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Abstract 

A fundamental challenge of agricultural development in sub-Saharan Africa (SSA) is that 

technologies which prove successful at a small scale, in limited locations, and with few 

farmers, often fail to scale to encompass the preponderance of poor farmers. This study 

focuses on the economics of deploying technologies and recommendations that are then 

scaled beyond their initial targeted groups. The dissertation is composed of three essays. 

In the first essay, we address the stylized fact that experimental crop responses are typically 

higher than observational crop responses obtained in farmers’ fields. This is arguably a 

canonical example of a failure to scale from experimental plots. To close these crop 

response gaps—necessary goal assuming general constant long-term trends in maize 

output/fertilizer price ratios—, we propose that fertilizer recommendations be based on a 

Bayesian combination of experimental and observational crop response estimates. We use 

Bayesian econometric methods to combine estimates from experimental and observational 

evidence. In the second essay, we build on the first to determine the likelihood that farmers 

will adopt new varietal technologies. We modify the differentiated product demand models 

used in the industrial organization literature to the economics of hybrid maize varietal 

adoption in Malawi. By focusing on the characteristics space of maize varieties, our 

approach can help in ex-ante evaluation of the scaling-up potential of new crop varieties. 

The final essay calibrates inter-district food flows in Malawi thereby providing statistics 

for improving the targeting of national and regional food policies and technology 

commercialization strategies. We develop a food sector model for Malawi and use it to 

analyze the impacts of varying transport costs on food traded among districts within the 

country.  
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1. Introduction 

This dissertation focuses on econometric and mathematical models for scaling up 

technologies or recommendations to improve their widespread adoption and development 

impacts. In the first essay, we propose that recommendations on fertilizer application rates 

and evaluations be based on a Bayesian combination of experimental and observational 

evidence to ensure that the recommendations can work at scale. We illustrate the approach 

with an application to spatially variable maize yield responses throughout Malawi. In the 

second essay, we propose a characteristics space analysis of quality-differentiated 

agricultural inputs—in this case alternative maize seed varieties—that allows analysis of 

the willingness to pay for various characteristics, thus revealing the demand for particular 

new crop varieties. In the final essay, we develop a food sector model that calibrates food 

flows across districts within Malawi thereby providing important information for making 

targeted food policy and technology commercialization decisions.  

Essay 1: A stylized fact of African agriculture is that crop responses to inorganic fertilizer 

application derived from experimental studies are often substantially greater than those 

from observational studies (e.g., farm surveys and administrative data). The divergence 

between experimental and observational crop responses reported in the literature, coupled 

with the recent debates on the relative costs and benefits of the expensive farm input 

subsidy programs in Africa, have raised the importance of reconciling these estimates. This 

essay argues that progress on closing the gaps has been impeded by focusing only on mean 

crop response differences while ignoring the enormous uncertainty and heterogeneity 

arising from variations in soil types, environmental conditions, and management practices. 

We show in this essay that a novel way of dealing with different crop response function 

estimates is to use a Bayesian approach that combines information from both experimental 

and observational data to model uncertainty and heterogeneity in crop yield responses. Our 

Bayesian approach has the advantage over conventional approaches to assessing (spatially 

variable) yield responses in that it addresses the potential concern that the experimental 

process tends to overstate observational crop response while observational methods tend 

to be muddled with behavioral (or crop management) factors. Using nationally 

representative experimental, survey, and administrative datasets from Malawi, we find 
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that: (1) crop responses to inorganic fertilizer use are uniformly low in observational data, 

(2) there are large heterogeneities in yield responses across space, and (3) ignoring 

parameter uncertainty and spatial heterogeneity in crop responses can lead to questionable 

policy prescriptions.  

Essay 2: There are always at least two sides to every story and an economic story of the 

adoption of agricultural technologies throughout sub-Saharan Africa (SSA) is no 

exception. One familiar story highlights the “acceptance problem,” namely that 

fundamental constraints in remoteness, weak markets, inappropriate policies, low 

education, cultural factors and many other related constraints are key drivers to the low 

rates of technology adoption that prevail in many parts of SSA. The other story focuses on 

the “availability problem,” which maintains that many newly available technologies fail to 

provide any relative advantage in terms of their performance related attributes compared 

with the other (often status quo) alternatives. This essay proposes a pure characteristics 

space analysis for both the acceptance and availability problems. We illustrate this model 

using an application of the adoption of maize varieties in Malawi, a rapidly changing 

differentiated input market. We find that farmers are willing to pay more for complex traits 

like drought tolerance and flint texture than yield differentials per se. Our results (and the 

analytical approach we develop) have direct implications for maize breeding programs in 

Malawi. 

Essay 3: This essay develops a spatially-explicit, mathematical-programming model for 

the Malawian food sector to calibrate inter-district food flows and to assess how transport 

cost variations affect these flows. Data on inter-district commodity trade flows are typically 

not collected and are thus unavailable for most sub-Saharan African (SSA) countries and 

for many parts of world. However, access to such data would present opportunities for 

smarter and better targeted development policies that allow for the spatial spillover of 

interventions targeted to a specific locale. The food sector modeling approach we develop 

and implement allows for a natural estimation of inter-district trade flows in data sparse 

environments where the lack of such data preclude estimation of intra-national gravity 

trade models. Our modeling method is consistent with a modified von Thünen “arrows” 

approach in which transport costs determine the quantities and types of inputs or outputs 
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that flow across (spatially) “separated” but not “isolated” districts. The calibration results 

for our baseline model indicate that about 7% of Malawian maize production flows among 

districts as compared with more than 40% for rice, beans and groundnuts, and 0% for 

cassava and potatoes. A simulation experiment of varying unit transport costs shows that 

reductions in per unit transport costs nonlinearly increase the share of production that is 

traded inter-regionally, although the traded shares vary among the crops included in our 

model. 
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2. Closing the Gaps in Experimental and Observational Crop Response 

Estimates: A Bayesian Approach 

The best fertilizer on any farm is the footsteps of the owner. 

(Taken from Scott 1998, p. 284, attributed to Confucius) 

2.1. Introduction 

A stylized fact of African agriculture is that experimentally derived crop responses to 

inorganic fertilizer application are often substantially greater than those obtained from 

observational studies (e.g., using farm survey or official administrative data). There is also 

a long history of description of this yield gap, which can be reduced to the presence or 

absence of positive or negative confounding factors such as biologically optimal crop 

management by researchers versus biologically sub-optimal (albeit possibly optimal bio-

economic) management by farmers; smaller, more uniform, plot sizes used in experiments 

versus larger and heterogeneous plot sizes used by farmers; biases or spatial inconsistencies 

in site or sample selection of scientific versus farmer plots; and observer bias (see, for 

example, Coe et al. 2016; Snapp et al. 2014). In addition to these factors, sample sizes (or 

the number of replicates) also differ, with farm surveys that can span thousands of 

households versus experiments that often include a few hundred sites at most. According 

to Bullock and Bullock (2000, p.97), “…the simple fact is that most agronomic 

experiments are not run for enough years and enough locations to obtain many different 

observations of weather and possible field characteristics”. Because a field experiment at 

a few locations cannot capture all this nuance in variation, the representativeness of 

agronomic experiments is often questioned because crop response estimates and 

recommendations derived from them are different from what is experienced under farmers’ 

conditions.  

Economists have had long-standing debates on both the causes and solutions related to 

yield gaps.1 Some of the early work on this topic includes Davidson and Martin (1965 and 

1967), Dillon and Anderson (1995), and Anderson (1992). This study contributes to this 

                                                 
1 See Beddow et al. (2014) for a detailed bio-economic review and evaluation of the yield gap literature. 
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prior literature by using experimental and observational evidence in Malawi to characterize 

the crop response gaps and proposes Bayesian linear and hierarchical models to combine 

the estimates from observational and experimental studies. 

The discrepancy in experimental versus commercial yield response can have profound 

policy implications. For example, a recent study by Jayne et al. (2015) using observational 

crop responses of the social benefits versus costs of the Malawian farm input subsidy 

program—one of the largest targeted national farm input subsidy programs in Africa—

found it to be unduly costly.2 In direct contrast, using experimental crop response data, 

Chirwa and Dorward (2013) found the program to be economically beneficial relative to 

its costs. According to Jayne et al. (2015), the use efficiency of the nitrogen applied to 

maize is perhaps the most important factor determining the benefits of the Malawi farm 

input subsidy program. The crux of their case largely hinges on the following yield 

response relativities: 

“These (crop response) estimates (3.4 – 9.9kg of maize output per unit of fertilizer 

applied per ha) are based on farm survey data and not researcher-influenced plots, 

and they reflect the range of management practices and production constraints 

found within Malawi’s smallholder farm sector… Unfortunately, Dorward and 

Chirwa (2015) maize response estimates of 16 – 18 kg are derived from researcher-

influenced farm trials undertaken in the late 1990s with participants who were 

largely master farmers” (Jayne et al., 2015, p. 746) 

While noting the challenges of reconciling these crop responses, Arndt et al. (2016) 

evaluated the subsidy program using crop responses ranging from 11.8 to 18.5 kg of maize 

per ha per kg of nitrogen fertilizer. They settled on this range of responses, more or less 

arbitrarily, to cover reported rates from the observational and experimental evidence they 

                                                 
2 Jayne et al. (2018) reviews subsidy programs for 10 African countries and reports that between 2011 and 

2014 the farm input subsidy program in Malawi accounted for 21 to 44 percent of the country’s total spending 

on agriculture.  

 



6 

 

 

reviewed3. Arndt and co-authors further comment that reconciling the experimental and 

observational crop responses remains an important and unresolved problem. The difficulty 

of fully reconciling the estimates from these multiple sources of data, which were collected 

at different time periods in different locations, with different varieties and using different 

research methods, is exacerbated by the reliance on mean response comparisons that 

completely ignore the substantive spatial and temporal heterogeneity in these responses.  

Given these challenges, policy making is usually left to guesswork regarding the true crop 

responses and a reliance on arbitrary approaches to re-adjusting experimental yield 

responses to better reflect farmer conditions. In this chapter, we propose a simple and 

replicable method of bringing all these subjective judgements into a formal estimation 

framework. The approach is based on the Bayesian paradigm of combining prior 

information and observational data. We use a Bayesian hierarchical model to incorporate 

both parameter uncertainty and heterogeneity in crop response functions and fertilizer 

recommendations. The Bayesian approach of combining different evidence on the same 

phenomenon has recently been used by Fessler and Kasy (2018) to combine predictions of 

labor demand and wage inequality derived from economic theory and empirically derived 

estimates, by Meager (2019) to combine results from various randomized control trials of 

micro-credit interventions across countries, and by Rosas et al. (2018) to impose duality 

theory restrictions based on experimental trial data to assess market level crop yield 

responses to prices in the U.S. In macroeconomic forecasting, the idea of combining 

evidence using the Bayesian paradigm has been implemented in Dynamic Stochastic 

General Equilibrium Modeling (DSGE) as well as New Keynesian Macroeconomics. It has 

also been used in the economics of education literature to combine teacher value added 

measures that are precise but biased with alternative measures based on admission lotteries 

for students that are unbiased but imprecise (Angrist et al. 2017).  

                                                 
3 Notice here that some of the crop response gaps are due to semantics. While much of what Jayne et al. 

(2015) refer to as crop responses are based on total fertilizer applied, Dorward and Chirwa (2015) specifically 

refer to nitrogen applied. This is a common cause of ostensible differences in yield responses given that 

agronomic experiments typically report nutrient specific responses while observational evidence often report 

crop output responses to the total fertilizer applied.  
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This chapter contributes to the crop responses literature by exploring the possibility of 

improving soil fertility recommendations through the careful combination of experimental 

and observational crop response evidence, while also taking into account parameter 

uncertainty and heterogeneity. Specifically, the study analyzes the effect of observational 

crop responses when conditioned on prior (experimental) crop responses. The applications 

from this modeling approach are many, especially given a lack of directly comparable 

experimental data over time due to changes in experimental designs. Using our proposed 

approach, researchers can simply use previous estimates as priors in a new analysis. 

Similarly, in many agronomic research projects (e.g., the Drought Tolerant Maize for 

Africa project by CIMMYT), scientists are asked to conduct household surveys prior to or 

while conducting experiments as part of learning the environment. With this approach they 

can formally use the household survey estimates as priors in their experimental analysis. 

The key rationale is that Bayesian estimates weight the estimate from the present and prior 

data using an inverse of the variance parameters so that the uncertainty of the parameters 

determine whether the prior or present data dominate. 

This chapter makes three main contributions. The first is that we incorporate parameter 

uncertainty in single output and multi-output crop response function estimation, which 

provides a more complete description of the crop response parameters. Specifically, we 

contribute to the on-going debates on the use of experimental versus observational mean 

crop responses by showing that using the mean response function in combination with 

arbitrary adjustments may result in suboptimal policy prescriptions in most cases because 

the inherent unobserved heterogeneity within and across farms requires site-specific 

optimization. Instead, researchers are likely better off using the entire distribution of the 

parameters (as this distribution contains more information than the mean), which entails 

comparing the distributions of benefit-cost ratios and profits obtained from the different 

alternatives being studied. Second, we illustrated the empirical implications of considering 

the spatial heterogeneity of crop responses among districts within Malawi. Third, we 

propose and validate the use of Bayesian recommendations that take into account 

parameter uncertainty and heterogeneity.  
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Although endogeneity issues from measurement error, simultaneity, and omitted variables 

require close consideration when estimating crop response functions (and such concerns 

bedevil all prior crop response assessments that use observational data), the use of district-

level fixed effects allows comparisons of within district differences of the sources of 

evidence while accounting for uncertainty of parameter estimates, and heterogeneity of 

crop response estimates.  Furthermore, this chapter follows a partial identification strategy 

to test if the crop response parameter is observationally equivalent under various prior 

specifications. 

Debates on whether crop response estimates are low or high in Malawi and other African 

countries are difficult if not impossible to resolve when uncertainty and heterogeneity of 

the estimates across time and space is ignored.  Most importantly, the results we obtain 

below show that even with an extremely high prior mean yield response (e.g., 30kg/ha of 

maize output per kg of fertilizer applied) and level of precision (e.g., a value of 10, which 

is equivalence to a variance of 0.1), the posterior crop response estimates can only go as 

high as 20kg of maize output per ha for a unit of nitrogen (N) fertilizer applied. In addition, 

the lowest is around 2kg of maize output per kg of fertilizer. This implies that there is a 

95% probability that the mean crop responses are between 2-20kg of maize output per 

kilogram of N fertilizer applied4. Further analysis in the chapter shows that there is huge 

spatial heterogeneity in the crop responses, which should be of importance in policy design 

because some of the districts are non-responsive to fertilizer application.   

This evidence therefore suggests that resolving policy debates that depend on crop 

responses should consider variances and heterogeneity in these responses. In summary, the 

results presented below illustrate that Malawian maize yield responses are generally low 

and highly variable (over time and space). This underscores the need for evidence-based 

targeting of locations and beneficiaries if farm input subsidy programs such as that 

presently operating in Malawi are to constitute a cost-effective public policy and be 

profitable for smallholder farmers.  

                                                 
4 The interpretation holds because we are using a Bayesian credible interval not a frequentist confidence 

interval.  
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2.2. Model 

2.2.1 Theoretical model 

The standard neoclassical approach to production economics on crop response to inputs 

like fertilizer is a primal approach based on deterministic profit maximization. Following 

Hartley (1983), the deterministic conditional neoclassical model of fertilizer usage and 

output response, given that a positive area of land has been allocated to crop 𝑗, assumes 

that farmers maximize profits with respect to all variable input levels associated with the 

area of land 𝑎𝑖𝑗 which is usually normalized to a unit hectare. The profit associated with 

crop j in each plot 𝑖 is defined as 

 
𝜋𝑖𝑗 = 𝑝𝑖𝑗𝑦𝑖𝑗 − 𝑤𝑖𝑗𝑥𝑖𝑗 − 𝐹𝐶𝑖𝑗  subject to:  𝑦𝑖𝑗 = 𝑓𝑖𝑗(𝑥𝑖𝑗, 𝑎𝑖𝑗, 𝑧𝑖𝑗;  𝜃𝑖𝑗) (1) 

Where πij is the profit per unit (hectare) for each plot 𝑖 and crop 𝑗. 𝑝𝑖𝑗 and 𝑤𝑖𝑗 are prices 

of crop outputs and fertilizer respectively. 𝑦𝑖𝑗 is the crop specific yield (kg/ha) and 

yij = fij(xij, aij, zij;  θij) describes the production technology where xij is the quantity of 

fertilizer applied (kg/ha), aij represents area under crop j in plot 𝑖, 𝑧𝑖𝑗 represents the quantity 

of other inputs like labor, and θij represents the set of relevant response parameters that 

are usually estimated from the data. 𝐹𝐶𝑖𝑗 represents fixed costs. 

Under assumptions of twice continuously differentiability, convexity of the production 

possibilities set, strict concavity of the objective function, the economic condition for 

optimality is 

 𝝏𝜋𝑖𝑗

𝝏𝑥𝑖𝑗
= 𝑝𝑖𝑗

𝜕𝑓𝑖𝑗(𝑥𝑖𝑗
∗, 𝑎𝑖𝑗, 𝑧𝑖𝑗;  𝜃𝑖𝑗)

𝜕𝑥𝑖𝑗
− 𝑤𝑖𝑗 = 0 

𝜕𝑓𝑖𝑗(𝑥𝑖𝑗
∗, 𝑎𝑖𝑗, 𝑧𝑖𝑗;  𝜃𝑖𝑗)

𝜕𝑥𝑖𝑗
=

𝑤𝑖𝑗

𝑝𝑖𝑗
 

 

(2) 

Using the implicit function theorem or assuming conventional functional forms for 

𝑓𝑖𝑗(𝑥𝑖𝑗
∗, 𝑎𝑖𝑗 , 𝑧𝑖𝑗;  𝜃𝑖𝑗), it is easy to find the optimal 𝑥𝑖𝑗

∗ and this approach has been used 

extensively in practice to make fertilizer use recommendations.  
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There are fundamental flaws using the neoclassical production model. First, the parameter 

𝜃𝑖𝑗, which essentially drives the optimality as well as heterogeneity across farms, is 

assumed to be known and certain such that it is usually not included in the optimization. 

But these parameters are rarely if ever known (either in an agronomical or statistical sense), 

which implies that economic decisions made on the basis of this assumption are suspect. 

The fundamental problem in agricultural settings is that the crop is typically grown on soils 

with an “inherent soil fertility gradient,” which implies that yields even under heavily 

controlled environments will be uncertain because of the unobserved heterogeneity in the 

soil even a few centimeters apart (Zingore et al. 2003).5  

In a statistical sense, 𝜃𝑖𝑗 is usually a set of unknown parameters, about which farmers may 

have some prior information based on the performance of the same or different crops under 

similar or different input regimes. In conventional theory, there is no provision to 

incorporate this prior. Second, this conventional approach does not provide any direction 

as to what type of data would be required to estimate the production relation 

𝑓𝑖𝑗(𝑥𝑖𝑗
∗, 𝑎𝑖𝑗 , 𝑧𝑖𝑗;  𝜃𝑖𝑗). A researcher can conduct experiments to decipher some 𝑥𝑖𝑗

∗, but no 

known experimental design can comprehensively investigate the effect of each of the 𝑥𝑖𝑗 

on yield while also controlling for all other effects in 𝑥𝑖𝑗 and 𝑧𝑖𝑗. Occasionally, multi-

factorial experiments are conducted to (partially) address this challenge. Another line of 

research uses farm surveys to analyze the observable determinants of yield. Under this 

approach, the farmer has already made a set of input and crop management choices 

depending on their observed and unobserved circumstances. Using these different 

approaches result in different estimates of 𝜃𝑖𝑗.  

This study proposes an extensive prior robust Bayesian analysis to investigate combined 

estimates of 𝜃𝑖𝑗 that are consistent with theory and the practical challenges (and the relative 

prices) faced by farmers.   

                                                 
5 In reality it is not just soil quality that varies with location. Many other climate, terrain, and physical aspect 

factors vary by location, often in ways that are imprecisely if at all measured, and variations in these factors 

also affect crop yields. 



11 

 

 

2.2.1.1 Are Bayesian recommendations the most profitable? 

In this section, we show analytically and numerically whether Bayesian 

recommendations are better than relying solely on experimental or observational based 

recommendations. Consider, two profit functions, one derived using experimental 

evidence while the other using observational evidence, 

𝜋𝑒 = max ∫ 𝑝𝑦(𝛽𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡, 𝑥) − 𝑤𝑥 

𝜋𝑠 = max ∫ 𝑝𝑦(𝛽𝑠𝑢𝑟𝑣𝑒𝑦, 𝑥) − 𝑤𝑥 

Now consider another possibility in which the results are based on a Bayesian 

combination of the evidence. Following Carlin and Louis (2009), we can think of a 

simple case where 𝜇 is the prior mean of crop responses, 𝑦 is the likelihood mean of crop 

responses, 𝜏2 is the variance of the prior and 𝜎2 be the variance of the likelihood, and 

𝜎2∗
= 𝜎2/𝑛. The normal-normal conjugate posterior distribution is given by  

𝑝(𝜃|𝑦) = 𝑁(𝜃| 
𝜎2∗

𝜇+𝜏2𝑦

𝜎2∗
+𝜏2 ,

𝜎2∗
𝜏2

𝜎2∗
+𝜏2) 

Letting 𝜔 =
𝜎2∗

𝜎2∗
+𝜏2 ∈ [0,1], then the posterior mean is a weighted average, 𝜔𝜇 + (1 − 𝜔)𝑦 

and posterior variance is given by 𝑣𝑎𝑟(𝜃|𝑦) = 𝐵𝜏2 ≡ (1 − 𝐵)𝜎2∗
 and is smaller than 

𝜏2and 𝜎2. The advantage of the posterior is that precision just as information is additive, 

𝑣𝑎𝑟(𝜃|𝑦)−1 = 𝑣𝑎𝑟(𝑦|𝜃) + 𝑣𝑎𝑟 (𝜃).  

Without loss of generality, we can write the Bayes posterior mean of crop responses using 

the notation from above in a similar way, 

𝛽 𝑏𝑎𝑦𝑒𝑠 = 𝜔𝛽𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 + (1 − 𝜔)𝛽𝑠𝑢𝑟𝑣𝑒𝑦 

𝜋𝐵(𝑝, 𝑤, 𝛽) = max ∫ 𝑝𝑦(𝛽 𝑏𝑎𝑦𝑒𝑠, 𝑥) − 𝑤𝑥 

A profit function is convex in 𝑝, 𝑤 and therefore 𝜋𝐵 ≥ 𝜋𝑠 and 𝜋𝐵 ≥ 𝜋𝑒 . We can also 

represent this relationship using a value-to-cost ratio (VCR) as 
𝑝𝑦

′(𝛽 𝑏𝑎𝑦𝑒𝑠,𝑥)

𝑤
≥
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𝑝𝑦′(𝛽 𝑠𝑢𝑟𝑣𝑒𝑦,𝑥)

𝑤
. This implies that we can simply compare the distribution of the VCR at the 

economically optimal Bayesian recommendations and the distribution of VCR at the 

economically optimal survey/experimental recommendations. For a quadratic crop 

response function, this is calculated as 𝑉𝐶𝑅 − 𝐸𝑂𝐵𝑅 =
𝑝(𝛽1

𝐵𝑎𝑦𝑒𝑠
+𝛽2

𝐵𝑎𝑦𝑒𝑠
𝑥∗𝐵𝑎𝑦𝑒𝑠

)

𝑤
, where 

EOBR is the economically optimal Bayesian recommendation. We provide more details 

of the approach in the appendices.  

2.2.2.2 Stochastic dominance comparisons 

To make comparisons across different scenarios we use first order stochastic dominance, 

in particular “posterior stochastic dominance.” Thus, different information sources are 

being combined probabilistically and stochastic dominance is being used to compare 

among them. Stochastic dominance is normally defined with respect to stochastic 

outcomes, which in the case of this study are profits. The study therefore concentrates on 

whether the fertilizer response parameters dominate each other across the entire measured 

range of fertilizer use when the prior is updated with additional information. Definition 1 

below provides a description of posterior stochastic dominance. 

Definition 1: First Order Posterior Stochastic Dominance- Let F(π) and G(π) be two 

cumulative distributions of outcomes (for example profits) based on different experimental 

priors. Drawing on Levy’s (2000, p.56) definition, the distribution of outcomes F(π) will 

first order stochastically dominate the distribution of outcomes G(π) if and only if F(π) is 

less than or equal to G(π) for every π and there is at least one π for which a strong inequality 

holds.  

Using the definition of stochastic dominance and interpretation of posterior parameter 

estimates as consisting of a prior and a data-based likelihood, two important claims follow 

when interpreting the prior scenarios. The first claim, based in the mean responses, is that 

if the mean for a prior is greater than the mean of the likelihood holding the variance or 

precision parameter constant, then the resulting posterior parameter is greater than the 

mean of the likelihood. Second, if the variance for a prior is greater (i.e., has lower 
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precision) than the variance of the likelihood assuming the same mean, then the variance 

for the posterior is greater than the variance of the likelihood.  

The stochastic dominance ordering is therefore an empirical question that depends on the 

relative magnitudes of the prior mean and precision versus the mean and the uncertainty of 

the likelihood. To illustrate the concept of stochastic dominance in comparing the prior 

scenarios, Figure 2-1 demonstrates three hypothetical cumulative distribution functions; 

F(.), G(.) and Q(.). In the figure, F(.) first order stochastically dominates G(.) since F(.) < 

G(.) across the entire measured range of profits. Higher order levels of stochastic 

dominance can be used to compare F(.) and Q(.) or G(.) and Q(.) (see Levy 2000).  

 

Figure 2-1:Stochastic dominance of hypothetical posterior outcomes given experimental 

priors 

2.2.2 Empirical models  

To incorporate the facets of the theory above, we use two estimation strategies, namely a 

Bayesian linear model and a Bayesian hierarchical model. All the models are quadratic in 
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the crop response parameter.6 The choice was made so that the results of the chapter are 

comparable with most of the experimental and observational estimates hitherto reported 

for Malawi, which have used this functional form (see, for example, Harou et al. 2017).  

2.2.2.1 Estimating equation: Bayesian linear model 

A Bayesian linear model is used to estimate the ray production function (see appendix A). 

The Bayesian linear model is equivalent to the ordinary least squares (OLS) regression 

model when a non-informative prior (e.g., zero mean and an arbitrarily large variance such 

as 10,000) is used. The Bayesian linear model for the ray production function approach is 

  ỹ𝑖 = 𝛽0 + 𝛽1𝑥𝑖𝑗 + 𝛽2𝑥𝑖𝑗
2 + 𝛼𝑧𝑖𝑗 + ∑ 𝜉𝜆𝑖𝑗

𝐽−1
𝑗=1 + 𝜖𝑖𝑗 

(3) 

where ỹ𝑖 is the output norm (hereafter referred to as total output index) defined as ỹ =

[∑ 𝑦𝑗
2𝑝

𝑗=1 ]
0.5

, and 𝑦𝑗 is the yield (kg/ha) of crop 𝑗. When mono-cropped maize is considered, 

the total output index is equivalent to maize yield; xij, xij
2  , zij and 𝜆 are vectors of nitrogen 

(N) fertilizer use (kg/ha), squared N fertilizer use, other explanatory variables (like seed 

use (kg/ha), rainfall etc.), and angular crop output coordinates (representing crop mix), 

respectively (see appendix A for details). The corresponding parameters are; 

𝛽1, 𝛽2, α and 𝜉 . Without loss of generality, we use the matrix notation for 𝛽 to represent 

all the parameters and 𝑋 the design matrix for all variables in the model in the derivations 

that follow. The disturbance term, 𝜖 has a multivariate normal distribution with mean 0 

and covariance matrix 𝜎2𝐼, where 𝐼 is an identity matrix, i.e.,  𝜖 ∼𝑖𝑖𝑑  𝑁(0, 𝜎2𝐼). In 

Bayesian econometric terminology, the variances 𝜎2 can be written as precision estimates, 

ℎ where ℎ = 𝜎−2 (Carlin and Louis 2015). 7  The multivariate normal density likelihood 

function is thus, 

                                                 
6 There is a large body of literature that suggests that choice of a functional form affects the crop responses. 

The quadratic crop response is used in this paper because it is easy to estimate as compared with nonlinear 

options and also satisfies the basic properties of a production (or yield response) function. 

7 By definition, the posterior distribution function p(θ|Y, X) given crop yields and inputs is derived from a 

likelihood function L(Y, X|θ) and a prior distribution function p(θ) using the Bayes Rule as follows: 
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𝐿(𝑦̃ |𝛽, ℎ) =

ℎ
𝑛

2⁄

(2𝜋)
𝑛

2⁄
{exp [−

ℎ

2
(‖𝑦‖ − 𝑋𝛽)′(‖𝑦‖ − 𝑋𝛽)]} (4) 

where 𝑛 is the number of observations. This multivariate normal density can be written 

equivalently in terms of ordinary least squares (OLS) quantities (Chib 1995) where 𝑣 =

𝑛 − 𝑘, 𝛽̂ = (𝑋′𝑋)−1𝑋′𝑦̃ and 𝑠2 =
(𝑦̃  − 𝑋𝛽̂)′(𝑦̃  − 𝑋𝛽̂)

𝑣⁄  to get: 

 𝐿(𝑦̃ |𝛽, ℎ) =
1

(2𝜋)
𝑛

2⁄
{ℎ

𝑛
2⁄  exp [−

ℎ

2
(𝛽 − 𝛽̂)𝑋′𝑋(𝛽 −

𝛽̂)]} {ℎ
𝑣

2⁄ exp [−
ℎ𝑣

2𝑠−2
]}. 

(5) 

The normal-inverse gamma conjugate prior is used in which the prior for 𝛽 is elicited 

conditional on ℎ: 𝛽|ℎ ∼ 𝑁(𝛽, ℎ−1𝑉) where the arguments are prior for the mean estimate 

and its variance respectively. The prior for the model precision is, ℎ ∼ 𝐺(𝑠−2, 𝑣). The 

posterior is therefore a normal-inverse gamma, 𝑁𝐺(𝛽, ℎ−1𝑉, 𝑠−2, 𝑣):  

 𝑝(𝛽, ℎ|𝑦̃) ∝ 𝐿(𝑦̃|𝛽, ℎ) × 𝑝(𝛽) × 𝑝(ℎ). (6) 

Though exact sampling from the posterior is possible, the model was estimated using 

Markov Chain Monte Carlo using Gibbs Sampling. All the models were run with 11,000 

MCMC iterations with 1,000 used as burn in and the remaining 10,000 for posterior 

analysis. Non-informative priors (0 prior mean and 0.001 prior precision) for the parameter 

estimates were assumed in the set of models presented in Table 4 in the appendix. 

Selection of observables, partial identification strategy, and robust Bayesian analysis  

The search for identification when estimating a production function—due to measurement 

errors and omitted variable bias—is an important area of research in production economics. 

Several strategies aimed at point identification of parameter estimates have been suggested 

                                                 

p(θ|Y, X) =
L(Y,X|θ)p(θ)

p(Y,X)
 ,where p(Y, X) is the normalizing constant which is a function of Y and X only, and 

can be defined by p(Y, X) = ∫ L(Y, X|θ)p(θ)
Ω

,where Ω is the parameter space. This implies that the posterior 

is proportional to p(θ|X, Y)  ∝ L(X, Y|θ) p(θ). 
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in the literature, including fixed effects estimation when using panel data or an instrumental 

variables approach. However, these strategies do not capture the uncertainty and 

unobserved heterogeneity associated with smallholder farming and the practical realities 

of observational data that is typically obtained via (farmer) recall. To achieve point 

identification, the ideal data set would be one with detailed data on day-to-day farm 

management practices, including certain details of prior crop management practices (e.g., 

crops grown before the present planting) and the farmers expectation of certain future 

factors (e.g., output prices, rainfall). In addition to these behavioral aspects, detailed soil 

quality, micro-scale precipitation and temperature measurements, as is done in precision 

agriculture, would be basic requirements. Such data are not available even for controlled 

experiments in most developing countries.  

Unlike most of other micro-econometric work in which the reliance on randomized control 

trials to generate observational data is a comparatively recent phenomenon, crop response 

research by agronomists has relied on randomization for about a century. In the case of 

smallholder agriculture, it was long ago recognized that due to biased site selection and 

standardized management, achieving representativeness through randomization prevents 

analysis of factors that actually affect crop response in farmers’ conditions (Coe et al. 

2016). This chapter therefore argues that elusive attempts at point identification (i.e., 

estimating an unbiased causal effect) are inappropriate for crop response research when 

using currently available observational data on smallholder agriculture. Using district fixed 

effects in regressions for both experimental and observational data combined with a partial 

identification strategy, in which various assumptions are tested and a menu of estimates is 

assessed in terms of their plausibility, seems to be the most appropriate approach in this 

context. This chapter uses the prior robust Bayesian analysis for both sensitivity analysis 

and partial identification.   

To make formal comparisons among the various yield response scenarios that we 

considered, we relied on the Bayes Factor. The Bayes Factor is the ratio of marginal 

likelihoods between two candidate models. Let model 1 be M1 and model 2 be M2. Their 

marginal likelihoods are simply the denominator of the Bayes rule  
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 p(𝑦̃|M1) = ∫ p(θ1)L(𝑦̃ |θ1) dθ1 and (7) 

 p(𝑦̃|M2) = ∫ p(θ2)L(𝑦̃ |θ2) dθ2. (8) 

The Bayes Factor is therefore:  

 BF21 =
p(𝑦̃|M2)

p(𝑦̃|M1)
. (9) 

In complex models such as those being used in this study, the calculation of marginal 

likelihoods is infeasible. However, we used the Chib (1995) approach to approximate the 

marginal likelihoods. Since the aim is to maximize likelihood, a Bayes Factor (BF21) of 

greater than unity implies that model 2 is a better (statistical) choice than model 1. The 

non-informative prior model (equivalent to using an ordinary least squares estimator) in 

Table A2 (see the appendix) is deemed improper, i.e., its marginal likelihood is not in 

closed form such that the Bayes Factors are undefined (Carlin and Louis 2015). The rest 

of the models which have informative priors are proper and are thus compared using Bayes 

Factors.  

2.2.2.2 Heterogeneity in crop responses: Bayesian hierarchical model 

The enormous heterogeneity in Malawi’s smallholder farming systems implies that even 

crop response parameters that capture the uncertainty in associated model parameters may 

not be sufficient to characterize the different biophysical and socioeconomic circumstances 

faced by farmers.  To address heterogeneity in the crop responses we deployed a Bayesian 

hierarchical modeling approach. According to Carlin and Louis (2015), a hierarchical 

modeling approach allows for a more explicit assessment of the heterogeneity both within 

and between groups. This modeling approach has been used extensively in the statistics 

and economics literature to model heterogeneity among individuals. For example, Cabrini 

et al. (2010) uses the Bayesian hierarchical approach to estimate market performance 

expectations (e.g., prospective prices) of individuals working in agricultural market 

advisory services. Chib and Carlin (1999) and Allenby and Rossi (1998) show how the 

hierarchical model can help in generating consumer and household specific parameters that 

are useful for marketers of consumer products.  
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Following Chib and Carlin (1999), consider the normal hierarchical model in matrix 

notation, 

 𝑦̃
𝑖

=  𝑋𝑖𝛽 +  𝑊𝑖   𝑏𝑖 + 𝜖𝑖 (10) 

where each group 𝑖 has 𝑘𝑖 observations. The term “group” is being used generally here so 

that any type of heterogeneity may be considered. For instance, a group may constitute a 

location (region/district/village/agroecological zone), household, soil type or poverty 

status.  𝑋𝑖 is 𝑘𝑖  × 𝑝 design matrix of 𝑝 covariates. 𝛽 is a corresponding 𝑝 × 1 vector of 

fixed effects. 𝑊𝑖 is 𝑘𝑖 × 𝑞 design matrix. 𝑏𝑖 is 𝑞 × 1 vector of subject-specific means and 

enable the model to capture marginal dependence among the observations on the 𝑖𝑡ℎ group. 

The group-specific random effects follow: 𝑏𝑖 ∼ 𝑁𝑞 (0, 𝑉𝑏). And the errors: 𝜖𝑖 ∼

𝑁(0, 𝜎2𝐼𝑘𝑖
). Assuming standard conjugate priors, 𝛽 ∼ 𝑁𝑝 (𝜇𝛽 , 𝑉𝛽) and 𝜎2 ∼

𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎 (𝑛𝑢,
1

𝛿
) and 𝑉𝑏 ∼ 𝐼𝑛𝑣𝑊𝑖𝑠ℎ𝑎𝑟𝑡 (𝑟, 𝑟𝑅) where 𝑟 is set to the number of 

parameters in the model and 𝑅 is a diagonal matrix with values along the diagonal equal to 

the number of parameters (Chapman and Feit 2015). In their estimation, they used the 

MCMChregress function which implements the Gibbs sampling algorithm based on 

algorithm 2 in Chib and Carlin (1999).  

2.3. Data sources and descriptive statistics  

2.3.1 Data sources 

The study uses both experimental and surveyed fertilizer response data for maize. In 

particular, the chapter uses evidence from a) the fertilizer verification experimental data 

collected and analyzed by the Malawi Maize Productivity Task Force in 1995/6-1997/8,8 

and b) the nationally representative Third Integrated Household Survey data, which were 

collected between 2010 and 2011 (and reflect production decisions for the 2008 and 2009 

farming seasons) across all National Statistical Organization enumeration areas in Malawi.  

                                                 
8 The author is indebted to Dr. Todd Benson at IFPRI who participated in the trials and kindly provided the 

data for the purposes of this study.  
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2.3.1.1 Experimental data 

The study uses geo-referenced on-farm experimental data for the 1995/96 and 1997/8 

growing seasons. The trials were carried out as experiments run on farmers’ fields under 

the auspices of the Malawi Maize Productivity Task Force consisting of national and 

international experts. More than 1,500 trials were successfully implemented to evaluate six 

different inorganic fertilizer packages for hybrid maize grown by smallholders across the 

whole country (Government of Malawi 1997). The distribution of successful trials was 

unbalanced across the sites/regions and seasons due to statistical and administrative 

reasons. As reported in Table 2-1, all six treatments (A, B, C, D, E, F) were tested in the 

1995/96 trials, while four (A, C, D, E) were tested in the 1997/98 trials. The structuring of 

treatments in the fertilizer trials suggests that the crop yield consequences of nitrogen and 

phosphorus may be confounding. That noted, agronomic studies on fertilizer use in Malawi 

(e.g., Government of Malawi, 1997) have argued that nitrogen is the most limiting macro-

nutrient, and as such we focus on nitrogen responses.  

In each of the two seasons, two hybrid maize varieties were planted; Malawi Hybrid 17 

(MH17) was planted in upland sites with historically good rainfall conditions, and MH18 

was supplied for trials in lowland areas and at those upland sites in rain-shadow areas. A 

few sites also tested composite varieties. The soil texture was recorded for each plot for 

each treatment plot per year, and a standard protocol was followed across all locations to 

ensure timely weeding, pest management, and other agronomic management activities. 

According to Benson et al. (1999, p. 12), one notable feature of the standardized protocol 

was to conduct the trials on farmer’s field that had not received fertilizer or been planted 

to legumes in the previous two years. The plot size was 6.3m by 9m, consisting of seven 

ridges spaced 90cm apart. The net harvest plot size was five full ridge lengths, or 1/247ha 

(0.00405ha). 
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Table 2-1: Fertilizer treatments tested in 1995/96 and 1997/98 

Treatment Nutrients Fertilizer 

Name Code Nitrogen 

(kg/ha) 

Phosphate 

(kg/ha) 

Sulphur 

(kg/ ha) 

Basal 

(50kg per ha) 

Top 

dressing 

(50kg/ha) 

A 0 0 0 0 0 

B 35 0 0 0 1.5Urea 

C 35 10 2 1 (23:21:0+4S) 1 Urea 

D 69 21 4 2 (23:21:0+4S) 2 Urea 

E 92 21 4 2 (23:21:0+4S) 3 Urea 

F 96 40 0 1.75DAP 3.5Urea 

Note: The nitrogen (phosphorus and sulphur) rates were computed based on the major nutrients composed in 

each of the basal and top dressing fertilizer. Consider for example for treatment C which required applying 

one 50kg bag of NPK or 23:21:0+4S and one 50kg of Urea. NPK has 23% of its composition in nitrogen 

while Urea has 46% of it composition in nitrogen. The total nitrogen applied for the C treatment is therefore 

N =  0.23 ∗ 50 + 50 ∗ 0.46 =  35.  

