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The goethite test is a beautifully engineered combina-
tion of thermal remanence application, AF demagneti-
zation and heating-cooling cycles that allows, in prin-
ciple, to separate the relative contributions of magnetite/
maghemite, goethite and hematite in a specimen. It is 
particularly useful in environmental magnetism applica-
tions, specifically when trying to extrapolate variations 
in climatic signatures, such as temperature and precipi-
tation from magnetic enhancement in samples that con-
tain mixtures of these three phases. Carter-Stiglitz et al. 
(2006a) were the first to perform what became known as 
the goethite test, though it wasn’t presented as a specific 
“test” until Guyodo et al. (2006) formalized it as such. 
	 The test is mostly conducted within a Magnetic Prop-
erties Measurement System (MPMS) instrument and in-
volves applying a pTRM to a specimen as it cools from 
400 to 300 K through goethite’s Néel temperature (~393 
K), thus activating goethite’s contribution. Typically, 2.5 
T is used, so that any other magnetic mineral present 
that is “softer” than goethite (i.e. everything s.l.) will 
also be activated. The field is turned off at room T and 
the pTRM remanence is then measured upon cooling 
the specimen to low temperatures (~10 - 20 K, “LT”) 
and warming back to 300 K, thus cycling through both 
the Morin (TM, ~260 K) and Verwey (TV, ~120 K) tran-
sitions (cycle 1). Of course, TM will not be apparent if 
the magnetite/maghemite content makes up more than a 
few percent (1-2 %) of the total iron oxide content, nor 
if hematite is only present as nanocrystals or contains 
impurities (e.g., Al or Ti). Likewise, oxidation of mag-
netite will lower and broaden the TV temperature and 
result in the characteristic “humpiness” of the cooling-
heating curves (Özdemir and Dunlop, 2010). Increasing 
titanium substitutions will also suppress TV. 
	 At room temperature, the specimen is removed from 
the MPMS and AF demagnetized (typically using 200 
mT fields) to remove the contribution of magnetite/ma-
ghemite (“Mt” will be used as a collective label for these 
phases hereafter). After re-inserting the specimen in the 

MPMS the remanence is measured between 300-LT-300 
K (cycle 2): this temperature cycling allows evaluating 
the shape of the curves sans “soft” phases, thus “look-
ing through” the ferrimagnetic phases at goethite (Gt) 
and hematite (Ht) only. The specimen is subsequently 
warmed to 400 K to remove the contribution of Gt, and 
then the final cycle between 400-LT-300 K (cycle 3), rea-
sonably reveals the contribution of Ht only. It is typically 
within these last two curves that if Ht grains larger than 
~30 nm are present, the TM will become visible. Sub-
tracting the cooling remanence post-AF treatment from 
the initial cooling remanence (cycle 1- cycle 2) allows 
quantifying the contribution of Mt removed. This is typi-
cally done for the 300 K measurement only, but can be 
evaluated for any temperature between room and LT. 
The contribution of Gt can be determined by subtract-
ing the remanence removed upon heating to 400 K, by 
computing the difference between the 300-LT-300 K re-
manences of cycles 3 and 2 as a function of temperature. 
As stated, any remaining remanence post-400 K heating 
should be representative of Ht only, but this is not always 
strictly the case, more on this below.

	 The classic goethite test suffers from the inconve-
nience of having to remove the specimen from the MPMS 
in order to perform the AF demagnetization (of course, 

Tinkering with the wheel:  
can the goethite test run more smoothly?

