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Abstract 
 
 This thesis explores three light management strategies for luminescent solar 

concentrators (LSCs). LSCs are concentrating photovoltaic systems in which luminophores 

are embedded within a polymer slab. Incident sunlight is absorbed by the luminophores, 

which then fluoresce. Fluorescent light is trapped within the polymer slab via total internal 

reflection and propagates to the edge of the slab where it is collected by solar cells. The 

first light management strategy uses wavelength-selective mirrors placed above the top 

surface of the concentrator to trap fluorescent light while transmitting sunlight in to be 

absorbed. Two mirrors are designed, and their performance is simulated when placed above 

a variety of LSCs. LSC parameters such as lateral size, quantum yield, and luminophore 

concentration were varied to study the effects of LSC design on top mirror design. The 

second strategy involves the use of multiple LSC layers for spectrum splitting. High energy 

light is absorbed by the top layer with minimal thermalization, while lower energy light is 

transmitted into the bottom layer, where it is absorbed. A multijunction LSC is modeled 

and its performance is simulated. Coupling effects between top and bottom layer 

performance are evaluated. Finally, the thin film architecture is considered, where a thin 

luminophore-quantum dot layer is deposited onto a glass substrate. A wave optics model 

is used to determine the effects of this architecture on luminophore emission and 

reabsorption. The performance of these LSCs are found to be superior to bulk polymer 

LSCs. Thin film LSCs are realized experimentally by synthesizing quantum dots and 

depositing a quantum dot-polymer layer onto a glass substrate. The optical properties of 

the quantum dots in solution and in the LSC are characterized and the light guiding 

properties of the thin film LSC are measured. 
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Chapter 1. Introduction 

1.1 Motivation 

 The development of photovoltaics for solar energy harvesting continues to be a 

critical field of research. In 2017, 65 billion kilowatt hours of solar energy was generated 

[1], and solar energy generation is projected to rise to 400 billion kilowatt hours by 2040 

[2]. Photovoltaic efficiency improvements can be achieved while maintaining low costs 

through the concentration of light onto photovoltaics, as solar cells operate at higher 

efficiencies under concentrated illumination [3]–[6]. Concentrating systems for 

photovoltaics have been an active area of research over the past several decades [7]–[12]. 

These systems concentrate sunlight onto small, high efficiency solar cells, reducing the 

usage of expensive solar cell materials while increasing the efficiency of the solar cells by 

increasing their short circuit currents. 

 Parabolic dish concentrators are the most commonly used class of concentrator for 

photovoltaics [13]–[15]. These concentrators exhibit good performance for direct sunlight, 

but they are unable to effectively collect diffuse light [5], [7], [8], [14]. As diffuse light 

constitutes 10–20% of all solar radiation on clear days, and up to 100% on cloudy days 

[16], this significantly reduces the overall performance of these systems. Consequently, 

parabolic dish concentrators require expensive, bulky solar tracking systems [6]–[8], [14]. 

In contrast, luminescent solar concentrators (LSCs) effectively concentrate both direct and 

diffuse sunlight [15], [17], [18]. LSCs also concentrate light spectrally, focusing broadband 

sunlight to a narrow range of wavelengths. This allows concentrated light to be matched to 

the peak external quantum efficiency of the solar cell. LSCs can be easily integrated into 
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building architectures and can provide heat management benefits, making them attractive 

options for concentrating photovoltaics. 

1.2 Luminescent Solar Concentrators 

 Luminescent solar concentrators consist of a slab of optically transparent material, 

typically a polymer, embedded with luminescent materials, known as luminophores, with 

solar cells fastened to the edges of the slab. Figure 1.1 shows a diagram of an LSC. 

Luminophores in the slab absorb incident sunlight and subsequently emit light which is 

then guided via total internal reflection to the edges, where it is collected by the solar cells. 

Since the LSC is thin relative to its lateral dimensions, this device acts as a solar 

concentrator. 

 

Figure 1.1 Sunlight incident upon the LSC is absorbed by the luminophores. Fluorescent light is the emitted 

by the luminophores and trapped via total internal reflection. Trapped light is guided to the edge of the device, 

where it is collected by edge-mounted solar cells. 

 Numerous loss mechanisms exist in LSCs which reduce the collection of light by 

solar cells. Much of the research in LSCs aims to minimize these losses, thereby increasing 

LSC efficiency. Figure 1.2 summarizes common loss mechanisms considered here. When 
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light is absorbed by luminophores, not all the light will be converted to emitted photons, 

as luminophore quantum yield is less than 100%. Some of the light will be lost to non-

radiative recombination. These losses are called absorption losses. Light that is emitted can 

be reabsorbed by other luminophores if there is overlap between luminophore absorption 

and emission bands. Light that is emitted, reabsorbed, and lost to non-radiative 

recombination constitute reabsorption losses. A third type of losses are escape cone losses, 

which occur when light is emitted into the escape cone rather than a total internal reflection 

mode. For an isotropically-emitting luminophore in a layer with refractive index 1.49, 74% 

of emitted light is trapped [19]. This means 26% is emitted into the escape cone. The 

fraction of light emitted into the escape cone, P, for a concentrator with refractive index n 

is given in Equation 1.1 [20]. The last two loss mechanisms deal with light which is not 

absorbed at all. Light may be reflected off the top surface of the concentrator, called 

reflection losses, or pass through without being absorbed, called unabsorbed losses. 

𝑃𝑃 = 1 −�1 − 1/𝑛𝑛2             (1.1) 

 

Figure 1.2 The common loss mechanisms in an LSC are given. Light can be absorbed or reabsorbed and lost 

to non-radiative recombination. Light can be emitted into the escape cone, where it is not trapped via total 

internal reflection. Light can also remain unabsorbed, either passing through the concentrator without being 

absorbed or getting reflected off the top surface of the concentrator. 
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1.3 Luminophores 

Luminophores are a central component of the LSC, as the choice of luminophore 

can impact device performance significantly. Luminophores should be able to absorb high 

energy sunlight while efficiently emitting light. They should have little spectral overlap, 

where the emission spectrum is significantly red-shifted with respect to the absorption 

spectrum to minimize reabsorption. Additionally, the luminophores should be photostable, 

inexpensive, and non-toxic. The most common classes of luminophores used in LSCs are 

fluorescent dyes [4], [10], [11], [18], [21]–[23] and quantum dots [4], [10], [11], [17], [24]. 

CdSe/CdS core-shell quantum dots and Si quantum dots are chosen for this work. 

CdSe/CdS quantum dots are attractive luminophores for LSC applications due to their high 

quantum yield, small spectral overlap, narrow emission spectrum, and photostability. 

Meanwhile, Si quantum dots possess a very little spectral overlap due to their indirect 

 

Figure 1.3 Absorption (solid) and emission (dotted) spectra are shown. CdSe/CdS quantum dots (pink) 

possess a narrow emission spectrum. Si quantum dots (maroon) have little overlap between their absorption 

and emission spectra. The Si absorption and emission spectra are courtesy of Samantha Hill. 
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bandgap and are made from inexpensive, nontoxic, and earth-abundant materials. The 

absorption and emission spectra for CdSe/CdS and Si quantum dots are shown in Figure 

1.3. The optical properties of Si quantum dots are courtesy of Samantha Hill. 

 In this work, both single layer and multijunction LSCs are examined. Multijunction 

LSCs, discussed in Section 1.4.2, feature multiple absorbing layers which are stacked to 

form a multijunction architecture. Different luminophores are placed in each layer to 

achieve spectrum splitting, where high energy light is absorbed by the top layer and lower 

energy light is absorbed by the lower level. Multijunction LSCs in the current work use 

CdSe/CdS quantum dots in the top layer and Si quantum dots in the bottom layer. A 

detailed balance shows the ideal bandgaps for the top and bottom junctions of a two-

junction solar cell are 1.9 and 1.0 eV, respectively [25]. As an analogous system, 

luminophores in a two-junction LSC should have the same bandgaps. The CdSe/CdS 

quantum dots used here have a bandgap of 2.1, making them a good candidate for the top 

layer. 

 Although the Si quantum dots used in the preliminary work have a band gap greater 

than 1.0 eV, Si quantum dots have been made with bandgaps between 1.0–1.2 eV [26]–

[28], and other candidate small band gap luminophores come with significant drawbacks. 

Near-infrared emitting fluorescent dyes suffer from prohibitively low quantum yields [29], 

[30]. Small band gap quantum dots such as PbS and PbSe are toxic, have low Stokes shifts 

and show photobleaching [31]–[33]. Adding a PbS shell to PbSe cores increases 

photostability but decreases quantum yield and Stokes shift [34]–[36]. CuInSe/ZnS 
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core/shell quantum dots have moderate quantum yield but low Stokes shift and blue-shifted 

emission relative to Si quantum dots [29], [37]. 

1.4 Light Management Strategies for Luminescent Solar Concentrators 

 The loss mechanisms discussed in Section 1.2 contribute to significant losses in 

LSC efficiency. These efficiency losses can be mitigated by improvements in luminophore 

optical properties, for instance by increasing quantum yield or decreasing spectral overlap, 

or by the implementation of light management strategies which manipulate the light-matter 

interactions within the LSC. Multiple light management strategies for LSCs are examined 

in this work, including the use of wavelength-selective mirrors, multijunction architectures, 

and the use of thin film architectures to control the angle of light emission. Each of these 

areas is briefly introduced below and discussed in more detail in later chapters. 

1.4.1 Wavelength-Selective Mirrors 

 Escape cone losses present a major loss mechanism in LSCs. Literature shows 

decreases in these losses upon the addition of wavelength-selective mirrors above the top 

surface of the LSC [10], [11], [15], [17]–[19], [21], [38], [39]. These mirrors selectively 

transmit high energy photons which are readily absorbed by the LSC while reflecting low 

energy photons emitted by the luminophore. Utilizing these mirrors, the concentrator can 

maintain high light absorption and dramatically increase the trapping of emitted light. 

Simulations have shown a 50% increase in LSC output for an ideal wavelength-selective 

mirror, and 20% increases have been realized experimentally [10]. Theoretical work by 

Rau et al. has shown that a wavelength-selective mirror is require for LSCs to reach their 

potential [38]. Experimentally, these mirrors are often made from 1D photonic crystals 
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(PCs), such as Bragg stacks [40] and Rugate filters [19], [41]–[43], or 3D PCs in opal or 

inverted opal geometries [19], [40], [44]–[49]. 

 An aperiodic reflector is used in the present work as a top mirror to reduce escape 

cone losses in an LSC. These mirrors are similar to Bragg stacks, which feature repeating 

layers of high and low index of refraction dielectric layers. However, while Bragg stacks 

have periodic layer thicknesses, the thickness of each layer in an aperiodic filter is tuned 

to reduce reflection outside of the desired wavelength range. Figure 1.4 shows the 

reflection spectrum of an aperiodic top mirror overlaid with the absorption and emission 

spectrum of CdSe/CdS quantum dots. 

 

Figure 1.4 The reflection spectrum of an aperiodic wavelength-selective mirror (blue) is overlaid against the 

absorption (pink, solid) and emission (pink, dotted) spectra of CdSe/CdS quantum dots. High energy light is 

transmitted through the mirror to be absorbed, while lower energy emitted light is reflection and trapped. 

1.4.2 Multijunction LSCs 

 Thermalization due to the absorption of light with energy above the band gap leads 

to major energy losses in photovoltaics and LSCs alike. When photons with energy higher 
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than the bandgap are absorbed, excited electrons create phonons as they relax to the band 

edge. These phonons dissipate as heat, which provides unwanted heating of the system and 

reduces efficiency [50], [51]. For an ideal solar cell with a band gap of 1.0 eV, 37% of 

incident solar energy is lost to these thermalization losses. Semiconductor materials with 

larger band gaps can be chosen to reduce thermalization, but these materials limit the 

spectral range of light available for absorption since light with energy lower than the band 

gap is readily not absorbed. 

 

Figure 1.5 Multijunction LSCs reduce thermalization and broaden absorption by stacking LSC layers with 

different luminophores in order of band gap. Luminophores with larger band gaps are placed at the top of the 

stack to absorb high energy light with minimal thermalization. Lower band gap materials absorb lower energy 

light transmitted by the upper layers. 

 Multijunction geometries minimize thermalization while maintaining a wide 

spectral absorption range. In multijunction photovoltaics, solar cells with increasing band 

gaps are stacked, with the smallest band gap on the bottom [52]. The first junction absorbs 

high energy light with minimal thermalization, while lower energy light is absorbed by 

successive junctions, maintaining the wide spectral absorption range of the bottom solar 

cell. The addition of a 1.9 eV junction to an ideal 1.0 eV solar cell decreases thermalization 

losses by over 40% while continuing to absorb light with energy greater than 1.0 eV. 
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Multijunction solar cells have reached efficiencies of 46.0%, the most efficient solar cell 

to date [53], [54]. 

 Multijunction LSC architectures, shown in Figure 1.6, can be used similarly to 

decrease thermalization and widen the spectral absorbance range [55], [56]. In these 

systems two or more absorbing layers with different luminophores are stacked. Separate 

solar cells are attached to the edges of each layer, allowing the peak external quantum 

efficiency of the solar cell to be matched to the emission spectrum of each luminophore. 

 

Figure 1.6 Different solar cells are attached to the top (pink) and bottom (orange) layers of the multijunction 

LSC. Mirrors can be placed at the front and back of the multijunction LSC to trap emitted light. Intermediate 

reflecting layers can be added for light manipulation, such as high angle diffraction to increase path length 

and therefore, absorbance. 

 Multijunction LSCs in the current work use CdSe/CdS quantum dots in the top 

layer and Si quantum dots in the bottom layer. Absorption in the CdSe/CdS top layer should 

be small at wavelengths longer than 600 nm to minimize overlap between the absorption 

and emission spectra of the CdSe/CdS quantum dots. Since absorption is approximately 

constant between 525 nm and 600 nm, this means the top layer should be designed to 

absorb light effectively at wavelengths shorter than 525 nm, which constitutes 22.4% of 

incident solar energy. Similarly, Si layer absorption should be small at wavelengths longer 
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than 700 nm, making 525–700 nm the desired range for bottom layer absorption. This 

wavelength range contains 25.1% of incident solar energy, as shown in Figure 1.7. 

 

Figure 1.7 The AM1.5 Global solar spectrum is shown. 22.4% of incident solar energy is available to the 

CdSe/CdS layer (shaded in pink). 25.1% of incident solar energy is available to the Si layer (shaded in 

orange). 

1.4.3 Thin Film LSCs 

 LSCs typically consist of luminophores embedded in polymer slab. However, 

luminophores can also be embedded into a thin polymer film deposited onto a glass 

substrate. The thin film architecture offers several benefits for LSC performance over 

polymer slab LSCs. In bulk polymer concentrators, emitted light is trapped within the 

absorbing layer and can be readily reabsorbed by other luminophores or scattered by the 

polymer matrix or luminophore aggregates. Thin film concentrators reduce reabsorption 

by confining absorption to a thin polymer layer while trapped light propagates primarily 

through a non-absorbing glass substrate with little scattering [57]. 
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Figure 1.8 Thin film LSCs reduce escape cone losses by preferentially emitting light into total internal 

reflection modes. Reabsorption losses are reduced by confining the absorbing layer to a thin quantum-dot 

polymer film, allowing trapped light to propagate primarily through a non-absorbing glass substrate. 

 In addition to light guiding benefits, the thin film architecture reduces escape cone 

losses by altering luminophore emission. Light emission from luminophores in a 

homogeneous medium is isotropic, with each angle receiving equal emission intensity. 

Luminophores in an inhomogeneous medium, however, emit light anisotropically [58]–

[62]. Thin film LSCs have film thicknesses similar to the wavelength of emitted light, 

meaning luminophores in the polymer film are in an inhomogeneous medium. Dipoles in 

a thin film are known to emit light preferentially into the higher refractive index 

surroundings at steep angles [58], [59]. In a thin film LSC, light emitted from the thin film 

is emitted preferentially into the glass substrate at steep angles and is trapped in the 

substrate via total internal reflection, allowing it to propagate to the edge of the 

concentrator. In this work, CdSe/CdS quantum dots are embedded into 

poly(cyclohexylethylene) (PCHE). PCHE is chosen as it is an optically clear polymer with 

minimal scattering, and it is soluble in the nonpolar solvents used to synthesize the quantum 

dots. Thin film LSCs are created by placing a quantum dot-polymer thin film onto a glass 

substrate. 
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1.5 Overview 

 Three light management strategies for LSCs are designed and evaluated in this 

thesis. Monte Carlo ray-tracing simulations are used to study the effects of these strategies 

on concentrator performance. Chapter 2 focuses on the use of wavelength-selective top 

mirrors to increase light trapping in LSCs. Various LSCs with top mirrors are modeled and 

compared to determine how concentrator design influences the design of these mirrors. 

