
 

THE DEVELOPMENT OF POTENTIAL MALE CONTRACEPTIVES VIA 
INHIBITION OF CATSPER AND ALSO GBA2 

 
 
 
 
 
 
 

A DISSERTATION 
SUBMITTED TO THE FACULTY OF 

UNIVERSITY OF MINNESOTA 
BY 

 
 
 
 
 

Erick Jeffrey Carlson 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 
 

ADVISER: Dr. Gunda I. Georg 
 

July 2019



 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Erick J. Carlson, 2019



 

Acknowledgments 

I would like to start by thanking Dr. Georg for her advice and support during the 

course of my studies here at the UMN. My successes here or in the future are absolutely 

thanks to her guidance and counsel over the years. On this same note, the advice and 

mentorship of Dr. Hawkinson is not unnoticed. I thank him deeply for the hours in his 

office my second and third years pouring over data. 

I thank Dr Portoghese for his agreeing on short notice to serve on my committee, 

Dr. Aldrich for agreeing to chair said committee while showing an enviable enthusiasm 

and Dr. Pomerantz for serving on my committee but also for many insightful conversations 

over the years. 

While the work presented herein may be my own, its success is owed in large part 

to the surrounding cast members of this seven-year play. To each the members of the Georg 

Group and ITDD I wish the best in the future and thank them kindly for the literally 

hundreds of jokes, advisements and conversations.  

A special thank you goes out to Sara Coulup and Peter Ycas for serving as the oars 

in the emotional row boat of graduate school. Helping me along against the current of my 

own self-destructive behaviors, I firmly believe that I would not be writing this were it not 

for these two amazing scientists and friends. They will be missed dearly. 

Last, but certainly not least is to thank my family. Though diasporic we may be, the 

bonds of kinship ground me in my roots. Your obvious love is a beacon in any dark day. I 

love you all.  

i 



 ii 

Dedication 

This thesis is dedicated to those who helped me through the 

years. 

They know who they are. 

They are cherished above all else. 

And they will never, ever read this thesis. 

  



 iii 

ABSTRACT 

The work presented herein constitutes the effort of one graduate student to mimic 

the efforts of a small biotech company. To this end, success was had on multiple fronts and 

the author is excited to showcase the data and results obtained on two different projects. 

Both projects focus on different targets of potential male contraceptives: spermiogenesis 

and sperm motility. In chapter one a very brief summary and introduction to the field of 

contraceptive research is presented, serving as an hors d’oeuvre to the main course of 

chapters two through four. 

Chapters two and three detail the efforts towards developing blockers of an 

intriguing calcium ion channel called CatSper. The proper function of this channel is 

required for fertilization, as knockout mice are completely infertile with no deleterious 

phenotypes observed. Inhibitors of this channel are well-suited to applications in non-

hormonal male contraception and two approaches towards developing blockers of this 

channel are described in chapters two and three. 

Chapter two discusses the work done towards converting the endogenous activator 

of the channel, progesterone, into a blocker via systematic modifications to the steroid 

scaffold This approach yielded three compounds able to block the physiologically relevant 

openers of the channel and revealed discrepancies between steroidal blockers and classic 

t-type calcium channel blockers. The discovery, efficacy and discrepancies of and between 

these compounds is discussed at length. 

Chapter three details the hit-to-lead development of two new scaffolds of CatSper 

blockers found via an HTS campaign which finished in 2012. Matrix chemistry was 
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utilized to generate libraries of focused compounds. The activity of these compounds in a 

developed influx assay could lead to further analog generation and eventually two 

submicromolar blockers of the channel were discovered and characterized. Additionally, 

the first steps of a fragment-inspired approach towards the development of a second 

scaffold is described in the latter half of chapter three. 

Finally, chapter four discusses the efforts of a separate project, focusing on a class 

of molecules termed iminosugars, specifically aminocyclopentitols. These compounds 

strongly modulate glycosphingolipid processing, resulting in infertility from improper 

spermatogenesis. A series of compounds were synthesized and showed potent, and more 

importantly, selective inhibition of the enzyme responsible for degradation of these lipids 

(GBA2). Iminosugars, as a whole, are hindered by species-specific efficacy observations 

and the compounds synthesized and evaluated as part of Chapter 4 could help to illuminate 

these discrepancies in the future, should the desire arise to explore these observations 

further.  
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Chapter One: Current Scope of Discovery in Male 
Contraception 

Section 1.1 Impact and General Strategies of Research 
The nutritional, economic and social consequences of unwanted pregnancies are 

wide-ranging and a great burden on both families and governments. Every year, worldwide 

there are more than 500 000 deaths from pregnancy-related complications and this figure 

does not include morbidities suffered by women from complications during pregnancy and 

childbirth.2 Additionally, maternal deaths and morbidities associated with pregnancies and 

child birth are as high as 1324 per 100 000 births.3 For these and many other reasons, 

further control over fertility is needed via novel, safe and effect contraceptive methods. 

According to a 2008 report in Contraception, just over 50% of pregnancies in the 

US are unintended.4 This number is decreasing slowly over time as cultural norms change 

but still remains around 50%.5 Given that many women cannot make use of hormonal 

therapies or IUDs, they must instead rely on their partners for contraception, to which the 

only reliable methods are vasectomy or condoms, though the efficacy of these methods is 

questioned.6 To this end, the need for a greater range of male-specific contraceptive options 

Table 1.1. Willingness of men from surveyed countries to utilize a male contraceptive 

If available would you be willing 
to use a new male fertility 
control? 

GER SWE USA ARG BRA MEX INDON 

Willing 69.0 58.1 49.3 44.4 62.7 65.4 28.5 

Uncertain 24.4 17.4 38.4 13.2 12.8 8.9 37.3 

Disapproving 6.6 24.4 12.4 42.3 24.5 25.7 34.2 

GER = Germany, SWE = Sweden, USA = United States of America, ARG = Argentina, 
BRA = Brazil, MEX = Mexico and INDON = Indonesia. Data is adapted from reference.1 

1 
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is great. The discovery of new contraceptive methods for men has been hindered by cultural 

stigmas and social dynamics.7, 8 Fortunately, it appears this outlook on male fertility control 

is finally changing with recent polls and press showing an increasing interest from men 

with respect to male-specific contraceptive methods.9 An acceptability study of over 9000 

men from 9 countries on 4 continents showed that men from all major religions and cultures 

indicated a willingness to use a male contraceptive if proven safe and reversible. 

From a drug development standpoint, the development of an effective, safe and 

reversible male contraceptive is incredibly challenging. Pregnancy, as a medical condition, 

is limited to the female half of any partnership. Societal and moral obligations aside, the 

man in any relationship, however casual or committed, suffers no physical health risks 

from pregnancy. Mental health of both partners in an unwanted pregnancy is obviously at 

risk, however it is the female of a couple who carries the child and suffers the physical 

ailments associated with pregnancy. Because of this, a contraceptive intended for men must 

be exquisitely safe and reversible, unlike in other morbidities in which the standards for 

safety can be reduced, given the state of the physical risk to the patient if left untreated. 

The “patients” taking a male contraceptive therapy are healthy individuals and the course 

of treatment could be many years, rather than months.10 

In general, potential male contraceptives target either spermatogenesis or the 

function of mature spermatozoa.11 Contraceptives affecting either of these categories exist 

as hormonal or non-hormonal therapies. Hormonal therapies were first explored in men, 

given their success in women, however these methods are difficult to achieve success, 

given the complicated hormonal regulation and serious side effects of testosterone 
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imbalance.12 As such, non-hormonal therapies are highly sought after, though it should be 

noted that recent successes of a synthetic androgen have garnered much attention in the 

press.13 This synthetic androgen prodrug successfully reduces levels of testosterone within 

the testes to levels insufficient to support production of sperm, while the concentrations 

circulating in the rest of the body remain nominal, circumventing one of the greatest pitfalls 

of hormonal treatments as discussed below. 

Section 1.2 Hormonal Therapies as Male Contraceptives 
Hormonal therapies as potential male contraceptives have been the first and longest 

studied, given their success in women.14 The studies surrounding hormonal therapies have 

centered on the inhibition of gonadotropin production and the resulting decrease in the 

production of testicular testosterone. Testicular testosterone concentrations are typically 

40- to 100-fold higher than serum levels.15 This high concentration is needed to support 

spermatogenesis and therefore therapies that reduce testicular testosterone levels are able 

to decrease sperm production. This has been proven to be the case in several independent 

studies.16, 17 The problems surrounding these therapies has been an inability to limit the 

reduction of serum testosterone concentrations, thus avoiding several side effects.18 

In all studies except the most recent, serum testosterone levels drop sufficiently low 

to cause a negative feedback to the hypothalamus and pituitary, shutting of secretion of 

luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Diminished levels of 

these hormones reduce testosterone production by the Leydig cells, however concomitant 

drop in serum testosterone levels causes the frequently observed side-effects such as loss 
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of libido and muscle mass.19 If used, these therapies would require androgen replacement 

therapy to restore these functions. 

Progestins have long been used in female contraceptives and are available in a 

variety of formulations, making them great candidates for potential use in men.20, 21 This 

class of hormones has been shown to reduce gonadotropin levels, and by extension, greatly 

diminish sperm counts.22 Their efficacy in vivo, however, has been limited and the focus 

of the field has turned, instead, to androgen-mediated therapies.23 

The parent androgen testosterone is, itself, not available in an oral dosage form and 

hepatotoxicity has been observed in orally bioavailable derivatives.24 Additionally, 

testosterone, as a drug, displays severe side effects given its inability to selectively 

modulate its androgenic (sexual) or anabolic (muscle building) effects.25 As such, synthetic 

derivatives of testosterone able to selectively modulate these functions of testosterone hold 

great promise. These selective androgen receptor modulators, or SARMs, have been the 

pursuit of researchers for over a decade and several synthetic androgens acting as SARMs 

are currently being tested in human patients, showing promise.26, 27 

Figure 1.1 shows the structures of two of the most promising synthetic androgens. 

11-beta-Methylnortestosterone (11β–MNT) and its undecanoate prodrug (11β–MNTD) 

Figure 1.1. Structures of Testosterone and Synthetic Androgens Being Pursued as 
Hormonal Male Contraceptives. 



 5 

have shown efficacy in rabbit models and are currently being tested in healthy human 

males, passing initial safety studies.28 Another synthetic androgen, 7α-

methylnortestosterone (MENT), shows promise since it cannot undergo 5α-reduction and, 

as such, is less likely to show the same side effects observed with testosterone.29 However, 

7α-MENT shows poor bioavailability and as such needs to be delivered continuously via 

an implant.30 A similar application is employed in androgen replacement therapies, and 

therefore an implant requirement is not problematic. The use of implants is also frequently 

used in female contraceptives for continuous release. 

All androgens discussed thus far act by inhibiting sperm production. While 

promising as a means to male contraception, is not without its drawbacks. One drawback 

with respect to these therapies is the time required to sufficiently reduce sperm 

population.31 It takes 12 to 16 weeks of treatment to reduce the sperm count to levels 

deemed contraceptive.32 This is a nontrivial amount of time for a therapy to take effect. 

Furthermore, patient compliance would need to be pristine, as several missed 

administrations could trigger sperm production in Leydig cells, undoing weeks of 

treatment. This of course assumes oral dosing instead of gel patches or subcutaneous 

release mechanisms, which apply a constant dose of would-be contraceptive. 

Another drawback to this approach is the potential need for regular screening to 

ensure sperm production is indeed sustained at a low level. Kits exist for at home use that 

could alleviate this pitfall, however it is nonetheless an extant obstacle. These drawbacks 

assume that the side effects observed with androgen treatment in the past are indeed just 

that: in the past. 
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But the largest drawback for testosterone-modulating contraceptives is that of the 

side effects observed in men dosed with the hormone. The anabolic effects of testosterone 

dosing come first to mind in public – changes in behavior and irritable mood dominate the 

press.33 However even more serious is the uncertainties surrounding the effects of 

testosterone therapy on cardiovascular health of men. One study found that testosterone 

therapy can increase the risk of heath attack, while another showed that it may, in fact, 

lower the risk of cardiovascular disease.34 While the cardiovascular side effects are serious 

and warrant further investigation, other side effects remain including sleep apnea, enlarged 

prostrate (noncancerous) and blood clotting.35 For previously mentioned reasoned, these 

side effects need to be nearly nonexistent for a male contraceptive to be approved by the 

FDA. As such, the field has largely turned to non-hormonal contraceptive options. 

Section 1.3 Nonhormonal Therapies as Male Contraceptives 
Given the challenges surrounding hormonal therapies for male contraception, 

nonhormonal targets have been the subject of intense research in the community. 

Nonhormonal targets include those effecting sperm production, maturation and or 

function.11, 36 While a plethora of targets exist and show promising initial results, the 

challenge remains to ensure the testes-specificity of these compounds. Additionally, 

penetration of the blood-testes barrier presents another hurdle.37 Nonhormonal targets 

include proteins ranging from kinases to ion channels to nuclear receptors. The diversity 

of this class of potential therapies has been the source of extensive and multiple reviews 

and will not be discussed in detail in this thesis, however a brief overview follows.38-40 
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Spermatogenesis is a promising target for contraception, both by hormonal and 

nonhormonal agents. Inhibitors of proteins involved in meiosis prevent spermatogenesis 

by reducing the number of germ cells present, as well as their maturation. Kinases are 

involved in the meiotic process and cyclin-dependent kinase 2 (CDK2) knockout male and 

female mice are infertile.41 

Targeting retinoic acid receptor alpha (RARα) has demonstrated efficacy when 

studied with antagonists thats inhibit spermatogenesis, similar to the aforementioned 

kinases.42 Difficulties in the metabolism of these compounds have limited their 

development, though work is ongoing in several labs.43 At the later stages of 

spermatogenesis, the germ cell must interact with the surrounding Sertoli cells as they 

finish maturation.44, 45 Several classes of compounds have been developed to inhibit this 

Figure 1.2. Structure and Targets for Studied Nonhormonal Contraceptives Affecting 
both Spermatogenesis and Sperm Function. 
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interaction, leading to infertility. Indazole carboxylic acids such as lonidamine,46 adjudin44 

and gamendazole47 (Figure 1.2) disrupt Sertoli cell-germ cell interactions. 

The second chapter of this thesis pertains to a class of compounds referred to as 

iminosugars and their ability to inhibit spermatogenesis by modulating glycoprocessing. 

Specifically, the formation and degradation of glucosylceramide.48 

This class of compounds reversibly induce infertility in C57BL/6 mice but not in 

other mice species, rabbits and humans.49 Further research is required to better understand 

the physiologically relevant targets that these compounds are inhibiting. 

The testes-specific bromodomains (BRDT), an epigenetic regulator, is another 

target regulating spermatogenesis and is the subject of intense study, though selectivity 

over analogous, ubiquitous domains will need to be achieved, given the side effects 

observed with pan bromodomain inhibitors.50-53 

Affecting sperm function once matured is one of the most prevailing strategies 

when for non-hormonal male contraception. Most of the targets currently explored have 

been validated by knockout studies in which the knockout mice showed little effect beyond 

the desired infertility.54 Within this class of potential drug targets, ion channels are 

prominent and include channels specific for calcium55 and potassium56, and as well as 

channels responsible for the regulation of pH, volume and osmolarity (aquaporins).57-60 

Many targets are available for study within this class and noteworthy strides have been 

made in developing inhibitors for the testis-specific Na,K-α4 ATPase exchanger.61 

Analogs of the cardenolide ouabain have proven to be potent and selective inhibitors of the 
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testes-specific isoform α4 with in vivo activity that significantly reduces sperm motility, 

including hyperactivated motility (HAM).62, 63 

In addition to small molecule inhibition of targets responsible for sperm maturation 

and function, effort has been put towards the development of a contraceptive vaccine. 

Immunocontraception involves the use of antigens to target different aspects of gamete 

production.38 Vaccines targeting luteinizing hormone releasing hormone (LHRH) have 

been tested and reduce testosterone production.64 It remains to be seen if these vaccines 

would circumvent the issues observed with hormonal therapies. These therapies would not 

be orally bioavailable and could have difficulty penetrating the blood-testes barrier. 

Nonetheless, efficacy has been shown in male monkeys after injections with human 

recombinant epididymal protease inhibitor (EPPIN), a serine protease inhibitor expressed 

in the testis. Contraceptive vaccines remain an ongoing area of research for several research 

groups.65, 66 

Section 1.4 Summary and Outlook 
Given recent results from the safety studies for 11β-MNTDC male contraception 

may be available to men seeking fertility control in the not-so-distant future. Further 

development of these promising compounds, and indeed, any compound showing efficacy, 

be it hormonal or nonhormonal, will require the involvement of a pharmaceutical 

company.1 This involvement is currently lacking but once a contraceptive has completed 

the rigid clinical trials required of these potential therapies, involvement of a company is 

more likely. Men all over the world, from all walks of life are seeking to carry their weight 

in preventing unplanned pregnancies. The development of a safe, reversible male 
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contraceptive would be a boon to men and women everywhere and this thesis details efforts 

on two fronts: aminocyclopentitols as inhibitors of spermatogenesis and CatSper inhibitors 

which significantly reduce sperm motility. 
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Chapter 2 Discovery and Characterization of Steroidal 
Blockers of the CatSper Complex 

Section 2.1 CatSper Form and Function 

Characterized for the first time in 2001, the cation channel of sperm (CatSper) is 

the foremost entry point of calcium into mature spermatozoa.67, 68 CatSper is a tetrameric, 

strongly voltage-gated ion channel consisting of at least 4 subunits: alpha, beta, delta, 

gamma and zeta and epsilon, though the latter two have only been shown to exist in mice, 

currently.69-72 CatSper is exquisitely testes-specific, demonstrated by Northern blot 

analysis in which it was shown that target mRNA was only present in tissue isolated from 

the testes and nowhere else in the body.68 

Given this specificity, CatSper was immediately implicated in fertility. Mating 

studies with catsper3-/- mice showed that male mice bearing this knockout were completely 

infertile with no other observable phenotypes. Furthermore, it was shown that if any of the 

complex components were knocked out, mice exhibited complete infertility. It should be 

noted that female mice bearing this knockout were completely homologous to their 

wildtype counterparts.55 

The observed infertility was a result of the inability of sperm from knockout mice 

to achieve hyperactivated motility (HAM). HAM is crucial to successful union between 

the sperm and egg and is also required for mature spermatozoa to traverse the upper 

reproductive tract, in which the mucus is quite thick.73 Frequently sperm become 

ensconced in the vascular folds of the endometrium and must release themselves when the 

time comes for the final step of fertilization.74 The egg itself is coated with a thick 

polysaccharide coat known as the zona pellucida.75 This final barrier cannot be penetrated 
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without first achieving HAM.76 As such, CatSper function is vital to successful fertilization 

and is therefore considered to be a promising non-hormonal contraceptive target. 

Endogenously, calcium influx via CatSper is greatly potentiated by the sex 

hormone progesterone and prostaglandin E1 (PGE1, Figure 2.2).77, 78 A large bolus of 

progesterone is released into the upper reproductive tract from the cumulus cells 

surrounding the ovum upon release of an egg.79 This increase in progesterone concentration 

activates CatSper and causes the sperm to release from the endometrium wall and proceed 

towards the released egg. In certain infertility cases, sperm from otherwise healthy men 

failed to respond to a progesterone stimulus.80, 81 Besides giving further credence to 

Figure 2.1. The CatSper Complex is Required for Proper Fertilization. (A) Confocal 
microscopy showing localization of CatSper antibodies to the principal piece of the 
sperm tail. (B) Electrophysiology experiments demonstrating the need for each α-
subunit of the CatSper complex for proper function. (C) Results of mating studies 
between wildtype female and the respective knockout male mice. Images from 54.  
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CatSper as a promising contraceptive target, this observation also directly validated the 

hypothesis that compounds able to prevent the progesterone-induced influx of Ca2+ from 

CatSper could serve as contraceptives. 

While the actions of progesterone on sperm have been known for many decades, it 

is only recently that a detailed characterization was achieved. It was shown in the late 80s 

that progesterone induced calcium influx in sperm, which elicited the aforementioned 

HAM.77 In 2011, electrophysiology experiments by two independent groups demonstrated 

that progesterone activates CatSper.82, 83 And, in 2016, it was reported that rather than 

binding to the CatSper complex, progesterone instead binds to a previously orphaned 

hydrolase called α/β-hydrolase domain containing protein 2 (ABHD2).84 By binding to and 

activating this hydrolase, 2-arachidonoyl glycerol (2-AG) concentrations within the sperm 

plasma membrane drop. Lowering 2-AG concentrations reduces the voltage threshold at 

which CatSper activation occurs, potentiating the inward flux observed in 

electrophysiology experiments.84 What remains to be determined is whether or not the 

other activator of CatSper, PGE1 also activates CatSper via the same mechanism. It has 

been proposed that this is not the case, though the work presented herein will stand in 

contrast to the prevailing views. 

Figure. 2.2. Structures of Progesterone and Prostaglandin E1 (PGE1). 
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CatSper, a validated target for nonhormonal contraception in men, is the subject of 

vigorous study in the field. A compound able to selectively block CatSper activation would 

be an excellent, novel contraceptive method for men. To this end we endeavored to 

discover new CatSper blockers via two distinct strategies. Detailed in this chapter are the 

efforts towards modifying one of the endogenous activators, progesterone, in an attempt to 

change this activator to a blocker of CatSper. 

Section 2.2 The SAR of Progesterone-Induced CatSper Activation 
Section 2.2.1 Study Goal and Overview 

It has been demonstrated that structural modifications to a ligand can lead to drastic 

changes in its activity at a particular target, such as converting agonists to antagonists.85 

To this end, a series of progesterone analogs were purchased, bearing small structural 

changes to the parent steroid in order to thoroughly probe the structure-activity relationship 

(SAR) of this CatSper-activating steroid scaffold as represented by Figure 2.3. 

Additionally, clinically used progestins and anti-progestins were purchased and tested for 

their ability to activate CatSper. Since all steroids share similar scaffolds, we investigated 

additional steroid classes to extend this SAR study. 

Figure 2.3. Sites of Potential Modification to the Progesterone Scaffold. 
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Section 2.2.2 Fluorescence Intensity Plate Reader (FLIPR) Assay for the Measurement of 
Calcium Influx: Development and Validation 

My study began by verifying a previously developed fluorescence intensity plate 

reader (FLIPR) assay by comparing the potency of progesterone to increase [Ca2+]i in 

Figure 2.4. Progesterone and PGE1 Elicit Calcium Influx in Live Human Sperm 
Cells as Monitored in a Representative FLIPR Experiment. Dotted lines representing 
increasing concentrations of test compound as shown. DMSO response is shown as 
solid black line. For both experiments, highest concentration 1 µM (highest RFU) 
down to 0.1 nM (lowest RFU) in 10X dilutions.  
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human sperm cells to the previously published patch-clamp and calcium fluorimetry 

experimental EC50 values of 7.7 ± 1.8 and 42 ± 9.3 nM, respectively. 82, 83 

The FLIPR assay consists of loading live human sperm cells with a calcium-

selective fluorescent dye called Fluo-4-AM.86 Selectively fluorescent in the presence of 

calcium, this dye has long been used to study calcium concentrations in a variety of 

settings. Live human sperm cells are collected and purified via swim up or centrifugation 

procedures, loaded with the dye and transferred to the FLIPR instrument where the 

fluorescence of the cells is monitored in real time. Test compounds to be tested as blockers 

are added to sperm cells in microtiter plates and given 2 min to bind, after which the opener 

relevant to the study is added, and the fluorescence of the well is monitored. DMSO 

Figure 2.5. Dose-Response Curves Confirming Potencies of Progesterone and 
PGE1. The EC50 values compare well with previously reported literature values for 
these compounds. Data are plotted as mean ± standard error, presented as a percent 
response relative to a saturating dose of progesterone (3 µM). Smooth curves 
represent the best fits of a nonlinear regression model to the data for each compound. 
EC50 values determined using Prism v6.05. 
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controls and compounds showing efficacy in the assay show reduced fluorescence as 

displayed in Figure 2.4. 

The observed EC50 value of 7.7 ± 1.4 nM for progesterone agreed with the 

previously reported values. Additionally, the EC50 value for PGE1 was confirmed to be 4.2 

± 0.7 nM, which was sufficiently close to those found previously in the literature.  

Preliminary dose-response experiments with progesterone indicated a 

concentration of 3 µM was sufficient to saturate response in the assay, therefore, 3 µM 

progesterone served as the high control in all subsequent response measurements. 

Section 2.2.2.1 The Characterization of l-Sirenin as a CatSper Activator 

While CatSper channels were originally thought to be animal-specific, it has been 

shown that a CatSper channel complex is present in the basal fungus Allomyces 

macrogynus (A. macrogynus).87 This fungus produces motile gametes that exhibit 

chemotaxis towards their female counterparts. This chemotaxis is driven by the sexual 

pheromone l-sirenin (Figure 2.6).88 

It is not known whether CatSper channels underlie the molecular mechanisms for 

chemotaxis in A. macrogynus, however the mechanism relies on calcium flux.89 We 

hypothesized that l-sirenin may activate fungal CatSper to enable gamete fertilization. 

Figure 2.6. The Chemical Structure of l-Sirenin. 
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Since animals and fungi diverged from a common ancestor over 1 billion years ago, a 

Figure 2.7. Sirenin Activates Catsper in Human Sperm. (A) Raw FLIPR traces 
showing increases in [Ca2+]i elicited by increasing concentrations of synthetic 
sirenin. The sirenin dose-response increases from 10 nM (bottom) to 100 µM 
(top) by 10X fold increases. (B) Concentration-dependent increases in [Ca2+]i 
elicited by sirenin show an EC50 value of 2.9 µM ± 0.7 µM. (C) Sirenin elicits 
the same level of calcium influx as the endogenous activators of CatSper. 
Treatment concentrations (black) were as follows: sirenin – 30 µM, progesterone 
and PGE1 – 1 µM. Pretreatment with 30 µM (grey) reduced the maximum 
efficacy of all openers tested. Data are plotted as mean ± standard error, presented 
as a percent response relative to a saturating dose of progesterone (3 µM) and the 
numbers in parenthesis represent the number of experiments performed. Smooth 
curves represent the best fits of a nonlinear regression model to the data for each 
compound. EC50 values determined using Prism v6.05. 
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compound capable of eliciting a similar response in gametes of both species would serve 

to demonstrate the high degree of conservation thought to govern most reproductive 

signaling.87 As such, we sought to demonstrate that l-sirenin could activate human CatSper 

Figure 2.8. Sirenin Increases Intracellular Calcium in Human Sperm through 
Activation of the CatSper Complex. (A) Representative monovalent ICatSper whole-
cell recordings from human spermatozoa in the absence (blue) or presence of test 
compound. Left panel, 50 µM sirenin (green) or right panel, 1 µM Progesterone 
(red). B) Averaged amplitudes of ICatSper recorded from human spermatozoa in the 
presence of indicated test compound. Potentiation was determined by dividing 
current amplitudes of ICatSper at -80 mV (negative) and +80 mV (positive) by the 
amplitude of ICatSper in the absence of the corresponding compound from the same 
cell. Data are represented as mean ± standard error with n indicating the number 
of individual cells recorded. 
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and cause calcium influx in healthy human sperm cells via our FLIPR assay and subsequent 

electrophysiological confirmation. 

 Sirenin has been an attractive target for the synthetic chemistry community, given 

its compact, complex structure and several total syntheses have been reported.90-95 A 

member of the Georg group, Dr. Syeda, did great work in optimizing the synthesis of this 

compound, further characterizing the side products of several key reactions and ultimately 

improving the synthetic route greatly. The detailed of synthesis of sirenin is not discussed 

here but has been reported.96 The efficacy of the synthesized sirenin acting at the CatSper 

complex was measured in the FLIPR assay. When assayed, the synthetic sirenin produced 

a concentration-dependent rise in [Ca2+]i in human sperm with an EC50 value of 2.9 ± 0.7 

µM. Interestingly, though perhaps not unexpectedly, this potency is greatly attenuated 

compared to the 10 pM concentrations shown to elicit chemotaxis in fungal sperm. This 

reduced potency between the two species is likely the result of the billions of years of 

evolution separating the two species.87 Additionally, the synthetic sirenin was able to elicit 

a maximum response in the assay, though at a reduced potency. Pretreatment with 30 µM 

of the known CatSper blocker mibefradil reduced the sirenin-induced activation 55%. 

These observations indicate that sirenin increases sperm [Ca2+]i by activating the CatSper 

complex. 

To confirm that the sirenin-mediated rise in [Ca2+]i resulted from CatSper 

activation, rather than second messenger pathways or other ion channels present in sperm, 

whole cell patch-clamp electrophysiology experiments were conducted according to 

established methods and are shown in Figure 2.8. ICatSper is a pH-sensitive Ca2+-selective 
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ion current. A step hyperpolarization of the sperm from 0 to – 80 mV followed by a ramp 

depolarization from -80 to +80 mV elicited an inward current followed by an outward 

current mediated by CatSper. Both 10 and 50 µM sirenin potentiated both the inward and 

outward ICatSper currents. This potentiation was blocked by co-application of 30 µM 

mibefradil, further supporting the conclusion that sirenin-induced calcium flux is the result 

of CatSper activation and not that of other channels within the sperm. 

Section 2.2.3 Various Steroids Effectively Activate CatSper 

With the FLIPR assay validated, a general trend of steroid SAR causing calcium 

influx was sought so that compounds exhibiting limited or no activity in the influx assay 

could then be tested for their ability to instead block Ca2+ influx. While testing each 

compound, 30 µM mibefradil co-application was performed concomitantly to ensure any 

observed efficacy was likely due to CatSper activation, given the ability of mibefradil to 

inhibit CatSper. 

In order to assess the effect of substitutions on the northern half of the A ring, 

methylation of the C2 position was sought and achieved via enolate chemistry as shown in 

Scheme 2.1. 

Scheme 2.1. The synthesis of 2,2-Dimethylprogesterone 
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2,2-Dimethylprogesterone (2.4) showed full efficacy when tested in the influx 

assay with an EC50 of 491 nM as shown in Table 2.1. 

TABLE 2.1. The ability of various steroids bearing modifications to the A ring 
and A-B ring fusion to increase [Ca2+]i in a whole cell calcium influx assay with 
and without added mibefradil 

 +30 µM Mibefradil 

Compound Structure EC50, nM[a] Emax, % n EC50, nM[a] Emax, % n 

2.1 

 

7.7 ± 1.4 100 9 5.1 ± 0.6 31 8 

2.2 

 

4.2 ± 0.7 94 9 3.5 ± 1.8 28 8 

2.3 

 

2900 ± 700 99 9 3300 ± 1100 45 6 

2.4 

 

491 ± 95 98 3 ND < 10 3 

2.5 

 

301 ± 79 90 3 349 ± 38 38 3 

2.6 

 

400 ± 18 97 3 291 ± 75 37 3 

2.7 

 

77 ± 9 101 3 82 ± 29 48 4 

2.8 

 

184 ± 38 107 3 106 ± 25 45 4 

2.9 

 

1460 ± 360 107 6 1180 ± 160 17 4 
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2.10 

 

1060 ± 190 108 6 1190 ± 388 23 4 

2.11 

 

77 ± 27 104 5 115 ± 13 46 4 

2.12 

 

159 ± 26 92 5 187 ± 45 18 4 

[a] EC50 values given as the mean ± standard error. ND = not determined 

Next, a thorough examination of the individual rings of the progesterone scaffold 

was undertaken starting with the southern half of the A and B rings and their fusion. In 

general, modification of the A ring is well-tolerated. Compounds containing a reduced C3 

keto group (compounds 2.5–2.12) elicit full response in the influx assay, though at reduced 

potencies varying from 77 to 400 nM. Furthermore, there appears little preference for the 

configuration of the A-B ring fusion, as both 5α-dihydroprogesterone (2.11) and 5β- 

dihydroprogesterone (2.12) display full activity in the assay and lack a significant 

difference in their EC50 values: 77 and 159 nM, respectively. Indeed, all tested compounds 

containing either reduced C4 or, as will be seen, substituted C5 positions show no observed 

preference for a cis vs trans relationship of the A-B ring fusion. Finally, 

tetrahydrodeoxycorticosterones (THDOCs) 2.9 and 2.10, which contain a 21-hydroxyl 

group in addition to a fully reduced A ring, showed a large drop in potency with EC50 

values of 1460 and 1060 nM for the 5β- and 5α-THDOC diastereomers, respectively. 
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Given the attenuated activity of the THDOCs, we next pursued modifications near 

the D-ring despite the known ability of 17α-hydroxyprogesterone (2.13) to evoke calcium 

influx in sperm.77 Table 2.2 shows the results of these modifications and Figure 2.9 shows 

the corresponding dose-response curves. When tested, 2.13 elicited calcium influx with an 

EC50 of 7.2 nM (Figure 2.9, filled squares), equaling the potency of progesterone. Shifting 

the hydroxyl group to the C16 position resulted in a 10-fold loss of activity observed for 

16α-hydroxyprogesterone (2.14). Medroxyprogesterone (2.15), the 6α-methyl analog of 

TABLE 2.2. The effect of C17, C16 and C6 modifications to the progesterone scaffold 
on the ability to increase [Ca2+]i in a whole cell calcium influx assay with and without 
added mibefradil 

 +30 µM Mibefradil 

Compound Structure EC50, 
nM[a] 

Emax, 
% n EC50, 

nM[a] 
Emax, 

% n 

2.13 

 

7.2 ± 0.8 117 3 11 ± 2 59 3 

2.14 
 

190 ± 40 106 3 220 ± 55 53 4 

2.15 

 

480 ± 52 95 3 ND < 10 3 

2.16 

 

> 10 000 ND 3 > 10 000 ND 3 

2.17 
 

> 10 000 ND 8 > 10 000 ND 4 

[a] EC50 values given as the mean ± standard error. ND = not determined 
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2.13 showed over 50-fold loss of activity (Figure 2.9, filled diamonds). The acetylated 

analog of 2.15, medroxyprogesterone acetate (2.16, MPA) showed no ability to increase 

[Ca2+]i up to 10 µM (Figure 2.9, unfilled squares). Interestingly, acetylation alone of the 

17α-hydroxyl group (2.17) was sufficient to almost entirely ablate activity (Figure 2.9, 

filled triangles). 

 
Section 2.2.3.1 Synthesis of Target Steroids 

Given the observed lack of activity of compounds 2.16 (MPA) and 2.17 (17α-

acetoxyprogesterone) in the influx assay, we endeavored to evaluate 6α-

methylprogesterone (2.18) to ascertain the effect on activity of B-ring modifications 

Figure 2.9. Dose-Response Curves Comparing Potencies of Progesterone and 
Several C17 and/or C6-Modified Analogues in Healthy Human Sperm. Data are 
plotted as mean ± standard error, presented as a percent response relative to a 
saturating dose of progesterone (3 µM). The number of separate experiments for 
individual compounds can be found in Table 2.2 along with EC50 and Emax values 
in the presence and absence of mibefradil. Smooth curves represent the best fits 
of a nonlinear regression model to the data for each compound. No fit was 
obtained for MPA and instead a connecting line is shown. 
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without any additional C17 modifications. Synthesis of 2.18 was achieved following 

previously described literature procedures for C6-modified androstanes and is outlined in 

Scheme 2.2.97 The synthesis began via the acid-catalyzed double protection of the C3 and 

C20 ketones of 2.1 furnishing the corresponding ethylene ketal 2.19. Epoxidation of 2.19 

with m-CPBA proceeded in good yield and the two resulting diastereomers were separable 

by column chromatography, revealing 3,3:20,20-bis(ethylenedioxy)-5α,6α-epoxypregnane 

(2.20) as the more polar product. Conditions yielding β-epoxide 2.21 as the sole product 

were successful on small scale, but a lack of solubility greatly hampered scale up. 

Furthermore, while the route to 2.18 could be shortened by alkylation of 2.21, this β-

epoxide proved entirely resistant to ring-opening addition by Grignard reagents or alkyl 

lithium species no matter the conditions used.98 

Scheme 2.2 Synthesis of 6α-Methylprogesterone (2.18) 

 

Proceeding towards target molecule 2.18, Grignard addition into 2.20 proceeded 

smoothly under refluxing conditions and furnished pregnane 2.22. Removal of the ketal 

groups under acidic conditions at elevated temperatures yielded 5α-hydroxy-6β-

methylpregnan-3,20-dione (2.23). Since ketal deprotection conditions proved insufficient, 
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dehydration of the 5α-hydroxy was achieved by treatment with thionyl chloride to provide 

2.24 in good yield. Finally, epimerization of the C6 position to the thermodynamically 

favored 6α epimer gave 6α-methylprogesterone (2.18) in 6 steps and 7% overall yield.  

The epoxidation of 2.19 served as a valuable branching point for the generation of 

additional analogs of the steroid backbone as shown in Scheme 2.3. Compounds 2.20 and 

2.21 were deprotected to give their corresponding epoxyprogesterones 2.25 and 2.26, 

respectively. Additionally, each intermediate along the synthetic route was tested in the 

influx assay and is, as such, included in Table 2.3 which shows the effect of these 

compounds in the calcium influx assay. 

Scheme 2.3 Synthesis of Analogs 2.25 and 2.26 

 

Section 2.2.3.2 Activity of Synthesized Steroids 

Interestingly, every compound tested containing ketalized C3 and C20 positions 

showed no activity in the influx assay (Figure 2.10, open diamonds, representative). The 

corresponding, ketone-containing epoxides (2.25 dose-response in Figure 2.10, filled 

diamonds) showed submicromolar EC50 values. The same pattern is not quite observed 

with 5α-hydroxy-6β-methylprogesterone (2.23) and its analogous ketal 2.22 though the 

compound containing the free ketones is still more potent. 
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With respect to the C6 methyl substitution, there is only a slight difference in 

activity between the two diastereomers 2.24 and 2.18 (Figure 2.10, filled squares vs filled 

triangles). The 6α-methyl substitution found in 2.18 influences activity to a slightly greater 

extent than its 6β-methyl counterpart in 2.24. The 6α-methyl modification of 2.18 caused 

a 93-fold reduction in activity with respect to progesterone activation, a significant 

decrease if not as significant as that of the 17α-acetoxy modification. 

TABLE 2.3. The observed effects on calcium influx with and without added 
mibefradil of synthesized steroids 

 +30 µM Mibefradil 

Compound Structure EC50, nM[a] Emax, % n EC50, nM[a] Emax, % n 

2.19 

 

> 10 000 ND 3 ND < 10 3 

2.20 

 

> 10 000 ND 3 ND < 10 3 

2.21 

 

> 10 000 ND 3 ND < 10 3 

2.22 

 

> 10 000 ND 3 ND < 10 3 

2.23 

 

6390 ± 
1210 ND 3 ND < 10 3 

2.24 

 

267 ± 34 99 3 ND < 10 3 

2.18 

 

720 ± 110 110 3 ND < 10 3 
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2.25 

 

243 ± 61 98 3 ND < 10 3 

2.26 

 

422 ± 30 86 3 ND < 10 3 

[a] EC50 values given as the mean ± standard error. ND = not determined 

Section 2.2.4 Clinically Relevant Steroids Elicit Calcium Influx in Human Sperm 

Given that MPA, a synthetic progestin, was the only compound tested thus far to 

show no activity at high concentrations in the influx assay, a series of clinically relevant 

progestins, anti-progestins and androgens were tested for their ability to increase [Ca2+]i in 

human sperm. As shown in Table 2.4, the progestin activity of MPA is likely not the cause 

Figure 2.10. Dose-Response Curves Comparing Potencies of Progesterone and Select 
Synthesized Compounds in Healthy Human Sperm. Data are plotted as mean ± 
standard error, presented as a percent response relative to a saturating dose of 
progesterone (3 µM). The number of separate experiments for individual compounds 
can be found in Table 2.3 along with EC50 and Emax values in the presence and absence 
of mibefradil. Smooth curves represent the best fits of a nonlinear regression model 
to the data for each compound. 
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of the observed lack of activity, since drospirenone (2.27, Figure 2.11, filled circles), 

another synthetic progestin, displayed an EC50 of 429 nM in the assay. 

However, two other progestins did show little to no ability to cause calcium influx: 

levonorgestrel (LNG, 2.28, Figure 2.11, filled squares) and nestorone (2.29, Figure 2.11, 

upright filled triangles). Intriguingly, both LNG and nestorone contain substitutions at the 

C17 position, bearing an ethynyl and acetoxy group, respectively, adding credence to the 

previous observations that C17 modifications reduce CatSper activity. 

TABLE 2.4. The effects of clinically used steroids on calcium influx with and without 
added mibefradil 

 +30 µM Mibefradil 

Compound Structure EC50, 
nM[a] Emax, % n EC50, nM[a] Emax, 

% n 

2.27 

 

429 ± 
140 104 7 486 ± 180 12 3 

2.28 

 

>> 10 
000 ND 4 ND ND 3 

2.29 

 

≈ 10 000 ND 4 ND ND 3 

2.30 

 

5730 ± 
2030 99 4 ND < 10 3 

2.31 

 

4410 ± 
950 106 5 ND < 10 5 

2.32 

 

>>10 000 ND 3 ND < 10 3 

[a] EC50 values given as the mean ± standard error. ND = not determined 
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Two anti-progestins, mifepristone (2.30, Figure 2.11, downward filled triangles) 

and ulipristal (2.31, Entry 2.29 and Figure 2.11, filled hexagons) were also tested and 

showed very weak activity in the calcium influx assay with EC50 values of 5.7 and 4.4 µM, 

respectively. Again, following the previously observed trend, the 17α-O-acetylated 

ulipristal analog 2.32 showed decreased activity in the influx assay to >>10 µM (Figure 

2.11 unfilled hexagons). 

Additionally, as shown in Table 2.5, the parent estrogen, 17β-estradiol (2.33, Figure 

2.12, circles) was shown to elicit calcium influx in human sperm. Testosterone (2.34, 

Figure 2.12, squares) was shown to cause calcium influx with a potency similar to that of 

the parent estrogen. Another hormone, aldosterone (ALDO, 2.35, Figure 2.12, upward 

Figure 2.11. Dose-Response Curves Comparing Potencies of Clinically Relevant 
Progestins and Antiprogestins. Data are plotted as mean ± standard error, presented as 
a percent response relative to a saturating dose of progesterone (3 µM). The number of 
separate experiments for individual compounds can be found in Table 2.4 along with 
EC50 and Emax values in the presence and absence of mibefradil. Smooth curves 
represent the best fits of a nonlinear regression model to the data for each compound. 
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triangles) was completely inactive in the influx assay. While not bearing any direct C17 

modifications, steric hindrance by the close proximity of the C18 aldehyde and the C21 

hydroxyl group found in the molecule could be responsible for this lack of activity. 

 

Given the activity of testosterone, several synthetic androgens were tested and 

shown to cause a calcium influx. 11β-Methyl-19-nortestosterone (11β-MNT, 2.36, Figure 

TABLE 2.5. The effects of clinically relevant androgens estrogens and 
mineralocorticoids on calcium influx both with and without added mibefradil 

 +30 µM Mibefradil 

Entry Compound EC50, 
nM[a] Emax, % n EC50, nM[a] Emax, % n 

2.33 

 

404 ± 92 99 4 302 ± 25 44 3 

2.34 

 

339 ± 22 98 3 433 ± 49 17 3 

2.35 

 

>>10 000 ND 6 ND < 10 3 

2.36 

 

280 ± 36 84 6 344 ± 30 15 3 

2.37 

 

437 ± 144 92 5 520 ± 60 43 3 

2.38 

 

1890 ± 
460 90 9 ND < 10 3 

2.39 

 

4970 ± 
600 32 6 4040 ± 30 30 3 

[a] EC50 values given as the mean ± standard error. ND = not determined 
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2.12, diamonds) was the most potent androgen at 280 nM. Its close analog 7α-methyl-19-

nortestosterone (7α-MNT, 2.37) shows similar activity. Interestingly, both 7α,11β-

dimethylandrolone (2.38) and its diastereomer 7β,11β-dimethylandrolone (2.39, Figure 

2.12, hexagons) showed comparatively diminished potencies at 1890 and 4970 nM, 

respectively. Intriguingly, 7β,11β-dimethylandrolone exhibited a maximum effect (Emax) of 

only 32%, the only such partial activator seen in all of the tested compounds.  

Section 2.3 Characterization of T-type Calcium Blockers Inhibiting 
CatSper 
Section 2.3.1 Mibefradil Blocks All Known CatSper Openers 

As noted previously, in Tables 2.1 – 2.5, 30 µM of the t-type calcium channel 

blocker (CCB) mibefradil (2.40) was included in all influx assays to prove that the induced 

Figure 2.12. Dose-Response Curves Comparing Potencies of 17β-Estradiol, 
Testosterone, Aldosterone and Representative Synthetic Androgens. Data are plotted as 
mean ± standard error, presented as a percent response relative to a saturating dose of 
progesterone (3 µM). The number of separate experiments for individual compounds 
can be found in Table 2.5 along with EC50 and Emax values in the presence and absence 
of mibefradil. Smooth curves represent the best fits of a nonlinear regression model to 
the data for each compound. 
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influx was indeed from CatSper activation, as it has long been known that mibefradil blocks 

Figure 2.13. Inhibition of Progesterone-, PGE1-, l-Sirenin and K+-Induced Calcium 
Influx by Mibefradil. (A) Representative raw FLIPR traces showing dose-dependent 
reduction of progesterone CatSper activation. Cells from DMSO group received neither 
blocker nor progesterone. Data normalized to experiment-specific high (3 µM 
progesterone). (B) Dose-response inhibition curves showing potency of mibefradil 
against progesterone-, PGE1-, sirenin-, or K+-induced calcium influx. In all 
experiments, the concentration of opener used corresponded to an EC80 dose as 
determined from uninhibited dose-response experiments (see text). The data are plotted 
as the mean ± the standard error with the number of repeated experiments and IC50 
values given in Table 2.6. Smooth curves represent the best fits of a nonlinear regression 
model to the data for each compound. 
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CatSper currents.99-101 We sought to validate the influx assay with respect to blocking 

CatSper currents with a control compound before continuing on with testing the inactive 

steroids for their ability to block CatSper currents.  

During the course of the influx assays, the EC80 doses for progesterone, PGE1 and 

sirenin were determined from their nonlinear regressions. These values are 30 nM, 10 nM 

and 1 µM, respectively. These concentrations were used when studying the ability of 

compounds to block each respective opener. CatSper can also be artificially opened by 

introducing the cells to a high pH/ high K+ environment.56 The concentration of K+ used in 

these experiments was 140 mM. 

TABLE 2.6. Inhibition by mibefradil and ML218 of various modes of CatSper 
activation 
Compound Structure Activator IC50, µM[a] Hill Slope[b] n 

2.40 

 

Progesterone 7.5 ± 1.3 –2.3 8 

PGE1 5.8 ± 1.2 –2.6 8 

l-Sirenin 13 ± 4 –1.7 6 

K+/pH 18 ± 2 –1.7 8 

2.41 

 

Progesterone 9.9 ± 0.9 –2.0 5 

PGE1 15 ± 5 –3.6 3 

l-Sirenin 14 ± 3 –2.2 3 

K+/pH 11 ± 3 –2.1 7 

[a] IC50 values given as the mean ± standard error. [b] Hill slope for each compound is 
given. Each opener was dosed at a constant EC80 concentration corresponding to 
concentrations listed in the text. 
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As shown in Figure 2.13 (A) mibefradil displayed a dose-dependent inhibition of 

progesterone-induced calcium influx in the FLIPR assay, as expected. Shown in Table 2.6 

and Figure 2.13 (B), mibefradil inhibits the progesterone-induced influx in the FLIPR assay 

with an IC50 value of 7.5 ± 1.3 µM. This value is higher than that observed in 

electrophysiology experiments in which 1 µM mibefradil was sufficient to ablate all 

CatSper currents. This trend of compounds appearing less potent in the FLIPR assay when 

compared to other assays was observed throughout the course of this study. Not 

unexpectedly, mibefradil was also able to completely block the PGE1-, sirenin, and high 

K+/pH-induced calcium influx, also shown in Table 2.6. 

Figure 2.14. Dose-Response Inhibition Curves Showing the Potency of 
ML218 Against Progesterone-, PGE1-, l-Sirenin-, or K+-Induced Calcium 
Influx. In all experiments, the concentration of opener used corresponded to an 
EC80 dose (see text). The data are plotted as the mean ± the standard error with 
the number of repeated experiments and IC50 values given in Table 2.6. Smooth 
curves represent the best fits of a nonlinear regression model to the data for each 
compound. 
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Section 2.3.2 ML218 also Blocks All Known CatSper Openers 

There have been reports in the past that mibefradil itself causes calcium influx 

above 30 µM in human sperm cells.101 While no mibefradil-induced calcium influx was 

observed in any assay described thus far, another structural class of t-type CCBs capable 

of blocking CatSper activation would be a useful compound to the scientific community. 

To this end we tested whether ML218 (2.41), a t-type CCB that was originally developed 

as a central nervous system probe molecule as an initiative of the molecular libraries 

production center network (MLPCN), is able to block calcium influx caused by CatSper.102 

Originally developed for Cav3.2 and Cav3.3 channels, showing sub-micromolar activity, 

we anticipated this compound might prove to be more potent that the established control 

compounds. 

While ML218 can completely inhibit the progesterone-induced calcium influx 

observed in the FLIPR assay, its potency of 9.9 ± 0.9 µM (Table 2.6 and Figure 2.14) is no 

higher than mibefradil. 

Like mibefradil, ML218 was also able to completely block the signal generated by 

PGE1, sirenin, and high K+/pH (Figure 2.14) with IC50 values given in Table 2.6. In all 

cases, IC50 values between ML218 and mibefradil were not significantly different for any 

method of activation and ML218 did not provoke any signal in the influx assay up to 100 

µM (data not shown). ML218 has a decidedly different structure than mibefradil and 

displays dissimilar selectivity profiles when tested in vivo.102 This compound inhibiting 

CatSper currents provides a second control molecule for researchers studying CatSper 

currents. 
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Section 2.4 The Discovery of Steroidal CatSper Blockers 
Section 2.4.1 The Inactive Steroids Successfully Block CatSper Activation 

Of the 55 compounds tested for their ability to cause calcium influx in human MPA, 

LNG, and ALDO. Having identified these compounds, we sought to determine if they were 

capable of blocking the progesterone-, PGE1-, sirenin-, and high K+/pH-induced activation 

of the CatSper channel, or if they were simply inactive. Cholic acid showed no activation 

when previously tested and also did not block any method of eliciting calcium influx (not 

shown). Therefore, cholic acid was deemed inactive in the assay and was not pursued 

further. Cells treated with increasing concentrations of MPA (2.16), LNG (2.28) and 

ALDO (2.35) showed dose-dependent decreases in the signal elicited by treatment with an 

EC80 dose (30 nM) of progesterone (Figure 2.15, A). The selected steroids not only block 

the CatSper activation via progesterone, but also that of PGE1 (Figure 2.15, B) and sirenin 

(Figure 2.15, C). 

As shown in Figure 2.15 and Table 2.7, MPA (2.16) is the most potent compound 

of the three discovered steroidal blockers, with IC50 values of 9.7 ± 2.9, 9.2 ± 1.6 and 12 ± 

3 µM for the respective activators as shown in Table 2.7. LNG (2.28) blocked each signal 

elicited with IC50 values of 32 ± 6, 20 ± 4 and 81 ± 9 µM, respectively, and ALDO (2.35) 

showed the weakest activity with IC50 values of 43 ± 9, 56 ± 11 and 78 ± 12 µM, 

respectively. 
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Figure 2.15. Dose-Response Inhibition Curves Showing Inhibition of CatSper 
Activation by Selected Steroids. The activator used in each graph is shown in the top 
right. In all experiments, the concentration of the opener used corresponded to an EC80 
dose (see text). The data are plotted as the mean ± the standard error with the number 
of repeated experiments and IC50 values given in Table 2.7. Smooth curves represent 
the best fits of a nonlinear regression model to the data for each compound. 
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Section 2.4.2 The Steroidal Blockers Cannot Inhibit the K+/pH-Induced Calcium Influx 

In general, including the studied t-type CCBs from the previous section, blockers 

most potently inhibit progesterone activation, followed by PGE1 and l-sirenin activation. 

Also, the inhibition curves generated from all compounds except MPA frequently showed 

Hill slopes less than -1.5, whereas those from MPA are closer to -1. 

TABLE 2.7. Inhibition by selected steroids of various modes of CatSper activation 

Compound Structure Activator IC50, µM[a] Hill Slope[b] n 

2.16 

 

Progesterone 9.7 ± 2.9 –1.3 12 

PGE1 9.2 ± 1.6 –1.2 11 

l-Sirenin 13 ± 4 –1.2 9 

2.28 

 

Progesterone 32 ± 6 –2.2 12 

PGE1 20 ± 4 –1.4 6 

l-Sirenin 81 ± 9 –2.8 6 

2.35 

 

Progesterone 43 ± 9 –2.3) 10 

PGE1 56 ± 11 –2.2 10 

l-Sirenin 78 ± 12 –2.3 9 

[a] IC50 values given as the mean ± standard error. [b] Hill slope for each compound 
is given. Each opener was dosed at a constant EC80 concentration corresponding to 
concentrations listed in the text. 
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Figure 2.16 shows the concentration-inhibition curves resulting from high K+/pH-

induced calcium influx in the presence of increasing concentrations of each steroidal 

blocker. From the figure it is clear that the studied steroidal compounds have minimal effect 

on this method of eliciting calcium influx, as the IC50 for each steroid is well above 100 

µM. Conversely, as was seen in the last section, cells treated with increasing concentrations 

of mibefradil and ML218 fail to response to this method of evoking calcium influx, with 

IC50 values for each compound of 18 ± 2 and 11 ± 3 µM, respectively (Table 2.6, K+/pH). 

In order to ensure that the observed discrepancies, and indeed, all the observed 

inhibitory activity, was due to CatSper blockage and not indiscriminate interference of the 

compounds, all studied blockers were tested for their ability to inhibit the diffusion-based 

calcium ionophore, A23187.103 By incubating sperm cells in the presence of 30 µM of each 

Figure 2.16. Dose-Response Inhibition Curves Showing Inability of Selected 
Steroids to Block K+-Induced Calcium Influx. The data are plotted as the mean ± 
the standard error. Experiments were repeated 4 times to ensure results. A smooth 
curve represents the best fits of a nonlinear regression model to the data for ALDO 
and LNG. 
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blocker, then treating with the ionophore and reading fluorescence, it was shown that the 

studied blockers do not indiscriminately reduce fluorescence or interfere with the dye used 

in the assay, Fluo-4-AM. As shown in Figure 2.17, all tested blockers were unable to 

significantly reduce the signal generated by this ionophore that facilitates ion diffusion 

across membranes, serving to validate the results shown previously in this section. 

Section 2.5 Mode of Inhibition Studies of Steroids versus T-type CCBs 
Section 2.5.1 T-type CCBs Display an Insurmountable Block of CatSper Activation 

Figure 2.17. All Studied Blockers Do Not Block the Diffusion-Based Ionophore, 
A23187. The data are plotted as the mean ± the standard error. Experiments were 
repeated 3 times. 
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While screening the purchased and synthesized steroids for their ability to activate 

CatSper, 30 µM mibefradil was included in each assay to ensure that the observed influx 

Figure 2.18. T-type CCBs Cause an Insurmountable Block of Ca2+-Influx in 
Human Sperm. Increasing concentrations of mibefradil and ML218 reduce Emax 
of progesterone (A), PGE1 (B) and l-sirenin (C). The EC50(app) remains 
unchanged from control in each case. Calculated Emax, EC50(app), and the number 
of repeated experiments are given in Table 2.8. The data are plotted as the mean 
± the standard error relative to the signal evoked by 3 µM progesterone. Smooth 
curves represent the best fits of a nonlinear regression model to the data for each 
compound. If Emax < 10%, then a line connecting points is shown instead of best 
fit data. 
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was due to CatSper-specific activation. It was noticed in each case that mibefradil reduced 

the Emax of every effective opener while leaving the EC50 unaffected (Tables 2.1 – 2.5, 

rightmost columns). These results are consistent with insurmountable or non-competitive 

inhibition. To further study and confirm these observations, the mechanism by which t-

type CCBs inhibit the calcium influx caused by the studied openers was examined by 

measuring the effects of fixed concentrations of mibefradil and ML218 on the dose-

response curves of progesterone, PGE1 and sirenin. 

As seen in Table 2.8, the presence of 1, 10, 30, and 100 µM mibefradil or ML218 

reduced Emax while each respective EC50 was insignificantly altered, consistent with non-

competitive inhibition. Furthermore, as seen previously in Tables 2.1–2.5, each studied 

steroid was blocked insurmountably by 30 µM mibefradil corroborating that t-type CCBs 

have binding sites distinct from those of steroids, PGE1 and sirenin. 

Section 2.5.2 The Block Produced by Steroidal Compounds is Surmountable 

Contrary to the non-competitive block caused by the t-type CCBs, the effect of the 

studied steroidal blockers is completely surmountable as shown in Figures 2.19 – 2.21. 

With respect to MPA, increasing concentrations of the progestin caused parallel rightward 

shifts of the progesterone dose-response curves, indicating competitive inhibition (Figure 

2.19, A). 



 

 Table 2.8. Effects of mibefradil and ML218 on progesterone-, PGE1- and sirenin-induced increase in [Ca2+]i 
in human sperm 

O
pe

ne
r 

   

 Blocker 
Conc. 
(µM) EC50(app)

[a] Emax
[b] n EC50(app)

[a] Emax
[b] n EC50(app)

[a] Emax
[b] n 

2.40 
 

0 7.7 ± 1.4 100 9 3.1 ± 0.3 94 9 2.9 ± 0.7 99 9 

1 4.1 ± 1.5 92 3 7.4 ± 0.1 84 3 3.8 ± 1.1 88 3 

10 7.9 ± 1.7 80 5 6.7 ± 2.1 50 5 2.8 ± 2.1 58 4 

30 6.6 ± 2.4 22 5 8.6 ± 2.4 9 3 6.7 ± 3.4 21 4 

100 ND 5 4 ND 7 5 ND 9 4 

2.41 
 

0 7.7 ± 1.4 100 9 3.1 ± 0.3 94 9 2.9 ± 0.7 99 9 

1 7.8 ± 1.4 87 3 1.7 ± 0.2 73 3 ND ND – 

10 7.9 ± 2.4 37 3 10 ± 1 48 3 2.9 ± 1.9 66 3 

30 ND 7 3 4.3 ± 1.1 18 3 1.1 ±0.3 31 3 

100 ND 2 3 ND 5 3 ND 2 3 
[a]EC50 values given in nM as the mean ± standard error. [b]Data presented as % of saturating dose of 
progesterone (3 µM). ND = not determined 



 

 

Competitive inhibition, by definition, signifies that the blocker and opener at least 

partially share a binding site. Interesting, MPA also displays competitive inhibition of the 

signal evoked by PGE1 and l-sirenin (Figure 2.19, B & C, respectively). Pre-incubation of 

cells with 30 µM MPA caused approximately a 10-fold shift in the dose-response curve for 

progesterone giving an EC50(app) of 67 ± 14 nM vs the EC50 of 7.7 ± 1.4 without added 

Figure 2.19. Effects of Increasing Concentrations of Medroxyprogesterone 
Acetate (MPA) on Increase of [Ca2+]i. in Human Sperm. (A-C) Increasing 
concentrations of MPA increase the EC50(app) value of progesterone (A), PGE1 
(B) and l-sirenin (C) while insignificantly affecting Emax, consistent with 
competitive inhibition. Calculated Emax and EC50(app) values, and the number 
of repeated experiments are given in Table 2.9. Data are plotted as the mean 
± the standard error. (D) Representative Schild regression for the competitive 
block of progesterone by MPA. Dose ratios were calculated from EC50 values 
for each curve fitted independently to a non-linear regression model. The line 
was fitted by linear regression with its slope set to unity. KB values for all 
interactions are given in Table 2.10. 
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MPA. Table 2.9 summarizes the interactions of each steroidal blocker with each studied 

opener. 

A similar pattern is observed when cells are treated with increasing concentrations 

of LNG, instead of MPA (Figure 2.20, A–C). LNG displayed a similar effect to those 

observed when cells were treated with MPA, though the effect on the influx evoked by l-

sirenin was diminished at 10 µM, compared the inhibition by MPA. At this concentration, 

LNG was unable to alter the response of cells to l-sirenin. 

Figure 2.20. Effects of Increasing Concentrations of Levonorgestrel (LNG) on 
Increase of [Ca2+]i. in Human Sperm. (A-C) Increasing concentrations of LNG 
increase the EC50(app) value of progesterone (A), PGE1 (B) and l-sirenin (C) while 
insignificantly affecting Emax, consistent with competitive inhibition. Calculated 
Emax and EC50(app) values, and the number of repeated experiments are given in 
Table 2.9. The data are plotted as the mean ± the standard error. (D) Representative 
Schild regression for the competitive block of progesterone by LNG. Dose ratios 
were calculated from EC50 values for each curve fitted independently to a non-
linear regression model. The line was fitted by linear regression with its slope set 
to unity. KB values for all interactions are given in Table 2.10. 
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Finally, Figure 2.21 shows the effect of increasing aldosterone on the signals caused 

by each opener. Again, rightward shifts are observed with increasing concentrations of the  

Table 2.9. Effects of MPA, LNG and ALDO on progesterone-, PGE1- and l-sirenin-
induced increase in [Ca2+]i in human sperm 

O
pe

ne
r 

   

 Blocker 
Conc. (µM) EC50(app), 

nM[a] Emax
[b] n EC50(app), 

nM[a] Emax
[b] n EC50(app), 

µM[a] Emax
[b] n 

2.16 

 

0 7.7 ± 1.4 100 9 3.1 ± 0.3 94 9 2.9 ± 0.7 99 9 

10 28 ± 8 102 3 15 ± 2 101 3 10 ± 1 108 3 

30 67 ± 14 105 3 55 ± 5 108 3 26 ± 5 111 3 

100 234 ± 19 ≥100 3 232 ± 14 ≥100 3 83 ± 6 ≥100 3 

2.28 
 

0 7.7 ± 1.4 100 9 3.1 ± 0.3 94 9 2.9 ± 0.7 99 9 

10 19 ± 6 95 8 15 ± 3 102 4 3.2 ± 0.6 104 4 

30 49 ± 12 102 4 54 ± 4 109 4 10 ± 5 100 4 

100 139 ± 27 ≥100 4 125 ± 7 ≥100 4 32 ± 6 85 4 

2.35 
 

0 7.7 ± 1.4 100 9 3.1 ± 0.3 94 9 2.9 ± 0.7 99 9 

10 28 ± 9 105 4 12 ± 6 105 4 11 ± 2 95 4 

30 84 ± 21 103 4 29 ± 2 104 4 28 ± 5 108 4 

100 253 ± 45 ≥100 4 96 ± 8 96 4 85 ± 7 ≥100 4 

[a]EC50 values given as the mean ± standard error. [b]Data presented as % of saturating 
dose of progesterone (3 µM). A constraint of Emax = 100 was placed on certain curves 
displaying a significant rightward shift and is indicated by a “≥100” for Emax. ND = not 
determined 
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mineralocorticoid while the Emax is unaffected. ALDO, unlike LNG reduced 

EC50(app) of all the studied openers, having the greatest effect at higher concentrations (30 

and 100 µM). 

Given this apparent competitive inhibition, we sought to verify the competitive 

nature of these interactions by performing Schild analysis (Figures 2.19–2.21, D).104 KB 

values (Table 2.10) were determined according to Schild regression experiments and the 

more generalized Leff-Dougall approach.105 There was good agreement between the two 

Figure 2.21. Effects of Increasing Concentrations of Aldosterone (ALDO) on 
Progesterone-Induced Increase of [Ca2+]i. in Human Sperm. (A-C) Increasing 
concentrations of ALDO increase the EC50(app) value of progesterone (A), PGE1 (B) and 
l-sirenin (C) while insignificantly affecting Emax, consistent with competitive 
inhibition. Calculated Emax and EC50(app) values, and the number of repeated experiments 
are given in Table 2.9. The data are plotted as the mean ± the standard error. (D) 
Representative Schild regression for the competitive block of progesterone by ALDO. 
Dose ratios were calculated from EC50 values for each curve fitted independently to a 
non-linear regression model. The line was fitted by linear regression with its slope set 
to unity. KB values for all interactions are given in Table 2.10. 
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methods of analysis and Schild regression plots had slopes of unity within the 95% CI, 

helping to confirm a competitive interaction between the steroidal blockers and 

progesterone, PGE1 and l-sirenin. 

 

Section 2.6 Computer-Aided Sperm Analysis (CASA) as a Confirmatory 
Assay 
Section 2.6.1 CASA as a Technique for Motility Parameter Acquisition 

So far, the data presented, and any conclusions made from it, are derived from the 

results of a single type of assay. While great effort was put towards making this assay as 

reliable as possible (and this was achieved), a secondary assay confirming the observations 

of the first would greatly validate our results. To this end, we turned to computer-aided 

Table 2.10. Calculated dissociation constants for the studied steroidal 
blockers of calcium influx into human sperm 

Opener Blocker 
pKB 

Schild[a] Leff-Dougall[b] 

 

MPA 5.77 5.66 

LNG 5.53 5.14 

ALDO 5.62 5.02 

 

MPA 5.51 5.60 

LNG 5.48 5.26 

ALDO 5.34 4.82 

 

MPA 5.29 4.80 

LNG ND 3.97 

ALDO 5.2 3.98 
[a]For all Schild analyses, the slopes of the regressions used in 
determinations had slopes of unity within a 95% CI. [b]pKB calculated from 
equation presented in ref. 102. ND = not determined 
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sperm analysis (CASA). CASA has been utilized to analyze sperm motility since the late 

80s, when it became readily available commercially. The technique has numerous 

successful studies to its credit in many different species.106, 107 

CASA detects the position of sperm heads and generates tracks relating to sperm 

movement over a short interval. Kinematic parameters (Figure 2.22) can be derived from 

these tracks describing velocities, path curvature, beat cross frequency, and amplitude of 

lateral head displacement (ALH). These parameters are monitored in real time from 

multiple (up to around 60) cells per field of view during short 1 second videos. Cells are 

then sorted into populations of cells including static, weakly motile (slow), motile, and 

progressively motile.108 

Section 2.6.2 CASA as a Technique for Monitoring HAM: Early Studies 

It should be noted here that CatSper function has little effect on these normal 

motility parameters and disruption of channel activity mainly leads to the inability of sperm 

Figure 2.22. The Kinematic Parameters Measured by CASA Systems. VSL, straight 
line velocity; VCL, curvilinear velocity; VAP, average path velocity, ALH; amplitude of 
lateral head displacement; LIN; linearity: the linearity of the curvilinear path (ratio of 
VSL/VCL). 
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to achieve hyperactivated motility (HAM) with only a marginal effect on normal motility 

expected.55 HAM is a complex mode of motility integrally intertwined with the even more 

complex process of capacitation.109 As such, parameters for its detection in CASA 

instruments vary greatly from group to group and are dependent on every aspect of sperm 

cell preparation and isolation including the buffers used, the frame rate of instrument, and 

individual chamber depths.110-113 With this in mind we first set out to ensure we could elicit 

HAM in cells from our various donors involved in the project, while also confirming that 

our core openers in the study had no effect themselves on normal motility parameters. 

First, one of the steps in the procedure for isolating sperm cells can involve a short 

centrifugation step, utilized to ensure consistent concentrations of cells are used in a given 

treatment. This centrifugation step was shown to have no direct effect on observed motility 

of isolated cells and was not taken into any further considerations (data not shown). Next, 

Figure 2.23 shows that up to 10 µM progesterone (A) and PGE1 (B) had no significant 

effect on total or progressive motility in human sperm cells.  

Figure 2.23. Progesterone and PGE1 Show No Effect on Normal Motility Parameters. 
Data are represented as means ± SD and represent at least 6 independent experiments. 
“%” is percent of total cell count. 



 53 

Having shown that progesterone and PGE1 do not affect normal motility 

parameters, we sought conditions to raise the population of cells displaying HAM. Many 

experiments were dedicated to this end and conditions were found in which a 

concentration-depended increase in cells displaying HAM was observed as displayed in 

Figure 2.24. Both progesterone and PGE1, in the presence of 15 mM NaHCO3 and 5% 

(w/v) BSA can successfully and significantly increase the population of cells displaying 

HAM at 100 nM. Furthermore, increases were seen with a concentration as low as 10 nM, 

but these increases were only significant for progesterone.  

Section 2.6.3 Effect of Studied T-Type CCBs on Sperm Motility 

Having established the effect of progesterone and PGE1 on motility, the next 

experiments were carried out to observe the effects of all previously studied blockers on 

Figure 2.24. Progesterone and PGE1 Effectively Increase the Population of Cells 
Displaying HAM in Human Sperm Cells. Data are represented as means ± SD; numbers 
in parentheses indicate the number of experiments; and **P < 0.005, ***P <0.0005. 
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sperm motility, both normal and hyperactivated. It has previously been shown that CatSper 

knockout mice lose motility over time, so blocking CatSper should show a slight drop in 

normal motility parameters with an increased, robust effect on HAM.55 Figure 2.25 shows 

the effects of mibefradil and ML218 on normal motility parameters in sperm. Also included 

is the closely related t-type CCB NNC 55 0396 (NNC). 

As shown in Figure 2.25, the t-type CCBs mibefradil and NNC, have a significant 

effect on motility in human sperm at 10 µM and above, completely reducing total and 

progressive motility to 0% at 30 µM. Only slight motility reduction is observed at 1 µM 

though a pronounced effect can be seen, especially on progressive motility. ML218 shows 

a reduced effect on normal motility compared to mibefradil and NNC, though complete 

Figure 2.25. Effect of T-Type CCBs on Total and Progressive Motility. Data are 
represented as means ± SD; data represent the means of 6 individual experiments in 
all cases; and *P < 0.05, ***P <0.0005, ****P <0.0001. Statistics not performed 
on data showing complete inhibition of motility. 
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ablation of motility is still seen at 30 µM. This reduced effect at 10 µM by ML218 is an 

interesting finding which will be discussed further later in this chapter. 

Section 2.6.4 Steroidal Blockers Show Little Effect on Sperm Motility 

Before determining the effects of the steroidal blockers on HAM, we first sought 

to determine their effects on normal motility parameters. We expected these compounds to 

show a minimal effect on normal motility and this was observed, as shown in Figure 2.26. 

When tested at 1, 10 and 30 µM, only MPA showed any significant effect on total and 

progressive motility. LNG and ALDO did not impact normal motility parameters even at 

the highest concentrations tested, likely reflecting their diminished potencies observed in 

the FLIPR assay. 