Loess-paleosol sequence profile of Xihe basin at southern slope of West Qinling, 
http://english.igg.cas.cn/Research_2015/Research_Divisions_2015/CGE/QE/
Highlights7/201206/t20120611_86989.html
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A variant magnetic fingerprint has been attributed to 
hydrocarbon migration pathways (e.g. Abubakar, 2016; 
Liu et al., 2004; Reynolds et al., 1990). Hydrocarbon 
migration generally occur through a complex network 
(Zhou et al., 2010)  from the source rock (source kitch-
en) along available conduits. Depending on the amount 
of hydrocarbon generated and the subsurface structure 
and stratigraphy, these fluids may spill along the avail-
able conduit to potentially accumulate in a trapping sys-
tem or seep out at the surface. The identification of these 
conduits via their magnetic signature has the potential to 
provide additional exploration data for a more efficient 
development of petroleum resources. A new magnetic 
hydrocarbon migration hypothesis has recently been 
developed (Badejo, 2019). This hypothesis suggests 
that hydrocarbon migration pathways have an increased 
presence of ferrimagnetic iron sulphides and siderite 
varying in a gradational manner along the pathway. It 
also establishes the presence of magnetic enhancement 
at the fluid-fluid contacts due to the precipitation of mag-
netite and greigite. As part of my PhD study, I intend to 
test the universality of these theories or delineate their 
scope of applications by describing the magnetic sig-
nature along the hydrocarbon migration routes.  These 
routes will be established through well constrained basin 
models. This study is carried out in the Catcher develop-
ment area of the Western Shelf, Central North Sea. This 
area is apt for this study due to the petroleum system in 
play. The absence of a matured source kitchen under-
neath the Catcher development area and the presence of 
the lateral continuous Palaeocene sandstone that serves 
as a conduit for migration of hydrocarbons reduces the 
uncertainty involved in modelling the basin history.
	 At the Institute of Rock Magnetism (IRM), thermo-
magnetic measurements and Mössbauer spectroscopy 
were carried out to enable the identification of the mag-
netic mineralogy of the study area. Indications of the 
presence of siderite were generally present in the oil 
stained core samples along the migration route for hy-
drocarbons of the Catcher development area (See figure 
1a, b, c and d). Evidences of crystallographic changes 
associated with hexagonal pyrrhotite were also present 
in samples from the migration pathways (1b). Hexago-
nal pyrrhotite and greigite have been reported to form 

in sediments under anoxic conditions (Horng, 2018) and 
are known to occur in close association with one another 
(Larrasoaña et al., 2007). Although the varying magnetic 
behaviour of greigite in different domain state (Chang 
et al., 2009) and a lack of low temperature transitions  
(Moskowitz et al., 1993; Chang et al., 2007) has made 
its identification challenging, microscopic techniques, 
together with high temperature techniques and evidences 
of other iron sulphides can be used for its identification. 
Unstained sedimentary samples from the same forma-
tion in the Western shelf which were isolated from the 
migrating hydrocarbons shown no evidence for the pres-
ence of siderite and iron sulphides (See figure 1e and f).  
The experiments generally revealed a Verwey transition 
indicative of magnetite or titanomagnetites with the un-
stained samples having a higher concentration of these 
minerals (see figure 1). 
	 The information obtained from the experiments car-
ried out at the IRM would be used to qualitatively and 
when possible quantitatively describe the magnetic sig-
nature along the migration pathways whilst focusing 
on the contrast in signatures between these pathways 
and the surrounding regions. More samples need to be 
analysed to achieve a holistic definition of these varia-
tions and to carry out a detailed reservoir scale magnetic 
study.  The magnetic signature of petroleum reservoirs 
has been shown to relate to reservoir properties such as 
permeability (Ivakhnenko & Potter, 2004; Potter, 2007; 
Ali & Potter, 2011; Ali et al., 2013) and can be applied to 
prediction of the onset of production challenges such as 
scale formation (Imhmed, 2012). 
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Figure 1: Representative results of the thermomagnetic experiments carried 
out on samples from the Catcher development area. The oil stained samples 
indicate the presence of siderite (a, b, c and d) and iron sulphide (d). The 
unstained samples showed no evidence for the presence of siderite or iron sul-
phides (e and f). Magnetite or/and titanomagnetite presence is evident for both 
the stained and unstained sample. These minerals however indicate a stronger 
presence in the unstained sample.  
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Current Articles
A list of current research articles dealing with various topics in 
the physics and chemistry of magnetism is a regular feature of 
the IRM Quarterly. Articles published in familiar geology and 
geophysics journals are included; special emphasis is given to 
current articles from physics, chemistry, and materials-science 
journals. Most are taken from ISI Web of Knowledge, after 
which they are  subjected to Procrustean culling for this news-
letter. An extensive reference list of articles (primarily about 
rock magnetism, the physics and chemistry of magnetism, 
and some paleomagnetism) is continually updated at the IRM. 
This list, with more than 10,000 references, is available free of 
charge. Your contributions both to the list and to the Current 
Articles section of the IRM Quarterly are always welcome. 
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Environmental magnetism and Climate
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Proceedings of the Geologists Association, 130(2), 210-
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and L. D. Bitom (2019), Morphological, geochemical and 
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African Earth Sciences, 153, 111-129.
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palaeotsunami studies, Quaternary International, 507, 224-
232.

