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Abstract

In the era of big data, uncovering useful information and hidden patterns in the

data is prevalent in di↵erent fields. However, it is challenging to e↵ectively select

input variables in data and estimate their e↵ects. In this thesis, our goal is to de-

velop reproducible statistical approaches that provide mechanistic explanations of the

phenomenon observed in big data analysis. The thesis contains two parts: variable

selection and model estimation. The first part investigates how to measure and inter-

pret the usefulness of an input variable using an approach called “variable importance

learning” and builds tools (methodology and software) that can be widely applied.

We propose two variable importance measures, a parametric measure SOIL and a non-

parametric measure CVIL, using the idea of model combining and cross validation

respectively. The SOIL method is theoretically shown to have the inclusion/exclusion

property: When the model weights are properly around the true model, the SOIL

importance can well separate the variables in the true model from the rest. The CVIL

method possesses desirable theoretical properties and enhance the interpretability of

many mysterious but e↵ective machine learning methods. The second part focuses on

how to estimate the e↵ect of a useful input variable in the case where interaction of

two input variables exists. We investigate the minimax rate of convergence for regres-

sion estimation in high-dimensional sparse linear models with two-way interactions,

and construct an adaptive estimator that achieves the minimax rate of convergence

regardless of the true heredity condition and the sparsity indices.
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Chapter 1

Introduction

With the rapid development of technology, massive amounts of information/data are

produced every day in this era of big data. In various fields such as engineering, com-

puter science and finance, many statistical and machine learning methods are applied

to uncover useful information and patterns behind these enormous datasets. How-

ever, the theoretical mechanisms of many predictive machine learning methods are

not fully understood or even not understood at all. Developing reproducible statis-

tical approaches that provide mechanistic explanations of the phenomenon observed

in big data analysis is challenging and important.

In high-dimensional data analysis, a common problem is to select the relevant

or important variables among an an enormous number of variables, followed by the

problem of estimating the e↵ects of these selected variables. Such problems are chal-

lenging and meanwhile of great importance in real life applications as following. For

example, one lung cancer study (Subramanian et al., 2005) investigates the genetic

mutations on critical genes that are related to lung cancer. A record is kept of the

health status, which is classified as “good” or “poor”, of 62 patients along with mea-

surements of the activity of 5217 genes for each patient. To find out which genes

are most related to lung cancer, the researchers may determine the variable impor-

tance of each gene and then investigate those genes with high variable importance.

Discovering biologically relevant genes is essential in both early detection and treat-

ment of such deadly diseases. For some data, it is crucial to consider the interaction

1



Chapter 1. Introduction 2

between two input variables. For example, strong interactions of two antigenic sites

are observed during virus evolution (Han et al., 2016). This gene-gene interaction

is a common component in disease analysis. When interaction exists, structures are

usually required to describe the relationship, such as strong heredity. Strong heredity

means that if the interaction of two input variables is included in a model, then both

variables must individually be included in the model. Returning to the virus example,

since the interaction of two antigenic sites is strongly related to virus evolution, each

antigenic site should be considered relevant.

The thesis consists of two parts. In the first part, we investigate how to measure

and interpret the usefulness of an input variable using an approach called “variable

importance learning” and builds tools (methodology and software) that can be widely

applied. We propose two variable importance measures, a parametric measure SOIL

in Chapter 2 and a nonparametric measure CVIL in Chapter 3, corresponding to

and respectively.

In Chapter 2, we propose a new variable importance measure, sparsity oriented

importance learning (SOIL), for high-dimensional regression from a sparse linear mod-

eling perspective by taking into account the variable selection uncertainty via the use

of a sensible model weighting. The SOIL method is theoretically shown to have the

inclusion/exclusion property: When the model weights are properly around the true

model, the SOIL importance can well separate the variables in the true model from

the rest. In particular, even if the signal is weak, SOIL rarely gives variables not in the

true model significantly higher important values than those in the true model. Ex-

tensive simulations in several illustrative settings and real-data examples with guided

simulations show desirable properties of the SOIL importance in contrast to other

importance measures. Supplementary materials for this article are available online.

The proofs of the results are in Appendix A. This paper corresponds to Ye et al.

(2018).

In Chapter 3, we propose Cross Validation Importance Learning (CVIL), which

can be applied to any parametric or nonparametric methods to help demystify how
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these methods employ the input variables to make predictions. Given any specific

method, by deleting a variable in the data set or replacing the variable with a constant,

CVIL measures the relative di↵erence of the predictive performance of the model from

a cross-validation perspective. Under some mild conditions, CVIL is consistent in the

sense that it converges to the theoretical variable importance as the sample size grows.

Confidence intervals are constructed to show the reliability of the proposed CVIL

importance measure. By simulations and real data examples, we show that CVIL

provides a rank of variable importance attached to any seemingly uninterpretable

predictive algorithm such as deep neural network.

The second part of the thesis focuses on how to estimate the e↵ect of a useful

input variable in the case where interaction of two input variables exists.

Chapter 4 corresponds to Ye and Yang (2019). In this chapter, we first investi-

gate the minimax rate of convergence for regression estimation in high-dimensional

sparse linear models with two-way interactions. We derive matching upper and lower

bounds under three types of heredity conditions: strong heredity, weak heredity and

no heredity. From the results: (i) A stronger heredity condition may or may not

drastically improve the minimax rate of convergence. In fact, in some situations, the

minimax rates of convergence are the same under all three heredity conditions; (ii)

The minimax rate of convergence is determined by the maximum of the total price

of estimating the main e↵ects and that of estimating the interaction e↵ects, which

goes beyond purely comparing the order of the number of non-zero main e↵ects r1

and non-zero interaction e↵ects r2; (iii) Under any of the three heredity conditions,

the estimation of the interaction terms may be the dominant part in determining the

rate of convergence for two di↵erent reasons: 1) there exist more interaction terms

than main e↵ect terms or 2) a large ambient dimension makes it more challenging to

estimate even a small number of interaction terms. Second, we construct an adap-

tive estimator that achieves the minimax rate of convergence regardless of the true

heredity condition and the sparsity indices r1,r2.



Chapter 2

Sparsity Oriented Importance
Learning for High-dimensional
Linear Regression

2.1 Introduction

Variable importance has been an interesting research topic that helps to identify

which variables are most important for understanding, interpretation, estimation or

prediction purposes. The potential usages of variable importance measures include:

1. They help reduce the list of variables to be considered by screening out those

with importance values below a threshold. This leads to cost and time saving in

data analysis; 2. They also help decision makers to obtain a more comprehensive

understanding of the underlying data generation process than trusting any single

model by a variable selection procedure; 3. They o↵er a ranking of variables that can

be used to consider model selection or model averaging in a nested fashion, which

simplifies the consideration of all subset models; 4. They can help decision makers to

change or replace variables based on practical considerations. See Feldman (2005);

Louppe et al. (2013); Braun and Oswald (2011); Grömping (2015); Hapfelmeier et al.

(2014); Archer and Kimes (2008); Strobl et al. (2007) for reference.

Under the linear regression setting, various methods have been proposed for eval-

uating variable importance. The first type includes simple measures based on a final

4



2.1. Introduction 5

selected model, e.g., t-test values, (standardized) regression coe�cients, and p-values

of the variables. This approach has the severe drawback associated with any “win-

ner takes all” variable selection method. The variable selection uncertainty is totally

ignored and all the non-selected variables have zero importance.

Another approach is based on the R2 decomposition. Lindeman et al. (1980) used

the improved explained variance averaged over all possible orderings of predictors

to provide a ranking of the predictors. Feldman et al. (1999) extended it to the

weighted version (PMVD). Several encouraging methods, such as dominance analysis

(Budescu, 1993), hierarchical partitioning (Chevan and Sutherland, 1991), informa-

tion criterion based method (Theil and Chung, 1988) and the product of standardized

true coe�cients and partial correlation (Ho↵man, 1960), have also been proposed.

Besides importance measuring with parametric models, nonparametric approaches

are also available. For regression and classification, random forest (Breiman, 2001)

and its variants have attracted a lot of attention in many fields. Breiman (2001)

proposed two versions of variable importances for random forest. Ishwaran (2007)

studied the theoretical properties of variable importance for binary regression with

random forest. There, the variable importance is defined as the di↵erence between the

prediction error before and after the variable is noised up. Under proper assumptions,

the variable importance is shown to converge and suitably upper-bounded. Strobl

et al. (2008a) proposed conditional variable importance for random forest to correct

the bias of variable importance when there exist correlated variables. Ferrari and Yang

(2015) assess variable importance from a variable selection confidence set (VSCS)

perspective.

In this Chapter, we propose a sparsity oriented importance learning (SOIL) for

high-dimensional regression data. For our approach, by assigning weights to the

candidate linear models (or generalized linear models for classification), we come up

with measures of importance of the predictors in an absolute scale in [0, 1].

Several features/advantages of our method can be concluded as follows. First, it

involves multiple high-dimensional variable selection methods and combines all their
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solution path models, which produces many candidate models rather than being based

on only one model selection method. The resulting importance values are thus more

reliable than trusting one method alone. Second, SOIL uses external weighting, which

is independent of the model selection methods. This can avoid possible bias brought

up by using a method both for coming up with candidate models and for assessing

the models for weighting. Third, from the main theorem in the Chapter, we gain

a theoretical understanding of our method. We prove that the importances of the

true variables will tend to 1 and the importances of the other variables will tend to

0 as the sample size increases, as long as the weighting is sensible. Last but not

least, compared with other importance measures, our method also shows excellent

performances in the numerical study, with desirable behaviors such as exclusion,

inclusion, order preserving, robustness, etc.

In the current era of rich high-dimensional data, with the well-recognized severe

problem of irreproducibility of scientific findings (see, (e.g. Ioannidis and Khoury,

2011; McNutt, 2014; Stodden, 2015)), we believe the use of informative importance

measures can much improve the reliability of data analysis in multiple ways:

1. First, if the data analyst has already chosen a set of covariates for finalizing a

model to be recommended, the SOIL importance measure is helpful to put the

model under a more objective light. He/she can immediately inspect if some

variables deemed important by SOIL are missing in the set or the other way

around. If so, the analyst may want to investigate on the matter. For instance,

residuals from the model based on the current set of covariates, when plotted

against the missing variables, may reveal their relevance. Models with/without

the variables in questions can be fit and compared for a better understanding

on their usefulness.

2. Based on the theoretical properties of the SOIL, variables most suitable for

sparse modeling receive higher importance values. Thus the SOIL can be nat-

urally used to find the best model for the data. In theory, any fixed cuto↵
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in (0, 1) leads to a good performance (see Theorem 2). But the best cuto↵

depends on the purpose of the final model: for prediction accuracy, the cuto↵

should be lower and for identifying variables than can be validated at similar

sample sizes in future studies, the cuto↵ should be higher. See e.g., Yang (2005)

to understand the subtle matter of the conflict between model identification and

estimation/prediction.

3. Whether one comes up with a set of covariates based on SOIL importance

(as described above) or not (e.g., using a penalized likelihood based model

selection method), the SOIL importance values of the variables help the data

analyst get a sense on model selection uncertainty. More specifically, if there are

quite a few variables having importance values similar to some in a final model

(obtained from a trustworthy process that has, at least reasonably, justified

the usefulness of the selected covariates, e.g., based on cross validation), it

may indicate that the model selection uncertainty is perhaps high for the data

and there are alternative choices of variables that can give similar predictive

performances. In such a case, it is advantageous for the data analyst and the

decision maker to be well-informed on possible alternative models/covariates

to be used. For instance, if some covariates are much less costly for future

experiments or operations, they may be preferred to be included in the final

model even if their importance values are slightly lower than some other ones

in a good model.

4. When estimating the regression function or prediction is the main goal, the

understanding on degree of model selection uncertainty, together with other

model selection diagnostic tools (see, e.g., Nan and Yang (2014) for references),

can help the data analyst decide on the choice between model selection and

model averaging (see, Yang (2003); Chen et al. (2007) for results on comparison

between model selection and model averaging).

In summary, the SOIL method is helpful in di↵erent stages of model building. It can



2.2. General Methodology 8

be used to narrow down the set of covariates for further consideration and for reaching

a final model with sound considerations. Equally or even more importantly, it provides

an objective view on reliability of the model and the model selection uncertainty. This

gives information unavailable in the traditional practice of glorifying the final model

and thus can help much improve reproducibility of data analysis that involves variable

selection.

The remainder of the Chapter is organized as follows. In Section 2.2, we introduce

the proposed SOIL methodology and provide a theoretical understanding on some key

aspects. Sections 2.3 and 2.4 present the details of choosing the candidate models and

the weighting for SOIL in practice. In Section 2.5, we conduct several simulations

that fairly and informatively compare the performance of SOIL and three existing

and commonly used variable importance measures (LMG and two versions of random

forest importances). Furthermore, we apply these methods to three real datasets in

Section 2.6.

2.2 General Methodology

In this section, we introduce the Sparsity Oriented Importance Learning (SOIL) pro-

cedure, which provides an objective and informative profile of variable importances

for high dimensional regression and classification models. We consider the regression

setting first, and the generalization to the classification model will be discussed later

in Section 2.4.

Let X = (X1, . . . , Xp) be the n ⇥ p design matrix with Xj = (x1j, . . . , xnj)|,

j = 1, . . . , p, and y = (y1, . . . , yn)| be the n-dimensional response vector. The design

matrix can also be written as X = (x1, . . . ,xn)|, where xi = (xi1, . . . , xip)|, i =

1, . . . , n. We consider the following underlying linear regression model

y = X�⇤ + ",

where " is the vector of n independent errors and �⇤ = (�⇤
1 , . . . , �

⇤
p
)| is a p-dimensional
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vector of the true underlying model that generates the data. In general, predictors

may include those created by the original predictors observed, such as
p
X1, X2

1 and

X1X3. We adopt the sparsity assumption that most regression coe�cients �⇤
j
are zero.

Denote by | · | the cardinality of a set. We assume �⇤ is r⇤-sparse, where r
⇤ = |A

⇤
|

with A
⇤
⌘ supp(�⇤) = {j : �⇤

j
6= 0}.

SOIL importance depends on two ingredients: a manageable set of models (of-

ten based on a preliminary analysis) and a reliable external weighting method on

the models. Together they can provide valuable information on importance of the

predictors.

Suppose that one can obtain a collection of models A = {Ak}
K

k=1, which can be

either a full list of all-subset models when p is small, or a group of models obtained

from high-dimensional variable selection procedures such as Lasso (Tibshirani, 1996),

Adaptive Lasso (Zou, 2006), SCAD (Fan and Li, 2001) and MCP (Zhang, 2010a)

etc., when p is large. We refer to Ak, k = 1, . . . , K as candidate models, and w =

(w1, . . . , wK)| as the corresponding weighting vector, which is estimated from the

data.

Given the set A and the weighting w, we define the SOIL importance measure for

the j-th variable, j 2 {1, . . . , p}, as the accumulated sum of weights of the candidate

models Ak that contains the j-th variable. That is

SOIL Importance : Sj ⌘ S(j;w,A)=
P

K

k=1wkI(j 2 A
k).

2.2.1 Theoretical properties

We will show consistency of the SOIL importance measure, under the condition that

the weighting vector w = (w1, . . . , wK)| satisfies the following properties referred to

as weak consistency and consistency:

Definition 1 (Weak Consistency and Consistency) The weighting vector w is
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weakly consistent if

P
K

k=1 wk|A
k
rA

⇤
|

r⇤
p

! 0, as n ! 1, (2.1)

and w is consistent if

KX

k=1

wk|A
k
rA

⇤
|

p

! 0, as n ! 1,

where r denotes the symmetric di↵erence of two sets and | · | denotes number count-

ing. ⇤

Remark 1 Intuitively, both weak consistency and consistency of weighting ensure

that the weighting of the candidate models is concentrated enough around the true

model, but to di↵erent degrees. Including the denominator r
⇤ in ((2.1)) makes the

weak consistency condition more likely to be satisfied than consistency, when the true

model size r⇤ is allowed to increase in dimension as n increases, as long as it satisfies

the sparsity assumption r
⇤
<< n. ⇤

Remark 2 For a very poor candidate set A, there may not exist any (weakly) con-

sistent weighting vector. ⇤

Definition 2 (Path-consistent) A method is called path-consistent if

P (A⇤
2 �) ! 1, as n ! 1,

where � denotes the whole solution path produced by the method. ⇤

Remark 3 The definition of path-consistency provides an option of obtaining a good

candidate set A. We can consider the solution paths of multiple path-consistent

methods, which will be further discussed in Section 3.1. ⇤
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There are several di↵erent methods in the literature for providing the weight vector

w = (w1, . . . , wK)| for the candidate models A. For example, Buckland et al. (1997)

and Leung and Barron (2006) studied a weighting method based on information cri-

terion, such as AIC (Akaike, 1973) and BIC (Schwarz et al., 1978); Hoeting et al.

(1999) proposed the weighting by Bayesian model averaging (BMA) from a Bayesian

perspective; Several attractive frequentist model averaging approaches are also de-

veloped ((e.g. Yang, 2001; Hjort and Claeskens, 2003; Buckland et al., 1997; Hansen,

2007; Liang et al., 2012; Cheng et al., 2015; Cheng and Hansen, 2015)). In particular,

Yang (2001) proposed a weighting strategy by data splitting and cross-assessment,

which is referred to as the adaptive regression by mixing (ARM). He proved that the

weighting by ARM delivers the best rate of convergence for regression estimation.

One advantage of ARM is that it can be applied to combine general regression proce-

dures (not limited to parametric models). The ARM weighting was extended to the

classification problems in Yang (2000); Yuan and Ghosh (2008); Zhang et al. (2013).

Among the aforementioned weighting methods, there are several that give con-

sistent weights w. For example, when there are a fixed number of models in the

candidate model set, BMA typically gives a consistent weighting. ARM also gives

consistent weighting when the data splitting ratio is properly chosen (Yang, 2007).

Now we prove that (a) under the assumption of weakly consistent weighting, the sum

of the SOIL importance of the true variables will tend to the size of the true model

r
⇤, while the sum of the SOIL importance of the variables excluded by the true model

converges to 0; (b) a consistent weighting ensures that the SOIL importance of any

true variable tends to one as the sample size n goes to infinity; while each variable

outside the true model will have the SOIL importance tend to 0.

Theorem 1 (a) Under the assumption that the weighting w is weakly consistent,

we have:
P

j2A⇤ Sj

r⇤
p

! 1,

P
j /2A⇤ Sj

r⇤
p

! 0, as n ! 1;
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(b) When the weighting w is consistent, we have:

min
j2A⇤

Sj

p

! 1, max
j /2A⇤

Sj

p

! 0, as n ! 1. ⇤

In some applications, one may set up a threshold value c 2 (0, 1) for the variable

importance, and only keeps all the variables whose importances are greater than

c. Denote by Ac = {j : Sj > c} the model selected according to this criterion.

The property of Ac is shown in the following theorem, which indicates that for any

threshold c, the number of the true variables missed by Ac and the number of the

over-selected variables in Ac will be relatively small as n grows large.

Theorem 2 For any threshold c 2 (0, 1), denoteAc = {j 2 A
⇤ : Sj  c, j = 1, ..., p},

A
c
= {j /2 A

⇤ : Sj > c, j = 1, ..., p}, then if w is weakly consistent, we have

|Ac|

r⇤
p

! 0,
|A

c
|

r⇤
p

! 0, as n ! 1. ⇤

As for the choice of threshold, its value depends on how one intends to balance

between the cost of overfitting and under-fitting. Actually |AcrA
⇤
| = |Ac [A

c
|. We

can also get that
|AcrA

⇤
|

r⇤
p

! 0 as n ! 1. The proofs of Theorem 1 and Theorem

2 are presented in the Appendix.

2.3 Implementation

2.3.1 Candidate models

Now we discuss how to choose candidate models for computing the SOIL importance.

One approach is to use a complete collection of all-subset models as the candidate

models, i.e.

