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Abstract

Development of an origin-destination (OD) demand matrix is crucial for transit

planning. The development process is facilitated by transit automated data, making

it possible to mine boarding and alighting patterns on an individual basis. This thesis

presents novel methods for estimating transit OD matrix using automatically collected

data. Depending on the type of transit automated data, there are two methods pre-

sented. A novel trip chaining method which uses Automatic Fare Collection (AFC),

Automatic Vehicle Location (AVL), and General Transit Feed Specification (GTFS)

data is proposed to infer the most likely trajectory of individual transit passenger. The

method relaxes the assumptions on various parameters used in the existing trip chain-

ing algorithms such as transfer walking distance threshold, buffer distance for selecting

the boarding location, the time window for selecting the vehicle trip, etc. The thesis

also proposes a method for estimating the transit route origin-destination (OD) matrix

utilizing Automatic Passenger Count (APC) data. It uses l0 norm regularizer, which

leverages the sparsity present in the actual OD matrix. The technique is popularly

known as compressed sensing (CS). The applications of both methods using automated

data from Twin Cities, MN are also presented. The results show improved accuracy

and more inference rate in calculating the OD matrix using trip chaining. Similarly,

compressed sensing was found to work impressively well in evaluating transit route OD

matrix within small errors.
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Chapter 1

Introduction

Public transport agencies have historically planned their service with limited knowledge

of their customers’ travel behavior. For example, they used farebox data to determine

ridership of a transit route. To evaluate the passenger-centric information, they have

relied on on-board surveys to collect data about passengers’ boarding and alighting lo-

cation, and the purpose of travel. As the survey data is limited, it is expanded to the

whole population using expansion factors. There are also various limitations associated

with these surveys, such as cost, small sample size, bias, and other general reporting

errors [1]. Conversely, emerging automated data collection systems (ADCS) - namely

Automated Fare Collection (AFC) system, Automated Passenger Count (APC) system,

and Automated Vehicle Location (AVL) system - which are designed for administrative

purposes such as revenue management, provide a rich source of information about pas-

sengers travel pattern on an individual basis. This data is useful not only for improving

day-to-day transit operations but also for long-term strategic planning of transit net-

work [2].

This thesis builds upon recent work on the synthesis of large-scale automated tran-

sit data with optimization and statistical techniques to understand the passenger travel

pattern in a transit network. Using Twin Cities’ automated transit data as an example,

origin-destination (OD) matrices are estimated at different levels. Specifically, AFC and

AVL data are used to estimate a network-wide stop-level OD matrix, and APC data is

used to evaluate transit route-level OD matrix.
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The remainder of this chapter describes the motivation for this research, presents

its specific objectives, and finally outlines the structure of this thesis.

1.1 Motivation

This thesis focuses on one of the important input for analyzing a public transit system,

which is the flow of passengers between different stations/stops known as an origin-

destination (OD) matrix. OD estimation using automated smart card (or AFC) data

has attracted attention of many researchers over the last decade [3–15]. AFC system

records the fare related information when a passenger pays for a trip using a smart

card. This includes a serial ID assigned to the card, date and time of transaction, route

information, and coordinates.

The OD estimation requires a sequence of trips made by the passenger throughout

the day recorded using AFC system. However, the information available with this data

is limited and the full sequence of trips is usually not available. This is because of the

type of the fare collection system (open or closed) employed by a transit agency. In

closed transit systems [16], origin and destination is known for the trips as passengers

tap their card both when boarding as well as when alighting, whereas in open transit

systems [3–6,8–11,13,14], the boarding of passengers is usually known, and the alighting

is unknown as passengers tap their card only when boarding a transit vehicle. The al-

gorithm which infers missing boarding/alighting location in AFC data is known as trip

chaining. It uses a sequence of tags (smart card transactions) to make a chain of trips

made by the passenger by supplementing information from other data sources. The trip

chaining algorithms developed so far use assumptions on various parameters, e.g. buffer

radius to find the closest stop to the boarding location, walking distance threshold after

alighting to board the next route, time threshold to distinguish between boarding and

transfer, etc. These parameters can vary among different transit systems and can affect

the trip chaining results and therefore the origin-destination matrix. The current re-

search tries to relax the assumptions related to these parameters by proposing a robust

trip chaining algorithm. Specific problems and their solutions related to current trip
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chaining algorithms are discussed in §4.1.

The success of OD estimation using AFC data depends on the quality of data, the

percentage of passengers using a smart card, and assumptions involved in the trip-

chaining algorithm. Moreover, due to strict rules in the trip chaining algorithm, the

inference rate may not be high. On the other hand, the APC system collect information

about the number of passengers boarding and alighting at each transit stop. These

boarding and alighting counts can be used to evaluate an OD matrix. However, the

problem is hard to solve exactly as it requires solving an underdetermined system of

equations, in which case the number of unknowns to solve is far more than the number

of equations available. Usually, multiple solutions are possible for this problem, which

satisfy the given system of equations. In Chapter 5, we propose a method to evaluate

the transit route OD matrix using APC data. The problem is to estimate the flow

of passengers between stops for a single transit trip. The route matrix problem has a

special structure that provides an extra piece of information to reduce the ill-posedness

of the system of equations involved. The estimation requires the selection of the correct

estimate out of the multiple solutions. We use an estimation method that encourages the

sparse OD matrix using l0 norm regularizer. This helps in mitigating the ill-posedness

of the system and offers interpretability [17] as there is only a subset of the origin-

destination pairs which carries flow in an actual OD matrix. The method is popularly

known as compressed sensing [18].

1.2 Objectives

This thesis proposes new methods which promise the estimation of transit OD matrix

flexibly and efficiently using large scale automated data from a public transport agency,

in a way that can be performed on a continuous basis. More specifically, this thesis

seeks to fulfil the following objectives:

• Infer boarding and alighting location of regular route transactions in AFC data:

AFC transactions on regular routes (passengers pay while boarding) lack alighting

location of passengers. The objective is to develop a trip chaining algorithm to

evaluate the missing alighting and transfer locations.
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• Infer boarding and alighting location of pay-exit route transactions in AFC data:

Some transit systems are more complex than others because of the provision of

pay-exit routes. The pay exit buses are generally outbound trips from central

areas such as Downtown or University campus to suburban areas. In that case,

passengers tap their card when exiting the bus. This provides us with alighting

information rather than boarding locations. This objective tries to develop a trip

chaining algorithm which can also evaluate boarding and alighting for pay-exit

routes.

• Evaluate transit route OD matrix using APC data: The objective is to develop

an efficient optimization program to estimate transit route OD matrix using APC

data which leverages special structure of resulting OD matrix.

1.3 Thesis Organization

The methods developed in this thesis can be grouped into two categories: OD estimation

using AFC data and OD estimation using APC data. Since each category has a distinct

methodological background, each is presented in its own chapter. Following literature

review in Chapter 2, an overview of transit automated data is given in Chapter 3.

Then proposed methods in each category are described in Chapter 4 and 5 and their

technical implementation is presented in Chapter 6. The demonstration of applications

is presented in Chapter 7 which is finally followed by conclusions and recommendations

in Chapter 8.



Chapter 2

Literature Review

This chapter describes previous work related to the research presented in this thesis

which is grouped into two categories:

2.1 Origin Destination inference using AFC data

As most of the fare collection systems record passengers’ boarding information only,

alighting information must be inferred using the sequence of taps (or tags) made by the

passenger throughout the day. Thus, a significant amount of research has been done

to develop algorithms to determine the alighting location [19]. Navick and Furth used

location-stamped fare box data of Los Angeles area bus routes to determine alighting

location using an assumption that boarding pattern of the current trip and alighting

pattern of the opposite trip are symmetric for the entire day which means passengers

board the bus again from the same stop where they alighted during the previous trip [20].

Building on that assumption, [3, 5, 8, 14] developed a method of trip chaining for the

origin and destination inference with the following assumptions:

1. passengers return to the same location to board the bus where they alighted during

the previous trip,

2. no private mode of transportation is used between trips,

3. passengers do not walk a long (more than a certain threshold) distance to board

a bus or train,

5
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4. passengers end their last trip at the same location where they started their journey

of the day.

Based on the above assumptions, Trépanier et. al. proposed a model which infers

alighting stops by minimizing the distance between the alighting stop of the current trip

and boarding of the next trip [4] . They applied their method on AFC data from Quebec,

Canada and inferred 66% of the trips. Similarly, Wang et al. proposed a method which

combines AVL data with AFC data from London to infer the origin and destination

of different trips and validated the results using bus passenger origin and destination

survey (BODS) data [11]. Then Seaborn et al. stated some rules for trip chaining such

as maximum acceptable transfer time of 20 minutes for underground subway-to-bus, 35

minutes for the bus-to-underground subway, and 45 minutes for bus-to-bus trips [21].

