Weight (kg) AA 65.6 ± 14.1 39.1 - 96.6 0.26 

AT/TT 60.6 ± 25.6  23.8 – 104.0 

BMI (kg/m2) AA 23.16 ± 3.07 18.8 - 28.2 0.38 

AT/TT 22.61 ± 6.25 15.1 - 37.0 

Resting SpO2 (%) AA 96.7 ± 1.6 93 – 100 0.08 

AT/TT 97.5 ± 1.5 94 – 99 

Resting HR (beats per minute) AA 84.8 ± 14.6 58 – 103 0.21 

AT/TT 88.4 ± 9.0 75 – 100 

Systolic Blood Pressure (mmHg) AA 118.3 ± 15.3 90 - 146 0.40 

AT/TT 119.6 ± 10.5 104 -143 

Diastolic Blood Pressure (mmHg) AA 76.8 ± 8.4 67 – 100 0.50 

AT/TT 75.9 ± 8.1 62 - 98 

6MWD (m) AA 580.8 ± 85.8 405-766 0.39 

AT/TT 554.6 ± 59.1 469-640 

1STS repetitions AA 57.7 ± 14.5 23-82 0.19 

AT/TT 50.3 ± 9.0 34-62 

Days of antibiotic treatment (annual) AA 468.9 ± 327.3 0- 940 0.13 

AT/TT 350.9 ± 261.9 0 - 730 

Number of exacerbations (annual) AA 1.00 ± 0.95 0- 3 0.27 

AT/TT 1.00 ± 1.57 0 - 6 

Number of hospitalizations (annual) AA 0.43 ± 0.60 0 - 1 0.06 

AT/TT 0.07 ± 0.27 0 - 1 

Hospital days (annual) AA 3.52 ± 7.78 0 - 10 0.06 

AT/TT 0.36 ± 1.34 0 - 5 

  Frequency   

Female AA 9 (42.9)  0.17 

AT/TT 10 (71.4) 

F508del homozygous AA 12 (57.1)  1.00 

AT/TT 8 (57.1) 

CFRD AA 11 (52.4)  0.32 

AT/TT 5 (35.7) 

pseudomonas aeruginosa  
(previous two years) 

AA 13 (61.9)  0.59 

AT/TT 9 (64.3) 

staphylococcus aureus 

(previous two years) 

AA 11 (52.4)  0.11 

AT/TT 11 (78.6) 

Chronic pseudomonas aeruginosa AA 9 (42.9)  0.47 

AT/TT 7 (50.0) 

Chronic staphylococcus aureus AA 7 (33.3)  0.26 

AT/TT 8 (57.1) 

MDR pseudomonas aeruginosa 

 

AA 7 (33.3)  0.32 

AT/TT 7 (50.0) 

MDR staphylococcus aureus 
 

AA 4 (19.0)  0.15 
 AT/TT 1 (7.1) 

Modulator Therapy AA 11 (52.4)  0.27 

AT/TT 8 (57.1) 

BMI = body mass index; SpO2 = peripheral blood oxygen saturation; HR = heart rate; 6MWD = six minute walk distance; 

1STS = one-minute sit-to-stand test; CFRD = Cystic Fibrosis related diabetes; MDR = multi-drug resistant  
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Table 4: Estimated Fixed Effect of AA Genotype on Measures of Pulmonary Function as determined by linear mixed models 

 
Variable Estimate SE 95% CI p-value 

FVC%-predicted 3.62 5.91 -8.51 – 15.75 0.55 

FEV1%-predicted 6.02 1.05 -8.24 – 20.27 0.40 

FEV1/FVC% -2.53 9.83 -22.75 – 17.69 0.80 

FEF25-75%%-predicted 7.85 12.21 -17.23 – 32.93 0.53 
This model used the middle 75% of pulmonary data which represented 83% of subjects (ages: 13.17 – 41.98) 



50 
 

Figure Legend 

 
 

Figure 1: Measures of pulmonary function across time by genotype group. Scatter plots of  a) 

FVC%-predicted, b) FEV1%-predicted, c) FEV1/FVC-%, and d) FEF25-75%%-predicted are depicted 
with each data point representing pulmonary function parameter at given age in years. Pulmonary 

function was collected during a regularly scheduled clinic visit and adhered to American Thoracic 

Society testing standards. Blue open circles represent the A group and green open triangles 

represent the T group.  
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Figure 1: Measures of pulmonary function across time by genotype group 
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Chapter 4: Study Two - Correlation between Six-Minute Walk 

Test and One Minute Sit-to-Stand and Clinical Outcomes in 

Cystic Fibrosis 
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Synopsis 

Background: Advancements in screening and therapy options has greatly improved clinical course 

and extended lifespan for patients with Cystic Fibrosis (CF). This has created a need for more 

sensitive and dynamic clinical measures to better assess disease state than those traditionally used. 

Exercise testing provides valuable and unique information about disease status in CF.   

  

Methods: Twenty-three subjects were enrolled in the study. All subjects had at least one copy of 

the F508del mutation. Subjects completed the six-minute walk test (6MWT) and one-minute sit-

to-stand test (1STS). Heart rate (HR) and peripheral blood oxygen saturation (SpO2) were measured 

continuously. Dyspnea was measured upon test completion. Test performance, HR, SpO2, and 

dyspnea score were correlated between tests. Medical charts were reviewed for indicators of 

disease. Subjects were followed for at least 120-days and performance on exercise tests were 

evaluated for association with pulmonary exacerbation and hospitalization during follow-up. 

 

Results: Six minute walk distance (6MWD) and 1STS repetitions were significantly correlated 

(r=0.573, p=0.002) but neither outcome correlated with measures of pulmonary function (p>0.05). 

SpO2 and post-test dyspnea score were significantly correlated between tests (r=0.458, p=0.02; 

r=0.433, p=0.047, respectively). Those who desaturated during the 1STS (change in SpO2 > 4% 

from rest) had significantly lower FEV1%-predicted (80.4±19.4% v. 98.0±14.9%, p=0.05) and 

FEF25-75%%-predicted 57.7±32.5 v. 92.8±41.4%, p=0.04) compared to those who did not. Neither 

6MWD nor 1STS repetitions was associated with pulmonary exacerbation during follow -up. 

 

Conclusions: 6MWD and 1STS repetitions were significantly correlated in a sample of clinically 

stable CF patients. The results suggest that the 1STS may be a useful exercise test that can easily 

be incorporated into routine clinical care.  

 

Keywords: F508del, exercise, 6MWT, 1STS, pulmonary function, desaturation 
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Introduction 

Cystic Fibrosis (CF) is an autosomal recessive genetic disease that upsets chloride and sodium 

balance in epithelial tissue, most notably in the lungs, due to dysfunctional Cystic Fibrosis 

transmembrane conductance regulator (CFTR) protein [6, 54]. CF is recognized as the most 

common fatal genetic disease among those of Northern European decent [1, 56], with an estimated 

occurrence of 1 in every 3,200-3,400 live births [57, 58]. The hallmark feature of CF is the 

development of lung disease with substantial mucus build-up in the respiratory tract, leading to 

chronic bacterial infection and eventual respiratory failure [10]. Other organs where CFTR is 

present are also negatively impacted, including the pancreas [296], gastrointestinal tract [297], and 

cardiovascular system [373].  

 

Due to improved screening techniques and advancements in medical care the lifespan of CF 

patients continues to extend [299]. Because of this extra-pulmonary complications have become 

more clinically significant, in particular cardiovascular disruption appears to be an inherent 

characteristic of CF disease [300, 306]. Right and left ventricular dysfunction, arterial stiffness and 

impaired exercise response have all been reported in CF patients and are known to negatively 

impact long-term health  [52, 304, 305] However, current clinical evaluation does not address this 

critical aspect of  disease progression, prompting the need for additional, more holistic clinical 

measures. Exercise testing is a powerful clinical measure as it provides unique assessment of 

multiple body systems including pulmonary, cardiovascular, skeletal muscle, and metabolic [345].  

 

Exercise testing is now recognized as clinically useful for a variety of diseases including heart 

failure, pulmonary hypertension, interstitial lung disease, and CF [346]. Aerobic capacity, as 

measured in exercise testing by both maximal and sub-maximal efforts, is a significant and 

independent predictor of morbidity and mortality in both healthy and diseased states, including CF 

[38, 41]. As such, annual exercise testing in CF patients is now recommended in the United 

Kingdom, Australia, and New Zealand [347]. The gold-standard for exercise testing is a maximal, 

incremental cardiopulmonary exercise test (CPET) performed on either a bike or treadmill while 

collecting exhaled gases to determine peak oxygen uptake (VO2max), exhaled carbon dioxide 

(VCO2), ventilatory efficiency (VE/VCO2), along with other ventilatory measures [345] VO2max is 

the primary outcome measure obtained during CPET and represents the body’s ability to utilize 

oxygen during exercise. VO2max is a strong and independent predictor of death and lung transplant 

in patients with CF and provides valuable disease information beyond standard pulmonary function 

testing [41, 43, 341-343]. In children with mild-to-moderate CF disease, higher aerobic capacity is 
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associated with greater freedom from pulmonary exacerbation requiring hospitalization [344]. One 

large, multi-center study found that those with the highest VO2max and VE/VCO2, a measure taken 

during CPET of how well the lungs are able to meet metabolic demand, at peak exercise had the 

greatest survival after ten years and successfully predicted who was at highest risk for an adverse 

event [342].  

 

Even though CPET is the preferred method for exercise testing, the equipment, time, and staff 

required to regularly perform CPET is oftentimes not feasible for most clinics [352]. To 

accommodate for this limitation, field testing provides a low-cost, efficient alternative for obtaining 

estimates of aerobic capacity [374]. The six-minute walk test (6MWT) and one-minute sit-to-stand 

test (1STS) are validated field tests that require minimal equipment, are easy to administer, and 

have been shown as safe to perform over a wide range of disease severities [375, 376].  

 

The 6MWT is a well-utilized and practical exercise test that has been shown to be valid and reliable 

in the CF population [354, 356, 358]. The 6MWT is routinely used to measure exercise response 

to medical interventions, assess functional capacity, and determine eligibility for lung transplant. 

Six-minute walk distance (6MWD) has been shown to have prognostic ability, with reduced 

distance covered associated with lung transplant and death over 7 [49] and 12 years [51] in CF 

patients. One study in CF youth found that 6MWD predicted risk of hospitalization over a five-

year period, with greater 6MWD associated with reduced risk of hospitalization [48]. Of note, 

desaturation during the 6MWT has been demonstrated to be a clinically useful outcome in patients 

with CF, even in the absence of 6MWD impairment [51, 361]. The 6MWT is an easy-to-administer, 

clinically meaningful test that can be used in the CF population to assess functional capacity and 

exercise tolerance. 

 

Although the 6MWT requires minimal equipment, some clinics may lack a hallway in w hich to 

administer the test. As CF protocol requires stringent infection control procedures, a functional 

capacity test that can be performed in the same space as a clinical exam is desirable. The 1STS 

involves repetitions of alternating sitting to standing and requires only the use of a standard, armless 

chair and can be performed in a clinic room or at a patient’s home [46, 377] . Outcomes from the 

1STS have been correlated with 6MWD in healthy individuals and in COPD [362, 377] as well as 

with VO2max in COPD and CF patients [46, 47]. However, no previous studies have correlated 

response to 1STS and 6MWT in patients with CF. As the 1STS can be utilized in a clinic room or 

at a patient’s home, it may be a more practical test to employ in certain settings.      
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The purpose of this study was to examine the correlation of physiological parameters and outcomes 

collected during the 6MWT to those of the 1STS in a CF population. Further, the study aimed to 

assess the association of the 6MWT and 1STS with days to pulmonary exacerbation requiring 

antibiotic treatment. It was hypothesized that outcomes of the 6MWT would be positively 

correlated with those of the 1STS and that both measures from the 6MWT and 1STS would be 

associated with time to exacerbation. 

