
Molecular Imaging of Prostate Cancer 

Using Biomarker-Guided Strategies 

A DISSERTATION  

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL  

OF THE UNIVERSITY OF MINNESOTA  

BY 

MARIYA SHAPOVALOVA 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

 

 

 

Advisor 

Aaron LeBeau, PhD 

August 2019 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Mariya Shapovalova 



 i 

 
Acknowledgements 

 There are many people I would like to thank for helping me get to this point in my 

life. This was a team effort. The PhD process challenged me in every way possible. I can 

honestly say that my way of thinking has been changed about science and medicine. 

First, I would like to thank my wonderful family. My parents came to the United 

States from Ukraine in hopes of a better future for me. Without the move, this would not 

have been possible. I remember moving to NYC when I was 5. It was a difficult time in 

our lives, but I am forever grateful for my parents’ hard work to get established here in the 

United States. My parents are a constant source of support and are the main reason I was 

able to earn my PhD. Thank you, Mom and Dad, for everything. Thank you to all of the 

relatives in Ukraine, particularly grandma and grandpa for being my biggest fans and 

sincerely believing that I can do anything, even become the president of the U.S., which 

truly shows they believe I can do anything because I was not born in the U.S.! Also, thank 

you to my sister Nastya, for visiting me in Minnesota every summer and brightening every 

day she was with me. I am a lucky to have my amazing family, I love you all very much. 

A PhD can often be challenging intellectually and emotionally. The amount of hard 

work that I put in sometimes made it very difficult to handle the failures. Luckily, I had an 

advisor that understood how to see the positivity in failure and was always supportive of 

me, no matter what kind of day I was having. Thank you, Aaron, for being a source of 

knowledge, mentorship, and incredible support. I came into this lab relatively 

inexperienced and now I can honestly say that the research has turned me into a critical 

thinker. 



 ii 

My accomplishments could not have been possible without my partner in life, Sean. 

Sean and I remained in a long-distance relationship throughout my PhD. As if the PhD is 

not challenging enough, we also had to juggle international visits because he is from 

Canada! Sean, thank you for listening to all of my rants about cells dying, bacteria not 

growing, weird results, and so much more. Of course, there were also positive 

conversations, but Sean’s support always came through when things weren’t working in 

my favor. I am incredibly grateful for all of your support, love, and patience.  

I may not have a biological twin, but Melyssa, my best friend is my spiritual twin. 

She and I ended up going to graduate school at the same time, in Pharmacology, only at 

different schools. She ended up at Case Western, Ohio. She understood this time of my life 

like no other. She was a rock throughout this entire PhD adventure and the only person that 

actually comprehended my scientific rants. Thank you Melyssa for supporting me from 

day one.  

Lastly, I would like to thank my colleagues, my committee, and the animals 

involved in my studies. Thanks Hallie and Paige for being a resource in the lab. We were 

the first members in our lab which came with extra challenges. I couldn’t have asked for 

more dependable co-workers. I’d like to thank my committee for guiding me through this 

degree. My committee consisting of Hiroshi Hiasa, PhD, Cheuk Leung, PhD, Greg 

Metzger, PhD, and of course my PI Aaron LeBeau, PhD helped shape my experience and 

my research. Lastly, I would like to acknowledge the mice that helped contribute to my 

research. Thank you to all of the animals, because without them, the medical field would 

not be the same.   

 



 iii 

 

 

Dedication 

 

 

 

 

I dedicate this to my parents Kateryna Shapovalova and Vladyslav Shapovalov. 

 

  



 iv 

Abstract 

 Prostate cancer affects 1 in 9 men in their lifetime. While disease that is detected 

early can be very treatable, recurrence affects about 30% of the patients. Imaging is an 

important tool for detecting and assessing therapeutic regimens for prostate cancer patients. 

Patients with advanced stages of prostate cancer, typically those who have had a recurrence 

and are forming resistance to hormone therapy, are in a great need for a more accurate 

assessment of the extent of their disease for a better understanding of its aggressiveness. 

Clinical imaging offers physicians information about the location and extent of disease. 

Unfortunately, conventional imaging methods often lack the sensitivity needed to detect 

some lesions properly, especially when the disease is no longer localized and has spread 

outside of the prostate, which leads to insufficient information that is needed for proper 

diagnosis and treatment planning. Most of the current imaging techniques are not specific 

for tumor physiological processes. Therefore, a clinical need remains for new imaging 

agents that can target prostate tumors more specifically and sensitively. My PhD research 

focused on using molecular-genetic imaging approaches to develop imaging agents in vitro 

and in vivo that can detect prostate cancer using the cancer’s unique regulatory genetic 

differences from normal cells. I investigated the expression two prostate cancer-specific 

genes, AMACR and PEG10 and used the genes’ unique transcriptional regulations in the 

prostate cancer cells to induce prostate cancer-specific expression of reporter proteins. 

Specifically, I used the promoters of AMACR and PEG10 in adenovirus and plasmid DNA 

vectors upstream of various reporter genes to induce expression of reporter proteins in 

prostate cancer cells. By using the prostate cancer-specific promoters, I was able to image 

prostate cancer in vivo using various vectors and different modes of imaging such as 
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bioluminescence/fluorescence and positron emission tomography imaging.  My results 

strongly support that prostate cancer specific promoters can induce prostate cancer specific 

gene expression and may have the potential to be used for imaging purposes. 
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Chapter I: Introduction 

Prostate Cancer 

 In the United States (US),  prostate cancer (PCa) is the second most common cause 

of cancer in men, surpassed only by non-melanoma skin cancer [1]. In 2019, approximately 

170,000 men will be diagnosed with PCa, and over 30,000 men are estimated to lose their 

lives to PCa [2]. PCa takes a long time to develop and most patients are asymptomatic at 

diagnosis since the Food and Drug Administration (FDA) approval of prostate-specific 

antigen (PSA) blood screening test in 1994 [3, 4] which allows for more timely detection 

of the disease.   

 

The Prostate 

 The prostate is a walnut-sized gland [5] located in the pelvis anterior to the rectum 

and inferior to the bladder. The urethra runs through the center of the prostate and while 

lymph nodes are found throughout the body, some of them are in the pelvic area, near the 

prostate [6]. The prostate gland is a male sex organ that produces and secretes seminal fluid 

to protect the sperm and may facilitate sperm motility, however, the function of the organ 

is not fully understood. The prostate is divided into four lobes; anterior, middle, lateral, 

and posterior lobes [7]. The prostate consists of branching glands with ducts, which are 

lined with secretory epithelial cells and basal cells as well as scattered neuroendocrine cells 

[8-10]. The secretory epithelial cells (luminal cells) depend on androgen for growth and 

production of PSA. These secretory cells are derived from the transitional cell population 

(intermediate cells). The basal cells are not androgen-dependent and rarely express the 
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androgen receptors (AR). Basal cells give rise to the intermediate cells, from which the 

luminal cells will form. The gland is also surrounded by stroma that consists of fibroblasts, 

smooth muscle, nerves, and lymphatics [9]. A schematic of the different cellular 

compositions found in the prostate can be seen in Figure 1-1. The relevance of the lymph 

nodes is that PCa can often spread to them because of their close proximity to the prostate. 

 

Figure 1-1. Schematic of the cellular composition of the prostate epithelium.  

The prostate epithelium consists of inner secretory luminal cells and surrounding basal 

cells. The basement membrane is the barrier between the epithelium and stromal sections. 

Intermediate cells derived from basal cells give rise to luminal cells. Neuroendocrine cells 

are scarcely scattered throughout the lumen. The image was extracted/adapted from 

reference [10]. Permission to reuse and reprint the article are allowed as long as the original 

authors are cited. 

 

 Because PCa grows slowly and remains asymptomatic, the disease is often detected 

at various stages of progression. Localized disease, or cancer that has not spread outside of 

the prostate [11], has the highest potential for treatment response. Around 77% of new PCa 

cases are diagnosed as localized disease [12]. Regional PCa is defined as having spread 
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outside of the gland into nearby structures or lymph nodes [11]. Approximately 13% of 

PCa cases at diagnosis are regional disease [12]. Distant metastasis means the PCa has 

spread beyond the pelvis. The bones, liver, and lungs are common sites of PCa metastasis 

[13]. About 6% of PCa at diagnosis is metastatic disease [12]. Unknown/upstaged PCa 

account for the remaining 4% of diagnoses [12]. 

 

Screening 

PCa 5-year survival rate for men diagnosed with local or regional PCa is nearly 

100%. However, the 5-year survival rate for men diagnosed with distant metastasis 

plummets to around 30% [11]. These statistics reiterate the importance of screening since 

the early detection of asymptomatic, localized PCa. Timely treatment could prevent cancer 

from developing into metastatic disease and therefore reduce the morbidity associated with 

PCa. The current standard of care uses the PSA blood test to screen for PCa with or without 

the digital rectal exam. If a PSA test is suspicious, the patient is further evaluated via a 

biopsy to determine the final diagnosis [14]. 

 

Screening Guidelines 

The PSA test has revolutionized PCa screening since its FDA approval in 1994. 

There is clear evidence that the PSA test reduces the number of deaths from PCa [15] and 

the benefits of screening are clear in cases where malignant. Despite the proven benefits, 

some still question if the test does more harm than good. PCa is often so slow-growing that 

it may not cause a man any problems in his lifetime [16]. The PSA test has led to an increase 

in the detection of these slow-growing or benign tumors (indolent) and has resulted in the 
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overtreatment of some patients. These patients experience the adverse side effects 

associated with PCa treatment such as urinary, bowel, and sexual function [3] with little to 

no benefit. Several organizations have established similar guidelines for PCa screening that 

are aimed to distinguish between malignant and benign disease. Therefore, it is more likely 

that only patients that require treatment receive it. The controversy in screening lies in the 

overdiagnosis of clinically insignificant tumors, which leads to a related issue of cost 

versus benefit [17]. 

Memorial Sloan Kettering Cancer Center’s guidelines follow three principles [18]: 

• PCa can benefit from active surveillance. A diagnosis of PCa is information used 

to make decisions, but not an indication for immediate treatment. 

• Compliance with screening will increase if men are informed about their risk level. 

• There needs to be a balance between the harms and benefits of screening. 

There are some risk factors that determine how early men should start their PSA 

screening: 

1. Age: The risk of PCa increases with age. After the age of 50, the chances of 

having PCa increases [19]. Men age 50 and above are recommended to have 

their PSA level checked annually [20]. 60% of PCa cases are diagnosed in men 

over the age of 65[2]. 

2. Race: It is not understood why, but African-American men have a higher risk 

of developing PCa, and the disease tends to be more aggressive [21]. 

3. Family History: If a close family member was diagnosed with PCa before the 

age of 65, the risk of developing PCa is increased [22]. 
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4. Inherited Gene Mutations: BRCA1 and BRCA2 are associated with PCa risk 

[22]. 

5. Diet: High animal fats and low vegetables in a diet may increase the risk of PCa 

[23]. 

 

PSA 

 PSA is an androgen-regulated serine protease that is produced by prostate epithelial 

cells and secreted into the seminal fluid by normally functioning prostates [24]. The 

functional role of PSA is to cleave semenogelins in the seminal coagulum to increase sperm 

motility and dissolve cervical mucus [25, 26]. A low level of inactive PSA is released into 

the bloodstream where it circulates in its unbound state. Active PSA that enters the 

bloodstream gets quickly bound to protease inhibitors [25]. A PSA concentration of less 

than 4.0 ng/mL is considered normal, but if a man produces more than 4.0 ng/mL of PSA, 

a digital rectal exam is performed and a biopsy is recommended to evaluate the lesion using 

Gleason scoring which will be discussed further in this chapter [27]. Higher levels of PSA 

are associated with PCa because PSA production is increased in rapidly dividing PCa cells 

and the presence of cancer disrupts the barriers between the lumen and the capillary causing 

the release of more PSA into the bloodstream [28]. The PSA test was originally intended 

to monitor progression of disease in men who have already been diagnosed with PCa. In 

1994, the PSA blood test was approved to be used with the DRE to screen asymptomatic 

men, although men with PCa symptoms are also tested for PSA levels to help physicians 

evaluate disease progression. After the approval of the PSA test in 1994, disease detection 

increased dramatically [29].  
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 An elevated PSA result does not always mean a PCa diagnosis. There are other 

factors that can cause a rise in PSA levels in the blood. PSA naturally increases with age, 

can be higher in men with a noncancerous condition called benign prostatic hyperplasia 

(BPH), and can increase with inflammation of the prostate, which is a condition called 

prostatitis. A needle biopsy of the prostate needs to be performed before any definitive 

diagnosis is made. The biopsy is used to determine the Gleason score of the tumor, which 

is a scoring of the cell differentiation [30]. Due to the lack of specificity that comes with 

PSA screening, there is a clinical need for new detection methods that are less invasive 

than biopsy to detect prostate cancer and differentiate between life-threatening  PCa that 

requires treatment from indolent disease that does not require treatment [31-33]. 

 Active surveillance is an approach many physicians choose over treatment. If the 

cancer is not causing symptoms, expected to grow slowly based on the Gleason score (6 or 

less), is small and localized, then active surveillance may be a good choice [34]. The 

surveillance includes a bi-annual doctor visit with a PSA test (with or without DRE). 

Prostate biopsies may be done annually as well. Treatment is considered if significant 

changes take place in the PSA test/biopsy [35]. 

 PSA monitoring is used to determine the effectiveness of the PCa treatment. 

Generally, PSA levels decrease after successful treatment, however, PSA levels do not 

change immediately and can stay elevated in the blood for weeks after treatment. Following 

treatment, PSA tests are administered every few months and the frequency is determined 

by the physician [36]. Detectable PSA after treatment does not necessarily mean that cancer 

cells are still present. Physicians should use their discretion to investigate the elevated PSA 

result post-treatment and determine if further therapy is necessary. A dramatic increase in 
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PSA levels can be an indicator of recurrent disease; however, as the PCa becomes more 

advanced, PSA becomes less effective at indicating PCa recurrence because PCa can 

become androgen-independent and since PSA expression is dictated by the androgen 

receptor  (AR), AR-negative PCa does not benefit from PSA testing. There is a clinical 

need for more effective tests and tools for detecting recurring PCa because low PSA can 

be found in patients with very aggressive recurrent disease [37-39].  

 In summary, the PSA tests measure the level of PSA protein made by cells in the 

prostate gland that is released into the man’s bloodstream. The presence of PCa can 

increase PSA levels, however, PCa is not the only culprit responsible for elevated levels. 

PSA levels can also rise from slow-growing benign PCa or other noncancerous conditions. 

PSA alone is not a diagnosis, but a sign that the man should be referred for additional 

testing to determine a diagnosis whether it’s PCa related or not.  

 

PCa Diagnosis 

 Adenocarcinomas from the epithelial cells make up 95% of PCa cases. Other cases 

are rare and include mucinous or signet-ring cell carcinomas, adenoid cystic carcinomas, 

carcinoid tumors, large prostatic duct carcinomas, and small-cell undifferentiated cancers 

[40]. The degree of differentiation is proven to be critical for determining PCa prognosis. 

The standard for grading tumors based on their patterns of gland formation was developed 

by Gleason, and now PCa tumor biopsies are evaluated based on the “Gleason Score” [30]. 

Current procedures call for a biopsy evaluation after a suspicious screening results from 

the PSA test and digital rectal exam. 
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 The biopsy is performed using ultrasound to guide the biopsy needle placement and 

remove a small piece of tissue from the suspect areas. This procedure is referred to as 

transrectal ultrasonography (TRUS)-guided needle biopsy [41]. The biopsy is sent to 

pathologists for analysis where a Gleason score is given to grade the tissue. The pathologist 

performs Hematoxylin and eosin (H&E) staining to reveal the anatomy of the cells. The 

pathologist determines where the cancer is more prominent (the primary pattern) and 

assigns that region a primary grade (1-5, 5 being the most aggressive). The pathologist then 

determines the next prominent area and assigns that region a secondary grade. The 

“Gleason score” is the sum of the primary and secondary grades. A biopsy with normal 

looking cells would have a Gleason score below six. The highest Gleason score is a 10 

(5+5). The grading is primarily based on the level of differentiation of the cells. The less 

differentiated the cells look and less glandular the tissue appears under the microscope, the 

higher the score [42]. Figure 1-2 shows a schematic of the Gleason pattern scoring. 

 
Figure 1-2. Gleason Pattern Schematic.  
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The less differentiated the biopsy tissue is, the higher it’s Gleason score. A Gleason score 

of 7 and above is considered significant thus requiring medical intervention. The image 

was obtained from a SEER Training Site. NCI has asked that it was mentioned that since 

this may be an old figure due to updates in their content, there may have been changes in 

the grading scheme. The major change is that the cribriform glands that were previously 

grade 3 are now in grade 4. NCI has asked to make this disclaimer. [43]. 

 

 If the pathologist determines that the biopsy contains malignant cells, physicians 

are likely to recommend a diagnostic imaging test to locate the tumor and determine the 

extent of the disease. The common imaging methods used are multi-parametric magnetic 

resonance imaging (MRI) for general inquiry, radionuclide bone scan to determine if PCa 

has spread to the bones and a positron emission tomography (PET) scan to determine if the 

PCa has spread to other parts of the body [44]. The diagnostic imaging is a crucial 

component for determining the right treatment plan. 

 

PCa Staging 

 PCa staging is done to assess how much cancer is in the body and where it’s located. 

Staging helps determine the optimal treatment plan. The most widely staging system for 

PCa is the American Joint Committee on Cancer TNM system The TNM stands for the: 

T-tumor category, whether the PCa spread to the lymph nodes – N category, and whether 

the PCa has metastasized to other parts of the body- M category). 

T Category:  
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1. Clinical T category (T) : The physician’s estimate of the extent of disease based on 

the physical exam, which includes the DRE, biopsy, and imaging results. 

2. Pathologic T (pT) : This evaluation is assigned after the prostate has already been 

removed (if it’s been removed). The pT is more accurate than the T because it is 

done after the prostate has been examined in the lab.  