Table 2-2 includes descriptive statistics for the fertilizer trials in the two seasons. For each 

of the treatments, yields in 1995/96 were relatively higher than those obtained in 1997/98, 

reflecting less favorable weather during the 1997/98 season. In terms of treatments, the 

average yields were highest in treatment E, while the nil N treatment (Treatment A) had 

the lowest mean yield, which is expected considering that nitrogen fertilization is 

considered yield increasing, at least when moving from little or no N. 
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Table 2-2: Descriptive statistics of yields under different fertilizer treatments during 

1995/96 and 1997/98 seasons  

Season Treatment Mean Median Min Max Std.Dev CV(Std.Dev/ 

Mean)*100 

1995/96 A 1,410.47 1,261.18 0.00 7,245.40 873.26 61.91 

1995/96 B 2,182.90 2,028.86 0.00 6,854.25 989.95 45.35 

1995/96 C 2,358.06 2,284.75 182.78 8,577.87 985.00 41.77 

1995/96 D 2,881.76 2,833.09 310.73 9,029.33 1020.50 35.41 

1995/96 E 3,147.30 3,107.26 219.34 8,407.88 1086.49 34.52 

1995/96 F 2,946.88 2,924.48 274.17 7,018.75 1079.05 36.62 

1997/98 A 1,124.05 968.73 0.00 5,117.84 710.77 

 

63.23 

1997/98 C 1,996.54 1,919.19 109.67 5,940.35 927.44 46.45 

1997/98 D 2,523.04 2,467.53 91.39 6,762.86 1029.17 40.79 

1997/98 E 2,914.52 2,833.09 237.61 7,402.59 1157.81 39.73 

Note: Total number of trials is 1,677 for 1995/96 and 1,407 for 1997/98. 

A notable feature of the data summarized in this table, is the large variation in yield 

responses across each of the treatments. For both seasons, the coefficient of variation for 

the nil fertilizer treatment (A) are highest, with the lowest variation observed in treatments 

with the highest amount of nitrogen fertilizer applied (E and F). The variability observed 

can be attributed to interactions between fertilizer application and many other observed and 

unobserved factors including location, weather and topography. In this study, we explore 

the importance of understanding variability attributable to location effects.  

2.3.1.2 Household survey data 

The survey was conducted by the Malawi National Statistical Office. The data are analyzed 

at the crop-plot level to distinguish between input crop responses in single crop versus 

multi-crop farming systems. The observations pertain to rainy season plots that were owned 

and/or cultivated by the farm household and that were subject to Global Positioning System 

(GPS)-based land area measurement. The data files were merged first using the available 
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plot geo-codes and then using household geo-variables (e.g., longitude, latitude, distance 

to road). The merging was done in a way that made sure that all the households in the final 

sample had consistent and identifiable household geo-coordinates. The geo-referenced data 

allow for the analysis of both agronomic and farmer behavioral responses. The use of this 

spatially explicit plot level data therefore implies that it is possible to estimate a structural 

model of multi-crop production enterprises (Fezzi and Bateman 2011). All plots not grown 

with either maize or a legume were excluded from the analysis. In the final data used for 

the analysis, there are 19,692 plot-crop observations for five key crops: maize, groundnuts, 

beans, pigeon peas and soybeans. This represents 70 percent of the plot crop observations 

in the data. These are the major crops for Malawi (accounting for 70 percent of the 

country’s total cropped area in 2009-2013, Johnson (2016)) that are also featured in the 

integrated soil fertility management literature. 

2.3.1.3 Administrative data  

Administrative data were compiled from annual production estimates included in the 

Ministry of Agriculture and Food Security annual statistical bulletin for the period 1983-

2015. These data are reported at the district level and consist of the total hectarage and 

production and average yield for each crop (i.e., maize, groundnuts, beans, pigeon peas and 

soybeans). This source does not report any fertilizer use data by district, and thus these 

administrative data were only used in calculating cross-district differentials in crop yield 

performance, a spatial dimension of yield gaps9. For maize, the data has varietal (local, 

composite and hybrid) specific yield, hectarage and production information.  

2.3.2 Descriptive statistics 

Table 2-3 presents selected descriptive statistics for the various variables characterizing the 

farm households and plots.  

  

                                                 
9 The national per capita N fertilizer use in the current survey data is about 51 kg N/ha while in the period 

the experiments were conducted (1995/96 and 1997/98)it was about 38 kg of fertilizer perha (Minot et al. 

2000, p.50). This implies that the observational application rates were between the 0 and 35 kg N/ha 

treatments in the experiments.  



23 

 

 

Table 2-3:  Descriptive statistics for selected dependent and independent variables 

(n=19,692) 

Variables Unit Mean Standard Deviation 

Dependent variables   
  

Euclidean norm of  

the yields 

kg/ha 1,275.39 1,886.39 

Maize yield kg/ha 763.22 1264.7 

Groundnut yield kg/ha 163.6 1,122.86 

Bean yield kg/ha 45.98 397.13 

Pigeon pea yield kg/ha 107.49 501.61 

Soybean yield kg/ha 25.63 481.75 

Maize dummy Proportion 0.89 0.31 

Groundnut dummy Proportion 0.35 0.48 

Bean dummy Proportion 0.28 0.45 

Pigeon pea dummy Proportion 0.28 0.45 

Soybean dummy Proportion 0.29 0.45 

Key independent variables 
   

Total inorganic fertilizer applied  kg/ha 162.75 205.98 

Organic fertilizer use (Yes=1) Proportion 0.12 0.33 

Inorganic fertilizer use (Yes=1) Proportion 0.69 0.46 

Total N applied Kg/ha 51.37 

 

65.08 

 

Note: The Euclidean norm of the crop output vector 𝑦 is computed by ỹ = [∑ 𝑦𝑗
2𝑝

𝑗=1 ]
0.5

 

Table 2-3 shows that almost 90% of the plots in the sample were planted with maize 

followed by groundnuts (35%). The maize yields are within the range reported in most 

microeconomic studies. Inorganic fertilizer was used on almost 70% of the plots, while 

only 12% of the plots received organic fertilizers. The average fertilizer use is about 

162kg/ha (corresponding to 51.37 kg N/ha), which is around the application rate reported 
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for Malawi in other microeconomic studies.10 This figure is higher than in other sub-

Saharan African countries possibly because farmers are cultivating very small plots on 

especially small farms in the context of a generous farm input subsidy program.11 

Additional descriptive statistics are presented in Table A1 in the appendices. On average, 

the plots are 0.79 km away from the homestead, though with a huge variation across the 

sample (ranging from 0 to 10 km). The average plot size is 0.44ha. Most farmers perceive 

that their plots are either good (45%) or fair (43%) in response to a question about the 

perceived soil quality. Most of the plots (59%) have soils that are loam (i.e., between sand 

and clay) which are considered good soils for crop cultivation.  

The majority of the households (75%) are male-headed with an average household size of 

4.8 people. About 76 percent of the household heads have had no formal education. Almost 

46 percent of these households are classified as poor, with average household incomes less 

than MK 37,002 per person per year based on the formal definition of the Malawi National 

Statistical Office (NSO). Most of the households live in remote rural areas, about 9km from 

a main road and 37km from the nearest trading center. Figure A1 in the appendices shows 

the number of plots planted with each of the crops. Most of the plots are planted with a 

pure stand of maize followed by a pigeon pea-maize intercrop.  

2.3.3 Experimental and observational yield gaps 

The challenge of combining observational and experimental evidence is that it is unlikely 

that one will find directly comparable treatments, that is, yield responses obtained using 

similar amounts (and types) of fertilizer grown in the same weather events and similar soil 

types. The nationally representative datasets available are almost 20 years apart 

(experiments in the 1990s and surveys in the 2010s). To demonstrate that experimental-

                                                 
10 For example, Sheahan and Barrett (2017) report averages of 146 kg/ha (which is equivalent to 53.1 kg/ha 

of nitrogen) for Malawi while Komarek et al (2017) reports 51 kg/ha nitrogen for central Malawi. The 

nitrogen application rate reported here, was derived by multiplying 0.23 to basal (23:21:0+4S) fertilizer 

amount applied and 0.46 to top dress (Urea) fertilizer applied, where 0.23 and 0.46 represent the proportion 

of nitrogen in the fertilizer.   

11 The subsidy program targets about 1.5 million farm households representing half of the farm households 

in Malawi with two 50 kg bags of fertilizer (Arndt et al. 2016).  
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observational yield gaps existed in the 1990s when the experiments were being conducted, 

we compared the district averages from the plot level experimental data with the 

corresponding hybrid varietal-specific administrative data for each of the two seasons, 

1995/96 and 1997/98. Figure 2-2 shows scatterplots of district level averages of 

experimental hybrid maize yields for each of the fertilizer treatments (see Table 2-2) and 

the corresponding district averages of hybrid maize yields from administrative data in each 

of the respective seasons.12  

There are six plots for the 1995/96 agricultural season and four plots for the 1997/98 

agricultural season, with each of the plots representing the fertilizer treatments in the 

experimental evidence.13 The rays indicate the ratio of experimental to observational 

yields.  

A. 1995/96 agricultural season 

 

                                                 
12 MH17 and MH18 were the main improved maize varieties planted during the years of the trial. 

13 While the experimental data were parsed into their respective fertilizer treatment cohorts, the same (albeit 

seasonal and varietal specific) observational data were used in each of the fertilizer cohorts.   
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B. 1997/98 agricultural season 

 

Figure 2-2: District level hybrid maize yields from experimental and administrative data 

for 1997/98 agricultural season 

Across all the treatments, experimental yields are more than two times higher than the 

corresponding farm yields reported in the administrative database. As expected, the 

experimental-observational yield gaps increase as the amount of nitrogen applied in the 

experimental data increases. According to the Government of Malawi (1999), the 1997/98 

agricultural season was a bad maize-growing year in that some districts experienced 

drought. This is especially evident in Figure 2B where the yield gaps for the no-fertilizer 

treatment are much lower. This highlights that the gap between observational and 

experimental maize yields are affected by environmental and climate conditions. 

2.4. Results and discussion  

2.4.1 Overview of the existing maize crop response literature for Malawi 

The research on crop responses in Malawi dates back to at least the 1960s. Benson et al. 

(1998) reported estimates of experimental maize responses in studies conducted from the 

1960s to 1998 ranging from 23.1 to 34 kilograms of maize per unit of additional applied 
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nitrogen. Table 2-4 below taken from Arndt et al. (2016, supplemental material) reports 

the microeconomic evidence on the marginal returns to fertilizer use for selected types of 

maize seed. The mean maize responses range from 2.8 to 15 kg/ha for observational 

studies, much lower than the 23 to 34 kg/ha range reported in the experimental research. 

Informed by this prior evidence, below we use maize yield responses in the range of 0 to 

30 kg/ha of maize for an additional kg of applied nitrogen as priors by which to anchor my 

assessment of estimates in prior studies.  

Table 2-4: Marginal returns to nitrogen fertilizer use, by maize seed variety 

  

Dorward et 

al. (2008) 

(Survey of 

literature) 

Harou et 

al. (2017) 

(Malawi 

field 

trials) 

Chibwana 

et al. (2010) 

(Malawi 

FISP) 

Ricker-

Gilbert et 

al. (2011) 

(Malawi 

FISP) 

Ricker-

Gilbert 

and Jayne 

(2012) 

(Malawi 

FISP) 

 Kilogram of maize yield for an additional unit of nitrogen  

Local varieties 10-12  12.0   

Composites 15     

Hybrids 18-20     

All improved varieties   9.6   

All maize seed 15 24-32    

Contemporaneous effect    6.1  

Enduring effect    11.7  

Measured at the 10th percentile     2.8 

Measured at the median     7.6 

Measured at the mean     9.0 

Measured at the 90th percentile         9.7 

      

Source: Adapted from Arndt et al. (2016). 

In all the prior published assessments of both the experimental and observational maize 

yield response estimates for Malawi and sub-Saharan Africa, only mean responses were 

reported, absent any measures of the associated variation or uncertainty in these reported 

responses. 14 But to compare across studies and to make sense of these mean crop response 

parameter estimates, one cannot ignore the associated measures of precision. 

                                                 
14 See a recent comprehensive review by Jayne and Rashid (2013, p. 533, Table 3).  
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2.4.2 Experimental, observational and Bayesian crop responses 

In this section, we present the results from a Bayesian linear model (with results that are 

the same as using an ordinary least squares on equation 3). The set of results (see details in 

Appendix Tables A2 and A3) show the ray production functions for maize intercropped 

with either groundnuts, beans, pigeon peas or soybeans. The variables of interest in the 

production functions include N fertilizer, N fertilizer squared and coordinate angles, the 

latter representing the crop output mix. The coefficients for the polar coordinate angles are 

negative for all maize-legume combinations (see Table A3 in the appendices). This implies 

that an increase in the output mix reduces the total output index, meaning that the total 

output index is lower when maize is intercropped with a particular legume. We estimate 

that the mono-cropped maize response to N fertilizer application is about 10.56 kg/ha per 

kg of applied nitrogen, with a 95% credible interval of 9.78-11.36 kg/ha (see Table 2-5 and 

appendix Table A2). The experimental maize responses are about two times higher at 20.58 

kg/ha per kg of applied nitrogen, consistent with finding of Anderson (1992) who observed 

that 

“There is a systematic overstatement of the extent of responsiveness of crops to applied 

fertilizer in Africa, relative to what is achievable under most farm conditions. The 

extent of overstatement is of the order of a factor of, say, two in terms of incremental 

response ratios.” Anderson (1992, p. 393).  

Table 2-5: Experimental and observational maize response function to nitrogen  
 

Experimental Observational 

Parameter 2.50% 50% 97.50% 2.50% 50% 97.50% 

(Intercept) 1026.8 1281.98 1535.99 181.52 1104 2040.73 

N fertilizer amount 23.29 25.41 27.6 10.21 11.09 11.99 

N fertilizer squared -0.1 -0.09 -0.07 -0.01 -0.01 -0.01 

Marginal Effect at N=55kg/ha 19.13 20.58 22.05 9.78 10.56 11.36 

Note: Controls and district fixed effects are included in all specifications. For details, see Table A2 and Table 

A3 in the appendices. The marginal effects are calculated as 𝛽1 + 𝛽2𝑁, where 𝛽1 and 𝛽2 are estimated 

coefficients and 𝑁 is the average nitrogen fertilizer evaluated at N = 55 kg/ha.  
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Given these results, we can combine the experimental coefficient and the observational 

coefficient by simply using the experimental estimate (25.41) and its standard deviation 

(0.41) as the prior in a regression using the observation data. Figure A3 shows that the 

resulting posterior distribution of the N coefficient (i.e., median: 12.01, 95% credible 

interval: 11.53, 12.50) is still closer to the distribution of N responses derived from the 

observational estimates (i.e., median: 11.09, 95% credible interval: 10.21, 11.99) that the 

distribution derived from the experimental results. 

2.4.3 Robust Bayesian analysis with sensitivity testing 

The foregoing analysis documents the crop response gaps and the hybrid crop responses 

when using particular experimental and observational data. It is justifiable to question the 

use of experimental data that were collected almost two decades before the observational 

data. A lot of biophysical factors (including varieties and soil quality) may have changed. 

Therefore, the following set of results uses a range of alternative priors that span the 

plausible range drawing on evidence gleaned from the prior published literature.  

In particular, the Bayesian robustness results indicate changes in Bayesian estimates of the 

maize yield responses given changes in the prior distributions of crop responses at 55kg of 

nitrogen per ha. The robustness checks are in the changes to the prior on N fertilizer use on 

the mono-cropped maize response function. We considered a range of experimental crop 

response estimates reported for Malawi as summarized by Arndt et al. (2016) and Snapp 

et al. (2014) to assess if incorporating these priors leads to revisions in the crop responses 

that would warrant a change in the recommendations.15 We considered six mean prior 

levels of the crop response coefficient; specifically values of 0, 6, 12, 18, 24, and 30.  

A directed search for variance parameters across prior literature revealed that the estimates 

vary as well. For example, using different econometric specifications of a quadratic 

response function as we do, the standard error for the maize response to nitrogen ranges 

from about 0.3 to 0.5 in Harou et al. (2017). Using a quadratic production function, Darko 

                                                 
15 The reported crop response rates are derived from different functional form specifications of the crop 

response functions (e.g., quadratic, linear), econometric procedures (e.g., ordinary least squares, quantile 

regression) and using different datasets (e.g., household surveys, demonstration trials).  
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(2016, p.92) estimated standard errors of the crop responses ranging from 1.6 to 3.2. In this 

study, we therefore consider three precision levels: 0.1, 1 and 10 corresponding to 

variances of 10, 1 and 0.1 respectively. Table 2-6 shows crop response quantiles for 18 

different models for the various plausible mean and variance priors for the parameter 

corresponding to N fertilizer use. It is important to note that these are based on calculating 

marginal effects (which we also call crop response) not the direct coefficient of the N 

fertilizer. Marginal effects are calculated as 𝛽1 + 𝛽2𝑁̅ where 𝛽1 and 𝛽2 are coefficients for 

N and N squared terms, and 𝑁̅ is the average nitrogen fertilizer rate at which the effect is 

evaluated at (i.e., 55kg N/ha).   

The computed crop responses (Table 2-6, row 2 to row 13) are largely invariant to changes 

in the prior mean when the prior precision falls in the 0.1 and 1 range, but are indeed 

sensitive to the choice of prior means when a higher precision (10) is assumed. This is 

revealed by the extent of the overlapping 95% credible intervals when the different prior 

means are compared across the same low prior precision level (e.g., compare 5.92 upper 

quantile for 0 mean prior and 0.1 prior precision with 4.97 lower quantile for 30 mean prior 

and 0.1 prior precision). In terms of the effect of differences in the precision of the prior 

estimates, the table shows that when crop response posteriors at different prior precision 

are compared across the same prior mean, the pattern of crop response posterior results is 

fuzzy. The reason for this is that the prior precision of one parameter also affects the off-

diagonal terms in the variance-covariance matrix, such that depending on the associations 

across all parameters in the regression, the Bayesian crop responses may not be an intuitive 

weighted average. In Bayesian terminology, this is called the effect of nuisance parameters. 

This also partly explains why the posterior estimates in the baseline case (with 0 prior mean 

and 0.001 for all parameters) are different from the sensitivity analyses (0 prior mean and 

0.1 prior precision for all other variables except N and N squared terms).  

2.4.2.1 Mean crop response scenarios 

The scenarios in Table 2-6 are illustrated graphically in Figure 3 below using cumulative 

distribution functions (cdfs) of the crop response parameters subject to different priors. The 
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comparisons of the cdfs can be interpreted as the posterior stochastic dominance. This is 

done by first holding the precision constant while varying the mean of the prior for the 

nitrogen coefficient (Figure 2-3A and 2-3B). In Figure 2-3A, as expected, holding precision 

Table 2-6: Sensitivity analysis to various priors on the mean and precision 

Row number Prior Precision Prior Mean Marginal effects of N fertilizer use 

2.50% 50% 97.50% 

1 Baseline: 0.001 0 9.78 10.56 11.36 

2 0.1 0 4.62 5.27 5.92 

3 0.1 6 4.69 5.34 5.98 

4 0.1 12 4.76 5.41 6.05 

5 0.1 18 4.83 5.48 6.12 

6 0.1 24 4.90 5.55 6.19 

7 0.1 30 4.97 5.61 6.26 

8 1 0 4.16 4.78 5.39 

9 1 6 4.78 5.40 6.01 

10 1 12 5.41 6.02 6.64 

11 1 18 6.03 6.65 7.26 

12 1 24 6.65 7.27 7.88 

13 1 30 7.28 7.90 8.51 

14 10 0 2.02 2.47 2.91 

15 10 6 5.25 5.69 6.13 

16 10 12 8.47 8.92 9.36 

17 10 18 11.74 12.19 12.64 

18 10 24 15.09 15.55 16.01 

19 10 30 18.57 19.04 19.51 

Note: The prior means for all the controls including N squared term were set to 0 and prior precision was set 

to 0.1 (so as to make the prior proper for the calculation of the marginal likelihood needed for Bayes Factor). 

Marginal effects are calculated as 𝛽1 + 𝛽2𝑁 where 𝛽1 and 𝛽2 are coefficients for N and N squared terms and 

𝑁 is the average nitrogen fertilizer the effect is evaluated at 55.kg/ha.  

constant at the same low level, the model with the higher prior mean (30 maize kg/ha per 

kg of N) stochastically dominates all the other models. However, the differences between 

the posterior distributions of mean responses are small. At a higher precision level, the 
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ordering of the mean response distributions is maintained, but now the differences between 

the posterior distributions are quite pronounced (Figure 2-3B). This implies that achieving 

lower variance (high precision) may be necessary in the development of recommendations 

as also suggested by recent agronomic research (Vanlauwe et al. 2016 and Coe et al. 2016). 

These results show that comparing mean experimental and observational estimates without 

considering the variation in responses around the mean can result in final combined 

recommendations that are a reflection of the scenario in Figure 2-3A or that in Figure 2-

3B. Either way, the posterior responses are less than the experimental mean crop responses 

that are used to develop fertilizer application recommendations in Malawi.  

 

Figure 2-3: Posterior stochastic dominance at different prior mean values [prior precision 

= 0.1 and 10] 
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2.4.2.2 Precision of crop response scenarios 

In Figure 2-4A and 2-4B, we show the cases where the precision priors are varied while 

the prior mean is fixed at some value. As expected from stochastic dominance, the higher 

the precision assumed for the prior, the more likely it is that the posterior will be similar to 

the prior distribution. Since the prior mean is 0 in figure 2-4A, the posterior parameter 

estimates for the model with a highly informative prior (i.e., a high precision prior = 10) is 

stochastically dominated by the ones with a weakly informative or effectively non 

informative priors (1 or 0.1). A contrasting case is presented in figure 2-4B where a prior 

mean of 30 is assumed. Here the model with a high precise prior mean stochastically 

dominates the models with low(er) precision.  

 

Figure 2-4: Posterior stochastic dominance at different prior precision values [prior mean 

= 30] 
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2.4.2.3 Combined mean and precision scenario 

In the preceding stochastic dominance results, a clear and consistent ordering of either the 

prior mean or prior precision was assumed. But what of the case that has a higher prior 

mean but a lower precision relative to the opposite case (i.e., lower prior mean higher 

precision)? This is where Bayesian stochastic dominance becomes useful. Let’s consider a 

case where the prior means and variances are different. In Figure 2-5, a low mean-high 

variance prior leads to posterior parameter estimates that stochastically dominate the high 

mean-low variance results. This implies that the debate between Jayne et al. (2015) and 

Dorward and Chirwa (2015) on whether a lower or higher mean crop yield response is 

appropriate for assessing the economic veracity of Malawi’s farm input subsidy program 

is problematic when the precision (or variance) of the mean estimates are ignored.  

 

Figure 2-5: Posterior stochastic dominance at different experimental priors for mean and 

precision  

When uncertainty is incorporated it is the case that for assumed precision levels of 0.1 to 

1—which are typical of the precision levels in observational research—, the posterior crop 

response estimates that are likely relevant for commercial agriculture (observational) range 

from 4 to 9 kg of maize output for a unit of fertilizer per ha when the prior mean responses 

levels for experimental trials range from 0 to 30. While for precision levels of 1 to 10 which 
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are prevalent in experimental research, the posterior crop estimates range from 9 to 19 for 

prior mean levels from 0 to 30. Based on our evidence, the likely fertilizer crop responses 

for Malawian agriculture are low and highly variable. Thus, any claims of substantial crop 

responses to fertilizer application in Malawian maize production are questionable. 

Therefore, when evaluating the efficacy of policies that depend on empirical estimates of 

crop responses, it would be advisable to err on the conservative side (and draw on all the 

plausible evidence about the mean responses and variations around this mean). 

2.4.4 Heterogeneity in crop responses: Bayesian hierarchical model results  

Beyond the question of variations around the mean crop responses, the crop response gaps 

may also be due to differences in locations where each of the studies were conducted within 

the country. We therefore need to understand the heterogeneity in the crop responses across 

locations. There are two extremes in the way heterogeneity is typically handled in 

econometric analysis. Most studies pool all the data and generate a single response 

parameter, assuming a homogenous response for the whole sample. At the other end of the 

spectrum, one may consider estimating the response parameters with specific (additive and 

multiplicative) fixed effects for individual cohorts of the data (e.g., individual districts), 

but this is generally inefficient due to data limitations. A Bayesian hierarchical modeling 

framework is an efficient (i.e., in terms of degrees of freedom) middle ground, which 

allows estimation of individual specific parameters as random parameters.  
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Figure 2-6: Uncertainty and heterogeneity in crop response parameter on fertilizer use 

(kg/ha) 

Figure 2-6 shows the density plots of parameter uncertainty (panel A) and heterogeneity 

(panel B). Panel A is based on crop response parameter for the draws from the Bayesian 

linear model, and illustrates the parameter uncertainty under the maintained assumption of 

a spatially invariant response function. Panel B is based on a random parameter 

specification of the district-specific crop response parameter in a hierarchical Bayesian 

model, and represents the district-level heterogeneity in crop responses.  

The results indicate that the model-based parameter uncertainty (ranging from about 8 to 

14 additional kgs of maize for additional unit of fertilizer) plotted in Panel A is smaller 

than the district-to-district heterogeneity plotted in Panel B (-40 to 30 additional kgs of 

maize for additional unit of fertilizer). The negative responses imply that soils are not 

conditionally responsive to fertilizer application in these locations. While it is uncommon 

for agricultural economists and agronomists concerned with average responses to report 
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negative responses, this can occur when the fertilizer applied scorches the seed, especially 

in relatively dry conditions (Vanlauwe et al. 2011). The findings on district-to-district 

heterogeneity may seem unrealistic when compared with previous analyses that assumed 

spatial homogeneity in responses. This result is nonetheless consistent with agronomic 

research that addresses individual plot heterogeneity. For example, a recent study by 

Vanlauwe et al. (2016) compared empirical distributions (heterogeneity) to model based 

distributions (measuring uncertainty) of crop responses from agronomic trial data related 

to maize in Western Kenya and beans in Eastern Rwanda. They concluded that model based 

distributions provide better precision in the extremes than empirical curves, but that model 

based distributions depend on the assumption that the model is unbiased. In terms of 

developing targeted crop response support, the heterogeneous model may be more 

appropriate as it can help identify districts and plots that are non-responsive.  

Based on the observational data used in our analysis, the districts of Machinga, Nsanje and 

Chikwawa, for example, appear to be non-responsiveness to fertilizer application (see also 

Figure 2-7). This is in line with experimental evidence (Government of Malawi 1997) that 

reports lower crop responses in the shire valley districts (Nsanje and Chikwawa). This 

suggests a future research strategy that proceeds by answering two questions: 1) will maize 

in a given field respond to fertilizer; 2) if so, what is the optimum fertilizer rate? Answering 

question 2 is more difficult than answering question 1. At a minimum, being able to answer 

question 1 is really impactful. The hierarchical Bayesian model allows one to answer both 

questions in that we can identify unresponsive districts and the magnitude of the response 

for the responsive districts.  

Figure 2-7 shows the scatterplot of the district level linear crop response parameters in a 

hierarchical model for experimental and survey data. For almost seven districts 

(specifically, Chikwawa, Mulanje, Machinga, Rumphi, Mangochi, Phalombe and 

Mulanje), the soils are not responsive to fertilizer application based on the observational 

evidence but are responsive in the experimental evidence.  
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Figure 2-7: Scatterplot of hierarchical crop response coefficient by district from 

experimental and survey evidence.  

Note: The x and y axes correspond to the hierarchical coefficient for linear term in a quadratic crop response 

function not the marginal effect.  

As a research matter, this implies that there still more we need to learn about the 

biophysical and socio-economic aspects that distinguish these districts (i.e., water holding 

capacity or timing of fertilizer application). In terms of policy, it implies that well targeted 

extension services are required so that farmers do not waste fertilizer on unresponsive soils.  

2.4.5 Limitations and future research 

There are still several remaining limitations in addressing modeling challenges of 

parameter uncertainty, heterogeneity and disparate information sources in the estimation 

of crop responses to fertilizer application. The first limitation is that given the weaknesses 

of both experimental and observational studies, it is difficult to measure the quality of the 

subsequent posterior evidence.  
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The second limitation is that the scenarios on the effect of changes to the prior on the 

assumed posterior parameter estimates is based on the pooled model not the hierarchical 

model, which entails that heterogeneity is being treated separately from partial 

identification of the distribution of the parameters. This is inevitably the case because 

estimates treating fertilizer use parameters as random parameters across groups are not 

available. Other shrinkage models like empirical Bayes modeling and machine learning 

using ridge regression are potential candidates for future research. In addition, endogeneity 

concerns across both the experimental (due to self-selected master farmers) and 

observational (management bias and substantial measurement errors) evidence are areas of 

valid concern that future research could systematically address using quasi-experimental 

methods.  

Finally, the models are not directly linked to any policy parameter like whether to subsidize 

fertilizer, which not only depend on the uncertainty and heterogeneity of crop response 

parameters, but also on other parameters (e.g., relative profitability of other crops) and the 

associated political economy considerations. Future research should consider the effect of 

incorporating multiple sources of information, uncertainty and heterogeneity on a policy 

decision and the analytical tools proposed in the chapter are the most appropriate. 

2.5. Conclusion 

This chapter has incorporated three aspects that are often ignored in the crop response 

literature, namely parameter uncertainty, multiple sources of information, and (spatial) 

heterogeneity in the response to fertilizer use. A Bayesian approach is employed to address 

each of these themes and close the measured gaps in the responses. This is an important 

goal for agricultural research because of the fairly constant trends of crop output/fertilizer 

price ratios across sub-Saharan Africa, which are indicative of the proposition that long-

term trends in fertilizer profitability require improvements in farmer crop response rates 

(Jayne and Rashid 2013). The analysis has shown that using prior knowledge of crop 

response estimates adds insights to the assessment of crop responses using observational 

data. In particular we find that ignoring the precision parameter when using crop response 

estimates may lead to inconclusive policy prescriptions.  
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The debates on whether crop responses to fertilizer application are high or low are therefore 

questionable when uncertainty that appears to measurably affect the stochastic dominance 

ordering of crop response estimates is ignored. Unless uncertainty is considered, the 

arguments for or against the use of experimental and observation crop response estimates 

(e.g., Dorward and Chirwa (2015) and Jayne et al. (2015)) are inconclusive, thereby leading 

to questionable policy prescriptions. Moreover, while the debates have centered on means 

of crop responses, this chapter has shown that both the means and variances matter in these 

policy discussions. The results of incorporating heterogeneity in the estimation by way of 

using a hierarchical Bayesian modelling approach are quite revealing. We find that the 

degree of spatial heterogeneity in fertilizer responses varies markedly, with some districts 

being effectively non-responsive to the application of fertilizer (e.g., Chikwawa) while 

other districts are highly responsive (e.g., Dedza). Our results present a different and more 

nuanced picture relative to all the previous published research that completely ignores 

heterogeneity and relies on the assumption of homogeneity in assessing fertilizer crop 

responses.  
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3. Characteristics Space Analysis of Improved Maize Variety Adoption 

in Malawi 

“…it is most important to distinguish between the lag in "availability" and the 

lag in "acceptance." It does not make sense to blame…Southern farmers [in 

the United States] for being slow in acceptance, unless one has taken into 

account the fact that no satisfactory hybrids were available to them before the 

middle nineteen-forties”.  

Griliches (1957, p.507). 

3.1 Introduction 

In his seminal study of the time path of hybrid maize adoption in 20th century U.S. 

agriculture, Griliches (1957) elucidated (and empirically examined) the lags associated 

with delays in the market “availability” of relevant new varieties for each U.S. state, and 

the subsequent lags in the farmer uptake or “acceptance” of these new varieties within each 

state. However, most subsequent micro-econometric studies of varietal adoption—see, for 

example, the reviews by Feder et al. (1985) and Doss (2006)—focused exclusively on the 

acceptance problem by analyzing the fundamental constraints in remoteness, weak 

markets, distorted policies, low education, cultural and many other related constraints that 

affect farmer’s willingness or ability to adopt new varietal technologies.  

Focusing solely on these particular demand side determinates of adoption fails to provide 

operationally relevant information that can shape the supply of varietal innovations. In 

particular, past studies have been largely silent about the particular yield and crop quality 

traits or characteristics deemed desirable (or otherwise) by farmers facing particular (and 

often spatially variable) production problems.16 An approach to assessing varietal adoption 

that improves our understanding about the nature of the (spatially variable) varietal 

attributes most valued by farmers can help shape the supply side behavior of crop 

innovators and thus help reduce the demand versus supply side information asymmetries 

that result in inefficient and underperforming varietal markets.  

                                                 
16 Another limitation of many varietal adoption studies is that they also fail to make explicit the uptake 

implication of spatial and farmer heterogeneity (e.g., Suri 2011 and Duflo et al. 2011) and production risks 

and uncertainty. In the latter case, what may seem to be lack of adoption for unspecified reasons may simply 

reflect an optimal choice under risk and uncertainty (Hurley et al. 2018). 
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One approach to assessing varietal adoption using a varietal trait approach is to turn to the 

characteristics space model introduced by Lancaster (1966) to study the demand for goods 

(or in our case, farm inputs) where each of these goods (or inputs) is viewed as a “collection 

of characteristics.” This model operationalizes Griliches’ availability and acceptance 

delineation when analyzing micro adoption data. In his model, Lancaster differentiates 

between the characteristics of the product from the personal tastes of consumers. 

Characteristics were considered objective and universal properties of the good. In this 

chapter, we calculate the willingness to pay for varietal characteristics and then infer the 

predicted rate of adoption of new varieties using the characteristics space model.  

An example of the effect that changes in the unit cost and characteristics of a technology 

have on the extent of adoption of that technology may help illustrate the importance of the 

approach. Although maize breeding research in Malawi began in the late 1950s, adoption 

of new hybrid maize varieties remained quite low for decades thereafter (Mkondiwa et al. 

2019). It was not until the flint characteristic was introduced into hybrid maize, beginning 

around 1990, that the extent of varietal adoption began increasing from around 10% of the 

country’s maize area in the late-1980s to roughly 30% by the mid-1990s. During the past 

decade, a subsidy on maize seed and fertilizer has spurred significant additional adoption 

of improved maize seeds to now roughly 70% of maize area (Figure 3-1). What changed 

here is the unit cost and characteristics of the seed, not necessarily the personal 

characteristics of the farmers.  

In the context of Malawi, studying the specific characteristics of the varieties being adopted 

is of particular importance. Malawians generally reveal a distinct preference for certain 

varieties, like the flint varieties loosely categorized as local or “maize of the ancestors” 

(chimanga cha makolo) because of the efficiency in household processing to a fine white 

flour and the stored crop’s resistance to infestation by weevils (Smale et al. 1995).   

This study is motivated by the notion that when the characteristics bundled into a new 

varietal technology match the market and (spatially variable) production realities facing 
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Figure 3-1: Dynamics of improved maize variety adoption in Malawi. 

Source: Mkondiwa et al. (forthcoming). 

each farmer then that technology is more likely to be adopted. Varietal technologies that 

fail to be adopted tend to be those that are simply not known by farmers or those that 

contain characteristics (or in breeders’ parlance, traits) that are not well aligned with the 

heterogeneous contexts faced by farmers (in terms of spatial concordance, market 

opportunities, and tastes). Investments in agricultural research and technology are made on 

the justification that the technologies developed will be used by the farmers. The challenge 

is in estimating the demand for these new technologies based on the observed adoption 

rates of similar technologies. Elucidating the specific characteristics deemed desirable by 

farmers helps inform crop breeders and those making public and private decisions 

regarding investments in R&D (research and development) and the bulking and marketing 

of new varieties  

This chapter addresses the following two research questions: (i) how much are farmers 

willing to pay for various maize variety traits?, and (ii) what is the probability that a variety 

with a particular combination of characteristics will be adopted? We propose a 

characteristic space model that conceives of technologies (in this instance, improved maize 

varieties) to be a bundle of characteristics, and that adoption of these technologies depends 
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on the heterogeneous preferences of farmers. This approach has had only limited use in 

technology adoption studies even though agricultural technologies (such as improved crop 

varieties) often constitute a set of quality differentiated inputs, each with its own set of 

bundled characteristics. Some of the few such studies in the crop variety demand literature 

include Edmeades and Smale (2006), Useche et al. (2013) and Ward et al. (2014) (see 

appendix table A1, for a summary of the studies on varietal adoption that use a 

characteristics approach).  

However, even these prior adoption studies deploying a characteristics approach suffer 

from three important omissions. First, the studies ignore the supply side of the seed market, 

which is an integral part of the new industrial organization models for differentiated 

products (e.g., Nevo 2001) that we draw on for this study. Second, only a few of the models 

consider the fact that (subsistence or semi-subsistence) farmers are both consumers and 

producers such that varietal adoption involve both production and consumption decisions. 

Third, all the models ignore the objective characteristics conception that Lancaster 

described in the original framework he introduced in 1966. Most of the prior studies have 

farmers’ scoring varietal traits, yet these are not objective measures of the technical and 

biological characteristics of the traits embedded in each variety. In essence most of what 

these studies measure and denote as traits are simply part of the heterogeneity in the 

location and conditions of the farmer. For instance, an early maturing variety does not 

suddenly become a late maturing variety simply because a farmer in a certain 

agroecological locale feels the growing season in that location is too short for the variety 

to mature. In this instance, the subjective notion of “late maturing” is affected by the 

variable agroecological realities faced by each farmer based on their particular locale and 

their perception of the duration of the growing season vis a` vis the maturity potential of 

the variety. 

The use of farmer subjective ratings of various attributes of (varietal) technologies 

introduces endogeneity because the varietal ratings are correlated with unobserved (or 

unmeasured) household characteristics such as locale and taste.  To circumvent 

endogeneity concerns in farmers’ ratings of revealed varietal choices, some studies (e.g., 
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Kassie et al. 2017 and Ward et al. 2014) use stated choices in choice experiments. For 

example, Ward et al. (2014) presented rice farmers in Bihar, India with four hypothetical 

rice varieties varying in characteristics which included duration (days to maturity), yield 

(under normal and low rainfall scenarios), re-usable seed, seed price and seed rate. While 

this approach provides an unbiased way to analyze adoption, just as any stated preference 

method it fails to capture the reality of the production aspects of varietal adoption, which 

is that the choice is made without all the constraints of access, weather patterns and credit 

constraints.    

When we are explicit about spatial, topographic and weather-related factors when assessing 

the demand for varietal characteristics, we will be better able to account for that part of 

non-adoption that can be ascribed to a “mismatch” between the supply and demand of 

objective characteristics bundled in a particular variety, setting aside potentially 

confounding factors. Our model is estimated using frequentist and Bayesian random 

coefficient logit model (Jiang et al. 2009) to allow for parameter uncertainty when seeking 

to predict the adoption of new varieties. Using these procedures to identify an optimal set 

of characteristics to enhance adoption is a novel way of deploying economic analysis to 

direct crop breeding efforts towards those bundles of traits that are more likely to be 

adopted.  In addition, by distinguishing between varietal characteristics and consumer 

specific tastes, it is possible to appreciate analytical methods like genotype by trait (GxT) 

and biplot analysis that breeders use when choosing a set of varieties to advance in a 

breeding program (see, for example, Yan 2014, chapter 9 for details of these approaches). 

We can also use production economic concepts of data envelopment analysis (DEA) or 

non-parametric revealed preference to describe the characteristics frontier as envisaged by 

Lancaster (see, for example, Fernandez-Castro and Smith 2002 and Blow et al. 2008).   

We anchor this analysis on the salient features of the differentiated maize seed market in 

Malawi in which one of the varieties being considered, a dominant local variety, is saved 

from previous harvests and exchanged among farmers. The study allocates this variety to 

an imaginary seed company, “Ancestor’s Seed Company” to imply the local name of 

“Chimanga Cha Makolo” (Maize of the Ancestors). This then allows an analysis of the 
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market power features of this “Seed Company” and how government policy can help 

reduce the market share of this variety in favor of varieties with superior crop performance 

and other desired attributes.  

3.2 Model 

This section provides an overview of the theoretical model of adoption in the characteristics 

space and is divided into two parts, (1) theory of characteristic space adoption analysis, 

and (2) estimation and identification strategy.  

3.2.1 Characteristic space adoption analysis: Theory  

(a). What is a variety characteristic? 

Lancaster (1971) defines a characteristic as an objective and universal property of a good. 

For example,“…beauty is not a characteristic because it is in the eyes of the beholder but 

such things that spring out the beauty of a good like color are characteristics [are deemed 

characteristics] (Lancaster 1971, p.114 )”. Because characteristics can be numerous, he 

suggested that only the more relevant ones be considered as part of a demand analysis. The 

theoretical rationale for this particular operational definition springs from the ability to 

isolate the technical-goods characteristic relationships from the people-goods 

characteristics. In the context of maize varieties, this delineation allows identification of 

key characteristics that breeders incorporate into the new varieties. By requiring that these 

characteristics be external from the farmers’ subjective assessments, we are able to assure 

exogeneity of these characteristics relative to unobserved farmer characteristics.  