Chapter 3 discusses the use of a multijunction architecture to increase light absorption and 

decrease thermalization. Two-layer LSCs are modeled using CdSe/CdS and Si quantum 

dots as luminophores. The interdependence of layer performance is examined using a 

modified ray-tracing algorithm and the design of wavelength-selective mirrors for a 

multijunction system is briefly discussed. In Chapter 4, the thin film LSC architecture is 

explored using simulations. FDTD calculations are used to study the emissive properties 

of quantum dots in a thin film. A ray-tracing model is then used to compare thin film and 

bulk polymer LSC performance. Chapter 5 focuses on experimental work with thin film 

LSCs. CdSe/CdS quantum dots are synthesized using a colloidal synthesis. Thin film LSCs 

are fabricated by spin coating a quantum dot-polymer layer onto a glass substrate. The 

optical properties of the thin films are characterized and attenuation experiments are 

performed to study the light guiding properties of the LSCs. Finally, conclusions from this 

thesis and suggestions for future work on multijunction and thin film LSCs are presented 

in Chapter 6. 
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Chapter 2. Wavelength-Selective Mirrors 

Wavelength-selective mirrors which transmit light across the absorption band of 

the luminophore while reflecting light across the emission band of the luminophore are 

crucial to the reduction of escape cone losses in LSCs. The addition of such a mirror above 

the top surface of an LSC is required to achieve maximum efficiency [38]. The design of 

these mirrors, however, is difficult as overlap between the absorption and emission spectra 

of the luminophore creates a tradeoff between the transmission of sunlight into the 

concentrator and the trapping of luminescent light within the concentrator [63]. Mirror 

design is further complicated as the one-dimensional mirrors often used for this purpose 

have reflectivity bands which blue-shift as angle of incidence shifts away from normal 

incidence. In this section, the tradeoff between sunlight transmission and trapping of 

luminescent light in wavelength-selective mirrors is explored for various LSCs, and we 

show how LSC lateral size, luminophore, luminophore concentration, and quantum yield 

influence the design of these wavelength-selective mirrors. 

2.1 Wavelength-Selective Mirror Design 

A series of one-dimensional, aperiodic mirrors are designed to reduce escape cone 

losses in an LSC. These mirrors feature alternating dielectric layers of refractive index 1.45 

and 2.53. An aperiodic stack is chosen to reduce reflection outside of the desired reflection 

band, which is prominent in periodic stacks. The thicknesses of each layer in the stack is 

varied to tune the location of the mirror’s reflection band. An optimization method using 

the refractive index of each layer, the absorption and emission spectra of the luminophore, 

and initial guesses for layer thickness is used to determine the thickness of each layer. 
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Layer thickness in a periodic 1D Bragg stack, the peak wavelength of the emission 

spectrum divided by four times the refractive index of the layer, are used as initial guesses 

for layer thickness. A figure of merit is used to optimize mirror design. This figure of merit 

takes into consideration overlap between the reflection band and the absorption band, and 

overlap between the reflection band and the emission band. 

𝐹𝐹𝐹𝐹𝐹𝐹 = �1
𝐴𝐴
�
𝑊𝑊𝑎𝑎
�1
𝐸𝐸
�
𝑊𝑊𝑒𝑒

          (2.1) 

where A and E are parameters representing reflection across the absorption and emission 

bands, respectively, and 𝑊𝑊𝑎𝑎 and 𝑊𝑊𝑒𝑒 are weighting factors for the absorption and emission 

terms. 

The absorption parameter is calculated by integrating the product of top mirror 

transmission at normal incidence and the absorption band of the luminophore over the 

absorption band, weighting by the solar spectrum. 

𝐴𝐴 =
∫ �1−𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜃𝜃=0,𝜆𝜆)�𝛼𝛼(𝜆𝜆)𝑃𝑃𝑠𝑠𝑠𝑠(𝜆𝜆)𝑑𝑑𝜆𝜆
𝜆𝜆𝐴𝐴,𝑚𝑚𝑎𝑎𝑚𝑚
𝜆𝜆𝐴𝐴,𝑚𝑚𝑇𝑇𝑚𝑚

∫ 𝛼𝛼(𝜆𝜆)𝑃𝑃𝑠𝑠𝑠𝑠(𝜆𝜆)𝑑𝑑𝜆𝜆
𝜆𝜆𝐴𝐴,𝑚𝑚𝑎𝑎𝑚𝑚
𝜆𝜆𝐴𝐴,𝑚𝑚𝑇𝑇𝑚𝑚

    (2.2) 

The emission parameter is calculated by integrating the product of top mirror 

reflection and the emission band of the luminophore over the emission band and emitted 

angles. 

𝐴𝐴 =
∫ ∫ 𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜃𝜃,𝜆𝜆)𝑃𝑃𝑃𝑃(𝜆𝜆) sin(𝜃𝜃)𝑑𝑑𝜃𝜃𝑑𝑑𝜆𝜆

𝜋𝜋
2
0

𝜆𝜆𝐴𝐴,𝑚𝑚𝑎𝑎𝑚𝑚
𝜆𝜆𝐴𝐴,𝑚𝑚𝑇𝑇𝑚𝑚

∫ ∫ 𝑃𝑃𝑃𝑃(𝜆𝜆) sin(𝜃𝜃)𝑑𝑑𝜃𝜃𝑑𝑑𝜆𝜆
𝜋𝜋
2
0

𝜆𝜆𝐴𝐴,𝑚𝑚𝑎𝑎𝑚𝑚
𝜆𝜆𝐴𝐴,𝑚𝑚𝑇𝑇𝑚𝑚

    (2.3) 

By varying the absorption and emission weighting factors, mirrors are designed 

with different reflection bands, as shown in Figure 2.1. In this figure, the reflection band 
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at normal incidence of several mirrors is overlaid against the absorption and emission 

spectra of CdSe/CdS quantum dots with a seven monolayer CdS shell. 

 

Figure 2.1 Reflection bands for different mirrors at normal incidence are given. Overlaid is the absorption 

(black) and emission (red) spectra of a CdSe/CdS quantum dots with a seven monolayer shell. The mirror 

labeled (1) is referred to as the emission weighted mirror. The mirror labeled (2) is referred to as the 

absorption weighted mirror. 

Of the mirrors shown in Figure 2.1, two are selected for further study. The mirror 

labeled (1) in Figure 2.1 is chosen to represent emission weighted mirrors designed to 

preferentially trap emitted light, while the mirror labeled (2) in Figure 2.1 is chosen to 

represent absorption weighted mirrors designed to preferentially transmit light across the 

absorption band. These particular mirrors are chosen as they exhibit local maxima in LSC 

performance for concentrators with lateral dimensions 1 m x 1 m, quantum yield 0.9, and 

optical density 0.5 at 450 nm. 
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2.2 Monte Carlo Algorithm 

A ray-tracing Monte Carlo model is used to simulate LSC performance. Monte 

Carlo simulations have been used extensively in LSC studies to examine a variety of 

luminophores and LSC designs [37], [64]–[66]. This ray-tracing model uses angle- and 

wavelength-dependent reflectivity of the aperiodic mirrors, reflective and scattering 

properties of the back mirror, LSC geometry, and optical properties of the luminophore 

and polymer to predict the interaction of light with the concentrator system. 

In present studies, photons of a specified wavelength range are injected above the 

top face of the LSC and tracked. The simulations are discretized in time, where for each 

time step the photon moves a distance equal to the product of the speed of light and the 

time step. As photons propagate through the system, they may reach an interface between 

materials, where they could be reflected or refracted. Fresnel equations are used to 

determine the probability of reflection and Snell’s Law is used to determine the direction 

of refracted light [67]. Photons within the concentrator may be absorbed, where the 

 

Figure 2.2 A flow chart of the Monte Carlo algorithm used in ray-tracing simulations is given. Blue marks 

non-collection events. Loss mechanisms are shown in orange, while light collected by edge-mounted solar 

cells are marked in green. 
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probability of absorption is calculated from experimental absorption data for the 

luminophore and using Beer’s Law [68]. Upon absorption, a photon may be emitted at a 

random angle and a new wavelength determined by the emission spectrum, or lost to 

absorption or reabsorption losses due to non-unity quantum yield. The simulation continues 

to run until all photons have reached a collection mechanism. 

A flow chart of the Monte Carlo algorithm is given in Figure 2.2. Photons which 

reach the edge of the concentrator are collected by the solar cell, shown in green, while 

other photons are collected by loss mechanisms, shown in orange. Lost photons include 

photons reflected off the top surface of the concentrator or top mirror, lost to non-radiative 

recombination upon the first absorption event (non-radiative losses) or subsequent 

absorption events (reabsorption losses), emitted into the escape cone, or pass through the 

concentration unabsorbed. The number of photons collected by each collection mechanism 

is tracked to determine LSC performance. 

2.3 LSC Lateral Size 

Wavelength-selective mirrors are critical for the reduction of escape cone losses in 

LSCs. Aperiodic mirrors contain a reflection band across a desired spectral range with little 

reflection outside of this range, making it possible to effectively reflect light across the 

emission band of an LSC while transmitting light across its absorption band. Overlap 

between the absorption and emission bands presents a tradeoff in mirror design between 

transmitting and trapping light. While it is important to study this tradeoff for small, lab 

scale concentrators, it is also important to study how it changes with scaling to large 

concentrator sizes. As LSC lateral size is scaled, photons must travel longer average 
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distances to reach the edge of the device, changing the trapping and guiding properties of 

the concentrator. This inevitably alters mirror design. Monte Carlo simulations are used 

here to explore the effects of LSC lateral size on LSC performance and aperiodic mirror 

design. 

Three concentrator systems are chosen with different top mirrors. Each system 

contains CdSe/CdS quantum dot luminophores with a quantum yield of one and a diffuse 

back mirror which reflects light at all angles with equal intensity. The first system contains 

no top mirror, referred to as the standard LSC, while the second and third systems contain 

periodic and aperiodic top mirrors, respectively. The concentration factor of each system 

as LSC lateral size is scaled from 10-2 m to 102 m is shown in Figure 2.3. Concentration 

factor is a measure of the ability of an LSC to concentrate light, defined as the product of 

optical efficiency and geometric gain factor [69]. 

 

Figure 2.3 Concentration factor is plotted against side length for three LSC systems. The standard LSC 

(green) has no top mirror, while the second (red) and third (blue) LSCs have periodic and aperiodic top 

mirrors, respectively. Each LSC has a diffuse back mirror. Dotted lines mark the linear regime at short side 

lengths, and the horizontal regime at large side lengths. 
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As concentrator side length is varied, two regimes are observed, marked by sloped 

and horizontal lines in Figure 2.3. At small side lengths, concentration factor rises linearly 

with lateral size as geometric gain factor increases with little change in optical efficiency. 

For moderate side lengths, increases in geometric gain factor balance out with decreases in 

optical efficiency to form a constant concentration factor regime. Photons traveling farther 

average distances to reach the edge are more susceptible to reabsorption and hence 

reabsorption losses. Increasing concentration factor at large side lengths is observed due to 

a saturation of reabsorption losses as some emitted light is outside the absorption band of 

the luminophores. This behavior at large side lengths may not be a realistic prediction 

because the model does not account for light scattering by the polymer matrix, which may 

become significant for very large LSCs. 

The lateral size at which the linear and horizontal concentration factor regimes meet 

is referred to as the saturation length of the concentrator [65]. A large saturation length 

indicates the effective trapping and guiding of light in the LSC, as long side lengths are 

required to observe significant escape cone and reabsorption losses. Upon the addition of 

a periodic reflector the saturation length of the LSC increases from 0.309 m to 0.463 m. 

While a moderate increase in saturation length was observed for a periodic reflector, 

imperfect reflection within the desired reflection band and undesired reflection outside of 

it limit the effectiveness of the mirror. A much larger improvement, to 1.855 m, is seen for 

an aperiodic reflector due to its optimized reflection spectrum, maintaining high absorption 

and decreasing escape cone losses. 
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The impact of lateral size on aperiodic mirror design is determined by comparing 

concentrators with the absorption weighted and emission weighted mirrors, as discussed in 

Section 2.1, added above the top surface. Figure 2.4 shows the optical efficiency of 

concentrators with each mirror (a). Mirror design shifts from absorption weighted mirrors 

for small concentrators to emission weighted mirrors at larger sizes, with a crossover point 

at 0.1 m. Absorption efficiency is independent of lateral size, as light absorption is 

determined by thickness of the concentrator, not its lateral size. Trapping efficiency, on the 

other hand, is dependent on LSC lateral size. In small concentrators, light emitted into a 

total internal reflection mode has a small average distance required to reach the edge, 

meaning photons can be collected with little interaction with the mirror. Therefore, escape 

cone losses are small for concentrators with either absorption or emission weighted mirrors. 

This is evident in Figure 2.4(b), which shows that trapping efficiency is near unity for both 

mirrors at small sizes. Consequently, as both mirrors efficiently trap light in the LSC, 

allowing as much light into the concentrator as possible results in the largest optical 

        

Figure 2.4 The optical efficiency of LSCs with an emission (blue) or absorption (red) weighted mirror is 
given in (a). (b) The trapping efficiency of LSCs with each mirror is shown. 
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efficiency. Since the absorption weighted mirror is designed to preferentially allow light 

in, larger optical efficiencies for this reflector is observed. 

At large lateral sizes photons experience more interactions with the mirrors, as they 

must travel longer average distances to reach the edge. This is evidenced by the sharp drop 

in trapping efficiency at larger sizes for both mirrors (Figure 2.4(b)). As a result, mirrors 

that most effectively trap light are able to guide the most light to the edge. The emission 

weighted mirror is designed to do just this, so it is preferred to the absorption weighted 

reflector for large lateral sizes. 

2.4 Luminophore Properties 

In addition to LSC lateral size, the choice of luminophore, concentration of 

luminophore within the concentrator, and quantum yield of the luminophore have 

implications for the design of wavelength-selective top mirrors and are studied. 

All luminophores have distinct absorption and emission spectra, making mirror 

design dependent on the choice luminophore. Three Cd-based quantum dots are used here 

to determine the impact absorption and emission spectra overlap. CdSe core particles are 

shelled with zero, three, or seven monolayers of CdS. As shell thickness increases, 

excitonic features near the edge of the absorption band are suppressed, reducing overlap. 

Mirrors are designed for LSCs with these luminophores, each with quantum yield 0.9, 

optical density 1 at 450 nm, and a lateral size of 1 m x 1 m. 

For luminophores with significant overlap, transmitting light into the concentrator 

is more important than trapping emitted light. Figure 2.5 shows the absorption within the 

concentrator for each system. Mirrors for concentrators with CdSe and CdSe/3ML CdS 
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quantum dots preferentially transmit light, leading to high absorption and low trapping. 

Emitted photons in these systems are more likely to be reabsorbed and therefore less likely 

to interact with the mirror, decreasing the importance of trapping. Meanwhile, mirrors 

designed for concentrators with luminophores having little overlap show preferential 

trapping, with lower absorption and higher reflection, as emitted photons are very likely to 

interact with the mirror. 

 

Figure 2.5 The fraction of incident light absorbed at each wavelength is shown for LSCs with CdSe/CdS 

quantum dots with zero (blue), three (red), and seven (green) monolayers of CdS. 

The concentration of luminophores in a concentrator directly correlates to 

absorption of light by the concentrator, and reabsorption losses within the concentrator. 

Concentrators with optical densities between 0.1 and 2.0 at 450 nm, a quantum yield of 0.9 

and a lateral size of 1 m x 1 m were simulated. As optical density is increased, a rise and 

eventual fall in optical efficiency is observed for concentrator with either mirrors, shown 

in Figure 2.6. At low concentrations, the increase in absorption associated with an increase 

in optical density outweighs the effects of reabsorption. However, as absorption saturates 
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at high concentrations, reabsorption losses continue to rise, leading to decreasing optical 

efficiency. 

The emission weighted mirror outperforms the absorption weighted mirror at low 

concentrations. The performance of the absorption weighted mirror overtakes that of the 

emission weighted mirror at an optical density around 1.4. As with large spectral overlap, 

for concentrators with high luminophore concentrations, emitted light is likely to be 

reabsorbed and therefore less likely to interact with the mirror, leading to an emphasis on 

transmission over trapping. 

 

Figure 2.6 The optical efficiency for concentrators with emission (blue) and absorption (red) weighted 

mirrors is compared with varying optical density at 450 nm. 

Lastly, luminophore quantum yield is varied for concentrators without a top mirror 

and with either the absorption or emission weighted top mirrors. Both mirrors are seen to 

give a boost in performance over the concentrator without a mirror, shown in Figure 2.7. 

Although the absorption and trapping efficiency is different for each mirror, the 
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performance of the mirrors is similar for quantum yields under 85%. Only at high quantum 

yields does the emission weighted mirror become preferred due to the high number of 

interactions a photon has with the mirror as reabsorption losses approach zero (unity 

quantum yield). 