A = {?, {j1}, . . . , {jp}, {j1, j2}, {j1,j3}, . . . , {j1, . . . , jp}},
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where j1, . . . , jp 2 {1, . . . , p}. However, in the high-dimensional setting where p � n,

using the candidate models with all subsets is computationally infeasible. Alterna-

tively, we obtain the candidate models using tools for high-dimensional penalized

regression

min
�2Rp

1

n

nX

i=1

(yi � x|
i
�)2 +

pX

j=1

p�(�j), (2.2)

where p�(·) is a nonnegative penalty function with regularization parameter � 2

(0,1), such as, Lasso (Tibshirani, 1996) penalty p�(u) = �w|u| in ((2.2)), and non-

convex penalties including the smoothly clipped absolute deviation (SCAD) penalty

(Fan and Li, 2001)

p�(u) = �|u|I(|u|  �) +

⇢
�|u|�

(�� |u|)2

2(� � 1)

�
I(� < |u|  ��)

+
(� + 1)�2

2
I(|u| > ��), (� > 2),

or the minimax concave penalty (MCP, Zhang (2010a))

p�(u) = �

✓
|u|�

u
2

2��

◆
I(|u|  ��) +

��
2

2
I(|u| > ��), (� > 1).

We first apply a high-dimensional model selection method, e.g. SCAD, on the data

to compute solution paths for a sequence of tuning parameter {�1, . . . ,�L}. Let

{b��1 , . . . , b��L} be the estimated coe�cients of L di↵erent regularization levels for the

SCAD penalty and

ASCAD = {A
�1 ,A

�2 , . . . ,A
�L}

be the resulting models with A
�l ⌘ supp(b��l) = {j : b��l

j
6= 0}. We then use the set

ASCAD as the set of candidate models.

To further increase the chance of capturing the true/best model, we can put

together the resulting models from several di↵erent penalties to form a larger set

of candidate models, for example A = {ALasso,AAdaptiveLasso,ASCAD,AMCP}. The
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individual penalized methods for producing A do not have to all contain the true

model A⇤. As long as there is at least one candidate model in the solution paths being

(or very close to) the true model, SOIL importance can still work well, provided that

the weighing is sensible. By considering multiple model selection methods through

merging their solution paths, the chance of including the true model in A is enhanced.

2.3.2 Weighting

In this Chapter, we focus on two kinds of weighting methods: ARM weighting, which

is a weighting strategy by data splitting and cross-assessment, and BIC weighing

by BIC or a modified BIC information criterion (BIC-p) for high dimensional data.

Yang and Barron (1998) pointed out that when we have exponentially many models,

we may consider the model complexity in terms of the prior weight on the model.

When the dimensionality is large, a uniform prior penalty in ARM and BIC does not

perform well. Following the same approach in Nan and Yang (2014), we consider a

non-uniform prior (or descriptive complexity from a coding perspective) e� Ck when

computing both then ARM weighting and the BIC weighting, where  is a positive

constant and Ck will be given in Algorithm 1.

Weighting using ARM with nonuniform priors.

The ARM weighting method randomly splits the dataD = {(xi, yi)}ni=1 into a training

set D1 and a test set D2 of equal size (for simplicity, assume n is an even number).

Then the regression models trained on D1 are used for prediction on D2. Then the

weights w = (w1, . . . , wK)| can be computed based on this prediction. We consider

the linear regression model,

yi = x>
i
�⇤ + ✏i, ✏i ⇠ N(0, �2).

Specifically, if we denote by �(k)
s the nonzero-coe�cient sub-vector of �(k) specified

by the model Ak, and let x(k)
s 2 R|Ak| be the corresponding subset of predictors, we

summarize the ARM weighting method in Algorithm 1.
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Algorithm 1 The procedure of the ARM weighting for the regression case.

• Randomly split D into a training set D1 and a test set D2 of equal size.

• For each A
k
2 A, fit a standard linear regression of y on x

(k)
s using the training set D1 and

get the estimated coe�cient b�(k)
s and the estimated standard deviation b�(k)

s .

• For each A
k, compute the prediction x

(k)|
s

b�(k)
s on the test set D2.

• Compute the weight wk for each candidate model:

wk =
e� Ck(b�(k)

s )�n/2
Q

i2D2
exp(�(b�(k)

s )�2(yi � x
(k)|
s,i

b�(k)
s )2/2)

PK
l=1 e

� Cl(b�(l)
s )�n/2

Q
i2D2

exp(�(b�(l)
s )�2(yi � x

(l)|
s,i

b�(k)
s )2/2)

,

for k = 1, . . . ,K, where Ck = sk log
e·p
sk

+ 2 log(sk + 2) and sk = |A
k
| is the number of

non-constant predictors for model k.

• Repeat the steps above (with random data splitting) L times to get w(l)
k for l = 1, . . . , L, and

get wk = 1
L

PL
l=1 w

(l)
k .

Weighting using information criteria with nonuniform priors.

An alternative way of weighting is using BIC information criteria. Define I
BIC
k

=

�2 log `k + sk log n as the BIC information criterion, where `k is the maximized like-

lihood for model k and sk = |A
k
| denotes the number of non-constant predictors.

Then weight wk for model Ak
2 A is computed by

wk = exp(�
Ik

2
�  Ck)/

KX

l=1

exp(�
Il

2
�  Cl). (2.3)

We refer to the above approach with nonuniform priors as the BIC-p weighting.

Besides the ARM and BIC-p weighting, one can also consider another alternative

weighting approach by using Fisher’s fiducial idea from the generalized fiducial in-

ference (Lai et al., 2015). The details are included in Supplementary Materials Part

A. We do not discuss this method in details since it only applies to the regression

settings.
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Often consistency of a weighting method is proved when all subset models are

considered ((e.g. Lai et al., 2015)). But when p is large, it is computationally infeasible

to include all the variables, so some screening methods may be applied to reduce the

number of variables. Next we prove that under certain assumptions, SOIL importance

is consistent on di↵erentiating important variables from unimportant ones:

Corollary 1 Under the assumption that the weighting w on the all-subset candidate

models A is consistent, as long as at least one method is path-consistent, we have

min
j2A⇤

S(j;w
0
,A

0
)

p

! 1, max
j /2A⇤

S(j;w
0
,A

0
)

p

! 0, as n ! 1,

where w
0
is the renormalized weighting on A

0
, which is the collection of models using

union of solution paths. ⇤

2.3.3 Software

We provide our implementation of the SOIL importance measure in an o�cial R

package SOIL, which is publicly available on CRAN.

2.4 Extension to The Binary Classification Model

We extend the SOIL importance to the binary logistic regression case. Let Y 2 {0, 1}

be the response variable and X 2 Rp be the predictor vector. We assume that Y has

a Bernoulli distribution with conditional probabilities

Pr(Y = 1|X = x) = 1� Pr(Y = 0|X = x) =
e
x|�⇤

1 + ex
|�⇤ , (2.4)

where �⇤ = (�⇤
1 , . . . , �

⇤
p
)| is the vector corresponding to the true underlying model.

The ARM weighting for the logistic regression can be computed by Algorithm 2.
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Algorithm 2 The procedure of the ARM weighting for the binary classification case.

• Randomly split D into a training set D1 and a test set D2 of equal size.

• For each A
k
2 A, fit a standard logistic regression of y on x

(k)
s using the samples in D1.

Obtain the estimated coe�cients b�(k)
s and the corresponding function of predicted conditional

probability:

bp(k)(x) ⌘ Pr(Y = 1|X(k)
s = x) = exp(x| b�(k)

s )/(1 + exp(x| b�(k)
s )), k = 1, . . . ,K.

• For each A
k, compute the predicted probability bp(k)(x(k)

s,i ) on the test set {i|i 2 D2}.

• Compute the weight wk for each candidate model:

wk =
e� Ck

Q
i2D2

bp(k)(x(k)
s,i )

yi

⇣
1� bp(k)(x(k)

s,i )
⌘1�yi

PK
l=1 e

� Cl
Q

i2D2
bp(l)(x(l)

s,i)
yi

⇣
1� bp(l)(x(l)

s,i)
⌘1�yi

,

for k = 1, . . . ,K, where Ck = sk log
e·p
sk

+ 2 log(sk + 2) and sk = |A
k
| is the number of

non-constant predictors for model k.

• Repeat the steps above (with random data splitting) L times to get w(l)
k for l = 1, . . . , L, and

get wk = 1
L

PL
l=1 w

(l)
k .

2.4.1 Weighting using information criteria with nonuniform

priors

Similarly, the weight wk for model Ak
2 A using BIC-p the information criterion can

be computed in the same way as in ((2.3)) where I
BIC
k

= �2 log `k + 2sk log n, with

sk = |A
k
| and `k being the maximized likelihood function for the logistic model Ak.

2.5 Simulations

In this section, we consider a number of simulation settings to highlight the prop-

erties of SOIL in contrast to some other importance measures. We compare SOIL
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using the ARM and BIC-p weighting methods with three variable importance alter-

natives, which are denoted as LMG, RFI1 and RFI2. LMG is the relative importance

measure by averaging over all possible orderings for R
2 decomposition (Lindeman

et al., 1980). RFI1 and RFI2 are importance measures in random forests proposed

by Breiman (2001). Specifically, RFI1 is computed from a normalized di↵erence be-

tween the prediction error on the out-of-bag (OOB) portion of the data and that on

the permuted OOB data for each predictor variable. RFI2 is the total decrease in

node impurities from splitting on a particular variable, averaged over all trees. The

node impurity is defined by the Gini index for classification, and by residual sum of

squares for regression. Computationally, LMG can be obtained by the R implemen-

tation relaimpo (Grömping et al., 2006), while RFI1 and RFI2 can be obtained by R

implementation randomForest (Liaw and Wiener, 2002). Since LMG can only handle

the linear case with up to about 20 variables due to its computational limitation, we

are not able to get the relative importance LMG in some of our examples. In all

the simulations, we obtain Alasso, ASCAD and AMCP separately on the whole dataset

under the default settings of the tuning parameters from the package glmnet (lasso)

and ncvreg (SCAD and MCP) respectively. Then we use the union of Alasso, ASCAD

and AMCP as our candidate set A.

In the following we compare di↵erent variable importance measures for Gaussian

and Binomial cases under various settings of sample sizes, dimensions and feature

correlations.

Model 1: Gaussian. The simulation data {yi,xi}
n

i=1 is generated from the linear

model yi = x|
i
�⇤ + ✏i, ✏i ⇠ N(0, �2) and � 2 {0.1, 5}. We generate xi from multi-

variate normal distribution Np(0,⌃). For each element ⌃ij of ⌃, ⌃ij = ⇢
|i�j|, i.e. the

correlation of Xi and Xj is ⇢|i�j|, with ⇢ 2 {0, 0.9}.

Model 2: Binomial. The i.i.d. sample {yi,xi}
n

i=1 is generated from the binomial

model logit(pi) = x|
i
�⇤, where pi = P (Y = 1|X = xi). And xi is generated in the
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same way as the Gaussian case.

We summarize in Table 2.1 the model settings adopted in this simulation. For

each model setting with a specific choice of the parameters (⇢, �2), we repeat the

simulation 100 times and compute the averaged variable importance measures for

SOIL-BIC-p, SOIL-ARM, LMG, RFI1 and RFI2.

The results for the simulations are shown in Figures 2.1– 2.6 and Figures A.1–

A.6. Due to page restrictions, the figures of Example A.1– A.6 are only provided

in the supplementary materials, while the summary of all the examples are discussed

in the main part of the Chapter. For the scaling of the importance measures, we

standardize RFI1 and RFI2, dividing them by their respective maximum value of the

variable importance among all the variables for each realization of the data. As a

result, in each figure, we can see that the maximum value of RFI1 or RFI2 (after the

standardization) is always one. For SOIL and LMG, we keep their original values

as being proposed. The fact that the LMG importance values sum to one over the

variables should be kept in mind when comparing the di↵erent importance measures

on the graphs.

The choice of the prior  for the ARM and BIC-p weighting can be specified by

the users. To avoid cherry-picking, we present the results with a fixed choice:  = 0.5.

Our experience is that  = 0.5 or 1 generally works quite well. We conduct a sensitiv-

ity analysis on the choice of  , which is presented in Figure A.6 in the Supplementary

Materials. We tried eight di↵erent values, i.e.  2 {0, 0.5, 1, 1.5, 2, 3, 3.5, 10} on the

low noise (�2 = 0.01) and high correlation (⇢ = 0.9) case of Example S6. We can

conclude that a too large value  = 10 leads to poor performance of SOIL, i.e. de-

tecting nothing important, while choices of too small  (0 or close to 0) may result in

significant SOIL importances of unimportant variables. Overall, SOIL importances

under  = 0.5 or  = 1 are stably reliable in our simulations.
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Example n p Model Settings

Gaussian Case

1 100 1000 �⇤ = (4, 4, 4,�6
p
2, 4

3 , 0, ..., 0)
|

2 150 14+1 �⇤ = (4, 4, 4,�6
p
2, 4

3 , 0, ..., 0)
|. AddX15 = 0.5X1+2X4+e and �⇤

15 = 0,

where e ⇠ N(0, 0.01).

3 150 8 �⇤ = (0, . . . , 0)|

4 150 8 �⇤ = (1, . . . , 1)|

S1 150 20 �⇤ = (4, 4, 4,�6
p
2, 4

3 , 0, ..., 0)
|

S2 150 6+6 �⇤ = (4, 4,�6
p
2, 4

3 , 0, 0)
|. Add (X2

1 , X
2
2 , X

2
3 , X

2
4 , X

2
5 , X

2
6 ) and corre-

sponding coe�cients (�⇤
7 ,�

⇤
8 , . . . ,�

⇤
12)

| = (4, 0, 1, 0, 0, 0)|.

S3 150 6+6 �⇤ = (4, 4,�6
p
2, 4

3 , 0, 0)
|. Add

(X1X2, X1X3, X1X4, X2X3, X2X4, X3X4) and corresponding coef-

ficients (�⇤
7 ,�

⇤
8 , . . . ,�

⇤
12)

| = (4, 2, 2, 0, 0, 0)|.

S6 100 200 �⇤ = (4, 4, 4,�6
p
2, 4

3 , 0, ..., 0)
|

Binomial Case

5 80 7 �⇤ =
�
1, 1

2 ,
1
3 ,

1
4 ,

1
5 ,

1
6 , 0

� |

6 5000 7 �⇤ =
�
1, 1

2 ,
1
3 ,

1
4 ,

1
5 ,

1
6 , 0

� |

S4 150 20 �⇤ = (4, 4, 4,�6
p
2, 4

3 , 0, ..., 0)
|

S5 100 200 �⇤ = (4, 4, 4,�6
p
2, 4

3 , 0, ..., 0)
|

Table 2.1: Simulation settings

2.5.1 Relative performances of importance measures in sev-

eral key aspects

A summary of the relevant properties of di↵erent important measures is provided

in Table 2.2. In the following we discuss point-by-point these characteristics for

the importance measures in comparison. For convenience, we call the variables with

nonzero coe�cients the “true” variables.
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SOIL-ARM SOIL-BIC-p LMG RFI1 RFI2

Inclusion/Exclusion X X
Tuning in to information X X
Robustness to feature correlation X X
Robustness against confuser X X
Sensitivity to high-order terms X X
Pure relativeness X X X
Order preserving X X
High-dimensionality X X X X
Non-parametricness X X
Non-negativity X X X X

Table 2.2: Comparison of the characteristics for the importance measures. A “X”
indicates that a specified method has the given property. A blank space indicates the
absence of a property.

Inclusion/exclusion. The inclusion/exclusion aspect addresses the issue if an im-

portance measure can give a proper sense if a predictor is likely to be needed in the

best model to describe the data. These two criteria for importance have been dis-

cussed in Grömping (2015). Recall that given enough data for SOIL importance, the

true variables in the model have large importances (inclusion) and the variables that

are not in the true model have importances around zero (exclusion). In all exam-

ples, we can see that the SOIL-BIC-p and SOIL-ARM have the inclusion/exclusion

property. For example in Figure A.1, all the true variables (X1, . . . , X5) have

their SOIL importances around one, even though their coe�cients are di↵erent, i.e.

(�⇤
1 , . . . , �

⇤
5) = (4, 4, 4,�6

p
2, 43). In contrast, the other three measures LMG, RFI1

and RFI2 do not have the inclusion property when ⇢ = 0 and �2 = 0.01 (they all un-

dervalue the importance of X5, which has a small coe�cient). LMG, RFI1 and RFI2

do not have the exclusion property either. We can see that in Figure 2.2 the noise

variable X15 confuses LMG, RFI1 and RFI2. In Figure A.2 when ⇢ = 0.9, LMG,

RFI1 and RFI2 assign relatively high values on the noise variable X8. In Figure A.3

when ⇢ = 0.9 and �2 = 25, LMG, RFI1 and RFI2 fail on the noise variable X10.

SOIL is certainly incapable of giving high importance to very weak variables in
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the true model. For example Figure 2.5 shows that in a binomial model with the

decreasing coe�cient vector �⇤ =
�
1, 12 ,

1
3 ,

1
4 ,

1
5 ,

1
6 , 0

� |, the true variable X6’s SOIL

importance is only around 0.1, not much above that of the noise variableX7). However

this problem is alleviated as the sample increases: Figure 2.6 shows that the SOIL-

ARM and SOIL-BIC-p importances of six true variables (X1, . . . , X6) become closer

to one when n increases from 80 to 5000. In contrast, the LMG, RFI1, and RFI2 stay

basically the same as the sample size increases.

Tuning in to information. For high dimensional data, more often than not (to

say the least), sparsity is a reluctant acceptance that the info and/or computational

limit only allows us a simple model for application. The optimal sparsity should

depend on the sample size and noise level. Therefore, it is desirable to have an

importance measure to honor this perspective. When the sample size increases or the

noise decreases, we should have more information. Thus, the importance obtained

from the data should change due to the enrichment of information. Therefore in

most examples, when the correlation ⇢ and �
2 are low, one may hope the variable

importances delineate the true model. Comparing Examples 2.5 and 2.6, which di↵er

only in the sample size, as shown in Figure 2.5 and Figure 2.6, only SOIL-BIC-p

and SOIL-ARM react to the much increased information due to sample size increase,

while the other three importances are not tuned in to the information change.

Robustness to feature correlation. SOIL importances show robustness against

noise increase and higher feature correlation. For example in Figure 2.1, 2.2 and

Figures A.1– A.5 in Supplementary Materials Part B, even when there is high feature

correlation (⇢ = 0.9, �2 = 0.01) or strong noise (⇢ = 0, �2 = 25) in the data, the SOIL-

BIC-p and SOIL-ARM still give relatively large importance values to the true variable

X5, while the other methods consider X5 as unimportant. But in a case of both high

feature correlation and strong noise (⇢ = 0.9, �2 = 25), none of the importance

measures in comparison can quite clearly select X5 as an important variable because



2.5. Simulations 23

the information is too limited.

Robustness against confusers. A confuser refers to a variable that is closely

related to a true variable or some linear combination of the true variables but not

to the extent of serving as a valid alternative. An importance measure oriented

towards sparse modeling should assign near zero importances on the confusers. The

simulation results show that the SOIL importance measures are much more robust

to confusers than LMG, RFI1 and RFI2. In Example 2.2, we generate a confuser

X15 = 0.5X1+2X4+ e with Gaussian noise e ⇠ N(0, 0.01). The results in Figure 2.2

show that LMG, RFI1 and RFI2 fail to assign small importance to X15 (not in the

true model) and view it more important than some true variables. In contrast, small

ARM and BIC-p importances for X15 correctly indicate that it is unimportant.

Sensitivity to higher-order terms. The SOIL importance measures are more

sensitive to inclusion of higher-order terms in the model. In Example A.2 and A.3

we add quadratic terms X
2
1 , X

2
2 , X

2
3 , X

2
4 , X

2
5 , X

2
6 and pairwise interactions X1X2,

X1X3, X1X4, X2X3, X2X4, X3X4 respectively, where the coe�cients for X1X2, X1X3,

X1X4 and X
2
1 , X

2
3 are nonzero in the true models. Results in Figure A.2 and A.3

show that the ARM and BIC-p methods can select both true main-e↵ect variables

and true higher-order terms, whereas LMG, RFI1 and RFI2 fail to select some of the

main-e↵ect variables when interactions or quadratic terms are included.

Pure relativity. An importance measure is said to be purely relative if the values

individually do not have a sensible meaning on their own. One drawback of an

importance measure with pure relativity is that it does not di↵erentiate between

equal importance and equal unimportance cases. All coe�cients in Example 2.3 and

2.4 have the same relative size, which are �⇤ = (0, . . . , 0)| and �⇤ = (1, . . . , 1)|

respectively. We find that LMG, RFI1 and RFI2 do not o↵er any clue on importance

of each variable itself. Variables (X1, . . . , X6) in Example 2.3 have very similar
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LMG and RFI2 values to those in Example 2.4. And RFI1 behaves wildly as it

assigns very much di↵erent importances to the variables in the independence case

(⇢ = 0) of Example 2.3. The importance values are even significantly negative for

some variables. In contrast, SOIL-BIC-p and SOIL-ARM nicely separate the two

examples.

