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Research abstract 

 

Bovine tuberculosis (bTB) is an ancient, zoonotic, infectious disease of cattle that has an 

important impact in animal and public health. Within the United Nations Sustainable 

Development Goal 3 to “ensure healthy lives and promote wellbeing,” the WHO pursues 

by 2030 “the end of the human tuberculosis epidemic.” To achieve this goal the burden of 

zoonotic-bTB needs to be abolished globally. In spite of many efforts and resources 

invested in its eradication, bTB is still endemic in many countries. 

The intradermal tuberculin test and the slaughter of bTB positive animals, with the 

slaughter surveillance, are the basis of most of the bTB-control and eradication programs 

in place. However, the accuracy of intradermal testing tends to vary broadly with factors 

inherent to the settings (country) in which the test is carried out (resources, training, 

personnel, climate, and animal population), and related to the individual immunity of the 

animal (such as anergic periods or cross-reactivity with other Mycobacterial infections). 

In Uruguay, in spite of many efforts dedicated to bTB eradication, this disease has 

reached unprecedented prevalence levels in large, intensified dairy systems in the past 

years (2010-2018). Trends of dairy consolidation, characterized by a steady decline in the 

number of dairy farms, increases in herd-size and rearing intensification, were associated 

with this bTB-prevalence growth in dairy systems. This raised concerns regarding the 

suitability of the bTB-control strategies to reach eradication in this evolving demographic 

and management scenarios.  
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The overarching goal of this dissertation was the assessment of current and alternative 

control strategies for bovine tuberculosis in high-prevalence endemic settings, 

considering the identified demographic and management risk factors, to guide the design 

and implementation of optimal control and eradication procedures through mathematical 

modeling. In order to achieve this goal, we initially used Bayesian statistical approaches 

to identify to the limitations of the current testing protocol under field conditions and 

assessed alternative diagnostic tools, which could help to constrain those limitations. 

Specific aims fulfilled and the main findings of this research were: 

a) The characterization of the association between bTB diagnostic results and those 

obtained in Johne’s disease (JD) (another important and widespread mycobacterial 

infection in cattle) diagnostics at the herd and individual level in an endemic high bTB-

prevalence in which JD was present (scenario I), and individual association in high 

prevalence bTB- and JD-coinfected  herds (scenario II). We demonstrated, in the scenario 

I, an association between the herd bTB status and the results obtained in a JD-ELISA. In 

addition, we determined, at the individual level an increased chance of positivity in the 

JD-ELISA when animals were frequently (>3 within a year) and recently (within 90 

days) inoculated with intradermal tuberculin. For scenario II, we characterized the 

association between bTB- and JD-diagnostic result at the individual level in two farms in 

which both diseases were present at high prevalence. We observed a higher frequency of 

bTB-positive animals in the JD-positive population, with a significantly lower agreement 

between the caudal and cervical comparative intradermal tests compared to the JD-

negative population.  
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b) The evaluation of the accuracy in herds heavily bTB- and JD- coinfected of two in-

vitro (interferon-gamma release assay–IGRA- and ELISA) never previously used in 

Uruguay with the demographic and management risk characteristics identified (large 

herds, with a frequent and large number of animals, moved, and intensified). We 

determined the posterior estimates for sensitivity (Se) and specificity (Sp) from latent 

class models for IGRA and ELISA. We evidenced that IGRA was as sensitive (75-78%) 

as the intradermal tuberculin caudal fold test (CFT), and more sensitive than the serial 

use of CFT and intradermal comparative cervical test (CCT). Also, its specificity (90-

96%) was superior to the one of the CFT and equivalent to the use of CFT-CCT. 

Estimates for the performance of the ELISA reached limited Se (~52%) and good Sp 

(~92%). 

 c) The assessment of bTB-within-herd dynamics and the epidemiological and 

performance effectiveness (uninfected false positive unnecessary slaughters) of six 

alternative control strategies involving single and parallel combinations of different tests 

(IGRAs, CFT, CFT+IGRA, CFT+ELISA, IGRA+ELISA) in large herds highly co-

infected with bTB and JD. We concluded that any of the six alternative strategies 

assessed improved the time to bTB-control, as determined by the time-to eradication and 

time-to-regain the officially tuberculosis-free status, or reduce the false positive slaughter 

rate overall comparing to the status quo strategy (CFT-CCT in series). We characterized 

the role of the young cattle category (<12 months) on maintaining bTB-infection for 

longer periods when applying the alternative strategies to the status quo in highly bTB-

and JD- coinfected dairy herds in Uruguay. We showed the importance of targeting 
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control strategies to younger animal categories, the potential benefit of using the IGRA in 

the initial stages of the control when bTB-prevalence is high without incurring in 

additional unnecessarily slaughters, and the poor expectations of the use of ELISA in 

parallel combination with CFT or IGRA. 

Overall, we demonstrate that JD has an effect in bTB-diagnostic results at the herd and 

individual level in high prevalence bTB and JD coinfected populations studied, which 

needs to be addressed in the planning of bTB-control programs, specifically in regards of 

the performance of the bTB-diagnostic tools used. Still, in this co-infected scenario, the 

use of IGRA notably improved the sensitivity of detection in these herds, which can be 

beneficial in declining initial high bTB-prevalence levels. However, it is crucial to 

incorporate bTB-testing in young animals (<12 months) to break disease transmission 

and achieve prompt eradication. 

With the assessment of bTB-control strategies in high prevalent endemic areas, 

incorporating the effect of JD-coinfection in the test performance, and herd risk factors 

associated with bTB (size, movements, intensification), represents the first attempt to 

integrate field risk factors for the diagnosis of bTB, and JD-coinfection in the design of 

control strategies for heavily infected herds.  

Further studies would be required in order to determine the best bTB-control strategy 

resulting from the interaction between bTB- and JD- epidemiology, test performance, and 

economic costs, while acknowledging the country logistics and socio-cultural 

perceptions. Nevertheless, this research contributed to enhancing the understanding of 
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bTB-patterns in heavily endemic populations. The use of the diagnostic and modeling 

tools presented here can be the foundation of optimal bTB-control strategies to reach 

eradication when depopulation is not suitable. 
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CHAPTER 1 – Introduction  
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1.1 Chapter summary 

Bovine tuberculosis (bTB) is an ancient, zoonotic, and infectious disease of cattle that has 

a significant impact in animal and public health. This chapter briefly describes the 

general characteristics of bTB burden, epidemiology, and diagnostic tools that will be 

essential for the understanding of this dissertation. It also introduces Uruguay, the bTB-

endemic country that motivated this dissertation, including its cattle production system 

characteristics, bTB-epidemiology, surveillance, control, and eradication program and its 

limitations. Finally, we identify the gaps and limitations in the current bTB-control 

program in this endemic setting and the goals of this dissertation. 
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1.2 General characterization 

Etiology, hosts, transmission, clinical signs, and pathogenesis 

Bovine tuberculosis (bTB) is an ancient, zoonotic, and infectious disease of cattle 

that has an important impact in animal and public health. It is caused by members of the 

Mycobacterium tuberculosis complex (MTBC) (Braun & Lebek, 1958; McMurray, 1941; 

Schmiedel, 1968). Mycobacterium bovis (M. bovis) is the main MTBC member causing 

disease in cattle, which origin dates from more than 10,000 years ago in association with 

domestication of cattle and early farming (Good, Bakker, Duignan, & Collins, 2018); 

however in recent years Mycobacterium caprae (M. caprae) has been described as 

another important agent affecting cattle in central and eastern Europe (Alicia Aranaz, 

Cousins, Mateos, & Dominguez, 2003; Muller et al., 2013; Rodriguez et al., 2009; 

Zanardi et al., 2013). 

Transmission in cattle occurs mainly when a susceptible animal inhales an 

infective dose of aerosolized M. bovis, from a bTB-infected animal (Neill et al., 2001; 

Neill et al., 1994; Phillips et al., 2003) , or when sucking calves ingest contaminated 

colostrum or milk (Domingo, Vidal, & Marco, 2014; F. D. Menzies & Neill, 2000). 

Although M. bovis is an obligate pathogen, its bacterial structure allows it to survive in 

soil, water, and vegetation for 2 years when conditions are optimal (Morris, Pfeiffer, & 

Jackson, 1994) making ingestion of contaminated water or feed another possible 

transmission route in cattle, and the most likely cause of spillover to wildlife (Fitzgerald 

& Kaneene, 2013). Additionally, but less frequently reported, bTB-transmission paths 

can involve venereal, trans-placental, intra-mammary, and cutaneous route (Fraser D. 



 

4 

 

Menzies, Abernethy, Stringer, Honhold, & Gordon, 2012; Phillips et al., 2003; Vural & 

Tunca, 2001). 

A bTB-infected animal is hardly identifiable by the clinical signs until the 

advanced stages of the disease when the most characteristic symptoms are wasting, 

debilitation, emaciation, and loss in production and body condition. When the animal is 

infected by M. bovis it develops an immune response that, if it does not eliminate the 

pathogen, develops a granuloma, which is generated by the accumulation of 

macrophages, lymphocytes, and dendritic cells in the primary site of infection (Cassidy et 

al., 1998), the so-called tubercle. This tubercle can stay latent, or reactivate as a result of 

a rupture, second infection, or deprivation of the immune response (e.g., stress) causing 

bacterial dissemination and subsequent infection of other organs (Domingo et al., 2014). 

The tubercles may be visible as early as three weeks after infection (Cassidy et al., 1998), 

and might be associated with clinical signs (Thoen, Karlson, & Himes, 1981). Between 9 

and 20% of the infected animals might shed the M. bovis through the respiratory system, 

secretions, feces, milk, or urine for up to 38 weeks (Neill, Hanna, O’Brien, & 

McCracken, 1988; Neill et al., 1994) , becoming the main source of transmission to the 

other animals. 

While cattle is the main host of M. bovis, infection has been reported in a wide 

range of domestic mammals, such as sheep (Muñoz Mendoza et al., 2012) , swine 

(Barandiaran, Martínez Vivot, Pérez, Cataldi, & Zumárraga, 2015; Jenkins et al., 2011), 

goats (Aranaz, 1999), and equines (Keck, Dutruel, Smyej, Nodet, & Boschiroli, 2010; 

Sarradell et al., 2015) , and wild animals, such as buffalo, antelope (de Garine-

Wichatitsky et al., 2010; Shury, Nishi, Elkin, & Wobeser, 2015), deer (Miller & 
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Sweeney, 2013; Wobeser, 2009) , badgers (Buzdugan, Chambers, Delahay, & Drewe, 

2016; Byrne et al., 2015) , wild boars (Alicia Aranaz et al., 2004; Gortazar et al., 2011) , 

and possums (Lisle et al., 2005; Nugent et al., 2015), which may contributes to disease 

epidemiology. 

Given, these domestic species are in close contact with human populations, bTB is an 

important zoonosis (Cosivi et al., 1998). Similar to cattle, in humans, bTB is most often 

transmitted by aerosol exposure to the bacilli, or by the ingestion of unpasteurized milk, 

or contaminated food (Müller et al., 2013; Rua-Domenech, 2006).  

Disease burden 

Within the United Nations Sustainable Development Goal (SDG) 3 “Ensure 

healthy lives and promote wellbeing,” the end-TB strategy pursues by 2030 “the end of 

human tuberculosis epidemic”. In 2016, the World Health Organization estimated 

147,000 new cases of zoonotic-bTB globally, with ~10% of deaths due to the disease, in 

which it's presumed that African and Southeast Asian countries had the heaviest burden 

(WHO). However, the true burden is likely underestimated, given estimates are mainly 

provided by countries in which bTB-programs are in place, and no reports are available 

from those without control or surveillance strategies in place (Olea-Popelka et al., 2017). 

The cultural and social traditions of some developing countries in which the close 

interaction with animals and the consumption of raw milk and animal products is a 

frequent practice make control difficult and likely increases zoonotic-bTB incidence. 

Also, from the 179 countries in 2016, that reported their animal health status to 

the OIE (World Organization for Animal Health), ~50% declared the presence of bTB in 
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their animal populations. This indicates the global distribution and persistence of the 

disease in spite of efforts imposed in their control in many developed and developing 

countries (Bezos et al., 2014; de Kantor & Ritacco, 1994; Morris, 2015; Palmer & 

Waters, 2011; Picasso et al., 2017; Robinson, 2015), which raises the complexity in 

achieving the United Nations SDG-3. 

The zoonotic dimension was the initial incentive to pursue the eradication of bTB 

and implement national programs mostly based on test-and-slaughter of infected animals 

(Pfeiffer, 2013). Furthermore, the costs associated with the disease presence, losses in 

animal production (milk, meat), welfare, early culling, and limitations in the trade of 

animals or animals products furthermore motivated stakeholders to seek the eradication 

of bTB from their herds. In countries with an established bTB-surveillance and control 

program, the most of the economic burden of the disease is linked to its implementation 

(Gormley, Anderson, & Nugent, 2017; Pfeiffer, 2013; Tschopp et al., 2013).   

1.2 Immune response, antemortem and ancillary diagnostic tools 

The acquired immune response triggered by the infection of M. bovis involves 

two immunity types which develop after an initial interaction with the pathogen (Kindt, 

Osborne, & Goldsby, 2007), first, the cell-mediated (CMI) and secondary, the antibody-

mediated (AMI). The CMI is the most prominent and important response in the first 

stages of the disease and mainly relies on lymphocytes T (Baldwin & Telfer, 2015). The 

lymphocytes T helper 1 (Th1) are the ones that have a greater influence in the bTB-CMI, 

inducing the production of gamma-interferon (IFN-γ), and other cytokines (e.g. IL-17) 

responsible for the delayed-hypersensitivity type IV (Robinson, Orme, & Cooper, 2015) 
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that are the main target of most of the diagnostic tests. Lymphocytes T helper 2 (Th2) are 

involved in the development of the humoral response that will play a role in the more 

advanced stages of disease (Pollock, Welsh, & McNair, 2005). The emergence of the 

humoral response (AMI) is typically associated with the fade (or anergy) of the CMI 

(Mcnair et al., 2001) (figure 1.5.1). Until now, the period in which is possible to detect 

the immune response against bTB is not completely defined. Different studies reported 

the detection of CMI as early as 14 days until 119 days in natural and experimentally 

infected animals  (Kao R. R., Roberts M. G., & Ryan T. J., 1997; Neill, O’Brien, & 

Hanna, 1991; Perez, Ward, & Ritacco, 2002; Pollock et al., 2001). Still, the median initial 

time to detection is 41 days (Alvarez, Bezos, et al., 2014). 

Most of the animal health authorities base their national bTB-surveillance and 

control programs on the prompt detection and slaughter of infected animals to avoid 

transmission of the disease. The most used antemortem diagnostic methods are based on 

the detection of the CMI (OIE). The single or comparative intradermal tuberculin test 

(SIT, CCT), detecting the delayed-hypersensitivity type IV (Monaghan et al., 1994), and 

the interferon-gamma release assay (IGRA), detecting the gamma-interferon produced by 

lymphocytes T (Wood, Corner, & Plackett, 1990; Rothel et al., 1992). 

Intradermal tuberculin test 

In spite of the long time since its first use (>100 years)  (Good et al., 2018) the 

intradermal tuberculin test is still the bTB diagnostic test of election for cattle. The 

different variations of the tests intended to identify the delayed-hypersensitivity reaction 

triggered by the production of cytokines by the lymphocytes Th1 after  challenge by the 
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inoculation of a purified protein derivate from the M. bovis AN5 strain (PPDb) 

(Monaghan et al., 1994). If the animal was previously exposed to M. bovis, it develops a 

local hypersensitivity reaction in the inoculation site, which is maximum after 72 (± 4) 

hours of inoculation. The single intradermal test (SIT) has two variants currently used 

worldwide in terms of the inoculation site, with different performance (sensitivity and 

specificity) (Bezos, Casal, et al., 2014).  In Europe, the intradermal inoculation is 

performed in the neck (single cervical test –SCT-) (Council Directive 64/632/EEC, 

1964), and in Latin-America (de Kantor & Ritacco, 1994),North- America and New 

Zealand in the tail (caudal fold test–CFT-) (USDA/ APHIS 91-45-011). Any detectable 

reaction that increases the thickness of the skin at the inoculation site (>2 or 4 mm) 

and/or presence of local clinical signs (inflammation, oedema, pain, exudation and/or 

necrosis) is considered as a positive reaction (Monaghan et al., 1994).  

One of the main limitations associated with the SIT is the potential occurrence of 

cross-reactions due to previous sensitization with other environmental or pathogenic 

mycobacteria(Gilot & Cocito, 1993). To overcome this limitation and improve the 

performance of the SIT, a second intradermal test, the comparative cervical intradermal 

test (CCT) can be performed, consisting in the additional inoculation of a PPD from M. 

avium (PPDa) next (12.5 cm apart) to the PPDb inoculation site. When the difference in 

skinfold thickness in the PPDb inoculation site is ≥4 mm than the PPDa animals are 

categorized as reactors (Monaghan et al., 1994). 
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Interferon-gamma release assay (IGRA) 

The IGRA was developed ~30 years ago in Australia, and in the past years has 

been recommended as an ancillary in-vitro diagnostic assay for the intradermal test (OIE, 

2009). The IGRA is performed in two steps. First, the heparinized whole blood drawn 

from the animal is incubated with the PPDb (or different peptides derived from M. bovis), 

PPDa, and control buffers (PBS) to stimulate the IFN-γ release by sensitized lymphocyte 

T to the different antigens; and secondly, an enzyme sandwich immunosorbent assay is 

used to harvest the IFN- γ released in the plasma by the T-cells. Results obtained from 

the optical density (OD) read are used to classify the animals as positive or negative.  

Enzyme-linked immunosorbent assay (ELISA) and other serodiagnosis tools 

The use of diagnostic tools targeting the bTB-AMI detect animals, which likely 

are transmitting and shedding the pathogen (Pollock et al., 2001; Ritacco et al., 1991; I. 

Schiller et al., 2010). For that reason, their use of bTB-control programs is not officially 

recommended (OIE, 2009). However, can be useful to detect animals in the anergic stage 

(Casal et al., 2014; Pollock et al., 2005). 

Diverse serological diagnostic tools have been described for bTB diagnosis, but 

the most widely used is the ELISA with the MPB83 and MPB70 antigens (Waters et al., 

2011; Whelan et al., 2008). The ELISA technique is based on the capture of the specific 

antibodies with an antigen previously bound to an enzyme able to produce a quantifiable 

reaction (e.g., color, temperature) (Cho et al., 2007). 

Other serological tests have been developed to improve the ability to detect the 

AMI, such as the multi-antigen print immunoassay (MAPIA) (K.P. Lyashchenko et al., 
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2008), lateral-flow rapid test (LF), or the double-recognition ELISA (DR-ELISA) 

(Bezos, Casal, et al., 2014), but, their use is not frequent. 

Other ancillary diagnostic tests 

Post mortem diagnosis has been an essential component of bTB-passive 

surveillance in every country with a national bTB-program. The identification of 

macroscopic lesions (tubercles) during the examination of the carcass of animals, is 

essential. However, it requires that the animal has visible lesions in the lymph nodes to 

reach a good sensitivity (Diana L. Whipple, Bolin, & Miller, 1996). 

M. bovis culture is still considered the “gold standard” for bTB (OIE, 2009). The 

ability to correctly identify infected animals can be improved when the tissues cultured 

include bTB macroscopic lesions. However, because of the slow metabolism of M. bovis, 

it can take up to three months to obtain a positive result. Is in these scenarios in which the 

polymerase chain reaction, for detection of specific DNA, offers a potentially faster and 

more flexible option (de la Rua-Domenech et al., 2006). However, this technique is still 

not broadly used because is reported to be less sensitive than the culture (Gormley et al., 

2014).  

Performance of diagnostic tests used for bTB-control 

To assess and compare the performance of a diagnostic test it is necessary to 

determine its sensitivity and specificity. The probability of testing positive given the 

animal is bTB-infected represents the sensitivity (Se), and the probability of testing 

negative given the animal is non-infected represents the specificity (Sp) (Dohoo, Martin, 

& Stryhn, 2009). The accuracy (performance) of the previously described bTB-diagnostic 
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tools has been extensively studied mainly in North American and European countries, 

yielding an important variability in the performance achieved (Bezos, Casal, et al., 2014; 

de la Rua-Domenech et al., 2006; Nuñez-Garcia et al., 2018).  

The accuracy of the intradermal tuberculin test may differ depending on the type 

and location of the inoculation. Estimates for the CFT (Farnham, Norby, Goldsmith, & 

Wells, 2012a) and the SCT (Bezos, Casal, et al., 2014) were reviewed independently. 