Section 2.6.5 Both Classes of Blockers Effectively Reduce HAM 

Figure 2.26. Effect of Steroids on Total and Progressive Motility. Data are represented 
as means ± SD; data represent the means of 8 individual experiments in all cases; and 
*P < 0.05, **P <0.005. 



 56 

With the effects and discrepancies between classes of blockers, the next step in the 

progression of this project was to show the effects of the blockers on HAM specifically. 

Starting with the t-type CCBs, and given their pronounced effect on normal motility, it was 

expected that their effect on HAM would be substantial. Figure 2.27 shows that this is the 

case, with no cells achieving HAM above a concentration of 1 µM. The only exception 

Figure 2.27. Effect of T-Type CCBs on Hyperactivated Motility (HAM). Data are 
represented as means ± SD; data represent the means of four individual experiments in 
all cases; and *P < 0.05, **P <0.005, ***P <0.0005, ****P <0.0001. 
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was ML218 affecting progesterone-evoked HAM, in which a small fraction of cells was 

still able to hyperactivate. The effect of the compounds at 1 µM is pronounced in almost 

all cases. This class of compounds showed little effect on normal motility parameters at 

this concentration. Thus, the observed effect at 1 µM on HAM could point towards the 

efficacy of these compounds inhibiting CatSper specifically. 

Figure 2.28. Effect of MPA, LNG and ALDO on Hyperactivated Motility (HAM). Data 
are represented as means ± SD; data represent the means of six individual experiments 
in all cases; and *P < 0.05, **P <0.005, ***P <0.0005, ****P <0.0001. 
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With respect to the steroidal blockers, the effects on HAM are less pronounced and 

follow the trend observed with normal motility parameters, with MPA proving most 

effective in all cases and both LNG and ALDO providing only weak inhibition of HAM. 

Figure 2.28 shows the effects of the steroidal blockers on HAM. 

MPA at 10 and 30 µM is able to significantly reduce the population of sperm cells 

displaying HAM when both progesterone and PGE1 are used. Like the t-type CCBs, the 

effect from MPA is more potent with respect to HAM, compared to normal motility modes. 

Again, this can point towards CatSper-specific inhibition. Interestingly, LNG and ALDO 

show a reduced ability to inhibit HAM with respect to both studied openers. Both show 

efficacy at 30 µM individually, but neither is consistent across both openers, as either 

steroid shows increased efficacy for only one of the openers studied. 

Section 2.6.6 Recovery of Motility is Only Possible with Steroidal Blockers 

As exhibited in the FLIPR assay, there exists great discrepancies between the two types of 

blockers (Section 2.5) with respect to all methods of opening. To explore this observation 

further, making use of CASA, a simple experiment was envisioned in which the motility 

of cells could be recovered after treatment with a blocker in the presence an opener if that 

block was surmountable in nature. If, in the presence of opener, the motility was recovered 

despite the blocker being present this would indicate surmountable inhibition while, 

insurmountable inhibitors will have their effects unperturbed by the presence of an opener. 

The detailed experiment was only carried out with MPA the steroidal blocker, since 

this compound was the only compound to reduce normal motility parameters. As expected, 

when cells were treated with 30 µM MPA a reduction in total motility was observed 
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consistent with previous results (Figure 2.29, A). When these cells were then challenged 

with 100 nM progesterone significant recovery was observed, even approaching untreated 

levels though falling short marginally. 

Conversely, 100 µM progesterone was unable to increase motility when cells were 

previously dosed with 10 µM mibefradil, consistent with results from the FLIPR studies. 

Unexpectedly, when cells were dosed with 30 µM MPA and then dosed with 100 nM PGE1, 

no recovery of motility was observed. Furthermore, recovery of motility was observed in 

cells pretreated with 10 µM mibefradil, which to this point had only shown insurmountable 

inhibition. The increase in the presence of 100 nM PGE1 was statistically not significant, 

though the trend is undeniable. Further experiments are needed to explore this interesting, 

unexpected discrepancy between the t-type CCBs and the steroidal blockers. 

Figure 2.29. Modulation of Total Motility in the Presence of MPA or Mibefradil by 
Progesterone or PGE1. (A) Progesterone, P, rescues motility when coapplied with 
MPA but not mibefradil. (B) PGE1 is unable to recover motility degraded by steroidal 
blockers but can slightly increase motility in the presence of t-type CCB.  Data are 
represented as means ± SD; data represent the means of three individual experiments 
in all cases; and *P < 0.05. 
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Section 2.7 Discussion of Results 
Section 2.7.1 The CatSper channel is promiscuously activated 

The recent observations that exogenous EDCs and odorants can activate CatSper 

gives credence to the idea that CatSper can be activated by a wide variety of small 

molecules, including several classes of steroids.101 This study corroborates this notion by 

showing that over 30 steroid compounds activate CatSper. The systematic modification of 

the steroid skeleton has led to insights into the activity of steroids acting at CatSper which 

are summarized in Figure 2.30. 

Modifications to the A-ring appear to be well tolerated, with C2 alkylated 2.4 

(Table 2.1), as well as reduction of both the C4,C5-olefin and C3 carbonyl groups 

appearing to have no significant effect on activity (2.5–2.8, Table 2.1). These observations 

correspond well with previous studies showing that an O3-linked BSA-progesterone 

conjugate was still able to activate CatSper.83 The first reductions in potency were seen 

when the C21-hydroxyl bearing THDOCs 2.9 and 2.10 were tested, with EC50 values 

Figure 2.30. Summary of the SAR of Progesterone Activating CatSper. 
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falling above 1 µM for the first time (Table 2.1). This was the first indication that perhaps 

the D-ring of the steroid scaffold could be impactful, with respect to modulating channel 

activity. 

Further exploration of the B ring revealed that alkylations of this area are only 

somewhat well tolerated. Considerably reduced potencies were observed when 

modification of the B-ring is combined with other detrimental modifications, such as C17 

alkylations, like those seen in Table 2.2. An interesting trend was observed with the 

clinically used progestin medroxyprogesterone (2.15), which itself showed a modest 

potency of 480 nM. However, acetylation of the 17α-hydroxyl group to give 2.16 (MPA) 

completely ablated activity. Isolating these modifications, without the accompanying C6 

alkylation gives two compounds of extremely different activities with 17α-

acetoxyprogesterone 2.17 showing almost no ability to activate CatSper while 17α-

hydroxyprogesterone 2.13 is one of the most potent compounds identified at 7.2 nM.  

Whether or not the C6 modifications could also exert this sort of influence over 

activity remained to be seen so the synthesis of 6α-methylprogesterone (2.18) was 

undertaken, generating several additional analogs described in Table 2.3. Testing 2.18 in 

the influx assay revealed it to be a moderately potent activator of CatSper, further pointing 

away from the B-ring and instead towards the D-ring. Two interesting observations came 

from testing these synthesized steroids. First, 5α-hydroxy-6β-methylprogesterone 2.23 

displayed a much lower potency than other, structurally similar, compounds. And second, 

every steroid bearing a C3,C20 ketal rather than the natural ketone was completely inactive 

in the influx assay (2.19–2.22). 
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Several C-ring modified steroids were also tested. Bulky alkylations, such as the 4-

(dimethylamino)phenyl substituent found in the clinically relevant antiprogestins ulipristal 

(2.31), ulipristal acetate (2.32) and mifepristone (2.30) markedly reduce the potency of 

these compounds (Table 2.4). While the potencies of all three were reduced from 

progesterone, 2.31, bearing a 17α—hydroxyl group showed much great efficacy than its 

acetylated counterpart 2.32. Small groups such as hydroxy and methyl substituents were 

tolerated at the C11 position, indicating that large substitutions at this position greatly 

reduce the ability of these compounds to activate CatSper. This agrees nicely with a 

previous study which showed a lack of CatSper activation by a progesterone analog bearing 

a BSA conjugated to the steroid via a C11 hydroxy group.83 

It is worth noting that, while previous studies reported that mifepristone and 

ulipristal acetate were unable to block the progesterone-induced activation of CatSper, this 

is the first time these two compounds have been shown to actually activate the channel, 

albeit at elevated concentrations (EC50 ≈ 5 µM).114 The fact that these nuclear hormone 

receptor antagonists are able to instead activate CatSper serves as a fascinating example 

of the differences between CatSper and the progesterone nuclear hormone receptor. 

Recently, a synthetic androgen, 11β-methyl-19-nortestosterone dodecylcarbonate 

has passed safety trials and is being investigated further as a potential male contraceptive.28 

The free hydroxyl analog of this prodrug was included as a generous gift of synthetic 

androgens from the National Institute of Child Health and Human Development (NICHD) 

and was tested in the influx assay (Table 2.5) 11β-Methyl-19-nortestosterone (2.36) 

activates the CatSper complex with nanomolar efficacy (EC50 = 280 nM). Two of the 

synthetic androgens provided by the NICHD (2.36 and 2.37) displayed submicromolar 
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efficacy and two (2.38 and 2.39) showed micromolar efficacy for activating CatSper. The 

contraceptive efficacy of these compounds has not yet been determined, however if these 

studies were performed, the data presented herein could provide information to be 

considered for clinical trial design. 

In general, modifications to the D-ring of the scaffold produce much greater effects 

on the activity of the tested steroids, leading to the interpretation that this portion of the 

scaffold plays an important role in CatSper activation. This conclusion is strengthened by 

the significant difference in potency observed for 17α-hydroxyprogesterone (2.13) and 

17α-acetoxyprogesterone (2.17) (Table 2.2). It was frequently observed that all of the least 

potent potential activators tested in the influx assay bear acetoxy groups or similar 

hydrophobic substitutions at the C17 position, e.g. ulipristal acetate (2.32), mifepristone 

(2.30), nestorone (2.29),  medroxyprogesterone acetate (2.16), and levonorgestrel (2.28). 

Furthermore, modification of the C18 position produced inactive compounds 

bearing either an ethyl or an aldehyde as seen in 2.28 (LNG) and 2.35 (ALDO), 

respectively, though LNG also bears a C17 modification. All these modifications are 

located in proximity to the D-ring of the scaffold and inhibitor development in the future 

should follow the lead of Strünker et al. in their development of RU1968, shown in Figure 

2.31.115 

Figure 2.31 Structure of RU1968. A cross-species inhibitor of CatSper. 
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Section 2.7.2 ML218 blocks CatSper 

When studying CatSper physiology or pharmacology, investigators have few 

options beyond the published t-type CCBs mibefradil and the structurally similar NNC 55 

0396 (NNC). The mentioned RU1968 serves as another option to investigators but a t-type 

calcium channel showing a distinct structure from mibefradil and NNC would be an 

advantage to the field. In this study, we show for the first time that ML218 (2.41) is able 

to block all methods of evoking calcium influx in sperm, be it progesterone, PGE1, sirenin 

or elevated pH/K+ with IC50 values ranging from 9 to 15 µM depending on mode of 

activation (Table 2.6). For each method, the potency of ML218 was similar to that of 

mibefradil (Table 2.6). Additionally, both these t-type CCBs exhibit Hill slope values well 

below -1.0, pointing to a non-competitive, cooperative inhibition. Additionally, at 

concentrations up to 100 µM, ML218 showed insignificant calcium influx in sperm cells, 

in contrast to previous studies using mibefradil.82 Altogether, ML218 serves as another 

viable option for investigators interested in the pharmacology and physiology of CatSper 

and can be included as a tool compound in future CatSper studies. 

Section 2.7.3 Steroidal blockers of CatSper 

Of the 41 compounds tested for their ability to evoke calcium influx in sperm, four 

compounds showed no activity: cholic acid, MPA, LNG and ALDO. When tested for their 

ability to block the progesterone-induced activation of CatSper, all but cholic acid were 

active (Table 2.7). MPA, LNG and ALDO can now be added to the growing number of 

steroidal inhibitors of the CatSper complex. Furthermore, these compounds were able to 
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prevent the PGE1- and sirenin-induced calcium influx, a first in the field, as no steroidal 

blockers of these modes of activation have been shown previously. 

Of the steroidal blockers, MPA was the most potent across all modes of activation, 

while the IC50 values of ALDO and LNG were below 20 µM. This trend continued for 

PGE1- and sirenin-induced calcium influx. When studied for its ability to effect conception, 

MPA concentrations in the endometrium have been shown to rise towards the IC50 values 

obtained herein.116 This leaves the possibility that MPA could be having contraceptive 

effects by a unique, previously unknown, mechanism. The IC50 values of ALDO and LNG 

are sufficiently high so as to preclude their study of CatSper in vivo. Nevertheless, 

biochemical assays could still make use of these compounds to observe varying effects on 

human sperm function. 

Interestingly, the studied steroids were unable to block the pH/K+-induced calcium 

influx (Figure 2.16) indicating they prevent binding of activators rather than interfering 

with channel shape and function or directly blocking the pore of the channel. Also, given 

that these compounds do not prevent the signal evoked by ionophore A23187 (Figure 2.17), 

they are not non-specifically reducing the signal in the assay. This finding contributes 

further to the idea these compounds are binding and preventing activator binding.  

As mentioned before, the concentrations required for a total block of CatSper within 

these trials is well above those found in individuals taking any of these medications with 

respect to LNG and ALDO.117, 118 Even when taken as a higher dose for emergency 

contraception, LNG concentrations do not approach those corresponding to the IC50 

value.119 That is not to say, however, that the observed effects on motility associated with 
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MPA are not, in small part, due to CatSper activity. Given the intricacies involved in 

gamete transport, a minimal effect on CatSper could have important effects on fertility. 

Section 2.7.4 Mode of inhibition: Steroids vs T-Type CCBs 

Over the course of studying the SAR of steroids activating CatSper, each compound 

was concomitantly blocked with mibefradil to assure its activity was via CatSper 

(rightmost columns of Tables 2.1 – 2.5). In every instance, each tested compound was 

blocked by mibefradil in an apparent insurmountable manner, meaning there was no 

rightward shift in the dose-response curve but Emax was substantially reduced. 

This observation was reinforced by treating cells with increasing doses of 

progesterone, PGE1 and sirenin in the presence of 1, 10, 30 and 100 µM mibefradil or 

ML218 and observing a dose dependent reduction of Emax (Figure 2.18, and Table 2.8). 

These results suggest that mibefradil and ML218, and likely NNC given its structural 

similarity to mibefradil, bind CatSper at a site unique to that of the studied openers. The 

fact that these CCBs can block the ligand-free pH/K+-induced calcium influx suggests they 

alter the conformation of the channel upon binding, closing the pore of CatSper. 

In contrast, cells treated with the studied openers were consistently able to achieve 

maximum efficacy in the influx assay despite treatment with high concentrations (100 µM) 

of steroidal blocker (Figures 2.19 – 2.21). Only an apparent decrease in potency, not 

efficacy, was observed, consistent with competitive inhibition for each steroidal opener. 

(Table 2.9) For competitive inhibition to be observed, an overlap of binding sites is 

required. Given that MPA displays competitive inhibition with respect to both progesterone 

and PGE1, it follows that the binding sites for progesterone and PGE1 are either 

overlapping, the same, or in close proximity.  
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It is not unexpected that MPA and progesterone share a binding site given their 

structural similarity, however that they could also share a site with PGE1, which is perhaps 

more interesting, especially given the previous studies reporting distinct sites for both 

molecules.84 Stranger still is that the action of l-sirenin, a molecule from an entirely 

different species with no human counterpart observed, is also inhibited competitively by 

all three steroidal blockers. Taken together, these observations point to a shared or 

overlapping binding pocket for sirenin, progesterone and PGE1. 

With the identification of ABHD2 as a binding partner for progesterone in 2016, a 

potential explanation for the observed differences between the t-type and steroidal blockers 

of CatSper needs to be considered (Figure 2.32).84 It is possible that the t-type blockers 

Figure 2.32. Graphical Summary of CatSper Activation and Pharmacological 
Interventions. (1) Progesterone binds to and activates the hydrolase ABHD2. (2) 
ABHD2 hydrolyses 2-arachodonyl glycerol (2-AG), decreasing the concentration of 
this lipid in the plasma membrane of sperm. (3) Decreasing 2-AG levels in the 
membrane drastically shift CatSper activation thresholds and allow for potentiation 
of current through the channel. T-type CCBs directly affect CatSper while steroidal 
blockers affect ABHD2. There is insufficient data to conclude with confidence 
where PGE1 binds and exerts its influence. 
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bind to and inhibit the CatSper complex, while the steroidal blockers bind to membrane-

associated ABHD2. Without further studies beyond those conducted here and previously, 

however, the promiscuity with which CatSper is activated will not be fully understood, 

especially given the complexity of CatSper as a whole. 

Section 2.7.5 CASA Studies of Selected Blockers 

To possibly give more credence to these observations, we employed computer-

aided sperm analysis (CASA) to determine the effect of both t-type CCBs and steroidal 

blockers on sperm from healthy men. It was found that the t-type CCBs, mibefradil, ML218 

and NNC 55 0396 have profound effects on normal motility parameters (total and 

progressive motility, Figure 2.25) while also abolishing hyperactivated motility (HAM, 

Figure 2.27). The effect on normal motility versus HAM was not differentiated with this 

class of compounds, meaning the effects on both modes were substantial.  

Contrasting these results, the effects of the steroids on normal motility were 

minimal, with only MPA showing a slight effect on normal motility (Figure 2.26). The 

steroids also showed a diminished effect on HAM (Figure 2.28), with only MPA showing 

significant inhibition. LNG also significantly inhibited HAM at 30 µM, but MPA by far 

showed the most promising inhibition, consistent with its potency in the influx assay 

compared to LNG and ALDO. 

Of note, during the course of these CASA studies, a small percent of the sperm 

population was shown to achieve HAM in the buffers used (Figure 2.27 and 2.28, 

“untreated”). The t-type CCBs completely abolished HAM, reducing the population to zero 

at high concentrations. Conversely, MPA never reduced the population of cells displaying 

HAM to zero, instead only reducing to levels consistent with cells receiving no treatment. 
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This observation shows again the differences between these two classes of blockers. Given 

that the steroids are likely blocking activation via ABHD2 inhibition, a basal level of ICatSper 

is still achievable, leading to these baseline HAM populations. The t-type CCBs block all 

CatSper activation and, as such, abolish all HAM. 

Section 2.8 Summary and Prospects of the Data Presented 
In summary, I have used a calcium influx assay to study the SAR of the 

progesterone activating CatSper through systematic modifications of the steroid scaffold. 

From these experiments, I conclude that the D-ring of the scaffold plays a prominent role 

in CatSper activation while the A, B, and C ring better tolerate modifications, confirming 

observations made from previous work.83 Within these studies, three compounds showed 

negligible influx: medroxyprogesterone acetate (2.16), levonorgestrel (2.28) and 

aldosterone (2.35). 

These compounds were subsequently shown to block not only the progesterone-

induced calcium influx, but also that of PGE1 and sirenin. Furthermore, I showed that these 

steroidal blockers act in a competitive nature with respect to progesterone, PGE1 and 

sirenin, in contrast to the studied t-type CCBs, mibefradil and ML218, which display an 

insurmountable block. This is the first study showing ML218 blocks CatSper activation, 

giving researchers another tool compound beyond mibefradil and NNC55-0396 when 

studying CatSper physiology and pharmacology. Furthermore, the fascinating interplay of 

the steroidal blocks and t-type CCBs was studied in depth, with more questions being raised 

than answered. 

Future work on this project should focus on further studying the potential inhibition 

(or lack thereof) of ABHD2 by relevant compounds. Binding assays, such as those 
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previously reported, should be repeated with UV-probes of PGE1 and, potentially, steroidal 

blockers to gain better insight into this intricate, fascinating system that continues to 

confound the field with its complexity.84  
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Chapter 3: Hit-to-Lead Development of Two Scaffolds 
Discovered via a High Throughput Calcium Influx Assay  

Section 3.1 Introduction 
As presented in the previous chapter, birth control has been available to women 

since the early 1960s.6 Since then research to discover and develop a male equivalent has 

focused on hormonal contraceptives.120 However, no agent has reached the market to date 

due to side effects such as decrease of high-density lipoprotein (HDL), acne, low libido, 

and weight gain.39 Therefore, efforts have centered in recent years on developing non-

hormonal p\harmacological agents that specifically target the testis, the epididymis, or 

sperm. Nonhormonal targets relevant to male contraceptive development are briefly 

outlined in Chapter 1.  

 To date, little progress has been made in developing CatSper-specific blockers or 

antagonists. Along with the previously discussed NNC 55-0396 (3.1)121 and mibefradil 

(3.2),122, 123 limited screening of compounds identified HC-056456 (3.3) and its 

Figure 3.1. Structures of CatSper Blockers Discovered to Date. 
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methylisoxazole analog (3.4) as CatSper blockers (Figure 3.1). Compounds 3.1 and 3.2 are 

both antihypertensive agents showing minimal selectivity for t-type currents over l-type 

currents and have shown cardiotoxicity, leading to their withdrawal from clinical trials.124 

Compounds 3.3 and 3.4 slow the rise of intracellular calcium in sperm and prevent 

hyperactivated motility in the low micromolar range, but contain structural liabilities 

precluding their further development. In the previous chapter we discussed the t-type CCB 

ML218 (3.5, Figure 3.1). This compound is exquisitely selective for t-type currents but its 

safety profile is under explored.102 

As mentioned previously, heterologous expression of a functional CatSper channel 

has not yet been achieved and is likely due to a failure in proper assembly of the CatSper 

complex.125 This issue has hampered traditional drug discovery efforts for this ion channel 

target and thus ex vivo experimentation using live sperm is currently the best method to 

discover modulators of CatSper in a high throughput manner. This chapter describes the 

results of a high throughput screen completed in the fall of 2012 which led to several hit 

compounds which were subsequently verified and elaborated upon. The full scope of this 

screen is beyond the scope of this chapter, but a brief description follows.  

The HTS screen leading to the discovered compounds is found in Figure 3.2. To 

begin, over 36K compounds were screened at 10 µM using elevated potassium/pH 

conditions to elicit calcium influx into human sperm. This resulted in 220 compounds that 

exhibited > 60% inhibition. These 220 compounds were selected for dose response 

experiments in which 104 showed well-defined sigmoidal dose-response curves with IC50 

values below 55 µM.  
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Potency, physiochemical properties and lack of fluorescence interference were 

taken into account to reduce the number of compounds down to 12. These compounds were 

repurchased and verified to be pure by UPLC, then subjected again to the influx assay, only 

now the endogenous activator progesterone was used to elicit influx. Eight compounds 

reconfirmed in this assay and were chosen for further elaboration. One of these compounds 

was the known non-selective dopamine agonist apomorphine. This compound was 

removed from consideration considering its well-defined pharmacology, leaving seven 

scaffolds (3.6 to 3.12, Figure 3.3) for potential elaboration into lead molecules. 

Figure 3.2. CatSper HTS Campaign Workflow. 
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Several rounds of SAR studies were carried out with each confirmed hit using 

commercially available molecules, with data obtained in each round driving the selection 

of successive analogs. Analogs were also selected from the GPHR-library within the ITDD, 

as only a small portion of the library was screened originally. A total of 67 analogs were 

selected for purchase from commercial sources based on structural diversity, high ligand 

efficiencies, and cost/availability. From these purchased compounds, an evaluation of the 

SAR of each scaffold was obtained, though in all cases the most potent compound in the 

FLIPR assay was the original hit compound. 

In an attempt to narrow the number of scaffolds for SAR studies, cytotoxicity 

studies using the AlamarBlue assay were performed. The fibroblast cell line IMR-90 was 

selected as a non-transfected, non-germline control in addition to sperm viability assays. 

From these assays, 3.9 (GPHR-00032750) and 3.12 (GPHR-0036795) showed a complete 

lack of cytotoxicity in both sperm and control cell lines. This fact, coupled with promising 

Figure 3.3. Structures of Screening Hits from HTS Campaign. 
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initial electrophysiology and CASA data, led to the selection of these two scaffolds for a 

comprehensive SAR study. The results of which are described herein. 

Section 3.2 Development of GPHR-00032750 via Matrix Chemistry 
Section 3.2.1 Initial Observations and Retrosynthetic Strategy 

Hit 3.9 was originally found from a library of ChemBridge compounds and 

obtained the designation GPHR-0032750 in the GPHR Library. In the original screen, this 

compound was one of the more potent hits found, with an IC50 value of 4.1 ± 1.2 µM for 

progesterone-induced influx and 9.2 ± 4.0 µM for potassium-mediated influx. 

Additionally, electrophysiology work performed in the lab of Dr. Polina Lishko at UC–

Berkeley showed that the parent compound is a CatSper blocker in healthy human sperm 

(data not shown).  

Based on these results, 3.9 was subjected to further SAR studies. To this end, a 

synthetic chemistry effort utilizing matrix chemistry was undertaken. Matrix chemistry 

allows for the generation of multiple compounds in rapid succession by forming all 

possible iterations of two different reaction partners. With respect to the retrosynthetic 

analysis of scaffold 3.9, the combination of a nucleophile (piperazine) and an electrophile 

(isocyanate) will provide an array of analogs as shown in Scheme 3.1.  

Scheme 3.1 Retrosynthetic approach to analog generation centered on 3.9 
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The chemistry leading to analogs of 3.9 allows for the rapid generation of analogs 

by coupling various piperazines, alcohols, thiols and amines to isocyanates, carboxylic 

acids, sulfonyl and acyl chlorides and others. In this library, every compound was produced 

on a sub 20 mg scale, but sufficient quantities of every compound were purified by flash 

chromatography to properly characterize all synthesized compounds. All compounds were 

verified to be > 85% pure by qNMR before testing in the influx assay. This influx assay is 

the same as described in Chapter 2 and progesterone was utilized to activate CatSper in 

these assays, as it is the more physiologically relevant activator compared to elevated 

potassium/pH. Any compound that proved to be a rather potent analog was resynthesized, 

purified to >95% purity as determined by qNMR and, frequently, though not always, also 

by UPLC.  

 The generation of the focused library and its synthetic efforts follow. 

Section 3.2.2 Initial Synthetic Efforts Towards GPHR-00032750 Analogs 

 Initial forays into the SAR of analogs of 3.9 focused on studying the effect of the 

meta trifluoromethyl groups while varying the internal piperazine moiety in an attempt to 

improve potency. The first compounds synthesized in the first library sought to hold the 

m-trifluoromethyl group of the western phenyl ring relatively constant while varying the 

eastern phenyl ring substituents. The general synthetic scheme for the development of these 

compounds is shown in Scheme 3.2. Mixing of the appropriate piperazine with an 

isocyanate of interest in the presence of a mild base at r.t. was sufficient to obtain target 

molecules in good yield, generating a set of 40 compounds that were assayed for their 

ability to block the progesterone-evoked calcium influx. 
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Scheme 3.2 General reaction scheme for the synthesis of analogs 3.10–3.48 in Table 3.1 

 

Table 3.1. Potency of Piperazinyl Analogs from Scheme 3.2 
Compound R1 R2 IC50[a] 

3.10 H H > 100 
3.11 H 3-Me >100 
3.12 H 3-CF3 >100 
3.13 H 3-CN 25 ± 6 
3.14 H 3-NO2 >100 
3.15 H 3-CO2Me >100 
3.16 3-Me H 69 ± 5 
3.17 3-Me 3-Me 46 ± 11 
3.18 3-Me 3-CF3 9.2 ± 0.8 
3.19 3-Me 3-CN 32 ± 4 
3.20 3-Me 3-NO2 25 ± 2 
3.21 3-Me 3-CO2Me 28 ± 3 
3.22 3-Me 3,5-(CO2Me)2 28 ± 8 
3.23 3-Me 4-Indole >100 
3.24 3-CF3 H 26 ± 5 
3.25 3-CF3 3-Me 9.6 ± 0.4 
3.9 3-CF3 3-CF3 5.2 ± 1.7 
3.26 3-CF3 3,5-(CF3)2 2.9 ± 0.8 
3.27 3-CF3 3-CN >100 
3.28 3-CF3 3-NO2 17 ± 6 
3.29 3-CF3 3-CO2Me 24 ± 6 
3.30 3-CF3 3,5-(CO2Me)2 20 ± 7 
3.31 3-CF3 3-CO2H >100 
3.32 3-CF3 4-Indole 42 ± 9 
3.33 3-CF3 5-Indole 34 ± 3 
3.34 3,5-(CF3)2 H >100 
3.35 3,5-(CF3)2 3-Me 13 ± 4 
3.36 3,5-(CF3)2 3-CF3 4.1 ± 1.2 
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3.37 3,5-(CF3)2 3,5-(CF3)2 >100 
3.38 3,5-(CF3)2 3-CN 13 ± 1 
3.39 3,5-(CF3)2 3-NO2 7.0 ± 1.2 
3.40 3,5-(CF3)2 3-CO2Me 7.5 ± 0.9 
3.41 3,5-(CF3)2 3,5-(CO2Me)2 >100 
3.42 3,5-(CF3)2 3-CO2H >100 
3.43 3,5-(CF3)2 5-Indole 92 ± 9 
3.44 3-CN 3-CF3 8.6 ± 3.3 
3.45 3-CN 3,5-(CF3)2 5.0 ± 1.1 
3.46 3-CN 3-CN >100 
3.47 3-CN 3-NO2 >100 
3.48 3-CN 3-CO2Me >100 

From this initial set of compounds, a series of observations can be made regarding 

SAR patterns. First, the western phenyl group of the scaffold needs to be substituted. The 

type of substitution on this ring is not as important, as a great variety of substitutions retain 

some level of activity, but a phenyl group alone in this region is not sufficient to confer 

activity in the influx assay (compounds 3.10 – 3.15). Building on this observation, the more 

electron withdrawing the substitution, the more likely the compound is to show good 

potency in the assay, in the following order: m-CF3 ≈ m-NO2 > CN > Me. In general, the 

eastern phenyl ring of the scaffold is more tolerant of modifications compared to the 

western ring. A wider variety of substitutions still show activity including indoles (3.32, 

3.33), though potencies are diminished greatly. 

Importantly, included in this set of compounds was the original HTS hit (3.9). 

While this compound had been repurchased from vendors, its resynthesis, purification and 

assay all on site served to validate this series. From the SAR of this library of compounds 

it became apparent that the most potent modifications to the phenyl rings were going to 

remain the m-CF3 groups, though the m-methyl analog 3.17 retained activity, indicating 

that sterics of this group may play a bigger role than electronics. Building on the m-CF3 
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groups, several compounds were synthesized bearing 3,5-bis-CF3 groups. These 

compounds proved rather potent in many cases (3.26, 3.35, 3.36), however 3,5-

disubstitution with CF3 (3.37) and a methyl ester moiety (3.41) on the eastern phenyl ring 

produced inactive compounds. The carboxylic acid-containing compounds 3.31 and 3.42 

showed no activity compared to their ester counterparts 3.29 and 3.40. Presumably, the 

carboxylic acid is preventing cellular penetration.  

Section 3.2.3 Heterocyclic Analogs of Parent Compound Maintain Activity 

Perhaps the most important observation from the SAR study (Table 3.1) is that none 

of the synthesized compounds showed an increase in potency compared to the original hit 

compound 3.9. From Table 3.1 it is apparent that the eastern phenyl ring is more amenable 

to changes than the western phenyl ring. From this we sought to synthesize a small series 

of analogs in which a small heterocyclic group was appended to the eastern ring. In this 

series of analogs, we also investigated N-phenyl piperazines substituted with pyrrole (3.49–

3.51) and N-methylpyrazole (3.52–3.54), pyridine (3.55–3.59) and pyrimidine (3.60) 

moieties.  The results derived from these compounds are shown in Table 3.2. The synthesis 

of these compounds remains unchanged from Scheme 3.2. 

Table 3.2. Potencies of Heterocycles-Containing 
Analogs 3.49–3.60 

 
Compound R1 R2 IC50[a] 

3.49 3-CF3C6H4 
 

19 ± 6 

3.50 3,5-(CF3)2C6H3 
 

5.5 ± 1.8 
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3.51 3-CNC6H4 
 

21 ± 6 

3.52 3-CF3C6H4 
 

11 ± 2 

3.53 3,5-(CF3)2C6H3 
 

4.3 ± 0.9 

3.54 3-CNC6H4 
 

25 ± 5 

3.55 3-py. 3-Me >100 
3.56 3-py. 3-NO2 >100 
3.57 4-py. 3-Me >100 
3.58 4-py. 3-CF3 10 ± 2 
3.59 4-py. 3-NO2 43 ± 22 
3.60 2-pyr. 3-CF3 >100 

[a]Data presented in µM as mean ± SD and 
represent 3 individual experiments in all cases. 
py. = pyridine and pyr. = pyrimidine. 

From the data for these compounds several observations were made. The eastern 

phenyl ring can accept heterocyclic substituents and retain activity, with potencies for 3.50 

and 3.53 that are comparable to the parent compound 3.9. For these compounds, the 

modifications to the western phenyl ring follow the same trend that was observed 

previously, that an increase in electron withdrawing modifications leads to improved 

potency (3.50 > 3.49 > 3.51 and 3.53 > 3.52 > 3.54). Compounds 3.55–3.58 continue the 

trend that the western phenyl ring is less accepting of substitutions, as compounds in which 

the phenyl ring is changed to a pyridine (py) or pyrimidine (pyr), all activity is lost, save 

compound 3.58 which retained activity. 

Section 3.2.4 Analogs with Extended Aryl System Retain Activity 

After analysis of the SAR data for these compounds it became clear that pursuing 

analogs modified at the eastern phenyl ring would be advantageous. Also, since the 
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heterocyclic substituents retained activity, we hypothesized that additional steric bulk 

could be added in this area. As such we expanded the aryl system by adding another ring 

via linkage through an amide bond, making use of the previously synthesized 3.31 and 3.42 

as the starting material. The synthetic scheme leading to these analogs are shown in Scheme 

3.3. 

Scheme 3.3 Synthesis of extended aryl system analogs 

 

 Table 3.3 shows that addition of the extra aryl system to the scaffold is tolerated, 

as evinced by compounds 3.61 and 3.68. Large additions to this phenyl ring are not 

tolerated, however, as shown by compounds 3.66, 3.67, 3.74 and 3.75, smaller groups, such 

as the chloro- groups found in 3.64, 3.65 and 3.72 led to compounds displaying potencies 

slightly better than the parent compound. Conversely, heterocycles are not tolerated at this 

additional phenyl ring (3.76 and 3.77) and when the lipophilicity of the compound is too 

high all activity is lost, demonstrated by the inactive compounds 3.71 and 3.73 through 

3.76. In general, these molecules did not provide significant gains in potency over the 

parent compound and the molecular weights of these compounds were starting to be above 

500. With further modifications needed to improve potency the molecular weight of 

additional analogs would above 550 molecular weight, and therefore a different direction 

was chosen by modifying the central core of the molecule. 
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Section 3.2.5 Modifications to the Piperazinyl Urea Core are not Well Tolerated 

 Having seen little to no improvement in potency when synthesizing targets similar 

in structure to the parent compound, analogs that displayed a greater variety in molecular 

structure were designed and synthesized as shown in Scheme 3.4. 

Table 3.3. Potencies of extended aryl amide analogs 

 
Compound R1 R2 IC50[a] 

3.61 3-CF3 H 13 ± 5 
3.62 3-CF3 4-Cl 13 ± 5 
3.63 3-CF3 4-OMe >100 
3.64 3-CF3 3,4-(Cl)2 2.4 ± 0.7 
3.65 3-CF3 3-Cl 3.2 ± 0.6 
3.66 3-CF3 4-C(CH3)3 >100 
3.67 3-CF3 3-CF3, 4-Cl >100 
3.68 3,5-(CF3)2 H 6.5 ± 2.4 
3.69 3,5-(CF3)2 4-Cl >100 
3.70 3,5-(CF3)2 4-OMe >100 
3.71 3,5-(CF3)2 3,4-Cl >100 
3.72 3,5-(CF3)2 3-Cl 3.8 ± .3 
3.73 3,5-(CF3)2 4-NMe2 >100 
3.74 3,5-(CF3)2 4-C(CH3)3 >100 
3.75 3,5-(CF3)2 3-CF3, 4-Cl >100 
3.76 3,5-(CF3)2 4-py. >100 
3.77 3,5-(CF3)2 3-py. >100 
3.78 3,5-(CF3)2 4-CF3 7.1 ± 3.1 

[a]Data presented in µM as mean ± SD and represent 3 individual 
experiments in all cases. Py. = pyridine with numbering representing the 
position of endocyclic nitrogen. 
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Scheme 3.4 The synthesis of ring opened analogs of 3.9 via EDC coupling or isocyanate 
chemistry 

 

Modifications to the scaffold included removal of the eastern nitrogen of the urea 

linker, replacing it with a methylene group or simply removing the spacer all together, 

resulting in several compounds with an aryl ketone rather than the usual aniline.  

Table 3.4. Activities of Ring-Opened Analogs of 3.9 

 
Compound R1 R2 X Y n IC50[a] 

3.79 3-CF3, 4-Cl 3-CF3 NH CH2 1 6.4 ± 1.4 
3.80 3-CF3, 4-Cl 3-CN NH – 0 26 ± 1 
3.81 3-CF3, 4-Cl 3,5-CF3 NH – 0 >100 
3.82 3-CF3, 6-Cl 3-CF3 S CH2 1 29 ± 6 
3.83 3-CF3, 6-Cl 3-Me S NH 1 >100 
3.84 3-CF3 3-Me S NH 1 39 ± 11 
3.85 3-CF3 3-CN S NH 1 >100 
3.86 3-CF3 3-CO2Me S NH 1 32 ± 2 
3.87 3-CF3 3,5-(CO2Me)2 S NH 1 25 ± 8 
3.88 3-CF3 4-Indole S NH 1 15 ± 3 

[a]Data presented in µM as mean ± SD and represent 3 individual experiments in all 
cases. “–“ represents nonexistent site 
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In all synthesized compounds, the piperazine ring was opened to give either 

diamide linkers or carbamothioic esters in place of the normal urea. The activity of the 

resulting compounds is described in Table 3.4. 

As observed in Table 3.4, opening the ring to a more flexible linking moiety 

resulted in compounds that retained activity in the assay, but displayed diminished 

activities. In almost all cases double digit micromolar inhibitors were observed except for 

compound 3.79 whose potency matched that of the parent compound. No discernable 

trends were observed with these compounds regarding thiol linkers over amide linkers or 

how ring opening affected phenyl substitution patterns, but the fact that these compounds 

retained activity prompted further exploration of ring-opened analogs. Scheme 3.5 shows 

the additional analogs synthesized, centered on a commercially available azaindole 

methylamine nucleophile 3.89. 

Scheme 3.5 The synthesis of additional ring opened analogs of 3.9 

 

When first tested, these compounds appeared to be submicromolar inhibitors in the 

FLIPR assay. Closer inspection of the data, however, revealed these compounds 

substantially interfered with the fluorescent readings of the assay (not shown), prompting 

their removal from consideration and truncating their testing at n =2.  
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Table 3.5. Potencies of Analogs Using 3.89 as Nucleophile 
 

 

 

 Compound R1 n IC50[a]  
 3.90 3-CF3 0 >100  
 3.91 3,5-(CF3)2 0 >100  
 3.92 3-CN 0 >100  
 3.93 4-CN 1 >100  
 3.94 3-CF3, 6-Cl 0 >100  
 3.95 

 
0 >100  

 3.96 
  >100  

[a]Data presented in µM as mean ± SD and represent 2 individual experiments in all cases. 
For R1, when drawn, eastern phenyl group is replaced by entire drawing. 

Section 3.2.6 Sulfonamide Analogs of 3.9 Are Completely Inactive Save One Compound 

With the lackluster potencies seen in all ring-opened compounds the decision was 

made to stop drastically altering the piperazinyl core and instead, and change the urea 

linking group to improve potency. Sulfonamides retain many of the physicochemical 

properties of amides and ureas and, as such, were sought as potential analogs. Synthesis 

and testing of compound 3.97 showed that the sulfonamide analog corresponding to parent 

substitution pattern of 3.9 retained activity. With this knowledge, a series of sulfonamides 

were synthesized and assayed in the FLIPR assay. The synthesis of these compounds is 

shown in Scheme 3.6, though the chemistry is identical to the previously discussed 

isocyanate couplings. 
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Scheme 3.6 Synthesis of sulfonamide derivatives of 3.9 

 

As can be seen in Table 3.6, while analog 3.97 retained activity in the influx assay, 

almost every other sulfonamide synthesized showed no ability to block the progesterone-

mediated calcium influx in human sperm.  

Table 3.6. Potencies of Sulfonamide Derivatives 

 
Compound R1 R2 IC50[a] 

3.97 3-CF3 3-CF3 7.4 ± 0.9 
3.98 H H >100 
3.99 H 3-Me >100 
3.100 H 2-CF3 >100 
3.101 H 3-CF3 >100 
3.102 H 4-CF3 >100 
3.103 H 3,5-(CF3)2 >100 
3.104 3-Me H >100 
3.105 3-Me 2-CF3 >100 
3.106 3-Me 3-CF3 >100 
3.107 3-Me 4-CF3 >100 
3.108 3-Me 3,5-(CF3)2 >100 
3.109 3-CF3 H >100 
3.110 3-CF3 3-Me >100 
3.111 3-CF3 4-CF3 52 ± 9 
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3.112 3-CF3 3,5-(CF3)2 >100 
3.113 3-CN H 19 ± 4.4 
3.114 3-CN 3-Me >100 
3.115 3-CN 3-CF3 >100 
3.116 3,5-(CF3)2 H 76 ± 32 
3.117 3,5-(CF3)2 3-Me >100 
3.118 3,5-(CF3)2 2-CF3 >100 
3.119 3,5-(CF3)2 3-CF3 59 ± 7 
3.120 3,5-(CF3)2 4-CF3 2.2 ± 0.4 

[a]Data presented in µM as mean ± SD and represent 2 individual 
experiments. In cases where an IC50 value < 100 µM is observed,  
3 experiments were performed. 

 

A disappointing result to be sure, given the initial success of 3.97. This series of 

compounds was the first to introduce an o-CF3 group into any analog, though in all cases 

this substitution was inactive and not pursued in additional analogs. Compound 3.120 bears 

a p-CF3 group and is the most potent sulfonamide tested, though only moderately more 

potent than 3.97 and hit compound 3.9. 

Section 3.2.7 Exploration of the Nitrogen Spacer Reveals Promising Results 

Having synthesized and tested over 100 compounds to this point, several 

observations were used to drive further analog synthesis. First, the electron deficiency of 

both phenyl rings is crucial for retention of activity, with very few analogs showing activity 

independent of –CF3 groups. Second, the piperazine ring should be kept if possible, as most 

ring opened compounds showed reduced activity. Finally, the urea moiety is amenable to 

alteration only if the western nitrogen of this group is maintained, and it absolutely should 

not be changed to a sulfonamide. 

Scheme 3.7 EDC-mediated couplings leading to varied spacer analogs 
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Throughout the tested analogs there exist several examples in which the NH group 

of the urea linker is changed to a methylene linker (see compounds 3.79 and 3.97). Also, 

compound 3.80 retains some potency with a truncated spacer, keeping just an aryl amide 

rather than a full urea. We next sought to explore the need for this spacer by synthesizing 

compounds according to Scheme 3.7, in which zero or one methylene groups or nitrogen 

atoms could modulate potency in the influx assay. 

 As seen in Table 3.7, most of the compounds in which n = 0, leaving an aryl amide, 

show little reduced potency in the influx assay, with several showing no activity 

whatsoever (3.121, 3.124 and 3.125). These compounds closely resemble the parent 

compound, so their lack activity reflects the need for this spacer region to exist. Further 

validating the need for this spacer are compounds 3.126 and 3.127, which retain activity 

and are the same as the parent compound except the urea NH group is a methylene linker. 

These two compounds are less potent then their urea counter parts (see 3.126 vs 3.9 and 

3.127 vs 3.36). 

Table 3.7 Potency of truncated or methylene-containing compounds 
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 Compound R1 R2 n IC50[a]  
3.121 3-CF3 3-CF3 0 >100 
3.122 3-CF3 3,5-(CF3)2 0 26 ± 3 
3.123 3,5-(CF3)2 3-CF3 0 11 ± 1 
3.124 3,5-(CF3)2 3,5-(CF3)2 0 >100 
3.125 3,5-(CF3)2 3-CN 0 >100 
3.126 3-CF3 3-CF3 1 9.8 ± 0.2 
3.127 3,5-(CF3)2 3-CF3 1 7.7 ± 0.7 
3.128 3-CN 3-CF3 0 17 ± 2 
3.129 3-CN 3,5-(CF3)2 0 26 ± 6 
3.130 3-CN 3-CN 0 64 ± 1 

[a]Data presented in µM as mean ± SD and represent 3 individual experiments in all cases. 

Having explored truncated linkers with respect to the urea portion of the molecule, 

we next set out to increase the linker length. Having demonstrated with compounds 3.126 

and 3.127 that a methylene is tolerated at this position, we sought to explore whether 

potency could be gained via alkylation of this methylene group. We also utilized a phenoxy 

linker in these compounds to explore the effect of this change on compound potency. 

Scheme 3.8 Synthesis of phenoxy derivatives with alkylated linker regions 

 

Table 3.8. Potency of phenoxymethylene derivatives with and without alkylated 
linker regions 
 

 

 

 Compound R1 R2 R3 R4 IC50[a]  
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3.131 3-CF3 H H 3-CF3 6.9 ± 1.6 
3.132 3,5-(CF3)2 H H 3-CF3 4.7 ± 0.9 
3.133 3-CN H H 3-CF3 15 ± 4 
3.134 3-CF3 H H 3,4-F2 8.6 ± 1.2 
3.135 3,5-(CF3)2 H H 3,4-F2 7.5 ± 1.3 
3.136 3-CN H H 3,4-F2 66 ± 13 
3.137 3-CF3 H Me 3-CF3 9.6 ± 0.5 
3.138 3,5-(CF3)2 H Me 3-CF3 10 ± 4 
3.139 3-CN H Me 3-CF3 20 ± 4 
3.140 3-CF3 Me Me 3-CF3 5.2 ± 0.9 
3.141 3,5-(CF3)2 Me Me 3-CF3 43 ± 26 
3.142 3-CN Me Me 3-CF3 12 ± 4 

[a]Data presented in µM as mean ± SD and represent 3 individual experiments in all 
cases. 

From Table 3.8 there are several observations that can be made starting with the 

fact that, for the first time, all compounds in a synthesized set retained activity. This 

phenoxymethylene linker present in each of these compounds is an accepted change to the 

scaffold. Compounds 3.131, 3.132, 3.134, 3.135, and 3.140 display potencies equal to the 

parent compound. Though no significant increases in potency were observed, these results 

indicate a positive trend.  

Also, the need for an electron withdrawing groups continues as previously observed 

trends continue to be seen, with 3,5-CF3 > 3-CF3 > 3-CN (see compounds 3.132 vs 3.131 

vs 3.133. The new substitution pattern of 3,4-difluorophenyl seen in compounds 3.134 – 

3.136 retained activity, prompting the synthesis of future compounds that to explore 

monofluorinated phenyl ring systems. Finally, in general, it appears alkylation of this 

methylene linker is not beneficial, as methyl and gem-dimethyl variants did not show an 

increased potency in the influx assay as seen with compound 3.131 vs 3.137 vs 3.140. 

While the alkylated derivatives did not lose activity, they did not gain any. 



 91 

Section 3.2.8 Further Exploration of Spacer Region Results in Most Potent Compounds 

Discovered to Date 

With the phenoxymethylene linker-containing compounds proving efficacious in 

the influx assay, we sought to further explore compounds of a similar nature by changing 

the phenoxy moiety to an aniline, more closely resembling the parent compound. 

Furthermore, the spacer was elongated in some cases to two methylene groups and 

monofluorinated phenyl substitution patterns were included given the success of 

compounds 3.134 – 3.136. The synthesis of one of the final libraries of compounds is 

shown in Scheme 3.9 and follows the same EDC-mediated amide formations prevalent 

through earlier sections. 

Scheme 3.9 Synthesis of anilino derivatives with methylene and ethyl linkers 

 

Table 3.9. Synthesis of anilino derivatives with methylene and ethyl linkers 
 

 

 

 Compound R1 R2 n IC50[a]  
3.143 3-CF3 3-CF3 1 5.9 ± 1.7 

3.144 3,5-
(CF3)2 

3-CF3 1 1.9 ± 0.5 

3.145 3-CF3 2,4-F2 1 8.3 ± 1.2 
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The synthesized compounds were tested for their ability to inhibit progesterone-

induced calcium influx as per our standard protocol. These compounds were expected to 

be rather potent based on the compounds found in Table 3.8, and this is indeed the case 

with the two most potent compounds to date being found within this library: 3.147 and 

3.148. These two compounds are fluorinated anilines with a methylene spacer between the 

piperazinylamide and the eastern aryl group. 

It is perhaps not surprising that these compounds have a m-CF3 group on the 

western phenyl ring. Nonetheless, these compounds are the first submicromolar inhibitors 

discovered in this campaign and consistently displayed a potent block in our FLIPR assay 

as shown in Figure 3.4. Other very potent compounds are seen in Table 3.9 including 3.144 

and 3.160. Of particular interest is 3.160, since this compound was one of only two 

compounds with an ethyl linker to show activity in the assay, see compounds 3.153 – 3.159. 

3.146 3-CF3 4-Cl 1 4.6 ± 0.6 
3.147 3-CF3 2-F 1 0.51 ± 0.12 
3.148 3-CF3 4-F 1 0.46 ± 0.03 
3.149 3-Me 2,4-F2 1 5.9 ± 1.0 
3.150 3-Me 4-Cl 1 11 ± 1.7 
3.151 3-Me 2-F 1 6.6 ± 1.4 
3.152 3-Me 4-F 1 5.1 ± 0.2 
3.153 H H 2 >100 
3.154 3-Me H 2 >100 
3.155 3-CF3 H 2 >100 
3.156 H 2-NO2, 4-CF3 2 >100 
3.157 3-Me 2-NO2, 4-CF3 2 >100 
3.158 3-CF3 2-NO2, 4-CF3 2 >100 
3.159 H 3-F 2 >100 
3.160 3-Me 3-F 2 2.9 ± 0.3 
3.161 3-CF3 3-F 2 5.5 ± 2.1 

[a]Data presented in µM as mean ± SD and represent 3 individual experiments in all cases. 
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Compound 3.161 was the other active ethyl linker analog. Interestingly, 3.160 is the more 

potent of the compounds, yet bears a m-methyl substitution, while 3.161 has the typically 

more potent m-CF3 substitution. An interesting deviation from a consistent trend. 

Section 3.2.9 Probing the Piperazinyl Nitrogen via Heterocyclic and CH Replacement  

In an attempt to possibly find yet more potent compounds, an additional small 

collection of compounds was synthesized as shown in Scheme 3.10. 

Scheme 3.10 Synthesis of pyrimidinylpiperazine analogs 

 

Combining the potent carboxylic acids from Scheme 3.9 with the underutilized 

pyrimidinylpiperazine, it was hypothesized that this combination could potentially lead to 

Figure 3.4. Dose-Response Curves of 3.147 and 3.148 from influx assay. Data are 
plotted as mean ± standard error, presented as a percent response relative to an EC50 
dose of progesterone (30 nM). Smooth curves represent the best fits of a nonlinear 
regression model to the data for each compound. IC50 values determined using Prism 
v8.02. 
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potent compounds. As seen in Table 3.10, this was not the case. Previously, compound 

3.60 was the only compound with a pyrimidinylpiperazine moiety and was totally inactive 

in the assay. Optimism winning out, 5 compounds were synthesized and tested. One of the 

compounds did show activity in the assay though the potency left much to be desired. 

Table 3.10. Potencies of synthesized pyrimidinylpiperazine analogs 
 

 

 

Compound R1 IC50[a] 

3.162 3-CF3 >100 
3.163 2,4-(F)2 >100 
3.164 4-Cl >100 
3.165 2-F 22 ± 2 
3.166 4-F >100 

[a]Data represented as mean ± SD and represent 2 individual experiments in all cases except 
where activity was observed, then 3 replicates were performed. 

While synthesizing the various analogs of 3.9, the obvious electronic contributions 

of the western phenyl ring were observed consistently, with electron withdrawing groups 

seemingly required. As a final experiment a piperidine analog was synthesized, in which 

the Western nitrogen of the piperazine ring is replaced by a carbon. meta Electron 

withdrawing groups will lower the electron density of the piperazinyl nitrogen, raising its 

pKa. Given that this nitrogen is less likely to be protonated at relevant pHs, the activity of 

the parent compound should be “protonated nitrogen” agnostic. This is indeed the case, 

Figure 3.5 shows that piperidine compound 3.167, having a -CH- group in place of the 

anilinic nitrogen, is just as potent as 3.9. While not conclusive, this result suggests future 

analogs of this scaffold need not contain this potential metabolic liability. 
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Section 3.2.10 Verifying Synthesized Compounds Via CASA 

 As described before, CASA is computer-aided sperm analysis and measures the 

motility of live human sperm cells by tracking key kinematic parameters such as velocity 

and the amplitude of lateral head displacement. Having synthesized and tested over 160 

compounds in the FLIPR assays, validation of the two submicromolar compounds in a 

secondary assay was sought. The secondary assay used was CASA. Figure 3.6 summarizes 

the effect of compounds 3.9 (initial hit), 3.147, and 3.148. 

All the tested compounds affect normal motility at the concentrations tested to a 

significant degree. The parent compound 3.9 was tested at higher concentrations than the 

synthesized compounds due to the discrepancies in potency between the compounds. The 

Figure 3.5. A Piperazinyl Nitrogen is not Needed for Activity of Analogs. (A) 
Structures of 3.9 and 3.167 with circle highlighting difference in structure. (B) Dose-
response curves of piperidine-containing 3.167 and piperazine-containing 3.9. Data are 
plotted as mean ± standard error, presented as a percent response relative to an EC50 
dose of progesterone (30 nM). Smooth curves represent the best fits of a nonlinear 
regression model to the data for each compound. IC50 values determined using Prism 
v8.02. 
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two synthesized compounds effectively reduce motility in human sperm at 0.1 and 1 µM. 

Compound 3.148 is especially potent, showing only 33% remaining motility at 0.1 µM.  

It would be expected that a CatSper inhibitor would have minimal effect on normal 

motility parameters, however as observed in Chapter 2, the known t-type CCBs mibefradil 

and NNC 55 0396 have potent effects on normal motility in human sperm, indicating 

precedence for the observed effects these synthesized analogs are having on normal 

motility parameters. 

With respect to HAM, the synthesized compounds drastically impact HAM evoked 

by both PGE1 (Figure 3.7) and progesterone (Figure 3.8). At 100 nM 3.147 is able to 

effectively prevent cells from achieving HAM and at 1 µM both compounds are able to 

completely ablate the population of cells displaying HAM to zero or near zero.  

Figure 3.6. Compound 3.9 and Derivatives 3.147 and 3.148 Reduce both Total (black) 
and Progressive (gray) Motility in Human Sperm. Data are plotted as mean ± standard 
error, representing the mean of 4 replicate experiments, and *P < 0.05, **P < 0.005, 
***P < 0.0005, ****P < 0.0001. 
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The three compounds all show an improved efficacy with respect to inhibiting 

HAM over normal motility. For instance, at 1 µM parent compound 3.9 shows little effect 

on normal motility, but significantly impacts HAM. The same can be said for 3.147, which 

has limited impact on normal motility at 100 nM, yet nearly completely knocks down HAM 

at this concentration. Compound 3.148 is a bit of a stranger case in that it shows a 

pronounced effect on normal motility even at 100 nM, but, at this concentration, has a 

negligible effect on HAM elicited by both PGE1 and progesterone, though complete 

inhibition of HAM at 1 µM is seen. This oddity requires further investigation and the 

recruitment of additional progesterone-sensitive donors to fully elucidate this interaction. 

Section 3.3 Fragment-Inspired Approach towards Development of 
GPHR-00213869  
Section 3.3.1 Initial Observations and Retrosynthetic Strategy 

Figure 3.7. Effect of compound 3.9 and Derivatives 3.147 and 3.148 on HAM Induced 
by Treatment with 100 nM PGE1. Data are represented as means ± SD; data represent 
the means of 4 individual experiments in all cases; and ***P < 0.0005. 
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While the development of hit compound 3.9 was ongoing, forays into the 

development of 3.12 were planned and begun. Hit compound 3.12 was found, perhaps 

unsurprisingly given its structure, from a kinase inhibitor library. Showing an initial IC50 

value of 21 ± 2 µM and 10 ± 2 µM for progesterone- and K+-induced calcium influx 

respectively, this hit compound was chosen for further development based on promising 

electrophysiology data in human sperm and a lack of cytotoxicity in both sperm and 

somatic cells up to 100 µM. 

  

Figure 3.8. Effect of Compound 3.9 and its Synthesized Derivatives 3.147 and 3.148 
on HAM Induced by Treatment with 100 nM Progesterone (P). Data are represented as 
means ± SD; data represent the means of 4 individual experiments in all cases; and *P 
< 0.05, **P < 0.005. 



 99 

Scheme 3.11 Retrosynthetic analysis of hit compound 3.12 

 

Hit compound 3.12 has a more complicated structure than 3.9, containing a 

triazolopyridine core with a piperidine linker tying into an amide side chain. Scheme 3.11 

shows the retrosynthetic analysis for synthesis of target molecule 3.12. Disconnecting the 

side chain in the northeastern quadrant of the molecule and subsequent decoupling of the 

piperidine linker from the aromatic heterocycle gives a core heterocycle which can be 

disconnected to reveal 3-hydrazinylpyridazine and anhydrides as the starting materials. 

While compound 3.9 lent itself to the rapid generation of analogs via matrix 

chemistry, it would not be prudent to undertake the same strategy with 3.12. Requiring four 

steps to complete the synthesis, though rather abridged, would still give an exceedingly 

high number of analogs if each modification were to be explored in full. As such, a 

fragment-inspired approach to the development of 3.12 was undertaken and the description 

of the preliminary results follow. 

Section 3.3.2 General Strategy Towards Potent Analogs of GPHR-00213869 (3.12) 

As can be seen clearly in Scheme 3.11, the first step of the synthesis towards 3.12 

is a condensation cyclization reaction akin to those pioneered by Bischler and Napieralski. 

This robust chemistry allows for the electrophilic intramolecular formation of the triazolo 

or imidazole cores found in many natural products and drug molecules. For our efforts, this 
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chemistry allowed us to synthesize a series of compounds with varying nitrogen 

compositions. While varying the anhydride partner used in the reaction, a series a low 

molecular weight fragments could be envisioned as shown in Scheme 3.12. 

Scheme 3.12 General synthesis of southwestern fragments 
 

 

The starting material for this chemistry was affordable and the reactions were quite 

robust, as will be described. This chemistry was used to generate a focused library of 

fragments containing 64 compounds all of which were tested in the influx assay at two 

concentrations for their ability to inhibit calcium influx. The synthesis and testing of these 

analogs are described below. 

Section 3.3.3 Synthesis and Evaluation of 1,2,4-triazolo[4,3-b]pyridazine Core-
Containing Fragments 

The fragment library containing all four nitrogen atoms present in parent compound 

3.12 constitute 16 of the 64 compounds synthesized and bears a triazolopyridazine core. 

Interestingly, it was found that the phosphorous (IV) oxychloride usually required for these 

intramolecular cyclization chemistries to function was not needed, with the reaction 

proceeding smoothing in toluene under reflux as shown in Scheme 3.13 below. 

Scheme 3.13 Synthesis of [1,2,4]-triazolo[4,3-b]pyridazine heterocycles 
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Table 3.11. Percent inhibition of triazolopyridazine core compounds 

 
Compound R %Inhibition (30 µM) %Inhibition (100 µM) 

3.168 H 65 ± 12 65 ± 16 
3.169 3-Me 54 ± 10 53 ± 19 
3.170 3-CF3 50 ± 12 42 ± 14 
3.171 4-Me 55 ± 17 63 ± 20 
3.172 4-CF3 43 ± 21 22 ± 6 
3.173 4-OMe 44 ± 10 37 ± 11 
3.174 4-F 35 ± 19 49 ± 14 
3.175 4-Cl 53 ± 17 50 ± 20 
3.176 3-py. 22 ± 22 41 ± 23 
3.177 3,4-Cl 15 ± 9 34 ± 21 
3.178 4-C(CH3)3 61 ± 11 43 ± 13 

 
3.179 Me 29 ± 17 61 ± 8 
3.180 n-Butyl 51 ± 12 50 ± 20 
3.181 C(CH3)3 35 ± 18 31 ± 15 
3.182 CF3 49 ± 17 48 ± 13 
3.183 CCl3 72 ± 7 58 ± 15 
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 The substitution pattern stemming from the variable group on the symmetric 

anhydride were selected with inspirations taken from the work of Topliss, featuring 

different hydrophobicity constants (π) and substituent constants (electronics, σ) among all 

analogs synthesized.126 As mentioned, the synthesized compounds were tested for their 

ability to inhibit the progesterone-mediated calcium influx in our FLIPR assay. Given the 

low molecular weight of the compounds, and the desire to keep the number of assays to a 

minimum, the compounds were screened initially at two concentrations of 100 and 30 µM. 

The results of these assays are provided in Table 3.11. 

From Table 3.11 it is apparent that a rather narrow SAR is observed, with all 

compounds showing some level of activity, but no compound displaying markedly 

increased potency over the rest. Since potencies were similar across the tested compounds, 

favor was given to those compounds which showed a good dose-dependent action. Many 

of the compounds displayed the same levels of inhibition at both concentrations, so the 

compounds showing good potency while also showing a reasonable improvement of 

potency at 100 µM over 30 µM (3.171, 3.174, 3.179) were marked as targets for resynthesis 

and retesting.  

Data represented as mean ± SD and represent 3 individual experiments. In all cases, 
signal evoked by 30 nM progesterone. py. = Pyridine with numbering representing 
the position of endocyclic nitrogen. 



 103 

The m-Me substitution pattern found in compound 3.169 performed well, showing 

some of the better potency, though a dose-dependent effect was not observed. Interestingly, 

the unmodified phenyl substitute found in compound 3.168 proved to be quite a potent 

compound in the assay. Furthermore, bulky aliphatic groups, such as those seen in 3.178 

and 3.181 did not perform well, neither did heterocyclic replacements (3.176) nor 

trihalomethyl groups that were appended to phenyl rings (3.182, 3.183). Figure 3.8 shows 

the graphs associated with the data from Table 3.11. 

Section 3.3.4 Compounds containing a [1,2,4]triazolo[4,3-a]pyridine as Additional 

Fragments 

Scheme 3.14 Synthesis of [1,2,4]-triazolo[4,3-a]pyridine heterocycles 

 

Figure 3.8. Activity of Triazolopyridazine Library in a Calcium Influx Assay. Data are 
plotted as mean ± standard deviation, representing the mean of 3 replicate experiments. 
Compounds tested at 30 µM (dark grey) and 100 µM (light grey) against 30 nM 
progesterone.  
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As part of generating the fragment library, the systematic removal of the endocyclic 

nitrogen atoms of the southwestern ring system was planned. As such, the next series of 

compounds from which a library was synthesized removed one of the pyridazinyl nitrogen 

atoms, giving a triazolopyridine core. The chemistry used to synthesize this library is 

shown in Scheme 3.14 but is unchanged from Scheme 3.13. Again, the need for POCl3 was 

not observed, with refluxing conditions in toluene sufficient to induce the intramolecular 

cyclization. 

The synthesis of this class of fragment proceeded smoothly and 13 fragments were 

added to the library. The activity of these compounds is shown in Figure 3.9. Again, these 

compounds were tested at two concentrations to minimize the number of assays run and 

the data is presented as %remaining activity of a 30 nM dose of progesterone. 

 In general, removal of the superfluous nitrogen atoms (with respect to the 

chemistry) improved the activity of the compounds slightly, indicating that this extra 

Figure 3.9. Activity of Triazolopyridine Library in a Calcium Influx Assay. Data are 
plotted as mean ± standard deviation, representing the mean of 3 replicate experiments. 
Compounds tested at 30 µM (dark grey) and 100 µM (light grey) against 30 nM 
progesterone.  
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nitrogen atom is not needed for activity. Indeed, the fact that all the compounds showed 

activity aids this point. The percent remaining activity of each compound is given in Tables 

3.12 for the phenyl and alkyl derivatives, respectively. 

Table 3.12. Percent inhibition data for triazolopyridine core compounds 

 
Compound R %Inhibition (30 µM) %Inhibition (100 µM) 

3.184 H 33 ± 8 45 ± 12 
3.185 3-Me 34 ± 11 34 ± 13 
3.186 3-CF3 41 ± 12 29 ± 9 
3.187 4-Me 40 ± 10 34 ± 10 
3.188 4-CF3 46 ± 10 40 ± 9 
3.189 4-OMe 51 ± 11 38 ± 11 
3.190 4-F 55 ± 16 52 ± 13 
3.191 4-Cl 28 ± 4 29 ± 14 
3.192 3,4-Cl 26 ± 10 21 ± 10 

 
3.193 3-py. 46 ± 9 51 ± 10 
3.194 n-Butyl 30 ± 9 39 ± 11 
3.195 C(CH3)3 37 ± 9 50 ± 8 
3.196 3-CF3 42 ± 9 49 ± 11 

Data represented as mean ± SD and represent 3 individual experiments. In all cases, 
signal evoked by 30 nM progesterone. py. = Pyridine with numbering representing 
the position of endocyclic nitrogen. 

Similar trends were observed between the triazolopyridine and triazolopyridazine 

libraries. To start, the unsubstituted phenyl analog 3.184 shows similar activity to its 

triazolopyridazine counterpart 3.168 though its potency is reduced (68 vs 35% remaining 

activity). There is no significant trend between closely related analogs of the first two 
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libraries. That is to say not all triazolopyridazines are more/less potent than there 

triazolopyridine counterparts. That said, several compounds from this library showed good 

inhibition of the progesterone-induced influx, especially the lower molecular weight alkyl 

derivatives from Table 3.12 (3.194 – 3.196). 

Section 3.3.5 Generation of a Fragment Library with Compounds Containing an 
Imidazo[1,5-a]pyridine Core 

The last library systematically modifying the endocyclic nitrogen atoms of the 

southwestern fragment was a collection of compounds containing an imidazopyridine core. 

The synthesis of these compounds followed that of the previous libraries, though in this 

case the POCl3 was needed for the intramolecular cyclization to proceed. DCE was needed 

to access temperatures high enough to breach the activation energy of the reaction; DCM 

proved insufficient. 

Scheme 3.15 Synthesis of imidazo[1,5-a]pyridine heterocycles 

 

The synthesis of a small library of imidazopyridine core compounds was completed 

in short time and these compounds were assayed in the influx assay previously described. 

The results of these assays are shown in Table 3.13 and Figure 3.10. In general, the 

imidazopyridine library contained compounds showing the best potency of all compounds 

tested. In particular, compounds 3.198–3.200 are the most potent fragments with nearly 
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70% inhibition at 30 µM and near complete inhibition at 100 µM. Unfortunately, @ 100 

µM 3.198 affected the signal of the assay to such a degree that a reliable IC50 value could 

not be obtained. Nonetheless its potency at 30 µM was quite promising. 

Table 3.13. Percent inhibition data for triazolopyridine core compounds 

 
Compound R %Inhibition (30 µM) %Inhibition (100 µM) 

3.197 H 65 ± 11 48 ± 14 
3.198 3-Me 72 ± 6 ND 
3.199 3-CF3 61 ± 9 98 ± 2 
3.200 4-Me 70 ± 6.8 91 ± 12 
3.201 4-CF3 37 ± 9 62 ± 5 
3.202 4-F 53 ± 7 36 ± 8 
3.203 4-Cl 62 ± 10 44 ± 5 

 
3.204 3-py. 63 ± 9 61 ± 10 
3.205 Me 45 ± 8 42 ± 15 
3.206 n-Butyl 49 ± 11 57 ± 9 

Data represented as mean ± SD and represent 3 individual experiments. In all cases, 
signal evoked by 30 nM progesterone. py. = Pyridine with numbering representing 
the position of endocyclic nitrogen. ND = not determined. 
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 Yet again, as in all libraries synthesized so far, the phenyl derivative 3.197 shows 

good potency at 30 µM, it its activity at 100 µM is lower. The p-CF3 group found in 3.201 

confers good potency at 30 µM, like its m-CF3 counterpart in compound 3.199, however 

the activity at 100 µM was not increased compared to 30 µM, so this compound was not 

pursued further. Compound 3.204 is one of the first heterocyclic substitutions to show good 

activity at 30 µM, though at 100 µM no increase is observed. 

Section 3.3.6 Further Amide Fragments from Imidazo[1,5-a]pyridine Core Library 

The final library to be discussed resulted from a mistake by an undergraduate 

research assist who was working in the lab at the time. As can be seen in Scheme 3.15, the 

solvent for the intramolecular cyclization needed to be DCE to access higher temperatures. 

Figure 3.10. Activity of imidazopyridine library in a calcium influx assay. Data 
presented as percent remaining activity compared to signal evoked by 30 nM 
progesterone. Compounds tested at 30 µM (dark grey) and 100 µM (light grey). Data 
are plotted as mean ± standard deviation, representing the mean of 3 replicate 
experiments. No data for 100 µM 3.198 was obtained. 



 109 

However, the researcher misread the lab notebook and used DCM in its place. In this 

solvent, only the initial addition product is observed as shown in Scheme 3.16. 

Scheme 3.16 Synthesis of an amide library 

 

Several analogs corresponding to these ring-opened amides were isolated before 

this oversight could be remedied. However, given the nature of the project, these 

compounds were simply treated as additional, easily accessible compounds. 

Table 3.14. Percent inhibition data for amide library 

 
Compound R %Inhibition (30 µM) %Inhibition (100 µM) 

3.207 H 32 ± 18 63 ± 8 
3.208 3-Me 37 ± 14 60 ± 12 
3.209 4-Me 33 ± 19 66 ± 21 
3.210 4-CF3 49 ± 18 72 ± 19 
3.211 4-OMe 58 ± 17 41 ± 4 
3.212 4-F 53 ± 17 45 ± 8 
3.213 4-Cl 57 ± 25 47 ± 11 
3.214 3,5-Cl 30 ± 23 89 ± 25 
3.215 4-C(CH3)3 50 ± 15 83 ± 22 

 
3.216 3-py. 67 ± 19 52 ± 18 
3.216 Me 25 ± 5 66 ± 17 
3.217 n-Butyl 42 ± 5 60 ± 14 
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Data represented as mean ± SD and represent 3 individual experiments. In all cases, 
signal evoked by 30 nM progesterone. py. = Pyridine with numbering representing 
the position of endocyclic nitrogen. 