Numbers or letters after the T, N, M are used to provide more detail about each of these 

categories. The higher the number after the letter, the more advanced the cancer is. The 

categories are combined with the PSA level and grade group (Gleason score) to determine 

the overall stage of the cancer. The main stages of PCa range from I to IV. A higher number 

means indicates the extent of the cancer spreading. Table 1-1 summarizes the different 

categories and severity in each category. Table 1-2 groups the categories into stages [45]. 
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Table 1-1. PCa staging categories based on AJCC 7th edition. 

 

The table is based on the American Joint Committee on Cancer Prostate Cancer Staging 

and permission was obtained to use [46] . 
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Table 1-2. Prostate Cancer Staging.  
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Table adapted from the American Cancer Society webpage [45]. Permission obtained from 

Springer Nature, AJCC 7th edition to adapt table from the webpage. 

 



 14 

 

PCa Treatment  

 There are many forms of PCa therapy that can be used alone or in combination with 

other treatments. The treatment plan is determined by the physician and the patient based 

on the PCa extent, aggressiveness, and patient preference.  

• Active Surveillance: If a tumor is determined to be slow-growing, the physician 

may recommend to not take any direct action but to monitor the disease. [34] 

• Radical Prostatectomy: This is a surgery to remove the prostate, some surrounding 

tissue, and the seminal vesicles. Each surgery is unique, tailored to the location, 

size, and other aspects of the cancer. The lymph nodes are inspected to determine 

whether the cancer has spread and whether the patients should also go through 

another form of therapy following the surgery [47]. Surgery is recommended if 

[48]: 

o The diagnosis is early stage/localized where active surveillance is not 

appropriate. The surgery alone may be sufficient to eliminate the cancer. 

o The patient has rising PSA after initial focal therapy, which would be 

indicative of incomplete cancer eradication. 

o The tumor alone cannot be safely removed with surgery. 

• Radiation Therapy: This approach uses high-energy beams or radioactive seeds to 

eliminate tumors. The type of radiation treatment chosen depends on the disease. 

Radiation therapy can be combined with hormone therapy, as a monotherapy, or 

after surgery. There are two types of radiation therapy for PCa: 
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o Internal: Also referred to as brachytherapy, such as a radioactive seed 

implantation. This is an outpatient procedure and can come in low-dose rate 

and high-dose rate forms. The dose  rate refers to the seed at which the dose 

is delivered, not the dose itself. Brachytherapy uses seed implant which are 

radioactive sources. The seeds are inserted directly into the prostate and 

give off localized radiation. Brachytherapy is only indicated for men whose  

PCa is early stage and is slow growing (low-grade) [49, 50]. The two 

different forms of brachytherapy are: 

§ Low-dose-rate (LDR) brachytherapy: These seeds are permanent 

and meant only for local PCa. The seeds are typically made of 

iodine-125 or palladium-103 [51]. The radioactive seeds are 

attached to needles that are inserted into the prostate and are left in 

prostate and the needles are removed. These seeds give off radiation 

for weeks or months. Because the seeds are so small, they are left in 

the prostate even after the radioactive material is done emitting [50]. 

§ Hight-dose-rate (HDR) brachytherapy: The seeds are temporary 

placed for a few minutes (5-15 minutes) and then removed. The 

treatment can be repeated over the course of two days. This is often 

given with a form of EBRT. The seeds are typically made of  

iridium-192 or cesium-137. The seeds are attached to hollow 

needles that are inserted directed into the prostate. Catheters are 

placed in these needles, the needles are removed, and then seeds are 



 16 

placed in the catheters. The catheters are then removed after the last 

treatment [50, 52]. 

o External: Image-guided radiation therapy and radiosurgery. This is also 

known as external-beam radiation therapy (EBRT). EBRT aims the 

radiation directly at the prostate from the outside of the body using a linear 

accelerator. This approach can be used alone or in combination with other 

treatments for more aggressive disease. There are different types of EBRT 

[53]: 

§ Image-guided, Intensity-Modulated Radiation Therapy (IG-

IMRT): Before the start of the therapy, the prostate is physically 

marked with “fiducial markers” which are made of gold and allow 

the CT scanner to locate the tumor and prostate very accurately. The 

marking is done to prevent inaccuracy due to natural body 

movements which can shift the prostate. The patient is imaged 

before each session. The linear acceleratory is used to generate the 

high energy photons, or x-rays. The duration of this therapy involves 

multiple sessions [54]. At Memorial Sloan Kettering for example, 

IG-MRT is given over a period of 9 weeks in about 48 treatment 

sessions if administered alone. IG-MRT is recommended for 

patients who have urinary problems prior to treatment initiation 

[55]. This procedure can be performed without the repeated imaging 

scans, this is known as IMRT. 
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§ Proton Therapy: This is an advanced form of radiation therapy that 

uses protons rather than x-rays (which are the form of energy used 

in traditional radiation therapy) [56]. The benefit of proton therapy 

over IG-IMRT is unclear [57].  

§ Stereotactic surgery: Also known as stereotactic radiation therapy 

(SBRT), uses radiation entering the body through various angles and 

intersecting at the target. SBRT delivers higher doses of radiation 

compared to the MRT in a span of five visits. SBRT is more cost-

effective due to its shorter length of duration. The main difference 

between SBRT and IMRT is the use of unique beam angles to 

deliver higher radiation. SBRT requires higher accuracy that IMRT 

[58, 59].  

Memorial Sloan Kettering Cancer Center has the following recommendations for 

which radiation therapy to use based on the diagnosis [53]: 

Radiation therapy for localized PCa: 

• LDR brachytherapy 

• IG-MRT 

• Stereotactic surgery 

Radiation therapy for regional (also known as locally advanced) PCa 

• LDR brachytherapy with short-course of daily IG-IMRT 

• IG-IMRT with hormone therapy 

o In this case, hormone therapy is typically administered before the 

radiation therapy begins and is continued after radiation. 
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• HDR brachytherapy with short course of daily IG-IMRT 

Radiation therapy after prostatectomy 

• After radical prostatectomy if there are indications several years after 

surgery that the cancer has returned.  

• The tumor was not fully eradicated by the surgery.  

• The tumor was found protruding outside of the prostate during surgery.  

In these situations, IG-IMRT is recommended, which can also be combined 

with hormone therapy. 

• Focal Therapy: This term is used for non-invasive techniques that can kill small 

tumors confined within the prostate. The advantages of focal therapy are that it 

can kill the cancer while preserving prostate tissue and function while 

reducing side effects [60]. There are a few different types of focal therapy [61, 

62]: 

o Focal Cryoablation: A probe is used to deliver liquid nitrogen that 

surrounds the tumor and freezes it.  

o High Intensity Focused Ultrasound (HIFU): Guided by MRI, HIFU uses 

sound wave energy directed at the tumor. 

o Irreversible Cryoablation: Electrical currents are passed through the 

tumor and the electricity created pores in tumor cells, killing them. 

o Photodynamic Therapy: This therapy uses an intravenous injection of a 

photosensitizer (padeloporfin) which when exposed to light of a specific 

wavelength at the tumor site, releases cytotoxic oxygen species which 
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causes intravascular thrombosis. This is a novel technique that is still in 

clinical trials. 

• Systemic Therapies: Metastatic patients have numerous treatment options that take 

advantage of the biology of the PCa for targeting cancerous cells. These therapies 

are called “systemic” because they circulate the entire body and attack the cancer 

at distant metastatic sites. To appreciate the way these therapies work, it is 

important to understand the key signaling pathway involved [63]. Androgen 

receptor signaling drives survival and progression of the disease and is discussed 

in more detail in the section titled “Androgen Receptor Signaling in PCa [64].” The 

current systemic therapies available are: 

o Hormone Therapy: The male sex hormone, testosterone, is classified as 

an androgen (male hormones, but are not exclusively only active in males) 

and promotes PCa growth. Hormone therapy, also known as androgen-

deprivation therapy (ADT), includes several small molecules that decrease 

the production of testosterone or inhibit its binding abilities in the cancer 

cells. Hormone therapy is recommended for patients with recurrent or 

metastatic disease and also for patients that have a high Gleason score or 

PSA level and are receiving radiation therapy. Hormone therapy is also 

referred to as chemical castration. An alternative to chemical castration is 

surgical castration (orchiectomy). Surgical castration is more difficult for 

PCa patients to accept as it requires the removal of the testicles [65, 66]. 

Figure 1-3 is a representation of the pathway targeted by the hormone 

therapies. 
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§ LHRH Agonist: Luteinizing hormone-releasing hormone (LHRH) 

agonists work as agonist of the gonadotropin-releasing hormone 

(GnRH) receptor [67]. The GnRH is released by the hypothalamus. 

Binding of GnRH to the GnRH receptor causes the release of the 

follicle stimulating hormone (FSH) and the luteinizing hormone 

(LH) from the pituitary gland. LH binds to receptors in the testes, 

particularly in Leydig cells. The binding of LH to its receptor cause 

the Leydig cells to synthesize and secrete testosterone [68]. LHRH 

agonists work by inhibiting the release of LH by the pituitary  gland. 

LHRH are GnRH receptor agonists, which means the agonist could 

activate the GnRH receptor like the biological GnRH; the continued 

stimulation of the GnRH receptor causes it to desensitize to the 

effects of GnRH. The initial stimulation of the GnRH does cause a 

flare in LH and a rise in testosterone. After the flare-up, the 

desensitization occurs, and testosterone levels go down due to the 

lack of LH being released from the pituitary [67]. The flare-up can 

be avoided by co-administering anti-androgens when starting the 

LHRH agonists. There are multiple LHRH drugs available [69]. 

§ LHRH Antagonist: This drug works by antagonizing the GnRH 

receptor and avoids the initial flare up. There is only one such drug 

called Degarelix [70].  

§ CYP17A Inhibitor: This drug blocks the enzyme CYP17, which 

converts dehydroepiandrosterone (DHEA) to testosterone in the 



 21 

adrenal glands, testes, and prostate cancer cells [71]. This drug, 

called abiraterone, is used on patients that have high risk cancer 

(spread to several spots) or their cancer is castration resistant 

prostate cancer (CRPC), which means the cancer continues to grow 

despite of the low testosterone levels from an LHRH agonist, LHRH 

antagonist, or orchiectomy) [72]. Prednisone must be administered 

with abiraterone because abiraterone lowers the level of other 

hormones in the body [73]. 

§ Anti-androgens: These drugs prevent dihydrotestosterone (DHT), 

a more potent derivative of testosterone, from binding to the 

androgen receptor (AR).  Anti-androgens are used for CRPC. The 

most common FDA approved anti-androgen is enzalutamide. 

Enzalutamide binds to the ligand-binding domain (LBD) of the AR, 

which is where DHT would bind. This action not only prevents the 

AR from binding its targets in the nucleus, but also prevents the 

translocation of the receptor to the nucleus [74]. Enzalutamide is 

considered to be a second-generation anti-androgen. First-

generation bicalutamide does not prevent the translocation of AR 

into the nucleus [75, 76]. Enzalutamide has higher efficacy than the 

first-generation anti-androgen bicalutamide [77]. Apalutamide 

(approved 2018) and darolutamide (completed Phase III March 

2019) are other examples of second-generation anti-androgens [78, 

79].  
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Figure 1-3. Hormone therapy targeting pathway.  

Figure obtained from [66]. Permission to use figure is not required as long as it is references 

and a link is provided to the Creative Common License: 

http://creativecommons.org/licenses/by/4.0/ 

 

• Chemotherapy: When CRPC becomes unresponsive to hormonal therapy, 

chemotherapy is indicated. Taxanes, such as docetaxel, are often used to bind and 

stabilize the microtubules in dividing cells [80]. This stabilization causes the 

dividing cells to arrest in the G(2)M phase and eventually leads to apoptotic cell 

death [81]. 
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Androgen Receptor Signaling in PCa 

The androgen signaling pathway is the most targeted pathway in PCa because the 

androgen receptor (AR) plays a significant role in PCa progression. The AR is a steroid 

hormone nuclear receptor, like the estrogen receptor. The AR acts as a transcription factor 

when it binds to its major ligand 5α-dihydrotestosterone, (DHT), dimerizes, and 

translocates to the nucleus. AR binds to specific sequences in DNA known as androgen 

response elements to regulate gene transcription which promotes the growth and survival 

of prostate cells [82].  

Testosterone is primarily synthesized by the Leydig cells in the testes (~90%) and 

some is synthesized by the adrenal cortex (~10%) and is the precursor to DHT. 

Testosterone has two precursors, dehydroepiandrosterone (DHEA) and androstenedione. 

DHEA and androstenedione have precursors as well, that are converted into DHEA and 

androstenedione by CYP17A. CYP17A is the target of abiraterone. By inhibiting the 

actions of CYP17A, abiraterone is able to prevent the synthesis of testosterone precursors, 

thus abiraterone prevents DHT from being formed and binding the AR [83]. Figure 1-4 is 

a schematic of the pathway abiraterone targets. 



 24 

 
Figure 1-4. Pathway of DHT precursors. 

Permission to use figure was obtained from Elsevier [84].  

 

The AR consists of three domains: NH2 terminal transactivation domain, DNA 

binding domain (DBD), and ligand-binding domain (LBD). DHT binds to the LBD, which 

leads to a conformational change in the receptor. The receptor can then relocate to the 

nucleus and dimerize. The dimers can bind to the androgen-response elements of the 

promoters and the enhancers of target genes using the DBD. AR regulates the transcription 

of a large number of genes. Examples of such genes are KLK3 (codes for PSA), NKX3 

and FOXP1 (transcription factors), UBE2C and TACC2 (cell cycle regulators), IGF1 and 

APP (growth stimulators), and many more. AR can both activate and repress transcription 

[82].  

AR is the main target of ADT and anti-androgens but it has many mechanisms of 

resistance: 
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1. AR amplification: The PCa cells make more AR than normally [85]. The cells 

amplify the gene, which can lead to AR overexpression and allow the cancer 

cells to continue androgen-dependent growth in low levels of androgens after 

castration [86]. The amplification can cause the cells to be hypersensitive to the 

low level of androgens [87]. 

2. AR mutations: Mutations can result in various AR functions. Mutations can 

lead to loss-of-function and gain-of-function AR. A known AR mutation, AR-

T877A can be activated not only by androgens but also by the anti-androgen 

drug flutamide, estrogen, and progesterone [88]. Mutations in the LBD can 

cause resistance to anti-androgens [89, 90].  

3. Aberrant activation: Androgen independent activation of AR leads to resistance 

to ADT. Altered levels of AR coregulators and their function can cause 

resistance. Activation by the coregulators leads to ligand-independent signaling 

pathways. AR can also be activated by growth factors as a mechanism of 

resistance [91]. 

4. AR splice variants (AR-Vs): Alternative splicing leads to AR that is not 

responsive to therapy. For example, AR-V7 lacks the LBD, therefore anti-

androgens cannot bind to it. AR-V7 is located in the nucleus and is 

constitutively active [91]. 

The AR pathway is very important for the development of improved PCa therapies. 
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Recurrence  

 After patients are treated for their localized PCa, there can be an intermediate state 

of disease where the PSA has risen, but the cancer either has not formed or cannot be 

located using standard diagnostic tools. This intermediate state is known as biochemical 

recurrence (BCR). BCR may be an indication for starting ADT; however, it’s not always 

the case. Physicians face a difficult decision when deciding whether to treat the patient 

with BCR who is asymptomatic because the side effects of the medication may outweigh 

the benefits, but on the other hand, the therapy may prevent or delay the onset of metastatic 

disease [92]. The proportion of patients affected by BCR compared to the proportion of 

patients who actually develop metastatic disease is shown in Figure 1-5. It is clear from 

this figure that a large population of patients BCR would not need further treatment, but 

current clinical tools lack the sensitivity needed to differentiate between PSA rising that 

will lead to metastasis and PSA rising that will not lead to metastasis.  

 
Figure 1-5. Proportional model of PCa states.  

Reproduced with permission from publisher from Paller C, Management of Biochemically 

Recurrent Prostate Cancer After Local Therapy: Evolving Standards of Care and New 
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Directions. Clin Adv Hematol Oncol. 2013; 11(1), 14-23 [92]. The arrows in the figure 

represent disease progression after therapy. 

 

  Within 10 years post initial treatment, BCR affects 20-40% of patients treated with 

radical prostatectomy [93, 94] (~75,000 newly diagnosed PCa patients are treated with 

radical prostatectomy, which is ~30% of all those diagnosed [95]) and 30-50% of patients 

treated with radiation therapy [96] (~60,000 newly diagnosed patients are treated with 

radiation therapy, which is ~25% of all of those diagnosed [97]).  

 Progression of disease can lead to castration resistance, which means the PCa 

progresses in spite of ADT. This PCa can be non-metastatic (nmCRPC) or metastatic 

(mCRPC). nmCRPC is treated with drugs such as abiraterone or enzalutamide. 

Unfortunately, over 80% of patients with nmCRPC progress to mCRPC [98]. As of today, 

mCRPC is incurable and the goal of treatment is to extend life as long as possible, delay 

metastasis, and provide the best quality of life. mCRPC patients are commonly treated with 

abiraterone, anti-androgens, and chemotherapy [98, 99]. Other FDA approved options do 

exist, and many experimental therapeutics are being evaluated in clinical trials [100].  

As PCa progresses aggressively, it may start to develop neuroendocrine-like 

features and eventually develop into neuroendocrine PCa (NEPC). NEPC is associated 

with advanced diseases and poor clinical outcome [101-103]. In NEPC, cells lose their 

granular structure, develop small cell neuroendocrine-like morphology, and become 

positive for neuroendocrine (NE) markers [104]. AR signaling significantly decreases or is 

completely lost in NEPC. PSA becomes an ineffective way of monitoring disease because 

PSA is controlled by the AR signaling pathway, and with the loss of AR expression, PSA 
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loses its ability to predict disease progression [105]. Approximately 25-30% of mCRPC 

have neuroendocrine phenotypes. It is believed that NEPC develops in response to ADT 

and/or targeting of the AR signaling pathways [106]. NEPC is treated with the 

chemotherapeutic cis-platin [107]. 

Although PCa is treatable for many patients, there is a clinical need for new 

therapeutics and ways to monitoring the disease. The clinical need exists for patients who 

develop resistance to anti-androgens and for those where it is difficult to delineate between 

malignant and indolent disease.  