Building on the work of [21] and [11] in estimating origin-destination matrix using Lon-

don smart card (Oyster) data and iBus vehicle location data, Gordon et al. specified the

importance of the return trips, bus wait time, repeated service and circuity in trips [14].

The researchers suggested a circuity rule to account for the return trips. By using 750m

as the maximum alighting distance, circuity factor of 1.7 and minimum transfer time of

5 minutes and maximum time from 30 to 90 minutes, they inferred 96% of the boarding

locations and 74.5% of the alighting locations.

Nassir et al. used AFC data with General Transit Feed Specification (GTFS)

data [22] instead of commonly used AVL data to infer origins and destinations [10].

They used the closest stop found within an upper bound distance of the smart card tag

location as the boarding. Using the route information given in the AFC tag (transac-

tion), a search is done for a trip closest in time within an interval of AFC transaction

time. Using that trip, the stop found closest to the next boarding is inferred as the

alighting stop given that the distance between inferred alighting and next boarding is

less than 0.5 miles. Gordon et al. extended the research on origin-destination estima-

tion of smart card users to non-smart card transit users [23]. They proposed a scaling

method for expanding the OD matrix using the fare box data from London and com-

pared the results with the Iterative Proportional Fitting (IPF) method.

Researchers have also tried to validate the trip chaining assumptions either by doing
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a survey [21], [11] or using data from closed transit systems [16]. For example, Farzin

validated the assumptions of the closest stops and daily symmetry using a travel diary

survey in New York, which showed 90% accuracy [7]. Similarly, Alsger et al. used South-

East Queensland public transport smart card data, which has both boarding and alight-

ing information, to implement and validate the current trip chaining algorithms [16].

The researchers also suggested some improvements in the current algorithm, e.g., the

alighting of the last tag on a day is the stop nearest to the first boarding of the day on

the given transit route. They also suggested the average distance between the actual

and estimated alighting stops as 0.33 miles instead of 0.5 miles. Of course, this distance

parameter can vary for different transit systems, which we try to relax in this study.

Recent research on trip chaining has pointed out some limitations in trip chaining

algorithms and suggested improvements for that [24]. For example, Munizaga identi-

fied that wrong alighting can be inferred if a passenger takes a bus which runs in both

directions to go a few blocks away because the passenger would just cross the street to

board the next bus rather than taking a long route in the opposite direction [13]. To

alleviate this problem, the researchers suggested a cost function which is the sum of

the current transaction time and the walking time multiplied by some penalty factor

obtained from a discrete choice model. The adopted methodology inferred 80% of the

trips using data from Santiago, Chile. The algorithm proposed in Chapter 4 avoids

such situations by discarding the trip which is less likely to be taken by the passen-

ger. He and Trepaniér followed their previous work [4] and proposed a method to infer

the boarding and alighting of unlinked trips. The method multiplies the temporal and

spatial probabilities calculated using historical location and time of tags to infer the

potential alighting.

The quality of trip chaining results depends on fare collection system correctly

recording the tag information which is assumed to be correct by most of the studies.

This assumption may result in a wrong inference of boarding, alighting or especially

transfer detections. Robinson et al. pointed out various causes for why different sys-

tems may not record correct information [25]. The possible causes are AVL system

failure, card reader failure, software failure, etc. They proposed a method to identify
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such erroneous smart card data and suggested where transit agencies should target re-

sources to enhance the performance of their AVL and AFC systems. They applied the

proposed method to Singapore smart card data and found that alighting for about 7.7%

of the tags was found one stop before the actual alighting location and for 0.7% of the

tags, the alighting location was found one stop after the actual alighting.

While applying the current trip chaining algorithms to the Twin Cities’ AFC data,

similar errors in results were found. To improve the accuracy of the results, the cur-

rent research proposes a robust trip chaining method to alleviate the effect of various

assumptions on the parameters such as GPS inaccuracy (buffer zone for boarding stop

inference), finding most likely trip from GTFS data, etc. The method is similar to the

one used for map matching problem for multi-modal transportation network model-

ing [26] and can be applied to other transit systems with any smart card data structure.

The research also deals with complex transit systems consisting of “pay-exit” buses (pas-

sengers tap their card while alighting) such as Twin Cities, in which case passengers’

alighting is known but not their boarding.

2.2 Origin Destination estimation using APC data

APC systems collect information about the number of passenger boarding and alighting

at each transit stop. OD estimation using the boarding and the alighting counts is a

classic problem, which is hard to solve. The problem requires solving an underdeter-

mined system of equations, in which case the number of unknowns to solve is far more

than the number of equations available. To deal with this underdetermined system of

equations, various methods have been proposed in the literature, which are summarized

below:

1. Iterative Proportional Fitting (IPF) method This is a popular and easy-to-apply

method to evaluate the OD matrix using count data [27, 28]. The method starts

with a base matrix, which is improved iteratively by multiplying the columns and

rows of the matrix by a constant factor. The base matrix can be taken as a null

matrix or any other seed matrix. Mishalani et al. found that using onboard survey

data as a base matrix gives more accurate results than using null base matrix [29].
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The method has several issues such as the problem of non-structural zeros [27],

due to which a zero entry remains zero in every iteration. The method also fails

to converge if the number of zero entries become large in the matrix.

2. Bayesian inference methods: These methods use Bayesian approach to evaluate an

OD matrix by formulating the problem as a partially observed Markov chain and

utilizing prior information along with current observations of count data [30–33].

3. Optimization methods: As there are multiple solutions possible for this system

of equations, these methods try to find the one, which optimizes an objective

function. The objective can be maximizing entropy [34] or the likelihood [35–37]

function. With isotropic Gaussian noise, the maximum likelihood estimation turns

into a classic least squares problem.

Another class of optimization methods consider the above objectives along with a

regularizer. The regularizer helps to mitigate the ill-posedness of the system of equa-

tions [38]. The regularization can be included as a least square term between the

unknown and a prior OD matrix obtained from a survey or from domain knowledge.

This technique is quite popular in the literature. For example, Cascetta and Nguyen

minimized generalized least square objective with a prior matrix [28], Van Zuylen and

Willumsen maximized the relative entropy or minimized the Kullback-Leibler (KL) di-

vergence of unobserved and observed flow distributions [34]. This approach tries to force

the solution, as close to the prior matrix as possible which may result in poor estimates

if the prior or seed matrix used is not reliable.

In this research, we evaluate the transit route OD matrix using APC data. The

problem is the estimation of the flow of passengers between stops for a single trip. The

route matrix problem has a special structure that provides an extra piece of information

to reduce the ill-posedness of the system of equations. The estimation requires the

selection of the correct estimate out of the multiple solutions. We use an estimation

method that encourages the sparse OD matrix using l0 norm regularizer. This helps

in mitigating the ill-posedness of the system and offers interpretability [17] as there is

only a subset of the origin-destination pairs which carries flow in an actual OD matrix.

The method is popularly known as compressed sensing [18] and can also be viewed as
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the least absolute shrinkage and selection operator (LASSO) regression proposed by

Tibshirani [39].



Chapter 3

Transit Automated Data

The methods presented in this thesis were developed and tested using data from the

Twin Cities’ public transportation network. Although the data used for this research

comes from a particular public transport agency, the methods are applicable worldwide.

In this chapter, we describe the network structure of the Twin Cities’ transit network

and introduce the data sources used to conduct this research.

3.1 Twin Cities’ public transportation network

Metro Transit is the transportation resource for the Twin Cities, offering an integrated

network of buses, light rail and commuter trains as well as resources for those who

carpool, vanpool, walk or bike [40]. In 2019, Metro Transit manages more than 190

transit routes on more than 13,000 stops all over the Minneapolis-St. Paul region and

its suburban areas. The automated data used in this study is collected by Metro Transit.

3.2 Transit data

The different data sources used to conduct this research are General Transit Feed Specifi-

cation (GTFS), Automatic Fare Collection (AFC), Automatic Passenger Count (APC),

and Automatic Vehicle Location (AVL) data. There are various benefits of using auto-

mated transit data for transit planning. It offers several advantages [11] over traditional

surveys by:

11
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1. providing a link to passenger’s trips over a longer period of time

2. providing information about the share of different transit commuters (e.g. stu-

dents, workers, etc.)

3. storing the information in SQL database systems and using it efficiently

4. providing various research opportunities for analyzing passengers’ travel pattern

It can be classified as follows:

3.2.1 Automatic Fare Collection (AFC) Data

The AFC data used for this research comes from the University of Minnesota student

transit pass (U-Pass) transactions. The AFC system records the fare related information

when a passenger pays for a trip. This includes a particular serial ID assigned to the

pass, date and time of the tag, route information, geographical coordinates of the tag,

fare type, and transfer information.

3.2.2 Automatic Passenger Count (APC) Data

The automatic passenger count system records date, time, transit route, stop and trip

information, number of boarding and alighting at every stop, and geographical coor-

dinates of stop locations. The primary purpose of this data is to evaluate ridership

at different aggregation level. It is useful to evaluate service frequency based on the

demand. This data is used to obtain boarding and alighting counts which are used as

inputs in the method described in Chapter 5.