 

 A small library of amides resulted and these compounds were tested as previously 

described. Of note, while POCl3 was added to the first few reactions, once it was decided 

to synthesize the remaining analogs, this step was obviously not performed. 

As shown in Table 3.14, some of these serendipitous fragments are actually quite 

potent inhibitors of the progesterone-induced calcium influx, showing that methylamine 

derivatives can be used in the future development of this compound in addition to the 

cyclized products. In general, the same trends observed with the ring-closed analogs 

continue with this library of amides, with phenyl (3.207), m-Me (3.208) and CF3 groups 

(3.210) presenting the most active compounds. The 3,5-dichlorophenyl derivative 3.214 

Figure 3.11. Activity of Ring-Opened Amide Fragment Library in the Calcium Influx 
Assay. Data presented as percent remaining activity of signal evoked by 30 nM 
progesterone. Compounds tested at 30 µM (dark grey) and 100 µM (light grey). Data 
are plotted as mean ± standard deviation, representing the mean of 3 replicate 
experiments. 



 111 

showed a great dose response, however solubility issues prevented this compound from 

being pursued further.  

Section 3.3.7 Validating the Fragment-Based Approach Via Synthesis and Evaluation of 
Test Compounds 

During the course of generating and evaluating the discussed libraries, a valid 

question was raised: What percent of a particular compound’s activity is derived from the 

omnipresent halogen? This halogen was included on each molecule because it serves as the 

handle for second step chemistries involving either SNAr displacements or Buchwald-

Hartwig couplings. This handle was kept on the tested analogs in an attempt to save costs 

and time, as not all compound was used in to assay activity and remaining powder could 

be taken into these next steps immediately. 

That said, as a control, several dehalogenated analogs were synthesized and tested 

for their ability to inhibit calcium influx in human sperm. Comparing their activities to 

their halogenated counterparts would presumably show activity caused by the halogen. It 

Figure 3.12 Comparison of Test Compounds with or without an Aryl Halide. Data 
presented as percent of signal evoked by 30 nM Progesterone. Compounds tested at 30 
µM (dark grey) and 100 µM (light grey). Data are plotted as mean ± standard deviation, 
representing the mean of 3 replicate experiments. 
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was expected that the dehalogenated compounds would be slightly less potent than their 

halogenated partners, but that activity profiles would remain similar. If this were the case, 

then the strategy used so far would be legitimized. 

The synthesis of these control compounds is identical to that of their halogenated 

derivatives in the relevant schemes shown previously. Figure 3.12 shows the results of this 

test to be positive. 

 In both tested compounds, the dehalogenated derivative 3.218 and 3.219 show 

sufficiently similar activity to that of the originally tested compound (3.168 and 3.184) so 

as to not induce doubt in the previously reported data. While not conclusive, this 

experiment helps to show that the activity observed in the assay is almost certainly from 

the other molecular features present on the tested molecules and not that of the halogen. 

Section 3.3.8 Fragment Library Part Two: Confirming Activity of Most Potent Fragments 
in Influx Assay 

In the synthesis and characterization of the four focused libraries, 51 compounds 

were generated and tested in the influx assay. Of these 51 compounds several showed a 

promising ability to inhibit the progesterone-mediated calcium influx in human sperm. 

Before continuing with the next step of the synthetic route (transition-metal couplings or 

SNAr displacements), verification of a select few compounds and subsequent selection of 

a few key fragments was desired. To this end, as shown in Table 3.15, a small cohort of 

promising fragments, as determined by their initial results, were resynthesized, verified 

pure by qNMR and UPLC and assayed again in the influx assay. This time, given their 

already promising activity, the compounds were assayed at lower concentrations, being 10 

and 30 µM, rather than 30 and 100 µM. 
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Table 3.15. Resynthesized compounds and their potencies at lower 
concentrations 

 
Compound R X Y Z %Inhibition 

(10 µM) 
%Inhibition 

(30 µM) 
3.220 (3.198) 3-Me CH CH Br 31 ± 10 52 ± 5 
3.221 (3.199) 3-CF3 CH CH Br 30 ± 9 62 ± 5 
3.222 (3.200) 4-Me CH CH Br 15 ± 6 33 ± 8 
3.223 (3.168) H N N Cl 9 ± 2 30 ± 5 
3.224 (3.169) 3-Me N N Cl 26 ± 6 15 ± 5 
3.225 (3.171) 4-Me N N Cl 8 ± 2 29 ± 3 
3.226 (3.174) 4-F N N Cl 16 ± 7 29 ± 3 

 
3.227 (3.210) 4-CF3 CH2 CH Br 17 ± 13 23 ± 2 
3.228 (3.216) 4-C(CH3)3 CH2 CH Br 9 ± 4 26 ± 10 
Data represented as mean ± SD and represent 3 individual experiments. 
Compound number in parenthesis corresponds to previously synthesized 
compound number. 30 nM Progesterone was used to evoke signal in all assays. 
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As can be seen from Table 3.15 and Figure 3.13, the resynthesized compounds 

retained activities close their original levels of inhibition, a promising observation. For the 

sake of comparison, the original compound number for the first iteration of synthesis if 

provided in parenthesis in the table. Compounds 3.223 – 3.228 show around 70% 

remaining activity when retested at these lower concentrations. These values are similar to 

those previously seen with these compounds. Moreover, a dose response is seen in all 

compounds except 3.224 which showed equal inhibition at both concentrations tested. 

Figure 3.13. Activity of Resynthesized Compounds in a Calcium Influx Assay. Data 
presented as percent remaining activity compared to signal evoked by 30 nM 
Progesterone. Compounds tested at 10 µM (dark grey) and 30 µM (light grey). Data are 
plotted as mean ± standard deviation, representing the mean of 3 replicate experiments. 

Figure 3.14. Structures of Chosen Fragments from Synthesized Fragment 
Libraries. 
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In general, the fact that the compounds inhibited the influx at these lower 

concentrations, given their low molecular weights, is a promising result. However only 

three compounds were chosen for further elaboration. The compounds 3.220, 3.221 and 

3.222 are shown in Figure 3.14 that showed the best potency of all the retested fragments. 

Section 3.3.9 Ongoing Work: Towards Larger Molecular Weight Fragments of GPHR-

00213869 

The chosen fragments from Figure 3.14 are to be elaborated upon as shown in 

Scheme 3.17. It should be noted that, while not discussed, the 3-Me triazolopyridazine-

containing fragment, bearing the same substitution pattern seen in 3.12, will also be 

subjected to coupling reactions to synthesize a small number of compounds bearing this 3-

Me triazolopyridazine southwestern fragment. This small subset of compounds can serve 

as a pseudo control set, since their substitution pattern will eventually result in the 

resynthesis of the parent compound. Increases in potency from the novel analogs would be 

desired over the parent substitution pattern. 

The chemistries currently being utilized are meant to explore the linking of the 

piperidine ring found in 3.12. Modifications to this ring include ring expansions and 

contractions to both the corresponding homo-piperidine and pyrrolidine (Scheme 3.17, top 

reaction). Further nitrogen-containing rings are being pursued including piperazine, homo-

piperazine as well as pyrrole linkers. Fourteen commercially available nitrogen coupling 

partners have been purchased and will be coupled to each of the fragments by Buchwald-

Hartwig chemistry. Additionally, Suzuki-Miyaura reactions can be utilized to introduce 

aryl-aryl linkages via the corresponding pinacol boronic esters (Scheme 3.17, bottom 
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reaction). A series of 15 boronic esters and acids have been purchased and will be coupled 

to the chosen fragments to generate libraries of compounds for testing. 

 Each potential analog building off the southwestern heterocycle contains a methyl 

ester group, so as to standardize this group’s reactivity, much like the halogens in the 

discussed libraries. By holding this group constant, increases/decreases in activity can be 

correlated to the other introduced molecular features. After completion of this linker region 

library of compounds, compounds can be chosen in a manner similar to that described in 

this section. Then this methyl ester can be hydrolyzed using LiOH·2H2O (Scheme 3.18) 

and further analogs can be generated via EDC couplings to generate a large variety of 

analogs. Fischer esterification could also be utilized to explore the activity of esters at this 

position. Though, given their metabolic instabilities, it is perhaps merited to explore amides 

Scheme 3.17 Current and future reactions exploring linker region of 3.12 (inset) 
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to a greater degree. Preliminary SAR by commerce explored this modification and 

therefore it is known that amide formation is a viable approach to generate active analogs. 

Section 3.4 Discussion and Overarching Observations from Hit-to-Lead 
Development Endeavors 

After the preliminary work of Dr. Francis revealed narrow SAR patterns for all the 

HTS hit compounds, the best indicators for which of the hits should be developed further 

came from electrophysiology data provided by the Lishko lab at UC–Berkeley. This data 

showed the two compounds GPHR-00032750 (3.9) and GPHR-00213869 (3.12) were able 

to fully block the progesterone-mediated current in human sperm at 1µM. From this, the 

development of these two compounds was undertaken and some amount of success was 

achieved with respect to both of them. It should be said that the development of both these 

inhibitors is still ongoing and the work discussed in this chapter constitutes only a portion 

of an ongoing story. 
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Section 3.4.1 The Development of GPHR-00032750 

 The development of GPHP-00032750 (3.9) was begun in earnest in early 2015. The 

biphenylpiperazine scaffold lent itself to the rapid generation of analogs via facile 

chemistries. As such, the first library of compounds synthesized sought to explore the two 

phenyl ring substitutions present in the molecule via basic modifications probing the 

electronics of the two phenyl rings. In this library it was shown for the first, though not the 

last, that EWGs at the meta position are highly coveted and bring about the best activity, 

especially when comparing compounds 3.9 to 3.17. From this library, and confirmed in 

subsequent libraries, the general trend of –CF3 = –NO2 > Me >> Ph was found. With respect 

to the western phenyl ring, substitutions at the meta position were the only which retained 

activity. 

As seen from the data for this library heterocyclic appendages to the eastern phenyl 

ring seen in compounds 3.32 and 3.33 retained activity, indicating a tolerance in this area 

for bulkier substitutions. So, a series of compounds in which the eastern phenyl ring was 

substituted with heteroaromatic groups was synthesized (Table 3.2, compounds 3.49 – 

3.54). These compounds further showed the tolerance of this eastern phenyl ring for bulky 

substitutions, so analogs in which an additional aryl system was appended were synthesized 

and assayed. As seen in Table 3.3, these extended analogs retained activity in many cases, 

but given the quickly rising molecular weights and lipophilicity of these compounds, a turn 

in strategy was taken.127  

Given the lack of success in modifying the two phenyl rings, alterations of the core 

of the molecule, such as probing the piperazinylurea moiety was sought. The piperazine 

ring was opened to give diamide-containing analogs or thiocarbamoic esters and the urea 
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group was replaced with a sulfonamide in several analogs (Tables 3.4 – 3.6). This strategy 

failed to yield compounds with improved activity, ultimately leading to a great majority of 

inactive compounds. 

Knowing now that modification of the piperazine, and furthermore the western 

phenyl group, was not likely to increase potency, the spacing group adjacent to the eastern 

phenyl group was explored. Analogs were synthesized in which the urea group was 

replaced with an aryl ketone (3.121–3.125 and 3.128–3.130). These compounds were 

largely inactive, leading to the conclusion that the aniline moiety of the phenyl urea was 

needed, or perhaps at least a methylene to serve as a spacer between the eastern phenyl ring 

and the urea since compounds 3.126 and 3.127 retained activity. 

Extending this spacer group to phenoxymethylene linkers seen in Table 3.8 started 

to show promising results, with every compound showing potency equal to the parent 

compound. Also, now that this spacer was extend by a carbon, an additional point of 

modification (the methylene carbon) became possible. However, alkylation of this carbon 

did not significantly increase potency as demonstrated by compounds 3.136–3.142 and was 

abandoned. 

With momentum turning in our favor we sought to further explore analogs of 

similar structure to those compounds in Table 3.8. It was promising that compounds 

showing submicromolar inhibition in our calcium influx assay were achieved by changing 

of the phenoxy group to an aniline while making use of less bulky, still electron 

withdrawing o- and p-fluoro substitutions. Compounds 3.147 and 3.148 show 

submicromolar IC50 values and constitute the most potent CatSper blockers observed to 

date (Figure 3.4).  
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These compounds were subjected to CASA to evaluate their abilities to reduce 

sperm motility (both normal and hyperactivated) characterized. Both compounds show an 

impressive ability to reduce both normal and hyperactivated motility (Figures 3.6 – 3.8). 

Compound 3.147 is able to significantly diminish the population of cells displaying HAM 

at 100 nM and at 1 µM completely ablates this population. Analog 3.148 had a diminished 

effect on HAM at 100 nM but also shows complete reduction of HAM at 1 µM. These 

compounds both significantly reduce normal motility parameters at both concentrations 

tested. 

Going forward, further analogs of 3.147 and 3.148 should focus on removing the 

anilines from the compound while maintaining potency, since this group can be a metabolic 

liability. Further work should confirm that these compounds do indeed inhibit CatSper and 

not the recently characterized activity of the ubiquitously expressed ABHD2.128 

Confirmation of the activity of these compounds via electrophysiology is ongoing and will 

serve as the final test for these potent inhibitors of this intriguing channel. 

Section 3.4.2 Fragment-Inspired Development of GPHR-00213869 

 As mentioned previously, 3.12 or GPHR-00213869 is a more drug-like hit 

compound compared to 3.9. This compound, however, requires more synthetic steps to 

generate analogs. To avert this set back, a fragment-inspired approach was taken towards 

the development of this compound, with optimization of the southwestern heterocycle and 

adjacent phenyl system serving as a starting point. 

 Four libraries of compounds are described in Sections 3.3.3 through 3.3.6. These 

libraries focused on discerning the need for the individual nitrogen atoms of the original 

triazolopyridazine core. It was found that not all nitrogen atoms are necessary for the 
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Bischler-Napieralski chemistry to function and could be removed and fragments with good 

potency could still be obtained as exemplified by compounds 3.220 and 3.221. Compounds 

containing more than the two necessary nitrogen atoms were still effective inhibitors, but 

the imidazopyridine fragments were the best performing compounds.  

 The phenyl ring adjacent to this heterocyclic core was also explored at great length, 

with substitution patterns being heavily influenced by Topliss considerations surrounding 

lipophilicity and substituent constants.126 A great variety of both hydrophilic vs 

hydrophobic along with EWG vs EDG were synthesized. In general, as for 3.9, EWGs were 

favored, with –CF3 groups predominating the list of most active compounds as 

demonstrated with analog 3.199. Several analogs were synthesized in which the entirety of 

the phenyl ring was removed, replaced by alkyl chains of varying length and configuration. 

These compounds retained a modicum of activity but were usually less active than their 

phenyl counterparts (see 3.198 vs 3.205).  

Given that each fragment tested thus far contained an aryl halogen, effort was put 

towards ensuring the activity of the synthesized compounds was derived from molecular 

features which would be present in the final molecules, rather than a halogen. To this end, 

test compounds 3.218 and 3.219 were synthesized and their activities compared to their 

halogenated counterparts. As seen in Figure 3.12, the phenyl and halogenated derivatives 

displayed similar levels of activity, helping to prove that the pertinent molecular features 

of the synthesized fragments were the cause of activity, though further testing would be 

needed for conclusive assertions. 

 In total, 51 fragments were synthesized and three were chosen after a series of 

compounds were resynthesized and retested at lower concentrations (Section 3.3.8). These 
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three compounds (3.220, 3.221 and 3.222) will be taken forward into subsequent 

chemistries to explore the next fragment of the molecules, being the piperidine linker. 

Work is ongoing and several SNAr reactions have been completed to generate an initial 

library with these three chosen fragments being coupled to a series of commercially 

available nitrogen nucleophiles. Generation of additional analogs via Suzuki and Buchwald 

chemistry is planned and following subsequent testing and confirmation of activity, a series 

of EDC reactions will generate a final library of compounds resembling very closely 3.12, 

though hopefully optimized for CatSper inhibition. If all goes to plan, potent compounds 

resembling 3.12 should result from these synthetic efforts with only around 150 compounds 

being synthesized rather than the over 10K possible analogs. 
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Chapter 4: Structure-Activity Studies of Aminocyclopentitols: 
Discovery of Potent and Selective Inhibitors of GBA1 and 

GBA2 

Section 4.1 Project Aim and Background 
Found widespread in plants and bacteria, iminosugars are compounds in which the 

endocyclic oxygen of the sugar is replaced by a nitrogen atom.129 While minimally 

changing the overall structure of the compound, this substitution results in different 

biological properties. Comparing the amine to the ether moiety, the differences in the 

electrostatic properties of these two functional groups become apparent (Figure 4.1). As 

such, the protonated amine 4.1 found in iminosugars make them excellent modulators of 

Figure 4.1. Iminosugars as a Molecular Class of Compounds. (A) Representation of 
protonated amine 4.1 versus oxocarbenium ion transition state 4.2 found in carbohydrate 
processing enzymes. (B) Structures of example iminosugars. Including approved drugs 
NB-DNJ 4.3 and miglitol (4.5). 
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carbohydrate processing enzymes, mimicking intermediate oxocarbenium ion 4.2 found in 

enzymatic catabolism of glycosidic linkages.130, 131 

Iminosugars have been tested as potential therapeutics for numerous indications. 

Given their similarity to carbohydrates, saccharide processing deficiencies and lysosomal 

storage disorders were the first disease states that are treated with iminosugars.132, 133 In 

2002 and 2003, respectively, miglustat (N-butyl deoxy-nojirimycin, NB-DNJ, 4.3) was 

approved as an orphan drug by the Federal Drug Administration and the European 

Medicines Evaluation Agency for the treatment of type 1 Gaucher disease.134 Also, miglitol 

(4.5) is an approved treatment for type 2 diabetes.135 Moreover, iminosugars have shown 

several other properties including antiviral,136 and, antibacterial137 activity. More recently, 

Figure 4.2. Inhibitory Effects on CGT, GBA1 and GBA2. These enzymes are 
responsible for the synthesis (A) and degradation (B) of glycosphingolipids, 
respectively. The IC50 values for NB-DNJ inhibition are shown in light grey. CGT = 
ceramide-specific glucosyltransferase. GBA1 = Glucocerebrosidase 1 (lysosomal) 
GBA2 = Glucosylceramidase 2 (non-lysosomal) Figure and IC50 values adapted from 
previous reports. 141
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iminosugars have been reported as cystic fibrosis transmembrane conductance (CFTR) 

correctors.138, 139 Several examples are shown at the bottom of Figure 4.1. 

The biological activities of iminosugars are extensive but of relevance to this work 

is the ability of these compounds to modulate the glycosphingolipid metabolic pathway. 

Figure 4.2 illustrates this pathway containing several key enzymes that are inhibited by 

NB-DNJ and its diastereomer N-butyldeoxy-galactonojirimycin (4.4, NB-DGJ). These 

compounds can inhibit the enzymes responsible for both the formation and degradation of 

glucosylceramide: ceramide-specific glucosyltransferase (CGT) and β-glucosidase 1 

(lysosomal) and 2 (non-lysosomal).140-143 

 In 2002, it was shown that inhibition of these two enzymes can cause reversible 

loss of fertility in C57BL/6 mice.144 The study showed that these compounds affected 

formation of the acrosome, resulting in decreased motility and abnormal sperm 

morphology. However, these results could not be reproduced in humans, nor other species 

such as rats, rabbits and even different strains of mice.49, 145, 146 The discrepancies in these 

results among species as well as strains of mice is an ongoing area of research.147 

Figure 4.3. SAR of Six-Membered Iminosugars with Respect to CGT Inhibition. Figure 
adapted from reference 138. 
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The six-membered iminosugars NB-DNJ (4.3) and NB-DGJ (4.4) inhibit GBA1 

and GBA2 more effectively than CGT. This observation served as evidence that inhibition 

of GBA2 rather than CGT is responsible for the male contraceptive effects.148 Furthermore, 

it was shown later that GBA2 knockout mice were infertile.149 The SAR of the six-

membered iminosugars acting at these enzymes is well known with many studies seeking 

to improve both potency and selectivity of the scaffold for aforementioned reasons. The 

known SAR is shown in Figure 4.3. Any substitution to the C2 position of the ring, as well 

as alkylation of the C4 hydroxyl group completely ablates activity. The adjacent 

stereocenter at the C5 position can be either in alpha or beta orientation. Ring size of the 

glucose scaffold can vary greatly while retaining activity with analogs comprising 4- to 8-

membered rings.150 

Perhaps the most studied structural modification is the alkylation of the endocyclic 

nitrogen that generate N-alkyl iminosugar analogs.143 Studies have shown the inhibitory 

activity of compounds bearing hydrophobic alkyl groups at this nitrogen directly correlate 

with hydrophobicity.48 The most potent 6-membered iminosugar inhibitor of CGT, GBA1 

and GBA2 bears a [(5-adamantan-1-yl-methoxy)pentyl] group off the nitrogen. This 

compound, AMP-DNJ (Figure 4.1, 4.7) displays selective inhibitory activity for GBA2.151 

In an effort to further improve selectivity and potency for GBA2 we turned towards 

another class of iminosugars known as aminocyclopentitols.152 These compounds are 

known inhibitors of glucosidases but had not yet been tested as inhibitors of CGT, GBA1 

or GBA2.153 Aminocyclopentitols bear an exocyclic amine that is protonated at relevant 

pH values, which mimics the oxocarbenium intermediate in the same manner as their 6-

membered iminosugar counterparts. Previous work from the Georg group had shown that 
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monoalkylated aminocyclopentitols bearing butyl and nonyl alkyl chains were potent 

inhibitors of GBA1 and GBA2, with little to no effect on CGT.143 Thus, the work discussed 

herein attempted to further improve the activity of this aminocyclopentitol scaffold at 

GBA1 and GBA2 by synthesizing dialkylated compounds similar to those previously 

synthesized, hypothesizing that the increased hydrophobicity of analogs would further 

increase activity. The synthesis and biological characterization of these compounds 

follows. 

Section 4.2 Synthesis of Aminocyclopentitol Targets 
The synthesis of aminocyclopentitol derivatives up to the late stage alkylation 

precursor 4.15 is shown in Scheme 4.1. Starting the synthetic route from methyl-alpha-D-

glucopyranoside (4.8), the primary alcohol was protected as the tert-butyl silyl ether to 

form trihydroxy compound 4.9. Subsequent protection of the remaining secondary alcohols 

was achieved with benzyl bromide and resulted in the fully protected pyranoside 4.10.  

Scheme 4.1 Synthesis of benzylated aminocyclopentitol alkylation precursor 4.15 
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Deprotection of the primary alcohol under acidic conditions provided compound 

4.11, which was converted to the corresponding iodide compound using 

triphenylphosphine and molecular iodine to give Vasella fragmentation precursor 4.12.154 

The aforementioned chemistry was used to open acetal 4.12 to the primary aldehyde while 

concomitantly converting the primary iodide to the olefin 4.13. This aldehyde, after 

reaction with hydroxylamine hydrochloride, formed an intermediate oxime, which 

underwent 1,3-dipole cycloaddtion in toluene to furnish the [4:2] bicyclic system 4.14. 

Cleavage of the N-O bond proceeded under reductive conditions to reveal the primary 

amine 4.15, which was the precursor for the final steps of the reaction. 

Before proceeding onto the final steps of target molecule synthesis, one of the side 

chains desired was an adamantyl ether side chain that required a five-step synthesis.155 As 

described previously, this adamantyl sidechain was desired based on glucose mimic 4.7 
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which bears this modification and displays great activity. Scheme 4.2 shows the synthesis 

of the adamantyl aldehyde 4.20, that later served as the coupling partner with 4.15, 

beginning from 1,5-pentanediol. 

Scheme 4.2 Synthesis of target adamantyl aldehyde 4.20 

 

Monotosylation of 1,5-pentanediol gave tosylate 4.16, which after Parikh-Doering 

oxidation of the alcohol was converted to aldehyde 4.17. Subsequent protection of this 

aldehyde as the corresponding acetal 4.18, followed by SN2 displacement of the tosyl group 

by deprotonated 1-adamantylmethanol furnished compound 4.19. This reaction required 

elevated temperatures and would not proceed under 40 °C. Finally, deprotection of the 

acetal under acidic conditions proceeded smoothly and gave the desired aldehyde 4.20 in 

a 2% overall yield due to a disappointing yield in the initial monotosylation. However, 1,5–

pentanediol is inexpensive and therefore scale-up of the first step to accommodate this low 

yield is not cost prohibitive. 

With the required synthesis of the adamantyl aldehyde accomplished, the synthetic 

route could be completed, and target molecules 4.24–4.26 were obtained (Scheme 4.3). 

Previous work on this project subjected the benzylated primary amine to reductive 

amination conditions after forming the HCl salt of the primary amine. Since dibenzylated 

derivatives were the targets, the reaction conditions leading to the alkylated debenzylation 

precursors were modified to the conditions shown in Scheme 4.3.  
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Scheme 4.3 Completion of synthetic route and acquisition of target aminocyclopentitols 

 

Dialkylation of the primary amine was achieved using sodium 

triacetoxyborohydride (STAB) in dichloroethane (DCE) at elevated temperature and 

provided the benzylated compounds 4.21–4.23. From here two different methods were 

employed to deprotect the three hydroxyl groups. In situ generation of H2 via 

decomposition of ammonium formate in the presence of palladium on carbon was 

sufficient for the deprotection of 4.21 and 4.23. However, this reaction was sluggish with 

respect to benzylated dinonyl compound 4.22. As such, Birch conditions were utilized to 

deprotect this lipophilic molecule. In the end, target aminocyclopentitols 4.24, 4.25, and 

4.26 were obtained in either 10 linear steps for 4.24 and 4.26 or 15 steps for 4.25. 

Section 4.3 Biological Evaluation of Synthesized Aminocyclopentitols 
 Until work performed by another student in the Georg group, no 

aminocyclopentitol derivatives had been tested for their ability to inhibit CGT. As such, 

novel analogs 4.24–4.26 were assayed for CGT, as well as GBA2 inhibitory activities.48 

The full details on the assays used to determine CGT, GBA1 and GBA2 activities have 

been reported.48  
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Briefly, for CGT, a HEPES-buffered solution containing UDP-glucose, target 

iminosugar, and microsomes isolated from either C57BL/6 mice or LE rats were incubated 

for 30 min in the presence of a BODIPY-tagged ceramide. Enzymatic activity transfers a 

glucose molecule to this fluorescent ceramide. The product resulting from CGT activity is 

determined by elution on a TLC plate and the fluorescent product is quantified in a 

transilluminator. For GBA1 and GBA2, a fluorescence-based assay utilizing 4-

methylumbelliferyl β-D-glucoside (MUG) was used. Iminosugar dilutions are combined 

with testicular microsomes from the species of interest. GBA1 or GBA2 activity leads to 

the hydrolysis of the MUG probe, releasing the umbelliferone thereby increasing 

fluorescence. 

Table 4.1 shows the testing results for these compounds as inhibitors of GBA2 and 

CGT. NB-DNJ (4.3) was used as a reference compound in these assays and showed an IC50 

value of 48 and 7.4 µM for GBA2 and CGT, respectively. (Table 4.1) These results 

corroborate previous studies and highlight the lack of selectivity of this compound.48, 156 

Dibutyl derivative 4.24 showed a modest potency of 95 µM (Entry 4.2) when 

assayed for GBA2 inhibition but displayed no inhibition of CGT up to 1 mM. Compound 

4.24 is less potent than the monoalkylated derivative previously synthesized during the 

course of this project (3.3 µM, data not shown) with respect to GBA2 inhibition.143 The 

monoalkylated butyl analog also showed no inhibition of CGT up to 1 mM (data not 

shown).143 Continuing this trend, dinonyl aminocyclopentitol 4.26 was also less potent than 

its monoalkylated counterpart, which inhibited GBA2 with an IC50 value of 0.043 µM. 

However, compound 4.26 still shows a potent inhibition of GBA2 at 0.89 µM with no 

inhibition of CGT up to 1000 mM. Interestingly, shown in Entry 4.4, compound 4.25 
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showed 100% inhibition in the assay, even at concentrations as low as 1 pM. No inhibition 

CGT was observed up to 1 mM with 4.25. 

Table 4.1. Inhibitory activity of synthesized Iminosugars on enzymes of 
interest[a] 

 
Compound 

Ki (µM)  
GBA2 CGT 

 
4.3 48 7.4[b] 

 
4.24 95 >1000 

 
4.26 0.89 >1000 

 

4.25 << 1 nM > 1000 

[a]The details and procedures of the enzyme inhibition assay for GBA and CGT 
are reported.48 [b Value taken from previous reports.48 GBA2, β-glucosidase 2; 
CGT, ceramide-specific glucosyltransferase. Data presented as mean of 3 
experiments. 

Effort was then undertaken to deduce the cause of this exquisitely potent 

compound. The assay was functioning properly, as the controls worked well, and 4.25 itself 

was not interfering with the fluorescence of the assay. It was eventually reasoned that the 

sample sent for testing was contaminated with chelated palladium from the final 

deprotection step. To remedy this setback, the altered synthetic route displayed in Scheme 

4.4 was devised in which the debenzylation was moved up in the reaction sequence. It 

should be noted that this redefined scheme was needed because 4.25 proved unstable in the 

presence of a trimercaptotriazine resin meant to sequester palladium out of solutions. 
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Scheme 4.4 Altered synthetic route to avert palladium contamination  

 

Resynthesis of the target compound commenced and the alternative scheme was 

used for the final steps towards the synthesis of 4.25. Deprotection of benzylated 

aminocyclopentitol core 4.15 via in situ generation of H2 in the presence of palladium 

afforded the aminocyclopentitol 4.27, which was stable in the presence of the TMT resin. 

Compound 4.27 could then be subjected to the previously optimized reductive alkylation 

conditions to afford 4.25 after purification. qICP analysis performed by the UMN core 

facilities revealed only trace amounts of palladium, as well as other heavy metals. This 

compound was then retested and performed similarly to expected efficacy for the 

compounds of this class. 

Table 4.2 Inhibitory activity of resynthesized adamantyl compound on enzymes 
of interest[a] 

 
Compound 

Ki (µM)  
GBA1 GBA2 CGT 

 

4.25a ≤0.016[b] 0.014 ≈1000 

[a]The details and procedures of the enzyme inhibition assay for GBA and CGT are 
reported previously.48 [b]Below limit of detection in assay. Data presented as mean 
of three independent trials. 
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As shown in Table 4.2, 4.25 displayed a much more realistic IC50 value of 14 nM 

in the GBA2 assay. This updated IC50 value aligns with expected values, given previous 

results with monoalkylated aminocyclopentitols. That said, the resynthesized iminosugar 

shows an excellent selectivity for GBA1 and GBA2 over CGT (> 10,000). This is 

promising since NB-DNJ inhibits all three enzymes with nearly equal potency, with IC50 

values of 34, 38 and 7.4 µM for GBA1, GBA2 and CGT, respectively (Table 4.1, GBA1 

data not shown). 

The synthesized aminocyclopentitols described here inhibit GBA1 and GBA2 to a 

much greater extent than CGT. As expected, compounds bearing alkyl chains of increasing 

length showed concomitant increase in GBA inhibition, as demonstrated by the inhibitory 

trend observed in compounds 4.24 (butyl, 95 µM) versus 4.26 (nonyl, 0.89 µM). As 

mentioned, these dialkylated analogs are less potent than their previously synthesized 

mono-alkylated derivatives, indicating that there is a limit to the correlation of 

hydrophobicity with activity at these enzymes. Indeed, the cLogP of these dialkylated 

compounds is above 6 and solubility is likely an issue, especially at the higher 

concentrations. 

Furthermore, it is possible that only secondary amines display full activity and that 

a hydrogen bond donor is a necessary molecular feature of the GBA2 pharmacophore. 

However, despite their reduced activity, the selectivity profile for these compounds is still 

exquisite and future studies would do well to utilize these compounds. 

Section 4.4 Species-Dependent Action of Iminosugar Activity 
As discussed previously, differences in the efficacy between species has been 

observed with respect to iminosugars and infertility.144, 146, 157 Compound 4.3 (NB-DNJ) 
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inhibits CGT, GBA1 and GBA2 in vitro and in vivo with similar efficacies. Also, though 

4.3 was shown to be an effective and reversible oral male contraceptive agent when tested 

in C57BL/6 mice, the same level of efficacy was not observed in several other species, 

including rabbit, human and other mouse strains. In C57BL/6 mice, however, reversible 

inhibition of fertility was observed three weeks after daily oral administration of 15 mg/kg 

NB-DNJ, with return to normal parameters observed after three weeks of cessation of 

treatment. 144 Separately, glucosylceramide levels were elevated in the testes, brain and 

spleen of mice treated with these iminosugars, indicating the enzymes responsible for the 

breakdown of glucosylceramide, i.e. GBA2, are more pertinent to contraceptive effects 

observed in vivo.158 

It has been shown that NB-DGJ (4.4) can disrupt spermiogenesis in C57BL/6 mice 

and does so at much lower concentrations than NB-DNJ (4.3) .144 Furthermore, NB-DGJ 

has shown efficacy in species that remain fertile after treatment with NB-DNJ.159 The 

observed discrepancies between the two diastereomers could be caused by differences in 

their ADMET properties. To address this, a pharmacokinetic study with the two 

diastereomers was planned in an attempt to determine if plasma levels of 4.3 and 4.4 were 

significantly different, and thus a possible cause for the observed differences. 

Section 4.4.1 Synthesis of NB-DGJ and NB-DNJ 

Since 4.4 is not commercially available, its synthesis was carried out according to 

known procedures from the literature (Scheme 4.5).160 The four-step synthetic route begins 

with an LAH-mediated reductive ring opening of tetra-O-benzyl-D-glucopyranose 4.28 to 

reveal diol 4.29. Swern oxidation of 4.29 formed the intermediate ketoaldehyde that after 

double reductive amination reformed the six-membered ring observed in 4.30, now 
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containing the alkylated endocyclic nitrogen. Finally, debenzylation of this compound gave 

target molecule NB-DGJ (4.4) in 53% overall yield.  

Scheme 4.5 Gram-scale synthesis of NB-DGJ (4.4) 

 

While NB-DNJ is commercially available, purchasing the amount needed for even 

this small PK study was cost prohibitive. Therefore, we synthesized the amounts needed 

using the same route as shown in Scheme 4.3 but starting from the glucopyranoside. In 

short, we obtained sufficient amounts so as to perform the study with both compounds. 

Section 4.4.2 Bioavailability Determinations of NB-DNJ and NB-DGJ in Male CD Rats 

Per our original aim, we sought to correlate observed in vivo activity with the 

bioavailability of NB-DGJ, and perhaps discrepancies would be observed when compared 

to NB-DNJ. Previously, a study in collaboration between the Tash group at the University 

of Kansas Medical Center and the Georg group showed that NB-DGJ inhibits GBA2 from 

CD rats at 10 µM (unpublished results). This study also showed that NB-DJG was capable 

of causing a reversible contraceptive effect in vivo, while NB-DNJ showed no efficacy 

(unpublished results). To evaluate if bioavailability could be the cause of these 

discrepancies a small PK study was performed in which plasma levels following a single 

bolus oral dose of 150 mg/kg of either NB-DNJ or NB-DGJ were examined. Male CD rats 
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were orally dosed with the synthesized compounds by gavage (n=4) and at various 

timepoints following dosing, blood was taken. The resulting plasma was analyzed by 

LC/MS/MS.  

As seen in Figure 4.4, oral dosing of NB-DGJ resulted in a t1/2 of 6.5 hr and a Cmax 

of 11,0167 ng/mL. These results agree with previously reported literature values for the 

compound.161 Unfortunately, these data show no significant difference between NB-DNJ 

and NB-DGJ, indicating some other cause of the species-specific differences causing 

infertility. Based on this study we are confident that the variation of efficacies for these 

compounds is not due to differences in the metabolism of the compounds in this strain of 

rat. 

Figure 4.4 Pharmacokinetics of NB-DGJ and NB-DNJ in Male CD Rats. Rats with in-
dwelling jugular vein cannulas were orally dosed with compound (150 mg/kg) and at 
various times (0.083, 0.25, 0.5, 1, 2, 4, 8, 12, 24 and 48 h) afterwards, approximately 
0.1 ml whole blood was collected from each animal. Target compound was quantified 
in the resulting plasma using LC/MS/MS. Data represent the mean plasma levels ± SD 
and are the average of 4 independent experiments.  
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Section 4.5 Discussion and Summary of Aminocyclopentitol Work 
Herein, the synthesis and biological evaluation of several novel iminosugars of a 

sub classed known as aminocyclopentitols are reported. Previously, monoalkylated 

derivatives of this compound had been synthesized and been tested for their inhibition of 

GBA1 and GBA2. Using known trends in the SAR of this class of molecules affecting the 

enzymes, the hydrophobicity of the amine substitution was increased by dialkylation with 

alkyl chains of increasing length. 

Similar to their previously synthesized monoalkylated derivatives, the dialkylated 

aminocyclopentitols described here display increasing activity with alkyl chain length, 

though the dialkylated compounds proved less potent than their monoalkylated 

counterparts. 

One compound, 4.25, bearing an adamantyl chain was found to be a 14 nM inhibitor 

of GBA2, while showing only a slight inhibition of CGT (IC50 = 1000 µM). When first 

assayed this compound showed complete inhibition at 1 pM, but a redesigned synthesis 

allowed for us to obtain compound free of this metal contaminant and reliable assay results 

were achieved. 

Compound 4.25 is the most selective iminosugar for GBA2 vs CGT published to 

date and could serve as a future tool molecule for studying glucosidase inhibition-derived 

infertility, a field that is plagued by species-dependent results. Previous studies used a tool 

compound, NB-DNJ (4.3), which displays poor selectivity amongst GBA1, GBA2 and 

CGT.145 Therefore, molecules that selectively inhibit any one enzyme of the group would 

be preferred for future studies and these aminocyclopentitols fill a much-needed niche. 
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Finally, a portion of this project was dedicated to the synthesis and subsequent 

study of NB-DGJ (4.4), the galactose epimer of NB-DNJ (4.3). Compound 4.4 has shown 

efficacy in species outside the originally studied C57BL/6 mice, the only species in which 

4.3 has shown efficacy.159, 162, 163 We hypothesized that discrepancies in metabolism of 

these two compounds could be the cause for the differences in efficacy. Therefore, we 

synthesized both diastereomers of the compound of interest in gram quantity and dosed LE 

rats orally to observe any differences in the pharmacokinetic properties of 4.4 as compared 

to published values for 4.3. Unfortunately, the clearance and t1/2 of the two analogs were 

nearly identical, pointing to other causes for the observed species-dependent infertility 

results. Further pharmacological work is needed to understand the discrepancies in results 

between species and the synthesized aminocyclopentitols could serve as useful tool 

compounds in such studies.  
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Experimental Data and Procedures 

General Synthetic Considerations 

All chemicals and reagents were purchased from commercial sources and used directly 

without further purification. Solvents were dried using standard procedures. All non-

aqueous reactions were performed under an atmosphere of nitrogen in flame-dried 

glassware. Reaction progress was monitored by thin layer chromatography using silica gel 

plates (silica gel 60 F254) and eluted TLC plates were visualized with UV light (254 nm) 

and developing the plate with either KMnO4 or Ce(SO4)2 stain. Reaction products were 

isolated by silica gel flash column chromatography. NMR experiments were performed on 

a 400/100 MHz Bruker instrument (unless noted otherwise). NMR spectra were processed 

through MestReNova 9.0 (Mestrelab Research). Chemical shifts are reported as ppm 

relative to CDCl3 (7.26 ppm for 1H, 77.0 ppm for 13C) or CD3OD (3.33 ppm for 1H, 49.0 

ppm for 13C). 1H NMR coupling constants (J) are expressed in Hz, and multiplicity is 

described as follows: s = singlet; d = doublet; t = triplet; q = quartet; quin = quintet; sext = 

sextet; br = broad resonance; m = multiplet. Mass spectrometry experiments were recorded 

with APCI unless noted otherwise. Melting points, when present, were determined with 

Electrothermal Digital Mel-Temp 3.0 melting point apparatus and are uncorrected. For 

compounds centered on the GPHR-00032750 and GPHR-00213869 scaffolds, yields are 

not reported, as only a small fraction of the compound was collected after chromatography 

to ensure purity of the to-be-tested compound. 

Protocol for the Isolation of Motile Human Sperm 

Semen is collected from healthy male donors (IRB: 1102M96152) and allowed to liquify 

at 37 °C for at least 40 min. Concomitantly, for each mL of semen sample, a canonical tube 
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containing 5 mL of HAMs-F10 is prepared and allowed to warm to 37 ˚C at a 45 degree 

angle. After liquefaction, 1 mL of sample is layered beneath the buffer in each tube. The 

tubes are then left to incubate at 37 °C in a 5% CO2 environment for 1 h. After this 1 h, the 

top 2 mL of the buffer is siphoned off and combined among the different tubes. The 

concentration of this combined population is then determined through use of a 

hemocytometer and if a concentration of 10x106 cell/mL is not achieved the sample is 

centrifuged at 400 x g for 7 min. Post centrifugation, the supernatant is discarded and the 

pelleted cells are resuspended in an appropriate buffer, using a volume sufficient to achieve 

10x106 cells/mL. Note: it is crucial to ensure no loss of motility is observed due to the 

centrifugation. It is recommended that additional motility data is obtained post 

centrifugation to ensure cell health. If an experiment requires capacitation, cells (post swim 

up and concentration) are suspended in HAM’s-F10 containing 5% (w/v) BSA and 15 mM 

NaHCO3 and left to incubate for 3.5 h at 37 ˚C in an atmosphere of 5% CO2 either in the 

presence of compound or a DMSO vehicle. 

Calcium Influx Assay and the Isolation of Sperm for this Assay 

Semen from healthy human donors (IRB: 1102M96152) is collected and incubated in a 

shaker at 37 ̊ C until complete liquefaction is observed (no longer than 1 hr post collection). 

The sample is diluted to 50 mL in low pH/low K+ buffer (lo/lo buffer) containing (in mM): 

101 NaCl, 4.69 KCl, 0.2 MgSO4, 0.36 KH2PO4, 25 NaHCO3, 0.32 sodium pyruvate, 2.78 

glucose, 94 sodium lactate, 0.2 CaCl2, pH 6.7 adjusted with 1 M HCl. The sample is then 

centrifuged at 800 x g for 10 min at RT followed by aspiration of the supernatant; this 

centrifugation is repeated an additional time. Following this second centrifugation, the 

pellet was resuspended in 10 mL lo/lo buffer containing 10 µg/mL Fluo-4-AM (Life 
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Technologies, Grand Island, NY) and 1 mM probenicid After, incubation for 30 min at 37 

˚C (caution: light sensitive!), the sample was again diluted to 50 mL with low pH/low K+ 

buffer, centrifuged, and the supernatant aspirated to remove extracellular dye. The pellet 

was then resuspended in ca. 8 mL lo/lo buffer. Dye-loaded sperm were plated into black 

clear-bottom 384-well assay plates (Corning Inc, Tewksbury, MA) and transferred to the 

FLIPR® Tetra platform (Molecular Devices, Sunnyvale, CA). The calcium-induced 

fluorescence signal was continuously monitored for 7 min at 2 s intervals. When tested, 

blocking compound was added after a 10 s delay and allowed a 2 min binding period prior 

to opener addition. The signal was monitored for 5 min after opener addition. Opening of 

the channel was afforded by either 3 µM progesterone in lo/lo buffer or an activation buffer 

containing (in mM): 10 NaCl, 140 KCl, 0.198 MgSO4 · 7 H2O, 0.36 KH2PO4, 24.99 

NaHCO3, 0.32 sodium pyruvate, 2.78 glucose, 94.08 sodium lactate, CaCl2 · 2 H2O. 

Sperm Motility Analysis 

Viable human spermatozoa were selected by swim-up, and a subset of cells was allowed 

to capacitate at 37°C in normal capacitation media for 3.5 h. Sperm motility was analyzed 

by computer-assisted semen analysis (CASA, HTM-IVOS sperm analysis system, version 

12.3, Hamilton Thorne Biosciences, Beverly, MA) system that measured average path 

velocity (VAP, µm/s), straight-line velocity (VSL, µm/s,) and curvilinear velocity (VCL, 

µm/s). From these measurements, we can determine linearity of progression [LIN = 

(VSL/VCL) × 100], and straightness [STR = ( VSL/VAP) × 100]. Data were normalized 

to vehicle matched controls and presented as the average of (n) individual experiments ± 

S.E.M. For all experimental conditions, a minimum of 10 fields of view was analyzed 

containing at least 200 cells total, and all experiments were performed at 37°C. 
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Data Analysis 

Data were analyzed in Prism 8.0.2 (GraphPad Software, Inc, San Diego, CA, USA). 

Statistical data were calculated and represented everywhere in the text as the mean ± S.E.M 

or S.D where applicable, and (n) indicates the number of repeated experiments. 

Throughout, statistical significance is indicated by *P < 0.05, **P < 0.005, ***P < 0.0005 

and ****P < 0.0001. 

Synthesized Steroids 
2,2-Dimethylprogesterone (2.4)  

 

Progesterone (500 mg, 1.59 mmol) was dissolved in anhydrous diethylether (50 mL) and 

chilled to -78 °C followed by dropwise addition of n-butyllithium (1.74 mmol) as a 2.5 M 

solution in hexanes. The solution was stirred for 30 min followed by dropwise addition of 

methyliodide (4.77 mmol, 0.296 mL) after which the temperature of the reaction was 

allowed to raise to room temperature and stirred for 24 hr. A saturated solution of NH4Cl 

(5 mL) was used to quench excess alkyllithium reagent. After quenching, the contents of 

the flask were transferred to a separatory funnel and the organics were extracted with 

EtOAc (2 x 100 mL). The combined organics were washed with a saturated solution of 

NaCl (2 x 100 mL) and dried over Na2SO4, after which the solvent was removed in vacuo 

to afford an off white, viscous oil as the crude product. Purification by silica gel flash 

column chromatography (0 to 50% EtOAc in hexanes, followed by a second column at 0 

to 20% EtOAc) yielded target compound as a clear oil in 3.6% yield (26% BRSM). 1H 
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NMR (400 MHz, CDCl3) δ 5.56 (dd, J1 = 2.45, J2 = 5.14, 1H), 2.52 (m, 3H), 2.13 (s, 3H), 

1.23 (s, 3H), 0.86 (s, 6H), 0.64 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 216.5, 209.4, 149.8, 

119.7, 63.6, 56.9, 48.8, 48.7, 44.0, 38.8, 37.1, 33.7, 32.1, 31.6, 31.5, 31.2, 30.2, 27.3, 24.49, 

22.9, 21.3, 19.3, 13.3; HRMS (APCI-TOF) m/z calcd for C23H38NO2
+ [M + NH4]+ 

360.2897, found 360.2903. 

 

3,3:20,20-bis(Ethylenedioxy)-pregn-5-ene (2.19)  

 

Progesterone (5 g, 15 mmol) was dissolved in toluene (250 mL) containing a catalytic 

amount of p-toluenesulfonic acid (172 mg, 0.9 mmol). To this mixture was added ethylene 

glycol (40 mL) followed by attachment of a Dean-Stark trap and heating of the reaction to 

145 °C held for 24 h. At this time, the reaction was cooled to room temperature and 

concentrated under reduced pressure to ca 25% of its original volume and then was 

transferred to a separatory funnel. A saturated solution of sodium bicarbonate was added 

to the separatory funnel and the crude product was extracted with EtOAc (3 x 100 mL). 

The organic layers were then combined, dried with Na2SO4 and concentrated under reduced 

pressure to give crude product as an off-white solid which was then purified silica gel 

column chromatography (5 to 30% EtOAc in hexanes), affording 4.5 g (86% yield) of the 

desired bis-ketal as a white solid. mp 166-169 °C; 1H NMR (400 MHz, CDCl3) δ 5.35 (td, 

J1 = 1.95, J2 = 1.95, J3 = 4.46, 1H), 4.02-3.83 (m, 8H), 2.56 (ddd, J1 = 2.89, J2 = 5.51, J3 

= 14.10, 1H), 2.11 (dd, J1 = 2.86, J2 = 14.19j, 1H), 2.06 (dt, J1 = 3.90, J2 = 3.90, J3 = 12.85 
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1H), 1.96 (dddd, J1 = 2.96, J2 = 5.19, J3 = 5.19, J4 = 17.51, 1H), 1.30 (s, 3H), 1.03 (s, 3H), 

0.78 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 140.2, 122.1, 112.0, 109.5, 65.2, 64.5, 64.24, 

63.3, 58.2, 56.6, 49.7, 41.8, 39.4, 36.7, 36.4, 31.7, 31.5, 31.1, 24.6, 23.9, 23.0, 20.9, 18.9, 

12.9; HRMS (APCI-TOF) m/z calcd for C25H39O4
+ [M + H]+ 403.2843, found 403.2860. 

 

3,3:20,20-bis(Ethylenedioxy)-5,6-epoxypregnane 

 

m-Chloroperoxybenzoic acid (mCPBA, 1.84 g, 10 mmol, accounting for 77% purity of 

mCPBA), was added at room temperature to a foiled flask containing 1.01 g of 2 (2.5 

mmol) and 0.630 g NaHCO3 (7 mmol) dissolved in 200 mL anhydrous DCM. The reaction 

was stirred for 2 hr after which time 100 mL of sat. NaHCO3 solution was added. The 

contents were transferred to a separatory funnel where the layers were separated and the 

organics were washed twice more with 75 mL sat. NaHCO3. The combined organics were 

washed with brine, dried over Na2SO4 and concentrated in vacuo to afford crude product 

as a white solid. Purification by silica gel flash column chromatography (5% to 30% EtOAc 

in hexanes) gave 837 mg (80% yield) of 5α,6α-epoxide as a white solid, the more polar 

diastereomer (Rf = 0.15 @ 30% EtOAc) compared to 167 mg (16% yield) of the 5β,6β-

epoxide (Rf = 0.30 @ 30% EtOAc in hexanes) which was also a white solid. 
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3,3:20,20-bis(Ethylenedioxy)-5α,6α-epoxypregnane (2.20) 
mp 175-178 °C; 1H NMR (400 MHz, CDCl3) δ 3.93 (m, 8H), 2.81 (d, J1 = 

4.22, 1H) 2.37 (d, J1 = 13.99, 1H), 1.99 (dd, J1 = 3.14, J2 = 11.62, 1H), 1.92 

(ddd, J1 = 4.59, J2 = 6.61, J3 = 15.15, 1H), 1.27 (s, 3H), 1.07 (s, 3H), 0.71 

(s, 3H); 13C NMR (100 MHz, CDCl3) δ 112.1, 109.1, 65.3, 64.9, 64.7, 64.2, 

63.4, 58.03, 57.6, 56.9, 42.3, 42.0, 39.3, 39.2, 35.2, 31.5, 31.1, 29.5, 28.6, 

24.7, 23.7, 23.0, 20.6, 15.8, 13.0; (APCI-TOF) m/z calcd for C25H39O5
+ [M 

+ H]+ 419.2792, found 419.2803. 

 

 

3,3:20,20-bis(Ethylenedioxy)-5β,6β-epoxypregnane (2.21): 
mp 132-134 °C; 1H NMR (400 MHz, CDCl3) δ 3.92 (m, 8H), 3.06 (d, J1 = 

1.99, 1H), 2.33 (d, J1 = 14.02, 1H), 2.04 (ddt, J1 = 3.18, J2 = 3.18, J3 = 14.46, 

J4 = 26.30, 2H), 1.28 (s, 3H), 1.00 (s, 3H), 0.74 (s, 3H); 13C NMR (100 

MHz, CDCl3) δ 111.9, 108.9, 65.1, 64.7, 64.6, 64.1, 63.2, 57.9, 57.4, 56.7, 

42.2, 41.8, 39.1, 39.1, 35.1, 31.3, 31.0, 29.4, 28.4, 24.5, 23.6, 22.8, 20.4, 

15.7, 12.9; HRMS (ESI-TOF) m/z calcd for C50H76NaO10 [Dimer + Na]+ 

859.5331, found 859.5319. 
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3,3:20,20-bis(Ethylenedioxy)-5α-hydroxy-6β-methylpregnane (2.22) 

 

To a solution of 3,3:20,20-bis(ethylenedioxy)-5α,6α-epoxypregnane (71 mg, 0.17 mmol) 

dissolved in 5 mL THF was added MeMgBr (1.3 mL, 20 equiv, 3.4 mmol) as a 3 M solution 

in THF. The solution was then brought to reflux for 18 hr, after which it was cooled to 

room temperature and excess Grignard reagent was quenched with 3 mL of a saturated 

NH4Cl solution. Organics were then extracted with EtOAc (3 X 25 mL) and the organics 

were combined, washed with a saturated NaCl solution and dried over Na2SO4, then 

concentrated in vacuo to afford crude product as a clear, viscous oil. Purification by 

chromatography (0 to 20% EtOAc in hexanes) yielded 33 mg (45%, 75% based on RSM) 

of 5 as a white powder. mp 187-189; 1H NMR (400 MHz, CDCl3) δ 4.25 (s, 1H), 3.92 (m, 

8H), 2.20 (d, J1 = 14.04, 1H), 1.29 (s, 3H), 1.02 (s, 3H), 0.98 (d, J1 = 7.8, 3H), 0.77 (s, 3H); 

13C NMR (100 MHz, CDCl3) δ 112.02, 110.18, 76.33, 65.19, 64.35, 63.85, 63.19, 58.36, 

55.71, 45.63, 42.15, 40.43, 39.66, 39.51, 33.03, 32.56, 31.13, 30.14, 24.57, 23.82, 22.93, 

20.90, 18.15, 17.18, 13.19; HRMS (APCI-TOF) m/z calcd for C26H43O5
+ [M + H]+ 

435.3105, found 435.3127. 
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5α-Hydroxy-6β-methylpregnan-3,20-dione (2.23) 

 

To a stirring solution of 3,3:20,20-bis(ethylenedioxy)-5α-hydroxy-6β-methylpregnane (96 

mg, 0.221 mmol) in 2 mL THF was added 1 mL 3 M HCl. The reaction was stirred at room 

temperature for 3 hr, after which it was diluted with 50 mL of EtOAc and neutralized with 

a saturated solution of NaHCO3. The layers were separated and the organic layer was 

washed with brine, dried over Na2SO4 and then concentrated in vacuo. Silica gel flash 

column chromatography (0 to 40% EtOAc in hexanes) afforded 39 mg (51% yield) of 6 as 

a white solid. mp 227-229; 1H NMR (400 MHz, CDCl3) δ 3.01 (d, J1 = 14.7, 1H), 2.55 (t, 

J1 = 8.97, 1H), 2.36 (t, J1 = 6.29, 1H), 2.34 (d, J1 = 4.78, 1H) 2.13 (s, 3H), 1.25 (s, 3H), 

1.09 (d, J1 = 7.49, 3H), 0.66 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 211.4, 209.5, 80.0, 

63.8, 56.0, 50.6, 46.4, 44.3, 42.0, 40.0, 39.0, 38.0, 35.7, 33.4, 31.6, 30.6, 29.7, 24.6, 22.8, 

21.4, 17.9, 13.6; HRMS (ESI-TOF) m/z calcd for C44H68NaO6 [Dimer + Na]+ 715.4908, 

found 715.4861. 

 

6β-Methylprogesterone (2.24) 

 

Thionyl chloride (310 µL, 0.04 mmol) was added to a stirring solution of 3,3:20,20-

bis(ethylenedioxy)-5,6-epoxypregnane (20 mg, 0.058 mmol) in pyridine (1 mL) at 0 °C. 
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After 5 minutes, 5 mL of ice water was added to the reaction and organics were extracted 

2 X 10 mL EtOAc. The combined organics were then washed with brine (20 mL), dried 

over Na2SO4 and concentrated in vacuo. Purification by silica gel column chromatography 

(0 to 30 % EtOAc in hexanes) afforded 11 mg (60% yield) of 7 as a white solid. mp; 171-

172; 1H NMR (400 MHz, CDCl3) δ 5.76 (s, 1H), 2.65 (p, J1 = 7.01, 1H), 2.50 (m, 2H), 2.36 

(ddd, J1 = 2.68, J2 = 3.84, J3 = 17.45, 1H), 2.12 (s, 3H), 1.26 (s, 3H), 1.22 (d, J1 = 7.57, 

3H), 0.69 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 209.3, 199.8, 175.3, 125.2, 63.6, 56.1, 

53.2, 44.0, 38.7, 38.4, 38.3, 37.7, 37.4, 34.1, 31.5, 30.3, 24.5, 23.1, 22.8, 21.1, 20.4, 13.4; 

mp; 171-172; HRMS (APCI-TOF) m/z calcd for C22H33O2
+ [M + H]+ 329.2475, found 

329.2483. 

 

6α-Methylprogesterone (2.18) 

 

After 6β-methylprogesterone (11 mg, 0.033 mmol) was dissolved in ethanol (95%, 1 mL) 

with sonication, 0.1 mL of 1 M HCl was added and the reaction was stirred under reflux 

for 2 hr. The reaction was cooled and concentrated under reduced pressure. The resulting 

slurry was diluted with sodium bicarbonate (10 mL) and extracted with EtOAc (2 X 10 

mL). The combined organic layers were washed with brine (15 mL), dried over Na2SO4 

and concentrated in vacuo. Purification by silica gel column chromatography (0 to 30% 

EtOAc in hexanes) and HPLC (50% to 95% MeCN in H2O over 20 min) afforded 6α-

methylprogesterone (10.5 mg, 95%) as a white powder. mp 116-119 °C; 1H NMR (400 
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MHz, CDCl3) δ 5.80 (s, 1H), 2.53 (t, J1 = 9.02, 1H), 2.12 (s, 3H), 1.85 (td, J1 = 3.95, J2 = 

12.70, 1H), 1.19 (s, 3H), 1.07 (d, J1 = 6.40, 3H), 0.67 (s, 3H); 13C NMR (100 MHz, CDCl3) 

δ 209.3, 199.8, 174.1, 121.3, 63.5, 55.9, 53.9, 44.0, 40.9, 38.9, 38.7, 36.0, 35.4, 33.9, 33.7, 

31.5, 24.3, 22.9, 21.2, 18.4, 18.3, 13.4; HRMS (APCI-TOF) m/z calcd for C22H33O2
+ [M + 

H]+ 329.2475, found 329.2484. 

 

5α,6α-Epoxypregnan-3,20-dione (2.25) 

 

To a stirring solution of 3,3:20,20-bis(ethylenedioxy)-pregn-5-ene (alpha isomer, 27 mg, 

0.065 mmol) in 1 mL THF was added 0.7 mL 3 M HCl. The reaction was stirred at room 

temperature for 3 hr, after which it was diluted with 40 mL of EtOAc and neutralized with 

a saturated solution of NaHCO3. The layers were separated and the organic layer was 

washed with brine, dried over Na2SO4 and then concentrated in vacuo. Silica gel column 

chromatography (0 to 40% EtOAc in hexanes) afforded deprotected product as a white 

powder in 70% yield. mp 193-195 °C; 1H NMR (400 MHz, CDCl3) δ 3.82 (m, 1H), 3.37 

(d, J1 = 15.49, 1H), 2.54 (t, J1 = 8.94, 1H), 2.13 (s, 3H), 1.45 (s, 3H), 0.69 (s, 3H); 13C 

NMR (100 MHz, CDCl3) δ 210.5, 209.3, 78.7, 63.6, 63.4, 55.4, 50.7, 45.6, 44.2, 39.2, 

38.8, 37.8, 35.3, 34.8, 31.5, 30.1, 24.4, 22.8, 21.3, 17.8, 13.5; HRMS (APCI-TOF) m/z 

calcd for C21H34NO3
+ [M + NH4]+ 348.2533, found 348.2534. 
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5β,6β-Epoxypregnan-3,20-dione (2.26) 

 

To a stirring solution of 3,3:20,20-bis(ethylenedioxy)-pregn-5-ene (beta-isomer, 16.8 mg, 

0.04 mmol) in 1 mL THF was added 0.7 mL 3 M HCl. The reaction was stirred at room 

temperature for 3 hr, after which it was diluted with 40 mL of EtOAc and neutralized with 

a saturated solution of NaHCO3. The layers were separated and the organic layer was 

washed with brine, dried over Na2SO4 and then concentrated in vacuo. Silica gel column 

chromatography (0 to 40% EtOAc in hexanes) afforded 7.3 mg of deprotected product as 

a white powder in 58% yield. mp 154-152 °C; 1H NMR (400 MHz, CDCl3) δ 2.18 (s, 3H), 

0.96 (s, 3H), 0.65 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 211.08, 208.99, 208.52, 63.30, 

57.49, 56.61, 53.30, 46.38, 44.34, 41.14, 38.38, 38.08, 37.79, 37.35, 36.96, 31.48, 24.18, 

22.78, 21.62, 13.41, 12.60; HRMS (CI-TOF) m/z calcd for C21H34NO3
+ [M + NH4]+ 

348.2533, found 348.2538. 
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GPHR-00032750 Analogs 
N,4-Diphenylpiperazine-1-carboxamide (3.10)  

 

To a stirring solution of 1-phenylpiperazine (30 mg, 0.18 mmol, 1.0 equiv), triethylamine 

(1.9 µL, 0.018 mmol, 0.1 equiv) in DCM (5 mL) was added isocyanatobenzene (27 mg, 

0.21 mmol, 1.2 equiv) and the solution was stirred for 30 min at RT. After confirming 

consumption of limiting reagent by TLC, 3 mL of distilled water was added to the reaction 

vial. The organic layer was separated and removed under reduced atmosphere. Column 

chromatography (0 to 50% EtOAc/Hex) on silica gel was used to purify sufficient amounts 

of the target molecule for biological testing and characterization. LRMS (APCI - quad) m/z 

cal’d forC17H20N3O+ [M+H+], 282.3665 found 284. 1H NMR (400 MHz, CD3OD) δ 7.37 

(d, J = 8.6 Hz, 2H), 7.30 - 7.23 (m, 4H), 7.06 - 7.00 (m, 3H), 6.88 (t, J = 7.3 Hz, 1H), 3.74 

- 3.66 (m, 4H), 3.25 - 3.18 (m, 4H). 

 

4-Phenyl-N-(m-tolyl)piperazine-1-carboxamide (3.11)  

 

To a stirring solution of 1-phenylpiperazine (30 mg, 0.18 mmol, 1.0 equiv), triethylamine 

(1.9 µL, 0.018 mmol, 0.1 equiv) in DCM (5 mL) was added 1-isocyanato-3-methylbenzene 

(29 mg, 0.21 mmol, 1.2 equiv) and the solution was stirred for 30 min at RT. After 

confirming consumption of limiting reagent by TLC, 3 mL of distilled water was added to 
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the reaction vial. The organic layer was separated and removed under reduced atmosphere. 

Column chromatography (0 to 50% EtOAc/Hex) on silica gel was used to purify sufficient 

amounts of the target molecule for biological testing and characterization. LRMS (APCI - 

quad) m/z cal’d C18H22N3O+ [M+H+], 296.3935 found 297. 1H NMR (400 MHz, CD3OD) 

δ 7.26 (t, J = 7.4 Hz, 2H), 7.21 (s, 1H), 7.19 - 7.12 (m, 2H), 7.02 (d, J = 7.6 Hz, 2H), 6.92 

- 6.84 (m, 2H), 3.72 - 3.65 (m, 4H), 3.23 - 3.17 (m, 4H), 2.32 (s, 3H).  

 

4-Phenyl-N-(3-(trifluoromethyl)phenyl)piperazine-1-carboxamide (3.12)  

 

To a stirring solution of 1-phenylpiperazine (20 mg, 0.13 mmol, 1.0 equiv), triethylamine 

(1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was added 1-isocyanato-3-

(trifluoromethyl)benzene (27 mg, 0.16 mmol, 1.2 equiv) and the solution was stirred for 

30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL of distilled 

water was added to the reaction vial. The organic layer was separated and removed under 

reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was 

used to purify sufficient amounts of the target molecule for biological testing and 

characterization.  LRMS (APCI - quad) m/z cal’d for C18H19F3N3O+ [M+H+], 350.36 found 

360. 1H NMR (400 MHz, CDCl3) δ 7.68 (s, 1H), 7.60 (d, J = 8.1 Hz, 1H), 7.41 (t, J = 7.9 

Hz, 1H), 7.35 - 7.24 (m, 3H), 7.01 - 6.91 (m, 3H), 6.59 (br, 1H), 3.75 - 3.68 (m, 4H), 3.30 

- 3.23 (m, 4H). 
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N-(3-Cyanophenyl)-4-phenylpiperazine-1-carboxamide (3.13)  

 

To a stirring solution of 1-phenylpiperazine (30 mg, 0.18 mmol, 1.0 equiv), triethylamine 

(1.9 µL, 0.018 mmol, 0.1 equiv) in DCM (5 mL) was added 3-isocyanatobenzonitrile (32 

mg, 0.21 mmol, 1.2 equiv) and the solution was stirred for 30 min at RT. After confirming 

consumption of limiting reagent by TLC, 3 mL of distilled water was added to the reaction 

vial. The organic layer was separated and removed under reduced atmosphere. Column 

chromatography (0 to 50% EtOAc/Hex) on silica gel was used to purify sufficient amounts 

of the target molecule for biological testing and characterization. LRMS (APCI - quad) m/z 

cal’d for C18H19N4O+  [M+H+], 307.3765 found 307. 1H NMR (400 MHz, CD3OD) δ 7.85 

(s, 1H), 7.69 (d, J = 7.4 Hz, 1H), 7.45 (t, J = 7.9 Hz, 1H), 7.36 (d, J = 7.6 Hz, 1H), 7.27 (t, 

J = 7.5 Hz, 2H), 7.02 (d, J = 8.2 Hz, 1H), 6.68 (t, J = 7.3 Hz, 1H), 3.77 - 3.64 (m, 4H), 3.27 

- 3.17 (m, 4H). 

 

N-(3-Nitrophenyl)-4-phenylpiperazine-1-carboxamide (3.14)  

 

To a stirring solution of 1-phenylpiperazine (20 mg, 0.12 mmol, 1.0 equiv), triethylamine 

(1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was added 1-isocyanato-3-nitrobenzene 

(24 mg, 0.16 mmol, 1.2 equiv) and the solution was stirred for 30 min at RT. After 

confirming consumption of limiting reagent by TLC, 3 mL of distilled water was added to 

the reaction vial. The organic layer was separated and removed under reduced atmosphere. 
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Column chromatography (0 to 50% EtOAc/Hex) on silica gel was used to purify sufficient 

amounts of the target molecule for biological testing and characterization. LRMS (APCI - 

quad) m/z cal’d for C17H19N4O3
+ [M+H+], 327.36 found 328. 1H NMR (400 MHz, CDCl3) 

δ 8.24 (t, J = 2.2 Hz, 1H), 7.89 (dd, J1 = 2.1, J2 = 8.1 Hz, 1H), 7.84 (dd, J1 = 2.1, J2 = 8.2 

Hz, 1H), 7.45 (t, J = 8.2 Hz, 1H), 7.31 (t, J = 7.2 Hz, 2H), 7.01 - 6.91 (m, 3H), 6.77 (br, 

1H), 3.77 - 3.70 (m, 4H), 3.31 - 3.25 (m, 4H).   

 

Methyl 3-(4-phenylpiperazine-1-carboxamido)benzoate (3.15)  

 

To a stirring solution of 1-phenylpiperazine (30 mg, 0.18 mmol, 1.0 equiv), triethylamine 

(1.9 µL, 0.018 mmol, 0.1 equiv) in DCM (5 mL) was added methyl 3-isocyanatobenzoate 

(39 mg, 0.21 mmol, 1.2 equiv) and the solution was stirred for 30 min at RT. After 

confirming consumption of limiting reagent by TLC, 3 mL of distilled water was added to 

the reaction vial. The organic layer was separated and removed under reduced atmosphere. 

Column chromatography (0 to 50% EtOAc/Hex) on silica gel was used to purify sufficient 

amounts of the target molecule for biological testing and characterization. LRMS (APCI - 

quad) m/z cal’d for C19H22N3O3
+  [M+H+], 340.4025 found 340. 1H NMR (400 MHz, 

CD3OD) δ 8.09 (s, 1H), 7.74 - 7.63 (m, 3H), 7.45 - 7.36 (m, 1H), 7.27 (t, J = 7.3 Hz, 1H), 

7.02 (d, J = 7.2 Hz, 1H), 6.87 (t, J = 7.0 Hz, 1H), 3.93 - 3.87 (m, 5H), 3.74 - 3.68 (m, 4H), 

3.24 - 3.17 (m, 4H). 
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N-Phenyl-4-(m-tolyl)piperazine-1-carboxamide (3.16)  

 

To a stirring solution of 1-(m-tolyl)piperazine (30 mg, 0.14 mmol, 1.0 equiv), triethylamine 

(1.7 µL, 0.14mmol, 0.1 equiv) in DCM (5 mL) was added isocyanatobenzene (25 mg, 0.17 

mmol, 1.2 equiv) and the solution was stirred for 30 min at RT. After confirming 

consumption of limiting reagent by TLC, 3 mL of distilled water was added to the reaction 

vial. The organic layer was separated and removed under reduced atmosphere. Column 

chromatography (0 to 50% EtOAc/Hex) on silica gel was used to purify sufficient amounts 

of the target molecule for biological testing and characterization.  LRMS (APCI - quad) 

m/z cal’d C18H22N3O+ [M+H+], 296.3935 found 297. 1H NMR (400 MHz, CD3OD) δ 7.37 

(d, J = 8.6 Hz, 2H), 7.28 (t, J = 7.7 Hz, 2H), 7.14 (t, J = 7.8 Hz, 1H), 7.03 (t, J = 7.2 Hz, 

1H), 6.86 - 6.79 (m, 2H), 6.72 (d, J = 7.4 Hz, 1H), 3.72 - 3.65 (m, 4H), 3.22 - 3.15 (m, 4H), 

2.31 (s, 3H). 

 

N,4-di-m-Tolylpiperazine-1-carboxamide (3.17)  

 

To a stirring solution of 1-(m-tolyl)piperazine (30 mg, 0.15 mmol, 1.0 equiv), triethylamine 

(1.8 µL, 0.015 mmol, 0.1 equiv) in DCM (5 mL) was added 1-isocyanato-3-methylbenzene 

(27 mg,  0.18 mmol, 1.2 equiv) and the solution was stirred for 30 min at RT. After 

confirming consumption of limiting reagent by TLC, 3 mL of distilled water was added to 
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the reaction vial. The organic layer was separated and removed under reduced atmosphere. 