Order preserving. Order preserving refers to the property that the importance

reflects the “order” of the variables or not: (1) For the true variables (standardized)

with not too high correlations with others, it may be natural to expect the ones

with larger coe�cients to have larger importances (up to one of course); (2) The true

variables should have larger importances compared to the noise ones. In the case

that the sample size is too small for some true variables to be detectable, the order

preserving property demands that the noise variables should not receive significantly

higher importance values than these subtle true variables. SOIL-BIC-p and SOIL-

ARM exhibit the order preserving property in all the cases. LMG behaves poorly

when there exists a confuser as in Figure 2.2. RFI1 and RFI2 do not preserve the

order when correlation ⇢ = 0.9 and/or noise �2 is large.

High-dimensionality. SOIL-BIC-p, SOIL-ARM, RFI1 and RFI2 can work for

high-dimensional data when p > n as shown in Figure 2.1 and A.5. The exclu-

sion and inclusion properties still hold for SOIL-BIC-p and SOIL-ARM in the high

dimensional case (inclusion of a weak variable requires that �2 is not too high). In

contrast, LMG does not support high-dimensional data.

Non-negativity. SOIL-BIC-p, SOIL-ARM, LMG and IMG2 always yield non-

negative importance value. However, RFI1 does not satisfy this criterion.

Non-parametricness. Among the importance measures, only the two from ran-

dom forest are not limited to parametric modeling.
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Figure 2.1: Simulation results for Example 1, where n = 100, p = 1000. The true
coe�cients �⇤ = (4, 4, 4,�6

p
2, 43 , 0, ..., 0).
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Figure 2.2: Simulation results for Example 2, where n = 150, p = 14. The true
coe�cients �⇤ = (4, 4, 4,�6

p
2, 43 , 0, ..., 0). Add X15 = 0.5 ⇤ X1 + 2 ⇤ X4 + e and

corresponding �⇤
15 = 0, where e ⇠ N(0, �2

e
).
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Figure 2.3: Simulation results for Example 3, where n = 150, p = 8. The true
coe�cients �⇤ = (0, . . . , 0)|.
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Figure 2.4: Simulation results for Example 4, where n = 150, p = 8. The true
coe�cients �⇤ = (1, . . . , 1)|.
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Figure 2.6: Simulation results for Example 6, where n = 5000, p = 6. The true
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2.5.2 Comparison of SOIL with Lasso and stability selection

Meinshausen and Bühlmann (2010) proposed a stability selection (SS) method to

improve the Lasso variable selection. SS may be regarded as an importance measure.

In Supplementary Materials Part C, we present a comparison of SS importance to

our SOIL approach. Additionally, in Supplementary Materials Part D, we present a

stability comparison of Lasso and SOIL. Due to the worse performances of SS and

Lasso compared with SOIL, together with the fact that the main goals of SS and

Lasso are not on variable importance, we do not consider SS or Lasso in our main

simulation.

2.5.3 Influence of the weighting method on tree models

Are the advantages of the SOIL approach compared to random forest seen so far

mainly due to the data driven model averaging instead of the simple averaging as

in random forest? We here investigate the SOIL type weighting on the tree models.

Like the BIC weighting methods, we use the cost complexity of a tree, I↵(Tk) =

⌃|T |
m=1NmQm(Tk) + ↵|Tk|, to calculate the weights for the k-th tree Tk, where |Tk| is

the number of terminal nodes in the tree Tk, Nm is the number of observations in

each terminal of the tree, ↵ is the tuning parameter (selected by cross-validation)
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Figure 2.7: Simulation results for SOIL-tree on Example2

and Qm(Tk) is the deviance (node impurity if it is a classification tree) of the m-th

terminal node in Tk. Every tree produces a list of variable importance and we use

the weighted sum of these lists of tree variable importances as the final importance

measure, which we call SOIL-tree. We apply this measure in Example 2. Figure

2.7 shows the results. Comparing the SOIL-ARM/BIC-p with SOIL-tree, we can

see the SOIL-ARM/BIC-p perform better than SOIL-tree in di↵erentiating the true

important variables. Comparing the RFI1/RFI2 with SOIL-tree, we see that the

SOIL weighting improves the performances of random forest in the high correlation

high noise case. The former comparison indicates that the di↵erences between SOIL

and RF1/RF2 goes beyond the weighting di↵erence in SOIL and random forest and

the latter suggests that the SOIL weighting strategy can improve the performance of

tree-model based importances in the high correlation and high noise case.
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2.6 Real Data Examples

We apply the variable importance measures to three real datasets:

BGS data.

We first consider a dataset with small p from the Berkeley Guidance Study (BGS)

by Tuddenham and Snyder (1954). The dataset includes 66 registered newborn boys

whose physical growth measures are followed for 18 years. Following Cook and Weis-

berg (2009, p.179) we consider a regression model of age 18 height on p = 6 predic-

tors: weights at ages two (WT2) and nine (WT9), heights at ages two (HT2) and

nine (HT9), age nine leg circumference (LG9), and age 18 strength (ST18). The

corresponding SOIL-ARM, SOIL-BIC-p, LMG, RFI1 and RFI2 importances for each

variable are computed and summarized in Table 2.3. We found that HT9 is the most

important variable according to all methods. But di↵erent methods produce di↵erent

second-most important variables.

WT2 HT2 WT9 HT9 LG9 ST18

SOIL-ARM 0.16 0.09 0.03 1.00 0.62 0.28

SOIL-BIC-p 0.01 0.00 0.00 1.00 0.63 0.08

LMG 0.06 0.13 0.08 0.65 0.05 0.02

RFI1 1.72 2.50 1.79 55.66 4.12 1.05

RFI2 70.89 101.58 100.52 2126.64 123.52 127.74

Table 2.3: Importance measures of the variables in BGS data. The top two most
important variables according to each measure are in bold.

Then we conduct a “credibility check” for the above results of various importance

measures. To do so we use a guided simulation or cross-examination (Li et al., 2000;

Rolling and Yang, 2014), in which the performances of the importance measures are

tested using data that are simulated from models recommended by the importance
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measures respectively. The basic idea of cross-examination is that one usually antic-

ipates that a good method should have a better performance than other methods on

the simulated data that are constructed from the method itself. In our context, if

we compute the variable importances SA

1 , . . . , S
A

p
on a real dataset using measure A,

and construct a suggested model (with top rated important variables) and simulate

a new dataset from this model, then on the new dataset, the variable importances

S̃
A

1 , . . . , S̃
A

p
using measure A should be more similar to S

A

1 , . . . , S
A

p
than the variable

importances S̃B

1 , . . . , S̃
B

p
using measure B. Otherwise, one can naturally question the

adequacy of applying measure A to the original real data.

The cross-examination procedure is as follows:

1. Choose one measure from SOIL-ARM, SOIL-BIC-p, LMG, RFI1 and RFI2 as

the base measure, and select the resulting top two most important variables

(e.g. HT9 and LG9 if SOIL-ARM is the base measure).

2. Fit linear regression using only the selected variables as predictors, and obtain

the estimated coe�cients b� and standard deviation b�.

3. Generate the new response according to the model: Ynew = Xb� + b�N(0, 1).

4. Compute the SOIL-ARM, SOIL-BIC-p, LMG, RFI1 and RFI2 importance mea-

sures using the new dataset (X,Ynew).

5. Repeat the above steps 100 times and take the average of each importance.

6. Go to Step 1 until all measures have served as the base measure.

The results are depicted in Figure 2.8. Overall, SOIL-ARM and SOIL-BIC-p

perform reasonably better than the other importance measures. In the home-game

(where the variables are selected based on the base measure) of SOIL-ARM, SOIL-

BIC-p and RFI1, we can see that LMG and random forest (RFI1 or RFI2) do not

support the true variable LG9, while SOIL-ARM or SOIL-BIC-p clearly indicate,

correctly, HT9 and LG9 as the important ones (although with less confidence on LG9).
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Figure 2.8: Results of cross-examination for BGS data.

In fact, LMG, RFI1 and RFI2 all view HT2 as more important than LG9, a mistake

seemingly caused by the higher correlation of HT2 (0.57) to HT18 than LG9 (0.37).

In the home-game of LMG, all methods single out only HT9 as the most important

(but not HT2). However, SOIL-ARM and SOIL-BIC-p assign the second largest

importance to HT2, which is consistent with the aforementioned Order Preserving

property. The random forest importance measures do not show this property. The

home-game of RFI2 is similar to the home-game of LMG, where the Order Preserving

property still holds for SOIL-ARM and SOIL-BIC-p but not for the others.

We also perform a linear regression analysis on the full model directly in the BGS

application. The p-values for the variable are presented in Table 2.4. If we compare

the p-values with significance level ↵ = 0.1, the only significant variables are the

intercept and “HT9”. Consistently, HT9 is declared important according to all the

variable importances we considered. In terms of p-value, HT2 is the second most

important variable, which agrees with LMG, but is di↵erent from both the random

forest and SOIL importances in Table 2.3. Based on the earlier guided simulation

results, together with the intuition that given HT9, HT2 is unlikely to be that useful

for predicting height at age 18, we tend to think the significance analysis based on

the full model is less trustworthy. In general, as is well-known, p-value can be quite
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sensitive to the model used to fit the data, and thus may not be reliable to measure

variable importance.

Intercept WT2 HT2 WT9 HT9 LG9 ST18

p-value 2E-16 0.112 0.105 0.773 4.93E-16 0.246 0.258

Table 2.4: Classical significance (p-value) analysis of the BGS data

Bardet data.

For a dataset with large p, we consider the Bardet dataset. It collects tissue samples

from the eyes of 120 twelve-week-old male rats, which are the o↵spring of inter-crossed

F1 animals. For each tissue, the RNAs of 31,042 selected probes are measured by the

normalized intensity valued. The gene intensity values are in log scale.

To investigate the genes that are related to gene TRIM32, which causes the

Bardet-Biedl syndrome according to Chiang et al. (2006), a screening method (Huang

et al., 2008a) is applied to the original probes, which gives us a dataset with 200 probes

for each of 120 tissues. Specifically, 3000 out of the 31042 probes are selected with the

largest variances. Then we select 200 probes with the largest marginal correlation

with the response TRIM32 to obtain the reduced dataset, which is available upon

request. We use this screened dataset to carry out our importance measure analysis.

Since LMG is not feasible to handle cases with p > 20, it is not included in

our analysis below. The corresponding SOIL-ARM, SOIL-BIC-p, RFI1 and RFI2

importances for most important variable are summarized in Table 2.5. We present

the top ten variables according to the di↵erent importance measures respectively. The

name of each gene is too long, so for convenience we record the corresponding EST

number instead. From Table 2.5, we can see that di↵erent importance measures have

very di↵erent results.
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Rank ARM BIC-p RFI1 RFI2

1 25141 1.000 25141 1.000 25141 5.113 21907 0.061

2 28967 0.935 28967 1.000 21907 5.006 25141 0.059

3 28680 0.834 28680 0.999 11711 4.875 11711 0.054

4 30141 0.576 30141 0.491 11719 4.778 25105 0.041

5 21092 0.397 21092 0.278 25105 4.491 24565 0.036

6 15863 0.261 15863 0.142 9303 4.332 28680 0.035

7 17599 0.219 17599 0.121 28680 4.239 25403 0.034

8 22813 0.106 25367 0.028 25425 3.788 9303 0.033

9 25367 0.079 22813 0.016 16569 3.733 22029 0.032

10 24892 0.047 14949 0.005 22029 3.680 24087 0.030

Table 2.5: Top ten genes for di↵erent variable importance measures for Bardet data.

Notice thatX25141 is the most important variable according to Table 2.5. Random

forest is unstable in the sense that each time we compute the random forest impor-

tance on the data, the top ten variables obtained tended to be quite di↵erent in terms

of their rankings. For SOIL-BIC-p and SOIL-ARM, the top four genes always have

the same rank and the importance values are pretty much the same in di↵erent runs.

Also, a striking feature for the random forest in this data example is that the values

of the importances are quite close to each other and decaying gradually, making it

hard to judge which variables are really important.

We carry out a guided simulation study similar to that for the BGS data, except

that LMG is not included. Based on the information in Table 2.5, the top 4 vari-

ables are selected for SOIL-BIC-p (SOIL-ARM), and the top 10 for RFI1 and RFI2

respectively.

In Figure 2.9, we only present the variable importances of the “true” genes due to

space limitation. RFI1 and RFI2 are all normalized. In the home-game of SOIL-ARM

and SOIL-BIC-p, both can correctly select all the true variables if the cut-o↵ value is
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set at 0.4. For random forest, however, the maximum RFI1 and RFI2 values among

the unimportant ones exceed the most important ones respectively, indicating that

the random forest has di�culty di↵erentiating the really important and unimportant

variables.

In the home-game of RFI1 and RFI2, none of the competitors performs very well.

With the generating model being larger, with the limited information in the data

(in conjunction with the complicated correlation among the genes), the importance

measures simply cannot reveal all the true variables. Only the true variable X25414

is di↵erentiated clearly by all methods. From the SOIL perspective, it is willing to

support at most 3 more variables with some confidence. Random forest gives more

true variables significant importance values. A drawback is that some noise variables

receive relatively large importance values, which are even higher than almost half of

the true variables.

From the guided simulations, the Order Preserving property fails in all the cases

for the random forest importance measures. For SOIL, in the home-game of ARM

and BIC-p, it holds for both SOIL-ARM and SOIL-BIC-p; but in the home-game

of RFI1 or RFI2, the property does not hold exactly, but it does hold in the sense

that the maximum importance of the noise variables is still very small (and it is not

meaningful to rank the variables with tiny importance values). The key point here is

that while SOIL certainly can miss subtle variables in the true model when the sample

size is small, it typically does not recommend an unimportant variable as important.

The same cannot be said for the other importance measures.

Lung cancer data.

We analyze a lung cancer gene expression dataset (Subramanian et al., 2005) with

62 patients and 5217 genes. As more and more genomics studies have been done,

analyzing and interpreting genome-wide expression data have become a key task,

including the aspect of feature selection. The basic scientific question of interest here

for the lung cancer data is: Which genes were most linked to the lung cancer?
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Figure 2.9: Simulation results for cross-examination
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Perhaps, the most popular way would be to apply a penalized regression method.

For instance, Lasso selected 12 genes. However, the reliability of such results is a

big issue, as mentioned already (see, e.g., Nan and Yang (2014)). Two alternative

approaches may be taken to address the question: via random forest importances and

multiple hypothesis testing (Subramanian et al., 2005). As is pointed out in Subra-

manian et al. (2005), no genes are considered significantly related to the response at

a 5% significance level by multiple hypothesis testing. From Table 2.6 (only top 5

are shown), random forest considers a number of genes to be more or less equally

important, which does not seem to be very helpful in terms of telling the researcher if

any gene(s) could be said to be far more important than the rest. In addition, the two

random forest importance measures di↵er substantially in ranking of the genes. Thus

the two methods do not seem to reliably single out a few genes as most important to

the lung cancer. Can SOIL bring some new insight?

We present two SOIL importances also in Table 2.6. SOIL-ARM views ENO2

absolutely important for the response, and SOIL-BIC-p also gives it an importance

value much larger than all other genes (in this example, the BIC-p weighting seems

too aggressive in pursuing parsimony, giving a large weight on the null model with

intercept only). RHOG comes next, with importance values by SOIL-ARM/BIC-p

much smaller than those of ENO2 but larger relative to the rest. Given the really

small sample size, RHOG might be potentially important should a larger sample size

be used in a future study. We emphasize that SOIL importance is not meant to o↵er

the final say, but it provides stable insight on which covariates are most important

for explaining the response in the parametric modeling.

To further support the results of SOIL importances in Table 2.6, we carry out

a cross-examination, in which the top two genes for SOIL-ARM (SOIL-BIC-p) and

top five genes for RFI1(RFI2) are selected as the true variables respectively (note

that using more variables based on random forest gives even less reliable results

for random forest). A Bernoulli distribution with probability p̂ is used to generate

the new response Ynew, where the estimated probabilities via logistic regression and
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ARM BIC-p RFI1 RFI2
ENO2(0.999) ENO2(0.235) IL12RB1(2.383) PAICS(0.222)
RHOG(0.086) RHOG(0.0215) UBE2C(2.188) PSMA6(0.184)
PGAM1(0.005) PGAM1(0.000) EEF1A1(1.954) RHOG(0.156)
MICB(0.002) MICB(0.000) DPF1(1.893) IL12RB1(0.153)
DBP(0.001) DBP(0.000) P4HA1(1.883) UBE2C(0.145)

Table 2.6: Top 5 variables for di↵erent variable importance measures of the Lung
Cancer Data
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Figure 2.10: Results of cross-examination for Lung Cancer Data

vote proportion in random forest are utilized as the p̂ for the home-game of SOIL

and Random Forest respectively. Figure 2.10 shows that the SOIL methods are

self-consistent in the sense that it can identify the important variables in their home-

game. Random forests are not self-consistent since the maximum variable importance

of the unimportant variables is larger than those important ones. In the home-game

of RFI1 and RFI2, SOIL does not recognize any true variables as important. The

main reason is that the underlying generating process is non-parametric (with very

weak signal), for which SOIL is not intended to be applicable. Overall, the SOIL

importance measures seem to be well-supported in the multiple aspects above.



Chapter 3

Cross Validation Importance
Learning

3.1 Introduction

Big data is ubiquitous nowadays, accompanied by numerous challenges. The inter-

pretability of predictive variables/models is one challenge for many black-box meth-

ods, whose superior performances to traditional statistical methods in many applica-

tions are well recognized. The lack of interpretability hinder researchers/practitioners

from applying these methods unreservedly.

Variable importance has been a popular methodology to demystify many cur-

rently prevalent black box methods. By understanding the marginal “importance” of

each variable to the response, variable importance provides a non-parametric way of

interpreting how a modeling procedure utilize each variable.

One major reason behind the adoption of variable importance is the generalization

of machine learning and statistical methods. When a modeling method is overall

unstable (or hard to be generalized), its performance on new-coming similar datasets

or di↵erent types of datasets is not guaranteed by even an excellent performance of

a specific dataset.

Various statistical techniques such as model selection (Tibshirani, 1996; Fan and

Li, 2001; Zhang, 2010a) and machine learning (Cortes and Vapnik, 1995; Breiman,

40
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2001; Rosenblatt, 1958) are applied to predict the output variable from an possibly

enormous number of input variables.

Some methods such as model averaging use all the input variables, which is di�cult

for us to di↵erentiate the e↵ects of variables. Some methods have good predictive

performance using only a small portion of the input variables. However, this sparsity

adoption has given rise to two issues: first, the unselected variables are considered

as making no contribution at all despite the fact that nearly all input variables have

e↵ect on the output variable to some extent, with many being negligible in prediction;

second, an unstable procedure, given a slight change of the dataset, will lead to

drastically di↵erent results of selected variables while maintaining a similar prediction

performance. To improve the reliability of data analysis, it is desirable to have a

robust and stable quantification of all the variables. Variable importance analysis

is one way that gives the researchers/practitioners an overall understanding of the

variables and thus helps determine which variables should be included in the model.

Many variable importance measures under linear regression have been proposed,

such as regression coe�cients, standardized regression coe�cients, p-values, partial

correlations. These measures fail to provide an evaluation of all the variables. Vari-

ance decomposition is another way of measuring the importance of variables in lin-

ear regression, including LMG (Lindeman et al., 1980), dominance analysis (Bude-

scu, 1993), hierarchical partitioning (Chevan and Sutherland, 1991) and proportional

marginal variance decomposition (PMVD) (Feldman et al., 1999). See Gromping

(2007) for a more detailed review of variable importance measures based on vari-

ance decomposition. Ye et al. (2018) proposed sparsity oriented importance learning

(SOIL), which incorporates a manageable set of candidate models with a sensitive

weighting, and considers the sum of the weights of those candidate models that con-

tains a certain variable as the importance of that variable.

Nonparametric variable importance measures in the literature lie in two major

areas: random forest and causal inference. Breiman (2001) proposed random forest

together with two types of variable importance measures. Many variants of the tree-
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based variable importance measures are proposed later. For example, Strobl et al.

