
Studies in Nonlinear and Stochastic Phenomena and
Quality Factor Enhancement in a Nanomechanical

Resonator

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA DULUTH

BY

Md Raf E Ul Shougat

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

Advisor: Dr. Subramanian Ramakrishnan M.Sc., MSE, Ph.D.

July, 2019



c© Md Raf E Ul Shougat 2019

ALL RIGHTS RESERVED



Acknowledgements

It has been a dream from the early years of my undergraduate journey to pursue my

Master of Science degree in a topic which would be closely related to mathematics as

well as mechanical engineering. I am highly thankful to my advisor Dr. Subramanian

Ramakrishnan for taking me in his group and giving me an opportunity to work on such

a problem. When I started the journey of my master’s thesis, I was not confident enough

whether I can complete the thesis. My very first thanks for the completion of this thesis

goes to Dr. Ramakrishnan for his organized and focused guidance from learning the

very basic to advanced knowledge needed for the thesis. He always threw challenging

and interesting questions and steered me in the right direction. He greatly helped me

with his insightful thoughts about the progress I was making to attack the problems.

Our efforts did not go in vain. We have been able to write three conference papers and

one journal paper from this masters thesis. I am also grateful for his super guidance

and support in my Ph.D. application which helped me a great deal to earn a Ph.D.

fellowship with a position of ‘Research Assistant’ in the field of nonlinear dynamics;

related to the work of my master’s thesis.

I can’t thank enough my parents who have gone through much struggles from my

early childhood for my education and for inspiring me to go for higher education. I

thank them for supporting me even at this stage of my life being 8000 miles away. I

am thankful to my siblings for their love and support when I was struggling with my

problems. Truth to be told, the completion of this thesis would not have been possible

without the immense love and support I received from my family members.

It is my pleasure to show my sincere gratitude to Dr. Michael Greminger and Dr.

Andrea Schokker for being kind enough to be in my thesis committee. I want to thank

them for giving me constructive reviews and right direction to complete the thesis. I

i



want to thank Dr. Greminger for his time and playing a crucial role in my Ph.D.

application as well. I would also like to thank Dr. Michael Pluimer for helping me

greatly in my Ph.D. application process and for being so nice and friendly to me from

the very beginning.

I would like to thank Connor Edlund, one of our research group members, currently

pursuing Ph.D. at the University of Minnesota, who has immense contribution in build-

ing up my code for the numerical simulation from the very beginning of the master’s

journey. He never got disturbed even with my silly questions. His prior experience of

working in nonlinear dynamics with Dr. Ramakrishnan made my life easier and helped

me be in the right track from the early stage.

I am thankful for the support I got from all of my friends here at Duluth. Maksud,

Pasha, Rakib, Maqsood, Touhid, Samsul, Sudipta, Bipasha, Nitol, Nafis, Irfan, Gills,

Heather are some of the names that immediately come to my mind. I can never forget

the support and love of Razon, Sumona and Omi who have always inspired me to go

forward staying back in my country.

I want to thank Kim and Tracy for their administrative assistance and I would

also like to thank the Swenson College of Science and Engineering for the funding and

support.

It is my great pleasure to show my sincere gratitude to my all time favorite teacher

and personality - Professor Ashraful Islam, who has an immense contribution to the

journey of my life both academically and philosophically.

Finally, I am highly thankful to the Almighty for blessing me with the strength of

passing through this path, facing all the obstacles with confidence and courage.

ii



Dedication

To my father - Kebez Uddin Ahmed & mother- Suriya Begum.

iii



Abstract

Nonlinear damping has recently been experimentally observed in carbon nanotube and

graphene-based nanoelectromechanical (NEMS) resonators and shown to be an effective

means to achieve higher quality (Q) factors. Moreover, it has been shown that white

noise excitation can be exploited to shrink the resonance width of the frequency response

characteristics of the resonator as a pathway to higher Q factors. Motivated thus, this

thesis is a study of certain fundamental characteristics of the nonlinear dynamics of a

nanoelectromechanical resonator in both the deterministic and stochastic regimes with

a focus on the influence of those characteristics on the Q factor. Using a Duffing oscil-

lator based model, this thesis: (1) derives an analytical expression between oscillation

amplitude and frequency of a NEMS resonator using the harmonic balance method to

study the frequency response characteristics and validates the results using numerical

simulation, (2) studies the deterministic dynamics of a NEMS resonator deriving an

analytical relationship between the phase angle and maximum oscillation of the res-

onator response, (3) derives an analytical expression between the resonance frequency

and resonance amplitude, (4) studies the hysteresis characteristics both in the stochas-

tic and deterministic regimes elucidating the effects of nonlinear damping and external

excitation on the hysteresis region, (5) finds that stochastic excitation with increasing

intensity can shrink the hysteresis width, (6) shows that increasing the magnitude of

the linear damping coefficient results in the decrease of Q-factors, (7) shows that in the

combined presence of both parametric and external excitation, increasing the ratio of

pump frequency to external forcing frequency results in lower resonant frequency and

lower resonance width, (8) observes that in the parametrically driven nanomechanical

resonator, higher parametric oscillation amplitude increases the resonance amplitude

with a small impact on the resonance frequency, (9) solves the stochastic model using

the Euler-Maruyama method and generates frequency response curves where it is found

that higher noise intensity of Lévy stable stochastic process can increase the Q factor,

(10) finds that the Q factor is increased by decreasing the nonlinear damping and exter-

nal harmonic driving amplitude. In summary, this thesis presents a set of novel results
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on the nonlinear, stochastic dynamics of a NEMS resonator and discusses the implica-

tions of the results for achieving enhanced Q factors. The results are of interest both

from a theoretical viewpoint as well as in sensing applications using a nanoresonator.
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Chapter 1

Introduction

1.1 Definitions

Electromechanical systems are characterized by the coexistence of both mechanical and

electrical degrees of freedom and interactions between them. Indeed, conversion of elec-

trical energy into mechanical energy and vice versa occurs in these systems and they find

widespread applications in many aspects of our day to day life. Some common examples

that immediately come to our mind are electrical motors which take electrical energy

and convert it into mechanical movement, and generators which generate electricity by

transforming mechanical energy. Miniaturized versions of these electromechanical de-

vices are known as micro electromechanical systems (MEMS). MEMS can be typically

characterized based on the dimensions of the devices starting from a few millimeters in

the upper end all the way down to 1 micron in the lower end. Unparalleled advancement

of fabrication technology in the last couple of decades has taken these dimensions to

even smaller scales, down to a few nano metres [1, 2, 3]. The devices which find their

applications and functionality in the nano scale are commonly known as Nanoelectrome-

chanical system (NEMS). NEMS bridges a relation between nanoelectronic circuits and

mechanical actuators or motors. In general, MEMS and NEMS can be distinguished

by dimensions in such a way that the MEMS devices operate in the microscale and

NEMS devices are able to operate in the nanoscale. Another important distinguishing

parameter is the surface area to volume ratio. NEMS devices possess a very high sur-

face area to volume ratio compared to the MEMS devices [4] which has made NEMS

1
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extraordinarily popular in sensing applications. A nanoelectromechanical resonator is

an excellent example of a NEMS device which is used widely in sensory applications. It

is basically a nano scale beam which can oscillate at a specific frequency and depend-

ing on the geometry and actuating mechanism it can exhibit resonance. The unique

dynamical characteristics of a nanomechanical resonator makes it remarkably useful in

sensing physical quantities.

1.2 Manufacturing of NEMS

One of the most remarkable technological advancements the world has seen in the last

few decades is the development of MEMS and its extended branch-NEMS showing

their potential applications in many fields starting from the basic science to engineer-

ing. These advancements were achieved due to the noteworthy progress in materials

and manufacturing technology. A brief description of the materials and manufacturing

technologies in NEMS (or MEMS) is discussed in this section.

1.2.1 Materials for MEMS/NEMS

Silicon (Si) has been used as a material for microfabrication from the mid of twentieth

century after it was discovered that Silicon has piezoresistive property. More impor-

tantly, it was found that Si possessed higher piezoresistive coefficients than the other

materials used for regular strain gauges which marked the beginning of the development

of Si based strain gauge devices [4]. After that with the discovery of germanium (Ge)

showing the similar piezoresistive effect Si shows, piezoresistive sensors were made [5]

using Si and Ge which played a pioneering role in the development of the MEMS and

NEMS technology that we have now. Single-crystal silicon (Si), Silicon dioxide (SiO2),

Silicon carbide (SiC), Polycrystalline silicon-germanium (poly SiGe), Polycrystalline

germanium(polyGe) are the forms of Si and Ge based material used in MEMS. The

striking properties that make Si applicable in manufacturing microelectromechanical

devices are: [6, 4]:

- Silicon is extremely light having a density of around 2.3 g/cm3
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- It is dimensionally stable due to its very high melting point that is around 1400

degree celsius.

- Mechanical hysteresis is hardly seen in Silicon which makes it attractive for

sensor fabrication.

- Single-crystal Si exhibits very high modulus of elasticity (about 190 GPa) which

facilitates its use for building resonant beams.

- Si is comparatively easier to micromachine even in a bulk amount.

- It is a semi-conductive material having an energy gap of 1.14 eV and it is also

abundant in earth’s crust.

On the other hand, NEMS devices are generally fabricated from two popular 2-D

materials namely carbon nanotube (CNT) and graphene. Between them, graphene has

gained significant attention due to its multifaceted characteristics (electronic, optical,

magnetic, thermal, mechanical and so on) which makes it suitable in nanoelectronics

industry [7]. Graphene got its attention after Geim et al. mechanically exfoliated a

single layer of graphene from graphite [8], a great achievement in the history of science

and technology. The crystallographic structure of graphene is two-dimensional having

a thickness of one atomic layer of carbon and a lateral dimension of 1 to 10 micro meter

[9]. The properties that make graphene notably effective in NEMS devices are as follows

[9, 10, 11, 12, 13]:

- Graphene has a Youngs modulus of 1000 GPa which is higher than that of CNT

and 10 times higher than that of Silicon. This property makes it the strongest

and thinnest material discovered so far.

- It possesses significantly high carrier mobility which is important in device

physics.

-Graphene shows remarkable impermeability because sheets of graphene are at-

tached together so closely that other materials can not pass through graphene net.

It is impermeable to almost all regular gases.

- It also shows piezoresistive effect like Silicon.
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- If not doped or patterned, intrinsic graphene has no band gap.

- It has very high heat and electrical conductivity.

- Graphene has extremely high breaking strength.

- Because the structure is very thin, defects are not common in graphene sheets

unlike other bulky materials.

In summary, the extremely light and thin structure with unique mechanical and elec-

trical attributes made graphene the strongest candidate to build nanoelectromechanical

devices like nanoresonators or sensors with an improved performance.

1.2.2 Methods of NEMS/MEMS fabrication

Since this thesis is related to the study of graphene based NEMS resonator, we are

limiting our discussion to graphene NEMS devices. Graphene based NEMS devices can

be fabricated in two ways:

- Top down method.

- Bottom up method.

There are two main steps in the fabrication process: production of graphene itself and

then releasing of the suspended graphene structure. Since it is known that graphite

is a multilayered graphene material where several layers of graphene stack on top of

each other by Van der Waals bonds [12], graphene can be produced from graphite by

mechanical exfoliation also known as ‘Scotch tape method’ [9]. In this process, a scotch

tape is used to lower the thickness of the graphite through peeling the layers over and

again. Then the thin layers of graphite are rubbed against a solid surface (SiO2) which

results in the production of monolayered graphene. Though this is the most popular

method so far practiced in the synthesis of graphene, the process has the disadvantages

that it is not scalable and that the mechanical exfoliation is a difficult procedure. This

mechanical exfoliation based procedure is known as ‘Top-down method’.

There is another process available for graphene synthesis known as the CVD (Chem-

ical Vapor Deposition) technique. Copper or Nickel are used in this method with
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graphene on their surfaces. CVD based on Cu gained more attention due the fact that

using Cu 95% single layered graphene was produced. Ni based CVD technique yields

multilayered graphene. A major disadvantage of this method is that it results in lower

mechanical strength at the grain boundaries. This procedure is known as ’Bottom-up

method’.

Since the synthesis of graphene has been so widespread, it has become easier to

produce nanodevices like arrays of field effect transistors[14] or nanoresonators [15].

A nanoresonator can be fabricated in a similar fashion discussed above. [15] shows

graphene nanoresonator fabrication using CVD method where it is grown on Silicon

carbide (SiC). Then through etching process, the nanoresonator is separated from the

surface of SiC.

1.3 Historical Background

Though there is a long history of investigations in electromechanical systems going back

to the eighteenth century (for instance a device was invented by Coulomb to measure

electrical charge in 1785), research related to miniaturized electromechanical systems is

still relatively young and did not gather momentum until the middle of the twentieth

century. The technological innovation during World War II, specifically radar stimu-

lated research in semiconducting material synthesis (i.e. Silicon) laid the foundation of

this field. To this date this material group has been the basis for fabricating nano/mi-

cro devices. The research in MEMS was first inspired by the seminal talk of Richard

Feynman in 1959 American Physical Society meeting There’s Plenty of Room at the

Bottom [1] where he discussed about the future prospects of microsystem research. He

remarked:“Why cannot we write the entire 24 volumes of the Encyclopaedia Brittanica

on the head of a pin?” “ It is a staggeringly small world that is below. In the year 2000,

when they look back at this age, they will wonder why it was not until the year 1960

that anybody began seriously to move in this direction.”

This visionary scientist also announced that he would give $1000 to the person who

can build a motor ’1/64 of an inch’. William McLellan was the person who won the

prize after substantial effort by building it by hand. The process was very painstaking

and not recommended for batch fabrication. Industrially acceptable process for MEMS
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fabrication came after few years. A brief overview of the historical development in

MEMS/NEMS is given as follows [9, 16, 17] where the idea of reproduction of the table

and updating are based on [16] :

Table 1.1: Historical overview in MEMS/NEMS

1940s (World

War II)

Radar inspired research in silicon synthesis.

1959 Richard Feynman’s lecture in 1959 APS meeting (There

is Plenty of Room at the Bottom).

1960 Invention of planar batch manufacturing process.

1964 First batch manufactured MEMS device - resonant gate

transistor was produced by Nathanson and his group.

1970 Invention of microprocessor.

1979 Development of accelerometer in micromachining pro-

cess.

1981 The first journal research paper published on molecular

nanotechnology: ”Protein design as a pathway to molec-

ular manufacturing” by K. Eric Drexler [18].

1982 Invention of scanning tunneling microscope.

1984 Invention of polysilicon surface micromachining process

leading to the combined MEMS and IC fabrication for

the first time.

1985 Discovery of Buckminsterfullerene (C60).

1986 Invention of AFM.

1991 Invention of CNT.

1996 New process discovered to produce CNT with higher ac-

curacy marking the most significant progress in the field

of MEMS to this time.

2000s Fabrication and application of MEMS device increased

at a high rate.

2004 Separation of single layer graphene from graphite by

Geim and Novoselov.
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2007 Isolation of graphene nanomembrane.

2007 Cornell researchers became successful in actuation and

detection of motion of a graphene nanoelectromechanical

resonator.