Column chromatography (0 to 50% EtOAc/Hex) on silica gel was used to purify sufficient 

amounts of the target molecule for biological testing and characterization. LRMS (APCI - 

quad) m/z cal’d C19H24N3O+ [M+H+], 310.4205 found 310. 1H NMR (400 MHz, CD3OD) 

δ 7.21 (s, 1H), 7.18 - 7.11 (m, 3H), 6.88 - 6.83 (m, 2H), 6.80 (dd, J1 = 2.4, J2 = 8.1 Hz, 

1H), 6.72 (d, J = 7.4 Hz, 1H), 3.72 - 3.64 (m, 4H), 3.21 - 3.13 (m, 4H), 2.31 (s, 6H). 

 

4-(m-Tolyl)-N-(3-(trifluoromethyl)phenyl)piperazine-1-carboxamide (3.18)  

 

To a stirring solution of 1-(m-tolyl)piperazine (20 mg, 0.11 mmol, 1.0 equiv), triethylamine 

(1.8 µL, 0.011 mmol, 0.1 equiv) in DCM (5 mL) was added 1-isocyanato-3-

(trifluoromethyl)benzene (25 mg, 0.14 mmol, 1.2 equiv) and the solution was stirred for 

30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL of distilled 

water was added to the reaction vial. The organic layer was separated and removed under 

reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was 

used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C19H21F3N3O+ [M+H+], 364.39 found 

365. 1H NMR (400 MHz, CDCl3) δ 7.68 (s, 1H), 7.59 (d, J = 8.2 Hz, 1H), 7.41 (t, J = 7.9 

Hz, 1H), 7.30 (d, J = 8.1 Hz, 1H), 7.20 (t, J = 7.8 Hz, 1H), 6.84 - 6.73 (m, 3H), 3.71 (br, 

4H), 3.29 - 3.23 (m, 4H), 2.34 (s, 3H). 13C NMR (176 MHz, CDCl3) δ 154.6, 139.5, 139.2, 

131.2 (q, J = 33 Hz), 129.4, 129.2, 123.9 (q, J = 272 Hz), 123.0, 119.8 (d, J = 4 Hz), 117.7, 

116.6 (d, J = 4 Hz), 113.9, 49.6, 44.0, 21.8.  
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N-(3-Cyanophenyl)-4-(m-tolyl)piperazine-1-carboxamide (3.19) 

 

To a stirring solution of 1-(m-tolyl)piperazine (30 mg, 0.17 mmol, 1.0 equiv), triethylamine 

(1.8 µL, 0.017 mmol, 0.1 equiv) in DCM (5 mL) was added 3-isocyanatobenzonitrile (29 

mg, 0.20 mmol, 1.2 equiv) and the solution was stirred for 30 min at RT. After confirming 

consumption of limiting reagent by TLC, 3 mL of distilled water was added to the reaction 

vial. The organic layer was separated and removed under reduced atmosphere. Column 

chromatography (0 to 50% EtOAc/Hex) on silica gel was used to purify sufficient amounts 

of the target molecule for biological testing and characterization. LRMS (APCI - quad) m/z 

cal’d for C19H21N4O+  [M+H+], 321.4035 found 322. 1H NMR (400 MHz, CD3OD) δ 7.84 

(s, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.45 (t, J = 7.8 Hz, 1H), 7.35 (d, J = 6.4 Hz, 1H), 7.14 (t, 

J = 7.8 Hz, 1H), 6.85 (s, 1H), 6.81 (d, J = 8.1 Hz, 1H), 6.72 (d, J = 7.5 Hz, 1H), 3.73 - 3.67 

(m, 4H), 3.24 - 3.15 (m, 4H), 2.31 (s, 3H). 

 

N-(3-Nitrophenyl)-4-(m-tolyl)piperazine-1-carboxamide (3.20)  

 

To a stirring solution of 1-(m-tolyl)piperazine (20 mg, 0.11 mmol, 1.0 equiv), triethylamine 

(1.8 µL, 0.011 mmol, 0.1 equiv) in DCM (5 mL) was added 1-isocyanato-3-nitrobenzene 

(22 mg, 0.16 mmol, 1.2 equiv) and the solution was stirred for 30 min at RT. After 
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confirming consumption of limiting reagent by TLC, 3 mL of distilled water was added to 

the reaction vial. The organic layer was separated and removed under reduced atmosphere. 

Column chromatography (0 to 50% EtOAc/Hex) on silica gel was used to purify sufficient 

amounts of the target molecule for biological testing and characterization. LRMS (APCI - 

quad) m/z cal’d for C18H21N4O3
+ [M+H+], 341.39 found 342. 1H NMR (400 MHz, CDCl3) 

δ 8.24 (t, J = 2.2 Hz, 1H), 7.89 (dd, J1 = 2.2, J2 = 8.2 Hz, 1H), 7.84 (dd, J1 = 2.2, J2 = 8.2 

Hz, 1H), 7.45 (t, J = 8.2 Hz, 1H), 7.20 (t, J = 7.7 Hz, 1H), 6.85 - 6.74 (m, 3H), 3.74 (m, 

4H), 3.30 - 3.24 (m, 4H), 2.34 (s, 3H). 

 

Methyl 3-(4-(m-tolyl)piperazine-1-carboxamido)benzoate (3.21)  

 

To a stirring solution of 1-(m-tolyl)piperazine (30 mg, 0.17 mmol, 1.0 equiv), triethylamine 

(1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was added methyl 3-isocyanatobenzoate 

(36 mg, 0.20 mmol, 1.2 equiv) and the solution was stirred for 30 min at RT. After 

confirming consumption of limiting reagent by TLC, 3 mL of distilled water was added to 

the reaction vial. The organic layer was separated and removed under reduced atmosphere. 

Column chromatography (0 to 50% EtOAc/Hex) on silica gel was used to purify sufficient 

amounts of the target molecule for biological testing and characterization. LRMS (APCI - 

quad) m/z cal’d for C20H24N3O3
+  [M+H+], 354.4295 found 354. 1H NMR (400 MHz, 

CD3OD) δ 8.09 (s, 1H), 7.75 - 7.62 (m, 3H), 7.45 - 7.35 (m, 1H), 7.14 (t, J = 7.8 Hz, 1H), 
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6.85 (s, 1H), 6.81 (d, J = 8.2 Hz, 1H), 6.72 (d, J = 7.4 Hz, 1H), 3.91 (s, 3H), 3.75 - 3.65 

(m, 4H), 3.23 - 3.16 (m, 4H), 2.32 (s, 3H).  

 

Dimethyl 5-(4-(m-tolyl)piperazine-1-carboxamido)isophthalate (3.22)  

 

To a stirring solution of 1-(m-tolyl)piperazine (30 mg, 0.17 mmol, 1.0 equiv), triethylamine 

(1.8 µL, 0.017 mmol, 0.1 equiv) in DCM (5 mL) was added dimethyl 5-

isocyanatoisophthalate (48 mg, 0.20 mmol, 1.2 equiv) and the solution was stirred for 30 

min at RT. After confirming consumption of limiting reagent by TLC, 3 mL of distilled 

water was added to the reaction vial. The organic layer was separated and removed under 

reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was 

used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C22H26N3O5
+  [M+H+], 412.4655 

found 412. 1H NMR (400 MHz, CD3OD) δ 8.34 (s, 2H), 8.28 (s, 1H), 7.14 (t, J = 7.8 Hz, 

1H), 6.85 (s, 1H), 6.81 (d, J = 8.2 Hz, 1H), 6.72 (d, J = 7.4 Hz, 1H), 3.94 (s, 6H), 3.75 - 

3.68 (m, 4H), 3.23 - 3.16 (m, 4H), 2.32 (s, 3H). 

 

N-(1-Methyl-1H-indol-4-yl)-4-(m-tolyl)piperazine-1-carboxamide (3.23)  

 



 161 

To a stirring solution of 1-(m-tolyl)piperazine (30 mg, 0.17 mmol, 1.0 equiv), triethylamine 

(1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was added 4-isocyanato-1-methyl-1H-

indole (35 mg, 0.20 mmol, 1.2 equiv) and the solution was stirred for 30 min at RT. After 

confirming consumption of limiting reagent by TLC, 3 mL of distilled water was added to 

the reaction vial. The organic layer was separated and removed under reduced atmosphere. 

Column chromatography (0 to 50% EtOAc/Hex) on silica gel was used to purify sufficient 

amounts of the target molecule for biological testing and characterization. LRMS (APCI - 

quad) m/z cal’d for C18H19N4O+  [M+H+], 307.3765 found 307. 1H NMR (400 MHz, 

CD3OD) δ 7.22 - 7.10 (m, 4H), 7.06 (d, J = 7.4 Hz, 1H), 6.86 (s, 1H), 6.83 (d, J = 8.0 Hz, 

1H), 6.72 (d, J = 7.5 Hz, 1H), 6.47 (d, J = 3.1 Hz, 1H), 3.80 (s, 3H), 3.77 - 3.69 (m, 4H), 

3.30 - 3.18 (m,4 H), 2.32 (s, 3H). 

 

N-Phenyl-4-(3-(trifluoromethyl)phenyl)piperazine-1-carboxamide (3.24)  

 

To a stirring solution of 1-(3-(trifluoromethyl)phenyl)piperazine (30 mg, 0.12 mmol, 1.0 

equiv), triethylamine (1.8 µL, 0.012 mmol, 0.1 equiv) in DCM (5 mL) was added 

isocyanatobenzene (19 mg, 0.15 mmol, 1.2 equiv) and the solution was stirred for 30 min 

at RT. After confirming consumption of limiting reagent by TLC, 3 mL of distilled water 

was added to the reaction vial. The organic layer was separated and removed under reduced 

atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was used to 

purify sufficient amounts of the target molecule for biological testing and characterization. 
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LRMS (APCI - quad) m/z cal’d C18H19F3N3O+ [M+H+], 350.3647 found 351. 1H NMR 

(400 MHz, CD3OD) δ 7.42 (t, J = 7.8 Hz, 1H), 7.40 - 7.36 (m, 2H), 7.31 - 7.25 (m, 2H), 

7.25 - 7.20 (m, 2H), 7.12 (d, J = 7.7 Hz, 1H), 7.03 (t, J = 6.4 Hz, 1H), 3.74 - 3.67 (m, 4H), 

3.34 - 3.26 (m, 4H). 

 

N-(m-Tolyl)-4-(3-(trifluoromethyl)phenyl)piperazine-1-carboxamide (3.25)  

 

To a stirring solution of 1-(m-tolyl)piperazine (30 mg, 0.11 mmol, 1.0 equiv), triethylamine 

(1.6 µL, 0.011 mmol, 0.1 equiv) in DCM (5 mL) was added 1-isocyanato-3-methylbenzene 

(27 mg, 0.14 mmol, 1.2 equiv) and the solution was stirred for 30 min at RT. After 

confirming consumption of limiting reagent by TLC, 3 mL of distilled water was added to 

the reaction vial. The organic layer was separated and removed under reduced atmosphere. 

Column chromatography (0 to 50% EtOAc/Hex) on silica gel was used to purify sufficient 

amounts of the target molecule for biological testing and characterization. LRMS (APCI - 

quad) m/z cal’d C19H21F3N3O+ [M+H+], 364.3917 found 365. 1H NMR (400 MHz, 

CD3OD) δ 7.43 (t, J = 7.9 Hz, 1H), 7.25 - 7.09 (m, 6H), 6.87 (d, J = 6.2 Hz, 1H), 3.73 - 

3.68 (m, 4H), 3.34 - 3.25 (m, 4H), 2.32 (s, 3H). 13C NMR (176 MHz, CDCl3) δ 155.0, 

151.0, 138.9, 138.6, 131.6 (q, J = 31 Hz), 129.7, 128.7, 124.3, 124.0 (d, J = 272 Hz), 120.8, 

119.1, 117.1, 116.5 (d, J = 4 Hz), 112.5 (d, J = 4 Hz), 48.6, 43.8, 21.5. 
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N,4-bis(3-(Trifluoromethyl)phenyl)piperazine-1-carboxamide (3.9).  

 

To a stirring solution of 1-(3-triflouromethylphenyl)piperazine (30 mg, 0.13 mmol, 1.0 

equiv), triethylamine (1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was added 3-

trifluoromethylphenylisocyanate (29 mg, 0.15 mmol, 1.2 equiv) and the solution was 

stirred for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL 

of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C19H18F6N3O+ [M+H+] 418.36, 

found 418. 1H NMR (400 MHz, CDCl3) δ 7.66 (s, 1H), 7.58 (d, J = 8.2 Hz, 1H), 7.39 (q, 

J = 7.2 Hz, 2H), 7.30 (d, J = 7.8 Hz, 1H), 7.14 (d, J = 7.8 Hz, 1H), 7.12 (s, 1H), 7.07 (d, J 

= 8.4 Hz, 1H), 6.69 (s, 1H), 3.69 (t, J = 13.1 Hz, 4H), 3.29 (t, J = 5.2 Hz, 4H). 13C NMR 

(176 MHz, CDCl3) δ 160.4, 154.9 (d, J = 11 Hz), 154.8 (d, J = 11 Hz), 150.9, 139.5 (d, J 

= 9 Hz), 131.6 (d, J = 29 Hz), 131.2 (d, J = 36 Hz), 129.8, 129.4, 124.7 (d, J = 46 Hz), 

123.5, 123.2 (d, J = 27 Hz), 119.8, 119.2, 117.0, 116.6, 112.6, 48.6, 43.8. 

 

N-(3,5-Bis(trifluoromethyl)phenyl)-4-(3-(trifluoromethyl)phenyl)piperazine-1-
carboxamide (3.26)  
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To a stirring solution of 1-(3-(trifluoromethyl)phenyl)piperazine (30 mg, 0.13 mmol, 1.0 

equiv), triethylamine (1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was added dimethyl 

1-isocyanato-3,5-bis(trifluoromethyl)benzene (40 mg, 0.16 mmol, 1.2 equiv) and the 

solution was stirred for 30 min at RT. After confirming consumption of limiting reagent 

by TLC, 3 mL of distilled water was added to the reaction vial. The organic layer was 

separated and removed under reduced atmosphere. Column chromatography (0 to 50% 

EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target molecule for 

biological testing and characterization. LRMS (APCI - quad) m/z cal’d for C20H17F9N3O+ 

[M+H+], 486.3611 found 486. 1H NMR (400 MHz, CD3OD) δ 8.10 (s, 2H), 7.55 (s, 1H), 

7.44 (t, J = 7.9 Hz, 1H), 7.26 - 7.22 (m, 2H), 7.13 (d, J = 7.6 Hz, 1H), 3.81 - 3.69 (m, 4H), 

3.38 - 3.30 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 153.9, 150.8, 140.3, 132.2 (q, J = 34 

Hz), 131.7 (q, J = 32 Hz), 129.8, 123.9 (d, J = 272 Hz), 123.1 (d, J = 273 Hz), 119.4, 119.3, 

116.9 (d, J = 4 Hz), 116.5, 112.8 (d, J = 4 Hz), 48.7, 43.9. 

 

N-(3-Cyanophenyl)-4-(3-(trifluoromethyl)phenyl)piperazine-1-carboxamide (3.27) 

 

To a stirring solution of 1-(3-(trifluoromethyl)phenyl)piperazine (30 mg, 0.13 mmol, 1.0 

equiv), triethylamine (1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was added 3-

isocyanatobenzonitrile (22 mg, 0.16 mmol, 1.2 equiv) and the solution was stirred for 30 

min at RT. After confirming consumption of limiting reagent by TLC, 3 mL of distilled 

water was added to the reaction vial. The organic layer was separated and removed under 

reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was 
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used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C19H18F3N4O+ [M+H+], 375.3747 

found 375. 1H NMR (400 MHz, CD3OD) δ 7.85 (s, 1H), 7.69 (d, J = 9.6 Hz, 1H), 7.48 - 

7.40 (m, 2H), 7.35 (d, J = 7.7 Hz, 1H), 7.26 - 7.20 (m, 2H), 7.12 (d, J = 7.7 Hz, 1H), 3.77 

- 3.70 (m, 4H), 3.36 - 3.30 (m, 4H). 

 

N-(3-Nitrophenyl)-4-(m-tolyl)piperazine-1-carboxamide (3.28)  

 

To a stirring solution of 1-(3-(trifluoromethyl)phenyl)piperazine (20 mg, 0.09 mmol, 1.0 

equiv), triethylamine (1.8 µL, 0.009 mmol, 0.1 equiv) in DCM (5 mL) was added 1-

isocyanato-3-nitrobenzene (16 mg, 0.12 mmol, 1.2 equiv) and the solution was stirred for 

30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL of distilled 

water was added to the reaction vial. The organic layer was separated and removed under 

reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was 

used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C18H21N4O3
+ [M+H+], 341.39 found 

342. 1H NMR (400 MHz, CDCl3) δ 8.23 (t, J = 2.2 Hz, 1H), 7.89 (dd, J1 = 2.1, J2 = 8.1 

Hz, 1H), 7.84 (dd, J1 = 2.1, J2 = 8.1 Hz, 1H), 7.46 (t, J = 8.1 Hz, 1H), 7.40 (t, J = 8.0 Hz, 

1H), 7.19 - 7.14 (m, 2H), 7.11 (d, J = 8.4 Hz, 1H), 6.79 (br, 1H), 3.79 - 3.70 (m, 4H), 3.37 

- 3.30 (m, 4H). 
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Methyl 3-(4-(3-(trifluoromethyl)phenyl)piperazine-1-carboxamido)benzoate (3.29)  

 

To a stirring solution of 1-(3-(trifluoromethyl)phenyl)piperazine (30 mg, 0. 13 mmol, 1.0 

equiv), triethylamine (1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was added methyl 

3-isocyanatobenzoate (28 mg, 0.16 mmol, 1.2 equiv) and the solution was stirred for 30 

min at RT. After confirming consumption of limiting reagent by TLC, 3 mL of distilled 

water was added to the reaction vial. The organic layer was separated and removed under 

reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was 

used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C20H21F3N3O3
+ [M+H+], 408.4007 

found 408. 1H NMR (400 MHz, CD3OD) δ 8.14 (s, 1H), 7.75 - 7.67 (m, 2H), 7.49 - 7.40 

(m, 2H), 7.29 - 7.24 (m, 2H), 7.16 (d, J = 7.6 Hz, 1H), 3.94 (s, 3H), 3.81 - 3.73 (m, 4H), 

3.39 - 3.30 (m, 4H). 

 

Dimethyl 5-(4-(3-(trifluoromethyl)phenyl)piperazine-1-carboxamido)isophthalate 
(3.30) 

 

To a stirring solution of 1-(3-(trifluoromethyl)phenyl)piperazine (30 mg, 0.13 mmol, 1.0 

equiv), triethylamine (1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was added dimethyl 

5-isocyanatoisophthalate (36 mg, 0.16 mmol, 1.2 equiv) and the solution was stirred for 30 

min at RT. After confirming consumption of limiting reagent by TLC, 3 mL of distilled 
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water was added to the reaction vial. The organic layer was separated and removed under 

reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was 

used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C22H23F3N3O5
+ [M+H+], 466.4367 

found 466. 1H NMR (400 MHz, CD3OD) δ 8.44 - 8.18 (m, 2H), 7.45 (s, 1H), 7.34 - 7.04 

(m, 2H), 4.13 (br, 2H), 4.03 - 3.63 (m, 7H). 

 

3-(4-(3-(Trifluoromethyl)phenyl)piperazine-1-carboxamido)benzoic Acid (3.31) 

 

A solution of methyl 3-(4-(3-(trifluoromethyl)phenyl)piperazine-1-carboxamido)benzoate 

(EJC-3-136, 483 mg, 1.18 mmol, 1.0 equiv) was dissolved in a H2O/THF cosolvent system 

(1:5, H2O to THF) at rt. To the reaction was added LiOH·H2O (442 mg, 5.88 mmol, 5 

equiv) and the reaction was left to stir overnight. After confirming consumption of starting 

material by TLC, the THF was removed under reduced pressure and the resulting slurry 

was taken up in EtOAc and washed several times (2x25 mL) with 0.1 N HCl. The organic 

layer was separated and removed under reduced atmosphere. Column chromatography (0 

to 100% EtOAc/Hex) resulted in target molecule as a white powder in moderate yield (202 

mg, 47%). LRMS (APCI - quad) m/z cal’d C19H19F3N3O3
+ [M+H+], 394.3737 found 395. 

1H NMR (400 MHz, CDCl3) δ 7.97 (t, J = 2.0 Hz, 1H), 7.59 (td, J1 = 1.3, J2 = 7.7 Hz, 1H), 

7.55 (ddd, J1 = 1.0, 2.3, 8.2 Hz, 1H), 7.33 (t, J = 7.9 Hz, 1H), 7.28 (t, J = 7.9 Hz, 1H), 7.16 

- 7.10 (m, 2H), 7.01 (d, J = 7.6 Hz, 1H), 3.66 - 3.59 (m, 4H), 3.27 - 3.17 (m, 4H). 

 



 168 

N-(1-Methyl-1H-indol-4-yl)-4-(3-(trifluoromethyl)phenyl)piperazine-1-carboxamide 
(3.32)  

 

To a stirring solution of 1-(3-(trifluoromethyl)phenyl)piperazine (30 mg, 0.13 mmol, 1.0 

equiv), triethylamine (1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was added 4-

isocyanato-1-methyl-1H-indole (27 mg, 016 mmol, 1.2 equiv) and the solution was stirred 

for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL of 

distilled water was added to the reaction vial. The organic layer was separated and removed 

under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel 

was used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C21H22F3N4O+ [M+H+], 403.4287 

found 404. 1H NMR (400 MHz, CD3OD) δ 7.33 (t, J = 7.9 Hz, 1H), 7.18 - 7.11 (m, 2H), 

7.10 - 7.04 (m, 2H), 7.03 - 7.00 (m, 2H), 6.96 (d, J = 7.3 Hz, 1H), 6.36 (d, J = 3.2 Hz, 1H), 

3.69 (s, 3H), 3.68 - 3.63 (m, 4H). 

 

N-(1-Methyl-1H-indol-5-yl)-4-(3-(trifluoromethyl)phenyl)piperazine-1-carboxamide 
(3.33)  

 

To a stirring solution of 1-(3-(trifluoromethyl)phenyl)piperazine (30 mg, 0.13 mmol, 1.0 

equiv), triethylamine (1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was added 5-

isocyanato-1-methyl-1H-indole (27 mg, 0.16 mmol, 1.2 equiv) and the solution was stirred 

for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL of 
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distilled water was added to the reaction vial. The organic layer was separated and removed 

under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel 

was used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C21H22F3N4O+ [M+H+], 403.4287 

found 403. 1H NMR (400 MHz, CD3OD) δ 8.12 (d, J = 11 Hz, 1H), 7.51 (d, J = 2.0 Hz, 

1H), 7.44 (t, J = 7.9 Hz, 1H), 7.31 (d, J = 8.8 Hz, 1H), 7.28 - 7.21 (m, 1H), 7.16 - 7.10 (m, 

3H), 6.38 (d, J = 3.1 Hz, 1H), 3.79 (s, 3H), 3.75 - 3.70 (m, 4H). 

 

4-(3,5-bis(Trifluoromethyl)phenyl)-N-phenylpiperazine-1-carboxamide (3.34)  

 

To a stirring solution of 1-(3,5-bis(trifluoromethyl)phenyl)piperazine (30 mg, 0.09 mmol, 

1.0 equiv), triethylamine (1.5 µL, 0.009 mmol, 0.1 equiv) in DCM (5 mL) was added 

isocyanatobenzene (15 mg, 0.11 mmol, 1.2 equiv) and the solution was stirred for 30 min 

at RT. After confirming consumption of limiting reagent by TLC, 3 mL of distilled water 

was added to the reaction vial. The organic layer was separated and removed under reduced 

atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was used to 

purify sufficient amounts of the target molecule for biological testing and characterization. 

LRMS (APCI - quad) m/z cal’d C19H18F6N3O+ [M+H+], 418.3629 found 419. 1H NMR 

(400 MHz, CD3OD) δ 7.46 - 7.36 (m, 4H), 7.32 - 7.25 (m, 4H), 7.03 (q, J = 6.4 Hz, 2H), 

3.76 - 3.70 (m, 4H), 3.43 - 3.39 (m, 4H). 
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4-(3,5-bis(Trifluoromethyl)phenyl)-N-(m-tolyl)piperazine-1-carboxamide (3.35)  

 

To a stirring solution of 1-(3,5-bis(trifluoromethyl)phenyl)piperazine (30 mg, 0.09 mmol, 

1.0 equiv), triethylamine (1.5 µL, 0.009 mmol, 0.1 equiv) in DCM (5 mL) was added 1-

isocyanato-3-methylbenzene (16 mg, 0.11 mmol, 1.2 equiv) and the solution was stirred 

for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL of 

distilled water was added to the reaction vial. The organic layer was separated and removed 

under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel 

was used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d C20H20F6N3O+ [M+H+], 432.3899 found 

433. 1H NMR (400 MHz, CD3OD) δ 7.44 (s, 2H), 7.31 (s, 1H), 7.26 - 7.12 (m, 4H), 6.89 

- 6.82 (m, 1H), 3.75 - 3.68 (m, 4H), 3.44 - 3.35 (m, 4H), 2.31 (s, 3H). 

 

4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-(trifluoromethyl)phenyl)piperazine-1-
carboxamide (3.36).  

 

To a stirring solution of 1-(3,5-bis-triflouromethylphenyl)piperazine (30 mg, 0.10 mmol, 

1.0 equiv), triethylamine (1.8 µL, 0.01 mmol, 0.1 equiv) in DCM (5 mL) was added 3-

trifluoromethylphenylisocyanate (29 mg, 0.12 mmol, 1.2 equiv) and the solution was 

stirred for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL 

of distilled water was added to the reaction vial. The organic layer was separated and 
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removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C20H17F9N3O+ [M+H+] 486.36, 

found 487. 1H NMR (400 MHz, CDCl3) δ 7.67 (s, 1H), 7.58 (t, J = 8.2 Hz, 1H), 7.42 (t, J 

= 8.0 Hz, 1H), 7.36 (s, 1H), 7.32 (d, J = 7.5 Hz, 1H), 6.57 (s, 1H), 3.74 (t, J = 5.1 Hz, 4H), 

3.40 (t, J = 5.4 Hz, 4H). 13C NMR (176 MHz, CDCl3) δ 154.5, 151.1, 139.1, 132.6 (d, J 

= 33 Hz) 131.4 (d, J = 32 Hz), 129.5, 124.2, 123.2, 122.7, 120.1, 116.8, 115.0, 112.9, 100.0, 

47.9, 43.6. 

 

N,4-bis(3,5-bis(Trifluoromethyl)phenyl)piperazine-1-carboxamide (3.37)  

 

To a stirring solution of 1-(3,5-bis(trifluoromethyl)phenyl)piperazine (30 mg, 0.11 mmol, 

1.0 equiv), triethylamine (1.7 µL, 0.011 mmol, 0.1 equiv) in DCM (5 mL) was added 1-

isocyanato-3,5-bis(trifluoromethyl)benzene (30 mg, 0.13 mmol, 1.2 equiv) and the solution 

was stirred for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 

mL of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C23H22F6N3O5
+ [M+H+], 

534.4349 found 534. 1H NMR (400 MHz, CD3OD) δ 8.10 (s, 2H), 7.54 (s, 1H), 7.46 (s, 

2H), 7.31 (s, 1H), 3.38 - 3.69 (m, 4H), 3.50 - 3.38 (m, 4H). 

 



 172 

4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-cyanophenyl)piperazine-1-carboxamide 
(3.38)  

 

To a stirring solution of 1-(3,5-bis(trifluoromethyl)phenyl)piperazine (30 mg, 0.11 mmol, 

1.0 equiv), triethylamine (1.7 µL, 0.011 mmol, 0.1 equiv) in DCM (5 mL) was added 3-

isocyanatobenzonitrile (17 mg, 0.14 mmol, 1.2 equiv) and the solution was stirred for 30 

min at RT. After confirming consumption of limiting reagent by TLC, 3 mL of distilled 

water was added to the reaction vial. The organic layer was separated and removed under 

reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was 

used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C20H17F6N4O+ [M+H+], 443.3729 

found 443. 1H NMR (400 MHz, CDCl3) δ 7.86 (s, 1H), 7.69 (d, J = 6.3 Hz, 1H), 7.48 - 

7.42 (m, 3H), 7.36 (d, J = 7.7 Hz, 1H), 7.31 (s, 1H), 3.79 - 3.71 (m, 4H), 3.47 - 3.39 (m, 

4H). 

 

4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-nitrophenyl)piperazine-1-carboxamide 
(3.39) 

 

To a stirring solution of 1-(3,5-bis(trifluoromethyl)phenyl)piperazine (30 mg, 0.09 mmol, 

1.0 equiv), triethylamine (1.6 µL, 0.009 mmol, 0.1 equiv) in DCM (5 mL) was added 1-

isocyanato-3-nitrobenzene (20 mg, 0.11 mmol, 1.2 equiv) and the solution was stirred for 
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30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL of distilled 

water was added to the reaction vial. The organic layer was separated and removed under 

reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was 

used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d C19H17F6N4O3
+ [M+H+], 463.3599 found 

464. 1H NMR (400 MHz, CDCl3) δ 8.24 (t, J = 2.2 Hz, 1H), 7.91 (dd, J1 = 2.3, J2 = 8.3 

Hz, 1H), 7.83 (dd, J1 = 2.3, J2 = 8.2 Hz, 1H), 7.47 (t, J = 8.2 Hz, 1H), 7.37 (s, 1H), 7.28 (s, 

2H), 6.70 (s, 1H), 3.81 - 3.74 (m, 4H), 3.45 - 3.39 (m, 4H). 

 

Methyl 3-(4-(3,5-bis(trifluoromethyl)phenyl)piperazine-1-carboxamido)benzoate 
(3.40)  

 

To a stirring solution of 1-(3,5-bis(trifluoromethyl)phenyl)piperazine (30 mg, 0.11 mmol, 

1.0 equiv), triethylamine (1.7 µL, 0.011 mmol, 0.1 equiv) in DCM (5 mL) was added 

methyl 3-isocyanatobenzoate (20 mg, 0.14 mmol, 1.2 equiv) and the solution was stirred 

for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL of 

distilled water was added to the reaction vial. The organic layer was separated and removed 

under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel 

was used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C21H20F6N3O3
+ [M+H+], 476.3989 

found 477. 1H NMR (400 MHz, CD3OD) δ 8.10 (s, 1H), 7.72 - 7.64 (m, 2H), 7.46 (s, 2H), 

7.40 (t, J = 7.9 Hz, 1H), 7.31 (s, 1H), 3.91 (s, 3H), 3.79 - 3.72 (m, 4H), 3.46 - 3.40 (m, 4H). 
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13C NMR (101 MHz, CDCl3) δ 166.8, 154.6, 151.2, 138.9, 132.5 (q, J = 33 Hz), 130.9, 

129.1, 124.6, 124.5, 123.5 (q, J = 273 Hz), 120.8, 114.9, 112.7, 52.2, 47.9, 43.6. 

 

Dimethyl 5-(4-(3,5-bis(trifluoromethyl)phenyl)piperazine-1-
carboxamido)isophthalate (3.41)  

 

To a stirring solution of 1-(3,5-bis(trifluoromethyl)phenyl)piperazine (30 mg, 0.11 mmol, 

1.0 equiv), triethylamine (1.7 µL, 0.011 mmol, 0.1 equiv) in DCM (5 mL) was added 

dimethyl 5-isocyanatoisophthalate (28 mg, 0.14 mmol, 1.2 equiv) and the solution was 

stirred for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL 

of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C23H22F6N3O5
+ [M+H+], 

534.4349 found 534. 1H NMR (400 MHz, CD3OD) δ 8.34 (s, 2H), 8.29 (s, 1H), 7.47 (s, 

2H), 7.32 (s, 1H), 4.59 (br, 3H), 3.94 (s, 6H), 3.81 - 3.71 (m, 4H), 3.50 - 3.37 (m, 4H). 13C 

NMR (176 MHz, CDCl3) δ 165.9, 157.9, 150.9, 132.0 (q, J = 32 Hz), 131.5 (q, J = 32 Hz), 

130.3, 129.8, 124.0 (dq, J1 = 70, J2 = 273 Hz), 119.4, 118.5 (d, J = 4 Hz), 117.8, 116.9 (d, 

J = 4 Hz), 112.8 (d, J = 5 Hz), 111.8 (d, J = 4 Hz), 67.5, 49.3, 48.8, 45.1, 41.2. 
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3-(4-(3,5-bis(Trifluoromethyl)phenyl)piperazine-1-carboxamido)benzoic Acid (3.42)  

 

A solution of methyl 3-(4-(3,5-bis(trifluoromethyl)phenyl)piperazine-1-

carboxamido)benzoate (EJC-3-137, 499 mg, 1.05 mmol, 1.0 equiv) was dissolved in a 

H2O/THF cosolvent system (1:5, H2O to THF) at rt. To the reaction was added LiOH·H2O 

(210 mg, 5.25 mmol, 5 equiv) and the reaction was left to stir overnight. After confirming 

consumption of starting material by TLC, the THF was removed under reduced pressure 

and the resulting slurry was taken up in EtOAc and washed several times (2x25 mL) with 

0.1 N HCl. The organic layer was separated and removed under reduced atmosphere. 

Column chromatography (0 to 100% EtOAc/Hex) resulted in target molecule as a white 

powder in moderate yield (327 mg, 68%). LRMS (APCI - quad) m/z cal’d C20H18F6N3O3
+ 

[M+H+], 462.3719 found 463. 1H NMR (400 MHz, CDCl3) δ 7.97 (t, J = 1.9, 1H), 7.60 

(td, J1 = 1.3, J2 = 7.8 Hz, 1H), 7.56 (ddd, J1 = 1.0, J2 = 2.2, J3 = 8.2 Hz, 1H), 7.35 (s, 2H), 

7.28 (t, J = 7.9 Hz, 1H), 7.20 (s, 1H), 3.68 - 3.59 (m, 4H), 3.36 - 3.28 (m, 4H). 

 

4-(3,5-bis(Trifluoromethyl)phenyl)-N-(1-methyl-1H-indol-6-yl)piperazine-1-
carboxamide (3.43)  

 

To a stirring solution of 1-(3,5-bis(trifluoromethyl)phenyl)piperazine (30 mg, 0.11 mmol, 

1.0 equiv), triethylamine (1.7 µL, 0.011 mmol, 0.1 equiv) in DCM (5 mL) was added 4-

isocyanato-1-methyl-1H-indole (21 mg, 0.14 mmol, 1.2 equiv) and the solution was stirred 
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for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL of 

distilled water was added to the reaction vial. The organic layer was separated and removed 

under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel 

was used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C22H21F6N4O+ [M+H+], 471.4269 

found 472. 1H NMR (400 MHz, CD3OD) δ 7.51 (d, J = 1.9 Hz, 1H), 7.46 (s, 2H), 7.33 - 

7.28 (m, 2H), 7.17 - 7.10 (m, 2H), 6.38 (d, J = 3.1 Hz, 1H), 3.79 (s, 3H), 3.77 - 3.71 (m, 

4H), 3.46 - 3.39 (m, 4H). 

 

4-(3-Cyanophenyl)-N-(3-(trifluoromethyl)phenyl)piperazine-1-carboxamide (3.44).  

 

To a stirring solution of 1-(3-cyanophenyl)piperazine (30 mg, 0.16 mmol, 1.0 equiv), 

triethylamine (1.8 µL, 0.016 mmol, 0.1 equiv) in DCM (5 mL) was added 3-

trifluoromethylphenylisocyanate (29 mg, 0.18 mmol, 1.2 equiv) and the solution was 

stirred for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL 

of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C19H18F3N4O+ [M+H+] 375.37, 

found 375. 1H NMR (400 MHz, CDCl3) δ 7.67 (s, 1H), 7.59 (d, J = 8.1 Hz, 1H), 7.41 (t, 

J = 7.8 Hz, 1H), 7.36 (t, J = 8.7 Hz, 1H), 7.30 (d, J = 7.8 Hz, 1H), 7.16 (d, J = 7.0 Hz, 1H), 

7.12 (s, 1H),  6.71 (s, 1H), 3.70 (t, J = 5.1 Hz, 4H),  3.29 (t, J = 5.2 Hz, 4H). 13C NMR 
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(176 MHz, CDCl3) δ 154.7, 150.8, 139.5, 131.2, 130.1, 129.4, 123.7 (q, J = 274 Hz), 123.3, 

123.2, 120.3, 119.8, 119.8, 119.3, 118.7, 116.8, 113.0, 100.0, 48.2, 43.7. 

 

N-(3,5-bis(Trifluoromethyl)phenyl)-4-(3-cyanophenyl)piperazine-1-carboxamide 
(3.45)  

 

To a stirring solution of 3-(piperazin-1-yl)benzonitrile (30 mg, 0.16 mmol, 1.0 equiv), 

triethylamine (1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was added 1-isocyanato-

3,5-bis(trifluoromethyl)benzene (30 mg, 0.19 mmol, 1.2 equiv) and the solution was stirred 

for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL of 

distilled water was added to the reaction vial. The organic layer was separated and removed 

under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel 

was used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C20H17F6N4O+ [M+H+] 443.3729, 

found 443. 1H NMR (400 MHz, CDCl3) δ 7.90 (s, 2H), 7.52 (s, 1H), 7.37 (t, J = 7.8 Hz, 

1H), 7.19 - 7.10 (m, 3H), 6.97 (s, 1H), 3.83 - 3.61 (m, 4H), 3.36 - 3.22 (m, 4H). 13C NMR 

(101 MHz, CDCl3) δ 154.5, 150.8, 139.3, 131.2 (q, J = 33 Hz), 130.1, 129.5, 125.3, 123.3, 

123.0, 122.6, 120.3, 119.9 (q, J = 4 Hz), 119.1, 118.7, 116.6 (q, J = 4 Hz), 113.2, 48.2, 

43.7.  
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N,4-bis(3-Cyanophenyl)piperazine-1-carboxamide (3.46)  

 

To a stirring solution of 3-(piperazin-1-yl)benzonitrile (30 mg, 0.16 mmol, 1.0 equiv), 

triethylamine (1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was added 3-

isocyanatobenzonitrile (28 mg, 0.19 mmol, 1.2 equiv) and the solution was stirred for 30 

min at RT. After confirming consumption of limiting reagent by TLC, 3 mL of distilled 

water was added to the reaction vial. The organic layer was separated and removed under 

reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was 

used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C19H18N5O+ [M+H+] 332.3865, found 

332. 1H NMR (400 MHz, CDCl3) δ 7.76 (s, 1H), 7.62 (d, J = 7.2 Hz, 1H), 7.43 - 7.32 (m, 

3H), 7.18 - 7.11 (m, 3H), 6.62 (s, 1H), 3.74 - 3.66 (m, 4H), 3.35 - 3.29 (m, 4H). 

 

4-(3-Cyanophenyl)-N-(3-nitrophenyl)piperazine-1-carboxamide (3.47)  

 

To a stirring solution of 3-(piperazin-1-yl)benzonitrile (30 mg, 0.16 mmol, 1.0 equiv), 

triethylamine (1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was added 1-isocyanato-3-

nitrobenzene (32 mg, 0.19 mmol, 1.2 equiv) and the solution was stirred for 30 min at RT. 

After confirming consumption of limiting reagent by TLC, 3 mL of distilled water was 

added to the reaction vial. The organic layer was separated and removed under reduced 

atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was used to 
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purify sufficient amounts of the target molecule for biological testing and characterization. 

LRMS (APCI - quad) m/z cal’d C18H18N5O3
+ [M+H+], 352.3735 found 354. 1H NMR (400 

MHz, CDCl3) δ 8.20 (s, 2H), 7.89 (d, J = 8.3, 1H), 7.82 (d, J = 8.1 Hz, 1H), 7.45 (t, J = 7.4 

Hz, 1H), 6.93 (s, 1H), 3.67 (br, 4H), 3.07 (br, 4H). 

 

Methyl 3-(4-(3-cyanophenyl)piperazine-1-carboxamido)benzoate (3.48)  

 

To a stirring solution of 3-(piperazin-1-yl)benzonitrile (30 mg, 0.16 mmol, 1.0 equiv), 

triethylamine (1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was added methyl 3-

isocyanatobenzoate (34 mg, 0.19 mmol, 1.2 equiv) and the solution was stirred for 30 min 

at RT. After confirming consumption of limiting reagent by TLC, 3 mL of distilled water 

was added to the reaction vial. The organic layer was separated and removed under reduced 

atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was used to 

purify sufficient amounts of the target molecule for biological testing and characterization. 

LRMS (APCI - quad) m/z cal’d for C20H21N4O3
+ [M+H+] 365.4125, found 365. 1H NMR 

(400 MHz, CDCl3) δ 7.94 (s, 1H), 7.74 - 7.67 (m, 2H), 7.40 - 7.30 (m, 2H), 7.16 - 7.08 (m, 

3H), 6.86 (s, 1H), 3.88 (s, 3H), 3.70 - 3.64 (m, 4H), 3.28 - 3.22 (m, 4H). 

 

N-(3-(1H-Pyrrol-1-yl)phenyl)-4-(3-(trifluoromethyl)phenyl)piperazine-1-
carboxamide (3.49) 
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To a stirring solution of 1-(3-triflouromethylphenyl)piperazine (31 mg, 0.13 mmol, 1.0 

equiv), triethylamine (1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was added 1-(3-

isocyanatophenyl)-1H-pyrrole (30 mg, 0.15 mmol, 1.2 equiv) and the solution was stirred 

for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL of 

distilled water was added to the reaction vial. The organic layer was separated and removed 

under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel 

was used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C22H22F3N4O+ [M+H+] 415.44, found 

416. 1H NMR (400 MHz, CDCl3) δ 7.59 (t, J = 2.1 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.32 

(t, J = 8.1 Hz, 1H), 7.19 - 7.11 (m, 3H), 7.11 - 7.06 (m, 3H), 6.61 (br, 1H), 6.32 (t, J = 2.1 

Hz, 2H), 3.69 (t, J = 5.1 Hz, 4H), 3.28 (t, J = 5.2 Hz, 4H). 

 

 

N-(3-(1H-Pyrrol-1-yl)phenyl)-4-(3,5-bis(trifluoromethyl)phenyl)piperazine-1-
carboxamide (3.50) 

 

To a stirring solution of 1-(3,5-bis-triflouromethylphenyl)piperazine (40 mg, 0.13 mmol, 

1.0 equiv), triethylamine (1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was added 3,5-

bistrifluoromethylphenylisocyanate (30 mg, 0.015 mmol, 1.2 equiv) and the solution was 

stirred for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL 

of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 
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silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C23H21F6N4O+ [M+H+] 483.44, 

found 484. 1H NMR (400 MHz, CDCl3) δ 7.57 (t, J = 2.0 Hz, 1H), 7.36 - 7.30 (m, 2H), 

7.23 (s, 2H), 7.16 (d, J = 8.0 Hz, 1H), 7.12 - 7.05 (m, 3H), 3.70 (t, J = 4.9 Hz, 4H), 3.33 (t, 

J = 5.3 Hz, 4H) 

 

N-(3-(1H-Pyrrol-1-yl)phenyl)-4-(3-cyanophenyl)piperazine-1-carboxamide (3.51) 

 

To a stirring solution of 1-(3-cyanophenyl)piperazine (30 mg, 0.16 mmol, 1.0 equiv), 

triethylamine (1.8 µL, 0.016 mmol, 0.1 equiv) in DCM (5 mL) was added 1-(3-

isocyanatophenyl)-1H-pyrrole (29 mg, 0.19 mmol, 1.2 equiv) and the solution was stirred 

for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL of 

distilled water was added to the reaction vial. The organic layer was separated and removed 

under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel 

was used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C22H22N5O+ [M+H+] 372.45, found 

372. 1H NMR (400 MHz, CDCl3) δ 7.60 (t, J = 2.2 Hz, 1H), 7.38 (t, J = 8.6 Hz, 1H), 7.33 

(t, J = 7.8 Hz, 1H), 7.21-7.14 (m, 4H), 7.10 (t, J = 2.4 Hz, 3H), 6.49 (br, 1H), 6.33 (t, J = 

2.2 Hz, 2H), 3.74 (t, J = 5.2 Hz, 4H), 3.32 (t, J = 5.4 Hz, 4H). 
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N-(3-(1-Methyl-1H-pyrazol-5-yl)phenyl)-4-(3-(trifluoromethyl)phenyl)piperazine-1-
carboxamide (3.52) 

 

To a stirring solution of 1-(3-triflouromethylphenyl)piperazine (28 mg, 0.12 mmol, 1.0 

equiv), triethylamine (1.8 µL, 0.012 mmol, 0.1 equiv) in DCM (5 mL) was added 5-(3-

isocyanatophenyl)-1-methyl-1H-pyrazole (30 mg, 0.14 mmol, 1.2 equiv) and the solution 

was stirred for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 

mL of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C22H23F3N5O+ [M+H+] 430.45, 

found 431. 1H NMR (400 MHz, CDCl3) δ 7.54 - 7.51 (m, 2H), 7.41 - 7.35 (m, 3H), 7.16 - 

7.07 (m, 4H), 6.71 (br, 1H), 6.32 (d, J = 1.9 Hz, 1H), 3.92 (s, 3H), 3.72 (t, J = 5.3 Hz, 4), 

3.31 (t, J = 5.3 Hz, 4H),   

 

4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-(1-methyl-1H-pyrazol-5-
yl)phenyl)piperazine-1-carboxamide (3.53) 

 

To a stirring solution of 1-(3,5-bis-triflouromethylphenyl)piperazine (37 mg, 0.12 mmol, 

1.0 equiv), triethylamine (1.8 µL, 0.012 mmol, 0.1 equiv) in DCM (5 mL) was added 5-(3-

isocyanatophenyl)-1-methyl-1H-pyrazole (30 mg, 0.14 mmol, 1.2 equiv) and the solution 

was stirred for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 
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mL of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex)) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C23H22F6N5O+ [M+H+] 498.45, 

found 499. 1H NMR (400 MHz, CDCl3) δ 7.54 - 7.51 (m, 2H), 7.43 - 7.38 (m, 2H), 7.34 

(br, 1H), 7.15 - 7.07 (m, 1H), 6.69 (br, 1H), 6.33 (d, J = 1.5 Hz, 1H), 3.93 (s, 3H), 3.75 (t, 

J = 5.0 Hz, 4H), 3.40 (t, J = 5.3 Hz, 4H). 13C NMR (176 MHz, CDCl3) δ 154.8, 151.2, 

143.3, 139.0, 138.5, 132.7, 132.5, 131.4, 129.3, 124.2, 123.7, 122.7, 121.1, 120.4, 120.0, 

115.0, 112.8, 106.1, 48.0, 43.6, 37.6. 

 

4-(3-Cyanophenyl)-N-(3-(1-methyl-1H-pyrazol-5-yl)phenyl)piperazine-1-
carboxamide (3.54) 

 

To a stirring solution of 1-(3-cyanophenyl)piperazine (30 mg, 0.16 mmol, 1.0 equiv), 

triethylamine (1.8 µL, 0.016 mmol, 0.1 equiv) in DCM (5 mL) was added 1-(3-

isocyanatophenyl)-1H-pyrrole (29 mg,  0.19 mmol, 1.2 equiv) and the solution was stirred 

for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL of 

distilled water was added to the reaction vial. The organic layer was separated and removed 

under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex)) on silica gel 

was used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C22H23N6O+ [M+H+] 387.47, found 

387. 1H NMR (400 MHz, CDCl3) δ 7.55 (br, 1H), 7.53 (d, J = 2.0 Hz, 1H), 7.41 - 7.33 (m, 
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3H), 7.18 - 7.09 (m, 4H), 6.69 (1H), 6.33 (d, J = 2.0 Hz, 1H), 3.94 (s, 3H), 3.72 (t, J = 5.0 

Hz, 4H), 3.31 (t, J = 5.3 Hz, 4H). 13C NMR (176 MHz, CDCl3) δ 154.7, 151.1, 141.4, 

139.9, 132.8, 132.6, 132.4, 132.3, 129.9, 124.2, 122.7, 119.3, 116.9, 115.3, 115.0, 112.7, 

112.2, 110.5, 47.9, 43.6. 

 

4-(Pyridin-3-yl)-N-(m-tolyl)piperazine-1-carboxamide (3.55)  

 

To a stirring solution of 1-(pyridin-3-yl)piperazine (30 mg, 0.18 mmol,  1.0 equiv), 

triethylamine (1.9 µL, 0.018 mmol, 0.1 equiv) in DCM (5 mL) was added 1-isocyanato-3-

methylbenzene (29 mg, 0.21 mmol, 1.2 equiv) and the solution was stirred for 30 min at 

RT. After confirming consumption of limiting reagent by TLC, 3 mL of distilled water was 

added to the reaction vial. The organic layer was separated and removed under reduced 

atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was used to 

purify sufficient amounts of the target molecule for biological testing and characterization. 

LRMS (APCI - quad) m/z cal’d for C17H21N4O+ [M+H+], 297.38 found 299. 1H NMR (400 

MHz, CDCl3) δ 8.31 (dd, J1 = 1.6, J2 = 5.0 Hz, 2H), 7.23 (s, 1H), 7.18 (t, J = 7.8 Hz, 1H), 

7.14 - 7.10 (m, 1H), 6.88 (d, J = 8.8 Hz, 1H), 6.70 - 6.63 (m, 2H), 6.41 (br, 1H), 3.72 - 3.64 

(m, 4H), 3.48 - 3.40 (m, 4H), 2.33 (s, 3H). 
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N-(3-Nitrophenyl)-4-(pyridin-3-yl)piperazine-1-carboxamide (3.56)  

 

To a stirring solution of 1-(pyridin-3-yl)piperazine (30 mg, 0.18 mmol, 1.0 equiv), 

triethylamine (1.9 µL, 0.018 mmol, 0.1 equiv) in DCM (5 mL) was added 1-isocyanato-3-

nitrobenzene (29 mg, 0.21 mmol, 1.2 equiv) and the solution was stirred for 30 min at RT. 

After confirming consumption of limiting reagent by TLC, 3 mL of distilled water was 

added to the reaction vial. The organic layer was separated and removed under reduced 

atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was used to 

purify sufficient amounts of the target molecule for biological testing and characterization. 

LRMS (APCI - quad) m/z cal’d for C17H21N4O+ [M+H+], 297.38 found 299. 1H NMR (400 

MHz, CDCl3) δ 8.33 (dd, J1 = 1.7, J2 = 5.0 Hz, 2H), 8.23 (t, J = 2.2 Hz, 1H), 7.91 (ddd, J1 

= 1.0, J2 = 2.2, J3 = 8.2 Hz, 1H), 7.82 (ddd, J1 = 0.8, J2 = 2.2, J3 = 8.2 Hz, 1H), 7.47 (t, J = 

8.2 Hz, 1H), 6.71 - 6.65 (m, 3H), 3.77 - 3.70 (m, 4H), 3.52 - 3.44 (m, 4H). 

 

4-(Pyridin-4-yl)-N-(m-tolyl)piperazine-1-carboxamide (3.57)  

 

To a stirring solution of 1-(pyridin-4-yl)piperazine (30 mg, 0.18 mmol, 1.0 equiv), 

triethylamine (1.9 µL, 0.018 mmol, 0.1 equiv) in DCM (5 mL) was added 1-isocyanato-3-

methylbenzene (29 mg, 0.21 mmol, 1.2 equiv) and the solution was stirred for 30 min at 

RT. After confirming consumption of limiting reagent by TLC, 3 mL of distilled water was 

added to the reaction vial. The organic layer was separated and removed under reduced 
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atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was used to 

purify sufficient amounts of the target molecule for biological testing and characterization. 

LRMS (APCI - quad) m/z cal’d for C17H21N4O+ [M+H+], 297.38 found 298. 1H NMR (400 

MHz, CDCl3) δ 8.32 (t, J = 1.9 Hz, 1H), 8.15 (t, J = 2.9 Hz, 1H), 7.24 (s, 1H), 7.22 - 7.19 

(m, 2H), 7.17 (d, J = 7.5 Hz, 1H), 7.15 - 7.11 (m, 1H), 6.88 (d, J = 7.3 Hz, 1H), 6.45 (br, 

1H), 3.72 - 3.62 (m, 4H), 3.29 - 3.21 (m, 4H), 2.33 (s, 3H). 

 

4-(Pyridin-4-yl)-N-(3-(trifluoromethyl)phenyl)piperazine-1-carboxamide (3.58)  

 

To a stirring solution of 1-(pyridin-4-yl)piperazine (30 mg, 0.18 mmol, 1.0 equiv), 

triethylamine (1.9 µL, 0.018 mmol, 0.1 equiv) in DCM (5 mL) was added 1-isocyanato-3-

(trifluoromethyl)benzene (41 mg, 0.21 mmol, 1.2 equiv) and the solution was stirred for 

30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL of distilled 

water was added to the reaction vial. The organic layer was separated and removed under 

reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was 

used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C17H18F3N4O+ [M+H+], 351.35 found 

352. 1H NMR (400 MHz, CDCl3) δ 8.31 (t, J = 2.0 Hz, 1H), 8.15 (t, J = 3.1 Hz, 1H), 7.66 

(t, J = 2.0 Hz, 1H), 7.58 (dd, J1 = 2.1, J2 = 8.0 Hz, 1H), 7.39 (t, J = 7.9 Hz, 1H), 7.29 (d, J 

= 7.8 Hz, 1H), 7.22 - 7.19 (m, 2H), 6.89 (br, 1H), 3.75 - 3.64 (m, 4H), 3.30 - 3.22 (m, 4H). 
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N-(3-Nitrophenyl)-4-(pyridin-4-yl)piperazine-1-carboxamide (3.59)  

 

To a stirring solution of 1-(pyridin-4-yl)piperazine (30 mg, 0.18 mmol, 1.0 equiv), 

triethylamine (1.9 µL, 0.018 mmol, 0.1 equiv) in DCM (5 mL) was added 1-isocyanato-3-

nitrobenzene (29 mg, 0.21 mmol, 1.2 equiv) and the solution was stirred for 30 min at RT. 

After confirming consumption of limiting reagent by TLC, 3 mL of distilled water was 

added to the reaction vial. The organic layer was separated and removed under reduced 

atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was used to 

purify sufficient amounts of the target molecule for biological testing and characterization. 

LRMS (APCI - quad) m/z cal’d for C17H21N4O+ [M+H+], 297.38 found 299. 1H NMR (400 

MHz, CDCl3) δ 8.32 (t, J = 2.0 Hz, 1H), 8.22 (t, J = 2.2 Hz, 1H), 8.16 (t, J = 2.6 Hz, 1H), 

7.88 (ddd, J1 = 1.0, J2 = 3.2, J3 = 8.2 Hz, 1H), 7.83 (ddd, J1 = 1.0, J2 = 3.2, J3 = 8.2 Hz, 

1H), 7.45 (t, J = 8.2, 1H), 7.23 - 7.20 (m, 2H), 6.97 (br, 1H), 3.77 - 3.68 (m, 4H), 3.34 - 

3.24 (m, 4H). 

 

4-(Pyrimidin-2-yl)-N-(3-(trifluoromethyl)phenyl)piperazine-1-carboxamide (3.60)  

 

To a stirring solution of 2-(piperazin-1-yl)pyrimidine (30 mg, 0.11 mmol, 1.0 equiv), 

triethylamine (1.8 µL, 0.011 mmol, 0.1 equiv) in DCM (5 mL) was added 1-isocyanato-3-

(trifluoromethyl)benzene (41 mg, 0.14 mmol, 1.2 equiv) and the solution was stirred for 

30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL of distilled 
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water was added to the reaction vial. The organic layer was separated and removed under 

reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was 

used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C16H17F3N5O+ [M+H+], 352.34 found 

353. 1H NMR (400 MHz, CDCl3) δ 8.33 (d, J = 4.8 Hz, 2H), 7.67 (s, 1H), 7.59 (d, J = 8.2 

Hz, 1H), 7.40 (t, J = 7.9 Hz, 1H), 7.29 (d, J = 7.8 Hz, 1H), 6.63 (br, 1H), 6.56 (t, J = 4.7 

Hz, 1H), 3.98 - 3.86 (m, 4H), 3.66 - 3.58 (m, 4H). 

 

N-(3-(Phenylcarbamoyl)phenyl)-4-(3-(trifluoromethyl)phenyl)piperazine-1-
carboxamide (3.61)  

 

To a stirring solution of 3-(4-(3-(trifluoromethyl)phenyl)piperazine-1-

carboxamido)benzoic acid (20 mg, 0.05 mmol, 1 equiv) in DCM (5 mL) was added EDC 

(21 mg, 0.1 mmol, 2.0 equiv) and DMAP (0.085 mg, 0.005 mmol, 0.01 equiv). A small 

amount of DMF was needed for complete dissolution of the acid. This solution was stirred 

for 10 min before addition of aniline(7 mg, 0.075 mmol, 1.5 equiv). The reaction slurry 

was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics 

were separated and the solvent was removed under reduced pressure. Column 

chromatography (0 to 100% (EtOAc/Hex) on silica gel was used to purify sufficient 

amounts of the target molecule for biological testing and characterization. LRMS (APCI - 

quad) m/z cal’d C25H24F3N4O2
+ [M+H+], 469.4877 found 470. 1H NMR (400 MHz, 

CDCl3) δ 8.01 (s, 1H), 7.87 (t, J = 2.0, 1H), 7.67 - 7.60 (m, 3H), 7.51 (d, J = 7.9 Hz, 1H), 
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7.42 - 7.32 (m, 3H), 7.18 - 7.10 (m, 2H), 7.08 (d, J = 8.2 Hz, 1H), 6.81 (br, 1H), 3.72 - 3.64 

(m, 4H), 3.32 - 3.22 (m, 4H). 

 

N-(3-((4-Chlorophenyl)carbamoyl)phenyl)-4-(3-(trifluoromethyl)phenyl)piperazine-
1-carboxamide (3.62)  

 

To a stirring solution of 3-(4-(3-(trifluoromethyl)phenyl)piperazine-1-

carboxamido)benzoic acid (20 mg, 0.05 mmol, 1 equiv) in DCM (5 mL) was added EDC 

(21 mg, 0.1 mmol, 2.0 equiv) and DMAP (0.085 mg, 0.005 mmol0.01 equiv). A small 

amount of DMF was needed for complete dissolution of the acid. This solution was stirred 

for 10 min before addition of 4-chloroaniline (6 mg, 0.075 mmol, 1.5 equiv). The reaction 

slurry was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). 

Organics were separated and the solvent was removed under reduced pressure. Column 

chromatography (0 to 100% (EtOAc/Hex) on silica gel was used to purify sufficient 

amounts of the target molecule for biological testing and characterization. LRMS (APCI - 

quad) m/z cal’d C25H23ClF3N4O2
+ [M+H+], 503.9297 found 504. 1H NMR (400 MHz, 

CDCl3) δ 8.12 (s, 1H), 7.87 (s, 1H), 7.62 - 7.54 (m, 3H), 7.50 (d, J = 7.8 Hz, 1H), 7.42 - 

7.35 (m, 2H), 7.31 (d, J = 8.8 Hz, 2H), 7.15 (d, J = 7.8 Hz, 1H), 7.12 (s, 1H), 7.07 (d, J = 

8.3 Hz, 1H), 6.75 (br, 1H), 3.74 - 3.62 (m, 4H), 3.35 - 3.21 (m, 4H). 
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N-(3-((4-Methoxyphenyl)carbamoyl)phenyl)-4-(3-
(trifluoromethyl)phenyl)piperazine-1-carboxamide (3.63)  

 

To a stirring solution of 3-(4-(3-(trifluoromethyl)phenyl)piperazine-1-

carboxamido)benzoic acid (20 mg, 0.05 mmol, 1 equiv) in DCM (5 mL) was added EDC 

(21 mg, 0.1 mmol, 2.0 equiv) and DMAP (0.085 mg, 0.005 mmol, 0.01 equiv). A small 

amount of DMF was needed for complete dissolution of the acid. This solution was stirred 

for 10 min before addition of 4-methoxyaniline (7 mg, 0.075 mmol, 1.5 equiv). The 

reaction slurry was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 

mL). Organics were separated and the solvent was removed under reduced pressure. 

Column chromatography (0 to 100% (EtOAc/Hex) on silica gel was used to purify 

sufficient amounts of the target molecule for biological testing and characterization. LRMS 

(APCI - quad) m/z cal’d C26H26F3N4O3
+ [M+H+], 499.5137 found 500. 1H NMR (400 

MHz, CDCl3) δ 7.91 (t, J = 2.0 Hz, 1H), 7.77 - 7.71 (m, 2H), 7.43 - 7.36 (m, 2H), 7.18 - 

7.09 (m, 2H), 6.52 (br, 1H), 3.91 (s, 3H), 3.75 - 3.68 (m, 4H), 3.36 - 3.29 (m, 4H). 

 

N-(3-((3,4-Dichlorophenyl)carbamoyl)phenyl)-4-(3-
(trifluoromethyl)phenyl)piperazine-1-carboxamide (3.64)  

 

To a stirring solution of 3-(4-(3-(trifluoromethyl)phenyl)piperazine-1-

carboxamido)benzoic acid (20 mg, 0.05 mmol, 1 equiv) in DCM (5 mL) was added EDC 
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(21 mg, 0.1 mmmol, 2.0 equiv) and DMAP (0.085 mg, 0.005 mmol, 0.01 equiv). A small 

amount of DMF was needed for complete dissolution of the acid. This solution was stirred 

for 10 min before addition of 3,4-dichloroaniline (8 mg, 0.075 mmol, 1.5 equiv). The 

reaction slurry was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 

mL). Organics were separated and the solvent was removed under reduced pressure. 

Column chromatography (0 to 100% (EtOAc/Hex) on silica gel was used to purify 

sufficient amounts of the target molecule for biological testing and characterization. LRMS 

(APCI - quad) m/z cal’d C25H22Cl2F3N4O2
+ [M+H+], 538.3717 found 540. 1H NMR (400 

MHz, CDCl3) δ 8.35 (br, 1H), 7.89 (d, J = 2.5 Hz, 1H), 7.83 (t, J = 2.0 Hz, 1H), 7.52 - 7.43 

(m, 3H), 7.42 - 7.29 (m, 3H), 7.15 (d, J = 7.8 Hz, 1H), 7.13 (s, 1H), 7.09 (d, J = 8.3 Hz, 

1H), 6.80 (br, 1H), 3.76 - 3.61 (m, 4H), 3.35 - 3.22 (m, 4H). 

 

N-(3-((3-Chlorophenyl)carbamoyl)phenyl)-4-(3-(trifluoromethyl)phenyl)piperazine-
1-carboxamide (3.65)  

 

To a stirring solution of 3-(4-(3-(trifluoromethyl)phenyl)piperazine-1-

carboxamido)benzoic acid (20 mg, 0.05 mmol, 1 equiv) in DCM (5 mL) was added EDC 

(21 mg, 0.10 mmol, 2.0 equiv) and DMAP (0.085 mg, 0.005 mmol, 0.01 equiv). A small 

amount of DMF was needed for complete dissolution of the acid. This solution was stirred 

for 10 min before addition of 3-chloroaniline (7 mg, 0.075 mmol, 1.5 equiv). The reaction 

slurry was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). 

Organics were separated and the solvent was removed under reduced pressure. Column 
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chromatography (0 to 100% (EtOAc/Hex) on silica gel was used to purify sufficient 

amounts of the target molecule for biological testing and characterization. LRMS (APCI - 

quad) m/z cal’d C25H23ClF3N4O2
+ [M+H+], 503.9297 found 505. 1H NMR (400 MHz, 

CDCl3) δ 8.26 (s, 1H), 7.83 (t, J = 2.0 Hz, 1H), 7.77 (t, J = 2.1 Hz, 1H), 7.56 (d, J = 8.0, 

1H), 7.50 - 7.44 (m, 2H), 7.42 - 7.31 (m, 2H), 7.26 (t, J = 7.0 Hz, 1H), 7.19 - 7.08 (m, 4H), 

6.91 (s, 1H), 3.74 - 3.64 (m, 4H), 3.32 - 3.24 (m, 4H). 

 

N-(3-((4-(tert-Butyl)phenyl)carbamoyl)phenyl)-4-(3-
(trifluoromethyl)phenyl)piperazine-1-carboxamide (3.66)  

 

To a stirring solution of 3-(4-(3-(trifluoromethyl)phenyl)piperazine-1-

carboxamido)benzoic acid (20 mg, 0.05 mmol, 1 equiv) in DCM (5 mL) was added EDC 

(21 mg, 0.1 mmol, 2.0 equiv) and DMAP (0.085 mg, 0.005 mmol, 0.01 equiv). A small 

amount of DMF was needed for complete dissolution of the acid. This solution was stirred 

for 10 min before addition of 4-(tert-butyl)aniline (8 mg, 0.075 mmol, 1.5 equiv). The 

reaction slurry was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 

mL). Organics were separated and the solvent was removed under reduced pressure. 

Column chromatography (0 to 100% (EtOAc/Hex) on silica gel was used to purify 

sufficient amounts of the target molecule for biological testing and characterization. LRMS 

(APCI - quad) m/z cal’d C29H32F3N4O2
+ [M+H+], 525.5957 found 527. 1H NMR (400 

MHz, CDCl3) δ 7.92 (s, 1H), 7.87 (t, J = 1.9 Hz, 1H), 7.66 (d, J = 9.9 Hz, 1H), 7.58 - 7.49 
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(m, 2H), 7.44 - 7.35 (m, 3H), 7.19 - 7.08 (m, 2H), 6.72 (br, 1H), 3.78 - 3.65 (m, 4H), 3.36 

- 3.24 (m, 4H).  

 

N-(3-((4-Chloro-3-(trifluoromethyl)phenyl)carbamoyl)phenyl)-4-(3-
(trifluoromethyl)phenyl)piperazine-1-carboxamide (3.67)  

 

To a stirring solution of 3-(4-(3-(trifluoromethyl)phenyl)piperazine-1-

carboxamido)benzoic acid (20 mg, 0.05 mmol, 1 equiv) in DCM (5 mL) was added EDC 

(21 mg, 0.10 mmol, 2.0 equiv) and DMAP (0.085 mg, 0.005 mmol, 0.01 equiv). A small 

amount of DMF was needed for complete dissolution of the acid. This solution was stirred 

for 10 min before addition of 4-chloro-3-(trifluoromethyl)aniline (10 mg, 0.075 mmol, 1.5 

equiv). The reaction slurry was brought to 37 ˚C for 12 h before quenching with 1 N HCl 

solution (3 mL). Organics were separated and the solvent was removed under reduced 

pressure. Column chromatography (0 to 100% (EtOAc/Hex) on silica gel was used to 

purify sufficient amounts of the target molecule for biological testing and characterization. 

LRMS (APCI - quad) m/z cal’d C26H22ClF6N4O2
+ [M+H+], 571.9279 found 572. 1H NMR 

(400 MHz, CDCl3) δ 8.41 (s, 1H), 8.00 (d, J = 2.5 Hz, 1H), 7.93 (t, J = 1.9 Hz, 1H), 7.89 

(dd, J1 = 2.6, J2 = 8.8 Hz, 1H), 7.54 (d, J = 7.6 Hz, 1H), 7.51 - 7.45 (m, 2H), 7.43 - 7.36 

(m, 2H), 7.19 - 7.09 (m, 2H), 6.68 (br, 1H), 3.79 - 3.65 (m, 4H), 3.36 - 3.26 (m, 4H). 
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4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-(phenylcarbamoyl)phenyl)piperazine-1-
carboxamide (3.68)  

 

To a stirring solution of 3-(4-(3,5-bis(trifluoromethyl)phenyl)piperazine-1-

carboxamido)benzoic acid (20 mg, 0.05 mmol, 1 equiv) in DCM (5 mL) was added EDC 

(13 mg, 0.1 mmol, 2.0 equiv) and DMAP (0.052 mg, 0.005 mmol, 0.01 equiv). A small 

amount of DMF was needed for complete dissolution of the acid. This solution was stirred 

for 10 min before addition of aniline (6 mg, 0.075 mol, 1.5 equiv). The reaction slurry was 

brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics were 

separated and the solvent was removed under reduced pressure. Column chromatography 

(0 to 100% (EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target 

molecule for biological testing and characterization. LRMS (APCI - quad) m/z cal’d 

C26H23F6N4O2
+ [M+H+], 537.4859 found 537. 1H NMR (400 MHz, CDCl3) δ 7.94 (s, 1H), 

7.90 (t, J = 2.0 Hz, 1H), 7.69 - 7.60 (m, 3H), 7.54 (d, J = 7.7 Hz, 1H), 7.46 - 7.36 (m, 4H), 

7.16 (t, J = 7.4 Hz, 1H), 6.69 (br, 1H), 3.79 - 3.68 (m, 4H), 3.43 - 3.35 (m, 4H). 

 

4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-((4-
chlorophenyl)carbamoyl)phenyl)piperazine-1-carboxamide (3.69)  

 

To a stirring solution of 3-(4-(3,5-bis(trifluoromethyl)phenyl)piperazine-1-

carboxamido)benzoic acid (20 mg, 0.05 mmol, 1 equiv) in DCM (5 mL) was added EDC 
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(13 mg, 0.1 mmol, 2.0 equiv) and DMAP (0.052 mg, 0.005 mmol, 0.01 equiv). A small 

amount of DMF was needed for complete dissolution of the acid. This solution was stirred 

for 10 min before addition of 4-chloroaniline (8 mg, 0.075 mmol, 1.5 equiv). The reaction 

slurry was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). 

Organics were separated and the solvent was removed under reduced pressure. Column 

chromatography (0 to 100% (EtOAc/Hex) on silica gel was used to purify sufficient 

amounts of the target molecule for biological testing and characterization. LRMS (APCI - 

quad) m/z cal’d C26H22ClF6N4O2
+ [M+H+], 571.9279 found 572. 1H NMR (400 MHz, 

CDCl3) δ 8.02 (s, 1H), 7.93 (s, 1H), 7.65 - 7.52 (m, 3H), 7.43 (t, J = 7.8 Hz, 1H), 7.39 - 

7.30 (m, 2H), 6.63 (br, 1H), 3.82 - 3.67 (m, 4H), 3.47 - 3.33 (m, 4H). 

 

4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-((4-
methoxyphenyl)carbamoyl)phenyl)piperazine-1-carboxamide (3.70)  

 

To a stirring solution of 3-(4-(3,5-bis(trifluoromethyl)phenyl)piperazine-1-

carboxamido)benzoic acid (20 mg, 0.05 mmol, 1 equiv) in DCM (5 mL) was added EDC 

(13 mg, 0.1 mmol, 2.0 equiv) and DMAP (0.052 mg, 0.005 mmol, 0.01 equiv). A small 

amount of DMF was needed for complete dissolution of the acid. This solution was stirred 

for 10 min before addition of 4-methoxyaniline (8 mg, 0.075 mmol, 1.5 equiv). The 

reaction slurry was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 

mL). Organics were separated and the solvent was removed under reduced pressure. 