Bosken, J., I. Obreht, C. Zeeden, N. Klasen, U. Hambach, P. 
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Channell, J. E. T., C. Xuan, D. A. Hodell, S. J. Crowhurst, and 
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insula, Quaternary Science Reviews, 211, 17-33.
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delli, I. M. M. Rodrigues, J. F. Savian, M. Giorgioni, and 
B. Galbrun (2019), Paleoenvironmental signature of the 
Selandian-Thanetian Transition Event (STTE) and Early 
Late Paleocene Event (ELPE) in the Contessa Road section 
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cont’d. from pg. 1...
if it is known a priori that the specimens do not con-
tain any Mt, then cycle 1 can be skipped altogether, with 
cycle 2 following the application of the pTRM). Varia-
tions of the classic test which avoid AF demagnetization 
altogether have been proposed (Maher et al, 2004; Lascu 
and Feinberg, 2011). Alternatively, Lagroix and Guyodo 
(2017) utilized the oscillation mode for field sweeping 
of the MPMS, which effectively produces a coarse AF 
demagnetization without removing the sample, by ap-
plying a series of DC fields of switching polarity and 
progressively decreasing amplitude (approximately 30% 
per half cycle) which converge to zero. A subsequent ul-
tra-low field correction is applied to cancel any residual 
fields. The advantage of this protocol is obvious: limited 
handling of the specimen by the user to perform the AF 
demagnetization, thus allowing to perform the different 
temperature cyclings continuously and “hands free”. Ad-
ditional benefit is to eliminate the need to re-center the 
specimen, which could result in inaccuracies if the post-
AF remanence is weak and a poorly resolved centering 
peak is obtained. It also allows the "AF" demagnetization 
step to be done at temperatures other than 300 K opening 
up the possibility of doing a “LT-Goethite Test” and cap-
turing the remanence contribution of SP sized goethite 
and hematite with blocking temperatures <300K.
	 Appealing as it is, the process is not fool-proof, how-
ever. The major limitation is the coarseness of the switch-
ing fields applied: upon demagnetization of a magnetite 
specimen Lagroix and Guyodo (2017) report that 98.6% 
of the remanence of the specimen is removed by a 300 
mT peak field. Inspecting Lagroix and Guyodo’s test for 
the demagnetization routine (cf. their Fig 3a) one notices 
that certain steps past 300 mT result in negative magneti-
zations, whether “ultra low-field” corrected or not. In the 
case of Lagroix and Guyodo’s (2017) example, the mag-
netite remanence after 98.6% demagnetization is 1.28 x 
10-1Am2/kg, but the negative remanences resulting from 
the subsequent “demagnetization” steps are larger still. 
The large field decrement of the oscillation mode thus 
actually quantizes the coercivity spectra into relatively 
wide, positively and negatively magnetized coercivity 
windows, and the net moment can have quite significant 
magnitude. Certain specimens are more prone to reveal 
such behavior than others, and application of the pro-
tocol on a number of specimens in our lab has resulted 
in net negative magnetizations after the demagnetization 
routine, constituting an obvious drawback. 

	 Such behavior was the inspiration for a new alterna-
tive protocol that is also entirely executed within the 
MPMS and is essentially a combination of the “hard” 
IRM experiment (HIRM, Thompson and Oldfield, 1986) 
and the goethite test. The HIRM test involves applying 
a strong positive saturating IRM (e.g. 2.5 T) that will 
saturate all the phases in the specimen. Applying this in 
the form of a pTRM as is done in the goethite test en-
sures that Gt is fully activated in the positive direction, 
resulting in a positive magnetization of the specimen. 
The remanence subsequently measured (remanence 