 

Imaging of Prostate Cancer 

Imaging of PCa is used to detect and localize PCa. Imaging is helpful not only for 

detection but grading and staging of PCa as well.  Currently, the main modes of imaging 

are ultrasound-based imaging, magnetic resonance-based imaging, computed tomography, 

and positron emission tomography [44].  

 

Ultrasound Imaging: This is the oldest and most widely used imaging modality 

for PCa, pioneered in the 1980s. Transrectal ultrasonography (TRUS) mentioned 

earlier is well tolerated by patients and is inexpensive. TRUS can be used for guided 

biopsies and is considered to be the standard of care for PCa diagnosis. TRUS 

sensitivity is considered low. The appearances of cancer can overlap with benign 

lesions and the visualization of the capsule is poor.  There are novel modalities such 

as contrast-enhanced modes to increase sensitivity [108]. Ultrasound imaging is 

approved for the following PCa related indication: an abnormal DRE, biopsy 
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guidance, evaluation of patient with known PCa, and follow-up of patients with 

PCa [109]. These indications were current as of 1991 and it does not appear that 

much has changed in terms of ultrasound imaging. 

 

Magnetic Resonance Imaging (MRI): MRI in PCa is used mostly for 

intraprostatic disease detection and is useful for PCa staging and therapy guidance 

[110].  The recommended technique of MRI imaging in PCa is multi-parametric-

MRI or mp-MRI. This method combines T2 weighted imaging for high contrast 

structural detail, and other functional MR imaging techniques [111]. A pre-biopsy 

mpMRI can identify the areas that are suspicious. mpMRI can also be used post-

negative biopsy. Primarily, the mpMRI is used to determine the extent of the 

localized disease (without distant metastasis) to determine the proper treatment 

[112]. mpMRI limitations include: lack of sensitivity to differentiation BPH from 

PCa in the transition zones of the prostate, limited ability to differentiate between 

post-treatment change and local recurrence following treatment, and by inter-

observer variability. MRI is not used for detection of metastasis [113].  

 

Computed Tomography (CT) Scan: The CT scan uses x-rays to create a cross-

section image of the body to determine if the PCa has spread into the lymph nodes. 

As mentioned earlier, CT scans are used for guiding IG-IMRT. The limitation of 

CT scans is their inability to detect architectural changes within normal size lymph 

nodes (lymph nodes that are not enlarged). The sensitivity is limited for detecting 

the microscopic lymph node metastases [114].  
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Bone Scan: Patients who are stratified as high risk (high PSA) would typically be 

recommended a bone scan. The bone scan can effectively detect bone metastasis. 

Technetium-99-methylenediphosphonate (99mTc-MDP) bone scintigraphy is used 

to find these distant bone lesions. The limitation of this technique is that it is only 

sensitive for bone lesions. 99mTc-MDP localizes along mineralization fronts and 

can accumulate due to tumor presence and due to other bone related issues. In the 

literature, sensitivity has been reported to be between 62-89%. However, due to its 

low specificity, in many cases the increase in its uptake cannot be characterized as 

a malignancy [115].  

 

PET Imaging: CT scans, MRI, and bone scans are limiting because they can 

primarily detect nodal, local and bone disease. PET imaging is mostly used in 

relapsed disease. PET imaging is useful because it can target the tumor directly by 

being specific for either a surface marker or a tumor specific biological process. 

Traditionally, 18F-fluorodeoxyglucose (FDG) can work really well in cancer where 

glucose uptake is high, but not in PCa because it primarily relies on fatty acid and 

fructose metabolism. 11C-choline and 18F-choline are tracers with limited use. 

Choline can be metabolized and internalized by choline kinase, which is a protein 

that is overexpressed in PCa. The choline tracers do not differentiate well between 

benign and malignant tumors or inflammatory conditions. Choline tracers are FDA 

approved for use in patients with recurrent disease. 18F-fluiclovine has been 

recently approved by the FDA. 18F-fluiclovine is an amino acid that can be taken 
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up by sodium-dependent amino acid transporters which are associated with 

aggressive tumors. Non-specificity has been reported as 18F-fluiclovine can be 

taken up by inflamed areas and other malignancies. 18-F-NaF is a sensitive bone 

metastasis detector but compared to99mTc, it is more expensive and has less 

clinically relevance due to lack of  PET availability. 68Gallium-prostate-specific 

membrane antigen (PSMA) is being investigated in clinical trials. PSMA is 

overexpressed in PCa and conjugated PSMA ligands have been developed. The 

previous 111Indium-anti PSMA monoclonal antibody failed because it targeted an 

intracellular epitope, which caused binding to necrotic cells. PSMA ligands that are 

being developed now target a extracellular epitopes. 68Ga-PSMA PET is not yet 

FDA approved but clinical studies indicate that it is better than conventional 

imaging where there is biochemical recurrence [116]. 

 

Vectors for Gene Therapy and Molecular Imaging 

Gene therapy is the ability to make local modifications in the human genome. One 

of the most common techniques used for genetic alternation is recombinant DNA 

technology where a gene of interest (GOI) is inserted into a vector and delivered to target 

cells. This vector can be viral or plasmodial [117]. An ideal vector would be administered 

non-invasively, target only desired cells, and express a therapeutic amount of GOI or 

transgene. Gene therapy allows for the introduction of natural protein products and also 

enables production of proteins that are not typically found endogenously in the cells. Gene 

therapy can be applied to various diseases whether they are oncologic, infectious, or genetic 

[118]. Examples of how the GOI could function are [119]: 
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1. Replace a deficient gene or indirectly substitute for a loss of function gene that 

results in disease progression 

2. Cause direct or indirect toxicity to “diseased” cells 

3. Inhibit a gain-of-function pathway that is involved in disease progression 

The GOI approach can be used to express genes that do not have a therapeutic 

function but can be detected by a signal the GOI generates or indirectly causes. A gene 

therapy approach can be used for molecular imaging by using reporter genes such as 

fluorescence proteins in the vectors as the GOI. Some of these reporter proteins are bi-

modal and can work as both therapeutic and  imaging reporters. The gene therapy approach 

used for molecular imaging is an emerging field called “molecular-genetic imaging” which 

allows for imaging of molecular-genetic processes rather than anatomy [120].  

The inability to monitor gene expression is a limitation of gene therapy. A great use 

for molecular-genetic imaging is the possibility of using the reporter gene expression in 

conjunction with a therapeutic gene to assess gene therapy treatments. Molecular-genetic 

imaging can also be used as a stand-alone regimen to detect and monitor disease as any 

other clinically available imaging approach. The use of disease-specific promoters prevents 

reporter gene expression from occurring in unwanted locations. For example, a cancer-

specific promoter can be used to express reporter genes in the cancer only and that same 

promoter can be used to express therapeutic genes. The reporter genes and therapeutic 

genes can be part of the same vector or the reporter gene can act as a therapeutic gene. Bi-

modal protein such as herpes simplex 1 thymidine kinase (HSV1-TK) can be used for 

visualization and as a therapeutic because it converts non-toxic prodrugs such as 

ganciclovir into toxic compounds. Gene therapy vectors can also be evaluated using 
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reporter genes for their specificity and transcriptional efficiency by using the reporter gene 

as the GOI and later replacing the reporter gene with the therapeutic GOI. Using reporter 

genes for vector evaluation is a good way to determine if the vector is potent and specific 

to the target cells [121]. 

 

Plasmid  

Plasmid DNA (pDNA) is a gene therapy tool that is applied in cancer, infectious, 

genetic, and acquired diseases [122-130]. Plasmids can be used to transiently express 

protein in cancer cells to induce an inflammatory response (plasmid vaccine) [131, 132] or 

cell death (targeted gene therapy). Targeting the plasmid can be accomplished by using 

disease-specific promoters upstream of the GOI [133].  Often times, the protein expressed 

performs its anti-cancer role after the administration of an activating agent. For example, 

the GOI causes toxicity indirectly by driving the expression of another toxic gene [134] or 

can be targeted for toxicity (by administering an otherwise non-toxic substrate that is 

converted into a toxic molecule only in cells expressing the GOI) [135].  As of October 

2018, there are at least 62 active plasmid-based therapies in clinical trials around the world 

(according to clinicaltrials.gov). 

 

Clinical Plasmid Therapy 

As of October 2018, there are currently at least 20 plasmid DNA vaccines in phase II 

clinical trials that are active and 12 of them are for oncological diseases including 

neoplasia. Vaccines dominate the clinical plasmid therapy field, in part, because they have 

been studied longer in the clinical setting. There are various targeted gene therapy plasmids 
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being investigated for a variety of cancers. Interestingly, there are even investigations of a 

plasmid immunotherapy which consists of liposomal-non-coding DNA plasmid that is not 

considered gene therapy or a vaccine [136, 137]. 

 

Delivery 

Plasmid delivery routes and methods have many variations in pre-clinical studies. 

Intratumoral, intraperitoneal, and subdermal routes are common examples of what is 

currently being practiced in clinical trials. Although intravenous route of delivery opens 

more doors for toxicity, there is one plasmid therapeutic being investigated that is neither 

a vaccine nor a targeted therapy because it is non-coding that has been administered 

intravenously [136].  

Because plasmid DNA is negatively charged and suffers from a very short half-life in 

the cytoplasm, the amount of DNA that actually reaches the nucleus can be very low [138]. 

Nanoparticle delivery agents have been used clinically and pre-clinically as an alternative 

to naked DNA delivery.  The most commonly used delivery agents are linear-

polyethylenimine (l-PEI) [139] and cationic liposome [136].  Cationic liposomes and l-PEI 

have been used in clinical trials [137, 139, 140]. Limitations to l-PEI do exist, an important 

one being toxicity [141]. 

 

Production 

Plasmid development is performed in bacteria and antibiotic resistance genes in the 

plasmid sequence are commonly used as a selection marker. For the purposes of translation 

to humans, the plasmid should be modified to reduce toxicity via bacteria-added attributes 
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and prevent the potential for antibiotic resistant bacteria in the patient. Current FDA 

guidelines do not prohibit the use of an antibiotic marker, but it is recommended to avoid 

the use of penicillin and beta-lactams in the production process [142]. 

 

Plasmid therapy has potential for gene therapy development and it has already been 

successful in clinical trials. Plasmids are commonly used as vaccines or targeted gene 

therapy and are even being developed as immunotherapies. Plasmids can be applied for 

molecular imaging in the same manner by making the GOI a reporter gene whose signal 

can be detected and quantified by an imaging technology [143], but this has not been 

verified in the clinical setting. Oncological applications of plasmids are extensive both for 

solid and hematological tumors. There are some advantages of using plasmids over a viral 

delivery of the gene, although the delivery is not as effective. For example, pDNA has a 

lower risk of integrating with the chromosomal DNA than a retrovirus [144]. Overall, 

pDNA poses a smaller risk because of improved safety over viral vectors. pDNA can also 

be delivered more than once, has a low risk of integration, and it’s more cost-effective to 

construct and store. The disadvantages are the poor transfection efficiency and some risk 

of inflammation due to CpG motifs. Literature on systemic administration of plasmids in 

humans is limited. To the best of my knowledge, l-PEI coated plasmid has been 

administered to humans in at least one trial [139] and l-PEI has been administered in 

another trial with siRNA (NCT01435720). 
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Adenovirus 

 Like plasmids, adenoviruses (Ads) are used for gene therapy and vaccines. Ads are 

comprised of icosahedral protein capsid that encloses a linear duplex DNA genome of ~35 

kilo basepairs. The Ads’ genome encodes about 35 proteins. ~20 of these proteins are 

expressed in the early phase and allow the virus to control the cell to carry out the DNA 

replication process. The remainder of the proteins are expressed in the late phase and 

encode for the structural proteins [145]. Outside of their use in gene therapy, Ads found in 

our environment are known for causing cold-like symptoms [146].  

 

Clinical Adenovirus Therapy 

There are more than 400 gene therapy trials that have been or are being conducted 

with Ad vectors, most of them being for the treatment of cancer [145]. Ad vectors pose 

some advantages compared to other gene therapy methods. Ads are very well studied and 

can be grown into high titer stable stocks. Ads are highly effective at entering the cell 

compared to a plasmid with or without a delivery agent. The delivery of Ads is very 

effective in humans and this leads to higher expression of the GOI, which can make Ads 

very efficacious [147]. The Ad delivers a high levels of transgene expression for a short-

term period because they do not integrate into the genome as lentiviruses do, which is ideal 

for diseases like cancer, but not as useful for genetic diseases where permanent gene 

alteration is required to see the benefits [148]. 

 Ads are strongly immunogenic which poses some safety concerns, but the editing 

of the adenoviral genome allows for limiting some of the immunogenic response. There 

has been extensive experience with Ad vectors in various clinical applications so the safest 
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dosing and route of administration have already been well established [147]. Ad vectors 

are the most common vector used in clinical trials worldwide and account for ~20% of all 

of the gene therapy trials [149].  

The toxicity is Ads’ biggest red flag. Even with a lot of development of the Ad 

vectors for clinical applications, the interaction of the virions with macrophages in the 

blood, spleen, and liver is associated with acute toxicity [150]. Unfortunately, while Ads 

are very potent at getting the GOI expressed in the target, there still remains room for 

improvement when it comes to immunogenicity and hepatotoxicity. Ideally, it would be 

useful to develop Ads that can only enter target cells. Another issue Ads can run into in the 

clinic is the pre-immunity. Healthy individuals come across wild-type Ads and develop 

immunity. This hinders the use of Ads derived from common serotypes in these individuals 

[149]. 

 

Production 

Most Ad vectors are modified versions of the Ad5 serotype. Ads can be replication 

deficient, replication competent, or conditionally-replicative, which means there is a lot of 

permissible control using Ads. The replication deficient Ads have essential genes E1A and 

E1B deleted and replaced by an expression cassette with a high activity and/or tissue/cancer 

specific promoter. The E1A proteins are essential for Ad replication because they induce 

the expression of ~20 delayed early genes. E1B proteins inhibit host cell apoptotic response 

to Ad infection [145].  

The actual production of Ads can be a technically challenging and time consuming 

process. There are different cell lines that can be used such as HEK-293 cells for the 
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transfection of the Ad vector. Post-successful transfection, the cells make fully assembled 

virions. The process takes multiple rounds of amplification to obtain a therapeutic yield of 

viral particles and careful purification. Compared to the production of a plasmid, the Ad 

production is more labor intensive [149]. 

 Ads can be engineered for cancer-specific expression of the GOI just like plasmids 

by using cancer-specific promoters. In the same manner, they can be utilized for molecular 

imaging just like pDNA. Ads, unlike pDNA, have been utilized for molecular-genetic 

imaging in the clinics already [151]. The difference between the two vectors is efficiency 

of delivery and off target effects. Although pDNA is safer, Ads provide a much more 

effective expression of the GOI because Ads are very effective at entering most cells. Both 

vectors still have room for improvement to achieve better specificity and less off-target 

effects. 

  

Biomarkers 

 A biomarker refers to a category of medical signs which can be measured accurately 

and reproducibly to predict incidences of outcome or disease. Biomarkers by definition are 

objective, quantifiable characteristics of biological processes [152]. A biomarker can be 

measured by analyzing molecules such as DNA, RNA, protein, peptide, or biomolecule 

chemical modifications. Biomarker development involves initial discovery in basic studies, 

validation, and clinical development. The goal of the development is to stablish biomarker 

tests with clinical utility to inform clinical decision making and improve patient outcomes 

[153]. The clinical translation rate of biomarkers is very low, only 0.1% [154]. 
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 PSA is an example of a biomarker that was successful in clinical translation. There 

are various mechanisms which result in the presence of a biomarker due to a diseased state. 

For PSA, as stated earlier, this reason is that PCa cells express PSA and there is a disruption 

of layers between the prostate and blood vessels which causes leakage of PSA into the 

bloodstream. Other biomarkers can be overexpressed as a result of various cancer signaling 

pathways. If a protein becomes overexpressed in diseased cells, a common cause of that is 

the transcriptional regulation of the elevated protein. Though the levels of mRNA 

transcripts and protein levels may not always correlate, increased transcriptional output 

through promoter regulation can result in the elevated expression of genes in cancer cells 

[143].  

Biomarkers can also be utilized for cancer imaging. Surface biomarkers in 

particular are useful targets for imaging disease because they can be targeted by antibodies, 

small molecules, or peptides [155].  Indirect mechanisms of imaging are also possible. 

Indirect means that the biomarker itself is not used as the target for imaging, but rather its 

promoter is used to express exogenous reporter genes. This technique is referred to as 

“molecular-genetic imaging.” Molecular-genetic imaging can be accomplished through the 

use of viral and non-viral DNA vectors. The promoters incorporated in these vectors, in 

theory, would use the same transcriptional machinery as the endogenous promoters that 

result in biomarker expression. If the elevated biomarker expression is tumor-specific, then 

the biomarker-promoter is a good target for molecular-genetic imaging because it will be 

specific for those cells that are not expressing normal level of the biomarker [143].  
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Chapter II: Exploiting the transcriptional specificity of the alpha-

methylacyl-CoA racemase AMACR promoter for the molecular 

imaging of prostate cancer 

Chapter 1 is a first author manuscript with limited edits [156]. 