For example, cookability is not a characteristic in a Lancasterian sense, but flint or dent are 

such characteristics. Cookability reflects a farmer’s perception of a particular variety, 

whereas a farmers’ opinion does not change the flinty or dent characteristics of a variety.  

This conception of characteristics has been used in the industrial organization literature to 

estimate the demand for goods with specific quality attributes, including, for example 

studies by Berry et al. (1994 and 2004) and Nevo (2001). Berry et al. (1994 and 2004) used 

the following characteristics when modeling the demand for cars: the horsepower to weight 

ratio of the modal car engine (designation acceleration), number of passengers (size), city 
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miles per gallon, payload in thousands of pounds, plus a dummy variable to designate a 

minivan. When studying the demand for ready-to-eat cereals, Nevo (2001) used calories, 

sodium and fiber content as the set of defining characteristics for these goods.  

The key challenge to the proposed characteristic approach of modeling adoption is that the 

differentiated product market model of Lancaster was specifically developed in the context 

of consumption goods not production goods (inputs) like varieties.  There are, however, 

general models that capture both the production and consumption decisions of agricultural 

household behavior (e.g., Pollak 1989). Deploying an agricultural household (demand and 

supply) model in the context of a crop with varietal attributes draws on the same empirical 

modeling constructs as assessing supply and demand in a conventional differentiated 

products market model.  

(b). Demand  

We assume that a farmer 𝑖 derives utility 𝑢𝑖𝑗 from the choice of a maize variety 𝑗.  Let 𝑗 =

0, … , 𝐽 index the varieties competing in the market, where variety 𝑗 = 0 is the outside input 

(in this case a local reference variety). Let 𝑘 index the observed variety characteristics, 

including price, and 𝑟 index the observed household attributes. Following Berry et al. 

(2004), the farmer’s utility from choosing a particular variety is given by 

 𝑢𝑖𝑗 = ∑ 𝑥𝑗𝑘𝛽𝑖𝑘 + 𝜉𝑗 + 𝜖𝑖𝑗

𝑘

 (11) 

  

 𝛽𝑖𝑘 = 𝛽𝑘
̅̅ ̅ + ∑ 𝑧𝑖𝑟𝛽𝑘𝑟

0 + 𝛽𝑘
𝑢𝑣𝑖𝑘

𝑟

 (12) 

where 𝜉𝑗 are unmeasured aspects of maize variety quality, 𝑥𝑗𝑘, the observed aspects of the 

maize variety quality, 𝛽𝑖𝑘 is the taste of consumer 𝑖 for product characteristic 𝑘, 𝑧𝑖 are 

observed consumer attributes, 𝑣𝑖 are unobserved consumer attributes, and 𝜖𝑖𝑗 represents 

idiosyncratic individual preferences that are assumed independent of the variety 

characteristics and of each other. Farmers differ in terms of their varietal tastes by a vector  

𝒛 of observed demographic variables.  
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Substitute equation (12) into (11) to get: 

 𝑢𝑖𝑗 = 𝛿𝑗 + ∑ 𝑥𝑗𝑘𝑧𝑖𝑟 𝛽𝑘𝑟
0  

𝑘𝑟

+ ∑ 𝑥𝑗𝑘𝑣𝑖𝑘  𝛽𝑘
𝑢

𝑘

+ 𝜖𝑖𝑗 (13) 

where, for  𝑗 = 0,1, … , 𝐽 

𝛿𝑗 = ∑ 𝑥𝑗𝑘  𝛽̅𝑘 + 𝜉𝑗

𝑘

. 

We estimate the equation using a discrete choice model where the dependent variable is a 

multinomial choice of the variety grown. Empirically, the model is estimated using 

frequentist and Bayesian approaches.  The aim is to obtain willingness to pay measures, 

the estimated shares of each of the varieties that can then be used to compute the price-cost 

margins of the seed companies, and predictions on the adoption rates of new maize 

varieties.   

Assuming the error term is from an identically, independently distributed (iid) extreme 

value distribution, a standard multinomial logit regression can be used for equation 13. 

However, the challenge with the standard multinomial logit regression approach is that the 

number of parameters to be estimated increases with the number of varieties. Again, 

assuming the error term is from an identically, independently distributed (iid) extreme 

value distribution, we can instead use a linearized version of a logit specification for 

equation 13 where the dependent variable is defined as log (
𝑠𝑗

𝑠𝑜
) such that 𝑠𝑗 is the market 

share of variety 𝑗 and 𝑠0 is the share of the local variety.17 This reduces the number of 

parameters to be estimated to the total number of characteristics and demographic 

attributes. The estimating equation for a linearized logit model is 

 log (
𝑠𝑗

𝑠0
) = 𝛽0 + 𝛽𝑥𝑗 − 𝛼𝑝𝑗 + 𝑧𝑖𝜏 + ξj + 𝑣𝑖 + 𝜖𝑖𝑗 

 

(14) 

                                                 
17 This is standard in industrial organization literature and for derivations, the interested reader is referred to 

Nevo and Rosen (2012, p.666).  
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The willingness to pay for variety traits is calculated as  

 

𝑊𝑇𝑃𝑘 = −
𝛽𝑘

𝛼
 (15) 

 (c). Supply 

To understand the effects of the demand for specific varietal characteristics on the 

development and pricing behavior of seed suppliers (market power), requires also 

developing the supply side of the model.  The seed supply market can be categorized as 

oligopolistic with few companies that exhibit market power. Previous research (Chinsinga, 

2010; Mason and Ricker-Gilbert 2013) has reported that although the Malawian seed 

industry is reasonably open to entry, it effectively has been dominated by a few 

multinational companies that have little incentive to develop and supply maize varieties 

that better meet smallholder needs.  

We can therefore be confident to follow the tradition in the industrial organization literature 

of inferring price-cost margins using a pricing equation identity. Following Nevo’s (2001) 

notation, consider a finite number of seed suppliers (seed companies), 𝐹,  each firm (𝑓) 

producing a subset of maize varieties (𝑗 = 1, … , 𝐽) adopted by farmers, ℱ𝑓, to maximize 

profits 

 
Π𝑓 = ∑ (𝑝𝑗 − 𝑚𝑐𝑗)𝑀𝑠𝑗(𝑝) − 𝐶𝑓

𝑗∈ℱ𝑓

 (16) 

where 𝑠𝑗(𝑝) is the market share of variety 𝑗 as a function of the prices of all varieties, 𝑀 is 

the size of the market and 𝐶𝑓 is the fixed cost of production. The term in the bracket is the 

price-cost margin, measuring the difference between the seed price and the marginal cost 

of seed production. After deriving the Betrand-Nash first-order condition, Nevo (2001) 

found that the price-cost margin can be deduced as a function of the market shares (𝑠) of 

each variety and the ownership matrix (Ω) (consisting of dummies to delineate which 

company produces which variety) as follows: 
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𝑝 − 𝑚𝑐 = Ω−1𝑠(𝑝) (17) 

The price-cost margins can then be used to analyze whether the seed market is competitive. 

3.2.2 Identification strategy 

There are three potentially problematic identification issues when estimating any structural 

model (including this one) using observational data; specifically omitted variable bias 

(unobserved heterogeneity), simultaneity and measurement error. We now discuss each of 

these identification issues in turn. 

(a). Threats to identification  

First, omitted variable bias is a common threat to identification in differentiated product 

markets, not least because consumers are assumed to make choices based on complex 

unobserved tastes and preferences.  In the variety adoption decision, there are several 

sources of omitted variables. These can be categorized into two groups: unobserved 

technical characteristics and unobserved farmer characteristics. Although we sought to 

collect a comprehensive set of key characteristics for each of the varieties using data 

obtained from the seed companies and breeders, it is possible that the companies and the 

scientists did not provide all the relevant information, especially if that information were 

the source of their comparative advantage in the seed market. We can control for some of 

this variation by including a company fixed effect and the date of release of the variety to 

signal the level of knowledge in the market, but this won’t wipe away all unobserved 

characteristics. In addition, there are several straightforward unobserved factors like the 

temperature, humidity and moisture requirements for each variety. Essentially, we expect 

that the details on each variety’s set of characteristics made available to members of the 

variety release committee are much more than that company makes available to the public 

or is published in government variety release documents. The instruments that have been 

considered in the literature include characteristics of other products (varieties) and cost 

shifters.  
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Second, simultaneity has been the main thrust of employing the structural models found in 

the industrial organization literature to capture both demand and supply factors. By 

following this conventional approach, we are less concerned with this threat to 

identification. In addition, we use variables that are deemed likely to affect varietal choices, 

but in turn are not affected by that choice based on our knowledge of agricultural 

production. For example, instead of the actual yield of the variety, which is affected by the 

choice of the variety, we use yield potential, which does affect the choice of the variety but 

does not have reverse causality.  

Third, the problem of measurement error is common in variety adoption decisions based 

on recall information. First, it is difficult even for well-trained scientists to recognize some 

particular varieties, let alone open pollinated varieties whose observable traits might be 

affected by the varieties grown in close proximity. Second, in developing our database on 

varietal characteristics, different sources of data sometimes offered contradictory 

descriptions of a particular variety, thus introducing the possibility of measurement error 

when determine the characteristic list for a given variety. By restricting our empirical 

analysis to the better-known and widely used hybrid varieties, we reduced the potential of 

measurement error. In addition, triangulating information from several key sources 

provides some confidence for the second concern.  

(b). Control function approach to addressing endogeneity 

Much of the industrial organization literature uses the Berry et al. (1994) instrumental 

variables (IV) approach when dealing with endogeneity in this context. However, this 

approach is computationally heavy and prone to numerical errors. We thus considered 

alternatives to addressing the problem, and settled on using the control function (CF) as an 

alternative estimation strategy because it has several advantages in our particular case. It is 

easier to estimate and is applicable in cases where the Berry et al. (1994) approach is not 

valid, which includes our case where the number of products is small (Petrin and Train 

2009, p.4). In addition, standard IV approaches are problematic in nonlinear models like 

the multinomial logit, thus it is advisable to use the control function in this circumstance 

(Zeng 2014, p.90). The two candidate groups of instruments are the price of the variety in 
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other countries (e.g., Zambia), or the biological characteristics of the varieties that affect 

the cost of production but are not observed by the farmers.  

The problem with the first set of instruments is that some of the varieties like MH18 are 

only available in Malawi. We thus maintain the Malawi price in the instrument set. We 

specifically consider biological characteristics of the hybrid varieties that affect the cost of 

production by the seed company but potentially do not affect farmers’ preferences. Some 

of the candidates of these biological characteristics include seed production method, 

sowing rate, multiplication factor, rate of deterioration of seed viability and frequency of 

purchase (Cromwell, Friis-Hansen and Turner, 1992; Maredia et al., 1999). Of these we 

considered the seed production method—i.e., a single cross, three-way cross, or double 

cross— as the most distinguishing characteristic that increases the cost of seed 

production.18 According to studies cited above, in 1996, the grain/seed price ratios were: 

1:5 for a single cross, 1:3 for a three-way cross and 1:2 for a double cross. A recent study 

(Mabaya et al. 2019, p.7) documents a hybrid maize grain/seed price ratio of 1:4.17 and 

1:4.05 for OPVs. The reasons behind these OPV versus hybrid price differentials is perhaps 

succinctly stated by the Malawi seed company SeedCo, whose website states: 

“SC 727 seed is a single cross hybrid, i.e., it is produced from crossing two inbred 

lines which are generally poor in terms of seed yield produced, hence it’s very 

difficult and costly to produce. The price we give to SC 727 producers or seed 

growers is compensatory to cover up for the low productivity levels and the cost is 

transferred to the farmers/consumers hence the high price relative to three-way 

hybrids” Seed co Malawi (www.seedcogroup.com/mw/media/faqs).  

With these two instruments, we estimated the following first-stage regression: 

 
𝑃𝑗𝑡 = 𝛼0 + 𝛼1𝑍𝑎𝑚𝑏𝑖𝑎𝑃𝑟𝑖𝑐𝑒𝑗 + 𝛼2𝑆𝑖𝑛𝑔𝑙𝑒 𝐶𝑟𝑜𝑠𝑠 𝐷𝑢𝑚𝑚𝑦𝑗 + 𝛼3𝑥 + 𝜏𝑗𝑡, 

(18) 

                                                 
18 Single, double and three-way cross refer to the number of parents a hybrid has: two parental lines for a 

single cross; two single crosses for a double cross; and a pure inbred male parent and single cross female 

parent for a three-way cross (Maredia et al. 1999).  
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where 𝑃𝑗𝑡 is the calculated price of a particular hybrid seed 𝑗 in market/district 𝑡. All the 

hybrids released in recent years in Malawi are three-way crosses, and as such we could not 

use this as an instrument in the first stage but would be relevant for multi-country varietal 

demand analysis. This also points to the changing nature of varietal supply and demand 

dynamics that have evolved overtime to affect the constellation of the available hybrid 

varieties.  

Given there are no data on seed prices at the district level in Malawi, we computed the 

district-level seed price using the spatial price spreads in a related market, specifically the 

maize grain market, which has longitudinal price data at the district level. We also used the 

observed seed-grain price ratio to compute district level seed prices as follows: 

 
𝑃𝑗𝑡

𝑆𝑒𝑒𝑑 =
𝑃𝑗

𝑆𝑒𝑒𝑑

𝑃𝑠𝑐403
𝑆𝑒𝑒𝑑 ×

𝑃𝑠𝑐403
𝑆𝑒𝑒𝑑

𝑃𝑔𝑟𝑎𝑖𝑛
× 𝑃𝐺𝑟𝑎𝑖𝑛,𝑡, 

 

(19) 

where 𝑃𝑗𝑡 is the seed price for variety 𝑗 in district 𝑡, 𝑃𝐺𝑟𝑎𝑖𝑛,𝑡 is the price of maize grain for 

each district, 𝑃𝑗
𝑆𝑒𝑒𝑑 is the national level price of the variety 𝑗 and 𝑃𝑠𝑐403

𝑆𝑒𝑒𝑑  is the seed price 

of the dominant hybrid seed. By using this approach, we assume that districts with high 

grain prices also register high seed prices and that the seed-grain price ratio is based on 

prices of the dominant variety. These assumptions are likely to hold because districts whose 

hinterland are hard to reach will have higher seed prices and because it is difficult to move 

grain to the center of the district, the grain prices are also very high19. And SC 403 is grown 

nationwide as such the price ratio can be assumed not to be district specific.  

                                                 
19 This is also consistent with research that find that inputs are costly in the “last mile” (Minten et al. 2013). 
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3.3 Data and descriptive statistics 

3.3.1 Data  

We use two key sources of data to estimate the model. These are (i) household level data 

collected under the auspices of the adoption pathways project,20 and (ii) varietal 

characteristics data compiled by the authors from various company websites, variety 

release documents, and maize breeding trial reports  

Household Level Data 

A key variable gleaned from the household level survey data is the name of any improved 

varieties the farmer planted in a particular reference year, the dependent variable in our 

model.21 Other (right hand side) variables collected from this source of data include: i) 

household characteristics, including household size, household head education, household 

head age, and ii) farm characteristics, including farm size, fertilizer use, yield, whether the 

plot is mixed, and average maize yield. The data are compiled and analyzed at a plot level. 

The key assumption in using Berry et al. (1994) type models is that the consumer buys one 

product only. In the data used in this chapter, there is a tendency for individual farmers to 

grow multiple varieties. This however is controlled by plot level variables that allow a 

distinction across households based on plot characteristics. The results from this chapter 

should be interpreted with respect to the study population we are considering in the data. 

The study population includes smallholder farmers growing maize only within the sampled 

districts. In addition, because CIMMYT, via the SIMLESA project, has conducted several 

studies in these locations, it is expected that the adoption levels are likely to be higher than 

the average farmer in Malawi.  

 

                                                 
20 These data can downloaded from 

http://data.cimmyt.org/dvn/dv/cimmytdatadvn/faces/StudyListingPage.xhtml?mode=1&collectionId=122. 

21 The survey covers 16 districts in Malawi, specifcally Mzimba, Dedza, Kasungu, Ntcheu, Dowa, Ntchisi, 

Salima, Mchinji, Balaka, Blantyre, Chiradzulu, Machinga, Mangochi, Mwanza, Thyolo and Lilongwe.  
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Varietal Characteristics Data 

In constructing the variety characteristics database, we used multiple sources of 

information. The first step was to determine the attributes of the more than 40 varieties that 

were reported in the household survey using various sources. One was the DIIVA database 

(https://www.asti.cgiar.org/diiva), which contains information on the release date for each 

of the varieties and the name of the company that produced the variety. We searched online 

for information posted on the respective company websites regarding the different 

characteristics of each variety. For some varieties, we were able to cross-check the 

information provided by the seed companies against variety technology release documents 

published by the Ministry of Agriculture and Food Security in Malawi (Saka et al. 2006, 

Mviha et al. 2010, and Chisama et al. 2015 ) and a seed security assessment report by 

(Bokosi et al. 2011). Wherever possible we also verified the information with experimental 

field trials estimates drawn from multiple studies. Table 3-1 summarizes information on 

the main varieties, including their year of release and selected traits of each variety.  

Table 3-1: Varietal characteristics 

Variety 

name 

V.age Seed 

Company 

Maturity 

(Days) 

Flint Yield 

(t/ha) 

Price, 

MK/ 

kg 

Drought 

Tolerance 

MSV 

Resistance 

GLS 

Resistance 

SC403  14 SeedCo 100 Flint 4.5 320 Yes Yes No 

SC627  13 SeedCo 125 Flint 9.0 320 No Yes Yes 

DK8033  10 Monsanto 112.5 Dent 8.0 342 Yes Yes Yes 

DK8053 5 Monsanto 125 Flint 10.0 342 No Yes Yes 

MH18  22 NMBP* 125 Flint 6.0 365 No No No 

SC719  4 SeedCo 130 Dent 11.5 400 Yes Yes Yes 

PAN53 5 Pannar 137.5 Flint 9.0 365 Yes Yes Yes 

DK9089 3 Monsanto 117.5 Flint 10.0 342 No Yes Yes 

Local  > 50 Ancestor 
 

Flint 
 

33 - - - 

Notes: * released by the National Maize Breeding Programme (NMBP) and currently produced and 

marketed by Pannar seed company. The disease resistance traits (MSV and GLS resistance) are similar 

across varieties, and as such we did not include them in the estimation. For local variety, the characteristics 

are assumed for exposition but were not used in the estimation. V.age is variety age, i.e. number of years 

between variety release and survey year.  
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There are more than 40 maize varieties reportedly used by the smallholder farmers in the 

sample, with the top nine accounting for more than 85 percent of the market share 

(delineated by the total number of farmers growing maize). With this level of varietal 

concentration, the sample sizes for the other varieties were small and as such were not used 

in the analysis.  

3.3.2 Piecewise linear representation of the characteristics frontier  

Figure 3-2 illustrates the characteristic efficiency frontier represented by variety 1, variety 

2, and variety 3. If variety 2 is not available, then the characteristic frontier is composed of 

variety 1 and variety 3.  

 

Figure 3-2: Varietal characteristic frontier 

Note: The lines illustrate the discrete nature of the choices. That is, a farmer cannot choose a convex 

combination of the varieties. 

Using the characteristics database, it is possible to graphically illustrate the efficient 

frontier varieties across selected two-dimensional characteristics (as in figure 3-2). For a 
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two-dimensional approximation of a multi-dimensional frontier, a biplot analysis as 

commonly used by breeders may be adapted (Yan 2014). The graphical analysis can help 

ascertain the varieties that are likely to be adopted. Figure 3-3 shows a two-characteristic 

(potential yield and days to maturity) plot for the eight top hybrid varieties (see appendix 

Figure A1 for two-dimensional representations of multiple characteristics).  

 

Figure 3-3: Maturity-Yield variety frontier, discrete case 

Notes: The size of the circle represents the area extent of adoption, with SC403 being the most widely planted 

improved maize variety.  

It is apparent that days to maturity matters for adoption because the variety SC403 with the 

lowest days to maturity (i.e., highest negative days to maturity in the plot) is also the most 

planted even though it has lower yields.  Nonetheless, a high-yielding variety like DK9089 

is planted less because it is a younger variety, as shown figure 3-4. However, DK9089 is 

better than most varieties on days to maturity and is flinty, as such using the variety frontier 

we can deduce that in the fullness of time this variety may take up much of the market 

share particularly from DK8053.  
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Figure 3-4: Maturity-Variety Age-Yield frontier, discrete case 

3.3.3 Household characteristics 

The main household characteristics in the literature include household size, age, education, 

and gender. In our sample, 88% of the household heads were male. This is consistent with 

national household surveys that find that due to cultural norms, most households identify 

the oldest male in the household as the household head. The average household size was 5 

people, with the household head aged about 44 years. Years of schooling for the household 

head was about 6.68. The average plot size allocated to maize was about 0.5 ha. Over half 

of the households received subsidized seeds and fertilizers. Comparing across the different 

maize varieties, it is apparent that households adopting local varieties do not markedly 

differ in characteristics to those adopting improved varieties, except for slight differences 

in household sizes, plot size allocated to the variety, access to seed subsidy, and access to 

fertilizer subsidy. In general, those sticking with local varieties have smaller household 

sizes, larger plot sizes allocated to the variety, low access to seed subsidy and low access 

to fertilizer subsidy.  
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Table 3-2: Shares of each of the varieties studied and household characteristics 
   

Household size Age 

 

Plot Area 

 

Years of Schooling Gender(Male) Fertilizer  subsidy (Yes) Seed Subsidy(Yes) 

Variety Sample Proportion Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Local 821 0.33 5.44 2.62 47.10 14.72 0.53 1.77 6.55 12.36 0.81 0.39 0.56 0.50 0.49 0.50 

DK8033 (Mkangala) 191 0.08 5.64 2.08 42.81 10.38 0.41 0.27 7.54 15.96 0.90 0.31 0.67 0.47 0.64 0.48 

DK8053 (Mapasa) 197 0.08 5.89 2.35 42.01 13.27 0.54 0.51 6.93 7.56 0.90 0.30 0.61 0.49 0.60 0.49 

DK9089 (Fumba) 88 0.04 5.83 2.57 41.75 10.15 0.45 0.30 6.19 3.23 0.90 0.30 0.67 0.47 0.66 0.48 

MH18 (Chokonoka) 157 0.06 6.35 2.96 44.75 14.11 0.45 0.28 5.83 3.49 0.90 0.30 0.48 0.50 0.44 0.50 

PAN53 82 0.03 5.88 2.32 46.60 14.41 0.52 0.51 6.18 3.57 0.94 0.24 0.68 0.47 0.56 0.50 

SC403 (Kanyani) 501 0.20 5.69 2.52 44.63 14.01 0.38 0.37 6.52 10.94 0.81 0.39 0.66 0.47 0.63 0.48 

SC627 (Mkango) 332 0.13 5.62 2.74 44.57 14.10 0.41 0.25 6.70 10.05 0.83 0.38 0.62 0.49 0.56 0.50 

SC719 (Njovu) 127 0.05 5.85 2.22 42.20 13.74 0.47 0.34 7.72 9.17 0.91 0.28 0.62 0.49 0.60 0.49 

All 2496 1.00 5.80 2.49 44.05 13.21 0.46 0.51 6.68 8.48 0.88 0.32 0.62 0.48 0.58 0.49 

Note: The share of farmer growing the variety is consistent with other studies like Holden and Mangisoni (2013).  
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3.4 Estimation results and discussion 

3.4.1 Multinomial logit results 

The commonly used econometric model both in the traditional adoption analyses and 

the recent trait-based analyses is the multinomial logit or probit models (or their 

binomial variants). We also use the multinomial model as the baseline model for the 

mixed logit. Table A2 in the appendices shows the results for a multinomial logit 

estimation without the varietal characteristics included. This is akin to using a binary 

choice model in keeping with most of the prior agricultural economics literature. The 

reference variety in this case is the local variety.  In general, age of the household head 

is negatively related to the extent of adoption of most of these varieties. This is 

consistent with most prior binary choice literature in Malawi, which finds that age is 

negatively related to the adoption of improved varieties (e.g., Bezu, et al. 2014). While 

most of these studies find a positive effect of education on adoption, this is not 

consistent across all improved varieties as shown in the table. The differences in the 

parameters across the different varieties also cautions against using binary choice 

models to ascertain whether certain variables positively or negatively affect adoption. 

This is because, depending on the portfolio of varieties in the market, one may get 

different results. The characteristics approach essentially add variety level 

characteristics to this basic model.  

Table 3-3 shows linearized multinomial logit results. We show only estimates on the 

variety characteristics as estimates of the demographic are similar to the baseline model. 

Firstly, as expected from consumer theory, the price coefficient is negative. On average, 

it appears that relative to the local variety, an increase in price decreases the adoption 

of that variety after controlling for important varietal characteristics. Nonetheless, the 

price coefficient may be biased for two reasons. First, it may imply that there is 

individual heterogeneity in preference we are not capturing with multinomial logit 

model.  Second, for measurement reasons we may not be capturing all the relevant 

varietal quality characteristics for either the local variety or each of the hybrid varieties. 

We thus consider next models that include individual level heterogeneity in preferences 

and in Table 3-4, we show the results using control function approach (model 1 and 2 

are first stage) with varietal prices in Zambia being used as instruments for variety 

prices in Malawi. Adding a control function term marginally changes the price 

coefficient for national and district level price regressions (model 4 and 6).  
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Table 3-3: Linearized logit results 

Dependent variable: 𝑙𝑜𝑔 (
𝑠𝑗

𝑠0
) where 𝑠𝑗 share of variety adopted and 𝑠0 is share of local variety 

 Model 1 Model 2 Model 3 Model 4 

(Intercept) -0.5600*** 1.3716*** 1.3793*** 1.3641*** 
 (0.0787) (0.1282) (0.1308) (0.1536) 

Age 0.0033***  -0.0002 -0.0002 
 (0.0011)  (0.0004) (0.0004) 

Household size -0.0139**  0.0004 0.0004 
 (0.0059)  (0.0019) (0.0019) 

Education -0.0164***  0.0004 0.0004 
 (0.0043)  (0.0014) (0.0014) 

Sex -0.0087  -0.0105 -0.0026 
 (0.0668)  (0.0227) (0.0404) 

Plot area (ha) 0.0138  0.0185 0.0184 
 (0.0136)  (0.0134) (0.0134) 

Fertilizer subsidy 0.0200  -0.0235 -0.0234 
 (0.0624)  (0.0213) (0.0213) 

Seed subsidy -0.1159*  0.0151 0.0310 
 (0.0613)  (0.0210) (0.1407) 

Marital status -0.1927***  0.0040 0.0042 
 (0.0666)  (0.0227) (0.0227) 

Seed price  -0.0095*** -0.0095*** -0.0095*** 
  (0.0004) (0.0004) (0.0004) 

Variety age (years)  0.1580*** 0.1583*** 0.1582*** 
  (0.0035) (0.0036) (0.0036) 

Days to maturity  -0.0619*** -0.0619*** -0.0619*** 
  (0.0016) (0.0016) (0.0016) 

Flint   1.2926*** 1.2946*** 1.3027*** 
  (0.0368) (0.0370) (0.0501) 

Yield potential  0.0006*** 0.0006*** 0.0006*** 
  (0.0000) (0.0000) (0.0000) 

Drought tolerance  1.2325*** 1.2368*** 1.2365*** 
  (0.0308) (0.0310) (0.0311) 

Seed price :Fertilizer subsidy    -0.0000 
    (0.0004) 

Flint: Sex    -0.0094 
    (0.0395) 

R2 0.0362 0.8943 0.8946 0.8946 

Num. obs. 2458 1651 1651 1651 

***p < 0.01, **p < 0.05, *p < 0.1 
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Table 3-4: Addressing endogeneity using the control function approach 

 Control function first stage  Control function second stage 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Dependent variable Seed price 
District seed 

price 
𝑙𝑜𝑔 (

𝑠𝑗

𝑠0
) 

(Intercept) 387.3366*** 377.1106*** 2.8392*** 2.6266*** 0.9609*** 2.0242*** 
 (0.5090) (26.8578) (0.1282) (0.0000) (0.1169) (0.1177) 

Zambia seed 

prices 
6.2450*** 7.4459***     

 (0.0100) (0.5283)     

Variety age 

(years) 
-13.0841*** -11.6286*** 0.1580*** 0.1613*** 0.1898*** 0.1895*** 

 (0.0211) (1.1128) (0.0035) (0.0000) (0.0038) (0.0034) 

Days to maturity 5.1252*** 4.5679*** -0.062*** -0.065*** -0.087*** -0.076*** 
 (0.0064) (0.3361) (0.0016) (0.0000) (0.0014) (0.0014) 

Flint  -112.5436*** -103.4466*** 1.2926*** 1.3420*** 1.7407*** 1.5606*** 
 (0.1690) (8.9153) (0.0368) (0.0000) (0.0367) (0.0342) 

Yield potential -0.0605*** -0.0534*** 0.0006*** 0.0006*** 0.0007*** 0.0007*** 
 (0.0001) (0.0049) (0.0000) (0.0000) (0.0000) (0.0000) 

Drought  tolerance -105.6402*** -91.5964*** 1.2325*** 1.2452*** 1.3750*** 1.4895*** 
 (0.1983) (10.4622) (0.0308) (0.0000) (0.0352) (0.0321) 

Seed price   -0.0095*** -0.0085***   

   (0.0004) (0.0000)   

Control function 

(CF) term 
   -0.2321***   

    (0.0000)   

District seed price     -0.0010*** -0.0071*** 
     (0.0001) (0.0003) 

CF term with 

district seed prices 
     0.0068*** 

      (0.0003) 

R2 0.9988 0.2960 0.8943 1.0000 0.8590 0.8865 

Num. obs. 1651 1651 1651 1651 1651 1651 

***p < 0.01, **p < 0.05, *p < 0.1 

 

3.4.2 Mixed multinomial logit and heterogeneity  

Following Useche et al. (2009), we analyze a district-level heterogeneous model for the 

biophysical traits. This allows an investigation of whether the biophysical matching of 

the characteristics to the locations affects the adoption of these varieties. We also 

analyze an individual household mixed logit model. The results in appendix tables A3 

and A4 align closely with those presented in section 3.4.1.  

3.4.3 Are variety characteristics overrated? The shadow prices of characteristics 

Using the coefficients in Table 3-3 (model 3), we calculate the ratio of the seed price 

coefficient and each of the variety characteristics to estimate the shadow prices of each 

varietal characteristic. We report willingness to pay measures using a Bayesian version 
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of the logit specification because of the difficulties in computing moments for a random 

coefficient logit model (see Daly 2011 for details). When a goal of the analysis is to 

estimate farmers’ willingness to pay (WTP), or to conduct welfare analysis, it is 

important that the price coefficient be negative and not overlap zero for all consumers 

(Hess and Train 2017). While the price coefficients are negative in our particular 

application of the multinomial logit model, this may not be the case in most 

applications, thus resulting in potential for substantial specification search and 

publication bias. The advantage of using a Bayesian approach, is that we don’t need to 

worry about the significance of the price coefficients and the characteristic coefficients. 

We simply use the 10,000 MCMC draws to determine the shadow prices of the various 

traits. Table 3-5 shows the estimates of the median and 95% credible intervals for the 

willingness to pay for each of the varietal characteristics included in our analysis.  

Table 3-5: Estimated shadow prices of varietal characteristics, Malawi Kwacha 

 

WTP for 

Willingness to pay quantiles 

 2.50% 50% 97.50% 

Variety age 15.077 16.659 18.479 

Days to maturity -7.338 -6.52 -5.815 

Flintiness 121.676 136.325 153.226 

Yield 0.055 0.061 0.068 

Drought tolerance 118.354 130.201 143.829 

 

The signs on the trait specific WTP estimates indicate that farmers are unwilling to pay 

for a late maturing variety, or in other words are willing to pay for an early maturing 

variety. Notably farmers are willing to pay significantly more for complex traits like 

drought tolerance and flint texture when choosing hybrid varieties. To understand the 

magnitude of these effects, we can consider the WTP values in yield equivalents. The 

WTP for yield is 61 Malawi Kwacha for an additional yield of 1,000kg. our results 

implies that farmers are willing to pay about 2.13 times more for drought tolerance than 

they are willing to pay for an additional 1,000kg of yield. Similarly, farmers are willing 

to pay about 2.23 times more for a flint variety relative to a higher yielding (by 1,000 

kg/ha) variety. Coincidentally, our Bayesian estimates of farmer’s valuation of these 

traits in Malawi is similar to a discrete choice experimental valuation in Zimbabwe 

where farmers were paying a drought tolerance and flint texture premium of 2.56 and 



64 

 

5 times respectively relative to the amount they were willing to pay for a higher yielding 

(1,000 kg/ha) maize variety (Kassie et al. 2017).   

3.4.4 Predicting adoption and market power implications of a new variety 

There are several approaches that are used to predict the demand for a new product and 

the market power implications associated with that new product. These include 

predictions of market shares from the multinomial logit model (e.g., Berry et al. 2004) 

and calculation of the virtual prices for the differentiated product by computing prices 

at which demand for the new product is zero(Hausman 1996). Here, we introduce a new 

approach that uses the WTP measures and the characteristics frontier to predict the 

demand for new products. We begin by re-calibrating the characteristics frontier from 

a quantity to a value space. To do that, we simply multiply the WTP estimate by the 

quantity of the variety trait, 𝑋𝑘𝑗. The sum of the tarit-specific value across all the 

measured characteristics gives the quasi-varietal value 

 

𝑄𝑢𝑎𝑠𝑖 − 𝑣𝑎𝑟𝑖𝑒𝑡𝑦 𝑣𝑎𝑙𝑢𝑒𝑗 = 𝑄̂𝑗 = ∑ 𝑊𝑇𝑃𝑘 × 𝑋𝑘𝑗

𝐾

𝑘=1

 

 

(20) 

Assuming farmers aim to maximize the value of this measure or minimize the sum of 

losses from over or under-planting particular varieties, then in aggregate we expect that 

the share of farmers adopting a variety will be proportional to this measure. Thus 

 
𝑆ℎ𝑎𝑟𝑒 𝑎𝑑𝑜𝑝𝑡𝑖𝑛𝑔 𝑣𝑎𝑟𝑖𝑒𝑡𝑦𝑗 = 𝑠𝑗 =

𝑄𝑢𝑎𝑠𝑖 − 𝑣𝑎𝑟𝑖𝑒𝑡𝑦 𝑣𝑎𝑙𝑢𝑒𝑗

𝑇𝑜𝑡𝑎𝑙 𝑄𝑢𝑎𝑠𝑖 − 𝑣𝑎𝑟𝑖𝑒𝑡𝑦 𝑣𝑎𝑙𝑢𝑒

=
𝑄̂𝑗

∑ 𝑄̂𝑗  𝐽
𝑗=0

 
(21) 

The way to think about this is to consider a social planner who wants to minimize the 

total national losses from over- or under-planting particular varieties throughout the 

country. This objective function is consistent with the goals of African governments 

(especially Malawi) that are aiming to increase the number of farmers planting 

improved varieties and reduce the number of farmers planting local variety. The relative 

penalty for over-planting a variety is given by 𝑠 and the penalty for under-planting is 
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1 − 𝑠. Let the individual variety loss function be defined by the following piece-wise 

linear function 

 
𝐿𝑗(𝑠, 𝑄) = {

𝑠(𝑄 − 𝑄̂𝑗) 𝑖𝑓 𝑄 ≥ 𝑄̂𝑗

(1 − 𝑠)(𝑄̂𝑗 − 𝑄) 𝑖𝑓 𝑄 < 𝑄̂𝑗

 (22) 

 

where 𝑄 is the desired level of quasi-variety value. If this level is equal to or more than 

some level 𝑄̂𝑗 (representing the over-planting of a variety), then the social planner loses 

𝑠(𝑄 − 𝑄̂𝑗). If the level is less than this (representing under-planting a variety), the 

social planner loses (1 − 𝑠)(𝑄̂𝑗 − 𝑄). The social planner seeks to minimize the sum of 

losses across all varieties by planting varieties that give the maximum value 𝑄. The 

objective function is therefore  

 

∑ 𝐿𝑗(𝑠, 𝑄) = 𝑠 ∫ (𝑄 − 𝑄𝑗)𝑑𝐹(𝑄̂) + (1 − 𝑠) ∫ (𝑄 − 𝑄𝑗)𝑑𝐹(𝑄̂)
∞

𝑄

𝑄

0

𝐽

𝑗=0

 (23) 

We posit and provide a proof for the following theorem:22  

Theorem 1: The predicted socially optimal share of farmers planting a variety is 

equivalent to its proportion of the quasi-variety value in the market.  

Proof: Using the Leibniz rule,23 we calculate the first order condition and solve for 𝑄 

 𝜕𝐿(𝑠, 𝑄)

𝜕𝑄
= 𝑠 ∫ (1)𝑑𝐹(𝑄̂) + (𝑄 − 𝑄)(1) − (0 − 𝑄)0 + (1

𝑄

0

− 𝑠) ∫ (−1)𝐹(𝑄̂) + (∞ − 𝑦)0 − (𝑄 − 𝑄)1 = 0
∞

𝑄

 

(24) 

 

                                                 
22 This result has also been proved by Weitzman (2015) in an application concerning externalities. The 

general geometric methodology of this novel idea (use of weights or penalties in vertex and edge 

optimization) was also discussed at length by Lancaster (1971) in Chapter 5 and section 7.4. The proof 

we provide is motivated by a proof for the absolute error loss by Giles (2012).  

23 Let 𝜔(𝛼) = ∫ 𝑓(𝑥, 𝛼)𝑑𝑥
𝑢2

𝑢1
 where 𝑎 ≤ 𝛼 ≤ 𝑏. Then, 

𝜕𝜔

𝜕𝛼
= ∫ 𝑓(𝑥, 𝛼)𝑑𝑥

𝑢2

𝑢1
+ 𝑓(𝑢2, 𝛼)

𝜕𝑢2

𝜕𝛼
− 𝑓(𝑢1, 𝛼)

𝜕𝑢1

𝜕𝛼
  (Giles,2012)  
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𝑠 ∫ 𝑑𝐹(𝑄̂)

𝑄

0

= (1 − 𝑠) ∫ 𝑑𝐹(𝑄̂)
∞

𝑄

 (25) 

Note that ∫ 𝑑𝐹(𝑄̂)
𝑄

0
+ ∫ 𝑑𝐹(𝑄̂) =

∞

𝑄
 ∫ 𝑑𝐹(𝑄̂) = 1

∞

0
. Thus, we get the following 

equality 

 
𝑠 ∫ 𝑑𝐹(𝑄̂)

𝑄

0

= (1 − 𝑠)(1 − ∫ 𝑑𝐹(𝑄̂)
𝑄

0

 (26) 

 

 
𝑠 ∫ 𝑑𝐹(𝑄̂)

𝑄

0

= 1 − ∫ 𝑑𝐹(𝑄̂)
𝑄

0

− 𝑠 + 𝑠 ∫ 𝑑𝐹(𝑄̂)
𝑄

0

 (27) 

 

 
∫ 𝑑𝐹(𝑄̂)

𝑄

0

= 1 − 𝑠 (28) 

 

Therefore, by definition, Pr(𝑄̂𝑗 > 𝑄) = 𝑠. Thus, we expect that share of farmers 

adopting particular varieties will be equivalent to the share of the cumulative quasi-

varietal value relative to the total quasi-variety value. QED.  

This powerful idea is similar to Bonnet and Simioni (2001) who computed inverse 

demand functions as a function of WTP. When a new product is introduced into the 

market, we can simply recalibrate the total market value using the new set 

characteristics embodied in the variety and to determine how much of the share of 

overall market value will accrue to the new good. Table 3-6 shows the results of 

applying this heuristic in this instance. It is apparent that the varietal market shares 

predicted by this algorithm are almost exactly the same as the actual shares (e.g., the 

hybrid variety SC 403 has the exact share, 20%).  