 

Figure 2.7 Concentration factor is given as a function of luminophore quantum yield. LSCs with no top 

mirror (black), an emission weighted mirror (blue), and an absorption weighted mirror (red) are compared. 
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Chapter 3. Multijunction Luminescent Solar Concentrators 

LSCs suffer from thermalization losses when photons with energy higher than the 

band gap of the luminophore are absorbed. The resulting exciton quickly relaxes to the 

band edge, releasing a fraction of its energy as phonons which dissipate as heat. This loss 

in energy can be mitigated through the use of higher band gap luminophores. However, 

these luminophores suffer from lower absorption as no photons with energy lower than the 

band gap can be absorbed. Stacking LSC layers with different band gap luminophores 

allows for the reduction of thermalization losses while maintaining or enhancing the 

spectral range of light which is absorbed. In this work, multijunction LSCs are modeled 

and simulated using a ray-tracing Monte Carlo model. Two LSC layers are stacked, the top 

containing CdSe/CdS quantum dots and the bottom containing Si quantum dots. The effects 

of luminophore concentration on device performance is explored, and photoluminescent 

coupling effects are examined. The performance of the present multijunction system is then 

compared with other multijunction LSCs in the literature. 

3.1 Monte Carlo Algorithm Modifications 

The Monte Carlo algorithm presented in Section 2.2 forms the basis of the 

simulations used for multijunction LSCs. This algorithm is modified to include the 

geometry of two LSC layers, as well as the optical properties of the luminophores in both 

layers. Photons with wavelengths between 400–1100 nm are again injected above the top 

surface of the top LSC. As photons propagate through the two-layer system, they can 

interact with either layers; they can be reflected and refracted, absorbed and emitted, and 

finally, collected by collection mechanisms in either layer. The number photons collected 
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by each layer, and the collection mechanism within that layer, are explicitly tracked. The 

result of the simulations is a set of data which could be sorted by incident wavelength, 

collection layer, and collection mechanism. A diagram of the multijunction system can be 

seen in Figure 3.1. 

 

Figure 3.1 A multijunction system with two layers is presented. The top layer contains CdSe/CdS quantum 

dots; the bottom layer contains Si quantum dots. Each layer has separate collection mechanisms, and light 

can be collected by separate top or bottom layer solar cells. A diffuse mirror is added beneath the bottom 

surface of the LSC. Air gaps are added between the two LSC layers and the diffuse mirror. 

In addition to data on aggregate photon collection, photons which are absorbed and 

subsequently emitted are tagged according to which layer they were emitted from. The 

collection layer and collection mechanism of light emitted from one layer or another can 

be monitored. Note, the photons are tagged according to which layer they were first emitted 

from. Photons emitted from one layer and then absorbed and emitted by the other layer are 

counted in the set of photons emitted from the first layer they were emitted from but not 

the other. This tracking is used to study photoluminescent coupling, where light emitted 

from one concentrator interacts with another concentrator. 
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3.2 Light Absorption in Multijunction LSCs 

An analytical model is developed to predict the absorption of light in each layer of 

the two-layer multijunction LSC. This model can be used to quickly calculate the light 

absorbed by the top and bottom layers at each wavelength using the absorption spectrum 

of the luminophores, the optical density of each layer at 450 nm (as a measure of 

luminophore concentration), and the refractive index of the host polymer. Calculations are 

used to verify the Monte Carlo model after modifications to simulate the multijunction 

architecture. 

In the analytical model, the multijunction LSC system is treated as a pair of Fabry-

Perot etalons, which are transparent or absorbing plates, in this case absorbing, with 

reflective surfaces at either side. The intensity of light absorbed, reflected and transmitted 

through these etalons can be calculated [70]. In this treatment, light incident onto a 

luminescent layer is divided into an infinite series of partial waves whose sums represent 

the intensity of light transmitted, absorbed and reflected by the layer, respectively. By 

applying this analysis repeatedly as light propagates through the system, a complete 

account of the incident light can be given. 

3.2.1 First Pass through the Top LSC Layer 

 Light incident on the top LSC layer is split into an infinite series of partial waves, 

as shown in Figure 3.2. Light can be reflected, transmitted, or absorbed. The amplitude of 

partial reflectance, 𝜌𝜌𝑖𝑖, and transmittance, 𝜏𝜏𝑖𝑖, waves are 
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𝜌𝜌1 = 𝑟𝑟  ,    𝜌𝜌2 = 𝑡𝑡𝑡𝑡′𝑟𝑟′𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖   ,    𝜌𝜌3 = 𝑡𝑡𝑡𝑡′𝑟𝑟′3𝐴𝐴2𝑒𝑒2𝑖𝑖𝑖𝑖   ,   …     (3.1) 

𝜏𝜏1 = 𝑡𝑡𝑡𝑡′𝐴𝐴
1
2  ,   𝜏𝜏2 = 𝑡𝑡𝑡𝑡′𝑟𝑟′𝐴𝐴

3
2𝑒𝑒𝑖𝑖𝑖𝑖   ,   𝜏𝜏3 = 𝑡𝑡𝑡𝑡′𝑟𝑟′2𝐴𝐴

5
2𝑒𝑒2𝑖𝑖𝑖𝑖   ,   …        (3.2) 

where 𝑟𝑟 and 𝑟𝑟′ are the reflectivity coefficients for light entering and leaving the LSC, 

respectively, 𝑡𝑡 and 𝑡𝑡′ are the transmissivity coefficients for light entering and leaving the 

LSC, respectively, 𝐴𝐴 is the fraction of light not absorbed per two passes, and 𝛿𝛿 is a phase 

factor given by 

𝛿𝛿 = 4𝜋𝜋𝑛𝑛1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝜃𝜃1
𝜆𝜆

           (3.3) 

where 𝑛𝑛 is the index of refraction of the LSC, 𝑙𝑙 is the thickness of the LSC, 𝜃𝜃1 is the angle 

of light propagation in the LSC relative to the normal and 𝜆𝜆 is the wavelength of light. 

 

Figure 3.2 Light is incident on the top LSC layer. As the light interacts with the interfaces at the top and 

bottom of the layer, partial waves form, the sum of which represent the intensity of light reflected, 

transmitted, and absorbed. Transmitted light is then incident upon the bottom LSC layer. 

 

𝜏𝜏1 𝜏𝜏2 

𝜌𝜌2 𝜌𝜌3 

θ’ 
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Notice the reflectivity and transmissivity coefficients are defined such that 𝑅𝑅 = 𝑟𝑟2 with 

𝑟𝑟′ =  −𝑟𝑟 = −𝑅𝑅
1
2  and = 𝑡𝑡𝑡𝑡′ , where 𝑅𝑅 is reflectivity and 𝑇𝑇 = 1 − 𝑅𝑅 is transmissivity.  

The total amplitude of reflected light, 𝜌𝜌, is the sum of all partial reflected waves. 

With some simple algebraic manipulation 𝜌𝜌 can be represented as the sum of a geometric 

series. 

𝜌𝜌 = 𝜌𝜌1 + 𝜌𝜌2 + 𝜌𝜌3 + ⋯ = 𝑅𝑅
1
2 − 𝑇𝑇𝑅𝑅

1
2𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑅𝑅

3
2𝐴𝐴2𝑒𝑒2𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑅𝑅

5
2𝐴𝐴3𝑒𝑒3𝑖𝑖𝑖𝑖 − ⋯     (3.4) 

         = 𝑅𝑅
1
2�1 − 𝑇𝑇𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖�1 + 𝑅𝑅𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑅𝑅2𝐴𝐴2𝑒𝑒2𝑖𝑖𝑖𝑖 + ⋯�� = 𝑅𝑅

1
2 �1 − 𝑇𝑇𝐴𝐴𝑒𝑒𝑇𝑇𝑖𝑖

1−𝑅𝑅𝐴𝐴𝑒𝑒𝑇𝑇𝑖𝑖
�   

Here we used a simple geometric series formula valid for any |𝑥𝑥| < 1, namely 

1 + 𝑥𝑥 + 𝑥𝑥2 + ⋯ = 1
1−𝑥𝑥

    (3.5) 

The intensity of light reflected, 𝐼𝐼𝑟𝑟𝑇𝑇, (the subscript T denotes the top LSC layer) by 

the LSC is equal to the product of the total amplitude of reflected light and its complex 

conjugate. Shown below is the equation for 𝐼𝐼𝑟𝑟𝑇𝑇. 

𝐼𝐼𝑟𝑟𝑇𝑇 = 𝜌𝜌𝜌𝜌∗ = 𝑅𝑅 �1 − 𝑇𝑇𝐴𝐴𝑒𝑒𝑇𝑇𝑖𝑖

1−𝑅𝑅𝐴𝐴𝑒𝑒𝑇𝑇𝑖𝑖
� �1 − 𝑇𝑇𝐴𝐴𝑒𝑒−𝑇𝑇𝑖𝑖

1−𝑅𝑅𝐴𝐴𝑒𝑒−𝑇𝑇𝑖𝑖
�  (3.6) 

= 𝑅𝑅 �
1 − (𝑅𝑅 + 𝑇𝑇)𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖

1 − 𝑅𝑅𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖
� �

1 − (𝑅𝑅 + 𝑇𝑇)𝐴𝐴𝑒𝑒−𝑖𝑖𝑖𝑖

1 − 𝑅𝑅𝐴𝐴𝑒𝑒−𝑖𝑖𝑖𝑖
� 

= 𝑅𝑅 �
1 − 𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖

1 − 𝑅𝑅𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖
��

1 − 𝐴𝐴𝑒𝑒−𝑖𝑖𝑖𝑖

1 − 𝑅𝑅𝐴𝐴𝑒𝑒−𝑖𝑖𝑖𝑖
� 

= 𝑅𝑅 �
1 + 𝐴𝐴2 − 𝐴𝐴�𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑒𝑒−𝑖𝑖𝑖𝑖�

1 + 𝑅𝑅2𝐴𝐴2 − 𝑅𝑅𝐴𝐴(𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑒𝑒−𝑖𝑖𝑖𝑖)� 
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= 𝑅𝑅 �
1 + 𝐴𝐴2 − 2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝛿𝛿)

1 + 𝑅𝑅2𝐴𝐴2 − 2𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝛿𝛿)� 

= 𝑅𝑅 �
(1 − 𝐴𝐴)2 + 2𝐴𝐴(1 − cos(𝛿𝛿))

(1 − 𝑅𝑅𝐴𝐴)2 + 2𝑅𝑅𝐴𝐴(1 − cos(𝛿𝛿))� 

= 𝑅𝑅 �
(1 − 𝐴𝐴)2 + 4𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛2 �𝛿𝛿2�

(1 − 𝑅𝑅𝐴𝐴)2 + 4𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛2 �𝛿𝛿2�
� 

This procedure can be done to obtain the intensity of light transmitted, 𝐼𝐼𝑡𝑡𝑇𝑇 as well. 

The intensity of light absorbed, 𝐼𝐼𝑎𝑎𝑇𝑇, is then the difference between unity and the intensities 

of light reflected and transmitted. The results of those procedures are shown below. 

𝐼𝐼𝑡𝑡𝑇𝑇 = (1−𝑅𝑅)2𝐴𝐴

(1−𝑅𝑅𝐴𝐴)2+4𝑅𝑅𝐴𝐴𝑙𝑙𝑖𝑖𝑛𝑛2�𝑖𝑖2�
        (3.7) 

𝐼𝐼𝑎𝑎𝑇𝑇 = 1 − 𝐼𝐼𝑟𝑟𝑇𝑇 − 𝐼𝐼𝑡𝑡𝑇𝑇     (3.8) 

3.2.2 All Subsequent Passes Before the Mirror 

In this section we will analyze all light transmitted through the top LSC in Section 

3.2.1. The results of this section will be four equations representing the fractions of light 

which reaches the mirror (to be analyzed in Section 3.2.3), is absorbed by the top LSC 

layer, is absorbed by the bottom LSC layer, and is transmitted back out the top of the 

multijunction LSC, respectively. 

In Section 3.2.1 we determined the intensity of light transmitted through the top 

LSC on the first pass, 𝐼𝐼𝑡𝑡. This light will reach the bottom LSC, where, as with the top LSC, 

it will be partially reflected, 𝐼𝐼′𝑟𝑟𝑟𝑟1, transmitted, 𝐼𝐼′𝑡𝑡𝑟𝑟1, and absorbed, 𝐼𝐼′𝑎𝑎𝑟𝑟1. Light reflected 

from the bottom LSC then reaches the top LSC, where it can be reflected, 𝐼𝐼′𝑟𝑟𝑇𝑇1, transmitted, 
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𝐼𝐼′𝑡𝑡𝑇𝑇1, or absorbed, 𝐼𝐼′𝑎𝑎𝑇𝑇1. Reflected light will then reach the bottom LSC again. An infinite 

series of reflections will occur, creating an infinite series of intensities such as shown 

below. 

𝐼𝐼𝑡𝑡𝑟𝑟1′ = 𝐼𝐼𝑡𝑡𝑇𝑇𝐼𝐼𝑡𝑡𝑟𝑟   ,   𝐼𝐼𝑡𝑡𝑟𝑟2′ = 𝐼𝐼𝑡𝑡𝑇𝑇𝐼𝐼𝑟𝑟𝑇𝑇𝐼𝐼𝑡𝑡𝑟𝑟𝐼𝐼𝑟𝑟𝑟𝑟  ,   𝐼𝐼𝑡𝑡𝑟𝑟3′ = 𝐼𝐼𝑡𝑡𝑇𝑇𝐼𝐼𝑟𝑟𝑇𝑇2 𝐼𝐼𝑡𝑡𝑟𝑟𝐼𝐼𝑟𝑟𝑟𝑟2   ,   …  (3.9) 

𝐼𝐼𝑎𝑎𝑟𝑟1′ = 𝐼𝐼𝑡𝑡𝑇𝑇𝐼𝐼𝑎𝑎𝑟𝑟   ,   𝐼𝐼𝑎𝑎𝑟𝑟2′ = 𝐼𝐼𝑡𝑡𝑇𝑇𝐼𝐼𝑟𝑟𝑇𝑇𝐼𝐼𝑟𝑟𝑟𝑟𝐼𝐼𝑎𝑎𝑟𝑟  ,   𝐼𝐼𝑎𝑎𝑟𝑟3′ = 𝐼𝐼𝑡𝑡𝑇𝑇𝐼𝐼𝑟𝑟𝑇𝑇2 𝐼𝐼𝑟𝑟𝑟𝑟2 𝐼𝐼𝑎𝑎𝑟𝑟   ,   …  (3.10) 

𝐼𝐼𝑡𝑡𝑇𝑇1′ = 𝐼𝐼𝑡𝑡𝑇𝑇2 𝐼𝐼𝑟𝑟𝑟𝑟   ,   𝐼𝐼𝑡𝑡𝑇𝑇2′ = 𝐼𝐼𝑡𝑡𝑇𝑇2 𝐼𝐼𝑟𝑟𝑇𝑇𝐼𝐼𝑟𝑟𝑟𝑟2   ,   𝐼𝐼𝑡𝑡𝑟𝑟3′ = 𝐼𝐼𝑡𝑡𝑇𝑇2 𝐼𝐼𝑟𝑟𝑇𝑇2 𝐼𝐼𝑟𝑟𝑟𝑟3   ,   …   (3.11) 

𝐼𝐼𝑎𝑎𝑇𝑇1′ = 𝐼𝐼𝑡𝑡𝑇𝑇𝐼𝐼𝑎𝑎𝑇𝑇𝐼𝐼𝑟𝑟𝑟𝑟   ,   𝐼𝐼𝑎𝑎𝑇𝑇2′ = 𝐼𝐼𝑡𝑡𝑇𝑇𝐼𝐼𝑎𝑎𝑇𝑇𝐼𝐼𝑟𝑟𝑇𝑇𝐼𝐼𝑟𝑟𝑟𝑟2   ,   𝐼𝐼𝑎𝑎𝑇𝑇3′ = 𝐼𝐼𝑡𝑡𝑇𝑇𝐼𝐼𝑎𝑎𝑇𝑇𝐼𝐼𝑟𝑟𝑇𝑇2 𝐼𝐼𝑟𝑟𝑟𝑟3   ,   …  (3.12) 

 

Figure 3.3 Light transmitted through the top LSC layer is incident upon the bottom LSC layer. This light 

can be reflected back to the top layer, where it can be transmitted or absorbed, it can be absorbed by the 

bottom layer, or it can be transmitted through the bottom layer, where it is incident upon the diffuse 

bottom mirror. 