Overview 

The metabolic protein a-methylacyl-CoA racemase (AMACR) is significantly 

overexpressed in prostate cancer compared to the normal prostate and other non-malignant 

tissue. Though an attractive target, there are no reports in the literature on leveraging the 

expression of AMACR for the molecular imaging of prostate cancer. Here, we used a 

molecular-genetic imaging strategy to exploit the transcriptional specificity of the AMACR 

promoter for the in vivo detection of prostate cancer using the reporter gene luciferase. We 

performed a stepwise truncation of the promoter and identified a 565 base pair minimal 

promoter for AMACR that retained both high activity and specificity. Following 

identification of the minimal promoter for AMACR, we used an advanced two-step 

transcriptional amplification system to maximize the promoter output. We showed that our 

optimized AMACR promoter can drive expression of luciferase for molecular imaging in 

subcutaneous xenograft models of androgen receptor-positive and androgen receptor-

negative prostate cancer using a non-replicative adenovirus for gene delivery. Our results 

provide evidence that the AMACR promoter can be exploited to drive the cancer-specific 

expression of reporter genes and potentially even be incorporated into conditionally 

replicative adenoviruses for oncolytic therapy and other applications.    
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Introduction 

The isomerase a-methylacyl-CoA racemase (AMACR) is most commonly known 

for its physiologic role in catalyzing the stereoconversion of the α-methyl proton of 

branched chained fatty acids undergoing b-oxidation in the mitochondria and peroxisomes 

[157, 158]. Deficiencies in AMACR protein or activity have been associated with several 

peroxisomal disorders that lead to neurological impairment due to accumulation of 

branched-chain fatty acids [159]. The effects of such deficiencies can be ameliorated by 

decreasing the intake of these lipids that come primarily from meat and dairy-based diets 

[160]. In the early 2000s, two research groups independently verified AMACR as a prostate 

cancer (PCa) biomarker based on its specific overexpression in malignant tissue compared 

to benign prostate tissue by immunohistochemistry (IHC) [161, 162]. Subsequent studies 

established that AMACR protein was also present in metastatic lesions - not only localized 

primary PCa - and its expression was independent of the androgen receptor (AR) signaling 

axis [163-165]. Over the years, AMACR has been established as a dependable biomarker 

of PCa with IHC analysis finding that AMACR expression in needles biopsies had a 97% 

sensitivity and 100% specificity for PCa detection [166]. Since its initial discovery in PCa, 

AMACR overexpression has been documented in a number of other cancers including 

colon, ovarian and breast [167].    

The near-universal overexpression of AMACR in PCa has made it an attractive 

target for molecular imaging. Due to its overexpression in PCa compared to normal tissue, 

an AMACR imaging probe can potentially be used to non-invasively differentiate 

aggressive disease from indolent disease. A number of factors have hindered the 
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development of imaging probes for AMACR. Ideally, an AMACR imaging probe would 

be a small-molecule inhibitor of its enzymatic activity. There have been a number of studies 

that tried to develop assays for AMACR detection for high throughput screens of AMACR 

inhibitors but none of the inhibitors identified have moved toward clinical application [168-

171]. Another complicating factor for a small-molecule imaging probe to be successful is 

that the probe will have to cross the cell membrane and possibly the membrane of an 

organelle to reach enzymatically active AMACR. A more favorable approach is a 

molecular-genetic imaging strategy where the transcriptional specificity of the AMACR 

promoter is harnessed to drive the expression of reporter genes for cancer detection. The 

DNA construct containing the promoter and reporter gene can be delivered by viral or non-

viral means into the cell where transcription and translation of AMACR are occurring. The 

reporter genes can encode proteins for a number of imaging modalities including positron 

emission tomography, magnetic resonance, and bioluminescence imaging [172].           

In this study, we detail the development of a molecular-genetic imaging technology 

for AMACR that can detect PCa in vivo. Initially, truncated versions of the full-length 

2,295 base pair (bp) AMACR promoter were cloned and analyzed for transcriptional output 

using a luciferase assay in AR-negative and AR-positive PCa cell lines. From these 

experiments, we identified a 565 bp minimal AMACR promoter that was cancer-specific 

and possessed output equal to or greater than the full-length promoter. An advanced two-

step transcriptional activation (A.TSTA) system was then used to enhance the output to the 

minimal AMACR promoter [173]. This system - placed downstream of the minimal 

AMACR promoter and upstream of luciferase - expresses a GAL4-VP16 fusion protein 

driven by the minimal promoter. The fusion protein binds GAL4 binding sites upstream of 
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the transcription initiation site that results in an increased transcription of luciferase. Using 

this system, the output of the minimal promoter was enhanced while still retaining 

specificity. The enhanced promoter system along with luciferase was then incorporated 

into a non-replicative adenovirus (Ad) vector. Ad vectors are an efficient natural gene 

delivery system and are well-researched for cancer gene therapy [174]. The highly efficient 

delivery of the non-replicative Ad allowed for the imaging of AR-positive and AR-negative 

PCa xenografts in vivo using bioluminescence. Our data provide proof-of-concept that the 

tissue-specificity of the AMACR promoter can be exploited for detecting PCa via reporter 

gene imaging. In the future, this strategy could even be applied to therapy by delivering 

suicide genes or using conditionally replicative Ad (CRAd) for oncolytic and radioviral 

therapy. 

 

Results 

AMACR expression in clinical samples and models of prostate cancer 

At the protein level, AMACR has been reported in primary and metastatic PCa 

[161-164]. We confirmed these findings by staining sections from prostatectomy and 

metastatic lesion biopsies (Figure 2-1A-D). As expected, no AMACR was present in 

healthy prostate tissue (Figure 2-1A), but intense staining was observed in prostate 

adenocarcinoma (Figure 2-1B) and metastatic lesions acquired from liver and lymph node 

(Figure 2-1 C-D). It has long been established that concordance between mRNA and 

protein levels in a cell or tissue is often low (~20%) [175]. Certain proteins are long–lived 

within the cell requiring infrequent transcription, thus while the protein may be present in 

the cell, the mRNA may not. For a molecular-genetic imaging strategy to be successful, 
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the tissue-specific promoter must be highly active with high transcriptional rates of the 

target gene. Though AMACR has been used as a biomarker for IHC for nearly two decades, 

little analysis of the gene at the transcriptional level has been reported. We analyzed RNA-

seq data from three publicly available datasets for AMACR mRNA. In the TCGA [176] 

dataset comprised of primary PCa samples from 52 patients, we found that AMACR was 

highly up-regulated in PCa versus normal tissue from the same patient (Figure 2-2A). 

Analysis of the Grasso [177] and Taylor [178] datasets found that AMACR was 

significantly overexpressed in primary and metastatic disease compared to normal tissue, 

however, no significant difference was observed between primary and metastatic disease 

(Figure 2-1B). Analysis of these datasets further supports the cancer-specificity of 

AMACR and its ubiquitous expression in both primary and metastatic disease. These data 

also document that significant transcript is present in PCa supporting the use of AMACR 

transcription machinery for molecular imaging detection of the disease.  

The expression of AMACR at the protein and mRNA levels had previously been 

reported in LNCaP, PC3 and 22Rv1 cells and we confirmed those expression trends with 

our results [179-181]. To our knowledge, the expression of AMACR in MR42D cells had 

not been characterized prior in the literature. LNCaP cells were determined to have the 

most AMACR protein and mRNA by Western blot analysis and qPCR (Figure 2-3A and 

Fig 2-3B). The AMACR protein band in LNCaP cell line was found to be more intense 

that of the CaCo-2 cell line, a colon cancer cell line commonly used as a positive control 

for AMACR  (Figure 2-3A). The level of AMACR protein in the LNCaP-derived 

castration-resistant MR42D cells was similar to that of parental LNCaP cells, though 

mRNA levels differed (Figure 2-3A and Fig 2-3B). LNCaP cells are reliant on AR 
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signaling and produce prostate-specific antigen (PSA) whereas the MR42D cells are 

indifferent to AR signaling, possessing full-length AR, but producing no PSA [182, 183]. 

We also tested 22Rv1 cells, another castration-resistant model that expresses full-length 

AR and splice variants, and the highly metastatic AR-negative PC3 cells for AMACR 

expression [184]. The qPCR results (Figure 2-3B) indicated that 22Rv1 and PC3 cells may 

have some inhibition of AMACR protein at the translational level. This was speculated 

because the AMACR mRNA in 22Rv1 and PC3 was equal or greater than in MR42D, 

however, by Western blot (Figure 2-3A), MR42D revealed more protein. As anticipated, 

no AMACR was detected at either the protein or mRNA level in prostate epithelial cells 

(PrEC) isolated from healthy prostate tissue and in the colon cancer cell line HT-29 (Figure 

2-3A and Figure 2-3B). We show that the mRNA levels in 22Rv1, PC3, and MR42D are 

similar while the protein expression in those cell lines differ. This may be due to 

translational regulation mechanisms which are outside of the promoter control. These 

results document that though protein levels may differ potentially due to, AMACR mRNA 

is widespread throughout PCa cell lines regardless of AR status.  

 

Identification and optimization of a minimal promoter for maximum output 

The full-length 2,295bp promoter was truncated in a stepwise fashion and the 

transcriptional efficiency of the truncated AMACR promoters was evaluated using a 

luciferase assay. The purpose of this assay was to identify a minimal promoter that had a 

transcriptional output similar to the full-length promoter. Truncations were performed from 

the 5’ end of the full-length promoter and sites were picked randomly. All of the explored 

regulatory areas of the promoter based on previous literature search are in the 3’ end and 
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remained untouched. According to Zhang et al., 43% of the population has a 20bp deletion 

that does not alter the promoter strength [185]. Based on sequencing results, the PBMC 

donor used for cloning was affected by the 20bp deletion. Quantitative analysis of the 

promoter truncations was performed on the PCa cell lines LNCaP, MR42D, PC3, and 

22Rv1 were evaluated for transcriptional output with HT-29 cell line serving as a negative 

control for specificity. The cells were analyzed for luciferase expression 72 hours post-

transfection. Several of the truncations, such as 1726bp and 1893bp, were found to produce 

a higher output than the full-length promoter (Figure 2-4B-D). The augmented activity of 

the 1726bp and 1893bp promoters was not universal across all cell lines as indicated by 

the results in LNCaP (Figure 2-4A). The 565bp promoter was selected as the minimal 

promoter for subsequent experiments because it exhibited an output equal to or greater than 

the full-length promoter and also retained its specificity with little activity in HT29 cells 

(Figure 2-4E-F). 

Tissue-specific promoters such as AMACR often possess relatively weak 

transcriptional activity, especially when compared to strong viral promoters such as 

cytomegalovirus (CMV). As a result, this could potentially limit their utility in vivo. In 

order to enhance the transcriptional output of the AMACR minimal promoter without 

compromising its specificity for PCa, we opted to use a two-step transcriptional 

amplification (TSTA) system. This system was originally developed by Iyer et al. and later 

was further enhanced by Watanabe et al. to create an advanced TSTA (A.TSTA) system 

[173, 186].  The system is inserted downstream of the promoter and upstream of the gene 

of interest. An A.TSTA system was used with the AMACR minimal promoter to determine 

if transcriptional output could be enhanced. The A.TSTA element was inserted in the 
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AMACR 565bp pGL3 vector and a luciferase assay was performed on 22Rv1, MR42D, 

and HT29 cells 72 hours post-transfection. The results documented that the output signal 

significantly increased in MR42D and 22Rv1 cells compared to the 565 bp promoter data 

but did not significantly affect HT-29 signal (Figure 2-5A). The results in Figure 2-4 and 

Fig 2-5A are on the same scale and the results in Figure 2-5A compare the additions of 

A.TSTA to the 565 bp promoter data shown in Figure 2-4. From these data, we can 

conclude that the addition of the A.TSTA to the minimal 565bp promoter construct 

increased transcriptional output without compromising the promoter specificity. 

 

In vitro and in vivo Ad studies utilizing the AMACR minimal promoter 

To further evaluate the strength of the AMACR minimal promoter, we used Ad to 

deliver the reporter construct into cells. Luciferase in the Ad genome was used as the 

reporter gene to assess the transcriptional efficiency of the promoter (Figure 2-5B). In this 

study, only non-replicative Ad was used to assess promoter strength. For comparison, three 

viruses were constructed: a wild type Ad type 5 (Ad5) with the AMACR minimal promoter, 

an Ad with a chimeric fiber where the tail and shaft domains are Ad5 and the knob domain 

is of Ad3 (Ad5/3) with the AMACR minimal promoter, and Ad5/3 with the minimal 

promoter and A.TSTA. PC3, MR42D, and 22Rv1 cells were infected and analyzed for 

luciferase expression 48 hours post treatment (Figure 2-5C). We expected to see an 

increase in signal from cells infected with Ad5/3+AMACR 565bp compared to the 

Ad5+AMACR 565bp based the expanded tropism of Ad5/3. Our findings confirmed that 

the 5/3Ad was able to enter PC3 and MR42D cells better compared to Ad5, however, no 

significant difference in luciferase signal was observed when comparing the two Ads in the 
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22Rv1 cells. The addition of the A.TSTA increased the signal significantly in both PC3 

and 22Rv1 cells. The infection with Ad5/3+AMACR 565bp+A.TSTA was shown to not 

be significant in MR42Ds due to high variability. Based on these results, PC3 and MR42D 

cells were chosen for in vivo xenograft models in the experiment that followed. In 

summary, (Figure 2-5C) demonstrated that gene delivery and expression can be improved 

by modifying the wild type Ad5 fiber to the chimeric Ad5/3 fiber and by adding the 

A.TSTA system downstream of the AMACR minimal promoter. 

Next, we decided to investigate if the Ad5/3+AMACR 565bp+A.TSTA could drive 

the expression of luciferase in vivo. MR42D and PC3 cells were used to form subcutaneous 

tumors in nude mice. Once the tumors reached a volume of 50-100mm3, they were injected 

with the virus via intratumoral administration and imaged at 72 hours and one week post-

injection (Figure 2-6). Both tumors were bioluminescent at 72 hours. PC3 tumors were 

observed to be more responsive to the Ad at 72 hours, while the MR42D signal was less 

intense at 72 hours compared to the PC3, the signal was stronger at the one week time point 

(data not shown), however. This observation suggests that there may be a slower 

transcriptional onset or less efficient entry to the cells in the MR42D model. The in vivo 

experiment documented that our transcriptional system using the AMACR promoter was 

powerful enough to have a detectable signal for at least a week after administration of the 

virus in vivo.  

 

Discussion 

The goal of this study was to develop a novel imaging strategy for the detection of 

PCa using the transcriptional specificity of the AMACR promoter to drive the expression 
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of the reporter gene luciferase. Detecting AMACR can potentially lead to decreased patient 

overtreatment and the associated co-morbidities and financial costs. Additionally, an 

AMACR imaging probe delivered intraprostatically could be employed for image-guided 

biopsy, surgery and focal therapy. Molecular imaging of PCa that exploits the AMACR 

promoter in this manner has never been investigated prior in the literature. This approach 

differs from a number of PCa-targeted agents because the promoter, and not the actual 

protein itself, was used for PCa detection [187]. At the protein level, the expression of 

AMACR has been identified in both primary and metastatic disease with little to no 

expression in healthy tissues. Our RNA-seq analysis confirmed the widespread cancer-

specific expression of AMACR at the transcript level suggesting that our molecular-genetic 

imaging strategy can be employed to image both localized and metastatic disease. Another 

attribute making AMACR an attractive imaging target is that the transcription of the gene 

is not regulated by the AR. In one investigation, Luo et al. found that non-hormone 

refractory and hormone refractory metastases were strongly positive for AMACR by IHC 

[164]. Thus, unlike PSA or prostate-specific membrane antigen (PSMA) the level of 

AMACR expressed will not vary due to androgen deprivation therapy or treatment with 

second-generation making it a consistent target.  

Though not affected by AR modulation, the precise elements that regulate AMACR 

expression are unknown across PCa cell lines. Previously, an extensive analysis of 

AMACR promoter activity in different PCa cell lines had not been performed. Chen et al. 

[188] inspired our promoter truncation experiment with their experiments to determine the 

promoter regulatory regions. Based on Chen et al. and Zhang et al. [185] who determined 

the CpG island on the 3’ end of the promoter controls gene expression in the colon, we 
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avoided deleting the 3’ regulatory regions. The goal was to determine if there was a shorter, 

stronger promoter that can behave uniformly in the different PCa cell lines. Our data 

suggested that the promoter had regulatory sites in the upstream regions that are active in 

some cells, but activity was variable from cell type to cell type. The minimal 565bp 

promoter that we selected for our subsequent studies demonstrated stronger output than the 

full-length promoter in two PCa cell lines and the same output as the full length promoter 

in two other PCa cell lines. Unlike some of the other truncated promoters that had increased 

signal in the control cells, the 565bp promoter remained specific for PCa cells. In theory, 

a shorter promoter would be beneficial for future studies if using plasmid gene delivery as 

opposed to Ad. Plasmid size is important for delivery because there is a limitation to how 

much DNA mass can be delivered using polymer transfection reagents. Since delivery 

using in vitro transfection reagent is not as efficient as Ad infection, a shorter promoter 

would allow more copies of the plasmid delivered. For the purpose of this study, we chose 

the 565bp promoter because it had slightly higher transcriptional activity without losing 

specificity. Enhancing the transcription of the minimal promoter with the A.TSTA system 

worked especially well when Ad was used as the delivery method.  

The efficiency of Ad gene delivery is very dependent on the viral ability to interact 

with cellular receptors. The wild type Ad5 binds to the coxsackie-Ad receptor (CAR) for 

entry via its knob domain on the Ad fiber. [189] A strategy in the adenoviral field is the 

use of chimeric fibers. A well-established method is to use the knob domain of Ad serotype 

3, which enters cells independent of the CAR. A vector coding for the Ad3 knob, which 

binds CD46, was incorporated into the Ad5 genome by Krasnykh et al. to create a wild 

type Ad5 with the original tail and shaft domains of the fiber contain an Ad3 knob [190]. 
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The Ad5/3 with its chimeric fiber expands the tropism of the virus and has been shown to 

enter cancer cells more efficiently [189]. Our results confirmed the improved targeting of 

the Ad5/3 in two of the cell lines, PC3 and MR42D. While MR42Ds have never been 

studied in the context of adenoviral therapy, our PC3 and 22Rv1 findings are consistent 

with previous literature that found 22Rv1s to be as sensitive to Ad11 as they are to Ad5 

and PC3s to be more sensitive to Ad11 than Ad5 [191]. This is relevant because Ad11 

binds CD46 for cell entry like Ad3, and therefore the comparison of infectivity between 

Ad5:Ad5/3 and Ad5:Ad11 should correlate.  

While our preliminary results for a very advanced gene therapy approach are 

promising, there are some limitations to keep in mind. For the purposes of preclinical 

validation of the AMACR promoter, we used luciferase for PCa detection. If the AMACR 

promoter is to be pursued further, bioluminescence for PCa detection would have to be 

replaced with a clinically relevant modality such as positron emission tomography (PET). 