Column chromatography (0 to 100% (EtOAc/Hex) on silica gel was used to purify 
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sufficient amounts of the target molecule for biological testing and characterization. LRMS 

(APCI - quad) m/z cal’d C27H25F6N4O3
+ [M+H+], 567.5119 found 567. 1H NMR (400 

MHz, CDCl3) δ 7.88 (s, 1H), 7.81 (s, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.58 - 7.49 (m, 3H), 

7.43 (t, J = 7.9 Hz, 1H), 7.35 (s, 1H), 6.91 (d, J = 8.8 Hz, 2H), 6.55 (br, 1H), 3.82 (s, 3H), 

3.77 - 3.69 (m, 4H), 3.45 - 3.36 (m, 4H). 

 

4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-((3,4-
dichlorophenyl)carbamoyl)phenyl)piperazine-1-carboxamide (3.71)  

 

To a stirring solution of 3-(4-(3,5-bis(trifluoromethyl)phenyl)piperazine-1-

carboxamido)benzoic acid (20 mg, 0.05 mmol, 1 equiv) in DCM (5 mL) was added EDC 

(13 mg, 0.1 mmol, 2.0 equiv) and DMAP (0.052 mg, 0.005 mmol, 0.01 equiv). A small 

amount of DMF was needed for complete dissolution of the acid. This solution was stirred 

for 10 min before addition of 3,4-dichloroaniline (11 mg, 0.075 mmol, 1.5 equiv). The 

reaction slurry was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 

mL). Organics were separated and the solvent was removed under reduced pressure. 

Column chromatography (0 to 100% (EtOAc/Hex) on silica gel was used to purify 

sufficient amounts of the target molecule for biological testing and characterization. LRMS 

(APCI - quad) m/z cal’d C26H21Cl2F6N4O2
+ [M+H+], 606.3699 found 607. 1H NMR (400 

MHz, CDCl3) δ 8.83 (s, 1H), 7.89 (d, J = 2.4 Hz, 1H), 7.84 (s, 1H), 7.56 - 7.44 (m, 3H), 

7.42 - 7.32 (m, 3H), 7.27 (s, 1H), 6.84 (br, 1H), 3.80 - 3.65 (m, 4H), 3.43 - 3.29 (m, 4H). 
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4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-((3-
chlorophenyl)carbamoyl)phenyl)piperazine-1-carboxamide (3.72)  

 

To a stirring solution of 3-(4-(3,5-bis(trifluoromethyl)phenyl)piperazine-1-

carboxamido)benzoic acid (20 mg, 0.05 mmol, 1 equiv) in DCM (5 mL) was added EDC 

(13 mg, 0.1 mmol, 2.0 equiv) and DMAP (0.052 mg, 0.005 mmo, 0.01 equiv). A small 

amount of DMF was needed for complete dissolution of the acid. This solution was stirred 

for 10 min before addition of 3,4-dichloroaniline (8 mg, 0.075 mmol, 1.5 equiv). The 

reaction slurry was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 

mL). Organics were separated and the solvent was removed under reduced pressure. 

Column chromatography (0 to 100% (EtOAc/Hex) on silica gel was used to purify 

sufficient amounts of the target molecule for biological testing and characterization. LRMS 

(APCI - quad) m/z cal’d C26H22ClF6N4O2
+ [M+H+], 571.9279 found 572. 1H NMR (400 

MHz, CDCl3) δ 8.07 (s, 1H), 7.88 (t, J = 2.0 Hz, 1H), 7.78 (t, J = 2.1 Hz, 1H), 7.60 (d, J = 

8.0 Hz, 1H), 7.54 - 7.46 (m, 2H), 7.41 (t J = 7.9 Hz, 1H), 7.36 (s, 1H), 7.29 (d, J = 8.1 Hz, 

1H), 7.13 (ddd, J1 = 1.0, J2 = 3.0, J3 = 8.0 Hz, 1H), 6.71 (br, 1H), 3.83 - 3.66 (m, 4H), 3.46 

- 3.30 (m, 4H). 

 

4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-((4-(dimethylamino)phenyl)-
carbamoyl)phenyl)piperazine-1-carboxamide (3.73)  
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To a stirring solution of 3-(4-(3,5-bis(trifluoromethyl)phenyl)piperazine-1-

carboxamido)benzoic acid (20 mg, 0.05 mmol, 1 equiv) in DCM (5 mL) was added EDC 

(13 mg, 0.1 mmol, 2.0 equiv) and DMAP (0.052 mg, 0.005 mmol, 0.01 equiv). A small 

amount of DMF was needed for complete dissolution of the acid. This solution was stirred 

for 10 min before addition of N1,N1-dimethylbenzene-1,4-diamine (9 mg, 0.075 mmol, 

1.5 equiv). The reaction slurry was brought to 37 ˚C for 12 h before quenching with 1 N 

HCl solution (3 mL). Organics were separated and the solvent was removed under reduced 

pressure. Column chromatography (0 to 100% (EtOAc/Hex) on silica gel was used to 

purify sufficient amounts of the target molecule for biological testing and characterization. 

LRMS (APCI - quad) m/z cal’d C28H28F6N5O2
+ [M+H+], 580.5549 found 580. 1H NMR 

(400 MHz, CDCl3) δ 7.91 (s, 1H), 7.69 (d, J = 7.9 Hz, 1H), 7.58 - 7.50 (m, 2H), 7.40 (t, J 

= 8.0 Hz, 1H), 7.34 (s, 1H), 7.25 (s, 1H), 3.80 - 3.65 (m, 4H), 3.42 - 3.33 (m, 4H), 2.98 (s, 

6H). 

 

4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-((4-(tert-
butyl)phenyl)carbamoyl)phenyl)piperazine-1-carboxamide (3.74)  

 

To a stirring solution of 3-(4-(3,5-bis(trifluoromethyl)phenyl)piperazine-1-

carboxamido)benzoic acid (20 mg, 0.05 mmol, 1 equiv) in DCM (5 mL) was added EDC 

(13 mg, 0.1 mmol, 2.0 equiv) and DMAP (0.052 mg, 0.005 mmol, 0.01 equiv). A small 

amount of DMF was needed for complete dissolution of the acid. This solution was stirred 

for 10 min before addition of 4-(tert-butyl)aniline (10 mg, 0.075 mmol, 1.5 equiv). The 
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reaction slurry was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 

mL). Organics were separated and the solvent was removed under reduced pressure. 

Column chromatography (0 to 100% (EtOAc/Hex) on silica gel was used to purify 

sufficient amounts of the target molecule for biological testing and characterization. LRMS 

(APCI - quad) m/z cal’d C30H31F6N4O2
+ [M+H+], 593.5939 found 594. 1H NMR (400 

MHz, CDCl3) δ 7.91 - 7.83 (m, 2H), 7.68 (d, J = 8.5 Hz, 1H), 7.57 - 7.51 (m, 3H), 7.47 - 

7.33 (m, 4H), 6.61 (br, 1H), 3.78 - 3.69 (m, 4H), 3.45 - 3.35 (m, 4H), 1.32 (s, 9H). 

 

4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-((4-chloro-3-
(trifluoromethyl)phenyl)carbamoyl)phenyl)piperazine-1-carboxamide (3.75)  

 

To a stirring solution of 3-(4-(3,5-bis(trifluoromethyl)phenyl)piperazine-1-

carboxamido)benzoic acid (20 mg, 0.05 mmol, 1 equiv) in DCM (5 mL) was added EDC 

(13 mg, 0.1 mmol, 2.0 equiv) and DMAP (0.052 mg, 0.005 mmol, 0.01 equiv). A small 

amount of DMF was needed for complete dissolution of the acid. This solution was stirred 

for 10 min before addition of 4-chloro-3-(trifluoromethyl)aniline (13 mg, 0.075 mmol, 1.5 

equiv). The reaction slurry was brought to 37 ˚C for 12 h before quenching with 1 N HCl 

solution (3 mL). Organics were separated and the solvent was removed under reduced 

pressure. Column chromatography (0 to 100% (EtOAc/Hex) on silica gel was used to 

purify sufficient amounts of the target molecule for biological testing and characterization. 

LRMS (APCI - quad) m/z cal’d C27H21ClF9N4O2
+ [M+H+], 639.9261 found 695. 1H NMR 

(400 MHz, CDCl3) δ 8.34 (s, 1H), 7.99 (d, J = 2.5 Hz, 1H), 7.93 (s, 1H), 7.88 (dd, J1 = 2.6, 



 200 

J2 = 8.8 Hz, 1H), 7.57 - 7.45 (m, 3H) 7.41 (t, J = 7.8 Hz, 1H), 7.36 (s, 1H), 7.27 (s, 2H), 

6.67 (br, 1H), 3.79 - 3.71 (m, 4H), 3.44 - 3.35 (m, 4H). 

 

4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-(pyridin-4-ylcarbamoyl)phenyl)piperazine-
1-carboxamide (3.76)  

 

To a stirring solution of 3-(4-(3,5-bis(trifluoromethyl)phenyl)piperazine-1-

carboxamido)benzoic acid (20 mg, 0.05 mmol, 1 equiv) in DCM (5 mL) was added EDC 

(13 mg, 0.1 mmol, 2.0 equiv) and DMAP (0.052 mg, 0.005mmol, 0.01 equiv). A small 

amount of DMF was needed for complete dissolution of the acid. This solution was stirred 

for 10 min before addition of pyridin-4-amine (6 mg, 0.075 mmol, 1.5 equiv). The reaction 

slurry was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). 

Organics were separated and the solvent was removed under reduced pressure. Column 

chromatography (0 to 100% (EtOAc/Hex) on silica gel was used to purify sufficient 

amounts of the target molecule for biological testing and characterization. LRMS (APCI - 

quad) m/z cal’d C25H22F6N5O2
+ [M+H+], 538.4739 found 539. 1H NMR (400 MHz, 

CDCl3) δ 8.54 (d, J = 5.4 Hz, 1H) 8.03 - 7.89 (m, 2H), 7.64 (d, J = 6.5 Hz, 1H), 7.55 (t, J 

= 6.9 Hz, 1H), 7.46 - 7.32 (m, 3H), 6.70 (br, 1H), 3.80 - 3.66 (m, 4H), 3.45 - 3.32 (m, 4H). 
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4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-(pyridin-3-ylcarbamoyl)phenyl)piperazine-
1-carboxamide (3.77)  

 

To a stirring solution of 3-(4-(3,5-bis(trifluoromethyl)phenyl)piperazine-1-

carboxamido)benzoic acid (20 mg, 0.05 mmol, 1 equiv) in DCM (5 mL) was added EDC 

(13 mg, 0.1 mmol, 2.0 equiv) and DMAP (0.052 mg, 0.01 equiv). A small amount of DMF 

was needed for complete dissolution of the acid. This solution was stirred for 10 min before 

addition of pyridin-3-amine (6 mg, 0.075 mmol, 1.5 equiv). The reaction slurry was 

brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics were 

separated and the solvent was removed under reduced pressure. Column chromatography 

(0 to 100% (EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target 

molecule for biological testing and characterization. LRMS (APCI - quad) m/z cal’d 

C25H22F6N5O2
+ [M+H+], 538.4739 found 539. 1H NMR (400 MHz, CDCl3) δ 11.1 (s, 1H), 

9.37 (s, 1H), 9.14 (s, 1H), 8.29 (br, 1H), 8.16 (d, J = 5.6 Hz, 1H), 8.11 (br, 1H), 7.70 (s, 

1H), 7.63 (d, J = 8.2, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.32 (s, 1H), 7.21 (s, 2H), 7.10 (t, J = 

7.8 Hz, 1H), 3.76 (br, 4H), 3.29 (br, 4H). 

 

4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-((4-
(trifluoromethyl)phenyl)carbamoyl)phenyl)piperazine-1-carboxamide (3.78)  
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To a stirring solution of 3-(4-(3,5-bis(trifluoromethyl)phenyl)piperazine-1-

carboxamido)benzoic acid (20 mg, 0.05 mmol, 1 equiv) in DCM (5 mL) was added EDC 

(13 mg, 0.1 mmol, 2.0 equiv) and DMAP (0.052 mg, 0.005 mmol, 0.01 equiv). A small 

amount of DMF was needed for complete dissolution of the acid. This solution was stirred 

for 10 min before addition of 4-(trifluoromethyl)aniline (10 mg, 0.075 mmol, 1.5 equiv). 

The reaction slurry was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution 

(3 mL). Organics were separated and the solvent was removed under reduced pressure. 

Column chromatography (0 to 100% (EtOAc/Hex) on silica gel was used to purify 

sufficient amounts of the target molecule for biological testing and characterization. LRMS 

(APCI - quad) m/z cal’d C27H22F9N4O2
+ [M+H+], 605.4841 found 606. 1H NMR (400 

MHz, CDCl3) δ 8.18 (s, 1H), 7.96 (s, 1H), 7.79 (d, J = 8.3 Hz, 2H), 7.63 (d, J = 8.2 Hz, 

2H), 7.57 (d, J = 7.5 Hz, 1H), 7.48 -7.37 (m, 2H), 7.19 - 7.06 (m, 2H), 6.58 (br, 1H), 3.73 

(br, 4H), 3.33 (br, 4H). 

 

N-(4-Chloro-3-(trifluoromethyl)phenyl)-2-(2-(3-
(trifluoromethyl)phenyl)acetamido)acetamide (3.79) 

 

To a stirring solution of 2-amino-N-(4-chloro-3-(trifluoromethyl)phenyl)acetamide (38 

mg, 0.14 mmol, 1.0 equiv), triethylamine (1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) 

was added 2-(3-(trifluoromethyl)phenyl)acetyl chloride (40 mg, 0.17 mmol,1.2 equiv) and 

the solution was stirred for 30 min at RT. After confirming consumption of limiting reagent 

by TLC, 3 mL of distilled water was added to the reaction vial. The organic layer was 

separated and removed under reduced atmosphere. Column chromatography (0 to 50% 
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EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target molecule for 

biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C18H14ClF6N2O2
+ [M+H+] 439.7619, found 439. 1H NMR (400 MHz, CDCl3) δ 8.86 (s, 

1H), 7.85 (d, J = 2.6 Hz, 1H), 7.61 - 7.53 (m, 3H), 7.51 - 7.46 (m, 2H), 7.39 (d, J = 8.8 Hz, 

1H), 6.52 (s, 1H), 4.11 (d, J = 5.3 Hz, 2H), 3.72 (s, 4H). 

 

N-(4-Chloro-3-(trifluoromethyl)phenyl)-2-(3-(3-cyanophenyl)ureido)acetamide 
(3.80) 

 

To a stirring solution of 3-cyanobenzoic acid (15 mg, 0.12 mmol, 1 equiv) in DCM (5 mL) 

was added EDC (32 mg, 0.24 mmol, 2.0 equiv) and DMAP (32 mg, 0.30 mmol, 2.5 equiv). 

This solution was stirred for 10 min before addition of 2-amino-N-(4-chloro-3-

(trifluoromethyl)phenyl)acetamide (40 mg, 0.16 mmol,1.5 equiv). The reaction slurry was 

brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics were 

separated and the solvent was removed under reduced pressure. Column chromatography 

(0 to 45% (EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target 

molecule for biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C17H13ClF3N4O2
+ [M+H+] 397.7617, found 398. 1H NMR (400 MHz, CD3OD) δ 8.14 (t, J 

= 1.7 Hz, 1H), 8.08 (td, J1 = 1.4, J2 = 6.6 Hz, 1H), 8.0 (d, J = 2.6 Hz, 1H), 7.82 (td, J1 = 

1.4, J2 = 7.8 Hz, 1H), 7.69 (dd, J1 = 2.6, J2 = 8.8 Hz, 1H), 7.58 (t, J = 7.8 Hz, 1H), 7.43 (d, 

J = 8.7 Hz, 1H), 4.12 (s, 2H). 
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2-(3-(3,5-bis(Trifluoromethyl)phenyl)ureido)-N-(4-chloro-3-
(trifluoromethyl)phenyl)acetamide (3.81) 

 

To a stirring solution of 3,5-bistrifluoromethylbenzoic acid (27 mg, 0.12 mmol, 1 equiv) 

in DCM (5 mL) was added EDC (32 mg, 0.24 mmol, 2.0 equiv) and DMAP (32 mg, 0.30 

mmol, 2.5 equiv). This solution was stirred for 10 min before addition of 2-amino-N-(4-

chloro-3-(trifluoromethyl)phenyl)acetamide (40 mg, 0.16 mmol,1.5 equiv). The reaction 

slurry was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). 

Organics were separated and the solvent was removed under reduced pressure. Column 

chromatography (0 to 45% (EtOAc/Hex) on silica gel was used to purify sufficient amounts 

of the target molecule for biological testing and characterization. LRMS (APCI - quad) m/z 

cal’d for C18H12ClF9N3O2
+ [M+H+] 508.7481, found 509. 1H NMR (400 MHz, CD3OD) δ 

8.58 (s, 2H), 8.20 (s, 1H), 8.13 (d, J = 2.6 Hz, 1H), 7.82 (dd, J1 = 2.6, J2 = 8.8 Hz, 1H), 

7.56 (d, J = 8.8 Hz, 1H), 4.27 (s, 3H). 

 

S-(2-((2-Chloro-5-(trifluoromethyl)phenyl)amino)-2-oxoethyl) 2-(3-
(Trifluoromethyl)phenyl)ethanethioate (3.82) 

 

To a stirring solution of N-(2-chloro-5-(trifluoromethyl)phenyl)-2-mercaptoacetamide (40 

mg, 0.15 mmol, 1.0 equiv), triethylamine (1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) 

was added 2-(3-(trifluoromethyl)phenyl)acetyl chloride (40 mg, 0.18 mmol, 1.2 equiv) and 
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the solution was stirred for 30 min at RT. After confirming consumption of limiting reagent 

by TLC, 3 mL of distilled water was added to the reaction vial. The organic layer was 

separated and removed under reduced atmosphere. Column chromatography (0 to 50% 

EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target molecule for 

biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C18H14ClF6N2O2
+ [M+H+] 439.7619, found 440. 1H NMR (400 MHz, CDCl3) δ 8.67 (d, J 

= 2.0 Hz, 1H), 8.53 (br, 1H), 7.62 - 7.56 (m, 2H), 7.52 - 7.45 (m, 3H), 7.29 (dd, J1 = 2.1, 

J2 = 8.4 Hz, 1H), 4.01 (s, 2H), 3.75 (s, 2H). 

 

S-(2-((2-Chloro-5-(trifluoromethyl)phenyl)amino)-2-oxoethyl) m-
tolylcarbamothioate (3.83)  

 

To a stirring solution of N-(2-chloro-5-(trifluoromethyl)phenyl)-2-mercaptoacetamide (30 

mg, 0.10 mmol, 1.0 equiv), triethylamine (1.7 µL, 0.01 mmol, 0.1 equiv) in DCM (5 mL) 

was added 1-isocyanato-3-methylbenzene (20 mg, 0.12 mmol, 1.2 equiv) and the solution 

was stirred for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 

mL of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d C17H15ClF3N2O2S+ [M+H+], 

403.8237 found 404. 1H NMR (400 MHz, CD3OD) δ 8.49 (s, 1H), 7.64 (d, J = 8.4 Hz, 
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1H), 7.43 (dd, J1 = 2.1, J2 = 8.4 Hz, 1H), 7.36 - 7.29 (m, 2H), 7.18 (t, J = 7.7 Hz, 1H), 6.93 

(d, J = 7.6 Hz, 1H), 3.89 (s, 2H), 2.32 (s, 3H). 

 

S-(2-Oxo-2-((3-(trifluoromethyl)phenyl)amino)ethyl) m-tolylcarbamothioate (3.84) 

 

To a stirring solution of 2-mercapto-N-(3-(trifluoromethyl)phenyl)acetamide (30 mg, 0.10 

mmol, 1.0 equiv), triethylamine (1.7 µL, 0.010 mmol, 0.1 equiv) in DCM (5 mL) was 

added 1-isocyanato-3-methylbenzene (20 mg, 0.12 mmol, 1.2 equiv) and the solution was 

stirred for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL 

of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d C17H16F3N2O2S+ [M+H+], 369.3817 

found 370. 1H NMR (400 MHz, CD3OD) δ 8.04 (s, 1H), 7.77 (br, 1H), 7.51 (d, J = 8.4 Hz, 

1H), 7.40 (d, J = 7.6 Hz, 1H), 7.34 - 7.25 (m, 2H), 7.18 (t, J = 7.8 Hz, 1H), 6.92 (d, J = 7.4 

Hz, 1H) 3.38 (s, 2H), 2.32 (s, 3H). 

 

S-(2-Oxo-2-((3-(trifluoromethyl)phenyl)amino)ethyl) (3-
cyanophenyl)carbamothioate (3.85) 
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To a stirring solution of 2-mercapto-N-(3-(trifluoromethyl)phenyl)acetamide (36 mg, 0.15 

mmol, 1.0 equiv), triethylamine (1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was 

added 3-cyanophenylisocyanate (40 mg, 0.18 mmol, 1.2 equiv) and the solution was stirred 

for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL of 

distilled water was added to the reaction vial. The organic layer was separated and removed 

under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel 

was used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C17H13F3N3O2S+ [M+H+] 380.3647, 

found 381. 1H NMR (400 MHz, CD3OD) δ 7.93 (br, 1H), 7.85 (t, J = 1.9 Hz, 1H), 7.68 - 

7.62 (m, 2H), 7.44 - 7.27 (m, 4H), 3.80 (s, 2H). 

 

Methyl 3-((((2-oxo-2-((3-
(trifluoromethyl)phenyl)amino)ethyl)thio)carbonyl)amino)benzoate (3.86) 

 

To a stirring solution of 2-mercapto-N-(3-(trifluoromethyl)phenyl)acetamide (36 mg, 0.15 

mmol, 1.0 equiv), triethylamine (1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was 

added 4-isocyanato-1-methyl-1H-indole (40 mg, 0.19 mmol, 1.2 equiv) and the solution 

was stirred for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 

mL of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C18H16F3N2O4S+ [M+H+] 
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413.3907, found 414. 1H NMR (400 MHz, CD3OD) δ 8.08 (s, 1H), 7.92 (s, 1H), 7.70 - 

7.60 (m, 3H), 7.40 (t, J = 8.0 Hz, 1H), 7.33 - 7.25 (m, 2H), 3.79 (s, 3H), 3.78 (s, 2H). 

 

Dimethyl 5-((((2-oxo-2-((3-
(trifluoromethyl)phenyl)amino)ethyl)thio)carbonyl)amino)isophthalate (3.87) 

 

To a stirring solution of 2-mercapto-N-(3-(trifluoromethyl)phenyl)acetamide (36 mg, 0.15 

mmol, 1.0 equiv), triethylamine (1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was 

added 4-isocyanato-1-methyl-1H-indole (43 mg, 0.19 mmol, 1.2 equiv) and the solution 

was stirred for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 

mL of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C20H18F3N2O6S+ [M+H+] 

471.4267, found 471. 1H NMR (400 MHz, CD3OD) δ 8.30 (d, J = 1.4 Hz, 2H), 8.22 (s, 

1H), 7.93 (s, 1H), 7.68 (d, J = 8.2 Hz, 1H), 7.41 (t, J = 8.0 Hz, 1H), 7.29 (d, J = 7.7 Hz, 

1H), 3.83 (s, 6H), 3.81 (s, 2H). 
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S-(2-Oxo-2-((3-(trifluoromethyl)phenyl)amino)ethyl) (1-methyl-1H-indol-4-
yl)carbamothioate (3.88) 

 

To a stirring solution of 2-mercapto-N-(3-(trifluoromethyl)phenyl)acetamide (36 mg, 0.15 

mmol, 1.0 equiv), triethylamine (1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was 

added 4-isocyanato-1-methyl-1H-indole (42 mg, 0.18 mmol, 1.2 equiv) and the solution 

was stirred for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 

mL of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C19H17F3N3O2S+ [M+H+] 

408.4187, found 408. 1H NMR (400 MHz, CD3OD) δ 7.94 (s, 1H), 7.66 (d, J = 4.3 Hz, 

1H), 7.39 (t, J = 7.96, 1H), 7.31 - 7.19 (m, 2H), 7.11 (d, J = 8.2 Hz, 1H), 7.05 - 6.99 (m, 

2H), 6.46 (d, J = 3.2 Hz, 1H), 3.76 (s, 2H), 3.68 (s, 3H). 

 

3-(Trifluoromethyl)-N-((5-(trifluoromethyl)-1H-benzo[d]imidazol-2-
yl)methyl)benzamide (3.90) 

 

To a stirring solution of 3-(trifluoromethyl)benzoic acid (20 mg, 0.11 mmol, 1 equiv) in 

DCM (5 mL) was added EDC (36 mg, 0.22 mmol, 2.0 equiv) and DMAP (35 mg, 0.26 

mmol, 2.5 equiv). This solution was stirred for 10 min before addition of (5-
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(trifluoromethyl)-1H-benzo[d]imidazol-2-yl)methanamine (30 mg, 0.16 mmol, 1.5 equiv). 

The reaction slurry was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution 

(3 mL). Organics were separated and the solvent was removed under reduced pressure. 

Column chromatography (0 to 45% (EtOAc/Hex) on silica gel was used to purify sufficient 

amounts of the target molecule for biological testing and characterization. LRMS (APCI - 

quad) m/z cal’d for C17H12F6N3O+ [M+H+] 388.2929, found 388. 1H NMR (400 MHz, 

CD3OD) δ 8.98 (s, 1H), 8.23 (s, 1H), 8.12 (d, J = 7.8 Hz, 1H), 7.83 (s, 1H), 7.77 (d, J = 7.8 

Hz, 1H), 7.66 - 7.47 (m, 3H), 4.89 (d, J = 5.7 Hz, 2H).  

 

3,5-bis(Trifluoromethyl)-N-((5-(trifluoromethyl)-1H-benzo[d]imidazol-2-
yl)methyl)benzamide (3.91) 

 

To a stirring solution of 3,5-bis(trifluoromethyl)benzoic acid (20 mg, 0.11 mmol, 1 equiv) 

in DCM (5 mL) was added EDC (36 mg, 0.22 mmol, 2.0 equiv) and DMAP (35 mg, 0.26 

mmol, 2.5 equiv). This solution was stirred for 10 min before addition of (5-

(trifluoromethyl)-1H-benzo[d]imidazol-2-yl)methanamine (30 mg, 0.16 mmol, 1.5 equiv). 

The reaction slurry was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution 

(3 mL). Organics were separated and the solvent was removed under reduced pressure. 

Column chromatography (0 to 45% (EtOAc/Hex) on silica gel was used to purify sufficient 

amounts of the target molecule for biological testing and characterization. LRMS (APCI - 

quad) m/z cal’d for C18H11F9N3O+ [M+H+] 456.2911, found 456. 1H NMR (400 MHz, 
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CDCl3) δ 8.49 (br, 1H), 8.42 (s, 1H), 8.05 (s, 1H), 7.87 (s, 1H), 7.64 (d, J = 7.9 Hz, 1H), 

7.54 (d, J = 7.8 Hz, 1H), 4.89 (d, J = 5.7 Hz, 2H). 

 

3-Cyano-N-((5-(trifluoromethyl)-1H-benzo[d]imidazol-2-yl)methyl)benzamide (3.92) 

 

To a stirring solution of 3-cyanobenzoic acid (20 mg, 0.11 mmol, 1 equiv) in DCM (5 mL) 

was added EDC (36 mg, 0.22 mmol, 2.0 equiv) and DMAP (35 mg, 0.26 mmol, 2.5 equiv). 

This solution was stirred for 10 min before addition of (5-(trifluoromethyl)-1H-

benzo[d]imidazol-2-yl)methanamine (30 mg, 0.16 mmol, 1.5 equiv). The reaction slurry 

was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics 

were separated and the solvent was removed under reduced pressure. Column 

chromatography (0 to 45% (EtOAc/Hex) on silica gel was used to purify sufficient amounts 

of the target molecule for biological testing and characterization. LRMS (APCI - quad) m/z 

cal’d for C17H12F3N4O+ [M+H+] 345.3047, found 346. 1H NMR (400 MHz, CDCl3) δ 8.58 

(t, J = 5.9 Hz, 1H), 8.25 (s, 1H), 8.16 (d, J = 7.9 Hz, 1H), 7.82 (d, J = 7.7 Hz, 1H), 7.59 (d, 

J = 7.9 Hz, 1H), 7.54 (t, J = 8.7 Hz, 1H), 4.87 (d, J = 5.7 Hz, 2H). 

 

2-(4-Cyanophenyl)-N-((5-(trifluoromethyl)-1H-benzo[d]imidazol-2-
yl)methyl)acetamide (3.93) 
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To a stirring solution of 2-(4-cyanophenyl)acetic acid (20 mg, 0.11 mmol, 1 equiv) in DCM 

(5 mL) was added EDC (36 mg, 0.22 mmol, 2.0 equiv) and DMAP (35 mg, 0.20 mmol, 

2.5 equiv). This solution was stirred for 10 min before addition of (5-(trifluoromethyl)-1H-

benzo[d]imidazol-2-yl)methanamine (30 mg, 0.16 mmol, 1.5 equiv). The reaction slurry 

was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics 

were separated and the solvent was removed under reduced pressure. Column 

chromatography (0 to 45% (EtOAc/Hex) on silica gel was used to purify sufficient amounts 

of the target molecule for biological testing and characterization. LRMS (APCI - quad) m/z 

cal’d for C18H14F3N4O+ [M+H+] 359.3317, found 359. 1H NMR (400 MHz, CDCl3) δ 10.43 

(br, 1H), 7.64 (d, J = 8.2 Hz, 2H), 7.52 (s, 1H), 7.38 (d, J = 8.1 Hz, 2H), 6.81 (br, 1H), 4.62 

(d, J = 5.9 Hz, 2H), 3.69 (s, 2H). 

 

N-((5-(Trifluoromethyl)-1H-benzo[d]imidazol-2-yl)methyl)-2-(3-
(trifluoromethyl)phenoxy)acetamide (3.94) 

 

To a stirring solution of 2-(3-(trifluoromethyl)phenoxy)acetic acid (20 mg, 0.11 mmol, 1 

equiv) in DCM (5 mL) was added EDC (36 mg, 0.22 mmol, 2.0 equiv) and DMAP (35 mg, 

0.26 mmol, 2.5 equiv). This solution was stirred for 10 min before addition of (5-

(trifluoromethyl)-1H-benzo[d]imidazol-2-yl)methanamine (30 mg, 0.16 mmol, 1.5 equiv). 

The reaction slurry was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution 

(3 mL). Organics were separated and the solvent was removed under reduced pressure. 

Column chromatography (0 to 45% (EtOAc/Hex) on silica gel was used to purify sufficient 
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amounts of the target molecule for biological testing and characterization. LRMS (APCI - 

quad) m/z cal’d for C18H14F6N3O2
+ [M+H+] 418.3189, found 419. 1H NMR (400 MHz, 

CDCl3) δ 10.94 (br, 1H), 8.09 (s, 1H), 7.95 (br, 1H), 7.74 (br, 1H), 7.51 (s, 1H), 7.39 (t, J 

= 8.0 Hz, 1H), 7.09 (s, 1H), 7.03 (d, J = 8.2, 1H), 4.77 (d, J = 6.1, 2H), 4.58 (s, 3H).  

 

5,5,8,8-Tetramethyl-N-((5-(trifluoromethyl)-1H-benzo[d]imidazol-2-yl)methyl)-
5,6,7,8-tetrahydronaphthalene-2-carboxamide (3.95)  

 

To a stirring solution of 5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalene-2-carboxylic 

acid (41 mg, 0.11 mmol, 1 equiv) in DCM (5 mL) was added EDC (36 mg, 0.22 mmol, 2.0 

equiv) and DMAP (35 mg, 0.20 mmol, 2.5 equiv). This solution was stirred for 10 min 

before addition of (5-(trifluoromethyl)-1H-benzo[d]imidazol-2-yl)methanamine (30 mg, 

0.16 mmol, 1.5 equiv). The reaction slurry was brought to 37 ˚C for 12 h before quenching 

with 1 N HCl solution (3 mL). Organics were separated and the solvent was removed under 

reduced pressure. Column chromatography (0 to 45% (EtOAc/Hex) on silica gel was used 

to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C24H27F3N3O+ [M+H+] 430.4947, 

found 431. 1H NMR (400 MHz, CDCl3) δ 8.00 (t, J = 8.0 Hz, 1H), 7.86 (d, J = 1.9 Hz, 

2H), 7.60 (dd, J1 = 2.1, J2 = 8.3 Hz, 2H), 7.50 (d, J = 8.6 Hz, 1H), 7.35 (d, J = 8.2 Hz, 1H), 

4.87 (d, J = 5.9 Hz, 2H), 1.68 (s, 6H), 1.37 - 1.23 (m, 16H). 
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2-Chloro-N-((5-(trifluoromethyl)-1H-benzo[d]imidazol-2-yl)methyl)isonicotinamide 
(3.96)  

 

To a stirring solution of 2-chloroisonicotinic acid (28 mg, 0.11 mmol, 1 equiv) in DCM (5 

mL) was added EDC (36 mg, 0.22 mmol, 2.0 equiv) and DMAP (35 mg, 0.20 mmol, 2.5 

equiv). This solution was stirred for 10 min before addition of (5-(trifluoromethyl)-1H-

benzo[d]imidazol-2-yl)methanamine (30 mg, 0.16 mmol, 1.5 equiv). The reaction slurry 

was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics 

were separated and the solvent was removed under reduced pressure. Column 

chromatography (0 to 45% (EtOAc/Hex) on silica gel was used to purify sufficient amounts 

of the target molecule for biological testing and characterization. LRMS (APCI - quad) m/z 

cal’d for C15H11ClF3N4O+ [M+H+] 355.7247, found 356. 1H NMR (400 MHz, CDCl3) δ 

8.88 (br, 1H), 8.52 (dd, J1 = 0.7, J2, = 5.2 Hz, 1H), 7.86 (s, 2H), 7.71 (dd, J1 = 1.5, J2 = 5.2 

Hz, 1H), 7.64 (d, J = 8.5 Hz, 1H), 7.55 (d, J = 8.5 Hz, 1H), 4.85 (d, J = 5.7 Hz, 2H). 

 

1-((3-(Trifluoromethyl)benzyl)sulfonyl)-4-(3-(trifluoromethyl)phenyl)piperazine 
(3.97)  

 

A stirring solution of 1-(3-(trifluoromethyl)phenyl)piperazine (20 mg, 0.09 mmol, 1 equiv) 

in DCM (3 mL) was chilled to 0 °C and to this solution was added pyridine (21 mg, 0.27 

mmol, 3 equiv) and (3-(trifluoromethyl)phenyl)methanesulfonyl chloride (22 mg, 0.11 
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mmol, 1.2 equiv). The ice bath was removed and after confirming consumption of limiting 

reagent by TLC, 2 mL of distilled water was added to the reaction vial. The organic layer 

was separated and removed under reduced atmosphere. Column chromatography (0 to 50% 

EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target molecule for 

biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C19H19F6N2O2S+ [M+H+] 453.4229, found 453. 1H NMR (400 MHz, CDCl3) δ 7.70 -7.61 

(m, 3H), 7.54 (t, J = 7.6 Hz, 1H), 7.36 (t, J = 8.0 Hz, 1H), 7.14 (d, J = 7.6 Hz, 1H), 7.08 (s, 

1H), 7.03 (d, J = 8.64, 1H), 4.29 (s, 2H), 3.36 - 3.28 (m, 4H), 3.23 - 3.14 (m, 4H). 13C 

NMR (176 MHz, CDCl3) δ 150.9, 134.1, 131.4 (ddd, J1 = 32, J2 = 48, J3 = 64), 129.8, 

129.7, 129.4, 127.5 (d, J = 4 Hz), 125.7 (d, J = 4 Hz), 123.9 (dq, J1 = 72, J2 = 273 Hz), 

119.7, 117.2, 113.2, 56.4, 49.4, 45.9. 

 

1-(Benzylsulfonyl)-4-phenylpiperazine (3.98) 

 

A stirring solution of 1-phenylpiperazine (20 mg, 0.18 mmol, 1 equiv) in DCM (3 mL) was 

chilled to 0 °C and to this solution was added pyridine (21 mg, 0.56 mmol, 3 equiv) and 

phenylmethanesulfonyl chloride (28 mg, 0.21 mmol, 1.2 equiv). The ice bath was removed 

and after confirming consumption of limiting reagent by TLC, 2 mL of distilled water was 

added to the reaction vial. The organic layer was separated and removed under reduced 

atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was used to 

purify sufficient amounts of the target molecule for biological testing and characterization. 

LRMS (APCI - quad) m/z cal’d for C17H21N2O2S+ [M+H+], 317.4265 found 318. 1H NMR 
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(400 MHz, CDCl3) δ 7.38 - 7.28 (m, 4H), 7.23 - 7.15 (m, 4H), 6.86 - 6.77 (m, 2H), 4.19 (s, 

2H), 3.25 - 3.15 (m, 4H), 3.08 - 3.00 (m, 4H). 13C NMR (176 MHz, CDCl3) δ 165.9, 

157.8, 151.2, 132.5 (q, J = 33 Hz), 132.0 (q, J = 33 Hz), 130.3, 123.5 (dq, J1 = 60, J2 = 272 

Hz), 118.5 (d, J = 3 Hz), 117.8, 115.3 (d, J = 4 Hz), 113.0, 111.8 (d, J = 4 Hz), 67.6, 48.6, 

48.2, 44.8, 41.6. 

 

1-((3-Methylbenzyl)sulfonyl)-4-phenylpiperazine (3.99)  

 

A stirring solution of 1-phenylpiperazine (20 mg, 0.12 mmol, 1 equiv) in DCM (3 mL) was 

chilled to 0 °C and to this solution was added pyridine (21 mg, 0.36 mmol, 3 equiv) and 

m-tolylmethanesulfonyl chloride (30 mg, 0.15 mmol, 1.2 equiv). The ice bath was removed 

and after confirming consumption of limiting reagent by TLC, 2 mL of distilled water was 

added to the reaction vial. The organic layer was separated and removed under reduced 

atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was used to 

purify sufficient amounts of the target molecule for biological testing and characterization. 

LRMS (APCI - quad) m/z cal’d for C18H23N2O2S+ [M+H+], 331.4535 found 331. 1H NMR 

(400 MHz, CDCl3) δ 7.35 - 7.15 (m, 6H), 6.94 - 6.85 (m, 3H), 4.22 (s, 2H), 3.33 - 3.22 (m, 

4H), 3.15 - 3.09 (m, 4H), 2.37 (s, 3H). 
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1-Phenyl-4-((2-(trifluoromethyl)benzyl)sulfonyl)piperazine (3.100)  

 

A stirring solution of 1-phenylpiperazine (20 mg, 0.18 mmol, 1 equiv) in DCM (3 mL) was 

chilled to 0 °C and to this solution was added pyridine (21 mg, 0.56 mmol, 3 equiv) and 

(2-(trifluoromethyl)phenyl)methanesulfonyl chloride (38 mg, 0.21 mmol, 1.2 equiv). The 

ice bath was removed and after confirming consumption of limiting reagent by TLC, 2 mL 

of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C18H20F3N2O2S+ [M+H+], 

385.4247 found 386. 1H NMR (400 MHz, CDCl3) δ 7.85 (d, J = 7.8 Hz, 1H), 7.73 (dd, J1 

= 1.3, J2 = 8.0 Hz, 1H), 7.60 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.31 - 7.24 (m, 

2H), 6.95 - 6.68 (m, 3H), 4.44 (s, 2H), 3.41 - 3.34 (m, 4H), 3.21 - 3.12 (m, 4H). 

 

1-Phenyl-4-((3-(trifluoromethyl)benzyl)sulfonyl)piperazine (3.101)  

 

A stirring solution of 1-phenylpiperazine (20 mg, 0.18 mmol, 1 equiv) in DCM (3 mL) was 

chilled to 0 °C and to this solution was added pyridine (21 mg, 056 mmol, 3 equiv) and (3-

(trifluoromethyl)phenyl)methanesulfonyl chloride (38 mg, 0.21 mmol, 1.2 equiv). The ice 

bath was removed and after confirming consumption of limiting reagent by TLC, 2 mL of 



 218 

distilled water was added to the reaction vial. The organic layer was separated and removed 

under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel 

was used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C18H20F3N2O2S+ [M+H+], 385.4247 

found 386. 1H NMR (400 MHz, CDCl3) δ 7.71 - 7.61 (m, 3H), 7.53 (t, J = 7.7 Hz, 1H), 

7.31 - 7.26 (m, 2H), 6.95 - 6.86 (m, 3H), 4.27 (s, 2H), 3.36 - 3.29 (m, 4H), 3.18 - 3.11 (m, 

4H). 

 

1-Phenyl-4-((4-(trifluoromethyl)benzyl)sulfonyl)piperazine (3.102)  

 

A stirring solution of 1-phenylpiperazine (20 mg, 0.18 mmol, 1 equiv) in DCM (3 mL) was 

chilled to 0 °C and to this solution was added pyridine (21 mg, 0.56 mmol, 3 equiv) and 

(4-(trifluoromethyl)phenyl)methanesulfonyl chloride (38 mg, 0.21 mmol, 1.2 equiv). The 

ice bath was removed and after confirming consumption of limiting reagent by TLC, 2 mL 

of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C18H20F3N2O2S+ [M+H+], 

385.4247 found 387. 1H NMR (400 MHz, CDCl3) δ 7.66 (d, J = 8.1 Hz, 2H), 7.56 (d, J = 

8.0 Hz, 2H), 7.31 - 7.26 (m, 2H), 6.94 - 6.87 (m, 2H), 4.26 (s, 2H), 3.35 - 3.30 (m, 4H), 

3.19 - 3.14 (m, 4H). 
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1-((3,5-bis(Trifluoromethyl)benzyl)sulfonyl)-4-phenylpiperazine (3.103)  

 

A stirring solution of 1-phenylpiperazine (20 mg, 0.18 mmol, 1 equiv) in DCM (3 mL) was 

chilled to 0 °C and to this solution was added pyridine (21 mg, 0.52 mmol, 3 equiv) and 

(3,5-bis(trifluoromethyl)phenyl)methanesulfonyl chloride (48 mg, 0.21 mmol, 1.2 equiv). 

The ice bath was removed and after confirming consumption of limiting reagent by TLC, 

2 mL of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C19H19F6N2O2S+ [M+H+], 

453.4229 found 453. 1H NMR (400 MHz, CDCl3) δ 7.31 - 7.26 (m, 2H), 7.02 - 6.95 (m, 

2H), 6.95 - 6.88 (m, 3H), 6.85 (dddd, J1 = 2.4, J2 = 4.8, J3 = 8.9, J4 = 11.2 Hz, 1H), 4.19 

(s, 2H), 3.40 - 3.31 (m, 4H), 3.22 - 3.11 (m, 4H). 

 

1-(Benzylsulfonyl)-4-(m-tolyl)piperazine (3.104)  

 

A stirring solution of 1-(m-tolyl)piperazine (20 mg, 0.18 mmol, 1 equiv) in DCM (3 mL) 

was chilled to 0 °C and to this solution was added pyridine (21 mg, 0.56 mmol, 3 equiv) 

and phenylmethanesulfonyl chloride (26 mg, 0.2 mmol, 1.2 equiv). The ice bath was 

removed and after confirming consumption of limiting reagent by TLC, 2 mL of distilled 
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water was added to the reaction vial. The organic layer was separated and removed under 

reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel was 

used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C18H23N2O2S+ [M+H+], 331.4535 

found 331. 1H NMR (400 MHz, CDCl3) δ 7.44 - 7.37 (m, 4H), 7.15 (t, J = 7.7 Hz, 1H), 

6.76 - 6.66 (m, 3H), 4.26 (s, 2H), 3.30 - 3.22 (m, 4H), 3.14 - 3.08 (m, 4H), 2.31 (s, 3H). 

 

1-(m-Tolyl)-4-((2-(trifluoromethyl)benzyl)sulfonyl)piperazine (3.105)  

 

A stirring solution of 1-(m-tolyl)piperazine (20 mg, 0.18 mmol, 1 equiv) in DCM (3 mL) 

was chilled to 0 °C and to this solution was added pyridine (21 mg, 0.56 mmol, 3 equiv) 

and (2-(trifluoromethyl)phenyl)methanesulfonyl chloride (35 mg, 0.21 mmol, 1.2 equiv). 

The ice bath was removed and after confirming consumption of limiting reagent by TLC, 

2 mL of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C19H22F3N2O2S+ [M+H+], 

399.4517 found 400. 1H NMR (400 MHz, CDCl3) δ 7.85 (d, J = 7.8 Hz, 1H), 7.73 (d, J = 

8.0 Hz, 1H), 7.61 (t, J = 7.7 Hz, 1H), 7.49 (t, J = 7.7 Hz, 1H), 7.16 (t, J = 7.7 Hz, 1H), 6.76 

- 6.67 (m, 3H), 4.44 (s, 2H), 3.41 - 3.33 (m, 4H), 3.20 - 3.12 (m, 4H), 2.32 (s, 3H). 
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1-(m-Tolyl)-4-((3-(trifluoromethyl)benzyl)sulfonyl)piperazine (3.106)  

 

A stirring solution of 1-(m-tolyl)piperazine (20 mg, 0.18 mmol, 1 equiv) in DCM (3 mL) 

was chilled to 0 °C and to this solution was added pyridine (21 mg, 0.27 mmol, 3 equiv) 

and (3-(trifluoromethyl)phenyl)methanesulfonyl chloride (35 mg, 0.21 mmol, 1.2 equiv). 

The ice bath was removed and after confirming consumption of limiting reagent by TLC, 

2 mL of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C19H22F3N2O2S+ [M+H+], 

399.4517 found 399. 1H NMR (400 MHz, CDCl3) δ 7.71 - 7.58 (m, 3H), 7.53 (t, J = 7.7 

Hz, 1H), 7.16 (t, J = 7.7 Hz, 1H), 6.76 - 6.66 (m, 3H), 4.27 (s, 2H), 3.36 - 3.28 (m, 4H), 

3.17 - 3.09 (m, 4H), 2.31 (s, 3H). 

 

1-(m-Tolyl)-4-((4-(trifluoromethyl)benzyl)sulfonyl)piperazine (3.107)  

 

A stirring solution of 1-(m-tolyl)piperazine (20 mg, 0.18 mmol, 1 equiv) in DCM (3 mL) 

was chilled to 0 °C and to this solution was added pyridine (21 mg, 0.56 mmol, 3 equiv) 

and (4-(trifluoromethyl)phenyl)methanesulfonyl chloride (35 mg, 0.21 mmol, 1.2 equiv). 

The ice bath was removed and after confirming consumption of limiting reagent by TLC, 

2 mL of distilled water was added to the reaction vial. The organic layer was separated and 
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removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C19H22F3N2O2S+ [M+H+], 

399.4517 found 400. 1H NMR (400 MHz, CDCl3) δ 7.67 (d, J = 8.1 Hz, 2H), 7.55 (d, J = 

8.1 Hz, 2H), 7.16 (t, J = 7.6 Hz, 1H), 6.77 - 6.64 (m, 3H), 4.28 (s, 2H), 3.35 - 3.25 (m, 4H), 

3.17 - 3.10 (m, 4H), 2.31 (s, 3H). 

 

1-((3,5-bis(Trifluoromethyl)benzyl)sulfonyl)-4-(m-tolyl)piperazine (3.108)  

 

A stirring solution of 1-(m-tolyl)piperazine (20 mg, 0.18 mmol, 1 equiv) in DCM (3 mL) 

was chilled to 0 °C and to this solution was added pyridine (21 mg, 0.56 mmol, 3 equiv) 

and (3,5-bis(trifluoromethyl)phenyl)methanesulfonyl chloride (44 mg, 0.21 mmol, 1.2 

equiv). The ice bath was removed and after confirming consumption of limiting reagent by 

TLC, 2 mL of distilled water was added to the reaction vial. The organic layer was 

separated and removed under reduced atmosphere. Column chromatography (0 to 50% 

EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target molecule for 

biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C20H21F6N2O2S+ [M+H+], 467.4499 found 468. 1H NMR (400 MHz, CDCl3) δ 7.18 (s, 

1H), 7.09 (t, J = 7.7 Hz, 1H), 6.95 - 6.87 (m, 2H), 6.86 (tt, J1 = 2.3, J2 = 8.8 Hz, 1H), 6.70 

- 6.61 (m, 2H), 4.11 (s, 2H), 3.30 - 3.21 (m, 4H), 3.13 - 3.04 (m, 4H), 2.25 (s, 3H). 
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1-(Benzylsulfonyl)-4-(3-(trifluoromethyl)phenyl)piperazine (3.109)  

 

A stirring solution of 1-(3-(trifluoromethyl)phenyl)piperazine (20 mg, 0. 09 mmol, 1 equiv) 

in DCM (3 mL) was chilled to 0 °C and to this solution was added pyridine (21 mg, 0.27 

mmol, 3 equiv) and phenylmethanesulfonyl chloride (19 mg, 0.11 mmol, 1.2 equiv). The 

ice bath was removed and after confirming consumption of limiting reagent by TLC, 2 mL 

of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C18H20F3N2O2S+ [M+H+] 

385.4247, found 386. 1H NMR (400 MHz, CDCl3) δ 7.46 - 7.32 (m, 6H), 7.13 (d, J = 7.6 

Hz, 1H), 7.06 (s, 1H), 7.01 (d, J = 8.3 Hz, 1H), 4.28 (s, 2H), 3.30 - 3.23 (m, 4H), 3.18 - 

3.12 (m, 4H). 

 

1-((3-Methylbenzyl)sulfonyl)-4-(3-(trifluoromethyl)phenyl)piperazine (3.110) 

 

A stirring solution of 1-(3-(trifluoromethyl)phenyl)piperazine (20 mg, 0.09 mmol, 1 equiv) 

in DCM (3 mL) was chilled to 0 °C and to this solution was added pyridine (21 mg, 0.27 

mmol, 3 equiv) and m-tolylmethanesulfonyl chloride (18 mg, 0.11 mmol, 1.2 equiv). The 

ice bath was removed and after confirming consumption of limiting reagent by TLC, 2 mL 
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of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C19H22F3N2O2S+ [M+H+] 

399.4517, found 399. 1H NMR (400 MHz, CDCl3) δ 7.35 (t, J = 8.0 Hz, 1H), 7.30 - 7.26 

(m, 1H), 7.25 - 7.16 (m, 3H), 7.13 (d, J = 7.7 Hz, 1H), 7.06 (s, 1H), 7.02 (d, J = 8.8 Hz, 

1H), 4.23 (s, 2H), 3.32 - 3.24 (m, 4H), 3.22 - 3.13 (m, 4H), 2.36 (s, 3H). 

 

1-((4-Methylbenzyl)sulfonyl)-4-(3-(trifluoromethyl)phenyl)piperazine (3.111)  

 

A stirring solution of 1-(3-(trifluoromethyl)phenyl)piperazine (20 mg, 0.09 mmol, 1 equiv) 

in DCM (3 mL) was chilled to 0 °C and to this solution was added pyridine (21 mg, 0.27 

mmol, 3 equiv) and 4-methylphenylmethanesulfonyl chloride (18 mg, 0.11 mmol, 1.2 

equiv). The ice bath was removed and after confirming consumption of limiting reagent by 

TLC, 2 mL of distilled water was added to the reaction vial. The organic layer was 

separated and removed under reduced atmosphere. Column chromatography (0 to 50% 

EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target molecule for 

biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C19H22F3N2O2S+ [M+H+] 399.4517, found 399. 1H NMR (400 MHz, CDCl3) δ 7.66 (d, J 

= 8.1 Hz, 2H), 7.55 (d, J = 8.1 Hz, 2H), 7.37 (t, J = 7.96 Hz, 1H), 7.15 (d, J = 7.7 Hz, 1H), 

7.09 (s, 1H), 7.03 (d, J = 8.3 Hz, 1H), 4.29 (s, 2H), 3.38 - 3.29 (m, 4H), 3.25 - 3.17 (m, 

4H).  
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1-((3,5-bis(Trifluoromethyl)benzyl)sulfonyl)-4-(3-
(trifluoromethyl)phenyl)piperazine (3.112)  

 

A stirring solution of 1-(3-(trifluoromethyl)phenyl)piperazine (20 mg, 0.8 mmol, 1 equiv) 

in DCM (3 mL) was chilled to 0 °C and to this solution was added pyridine (21 mg, 0.24 

mmol, 3 equiv) and (3,5-bis(trifluoromethyl)phenyl)methanesulfonyl chloride (34 mg, 

0.11 mmol, 1.2 equiv). The ice bath was removed and after confirming consumption of 

limiting reagent by TLC, 2 mL of distilled water was added to the reaction vial. The organic 

layer was separated and removed under reduced atmosphere. Column chromatography (0 

to 50% EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target 

molecule for biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C20H18F9N2O2S+ [M+H+], 521.4211 found 521. 1H NMR (400 MHz, CDCl3) δ 7.37 (t, J = 

8.0 Hz, 1H), 7.15 (d, J = 7.6 Hz, 1H), 7.09 (s, 1H), 7.04 (dd, J1 = 2.5, J2 = 8.3 Hz, 1H), 

7.02 - 6.95 (m, 2H), 6.86 (tt, J1 = 2.3, J2 = 8.8 Hz, 1H), 4.20 (s, 2H), 3.39 - 3.32 (m, 4H), 

3.25 - 3.18 (m, 4H). 

 

3-(4-(Benzylsulfonyl)piperazin-1-yl)benzonitrile (3.113)  

 

A stirring solution of 3-(piperazin-1-yl)benzonitrile (30 mg, 0.09 mmol, 1 equiv) in DCM 

(3 mL) was chilled to 0 °C and to this solution was added pyridine (21 mg, 0.27 mmol, 3 
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equiv) and phenylmethanesulfonyl chloride (20 mg, 0.11 mmol, 1.2 equiv). The ice bath 

was removed and after confirming consumption of limiting reagent by TLC, 2 mL of 

distilled water was added to the reaction vial. The organic layer was separated and removed 

under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel 

was used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C18H20N3O2S+ [M+H+] 342.4365, 

found 342. 1H NMR (400 MHz, CDCl3) δ 7.45 - 7.37 (m, 4H), 7.32 (t, J = 7.6 Hz, 1H), 

7.22 (d, J = 7.6 Hz, 1H), 7.14 (d, J = 6.7 Hz, 1H), 7.09 - 7.04 (m, 2H), 4.28 (s, 2H), 3.30 - 

3.19 (m, 4H), 3.18 - 3.08 (m, 4H). 

 

3-(4-((3-Methylbenzyl)sulfonyl)piperazin-1-yl)benzonitrile (3.114)  

 

A stirring solution of 3-(piperazin-1-yl)benzonitrile (30 mg, 0.09 mmol, 1 equiv) in DCM 

(3 mL) was chilled to 0 °C and to this solution was added pyridine (21 mg, 0.11 mmol, 

0.27 mmol, 3 equiv) and m-tolylmethanesulfonyl chloride (20 mg, 1.2 equiv). The ice bath 

was removed and after confirming consumption of limiting reagent by TLC, 2 mL of 

distilled water was added to the reaction vial. The organic layer was separated and removed 

under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on silica gel 

was used to purify sufficient amounts of the target molecule for biological testing and 

characterization. LRMS (APCI - quad) m/z cal’d for C19H22N3O2S+ [M+H+] 356.4635, 

found 356. 1H NMR (400 MHz, CDCl3) δ 7.33 (dt, J1 = 2.0, J2 = 7.4 Hz, 1H), 7.30 - 7.26 
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(m, 1H), 7.23 (s, 1H), 7.19 (d, J = 8.3 Hz, 2H), 7.15 (d, J = 8.0 Hz, 1H), 7.09 - 7.04 (m, 

2H), 4.23 (s, 2H), 3.29 - 3.23 (m, 4H), 3.17 - 3.10 (m, 4H), 2.37 (s, 3H). 

 

3-(4-((3-(Trifluoromethyl)benzyl)sulfonyl)piperazin-1-yl)benzonitrile (3.115)  

 

A stirring solution of 3-(piperazin-1-yl)benzonitrile (30 mg, 0.09 mmol, 1 equiv) in DCM 

(3 mL) was chilled to 0 °C and to this solution was added pyridine (21 mg, 0.27 mmol, 3 

equiv) and (3-(trifluoromethyl)phenyl)methanesulfonyl chloride (20 mg, 0.11 mmol, 1.2 

equiv). The ice bath was removed and after confirming consumption of limiting reagent by 

TLC, 2 mL of distilled water was added to the reaction vial. The organic layer was 

separated and removed under reduced atmosphere. Column chromatography (0 to 50% 

EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target molecule for 

biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C19H19F3N3O2S+ [M+H+] 410.4347, found 411. 1H NMR (400 MHz, CDCl3) δ 7.67 (d, J 

= 8.1 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H), 7.34 (t, J = 7.9 Hz, 1H), 7.17 (d, J = 6.4 Hz, 1H), 

7.11 - 7.07 (m, 2H), 4.30 (s, 2H), 3.35 - 3.30 (m, 4H), 3.21 - 3.15 (m, 4H). 

 

1-(Benzylsulfonyl)-4-(3,5-bis(trifluoromethyl)phenyl)piperazine (3.116)  
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A stirring solution of 1-(3,5-bis(trifluoromethyl)phenyl)piperazine (20 mg, 0.09 mmol, 1 

equiv) in DCM (3 mL) was chilled to 0 °C and to this solution was added pyridine (21 mg, 

0.27 mmol, 3 equiv) and phenylmethanesulfonyl chloride (15 mg, 0.11 mmol, 1.2 equiv). 

The ice bath was removed and after confirming consumption of limiting reagent by TLC, 

2 mL of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C19H19F6N2O2S+ [M+H+] 

453.4229, found 455. 1H NMR (400 MHz, CDCl3) δ 7.45 -7.37 (m, 5H), 7.33 (s, 1H), 7.19 

(s, 1H), 4.29 (s, 2H), 3.29 - 3.23 (m, 4H), 3.23 - 3.18 (m, 4H). 

 

1-(3,5-bis(Trifluoromethyl)phenyl)-4-((3-methylbenzyl)sulfonyl)piperazine (3.117)  

 

A stirring solution of 1-(3,5-bis(trifluoromethyl)phenyl)piperazine (20 mg, 0.09 mmol, 1 

equiv) in DCM (3 mL) was chilled to 0 °C and to this solution was added pyridine (21 mg, 

0.27 mmol, 3 equiv) and m-tolylmethanesulfonyl chloride (16 mg, 0.11 mmol, 1.2 equiv). 

The ice bath was removed and after confirming consumption of limiting reagent by TLC, 

2 mL of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C20H21F6N2O2S+ [M+H+] 467.45, 
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found 468. 1H NMR (400 MHz, CDCl3) δ 7.33 (br, 1H), 7.30 - 7.23 (m, 2H), 7.22 - 7.18 

(m, 4H), 4.26 (s, 2H), 3.30 - 3.20 (m, 8H), 2.36 (s, 3H). 

 

1-(3,5-bis(Trifluoromethyl)phenyl)-4-((2-
(trifluoromethyl)benzyl)sulfonyl)piperazine (3.118)  

 

A stirring solution of 1-(3,5-bis(trifluoromethyl)phenyl)piperazine (30 mg, 0.11 mmol, 1 

equiv) in DCM (3 mL) was chilled to 0 °C and to this solution was added pyridine (21 mg, 

0.33 mmol, 3 equiv) and (2-(trifluoromethyl)phenyl)methanesulfonyl chloride (31 mg, 

0.14 mmol, 1.2 equiv). The ice bath was removed and after confirming consumption of 

limiting reagent by TLC, 2 mL of distilled water was added to the reaction vial. The organic 

layer was separated and removed under reduced atmosphere. Column chromatography (0 

to 50% EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target 

molecule for biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C20H18F9N2O2S+ [M+H+], 521.4211 found 521. 1H NMR (400 MHz, CDCl3) δ 7.86 (d, J 

= 7.7 Hz, 1H), 7.74 (d, J = 7.9 Hz, 1H), 7.62 (t, J = 7.5, 1H), 7.51 (t, J = 7.7 Hz, 1H), 7.34 

(s, 1H), 7.21 (s, 2H), 4.17 (s, 2H), 3.40 - 3.34 (m, 4H), 3.29 - 3.25 (m, 4H). 
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1-(3,5-bis(Trifluoromethyl)phenyl)-4-((3-
(trifluoromethyl)benzyl)sulfonyl)piperazine (3.119)  

 

A stirring solution of 1-(3,5-bis(trifluoromethyl)phenyl)piperazine (20 mg, 0.9 mmol, 1 

equiv) in DCM (3 mL) was chilled to 0 °C and to this solution was added pyridine (21 mg, 

0.27 mmol, 3 equiv) and (3-(trifluoromethyl)phenyl)methanesulfonyl chloride (21 mg, 

0.11 mmol, 1.2 equiv). The ice bath was removed and after confirming consumption of 

limiting reagent by TLC, 2 mL of distilled water was added to the reaction vial. The organic 

layer was separated and removed under reduced atmosphere. Column chromatography (0 

to 50% EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target 

molecule for biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C20H18F9N2O2S+ [M+H+] 521.4211, found 522. 1H NMR (400 MHz, CDCl3) δ 7.69 - 7.62 

(m, 3H), 7.55 (t, J = 8.0 Hz, 1H), 7.35 (s, 1H), 7.21 (s, 2H), 4.30 (s, 2H), 3.38 - 3.28 (m, 

4H), 3.27 - 3.19 (m, 4H). 

 

1-(3,5-bis(Trifluoromethyl)phenyl)-4-((4-
(trifluoromethyl)benzyl)sulfonyl)piperazine (3.120)  

 

A stirring solution of 1-(3,5-bis(trifluoromethyl)phenyl)piperazine (20 mg, 0.09 mmol, 1 

equiv) in DCM (3 mL) was chilled to 0 °C and to this solution was added pyridine (21 mg, 
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0.27 mmol, 3 equiv) and (4-(trifluoromethyl)phenyl)methanesulfonyl chloride (21 mg, 

0.11 mmol, 1.2 equiv). The ice bath was removed and after confirming consumption of 

limiting reagent by TLC, 2 mL of distilled water was added to the reaction vial. The organic 

layer was separated and removed under reduced atmosphere. Column chromatography (0 

to 50% EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target 

molecule for biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C20H18F9N2O2S+ [M+H+] 521.4211, found 521. 1H NMR (400 MHz, CDCl3) δ 7.77 (d, J 

= 8.1 Hz, 2H), 7.56 (d, J = 8.0, 2H), 7.36 (s, 1H), 7.22 (s, 2H), 4.31 (s, 2H), 3.37 - 3.30 (m, 

4H), 3.28 - 3.22 (m, 4H). 

 

(3-(Trifluoromethyl)phenyl)(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)methanone 
(3.121) 

 

To a stirring solution of 3-trifluoromethylbenzoic acid (22 mg, 0.12 mmol, 1 equiv) in 

DCM (5 mL) was added EDC (36 mg, 0.24 mmol, 2.0 equiv) and DMAP (35 mg, 0.30 

mmol, 2.5 equiv). This solution was stirred for 10 min before addition of 1-(3-

(trifluoromethyl)phenyl)piperazine (40 mg, 0.17 mmol, 1.5 equiv). The reaction slurry was 

brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics were 

separated and the solvent was removed under reduced pressure. Column chromatography 

(0 to 45% (EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target 

molecule for biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C19H17F6N2O+ [M+H+] 403.3479, found 404. 1H NMR (400 MHz, CD3OD) δ 7.74 - 7.68 
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(m, 2H), 7.67 - 7.56 (m, 2H), 7.32 (t, J = 7.7 Hz, 1H), 7.16 - 7.09 (m, 2H), 7.01 (d, J = 7.6 

Hz, 1H), 3.84 (br, 2H), 3.50 (br, 2H), 3.26 (br, 2H), 3.15 (br, 2H). 

 

(3,5-bis(Trifluoromethyl)phenyl)(4-(3-(trifluoromethyl)phenyl)piperazin-1-
yl)methanone (3.122) 

 

To a stirring solution of 3,5-bistrifluoromethylbenzoic acid (16 mg, 0.12 mmol, 1 equiv) 

in DCM (5 mL) was added EDC (36 mg, 0.24 mmol, 2.0 equiv) and DMAP (35 mg, 0.30 

mmol, 2.5 equiv). This solution was stirred for 10 min before addition of 1-(3-

(trifluoromethyl)phenyl)piperazine (40 mg, 0.17 mmol, 1.5 equiv). The reaction slurry was 

brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics were 

separated and the solvent was removed under reduced pressure. Column chromatography 

(0 to 45% (EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target 

molecule for biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C20H16F9N2O+ [M+H+] 471.3461, found 471. 1H NMR (400 MHz, CD3OD) δ 8.14 (s, 1H), 

8.13 (s, 2H), 7.44 (t, J = 8.0 Hz, 1H), 7.27 - 7.22 (m, 2H), 7.14 (d, J = 7.6 Hz, 1H), 3.98 

(br, 2H), 3.61 (br, 2H), 3.41 (br, 2H), 3.28 (br, 2H). 

 

(4-(3,5-bis(Trifluoromethyl)phenyl)piperazin-1-yl)(3-
(trifluoromethyl)phenyl)methanone (3.123) 
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To a stirring solution of 3-trifluoromethylbenzoic acid (16 mg, 0.12 mmol, 1 equiv) in 

DCM (5 mL) was added EDC (36 mg, 0.24 mmol, 2.0 equiv) and DMAP (35 mg, 0.30 

mmol, 2.5 equiv). This solution was stirred for 10 min before addition of 1-(3,5-

bis(trifluoromethyl)phenyl)piperazine (40 mg, 0.18 mmol, 1.5 equiv). The reaction slurry 

was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics 

were separated and the solvent was removed under reduced pressure. Column 

chromatography (0 to 45% (EtOAc/Hex) on silica gel was used to purify sufficient amounts 

of the target molecule for biological testing and characterization. LRMS (APCI - quad) m/z 

cal’d for C20H16F9N2O+ [M+H+] 471.3461, found 471. 1H NMR (400 MHz, CD3OD) δ 

7.85 - 7.79 (m, 2H), 7.76 - 7.70 (m, 2H), 7.46 (s, 2H), 7.32 (s, 1H), 3.96 (br, 2H), 3.63 (br, 

2H), 3.48 (br, 2H), 3.37 (br, 2H). 

 

(3,5-bis(Trifluoromethyl)phenyl)(4-(3,5-bis(trifluoromethyl)phenyl)piperazin-1-
yl)methanone (3.124) 

 

To a stirring solution of 3,5-bis(trifluoromethyl)benzoic acid acid (22 mg, 0.08 mmol, 1 

equiv) in DCM (5 mL) was added EDC (36 mg, 0.16 mmol, 2.0 equiv) and DMAP (35 mg, 

0.20 mmol, 2.5 equiv). This solution was stirred for 10 min before addition of 1-(3,5-

bis(trifluoromethyl)phenyl)piperazine (40 mg, 0.13 mmol, 1.5 equiv). The reaction slurry 

was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics 

were separated and the solvent was removed under reduced pressure. Column 

chromatography (0 to 45% (EtOAc/Hex) on silica gel was used to purify sufficient amounts 
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of the target molecule for biological testing and characterization. LRMS (APCI - quad) m/z 

cal’d for C21H15F12N2O+ [M+H+] 539.3443, found 539. 1H NMR (400 MHz, CD3OD) δ 

8.15 - 8.12 (m, 3H), 7.46 (s, 2H), 7.32 (s, 1H), 3.98 (br, 2H), 3.62 (br, 2H), 3.51 (br, 2H), 

3.39 (br, 2H). 

 

3-(4-(3,5-bis(Trifluoromethyl)phenyl)piperazine-1-carbonyl)benzonitrile (3.125) 

 

To a stirring solution of 3-cyanobenzoic acid acid (13 mg, 0.08 mmol, 1 equiv) in DCM (5 

mL) was added EDC (36 mg, 0.16 mmol, 2.0 equiv) and DMAP (35 mg, 0.20 mmol, 2.5 

equiv). This solution was stirred for 10 min before addition of 1-(3,5-

bis(trifluoromethyl)phenyl)piperazine (40 mg, 0.13 mmol, 1.5 equiv). The reaction slurry 

was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics 

were separated and the solvent was removed under reduced pressure. Column 

chromatography (0 to 45% (EtOAc/Hex) on silica gel was used to purify sufficient amounts 

of the target molecule for biological testing and characterization. LRMS (APCI - quad) m/z 

cal’d for C20H16F6N3O+ [M+H+] 428.3579, found 429. 1H NMR (400 MHz, CD3OD) δ 

7.92 - 7.84 (m, 2H), 7.79 (td, J1 = 1.5, J2 = 7.8 Hz, 1H), 7.48 - 7.39 (m, 2H), 7.33 (s, 2H), 

7.23 (d, J = 8.1 Hz, 1H), 3.95 (br, 2H), 3.62 (br, 2H), 3.49 (br, 2H), 3.38 (br, 2H). 
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2-(3-(Trifluoromethyl)phenyl)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)ethan-
1-one (3.126) 

 

To a stirring solution of 1-(3-(trifluoromethyl)phenyl)piperazine (34 mg, 0.15 mmol, 1.0 

equiv), triethylamine (1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was added 2-(3-

(trifluoromethyl)phenyl)acetyl chloride (40 mg, 0.18 mmol, 1.2 equiv) and the solution 

was stirred for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 

mL of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C20H19F6N2O+ [M+H+] 417.3749, 

found 417. 1H NMR (400 MHz, CDCl3) δ 7.56 - 7.50 (m, 2H), 7.47 - 7.44 (m, 2H), 7.36 

(t, J = 8.0 Hz, 1H), 7.13 (d, J = 7.7 Hz, 1H), 7.08 (s, 1H), 7.04 (dd, J1 = 2.5, J2 = 8.4 Hz, 

1H), 3.85 - 3.81 (m, 4H), 3.67 - 3.61 (m, 2H), 3.22 - 3.19 (m, 2H), 3.13 - 3.10 (m, 2H). 

13C NMR (176 MHz, CDCl3) δ 168.9, 150.9, 135.7, 132.3, 131.5 (q, J = 32 Hz), 131.0 (q, 

J = 28), 129.8, 129.2, 125.6 (d, J = 4 Hz), 124.1 (dq, J1 = 29, J2 = 273 Hz), 293.2 (d, J = 4 

Hz), 119.3, 116.7 (d, J = 4 Hz), 112.9 (d, J = 4 Hz), 49.0, 48.7, 45.7, 41.6, 40.2. 