1.4 Applications of a Nanoelectromechanical Resonator

The last couple of decades witnessed unprecedented advancement in nano system specif-

ically after the discovery of graphene leading to the development of nano scale devices.

Mostly these devices have applications in sensing nano scale physical quantities (i.e.

mass, motion, charge etc.). Among the nanoscale devices built so far, the nanomechan-

ical resonator has earned the greatest attention because it can achieve extremely high

frequency (up to 109 Hz) [19]. The high frequency characteristics are obtained due to

its extremely small dimensions. The resonant frequency (fn) of the resonator has an

inversely proportional relationship with the square of the resonator’s length (fn ∝ L−2)

[20]. It implies that if a resonator’s length is lowered by half, resonant frequency can

be four times higher. The reason we are concerned about resonant frequency is that it

is intimately related to the sensing accuracy of the resonator.

1.4.1 Mass Detection

One of the most incredible applications of the NEMS resonator is the ability of nano scale

mass sensing. Mass sensing depends on the resonant frequency and resonant frequency

shift and is governed by the following simplified relation: [19, 21]:

∆fn
fn

= −1

2

∆m

m
(1.1)

where ∆fn and fn represent the frequency shift and the resonant frequency respectively,

m and ∆m represent the initial mass of the resonator and the accumulated mass re-

spectively. The equation clearly indicates that the higher the frequency the smaller

the mass that can be detected. In other words, the higher the quality factor (Q-factor

∝ ∆fn), the better is the detection sensitivity. Since the nanomechanical resonator

is capable of reaching ultra high frequency regime, this device is well suited for ultra
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sensitive mass detection. Ekinci et al. [19] experimentally showed attogram scale mass

detection using NEMS resonator. In this process, they used a 32.8 MHz nanoresonator

in vacuum and a stream of atoms dissolved on the surface of this resonator. Later, they

found the amount of added molecules (responsivity of 2.53 ×10−18 g) measuring the

resonant frequency shift ∆fn. Besides this, they also predicted the possibility of sensing

a single molecule using a nanoresonator. Jensen et al. [22] using a double-walled car-

bon nanotube based nanoresonator recorded a mass sensitivity of 1.3 ×10−25g. Other

important research efforts with a concentration on the nano scale mass sensing using

nanomechanical resonators may be found in [23, 24, 25]

Nonlinear Oscillation and Mechanical Tension in Mass Detection

The earlier method of mass sensing shown in the previous discussion is based on the

assumption that no nonlinearity is coming into play in the sensing scheme and the

oscillations are strictly harmonic. However, this is not the reality. There is a rich

literature discussing the fact that the dynamics of a nanoresonator is reliably determined

by nonlinearity and hence the oscillation is mostly in nonlinear regime [3, 26]. Dai et

al. [27] considered nonlinear oscillation based on continuum elastic model to detect

nano scale mass using carbon nano tube resonator. They observed that with a small

electrostatic force showed nonlinear oscillation yields to a specific resonant frequency

shift which is not found in harmonic oscillation regime. They also observed that resonant

frequency increased when the electrostatic force is large enough to carry the dynamics in

the nonlinear oscillation regime. They derived the following equation modifying Duffing

equation to describe the dynamics of a nanomechanical resonator taking the absorbed

mass into account:

[α+ β T ] z(t) + γ [z(t)]3 + η z̈(t) = p0 cos(Ω t) (1.2)

where, α = 16π4 E I
3L2

β = 4π2

3L

γ = 8π4 EA
9L3

η = 2
3 ρCNT AL+ ∆M

E,I,A and L are Youngs modulus, cross sectional moment of inertia, cross sectional
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are and length of the resonator respectively. Their numerical study suggests that if

the excitation is large enough to turn the oscillation in the nonlinear regime, resonant

frequency gets higher caused by added mass. Additionally, they observed that in the

case of a longer nanoresonator, detection sensitivity increases since it results in higher

resonant frequency with larger resonant shift as well. In summary, nonlinearity can

significantly increase the accuracy of the mass detection scheme.

Besides this they also studied the effects of mechanical tension on the mass detection

sensitivity. They showed that mechanical tension can decrease the resonant frequency.

Using the continuum elastic model they report the following relation:

ω0 ≈ ω̃0

√
1 + T̃ (1.3)

where, ω̃0 is the initial resonant frequency when no mechanical tension is considered

and T̃ is the mechanical tension which can be written as T̃ = TL2

EI This relation yields

the following relation between resonant frequency shift and the added mass under the

effect of mechanical tension:

∆ω

∆ω̃0
= −1

2

∆m

mCNT

√
1 + T̃ (1.4)

As a result, in one way the detection sensitivity increases for considering mechanical

tension while this tension results in the decrease of resonant frequency. In other words,

mechanical tension may not help in nonlinear oscillation based mass detection scheme

due to the two opposite effects on the sensitivity.

1.4.2 Actuation and Motion Sensing

With the scaling down of the resonator, the oscillatory response regime gets smaller and

actuation becomes important as well as the sensing of nano scale deflection. Techniques

used for MEMS devices are not useful here anymore due to speed, coupling and com-

patibility issues. Actuation and motion detection of NEMS resonator are discussed in

this section.
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Actuation of Motion

There are two widely known methods of actuation of motion [28, 29]: Magnetomotive

and capacitive actuation. In the magnetomotive actuation, the nanoresonator is set

inside a strong magnetic field made. Besides this magnetic field, ac current is driven

through the nanoresonator. As a result Lorentz force is generated [29]. The oscillatory

motion of the resonator can be described using the following relation:

X(ω) =
l B I(ω)

meff ω
2
0 − ω2 + i ω ω0

Q

(1.5)

where I(ω) denotes the ac current magnitude,l is the resonator length and B is the

magnetic field strength. The only difficulty with this method is that it requires a very

strong magnetic field.

More information relating magnetomotive scheme of NEMS beam actuation can be

found here [30].

In the capacitive method of actuation, a scheme similar to the one applied in MEMS

domain is followed for NEMS resonator as well. Firstly, the capacitor is charged and

then attractive force generates between the capacitor plates. Specific voltage is applied

between the resonator and the gate electrode. Major drawback with this method is

that the actuation efficiency is lower at higher frequency. Sekaric et al. experimen-

tally showed this actuation method worked at a resonant frequency of 640 MHz [31].

There are some other methods for actuation and among them thermal actuation offers

a possible effective way which is yet to be fully explored.

Detection of Motion

Similar to the the actuation technique, a magnetic field can be used in motion detection

scheme [29, 32, 33]. Here an amplifier is connected to the magnetomotive transducer

with an assumption of the amplifier being the dominant noise source. The generated

emf in the magnetic circuit is given by the following equation:

v0(t) = ξ l B ẋ(t) (1.6)

where, B is the magnetic field strength, l is the resonator length and ξ is a geometric

factor, x(t) is the displacement of beam. It is noted that the amplifier used in this has
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to be a low noise amplifier since the beam displacement is very small. The kernel of

this method is that depending on the movement of the nanoresonator, variable emf will

be produced which can re recorded by the detection circuit. Differences in emf will give

us the required measure of deflection.

Optomechanical coupling has also been used in the motion detection domain [28]. In

this approach, Ekinci and his coworkers used an array of 63 cantilever nanomechanical

beams. The lengths of these beams varied from 5m to 18.8 µm keeping the thickness

(t) and widths (w) same for all : w= 500 nm and t= 230 nm. Using near-field optome-

chanical coupling technique they found a maximum deflection sensitivity of 0.024/µm

for each cantilever in the array.

Akin to the actuation technique, the capacitive method is applicable in the dis-

placement detection scheme. Here with the variation of the nanoresonator motion, the

capacitance is varied in the circuit which alters the voltage across the capacitor based

on the following relation:

dQ = V dC + CdV (1.7)

where, dQ is the change of charge in the capacitor, dC is the change of capacitance and

dV is the change in voltage. Though it is easier to implement this scheme in the MEMS

device, miniaturization of the capacitive detection circuit faces much more difficulties.

Some other methods of motion/displacement detection include piezoresistive and

piezoelectric detection [29], electron tunneling [29], using scanning electron microscope

(SEM) [34], using a quantum point contact [35] and so on. More research on the

detection of motion using NEMS beam can be found here [36, 37, 38]

1.4.3 Nanoresonator in Biological Detection

Nanomechanical resonators have many spectacular applications in biological science

such as cell detection [39, 40, 41], virus detection [42, 43], protein detection [25, 44, 45],

DNA detection [46, 47, 48], enzymatic activity detection [49, 50] and so on. Among

them, cell detection has attracted the attention of the biological community the most

due to the fact that early detection of many intimidating cells (i.e. cancer cell ) are

possible with the help of a nanoresonator. Craighead and his group [39] for the first

time successfully utilized microcantilever in cell detection. Later, his group [51] used
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arrays of nanomechanical beams to detect individual DNA molecule. They measured

the shift of resonant frequency which occurred because of the accumulated mass on the

nanomechanical resonator. In this process, each resonator was driven thermooptically

and optical interference was used to detect their motion. By doing so, they were able to

detect single DNA molecule attached on the nano beam. The frequency shift was found

to be proportion to the number of bound DNA molecules in each device. The smallest

of the cantilevers used gave the highest sensitivity which was 194 Hz/attogram.

In another investigation, Craighead et al. [52] used nanomechanical resonator arrays

to detect prion proteins (PrP) which is a cause of neurodegenerative disease. Here they

used antibodies as an additional mass labels which resulted in a sensitivity of 2 µg/mL

and with nanoparticles mass labels they showed a sensitivity of 2 ng/mL.

Again, Craighead et al. [42] in another research effort, used an array of cantilever

based nanomechanical resonating element to detect virus particles. A special kind of

Baculovirus was used as a binding element. With the addition of virus particles, the

resonant frequency changes which works as an identifying factor in virus detection.

Additionally, the detector array was able to distinguish different concentration of virus

solution varying from 105 to 107 pfu/mL.

In summary, we can say that NEMS have dramatically changed the sensing tech-

nology. However, NEMS are useful in the study of fundamental science as well. For

example, it can be used in the study of a quantum phenomenon named as ’Casimir

effect’ [53] which can produce a force of hundreds of piconewtons to result motion in

nanomechanical devices. Electron spin detection has been possible in MEMS device

(magnetic resonance force microscopy) [54] and there has been many efforts to detect

nuclear spin which is extremely challenging due to the fact that it generates forces of

about 10−21N . This force is even smaller than 1/1000 of the force generated from single

electron spins [53]. Schwab and his group [55] reported an experimental investigation

of position detection approach determined by Heisenberg uncertainty principle using a

nanomechanical resonator coupled to a single electron transistor. They were able to

achieve a position resolution factor of 4.3 above the quantum limit. Some other applica-

tions of NEMS resonator include detection of quantum state [56],detection of quantum

interference [57] and in building quantum computers [53].

Providing an overview of the applications of NEMS resonator both in engineering
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and fundamental science, now we are turning our attention towards the nonlinear phe-

nomenona in the dynamics of a nanomechanical resonator.

1.5 Nonlinear Behavior of a Nanomechanical Resonator

Nanomechanical resonators often show nonlinear characteristics due to their extremely

small size. Some widely reported nonlinear phenomena are : hardening, softening, bista-

bility, mixed hardening and softening behavior and nonlinear resonances in nanomechan-

ical resonators. Husain and his co-workers [58] reported nonlinear phenomena studying

doubly-clamped nanowire-based resonator which is ‘43 nm in diameter and 1.3 µm in

length’. In the process of building this Platinum based nanoresonator, they took a mixed

manufacturing approach. They combined both ‘top-down’ and ‘bottom-up’ methods of

manufacturing which is known as ‘Hybrid’ method. Analysing the response characteris-

tics, they showed that with the increase of driving force the response changes the nature

from linear to nonlinear regime where hysteresis is remarkably noted. To give a broader

picture of nonlinear response, their experimental result is given below:

The response also depicts a region of bistability which is not found in linear res-

onators. The resonance response is a resonance in the hardening regime. The hardening

nature of the resonator increased with increasing driving force. They reported an in-

crease of driving voltage from 40 µV to 400 µV with a step size of 40 µV to generate this

figure. They also reported that the critical oscillation amplitude above which bistability

occurs is associated to the geometry of the resonator. The relation they ended up is as

follows:

xc =
d
√

2√
0.528Q ( 1 − v2 )

(1.8)

where, xc is the critical amplitude, d is the nanoresonator diameter, Q is the quality

factor, and v is the Poissons ratio of the material used. These concepts are not found

in a linear oscillator. In another investigation, Kacem et al [59] found four bifurcation

points under different conditions where they observed all hardening,softening and mixed

hardening-softening based resonance. Further, Kacem and his group [60] also explored

doubly clamped nanomechanical resonators modeled using Euler-Bernoulli equation tak-

ing both mechanical and electrostatic nonlinearities into account. Here they again
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reported their findings of hardening,softening and mixed hardening-softening based re-

sponse of the nanoresonator.

Study of nonlinear phenomena is important for many engineering design considera-

tions. For example, Roessig and his coworkers [61] working with a tuning fork oscillator

showed that in the nonlinear regime, frequency stability breaks and coupling with noise

mixing due to mechanical and electrostatic nonlinearities, the performance of the res-

onator degrades. The nonlinearities can also lead to motion instability causing a collapse

in the system [60]. So, it can be said that nonlinear dynamics of a nanoresonator de-

serves significant attention which is going to be the central aspect of this thesis.

1.6 Motivation and Thesis Outline

Based upon the discussion up to this point, hopefully it is evident that the principal

application of a nanomechanical resonator is in the sensing of physical quantities. In

order to use it in nanoelectronic circuit efficiently, a complete understanding of the

dynamics of a nanoresonator is a must. The nonlinear dynamic response is also affected

by the stochastic excitation which in turn influences the sensing performance as well.

So, the deterministic and stochastic dynamics of a nanoresonator are going to be the

central attention of this thesis. Hence, these two aspects of nanoresonators deserve an

in-depth review which is discussed in the following sections.

1.6.1 Precursory Works with Nonlinear Damping

One of the most promising works in the field on damping based nonlinearity is done by

Eichler and his group [3]. Linear damping has been reported in plenty of works for a long

time. Linear damping for vibrating systems in general is proportional to the velocity.

But Eichler et al. in their work reported that they found the damping largely dependent

on the amplitude of the motion which can be described by a nonlinear damping force

(not proportional to only ‘velocity’ like the linear damping force). They did experiment

with graphene and carbon nanotube resonators at a very low temperature (90 mK) in a

vacuum chamber. Oscillating voltage is applied to perform electrostatic actuation and

the displacement of the resonator was detected using frequency modulation technique

[62]. To support their ideas of nonlinear damping based nanoresonator, they performed
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experiments in three different conditions using CNT/graphene resonators:

• Nanotube resonator under the effect of tensile stress.

• Graphene resonator under the effect of tensile stress.

• Nanotube resonator with slack.