 

Methods 

Subjects 

This protocol was approved by the University of Minnesota Institutional Review Board 

(IRB#00000972). Written informed consent was provided by all subjects. Inclusion criteria were 

as follows: 1.) confirmed diagnosis of CF by sweat test and/or genetic evaluation, 2.) at least one 

copy of the F508del mutation, 3.) percent predicted forced expiratory volume in one second 

(FEV1%-predicted) greater than 40% predicted. Exclusion criteria included: 1.) exacerbation or 

change to medication in the four weeks prior to enrollment, 2.) no history of cardiovascular or 

inflammatory disease, and 3.) illness or injury on day of visit.  

 

All patients performed the 6MWT and 1STS at time of enrollment, which took place on the same 

day as a regularly scheduled outpatient clinic visit where routine spirometry and anthropometric 

procedures were performed.  Exercise test administration was randomized for each patient with 

adequate rest time between efforts. Historical and post-visit pulmonary function and 

anthropometric data was collected from the medical record along with relevant clinical information 

(genetic mutation, presence of comorbidities, bacterial colonization, exacerbation, use of modulator 

medication, and antibiotic treatment). Chronic pseudomonas aeruginosa colonization was defined 

as at least 50% of sputum samples in the previous year [378]. Patients were followed for at least 

120-days after date of enrollment for documented pulmonary exacerbation, antibiotic prescription, 

hospitalization, and pulmonary function testing. 

  

Pulmonary Exacerbation 

Days to exacerbation were recorded during the follow-up period. Presence of exacerbation was 

defined based on provider notes and prescription of antibiotic(s). Follow-up time ranged from 120 

days to 300 days. 
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Lung Function  

Lung function was assessed during regularly scheduled clinic visits according to American 

Thoracic Society guidelines and standards [367]. Forced vital capacity (FVC), forced expiratory 

volume in one second (FEV1), ratio of forced expiratory volume in one second to forced vital 

capacity (FEV1/FVC), and forced expiratory flow 25 to 75% of FVC (FEF25-75%) were recorded. 

All results are expressed in %-predicted.  

  

Six-Minute Walk Test 

The 6MWT was performed according to American Thoracic Society guidelines [354]. Using 

standardized language, subjects were instructed to walk as far as possible during the test time, 

which took place in an enclosed, 30-meter hallway. They were assured they could rest at any time 

during the test and could end the test at any time. Subjects were given standard encouragements 

during the test.  The protocol was demonstrated by the researcher, and an opportunity to practice 

the test procedure was provided to reduce learning effect. Heart rate (HR) and peripheral blood 

oxygen saturation (SpO2) were collected at rest, during exercise, and immediately post-test via a 

blue-tooth enabled finger probe (Masimo MightStat, Masimo Corp., Irvine, CA, USA).  

Desaturation was defined as change in SpO2 greater than 4% from rest [360, 379]. Perception of 

dyspnea was evaluated using the modified Borg scale at the beginning and end of the test.  

  

One-Minute Sit-to-Stand Test 

The 1STS was performed according to previously described methods using a standard 48cm 

armless chair [370, 371]. The subject started in a seated position with knees and hips flexed as close 

to 90o as possible with feet hip-width apart and hands on hips. Subjects were instructed to perform 

as many self-paced sit-to-stand repetitions as possible during the test. To be counted as a repetition, 

knees had to be entirely straightened during the stand portion; with the buttocks making contact 

with the chair on the sit portion. The protocol was demonstrated by the researcher, and an 

opportunity to practice the test procedure was provided to reduce learning effect. HR and SpO2 

were collected at rest and immediately post-test. Desaturation was defined as change in SpO2 

greater than 4% from rest to immediately post-test. Perception of dyspnea was evaluated using the 

modified Borg scale at the beginning and end of the test. 

  

Statistical Analysis 

Statistical analysis was performed using SPSS (Version 23, IBM Corp., Armonk, NY). Data 

normality was assessed by Shapiro-Wilk test and comparisons of means was performed using 
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Student’s independent t-test or Mann-Whitney U, depending on data normality. Continuous 

variables are presented as mean ± SD and categorical variables are presented as absolute frequency 

(%). Correlations were performed using Spearman test. Statistical significance was set at p < 0.05. 

 

Univariate Cox proportional hazards regression were determined with days to exacerbation as the 

dependent variable and the following independent variables: age, body mass index (BMI), sex, 

chronic pseudomonas aeruginosa colonization, Cystic Fibrosis Related Diabetes (CFRD), 1STS 

repetitions, 6MWD, FVC%-predicted, FEV1%-predicted, FEV1/FVC%-, and FEF25-75%%-

predicted.  

 

To determine the association of 6MWD and 1STS repetitions with exacerbation during the follow-

up period, relative risk and 95% confidence interval were calculated. Subjects were categorized as 

either above or below the median value for 6MWD and 1STS repetitions.        

 

Results 

A sub-sample from Study One was used to complete this study. Twenty-three subjects were 

enrolled in this study (10 male, 13 female, mean age = 35.5±9.3 years) and all subjects identified 

as non-Hispanic Caucasian. Demographic and clinical characteristics are presented in Table 1. 

Thirteen subjects (56.5%) were homozygous for F508del mutation, with the remaining subjects 

being F508del heterozygotes. Due to technical difficulties not all HR and SpO2 data were collected 

on all subjects at all time-points therefore the sample size (n) is reported for test results that do not 

include the entire sample. The subjects were relatively healthy CF patients with a mean BMI of 

23.87±3.39kg/m2, mean FEV1%-predicted of 82.7±19.6% and mean FVC%-predicted of 

94.8±12.3%. All but one subject had pancreatic insufficiency, with 12 (52.2%) having Cystic 

Fibrosis Related Diabetes (CFRD) and 14 (60.9%) with chronic pseudomonas aeruginosa 

colonization. Fourteen (60.8%) subjects were on modulator therapy at time of testing. There was 

no significant difference in walk distance between females and males (559.8m, 103.1 v. 567.8m, 

59.5 p=0.82), but females did achieve significantly more repetitions during the 1STS (59.7, 9.8 v. 

48.5, 14.2 p = 0.036). 

 

As seen in Figure 1, 6MWD and 1STS repetitions were significantly correlated (r = 0.573, p = 

0.02). Table 2 summarizes correlation coefficients for 6MWD, 1STS repetitions, and measures of 

pulmonary function. Neither 6MWD nor 1STS was correlated with measures of pulmonary 

function (FVC, FEV1, FEV1/FVC, and FEF25-75%, p>0.05). SpO2 (r = 0.458, p = 0.02) and post-test 



59 
 

dyspnea score (r = 0.433, p = 0.047, n = 22) were significantly correlated between tests, however 

post-HR was not (r = 0.198, p = 0.201, n = 20). Post-test dyspnea score was significantly higher 

after the 1STS compared to the 6MWT (Figure 2; 3.8 ± 1.7 v. 2.9 ± 1.3, p = 0.03). No differences 

in 6MWD or 1STS repetitions were found between homozygous F508del, CFRD, or modulator 

therapy (p > 0.05). Those with chronic pseudomonas aeruginosa colonization had significantly 

greater 6MWD (595.0±72.9m v 524.4±72.0m, p=0.02) and tended to have greater 1STS repetitions 

(58.5±8.6 v. 50.1±16.3, p = 0.06) compared to those without chronic pseudomonas aeruginosa 

colonization. 

 

Differences in measures of pulmonary function did not differ between those who desaturated and 

those who did not during the 6MWT (Table 3, p > 0.05). However, those who desaturated during 

the 1STS had significantly lower FEV1%-predicted (80.4±19.4% v. 98.0±14.9%, p = 0.05) and 

FEF25-75%%-predicted (57.7±32.5% v. 92.8±41.4%, p = 0.04) compared to those who did not 

(Figure 3).  

 

Twelve individuals experienced a pulmonary exacerbation during follow-up. Univariate Cox 

proportional hazards were calculated using the predictors of age, BMI, sex, chronic pseudomonas 

aeruginosa colonization, CFRD, 1STS repetitions, 6MWD, FVC%-predicted, FEV1%-predicted, 

FEV1/FVC%-predicted, and FEF25-75%%-predicted to explain days to exacerbation. Univariate 

analysis demonstrated FEF25-75%%-predicted to be the only variable significantly associated with 

days to exacerbation (p = 0.02). The median distance walked during the 6MWT was 582.5m and 

the median STS repetitions was 59. There was no increase in risk of exacerbation during follow-up 

for those who performed below the median values for either the 6MWT (risk = 1.5, 95%CI = 0.68 

- 3.42) or 1STS (risk = 0.78, 95% CI = 0.35 - 1.7).  

 

Discussion 

It was observed that 6MWD was significantly correlated with 1STS repetitions but neither was 

correlated with measures of pulmonary function in a sample of clinically stable CF subjects. 

Further, it was observed that those who desaturated during the 1STS, but not the 6MWT, had 

significantly lower FEV1- %predicted and FEF25-75%%-predicted compared to those who did not 

desaturate during testing. These findings support the use of the 1STS in the CF population to assess 

functional capacity when the equipment and/or space for CPET or 6MWT is unavailable. These 

results further contribute to the literature that exercise testing in CF patients is a valuable tool to be 
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utilized in clinic as it provides a full assessment of disease beyond that captured in lung function 

testing alone.    

 

The classic marker of morbidity and mortality in CF is FEV1%-predicted and this measure is the 

primary driver of clinical decision making. However, improvements in early intervention and 

therapy options have slowed pulmonary decline, meaning this outcome may no longer be sensitive 

enough to indicate disease progression, especially as individuals live longer and develop more 

extra-pulmonary co-morbidities. Exercise testing has been shown to be a reliable and sensitive 

measure in CF, with exercise parameters demonstrating prognostic and interventional ability, even 

when FEV1 is unaffected [41, 43, 48]. One study, in a sample of relatively healthy pediatric CF 

patients, found that VO2max as measured by CPET, but not FEV1%-predicted, was significantly 

correlated with structural damage as assessed by Bhalla score using High Resolution Computed 

Tomography [380]. Further, over a two-year period, Bhalla score and VO2max decreased 

significantly, while FEV1%-predicted remained stable. Rosenfeld and colleagues (2001) found that 

reports of decreased exercise tolerance had a greater association with pulmonary exacerbation (OR 

= 22.4) compared to classic markers including change in sputum appearance (OR = 11.4) and 

decline in FEV1%-predicted (OR = 2.7) [381]. These findings confirm that exercise testing provides 

a unique opportunity to examine the complex, interacting systems of the pulmonary, 

cardiovascular, metabolic, and muscular systems in a way that system-specific tests do not and 

therefore should be included in routine clinical evaluation.  

 

CPET is the gold standard for exercise testing and provides the most complete information about 

exercise parameters and limitations to exercise performance. However, CPET requires the use of 

expensive, space-consuming equipment and trained professionals to complete testing. Further, the 

stringent infection prevention protocol in CF requires disposal and extensive cleaning of equipment 

beyond normal requirements, resulting in additional expense and logistic complexity. Therefore, 

submaximal field testing lends itself well to assessing functional capacity in CF patients. Indeed, 

the 6MWT has been shown to be a valid and reliable measure in CF [356, 358] and has been shown 

to be significantly correlated with CPET [50].  Further, it is known to have significant prognostic 

ability, with shorter distance covered associated with hospitalization, antibiotic use, lung transplant 

and death [48, 49, 51]. Although the 6MWT is a well-used test, it requires a dedicated space to 

perform and not all clinics have an unobstructed, long hallway to perform the test. As such, it is of 

interest to explore exercise testing that may be done in a clinic room or at home with already 

available space and equipment. The 1STS mimics movements performed during daily activities 
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and can be used to measure lower limb muscle function and functional capacity [382, 383]. The 

1STS has been most explored in COPD, where it has been shown to be associated with quadriceps 

muscle force, quality of life, and mortality [46]. In CF, Radtke and colleagues have demonstrated 

that the exercise response to 1STS was significantly correlated with the exercise response to CPET 

and measures of quality of life [47, 382]. These findings were confirmed by Gruet et al. (2016) who 

also demonstrated that desaturation during 1STS was significantly related to desaturation during 

CPET, demonstrating its ability as a surrogate measure for CPET [50]. Further, the 1STS lends 

itself well to repeated testing and may be useful to track daily changes in exercise tolerance to allow 

for better early identification and treatment of pulmonary exacerbation.  