Traditionally, a slightly improved sensitivity (Se) was attributed to the SCT (Se: 80.2-

100%) over the CFT (Se: 80.3-93%). Still, field studies reported lower Se estimates of 

53% (27.3–81.5, 95% CI) and 69.4% (40.1–92.2, 95% CI), respectively, depending on 

the interpretation criteria used (Alvarez et al., 2012). In addition, as previously 

mentioned, the Sp of the SIT is not perfect, with estimates between 89.2 and 95.2% 

(CFT), and 55.1 to 99% (SCT) (Bezos, Casal, et al., 2014). The accuracy of the CCT 

when applied as a confirmation test after the SIT with the objective of improving the 

specificity of the bTB-diagnostic, included a Se of 70 and 89.9% (depending on which 

SIT was performed first) and a Sp of 78.8 to 100% (Bezos, Casal, et al., 2014; de la Rua-

Domenech et al., 2006) . 

The use of IGRA (with various antigens) as an ancillary diagnostic tool in many 

bTB-control programs worldwide is generally intended for the improvement of the Se of 

detection. The performance of the IGRA after the intradermal inoculation of PPDb may 

improve in terms of Se due to an anamnestic/booster effect (Palmer et al., 2006). 

Recently a meta-analysis reported Se estimates in the range of 49 and 90% depending on 

the antigen used. Although the Sp of 96.6 (85-99.6, 95% CI) tend to be lower than the 

intradermal test, the use of more specific peptides improved the initially reported 
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performance (99-100%) (Aagaard et al., 2006; Nuñez-Garcia et al., 2018; Vordermeier et 

al., 2001).  

While not part of any official bTB-control program yet, the ELISA has potential 

when strategically used with the intradermal test (Casal et al., 2014). The performance of 

the ELISA has not been broadly explored but estimates of 33-84%, and 81-100%  for Se 

and Sp respectively have been reported (Al-Mouqatea et al., 2018; Casal et al., 2014; 

Nuñez-Garcia et al., 2018). 

1.3 bTB-endemic setting 

Uruguay: cattle production and bTB-epidemiology 

Uruguay is a country located in the southeastern coast of the South American 

continent (Figure 1.5.2). The vast majority of its land extension (175.020 sq. km) is 

utilized for agriculture production, which accounts for ~8% of the gross domestic product 

(GDP) of the country. In a country of >18 million heads of livestock, activities related to 

its production represents >50% of the agro-industrial GDP (DIEA, 2018) and relates to 

60% of the employment within this sector (Riella & Ramirez, 2012).  

The dairy industry in Uruguay accounts for ~10% of the cattle farms and is 

mainly located in the western and southeastern areas of the country. Uruguayan dairies 

historically had small-to-medium size herds (<360 animals), and semi-pastured based 

production with low rearing intensity. However, in the past decade the trends of 

consolidation, characterized by a steady decline in the number of dairy herds with an 

attrition rate of 15% (2011-2018) characterized by exiting small herds and increased 

consolidation. The dairy industry in Uruguay became a particular example of the 
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continuous evolution of the animal production systems in the country and the need to 

adjust and redesign animal health programs accordingly.  

Historically, with the use of the current bTB-control program, the prevalence of 

bTB consistently decreased to 1% in 1990, and <0.001% in 2010 according to official 

records (DSA-MGAP, 2016), showing a trending potential to achieve eradication.  

While the bTB-prevalence in Uruguay did not vary substantially, in the past years 

(2011-2018) there was an increase in the number of bTB-outbreaks in dairy herds (figure 

1.5.3), with a within-herd median prevalence >10 times higher than the reported for the 

previous similar period (2003-2010) (Animal Health Division, MGAP, 2017).  

 Recent epidemiological assessments revealed the spatial and animal movement 

network clustering of bTB-outbreaks, with a spatial aggregation of cases in the western 

areas of the country at the time that the number of bTB-outbreaks started to rise (2011-

2013). Herd-level risk factors analysis concluded that larger dairy herds (>360 animals) 

had a 14 times higher risk of bTB-breakdown, and certain management practices, such as 

large sizes-batches of incoming animals (>44), led to twice the risk than those purchasing 

fewer animals (Picasso et al., 2017). A deeper analysis of movement patterns within the 

cattle population in Uruguay showed that the majority of farms had few to no contacts, 

whereas the 10% most highly connected farms accounted for 72-83% of animals moved 

annually. Dairy premises were responsible for the majority of the outward movements in 

the network, with 75% of them connected to at least one other farm by out-shipments 

(VanderWaal et al., 2016) (Figure 1.5.4). The high dairy interconnection highlighted the 

risk for these farms to contract bTB and spread the disease. 
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bTB-surveillance and control program  

bTB-active surveillance program in Uruguay was designed to target the most 

common risk factors associated with bTB (Humblet, Boschiroli, & Saegerman, 2009), 

which were typically associated with the dairy systems. Dairy animals are often 

maintained in the herd for several years, with management practices that involve frequent 

commingling of animals (milking routines), and feeding habits that could increase the 

risk of inhalation of aerosolized M. bovis, together with low biosecurity and excess of 

manure accumulations that can increase the risk for the fecal-oral transmission. Passive 

bTB-surveillance was implemented at the slaughter of animals intending to detect 

potential bTB circulating in the beef industry.   

 The current regulations for bTB-surveillance- and-control are based on serial 

testing -and slaughter of reactors in the dairies, and the visual examination of the 

carcasses for detection of any tubercle-like lesion at slaughter with the use of culture as 

an ancillary diagnostic test for bTB-confirmation (MGAP, 1989). The status of Officially 

Tuberculosis Free (OTF) herd in dairies is obtained when annual testing is negative for 

the complete herd, and no evidence of bTB-lesions are found at slaughter; while beef 

herds are OTF when no macroscopic lesions are found at the slaughter of culled cattle.   

In dairies, adult animals (>12 months old), are annually subjected to bTB- testing 

with the use of the CFT version of the intradermal tuberculin test. Animals with local 

clinical signs (inflammation, edema, pain, exudation and/or necrosis) or skin thickness 

increase > 4mm after 72 hrs post inoculation are reactors, and they are retested for 

confirmation, in a period <10 days or >60days, with the comparative cervical tuberculin 
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(CCT). When the difference in skin thickness between the two inoculations performed in 

the CCTusing M. bovis (PPDb) and M. avium (PPDa) antigen is >4mm, animals are 

considered positive and sent to slaughter within the month of detection (MGAP, 1989).  

Movements of animals from the herd are suspended until  OTF status is regained. 

Slaughter procedures are followed under the official veterinary supervision and tissues 

from the carcasses must be submitted to the laboratory for M. bovis culture. After an 

infected herd is detected, a complete epidemiological investigation starts, and control 

strategies are applied, including the retesting of all eligible animals in the infected herd 

and contact herds (neighbors and connected by movements within the past two years) to 

disclosure evidence of bTB or exposure in those contact herds too. When the outbreak 

herd accomplishes two consecutive whole-herd negative testing results in a period no less 

than 60 to 120 days, it regains the OTF status. 

1.4. Gaps and limitations of the bTB-control program in endemic settings 

Generally, the accuracy of intradermal testing tends to vary according to several 

factors inherent to the situation in which the test is carried (resources, training, personnel, 

climate, and animal population), and related to the individual immunity of the animal (de 

la Rua-Domenech et al., 2006). Factors associated with the implementation setting can be 

summarized in a) factors inherent to the test (antigens or sample), and b) operating 

characteristics.  

The factors associated with the implementation settings that are inherent to the 

intradermal test and can affect its performance relate to the potency of the tuberculin 

used, for instance: the improper manufacturing of the antigens, such as contamination 
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(purity), miscalibration of the potency, strain used; or the improper preservation of the 

antigen, such as time (expiration), temperature, light and humidity during storing (de la 

Rua-Domenech et al., 2006; Monaghan et al., 1994). Performance limitations associated 

with the operating characteristics include factors such as the dose inoculated in the 

animal, the location (subcutaneous instead of intradermal), inadequate time between 

inoculation and reading the results, misidentification of the animals or the PPD used (in 

the case of the CCT), errors in records between inoculation and reading of reaction. 

 Factors related to the animal immune system that impair the accuracy (Se or Sp) 

of the intradermal test can be associated with: a) management practices, b) physiological 

events, c) pathological events(Alvarez et al., 2014; Humblet et al., 2009). Different 

regular management practices can suppress the response of the immune system to the 

tuberculin inoculation, such as the administration of immunosuppressive drugs (e.g. 

corticoids), the repeated inoculation of tuberculins between 10-60 days after the previous 

inoculation, and the vaccination against other mycobacterial diseases (Johne’s disease). 

Physiological events affecting the hypersensitivity type IV response are pregnancy, or 

stress situations, such as animal movements or nutritional deficits. Finally, animals with 

recent bTB-infections (<42 days), or in too advanced stages of the disease may fall into a 

non-reactive period in which the immune system will fail to react to the tuberculin 

inoculation. Together, false reactions (cross-reactions or suppression) can occur when 

animals are co-infected with other viruses (e.g., bovine viral diarrhea) or other 

mycobacteria (i.e., Mycobacterium avium subsp. paratuberculosis –the etiological agent 

of JD- or environmental mycobacteria) (de la Rua-Domenech et al., 2006; Monaghan et 

al., 1994; Snider, 1982). 
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Although sometimes challenging, limitations associated with the implementing 

settings tend to be relatively easy to identify, correct, and mitigate by the use of good 

management practices. Similarly, immunological factors associated with management 

and physiological events can be mitigated when using a bTB-testing protocol. 

Nevertheless, pathological events associated with the immune system of the animal tend 

to be highly variable and need to be studied and addressed through the integrated and 

strategic use of the available diagnostic tools. 

For Uruguay, an in-silico assessment of the performance of the program using an 

integrated within- and between-herd model parameterized for the bTB-endemic Uruguay 

cattle population indicated that slaughter sensitivity had little impact on the overall 

surveillance sensitivity when combined with skin testing. At the same time, the model 

suggested that the sensitivity of the surveillance strategies (i.e. CFT and CCT in series) 

was limited (0.53, 95th 0.46–0.62), and if testing efforts were relaxed (risk-targeted 

surveillance), prevalence estimates did not vary significantly (VanderWaal et al., 2017). 

This results highlighted the need for improvement of sensitivity of the field tests to detect 

bTB-infected animals. 

The current scenario in Uruguay, characterized by a) an increase of bTB-dairy 

outbreaks with a high within-herd prevalence, b) the evolution of the dairy into a highly 

intensified system, and c) the limited accuracy of the bTB-testing scheme, raised the 

question of whether the current control strategies are suitable to achieve bTB-eradication 

in this (and similar) endemic settings. 
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In some countries, depopulation is a feasible alternative to eradicate bTB from 

high prevalence herds (More, Radunz, & Glanville, 2015). However, the complexity of 

its implementation, cost, and social impact (Giovanna Ciaravino et al., 2017) that 

slaughtering a complete herd imposes, makes this strategy unfeasible in Uruguay. 

The gaps in the understanding of the performance of different diagnostic 

strategies accounting for field-test accuracy, cattle demographic characteristics, and JD 

coinfection, when depopulation is not feasible, needs to be addressed. The Uruguayan 

current bTB-epidemiology and production characteristics need to be studied to approach 

this gap. 

Testing empirically in vivo different scenarios for the control of bTB, it would be 

unmanageable and sometimes unethical to incur in its costs and risks. Is in this situation 

in which mathematical models can help us understand the interactions of the underlying 

factors that affect disease transmission (de Jong, 1995), connecting theories, and testing 

the counterfactual hypothesis.  

Mathematical transmission models were previously used to mimic bTB dynamics 

(Alvarez, Bezos, et al., 2014; G. Ciaravino et al., 2018; Kao R. R. et al., 1997; Perez et 

al., 2002; Rossi, Aubry, Dubé, & Smith, 2019), since they allow accounting for the bTB-

chronic nature, with long and variable incubation periods, and biological variabilities. 

Moreover, bTB-models incorporate different characteristics of the production systems, 

while avoiding the risks and the costs of in-vivo implementation (Halasa & Dürr, 2017), 

which makes them a remarkable tool to contribute to this research.  
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1.5 Goal of the dissertation 

With the purpose of filling the gap explained above, the overarching goal of this 

dissertation is to assess the usefulness of alternative diagnostic tools for bTB in high 

prevalence endemic areas in which depopulation is not feasible, to guide the design and 

implementation of optimal strategies to succeed in the eradication of bTB in endemic 

populations. 

 In order to achieve this goal, we specifically need to understand the potential 

immunological response to the current testing protocol under field conditions and 

assessment of tools that will help us to avoid those limitations. The diagnostic interaction 

with Johne’s disease (JD) at the herd and individual level (chapter 2 and 3), and the 

performance of diagnostic tools that can improve detection during the non-reactive 

periods (early and late stages of infection) (chapter 4) will be essential to ultimately, 

identify strategies that might be the basis of control programs in similar endemic settings 

(chapter 5), (figure 1.5.5). 

Specifically, in chapter two, a characterization of the association between bTB 

diagnostic results and results obtained from a JD-ELISA at the herd and individual level 

in an endemic high prevalence setting was performed. We selected the Castilla y Leon 

(CyL) autonomous community in Spain for this study because it has  the largest cattle 

population of Spain, bTB-prevalence levels >1%, a test-and-slaughter bTB-control 

program in place, and JD present though at an unknown level in the cattle herds with no 

official control program in place, making it an optimum setting to address this goal. 
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Chapter three aimed to determine, characterize, and estimate the association 

between bTB- and JD-diagnostic results at the individual level in two farms in which 

both diseases were present at high prevalence. To understand this, we selected two 

chronically bTB-infected dairy herds in Uruguay, with high (>7%) apparent prevalence 

based on intradermal testing and with a history of JD-positive serological results. 

In the fourth chapter of this thesis, we estimated the accuracy of two in-vitro 

assays never used previously in Uruguay in two herds heavily infected with the 

demographic risk factor previously described, and highly co-infected with JD, to 

understand their potential performance in those scenarios. The two commercial assays for 

in-vitro diagnosis of bTB selected were the IGRA and the ELISA, which had been used 

to improve the sensitivity of diagnostic in the non-reactive periods in which intradermal 

tests fail. 

Finally, in chapter five, we evaluated alternative strategies to control and 

eradicate bTB from chronically- and heavily- infected herds based on the use of different 

combinations of diagnostic tests in JD-co infected setting using mathematical modeling.  

As a whole, this dissertation explores some of the most critical factors affecting bTB-

control and diagnosis and evaluate opportunities to mitigate them under field conditions 

in endemic populations. In a broader view, the diagnostic and modeling tools presented in 

this research can contribute to the foundation of the optimal bTB-control strategy in 

endemic settings, when depopulation is not suitable. 
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1.5 Figures 

Figure 1: Schematic representation of the diversity of responses of the 

bovine immune system to various tests for bTB.  

 

Figure credit to de la Rua-Domenech et al., 2006). 
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Figure 2: Location of Uruguay. 

 

Figure 3: Bovine tuberculosis positive farms reported per year in Uruguay (2003-2018). 
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Figure 4: An example of the neighborhoods of a dairy farm in Uruguay. 

 

 

Dairy focal node (yellow-square), drawn randomly from the farms with dairy production. These 

networks include all farms reachable within two steps, taking into account both the direction and 

temporal sequence of movements (reproduced from VanderWaal et al., 2016)
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Figure 5: Schematic representation of the different specific aims and their interaction to address the overarching goal. 
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2.1 Chapter summary 

Bovine Tuberculosis (bTB) diagnosis is impaired by numerous factors including 

cross-reactivity with Mycobacterium avium subsp. paratuberculosis, which causes 

Johne's disease (JD). In addition, the effect of repeated bTB-intradermal testing on the 

performance of JD diagnostic tests is not fully understood. This chapter aimed to 

evaluate the impact of repeated bTB-intradermal tests under field conditions on the JD 

serological status of cattle. bTB-positive herds (n=264) from Castilla-y-Leon region 

in Spain were selected and matched with officially tuberculosis-free control herds. 

The association between JD- and bTB-status at the herd level was assessed using 

conditional logistic regression and, in herds with both JD- and bTB-positive animals; 

a Bayesian hierarchical mixed-effect model was used for individual-level analysis. A 

significantly higher risk of being JD-positive (OR: 1.48; 95%CI: 1.01 – 2.15) was 

found for bTB positive herds compared with controls. Individual results indicated that 

cattle tested >3 times/year, within the last 90 days and >12 months were more likely 

to be JD-positive. A skin-test related boost in antibody response could be the cause of 

an apparent increase in the sensitivity of the JD-absorbed-ELISA. Improved 

knowledge of the diagnostic interactions between bTB and JD facilitates the design of 

more effective control programs in coinfected herds. 
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2.2 Introduction: 

Bovine Tuberculosis (bTB) is a chronic disease in bovines with a worldwide 

distribution causing a significant impact in both animal and public health (Muller et 

al., 2013; Olea-Popelka et al., 2017; “WHO | Tuberculosis,” n.d.). Because of this 

zoonotic potential of its main causative agent, Mycobacterium bovis, measures for 

disease control and eradication in the livestock were first implemented in the 1890s in 

Denmark (Bang, 1908) and subsequently in most industrialized countries during the 

last century. All eradication programs are based on test-and-cull and depopulation 

policies (Bezos, Álvarez, et al., 2014; Pfeiffer, 2013). Detection of the disease at the 

herd level is an important part of the control programs. Therefore, the accuracy of the 

diagnostic tools being used is essential, since both false positive and false negatives 

will have severe implications for all stakeholders involved. 

In Spain, the official bovine tuberculosis/bTB-free (OTF) status of the country has not 

been obtained yet, despite substantial efforts invested in the national bTB eradication 

program. However, the bTB herd prevalence in Spain has remained relatively stable 

over the past 15 years, ranging between 2.1% and 2.8% of the herds in 2000 and 

2017, respectively.  The herd prevalence varies significantly between regions 

(Ministerio de Agricultura y Pesca AyMA, 2017). The Castilla-y-Leon (CyL) 

autonomous community, in the northwest-central region of Spain, has the largest 

cattle population of the country. The bTB herd-level prevalence in CyL is >1% and, 

therefore, is classified as a high prevalence region according to the standards of the 

bTB eradication program of Spain. Approximately 30% of herds classified as bTB-
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infected herds in 2015 were located in this region (Ministerio de Agricultura y Pesca 

AyMA, 2017). 

As part of the eradication program, all herds are screened for bTB using the single 

intradermal tuberculin test (SIT). In Spain, the SIT assay is performed according to 

European regulations (Council Directive 64/432/EEC) and is applied in the cervical 

area of all cattle older than six weeks at least once every year. In addition, the 

interferon-gamma release assay (IGRA) is used in bTB-infected herds as an ancillary 

test in animals older than six months to maximize diagnostic sensitivity to detect all 

infected animals within the herd(Council Directive 64/432/EEC). 

Failures to eradicate bTB have been attributed, at least in part, to the lack of accuracy 

of the bTB diagnostic tools (Irene Schiller et al., 2010). Many individual- and herd-

level factors can impair the performance of bTB diagnostic assays, including cross-

reactivity due to previous sensitization with other mycobacteria, resulting in both false 

negatives and false positives. For example, Mycobacterium avium subsp. 

paratuberculosis (MAP), the causative agent of Johne’s Disease (JD),  shares 

structural proteins and virulence factors with M. bovis and has been described as a 

frequent source of diagnostic interference when intradermal assay testing is used 

(Abdallah et al., 2007; Alicia Aranaz et al., 2006; Gilot & Cocito, 1993; Roussel, 

Fosgate, Manning, & Collins, 2007). However, the exact impact of  JD on bTB 

diagnostic performance and, vice versa, the effect of bTB itself as well as the frequent 

use of the intradermal assay for the detection of bTB on the detection of JD, is still 

largely unknown. Some reports described an impaired sensitivity and/or specificity in 

at least one of the diagnostic tests (Alvarez et al., 2008, 2012; Alicia Aranaz et al., 
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2006; Brito et al., 2014; A.E. Kennedy, Byrne, O’Mahony, & Sayers, 2017), while 

others reported a negligible effect (Dunn et al., 2005). 

Johne’s disease (JD), a chronic disease of ruminants with a worldwide distribution, is 

an important cause of the reduction in efficiency and profitability of the dairy industry 

(Over, Crandall, O’Bryan, & Ricke, 2011). Although the economic impact of the 

disease in the cattle industry varies depending on production systems (Barbara 

Dufour, Régis Pouillot, & Benoît Durand, 2004), it can be as high as US$ 22 to 200 

per cow, as estimated for the United States, (Ott, Wells, & Wagner, 1999; Stott, 

Jones, Humphry, & Gunn, 2005). JD is also present in cattle herds in Spain, including 

CyL. However, at present little is known about its epidemiology and distribution in 

this region. 