 

𝐼𝐼′𝑡𝑡𝐵𝐵1 

θ’ 

𝐼𝐼′𝑡𝑡𝑇𝑇1 

𝐼𝐼′𝑟𝑟𝐵𝐵1 
𝐼𝐼′𝑟𝑟𝑇𝑇1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bottom LSC θ2 
n2 

Top LSC 
n1 
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As in Section 3.2.1, the sum of these infinite sets of terms form the total intensity 

of light transmitted through the bottom, absorbed in the bottom, transmitted through the 

top and absorbed in the top, respectively. The terms form a geometric series, the sum of 

which can be simplified using the equation for a geometric series presented in Section 

3.2.1. This leads to the following equations. 

𝐼𝐼𝑡𝑡𝑟𝑟′ = 𝐼𝐼𝑡𝑡𝑇𝑇𝐼𝐼𝑡𝑡𝑡𝑡
 

1−𝐼𝐼𝑇𝑇𝑇𝑇𝐼𝐼𝑇𝑇𝑡𝑡
     (3.13) 

𝐼𝐼𝑎𝑎𝑟𝑟′ = 𝐼𝐼𝑡𝑡𝑇𝑇𝐼𝐼𝑎𝑎𝑡𝑡
 

1−𝐼𝐼𝑇𝑇𝑇𝑇𝐼𝐼𝑇𝑇𝑡𝑡
     (3.14) 

𝐼𝐼𝑡𝑡𝑇𝑇′ = 𝐼𝐼𝑡𝑡𝑇𝑇
2 𝐼𝐼𝑇𝑇𝑡𝑡

 

1−𝐼𝐼𝑇𝑇𝑇𝑇𝐼𝐼𝑇𝑇𝑡𝑡
     (3.15) 

𝐼𝐼𝑎𝑎𝑇𝑇′ = 𝐼𝐼𝑡𝑡𝑇𝑇𝐼𝐼𝑎𝑎𝑇𝑇
 𝐼𝐼𝑇𝑇𝑡𝑡

1−𝐼𝐼𝑇𝑇𝑇𝑇𝐼𝐼𝑇𝑇𝑡𝑡
     (3.16) 

3.2.3 First Set of Reflection Off Mirror 

 

Figure 3.4 Once light pass through the bottom LSC layer it reaches the mirror and is reflected back 

towards the bottom layer, where it can be absorbed or transmitted. 

θ’ 𝐼𝐼′𝑡𝑡𝐵𝐵  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bottom LSC 
n2 

Mirror 
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Light passing through to the mirror will be reflected off the mirror and transmitted, 

reflected or absorbed by the bottom LSC. However, any reflected light is not lost. Rather, 

it is reflected again off the mirror and returns to the bottom LSC. Throughout the course of 

an infinite number of reflections, all light will be either absorbed or transmitted through 

the bottom LSC. Then the intensity of light transmitted is the product of the intensity of 

incident light and the ratio of transmitted light to the sum of transmitted and absorbed light. 

The intensity of light transmitted and absorbed by the bottom LSC (with 𝐼𝐼′𝑡𝑡𝑟𝑟 the intensity 

of incident light, as derived in Section 3.2.2) are given by 𝐼𝐼′′𝑡𝑡𝑟𝑟1 and 𝐼𝐼′′𝑎𝑎𝑟𝑟1, respectively. 

The parameters 𝑥𝑥𝑡𝑡 and 𝑥𝑥𝑎𝑎 are introduced here to condense future equations. 

 

𝐼𝐼′′𝑡𝑡𝑟𝑟1,1 = 𝐼𝐼′𝑡𝑡𝑡𝑡𝐼𝐼𝑡𝑡𝑡𝑡
𝐼𝐼𝑡𝑡𝑡𝑡+𝐼𝐼𝑎𝑎𝑡𝑡

= 𝐼𝐼𝑡𝑡𝑟𝑟′ 𝑥𝑥𝑡𝑡             (3.17) 

𝐼𝐼′′𝑎𝑎𝑟𝑟1,1 = 𝐼𝐼′𝑡𝑡𝑡𝑡𝐼𝐼𝑎𝑎𝑡𝑡
𝐼𝐼𝑡𝑡𝑡𝑡+𝐼𝐼𝑎𝑎𝑡𝑡

= 𝐼𝐼𝑡𝑡𝑟𝑟′ 𝑥𝑥𝑎𝑎                  (3.18) 

3.2.4 All Reflection Off Mirror 

In Section 3.2.1 we derived an equation for light reflected off the mirror and 

transmitted through the bottom LSC layer. This light will then be incident on the top LSC 

layer. Notice this is analogous to the system treated in Section 3.2.1. Therefore, we can use 

the equations derived in that section (with a different intensity of incident light, of course). 

Note, in Section 3.2.2 light was incident on the bottom LSC layer. In the present case, light 

is incident on the top LSC layer. These equations represent the light transmitted through 

the top and bottom LSC layers, and absorbed through the top and bottom LSC layers.  
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𝐼𝐼𝑡𝑡𝑟𝑟2,1
′′ = 𝐼𝐼′′𝑡𝑡𝑡𝑡1,1𝐼𝐼𝑇𝑇𝑇𝑇𝐼𝐼𝑡𝑡𝑡𝑡

 

1−𝐼𝐼𝑇𝑇𝑇𝑇𝐼𝐼𝑇𝑇𝑡𝑡
= 𝐼𝐼𝑡𝑡𝑟𝑟1,1

′′ 𝑦𝑦𝑡𝑡   (3.19) 

𝐼𝐼𝑎𝑎𝑟𝑟2,1
′′ = 𝐼𝐼′′𝑡𝑡𝑡𝑡1,1𝐼𝐼𝑇𝑇𝑇𝑇𝐼𝐼𝑎𝑎𝑡𝑡

 

1−𝐼𝐼𝑇𝑇𝑇𝑇𝐼𝐼𝑇𝑇𝑡𝑡
= 𝐼𝐼𝑡𝑡𝑟𝑟1,1

′′ 𝑦𝑦𝑎𝑎   (3.20) 

𝐼𝐼𝑡𝑡𝑇𝑇1′′ = 𝐼𝐼′′𝑡𝑡𝑡𝑡1,1𝐼𝐼𝑡𝑡𝑇𝑇
1−𝐼𝐼𝑇𝑇𝑇𝑇𝐼𝐼𝑇𝑇𝑡𝑡

= 𝐼𝐼𝑡𝑡𝑟𝑟1,1
′′ 𝑧𝑧𝑡𝑡    (3.21) 

𝐼𝐼𝑎𝑎𝑇𝑇1′′ = 𝐼𝐼′′𝑡𝑡𝑡𝑡1,1𝐼𝐼𝑎𝑎𝑇𝑇
 

1−𝐼𝐼𝑇𝑇𝑇𝑇𝐼𝐼𝑇𝑇𝑡𝑡
𝐼𝐼𝑡𝑡𝑟𝑟1,1
′′ 𝑧𝑧𝑎𝑎    (3.22) 

Light transmitted through the bottom LSC, 𝐼𝐼𝑡𝑡𝑟𝑟2,1
′′ , will be incident on the mirror and 

an analysis analogous to the one in Section 3.2.3 can be performed. This leads to an infinite 

series, resulting in the following equations, 

 

𝐼𝐼𝑡𝑡𝑟𝑟1,1
′′ = 𝐼𝐼𝑡𝑡𝑟𝑟′ 𝑥𝑥𝑡𝑡   ,   𝐼𝐼𝑡𝑡𝑟𝑟1,2

′′ = 𝐼𝐼𝑡𝑡𝑟𝑟2,1
′′ 𝑥𝑥𝑡𝑡  ,   𝐼𝐼𝑡𝑡𝑟𝑟1,3

′′ = 𝐼𝐼𝑡𝑡𝑟𝑟2,2
′′ 𝑥𝑥𝑡𝑡   ,   …  (3.23) 

𝐼𝐼𝑎𝑎𝑟𝑟1,1
′′ = 𝐼𝐼𝑡𝑡𝑟𝑟′ 𝑥𝑥𝑎𝑎  ,   𝐼𝐼𝑎𝑎𝑟𝑟1,2

′′ = 𝐼𝐼𝑡𝑡𝑟𝑟2,1
′′ 𝑥𝑥𝑎𝑎  ,   𝐼𝐼𝑎𝑎𝑟𝑟1,3

′′ = 𝐼𝐼𝑡𝑡𝑟𝑟2,2
′′ 𝑥𝑥𝑎𝑎   ,   …  (3.24) 

𝐼𝐼𝑡𝑡𝑟𝑟2,1
′′ = 𝐼𝐼𝑡𝑡𝑟𝑟1,1

′′ 𝑦𝑦𝑡𝑡  ,   𝐼𝐼𝑡𝑡𝑟𝑟2,2
′′ = 𝐼𝐼𝑡𝑡𝑟𝑟1,2

′′ 𝑦𝑦𝑡𝑡  ,   𝐼𝐼𝑡𝑡𝑟𝑟2,3
′′ = 𝐼𝐼𝑡𝑡𝑟𝑟1,3

′′ 𝑦𝑦𝑡𝑡   ,   … (3.25) 

𝐼𝐼𝑎𝑎𝑟𝑟2,1
′′ = 𝐼𝐼𝑡𝑡𝑟𝑟1,1

′′ 𝑦𝑦𝑎𝑎  ,   𝐼𝐼𝑎𝑎𝑟𝑟2,2
′′ = 𝐼𝐼𝑡𝑡𝑟𝑟1,2

′′ 𝑦𝑦𝑎𝑎  ,   𝐼𝐼𝑎𝑎𝑟𝑟2,3
′′ = 𝐼𝐼𝑡𝑡𝑟𝑟1,3

′′ 𝑦𝑦𝑎𝑎   ,   … (3.26) 

𝐼𝐼𝑡𝑡𝑇𝑇1′′ = 𝐼𝐼𝑡𝑡𝑟𝑟1,1
′′ 𝑧𝑧𝑡𝑡  ,   𝐼𝐼𝑡𝑡𝑇𝑇2′′ = 𝐼𝐼𝑡𝑡𝑟𝑟1,2

′′ 𝑧𝑧𝑡𝑡  ,   𝐼𝐼𝑡𝑡𝑇𝑇3′′ = 𝐼𝐼𝑡𝑡𝑟𝑟1,3
′′ 𝑧𝑧𝑡𝑡   ,   …  (3.27) 

𝐼𝐼𝑎𝑎𝑇𝑇1′′ = 𝐼𝐼𝑡𝑡𝑟𝑟1,1
′′ 𝑧𝑧𝑎𝑎  ,   𝐼𝐼𝑎𝑎𝑇𝑇2′′ = 𝐼𝐼𝑡𝑡𝑟𝑟1,2

′′ 𝑧𝑧𝑎𝑎  ,   𝐼𝐼𝑎𝑎𝑇𝑇3′′ = 𝐼𝐼𝑡𝑡𝑟𝑟1,3
′′ 𝑧𝑧𝑎𝑎   ,   …  (3.28) 

Let’s look specifically at the light absorbed by the bottom LSC, given by the 

equation below. 

𝐼𝐼𝑎𝑎𝑟𝑟′′ = ∑ 𝐼𝐼𝑎𝑎𝑟𝑟1,𝑖𝑖
′′∞

𝑖𝑖 = 1 + 𝐼𝐼𝑎𝑎𝑟𝑟2,𝑖𝑖
′′       (3.29) 
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Notice the series is iterative, as shown below. When simplified, the terms form two 

geometric series, which yield a final equation for the absorption of light in the bottom LSC. 

𝐼𝐼𝑎𝑎𝑟𝑟′′ = 𝐼𝐼𝑎𝑎𝑟𝑟1,1
′′ + 𝐼𝐼𝑎𝑎𝑟𝑟1,2

′′ + 𝐼𝐼𝑎𝑎𝑟𝑟1,3
′′ + ⋯        (3.30) 

+𝐼𝐼𝑎𝑎𝑟𝑟2,1
′′ + 𝐼𝐼𝑎𝑎𝑟𝑟2,2

′′ + 𝐼𝐼𝑎𝑎𝑟𝑟2,3
′′ + ⋯ 

= 𝐼𝐼𝑡𝑡𝑟𝑟′ 𝑥𝑥𝑎𝑎 + 𝐼𝐼𝑡𝑡𝑟𝑟2,1
′′ 𝑥𝑥𝑎𝑎 + 𝐼𝐼𝑡𝑡𝑟𝑟2,2

′′ 𝑥𝑥𝑎𝑎 + ⋯ 

+𝐼𝐼𝑡𝑡𝑟𝑟1,1
′′ 𝑦𝑦𝑎𝑎 + 𝐼𝐼𝑡𝑡𝑟𝑟1,2

′′ 𝑦𝑦𝑎𝑎 + 𝐼𝐼𝑡𝑡𝑟𝑟1,3
′′ 𝑦𝑦𝑎𝑎 + ⋯ 

= 𝐼𝐼𝑡𝑡𝑟𝑟′ 𝑥𝑥𝑎𝑎 + 𝐼𝐼𝑡𝑡𝑟𝑟1,1
′′ 𝑦𝑦𝑡𝑡𝑥𝑥𝑎𝑎 + 𝐼𝐼𝑡𝑡𝑟𝑟1,2

′′ 𝑦𝑦𝑡𝑡𝑥𝑥𝑎𝑎 + ⋯ 

+𝐼𝐼𝑡𝑡𝑟𝑟′ 𝑥𝑥𝑡𝑡𝑦𝑦𝑎𝑎 + 𝐼𝐼𝑡𝑡𝑟𝑟2,1
′′ 𝑥𝑥𝑡𝑡𝑦𝑦𝑡𝑡 + 𝐼𝐼𝑡𝑡𝑟𝑟2,2

′′ 𝑥𝑥𝑡𝑡𝑦𝑦𝑡𝑡 + ⋯ 

… 

= 𝐼𝐼𝑡𝑡𝑟𝑟′ 𝑥𝑥𝑎𝑎 + 𝐼𝐼𝑡𝑡𝑟𝑟′ 𝑦𝑦𝑡𝑡𝑥𝑥𝑎𝑎2 + 𝐼𝐼𝑡𝑡𝑟𝑟′ 𝑦𝑦𝑡𝑡2𝑥𝑥𝑎𝑎3 + ⋯ 

+𝐼𝐼𝑡𝑡𝑟𝑟′ 𝑥𝑥𝑡𝑡𝑦𝑦𝑎𝑎 + 𝐼𝐼𝑡𝑡𝑟𝑟′ 𝑥𝑥𝑡𝑡2𝑦𝑦𝑎𝑎𝑦𝑦𝑡𝑡 + 𝐼𝐼𝑡𝑡𝑟𝑟′ 𝑥𝑥𝑡𝑡3𝑦𝑦𝑎𝑎𝑦𝑦𝑡𝑡2 + ⋯ 

= 𝐼𝐼𝑡𝑡𝑟𝑟′ �
𝑥𝑥𝑎𝑎

1 − 𝑥𝑥𝑡𝑡𝑦𝑦𝑡𝑡
+

𝑥𝑥𝑡𝑡𝑦𝑦𝑎𝑎
1 − 𝑥𝑥𝑡𝑡𝑦𝑦𝑡𝑡

� 

= 𝐼𝐼𝑡𝑡𝑟𝑟′ �
𝑥𝑥𝑎𝑎 + 𝑥𝑥𝑡𝑡𝑦𝑦𝑎𝑎
1 − 𝑥𝑥𝑡𝑡𝑦𝑦𝑡𝑡

� 

A similar analysis can be performed to determine the intensity of light absorbed by 

the top LSC layer and transmitted through the top LSC layer. Equations for these values 

are given below. 

𝐼𝐼𝑎𝑎𝑇𝑇′′ = 𝐼𝐼𝑡𝑡𝑟𝑟′ � 𝑥𝑥𝑡𝑡𝑧𝑧𝑎𝑎
1−𝑥𝑥𝑡𝑡𝑦𝑦𝑡𝑡

�         (3.31) 

𝐼𝐼𝑡𝑡𝑇𝑇′′ = 𝐼𝐼𝑡𝑡𝑟𝑟′ � 𝑥𝑥𝑡𝑡𝑧𝑧𝑡𝑡
1−𝑥𝑥𝑡𝑡𝑦𝑦𝑡𝑡

�       (3.32) 



36 
 

3.2.5 Total Absorption and Losses 

In the previous three sections, we analyzed light as it passed through a multi-

junction LSC. In this section we’ll put it all together. In all, light can be absorbed by the 

top LSC layer, absorbed by the bottom LSC layer, or lost out the top of the multi-junction 

LSC. The intensity light absorbed or lost is simply the sum of the intensities found in the 

preceding sections, respectively. Thus, 

𝐼𝐼𝑎𝑎𝑇𝑇𝑡𝑡𝑙𝑙𝑡𝑡𝑎𝑎𝑙𝑙 = 𝐼𝐼𝑎𝑎𝑇𝑇 + 𝐼𝐼𝑎𝑎𝑇𝑇′ + 𝐼𝐼𝑎𝑎𝑇𝑇′′              (3.33) 

𝐼𝐼𝑎𝑎𝑟𝑟𝑡𝑡𝑙𝑙𝑡𝑡𝑎𝑎𝑙𝑙 = 𝐼𝐼𝑎𝑎𝑟𝑟 + 𝐼𝐼𝑎𝑎𝑟𝑟′ + 𝐼𝐼𝑎𝑎𝑟𝑟′′              (3.34) 

𝐼𝐼𝑡𝑡𝑇𝑇𝑡𝑡𝑙𝑙𝑡𝑡𝑎𝑎𝑙𝑙 = 𝐼𝐼𝑡𝑡𝑇𝑇 + 𝐼𝐼𝑡𝑡𝑇𝑇′ + 𝐼𝐼𝑡𝑡𝑇𝑇′′               (3.35) 

3.2.6 Model Results and Monte Carlo Model Comparison 

The absorption of light by each layer is calculated using this model, with no top or 

bottom mirrors present, but perfect specular mirrors placed on the sides. Results from the 

 

Figure 3.5 The fraction of incident light absorbed calculated from the analytical model (dotted) is 

compared to Monte Carlo simulations (dashed). Top layer absorption is given in blue, while bottom layer 

absorption is shown in red. 
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analytical calculations and Monte Carlo simulations are shown in Figure 3.5. 