3.2.3 Automatic Vehicle Location (AVL) Data

The automatic vehicle location system records date, time, transit route, stop and trip

information, departure and arrival time at time point stops, and geographical coordi-

nates of stops. The system is primarily used to provide real-time bus arrival information

to passengers. It is also used to evaluate the quality of service of passengers by eval-

uating the delay experienced by them. This data is used to calibrate the probability

distribution of delay of buses required for robust trip chaining algorithm described in

Chapter 4 in §4.2.
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3.2.4 General Transit Feed Specification (GTFS) Data

General Transit Feed Specification (GTFS) is a standard format of transit schedule

data provided by many transit agencies all over the world [22]. It contains schedule

information of the buses and light rail, including their stop location, route information,

scheduled arrival and departure time. Different tables of GTFS data which are used for

this research are briefly described below:

1. Agency : It contains information of one or more transit agencies offering service

2. Stops: It contains information about the individual location of stops where pas-

sengers can pick up or drop off.

3. Routes: It contains information about individual routes such as route ID, name,

type, and sort order.

4. Trips: It contains the information about trips made by individual route through-

out the day

5. Stop times: It contains information about the time that a vehicle arrives and

depart from individual bus stops for each trip.

6. Calendar : It contains information about service ID for the different type of service.

For example, the service of weekdays, weekends, and holidays can be different.

For trip chaining algorithm described in Chapter 4 in §4.2, we need to select the

appropriate service ID for the study period and then query the data.



Chapter 4

Origin and Destination Inference

using Trip Chaining

In order to observe passenger movement in a transit network using AFC data, boarding,

and alighting location and times must be inferred based on the incomplete information

available. This is achieved by using a suitable trip chaining algorithm. This chapter

describes the development of robust trip chaining algorithm. Before that, various issues

related to existing trip chaining algorithm which we try to address in this research are

explained.

4.1 Problems in existing trip chaining algorithm

This section explains problems associated with current trip chaining algorithm and the

desired improvements. We use reference of trip chaining algorithm developed by Nassir

et al. to point out various problems [10]. The algorithm uses consecutive tags of a card

holder which are termed as ”current” and ”next” tag throughout this thesis. For the

last tag of the day, next tag can be assumed as the first tag of the day. First, the trip

chaining algorithm developed by [10] is summarized below:

1. Read AFC data and select the ”current” and ”next” tag.

2. Extract GTFS schedule of the current tag’s route and direction to find the closest

stop to the current tag location.

14
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3. Go to step 4 if the distance between the current tag and closest stop found is less

than 0.1 miles otherwise exclude the tag and go back to step 1.

4. Find a trip within TrT–α and TrT +β closest to the current tag time. Here, TrT

is the current tag time and α and β are schedule adherence parameters determined

using AVL data.

5. Find the closest stop to the next tag location on the trip found in step 4 for the

stops sequence greater than the stop found in step 2.

6. Go to step 7 if the distance between the inferred alighting location of the current

tag and the next tag location is less than 0.5 miles, otherwise exclude the tag.

7. Go to step 8 if the boarding time of the next tag is greater than the alighting time

of the previous tag, otherwise exclude the tag and go to step 2.

8. Determine if the current tag is the first tag of the day. If it is, mark it as “board-

ing”, otherwise determine if it is a transfer. A detailed discussion about transfer

detection is given §4.2.4.

The method, although working in most of the cases, may result in wrong inference

or no inference in some cases. These cases are described below.

4.1.1 The sub-route problem

To manage some of the transit routes efficiently, the Twin Cities transit system has

sub-routes for most of the high frequency routes. For example, route 2 has sub-routes

2A, 2C, 2E and route 3 has sub-routes 3A, 3B, 3C, 3E, 3K. Generally, one of the sub-

routes is more common than the others and runs throughout the day, whereas others are

either short turns or branches to serve more areas. To better understand the sub-route

problem, let us consider following instance (Figure 4.1):

A passenger took the bus route 2 from Coffman Memorial Union stop and alighted

at Hennepin Ave and 8th Street to transfer to route 10. The current trip chaining

algorithm selects any trip from GTFS data which is closest in time to the current tag

time. If it selects the trip within route 2A that only goes up to TCF Bank Stadium
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Union stop

TCF Bank
Stadium

Wrong
Alighting
inference
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Transfer

Tag Location
Transit Stop

Figure 4.1: Incorrect alighting inference due to selection of incorrect sub route

stop and infer it as alighting stop, then the distance between this stop and the next tag

location is more than the walking distance threshold and the algorithm does not infer

any alighting stop (discards this record). In this case, a more robust inference method

is required to correctly infer the trip within route 2C, which connects with route 10 at

Hennepin Ave and 8th St.

4.1.2 The boarding stop inference problem

The GPS location of tags provided by AFC system may consist of location measurement

errors [25]. If the algorithm simply finds the closest stop to the tag location, then a

potentially wrong boarding stop inference may result in wrong trip inference, wrong

alighting stop inference or no inference at all.

4.1.3 The “pay-exit” route problem

Because of high commuter demand to Downtown Minneapolis, Downtown St. Paul, and

the University of Minnesota campus, some of the outbound bus routes in the evening

peak let passengers enter the bus while boarding and pay while alighting (unlike the

regular routes where riders tap while entering the bus). Such cases were not consid-

ered during previous studies. In these cases, we do not know the boarding but know

the alighting location. Depending on the combination of tags made by a passenger

throughout the day, missing boarding or alighting may or may not be inferred. This
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arises four different cases depending on the consecutive tags of the passenger (Figure

4.2).

1. Current tag (B1) is regular and next tag (B2) is regular

This is the normal case which has been considered previously in the research. Here,

we know the boarding of the current as well as the next tag. Using the route and

direction information of the current tag, we can infer the alighting location of the

current tag.

2. Current tag (A1) is pay exit and next tag (B2) is regular

In this case, we know the alighting of the current tag and boarding of the next

tag. This is the easiest case among four cases as we need not to infer any location.

The only thing to determine in this case is to detect whether or not the next tag

is a transfer. Note that the possibility of inferring the boarding of the current tag

depends on its previous tag. Similarly, the possibility of inferring the alighting of

the next tag depends on its next tag.

3. Current tag is regular (B1) and next tag (A2) is pay exit

This is the most difficult case among all as we know the boarding of the current

tag and the alighting of the next tag which means alighting of the current tag and

the boarding of the next tag is missing. Two sub-cases arise in this case depending

on the bus route used.

• If two different bus routes (which are not geographically parallel) are used for

both tags, then we can find stops connecting two routes which gives the least

distance between the inferred alighting of the current tag and the inferred

boarding of the next tag.

• If same or parallel routes are used for both tags, then we cannot infer the

alighting of the current tag and boarding of the next tag. This sub case

is quite usual for commuters who take a bus from sub-urban areas which is

regular in the inbound direction in the morning but when they return to their

home, the same bus is pay exit in the outbound direction in the evening. We

propose a method of proportion in §4.2.3 to approximate these cases.
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4. Current tag is pay exit (A1) and next tag (A2) is pay exit

In this case, we know the alighting of both current and next tag. We can make a

search list of the stops that come before the alighting stop of the next tag and infer

the boarding of the next tag by finding the stop closest to the alighting location of

the current tag. Again, the boarding of the first tag may or may not be inferred

depending on its previous tag.

4.2 The robust trip chaining algorithm

The trip chaining method described in this thesis is inspired by map matching algorithms

used for multi-modal transportation network modeling [41], [26]. The map matching

algorithm is used to map the public transit stops from GTFS data to a road network

by creating a restricted shortest path problem. In this way, it avoids the problems

like complicated road geometry, and lack of dynamic vehicle information like vehicle

trajectory, speed, turning and heading. Similar methods are common for matching GPS

locations to existing road networks to track the trajectory of a vehicle using probability

models such as Hidden Markov Model [42]. The proposed trip chaining method also

finds a set of candidate trips for a given AFC tag to reach the next tag, calculates

the probability of each trip, then the most likely trip is found to infer the boarding

and alighting stops. In this way, different problems faced by the current trip chaining

algorithm are addressed. We start with the basic case when both of the consecutive

tags are regular which can be applied to any transit system and then we can expand

this method to specific cases for the Twin Cities data.

4.2.1 Trip set generation

Consider two consecutive tags n and n+ 1 of a particular card number on a given date.