Measuring the response in all three cases they found that resonant frequency in-

creases and resonance width broadens with an increase in driving voltage. Additionally,

they observed hysteresis phenomena under certain conditions. They later on explained

these phenomena with the help of a nonlinear damping framework. Besides their study,

Bunch et al. [63] in their experimental study of nanoresonators from graphene sheets

also predicted that nonlinear damping might play a vital role on the performance of

the resonator affecting the quality factor. This gives the motivation of analytical and

numerical study of how the nonlinear damping is affecting the resonator dynamics and

performance.

1.6.2 Precursory Works with Stochastic Dynamics

Noise has footprint in all physical systems. Depending on the intensity of the noise, it

can either destroy or enhance the system characteristics. In the previously mentioned

works of Eichler et al. [3] and Bunch et al. [63], stochastic effect was not taken into

account. However, in a nano system, noise can drastically change the dynamics. Some

examples of noise affected nano system are here [64, 65, 66, 67, 68]. Ros and his co-

workers [66] studied graphene based nanomechanical resonator model considering the

stochastic effects. Applying white Gaussian noise as external noise and thermomechan-

ical noise as internal noise, they concluded that such types of noise with an increased

intensity can increase the quality factor. They also mentioned that, without considering

the stochastic effect, calculation of nonlinear damping coefficient done by Eichler et al.

[3] would not give the correct result since they did not consider noise intensity as a

factor to govern resonance width.

In another work, Badzey and his co-worker [64] observed resonance governed by

stochastic excitation in bistable nanomechanical oscillators. They also reported an
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amplification of signal strength in the presence of white noise. They predicted that

stochastic resonance might play role in signal processing as well.

Nakada and his co-workers [69] performed numerical study applying the Euler-

Maruyama method on the stochastic magnetization dynamics of two spin torque nano

oscillator (STNO) pair coupled with each other. Through the injection of noisy current

in the bistable regime they observed that the STNO pair can induce the stochastic state

transition from the out-of-phase synchronization state to the in-phase synchronization

state. The research mentioned above strongly suggests that stochastic excitation can

change the dynamics and efficacy of a system which gives us the motivation to study

how stochastic dynamics can affect the dynamics and performance of a nanomechanical

resonator.

1.6.3 Thesis Outline

Motivated by the aforementioned research efforts, the objective of the thesis is to in-

vestigate the resonator dynamics in nanoscale. In order to accomplish that, graphene

or carbon nanotube resonator is chosen due to their advantages in sensing applications.

The purpose of this thesis is to study the dynamics of nanomechanical resonator both

in deterministic and stochastic regimes. Specifically, our efforts will be to gain both

analytical and numerical understanding of the deterministic dynamics of the resonator.

Once that is done, stochastic analysis based on the Lévy flight excitation will be per-

formed to get an understanding of the dynamics in the stochastic regime. The linear

and nonlinear damping and external drive can have influence on the performance of

the resonator. So, both analytical and numerical aspects are chosen to see their effect

on the dynamics and eventually on the quality factor of the resonator. Later on, we

seek to enhance the effectiveness of nanoresonator in sensory applications exploiting the

unavoidable stochastic excitation at this nanoscale. We also investigate the dynamics

of a nanoresonator under the effect of parametric excitation and see if the paramet-

ric excitation can improve the quality factor of a nanoresonator to be used in sensing

scheme.

The structure of the thesis goes as follows:

• Chapter 1 discusses about the basics of nanomechanical resonators, introduces the
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objectives of the thesis and briefly discusses the related literature and motivation

of the thesis.

• Chapter 2 presents the modeling of the nanomechanical resonators, briefly dis-

cusses the analytical and numerical methods used in the later sections.

• In Chapter 3, the deterministic dynamics of a nanomechanical resonator is studied

based on analytical and numerical methods discussed in Chapter 2.

• Chapter 4 describes the stochastic dynamics of a nanomechanical resonator based

on Lévy noise. It also discusses the Q-factor enhancement based on both stochastic

and deterministic model.

• Chapter 5 presents a final discussion of the analyses presented in the thesis.



Chapter 2

Modeling and Methodology

2.1 Introduction

It was previously mentioned in Chapter 1 (Sec. 1.6) that the purpose of this thesis is to

perform numerical and analytical studies of the nonlinear characteristics of a nanores-

onator. However, the dynamics of a nonlinear oscillator can often be approximated by

the dynamics of a linear oscillator under certain assumptions. Keeping that in mind,

firstly some concepts and mathematical ideas of a linear oscillator model are briefly

presented in this section and then nonlinear modeling is introduced. Finally, methods

of studying and analyzing the model are discussed.

• In sec. 2.2 linear oscillator model is discussed using two examples: spring-mass

system and simple pendulum.

• Sec 2.3 presents modeling of nonlinear resonator related to Duffing oscillatory

model. Characteristics of Duffing oscillator are also discussed briefly here in this

section. Extending the discussion from Duffing oscillator, modeling of a nanome-

chanical resonator is introduced.

• Sec 2.4 talks about the Harmonic Balance Method as an analytical tool to study

the model of a nanomechanical resonator.

• Sec 2.5 discusses the numerical method of studying the dynamics of a nanome-

chanical resonator in both deterministic and stochastic regime.

18
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2.2 Linear System

Linear systems are used to model a wide range of engineering systems [70, 71, 72, 73, 74,

75]. Dynamical systems are well treated with the help of differential equations. Hence,

the theory of linear and nonlinear oscillation (which are basically dynamical systems)

depends largely on the mathematical analysis of differential equations. Spring-mass

system or simple pendulum are the classic examples of linear oscillator model (simple

harmonic oscillator model).

Let us consider a spring (linear) on a frictionless surface in a relaxed condition where

one end is fixed while the other end is attached to a mass and free. Then some force

(push or pull) is applied and then retracted along the axis of the spring. The spring

starts oscillating along the axis under the restoring force. Mathematical analysis can tell

us that the oscillation is harmonic. If the spring force follows Hooke’s law, the system

will turn out to be a simple harmonic oscillator.

Figure 2.1: Simple Harmonic Oscillator
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Spring force is be represented as follows:

F (x) = kx (2.1)

where, k is the linear spring constant.

Applying Newtonian mechanics, the oscillatory motion can be written in terms of

second order ordinary differential equation using the spring force as follows:

− kx = mẍ (2.2)

With some rearrangement:

mẍ+ ω2x = 0

where, ω2 = k
m

The general solution of the Eqn.2.2 can be written as

x = Acos (ω t) +B sin (ω t)

If the spring force is modeled by higher order polynomial (not by Hooke’s law), the

oscillator will be turned to a nonlinear oscillator.

Again, if the resonator motion is modeled using a dashpot, under the effect of

harmonic driving force, the previous second order differential equation (Eqn. 2.2) turns

into the following way:

mẍ+ γ ẋ+ k x = Fcos (Ω t) (2.3)

where, x is the mass displacement of mass m, k is the spring coefficient (ω2 = k
m), γ is

the damping coefficient, F is the amplitude of the sinusoidal driving force.

Solution of the Eqn.2.3 for amplitude of the motion can written as follows:

|X| = F√
(mΩ2 − k )2 + (γ Ω)2

(2.4)

From Eqn. 2.4, it is clear that the oscillation amplitude is directly proportional

to the driving force amplitude. So, this is basically a linear system. Looking at the

the governing equation (differential equation 2.3), we can also see that it is a linear

differential equation.
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Figure 2.2: Damped harmonic oscillator
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Figure 2.3: Frequency response curve of a damped harmonic oscillator
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Fig.2.3 is the frequency response plot of a damped harmonic oscillator which shows

underdamped and overdamped response. From the solution of Eqn.2.4, it can be shown

that under the effect of constant force meaning without the presence of harmonic nature

of the driving force, the response will be as follows:

X = F/k (2.5)

which makes total sense since the frequency is zero and the spring will be stretched at

a fixed amount. Here the question will shrink down to how much the spring will be

stretched under the effect of constant forcing rather than a harmonic force. On the

other hand, if the frequency is very high considering the damping force is small enough,

mΩ2 term will be large enough to dominate in the denominator of Eqn. 2.6 and the

solution can be written as:

lim
Ω→∞

|X| = F

mΩ2
(2.6)

where, Ω → ∞ turns this expression
√

(mΩ2 − k )2 + (γ Ω)2 into mΩ2. This means

that if the system is driven by very high frequencies, the damping will be hardly felt

rather the inertia due to the mass attached will be felt and the applied force will keep

accelerating the system.

It is also noted that the denominator [
√

(mΩ2 − k )2 + (γ Ω)2] is always positive.

When mΩ2 = k , the response,X will be large which will move towards a very large

response if damping is low. In that case, this very large response will be the resonance

of the system. In the case of resonance, the external harmonic forcing frequency will be

the same as natural frequency (ω) of the oscillator (since, k = mω2).

mΩ2 = k

mΩ2 = mω2

Ω2 = ω2

Ω = ω

(2.7)

Fig.2.3 shows the frequency response plot where the peak amplitude refers to the

resonance condition. From the characteristics of the frequency response plot, it is clear
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that for a linear oscillator, there will be no hysteresis region and resonance will occur

exactly when the harmonic driving frequency matches the natural frequency. With the

increase of damping (γ), the response amplitude decreases and hence, the resonance

amplitude decreases as well. In the overdamped condition (γ = 10), the response

starts decreasing from the very beginning with the increasing frequency and for the

underdamped conditions (γ = 0.01 and 0.1), the response is larger closer to resonance

frequency. The plotting is done considering, m = 1,k = 1 and that is why the natural

frequency or the resonance frequency will be at Ω = ω = 1.

Here, we also note that, the restoring force in the spring for linear oscillator is

F = −kx and the potential energy would be V = 1
2kx

2. Fig.1.6.3 shows the potential

curve with k=1;

Another classic example of a linear oscillator is the simple pendulum. Let us assume

a simple pendulum as shown in Fig. 2.5. A very small mass (point mass),m is suspended

from an inextensible light spring of length, L. The bob can swing back and forth in the

vertical plane (x-y plane). The equilibrium position is the point when there is no vertical

deviation of the bob. Let us assume that the bob is displaced by a small angle (θ) with

the downward vertical.

The moment of inertia, I can be written as I = mL2. If the torque acting on the

system is τ , the equation of motion of the pendulum turns out to be:

Iθ̈ = τ (2.8)

The two forces acting on the bob (m) are the tension T , along the string and the

downward gravitational force (mg). The tension has no effect on the torque since the

line of action of the torque passes through the pivot. So, the only force that contributes

to torque is the component of the gravitational force (mgsinθ). Hence the expression

of the torque can be written as:

τ = −mgL sin θ (2.9)

Now, combining Eqn. 2.8 and 2.9, Eqn. 2.10 can be written as:
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Figure 2.4: Potential energy for linear spring
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Figure 2.5: Simple pendulum
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mL2θ̈ = −mgL sin θ

Lθ̈ = − g sin θ

(2.10)

If the angle of deviation from the equilibrium, θ is restricted to be small, from

trigonometry,

sin θ = θ

Under this restriction, the equation of motion (Eqn. 2.10) can be written as:

Lθ̈ + g θ = 0 (2.11)

θ̈ + ω2 θ = 0 (2.12)

where ω =
√
g/L

It is noted that Eqn.2.12 is the similar second order differential equation found earlier in

the spring-mass system. Now, if we consider that the pendulum is driven by harmonic

forcing under the effect of damping, it will be turned out to be an equation of simple

harmonic oscillator.

θ̈ + ω2 θ + γ θ̇ = F cos(Ω t) (2.13)

where, γ is the linear damping coefficient and Ω is the frequency of the harmonic driving

force.

In summary, the simple harmonic oscillator provides a fundamental framework to

describe linear systems. This equation will play a key role in modeling the dynamics of

a nanomechanical resonator which is discussed in the next sections.

2.3 Nonlinear Oscillator

Like linear oscillators, nonlinear oscillators are also used to model a variety of physical

systems or processes [76, 77, 78, 79, 80, 81, 82]. Duffing oscillator and Van der Pole
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oscillator are two well known examples of nonlinear oscillators. Between them, Duffing

oscillator plays an important role to model a nanomechanical resonator. Hence, mod-

eling and characteristics of the Duffing oscillator will be our point of interest in this

section.

Duffing oscillator is basically a modified version of driven harmonic oscillator as dis-

cussed in the previous section (section 2.2). It was named after Georg Duffing (1861

1944). The Duffing oscillator is defined by the following second order nonlinear differ-

ential equation:

ẍ + δ ẋ + β x + αx3 = F cos (ω t ) (2.14)

where, α is responsible for linear stiffness and β controls the nonlinearity of the

system.

the model clearly tells us that the equation differs from the damped driven harmonic

oscillator by a term αx3 of cubic stiffness which is known as nonlinear Duffing term. The

presence of this single term changes the dynamics remarkably. Some of the important

facts of the Duffing equation are given below:

• Exact analytical solution is not available in terms of simple functions. Solutions in

terms of Jacobi elliptic functions do exist but are difficult to deal with in practice.

• A linear combination of solutions will not yield the solution of the Duffing equation

like it does for simple harmonic oscillator since the superposition principle can not

be applicable due to the nonlinear term.

• The solution is strongly dependent on the initial values.

• Frequency response characteristics can show hardening or softening regime de-

pending on the parameters.

• Limit cycles can exist.

The potential energy of the Duffing oscillator can be written as follows:

V (x) =
1

2
βx2 +

1

4
αx4 (2.15)
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In the case of β > 0, the Duffing equation can be described in terms of a nonlinear

spring with a restoring force of F = −αx3−βx. In this case, system will be monostable.

The spring is called a hardening spring if α > 0 and spring will be a softening spring if

α < 0.

For β < 0, the Duffing oscillator represents the double well potential of a point

mass. The dynamics of a harmonically deflected steel beam in between two magnets

can be defined using this parameter setting [Fig. 2.6].

Figure 2.6: Deflected steel beam in between two magnets

Basically, depending on the sign of α and β, the potential and the characteristics of



30

the equilibrium points vary.

• If α and β have same sign with α >0 and β>0, the spring will be in a hard-

ening regime and the potential energy curve will exhibit monostability with one

equilibrium point. Fig. 2.7 depicts this situation.

• If α and β have opposite signs with α >0 and β<0, the spring will be in a hardening

regime and the potential energy curve will exhibit bistability with 3 equilibrium

point. Fig. 2.8 depicts this situation.

• If α and β have same sign with α <0 and β <0, the spring will be in a softening

regime and the potential energy curve will have one unstable equilibrium point.

Fig. 2.9 depicts this circumstance.

• For α and β have opposite sign with α <0 and β >0, the spring will be in a

softening regime and the potential energy curve will have 3 equilibrium points

with 1 stable point. Fig. 2.10 depicts this situation.

Relating to the potential energy curve of a linear spring (Fig.2.4), it can be said that

in case of a Duffing oscillator, the potential energy due to the nonlinear spring could show

bistability and more than one equilibrium point. Hence, the frequency response should

also differ from the linear case. The frequency response curves for Duffing oscillator

are plotted in Fig. 2.11 in 3 different cases. In each case β = 1, δ = 0.1 and F=1 are

considered.

• For α =0 the response will be the same as in the case of linear oscillator. There is

no hysteresis region in the response and the resonance condition is also unchanged

from the linear oscillator.