The simulations show excellent agreement with the analytical model calculations. 

The relative percent difference is within 1% for the top layer and 5% for the bottom layer, 

with the Monte Carlo simulations displaying slightly lower absorption values. These results 

verify the accuracy of the multijunction model and provide confidence for future 

simulations. 

3.3 Multijunction LSC Simulations 

Monte Carlo simulations are used to study the multijunction system. Two layers, 

each with lateral size 1 m x 1 m, are stacked with a 1 mm air gap separating them. The top 

layer contains CdSe/CdS quantum dots with quantum yield 75%, while the second layer 

contains Si quantum dots with quantum yield 50%. These quantum yields are chosen to 

reflect experimentally realizable values. PMMA is selected as the host polymer in both 

layers. The absorption and emission spectra for each luminophore is taken from 

experimental measurements. 

3.3.1 Optical Density 

The optical density, or concentration, of luminophores is an important parameter in 

any LSC. Light absorption and reabsorption losses are greatly affected by the concentration 

of luminophores in the concentrator, so optimizing this parameter is required for maximum 

performance. The multijunction model is used here to determine the optimum optical 

density of each layer of the multijunction LSC. 

There are two competing factors associated with luminophore concentration: 

increasing optical density increases absorption, but also allows more emitted light to be 
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reabsorbed [71]. This tradeoff is further complicated for multijunction systems by the 

presence of different luminophores. In a single layer LSC absorption of all light with 

energy above the band gap is desired, but in a multijunction LSC each layer should absorb 

a different spectral range. Specifically, the top layer should absorb light above the band 

gap, while the bottom layer should absorb light between the band gaps of the top and 

bottom layer luminophore. 

As a first step to finding the optimal optical density, and to demonstrate the tradeoff 

between light absorption and reabsorption losses, bottom layer optical density is varied 

while holding top layer OD = 1.0 at 450 nm. An optimum bottom layer optical density is 

observed at 0.2 at 450 nm, as seen in Figure 3.6, which shows the fraction of light reaching 

the bottom layer solar cell at varying wavelength and bottom layer optical density. 

 

Figure 3.6 The bottom layer optical density at 450 nm was varied from 0.1 to 1.5. The fraction of incident 

light reaching the edge of the bottom layer concentrator is plotted against bottom layer optical density at 450 

nm and wavelength. 
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To observe the competing factors, absorption and reabsorption are tracked 

explicitly. The total number of photons absorbed by the bottom layer is found to increase 

monotonically with optical density. However, of the light absorbed and emitted by the 

bottom layer, the fraction lost to reabsorption losses in the bottom layer also increases 

monotonically. This means that although more light is absorbed at higher optical density, 

less of the absorbed light reaches the edge of the concentrator. Figure 3.7 shows bottom 

layer light absorption and the fraction of absorbed light reaching the edge. These 

observations demonstrate how increasing bottom layer optical density increases both light 

absorption and reabsorption losses, creating the optimum observed. 

 

Figure 3.7 As bottom layer optical density increases, the fraction of incident light absorbed by the bottom 

layer (red) increases. However, due to reabsorption losses, the fraction of absorbed light which reaches the 

edge of the bottom layer concentrator (blue) decreases. 

An optimum bottom layer optical density of 0.2 at 450 nm is found assuming a top 

layer optical density of 1 at 450 nm. By allowing the optical density of both layers to 
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change, an interdependence of layer performance is observed. Namely, the performance of 

the bottom layer is dependent on light absorption in the top layer. 

An iterative method is used to find the optimum optical density of each layer. The 

first iteration was discussed previously: the optical density of the top layer was fixed at 1 

while the optimum bottom layer optical density was determined. Then, the bottom layer 

optical density is fixed at this optimum, 0.2, while top layer optical density is optimized. 

Luminophore concentration in the bottom layer is then varied again, this time holding the 

top layer optical density at the new value. This process is continued until an optimum set 

of values is found to within 0.01 at 450 nm. Multijunction LSC performance in this system 

is optimized at optical densities of 0.15 for the top layer and 0.07 for the bottom layer. 

A shift in optimal bottom layer optical density is observed, from 0.2 to 0.07, as top 

layer optical density decreases from 1 to it optimum value, 0.15. When the concentration 

of luminophores in the top layer is decreased, top layer absorption decreases. This leads to 

an increase in bottom layer absorption, as more light is transmitted through the top layer 

and is incident upon the bottom layer. The change in bottom layer absorption due to top 

layer concentration alters the balance point, the optimum, between light absorption and 

reabsorption losses in the bottom layer. This balance is pushed to lower optical densities, 

where light absorption can remain relatively high while decreasing reabsorption losses. 

The performance of the optimal concentrator system is shown in Figure 3.8. At 

wavelengths shorter than about 500 nm, the top layer collects more light than the bottom 

due to strong absorption at these wavelengths and higher quantum yield. However, the top 

concentrator does not absorb past 650 nm, so little light is guided to the edge for 
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wavelengths longer than 650 nm. In contrast, the bottom layer concentrator absorbs 

throughout the visible and into the near-IR. Therefore, the bottom layer experiences a more 

gradual decrease in efficiency as wavelength lengthens. When weighted over the solar 

spectrum between 400 nm and 1100 nm, the bounds of the present simulations, the top 

layer has an optical efficiency of 3.02% and the bottom layer has an optical efficiency of 

2.20%. The overall optical efficiency of the multijunction LSC is 5.22%. 

 

Figure 3.8 The fraction of incident light reaching the edge of the top layer (blue) and bottom layer (red) 

concentrators is shown. At short wavelengths, the top layer efficiently collects and guides light, though it 

collects little light at wavelengths longer than 650 nm. 

3.3.2 Photoluminescent Coupling Effects 

The dependence of bottom layer design and performance upon top layer design was 

discussed in the previous section. In this section another type of layer interdependence is 

explored: photoluminescent coupling. Light absorbed and emitted in one layer may 

propagate into the other layer and interact with luminophores there, leading to the 
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interdependence of top and bottom layer performance. These effects can give rise to 

nonlinear behavior in multijunction system efficiency, whereas improvement in the 

efficiency of one layer can also improve performance in the other layer. The extent of these 

coupling effects in the present multijunction LSC system is studied to gain insights into 

LSC layer interdependence. Emitted photons are sorted by which layer they were emitted 

from. The collection mechanisms for photons absorbed and emitted from each layer are 

tracked separately, allowing for an explicit examination of how emission from one layer 

affects the performance of the other layer. 

  

Figure 3.9 Photons emitted by the top (left) and bottom (right) layers are separated, and their collection 

mechanisms are tracked. A majority of emitted photons are lost to the escape cone or collected within the 

same layer they were emitted from. 

From Figure 3.9, it is seen that the effects of coupling are relatively small in the 

present system. Virtually no light emitted by the bottom layer was collected by the top 

layer solar cell or lost to top layer reabsorption. Therefore, the presence of the bottom layer 

does not increase top layer efficiency through photoluminescent coupling effects. The 

reason for this lack of coupling can be explained by observing in Figure 1.3 that there is 

Top Bottom 
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little overlap between the top layer absorption spectrum and bottom layer emission 

spectrum. 

While there is little overlap between top layer absorption and bottom layer 

emission, there does exist significant overlap between the bottom layer absorption 

spectrum and top layer emission spectrum, leading to coupling. The presence of coupling 

effects is evident in top layer-emitted light, where 3.82% of light emitted by the top layer 

was reabsorbed by the bottom layer. Although coupling is observed in the present system, 

the performance increase of the bottom layer due to this coupling is slight. 

Despite the lack of efficiency gain due to photoluminescent coupling in the present 

system, it should be noted that this multijunction system does not contain a mirror above 

the surface of the top layer. As a result, trapping is relatively poor in these concentrators, 

leading to few opportunities for light emitted from one layer to interact with the other. If a 

top mirror was added to the concentrator, light could be trapped between the top and bottom 

mirrors, passing several times through each of the layers, giving rise to many opportunities 

for interactions. Photoluminescent coupling is expected to be much more prominent in 

these cases. 

3.3.3 Ideal Top Mirrors 

Wavelength-selective mirrors placed above the top surface of a single layer LSC 

serve to transmit high energy light into the concentrator while trapping emitted light, 

maintain high light absorption while reducing escape cone losses. These mirrors offer the 

same potential for multijunction LSCs. Designing a wavelength-selective mirror for a 

stacked concentrator system has added complexity due to the presence of two absorption 
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bands and two emission bands (one for each layer). Simulations are performed placing 

idealized top mirrors above the multijunction LSC to evaluate the potential of these mirrors 

for efficiency improvement. 

 

Figure 3.10 Four multijunction LSCs were examined with various top mirrors. (a) No top mirror is added. 

(b) A top mirror is added above the surface of the top LSC layer. This mirror has a reflection band from 800 

nm to 1100 nm, overlapping with the emission spectrum of Si quantum dots. (c) This mirror has reflection 

from 600 nm to 675 nm, overlapping with the emission spectrum of CdSe/CdS quantum dots. (d) The final 

mirror has reflection bands from 600 nm to 675 nm and from 800 nm to 1100 nm. 

Before designing photonic mirrors, as was done in Section 2.1, idealized cases are 

examined to determine the desired reflection band of the top mirror and the performance 

enhancement potential of top mirrors for a multijunction configuration. Simulations are 

performed on four multijunction LSC systems: no top mirror (Figure 3.10(a)), a mirror 

whose reflection band overlaps with the emission spectrum of Si quantum dots (Figure 

                                                  

      

(a) 

(d) (c) 

(b) 
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3.10(b)), a mirror whose reflection band overlaps with the emission spectrum of CdSe/CdS 

quantum dots (Figure 3.10(c)), and finally, a mirror with reflection bands which overlap 

with the emission spectra of both luminophores (Figure 3.10(d)). For each of the idealized 

top mirrors, reflectivity is one within the reflection band, and zero outside of it. The 

reflection bands do not blue shift with angle of incidence. 

An increase in the fraction of light reaching the edge of the concentrators is 

observed for wavelengths outside the reflection band of the mirrors due to the enhanced 

trapping provided by the mirrors. However, no light within the reflection band is collected 

as all light within the reflection band is reflected. Edge collection from both layers is given 

in Figure 3.11.  

 

 

Figure 3.11 The fraction of light reaching the concentrator edge is compared for an open top system, and the 

three idealized mirrors (see Figure 3.10). The sum of light reaching the top layer edge and light reaching the 

bottom layer edge is given. 
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The performance of these three idealized cases are compared. For the multijunction 

LSC with no top mirror, 5.22% of light is collected at the edge, weighting by the solar 

spectrum from 400 nm to 1100 nm. Upon the addition of the first mirror (Figure 3.10(a)) 

there is little change in performance as 5.31% of light reaches the edge. Although the 

presence of the mirror reduces escape cone losses, there is also an increase in reabsorption 

as photons trapped between the mirrors pass several times through the concentrators. 

Increased reabsorption and reflection losses reduce the effectiveness of this mirror at 

boosting efficiency. The second mirror (Figure 3.10(b)) has an optical efficiency of 5.76%, 

a relative increase of 10% from the open top system. Reabsorption and reflection losses 

also increase upon the addition of this mirror. However, the mirror is much more effective 

at reducing escape cone losses, with less than half the escape cone losses of the first mirror 

system. The third mirror is a combination of the first two, and increases efficiency to 

5.92%, a relative increase of 13%. Escape cone losses in this system constitute less than 

1% of incident light for a multijunction system with this mirror. 

Three idealized top mirrors are added above the top surface of the multijunction 

LSC to evaluate the potential benefits from such mirrors. Moderate gains in efficiency are 

observed, with efficiency improvements up to 13%. The width and wavelength range of 

the reflection bands of these mirrors are not varied, and it is likely that further increases 

could be seen with optimization. However, much of the performance gains provided by 

these top mirrors may be damped as idealities are relaxed. Imperfect reflection within the 

reflection band and imperfect transmission outside the reflection band may lead to 

decreases in the performance enhancing effects of the mirrors. 
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3.4 Multijunction LSC Performance 

In this section a multijunction LSC with two layers is examined. The top layer 

contains CdSe/CdS quantum dots with quantum yield 75% and an optimum optical density 

of 0.15 at 450 nm. The bottom LSC layer contains Si quantum dots with quantum yield 

50% and optimum optical density 0.07 at 450 nm. Each of the layers is 1 m x 1 m in lateral 

size and 0.003 m thick. A diffuse mirror is placed beneath the bottom surface of the LSC 

to increase light absorption and trapping. The fraction of light reaching the edge of each 

layer is determined for a wavelength range of 400 nm to 1100 nm. When weighting by the 

solar spectrum within that range, an optical efficiency of 3.02% for the top layer and 2.20% 

for the bottom layer is found, for an overall optical efficiency of 5.22%. 

The efficiency of other multijunction LSCs reported in the literature is given in 

Table 3.1. While it is difficult to compare results directly due to differences in LSC size 

and efficiency measurement methodology, some works report optical efficiency while 

other measure the PCE of edge-mounted solar cells, the efficiency of the concentrator in 

this work is similar to reported literature values. Optical efficiency is known to decrease 

with concentrator size, so the large lateral sizes used in present simulations lead to lower 

efficiency than many of the smaller concentrators in the literature. Conversely, the presence 

of a diffuse back mirror, absent in other works, boosts efficiency. 
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Table 3.1 Efficiencies for multijunction LSCs in the literature are reported. The type of luminophore, 

concentrator size, efficiency, and efficiency type (PCE or optical efficiency) is given, along with 

corresponding references. 

Luminophores Size (cm3) Efficiency Efficiency 
Type Ref. 

BA241 Dye 
BA856 Dye 2 x 2 x 0.3 6.7% PCE [55] 

C-dots 
CdPb(Br0.8Cl0.2)3 
CsPb(Br0.2I0.8)3 

10 x 10 x 0.2 3.05% PCE [72] 

Mn:CdxZn1-xS/ZnS 
CuInSe2/ZnS 15.24 x 15.24 x 0.16 6.4% Optical [29] 

Three Dyes 120 x 13.5 x 0.2 6.1% Optical [73] 
DCJTB Dye 

Pt(TPBP) 2.5 x 2.5 x 0.2 6.8% PCE [74] 

Lumogen F Red305 
Yellow CRS040 5 x 5 x 0.5 7.1% PCE [75] 

CdSe/CdS 
Si 100 x 100 x 0.3 5.22% Optical This work 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



49 
 

Chapter 4. Thin Film LSC Simulations 

 Thus far, single junction and multijunction LSC simulations have utilized a bulk 

polymer architecture, where luminophores are homogeneously dispersed in a polymer 

medium. Thin film LSCs consist of a film of polymer embedded with luminophores, having 

a thickness close to the wavelength of emitted light, deposited onto a glass substrate. In 

this architecture sunlight is absorbed by luminophores in the thin film, which then emit 

light into the glass substrate where it is guided to the edges via total internal reflection. The 

thin film architecture may provide performance advantages by allowing fluorescent light 

to propagate within a lossless glass substrate instead of an absorbing polymer slab. 

However, the angles of emitted light are also modified by the thin film structure. It is, 

therefore, critical to understand how light interacts with a thin film LSC and to evaluate 

the differences between the bulk polymer and thin film architectures. Here, a thin film LSC 

is modeled. The performance of thin film LSCs is calculated and compared to a bulk 

polymer concentrator. 

4.1 Ray and Wave Optics Model 

 The simulation of thin film LSCs is more complicated than bulk polymer LSCs as 

the thickness of the film is close to the wavelengths of incident and emitted light, giving 

rise to wave effects which cannot be accounted for using a ray-tracing model. These thin 

film effects alter the angular distribution of emission from the luminophores, reabsorption 

within the concentrator, and reflection off the top face of the LSC. To model these effects, 

a wave optics model is required. A 3D FDTD model is developed to calculate the angular 

distribution of the emission of light from a luminophore within the thin film, as well as 
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light reabsorption in the film. An analytical model is used to calculate thin film absorption, 

reflection, and transmission. Data from these calculations is then integrated into a Monte 

Carlo ray-tracing model which simulates the performance of thin film LSCs. 