Assuming a new variety (Table 3-6, last row) is being proposed with all the desirable 

biological characteristics (early maturing, flint, highest yield potential, and drought 

tolerant), we can use our methodology to determine the ex-ante predicted rate of 

adoption. The last column in Table 3-6 shows the predicted shares of each of the 

varieties following the introduction of the hypothetical new variety. It is apparent that 

the new variety will take 37% of the market share, displacing the local variety (37% to 
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21%) and the variety SC403 (20% to 12%). Notice that this superior variety does not 

fully displace the local variety–an important finding considering Malawi’s seed policies 

that aim to rapidly reduce the market presence of local varieties. This is the case because 

the perceived value of the local variety is still high and that farmers need many years 

to learn about the variety.  
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Table 3-6: Predicted shares of varieties after introduction of a new variety 

Variety Price Variety 

age 

Days to 

maturity 

Flint Yield, 

t/ha 

DT Quasi-

variety 

value 

Predicted 

shares 

Actual 

shares 

Diff. New 

Share 

SC403  320 14 100 1 4.5 1 122.25 0.20 0.20 0.00 0.12 

SC627  320 13 125 1 9 0 86.89 0.14 0.13 0.01 0.09 

DK8033  342 10 112.5 0 8 1 51.29 0.08 0.08 0.00 0.05 

DK8053 342 5 125 1 10 0 14.62 0.02 0.08 -0.05 0.01 

MH18  365 22 125 1 6 0 53.82 0.09 0.06 0.02 0.06 

SC719  400 4 130 0 11.5 1 50.74 0.08 0.05 0.03 0.05 

PAN53 365 5 137.5 1 9 1 2.32 0.00 0.03 -0.03 0.00 

DK9089 342 3 117.5 1 10 0 30.20 0.05 0.04 0.01 0.03 

Hybrid all 
      

412.14 0.67 0.67 0.00 0.42 

Local 
      

202.99 0.33 0.33 0.00 0.21 

New 

Variety 

 
1 100 1 12000 1 363.19 

   
0.37 

Note: Flint and DT (drought tolerance) are dummies.   

  



69 

 

Given the predicted shares and ownership matrix, we can also determine the market 

power implications by computing the price-cost margins (PCM) for each seed company 

using equation 17 (Table 3-7). In the current market, Seed Co has market power almost 

two times that of the other two major competitors (Monsanto and Pannar)24.  If Seed 

Co is the one introducing the new variety, its PCM increases from 0.42 to 0.64. If the 

new variety is introduced by Monsanto however, its PCM increases from 0.16 to 0.47 

while that of the market leader, Seed Co, decreases from 0.42 to 0.27. Similarly, with 

Pannar introducing the variety its PCM increases from 0.09 to 0.43.  These results are 

contingent on the sample of varieties and the characteristics used in this study and are 

thus only illustrative of the substantive real-world varietal market implications of 

introducing new crop varieties.  

Table 3-7: Price-cost margins under introduction of a new hybrid variety.  

  PCM if new variety is produced by 

Company 
Current 

market PCM 
 SeedCo Monsanto   Pannar  

Seed Co 0.42 0.64 0.27 0.27 

Monsanto 0.16 0.10 0.47 0.10 

Pannar 0.09 0.06 0.06 0.43 

 

3.4.5 Limitations and future research 

The characteristics space analysis laid out in this chapter allows for the direct estimation 

of the willingness to pay for varietal traits, the prediction of demand for new varieties, 

and their market power and welfare implications. Efforts to investigate the adoption of 

new varieties that delve deeper than the simple improved versus local variety 

dichotomy raise concerns as to the extent to which farmers can really identify the actual 

variety they planted or whether the phenotypes reported by seed companies are 

legitimate. This has been documented in the emerging literature on field based DNA 

fingerprinting of maize varieties (see, for example, Wossen et al. 2019) where 

discrepancies between reported varieties and the actual genetic make-up of these 

varieties have been found.  

                                                 
24 Sutcliffe (2014) reports that there nine seed companies that operated in 2011 and documents the nature 

of seed market competition.  
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Future research should address these concerns by reaching beyond the names of the 

varieties (and their derived traits) to the phenotypes arising from the actual genetic 

make-up of the varieties. The other concern, and possibly an opportunity for further 

research, is that most of the varieties are produced by multinational companies which 

operate under different sets of agricultural policies across countries. Understanding the 

varietal adoption and related welfare implications of varietal development and releases 

policies using the characteristics space model proposed opens up exciting and socially 

valuable lines or research regarding agricultural innovation policy. Lastly, the novel 

approach of predicting adoption of new varieties we have developed can be used at a 

more disaggregated spatial resolution, thereby better matching a new variety to the 

locale where its embodied agronomic and economic benefits will be more fully realized.  

3.5 Conclusion 

This chapter investigates the willingness to pay for maize varietal traits among 

smallholder farmers in Malawi. The maize seed industry is key to food security in 

Malawi, and the country’s seed policies have huge impacts on the growth trajectory of 

the national economy.  Given that the adoption of improved variety seeds is increasing 

particularly because of the generous Malawi farm input subsidy program, it is important 

to consider the quality attributes of the improved varieties and match these to the quality 

needs of farmers operating under heterogeneous production conditions. In addition, the 

multiplicity of varieties makes it highly questionable to treat improved varieties as if 

they were homogenous products. This implies that determinants of the adoption of 

improved varieties may be misleading if one relies on binary choice data (e.g., 

improved versus local varieties) since specific characteristics (or traits) may be 

accounting for uptake performance of a particular variety, traits that may be shared 

across certain varieties be they improved or local. A characteristic based approached to 

the analysis of varietal adoption provided more nuanced and operationally valuable 

insights into the determinants of adoption. Specifically, we find that farmers are willing 

to pay more than two times for a drought tolerant and flint variety for a higher yielding 

(1,000 kg of maize per ha) variety— an important result when yield benefits are a key 

goal of a breeding program.    

The previous literature on heterogeneous varietal demands focused on farmer ratings 

of varietal characteristics. In do so they ignored the most fundamental aspect of the 
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Lancaster/characteristics space framework, namely that the characteristics are best 

defined in an objective, technical and invariant fashion, setting aside (likely variable) 

farmer centric perceptions of varietal characteristics. Doing so has the advantage that 

breeders and seed companies can focus on enhancing the development of a portfolio of 

varieties that embody a clearly defined set of varietal traits whose deployment can be 

targeted to particular production locales and market realities in ways that enhance the 

overall market value of these new varieties.  
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4. Calibrating Inter-District Food Crop Flows in Malawi 

“... information on trade flows within a country is rarely available to researchers, 

yet the response of these trade flows to a transportation infrastructure improvement 

says a great deal about the potential for gains from trade.”  

Donaldson (2018, p.900). 

4.1. Introduction 

The quest for smart and well targeted agricultural development policies in sub-Saharan 

Africa has never been more important than now due to ever increasing financial 

demands on government budgets. In this quest, the effect that policies have on the flow 

of agricultural produce among districts within a country is usually neglected or poorly 

understood, with much of the emphasis being placed on the international trade 

implications of such policies. Understanding how food flows within a country is an 

important food policy issue, not least because of the likely spill-ins and spill-outs of 

impacts across regions/districts within a country as agricultural interventions are 

brought to scale. Absent effective spatial trade and price transmission information, 

substantial regional deficits or surpluses may emerge, even when nationally produced 

(or accessible) supply can ostensibly meet the needs of all the households within a 

country at prevailing average prices. Therefore, inter-district trade is an important part 

of an effective food security strategy, especially considering that most sub-Saharan 

African countries still protect their food sectors especially during deficit years (Myers 

2013). Inter-district commodity trade data are, however, not collected on a systematic 

basis and thus unavailable in most sub-Saharan African (SSA) countries and many parts 

of world. In this chapter, we use a theoretical model introduced by von Thünen to guide 

the development of a mathematical programming model to calibrate food flows among 

districts in Malawi.  

Almost two centuries ago, Johann Heinrich von Thünen, a German farmer-cum-

economist developed a stylized theory of the effect of distance and transportation costs 

on the spatial structure of farm organization around a main city (Hall 1966). The theory 

predicts that with increasing distance from an isolated town, land will progressively be 

given up to products that are cheaper to transport in relation to their value. For this 

reason alone, von Thünen posits that sharply differentiated concentric rings will form 
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around a town, with production in each ring being dominated by a particular agricultural 

product. Thus based on von Thünen’s insights, we know that locations for commodity 

production are not random. Thus because spatial mathematical programming models 

rely on spatially specific production and consumption data to calibrate flows, we can 

confidently use calibrated food flows in making policy decisions, e.g., fuel subsidies to 

reduce transport costs. 

Beyond the theoretical justifications, Thünen like patterns in the spatial organization of 

economic activities have been observed in several developing countries. Jacoby and 

Minten (2009) report that for the least remote households in Madagascar, as much as 

87% of crop sales by weight are either fruits, vegetables or tubers. Conversely, for 

remote households as much as 95% of crop sales by weight are high valued crops per 

kilogram of dry grains (mainly rice, maize and beans). Similar patterns have been 

reported for Nepal by Jacoby (2000) and Fafchamps and Shilpi (2003), and for the 

Democratic Republic of Congo by Minten and Kyle (1999). The benefits of reducing 

transport costs in sub-Saharan Africa on both agricultural productivity and welfare are 

well researched, mostly by development economists though without basing their 

analyses on von Thünen’s work (e.g. Fafchamps, Gabre-Madhin, and Minten, 2005 for 

Benin, Madagascar and Malawi; Jacoby and Minten, 2009 for Madagascar; Gollin and 

Rogerson, 2014 for Uganda; and Adam et al. 2018 for Tanzania).  

These studies show how the spatial variation in transport costs affect different outcomes 

including incomes, prices, migration and structural transformation. For example, 

Fafchamps, Gabre-Madhin and Minten (2005) used trader survey data to investigate the 

presence of increasing returns to agricultural trade. Regarding transport costs, they 

concluded that for the Malawian and Madagascar cases that they studied, unit transport 

cost could be reduced simply by organizing larger loads. Jacoby and Minten (2009) use 

the canonical agricultural household model and novel cross-sectional data from 

Madagascar to examine the impact of a plausibly exogenous variation in transport costs 

on incomes. They find that a road that essentially eliminated transport costs would boost 

the incomes of the remotest households by nearly half, mostly by raising non-farm 

earnings. Gollin and Rogerson (2014) develop a multi-sector multi-region general 

equilibrium model to examine the effect of transport costs and changes in agricultural 

productivity on household welfare in Uganda. They find that high transportation costs 
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lead to high food prices in cities, thereby restricting migration from rural to urban areas 

and exacerbating subsistence farming in rural areas.   

Adam et al. (2018) expanded the spatial general equilibrium model in Gollin and 

Rogerson (2014) to analyze the effects of public investment programs—including those 

that reduce transport costs—on household welfare in Tanzania. In relation to transport 

costs, they find that interventions that directly reduce transport costs accelerate 

processes of structural transformation, making the economy more tradable in the 

process though this depends on market power of the transporters. They however rely 

on stylized assumptions— regions are defined functionally with no actual location on 

the map and urban regions do not produce any agricultural commodities— which are 

at best questionable since location matters in the distribution of economic activities and 

there is as much agricultural production in the peripherals of the urban areas as in the 

rural areas.  

Globally, benefits of reducing transport costs mostly through transport infrastructure 

like roads and railroads have been reported in India (Donaldson 2018) and the United 

State (Costinot and Donaldson 2016), where the introduction of rail roads is reported 

to have reduced famine and increased agricultural production.  Nonetheless, these 

studies did not analyze directly the effect of transport cost reduction on the volumes 

that are traded across districts understandably because data on flows across districts are 

not available in most countries. At the international level, transport costs have been 

found to be a key determinant in international trade flows and therefore gains to trade 

(Venables and Limao 2002).  

The estimation of trade elasticities and share of home traded goods are at the pinnacle 

of the new international trade theories. Only a few studies (e.g., Donaldson 2018 for 

India) have applied these models to intra-national trade because these trade models 

require prior estimates of trade flows which are unavailable for most countries. 

Donaldson (2018, p.900) summarizes this food policy and data problem, “information 

on trade flows within a country is rarely available to researchers, yet the response of 

these trade flows to a transportation infrastructure improvement says a great deal 

about the potential for gains from trade”. The analysis of intra-country trade flows is 

important for making food policies because of the likely spill-overs across space and 

time. For instance, to understand whether a farm subsidy for rural poor improves 
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nutritional outcomes, we need to know the quantity of food that moves across the rural-

urban space. In addition, trade flows may alleviate impacts of weather shocks like 

droughts and floods (see for example Burgess and Donaldson 2010 in India).  

We relax some assumptions (e.g. uniform fertility and single town) in von Thünen’s 

theory and propose that a price endogenous nonlinear mathematical programming 

model (following Chen and Onal, 2012) is a general modelling framework for 

implementing what von Thünen laid out. The advantage of this model is that the optimal 

solution includes calibrated volumes of produce traded. We implement the spatially 

specific mathematical programming model for six major food crops (maize, rice, 

cassava, potatoes, beans and groundnuts) in Malawi— a largely rural agricultural 

country with high domestic transport costs. The model is calibrated for each of the 27 

districts using 10 years of crop mix data to avoid overspecialization with supply and 

demand schedules referenced for 2009/10 agricultural season. We implemented the 

model using the commercial version of GAMS (General Algebraic Modelling System). 

The calibration results for the base year show that 7% of produced quantities of maize 

flow across districts as compared with 66% for rice, 74% for beans, 46% for 

groundnuts, and zero for cassava and potatoes. The results of the chapter show that 

instead of concentric rings, there exists “arrows” of product flows across the different 

separated but not isolated districts that reflect the spatial shadow price differences in 

relation to transport costs. A simulation experiment shows that a reduction in the per 

unit cost of transport nonlinearly increases by a small margin the share of production 

traded. This points to alternative investment and policy decisions mostly towards rural 

road infrastructure that enhances the urban connectedness of rural areas.  

This chapter makes two main contributions to this literature. First, this chapter is the 

first in Malawi to calibrate trade flows of food crops within the country and thus provide 

a benchmark for future agricultural policy making in Malawi. Second, the chapter links 

a causal theory of the effects of distance (and transport costs) on the spatial organization 

of economic activity by von Thunen to mathematical programming models.  

The rest of the chapter is organized as follows. The policy context motivating the 

modelling approach is discussed in subsection 4.1.1. The model is discussed in section 

4.2 followed by a description of the data and agricultural statistics used in the 

calibration in section 4.3. The results of the calibration are presented in section 4.4. 
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Section 4.5 provides the discussion of the results with respect to von Thünen spatial 

economic theory and their implications for food policy followed by concluding remarks 

in section 4.6.  

4.1.1 Food policy context 

The pursuit of self-sufficiency in food is evident in both historical and current food 

policies of Malawi. The key priority of Malawi’s post-independence era agricultural 

policy has been to attain food self-sufficiency through production of own staple foods.  

On the production side, Malawi has been implementing a farm input subsidy program 

for staple food production since 2005/06. On the trade side, Malawi occasionally 

invokes import and export bans whenever the country experiences crop production 

surplus and deficits respectively. In addition, the government annually recommends 

minimum farmgate prices, and supports a grain marketing board and food reserve 

agency (Pauw and Edelman 2015). While many economists espouse the principles of 

free trade and its benefits, these principles are often not heeded by governments and 

policy makers for both political and practical economic reasons. This position is 

unlikely to change in the foreseeable future. In this chapter, we take a neglected “intra-

country, inter-district” view of the Malawi economy. Assuming a closed staple food 

sector economy in the case of Malawi is plausible because although Malawi is an 

occasional importer and exporter of maize (the main staple food), the internationally 

volumes are typically less than 6% of production. There is virtually no recorded trade 

in the other key staples like cassava and sweet potatoes because of low value-bulk ratio 

(Minot 2010a).  A much lower percentage (2%) for traded maize is reported by Adam 

et al. (2018) for Tanzania.  

We rely on the fact that heterogeneity within a country can generate free-trade-like 

benefits across the different districts or regions of the country that would result in a 

second-best food policy under self-sufficiency. Benson et al. (2016) similarly argues 

that the implication of farming diversity in Malawi is that the comparative advantage 

of different areas of the country for production of different crops, livestock and other 

agricultural products differs significantly from place to place. To achieve these district 

or regional comparative advantages, targeted policies are a necessity. Targeting of 

agricultural policies to the poor and across geography nonetheless has been a difficult 

task among policy makers and economists in developing countries including Malawi 
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because agricultural statistics are either sparse or not timely. For the purposes of the 

sector model, Malawi is disaggregated into 27 districts as shown in the Figure 4-1 

below. The district is a useful spatial unit of analysis for calibrating the model because 

most agricultural and development statistics are available at this level. In addition, 

Malawi’s decentralization efforts are targeted at making the district as the central point 

of policy discourses with structures and powers that were initially in the purview of the 

national government.  

 

Figure 4-1: Districts of Malawi 

Notes: Shaded districts (Lilongwe, Mzimba, Zomba and Blantyre) are city districts. Lilongwe is the 

capital city.  

Maize is the most important food crop in the country, followed by cassava, potatoes 

and Sorghum (Minot, 2010a). Precisely, per capita consumption of maize is 133kg and 

it accounts for about 54% of caloric intake of households in Malawi (Table 4-1). Using 

nationally representative survey data for 2005/06, Ecker and Qaim (2011) report that 

on average, more than 60% of the total food quantity consists of staple foods, primarily 
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maize. Maize accounts for 46% of total food quantities, more than 60% of energy, and 

almost half of protein consumption. It is also the source for 67% of total iron, 65% of 

total zinc, and almost 70% of total riboflavin consumed.  In selecting the food crops to 

include in the model, we were guided by the long-term importance of the food crop to 

the Malawian population. Therefore, the major food crops- Maize, Rice, Cassava and 

Potatoes were chosen. We however included other food crops that offer other major 

nutrients apart from calories available through the staple food crops. Two pulses (i.e., 

Beans and groundnuts) were thus also included in the model. 

Table 4-1: Food consumption (kg/person/year) in urban and rural areas 

Food Crop Verduzco-Gallo, Ecker, Pauw (2014) Minot (2010) 

based of FAO 2009 

Food balance sheet  
Urban Rural National Share 

of 

caloric 

intake 

(%)  
2004/05 2010/11 2004/05 2010/11 2009 

 

Maize 144 159 154 177 133 54 

Rice 13 16 4 5 
  

Cassava 15 9 20 15 89 7 

Potato 22 39 16 19 88 8 

Beans 10 10 9 7 
  

Groundnuts 4 6 10 6 
  

 

Studies on market equilibrium models are comparatively sparse, especially in Malawi. 

Some of the previous market equilibrium models in Malawi include; Mapila, et al. 

(2013) which focused on the maize sector, and Simler (1997) and Kachulu (2018) on 

multiple crops. Though Simler looked at more than 10 major crops, the analysis was at 

the national level (without spatial consideration) and is now dated, with major changes 

in the Malawian economy since this work was published over two decades ago. Another 

related strand of research analyses the spatial flows of agricultural commodities. There 

are also only few articles as shown in Table 4-2 that attempted to estimate spatial flows 

usually for maize. The reason for this is the lack of data and the difficulty in collecting 

data from traders who for practical and strategic reasons may not be willing to publicly 

share their volume of operations.   
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Specific efforts that collected spatial flows in the context of Malawi include Gabre-

madhin et al. (2001) and FEWSNET (2014, 2018).25 These efforts relied on trader 

surveys and expert opinion to assess the direction of flows and in the case of Gabre-

madhin et al. (2001) both the direction and volume of flows (Table 4-2). The estimates 

from these studies are not updated and though required are not given attention in the 

data collection efforts by the government or its development partners. This lack of 

knowledge affects decision making in that it is difficult to target production and 

consumption policies to where they would be most effective.  

Table 4-2: Spatial flows and market analysis studies in Malawi 

Study  Period 

studied 

Data and Methods Crops and total volumes Share of traded 

produce 

(national) 

Panel a: Spatial flows studies 

Gabre-madhin et al. 

(2001) 

2001 Trader survey Maize, rice, beans and pulses, 

soybeans 

Not given 

FEWSNET (2014) 2009 Expert opinion Maize Not given 

FEWSNET (2018) 2018 Expert opinion Maize, pulses in Southern 

region 

 

Jayne et al. (2010) 2009 Trader survey  Maize 12.9% 

Haggblade, 

Longabaugh, and 

Tschirley (2009) 

2009 Mapping of 

administrative and 

survey data 

Food staples (Maize, Cassava) 12.2% 

Myers (2013) 2001-

2008 

Spatial cointegration 

models 

Maize Not given 

Panel b: Market analysis studies 

Mapila, et al. (2013) 2010 Agricultural 

Statistics and linear 

programming 

Maize Not given 

Kachulu (2018)  2010  Malawi Agricultural 

Sector Model 

Cassava, Cotton, Groundnuts, 

Maize, Paprika, Rice, 

Sorghum, Soybean, 

Sugarcane, Tobacco 

Not given 

 

                                                 
25 Famine Early Warning Systems Network, an initiative led by the United States Agency for 

International Development (USAID).  
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4.2. Model 

4.2.1 Von Thünen spatial economic theory  

To estimate inter-district trade flows without having to observe any prior estimates- 

because they are unavailable in Malawi anyway; we need both a coherent theory and 

empirical model that link observable variables like production, consumption and factor 

endowments to trade flows across locations. In this section, we discuss the proposition 

of using von Thünen spatial economic theory and mathematical programming as its 

empirical apparatus. Several studies have questioned the economic theory behind the 

use of spatial sector programming models because these models aggregate data at sector 

and regional levels yet much of the economic theory is at the level of an individual 

economic agent (Wiborg et al. 2005). However, this criticism applies to all other 

modeling alternatives, including computable general equilibrium (CGE) and 

econometrically estimated gravity models and so we set it aside.   

We propose that it is useful to think of a spatial sector programming model as an 

empirical procedure for relaxing and implementing von Thünen’s spatial economic 

theory. Figure 4-2 shows this theory where the net land rent, 𝜋𝑖 = 𝑃𝑖 − 𝑅𝑖(𝑇𝐶) is a  

 

Figure 4-2: Land rent profile and von Thünen rings (Source: adapted from Fujita 2012) 
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function of land value (price) for each land profile, 𝑃𝑖 (note: 𝑖 ∈ {𝐴, 𝐵, 𝐶}) and land 

profile transport costs given by 𝑅𝑖(𝑇𝐶). At the center of the town, crops difficult to 

transport (e.g., tomato represented as A) will be grown because 𝑃𝐴 > 𝑃𝐵 > 𝑃𝐶. As we 

move away from the main town, the transport costs will be higher and it will be valuable 

to grow crop 𝐵.  

The link between von Thünen theory and mathematical programming was first 

proposed by Stevens (1968). Stevens suggested that a formal “one-shot” model of von 

Thünen’s theory should be of the general mathematical programming format since such 

a format would explicitly determine which activities (crops) appear in an optimal 

solution and which of the large set of inequalities forms the set of equations to be solved 

for equilibrium values. Hartwick (1972) later showed that von Thünen theory can be 

solved using an endogenous price equilibrium model. Paul Samuelson’s essay “Thünen  

at Two Hundred” eloquently pointed in this direction, “when Thünen  perceived what 

spatial pricing and specialization patterns are admissible under competition, he was 

anticipating the methods and results of Kuhn-Tucker nonlinear programming” 

(Samuelson 1983). These suggestions were however not followed through with 

empirical data. Drawing from von Thünen’s assumptions, we make the necessary 

changes in assumption to make it the underlying theory for a spatial sector 

programming model—a regional model rich in structure regarding production and 

consumption (see Table 4-3 for a comparison of assumptions made by von Thünen and 

those used in spatial sector programming models).  

This approach allows the interpretation of the results in light with the theory and thereby 

leading to consistent policy recommendations on trade flows. Using heroic 

assumptions, von Thünen showed analytically and with examples that with increasing 

distance from the isolated town, the land will progressively be given up to products 

cheap to transport in relation to their value. For this reason alone, sharply differentiated 

concentric rings or belts will form around the town, each with its own staple product. It 

will be shown— with non-linear, multi-district food sector model— that arrows instead 

of concentric rings will point to the cities with distance and hence transport cost being 

the key factor in dictating the type of crop being traded. 
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Table 4-3: Von Thünen spatial economic theory and spatial sector programming 

models 

Assumptions von Thünen Theory Spatial sector programming model 

1) Soil fertility Uniform across plain 

leading to constant crop 

yields 

Variation by soil type, region, 

topography etc. leading to differences 

in crop yields 

2) Market center Single Multiple markets 

3) Unit transportation cost Uniform Inter-region transport costs can vary 

by crop. Intra-region transportation 

costs usually ignored (Hall, et al. 

1975) 

4) Production costs Uniform Vary by region and crops 

5) Demand Infinitely elastic Empirical demand estimates 

 

4.2.2 Non-linear, multi-district food sector model 

This study is based on three chronologically related economic models- the spatial 

economic theory proposed by von Thünen almost two centuries ago, the spatial 

equilibrium models of Samuelson (1952) and Takayama and Judge (1971), and sector 

programming models as introduced by McCarl (1982). Mathematical programming 

sector models have been widely used in developed countries to predict the impacts of 

changes in public policy, technology and infrastructure as well as in the general 

economic conditions on an agricultural economy and to evaluate alternative policy 

choices (Apland and Andersson 1996). Alternative approaches to estimating trade 

flows usually used in international trade include gravity models (Limao and Venables 

2001), co-integration models (Myers 2013), input-output regional models (Uribe, de 

Leeuw and Theil 1966) and trader surveys. The advantage for using spatial sector 

programming models is that these models can help generate some nonexistent estimates 

that can then be used in future for improving the collection of agricultural statistics. 

This advantage motivates the use of the model since Malawi lacks agricultural statistics 

on inter-district trade flows of food crops. The major challenge of using these models 

is that they are data intensive, some of which may not be readily available in a 

developing country. In this study, we show how compromises can be made to make the 

model operational for policy making with readily available data 



83 

 

We assume more than two regions (or districts) trading in more than two homogenous 

commodities. Each district constitutes a single and distinct market which is separated 

but not isolated by a transportation cost. In addition, districts within the sector model 

allow for differences in available technology, resource supplies, and product demands 

(Apland and Andersson 1996).  The key assumptions for the model include; competitive 

behavior for the participants and districts; and no legal restrictions to limit the actions 

of arbitragers in each district. These assumptions are plausible for Malawi because as 

reported by Myers (2013), spatial price transmission and seasonal price patterns in 

private sector maize markets in Malawi are generally consistent with long-run 

competitive inter-regional trade.  

Using the assumptions stated, we can set up the net benefit function or net quasi-welfare 

maximization problem for a static, multi-region, multi-crop, non–linear programming 

model of the food sector in Malawi. The model captures the market equilibrium by 

maximizing economic surplus subject to market clearing and land allocation 

constraints. Consider the following nonlinear programming model of a closed food 

sector with a set of regions, Ω𝐺; set of multiple products, Ω𝑌;  set of multiple variable 

inputs,Ω𝑍𝑉; and a set of production activities in region 𝑔, Ω𝑋𝐺:  

 Maximize: 𝑊 = ∑ ∑ [𝑎𝑔𝑖𝑌𝑔𝑖 + 0.5𝑏𝑔𝑖𝑌𝑔𝑖
2 ]

𝑖∈Ω𝑌

 

𝑔∈Ω𝐺

− ∑ ∑ [𝑐𝑔𝑘𝑍𝑔𝑘 + 0.5𝑑𝑔𝑘𝑍𝑔𝑘
2 ]

𝑘∈Ω𝑍𝑉

− ∑ ∑ ∑ 𝑡𝑦𝑔ℎ𝑖𝑇𝑌𝑔ℎ𝑖

𝑖∈Ω𝑌ℎ∈Ω𝐺,ℎ≠𝑔

 

𝑔∈Ω𝐺𝑔∈Ω𝐺

− ∑ ∑ ∑ 𝑡𝑧𝑔ℎ𝑘𝑇𝑍𝑔ℎ𝑘

𝑘∈Ω𝑍𝑉ℎ∈Ω𝐺,ℎ≠𝑔𝑔∈Ω𝐺

 

(29) 

Subject to: 

 𝑌𝑔𝑖 − ∑ 𝑒𝑔𝑖𝑗𝑋𝑔𝑗

𝑗∈Ω𝑋𝐺

+ ∑ 𝑇𝑌𝑔ℎ𝑖

𝑔∈ΩG,ℎ≠𝑔

− ∑ 𝑇𝑌ℎ𝑔𝑖

𝑔∈ΩG,ℎ≠𝑔

≤ 0   ∀ g ∈ ΩG, i ∈ ΩY (30) 

 ∑ 𝑣𝑔𝑘𝑗𝑋𝑔𝑗 − 𝑍𝑔𝑘 + ∑ 𝑇𝑍𝑔ℎ𝑘

𝑔∈ΩG,ℎ≠𝑔

− ∑ 𝑇𝑍ℎ𝑔𝑘

𝑔∈ΩG,ℎ≠𝑔

≤ 0;    ∀ g ∈ ΩG, k ∈ ΩZV 

𝑗∈Ω𝑋𝐺

 (31) 

 𝑌𝑔𝑖 , 𝑋𝑔𝑗 , 𝑍𝑔𝑘, 𝑇𝑌𝑔ℎ𝑖 , 𝑇𝑌𝑔ℎ𝑘 ≥ 0; ∀  𝑔 ∈ Ω𝐺; 𝑖 ∈ Ω𝑌 , 𝑗 ∈ Ω𝑋, 𝑘 ∈ Ω𝑍; ℎ ∈ Ω𝐺 , ℎ ≠ 𝑔 

 
(32) 

𝑋𝑔𝑗 ≤ ∑ Φgt𝑋𝑔𝑗𝑡

2009

𝑡=2000

  

 

(33) 
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∑ Φgt

2009

𝑡=2000

≤ 1  

 

(34) 

where 

𝑔 is the region/district; 

𝑌𝑔𝑖 is the quantity demanded of product 𝑖 in district 𝑔; 

𝑍𝑔𝑘 is the quantity supplied of variable input 𝑘 in district 𝑔; 

𝑋𝑔𝑗 is the level of production activity 𝑗 (area of land under crop j) in district 𝑔; 

𝑇𝑌𝑔ℎ𝑖 is the quantity of product 𝑖 shipped from district 𝑔 to district ℎ; 

𝑇𝑍𝑔ℎ𝑘 is the quantity of variable input 𝑘 shipped from district 𝑔 to district ℎ; 

𝑒𝑔𝑖𝑗 is the output of product 𝑖 per unit of production activity 𝑗 in district 𝑔 (or 

yield coefficient); 

𝑣𝑔𝑘𝑗 is requirement of variable input 𝑘 per unit of production activity 𝑗 in district 

𝑔; 

𝑡𝑦𝑔ℎ𝑖 is transport cost from district 𝑔 to district ℎ per unit of product 𝑖;  

𝑡𝑧𝑔ℎ𝑘 is transport cost from district 𝑔 to district ℎ per unit of variable input 𝑘; 

Φ𝑔𝑡 is the endogenous weight for historical crop mixes. 

The market demand function for product 𝑖 in region 𝑔, in quantity dependent form is, 

𝑃𝑔𝑖 = 𝑎𝑔𝑖 + 𝑏𝑔𝑖𝑌𝑔𝑖. The related terms in the objective function, 𝑎𝑔𝑖𝑌𝑔𝑖 + 0.5𝑏𝑔𝑖𝑌𝑔𝑖
2 , are 

demand function integrals. The market supply function for variable input 𝑘 in region 

𝑔, in quantity dependent form is, 𝑅𝑔𝑘 = 𝑐𝑔𝑘 + 𝑑𝑔𝑘𝑍𝑔𝑘. The related terms in the 

objective function, 𝑐𝑔𝑘𝑍𝑔𝑘 + 0.5𝑑𝑔𝑘𝑍𝑔𝑘
2 , are input supply function integrals. The 

constraint in equation 30 represents the product balance where total use of each product 

is restricted to its total supply. The constraint in equation 31 is the input balance 

constraint which restricts the use of input 𝑘 in region 𝑖  to its availability.  The constraint 

in equation 32 is the usual non-negativity requirement constraint for all the endogenous 

variables. The constraint in equation 33 and 34 represent convexity restrictions on 

historical crop mixes. This is discussed in the next section.  

4.2.3 Crop mixes in the food sector model 

The use of aggregate level supply responses instead of individual supply response 

functions in the sector model has its caveats. There may be discrepancies for the 

following reasons: (i) details on production are typically much less in a sector model 
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than in individual farm models, (ii) sector models typically ignore market factors like 

product differentiation and quality, and (iii) transaction costs are often omitted (Wiborg 

et al. 2005). In addition to these sources of aggregation bias, extreme specialization in 

mathematical programming models is also not consistent with observed production 

patterns. There are two main approaches of dealing with the aggregation bias and 

extreme specialization: positive mathematical programming (PMP) and crop mix 

approach. For trade flows calibration, the PMP approach requires prior knowledge of 

crop flows (Paris et al. 2011) which are not available in the case of Malawi.  

The crop mix approach was introduced by McCarl and Spreen (1980) to reduce the 

potential aggregation biases. The crop mix approach also prevents extreme crop 

specialization (Apland & Andersson, 1996). This approach restricts the crop mix to the 

space spanned by a convex combination of historical crop mixes. The main assumption 

when using this approach is that there is a duality between solving an aggregate model 

with the full detail of all the farm firm models included on the one hand, and on the 

other building an aggregate model without the farm firm models which is constrained 

to the production possibility set spanned by a convex combination of all possible 

optimal solutions of the farm firm models (Wilborg, et al. 2005; Merel and Howitt 

2014).  

There are two important deficiencies when using the historical crop mixes. Firstly, the 

use of historical crop mixes does not constitute as rich a production possibility set, as 

one would have the full detail in a model. Historical crop mixes are reflections of 

producer decisions in the face of prevailing prices. Thus, the crop mixes will not be an 

accurate representation either if the expected prices confronted by the model are outside 

the historical range or if the situation to be examined substantially revises the 

production possibilities. Second, the approach does not take account of changes in 

production costs, inputs and yields when crop mixes change. Several extensions 

considering these have been made. These include; supplementing the historical crop 

mixes with expert information or survey information and in a recent study, Chen and 

Onal (2012) suggested combining historical crop mixes with synthetic crop mixes that 

are based on acreage response elasticity. The justification for the modification is that 

though historical crop mixes may be valid when simulating farmer’s planting decisions 

under normal conditions, they may be too restrictive for future land uses.   



86 

 

In this chapter, we use historical crop mixes26 because during this decade Malawi 

experienced both worst droughts in 2001/02, 2004/05 and 2007/08 with extreme price 

spikes, normal, and bumper harvests particularly after the 2005/06 agricultural season. 

For example, due to poor harvest, maize prices rose in 2001/02, 2004/05 and 2007/08 

by 354%, 218% and 395% respectively (Ellis and Manda 2012). Despite these price 

spikes, the allocation of land to the various food crops has remained stable as can be 

seen in figure 4-3.  

 

Figure 4-3: National crop mix, 2000/01-2009/10 

 

4.2.4 Analytical results  

The endogenous variable that lies at the core of this study is 𝑇𝑌𝑔ℎ𝑖, the quantity of a 

crop 𝑖 that is traded across regions 𝑔 and ℎ. The study seeks to determine its share to 

total production under different perturbations of per unit transport cost, 𝑡𝑦𝑔ℎ𝑖. To 

understand how inter-district trade flows are estimated using the model, we show the 

Kuhn-Tucker-Karush (K-T-K) conditions corresponding to the inter-district product 

trade flow variable,𝑇𝑌𝑔ℎ𝑖. Let the Lagrange multiplier associated with the product 

                                                 
26 The crop mixes are incorporated in the model using convexity constraint which is part of the input 

constraints as shown in the partial tableau in the appendices. 
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balance constraint (2) for product 𝑖 in region 𝑔 be 𝜆𝑔𝑖. Then K-T-K conditions for the 

product variables are: 

 𝜕𝐿

𝜕𝑇𝑌𝑔ℎ𝑖

= −𝑡𝑦𝑔ℎ𝑗 + 𝜆ℎ𝑖 − 𝜆𝑔𝑖 ≤ 0; ∀𝑔 ∈ Ω𝐺 , ℎ ∈ Ω𝐺 , ℎ ≠ 𝑔, 𝑖 ∈ Ω𝑌 (35) 

 
∑ ∑ ∑ [

𝜕𝐿

𝜕𝑇𝑌𝑔ℎ𝑖

] 𝑇𝑌𝑔ℎ𝑖

𝑖∈Ω𝑌ℎ∈Ω𝐺,ℎ≠𝑔𝑔∈Ω𝐺

= ∑ ∑ ∑ [−𝑡𝑦𝑔ℎ𝑖 + 𝜆ℎ𝑖 − 𝜆𝑔𝑖]𝑇𝑌𝑔ℎ𝑖 = 0

𝑖∈Ω𝑌ℎ∈Ω𝐺,ℎ≠𝑔

 

𝑔∈Ω𝐺

  

(36) 

 𝑇𝑌𝑔ℎ𝑖 ≥ 0; ∀ 𝑔 ∈ Ω𝐺 , ℎ ∈ Ω𝐺 , ℎ ≠ 𝑔, 𝑖 ∈ Ω𝑌 (37) 

 𝜕𝐿

𝜕𝜆𝑔𝑖

= −𝑌𝑔𝑖 + ∑ 𝑒𝑔𝑖𝑗𝑋𝑔𝑗

𝑗∈Ω𝑋𝐺

+ ∑ 𝑇𝑌ℎ𝑔𝑖

ℎ∈Ω𝐺,ℎ≠𝑔

− ∑ 𝑇𝑌𝑔ℎ𝑖

ℎ∈Ω𝐺 ,ℎ≠𝑔

≥ 0; 𝑔 ∈ Ω𝐺 , 𝑖 ∈ Ω𝑌 (38) 

 
∑ ∑ [

𝜕𝐿

𝜕𝜆𝑔𝑖

] 𝜆𝑔𝑖

𝑖∈Ω𝑌𝑔∈Ω𝐺

= ∑ ∑ [−𝑌𝑔𝑖 + ∑ 𝑒𝑔𝑖𝑗𝑋𝑔𝑗

𝑗∈Ω𝑋𝐺

+ ∑ 𝑇𝑌ℎ𝑔𝑖

ℎ∈Ω𝐺,ℎ≠𝑔𝑖∈Ω𝑌𝑔∈Ω𝐺

− ∑ 𝑇𝑌𝑔ℎ𝑖

ℎ∈Ω𝐺,ℎ≠𝑔

] 𝜆𝑔𝑖 = 0  

(39) 

 𝜆𝑔𝑖 ≥ 0; 𝑔 ∈ Ω𝐺 , 𝑖 ∈ Ω𝑌 (40) 

   

The set of K-T-K conditions can be interpreted based on whether inter-district trade 

occurs. If no trade takes place, by conditions [38-40], consumption within the region, 

𝑌𝑔𝑖
∗ , is equal to endogenous crop supply or production, ∑ 𝑒𝑔𝑖𝑗𝑋𝑔𝑗

∗
𝑗∈Ω𝑋𝐺

. If district 𝑔 

engages in inter-district trade of food crop 𝑖, then ∑ 𝑇𝑌ℎ𝑔𝑖ℎ∈Ω𝐺,ℎ≠𝑔 > 0 or 

∑ 𝑇𝑌𝑔ℎ𝑖ℎ∈Ω𝐺,ℎ≠𝑔 > 0, indicating excess demand or excess supply, respectively. The 

arbitrage condition holds, so that, by conditions [35-37], the prices of the food crop in 

region 𝑔 and ℎ will differ by at most the unit cost of transportation between the two 

regions, 𝜆𝑔𝑖
∗ − 𝜆ℎ𝑖

∗ ≤ 𝑡𝑦𝑔ℎ𝑖.  

In the simulations, we demonstrate how varying the unit cost of transportation affects 

the ratio of inter-district trade volumes to total production. This value will differ across 

crops and regions thereby resulting in a flurry of von Thünen arrows. Following 

Donaldson (2018), we present three qualitative results that a simple inter-district model 

would produce.  

Result 1 [Von Thunen Arrows of Flows]: Reducing transport costs across all districts 

will increase total flows for all commodities that were flowing under the baseline. The 
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flows will increase the most for crops that use the mobile factors the most intensively. 

Mathematically, we are claiming that 
dTY

dty
< 0. 

Result 2: Share of traded volumes and trade elasticity are sufficient statistics for 

making welfare comparisons of the effect of transport costs.  

Result 3: Reducing transport costs increases total welfare.  

The complexity of the model makes it difficult to derive envelope and implicit function 

properties for an analytic solution. We thus depend on a mathematical simulation to 

determine the effects of transport cost changes on food flows.  

4.2.5 Computation 

The model is calibrated in the commercial version of GAMS (General Algebraic 

Modelling System) following a structure of Forest and Agricultural Sector 

Optimization Model for the U.S (Adams et al. 1996) and Minnesota Sector Model 

documented in Moon et al. (2014). The GAMS code is provided in appendix C and the 

data matrices are available from the author upon request.  

4.3. Data and model inputs 

In this section, we provide a detailed description of the data used in the calibration. A 

sector model is as accurate as the data used for the calibration and careful attention is 

made to explicitly explain the data assumptions made. The data inputs for the model 

include the raw food crop prices and quantity demanded, historical crop mixes (hectares 

under each crop), crop yields, production and marketing costs for each of 27 districts. 