• For α <0 the response will differ from the case of linear oscillator since the curve

will show response in softening regime. There will be hysteresis region in the

response and the resonance frequency will be lower than the resonance frequency

of linear oscillator.

• For α >0 the response will differ from the case of linear oscillator since the curve

will show response in hardening regime. There will be hysteresis region in the
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response and the resonance frequency will be higher than the resonance frequency

of linear oscillator.

Figure 2.7: Single well potential (hardening regime)

The model of a nanoelectromechanical resonator has similarity with the Duffing os-

cillator. Looking at the models of simple harmonic oscillator and Duffing oscillator,

it is clear that those do not consider nonlinear damping as an energy decaying factor.

Resonators from meter scale to micro scale (in some case even in nano scale) can be

modeled in terms of only linear damping. Eichler et al. [3] performed experiments with

graphene and CNT based nanoresonators and explained the NEMS resonator dynam-

ics with nonlinear damping based on the nonlinear damping theory provided in [26].

They explained graphene/CNT based nanoresonator dynamics modifying the Duffing
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Figure 2.8: Double well potential (hardening regime)
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Figure 2.9: Single well potential(softening regime)
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Figure 2.10: Double well potential(softening regime)
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Figure 2.11: Frequency response of a Duffing oscillator
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equation with an additional higher order nonlinear damping term, ηx2ẋ. This nonlinear

damping term differs with linear damping in such a way that, linear damping (δẋ) is

unchanged with the amplitude of the motion whereas nonlinear damping depends on

the amplitude of the motion (nonlinear damping ∝ amplitude). Model equation of

nanomechanical resonator including nonlinear damping term is given below [3, 26, 66]:

m¨̃x+ kx̃+ αx̃3 + γ ˙̃x+ η̃x̃2 ˙̃x = Fdrive cos(2πf t̃) (2.16)

Here, m represents the effective mass of the resonator, α is the coefficient of cubic

stiffness, k is the linear stiffness coefficient (positive quantity), γ and η are the linear and

nonlinear damping coefficients respectively. The linear stiffness coefficient, k is expressed

as k = mω2
0 (where ω0 = 2πf is the natural frequency of fundamental mode) and

Fdrive, the amplitude of the external force. We reiterate that α > 0 corresponds to the

hardening stiffness regime (with a monostable quartic potential energy function) while

α < 0 corresponds to the softening stiffness regime (with a bistable quartic potential

energy function).

Model Eqn. 2.16 will be our point of interest for the rest of this thesis. The analytical

and computational scheme are based in the nondimesionalised form of this model. The

derivation of the nondimensionalised model of Eqn. 2.16 is given in the next section.

2.3.1 Nondimensionalization

Nondimensionalization is considered to be the first step to deal with the analytical or

numerical solution of a complex differential equation. The reasons behind nondimen-

sionalization are as follows:

• It makes the equation comparatively simple reducing the number of variables.

• Dimensionless equations can be analyzed without any concern about the units of

the physical parameters.

• In numerical simulation, the errors associated with the calculations due to the

physical size of the parameters can be avoided.

• Since nondimensionalization process scales the parameters, it might take less nu-

merical time and cost.
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• Relative importance of the parameters/terms of the model equation is well under-

stood.

Nondimensionalization of the Model Equation

Moving our attention back to Eqn. 2.16 it is clear that x̃, t̃ are the variables and m,

k, γ, α, η, f, Fdrive are the dimensional parameters. First step is to nondimensionalize

the variables x̃ and t̃ into x and t respectively using the dimensional parameters. To do

that let us assume:

x =
x̃

xs

t =
t̃

ts
k = mw2

0

(2.17)

where xs and ts are the scaling factors. These can be expresses as follows:

xs =

√
mw2

0

α

ts =
1

w0

(2.18)

For convenience, let us rewrite the model equation (Eqn. 2.16) with some rearrange-

ments and using ‘ d
dt̃

’ as the notation of the derivative:

m
d2x̃

dt̃2
+mw2

0 x̃+ α x̃3 + γ
dx̃

dt̃
+ η̃ x̃2 dx̃

dt̃
= Fdrive cos ( 2π f t̃ ) (2.19)

Substituting x̃ and t̃ of Eqn.2.19 with the scaling factors of Eqn.2.17:
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m
d2(xxs)

d(ts t)
2 +mw2

0 (xxs) + α (xxs)
3 + γ

d(xxs)

d(ts t)
+

η̃ (xxs)
2 d(xxs)

d(ts t)
= Fdrive cos ( 2π f ts t )

⇒ m
d

d (ts t)

[d(xxs)

d (ts t)

]
+mw2

0 (xxs) + α (xxs)
3 + γ

d(xxs)

d(ts t)
+

η̃ (xxs)
2 d(xxs)

d(ts t)
= Fdrive cos ( 2π f ts t )

(2.20)

⇒ m
xs
ts

d

d (ts t)

[d x
d t

]
+mw2

0 (xxs) + α (xxs)
3 + γ

xs
ts

dx

d t
+

η̃ (xxs)
2 xs
ts

dx

d t
= Fdrive cos ( 2π f ts t )

⇒ m
xs
t2s

d2 x

d t2
+mw2

0 (xxs) + α (xxs)
3 + γ

xs
ts

dx

d t
+

η̃ (xxs)
2 xs
ts

dx

d t
= Fdrive cos ( 2π f ts t )

(2.21)

Now, using the values of xs and ts used in Eqn. 2.18 into Eqn. 2.21:
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⇒ m

√
mw2

0
α

( 1
w0

)2

d2 x

d t2
+mw2

0

(
x

√
mw2

0

α

)
+ α

(
x

√
mw2

0

α

)3
+ γ

√
mw2

0
α

1
w0

dx

d t
+

η̃
(
x

√
mw2

0

α

)2 xs
ts

dx

d t
= Fdrive cos ( 2π f

1

w0
t )

⇒ m

√
mw2

0
α

( 1
w0

)2

d2 x

d t2
+ +mw2

0

(
x

√
mw2

0

α

)
+ α

(
x

√
mw2

0

α

)3
+ γ

√
mw2

0
α

1
w0

dx

d t
+

η̃
(
x

√
mw2

0

α

)2

√
mw2

0
α

1
w0

dx

d t
= Fdrive cos ( 2π f

1

w0
t )

⇒ w3
0

√
m3

α

d2 x

d t2
+ w3

0

√
m3

α
x+ αx3w3

0

(√m

α

)3
+ γw2

0

√
m

α

dx

d t
+

η̃ x2
(√mw2

0

α

)3
w0

d x

d t
= Fdrive cos (

w̃

w0
t )

Here, we usedw = 2π f

⇒ w3
0

√
m3

α

d2 x

d t2
+ w3

0

√
m3

α
x+ x3w3

0

√
m3

α
+ γw2

0

√
m

α

dx

d t
+

η̃ x2
(√mw2

0

α

)3
w0

d x

d t
= Fdrive cos (

w̃

w0
t )

(2.22)

Dividing the whole Eqn.2.22 with w3
0

√
m3

α :

d2 x

d t2
+ x+ x3 +

γ

mw0

d x

d t
+ η̃ x2 w0

α

dx

d t
=

Fdrive
w3

0

√
α

m3
cos (

w̃

w0
t )

⇒ d2 x

d t2
+ x+ x3 + δ

d x

d t
+ η x2 d x

d t
= FD cos (Ω t )

(2.23)
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where,

Ω =
ω

ω0

δ =
γ

mω0

η =
˜η ω0

α

FD =
Fdrive
ω3

0

√
α

m3

(2.24)

which will be used for the rest of this thesis unless specified otherwise.

Finally we can write the final form of nondimensionalized model equation as follows:

ẍ+ x+ x3 + δ ẋ+ η x2 ẋ = FD cos (Ω t ) (2.25)

which is the deterministic model equation of the dynamics of a nanoelectromechanical

resonator. Study of this equation will be our core focus of this thesis.

2.3.2 Parametric Modeling of a Nanomechanical Resonator

Time dependent parameters are common in micro/nano systems. As a result, parametric

excitation often occurs naturally in micro and nanoscale systems. It can be used to

modulate the natural frequency of a resonator even without the presence of an external

excitation. There has been many efforts to model the effect of parametric excitation on

the dynamics of a nano/micro resonator. A popular approach is to model the dynamics

in such a way that parametric excitation can modulate the effective spring constant

of the nanoresonator [83, 84, 85]. Taking parametric excitation into account, using the

same scaled form of a nanoresonator model ( Eqn. 2.25, the dynamics of a nanoresonator

can be modified by introducing a harmonic parametric excitation in the stiffness term

[26, 86] as follows:

ẍ+ δẋ+ [1 +H cos(Ωpt)]x+ x3 + ηx2ẋ = FD cos(Ωdt+ φg) (2.26)

where H is the parametric excitation amplitude that regulates linear stiffness of the

system, Ωd represents the external forcing frequency and Ωp denotes the pump frequency.
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2.3.3 Stochastic Modeling of a Nanomechanical Resonator

One of the objectives of this thesis is to investigate the effect of external stochastic

excitation on the dynamics of the nanoresonator since noise-induced effects are impor-

tant to consider in the micro and nano scales. Lévy flight excitation is chosen as the

stochastic process here since, in several situations, it provides a better representation of

the noise process driving the dynamics than the typically considered white noise process

(Brownian motion). Taking the noise into account, the deterministic model based on

Ordinary Differential Equation (ODE) transforms into Stochastic Differential Equation

Model (SDE). Additional external forcing as stochastic excitation is quite common in

nano/micro scaled system which has been discussed in section 1.6.2 and this stochastic

force is taken into account by introducing the term σξ(t) into Eqn. 2.25:

ẍ+ x+ x3 + δ ẋ+ η x2 ẋ = FD cos (Ω t ) + σξ(t) (2.27)

where, σ represents the noise intensity of the stochastic process ξ(t). In case of white

Gaussian noise process,ξ(t) is a zero-mean, Dirac Delta function correlated process

where the increments are drawn from a Gaussian distribution. On the other hand, the

increments are taken from a Lévy distribution in the case Lévy stochastic process. Lévy

flights are are known to possess extremely long jumps which implies that realizations

can have values far from the mean. It is our interest to see the effect of this Lévy

stochastic excitation on the hysteresis and the Q factor of the nanoresonator. Here, we

note that the mathematical representation of Lévy distribution can be given [87, 88, 89]

as follows:

L(s, γ, µ) =


√

γ
2π

1
( s−µ ) 3/2 e

(− γ
2 ( s−µ )

)
0 < µ < s <∞

0 if s ≤ 0
(2.28)

where, γ > 0 is the width controlling parameter and µ holds for the location of the

distribution peaks. Though the above mathematical representation is complex, Lévy

distribution can simply be represented using a power law:

L(s) ∼ |s|−1−β (2.29)

where, Lévy index, β affects the characteristics of tail regime of a Lévy distribution.
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When β is smaller (closer to zero), longer step sizes are drawn in the distribution whereas

for higher β values (closer to 2), smaller steps are observed in the distribution.

The Lévy distribution can also be represented by its Fourier transform as follows:

F (k) = exp(−α|k|β), 0 < β ≤ 2 (2.30)

where, α is the skewness factor, valued in between -1 and 1; α = 0 indicates that

distribution is symmetric. When β = 2, the Lévy distribution turns into the Gaussian

distribution and for β = 1, the distribution turns into the Cauchy probability distri-

bution. When β is small, the skewness of α becomes significant. As β increases, the

dominance of α decreases.

Fig.2.12 shows the variation of probability distribution characteristics with β. With

the decrease of β, the distribution peak goes higher and the long tailed characteristics

become more dominant (See Fig.2.13). The tail is the shortest when β=2 and it becomes

the normal probability distribution plot.

Fig.2.14 shows the skewness of the probability distribution plot.

• When α < 0, long tail is on the left side making the distribution left skewed.

• When α > 0, long tail is on the right side making the distribution right skewed.

• When α = 0, tails on the both sides are equal making the distribution symmetric.

Fig.2.15 shows the variation of peaks in the probability distribution plot and Fig.2.16

depicts the variation of the width of the distribution curves. With increasing γ, the

width becomes larger and the distribution peaks become smaller.

2.4 Analytical Method

Many of the real life problems we face are nonlinear in nature. In other words, many

real life phenomena can be modeled using nonlinear differential equations. There have

been several methods developed to study the dynamics of a nonlinear system. They

are:

• Perturbation Method
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Figure 2.12: Comparison of β parameters in probability distribution plots. Here,α =
0, γ = 1, µ = 0.
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Figure 2.13: Comparison of β parameters in probability distribution plots (zoomed in).
Long tail is observed. Here, α = 0, γ = 1, µ = 0.
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Figure 2.14: Comparison of α parameters in probability distribution plots. Here,β =
0.5, γ = 1, µ = 0.
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Figure 2.15: Comparison of µ parameters in probability distribution plots. Here, β =
0.5 = 0, γ = 1, α = 0.
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Figure 2.16: Comparison of γ parameters in probability distribution plots. Here, β =
0.5 = 0, µ = 1, α = 0.
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• The Method of Harmonic Balance

• The Method of Krylov and Bogolyubov

• The Method of Multiple Scales

• The Optimal Homotopy Asymptotic Method

• The Optimal Homotopy Perturbation Method

• The Optimal Variational Iteration Method

• Optimal Parametric Iteration Method

Among them, ‘The Method of Harmonic Balance (HBM)’ is our focus in this thesis which

is applied to solve nondimensionalized model equation of a nanomechanical resonator.

If there exists a periodic solution to a differential equation, the solution can be sought

using the terms of the Fourier Series. The steps which are followed to obtain solution

using HBM are given below:

Step 1: Response should be like one of the following forms

x(t) =

M∑
m=0

Am cos(mωt+mβ0)

or

x(t) =
M∑
m=0

Am sin(mωt+mβ0)

or

x(t) =
M∑
m=0

[
Âm cos(mωt) + B̂m sin(mωt)

]
(2.31)

Step 2: It needs to take only one term expansion of the Eqn. 2.31 Say,

x = A1 cos(ωt+ βω0) = A1 cos(φ) (2.32)

Step 3: Substitute the one term expansion in the governing equation.

Step 4: Equate the coefficient of cos(φ) to zero.

Step 5: A1 is considered to be small and a relation between ω and A1 is obtained.
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Step 6: Solution has to be checked.

Step 7: If the solution is not correct, we have to go back to Step 3 where two terms need

to be considered this time.

x = A0 +A1 cos(ωt+ βω0) = A0 +A1 cos(φ) (2.33)

Step 8: Equate the coefficients of cos(φ) and constant terms to zero.

Step 9: Follow steps 5 and 6.

Step 10: If solution is not correctly obtained, an extra term has to be added in Step 7. Say,

x = A0 +A1 cos(φ) +A2 cos(2φ) (2.34)

Step 11: Iterate the steps from Step 7 to Step 10 unless solution with good accuracy is

obtained.

Harmonic balance method is popular in the study of nonlinear vibrations. But there

are disadvantages with this method. Those are as follows:

• Before the formulation of the solution, it is important to know the type of solution,

based upon which a decision can be taken about using HBM method.