(2008b) suggested a more reliable conditional permutation importance in random

forest for correlated input variables. Sandri and Zuccolotto (2008) used the addition

of pseudo-variables (Wu et al., 2007) to correct bias for the Gini variable impor-

tance measure in classification trees. Wang et al. (2010) used maximal conditional

chi-square (MCC) to measure the conditional association between single nucleotide

polymorphisms (SNPs) and the disease of interest. Chipman et al. (2010) and Ble-

ich et al. (2014) proposed a bayesian additive regression trees (BART) model and

considered the proportion that each variable is used splitting rules of internal nodes

within the trees as a variable selection approach. This variable inclusion proportion

can also be viewed as a variable importance measure in BART model.

In contrast, in causal inference, variable importance is viewed as a real-valued

parameter that is defined as the di↵erence between the conditional mean of causal

e↵ect relative to the baseline. For example, E(Y |A = a)−E(Y |A = 0) with covariates

X = (A,W ) is defined as the marginal variable importance in Van der Laan (2006),

where A is the variables of interest. In the framework of causal inference, such variable

importance measure allow statistical inference including p-value and the confidence

interval. For example, Van der Laan (2006) developed double robust estimators of

several proposed marginal and adjusted variable importances. Hejazi et al. (2017)

proposed a targeted variable importance and developed the corresponding estimators

via targeted maximum likelihood estimation (TMLE) for datasets with small sample

sizes. As pointed out in Williamson et al. (2017), these variable importance measures

may be di�cult to interpret in applications. They proposed a variable importance

that can be interpreted as the increased variance of the outcome variable from the

addition of the variable in the conditional mean function.

Variable importance measures are also proposed under other frameworks than

the random forest and causal inference frameworks. Ribeiro et al. (2016) proposed

a novel variable importance tool (LIME) to interpret and explain the predictions of

classifiers at any fixed point. The idea behind LIME is that any function can be
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locally approximated by linear functions. By solving a distance-weighted penalized

regression at a local sample around the point of interest, LIME outputs the important

covariates that explains the predictions provided by any uninterpretable classifier,

helping people decide whether to trust the classifier for long-term purposes. Fisher

et al. (2018) studied the variable importance to any model class, rather than a single

model. The proposed model reliance (MR) investigates the expected loss of a model f

on a switched sample, in which the covariates of interest in a sample is replaced by the

same covariates from another independent sample with the same distribution. MR

can be related to the conditional causal e↵ects if the covariate is binary. The model

class reliance (MCR) is then defined as the maximum and the minimum of the model

reliance over a class of models. Through MCR, finite sample bounds and coverage

properties are obtained for inference of the best model that minimize the expected

prediction loss. For more references, we refer the readers to Olden et al. 2004; Huang

et al. 2008b; Chambaz et al. 2012; Sapp et al. 2014. Many other fields have also used

the variable importance to analyze problems, through di↵erent terminologies such

as sensitivity analysis, screening methods, delta index, among others. For variable

importance measures in areas other than statistics, see Wei et al. (2015) for a general

review.

All the aforementioned variable importance measures are either di�cult to inter-

pret under many applications or associated tightly with specific methods. In addition,

many machine learning methods do not usually provide a variable importance measure

or insights of their predictions. This has motivated us to come up with Cross Valida-

tion Importance Learning (CVIL), which can be applied to any statistical model to

provide interpretable variable importance measures of the variables in those “mag-

ical” machine learning methods, from the perspective of prediction. Based on the

fixation of a variable at a constant value in the dataset or the deletion of a particular

variable in the dataset, we propose two types of CVILs, CVILp and CVILr, by calcu-

lating the cross-validation averaged di↵erence in prediction error (the sum of squared

error) between the new dataset and the original dataset.
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The contributions of this paper are three-fold. First, our method is general and

can be applied to any modeling procedure. It enables one to interpret how important

an input variable is considered by a specific modeling procedure in predicting the

output variable. The proposed variable importance is interpreted as the proportion

of improved prediction error after fixing or deleting a variable. Second, the two types

of variable importance measures, CVILp and CVILr, evaluate the importance of each

variable to the modeling procedure from the perspective of prediction accuracy (or

position) and replaceability respectively. Under mild conditions, consistency results

of both types of variable importances are established, together with the corresponding

confidence intervals. Given any specific method, CVIL ranks the relative contribution

of all input variables and provides us a way to interpret many predictive algorithms

that lack interpretability.

We were aware of the work by Lei et al. (2018) during the write-up of this pa-

per. Lei et al. (2018) proposed a model-free variable importance measure, named

leave-one-covariate-out (LOCO), as a random parameter to measure the importance

of a variable, under the conformal inference framework. The idea of LOCO is sim-

ilar with our proposed replaceability variable importance, which is that deleting an

important variable will decrease the prediction accuracy. In their follow-up paper

(Rinaldo et al., 2016), the authors further investigate the theoretical properties of

LOCO for post-selection inference. Though similar ideas, our replaceability impor-

tance and the LOCO importance di↵er in several aspects: 1) The LOCO variable

importance is a random quantity conditional on the training set. As pointed out by

the authors, for each splitting, the inference targets a di↵erent parameter due to its

randomness. However, our replaceability importance measure is a fixed parameter

that does not depend on the training set but focuses more on the general predictive

importance of whether a variable can be replaced by other variables; 2) Due to the

technical considerations in their proof, the authors redefine the LOCO parameter by

adding a random noise that makes the inference conservative, as well as truncating

the prediction values of the modeling procedure to make sure the LOCO is element-
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wise bounded. Thus LOCO is di↵erent from our replaceability importance; 3) LOCO

in finite sample inference investigates the local/conditional importance of a variable,

which only requires a uniform boundedness assumption on the distribution family

and can be estimated accurately. In contrast, our method focuses more on using

the variable importance measures as a tool to assist the understanding of how any

modeling methods employ the variables.

The remainder of this paper is as follows. In Section 3.2, we propose two types of

variable importances, behind which the intuition is demonstrated by two theoretical

examples. Section 3.3 presents the methodology of CVIL and its asymptotic prop-

erties. We also provide statistical inference of the CVIL importances in Section 3.4.

Good performances of our proposed CVIL importances are illustrated by simulations

in Section 3.5, and Section 3.6 presents the application of CVIL on one real data

example. The proofs and some figures are included in the Appendix.

3.2 Variable Importance (VI)

We consider the data generating model

Y = f(X) + ✏, (3.1)

where f(x) = E(Y |X = x) : Rp
7! R is an unknown regression function, X =

(X1
, ..., X

p) is a p-dimensional predictor and ✏ is the random noise (independent ofX)

with E(✏) = 0 and V ar(✏) = �
2
< 1. Let Z = (Xi, Yi)ni=1 denote the dataset of n i.i.d.

copies from the data generating model and denote the distribution ofX as Px. Denote

||f(x)||q = (
R
|f(x)|qdPx)1/q as the Lq norm for q > 0 with respect to the probability

measure Px and ||f ||1 = ess sup |f | = inf{c � 0 : |f(x)|  c almost surely} as the

L1 norm.

The next two subsections introduce our proposals of two types of variable importances:

the position variable importance and the replaceability variable importance.
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3.2.1 The position variable importance measures

The idea is similar with the permutation variable importance measure in random

forest Breiman (2001). Intuitively, given that every other variable stays unchanged,

if a variable is important in predicting the response variable for a modeling procedure,

breaking the connection between the variable and the response should increase the

prediction error. There are many ways of undermining the information contained

in a variable, such as permuting the columns of this variable in the training set

(Breiman, 2001), deleting the column of the variable (Rinaldo et al., 2016). In terms

of prediction,

We use the superscripts X(j) to denote that the j-th covariate of the vector X

is replaced with a constant cj. Let � be a modeling procedure that provides an

estimator, denoted as �̂n(x), of the mean regression function f(x), where the subscript

n indicates the number of observations used in the modeling procedure. Before stating

the definition of the position variable importance, we need the following condition of

the limiting behavior of the modeling procedure �:

(A1) There exists a function g�,n(x) such that for any j = 1, ..., p, ||�̂n(X(j)) �

g�,n(X(j))||2
p

! 0 as n ! 1.

(A2) There exists a g�(x) such that ||g�,n(X(j))� g�(X(j))||2 ! 0 as n ! 1.

The convergence in probability is over the joint distribution of the nsample points

that are used to fit the procedure �. From the conditions, we emphasize here the

limiting behavior of � in high-dimensional cases, rather than its accurate prediction.

Condition (A1) implies that the limiting function, g�,n(x) , is allowed to depend on the

sample size n. We still require the existence of a fixed function g�(x) as in condition

(A2). Note that the function �̂n contains the data points {Xi}
n

i=1.

Definition 3 (position variable importance) Under the setting of (4.10), with

conditions (A1)-(A2) hold, the position variable importance of the covariate Xj with
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respect to the modeling procedure � is defined as

VIp(Xj; �, n) :=
E(g�,n(X(j))� Y )2

E(g�,n(X)� Y )2
� 1. ⇤

Remark 4 VIp focuses on the “position” of a variable in terms of the predictive

performance. It computes the relatively increased prediction error after data pertur-

bation of a variable on the test set, i.e., replacing the variable with a constant in

the test set. The larger VIp is, the more important a variable is in predicting the

output variable with respect to the modeling procedure �. It is a conditional variable

importance since all the other variables stay unchanged. ⇤

Remark 5 Both types of variable importance measures are interpreted as the percent

of increment of prediction error after changing a covariate. Our methods emphasize

the importance of a variable in predicting the output variable rather than model

identification. In practice, we can take the sample mean over the training set as an

estimate of cj. ⇤

Remark 6 The way of defining variable importance as a ratio instead of di↵erence

ensures that the VIp is linear-transformation invariant. So the variable importances

of one variable given by di↵erent modeling procedures are comparable. ⇤

3.2.2 The replaceability variable importance measures

We use the superscripts X(�j) to denote that the j-th covariate of the vector X is

deleted. Let �̂(�j)
n (x(�j)) be the estimator generated by the modeling procedure �

based on the variables X(�j) of n observations, i.e., {X(�j)
i

, Yi}
n

i=1. The superscript

(�j) on �̂(�j)
n is to emphasize its di↵erence from the function �̂n, the domain of which

is p-dimensional. We need the following conditions before stating the definition of

replaceability variable importance:
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(A3) For j = 1, ..., p, there exists a function g
(�j)
�,n

(x(�j)) such that ||�̂
(�j)
n (X(�j)) �

g
(�j)
�,n

(X(�j))||2
p

! 0 as n ! 1.

(A4) For j = 1, ..., p, there exists a function g
(�j)
�

(x(�j)) such that ||g
(�j)
�,n

(X(�j)) �

g
(�j)
�

(X(�j))||2
p

! 0 as n ! 1.

Definition 4 (replaceability variable importance) The replaceability variable im-

portance (VIr) of a covariate Xj with respect to the modeling procedure � is defined

as

VIr(Xj; �, n) :=
E(g(�j)

�,n
(X(�j))� Y )2

E(g�,n(X)� Y )2
� 1. ⇤

Remark 7 In comparison to VIp, VIr concentrates on the predictive performance

when a variable is wiped out in the training data. It is a common issue in real life

that many variables are highly correlated with each other. If modeling procedures

(e.g., LASSO, Random Forest) only care about making a good prediction, then cor-

related variables might receive similar low replaceability variable importance values,

since deleting one variable does not largely a↵ect the prediction accuracy. From the

perspective of replaceability, it is worth incorporating VIr as another variable impor-

tance measure. Though VIr is defined from a prediction perspective, it still provides

an understanding of how di↵erent modeling procedures utilize highly correlated vari-

ables. The larger VIr is, the more irreplaceable a variable is in predicting the output

variable with respect to the modeling procedure �. ⇤

3.2.3 Examples

Through the following theoretical examples, we illustrate the rationale behind the

variable importances VIp and VIr for both parametric and non-parametric cases.
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(1) Parametric case Let the data generating process be Y = X1+X2+ ✏0, where

EX1 = 0, Var(X1) < 1 and ✏0 ⇠ N(0, �2
0). Consider the following three cases:

(i) We have an additional variable X3 = X1+✏1, where ✏1 ⇠ N(0, �2
1). Let � be the

modeling procedure that fits a linear regression of Y on the covariates (X1, X2, X3).

(ii) We have an additional variable X3 that is independent of X1. Let � be the

modeling procedure that fits a linear regression of Y on the covariates (X1, X2, X3).

(iii) We have an additional variable X3 = X1 + X2. Let � be the modeling

procedure that chooses the model with the smallest BIC among linear regression

models of Y on all possible subsets of (X1, X2, X3).

Under proper conditions, we have that the estimated function by the linear re-

gression � converge to a function g�(x) as in Table 3.1. The theoretical importances

of the variables X1 and X3 are presented in Table 3.2. In the position variable im-

portance (VIp), the constant cj is chosen accordingly so that the e↵ect of the variable

is the smallest among all possible cj, i.e., cj = argmin
cj

VIp(Xj; �, cj).

Case g�(x) g
(�1)
�

(x(�1)) g
(�3)
�

(x(�3))

(i) x1 + x2 x2 + bx3 x1 + x2

(ii) x1 + x2 x2 x1 + x2

(iii) x3 x3 x1 + x2

Table 3.1: The limiting functions in the parametric case. Here the constant b =
Var(X1)

Var(X1)+�2
1
.

Case VIp(X1) VIr(X1) VIp(X3) VIr(X3)

(i) Var(X1)
�
2
0

1
�
2
0

�
2
1 ·Var(X1)

Var(X1)+�2
1

0 0

(ii) Var(X1)
�
2
0

Var(X1)
�
2
0

0 0

(iii) 0 0 Var(X3)
�
2
0

0

Table 3.2: The variable importances of X1 and X3 in the parametric case.
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Di↵erent patterns of the combination of VIp and VIr have di↵erent implications.

For a variable, if VIp = VIr > 0, the role of this variable cannot be replaced by another

variable for a static (without variable selection) modeling method �, which can be

seen in case (ii) for X1. If VIp = VIr = 0, the variable can either be independent of

any other variable or a confuser variable (correlated with a variable that is in the data

generating process), which can be seen in case (i) and (ii) for X3. In case (i), even

if X3 is correlated with X1, it does not has a position in g�(x), which is consistent

with its zero VIp with respect to �. If VIp > VIr = 0, the variable is replaceable by

other variables (or may totally dependent with some other variables) but treated as

irreplaceable by the modeling procedure �, which can be seen in case (iii) for X3. If

VIp 6= VIr > 0 with VIr small, the variable is important in predicting the response

but is replaceable by another variable (without it, the predictive performance of �

may not change much), which can be seen in case (i) for X1. In case (i), the VIr

importance of X1 will be close to 0 when it is highly correlated to X3 (�2
1 is small).

It is worth noticing that, for VIr(X1) in case (i), �
2
1 ·Var(X1)

Var(X1)+�2
1
is an increasing func-

tion of �2
1 and thus VIr(X1) is upper bounded by Var(X1)

�
2
0

that happens to be the

replaceability importance of X1 in case (ii). This coincidence can be explained by the

intuition that the replaceability importance of a variable reaches its maximum when

no variable can replace it (i.e., �2
1 ! 1 in our examples or in general all the variables

are independent with the target variable).

(2) Nonparametric case Let the data generating process be Y = f(X) + ✏0 =
P1

i=0 ai�i(X) + ✏0, where X ⇠ Uniform(�1, 1) and ✏0 ⇠ N(0, �2
0). Let P�i(x) be the

solution to min
t

E(t��i(x))2, where t is a linear combination of the basis {�j(x)}1j=0,j 6=i
.

Consider the following two cases:

(i) Non-orthogonal basis: f(x) = e
x with ai =

1
i! and �i(x) = x

i.

(ii) Orthogonal basis: f(x) = 1p
2�2x

with ai = 2i and{�i(x)}1i=0, where {�i(x)}1i=0

are the Legendre polynomials.

For both (i) and (ii), let � be the polynomial regressions of y on x, which selects the
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order of the polynomials using AIC. Under proper conditions, we have the estimated

function converges to g�(X) =
P1

i=0 ai�i(x).

Case VIp(�i(x)) VIr(�i(x))

(i) E(�i(x))2

�
2
0i!i!

E(P�i(x)��i(x))2
�
2
0i!i!

(ii) 22i

�
2
0
( 1
2i+1)

22i

�
2
0

1
2i+1

Table 3.3: The variable importances of �i(x) in the nonparametric case. In VIp, for
the i-th base term �i(x), the constant c that replaces the variable is chosen as such
that �i(c) = 0, where cdepends on i.

For any basic term �i(x) in the orthogonal basis case, when the constant c is

properly selected such that �i(c) = 0, the position importance and replaceability

importance of �i(x) are the same (non-zero). In the non-orthogonal basis case, when

a basic term, for example �10(x), is highly correlated with other basic terms, its VIr

importance is possibly close to 0 (P�i(x) is close to �i(x)) but its VIp importance is

nonzero. Similar interpretation of the combination of VIp and VIr can be obtained

as in the parametric case.

3.3 Cross-Validation Importance Learning (CVIL)

We use cross-validation to estimate the position and the replaceability variable impor-

tances. Cross-validation is a widely general method to evaluate and compare the pre-

dictive performances of modeling procedures on unknown data. In cross-validation,

we randomly split the data into the training set for model fitting and the test set

for model evaluation. However, predictive performance measured on only one split

of the data is usually considered unstable. Di↵erent methods of cross-validations

with multiple data splittings are thus proposed, which can be divided into two main

categories: exhaustive cross-validation (e.g. leave-p-out CV; leave-one-out CV) and

non-exhaustive cross-validation (e.g. k-fold CV; Monte Carlo CV; repeated learning-

testing). The exhaustive cross-validation averages over all possible splittings while
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non-exhaustive cross-validation averages over only a subset of all data splittings.

We introduce notations before stating our proposed cross-validation based esti-

mates of the variable importances. Denote a random permutation of the observations

as ⇡k, the first n1 observations as the training set, the rest n2 observations being the

test set, i.e., Z1 = (Xi, Yi)
n1
i=1 and Z2 = (Xi, Yi)ni=n1+1. We denote Z(j)

1 = (X(j)
i
, Yi)

n1
i=1

and denote Z(�j)
1 , Z(j)

2 and Z(j)
2 in a similar way. Let �̂n1(x) and �̂

(�j)
n1 (x(�j)) denote

an estimator of f(x), generated by a modeling procedure � on the training sets Z1

and Z(�j)
1 respectively. Define

CVILp(X
j; �, n, ⇡k) :=

P
n

i=n1+1(�̂n1(X
(j)
i
)� Yi)2/n2

P
n

i=n1+1(�̂n1(Xi)� Yi)2/n2

� 1 (3.2)

and

CVILr(X
j; �, n, ⇡k) =

P
n

i=n1+1(�̂
(�j)

n1
(X(�j)

i
)� Yi)2/n2

P
n

i=n1+1(�̂n1(Xi)� Yi)2/n2

� 1 (3.3)

be the cross-validation based importance learning (CVIL) of the variable importance

VIp and VIr respectively over one data splitting ⇡k. Consider a collection of data

splitting {⇡k}
K

k=1 with the same splitting ratio, we use 1
K

P
K

k=1 CVILp(Xj; �, n, ⇡k)

and 1
K

P
K

k=1 CVILr(Xj; �, n, ⇡k) for a more stable measure in practice.

3.3.1 Consistency

We establish the consistency of the two proposed CVIL variable importance measures

in this subsection. The following conditions are required.

(A5) The functions f and g� are bounded almost surely, i.e., ||f ||1 < 1 and

||g�||1 < 1.

(A6) For j = 1, ...., p, the functions �̂n, �̂
(�j)
n , g�,n ,g(�j)

�,n
are uniformly bounded for

n. For example, 9 M1 > 0 such that ||�̂n||1 < M1, 8 n � 1.
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Remark 8 The boundedness conditions (A5)-(A6) are commonly used in the regres-

sion function estimation literature. ⇤

Theorem 3 Suppose the conditions (A1), (A2), (A5), (A6) hold and n2 ! 1, the

cross-validation based position variable importance for Xj by the modeling procedure

� is consistent: ⇤

1

K

KX

k=1

CVILp(X
j; �, n, ⇡k)� VIp(Xj; �, n)

p

! 0

as n ! 1.

Proof 3.1

The proof is in the Appendix. ⇤

Theorem 4 Suppose conditions (A3)-(A6) hold and n2 ! 1, the cross-validation

based replaceability variable importance for Xj by the modeling procedure � is con-

sistent: ⇤

1

K

KX

k=1

CVILr(X
j; �, n, ⇡k)� VIr(Xj; �, n)

p

! 0

as n ! 1.