The model is calibrated and validated using 2009/10 as the reference year. The data are 

summarized in four broad categories: demand data, production data, transportation data 

and crop budgets.  

4.3.1 Demand  

The demand data used in the model included rural and urban own price elasticities for 

each of the food crops, district level quantities consumed per capita for each of the food 

crops, district level population and prices of the food crops for 2009/10 agricultural 

season. The demand functions we use in this study were obtained from a quadratic 

almost ideal demand system (QUAIDS) elasticities estimated by Ecker and Qaim 
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(2011). Instead of working out the inverse of the Quadratic Almost Ideal System, we 

use the own price elasticities, price data and quantity consumed in each district to derive 

the coefficients for the demand system.  The slope coefficients for the district demand 

equations for each food crop are therefore calculated as: 𝑏𝑔𝑖 =
 𝛿𝑔𝑖  𝑌̅𝑔𝑖

𝑃̅𝑔𝑖
  where 𝛿𝑔𝑖 is the 

own price elasticity (different for rural and urban districts) and the bars on the variables 

represent the observed values for prices, 𝑃 and quantity demanded,𝑌 in each of the 

districts. The elasticity refers to the percentage change in 𝑌 with respect to change in 

𝑃, but the slope is defined from the inverse demand function so it is ΔP ΔY⁄  (Hazell and 

Norton 1986). The treatment of demand functions in this way implicitly assumes that 

the demand system in each district is proportional to the rural and urban disaggregated 

demand systems. According to Hall, et al. (1975), this does not imply that the quantities 

demanded in a particular district will be proportional to national quantities; price 

variations between areas will prevent that. Thus, this treatment ignores intra-rural or 

intra-urban district differences in preferences. The own price and expenditure 

elasticities were obtained from a 2009/10 study by Ecker and Qaim (2011). Table 4-4 

summarizes the elasticities used in the study. The urban elasticities were used for the 

city districts of Lilongwe, Blantyre, Zomba and Mzuzu (in Mzimba District). 

Table 4-4: Expenditure and Marshallian own-price elasticities of food demand among 

rural and urban households  

 Expenditure elasticities Own-price elasticities 

Crop   Rural Urban Rural Urban 

Maize 0.948 0.628 -0.877 -0.722 

Rice 0.892 0.904 -0.816 -0.959 

Cassava -0.665 0.076 0.618 -1.152 

Potatoes 0.712 1.004 -0.770 -1.248 

Beans 1.365 0.197 -0.952 0.415 

Groundnuts 0.744 0.413 -0.821 -0.013 

Source: Ecker and Qaim (2011) 

These values were considered acceptable since it is generally known that demand for 

staple crops is usually inelastic (The World Bank 2008). The positive elasticities for 

cassava and potatoes are inconsistent with demand theory and therefore have 
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implications on the results for these two crops27. The demand quantities were calculated 

by multiplying the per capital food crop consumption per year as reported in Verduzco-

Gallo, Ecker, and Pauw (2014) by the population size in each district from the 2008 

Malawi Population Census. In the case of cities, the district and city population were 

summed. The income coefficient was calculated from the income elasticities reported 

in Table 4-4, and expenditure per capita calculated by the author from the Integrated 

Household Survey III data.  

4.3.2 Production and input supply parameters  

The Malawi food sector model has the following inputs: seeds for each crop (i.e., maize, 

rice, potatoes, cassava, beans, groundnuts), basal fertilizer, top-dressing fertilizer, 

pesticides, transport, packaging materials, labor and land. These inputs can be divided 

into three groups of inputs: (i) exogenously-priced inputs (e.g., seeds, fertilizer, 

pesticides, packaging, and transport), (ii) available in fixed supply (e.g., land), and 

endogenously determined (e.g., labor). For exogenously-priced inputs, a unit cost entry 

is made directly in the objective function. For such inputs, the implicit supply function 

is infinitely elastic and the supply function integral is linear (Apland and Anderson 

1996). We thus included prices of the inputs as the intercept and a zero slope in the 

input supply equation. We obtained the price information from crop budgets provided 

by the Malawi’s Ministry of Agriculture and Food Security.  

Labor was assumed to be endogenously priced because labor use in smallholder 

agriculture in Malawi is largely family labor with under 10% of the total labor use being 

hired labor (Takane 2008); casual labor is very common. The data used on wage rates 

for labor use, labor requirement and available labor were obtained from Ministry of 

Agriculture and Food Security Crop Budgets for 2010 and were consistent with survey 

evidence from Takane (2008). The estimated labor supply elasticity was assumed to be 

(0.15) using the experimental results reported by Goldberg (2016). The only input 

available in fixed supply is food crop land. Crop land was therefore mapped to specific 

districts as land types and restricted using convexity restrictions. The crop production 

quantities, area cultivated and yields in each of the districts were collected from the 

                                                 
27 Note that even using plausible values for demand elasticities the input and output data for cassava and 

potatoes  are of poor quality and there is still no consensus on productivity levels. In Malawi for example, 

there are discrepancies among international databases, ministerial data sources and the national 

household surveys on the production statistics of roots and tubers (Kilic et al. 2018).    
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Agricultural Statistics Bulletin compiled by the Malawi Ministry of Agriculture and 

Food Security.   

4.3.3 Transportation  

Transportation costs from one district to another were computed from district-district 

distances and per unit per km transportation costs from the literature. We calculated 

geodesic distances in kilometres from the centroid of one district to another using 

geosphere package in R (specifically using the distm function). But these did not quite 

reflect the travel distances. Because geodesic distances do not capture the road 

infrastructure and practical realities of traveling across district centers, we use distances 

calculated from road networks instead and also supplemented these with google map 

API distances for three districts not in the database. The google map distances are the 

same as the distances calculated from the road networks.  

This implies that transport costs take the form of iceberg costs as is standard in trade 

literature. For domestic routes, Tchale and Keyser (2010) estimate transport cost to be 

18.00 Malawi Kwacha (0.129 USD) per ton per kilometre (or equivalently 0.018 

Malawi Kwacha per kg per kilometre). This takes a value of 0.0252 USD using the 

2016 exchange rate of 1 MWK/0.0014 USD (Guo and Hawkins 2016). Fafchamps and 

Gabremadhin (2006) using a trader survey estimated transport costs within Malawi as 

$0.70 per ton per km. Another study by Lall, Wang, and Munthali (2009) estimated 

using a survey of tobacco truckers that the average unit transport price (per ton, per km) 

is 228.4 Malawi kwacha from rural areas to the country’s main cities in comparison to 

10 and 12 Malawi kwacha per ton per km on routes linking the country to international 

markets. In the analysis, we assumed the value by Tchale and Keyser (2010) to be the 

base transport cost. Though, a spatial sector programming does not include intra-district 

transportation cost, we got estimates of transportation cost for each of the crops from 

the crop budgets which were added to the production costs.  

4.3.4 Crop budgets 

The crop budgets used in the study are based on the 2010 Ministry of Agriculture and 

Food Security gross margin analyses. We verify the input requirements by comparing 

to the official guide to agricultural production by the Ministry of Agriculture and Food 

Security.  The crop budgets are used to define the input and output coefficients for the 

model. The crop budgets are at national level but the crop yields are at district level 
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which allows an approximation of agro-ecological comparative advantage of each 

district to produce a particular crop. We use a 10 year average (2000-2009) as baseline 

yields in each district.  

The flow chart in figure 4-4 provides a list of the data inputs and outputs of the food 

sector model. 

 

Figure 4-4: Model flow chart 

4.4.  Calibration results  

In the previous two sections, we presented the model and associated data inputs. We 

now turn to the calibration results starting with the baseline results then transport cost 

simulations.  

4.4.1 Baseline scenario (Scenario 1) and model validation  

The common approach of validating a sector model is to compare the model results to 

observed values of interest. Since we do not have any data on food flows, the model is 
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validated by comparing the simulated land allocation and crop production levels of the 

6 food crops with the observed levels in the reference year (2009/10). We also compare 

the resultant map for maize flows to the FEWSNET market flow map for the 

corresponding year. In general, the base results are quite different from the observed 

levels. The table 4-5 shows the calibrated and actual land uses, yields and traded 

volumes in Malawi.  

Table 4-5: Calibrated yields, production and consumption in Malawi (Baseline) 

  
Units Without Restrictions with crop mix 

Maize Area Hectares                        978,955.18  1059652.85 

Maize Prod Kilograms              1,472,178,469.24  1557311930.30 

Maize Yield Kilograms/hectare                            1,503.83  1469.64 

Maize Ship-In Kilograms                 128,948,844.85  105367460.87 

Maize Demand Kilograms              1,472,178,469.24  1557311930.30 

Rice Area Hectares                          98,773.37  59601.97 

Rice Prod Kilograms                   78,411,951.00  78411951.00 

Rice Yield Kilograms/hectare                               793.86  1315.59 

Rice Ship-In Kilograms                   64,351,594.30  51869157.49 

Rice Demand Kilograms                   78,411,951.00  78411951.00 

Beans Area Hectares                        140,137.80  136627.17 

Beans Prod Kilograms                   65,348,009.00  65348009.00 

Beans Yield Kilograms/hectare                               466.31  478.29 

Beans Ship-In Kilograms                   54,485,587.87  48439699.55 

Beans Demand Kilograms                   65,348,009.00  65348009.00 

Groundnuts Area Hectares                        141,539.74  115121.78 

Groundnuts Prod Kilograms                   78,400,476.00  78400476.00 

Groundnuts Yield Kilograms/hectare                               553.91  681.02 

Groundnuts Ship-In Kilograms                   66,278,838.00  35722477.70 

Groundnuts Demand Kilograms                   78,400,476.00  78400476.00 
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Table 4-6: Calibrated yields, production and consumption in Malawi (Baseline) 

Crop Transport cost Scenario Share intra-district trade Share intra-district  

(with crop restrictions) 

Maize 0 10.19 23.19 

Rice 0 76.52 81.76 

Beans 0 110.27 96.77 

Groundnuts 0 91.94 53.71 

Maize 9 9.88 8.29 

Rice 9 89.51 66.29 

Beans 9 93.28 78.40 

Groundnuts 9 86.60 46.01 

Maize 18 8.76 6.77 

Rice 18 82.07 66.14 

Beans 18 83.38 74.13 

Groundnuts 18 84.54 45.56 

Maize 36 6.81 5.85 

Rice 36 81.92 65.83 

Beans 36 75.59 65.20 

Groundnuts 36 79.74 46.05 

 

For the baseline calibration year (2009/10), almost 7% of maize production is traded. 

This is close to estimates reported in other studies. Because rice, groundnuts and beans 

are demanded more in urban districts, the share of traded volumes is over 40% of 

production. The deviances imply a potential problem in the prediction of the economy. 

The differences between observed and model baseline values can be explained by the 

data regularities used for building the model. These include the cost of fertilizer. For 

instance, while the market cost of fertilizer was about 5500 Malawi Kwacha per 50kg 

in 2009/10, during this period a subsidy program (seeds and fertilizer) was provided to 

about half of the farming population to Maize implying the cost of producing maize 

was much lower due to the subsidy as compared to the market rate.  

In terms of land allocation, we compared the results from the model to crop suitability 

maps reported by Benson, Mabiso, and Nankhuni (2016). The suitability maps are 

consistent with the results of the chapter for all the crops grown.  

4.4.2 Transport cost experiments 

We consider four transport cost scenarios. These are (i) Scenario 1: Baseline- current 

per unit transport cost of 18 Malawi kwacha/MT/Km (0.0252 USD), (ii) Scenario 2: 

Double transportation costs from 18 to 36 Malawi Kwacha/MT/Km, (iii) Scenario 3: 
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Half transportation costs from 18 to 9 Malawi Kwacha/MT/Km and (iv) Scenario 4: 

Reduce unit transportation costs to close to zero kwacha per MT per Km. These 

scenarios capture a range of transport cost changes that may occur under exogenous 

improvements in infrastructure and changes in fuel costs. Note that for scenario 4, the 

factor and output price equalization theorem across districts of Samuelson holds.  

The figure 4-5 shows that a reduction in transport costs increases the share of traded 

volumes for all the crops. The increase in the share is however smaller as compared to 

the rate of transport cost reduction and exhibits nonlinearity. For instance, reducing 

transport costs by half increases the share of traded volumes of maize from 6.77 to 8.29 

percent. Cassava and potatoes do not move across districts in the optimal solution even 

at this lower transport cost.  

 

 Figure 4-5: Share of production traded across districts under different transport cost 

scenarios (without cropping restrictions) 

According to Minot (2010b), cassava is considered as a poor person’s crop as such it is 

usually consumed within the producing districts. It is therefore expected that in the 

optimal solution, the share of cassava traded is equal to zero even under low transport 

costs. The results in the chapter are somewhat different from prior studies on effects of 

transport costs on internationally traded volumes. According to Minten and Kyle 

(1999), doubling transport costs can reduce trade flows by around 80%.  
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In Uganda, Gollin and Rogerson (2014) find that higher transport costs drive up the 

size of the agricultural workforce and the fraction in subsistence. Donaldson (2018) for 

India and Donaldson (2019) for USA found that the intra-national estimate of the 

elasticity of trade flows with respect to distance is close to minus one. 

4.5. Discussion  

4.5.1 Spatial trade flows in Malawi: a von Thünen interpretation 

The map (figure 4-6) shows the baseline year (2009/10) direction but not the volumes 

of maize trade flows among the different markets in Malawi reported by FEWSNET 

(Famine Early Warning Systems Network) using expert opinions. To validate the 

model, we compare the direction of the flows to those shown in figure 4-6. We then 

discuss the quantities predicted using the model. There are several important 

distinctions between these flows and what is expected from the model. First, the figure 

shows bi-directional flows which may be due to differences in the timing of the 

availability of harvests. In the calibrated model, we only observe the net inter-district 

flows.  
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Figure 4-6: Map of observed maize trade flows in a normal year (2009) 

Source: FEWSNET (2014). Note: Production and Market Flow Maps provide a summary of experience based knowledge of market 

networks significant to food security. Maps are produced by USGS in collaboration with other FEWS NET staff, local government 

ministries, market information systems, NGOs, and network and private sector partners. 

It is evident in the figure 4-6 that most southern region districts and districts along the 

Lake Malawi are maize crop deficit districts. To illustrate this, consider districts that 

are wholly food insecure in the southern part of the country. These include, Machinga, 

Thyolo, Chikwawa and Nsanje. 
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Figure 4-7: Calibrated inter-district maize trade in Malawi showing von Thunen 

arrows 

Note: The flows are in metric tons. The flows for maize are consistent with expert opinion and literature 

on marketing of maize  

The figures 4-6 and 4-7 also illustrate the intuitive and modified von Thünen prediction 

of flows of agricultural outputs into the main cities of Lilongwe and Blantyre. The 

closer by districts are acting more as service districts providing maize to these urban 

areas. It is evident from the maps that in each region there are central district markets 

that import large flows of food crop commodities consistent with an observation by 

Mapila et al. (2013). In the case of central region, Lilongwe is the main maize market— 
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serviced by Mchinji, Kasungu, Dowa and Dedza based on FEWSNET estimates in 

figure 4-6 and only Mchinji and Dowa based on our calibration results. 

In the southern region, Blantyre District is the main market— serviced by Phalombe, 

Mulanje, Thyolo and Mwanza.  In terms of inter-regional flows, the results are 

consistent with the analysis by Myers (2013) who asserted that major inter-regional 

maize flows are from the centre to the south, with intermittent flows in both directions 

between the centre and the north, depending on weather patterns and the season. The 

maps are generally similar when considered at district level. For instance, Mchinji ships 

maize to Lilongwe, Ntcheu ships maize to Balaka. It is however difficult to make 

comparisons in cases where some parts of district are maize insecure while others are 

not in the FEWSNET map. In the figure 4-6 and 4-7, this is resolved using a district as 

the main analysis unit. Further research should consider the economics of 

disaggregating the sector programming model to finer spatial units and thus 

downscaling any policy interventions to such levels. The disparity between the model 

results and the map may also be due to the assumption of competitive markets and 

closed economy. Thus, a model that allows for alternative market structures and 

international trade may be most appropriate to reproduce the observed levels.     

The relative values of traded volumes for the food crops including maize (figures in the 

appendices) are higher than those reported by Gabre-madhin et al. (2001) for 1998-99 

season. They concluded that maize was traded in amounts ranging from 400 to 8000 

tons. Rice volumes were smaller ranging from 50 to 1000 tons. Beans/pulses trade 

ranges from 100 tons to 3000 tons whereas soybeans range anywhere from 10 tons to 

5000 tons.  This may imply that overtime; the level of traded volumes has been 

increasing. The flows for rice seem off because it requires a lot of water. A model with 

a water balance constraint would be appropriate to pin down the optimal rice flows. 

  

The other limitation of the study is that it doesn’t have a nutrition module. The six major 

crops analyzed provide all the required calories but not enough of the other macro and 

micronutrients. This should be a key element of future modelling work in this research 

agenda.  
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4.5.2 Food and nutrition policy implications 

The model presented in this chapter allows the estimation of food crop flows across the 

districts in Malawi. The policy simulations on reducing per unit transport costs show 

that cassava is not traded even under much lower transport costs. It is apparent that a 

reduction in transportation costs alone allows achieving food self -sufficiency for all 

crops while reducing total land area to food production and at modest levels of current 

crop yields. Under all transport scenarios, legumes (groundnuts and beans) are traded 

substantially across districts in optimum. This implies that encouraging rural farmers 

to grow more legumes does not necessary imply that the farmers will consume the 

legumes which has implications on nutrition since legumes are the cheaper source of 

protein in these areas. The demand scenarios are such that the grains are traded from 

surplus to deficit areas. One important challenge in Malawi’s food sufficiency drive is 

ensuring that food commodities can move from food surplus districts to food deficit 

districts. To facilitate such economic activities, government and policy makers can 

make concerted investments in the transportation sector that reduce transport costs with 

the aim of increasing the flows. The transport costs also capture other related trade costs 

like bribes that transporters pay to move with good across police road blocks (these 

inevitably increase the charges the traders have to pay to move good across districts) 

and other implicit restrictions on volumes of inputs and products.  

The cost of transportation is generally an important determinant of farm production 

decisions and thus, of aggregate land use, which in turn influences trade flows and 

aggregate welfare. The study found an important realization in terms of maize policy 

as producers and consumers in each district trade within the district more as compared 

to inter-district trade thus increasing the connectedness of districts through road 

infrastructural development cannot necessarily increase the trade flows between 

districts. Thus, government policy can be more effective if investments are made in 

rural road infrastructure that makes the rural areas connected to the district capital.  

The results in the chapter also provide a caution to researchers who assume large, 

uniform and linear effects of transport costs reduction on trade. The Malawi case as 

presented in this chapter shows that the effects are small, non-linear and vary 

considerably by crop.  This chapter has also provided a prototype model using readily 

available subnational data to guide targeted agricultural development planning in 
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Malawi and other data sparse countries in sub-Saharan Africa. In addition, the use of a 

spatial sector programming model can show the improvements required in the 

collection of agricultural statistics relevant for policy making. Given the importance of 

trade flows in making credible food policy decisions, it is important that statistical 

agencies in SSA introduce commodity flow surveys within countries. These can be 

implemented together with well-established agricultural surveys like the Living 

Standards Measurement Surveys (LSMS).  

4.6. Limitations and future research 

As with any other calibration exercise, our results depend on the quality of the 

underlying data. In this chapter, we have been explicit about the nature and sources of 

the data used, which we made clear so that our results and conclusions are interpreted 

within the limitations of the data realities we faced. First, food flows data are not 

collected and thus not available in Malawi— no one knows how much maize, rice, 

cassava, potatoes, beans, and groundnuts is traded across districts. This chapter 

estimates such data under the assumption of perfect competition. In addition, the results 

that even under low transport costs, cassava and potatoes are not traded across districts 

runs counter to the common sight of trucks carrying these commodities across different 

parts of the country. This may be largely due to poor quality of production and 

consumption data for these crops (see Kilic et al. 2018 for a description of the data 

quality issues for roots and tubers). Second, for the transport cost data, we assumed a 

constant per unit cost across crops and used distances based on centroids of districts. 

Both these assumptions have the potential to be relaxed, with possible important 

empirical implications. And finally, we did not include water balance and nutrition 

modules in the current version of the model. In general, these latter two limitations do 

not affect the qualitative conclusions of the study but remain important in this modeling 

work. Even with all these limitations, the potential for using spatial programming 

models in guiding data collection efforts for policy analysis remains huge. Future 

research agenda on generating “policy relevant” agricultural statistics in Malawi and 

other SSA countries should focus on introducing intra-national commodity flow 

surveys. The credibility of policy recommendations regarding the prospective benefits 

from freer international trade in food trade likely resonate with policy makers if the 

flow through benefits from enhanced intra-national trade are quantified and reported as 

national food sector policies are formulated. 
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Chapter 1 Appendices 

 

Figure A1: Venn-diagram of maize-legume intercropping in Malawi (numbers are number 

of plot observations) 
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Additional Tables 

Table A1: Additional descriptive statistics 

 Unit Proportion/mean  Std. Dev 

Plot characteristics   
  

Distance from plot to homestead Kilometers 0.79 1.20 

Plot area (GPS measured) Hectares 0.44 3.08 

Slope Percentage 5.66 4.96 

Rainfall Millimeters 833.21 80.78 

Elevation Meters 876.33 312.25 

Crop stand dummy (Pure stand=1) Proportion 0.43 0.50 

Soil type (Sandy=1) Proportion 0.20 0.40 

Soil type (Between sandy and clay=1) Proportion 0.59 0.49 

Soil type (Clay=1) Proportion 0.17 0.38 

soil type (Other=1) Proportion 0.04 0.19 

soil quality (Good=1) Proportion 0.45 0.5 

soil quality (Fair=1) Proportion 0.43 0.5 

soil quality (Poor=1) Proportion 0.12 0.32 

Household characteristics       

Family labor Hours/ha/year 856.25 1225.33 

Age of household head Years 43.53 16.29 

Household size Number 4.79 2.18 

Poverty quintile 1-10 3.17 1.35 

Distance to road Kilometers 9.86 10.32 

Distance to trading center Kilometers 37.91 20.81 

Distance to nearest border  Kilometers 22.82 17.43 

Distance to marketing parastatal depot Kilometers 7.90 5.29 

Total expenditure per capita Malawi kwacha 53154.35 53692.46 

Poverty (Poor=1) Proportion 0.46 0.50 

Gender of the household head (Female=1) Proportion 0.25 0.43 

Education level of household head (None=1) Proportion 0.76 0.43 

Education level of household head (Primary=1) Proportion 0.10 0.30 

Education level of household head (Secondary=1) Proportion 0.13 0.33 

Education level of household head (Tertiary=1) Proportion 0.01 0.11 
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Table A2: Non-informative prior Bayesian linear model results for mono-cropped maize plots 

Panel A: Survey evidence 

Dependent variable: Maize yield (mono-cropped plots only) 

 Posterior 

median 

Posterior 

Std.Dev 

2.5%  97.5% 

(Intercept) 1104.00  475.44  181.52  2040.73  

Total inorganic N fertilizer use 11.09  0.46  10.21  11.99  

Squared (Total inorganic N fertilizer 

use) 
-0.01  0.00  -0.01  -0.01  

Organic fertilizer use(No=1) -154.22  45.22  -243.59  -65.43  

Total family labor per ha 0.25  0.01  0.22  0.28  

Crop stand(mixed=1) -238.47  40.42  -315.94  -157.90  

Seed use  45.88  40.73  -35.20  124.82  

Soil type (Between sandy and clay=1) 135.93  50.68  37.05  236.18  

Soil type (Clay=1) 31.15  93.58  -148.73  217.06  

Soil type (Other=1) -125.43  33.01  -189.92  -59.55  

Soil quality (Fair=1) -201.16  51.48  -301.14  -100.92  

Soil quality (Poor=1) -0.32  0.43  -1.17  0.52  

Rainfall 0.18  0.10  -0.02  0.38  

Elevation -1.31  3.95  -8.92  6.42  

Slope  -7.31  3.72  -14.63  -0.11  

Area planted (GPS recorded) -87.28  37.29  -161.16  -14.83  

Household head gender (Female=1) -0.02  0.95  -1.88  1.80  

Household head age 13.66  7.08  -0.21  27.64  

Household size -181.83  33.59  -247.01  -116.28  

Poverty(poor=1) 93.42  49.82  -3.71  191.65  

Education (Primary=1) 47.56  48.20  -45.14  142.55  

Education (Secondary=1) 441.03  115.94  209.87  662.94  

Education (Tertiary=1) -19.55  12.92  -44.57  6.22  

Distance from plot to house 1104.00  475.44  181.52  2040.73  

District fixed effects Yes Yes Yes Yes 
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Panel B. Experimental Evidence 

Maize yield  
Posterior 

median 

Posterior 

Std.Dev 

2.5%  97.5% 

(Intercept)  1281.98  130.17  1026.80  1535.99  

N fertilizer applied 25.41  1.09  23.29  27.60  

N fertilizer applied  squared  -0.09  0.01  -0.10  -0.07  

Phosphorus -2.82  1.51  -5.84  0.10  

Surphur  49.06  6.66  36.19  62.11  

1997/98=1  -310.48  17.40  -344.64  -275.69  

MH17 variety 87.56  124.46  -150.00  337.79  

MH18 variety 130.91  120.84  -106.32  368.63  

Soil texture (medium=1)  162.16  15.85  131.53  193.41  

District fixed effects Yes Yes Yes Yes 
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Appendix A: Multi-output crop response functions 

Perhaps the most difficult problem in estimating non-experimental/observational agricultural 

production functions is that input data typically are not available by crop (Just, Zilberman and 

Horchman 1983). As such the separate ordinary least squares or seemingly unrelated regressions 

may be limited in capturing the crop specific response to fertilizer when the crops are intercropped. 

In the case of multi-crop farming systems, most researchers therefore use the dual profit or cost 

function approach. In the recent literature it has been observed that duality does not hold when 

there is measurement error or when there is less variability in the price data (Lusk et al. 2002) 

which is the case in the Malawian data. We therefore consider a new approach that was initially 

introduced by Löthgren (1997) and later expounded by  Löthgren (2000), Barrett and Hogset 

(2003) and Henningsen et al. (2015).  Other studies that have used the ray production function 

approach include Fousekis (2002) in fisheries production and ( Löthgren  2000) in rice production.  

First consider a single crop, say maize output production function denoted as: 

 f(x) = max{y ≥ 0: y ∈ Y(x)} (A1) 

where Y(x) is the output set satisfying all the basic axioms of convexity, closedness and free 

disposal. This production function can be analyzed using a single regression equation specifying 

the relation between output and inputs. In the case of Malawi and other African countries, it is 

common for farmers to grow multiple crops on the same plot during the same growing period. 

Here, we follow Löthgren  (1997) ray production function approach which is based on the polar- 

coordinate representation of the output vector; 

 y = ỹm(λ) (A2) 

where ỹ = [∑ 𝑦𝑗
2𝑝

𝑗=1 ]
0.5

 denotes the Euclidean norm of the output vector 𝑦.  The function 

𝑚: [0,
𝜋

2
]

𝑝−1

→ [0,1]𝑝 is defined by 𝑚𝑖(𝜆) = cos 𝜆𝑗 ∏ sin 𝜆𝑚
𝑖−1
𝑚=0  for all 𝑗 = 1, … , 𝑝 crops where 

𝜆 ∈ [0,
𝜋

2
]

𝑝−1

 and by definition sin 𝜆0 = cos 𝜆𝑝 = 1 represents a transformation of the polar 

coordinate angle vector to output mix 𝑚(𝜆) =
𝑦

 ỹ
 with norm 𝑚(𝜆) = 1. The coordinate angles for 

the five crops considered in this study can then be recursively determined from the inverse 

transformation. The challenge though is that the sample of farmers who grow all the crops on the 
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same plot is very small. The sample size may be appropriate for maize-single legume intercrops. 

As such, we calculated separate yield norms and coordinate angles for maize and each of the 

legumes as follows 

 λmaize,legume = arccos
ymaize

 ỹ𝑚𝑎𝑖𝑧𝑒,𝑙𝑒𝑔𝑢𝑚𝑒
 and 

   (A3) 

 λlegume = arccos
ylegume

 ỹ𝑚𝑎𝑖𝑧𝑒,𝑙𝑒𝑔𝑢𝑚𝑒 sin λmaize,legume
. 

(A4) 

Henningsen et al. (2019) showed that to get robust results, the coordinate angles should not include 

the recursive 𝑠𝑖𝑛 components. Following this suggestion, we then estimate a single equation 

production function (𝑓(𝑥, 𝜆)) with the Euclidean norm of the output vectors as the dependent 

variable and inputs and the polar output coordinates as independent variables. The advantage of 

this approach is that in cases where the farmer is growing a single crop, the production function is 

the same as the traditional single equation production function. In addition, the ray production 

function is equivalent to the output distance function which makes it consistent with multi-output 

production economics theory (Lothgren 1997). Figure A2 shows the polar representation of the 

production possibilities frontier in the maize-legume space.  

 

Figure A2: Polar representation of production possibilities frontier in maize-legume output space 
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Table A3 shows that the coordinate angles estimate are negative. This is consistent with agronomic 

evidence in Malawi. The fertilizer use estimate for the ray productions are within overlapping 

credible intervals with the maize -only production function. This is the case because maize is the 

main crop within each of the multi-crop farming systems analyzed. It is also apparent that standard 

deviations of the linear part of the crop responses are larger in inter-cropping farming systems than 

in sole cropping systems. In the sensitivity analyses we considered the model with maize only. 

Since my main concern is with crop response estimates, we do not discuss the other parameters 

but only point out that they are all in line with other studies on crop response function estimation 

in Africa.  

Table A3: Bayesian linear model results for maize-legume intercrops 

 Dependent variables  

 Maize and bean yield 
norm 

Maize and 
Groundnuts 

yield norm 

Maize and pigeon 
peas 

yield norm 

Maize and soya beans 

 
Median Std.Dev Median Std.Dev Median Std.Dev Median Std.Dev 

(Intercept) 3691.58  1732.20  -1764.44  1437.42  2918.53  871.50  14601.59  4428.11  

Polar coordinate (legume) -3438.23  994.79  -4.8E+9  4.2E+9  -2736.80  468.36  -625.32  2456.52  

Total inorganic N fertilizer use 8.15  1.21  4.81  1.24  3.33  0.44  2.67  5.09  

Squared N fertilizer use -0.01  0.00  -0.00  0.00  -0.00  0.00  0.01  0.02  

organic fertilizer use(No=1) 28.24  99.45  -139.32  99.87  20.87  43.63  -634.93  272.07  

Total family labor per ha 0.11  0.05  0.17  0.05  0.21  0.01  0.14  0.20  

Seed use  0.95  0.28  0.85  0.50  0.51  0.11  33.05  7.38  

Soil type (Between sandy and clay=1) 201.19  116.80  42.69  91.65  -39.82  36.47  105.93  400.59  

Soil type (Clay=1) 208.86  134.22  44.54  121.88  -33.30  51.05  168.97  489.20  

Soil type (Other=1) -102.15  182.33  83.38  156.28  53.25  81.27  67.58  748.93  

Soil quality (Fair=1) -196.42  77.77  139.27  83.63  -135.14  30.76  236.44  254.04  

Soil quality (Poor=1) 6.95  126.85  -175.32  113.40  -211.17  51.14  -1023.78  351.55  

Rainfall -0.05  1.39  2.81  1.43  0.80  0.62  -14.64  3.85  

Elevation 0.32  0.23  -0.10  0.27  0.54  0.12  -0.74  1.36  

Slope  -14.68  7.07  11.96  10.36  -2.10  3.41  48.40  33.96  

Area planted (GPS recorded) -402.65  142.38  -181.49  110.92  -362.40  48.52  192.48  303.73  

Household head gender (Female=1) -153.59  85.76  -119.20  80.89  -40.69  32.83  592.78  313.52  

Household head age -6.10  2.24  -2.99  2.13  -0.23  0.91  5.93  6.80  

Household size 15.25  19.49  2.73  18.85  2.47  7.71  127.68  61.59  

Poverty(poor=1) -55.25  83.75  -188.91  86.29  -33.49  32.48  16.26  231.78  

Education (Primary=1) -320.67  115.14  390.17  123.72  -14.51  50.52  487.35  434.74  

Education (Secondary=1) -41.77  106.41  73.95  120.66  61.69  47.89  770.02  347.30  
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Education (Tertiary=1) -175.47  337.24  -181.49  419.33  310.06  252.95  -298.51  192.23  

Distance from plot to house -45.23  32.67  27.78  34.39  2.02  12.31  33.05  7.38  

District fixed effect Yes  Yes  Yes  Yes  

 

 

 

Figure A3: Crop responses to nitrogen application. Note: the Bayes curve uses means and 

precision parameters from the survey and experimental curves 

Appendix B: Profitability analysis and cross-validation 

To determine whether Bayesian recommendations are the most profitable to farmers, we follow a 

three-stage validation procedure.  

Stage 1 

In the first stage, we use 50% of the survey sample and 100% of the experimental survey data to 

calculate the optimal rates of nitrogen at a fixed price ratio. We also calculate value-cost ratios 

(VCR) at the economically optimal recommendations. 
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𝑉𝐶𝑅 − 𝐸𝑂𝐵𝑅 =
𝑝(𝛽1

𝐵𝑎𝑦𝑒𝑠
+ 𝛽2

𝐵𝑎𝑦𝑒𝑠
𝑥∗𝐵𝑎𝑦𝑒𝑠)

𝑤
   

𝑉𝐶𝑅 − 𝐸𝑂𝐸𝑅 =
𝑝(𝛽1

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 + 𝛽2
𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑥∗𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡)

𝑤
 

𝑉𝐶𝑅 − 𝐸𝑂𝑆𝑅 =
𝑝(𝛽1

𝑆𝑢𝑟𝑣𝑒𝑦
+ 𝛽2

𝑆𝑢𝑟𝑣𝑒𝑦
𝑥∗𝑆𝑢𝑟𝑣𝑒𝑦)

𝑤
 

Stage 2 

 In the second stage, we re-estimate with 50% of the data using a non-informative Bayesian model 

on the survey data. We then use the parameters from this equation and optimal rates from the first 

stage calculate VCR at economically optimal recommendations.  

𝑉𝐶𝑅 − 𝐸𝑂𝐵𝑅 − 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 =
𝑝(𝛼1

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 + 𝛼2
𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑥∗𝐵𝑎𝑦𝑒𝑠)

𝑤
 

𝑉𝐶𝑅 − 𝐸𝑂𝐸𝑅 − 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 =
𝑝(𝛼1

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 + 𝛼2
𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑥∗𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡)

𝑤
 

𝑉𝐶𝑅 − 𝐸𝑂𝑆𝑅 − 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 =
𝑝(𝛼1

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 + 𝛼2
𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑥∗𝑆𝑢𝑟𝑣𝑒𝑦)

𝑤
 

Stage 3 

In the third stage, we calculate the gains and losses in the crop responses from first stage as 

compared to the second stage. This is the value to using a particular recommendation.  

The  value-cost ratio (VCR) analysis shows that Bayesian recommendations are the most profitable 

in the out-of-sample validation tests followed by experimental recommendations.  
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Chapter 2 Appendices 

Appendix A: Additional Tables and Graphs 

TableA1: Prior literature using characteristics/trait crop varietal adoption models 

 Study Country 

and Crop 

Dependent 

variables 

Independent variables Research 

Methods 

Econometric 

Models 

Identification 

strategy  

Adesina and 
Zinnah 

(1993) 

Sierra 
Leone, 

Rice 

Proportion of 
the total 

varietal 

portifolio 
(i.e., local and 

improved 

varieties) that 
is constituted 

by improved 

varieties  

Variety characteristics-farmer’s 
valuation of taste, yield, ease of cooking, 

ease of threshing and tillering capacity 

 
Controls: Age, farm size, access to 

extension services, participation in on-

farm trials, rice farming experience 

Observational  Tobit Selection on 
observables 

Lunduka, 

Fisher, 

Snapp(2012) 

Malawi, 

Maize 

 Share plant 

of local, 

hybrid, OPV 
and Recycled 

hybrid seed 

varieties 

Variety characteristics- high yielding, 

drought tolerance, early maturing, 

storability, poundability, flour-to- grain 
ratio, and taste 

 

Controls: knowledge about varieties, 
household head, household education, 

number of adult household members, 

access to credit (landholding and wealth), 
distance to agricultural inputs and 

outputs markets, subsidy seed voucher 

receipt  

Observational 

(one district) 

 
-  

Tobit Selection on 

observables 

Ward et al 

(2014) 

India, Rice  Hypothetical 

four rice 

seeds to be 
chosen by 

farmers based 

on 
characteristics 

 Variety characteristics- Hypothetical 

researcher introduced characteristics; 

duration to maturity, yield, grain can be 
stored and used as seed next season, seed 

price, seed rate.  

 
Controls: Age, household size, land area 

owned, farming experience, access to 

irrigation water, number of different 
varieties cultivated,  

Discrete choice 

experiment 

 Random 

parameter 

logit model 

Experiment  

Zeng (2014) Maize, 

Ethiopia 

Binary 

adoption 

decision 

Variety characteristics- farmers 

valuation of grain yield, disease 

resistance, storability, grain price, taste. 
 

Controls: prices of seeds, maize output 

and fertilizer, household size, total land 
holding, marital status, gender, age, 

access to credit, distance to the nearest 

market, seed dealer and fertilizer dealers, 
regional dummies, adoption decision of 

current season.  

  

Observational  Mixed logit Control 

function 

approach 

Girma et al 

(2017) 

Zimbabwe, 

Maize 

18 

hypothetical 

varieties  

Variety characteristics: Yield, cob size, 

grain size, drought tolerance, grain 

texture, tip (husk) cover and seed price.  

Discrete choice 

experiment 

Generalized 

multinomial 

logit model 

Experiment 

 Smale et al. 

(2001) 

 Mexico, 

Maize   

 Portion of 

household 

maize area 
planted to 

each variety 

 Variety characteristics- Suitability for 

market sale, consumption of the staple 

food, preparation of food consumed on 
special occasions, avoiding disastrous 

harvests, quality of feed or forage, farmer 

assessment of seed cost.  
 

Controls: regional characteristics 

(productivity potential and infrastructural 
development), remittances, percentage of 

sales, total maize area, percentage of 

maize area, tractor ownership, access to 

 informal 

interviews and 

field research 
 

- Household 

survey 

 Tobit  
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irrigation,  number of soil types on the 

farm. 