An example of a reporter gene that can be used for PET imaging is herpes simplex 1 

thymidine kinase (HSV1-TK) [192]. HSV1-TK can also be used as a suicide gene for 

therapeutic purposes [135]. This approach may also have difficulty overcoming tumor 

heterogeneity and it will not have an effect on detecting necrotic tissue.  

In addition to using this molecular-genetic imaging approach for differentiating 

aggressive PCa from benign disease, our technology can be developed further for 

therapeutic purposes. In this study, we used a non-replicative Ad to determine whether we 

can detect the PCa using the AMACR promoter. For therapy, suicide genes such as herpes 

simplex thymidine kinase or cytosine deaminase could be inserted into the promoter 

construct in place or adjacent to the reporter gene [135]. Additionally, a CRAd oncolytic 
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virus can benefit from our promoter system to treat PCa. In this scenario, CRAd replication 

can be guided by the cancer-specific AMACR promoter allowing for tissue-specific 

replication in the PCa leading to cancer cell death [193]. Our work provides strong 

evidence that there is value in using the AMACR promoter system in a CRAd and in and 

also for other Ad based strategies[174] for therapeutic applications.  

 

Material and Methods 

Immunohistochemistry 

Immunohistochemistry was performed on formalin-fixed paraffin-embedded tissue 

sections using the rabbit anti-AMACR/p504S clone 13H4 antibody (Novus Bio). 

Unstained sections (4 µm) were de-paraffinized and rehydrated using standard methods. 

For antigen retrieval, slides were incubated in 6.0 pH buffer (Reveal Decloaking reagent 

from Biocare Medical) in a steamer for 30 min at 95-98°C. This was followed by a 20 min 

cool down period. A serum-free blocking solution (Sniper, Biocare Medical) was placed 

on sections for 30 min. Blocking solution was removed and slides were then incubated in 

primary antibody diluted in 10% blocking solution/90% TBST. The antibody was used 

according to the manufacturer’s protocol. Patient biopsies for analysis were acquired using 

a University of Minnesota Human Subjects Division approved IRB protocol for tissue 

acquisition (IRB#1604M86 269) and with patient consent.  

 

RNA-seq Analysis  

The RNA-seq data from the TCGA was analyzed using a method previously 

described [194]. In short, the data were downloaded from dbGaP, study accession 
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phs000178.v9.v8 [176], yielding paired tumor/normal samples for 52 patients. Genes under 

300 bp were removed from further analysis as these are not isolated effectively in standard 

RNA-seq library preps. Genes with low expression (those with less than 10 reads in half 

of the samples) were removed, and paired tumor and normal samples were analyzed for 

differential expression using edgeR. 

    

Plasmids 

For the plasmid promoter luciferase assay, a pGL3 Basic vector (Promega, E1751) 

was used as the backbone for cloning. For cloning the full-length promoter, peripheral 

blood mononuclear cell genomic DNA was used. Primers for the different length AMACR 

promoters can be found in the Table 2-1. The advanced two-step transcriptional 

amplification system was designed according to Watanabe et al. and synthesized by 

Genscript. An example of a plasmid map used can be found in the Figure 2-7. 

 

Adenoviral Vectors 

The vectors for adenoviral cloning were provided by the Davydova laboratory. Two 

adenoviral (Ad) vectors were used, a wild-type pAd5 and the chimeric pAd5/3. Cloning of 

the Ad vectors was done by homologous recombination with pShuttle vectors containing a 

firefly luciferase gene and the promoter based transcriptional system. Homologous 

recombination was performed in BJ5183 electrocompetent cells (Agilent). A total of three 

viruses were generated for this study (Ad5+AMACR 565 bp, Ad5/3+AMACR 565 bp, and 

Ad5/3+AMACR 565 bp+A.TSTA). Virus was generated based on Davydova et al. [195]. 

HEK-293T cells were used for viral productions. Cells were transfected with linearized 
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viral vectors (linearized by PacI) and delivered to cells using Qiagen Superfect transfection 

reagent. Cells were observed for the cytopathic effect to determine viral infection. The 

viruses were amplified and purified by a double cesium chloride density gradient 

ultracentrifugation and dialyzed in 10% glycerol in PBS. The adenoviral functional titer 

was determined by using an immunoassay kit from Cell Biolabs. 

 

Cell Lines  

The cell lines LNCaP, PC3, 22Rv1, HEK-293T and PrEC were purchased from the 

American Type Culture Collection (ATCC) and were maintained according to ATCC 

guidelines. MR42D cells were a gift from Dr. Amina Zoubeidi (Vancouver Prostate 

Center) and were cultured in 10 µM enzalutamide. HT-29 cells were a gift from Dr. Hiroshi 

Hiasa (Department of Pharmacology, University of Minnesota). All cell lines were verified 

by short-tandem repeat analysis and analyzed for mycoplasma contamination prior to our 

studies.  

 

Western Blot 

For protein quantification, 20 µg of protein (lysate) of each cell line were used to 

run on SDS-PAGE and transferred to a nitrocellulose membrane. The primary polyclonal 

rabbit AMACR antibody (Sigma, HPA020912) was used at 1:500 and was incubated 

overnight at 4°C. The blots were analyzed using a LICOR C-DiGit Blot Scanner. 
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Quantitative RT-qPCR 

106 cells were used for RNA extraction using RNeasy kit (Qiagen). RNA to cDNA 

conversion was performed using the High capacity RNA to cDNA kit (Applied 

Biosystems). For gene quantification, Taqman RT-PCR was performed using the Taqman 

Universal PCR MasterMix (Applied Biosystems) and the following gene expression 

probes: AMACR –Hs01091292 and 18s ribosomal RNA Hs03928985 for a normalization 

control. A StepOnePlus Real-Time PCR system instrument (Applied Biosystems) was used 

for qPCR. Data was analyzed using a comparative Ct method were the fold change = 2 

−ΔΔCt). 

 

Plasmid Luciferase Assay 

104 cells/well were plated in 96 well plates the night before transfecting. Cells were 

transfected with 90 ng of the experimental plasmid DNA (pGL3 vector backbones) and 9 

ng of control pRL-TK plasmid (Promega) with 0.24 µl of transfection reagent GeneJuice 

(Millipore) per well. Cells were analyzed 72 hours post-transfection. For analysis, cells 

were lysed using the passive lysis buffer from Promega. The Dual-Luciferase Reporter 

Assay System (Promega) was used to quantify luciferase activity. Each readout of the 

firefly luciferase (LUC) was normalized to its respective renilla luciferase control readout 

(REN). Results are reported as LUC/REN = Relative Luciferase Units (RLU). 

 

Adenoviral Luciferase Assay 

50,000 cells were plated in 24 wells plates with 500 ul of 5% FBS growth media. 

The next day cells were treated with 100vp/cell.  Virus was prepared in 100ul of 5% FBS 
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growth media and added to the existing media in the wells. At 48 hours cells were lysed 

using 100 ul of passive lysis buffer from Promega and the luciferase activity was 

determined with the Luciferase Assay System (Promega). 40 ul of the lysate was taken for 

the luciferase assay. Luciferase readouts were normalized to the protein content as 

determined by the Coomassie Plus Protein Assay (ThermoFisher). 5 ul of the lysate was 

used for the protein assay. 

 

In vivo Bioluminescence Detection 

Animal work was done in agreement with our Institutional Animal Care and Use 

Committee (IACUC) protocol. PC3 and MR42D cells (106) were inoculated into the flanks 

of nude athymic mice (Envigo) of 3-4 weeks of age in a 1:1 dilution of Matrigel (Corning) 

to PBS. The tumors were allowed to grow for three weeks. The mice received single 

intratumoral injections of Ad5/3+AMACR565 BP+A.TSTA (4x109 vp in 50 µmL PBS). 

Images of in vivo expression of the luciferase were acquired at 72 hours and 1-week post 

injection of the virus. For image acquisition, mice were injected intraperitoneally with 150 

mg/kg of D-Luciferin potassium salt (GoldBio) and imaged 10 minutes post-injection with 

the IVIS Spectrum (Caliper/Xenogen). Images were analyzed with Living Image 4.5 

software. The min/max values of the signal were not constant for the two imaging 

timepoints as the signal was significantly lower at the 1-week time point. 
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Figures 

 

 

Figure 2-1. Clinical relevance of AMACR expression in primary and metastatic 

prostate cancer.  

Immunohistochemical staining of AMACR in healthy prostate (A), prostate 

adenocarcinoma (B), liver metastasis (C) and adrenal metastasis (D). Scale bars (A-D), 

200μm.  
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Figure 2-2 Analysis of AMACR in patient samples.  

(A) Analysis of the TCGA RNA-seq data documenting that the AMACR expression is 

overexpressed in the PCa versus normal tissue (n=52). The red bar represents a ratio equal 

to 1 meaning AMACR expression in both PCa and normal tissue are the same. (B) Analysis 

of the AMACR expression in normal, primary and metastatic PCa from the Taylor and 

Grasso datasets. Significance was determined using the student t-test (**** p<0.0001). 
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Figure 2-3.  Overexpression of AMACR in prostate cancer cell line models.  

(A) Western blot analysis of AMACR protein levels. Top: AMACR protein levels in four 

human PCa cell lines: MR42D, LNCaP, 22Rv1, PC-3, and the positive control colon cancer 

cell line Caco-2. Bottom: AMACR protein levels in prostate epithelial cells (PrEC) and 

colon cancer HT-29 cells. (B) Relative AMACR mRNA levels by qPCR normalized to 

reference gene 18S ribosomal RNA. Top: High AMACR mRNA levels in PCa cell lines. 

Bottom: Low AMACR mRNA levels in healthy PrEC and negative control HT-29 colon 

cancer cells. 
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Figure 2-4. Truncated AMACR promoter analysis by the luciferase assay. 

Transcriptional activity of the truncated AMACR promoters is represented in relative 

luciferase units (RLU). Luminescence was measure 72 hours post transfection of plasmid 

containing a promoter and firefly luciferase gene. Luminescence from the firefly luciferase 
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(LUC) driven by the AMACR promoter was normalized for transfection efficiency [co-

transfection with pRL-TK which expresses renilla luciferase (REN)]. The full-length 

AMACR promoter and the constitutively-on CMV promoter are presented for comparison 

for each cell line. (A-D) AMACR promoter activity in PCa cells. (E) AMACR promoter 

activity in the low AMACR expressing colon cancer HT-29 cells. (F) A comparison of the 

full-length promoter activity in PCa cells and HT-29 cells to the 565bp truncated promoter. 

The 565bp promoter is shown to be equally powerful in LNCaP and 22Rv1 cells, more 

powerful in MR42D and PC-3 cells compared to the full-length promoter and did not show 

an increase in activity in the low AMACR expressing HT-29 cells. Results are presented 

as mean ± standard error of the mean (SEM) of n=6. Significance was determined using 

the student t-test (**** p<0.0001; *** p<0.001; ** p<0.01; *p<0.05). 
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Figure 2-5. Addition of the advanced two-step transcriptional amplification system 

and assessment of promoter activity using adenoviral gene delivery in vitro.  

(A) Luciferase signal 72-hour post transfection of plasmid containing the A.TSTA 

downstream of the AMACR 565bp promoter in PCa cells MR42D and 22Rv1, and colon 

cancer HT-29 cells. The 565 bp promoter data is from Figure 2-4 and placed here for 

comparison. Luminescence from the firefly luciferase (LUC) driven by the AMACR 

promoter was normalized for transfection efficiency [co-transfection with pRL-TK which 

expresses renilla luciferase (REN)]. (B) Adenovirus gene delivery to the cells. The 

promoter or promoter system is introduced to the Ad genome and a virus is constructed. 

Cells are infected with the virus and DNA is released into the nucleus for gene delivery. 

(C) Promoter activity expressed in RLU (luciferase signal normalized to total protein) 48 

hours post-delivery of adenovirus containing firefly luciferase as the reporter gene. The 

activity of the 565bp promoter was analyzed using adenovirus serotype 5 (Ad5) and Ad 
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with a chimeric fiber with the knob domain of Ad3 in the Ad5 capsid (Ad5/3) for delivery. 

The addition of the A.TSTA was analyzed using only Ad5/3 for delivery. RLU is 

normalized to the protein concentration. Results are presented as mean ± standard error of 

the mean (SEM) of n=6 in (A) and n=3 in (B). Significance was determined using the 

student t-test (**** p<0.0001; *** p<0.001; ** p<0.01; *p<0.05, n.s.= not significant). 
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Figure 2-6. Ad5/3 gene delivery of luciferase guided by the AMACR 565bp promoter 

and the A.TSTA system.  

Mice injected intratumorally with Ad5/3+AMACR 565bp+A.TSTA. The mice were 

injected with D-luciferin prior to imaging to detect AMACR promoter-driven expression. 

MR42D and PC3 subcutaneous xenografts in nude mice were used as the PCa models. 

Images were acquired at 72 hours (left) and at one week (right). The results presented are 

representative images of n = 3 mice. The signal was diminishing by the 1-week time point 

in both xenografts as demonstrated by the change in the minimum and maximum of the 

signal strength. 
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Figure 2-7. Example of experimental plasmid map.  

The promoter was inserted using the MluI and XhoI while the A.TSTA was inserted using 

BglII and HindIII. The construct is designed according to Watanabe et.al with. Two VP2 

domains instead of 1. The plasmid backbone used was pGL3 from Promega with the firefly 

luciferase reporter gene. More details on TSTA design can be found in Chapter 3 Methods. 

 

 

 

 

 

MluI  (15)

XhoI  (584)

BglII  (588)

VP16 (2x)

HindIII  (1731)

pGL3 - AMACR 565+A.TSTA

6496 bp
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Table 2-1. Primers for promoter truncation. 

The table above provides detailed primers used for the truncation of the AMACR promoter. 

The same reverse primer was used do all the promoter cloning. The reverse primer, and 

full length forward primer were based on Chen et al. [188]. 

 

 

Primer Sequence 

Reverse (Rev63) – XhoI Cut Site 5’ 

CGGCTCGAGCTGAAGGAAACTGAGCA

G3’ 

Full Length (2295 BP) Forward - MluI 

Cut site 

5’ CGACGCGTCCTCAGAAGCATGTGA 

3’ 

1983 Forward – MluI Cut site 5’ 

GCAACGCGTGGGACTGCTGGATCATA

T 3’ 

1726 Forward - MluI Cut site 5’ 

GCAACGCGTTGTTGGCCATTTGTATG

C 3’ 

1095 Forward - MluI Cut site 5’ CGGACGCGTTCTGGTAGTG 3’   

893 Forward - MluI Cut site 5’ CGGACGCGTACTTGCTTGAG 3’ 

565 Forward - MluI Cut site 5’ CGGACGCGTTCTGGTAGTG 3’ 

294 Forward- MluI Cut site 5’ CCGACGCGTGTACAATAAAAGCG 3’ 
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Chapter III: The molecular detection of lethal prostate cancer by 

PEG10 promoter-driven expression of reporter genes 

Overview 

Purpose: The retrotransposon-derived paternally expressed gene 10 (PEG10) protein is 

ordinarily expressed at high levels in the placenta. It was discovered recently that PEG10 

isoforms promoted the progression of prostate cancer (PCa) to a highly lethal androgen 

receptor negative phenotype. PEG10 expression in castration resistant PCa (CRPC) has not 

been explored and a utility for the PEG10 overexpression has never been developed. Our 

study investigates the extent of PEG10 expression in PCa and develops the PEG10 

promoter into a molecular-genetic imaging tool. 

 

Experimental Design: To study PEG10 expression in castration resistant PCa, we 

analyzed patient microarray data, patient RNA seq data, patient biopsies, and patient 

derived xenografts. The PEG10 promoter was optimized for optimal transcription 

efficiency in-vitro and integrated into a reporter-plasmid to detect PCa in-vivo. 

 

Results: Our investigations found that PEG10 is expressed in castration-resistant PCa. We 

subsequently developed a molecular genetic imaging strategy for the non-invasive imaging 

of highly lethal PCa by utilizing the cancer-specificity of the PEG10 promoter to drive the 

expression of reporter genes. By using this PEG10 promoter upstream of a reporter gene 

in a plasmid, we were able to detect PCa by fluorescence and positron emission 

tomography imaging after systemic administration of the plasmid in mice. Subcutaneous 
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CWR-R1 xenografts and CWR-R1 intratibial tumors were used as CRPC models to 

demonstrate the utility of our imaging system. 

 

Conclusions: We show that PEG10 is more widely expressed in PCa than documented 

previously and that PEG10 expression occurs in CRPC. Because of its broad expression in 

aggressive forms of PCa, PEG10 can targeted for imaging using the transcriptional output 

of the PEG10 promoter.  We developed a PEG10-biomarker driven imaging technology 

that has the potential to improve detection and monitoring of disease progression. 

 

Introduction   

Prostate cancer (PCa) is a prevailing disease affecting 1 in 9 men in the United 

States [196]. Once prostate cancer has metastasized to the bone and soft tissue, few 

effective treatment options exist. Androgen-deprivation therapy (ADT) is the clinical 

standard for the treatment of metastatic disease [197]. ADT suppresses the endogenous 

production of androgen by the testes leading to decreased signaling through the androgen 

receptor (AR). Signaling through the AR axis is required for the development and normal 

function of the adult prostate as well as the growth and survival of PCa cells [198]. 

Although initial response rates are high, all men will eventually fail ADT and develop 

castration-resistant prostate cancer (CRPC) [199]. Aberrant reactivation of the AR 

signaling axis, due to AR over-expression, constitutively active AR splice variants and the 

endogenous production of testosterone by the cancer cell, is a salient feature of CRPC 

[200]. The second-generation anti-androgens abiraterone and enzalutamide have recently 

demonstrated clinical advantages in CRPC patients treated with second-line hormonal 
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agents and docetaxel [201]. Resistance to these therapies inevitably occurs and many men 

develop a highly lethal subtype type of non-AR driven disease [202, 203]. Treatment 

options for this subtype are limited, consisting of taxanes and platinum agents [202]. Thus, 

there is an urgent need for the development of novel effective therapies to treat late-stage, 

drug resistant PCa.   