The Monte Carlo algorithm is similar to the one used in Chapter 2. The geometry 

of the system is changed, however. Instead of assuming luminophores are homogeneously 

dispersed within a bulk polymer layer, a glass substrate with an infinitely thin polymer-

luminophore film on its top face is modeled. Light incident upon the top face of the LSC 

can be absorbed by the thin film, reflected, or transmitted, where the probability of 

absorption, reflection, and transmission is calculated by an analytical model. Absorbed 

light can then be lost to absorption losses due to non-unity quantum yield, emitted into the 

air, emitted into the glass substrate, or emitted and reabsorbed without leaving the thin film. 

The angular distribution of luminescence into the air and substrate, as well as the 

probability of reabsorption, is determined from the FDTD calculations. Light propagates 

through the system until it is lost to one of the loss mechanisms discussed in Section 2.2 or 

reaches the edge of the concentrator. The collection mechanisms in these simulations are 

almost the same as those of the bulk polymer simulations. However, escape cone losses are 

split between losses to the air and losses through the substrate. 

4.2 Dipole Emission in a Homogeneous Medium and Dielectric Half Space 

 Before simulating the emissive properties of luminophores in a thin film, the FDTD 

model is tested using simpler systems. First, a dipole is placed in a 3D homogenous 

dielectric medium with n = 1.0, where it should exhibit isotropic emission. Perfectly 

matched boundary conditions are used at each boundary of the simulation region. Using 
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this boundary condition, all light reaching the edge of the simulation is absorbed by the 

boundary, none of the light is reflected back into the simulation region. Monitors are placed 

above and beneath the dipole to measure the electric field upon emission. This data is 

transformed into the far field, where the angular distribution of emission is determined. 

Dipole orientation is taken as isotropic. Thus, three simulations are run with varying dipole 

orientations, each orthogonal to the other two, and averaged. 

 The angular distribution of emission for a dipole in a homogeneous medium is 

shown in Figure 4.1. In this figure, 0 degrees denotes the direction normal to the bottom 

monitor (see Figure 4.1 inset), 90 degrees denotes the direction parallel to the monitor 

surface, and 180 degrees denotes the direction normal to the top monitor. Emission is 

observed as isotropic at most angles. However, from 70 to 90 degrees, and from 110 to 90 

degrees, emission intensity sharply decreases to zero. While isotropic emission is expected 

at all angles, this decrease to zero emission at 90 degrees is not due to an error in the 

simulation but a model limitation. The monitors above and beneath the dipole measure 

emission intensity above and beneath the dipole. However, these monitors cannot measure 

light emitted parallel or nearly parallel to their surface, that is, light emitted near 90 degrees. 

As a result, far field calculations are performed assuming no electric field intensity past the 

edges of the monitor. It is this boundary condition which gives rise to the observed feature. 

 It is important to note that for all future simulations, the model will not be accurate 

for some angles near 90 degrees. However, the range of angles over which the model yields 

inaccurate results, between 70 and 110 degrees in the case of a dipole in a homogeneous 

medium, will vary depending on the simulation. For instance, for the case of a dipole in a 
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thin film, which will be discussed in Section 4.3, little light is emitted at angles near 90 

degrees. Thus, the zero electric field intensity boundary condition on the monitors is a 

better assumption than in the homogeneous medium case. Therefore, the model is expected 

to be accurate for a large range of angles. 

 

Figure 4.1. The angular distribution of emission from a dipole in a homogeneous medium is shown. Isotropic 

emission is seen for most angles, but emission intensity falls to zero at 90 degrees. The inset shows the model, 

where a dipole is placed in an n = 1.0 lossless medium. Two monitors (represented by dotted lines) are placed 

above and beneath the dipole. 0 degrees denotes the direction beneath the dipole, 90 degrees denotes the 

direction to the side of the dipole, and 180 degrees denote the direction above the dipole. 

 After studying the homogeneous case to determine the limitations of the FDTD 

model, a dipole is placed near a dielectric half space to observe how a nearby interface 

alters dipole emission. A dipole emission wavelength of 645 nm is chosen, which 

corresponds to the peak emission wavelength of CdSe/CdS quantum dots. Refractive index 
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data is measured for a thin film with CdSe/CdS core-shell quantum dots and for a glass 

substrate using spectroscopic ellipsometry, as discussed in Chapter 5. These data are 

imported into the FDTD model, where the upper region of the half space has the real 

refractive index of the thin film and the lower region of the half space has the refractive 

index of glass. Note, the imaginary component of the refractive index is set to zero for half 

space simulations. At 645 nm, the refractive index of the upper region is 1.60, and the 

refractive index of the lower region is 1.52. 

The dipole is placed in the upper region a height, H, from the interface. This height 

is varied from 100 nm to 1000 nm. The angular distribution of dipole emission for various 

heights is given in Figure 4.2. When the dipole is near the interface, a sharp peak in 

emission intensity forms at steep angles (near 90 degrees) in the upper region. Additionally, 

more light is emitted into the upper region. This preferential emission into the upper region 

occurs due to the difference in refractive index. As the dipole moves away from the 

interface, the emission intensity peak decreases and emission intensity into the lower region 

increases, moving towards isotropic behavior. While anisotropic emission is still observed 

at a distance of 1000 nm from the interface, the anisotropic features are significantly less 

distinct. 

Generally, a dipole near a dielectric interface will emit more light into the higher 

refractive index medium, with a preference for emission at steep angles. This is favorable 

for our thin film LSCs, as the refractive index of the glass substrate is larger than that of 

the air, so preferential emission into the substrate is expected. Emission at steep angles is 

also beneficial as light emitted into the substrate has a more direct path towards the edge. 
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Figure 4.2. A dipole is placed in a dielectric half space at various distances from the interface. The angular 

distribution shows anisotropic behavior at short heights, trending towards isotropic emission as the dipole is 

moved away from the interface. The half space model is shown in the inset, where a dipole is placed a distance 

H away from the interface between two dielectric materials. 

4.3 Dipole Emission in a Thin Film 

 After testing the FDTD model for simpler cases of dipole emission in a 

homogeneous medium and dipole emission near a dielectric half space, a dipole is placed 

in a thin film to model the thin film LSC system. Thin film effects on dipole emission and 

the reabsorption of emitted light are calculated. The thickness of the thin film is varied 

from 100 nm to 1500 nm to determine how LSC performance can be altered by changing 

thin film thickness. 

4.3.1 Dipole Height and Orientation 

 In these simulations, air above the thin film and the glass substrate beneath the thin 

film are treated as semi-infinite layers. Monitors are placed above and beneath the thin 
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film, parallel to its top and bottom interfaces. The refractive index of the thin film and the 

substrate are taken from experimental measurements, as discussed in the previous section. 

Note, for thin film simulations, the imaginary component of the refractive index of the thin 

film is not set to zero. For each simulation, three cases are run with varying dipole 

orientations. Figure 4.3 shows the electric field intensity map for emission from a dipole 

in a 100 nm thick film into the glass substrate for different dipole orientations. In these 

simulations, the hemispherical distribution of electric field intensity above and beneath the 

thin film is calculated. This hemisphere is then projected onto a circle, which is what is 

shown in the figure. Here, the X and Y directions are parallel to the monitors (and the 

interfaces between the air, thin film, and substrate), while the Z direction is normal to the 

 

Figure 4.3 Electric field maps are shown for dipoles oriented in the a) X, b) Y, and c) Z directions. The 

electric field intensity map is a 2D projection of the hemispherical distribution of electric field intensity 

beneath the thin film, i.e. into the substrate. Note, the outside box of the diagrams beneath the electric field 

intensity maps denotes the edge of the simulation region. The air and substrate are treated as semi-infinite in 

height. 

 



56 
 

monitors. The three dipole orientations are averaged to yield results for an isotropic mixture 

of dipole orientation, which is a reasonable assumption for luminophores dispersed in a 

thin polymer film.  

 In addition to averaging results over dipole orientation, it is also important to 

consider different dipole heights within the film. As seen in Section 4.2, the angular 

distribution of emission changes as a dipole is moved closer or farther away from a 

dielectric interface. Similarly, the angular distribution of emission will change as the dipole 

is moved closer to the air/thin film interface or the thin film/substrate interface. Figure 4.4 

shows the angular distribution for a 700 nm thin film at (a) varying dipole heights, and (b) 

the average angular distribution. At different heights the angular distribution changes, with 

    

Figure 4.4 The angular distribution of emission from a dipole in a 700 nm thin film is given. The height of 

the dipole within the thin film was varied, placing the dipole 1/4, 1/2, and 3/4 of the film thickness away 

from the thin film/substrate interface (a). The three angular distributions were averaged to yield the average 

angular distribution of emission from a dipole in a 700 nm thin film (b). Note, the outside box in the inset 

denotes the edge of the simulation region. The air and substrate are treated as semi-infinite in height. 

 

a) b) 
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variation in the maximum angle, the intensity, and the number of angle maxima. No one 

height captures the shape of the average angular distribution. Therefore, for all subsequent 

simulations nine simulations are averaged, with the dipole placed T/4, T/2, and 3T/4 from 

the thin film/substrate interface, where T is the film thickness, and with each of the three 

dipole orientations. 

4.3.2 Angular Distribution of Emission from a Dipole in a Thin Film 

 For a dipole in a dielectric half space, the angular distribution of its emission is 

anisotropic. A peak in emission intensity is observed at steeper angles, and more light is 

emitted into the high refractive index layer. In our thin film system there are two dielectric 

interfaces. The refractive index in each layer, as well as the thickness of the thin film, which 

affects the average distance between the dipole and each of the dielectric interfaces, is 

expected to impact the emission properties of the dipole. The effects of film thickness on 

dipole emission are explored here. 

 First, emission from a 100 nm thin film is analyzed. The electric field map, similar 

to the ones given in Figure 4.3, is shown in Figure 4.5. In this figure, the electric field 

intensity is averaged over three dipole orientations and three dipole heights, nine 

simulations in total. Figure 4.5(a) shows emission intensity into the substrate, while Figure 

4.5(b) shows emission intensity into the air. In both the substrate and the air, we see 

rotational symmetry in the XY plane. For an isotropic dipole in a homogeneous thin film, 

the system is rotationally symmetric in the XY plane, so the observation of rotational 

symmetry in the angular distribution of emission from such a dipole is expected. 
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An emission peak at steep angles into the substrate is observed. This is promising 

for LSC performance, as this peak occurs at angles steeper than the critical angle between 

the substrate and air, meaning light emitted at such angles is trapped in the concentrator. 

Also promising, the emission intensity into the substrate is much higher than the emission 

intensity into the air. This behavior is necessary in thin film LSCs to avoid prohibitive 

escape cone losses, as none of the fluorescent light emitted directly into the air can reach 

the solar cells at the edge of the substrate. Another interesting observation is the similarity 

between the behavior of emission in a thin film and emission in a half space. Although 

there is an intermediate layer—the thin film—in which the dipole is placed, the angular 

distribution of emission from a dipole in a thin film resembles that of a dipole in a half 

space. Light is preferentially emitted into the substrate, which has a real refractive index 

greater than the air but less than the thin film, and there is a strong emission peak at steep 

angles. 

 

Figure 4.5 The electric field intensity map for light emitted from a dipole in a 100 nm thin film into the (a) 

substrate and the (b) air is shown. Emission intensity is angularly symmetric within the XY plane. A peak is 

observed in the substrate at steep angles, and more light is emitted into the substrate than the air. 
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To study the effects of film thickness on luminophore emission, the thickness of 

the thin film is varied from 100 nm to 1000 nm. The electric field intensity is calculated as 

a function of the angle between the direction of emission and the normal of the thin 

film/substrate interface. In this case, 0 degrees is directly into the substrate, 90 degrees 

points along the thin film, and 180 degrees is directly into the air. Figure 4.6 shows the 

angular distribution for various thin film thicknesses. 

 

Figure 4.6 The angular distribution of emission is given for various thin film thicknesses. Emission into the 

substrate, normal to the thin film/substrate interface, is 0 degrees. Emission parallel to the interface is 90 

degrees. Emission into the air, normal to the air/thin film interface, is 180 degrees. 

As thin film thickness increases, the emission peak first shifts to steeper angles, 

before transitioning to smaller angles. The intensity of the emission peak steadily decreases 

with film thickness. Two effects are observed here. First, as film thickness increases, the 

emission peak shifts to steeper angles. For a non-absorbing film, we would expect to see a 

constant shift of the peak to steeper angles. However, the film is absorbing, as it contains 
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luminophores, and as film thickness increases so does reabsorption within the thin film. 

This reabsorption is most prominent with light emitted at steep angles. Therefore, as film 

thickness increases, more and more of the emission peak is lost to reabsorption, leading to 

the eventual shift in emission to smaller angles and the general decrease in peak intensity 

with film thickness. For thin film LSCs, these results indicate that films cannot be made 

too thick or much of the light emitted into the substrate will not be trapped by total internal 

reflection. 

4.3.3 Reabsorption of Emission within a Thin Film 

 The increase of reabsorption with thin film thickness was briefly discussed in the 

previous section. In this section, the reabsorption of emitted light within the thin film is 

explored further. When light is emitted from a luminophore in an LSC, it can be reabsorbed 

by other luminophores reaching the edge of the device. This reabsorption is problematic, 

as light must be guided to the edge to be collected by the solar cells. After each reabsorption 

event, there is a chance for non-radiative recombination or emission into the escape cone, 

resulting in losses in LSC efficiency. Therefore, LSCs should be designed to minimize the 

number of interactions an emitted photon has with luminophores. Thin film LSCs are 

designed to minimize these interactions by confining the absorbing luminophores to a thin 

film placed on top of a glass waveguide. Once light is emitted into the glass substrate, it 

can propagate to the edges with minimal interactions with the thin film. However, before 

light is trapped in the substrate it must be emitted out of the thin film. Naturally, some of 

the light emitted within the thin film is reabsorbed before leaving the thin film. The effects 

of thin film thickness on this reabsorption is explored. 
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 Reabsorption probability is the fraction of emitted light that does not enter the air 

or substrate. That is, it is the fraction of emitted light which is absorbed by the thin film. 

Note that for present simulations, all emitted light propagating within the thin film is 

absorbed before reaching the edge of the simulation region, so all light which does not 

enter the air or substrate has been absorbed. The reabsorption probability is calculated for 

varying film thickness and plotted in Figure 4.7. Increasing thin film thickness increases 

both the number of luminophores within the thin film, though the concentration of 

luminophores is constant, and the average distance between a luminophore and the air or 

substrate. Thus, thicker films experience greater reabsorption, with the probability of 

reabsorption without leaving the thin film near 45% for 1000 nm thin films. In addition to 

rising reabsorption with thin film thickness, oscillatory behavior is observed. The 

 

Figure 4.7 The probability of reabsorption within the thin film is shown for varying thin film thicknesses. 

Reabsorption is low for thinner films, but approaches 45% for thicker films, presenting a significant source 

of losses for an LSC. 
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reabsorption probability curve shows oscillations with a frequency near the wavelength of 

emitted light. These oscillations likely arise from the trapping of light within the thin film, 

as thin film reflection and transmission oscillates with thin film thickness. 

4.4 Thin Film Absorption, Reflection, and Transmission 

 To model a thin film in the Monte Carlo algorithm, Fresnel equations and 

absorption data are inadequate to capture the absorption, reflection, and transmission 

behavior of the thin film. Light incident upon a thin film must be treated as a wave because 

the thickness of the thin film is on the order of the wavelength of incident light, giving rise 

to interference effects. Therefore, an analytical wave-optics model must be developed to 

calculate the absorption, reflection, and transmission of a thin film using film thickness, 

film and substrate refractive index data, luminophore absorption spectrum, and angle of 

incidence as inputs. The addition of this model into the Monte Carlo algorithm allows the 

algorithm to evaluate whether a photon incident upon the thin film is absorbed, reflected, 

or transmitted. 

 

Figure 4.8 Light incident on the thin film is split into partial reflectance and transmittance waves. The sum 

of these waves can be used to determine the absorption, reflection, and transmission of the thin film. 