 

For the 6MWT, subjects walked similar distances to those previously reported in CF patients with 

similar pulmonary function [51, 360], which is shorter than previous reports of the mean 6MWD 

of healthy participants between 602 and 667 meters [362, 384, 385]. This sample performed more 

1STS repetitions than has been reported in COPD patients [371] but was similar to what has been 

reported in CF patients [47]. The 6MWT and 1STS have been shown to be significantly correlated 

in healthy [362] and COPD [371, 377] samples, but their relationship has not previously been 

assessed in CF patients. It was observed that 6MWD and 1STS repetitions were significantly 

correlated with one another. SpO2 and dyspnea were significantly correlated between tests, but HR 

response was greater during 6MWT, suggesting a higher reliance on cardiovascular function during 

this test. Individuals with CF have been shown to have attenuated cardiac function in response to 

exercise, with lower stroke volume and cardiac output compared to healthy individuals [305]. As 

such, performing the 6MWT appears to be more taxing on the cardiovascular system and therefore 

may have elicited more compensatory mechanisms (i.e. increased HR) than the 1STS. Additionally, 

dyspnea scores after the 1STS, although correlated with those during the 6MWT, were significantly 

higher than dyspnea scores following the 6MWT. As the 1STS is a measure of lower limb function, 

which has shown to be impaired in CF, this finding suggests that stress to the muscular system is 

perceived as more demanding to relatively healthy CF patients compared to cardiopulmonary 

stress.  

 

The 1STS mimics activities performed in daily life (climbing stairs, short sprints, etc.) that stress 

the anaerobic system. Anaerobic metabolism has been shown to be impaired in CF individuals  

[350, 386] and anaerobic capacity has been shown to be related to pulmonary function in some 

reports [387]. There was not a significant correlation between the 6MWT or 1STS with measures 

of pulmonary function, similar to previous reports [350, 358, 388], suggesting that exercise 
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performance was not limited by pulmonary factors in the sample. Additionally, there was not a 

significant association between occurrence of pulmonary exacerbation and performance on 6MWT 

or 1STS or an increased risk of exacerbation in those who performed below the median value for 

either test. These results are somewhat dissimilar to previous findings that reported the prognostic 

ability of the 6MWT in CF patients. Martin et al. (2013) observed an increased risk of lung 

transplant and death for those who had the shortest 6MWD at 12-year follow-up [51]. These 

findings were replicated Flores et al. (2016) at a 7-year follow-up [49] and supported by another 

study which found 6MWD predicted risk of hospitalization over a five-year period in CF youth 

[48]. This study has important differences when compared to these previous studies and may 

explain the differences in findings. First, the follow-up time in this study was much shorter than 

previous studies. Second, the outcome of interest was acute pulmonary exacerbation, not severe 

disease events. Third, the sample was overall healthier and more homogenous than previously 

reported samples. In the sample, pulmonary function does not appear to be a limiting factor in 

performance on the 6MWT or 1STS as indicated by the lack of correlation between test 

performance and pulmonary function. As drop in FEV1%-predicted is a major driver in the 

diagnosis of pulmonary exacerbation, it may be that in relatively healthy CF patients the lack of 

correlation between functional capacity and pulmonary function explains the lack of association 

between exacerbation and performance. To better comprehend the physiology behind these 

findings further research is needed to understand the limiting factors in exercise performance in 

CF. Desaturation during the 1STS was found to be significantly associated with desaturation during 

CPET, supporting the role of 1STS desaturation as a surrogate marker for CPET saturation status 

[50]. Those who desaturated during the 1STS, but not the 6MWT, had significantly lower FEV1%-

predicted, congruent with previous findings. These findings support the clinical usefulness of the 

1STS in those with CF.  

 

This study had several limitations. Firstly, a control group was not included by which to compare 

the results. Previous work on the 6MWT and 1STS has provided some reference values by which 

to compare this sample [362, 385]. However, these previously reported values do not necessarily 

correspond to the anthropometric or disease status of this sample. Secondly, the sample size was 

small and relatively healthy, limiting the generalizability and depth of conclusions that can draw 

from the data. Finally, individual differences in limb length, height, body mass, and daily physical 

activity levels, which may impact performance on 6MWT and 1STS, were not accounted for in 

analysis. Previous reports are inconclusive on whether these anthropometrics impact outcomes [47, 

50, 389]. Further research is needed to better understand these interactions.  
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Both the 1STS and 6MWT have been shown to be sensitive to intervention and changes in disease 

status, with minimal clinical importance of 3-5 repetitions and 30-meters being reported, 

respectively [371, 382]. These findings further support the sensitivity and usefulness of these tests 

in clinical practice. An association between pulmonary exacerbation during follow-up and 

performance on 6MWT or 1STS was not observed in this study. However, both tests have been 

shown to provide clinically meaningful information outside of traditionally used clinical measures 

and further support the notion that exercise testing should be incorporated into monitoring of CF 

patients. The 1STS lends itself well to routine clinical testing as it can be performed in a clinic 

room using already available equipment and provides information beyond resting measures. 

Further, it can be performed at home and be used as a daily measure to assess reduced exercise 

tolerance, an important marker of pulmonary exacerbation. The results of this study support the use 

and clinical importance of the 6MWT and 1STS in CF patients.  

 

Conclusion 

The main finding from this study was 6MWD and 1STS repetitions were significantly correlated 

in a sample of relatively healthy CF patients. There was not an association between functional 

capacity testing and pulmonary exacerbation during follow-up. However, is was observed that 

those who desaturated during the 1STS had significantly lower FEV1%-predicted, suggesting the 

usefulness of this test during routine clinical care.  
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Table Legend 

Table 1. Subject Clinical Characteristics and Resting Values  

 

Table 2. Correlations between 6MWT, 1STS and measures of pulmonary function. 

 

Table 3. Performance and Physiological Response to 6MWT and 1STS 
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Table 1: Subject Clinical Characteristics and Resting Values 

 
Variable Female (n=13) Male (n=10) p-value All 

Age (years) 33.5 ± 8.1 38.2 ± 10.5 0.245 35.5 ± 9.3 

Weight (kg) 61.1 ± 12.9 78.1 ± 12.7 0.003* 68.5 ± 15.2 

Height (cm) 164.2 ± 9.2 174.1 ± 6.5 0.005* 168.5 ± 9.4 

BMI (kg/m2) 22.5 ± 3.0 25.7 ± 3.1 0.012* 23.9 ± 3.4 
Systolic Blood Pressure 

(mmHg) 

117.2 ± 10.5 127.2 ± 11.7 0.040* 
121.5 ± 11.9 

Diastolic Blood Pressure 

(mmHg) 

75.0 ± 7.9 81.5 ± 8.1 0.012* 
77.8 ± 8.5 

Resting HR (beats per 
minute) 

78.1 ± 9.0 82.5 ± 11.6 0.314 
80.0 ± 10.2 

Resting SpO2 97.5 ± 1.3 96.4 ± 1.0 0.040* 97.0 ± 1.2 

FEV1%-predicted 79.7 ± 15.4 86.7 ± 24.3 0.407 82.7 ± 19.6 

FVC%-predicted 92.8 ± 10.7 97.4 ± 14.3 0.391 94.8 ± 12.3 

FEV1/FVC%-predicted 71.7 ± 9.9 71.1 ± 11.3 0.894 71.4 ± 10.3 
FEF25-75%%-predicted 59.7 ± 9.8 72.5 ± 43.9 0.258 62.8 ± 35.4 

6MWD (m) 567.8 ± 59.5 559.8 ± 103.1 0.816 564.3 ± 79.3 

1STS repetitions 59.7 ± 9.8 48.5 ± 14.2 0.036* 54.8 ± 12.9 

Variable    Frequency (%) 

Female    13 (56.5) 

Homozygous F508del    13 (56.5) 

Modulator Therapy    14 (60.8) 
CFRD    12 (52.2) 

Chronic pseudomonas 

aeruginosa 

   14 (60.9) 

BMI = body mass index; HR = heart rate; SpO2 = peripheral blood oxygen saturation; FEV1 = Forced expiratory flow 

in one second; FVC = forced vital capacity; FEF25-75% = Forced expiratory flow at 25-75%; 6MWD = six-minute walk 

distance; 1STS = one-minute sit-to-stand test; CFRD = Cystic Fibrosis related diabetes 

Continuous data presented as mean ± standard deviation 

*Denotes significance at p < 0.05



66 
 

Table 2: Correlations between 6MWT, 1STS and measures of pulmonary function 

 

Variable 6MWD p-value 1STS Repetitions p-value 

6MWD - - 0.573 0.002* 

1STS repetitions 0.573 0.002* - - 

FVC%-predicted 0.101 0.323  0.206 0.173 

FEV1%-predicted 0.061 0.390  0.012 0.478 

FEV1/FVC%-predicted 0.117 0.297 -0.042 0.425 

FEF25-75%%-predicted 0.085 0.350 -0.086 0.348 
6MWD = six minute walk distance; 1STS = one-minute sit-to-stand; FEV1 = Forced expiratory flow in one second; 

FVC = forced vital capacity; FEF25-75% = Forced exiratory flow at 25-75% 

Data presented are correlation coefficients obtain from Spearman correlat ion test.  

*Denotes statistical significance at p < 0.05
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Table 3: Performance and Physiological Response to 6MWT and 1STS  
 
Variable Mean ± SD 

6MWT  

6MWD (m) 564.3 ± 79.3 

Post-SpO2 95.2 ± 2.1 

1-min post-SpO2 97.1 ± 1.4 
Delta SpO2 -4.3 ± 2.8 

 Post-HR 116.6 ± 15.8 

1-min post-HR 98.3 ± 11.0 

Post-Borg 2.9 ± 1.3 

1-min post-Borg 2.0 ± 1.2 

1STS  

1STS Repetitions 54.8 ± 12.9 

Post-SpO2 94.8 ± 2.8 
1-min post-SpO2 96.8 ± 1.3 

Delta SpO2 -2.3 ± 2.8 

 Post-HR 113.7 ± 9.2 

1-min post-HR 95.0 ± 11.4 

Post-Borg 3.8 ± 1.7 

1-min post-Borg 2.2 ± 1.5 

Variable Frequency 

6MWT – Desaturation  7 (30.4) 

1STS – Desaturation 4 (17.4) 

Any Desaturation 11 (47.8) 
6MWD = six minute walk distance; SpO2 = peripheral blood oxygen saturation 

HR = heart rate; 1STS = one-minute sit-to-stand; 6MWT = six minute walk test  
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Figure Legend 

 

Figure 1: Correlation of 6MWD and STS repetitions. Subjects completed 6MWT and 1STS on the 

same day of testing. Performance measures of 6MWD and STS repetitions were found to be 

significantly correlated using Spearman test (r = 0.573, p = 0.02). 

 

Figure 2: Comparison of perceived dyspnea score immediately post-exercise test. Subjects 

completed 6MWT and 1STS on the same day. Measures of perceived dyspnea score using the 

Modified Borg Scale were collected at the end of each test. Bars represent mean dyspnea score as 

reported using modified Borg Scale. Error bars represent standard mean error.  