• The harmonics which are neglected need to be checked thoroughly in case they

are actually in the higher order or not.

• One has to know which harmonic terms need to be included in the solution.

• If higher number of terms needed in the assumed solution, the corresponding

algebraic calculations can be very tedious.

• Stability analysis is not possible with this method.

Despite having these disadvantages, this method has been proven to be successful in

obtaining solutions in the strongly nonlinear regime where perturbation techniques are

not that much dependable. Further information about this aspect of the harmonic

balance method is available in [90, 91, 92, 93, 94].
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2.5 Numerical Method

In order to obtain numerical solutions of the nondimensionalized model equation of

the nanomechanical resonator, this thesis applies the Euler-Maruyama method [95].

The Euler-Maruyama method integrates first order differential equation and is well

suited to solve stochastic differential equation. This section discusses the basics of

Euler-Maruyama method and how to use this method to solve a stochastic differential

equation.

2.5.1 Euler-Maruyama method

Euler-Maruyama method is a modified version of Euler method of numerical integra-

tion where we also need to convert higher order differential equations into first order

differential equations. When no stochastic terms are considered, the Euler-Maruyama

method yields the Euler method of numerical integration.

A generic stochastic differential in its scalar form can be written as follows:

X(t) = X0 +

∫ t

0
f(X(s))ds+

∫ t

0
g(X(s))dWs (2.35)

where, X0 is the initial value, f and g are the scalar functions. The left integration is

the numerical integration based on the deterministic part and the right integral is based

on the stochastic part of the model. Considering both, X(t) is the stochastic process

(understood as a sequence of random variables realized in each point in time) that is the

solution of the SDE. This integral representation is not conventional when compared

with the deterministic case. The regular way to write equation in terms of a differential

form which is:

dX(t) = f(X(t))dt+ g(X(t))dW (t) (2.36)

where, X(0) = X0 is the initial value, t is defined as 0 ≤ t ≤ T . Then, X(t) will be the

solution of Eqn. 2.35 at each point in time. Here, we note that, there is no mathematical

meaning of dW (t)/t since the derivative of stochastic motion does not exist; however,

the differential exists [95]. If g is zero, the equation is a deterministic ODE which can

be written as dX(t)/dt = f(X(t));X(0) = X0.
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After writing the equation in the differential form as in Eqn. 2.36, next step is to

discretize the interval [0,T] in which the integral has to be computed. If L is a number

of increment, discretized time interval,∆t = T/L. and tj = j∆t. If the approximate

numerical value of X(tj) is written as Xj , the E-M model can be written as:

X(tj+1) = X(tj) + f(X(tj))∆t+ g(X(tj))dW (tj) (2.37)

where j=1,2,3...,L. Looking at the Eqn. 2.37, it is obvious that if we want to calculate

the value of X(tj+1) we need the value from previous step that is the value of X(tj). For

the first step we need to define the initial value and after that the X(tj+1) values are

calculated by loop until the stability of the solution is achieved. Here, it is important

to note that, the convergence of solution depends on the values of simulation time, T

and step size ∆T . Tweaking these values will take us to the converged correct solution.

Like in the case of Brownian noise where dW(t) is determined using a random number

generator based on the normal distribution [95], differential noise of Lev́y distribution

can be determined using a corresponding random number generator available in the

literature [96].

2.5.2 Formulation of Model Equation for Numerical Solution

The focus of our simulation is to numerically solve the model equation of a nanome-

chanical resonator given in Eqn.2.25 and Eqn. 2.27.These two equations can written

using the vector formulation of Ito stochastic differential equations as follows:

dx̄ = Ādt+ B̃ ¯dW (2.38)

where x̄ is the vector valued state variable, W̄ is the Lévy stochastic process vector,

and Ā and B̃ may take the following form:

Ā =

[
x2

−x1 − x3
1 − δx2 − ηx2

1x2 + FDcos(Ωt)

]
(2.39)

B̃ = σ

[
0

1

]
(2.40)
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Eqn. 2.38 is solved numerically based on the Euler method (σ = 0) in case of the

deterministic model (Eqn. 2.25), and the Euler-Maruyama method [95] for stochas-

tic model (Eqn. 2.27) (σ 6= 0). In both cases, step rate of 3000 Hz is used with a

simulation time of 2000 seconds. Lévy noise profiles were randomly generated follow-

ing methods available in the literature [96, 97]. Since the noise profiles are random,

50 Euler-Maruyama simulations are performed in the case of stochastic model and an

average is calculated to ensure the consistency of the results.

2.5.3 Quality Factor

Quality factor of a resonator refers to the amount of energy stored per oscillation with

respect to the amount of energy dissipated per oscillation period. Lower quality factor

indicates higher amount of damping is present in the system and amount of energy lost

is higher. The following equation (Eqn. 2.41) can be used for the standard definition of

quality factor:

Q = 2π
Energy stored

Energy dissipated per cycle
(2.41)

If the system response and resonance are dominated by nonlinearity of the system,

the quality factor can be expressed as follows [66]:

Q = ω0
Ẽ

〈dẼ
dt̃
〉

= 1.09
Ωres

∆Ω
(2.42)

where Ẽ is the energy of the resonator at any time and 〈...〉 indicates time averaging in

such a time period which is longer than the oscillation time period and shorter in the

sense that lower amount of energy lost is marked. Ωres is the resonance frequency and

∆Ω represents resonance width which can be calculated by ∆Ω = 2π[FWHM ] where,

“FWHM is the width at which the profile curve reaches half of its maximum value,

measured from the positive minima value it reaches”[66].

Eichler et al. experimentally showed that the formula Q = 1.09Ωres
∆Ω works correctly

in the case of higher quality factor when the oscillation is found in the high frequency

regime. Since there has not been any experimental evidence found to support this factor

of 1.09 for the lower quality factor, to avoid confusion, the thesis will use the following

relation which serves to characterize the quality factor in any frequency regime:



53

Q ∝ Ωres

∆Ω
(2.43)

Hence, calculating the ratio of the resonance frequency to the resonance width (Ωres
∆Ω )

aids the discussion of enhancement of the Q-factor. We note that Ros et al. [66] also

used Eqn.2.43 to discuss the Q factor.



Chapter 3

Deterministic Results

3.1 Introduction

In this chapter, the nondimensional model equation (Eqn. 2.25) for the deterministic

regime. derived in the previous section, will be solved both analytically and numerically

which will give us a good understanding of the dynamics of a nanomechanical resonator.

Firstly, analytical solution to the model will be sought using the method of harmonic

balance. Then, accuracy of the analytical solution will be investigated using numerical

simulation. Since the understanding of the dynamics of a nanomechanical resonator

greatly relies upon its frequency response characteristics, the analytical solution and

numerical methods will be used to analyze the same. The hysteresis analysis is added

considering the effects of nonlinear damping and external drive on the hysteresis regime.

Finally, the deterministic model with parametric excitation is studied where the exci-

tation is regarded as of the harmonic type. The analysis of this chapter will be used as

a basis to study the stochastic model in the next chapter.

3.2 Analytical Frequency-Amplitude Relation

Classical perturbation methods yield impressively accurate results within a range of

frequencies which are closer to the frequencies of the undamped system [90]. However,

systems with strong nonlinearity are not well understood with these methods. On

the contrary, the harmonic balance method can be reliably applied to the systems with

54
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strong nonlinearity [90] showing remarkable similarity between analytical and numerical

solution. Considering this fact, we use the harmonic balance method to analytically

solve Eqn.2.25.

Considering only one term in the expansion as stated in Section 2.4,it can assumed

that:

x = X cos(Ωt+ φ) (3.1)

where, X is the maximum response displacement of the resonator under harmonic forc-

ing. Taking the first and second derivative of the assumed solution:

ẋ = −ΩX sin(Ωt+ φ)

ẍ = −Ω2X cos(Ωt+ φ)

(3.2)

Substituting the values of x, ẋ and ẍ into the Eqn. 2.25:

−Ω2X cos(Ωt+ φ) +X cos(Ωt+ φ) + δ[−ΩX sin(Ωt+ φ)] +(
X cos(Ωt+ φ)

)3
+ η[X cos(Ωt+ φ)]2[−ΩX sin(Ωt+ φ)] = FD cos(Ωt)

=⇒ cos(Ωt+ φ)[(1− Ω2)X]− δΩX[sin(Ωt+ φ)] +
1

4
X3[4 cos3(Ωt+ φ)]

−ηΩX3[cos2(Ωt+ φ)] sin(Ωt+ φ) = FD cos(Ωt)

=⇒ cos(Ωt+ φ)[(1− Ω2)X]− δΩX[sin(Ωt+ φ)] +
1

4
X3
[
3 cos(Ωt+ φ) +

cos
(

3(Ωt+ φ)
)]
− ηΩX3[cos2(Ωt+ φ)] sin(Ωt+ φ) = FD cos(Ωt)

=⇒ cos(Ωt+ φ)[(1− Ω2)X]− δΩX[sin(Ωt+ φ)] +
1

4
X3
[
3 cos(Ωt+ φ) +

cos
(

3Ωt+ 3φ
)]
− ηΩX3[1− sin2(Ωt+ φ)] sin(Ωt+ φ) = FD cos(Ωt)

(3.3)
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Since it is assumed that the solution contains the first harmonics only, neglecting the

3Ωt term:

cos(Ωt+ φ)[(1− Ω2)X]− (δΩX)[sin(Ωt+ φ)] +
1

4
X3
[
3 cos(Ωt+ φ)

]
+

−ηΩX3[sin(Ωt+ φ)− sin3(Ωt+ φ)] = FD cos(Ωt)

=⇒ cos(Ωt+ φ)[(1− Ω2)X]− (δΩX)[sin(Ωt+ φ)] +
3

4
X3 cos(Ωt+ φ) +

−ηΩX3[sin(Ωt+ φ)] + ηΩX3[sin3(Ωt+ φ)] = FD cos(Ωt)

=⇒ cos(Ωt+ φ)[(1− Ω2)X]− (δΩX)[sin(Ωt+ φ)] +
3

4
X3 cos(Ωt+ φ) +

−ηΩX3[sin(Ωt+ φ)] +
1

4
ηΩX3[4 sin3(Ωt+ φ)] = FD cos(Ωt)

=⇒ cos(Ωt+ φ)[(1− Ω2)X]− (δΩX)[sin(Ωt+ φ)] +
3

4
X3 cos(Ωt+ φ) +

−ηΩX3[sin(Ωt+ φ)] +
1

4
ηΩX3[3 sin(Ωt+ φ)− sin 3(Ωt+ φ)] = FD cos(Ωt)

=⇒ cos(Ωt+ φ)[(1− Ω2)X]− (δΩX)[sin(Ωt+ φ)] +
3

4
X3 cos(Ωt+ φ) +

−ηΩX3[sin(Ωt+ φ)] +
1

4
ηΩX3[3 sin(Ωt+ φ)− sin(3Ωt+ 3φ)] = FD cos(Ωt)

(3.4)

Again, neglecting the 3Ωt term:

=⇒ cos(Ωt+ φ)[(1− Ω2)X]− (δΩX)[sin(Ωt+ φ)] +
3

4
X3 cos(Ωt+ φ) +

−ηΩX3[sin(Ωt+ φ)] +
1

4
ηΩX3[3 sin(Ωt+ φ)] = FD cos(Ωt)

=⇒ cos(Ωt+ φ)[(1− Ω2)X +
3

4
X3]− sin(Ωt+ φ)[δΩX + ηΩX3 − 3

4
ηΩX3]

= FD cos(Ωt)

(3.5)
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For the simplification of the algebraic calculation, let us assume:

(1− Ω2)X +
3

4
X3 = A

and

δΩX + ηΩX3 − 3

4
ηΩX3 = B (3.6)

So, Eqn. 3.5 will be converted into:

cos(Ωt+ φ)A− sin(Ωt+ φ)B = FD cos(Ωt)

=⇒ [cos(Ωt) cosφ− sin(Ωt) sinφ]A− [sin(Ωt) cosφ+ cos(Ωt) sinφ]B

= FD cos(Ωt)

=⇒ cos(Ωt)[A cosφ−B sinφ] + sin(Ωt)[−A sinφ−B cosφ] = FD cos(Ωt)

(3.7)

Equating the coefficients of cos(Ωt) from Eqn. 3.7:

A cosφ−B sinφ = FD (3.8)

and equating the coefficients of sin(Ωt) from Eqn. 3.7:

−A sinφ−B cosφ = 0 (3.9)

Taking square in Eqn. 3.8 and Eqn. 3.9 :

A2 cos2 φ− 2AB sinφ cosφ+B2 sin2 φ = F 2
D (3.10)

A2 sin2 φ+ 2AB sinφ cosφ+B2 cos2 φ = 0 (3.11)

Summing up the squared equations (Eqn. 3.10 and Eqn. 3.11):

A2(cos2 φ+ sin2 φ) +B2(cos2 φ+ sin2 φ) = F 2
D

=⇒ A2 +B2 = F 2
D (3.12)

Substituting the values of A and B from Eqn. 3.6 into the Eqn. 3.12:
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[
3

4
X3 + (1− Ω2)X]2 + Ω2X2[δ +

1

4
ηX2]2 = F 2

D

=⇒ [
3

4
X3 + (1− Ω2)X]2 + Ω2X2(δ +

1

4
ηX2)2 = F 2

D

=⇒ 9

16
X6 + (1− Ω2)2X2 +

3

2
X4(1− Ω2) + Ω2X2

[
δ2 +

1

2
δηX2 +

1

16
η2X4

]
= F 2

D

=⇒ 9

16
X6 + (1− 2Ω2 + Ω4)X2 +

3

2
X4(1− Ω2) + Ω2

[
δ2X2 +

1

2
δηX4 +

1

16
η2X6

]
= F 2

D

=⇒ Ω4X2 + Ω2
[ 1

16
η2X6 +

1

2
δηX4 − 3

2
X4 + δ2X2 − 2X2

]
= F 2

D

(3.13)

Eqn. 3.13 is quadratic in Ω2 and now, solving for Ω2:

Ω2 = (− 1

32
η2X4 +

3

4
X2 − 1

4
ηX2δ − 1

2
δ2 + 1)±[( 1

32
η2X4 − 3

4
X2 +

1

4
ηX2δ +

1

2
δ2 − 1

)2
− (

9

16
X4 +

3

2
X2 −

F 2
D

X2
+ 1)

] 1
2

(3.14)

Neglecting negative values of Ω:

Ω1,2 =

[
(− 1

32
η2X4 +

3

4
X2 − 1

4
ηX2δ − 1

2
δ2 + 1)±[( 1

32
η2X4 − 3

4
X2 +

1

4
ηX2δ +

1

2
δ2 − 1

)2
−

(
9

16
X4 +

3

2
X2 −

F 2
D

X2
+ 1)

] 1
2

] 1
2

(3.15)

Eqn. 3.15 establishes the relation between frequency (Ω) and amplitude. In this

thesis it is assumed that linear damping to be very low (δ << 1) unless stated otherwise.