MAP-infected cattle initially develop a minor cellular response followed by the 

generation of antibodies in more advanced stages of the disease (S.S. Nielsen & Toft, 

2008). This late antibody response is the target of a serum enzyme-linked 

immunoabsorbent assay (ELISA). Because of this late antibody response, the assay 

identifies only animals JD infected in an advanced stage of infection. Nevertheless, 

the ELISA is the most commonly used JD screening test because it has low logistic 

demands, it is affordable and is easy to implement, and the results are rapidly obtained 

(Scott et al., 2010). Interestingly, a possible effect has been described of the routine 

intradermal assay based on the inoculation of bovine and avian purified protein 

derivates of tuberculin (PPDs). The resulting effect is the so-called anamnestic rise of 

antibody levels, causing increased sensitivity of the ELISA, enhancing the detection 
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of  JD-infected cattle (Aideen E Kennedy, O’Mahony, Byrne, MacSharry, & Sayers, 

2017). 

This chapter aimed to characterize the effect of the repeated use of bTB diagnostic 

tests on the JD status at the herd and animal level to evaluate the potential for 

diagnostic interference between these two mycobacterial diseases under field 

conditions. Specifically, we aimed at testing two hypotheses, namely, (a) frequent 

testing for bTB has an impact on the JD status at the herd level (as determined using a 

serological assay); and (b) there is an association between bTB and JD diagnostic 

results at the individual level in herds in which both diseases are present. Results 

presented here will help to understand, in quantitative terms, the relation between the 

two most important chronic diseases of livestock caused by mycobacteria, ultimately 

contributing to the evaluation and subsequent improvement of surveillance strategies 

in endemically infected countries. 

2.3 Methods 

Study population: 

The study was conducted in CyL, located in the central area of Spain. Herds were 

selected using a case-control design. The history of bTB-infected herds present in 

2015 was screened to select those that were already positive in 2013 and 2014 and 

had at least 10 animals ≥ 6 months of age (case herds). Each case herd was matched 

with a control herd (1:1) paired by known bTB risk factors such as production type 

(dairy, beef, bullfighting), herd size (<51, 51-100, 101-200 or >200 animals) and 
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geographic location (county) (Humblet et al., 2009). All control herds had been 

officially tuberculosis-free (OTF) for at least the previous 24 months.  

Diagnostic tests: 

All herds were routinely subjected to the official diagnostic tests mandatory in the 

bTB eradication program (the SIT test and, for known bTB-infected herds, the SIT in 

combination with the IGRA). Briefly, the SIT assay requires the intradermal 

inoculation of a bovine PPD (PPDb), prepared from a culture of M. bovis, in the 

cervical area and measuring the skin thickness at the inoculation site before the 

injection and after 72 hours. Applying the severe interpretation (according to Council 

Directive 64/432/EEC and R.D. 2611/1996): if an increase in skinfold thickness of 

>2mm or clinical signs (inflammation, oedema, pain, exudation and/or necrosis) were 

observed at the inoculation site, the animal was considered to be a bTB reactor. In 

known bTB positive herds, blood samples from all ≥6 month-old animals were also 

collected in tubes with heparin, transported to the laboratory and within 8 hours 

analyzed using the BOVIGAM ELISA (Thermo Fisher Scientific, USA) as described 

elsewhere (Alvarez et al., 2009).  

Finally, cattle serum collected from the coccygeal vein of all animals from the 

selected case and control herds, obtained as part of the bovine brucellosis eradication 

program, were then screened using a JD serological test. JD specific antibodies were 

detected with a commercial Enzyme-Linked Immunosorbent Assay (ELISA). In this 

JD-ELISA, an ELISA plate coating a crude extract of MAP is used and involves an 

absorption step with a Mycobacterium phlei extract to reduce cross-reactivity with 

environmental mycobacteria, as described elsewhere (YOKOMIZO, YUGI, & 
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MERKAL, 1985). Animals with an S/P ratio ≥ 60% were considered positive as 

recommended by the kit manufacturer (Institute Pourquier, Montpellier, France). 

Herds were classified as JD-negative if all tested animals were seronegative and JD-

positive otherwise. In addition, we assessed the effect of increasing the cut-off to 

classify a herd as JD positive to two animals to maximize herd-level specificity. 

Data analyses 

Association between bTB- and JD- diagnosis at the herd level 

We explored the effect that the repeated use of SIT assay has on JD-ELISA results at 

the herd level in two ways. First, a univariable conditional logistic regression was 

used to estimate the strength of the association between the JD status and the bTB 

classification (case/control) of the herd; second, a Wilcoxon matched-pair signed rank 

test was applied to compare the number of JD positive animals in case versus control 

herds. 

Association between bTB- and JD-diagnosis at the individual level   

Herds, in which positive animals to both bTB and JD diagnostic tests were detected, 

were identified. In those herds, information on variables at the individual (age, time 

since the last SIT test, number of SIT tests undertaken in the previous year, and result 

in the concurrent SIT/IGRA) and herd (production type and herd size) levels 

hypothesized to be associated with the JD individual result was collected. Continuous 

variables were categorized into four categories based on previous knowledge or 

biological reasoning and data distribution (quartiles). 
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The association between the individual and herd variables and the response obtained 

in the JD ELISA at the individual level was assessed using a Bayesian multivariable 

logistic regression mixed model. A hierarchical model was used to account for the 

lack of independence between observations from animals in the same herd. Individual 

JD-ELISA results (positive/negative, 𝐽𝐷𝑖𝑗) from animal i in herd j were assumed to 

follow a Bernoulli distribution with probability 𝑝𝑖𝑗, formulated as a function of the 

individual (β[n]) and herd (γ[k]) level fixed effects and the variability in risk given by 

the herd of origin as the random herd intercept (αj).  

𝐽𝐷𝑖𝑗  ~ 𝑑𝑏𝑒𝑟𝑛(𝑝𝑖𝑗) 

𝜑𝑗 =  𝛼𝑗 +  𝛾1 ∗ 𝑧1[𝑗] + 𝛾2 ∗ 𝑧2[𝑗] 

log(𝑝[𝑖𝑗]) = 𝛽0 +  𝛽1 ∗ 𝑥[𝑖𝑗] + ⋯ 𝛽𝑛 ∗ 𝑥[𝑖𝑗] + 𝜑𝑗 

Herd-level variables (𝑧1,2) were included in the model as part of the herd-level 

random effect model (𝜑𝑗) and the best structure for 𝜑𝑗 was selected based on the 

lower deviance inference criterion (DIC) (D. J. Spiegelhalter, Best, Carlin, & van der 

Linde, 2002) of models that only included the intercept (𝛽0) at the individual effect. 

Then, individual-level variables (β1… βn) were considered alternatively in univariable 

models and those in which a statistically important association (80% posterior 

probability intervals not including zero) was found were maintained in a multilevel 

multivariable model. Collinearity between covariables was assessed using a chi-

square test.   
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Gaussian weakly informative priors [N(0, 100)] were used for the regression 

coefficients at the herd (γ) and individual level (β). The herd-level random intercept 

(𝛼𝑗) was assigned a normal distribution in which the mean was parameterized using a 

normal distribution N(0,1), and the inverse of the variance was modeled as a 

Gamma(0.01, 0.01). The best-fitting model was selected based on lower DIC. Two-

way interactions between covariates were assessed after partial pooling (also referred 

to as “recategorizing”)  the covariates as appropriate based on the posterior estimates 

results in following procedures described elsewhere (A Gelman & Hill, 2007). 

Briefly, each category of the covariates will have a posterior risk estimate; when the 

estimate was similar for two continuous categories, we pooled (or recategorized) them 

to assess its interaction with other covariates.  

Models were fitted using OpenBUGS 3.2.2 (Thomas, O’Hara, Ligges, & Sturtz, 2006) 

via the R2OpenBUGS package (Sturtz, Ligges, & Gelman, 2005) from the R software 

(v3.2.4, R Foundation for Statistical Computing). Three independent chains were run 

for 7,500 iterations considering a burn-in period of 2,500 iterations. To eliminate 

potential autocorrelation in the posterior estimates, we selected one of every ten 

consecutive samples. Convergence was assessed in two ways: (a) graphically, by 

visually assessing the mixing of the three chains and (b) considering the Gelman-

Rubin^R estimate, which compares the variability within and between the multiple 

simulated chains (Brooks & Gelman, 1998; Andrew Gelman & Rubin, 1992).  
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2.4 Results 

Herd-level analysis 

The majority (264/373, 70.8%) of the bTB-infected herds initially enrolled in the 

study were successfully matched with an OTF control-herd with similar 

characteristics (production type, size, and location), so the final sample size was 

composed of 528 herds and 56,131 animals tested for both bTB and JD. In the case 

herds, 120 and 1740 animals were positive to the SIT test and IGRA, respectively. 

Overall, 272 herds (147 cases and 125 controls) were classified as JD-positive (Table 

1), with a median within-herd JD apparent prevalence of 2.34% (interquartile range 

(IQR): 1.12-4.44%) in the bTB-infected herds and 1.81% (IQR: 1.11-3.44%) in the 

controls. The univariate conditional logistic regression model suggested a significant 

(P=0.01) higher risk of being classified as JD- positive among case herds compared 

with controls (OR: 1.47; 95% CI: 1.01 – 2.15). If a more restrictive cut-off value was 

applied to consider a herd to be positive for JD (>1 reactor), the number of JD 

positive herds decreased to 162 (95 cases and 67 controls), and the association was 

still observed (P < 0.01). 

Also, bTB infected herds had a significantly (P<0.01, Wilcoxon rank test) higher 

number of JD-positive animals compared to control herds. 

Individual-level analysis 

Animals positive in both the bTB and JD diagnostic tests were found in 93 (17.5%) 

case herds for a total of 14,187 animals. Among those herds, the median within-herd 

JD prevalence was 1.59% (IQR: 0.3-2.9%). The total number of reactors to the SIT-
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test, the IGRA, and the JD-ELISA was 28, 835 and 314 animals, respectively (Table 

2). 

Herd size ranged between 25 and 630 animals, with a median of 223 animals (IQR: 

144 – 350). The predominant production type of the animals was beef (83%), 

followed by dairy (13%) and bullfighting (4%), and their median age was four years 

(IQR: 1.2 – 8.2). The median number of SIT tests performed per animal in the 

previous year was two (range: 1-5), with the most recent day in which the SIT test 

was performed ranging between 80 and 398 days (median = 183 days) before the 

sampling day.  

The herd random effect used for the multivariable analysis included no covariates 

given that their addition did not improve the DIC of the null model (2828) (Table 3). 

Time-since-last-SIT, number-of-SIT-tests, and age-category were the animal-level 

variables selected in the univariable models (Table 2) and were also maintained in the 

multivariable model. 

Animals tested more than three times in the previous year, in which the last 

intradermal assay was performed <3 months before the JD’s testing and older than 12 

months had a higher probability of testing positive in the JD-ELISA (Table 4). 

The model converged well, as indicated by the visual inspection of the chains and the 

Gelman-Rubin^R estimates <1.01 for all parameters. Collinearity between variables 

was not detected, and no two-way interactions were included in the final model. 
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2.5 Discussion 

The effect of the inoculation of PPDb during bTB-intradermal testing on the results of 

subsequent bTB diagnostic assays (cellular and humoral immune response tests) in 

both bTB-infected and bTB-free animals has been well documented and is generally 

accepted (Casal et al., 2017, 2014; Green et al., 2009; M V Palmer et al., 2006; W 

Ray Waters et al., 2015). However, reports on the effect of PPDb inoculation on the 

diagnostic response for JD are conflicting (Alvarez et al., 2009; Alicia Aranaz et al., 

2006; Brito et al., 2014; Dunn et al., 2005; W. Lilenbaum et al., 2009; Walter 

Lilenbaum et al., 2007; Mosavari, Geravand, Tadayon, & Keshavarz, 2016; Varges, 

Marassi, Oelemann, & Lilenbaum, 2009). As with bTB, JD has its own 

physiopathological characteristics that hamper its diagnoses, such as its long 

incubation period and the delayed antibody response (Rangel et al., 2015; Sweeney, 

2011). In addition, JD is a non-notifiable disease and therefore control of the disease 

is voluntary, resulting in limited knowledge of its distribution (Søren Saxmose 

Nielsen & Toft, 2009; Pearce et al., 2008). 

In our study, we aimed to elucidate the association between bTB and JD infection by 

assessing the responses to diagnostic tests in animals from naturally coinfected herds 

and bTB free herds in an endemic bTB region of Spain. To address the effect of the 

main herd-level risk factors associated with bTB (Humblet et al., 2009), each case 

was matched with a control (1:1) based on (a) production type, (b) herd size, and (c) 

geographic proximity. Our results at the herd level analysis indicated a marginal 

association between the classification based on both the bTB and JD diagnostic tests. 

However, this association was stronger when a more restrictive (specific) cut-off was 
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used to classify a herd as JD positive. Additionally, when the number of reactors in 

the JD-ELISA from bTB infected and free herds were compared, a strongly 

significant difference was observed between both categories of infection. There are 

three non-exclusive reasons that might help to explain, at least in part, those results. 

First, JD herd-prevalence may be truly higher in bTB-infected herds compared to 

bTB-negative herds due to certain shared risk factors, such as poor management and 

poor biosecurity, that would lead to a higher risk for both diseases (Humblet et al., 

2009; Rangel et al., 2015; Singh, Chauhan, & singh, 2016). Second, the sensitivity of 

the JD-ELISA may be higher in animals subjected to the more frequent skin testing in 

bTB infected herds when compared to OTF herds tested only once annually, (A.E. 

Kennedy et al., 2017; Thom et al., 2004) as discussed in the analysis at the individual 

level (see below). Third, a decrease in the JD-ELISA specificity at the herd level as 

well as a higher number of JD reactors in bTB infected herds. This lack of specificity 

might be due to the more frequent PPDb inoculation carried out in bTB infected 

herds, or due to the increase in sensitivity in the JD-ELISA while applying the same 

cut-off in herds with a positive and negative  bTB-status (Aideen E. Kennedy et al., 

2014; W. Lilenbaum et al., 2009). 

The results obtained in the individual level-analysis supported the second and third 

hypotheses outlined above, since cattle that had been tested within the previous 90 

days (three months) and that received more than three bovine PPD inoculations in the 

previous year had 5.00 (95% CI 1.43-10) and 1.43 (95% CI 0.26-10) higher odds of 

testing positive in the JD-ELISA, respectively (Table 4). The shortest possible 

interval between two consecutive SIT tests in a herd in Spain is 60 days (64/432/EEC, 
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1964) and consequently, the number of animals in which the previous SIT test had 

been conducted within the previous 90 days was small (510/14187, 3.6%). 

Notwithstanding, a significantly higher proportion of JD positive animals was 

observed in this cohort of animals (15.0% vs. 1.95% in the remaining 13677 animals, 

Table 2). When the animals that received the previous SIT test between 90 and 365 

days were included in the analysis, the observed differences were no longer 

significant. These results suggest that the possible anamnestic response induced by the 

inoculation of PPDb would be of short duration vanishing at posterior times, as was 

previously described (de la Rua-Domenech et al., 2006; Monaghan et al., 1994). An 

enhanced M. bovis-specific antibody response after PPDb inoculation has been 

reported for bTB-serological tests during a similar time frame (7 to 60 days post-

inoculation) (Casal et al., 2014; M V Palmer et al., 2006; Irene Schiller et al., 2010). 

Given the crude extract of MAP used as a coating in the JD-ELISA , this increased 

immune response could have also an effect in the JD-immune response resulting in 

the improvement of antibody detection by JD-ELISA under field conditions. 

Alternatively, the increase in the rate of JD reactors in bTB infected herds after the 

inoculation of PPDb could be due to JD-bTB cross-reactivity, so that animals positive 

in the JD-ELISA would be infected with M. bovis instead (W. Lilenbaum et al., 2009; 

Walter Lilenbaum et al., 2007; Seva et al., 2014). Additionally, experimental studies 

showed an increase of JD-specific antibodies during the first 50 and 100 days post- M. 

bovis inoculation, although could be an effect of the presence of maternal antibodies 

(Eda et al., 2006; Speer et al., 2006). 
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Yet, when the individual results from the SIT or IGRA were analyzed, a lack of 

association with JD positivity was observed, in contrast with previous studies 

(Alvarez et al., 2008; Brito et al., 2014; Aideen E. Kennedy et al., 2014; Walter 

Lilenbaum et al., 2007; Seva et al., 2014). This could indicate that JD reactors were 

therefore not infected with M. bovis, and therefore positivity in the JD-ELISA would 

not be due to cross-reactivity in M. bovis infected animals. However, this result 

should be interpreted with care since our ability to detect an association between the 

responses in the SIT test and the JD-ELISA is hampered by the low number of SIT 

reactors observed in the case herds (Table 2). This is typical of infected herds 

subjected to repeated skin testing in which reactors have been removed in previous 

herd-tests, and there is an increased likelihood of finding infected animals in the pre-

allergic state (Alvarez et al., 2012). Alternatively, the lack of association could be due 

to animals being in an anergic stage in which cellular tests no longer have the ability 

to detect infected animals and in which only the (humoral) antibody response remains 

(de la Rua-Domenech et al., 2006; S.S. Nielsen & Toft, 2008). 

The high risk of JD-seropositivity in animals inoculated four or more times within the 

previous 12 months as observed in this study could be the result of increased 

cytokines levels after repeated SIT inoculations stimulating T-lymphocytes with 

PPDb, and indirectly increasing JD-ELISA sensitivity (Coad et al., 2010; Doherty et 

al., 1996; Radunz & Lepper, 1985; Thom et al., 2004; W Ray Waters et al., 2015). 

The final model indicated that age was a risk factor for JD-ELISA positivity, which 

was expected and has been reported in the literature, given that the humoral response 

against MAP is typically observed at later and more advanced stages of the disease 
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and therefore in older animals (Kostoulas, Browne, Nielsen, & Leontides, 2013; 

Machado et al., 2018; Søren Saxmose Nielsen, Toft, & Okura, 2013). 

The low number of reactors to all tests detected in both case and control herds limited 

the power of our study (Table 2). In addition, the true JD-status of the herds was 

determined using the JD-ELISA, that has limited sensitivity (range 0.21-0.94, mean 

0.46) and specificity (range 0.4-1.0, mean of 0.96) (Ayele, Machackova, & Pavlik, 

2001; Eda et al., 2006; Mckenna et al., 2005, 2005). However, the assay has been 

applied successfully for the screening of JD in cattle under field conditions 

(Gilardoni, Paolicchi, & Mundo, 2012; S.S. Nielsen & Toft, 2008).  In addition, when 

herd accuracy was calculated (©2018 Ausvet) using a more specific cut-off value 

(>=2 JD-ELISA positive animals) and discarding those potential JD false positive 

herds, herd sensitivity was lower, still, results showed a stronger association between 

bTB-infected and JD-positive herds (P<0.012) than the previous analysis, which 

supported our conclusions regardless of the uncertainty of true herd status. 

In conclusion, we demonstrated here that there is an association between the herd-

level bTB status and the results obtained in a JD-ELISA and that at the individual 

level an increased chance of positivity in the JD-ELISA occurs when animals have 

been subjected to frequent (>3 within a year) and recent (within 90 days) PPD 

inoculations as part of the SIT test. These results, together with the lack of association 

between the individual JD and bTB diagnostic results, suggest that repeated bTB skin 

testing could have a booster effect that increases the sensitivity of JD serological tests. 

Further studies would be required in order to confirm the true JD status of 

seropositive animals. Our results demonstrate the interaction between bTB repeated 
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testing and JD individual and herd-level results and are applicable for the evaluation 

of surveillance and control program for two of the most important endemic diseases 

affecting cattle in Spain. 
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2.6 Figures 

Figure 6: Location of the herds studied in Castilla y Leon (CyL) region in Spain 

(white dot). 
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2.7 Tables 

Table 1: The layout of case-control herds sampled to estimate the association between 

bTB status and JD-ELISA results. 

  

 bTB free (controls) 

   JD positive JD negative Total 

bTB infected 

(cases) 

JD positive 79 68 147 

JD negative 46 71 117 

 Total 125 139 264 
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Table 2: Association between the individual level variables and the result in a JD 

ELISA determined using a univariable regression model with the herd as a random 

effect. Median odds ratio and 95% Posterior Probability Interval (95%PPI) for each category, 

and the number and percentage in each category of JD-positive results. 