 

Figure 3. Pulmonary function parameters and desaturation during exercise. Measures of SpO2 were 

collected immediately upon ceassation of the 1STS. Desaturation was defined as change in SpO2 > 

4% from resting to end-of-exercise. Pulmonary function compared between subjects who did and 

did not desaturate during the 1STS. Bars represent mean value and error bars represent standard 

error mean.  
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Figure 1: Correlation of 6MWD and 1STS repetitions. 
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Figure 2: Comparison of perceived dyspnea score immediately post-exercise 

 
 

 
6MWT = six-minute walk test; STS = one-minute sit-to-stand  

* denotes signifigance (p < 0.05)      
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Figure 3: Pulmonary function parameters and desaturation during exercise 

 

 
 
FEV1 = Forced expiratory volume in one second; FEF25-75% = Forced expirtory flow 25-75% 

* denotes signifigance (p < 0.05) 
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Chapter 5: Study Three - Evaluation of the Desaturation-

Distance Ratio in Cystic Fibrosis Patients 
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Synopsis  

Background: The six-minute walk test (6MWT) is a well-validated clinical exercise test used to 

monitor a variety of patient populations. Traditional performance measures obtained during the 

6MWT have been significantly correlated with hospitalization, time to lung transplant, and death 

in patients with Cystic Fibrosis (CF). Use of additional measures derived from the 6MWT may 

provide valuable clinical information beyond traditional measures. The purpose of this study was 

to examine the clinical utility of the desaturation-distance ratio (DDR) in patients with CF. 

  

Methods: Twenty subjects were enrolled in the study. All subjects had at least one copy of the 

F508del mutation. Subjects completed the six-minute walk test (6MWT) with heart rate (HR) and 

peripheral blood oxygen saturation (SpO2) being measured continuously. Two version of DDR 

were calculated (DDRTotal and DDRSimple) using the ratio of the sum of desaturation during the 

6MWT and distance covered (6MWD). Subjects were followed for at least 120-days and medical 

charts were reviewed for indicators of disease. Performance on exercise tests were evaluated for 

association with pulmonary exacerbation and hospitalization during the follow-up. 

 

Results: The average 6MWD was 568.0±79.7m, average DDRtotal was 2.93±0.85 and average 

DDRsimple was 0.045±0.02. Both measures of DDR(total and simple) provided greater correlation with 

classic clinical measures than either 6MWD or SpO2 alone, though DDRtotal correlated better with 

measures of pulmonary function and 6MWD than DDRSimple, suggesting that DDRtotal is a better 

indicator of lung function and functional capacity than DDRsimple in those with CF.  Those who 

experienced a pulmonary exacerbation during follow-up had significantly higher DDR (total and simple) 

than those who did not have a pulmonary exacerbation during follow-up. There was no difference 

in 6MWD between those who did and did not have a pulmonary exacerbation. 

 

Conclusions: DDR was significantly correlated with clinical measures of CF disease and may be 

useful when evaluating functional capacity in the CF population, especially when used in 

conjunction with typical 6MWT measures.  

 

Keywords: F508del, exercise, six-minute walk test, DDR, pulmonary function, desaturation  

 

Funding: None  
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Introduction 

Cystic fibrosis (CF) is one of the most common autosomal recessive genetic disorders among 

Caucasians [56]. It is multi-system disease that is primarily characterized by chronic airway 

infection and progressive respiratory disease, with approximately 90% of CF patients dying from 

respiratory failure [390]. Improvements in disease identification, organization of care, therapy 

regiments, and medication options have led to vast improvements in clinical outcomes, increasing 

the median age of survival from approximately 10 years in the 1960s to over 40 years today [391]. 

With improving survival rates, emergence of non-lung co-morbidities not previously associated 

with CF are emerging. Notably, cardiovascular function has been shown to be attenuated in those 

with CF with increased vessel stiffness and cardiac dilation being noted [300, 301, 373, 392]. These 

new disease trends have prompted a need for sensitive and dynamic clinical outcomes that are able 

to assess multiple organ systems and their interactions to best measure disease severity [345].  

 

Exercise capacity, as determined by maximal cardiopulmonary exercise testing (CPET), measures 

the functionality and coordination of the pulmonary, cardiovascular, and muscular systems to 

provide key insight in (dys)function of each system and their interactions that may not be apparent 

at rest [38, 345, 347]. CPET has been shown to be a significant independent predictor of morbidity 

and mortality in CF patients and provides meaningful information on disease severity and clinical 

outcomes [41, 43, 341-343]. As such, some countries recommend annual exercise testing for CF 

patients [337]. 

 

Although maximal CPET testing is the gold standard and provides valuable information, the 

equipment and staff needed to perform these tests may exclude facilities from being able to 

administer these tests [352]. The six-minute walk test (6MWT) is a simple and inexpensive field 

test that is designed to be administered in a variety of settings with minimal training [369]. The 

6MWT has been shown to have prognostic value in a variety of disease populations, including CF.  

Martin et al. (2013) demonstrated, in a large diverse sample, that six-minute walk distance (6MWD) 

and desaturation during the 6MWT were indicative of increased risk of lung transplant or death 

[51]. Further, a study examining 6MWT in youths found that 6MWD, but not FEV1, had a strong 

negative correlation with hospitalization days and that greater 6MWD reduced the risk of 

hospitalization over a five-year period [48]. The 6MWT is a useful tool in measuring disease status 

in patients with CF. 
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In addition to exercise capacity, desaturation during exercise has been shown to be an important 

indicator of disease severity. In those with idiopathic interstitial pneumonia, desaturation during 

exercise testing was a better predictor of mortality than exercise capacity alone [393]. Even without 

differences in 6MWD, one study found that CF patients who desaturated during 6MWT had greater 

clinical severity scores and bacterial infections than those who did not desaturate [360]. Further, 

greater desaturation during the 6MWT was associated with greater odds of lung transplant or death 

in a seven-year follow-up of CF patients [49]. The 6MWT demonstrates clinical relevance in 

characterizing the progression of CF disease, with outcomes obtained from the 6MWT providing 

insight into disease severity separate from pulmonary function testing.  

 

As 6MWD and desaturation during exercise have been shown to be important indicators of disease, 

a measurement that takes both these variables into account may prove more useful than either alone. 

The desaturation-distance ratio (DDR) is a measurement that has been used in COPD and non-CF 

lung disease and encompasses both 6MWD and desaturation during exercise [394-396]. Previous 

work has shown its usefulness as a clinical outcome in providing additional information about 

exercise response than either 6MWD or desaturation alone. However, no work has been done to 

examine the usefulness of DDR in CF. The purpose of this study was to evaluate whether DDR 

provides additional benefit in the functional assessment of CF patients.           

 

Methods 

 
Subjects 

All study procedures were approved by the Institutional Review Board at the University of 

Minnesota (IRB#00000972). Subjects were recruited via email from a listserv maintained by the 

Minnesota Cystic Fibrosis Center. All subjects provided written informed consent. Patients were 

eligible for participation if they had a confirmed diagnosis of CF by sweat test and/or genetic 

evaluation and had at least one copy of the F508del mutation, had a forced expiratory volume 

(FEV1) greater than 40% predicted, and had no history of cardiovascular or inflammatory disease. 

Patients were excluded if they had experienced an exacerbation or change to medication in the four 

weeks prior to enrollment or were sick/injured the day of visit. 

 

Six-Minute Walk Test 

Twenty-four participants met eligibility criteria and were included in the study. Of those, five did 

not have analyzable heart rate (HR) and SpO2 data during the walk test so they were excluded from 
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calculations for DDR. The 6MWT was performed according to current American Thoracic Society 

guidelines [354] and was administered by a trained researcher. Patients were instructed to walk as 

far as possible at their own pace along a 30-meter indoor corridor and were assured they could rest 

or stop at any time during the test. Test procedures were demonstrated by the researcher and an 

opportunity to practice directions was given prior to the start of the test to reduce learning effect. 

Standard phrases were communicated every minute. HR and SpO2 were evaluated continuously at 

two-second intervals during the duration of the test and during recovery via a blue-tooth enabled 

finger probe (Masimo MightStat, Masimo Corp., Irvine, CA, USA). Measures of dyspnea were 

taken at the beginning and end of the 6MWT using the modified Borg scale [397]. Demographic, 

anthropometric, and lung function data was collected from patient medical records.  

 

Desaturation Distance Ratio (DDR) 

The desaturation area (DA) was calculated as previously described [394, 395]. Briefly, the total 

area above the SpO2 curve was calculated by subtracting each SpO2 reading from 100% and then 

adding all the differences together. DDR was then calculated by using the equation DDR = 

DA/6MWD. Two versions of the DDR (DDRtotal and DDRsimple) were calculated based on different 

methods described in the literature [394, 395]. DDRtotal used SpO2 readings taken every two seconds 

whereas DDRsimple calculated DA based on SpO2 readings taken each minute. 

 

Lung Function 

Lung function was assessed during regularly scheduled clinic visits according to American 

Thoracic Society guidelines and standards [367]. Forced vital capacity (FVC), forced expiratory 

volume in one second (FEV1), ratio of forced expiratory volume in one second to forced vital 

capacity (FEV1/FVC), and forced expiratory flow 25 to 75% of FVC (FEF25-75%) were recorded. 

All results are expressed in %-predicted. 

 

Pulmonary Exacerbation 

Days to exacerbation were recorded during the follow-up period. Presence of exacerbation was 

defined based on provider notes and prescription of antibiotic(s). Follow-up time ranged from 120 

days to 300 days. 

 

Statistical Analysis 

All statistical analyses were performed using SPSS Statistics for Windows, Version 23 (IBM 

Corporation, Armonk, NY, USA). All quantitative data is expressed as mean±SD or counts and 
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percentages, where appropriate. Student’s independent t-test was performed to compare outcome 

means between significant markers of disease. Correlations between 6MWT, DDR, and pulmonary 

function were assessed using Spearman’s correlation coefficient. Significance was set at 0.05.   

 

Univariate Cox proportional hazards regression were determined with days to exacerbation as the 

dependent variable and the following independent variables: DDRTotal, DDRSimple, 6MWD, FVC%-

predicted, FEV1%-predicted, FEV1/FVC%, and FEF25-75%%-predicted.  

 

Results 

Subjects used in this study represent a sub-sample from Study One. Twenty-four participants (11 

males, 13 females) completed study procedures and were included in analysis, however due to 

technical difficulties during data collection DDR values were not able to be calculated for five 

participants. Sample characteristics are described in Table 1. Subjects had relatively healthy lungs 

with an average FEV1-%predicted of 82.0±19.5% and average FVC-%predicted of 94.5±12.1%. 

Ten participants had an FEV1-%predicted below 80%, indicative of mild obstructive lung disease. 

All participants had at least one copy of the F508del mutation, with fourteen participants being 

F508del homozygous. All but one subject were pancreatic insufficient and 13 subjects had CF-

Related Diabetes (CFRD) (54.2%).  

 

The average 6MWD for all participants was 568.0±79.7m with a range of 405-766 meters. Distance 

covered did not differ significantly between FEV1-%predicted status (below 80%predicted: 

563.1±83.5 meters v. above 80%predicted: 571.5±79.8 meters, p = 0.4), number of F508del copies 

(homozygous: 552.8±84.0 v. heterozygous: 589.2±71.9 meters, p = 0.14), or presence of CFRD 

(present: 549.65±77.5 v. absent: 589.7±80.2 meters, p = 0.11). All subjects completed the 6MWT 

without stopping and no subject required supplemental oxygen. 6MWD correlated significantly 

with measures of heart rate response but not measures of SpO2 or pulmonary function (Table 2).  