 

1-(4-(3,5-bis(Trifluoromethyl)phenyl)piperazin-1-yl)-2-(3-
(trifluoromethyl)phenyl)ethan-1-one (3.127) 
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To a stirring solution of 1-(3,5-bis(trifluoromethyl)phenyl)piperazine (44 mg, 0.15 mmol, 

1.0 equiv), triethylamine (1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was added 2-(3-

(trifluoromethyl)phenyl)acetyl chloride (40 mg, 0.18 mmol, 1.2 equiv) and the solution 

was stirred for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 

mL of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C21H18F9N2O+ [M+H+] 485.3731, 

found 386. 1H NMR (400 MHz, CDCl3) δ 7.57 - 7.50 (m, 2H), 7.48 - 7.45 (m, 2H), 7.33 

(s, 1H), 7.22 (s, 2H), 3.88 - 3.81 (m, 4H), 3.69 - 3.63 (m, 2H), 3.32 - 3.25 (m, 2H), 3.23 - 

3.15 (m, 2H). 13C NMR (176 MHz, CDCl3) δ 168.9, 151.2, 135.5, 132.5 (q, J = 33 Hz), 

132.3, 131.1 (q, J = 32 Hz), 129.3, 125.6, 123.9 (q, J = 272 Hz), 124.0 (d, J = 4 Hz), 123.4 

(q, J = 273 Hz), 115.2 (d, J = 4 Hz), 112.9, 48.3, 48.2, 45.5, 41.4, 40.3. 

 

3-(4-(3-(Trifluoromethyl)benzoyl)piperazin-1-yl)benzonitrile (3.128)  

 

To a stirring solution of 3-trifluoromethylbenzoic acid (20 mg, 0.12 mmol, 1 equiv) in 

DCM (5 mL) was added EDC (36 mg, 0.24 mmol, 2.0 equiv) and DMAP (35 mg, 0.30 

mmol, 2.5 equiv). This solution was stirred for 10 min before addition of 3-(piperazin-1-

yl)benzonitrile (30 mg, 0.16 mmol, 1.5 equiv). The reaction slurry was brought to 37 ˚C 

for 12 h before quenching with 1 N HCl solution (3 mL). Organics were separated and the 

solvent was removed under reduced pressure. Column chromatography (0 to 45% 
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(EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target molecule for 

biological testing and characterization. LRMS (APCI - quad) m/z cal’d for C19H17F3N3O+ 

[M+H+], 360.3597 found 362. 1H NMR (400 MHz, CDCl3) δ 7.75 - 7.68 (m, 2H), 7.65 - 

7.57  (m, 2H), 7.36 (dd, J1 =7.3, J2 = 7.6 Hz, 1H), 7.19 - 7.10 (m, 3H), 3.94 (br, 2H), 3.61 

(br, 2H), 3.24 (br, 4H). 

 

3-(4-(3,5-bis(Trifluoromethyl)benzoyl)piperazin-1-yl)benzonitrile (3.129)  

 

To a stirring solution of 3,5-bis(trifluoromethyl)benzoic acid (27 mg, 0.12 mmol, 1 equiv) 

in DCM (5 mL) was added EDC (36 mg, 0.24 mmol, 2.0 equiv) and DMAP (35 mg, 0.30 

mmol, 2.5 equiv). This solution was stirred for 10 min before addition of 3-(piperazin-1-

yl)benzonitrile (30 mg, 0.16 mmol, 1.5 equiv). The reaction slurry was brought to 37 ˚C 

for 12 h before quenching with 1 N HCl solution (3 mL). Organics were separated and the 

solvent was removed under reduced pressure. Column chromatography (0 to 45% 

(EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target molecule for 

biological testing and characterization. LRMS (APCI - quad) m/z cal’d for C20H16F6N3O+ 

[M+H+], 428.3579 found 427. 1H NMR (400 MHz, CDCl3) δ 7.97 (s, 1H), 7.90 (s, 2H), 

7.37 (dd, J1 = 4.6, J2 = 7.6 Hz, 1H), 7.17 (d, J = 6.5 Hz, 1H), 7.15 - 7.10 (m, 2H), 3.96 (br, 

2H), 3.60 (br, 2H), 3.28 (br, 4H). 
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3-(4-(3-Cyanobenzoyl)piperazin-1-yl)benzonitrile (3.130)  

 

To a stirring solution of 3-cyanobenzoic acid (15 mg, 0.12 mmol, 1 equiv) in DCM (5 mL) 

was added EDC (36 mg, 0.24 mmol, 2.0 equiv) and DMAP (35 mg, 0.30 mmol, 2.5 equiv). 

This solution was stirred for 10 min before addition of 3-(piperazin-1-yl)benzonitrile (30 

mg, 0.16 mmol, 1.5 equiv). The reaction slurry was brought to 37 ˚C for 12 h before 

quenching with 1 N HCl solution (3 mL). Organics were separated and the solvent was 

removed under reduced pressure. Column chromatography (0 to 45% (EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C19H17N4O+ [M+H+], 317.3715 

found 317. 1H NMR (400 MHz, CDCl3) δ 7.76 - 7.72 (m, 2H), 7.68 (d, J = 7.8 Hz, 1H), 

7.58 (t, J = 7.9 Hz, 1H), 7.36 (dd, J1 = 5.0, 7.7 Hz, 1H), 7.16 (d, J = 7.6 Hz, 1H), 7.14 - 

7.10 (m, 2H), 3.93 (br, 2H), 3.59 (br, 2H), 3.25 (br, 4H). 

 

2-(3-(Trifluoromethyl)phenoxy)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-
yl)ethan-1-one (3.131) 

 

To a stirring solution of 2-(3-(trifluoromethyl)phenoxy)acetic acid (19 mg, 0.12 mmol, 1 

equiv) in DCM (5 mL) was added EDC (36 mg, 0.24 mmol, 2.0 equiv) and DMAP (35 mg, 

0.30mmol, 2.5 equiv). This solution was stirred for 10 min before addition of 1-(3-

(trifluoromethyl)phenyl)piperazine (40 mg, 0.17 mmol, 1.5 equiv). The reaction slurry was 
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brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics were 

separated and the solvent was removed under reduced pressure. Column chromatography 

(0 to 45% (EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target 

molecule for biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C20H19F6N2O2
+ [M+H+] 433.3739, found 433. 1H NMR (400 MHz, CD3OD) δ 7.49 (t, J = 

8.1 Hz, 1H), 7.43 (t, J = 7.8 Hz, 1H), 7.30 - 7.23 (m, 3H), 7.13 (d, J = 7.7 Hz, 1H), 4.97 (s, 

2H), 3.83 - 3.72 (m, 4H), 3.30 - 3.23 (m, 4H). 

 

1-(4-(3,5-bis(Trifluoromethyl)phenyl)piperazin-1-yl)-2-(3-
(trifluoromethyl)phenoxy)ethan-1-one (3.132) 

 

To a stirring solution of 2-(3-(trifluoromethyl)phenoxy)acetic acid (19 mg, 0.08 mmol, 1 

equiv) in DCM (5 mL) was added EDC (36 mg, 0.16 mmol, 2.0 equiv) and DMAP (35 mg, 

0.2 mmol, 2.5 equiv). This solution was stirred for 10 min before addition of 1-(3,5-

bis(trifluoromethyl)phenyl)piperazine (31 mg, 0.13mmol, 1.5 equiv). The reaction slurry 

was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics 

were separated and the solvent was removed under reduced pressure. Column 

chromatography (0 to 45% (EtOAc/Hex) on silica gel was used to purify sufficient amounts 

of the target molecule for biological testing and characterization. LRMS (APCI - quad) m/z 

cal’d for C21H18F9N2O2
+ [M+H+] 501.3721, found 501. 1H NMR (400 MHz, CD3OD) δ 

7.50 (t, J = 8.0 Hz, 1H), 7.47 (s, 2H), 7.33 (s, 1H), 7.39 (s, 2H), 7.27 (d, J = 8.8 Hz, 1H), 

4.99 (s, 2H), 3.85 - 3.76 (m, 4H), 3.48 - 3.43 (m, 2H), 3.34 - 3.36 (m, 2H). 
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3-(4-(2-(3-(Trifluoromethyl)phenoxy)acetyl)piperazin-1-yl)benzonitrile (3.133)  

 

To a stirring solution of 2-(3-(trifluoromethyl)phenoxy)acetic acid (23 mg, 0.12 mmol, 1 

equiv) in DCM (5 mL) was added EDC (36 mg, 0.24 mmol, 2.0 equiv) and DMAP (35 mg, 

0.30 mmol, 2.5 equiv). This solution was stirred for 10 min before addition of 3-(piperazin-

1-yl)benzonitrile (30 mg, 0.16 mmol, 1.5 equiv). The reaction slurry was brought to 37 ˚C 

for 12 h before quenching with 1 N HCl solution (3 mL). Organics were separated and the 

solvent was removed under reduced pressure. Column chromatography (0 to 45% 

(EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target molecule for 

biological testing and characterization. LRMS (APCI - quad) m/z cal’d for C20H19F3N3O2
+ 

[M+H+], 390.3857 found 391. 1H NMR (400 MHz, CDCl3) δ 7.41 (t, J = 8.0 Hz, 1H), 7.34 

(dd, J1 = 4.6, J2 = 7.6 Hz, 1H), 7.28 - 7.24 (m, 1H), 7.19 (s, 1H), 7.14 (d, J = 7.9 Hz, 2H), 

7.13 - 7.08 (m, 2H), 4.78 (s, 2H), 3.83 - 3.71 (m, 4H), 3.27 - 3.16 (m, 4H). 

 

2-((3,4-Difluorophenyl)amino)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)ethan-
1-one (3.134) 

 

To a stirring solution of (3,4-difluorophenyl)glycine (30 mg, 0.13 mmol, 1 equiv) in DCM 

(5 mL) was added EDC (44 mg, 0.26 mmol, 2.0 equiv) and DMAP (1.9 mg, 0.013 mmol,  

0.1 equiv). This solution was stirred for 10 min before addition of 1-(3-
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trifluoromethylphenyl)-piperazine (55 mg, 0.19 mmol, 1.5 equiv). The reaction slurry was 

brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics were 

separated and the solvent was removed under reduced pressure. Column chromatography 

(0 to 45% (EtOAc/Hex)) on silica gel was used to purify sufficient amounts of the target 

molecule for biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C19H18F5N2O2
+ [M+H+] 401.36, found 402. 1H NMR (400 MHz, CDCl3) δ 738 (t, J = 8.4 

Hz, 1H), 7.15 (d, J = 8.0 Hz, 1H), 7.11 (br, 1H), 7.11 - 7.04 (m, 2H), 6.81 (ddd, J1 = 3.44, 

J2 = 6.5, J3 = 9.4 Hz, 1H), 6.68 (dddd, J1 = 1.8, J2 = 3.2, J3 = 6.4, J4 = 9.1 Hz, 1H), 4.70 (s, 

2H), 3.80 (t, J = 5.2, 2H), 3.75 (t, J = 5.1 Hz, 2H), 3.26 - 3.19 (m, 4H). 13C NMR (176 

MHz, CDCl3) δ 165.9, 153.9 (d, J = 11 Hz), 151.2 (d, J = 14 Hz), 150.8, 149.8 (d, J = 13 

Hz), 149.8 (d, J = 13 Hz), 144.9 (d, J = 13 Hz), 131.2 (q, J = Hz), 129.8, 124 (d, J = 272 

Hz), 119.4, 117.5 (d, J = 18 Hz), 116.9 (d, J = 4 Hz), 112.9 (d, J = 4 Hz), 109.9 (dd, J1 = 4 

Hz, J2 = 6 Hz), 104.7 (d, J = 20 Hz), 68.2, 49.3, 48.9, 45.1, 41.8. 

 

1-(4-(3,5-bis(Trifluoromethyl)phenyl)piperazin-1-yl)-2-((3,4-
difluorophenyl)amino)ethan-1-one (3.135) 

 

To a stirring solution of (3,4-difluorophenyl)glycine (30 mg, 0.13 mmol, 1 equiv) in DCM 

(5 mL) was added EDC (44 mg, 0.26 mmol, 2.0 equiv) and DMAP (1.9 mg, 0.013 mmol, 

0.1 equiv). This solution was stirred for 10 min before addition of 1-(3,5-

bistrifluoromethylphenyl)-piperazine (71 mg, 0. 20 mol, 1.5 equiv). The reaction slurry 

was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics 
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were separated and the solvent was removed under reduced pressure. Column 

chromatography (0 to 45% (EtOAc/Hex) on silica gel was used to purify sufficient amounts 

of the target molecule for biological testing and characterization. LRMS (APCI - quad) m/z 

cal’d for C20H17F8N2O2
+ [M+H+] 469.3547, found 470. 1H NMR (400 MHz, CDCl3) δ 

7.36 (s, 1H), 7.25 (s, 2H), 7.08 (q, J = 9.4 Hz, 1H), 6.81 (ddd, J1 = 3, J2 = 6.4, J3 = 9.4 Hz, 

1H), 6.71 - 6.65 (m, 1H), 4.71 (s, 2H), 3.82 (t, J = 5.2 Hz, 2H), 3.78 (t, J = 5.1 Hz, 2H), 

3.35 - 3.26 (m, 4H). 13C NMR (176 MHz, CDCl3) δ 166.0, 153.9 (d, J = 10 Hz), 151.2, 

149.8 (d, J = 14 Hz), 146.4 (d, J = 13 Hz), 145.0 (d, J = 13 Hz), 132.5 (q, J = 33 Hz), 123.3 

(q, J = 272 Hz), 117.6 (d, J = 19 Hz), 115.3, 113.1, 109.8 (dd, J1 = 4, J2 = 6 Hz), 104.6 (d, 

J = 21 Hz), 68.3, 48.7, 48.2, 44.6, 41.6.  

 

3-(4-((3,4-Difluorophenyl)glycyl)piperazin-1-yl)benzonitrile (3.136) 

 

To a stirring solution of (3,4-difluorophenyl)glycine (30 mg, 0.16 mmol, 1 equiv) in DCM 

(5 mL) was added EDC (44 mg, 0.32 mmol, 2.0 equiv) and DMAP (1.9 mg, 0.016 mmol, 

0.1 equiv). This solution was stirred for 10 min before addition of 3-(piperazin-1-

yl)benzonitrile (44 mg, 0.24 mmol, 1.5 equiv). The reaction slurry was brought to 37 ˚C 

for 12 h before quenching with 1 N HCl solution (3 mL). Organics were separated and the 

solvent was removed under reduced pressure. Column chromatography (0 to 45% 

(EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target molecule for 

biological testing and characterization. LRMS (APCI - quad) m/z cal’d for C19H18F2N3O2
+ 

[M+H+] 358.3683, found 358. 1H NMR (400 MHz, CDCl3) δ 7.36 (dd, J1 = 7.6, J2 = 9.24, 
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1H), 7.17 (d, J = 7.6, 1H), 7.13 - 7.05 (m, 3H), 6.81 (ddd, J1 = 3, J2 = 6.4, J3 = 9.4 Hz, 1H), 

6.68 (dddd, J1 = 1.8, J2 = 3.2, J3 = 6.4, J4 = 9.1 Hz, 1H), 4.70 (s, 2H), 3.80 (t, J = 5.2 Hz, 

2H), 3.75 (t, J = 5.0 Hz, 2H), 3.25 - 3.16 (m, 4H). 

 

2-(3-(Trifluoromethyl)phenoxy)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-
yl)propan-1-one (3.137) 

 

To a stirring solution of 2-(3-(trifluoromethyl)phenoxy)propanoic acid (30 mg, 0.13 mmol, 

1 equiv) in DCM (5 mL) was added EDC (40 mg, 0.26 mmol, 2.0 equiv) and DMAP (1.2 

mg, 0.1 equiv). This solution was stirred for 10 min before addition of 1-(3-

trifluoromethylphenyl)-piperazine (44 mg, 0.19 mmol, 1.5 equiv). The reaction slurry was 

brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics were 

separated and the solvent was removed under reduced pressure. Column chromatography 

(0 to 45% (EtOAc/Hex)) on silica gel was used to purify sufficient amounts of the target 

molecule for biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C21H21F6N2O2
+ [M+H+] 447.40, found 447. 1H NMR (400 MHz, CDCl3) δ 7.38 (app. qt, 

2H), 7.24 (d, J = 7.7 Hz, 1H), 7.17 - 7.06 (m, 4H), 7.04 (d, J = 8.0 Hz, 1H), 5.04 (q, J = 

6.9 Hz, 1H), 3.89 - 3.73 (m, 4H), 3.26 - 3.16 (m, 2H), 3.16 - 3.07 (m, 1H), 3.07 - 2.99 (m, 

1H), 1.67 (d, J = 6.8 Hz, 3H). 13C NMR (176 MHz, CDCl3) δ 169.1, 157.2, 150.9, 132.3 

(d, J = 36 Hz), 131.7, (d, J = 40 Hz) 130.4, 129.7, 123.0, 119.3, 118.4, 117.9, 116.9, 112.8, 

112.1, 74.5, 49.3, 49.0, 44.8, 42.2, 17.9. 
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1-(4-(3,5-bis(Trifluoromethyl)phenyl)piperazin-1-yl)-2-(3-
(trifluoromethyl)phenoxy)propan-1-one (3.138) 

 

To a stirring solution of 2-(3-(trifluoromethyl)phenoxy)propanoic acid (30 mg, 0.12 mmol, 

1 equiv) in DCM (5 mL) was added EDC (40 mg, 0.24 mmol, 2.0 equiv) and DMAP (1.59 

mg, 0.1 mmol, 2.0 equiv). This solution was stirred for 10 min before addition of 1-(3,5-

bistrifluoromethylphenyl)-piperazine (57 mg, 0.18 mmol, 1.5 equiv). The reaction slurry 

was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics 

were separated and the solvent was removed under reduced pressure. Column 

chromatography (0 to 45% (EtOAc/Hex) on silica gel was used to purify sufficient amounts 

of the target molecule for biological testing and characterization. LRMS (APCI - quad) m/z 

cal’d for C22H20F9N2O2
+ [M+H+] 515.40, found 515. 1H NMR (400 MHz, CDCl3) δ 7.42 

(t, J = 8.4 Hz, 1H), 7.34 (s, 1H), 7.25 (obscured doublet, 1H), 7.21 (s, 1H), 7.16 (br, 1H), 

7.11 (d, J = 8.4 Hz, 1H), 5.05 (q, J = 7.1 Hz, 1H), 3.93 - 3.77 (m, 4H), 3.33 - 3.25 (m, 2H), 

3.22 - 3.14 (m, 1H), 3.13 - 3.04 (m, 1H), 1.68 (d, J = 6.8 Hz, 3H). 

 

3-(4-(2-(3-(Trifluoromethyl)phenoxy)propanoyl)piperazin-1-yl)benzonitrile (3.139) 

 

To a stirring solution of 2-(3-(trifluoromethyl)phenoxy)propanoic acid (30 mg, 0.16 mmol, 

1 equiv) in DCM (5 mL) was added EDC (40 mg, 0.24 mmol, 1.5 equiv) and DMAP (31 



 245 

mg, 0.24 mmol, 1.5 equiv). This solution was stirred for 10 min before addition of 1-

(cyanophenyl)-piperazine (35 mg, 0.24 mmol, 1.5 equiv). The reaction slurry was brought 

to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics were separated 

and the solvent was removed under reduced pressure. Column chromatography (0 to 45% 

(EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target molecule for 

biological testing and characterization. LRMS (APCI - quad) m/z cal’d for C21H21F3N3O2
+ 

[M+H+] 404.41, found 404. 1H NMR (400 MHz, CDCl3) δ 7.41 (t, J = 8.2 Hz, 1H), 7.33 

(dd, J1 = 7.6, J2, = 9.2 Hz, 1H), 7.25 (obscured doublet, 1H), 7.17 - 7.13 (m, 2H), 7.12 - 

7.06 (m, 3H), 5.04 (q, J = 6.9 Hz, 1H), 3.91 - 3.75 (m, 4H), 3.24 - 3.16 (m, 2H), 3.16 - 3.05 

(m, 1H), 3.05 - 2.79 (m, 1H), 1.67 (d, J = 6.8 Hz, 3H). 

 

2-Methyl-2-(3-(trifluoromethyl)phenoxy)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-
1-yl)propan-1-one (3.140) 

 

To a stirring solution of 2-methyl-2-(3-(trifluoromethyl)phenoxy)propanoic acid (30 mg, 

0.12 mmol, 1 equiv) in DCM (5 mL) was added EDC (40 mg, 0.24 mmol, 2.0 equiv) and 

DMAP (31 mg, 0.24 mmol, 2.0 equiv). This solution was stirred for 10 min before addition 

of 1-(3-trifluoromethylphenyl)-piperazine (48 mg, 0.18 mmol, 1.5 equiv). The reaction 

slurry was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). 

Organics were separated and the solvent was removed under reduced pressure. Column 

chromatography (0 to 45% (EtOAc/Hex) on silica gel was used to purify sufficient amounts 

of the target molecule for biological testing and characterization. LRMS (APCI - quad) m/z 
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cal’d for C22H23F6N2O2
+ [M+H+] 461.63, found 462. 1H NMR (400 MHz, CDCl3) δ 7.46 

- 7.39 (m, 2H), 7.35 (s, 1H), 7.30 (d, J = 7.8 Hz, 1H), 7.23 - 7.17 (m, 2H), 7.12 - 7.04 (m, 

3H), 4.08 (br, 2H), 3.92 (br, 2H), 3.22 (br, 2H), 2.95 (br, 2H), 1.78 (s, 6H). 13C NMR (176 

MHz, CDCl3) δ 171.2, 155.5, 150.8, 132.2 (d, J = 32 Hz), 131.6 (d, J = 33 Hz), 130.0, 

129.7, 124.9, 123.3, 119.7, 119.1, 118.3, 116.7, 114.5, 112.6, 81.4, 49.0, 48.8, 45.6, 42.8, 

26.0. 

 

1-(4-(3,5-bis(Trifluoromethyl)phenyl)piperazin-1-yl)-2-methyl-2-(3-
(trifluoromethyl)phenoxy)propan-1-one (3.141) 

 

To a stirring solution of 2-methyl-2-(3-(trifluoromethyl)phenoxy)propanoic acid (30 mg, 

0.12 mmol, 1 equiv) in DCM (5 mL) was added EDC (40 mg, 0.24 mmol, 2.0 equiv) and 

DMAP (31 mg, 0.24 mmol, 2.0 equiv). This solution was stirred for 10 min before addition 

of 1-(3,5-bistrifluoromethylphenyl)-piperazine (48 mg, 0.18 mmol, 1.5 equiv). The 

reaction slurry was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 

mL). Organics were separated and the solvent was removed under reduced pressure. 

Column chromatography (0 to 45% (EtOAc/Hex) on silica gel was used to purify sufficient 

amounts of the target molecule for biological testing and characterization. LRMS (APCI - 

quad) m/z cal’d for C23H22F9N2O2
+ [M+H+] 529.43, found 529. 1H NMR (400 MHz, 

CDCl3) δ 7.35 (t, J = 7.8 Hz, 1H), 7.30 (s, 1H), 7.22 (td, J1 = 0.7 Hz, J2 = 7.0 Hz, 1H), 7.15 
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- 7.11 (m, 3H), 7.01 (dd, J1 = 2.6, J2 = 8.3 Hz, 1H), 4.01 (br, 2H), 3.84 (br, 2H), 3.20 (br, 

2H), 2.92 (br, 2H), 1.70 (s, 6H).  

 

3-(4-(2-Methyl-2-(3-(trifluoromethyl)phenoxy)propanoyl)piperazin-1-yl)benzonitrile 
(3.142) 

 

To a stirring solution of 2-methyl-2-(3-(trifluoromethyl)phenoxy)propanoic acid (30 mg, 

0.12 mmol, 1 equiv) in DCM (5 mL) was added EDC (40 mg, 0.24 mmol, 2.0 equiv) and 

DMAP (31 mg, 0.24 mmol, 2.0 equiv). This solution was stirred for 10 min before addition 

of 1-(3-cyanophenyl)-piperazine (48 mg, 0.18 mmol, 1.5 equiv). The reaction slurry was 

brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics were 

separated and the solvent was removed under reduced pressure. Column chromatography 

(0 to 45% (EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target 

molecule for biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C22H23F3N3O2
+ [M+H+] 418.44, found 419. 1H NMR (400 MHz, CDCl3) δ 7.36 (t, J = 7.8 

Hz, 1H), 7.33 - 7.28 (m, 1H), 7.23 (J1, = 0.7, J2 = 7.0 Hz, 1H), 7.14 - 7.10 (m, 2H), 7.04 - 

7.00 (m, 3H), 4.00 (br, 2H), 3.83 (br, 2H), 3.12 (br, 2H), 2.84 (br, 2H), 1.70 (s, 6H). 

 

2-((3-(Trifluoromethyl)phenyl)amino)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-
yl)ethan-1-one (3.143) 
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To a stirring solution of (3-(trifluoromethyl)phenyl)glycine (40 mg, 0.17 mmol, 1 equiv) 

in DCM (5 mL) was added EDC (56 mg, 0.34 mmol, 2.0 equiv) and DMAP (2.2 mg, 0.17 

mmol, 0.1 equiv). This solution was stirred for 10 min before addition of 1-(3-

trifluoromethylphenyl)-piperazine (63 mg, 0.25 mmol, 1.5 equiv). The reaction slurry was 

brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics were 

separated and the solvent was removed under reduced pressure. Column chromatography 

(0 to 45% (EtOAc/Hex)) on silica gel was used to purify sufficient amounts of the target 

molecule for biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C20H20F6N3O+ [M+H+] 432.39, found 434. 1H NMR (400 MHz, CDCl3) δ 7.41 (t, J = 7.9 

Hz, 1H), 7.28 (t, J = 7.8 Hz, 1H), 7.21 - 7.12 (m, 3H), 6.68 (d, J = 7.6 Hz, 1H), 6.84 - 6.80 

(m, 2H), 3.96 (s, 1H), 3.90 (t, J = 5.3 Hz, 2H), 3.69 (t, J = 5.2, 2H), 3.31 (t, J = 5.2 Hz, 

2H), 3.28 (t, J = 5.2 Hz, 2H). 13C NMR (176 MHz, CDCl3) δ 167.0, 150.9, 147.3, 131.8, 

(d, J = 11), 131.6, (d, J = 11 Hz), 129.8, 129.7, 125.1, (d, J = 37 Hz), 123.6 (d, J = 37 Hz), 

119.6, 117.1, 116.5, 114.1, 113.0, 108.5, 49.1, 49.0, 44.8, 44.1, 41.9. 

 

1-(4-(3,5-bis(Trifluoromethyl)phenyl)piperazin-1-yl)-2-((3-
(trifluoromethyl)phenyl)amino)ethan-1-one (3.144) 

 

To a stirring solution of (3-(trifluoromethyl)phenyl)glycine (40 mg, 0.13 mmol, 1 equiv) 

in DCM (5 mL) was added EDC (56 mg, 0.26 mmol, 2.0 equiv) and DMAP (2.2 mg, 0.013 

mmol, 0.1 equiv). This solution was stirred for 10 min before addition of 1-(3,5-

bistrifluoromethylphenyl)-piperazine (63 mg, 0.19 mmol, 1.5 equiv). The reaction slurry 
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was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics 

were separated and the solvent was removed under reduced pressure. Column 

chromatography (0 to 45% (EtOAc/Hex) on silica gel was used to purify sufficient amounts 

of the target molecule for biological testing and characterization. LRMS (APCI - quad) m/z 

cal’d for C21H19F9N3O+ [M+H+] 500.39, found 501. 1H NMR (400 MHz, CDCl3) δ 7.37 

(s, 1H), 7.32 - 7.27 (m, 3H), 7.00 (d, J = 7.4 Hz, 1H), 6.87 - 6.81 (m, 2H), 3.98 (s, 2H), 

3.89 (t, J = 5.3 Hz, 2H), 3.69 (t, J = 4.7 Hz, 2H), 3.38 (t, J = 5.4 Hz, 2H), 3.34 (t, J = 5.6 

Hz, 2H). 13C NMR (176 MHz, CDCl3) δ 167.1, 151.7, 147.2, 132.6 (q, J = 40 Hz), 131.6 

(d, J = 38 Hz), 121.7, 124.1 (d, J = 272 Hz), 123.4 (d, J = 272 Hz), 116.5, 115.4, 114.1 (d, 

J = 4 Hz), 113.2 (d, J = 3 Hz), 108.5 (d, J = 4 Hz), 48.3, 44.8, 43.8, 41.6. 

 

2-((2,4-Difluorophenyl)amino)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)ethan-
1-one (3.145)  

 

To a stirring solution of (2,4-difluorophenyl)glycine (16 mg, 0.07 mmol, 1 equiv) in DCM 

(5 mL) was added EDC (27 mg, 0.14 mmol, 2.0 equiv) and DMAP (0.10 mg, 0.007 mmol, 

0.01 equiv). This solution was stirred for 10 min before addition of 1-(3-

(trifluoromethyl)phenyl)piperazine (30 mg, 0.011 mmol, 1.5 equiv). The reaction slurry 

was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics 

were separated and the solvent was removed under reduced pressure. Column 

chromatography (0 to 100% (EtOAc/Hex) on silica gel was used to purify sufficient 

amounts of the target molecule for biological testing and characterization. LRMS (APCI - 
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quad) m/z cal’d for C19H19F5N3O+ [M+H+], 400.37 found 401. 1H NMR (400 MHz, 

CDCl3) δ 7.39 (t, J = 8.0 Hz, 1H), 7.20 - 7.07 (m, 3H), 6.85 - 6.71 (m, 2H), 6.55 (dd, J1 = 

5.3, J2 = 9.3 Hz, 1H), 3.95 (s, 2H), 3.89 - 3.82 (m, 4H), 3.73 - 3.60 (m, 4H), 3.34 - 3.21 (m, 

4H). 

 

2-((4-Chlorophenyl)amino)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)ethan-1-
one (3.146)  

 

To a stirring solution of (4-chlorophenyl)glycine (16 mg, 0.07 mmol, 1 equiv) in DCM (5 

mL) was added EDC (27 mg, 0.14mmol, 2.0 equiv) and DMAP (0.10 mg, 0.007 mmol, 

0.01 equiv). This solution was stirred for 10 min before addition of 1-(3-

(trifluoromethyl)phenyl)piperazine (30 mg, 0.10 mmol, 1.5 equiv). The reaction slurry was 

brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics were 

separated and the solvent was removed under reduced pressure. Column chromatography 

(0 to 100% (EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target 

molecule for biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C19H20ClF3N3O+ [M+H+], 398.83 found 399.1H NMR (400 MHz, CDCl3) δ 7.39 (t, J = 7.9 

Hz, 1H), 7.19 - 7.11 (m, 4H), 7.09 (d, J = 8.3 Hz, 1H), 6.59 (d, J = 8.7 Hz, 2H), 3.91 (s, 

2H), 3.88 - 3.84 (m, 2H), 3.66 - 3.61 (m, 2H), 3.31 - 3.22 (m, 4H). 13C NMR (101 MHz, 

CDCl3) δ 167.3, 150.9, 145.8, 131.6 (q, J = 32 Hz), 129.8, 129.2, 120.7 (q, J = 315 Hz), 

117.1 (d, J = 4 Hz), 114.0, 113.0 (d, J = 4 Hz), 49.1, 49.0, 45.2, 44.1, 41.9.  
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2-((2-Fluorophenyl)amino)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)ethan-1-
one (3.147)  

 

To a stirring solution of (2-fluorophenyl)glycine (15 mg, 0.07 mmol, 1 equiv) in DCM (5 

mL) was added EDC (27 mg, 0.14 mmol,2.0 equiv) and DMAP (0.10 mg, 0.007 mmol, 

0.01 equiv). This solution was stirred for 10 min before addition of 1-(3-

(trifluoromethyl)phenyl)piperazine (30 mg,  0.1 mmol, 1.5 equiv). The reaction slurry was 

brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics were 

separated and the solvent was removed under reduced pressure. Column chromatography 

(0 to 100% (EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target 

molecule for biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C19H20F4N3O+ [M+H+], 382.38 found 383. 1H NMR (400 MHz, CDCl3) δ 7.40 (t, J = 7.9 

Hz, 1H), 7.20 - 7.09 (m, 3H), 7.03 - 6.96 (m, 2H), 6.72 - 6.59 (m, 2H), 3.98 (s, 2H), 3.92 - 

3.85 (m, 2H), 3.70 - 3.64 (m, 2H), 3.31 - 3.24 (m, 4H). 

 

2-((4-Fluorophenyl)amino)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)ethan-1-
one (3.148)  

 

To a stirring solution of (4-fluorophenyl)glycine (15 mg, 0.07 mmol, 1 equiv) in DCM (5 

mL) was added EDC (27 mg, 0.14 mmol, 2.0 equiv) and DMAP (0.10 mg, 0.007, 0.01 
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equiv). This solution was stirred for 10 min before addition of 1-(3-

(trifluoromethyl)phenyl)piperazine (30 mg, 0.11 mmol, 1.5 equiv). The reaction slurry was 

brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics were 

separated and the solvent was removed under reduced pressure. Column chromatography 

(0 to 100% (EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target 

molecule for biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C19H20F4N3O+ [M+H+], 382.38 found 382. 1H NMR (400 MHz, CDCl3) δ 7.39 (t, J = 7.9 

Hz, 1H), 7.14 (d, J = 7.7 Hz, 1H), 7.13 (s, 1H), 7.08 (d, J = 8.2 Hz, 1H), 6.92 (t, J = 8.7 

Hz, 2H), 6.67 - 6.58 (m, 2H), 3.92 (s, 2H), 3.89 - 3.82 (m, 2H), 3.67 - 3.61 (m, 2H), 3.31 - 

3.22 (m, 4H). 

 

2-((2,4-Difluorophenyl)amino)-1-(4-(m-tolyl)piperazin-1-yl)ethan-1-one (3.149)  

 

To a stirring solution of (4-fluorophenyl)glycine (21 mg, 0.12 mmol, 1 equiv) in DCM (5 

mL) was added EDC (35 mg, 0.24 mmol, 2.0 equiv) and DMAP (0.13 mg, 0.012 mmol, 

0.01 equiv). This solution was stirred for 10 min before addition of 1-(m-tolyl)piperazine 

(30 mg, 0.16 mmol, 1.5 equiv). The reaction slurry was brought to 37 ˚C for 12 h before 

quenching with 1 N HCl solution (3 mL). Organics were separated and the solvent was 

removed under reduced pressure. Column chromatography (0 to 100% (EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C19H22F2N3O+ [M+H+], 346.40 
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found 346. 1H NMR (400 MHz, CDCl3) δ 7.19 (t, J = 7.7 Hz, 1H), 6.87 - 6.69 (m, 5H), 

6.54 (dt, J1 = 5.3, J2 = 9.2 Hz, 1H), 4.95 (br, 1H), 3.94 (s, 2H), 3.89 - 3.83 (m, 2H), 3.67 - 

3.60 (m, 2H), 3.26 - 3.16 (m, 4H), 2.34 (s, 3H). 

 

2-((4-Chlorophenyl)amino)-1-(4-(m-tolyl)piperazin-1-yl)ethan-1-one (3.150)  

 

To a stirring solution of (4-chlorophenyl)glycine (21 mg, 0.12 mmol, 1 equiv) in DCM (5 

mL) was added EDC (35 mg, 0.24 mmol, 2.0 equiv) and DMAP (0.13 mg, 0.012 mmol, 

0.01 equiv). This solution was stirred for 10 min before addition of 1-(m-tolyl)piperazine 

(30 mg, 0.16 mmol, 1.5 equiv). The reaction slurry was brought to 37 ˚C for 12 h before 

quenching with 1 N HCl solution (3 mL). Organics were separated and the solvent was 

removed under reduced pressure. Column chromatography (0 to 100% (EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C19H23ClN3O+ [M+H+], 344.86 

found 345. 1H NMR (400 MHz, CDCl3) δ 7.21 (t, J = 7.7 Hz, 1H), 7.15 (d, J = 8.3 Hz, 

2H), 6.89 - 6.80 (m, 3H), 6.56 (d, J = 8.4 Hz, 2H), 3.94 - 3.88 (m, 4H), 3.69 (br, 2H), 3.28 

- 3.19 (m, 4H), 2.35 (s, 3H). 

 



 254 

2-((2-Fluorophenyl)amino)-1-(4-(m-tolyl)piperazin-1-yl)ethan-1-one (3.151)  

 

To a stirring solution of (2-fluorophenyl)glycine (19 mg, 0.12 mmol, 1 equiv) in DCM (5 

mL) was added EDC (35 mg, 0. 24 mmol, 2.0 equiv) and DMAP (0.13 mg, 0.012 mmol, 

0.01 equiv). This solution was stirred for 10 min before addition of 1-(m-tolyl)piperazine 

(30 mg, 0.16 mmol, 1.5 equiv). The reaction slurry was brought to 37 ˚C for 12 h before 

quenching with 1 N HCl solution (3 mL). Organics were separated and the solvent was 

removed under reduced pressure. Column chromatography (0 to 100% (EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C19H23FN3O+ [M+H+], 328.41 

found 329. 1H NMR (400 MHz, CDCl3) δ 7.19 (t, J = 7.6 Hz, 1H), 7.04 - 6.95 (m, 2H), 

6.82 - 6.72 (m, 3H), 6.71 - 6.58 (m, 2H), 5.12 (br, 1H), 3.97 (s, 2H), 3.88 - 3.82 (m, 2H), 

3.66 - 3.60 (m, 2H), 3.25 - 3.16 (m, 4H), 2.34 (s, 3H). 13C NMR (176 MHz, CDCl3) δ 

167.3, 152.7 (dd, J1 = 11, J2 = 238 Hz), 151.0 (dd, J1 = 11, J2 = 238 Hz), 150.4, 132.6 (dd, 

J1 = 3, J2 = 12 Hz), 131.6 (q, J = 33 Hz), 129.8, 124.2 (q, J = 273 Hz), 119.5, 116.9 (d, J = 

4 Hz), 112.9 (d, J = 4 Hz), 112.3 (dd, J1 = 5, J2 = 9 Hz), 110.5 (dd, J1 = 4, J2 = 22 Hz), 

103.7 (dd, J1 = 23, J2 = 27 Hz), 49.0, 48.9, 45.4, 44.1, 41.8. 
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2-((4-Fluorophenyl)amino)-1-(4-(m-tolyl)piperazin-1-yl)ethan-1-one (3.152)  

 

To a stirring solution of (4-fluorophenyl)glycine (19 mg, 0.11 mmol, 1 equiv) in DCM (5 

mL) was added EDC (35 mg, 0.22 mmol, 2.0 equiv) and DMAP (0.13 mg, 0.011 mmol, 

0.01 equiv). This solution was stirred for 10 min before addition of 1-(m-tolyl)piperazine 

(30 mg, 0.15 mmol, 1.5 equiv). The reaction slurry was brought to 37 ˚C for 12 h before 

quenching with 1 N HCl solution (3 mL). Organics were separated and the solvent was 

removed under reduced pressure. Column chromatography (0 to 100% (EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C19H23FN3O+ [M+H+], 328.41 

found 330. 1H NMR (400 MHz, CDCl3) δ 7.19 (t, J = 7.6 Hz, 1H), 6.91 (t, J = 8.5 Hz, 2H), 

6.82 - 6.74 (m, 3H), 6.62 - 6.54 (m, 2H), 3.90 (s, 2H), 3.87 - 3.82 (m, 2H), 3.66 - 3.60 (m, 

2H), 3.25 - 3.16 (m, 4H), 2.34 (s, 3H). 

 

3-(Phenylamino)-1-(4-phenylpiperazin-1-yl)propan-1-one (3.153)  

 

To a stirring solution of 3-(phenylamino)propanoic acid (50 mg, 0.30 mmol, 1 equiv) in 

DCM (5 mL) was added EDC (94 mg, 0.6 mmol, 2.0 equiv) and DMAP (92 mg, 0.75 

mmol, 2.5 equiv). This solution was stirred for 10 min before addition of 1-

phenylpiperazine (73 mg, 0.45 mmol, 1.5 equiv). The reaction slurry was brought to 37 ˚C 
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for 12 h before quenching with 1 N HCl solution (3 mL). Organics were separated and the 

solvent was removed under reduced pressure. Column chromatography (0 to 100% 

(EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target molecule for 

biological testing and characterization. LRMS (APCI - quad) m/z cal’d for C19H24N3O+ 

[M+H+], 310.42 found 310. 1H NMR (400 MHz, CDCl3) δ 7.28 (t, J = 7.5 Hz, 2H), 7.18 

(t, J = 7.3 Hz, 2H), 6.95 - 6.87 (m, 3H), 6.71 (t, J = 7.3 Hz, 1H), 6.65 (d, J = 8.0 Hz, 2H), 

4.45 (br, 1H), 3.82 - 3.75 (m, 2H), 3.61 - 3.54 (m, 2H), 3.53 (t, J = 6.8 Hz, 2H), 3.19 - 3.09 

(m, 4H), 2.66 (t, J = 6.0 Hz, 2H) 

 

3-(Phenylamino)-1-(4-(m-tolyl)piperazin-1-yl)propan-1-one (3.154)  

 

To a stirring solution of 3-(phenylamino)propanoic acid (50 mg, 0.29 mmol, 1 equiv) in 

DCM (5 mL) was added EDC (94 mg, 0.58 mmol, 2.0 equiv) and DMAP (92 mg, 0.75 

mmol, 2.5 equiv). This solution was stirred for 10 min before addition of 1-(m-

tolyl)piperazine (80 mg, 0.45 mmol, 1.5 equiv). The reaction slurry was brought to 37 ˚C 

for 12 h before quenching with 1 N HCl solution (3 mL). Organics were separated and the 

solvent was removed under reduced pressure. Column chromatography (0 to 100% 

(EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target molecule for 

biological testing and characterization. LRMS (APCI - quad) m/z cal’d for C20H26N3O+ 

[M+H+], 324.45 found 325. 1H NMR (400 MHz, CDCl3) δ 7.22 - 7.13 (m, 3H), 6.77 - 6.67 

(m, 4H), 6.64 (d, J = 8.4 Hz, 2H), 4.34 (br, 1H), 3.81 - 3.75 (m, 2H), 3.60 - 3.50 (m, 4H), 

3.17 - 3.08 (m, 4H), 2.65 (t, J = 6.0 Hz, 2H), 2.33 (s, 3H). 
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3-(Phenylamino)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)propan-1-one 
(3.155) 

 

To a stirring solution of 3-(phenylamino)propanoic acid (50 mg, 0.22 mmol, 1 equiv) in 

DCM (5 mL) was added EDC (94 mg, 0.44 mmol, 2.0 equiv) and DMAP (92 mg, 0.51 

mmol, 2.5 equiv). This solution was stirred for 10 min before addition of 1-(3-

(trifluoromethyl)phenyl)piperazine (104 mg, 0.33 mmol, 1.5 equiv). The reaction slurry 

was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics 

were separated and the solvent was removed under reduced pressure. Column 

chromatography (0 to 100% (EtOAc/Hex) on silica gel was used to purify sufficient 

amounts of the target molecule for biological testing and characterization. LRMS (APCI - 

quad) m/z cal’d for C20H23F3N3O+ [M+H+], 378.42 found 379. 1H NMR (400 MHz, 

CDCl3) δ 7.37 (t, J = 8.0 Hz, 1H), 7.18 (t, J = 7.3 Hz, 2H), 7.13 (d, J = 7.7 Hz, 1H), 7.10 

(s, 1H), 7.05 (d, J = 8.3 Hz, 1H), 6.72 (t, J = 7.3 Hz, 1H), 6.65 (d, J = 8.6 Hz, 2H), 4.45 

(br, 1H), 3.83 - 3.76 (m, 2H), 3.61 - 3.57 (m, 2H), 3.54 (t, J = 6.0 Hz, 2H), 3.24 - 3.13 (m, 

4H), 2.66 (t, J = 6.0 Hz, 2H).  

 

3-((2-Nitro-4-(trifluoromethyl)phenyl)amino)-1-(4-phenylpiperazin-1-yl)propan-1-
one (3.156)  
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To a stirring solution of 3-((2-nitro-4-(trifluoromethyl)phenyl)amino)propanoic acid (50 

mg, 0.6 mmol, 1 equiv) in DCM (5 mL) was added EDC (55 mg, 1.2 mmol, 2.0 equiv) and 

DMAP (54 mg, 1.5 mmol, 2.5 equiv). This solution was stirred for 10 min before addition 

of 1-phenylpiperazine (43 mg, 0.9 mmol, 1.5 equiv). The reaction slurry was brought to 37 

˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics were separated and 

the solvent was removed under reduced pressure. Column chromatography (0 to 100% 

(EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target molecule for 

biological testing and characterization. LRMS (APCI - quad) m/z cal’d for C20H22F3N4O3
+ 

[M+H+], 423.42 found 424. 1H NMR (400 MHz, CDCl3) δ 8.52 (t, J = 6.5 Hz, 1H), 8.47 

(d, J = 2.1 Hz, 1H), 7.64 (dd, J1 = 2.2, J2 = 9.0 Hz, 1H), 7.29 (t, J = 7.1 Hz, 2H), 7.03 (d, J 

= 9.0 Hz, 1H), 6.96 - 6.90 (m, 2H), 3.85 - 3.73 (m, 4H), 3.67 - 3.60 (m, 2H), 3.22 - 3.14 

(m, 4H), 2.77 (t, J = 6.6 Hz, 2H). 

 

3-((2-Nitro-4-(trifluoromethyl)phenyl)amino)-1-(4-(m-tolyl)piperazin-1-yl)propan-1-
one (3.157)  

 

To a stirring solution of 3-((2-nitro-4-(trifluoromethyl)phenyl)amino)propanoic acid (50 

mg, 0.29 mmol, 1 equiv) in DCM (5 mL) was added EDC (55 mg, 0.6 mmol, 2.0 equiv) 

and DMAP (54 mg, 0.75 mmol, 2.5 equiv). This solution was stirred for 10 min before 

addition of 1-(m-tolyl)piperazine (47 mg, 0.45 mmol, 1.5 equiv). The reaction slurry was 

brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics were 

separated and the solvent was removed under reduced pressure. Column chromatography 
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(0 to 100% (EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target 

molecule for biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C21H24F3N4O3
+ [M+H+], 437.44 found 438. 1H NMR (400 MHz, CDCl3) δ 8.51 (br, 1H), 

8.48 (s, 1H), 7.64 (dd, J1 = 2.2, J2 = 9.1 Hz, 1H), 7.18 (t, J = 7.7 Hz, 1H), 7.03 (d, J = 9.0 

Hz, 1H), 6.78 - 6.73 (m, 2H), 3.84 - 3.73 (m, 4H), 3.65 - 3.60 (m, 2H), 3.20 - 3.14 (m, 4H), 

2.77 (t, J = 6.6 Hz, 2H), 2.33 (s, 3H). 

 

3-((2-Nitro-4-(trifluoromethyl)phenyl)amino)-1-(4-(3-
(trifluoromethyl)phenyl)piperazin-1-yl)propan-1-one (3.158)  

 

To a stirring solution of 3-((2-nitro-4-(trifluoromethyl)phenyl)amino)propanoic acid (50 

mg, 0.17 mmol, 1 equiv) in DCM (5 mL) was added EDC (55 mg, 0.34 mmol, 2.0 equiv) 

and DMAP (54 mg, 0.42 mmol, 2.5 equiv). This solution was stirred for 10 min before 

addition of 1-(3-(trifluoromethyl)phenyl)piperazine (62 mg, 0.26 mmol, 1.5 equiv). The 

reaction slurry was brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 

mL). Organics were separated and the solvent was removed under reduced pressure. 

Column chromatography (0 to 100% (EtOAc/Hex) on silica gel was used to purify 

sufficient amounts of the target molecule for biological testing and characterization. LRMS 

(APCI - quad) m/z cal’d for C21H21F6N4O3
+ [M+H+], 491.41 found 492. 1H NMR (400 

MHz, CDCl3) δ 8.52 (t, J = 5.8 Hz, 1H), 8.47 (d, J = 2.1 Hz, 1H), 7.64 (dd, J1 = 2.2, J2 = 

9.1 Hz, 1H), 7.38 (t, J = 7.9 Hz, 1H), 7.14 (d, J = 7.8 Hz, 1H), 7.11 (s, 1H), 7.70 (d, J = 8.3 
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Hz, 1H), 7.03 (d, J = 9.0 Hz, 1H), 3.84 - 3.76 (m, 4H), 3.68 - 3.62 (m, 2H), 3.28 - 3.19 (m, 

4H), 2.78 (t, J = 6.6 Hz, 2H). 

 

3-((2-Fluorophenyl)amino)-1-(4-phenylpiperazin-1-yl)propan-1-one (3.159) 

 

To a stirring solution of 3-((2-fluorophenyl)amino)propanoic acid (50 mg, 0.26 mmol, 1 

equiv) in DCM (5 mL) was added EDC (85 mg, 0.52 mmol, 2.0 equiv) and DMAP (83 mg, 

0.63 mmol, 2.5 equiv). This solution was stirred for 10 min before addition of 1-

phenylpiperazine (66 mg, 0.40 mmol, 1.5 equiv). The reaction slurry was brought to 37 ˚C 

for 12 h before quenching with 1 N HCl solution (3 mL). Organics were separated and the 

solvent was removed under reduced pressure. Column chromatography (0 to 100% 

(EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target molecule for 

biological testing and characterization. LRMS (APCI - quad) m/z cal’d for C19H23FN3O+ 

[M+H+], 328.41 found 329. 1H NMR (400 MHz, CDCl3) δ 7.32 - 7.26 (m, 2H), 7.08 (q, J 

= 6.9 Hz, 1H), 6.94 - 6.89 (m, 3H), 6.42 - 6.36 (m, 2H), 6.32 (td, J1 = 2.4, J2 = 11.6 Hz, 

1H), 3.81 - 3.77 (m, 2H), 3.61 - 3.56 (m, 2H), 3.50 (t, J = 5.9 Hz, 2H), 3.18 - 3.11 (m, 4H), 

2.64 (t, J = 5.9 Hz, 2H). 

 

3-((2-Fluorophenyl)amino)-1-(4-(m-tolyl)piperazin-1-yl)propan-1-one (3.160)  
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To a stirring solution of 3-((2-fluorophenyl)amino)propanoic acid (50 mg, 0.28 mmol, 1 

equiv) in DCM (5 mL) was added EDC (85 mg, 0.54 mmol, 2.0 equiv) and DMAP (83 mg, 

0.69 mmol, 2.5 equiv). This solution was stirred for 10 min before addition of 1-(m-

tolyl)piperazine (72 mg, 0.42 mmol, 1.5 equiv). The reaction slurry was brought to 37 ˚C 

for 12 h before quenching with 1 N HCl solution (3 mL). Organics were separated and the 

solvent was removed under reduced pressure. Column chromatography (0 to 100% 

(EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target molecule for 

biological testing and characterization. LRMS (APCI - quad) m/z cal’d for C20H25FN3O+ 

[M+H+], 342.44 found 343. 1H NMR (400 MHz, CDCl3) δ 7.17 (t, J = 7.7 Hz, 1H), 7.08 

(q, J = 7.9 Hz, 1H), 6.77 - 7.60 (m, 3H), 6.42 - 6.27 (m, 3H), 4.51 (br, 1H), 3.81 - 3.75 (m, 

2H), 3.61 - 3.54 (m, 2H), 3.50 (t, J = 5.8 Hz, 2H), 3.18 - 3.09 (m, 4H), 2.64 (t, J = 5.9 Hz, 

2H), 2.32 (s, 3H). 13C NMR (176 MHz, CDCl3) δ 169.9, 164.0 (d, J = 243 Hz), 150.9, 

149.6 (d, J = 10 Hz), 139.0, 130.4 (d, J = 10 Hz), 129.1, 121.7, 117.6, 113.8, 109.0, 103.7 

(d, J = 22 Hz), 99.4 (d, J = 25 Hz), 49.8, 49.5, 45.4, 41.6, 39.3, 31.9, 21.7.  

 

3-((2-Fluorophenyl)amino)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)propan-
1-one (3.161)  

 

To a stirring solution of 3-((2-fluorophenyl)amino)propanoic acid (50 mg, 0.26 mmol, 1 

equiv) in DCM (5 mL) was added EDC (85 mg, 0.52 mmol, 2.0 equiv) and DMAP (83 mg, 

0.69 mmol, 2.5 equiv). This solution was stirred for 10 min before addition of 1-(3-

(trifluoromethyl)phenyl)piperazine (94 mg, 0.40 mmol, 1.5 equiv). The reaction slurry was 
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brought to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics were 

separated and the solvent was removed under reduced pressure. Column chromatography 

(0 to 100% (EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target 

molecule for biological testing and characterization. LRMS (APCI - quad) m/z cal’d for 

C20H22F4N3O+ [M+H+], 396.41 found 397. 1H NMR (400 MHz, CDCl3) δ 7.37 (t, J = 7.9 

Hz, 1H), 7.16 - 7.02 (m, 4H), 6.42 - 6.64 (m, 2H), 6.31 (td, J1 = 2.4, J2 = 11.6 Hz, 1H), 

4.50 (br, 1H), 3.83 - 3.77 (m, 2H), 3.63 - 3.57 (m, 2H), 3.51 (t, J = 5.9 Hz, 2H), 3.24 - 3.16 

(m, 4H), 2.65 (t, J = 5.9 Hz, 2H). 13C NMR (176 MHz, CDCl3) δ 170.0, 164.0 (d, J = 

243), 150.9, 149.5 (d, J = 11 Hz), 131.5 (d, J = 32 Hz), 130.4 (d, J = 11 Hz), 129.8,  124.1 

(d, J = 273 Hz), 119.4, 117.0, 112.8 (d, J = 4 Hz), 109.0 (d, J = 2 Hz), 103.9 (d, J = 21 Hz), 

99.4 (d, J = 25 Hz), 49.0, 48.9, 45.1, 41.3, 39.3, 31.9. 

 

1-(4-(Pyrimidin-2-yl)piperazin-1-yl)-2-((3-(trifluoromethyl)phenyl)amino)ethan-1-
one (3.162)  

 

To a stirring solution of (3-(trifluoromethyl)phenyl)glycine (27 mg, 0.11 mmol, 1 equiv) 

in DCM (5 mL) was added EDC (37 mg, 0.22 mmol, 2.0 equiv) and DMAP (0.14mg, 

0.01mmol, 0.01 equiv). This solution was stirred for 10 min before addition of 2-

(piperazin-1-yl)pyrimidine (30 mg, 0.15 mmol, 1.5 equiv). The reaction slurry was brought 

to 37 ˚C for 12 h before quenching with 1 N HCl solution (3 mL). Organics were separated 

and the solvent was removed under reduced pressure. Column chromatography (0 to 100% 

(EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target molecule for 
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biological testing and characterization. LRMS (APCI - quad) m/z cal’d for C17H19F3N5O+ 

[M+H+], 366.37 found 367. 1H NMR (400 MHz, CDCl3) δ 8.30 (d, J = 4.8 Hz, 2H), 7.25 

- 7.19 (m, 1H), 6.91 (d, J = 7.6 Hz, 1H), 6.78 - 6.71 (m, 2H), 6.53 (t, J = 4.8 Hz, 1H), 3.93 

- 3.87 (m, 4H), 3.86 - 3.80 (m, 2H), 3.77 - 3.70 (m, 2H), 3.53 - 3.46 (m, 2H).  

 

2-((2,4-Difluorophenyl)amino)-1-(4-(pyrimidin-2-yl)piperazin-1-yl)ethan-1-one 
(3.163)  

 

To a stirring solution of (2,4-difluorophenyl)glycine (23 mg, 0.11 mmol, 1 equiv) in DCM 

(5 mL) was added EDC (37 mg, 0.22 mmol, 2.0 equiv) and DMAP (0.14 mg, 0.01mmol, 

0.01 equiv). This solution was stirred for 10 min before addition of 2-(piperazin-1-

yl)pyrimidine (30 mg, 0.16 mmol, 1.5 equiv). The reaction slurry was brought to 37 ˚C for 

12 h before quenching with 1 N HCl solution (3 mL). Organics were separated and the 

solvent was removed under reduced pressure. Column chromatography (0 to 100% 

(EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target molecule for 

biological testing and characterization. LRMS (APCI - quad) m/z cal’d for C16H18F2N5O+ 

[M+H+], 334.35 found 335. 1H NMR (400 MHz, CDCl3) δ 8.35 (d, J = 4.8 Hz, 2H), 6.85 

- 6.71 (m, 2H), 6.61 - 6.52 (m, 2H), 3.97 - 3.86 (m, 6H), 3.81 - 3.74 (m, 2H), 3.58 - 3.50 

(m, 2H). 
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2-((4-Chlorophenyl)amino)-1-(4-(pyrimidin-2-yl)piperazin-1-yl)ethan-1-one (3.164)  

 

To a stirring solution of 4-chlorophenyl)glycine (22 mg, 0.11mmol, 1 equiv) in DCM (5 

mL) was added EDC (37 mg, 0.22 mmol, 2.0 equiv) and DMAP (0.14 mg, 0.011 mmol, 

0.01 equiv). This solution was stirred for 10 min before addition of 2-(piperazin-1-

yl)pyrimidine (30 mg, 0.16 mmol, 1.5 equiv). The reaction slurry was brought to 37 ˚C for 

12 h before quenching with 1 N HCl solution (3 mL). Organics were separated and the 

solvent was removed under reduced pressure. Column chromatography (0 to 100% 

(EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target molecule for 

biological testing and characterization. LRMS (APCI - quad) m/z cal’d for C16H19ClN5O+ 

[M+H+], 332.81 found 333. 1H NMR (400 MHz, CDCl3) δ 8.47 (d, J = 5.0 Hz, 2H), 7.16 

(d, J = 8.6 Hz, 2H), 6.74 (t, J = 5.0 Hz, 1H), 6.62 (d, J = 8.5 Hz, 2H), 4.16 - 4.08 (m, 2H), 

4.04 - 3.98 (m, 2H), 3.39 (s, 2H), 3.85 - 3.78 (m, 2H), 3.67 - 3.60 (m, 2H). 

 

2-((2-Fluorophenyl)amino)-1-(4-(pyrimidin-2-yl)piperazin-1-yl)ethan-1-one (3.165)  

 

To a stirring solution of (2-fluorophenyl)glycine (22 mg, 0.11 mmol, 1 equiv) in DCM (5 

mL) was added EDC (37 mg, 0.22 mmol, 2.0 equiv) and DMAP (0.14 mg, 0.011 mmol,  

0.01 equiv). This solution was stirred for 10 min before addition of 2-(piperazin-1-

yl)pyrimidine (30 mg, 0.16 mmol, 1.5 equiv). The reaction slurry was brought to 37 ˚C for 
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12 h before quenching with 1 N HCl solution (3 mL). Organics were separated and the 

solvent was removed under reduced pressure. Column chromatography (0 to 100% 

(EtOAc/Hex) on silica gel was used to purify sufficient amounts of the target molecule for 

biological testing and characterization. LRMS (APCI - quad) m/z cal’d for C16H19FN5O+ 

[M+H+], 316.36 found 317. 1H NMR (400 MHz, CDCl3) δ 8.36 (d, J = 4.8 Hz, 2H), 7.04 

- 6.95 (m, 2H), 6.69 - 6.57 (m, 3H), 4.00 - 3.87 (m, 6H), 3.82 - 3.75 (m, 2H), 3.59 - 3.52 

(m, 2H). 

 

2-((4-Fluorophenyl)amino)-1-(4-(pyrimidin-2-yl)piperazin-1-yl)ethan-1-one (3.166)  

 

To a stirring solution of (4-fluorophenyl)glycine (22 mg, 0.11 mmol, 1 equiv) in DCM (5 

mL) was added EDC (37 mg, 0.22 mmol, 2.0 equiv) and DMAP (0.14 mg, 0.01 mmol, 0.01 

equiv). This solution was stirred for 10 min before addition of 2-(piperazin-1-yl)pyrimidine 

(30 mg, 0. 16 mmol, 1.5 equiv). The reaction slurry was brought to 37 ˚C for 12 h before 

quenching with 1 N HCl solution (3 mL). Organics were separated and the solvent was 

removed under reduced pressure. Column chromatography (0 to 100% (EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C16H19FN5O+ [M+H+], 316.36 

found 318. 1H NMR (400 MHz, CDCl3) δ 8.36 (d, J = 4.8 Hz, 2H), 6.92 (t, J = 8.7 Hz, 

2H), 6.65 - 6.56 (m, 3H), 3.98 - 3.86 (m, 6H), 3.80 - 3.73 (m, 2H), 3.61 - 3.50 (m, 2H). 
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N,4-bis(3-(Trifluoromethyl)phenyl)piperidine-1-carboxamide (3.167)  

 

To a stirring solution of 4-(3-(trifluoromethyl)phenyl)piperidine (30 mg, 0.13 mmol, 1.0 

equiv), triethylamine (1.8 µL, 0.013 mmol, 0.1 equiv) in DCM (5 mL) was added 1-

isocyanato-3-(trifluoromethyl)benzene (29 mg, 0.16 mmol, 1.2 equiv) and the solution was 

stirred for 30 min at RT. After confirming consumption of limiting reagent by TLC, 3 mL 

of distilled water was added to the reaction vial. The organic layer was separated and 

removed under reduced atmosphere. Column chromatography (0 to 50% EtOAc/Hex) on 

silica gel was used to purify sufficient amounts of the target molecule for biological testing 

and characterization. LRMS (APCI - quad) m/z cal’d for C20H19F6N2O+ [M+H+], 417.37 

found 419. 1H NMR (400 MHz, CDCl3) δ 7.67 (s, 1H), 7.58 (d, J = 8.2 Hz, 1H), 7.52 - 

7.37 (m, 5H), 7.29 (d, J = 7.8 Hz, 1H), 6.59 (s, 1H), 4.25 (d, J = 13.4 Hz, 2H), 3.04 (t, J = 

12.9 Hz, 2H), 2.82 (tt, J1 = 3.3, J2 = 6.9 Hz, 1H), 1.96 (d, J = 15.0 Hz, 2H), 1.75 (dq, J1 = 

4.1, J2 = 12.7 Hz, 2H), 13C NMR (101 MHz, CDCl3) δ 154.4, 145.9, 139.7, 131.1 (quint, 

J = 32 Hz), 130.1, 129.4, 129.1, 124.1 (dq, J1 = 16, J2 = 272), 123.5 (sext, J = 4 Hz), 122.9, 

119.6 (q, J = 4 Hz), 116.4 (q, J = 4 Hz), 44.9, 42.5, 32.9. 
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GPHR-00213869 Analogs 
6-Chloro-3-phenyl-[1,2,4]triazolo[4,3-b]pyridazine (3.168) 

 

To a stirring suspension of 3-chloro-6-hydrazinylpyridazine (100 mg, 0.69 mmol, 1 equiv) 

in toluene (20 mL) was added DIPEA (0.2 mL, 0.069 mmol, 0.01 equiv) and benzoic 

anhydride (313 mg, 1.38 mmol, 2 equiv). The resulting suspension was heated to reflux 

and stirred for 12 h. After confirmation of consumption of starting material by TLC, the 

reaction was cooled to rt and the toluene was removed under reduced pressure. DCM (50 

mL) was added and reaction was washed with a saturated NaHCO3 solution (3 x 25 mL). 

The organic layer was then dried over Na2SO4, filtered and solvent removed under reduced 

pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used to purify 

sufficient amounts of target molecule for biological testing and characterization.  

LRMS (CI-quad) m/z cal’d for C11H8N4Cl+ [M+H+] 231.65, found 232.  

1H NMR (400 MHz, CDCl3) δ 10.29 (s, 1H), 8.19 (d, J = 9.2 Hz, 1H), 7.65 (d, J = 7.1 Hz, 

2H), 7.56 (d, J = 7.7 Hz, 2H), 7.48 (d, J = 9.2 Hz, 1H), 7.42 (dd, J1 = 7.6, J2 = 15.0 Hz, 

1H), 7.38 - 7.30 (m, 3H), 7.20 (t, J1 = 7.7 Hz, 2H). 

 

6-Chloro-3-(m-tolyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.169) 
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To a stirring suspension of 3-chloro-6-hydrazinylpyridazine (100 mg, 0.69 mmol, 1 equiv) 

in toluene (20 mL) was added DIPEA (0.2 mL, 0.069 mmol, 0.01 equiv) and 3-

methylbenzoic anhydride (261 mg, 1.38 mmol, 2 equiv). The resulting suspension was 

heated to reflux and stirred for 12 h. After confirmation of consumption of starting material 

by TLC, the reaction was cooled to rt and the toluene was removed under reduced pressure. 

DCM (50 mL) was added and reaction was washed with a saturated NaHCO3 solution (3 x 

25 mL). The organic layer was then dried over Na2SO4, filtered and solvent removed under 

reduced pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used 

to purify sufficient amounts of target molecule for biological testing and characterization. 

LRMS (CI-quad) m/z cal’d for C12H10N4Cl+ [M+H+] 246.69, found 247. 1H NMR (400 

MHz, CDCl3) δ 9.05 (s, 1H), 8.21 (d, J = 9.3 Hz, 1H), 7.54 (d, J = 9.2 Hz, 1H), 7.50 (d, J 

= 11.0 Hz, 1H), 7.44 (d, J = 7.5 Hz, 1H), 7.33 - 7.27 (m, 1H), 2.35 (s, 3H).  

 

6-Chloro-3-(3-(trifluoromethyl)phenyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.170) 

 

To a stirring suspension of 3-chloro-6-hydrazinylpyridazine (100 mg, 0.69 mmol, 1 equiv) 

in toluene (20 mL) was added DIPEA (0.2 mL, 0.069 mmol, 0.01 equiv) and 3-

(trifluoromethyl)benzoic anhydride (247 mg, 1.38 mmol, 2 equiv). The resulting 

suspension was heated to reflux and stirred for 12 h. After confirmation of consumption of 

starting material by TLC, the reaction was cooled to rt and the toluene was removed under 

reduced pressure. DCM (50 mL) was added and reaction was washed with a saturated 
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NaHCO3 solution (3 x 25 mL). The organic layer was then dried over Na2SO4, filtered and 

solvent removed under reduced pressure. Column chromatography (0 to 10% 

MeOH/DCM) on silica gel was used to purify sufficient amounts of target molecule for 

biological testing and characterization. LRMS (CI-quad) m/z cal’d for C12H7N4F3Cl+ 

[M+H+] 300.66, found 300. 1H NMR (400 MHz, CDCl3) δ 8.79 (s, 1H) 8.70 (d, J = 7.9 

Hz, 1H), 8.19 (d, J = 9.6 Hz, 1H), 7.79 (J = 7.8 Hz, 1H), 7.71 (t, J = 7.9 Hz, 1H), 7.21 (d, 

J = 9.6 Hz, 1H). 

 

6-Chloro-3-(p-tolyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.171) 

 

To a stirring suspension of 3-chloro-6-hydrazinylpyridazine (100 mg, 0.69 mmol, 1 equiv) 

in toluene (20 mL) was added DIPEA (0.2 mL, 0.069 mmol, 0.01 equiv) and 4-

methylbenzoic anhydride (175 mg, 1.38 mmol, 2 equiv). The resulting suspension was 

heated to reflux and stirred for 12 h. After confirmation of consumption of starting material 

by TLC, the reaction was cooled to rt and the toluene was removed under reduced pressure. 

DCM (50 mL) was added and reaction was washed with a saturated NaHCO3 solution (3 x 

25 mL). The organic layer was then dried over Na2SO4, filtered and solvent removed under 

reduced pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used 

to purify sufficient amounts of target molecule for biological testing and characterization. 

LRMS (CI-quad) m/z cal’d for C12H10N4Cl+ [M+H+] 246.69, found 247. 1H NMR (400 

MHz, CDCl3) δ 8.35 (d, J = 8.3 Hz, 2H), 8.16 (d, J = 9.6 Hz, 1H), 7.38 (d, J = 8.0 Hz, 2H), 

7.14 (d, J = 9.6, 2H), 2.45 (s, 3H). 
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6-Chloro-3-(4-(trifluoromethyl)phenyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.172) 

 

To a stirring suspension of 3-chloro-6-hydrazinylpyridazine (100 mg, 0.69 mmol, 1 equiv) 

in toluene (20 mL) was added DIPEA (0.2 mL, 0.069 mmol, 0.01 equiv) and 4-

(trifluoromethyl)benzoic anhydride (249 mg, 1.38 mmol, 2 equiv). The resulting 

suspension was heated to reflux and stirred for 12 h. After confirmation of consumption of 

starting material by TLC, the reaction was cooled to rt and the toluene was removed under 

reduced pressure. DCM (50 mL) was added and reaction was washed with a saturated 

NaHCO3 solution (3 x 25 mL). The organic layer was then dried over Na2SO4, filtered and 

solvent removed under reduced pressure. Column chromatography (0 to 10% 

MeOH/DCM) on silica gel was used to purify sufficient amounts of target molecule for 

biological testing and characterization. LRMS (CI-quad) m/z cal’d for C12H7N4F3Cl+ 

[M+H+] 300.66, found 300. 1H NMR (400 MHz, CDCl3) δ 8.62 (d, J = 7.8 Hz, 2H), 8.19 

(d, J = 9.6 Hz, 1H), 7.83 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 9.6 Hz, 1H).  

 

6-Chloro-3-(4-methoxyphenyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.173) 

 

To a stirring suspension of 3-chloro-6-hydrazinylpyridazine (100 mg, 0.69 mmol, 1 equiv) 

in toluene (20 mL) was added DIPEA (0.2 mL, 0.069 mmol, 0.01 equiv) and 4-
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methoxybenzoic anhydride (294 mg, 1.38 mmol, 2 equiv). The resulting suspension was 

heated to reflux and stirred for 12 h. After confirmation of consumption of starting material 

by TLC, the reaction was cooled to rt and the toluene was removed under reduced pressure. 

DCM (50 mL) was added and reaction was washed with a saturated NaHCO3 solution (3 x 

25 mL). The organic layer was then dried over Na2SO4, filtered and solvent removed under 

reduced pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used 

to purify sufficient amounts of target molecule for biological testing and characterization. 

LRMS (CI-quad) m/z cal’d for C12H10N4OCl+ [M+H+] 262.69, found 263. 1H NMR (400 

MHz, CDCl3) δ 9.06 (s, 1H), 7.95 (d, J = 8.8 Hz, 1H), 7.83 (d, J = 8.9 Hz, 2H), 6.97 (d, J 

= 8.9 Hz, 2H), 3.87 (s, 3H). 