Epidemiological 

Factor 

Categories (N) JD positives 

(%) 

Median 95% PPI 

Time since last 

SIT 
<3 months (510) 

3-6 months (6155) 

>6-9 months (6448) 

>9 months (1074) 

47 (14.9) 

123 (39.2) 

116 (36.9) 

28 (8.9) 

(REF) 

-1.4 

-1.5 

-1.0 

 

-2.1 – (-0.7) 

-2.2 – (-0.8) 

-1.9 – (-0.1) 

SIT result 
No (14,159) 

Yes (28) 

312 (99.36) 

2 (0.64) 

(REF) 

1.0 

 

-0.9 – 2.5 

IFN-γ result 
No (13,352) 

Yes (835) 

293 (93.3) 

21 (6.7) 

(REF) 

0.0 

 

-0.5 – 0.4 

Number of SIT 

tests (previous 

year) 

>3 (1420) 

1 (415) 

2 (8732) 

3 (3620) 

11 (3.5) 

178 (56.7) 

59 (18.8) 

66 (21.0) 

(REF) 

-0.3 

-0.7 

-0.8 

 

-1.5 – 0.8 

-1.3 – 0.0 

-1.5 – 0.0 

Age category 
<1 year (2906) 

1-4 years (4331) 

>4-9 years(3972) 

>9 years (2978) 

78 (24.8) 

95 (30.2) 

56 (17.8) 

85 (27.2) 

(REF) 

1.6 

2.3 

2.1 

 

1.1 – 2.2 

1.7 – 2.9 

1.5 – 2.8 
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Table 3: Categorization of the covariates assessed at the herd level with the posterior 

fixed effects regression coefficients Median (odds ratio), standard deviation (sd), 95% 

Posterior Probability Interval (95% PPI), and Deviance Information Criterion (DIC) 

for the univariable analysis for the random effect model. 

Epidemiological 

Factor 

Categories (%) Median sd 95% PPI DIC 

Herd size >200 anim (51) 

101-200 anim (35) 

51-100 anim (11) 

<51 anim (3) 

(REF) 

0.0 

-0.3 

0.3 

 

0.2 

0.3 

0.4 

 

-0.5 – 0.5 

-1.0 – 0.3 

-0.6 – 1.1 

 

 

 

2887 

Production type Beef (83) 

Dairy (13) 

Bullfighting (4) 

(REF) 

- 0.1 

- 0.5 

 

0.4 

0.6 

 

-0.8 - 0.6 

-1.7 -0.7 

 

 

2887 
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Table 4: Final individual animal model posterior fixed effects Odds Ratio Median, 

standard deviation (sd), and 95% posterior probability interval (95% PPI).  

Parameter Category(N) Median sd 95% PPI 

Animal age <1 year (2906) 

1-4 years (4331) 

>4-9 years(3972) 

>9 years (2978) 

(REF) 

4.7 

9.6 

      8.4 

 

1.7 

3.4 

3.1 

 

2.6 – 9.1 

5.5 – 18.4 

4.7 – 16.5 

Time since last SIT  <3 months (510) 

3-6 months (6155) 

>6-9 months (6448) 

>9 months (1074) 

(REF) 

0.2 

0.2 

     0.3 

 

0.2 

0.2 

0.5 

 

0.1 – 0.7 

0.1 – 0.8 

0.1 – 1.8 

Number of SIT 

tests (previous 

year) 

>3 (1420) 

1 (415) 

2 (8732) 

3 (3620) 

(REF) 

0.7 

0.8 

0.7 

 

1.1 

0.4 

0.3 

 

0.1 – 3.8 

0.3 – 1.8 

0.3 – 1.6 
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3.1 Chapter summary 

The consolidation of the dairy industry, with an increase in sizes, density, and 

productivity of the herds, was associated with unprecedented bovine tuberculosis 

(bTB) prevalence levels in dairy herds in Uruguay, where Johne’s disease (JD), 

another mycobacterial disease, is also prevalent. Here, we aimed to characterize the 

association between bTB- and JD-diagnostic results in two heavily bTB- and JD-co-

infected dairy herds. Results from bTB-intradermal tests and JD-ELISA in 686 cows 

indicated a significantly (P<0.001) higher frequency of bTB-positive animals in the 

JD-positive population, in which a significantly lower agreement between the caudal 

and cervical comparative intradermal tests was observed, compared to the JD-

negative population. These findings suggest a significant association between the 

detection of these mycobacterial diseases, that may affect the performance of the 

routine bTB diagnostic tests performed in dairy herds in Uruguay.   

 

Keywords: Caudal Fold Tuberculin; Comparative Cervical Tuberculin, ELISA; 

Mycobacterium avium subsp. paratuberculosis (MAP), Dairy cattle. 
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3.2 Introduction 

Bovine tuberculosis (bTB) is a worldwide-distributed chronic infectious 

disease of cattle caused mainly by infection with Mycobacterium bovis (M. bovis), 

which represents a threat to animal and public health. The annual number of bTB-

positive detected herds, the within-herd prevalence in infected herds, and the time 

from detection-to-control1 has increased over the last decade in Uruguay, despite 

measures implemented as part of the national bTB-control program. Briefly, dairy 

animals are annually tested with the caudal fold tuberculin test (CFT), and reactors are 

confirmed with the comparative cervical tuberculin test (CCT). CCT reactors are sent 

to slaughter, and the complete herd is re-tested every 60 to 120 days until the herd has 

two consecutive negative herd-tests are achieved. Challenges in controlling the 

disease may be explained, at least in part, by the consolidation of the dairy industry2, 

given that large dairy herds (>360 animals) with frequent movement of animals (>44 

individuals annually) have become relatively common in the country. Those 

unusually large dairy farms have been found to experience a high risk of bTB-

breakdown, what could be related to the limited efficacy of control strategies in place, 

that were initially designed for a more traditional dairy production standards 

characterized by relatively small farms, with less animal density, less individual 

production pressure, and infrequent movements (Picasso et al., 2017).  

Insufficient accuracy of the bTB-diagnostic tests routinely used in Uruguay 

(caudal fold test –CFT- followed by the comparative cervical test –CCT- for 

                                                 

a See: http://www.oie.int/wahis_2/public/wahid.php/Countryinformation/Animalsituation  
b See https://descargas.mgap.gub.uy/DIEA/Anuarios/Anuario2018/Anuario_2018.pdf  

http://www.oie.int/wahis_2/public/wahid.php/Countryinformation/Animalsituation
https://descargas.mgap.gub.uy/DIEA/Anuarios/Anuario2018/Anuario_2018.pdf
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confirmation of reactors), represents an additional constraint to the success of the bTB 

control program. This lack in performance may be explained in part by the cross-

reactivity with other mycobacterial infections, such as Mycobacterium avium subsp. 

paratuberculosis (MAP), the etiological agent for Johne’s disease (JD), particularly in 

the case of the CFT(Brito et al., 2014). In Uruguay, JD is widespread in dairy cattle, 

with a reported within-herd prevalence of 2.5% in 2015 (Suanes et al., 2018).  

In the current changing scenario of the Uruguayan dairy industry, with 

untraditional large herds, frequent animal movements, and widespread occurrence of 

JD, there is a need to assess the performance of the bTB-diagnostic strategies (CFT, 

and CCT), and their potential interaction with JD-diagnosis, with the ultimate 

objective of evaluating and informing the design of the control plan for the disease. 

Here, we aimed to characterize and estimate the association between bTB- and JD-

diagnostic results in two farms with the recently identified bTB risk factors in which 

both diseases were present at high prevalence. 

3.3 Methods 

We randomly sampled 686 Holstein cows (>24 months) from two large 

(~1000 dairy females, >75th percentile for the country2) dairy herds from one of the 

largest dairy companies in Uruguay. These two herds had been bTB-infected since 

2013, had a history of JD-seropositive results and animals with chronic diarrhea, were 

located in the same geographic region, mingled their animals frequently and 
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systematically, had similar management practices, and were subjected to similar bTB-

control measures, which are mandatory for bTB-infected herds in Uruguay3. 

Selected animals were subject to bTB-intradermal testing which involves the 

inoculation of purified protein derivate from M. bovis (PPDb) for CFT, and from M. 

bovis and M. avium (PPDa) for the CCT. The CFT was performed in all animals, and 

those with a palpable increase in skin thickness or with local clinical signs of 

inflammation 72hrs post inoculation were re-tested using the CCT within the 

following 10 days. Animals with >4 mm increase the difference in skin thickness 

between the PPDb- and PPDa- inoculation site after 72hs were considered bTB-

infected2  . Additionally, serum samples were collected from the coccygeal vein of all 

animals when the CFT was interpreted to perform a JD-indirect Enzyme-Linked 

Immunosorbent Assay (ELISA) (ID.Vet, Montpellier, France) following the 

manufacturer recommendations; animals with a sample-to-positive ratio result (S/P) ≤ 

0.6 were considered negatives and otherwise were classified as positives.  

3.4 Results and discussion 

 Most animals (427/686, 62.24%) were positive to the CFT, and of that, 58.08 

% (248/427) were also positive to the CCT. In addition, 44.16% (303/686) animals 

tested positive to the JD-ELISA, confirming the high bTB- and JD- prevalence. 

Interestingly, the proportion of bTB-positive animals (to both CFT and CCT) was 

significantly (P<0.001) higher among JD-reactors compared to JD-negative cattle 

(Table 1). The degree of diagnostic interference in bTB- and JD-diagnostic tests in 

                                                 

c See: http://www2.mgap.gub.uy/portal/page.aspx?2,dgsg,dgsg-legislacion-sanitaria  

http://www2.mgap.gub.uy/portal/page.aspx?2,dgsg,dgsg-legislacion-sanitaria
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animals infected with either or both pathogens under field conditions is still not fully 

understood(Brito et al., 2014; Alicia Aranaz et al., 2006; Dunn et al., 2005). Results 

here may indicate that animals infected with one of the diseases would develop a 

cross-reactive immune response to the other disease, increasing the sensitivity of the 

other test or reducing its specificity(Roupie et al., 2018; Alvarez et al., 2009; Walter 

Lilenbaum et al., 2007), what may have happened here, with a decreased specificity 

of the JD-ELISA(Dunn et al., 2005). Another potential explanation may be an 

increased individual susceptibility (or resistance) to mycobacterial infections in which 

animals that are infected with one disease are/become more susceptible to the other.  

The agreement between the two bTB intradermal tests (CFT and CCT) was 

fair in the JD-ELISA-positive animals (kappa-coefficient= 0.34, CI:0.25-0.42) and 

moderate in the JD-ELISA-negative population (kappa-coefficient = 0.52, CI:0.44-

0.59), with a lower agreement in the JD-positive animals than the overall agreement 

observed (Table 1). The main source of disagreement between the results in the two 

intradermal tests in the JD-positive group was the higher proportion of CFT-

positive/CCT-negative results (0.31 compared with 0.22 among the JD-negative 

animals). Such difference suggests that JD-seropositivity has an impact on the result 

of the skin tests, by either reducing CFT-specificity or CCT-sensitivity. Potential 

explanations for a higher rate of CFT-false positive results include the cross-reactivity 

between bTB and JD, with the subsequent CFT-specificity reduction that may only be 

partially resolved with the use of the CCT. A reduction in the CCT-sensitivity, on the 

other hand, could be explained by the induction of a greater response to the PPDa 

inoculation that would mask the PPDb reaction, leading to CCT-false negative results 
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in bTB-infected animals (Hope et al., 2005). The potential impact of this phenomenon 

in smaller infected herds in which the number of reactors would be lower should be 

assessed. Still, in a scenario of a high prevalence of bTB as the one evaluated here the 

reduction in the CCT-sensitivity (and therefore of its negative predictive value) is the 

most concerning possibility, and highlights the necessity to re-evaluate the use of 

testing in series to control bTB in high bTB-prevalent and JD-coinfected herds in 

Uruguay. 

This study is the first to characterize the diagnostic interaction between bTB 

and JD, the two most important mycobacterial diseases in Uruguayan cattle, in high 

prevalence, coinfected herds. Most importantly, our findings suggest that evaluating 

the distribution of both diseases in high prevalence bTB-infected herds in Uruguay 

may be important to facilitate disease control and eventual eradication. 
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3.5 Tables 

Table 5: Bovine tuberculosis and Johne’s disease (JD) diagnostic results in dairy cows 

selected. 

 

JD-ELISA 

 

Number of 

samples (%) 

Number of cows 

positive to CFTa 

(%) 

Number of cows 

positive to CCTb 

(%) 

Cohen’s kappac 

(95%CI) 

Positive 303(44.16) 260 (85.81) 167(55.11) 0.34 (0.25 – 0.42) 

Negative 383(55.84) 167 (43.60) 81(21.81) 0.52 (0.44 – 0.59) 

Total 686 427 (62.24) 248(36.15) 0.46 (0.51 – 0.56) 

 

a Caudal Fold Tuberculin test (CFT) 

b Comparative Cervical Tuberculin test (CCT) 

c Agreement between CFT and CCT.  
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4.1 Chapter summary 

The accuracy of new or alternative diagnostic tests is typically estimated in relation to 

a well-standardized reference test referred to as a gold standard. However, for bovine 

tuberculosis (bTB), a chronic disease of cattle that affects animal and public health, 

no reliable gold standard is available. In this context, latent-class models implemented 

using a Bayesian approach can help to assess the accuracy of diagnostic tests 

incorporating previous knowledge on test performance and disease prevalence. In 

Uruguay, bTB-prevalence has increased in the past decades partially because of the 

limited accuracy of the diagnostic strategy in place, based on intradermal testing 

(caudal fold test, CFT, for screening and comparative cervical test, CCT, for 

confirmation) and slaughter of reactors. Here, we evaluated the performance of two 

alternative bTB-diagnostic tools, the interferon gamma assay, IGRA, and the enzyme-

linked immunosorbent assay (ELISA), which had never been used in Uruguay in the 

absence of a gold standard. In order to do such, animals from two heavily infected 

dairy herds and tested with CFT-CCT were also analyzed with the IGRA using two 

antigens (study 1) and the ELISA (study 2). The accuracy of the IGRA and ELISA 

was assessed fitting two latent-class models: a two test-one population model (LCA-

a) based on the analysis of CFT/CFT-CCT test results and one in-vitro test (IGRA or 

ELISA), and a one test-one population model (LCA-b) using the IGRA or ELISA 

information in which the prevalence was modeled using information from the skin 

tests. Posterior estimates for model LCA-a suggested that IGRA was as sensitive (75-

78%) as the CFT and more sensitive than the serial use of CFT-CCT. Its specificity 

(Sp: 90-96%) was superior to the one for the CFT and equivalent to the use of CFT-

CCT. Estimates from LCA-b models consistently yielded lower posterior Se estimates 



 

58 

 

for the IGRA but similar results for its Sp. Estimates for the Se (52% 95PPI: 44.41, 

71.28) and the Sp (92% PPI: 78.63, 98.76) of the ELISA were however similar 

regardless of the model used. These results suggest that the incorporation of IGRA for 

detection of bTB in highly infected herds could be a useful tool to improve the 

sensitivity of the bTB-control in Uruguay. 

4.2 Introduction 

The accuracy of diagnostic tests has been traditionally estimated by comparing 

the test results with those of a reference test, sometimes referred to as the gold 

standard, which unequivocally indicates the true status of an individual (infected/not 

infected). In the absence of such a reference test, latent class analyses based on 

Bayesian methods provide an alternative strategy for evaluation of diagnostic tests 

when the true status of the individual is unknown. The use of this approach in the 

context of veterinary medicine has been described elsewhere (Branscum, Gardner, & 

Johnson, 2005). Briefly, the use of latent class analyses based on Bayesian methods 

involves the combination of previous knowledge on test performance (when 

available) with the evidence provided by newly collected data to obtain a posterior 

estimate on test performance and disease prevalence, often achieved through Monte 

Carlo simulations using Gibbs sampling (D. Spiegelhalter, Thomas, Best, & Gilks, 

1996). The prior knowledge on test performance is typically obtained through the 

review of the scientific literature and/or the elicitation of expert opinion (Suess, 

Gardner, & Johnson, 2002). Methodologies to elicit expert opinion have been 

described elsewhere (Suess et al., 2002).  
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Use of latent class models in veterinary epidemiology has increased in the past 

decades, particularly for the assessment of diagnostic tests for chronic and complex 

diseases for which gold standard tests are not available, such as bovine tuberculosis 

(bTB) (Al-Mouqatea et al., 2018; Alvarez et al., 2012; de la Cruz et al., 2018; Valerie-

Beau Pucken et al., 2017). 

Bovine tuberculosis, mainly caused by infection with Mycobacterium bovis 

(M. bovis), is an important chronic disease of cattle that causes a substantial impact on 

animal and public health, and that imposes a significant economic burden associated 

with its control and international trade restrictions (Collins, 2006; Zinsstag, Schelling, 

Roth, & Kazwala, 2008).  

Control programs worldwide are based on test and removal of positive animals 

or, in some cases, complete herds (OIE, 2009). In Uruguay, the bTB-national program 

involves serial intradermal testing (caudal fold test –CFT- followed by the 

comparative cervical test –CCT- for confirmation) of all dairy herds annually for the 

detection of infected animals and its posterior removal (Casas Olascoaga, 2013; 

Picasso et al., 2017). In the past decade, the number of bTB-positive dairy herds 

detected every year, the within-herd prevalence in infected farms, and the time from 

outbreak detection to control has increased in Uruguay despite measures implemented 

as part of the national bTB control program (Picasso et al., 2017; WAHIS_OIE, 

2014). The evolution of the dairy industry in the country, characterized by an increase 

in herd sizes and production intensification, has been associated with the limited 

success of bTB-control in recent years (Picasso et al., 2017; Picasso-Risso et al., 

2019). Additionally, insufficient sensitivity of bTB diagnostic tests may also 



 

60 

 

contribute to the persistence of potentially infectious individuals in the herd that can 

further spread the disease within and between herds (Alvarez, Bezos, et al., 2014). 

In Europe the use of the interferon-gamma release assay (IGRA) in parallel 

with the skin test has been incorporated in many eradication programs to maximize 

diagnostic sensitivity (Council Directive 64/432/EEC, 1964) (EFSA (European Food 

Safety Authority), 2012; EFSA Panel on Animal Health and Welfare (AHAW) et al., 

2017). Other tests based in the detection of specific antibodies (such as the enzyme-

linked immunosorbent assay, ELISA) have been developed and proven useful for 

detection of specific subpopulations of M. bovis-infected animals that may not react to 

the skin test, although their field use has been mostly limited so far to experimental 

purposes (Casal et al., 2014; W R Waters et al., 2011; W. R. Waters et al., 2006; 

Konstantin P. Lyashchenko, Pollock, Colangeli, & Gennaro, 1998; K. Lyashchenko et 

al., 1998; Radunz & Lepper, 1985). Characterization of the performance of alternative 

diagnostic tools (IGRA and ELISA) in Uruguay may help to design strategies for the 

improvement of the diagnostic sensitivity in high bTB-prevalence infected dairy 

herds, currently a priority for the control and eradication of bTB in the country. 

Here, we aimed to estimate the accuracy of two commercial assays for in-vitro 

diagnosis of bTB that had never been used in Uruguay, namely an IGRA (using two 

alternative antigens) and an antibody-based ELISA, fitting two different latent-class 

models in a Bayesian framework. Results from this study will help to quantify the 

potential impact that alternative diagnostic strategies may have in improving the 

effectiveness of the bTB-control program in Uruguay. 
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4.3 Methods 

We followed the STARD-BLCM guidelines to describe the materials and methods in 

our study (Kostoulas et al., 2017). 

Study design 

Two studies (referred to as study 1 and study 2) using a “single-gate” 

diagnostic design were performed to evaluate the performance of the in-vitro bTB-

diagnostic assays. In brief, a “single-gate” study includes positive- and negative- 

infected animals selected from a single population, in contrast to a “two-gate” study in 

which cases and controls are selected using a diverse inclusion criteria, which leads to 

two different populations (Rutjes, Reitsma, Vandenbroucke, Glas, & Bossuyt, 

2005)(Rutjes et al., 2005). 

Source populations 

Sampling for both studies was carried in 2016, and included 121 and 279 

Holstein cows for studies 1 and 2, respectively. All animals were selected from two 

commercial dairy herds belonging to the same company (with similar management 

practices and that frequently and systematically mingle their animals) located in the 

Department of Florida. Both herds were bTB positive since 2013. The two herds were 

subjected to the intradermal test as regulated by the national bTB-control program in 

Uruguay for dairies based on the status of the herd (MGAP, 1989). In addition, blood 

(study 1) or serum (study 2) samples were drawn from the selected animals (Fig 1). 
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Sampling and diagnostic assays 

All dairy > 12-month animals were tested using the CFT as a screening test, 

involving the intradermal inoculation of a purified protein derivate from M. bovis 

(PPDb) in the caudal area. Animals with an increase in skin thickness and/or presence 

of in-situ clinical signs of inflammation 72hs post inoculation were considered 

reactors and subjected to the CCT for confirmation within the following seven days. 