 

DDRtotal was calculated for nineteen participants and DDRsimple was calculated for twenty 

participants where satisfactory data was collected. Average DDRtotal was 2.93±0.85 and average 

DDRsimple 0.045±0.02. Results from Spearman analysis are depicted in Table 2. DDRtotal, but not 

DDRsimple, was significantly correlated with FEV1%-predicted (r= -0.401, p = 0.045 and r = -0.301, 

p = 0.099, respectively) and FVC%-predicted (r = -0.412, p = 0.047; r = 0.003, p = 0.496). Both 

measures were significantly correlated with FEV1/FVC-% (r = -0.412, p = 0.040; r = -0.539, p = 

0.007). Neither were correlated with FEF25-75%-predicted (r = -0.372, p = 0.059 and r = -0.335, p = 
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0.075, respectively). These findings suggest that DDRtotal is a better indicator of lung function than 

DDRsimple in those with CF.  Interestingly, DDRsimple correlated with more measures of SpO2 than 

DDRtotal.  DDRtotal, but not DDRsimple, was correlated with 6MWD (r = -0.438, p = 0.030 and r = -

0.222, p = 0.173, respectively). Resting HR and SpO2 were not significantly correlated with 

measures of DDR, 6MWD or pulmonary function, however HR response during exercise was 

correlated with 6MWD. Dyspnea as measured by Borg scale was not significantly correlated with 

DDRtotal, DDRsimple, 6MWD, or measures of pulmonary function. 

 

Eleven individuals experienced a pulmonary exacerbation during follow-up. Univariate Cox 

proportional hazards were calculated using the predictors DDRTotal, DDRSimple, 6MWD, FVC%-

predicted, FEV1%-predicted, FEV1/FVC%, and FEF25-75%%-predicted to explain days to 

exacerbation. None of the measures of pulmonary function, DDR measures, or 6MWD were 

significantly associated with days to exacerbation. Those who experienced an exacerbation during 

follow-up had significantly higher DDR(total and simple) (1.62±0.41 v. 1.24±0.36, p=0.03; 5.36±1.55 v. 

4.03±0.95 p=0.02, respectively). There was no difference in 6MWD between those who did and 

did not experience an exacerbation during follow-up (554.5±95.8 v 589.3±64.2 p= 0.19, 

respectively). 

 

Discussion 

Previous research has demonstrated the clinical importance of exercise testing in patients with CF 

and current recommendations call for annual exercise testing of CF patients [43, 337, 347]. As CF 

impacts several organ systems including pulmonary, cardiovascular, metabolic, and muscular, 

exercise testing provides unique insight into the (dys)function of these systems [345]. The 6MWT 

is an inexpensive, simple submaximal exercise test that can be administered to patients, even those 

with severe disease, and has been shown to be associated with clinical outcomes in several patient 

populations, including CF [51, 342, 398]. As great variation in clinical presentation and disease 

severity is demonstrated in CF, additional measures derived from the 6MWT may prove useful in 

accurately characterizing functional capacity in this patient population. In this study the correlation 

of DDR with pulmonary function in patients with CF was evaluated. It was found that DDRtotal was 

better correlated with measures of pulmonary function than DDRsimple and neither was correlated 

with HR response during exercise. Conversely, 6MWD was significantly correlated with HR 

response during exercise but not pulmonary function or SpO2, suggesting that DDR and 6MWD 

provide insight into related but separate components of exercise response. Both measures of 
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DDR(total and simple) provided greater correlation with classic clinical measures than either 6MWD or 

SpO2 alone and may be a useful measure of exercise capacity in the CF population.  

 

Both 6MWD and desaturation during exercise have independently been shown to have prognostic 

value in lung diseases [399, 400], including CF [48, 51]. Creating a metric that combines these two 

variables may improve insight into disease state and provide a more complete view of exercise 

response. DDR was first used in patients with interstitial lung disease where it was found that DDR, 

6MWD, and SpO2 measures all significantly correlated with measures of pulmonary function [394]. 

However, DDR showed a stronger correlation with pulmonary function, notably diffusing capacity 

of the lungs for carbon monoxide (DLCO), compared to 6MWD and SpO2 alone, suggesting that 

DDR provides additional clinical information than either measure alone. Similar to the current 

findings, the authors noted that 6MWD was not correlated with measures of SpO2, suggesting that 

6MWD and SpO2 data provide insight into different components of exercise response. Follow-up 

studies completed in COPD patients support initial findings on DDR, showing stronger correlation 

of DDR with measures of pulmonary function than 6MWD alone [395, 396].  

 

In contrast to previous reports, there was not a correlation between 6MWD and pulmonary function 

observed in this study. This may be due to the relatively healthy nature of the sample population 

compared the other studies. Fujimoto et al. (2017) found that in patients who had greater obstructive 

lung disease as defined by FEV1/FVC% < 70%, 6MWD was significantly correlated with FEV1%-

predicted, however this was not the case for patients with a FEV1/FVC% > 70%, where 6MWD 

and pulmonary function measures were not correlated [395]. Results of the correlation between 

6MWD and FEV1%-predicted, the most commonly reported pulmonary function measure among 

CF patients is mixed, with some studies finding significant correlation between 6MWD and 

FEV1%-predicted [48, 51] but not others [49, 401]. This may be due to differences in statistical 

methods, severity of disease, and CF mutation. Additionally, it was found that DDRtotal, but not 

DDRsimple, was significantly correlated with measures of pulmonary function. This suggests that 

collecting SpO2 at one-minute intervals may not be sufficient to calculate a meaningful DDR value 

in CF patients. This is in contrast to previous research in COPD patients which found that DDRtotal 

and DDRsimple produced congruent results [395]. Additionally, there was no difference in 6MWD 

between subjects who experienced a pulmonary exacerbation during follow-up but DDR(total and simple) 

were significantly higher in those who experienced a pulmonary exacerbation compared to those 

who did not, suggesting that DDR measures provide more insight into disease than 6MWD alone.  
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In this study it was found that DDR, but not 6MWD, correlated with measures of SpO2, consistent 

with previous findings [396]. However, not reported previously but of interest, is the finding that 

DDR correlated with measures of SpO2 but not measures of HR, whereas 6MWD correlated with 

all measures of HR but not SpO2. This finding suggests that different parameters of the 6MWT 

provide insight into different aspects of exercise response and may help to better understand 

limiting factors of exercise in CF patients. This is important as cardiovascular function has been 

shown to be attenuated in those with CF [300, 301] and impaired cardiac response to exercise has 

been noted [52, 304, 392]. HR response to exercise is an important measure of cardiovascular 

health, with impairment associated with morbidity and mortality in healthy and diseased 

populations [402-405]. One study found that heart rate response during the 6MWT was 

significantly associated with clinical outcomes one-year post pulmonary endarterectomy in those 

with thromboembolic pulmonary hypertension [406]. This observation suggests that although DDR 

may provide meaningful insight into SpO2 response to exercise, it does not provide information on 

HR response, a clinically relevant outcome. Therefore, DDR may serve as a useful tool for 

practitioners to assess exercise capacity but should not be used to the exclusion of classic 6MWT 

outcomes.   

 

Limitations of this study include a small, relatively homogenous sample size, blocking the ability 

to determine usefulness of DDR across a continuum of disease states. We did not include measures 

of daily physical activity, which may have impacted performance results and contributed to 

findings. Additionally, due to the cross-sectional nature of this study no follow-up was achieved to 

determine prognostic value of DDR. It may be that change in DDR is more indicative of disease 

status. Finally, as CF disease impacts multiple organ systems collecting data on additional markers 

of disease, in addition to pulmonary function, would have been beneficial. Future research should 

examine how well DDR functions as a prognostic for morbidity and mortality in CF.  

 

Conclusion  

DDR is significantly correlated with measures of SpO2 and pulmonary function and, used in 

conjunction with typical 6MWT outcomes, may be a helpful tool in evaluating exercise capacity in 

patients with CF. 
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Table Legend 

Table 1. Subject clinical characteristics 

 

Table 2. Spearman correlation coefficients for measures of functional capacity and pulmonary 

function 
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Table 1: Subject clinical characteristics 
 

Variable Mean Range 

Age (years) 35.68 ± 9.14 20.70 – 60.43 
Height (cm) 168.35 ± 9.25 152.40 – 185.39 
Weight (kg) 68.36 ± 14.87 46.41 – 96.58 

BMI (kg/m2) 23.87 ± 3.31 19.16 – 30.68 
Resting SpO2 97.01 ± 1.19 95 - 100 

Resting HR (bpm) 80.06 ± 9.94 61 - 99 
Systolic Blood Pressure (mmHg) 121.75 ± 11.72 102-146 

Diastolic Blood Pressure (mmHg) 77.67 ± 8.33 67-100 
FVC%-predicted 94.5 ± 12.1 72-125 

FEV1%-predicted 82.0 ± 19.5 53-118 
FEV1/FVC% 71.0 ± 10.2 50-85 

FEF25-75%%-predicted 61.3 ± 35.4 18-143 
6MWD (m) 567.98 ± 79.67 405-766 

DDRtotal 2.93 ± 0.85 1.62 – 4.49 
DDRsimple 0.045 ± 0.017 0.004 – 0.075 

 Frequency (%)  

Female 13 (54.2)  

F508del homozygous 14 (58.3)  
CFRD 13 (54.2)  

Current pseudomonas aeruginosa 15 (62.5)  

Current staphylococcus aureus 8 (33.3)  

Chronic pseudomonas aeruginosa 15 (62.5)  

Chronic staphylococcus aureus 7 (29.2)  
 

BMI = body mass index; SpO2 = peripheral blood oxygen saturation; HR = heart rate; FVC = forced vital capacity; 

FEV1 = forced expiratory volume in one second; FEF25-75% = forced expiratory flow at 25-75%; 

6MWD = six minute walk distance; DDR = desaturation-distance ratio; CFRD = Cystic Fibrosis related diabetes 
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Table 2: Spearman correlation coefficients for measures of functional capacity and pulmonary 
function 

 

DDRtotal r p 

FEV1%-predicted -0.401 0.045* 

FVC%-predicted -0.396 0.047* 

FEV1/FVC% -0.412 0.040* 

FEF25-75%-predicted -0.372 0.059 

Resting SpO2 -0.137 0.288 

Post-SpO2 -0.361 0.064 
Delta SpO2 -0.275 0.127 

Lowest SpO2 -0.431 0.033* 

Resting HR  0.061 0.401 

Post-HR -0.201 0.212 

Change in HR -0.323 0.096 
Highest HR -0.163 0.259 

HR recovery   0.164 0.258 

DDRsimple   

FEV1%-predicted -0.301 0.099 

FVC%-predicted  0.003 0.496 

FEV1/FVC% -0.539 0.007* 

FEF25-75%-predicted -0.335 0.075 
Resting SpO2 -0.306 0.095 

Post-SpO2 -0.759 0.000* 

Delta SpO2 -0.581 0.004* 

Lowest SpO2 -0.759 0.000* 

Resting HR  0.173 0.233 
Post-HR  0.031 0.449 

Change in HR -0.187 0.222 

Highest HR  0.106 0.338 

HR recovery   0.340 0.077 

6MWD   

FEV1%-predicted -0.007 0.487 

FVC%-predicted  0.024 0.465 
FEV1/FVC%  0.046 0.416 

FEF25-75%-predicted  0.008 0.485 

Resting SpO2 -0.025 0.454 

Post-SpO2 -0.037 0.432 

Delta SpO2  0.016 0.471 
Lowest SpO2 -0.241 0.160 

Resting HR -0.205 0.169 

Post-HR -0.837 0.000* 

Change in HR -0.748 0.000* 

Highest HR  0.821 0.000* 
HR recovery  -0.551 0.004* 

DDRtotal -0.438 0.030* 

DDRsimple -0.222 0.173 
FEV1 = Forced expiratory flow in one second; FVC = forced vital capacity 

FEF25-75% = Forced exiratory flow at 25-75%; SpO2= peripheral blood oxygen saturation 

HR = heart rate; DDR = desaturation-distance ratio 

*Denotes significance at p < 0.05 
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Figure Legend 
 

Figure 1: Correlation between measures of functional capacity and pulmonary function. SpO2 was 
continuously measured during the 6MWT and DDR was calculated using the sum of desaturation 

during the 6MWT and 6MWD. Spearman correlation was used to determine the following 

relationships: a.) DDRtotal, was significantly correlated with 6MWD (r = -0.438, p = 0.030) and b.) 