Using GTFS data, we can make a list of candidate stops Sn = {snk, k = 1, 2, ...} found

within a buffer distance of α miles of the tag location θn given route rn and direction

δn. The value of α can be suitably taken depending on the accuracy of the GPS. For

example, previous studies have used α = 0.1 miles to find the boarding stop. This will

consider the possibility of all the stops which are close to the tag location θn being the

boarding stop and help in obviating the problem of wrong boarding stop being selected.
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The error in the GPS location is usually modeled using great circle distance [42] which

is the shortest distance between two points on the surface of a sphere [43]. We can find

the great circle distance dnk between θn and snk as

dnk = GC(θn, snk) ∀k (4.1)

The next step is to find possible trips from these stop locations which go in the

direction of the next tag location. For each stop snk, find the possible trips Tnk =

{trkl, l = 1, 2, ...} which are within τ minutes of tag time tn assuming that bus can be

late or early on a given stop snk by τ minutes. This delay parameter τ is flexible and

can be adjusted for the given algorithm. With greater value of τ , more trip options

will be created. This will obviate the problem of incorrect sub-route (§4.1.1) trip being

selected. Then we calculate the delay for different trips as:

∆kl = |ttrkl − tn| ∀k, l (4.2)

Using the trip information, for each trip l, find a set of alighting stops Ankl =

{aklm,m = 1, 2, ...} which are within ε miles of next tag location θn+1. Again, ε is

flexible and can be assumed as any suitable value. This will avoid the problem of

finding wrong alighting stop mentioned in [13]. Let IVklm be the in-vehicle time for

the trip trkl with alighting stop aklm and wklm be the walking distance from alighting

location aklm to the next tag location θn+1. All the potential stops and trips can be

connected via a graph shown in Figure 4.3 as an example.

4.2.2 Probability calculation for possible trips

Let P (snk) be the probability of boarding stop snk from tag location θn. This probability

is a function of great circle distance dnk which is created because of the GPS inaccuracy

and can be modeled as a zero mean Gaussian distribution [44], given as:

P (snk) = f(σk, dnk) =
1√

2πσ2
k

exp
−0.5(

dnk
σk

)2 ∀k (4.3)

If we assume snk was the actual boarding location, then dnk is an estimate of the
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Figure 4.3: Network of possible trips

magnitude of GPS error. The standard deviation of these values, i.e. σk, is our estimate

of the GPS error. We estimate σk using the median absolute deviation, which is a robust

estimator of standard deviation. The value of σk can be given as:

σk = 1.4826 ∗median(dnk) ∀k (4.4)

The probability of taking a trip trkl from stop snk, i.e., P (trkl|snk), is a function of

bus delay ∆kl:

P (trkl|snk) = f(∆kl) ∀k, l (4.5)

The probability distribution function f(∆kl) of bus delay can be calculated using AVL

data, which contains vehicle arrival times on limited stops for a given bus route trip l.

We can model the probability of reaching the next tag location θn+1 by taking trip trkl

and alighting at stop aklm using a multinomial logit route choice model given as:

P (aklm|trkl, snk) =
exp−(β1IVklm+β2

wklm
s

)∑
p,g exp−(β1IVkpg+β2

wkpg
s

)
∀l, k (4.6)
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where, s is the walking speed which is assumed as 3.0 miles per hour. β1 and β2 are

the parameters which shows the disutility of walking in comparison to in-vehicle travel

time according to user behavior.

Finally, assuming the random variables describing the probability distributions are in-

dependent, we can evaluate the probability of traversing from location θn to θn+1 using

any of the trips by multiplying (3), (5) and (6) which is the product of the following

components.

• GPS inaccuracy of the current tag

• Bus delay of the current tag

• Route choice model consisting of in-vehicle and walking time between the current

tag and the next tag.

P (aklm, trkl, snk|θn, θn+1) = P (aklm|trkl, snk, θn, θn+1)P (trkl|snk, θn, θn+1)P (snk|θn, θn+1)

= f(σk, dnk)f(∆kl)P (aklm|trkl, snk) ∀l, k,m
(4.7)

Hence, the most likely boarding and alighting stops for this tag n can be inferred

using the trip for which P (aklm, trkl, snk|θn, θn+1) is maximum.

4.2.3 Extension to pay-exit cases

If there is a combination of pay-exit and regular tags (§4.1.3), then the probability

calculations change according to available information. These cases are discussed below:

Current tag is pay exit and next tag is regular

In this case, the probability of each trip consists of three components:

• GPS inaccuracy of the current tag

• Bus delay of the current tag

• Route choice model consisting of only walking time between the current tag and

the next tag.
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The final expression is given below:

P (aklm, trkl, snk|θn, θn+1) = f(σk, dnk)f(∆kl)
exp−(β2

wklm
s

)∑
p,g exp−(β2

wkpg
s

)
∀l, k (4.8)

Current tag is regular and next tag is pay exit

For this case, if two different routes are used for making these two trips, then the

probability of each alternative to go from the current boarding to the next alighting

consists of three components:

• GPS inaccuracy of the current tag and the next tag

• Bus delay of the current tag and the next tag

• A common route choice model consisting of in-vehicle travel time of the two trips

and the walking time between the trips.

The final expression is given below:

P (aklm12 , trkl1 , trkl2 , snk1 , snk2 |θn, θn+1) = f(σ1
k, d

1
nk)f(σ2

k, d
2
nk)f

1(∆1
kl)f

2(∆2
kl)

exp−(β1IVklm1+β1IVklm2+β2
w
klm12
s

)∑
g,p1,p2 exp−(β1IVkpg1+β1IVkpg2+β2

w
kpg12

s
)
∀l, k

(4.9)

If both tags use the same or parallel routes, we can make use of APC data to assign the

alighting of the current tag and boarding of the next tag. Usually some particular stops

at the end of the routes are more common stops for alighting. Using route information,

we calculate the proportion of alighting at these stops for each route, then assign the

required boarding and alighting stops proportionally for each case in the AFC data. In

this way, we may not get exact inference in the individual level, but on an aggregate

level, the results will be consistent. Anyhow, the percentage of these cases in the AFC

database is very low.

Current tag is pay exit and next tag is pay exit

In this case, the probability of each trip consists of three components
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• GPS inaccuracy of the next tag

• Bus delay of the next tag

• route choice model consisting of in-vehicle travel time and walking time of the

next trip.

The final expression is given below:

P (aklm, trkl, snk|θn, θn+1) = f(σk, dn+1,k)f(∆kl)f(
exp−(β1IVklm+β2

wklm
s

)∑
p,g exp−(β1IVkpg+β2

wkpg
s

)
) ∀l, k

(4.10)

4.2.4 Transfer detection

Transfer information given in the AFC data may not be reliable. Consistent with the

fair policy, the AFC system considers a tag as a transfer if it has been made within

150 minutes of the previous tag time. The method described in [10] is used to detect

transfers. The method infers next tag as transfer if it has been made within 30 minutes

and boarding if it has been made after 90 minutes of alighting. Between 30 and 90

minutes, after alighting at a station, the walking time (W) and setback delay time (D)

(due to possible minor activities like buying coffee or newspaper) is considered and a

time tacc is calculated which is the time when boarding stop becomes accessible. Then,

the number of opportunities (Nopp) to catch the next bus is calculated between the

time tacc and the actual boarding time of the next tag by counting the number of trips

in GTFS data within the time range. If Nopp ≤ 1, we infer the next tag as transfer,

otherwise, there is a possibility of an activity and we mark the next tag as boarding.

Pseudocode for this trip chaining algorithm is given in Algorithm 1.
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Algorithm 1 Robust Trip Chaining Algorithm

1: Data structures
2: n: an AFC tag
3: pe: 1, if tag is pay exit, 0, otherwise
4: seq: sequence number of the tag serial number for the given date
5: ser: sequence number of a transit stop for a given trip ID in GTFS data
6: P : list of possible stops around tag location
7: L: list of possible trips for a given stop
8: All other notations are consistent with Appendix A
9: function FindPossibleStops(tag[n])

10: P ← []
11: st list← find a list of stops for tag[n].r and tag[n].δ from GTFS
12: for each stop s in st list do
13: if dist(s, tag[n].θ) < α then
14: append s to P

15: return P
16: function FindPossibleTrips(p)
17: L← []
18: tr list← find all the trips for given stop p.r, p.δ from GTFS
19: for each trip l in tr list do
20: if abs(l.dep− tag[n].t) ≤ τ then
21: append l to L

22: return L
23: function InferBoardingAlighting(l, tag[n], tag[n+ 1])
24: if the inference is for alighting then
25: al stops← find stops with stop sequence greater than l.ser
26: return alighting stops within distance ε of the tag[n+ 1]
27: else
28: bo stops← find stops with stop sequence less than l.ser
29: return boarding stops within distance ε of the tag[n]

30: Algorithm
31: for each n do
32: Prob← []
33: if tag[n].seq = last tag of the day then
34: take tag[n+ 1] = first tag of the day for that serial number

P ← FindPossibleStops(tag[n])
35: for each stop p in P do
36: L← FindPossibleTrips(p)
37: for each trip l in L do
38: Depending on tag[n].pe and tag[n+ 1].pe
39: L← InferBoardingAlighting(l, tag[n], tag[n+ 1])
40: Calculate Prob[l]

41: Find the trip with maximum probability
42: Infer the boarding and alighting of tag[n] and tag[n+ 1] based on that trip



Chapter 5

Origin and Destination

Estimation using Compressed

Sensing

In this chapter, we describe the method to estimate the route level OD matrix using

boarding and alighting counts available from APC data.