 

6-Chloro-3-(4-fluorophenyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.174) 

 

To a stirring suspension of 3-chloro-6-hydrazinylpyridazine (100 mg, 0.69 mmol, 1 equiv) 

in toluene (20 mL) was added DIPEA (0.2 mL, 0.069 mmol, 0.01 equiv) and 4-

fluorobenzoic anhydride (180 mg, 1.38 mmol, 2 equiv). The resulting suspension was 

heated to reflux and stirred for 12 h. After confirmation of consumption of starting material 

by TLC, the reaction was cooled to rt and the toluene was removed under reduced pressure. 

DCM (50 mL) was added and reaction was washed with a saturated NaHCO3 solution (3 x 

25 mL). The organic layer was then dried over Na2SO4, filtered and solvent removed under 

reduced pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used 
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to purify sufficient amounts of target molecule for biological testing and characterization. 

LRMS (CI-quad) m/z cal’d for C11H7N4FCl+ [M+H+] 250.65, found 251. 1H NMR (400 

MHz, CDCl3) δ 8.49 (dddd, J1 = 3.0, J2 = 5.1, J3 = 8.4, J4 = 10.1 Hz, 2H), 8.16 (d, J = 9.6 

Hz, 1H), 7.27 (dddd, J1 = 3.0, J2 = 5.1, J3 = 10.1 Hz, 2H), 7.16 (d, J = 9.6 Hz, 1H). 

 

6-Chloro-3-(4-chlorophenyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.175) 

 

To a stirring suspension of 3-chloro-6-hydrazinylpyridazine (100 mg, 0.69 mmol, 1 equiv) 

in toluene (20 mL) was added DIPEA (0.2 mL, 0.069 mmol, 0.01 equiv) and 4-

chlorobenzoic anhydride (203 mg, 1.38 mmol, 2 equiv). The resulting suspension was 

heated to reflux and stirred for 12 h. After confirmation of consumption of starting material 

by TLC, the reaction was cooled to rt and the toluene was removed under reduced pressure. 

DCM (50 mL) was added and reaction was washed with a saturated NaHCO3 solution (3 x 

25 mL). The organic layer was then dried over Na2SO4, filtered and solvent removed under 

reduced pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used 

to purify sufficient amounts of target molecule for biological testing and characterization. 

LRMS (CI-quad) m/z cal’d for C11H7N4Cl2
+ [M+H+] 267.11, found 267. 1H NMR (400 

MHz, CDCl3) δ 8.43 (d, J = 8.7 Hz, 2H), 8.16 (d, J = 9.6 Hz, 1H) 7.54 (d, J = 8.6 Hz, 2H), 

7.17 (d, J = 9.6 Hz, 1H). 
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6-Chloro-3-(pyridin-3-yl)-[1,2,4]triazolo[4,3-b]pyridazine (3.176) 

 

To a stirring suspension of 3-chloro-6-hydrazinylpyridazine (100 mg, 0.69 mmol, 1 equiv) 

in toluene (20 mL) was added DIPEA (0.2 mL, 0.069 mmol, 0.01 equiv) and nicotinic 

anhydride (157 mg, 1.38 mmol, 2 equiv). The resulting suspension was heated to reflux 

and stirred for 12 h. After confirmation of consumption of starting material by TLC, the 

reaction was cooled to rt and the toluene was removed under reduced pressure. DCM (50 

mL) was added and reaction was washed with a saturated NaHCO3 solution (3 x 25 mL). 

The organic layer was then dried over Na2SO4, filtered and solvent removed under reduced 

pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used to purify 

sufficient amounts of target molecule for biological testing and characterization. LRMS 

(CI-quad) m/z cal’d for C10H7N5Cl+ [M+H+] 233.65, found 234. 1H NMR (400 MHz, 

CDCl3) δ 9.72 (d, J1 = 2.0 Hz, 1H), 8.80 - 8.72 (m, 2H), 8.19 (d, J1 = 9.6 Hz, 1H), 7.52 

(dd, J1 = 4.9, J2 = 8.0 Hz, 1H), 7.21 (d, J1 = 9.6 Hz, 1H). 

 

6-Chloro-3-(3,4-dichlorophenyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.177) 

 

To a stirring suspension of 3-chloro-6-hydrazinylpyridazine (100 mg, 0.69 mmol, 1 equiv) 

in toluene (20 mL) was added DIPEA (0.2 mL, 0.069 mmol, 0.01 equiv) and 3,4-

dichlorobenzoic anhydride (251 mg, 1.38 mmol, 2 equiv). The resulting suspension was 
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heated to reflux and stirred for 12 h. After confirmation of consumption of starting material 

by TLC, the reaction was cooled to rt and the toluene was removed under reduced pressure. 

DCM (50 mL) was added and reaction was washed with a saturated NaHCO3 solution (3 x 

25 mL). The organic layer was then dried over Na2SO4, filtered and solvent removed under 

reduced pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used 

to purify sufficient amounts of target molecule for biological testing and characterization. 

LRMS (CI-quad) m/z cal’d for C11H6N4Cl3
+ [M+H+] 301.55, found 302. 1H NMR (400 

MHz, CDCl3) δ 8.64 (d, J1 = 2.0 Hz, 1H), 8.38 (dd, J1 = 2.0, J2 = 8.5 Hz, 1H), 8.18 (d, J = 

9.6 Hz, 1H), 7.65 (d, J = 8.5 Hz, 1H), 7.20 (d, J = 9.6 Hz, 1H). 

 

3-(4-(tert-Butyl)phenyl)-6-chloro-[1,2,4]triazolo[4,3-b]pyridazine (3.178) 

 

To a stirring suspension of 3-chloro-6-hydrazinylpyridazine (100 mg, 0.69 mmol, 1 equiv) 

in toluene (20 mL) was added DIPEA (0.2 mL, 0.069 mmol, 0.01 equiv) and 4-(tert-

butyl)benzoic anhydride (233 mg, 1.38 mmol, 2 equiv). The resulting suspension was 

heated to reflux and stirred for 12 h. After confirmation of consumption of starting material 

by TLC, the reaction was cooled to rt and the toluene was removed under reduced pressure. 

DCM (50 mL) was added and reaction was washed with a saturated NaHCO3 solution (3 x 

25 mL). The organic layer was then dried over Na2SO4, filtered and solvent removed under 

reduced pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used 

to purify sufficient amounts of target molecule for biological testing and characterization. 
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LRMS (CI-quad) m/z cal’d for C15H16N4Cl+ [M+H+] 289.77, found 290. 1H NMR (400 

MHz, CDCl3) δ 8.39 (dd, J1 = 2.0, J2 = 2.4 Hz, 1H), 8.37 (dd, J1 = 1.5, J2 = 1.9 Hz, 1H), 

8.14 (d, J = 9.6 Hz, 1H), 7.61 (dd, J1 = 2.1, J2 = 2.6 Hz, 1H), 7.59 (dd, J1 = 1.7, J2 = 2.1 

Hz, 1H), 7.13 (d, J = 9.6 Hz, 1H), 1.39 (s, 9H).  

 

6-Chloro-3-methyl-[1,2,4]triazolo[4,3-b]pyridazine (3.179) 

 

To a stirring suspension of 3-chloro-6-hydrazinylpyridazine (100 mg, 0.69 mmol, 1 equiv) 

in toluene (20 mL) was added DIPEA (0.2 mL, 0.069 mmol, 0.01 equiv) and acetic 

anhydride (70 mg, 1.38 mmol, 2 equiv). The resulting suspension was heated to reflux and 

stirred for 12 h. After confirmation of consumption of starting material by TLC, the 

reaction was cooled to rt and the toluene was removed under reduced pressure. DCM (50 

mL) was added and reaction was washed with a saturated NaHCO3 solution (3 x 25 mL). 

The organic layer was then dried over Na2SO4, filtered and solvent removed under reduced 

pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used to purify 

sufficient amounts of target molecule for biological testing and characterization. LRMS 

(CI-quad) m/z cal’d for C6H6N4Cl+ [M+H+] 170.59, found 170. 1H NMR (400 MHz, 

CDCl3) δ 8.03 (d, J = 9.6 Hz, 1H), 7.08 (d, J = 9.6 Hz, 1H), 2.80 (s, 3H). 

 

6-Chloro-3-propyl-[1,2,4]triazolo[4,3-b]pyridazine (3.180) 
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To a stirring suspension of 3-chloro-6-hydrazinylpyridazine (100 mg, 0.69 mmol, 1 equiv) 

in toluene (20 mL) was added DIPEA (0.2 mL, 0.069 mmol, 0.01 equiv) and butyric 

anhydride (107 mg, 1.38 mmol, 2 equiv). The resulting suspension was heated to reflux 

and stirred for 12 h. After confirmation of consumption of starting material by TLC, the 

reaction was cooled to rt and the toluene was removed under reduced pressure. DCM (50 

mL) was added and reaction was washed with a saturated NaHCO3 solution (3 x 25 mL). 

The organic layer was then dried over Na2SO4, filtered and solvent removed under reduced 

pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used to purify 

sufficient amounts of target molecule for biological testing and characterization. LRMS 

(CI-quad) m/z cal’d for C8H10N4Cl+ [M+H+] 198.64, found 198. 1H NMR (400 MHz, 

CDCl3) δ 8.04 (d, J = 9.6 Hz, 1H), 7.07 (d, J = 9.6 Hz, 1H), 3.15 (t, J = 7.4 Hz, 2H), 1.95 

(sext, J = 7.5 Hz, 2H), 1.05 (t, J = 7.4 Hz, 3H).   

 

3-(tert-Butyl)-6-chloro-[1,2,4]triazolo[4,3-b]pyridazine (3.181) 

 

To a stirring suspension of 3-chloro-6-hydrazinylpyridazine (100 mg, 0.69 mmol, 1 equiv) 

in toluene (20 mL) was added DIPEA (0.2 mL, 0.069 mmol, 0.01 equiv) and pivalic 

anhydride (128 mg, 1.38 mmol, 2 equiv). The resulting suspension was heated to reflux 

and stirred for 12 h. After confirmation of consumption of starting material by TLC, the 

reaction was cooled to rt and the toluene was removed under reduced pressure. DCM (50 

mL) was added and reaction was washed with a saturated NaHCO3 solution (3 x 25 mL). 

The organic layer was then dried over Na2SO4, filtered and solvent removed under reduced 
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pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used to purify 

sufficient amounts of target molecule for biological testing and characterization. LRMS 

(CI-quad) m/z cal’d for C9H13N4Cl+ [M+H+] 213.68, found 214. 1H NMR (400 MHz, 

CDCl3) δ 8.05 (d, J = 9.6 Hz, 1H), 7.06 (d, J = 9.7, 1H), 1.61 (s, 9H). 

 

6-Chloro-3-(trifluoromethyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.182) 

 

To a stirring suspension of 3-chloro-6-hydrazinylpyridazine (100 mg, 0.69 mmol, 1 equiv) 

in toluene (20 mL) was added DIPEA (0.2 mL, 0.069 mmol, 0.01 equiv) and 2,2,2-

trifluoroacetic anhydride (144 mg, 1.38 mmol, 2 equiv). The resulting suspension was 

heated to reflux and stirred for 12 h. After confirmation of consumption of starting material 

by TLC, the reaction was cooled to rt and the toluene was removed under reduced pressure. 

DCM (50 mL) was added and reaction was washed with a saturated NaHCO3 solution (3 x 

25 mL). The organic layer was then dried over Na2SO4, filtered and solvent removed under 

reduced pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used 

to purify sufficient amounts of target molecule for biological testing and characterization. 

LRMS (CI-quad) m/z cal’d for C6H3N4F3Cl+ [M+H+], 224.56, found 224. 1H NMR (400 

MHz, CDCl3) δ 8.22 (d, J = 10.0 Hz, 1H), 7.34 (d, J = 9.7, 1H). 

 

6-Chloro-3-(trichloromethyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.183) 
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To a stirring suspension of 3-chloro-6-hydrazinylpyridazine (100 mg, 0.69 mmol, 1 equiv) 

in toluene (20 mL) was added DIPEA (0.2 mL, 0.069 mmol, 0.01 equiv) and 2,2,2-

trichloroacetic anhydride (213 mg, 1.38 mmol, 2 equiv). The resulting suspension was 

heated to reflux and stirred for 12 h. After confirmation of consumption of starting material 

by TLC, the reaction was cooled to rt and the toluene was removed under reduced pressure. 

DCM (50 mL) was added and reaction was washed with a saturated NaHCO3 solution (3 x 

25 mL). The organic layer was then dried over Na2SO4, filtered and solvent removed under 

reduced pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used 

to purify sufficient amounts of target molecule for biological testing and characterization. 

LRMS (CI-quad) m/z cal’d for C6H3N4Cl4+ [M+H+] 273.93, found 274. 1H NMR (400 

MHz, CDCl3) δ 8.21 (d, J = 9.7 Hz, 1H), 7.33 (d, J = 9.5 Hz, 1H). 

 

6-Bromo-3-phenyl-[1,2,4]triazolo[4,3-a]pyridine (3.184) 

 

To a stirring suspension of 5-bromo-2-hydrazinylpyridine (100 mg, 0.69 mmol, 1 equiv) 

in toluene (20 mL) was added benzoic anhydride (54 mg, 0.69 mmol, 1 equiv). The 

resulting suspension was heated to reflux and stirred for 24 h. After confirmation of 

consumption of starting material by TLC, the reaction was cooled to rt and the toluene was 

removed under reduced pressure. DCM (50 mL) was added and reaction was washed with 

a saturated NaHCO3 solution (3 x 25 mL). The organic layer was then dried over Na2SO4, 

filtered and solvent removed under reduced pressure. Column chromatography (0 to 10% 
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MeOH/DCM) on silica gel was used to purify sufficient amounts of target molecule for 

biological testing and characterization. LRMS (CI-quad) m/z cal’d for C12H9N3Br+ [M+H+] 

276.12, found 276. 1H NMR (400 MHz, CDCl3) δ 8.15 (d, J = 2.2 Hz, 1H), 7.89 (d, J = 

7.5 Hz, 2H), 7.62 (dd, J1 = 2.3, J2 = 8.9 Hz, 1H), 7.56 (t, J = 7.2 Hz, 1H), 7.47 (d, J = 7.8 

Hz, 2H), 6.74 (d, J = 8.9 Hz, 1H). 

 

6-Bromo-3-(m-tolyl)-[1,2,4]triazolo[4,3-a]pyridine (3.185) 

 

To a stirring suspension of 5-bromo-2-hydrazinylpyridine (100 mg, 0.69 mmol, 1 equiv) 

in toluene (20 mL) was added 3-methylbenzoic anhydride (134 mg, 0.69 mmol, 1 equiv). 

The resulting suspension was heated to reflux and stirred for 24 h. After confirmation of 

consumption of starting material by TLC, the reaction was cooled to rt and the toluene was 

removed under reduced pressure. DCM (50 mL) was added and reaction was washed with 

a saturated NaHCO3 solution (3 x 25 mL). The organic layer was then dried over Na2SO4, 

filtered and solvent removed under reduced pressure. Column chromatography (0 to 10% 

MeOH/DCM) on silica gel was used to purify sufficient amounts of target molecule for 

biological testing and characterization. LRMS (CI-quad) m/z cal’d for C13H11N3Br+ 

[M+H+] 290.15, found 290. 1H NMR (400 MHz, CDCl3) δ 8.18 (d, J = 2.1 Hz, 1H), 7.68 

(s, 1H), 7.65 (d, J = 6.7 Hz, 1H), 7.59 (dd, J1 = 2.3, J2 = 8.8 Hz, 1H), 7.38 - 7.33 (m, 2H), 

6.70 (d, J = 8.8 Hz, 1H), 2.40 (s, 3H).  
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6-Bromo-3-(3-(trifluoromethyl)phenyl)-[1,2,4]triazolo[4,3-a]pyridine (3.186) 

 

To a stirring suspension of 5-bromo-2-hydrazinylpyridine (100 mg, 0.53 mmol, 1 equiv) 

in toluene (20 mL) was added 3-(trifluoromethyl)benzoic anhydride (191 mg, 0.53 mmol, 

1 equiv). The resulting suspension was heated to reflux and stirred for 24 h. After 

confirmation of consumption of starting material by TLC, the reaction was cooled to rt and 

the toluene was removed under reduced pressure. DCM (50 mL) was added and reaction 

was washed with a saturated NaHCO3 solution (3 x 25 mL). The organic layer was then 

dried over Na2SO4, filtered and solvent removed under reduced pressure. Column 

chromatography (0 to 10% MeOH/DCM) on silica gel was used to purify sufficient 

amounts of target molecule for biological testing and characterization. LRMS (CI-quad) 

m/z cal’d for C13H8N3F3Br+ [M+H+] 344.12, found 344. 1H NMR (400 MHz, CDCl3) δ 

8.21 (d, J = 2.1 Hz, 1H), 8.14 (s, 1H), 8.05 (d, J = 7.8 Hz, 1H), 7.81 (d, J = 7.8 Hz, 1H), 

7.60 (t, J = 6.7 Hz, 1H), 6.69 (d, J = 8.8 Hz, 1H). 

 

6-Bromo-3-(p-tolyl)-[1,2,4]triazolo[4,3-a]pyridine (3.187) 

 

To a stirring suspension of 5-bromo-2-hydrazinylpyridine (100 mg, 0.53 mmol, 1 equiv) 

in toluene (20 mL) was added 4-methylbenzoic anhydride (134 mg, 0.53 mmol, equiv). 
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The resulting suspension was heated to reflux and stirred for 24 h. After confirmation of 

consumption of starting material by TLC, the reaction was cooled to rt and the toluene was 

removed under reduced pressure. DCM (50 mL) was added and reaction was washed with 

a saturated NaHCO3 solution (3 x 25 mL). The organic layer was then dried over Na2SO4, 

filtered and solvent removed under reduced pressure. Column chromatography (0 to 10% 

MeOH/DCM) on silica gel was used to purify sufficient amounts of target molecule for 

biological testing and characterization. LRMS (CI-quad) m/z cal’d for C13H11N3Br+ 

[M+H+] 290.15, found 290. 1H NMR (400 MHz, CDCl3) δ 8.16 (d, J = 2.3 Hz, 1H), 7.76 

(d, J = 8.1 Hz, 2H), 7.58 (dd, J1 = 2.4, J2 = 8.8 Hz, 1H), 7.25 (d, J = 7.9 Hz, 2H), 6.70 (d, 

J = 9.6 Hz, 1H), 2.41 (s, 3H). 

 

6-Bromo-3-(4-(trifluoromethyl)phenyl)-[1,2,4]triazolo[4,3-a]pyridine (3.188) 

 

To a stirring suspension of 5-bromo-2-hydrazinylpyridine (100 mg, 0.53 mmol, 1 equiv) 

in toluene (20 mL) was added 4-(trifluoromethyl)benzoic anhydride (191 mg, 0.53 mmol, 

equiv). The resulting suspension was heated to reflux and stirred for 24 h. After 

confirmation of consumption of starting material by TLC, the reaction was cooled to rt and 

the toluene was removed under reduced pressure. DCM (50 mL) was added and reaction 

was washed with a saturated NaHCO3 solution (3 x 25 mL). The organic layer was then 

dried over Na2SO4, filtered and solvent removed under reduced pressure. Column 

chromatography (0 to 10% MeOH/DCM) on silica gel was used to purify sufficient 
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amounts of target molecule for biological testing and characterization. LRMS (CI-quad) 

m/z cal’d for C13H8N3F3Br+ [M+H+] 344.12, found 344. 1H NMR (400 MHz, CDCl3) δ 

8.23 (d, J = 2.0 Hz, 1H), 7.99 (d, J = 8.0 Hz, 2H), 7.75 (d, J = 8.0 Hz, 2H), 7.65 (dd, J1 = 

2.3, J2 = 8.8 Hz, 1H), 6.71 (d, J = 8.8 Hz, 1H). 

 

6-Bromo-3-(4-methoxyphenyl)-[1,2,4]triazolo[4,3-a]pyridine (3.189) 

 

To a stirring suspension of 5-bromo-2-hydrazinylpyridine (100 mg, 0.53 mmol, 1 equiv) 

in toluene (20 mL) was added 4-methoxybenzoic anhydride (151 mg, 0.53 mmol, equiv). 

The resulting suspension was heated to reflux and stirred for 24 h. After confirmation of 

consumption of starting material by TLC, the reaction was cooled to rt and the toluene was 

removed under reduced pressure. DCM (50 mL) was added and reaction was washed with 

a saturated NaHCO3 solution (3 x 25 mL). The organic layer was then dried over Na2SO4, 

filtered and solvent removed under reduced pressure. Column chromatography (0 to 10% 

MeOH/DCM) on silica gel was used to purify sufficient amounts of target molecule for 

biological testing and characterization. LRMS (CI-quad) m/z cal’d for C13H11ON3Br+ 

[M+H+] 306.15, found 306. 1H NMR (400 MHz, CDCl3) δ 8.15 (d, J = 2.2 Hz, 1H), 7.83 

(dt, J1 = 2.8, J2 = 4.8 Hz, 2H), 7.55 (dd, J1 = 2.4, J2, = 8.8 Hz, 1H), 6.92 (dt, J1 = 2.8, J2 = 

4.7 Hz, 2H), 6.67 (d, J = 8.8, 1H), 3.85 (s, 3H). 
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6-Bromo-3-(4-fluorophenyl)-[1,2,4]triazolo[4,3-a]pyridine (3.190) 

 

To a stirring suspension of 5-bromo-2-hydrazinylpyridine (100 mg, 0.53 mmol, 1 equiv) 

in toluene (20 mL) was added 4-fluorobenzoic anhydride (138 mg, 0.53 mmol, equiv). The 

resulting suspension was heated to reflux and stirred for 24 h. After confirmation of 

consumption of starting material by TLC, the reaction was cooled to rt and the toluene was 

removed under reduced pressure. DCM (50 mL) was added and reaction was washed with 

a saturated NaHCO3 solution (3 x 25 mL). The organic layer was then dried over Na2SO4, 

filtered and solvent removed under reduced pressure. Column chromatography (0 to 10% 

MeOH/DCM) on silica gel was used to purify sufficient amounts of target molecule for 

biological testing and characterization. LRMS (CI-quad) m/z cal’d for C12H8N3FBr+ 

[M+H+] 294.11, found 294. 1H NMR (400 MHz, CDCl3) δ 8.24 (d, J = 2.3 Hz, 1H), 7.89 

(dd, J1 = 5.3, J2 = 8.4 Hz, 2H), 7.64 (dd, J1 = 2.3, J2 = 8.8 Hz, 1H), 7.17 (t, J = 8.5 Hz, 2H), 

6.69 (d, J = 8.7 Hz, 1H).   

 

6-Bromo-3-(4-chlorophenyl)-[1,2,4]triazolo[4,3-a]pyridine (3.191) 

 

To a stirring suspension of 5-bromo-2-hydrazinylpyridine (100 mg, 0.53 mmol, 1 equiv) 

in toluene (20 mL) was added 4-chlorobenzoic anhydride (156 mg, 0.53 mmol, equiv). The 
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resulting suspension was heated to reflux and stirred for 24 h. After confirmation of 

consumption of starting material by TLC, the reaction was cooled to rt and the toluene was 

removed under reduced pressure. DCM (50 mL) was added and reaction was washed with 

a saturated NaHCO3 solution (3 x 25 mL). The organic layer was then dried over Na2SO4, 

filtered and solvent removed under reduced pressure. Column chromatography (0 to 10% 

MeOH/DCM) on silica gel was used to purify sufficient amounts of target molecule for 

biological testing and characterization. LRMS (CI-quad) m/z cal’d for C12H8N3ClBr+ 

[M+H+] 310.57, found 310. 1H NMR (400 MHz, CDCl3) δ 8.08 (d, J = 2.3 Hz, 1H), 7.75 

(d, J = 8.4 Hz, 2H), 7.54, (dd, J1 = 2.4, J2 = 8.8 Hz, 1H), 7.36 (d, J = 8.5, 2H), 6.63 (d, J = 

8.8 Hz, 1H).  

 

6-Bromo-3-(3,4-dichlorophenyl)-[1,2,4]triazolo[4,3-a]pyridine (3.192) 

 

To a stirring suspension of 5-bromo-2-hydrazinylpyridine (100 mg, 0.53 mmol, 1 equiv) 

in toluene (20 mL) was added 3,4-dichlorobenzoic anhydride (192 mg, 0.53 mmol, equiv). 

The resulting suspension was heated to reflux and stirred for 24 h. After confirmation of 

consumption of starting material by TLC, the reaction was cooled to rt and the toluene was 

removed under reduced pressure. DCM (50 mL) was added and reaction was washed with 

a saturated NaHCO3 solution (3 x 25 mL). The organic layer was then dried over Na2SO4, 

filtered and solvent removed under reduced pressure. Column chromatography (0 to 10% 

MeOH/DCM) on silica gel was used to purify sufficient amounts of target molecule for 
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biological testing and characterization. LRMS (CI-quad) m/z cal’d for C12H7N3Cl2Br+ 

[M+H+] 345.01, found 345. 1H NMR (400 MHz, CDCl3) δ 8.23 (d, J = 2.3 Hz, 1H), 7.97 

(d, 2.04 Hz, 1H), 7.69 (dd, J1 = 1.8, J2 = 8.3 Hz, 1H), 7.64 (dd, J1 = 2.3, J2 = 4.8 Hz, 1H), 

7.57 (d, J = 8.3 Hz, 1H), 6.68 (d, J = 8.8 Hz, 1H). 

 

6-Bromo-3-(pyridin-3-yl)-[1,2,4]triazolo[4,3-a]pyridine (3.193) 

 

To a stirring suspension of 5-bromo-2-hydrazinylpyridine (100 mg, 0.53 mmol, 1 equiv) 

in toluene (20 mL) was added nicotinic anhydride (120 mg, 0.53 mmol, equiv). The 

resulting suspension was heated to reflux and stirred for 24 h. After confirmation of 

consumption of starting material by TLC, the reaction was cooled to rt and the toluene was 

removed under reduced pressure. DCM (50 mL) was added and reaction was washed with 

a saturated NaHCO3 solution (3 x 25 mL). The organic layer was then dried over Na2SO4, 

filtered and solvent removed under reduced pressure. Column chromatography (0 to 10% 

MeOH/DCM) on silica gel was used to purify sufficient amounts of target molecule for 

biological testing and characterization. LRMS (CI-quad) m/z cal’d for C11H8N4Br+ [M+H+] 

277.11, found 277. 1H NMR (400 MHz, CDCl3) δ 9.08 (s, 1H), 8.70 (d, J = 4.7 Hz, 1H), 

8.15 (d, J = 7.9 Hz, 1H), 8.11 (d, J = 2.1 Hz, 1H), 7.50 (dd, J1 = 2.3, J2 = 8.9 Hz, 1H), 7.33 

(dd, J1 = 4.9, J2 = 8.1 Hz, 1H), 6.63 (d, J = 8.8 Hz, 1H). 
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6-Bromo-3-propyl-[1,2,4]triazolo[4,3-a]pyridine (3.194) 

 

To a stirring suspension of 5-bromo-2-hydrazinylpyridine (100 mg, 0.53 mmol, 1 equiv) 

in toluene (20 mL) was added butyric anhydride (83 mg, 0.53 mmol, equiv). The resulting 

suspension was heated to reflux and stirred for 24 h. After confirmation of consumption of 

starting material by TLC, the reaction was cooled to rt and the toluene was removed under 

reduced pressure. DCM (50 mL) was added and reaction was washed with a saturated 

NaHCO3 solution (3 x 25 mL). The organic layer was then dried over Na2SO4, filtered and 

solvent removed under reduced pressure. Column chromatography (0 to 10% 

MeOH/DCM) on silica gel was used to purify sufficient amounts of target molecule for 

biological testing and characterization. LRMS (CI-quad) m/z cal’d for C9H11N3Br+ [M+H+] 

242.11, found 242. 1H NMR (400 MHz, CDCl3) δ 8.17 (d, J = 2.3 Hz, 1H), 7.60 (dd, J1 = 

2.4, J2 = 8.9 Hz, 1H), 6.61 (d, J = 8.8 Hz, 1H, 2.27 (t, J = 7.4 Hz, 2H), 1.73 (sext, J = 7.5 

Hz, 2H), 0.99 (t, J = 7.4 Hz, 3H).  

 

6-Bromo-3-(tert-butyl)-[1,2,4]triazolo[4,3-a]pyridine (3.195) 

 

To a stirring suspension of 5-bromo-2-hydrazinylpyridine (100 mg, 0.53 mmol, 1 equiv) 

in toluene (20 mL) was added pivalic anhydride (98 mg, 0.53 mmol, equiv). The resulting 

suspension was heated to reflux and stirred for 24 h. After confirmation of consumption of 
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starting material by TLC, the reaction was cooled to rt and the toluene was removed under 

reduced pressure. DCM (50 mL) was added and reaction was washed with a saturated 

NaHCO3 solution (3 x 25 mL). The organic layer was then dried over Na2SO4, filtered and 

solvent removed under reduced pressure. Column chromatography (0 to 10% 

MeOH/DCM) on silica gel was used to purify sufficient amounts of target molecule for 

biological testing and characterization. LRMS (CI-quad) m/z cal’d for C10H13N3Br+ 

[M+H+] 256.13, found 257. 1H NMR (400 MHz, CDCl3) δ 8.17 (d, J = 2.1 Hz, 1H), 8.06 

(s, 1H), 7.56 (dd, J1 = 2.2 Hz, J2 = 8.8, 1H), 6.54 (d, J = 8.8 Hz, 1H), 1.26 (s, 9H). 

 

6-Bromo-3-(trifluoromethyl)-[1,2,4]triazolo[4,3-a]pyridine (3.196) 

 

To a stirring suspension of 5-bromo-2-hydrazinylpyridine (100 mg, 0.53 mmol, 1 equiv) 

in toluene (20 mL) was added 2,2,2-trifluoroacetic anhydride (111 mg, 0.53 mmol, equiv). 

The resulting suspension was heated to reflux and stirred for 24 h. After confirmation of 

consumption of starting material by TLC, the reaction was cooled to rt and the toluene was 

removed under reduced pressure. DCM (50 mL) was added and reaction was washed with 

a saturated NaHCO3 solution (3 x 25 mL). The organic layer was then dried over Na2SO4, 

filtered and solvent removed under reduced pressure. Column chromatography (0 to 10% 

MeOH/DCM) on silica gel was used to purify sufficient amounts of target molecule for 

biological testing and characterization. LRMS (CI-quad) m/z cal’d for C7H4N3F3Br+ 

[M+H+] 268.03, found 268. 1H NMR (400 MHz, CDCl3) δ 8.25 (d, J = 2.4 Hz, 1H), 7.69 

(dd, J1 = 2.4, J2 = 8.8 Hz, 1H), 6.65 (d, J = 8.8 Hz, 1H). 
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6-Bromo-3-phenylimidazo[1,5-a]pyridine (3.197) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (100 mg, 0.69 mmol, 1 

equiv) in dichloroethane (20 mL) was added benzoic anhydride (131 mg, 0.76 mmol, 1.1 

equiv). The resulting suspension was stirred at rt for 30 min before dropwise addition of 

POCl3 (88 mg, 0.76 mmol, 1.1 equiv) as a solution in ca 3 mL DCM. The reaction was 

then heated to reflux for 3 hr. After confirmation of consumption of starting material by 

TLC, the reaction was cooled to rt and the reaction was stirred with 5 mL of 0.1 N HCl 

(caution:exothermic reaction) for 15 mins to hydrolyze excess POCl3. Post stirring, the 

reaction was washed with a saturated NaHCO3 solution (3 x 25 mL, caution:gas evolution). 

The organic layer was then dried over Na2SO4, filtered and solvent removed under reduced 

pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used to purify 

sufficient amounts of target molecule for biological testing and characterization. LRMS 

(CI-quad) m/z cal’d for C13H10N2Br+ [M+H+] 276.14, found 276. 1H NMR (400 MHz, 

CDCl3) δ 8.40 (s, 1H), 7.78 (d, J = 7.6 Hz, 2H), 7.60 (s, 1H), 7.56 (t, J = 7.5 Hz, 2H), 7.48 

(t, J = 7.4 Hz, 1H), 7.41 (d, J = 9.6 Hz, 1H), 6.80 (d, J = 9.6 Hz, 1H). 

 

6-Bromo-3-(m-tolyl)imidazo[1,5-a]pyridine (3.198) 

 



 289 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (100 mg, 0.69 mmol, 1 

equiv) in dichloroethane (20 mL) was added 3-methylbenzoic anhydride (141 mg, 1.58 

mmol, 2.3 equiv). The resulting suspension was stirred at rt for 30 min before dropwise 

addition of POCl3 (88 mg, 1.12 mmol, 1.7 equiv) as a solution in ca 3 mL DCM. The 

reaction was then heated to reflux for 3 hr. After confirmation of consumption of starting 

material by TLC, the reaction was cooled to rt and the reaction was stirred with 5 mL of 

0.1 N HCl (caution:exothermic reaction) for 15 mins to hydrolyze excess POCl3. Post 

stirring, the reaction was washed with a saturated NaHCO3 solution (3 x 25 mL, caution:gas 

evolution). The organic layer was then dried over Na2SO4, filtered and solvent removed 

under reduced pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel 

was used to purify sufficient amounts of target molecule for biological testing and 

characterization. LRMS (CI-quad) m/z cal’d for C11H8N2Br+ [M+H+] 249.10, found 249. 

1H NMR (400 MHz, CDCl3) δ 8.38 (s, 1H), 7.60 (s, 1H), 7.57 (s, 1H), 7.55 (d, J = 7.7 Hz, 

1H), 7.43 (t, J = 7.6 Hz, 1H), 7.38 (d, J = 9.5 Hz, 1H), 7.28 (d, J = 7.6, 1H), 6.77 (dd, J1 = 

1.5, J2 = 10.9 Hz, 1H), 2.45 (s, 3H). 

 

6-Bromo-3-(3-(trifluoromethyl)phenyl)imidazo[1,5-a]pyridine (3.199) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (100 mg, 0.69 mmol, 1 

equiv) in dichloroethane (20 mL) was added 3-(trifluoromethyl)benzoic anhydride (210 

mg, 0.76 mmol, 1.1 equiv). The resulting suspension was stirred at rt for 30 min before 
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dropwise addition of POCl3 (105 mg, 0.89 mmol, 1.3 equiv) as a solution in ca 3 mL DCM. 

The reaction was then heated to reflux for 3 hr. After confirmation of consumption of 

starting material by TLC, the reaction was cooled to rt and the reaction was stirred with 5 

mL of 0.1 N HCl (caution:exothermic reaction) for 15 mins to hydrolyze excess POCl3. 

Post stirring, the reaction was washed with a saturated NaHCO3 solution (3 x 25 mL, 

caution:gas evolution). The organic layer was then dried over Na2SO4, filtered and solvent 

removed under reduced pressure. Column chromatography (0 to 10% MeOH/DCM) on 

silica gel was used to purify sufficient amounts of target molecule for biological testing 

and characterization. LRMS (CI-quad) m/z cal’d for C14H9N2F3Br+ [M+H+] 343.13, found 

343. 1H NMR (400 MHz, CDCl3) δ 8.35 (s, 1H), 8.08 (s, 1H), 7.96 (d, J = 7.5 Hz, 1H), 

7.73 - 7.67 (m, 2H), 7.63 (s, 1H), 7.43 (d, J = 9.6 Hz, 1H), 6.85 (d, J = 9.6 Hz, 1H).  

 

6-Bromo-3-(p-tolyl)imidazo[1,5-a]pyridine (3.200) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (100 mg, 0.69 mmol, 1 

equiv) in dichloroethane (20 mL) was added nicotinic anhydride (147 mg, 0.76 mmol, 1.1 

equiv). The resulting suspension was stirred at rt for 30 min before dropwise addition of 

POCl3 (105 mg, 0.89 mmol, 1.3 equiv) as a solution in ca 3 mL DCM. The reaction was 

then heated to reflux for 3 hr. After confirmation of consumption of starting material by 

TLC, the reaction was cooled to rt and the reaction was stirred with 5 mL of 0.1 N HCl 

(caution:exothermic reaction) for 15 mins to hydrolyze excess POCl3. Post stirring, the 
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reaction was washed with a saturated NaHCO3 solution (3 x 25 mL, caution:gas evolution). 

The organic layer was then dried over Na2SO4, filtered and solvent removed under reduced 

pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used to purify 

sufficient amounts of target molecule for biological testing and characterization. LRMS 

(CI-quad) m/z cal’d for C14H12N2Br+ [M+H+] 289.16, found 289. 1H NMR (400 MHz, 

CDCl3) δ 8.36 (s, 1H), 7.65 (d, J = 7.9 Hz, 2H), 7.56 (s, 1H), 7.39 - 7.32 (m, 3H), 6.76 (d, 

J = 9.5 Hz, 1H), 2.44 (s, 3H). 

 

6-Bromo-3-(4-(trifluoromethyl)phenyl)imidazo[1,5-a]pyridine (3.201) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (100 mg, 0.69 mmol, 1 

equiv) in dichloroethane (20 mL) was added 4-(trifluoromethyl)benzoic anhydride (210 

mg, 0.76 mmol, 1.1 equiv). The resulting suspension was stirred at rt for 30 min before 

dropwise addition of POCl3 (105 mg, 0.89 mmol, 1.3 equiv) as a solution in ca 3 mL DCM. 

The reaction was then heated to reflux for 3 hr. After confirmation of consumption of 

starting material by TLC, the reaction was cooled to rt and the reaction was stirred with 5 

mL of 0.1 N HCl (caution:exothermic reaction) for 15 mins to hydrolyze excess POCl3. 

Post stirring, the reaction was washed with a saturated NaHCO3 solution (3 x 25 mL, 

caution:gas evolution). The organic layer was then dried over Na2SO4, filtered and solvent 

removed under reduced pressure. Column chromatography (0 to 10% MeOH/DCM) on 

silica gel was used to purify sufficient amounts of target molecule for biological testing 
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and characterization. LRMS (CI-quad) m/z cal’d for C14H9N2F3Br+ [M+H+] 343.13, found 

343. 1H NMR (400 MHz, CDCl3) δ 8.40 (s, 1H), 7.93 (d, J = 8.1 Hz, 2H), 7.81 (d, J = 8.2 

Hz, 2H), 7.64 (s, 1H), 7.44 (d, J = 9.5 Hz, 1H), 6.85 (d, J = 9.5 Hz, 1H). 

 

6-Bromo-3-(4-fluorophenyl)imidazo[1,5-a]pyridine (3.202) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (100 mg, 0.69 mmol, 1 

equiv) in dichloroethane (20 mL) was added 4-fluorobenzoic anhydride (322 mg, 1.58 

mmol, 2.3 equiv). The resulting suspension was stirred at rt for 30 min before dropwise 

addition of POCl3 (140 mg, 1.12 mmol, 1.7 equiv) as a solution in ca 3 mL DCM. The 

reaction was then heated to reflux for 3 hr. After confirmation of consumption of starting 

material by TLC, the reaction was cooled to rt and the reaction was stirred with 5 mL of 

0.1 N HCl (caution:exothermic reaction) for 15 mins to hydrolyze excess POCl3. Post 

stirring, the reaction was washed with a saturated NaHCO3 solution (3 x 25 mL, caution:gas 

evolution). The organic layer was then dried over Na2SO4, filtered and solvent removed 

under reduced pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel 

was used to purify sufficient amounts of target molecule for biological testing and 

characterization. LRMS (CI-quad) m/z cal’d for C13H9N2FBr+ [M+H+] 293.13, found 293. 

1H NMR (400 MHz, CDCl3) δ 8.24 (s, 1H), 7.69 (dd, J1 = 5.4, J2 = 8.2 Hz, 2H), 7.51 (s, 

1H), 7.33 (d, J = 9.5 Hz, 1H), 7.17 (d, J = 8.6 Hz, 1H), 6.73 (d, J = 9.6 Hz, 1H). 
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6-Bromo-3-(4-chlorophenyl)imidazo[1,5-a]pyridine (3.203) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (100 mg, 0.69 mmol, 1 

equiv) in dichloroethane (20 mL) was added 4-chlorobenzoic anhydride (361 mg, 1.58 

mmol, 2.3 equiv). The resulting suspension was stirred at rt for 30 min before dropwise 

addition of POCl3 (141 mg, 1.12 mmol, 1.7 equiv) as a solution in ca 3 mL DCM. The 

reaction was then heated to reflux for 3 hr. After confirmation of consumption of starting 

material by TLC, the reaction was cooled to rt and the reaction was stirred with 5 mL of 

0.1 N HCl (caution:exothermic reaction) for 15 mins to hydrolyze excess POCl3. Post 

stirring, the reaction was washed with a saturated NaHCO3 solution (3 x 25 mL, caution:gas 

evolution). The organic layer was then dried over Na2SO4, filtered and solvent removed 

under reduced pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel 

was used to purify sufficient amounts of target molecule for biological testing and 

characterization. LRMS (CI-quad) m/z cal’d for C13H8N2ClBr+ [M+H+] 293.13, found 293. 

1H NMR (400 MHz, CDCl3) δ 8.27 (s, 1H), 7.66 (d, J = 8.3 Hz, 1H), 7.54 (s, 1H), 7.46 

(d, J = 8.2 Hz, 1H), 7.35 (d, J = 9.7 Hz, 1H), 6.75 (d, J = 9.6 Hz, 1H). 

 

6-Bromo-3-(pyridin-3-yl)imidazo[1,5-a]pyridine (3.204) 
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To a stirring suspension of (5-bromopyridin-2-yl)methanamine (100 mg, 0.69 mmol, 1 

equiv) in dichloroethane (20 mL) was added nicotinic anhydride (132 mg, 0.76 mmol, 1.1 

equiv). The resulting suspension was stirred at rt for 30 min before dropwise addition of 

POCl3 (105 mg, 0.89 mmol, 1.3 equiv) as a solution in ca 3 mL DCM. The reaction was 

then heated to reflux for 3 hr. After confirmation of consumption of starting material by 

TLC, the reaction was cooled to rt and the reaction was stirred with 5 mL of 0.1 N HCl 

(caution:exothermic reaction) for 15 mins to hydrolyze excess POCl3. Post stirring, the 

reaction was washed with a saturated NaHCO3 solution (3 x 25 mL, caution:gas evolution). 

The organic layer was then dried over Na2SO4, filtered and solvent removed under reduced 

pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used to purify 

sufficient amounts of target molecule for biological testing and characterization. LRMS 

(CI-quad) m/z cal’d for C12H9N3Br+ [M+H+] 276.12, found 276. 1H NMR (400 MHz, 

CDCl3) δ 9.07 (d, J = 2.3 Hz, 1H) 8.70 (d, J = 5.0 Hz, 1H), 8.38 (s, 1H), 8.13 (d, J = 8.1 

Hz, 1H), 7.63 (s, 1H), 7.50 (dd, J1 = 4.8, J2 = 7.9 Hz,1H), 7.44 (d, J = 9.6 Hz, 1H), 6.85 (d, 

J = 9.5 Hz, 1H).  

 

6-Bromo-3-methylimidazo[1,5-a]pyridine (3.205) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (100 mg, 0.69 mmol, 1 

equiv) in dichloroethane (20 mL) was added acetic anhydride (59 mg, 0.76 mmol, 1.1 

equiv). The resulting suspension was stirred at rt for 30 min before dropwise addition of 

POCl3 (105 mg, 0.89 mmol, 1.3 equiv) as a solution in ca 3 mL DCM. The reaction was 
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then heated to reflux for 3 hr. After confirmation of consumption of starting material by 

TLC, the reaction was cooled to rt and the reaction was stirred with 5 mL of 0.1 N HCl 

(caution:exothermic reaction) for 15 mins to hydrolyze excess POCl3. Post stirring, the 

reaction was washed with a saturated NaHCO3 solution (3 x 25 mL, caution:gas evolution). 

The organic layer was then dried over Na2SO4, filtered and solvent removed under reduced 

pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used to purify 

sufficient amounts of target molecule for biological testing and characterization. LRMS 

(CI-quad) m/z cal’d for C8H8N2Br+ [M+H+] 213.07, found 213. 1H NMR (400 MHz, 

CDCl3) δ 7.76 (s, 1H), 7.29 (s, 1H), 7.22 (t, J = 11.8 Hz, 1H), 6.63 (d, J = 10.1 Hz, 1H), 

2.57 (s, 3H). 

 

6-Bromo-3-propylimidazo[1,5-a]pyridine (3.206) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (100 mg, 0.69 mmol, 1 

equiv) in dichloroethane (20 mL) was added butyric anhydride (91 mg, 0.76 mmol, 1.1 

equiv). The resulting suspension was stirred at rt for 30 min before dropwise addition of 

POCl3 (105 mg, 0.89 mmol, 1.3 equiv) as a solution in ca 3 mL DCM. The reaction was 

then heated to reflux for 3 hr. After confirmation of consumption of starting material by 

TLC, the reaction was cooled to rt and the reaction was stirred with 5 mL of 0.1 N HCl 

(caution:exothermic reaction) for 15 mins to hydrolyze excess POCl3. Post stirring, the 

reaction was washed with a saturated NaHCO3 solution (3 x 25 mL, caution:gas evolution). 

The organic layer was then dried over Na2SO4, filtered and solvent removed under reduced 
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pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used to purify 

sufficient amounts of target molecule for biological testing and characterization. LRMS 

(CI-quad) m/z cal’d for C10H12N2Br+ [M+H+] 242.12, found 242. 1H NMR (400 MHz, 

CDCl3) δ 7.88 (s, 1H), 7.39 (s, 1H), 7.30 (t, J = 9.6 Hz, 1H), 6.70 (d, J = 9.6 Hz, 1H), 2.93 

(t, J = 7.6 Hz, 2H), 1.90 (sext, J = 7.4 Hz, 2H), 1.05 (t, J = 7.4 Hz, 3H).  

 

N-((5-Bromopyridin-2-yl)methyl)benzamide (3.207) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (20 mg, 0.106 mmol, 1 

equiv) in dichloroethane (20 mL) was added benzoic anhydride (26 mg, 0.76 mmol, 1.1 

equiv). The resulting suspension was stirred at rt for 30 min. After confirmation of 

consumption of starting material by TLC, reaction solvent was removed under reduced 

pressure and column chromatography (0 to 10% MeOH/DCM) on silica gel was used to 

purify sufficient amounts of target molecule for biological testing and characterization. 

LRMS (CI-quad) m/z cal’d for C13H12ON2Br+ [M+H+] 294.15, found 294. 1H NMR (400 

MHz, CDCl3) δ 8.62 (d, J = 1.9 Hz, 1H), 7.85 (d, J = 7.0 Hz, 2H), 7.81 (dd, J1 = 2.3, J2 = 

8.3 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.27 (t, J = 6.6 Hz, 1H), 4.72 

(d, J = 5.0 Hz, 2H). 

 

N-((5-Bromopyridin-2-yl)methyl)-3-methylbenzamide (3.208) 
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To a stirring suspension of (5-bromopyridin-2-yl)methanamine (20 mg, 0.106 mmol, 1 

equiv) in dichloroethane (20 mL) was added 3-methylbenzoic anhydride (30 mg, 0.76 

mmol, 1.1 equiv). The resulting suspension was stirred at rt for 30 min. After confirmation 

of consumption of starting material by TLC, reaction solvent was removed under reduced 

pressure and column chromatography (0 to 10% MeOH/DCM) on silica gel was used to 

purify sufficient amounts of target molecule for biological testing and characterization. 

LRMS (CI-quad) m/z cal’d for C14H14ON2Br+ [M+H+] 307.18, found 307. 1H NMR (400 

MHz, CDCl3) δ 8.63 (d, J = 2.0 Hz, 1H), 7.81 (dd, J1 = 2.2, J2 = 8.3 Hz, 1H), 7.67 (s, 1H), 

7.66 - 7.59 (m, 1H), 7.37 - 7.29 (m, 2H), 7.26 (t, J = 4.8 Hz, 1H), 4.71 (d, J = 5.1 Hz, 2H), 

2.40 (s, 3H). 

 

N-((5-Bromopyridin-2-yl)methyl)-4-methylbenzamide (3.209) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (20 mg, 0.106 mmol, 1 

equiv) in dichloroethane (20 mL) was added 4-methylbenzoic anhydride (30 mg, 0.76 

mmol, 1.1 equiv). The resulting suspension was stirred at rt for 30 min. After confirmation 

of consumption of starting material by TLC, reaction solvent was removed under reduced 

pressure and column chromatography (0 to 10% MeOH/DCM) on silica gel was used to 

purify sufficient amounts of target molecule for biological testing and characterization. 

LRMS (CI-quad) m/z cal’d for C14H14ON2Br+ [M+H+] 307.18, found 308. 1H NMR (400 

MHz, CDCl3) δ 8.62 (d, J = 2.1 Hz, 1H), 7.80 (dd, J1 = 2.3, J2 = 8.4 Hz, 1H), 7.75 (d, J = 

8.2 Hz, 2H), 7.36 (br, 1H), 7.29 - 7.20 (m, 3H), 4.71 (d, J = 5.1 Hz, 2H), 2.40 (s, 3H). 
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N-((5-Bromopyridin-2-yl)methyl)-4-(trifluoromethyl)benzamide (3.210) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (20 mg, 0.106 mmol, 1 

equiv) in dichloroethane (20 mL) was added 4-(trifluoromethyl)benzoic anhydride (42 mg, 

0.76 mmol, 1.1 equiv). The resulting suspension was stirred at rt for 30 min. After 

confirmation of consumption of starting material by TLC, reaction solvent was removed 

under reduced pressure and column chromatography (0 to 10% MeOH/DCM) on silica gel 

was used to purify sufficient amounts of target molecule for biological testing and 

characterization. LRMS (CI-quad) m/z cal’d for C14H11ON3F3Br+ [M+H+] 375.16, found 

375. 1H NMR (400 MHz, CDCl3) δ 8.65 (d, J = 2.2 Hz, 1H), 7.99 (d, J = 8.1 Hz, 2H), 7.87 

(dd, J1 = 2.3, J2 = 8.4 Hz, 1H), 7.74 (d, J = 8.1 Hz, 2H), 7.57 (br, 1H), 7.29 (d, J = 8.3, 1H), 

4.75 (d, J = 4.9 Hz, 2H).   

 

N-((5-Bromopyridin-2-yl)methyl)-4-methoxybenzamide (3.211) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (20 mg, 0.106 mmol, 1 

equiv) in dichloroethane (20 mL) was added 4-methoxybenzoic anhydride (34 mg, 0.76 

mmol, 1.1 equiv). The resulting suspension was stirred at rt for 30 min. After confirmation 

of consumption of starting material by TLC, reaction solvent was removed under reduced 
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pressure and column chromatography (0 to 10% MeOH/DCM) on silica gel was used to 

purify sufficient amounts of target molecule for biological testing and characterization. 

LRMS (CI-quad) m/z cal’d for C14H14O2N2Br+ [M+H+] 323.18, found 323. 1H NMR (400 

MHz, CDCl3) δ 8.63 (d, J = 2.2 Hz, 1H), 7.88 - 7.77 (m, 3H), 7.35 (br, 1H), 7.28 (d, J = 

8.8 Hz, 2H), 4.72 (d, J = 5.1 Hz, 2H), 3.86 (s, 3H). 

 

N-((5-Bromopyridin-2-yl)methyl)-4-fluorobenzamide (3.212) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (20 mg, 0.106 mmol, 1 

equiv) in dichloroethane (20 mL) was added 4-fluorobenzoic anhydride (31 mg, 0.76 

mmol, 1.1 equiv). The resulting suspension was stirred at rt for 30 min. After confirmation 

of consumption of starting material by TLC, reaction solvent was removed under reduced 

pressure and column chromatography (0 to 10% MeOH/DCM) on silica gel was used to 

purify sufficient amounts of target molecule for biological testing and characterization. 

LRMS (CI-quad) m/z cal’d for C13H11ON2FBr+ [M+H+] 311.14, found 311. 1H NMR (400 

MHz, CDCl3) δ 8.65 (d, J = 2.3 Hz, 1H), 7.89 (ddd, J1 = 2.8, J2 = 3.3, J3 = 5.4 Hz, 2H), 

7.85 (dd, J1 = 2.4, J2 = 8.3 Hz, 1H), 7.41 (br, 1H), 7.28 (d, J = 8.4 Hz, 2H), 7.14 (ddd, J1 = 

3.0, J2 = 4.8, J3 = 11.5 Hz, 2H), 4.73 (d, J = 5.0 Hz, 2H).  
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N-((5-Bromopyridin-2-yl)methyl)-4-chlorobenzamide (3.213) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (20 mg, 0.106 mmol, 1 

equiv) in dichloroethane (20 mL) was added 4-fluorobenzoic anhydride (34 mg, 0.76 

mmol, 1.1 equiv). The resulting suspension was stirred at rt for 30 min. After confirmation 

of consumption of starting material by TLC, reaction solvent was removed under reduced 

pressure and column chromatography (0 to 10% MeOH/DCM) on silica gel was used to 

purify sufficient amounts of target molecule for biological testing and characterization. 

LRMS (CI-quad) m/z cal’d for C13H11ON2ClBr+ [M+H+] 327.60, found 327. 1H NMR (400 

MHz, CDCl3) δ 8.63 (d, J = 2.4 Hz, 1H), 7.85 (dd, J1 = 2.6, J2 = 8.6 Hz, 1H), 7.80 (d, J = 

8.3 Hz, 2H), 7.43 (d, J = 8.7 Hz, 2H), 7.27 (d, J = 7.4 Hz, 1H),  4.71 (d, J = 5.0 Hz, 2H). 

 

N-((5-Bromopyridin-2-yl)methyl)-3,4-dichlorobenzamide (3.214) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (20 mg, 0.106 mmol, 1 

equiv) in dichloroethane (20 mL) was added 3,4-dichlorobenzoic anhydride (42 mg, 0.76 

mmol, 1.1 equiv). The resulting suspension was stirred at rt for 30 min. After confirmation 

of consumption of starting material by TLC, reaction solvent was removed under reduced 

pressure and column chromatography (0 to 10% MeOH/DCM) on silica gel was used to 

purify sufficient amounts of target molecule for biological testing and characterization. 
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LRMS (CI-quad) m/z cal’d for C13H10ON2Cl2Br+ [M+H+] 362.04, found 362. H1 NMR 

(400 MHz, CDCl3) 8.64 (d, J = 2.2 Hz, 1H), 7.96 (d, J = 2.0 Hz, 1H), 7.85 (dd, J1 = 2.3, 

J2 = 8.4 Hz, 1H), 7.68 (dd, J1 = 2.0, J2 = 8.4 Hz, 1H), 7.53 (d, J = 8.4 Hz, 1H), 7.50 (br, 

1H), 7.28 (s, 1H), 4.71 (d, J = 4.9 Hz, 2H). 

 

N-((5-Bromopyridin-2-yl)methyl)-4-(tert-butyl)benzamide (3.215) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (20 mg, 0.106 mmol, 1 

equiv) in dichloroethane (20 mL) was added 4-(tert-butyl)benzoic anhydride (39 mg, 0.76 

mmol, 1.1 equiv). The resulting suspension was stirred at rt for 30 min. After confirmation 

of consumption of starting material by TLC, reaction solvent was removed under reduced 

pressure and column chromatography (0 to 10% MeOH/DCM) on silica gel was used to 

purify sufficient amounts of target molecule for biological testing and characterization. 

LRMS (CI-quad) m/z cal’d for C17H16ON2Br+ [M+H+] 345.23, found 345. 1H NMR (400 

MHz, CDCl3) δ 8.61 (d, J = 2.1 Hz, 1H), 7.83 - 7.77 (m, 3H), 7.46 (d, J = 8.6 Hz, 2H), 

7.27 (d, J = 8.3 Hz, 1H), 4.71 (d, J = 5.1 Hz, 2H), 1.34 (s, 9H).  

 

N-((5-Bromopyridin-2-yl)methyl)nicotinamide (3.216) 
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To a stirring suspension of (5-bromopyridin-2-yl)methanamine (20 mg, 0.106 mmol, 1 

equiv) in dichloroethane (20 mL) was added nicotinic anhydride (27 mg, 0.76 mmol, 1.1 

equiv). The resulting suspension was stirred at rt for 30 min. After confirmation of 

consumption of starting material by TLC, reaction solvent was removed under reduced 

pressure and column chromatography (0 to 10% MeOH/DCM) on silica gel was used to 

purify sufficient amounts of target molecule for biological testing and characterization. 

LRMS (CI-quad) m/z cal’d for C12H11ON3Br+ [M+H+] 294.14, found 294. 1H NMR (400 

MHz, CDCl3) δ 9.14 (d, J = 2.2 Hz, 1H), 8.76 (dd, J1 = 1.6, J2 = 5.0 Hz, 1H), 8.64 (d, J = 

2.2 Hz, 1H), 8.23 (td, J1 = 2.0, J2 = 4.0 Hz, 1H), 7.84 (dd, J1 = 2.5, J2 = 8.4 Hz, 1H), 7.68 

(br, 1H), 7.46 (dd, J1 = 4.9, J2 = 8.0 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H), 4.74 (d, J = 4.9 Hz, 

2H). 

 

N-((5-Bromopyridin-2-yl)methyl)acetamide (3.217) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (20 mg, 0.106 mmol, 1 

equiv) in dichloroethane (20 mL) was added 4-chlorobenzoic anhydride (12 mg, 0.76 

mmol, 1.1 equiv). The resulting suspension was stirred at rt for 30 min. After confirmation 

of consumption of starting material by TLC, reaction solvent was removed under reduced 

pressure and column chromatography (0 to 10% MeOH/DCM) on silica gel was used to 

purify sufficient amounts of target molecule for biological testing and characterization. 

LRMS (CI-quad) m/z cal’d for C8H10ON2Br+ [M+H+] 231.08, found 231. 1H NMR (400 
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MHz, CDCl3) δ 8.60 (d, J = 2.1 Hz, 1H), 7.80 (dd, J1 = 2.2, J2 = 8.3 Hz, 1H), 7.20 (d, J = 

7.9 Hz, 1H), 6.60 (s (b), 1H), 2.07 (s, 3H). 

 

N-((5-Bromopyridin-2-yl)methyl)butyramide (3.218) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (20 mg, 0.106 mmol, 1 

equiv) in dichloroethane (20 mL) was added butyric anhydride (18 mg, 0.76 mmol, 1.1 

equiv). The resulting suspension was stirred at rt for 30 min. After confirmation of 

consumption of starting material by TLC, reaction solvent was removed under reduced 

pressure and column chromatography (0 to 10% MeOH/DCM) on silica gel was used to 

purify sufficient amounts of target molecule for biological testing and characterization. 

LRMS (CI-quad) m/z cal’d for C10H14ON2Br+ [M+H+] 259.13, found 259. 1H NMR (400 

MHz, CDCl3) δ 8.59 (d, J = 2.1 Hz, 1H), 7.79, (dd, J1 = 2.3, J2 = 8.3 Hz, 1H), 7.19 (d, J = 

8.3 Hz, 1H), 6.58 (s, 1H), 4.51 (d, J = 5.2 Hz, 2H), 2.25 (t, J = 7.4 Hz, 2H). 1.69 (sext, 7.44 

Hz, 2H), 0.96 (t, J = 7.4 Hz, 3H). 

 

3-Phenyl-[1,2,4]triazolo[4,3-a]pyridine (3.218) 

 

To a stirring suspension of 2-hydrazinylpyridine (100 mg, 0.91 mmol, 1 equiv) in toluene 

(20 mL) was added benzoic anhydride (208 mg, 0.91 mmol, 1 equiv). The resulting 



 304 

suspension was heated to reflux and stirred for 24 h. After confirmation of consumption of 

starting material by TLC, the reaction was cooled to rt and the toluene was removed under 

reduced pressure. DCM (50 mL) was added and reaction was washed with a saturated 

NaHCO3 solution (3 x 25 mL). The organic layer was then dried over Na2SO4, filtered and 

solvent removed under reduced pressure. Column chromatography (0 to 10% 

MeOH/DCM) on silica gel was used to purify sufficient amounts of target molecule for 

biological testing and characterization. LRMS (CI-quad) m/z cal’d for C12H10N3
+ [M+H+] 

197.26, found 197. 1H NMR (400 MHz, CDCl3) δ 8.14 (dd, J1 = 1.6, J2 = 5.6 Hz, 1H), 

7.90 (d, J = 7.3 Hz, 2H), 7.58 - 7.50 (m, 2H), 7.47 (t, J = 7.7 Hz, 2H), 6.80 (t, J = 4.2 Hz, 

1H). 

 

3-Phenyl-[1,2,4]triazolo[4,3-b]pyridazine (3.219) 

 

To a stirring suspension of 3-hydrazinylpyridazine (100 mg, 0.69 mmol, 1 equiv) in toluene 

(20 mL) was added DIPEA (0.2 mL, 0.069 mmol, 0.01 equiv) and benzoic anhydride (205 

mg, 1.38 mmol, 2 equiv). The resulting suspension was heated to reflux and stirred for 12 

h. After confirmation of consumption of starting material by TLC, the reaction was cooled 

to rt and the toluene was removed under reduced pressure. DCM (50 mL) was added and 

reaction was washed with a saturated NaHCO3 solution (3 x 25 mL). The organic layer was 

then dried over Na2SO4, filtered and solvent removed under reduced pressure. Column 

chromatography (0 to 10% MeOH/DCM) on silica gel was used to purify sufficient 



 305 

amounts of target molecule for biological testing and characterization. LRMS (CI-quad) 

m/z cal’d for C11H9N4
+ [M+H+] 198.22, found 198. 1H NMR (400 MHz, CDCl3) δ 8.51 - 

8.44 (m, 3H), 8.21 (dd, J1 = 1.6, J2 = 9.5 Hz, 1H), 7.59 - 7.52 (m, 3H), 7.16 (dd, J1 = 4.1, 

J2 = 9.5 Hz, 1H).  

 

6-Bromo-3-(m-tolyl)imidazo[1,5-a]pyridine (3.220) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (100 mg, 0.69 mmol, 1 

equiv) in dichloroethane (20 mL) was added 3-methylbenzoic anhydride (314 mg, 1.58 

mmol, 2.3 equiv). The resulting suspension was stirred at rt for 30 min before dropwise 

addition of POCl3 (141 mg, 1.12 mmol, 1.7 equiv) as a solution in ca 3 mL DCM. The 

reaction was then heated to reflux for 3 hr. After confirmation of consumption of starting 

material by TLC, the reaction was cooled to rt and the reaction was stirred with 5 mL of 

0.1 N HCl (caution:exothermic reaction) for 15 mins to hydrolyze excess POCl3. Post 

stirring, the reaction was washed with a saturated NaHCO3 solution (3 x 25 mL, caution:gas 

evolution). The organic layer was then dried over Na2SO4, filtered and solvent removed 

under reduced pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel 

was used to purify sufficient amounts of target molecule for biological testing and 

characterization. LRMS (CI-quad) m/z cal’d for C14H12N2Br+ [M+H+] 289.16, found 289. 

1H NMR (400 MHz, CDCl3) δ 8.36 (s, 1H), 7.59 (s, 1H), 7.57 (s, 1H), 7.54 (d, J = 7.9 Hz, 
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1H), 7.43 (d, J = 7.6 Hz, 1H), 7.38 (d, J = 9.5, 1H), 7.28 (d, J = 8.8 Hz, 1H), 6.77 (d, J = 

9.5 Hz, 1H), 2.45 (s, 3H). 

 

6-Bromo-3-(3-(trifluoromethyl)phenyl)imidazo[1,5-a]pyridine (3.221) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (100 mg, 0.69 mmol, 1 

equiv) in dichloroethane (20 mL) was added 3-(trifluoromethyl)benzoic anhydride (448 

mg, 1.58 mmol, 2.3 equiv). The resulting suspension was stirred at rt for 30 min before 

dropwise addition of POCl3 (141 mg, 1.12 mmol, 1.7 equiv) as a solution in ca 3 mL DCM. 

The reaction was then heated to reflux for 3 hr. After confirmation of consumption of 

starting material by TLC, the reaction was cooled to rt and the reaction was stirred with 5 

mL of 0.1 N HCl (caution:exothermic reaction) for 15 mins to hydrolyze excess POCl3. 

Post stirring, the reaction was washed with a saturated NaHCO3 solution (3 x 25 mL, 

caution:gas evolution). The organic layer was then dried over Na2SO4, filtered and solvent 

removed under reduced pressure. Column chromatography (0 to 10% MeOH/DCM) on 

silica gel was used to purify sufficient amounts of target molecule for biological testing 

and characterization. LRMS (CI-quad) m/z cal’d for C14H7N2F3Br+ [M+H+] 341.12, found 

341. 1H NMR (400 MHz, CDCl3) δ 8.27 (s, 1H), 8.00 (s, 1H), 7.88 (d, J = 7.5 Hz, 1H), 

7.65 - 7.57 (m, 2H), 7.54 (s, 1H), 7.35 (d, J = 9.5 Hz, 1H), 6.76 (d, J = 9.5 Hz, 1H). 
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6-Bromo-3-(p-tolyl)imidazo[1,5-a]pyridine (3.222) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (100 mg, 0.69 mmol, 1 

equiv) in dichloroethane (20 mL) was added 4-methylbenzoic anhydride (314 mg, 1.58 

mmol, 2.3 equiv). The resulting suspension was stirred at rt for 30 min before dropwise 

addition of POCl3 (141 mg, 1.12 mmol, 1.7 equiv) as a solution in ca 3 mL DCM. The 

reaction was then heated to reflux for 3 hr. After confirmation of consumption of starting 

material by TLC, the reaction was cooled to rt and the reaction was stirred with 5 mL of 

0.1 N HCl (caution:exothermic reaction) for 15 mins to hydrolyze excess POCl3. Post 

stirring, the reaction was washed with a saturated NaHCO3 solution (3 x 25 mL, caution:gas 

evolution). The organic layer was then dried over Na2SO4, filtered and solvent removed 

under reduced pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel 

was used to purify sufficient amounts of target molecule for biological testing and 

characterization. LRMS (CI-quad) m/z cal’d for C14H12N2Br+ [M+H+] 289.16, found 289. 

1H NMR (400 MHz, CDCl3) δ 8.28 (s, 1H), 7.58 (d, J = 7.7 Hz, 2H), 7.49 (s, 1H), 7.33 - 

7.25 (m, 3H), 6.68 (d, J = 9.5 Hz, 1H), 2.37 (s, 3H). 

 

6-Chloro-3-phenyl-[1,2,4]triazolo[4,3-b]pyridazine (3.223) 
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To a stirring suspension of 3-chloro-6-hydrazinylpyridazine (100 mg, 0.69 mmol, 1 equiv) 

in toluene (20 mL) was added DIPEA (0.2 mL, 0.069 mmol, 0.01 equiv) and benzoic 

anhydride (78 mg, 0.69 mmol, 1 equiv). The resulting suspension was heated to reflux and 

stirred for 12 h. After confirmation of consumption of starting material by TLC, the 

reaction was cooled to rt and the toluene was removed under reduced pressure. DCM (50 

mL) was added and reaction was washed with a saturated NaHCO3 solution (3 x 25 mL). 

The organic layer was then dried over Na2SO4, filtered and solvent removed under reduced 

pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used to purify 

sufficient amounts of target molecule for biological testing and characterization. LRMS 

(CI-quad) m/z cal’d for C11H7N4Cl+ [M+H+] 231.65, found 232. 1H NMR (400 MHz, 

CDCl3) δ 8.45 (d, J = 7.9 Hz, 2H), 8.15 (d, J = 9.6 Hz, 1H), 7.59 - 7.49 (m, 3H), 7.15 (d, 

J = 9.6 Hz, 1H). 

 

6-Chloro-3-(m-tolyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.224) 

 

To a stirring suspension of 3-chloro-6-hydrazinylpyridazine (100 mg, 0.69 mmol, 1 equiv) 

in toluene (20 mL) was added DIPEA (0.2 mL, 0.069 mmol, 0.01 equiv) and 3-

methylbenzoic anhydride (87 mg, 0.69 mmool, 1 equiv). The resulting suspension was 

heated to reflux and stirred for 12 h. After confirmation of consumption of starting material 

by TLC, the reaction was cooled to rt and the toluene was removed under reduced pressure. 

DCM (50 mL) was added and reaction was washed with a saturated NaHCO3 solution (3 x 
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25 mL). The organic layer was then dried over Na2SO4, filtered and solvent removed under 

reduced pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used 

to purify sufficient amounts of target molecule for biological testing and characterization. 

LRMS (CI-quad) m/z cal’d for C12H10N4Cl+ [M+H+] 246.69, found 247. 1H NMR (400 

MHz, CDCl3) δ 8.29 - 8.20 (m, 2H), 8.17 (d, J = 9.6 Hz, 1H), 7.46 (t, J = 7.9 Hz, 1H), 7.36 

(d, J = 7.7 Hz, 1H), 7.17 (d, J = 9.6 Hz, 1H), 2.48 (s, 3H). 

 

6-Chloro-3-(p-tolyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.225) 

 

To a stirring suspension of 3-chloro-6-hydrazinylpyridazine (100 mg, 0.69 mmol, 1 equiv) 

in toluene (20 mL) was added DIPEA (0.2 mL, 0.069 mmol, 0.01 equiv) and 4-

methylbenzoic anhydride (87 mg, 0.69 mmol, 1 equiv). The resulting suspension was 

heated to reflux and stirred for 12 h. After confirmation of consumption of starting material 

by TLC, the reaction was cooled to rt and the toluene was removed under reduced pressure. 

DCM (50 mL) was added and reaction was washed with a saturated NaHCO3 solution (3 x 

25 mL). The organic layer was then dried over Na2SO4, filtered and solvent removed under 

reduced pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used 

to purify sufficient amounts of target molecule for biological testing and characterization. 

LRMS (CI-quad) m/z cal’d for C12H10N4Cl+ [M+H+] 246.69, found 247. 1H NMR (400 

MHz, CDCl3) δ 8.35 (d, J = 8.0 Hz, 2H), 8.17 (d, J = 9.6 Hz, 1H), 7.39 (d, J = 8.0 Hz, 2H), 

7.16 (d, J = 9.6 Hz, 1H), 2.45 (s, 3H).  
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6-Chloro-3-(4-fluorophenyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.226) 

 

To a stirring suspension of 3-chloro-6-hydrazinylpyridazine (100 mg, 0.69 mmol, 1 equiv) 

in toluene (20 mL) was added DIPEA (0.2 mL, 0.069 mmol, 0.01 equiv) and 4-

fluorobenzoic anhydride (87 mg, 0.69 mmol, 1 equiv). The resulting suspension was heated 

to reflux and stirred for 12 h. After confirmation of consumption of starting material by 

TLC, the reaction was cooled to rt and the toluene was removed under reduced pressure. 