Proof 3.2

The proof is in the Appendix. ⇤

Remark 9 The functions g�,n, g
(�j)
�,n

do not need to have an explicit expression of x.

The theorems imply that the two variable importance measures mimic the proportion

of change in prediction error for the underlying modeling procedure � after a pertur-

bation to the dataset. The perturbation refers to fixation and deletion respectively

in CVILp and CVILr. If the modeling procedure itself is not predictive, CVIL-� may

fail to give an overall informative evaluation of the covariates. ⇤
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Remark 10 The above two variable importance measures can be applied to any

modeling procedure. Additionally, it provides a way of interpreting some mysterious

methods such as “black-box” machine learning algorithms since CVIL reflects how

the modeling procedure itself evaluates the predictive power of each variable in the

dataset. ⇤

3.4 Statistical Inference

In this subsection, we establish the asymptotic normality of CVIL under appro-

priate conditions and provide its corresponding confidence intervals. Denote µg =

EX(g�,n(X) � Y )2, µ� = EX|Z1(�̂n1(X) � Y )2, �2
g
= VarX(g�,n(X) � Y )2 and �

2
�
=

VarX|Z1(�̂n1(X)�Y )2. Then define µ
g(j) = EX(g�,n(X(j))�Y )2 and µ

g(�j) = EX(g
(�j)
�,n

(X(�j))�

Y )2, where the superscript (j) and (�j) indicate the di↵erence in the function g. De-

note �
g(j),g = �

g,g(j) = Cov((g�,n(X(j))� Y )2, (g�,n(X)� Y )2). We denote µ
�(j) , µ�(�j) ,

�
g(j) , �g(�j) , ��, ��(j) , ��(�j) , �g(�j),g, ��(j),� and ��(�j),� in a similar way. For the above

notations, we omit n and n1 in the subscripts for presentation convenience, e.g., we

use µg instead of µg,n and µ� instead of µ�,n1 . The following conditions are needed.

We also define µ
0
g
= EX(g�(X) � Y )2, (�0

g
)2 = VarX(g�(X) � Y )2, and µ

0
g(j)

, µ0
g(�j) ,

�
0
g(j)

, �0
g(�j) , �

0
g(j),g

, �0
g(�j),g

in a similar way, where the superscript 0 emphasizes that

the constant does not depend on n.

(B0) n2 ! 1.

(B1)
p
n2 · ||�̂n1(x)� g�,n1(x)||1

p

! 0 as n ! 1.

(B2)
p
n2 · ||�̂n1(x

(j))� g
(j)
�,n1

(x(j))||1
p

! 0 as n ! 1.

(B3)
p
n2 · ||�̂

(�j)
n1 (x(�j))� g

(�j)
�,n1

(x(�j))||1
p

! 0 as n ! 1.

(B4) 1p
n2
E

�������

0

@ �
2
�(j)

�
�,�(j)

�
�,�(j) �

2
�

1

A
� 1

2
0

@ (�̂n1(X
(j)
i
)� Yi)2 � µ

�(j)

(�̂n1(Xi)� Yi)2 � µ�

1

A

�������

3

! 0 as n ! 1,

where || · || is the Euclidean norm.
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(B5) 1p
n2
E

�������

0

@ �
2
�(�j) �

�,�(�j)

�
�,�(�j) �

2
�

1

A
� 1

2
0

@ (�̂n1(X
(�j)
i

)� Yi)2 � µ
�(�j)

(�̂n1(Xi)� Yi)2 � µ�

1

A

�������

3

! 0 as n !

1, where || · || is the Euclidean norm.

Remark 11 The above conditions put constraints on the splitting ratio n2/n1, based

on the specific convergence rate of the modeling procedure. For example, the ||�̂n1(x)�

gn1,�(x)||
2
2 is of order 1/n1 for parametric methods �, thus the requirement of the

splitting ratio is that n2/n1 ! 0. In practice, half-half splitting or 60/40 splitting

usually has a good performance to our experience. ⇤

Remark 12 Conditions (B4) and (B5) require that the standardized version of the

prediction error (�̂n1(X
(j)
i
)� Yi)2, (�̂

(�j)

n1
(X(�j)

i
)� Yi)2 and (�̂n1(Xi)� Yi)2 have third

moments of orderO(
p
n2). These errors need not necessarily to be uniformly bounded.

The conditions also require that corrX|Z1((gn1,�(X
(j))� Y )2, (gn1,�(X)� Y )2) 6= 1 and

corrX|Z1((g
(�j)
n1,�

(X(�j)) � Y )2, (gn1,�(X) � Y )2) 6= 1. For the variables that are not

used by a modeling procedure � at all, conditions (B4) and (B5) no longer hold

since �2
�
= �

2
�(j)

= �
�,�(j) and �

2
�
= �

2
�(�j) = �

�,�(�j) . For these variables, the CVILp

and CVILr importances are equivalent to 0. The results in this subsection focus on

variables that are used by the modeling procedure �. ⇤

Theorem 5 (Asymptotic Normality of CVILp) Assume conditions (A2), (B0),

(B1), (B2) and (B4) hold. Define VIp(Xj; �) =
E(g�(X(j))�Y )2

E(g�(X)�Y )2 � 1. We have

p
n2(CVILp(X

j; �, ⇡k)� VIp(Xj; �))
d
! N

0

@0,

 
�
0
g(j)

µ0
g

!2

+

 
µ
0
g(j)
�
0
g

(µ0
g
)2

!2

� 2
µ
0
g(j)
�
0
g,g(j)

(µ0
g
)3

1

A

as n ! 1. ⇤

Proof 3.3

The proof is in the Appendix. ⇤



3.4. Statistical Inference 56

We have similar results for CVILr as follows.

Theorem 6 (Asymptotic Normality of CVILr) Assume conditions (B0), (B1),

(B3) and (B5) hold. Define VIr(Xj; �) =
E(g

(�j)
� (X(�j))�Y )2

E(g�(X)�Y )2 � 1. We have

p
n2(CVILr(X

j; �, ⇡k)� VIr(Xj; �))
d
! N

0

@0,

 
�
0
g(�j)

µ0
g

!2

+

 
µ
0
g(�j)�

0
g

(µ0
g
)2

!2

� 2
µ
0
g(�j)�

0
g,g(�j)

(µ0
g
)3

1

A

as n ! 1. ⇤

Proof 3.4

The proof is in the Appendix. ⇤

One natural estimate of the standard deviation of the CVILp is to plug in the sample

mean, sample variance and sample covariance. For instance, the “sample” mean

estimate of µ0
g
based on the test sample is , i.e. µ̂0

g
= 1

n2

P
n

i=n1+1(�̂n1(X
(j)
i
)�Yi)2. The

other estimates are obtained in a similar way. Based on the asymptotic normality

of the CVIL, we can build the corresponding confidence interval as follows. we can

construct a 1� ↵ confidence interval for the VIp importance of Xj as following:

CVILp(X
j; �, ⇡k)± z↵/2

vuuut 1

n2

0

@
 
�̂0
g(�j)

µ̂0
g

!2

+

 
µ̂0
g(�j) �̂

0
g

(µ̂0
g
)2

!2

� 2
µ̂0
g(�j) �̂

0
g,g(�j)

(µ̂0
g
)3

1

A,

where z↵/2 is the lower ↵/2 quantile of the standard normal distribution. The 1� ↵

confidence interval for the VIr importance of Xj can be constructed in a similar way.

Remark 13 This result only applies to CVIL based on one data splitting. To build

a confidence interval for CVIL with multiple splittings, we can use the mean of the

plug-in estimators over multiple splittings. For example, the point estimate in the

confidence interval will be
P

K

k=1 CVILp(Xj; �, ⇡k) and the estimate of u0
g
will be µ̂00

g
=

1
n2

P
K

k=1

P
n

i=n1+1(�̂n1(X
(j)
i
; ⇡k)� Yi)2.
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3.5 Numerical Studies

In this section, we demonstrate the performance of CVILp and CVILr from various

simulation settings. Modeling methods such as generalized additive model (GAM),

neural network (NN), LASSO, linear regression with full model (LR) and stepwise

linear regression (LRs) are evaluated. Another two methods (random forest (RF) and

LMG), known for providing a variable importance measure within the methods, are

also considered. Here LMG is a relative importance measure from linear regression

which averages over all possible orderings of the variables when fitting a linear model.

Random forest provides two types of variable importance measures, denoted as RFI1

and RFI2 in this paper. For each variable, RFI1 is the normalized di↵erence between

prediction errors based on pre-permuted and post-permuted out-of-bag data; RFI2

evaluates the total decrease in node impurity (Gini index for classification and residual

sum of squares for regression) over all splits of the variable and all trees.

3.5.1 Simulations settings

We take into consideration various aspects of model settings, such as dimensions,

data generating models and variable correlations. The design matrix Xn⇥p is gen-

erated from a zero-mean multivariate normal distribution, where the (i, j) entry of

the covariance matrix is ⇢|i�j|, with ⇢ = 0 or 0.9. The noise variable ✏ is generated

from a univariate normal distribution N(0, 0.01). The model setups of the simulation

examples are described in Table 3.4. Basically, the first three examples (Examples

1.1 to 4.3) are linear cases and the other three are generalized linear/additive models.

For low-dimensional linear cases, we compare the performance of CVILp/CVILr-

� (�2{RF,LR,LRs,LASSO}) and three variable importance measures LMG, RFI1,

RFI2. For the high-dimensional linear case (Example 1.2), only CVILp-� (� 2

{RF,LASSO}) and RFI1/RFI2 are compared in the high-dimensional linear case

where CVILr is time-consuming and LMG is computationally infeasible. In non-linear

cases, we include CVILp/CVILr-� (�2{GAM,RF,NN}) and RFI1/RFI2.
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For each specific simulation setting, five times of two-fold cross-validation are

conducted in each repetition and we repeat the simulation 100 times. The averaged

variable importance measures are then computed.

Example n p model

Linear cases

1 150 1000 y = x1 + x2 + x3 +
1
2x4 +

1
2x5 �

1
2x6 �

1
2x7 + ✏

2 150 10+1 y = x1 + x2 �
1
2x3 �

1
8x4 + ✏, x11 = x1 + ✏0, ✏0 ⇠ N(0, 10e� 6)

3 150 10 y = c(x1 + x2 + ...+ x10) + ✏, c = 1, 10, 0

Nonlinear cases

4 150 10 y = exp(x1 + x2 � x3 +
3
4x4 �

3
4x5) + ✏

5 150 10 y = exp(x1) + exp(x2) + sin(x3) + x4 +
1
2x5 �

1
4x6 +

1
6x7 + ✏

Table 3.4: Model setups for simulation study. In this table, the dimension p = 10+1
indicates that we have 11 variables in total, among which 10 variables are generated
from a 10-dimensional multivariate normal distribution and one variable is specifically
generated (such as binomial distribution, linear combination of the first 10 variables).
Examples A1.1, A3 and A6 are deferred to the Appendix.

3.5.2 Performance of the CVIL based importance measures

The results of the simulations are displayed in Figures ( 3.1- B.5). When plotting the

random forest variable importances, we standardize RFI1 and RFI2 by dividing the

maximum value of variable importances among p variables so that the maximum value

for RFI1 and RFI2 is always 1 in the figures. For simplicity, we call the variables with

non-zero coe�cients “true” variables. We summarize the performance of the CVIL

and other methods in the following aspects.

Example 1

Replaceability may help the discovery of causal relationship In Example

1, we want to investigate the performance of CVIL in the case where there exists a
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replaceable true variable. In this example, X11 is not in the model but predictive due

to its high correlation with the true variable X1. From the CVILp-� and CVILr-�

importances with � being RF, LR, LRs or LASSO, we can make the conclusion that

{X1, X2, X3, X11} are predictive, among which X10 and X1 are replaceable. Then we

may consider to further investigate the relationship between these two replaceable

variables if we are interested in finding out who is in the true model (or who has

the causal relationship with the response rather than just correlation). But if we are

only provided with LMG, RFI1 or RFI2, no conclusions of causal relationship can be

made any further for X10 and X1.

Example 2

Joint importance and marginal importance In Example 2 when c = 1,

none of the confidence interval of CVILp-� and CVILr-� (� 2 {RF, LR, LRs, LASSO})

variable importances contain 0, meaning all the variable are utilized by the modeling

procedure � and are not replaceable. However, for a given variable, say X1, we have

CVILp-�(X1) > CVILr-�(X1) for � = RF, while CVILp-�(X1) < CVILr-�(X1) for

� = LR, LRs or LASSO. This is due to the di↵erence of the modeling procedure.

Note that the CVIL variable importances in our paper are from a marginal importance

perspective. For example, in linear regression, when all the variables are independent

with each other, deleting it (not using the information of the variable in both training

and testing) will lead to larger prediction error than replacing it with a constant (using

the information for training but not testing). However, RF is a modeling procedure

that divide data into subgroups (terminal nodes), and replacing one variable with a

constant actually destroys the joint relationship of the variables, thus the predictive

performance is worse than that of deleting a variable.

Relativeness and absoluteness These three sub-examples (c = 1, 10, 0) in

Example 2 are designed to interpret the scale of CVIL, as well as the relative-
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ness/absoluteness of variable importance measure. Comparing sub-examples in the

low correlation setting (⇢ = 0), (Figures 3.2, 3.3 and 3.4), whether a set of equally-

important (same values of coe�cients) variables are absolutely important or relatively

important is reflected by both the scale of CVIL and the modeling procedure �. We

notice that the scale of CVILp/CVILr and RFI2 increases dramatically when the coef-

ficient � changes from zero (Figure 3.4) to non-zero (Figures 3.2 and 3.3). An easy

interpretation of CVILp is the increased ratio of the prediction error when replac-

ing the variable with the sample mean (note the scales of CVIL are di↵erent between

c = 1 and c = 10). But for RFI, it is hard to interpret the scale since it only calculates

the di↵erence between pre-permuted and post-permuted data. Booth RFI1/RFI2 and

CVILp/CVILr-RF imply that random forest cannot di↵erentiate between c = 0 and

c 6= 0. It can be concluded that random forest importance measures the relativeness

rather than the absoluteness of the variable importance, but these two examples are

totally di↵erent in practice. A relative variable importance measure might lead to

misleading scientific findings.

Improvement of CVIL-RF over RFI Comparing the performances of CVILp/CVILr-

RF and RFI1/RFI2, it is easier to make conclusions of the “importance” of variables

with the confidence intervals provided by CVIL. When c = 1 or c = 10, all the vari-

ables are relatively equally important based on CVIL or RF. With the confidence

intervals provided by CVIL, CVIL improves the RFI by providing more details of

whether the value is significantly di↵erent than 0, thus provide researchers/practitioners

a clear cuto↵ (or equivalently reference like p-values) when employing the CVIL vari-

able importance measures.

Example 3

Applicability to non-linear models Example 3 is designed for data generated

from a generalized additive model and a generalized multiplicative model. By all the
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methods, only true variables with large coe�cients ((x1, x2, x3, x4) for Example 3) are

assigned large values of importance.

Negativity of the confidence interval In Example 3 (Figure 3.5), an inter-

esting phenomena is that the confidence intervals of CVILp/CVILr-GAM for {X5,..., X10}

are all negative (all numbers in the interval are negative). We mark this as a char-

acteristic of our method. When there is not enough sample size, fitting an extra

unimportant (not in the model or has small predictive power) variable may even in-

crease the prediction error. So we increase the sample size of Example 5 from n = 150

to n = 300, 500 and the confidence intervals begin to contain 0. The negativity of

the confidence interval actually implies the “no/negative predictive power” of the

variables under the current sample size, suggesting us to throw away these “definitely

unimportant” variables.
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Figure 3.1: Example 1, ⇢ = 0. This example is to demonstrate the replaceability

variable importance in terms of model selection/estimation.
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Figure 3.2: Example 2, c = 1, ⇢ = 0. This example is to demonstrate the absoluteness
and relativeness of variable importance measures.
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Figure 3.3: Example 2, c = 10, ⇢ = 0
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Figure 3.4: Example 2, c = 0, ⇢ = 0
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Figure 3.5: Example 3, ⇢ = 0
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3.6 Real Data Examples

We investigate the performance of CVILp and CVILr of some model procedures � on

four real data applications. In the real data analysis, we obtain the averaged values

of CVILp/CVILr using two-fold cross-validation based on 100 repetitions. Direct

variable importance measures such as RFI1/RFI2 and SOIL-ARM/BIC-p (Ye et al.,

2018) are conducted for comparison.

3.6.1 Prostate cancer data

We consider the prostate cancer study in Stamey et al. (1989); Friedman et al. (2001),

which investigates the correlation between the prostate specific antigen (psa) level

and a list of other 8 medical measurements in 102 patients before and after receiving a

radical prostatectomy. The postoperative psa values are only available in 97 patients,

so we use the dataset (available within the R package lasso2) used in Friedman et al.

(2001), with 97 patients and 9 variables. The descriptions of the response lpsa and 8

predictors are presented in Table 3.5.

Variables Description

X1: lcavol log of cancer volume

X2: lweight log of prostate weight

X3: age patient age

X4: lbph log of benign prostatic hyperplasia amount

X5: svi seminal vesicle invasion

X6: lcp log of capsular penetration

X7: gleason gleason score

X8: pgg45 percentage gleason score

Y : lpsa log of prostate specific antigen (psa) levels

Table 3.5: Variable description of prostate cancer data
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In comparison to the analysis in Friedman et al. (2001), we follow their practice of

treating all the variables as continuous. The residual analysis of the linear regression

of the response on all the predictors suggests that the linear model is a good fit. In

this example, to conduct the variable importance analysis, we consider the modeling

procedure � to be one of {RF,LR,LRs}. Additionally, we include four direct variable

importance measures: RFI1, RFI2, SOIL-BIC-p, SOIL-ARM, the results of which

are presented in Figure 3.6. Overall, CVILp and CVILr (with 95% confidence inter-

val) have similar performances over di↵erent modeling procedures �. All the CVIL

methods agree on that lcavol is the only important variable in terms of prediction,

indicating the high correlation between variables. For the performances of CVILp,

particularly, the procedure “replacing variables with the training sample mean” when

calculate the position importance is not e↵ective enough due to the low variance of

the variables lweight and svi in the dataset, hence their insignificance of position

importance. An alternative approach could be to set a grid of constants and pick the

one that achieves the largest position importance through cross validation. In the

analysis of Friedman et al. (2001), four variables lcavol, lweight, svi and lbph are

considered significant with Z-scores 5.37, 2.75, 2.47 and 2.06 respectively (Z-scores

with its absolute value larger than 2.002 are considered significant). Their analysis

is based on a training set with size 67 in one data split. So we fit a linear regression

directly on the whole dataset and the results of Z-score show the significant variables

are lcavol, lweight and svi under 0.05 significance level, which are the top 3 variables

in each variable importance measure in Figure 3.6.

To demonstrate that CVIL can be used to find potential predictive interaction

terms, we did a guided-simulation as following. First we generate a new response

based on the following linear model with two-way interactions:

Ynew = 0.1X1 + 0.1X4 + 0.1X6 +X1X6 +X4X6 + ✏, ✏ ⇠ N(0, 0.01).

Then we obtain the variable importance measures, presented in Table 3.6, for each

variable based on this new dataset {Ynew, X}. From Table 3.6, it can be observed that
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Figure 3.6: Importance measures of the prostate cancer data

it is hard for linear regression or CVIL-LR (with the response regressed on all the main

e↵ects of the variables) to detect all the three true variables from the perspective of

prediction, especially when the coe�cients of the main e↵ects are small. It is not sur-

prising to see that X6 is the only important variable suggested by CVILp/CVILr-LR,

since X6 appears in both interaction e↵ects X1X6, X4X6. In comparison, RFI1/RFI2

(if we pick the first three variables) and CVILp/CVILr-RF can identify the correct

main e↵ects even these variable importances are designed in terms of prediction power.