5.1 Preliminaries

Let N be the set of stops along a transit route at which passenger board or alight. We

consider the boarding and alighting in a single direction. Let bi and ai be the observed

number of passengers who board and alight at stop i = (1, 2, ..., |N |) respectively. The

values of bi and ai are obtained from APC data. Let X = {xij} ∈ R|N |×|N | be the

origin-destination flow matrix, where xij denotes the number of passengers boarding at

stop i and alighting at stop j. The overall setup is shown in Figure 5.1. Let x ∈ R|N |
2

be the vectorized form of matrix X i.e., x = V ec(X).

5.2 Formulating transit route OD estimation problem

The estimation procedure is subject to the following constraints:

26
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1 2 3 i j |N |

xij
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Figure 5.1: Transit route origin-destination (OD) flow

1. If we sum the values of xij along all the columns, then we get the total number

of passengers boarding at stop i i.e. bi,

|N |∑
j=1

xij = bi ∀ i ∈ N (5.1)

2. Similarly, if we sum the values of xij along all the rows, then we get the total

number of passengers alighting at stop j, i.e., aj

|N |∑
i=1

xij = aj ∀ j ∈ N (5.2)

3. The total number of boarding at all the stops should be equal to the total number

of alighting.
|N |∑
j=1

bj =

|N |∑
i=1

ai (5.3)

4. The number of boarding and alighting at the same stop is zero, which means the

diagonal elements of the matrix X should be equal to zero.

xii = 0 ∀ i ∈ N (5.4)

5. As the transit vehicle runs in a single direction, a passenger boarding at one stop
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Alighting
1 2 . . . n Total Boarding

1 0 b1
2 0 0 b2

Boarding . 0 0 0 .
. 0 0 0 0 .
. 0 0 0 0 0 .
n 0 0 0 0 0 0 bn
Total Alighting a1 a2 . . . an T

Table 5.1: OD matrix for a route in a single direction

cannot alight at the previous stops that vehicle has already visited. This means,

xij = 0 ∀ i > j, ∀ i, j ∈ N (5.5)

6. The total load on a link between two stops is equal to the passengers boarding

between those stops.
k∑
i=1

(bi − ai) =

k∑
i=1

n∑
j=k+1

xij (5.6)

By imposing these constraints, the structure of the matrix will look as in Table 5.1.

We can express the linear constraints (5.1) - (5.6), in form of a matrix as

A (x) = b (5.7)

where, A ∈ Rp × |N |
2

is the linear map (which is a matrix in this case) for p number

of constraints and b ∈ Rp represents the constant vector for these constraints. In the

following subsections, we describe the proposed solution to the given problem.

5.3 Transit route OD estimation using compressed sensing

technique

As discussed, 5.7 is usually an ill-posed problem for which one can expect multiple

solutions. A generic regularizer can help in mitigating the ill-posedness of the problem.
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One such regularizer is the generalized least square with prior matrix available from

survey data. The quality of the solution depends upon the availability of a good prior

matrix as the optimal solution is forced to be as close as possible to the prior matrix. We

can use other regularizers based on the domain knowledge on the space of the plausible

OD flows in the network [17]. To use one such regularizer, we make the following

assumption:

Assumption 1 The planted OD matrix in the set of linear equations is sparse which

means that the flow between many of the OD pairs should be equal to zero. The observed

flow is only due to a small subset of N(N−1)
2 pairs.

The intuition behind the above assumption is that there is a large number of OD

pairs for a transit route, but the travel happens only along few pairs. For example,

during the morning peak hours, there are only a few popular origin stops such as res-

idential locations and few destinations stops such as central business areas, park and

rides, etc. Moreover, it is unlikely that passengers boarding at initial stops of the route

will alight at all the following stops. This makes the flow between most of the OD pairs

equal to zero. This is opposite to the solution evaluated using entropy maximization,

which tries to achieve the solution, as uniform as possible to minimize the errors. The

sparsity as a regularizer has been used before for highway network OD estimation and

has found promising results [17, 45–47]. For example, Menon et al. leverages sparsity

in highway OD matrix to estimate a set of suitable traffic analysis zones (TAZs) and

use those zones to evaluate an OD matrix [17]. The method proposed in [17] has a

bi-level structure with sparse OD estimation on upper level and traffic assignment using

user equilibrium at lower level. The use of non-negativity constraints for improving the

solution is also emphasized. We use a similar optimization for the transit route OD

estimation problem, which has a special structure as we get an extra set of constraints

because of the transit movement in one direction. We also describe the conditions under

which sparse recovery is possible.

5.3.1 Using sparsity as the regularizer for OD estimation

To achieve the sparsity in the solution, we minimize the number of non-zero entries in

the solution, which can be done by minimizing l0 norm of the vector x. We can state
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the problem as the minimization of l0 norm of x subject to linear constraints. The

optimization formulation is given below:

minimize
x≥0

‖x‖0

subject to A(x) = b

(5.8)

The non-negativity should not be dropped from (5.8) as it helps to mitigate the ill-

posedness of the problem [17]. Using Lagrangian relaxation, the linear constraints can

be included in the objective function as a least square term and formulated as following:

minimize
x≥0

‖A(x)− b‖2 + µ‖x‖0 (5.9)

The problem (5.9) tries to find the sparse vector x planted in the given ill-posed

system of linear equations. The regularization parameter µ controls the sparsity of the

vector and requires tuning to get the best results. A higher value of the µ will impose

more sparsity in the solution. When µ = 0, (5.9) reduces to an ordinary least squares

problem. The optimization program (5.9) is useful for the APC data when the total

number of boarding and alighting do not match as the least square term will try to find

a solution which best explains the observed flows. This happens quite often in the APC

systems due to the errors in recording data. The given problem (5.9) is an NP-hard

as the minimization of l0 norm cannot be done in polynomial time. Recent work in

compressed sensing has proposed a tightest convex relaxation of the l0 norm which is l1

norm [48]. The problem (5.9) can be restated as follows.

minimize
x≥0

‖A(x)− b‖2 + µ‖x‖1 (5.10)

Where, ‖x‖1 =
∑

i |xi|. (5.10) is a convex optimization program as the absolute

value of xi can be written as a set of linear inequality constraints. The use of l1

norm is better than the l2 norm (also called ridge regression) to achieve sparsity. This

is because the l1 norm ball has corner points that can intersect the given plane at the

sparsest solutions, unlike l2 norm ball. The problem can also be viewed as least absolute

shrinkage and selection operator (or Lasso regression) proposed by [39] as given a set

of observations, we try to estimate the coefficients which satisfies the given equations.
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However, there is a key difference between compressed sensing and LASSO. The former

provides conditions under which the linear map A nicely behaves and the uniqueness

of the solution can be proved (these conditions are discussed in the next subsection).

In other words, we can design A in such a way that it can guarantee to recover the

actual solution. On the other hand, LASSO is a regression method in which we have no

control over the data and we try to find the best coefficients which are sparse and satisfy

the equations obtained from data. We can also interpret these estimates as a Bayesian

posterior mode estimate when the regression parameters have independent Laplacian

(i.e., double exponential) priors [49]. Now the natural question which arises is that

when does solving (5.10) gives a good solution to (5.9). In other words, what natural

conditions can be applied on a linear map A so that we can say that the solution is

unique. Candés and Tao, 2005 proposed the idea of restricted isometry property (RIP)

of the matrices, which states that if A satisfies the isometry property, then there exists

a unique solution to the problem (5.10) which is equal to the solution of (5.9).

Definition 1 (Restricted Isometry Property (RIP)) The linear map A has RIP

with constants k and δk, if ∀‖x‖0 ≤ k,A behaves almost as an isometry in following

sense i.e., l2 norm of A (x) is close to the l2 norm of vector x:

(1− δk)‖x‖22 ≤ ‖A(x)‖22 ≤ (1 + δk)‖x‖22 (5.11)

Loosely speaking, a matrix A satisfies RIP when δk is small (i.e. less than 1). When 5.11

is satisfied, then A approximately preserves the Euclidean length of k−sparse vectors

and it cannot lie in the null space of A. This property is important otherwise, there is no

hope of recovering x from 5.7 [50]. The implication of RIP in compressed sensing is that

the pairwise distances between k−sparse vectors must be preserved in the measurement

space due to which the ‖x‖1 and ‖x‖2 can be scaled into each other by some constant.

This idea is related to the old notion of Almost Euclidean subspaces. This results in the

recovery of x close to exact k-sparse x by solving 5.8 with an overwhelming probability.

RIP matrices are extremely common in practice and most of the random matrices satisfy

this property. Based on the above definition of RIP, a theorem is proposed by Candés

and Tao, 2005 [48].