FEV1%-predicted (r= -0.401, p = 0.045) but c.) 6MWD was not significantly correlated with 

FEV1%-predicted (r = -0.007, p = 0.487). 
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Figure 1: Correlation between measures of functional capacity and pulmonary function.   

 

a)   b)  

c)    

DDR = Desaturation-distance ratio; 6MWD = six-minute walk distance; FEV1 = Forced expiratory flow in one second.  
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Chapter 6: Limitations 
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This dissertation was limited by several factors, including those inherent to cross-sectional study 

design and genetic methodology. Notably, the small sample size and uneven genotype distribution 

in Study One limited statistical power and did not allow comparison between each genotype (AA, 

AT, TT). As only 2 subjects presented with the TT genotype, two genotypes were collapsed into 

one group (AA, AT/TT) even though physiological differences may exist between the AT and TT 

genotypes. Further, the large spread in data given the sample size may have muffled the statistical 

and clinical significance of the findings. Post-hoc power analysis was performed on the clinical 

outcomes of antibiotic days (0.22), CFRD (0.16), MDR pseudomonas aeruginosa (0.17), 6MWT 

(0.16), 1STS (0.33) to confirm that the study was not powered well enough to detect statistically 

significant differences between the A and T groups in these measures. Given this, the required 

sample size needed to detect a statistically significant difference (p < 0.05) was calculated: 

antibiotic days (n=121/group), CFRD (n=138/group), MDR pseudomonas aeruginosa 

(n=138/group), 6MWT (n=167/group), and 1STS (n=60/group).  

 

Subjects were recruited via listserv email and self-identified to participate in the study. This may 

have skewed the sample towards healthier, more active participants as sicker, less active patients 

may have self-selected out of the study, which was advertised as involving exercise. Additionally, 

more sensitive measures of lung obstruction and damage, such as that available from computed 

tomography and magnetic resonance imaging scans, were not available. Previous studies have used 

validated scoring measures, such as Bhalla [407] and Shwachman-Kulczycki [408], to describe 

lung structure damage in CF patients. These measures would have provided better insight into 

disease progression, especially in younger patients, than pulmonary function testing. Finally, due 

to the relatively healthy sample, there were not enough adverse events (hospitalizations, lung 

transplant, etc.) to determine any differences in these clinically important outcomes. Inclusion of a 

more clinically diverse sample may have allowed for these comparisons and provided a more 

complete picture of the association between genetic variation in the SCNN1A gene and exercise 

response with clinical outcomes in CF. 

 

Exercise testing was only completed once during the study. Learning effects have been reported in 

regards to exercise testing, with best outcomes being achieved after practice of exercise protocol 

[409]. Although the American Thoracic Society Guidelines for the 6MWT do not include having 

the subject perform the test twice, some have found a practice effect with better performance on 

subsequent 6MWT [410, 411], though others have not observed this [412] suggesting degree of 

learning effect may be specific to patient population  Due to time and space limitations in clinic 
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only one session of the 6MWT and 1STS were completed for each subject. These may have resulted 

in exercise testing measurements that did not reflect a subject’s best performance. Standard 

instructions and encouragement were given to each subject along with demonstration of protocol 

and opportunity to practice prior to data collection. Further, we did not collect any measures of 

daily physical activity to assess for any training effects that may have been present between groups. 
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Chapter 7: Conclusion and Future Directions 
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Conclusion 
 

CF is an autosomal recessive genetic disease that results in dysfunction of the chloride channel 

CFTR, leading to dysregulation of chloride transport in epithelial tissue throughout the body, 

including the lung. In addition to chloride transport, CFTR is involved in regulating sodium 

transport by serving as an inhibitor of ENaC. In the absence of CFTR, ENaC remains uninhibited 

resulting in hyper-absorption of sodium across the apical membrane and subsequent depletion of 

the ASL. This depletion of the ASL causes development of sticky mucus that impedes mucociliary 

clearance and contributes to eventual tissue necrosis and respiratory failure. Although there is no 

cure for CF, improvements in screening and therapeutic options has extended average lifespan and 

slowed disease progression. This has prompted the need for clinical tests and interventions that are 

more personalized and sensitive to achieve optimal outcomes for every patient. The purpose of this 

dissertation was to examine the association of genetic variation in alpha ENaC and exercise 

response with clinical outcomes in patients with CF. Overall, the three unique studies presented in 

this work focus on improving personalized care and monitoring of CF patients.  

 

The first aim was to examine the association of genetic variation at position 663 of the SCNN1A 

gene, which encodes for the alpha subunit of ENaC, with clinical outcomes in CF patients (Chapter 

3). It was hypothesized that those with at least one copy of the more active T663 allele (AT/TT) 

would have poorer clinical outcomes than those homozygous for the A663 allele (AA). This 

hypothesis was based on the reasoning that greater ENaC activity would further contribute to the 

sodium hyper-absorption already present in CF, effectively accelerating the mechanism of lung 

disease. However, the findings did not fully support the hypothesis as there were not any 

statistically significant differences between the two groups in the primary outcomes of antibiotic 

use, hospitalization, or presence of co-morbidities. Using LMM a trend across time was observed 

that those in the A group had greater pulmonary function than those in the T group, though this 

observation was not statistically significant. Although not statistically significant, those in the A 

group walked an average of 26.3 meters further on the 6MWT and performed, on average, 8 more 

repetitions during the 1STS than those in the T group. This is worth noting because previous work 

has suggested that the minimal clinical significance for the 6MWT is 30 meters and for the 1STS 

is 3-5 repetitions. So although there was no statistical difference in these measures between groups 

the differences observed are still large enough to suggest some clinical importance. Due to the large 

variability in the data and the relatively small sample size the study was not powered high enough 

to detect any true differences that may exist. Additionally, low numbers in the TT genotype (n=2), 
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did not allow for comparison of outcomes between the three genotypes (AA, AT, TT) but instead 

the two genotypes containing the T663 variant (AA, AT/TT) had to be combined. This may have 

washed out any true, clinically relevant modifying effect that the TT genotype may have on CF 

disease or heterozygote advantage that may be present. Further, a difference in allele frequency 

between the study sample and those previously reported was observed. Notably, the frequency of 

the TT genotype seemed especially low, suggesting that there may be a connection between CF 

and genetic variation at position 663. The findings from Study One suggests that genetic variation 

at position 663 of the SCNN1A may modify pulmonary disease in CF, though the effect may not 

be as great as already appreciated disease modifiers.  

 

The second aim was to examine the correlation of physiological parameters and performance 

between the 6MWT and 1STS in patients with CF (Chapter 4). It was hypothesized that 

physiological parameters and performance outcomes collected during the 6MWT would be 

positively correlated with those of the 1STS. The findings supported the hypothesis, as 6MWD and 

1STS repetitions, the main performance outcome of each, were significantly correlated. 

Additionally, the study aimed to assess the association of the 6MWT and 1STS with pulmonary 

exacerbation during follow-up and it was hypothesized that performance outcomes from both the 

6MWT and 1STS would be associated with pulmonary exacerbation. These findings did not 

support the hypothesis as neither 6MWD nor 1STS repetitions was significantly correlated with 

time to or presence of pulmonary exacerbation. Given the previous literature that 6MWD is 

significantly correlated with measures of mortality and hospitalization in CF it was surprising that 

neither measure was associated with pulmonary exacerbation. This may be because the sample had 

less severe lung disease than those previously reported and prognostic ability may be somewhat 

dependent on severity of lung disease. Additionally, because functional capacity was assessed at 

only one time-point change in functional capacity overtime was not able to be evaluated. It may be 

that in patients with healthier lungs change from baseline functional capacity is more helpful in 

predicting pulmonary exacerbation than an isolated functional capacity test. Future research is 

needed to assess this question. The association of desaturation during exercise testing with clinical 

measures was also assessed and it was found that those who desaturated during the 1STS, but not 

6MWT, had significantly lower FEV1%-predicted and FEF25-75%%-predicted compared to those 

who did not desaturate. This suggests that although measures of 6MWT and 1STS are correlated 

the physiological response to each test is unique and incorporating both tests into routine clinical 

care may be useful.   
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The third aim of this dissertation was to evaluate the association of DDR to measures of pulmonary 

function in CF subjects (Chapter 5). It was hypothesized that DDR would be significantly 

associated with measures of pulmonary function in CF subjects and be associated with pulmonary 

exacerbation during follow-up. The hypothesis was partially supported by the findings. It was 

observed that both DDRtotal and DDRsimple, were significantly correlated with measures of 

pulmonary function, though DDRtotal was more strongly correlated, suggesting this measure is a 

better indicator of lung function. Even though neither DDR measure was significantly associated 

with days to exacerbation as it was hypothesized, those who experienced an exacerbation during 

follow-up had significantly higher DDR(total and simple) than those who did not report an exacerbation. 

This was not true of 6MWD, which saw no difference between those who did and did not 

experience a pulmonary exacerbation during follow-up. These results suggest that DDRtotal may be 

a useful supplementary measure in CF patients performing the 6MWT.  

 

This dissertation adds to the current body of literature on clinical monitoring in CF. Although clear 

evidence that variation at position 663 of the SCNN1A gene is a modifier of CF lung disease was 

not observed, this work did add important observations to this question that suggest some degree 

of disease modification may be present. Additionally, it was demonstrated that the 1STS and DDR, 

measures not currently used clinically in CF, provide relevant information that can be obtained with 

minimal time and equipment. 

 

Future Directions 

The findings of this dissertation highlight the importance of exploring genetic modifiers and clinical 

utility of functional capacity testing in CF. In regards to Study One, future research should better 

characterize the frequency of A663 and T663 variants in the CF population by collection data from 

a wider range of ages, CFTR mutation classes, and disease states. Additionally, it is of interest to 

examine the mechanisms of this SNP to better understand how this genetic variation impacts 

disease processes, such as mucociliary clearance and inflammation, in CF. Further, exploring the 

pharmacological interactions that SNPs may have with commonly used treatments would help to 

propel personalized medicine regiments. In regards to Study Two, future research should explore 

the feasibility and usefulness of repeated, at-home  measures of the 1STS to monitor CF disease. 

Additionally, care should be taken to examine the association between changes in easily obtained 

resting measures, such as HR and SpO2, and development of pulmonary symptoms. Finally, in 

regards to Study Three, future research should better examine how well DDR functions as a 

prognostic for important clinical milestones such as antibiotic use, hospitalization, lung transplant, 
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and death. As there is currently no cure for CF it is vital that research efforts are given to expanding 

the knowledge of intricate disease processes and developing purposeful monitoring techniques to 

ensure that all patients receive the best possible outcomes. 
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Appendix A 

Patient Recruitment Letter 

 

Greetings, 

 

The University of Minnesota is currently conducting a research study for Cystic Fibrosis 

Patients age 7-64 years. We are currently collaborating with physicians and nurse 
practitioners from the Clinics and Surgery Center and Pediatric Specialty Care Discovery 

Clinic to recruit for this study.  

 

With this research we hope to better understand the clinical impact that genetic variation 

within a specific cellular channel has in Cystic Fibrosis. If you choose to partic ipate you 
would complete study procedures in-clinic at your next clinic visit or during a scheduled 

visit to the Laboratory of Physiological Hygiene and Exercise Science at the University of 

Minnesota – Twin Cities. These procedures include a cheek swab, submaximal exercise 

test, and collection of exhaled breath condensate which involves breathing into a tube at 

rest. These procedures will add 30-45 minutes to your clinic visit. Compensation will be 

provided.  

 

If you are interested in participating, or simply would like more details about the study 

before agreeing, please feel free to contact me directly with the information listed below.  

 

Thank you so much for your time! 