“A”) contains the sum-contribution of +Gt, +Ht, and 
+ Mt (when these three phases are present). With the 
MPMS, this remanence can be measured as a function 
of temperature while cycling in zero field from 300 K 
to LT and back (the equivalent of cycle 1), and any Mt 
grains that lose remanence through TV can be observed. 
A smaller field IRM (e.g. 200 or 300 mT) is then applied 
in the opposite direction, thus effectively reversing the 
contribution of the “soft” phases. The resulting rema-
nence (remanence “B”) will thus be the summation of 
+Gt, +Ht, and -Mt (assuming that Ht and Gt remanences 
are unaffected by this intermediate field). Just as for the 
HIRM experiment, (A+B)/2 yields the joint contribu-
tion of the “hard” phases (Gt and Ht), whereas (A-B)/2 
provides the contribution of the “soft” phases (Mt). The 
respective contributions can be readily calculated for 
any temperature between LT and 300 K by temperature-
cycling remanence B (cycle 2). Extending the warming 
curve of cycle 2 to 400 K allows removing the contribu-
tion of Gt. Subsequent cycling (cycle 3) from 400 K to 
LT and back to 300 K, effectively eliminates the goethite 
contribution to the remanence, just as in the goethite test. 
A simple subtraction of the remanence removed by the 
400 K warming (heating curve of cycle 2- heating curve 
of cycle 3) from the “hard” contribution between LT and 
300 K results in the isolation of Ht’s remanence in that 
temperature range. Boom.
	 There are certain caveats, however, which may affect 
both the HIRM and the goethite test (old and new, but 
from now on I will only refer to the original goethite 
test) protocols, and if applicable require some additional 
data processing. These are recognizable from the data 
themselves and take different forms depending on the 
protocol performed. The caveats may inhibit a complete 
separation of the relative contributions of the individual 
mineral phases to the bulk remanence: for example there 
are cases in which nano hematite particles are “softer” 
than larger single domain hematite grains (e.g. Vallina 
et al., 2004) and can be demagnetized (or have their mo-
ments reversed) by ~200 mT fields. When present, these 
grains will contribute to the “soft” mineral fraction iso-
lated in these tests and will erroneously be attributed to 
Mt. Some maghemite grains can “survive” 200 mT AF 
demagnetization but lose part of their remanence by 400 
K , thus affecting determination of the relative contribu-
tions of all phases. These examples will be discussed in 
more detail below. In the following, I will first describe 
a case study for which the caveats are not applicable: 
goethite tests applied to the Mauch Chunk formation red 
beds, containing dominant hematite, some magnetite 
and minimal goethite.

Classic goethite test. In the classic goethite test, the 
specimen behaves “as expected”: some remanence is lost 
during temperature cycling 1, reflecting non-recovery as 
the magnetic minerals present cycle through TM and TV 
and further remanence is lost through AF demagnetiza-
tion in 200 mT fields (Fig. 1). Note that TM is not particu-
larly sharp, indicating a range of Ht grain sizes (specular 
and pigmentary), whereas TV is most evident from FC 
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remanence curves (not shown here, but the reader may 
refer to Bilardello and Kodama, 2010). 

	 The relative contribution of Mt is quantified as the 
dark blue curve in Fig. 2. Upon thermal demagnetiza-
tion to 400 K a small amount of remanence that is attrib-
uted to Gt is lost (yellow curve in Fig. 1), and its relative 
contribution, shown as the orange curve in Fig. 2 can be 

C1

H1

C2

H2C3

H3

Cycle 1

Cycle 2

Cycle 3

Mt removed by AF

Goethite removed
by thermal demagnetization

Fig. 1. Results of the classic goethite test for the Mauch Chunk formation red 
beds containing hematite, magnetite, and minimal goethite. The initial step of 
cooling in a 2.5 T field from 400 to 300 K is not shown.  C and H stand for cool-
ing and heating and each cooling-heating couple make up a temperature cycle. 
AF is the remanence removed upon 200 mT alternating field demagnetization. 

quantified by subtracting the subsequent warming curve 
H3 from H2. The remaining remanence, cycle 3 in Fig. 1 
reflects the contribution of hematite. Some thermal hys-
teresis exists between cooling and heating curves C2 and 
H2, but the remanence is entirely recovered by 300 K. 
In percent, the relative remanence contributions at 300 
K are 17.6% (Mt), 79.8% (Ht) and 2.6% (Gt). Note, that 
MPMS data are often prone to first-point artifacts, so the 
300 K results may not always be the most representative: 
in this case, however, the relative contributions to the 
total remanence at 295 K are virtually identical.