Theorem 1 (Candés and Tao, 2005 [48]) If A (x) = b and b is constructed using a
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sparse solution with ‖x‖0 ≤ k, and the RIP condition is satisfied with constants δ2k and

δ3k, satisfying δ2k + δ3k < 1, then (5.10) can obtain a unique solution to the problem

(5.9) with as few as O
(
klog

(
|N |2
k

))
number of equations.

As the passenger flow cannot be negative, we can replace the l1 norm with sum of the

components of vector x, which allow us to use the gradient-based approaches to solve

the optimization program (5.10) efficiently. If we have some idea about the number of

non-zero entries (say less than k), we can constraint the solution as follows:

minimize
x≥0

‖A(x)− b‖2

subject to ‖x‖0 ≤ k
(5.12)

We use the optimization program (5.8) with l1 norm for solving the transit route

OD estimation problem. The problem is convex and can be solved easily using a stan-

dard convex optimization solver such as CVX [51]. We could also employ an iterative

algorithm proposed in [39] to evaluate a sparse solution but the algorithm does not

guarantee convergence to a unique solution. Applications of this method are presented

in §7.2.



Chapter 6

Implementation

Various issues related to automated data needs to be resolved before implementing the

methods. This includes the cleaning of data, removing inconsistencies, and inferring

fields required for the algorithm. This chapter describes the data preparation steps

along with implementation strategies of the algorithm described in §4.2.

6.1 Processing of AFC data

AFC data does not contain a sequence of trips made by a passenger in a day. Based

on the time of a transaction, a sequence field was added to the data which keeps track

of the sequence of the tags made by a passenger on a particular day. A pay-exit field

was also added to the data by checking the buses and their direction in which they are

pay-exit. The field takes the value 1 if given transaction route is pay-exit. Several other

issues with data were resolved before running the trip chaining algorithm. For example,

AFC data for light rail does not have geographical coordinates but contains the station

information where the passenger boarded the light rail, in which case we do not have to

search for possible boarding stops. Another issue is that light rail AFC data does not

have direction information. This is because light rail stations serve the trains in both

directions. We inferred the direction of light rail trips using the next tag location.

After the initial data processing, there are still some tags which do not have any

geographic information. These mainly consist of the buses not operated by Metro

Transit (e.g operated by Minnesota Valley Transit Authority (MVTA), or First Transit).
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We removed such entries for the analysis because the GTFS data was unavailable for

these services. The data also contains some tags which have a geographic location

outside the transit service region, so we removed such entries from the dataset. We

also removed the cases where a single tag is made by a passenger on a day as trip

chaining requires at least two trips made by a passenger in order to estimate the origin

and destination. Table 6.1 shows the number of tags in the data set for four typical

weekdays (March 07, 2016 to March 10, 2016).

Table 6.1: Tag Description

Description Number of tags Percentage

Total tags 85,456

Missing geographical coordinates 4,785 5.6

Outlier geographical location 3,515 4.1

Single tags 10,782 12.6

Total remaining tags 66,374 77.7

6.2 Processing of APC data

The APC data used for the method described in §3.2.2 was uploaded to Microsoft SQL

server and queried using the R package RODBC [52]. We select A-Line, which is a bus

rapid transit (BRT) route in Twin Cities for this analysis. It serves 20 stations along

Snelling Av and 46th St. We select a trip from the data during peak hour. The results

are presented in §7.2.2

6.3 Trip chaining model calibration

6.3.1 Gaussian model for GPS inaccuracy

To calibrate (4.3)-(4.4), we created a list of the AFC tag locations for which only one

stop is found within a buffer distance of 0.1 miles and calculated the values of the dnk.

These stops can be regarded as ground truth data required for calibration. Using these

values, σk was calculated equal to 55.25 ft.



35

6.3.2 Bus delay probability distribution

As mentioned before, AVL data contains bus arrival time at limited stops. Therefore,

the available arrival times are used to calculate the probability of bus route being early

or late. For this purpose, a discrete distribution for the bus delay distribution (4.5)

with a class range of one-minute intervals is calibrated.

6.3.3 Route choice model

For (4.6), we assumed the value of β1 = 1, β2 = 2, and the walking speed, s = 3 miles per

hour for our route choice model. These values are consistent with the literature [53–55].



Chapter 7

Applications

In this chapter, we analyze the results obtained after applying the methods described

in Chapter 4 and 5 on Twin Cities’ transit data and then present a few applications of

these results.

7.1 Application of AFC data

7.1.1 Analysis of the results

After data preparation, Algorithm 1 was implemented in R [56] for U-Pass (University

of Minnesota Pass) AFC data from March 07, 2016 to March 10, 2016. Figure 7.1

shows the number of trips made by the U-Pass holders during the analysis period. We

can observe the morning peak between 6:30 A.M. to 9:30 P.M. and the afternoon peak

between 3:00 P.M. to 6:30 P.M.

Figure 7.1: Time distribution of the trips in U-Pass data
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Table 7.1: Comparison of the results between the baseline and the proposed method

Inference Baseline method Proposed method

Regular tags 46,507 51,919

Pay exit tags 0 4,504

Total 46,507 56,423

Total number of tags considered: 66,374 (60,812 Regular tags and 5,562 Pay exit tags)

After removing all the outliers described in §6.1, 66,374 out of 85,456 tags were left.

Out of the remaining 66,374 tags, both origin and destination of 56,423 (85%) tags

were successfully inferred in comparison to 46,507 (70%) tags being inferred using the

baseline algorithm described in [10]. Table 7.1 summarizes the results in which about

81% of pay exit cases were inferred using the proposed algorithm in comparison to no

inference using the baseline algorithm. Another comparison was done between the two

algorithms for inferred boarding and alighting. Out of 46,507 inferred regular cases, 384

(0.8%) boardings and 300 (0.6%) alightings were different. About 9% of the tags were

inferred as transfers in comparison to 17% in the original AFC data which considers

every tag as a transfer if it is made within 2 hours and 30 minutes of the previous tag

time. One point of interest is whether the last tag of the day can be inferred using the

first tag of the day. We found that out of 26,275 last tags, the algorithm is able to

infer the boarding and alighting of 21,110 tags (80%). This shows that this assumption

works well in practice. Among the tags which are not inferred, about 59% are not

inferred because no stop was found within walking distance from the current alighting

location to the next boarding location. The likely reason for this non-inference is the

use of another mode of transportation between two transit trips. We also observed that

due to wrong selection of trip IDs from GTFS data, around 558 tags were not inferred

using the baseline algorithm because the boarding time of the next tag was less than

the alighting time of the current tag. The proposed algorithm eliminated this problem.

This is because of the consideration of a list of possible trajectories for a given tag in

the proposed algorithm in comparison to only one trip in the baseline algorithm.

The selection of the most likely trajectory based on the highest probability may result

in accumulation of the inference error if there are multiple likely trajectories instead of

a dominant one. In order to check for this possibility, we calculated the percentage
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difference between the probabilities of the first and the second (if exists) most likely

trajectories for every tag. The percentage difference is calculated with respect to the

highest probability. A histogram of the percentage difference of these probabilities is

shown in Figure 7.2. We found that more than 95% of the values were greater than

19% difference. To test if there exist a significant number of trips with multiple likely

trajectories, we extracted 5% of the trips from lower tail of the distribution (shown by

the dashed line) to compare the means of the probabilities of the first and the second

most likely trajectories. We used the paired two sample T-test to compare the means.

Figure 7.2: Distribution of the percentage difference between the probabilities of the
first and the second (if exists) most likely trajectories

H0 :µfirst = µsecond

H1 :µfirst 6= µsecond

(7.1)

We found a T-statistic value of 24.383 which is greater than the critical value at 99%

confidence level. This rejects the null hypothesis that the means of the probabilities of
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the first and second most likely trajectories are equal. We recommend performing this

test to check the quality of the results. If there exists a significant number of trips with

multiple likely trajectories, then we either should consider all the likely trajectories for

that tag or choose a trajectory randomly from the set of likely trajectories.

7.1.2 Applications using the inferred results

To summarize the outputs, heat maps of trip origins and destinations are prepared

(Figure 7.3). The maps show that during morning peak hours, most of the trips originate

from the areas east of the campus, Downtown and southwest Minneapolis, Downtown St.

Paul, area around the university campus and Metro Green Line, while trip destinations

are mainly at the university campus. Looking at the results for the evening peak hours,

the origins and destinations look reversed, where most trips begin from the university

campus and end at popular morning origin locations.