In this test, two PPD inoculations from M. bovis (PPDb) and M. avium (PPDa) are 

performed in the cervical area. When the difference in skinfold thickness in the PPDb 

inoculation site was ≥4 mm than the PPDa animals were considered infected and 

culled.  

Blood or serum samples were collected from the coccygeal vein of cows 

enrolled in studies 1 and 2, respectively, after the results of the serial CCT test were 

assessed (if applicable). Samples were maintained at environmental temperatures (20 

to 25 ºC) until arrival to the official veterinary diagnostic laboratory (Miguel C. 

Rubino) within the first 8 hours post extraction to perform the IGRA (blood) or the 

ELISA (serum). 

In study 1, blood samples were stimulated with specific antigens as described 

elsewhere (P. R. Wood et al., 1990). All samples were divided into five aliquots and 

incubated for 18h with pokeweed mitogen, PBS (blank), PPDa, PPDb and an 

antigenic cocktail formed by the early secretory antigenic target-6 (ESAT-6) and the 

culture filtrate protein 10 (CFP-10), two highly specific M. bovis antigenic proteins 

(Vordermeier et al., 2001)(Vordermeier et al., 2001). Samples were then centrifuged, 

and the supernatant was analyzed using the Bovigam 2.G (Prionics, Schlieren-Zurich, 
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Switzerland) according to the manufacturer’s recommendations. Two criteria based 

on different sets of antigens were applied to classify animals as positive; for criteria A 

(IGRAb) animals were considered positive if the optical density (OD) obtained after 

stimulation with PPDb (ODPPDb) minus the OD of the aliquot stimulated with PBS 

(ODPBS) was ≥0.1 and ODPPDb - ODPBS ≥0.1; in the case of criteria B (IGRAc), 

animals were classified as positive when ODcocktail - ODPPDb was ≥0.1. For study 

2, a commercial ELISA (IDEXX Laboratories, Westbrook, ME) was used to detect 

MPB83 and MPB70 bTB specific antibodies as described elsewhere (W R Waters et 

al., 2011). Animals with an S/P ratio ≥ 0.3 were considered positive and negative if 

else as recommended by the manufacturer. 

Statistical models  

Latent-class models were used to estimate diagnostic test accuracy (sensitivity 

–Se-, and specificity -Sp-) of the IGRA using the different antigens (IGRAb and 

IGRAc) and the ELISA in the absence of a gold standard assay (Branscum et al., 

2005; Ian A Gardner, Stryhn, Lind, & Collins, 2000). Samples collected were 

assumed to originate from a single population given they were drawn from herds 

belonging to the same company with similar animal health status regarding bTB and 

similar production management standards.  

For each study  (1 and 2), two different models were used alternatively:  a two 

dependent tests-one population model (LCA-a) using the results from the skin test 

(CFT or CFT-CCT) and one of the in-vitro tests (IGRA or ELISA), and a one test-one 

population model (LCA-b) analyzing the results of the in-vitro tests separately (Fig. 

1). 
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Conditional correlation coefficients for the Se (rhoD) and Sp (rhoDc) were 

included in the LCA-a models as described elsewhere (Ian A Gardner et al., 2000). 

We assumed results from the tests were conditionally dependent because results from 

diagnostic tests targeting a similar biological phenomenon, such as the intradermal 

tests and the IGRA (Pollock et al., 2005), are likely dependent (Ian A Gardner et al., 

2000; Georgiadis, Johnson, Gardner, & Singh, 2003). Similarly, and although the 

ELISA is based on the detection of the humoral immune response in the infected 

animals, there is a relationship between the initial predominant cellular-mediated 

immunity and the posterior humoral immunity observed as disease progresses in the 

animal (de la Rua-Domenech et al., 2006), so results from the skin test and the ELISA 

were also assumed to be conditionally dependent.  

Beta prior distributions for the Se and Sp of the CFT, CFT-CCT, IGRAb, 

IGRAc, and ELISA were chosen according to previous reports (Table 1 & 

Supplementary table 1). Distributions were fitted using Beta buster version 1.0 

(http://252s-weblive.vet.unimelb.edu.au:3838/users/epi/beta.buster/). More 

informative distributions were used for the Se and Sp of the CFT-CCT due to the 

availability of Uruguay-specific information compared with those used for the in-vitro 

assays since most references for those originating from other countries with a 

different experience in the use of these techniques (Table1). 

 For the LCA-a (two-dependent-test) models, prevalence priors were 

formulated from expert opinion following procedures described elsewhere (Suess et 

al., 2002). For the LCA-b (one-test) models, prior distributions for prevalence were 

formulated using the results from the CFT-CCT as described previously (Rogan & 

http://252s-weblive.vet.unimelb.edu.au:3838/users/epi/beta.buster/
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Gladen, 1978). Briefly, we simulated the true prevalence distribution using the 

Rogan-Gladen estimation method to correct for the imperfect Se and Sp of the CFT-

CCT (assumed to follow beta distributions as mentioned before) (Table 1) through 

5,000 iterations in an Excel spreadsheet (Microsoft Office Professional Edition, 2016) 

using @Risk software version 7.0.0 (Palisade Corporation 2015). The outputs from 

the simulations were used to fit a beta distribution that was used as the prevalence 

prior to LCA-b models. 

Three Markov chain Monte Carlo runs were implemented per model to 

visually assess convergence (also tested using the Gelman-RubinˆR statistic) (Andrew 

Gelman & Rubin, 1992). Models were run for 7,500 iterations for computing 

posterior estimates after an initial burn-in of 2,500 samples. To eliminate potential 

autocorrelation, we applied thinning and selected one every 10 consecutive samples. 

Latent-class models were fitted using OpenBUGS 3.2.2 (Lunn et al., 2009) via the 

R2OpenBUGS package (Sturtz, Ligges, and Gelman 2005) from the R 3.2.4 software. 

The influence of the selected priors on the posteriors distributions was evaluated by 

comparing the initial models with a model fitted using non-informative uniform (0,1) 

distributions for each parameter under evaluation. The possible independence between 

the results of the two tests being assessed was also evaluated by fitting models that 

did not include correlation terms. Model fit was assessed using the deviance 

information criterion (DIC), and the model selection (LCA-a or LCA-b) was based on 

lower DIC (D. J. Spiegelhalter et al., 2002) and narrower posterior credibility 

intervals. 
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4.4 Results 

Cross-tabulated dichotomous results for the combination of the intradermal 

tests (CFT or CFT-CCT), and the in-vitro assays (IGRAb, IGRAc, or ELISA) are 

presented in table 2.  

The estimated posterior estimates for the Se and Sp of the diagnostic tests and 

the prevalence in Study 1 and 2 are shown in table 3.  

Study 1. Median posterior estimates for the prevalence, Se and Sp of the 

intradermal tests (CFT, and CFT-CCT) using the LCA-a model were similar 

regardless the antigen used in the IGRA (IGRAb or IGRAc) (table 3). The median 

posterior IGRAb Sp estimates were slightly lower than those obtained for the IGRAc, 

whit higher median Sp values for the models integrating CFT-CCT as the second test 

as well but with the overlapping of the PPIs (Table 3).  

LCA-b models consistently yielded lower Se values for both IGRAs and 

higher prevalence estimates compared with LCA-a models, but with similar Sp 

posterior estimates. 

Study 2.  The LCA-a model yielded higher posterior estimates for the 

prevalence and Se of the intradermal tests, and a markedly lower Sp posterior values 

for CFT compared to those observed in study 1 using the same model. ELISA Se and 

Sp estimate obtained using the two models (LCA-a and b) were consistent. 

Conditional correlation between intradermal and in-vitro test results in 

infected (rhoD) and non-infected animals (rhoDc) was low, with 95%PPI including 0 

in all LCA-models for study 1(table 3). However, no significant improvement was 



 

67 

 

observed in the DIC when test independence was assumed for models using IGRAs 

and CFT (study 1: 19.4 vs. 19.4, 19.4 vs. 19) or IGRAs and CFT-CCT (study 1: 18.1 

vs. 17.5, 17.7 vs. 19.7) respectively. Interestingly, the LCA-a model from study 2 

showed the highest median correlation terms for infected animals (rhoD = 11.7 and 

17.05), showing a poorer fit of the model when independent-tests models were 

assessed (ELISA and CFT DIC:19.4 vs 24.7, ELISA and CFT-CCT DIC:24.4 vs 

31.9), although 95% PPI included 0. 

The sensitivity analysis revealed that results obtained using LCA-a models for 

study 1 were not affected (changes <10.5%) by the use of weakly informative priors 

(Suppl table 2). However, various parameters were severely affected (changes>10.5% 

when weakly informative priors were used) by choice of priors in the remaining 

models/studies. Results were most affected when LCA-a models were applied in 

study 2. The use of uniform distributions for the Sp of the in-vitro assays in both 

studies resulted in 17.8 to 38.2% decreased posterior median Sp values. Similarly, use 

of uniform priors for the prevalence resulted in a >20% reduction in posterior 

estimates of study 1 using the LCA-b model (76.5 to 54.3 and 65.4 to 52.2), and an 

increase in the Se estimates for IGRAb and IGRAc.  

All models reached convergence as indicated by the visual inspection of the 

Markov chains and the Gelman-RubinˆR statistic (<1.002) for all parameters. 

4.5 Discussion 

Due to the increasing number of bTB- infected herds in Uruguay (Animal 

Health Bureau, Uruguay -DSA MGAP-), the need for early and accurate detection, 
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isolation and removal of infected animals from a herd is crucial when the whole herd-

culling is not an economically or socially sustainable option. Here, we aimed to assess 

the performance of bTB-in-vitro assays under field conditions for the first time in 

Uruguay with the ultimate goal of improving current bTB diagnostic strategies for 

chronic and high prevalence infected dairy herds. 

In order to estimate the performance of the in-vitro assays evaluated here we 

used LCA, a suitable analytical approach when no reliable gold standard is available 

(Branscum et al., 2005; Enøe, Georgiadis, & Johnson, 2000; I.A. Gardner, 2002), as it 

is the case for bTB (Alvarez et al., 2012; de la Cruz et al., 2018; Praud, 

BOSCHIROLI, MEYER, GARIN-BASTUJI, & DUFOUR, 2015). We fitted two 

different latent-class models using prevalence priors based on expert opinion or 

diagnostic test results in order to evaluate the potential impact of a given 

methodological approach. Based on DIC, models with three (Se, Sp, Prev) parameters 

were preferred above those with seven (Se1, Se2, rhoD, Sp1, Sp2, rhoDc, Prev). 

Correlation between test results were very low in all models/test pairs, what had been 

already described for the IGRA and single skin test (Alvarez et al., 2012; de la Cruz et 

al., 2018) such result is expected because the diagnostic tests evaluated here have high 

Sp (Branscum et al., 2005). However, the comparatively higher correlation between 

the ELISA and CFT or CFT-CCT estimates in bTB-infected animals (rohD) was 

surprising, given that the ELISA and the skin tests target different immune responses 

and therefore a larger degree of independence is often assumed (de la Rua-Domenech 

et al., 2006; Drewe, Tomlinson, Walker, & Delahay, 2010).  
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Prevalence priors elicited from expert opinion were considerably lower than 

those based on the intradermal test results (median of 0.35 vs. 0.85). That finding 

could explain, at least in part, the lower posterior estimates for prevalence obtained in 

LCA-a models compared with those from LCA-b models. The higher posterior 

prevalence estimates obtained using all models in both studies; along with the fact 

that the two sampled herds remained infected with high rates of reactors two years 

after this study was completed (data not shown) suggest that bTB-infection was 

higher than what was estimated using expert opinion in this population. Comparison 

of results from the two modeling approaches illustrates the potential negative 

consequences of basing prior distributions exclusively on expert opinion. 

Interestingly, estimates for the Se and Sp of the CFT test were lower than 

those described for the US (Farnham, Norby, Goldsmith, & Wells, 2012b; Norby et 

al., 2004; D. L. Whipple et al., 1995), and more in line with Se values reported in field 

studies in Australia (P. Wood et al., 1991). Likewise, posterior estimates for the serial 

use of CFT-CCT remained in the lower end of previous estimates (Norby et al., 2004; 

Nuñez-Garcia et al., 2018; VanderWaal et al., 2017; Vordemeier et al., 2006). This 

relatively low accuracy of the intradermal tests in Uruguay suggests that the bTB-

control program may suffer from limited Se in heavily infected herds, what could lead 

to the persistence of infected animals in the dairy cattle population over time, which, 

with the consolidation and intensification of the industry, may have contributed to the 

re-emergence of bTB observed in the last decade (Picasso-Risso et al., 2019).  

Posterior estimates for the Se of IGRAb and IGRAc obtained using LCA-a 

models (table 3) are in agreement with previous reports suggesting IGRAs are at least 
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as sensitive as intradermal assays (Bezos, Casal, et al., 2014; de la Rua-Domenech et 

al., 2006). IGRAs have two major advantages over intradermal tests, namely, the 

potential for detecting false negative animals in the skin test (Coad et al., 2010, 2010; 

E. Gormley et al., 2004; Monaghan et al., 1994; Vordemeier et al., 2006), and the 

opportunity to maximize their sensitivity thanks to the anamnestic effect induced by 

the inoculation of PPDs when used in combination with intradermal tests (Casal et al., 

2014; M V Palmer et al., 2006; Vordemeier et al., 2006). The population under study 

was sampled at post intradermal inoculation of the PPDb, while this time was 

variable, it could have contributed to an enhanced Se in agreement with previous 

studies in which IGRAs performance was assessed following intradermal tuberculin 

testing (Waters et al., 2015). 

A slightly higher Sp was obtained for the IGRAc compared with the IGRAb, 

what could be due to the use of more specific antigens (peptide-cocktail with ESAT-6 

and CFP-10)  (Aagaard et al., 2006; Casal et al., 2012; Flores-Villalva et al., 2012; 

Vordermeier et al., 2001)  although could be also a product of the different priors used 

for each test based on available knowledge. Interestingly, Sp of the IGRAc was 

equivalent to that of CFT-CCT, suggesting that the use of a single assay (IGRAc) 

could potentially replace serial testing with CFT-CCT for bTB screening in heavily 

infected dairy herds. 

In conclusion, results found here, irrespective of the modeling approach 

followed, suggest that the use of IGRAs in Uruguay can dramatically improve the 

limited Se of the currently used diagnostic strategies based on skin tests, which would 

require numerous herd tests to eliminate the disease from heavily infected herds as the 
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ones analyzed here. The ELISA could also have some potential for detection of bTB-

infected animals if used as an ancillary test to skin test in these populations. 
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4.6 Figures 

Figure 7: Schematic diagram showing the study design, with the diagnostic tests used 

for study 1 and study 2, and the Bayesian latent-class fitted models LCA-a and LCA-

b. 
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4.7 Tables 

Table 6: Prior estimates (Mode and 5th percentiles) for sensitivity, specificity of the 

intradermal tests (CFT, CFT-CCT) and in-vitro (IGRAb, IGRAc, and ELISA) bTB 

tests, and prevalence for the two models implemented. 

Diagnostic test Priors estimates 

 Sensitivity Beta distribution Specificity Beta distribution 

CFT 80 (>51) α:  7.99, β: 2.75 90 (>60) α: 8.3045, β: 1.81 

CFT-CCT 53 (>46) α: 73.81, β: 65.57 97 (>94) α: 176.39, β: 6.42 

IGRAb 83.5 (>48) α: 5.99, β: 1.99 95 (>80) α: 21.20, β:2.06 

IGRAc 80 (>60) α: 14.84, β: 4.46 97 (>94) α: 176.39, β: 6.42 

ELISA 57.1(>33.1) α: 6.98, β: 5.49 95 (>81) α: 23.25, β: 2.17 

Prevalence(*) 35 (>15) α:  3.63, β: 5.88  Experts opinion 

Prevalence (+) 85 (>61) α: 8.46, β: 1.742  CFT-estimated 

(*) Prevalence priors distributions based on expert opinions used in the LCA-a 

(+) Prevalence priors distributions based on results from the intradermal test (CFT) 

used in the LCA-b 
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Table 7: Cross-tabulated dichotomous diagnostic results for intradermal test (CFT, 

CFT-CCT) and in-vitro (IGRAb, IGRAc, ELISA) bTB- diagnostic tests. 

 

Study Diagnostic test CFT+ CFT- CFT-CCT+ CFT-CCT- Total 

1 IGRAb Positive 35 19 26 28 54 

  Negative 25 42 10 57 67 

 IGRAc Positive 34 16 24 26 50 

  Negative 26 45 12 59 71 

  Total 60 61 36 85 121 

2 ELISA Positive 126 3 91 38 129 

  Negative 108 42 64 86 150 

  Total 234 45 155 124 279 
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Table 8: Posterior estimates (median and 95% posterior probability interval) for CFT, CFT-CCT and in-vitro assays (IGRAb, IGRAc, 

ELISA) sensitivities, specificities, prevalence, and, when applicable, correlation terms (rhoD, rhoDc) distributions obtained for study 

1 (121 animals) and study 2 (279 animals), applying the model ‘a’, or the model ‘b’ in chronic naturally infected dairy herds in 

Uruguay. 

Study/
Model 

Diagnostic test  Posteriors estimates 

 Test-one Test-two DIC Sensitivity Specificity Prevalence rhoD rhoDc 

1/a  IGRAb  75.32 (58.96, 
91.63) 

89.96 (77.82, 
97.23)* 

50.84 (33.80, 
67.73) 

-4.09 (-28.94, 
35.07) 

-2.78 (-20.70, 
23.68) 

 CFT  19.4 73.34 
(56.88,89.44) 

77.02 (58.96, 
95.48) 

   

  IGRAc 19.4 75.73 (62.45, 
88.08) 

96.49 (93.85, 
98.22)* 

51.33 (38.11, 
65.33) 

-3.50 (-24.00, 
24.73) 

-0.33 (-7.84, 9.23)  

 CFT   72.43 (58.34, 
83.75) 

76.23 (59.98, 
93.95) 

   

2/a  ELISA 19.4 57.82 (48.92, 
73.43) 

93.76 (85.57, 
98.08) 

76.94 (56.97, 
87.80)* 

11.17 (-1.96, 29.72) 4.75 (-1.39, 
27.78) 

 CFT   95.48 (88.83, 
98.91) 

63.87 (34.15, 
94.31) 

   

1/a  IGRAb 18.1 78.01 (62.97, 
89.53) 

91.43 (78.91, 
98.26) 

50.37 (37.38, 
63.48) 

-2.47 (-31.69, 
29.59)  

-0.48 (-8.19, 
16.20)  

 CFT-CCT   53.27 (45.76, 
60.59) 

96.19 (92.78, 
98.37) 
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  IGRAc 17.7 76.21 (65.35, 
85.86) 

96.56 (93.34, 
98.52) 

51.30 (40.28, 
62.97) 

-6.03 (-28.49, 
17.95) 

-0.09 (-3.42, 5.10) 

 CFT-CCT   52.89 (45.66, 
59.93) 

96.13 (92.66, 
98.32) 

   

2/a  ELISA 24.4 52.29 (44.96, 
60.35) 

92.41 (78.82, 
98.48)* 

79.73 (73.23, 
91.80)* 

17.05 (-0.26, 31.64) -0.08 (-8.02, 
16.78) 

 CFT-CCT   60.44 (54.45, 
66.59) 

96.14 (92.60, 
98.34)* 

   

1/b  IGRAb 7.3 58.12 (43.14, 
86.23) 

92.70 (77.84, 
98.85)* 

76.57 (48.06, 
96.68) 

NA NA 

  IGRAc 7.8 66.04 (46.97, 
86.68) 

96.72 (93.54, 
98.68)* 

65.37 (45.68, 
91.79) 

NA NA 

2/b  ELISA 8.4 53.85(44.41, 
71.28) 

92.42 (78.63, 
98.76)* 

83.79 (59.92, 
97.78) 

NA NA 

 

Model ‘a’: Two-dependent-test and one population model 

Model ‘b’: One-test one population model 

IGRAb: Interferon-gamma release assay using PPDb-PPDa antigens 

IGRAc: Interferon-gamma release assay using peptide cocktail antigens 

ELISA: Commercial Enzyme-immunosorbent assay 

(*) Differences between the use of informative vs. uniform priors reflects a >10.5% variation in the posterior estimates 
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5.1 Chapter summary 

In Uruguay, bovine tuberculosis, a chronic disease of cattle, became endemic with high 

prevalence in large dairy herds, raising the concern of the authorities and the 

stakeholders, and threatening animal and public health. The lack of resources, together 

with the economic and social impact that slaughtering a complete herd imposes, makes 

depopulation an impractical alternative. The increase in bTB-prevalence was recently 

associated to demographic and management changes in the dairy industry in Uruguay 

challenging the current control program based on intradermal serial testing using the 

caudal fold- and comparative cervical- tuberculin test and slaughter of reactors. Here, we 

aimed at understanding the bTB-within-herd dynamics with the use of mathematical 

modeling. In order to assess the effectiveness of current and six alternative control 

scenarios that simultaneously minimized the slaughter of uninfected animals. We 

modified a compartmental age-structured frequency-dependent bTB-within-herd model 

parameterized and validated previously for Uruguay to simulate independently six 

alternative scenarios. The alternative control strategies assessed aimed to increase the 

sensitivity of detection and include: the single use of the caudal fold test (CFT) or the 

interferon gamma release assay (with the use of two different antigens-IGRAb and 

IGRAc-), and the use of parallel testing with CFT+IGRA, CFT and an Enzyme-linked 

immunosorbent assay (ELISA), or IGRA+ELISA every three months in adult animals 

(>1year). Results showed no significant differences in the time to reach bTB-eradication 

or official tuberculosis-free status (two consecutive negative test results) with any of the 

alternative strategies relative to the status quo, showing a consistent residual bTB-
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infection for all the scenarios in the young categories (calves). Additionally the relative 

cost, assessed as the proportion of unnecessary slaughtered uninfected animals (false 

positives), significantly increased for all strategies in reference to the status quo. 