DCM (50 mL) was added and reaction was washed with a saturated NaHCO3 solution (3 x 

25 mL). The organic layer was then dried over Na2SO4, filtered and solvent removed under 

reduced pressure. Column chromatography (0 to 10% MeOH/DCM) on silica gel was used 

to purify sufficient amounts of target molecule for biological testing and characterization. 

LRMS (CI-quad) m/z cal’d for C11H7N4FCl+ [M+H+] 250.65, found 251. 1H NMR (400 

MHz, CDCl3) δ 8.49 (dd, J1 = 5.4, J2 = 8.6 Hz, 2H), 8.17 (d, J = 9.6 Hz, 1H), 7.26 (t, J = 

8.5 Hz, 2H), 7.17 (d, J = 9.6 Hz, 1H).  

 

N-((5-Bromopyridin-2-yl)methyl)-4-(trifluoromethyl)benzamide (3.227) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (50 mg, 0.27 mmol, 1 

equiv) in dichloroethane (20 mL) was added 4-(trifluoromethyl)benzoic anhydride (193 
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mg, 0.54 mmol, 2 equiv). The resulting suspension was stirred at rt for 30 min. After 

confirmation of consumption of starting material by TLC, reaction solvent was removed 

under reduced pressure and column chromatography (0 to 10% MeOH/DCM) on silica gel 

was used to purify sufficient amounts of target molecule for biological testing and 

characterization. LRMS (CI-quad) m/z cal’d for C14H11ON2F3Br+ [M+H+] 361.15, found 

361. 1H NMR (400 MHz, CDCl3) δ 8.63 (d, J = 2.2 Hz, 1H), 7.97 (d, J = 8.0 Hz, 2H), 7.84 

(dd, J1 = 2.3, J2 = 8.3 Hz, 1H), 7.72 (d, J = 8.1 Hz, 2H), 7.58 (br, 1H), 7.27 (d, J = 7.2 Hz, 

1H), 4.73 (d, J = 4.9 Hz, 2H). 

 

N-((5-Bromopyridin-2-yl)methyl)-4-(tert-butyl)benzamide (3.228) 

 

To a stirring suspension of (5-bromopyridin-2-yl)methanamine (50 mg, 0.27 mmol, 1 

equiv) in dichloroethane (20 mL) was added 4-(tert-butyl)benzoic anhydride (193 mg, 0.27 

mmol, 2 equiv). The resulting suspension was stirred at rt for 30 min. After confirmation 

of consumption of starting material by TLC, reaction solvent was removed under reduced 

pressure and column chromatography (0 to 10% MeOH/DCM) on silica gel was used to 

purify sufficient amounts of target molecule for biological testing and characterization. 

LRMS (CI-quad) m/z cal’d for C17H20ON2Br+ [M+H+] 349.26, found 349. 1H NMR (400 

MHz, CDCl3) δ 8.61 (d, J = 2.2 Hz, 1H), 7.82 - 7.77 (m, 3H), 7.46 (d, J = 8.6 Hz, 2H), 

7.39 (br, 1H), 7.25 (d, J = 8.4 Hz, 1H), 4.70 (d, J = 5.1 Hz, 2H), 1.33 (s, 9H).  

  



 312 

Aminocyclopentitol Synthesis 
(2R,3S,4S,5R,6S)-2-(((tert-Butyldimethylsilyl)oxy)methyl)-6-methoxytetrahydro-2H-
pyran-3,4,5-triol (4.9).  

 

Methyl-α-D-glucopyranoside (5.10 g, 26.3 mmol) was dissolved in anhydrous DMF (60 

mL) and cooled to 0 °C. Imidazole (4.40 g, 64.6 mmol) and tert-butyldimethylsilyl chloride 

(4.70 g, 31.0 mmol) were added to the solution in sequence. The mixture was allowed to 

stir at room temperature overnight. Upon the consumption of starting material, monitored 

by TLC, the solvent was removed under high vacuum and the residue was dissolved in 

EtOAc (400 mL). The solution was washed with water (2 x 200 mL) and brine (2 x 200 

mL), dried over MgSO4, and concentrated in vacuo. The residue was purified by flash 

column chromatography on silica gel, using 100% EtOAc as the eluent. After 

chromatographic purification, an amorphous solid was obtained (7.3 g, 24 mmol, 98%). 1H 

NMR (CDCl3, 400 MHz): δ 4.75 (d, J = 3.9 Hz, 1H), 3.89 (dd, J = 4.9, 10.6 Hz, 1H), 3.82 

(dd, J = 5.2, 10.6 Hz, 1H), 3.74 (t, J = 9.1 Hz, 1H), 3.61 (dd, J = 5.0, 9.7 Hz, 1H), 3.53 (t, 

J = 9.0 Hz, 1H), 3.51 (m, 1H), 3.42 (s, 3H), 3.14 (s, 1H), 2.82 (s, 1H), 2.19 (d, J = 7.6 Hz, 

1H), 0.91 (s, 9H), 0.10 (s, 6H); 13C NMR (CDCl3, 100 MHz): δ 100.0, 75.6, 73.3, 73.1, 

71.2, 65.2, 56.2, 26.7, 19.1, -4.6; ESI-HRMS: calc’d m/e for [M+Na+] C13H28NaO6Si: 

309.1733, found 309.2209; IR (neat, NaCl, cm-1): 3474, 2954, 2929, 2858, 1655, 1472, 

1464, 1361, 1253, 1194, 1152, 1112, 1045, 1002, 903, 854, 837, 777, 749; [α]25  D +98 (c 

1.0, CHCl3). 
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tert-Butyldimethyl(((2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxytetrahydro-
2H-pyran-2-yl)methoxy)silane (4.10).  

 

The starting pyranoside (7.00 g, 22.7 mmol) was dissolved in anhydrous DMF (100 mL) 

and cooled to 0 °C. Sodium hydride (3.30 g, 82.5 mmol) was added to the solution. After 

the evolution of H2 ceased, benzyl bromide (12.2 mL, 103 mmol) was added to the reaction. 

The mixture was stirred under an atmosphere of nitrogen overnight. Upon the consumption 

of the starting material, monitored by TLC, the reaction was quenched with MeOH (10 

mL), then poured into water (500 mL) and extracted with EtOAc (5 x 100 mL). The 

combined organic layers were washed with water (2 x×200 mL) and brine (2 x 200 mL), 

dried over MgSO4, and concentrated in vacuo. The residue was purified by flash column 

chromatography on silica gel, using 10% EtOAc:hexanes (v/v) as the eluent. After 

chromatographic purification, a colorless oil was obtained (11.2 g, 19.3 mmol, 85%). 1H 

NMR (CDCl3, 400 MHz): δ 7.32 - 7.21 (m, 15H), 4.93 (d, J = 10.8 Hz, 1H), 4.84 (d, J = 

10.9 Hz, 1H), 4.78 (d, J = 10.9 Hz, 1H), 4.76 (d, J = 12.1 Hz, 1H), 4.64 (d, J = 12.1 Hz, 

1H), 4.60 (d, J = 11.0 Hz, 1H), 4.57 (d, J = 3.6 Hz, 1H), 3.96 (t, J = 9.3 Hz, 1H), 3.75 (d, 

J = 3.2 Hz, 1H), 3.58 (dt, J = 3.7, 10.0 Hz, 1H), 3.50 (d, J = 9.1 Hz, 1H), 3.48 (d, J = 3.6 

Hz, 1H), 3.46 (d, J = 3.6 Hz, 1H), 3.33 (s, 3H), 0.85 (s, 9H), 0.00 (d, J = 2.0 Hz, 6H); 13C 

NMR (CDCl3, 100 MHz): δ 139.2, 138.9, 138.6, 128.8, 128.7, 128.4, 128.39, 128.2, 128.0, 

127.9, 98.2, 82.5, 80.6, 78.1, 76.2, 75.3, 73.7, 71.9, 62.6, 55.2, 26.3, 18.7, -4.8, -5.0; ESI-

HRMS: calc’d m/e for [M+Na+] C34H46NaO6Si: 601.2961, found 601.2932; IR (neat, NaCl, 

cm-1): 3065, 3031, 2928, 2856, 1606, 1497, 1455, 1361, 1252, 1201, 1193, 1160, 1136, 
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1092, 1072, 910, 836, 778, 735, 697; [α]25  D  +130 (c 0.89, CHCl3). 

 

((2R,3R,4S,5R,6S)-3,4,5-tris(Benzyloxy)-6-methoxytetrahydro-2H-pyran-2-
yl)methanol (4.11).  

 

The starting pyranoside (11.5 g, 19.9 mmol) was dissolved in acetonitrile (120 mL). H2O 

(25 mL) was added, and the pH of the solution adjusted to pH = 3 by the addition of p-

toluenesulphonic acid. The reaction mixture was stirred at room temperature overnight. 

Upon the consumption of the starting material, monitored by TLC, EtOAc (300 mL) was 

added to the reaction mixture. The mixture was washed with saturated aqueous sodium 

bicarbonate (2 x 150 mL) and brine (150 mL). The organic layers were combined, dried 

over MgSO4, and concentrated in vacuo. The residue was purified by flash column 

chromatography on silica gel, using 30% EtOAc:hexanes (v/v) as the eluent. After 

chromatographic purification, a colorless oil was obtained (6.00 g, 12.9 mmol, 65%). 1H 

NMR (CDCl3, 400 MHz): δ 7.37 - 7.28 (m, 15H), 4.99 (d, J = 10.9 Hz, 1H), 4.88 (d, J = 

11.1 Hz, 1H), 4.84 (d, J = 10.9 Hz, 1H), 4.80 (d, J = 12.1 Hz, 1H), 4.65 (t, J = 12.2 Hz, 

2H), 4.57 (d, J = 3.6 Hz, 1H), 4.00 (t, J = 9.3 Hz, 1H), 3.77 (m, 1H), 3.69 (m, 1H), 3.65 

(m, 1H), 3.53 (d, J = 9.2 Hz, 1H), 3.50 (dd, J = 3.6, 6.1 Hz, 1H), 3.37 (s, 3H), 1.60 (dd, J 

= 5.3, 7.4 Hz, 1H); 13C NMR (CDCl3, 100 MHz): δ 139.1, 138.5, 128.8, 128.8, 128.5, 

128.4, 128.3, 128.3, 128.2, 128.0, 98.6, 82.3, 80.4, 76.1, 75.4, 73.8, 71.0, 62.3, 55.6.; ESI-

HRMS: calc’d m/e for [M+Na+] C28H32NaO6: 487.2097, found 487.2104; IR (neat, NaCl, 

cm-1): 3486, 3063, 3034, 2921, 1732, 1606, 1497, 1454, 1360, 1260, 1192, 1076, 1072, 
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1068, 911, 802, 737, 697; [α]25  D  +23 (c 0.99, CHCl3). 

 

(2S,3S,4S,5R,6S)-3,4,5-Tris(benzyloxy)-2-(iodomethyl)-6-methoxytetrahydro-2H-
pyran (4.12).  

 

Triphenylphosphine (5.10 g, 19.4 mmol) and imidazole (1.80 g, 26.4 mmol) were 

successively dissolved in THF (150 mL). The resultant mixture was cooled to 0 °C, and 

iodine (4.90 g, 19.3 mmol) was added in portions over 30 min. A solution of starting 

pyranoside (6.00 g, 12.9 mmol) in THF (50 mL) was cannulated into the reaction flask. 

The reaction was then heated to 66 °C and stirred at that temperature for 1 h. The reaction 

was then cooled to room temperature and quenched with H2O (25 mL); the aqueous layer 

was extracted with EtOAc (250 mL x 2). The organic layers were combined, washed with 

10% sodium thiosulfate, dried over MgSO4, and concentrated in vacuo. The crude material 

was purified by flash column chromatography on silica gel, using 10% EtOAc:hexanes 

(v/v) as the eluent. After chromatographic purification, a light yellow, oil was obtained 

(10.8 g, 18.8 mmol, 97%). 1H NMR (CDCl3, 400 MHz): δ 7.37 - 7.27 (m, 15H), 4.99 (d, J 

= 10.8 Hz, 1H), 4.94 (d, J = 11.0 Hz, 1H), 4.81 (d, J = 2.0 Hz, 1H), 4.79 (d, J = 3.3 Hz, 

1H), 4.67 (t, J = 11.0 Hz, 2H), 4.61 (d, J = 3.6 Hz, 1H), 4.01 (t, J = 9.0 Hz, 1H), 3.54 (dd, 

J = 3.6 Hz, 1H), 3.46 (m, 2H), 3.42 (s, 3H), 3.34 (t, J = 9.0 Hz, 1H), 3.29 (dd, J = 6.7, 11.0 

Hz, 1H); 13C NMR (CDCl3, 100 MHz): δ 138.9, 138.4, 138.36, 128.9, 128.85, 128.8, 128.4, 

128.35, 128.3, 128.1, 98.5, 81.9, 81.9, 80.4, 76.1, 75.7, 73.8, 69.7, 55.9, 8.0; ESI-HRMS: 



 316 

calc’d m/e for [M+Na+] C28H31INaO5: 597.1114, found 597.1162; IR (neat, NaCl, cm-1): 

3062, 3030, 2909, 1496, 1454, 1359, 1260, 1196, 1120, 1102, 1088, 1048, 1028, 736, 697; 

[α]25  D  +32 (c 1.1, CHCl3). 

 

(2R,3S,4R)-2,3,4-Tris(benzyloxy)hex-5-enal (4.13). 

 

The starting Iodo-compound (4.6 g, 8.0 mmol) was dissolved in a mixture of THF/H2O 

(9:1, 200 mL) and then activated zinc (5.20 g, 79.5 mmol) was added. The flask was placed 

in an ultrasonic cleaner and sonicated overnight. The reaction progress was monitored by 

mass spectroscopy due to the fact that the Rf value of the product is identical to that of the 

starting material on TLC. Upon the consumption of the starting material, the reaction was 

diluted with EtOAc (50 mL), and the aqueous layer was extracted with EtOAc (50 mL x 

2). The organic layers were combined, washed with sodium bicarbonate (20 mL), brine (20 

mL) and dried over MgSO4. The solvent was removed in vacuo and the residue was purified 

by flash column chromatography on silica gel, using 10% EtOAc:hexanes (v/v) as the 

eluent. After chromatographic purification, a colorless oil was obtained (3.1 g, 7.5 mmol, 

96%). 1H NMR (CDCl3, 400 MHz): 9.63 (dd, J = 1.6, 2.2 Hz, 0.6 H), 9.57 (d, J = 1.0 Hz, 

0.4H), 7.29 - 7.21 (m, 15H), 5.84 - 5.76 (m, 1H), 5.29 (dt, J = 1.0, 4.3 Hz, 1H), 5.20 (dd, J 

= 1.0, 7.0 Hz, 1H), 4.64 (dd, J = 2.2, 10.0 Hz, 1H), 4.60 (t, J = 13.1 Hz, 1H), 4.54 (m, 1H), 

4.50 (m, 1H), 4.44 (dd, J = 8.0, 19.8 Hz, 1H), 4.30 (dd, J = 3.3, 11.9 Hz, 1H), 4.04 (m, 1H), 

3.91 (t, J = 6.8 Hz, 1H), 3.78 (m, 1H); 13C NMR (CDCl3, 100 MHz): δ 201.6, 201.0, 138.1, 
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138.07, 137.8, 137.7, 137.2, 134.8, 134.4, 128.6, 128.5, 128.4, 128.4, 128.34, 128.31, 

128.26, 128.2, 128.1, 128.0, 127.9, 127.8, 127.79, 127.7, 127.6, 127.0, 119.5, 119.4, 82.4, 

81.8, 80.9, 80.0, 75.9, 74.5, 73.3, 73.1, 71.0 70.7, 45.2; ESI-HRMS: calc’d m/e for 

[M+Na+] C27H28NaO4: 439.1885, found 439.1954; IR (neat, NaCl, cm-1): 3064, 3031, 

2866, 1727, 1497, 1454, 1393, 1352, 1208, 1071, 1027, 932, 735, 697; [α]25  D  +4.5 (c 0.85, 

CHCl3). 

 

(3aR,4R,5S,6S,6aR)-4,5,6-Tris(benzyloxy)hexahydro-1H-cyclopenta[c]isoxazole 
(4.14). 

 

The starting aldehyde (3.8 g, 9.1 mmol) was dissolved in MeOH (40 mL). To the stirring 

solution, hydroxylamine hydrochloride (2.50 g, 36.0 mmol) was added. The suspension 

was neutralized with sodium bicarbonate (4.30 g, 40.6 mmol). The solution was then stirred 

under refluxing conditions for 6 h. After the consumption of the starting material, the 

solvent was removed in vacuo. The residue was dissolved in EtOAc, washed with 10% 

HCl solution, saturated sodium bicarbonate, and brine in sequence, and dried over MgSO4. 

The solvent was removed to yield an oily residue which was passed through a silica plug 

with 25% EtOAc:hexanes (v/v) as the eluent, giving a mixture of inseparable E/Z isomers 

as a light green oil. The resulting oxime (970 mg, 2.20 mmol) was then dissolved in dry 

toluene (35 mL) and heated at reflux for 15 h under nitrogen. Upon the consumption of the 

starting material, monitored by TLC, the reaction was cooled; and the solvent was removed 

in vacuo. The crude product was purified by flash column chromatography on silica gel, 



 318 

using 40% EtOAc in hexanes as the eluent. After chromatographic purification, a yellow 

oil was obtained (2.7 g, 6.4 mmol, 70%). 1H NMR (CDCl3, 400 MHz): δ 7.38 - 7.28 (m, 

15 H), 4.85 (d, J = 11.8 Hz, 1H), 4.79 (d, J = 11.9 Hz, 2H), 4.71 (d, J = 5.9 Hz, 2H), 4.58 

(d, J = 11.8 Hz, 1H), 3.94 (t, J = 8.4 Hz, 1H), 3.87 (t, J = 5.8 Hz, 2H), 3.83 (t, J = 6.6 Hz, 

1H), 3.68 (t, J = 7.4 Hz, 1H), 3.46 (t, J = 6.9 Hz, 1H), 2.91 (dd, J = 5.5, 7.0 Hz, 1H); 13C 

NMR (CDCl3, 100 MHz): δ 138.5, 138.3, 138.1, 128.5, 128.4, 128.3, 127.9, 127.8, 127.75, 

127.7, 127.6, 127.5, 86.0, 85.6, 84.7, 76.0, 72.7, 72.4, 72.3, 66.3, 49.6; ESI-HRMS: calc’d 

m/e for [M+Na+] C27H29NNaO4: 454.1994, found 454.1996; IR (neat, NaCl, cm-1): 3435, 

3031, 2922, 2863, 1742, 1724, 1497, 1454, 1364, 1208, 1094, 1072, 736, 697; [α]25  D  +25 

(c 0.54, CHCl3). 

 

((1R,2R,3S,4S,5R)-2,3,4-Tris(benzyloxy)-5-amino-cyclopentyl)methanol (4.15). 

 

To a stirring solution of starting isoxazole (675 mg, 1.60 mmol) in 85% acetic acid in H2O 

(25 mL), active zinc dust (510 mg, 8.00 mmol) was added. The reaction was then stirred at 

55 °C for 2 h. After the consumption of the starting material, monitored by TLC, the 

mixture was cooled to room temperature and the zinc dust was filtered off. The filtrate was 

diluted with H2O (25 mL) and basified with 1M NaOH. The resultant solution was 

extracted with CH2Cl2 (3 x 25 mL); the organic layers were combined, dried over MgSO4, 

and concentrated in vacuo. The crude product was purified by flash column 

chromatography on silica gel, using 10% MeOH/CH2Cl2 + 1% NH4OH as the eluent. After 

chromatographic purification, a colorless oil was obtained (0.97 g, 2.2 mmol, 87%). 1H 
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NMR (CDCl3, 400 MHz): δ 7.30 - 7.28 (m, 15 H), 5.56 - 5.23 (br s, 3H), 4.68 (d, J = 12.0 

Hz, 2H), 4.64 (d, J = 11.1 Hz, 2H), 4.54 (m, 2H), 4.53 (d, J = 11.6 Hz, 1H), 4.48 (d, J = 

11.6 Hz, 1H), 4.02 (t, J = 5.7 Hz, 1H), 3.92 (t, J = 4.4 Hz, 1H), 3.87 (t, J = 5.0 Hz, 1H), 

3.82 (m, 1H), 3.69 (t, J = 6.7 Hz, 1H), 2.02 (m, 1H); 13C NMR (CDCl3, 100 MHz): δ 138.2, 

138.18, 138.0, 128.8, 128.3, 128.2, 128.16, 87.6, 85.6, 83.0, 72.8, 72.4, 72.3, 61.1, 55.8, 

45.3; ESI-HRMS: calc’d m/e for [M+H+] C27H32NO4: 434.2326, found 434.2295; IR (neat, 

NaCl, cm-1): 3308, 3063, 3030, 2927, 2871, 1496, 1454, 1363, 1207, 1091, 1071, 1028, 

735, 697.  

 

5-Hydroxypentyl 4-methylbenzenesulfonate (4.16). 

 

To a stirring solution of 1,5-pentanediol (3 g, 28 mmol, 1 equiv) in DCM (50 mL) was 

added DMAP (342 mg, 2.8 mmol, 0.1 equiv) followed by p-toluenesulfonyl chloride 

(pTsCl, 5.49 g, 28 mmol, 1 equiv). The pTsCl was added as a solution in DCM over 10 

mins. After the addition was complete the reaction was left to stir overnight at room 

temperature under nitrogen. After confirming consumption of starting materials, the 

reaction was transferred to a separatory funnel and was successively with water (2x100 

mL) and brine (2X100 mL). The remaining organics were dried over Na2SO4, filtered and 

concentrated en vacuo. The crude product was purified by flash column chromatography 

on silica gel, using 10% to 30% EtOAc/Hexanes (v/v) as the eluent. After purification a 

colorless, viscous oil was obtained whose spectra matched reported literature. (1.41 g, 

19%). 1H NMR (CDCl3, 400 MHz): δ 7.78 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 
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4.03 (t, J = 6.4 Hz, 2H), 3.60 (t, J = 6.3 Hz, 2H), 2.45 (s, 3H), 1.67 (q, J = 7.2 Hz, 2H), 

1.55 – 1.48 (m, 2H), 1.44 – 1.35 (m, 2H). 

 

5-Oxopentyl 4-methylbenzenesulfonate (4.17)  

 

The starting tosyl compound (1.41 g, 5.45 mmol, 1 equiv) was dissoved in 50 mL of a 4:1 

mix of DCM to DMSO. To this was incrementally added sulfur trioxide pyridine complex 

(3.4 g, 21.8 mmol, 4 equiv) over 10 min. The reaction was stirred at room temperature for 

30 min and after confirming consumption of starting material, it was quenched with 50 mL 

water. The mixture was transferred to a separatory funnel and washed once with brine (50 

mL) followed by a saturated solution of citric acid (50 mL). The organics were dried over 

Na2SO4, filtered and concentrated en vacuo to afford 1.28 g of crude product which was 

purified via flash chromatographing using 20 to 50% EtOAc/Hexanes (v/v) as the eluent. 

A viscous, colorless oil was obtained after purification. (464 mg, 1.81 mmol, 33%). 1H 

NMR (CDCl3, 400 MHz): δ 9.72 (s, 1H), 7.78 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.1 Hz, 2H), 

4.03 (t, J = 5.6 Hz, 2H), 2.48 – 2.37 (m, 5H), 1.74 – 1.61 (m, 4H). 

 

4-(1,3-Dioxolan-2-yl)butyl 4-methylbenzenesulfonate (4.18). 

 

An excess of ethylene glycol (7 mL, 125 mmol, 100 equiv) and para-toluene sulfonic acid 

(31 mg, 0.18 mmol, 0.1 equiv) were dissolved in 20 mL of toluene. To this flask was 

attached a Dean-Stark apparatus and the flask was refluxed for 1 h, cooled, and to it was 
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added the starting aldehyde (464 mg, 1.8 mmol, 1 equiv) as a solution in anhydrous toluene 

(10 mL). The reaction was brought to reflux again for 4 hr after which time starting material 

was no longer observed by TLC. The reaction was cooled, transferred to a separatory 

funnel and washed with sat. NaHCO3 until neutralized. The organics were dried over 

Na2SO4, filtered and collected en vacuo. The crude product was purified using flash column 

chromatography to afford target acetal as a colorless, very viscous oil. (398 mg, 1.33 mmol, 

74%). 1H NMR (CDCl3, 400 MHz): δ 7.80 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 7.9 Hz, 2H), 

4.81 (t, J = 4.63 Hz, 1H), 4.03 (t, J = 6.4 Hz, 2H), 3.99 – 3.79 (m, 4H), 2.46 (s, 3H), 1.75 

– 1.66 (m, 2H), 1.65 – 1.58 (m, 2H), 1.50 – 1.41 (m, 2H). 

 

2-(4-((Adamantan-1-yl)methoxy)butyl)-1,3-dioxolane (4.19) 

 

To a stirring solution of 1-adamantane methanol (615 mg, 3.87 mmol, 1.5 equiv) in DMF 

(15 mL) was added sodium hydride (300 mg, 7.5 mmol, 3 equiv) incrementally over 20 

min after which the reaction was heated to 40 °C for 1 hr. At this time, the starting acetal 

(EJC-4-114, 775 mg, 2.5 mmol, 1 equiv) was added to the reaction as a solution in DMF 

(10 mL). The reaction was stirred for a further 3.5 hr until starting material was confirmed 

consumed. At which time the reaction was cooled to room temperature, diluted with 100 

mL water and transferred to a separatory funnel. The organics were extracted 2X150 mL 

EtOAc, then the combined organics were washed 2X100 mL brine, dried over Na2SO4, 

filtered and concentrated en vacuo. The crude product was purified by flash colum 

chromatography using 15 to 45% EtOAc/Hex (v/v) as the eluent. Pure product was 
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obtained as a colorless, viscous oil. (543 mg, 1.8 mmol, 74%) 1H NMR (CDCl3, 400 MHz): 

δ 4.86 (br, 1H), 3.98 – 3.82 (m, 4H), 3.38 (t, J = 6.1 Hz, 2H), 2.95 (s, 2H), 1.95 (s, 3H), 

1.72 – 1.57 (m, 11H), 1.52 (br, 6H), 1.49 – 1.46 (m, 2H). 

 

5-((Adamantan-1-yl)methoxy)pentanal (4.20)  

 

Starting acetal (540 mg, 1.8 mmol, 1 equiv) was dissolved in a 1:1 mixture of 6 M HCl and 

acetone. The reaction was heated to 40 °C for 2 hr. Upon confirmation of consumption of 

starting material, the reaction was neutralized with a 0 °C slurry of 6 mL of a 1:1 mix of 3 

N NaOH and diethyl ether. Ensuring the pH of the reaction was raised above 7, the reaction 

was then transferred to a separatory funnel and the layers separated. The aqueous layer was 

extracted twice more with 30 mL diethyl ether. The combined organic layers were then 

washed with brine (2X50 mL), dried over Na2SO4, filtered and concentrated en vacuo. The 

crude product was purified by flash column chromatography using 3 to 10% 

EtOAc/Hexanes (v/v) as the eluent. The colorless, viscous oil recovered from the column 

was verified as target molecule and used within 3 days. (324 mg, 1.3 mmol, 71%). 1H NMR 

(CDCl3, 400 MHz): δ 9.77 (s, 1H), 3.39 (t, J = 6.4 Hz, 2H), 2.95 (s, 2H), 2.47 (t, J = 7.4 

Hz, 2H), 1.95 (br, 3H), 1.74 – 1.58 (m, 12H), 1.52 (s, 6H). 
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((1R,2R,3S,4S,5R)-2,3,4-tris(Benzyloxy)-5-(dibutylamino)cyclopentyl)methanol 
(4.21) 

 

To a solution of the free amine (288 mg, 0.666 mmol, 1 equiv) in DCE (15 mL) was added 

butanal (191.8 mg, 2.66 mmol, 4 equiv). After 10 min, sodium triacetoxyborohydride (705 

mg, 3.33 mmol, 5 equiv) was added to the mixture, and the reaction was stirred at room 

temperature for 15 h. After the consumption of the starting material, monitored by TLC, 

the reaction was quenched with a saturated sodium bicarbonate solution and extracted with 

CH2Cl2 (2 x 50 mL). The organic layers were combined, dried over MgSO4, and 

concentrated in vacuo. The crude product was purified by flash column chromatography 

on silica gel, using 5% MeOH/CH2Cl2 + 1% NH4OH as the eluent. Product was isolated as 

a colorless oil (119.2 mg, 33%). 1H NMR (CDCl3, 400 MHz): δ 7.38 – 7.25 (m, 15H), 4.68 

(t, J`= 11.9 Hz, 2H), 4.62 – 4.52 (m, 4H), 4.15 (dd, J1 = 6.0 Hz, J2 = 8.3 Hz, 1H), 3.99 (t, J 

= 5.4 Hz, 1H), 3.8 (m, 2H), 3.56 (t, J = 5.2 Hz, 1H), 3.51 (t, J = 8.6 Hz, 1H), 2.60 – 2.53 

(m, 5H), 1.57 (b, 1H), 1.48 – 1.42 (m, 4H), 1.27 – 1.21 (m, 4H), 0.89 (t, J = 7.0 Hz, 6H); 

13C NMR (CDCl3, 100 MHz) δ 138.0, 128.5, 128.4, 128.35, 128.30, 128.2, 127.9, 127.83, 

127.77, 127.6, 89.3, 88.5, 87.6, 83.0, 82.8, 81.2, 77.2, 72.3, 71.8, 71.1, 68.1, 65.2, 63.4, 

63.1, 52.5, 46.9, 44.7, 35.0, 33.4, 31.7, 29.7, 20.7, 19.2, 14.12, 14.05.; ESI-HRMS: calc’d 

m/e for [M+] C35H47NO4: 545.3505, found 545.3495. [α]25  D  +50 (c 0.100, MeOH). 
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(1R,2S,3S,4R,5R)-2,3,4-tris(Benzyloxy)-5-((benzyloxy)methyl)-N,N-
dinonylcyclopentan-1-amine (4.22) 

 

To a solution of the free amine (287 mg, 0.666 mmol, 1 equiv) in DCE (15 mL) was added 

nonanal (472.7 mg, 3.32 mmol, 5 equiv). After 10 min, sodium triacetoxyborohydride (844 

mg, 3.98 mmol, 6 equiv) was added to the mixture, and the reaction was stirred at room 

temperature for 15 h. After the consumption of the starting material, monitored by TLC, 

the reaction was quenched with a saturated sodium bicarbonate solution and extracted with 

CH2Cl2 (2 x 50 mL). The organic layers were combined, dried over MgSO4, and 

concentrated in vacuo. The crude product was purified by flash column chromatography 

on silica gel, using 5% MeOH/CH2Cl2 + 1% NH4OH as the eluent. Product was isolated as 

a colorless oil (157 mg, 39%). 1H NMR (CDCl3, 400 MHz): δ 7.37 – 7.25 (m, 15H), 5.62 

(b, 1H), 4.69 (d, J = 11.2 Hz, 1H), 4.64 (t, J = 11.9 Hz, 1H), 4.61 – 4.52 (m, 4H), 4.14 (t, 

J = 7.6 Hz, 1H), 3.99 (t, J = 5.4 Hz, 1H), 3.80 – 3.70 (m, 2H), 3.56 (t, J = 5.2 Hz, 1H), 3.50 

(t, J = 8.6 Hz, 1H), 2.6 – 2.49 (m, 5H), 1.50 – 1.40 (m, 4H), 1.31 – 1.17 (m, 24H), 0.88 (t, 

J = 6.5 Hz, 6H). 13C NMR (CDCl3, 100 MHz) δ 138.27, 138.26, 138.1, 128.55, 128.54, 

128.52, 128.51, 128.39, 128.38, 127.99, 127.98, 127.92, 127.89, 127.88, 127.87, 127.86, 

127.85, 127.7, 89.4, 83.1, 83.06, 83.05, 72.4, 71.91, 71.88, 65.3, 63.4, 63.0, 52.80, 52.79, 

44.8, 32.93, 32.92, 32.0, 29.69, 29.67, 29.56, 29.55, 29.38, 29.37, 27.6, 27.5, 25.9, 22.8, 

14.2; ESI-HRMS: calc’d m/e for [M+H+] C45H67NO4:686.5143, found 686.5135. [α]25  D  

+62 (c 0.81, MeOH). 
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((1R,2R,3S,4S,5R)-2-((6-(Adamantan-1-ylmethoxy)hexyl)amino)-3,4,5-
tris(benzyloxy)cyclopentyl)methanol (4.23) 

 

To a solution of the free amine (200 mg, 0.463 mmol, 1 equiv) in MeOH (15 mL) was 

added aldehyde 4.20 (130 mg, 0.522 mmol, 1.12 equiv). After 10 min, sodium 

triacetoxyborohydride (294 mg, 1.39 mmol, 3 equiv) was added to the mixture, and the 

reaction was stirred at room temperature for 15 h. After the consumption of the starting 

material, monitored by TLC, the reaction was quenched with a saturated sodium 

bicarbonate solution and extracted with CH2Cl2 (2 x 50 mL). The organic layers were 

combined, dried over MgSO4, and concentrated in vacuo. The crude product was purified 

by flash column chromatography on silica gel, using 5% MeOH/CH2Cl2 + 1% NH4OH as 

the eluent. Product was isolated as a colorless oil (119 mg, 33%). %). 1H NMR (CDCl3, 

400 MHz): δ 7.38 – 7.27 (m, 15H), 4.69 (d, J1 = 12 Hz, 1H), 4.63 – 4.50 (m, 5H), 3.97 (t, 

J1 = 4.5 Hz, 1H), 3.85 – 3.94 (m, 4H), 3.34 (t, J1 = 6.5 Hz, 2H), 3.24 (t, J1 = 7.0 Hz, 1H), 

2.94 (s, 2H), 2.59 (t, J1 = 6.9 Hz, 2H), 2.36 (dd, J1 = 5.9 Hz, J2 = 12 Hz, 1H), 1.95 (bs, 3H), 

1.74 – 1.61 (m, 7H), 1.60 – 1.25 (m, 14H). 13C NMR (CDCl3, 100 MHz) δ 137.5, 128.6, 

128.6, 127.8, 127.4, 86.5, 82.8, 81.8, 78.5, 73.3, 73, 71.3, 57.5, 48.3, 46.4, 40, 36.8, 34, 

31.6, 30.8, 30.2, 28.4, 27, 25.6; ESI-HRMS: calc’d m/e for [M+H+] C44H59NO5: 681.4393, 

found 681.4400. 
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(1R,2S,3S,4R,5R)-4-(Dibutylamino)-5-(hydroxymethyl)cyclopentane-1,2,3-triol 
(4.24). 

 

A mixture of the tri-benzyl precursor (119 mg, 0.22 mmol, 1 equiv), ammonium formate 

(138 mg, 1.94 mmol, 10 equiv) and 10% palladium on carbon (0.3 g per mmol of O-benzyl 

group) was refluxed in MeOH in a sealed reaction vessel for 5 h. Thereafter, the catalyst 

was filtered off by passing the reaction mixture through a Celite pad. The solvent was 

subsequently removed under vacuum. The neutral residue was purified by flash column 

chromatography on silica gel, using 10% MeOH/ CH2Cl2 + 1% NH4OH (v/v) as the eluent. 

Compound was obtained as a colorless oil (39.5 mg, 51%). 1H NMR (CDCl3, 400 MHz): 

δ 5.05 (br, 4H), 4.01 (m, 1H), 3.85 (m, 1H), 3.69 (m, 3H), 3.32 (t, J = 9.25 Hz, 1H), 2.61 

(m, 4H), 2.26 (b, 1H), 1.48 (m, 4H), 1.29 (m, 4H), 0.92 (t, J = 7.15 Hz, 6H); 13C NMR 

(CDCl3, 100 MHz): δ 81.5, 75.5, 75.4, 64.4, 62.4, 52.8, 45.2, 29.7, 20.6, 14.1; ESI-HRMS: 

calc’d m/e for [M+H+] C14H30NO4: 276.2169, found 276.2180. [α]25  D  +18 (c 0.36, MeOH). 

 

(1R,2S,3S,4R,5R)-4-((5-((Adamantan-1-yl)methoxy)pentyl)amino)-5-
(hydroxymethyl)cyclopentane-1,2,3-triol (4.25). 

 

A mixture of the tri-benzyl precursor (129.7 mg, 0.194 mmol, 1 equiv), ammonium formate 

(122 mg, 1.94 mmol, 10 equiv) and 10% palladium on carbon (0.3 g per mmol of O-benzyl 
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group) was refluxed in MeOH in a sealed reaction vessel for 5 h. Thereafter, the catalyst 

was filtered off by passing the reaction mixture through a Celite pad. The solvent was 

subsequently removed under vacuum. The neutral residue was purified by flash column 

chromatography on silica gel, using 10% MeOH/ CH2Cl2 + 1% NH4OH (v/v) as the eluent. 

Compound was obtained as a colorless oil (39.5 mg, 51%).  1H NMR (CDCl3, 400 MHz): 

δ 3.97 (t, J = 7.3 Hz, 1H), 3.88 (d, J = 10.9 Hz, 1H), 3.73 (q, J = 8.2 Hz, 2H), 3.65 (t, J = 

8.1 Hz, 1H), 3.37 (t, J = 6.5 Hz, 2H), 3.11 (t, J = 8.7 Hz, 1H), 2.95 (s, 2H), 2.66 (m, 2H), 

2.05 (m, 1H), 1.96 (m, 3H), 1.68 (app. q, 6H), 1.54 (m, 10H), 1.36 (m, 2H); 13C NMR 

(CDCl3, 100 MHz): δ 82.0, 81.0, 75.1, 71.5, 61.9, 49.8, 45.0, 39.8, 37.3, 34.1, 30.0, 29.5, 

28.3, 23.9.; ESI-HRMS: calc’d m/e for [M+H+] C22H40NO5: 398.2901, found 

398.2912;[𝑎𝑎] 25
𝐷𝐷

 +11 (c 0.46, MeOH). 

 

(1R,2S,3S,4R,5R)-4-(Dinonylamino)-5-(hydroxymethyl)cyclopentane-1,2,3-triol 
(4.26)  

 

A fask, fitted with a dry ice condenser, was charged with anhydrous liquid ammonia (8.0 

mL) and then an amount of lithium was added piecewise so as to cause to persist the blue 

color within the flask. A solutin of tri-benzyl compound (0.157 g, 0.229 mmol, 1 equiv) 

was dissolved in THF and added dropwise into the flask over 5 min. After an additional 10 

min, ammonium chloride was added to the solution until the blue color faded. The dry ice 

condenser was removed and the ammonia was allowed to evaporate. The residue was 

extracted with EtOAc (2 X 20 mL). The organic layers were combined, dried over Mg2SO4 



 328 

and concentrated en vacuo. The crude product was purified by flash column 

chromatography on silica gel with 10% MeOH/DCM + 1% NH4OH (v/v) as the eluent. 

After chromatographic purification, a colorless, viscous oil was obtained (88 mg, 92%). 1H 

NMR (CDCl3, 400 MHz): δ 4.90 (b, 2H), 3.98 (t, J = 7.8 Hz, 1H), 3.85 (dd, J1 = 4.8 Hz, J2 

= 11.7 Hz, 1H), 3.7 (p, J = 8.1 Hz, 2H), 3.64 (dd, J1 = 6.3 Hz, J2 = 12 Hz 1H), 3.28 (t, J = 

10 Hz, 1H), 2.56 (t, J = 7.6 Hz, 4H), 2.22 (m, 1H), 1.48 (m, 4H), 1.27 (m, 26H), 0.88 (t, J 

= 6.3 Hz, 6H); 13C NMR (CDCl3, 100 MHz): δ 81.5, 75.7, 75.5, 64.3, 62.5, 53.0, 45.4, 

31.9, 29.7, 29.4, 27.6, 22.7, 14.1; ESI-HRMS: calc’d m/e for [M+H+] C24H50NO4: 

416.3734, found 416.3783. [α]25  D  +23 (c 1.00, MeOH).  

 

(1R,2S,3S,4R,5R)-4-Amino-5-(hydroxymethyl)cyclopentane-1,2,3-triol (4.27).  

 

A mixture of the tribenzyl precursor (0.155 g, 0.358 mmol, 1 equiv), ammonium formate 

(225 mg, 3.58 mmol, 10 equiv) and 10% palladium on carbon (0.3 g per mmol of O-benzyl 

group, 430 mg) was refluxed in MeOH in a sealed reaction vessel for 3 h. Thereafter, the 

catalyst was filtered off by passing the reaction mixture through a Celite pad. The solvent 

was subsequently removed under vacuum, yielding the product as a tan solid. This solid 

was taken up in MeOH and shaken with MP-TMT resin (Biotage, cat#801469, 0.3 g per 

mmol of Pd used in reaction) for 24 hr. After this, the contents of the vial were filtered 

through a celite pad and the solvent was removed under vacuum to afford an off-white 

solid of suitable purity to carry on to the final step (50.6 mg, 0.31 mmol, 87%). 1H NMR 
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(CD3OD, 400 MHz) 3.83 – 3.77 (ddd, J1 = 3.9 Hz, J2 = 11 Hz, 2H), 3.76 – 3.71 (m, 2H), 

3.62 (t, J = 7.8 Hz, 1H), 3.43 (t, J = 9.2 Hz, 1H), 2.18 – 2.11 (m, 1H); 13C NMR (CD3OD, 

100 MHz) δ 81.8, 79.2, 75.8, 59.9, 56.3, 45.9; ESI-HRMS: calc’d m/e for [M+] C6H13NO4: 

163.0845, found 163.0865; [𝑎𝑎] 25
𝐷𝐷

 +8 (c 0.61, MeOH). 

 

(2S,3R,4S,5R)-2,3,4,6-tetrakis(Benzyloxy)hexane-1,5-diol (4.29). 

 

To a 0 °C solution of commercially available 2,3,4,6-tetra-O-benzyl-α-galactopyranose 

(5.25 g, 9.71 mmol, 1 equiv) in anhydrous THF (150 mL), LiAlH4 (1.25 g, 33 mmol, 3.43 

equiv) was added carefully in small portions.  The mixture was stirred overnight at room 

temperature and then cooled to 0 °C.  After the excess of LiAlH4 was destroyed by the 

careful addition of ethyl acetate (20 mL), additional ethyl acetate (500 mL) was added.  

Then 2 N aq HCl (250 mL) was added and the reaction mixture was stirred for 10 minutes. 

The organic layer was separated, washed successively with sat. aq. NaHCO3 (150 mL), 

dried with Na2SO4, and evaporated affording 4.22 g (80%) of 1.19 as a colorless viscous 

syrup.  

1H NMR (400 MHz, CDCl3): δ = 7.27 (m, 20H), 4.6 (m, 8H), 4.02 (m, 1H), 3.89 (dd, J = 

3.6, 6.2 Hz, 1H), 3.75 (m, 3H), 3.63 (d, J = 3.8 Hz, 2H), 3.55 (dd, J = 4.5, 11.9 Hz, 1H). 

13C NMR (100 MHz, CDCl3): δ = 138.27, 138.01, 128.59, 128.28, 128.14, 128.06, 127.98, 

127.09, 79.62, 79.22, 77.47, 74.66, 73.60, 73.41, 73.23, 71.27, 70.84, 61.95. [𝛼𝛼] 25
𝐷𝐷

 +14.7 

(c = 1.12, CHCl3). ESI-HRMS: calc’d m/z for [M+H+] C22H40NO5: 543.2741, found 

543.2771. 



 330 

 

(2R,3S,4R,5S)-3,4,5-tris(Benzyloxy)-2-((benzyloxy)methyl)-1-butylpiperidine (4.30).  

 

To a -78 °C mixture of dry CH2Cl2 (12 mL) and anhydrous DMSO (3.65 g, 3.32 mL, 46.9 

mmol, 6 equiv) under an inert gas atmosphere was added dropwise a solution of oxalyl 

chloride (4.04 g, 2.73 mL, 31 mmol, 4 equiv) in CH2Cl2 (25 mL) over 15 min. After the 

mixture was stirred for 1.5 h at -78 °C, a solution of 1.19 (4.22 g, 7.78 mmol, 1 equiv) in 

CH2Cl2 (15 mL) was added dropwise while maintaining the temperature of the reaction 

mixture below -78 °C during the addition. The mixture was stirred for an additional 2 h at 

–78°C and then a solution of Et3N (6.29 g, 8.68 mL, 8 equiv) in CH2Cl2 (10 mL) was added 

slowly dropwise at -78 °C. After that, the mixture was allowed to warm to room 

temperature and the solvents were removed under reduced pressure at 40 °C. The residue 

containing the crude ketoaldehyde 2 was used in the next step without purification. 

The ketoaldehyde was dissolved in anhydrous methanol (150 mL) and then 

powdered 4 Å molecular sieves (0.3g per mmol limiting reagent) were added.  A solution 

of n-butylamine (1.71 g, 2.31 mL, 23.3 mmol, 3 equiv) in anhydrous methanol (25 mL) 

was added, followed by sodium cyanoborohydride (1.46 g, 23.34 mmol, 3 equiv). The pH 

should be maintained below 7 during this reaction. If needed, acetic acid is added to the 

mix. After the mixture was stirred at 50 °C overnight, the mixture was made alkaline via 

addition of 1.0 M NaOH. The mixture was filtered through Celite and the filtrate was 

diluted with water (50 mL), extracted twice with CH2Cl2 (100 mL) and dried over Na2SO4.  

Silica gel column chromatography, employing hexanes/ethyl acetate (80:20) furnished 
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1.21 as a pale yellow solid (696 mg, 15% over two steps). 1H NMR (400 MHz, CDCl3) δ 

= 7.3 (m, 20H), 4.95 (d, J = 11.1 Hz, 1H), 4.87 (d, J = 10.9 Hz, 1H), 4.80 (d, J = 11.1 Hz, 

1H), 4.68 (d, J = 11.6 Hz, 1H), 4.64 (d, J = 11.6 Hz, 1H), 4.48 (d, J = 12.3 Hz, 1H), 4.45 

(d, J = 12.3 Hz, 1H), 4.42 (d, J = 10.9 Hz, 1H), 3.60 (m, 4H), 3.45 (t, J = 9.0 Hz, 1H), 3.10 

(dd, J = 4.8, 11.1 Hz, 1H), 2.60 (m, 2H), 2.30 (d, J = 9.5Hz, 1H), 2.25 (t, J = 10.8 Hz, 1H), 

1.35 (m, 2H), 1.19 (m, 2H), 0.86 (t, J = 7.2 Hz, 3H), 13C NMR (100 MHz, CDCl3): δ = 

138.24, 138.79, 138.00, 128.59, 128.53, 128.48, 128.02, 127.78, 127.67, 127.57, 87.57, 

78.81, 78.77, 75.46, 75.34, 73.64, 72.91, 63.95, 54.66, 52.29, 25.92, 20.84, 14.71. [𝛼𝛼] 25
𝐷𝐷

 -

14.0 (c = 1.23, CHCl3). ESI-HRMS: calc’d m/z for [M+H+] C38H45NO4: 580.3421, found 

580.3341. 

 

N-Butyl-1-deoxynojirimycin (4.31).  

 

To a solution containing 4.30 (696 mg, 1.2 mmol, 1 equiv) dissolved in methanol (50 mL) 

and H2O (15 mL) was added palladium chloride (851 mg, 4.8 mmol, 1.1 equiv per benzyl 

group).  The reaction was stirred under hydrogen gas until the uptake of hydrogen stopped. 

The reaction mixture was filtered through Celite and solvent was removed en vacuo. The 

crude product was purified using flash column chromatography (10% MeOH in DCM) to 

afford 248 mg (94%) of target compound. Mp = 129-130 °C Optical rotation [α]D
25 -15 (c 

= 1.23, H2O). 1H NMR (D2O, 400 MHz): δ 3.91 (dd, J = 2.3, 12.8 Hz, 1H), 3.83 (dd, J = 

2.7, 12.8 Hz, 1H), 3.54 (ddd, J = 4.9, 10.2, 14.3 Hz, 1H), 3.38 (d,d, J = 9.4 Hz, 1H), 3.25 



 332 

(d,d, J = 9.3 Hz, 1H), 3.03 (dd, J = 5.0, 11.4 Hz, 1H), 2.74 (m, 1H), 2.60 (m, 1H), 2.30 (d, 

J = 11.1 Hz, 1H), 2.24 (dd, J = 2.7, 12.5 Hz, 1H), 1.46 (m, 2H), 1.28 (m, 2H), 0.90 (t, J = 

7.3 Hz, 3H). 13C NMR (100 MHz, D2O): δ 74.7, 70.0, 66.7, 62.6, 60.2, 55.5, 52.1, 24.8, 

20.0, 13.1; ESI-HRMS: calc’d m/z for [M+H+] C38H45NO4: 219.1471, found 220.1521. 

HRMS calc’d for C10H22NO4 (M+1)+; found 220.1521. 
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	4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-((3,4-dichlorophenyl)carbamoyl)phenyl)piperazine-1-carboxamide (3.71)
	4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-((3-chlorophenyl)carbamoyl)phenyl)piperazine-1-carboxamide (3.72)
	4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-((4-(dimethylamino)phenyl)-carbamoyl)phenyl)piperazine-1-carboxamide (3.73)
	4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-((4-(tert-butyl)phenyl)carbamoyl)phenyl)piperazine-1-carboxamide (3.74)
	4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-((4-chloro-3-(trifluoromethyl)phenyl)carbamoyl)phenyl)piperazine-1-carboxamide (3.75)
	4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-(pyridin-4-ylcarbamoyl)phenyl)piperazine-1-carboxamide (3.76)
	4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-(pyridin-3-ylcarbamoyl)phenyl)piperazine-1-carboxamide (3.77)
	4-(3,5-bis(Trifluoromethyl)phenyl)-N-(3-((4-(trifluoromethyl)phenyl)carbamoyl)phenyl)piperazine-1-carboxamide (3.78)
	N-(4-Chloro-3-(trifluoromethyl)phenyl)-2-(2-(3-(trifluoromethyl)phenyl)acetamido)acetamide (3.79)
	N-(4-Chloro-3-(trifluoromethyl)phenyl)-2-(3-(3-cyanophenyl)ureido)acetamide (3.80)
	2-(3-(3,5-bis(Trifluoromethyl)phenyl)ureido)-N-(4-chloro-3-(trifluoromethyl)phenyl)acetamide (3.81)
	S-(2-((2-Chloro-5-(trifluoromethyl)phenyl)amino)-2-oxoethyl) 2-(3-(Trifluoromethyl)phenyl)ethanethioate (3.82)
	S-(2-((2-Chloro-5-(trifluoromethyl)phenyl)amino)-2-oxoethyl) m-tolylcarbamothioate (3.83)
	S-(2-Oxo-2-((3-(trifluoromethyl)phenyl)amino)ethyl) m-tolylcarbamothioate (3.84)
	S-(2-Oxo-2-((3-(trifluoromethyl)phenyl)amino)ethyl) (3-cyanophenyl)carbamothioate (3.85)
	Methyl 3-((((2-oxo-2-((3-(trifluoromethyl)phenyl)amino)ethyl)thio)carbonyl)amino)benzoate (3.86)
	Dimethyl 5-((((2-oxo-2-((3-(trifluoromethyl)phenyl)amino)ethyl)thio)carbonyl)amino)isophthalate (3.87)
	S-(2-Oxo-2-((3-(trifluoromethyl)phenyl)amino)ethyl) (1-methyl-1H-indol-4-yl)carbamothioate (3.88)
	3-(Trifluoromethyl)-N-((5-(trifluoromethyl)-1H-benzo[d]imidazol-2-yl)methyl)benzamide (3.90)
	3,5-bis(Trifluoromethyl)-N-((5-(trifluoromethyl)-1H-benzo[d]imidazol-2-yl)methyl)benzamide (3.91)
	3-Cyano-N-((5-(trifluoromethyl)-1H-benzo[d]imidazol-2-yl)methyl)benzamide (3.92)
	2-(4-Cyanophenyl)-N-((5-(trifluoromethyl)-1H-benzo[d]imidazol-2-yl)methyl)acetamide (3.93)
	N-((5-(Trifluoromethyl)-1H-benzo[d]imidazol-2-yl)methyl)-2-(3-(trifluoromethyl)phenoxy)acetamide (3.94)
	5,5,8,8-Tetramethyl-N-((5-(trifluoromethyl)-1H-benzo[d]imidazol-2-yl)methyl)-5,6,7,8-tetrahydronaphthalene-2-carboxamide (3.95)
	2-Chloro-N-((5-(trifluoromethyl)-1H-benzo[d]imidazol-2-yl)methyl)isonicotinamide (3.96)
	1-((3-(Trifluoromethyl)benzyl)sulfonyl)-4-(3-(trifluoromethyl)phenyl)piperazine (3.97)
	1-(Benzylsulfonyl)-4-phenylpiperazine (3.98)
	1-((3-Methylbenzyl)sulfonyl)-4-phenylpiperazine (3.99)
	1-Phenyl-4-((2-(trifluoromethyl)benzyl)sulfonyl)piperazine (3.100)
	1-Phenyl-4-((3-(trifluoromethyl)benzyl)sulfonyl)piperazine (3.101)
	1-Phenyl-4-((4-(trifluoromethyl)benzyl)sulfonyl)piperazine (3.102)
	1-((3,5-bis(Trifluoromethyl)benzyl)sulfonyl)-4-phenylpiperazine (3.103)
	1-(Benzylsulfonyl)-4-(m-tolyl)piperazine (3.104)
	1-(m-Tolyl)-4-((2-(trifluoromethyl)benzyl)sulfonyl)piperazine (3.105)
	1-(m-Tolyl)-4-((3-(trifluoromethyl)benzyl)sulfonyl)piperazine (3.106)
	1-(m-Tolyl)-4-((4-(trifluoromethyl)benzyl)sulfonyl)piperazine (3.107)
	1-((3,5-bis(Trifluoromethyl)benzyl)sulfonyl)-4-(m-tolyl)piperazine (3.108)
	1-(Benzylsulfonyl)-4-(3-(trifluoromethyl)phenyl)piperazine (3.109)
	1-((3-Methylbenzyl)sulfonyl)-4-(3-(trifluoromethyl)phenyl)piperazine (3.110)
	1-((4-Methylbenzyl)sulfonyl)-4-(3-(trifluoromethyl)phenyl)piperazine (3.111)
	1-((3,5-bis(Trifluoromethyl)benzyl)sulfonyl)-4-(3-(trifluoromethyl)phenyl)piperazine (3.112)
	3-(4-(Benzylsulfonyl)piperazin-1-yl)benzonitrile (3.113)
	3-(4-((3-Methylbenzyl)sulfonyl)piperazin-1-yl)benzonitrile (3.114)
	3-(4-((3-(Trifluoromethyl)benzyl)sulfonyl)piperazin-1-yl)benzonitrile (3.115)
	1-(Benzylsulfonyl)-4-(3,5-bis(trifluoromethyl)phenyl)piperazine (3.116)
	1-(3,5-bis(Trifluoromethyl)phenyl)-4-((3-methylbenzyl)sulfonyl)piperazine (3.117)
	1-(3,5-bis(Trifluoromethyl)phenyl)-4-((2-(trifluoromethyl)benzyl)sulfonyl)piperazine (3.118)
	1-(3,5-bis(Trifluoromethyl)phenyl)-4-((3-(trifluoromethyl)benzyl)sulfonyl)piperazine (3.119)
	1-(3,5-bis(Trifluoromethyl)phenyl)-4-((4-(trifluoromethyl)benzyl)sulfonyl)piperazine (3.120)
	(3-(Trifluoromethyl)phenyl)(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)methanone (3.121)
	(3,5-bis(Trifluoromethyl)phenyl)(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)methanone (3.122)
	(4-(3,5-bis(Trifluoromethyl)phenyl)piperazin-1-yl)(3-(trifluoromethyl)phenyl)methanone (3.123)
	(3,5-bis(Trifluoromethyl)phenyl)(4-(3,5-bis(trifluoromethyl)phenyl)piperazin-1-yl)methanone (3.124)
	3-(4-(3,5-bis(Trifluoromethyl)phenyl)piperazine-1-carbonyl)benzonitrile (3.125)
	2-(3-(Trifluoromethyl)phenyl)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)ethan-1-one (3.126)
	1-(4-(3,5-bis(Trifluoromethyl)phenyl)piperazin-1-yl)-2-(3-(trifluoromethyl)phenyl)ethan-1-one (3.127)
	3-(4-(3-(Trifluoromethyl)benzoyl)piperazin-1-yl)benzonitrile (3.128)
	3-(4-(3,5-bis(Trifluoromethyl)benzoyl)piperazin-1-yl)benzonitrile (3.129)
	3-(4-(3-Cyanobenzoyl)piperazin-1-yl)benzonitrile (3.130)
	2-(3-(Trifluoromethyl)phenoxy)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)ethan-1-one (3.131)
	1-(4-(3,5-bis(Trifluoromethyl)phenyl)piperazin-1-yl)-2-(3-(trifluoromethyl)phenoxy)ethan-1-one (3.132)
	3-(4-(2-(3-(Trifluoromethyl)phenoxy)acetyl)piperazin-1-yl)benzonitrile (3.133)
	2-((3,4-Difluorophenyl)amino)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)ethan-1-one (3.134)
	1-(4-(3,5-bis(Trifluoromethyl)phenyl)piperazin-1-yl)-2-((3,4-difluorophenyl)amino)ethan-1-one (3.135)
	3-(4-((3,4-Difluorophenyl)glycyl)piperazin-1-yl)benzonitrile (3.136)
	2-(3-(Trifluoromethyl)phenoxy)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)propan-1-one (3.137)
	1-(4-(3,5-bis(Trifluoromethyl)phenyl)piperazin-1-yl)-2-(3-(trifluoromethyl)phenoxy)propan-1-one (3.138)
	3-(4-(2-(3-(Trifluoromethyl)phenoxy)propanoyl)piperazin-1-yl)benzonitrile (3.139)
	2-Methyl-2-(3-(trifluoromethyl)phenoxy)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)propan-1-one (3.140)
	1-(4-(3,5-bis(Trifluoromethyl)phenyl)piperazin-1-yl)-2-methyl-2-(3-(trifluoromethyl)phenoxy)propan-1-one (3.141)
	3-(4-(2-Methyl-2-(3-(trifluoromethyl)phenoxy)propanoyl)piperazin-1-yl)benzonitrile (3.142)
	2-((3-(Trifluoromethyl)phenyl)amino)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)ethan-1-one (3.143)
	1-(4-(3,5-bis(Trifluoromethyl)phenyl)piperazin-1-yl)-2-((3-(trifluoromethyl)phenyl)amino)ethan-1-one (3.144)
	2-((2,4-Difluorophenyl)amino)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)ethan-1-one (3.145)
	2-((4-Chlorophenyl)amino)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)ethan-1-one (3.146)
	2-((2-Fluorophenyl)amino)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)ethan-1-one (3.147)
	2-((4-Fluorophenyl)amino)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)ethan-1-one (3.148)
	2-((2,4-Difluorophenyl)amino)-1-(4-(m-tolyl)piperazin-1-yl)ethan-1-one (3.149)
	2-((4-Chlorophenyl)amino)-1-(4-(m-tolyl)piperazin-1-yl)ethan-1-one (3.150)
	2-((2-Fluorophenyl)amino)-1-(4-(m-tolyl)piperazin-1-yl)ethan-1-one (3.151)
	2-((4-Fluorophenyl)amino)-1-(4-(m-tolyl)piperazin-1-yl)ethan-1-one (3.152)
	3-(Phenylamino)-1-(4-phenylpiperazin-1-yl)propan-1-one (3.153)
	3-(Phenylamino)-1-(4-(m-tolyl)piperazin-1-yl)propan-1-one (3.154)
	3-(Phenylamino)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)propan-1-one (3.155)
	3-((2-Nitro-4-(trifluoromethyl)phenyl)amino)-1-(4-phenylpiperazin-1-yl)propan-1-one (3.156)
	3-((2-Nitro-4-(trifluoromethyl)phenyl)amino)-1-(4-(m-tolyl)piperazin-1-yl)propan-1-one (3.157)
	3-((2-Nitro-4-(trifluoromethyl)phenyl)amino)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)propan-1-one (3.158)
	3-((2-Fluorophenyl)amino)-1-(4-phenylpiperazin-1-yl)propan-1-one (3.159)
	3-((2-Fluorophenyl)amino)-1-(4-(m-tolyl)piperazin-1-yl)propan-1-one (3.160)
	3-((2-Fluorophenyl)amino)-1-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)propan-1-one (3.161)
	1-(4-(Pyrimidin-2-yl)piperazin-1-yl)-2-((3-(trifluoromethyl)phenyl)amino)ethan-1-one (3.162)
	2-((2,4-Difluorophenyl)amino)-1-(4-(pyrimidin-2-yl)piperazin-1-yl)ethan-1-one (3.163)
	2-((4-Chlorophenyl)amino)-1-(4-(pyrimidin-2-yl)piperazin-1-yl)ethan-1-one (3.164)
	2-((2-Fluorophenyl)amino)-1-(4-(pyrimidin-2-yl)piperazin-1-yl)ethan-1-one (3.165)
	2-((4-Fluorophenyl)amino)-1-(4-(pyrimidin-2-yl)piperazin-1-yl)ethan-1-one (3.166)
	N,4-bis(3-(Trifluoromethyl)phenyl)piperidine-1-carboxamide (3.167)

	GPHR-00213869 Analogs
	6-Chloro-3-phenyl-[1,2,4]triazolo[4,3-b]pyridazine (3.168)
	6-Chloro-3-(m-tolyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.169)
	6-Chloro-3-(3-(trifluoromethyl)phenyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.170)
	6-Chloro-3-(p-tolyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.171)
	6-Chloro-3-(4-(trifluoromethyl)phenyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.172)
	6-Chloro-3-(4-methoxyphenyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.173)
	6-Chloro-3-(4-fluorophenyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.174)
	6-Chloro-3-(4-chlorophenyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.175)
	6-Chloro-3-(pyridin-3-yl)-[1,2,4]triazolo[4,3-b]pyridazine (3.176)
	6-Chloro-3-(3,4-dichlorophenyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.177)
	3-(4-(tert-Butyl)phenyl)-6-chloro-[1,2,4]triazolo[4,3-b]pyridazine (3.178)
	6-Chloro-3-methyl-[1,2,4]triazolo[4,3-b]pyridazine (3.179)
	6-Chloro-3-propyl-[1,2,4]triazolo[4,3-b]pyridazine (3.180)
	3-(tert-Butyl)-6-chloro-[1,2,4]triazolo[4,3-b]pyridazine (3.181)
	6-Chloro-3-(trifluoromethyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.182)
	6-Chloro-3-(trichloromethyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.183)
	6-Bromo-3-phenyl-[1,2,4]triazolo[4,3-a]pyridine (3.184)
	6-Bromo-3-(m-tolyl)-[1,2,4]triazolo[4,3-a]pyridine (3.185)
	6-Bromo-3-(3-(trifluoromethyl)phenyl)-[1,2,4]triazolo[4,3-a]pyridine (3.186)
	6-Bromo-3-(p-tolyl)-[1,2,4]triazolo[4,3-a]pyridine (3.187)
	6-Bromo-3-(4-(trifluoromethyl)phenyl)-[1,2,4]triazolo[4,3-a]pyridine (3.188)
	6-Bromo-3-(4-methoxyphenyl)-[1,2,4]triazolo[4,3-a]pyridine (3.189)
	6-Bromo-3-(4-fluorophenyl)-[1,2,4]triazolo[4,3-a]pyridine (3.190)
	6-Bromo-3-(4-chlorophenyl)-[1,2,4]triazolo[4,3-a]pyridine (3.191)
	6-Bromo-3-(3,4-dichlorophenyl)-[1,2,4]triazolo[4,3-a]pyridine (3.192)
	6-Bromo-3-(pyridin-3-yl)-[1,2,4]triazolo[4,3-a]pyridine (3.193)
	6-Bromo-3-propyl-[1,2,4]triazolo[4,3-a]pyridine (3.194)
	6-Bromo-3-(tert-butyl)-[1,2,4]triazolo[4,3-a]pyridine (3.195)
	6-Bromo-3-(trifluoromethyl)-[1,2,4]triazolo[4,3-a]pyridine (3.196)
	6-Bromo-3-phenylimidazo[1,5-a]pyridine (3.197)
	6-Bromo-3-(m-tolyl)imidazo[1,5-a]pyridine (3.198)
	6-Bromo-3-(3-(trifluoromethyl)phenyl)imidazo[1,5-a]pyridine (3.199)
	6-Bromo-3-(p-tolyl)imidazo[1,5-a]pyridine (3.200)
	6-Bromo-3-(4-(trifluoromethyl)phenyl)imidazo[1,5-a]pyridine (3.201)
	6-Bromo-3-(4-fluorophenyl)imidazo[1,5-a]pyridine (3.202)
	6-Bromo-3-(4-chlorophenyl)imidazo[1,5-a]pyridine (3.203)
	6-Bromo-3-(pyridin-3-yl)imidazo[1,5-a]pyridine (3.204)
	6-Bromo-3-methylimidazo[1,5-a]pyridine (3.205)
	6-Bromo-3-propylimidazo[1,5-a]pyridine (3.206)
	N-((5-Bromopyridin-2-yl)methyl)benzamide (3.207)
	N-((5-Bromopyridin-2-yl)methyl)-3-methylbenzamide (3.208)
	N-((5-Bromopyridin-2-yl)methyl)-4-methylbenzamide (3.209)
	N-((5-Bromopyridin-2-yl)methyl)-4-(trifluoromethyl)benzamide (3.210)
	N-((5-Bromopyridin-2-yl)methyl)-4-methoxybenzamide (3.211)
	N-((5-Bromopyridin-2-yl)methyl)-4-fluorobenzamide (3.212)
	N-((5-Bromopyridin-2-yl)methyl)-4-chlorobenzamide (3.213)
	N-((5-Bromopyridin-2-yl)methyl)-3,4-dichlorobenzamide (3.214)
	N-((5-Bromopyridin-2-yl)methyl)-4-(tert-butyl)benzamide (3.215)
	N-((5-Bromopyridin-2-yl)methyl)nicotinamide (3.216)
	N-((5-Bromopyridin-2-yl)methyl)acetamide (3.217)
	N-((5-Bromopyridin-2-yl)methyl)butyramide (3.218)
	3-Phenyl-[1,2,4]triazolo[4,3-a]pyridine (3.218)
	3-Phenyl-[1,2,4]triazolo[4,3-b]pyridazine (3.219)
	6-Bromo-3-(m-tolyl)imidazo[1,5-a]pyridine (3.220)
	6-Bromo-3-(3-(trifluoromethyl)phenyl)imidazo[1,5-a]pyridine (3.221)
	6-Bromo-3-(p-tolyl)imidazo[1,5-a]pyridine (3.222)
	6-Chloro-3-phenyl-[1,2,4]triazolo[4,3-b]pyridazine (3.223)
	6-Chloro-3-(m-tolyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.224)
	6-Chloro-3-(p-tolyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.225)
	6-Chloro-3-(4-fluorophenyl)-[1,2,4]triazolo[4,3-b]pyridazine (3.226)
	N-((5-Bromopyridin-2-yl)methyl)-4-(trifluoromethyl)benzamide (3.227)
	N-((5-Bromopyridin-2-yl)methyl)-4-(tert-butyl)benzamide (3.228)

	Aminocyclopentitol Synthesis
	(2R,3S,4S,5R,6S)-2-(((tert-Butyldimethylsilyl)oxy)methyl)-6-methoxytetrahydro-2H-pyran-3,4,5-triol (4.9).
	tert-Butyldimethyl(((2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxytetrahydro-2H-pyran-2-yl)methoxy)silane (4.10).
	((2R,3R,4S,5R,6S)-3,4,5-tris(Benzyloxy)-6-methoxytetrahydro-2H-pyran-2-yl)methanol (4.11).
	(2S,3S,4S,5R,6S)-3,4,5-Tris(benzyloxy)-2-(iodomethyl)-6-methoxytetrahydro-2H-pyran (4.12).
	(2R,3S,4R)-2,3,4-Tris(benzyloxy)hex-5-enal (4.13).
	(3aR,4R,5S,6S,6aR)-4,5,6-Tris(benzyloxy)hexahydro-1H-cyclopenta[c]isoxazole (4.14).
	((1R,2R,3S,4S,5R)-2,3,4-Tris(benzyloxy)-5-amino-cyclopentyl)methanol (4.15).
	5-Hydroxypentyl 4-methylbenzenesulfonate (4.16).
	5-Oxopentyl 4-methylbenzenesulfonate (4.17)
	4-(1,3-Dioxolan-2-yl)butyl 4-methylbenzenesulfonate (4.18).
	2-(4-((Adamantan-1-yl)methoxy)butyl)-1,3-dioxolane (4.19)
	5-((Adamantan-1-yl)methoxy)pentanal (4.20)
	((1R,2R,3S,4S,5R)-2,3,4-tris(Benzyloxy)-5-(dibutylamino)cyclopentyl)methanol (4.21)
	(1R,2S,3S,4R,5R)-2,3,4-tris(Benzyloxy)-5-((benzyloxy)methyl)-N,N-dinonylcyclopentan-1-amine (4.22)
	((1R,2R,3S,4S,5R)-2-((6-(Adamantan-1-ylmethoxy)hexyl)amino)-3,4,5-tris(benzyloxy)cyclopentyl)methanol (4.23)
	(1R,2S,3S,4R,5R)-4-(Dibutylamino)-5-(hydroxymethyl)cyclopentane-1,2,3-triol (4.24).
	(1R,2S,3S,4R,5R)-4-((5-((Adamantan-1-yl)methoxy)pentyl)amino)-5-(hydroxymethyl)cyclopentane-1,2,3-triol (4.25).
	(1R,2S,3S,4R,5R)-4-(Dinonylamino)-5-(hydroxymethyl)cyclopentane-1,2,3-triol (4.26)
	(1R,2S,3S,4R,5R)-4-Amino-5-(hydroxymethyl)cyclopentane-1,2,3-triol (4.27).
	(2S,3R,4S,5R)-2,3,4,6-tetrakis(Benzyloxy)hexane-1,5-diol (4.29).
	(2R,3S,4R,5S)-3,4,5-tris(Benzyloxy)-2-((benzyloxy)methyl)-1-butylpiperidine (4.30).
	N-Butyl-1-deoxynojirimycin (4.31).
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