The development of novel therapeutics, and the appropriate tailoring of existing 

therapies, is hindered by the inability to accurately quantify disease burden and patient 

response to therapy by molecular imaging [204]. The most commonly used imaging 

modality to assess disease burden, measure patient response to therapy and disease 

progression in men with PCa is the 99mTc methylene diphosphonate (99mTc-MDP) bone 

scan [205]. Though the bone scan is useful in measuring osseous metastases, a large 

percentage of men with late-stage disease now develop extensive visceral metastases for 

which no imaging gold standard exists [206]. The positron emission tomography (PET) 

tracer 18F-fluorodeoxyglucose (18F[FDG]) is commonly used in the clinic to image types 

of cancer that are dependent on glucose metabolism [207]. However, 18F[FDG] has 

performed poorly for imaging PCa due to its unique metabolic properties that result in 

metastatic lesions with little avidity for glucose [207-209]. Other PET tracers such as 18F-

choline, radiolabeled PSMA ligands, and 18F[NaF] are limited in the phenotypes of PCa 

they are able to detect [116]. More recently, the FDA approved a 18F-labeled artificial 

amino acid derivative, 18F-fluciclovine, for the imaging of recurrent PCa in patients with 

elevated PSA [210]. This tracer is still under investigation and has not been evaluated for 

imaging late-stage disease. Other imaging modalities such as magnetic resonance imaging 

and CT are limited in their application and tell nothing of the underlying biology of the 
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cancer cell [206]. Thus, there is no accurate modality currently available for imaging late-

stage PCa.    

One attractive imaging strategy that is non-invasive and allows for the detection of 

cancer with high specificity and low background is molecular-genetic imaging. Molecular-

genetic imaging relies on the transcriptional mechanics of the disease rather than the 

targeting of a cell surface antigen or a metabolic protein [211]. In this strategy, the promoter 

of a cancer-specific gene is used to drive the expression of a reporter gene within the cancer 

cell. This promoter-reporter gene system is placed in a plasmid that is administered locally 

or systemically. Once the plasmid is delivered to the cancer cell, the cancer-specific 

promoter guides the expression of reporter genes such as herpes simplex 1 thymidine 

kinase (HSV1-TK) which can be detected via PET imaging after the administration of a 

radiolabeled nucleoside substrate [211]. Pre-clinical research using molecular-genetic 

imaging has previously been successful at detecting cancer models using cancer-specific 

promoters to drive reporter gene expression [212, 213]. Additionally, molecular genetic 

imaging can be further exploited for theranostic purposes by the expression of suicide 

genes such as cytosine deaminase[135]. Plasmid-based therapeutics and their delivery 

agents are currently in clinical trials which makes molecular-genetic imaging a 

translational tool [125, 212, 213].  

Elevated paternally expressed gene 10 (PEG10) expression in PCa [214] has been 

reported and recently its upregulation was discovered in the transdifferentiation of AR-

driven prostate adenocarcinoma to non-AR driven disease [215]. PEG10 is a 

retrotransposon-derived gene primarily expressed in the placenta and is crucial for 

embryonic development [216]. We investigated the expression of PEG10 in healthy 
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prostate tissue, primary adenocarcinoma, metastatic CRPC and AR-PCa. Our analysis 

discovered that PEG10 expression was not restricted to AR-disease but was also found in 

a subset of AR+ CRPC including disease expressing AR splice variants. Harnessing the 

overexpression of PEG10, we used the transcriptional mechanisms of PEG10 to create a 

molecular-genetic imaging tool for the detection of these highly lethal PCa subtypes. The 

imaging strategy incorporated an optimized PEG10 promoter and a two-step transcriptional 

amplification element for enhanced output. Our final imaging construct allowed for the 

precise tumor detection in a CRPC subcutaneous xenograft model by PET/CT. 

 

Results 

Expression of PEG10 is prominent in metastatic disease and not adenocarcinoma.  

Immunohistochemistry (IHC) analysis was performed on tissue microarrays 

(TMAs) of primary prostate adenocarcinoma. The antibody for IHC was validated using 

placenta as a positive control (Figure 3-1). No positive staining for PEG10 was observed 

in any of the primary prostate adenocarcinoma cores (0/120) even across a spectrum of 

high Gleason scores. (Figure 3-2A). Next, we analyzed publicly-available RNA-seq 

datasets [217-219] to quantify PEG10 expression between hormone naïve primary prostate 

tumors and metastasis (Figure 3-2B). These data documented a significant increase in 

PEG10 mRNA expression in CRPC metastases compared to primary tumors (p<0.01). We 

then analyzed a liver biopsy from a patient who demonstrated radiographic progression 

while on abiraterone in the presence of declining PSA. Here, strong PEG10 staining was 

observed in the liver biopsy while AR staining was completely absent (Figure 3-2C). The 

original biopsy from the prostate of this patient prior to surgery documented aggressive 
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Gleason 4 + 5 disease that was absent for PEG10 but positive for AR expression by IHC 

(Figure 3-2D). 

 

Regulation of PEG10 by full length AR and AR variants.  

Based on previous reports, the lack of AR expression in NEPC appeared to promote 

PEG10 expression [215]. In the CWR-R1-derivative cell line R1-AD1 [220], ChIP-seq 

analysis demonstrated that the wild type, androgen activated AR was bound to the PEG10 

gene. Conversely, insignificant binding to the PEG10 gene was observed in ChIP-seq data 

from vehicle-treated R1-AD1 cells and in R1-D567 cells that only express the 

constitutively active AR variant, ARv567es (Figure 3-3A). We next used RT-PCR to test 

the androgen regulation of PEG10 mRNA in PCa cells treated with the synthetic androgen 

R1881 (Figure 3-3B). LNCaP cells, which express full-length wild-type AR, displayed an 

increase in PEG10 expression when grown in charcoal stripped serum (CSS). The addition 

of R1881 to the CSS media reduced the PEG10 expression in LNCaP cells back to baseline, 

indicating that active AR represses PEG10 expression. CWR-R1 cells, which express wild 

type AR and AR splice variants [221, 222] did not display R1881-mediated repression of 

PEG10 mRNA. Our data may be preliminary evidence that constitutive activity of AR 

variants expressed in CWR-R1 cells may be dominant over full-length AR in regulating 

PEG10 expression. 

 

PEG10 expression is not confined to AR-negative PCa cells.  

We discovered that cell lines previously reported to express elevated levels of 

PEG10 (DU145 and PC3) did not exhibit the highest expression levels out of the PCa cell 
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lines analyzed by qPCR (Figure 3-4A). The qPCR data found that AR+ cell lines with a 

castration-resistant phenotype [223, 224] - CWR-R1, 22Rv1, and MR42D - had elevated 

PEG10 expression levels. Both CWR-R1 and 22Rv1 cells express AR splice variants in 

addition to full-length AR[221, 223] while MR42D cells express wild type AR but are 

indifferent to AR signaling [183]. The analysis of cell line PEG10 expression was also used 

to determine models and controls for studies of PEG10 promoter activity  

IHC staining of PEG10 in a tissue microarray of LuCaP-series patient derived 

xenografts (PDXs) found strong straining in the PDXs representing AR-null 

neuroendocrine PCa (NEPC), including LuCaP 145.1 (Figure 3-4B). Strong staining was 

also observed in the AR splice variant-positive model LuCaP 86.2, while no staining for 

PEG10 was observed in the AR+ adenocarcinoma model LuCaP 78. The IHC results of 

PDX staining for PEG10 support our hypothesis that there may be a path of alternative 

regulation of PEG10 expression by AR splice variants which results in elevated PEG10 

expression. To test this directly, we investigated microarray data from CWR-R1 cells 

transfected with siRNA targeting AR exon 7, which ablates expression of full-length AR 

but not AR-V7, or CWR-R1 cells transfected with siRNA targeting AR exon 1, which 

ablates expression of both full-length AR and AR-V7 (Figure 3-4C). PEG10 expression 

was higher in CWR-R1 cells transfected with exon 1-targeted siRNA vs exon 7-targeted 

siRNA, indicating that AR-V7 may be activating PEG10 expression. Collectively, analysis 

of gene expression and IHC with PDX tissue support the hypothesis that lack of AR is not 

the only factor responsible for PEG10 upregulation and that AR-Vs may positively regulate 

PEG10 expression. To our knowledge, this is the first data demonstrating positive 

regulation of PEG10 expression by AR variants. Subsequently, a microarray of early 
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passage LuCaP PDX models was analyzed for PEG10 expression (Figure 3-5A). PEG10 

was elevated in NEPC PDX models that are AR- (Figure 3-5B,  p<0.0001). However, 

based on the heatmap, it should be noted that some AR+ PDXs did in fact exhibit elevated 

PEG10 which may be due to the presence of AR splice variants (LuCaP 86.2 and 147) 

[220, 225]. Aside from these individual examples, overall the PDX microarray did show a 

negative correlation between PEG10 and AR (Pearson’s rho = -0.5242), supporting 

previous literature that wild-type AR does in fact play some role in downregulating PEG10 

expression (Figure 3-5C). 

 

PEG10 expression weakly correlates with downregulated AR in a patient microarray.  

We next studied PEG10 in gene expression microarray data of 171 CRPC from 63 

patients with metastatic CRPC [226] (Figure 3-6A). This gene expression microarray 

demonstrated evidence of large variability in PEG10 expression among tumors that are 

AR+, NE-. PEG10 expression was elevated in AR+/NE+ and AR-/NE+ tumors compared to 

the AR+/NE- tumor population (Figure 3-6B). This observation supports previous literature 

on PEG10 elevation in NEPC [215], but also shows that PEG10 expression can also be 

high in AR+ tumors. AR-/NE, which has been termed double-negative CRPC, displayed 

less PEG10 expression than NE+ tumors. The mCRPC microarray revealed that in clinical 

samples, the negative correlation of PEG10 and AR was slightly weaker (Figure 3-6C) 

than in the LuCaP PDX models based on Pearson’s correlation coefficient (Pearson’s rho 

= -0.4217). The correlation between AR and PEG10 represented by Pearson’s correlation 

coefficient supports that PEG10 expression correlates with AR downregulation but also 
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leaves room for our hypothesis that AR variants and/or other factors may play a role in 

regulating PEG10 expression.  

 

ONECUT2 has a similar expression trend with PEG10.  

ONECUT2 was recently identified as a regulator of lethal PCa by suppressing AR-

dependent signaling [227, 228]. The recent literature documents that PEG10 expression in 

the 22Rv1 in vivo model decreased after inhibition of ONECUT2 and increased in vitro 

after ONECUT2 overexpression in LNCaP and C4-2 cells. In line with this, microarray 

data from CRPC patients demonstrated that elevation of ONECUT2 expression occurred 

in AR+/NE+ and AR-/NE+ tumor populations but not in double negative PCa (Figure 3-

7A). The trend in expression was similar to that of PEG10. There was a positive correlation 

between PEG10 and ONECUT2 (Figure 3-7B) (Pearson’s rho = 0.5292) and a negative 

correlation between AR and ONECUT2 (Figure 3-7C) (Pearson’s rho = -0.4199). 

ONECUT2 expression in LuCaP PDX microarray was also elevated in NEPC compared to 

adenocarcinoma (Figure 3-7D). 

 

PEG10 promoter is a powerful transcriptional tool.  

After verifying PEG10 prominence in aggressive PCa, our goal was to use the 

elevated expression to create a powerful detection tool for PCa. Our strategy was to 

incorporate the transcriptional power of the PEG10 promoter in a molecular-genetic 

approach to image PCa. The promoter was first optimized to be more powerful than its 

intrinsic self. Two PEG10 promoter versions were cloned, a full length (~2 kb) promoter 

(PEG102KB) and a truncated ~1 kb promoter (PEG101KB) based on previous reports [229] 
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and placed into a pGL3-Basic vector (~4.8 kb) which has a luciferase reporter gene. The 

transcriptional efficiency of the two promoter variants was initially evaluated in AR- cells 

with LNCaP as a control for known low PEG10 expression (Figure 3-8A). By luciferase 

assay, we discovered that the 1 kb promoter was significantly stronger than the full-length 

PEG10 promoter in the three cell lines. Equal mass of each construct was used for 

transfection. Because the 1 kb construct was ~15% smaller that the pGL3 vector with the 

2 kb promoter, 15% more copies of the construct were delivered of  PEG101KB  than 

PEG102KB. The 1 kb promoter resulted in more than 15% more luciferase signal, which 

proved that the 1 kb promoter was intrinsically more efficient in PCa cells and the results 

were not a result of more plasmid copies delivered. Our results were supported previous 

literature [229], where it was suggested that there must be repressor elements that exist in 

the 5’ end of the promoter and those elements are eliminated in the PEG101KB construct. 

To further enhance activity of the truncated PEG10 promoter, we added a two-step 

transcriptional amplification (TSTA) element (Figure 3-9). There are various established 

versions of the TSTA in literature. In our study (Figure 3-8B), we tested the conventional-

TSTA, which we called TSTA [186] and the advanced-TSTA (A.TSTA) [173]. Our 

designs used two VP-16 domains as described in the methods. The conventional TSTA 

contains a gene coding for the fusion protein of GAL4 binding domain and a VP16 

activation domains from the herpes simplex virus 1 activator VP16 downstream of the 

promoter. Based on previous literature [230], we used two VP16 domains in the fusion 

protein in our plasmids. The fusion protein binds to an array of 5 GAL4 binding sites, 

which increases transcription of the reporter gene [186]. The A.TSTA contains additional 
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polyglutamines and rat glucocorticoid receptor in the fusion protein, increasing 

transcription even further [173].  

Increased luciferase output was observed after the addition of both the TSTA to the 

1 kb promoter (TSTAPEG101KB) and A.TSTA (A.TSTAPEG101KB) compared to the 1 kb 

promoter alone. Comparison of the two elements side by side showed that the 

transcriptional output for the A.TSTAPEG101KB was significantly more powerful than the 

TSTAPEG101KB based on the luciferase activity results (Figure 3-8B). We then looked at 

AR+ CRPC models and compared the output of PEG101KB, TSTAPEG101KB, and 

A.TSTAPEG101KB (Figure 3-8C) and found that universally the addition of A.TSTA 

increases the transcriptional power of the PEG10 promoter. It should be noted that the 

TSTA elements appear to have variable effects from cell line to cell line. An empty vector 

control was performed in all cell lines (Figure 3-10). Based on these data, A.TSTAPEG101KB 

was the most powerful transcriptional tool developed. Interestingly, the HT-29 colon 

cancer cell line, exhibited increase signal with the addition of the TSTA elements even 

though their mRNA level resembles LNCaP (Figure 3-8C), it even appeared to actually 

decrease with TSTA element addition. The reason for this is not clear but the TSTA 

transcriptional regulatory mechanisms responsible must be different. The TSTA elements 

did appear to have variable effect in each cell line, but overall the effect was positive. 

The luciferase gene in our construct was replaced with near-infrared fluorescence 

reporter protein 682 (iRFP682) which is excited at 663 nm and emits at 682 nm [231]. A 

transfection protocol similar to the one used in the luciferase assay was performed on 

CWR-R1, PC3, and LNCaP cells and the transcriptional output of the PEG10 promoter 

constructs was visualized via fluorescence cell imaging (Figure 3-8E). We found that the 



 78 

PC3 cells appeared to have greater fluorescence intensity than the CWR-R1 even though 

CWR-R1 cells show higher levels of PEG10 mRNA. We attributed the lower expression 

of iRFP682 in CWR-R1 in this imaging experiment as a possible result of the transfection 

efficiency of the CWR-R1 cells with the transfection reagent used or different post-

transcriptional regulations in the cell line that are beyond promoter control. These data 

documented that the A.TSTAPEG101KB promoter construct was powerful and it was selected 

for subsequent in vivo experiments.  

 

PCa detection by optical imaging using the PEG10 promoter.  

We evaluated our strategy for the near-infrared (NIR) imaging of PCa in vivo by 

detecting the reporter protein iRFP682 (Figure 3-11). Mice bearing subcutaneous CWR-

R1 xenografts were injected systemically with either A.TSTAPEG101KB iRFP682 plasmid or 

TSTAPEG101KB iRFP682 plasmid using in vivo-jet PEI. The mice were imaged starting at 

24 hours post-injection of the polymer-coated plasmid constructs. Images acquired using 

675/720 nm excitation/emission. The images (Figure 3-11A-B, Figure 3-12A) of mice 

injected with the two plasmids demonstrated that the promoter alone was strong enough to 

drive expression levels of the fluorescent protein sufficient for detection. The addition of 

the A.TSTA to the plasmid resulted in significantly stronger signal compared to the 

promoter alone (Figure 3-11C) based on the two-way ANOVA analysis of region of 

interest (ROI) fluorescence intensity which indicated that the constructs were significantly 

different (p=0.0374). Bonferroni’s post-hoc found the 72 hour time point to be significantly 

different between the two mouse groups. An identical ROI measurement was drawn around 

each tumor for consistency since tumor sizes varied from mouse to mouse for the 
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acquisition of these measurements. In a separate experiment, mice were injected with the 

A.TSTAPEG101KB iRFP682 and tumors were excised at 96 hours post-injection. In a separate 

injection of the A.TSTAPEG101KB iRFP682 plasmid-polymer complex, ex vivo visualization 

of the tumors documented high expression of the iRFP682 protein (Figure 3-11D).  

We normalized the radiant efficiency min/max values to the A.TSTAPEG101KB 

iRFP682 construct, however, we showed that the promoter alone can be sufficient to detect 

the tumor as the min/max values are slightly lower (Figure 3-12B). It is important to note 

that background fluorescence exists in the mice even on the special low-fluorescence diet 

(alfalfa free) the mice were fed (Figure 3-13A). The background signal in untreated mice 

can be visualized in the bladders, gut/stomach, as well as some upper-body regions. After 

injection of A.TSTAPEG101KB iRFP682, there is a visible increase in background in the 

gut/stomach regions (Figure 3-13B). Because the PEG10 is not expressed in these organs 

in mice, we do not necessarily attribute the elevation in fluorescence signal to the promoter 

activity although we cannot eliminate that as a possibility. The reason behind the 

fluorescence in the gut/stomach regions may be an off-target effect, however, to the best 

of our knowledge, fluorescence reporter constructs through systemic delivery have not 

been previously explored in literature and we therefore are not able to offer a precise 

explanation. The background signal can be considered negligible when the s.c. xenograft 

is imaged ex vivo (Figure 3-13C). 