However, we demonstrate how the alternative strategies can significantly reduce bTB-

prevalence when applied for restricted periods (6, 12 or 24 months), and in the case of 

IGRAc, without incurring higher unnecessary slaughter of animals in the first 6 months. 

The enhanced understanding of bTB-within-herd dynamics with the use of different 

control strategies helps to the advance in the identification of the optimal strategy for the 

control and eradication of bTB from dairy cattle in Uruguay and similar endemic settings. 
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5.2 Introduction 

Mycobacterium bovis (M. bovis) is the main cause of bovine tuberculosis, one of 

the most widespread zoonotic bacterial infection that affects cattle and other mammals. 

Limited control success has been achieved worldwide (Bezos et al., 2014; Good et al., 

2018; More, Radunz, & Glanville, 2015; Morris, 2015) in part because of the chronic 

nature of the disease, and the limited accuracy of the current diagnostic strategies 

developed (Schiller et al., 2010).  

The use of bTB-intradermal testing has proven a useful tool for bTB-surveillance 

when detecting infected herds (Bezos et al., 2014; de la Rua-Domenech et al., 2006); 

however, the accuracy at the individual level is limited, in part because of host and 

pathogen characteristics (Gormley et al., 2006; Gormley et al., 2004), making challenging 

the eradication of disease when infection establishes. In herds with high prevalence, bTB-

control using intradermal test-and-individual-slaughter is difficult; still, prompt control of 

the disease is crucial to avoid hazardous levels of pathogen circulation that can impose 

high zoonotic risk, and animal health and welfare impact.  

To achieve control in high prevalence settings two main approaches have been 

used with variable success; a) the use of in-vitro tests as ancillary diagnostic strategy to 

improve the sensitivity for bTB detection (Council Directive 64/432/EEC, (Casal et al., 

2014), and b) the depopulation of the complete herds in which individual reactors were 

detected (More, Radunz, & Glanville, 2015; Verteramo Chiu et al., 2019). Advantages 

and limitations of the use of in-vitro ancillary diagnostic tests have been reviewed 
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elsewhere (Bezos, Casal, et al., 2014; de la Rua-Domenech et al., 2006), but essentially 

these tests target animals infected with M. bovis that is likely missed by the intradermal 

testing. Whole herd depopulation, although costly, is an effective strategy to control and 

eradicate bTB (More et al., 2015). However, the complexity of its implementation 

increases with the size of the bTB-infected herd and is not always a feasible option. The 

lack of resources, together with the economic and social impact that culling a complete 

herd in which infection is confirmed in a low proportion of the animals involved, makes 

difficult to justify as a routine strategy for bTB-control programs in endemic settings 

(Ciaravino et al., 2017). 

In Uruguay, the bTB-control program relies on serial intradermal testing, with the 

use of Caudal Fold Tuberculin test –CFT- as a screening test and the Comparative 

Cervical Tuberculin tests –CCT- for confirmation, followed by the slaughter of reactors 

and the bacteriological analysis. Herds in which bTB-infection is confirmed are subjected 

to intradermal retesting until two consecutive negative results in the whole herd are 

achieved to regain the officially tuberculosis-free status (OTF) (MGAP, 1989). Farmers 

with bTB-positive animals resulting in the slaughter are eligible for government 

indemnity (Law 19300, 26/12/2014.DGSG/MGAP). 

The application of the national bTB-program in Uruguay was translated into a low 

herd prevalence (<0.001) for several years (WAHIS_OIE, 2014). However, in the past 

decade, we observed an increase in the number of bTB-infected dairy herds, the within-

herd bTB-prevalence and the time from detection to the recovery of the officially 
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tuberculosis-free status (OTF) (Picasso-Risso et al., 2019), which led to unprecedented 

challenges in the control of bTB in Uruguay. This bTB-endemic scenario in Uruguay was 

associated with changes in dairies demographic structure and management, resulted from 

the consolidation of its industry (Picasso et al., 2017; Picasso-Risso et al., 2019).  The 

observed variation of bTB dynamics followed the emergence of a dairy industry with 

larger herds (>360 animals) (DIEA, 2018), higher animal density, increased animal 

movements, and more intensive animal rearing than the traditional farming from the 

previous decades (Picasso et al., 2017). The current bTB-prevalence increase in the dairy 

industry raised the question whether the current bTB-program in Uruguay is efficient 

enough to control bTB in these dairy herds once the infection is confirmed and 

transmission is occurring.  

Mathematical transmission models have been used broadly to understand within-

herd bTB-transmission patterns and to evaluate control and surveillance strategies 

(Alvarez et al., 2014; Brooks-Pollock, Roberts, & Keeling, 2014; Ciaravino et al., 2018; 

Perez, Ward, & Ritacco, 2002; Rossi, et al., 2019). These models allow accounting for 

the chronic nature of the disease, with long and variable incubation periods, biological 

variabilities, and different production systems (Alvarez, Bezos, et al., 2014), while 

avoiding the risks and the costs of implementing the control strategies in-vivo (Halasa & 

Dürr, 2017). For Uruguay, an integrated within-and between-herd model was 

parameterized and validated previously to evaluate the effect of risk-targeted bTB-

surveillance with the use of the current test-and-slaughter bTB- program (VanderWaal et 

al., 2017). However, previous studies suggested that the sensitivity of the test-and-
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slaughter program is impaired in high prevalence dairy herds in Uruguay (Picasso-Risso 

et al. submitted), and given depopulation of these large herds in Uruguay is not 

economically, logistically or socially feasible, the use of alternative diagnostic in-vitro 

assays, is a reasonable tool to reach control in these herds.  

In this study, we simulated the application of the current and six mutually 

exclusive alternative bTB-control strategies, aiming to the assessment of which strategy 

is more effective to eradicate bTB from the herd, while minimizing the slaughter of 

uninfected animals, to ultimately, elucidate the optimal option for high prevalence dairy 

herds in Uruguay when depopulation is not an alternative. 

5.3 Methods 

Model description 

Our interest was to use a mathematical transmission model that can capture and 

integrate three within-herd dynamics: herd demographics, bTB transmission, and control 

strategies in bTB-infected dairy herds with high prevalence (>10%) to evaluate the 

effectiveness of six alternative control scenarios relative to the status quo. We used a 

modified version of the stochastic, age-structured compartmental within-herd simulation 

model developed and parameterized previously for bTB patterns in Uruguayan cattle 

herds (VanderWaal et al., 2017). This model simulated the different dynamics in discrete 

monthly periods. The model was coded and run in R software (v3.2.4, R Foundation for 

Statistical Computing). 
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The outputs of the model were a) time to bTB-eradication, b) bTB-prevalence at 

the end of the first six months and each of the first ten years of simulations, c) time to 

regain the OTF status, and d) proportion of animals slaughtered (true and false positives). 

Herd demographics 

Demography parameters were modeled as previously described (VanderWaal et 

al., 2017). Briefly, we used two animal categories, adults (all animals >12 months), and 

calves (≤12 months), with calves moving into adult categories at a rate 1/12 months. 

Animal slaughter, births, and replacement occur on rates previously estimated for dairies 

in Uruguay (VanderWaal et al., 2017), following a Poisson distribution with an average 

proportion of non-infection related slaughters for adults (λsl.a) of 0.268, and for calves 

(λsl.c) of 0.007. In order to maintain stable herd size, births were assigned the same rate 

as λsl.c and replacement in the adult category the same rate as λsl.a every 4 months 

(frequency of s = 4). The model was initialized with an adult/calf ratio of 75/25 in a 

population of 500 animals following the typical replacement rates and demographic 

characteristics of large dairy herds in Uruguay (DIEA, 2018). 

Individual-based bTB-transmission dynamics 

bTB-infection was simulated using a stochastic, discrete, compartmental model, 

in which animals were assumed to transit four mutually exclusive stages; Susceptible (S), 

Occult (O), Reactors to diagnostic tests (R), and Infectious (I; SORI model) (Alvarez, 

Bezos, et al., 2014; G. Ciaravino et al., 2018; Conlan et al., 2012; Perez et al., 2002; 

VanderWaal et al., 2017). When healthy animals from the susceptible compartment ‘S’ 
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are exposed to M. bovis, they move to the occult stage during a latent period (λ1) in 

which even though infected, they are not detected by any bTB-diagnostic test 

(antemortem test) and are not considered infectious. As disease progresses, these occult 

animals become reactors to the diagnostic tests at two different times of detection (λ2a 

and λ2b) corresponding to the sub-compartments Ra and Rb respectively: λ2a represents 

the period in which infected animals are only detected by the IGRA, and λ2b representing 

the time in which all tests can detect bTB-infected animals. The final compartment (I) 

represents animals that are infectious while also reactive to antemortem diagnostic testing 

(Figure 5.6.1). The same SORI-model was applied for the two age categories. The 

transition between compartments occurs following a Poisson process with rates based on 

the following deterministic backbone differential equations: 
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We assumed homogeneous mixing between adults and calves, and frequency-

dependent transmission given that in dairies the likelihood of effective contact between 
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animals was assumed to remain independently of the size of the herds (Smith et al., 2013; 

VanderWaal et al., 2017).  

At each time step, the number of animals that transitioned between each 

compartment was pulled from a Poisson distribution with the purpose of incorporating 

stochasticity to the model as was previously described (Gillespie, 2001; Keeling & 

Rohani, 2008). 

 

Individual-based bTB-control dynamics 

We evaluated six alternative control strategies scenarios (table 5.7.1). The 

alternative strategies were selected to improve the current sensitivity of the control 

program with the application of a maximum of two diagnostic tests at once. Testing was 

performed every three months to allow comparison with the status quo control strategy in 

Uruguay (MGAP, 1989).   

We simulated the bTB-transmission dynamics independently with the application 

of each alternative strategy previously described. Each testing method had a specific beta 

distributed sensitivity –Se- and specificity –Sp- that related to the different stages of 

disease (SORI-compartments) (table 5.7.2) describe elsewhere (Picasso-Risso et al., 

submitted). Animals detected through the different diagnostic strategies were eliminated 

from the herd before the following testing period (i.e., every three months). We assume 

constant herd size during simulations, and we incorporated the same number of 
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slaughtered animals to the susceptible category in the following time step. We recorded 

the number of slaughtered animals using four new mutually exclusive compartments, one 

for the false positives (SS) and three for the true positives (RaS, RbS, IS) from each 

control strategy (Figure 5.6.1). The number of animals falling in each detected 

compartments were drawn from a Poisson distribution centered on the expected number 

of animals testing false positive in the susceptible (Ss), and true positive in the infected 

compartments (Ras, Rbs, Is) given by the equations 1 and 2 respectively for strategies 

involving one-test or parallel testing. Positive and negative correlation coefficients 

(rhoDc and rhoD) were included when combining two-diagnostic tests following the 

distributions described in the previous literature for Uruguay (Picasso-Risso et al. 

submitted). 

 Eq 1. False Positives:  𝑆𝑠 = [1 − 𝑆𝑝)] ∗ 𝑆𝑎𝑑             (single testing) 

    𝑆𝑠 = [1 − (𝑆𝑝1 ∗  𝑆𝑝2  +  𝑟ℎ𝑜𝐷)] ∗ 𝑆𝑎𝑑(parallel testing) 

Eq 2. True Positives:  

𝑅𝑎𝑠 = 𝑆𝑒 ∗ 𝑅𝑎𝑎𝑑   𝑅𝑏𝑐 = 𝑆𝑒 ∗ 𝑅𝑏𝑎𝑑  𝐼𝑠 = 𝑆𝑒 ∗ 𝐼𝑎𝑑                              (single testing) 

 𝑅𝑎𝑠 = (𝑆𝑒1 ∗  𝑆𝑒2  +  𝑟ℎ𝑜𝐷𝑐) ∗ 𝑅𝑎𝑎𝑑 

𝑅𝑏𝑠 = (𝑆𝑒1 ∗  𝑆𝑒2  +  𝑟ℎ𝑜𝐷𝑐) ∗ 𝑅𝑏𝑎𝑑 

  𝐼𝑠 = (𝑆𝑒1 ∗  𝑆𝑒2  +  𝑟ℎ𝑜𝐷𝑐) ∗ 𝐼𝑎𝑑     (parallel testing) 
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Assessment of alternative strategies  

To mimic the scenario of high bTB herd prevalence, we initially ran the model 

without the application of any control strategy until the median apparent prevalence (the 

sum of the animals in compartments R and I) of 500 iterations reached 10%, mimicking 

the worst scenario (i.e. highest bTB-prevalence) for dairy bTB-infected herds in Uruguay. 

Then, we used the median estimated number of animals in each of the infected 

compartments (O-R-I) to seed each of the six runs of the model evaluating the bTB-

control strategies (Supplementary figure 5.8.S1).  This was done in order to create a 

realistic distribution of animals across compartments in a high prevalence situation. 

Models with each control strategy were run for 500 simulations during a period of 

20 years, and results were summarized as median, and 2.5, 25, 75, and 97.5% intervals, 

meaning the interval containing 2.5, 25, 75, and 97.5% of the outcome. Differences 

between the outcomes were compared using the Kruskal-Wallis test (Kruskal & Wallis, 

1952), Dunn’s test for pairwise comparison, and log-rank test to compare time to 

eradication and OTF. 

5.4 Results 

Epidemiological indicators: 

The median and 75ths, 95ths percentile estimates showed slightly different trends 

in the time to bTB-eradication in each scenario for the complete herd and categorized by 

age (figures 5.6.2-3). The median time to eradication ranged from 61 to 82 months, and 
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41 to 62 months if only adults are considered (table 5.7.3). Towards the end of the 

outbreak, calves carried most of the residual infections, which represent the category 

without bTB-control strategies applied, maintaining the circulation of the disease for 

significant (Kruskal-Wallis P-value <0.05) longer periods. 

There were no significant differences in the overall bTB-prevalence distributions 

when comparing the six alternative scenarios relative to the status quo according to the 

Kruskal-Wallis test (P-value 0.59), and the log-rank test (P-value 0.29) (figure 5.6.4). 

However, when differences in the first six month and annual prevalence at the end of the 

first ten years of the simulations were assessed, we detected significant differences in the 

first three periods (6,12,24 months) (P-value<0.05), and no differences in the subsequent 

ones. Status quo prevalence at six month (1.02% 95th%ile: 8.4-11.8) and the first year 

(5.7%, 95th %ile: 4.6-7.6statistically differ from the prevalence estimates for the other six 

alternative scenarios (table 5.7. 4, figure 5.8.S2-S3) (P-values <0.05). At the end of the 

second year of simulations, the bTB-prevalence distributions of the status quo (2.5%, 

95th %ile: 1.2-5.2) was significantly different from the CFT+IGRA (1.8%, 95th %ile: 

1.1-3.6) (P-value 0.01), and in the margin of significance with the IGRAb (2.2%, 95th 

%ile: 1.0-3.8), and IGRA+ELISA (2.4%, 95th %ile: 0.8-4.2) (P-value<0.1) (table 5.7.4, 

figure 5.8.S4). 

Time to regain the OTF status did not vary between the strategies simulated 

according to the Kruskal-Wallis test, or the log-rank test (P-value >0.05) (figure 5.6.5), 

with median estimates ranging between 50 and 59 months (4.1 to 4.9 years).  



 

90 

 

Performance effectiveness 

The simulated scenarios using ELISA as an ancillary test (IGRA+ELISA and 

CFT+ELISA) have a larger proportion of animals testing positive (figure 5.6.6), with 

larger rates of false positives (15.47%, 95th %ile:12-19.1 and 17.73%, 95th %ile: 14.1-

21.2 (figure 5.6.7), than the status quo or the other alternative scenarios. The status quo 

scenario has the lowest proportion of positive diagnostic results, and false positive results 

(median: 0.8% 95th %ile: 0.5-1.3), which distribution was significantly different from all 

the other simulated strategies according to the Kruskal-Wallis test. 

5.5 Discussion  

In Uruguay, the bTB-control program in dairies is based on a strategy that 

provides high diagnostic specificity (CFT and CCT serial testing) to avoid unnecessary 

animal culling (false positives), which resulted in historical low prevalence values 

reported within- and between- herds until the past decade (WAHIS_OIE, 2014). Since 

then, a consistent increase in the reported number of bTB-infected dairy herds and its 

within-herd prevalence in the past decade associated to demographic and management 

changes in the industry led to challenging the effectiveness of the current bTB-control 

program in this evolving population. 

In this study, we intended to understand the effectiveness of alternative control 

strategies, directed to the increase in the bTB-diagnostic sensitivity (with single or 

parallel testing), on the bTB-within-herd dynamics in highly prevalent dairy herds in 

Uruguay, while minimizing the culling of uninfected animals. To do so, we utilized 
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mathematical models that can help us to embrace the uncertainty associated with the long 

duration of the disease, the lack of clinical signs, and variability in disease dynamics and 

transmission patterns (Brooks-Pollock et al., 2014; G. Ciaravino et al., 2018). With 

mathematical modeling, we benefit from the avoidance of risk and costs associated with 

field implementation of the different strategies and can help decision-making (Alvarez, 

Bezos, et al., 2014; Perez et al., 2002). 

Here, we initially simulated bTB-transmission in 500-size dairy herd 

(>75percentile for dairies in Uruguay) (DIEA, 2018; Picasso et al., 2017), with two 

categories of animals (adults and calves), and an apparent prevalence of 10% to 

subsequently simulate a conservative scenario towards eradication, with the application 

of seven control strategies (status quo and six alternatives) every three months. We 

intended to simulate the current demographic and endemic characteristics of the most 

challenging bTB-dairy outbreaks currently active in Uruguay, and the most conservative 

testing scenario to improve the detection sensitivity. 

An advantage of the IGRAs involved the marginal earlier detection (~2 weeks) of 

the bTB- cell-mediated immune response in comparison to the intradermal test or the 

ELISA assay (Bezos, Casal, et al., 2014; de la Rua-Domenech et al., 2006). The inclusion 

of two reactors subcompartments (Ra and Rb) was important to account for the variations 

in duration of the detection period for the IGRAs and the intradermal and ELISA assay. 

Our findings indicated that there were no significant differences overall to reach 

bTB-eradication or OTF-status with the six strategies relative to the status quo (73 



 

92 

 

months for status quo strategy, 95th %ile: 36-103, and 59 months for alternative strategies, 

95th %ile: 26-122 months respectively); and the relative costs associated with 

slaughtering uninfected animals will be significantly incremented with the use of 

alternative strategies, with the worse estimated performance observed with strategies that 

included the ELISA (table 5.7.3). The lack of significant improvement can be associated 

with the maintenance of the disease in the calves’ category (figure 5.6.3). In most of the 

simulated scenarios, eradication is reached earlier in the adult category than the calves 

(table 5.7.3), who remain undetected until reaching the opportunity to be tested when 

they reach >12 months old, and responsible in most of the simulations of sustaining bTB 

in the herd for longer periods (table 5.7.3, figure 5.6.3). Thus, we need to consider that 

this conclusion might not hold when simulating control strategies that include calfdhood 

testing. 