 

Best Regards, 

 

Hanan Zavala 

Email: zaval013@umn.edu 
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Appendix B 

Minnesota Cystic Fibrosis Center Listserv Recruitment Email 

 

"Cystic Fibrosis Patients Needed for Research Study Examining Genetic Variability and 

Clinical Outcomes” 

 
We are currently seeking individuals with Cystic Fibrosis caused by del.F508 mutation to take 

part in a study being conducted at the University of Minnesota looking at genetic variability and 

clinical outcomes. With this research we hope to better understand how genetic variation within a 

specific cellular channel impacts clinical outcomes in Cystic Fibrosis . Study procedures include 

collection of a cheek swab and exhaled breath condensate (which involves breathing into a tube at 
rest), along with functional capacity tests (which involve completing everyday activities such as 

walking). These procedures take approximately 30 - 45 minutes to complete and are done the 

same day as a regularly scheduled clinic visit. Compensation is provided. 

 

If you are interested in participating or would like more details about the study, please email 
zaval013@umn.edu to determine if you are eligible. 

  

Thank you so much for your time! We look forward to hearing from you.  

  

mailto:zaval013@umn.edu
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Appendix C 

Study Consent Form 
IRB Study Number: 00000972 

 

Title of Research Study: Title of Research Study: Influence of Genetic Variation of αENac in 

Cystic Fibrosis Patients 
 

Researcher Team Contact Information: Hanan Zavala, M.S. 

 

For questions about research appointments, the research study, research results, or other concerns, 

call the study team at:  

Researcher Name: Hanan Zavala, M.S. 

Email Address: zaval013@umn.edu 

Research Advisor: Eric Snyder, Ph.D 

Email Address: snyd0180@umn.edu 

 

What is research?   

Doctors and researchers are committed to your care and safety. There are important differences 

between research and treatment plans: 
       

The goal of research is to learn new things in order to help groups of people in the future. 

Researchers learn things by following the same plan with a number of participants, so they do not 

usually make changes to the plan for individual research participants. You, as an individual, may 

or may not be helped by volunteering for a research study. 
The goal of treatment is to help you get better or to improve your quality of life. Doctors can make 

changes to your treatment plan as needed.  

      

Why am I being asked to take part in this research study? 

We are asking you to take part in this research study because you have a diagnosis of cystic fibrosis 
and are being seen in clinic today. 

 

What should I know about a research study? 

Someone will explain this research study to you. 

Whether or not you take part is up to you. 

You can choose not to take part. 
You can agree to take part and later change your mind. 

Your decision will not be held against you. 

You can ask all the questions you want before you decide. 

 

Why is this research being done? 
The purpose of this research is to learn more about why certain CF patients have better clinical 

outcomes than others. We are interested in looking at a specific part of the DNA to see if individual 

differences in this area are associated with better lung function. We are also interested in seeing 

how this area of DNA influences aerobic capacity in patients with CF. There are no direct benefits 

to participating in this study. With this information we hope to improve care for patients in the 
future by encouraging personalized medical decisions based on an individuals’ DNA.   

 

How long will the research last? 
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Your participation will last only during today’s visit (1 visit) and take approximately 30 – 45 

minutes to complete. Your electronic medical record will be reviewed and data extracted from 

clinic visits and hospitalizations up to one year after enrollment into the study. 
 

How many people will be studied? 

We expect up to 200 adults will be in this research study and up to 200 children, for a total of up 

to 400 participants.  

 
What happens if I say “Yes, I want to be in this research”? 

Today you will be asked to complete a cheek swab, which involves rubbing the inside of both 

cheeks with a toothbrush like instrument. Then you may be asked to breathe into a mouthpiece for 

approximately 10 minutes. Finally, you may be asked to complete three submaximal exercise tests. 

One test involves walking at a brisk pace for six minutes, one involves stepping up and down on a 

step for three minutes, and one involves transitioning from sitting and standing for one minute. 
Information from your medical chart (including results from pulmonary function tests, 

hospitalizations, and demographic information) will be used, including information from previous 

clinical visits and clinical visits taking place up to one year after today’s  date. You will be 

monitored by a trained researcher during all procedures and procedures will be ceased immediately 

at any point during data collection if you do not want to continue. All clinical tests, exams, and 
consultations as ordered by your provider will still be done, even if you do not take part in the 

research study. Declining to participate does not alter your care during this or any future visits.  

 

What happens if I say “Yes”, but I change my mind later? 

You can leave the research at any time. Leaving will not be held against you. 
 

If you decide to leave the research, provide verbal notice or written notice to the investigator. Verbal 

notice can be given to the investigator in person or by contacting them at 952-456-6356. Written 

notice can be sent to Room 110A Cooke Hall 1900 University Ave SE, Minneapolis, MN 55455 

or zaval013@umn.edu so that the investigator can cease collecting further data from the medical 

record. Your written request does not need to provide a specific reason for withdrawal.  
 

Choosing not to be in this study or to stop being in this study will not result in any penalty to you 

or loss of benefit to which you are entitled. Meaning, your choice not to be in this study will not 

negatively affect your right to any present or future medical treatment. 

 
If you withdraw, no more information will be collected from you. When you indicate that you wish 

to withdraw, the information already collected from you will be used in the study because we will 

not be able to remove it from the information we have gathered.   

 

What are the risks of being in this study?  Is there any way being in this study could be bad 
for me? 

This study involves no greater than minimal risks. You may have some discomfort during the 

exercise testing as heart and breathing rate will increase and they may feel warm.  

 

Will it cost me anything to participate in this research study? 

Taking part in this research study will not lead to any costs to you.  
 

What happens to the information collected for the research? 

Efforts will be made to limit the use and disclosure of your personal information, including research 

study and medical records, to people who have a need to review this information. We cannot 

promise complete privacy. Organizations that may inspect and copy your information include the 



123 
 

IRB and other representatives of this institution, including those that have responsibilities for 

monitoring or ensuring compliance. All of the information collected as part of this research study, 

including genetic information and exercise test results, will only be used for research purposes and 
will not be included in your medical chart. 

 

Will anyone besides the study team be at my consent meeting?   

You may be asked by the study team for your permission for an auditor to observe your consent 

meeting (or a recording of your consent meeting). Observing the consent meeting is one way that 
the University of Minnesota makes sure that your rights as a research participant are protected. The 

auditor is there to observe the consent meeting, which will be carried out by the people on the study 

team. The auditor will not record any personal (e.g. name, date of birth) or confidential information 

about you. The auditor will not observe your consent meeting (or a recording of your consent 

meeting) without your permission ahead of time.    

 
Who do I contact if I have question, concerns or feedback about my experience?  

This research has been reviewed and approved by an Institutional Review Board (IRB) within the 

Human Research Protections Program (HRPP). To share feedback privately with the HRPP about 

your research experience, call the Research Participants’ Advocate Line at 612-625-1650 or go to 

www.irb.umn.edu/report.html. You are encouraged to contact the HRPP if:  
 

Your questions, concerns, or complaints are not being answered by the research team.  

You cannot reach the research team. 

You want to talk to someone besides the research team. 

You have questions about your rights as a research participant. 
You want to get information or provide input about this research. 

 

Will I have a chance to provide feedback after the study is over?  

After the study, you might be asked to complete a survey about your experience as a research 

participant. You do not have to complete the survey if you do not want to. If you do choose to 

complete the survey, your responses will be anonymous.   
If you are not asked to complete a survey after the study is over, but you would like to share 

feedback, please contact the study team or the Human Research Protection Program (HRPP). See 

the “Who Can I Talk To?” section of this form for study team and HRPP contact information.  

 

What else do I need to know? 
In the event that this research activity results in an injury, treatment will be available, including 

first aid, emergency treatment and follow-up care as needed. Care for such injuries will be billed 

in the ordinary manner to you or your insurance company. If you think that you have suffered a 

research related injury, let the study physicians know right away. 

 
A federal law, called the Genetic Information Nondiscrimination Act (GINA), generally makes it 

illegal for health insurance companies, group health plans, and most employers to discriminate 

against you based on your genetic information. This law generally will protect you in the following 

ways: 

 

Health insurance companies and group health plans may not request your genetic information that 
we get from this research. 

 

Health insurance companies and group health plans may not use your genetic information when 

making decisions regarding your eligibility or premiums. 

 

http://www.irb.umn.edu/report.html
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Employers with 15 or more employees may not use your genetic information that we get from this 

research when making a decision to hire, promote, or fire you or when setting the terms of your 

employment. 
 

Be aware that this federal law does not protect you against genetic discrimination by companies 

that sell life insurance, disability insurance, or long-term care insurance. 

 

Will I be compensated for my participation?  
If you agree to take part in this research study, we will pay you $10 for your time and effort.  

 

Use of Identifiable Health Information 

We are committed to respect your privacy and to keep your personal information confidential.  

When choosing to take part in this study, you are giving us the permission to use your personal 

health information that includes health information in their medical records and information that 
can identify them. For example, personal health information may include name, address, phone 

number or social security number. Those persons who get health information may not be required 

by Federal privacy laws (such as the Privacy Rule) to protect it. Some of those persons may be able 

to share information with others without your separate permission. Please read the HIPAA 

Authorization form that we have provided and discussed.  
 

The results of this study may also be used for teaching, publications, or for presentation at scientific 

meetings. You will not be personally identified in any presentation or publication.  

 

Your signature documents your permission to take part in this research.  You will be provided a 
copy of this signed document. 

 

_______________________________________________      __________________ 

Signature of Participant                                                                Date 

 

_______________________________________________ 
Printed Name of Participant 

 

 

____________________________________________            __________________ 

Signature of Person Obtaining Consent                                             Date 
 

______________________________________________________ 

Printed Name of Person Obtaining Consent 

Your signature documents your permission for the named child to take part in this research.  

   
 

Note: Investigators are to ensure that individuals who are not parents can demonstrate their legal 

authority to consent to the child’s participation in the research. Contact legal counsel if any 

questions arise. 
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Appendix D 

Parental Permission Form 
IRB Study Number: 00000972 

 

Title of Research Study: Influence of Genetic Variation of αENaC on Clinical Outcomes in 

Cystic Fibrosis Patients    
 

Investigator: Hanan Zavala, M.S. 

Researcher Name: Hanan Zavala, M.S. 

Email Address: zaval013@umn.edu 

Research Advisor: Eric Snyder, Ph.D 

Email Address: snyd0180@umn.edu 

 
What is research?              

Doctors and researchers are committed to your child’s care and safety. There are important 

differences between research and treatment plans: 

 

The goal of research is to learn new things in order to help groups of people in the future. 
Researchers learn things by following the same plan with a number of participants, so they do not 

usually make changes to the plan for individual research participants. You, as an individual, may 

or may not be helped by volunteering for a research study. 

 

The goal of treatment is to help you get better or to improve your quality of life. Doctors can make 

changes to your treatment plan as needed.  
 

Why am I being asked to take part in this research study? 

We are asking you and your child to take part in this research study because you are the parent of 

a child who has a diagnosis of cystic fibrosis who is being seen in clinic today.  

 
What should I know about being in a research study? 

Someone will explain this research study to you. 

Whether or not your child takes part is up to you and your child.  

You can choose not to have your child take part. 

You can agree to take part and later change your mind. 
Your decision will not be held against you. 

You can ask all the questions you want before you decide. 

 

Who can I talk to? 

For questions about research appointments, the research study, research results, or other concerns, 

call the study team at: 
 

This research has been reviewed and approved by an Institutional Review Board (IRB) within the 

Human Research Protections Program (HRPP). To share feedback privately with the HRPP about 

your or your child’s research experience, call the Research Participants’ Advocate Line at 612-625-

1650 or go to www.irb.umn.edu/report.html. You are encouraged to contact the HRPP if:  
 

Your questions, concerns, or complaints are not being answered by the research team.  

You cannot reach the research team. 

You want to talk to someone besides the research team. 

You have questions about your or your child’s rights as a research participant.  
You want to get information or provide input about this research. 

 

tel:(612)%20625-1650
tel:(612)%20625-1650
http://www.irb.umn.edu/report.html
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Why is this research being done? 