Edmeades 

and Smale 

(2006) and 
Edmeades et 

al. (2008)  

Uganda, 

Bananas 

Number of 

banana mats 

Variety characteristics-cooking quality, 

yield, brewing quality, yield loss from 

diseases 

Household 

Survey 

Zero 

Inflated 

Poisson 

Selection on 

observables 

Edmeades 
(2007) 

Uganda, 
Bananas 

Hedonic price Variety characteristics: Quality, bunch 
size and fruit size 

Discrete choice 
experiment 

Two-Stage 
Least 

Squares (2-

SLS) 

Two-Stage 
Least 

Squares (2-

SLS) 

Useche et al. 
(2009) 

USA, GM 
Corn 

Discrete 
choice of 

variety 

Variety Characteristics- seed cost, yield, 
insecticide use, herbicide use, labor 

Other-total operated acres, labor, 

education, concern on environmental 
effects, region dummies 

Observational 
(Administrative 

Farm survey)  

Mixed 
multinomial 

logit 

Selection on 
observables 

 

Table A2: Multinomial logit model results without variety characteristics  
  

2.50% 50% 97.50% 

Intercept muDK8033Mkangala -2.60 -1.74 -0.83 

Intercept muDK8053Mapasa -3.00 -2.12 -1.24 

Intercept muDK9089Fumba -4.19 -2.70 -1.42 

Intercept muMH18Chokonoka -3.36 -2.44 -1.55 

Intercept muPAN53 -6.17 -4.66 -3.20 

Intercept muSC403Kanyani -0.72 -0.14 0.49 

Intercept muSC627Mkango -1.47 -0.79 -0.14 

Intercept muSC719Njovu -4.05 -2.86 -1.68 

Age muDK8033Mkangala -0.03 -0.02 -0.01 

Age muDK8053Mapasa -0.03 -0.02 -0.01 

Age muDK9089Fumba -0.05 -0.03 -0.01 

Age muMH18Chokonoka -0.02 -0.01 0.01 

Age muPAN53 -0.01 0.01 0.02 

Age muSC403Kanyani -0.02 -0.01 0.00 

Age muSC627Mkango -0.02 -0.01 0.00 

Age muSC719Njovu -0.03 -0.02 0.00 

Household size muDK8033Mkangala -0.04 0.03 0.10 

Household size muDK8053Mapasa 0.00 0.06 0.11 

Household size muDK9089Fumba -0.05 0.05 0.14 

Household size muMH18Chokonoka 0.04 0.11 0.17 

Household size muPAN53 -0.05 0.03 0.11 

Household size muSC403Kanyani 0.01 0.06 0.11 

Household size muSC627Mkango -0.02 0.03 0.09 

Household size muSC719Njovu -0.02 0.05 0.12 

Education muDK8033Mkangala 0.01 0.06 0.10 

Education muDK8053Mapasa 0.03 0.08 0.12 

Education muDK9089Fumba -0.01 0.06 0.12 

Education muMH18Chokonoka -0.01 0.04 0.09 

Education muPAN53 0.01 0.08 0.15 
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Education muSC403Kanyani -0.02 0.02 0.05 

Education muSC627Mkango 0.00 0.04 0.07 

Education muSC719Njovu -0.03 0.03 0.09 

Sex muDK8033Mkangala -0.60 0.18 0.93 

Sex muDK8053Mapasa -0.83 -0.05 0.64 

Sex muDK9089Fumba -1.10 -0.13 0.98 

Sex muMH18Chokonoka -0.62 0.19 1.10 

Sex muPAN53 -0.28 0.97 2.52 

Sex muSC403Kanyani -0.48 0.02 0.48 

Sex muSC627Mkango -0.77 -0.19 0.33 

Sex muSC719Njovu -1.24 -0.40 0.50 

Plot area muDK8033Mkangala -1.20 -0.62 -0.17 

Plot area muDK8053Mapasa -0.24 -0.04 0.07 

Plot area muDK9089Fumba -0.94 -0.28 0.04 

Plot area muMH18Chokonoka -1.07 -0.51 -0.07 

Plot area muPAN53 -0.61 -0.15 0.06 

Plot area muSC403Kanyani -1.52 -1.10 -0.71 

Plot area muSC627Mkango -1.25 -0.78 -0.39 

Plot area muSC719Njovu -0.75 -0.25 0.02 

Fertilizer subsidy muDK8033Mkangala -1.12 -0.32 0.44 

Fertilizer subsidy muDK8053Mapasa -1.41 -0.57 0.16 

Fertilizer subsidy muDK9089Fumba -1.95 -0.64 0.48 

Fertilizer subsidy muMH18Chokonoka -1.34 -0.53 0.21 

Fertilizer subsidy muPAN53 0.23 0.97 1.68 

Fertilizer subsidy muSC403Kanyani -0.94 -0.38 0.13 

Fertilizer subsidy muSC627Mkango -0.34 0.14 0.63 

Fertilizer subsidy muSC719Njovu -1.65 -0.59 0.29 

Seed subsidy muDK8033Mkangala 0.23 0.96 1.71 

Seed subsidy muDK8053Mapasa 0.34 1.05 1.83 

Seed subsidy muDK9089Fumba 0.37 1.46 2.82 

Seed subsidy muMH18Chokonoka -0.40 0.32 1.13 

Seed subsidy muPAN53 -1.10 -0.44 0.30 

Seed subsidy muSC403Kanyani 0.46 0.97 1.51 

Seed subsidy muSC627Mkango -0.28 0.19 0.71 

Seed subsidy muSC719Njovu 0.12 0.96 1.91 

Marital status muDK8033Mkangala -0.38 0.43 1.26 

Marital status muDK8053Mapasa 0.05 0.79 1.63 

Marital status muDK9089Fumba -0.20 0.85 2.04 

Marital status muMH18Chokonoka -0.35 0.44 1.29 

Marital status muPAN53 -0.75 0.29 1.57 

Marital status muSC403Kanyani -0.58 -0.12 0.35 

Marital status muSC627Mkango -0.25 0.24 0.84 

Marital status muSC719Njovu 0.61 1.64 2.74 
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Appendix Table A3: Bayesian hierarchical multinomial logit with district heterogeneity  
Estimate Est.Error l-95% 

CI 

u-95% 

CI 

Intercept 1.7700 0.1900 1.4100 2.1500 

Price -0.0100 0.0000 -0.0100 -0.0100 

Variety age (years) 0.1500 0.0100 0.1400 0.1600 

Days to maturity -0.0600 0.0000 -0.0600 -0.0600 

Flint  1.2400 0.0400 1.1600 1.3300 

Yield potential 0.0000 0.0000 0.0000 0.0000 

Drought tolerance 1.1500 0.0500 1.0600 1.2400 

District(16) level Effects 
    

sd(Intercept) 0.4400 0.1700 0.1400 0.8300 

sd(Price) 0.0000 0.0000 0.0000 0.0000 

sd(Variety age) 0.0200 0.0000 0.0100 0.0300 

sd(MaturityMidPoint) 0.0000 0.0000 0.0000 0.0000 

sd(FlintDentFlint) 0.0300 0.0300 0.0000 0.0900 

sd(PotYieldMidPoint) 0.0000 0.0000 0.0000 0.0000 

sd(DroughtToleranceYes) 0.1400 0.0300 0.0900 0.2100 

cor(Intercept,Price) 0.1000 0.4500 -0.6400 0.8000 

cor(Intercept,Variety age) -0.6100 0.3000 -0.9500 0.0400 

cor(Price,Variety age) -0.7200 0.2000 -0.9500 -0.2400 

cor(Intercept,MaturityMidPoint) -0.1600 0.3600 -0.7800 0.5600 

cor(Price,MaturityMidPoint) -0.3100 0.4000 -0.9000 0.5600 

cor(Variety age,MaturityMidPoint) 0.2700 0.3800 -0.5400 0.8900 

cor(Intercept,FlintDentFlint) -0.0700 0.3200 -0.6600 0.5200 

cor(Price,FlintDentFlint) 0.0300 0.3800 -0.6200 0.7000 

cor(Variety age,FlintDentFlint) -0.0400 0.3800 -0.8500 0.6300 

cor(MaturityMidPoint,FlintDentFlint) -0.0800 0.3300 -0.7200 0.5300 

cor(Intercept,PotYieldMidPoint) -0.6600 0.2100 -0.9000 -0.1100 

cor(Price,PotYieldMidPoint) -0.5100 0.3300 -0.9400 0.1800 

cor(Variety age,PotYieldMidPoint) 0.7000 0.2100 0.1000 0.9300 

cor(MaturityMidPoint,PotYieldMidPoint) 0.0300 0.3400 -0.6200 0.7200 

cor(FlintDentFlint,Yield potential) -0.0600 0.3900 -0.7200 0.7000 

cor(Intercept,DroughtToleranceYes) -0.6200 0.2700 -0.9500 0.0400 

cor(Price,DroughtToleranceYes) -0.6300 0.2400 -0.9500 0.0300 

cor(Variety age,DroughtToleranceYes) 0.8200 0.1200 0.5100 0.9500 

cor(MaturityMidPoint,DroughtToleranceYes) 0.2600 0.4100 -0.6000 0.8700 

cor(FlintDentFlint,DroughtToleranceYes) 0.1200 0.3500 -0.6800 0.7400 

cor(Yield potential,DroughtToleranceYes) 0.7000 0.1800 0.2700 0.9600 
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Appendix Table A4: Bayesian hierarchical multinomial logit with individual household 

heterogeneity  
Estimate Est.Error l-95% 

CI 

u-95% 

CI 

Intercept 1.4400 0.0700 1.2700 1.5500 

Price -0.0100 0.0000 -0.0100 -0.0100 

Variety age (years) 0.1600 0.0000 0.1600 0.1700 

Days to maturity -0.0700 0.0000 -0.0800 -0.0600 

Flint 1.4200 0.0400 1.3000 1.4800 

Yield potential 0.0000 0.0000 0.0000 0.0000 

Drought tolerance 1.2100 0.0200 1.1900 1.2600 

Individual (1651) level effects 
    

sd(Intercept) 0.0200 0.0100 0.0000 0.0500 

sd(Price) 0.0000 0.0000 0.0000 0.0000 

sd(Variety age) 0.0100 0.0100 0.0000 0.0200 

sd(Days to maturity) 0.0100 0.0000 0.0000 0.0100 

sd(FlintDentFlint) 0.1800 0.0600 0.0200 0.2500 

sd(Yield potential) 0.0000 0.0000 0.0000 0.0000 

sd(DroughtToleranceYes) 0.1000 0.0800 0.0100 0.1900 

cor(Intercept,Price) -0.1900 0.6400 -0.8900 0.5900 

cor(Intercept,Variety age) 0.1500 0.5600 -0.5400 0.7200 

cor(Price,Variety age) -0.8300 0.0500 -0.9200 -0.7500 

cor(Intercept,MaturityMidPoint) 0.5100 0.3000 -0.0600 0.8900 

cor(Price,MaturityMidPoint) -0.1000 0.8900 -0.9900 0.8700 

cor(Variety age,MaturityMidPoint) -0.0500 0.7700 -0.9000 0.7400 

cor(Intercept,FlintDentFlint) -0.4500 0.2200 -0.7100 -0.1100 

cor(Price,FlintDentFlint) -0.0300 0.7800 -0.8700 0.7800 

cor(Variety age,FlintDentFlint) -0.0700 0.9000 -0.9800 0.8900 

cor(MaturityMidPoint,FlintDentFlint) -0.7900 0.2300 -1.0000 -0.1800 

cor(Intercept,PotYieldMidPoint) -0.1900 0.1500 -0.4400 0.0000 

cor(Price,PotYieldMidPoint) -0.3700 0.4600 -0.8600 0.1600 

cor(Variety age,PotYieldMidPoint) 0.4700 0.3900 -0.1100 0.8900 

cor(MaturityMidPoint,PotYieldMidPoint) -0.5800 0.4100 -1.0000 0.0900 

cor(FlintDentFlint,PotYieldMidPoint) 0.4900 0.4900 -0.1000 1.0000 

cor(Intercept,DroughtToleranceYes) 0.2700 0.5800 -0.5500 0.8500 

cor(Price,DroughtToleranceYes) -0.5700 0.4600 -0.9900 0.3800 

cor(Variety age,DroughtToleranceYes) 0.5300 0.4500 -0.4100 0.9200 

cor(MaturityMidPoint,DroughtToleranceYes) 0.4400 0.5300 -0.3800 0.9400 

cor(FlintDentFlint,DroughtToleranceYes) -0.3800 0.4800 -0.8700 0.3700 

cor(PotYieldMidPoint,DroughtToleranceYes) -0.0100 0.2100 -0.4800 0.3400 

 

Appendix B: Multidimensional representations of the characteristic’s technology frontier 

(a) Biplot analysis 

We can use a biplot to show a two-dimensional approximation of the multi-dimensional 

representation of the characteristics data.  
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Figure A1: Biplot for ranking varieties  

Notes: The numbers represent the varieties where 1=SC403, 2=SC 627, 3=DK8033, 4=DK8053, 5=MH 18, 6=SC 

719, 7=PAN53, 8=DK9089.  

The varieties closer to the origin have most of the characteristics while those far from the origin 

like 1 (SC 403) and 5 (MH 18) have specialized traits. Most importantly, these varieties are the 

oldest. The closeness of the variety to a trait reveals the trait profile of that variety. For instance, 

variety 6 (SC 4719) has the highest yield while varieties 1 (SC 403) and 5 (MH 18) have the 

highest yield potential.  

(b) Data envelopment and revealed preference analysis 

As we increase the number of characteristics, it is difficult to visualize the ranking of the 

varieties. One can therefore consider a mathematical representation of the characteristics 

technology that allows a multi-dimensional ranking of the varieties. Data Envelopment 

Analysis (DEA) as used in production efficiency analysis can be used for such purpose. Choi 
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and Oh (2010) suggest that DEA can be used for a Lancaster characteristics space analysis by 

treating price as an input and the rest of the product characteristics as outputs. We leave this 

for future research.  

Chapter 3 Appendices 

Appendix A: Partial tableau 

Table A1: A partial tableau (one-district) illustrating the structure of the Malawi Food Sector 

Programming Model (MAFOSP) 

 MAI

ZE 

RI

CE 

CASS

AVA 

POTA

TOES 

BEA

NS 

G/N

UTS 

20

00 

20
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03 

-

-

- 
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09 

INP

UT 

SUP

PLY  

PROD

UCT 

DEMA

ND 

R

H

S 

EQUA

TION 
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ER 

MAX: 

NET 

BENEFI

T 

            - +  (1) 

X-

MAIZE 

1      -a -a -a -a -

a 

-a   ≤

0 

(2) 

X-RICE  1     -a -a -a -a -
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Appendix B: Food crop flows in Malawi without Cropping Restrictions 

 

Figure B1: Maize flows 
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Figure B2: Rice flows 

Notes: The rice flows are not consistent with the production patterns prevailing in the country. The major rice 

producing districts are Karonga, Nkhotakota, Zomba, Chikwawa and Nsanje. In the figure, each of these is buying 

rice. A water balance module will help correct this pattern.  
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Figure B3: Bean flows  
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Figure B4: Groundnut flows  
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Appendic C: Food crop flows in Malawi with crop mix restrictions 

 

 

Figure C1: Maize flows 
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Figure C2: Rice flows 
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Figure C3: Bean flows 
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Figure C4: Groundnut flows 
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Appendix D: GAMS code for the agricultural sector model 

$TITLE: A MALAWI AGR SECTOR PROTOTYPE MODEL FOR POLICY ANALYSIS; 2019-REF 

$OFFSYMXREF 

$OFFSYMLIST 

* 

* JEFFREY APLAND 

* MAXWELL MKONDIWA 

* DEPT OF APPLIED ECONOMICS 

* UNIVERSITY OF MINNESOTA 

* 

OPTION LIMROW=100, LIMCOL=100, SOLPRINT=ON, ITERLIM=2000; 

 

* SETS CONTROLLING SOLUTION REPORTS 

 

* MAXWELL: 27TH FEB 2019 

* Add Policy Scenarios.  Active only the line 

*associated to the scenario of interest and run de model 

SET SWITCH /BASELINE, ZEROTRANSPORTCOST,HALFTRANSPORTCOST,DOUBLETRANSPORTCOST/; 

 

PARAMETERS SCENARIOS(SWITCH) BASELINESC /BASELINE 1,ZEROTRANSPORTCOST 

0,HALFTRANSPORTCOST 0,DOUBLETRANSPORTCOST 0/; 

*PARAMETERS SCENARIOS(SWITCH) ZEROTRANSPORTCOSTSC /BASELINE 0,ZEROTRANSPORTCOST 

1,HALFTRANSPORTCOST 0,DOUBLETRANSPORTCOST 0/; 

*PARAMETERS SCENARIOS(SWITCH) HALFTRANSPORTCOSTSC /BASELINE 0,ZEROTRANSPORTCOST 

0,HALFTRANSPORTCOST 1,DOUBLETRANSPORTCOST 0/; 

*PARAMETERS SCENARIOS(SWITCH) DOUBLETRANSPORTCOSTSC /BASELINE 0,ZEROTRANSPORTCOST 

0,HALFTRANSPORTCOST 0,DOUBLETRANSPORTCOST 1/; 

 

 

SET  KRT  RESULTS TABLES 

   /01  OBJECTIVE FUNCTION VALUE,                02  REGIONAL PRODUCTION ACTIVITIES, 

    03  CROP PRODUCTION ACTIVITIES,              04  REGIONAL INPUT SUPPLY ACTIVITIES, 

    05  CROP LAND INPUT SUPPLY ACTIVITIES,       06  REGIONAL PRODUCT DEMAND 

ACTIVITIES, 

    07  INTER-REG TRANSPORTATION ACTIVITIES,     08  REGIONAL IMPORT ACTIVITIES, 

    09  REGIONAL EXPORT ACTIVITIES, 

    31  REGIONAL INPUT CONSTRAINTS,              32  CROP LAND INPUT CONSTRAINTS, 

    33  REGIONAL PRODUCT CONSTRAINTS, 

    41  CROP ACTIVITIES BY REG & LAND TYPE,      42  CROP ACTIVITIES SUMMED BY REGION, 

    43  TOTAL CROP PROD ACTIVITY LEVELS, 

    71  REG INPUT & PROD RESULTS BY REGION,      72  REG INPUT & PROD RESULTS BY ITEM, 

    73  REG INPUT & PROD RESULTS SELECT ITEMS, 

    81  INTER-REG INPUT & PRODUCT SHIPMENTS, 

    91  CROP RESULTS BY REG TABLE 91,            92  CROP RESULTS TOTAL TABLE 92 /; 

 

* PRINT TABLE IF PRNT = 1 

PARAMETER  PRNT(KRT) 

   /01*03 1, 04*09 1, 31*33 1, 41 1, 42 1, 43 1, 71 1, 72 1, 73 1, 81 1, 91 1, 92 1/; 

 

$STITLE SET DECLARATIONS AND ASSIGNMENTS 

* OVERVIEW OF SETS: 

*-------------------------------------------------------------------------------------

------------------ 

* SET................  

DESCRIPTION..................................................................... 

*-------------------------------------------------------------------------------------

------------------ 

* JR                   REGIONS 

* JRS                  INTER-REGIONAL TRANSPORT SOURCE REGIONS, ALIAS JR 

* JRD                  INTER-REGIONAL TRANSPORT DESTINATION REGIONS, ALIAS JR 

* 

* JIP                  INPUTS AND PRODUCTS 
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* 

* JI(JIP)              INPUTS 

* JIR(JI)              REGIONAL INPUTS 

* JIT                  CROP LAND TYPES 

* JIC(JI)              CROP LAND INPUTS 

* JIN(JI)              NONREGIONAL INPUTS 

* JRIR(JR,JIR)         REGIONAL INPUTS MAPPED TO REGIONS 

* JRT(JR,JIT)          CROP LAND TYPES MAPPED TO REGIONS 

* JRIC(JR,JIC)         CROP LAND INPUTS MAPPED TO REGIONS 

 

* JP(JIP)              PRODUCTS 

* JPR(JP)              REGIONAL PRODUCTS 

* JPN(JP)              NONREGIONAL PRODUCTS 

* JRPR(JR,JP)          REGIONAL PRODUCTS MAPPED TO REGIONS 

* 

* JRSD(JRS,JRD)        INTER-REGIONAL TRANSPORT DESTINATIONS MAPPED TO SOURCES 

* JTIP(JIP)            TRANSPORTED REGIONAL INPUTS AND PRODUCTS 

* JRSDIP(JRS,JRD,JIP)  INPUTS AND PRODUCTS MAPPED TO SOURCE AND DESTINATION REGIONS 

* 

* JIPX(JIP)            EXPORTED INPUTS AND PRODUCTS 

* JIPM(JIP)            IMPORTED INPUTS AND PRODUCTS 

* JIPRX(JR,JIP)        EXPORTED REGIONAL INPUTS AND PRODUCTS MAPPED TO REGIONS 

* JIPRM(JR,JIP)        IMPORTED REGIONAL INPUTS AND PRODUCTS MAPPED TO REGIONS 

* JIPNX(JIP)           EXPORTED NONREGIONAL INPUTS AND PRODUCTS 

* JIPNM(JIP)           IMPORTED NONREGIONAL INPUTS AND PRODUCTS 

* 

* JX                   PRODUCTION ACTIVITIES 

* JXR(JX)              REGIONAL ACTIVITIES 

* JXC(JXR)             CROP PRODUCTION ACTIVITIES 

* JXL(JXR)             LIVESTOCK PRODUCTION ACTIVITIES 

* JXP(JXR)             PROCESSING ACTIVITIES 

* JXO(JX)              OTHER ACTIVITIES 

* JRX(JR,JX)           PRODUCTION ACTIVITIES MAPPED TO REGIONS 

* JXCT(JXC,JIT)        CROP LAND TYPES MAPPED TO CROP PROD ACTIVITIES 

* JRXT(JR,JXC,JIT)     CROP LAND TYPES AND CROP PROD ACTIVITIES MAPPED TO REGIONS 

* JXN(JX)              NONREGIONAL PRODUCTION ACTIVITIES 

* 

* JB                   BUDGETS USED TO CONSTRUCT CROP AND LIVESTOCK ACTIVITIES 

* JBR(JR,JB)           BUDGETS MAPPED TO REGIONS 

* JBC(JB)              CROP BUDGETS USED TO CONSTRUCT CROP PRODUCTION ACTIVITIES 

* JBCT(JBC,JIT)        CROP BUDGETS MAPPED TO CROP LAND TYPES 

* JBCR(JR,JXC,JBC)     CROP BUDGETS MAPPED TO CROP PROD ACTIVITIES AND REGIONS 

* JBL(JB)              LIVESTOCK BUDGETS USED TO CONSTRUCT LIVESTOCK PROD ACTIVITIES 

* JBLR(JR,JXL,JBL)     LIVESTOCK BUDGETS MAPPED TO LIVESTOCK PROD ACTIVITIES AND 

REGIONS 

* 

* JOC                  OTHER PRODUCTION ACTIVITY CONSTRAINTS 

* JOCR(JOC)            OTHER REGIONAL PRODUCTION ACTIVITY CONSTRAINTS 

* JROCR(JR,JOCR)       OTHER REGIONAL CONSTRAINTS MAPPED TO REGIONS 

* JOCN(JOC)            OTHER NONREGIONAL PRODUCTION ACTIVITY CONSTRAINTS 

* 

* JU                   UNITS OF MEASURE 

* JU2                  UNITS OF MEASURE, ALIAS JU 

* JUX(JX,JU)           UNITS MAPPED TO PRODUCTION ACTIVITIES 

* JUIPX(JIP,JU)        UNITS OF MEASURE MAPPED TO INPUTS AND PRODUCTS FOR PROD 

ACTIVITIES 

* JUB(JB,JU)           UNITS OF MEASURE MAPPED TO BUDGETS 

* JUBL(JBC,JU)         UNITS OF MEASURE MAPPED TO LIVESTOCK BUDGETS 

* JUIPB(JIP,JU)        UNITS OF MEASURE MAPPED TO INPUTS AND PRODUCTS FOR BUDGETS 

* 

* JSDP                 SUPPLY AND DEMAND PARAMETERS 

* JXMP                 EXPORT AND IMPORT PARAMETERS 



138 

 

*-------------------------------------------------------------------------------------

------------------ 

* 

* MOST SETS ARE DECLARED AND ELEMENTS ASSIGNED IN THE ORDER LISTED IN THE COMMENTS 

ABOVE.  HOWEVER, 

* SOME SETS ARE ASSIGNED AFTER NECESSARY DATA HAVE BEEN ENTERED.  A GAMS SET IS CALLED 

DYNAMIC IF 

* ITS ELEMENTS ARE ASSIGNED BASED ON THE ELEMENTS OF OTHER SETS OR THE VALUES OF 

CERTAIN PARAMETERS. 

* DYNAMIC SETS ARE MARKED ABOVE WITH **.  ONCE MEMBERSHIP HAS BEEN ASSIGNED, IT IS 

USEFUL TO EXCLUDE 

* ELEMENTS FROM CERTAIN SETS IN ORDER TO MANAGE MODEL SIZE.  FOR EXAMPLE, ALL REGIONAL 

INPUTS ARE 

* ASSIGNED TO ALL REGIONS.  HOWEVER, IF SOME INPUTS ARE NOT USED IN SOME REGIONS, THE 

NUMBER OF 

* CONSTRAINTS MAY BE REDUCED BY EXCLUDING THE INPUTS FROM THOSE REGIONS. 

 

 

SET  JR  REGIONS 

*-------------------------------------------------------------------------------------

------------------ 

* REGION......    DESCRIPTION..................      REGION......    

DESCRIPTION.................. 

*-------------------------------------------------------------------------------------

------------------ 

 / CHI            CHITIPA,                           KAR             KARONGA, 

   RUM            RUMPHI,                            MZI             MZIMBA, 

   KHA            NKHATABAY,                         KAS             KASUNGU, 

   DOW            DOWA,                              NTCH            NTCHISI, 

   MCH            MCHINJI,                           SA              SALIMA, 

   KK             NKHOTAKOTA,                        LL              LILONGWE, 

   DED            DEDZA,                             NU              NTCHEU, 

   MAC            MACHINGA,                          MAN             MANGOCHI, 

   BLK            BALAKA,                            ZA              ZOMBA, 

   BT             BLANTYRE,                          TO              THYOLO, 

   CZ             CHIRADZULU,                        PHA             PHALOMBE, 

   MU             MULANJE,                           MWA             MWANZA, 

   NEN            NENO,                              CHK             CHIKWAWA, 

   NSA            NSANJE /; 

*-------------------------------------------------------------------------------------

------------------ 

 

ALIAS(JR,JRS);    ALIAS(JR,JRD); 

 

 

SET  JIP  INPUTS AND PRODUCTS 

*-------------------------------------------------------------------------------------

------------------ 

* INPUT/PROD..    DESCRIPTION..................      INPUT/PROD..    

DESCRIPTION.................. 

*-------------------------------------------------------------------------------------

------------------ 

 /MAIZESEED       MAIZE SEED,                        RICESEED        RICE SEED, 

  CASSAVASEED     CASSAVA SEED,                      POTATOSEED      POTATO SEED, 

  BEANSSEED       BEANS SEED,                        GNUTSSEED       GROUNDNUTS SEED, 

  FERT1           FERTLIZER BASAL,                   FERT2           FERTILIZER TOP 

DRESSING, 

  PESTICIDES      PESTICIDES,                        TRANSPORT       TRANSPORT, 

  PACKAGINGM      PACKAGING MATERIALS,               LABOR           LABOR USE, 

  MAIZE           MAIZE,                             RICE            RICE, 

  CASSAVA         CASSAVA,                           POTATOES        POTATOES, 

  BEANS           BEANS,                             GROUNDNUTS      GROUNDNUTS, 

  CL-MAIZE        MAIZE CROPLAND,                    CL-RICE         RICE CROPLAND, 
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  CL-CASSAVA      CASSAVA CROPLAND,                  CL-POTATOES     POTATOES 

CROPLAND, 

  CL-BEANS        BEANS CROPLAND,                    CL-GROUNDNUTS   GROUNDNUTS 

CROPLAND, 

  CL-TOTAL        TOTAL CROPLAND,                    CONVEX          CONVEXITY 

  BLANK-I,                                           BLANK-P/; 

*-------------------------------------------------------------------------------------

------------------ 

 

 

SET  JI(JIP)  INPUTS  /MAIZESEED, RICESEED, CASSAVASEED, POTATOSEED, BEANSSEED, 

GNUTSSEED, FERT1, FERT2, 

                       PESTICIDES, TRANSPORT, PACKAGINGM, LABOR, CL-MAIZE, CL-RICE, 

CL-CASSAVA, 

                       CL-POTATOES, CL-BEANS, CL-GROUNDNUTS,CL-TOTAL, CONVEX, BLANK-

I/; 

 

SET  JIR(JI)  REGIONAL INPUTS  /MAIZESEED, RICESEED, CASSAVASEED, POTATOSEED, 

BEANSSEED, GNUTSSEED, 

                                FERT1, FERT2, PESTICIDES, TRANSPORT, PACKAGINGM, 

LABOR/; 

$EJECT; 

*    CROP LAND INPUTS PLAY A UNIQUE ROLE IN MAGS.  THEY DEFINE THE LEVEL OF 

AGGREGATION FOR THE CROP 

*    PRODUCTION ACTIVITIES.  RELEVANT CROP BUDGETS ARE CREATED FOR EACH TYPE OF CROP 

LAND.  CROP 

*    PRODUCTION ACTIVITIES ARE CONSTRUCTED USING THESE BUDGETS, AND CROP PRODUCTION 

ACTIVITIES ARE 

*    MAPPED TO EACH REGION IN WHICH THE CORRESPONDING LAND TYPE OCCURS. 

 

SET  JIT  CROP LAND TYPES  /CLT-CHI, CLT-KAR, CLT-RUM, CLT-KHA, CLT-MZI, CLT-KAS, CLT-

MCH, CLT-DOW, CLT-NTCH, CLT-LL, CLT-DED, CLT-NU, CLT-KK, CLT-SA, CLT-MAN, 

                            CLT-MAC, CLT-ZA, CLT-BLK, CLT-BT, CLT-TO, CLT-CZ, CLT-PHA, 

CLT-MU, CLT-MWA, CLT-NEN, CLT-CHK, CLT-NSA/; 

 

SET  JIC(JI)  CROP LAND INPUTS  /CL-MAIZE, CL-RICE, CL-CASSAVA, CL-POTATOES, CL-BEANS, 

CL-GROUNDNUTS, 

                                 CL-TOTAL, CONVEX/; 

 

SET  JIN(JI)  NONREGIONAL INPUTS /BLANK-I/; 

 

 

SET  JRIR(JR,JIR)  REGIONAL INPUTS MAPPED TO REGIONS; 

 

     JRIR(JR,JIR) = YES; 

 

SET  JRT(JR,JIT)  CROP LAND TYPES MAPPED TO REGIONS  /CHI.CLT-CHI, KAR.CLT-KAR, 

RUM.CLT-RUM, KHA.CLT-KHA, MZI.CLT-MZI, 

                  KAS.CLT-KAS, MCH.CLT-MCH, DOW.CLT-DOW, NTCH.CLT-NTCH, LL.CLT-LL, 

DED.CLT-DED, NU.CLT-NU, KK.CLT-KK, SA.CLT-SA, MAN.CLT-MAN, 

                  MAC.CLT-MAC, ZA.CLT-ZA, BLK.CLT-BLK, BT.CLT-BT, TO.CLT-TO, CZ.CLT-

CZ, PHA.CLT-PHA, MU.CLT-MU, MWA.CLT-MWA, NEN.CLT-NEN, 

                  CHK.CLT-CHK, NSA.CLT-NSA /; 

 

SET  JRIC(JR,JIC)  CROP LAND INPUTS MAPPED TO REGIONS; 

 

     JRIC(JR,JIC) = YES; 

$EJECT; 

SET  JP(JIP)  PRODUCTS  /MAIZE, RICE, CASSAVA, POTATOES, BEANS, GROUNDNUTS, BLANK-P/; 

 

SET  JPR(JP)  REGIONAL PRODUCTS  /MAIZE, RICE, CASSAVA, POTATOES, BEANS, GROUNDNUTS/; 

 

SET  JPN(JP)  NONREGIONAL PRODUCTS  /BLANK-P/; 
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SET  JRPR(JR,JP)  REGIONAL PRODUCTS MAPPED TO REGIONS; 

 

*    MAP ALL REGIONAL PRODUCTS TO ALL REGIONS, THEN IDENTIFY EXCEPTIONS 

 

     JRPR(JR,JPR) = YES; 

 

     JRPR("TO","RICE") = NO; 

     JRPR("NTCH","RICE") = NO; 

 

*    CANCEL MAPPINGS OF NONREGIONAL PRODUCTS TO REGIONS 

 

     JRPR(JR,JP)$(NOT JPR(JP)) = NO; 

 

SET  JRSD(JRS,JRD)  INTER-REGIONAL TRANSPORT ROUTES - DESTINATIONS MAPPED TO SOURCES; 

 

*    ALLOW TRANSPORT BETWEEN ALL REGIONS BUT PRECLUDE ROUTES W THE SAME SOURCE AND 

DESTINATION 

 

     JRSD(JRS,JRD) = YES;   JRSD(JRS,JRS) = NO; 

 

SET  JTIP(JIP)  TRANSPORTED REGIONAL INPUTS AND PRODUCTS  /MAIZESEED, RICESEED, 

CASSAVASEED, POTATOSEED, 

                BEANSSEED, GNUTSSEED, FERT1, FERT2, PESTICIDES, MAIZE, RICE, CASSAVA, 

POTATOES, BEANS, 

                GROUNDNUTS/; 

 

SET  JRSDIP(JRS,JRD,JIP)  INPUTS AND PRODUCTS MAPPED TO SOURCES AND DESTINATIONS; 

     JRSDIP(JRS,JRD,JIP) = YES; 

 

 

*    THE FOLLOWING REGIONAL PRODUCTS MAY BE SHIPPED BETWEEN ANY TWO REGIONS IN WHICH 

THEY OCCUR 

 

*     JRSDIP(JRS,JRD,"MAIZE") = YES;            JRSDIP(JRS,JRD,"BEANS") = YES; 

*     JRSDIP(JRS,JRD,"RICE") = YES;             JRSDIP(JRS,JRD,"GROUNDNUTS") = YES; 

*     JRSDIP(JRS,JRD,"CASSAVA") = YES; 

*     JRSDIP(JRS,JRD,"POTATOES") = YES; 

 

*    INPUTS AND PRODUCTS THAT ARE NOT TRANSPORTED ARE BELOW EXCLUDED FROM MAPPINGS TO 

ROUTES.  ALSO 

*    EXCLUDED ARE SHIPMENTS WHERE THE ROUTE IS NOT AN IDENTIFIED SHIPPING ROUTE, OR IF 

THE SOURCE OR 

*    DESTINATION HAS NOT MARKET FOR THE ITEM 

 

     JRSDIP(JRS,JRD,JIP)$(NOT JTIP(JIP)) = NO; 

     JRSDIP(JRS,JRD,JTIP)$(NOT JRSD(JRS,JRD)) = NO; 

     JRSDIP(JRS,JRD,JIR)$((NOT JRIR(JRS,JIR)) OR (NOT JRIR(JRD,JIR))) = NO; 

     JRSDIP(JRS,JRD,JPR)$((NOT JRPR(JRS,JPR)) OR (NOT JRPR(JRD,JPR))) = NO; 

 

 

$EJECT; 

SET  JX  PRODUCTION ACTIVITIES 

*-------------------------------------------------------------------------------------

------------------ 

* ACTIVITY....  DESCRIPTION.......................     ACTIVITY....  

DESCRIPTION....................... 

*-------------------------------------------------------------------------------------

------------------ 

 /X-MAIZE       MAIZE PRODUCTION,                      X-RICE        RICE PRODUCTION, 

  X-CASSAVA     CASSAVA PRODUCTION,                    X-POTATOES    POTATOES 

PRODUCTION, 
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  X-BEANS       BEANS PRODUCTION,                      X-GROUNDNUTS  GROUNDNUTS 

PRODUCTION, 

  X-MIX-00      CROP MIX IN 2000,                      X-MIX-01      CROP MIX IN 2001, 

  X-MIX-02      CROP MIX IN 2002,                      X-MIX-03      CROP MIX IN 2003, 

  X-MIX-04      CROP MIX IN 2004,                      X-MIX-05      CROP MIX IN 2005, 

  X-MIX-06      CROP MIX IN 2006,                      X-MIX-07      CROP MIX IN 2007, 

  X-MIX-08      CROP MIX IN 2008,                      X-MIX-09      CROP MIX IN 

2009/; 

*-------------------------------------------------------------------------------------

------------------ 

 

 

SET  JXR(JX)  REGIONAL PRODUCTION ACTIVITIES  /X-MAIZE, X-RICE, X-CASSAVA, X-POTATOES, 

X-BEANS, 

              X-GROUNDNUTS, X-MIX-00,X-MIX-01,X-MIX-02,X-MIX-03,X-MIX-04,X-MIX-05,X-

MIX-06,X-MIX-07,X-MIX-08,X-MIX-09/; 

 

SET  JXC(JXR)  CROP PRODUCTION ACTIVITIES  /X-MAIZE,X-RICE,X-CASSAVA,X-POTATOES,X-

BEANS,X-GROUNDNUTS, 

     X-MIX-00,X-MIX-01,X-MIX-02,X-MIX-03,X-MIX-04,X-MIX-05,X-MIX-06,X-MIX-07,X-MIX-

08,X-MIX-09/; 

 

SET  JXL(JXR)  LIVESTOCK PRODUCTION ACTIVITIES; 

 

SET  JXP(JXR)  PROCESSING ACTIVITIES; 

 

SET  JXO(JX)  OTHER ACTIVITIES; 

 

* Maxwell 

*SET YR YEAR /00*09/; 

SET  JRX(JR,JXR)  PRODUCTION ACTIVITIES MAPPED TO REGIONS; 

 

*    MAP ALL REGIONAL PROD ACTIVITIES TO ALL REGIONS, THEN EXCLUDE EXCEPTION 

 

     JRX(JR,JXR) = YES; 

 

     JRX("NTCH","X-RICE") = NO;   JRX("TO","X-RICE") = NO; 

 

 

SET  JXCT(JXC,JIT)  CROP LAND TYPES MAPPED TO CROP PROD ACTIVITIES; 

*    MAP ALL LAND TYPES TO ALL CROP PRODUCTION ACTIVITIES , THEN EXCLUDE EXCEPTION 

     JXCT(JXC,JIT) = YES; 

 

SET  JRXT(JR,JXC,JIT)  CROP LAND TYPES MAPPED TO CROP PROD ACTIVITIES AND REGIONS; 

 

*    EXCLUDE ALL COMBINATIONS, THEN MAP LAND TYPES AND CROP PROD ACT WHEN BOTH ARE 

MAPPED TO THAT REGION 

     JRXT(JR,JXC,JIT) = NO; 

     JRXT(JR,JXC,JIT)$(JRT(JR,JIT) AND JRX(JR,JXC) AND JXCT(JXC,JIT)) = YES; 

 

SET  JXN(JX)  NONREGIONAL PRODUCTION ACTIVITIES; 

     JXN(JX) = NO; 

 

$EJECT; 

SET  JB  BUDGETS USED TO CONSTRUCT CROP AND LIVESTOCK PRODUCTION ACTIVITIES 

*-------------------------------------------------------------------------------------

------------------ 

* BUDGET......  DESCRIPTION.......................     BUDGET......  

DESCRIPTION....................... 

*-------------------------------------------------------------------------------------

------------------ 

 /B-MAIZE       MAIZE PRODUCTION,                      B-MIX-04      CROP MIX IN 2004, 

  B-RICE        RICE PRODUCTION,                       B-MIX-05      CROP MIX IN 2005, 
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  B-CASSAVA     CASSAVA PRODUCTION,                    B-MIX-06      CROP MIX IN 2006, 

  B-POTATOES    POTATOES PRODUCTION,                   B-MIX-07      CROP MIX IN 2007, 

  B-BEANS       BEANS PRODUCTION,                      B-MIX-08      CROP MIX IN 2008, 

  B-GROUNDNUTS  GROUNDNUTS PRODUCTION,                 B-MIX-09      CROP MIX IN 2009, 

  B-MIX-00      CROP MIX IN 2000,                      B-MIX-01      CROP MIX IN 2001, 

  B-MIX-02      CROP MIX IN 2002,                      B-MIX-03      CROP MIX IN 

2003/; 

*-------------------------------------------------------------------------------------

------------------ 

 

SET  JBR(JR,JB)  BUDGETS MAPPED TO REGIONS; 

     JBR(JR,JB) = YES; 

 

SET  JBC(JB)  CROP BUDGETS USED TO CONSTRUCT CROP PRODUCTION ACTIVITIES  /B-MAIZE, B-

RICE, B-CASSAVA, 

     B-POTATOES, B-BEANS, B-GROUNDNUTS, B-MIX-00*B-MIX-09/; 

 

* Maxwell, 2nd July 

*SET  YR2(JBC) CROP AREA BY YEAR /B-MIX-00*B-MIX-09/ 

 

SET YEAR HISTORICAL MIXES YEARS /2000*2009 /; 

 

 

SET  JBL(JB)  LIVESTOCK BUDGETS USED TO CONSTRUCT LIVESTOCK PRODUCTION ACTIVITIES; 

 

SET  JBCT(JBC,JIT)  CROP BUDGETS MAPPED TO CROP LAND TYPES; 

*    MAP ALL CROP BUDGETS TO CROP LAND TYPES THEN EXCLUDE EXCEPTIONS 

     JBCT(JBC,JIT)=YES; 

 

SET  JBCR(JR,JXC,JBC)  CROP BUDGETS MAPPED TO CROP PROD ACTIVITIES AND REGIONS; 

     JBCR(JR,JXC,JBC) = NO; 

 

     JBCR(JR,JXC,JBC) 

     $(JRX(JR,JXC) AND JBR(JR,JBC) AND 

      (SUM(JIT$(JRT(JR,JIT) AND JRX(JR,JXC) AND JBCT(JBC,JIT)),1)>0)) = YES; 

 

SET JOC  OTHER PRODUCTION ACTIVITY CONSTRAINTS; 

SET JOCR(JOC) OTHER REGIONAL PRODUCTION ACTIVITY CONSTRAINTS; 

SET JROCR(JR,JOCR)  OTHER REGIONAL CONSTRAINTS MAPPED TO REGIONS; 

SET JOCN(JOC)  OTHER NONREGIONAL PRODUCTION ACTIVITY CONSTRAINTS; 

 

 

$EJECT; 

SET  JU  UNITS OF MEASURE 

*-------------------------------------------------------------------------------------

------------------ 

* UNITS........  DESCRIPTION......................    UNITS........  

DESCRIPTION...................... 