Hence, after applying δ << 1, Eqn. 3.15 can be written as follows:

Ω1,2 =

[
(− 1

32
η2X4 +

3

4
X2 + 1)±

(
(

1

32
η2X4 − 3

4
X2 − 1)2−

(
9

16
X4 +

3

2
X2 −

F 2
D

X2
+ 1)

) 1
2

] 1
2

(3.16)
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Here we also note that up sweep frequency response is represented by the following

equation taking the negative (-) sign from the ± sign of Eqn.3.16:

Ωupsweep =

[
(− 1

32
η2X4 +

3

4
X2 + 1)−

(
(

1

32
η2X4 − 3

4
X2 − 1)2−

(
9

16
X4 +

3

2
X2 −

F 2
D

X2
+ 1)

) 1
2

] 1
2

(3.17)

and down sweep of the frequency response is denoted by the following equation taking

the positive (+) sign of the ± sign from Eqn.(3.16):

Ωdownsweep =

[
(− 1

32
η2X4 +

3

4
X2 + 1) +

(
(

1

32
η2X4 − 3

4
X2 − 1)2−

(
9

16
X4 +

3

2
X2 −

F 2
D

X2
+ 1)

) 1
2

] 1
2

(3.18)

Using the analytical solution found above, some of the frequency response plots (Fig.

3.1) of a nanomechanical resonator based on the analytic solution are given here which

will be used next to determine the accuracy of the solution.

Fig. 3.1 depicts frequency response plot with varying nonlinear damping. It shows

that with the increase of nonlinear damping, the amplitude of the resonator goes down.

This is reasonable since additional damping will cause greater energy loss in the os-

cillation and hence amplitudes will be smaller. It is also noted that with increase of

nonlinear damping, resonance frequency goes down as well. The figure also clearly tells

us that the resonator is in the hardening regime and hence the resonance frequency is

greater than unity.

Using numerical solution posted next and the analytical solutions shown here, the

next sections will be discussing about the important characteristics of the dynamics of

a nanomechanical resonator.

3.3 Numerical Frequency-Amplitude Relation

In this section, numerical solution of the governing deterministic differential equation

of a nanomechanical resonator (Eqn. 2.25) is solved using Euler method discussed in
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Figure 3.1: Frequency response plot of a nanomechanical resonator based on the analytic
solution. From top to bottom η = 1.3, 2.0 and 3.5 respectively. Here, FD = 0.2, δ =
0.001.
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the Sec. 2.5. The initial values of the two state variables were taken to be zero. Some

of the frequency response plots (Fig. 3.2) of a nanomechanical resonator based on the

numerical solution are given at this point. With the same parameter values of η, FD, δ,

the plot shows same qualitative relation with the analytical solution. That is, with the

increase of nonlinear damping, resonance frequency and amplitude both go down and

the resonator is operating in the hardening regime as well.

Figure 3.2: Frequency response plot of a nanomechanical resonator based on the
numerical solution. From top to bottom η = 1.3, 2.0 and 3.5 respectively. Here,
FD = 0.2, δ = 0.001.
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3.4 Comparison of Analytical and Numerical Frequency-

Amplitude Relation

The accuracy of the analytical solution (Eqn. 3.16) based on the Harmonic balance

method will be determined here with the help of numerical solution using Euler method.

To do that, both of solutions posted earlier in Fig. 3.1 and Fig. 3.2 are superimposed

in a single figure below having the same parameter values (FD = 0.2, δ = 0.001 and

η = 1.3, 2.0 and 3.5).

Figure 3.3: Superposition of frequency response plots of a nanomechanical resonator
based on the numerical and analytical solution. From top to bottom η = 1.3, 2.0 and
3.5 respectively. Here, FD = 0.2, δ = 0.001.

Looking at the combined plot of numerical and analytical solution in Fig. 3.3, it

can be clearly said that the solution obtained using the method of harmonic balance

(Eqn. 3.16 shows excellent agreement with the numerical solution in each of the fre-

quency response curve which establishes that the harmonic balance solution is accurate.
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Additionally, it asserts the validity of the harmonic balance method in case of strong

nonlinearity as well.

The only discrepancy between the numerical and analytical solutions is found in the

neighbourhood of Ω ∼ 1
3 . It will be easier to address this point by looking closely at

the time response plot of the numerical solution of Eqn.2.25 at that frequency.

Figure 3.4: Time-Displacement plot of a resonator’s response in some limited time
frame. Initial value is zero. Here, FD = 0.2, δ = 0.001,Ω = 1.2, η = 1.3.

Fig.3.4 shows the time response plot at a frequency of Ω = 1.2 with a nonlin-

ear damping coefficient of η = 1.3. At this frequency the maximum displacement

value matches with the analytical one (Xmax=0.795) in Fig.3.3. In the same way, the

time response plot of Fig.3.5 using the same numerical parameters at the frequency of

Ω = 0.34 indicates that the maximum displacement value (Xmax) with numerical solu-

tion is around 0.214. However, Fig.3.3 gives us this value to be around 0.219. So,there

is an error of around 2.33%. The reason behind this mismatch lies in the assumption

underlying the harmonic balance method. In the harmonic balance method, it is as-

sumed that the solution is harmonic. Whereas, looking at the time response plot it is

clear that at Ω = 0.34, the response is sub-harmonic and at Ω = 1.2, the response is har-

monic. Since, the analytical solution explicitly assumed that the solution is harmonic in
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Figure 3.5: Time-Displacement plot of a resonator’s response in some limited time
frame. Initial value is zero. Here, FD = 0.2, δ = 0.001,Ω = 0.34, η = 1.3.

Figure 3.6: Time-Velocity plot of a resonator’s response in some limited time frame.
Initial value is zero. Here, FD = 0.2, δ = 0.001,Ω = 1.2, η = 1.3.
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Figure 3.7: Time-Velocity plot of a resonator’s response in some limited time frame.
Initial value is zero. Here, FD = 0.2, δ = 0.001,Ω = 0.34, η = 1.3.

all frequencies which is not entirely true, the mismatch occurs. However, the fact that

the dynamics is not entirely sub-harmonic is the redeeming feature here. Otherwise,

the method of harmonic balance would have provided insufficiently accurate results for

the other parameter values considered in this model. To support this reasoning, time-

velocity plots are also added in Fig.3.6 with Ω = 1.2 and Fig.3.7 with Ω = 0.34. These

plots also show full harmonic time-velocity for Ω = 1.2 and sub-harmonic time-velocity

for Ω = 0.34.

3.5 Comparison with Perturbation Method Solution

Previously, secular perturbation theory ([98, 99]) was applied [26] to get the analytic

solution of Eqn. 2.25. That solution is given here in terms of notations followed in this

thesis. The full derivation can be found in [26].

Ω1,2 = ε

[
3

8

√
Xε± 1

8

[ 1√
Xε

(
16
(FD
ε
3
2

)2
−
√
Xε(4 + η

√
Xε)2

)] 1
2

]
+ 1 (3.19)
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where, ε is the small expansion parameter known as the perturbation parameter and

ε<<1. This does not accurately match with the numerical results for different cases.

Particularly, under the effect of higher driving force FD when the oscillation amplitude

is larger, the mismatch is quite pronounced. Considering this discrepancy, we chose to

use the harmonic balance method which ended up showing excellent agreement with

the numerical solution even under higher external drive amplitudes.

Figure 3.8: Comparison of Numerical and harmonic balance and Perturbation solution
of maximum oscillation amplitude vs Ω in case of small external drive amplitude (FD =
0.001). Here, ε = 0.001, η = 1.6, δ = 0.001

Fig. 3.8 shows that there is a noteworthy match among numerical, harmonic balance

and perturbation method solution when the oscillation amplitude is small under lower

driving amplitude whereas Fig. 3.9 shows the dissimilarity of perturbation solution with

harmonic balance and numerical solution under higher driving force.

Another limitation with the perturbation solution found here is that, as is to be

expected, the solution depends on the perturbation parameter (ε). It is also noted that,
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Figure 3.9: Comparison of Numerical, harmonic balance and perturbation solution of
maximum oscillation amplitude vs Ω in case of large external drive amplitude (FD =
0.2).Here, ε = 0.1, η = 0.5, δ = 0.001
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the sub-harmonic resonance near Ω ∼ 1/3 is also not found using this method jusy like

in the case of the harmonic balance method. In summary, the method of harmonic

balance is an excellent choice to study the dynamics of a nanomechanical resonator.

3.6 Additional Analytical Relations

The method of harmonic balance not only gives us the frequency-amplitude relation but

also yields some other relations which contribute to an in-depth understanding of the

dynamics of a nanomechanical resonator.

From the previously assumed solution of equation Eqn. 2.25 x = Xcos(Ωt+φ), and

going a little back from Eqn. 3.16 using Eqn. 3.9 (equating the coefficients of sin(Ωt)),

it can be shown that phase angle is related to the nonlinear damping coefficient η by

following relation. Here we note that the relationship is obtained imposing the condition

of linear damping being very small (δ << 1). Plot for phase angle is given in Fig.3.10

tanφ = − ηΩX2

4 + 3X2 − 4Ω2
(3.20)

The phase angle can used to characterize the resonance frequency (Ωres) of a nanores-

onator. In the presence of a smaller external forcing frequency (Ω <<Ωres), the phases

of the resonator and driving force are the same. In contrast, the phase response of the

resonator shows disagreement with the external drive when the frequency is larger. The

higher the driving frequency, the more the resonator is out of of phase with the exter-

nal drive. When the driving frequency is same as the resonance frequency, the phase

response is −π/2 and the phase response reaches −π when the frequency is very high

(Ω > > Ωres). Here we also note that in both high and low frequency regions, the phase

response of the resonator is nearly identical for different nonlinear damping coefficients.

Alternatively stated, the variation of the phase response under different conditions is

marked only when the driving frequency is close to the resonance frequency (Ω ≈ Ωres).

Fig.3.10 also illustrates the relation between nonlinear damping and resonance fre-

quency. Under higher nonlinear damping, the phase angle reaches −π/2 earlier than in

the case of lower nonlinear damping. Hence, the resonance frequency gets smaller with

increasing nonlinear damping coefficient (η). This statement is also found to be true in

the frequency response plot shown earlier (Fig. 3.1).
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Figure 3.10: Variation of phase angle with frequency. Here, FD = 0.2, δ =0.001. η=
0.5 (red star), 1.0 (blue circle), 1.6 (black triangle).
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Figure 3.11: Frequency response under different driving forces,FD. Here, η = 1.5, δ
=0.001. FD varies from top to bottom as FD = 0.3, 0.2, 0.1 respectively.
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Turning to a related question, here a relation between resonance amplitude (Xres)

and resonance frequency (Ωres) is derived. As stated earlier, Fig. 3.1 shows frequency

response curves of a nanoresonator varying the nonlinear damping coefficient. Another

set of frequency response curves are plotted in Fig.3.11 varying the driving force while

keeping the nonlinear damping constant. In both cases, Fig.3.1 and Fig. 3.11 show

that the curves are differentiable at every point of Ω-Xmax plane (C1 continuity exists).

Moreover, maximum amplitude occurs at the resonance frequency. So, imposing the

condition of dXdΩ = 0 at maximum where the amplitude refers to the resonance amplitude

(Xres) and frequency refers to the resonance frequency (Ωres) should give us a relation

between maximum amplitude and resonance frequency. The condition will be imposed

on Eqn. 3.13. Under very weak linear damping (δ <<1) the Eqn.3.13 will be turned

into:

Ω4X2 + Ω2
[ 1

16
η2X6 − 3

2
X4 − 2X2

]
= F 2

D (3.21)

Taking derivative both sides of Eqn.3.21 with respect to Ω and putting dX
dΩ = 0:

X2(−4Ω + 4Ω3) +
3

2
X4(−2Ω) +

1

16
η2X6(2Ω) = 0

=⇒ X2(4Ω3 − 4Ω)− 3ΩX4 +
1

8
η2X6Ω = 0

=⇒ (4Ω3 − 4Ω)− 3ΩX2 +
1

8
η2X4Ω = 0

=⇒ (4Ω2 − 4)− 3X2 +
1

8
η2X4 = 0

=⇒ 4(Ω2 − 1) = 3X2 − 1

8
η2X4

=⇒ Ω2 − 1 =
3

4
X2 − 1

32
η2X4

=⇒ Ω2 = 1 +
3

4
X2 − 1

32
η2X4

=⇒ Ω = ±
√

1 +
3

4
X2 − 1

32
η2X4

(3.22)

Neglecting negative sign:

Ωres =

√
1 +

3

4
X2
res −

1

32
η2X4

res (3.23)
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Eqn.3.23 provides resonance amplitude, Xres if the corresponding resonance fre-

quency, Ωres is known and vice versa. Fig.3.12 shows the plot of resonance amplitude

(Xres) and resonance frequency (Ωres) using Eqn.3.23 and numerical solution under

different nonlinear damping conditions keeping the driving force fixed. The plot shows

remarkable agreement in between numerical and analytical solution (Eqn.3.23).

Figure 3.12: Validation of Eqn.3.23 by plotting Xres vs Ωres. From left to right η =0.8,
0.7, 0.6, 0.5, 0.4, 0.3 and 0.2 respectively. FD = 0.2, δ=0.001.

3.7 Hysteresis Study in Deterministic Regime

It is well known that the Duffing oscillator shows frequency dependent hysteresis behav-

ior. Since the dynamics of a nanoresonator is modeled based on the Duffing equation,
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hysteresis phenomenon of a nanoresonator is a natural topic to study. Here, firstly hys-

teresis is studied based on the nonlinear damping and then the effect of external drive

on the hysteresis region is analyzed.

3.7.1 Hysteresis due to Nonlinear Damping

To study the effect of nonlinear damping on the hysteresis regime, nonlinear damping

coefficient (η) is tweaked to observe hysteresis at a certain driving force. Using this

procedure, several frequency response curves were plotted. Fig. 3.13 shows frequency

response graph where nonlinear damping is varied keeping the external drive fixed. The

result shows that with an increase in nonlinear damping (from η = 0.2 to η = 0.5) the

hysteresis region shrinks and at one point the hysteresis region vanishes (η = 1.6). It

is also noted that the hysteresis region shrinks in such a way that the lower frequency

of the hysteresis width is fixed and higher frequency gets lower with the increase of

nonlinear damping. In other words, the hysteresis window moves towards the lower

frequency region with increasing nonlinear damping.

In the Fig.3.13, double arrow line represents the width of hysteresis region. For

η = 1.6 and FD = 0.2, there exists no hysteresis. Hence, no double arrow line is visible.

It is noted that, the frequency response curves plotted here are based on the numerical

solutions and not using analytical solutions.

A set of frequency response curves are plotted in Fig. 3.14 below in the hysteresis

regime both numerically and analytically with varying nonlinear damping. It offers a

little more insight into the analytical solution using the harmonic balance method and

the numerical solution using Euler method.