The purpose of this research is to learn more about why certain CF patients have better clinical 

outcomes than others. We are interested in looking at a specific part of the DNA to see if individual 
differences in this area are associated with better lung function. We are also interested in seeing 

how this area of DNA influences aerobic capacity in patients with CF. There are no direct benefits 

to participating in this study. With this information we hope to improve care for patients in the 

future by encouraging personalized medical decisions based on an individuals’ DNA.   

 
How long will the research last? 

Your participation will last only during today’s visit (1 visit) and take approximately 30 – 45 

minutes to complete. Your child’s electronic medical record will be reviewed and data extracted 

from clinic visits and hospitalizations up to one year after enrollment into the study.  

 

How many children / parents will be studied? 
We expect up to 200 children will be in this research study. We also expect up to 200 adult CF 

patients to be in this research study.   

 

What happens if I say “Yes, I want to be in this research”? 

Today your child will be asked to complete a cheek swab, which involves rubbing the inside of 
both cheeks with a toothbrush like instrument. Then your child may be asked to breathe into a 

mouthpiece with a plug placed over their nose for approximately 10 minutes. Finally, your child 

may be asked to complete three submaximal exercise tests. One test involves walking at a brisk 

pace for six minutes, one involves stepping up and down on a step for three minutes, and one 

involves transitioning from sitting and standing for one minute. Information from your child’s 
medical chart (including results from pulmonary function tests, hospitalizations, and demographic 

information) will be used, including information from previous clinical visits and clinical visits 

taking place up to one year after today’s date. Your child will be monitored by a trained researcher 

during all procedures and procedures will be ceased immediately at any point during data collection 

if you or your child do not want to continue. All clinical tests, exams, and consultations as ordered 

by your provider will still be done, even if you do not take part in the research study. Declining to 
participate does not alter your child’s care during this or any future visits.  

 

What happens if I do not want to be in this research? 

You and your child may decline to participate and it will not be held against you. Future care and 

treatment of your child will not be impacted by your decision to participate or not.  
 

What happens if I say “Yes”, but I change my mind later? 

You and your child can leave the research at any time and it will not be held against you.  If you 

decide to leave the research, provide verbal notice or written notice to the investigator. Verbal 

notice can be given to the investigator in person or by contacting them at 952-456-6356. Written 
notice can be sent to Room 110A Cooke Hall 1900 University Ave SE, Minneapolis, MN 55455 

or zaval013@umn.edu so that the investigator can cease collecting further data from the medical 

record. Your written request does not need to provide a specific reason for withdrawal.  

 

Choosing not to be in this study or to stop being in this study will not result in any penalty to you 

or loss of benefit to which you are entitled. Meaning, your choice not to be in this study will not 
negatively affect your child’s right to any present or future medical treatment.  

 

At any time, you or your child may decide to withdraw from the study. If you withdraw, no more 

information will be collected from you or your child. When you indicate that you wish to withdraw, 
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the information already collected from you and your child will be used in the study because they 

will not be able to remove it from the information they have gathered.  

 
What are the risks? Is there any way being in this study could be bad for me or my child? 

This study involves no greater than minimal risks. Your child may have some discomfort during 

the exercise testing as their heart and breathing rate will increase and they may feel warm. If your 

child does experience some discomfort, it is anticipated to be minimal. 

 
What happens to the information collected for the research? 

Efforts will be made to limit the use and disclosure of you and your child’s personal information, 

including research study records, to people who have a need to review this information. We cannot 

promise complete secrecy. Organizations that may inspect and copy your information include the 

IRB and other representatives of this institution. The video recorded conversation is for data 

analysis purposes only. It will not be used in any presentations or publications. All of the 
information collected as part of this research study, including genetic information and exercise test 

results, will only be used for research purposes and will not be included in your medical chart.  

 

To help maintain privacy, your child will be given a unique study ID to identify them. Only one 

link will exist between this study ID and your child’s identifying information. Data will be kept in 
a locked electronic file which will be stored on a secure University of Minnesota network that is 

password protected. Data kept on paper files will be stored in locked offices and will not be released 

without your consent. A copy of the consent will be kept in your child’s medical chart.  

We will not ask about child abuse, but if your child tells us about child abuse or neglect, we are 

legally obligated to report it to state authorities.   
 

Will anyone besides the study team be at the consent meeting?   

You may be asked by the study team for your permission for an auditor to observe the consent 

meeting (or a recording of the consent meeting). Observing the consent meeting is one way that the 

University of Minnesota makes sure that the rights of research participants are protected. The 

auditor is there to observe the consent meeting, which will be carried out by the people on the study 
team. The auditor will not record any personal (e.g. name, date of birth) or confidential information 

about you or your child. The auditor will not observe the consent meeting (or a recording of the 

consent meeting) without your permission ahead of time.    

 

Will I have a chance to provide feedback after the study is over?  
After the study, you might be asked to complete a survey about your child’s experience as a research 

participant. You do not have to complete the survey if you do not want to. If you do choose to 

complete the survey, your responses will be anonymous.   

If you are not asked to complete a survey after the study is over, but you would like to share 

feedback, please contact the study team or the Human Research Protection Program (HRPP). See 
the “Who Can I Talk To?” section of this form for study team and HRPP contact information.  

 

What else do I need to know? 

In the event that this research activity results in an injury, treatment will be available, including 

first aid, emergency treatment and follow-up care as needed. Care for such injuries will be billed 

in the ordinary manner to you or your insurance company. If you think that you have suffered a 
research related injury, let the study physicians know right away. 

 

A federal law, called the Genetic Information Nondiscrimination Act (GINA), generally makes it 

illegal for health insurance companies, group health plans, and most employers to discriminate 
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against you based on your genetic information. This law generally will protect you in the following 

ways: 

 
Health insurance companies and group health plans may not request your genetic information that 

we get from this research. 

 

Health insurance companies and group health plans may not use your genetic information when 

making decisions regarding your eligibility or premiums. 
 

Employers with 15 or more employees may not use your genetic information that we get from this 

research when making a decision to hire, promote, or fire you or when setting the terms of your 

employment. 

 

Be aware that this federal law does not protect you against genetic discrimination by companies 
that sell life insurance, disability insurance, or long-term care insurance. 

 

Will I be compensated for my participation?  

You or your child will be paid $10 for their participation in this study.  

If for any reason you and your child do not complete the whole study, you will still receive the full 
payment. 

Your signature documents your permission for you and the named child to take part in this research. 

   

_____________________________________________________ 

Printed name of child participant 
 

   

______________________________________________________      __________________ 

Printed name of parent [  ] or individual legally authorized [  ]                 Date 

to consent for the child to participate 

 
______________________________________________________      __________________ 

Signature of parent [  ] or individual legally authorized [  ]                 Date 

to consent for the child to participate 

 

 
 

______________________________________________________      ____________________ 

Signature of person obtaining consent and assent                                   Date 

 

______________________________________________________ 
Printed name of person obtaining consent and assent  
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Appendix E 

Assent Form 
IRB Study Number: 00000972 

 

University of Minnesota 

 
Assent to Participate in Research 

 

Title of Research Study: Influence of Genetic Variation of αENaC on Clinical Outcomes in 

Cystic Fibrosis Patients    

 
Researcher: Hanan Zavala, M.S. 

Researcher Name: Hanan Zavala, M.S. 

Email Address: zaval013@umn.edu 

Research Advisor: Eric Snyder, Ph.D 

Email Address: snyd0180@umn.edu 

 

What is research? 
Doctors and researchers are committed to your care and safety. There are important differences 

between research and treatment plans:                                                                   

 

The goal of research is to learn new things in order to help groups of kids in the future. Researchers 

learn things by asking a question, making a plan, and testing it. The goal of treatment is to help you 

get better by using medication, therapy, surgery or other things that usually makes kids feel better. 
Sometimes treatments help make you feel better or get rid of the condition completely. Doctors can 

make changes to your treatment plan as needed.  

 

Why am I being asked to take part in this research study? 

A research study is usually done to find a better way to treat people or to understand how things 
work. You are being asked to take part in this research study because you have cystic fibrosis and 

are being seen in clinic today. 

 

What should I know about being in a research study? 

You do not have to be in this study if you do not want to do so. It is up to you if you want to 
participate and if you want to, talk to your parents about any questions or concerns you have about 

the study. You can choose not to take part now and change your mind later if you want. If you 

decide you do not want to be in this study, no one will be mad at you. You can ask all the questions 

you want before you decide. 

 

Why is this research being done? 
In this study, I want to find out more about how your DNA impacts how well your lungs work and 

how hard you have to work during exercise.  

 

How long will the research last? 

Your participation will last only during today’s visit (1 visit) and take approximately 30 – 45 
minutes to complete. Your child’s electronic medical record will be reviewed and data extracted 

from clinic visits and hospitalizations up to one year after enrollment into the study.  

 

What happens if I say “Yes, I want to be in this research”? 

If it is okay with you and you agree to join this study, you will be asked to do a cheek swab, which 
involves rubbing the inside of both cheeks with something that is similar to a toothbrush. Then you 

may be asked to breathe into a mouthpiece, similar to the one used during pulmonary function 
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testing, for approximately 10 minutes. Finally, you may be asked to complete three exercise tests. 

One test involves walking at a brisk pace for six minutes, one involves stepping up and down on a 

step for three minutes, and one involves going from sitting to standing for one minute. Information 
from your medical chart will be used, including information from previous clinical visits and 

clinical visits taking place up to a year after today’s date.  

 

Is there any way being in this study could be bad for me? 

You may have some discomfort during the exercise testing as you may breathe fast and feel hot.  
 

What happens to the information collected for the research? 

The researchers will share your information, including research study records, to only people who 

have a need to review this information. For example, sometimes researchers need to share 

information with the University or other people that work in research to make sure the researchers 

are following the rules. All of the information collected as part of this research study, including 
genetic information and exercise test results, will only be used for research purposes and will not 

be included in your medical chart. 

 

What else do I need to know? 

If you agree to take part in this research study, the researcher will compensate you $10.  
 

Who can I talk to? 

For questions about research appointments, the research study, research results, or other concerns, 

call the study team at: 

 
This research has been reviewed and approved by an Institutional Review Board (IRB), a group of 

people that look at the research before it starts. This group is part of the Human Research Protection 

Program (HRPP). To share concerns privately with the HRPP about your research experience, call 

the Research Participants’ Advocate Line at 612-625-1650 or go to www.irb.umn.edu/report.html. 

You are encouraged to contact the HRPP if: 

  
●      Your questions, concerns, or complaints are not being answered by the research team.  

●      You cannot reach the research team. 

●      You want to talk to someone besides the research team or your parents.  

●      You have questions about your rights as a research participant.  

●      You want to get information or provide feedback about this research.  
 

Signature Block for Child Assent 

   

______________________________________________________      __________________ 

Signature of child                                                                          Date 
  

______________________________________________________       

Printed name of child  

   

______________________________________________________      __________________ 

Printed name of person obtaining assent                                                    Date 
   

______________________________________________________      

Signature of person obtaining assent                                     

 

  

tel:(612)%20625-1650
http://www.irb.umn.edu/report.html
http://www.irb.umn.edu/report.html
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Appendix F 

Data Collection Form 
Subject ID: 

 

Date: 

 
Time: 

 

Gift Card Number: 

 

Medications taken before testing (dose and time): 
 

 

Genetic Sample ID 

Left    Right 

 
Exhaled Breath Condensate 

Start Time: 

End Time: 

 

Six minute walk test 

Start time: 
End time: 

 

Stopped or paused before 6 minutes? No Yes  

Other symptoms at end of exercise: angina dizziness hip, leg, or calf pain  

Number of laps:  
Total distanc e walked in 6 minutes : 

Predicted distanc e: meters    

Percent predicted:  %  

 

 Pre 1 min 2 min 3min 4 min 5 min Post 1 min 

post 

2 min 

post 

HR          

O2          

RPE  X X X X X    

Dyspnea  X X X X X    

 

1 minute sit-stand test 

Number of reps: 

 

Stop during test: 
 

 Pre Post 1 min post 2 min post 

HR     

O2     

RPE     

 

 