HIRM-Goethite test. Subjecting the same specimen 
to the hybrid HIRM/goethite test similar results are ob-
tained (Fig. 3). The first observed difference with the 
classic test is that the C2 curve now has the lowest rema-
nence, owing to the magnetization of Mt pointing down. 
After cycling through TV the remanence increases some-
what on warming (yellow curve H2), as a consequence 
of non recovery of some Mt remanence. Heating to 400 
K removes the contribution of Gt, and further low tem-
perature cycling removes additional remanence (green 
curve H3).
	 Calculating the “soft” (Mt) and “hard” (Gt + Ht) con-
tributions at 300 K as shown above, one obtains 15.4% 
and 84.6% respectively. At 300 K, 1.4% of the initial 
remanence is removed by heating to 400 K, and can be 
attributed to Gt. Subtracting this from the total “hard” 
contribution one obtains 83.2% for hematite’s total con-
tribution, with virtually identical results at 295 K.
	 The two techniques are thus in the ballpark of each 
other, with the greatest divergence around the relative 
contributions of Mt and Ht by a few %. The contribution 
of Gt is minimal and differs by ~1%  of the total rema-

C1

H1

C2

H2

C3
H3

Fig. 2. Relative contributions of the magnetic phases present 
as determined from AF demagnetization (Mt, blue), thermal 
demagnetization to 400 K (Gt, orange), and remaining rema-
nence (Ht, red). 

Fig. 3. HIRM-goethite test for the Mauch Chunk formation speci-
men. Note that the cooling curve 2 (C2, in gray) now has the lowest 
remanence which increases upon temperature cycling (heating curve 
H2, in yellow) as a consequence of non recovery of Mt remanence 
which points downwards.

Mt 17.6%

Gt 2.6%

Ht 79.8%
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nence among both tests. In the HIRM-Gt test, 200 mT 
DC fields are considered the equivalent of 200 mT AF 
demagnetization, but strictly speaking they are not, and 
in fact IRMs are more effective at capturing the whole 
spectrum of grain coercivity, depending on the AF fre-
quency they are compared to. The DC fields, because 
stronger, may also be more effective at reversing the mo-
ment of some nano-Ht grains, if present, thus affecting 
the “hard”/”soft” mineral ratio.
Case in which the caveats are applicable. An atmo-
spheric dust containing maghemite, hematite and goe-
thite (Reynolds et al., 2014) was subjected to both tests.

The classic goethite test immediately reveals a dominant 
Mt contribution (cycle 1, pre 200 mT AF demagnetiza-
tion) compared to the “hard” phases present (post-AF) 
(Fig. 5). After the removal of Mt though AF, an increase 
of remanence between 300 K and 20 K is apparent, 
which is typical of goethite. Some temperature hyster-
esis is present between ~150 and 300 K, thus around TM. 
Further decrease of magnetization is experienced when 
warming to 400 K, as expected. Temperature cycle 3 still 
shows the increase in remanence upon cooling, though 
subdued, and the hysteresis is more pronounced (Fig. 5)
	 Determining the relative contributions to the rema-
nence as a function of temperature, Mt makes up 93.4% 
at 300 K (and 295 K), leaving 6.6% for the “hard” phas-
es. The goethite contribution at 300 K removed by heat-
ing is small (0.6%), however, the increase in remanence 
upon cooling observed in cycle 3 suggests that not all 
of the Gt was removed by thermal demagnetization at 
400 K. There is also the likely possibility that this “un-
removed Gt” is possibly “hard” maghemite that resists 
AF demagnetization. I will discuss this further below, for 
the time being I will keep referring to it as Gt. To obvi-
ate this effect, and assuming that all goethite remanence 

should be removed by 400 K, the remanences in cycle 
3 have been slope-corrected, by fitting a line through 
data above TM and restoring this to horizontal by pivot-
ing around the 400 K value of magnetization, thus al-
lowing to determine the “true” contribution of Ht (Fig. 
6). The difference (0.5%) can then be attributed to Gt 
not removed by 400 K and used to compile the total Gt 
contribution (1.1%). The corrected contributions of Gt 
and Ht are reported in Fig. 7. As expected, the Gt relative 
contribution removed is larger at low temperature.

Fig. 4. Relative contributions of the magnetic phases present. 
These are comparable to those obtained through the classic 
goethite test. Colors as in figure 2, the dark red curve is for the 
“hard” components combined.

Fig. 5. Classic goethite test performed on a dust sample containing maghemite, 
hematite and goethite. Note the different scales for the pre- and post-AF mea-
surements. Thermal hysteresis about the Morin transition is highlighted, as 
well as a negative slope corresponding to the contribution of goethite that was 
not removed by 400 K thermal demagnetization. See text for details.