From Fig. 3.14 it is clear that in the hysteresis regime, two solutions emerge from

the numerical method whereas there exist three possible solutions per the analytical

method. The reason behind this apparent discrepancy is that the dotted analytical

solutions of hysteresis width presented in Fig.3.14 represent the unstable solutions and

the unstable solutions cannot be found in reality [66]. The unstable branches of the

frequency response curves are only visible where hysteresis is found (see Fig.3.14, Fig.3.2

and Fig.3.2).
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Figure 3.13: Hysteresis width affected by nonlinear damping. Maximum oscillation
amplitude vs Ω From top to bottom η=0.2, 0.5 and 1.6. Here, FD = 0.2,δ = 0.001.
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Figure 3.14: Hysteresis width affected by nonlinear damping. Maximum oscillation
amplitude vs Ω From top to bottom η=0.2, 0.5 and 1.0. Here, FD = 0.2,δ = 0.001.
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Features of the Numerical Solution

The solution in hysteresis regime is easier to obtain if one follows the analytical relation

for upsweep and downsweep using Eqn.3.17, Eqn.3.18 or Eqn.3.16. However, one has

to be careful when obtaining the numerical solution as highlighted below:

• If the initial value is kept fixed at zero for each frequency in the loop of the

numerical solution, one will end up getting the same amplitude. Hence, bistability

will be invisible if exists. Fig.3.17 is plotted with zero initial value which represents

a time response in the downsweep regime of the hysteresis area.

• The initial value has to be changed for each frequency in such a way that the

amplitude and velocity of the previous frequency should be used as the initial

value of the next frequency. Fig.3.15 shows this time response plot at Ω = 1.54.

The final value of displacement and velocity of Ω = 1.535 are used as initial values

time response plot at Ω = 1.54.

• In some cases, step size and simulation time might require a change. So, in

the hysteresis regime, to avoid confusion, it is recommended to tweak step size

and simulation time to let the solution develop completely. Fig.3.15 is generated

using a step size of 1/6000 and simulation time of 6000 sec. Whereas, Fig.3.17 is

generated using a step size of 1/1000 and simulation time of 1000 sec. Using a

lower simulation time here, one would see a wrong time response curve which will

make the frequency response curve wrong as well at this frequency. Fig. shows

this incorrect plot.

3.7.2 Hysteresis due to External Drive

To study the effect of harmonically driven external forcing (FD) on the hysteresis region,

the driving force is tweaked to see the existence of hysteresis at a fixed value of the

nonlinear damping coefficient. Using this procedure, several frequency response curves

are plotted (Fig. 3.18. The results show that the hysteresis window gets smaller with

decreasing driving force (from FD = 0.25 to FD = 0.05). However, the amount of this

shrinkage with lowering driving force is not as much as it is in the case of increasing
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Figure 3.15: Time response at zero initial value. Here, η = 0.2, FD = 0.2,δ = 0.001,Ω =
1.54.Step size=1/6000 and simulation time=6000 sec.

Figure 3.16: Time response at initial value of displacement=1.3674 and velocity=1.9088.
Here, η = 0.2, FD = 0.2,δ = 0.001,Ω = 1.54.
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Figure 3.17: Time response at zero initial value. Here, η = 0.2, FD = 0.2,δ = 0.001,Ω =
1.54. Step size=1/1000 and simulation time=1000 sec.

nonlinear damping. It is also noted that with a decrease in external drive, resonance

frequency and resonance amplitude are both reduced.

To support this numerical simulation, both analytical and numerical plots are given

in Fig.3.19 which exhibit remarkable match between the analytical and numerical so-

lutions. It is clear that there exists a subharmonic resonance near Ω ∼ 1/3 and this

resonance dies out with decreasing the amplitude of the harmonic external forcing.

3.8 Linear Damping

Study of the frequency response characteristics of a nanoresonator based on the analyt-

ical solution of Eqn. 3.15 is presented here. Increasing the linear damping coefficient

δ, keeping the nonlinear damping fixed, here we varied the linear damping coefficient

(δ). The result shows that with the increase of linear damping, it dominates over the

nonlinear damping and hence it makes the curves flatter by reducing the oscillation am-

plitude. Fig. 3.20 shows this phenomenon where linear damping coefficients are varied

from top to bottom as follows: δ = 1× 10−3, 8× 10−2, 2.5× 10−1, 8× 10−1.

Moreover, since the frequency response gets flatter, it can be undoubtedly concluded
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Figure 3.18: Hysteresis region affected by external drive. Maximum oscillation ampli-
tude vs Ω. From top to bottom FD=0.25, 0.13 and 0.05. Here, η = 0.5, δ = 0.001.
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Figure 3.19: Plot of maximum oscillation amplitude vs Ω using numerical solution and
HBM method. From top to bottom FD=0.25, 0.13 and 0.05. Here,η = 0.5, δ = 0.001.
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Figure 3.20: Maximum oscillation amplitude vs Ω due to the change in linear damping.
From top to bottom, δ = 1×10−3, 8×10−2, 2.5×10−1, 8×10−1. Here, FD = 0.2, η = 1.6.
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that in the case of nanoresonators, the Q-factor decreases with the increase of linear

damping akin to linear resonators.

3.9 Parametric Excitation

Studying the dynamics of a nanoresonator it is found that in the presence of both

external drive and parametric excitation, the frequency response differs from the case

of exclusive presence of external drive in such a way that for the combined case, the

oscillation amplitude of the resonator is near zero at all places except in the neighbour-

hood of resonance frequency. In order to understand how parametric forcing affects

the quality factor, here it is studied how the ratio of pump frequency and driving fre-

quency (ΩP /ΩD) affects the dynamics of a nanoresonator. It is observed that with an

increase in the ΩP
ΩD

ratio, the resonance width shrinks and at the same time the reso-

nance frequency decreases as well. This result implies that the ΩP
ΩD

ratio does not have

a noteworthy impact on the Q-factor. It also needs to be noted that the resonant shift

becomes smaller when the pump frequency (ΩP >> ΩD) becomes very high. Fig.3.21

provides the frequency response curves varying the ratios of pump frequency and driving

frequency (ΩP /ΩD) and Fig. 3.22 depicts the variation of resonance frequency changing

the ΩP /ΩD values.

The frequency response curves plotted in Fig.3.21 follows similar trends found in

Rhodes et al. [100] where they studied the response of a nanoresonator considering

parametric excitation based on the the linear Mathieu equation model.

The effect of variation of parametric forcing amplitude on the frequency response

curve is studied here at this point. Keeping the ratio of pump frequency and driving

frequency fixed at ΩP
ΩD

=2, an increase in the harmonic oscillation amplitude resulted in

the higher resonance amplitude. At the same time, a slight increase in the resonance

frequency is also noted. This phenomenon is plotted in Fig.3.23

3.10 Deterministic Results: Conclusion

The analysis based on the deterministic model of a nanomechanical resonator is pre-

sented in this chapter. The results lead to several important conclusions:
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Figure 3.21: Frequency response under parametric excitation. Here, H=0.5, FD = 0.1,
η = 1.6, φg = 0, δ = 0.001.
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Figure 3.22: Variation of resonant frequency at different external and parametrically
driven frequency conditions. Here, H=0.5, FD = 0.1, η = 1.6, φg = 0, δ = 0.001.



85

Figure 3.23: Variation of resonance amplitude and resonance frequency at different para-
metric forcing amplitudes. From right to left, H=0.2,0.27,0.35,0.42 and 0.5 respectively.
Here, FD = 0.1, η = 1.6, φg = 0, δ = 0.001.
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• The method of Harmonic Balance is a reliable and effective tool to study the

dynamics of a nanomechanical resonator. Our results underscore its superiority

over the perturbation method.

• Hysteresis in the frequency response curves of a nanomechanical resonator can be

controlled by both nonlinear damping and external harmonic forcing. Increasing

the magnitude of nonlinear damping coefficient leads to shrinkage in the hystere-

sis width while an increase in the driving force results in the expansion of the

hysteresis region.

• Interesting phenomena like subharmonic resonance are only visible in the numeri-

cal simulation. On the other hand, unstable branches of frequency response curves

are visible only in the analytic solution.

• Resonance frequency and resonance amplitude can be explained elegantly in terms

of phase response curves. This can be accomplished deriving a new relation using

the analytical frequency-amplitude relation. Resonance is marked in the phase

response curve when the phase angle is −π.

• If the linear damping is not too low, it will dominate the dynamics. An increase in

the linear damping flattens out the frequency response curves which is undesirable

in sensing applications.

• Effect of parametric harmonic excitation on the deterministic dynamics is also

studied here. Increasing the ratio of pump frequency and external driving fre-

quency ΩP
ΩD

, resonance width shrinks and at the same time resonance frequency

decreases as well. Increasing the harmonic oscillation amplitude results in higher

resonance amplitude with a small increase in the resonance frequency.

In summary, these results together provide significant insights into multiple aspects

of the nonlinear dynamics of a nanomechancial resonator. The deterministic analysis

described in this chapter provides the basis for the study of dynamics in the stochastic

regime.



Chapter 4

Q-factor and Stochastic Dynamics

It has already been mentioned in Chapter 1 (Sec. 1.6) that one of the main objectives of

this thesis is to study the dynamics of a nanomechanical resonator in stochastic regime.

In this chapter, the modelled equation (Eqn. 2.27) outlined in the Sec.2.3.3 will be

solved numerically based on the Euler-Maryuma method. The effect of noise on the

hysteresis regime of a frequency response curve is also analyzed here. Additionally,

this section will discuss how the quality factor of a nanoresonator can be increased

both in deterministic and stochastic regime which is crucial in sensing scheme using a

nanoresonator.

4.1 Hysteresis Study in Stochastic Regime

Similar to the deterministic study, stochastic effect on the hysteresis region is discussed

in this section. Previously, Ros et al. [66] studied the effect of stochastic excitation on

the hysteresis characteristics of a nanoresonator based on white Gaussian noise excita-

tion. It is restated that in this thesis, the effects of Lévy flight as a form of external

forcing on the hysteresis nature of frequency response curve is studied by solving Eqn.

2.27 applying the Euler-Maruyama scheme and Mantegna’s algorithm [97]. β = 1.5 is

considered for Lévy flight excitation in a symmetric distribution (See Eqn.2.30. Fig.4.1

shows the numerically generated probability density function for Lévy stable stochastic

process used in the simulation.

It is found that hysteresis window shrinks as a result of increasing noise intensity
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Figure 4.1: Numerically generated probability density function for Lévy stable stochastic
process used in the simulation. Here,β = 1.5.
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(σ). Fig.4.2 and Fig.4.3 show this phenomenon where, η = 0.2, FD = 0.2, δ << 1

and noise intensity was taken as σ=0.002, and σ=0.005. Ros et al.[66] observed similar

frequency response characteristics studying the system under the influence of white

Gaussian noise. The key take way from this study is that the width of hysteresis region

shows much more sensitivity in the presence of Lévy excitation. It is also noted that

the hysteresis width not only gets smaller due to increase in noise intensity but also the

hysteresis window moves toward the higher frequency region.

Figure 4.2: Maximum oscillation amplitude vs Ω showing the decrease in hysteresis
width due to noise(σ = 0.002). Here, δ = 0.001, η = 0.2.
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Figure 4.3: Maximum oscillation amplitude vs Ω showing the decrease in hysteresis
width due to noise(σ = 0.005). Here, δ = 0.001, η = 0.2.
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4.2 Q-factor

It is clear from the literature review that Q-factor plays an important role in sensory ap-

plications. There exists an inversely proportional relationship in between Q-factor of a

nanoresonator and resonance width ∆Ω alike linear resonators [66]. Considering exper-

imental feasibility, it is more convenient to think of regulating noise sources rather than

changing the external drive or nonlinear damping [66]. Hence, the effects of stochastic

excitation on Q-factor is a relevant topic to study. Similar to hysteresis analysis, Lévy

stable stochastic process is used here to tune Q-factor. Fig. 4.4 presents the character-

istics of frequency response curve influenced by Lévy noise process under various noise

intensity,σ. Using the frequency response curves from this plot, variation of resonance

width (∆Ω) is plotted for different noise intensity (Fig. 4.5). The results show that

as the noise strength increases, the window of resonance width decreases while keeping

the resonance frequency (Ωres) fixed. As a result, ratio of resonance frequency to the

resonance width Ωres
∆Ω decreases. According to the Eqn. 2.43, the plot clearly provides

the evidence that the Q-factor has a proportional relationship with the noise intensity

of Lévy flight excitation. In other words, Q-factor increases (or decreases) with increas-

ing (or decreasing) noise intensity. Ros et al. [66] observed similar trend studying the

dynamics influenced by white Gaussian noise.

Q-factor has also been studied considering the effect of nonlinear damping on Q-

factor. We know that Q-factor has an inversely proportional relationship with linear

damping [101]. This relationship also holds true for the nonlinear damping as well that

is increasing the nonlinear damping, quality factor decreases. Fig. 4.6 provides the plot

based on the same parameter setting used for Fig.3.2.

Later on, effect of driving force on Q-factor is studied. Fig. 4.7 shows the variation

in frequency response curves due to the change in driving force. It is found that,

increasing the driving force, both resonance frequency and resonance width increase.

However, increase in resonance frequency is less than the increase in resonance width

which leads to lower the ratio of resonance frequency and resonance width (Ω0/∆Ω)

according to the Equation 2.43. So, quality factor decreases with increasing driving

force (see Fig.4.8). So, it is recommended to lower both nonlinear damping and driving

force to increase quality factor which will in turn increase the sensitivity of the resonator.
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Figure 4.4: Averaged Maximum oscillation amplitude vs Ω for different strength of noise
in case of Lévy flight excitation with constant η = 1.6, δ = 0.001 and FD = 0.2. From
bottom to top σ = 0, 5× 10−4, 1× 10−3, 1.5× 10−3,2× 10−3, 2.5× 10−3, and 3× 10−3.



93

Figure 4.5: Decrease of ∆Ω (Increase of quality factor) with increasing noise. Values
from simulation are noted by the circles and the solid line shows fitted curve following
this equation: ∆Ω = −97.2561σ + 2.5456.
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Figure 4.6: Variation of Q-factor with nonlinear damping. Here FD = 0.2 and δ = 0.001.
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Figure 4.7: Frequency response varying driving force. η = 1.6 and δ = 0.001.
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Figure 4.8: Variation of Q-factor with driving force. Here η = 1.6 and δ = 0.001.
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4.3 Conclusion

The analysis based on the stochastic model of a nanomechanical resonator is presented in

this chapter. Additionally, ways of enhancing Q-factor are also described. The following

core ideas can be taken from this chapter:

• Stochastic model of nanomechanical resonator is solved using Euler-Maruyama

method and averaged frequency response curves are plotted. Analyzing the re-

sponse it is found that increasing the intensity of noise based on Lévy flight exci-

tation can increase the quality factor of a nanoresonator.

• Lévy stable stochastic excitation with increasing intensity can shrink the hysteresis

region. Simulation is performed to show this phenomenon increasing the noise

intensity from σ = 0 to σ = 0.002 and then to σ = 0.005.

• Decreasing of the nonlinear damping leads to decreasing the energy loss per oscil-

lation. Hence, lowering nonlinear damping increases the quality factor.

• Decreasing the driving force leads to lower the ratio of resonance frequency and

resonance width (Ω0/∆Ω). Hence, lowering driving force increases the quality

factor.