63 
 

The thin film is treated as an etalon, similarly to the treatment of multijunction 

LSCs in Section 3.2. Light incident on the thin film is divided into an infinite series of 

partial waves, shown in Figure 4.8. The amplitude of these partial reflectance, 𝜌𝜌𝑖𝑖, and 

transmittance, 𝜏𝜏𝑖𝑖, waves are 

𝜌𝜌1 = �𝑅𝑅1  ,    𝜌𝜌2 = 𝑇𝑇�𝑅𝑅2𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖   ,    𝜌𝜌3 = 𝑇𝑇𝑅𝑅1�𝑅𝑅2𝐴𝐴2𝑒𝑒2𝑖𝑖𝑖𝑖   ,   …    (4.1) 

𝜏𝜏1 = �𝑇𝑇1�𝑇𝑇2𝐴𝐴
1
2  ,   𝜏𝜏2 = �𝑇𝑇1�𝑇𝑇2�𝑅𝑅1�𝑅𝑅2𝐴𝐴

3
2𝑒𝑒𝑖𝑖𝑖𝑖   , 

𝜏𝜏3 = �𝑇𝑇1�𝑇𝑇2𝑅𝑅1𝑅𝑅2𝐴𝐴
5
2𝑒𝑒2𝑖𝑖𝑖𝑖   ,   …         (4.2) 

where 𝑅𝑅1 and 𝑅𝑅2 are the reflectivities of the air/thin film and thin film/substrate interfaces, 

respectively, 𝑇𝑇1 and 𝑇𝑇2 are the transmissivities of the air/thin film and thin film/substrate 

interfaces, respectively, 𝐴𝐴 is the fraction of light not absorbed per two passes, and 𝛿𝛿 is a 

phase factor given by 

𝛿𝛿 = 4𝜋𝜋𝑛𝑛1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝜃𝜃1
𝜆𝜆

          (4.3) 

where 𝑛𝑛 is the index of refraction of the thin film, 𝑙𝑙 is the thickness of the thin film, 𝜃𝜃1 is 

the angle of light propagation in the thin film relative to the normal and 𝜆𝜆 is the wavelength 

of light. Notice 𝑇𝑇 = 1 − 𝑅𝑅. 

The total amplitude of reflected light, 𝜌𝜌, is the sum of all partial reflected waves. 

With some simple algebraic manipulation 𝜌𝜌 can be represented as the sum of a geometric 

series. 

𝜌𝜌 = 𝜌𝜌1 + 𝜌𝜌2 + 𝜌𝜌3 + ⋯ = �𝑅𝑅1 − 𝑇𝑇1�𝑅𝑅2𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑇𝑇1�𝑅𝑅1𝑅𝑅2𝐴𝐴2𝑒𝑒2𝑖𝑖𝑖𝑖 − 𝑇𝑇1𝑅𝑅1𝑅𝑅2
3
2𝐴𝐴3𝑒𝑒3𝑖𝑖𝑖𝑖 − ⋯ 

 (4.4)  
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= �𝑅𝑅1 − 𝑇𝑇1�𝑅𝑅2𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖�1 + �𝑅𝑅1�𝑅𝑅2𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑅𝑅1𝑅𝑅2𝐴𝐴2𝑒𝑒2𝑖𝑖𝑖𝑖 +⋯� = �𝑅𝑅1 −
𝑇𝑇1�𝑅𝑅2𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖

1 −�𝑅𝑅1�𝑅𝑅2𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖
 

Here we used a simple geometric series formula valid for any |𝑥𝑥| < 1, namely 

1 + 𝑥𝑥 + 𝑥𝑥2 + ⋯ = 1
1−𝑥𝑥

    (4.5) 

The intensity of light reflected, 𝐼𝐼𝑟𝑟 is equal to the product of the total amplitude of 

reflected light and its complex conjugate. Shown below is the equation for 𝐼𝐼𝑟𝑟. 

𝐼𝐼𝑟𝑟𝑇𝑇 = 𝜌𝜌𝜌𝜌∗ = ��𝑅𝑅1 −
𝑇𝑇1�𝑅𝑅2𝐴𝐴𝑒𝑒𝑇𝑇𝑖𝑖

1−�𝑅𝑅1�𝑅𝑅2𝐴𝐴𝑒𝑒𝑇𝑇𝑖𝑖
� ��𝑅𝑅1 −

𝑇𝑇1�𝑅𝑅2𝐴𝐴𝑒𝑒−𝑇𝑇𝑖𝑖

1−�𝑅𝑅1�𝑅𝑅2𝐴𝐴𝑒𝑒−𝑇𝑇𝑖𝑖
�  (4.6) 

= �
�𝑅𝑅1 − 𝑅𝑅1�𝑅𝑅2𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖 − (1 − 𝑅𝑅1)�𝑅𝑅2𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖

1 −�𝑅𝑅1�𝑅𝑅2𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖
� �

�𝑅𝑅1 − 𝑅𝑅1�𝑅𝑅2𝐴𝐴𝑒𝑒−𝑖𝑖𝑖𝑖 − (1 − 𝑅𝑅1)�𝑅𝑅2𝐴𝐴𝑒𝑒−𝑖𝑖𝑖𝑖

1 −�𝑅𝑅1�𝑅𝑅2𝐴𝐴𝑒𝑒−𝑖𝑖𝑖𝑖
� 

= �
�𝑅𝑅1 − �𝑅𝑅2𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖

1 −�𝑅𝑅1�𝑅𝑅2𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖
� �

�𝑅𝑅1 − �𝑅𝑅2𝐴𝐴𝑒𝑒−𝑖𝑖𝑖𝑖

1 −�𝑅𝑅1�𝑅𝑅2𝐴𝐴𝑒𝑒−𝑖𝑖𝑖𝑖
� 

=
𝑅𝑅1 + 𝑅𝑅2𝐴𝐴2𝑒𝑒𝑖𝑖𝑖𝑖 − �𝑅𝑅1�𝑅𝑅2𝐴𝐴�𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑒𝑒−𝑖𝑖𝑖𝑖�
1 + 𝑅𝑅1𝑅𝑅2𝐴𝐴2 − �𝑅𝑅1�𝑅𝑅2𝐴𝐴(𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑒𝑒−𝑖𝑖𝑖𝑖)

 

=
��𝑅𝑅1 − �𝑅𝑅2𝐴𝐴�

2
+ 2�𝑅𝑅1�𝑅𝑅2𝐴𝐴 − �𝑅𝑅1�𝑅𝑅2𝐴𝐴�𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑒𝑒−𝑖𝑖𝑖𝑖�

�1 −�𝑅𝑅1�𝑅𝑅2𝐴𝐴�
2

+ 2�𝑅𝑅1�𝑅𝑅2𝐴𝐴 − �𝑅𝑅1�𝑅𝑅2𝐴𝐴(𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑒𝑒−𝑖𝑖𝑖𝑖)
 

=
��𝑅𝑅1 − �𝑅𝑅2𝐴𝐴�

2
+ 2�𝑅𝑅1�𝑅𝑅2𝐴𝐴(1 − cos(𝛿𝛿))

�1 −�𝑅𝑅1�𝑅𝑅2𝐴𝐴�
2

+ 2�𝑅𝑅1�𝑅𝑅2𝐴𝐴(1 − 𝐴𝐴𝐴𝐴𝐴𝐴(𝛿𝛿))
 

=
��𝑅𝑅1 − �𝑅𝑅2𝐴𝐴�

2
+ 4�𝑅𝑅1�𝑅𝑅2𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛2 �

𝛿𝛿
2�

�1 −�𝑅𝑅1�𝑅𝑅2𝐴𝐴�
2

+ 4�𝑅𝑅1�𝑅𝑅2𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛2 �
𝛿𝛿
2�
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This method can be repeated for transmissivity to obtain the intensity of light 

transmitted, 𝐼𝐼𝑡𝑡. The intensity of light absorbed, 𝐼𝐼𝑎𝑎, is then the difference between 1 and the 

intensities of light reflected and transmitted. The results of those procedures are shown 

below. 

𝐼𝐼𝑡𝑡 = (1−𝑅𝑅1)(1−𝑅𝑅2)𝐴𝐴2

�1−�𝑅𝑅1�𝑅𝑅2𝐴𝐴�
2
+4�𝑅𝑅1�𝑅𝑅2𝐴𝐴𝑙𝑙𝑖𝑖𝑛𝑛2�

𝑖𝑖
2�

    (4.7) 

𝐼𝐼𝑎𝑎 = 1 − 𝐼𝐼𝑟𝑟𝑇𝑇 − 𝐼𝐼𝑡𝑡𝑇𝑇           (4.8) 

4.5 Thin Film LSC Monte Carlo Simulations 

 After studying the effects of a thin film architecture on luminophore emission and 

reabsorption, and calculating thin film absorption, reflection and transmission, the results 

from those simulations are integrated into a Monte Carlo ray-tracing model to evaluate the 

performance of thin film LSCs. When photons reach the thin film, equations 4.6–4.8 from 

Section 4.4 are used to determine whether the photons were absorbed, reflected, or 

transmitted. Absorbed photons can be emitted, with a certain probability of being 

reabsorbed without leaving the thin film, determined by the results in Section 4.3.3. 

Photons that are emitted without being reabsorbed have an angular distribution determined 

by the simulations in Section 4.3.2. 

Monte Carlo simulations are performed for a 1 m x 1 m thin film LSC with a 100 

nm thick film embedded with CdSe/CdS quantum dots where QY = 75%, OD = 0.033 at 

450 nm. No mirrors are placed above or beneath the LSC. The results of the simulations 

are shown in Figure 4.9(a). The collection mechanisms of absorbed light are tracked and 

are shown in Figure 4.9(b). Unabsorbed losses present the largest loss mechanism in this 
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system, as a majority of incident light passes through the concentrator without being 

absorbed due to the low optical density of the thin film. Unabsorbed losses could be 

decreased by increasing the thickness of the thin film, increasing the concentration of 

luminophores in the film, or with the addition of a back mirror to reflect transmitted light 

back into the concentrator. Aside from transmitted light, reflection is another major loss 

mechanism. Reflection losses are more prominent here compared to bulk polymer LSCs 

because the real refractive index of the thin film is higher than that of a bulk polymer, 

leading to higher Fresnel reflection. Of the light that enters into the concentrator and is 

absorbed, almost 40% of the light is emitted and guided to the solar cell. Reabsorption and 

escape cone losses are relatively small, with roughly 1/3 of absorbed light being lost to 

these mechanisms. The collection mechanisms of absorbed light shown in Figure 4.9(b) is 

independent of incident photon wavelength as quantum yield and emission wavelength is 

 

Figure 4.9 Monte Carlo simulation results for a 1 m x 1 m thin film LSC with a thin film thickness of 100 

nm, CdSe/CdS QY of 75%, and OD of 0.033 at 450 nm. Simulations results were shown for (a) all incident 

light, and (b) absorbed light. 
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independent of incident wavelength. A lot of noise exists near 700 nm because few photons 

are absorbed at these wavelengths. 

Simulations are run for thin film LSCs with varying thin film thicknesses. For these 

simulations, the concentration of luminophores in the thin film is held constant, meaning 

the optical density of the film increases with film thickness. Analogous simulations are run 

for a bulk polymer LSC with the same quantum yield, LSC dimensions, and optical 

densities. The fraction of light collected at the edge is calculated for each LSC architecture 

and weighted by the solar spectrum. A plot of edge collection against optical density, which 

correlates to film thickness for the thin film LSC, is given in Figure 4.10. Note that OD = 

 

Figure 4.10 The fraction of light reaching the edge of a thin film (blue) and bulk polymer (orange) LSC, 

weighted by the solar spectrum, is plotted against optical density at 450 nm. The top x axis shows 

corresponding film thicknesses for the thin film. At small thickness/ODs, the thin film provides superior 

performance, though the bulk polymer LSC outperforms the thin film design at larger thicknesses/ODs. 
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0.033 (at 450 nm) correlates to a film thickness of 100 nm and OD = 0.334 correlates to a 

film thickness of 1000 nm. Both the thin film LSC and the bulk polymer LSC show an 

increase in edge collection up to an optimal film thickness/OD, and then a decrease. The 

optimal OD is much smaller for the thin film LSC, around 0.10, than the bulk polymer 

LSC, around 0.35. For the thin film LSC, low reabsorption combined with preferential 

emission at steep angles contributes to the low optimal OD.  

For small ODs, the thin film LSC is able to outperform the bulk polymer LSC by 

decreasing escape cone and reabsorption losses, see Figure 4.11. However, as OD 

increases, reabsorption within the thin film leads to higher reabsorption losses and reduces 

the emission peak at steep angles, increasing escape cone losses. This leads to a decrease 

in thin film performance relative to the bulk polymer, causing the bulk polymer LSC to 

 

Figure 4.11 (a) Escape cone and (b) reabsorption losses are given for the thin film and bulk polymer LSCs 

for varying film thickness/OD. Preferential emission at steep angles leads to a reduction in escape cone losses 

for the thin film LSC at low OD. Emission is effectively coupled into the substrate for the thin film LSC with 

low OD, leading to a reduction in reabsorption losses, as light can propagate primarily through the lossless 

glass substrate. 
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overtake the thin film LSC in edge collection around OD = 0.175. The best performance 

achieved in these simulations is for the thin film LSC with a thin film thickness of 300 nm 

(OD = 0.10 nm), demonstrating the benefits offered by a thin film architecture. However, 

the superior efficiency of the bulk polymer at larger ODs shows the need to understand the 

thin film system in order to achieve these benefits. 
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Chapter 5. Thin Film LSC Experiments 

 In conjunction with simulations, thin film LSCs are fabricated and tested 

experimentally. CdSe/CdS core-shell quantum dots are synthesized using a colloidal 

method and characterized. Quantum dots are then dispersed in a polymer solution and 

deposited onto a glass substrate, forming an LSC. The optical properties of the LSC are 

characterized and experiments are performed to study the guiding properties of the 

concentrator. 

5.1 CdSe/CdS Quantum Dot Synthesis 

𝐶𝐶𝐶𝐶(𝑚𝑚𝑦𝑦𝑟𝑟𝐴𝐴𝐴𝐴𝑡𝑡𝑚𝑚𝑡𝑡𝑒𝑒)2 + 𝑆𝑆𝑒𝑒𝐹𝐹2 + 𝐴𝐴𝑙𝑙𝑒𝑒𝐴𝐴𝐴𝐴 𝑚𝑚𝐴𝐴𝐴𝐴𝐶𝐶
1−𝑙𝑙𝑙𝑙𝑡𝑡𝑎𝑎𝑑𝑑𝑒𝑒𝑙𝑙𝑒𝑒𝑛𝑛𝑒𝑒
�⎯⎯⎯⎯⎯⎯⎯⎯⎯� 𝐶𝐶𝐶𝐶𝑆𝑆𝑒𝑒𝑄𝑄𝑄𝑄𝑙𝑙 

𝐶𝐶𝐶𝐶𝑆𝑆𝑒𝑒𝑄𝑄𝑄𝑄𝑙𝑙 + 𝐶𝐶𝐶𝐶(𝐷𝐷𝐷𝐷𝑇𝑇𝐶𝐶)2 + 𝐶𝐶𝐶𝐶(𝐴𝐴𝑙𝑙𝑒𝑒𝑚𝑚𝑡𝑡𝑒𝑒)2 + 𝐴𝐴𝑙𝑙𝑒𝑒𝑦𝑦𝑙𝑙𝑚𝑚𝑚𝑚𝐴𝐴𝑛𝑛𝑒𝑒
𝑑𝑑𝑙𝑙𝑑𝑑𝑒𝑒𝑙𝑙𝑎𝑎𝑛𝑛𝑒𝑒
�⎯⎯⎯⎯⎯� 𝐶𝐶𝐶𝐶𝑆𝑆𝑒𝑒/𝐶𝐶𝐶𝐶𝑆𝑆𝑄𝑄𝑄𝑄𝑙𝑙 

A previously-reported non-injection method is used to synthesize colloidal 

CdSe/CdS core-shell quantum dots [71], [76]. Equimolar amounts of cadmium myristate 

and selenium dioxide are dissolved in 1-octadecene at room temperature. The resulting 

solution is degassed to remove any water and air dissolved in the solvent. The solution is 

then placed under nitrogen and heated to 240 ⁰C. During heating, the milky solution turns 

clear and colorless before gradually transitioning from to yellow, orange, bright red, and 

finally a dark red. Oleic acid ligands are injected into the heated solution dropwise in a 3:1 

molar ratio to the cadmium and selenium precursors. The solution is then cooled to room 

temperature. Quantum dots are crashed out of solution using acetone and re-dispersed in 

toluene to remove unreacted precursors and excess ligands. The absorbance spectrum of 

these CdSe quantum dots are shown in Figure 5.1. The first excitonic peak is seen at 584 
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nm, while other excitonic features are observed at 405 nm, 474 nm, and 547 nm. UV-VIS 

correlations reported in Reference [77] are used to calculate the average size of the quantum 

dots, which is 3.7 nm. 

 

Figure 5.1 The absorbance spectrum of CdSe quantum dots is given. The first excitonic feature is seen at 

584 nm. 

 CdS shells are added to the CdSe quantum dots in solution by creating a cadmium 

and sulfur precursor solution and performing a series of injections to a solution of CdSe 

cores. Dodecane and oleylamine are mixed and degassed to remove dissolved gasses. CdSe 

quantum dots dissolved in toluene are added to the solution air free, and the solution is 

degassed again. A cadmium and sulfur precursor solution is made by mixing dodecane, 

oleylamine, cadmium diethyldithiocarbamate, and cadmium oleate and then degassing. 