We used subcutaneous (s.c.) HT-29 xenografts for a low-control because they had 

low PEG10 mRNA levels and appeared to not have an increase in signal with the addition 

of A.TSTA in the luciferase assay (Figure 3-8D). Mice were imaged at 24, 48, and 72 

hours post construct injection (Figure 3-14A-B). When normalized to the same min/max 
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values as CWR-R1 (Figure 3-11A-B), HT-29 did not show any visible signal. The 

xenografts were verified for low expression of PEG10 by IHC (Figure 3-15). 

 To demonstrate that this gene therapy imaging approach is applicable for metastasis 

detection, we repeated our fluorescence imaging studies in an intratibial (i.t.) PCa model 

that mimics bone metastasis [232]. The i.t. model was developed by injecting CWR-R1 

cells into one of tibia of each mouse. Three weeks post tumor inoculation, the mice were 

injected with the A.TSTAPEG101KB iRFP682 plasmid and imaged at 25, 48, and 72 hours 

(Figure 3-16A). Compared to the healthy legs, there was visual signal apparent at the tibia 

of the i.t. CWR-R1 legs. We compared the signal of the healthy legs of each mouse to the 

i.t. legs by using same-size ROIs around the tibias (Figure 3-16B). The i.t. legs had 

significantly more near-infrared fluorescence due to the construct as determined by two-

way ANOVA (p=0.0234). Bonferroni’s post-hoc analysis indicated significant difference 

at the 48 and 72 hour time points.  

 

PCa detection by PET/CT imaging via the PEG10 promoter.  

Encouraged by our NIR imaging results, we decided to use our transcriptional 

technology to detect PCa in vivo using the clinically relevant imaging modality PET/CT. 

To develop a PET/CT imaging strategy, we opted to use herpes simplex virus 1 thymidine 

kinase (HSV1-TK) as the reporter gene. HSV1-TK works by phosphorylating radiolabeled 

pyrimidine nucleoside derivatives such as 5-[124I]iodo-2’-fluoro-2’-deoxy-1-b-D-arabino-

5-iodouracil (124I-FIAU) [192]. 124I-FIAU is a poor substrate for mammalian thymidine 

kinase; however, cells expressing HSV1-TK can phosphorylate and trap high levels of the 

radiolabeled nucleoside substrate (Figure 3-17A) [233]. Using HSV1-TK as the reporter 
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gene, we were able image subcutaneous CWR-R1 xenografts 72 hours post-injection of 

A.TSTAPEG101KB HSV1-TK plasmid construct with 124I-FIAU. To control for off-target 

expression of HSV1-TK and localization of 124I-FIAU, non-tumor bearing mice were 

injected with A.TSTAPEG101KB HSV-TK plasmid construct (Figure 3-18). Off-target 

localization of free 124I from deiodated FIAU was seen as anticipated in the thyroid (Ty) 

due to the glands involvement in the metabolism of iodine and in the bladder (B) due to 

iodine excretion in the urine [234, 235]. Both Ty and B signal can be seen in a 

representative image of a non-tumor bearing mouse as visualized in the 2-D (Figure 3-

18Aa) and 3-D reconstructed images (Figure 3-18Ab). The mice in the CWR-R1 xenograft 

group exhibited the same non-specific uptake in the Ty and B, as documented in the 2-D 

(Figure 3-18Ba) and 3-D reconstructed images of a representative mouse (Figure 3-

18Bb). To confirm that the signal in the tumor was the result of HSV1-TK expression, s.c. 

tumors were analyzed by qPCR and IHC. Both HSV1-TK and PEG10 were detected 

(Figure 3-17B-C).  

 The CWR-R1 s.c. model was verified by PET/CT imaging. Mice with i.t. CWR-R1 

tumors (5 weeks post-inoculation) in the tibia were injected with A.TSTAPEG101KB HSV1-

TK. Mice were injected with 124I-FIAU forty-eight hours post DNA injection and imaged 

the next day. Signal at the tumor legs was clearly visible inside the tibia while no signal 

was present at the site of the healthy tibia in 2-D analysis (Figure 3-19A). 3-D 

reconstruction was performed and slicing of the legs had to be done because the PET signal 

was inside the bone (Figure 3-19B).  

In the s.c. PET experiment not much signal was visible in the gastrointestinal tract 

and liver, the site of FIAU metabolism [212, 235], but in the IT experiment significant 
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signal was also seen in the liver and gastrointestinal tract (full body image not shown). We 

injected 250 uCi in the IT experiment vs 150 uCi in the subcutaneous experiment, so the 

increase of 124I-FIAU dose may be responsible for the difference in gastrointestinal signal.   

 

Discussion 

The goal of this study was to greater understand PEG10 expression in PCa and 

develop a method for detecting aggressive subtypes of PCa by exploiting the disease-

specific expression of PEG10. The expression of PEG10 in PCa was previously only 

documented in NEPC (23). By analyzing PCa models and clinical specimens, we found 

that PEG10 is expressed in CRPC (cell lines, PDXs, microarray) in addition to AR-NEPC. 

Previous research hypothesized that PEG10 expression was strongly associated with the 

absence of AR [215]. We found a negative correlation between the expression of AR and 

PEG10 in the LuCaP PDX models and mCRPC patient microarray analysis. Analysis of 

the AR variant expressing cell lines proposes that AR splice variants may play a role in 

PEG10 expression. Our data gives a very preliminary introduction that there may be an 

association between AR variants and PEG10. Recent findings have shown that ONECUT2 

acts as a suppressor of AR activity, a survival factor, and a driver of a NE differentiation 

in PCa. We explored the trends of PEG10, AR, and ONECUT2 expression by microarray 

analysis. Our analysis showed a negative correlation between AR and ONECUT2, a 

positive correlation between ONECUT2 and PEG10, and elevated ONECUT2 in NE+ PCa. 

The data supports published findings that ONECUT2 indirectly regulates PEG10 through 

suppression of AR or directly regulates PEG10 by binding to its promoter [227, 228]. The 
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recent report results [227, 228] elucidated that PEG10 is a marker of NE differentiation 

that is present in highly lethal disease subtypes.   

 By harnessing the transcriptional specificity of the PEG10 promoter, we were able 

to develop a molecular genetic strategy for detecting CRPC by molecular imaging. Tissue-

specific promoters are often weak when compared to constitutively active viral promoters 

such as CMV. In the past, TSTA has been used to improve the output of inherently weak 

tissue-specific promoters [186]. Based on our results, the PEG10 promoter by itself was 

not a weak promoter and can achieve strong PCa specific expression. Though the promoter 

is sufficient on its own, the A.TSTA element significantly improved signal in multiple in 

vitro. Although there were a few times when the A.TSTA did not add significant 

improvement, in the majority of the cell lines and assays, the A.TSTA did contribute to 

significant increase in gene transcription. We managed to optimize a stronger promoter 

than its intrinsic version without compromising specificity or toxicity, thus creating a 

powerful imaging tool that detects PCa for a greater duration of time compared to other 

reported promoter-guided imaging technologies in the literature [212, 213]. In this study, 

we used our optimized PEG10 promoter to drive the expression of reporter genes for 

optical and nuclear imaging (iRFP682 and HSV1-TK). Our PEG10 molecular imaging 

approach was sensitive enough to detect small bone lesions in the intratibial bone 

metastasis model of CRPC using the CWR-R1 cell line. The ability to detect bone lesions 

is significant because there is currently no reliable imaging agent available in the clinics to 

detect such tumors. The promoter could be used alone or with the A.TSTA enhancement. 

The A.TSTA showed variable enhancement, but since human tumors are heterogenous, we 

would not expect the construct to work equally across all cells. Overall, the PEG10 
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promoter shows promise of utility across a variety of different PCa models. To the best of 

our knowledge, no form of two step transcriptional amplification systems have be used in 

clinical trials, so for clinical translation the promoter alone would be the best candidate 

since we have shown it is sufficient for signal generation. In the future, this strategy can be 

employed for theranostic purposes by the expression of suicide genes such as cytosine 

deaminase and radioviral therapy using conditionally replicative viruses.   

Most of the molecular genetic imaging studies reported in the literature relied on 

using Ad delivery of the reporter constructs rather than the systemic injection of a polymer-

coated plasmid as in our study. Previously, the promoters of PCa-specific genes such as 

probasin [236] and PSA [237, 238] were used to drive tissue-specific expression of reporter 

genes by molecule genetic imaging. Studies using the PSA promoter also [237, 238] 

utilized the TSTA elements to enhance transcription within the adenovirus, similarly to our 

previous work on using the promoter of the metabolic protein a-methylacyl CoA racemase 

promoter to detect PCa in vivo [156]. Though recombinant viruses have been widely used 

as vectors for gene delivery, a number of issues exist when using viruses in this capacity 

including difficulty in production, poor reproducibility, immunogenicity, insertional 

mutagenesis into the human genome and poor bioavailability. The imaging technology that 

we developed in this study has potential for clinical translation. While the use of the PEG10 

promoter for molecular imaging is novel, plasmid therapeutics in humans and the use of 

cationic reagents for plasmid delivery are not. The l-PEI reagent used in this study is under 

investigation in a clinical trial for plasmid delivery in France [124] and Israel [124]. Non-

complexed DNA is also in clinical trials without a transfection reagent for the treatment of 

pancreatic [239] and ovarian cancers [129]. A plasmid CRPC vaccine applied by 
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intradermal injection in the United States has also done well in a clinical trial [131] and 

there are a number of PCa plasmid vaccines currently being investigated in clinical trials. 

Plasmid gene therapy has seen success in the cancer field and our PEG10-based technology 

has the potential for clinical development. We believe the limiting factor in plasmid-based 

agents is the delivery agents and delivery route. l-PEI is known to cause toxicity, and we 

observed some of that in our mice after systemic administration [240] but we were 

successful at decreasing toxicity by increasing the total volume of administration.  

Our findings that PEG10 expression was present in AR- and AR splice variant PCa 

underscores the utility of PEG10 detection in disease management and drug development. 

Effective therapies do not exist for AR- and AR splice variant driven PCa. The ability to 

monitor patient response to therapy radiographically is critical to the development of new 

agents to combat these lethal forms of the disease. We have shown that the PEG10 

promoter can be used as a detection tool in an expression vector. The promoter has 

transcriptional power alone or can be enhanced with A.TSTA, which may increase 

transcription. The molecular genetic detection of PCa using the PEG10 promoter by PET 

has the potential to be developed into an effective imaging tool. We acknowledge that this 

study is the first of its kind where the PEG10 promoter is applied as an imaging tool and 

that more investigation of PEG10’s regulation by AR variants must be performed in order 

to further validate the hypothesis.  
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Materials and Methods 

Immunohistochemistry 

IHC was performed on formalin-fixed paraffin-embedded tissue sections using (1:500) 

rabbit anti- PEG10 (Novus NBP2-13749) and (1:100) rabbit anti-androgen receptor SP107 

(Sigma). Unstained sections (4 μm) were de-paraffinized and rehydrated using standard 

methods. For antigen retrieval, slides were incubated in 6.0 pH buffer (Reveal Decloaking 

reagent, Biocare Medical) in a steamer for 30 min at 95–98°C, followed by a 20 min cool 

down period. A serum-free blocking solution (Sniper, Biocare Medical) was placed on 

sections for 30 min. Blocking solution was removed and slides were incubated in primary 

antibody diluted in 10% blocking solution/90% TBST. The antibody was used according 

to the manufacturer's protocol.  

 

CHiP-Seq 

CHiP-Seq data were obtained based on previous literature [220]. 

 

RNA-Seq 

RNA-Seq FPKM values in Figure 3-2B were obtained using the methods described in 

[219]. 

 

Tissue Microarrays 

PEG10 IHC analysis was performed on a 120 Case High Grade Race Disparity tissue 

microarray (TMA) constructed from African American and Caucasian patients and on a 

LuCaP patient-derived xenograft tissue TMA acquired from the Prostate Cancer 
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Biorepository Network (PCBN). The liver biopsy analyzed for PEG10 staining was 

acquired using a University of Minnesota Human Subjects Division approved IRB protocol 

for tissue acquisition (IRB#1604M86269) and with patient consent. 

 

DNA Microarray 

Expression values in Figure 3-4C were obtained using the publicly available 

expression profiling by array GSE41784. Microarray data was extracted from previously 

published studies of a set of metastatic tumors from men with castration resistant prostate 

cancer (Figure 3-5) [226] and patient-derived xenograft (PDX) models of prostate cancer 

(Figure 3-6) [241]. Both datasets are available in the Gene Expression Omnibus under 

accessions GSE77930 and GSE93809. 

 

Cell Lines 

Prostate cancer cell lines 22Rv1, DU145, PC3, LNCaP were obtained from the 

American Type Culture Collection (ATCC) and were maintained according to ATCC 

guidelines. MR42D cells were a gift from Dr. Amina Zoubeidi (Vancouver Prostate 

Center) and maintained with 10uM enzalutamide. CWR-R1 cells were a gift from Dr. Scott 

Dehm (University of Minnesota). HT-29 cells were a gift from Dr. Hiroshi Hiasa 

(University of Minnesota). All cell lines were verified by short-tandem repeat analysis and 

analyzed for mycoplasma contamination prior to our studies. 
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R1881 Treatment of CWR-R1 and LNCaP Cells 

106 cells per well were plated in 6-well plates in full growth media and incubated 

overnight. Media was then changed to 10% CSS-DMEM and cells were incubated for 24 

hours. Control cells were kept in FBS. Cells were then treated with the following: Control: 

Full growth (FBS) media/DMSO, CSS: 10% CSS media/DMSO, CSS+R1881: 10% CSS 

Media/ 10 nM R1881 in DMSO. Cells were incubated for 24 hours and the same treatment 

was re-applied after 24 hours. The total incubation in R1881 was 48 hours after which cells 

were collected for RNA extraction. 

 

Quantitative RT-QPCR 

RNA was extracted from 106 cells with a RNeasy kit (Qiagen). RNA was converted 

to cDNA using the High Capacity RNA to cDNA kit (Applied Biosystems). Taqman RT-

PCR was performed using the Taqman Universal PCR Master Mix (Applied Biosystems) 

and the following Taqman Gene Expression probes: PEG10; Hs00248288_s1, 18S5 

ribosomal RNA; Hs03928985 for a normalization control, and a  custom HSV1-TK probe 

(Figure 3-17B) [242]. Taqman probe in the supplemental was PEG10; Hs01122880. qPCR 

was performed on a StepOnePlus Real-Time PCR system instrument (Applied 

Biosystems). Data was analyzed using the comparative Ct method (fold change = 2−ΔΔCt) 

[243].  

Plasmids 

A pGL3 Basic vector (Promega, E1751) was used as the backbone for all of the 

cloning. Primers for the full length PEG10 promoter cloning from PBMC cDNA and 

truncated 1KB promoter were based on previous literature (Table 3-1) [229]. MluI and 
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XhoI were the cut sites used for the promoter insertion. The conventional single construct 

two-step transcriptional amplification was designed according to previous literature and 

synthesized by Genscript[173, 186, 244]. The TSTA element was designed head-to-tail or 

“unidirectional”. The system can be used head-to-head or head-to-tail (bidirectional) 

according to patent US7527942B2. Both orientations have been tested in literature. Our 

GAL4-VP16 fusion protein consisted of GAL4 amino acids 1-147 and two consecutive 

VP16 domains, amino acids 413-456. Some literature uses VP16 amino acids 413-454. We 

used amino acids 413-456 based on literature that states that single most crucial aspect 

VP16 is located between residues 429 and 456[244].  A linker was used to fuse the two 

proteins (PEFLQPGGS). A pause site of 33 base pairs was placed downstream of the 

consecutive GAL4-VP16(x2) sequences [245] (no linker was used between the consecutive 

VP16 sequences) followed by five GAL4 DNA binding sites (cggagtactgtcctccg) each 

separated by two base pairs (ag) [246]. An adenovirus minimal promoter was placed 16 bp 

after the last GAL4 binding site (23 bp from GAL4 binding site to TATA box). The 

advanced two-step transcriptional amplification system was designed according to 

previous literature and synthesized by Genscript [173]. Our A. TSTA is identical to our 

TSTA other than the addition of polyglutamines and rat glucocorticoid receptor protein 

between the GAL4 binding domain and VP16 sequences. A map of the PEG10 1KB 

promoter with the A.TSTA can be found in Figure 3-20. BglII and HindIII were used as 

the insert cut sites for the TSTA elements. To the best of our knowledge, this particular 

system may be unique due to our approach of combining the polyglutamines and rat 

glucocorticoid receptor and using two VP16 domains rather than one VP16 domain like in 

the original advanced TSTA. 
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 For fluorescence studies, the firefly luciferase encoding gene in pGL3 basic was 

replaced with a near-infrared protein 682 (iRFP682). piRFP682-N1 was a gift from 

Vladislav Verkhusha (Addgene plasmid # 45459). For in vivo PET studies, the Luc gene 

was replaced with HSV1-TK (cloned from pLV-SFFV-HSVTK, Imanis Life Sciences, 

DNA1052). Correct insertion of DNA fragments was verified by Sanger sequencing and 

gel restriction analysis.  

 

Luciferase Assays 

On day 1, cells were plated in 96 well plates (104 cell/ well). On day 2, cells were 

transfected with 90 ng of experimental plasmid DNA and 9 ng of control pRL-TK per well 

with 0.24μl GeneJuice (Millipore). 72 hours post-transfection (or day 5), cells were lysed 

using the passive lysis buffer from Promega. Luciferase activity was quantified using the 

Dual-Luciferase Reporter Assay System (Promega). Each experimental firefly luciferase 

output (LUC) was normalized to its respective renilla luciferase (REN) control output. 

Relative luciferase units (RLU) are LUC/REN. 