*-------------------------------------------------------------------------------------

------------------ 

 /AC             ACRES,                               AC1000         THOUSAND ACRES, 

  HA             HECTARES,                            HA1000         THOUSAND 

HECTARES, 

  LB             POUNDS,                              CWT            HUNDREDWEIGHT, 

  T-US           US TONS,                             T-US1000       THOUSAND US TONS, 

  KG             KILOGRAMS,                           MT             METRIC TONS, 

  MT1000         THOUSAND METRIC TONS,                BU             BUSHELS, 

  BU1000         THOUSAND BUSHELS,                    BU-CORN        BUSHELS OF CORN 

GRAIN, 

  BU-SOY         BUSHELS OF SOYBEANS,                 BU-WHT         BUSHELS OF WHEAT, 

  BG-CS          BAGS OF CORN SEED,                   GAL            GALLONS, 

  GAL1000        THOUSAND GALLONS,                    MGAL           MILLION GALLONS, 

  L              LITERS,                              ML             MILLION LITERS, 
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  BRL            BARRELS,                             MBRL           MILLION BARRELS, 

  HD             HEAD,                                HD1000         THOUSAND HEAD, 

  LTR            LITTERS,                             LTR1000        THOUSAND LITTERS, 

  HR             HOURS,                               HR1000         THOUSAND HOURS, 

  KW             KILOWATTS - THOUSAND WATTS,          MW             MEGAWATTS - 

MILLION WATTS, 

  GW             GIGAWATTS - BILLION WATTS,           USD            DOLLARS, 

  USD1000        THOUSAND DOLLARS,                    AN-USD         ANNUAL DOLLARS, 

  AN-USD1000     THOUSAND ANNUAL DOLLARS,             OTHER          OTHER UNITS 

CONVERT ONLY TO OTHER 

 

  MANDAYS        PERSON DAYS OF LABOR 

  KWACHA         MALAWI KWACHA CURRENCY 

  50KG           50 KILOGRAMS /; 

*-------------------------------------------------------------------------------------

------------------ 

 

ALIAS(JU,JU2); 

 

SET  JUX(JX,JU)  UNITS MAPPED TO PRODUCTION ACTIVITIES 

/ X-MAIZE.HA, X-RICE.HA, X-CASSAVA.HA, X-POTATOES.HA, X-BEANS.HA, X-GROUNDNUTS.HA, X-

MIX-00.OTHER, 

  X-MIX-01.OTHER, X-MIX-02.OTHER, X-MIX-03.OTHER, X-MIX-04.OTHER, X-MIX-05.OTHER, X-

MIX-06.OTHER, 

  X-MIX-07.OTHER, X-MIX-08.OTHER, X-MIX-09.OTHER /; 

 

SET  JUIPX(JIP,JU)  UNITS OF MEASURE MAPPED TO INPUTS & PRODUCTS FOR CONST & 

ACTIVITIES 

/ MAIZESEED.KG, RICESEED.KG, CASSAVASEED.KG, POTATOSEED.KG, BEANSSEED.KG, 

GNUTSSEED.KG, FERT1.50KG, 

  FERT2.50KG, PESTICIDES.L,LABOR.MANDAYS, MAIZE.KG, RICE.KG, CASSAVA.KG, POTATOES.KG, 

BEANS.KG, 

  GROUNDNUTS.KG, TRANSPORT.KWACHA, PACKAGINGM.KWACHA/; 

 

SET  JUB(JB,JU)  UNITS MAPPED TO BUDGETS 

 

/ B-MAIZE.HA, B-RICE.HA, B-CASSAVA.HA, B-POTATOES.HA, B-BEANS.HA, B-GROUNDNUTS.HA, B-

MIX-00.OTHER, 

  B-MIX-09.OTHER, B-MIX-01.OTHER, B-MIX-02.OTHER, B-MIX-03.OTHER, B-MIX-04.OTHER, B-

MIX-05.OTHER, 

  B-MIX-06.OTHER, B-MIX-07.OTHER, B-MIX-08.OTHER/; 

 

SET  JUIPB(JIP,JU)  UNITS OF MEASURE MAPPED TO INPUTS AND PRODUCTS FOR BUDGETS 

/ MAIZESEED.KG,RICESEED.KG, CASSAVASEED.KG, POTATOSEED.KG, BEANSSEED.KG, GNUTSSEED.KG, 

FERT1.50KG, 

  FERT2.50KG, PESTICIDES.L,LABOR.MANDAYS, MAIZE.KG, RICE.KG, CASSAVA.KG, POTATOES.KG, 

BEANS.KG, 

  GROUNDNUTS.KG, TRANSPORT.KWACHA, PACKAGINGM.KWACHA/; 

 

 

SET  JSDP  SUPPLY & DEMAND PARAMETERS  /INTERCEPT, SLOPE, PBAR, QBAR, ELAST, QMIN, 

QMAX/; 

 

SET  JXMP  EXPORT & IMPORT PARAMETERS  /X-PRICE, X-MIN, X-MAX, M-PRICE, M-MIN, M-MAX/; 

$STITLE PARAMETER DECLARATIONS AND ASSIGNMENTS 

* OVERVIEW OF MODEL PARAMETERS 

*-------------------------------------------------------------------------------------

------------------ 

* PARAMETER............  

DESCRIPTION................................................................... 

*-------------------------------------------------------------------------------------

------------------ 

* CNV(JU,JU2)            CONVERSION FACTOR JU TO JU2 
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* CNV1(JBC,JXC)          CONVERSION MULTIPLIER BUDGET UNITS TO ACTIVITY UNITS 

* CNV2(JIP)              CONVERSION MULTIPLIER FOR INPUT OR PRODUCT BUDGET TO ACTIVITY 

* 

* CSR(JR,JIR,JSDP)       REGIONAL INPUT SUPPLY PARAMETERS 

* CSC(JR,JIT,JIC,JSDP)   CROP LAND INPUT SUPPLY PARAMETERS 

* CSN(JIN,JSDP)          NONREGIONAL INPUT SUPPLY PARAMETERS 

* 

* CDR(JR,JPR,JSDP)       REGIONAL PRODUCT DEMAND PARAMETERS 

* CDN(JPN,JSDP)          NONREGIONAL PRODUCT DEMAND PARAMETERS 

* 

* CXMR(JR,JIP,JXMP)      REGIONAL IMPORT AND EXPORT PARAMETERS 

* CXMN(JIP,JXMP)         NONREGIONAL IMPORT AND EXPORT PARAMETERS 

* 

* DX(JR)                 X COORDINATE FOR REGION 

* DY(JR)                 Y COORDINATE FOR REGION 

* DT(JRS,JRD)            DISTANCE IN MILES BETWEEN REGIONS 

* 

* CTIP(JIP)              UNIT TRANSPORTATION COST PER MILE BY PRODUCT 

* CTR(JRS,JRD,JIP)       UNIT TRANSPORTATION COST BY SOURCE, DESTINATION AND PRODUCT 

* 

* AC(JIT,JBC,JIP)        PRODUCT AND INPUT COEFFICIENTS FOR CROP BUDGETS 

* AOC(JIT,JBC,JOC)       OTHER CONSTRAINT COEFFICIENTS FOR CROP BUDGETS 

* ACM(JR,JBC,JXC)        IO COEF MULTIPLIER CROP BUDGET TO PRODUCTION ACTIVITY 

* 

* AL(JR,JBL,JIP)         PRODUCT AND INPUT COEFFICIENTS FOR LIVESTOCK BUDGETS 

* AOL(JR,JBL,JOC)        OTHER CONSTRAINT COEFFICIENTS FOR LIVESTOCK BUDGETS 

* ALM(JR,JBL,JXL)        IO COEF MULTIPLIER LIVESTOCK BUDGET TO PRODUCTION ACTIVITY 

* 

* ARP(JR,JXP,JIP)        PRODUCT AND INPUT COEF FOR REGIONAL PROCESSING ACTIVITIES 

* AORP(JR,JXP,JOCR)      OTHER CONSTRAINT COEF FOR REGIONAL PROCESSING ACTIVITIES 

* 

* AR(JR,JXR,JIP)         PRODUCT AND INPUT COEF FOR REGIONAL PRODUCTION ACTIVITIES 

* ARC(JR,JXC,JIT,JIP)    PRODUCT AND INPUT COEF FOR REGIONAL CROP PRODUCTION 

ACTIVITIES 

* AOR(JR,JXR,JOCR)       OTHER CONSTRAINT COEF FOR REGIONAL PRODUCTION ACTIVITIES 

* AORC(JR,JXC,JIT,JOCR)  OTHER CONSTRAINT COEF FOR REGIONAL CROP PRODUCTION ACTIVITIES 

* BOR(JR,JOCR)           RIGHTHAND SIDES FOR OTHER REGIONAL CONSTRAINTS 

* 

* AN(JXN,JIP)            PRODUCT AND INPUT COEF FOR NONREGIONAL PRODUCTION ACTIVITIES 

* AON(JXN,JOCN)          OTHER CONSTRAINT COEF FOR NONREGIONAL PRODUCTION ACTIVITIES 

* BON(JOCN)              RIGHTHAND SIDES FOR OTHER NONREGIONAL CONSTRAINTS 

*-------------------------------------------------------------------------------------

------------------ 

$EJECT 

SCALAR  ACHA  ACRES PER HECTARE  /2.469955/;       SCALAR  LBKG  POUNDS PER KILOGRAM  

/2.20462/; 

SCALAR  GL  GALLONS PER LITER  /0.264172/;         SCALAR  MKM  MILES PER KILOMETER  

/1.609344/; 

 

PARAMETER  CNV(JU,JU2)  MULTIPLIER FOR CONVERSION OF UNITS JU TO UNITS JU2; 

 

CNV(JU,JU2) = 0;                              CNV(JU,JU) = 1; 

 

CNV("AC","AC1000") = 1/1000;                  CNV("AC1000","AC") = 1000; 

CNV("AC","HA") = 1/ACHA;                      CNV("HA","AC") = ACHA; 

CNV("AC","HA1000") = 1/(ACHA*1000);           CNV("HA1000","AC") = ACHA*1000; 

CNV("AC1000","HA") = 1000/ACHA;               CNV("HA","AC1000") = ACHA/1000; 

CNV("AC1000","HA1000") = 1/ACHA;              CNV("HA1000","AC1000") = ACHA; 

CNV("HA","HA1000") = 1/1000;                  CNV("HA1000","HA") = 1000; 

 

CNV("LB","CWT") = 1/100;                      CNV("CWT","LB") = 100; 

CNV("LB","T-US") = 1/2000;                    CNV("T-US","LB") = 2000; 

CNV("LB","T-US1000") = 1/(1000*2000);         CNV("T-US1000","LB") = 1000*2000; 
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CNV("CWT","T-US") = 100/2000;                 CNV("T-US","CWT") = 2000/100; 

CNV("CWT","T-US1000") = 100/(1000*2000);      CNV("T-US1000","CWT") = (1000*2000)/100; 

CNV("CWT","KG") = 100/LBKG;                   CNV("KG","CWT") = LBKG/100; 

CNV("CWT","MT") = 100/(LBKG*1000);            CNV("MT","CWT") = (1000*LBKG)/100; 

CNV("CWT","MT1000") = 100/(LBKG*1000*1000);   CNV("MT1000","CWT") = 

(1000*1000*LBKG)/100; 

 

CNV("T-US","T-US1000") = 1/1000;              CNV("T-US1000","T-US") = 1000; 

CNV("LB","KG") = 1/LBKG;                      CNV("KG","LB") = LBKG; 

CNV("LB","MT") = 1/(1000*LBKG);               CNV("MT","LB") = 1000*LBKG; 

CNV("LB","MT1000") = 1/(1000*1000*LBKG);      CNV("MT1000","LB") = 1000*1000*LBKG; 

CNV("T-US","KG") = 2000/LBKG;                 CNV("KG","T-US") = LBKG/2000; 

CNV("T-US","MT") = 2000/(1000*LBKG);          CNV("MT","T-US") = 1000*LBKG/2000; 

CNV("T-US","MT1000") = 2000/(1000*1000*LBKG); CNV("MT1000","T-US") = 

1000*1000*LBKG/2000; 

CNV("T-US1000","KG") = 1000*2000/LBKG;        CNV("KG","T-US1000") = LBKG/(1000*2000); 

CNV("T-US1000","MT") = 2000/LBKG;             CNV("MT","T-US1000") = LBKG/2000; 

CNV("T-US1000","MT1000") = 2000/(1000*LBKG);  CNV("MT1000","T-US1000") = 

1000*LBKG/2000; 

CNV("KG","MT") = 1/1000;                      CNV("MT","KG") = 1000; 

CNV("KG","MT1000") = 1/(1000*1000);           CNV("MT1000","KG") = 1000*1000; 

CNV("MT","MT1000") = 1/1000;                  CNV("MT1000","MT") = 1000; 

 

CNV("BU","BU1000") = 1/1000;                  CNV("BU1000","BU") = 1000; 

 

CNV("BU-CORN","LB") = 56;                     CNV("LB","BU-CORN") = 1/56; 

CNV("BU-CORN","T-US") = 56/2000;              CNV("T-US","BU-CORN") = 2000/56; 

CNV("BU-CORN","T-US1000") = 56/(2000*1000);   CNV("T-US1000","BU-CORN") = 

(2000*1000)/56; 

CNV("BU-CORN","KG") = 56/LBKG;                CNV("KG","BU-CORN") = LBKG/56; 

CNV("BU-CORN","MT") = 56/(LBKG*1000);         CNV("MT","BU-CORN") = (LBKG*1000)/56; 

CNV("BU-CORN","MT1000")=56/(1000*1000*LBKG);  CNV("MT1000","BU-

CORN")=(1000*1000*LBKG)/56; 

 

CNV("BU-SOY","LB") = 60;                      CNV("LB","BU-SOY") = 1/60; 

CNV("BU-SOY","T-US") = 60/2000;               CNV("T-US","BU-SOY") = 2000/60; 

CNV("BU-SOY","T-US1000") = 60/(2000*1000);    CNV("T-US1000","BU-SOY") = 

(2000*1000)/60; 

CNV("BU-SOY","KG") = 60/LBKG;                 CNV("KG","BU-SOY") = LBKG/60; 

CNV("BU-SOY","MT") = 60/(LBKG*1000);          CNV("MT","BU-SOY") = (LBKG*1000)/60; 

CNV("BU-SOY","MT1000")=60/(1000*1000*LBKG);   CNV("MT1000","BU-

SOY")=(1000*1000*LBKG)/60; 

 

CNV("BU-WHT","LB") = 60;                      CNV("LB","BU-WHT") = 1/60; 

CNV("BU-WHT","T-US") = 60/2000;               CNV("T-US","BU-WHT") = 2000/60; 

CNV("BU-WHT","T-US1000") = 60/(2000*1000);    CNV("T-US1000","BU-WHT") = 

(2000*1000)/60; 

CNV("BU-WHT","KG") = 60/LBKG;                 CNV("KG","BU-WHT") = LBKG/60; 

CNV("BU-WHT","MT") = 60/(LBKG*1000);          CNV("MT","BU-WHT") = (LBKG*1000)/60; 

CNV("BU-WHT","MT1000")=60/(1000*1000*LBKG);   CNV("MT1000","BU-

WHT")=(1000*1000*LBKG)/60; 

 

CNV("BG-CS","LB") = 50;                       CNV("LB","BG-CS") = 1/50; 

CNV("BG-CS","T-US") = 50/2000;                CNV("T-US","BG-CS") = 2000/50; 

CNV("BG-CS","T-US1000") = 50/(2000*1000);     CNV("T-US1000","BG-CS") = 

(2000*1000)/50; 

CNV("BG-CS","KG") = 50/LBKG;                  CNV("KG","BG-CS") = LBKG/50; 

CNV("BG-CS","MT") = 50/(LBKG*1000);           CNV("MT","BG-CS") = (LBKG*1000)/50; 

CNV("BG-CS","MT1000") = 50/(1000*1000*LBKG);  CNV("MT1000","BG-CS") = 

(1000*1000*LBKG)/50; 

 

CNV("GAL","GAL1000") = 1/1000;                CNV("GAL1000","GAL") = 1000; 

CNV("GAL","MGAL") = 1/1000000;                CNV("MGAL","GAL") = 1000000; 



146 

 

CNV("GAL","L") = 1/GL;                        CNV("L","GAL") = GL; 

CNV("GAL","ML") = 1/(GL*1000000);             CNV("ML","GAL") = 1000000*GL; 

CNV("GAL1000","MGAL") = 1/1000;               CNV("MGAL","GAL1000") = 1000; 

CNV("GAL1000","L") = 1000/GL;                 CNV("L","GAL1000") = GL/1000; 

CNV("GAL1000","ML") = 1000/(GL*1000000);      CNV("ML","GAL1000") = (GL*1000000)/1000; 

CNV("MGAL","L") = 1000000/GL;                 CNV("L","MGAL") = GL/1000000; 

CNV("MGAL","ML") = 1/GL;                      CNV("ML","MGAL") = GL; 

CNV("L","ML") = 1/1000000;                    CNV("ML","L") = 1000000; 

CNV("BRL","MBRL") = 1/1000000;                CNV("MBRL","BRL") = 1000000; 

 

CNV("HD","HD1000") = 1/1000;                  CNV("HD1000","HD") = 1000; 

CNV("LTR","LTR1000") = 1/1000;                CNV("LTR1000","LTR") = 1000; 

 

CNV("KW","MW") = 1/1000;                      CNV("MW","KW") = 1000; 

CNV("KW","GW") = 1/1000000;                   CNV("GW","KW") = 1000000; 

CNV("MW","GW") = 1/1000;                      CNV("GW","MW") = 1000; 

 

CNV("USD","USD1000") = 1/1000;                CNV("USD1000","USD") = 1000; 

CNV("AN-USD","AN-USD1000") = 1/1000;          CNV("AN-USD1000","AN-USD") = 1000; 

 

 

PARAMETERS  CNV1(JB,JX)  CONVERSION MULTIPLIER BUDGET UNITS TO PROD ACT UNITS, 

            CNV2(JIP)  CONVERSION MULTIPLIER BY ITEM BUDGET TO CONSTRANT UNITS; 

 

            CNV1(JB,JX) = SUM(JU$JUB(JB,JU),SUM(JU2$JUX(JX,JU2),CNV(JU,JU2))); 

            CNV2(JIP) = SUM(JU$JUIPB(JIP,JU),SUM(JU2$JUIPX(JIP,JU2),CNV(JU,JU2))); 

 

$STITLE SUPPLY AND DEMAND PARAMETER DECLARATIONS AND ASSIGNMENTS 

* REGIONAL AND NONREGIONAL INPUTS, AND CROP LAND INPUTS, HAVE SUPPLY ACTIVITIES.  

SINCE THE OBJECTIVE 

* FUNCTION OF THE MODEL IS CONSUMER PLUS PRODUCER SURPLUS, THE OBJECTIVE FUNCTION 

ENTRY FOR AN INPUT 

* SUPPLY ACTIVITY IS MINUS THE SUPPLY FUNCTION INTEGRAL.  SUPPLY FUNCTIONS ARE ASSUMED 

TO BE LINEAR IN 

* THIS VERSION OF MAGS, HOWEVER RELAXATION OF THAT ASSUMPTION IS STRAIGHT FORWARD AND 

CAN BE ACCOMODATED 

* WITH GAMS.  PARAMETERS ARE ASSIGNED OR COMPUTED IN PRICE DEPENDENT FORM.  AN 

INFINITELY ELASTIC SUPPLY 

* IS INDICATED BY A ZERO SLOPE WITH THE INTERCEPT THEN BECOMING THE CONSTANT MARKET 

PRICE.  IF IN THE 

* FOLLOWING TABLES BOTH THE INTERCEPT AND SLOPE ARE ZERO, OR EQUIVALENTLY BLANK, THE 

SLOPE AND INTERCEPT 

* WILL BE COMPUTED WITH THE USER ASSIGNED PRICE, QUANTITY AND ELASTICITY (PBAR, QBAR 

AND ELAST, 

* RESPECTIVELY) IF ALL THREE OF THESE PARAMETERS ARE STRICTLY POSITIVE. 

* 

* FIXED SUPPLIES CAN BE MODELED BY SETTING APPROPRIATE VALUES FOR QMIN AND QMAX WHICH 

ARE USED AS LOWER 

* AND UPPER BOUNDS, RESPECTIVELY, ON THE SUPPLY ACTIVITIES.  IF EXOGENOUS SUPPLY 

FUNCTIONS ARE TO BE 

* USED WITHOUT OTHER LIMITS TO SUPPLY, QMIN SHOULD BE SET TO ZERO AND QMAX SHOULD BE 

SET TO INFINITY 

* (INF).  A POSITIVE QMIN AND OR A FINITE QMAX MAY BE SET, IF DESIRED, WITH AN 

EXOGENOUS SUPPLY FUNCTION 

* THAT IS PRICE RESPONSIVE OR INFINITELY ELASTIC FROM QMIN TO QMAX. 

* 

* PRICES ARE IN DOLLARS OR OTHER BASE CURRENCY USED IN THE MODEL.  QUANTITIES ARE IN 

THE UNITS DEFINED 

* BY THE USER FOR THE INPUT'S SUPPLY ACTIVITY AND CONSTRAINT. 

* 

 

 

TABLE  CSR(JR,JIR,JSDP)  REGIONAL INPUT SUPPLY PARAMETERS 
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$OFFLISTING; 

*$INCLUDE C:\0 Teaching\ApEc 8202\Exams\CSR.INC 

$INCLUDE G:\My Drive\MalawiAgSectorModel\GAMS Model\CSR8thNov.INC 

; 

$ONLISTING; 

 

* CHECK TO SEE IF ELAST PBAR AND QBAR ARE TO BE USED TO CALCULATE THE INTERCEPT & 

SLOPE FOR THE INVERSE 

* SUPPLY FUNCTION FOR EACH REGIONAL INPUT IN EACH REGION. IF INDICATED, CALCULATE THE 

SLOPE & INTERCEPT. 

 

  SET CHECKCSR(JR,JIR); 

  CHECKCSR(JR,JIR)=NO; 

  CHECKCSR(JR,JIR)$((CSR(JR,JIR,"SLOPE")=0) AND (CSR(JR,JIR,"INTERCEPT")=0) 

           AND (CSR(JR,JIR,"PBAR")>0) AND (CSR(JR,JIR,"QBAR")>0) AND 

(CSR(JR,JIR,"ELAST")>0)) = YES; 

  CSR(JR,JIR,"SLOPE")$CHECKCSR(JR,JIR) = 

CSR(JR,JIR,"PBAR")/(CSR(JR,JIR,"QBAR")*CSR(JR,JIR,"ELAST")); 

  CSR(JR,JIR,"INTERCEPT")$CHECKCSR(JR,JIR) 

      = CSR(JR,JIR,"PBAR") - (CSR(JR,JIR,"PBAR")/CSR(JR,JIR,"ELAST")); 

 

 

 

 

PARAMETER  CSC(JR,JIT,JIC,JSDP)  CROP LAND INPUT SUPPLY PARAMETERS; 

           CSC(JR,JIT,JIC,JSDP) = 0.0; 

           CSC(JR,JIT,JIC,"QMIN") = -INF; 

*           CSC(JR,JIT,"CL-RICE","QMAX") = 20000; 

           CSC(JR,JIT,"CONVEX","QMIN") = 1.0; 

           CSC(JR,JIT,"CONVEX","QMAX") = 1.0; 

 

 

* CHECK TO SEE IF ELAST PBAR AND QBAR ARE TO BE USED TO CALCULATE THE INTERCEPT & 

SLOPE FOR THE INVERSE 

* SUPPLY FUNCTION FOR EACH CROP LAND INPUT FOR EACH CROP LAND TYPE IN EACH REGION. IF 

INDICATED, 

* CALCULATE THE SLOPE & INTERCEPT. 

 

$OFFTEXT 

  SET CHECKCSC(JR,JIT,JIC); 

  CHECKCSC(JR,JIT,JIC)=NO; 

  CHECKCSC(JR,JIT,JIC)$((CSC(JR,JIT,JIC,"SLOPE")=0) AND 

(CSC(JR,JIT,JIC,"INTERCEPT")=0) 

           AND (CSC(JR,JIT,JIC,"PBAR")>0) AND (CSC(JR,JIT,JIC,"QBAR")>0) 

           AND (CSC(JR,JIT,JIC,"ELAST")>0)) = YES; 

  CSC(JR,JIT,JIC,"SLOPE")$CHECKCSC(JR,JIT,JIC) 

                         = 

CSC(JR,JIT,JIC,"PBAR")/(CSC(JR,JIT,JIC,"QBAR")*CSC(JR,JIT,JIC,"ELAST")); 

  CSC(JR,JIT,JIC,"INTERCEPT")$CHECKCSC(JR,JIT,JIC) 

      = CSC(JR,JIT,JIC,"PBAR") - (CSC(JR,JIT,JIC,"PBAR")/CSC(JR,JIT,JIC,"ELAST")); 

$EJECT; 

* REGIONAL AND NONREGIONAL PRODUCTS HAVE DEMAND ACTIVITIES.  SINCE THE OBJECTIVE 

FUNCTION OF THE MODEL 

* IS CONSUMER PLUS PRODUCER SURPLUS, THE OBJECTIVE FUNCTION ENTRY FOR A PRODUCT DEMAND 

ACTIVITY IS THE 

* DEMAND FUNCTION INTEGRAL.  DEMAND FUNCTIONS ARE ASSUMED TO BE LINEAR, HOWEVER 

RELAXATION OF THAT 

* ASSUMPTION IS STRAIGHT FORWARD AND CAN BE ACCOMODATED WITH GAMS.  PARAMETERS ARE 

ASSIGNED OR COMPUTED 

* IN PRICE DEPENDENT FORM.  AN INFINITELY ELASTIC DEMAND IS INDICATED BY A ZERO SLOPE 

WITH THE INTERCEPT 

* THEN BECOMING THE CONSTANT MARKET PRICE.  IF IN THE FOLLOWING TABLES BOTH THE 

INTERCEPT AND SLOPE ARE 
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* ZERO, OR EQUIVALENTLY BLANK, THE SLOPE AND INTERCEPT WILL BE COMPUTED WITH THE USER 

ASSIGNED PRICE, 

* QUANTITY AND ELASTICITY (PBAR, QBAR AND ELAST, RESPECTIVELY) IF THE PBAR AND QBAR 

PARAMETERS ARE 

* POSITIVE AND THE ELAST PARAMETER IS NEGATIVE. 

* 

* FIXED DEMANDS CAN BE MODELED BY SETTING APPROPRIATE VALUES FOR QMIN AND QMAX WHICH 

ARE USED AS LOWER 

* AND UPPER LIMITS, RESPECTIVELY, ON THE DEMAND ACTIVITIES.  IF EXOGENOUS DEMAND 

FUNCTIONS ARE TO BE 

* USED WITHOUT OTHER LIMITS TO DEMAND, QMIN SHOULD BE SET TO ZERO AND QMAX SHOULD BE 

SET TO INFINITY 

* (INF).  A POSITIVE QMIN AND/OR A FINITE QMAX MAY BE SET, IF DESIRED, WITH AN 

EXOGENOUS DEMAND FUNCTION 

* THAT IS PRICE RESPONSIVE OR INFINITELY ELASTIC FROM QMIN TO QMAX. 

* 

* PRICES ARE IN DOLLARS OR OTHER BASE CURRENCY USED IN THE MODEL.  QUANTITIES ARE IN 

THE UNITS DEFINED 

* BY THE USER FOR THE PRODUCT'S DEMAND ACTIVITY AND CONSTRAINT. 

 

 

TABLE  CDR(JR,JPR,JSDP)  REGIONAL PRODUCT DEMAND PARAMETERS 

$OFFLISTING; 

*$INCLUDE C:\0 Teaching\ApEc 8202\Exams\CDR.INC 

$INCLUDE G:\My Drive\MalawiAgSectorModel\GAMS Model\CDR.INC 

; 

$ONLISTING; 

 

* CHECK TO SEE IF ELAST PBAR AND QBAR ARE TO BE USED TO CALCULATE THE INTERCEPT & 

SLOPE FOR THE INVERSE 

* DEMAND FUNCTION FOR EACH REGIONAL PRODUCT IN EACH REGION. IF INDICATED, CALCULATE 

THE SLOPE & 

* INTERCEPT. 

 

 

  SET CHECKCDR(JR,JPR); 

  CHECKCDR(JR,JPR)=NO; 

  CHECKCDR(JR,JPR)$((CDR(JR,JPR,"SLOPE")=0) AND (CDR(JR,JPR,"INTERCEPT")=0) 

           AND (CDR(JR,JPR,"PBAR")>0) AND (CDR(JR,JPR,"QBAR")>0) AND 

(CDR(JR,JPR,"ELAST")>0)) = YES; 

  CDR(JR,JPR,"SLOPE")$CHECKCDR(JR,JPR) = 

CDR(JR,JPR,"PBAR")/(CDR(JR,JPR,"QBAR")*CDR(JR,JPR,"ELAST")); 

  CDR(JR,JPR,"INTERCEPT")$CHECKCDR(JR,JPR) 

      = CDR(JR,JPR,"PBAR") - (CDR(JR,JPR,"PBAR")/CDR(JR,JPR,"ELAST")); 

 

*PARAMETER  CDN(JPN,JSDP)  NONREGIONAL PRODUCT DEMAND PARAMETERS; 

*           CDN(JPN,JSDP) = 0.0; 

*           CDN(JPN,"QMAX") = INF; 

 

 

* CHECK TO SEE IF ELAST PBAR AND QBAR ARE TO BE USED TO CALCULATE THE INTERCEPT & 

SLOPE FOR THE INVERSE 

* DEMAND FUNCTION FOR EACH NON-REGIONAL PRODUCT. IF INDICATED, CALCULATE THE SLOPE & 

INTERCEPT. 

 

*  SET CHECKCDN(JPN); 

*  CHECKCDN(JPN)=NO; 

*  CHECKCDN(JPN)$((CDN(JPN,"SLOPE")=0) AND (CDN(JPN,"INTERCEPT")=0) 

*           AND (CDN(JPN,"PBAR")>0) AND (CDN(JPN,"QBAR")>0) AND (CDN(JPN,"ELAST")>0)) 

= YES; 

*  CDN(JPN,"SLOPE")$CHECKCDN(JPN) = 

CDN(JPN,"PBAR")/(CDN(JPN,"QBAR")*CDN(JPN,"ELAST")); 
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*  CDN(JPN,"INTERCEPT")$CHECKCDN(JPN) = CDN(JPN,"PBAR") - 

(CDN(JPN,"PBAR")/CDN(JPN,"ELAST")); 

 

 

$STITLE TRADE PARAMETER DECLARATIONS AND ASSIGNMENTS 

* FOR TRADED PRODUCTS AND INPUTS, IMPORT AND EXPORT PRICES IN THE MODEL ARE EXOGENOUS.  

PRICES AND 

* MINIMUM AND MAXIMUM TRADE LEVELS MAY BE SET IN THE FOLLOWING TABLES FOR REGIONAL AND 

NONREGIONAL 

* INPUTS AND PRODUCTS. 

 

PARAMETER  CXMR(JR,JIP,JXMP)  REGIONAL IMPORT AND EXPORT PARAMETERS; 

 

PARAMETER  CXMN(JIP,JXMP)  NONREGIONAL IMPORT AND EXPORT PARAMETERS; 

 

$STITLE INTER-REGIONAL TRANSPORTATION PARAMETER DECLARATIONS AND ASSIGNMENTS 

TABLE  DT(JRS,JRD)  DISTANCE IN MILES BETWEEN REGIONS 

$OFFLISTING; 

*$INCLUDE C:\0 Teaching\ApEc 8202\Exams\DT.INC 

$INCLUDE G:\My Drive\MalawiAgSectorModel\GAMS Model\DT.INC 

; 

$ONLISTING; 

 

 

DT(JRS,JRS) = 9999999.0; 

 

 

PARAMETER CTIP(JIP) UNIT TRAN COST PER KM PER PRODUCT; 

        CTIP(JIP)=0.018*SCENARIOS("BASELINE"); 

*        CTIP(JIP)=0.0000000001*SCENARIOS("ZEROTRANSPORTCOST"); 

*        CTIP(JIP)=0.009*SCENARIOS("HALFTRANSPORTCOST"); 

*        CTIP(JIP)=0.036*SCENARIOS("DOUBLETRANSPORTCOST"); 

 

PARAMETER  CTR(JRS,JRD,JIP)  UNIT INTER-REGIONAL TRANS COST BY SOURCE DESTINATION & 

ITEM; 

 

           CTR(JRS,JRD,JIP) = 999999.9; 

 

           CTR(JRS,JRD,JTIP)$JRSDIP(JRS,JRD,JTIP) = DT(JRS,JRD)*CTIP(JTIP); 

 

$STITLE PRODUCTION ACTIVITY TECHNICAL COEFFICIENTS AND SUPPORTING BUDGET DATA 

* INPUT/OUTPUT COEFFICIENTS AND OTHER CONSTRAINT COEFFICIENTS FOR PRODUCTION 

ACTIVITIES MAY BE ENTERED 

* DIRECTLY, OR THEY MAY BE COMPUTED USING COEFFICIENTS FROM UNIT BUDGETS.  FOR CROP 

AND LIVESTOCK 

* PRODUCTION ACTIVITIES, THE CONSTRAINT COEFFICIENTS MAY BE COMPUTED WITH COEFFICIENTS 

AND MULTIPLIERS 

* FOR RELATED CROP AND LIVESTOCK BUDGETS. 

* 

* THE INPUT/OUTPUT COEFFICIENTS SHOULD BE INTERPRETED AS THE NET USE OF THE ITEM PER 

UNIT OF THE 

* ACTIVITY.  THUS AN INPUT REQUIREMENT WOULD BE INDICATED BY A POSITIVE COEFFICIENT.  

A NEGATIVE INPUT 

* COEFFICIENT IMPLIES THAT THE ACTIVITY IS A NET SUPPLIER OF THE INPUT.  A PRODUCT 

WOULD TYPICALLY HAVE 

* A NEGATIVE COEFFICIENT INDICATING NET SUPPLY.  ENDOGENOUS DEMAND FOR A PRODUCT WOULD 

BE IMPLIED BY A 

* PRODUCTION ACTIVITY WITH A POSITIVE INPUT COEFFICIENT. 

 

TABLE  AC(JIT,JBC,JIP)  PRODUCT AND INPUT COEFFICIENTS FOR CROP BUDGETS 

$OFFLISTING; 

*$INCLUDE C:\0 Teaching\ApEc 8202\Exams\AC.INC 

$INCLUDE G:\My Drive\MalawiAgSectorModel\GAMS Model\AC.INC 
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; 

$ONLISTING; 

 

* ASSIGN INPUT REQUIREMENTS FOR CROP LAND INPUTS 

 

AC(JIT,"B-MAIZE","CL-MAIZE")$JBCT("B-MAIZE",JIT) = 1.0; 

AC(JIT,"B-MAIZE","CL-TOTAL")$JBCT("B-MAIZE",JIT) = 1.0; 

 

AC(JIT,"B-RICE","CL-RICE")$JBCT("B-RICE",JIT) = 1.0; 

AC(JIT,"B-RICE","CL-TOTAL")$JBCT("B-RICE",JIT) = 1.0; 

 

AC(JIT,"B-CASSAVA","CL-CASSAVA")$JBCT("B-CASSAVA",JIT) = 1.0; 

AC(JIT,"B-CASSAVA","CL-TOTAL")$JBCT("B-CASSAVA",JIT) = 1.0; 

 

AC(JIT,"B-POTATOES","CL-POTATOES")$JBCT("B-POTATOES",JIT) = 1.0; 

AC(JIT,"B-POTATOES","CL-TOTAL")$JBCT("B-POTATOES",JIT) = 1.0; 

 

AC(JIT,"B-BEANS","CL-BEANS")$JBCT("B-BEANS",JIT) = 1.0; 

AC(JIT,"B-BEANS","CL-TOTAL")$JBCT("B-BEANS",JIT) = 1.0; 

 

AC(JIT,"B-GROUNDNUTS","CL-GROUNDNUTS")$JBCT("B-GROUNDNUTS",JIT) = 1.0; 

AC(JIT,"B-GROUNDNUTS","CL-TOTAL")$JBCT("B-GROUNDNUTS",JIT) = 1.0; 

 

AC(JIT,"B-MIX-00","CONVEX")$JBCT("B-MIX-00",JIT) = 1.0; 

AC(JIT,"B-MIX-01","CONVEX")$JBCT("B-MIX-01",JIT) = 1.0; 

AC(JIT,"B-MIX-02","CONVEX")$JBCT("B-MIX-02",JIT) = 1.0; 

AC(JIT,"B-MIX-03","CONVEX")$JBCT("B-MIX-03",JIT) = 1.0; 

AC(JIT,"B-MIX-04","CONVEX")$JBCT("B-MIX-04",JIT) = 1.0; 

AC(JIT,"B-MIX-05","CONVEX")$JBCT("B-MIX-05",JIT) = 1.0; 

AC(JIT,"B-MIX-06","CONVEX")$JBCT("B-MIX-06",JIT) = 1.0; 

AC(JIT,"B-MIX-07","CONVEX")$JBCT("B-MIX-07",JIT) = 1.0; 

AC(JIT,"B-MIX-08","CONVEX")$JBCT("B-MIX-08",JIT) = 1.0; 

AC(JIT,"B-MIX-09","CONVEX")$JBCT("B-MIX-09",JIT) = 1.0; 

 

PARAMETER  AOC(JIT,JBC,JOC)  OTHER CONSTRAINT COEFFICIENTS FOR CROP BUDGETS; 

 

 

PARAMETER  ACM(JR,JBC,JXC)  IO COEF MULTIPLIER CROP BUDGET TO PRODUCTION ACTIVITY; 

 

           ACM(JR,"B-MAIZE","X-MAIZE")$(JBR(JR,"B-MAIZE") AND JRX(JR,"X-MAIZE")) = 1; 

           ACM(JR,"B-RICE","X-RICE")$(JBR(JR,"B-RICE") AND JRX(JR,"X-RICE")) = 1; 

           ACM(JR,"B-CASSAVA","X-CASSAVA")$(JBR(JR,"B-CASSAVA") AND JRX(JR,"X-

CASSAVA")) = 1; 

           ACM(JR,"B-POTATOES","X-POTATOES")$(JBR(JR,"B-POTATOES") AND JRX(JR,"X-

POTATOES")) = 1; 

           ACM(JR,"B-BEANS","X-BEANS")$(JBR(JR,"B-BEANS") AND JRX(JR,"X-BEANS")) = 1; 

           ACM(JR,"B-GROUNDNUTS","X-GROUNDNUTS")$(JBR(JR,"B-GROUNDNUTS") AND 

JRX(JR,"X-GROUNDNUTS"))= 1; 

 

           ACM(JR,"B-MIX-00","X-MIX-00")$JRX(JR,"X-MIX-00") = 1; 

           ACM(JR,"B-MIX-01","X-MIX-01")$JRX(JR,"X-MIX-01") = 1; 

           ACM(JR,"B-MIX-02","X-MIX-02")$JRX(JR,"X-MIX-02") = 1; 

           ACM(JR,"B-MIX-03","X-MIX-03")$JRX(JR,"X-MIX-03") = 1; 

           ACM(JR,"B-MIX-04","X-MIX-04")$JRX(JR,"X-MIX-04") = 1; 

           ACM(JR,"B-MIX-05","X-MIX-05")$JRX(JR,"X-MIX-05") = 1; 

           ACM(JR,"B-MIX-06","X-MIX-06")$JRX(JR,"X-MIX-06") = 1; 

           ACM(JR,"B-MIX-07","X-MIX-07")$JRX(JR,"X-MIX-07") = 1; 

           ACM(JR,"B-MIX-08","X-MIX-08")$JRX(JR,"X-MIX-08") = 1; 

           ACM(JR,"B-MIX-09","X-MIX-09")$JRX(JR,"X-MIX-09") = 1; 

 

JBCR(JR,JXC,JBC)$(JXR(JXC) AND (ACM(JR,JBC,JXC) NE 0)) = YES; 

 

JRXT(JR,JXC,JIT)$(JXR(JXC) AND JRT(JR,JIT)) = YES; 
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$EJECT; 

 

 

PARAMETER  AL(JR,JBL,JIP)  PRODUCT AND INPUT COEF FOR LIVESTOCK BUDGETS; 

 

PARAMETER  AOL(JR,JB,JOC)  OTHER CONSTRAINT COEF FOR LIVESTOCK BUDGETS; 

 

PARAMETER  ALM(JR,JBL,JXL)  IO COEF MULTIPLIER LIVESTOCK BUDGET TO PROD ACTIVITY; 

 

PARAMETER  ARP(JR,JXP,JIP)  PRODUCT AND INPUT COEF FOR REGIONAL PROCESSING ACTIVITIES; 

 

PARAMETER  AORP(JR,JXP,JOC)  OTHER CONSTRAINT COEF FOR REGIONAL PROCESSING ACTIVITIES; 

 

PARAMETER  AR(JR,JXR,JIP)  PRODUCT AND INPUT COEF FOR REGIONAL PROD ACTIVITIES; 

 

* CALCULATE INPUT/OUTPUT COEFFICIENTS FOR LIVESTOCK PRODUCTION ACTIVITIES USING BUDGET 

COEFFICIENTS AND 

* CORRESPONDING BUDGET MULTIPLIERS, ADJUSTING FOR UNIT CONVERSIONS 

 

*          AR(JR,JXL,JIP)$JRX(JR,JXL) = SUM(JBL$(JBR(JR,JBL) AND (CNV1(JBL,JXL)>0)), 

*                                             

CNV2(JIP)*ALM(JR,JBL,JXR)*AL(JR,JBL,JIP)/CNV1(JBL,JXR)); 

 

*         AR(JR,JXP,JIP)$JRX(JR,JXP) = ARP(JR,JXP,JIP); 

 

PARAMETER  ARC(JR,JXC,JIT,JIP)  PRODUCT AND INPUT COEF FOR REG CROP PROD ACTIVITIES; 

 

PARAMETER  AOR(JR,JXR,JOC)  OTHER CONSTRAINT COEF FOR REGIONAL PROD ACTIVITIES; 

 

PARAMETER  AORC(JR,JXC,JIT,JOC)  OTHER CONSTRAINT COEF FOR REG CROP PROD ACTIVITIES; 

 

PARAMETER  BOR(JR,JOC)  RHS FOR OTHER REGIONAL CONSTRAINTS; 

 

$EJECT 

 

 

* FOR PRODUCTION ACTIVITIES MAPPED TO CROP AND LIVESTOCK BUDGETS, CALCULATE THE INPUT 

AND OUTPUT 

* COEFFICIENTS.  IF A COEFFICIENT VALUE HAS BEEN ASSIGNED TO THE ACTIVITY AND THAT 

ACTIVITY IS MAPPED TO 

* A CROP OR LIVESTOCK BUDGET, THE COEFFICIENT IS REASSIGNED TO ITS CURRENT VALUE PLUS 

THE BUDGET VALUE 

* TIMES THE CORRESPONDING MULTIPLIER.  COEFFICIENTS FOR OTHER CONSTRAINTS ARE COMPUTED 

THE SAME WAY. 