One reason of the success of RF is the tree structure naturally includes interactions

between variables. It is also worth mentioning that, unlike RFI1/RFI2 (we need to

decide the number of variables to be selected), CVIL provides statistical inference tool

such as the confidence interval to exclude the unimportant main e↵ects. Thus, by

comparing the di↵erent performances of LR and RF (and the corresponding variable

importances), researchers/practitioners can move further to investigate interactions

e↵ects.
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LR (p-value) CVILp-LR CVILr-LR RFI1 RFI2 CVILp-RF CVILr-RF

X1 8.33e-05 0.32 0.16 31.17 97.96 0.33 0.18
X2 0.39 -0.01 -0.03 2.17 24.19 0.02 -0.04
X3 0.60 -0.04 -0.04 -0.04 13.03 -0.01 -0.06
X4 0.10 0.02 0.00 49.27 251.49 0.71 0.58
X5 0.59 -0.05 -0.04 2.45 1.77 -0.01 -0.01
X6 1.84e-14 2.07 0.87 61.19 856.70 4.02 1.49
X7 0.28 0.02 -0.01 -1.03 0.57 0.00 0.01
X8 0.12 0.03 -0.02 6.25 14.63 0.05 -0.06

Table 3.6: Variable importance measure for the guided simulation of the prostate
data. The highlighted values are either p-values that are less than 0.05 or CVIL
importances whose 95% CI doesn’t contain 0.



Chapter 4

High-dimensional Adaptive
Minimax Sparse Estimation with
Interactions

4.1 Introduction

High-dimensional data are increasingly prevalent in various areas such as bioinfor-

matics, astronomy, climate science and social science. When the number of variables

p is larger than the sample size n in the linear regression setting, statistical estimation

of the regression function often requires some crucial conditions. One common con-

dition is the sparsity of the data generating model, under which only a small portion

of the variables are important to a↵ect the response variable. Under this condition,

both sparse estimation of high-dimensional linear regression functions and variable

selection have been well studied with fruitful theoretical understandings in the re-

cent decade. Minimax estimation of the regression function with main e↵ects only

are well investigated under lq-sparsity constraints with 0  q  1 Candes and Tao

(2007); Bunea et al. (2007); Zhang and Huang (2008); Van De Geer and Bühlmann

(2009); Bickel et al. (2009); Zhang (2010b); Knight and Fu (2000); Raskutti et al.

(2011); Rigollet and Tsybakov (2011); Wang et al. (2014); model selection consis-

tency results are also obtained for various model selection procedures Fan and Li

(2001); Zhao and Yu (2006); Zhang and Huang (2008); Lv and Fan (2009).

69
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However, models with only main e↵ects are often not adequate to fully capture the

nature of the data. Interaction terms may be necessary to not only improve the pre-

diction performance but also enhance the understanding of the relationships among

the variables, especially in areas such as social networks, medicine, and genetics,

where interaction e↵ects between the covariates are of enormous interest. Hierarchi-

cal constraints are often imposed to describe the underlying structure of models with

interaction e↵ects, such as the marginality principle Nelder (1977), the e↵ect heredity

principle Hamada and Wu (1992) and the “well-formulated models” Peixoto (1987).

We follow a popular naming convention of heredity conditions as adopted in Chip-

man (1996): strong heredity and weak heredity. Strong heredity assumes that if an

interaction term is in the model, then both of its corresponding main e↵ects should

also be included, while weak heredity only requires that at least one of its main ef-

fects should be included. In practice, it is possible that, compared to the interaction

terms, some main e↵ects are so small that including them in modeling may not be

beneficial from the perspective of estimation variability. Thus, in this work we take

into consideration the additional case where no heredity condition is imposed at all,

also for the purpose of theoretical comparison with the other two heredity conditions.

Many approaches are proposed for interaction selection, most of which can be

categorized into two types: joint selection and stage-wise selection. The joint se-

lection approach selects the main and interaction terms simultaneously by searching

over all possible models with interactions. A typical way of joint selection is to use

regularization methods with specially designed penalty terms. For example, Yuan et

al. Yuan et al. (2009) introduced a family of shrinkage estimators, which incorporate

the hierarchical structures through linear equality constraints on the coe�cients and

possess both selection consistency and root-n estimation consistency under fixed p.

Choi et al. Choi et al. (2010) re-parameterized the regression model with interactions

and applied an adaptive L1-norm penalty. The estimators have the oracle property

Fan and Li (2001) when p = o(n1/10). Hao et al. Hao et al. (2018) proposed a compu-

tationally e�cient regularization algorithm under marginality principle (RAMP) that
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simultaneously selects the main e↵ects, interaction e↵ects and quadratic e↵ects for

high-dimensional data p � n. They also verified the interaction selection consistency

property of the two-stage LASSO under some sensible conditions.

The stage-wise selection procedure first performs a main e↵ect selection (by ex-

cluding the interaction terms) to reduce the dimension of variables and then carries

out a joint selection on the reduced list of variables, which is computationally feasible

and e↵ective. For example, viewing the sliced inverse regression Li (1991) from a like-

lihood perspective, Jiang and Liu Jiang and Liu (2014) suggested a stage-wise variable

selection algorithm (SIRI) via inverse regression, which is able to detect higher or-

der interactions without any specific hierarchical structure. Hao and Zhang Hao and

Zhang (2014) proposed two stage-wise interaction selection procedures, IFORT and

IFORM, both of which enjoy the sure screening property in the first stage. Fan et

al. Fan et al. (2016) proposed a method, named the interaction pursuit, that incor-

porates both screening and variable selection in ultra-high dimensions. The method

possesses both the sure screening property and the oracle property in the two stages

respectively. For some other works on interaction selection, see Zhao et al. (2009);

Li et al. (2012); Bien et al. (2013); Hall and Xue (2014). While having the afore-

mentioned good properties, both types of interaction selection approaches have their

own disadvantages as well. The joint selection is usually computational infeasible

(insu�cient storage) when p is large; the stage-wise selection, as pointed out in Hao

and Zhang (2014), may be very di�cult to be theoretically justified under general

conditions.

Although there have been many novel developments on selection of interaction

terms as described above, little work has been done on the estimation of the regres-

sion function when interactions exist. In this paper, we present some theoretical

results on the minimax rate of convergence for estimating the high-dimensional re-

gression function with interaction terms under three di↵erent hierarchical structures.

Regardless of the heredity condition, our results show that the minimax rate is deter-

mined by the maximum of the total estimation price of the main e↵ects and that of
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the interaction e↵ects. Heredity conditions enter the minimax rate of convergence in

terms of the estimation price of the interaction e↵ects, namely r2(1 + log(K/r2))/n,

where r2 is the number of non-zero interaction e↵ects and K is the number of el-

igible candidate interaction terms under each of the di↵erent heredity conditions.

Consequently, a stronger heredity condition leads to possibly faster minimax rate of

convergence. For example, when the underlying model has no more than r1 non-zero

main e↵ects, at most K =
�
r1

2

�
interaction terms are allowed to enter the model under

strong heredity, compared to K = r1(pn � (r1 + 1)/2) under weak heredity. As will

be seen, only in certain situations is the minimax rate improved by imposing the

strong heredity, although strong heredity allows fewer eligible interaction terms than

the other two heredity conditions. Also, from the perspective of estimation, there

may be no di↵erence in rate of convergence between weak heredity and no heredity in

many situations. An intuitive reason is that, when the number of interactions is small

(log r2 is asymptotically away from log(r1pn)), the estimation price due to searching

over the eligible interaction terms remains the same under the above two heredity

conditions. Our results provide a complete characterization and comparison of the

minimax rates of convergence under the three heredity conditions.

In real applications, since one does not know the true heredity condition behind

the data (or practically the best heredity condition to describe the data at the given

sample size), it is desirable to construct an estimator that performs optimally no

matter which of the three heredity conditions holds. Such an estimator that adapts

to the true heredity condition as well as the unknown number of main and interaction

e↵ects will be obtained in this paper.

The derivations of both the upper and lower bounds have close connections to the

information theory. For the upper bound, the adoption of the model complexity in the

model selection criterion used (ABC) is from the perspective of description length in

information theory Rissanen (1983); Hansen and Yu (2001); Barron and Cover (1991);

Wallace and Freeman (1987); Hall and Hannan (1988). The ABC criterion is inspired

to handle the selection bias of AIC in high-dimensional case by adding an extra model
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complexity term and it leads to desirable resolvability bounds. For the lower bound,

Fano’s inequality in information theory plays a key role.

The remainder of the paper is organized as follows. In Section 4.2, we introduce

the model setup, the loss function and the heredity conditions for the problem. In

Section 4.3, after stating the required assumption, we present our main results of

the minimax rate of convergence under strong heredity. The theoretical results under

weak heredity and no heredity are presented in Section 4.4. Section 4.5.1 provides

detailed rates of convergence under di↵erent heredity conditions in relation to the

sparsity indices, the ambient dimension and the sample size, followed by Section

4.5.2 where we present some interesting implications of the detailed results. In

Section 4.6, we extend our results to quadratic models in which both quadratic and

interaction e↵ects are considered. In Section 4.7, we construct an adaptive estimator

that achieves the minimax rate of convergence without knowledge of the type of the

heredity condition or the sparsity indices (r1 and r2). The proofs of our results and

some technical tools are presented in the Appendix.

4.2 Preliminaries

Model Setup Suppose the dataset is composed of (X,Y), where X = (x1, ...,xp)

is a n ⇥ p matrix with n observations on p covariates and Y = (y1, ..., yn)T is the

response vector. We start by considering a linear regression model with both main

e↵ects and two-way interaction e↵ects:

Y = Z� + ✏, (4.1)

where � = ((�(1))T , (�(2))T )T is the overall coe�cient vector, Z = (X, [XX]) 2

Rn⇥( p
2+p
2 ) is the full design matrix, and the random noise vector ✏ ⇠ N(0, �2

In)

with known �. More specifically, �(1)
2 Rp and �

(2)
2 R(

p
2) are the coe�cients of

the main e↵ects and the two-way interaction e↵ects respectively. Here we define
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[XX] = (x1 � x2, ...,x1 � xp, ...,xp�1 � xp)T as the n⇥
�
p

2

�
matrix that contains all the

two-way interaction terms, where � denotes the point-wise product of two vectors.

In this paper, our focus is on the fixed design, i.e., the covariates are considered

given. Our goal is to estimate the mean regression function by a linear combination

of the covariates and interaction terms.

Loss Function Denote h(·) : R(p2+p)/2
! R as the mean regression function, i.e.,

h(z) = zT� for z 2 R(p2+p)/2. Denote ĥ(z) = zT �̂ as an estimated function of

h(z). In our fixed design setting, we focus on the prediction loss (or the Averaged

Squared Error) L(h, ĥ) := 1
n
||Z� � Z�̂||22, where k·k2 is the Euclidean norm. Set the

index sets for the main e↵ects and the interaction e↵ects as Imain = {1, ..., p} and

Iint = {(i, j) : 1  i < j  p} respectively.

Let I = (I1, I2) ⇢ Imain ✏ Iint (✏ is the Cartesian product) be the index set

of a model with |I1| non-zero main e↵ects and |I2| non-zero interaction e↵ects. In

this paper, we consider the data generating model ((4.1)) with at least two main

e↵ects and one interaction e↵ect purely for convenience, which does not a↵ect the

conclusions. Let ZI be the n ⇥ |I| submatrix of Z that corresponds to the model

index I. Its corresponding least squares estimator PIY is used to estimate Z�, where

PI is the projection matrix onto the column space of ZI. The loss function of using

model I is denoted as L(I) := 1
n
||PIY � Z�||22.

Heredity Conditions Denote the space of all the p+
�
p

2

�
-dimensional vectors with

a hierarchical notation of the subscripts as

R̈p = {� 2 Rp+(p2)|� = (�1, ..., �p, �1,2, ..., �p�1,p)}.

We refer to �(1) = (�1, ..., �p) as the subvector consisting of the first p elements in �,

and �(2) = (�1,2, ..., �p�1,p) as the subvector containing the rest of the elements. We
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introduce the following two vector spaces:

R̈p

weak
=
n
� 2 R̈p

| �i,j 6=0  �i 6=0 _ �j 6=0, 1  i < j  p

o

and

R̈p

strong =
n
� 2 R̈p

| �i,j 6=0  �i 6=0 · �j 6=0, 1  i < j  p

o
.

The space R̈p

strong captures the strong heredity condition that if the interaction term is

in the model, then both of its corresponding main e↵ects should also be included. The

space R̈p

weak
characterizes the weak heredity condition that if the interaction is in the

model, then at least one of its main e↵ects should be included. As pointed out in Hao

and Zhang (2017), the sign of the main e↵ect coe�cients are not invariant of linear

transformation of the covariates individually due to the existence of the interaction

terms. Heredity conditions are consequently meaningless without the specification of

the model parametrization. In our paper, we stick to the parameterization Z and

include the no heredity condition by considering the vector space R̈p. Define the l0-

norm of a vector a = (a1, ..., ap) as the number of its non-zero elements, i.e., kak0 =P
p

i=1 ai 6=0. For a vector space S 2

n
R̈p

strong, R̈p

weak
, R̈p

o
, define the corresponding

l0-ball and l0-hull of S as

B0(r1, r2;S) =
�
� = (�(1)

, �
(2)) 2 S,

���(1)
��
0
 r1,

���(2)
��
0
 r2

 
(4.2)

and

F0(r1, r2;S) =
�
h : h(z) = zT�, � 2 B0(r1, r2;S)

 

respectively. Note that B0(r1, r2;S) represents the collection of coe�cients � with

at most r1 non-zero main e↵ects and r2 non-zero interaction e↵ects under a certain

hierarchical constraint S. And F0(r1, r2;S) denotes the collection of linear combina-

tions of the covariates with coe�cients � 2 B0(r1, r2;S). Throughout this paper, we

assume that r1 + r2  n (otherwise the minimax risk may not converge), r1 � 2 and

r2 � 1.
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Minimax Risk It is helpful to consider the uniform performance of a modeling pro-

cedure when we have plentiful choices of modeling procedures during the analysis of

a statistical problem. The minimax framework seeks an estimator that minimizes the

worst performance (in statistical risk) assuming that the truth belongs to a function

class W . The minimax risk we consider is

min
ĥ

max
h2W

EL(ĥ, h),

where ĥ is over all estimators, and min and max may refer to inf and sup, more

formally speaking. In our work, we assume that the true mean regression function has

a hierarchical structure by imposingW = F0(r1, r2;S), with S 2

n
R̈p

strong, R̈p

weak
, R̈p

o
.

In this paper, we will use the notation bn ⌫ an or an � bn to represent an = O(bn).

If both bn ⌫ an and an ⌫ bn hold, we denote an ⇣ bn to indicate that an and bn are

of the same order. If an ⌫ bn holds without an ⇣ bn, we use the notation an � bn or

bn � an.

4.3 Minimax Rate of Convergence under Strong

Heredity

4.3.1 Assumption

We start by stating an assumption required for our result of the minimax rate of

convergence under strong heredity. In this paper, we use pn to indicate that the

number of main e↵ects p can go to infinity as n increases. We also allow r1 and r2 to

increase with the sample size n as well.

Sparse Reisz Condition (SRC) For some l1, l2 > 0, there exist constants b1, b2 >

0 (not depending on n) such that for any � = (�(1)
, �

(2)) with
���(1)

��
0
 min(2l1, pn

)
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and
���(2)

��
0
 min

�
2l2,

�
pn

2

��
, we have

b1 k�k2 
1
p
n
kZ�k2  b2 k�k2 . (4.3)

The SRC assumption requires that the eigenvalues of 1
n
ZT

IZI for any relevant

sparse submatrix ZI of Z are bounded above and away from 0. It was first proposed

in Zhang and Huang (2008). It is similar to the sparse eigenvalue conditions in Zhang

(2010c); Raskutti et al. (2011), quasi-isometry condition in Rigollet and Tsybakov

(2011); it is also related to the more stringent restricted isometry property (which re-

quires the constants b1, b2 are close to 1) in Candes and Tao (2007). Such assumptions

are standard in the l1-regularization analysis like LASSO and the Dantzig selector.

See Bickel et al. (2009); Meinshausen and Yu (2009); Koltchinskii (2009) for more

references.

One way to interpret the imposition of the SRC assumption is that k✓ � �k
2
2

characterizes, up to a constant, the Kullback-Leibler divergence between two joint

densities (the joint distribution of the response vector y under fixed design) with

parameters ✓ and � respectively, when ✓ and � are properly sparse. To see this, let zi

be the i-th row of Z and we have the joint density P✓ = (2⇡)�n/2
�
�n

Q
n

i=1 exp(�
1
2(yi�

zi✓)2/�2) with parameter ✓. The K-L distance is then D(P✓||P�) =
1

2�2

P
n

i=1(zi� �

zi✓)2 =
1

2�2 kZ(✓ � �)k22, which behaves like k✓ � �k
2
2 under SRC .

Such a relationship between the regression function space and the coe�cient space

is needed in deriving the minimax lower bound. Without this assumption, the metric

entropy of the regression function class may not be determined in terms of the numbers

of the main and interaction terms, and the actual minimax risk can converge at

di↵erent rates, depending on how kZ(✓ � �)k22 and k✓ � �k
2
2 are related. The SRC

is a relatively mild condition that imposes constraints on the sub-matrices of Z with

small sizes. It does not necessarily ensure that the design matrix has rank close to

min(n, pn). The SRC condition is expected to hold when the true regression function

has a sparse representation and the covariates are not highly correlated.



4.3. Minimax Rate of Convergence under Strong Heredity 78

4.3.2 Minimax rate

Now we present our main result of the minimax rate of convergence under strong

heredity. A simple estimator is enough for an e↵ective minimax upper bound. Let

Î = argminI2Istrong
r1,r2

P
n

i=1(Yi � Ŷ
I
i
)2 be the model that minimizes the residual sum of

squares over all the models that have exactly r1 non-zero main e↵ects and r2 non-zero

interaction e↵ects under strong heredity, denoted as Istrong
r1,r2

, where ŶI = PIY is the

projection of Y onto the column space of the design matrix ZI. For lower bounding

the minimax risk, the information-theoretical tool of using Fano’s inequality with

metric entropy understanding Yang and Barron (1999) plays an important role in the

proof.

Theorem 7 Under the Sparse Reisz Condition with l1 = r1  pn ^ n, l2 = r2 

�
r1

2

�
^ n and the strong heredity condition W = F0(r1, r2; R̈pn

strong), the minimax risk

is upper bounded by

min
ĥ

max
h2W

EL(ĥ, h)  sup
h2W

E(L(Î)) 
c�

2

n

 
r1

✓
1 + log

pn

r1

◆
+ r2

 
1 + log

�
r1

2

�

r2

!!
,

(4.4)

where c is a pure constant; the minimax risk is lower bounded by

min
ĥ

max
h2W

EL(ĥ, h) � c1
�
2

n

 
r1

✓
1 + log

pn

r1

◆
_ r2

 
1 + log

�
r1

2

�

r2

!!
(4.5)

for some positive constant c1 that only depends on the constants b1 and b2 in the SRC

assumption. ⇤

From the theorem, under the SRC and the strong heredity condition, the minimax

rate of convergence scales as: min
ĥ
maxh2W EL(ĥ, h) ⇣

�
2

n
(r1(1 + log pn

r1
) _ r2(1 +

log(
�
r1

2

�
/r2))).
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Remark 14 The term r1(1 + log(pn/r1))/n = r1
n
+ r1

n
log(pn/r1) reflects two aspects

in the estimation of the main e↵ects: the price of searching among
�
pn

r1

�
possible

models, which is of order r1 log(pn/r1)/n, and the price of estimating the r1 main

e↵ect coe�cients after the search. Thus r1(1 + log(pn/r1))/n is the total price of

estimating the main e↵ects. Similarly, r2
�
1 + log

��
r1

2

�
/r2

��
/n is the total price of

estimating the interaction e↵ects. ⇤

Remark 15 Our result of the upper bound is general and holds regardless of the

size of r1. When r1 is large (e.g., close to n), the upper bound converges slowly or

even does not converge at all. ⇤

4.4 Minimax Rate of Convergence under Weak

Heredity and No Heredity

Similar results are obtained under weak heredity and no heredity. The minimax rate

of convergence is still determined by the maximum of the total price of estimating the

main e↵ects and that of the interaction e↵ects. When the heredity condition changes,

the total price of estimating the interaction e↵ects may di↵er, possibly substantially.