 

In vitro iRFP Imaging 

On day 1, 104 cells were plated in a 96 well plate. On day 2, cells were transfected 

with plasmids containing the iRPF682 gene. 90 ng of DNA and 0.24μl of GeneJuice 

(Millipore) were used for the transfection. Cells were incubated for 72 hours and visualized 

on the Odyssey Infrared imaging system (LI-COR) using the 700nm channel. 
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Xenograft Models 

3-4 week old hsd:athymic mice were purchased from Envigo. For each mouse, 106 

CWR-R1 or HT-29 cells were suspended in 200μl of a 1:1 mixture of Matrigel (Corning) 

and 1X PBS. The cells were implanted s.c. into the flanks of the mice using a 25 gauge 

needle. The tumors were allowed to grow until visible with the naked eye to start imaging 

experiments.  

 

CWR-R1 Intratibial Model 

3-4 week old hsd:athymic mice were purchased from Envigo. 2.5x105 of CWR-R1 

cells in 1X PBS were injected into the tibia of one leg. Tumors were allowed to form for 

three weeks before near-infrared imaging. The same tumors were used for PET imaging 5 

weeks post intratibial injections. 

 

Systemic In-Vivo DNA Delivery 

Plasmid DNA was prepared with EndoFree Plasmid Kit (Qiagen). Endotoxin level 

was ensured as <0.1EU/ug DNA. For the delivery of the plasmids in-vivo, low molecular 

weight l-PEI-based cationic polymer, in vivo-jetPEITM (Polyplus-transfection) was used as 

gene delivery reagent for tail vein IV administration. A ratio of 6 was used for nitrogen to 

phosphate (N/P=6) was used for all injections. 40 ug of plasmid DNA and 4.8μl of 150 

mM in vivo-jet PEITM were combined according to the manufacturer’s instructions to form 

the DNA polyplex in a total volume of 400μl for each mouse. Acute toxicity was observed 

initially when 200μl was used as the final volume for each systemic tail vein injection. 

Increasing the volume to 400μl decreased the acute toxicity (only 1 mouse was found with 
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acute toxicity out of all of the experiments presented in this work). Plasmid DNA/PEI 

complex was delivered using a 26 gauge needle. 

 

In-Vivo Fluorescence Imaging 

Mice were imaged with the IVIS Spectrum (Caliper/Xenogen) at the University of 

Minnesota – University Imaging Center. Mice were placed on special low fluorescence 

diet, TC.97184 (Envigo). For each imaging session, mice were under a 2.0% 

isoflurane/oxygen mixture. For the filters, 675nm/720nm were used. Living Image 4.5 

software was used for image acquisition and analysis. For ROI analysis, a circle of the 

same size was used on all mice and placed in regions of high fluorescence in each tumor. 

 

PET-CT imaging and data analysis 

For subcutaneous CWR-R1 model: On day 1, mice were injected with the 

plasmid/PEI complexes (40 ug DNA). 72 hours post DNA delivery, 124I-FIAU (purchased 

from 3D imaging, Arkansas) was injected into the mice via IV (150 uCi per animal). For 

intratibial CWR-R1 model: On day 1, mice were injected with the plasmid/PEI complexes. 

48 hours post DNA delivery, 124I-FIAU (purchased from 3D imaging, Arkansas) was 

injected into the mice via IV (250 uCi per animal). 24 hours post isotope injection, the 

animals were imaged using Siemens Inveon microPET/CT at the University of Minnesota 

– University Imaging Center. Acquisition time was 40 minutes. Animals were kept under 

2% isoflurane/oxygen mixture throughout the duration of the scan. For the 2D image 

analysis, Inveon Research Software was used. AMIRA was used for 3D reconstruction. 
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Statistical Analysis 

Data analysis was performed on GraphPad Prism 7 (GraphPad Software Inc.). 

qPCR results were analyzed in Excel. Statistical significance was determined using the 

unpaired two-tailed Student’s t-test, unpaired two-tailed Welch’s t-test where the variances 

are shown to be different via F-test, one-way ANOVA, or two-way ANOVA. Only two-

tailed tests were used. Results are depicted as mean+SEM unless stated otherwise. All p 

values of <0.05, <0.01, <0.001, and <0.0001were considered significant. Pearson’s 

correlation coefficient was used to determine correlation between genes (Pearson’s rho). 

The symbols used to represent the p values were : ns (p>0.05), * (p≤0.05), **(p≤0.01), 

***(p≤0.001), ****(p≤0.0001). The test used in each statistical analysis is specified in the 

figure legend.  
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Figures 

 

 

Figure 3-1. PEG10 staining in human placenta.  

Positive control for PEG10 expression. The placenta is the known to be abundant in PEG10 

expression.  
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Figure 3-2. PEG10 expression in primary PCa tumors versus metastasis.   

(A) IHC staining for PEG10 in primary PCa tumors graded Gleason 4+3, 4+4, and 4+5. 

Scale bars represent 200μm. (B) RNA-seq analysis of PEG10 expression in primary tumor 

versus metastasis. Multiple raw FASTQ RNA-seq datasets were obtained via DbGAP and 

aligned and transcripts quantified via a uniform pipeline, enabling cross-experimental 

comparisons.  Data is reported as FPKM. Significance was determined by unpaired two-

tailed Welch’s t-test after a significant F-test and Grubb’s outlier test were used in (C) 

PEG10 IHC staining in a case study of a patient with AR- liver metastasis. Scale bars 

represent 4 mm, 60μm, and 100μm left to right. (D) IHC staining of PEG10 in a case study 

of patient with AR+ adenocarcinoma graded Gleason 4+5. Scale bars represent 60μm. (** 

p<0.01). Results are expressed in mean+standard error of the mean (SEM). (**** 

p<0.0001; *** p<0.001; ** p<0.01; * p<0.05, n.s. = not significant).  
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Figure 3-3. AR variants interact with PEG10. 

(A) CHiP-seq analysis of the AR binding to PEG10. All cells were pretreated with CSS. 

The full-length AR-expressing R1-AD1 cells were treated with DHT for AR activation and 

AR variant-expressing R1-567 cells were treated with vehicle. (B) PEG10 expression in 

LNCaP and CWR-R1 cells after treatment with CSS or CSS+R1881. The PEG10 

expression for each cell line was normalized relative to their corresponding FBS controls. 

Significance was determined by two-tailed Student’s t-test (n=3).  (**** p<0.0001; *** 

p<0.001; ** p<0.01; * p<0.05, n.s. = not significant). Results in (B) are expressed in 

mean+standard error of the mean (SEM). 
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Figure 3-4. PEG10 is elevated in the presence of AR variants.  

(A) PEG10 mRNA in PCa cell lines expressed relative to housekeeping gene 18S5. (B) 

PEG10 staining in LuCaP PCa PDXs where (Ba) is LuCaP 145.1, a model of NE+, AR- 

PCa, (Bb) is LuCaP 86.2, an adenocarcinoma (AC) PCa model, AR-V7+, and (Dc) LuCaP 

78, an AC model with only wild-type AR expression. Scale bars represent 300μm in full 

image and 60μm in magnified (C) AR regulation of PEG10 expression in R1-AD1 cells. 

PEG10 expression levels are represented as an expression value of RNA analyzed by 

Illumina Beadchips. AR-Off cells were treated with siRNA targeting AR exon 1. AR-V 

On Only cells were treated with siRNA targeting AR exon 7. Significance was determined 

using the unpaired two-tailed Student’s t-test (n=3). (**** p<0.0001; *** p<0.001; ** 

p<0.01; * p<0.05, n.s. = not significant). Results in (C) are expressed in mean+standard 

error of the mean (SEM). 
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Figure 3-5. PEG10 analysis of LuCaP patient derived xenografts. 

(A) PEG10 and ONECUT2 expression represented in a microarray heatmap of early 

passage LuCaP PDXs microarray. The samples are sorted by the adenocarcinoma or NE 

status. (B) Microarray PEG10 expression represented as log2 median centered ratio in 

adenocarcinoma and NE PDXs presented microarray (A). Significance was determined 

using Welch’s unpaired- t-test after using an F-test and Grubb’s test. (C) Negative 

correlation of PEG10 and AR in LuCaP microarray in (A). Pearson’s correlation test, 

p=0.0085. Colored red line represents linear regression. (**** p<0.0001; *** p<0.001; ** 

p<0.01; * p<0.05, n.s. = not significant). Results in (B) are expressed minimum to 

maximum with all points shown. 
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Figure 3-6. PEG10 analysis of patient microarray.  

(A) Negative correlation of PEG10 and AR in LuCaP microarray in (F). Pearson’s 

correlation test, p=0.0085. Colored red line represents linear regression. (I) PEG10 and 

ONECUT2 expression represented in a CRPC microarray (n=171 tumors from 63 men). 

Samples are sorted by the AR and NE status. (B) PEG10 expression represented as log2 

median centered ratio in patient tumor samples represented in microarray (A) sorted by the 

AR and NE status. Significance was determined by one-way ANOVA with Dunnett’s post-

test. (C) Negative correlation between PEG10 and AR in CRPC microarray. Pearson’s 

correlation test, p<0.0001. Colored red line represents linear regression. (**** p<0.0001; 

*** p<0.001; ** p<0.01; * p<0.05, n.s. = not significant). Results in (B) are expressed 

minimum to maximum with all points shown. 
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Figure 3-7. ONECUT2 correlates with PEG10 expression patterns.  

(A) ONECUT2 expression represented as log2 median centered ratio in the CRPC 

microarray (heat map represented in Figure 3-6A) sorted by AR and NE status. 

Significance was determined by one-way ANOVA with Dunnett’s post-test (B) Positive 

correlation between PEG10 and ONECUT2 in patient microarray (Figure 3-6). Pearson’s 

correlation test, P<0.0001. (C) Negative correlation between ONECUT2 and AR in 

mCRPC microarray (Figure 3-6). Pearson’s correlation test, P<0.0001. Colored blue line 

represents linear regression. (D) ONECUT2 expression represented as log2 median 

centered ratio in adenocarcinoma and NE PDXs presented microarray (Figure 3-5). 

Significance was determined using Welch’s unpaired- t-test after using an F-test and 

Grubb’s test Colored red line represents linear regression. Significance in A was 

determined using the unpaired two-tailed (**** p<0.0001; *** p<0.001; ** p<0.01; * 

p<0.05, n.s. = not significant). Results in (A,D) are expressed minimum to maximum with 

all points shown. 
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Figure 3-8. Transcriptional analysis of the PEG10 promoter.  

(A) Luciferase activity in relative luciferase units (RLU) of the full length PEG10 promoter 

(PEG102KB) and the truncated 1KB promoter (PEG101KB)  in LNCaP, DU145 and PC3. (B) 

Comparison of the luciferase activity of PEG101KB promoter with TSTAPEG101KB and 

A.TSTAPEG101KB in LNCaP, DU145, PC3. (C) Comparison of the luciferase activity of 

PEG101KB promoter with TSTAPEG101KB and A.TSTAPEG101KB in CRPC cell lines MR42D 

and 22Rv1. (E) Near-infrared detection of the iRFP682 in cells transfected with various 

constructs. iRFP682 is a construct with no promoter.  Significance was determined using 

the unpaired two-tailed Student’s t-test (**** p<0.0001; *** p<0.001; ** p<0.01; * p<0.05, 

n.s. = not significant were used to indicate significance between PEG102KB and PEG101KB, 

PEG101KB and TSTAPEG101KB, PEG101KB and A.TSTAPEG101KB. a p<0.05 and c p<0.001 

were used to represent significance comparing TSTAPEG101KB and A.TSTAPEG101KB ). 

Results are expressed in mean+ SEM. 
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Figure 3-9. TSTA Schematic.  

The PEG10 promoter drives the expression of a fusion protein. In conventional TSTA the 

fusion protein consists of GAL4 binding domain (B.D.) and VP16. The advanced TSTA 

has the added element of polyglutamines and rat glucocorticoid receptor. The fusion 

protein is then transcribed and translated after which it binds to the the GAL4 DNA binding 

sites (B.S.), upstream of a minimal promoter, resulting in the transcription of the  gene. 

 

Figure 3-10. Luciferase expression in empty pGL3 vector.  

Luciferase expression in cells treated with an empty pGL3 vector was low (no promoter).  
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Figure 3-11. In vivo near-infrared fluorescence molecular imaging with PEG10 

promoter guided expression of iRFP682 in subcutaneous CWR-R1 model. 

 Representative images of mice with CWR-R1 s.c. xenografts injected with (A) 

A.TSTAPEG101KB iRFP682 (n=3) and (B) PEG101KB iRFP682 (n=4) across different time 

points post injection. (C) Region of interest (ROI) signal presented in mean ± SEM. 

Significance was determined using by matching two-way ANOVA (construct p=0.0374) 

with Bonferroni’s post-test (* p<0.05). (D) Tumors excised from mice injected with 

A.TSTAPEG101KB iRFP682  72 hours post intravenous administration (n = 3). 
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Figure 3-12. Near-infrared imaging with PEG101KB and iRFP682.  A.TSTAPEG101KB 

iRFP682 with different normalization.  

(A) Mice from Figure 3-11. (B) Mice injected with PEG101KB iRFP682 from Figure 3-

11A and Figure 3-11B using lower minimum and maximum values for the radiant 

efficiency. 

 

A 

B 
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Figure 3-13. Negative in vivo controls for near-infrared 

imaging. 

(A) Control mice not injected with anything on a TEKLAD 

91784 diet. A variability in background signal in the gut, 

stomach, bladder, throat region, and skull region.  (B) A 

tumorless mouse injected with A.TSTAPEG101KB iRFP682. 

An increase in signal can be seen in the stomach and gut 

area. (C) A representative image (n=3) of a mouse with a 

CWR-R1 tumor injected with A.TSTAPEG101KB iRFP682. 

and cut open 96 hours post intravenous injection of the 

DNA. There is slight fluorescence in the stomach and gut. 

A B 

C

b 
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Figure 3-14. In vivo near-infrared fluorescence molecular imaging with PEG10 

promoter guided expression of iRFP682 in negative control HT-29 subcutaneous 

xenografts.  

Representative images of mice with HT-29 s.c. xenografts injected with (A) 

A.TSTAPEG101KB iRFP682 (n=4) and (B) PEG101KB iRFP682 (n=4) across different time 

points post injection. 

 

Figure 3-15. PEG10 expression by IHC in HT-29 xenografts.   
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Representative image of HT-29 xenografts (n=4) stained for PEG10 by IHC. Size bars 

represent 100um. 

 

 

Figure 3-16. In vivo near-infrared fluorescence molecular imaging with PEG10 

promoter guided expression of iRFP682 in CWR-R1 intratibial model.  

(A) Representative image of mice with intratibial tumors in one of the tibia injected with 

A.TSTAPEG101KB (n=4) across different time points post injection. (B) Region of interest 

(ROI) signal presented in mean ± SEM of the SWR-R1 intratibial legs and healthy legs. 

Significance was determined using by matching two-way ANOVA (construct p=0.0234) 

with Bonferroni’s post-test (* p<0.05). 
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Figure 3-17. HSV-TK and PEG10 expression in CWR-R1 tumors.  

(A) Schematic of 124I[FIAU] entrapment. (B) HSV-TK expression was analyzed in tumors 

of 2 mice that were injected with A.TSTAPEG101KB HSV-TK  and in a tumor of a negative 

control mouse that was injected in vivo-jetPEI only. HSV1-TK Taqman Gene expression 

samples were custom made based on previous literature.  PEG10 expression in the 

corresponding tumors was also analyzed. Three pieces of tumor from each mouse were 

used for mRNA extraction and run in three technical replicates. Statistical analysis was not 

performed because n=3 mice were not used. Variability was seen in HV1-TK expression 

between tumor pieces. We hypothesis this to be due to the amount of stromal tissue found 

in the different pieces. (C) Expression of PEG10 protein in CWR-R1 xenografts was 

confirmed using immunohistochemistry (n=2).  The size bar in the image on the left is 582 

um, the size bar on the right is 96um. 

A 

B 

C 
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Figure 3-18. In vivo PET/CT imaging with PEG10 promoter guided expression of 

HSV1-TK of subcutaneous CWR-R1 model.  

(A) Control tumor-less mice injected with A.TSTAPEG101KB HSV1-TK and imaged 24 hours 

post injection with 124I-FIAU  (n=3) where (Aa) Representative 2D images and (Ab) 

Representative 3D images. (B) Mice with CWR-R1 subcutaneous tumors injected with 

A.TSTAPEG101KB HSV1-TK (n=3)  and imaged 24 hours post injection with 124I-FIAU where 

(Ba) Representative 2D images and (Bb) Representative 3D images. Ty= thyroid, B= 

bladder, T= tumor. 
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Figure 3-19. In vivo PET/CT imaging with PEG10 promoter guided expression of 

HSV1-TK of intratibial CWR-R1 model.  

Intratibial CWR-R1 mice injected with A.TSTAPEG101KB HSV1-TK (n=3)  and imaged 24 

hours post injection with 124I-FIAU where (A) are representative 2D images and (B) are 

representative 3D images. T= tumor. 

 

 

A B 
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Figure 3-20. Plasmid map of A.TSTAPEG101KB in pGL3-Basic.  

The A.TSTA consists of: PEG10 promoter, a fusion protein (GAL4, polyglutamines, rat 

glucocorticoid receptor, two consecutive VP16 activation domains), a pause site, five 

GAL4 DNA binding sites, and an adenovirus minimal promoter upstream of the luciferase 

reporter gene. 
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Table 3-1. Primers for PEG10 promoter cloning.  

Reverse Primer (XhoI) 5’- ACGTGCTCGAGCCGAAGTTGAAGCGCGTGT-3′ 

Full Length ~2KB Forward Primer 

(MluI) 

5’-TCGAACGCGTAATTTGACAGCGGTCACCAG-3’ 

~1KB Promoter Forward Primer 

(MluI) 

5’-TCGAACGCGTTCTGGCCTCCAGCCGG -3’ 

 

Primers were based on previous literature [229]. The target sequence was between -1941 

and +19 positions based on their transcription start site results. The same reverse primer 

was used for both promoters. The truncation happened at the 5’ end of the promoter. The 

lengths of the promoters are rounded. The cut sites are underlined and the promoter 

sequences are bolded. 
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