We compared the route ridership to assess the most common transit routes used

by university students. Table 7.2 shows the high ridership routes and stops. In this

table, as expected Metro Green Line has the highest ridership as it connects Downtown

Minneapolis and Downtown St. Paul via university campus through two stations, East

Bank Station and West Bank Station, which are also the popular locations for board-

ing and alighting in the stop table. Route 2 and route 3 are the most common bus

routes used by the university students who live close to the campus. Route 3 connects

Downtown Minneapolis and Downtown St. Paul via university by serving areas around

the campus. Route 6, route 114 and route 113 serve the southwest suburbs while route

465 and 87 serve the southern suburbs. It is interesting to see that many students from

the suburbs use the bus to commute to the campus. In the stop table (Table 7.2),

stops located in the university campus such as East Bank Station, Pleasant Street &

Jones Hall, West Bank Station, Washington Avenue & Coffman Union and Washington

Avenue & Oak Street SE show high ridership. Other high ridership stops shown in the

table are Metro Green Line stations. Finally, 15th Avenue SE and Como Avenue is also

a popular stop for boarding and alighting served by route 3.
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(a) Origins in morning peak (b) Destinations in morning peak

(c) Origins in evening peak (d) Destinations in evening peak

Figure 7.3: Intensity of trip origins and destinations. (For interpretation of colors in
this figure, the reader is referred to the web version of this thesis.)

The highest number of tags was made on the Metro Green Line stations for which we

did stop level origin-destination analysis. In Figure 7.4(a), we can observe that in the

morning peak and eastbound direction, most trips start from Downtown Minneapolis at

the western end of the line to the East Bank and West Bank Stations on the university

campus or from Downtown St. Paul Union Depot (Figure 7.4(b)) at the eastern end

of the line to the East Bank Station. Most of the students commute from the stations

east of campus, for example, Stadium Village, Prospect Park and Westgate which are

closer to the university. Conversely, during the evening peak, most trips go from East

Bank and West Bank Stations to the popular origin locations in the morning (Figure

7.4(c) and Figure 7.4(d)).
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Table 7.2: Routes and stop locations with high ridership

Route Ridership Stop/Station Boarding Alighting

Metro Green Line 22,144
East Bank Station
& Platform

7,052 7,314

3 12,213 Pleasant St & Jones Hall 3,423 3,265
2 6,340 Stadium Village Station & Platform 2,928 2,783
6 3,014 West Bank Station & Platform 2,924 2,723
465 2,274 Washington Ave & Coffman Union 1,637 2,006
114 1,569 Westgate Station & Platform 1,441 1,280
113 1,207 15th Ave SE & Como Ave SE 1,105 1,013
901 1,126 Washington Av & Oak St SE 971 971
87 1,073 Prospect Park Station & Platform 923 828

698 794
Warehouse Hennepin Ave Station &
Platform

714 626

7.1.3 Discussion

In this subsection, we discuss the possible ways to infer the non-inferred tags. The

proposed method infers the boarding and alighting of the tags made by the passenger

during the day based on the assumptions given in §2.1. If these assumptions are not

satisfied, then it cannot infer the boarding and alighting location of a given tag. Such

trips (tags) are called unlinked trips [15]. The inference of such trips is possible using a

method proposed by [15], which assumes that passengers tend to follow the same routine,

and the historical alighting location and time information can be used to infer the

alighting location of an unlinked trip. The method extracts the historical destinations

for a passenger and tries to estimate the probability of alighting on these locations.

The probability is found using spatial and temporal proximity of the historical alighting

and the potential alighting. The method can be used in our case for the regular tags.

We need to repeat the procedure of finding the spatial and the temporal probabilities

for all the possible trajectories found for a given tag. However, the method may not

be useful for pay-exit cases. For example, for a commuter who takes a regular route

in the morning and pay-exit route in the evening, there will be no historical alighting

and boarding location for the current and the next tag location respectively. Another

disadvantage of combining the method proposed by [15] and the proposed method is

heavy computational time as the spatial and temporal probabilities need to be calculated

for each possible trajectory.
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(a) Flow of passengers in the morning peak in
the eastbound direction

(b) Flow of passengers in the morning peak in
the westbound direction

(c) Flow of passengers in the evening peak in the
eastbound direction

(d) Flow of passengers in the evening peak in
the westbound direction

Figure 7.4: Passenger origin-destination flow on Metro Green Line light rail. (For
interpretation of colors in this figure, the reader is referred to the web version of this
thesis.)
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Transit agencies require full O-D matrix for all the trips made by users given the er-

rors and the missing information. This can be achieved using the boarding and alighting

count data available from APC data. The O-D matrix obtained from AFC data using

trip chaining algorithm can be used as a seed or prior matrix in optimization meth-

ods proposed by [34] or [36]. These optimization methods promise to perform better

with a good quality seed matrix, which we can obtain from the trip chaining results.

Another possibility is to proportionally assign the non-inferred boarding and alighting

based on the APC data. Although these methods may not infer the correct boarding

and alighting on an individual level, they will improve the results on an aggregate level.

7.2 Application of APC data

In this section, we present two numerical examples of OD estimation using the proposed

methodology. First, simulation is used to assess the consistency and accuracy of the

estimation method. Second, the OD estimation of a bus route in Twin Cities, MN is

presented.

7.2.1 OD estimation using simulation

We prepare a synthetic OD matrix to set up a simulation environment. There can

be different ways to simulating OD matrices for this experiment. In real APC data,

there is likely to be a regular pattern of flow with some noise in it. However, to test

the method in worst case scenarios, we simulate random matrices. To prepare such

synthetic matrices, we make some assumptions on the probability distribution of arrival

of the passengers on different stops. To facilitate the presentation of results, only 10

stops along a transit route are considered. The passenger arrival at the stop is assumed

to follow a Poisson distribution.

bi ∼ Poisson(k) ∀i ∈ N (7.2)

where, k is the mean arrival rate at the stop and bi is the number of boarding at stop

i. We recommend fitting a Poisson distribution to the real data to calculate the value of

k. For example, the mean value of the arrival rate of the passengers on the A-line was
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found to be equal to 0.86 during peak hours, which is quite low. To assess the significant

errors produced by the estimation, the mean value equal to 15 passengers is assumed.

Then the sparsity level is set for the O-D matrix. The sparsity level will make the value

of the probability of flow from one stop to another stop zero if this probability value is

less than the threshold sparsity level. This is done to create sparsity in the matrix and

to test whether the method works more efficiently when the sparsity is high. Then the

flow from one stop is assigned to others by assuming a multinomial distribution i.e.,

xij ∼MNL(bi, pi1, pi2, ..., pi|N |) (7.3)

where, pij is the probability of movement from stop i to stop j. The diagonal and

lower triangle elements of the matrix are set to zero because of the constraints (5.4)-

(5.5). To calculate the boarding and alighting flows for O-D estimation, we sum the

rows and columns of the simulated matrix. After that, an optimization model is set up

using the Python API of CVX [51]. To avoid choosing the value of µ in optimization

program (5.10), the program (5.8) is solved with l1 norm. However, we recommend

using the optimization program (5.10) when the sum of boarding and alighting count

do not match in the APC data, which happens because of the errors in data collection.

Figure 7.5 shows an example of recovered matrix using the proposed method. Using

200 Monte-Carlo samples of OD matrices, the root mean square error (RMSE) between

the actual OD x and estimated OD xest vector is calculated.

Actual OD Estimated OD
Stop # 1 2 3 4 5 6 7 8 9 10 Stop # 1 2 3 4 5 6 7 8 9 10
1 0 3 0 3 0 0 2 2 2 0 1 0 3 0 3 2 0 0 4 0 0
2 0 0 12 0 0 0 0 0 3 0 2 0 0 12 0 0 1 2 0 0 0
3 0 0 0 0 1 9 0 4 0 0 3 0 0 0 0 0 14 0 0 0 0
4 0 0 0 0 1 0 4 0 1 3 4 0 0 0 0 0 0 0 0 9 0
5 0 0 0 0 0 6 1 1 0 1 5 0 0 0 0 0 0 0 1 0 8
6 0 0 0 0 0 0 4 6 4 1 6 0 0 0 0 0 0 9 1 5 0
7 0 0 0 0 0 0 0 0 4 3 7 0 0 0 0 0 0 0 7 0 0
8 0 0 0 0 0 0 0 0 2 0 8 0 0 0 0 0 0 0 0 2 0
9 0 0 0 0 0 0 0 0 0 2 9 0 0 0 0 0 0 0 0 0 2
10 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0

Figure 7.5: An illustration of actual and recovered matrix



45

Figure 7.6: l2 error between the actual and estimated OD matrix

Figure 7.6 shows the histogram of RMSE in the estimation for each sample. We can

observe that the mean value of the error is 0.59 and with a standard deviation of 0.09.

The 95% confidence interval of the l2 error was found to be equal to (0.585, 0.611). This

shows that the results obtained from this estimation method are consistent and small.

To see how the method performed in predicting the individual origin-destination pair

flow value, we created a box plot for the estimation error (Figure 7.7). The proposed

method predicted the actual value of the non-zero entries 41.5% of the time. In case of

errors, the method seems to overpredict the values except some of the O-D pairs such

as 0-4, 1-2 and 5-6.
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Figure 7.7: Box plot for the errors in estimation of O-D flows
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Figure 7.8(a) shows the average load profile of the passengers on the transit route.