Theorem 8 Under the Sparse Reisz Condition with l1 = r1  pn ^ n, l2 = r2 

(r1pn) ^ n and the weak heredity condition W = F0(r1, r2; R̈pn

weak
), the minimax risk

is of order

min
ĥ

max
h2W

EL(ĥ, h) ⇣
�
2

n

✓
r1

✓
1 + log

pn

r1

◆
_ r2

✓
1 + log

r1 · pn

r2

◆◆
. (4.6)

⇤

Theorem 9 Under the Sparse Reisz Condition with l1 = r1  pn ^ n, l2 = r2 



4.5. Comparisons and Insights 80

�
pn

2

�
^ n and the no heredity condition W = F0(r1, r2; R̈pn), the minimax risk is of

order

min
ĥ

max
h2W

EL(ĥ, h) ⇣
�
2

n

 
r1

✓
1 + log

pn

r1

◆
_ r2

 
1 + log

�
pn

2

�

r2

!!
. (4.7)

⇤

Remark 16 We apply standard analytical tools in the derivations of minimax upper

and lower bounds in the preceding theorems. For the upper bound, it is crucial to

deal with the selection bias, which arises from the di�culty in identifying the set of

nonzero coe�cients among combinatorial many choices and thus can be very large

since pn is allowed to be arbitrarily large. Note that the familiar analyses and results

for bias-correction type of criteria such as AIC are not applicable here. The oracle

inequality for the ABC criterion turns out to work e↵ectively with carefully designed

model complexity terms for establishing the optimal-rate upper bounds. For the

lower bound, Fano’s inequity is expected to do the job, but there are significant details

to work out to obtain matching upper and lower bounds in order. In particular, we

need to sort out the metric entropy behaviors of the target function classes defined

under the di↵erent heredity conditions, which involves the relationship between the

parameter (coe�cient) space and the regression function space. The risk bounds

in the form of the maximum value of the precisely derived prices of estimating the

main e↵ects and the interactions respectively shed light on understanding how the

number of the main e↵ects and that of the interactions, together with the hierarchical

structure, jointly determine the minimax rate of convergence. ⇤

4.5 Comparisons and Insights

In this section, we summarize the consequences of our main results in three scenarios

for an integrated understanding. For brevity, we introduce the following notation.

For a, b 2 N+ and a � b, define the quantity ⇠a
b
:= b(1 + log(a/b)). The total price of
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estimating the main e↵ects and the interaction e↵ects are then denoted as �2
⇠
pn
r1
/n

and �
2
⇠
K

r2
/n respectively, where K depends on pn, r1 and the heredity condition.

We also use the notation KS ((4.14)) to indicate that K depends on the heredity

condition S. Let

M(S) := min
ĥ

maxEL(ĥ, h)
h2F0(r1,r2;S)

denote the minimax risk under the heredity condition S.

4.5.1 Detailed rates of convergence

Since the minimax rate of convergence depends on the maximum of ⇠pn
r1

and ⇠K
r2
, we

discuss the cases where one of the two quantities is greater than the other.

Scenario 1: r2 � r1 When there are more main e↵ects than interaction e↵ects in

the sense that r2 � r1, the minimax rate of convergence is not a↵ected by the heredity

conditions. When log(pn/r1) ⌫ log r1, i.e., log(pn/r1) ⇣ log pn, we always have

⇠
pn
r1

⌫ ⇠
p
2
n

r2 = max{⇠
r
2
1

r2 , ⇠
r1pn
r2

, ⇠
p
2
n

r2 }, i.e., ⇠
pn
r1

⌫ ⇠
K

r2
regardless of the heredity conditions.

When log(pn/r1) � log r1, it depends on the order of r2 to further decide which

estimation price is larger. When log(pn/r1) � log r1, let r⇤ be such that ⇠pn
r1

⇣ ⇠
r
2
1

r⇤ . If

r⇤ ⌫ r2, we have ⇠pn
r1

⌫ ⇠
K

r2
; otherwise ⇠pn

r1
� ⇠

K

r2
.

In summary, given that r2 � r1, the minimax risk is of order

M(S) ⇣

8
><

>:

�
2

n
⇠
r
2
1

r2 , if r⇤ � r2 � r1 and log pn

r1
� log r1,

�
2

n
⇠
pn
r1
, otherwise,

for S 2

n
R̈p

strong, R̈p

weak
, R̈p

o
.

Remark 17 The cuto↵ relationship log(pn/r1) ⌫ log r1, or equivalently log(pn/r1) ⇣

log pn, actually characterizes the sparseness of the main e↵ects. It requires sparseness

in log order that log r1 is not too close to log pn. For example, log(pn/r1) ⌫ log r1 holds
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when pn ⇣ exp(r1) or pn ⇣ r
1+↵
1 with a constant ↵ > 0, but not when pn ⇣ r1 log(r1),

although these cases all satisfy that r1 ⌧ pn. More insights of Scenario 1 are discussed

in 2) of subsection 4.5.2. ⇤

Remark 18 This scenario also includes the special case when pn = O(1), where we

must have r1 = O(1) and r2 = O(1). The minimax rate of convergence is of the

standard parametric order 1/n regardless of the heredity conditions. ⇤

Scenario 2: r1 � r2 and log pn � r1 When there exist more interaction terms,

i.e., r1 � r2, under weak or no heredity, the quantity ⇠K
r2

is always no less than (in

order) ⇠pn
r1
.

For strong heredity, we discuss case by case. When log(pn/r1) � log r1, we always

have ⇠pn
r1

� ⇠
r
2
1

r2 . When log(pn/r1) ⌫ log r1, it depends on the order of r2 to decide

which estimation price is larger in terms of order. When log(pn/r1) ⌫ log r1, let r0⇤ be

such that ⇠pn
r1

⇣ ⇠
r
2
1

r0⇤
. If r2 ⌫ r

0
⇤, we have ⇠pn

r1
� ⇠

r
2
1

r2 ; otherwise ⇠
pn
r1

� ⇠
r
2
1

r2 . In summary,

given that r1 � r2 and log pn � r1, the minimax risk is of order

M(R̈pn
strong) ⇣

8
><

>:

�
2

n
⇠
pn
r1
, if r1 � r2 � r

0
⇤ and log pn

r1
⌫ log r1,

�
2

n
⇠
r
2
1

(r2^r21)
, otherwise,

M(R̈pn

weak
) ⇣

�
2

n
⇠
r1pn

(r2^r1pn),

M(R̈pn) ⇣
�
2

n
⇠
p
2
n

(r2)
.

Remark 19 The term ⇠
K

(r2^K) deals with the case where r2 is inactive in the sense

that r2 exceeds K under the specific heredity condition. For example, with r2 �
�
r1

2

�
,

the upper bound r2 in ((4.2)) does not provide any new information of the number

of non-zero interaction e↵ects for strong heredity. Thus the l0-ball B0(r1, r2; R̈p

strong)

is automatically reduced to a subset B0(r1,
�
r1

2

�
; R̈p

strong). ⇤
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Scenario 3: r1 � r2 and log pn ⌫ r1 When the number of the main e↵ects

pn is at least exponentially as many as the non-zero main e↵ects in the sense that

log pn ⌫ r1, ⇠pnr1 is always no less than ⇠K
r2

in terms of order. In fact, in this scenario,

the results of the minimax rates under weak or no heredity are exactly the same as

those in Scenario 2. For completeness, we still present the results. Specifically, the

minimax risk is of order

M(R̈pn
strong) ⇣

�
2

n
⇠
pn
r1
,

M(R̈pn

weak
) ⇣

�
2

n
⇠
r1pn

(r2^r1pn),

M(R̈pn) ⇣
�
2

n
⇠
p
2
n

r2
.

4.5.2 Interesting implications

1. Comparing the results for weak heredity and no heredity, we may or may not

have distinct rates of convergence. When there exists a small constant c > 0

such that log r2  (1 � c) · log(r1pn) for large enough n, there is no di↵erence

between weak heredity and no heredity from the perspective of rate of conver-

gence in estimation. It still remains an open question how they are di↵erent for

the problem of model identification. Without the above relationship between

r1 and r2, there is no guarantee that the rates of convergence are the same

under weak heredity and no heredity. For example, when r2 = r1pn/ log r1, if

in addition we have r1 = pn  n
1/2, the minimax rates are the same under

weak and no heredity, at M(R̈pn

weak
) ⇣ M(R̈pn) ⇣ r1pn log log r1/(n log r1). In

contrast, if instead we have r1 =
p
pn, then the minimax rates are di↵erent,

with M(R̈pn

weak
) ⇣ r1pn log log r1/(n log r1) and M(R̈pn) ⇣ r1pn/n.

2. Heredity conditions do not a↵ect the rates of convergence in some situations. For

example, when there exist more main e↵ects than interaction e↵ects (Scenario

1), the minimax rates of convergence are the same under all three heredity
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conditions. To understand why the heredity condition is blurred when the

number of main e↵ects dominates, we first observe the risk increment from

strong heredity (�
2

n
(⇠pn

r1
+ ⇠

r
2
1

r2 )) to no heredity (�
2

n
(⇠pn

r1
+ ⇠

p
2
n

r2 )). Note the risk

bound increment is of order 2 r2
n
log pn

r1
, which is smaller than 2 r1

n
(1 + log pn

r1
) ⇣

1
n
⇠
pn
r1

when r2 � r1. Thus, the risk increment does not a↵ect the rate of the

convergence. The estimation price of the interaction terms may be of a higher

order than that of the main terms, but interestingly in this case (r2 � r1), the

di↵erences among the prices in learning the interaction terms under di↵erent

heredity conditions are always not larger (in order) than the price of learning

the main e↵ects.

3. From the detailed rates of convergence, under any of the three heredity condi-

tions, the estimation of the interaction terms ⇠K
r2
/n may become the dominating

part. There are two di↵erent reasons why the price of estimating the interac-

tion terms becomes higher than that for the main e↵ect terms. One is that the

number of interaction terms is more than that of the main e↵ect terms. The

other reason is that although the main e↵ect terms outnumber the interaction

terms, the ambient dimension is so large that even estimating a small number

of the interaction terms is more challenging than estimating the main e↵ects.

4. How much can the rate of convergence be improved by imposing strong hered-

ity? We quantify this improvement by taking the ratio of two minimax rates

of convergence given the ambient dimension pn, i.e., M(R̈pn
strong)/M(R̈pn

weak
)

and M(R̈pn
strong)/M(R̈pn). In Scenario 2 (r1 � r2 and log pn � r1), we have

M(R̈pn
strong)/M(R̈pn

weak
) ⌫ log pn/pn, where the maximal improvement happens

when r1 ⇣ log pn and r2 ⇣ r1pn. That is, the minimax rate of convergence under

strong heredity is up to log pn/pn times faster than that under weak heredity.

Similarly we have M(R̈pn
strong)/M(R̈pn) ⌫ log2 pn/p2n, where the maximal im-

provement log2 pn/p2n happens at r1 ⇣ log pn and r2 ⇣ p
2
n
.

5. In Scenario 3 (r1 � r2 and log pn ⌫ r1), the improvement
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M(R̈pn
strong)/M(R̈pn

weak
) ⌫ log pn/pn, where the maximal improvement happens

when r2 ⌫ r1pn. In this scenario, the maximal improvement of the minimax

rate from weak heredity to strong heredity depends on the ambient dimension

pn. In other words, the larger the ambient dimension is, the more improvement

of minimax rate of convergence we have from weak heredity to strong heredity.

Similarly we have M(R̈pn
strong)/M(R̈pn) ⌫ log pn/p2n, where the equality holds if

r1 = O(1) and r2 ⇣ p
2
n
.

6. If r2 is active for all three heredity conditions, i.e., r2 
�
r1

2

�
, the maximal

improvement of minimax rate from weak/no heredity to strong heredity turns

out to be consistent. That is, M(R̈pn
strong)/M(R̈pn

weak
) ⇣ M(R̈pn

strong)/M(R̈pn) ⌫

1/ log pn, where the maximal improvement happens at r1 ⇣ log pn and r2 ⇣ r
2
1.

4.6 Extension to Quadratic Models

Our aforementioned results do not consider quadratic e↵ects. When both quadratic

and two-way interaction e↵ects are included in a model (called a quadratic model),

it is easy to see the rates of convergence in the theorems still apply under both

strong heredity and weak heredity. However, in the case of no heredity, the number

of quadratic terms enters into the minimax rate. Assume one model has at most r3

extra non-zero quadratic terms. We need the following assumption.

Sparse Reisz Condition 2 (SRC2) For some l1, l2, l3 > 0, there exist constants

b1, b2 > 0 (not depending on n) such that for any � = (�(1)
, �

(2)
, �

(3)) with
���(1)

��
0


min(2l1, pn
),
���(2)

��
0
 min(2l2,

�
pn

2

�
) and

���(3)
��
0
 min(2l3, pn), we have

b1 k�k2 
1
p
n
kZ⇤

�k2  b2 k�k2 ,

where Z⇤ = (X, [XX],X2) is the new design matrix, with X2 representing the n⇥ p

matrix that contains all the quadratic terms.
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Next we state the minimax results for quadratic models. Strong heredity and

weak heredity are exactly the same condition since a quadratic term has only one

corresponding main e↵ect term. That is, both strong and weak heredity require that

if a quadratic term X
2
1 has a non-zero coe�cient, then X1 must also have a non-zero

coe�cient. Similarly, under SRC2 with l1 = r1, l2 = r2, l3 = r3, the minimax rate of

convergence under strong/weak heredity for the quadratic model stays the order

�
2

n

 
r1(1 + log

pn

r1
) _ r2(1 + log

�
r1

2

�

r2
)

!
; (4.8)

under no heredity, its order becomes

�
2

n

 
r̄(1 + log

pn

r̄
) _ r2(1 + log

�
pn

2

�

r2
)

!
, (4.9)

where r̄ = r1 _ r3.

Remark 20 The proofs of the rates are similar with the proofs in the two-way in-

teraction case. So we do not include them in the paper. ⇤

4.7 Adaptation to Heredity Conditions and Spar-

sity Indices

In the previous sections, we have determined the minimax rates of convergence for

estimating the linear regression function with interactions under di↵erent sizes of

sparsity indices r1, r2 and heredity conditions S. These results assume that r1, r2

and S are known. However, in practice, we usually have no prior information about

the underlying heredity condition nor the sparsity constraints. Thus it is necessary

and appealing to build an estimator that adaptively achieves the minimax rate of
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convergence without the knowledge of S, r1 and r2. We construct such an adaptive

estimator as below.

To achieve our goal, we consider one specific model and three types of models

together as the candidate models:

F̄ = {Ipn,(p2n�pn)/2} [ {I
strong

k1,k2
} [ {I

weak

k1,k2
} [ {I

no

k1,k2
},

where Ipn,(p2n�pn)/2 denotes the full model with pn main e↵ects and all the
�
pn

2

�
in-

teraction e↵ects. It is included so that the risk of our estimator will not be worse

than order RZ/n, in which RZ is the rank of the full design matrix. With a slight

abuse of the notation, we use I
strong

k1,k2
, Iweak

k1,k2
and I

no

k1,k2
to represent a model with k1

main e↵ects and k2 interaction e↵ects under strong heredity, weak heredity and no

heredity respectively. Note that some models appear more than once in F̄ , which

does not cause any problem for the goal of estimating the regression function. The

details of the range of k1 and k2 for each model class are shown in ((4.11)), ((4.12))

and ((4.13)).

Model selection criteria with a bias-correction term (e.g., AIC Akaike (1974), FPE

Akaike (1969), Cp Mallows (1973)) have been studied and shown to have asymptotic

optimal properties (e.g., Shibata (1983); Li (1987); Polyak and B. Tsybakov (1990))

under the constraint that there are only polynomially many models per size in the

candidate set. However, when an exponential number of models or more are consid-

ered in high-dimensional cases, these selection criteria may fail due to severe selection

bias (see Yang and Barron (1998)). The ABC criterion in Yang (1999) was proposed

to overcome this limitation by adding an extra model complexity term. The selected

model by ABC was proved to have desirable resolvability bounds. So we apply the

ABC criterion to select the best model from the candidate set. Note that ABC was de-

rived under information-theoretic considerations, heavily influenced by works in the

intersection of information theory and statistics Barron and Cover (1991); Barron

et al. (1994); Yang and Barron (1998). The specific application of the general ABC
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criterion for the present problem also naturally follows from a coding perspective.

For a model I in F̄ , the criterion value is

ABC(I) =
nX

i=1

(Yi � Ŷ
I
i
)2 + 2rI�

2 + ��
2
CI, (4.10)

where ŶI = PIY is the projection of Y onto the column space of the design matrix

ZI with rank rI, CI is the descriptive complexity of model I and � > 0 is a constant.

The model descriptive complexity satisfies CI > 0 and
P

I2F̄ exp(�CI)  1. From

an information-theoretic perspective, the model complexity term can be considered

as the code-length of a prefix-code that describes the model.

The model descriptive complexity is crucial in building the adaptive model. Let

⇡0, ⇡1, ⇡2, ⇡3 2 (0, 1) be four constants such that ⇡0 + ⇡1 + ⇡2 + ⇡3 = 1. Set

CIpn,(p2n�pn)/2
= � log ⇡0 for the full model,

CIstrong
k1,k2

= � log ⇡1+log(pn^n)+ log

✓✓
k1

2

◆
^ n

◆
+log

✓
pn

k1

◆
+log

✓�
k1

2

�

k2

◆
(4.11)

for 1  k1  pn ^ n and 0  k2 
�
k1

2

�
^ n,

CIweak
k1,k2

= � log ⇡2 + log(pn ^ n) + log (K ^ n) + log

✓
pn

k1

◆
+ log

✓
K

k2

◆
(4.12)

with K = k1pn �
�
k1

2

�
� k1 for 1  k1  pn ^ n and 0  k2  K ^ n, and

CIno
k1,k2

= � log ⇡3+log(pn^n)+ log

✓✓
pn

2

◆
^ n

◆
+log

✓
pn

k1

◆
+log

✓�
pn

2

�

k2

◆
, (4.13)

for 1  k1  pn ^ n and 0  k2 
�
pn

2

�
^ n. This complexity assignment recognizes

that there are three types of models under the di↵erent heredity conditions.

Let Î = argminI2F̄ ABC(I) denote the model that minimizes the ABC criterion

over the candidate model set F̄ and ŶÎ := PÎY denote the least squares estimate of
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Y using the model Î. Then we have the following oracle inequality.

Theorem 10 When � � 5.1/ log 2, the worst risk of the ABC estimator ŶÎ is upper

bounded by

supE(L(Î))
h2F0(r1,r2;S)


c�

2

n


RZ ^

✓
r1

✓
1 + log

pn

r1

◆
+ r2

✓
1 + log

KS

r2

◆◆�
,

with

KS =

8
>>>><

>>>>:

�
r1

2

�
, if S = R̈p

strong,

r1pn, if S = R̈p

weak
,

�
pn

2

�
, if S = R̈p

,

(4.14)

where RZ is the rank of the full design matrix Z and the constant c only depends on

the constant �. ⇤

From the theorem, without any prior knowledge of the sparsity indices, the con-

structed ABC estimator adaptively achieves the minimax upper bound regardless of

the heredity conditions. The result also indicates a major di↵erence between estima-

tion and model identification. For estimation, from the result, we are able to achieve

adaptation with respect to the heredity condition without any additional assumption.

For model identification, although we are not aware of any work that addresses the

task of adaptation over the unknown heredity nature, it seems certain that much

stronger assumptions than those for consistency under an individual heredity condi-

tion will be necessary to achieve adaptive selection consistency. Achieving adaptive

model selection consistency under di↵erent types of conditions remains an important

open problem on model selection theory and methodology.

Remark 21 We do not require any assumptions on the relationship among the vari-

ables for the upper bound in the theorem. In particular, the variables may be arbitrary

correlated. ⇤
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Remark 22 The order RZ/n is achievable when we use the projection estimator

from the full model. Thus the minimax rate of convergence is no slower than the

order RZ/n. As is known, the rank of the design matrix plays an important role in

determining the minimax rate of convergence under fixed design Yang (1999); Rigollet

and Tsybakov (2011); Wang et al. (2014). For our result, when pn, r1 and r2 together

make the total estimation price of the true model small enough, the upper bound will

be improved from RZ/n to (r1(1 + log(pn/r1)) _ r2(1 + log(
�
r1

2

�
/r2)))/n. ⇤

Remark 23 The ABC estimator may not be practical when pn is large. In such a

case, stochastic search instead of all subset selection may be used for implementation,

although the associated theoretical understanding is yet to be established. ⇤

Remark 24 The term “RZ ^ ” automatically applies to the lower bound under

whichever heredity condition, since under the SRC assumption, it intrinsically re-

quires that r1(1 + log(pn/r1)) _ r2(1 + log(
�
r1

2

�
/r2)) is no larger than RZ in terms of

order. Otherwise, the lower bound (r1(1+log(pn/r1))_r2(1+log(
�
r1

2

�
/r2)))/n by our

proof will exceed the upper bound RZ/n, which leads to a contradiction. We give a

specific example in Appendix C.5 to illustrate this requirement. ⇤



Chapter 5

Conclusion and Discussion

Variable importance is aimed to find the important variables for explanation or pre-

diction of the response. The motivation is most natural but the task of devising an

importance measure is quite tricky. Several challenges immediately arrive: 1. Im-

portance depends on the goal of the analysis and application. Di↵erent goals may

require di↵erent importance measures. 2. Should importance be based on parametric

models or nonparametric models? Both seem to be valuable in our view. 3. Should

the importance measure be purely relative to compare di↵erent variables or should

their values have some meaning on their own?