Chapter 5

Conclusion and Discussion

In this thesis, different aspects of the dynamics of a nanoresonator are explored. The

resonator studied here is modelled considering the effect of nonlinear damping and driven

by external harmonic excitation. The dynamical response of the resonator is investigated

both in the deterministic and stochastic regime. The results and conclusions obtained

here are summarized as follows:

• The method of harmonic balance fits excellently to analyze the dynamics of a

nanomechanical resonator based on Duffing equation model. This method has

been found superior to the previously used perturbation method to study this

dynamics.

• Numerical simulation based on Euler method, remarkably known for solving ordi-

nary differential equation is used to validate the accuracy of the analytical solution

from different perspectives (i.e. under different external harmonic driving, differ-

ent nonlinear damping). The slight mismatch of subharmonic resonance between

numerical and analytical solution is well explained with necessary evidence and

reasoning.

• The deterministic dynamics is also studied deriving an analytical relation between

phase angle and amplitude of the motion of the resonator. It is found that the

phase angle can used to characterize the resonance frequency (Ωres) of a nanores-

onator. The resonance is found when the phase of the driving frequency is at ‘−π’
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and the variation of the phase response with frequency is well marked only when

driving frequency is close to the resonance frequency (Ω ≈ Ωres).

• Hysteresis is studied both in deterministic and stochastic model. In the determin-

istic study of hysteresis, it is found that increasing nonlinear damping or decreasing

external drive results in decreasing hysteresis region. It is also observed that with

increasing external drive or decreasing nonlinear damping, resonance frequency in-

creases. In the stochastic study of hysteresis, it is seen that stochastic excitation

with increasing intensity can shrink the hysteresis region.

• When linear damping is not low, it dominates the response of the resonator dy-

namics. Higher linear damping flattens the frequency response curve leading to

lower the quality factor.

• Studying the parametrically driven model, it is observed that in the combined

presence of parametric and external excitation, increasing the ΩP
ΩD

ratio results in

decreasing the resonance width without affecting Q-factor. It is also found that

increasing the harmonic oscillation amplitude of parametric excitation results in

the higher resonance amplitude with a small increase in the resonance frequency.

• Analyzing the stochastic model based on Lévy stable stochastic process, we find

that increasing the noise intensity, resonance frequency is fixed. However, it de-

creases the resonance width resulting in an increase in the quality factor. It is

restated that quality factor is the key to determine the performance of a sensor;

the higher is the quality factor, the better it is.

• In an effort to find other ways to enhance quality factor of the resonator, it is clear

that under lower nonlinear damping, energy lost is lower in an oscillation period.

Hence, quality factor will be higher and it will show more sensitivity in sensing

physical quantities in the case of lower nonlinear damping.

• Higher driving force increases the resonance frequency which is the opposite effect

of increasing nonlinear damping. Still, an increase in the driving force decreases

the quality factor due to the fact that it increases resonance width much more

than increasing resonance frequency. As a result, quality factor decreases. Hence,

lower external drive is required for higher quality factor.
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Further research direction may include stability analysis as well as analytic charac-

terization of the Q-factor results using the Fokker-Planck formalism. We also expect

that being motivated by the analysis and computation, pertinent experiments will be

performed to study the dynamics of a nanoresonator under the effect of Lévy flights.
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Appendix A

MATLAB Scripts

A.1 Deterministic Code for Numerical Simulation

The script below is used to perform deterministic simulation using Euler method which

generates the frequency response curves:

c l c

c l e a r a l l

format long

N=3000; dt=1/N;T=3000;

%%%% Upsweep frequecny response curve

X1(1)=0;

X2(1)=0; i =0;k=0;

C1=1;C2=0.001; n=1.6 ; Fd=0.2; j =2;

%n=non l in . damp . c o e f f . , Fd=dr ive amplitude , C2=l i n . damp . c o e f f .

S2 = ze ro s (1 ,N∗T+1);

Absolute2= ze ro s (1 ,N∗T+1);

%%%% Loop f o r Upsweep f requecny response curve

f o r w2= 0 : 0 . 0 5 : 2 . 0

k=k+1

f o r j =2:N∗T+1

X2( j )=X2( j−1)+dt∗(−C1)∗X1( j−1)−C2∗X2( j−1)

−(C1ˆ3)∗X1( j−1)ˆ3−n∗X1( j −1)ˆ2∗X2( j−1)
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+Fd∗ cos (w2∗( j −1)∗dt ) ;

X1( j )=X1( j−1)+dt ∗(X2( j −1)) ;

i f ( ( ( j −1)∗dt ) > T−100)

S2 ( j )=X1( j ) ; %save the f i n a l 100 sec d i sp lacement value

S2 p ( j )=X2( j ) ; %save the f i n a l 100 sec v e l o c i t y va lue

end

Absolute2 ( j )=abs ( S2 ( j )) ;% di sp . va lue s in to abso lu t e

Absolute2 p ( j )=abs ( S2 p ( j )) ;% v e l o c i t y va lue s in to abso lu t e

end

Xmax2( k)= max( Absolute2 )

%tak ing the maximum value o f the disp lacement

Xmax2 p( i )= max( Absolute2 p )

%tak ing the maximum value o f the v e l o c i t y

X1(1)=max( Absolute2 ) ;

%us ing the f i n a l va lue o f

d i sp lacement as the i n i t i a l in next loop

X2(1)=max( Absolute2 p ) ;

%us ing the f i n a l va lue o f

v e l o c i t y as the i n i t i a l in next loop

end

p lo t ( 0 : 0 . 0 5 : 2 . 0 , Xmax2 , ’ bo ’ ) %p l o t t i n g the upsweep curve

hold on

%%%% Downsweep frequecny response curve

S1 = ze ro s (1 ,N∗T+1);

Absolute1= ze ro s (1 ,N∗T+1);

%%%% Loop f o r Downsweep f requecny response curve

f o r w1=2.0:−0.05:0

i=i +1;

f o r j =2:N∗T+1

X2( j )=X2( j−1)+dt∗(−C1)∗X1( j−1)−C2∗X2( j−1)

−(C1ˆ3)∗X1( j−1)ˆ3−n∗X1( j −1)ˆ2∗X2( j−1)

+Fd∗ cos (w1∗( j −1)∗dt ) ;
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X1( j )=X1( j−1)+dt ∗(X2( j −1)) ;

i f ( ( ( j −1)∗dt ) > T−100)

S1 ( j )=X1( j ) ; %save the f i n a l 100 sec d i sp lacement value

S1 p=X2( j ) ; %save the f i n a l 100 sec v e l o c i t y va lue

end

Absolute1 ( j )=abs ( S1 ( j ) ) ; %di sp . va lue s in to abso lu t e

Absolute1 p ( j )=abs ( S1 p ( j )) ;% v e l o c i t y va lue s in to abso lu t e

end

Xmax1( i )= max( Absolute1 ) %maxm value o f the d isp lacement

Xmax1 p( i )= max( Absolute1 p ) %maxm value o f the v e l o c i t y

X1(1)=max( Absolute1 ) ; %i n i t i a l i z i n g va lue s f o r next loop

X2(1)=max( Absolute1 p ) ; %i n i t i a l i z i n g va lue s f o r next loop

end

p lo t ( 2 . 0 : −0 . 0 5 : 0 ,Xmax1 , ’ bo ’ ) %p l o t t i n g the downsweep curve

A.2 Deterministic Code for Analytical Solution Plot

The script below is used to plot deterministic analytical solution using the HBM method

which generates the frequency response curves:

c l e a r a l l

c l c

%f i x i n g va lue s f o r non . l i n . damp . co−e f f , d r i v e amplitude

n=1.6; Fd=0.2; i =0;

P= 0 : 0 . 0 0 5 : 1 . 0 9 ; %range o f amplitude want to p l o t

%Loop f o r the p l o t

f o r X=P

i=i +1;

B2=(1/16)∗nˆ2∗Xˆ6−(3/2)∗Xˆ4−2∗Xˆ2

A=Xˆ2

C=(9/16)∗Xˆ6+(3/2)∗Xˆ4+Xˆ2−Fdˆ2

Char=B2ˆ2−4∗A∗C
Omegasquare3=(−B2+s q r t (B2ˆ2−4∗A∗C))/ (2∗A) ; %f o r downsweep
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Omegasquare4=(−B2−s q r t (B2ˆ2−4∗A∗C))/ (2∗A) ; %f o r upsweep

Omega3( i )= s q r t ( Omegasquare3 ) ;

Omega4( i )= s q r t ( Omegasquare4 ) ;

i f ( Omegasquare3<0)

Omega3( i )=nan %igno r ing complex so ln .

end

i f ( Omegasquare4<0)

Omega4( i )=nan %igno r ing complex so ln .

end

end

p lo t (Omega3 ,P, ’ g−− ’);

xl im ( [ 0 . 1 5 ] ) %axes l i m i t

ylim ( [ 0 0 . 8 2 ] ) %axes l i m i t

hold on

p lo t (Omega4 ,P, ’ g−− ’); %p l o t t i n g

A.3 Code for Numerical Simulation in Stochastic Regime

The script below is used to perform stochastic simulation using Euler-Maruyama method

which generates the frequency response curve for a specific noise intensity:

c l c

c l e a r a l l

format long

N=3000; dt=1/N;T=3000;

Numofruns=50; %no o f runs f o r average

dL= s q r t ( dt )∗ l evy ( Numofruns ,N∗T+1 ,1 .5 ) ;

C1=1; Fd=0.2; j =2;

n=1.6 ; k=0;m=0;x=0; no i s e =0; sigma =0.001;

%%%% Loop f o r upsweep frequency response curve

f o r C2 = [ 0 . 0 0 0 1 ] ;

i=0
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X1(1)=0;% i n i t i a l va lue

X2(1)=0;% i n i t i a l va lue

S1 = ze ro s (1 ,N∗T+1);

Absolute1= ze ro s (1 ,N∗T+1);

f o r w1 = 0 : 0 . 0 1 : 2 ;

i=i +1;

Xmax1( i )=0;

f o r y=1:Numofruns;% averag ing loop

f o r j =2:N∗T+1

X2( j )=X2( j−1)+dt∗(−C1∗X1( j−1)−C2∗X2( j−1)−
(C1ˆ3)∗X1( j−1)ˆ3−n∗X1( j −1)ˆ2∗X2( j − 1 ) . . .

+Fd∗ cos (w1∗( j −1)∗dt ))+ sigma∗dL(y , j −1);

X1( j )=X1( j−1)+dt ∗(X2( j −1)) ;

i f ( ( ( j −1)∗dt ) > T−100)

S1 ( j )=X1( j );% sav ing f i n a l 100 s va lue s

end

Absolute1 ( j )=abs ( S1 ( j )) ;% turn ing saved va lue s in to abso lu t e

end

Xmax1( i )= Xmax1( i )+max( Absolute1 ) ;

%summing up the max va lue s

X1(1)=0;

X2(1)=0;

end

Xmax1( i )=Xmax1( i )/ Numofruns ;

%averag ing the max disp lacement va lue s

end

p lo t ( 0 : 0 . 0 1 : 2 , Xmax1, ’−o ’)% p l o t t i n g downsweep curve

hold on;%hold the curve f o r next curve in the same f i g u r e

end

%%%% Loop f o r downsweep frequency response curve

f o r C2 = [ 0 . 0 0 0 1 ] ;

i =0;
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X1(1)=0;

X2(1)=0;

S1 = ze ro s (1 ,N∗T+1);

Absolute1= ze ro s (1 ,N∗T+1);

f o r w2 = 2 : −0 . 01 : 0 ;

i=i +1;

Xmax2( i )=0;

f o r y=1:Numofruns ;

f o r j =2:N∗T+1

X2( j )=X2( j−1)+dt∗(−C1∗X1( j−1)−C2∗X2( j−1)−
(C1ˆ3)∗X1( j−1)ˆ3−n∗X1( j −1)ˆ2∗X2( j − 1 ) . . .

+Fd∗ cos (w2∗( j −1)∗dt ))+ sigma∗dL(y , j −1);

X1( j )=X1( j−1)+dt ∗(X2( j −1)) ;

i f ( ( ( j −1)∗dt ) > T−100)

S1 ( j )=X1( j );% sav ing f i n a l 100 s va lue s

end

Absolute1 ( j )=abs ( S1 ( j )) ;% turn ing saved va lue s in to abso lu t e

end

Xmax2( i )= Xmax2( i )+max( Absolute1 ) ;

%summing up the max va lue s

X1(1)=0;

X2(1)=0;

end

Xmax2( i )=Xmax2( i )/ Numofruns ;

%averag ing the max disp lacement va lue s

end

p lo t (2 : −0 .01 :0 ,Xmax2, ’−o ’)% p l o t t i n g downsweep curve

end

A.3.1 m file for Lévy function calling

Levy.m function script used in the stochastic simulation:
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func t i on [ z ] = levy (n ,m, beta )

%’ M u l t i o b j e c t i v e cuckoo search f o r

des ign opt imiza t i on Xin−She Yang , Suash Deb ’ .

% Input

% n = Number o f s t ep s

% m = Number o f Dimensions

% beta = Power law index , Note : 1 < beta < 2

% Output

% z −> ’n ’ l evy s t ep s in ’m’ dimension

num = gamma(1+beta )∗ s i n ( p i ∗beta / 2 ) ;

% used f o r Numerator

den = gamma((1+ beta )/2)∗ beta ∗2ˆ(( beta −1)/2) ;

% used f o r Denominator

sigma u = (num/den )ˆ(1/ beta );% Standard dev i a t i on

u = random ( ’ Normal ’ , 0 , s igma u ˆ2 ,n ,m) ;

v = random ( ’ Normal ’ , 0 , 1 , n ,m) ;

z = u . / ( abs ( v ) . ˆ ( 1 / beta ) ) ;

end

A.4 Probability Density Function

Using MATLAB 2019a, code for probability density function plot is given here:

c l e a r a l l

%genera t ing the d i s t r i b u t i o n s
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pd1 = makedist ( ’ Stable ’ , ’ alpha ’ , 2 ,

’ beta ’ , 0 , ’ gam ’ , 1 , ’ de l ta ’ , 0 ) ;

pd2 = makedist ( ’ Stable ’ , ’ alpha ’ , 1 . 5 ,

’ beta ’ , 0 , ’ gam ’ , 1 , ’ de l ta ’ , 0 ) ;

pd3 = makedist ( ’ Stable ’ , ’ alpha ’ , 0 . 5 ,

’ beta ’ , 0 , ’ gam ’ , 1 , ’ de l ta ’ , 0 ) ;

%Ca lcu la te the pdf f o r each d i s t r i b u t i o n .

x = −10 : . 1 : 10 ;

pdf1 = pdf ( pd1 , x ) ;

pdf2 = pdf ( pd2 , x ) ;

pdf3 = pdf ( pd3 , x ) ;

%Plot a l l th ree pdf f u n c t i o n s on

the same f i g u r e f o r v i s u a l comparison .

f i g u r e

p l o t (x , pdf1 , ’ b− ’ ) ;

p l o t (x , pdf2 , ’ r − ’ ) ;

hold on

p lo t (x , pdf3 , ’ b− ’ ) ;

hold o f f
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