The width of the 95% confidence interval is small which shows that the method is reliable

in estimating demand and therefore in deciding the adequate frequency to handle the

load of the passengers. We can also observe that the errors in estimating the load of

the passengers is also quite small (Figure 7.8(b)).

Figure 7.8: (a) Average load profile of the transit route. (b) Box plot of error between
actual and estimated load

To understand the effect of sparsity, we solved the problem for several levels of

sparsity and calculated the root mean square error (RMSE) between the estimated and

actual OD matrix. Figure 7.9 shows the RMSE value with respect to the sparsity in the

matrix. We can observe that the RMSE value is reduced with increased sparsity. For

example, when the OD matrix has only 10% non-zero values, the corresponding RMSE

value was found to be less than 0.35, which is quite impressive. This shows that the

accuracy of the method is improved when there is more sparsity. Comparing the results

to common least squares solution (Figure 7.9), the proposed method is able to recover

solutions with lower RMSE value. It can also be observed that when the sparsity is low,

the proposed method is more efficient than least squares as the gap between two lines is

high but when there are a greater number of non-zero entries, the RMSE gap between

these two methods reduces.
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Figure 7.9: Root mean square error (RMSE) versus sparsity in OD estimation (Sparsity
is in terms of proportion of non-zero values)

To see how different demand patterns affect the OD estimation, a similar simulation

for several mean arrival rates (k) of passengers at stops is performed. Figure 7.10 shows

normalized RMSE values with respect to sparsity in the random matrix for different

mean arrival rate. The normalization is done by simply dividing RMSE by mean arrival

rate. The results are presented in separate panels. We can see that the normalized

RMSE decreases with an increase in demand. At k = 20, the normalized RMSE value

was found to be almost equal to 1, which is still quite low. At lower demand, the matrix

is already sparse, so we see less effect of sparsity parameter.
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Figure 7.10: Comparing RMSE with sparsity for different mean arrival rates (each panel
represents different mean arrival rate of passengers)

7.2.2 OD estimation of A Line BRT route in Twin Cities

We select A Line, which is a bus rapid transit (BRT) route in Twin Cities for this

analysis. It serves 20 stations along Snelling Av and 46th St. We select a trip from

the data during peak hour. The number of boarding and alighting at different stops

in the northbound direction is shown in Figure 7.11. We can observe the popular

boarding locations such as 46th street station, 46th & Minnehaha station, and Snelling

& Highland station and alighting stops such as Rosedale transit center, Snelling &

Highland station and Snelling & Clair st. station. The optimization program (5.10) is

used to solve the given problem with a value of µ = 0.2. A few recommendations for

choosing the value of µ is given in [39].

The total ridership of the trip is 16. Because of low ridership, flow along most of

the O-D pairs should be equal to zero. We apply the proposed method to the given

data and calculate the origin-destination flows. Figure 7.12 shows the origin-destination

flows between different O-D pairs. We can see that the flow occurred only between 11

O-D pairs out of 400 pairs (2.75%). The highest flow was observed between Snelling &

Highland Av and Rosedale Transit Center, which is the last station along this route.
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Figure 7.11: Boarding and alighting counts of A Line

Other popular OD pairs are 46th St and Snelling & St. Clair, Snelling & Minnehaha

and Snelling & Highland Av. Because of the low ridership, the sparse matrix recovery

seems to perform well.
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Figure 7.12: Origin-Destination flow for A Line, Twin Cities, MN



Chapter 8

Conclusions and

Recommendations

The methods presented in this thesis have shown to infer aspects of passenger trajecto-

ries which are not directly observable through raw data. This chapter summarizes the

results and findings of these methods and assesses the extent to which the objectives

described in §1.2 were satisfied. Various recommendations for future research are then

proposed including the improvement in current methodology and potential applications

of results obtained.

8.1 Results and Findings

This thesis presents the application of transit automated data to estimate OD matrix

at different aggregation levels. A robust method for trip chaining of AFC data was

presented to infer origin and destination of transactions, which tries to relax various

assumptions on the parameters used in the existing trip chaining algorithms. The pa-

rameters can vary according to the quality of data and user behavior in different transit

systems, so a fixed value cannot be assumed for different transit systems. This is evident

from trip chaining results for the Twin Cities’ AFC data. The proposed method provides

the flexibility to assume a higher value for these parameters to avoid the wrong infer-

ence of origin and destination. The method uses probability distributions for potential

boarding stop location, bus delay and passenger’s route choice behavior. By combining

52
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these probabilities, it infers the most likely trajectory of the passenger. Though being

an open transit system with pay-exit buses and sub-routes, these attributes create var-

ious problems for trip chaining. Using the proposed method, various problems such as

erroneous GPS locations, selection of the wrong trip for inference, and pay-exit cases

are addressed. The proposed algorithm was also suitably modified to deal with different

pay exit cases. The O-D matrix results can be used in multiple ways to understand the

travel behavior of passengers in a transit system. We presented the ridership analysis

on an aggregate level for the Twin Cities and also the route level analysis for a light rail

transit line. The trip chaining results can also be used for creating clusters of customers

to evaluate similar travel patterns based on their regularity in using the transit system.

These results can inform planners for better decisions to improve transit services.

The thesis also proposed a method for estimating an origin-destination OD matrix

for a transit route along one direction. The problem was formulated as an undetermined

system of linear equations. The adopted strategy was to estimate a sparse O-D matrix,

using l0 norm. Using its convex surrogate l1 regularizer, the problem can be solved

efficiently. The sparsity in the matrix is generated because there are only a few popular

O-D pairs along a transit route where the flow occurs. The constraints and sparsity try

to force the solution to an actual value. We tested the efficiency of the estimator using

simulation. The errors were found to be bound within a small range. With an increased

level of sparsity in the matrix, the method was able to recover more accurate results.

We also found small errors even for higher demand. For example, the normalized RMSE

between estimated and actual matrix value was found to be at most 0.1. It was observed

that the proposed method works efficiently by showing a numerical example of A-line

BRT route in Twin Cities, MN.

8.2 Recommendations for future research

Current research on trip chaining can be expanded in multiple directions. The case

where the current tag is regular and the next tag is pay-exit and both tags use the same

route is analyzed using a method of proportions. Additional information from other
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data sources can help in the development of a suitable algorithm for this case. Further-

more, the results obtained from trip chaining can also be used for other research such

as trip purpose inference, analyzing spatial and temporal travel pattern, route choice

behavior analysis of passengers and transit assignment models.

The use of compressed sensing to solve the underdetermined system of equations

is new to the transportation field. The research described in chapter 5 can also be

expanded in multiple directions. The method can be used to estimate a full transit

network OD matrix. The problem can be formulated as a bi-level program with sparse

recovery optimization at the upper level and transit assignment at the lower level to

capture route choice behavior in the model. We believe that the network level OD will

also be sparse because it is unlikely that passengers boarding at one stop can alight at all

other stops in the network. The concept can also be extended to matrix sensing which

will be helpful in estimating a time-dependent transit OD matrix. As the boardings and

alightings follow a regular pattern during various hours of the day, data from several

days can be used to learn this pattern. This means the high dimensional data for several

days can be used to minimize the rank of the matrix to extract a regular pattern. This

can be done by minimizing the nuclear norm of the matrix, which is a convex surrogate

for the rank of the matrix. The problem is computationally challenging and needs

further attention. Further studies are required to show under which constraints, the

OD linear map satisfy the RIP property. Other statistical methods are also required to

assess the accuracy of the estimation.
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Appendix A

Notations

Table A.1: Notations used in this thesis

Variable Definition

n Index/row number in the AFC data

t Time of the tag

r Bus route number of the tag

δ Direction of bus route

θ Geographical coordinates of the tag

GC Great circle distance

α Buffer distance for finding possible boarding stops

ε Buffer distance for finding possible alighting stops

τ Buffer time for finding possible trips

k Index for different boarding stops

l Index for different trips

m Index for different alighting stops

Sn List of possible boarding stops for tag n

Tnk List of possible trips for tag n and boarding stop k

∆kl Absolute difference between tag time tn and trip time ttrkl

Ankl List of possible alighting stops for tag n, boarding stop k and trip l

Continued on next page

61



62

Variable Definition

IVklm In-vehicle travel time for trip l with boarding stop k and alighting stop

m

wklm Walking distance from alighting stop m for trip l with boarding stop

k

to the next tag location θn+1

‖M‖1 l1 norm of matrix M , ‖M‖1 =
∑

ij |Mij |
‖M‖∞ l∞ norm of matrix M , ‖M‖∞ = maxi,j |Mij |
N Noise matrix

Lf Lipshitz constant

〈, 〉 Inner product

N Set of stops/stations along a transit route

i Index for transit stop

bi Number of passengers boarding at stop i

ai Number of passengers alighting at stop i

X Origin destination flow matrix

x Vector form of OD matrix X

A A Linear map on vector x
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