Cycle 1

Cycle 2

Cycle 3

T-hysteresis

Unremoved Gt

Gt slope

Slope-corrected (Ht)

Fig. 6. Correction for the goethite slope of the hematite data 
from cycle 3 (dashed and dotted lines are the cooling and 
warming curves, respectively). 

Ht 83.2%

Mt 15.4%

Gt 1.4%

Hard 84.6%
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HIRM-Goetite test. Performing the alternate test on the 
same specimen, the remanences of cycles 2 and 3 are 
negative, owing to the dominance of Mt present (Fig. 
8a). Evaluating the remanence in absolute values is 
sometimes helpful (Fig. 8b), however one must bear in 
mind that the Mt contribution is never removed, simply 
reversed, and contributes to all cycles shown. 
	 Computing the “soft” and “hard” contributions, 93% 
and 7%, respectively are obtained (Fig. 9), providing an 
excellent comparison with the classic test. Separating the 
relative contributions of Gt and Ht, however, is trickier. 
The “Gt” remanence removed upon heating to 400 K, 
obtained by subtracting the heating curve 3 (cycle 3, 
-Mt, +Ht) from the heating curve 2 (cycle 2, -Mt, + Ht, 

+ Gt), in fact appears to be larger than the total “hard” 
contribution (Fig. 9), amounting to 10.6% of the total 
remanence. In the previous example, Gt appeared to not 
be completely removed by the 400 K thermal demag-
netization, however, if this were the case in the HIRM 
test, then the Gt contribution would be even larger than 
10.6%. More likely, some nano-maghemite is thermally 
demagnetized by 400 K, enhancing the apparent Gt con-
tribution. In fact, Carter-Stiglitz et al. (2006b), follow-
ing Smirnov and Tarduno (2000), acknowledge that ma-
ghemite may have similar low temperature behavior to 
goethite. That the hematite slope in Fig. 6 was corrected 
for some maghemite unremoved by AF demagnetization 
thus remains a likely possibility.
	 Despite these issues, the excellent agreement of the 
relative “soft” and “hard” contributions for the two tests 
is encouraging, and attests to the validity of 200 mT 
AF in removing most of the Mt contribution, and 200 
mT DC demagnetization in reversing the polarity of the 
same grains. Whether it is the goethite or the maghemite 
contribution that needs to be adjusted after the slope 
correction, however, and thus affecting the total “hard” 
and “soft” contributions determined through both tests, 
still remains a matter of debate. Unlike the classic test, 
however, in the HIRM test it is not possible to correct 
the Ht contribution by adjusting the slope of the cycle 3 
curves, because the Mt contribution is still heavily pres-
ent in those curves (rather, one can adjust the slope, but 
the magnitude will still be off). This contribution can-
not be effectively subtracted without making heavy as-
sumptions on how much of its remanence is removed/
remains through non-recovery across the TV during and 
after temperature cycles 2 and 3. For similar specimens, 
then, the classic goethite test thus remains the preferred 
option, though if a slope in cycle 3 remains, then the cul-
prit mineralogy (Gt or Mt) should be investigated more 
closely. Performing the Lagroix and Guyodo (2017) test 
on Mt rich samples may also introduce uncertainties 

Fig. 7. Relative contributions of the different iron oxides. The 
contributions of hematite (red) and goethite (orange) are cal-
culated after correcting for the slope of goethite in cycle 3 (see 
Fig. 6).

A B

Fig. 8. Results of the HIRM test on the atmospheric dust specimen: A) Measured data; B) absolute values of the magnetizations. 
Note the further loss of maghemite remanence during temperature cycle 3.

Mt 93.4%

Ht 5.5%
Gt 1.1%
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around how much Mt contribution is effectively demag-
netized, which, if the bulk of the remanence is positive, 
may largely go undetected.
	 As briefly mentioned, there is also the possibility of 
introducing error due to partial demagnetization/switch-
ing of the “hard” phases, especially hematite.  In soils 
hematite is generally very hard and the standard assump-
tion that it’s unaffected by 200 mT probably holds, how-
ever, small authigenic particles (or aggregates) at the 
SP-SD boundary may have lower coercivity. Likewise 
larger hematite crystals in igneous/metamorphic rocks 
may also have very low coercivity. While these tests are 
generally geared towards sedimentary magnetism they 
are not completely general and the possible caveats must 
always be considered. 
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