 

 

PARAMETER  ARC(JR,JXC,JIT,JIP) PRODUCT AND INPUT COEF FOR REG CROP PROD ACTIVITIES; 

 

ARC(JR,JXC,JIT,JIP)$JRXT(JR,JXC,JIT) 

              = SUM(JBC$(JBCT(JBC,JIT)), 

                    ACM(JR,JBC,JXC)*AC(JIT,JBC,JIP)); 

 

* THESE WERE ADDED ON 3RD APRIL 2019 BECAUSE THE MODEL WAS NOT PRODUCING 

*  WITHIN THE CROP MIX CONVEX COMBINATION 

 

ARC(JR,"X-MAIZE",JIT,JI)$JRXT(JR,"X-MAIZE",JIT) = ARC(JR,"X-MAIZE",JIT,JI); 

ARC(JR,"X-MAIZE",JIT,JIC) = 0; 

ARC(JR,"X-MAIZE",JIT,"CL-MAIZE")$JRXT(JR,"X-MAIZE",JIT) = ARC(JR,"X-MAIZE",JIT,"CL-

MAIZE"); 

ARC(JR,"X-MAIZE",JIT,"CL-TOTAL")$JRXT(JR,"X-MAIZE",JIT) = ARC(JR,"X-MAIZE",JIT,"CL-

TOTAL"); 

*ARC(JR,"X-CORN2",JIT,JP)$JRXT(JR,"X-CORN2",JIT) = 0.95*ARC(JR,"X-CORN",JIT,JP); 
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ARC(JR,"X-RICE",JIT,JI)$JRXT(JR,"X-RICE",JIT) = ARC(JR,"X-RICE",JIT,JI); 

ARC(JR,"X-RICE",JIT,JIC) = 0; 

ARC(JR,"X-RICE",JIT,"CL-RICE")$JRXT(JR,"X-RICE",JIT) = ARC(JR,"X-RICE",JIT,"CL-RICE"); 

ARC(JR,"X-RICE",JIT,"CL-TOTAL")$JRXT(JR,"X-RICE",JIT) = ARC(JR,"X-RICE",JIT,"CL-

TOTAL"); 

 

ARC(JR,"X-CASSAVA",JIT,JI)$JRXT(JR,"X-CASSAVA",JIT) = ARC(JR,"X-CASSAVA",JIT,JI); 

ARC(JR,"X-CASSAVA",JIT,JIC) = 0; 

ARC(JR,"X-CASSAVA",JIT,"CL-CASSAVA")$JRXT(JR,"X-CASSAVA",JIT) = ARC(JR,"X-

CASSAVA",JIT,"CL-CASSAVA"); 

ARC(JR,"X-CASSAVA",JIT,"CL-TOTAL")$JRXT(JR,"X-CASSAVA",JIT) = ARC(JR,"X-

CASSAVA",JIT,"CL-TOTAL"); 

 

ARC(JR,"X-POTATOES",JIT,JI)$JRXT(JR,"X-POTATOES",JIT) = ARC(JR,"X-POTATOES",JIT,JI); 

ARC(JR,"X-POTATOES",JIT,JIC) = 0; 

ARC(JR,"X-POTATOES",JIT,"CL-POTATOES")$JRXT(JR,"X-POTATOES",JIT) = ARC(JR,"X-

POTATOES",JIT,"CL-POTATOES"); 

ARC(JR,"X-POTATOES",JIT,"CL-TOTAL")$JRXT(JR,"X-POTATOES",JIT) = ARC(JR,"X-

POTATOES",JIT,"CL-TOTAL"); 

 

ARC(JR,"X-BEANS",JIT,JI)$JRXT(JR,"X-BEANS",JIT) = ARC(JR,"X-BEANS",JIT,JI); 

ARC(JR,"X-BEANS",JIT,JIC) = 0; 

ARC(JR,"X-BEANS",JIT,"CL-BEANS")$JRXT(JR,"X-BEANS",JIT) = ARC(JR,"X-BEANS",JIT,"CL-

BEANS"); 

ARC(JR,"X-BEANS",JIT,"CL-TOTAL")$JRXT(JR,"X-BEANS",JIT) = ARC(JR,"X-BEANS",JIT,"CL-

TOTAL"); 

 

ARC(JR,"X-GROUNDNUTS",JIT,JI)$JRXT(JR,"X-GROUNDNUTS",JIT) = ARC(JR,"X-

GROUNDNUTS",JIT,JI); 

ARC(JR,"X-GROUNDNUTS",JIT,JIC) = 0; 

ARC(JR,"X-GROUNDNUTS",JIT,"CL-GROUNDNUTS")$JRXT(JR,"X-GROUNDNUTS",JIT) = ARC(JR,"X-

GROUNDNUTS",JIT,"CL-GROUNDNUTS"); 

ARC(JR,"X-GROUNDNUTS",JIT,"CL-TOTAL")$JRXT(JR,"X-GROUNDNUTS",JIT) = ARC(JR,"X-

GROUNDNUTS",JIT,"CL-TOTAL"); 

 

PARAMETER  AN(JX,JIP)  PRODUCT AND INPUT COEFFICIENTS FOR NONREGIONAL PROD ACTIVITIES; 

 

PARAMETER  AON(JX,JOC)  OTHER CONSTRAINT COEFFICIENTS FOR NONREGIONAL PROD ACTIVITIES; 

 

PARAMETER  BON(JOC)  RHS FOR OTHER NONREGIONAL CONSTRAINTS; 

 

*AreaData (JR,JXC,JBC) 

 

$STITLE  DATA CHECKS AND DISPLAY 

* THE FOLLOWING SETS ARE CONSTRUCTED TO SEE IF INPUTS, PRODUCTS, BUDGETS, OR 

CONSTRAINTS AND ACTIVITIES 

* LACK INDICATED UNITS OR IF DUPLICATE UNITS ARE SPECIFIED.  INPUT AND PRODUCT ITEMS 

DO NOT NEED BUDGET 

* UNITS IF THEY DO NO APPEAR IN A CROP OR LIVESTOCK BUDGET 

 

SET  ICK01(JBC)  BUDGETS WITH NO UNITS SPECIFIED; 

SET  ICK02(JBC)  BUDGETS WITH DUPLICATE UNITS SPECIFIED; 

SET  ICK03(JXC)  ACTIVITIES WITH NO UNITS SPECIFIED; 

SET  ICK04(JXC)  ACTIVITIES WITH DUPLICATE UNITS SPECIFIED; 

SET  ICK05(JBC,JXC)  BUDGET - ACTIVITY COMBOS W ZERO CONVERSION MULT; 

 

SET  ICK06(JIP)  INPUTS AND PRODUCTS USED IN CROP OR LIVESTOCK BUDGETS; 

SET  ICK07(JIP)  INPUTS AND PRODUCTS W NO BUDGET UNITS SPECIFIED; 

SET  ICK08(JIP)  INPUTS AND PRODUCTS W DUPLICATE BUDGET UNITS SPECIFIED; 

SET  ICK09(JIP)  INPUTS AND PRODUCTS W NO MODEL UNITS SPECIFIED; 

SET  ICK10(JIP)  INPUTS AND PRODUCTS W DUPLICATE MODEL UNITS SPECIFIED; 

SET  ICK11(JIP)  INPUTS AND PRODUCTS W ZERO CONVERSION MULT; 
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PARAMETERS  KNT1(JBC,JXC)  UNIT CONVERSION COMB0S FOR BUDGET AND ACT - MUST = 1, 

            KNT2(JIP)  UNIT CONVERSION COMBOS FOR INPUT OR PRODUCT - MUST = 1; 

 

OPTION  CNV1:6:1:1;     DISPLAY  CNV1; 

OPTION  CNV2:6:0:1;     DISPLAY  CNV2; 

 

ICK01(JBC) = NO;      ICK01(JBC)$(SUM(JU$JUB(JBC,JU),1)<1) = YES;     DISPLAY ICK01; 

ICK02(JBC) = NO;      ICK02(JBC)$(SUM(JU$JUB(JBC,JU),1)>1) = YES;     DISPLAY ICK02; 

ICK03(JXC) = NO;      ICK03(JXC)$(SUM(JU$JUX(JXC,JU),1)<1) = YES;     DISPLAY ICK03; 

ICK04(JXC) = NO;      ICK04(JXC)$(SUM(JU$JUX(JXC,JU),1)>1) = YES;     DISPLAY ICK04; 

 

ICK05(JBC,JXC) = NO; 

ICK05(JBC,JXC) 

  $(CNV1(JBC,JXC)<=0 AND (SUM(JR$(JBCR(JR,JXC,JBC) AND ACM(JR,JBC,JXC)>0),1)>0)) = 

YES; 

DISPLAY ICK05; 

 

ICK06(JIP) = NO; 

ICK06(JIP)$(SUM(JIT,SUM(JBC,ABS(AC(JIT,JBC,JIP)))) > 0) = YES; 

*ICK06(JIP)$(SUM(JR,SUM(JBL,ABS(AL(JR,JBL,JIP)))) > 0) = YES; 

 

ICK07(JIP) = NO; 

ICK07(JIP)$((SUM(JU$JUIPB(JIP,JU),1)<1) AND ICK06(JIP)) = YES;  DISPLAY ICK07; 

 

ICK08(JIP) = NO;      ICK08(JIP)$(SUM(JU$JUIPB(JIP,JU),1)>1) = YES;   DISPLAY ICK08; 

ICK09(JIP) = NO;      ICK09(JIP)$(SUM(JU$JUIPX(JIP,JU),1)<1) = YES;   DISPLAY ICK09; 

ICK10(JIP) = NO;      ICK10(JIP)$(SUM(JU$JUIPX(JIP,JU),1)>1) = YES;   DISPLAY ICK10; 

ICK11(JIP) = NO;      ICK11(JIP)$(CNV2(JIP)<=0) = YES;                DISPLAY ICK11; 

 

*PARAMETER ARCB(JR,JXC,JIT,JIP); 

 

DISPLAY ACM; 

DISPLAY AC; 

DISPLAY ARC; 

 

SET  IDTR(JR)  DISPLAY DATA FOR THESE REGIONS  /CHI,KAR/; 

 

SET  IDTIC(JIT)  DISPLAY DATA FOR THESE CROP LAND TYPES  /CLT-CHI,CLT-KAR/; 

 

 

PARAMETER  DT1(JR,JX,JB)  BUDGET MULT BY PROD ACT & REG; 

           DT1(JR,JXC,JBC)$IDTR(JR) = ACM(JR,JBC,JXC); 

           OPTION  DT1:4:1:1;      DISPLAY  DT1; 

 

PARAMETER  DT2(JIT,JIP,JBC)  IP COEF FOR CROP BUDGETS; 

           DT2(JIT,JIP,JBC)$IDTIC(JIT) = AC(JIT,JBC,JIP);   OPTION  DT2:5:1:1;      

DISPLAY  DT2; 

 

PARAMETER  DT3(JR,JIT,JIP,JXC)  PROD & INPUT COEF TABLE; 

           DT3(JR,JIT,JIP,JXC)$(IDTR(JR) AND IDTIC(JIT)) = ARC(JR,JXC,JIT,JIP); 

* OPTION  DT3:5:1:1; 

           DISPLAY  DT3; 

 

IDTR(JR) = NO;  IDTR("CHI") = YES;   IDTR("KAR") = YES; 

 

 

$STITLE  DECLARE AND DEFINE VARIABLES, EQUATIONS AND THE SECTOR MODEL 

VARIABLES 

*-------------------------------------------------------------------------------------

------------------ 

* VARIABLE........  

DESCRIPTION........................................................................ 
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*-------------------------------------------------------------------------------------

------------------ 

  ZOBJ              CONSUMER PLUS PRODUCER SURPLUS 

  XR(JR,JXR)        REGIONAL PRODUCTION ACTIVITIES 

  XRC(JR,JXC,JIT)   REGIONAL CROP PRODUCTION ACTIVITIES 

  ZR(JR,JIR)        REGIONAL INPUT SUPPLY 

  ZC(JR,JIT,JIC)    CROP LAND INPUT SUPPLY 

*  LAMBDA2(JR,YEAR)    WEIGHT VARIABLES FOR HISTORICAL CROP MIXES 

* CROPLAND2(JR,JIC) CROP LAND USED BY CROP 

  YR(JR,JPR)        REGIONAL PRODUCT DEMAND 

  TR(JRS,JRD,JIP)   INTER-REGIONAL TRANSPORTATION ACTIVITIES 

  TMR(JR,JIP)       REGIONAL IMPORT ACTIVITIES 

  TXR(JR,JIP)       REGIONAL EXPORT ACTIVITIES 

  XN(JX)            NON-REGIONAL PRODUCTION ACTIVITIES 

  ZN(JIN)           NON-REGIONAL INPUT SUPPLY 

  YN(JPN)           NON-REGIONAL PRODUCT DEMAND 

  TMN(JIP)          NON-REGIONAL IMPORT ACTIVITIES 

  TXN(JIP)          NON-REGIONAL EXPORT ACTIVITIES; 

*-------------------------------------------------------------------------------------

------------------ 

 

POSITIVE VARIABLES  XR, XRC, ZR, ZC, YR, TR, TMR, TXR, XN, ZN, YN, TMN, TXN; 

*LAMBDA2, CROPLAND2; 

 

* 

* SET THE LOWER AND UPPER BOUNDS ON INPUT SUPPLY AND PRODUCT DEMAND VARIABLES TO THE 

ASSOCIATED QMIN 

* AND QMAX VALUES, RESPECTIVELY 

 

 

ZR.LO(JR,JIR) $JRIR(JR,JIR) = CSR(JR,JIR,"QMIN"); 

ZR.UP(JR,JIR) $JRIR(JR,JIR) = CSR(JR,JIR,"QMAX"); 

 

ZC.LO(JR,JIT,JIC) $(JRT(JR,JIT) AND JRIC(JR,JIC)) = CSC(JR,JIT,JIC,"QMIN"); 

ZC.UP(JR,JIT,JIC) $(JRT(JR,JIT) AND JRIC(JR,JIC)) = CSC(JR,JIT,JIC,"QMAX"); 

 

YR.LO(JR,JPR) $JRPR(JR,JPR) = CDR(JR,JPR,"QMIN"); 

YR.UP(JR,JPR) $JRPR(JR,JPR) = CDR(JR,JPR,"QBAR"); 

 

$EJECT 

EQUATIONS 

*-------------------------------------------------------------------------------------

------------------ 

* EQUATION..............  

DESCRIPTION.................................................................. 

*-------------------------------------------------------------------------------------

------------------ 

 OBJ                      OBJECTIVE FUNCTION SECTOR WELFARE 1000'S 

 INPUTREG(JR,JIR)         REGIONAL INPUT CONSTRAINTS 

 INPUTREGCL(JR,JIT,JIC)   CROP LAND INPUT CONSTRAINTS 

 PRODREG(JR,JPR)          REGIONAL PRODUCT CONSTRAINTS; 

* CONVEX2(JR)              CONVEXITY REQUIREMENT 

* HISTAREA2(JR,JIC)        TOTAL LAND CONSTRAINT CROPS RESTRICTED TO HISTORICAL MIXES; 

*INPUTNON(JIN)            NONREGIONAL INPUT CONSTRAINTS 

* PRODNON(JPN)             NONREGIONAL PRODUCT CONSTRAINTS; 

*-------------------------------------------------------------------------------------

------------------ 

 

 

OBJ.. 

 

 ZOBJ =E= 
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 .001*( SUM(JR, - SUM(JIR $JRIR(JR,JIR), (CSR(JR,JIR,"INTERCEPT")*ZR(JR,JIR) 

                                         + 0.5*CSR(JR,JIR,"SLOPE")*(ZR(JR,JIR)**2))) 

 

                - SUM(JIT $JRT(JR,JIT), SUM(JIC $JRIC(JR,JIC), 

                                                

(CSC(JR,JIT,JIC,"INTERCEPT")*ZC(JR,JIT,JIC) 

                                                + 

0.5*CSC(JR,JIT,JIC,"SLOPE")*(ZC(JR,JIT,JIC)**2)))) 

 

                + SUM(JPR $JRPR(JR,JPR), (CDR(JR,JPR,"INTERCEPT")*YR(JR,JPR) 

                                     + 0.5*CDR(JR,JPR,"SLOPE")*(YR(JR,JPR)**2))) 

 

                - SUM(JRD, SUM(JIP $JRSDIP(JR,JRD,JIP), 

CTR(JR,JRD,JIP)*TR(JR,JRD,JIP))))); 

 

$ONTEXT 

                - SUM(JIP $JIPRM(JR,JIP), CXMR(JR,JIP,"M-PRICE")*TMR(JR,JIP)) 

 

                + SUM(JIP $JIPRX(JR,JIP), CXMR(JR,JIP,"X-PRICE")*TXR(JR,JIP))) 

 

        - SUM(JIN, (CSN(JIN,"INTERCEPT")*ZN(JIN) + 0.5*CSN(JIN,"SLOPE")*(ZN(JIN)**2))) 

 

        + SUM(JPN, (CDN(JPN,"INTERCEPT")*YN(JPN) + 0.5*CDN(JPN,"SLOPE")*(YN(JPN)**2))) 

 

        - SUM(JIP $JIPNM(JIP), CXMN(JIP,"M-PRICE")*TMN(JIP)) 

 

        + SUM(JIP $JIPNX(JIP), CXMN(JIP,"X-PRICE")*TXN(JIP))); 

 

$OFFTEXT 

 

INPUTREG(JR,JIR) $JRIR(JR,JIR).. 

 

*SUM(JXR $(JRX(JR,JXR) AND (NOT JXC(JXR))), AR(JR,JXR,JIR)*XR(JR,JXR)) 

 

 SUM(JXC, SUM(JIT $JRXT(JR,JXC,JIT), ARC(JR,JXC,JIT,JIR)*XRC(JR,JXC,JIT))) 

 

 - ZR(JR,JIR) 

 

 + SUM(JRD $JRSDIP(JR,JRD,JIR), TR(JR,JRD,JIR)) 

 

 - SUM(JRS $JRSDIP(JRS,JR,JIR), TR(JRS,JR,JIR))=E= 0; 

 

* - TMR(JR,JIR) $(JR,JIR) + TXR(JR,JIR) $JIPRX(JR,JIR) =E= 0; 

 

*HISTAREA2(JR,JIC).. 

*   SUM(YR2, LAMBDA2(JR,YEAR)*AREADATA(JR,JIC,YEAR))-CROPLAND2(JR,JIC)=L=0; 

 

INPUTREGCL(JR,JIT,JIC) $(JRT(JR,JIT) AND JRIC(JR,JIC)).. 

 

  SUM(JXC $JRXT(JR,JXC,JIT), ARC(JR,JXC,JIT,JIC)*XRC(JR,JXC,JIT)) - ZC(JR,JIT,JIC) =L= 

0; 

 

 

PRODREG(JR,JPR) $JRPR(JR,JPR).. 

 

  SUM(JXC, SUM(JIT $JRXT(JR,JXC,JIT), ARC(JR,JXC,JIT,JPR)*XRC(JR,JXC,JIT))) 

 

 + YR(JR,JPR) 

 

 + SUM(JRD $JRSDIP(JR,JRD,JPR), TR(JR,JRD,JPR)) 

 

 - SUM(JRS $JRSDIP(JRS,JR,JPR), TR(JRS,JR,JPR))=E= 0; 
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MODEL MAGS /ALL/; 

 

*OPTION NLP = CONOPT 

*OPTION NLP = CONOPT2 

*OPTION NLP=MINOS5 

 

SOLVE MAGS USING NLP MAXIMIZING ZOBJ; 

 

$STITLE  GENERATE AND DISPLAY SOLUTION REPORTS 

SET  JTH1  RESULTS TABLE HEADERS 1  /LOWER, LEVEL, UPPER, MARGINAL/; 

 

SET  JTH2  RESULTS TABLE HEADERS 2  /AREA, PROD, YIELD, USE, QUANTITY, SHIP-IN, SHIP-

OUT, DEMAND, 

     SUPPLY, EXPORT, IMPORT, LAMBDA, PRICE, VALUE/; 

 

PARAMETER  RT01  CONSUMER PLUS PRODUCER SURPLUS $1000'S; 

 RT01 = ZOBJ.L; 

 OPTION  RT01:0:0:1;    DISPLAY$PRNT("01") RT01; 

 

*PARAMETER  RT02(JR,JXR,JU,JTH1)  REGIONAL PRODUCTION ACTIVITIES; 

* RT02(JR,JXR,JU,"LOWER")$(JUX(JXR,JU) AND JRX(JR,JXR)AND(NOT JXC(JXR))) = 

XR.LO(JR,JXR); 

* RT02(JR,JXR,JU,"LEVEL")$(JUX(JXR,JU) AND JRX(JR,JXR)AND(NOT JXC(JXR))) = 

XR.L(JR,JXR); 

* RT02(JR,JXR,JU,"UPPER")$(JUX(JXR,JU) AND JRX(JR,JXR)AND(NOT JXC(JXR))) = 

XR.UP(JR,JXR); 

* RT02(JR,JXR,JU,"MARGINAL")$(JUX(JXR,JU) AND JRX(JR,JXR)AND(NOT JXC(JXR))) = 

XR.M(JR,JXR); 

* OPTION  RT02:4:2:1;    DISPLAY$PRNT("02") RT02; 

 

PARAMETER  RT03(JR,JXC,JIT,JU,JTH1)  REGIONAL CROP PRODUCTION ACTIVITIES; 

 RT03(JR,JXC,JIT,JU,"LOWER")$(JRXT(JR,JXC,JIT) AND JUX(JXC,JU)) = XRC.LO(JR,JXC,JIT); 

 RT03(JR,JXC,JIT,JU,"LEVEL")$(JRXT(JR,JXC,JIT) AND JUX(JXC,JU)) = XRC.L(JR,JXC,JIT); 

 RT03(JR,JXC,JIT,JU,"UPPER")$(JRXT(JR,JXC,JIT) AND JUX(JXC,JU)) = XRC.UP(JR,JXC,JIT); 

 RT03(JR,JXC,JIT,JU,"MARGINAL")$(JRXT(JR,JXC,JIT) AND JUX(JXC,JU)) = 

XRC.M(JR,JXC,JIT); 

 OPTION  RT03:4:3:1;    DISPLAY$PRNT("03") RT03; 

 

PARAMETER  RT04(JR,JIR,JU,JTH1)  REGIONAL INPUT SUPPLY ACTIVITIES; 

 RT04(JR,JIR,JU,"LOWER")$(JRIR(JR,JIR) AND JUIPX(JIR,JU)) = ZR.LO(JR,JIR); 

 RT04(JR,JIR,JU,"LEVEL")$(JRIR(JR,JIR) AND JUIPX(JIR,JU)) = ZR.L(JR,JIR); 

 RT04(JR,JIR,JU,"UPPER")$(JRIR(JR,JIR) AND JUIPX(JIR,JU)) = ZR.UP(JR,JIR); 

 RT04(JR,JIR,JU,"MARGINAL")$(JRIR(JR,JIR) AND JUIPX(JIR,JU)) = ZR.M(JR,JIR); 

 OPTION  RT04:4:3:1;    DISPLAY$PRNT("04") RT04; 

 

PARAMETER  RT05(JR,JIT,JIC,JU,JTH1)  CROP LAND INPUT SUPPLY ACTIVITIES; 

 RT05(JR,JIT,JIC,JU,"LOWER")$(JRT(JR,JIT) AND JRIC(JR,JIC) AND JUIPX(JIC,JU)) = 

ZC.LO(JR,JIT,JIC); 

 RT05(JR,JIT,JIC,JU,"LEVEL")$(JRT(JR,JIT) AND JRIC(JR,JIC) AND JUIPX(JIC,JU)) = 

ZC.L(JR,JIT,JIC); 

 RT05(JR,JIT,JIC,JU,"UPPER")$(JRT(JR,JIT) AND JRIC(JR,JIC) AND JUIPX(JIC,JU)) = 

ZC.UP(JR,JIT,JIC); 

 RT05(JR,JIT,JIC,JU,"MARGINAL")$(JRT(JR,JIT) AND JRIC(JR,JIC) AND JUIPX(JIC,JU)) = 

ZC.M(JR,JIT,JIC); 

 OPTION  RT05:4:3:1;    DISPLAY$PRNT("05") RT05; 

 

PARAMETER  RT06(JR,JPR,JU,JTH1)  REGIONAL PRODUCT DEMAND ACTIVITIES; 

 RT06(JR,JPR,JU,"LOWER")$(JRPR(JR,JPR) AND JUIPX(JPR,JU)) = YR.LO(JR,JPR); 

 RT06(JR,JPR,JU,"LEVEL")$(JRPR(JR,JPR) AND JUIPX(JPR,JU)) = YR.L(JR,JPR); 

 RT06(JR,JPR,JU,"UPPER")$(JRPR(JR,JPR) AND JUIPX(JPR,JU)) = YR.UP(JR,JPR); 

 RT06(JR,JPR,JU,"MARGINAL")$(JRPR(JR,JPR) AND JUIPX(JPR,JU)) = YR.M(JR,JPR); 

 OPTION  RT06:4:3:1;    DISPLAY$PRNT("06") RT06; 
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PARAMETER  RT07(JRS,JRD,JIP,JU,JTH1)  INTER-REGIONAL TRANSPORTATION ACTIVITIES; 

 RT07(JRS,JRD,JIP,JU,"LOWER")$(JRSDIP(JRS,JRD,JIP) AND JUIPX(JIP,JU)) = 

TR.LO(JRS,JRD,JIP); 

 RT07(JRS,JRD,JIP,JU,"LEVEL")$(JRSDIP(JRS,JRD,JIP) AND JUIPX(JIP,JU)) = 

TR.L(JRS,JRD,JIP); 

 RT07(JRS,JRD,JIP,JU,"UPPER")$(JRSDIP(JRS,JRD,JIP) AND JUIPX(JIP,JU)) = 

TR.UP(JRS,JRD,JIP); 

 RT07(JRS,JRD,JIP,JU,"MARGINAL")$(JRSDIP(JRS,JRD,JIP) AND JUIPX(JIP,JU)) = 

TR.M(JRS,JRD,JIP); 

 OPTION  RT07:4:3:1;    DISPLAY$PRNT("07") RT07; 

 

PARAMETER  RT31(JR,JIR,JTH1)  REGIONAL INPUT CONSTRAINTS; 

 RT31(JR,JIR,"LOWER")$JRIR(JR,JIR) = INPUTREG.LO(JR,JIR); 

 RT31(JR,JIR,"LEVEL")$JRIR(JR,JIR) = INPUTREG.L(JR,JIR); 

 RT31(JR,JIR,"UPPER")$JRIR(JR,JIR) = INPUTREG.UP(JR,JIR); 

 RT31(JR,JIR,"MARGINAL")$JRIR(JR,JIR) = INPUTREG.M(JR,JIR); 

 OPTION  RT31:4:2:1;    DISPLAY$PRNT("31") RT31; 

 

PARAMETER  RT32(JR,JIT,JIC,JTH1)  CROP LAND INPUT CONSTRAINTS; 

 RT32(JR,JIT,JIC,"LOWER")$(JRT(JR,JIT) AND JRIC(JR,JIC)) = INPUTREGCL.LO(JR,JIT,JIC); 

 RT32(JR,JIT,JIC,"LEVEL")$(JRT(JR,JIT) AND JRIC(JR,JIC)) = INPUTREGCL.L(JR,JIT,JIC); 

 RT32(JR,JIT,JIC,"UPPER")$(JRT(JR,JIT) AND JRIC(JR,JIC)) = INPUTREGCL.UP(JR,JIT,JIC); 

 RT32(JR,JIT,JIC,"MARGINAL")$(JRT(JR,JIT) AND JRIC(JR,JIC)) = 

INPUTREGCL.M(JR,JIT,JIC); 

 OPTION  RT32:4:2:1;    DISPLAY$PRNT("32") RT32; 

 

PARAMETER  RT33(JR,JPR,JTH1)  REGIONAL PRODUCT CONSTRAINTS; 

 RT33(JR,JPR,"LOWER")$JRPR(JR,JPR) = PRODREG.LO(JR,JPR); 

 RT33(JR,JPR,"LEVEL")$JRPR(JR,JPR) = PRODREG.L(JR,JPR); 

 RT33(JR,JPR,"UPPER")$JRPR(JR,JPR) = PRODREG.UP(JR,JPR); 

 RT33(JR,JPR,"MARGINAL")$JRPR(JR,JPR) = PRODREG.M(JR,JPR); 

 OPTION  RT33:4:2:1;    DISPLAY$PRNT("33") RT33; 

 

PARAMETER  RT41(JR,JIT,JXC)  CROP PROD ACTIVITY LEVELS BY REGION & LAND TYPE; 

 RT41(JR,JIT,JXC) $JRXT(JR,JXC,JIT) = XRC.L(JR,JXC,JIT); 

 OPTION  RT41:3:1:1;     DISPLAY$PRNT("41")  RT41; 

 

PARAMETER  RT42(JXC,JR)  CROP PROD ACTIVITY LEVELS SUMMED BY REGION; 

 RT42(JXC,JR) = SUM(JIT $JRXT(JR,JXC,JIT), XRC.L(JR,JXC,JIT)); 

 OPTION  RT42:3:1:1;     DISPLAY$PRNT("42")  RT42; 

 

PARAMETER  RT43(JXC)  TOTAL CROP PROD ACTIVITY LEVELS; 

 RT43(JXC) = SUM(JR, SUM(JIT $JRXT(JR,JXC,JIT), XRC.L(JR,JXC,JIT))); 

 OPTION  RT43:3:0:1;     DISPLAY$PRNT("43")  RT43; 

 

PARAMETER  RT71(JR,JIP,JU,JTH2)  REGIONAL INPUT & PRODUCT RESULTS BY REGION; 

 RT71(JR,JIP,JU,JTH2) = 0.0; 

 RT71(JR,JIR,JU,"PROD")$JUIPX(JIR,JU) 

   = SUM(JXC, SUM(JIT $(JRXT(JR,JXC,JIT) AND (ARC(JR,JXC,JIT,JIR)<0)), 

         - ARC(JR,JXC,JIT,JIR)*XRC.L(JR,JXC,JIT))); 

 RT71(JR,JPR,JU,"PROD")$JUIPX(JPR,JU) 

   = SUM(JXC, SUM(JIT $(JRXT(JR,JXC,JIT) AND (ARC(JR,JXC,JIT,JPR)<0)), 

         - ARC(JR,JXC,JIT,JPR)*XRC.L(JR,JXC,JIT))); 

 RT71(JR,JIR,JU,"USE")$JUIPX(JIR,JU) 

   = SUM(JXC, SUM(JIT $(JRXT(JR,JXC,JIT) AND (ARC(JR,JXC,JIT,JIR)>0)), 

         ARC(JR,JXC,JIT,JIR)*XRC.L(JR,JXC,JIT))); 

 RT71(JR,JPR,JU,"USE")$JUIPX(JPR,JU) 

   = SUM(JXC, SUM(JIT $(JRXT(JR,JXC,JIT) AND (ARC(JR,JXC,JIT,JPR)>0)), 

         ARC(JR,JXC,JIT,JPR)*XRC.L(JR,JXC,JIT))); 

 RT71(JR,JIP,JU,"SHIP-IN")$JUIPX(JIP,JU) = SUM(JRS$JRSDIP(JRS,JR,JIP), 

TR.L(JRS,JR,JIP)); 

 RT71(JR,JIP,JU,"SHIP-OUT")$JUIPX(JIP,JU) = SUM(JRD$JRSDIP(JR,JRD,JIP), 

TR.L(JR,JRD,JIP)); 
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 RT71(JR,JPR,JU,"DEMAND")$(JRPR(JR,JPR) AND JUIPX(JPR,JU)) = YR.L(JR,JPR); 

 RT71(JR,JIR,JU,"SUPPLY")$(JRIR(JR,JIR) AND JUIPX(JIR,JU)) = ZR.L(JR,JIR); 

 

 RT71(JR,JPR,JU,"PRICE")$(JRPR(JR,JPR) AND JUIPX(JPR,JU)) = PRODREG.M(JR,JPR); 

 RT71(JR,JIR,JU,"PRICE")$(JRIR(JR,JIR) AND JUIPX(JIR,JU)) = INPUTREG.M(JR,JIR); 

 RT71(JR,JPR,JU,"LAMBDA")$(JRPR(JR,JPR) AND JUIPX(JPR,JU)) = YR.M(JR,JPR); 

 RT71(JR,JIR,JU,"LAMBDA")$(JRIR(JR,JIR) AND JUIPX(JIR,JU)) = ZR.M(JR,JIR); 

 OPTION  RT71:3:2:1;     DISPLAY$PRNT("71")  RT71; 

 

PARAMETER  RT72(JIP,JR,JU,JTH2)  REGIONAL INPUT & PRODUCT RESULTS BY ITEM; 

 RT72(JIP,JR,JU,JTH2) = RT71(JR,JIP,JU,JTH2); 

 OPTION  RT72:3:2:1;     DISPLAY$PRNT("72")  RT72; 

 

SET  JIP73(JIP) 

/MAIZESEED,RICESEED,CASSAVASEED,POTATOSEED,BEANSSEED,GNUTSSEED,FERT1,FERT2, 

                       PESTICIDES,TRANSPORT,PACKAGINGM,LABOR/; 

 

PARAMETER  RT73(JIP,JR,JU,JTH2)  REGIONAL INPUT & PRODUCT RESULTS FOR SELECT ITEMS; 

 RT73(JIP,JR,JU,JTH2)$JIP73(JIP) = RT71(JR,JIP,JU,JTH2); 

 OPTION  RT73:3:2:1;     DISPLAY$PRNT("73")  RT73; 

 

PARAMETER  RT81(JIP,JU,JRS,JRD)  INTER-REG INPUT & PRODUCT SHIPMENTS; 

 RT81(JIP,JU,JRS,JRD) = RT07(JRS,JRD,JIP,JU,"LEVEL"); 

 OPTION  RT81:3:1:1;     DISPLAY$PRNT("81")  RT81; 

 

SET  JPR91(JPR)  CROP PRODUCTS FOR RESULTS TABLE 91 

/MAIZE,RICE,CASSAVA,POTATOES,BEANS,GROUNDNUTS/; 

 

PARAMETER  RT91(JPR91,JR,JTH2)  CROP PRODUCT RESULTS BY REGION TABLE 91; 

 RT91(JPR91,JR,"PROD") = SUM(JU$JUIPX(JPR91,JU),RT71(JR,JPR91,JU,"PROD")); 

 RT91(JPR91,JR,"USE") = SUM(JU$JUIPX(JPR91,JU),RT71(JR,JPR91,JU,"USE")); 

 RT91(JPR91,JR,"SHIP-IN") = SUM(JU$JUIPX(JPR91,JU),RT71(JR,JPR91,JU,"SHIP-IN")); 

 RT91(JPR91,JR,"DEMAND") = SUM(JU$JUIPX(JPR91,JU),RT71(JR,JPR91,JU,"DEMAND")); 

 RT91(JPR91,JR,"EXPORT") = SUM(JU$JUIPX(JPR91,JU),RT71(JR,JPR91,JU,"EXPORT")); 

 RT91(JPR91,JR,"IMPORT") = SUM(JU$JUIPX(JPR91,JU),RT71(JR,JPR91,JU,"IMPORT")); 

 RT91(JPR91,JR,"PRICE") = SUM(JU$JUIPX(JPR91,JU),RT71(JR,JPR91,JU,"PRICE")); 

 RT91(JPR91,JR,"AREA") = SUM(JU$JUIPX(JPR91,JU), 

      SUM(JXC, SUM(JIT $(JRXT(JR,JXC,JIT) AND 

(ARC(JR,JXC,JIT,JPR91)<0)),XRC.L(JR,JXC,JIT)))); 

 RT91(JPR91,JR,"YIELD")$(RT91(JPR91,JR,"AREA")>0) = 

RT91(JPR91,JR,"PROD")/RT91(JPR91,JR,"AREA"); 

 OPTION  RT91:3:1:1;     DISPLAY$PRNT("91")  RT91; 

 

PARAMETER  RT92(JPR91,JTH2)  CROP RESULTS TOTAL TABLE 92; 

 RT92(JPR91,"AREA") = SUM(JR,RT91(JPR91,JR,"AREA")); 

 RT92(JPR91,"PROD") = SUM(JR,RT91(JPR91,JR,"PROD")); 

 RT92(JPR91,"USE") = SUM(JR,RT91(JPR91,JR,"USE")); 

 RT92(JPR91,"DEMAND") = SUM(JR,RT91(JPR91,JR,"DEMAND")); 

 RT92(JPR91,"EXPORT") = SUM(JR,RT91(JPR91,JR,"EXPORT")); 

 RT92(JPR91,"IMPORT") = SUM(JR,RT91(JPR91,JR,"IMPORT")); 

  RT92(JPR91,"SHIP-IN") = SUM(JR,RT91(JPR91,JR,"SHIP-IN")); 

 RT92(JPR91,"YIELD")$(RT92(JPR91,"AREA")>0) = RT92(JPR91,"PROD")/RT92(JPR91,"AREA"); 

 

 

 OPTION  RT92:3:1:1;     DISPLAY$PRNT("92")  RT92; 

 

*=== Export to Excel using GDX utilities 

 

*=== First unload to GDX file (occurs during execution phase) 

*execute_unload "G:\My Drive\MalawiAgSectorModel\GAMS Model\results.gdx" 

execute_unload "G:\My Drive\MalawiAgSectorModel\GAMS Model\resultsBaseline.gdx" 

*execute_unload "G:\My Drive\MalawiAgSectorModel\GAMS Model\resultsZeroTC.gdx" 

*execute_unload "G:\My Drive\MalawiAgSectorModel\GAMS Model\resultsHalfTC.gdx" 
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*execute_unload "G:\My Drive\MalawiAgSectorModel\GAMS Model\resultsDoubleTC.gdx" 

*=== Now write to variable levels to Excel file from GDX 

*=== Since we do not specify a sheet, data is placed in first sheet 

execute 'gdxxrw.exe resultsBaseline.gdx' 

*execute 'gdxxrw.exe resultsZeroTC.gdx' 

*execute 'gdxxrw.exe resultsHalfTC.gdx' 

*execute 'gdxxrw.exe resultsDoubleTC.gdx' 

* execute 'gdxxrw.exe results.gdx' 

*=== Write marginals to a different sheet with a specific range 
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