When exploring the effect of the control strategies in shorter periods, after 6, 12 

and 24 months, we interestingly observed a significant reduction in bTB-prevalence at 

the end of the first 6 and 12 months with the use of any of the six alternative strategies of 

control, and after 24 months with the use of CFT+IGRA parallel testing. These results 

demonstrate that alternative strategies can be selected as an initial strategy, with the 

following use of the current status quo for eradication, when following the assumptions 

of the model. In addition, when the strategies were assessed for unnecessary slaughter, 

the IGRAc, matched the performance of the status quo in the first 6 months of testing (P-

value >0.05) (supplementary figure 5.8.S4), suggesting that might be an effective tool to 
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reduce bTB-prevalence at initial stages of the control program (six months or two 

consecutive tests). 

In the different control scenarios, the sensitivity and specificity of the diagnostic 

tools applied were based on estimations for accuracy for high bTB-prevalence dairy herds 

in Uruguay (Picasso-Risso et al., submitted), which can help to reduce the ambiguity (and 

sometime contradictory) test performance (Alvarez, Bezos, et al., 2014; G. Ciaravino et 

al., 2018). Testing intervals (3 months) represent the highest possible pressure for 

detection for intradermal testing in which we can elude the anergy period (de la Rua-

Domenech et al., 2006; Radunz & Lepper, 1985; Vordemeier et al., 2006), and slaughter 

is logistically possible before next testing period. Although in-vitro testing allows more 

frequent testing, and can benefit from the booster effect after tuberculin inoculation when 

applied in parallel (CFT+IGRA) (Casal et al., 2014; M V Palmer et al., 2006; Irene 

Schiller et al., 2010), we prefer to assess the strategies in reference to the status quo, and 

avoided the inclusion of shorter testing-intervals. Nevertheless, a deeper understanding of 

the effect of different testing periods is needed, before the elaboration of 

recommendations for decision-making. 

In order to evaluate the optimal strategies, we balanced the epidemiological 

effectiveness of the control while minimizing unnecessary culling of false reactors 

relative to the status quo. While an initial approximation of the additional efforts that will 

impose each strategy is still essential to estimate the economic cost (Kao, Roberts, & 
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Ryan, 1997; Kao et al., 2018; Smith et al., 2013) and social acceptance (Ciaravino et al., 

2017) before its implementation. 

Here, we conclude that alternative strategies assessed do not improve the time to 

bTB-control or reduce the false positive slaughters overall, but most importantly we 

increased the understanding of bTB-dynamics in adult and calf categories when applying 

different testing pressures in these highly infected dairy herds in Uruguay. Additionally, 

we showed the importance of target control strategies to infected calves, the potential 

benefit of using the IGRAc in the initial stages of the control when bTB-prevalence is 

~10%, without incurring in additional unnecessarily slaughters, and the poor control 

reached with the ELISA. The determination of the best strategy will be a result of 

epidemiological, performance and economic balance while acknowledging the country 

logistics and socio-cultural perceptions, and with our results here, we enhance the 

understanding of bTB-within-herd dynamics that reduce the gap in the knowledge for 

identification of the optimal bTB-control strategy for dairies in Uruguay and similar 

endemic settings. 
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5.6 Figures 

Figure 8: Diagram representing the bTB-transmission flow between compartments 

(figure 1a) including calves (top row) and adults (second row), and control strategies 

dynamics (figure 1b). Number of animals in each bTB-compartment are indicated as 

susceptible (S), occult (O), reactors in subgroup a (Ra) and b (Rb), and infectious (I). 

Transmission rates between infectious and susceptible stage are represented by β, and the 

duration of the occult, reactors a, and reactors b stages are represented by λ1, λ2a, λ2b. 

The equations for the probability of testing positive to the control strategies included 

sensitivity (Se), specificity (Sp), and correlation coefficients between negative (rhoD) and 

positive (rhoDc) results respectively. 
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 Figure 9: Median, five and 95th percentile estimates of bTB-prevalence per month 

simulated for the model output of 500 iterations in a 500-size herd, with the application 

of status quo (Skin_series) and six alternative strategies. The red vertical line indicates 

when 50% of the simulations reached bTB-eradication for each strategy, and the shadow 

shows the range of months in which eradication is reached for 90% of the iterations. 

 

CFT: Caudal Fold tuberculin test 

Skin_series: CFT and Comparative Cervical tuberculin test serial testing 

IGRAb: Interferon-gamma release assay using PPDb-PPDa antigens 

IGRAc: Interferon-gamma release assay using peptide cocktail antigens 

ELISA: Commercial Enzyme-immunosorbent assay
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Figure 10: Median, and 95th percentile estimates of bTB-prevalence simulated for the 

model output of 500 iterations in a 500-size herd, with the application of status quo 

(Skin_series) and six alternative strategies. Simulated estimates for bTB-prevalence in 

adults, representing 75% of the herd population (pink), and estimates for calves 

representing 25% of the population (turquoise) are shown per month. 
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Figure 11: Comparison of time to eradication for status quo and alternative control strategies. Boxplot (right) shows the number of 

months to reach prevalence zero per strategy (median, interquartile range, and 95th percentile whiskers). Survival curve shows the 

median time to reach eradication. No significant differences were observed with the Kruskal-Wallis or the log-rank tests. 
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Figure 12: Comparison of time to reach the officially tuberculosis-free status for the 500 simulations with the status quo and six 

alternative control strategies. Boxplot (median, interquartile-range and 95th percentile whiskers) shows the number of months to reach 

two consecutive true negative bTB-diagnostic results per strategy. 
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Figure 13: Median and 95th percentile of the proportion of animals testing positive (pink), and testing true positive (turquoise) the 

status quo (0.Skin_series) and the six alternative control scenario per month. 
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Figure 14: Distribution (median, 95th percentiles) of the 500 simulations of the proportion 

of animals testing false positive over the total adults tested, to the status quo 

(0.Skin_series) and the six alternative control scenario per testing implemented. 
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5.7 Tables 

Table 9: Control strategies evaluated by the model 

 

CFT: Caudal Fold tuberculin test 

CCT: Comparative Cervical tuberculin test 

IGRAb: Interferon-gamma release assay using PPDb-PPDa antigens 

IGRAc: Interferon-gamma release assay using peptide cocktail antigens 

ELISA: Commercial Enzyme-immunosorbent assay 

 

Strategy Combination Test 1 Test2 

Status Quo Serial CFT CCT 

1. CFT NA CFT NA 

2. IGRAb NA IGRAb NA 

3. IGRAc NA IGRAc NA 

4.  CFT + IGRA Parallel CFT IGRA 

5.  CFT + ELISA Parallel CFT ELISA 

6.  IGRA + ELISA Parallel IGRAc ELISA 
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 Table 10: Sensitivity and specificity estimates used for modeling each bTB-testing 

strategy. 

 

CFT: Caudal Fold tuberculin test 

CCT: Comparative Cervical tuberculin test 

IGRAb: Interferon-gamma release assay using PPDb-PPDa antigens 

IGRAc: Interferon-gamma release assay using peptide cocktail antigens 

ELISA: Commercial Enzyme-immunosorbent assay 

(*) Median and 95PPI estimates obtained from Picasso-Risso et al. (submitted) 

Strategy Sensitivity* dβeta (α1,  α2) Specificity* dβeta (α1,  

α2) 

Status Quo 53.27 (45.76, 

60.59) 

89.1, 78.6 96.56 (93.34, 

98.52) 

60.4, 1.6 

CFT 73.34 

(56.88,89.44) 

18.6, 6.8 77.02 (58.96, 

95.48) 

23.5, 3.8 

IGRAb 78.01 (62.97, 

89.53) 

26.7, 7.9 91.43 (78.91, 

98.26) 

27.8, 3.2 

IGRAc 76.21 (65.35, 

85.86) 

46.3, 14.4 96.56 (93.34, 

98.52) 

324.9, 13.5 

ELISA 53.85(44.41, 

71.28) 

83.7, 76.1 92.42 (78.63, 

98.76) 

26.4, 2.7 
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Table 11: Median (med), 2.5(q2.5), 25(q25), 75(q75), and 97.5 (q97.5) percentiles for the 500 simulations of the time (years and 

months) and number of tests necessary to reach bTB-eradication, and to reach the officially tuberculosis-free (OTF) status for the 

status quo and the six alternative control strategies. The columns 3 to 12 show the eradication estimates for the complete herd (adults 

and calves), and for the adult animals solely. Last five columns indicate the estimates for OTF. Colors represent four different time 

categories: <3 years (green), 3 to 6 years (grey), >6 to 9 years (coral), and >9 years (red) or its respective months and number of tests 

performed in that period. 
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  Complete herd (eradication) Adults (eradication) OTF 

Test  q2.5 q25 med q75 q97.5 q2.5 q25 med q75 q97.5 q2.5 q25 med q75 q97.5 

StQuo Years 3.0 5.0 6.1 8.6 11.1 2.6 3.8 4.3 8.3 11.1 2.2 3.4 4.9 6.9 10.2 

 Months 36 60 73 103 133 31 46 52 100 133 26 41 59 83 122 

 Tests 13 21 25 35 45 11 16 18 34 45 9 14 20 28 41 

CFT Years 3.8 4.8 6.8 9.1 11.3 1.8 3.6 4.3 7.6 9.3 2.4 3.4 4.9 6.7 9.9 

 Months 46 58 82 109 136 22 43 52 91 112 29 41 59 80 119 

 Tests 16 20 28 37 46 8 15 18 31 38 10 14 20 27 40 

IGRAb Years 3.6 5.0 6.1 7.1 9.8 1.3 2.7 4.3 5.6 8.6 2.4 3.4 4.9 6.4 8.4 

 Months 43 60 73 85 118 16 32 52 67 103 29 41 59 77 101 

 Tests 15 21 25 29 40 6 11 18 23 35 10 14 20 26 34 

IGRAc Years 3.6 4.3 5.1 6.8 9.3 1.3 2.3 3.6 5.1 8.8 1.9 2.7 4.2 5.7 8.7 

 Months 43 52 61 82 112 16 28 43 61 106 23 32 50 68 104 

 Tests 15 18 21 28 38 6 10 15 21 36 8 11 17 23 35 

CFT_IGRA Years 3.3 4.3 5.1 6.6 14.3 0.9 2.7 3.3 5.8 13.1 1.9 3.4 4.2 6.4 7.4 

 Months 40 52 61 79 172 11 32 40 70 157 23 41 50 77 89 

 Tests 14 18 21 27 58 4 11 14 24 53 8 14 17 26 30 

CFT_ELISA Years 4.6 5.1 6.8 7.6 12.8 2.6 2.8 4.1 7.3 10.8 3.2 4.2 4.7 7.9 9.4 

 Months 55 61 82 91 154 31 34 49 88 130 38 50 56 95 113 

 Tests 19 21 28 31 52 11 12 17 30 44 13 17 19 31 38 

IGRA_ELISA Years 2.8 4.3 5.8 8.6 11.3 1.3 2.1 3.4 6.0 10.3 2.2 3.9 4.7 7.2 10.9 

 Months 34 52 70 103 136 16 25 41 72 124 26 47 56 86 131 

 Tests 12 18 24 35 46 6 9 14 25 42 9 16 19 29 44 
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Table 12: bTB-prevalence estimates at the end of the 6, 12, 24 months of simulating 

control strategies. 

Diagnostic test month bTB-prevalence 

  median 5th percentile 95th percentile 

Skin series 6 0.102 0.084 0.118 

(Status quo) 12 0.057 0.046 0.076 

 24 0.025 0.012 0.052 

CFT 6 0.086 0.066 0.110 

 12 0.050 0.038 0.072 

 24 0.028 0.008 0.046 

IGRAb 6 0.080 0.056 0.107 

 12 0.046 0.027 0.071 

 24 0.022 0.010 0.039 

IGRAc 6 0.082 0.058 0.100 

 12 0.048 0.034 0.064 

 24 0.022 0.010 0.038 

IGRA_CFT 6 0.064 0.046 0.079 

 12 0.038 0.023 0.052 

 24 0.018 0.011 0.036 

ELISA_CFT 6 0.088 0.070 0.098 

 12 0.048 0.029 0.062 

 24 0.026 0.014 0.048 

ELISA_IGRA 6 0.064 0.045 0.085 

 12 0.038 0.026 0.055 

 24 0.024 0.008 0.042 
 

CFT: Caudal Fold tuberculin test 

Skin_series: CFT and Comparative Cervical tuberculin test serial testing 

IGRAb: Interferon-gamma release assay using PPDb-PPDa antigens 

IGRAc: Interferon-gamma release assay using peptide cocktail antigens 
ELISA: Commercial Enzyme-immunosorbent assay 

Kruskal-Wallis significant different prevalence estimates (P-value <0.05) relative to the status quo are represented in 

bold  
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CHAPTER 6 – General discussion and conclusions 
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This research provides the foundations for a better understanding of the bTB-

epidemiology and diagnostic tools and their impact in bTB-within herd dynamics 

when applied in the control of bTB in endemic settings. In addition, results here 

approach the existing gap in the elucidation of the optimum control strategies to be 

implemented for bTB-eradication. 

With the assessment of the diagnostic interaction between JD and bTB in the 

second and third chapter of this dissertation, we demonstrated that positive JD and 

bTB animals tend to coexist in the herd. Because the limited number of bTB-infected 

herds in Uruguay could represent a limitation for the robustness of the herd level 

analyses, we conducted the study in Castilla y Leon (CyL), Spain. CyL is a bTB-

endemic region, that suited the characteristics needed for this study (bTB-prevalence 

levels >1%, test-and-slaughter bTB-control program, and the presence of JD in the 

cattle herds), making it an optimum setting to address this goal. Moreover, variations 

in the extent of bTB and JD interaction patterns depended on both diseases prevalence 

levels. Among bTB-high prevalence and JD- coinfected herds (Spain), the JD-

antibody response is more likely to occur when frequent inoculations of tuberculin are 

used, while in JD- bTB- high prevalence coinfected herds (Uruguay) the cell-

mediated immune response tend to occur in higher proportions in animals with 

specific JD-antibodies. Results here may indicate that animals infected with one of the 

diseases would develop a cross-reactive immune response to the other disease, 

increasing the sensitivity of the other test or reducing its specificity. Alternatively, a 

similar effect can be inferred from those animals that are frequently inoculated with 

the intradermal tuberculin test, but not bTB-positives. While not concluding in 
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elucidating the interaction between true disease statuses of the animals, these findings 

highlighted the need to adjust the performance estimates for bTB-diagnosis in bTB- 

and JD- coinfected herds. 

Consequently, in chapter four, we assessed the performance of bTB-in-vitro tools, 

with potential use in the high bTB-JD-prevalence endemic populations in Uruguay. 

With this study, we confirmed the improvement in the sensitivity of diagnostic that 

can be achieved with the use of IGRA, and the potential applicability of ELISA as an 

ancillary tool to increase the specificity, expanding the understanding of bTB-in-vitro 

tools performance in heavily bTB- and JD-coinfected herds and Uruguay.  

Finally, in chapter five we integrate the knowledge acquired in the previous chapters 

with simulation models to understand the effect in bTB-within-herd dynamics, and 

epidemiological and performance effectiveness of six alternative control scenarios 

that simultaneously minimized the slaughter of uninfected animals. With the 

evaluation of alternatives that improved the sensitivity of detection (single testing or 

combinations in parallel), we demonstrated that variations in within-herd dynamics 

were not substantial to improve bTB- control, -time-to-eradication or minimize the 

unnecessary slaughter. 

As a whole, this research contributes to approaching the gap in knowledge of the 

potential effect of the use of in-vitro and intradermal testing strategies as part of a 

differential control program in high-prevalence bTB- and JD- coinfected herds, 

enhancing the understanding that will be the foundation of the optimal bTB-control 

strategy in endemic settings, when depopulation is not suitable. The incorporation of 

field estimates for chronically and heavily bTB-infected herds, and demographic 
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vicissitudes represents a novelty in the assessment of bTB-control strategies for high 

prevalence bTB-endemic areas, and it is the first attempt to address JD- and bTB- co-

infection for bTB-control. In addition, it exposes the need to explore the 

epidemiological advantages and disadvantages of the implementation of bTB and JD 

integrated control and eradication programs in highly coinfected populations. 

While addressing the primary goal of this research, we disregard the true bTB- and 

JD- animal status of the animals when assessing diagnostic interference and accuracy, 

which limits the understanding on the extent of the impact of one disease on the other. 

However, the scientific consensus on the lack of a sensitive gold standard method 

supports the selection of Bayesian statistics and modeling analytical tools to embrace 

this uncertainty and generate valid results.  

As scientific based research, as the more we learn, the more hypothesis and questions 

we generate. While we accomplished the goal of this dissertation, more questions 

have raised that could be addressed in the future such as: 

 What would be the most cost-benefit strategy for bTB-eradication in 

coinfected endemic settings? 

 What are the individual, or pathogen (e.g., strains) factors increasing the 

susceptibility (or resistance) for bTB and JD coinfection here? 

 What is the effect of other coinfections (e.g., viruses, parasites) in the accuracy 

of bTB-diagnostics tools and effectiveness of bTB-control? 

 Are these findings valid to other demographic and management patterns?  
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 In these heavily bTB-infected settings, there is a higher risk for disease 

transmission due to alternative routes, often disregarded, that will affect the 

force of infection estimate assumed?  

 What is the potential zoonotic impact of aiming bTB eradication in high-

prevalence herds with the use of test-and-slaughter strategies instead of 

depopulation? 

The epidemiology and diagnosis of bTB are very complex, intriguing and ambiguous. 

Although, significant advances have been made in understanding and addressing the 

limitations of bTB-diagnosis and eradication constraints, the continuous evolution of 

the animal production systems, the economy, and the socio-cultural trends, demands a 

continuous assessment and readjustment of bTB-control strategies. As an animal-

health scientific community, we have the responsibility to reach a bTB-

epidemiological understanding to reduce its burden in animals, people and the 

environment. The WHO “end-TB strategy” creates the unique opportunity to reunite 

forces and reach bTB-eradication soon. This dissertation intends to be a grain of sand 

in work to achieve that goal, which hopefully, will encourage others in the passion of 

fighting against this ancient challenge. 
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Appendix A: Supplementary material for modeling the accuracy of three 

in-vitro bovine tuberculosis tests using a Bayesian approach. 
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Supplementary table S1. References for the elaboration of prior distributions for sensitivity (Se) and specificity (Sp) for intradermal (CFT, CFT-

CCT) and in-vitro (IGRAb, IGRAc, ELISA) diagnostic tests evaluated. 

Test Antigen Cutoff Se 95CI  Sp 95CI  Characteristics Reference (et al.) Year Origin 

CFT  Any 76 56 89 100 92 100 Meta-analisis Nuñez-Garcia 2018 UK & Ireland 
  palpable 85.7   92.6   Meta-analysis Farnham 2011 USA 
  increase 83.33 51.59 97.91    Study Norby 2004 USA 
   80.4      Study Whipple 1995 USA 
   82   96   Review USDA-APHIS 1992 USA 
   65.6 56.6 73.9    Study Wood 1991 Australia 
   81.8   96.3   Study Francis 1978 Australia 

CFT-CCT  >4mm 50 26 78 100 99 100 Meta-analisis Nuñez-Garcia 2018 UK & Ireland 
   53 46 62    Study VanderWaal 2017 Uruguay 
   55.1-93.5   88.8-100   Review Vordemeier 2006 Global 
   75 42.81 94.51    Study Norby 2004 USA 

IGRA PPDb- 0.1 60.7 48 72    Study Casal 2014 Spain 
 PPDa  83.5 73.6 91.6 90.4 89.1 92.7 Study Alvarez 2012 Spain 
 (IGRAb)  87.6 73 100 96.6 85 99.6 Review de la Rua Domenech 2006 Global 
   88   95   Study Gormley 2006 Ireland 
   66   84   Study Aagaard 2006 Global 
   85 72 90 93 89 96 Study Ryan 2000 New Zealand 

IGRA Peptide
- 

0.1 78 60 90 99 99 100 Meta-analisis Nuñez-Garcia 2018 UK & Ireland 

 Cocktail  80   100   Study Flores-Villalba 2012 Mexico 
 (IGRAc)  85 73 94 97 94 100 Study Aagaard 2006 Global 

ELISA MPB83- >0.3 61.1 33.1 84.6 85.4 81.7 88.8 Study Al-Mouqatea 2018 Kuwait 
 MPB70  57.1 44 69 100   Study Casal 2012 Spain 
   18.1   96.4   Study Wood 1992 Australia 
   61.9 30 96.7 98.2 93.8 100 Review Waters 2012 UK,Ireland,NZ,USA 



 

140 

 

Supplementary table S2. Results from the sensitivity analyses using uniform distributed priors for sensitivity (Se), specificity (Sp), and 

Prevalence (prev) for each bTB-diagnostic test evaluated. Reference values indicate posterior median results and posterior probability 

intervals (LowPPI, high PPI) for the model including informative priors. 