The quantum dot solution is heated to 80 ⁰C and enough precursor solution is injected to 

form one monolayer of CdS shell. The solution is then heated to 160 ⁰C, held for 20 

minutes, and cooled to 80 ⁰C. These injections are repeated until the desired number of 



72 
 

monolayers was achieved. After injections, nitrogen gas is bubbled through the CdSe/CdS 

quantum dot solution. Cadmium chloride is injected to passivate the surface of the quantum 

dots. The quantum dots are crashed out of solution using acetone and re-dispersed in 

hexane or octane. 

5.2 CdSe/CdS Quantum Dot Characterization 

 The optical properties of synthesized quantum dots are characterized. TEM images 

are taken to determine the size distribution of quantum dots. Figure 5.2 shows an image of 

the quantum dots and the size distribution calculated from TEM images. The quantum dots 

are slightly ellipsoidal with an average diameter of 9.3 ± 1.2 nm, corresponding to an 8 

monolayer CdS shell. 

 

Figure 5.2 (a) A TEM image of CdSe/CdS quantum dots is given. The quantum dots are slightly ellipsoidal. 

(b) The size distribution of the quantum dots, determined from TEM images, is shown. The average quantum 

dot size was 9.3 ± 1.2 nm. 
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 The absorbance and emission spectra of the quantum dots in hexane are measured 

using UV-VIS and fluorescence spectroscopy, respectively. These spectra are given in 

Figure 5.3. The first excitonic feature of the absorption spectrum occurs at 625 nm, red-

shifted from the CdSe cores, which exhibit their first excitonic peak at 584 nm. The 

excitonic absorbance features of the CdSe cores are suppressed by CdS shell, reducing 

overlap between the absorption and emission spectra, which is important for LSC 

applications. The emission spectrum of the quantum dots has an emission peak at 644 nm 

with a FWHM of 36 nm. 

 

Figure 5.3 The absorbance (solid) and emission (dotted) spectra of CdSe/CdS is shown. A weak excitonic 

peak is observed at 625 nm, while the emission peak occurs at 644 nm. 

 The fluorescent lifetime of the quantum dots is measured to determine the average 

lifetime of an excited electron. Nonradiative recombination mechanisms are generally 

faster than radiative recombination, so longer lifetimes correlate to more emission. The 

fluorescent lifetime of the quantum dots is measured as 37 ± 1 ns. Quantum yield 
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measurements are taken to directly measure emission efficiency. The CdSe/CdS quantum 

dots had a quantum yield of 67%. 

5.3 Thin Film Fabrication and Characterization 

 Once CdSe/CdS core-shell quantum dots are fabricated and characterized, they are 

dispersed into a polymer solution and deposited onto a glass substrate to form a thin film 

LSC. Poly(cyclohexylethylene) (PCHE) is chosen as it is an optically clear polymer with 

minimal scattering, and it is soluble in the nonpolar solvents used to synthesize the quantum 

dots. PCHE is dissolved in octane and filtered. The PCHE polymer solution is added to 

quantum dots in octane. The resulting quantum dot-PCHE solution is filtered to remove 

aggregates and spin cast onto a 2.54 cm x 2.54 cm x 0.1 cm glass substrate. The fluorescent 

lifetime of quantum dots in the thin film is 20.2 ± 0.3 ns, a significant decrease from 

 

Figure 5.4 The emission spectrum of quantum dots in (pink, dotted) solution and (blue, solid) PCHE are 

plotted. The solid state emission spectrum contains an emission peak at 645 nm with FWHM 33 nm. Peak 

wavelength and width are similar to corresponding solution state measurements. 
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solution state measurements. The emission spectrum, however, is preserved upon 

dispersion into PCHE. The spectrum, shown in Figure 5.4, has a peak at 645 nm with a 

FWHM of 33 nm.  

5.4 Effects of Thin Film Thickness on LSC Optical Properties 

 In this section, the optical properties of two LSCs with similar absorption but 

varying film thickness are compared. Thin film LSCs are prepared using the fabrication 

method described in Section 5.3. The concentrations of quantum dots and PCHE in the 

quantum dot-PCHE solution are varied to tune the thickness and optical density of the 

films. The volume percent of quantum dots in the thinner film is 13.0 ± 0.1 % and the 

volume percent of quantum dots in the thicker film is 8.5 ± 0.1 %, determined by 

ellipsometry, discussed later in this section. Reflection and transmission measurements are 

taken to calculate the extinction of the LSC. For these measurements, light is incident at an 

 

Figure 5.5 The extinction spectra of the thinner and thicker film is calculated from reflection and 

transmission measurements taken with light incident 6 degrees from the surface normal. Similar extinction 

is shown for both films. 
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angle of 6 degrees from the LSC surface normal. The extinction spectra of the two films, 

denoted “thinner” and “thicker,” are shown in Figure 5.5. The thicker film absorbs slightly 

more light, but the difference in absorption is small. 

 Spectroscopic ellipsometry is used to measure the film thickness and refractive 

index of each film. For these measurements, glass substrates cannot be used as reflection 

from the back surface of the glass interferes with thin film reflection. Therefore, films are 

deposited onto 2.54 cm x 2.54 cm silicon wafers using the same quantum dot-PCHE 

solutions and processing conditions used during thin film LSC fabrication. Spectroscopic 

ellipsometry measurements are taken for wavelengths between 400 nm and 790 nm. Data 

is fit to a Maxwell-Garnett model which is used to determine the thickness and volume 

fraction of quantum dots in each film. The volume fraction, refractive index of PCHE, and 

intrinsic refractive index of the quantum dots is then used to calculate the refractive index 

of the films. The thickness of the thinner film is 82.6 ± 0.1 nm; the thickness of the thicker 

film is 322.8 ± 0.7 nm. The refractive index of each film is shown in Figure 5.6. The real 

 

Figure 5.6 The (a) real and (b) imaginary components of refractive index are given for each film. 
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and imaginary component of the refractive index is larger for the thinner film than the 

thicker. Since the thinner film has similar extinction as the thicker, but is 3–4 times thinner, 

the concentration of quantum dots is larger in the thinner film. This increases the refractive 

index of the thin film, as the refractive index of the quantum dots is larger than PCHE.  

 Thin film reflection and transmission are found to vary with thin film thickness in 

Chapter 4. Interference effects within the thin film give rise to destructive or constructive 

interference which can increase or decrease reflection. These interference effects depend 

on the wavelength and angle of incident light, and the thickness of the thin film. Angle-

dependent reflection measurements are performed to determine how the reflection 

spectrum changes with thin film thickness. Figure 5.7 shows the dependence of reflection 

on incident angle and wavelength for the (a) thinner and (b) thicker film. Oscillatory 

behavior with respect to incident wavelength is observed for each film. However, the 

frequencies of these oscillations vary between the thinner film, which has low frequency 

 

Figure 5.7 Reflection by the (a) thinner and (b) thicker film is plotted with respect to wavelength and incident 

angle. Oscillations are observed in both spectra. 
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oscillations, and the thicker film, which has higher frequency oscillations. For both films, 

reflection is larger at steeper angles, and the reflection peak blue-shifts with incident angle. 

5.5 Light Guiding in Thin Film LSCs 

 Simulations presented in Chapter 4 suggest LSC performance varies with thin film 

thickness. Thinner films were shown to experience fewer reabsorption and escape cone 

losses. To test the light guiding properties of thin film LSCs with different film thickness, 

the attenuation of edge collection with illumination distance from the edge is measured for 

the two LSCs described in Section 5.4. In these experiments, light from a 405 nm laser is 

swept back and forth along the lateral dimension of the concentrator. The edge of the LSC 

is connected to an integrating sphere which collects light reaching the edge. 

The intensity of edge collection can be plotted against the distance of the beam spot 

from the edge. This plot is shown in Figure 5.8(a). We see an exponential decrease in edge 

collection with illumination position. A more gradual decay indicates good guiding 

efficiency, while a steep decay indicates light is not guided far before leaving the 

concentrator. Here, we see similar attenuation for both the thinner and thicker film. Thus, 

the light guiding properties of the thin films appear to be similar. It should be noted that 

edge collection intensity does not decay to zero, but some finite value between 25 and 30% 

of collection intensity near the edge. This shows that some light is emitted outside of the 

absorption band of the luminophores and trapped in the LSC. Such light can propagate 

large distances without being disturbed by reabsorption or scattering. 

In addition to edge collection intensity, the collection spectrum is measured. Each 

spectrum is fitted to a Gaussian, and the center wavelength of the Gaussian peaks is plotted 
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against position from the edge in Figure 5.8(b). Again, we see similar results for each of 

the thin films. A slight red-shift in center wavelength is observed. Reabsorption naturally 

increases as the average path length of photons reaching the edge increases. As light with 

shorter wavelengths are more readily reabsorbed by the luminophores, this leads to the 

observed red-shift of center wavelength. It should be noted that this shift is small, less than 

1 nm, which indicates little reabsorption within the thin films. 

 

Figure 5.8 (a) Attenuation measurements are given for the thinner and thicker film. Each film shows an 

exponential decay in edge collection intensity with illumination position. The decay of each film is similar, 

pointing toward similar light guiding properties. (b) The center wavelength of the edge collection spectrum 

is shown. Both films show a slight red-shift with position as more light at shorter wavelengths are reabsorbed. 
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Chapter 6. Conclusions and Future Work 

 The potential for light management strategies to provide efficiency improvements 

in LSCs has been explored in this thesis. This work has focused on three light management 

strategies: wavelength-selective mirrors, multijunction LSCs, and the thin film 

architecture. Design considerations were examined for aperiodic wavelength-selective top 

mirrors to increase light trapping. Spectrum splitting was achieved using a multijunction 

configuration to increase absorption and decrease thermalization. Finally, thin film effects 

were demonstrated to increase light trapping and light guiding. In this chapter, suggestions 

are discussed for future work in multijunction and thin film LSC architectures. Potential 

intermediate reflector designs are presented and next steps for simulations and 

experimental work continuing thin film LSC studies are discussed. 

6.1 Intermediate Reflectors for Multijunction LSCs 

 Reflecting layers can be used in LSCs to increase light absorption and decrease 

escape cone losses. A mirror can be placed beneath the LSC to reflect unabsorbed light and 

light emitted into the escape cone back into the concentrator. A wavelength-selective 

mirror can be placed above the LSC to reflect emitted light while transmitting light within 

the absorption band. Multijunction LSCs present a third opportunity for efficiency-

enhancing mirror: an intermediate reflector placed in between LSC layers. Intermediate 

reflectors have been used extensively in multijunction solar cells to aid in current matching 

by reflecting some of the incident light back into the top solar cell, increasing top layer 

absorption. These intermediate reflectors can provide wavelength-independent reflection, 

as with thin films which exhibit Fresnel reflection [78]–[82], or wavelength-selective 
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reflection, as with 1D and 3D photonic crystals [40], [46]–[49], [83], [84]. Two classes of 

intermediate reflectors are discussed here. 

 The first intermediate reflector is a 3D photonic crystal reflector designed to 

increase light absorption and provide trapping of bottom layer emission. 3D photonic 

crystals are periodic arrangements of nanoscale dielectric building blocks which provide 

wavelength-selective reflection via interference effects similar to the top mirrors used in 

Chapter 2. However, these 3D arrangements offer additional optical properties such of 

forward scattering of transmitted light and the absence of the blue-shifting effect in their 

reflection band with angle of incidence. These additional properties provide light 

absorption benefits by increasing bottom layer absorption through scattering and providing 

consistent reflection at all angles of incidence. 

 

Figure 6.1 An intermediate reflector consisting of a 3D photonic crystal (brown) can be designed to increase 

light absorption in both layer, decrease thermalization, and increase bottom layer trapping. 

 Intermediate reflectors consisting of 3D photonic crystals can be designed to reflect 

high energy light back into the top layer, reducing thermalization and increasing top layer 

absorption, forward scatter light transmitted into the bottom layer to increase absorption 

there, and reflect low energy light emitted from bottom layer luminophores. These effects, 
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summarized in Figure 6.1, combine to increase light absorption and trapping. Increasing 

light absorption not only decreases unabsorbed losses in the concentrators, but shifts the 

optimum optical density of the layers to lower values, decreasing reabsorption losses as 

well. Increased trapping in the bottom layer decreases escape cone losses from bottom layer 

emission. 

 The second intermediate reflector proposed is a beam-guiding metasurface. 

Metasurfaces are nanostructure materials consisting of a periodic array of nanofeatures 

which give rise to unique optical properties [85]. By choosing the appropriate geometry 

and material properties the phase, amplitude, and polarization of light can be controlled 

[86], [87]. For LSC applications, avoiding parasitic light absorption by the intermediate 

reflector is critical, so dielectric metasurfaces are required. Such reflectors can be used to 

tune the angle of transmitted and reflected light [88]–[91]. 

 A beam-guiding metasurface can be designed to steer transmitted light towards the 

edge of the concentrator, serving to decrease reabsorption by decreasing the path length of 

trapped light while increasing absorption by increasing the path length of incident light. 

These two effects are shown in Figure 6.2. Light reflected off the metasurface featuring a 

phase gradient is guided to the edge by imparting a phase shift which increases the angle 

of reflected light. The angle of reflected light is determined by generalized Snell’s law [70], 

shown in Equation 6.1. References [92] and [93] show two examples of nanodisk and 

nanoblock arrays designed to steer transmission through the metasurface to desired angles. 

sin(𝜃𝜃𝑟𝑟) − sin(𝜃𝜃𝑖𝑖) = 𝑛𝑛𝑖𝑖−1𝜆𝜆∇𝛷𝛷/2𝜋𝜋    (6.1) 
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where 𝜃𝜃𝑟𝑟 and 𝜃𝜃𝑖𝑖 are the reflected and incident angles, 𝑛𝑛𝑖𝑖 is the index of refraction of the 

surrounding medium, 𝜆𝜆 is the wavelength of light and ∇𝛷𝛷 is the phase gradient. 

 

Figure 6.2 (a) Metasurfaces impart a phase shift upon reflection, providing anomalous reflection and guiding 

light to the edge. (b) Light transmitted through the metasurface is refracted at large angles, increasing light 

absorption. 

6.2 Thin Film LSCs 

 Present work has demonstrated the effects of thin film geometry on LSC 

performance. Simulations were performed for LSCs with varying film thicknesses. In these 

simulations, the concentration of quantum dots in the polymer film were held constant, 

meaning as thin film thickness increased, so did optical density. This creates a convolution 

of effects when evaluating how film thickness and optical density affect LSC performance. 

This is perhaps most evident in Figure 4.6, where the angular distribution of emitted light 

is shown for varying thin film thicknesses. In this plot, we observed the emission peak 

begin to shift to large angles as film thickness increased, then shift to lower angles as light 

at large angles was reabsorbed. From these simulations, it is difficult to discern whether 

how much of this problematic reabsorption is due to film thickness versus an increase in 

thin film optical density. 
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 In order to deconvolute thin film thickness from optical density, simulations could 

be run with varying quantum dot concentration, allowing thin film thickness to vary while 

holding optical density constant or vice versa. Such simulations are made difficult, 

however, by changes in thin film refractive index with quantum dot concentration. Several 

thin films with different concentrations can be fabricated and measured using spectroscopic 

ellipsometry to create a dataset with refractive index data for several concentrations. These 

data can be imported into the FDTD model and used to simulate with varying thickness 

and constant optical density, or varying optical density and constant thickness. Results 

from these simulations can be analyzed to determine thin film reabsorption and the angular 

distribution of emission, and implemented into Monte Carlo simulations to study LSC 

performance. 

 Experimentally, two thin films have been fabricated with different film thicknesses 

and similar optical density. A larger set of film thicknesses could be fabricated to study a 

wider range of thicknesses. Additionally, thin films can be fabricated with constant film 

thickness but varying optical density to study the effects of quantum dots concentration on 

light guiding and emission. A set of bulk polymer LSCs could be made to directly compare 

the performance of thin film and bulk polymer LSCs, demonstrating the differences shown 

in simulations. 

6.3 Conclusion 

 Luminescent solar concentrators provide an opportunity for efficient building-

integrated photovoltaics due to their versatility in design and ability to effectively collected 

and concentrate direct and diffuse sunlight. Light management systems are a crucial 
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component of LSCs which can serve to increase light absorption and decrease several 

prominent loss mechanisms like reabsorption and escape cone losses. This work has shown 

how three of these light management strategies can be used to boost LSC performance 

significantly. Design considerations for aperiodic top mirrors were explored to maximize 

light trapping while maintaining high light absorption. Two LSC layers were stacked to 

form a multijunction LSC. Thermalization losses were reduced while broadening the 

absorption band of the LSC system. Finally, wave optics effects were studied for a thin 

film LSC geometry. The emission and guiding properties of this architecture were 

examined and the potential of these concentrator to provide superior performance over 

traditional bulk polymer concentrators was demonstrated. Ultimately, in this work we see 

the potential for light management strategies to produce high efficiency luminescent solar 

concentrators and the breadth of such strategies available to achieve this goal. 
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