 

STUDY   Expert opinion prevalence priors (Models LCA-a) 

    IGRAb & CAUDAL FOLD TEST 

1 

  Test Parameter Prior Median LowPPI high PPI 
Diff in 
median Percentage Reference LowPPI High_PPI 

  IGRAb Se Table 2 0.75 0.59 0.92 0.00 -0.05 0.75 0.59 0.92 

    Sp Table 2 0.90 0.77 0.97 0.00 -0.17 0.90 0.78 0.97 

  CFT Se dunif(0,1) 0.71 0.52 0.92 -0.02 2.79 0.73 0.57 0.89 

    SP Table 2 0.76 0.57 0.95 -0.01 1.42 0.77 0.59 0.95 

    prev Table 2 0.51 0.34 0.69 0.00 -0.35 0.51 0.34 0.68 

    DIC   19.70     0.30 -1.55 19.40     

  IGRAb Se Table 2 0.78 0.60 0.93 0.03 -4.09    

    Sp Table 2 0.90 0.79 0.97 0.00 -0.22    

  CFT Se Table 2 0.71 0.54 0.88 -0.02 2.84    
    SP dunif(0,1) 0.70 0.51 0.95 -0.07 8.85    

    prev Table 2 0.49 0.33 0.67 -0.02 3.87    

    DIC   19.70            

  IGRAb Se dunif(0,1) 0.72 0.53 0.94 -0.04 5.05    

    Sp Table 2 0.89 0.75 0.97 -0.01 0.83    

  CFT Se Table 2 0.74 0.56 0.91 0.00 -0.28    
    SP Table 2 0.78 0.58 0.96 0.01 -1.72    

    prev Table 2 0.52 0.33 0.71 0.01 -2.04    

    DIC   19.80            

  IGRAb Se Table 2 0.69 0.50 0.90 -0.06 8.39    

    Sp dunif(0,1) 0.74 0.55 0.93 -0.16 17.88    
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  CFT Se Table 2 0.79 0.58 0.94 0.06 -7.63    
    SP Table 2 0.76 0.55 0.96 -0.01 1.33    

    prev Table 2 0.45 0.21 0.65 -0.06 12.29    

    DIC   19.70            

  IGRAb Se Table 2 0.72 0.56 0.90 -0.03 4.24    

    Sp Table 2 0.91 0.78 0.98 0.01 -1.13    

  CFT Se Table 2 0.72 0.56 0.88 -0.01 1.52    
    SP Table 2 0.80 0.60 0.97 0.03 -3.81    

    prev dunif(0,1) 0.56 0.37 0.76 0.05 -10.17    

    DIC   19.50            

  



 

142 

 

Expert opinion prevalence priors (Models LCA-a) 
IGRAb & COMPARATIVE CERVICAL TEST 

Test Parameter Prior Median LowPPI 
high 
PPI 

Diff in 
median Percentage Reference LowPPI High_PPI 

IGRAb Se Table 2 0.78 0.62 0.90 0.00 -0.38 0.78 0.63 0.90 

  Sp Table 2 0.90 0.74 0.98 -0.02 -1.71 0.91 0.79 0.98 

CCT Se dunif(0,1) 0.56 0.38 0.83 0.02 4.51 0.53 0.46 0.61 

  SP Table 2 0.96 0.93 0.98 0.00 0.02 0.96 0.93 0.98 

  prev Table 2 0.49 0.31 0.65 -0.02 -3.33 0.50 0.37 0.63 

  DIC   19.10         18.10     

IGRAb Se Table 2 0.81 0.65 0.93 0.03 3.83    
  Sp Table 2 0.91 0.79 0.98 0.00 -0.42    
CCT Se Table 2 0.53 0.45 0.60 -0.01 -1.20    
  SP dunif(0,1) 0.90 0.77 0.99 -0.06 -6.31    
  prev Table 2 0.48 0.34 0.62 -0.03 -5.39    
  DIC   18.60            
IGRAb Se dunif(0,1) 0.76 0.56 0.91 -0.02 -2.78    
  Sp Table 2 0.91 0.76 0.98 -0.01 -0.65    
CCT Se Table 2 0.53 0.45 0.61 0.00 -0.53    
  SP Table 2 0.96 0.93 0.98 0.00 0.02    
  prev Table 2 0.51 0.37 0.66 0.00 0.80    
  DIC   18.80            
IGRAb Se Table 2 0.74 0.57 0.87 -0.04 -4.61    
  Sp dunif(0,1) 0.83 0.63 0.97 -0.09 -9.35    
CCT Se Table 2 0.54 0.46 0.62 0.01 0.98    
  SP Table 2 0.96 0.93 0.98 0.00 -0.01    
  prev Table 2 0.48 0.34 0.63 -0.02 -4.20    
  DIC   18.90            
IGRAb Se Table 2 0.77 0.61 0.89 -0.01 -1.54    
  Sp Table 2 0.92 0.79 0.98 0.01 0.56    
CCT Se Table 2 0.53 0.45 0.60 -0.01 -1.11    
  SP Table 2 0.96 0.93 0.98 0.00 0.06    
  prev dunif(0,1) 0.53 0.39 0.69 0.02 4.64    
  DIC   18.30            
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     Expert opinion prevalence priors (Models LCA-a) 
    IGRAc & CAUDAL FOLD TEST 

1 

  Test Parameter Prior Median LowPPI 
high 
PPI 

Diff in 
median Percentage Reference LowPPI High_PPI 

  IGRAc Se Table 2 0.76 0.63 0.88 0.00 -0.55 0.76 0.62 0.88 

    Sp Table 2 0.97 0.94 0.98 0.00 -0.03 0.96 0.94 0.98 

  CFT Se dunif(0,1) 0.71 0.55 0.84 -0.02 2.63 0.72 0.58 0.84 

    SP Table 2 0.75 0.59 0.93 -0.01 1.42 0.76 0.60 0.94 

    prev Table 2 0.51 0.38 0.65 0.00 0.46 0.51 0.38 0.65 

    DIC   19.50         19.40     

  IGRAc Se Table 2 0.78 0.64 0.89 0.02 -2.43       

    Sp Table 2 0.97 0.94 0.98 0.00 -0.01       

  CFT Se Table 2 0.71 0.57 0.83 -0.01 1.79       

    SP dunif(0,1) 0.71 0.54 0.93 -0.05 6.73       

    prev Table 2 0.50 0.37 0.64 -0.02 3.11       

    DIC   19.60               

  IGRAc Se dunif(0,1) 0.79 0.52 0.93 0.03 -3.86       

    Sp Table 2 0.97 0.94 0.98 0.01 -0.73       

  CFT Se Table 2 0.77 0.56 0.84 0.04 -6.01       

    SP Table 2 0.86 0.59 0.97 0.10 13.24       

    prev Table 2 0.60 0.38 0.71 0.08 16.34       

    DIC   19.90               

  IGRAc Se Table 2 0.73 0.57 0.87 -0.03 3.91       

    Sp dunif(0,1) 0.79 0.62 0.95 -0.17 17.97       

  CFT Se Table 2 0.79 0.59 0.95 0.07 -9.69       

    SP Table 2 0.75 0.55 0.95 -0.02 2.25       

    prev Table 2 0.42 0.20 0.61 -0.09 17.23       

    DIC   19.60               

  IGRAc Se Table 2 0.74 0.61 0.87 -0.02 2.30       

    Sp Table 2 0.97 0.94 0.98 0.00 -0.05       

  CFT Se Table 2 0.72 0.58 0.84 0.00 0.28       

    SP Table 2 0.78 0.61 0.96 0.02 -2.77       

    prev dunif(0,1) 0.55 0.40 0.70 0.03 -6.52       

    DIC   19.40               
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Expert opinion prevalence priors (Models LCA-a) 

IGRAc & COMPARATIVE CERVICAL TEST 

Test Parameter Prior Median LowPPI high PPI Diff in median Percentage Reference LowPPI High_PPI 

IGRAc Se Table 2 0.76 0.64 0.86 0.00 -0.26 0.76 0.65 0.86 

  Sp Table 2 0.97 0.93 0.99 0.00 -0.03 0.97 0.93 0.99 

CCT Se dunif(0,1) 0.52 0.38 0.67 0.00 -0.76 0.53 0.46 0.60 

  SP Table 2 0.96 0.93 0.98 0.00 0.02 0.96 0.93 0.98 

  prev Table 2 0.51 0.40 0.64 0.00 0.10 0.51 0.40 0.63 

  DIC   19.10         17.70     

IGRAc Se Table 2 0.79 0.67 0.89 0.03 3.50       

  Sp Table 2 0.97 0.94 0.98 0.00 -0.01       

CCT Se Table 2 0.52 0.45 0.59 -0.01 -1.55       

  SP dunif(0,1) 0.90 0.76 0.99 -0.07 -6.84       

  prev Table 2 0.49 0.37 0.61 -0.03 -5.29       

  DIC   18.30               

IGRAc Se dunif(0,1) 0.74 0.57 0.88 -0.02 -2.51       

  Sp Table 2 0.97 0.93 0.99 0.00 0.01       

CCT Se Table 2 0.53 0.45 0.60 0.00 -0.15       

  SP Table 2 0.96 0.93 0.98 0.00 0.11       

  prev Table 2 0.52 0.40 0.66 0.00 0.78       

  DIC   18,8               

IGRAc Se Table 2 0.74 0.62 0.84 -0.02 -3.12       

  Sp dunif(0,1) 0.87 0.70 0.98 -0.10 -10.35       

CCT Se Table 2 0.54 0.46 0.62 0.01 2.10       

  SP Table 2 0.96 0.93 0.98 0.00 0.01       

  prev Table 2 0.48 0.34 0.61 -0.04 -7.17       

  DIC   18.70               

IGRAc Se Table 2 0.76 0.64 0.85 -0.01 -0.80       

  Sp Table 2 0.97 0.93 0.99 0.00 0.04       

CCT Se Table 2 0.53 0.45 0.60 0.00 -0.55       

  SP Table 2 0.96 0.93 0.98 0.00 0.07       

  prev dunif(0,1) 0.53 0.41 0.67 0.02 3.66       

  DIC   17.90               
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Expert opinion prevalence priors (Models LCA-a) 

ELISA 01 & CAUDAL FOLD TEST 

Test Parameter Prior Median LowPPI high PPI Diff in median Percentage Reference LowPPI High_PPI 

ELISA Se Table 2 0.58 0.50 0.73 0.01 -0.88 0.58 0.49 0.73 

  Sp Table 2 0.93 0.86 0.98 0.00 0.31 0.94 0.86 0.98 

CFT Se dunif(0,1) 0.98 0.92 1.00 0.03 -2.67 0.95 0.89 0.99 

  SP Table 2 0.67 0.37 0.95 0.03 -4.85 0.64 0.34 0.94 

  prev Table 2 0.76 0.57 0.86 -0.01 1.29 0.77 0.57 0.88 

  DIC   19.10         19.40     

ELISA Se Table 2 0.67 0.54 0.82 0.10 16.45       

  Sp Table 2 0.92 0.78 0.98 -0.02 2.10       

CFT Se Table 2 0.92 0.79 0.98 -0.03 3.27       

  SP dunif(0,1) 0.31 0.09 0.62 -0.33 51.07       

  prev Table 2 0.62 0.45 0.80 -0.15 19.18       

  DIC   20.00               

ELISA Se dunif(0,1) 0.58 0.48 0.87 0.01 -0.90       

  Sp Table 2 0.93 0.85 0.98 -0.01 0.53       

CFT Se Table 2 0.95 0.87 0.99 -0.01 0.75       

  SP Table 2 0.59 0.27 0.93 -0.05 7.59       

  prev Table 2 0.76 0.47 0.89 -0.01 1.59       

  DIC   18.00               

ELISA Se Table 2 0.53 0.40 0.68 -0.05 7.85       

  Sp dunif(0,1) 0.80 0.46 0.97 -0.14 15.03       

CFT Se Table 2 0.95 0.88 0.99 0.00 0.26       

  SP Table 2 0.61 0.25 0.94 -0.03 4.73       

  prev Table 2 0.76 0.42 0.87 -0.01 1.29       

  DIC   18.80               

ELISA Se Table 2 0.53 0.45 0.63 -0.05 8.23       

  Sp Table 2 0.94 0.85 0.98 0.00 -0.37       

CFT Se Table 2 0.93 0.83 0.98 -0.03 2.75       

  SP Table 2 0.81 0.48 0.97 0.18 -27.45       
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  prev dunif(0,1) 0.87 0.73 0.99 0.10 -12.56       

  DIC   19.60               

 

Expert opinion prevalence priors (Models LCA-a) 

ELISA 01 & COMPARATIVE CERVICAL TEST 

Test Parameter Prior Median LowPPI high PPI Diff in median Percentage Reference LowPPI High_PPI 

ELISA Se Table 2 0.58 0.50 0.66 0.06 11.74 0.52 0.45 0.60 

  Sp Table 2 0.86 0.71 0.97 -0.06 -6.56 0.92 0.79 0.98 

CCT Se dunif(0,1) 0.77 0.64 0.98 0.17 28.22 0.60 0.54 0.67 

  SP Table 2 0.96 0.93 0.98 0.00 0.15 0.96 0.93 0.98 

  prev Table 2 0.69 0.53 0.83 -0.11 -13.51 0.80 0.73 0.92 

  DIC   22.50         24.40     

ELISA Se Table 2 0.60 0.49 0.73 0.08 14.52       

  Sp Table 2 0.91 0.79 0.97 -0.02 -1.86       

CCT Se Table 2 0.56 0.48 0.63 -0.05 -8.13       

  SP dunif(0,1) 0.48 0.18 0.74 -0.48 -49.60       

  prev Table 2 0.69 0.52 0.85 -0.11 -13.28       

  DIC   23.00               

ELISA Se dunif(0,1) 0.53 0.45 0.62 0.00 0.54       

  Sp Table 2 0.92 0.79 0.99 0.00 0.08       

CCT Se Table 2 0.61 0.55 0.67 0.00 0.22       

  SP Table 2 0.96 0.93 0.98 0.00 0.01       

  prev Table 2 0.83 0.72 0.92 0.03 3.99       

  DIC   24.90               

ELISA Se Table 2 0.48 0.39 0.58 -0.04 -7.65       

  Sp dunif(0,1) 0.71 0.18 0.97 -0.22 -23.41       

CCT Se Table 2 0.60 0.54 0.67 0.00 -0.44       

  SP Table 2 0.96 0.93 0.98 0.00 0.02       

  prev Table 2 0.84 0.73 0.92 0.04 4.95       

  DIC   24.40               

ELISA Se Table 2 0.48 0.42 0.56 -0.04 -7.52       
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  Sp Table 2 0.93 0.79 0.98 0.00 0.15       

CCT Se Table 2 0.57 0.51 0.63 -0.04 -5.97       

  SP Table 2 0.96 0.93 0.98 0.00 0.18       

  prev dunif(0,1) 0.94 0.82 1.00 0.15 18.30       

  DIC   22.40               

 

CFT-estimated prevalence prior distribution (Models LCA-b) 
IGRAb 

Test Parameter Prior Median LowPPI high PPI Diff in median Percentage Reference LowPPI High_PPI 

IGRAb Se dunif(0,1) 0.52 0.40 0.79 0.52 9.76 0.58 0.43 0.86 

  Sp Table 2 0.92 0.77 0.99 0.92 0.36 0.93 0.78 0.99 

  prev Estimated 0.83 0.53 0.98 0.83 -8.92 0.77 0.48 0.97 

  DIC   7.20         7.30     

IGRAb Se Table 2 0.55 0.36 0.93 -0.03 -5.38       

  Sp dunif(0,1) 0.60 0.10 0.98 -0.33 -35.10       

  prev Estimated 0.73 0.00 0.97 -0.04 -4.78       

  DIC   7.50               

IGRAb Se Table 2 0.75 0.47 0.96 0.17 28.49       

  Sp Table 2 0.92 0.75 0.99 -0.01 -1.00       

  prev dunif(0,1) 0.54 0.31 0.92 -0.22 -29.05       

  DIC   7.10               

IGRAc  

IGRAc Se dunif(0,1) 0.49 0.37 0.77 -0.17 25.08 0.66 0.47 0.87 
  Sp Table 2 0.97 0.93 0.99 0.00 0.07 0.97 0.94 0.99 
  prev Estimated 0.83 0.53 0.98 0.18 -27.70 0.65 0.46 0.92 
  DIC   7.20         7.80     

IGRAc Se Table 2 0.73 0.45 0.91 0.07 10.74       

  Sp dunif(0,1) 0.61 0.49 0.99 -0.36 -36.85       

  prev Estimated 0.00 0.00 0.91 -0.65 -100.00       

  DIC   7.80               

IGRAc Se Table 2 0.77 0.55 0.91 0.11 16.19       

  Sp Table 2 0.97 0.93 0.99 0.00 -0.09       
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  prev dunif(0,1) 0.52 0.37 0.78 -0.13 -20.05       

  DIC   7.20               

ELISA 
Test Parameter Prior Median LowPPI high PPI Diff in median Percentage Reference LowPPI High_PPI 

ELISA Se dunif(0,1) 0.54 0.44 0.79 0.00 0.26 0.54 0.44 0.71 

  Sp Table 2 0.93 0.78 0.99 0.00 0.11 0.92 0.79 0.99 

  prev Estimated 0.84 0.54 0.98 0.00 -0.24 0.84 0.60 0.98 

  DIC   8.00         8.40     

ELISA Se Table 2 0.48 0.34 0.70 -0.06 -10.33       

  Sp dunif(0,1) 0.57 0.05 0.98 -0.35 -38.20       

  prev Estimated 0.83 0.00 0.98 -0.01 -0.88       

  DIC   8.00               

ELISA Se Table 2 0.59 0.45 0.81 0.05 8.77       

  Sp Table 2 0.92 0.76 0.99 0.00 -0.49       

  prev dunif(0,1) 0.75 0.47 0.98 -0.09 -10.43       

  DIC   8.00               
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Appendix B: Supplementary material for modeling bTB within-herd 

dynamics with the use of different diagnostic strategies in high prevalence 

herds when depopulation is not feasible. 

Figure 5.8.S1. 

Each line represents the median proportion of animals in each infected compartment 

(Occult, Reactive.a, Reactive.b, and Infectious) after 500 iterations. True 10% (Disease) 

and apparent 10% (Reactive.a + Reactive.b + Infectious) prevalence of bTB per year 

when simulating bTB-transmission without any control strategy applied are indicated by 

the intercept with the horizontal line. 
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Figure 5.8.S2. The median and 95th percentile of bTB-prevalence on the first six months 

of simulations for each independent strategy scenario, and the comparison of the median 

bTB-prevalence estimate for all scenarios (b). Median bTB-prevalence at the end of the 

year (red line) is represented for all the simulated strategies respectively.  

 

 

Skin_series: CFT and Comparative Cervical tuberculin test with in the series application 

CFT: Caudal Fold tuberculin test 

IGRAb: Interferon-gamma release assay using PPDb-PPDa antigens 

IGRAc: Interferon-gamma release assay using peptide cocktail antigens 

ELISA: Commercial Enzyme-immunosorbent assay 
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Figure 5.8. S3. The median and 95th percentile of bTB-prevalence per month on year one 

of simulations for each independent strategy scenario, and the comparison of the median 

bTB-prevalence estimate for all scenarios (b). Median bTB-prevalence at the end of the 

year (red line) is represented for all the simulated strategies respectively.  

 

Skin_series: CFT and Comparative Cervical tuberculin test with in series application 

CFT: Caudal Fold tuberculin test 

IGRAb: Interferon-gamma release assay using PPDb-PPDa antigens 

IGRAc: Interferon-gamma release assay using peptide cocktail antigens 

ELISA: Commercial Enzyme-immunosorbent assay 
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Figure 5.8. S4. The median and 95th percentile of bTB-prevalence per month on year two 

of simulations for each independent strategy scenario, and the comparison of the median 

bTB-prevalence estimate for all scenarios (b). A reference 2.5% bTB-prevalence (red 

line) is shown for the status quo (Skin_series), caudal fold test (CFT), interferon-gamma 

release assay with PPD bovis and PPD avium antigen (IGRAb), interferon-gamma 

release assay with peptide cocktail antigen (IGRAc), and parallel combinations for 

IGRAc and CFT (IGRA_CFT), ELISA and CFT (ELISA_CFT), and ELISA and IGRAc 

(ELISA_IGRA) respectively. 
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Figure 5.8. S5. Distribution (median, 95th percentile) of the 500 simulations of the predictive positive value of the for the status quo 

(0.Skin_series) and the six alternative control scenario in the first 6 (left), 12 (center) and 24 months (right) of testing implementation. 

 