The topic is even controversial, with attitude ranging from enthusiasm in research

and/or application, to reluctant acceptance as a practical approach to deal with many

predictors, to total pessimism on the topic that dismisses the possibility of general

successes. The di↵erent opinions are all valid, properly reflecting the complexity and

multi-facet nature of the problem.

In our opinion, there are two important facts to keep in mind. One is that people

crave for importance measures, love ranking, and they put them in use. This calls for

more research on the topic. The other is that the currently dominating practice is still

“winner-takes-all”, which is definitely a culprit of irreproducibility of many research

results. For reasonably complex data, making inference and decision based on a final

selected model can lead to severely biased conclusions. A reliable importance measure

can provide much needed complementary information to that from a final model and

91
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substantially improve the reliability of data analysis.

We have investigated the variable importance in linear regression and classifica-

tion cases. The proposed new variable importance measure (SOIL) is driven by model

combination for considering more than a single model, thus giving us an understand-

ing of all the variables, instead of only the “important” ones in view of a single model.

It is seen from both the simulation results and the real data examples that the SOIL

approach has several desirable features such as exclusion/inclusion, order preserving

and robustness in several aspects, and performs very well compared to other variable

importance measures considered.

As Grömping (2015) pointed out in her paper, there is no commonly accepted the-

oretical framework in the variable importance area. Not surprisingly, many critiques

on variable importance measures come up. Ehrenberg (1990) pointed out that one

should focus on the underneath causal mechanism instead of the relative importance.

We think SOIL is satisfactory in this regard. First, given enough information, SOIL

assigns variable importance close to one for these true predictors, which is consis-

tent with revealing the causal relationship between the response and the predictors.

Second, the SOIL importance of a variable goes beyond relative assessment of the

variables and it gives an absolute sense on how much a variable is needed in the

linear modeling with the available information. In regression settings, data analysts

often use t statistic or p-value to see if a variable is significant or not. Kruskal and

Majors (1989) pointed out that this pertains to a di↵erent concept. In their view,

variable importance is a population property while significance is a property of both

population and sample. To us, since all models are only approximations to model

the data, there is advantage to treat variable importance measures as data dependent

quantities that reflect the nature of the data. SOIL intends to do just that.

Note that the two importance measures by the random forecast are not based on

parametric modeling. When the GLM framework does not work for the data, our

SOIL approach may not provide valuable information while random forest based ones

may.
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To be fair, it may be debatable if a variable that has some predictive power (one

way or another) but is not needed in the best model should be given significant

(reasonably strong) importance or not. Our view is that it seems rare to consider the

covariates only individually and thus it is better to reflect the goal of finding the best

set of covariates to explain the response in the importance measures. From this angle,

while giving out relevant variables is certainly useful, it may not be most essential

from a modeling perspective.

Through our simulation work, we have shown that the other methods often give

clearly higher importance to variables that are not in the true model and/or give lower

values for some variables in the true model when the covariates are correlated, error

variance is large, or there are interaction terms. In real applications, these situations

occur rather commonly. Thus the results seem to suggest that when sparse modeling

is the goal, those importance measures may not directly provide objective variable

assessment information.

The proposed CVIL takes the “prediction” importance of a variable into consid-

eration and incorporates two ways of examining variable importance: position and

replaceability. CVILp concerns that the change of the prediction performance if we

only have a limited information of a variable (the mean), and CVILr focuses on if a

variable could be replaced in the sense that the removal of a replaceable variable will

not substantially a↵ect the prediction performance. The combination of the two vari-

able importances can also be a tool for the purpose of model identification. Further

investigation are then desired for those replaceable variables rather simply looking

into highly correlated variables, which saves more time and money. The definition of

CVIL provides a new way to understand how a variable is important to the modeling

procedure, especially when a model with good performance is hard to explain and

interpret, which is common in practice. It is also worth pointing out that CVIL-�

improves the stability of the modeling procedure when � is unstable. The unsta-

bleness of a modeling procedure sometimes results from the high correlation of the

variables in the dataset. One limitation of our work is that the replaceability impor-
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tance (CVILr) cannot determine which one of the two highly correlated variables is

in the true model (assuming there is an underlying model). Another shortcoming is

that CVILr is computationally demanding since it runs the procedure every time it

deletes a variable. Future work of the above two aspects is of great interest.

For estimation problems with existence of interaction terms, it is of potential in-

terest that which hierarchical structure should be used in practice. An potential topic

is to develop some tests for heredity condition since we may not have enough data to

utilize no heredity condition. Then whether using strong heredity has significant dif-

ference/improvement from using weak heredity condition is crucial for real problems

in many applications. The computational cost in interaction selection and estimation

problems plays a key role. Another potential problem is to design a genetic algo-

rithm to realize the ABC model selection criterion which achieves the minimax rate

of convergence.
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Appendix A

Proofs and Supplemental Materials
of Chapter 2

A.1 Proof of Theorem 1
Proof A.1

Denote by A
⇤
\A

k the set of variables contained in A
⇤ but not in A

k. Since
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On the other hand,
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A.2 Proof of Theorem 2
Proof A.2 (Proof)

Assume
|Ac|

r⇤
does not converge to 0 in probability as n tends to infinity (r⇤ may or may

not depend on n), then there exists a positive constant ✏0, such that P

✓
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� ✏0

◆

does not converge to 0. On the other hand,

P
j2A⇤(1� Sj)

r⇤
=

P
j2A⇤,Sjc

(1� Sj)

r⇤
+

P
j2A⇤,Sj>c

(1� Sj)

r⇤

�

P
j2A⇤,Sjc

(1� Sj)

r⇤

�

P
j2A⇤,Sjc

(1� c)

r⇤

= (1� c)

P
j2A⇤ I(Sj  c)

r⇤

= (1� c)
|Ac|

r⇤
.

So we have P

✓P
j2A⇤(1� Sj)

r⇤
� (1� c)✏0

◆
� P (
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� ✏0), which does not converge

to 0. But this contradicts with Theorem 1. Hence, we have
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p

! 0. Similarly, we
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can prove
|A

c
|

r⇤
p

! 0. ⇤

A.3 Weighting using generalized fiducial inference

Based on Fisher’s controversial fiducial idea, Lai et al. (2015) proposed the generalized

fiducial inference applied to “large p small n” problem. Their paper concerns the

generalized fiducial inference for the linear regression case. For each candidate model

A
k, the fiducial probability for the model is

p(Ak) / R(Ak) ⌘ �(
n�

��Ak
��

2
)(⇡RSSAk)�

n�|Ak|�1

2 n
�
|Ak|+1

2

0

@ p
��Ak

��

1

A
��

,

where RSSAk is the residual sum of squares of Ak. For a practical reason, the authors

approximate the above fiducial probability by

r(Ak) ⇡ R(Ak)/
KX

l=1

R(Al).

We can use r(Ak) as the weight wk for each candidate model. It is shown in their

paper that the true model will have the highest fiducial probability among all the

candidate models.

A.4 Additional simulation results

In this part, we provide the results of Example A.1- A.6, whose settings are described

in Table 2.1 of the main body of the article. These results support our conclusions

as discussed in Section 2.5.1.



A.4. Additional simulation results 111

[H]

5 10 15 20

⇢ = 0, �2 = 0.01

Variable Index

Im
p
or
ta
n
ce

0
0.
2

0.
4

0.
6

0.
8

1

SOIL (BIC-p)
SOIL (ARM)
LMG
RFI1
RFI2

5 10 15 20

⇢ = 0.9, �2 = 0.01

Variable Index

Im
p
or
ta
n
ce

0
0.
2

0.
4

0.
6

0.
8

1

SOIL (BIC-p)
SOIL (ARM)
LMG
RFI1
RFI2

5 10 15 20

⇢ = 0, �2 = 25

Variable Index

Im
p
or
ta
n
ce

0
0.
2

0.
4

0.
6

0.
8

1

SOIL (BIC-p)
SOIL (ARM)
LMG
RFI1
RFI2

5 10 15 20

⇢ = 0.9, �2 = 25

Variable Index

Im
p
or
ta
n
ce

0
0.
2

0.
4

0.
6

0.
8

1

SOIL (BIC-p)
SOIL (ARM)
LMG
RFI1
RFI2

Figure A.1: Simulation results for Example A.1, where n = 150, p = 20. The true
coe�cients �⇤ = (4, 4, 4,�6
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Figure A.4: Simulation results for Example A.4, where n = 150, p = 20. The true
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Figure A.5: Simulation results for Example A.5, where n = 100, p = 200. The true
coe�cients �⇤ = (4, 4, 4,�6

p
2, 34 , 0, ..., 0).
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Figure A.6: Sensitivity analysis of  , where n = 100, p = 200. The true coe�cients
�⇤ = (4, 4, 4,�6

p
2, 34 , 0, ..., 0).
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A.5 Comparison with stability selection

In this subsection, we present a comparison of SS (Meinshausen and Bühlmann, 2010)

importance and our SOIL importance.

The simulation data {yi,xi}
n

i=1 is generated from the linear model yi = x|
i
�⇤ + ✏i,

✏ ⇠ N(0, �2). We generate xi from multivariate normal distribution Np(0,⌃). For

each element ⌃ij of ⌃, ⌃ij = ⇢
|i�j|, i.e. the correlation of Xi and Xj is ⇢|i�j|. We

consider two cases, the settings of which are listed in Table A.1.

Example n p ⇢ �
2 Coe�cients

1 100 20 0 0.01 �⇤ = (4, 4, 4,�6
p
2, 34 , 0, ..., 0)

|

2 100 20 0.7 0.1 �⇤ = (4, 0, 4,�6
p
2, 34 , 0, ..., 0)

|

Table A.1: Simulation settings for SS

It can be seen from Tables A.2 and A.3 that SS does not give enough importance

to the true variableX5 in Example 1 while it more strongly supports the noise variable

X2 than the true variable X5 in Example 2, which leads to unavoidable incorrect

variable selection regardless of the cuto↵ to be used to decide if a variable is in or

out based on its importance. In contrast, SOIL-ARM and SOIL-BIC-p pick all the

important variables and leave noise variables out. From these results, together with

the fact that the main goal of SS is not on variable importance, we have not considered

stability selection in the main simulations in this work.

Method/Variable X1 X2 X3 X4 X5 max of rest

SOIL-ARM 1.00 1.00 1.00 1.00 1.00 0.12

SOIL-BIC-p 1.00 1.00 1.00 1.00 1.00 0.07

Stability Selection 0.99 0.99 0.99 1.00 0.02 0.002

Table A.2: Variable importance for Example 1.
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Method/Variable X1 X2 X3 X4 X5 max of rest

SOIL-ARM 1.00 0.15 1.00 1.00 1.00 0.14

SOIL-BIC-p 1.00 0.06 1.00 1.00 1.00 0.05

Stability Selection 1.00 0.44 0.94 1.00 0.26 0.05

Table A.3: Variable importance for Example 2.

A.6 Stability comparison of SOIL and Lasso.

We conduct a stability comparison of our methods and Lasso at a reduced sample size

to show that our method is more stable than Lasso against small changes in the data.

The simulation data {yi,xi}
n

i=1 is generated from the linear model yi = x|
i
�⇤ + ✏i,

✏i ⇠ N(0, �2) and �2 = 0.01. xi is generated from Np(0,⌃), where ⌃ij = ⇢
|i�j| and

⇢ = 0.5. We set n = 50, p = 200 and �⇤ = (4, 4,�6
p
2, 4/3, 0, 0, 4, 0, 1, 0, . . . , 0)|.

We randomly remove 10 observations from the dataset and use the remaining data

to compute the corresponding SOIL-BIC-p importances and the Lasso coe�cients.

The results are recorded over 100 replications and shown in Figure A.7. We can see

that, for each run with the reduced sample size, the result for the SOIL importance

is pretty consistent, while the result for the Lasso coe�cients varies considerably,

indicating that the SOIL importance has the continuity property with respect to a

reduced sample size and is more stable than Lasso.
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for 100 replications. Top panel: SOIL-BIC-p importances. Bottom panel: Lasso
coe�cients. Each grey line represents the result from one replication.
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Proofs and Figures of Chapter 3

B.1 Proof of Theorem 3
Proof B.1

Recall that

CVILp(X
j; �, n, ⇡k) :=

1
n2

P
n

i=n1+1(�̂n1(X
(j)
i
)� Yi)2

1
n2

P
n

i=n1+1(�̂n1(Xi)� Yi)2
� 1

Denote the above numerator as An and the denominator as Bn. Let Ag,n :=

EXi,Yi(g�,n(X
(j)
i
)�Yi)2 and Bg,n := EXi,Yi(g�,n(Xi)�Yi)2. Let Ag := EXi,Yi(g�(X

(j)
i
)�

Yi)2 and Bg := EXi,Yi(g�(Xi)� Yi)2. If we prove An �Ag,n1

p

! 0 and Bn �Bg,n1

p

! 0

as n ! 1, it follows by Slutsky’s theorem that

CVILp(X
j; �, n, ⇡k)� VIp(Xj; �, n) =

An

Bn

�
Ag,n1

Bg,n1

=
AnBg,n1 � Ag,n1Bn

BnBg,n1

=
(An � Ag,n1)Bg,n1 + Ag,n1(Bg,n1 � Bn)

BnBg,n1

p

!
0

Bg

+
Ag

B2
g

0 = 0
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as n ! 1 for any k = 1, ..., K. Then we have

1

K

KX

k=1

CVILp(X
j; �, n, ⇡k)� VIp(Xj; �, n)

p

! 0

as n ! 1. The desired result follows.

Thus it remains to prove An � Ag,n1

p

! 0 and Bn � Bg,n1

p

! 0 as n ! 1. First,

An =
1

n2

nX

i=n1+1

(�̂n1(X
(j)
i
)� f(Xi)� ✏i)

2
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nX

i=n1+1

An1i,

For any constant " > 0, we have
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2 [(An1i � Ag,n1)|Z1] + n2E

⇥
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2
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⇤ 
(B.1)

=
1
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8
>>><

>>>:
(1�

1

n2
)E2(An1i � Ag,n1)| {z }

(i)

+
1

n2
E(An1i � Ag,n1)

2

| {z }
(ii)

9
>>>=

>>>;
,

where (1) follows from Chebyshev’s inequality and the conditional independency of

the observations assures (2). It su�ces to prove that both (i) and (ii) converge to 0
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as n ! 1.
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where (3) follows from the almost surely (uniform) boundedness of the functions f ,

�̂n1 and g�,n1 . Since

E
����̂n1(X

(j)
i
)� g�,n1(X

(j)
i
)
��� = EZ1E

h����̂n1(X
(j)
i
)� g�,n1(X

(j)
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)
��� |Z1
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= EZ1 ||�̂n1(X
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(4)

 EZ1 ||�̂n1(X
(j)
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)� g�,n1(X

(j)
i
)||2

(5)
! 0

where (4) follows from the monotonicity of the Lq norm and (5) follows from the

boundedness of the functions and condition (A2). Thus (i) converges to 0 as n goes

to infinity. By the (uniform) boundedness of the functions (conditions (A5) and

(A6)), we have that E(An1i � Ag,n1)
2 is bounded above regardless of n1 and thus

(ii) = 1
n2
E(An1i � Ag,n1)

2
! 0 as n ! 1. Hence An � Ag,n1

p

! 0 as n ! 1.

Following the same arguments, we have Bn�Bg,n1 ! 0 in probability as n1 ! 1.

This completes the proof of Theorem 3. ⇤
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B.2 Proof of Theorem 4
Proof B.2

Following the same arguments as in proof of Theorem 3, with �̂
(�j)

n1
(X(�j)

i
),

g
(�j)
�,n1

(X(�j)) replacing �̂n1(X
(j)
i
), g�,n1(X

(j)) respectively, we can prove Theorem 4. ⇤

B.3 Proof of Theorem 5
Proof B.3

Under one data splitting, the cross-validation based position variable importance for

X
j is

CVILp(X
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variate Berry-Esseen theorem, for any convex set D ✓ R2, we have
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where ⇠ is a 2-dimensional Gaussian with mean 0 and covariance matrix ⌃n, c is a

universal constant and || · || is the Euclidean norm. Taking expectation EZ1 on both

sides of the inequality, we have
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which leads to
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By condition (B4), we have the right hand side converges to 0 in probability as n

goes to infinity. Thus,
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as n ! 1. By delta method, we have
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Figure B.1: Example 1, ⇢ = 0.9
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Figure B.2: Example 2, c = 1, ⇢ = 0.9
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Figure B.3: Example 2, c = 10, ⇢ = 0.9
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Figure B.4: Example 2, c = 0, ⇢ = 0.9
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Appendix C

Proofs of Chapter 4

C.1 Proof of Theorem 7

C.1.1 Proof of the Upper Bound ((4.4))

Recall that h(z) = zT� and ĥ(z) = zT �̂. Set hI := PIh as the estimator by model

I, where we use the bold-face h = (h(zT1 ), ..., h(z
T

n
))T to denote the mean regression

function vector and zi is the i-th row of the full design matrix Z. We first prove that

Î is equivalently an ABC estimator over the candidate set we consider. The SRC

assumption with l1 = r1, l2 = r2 assures that r1 + r2  n. It follows that, for any

model I = (I1, I2) with |I1|0 = r1, |I2|0 = r2, the corresponding submatrix ZI is full

rank, i.e., rI = r1 + r2. Thus,

Î = argmin
I2F

nX

i=1

(Yi � Ŷ
I
i
)2

= argmin
I2F

nX

i=1

(Yi � Ŷ
I
i
)2 + 2rI�

2 + ��
2
CI

= argmin
I2F

ABC(I),

where F is the collection of models that have r1 non-zero main e↵ects and r2 non-zero

interaction e↵ects with 0  r1  pn, 1  r2 
�
r1

2

�
, and all the models in F share the
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same model descriptive complexity

CIstrong
r1,r2

= log

✓
pn

r1

◆
+ log

✓�
r1

2

�

r2

◆
.

The ABC criterion and the model descriptive complexity are introduced near ((4.10)).

Therefore, Î is an ABC estimator over the candidate set F .

Next we prove the upper bound. Since Î is an ABC estimator over the candidate

set F , by Theorem 1 in Yang (1999), we have:

E(L(Î))  c inf
I2F

✓
1

n
khI � hk22 +

�
2
rI

n
+
��

2
CI

n

◆
, (C.1)

where c is a positive constant that depends on the constant � only. When h 2 W =

F0(r1, r2; R̈pn
strong), there exists a specific model in F such that the projection estimator

of this model is equal to h. We consider the RHS of ((C.1)) evaluated at such a model,

where we still denote it as Ir1,r2 for convenience. Thus,

E(L(Î))  c

✓��hIr1,r2
� h

��2 +
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=
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.

The term (i) is bounded as follows:
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Therefore,

E(L(Î)) 
c2 · �

2

n

 
r1

✓
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r1

◆
+ r2

 
1 + log

�
r1

2

�
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!!
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Thus we have

min
ĥ

max
h2W

EL(ĥ, h)  max
h2W

E(L(Î)) 
c2 · �

2

n

 
r1

✓
1 + log

pn

r1

◆
+ r2

 
1 + log

�
r1

2

�
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!!
,

where the above c1, c2 are universal constants.

C.1.2 Proof of the Lower Bound ((4.5))

Before stating the proof of ((4.5)), we introduce the local metric entropy, two impor-

tant sets that aid the understanding of the metric entropy of the regression function

space, together with the lemmas in relation to these two sets.

Metric Entropy

Metric entropy plays a central role in minimax theory, through the concepts of packing

and covering. It provides a way to understand the “cardinality” of a set with infinitely

many elements. In deriving the lower bound, information theoretic techniques play

a key role, such as the local metric entropy, Fano’s inequality, Shannon’s mutual

information and Kullback–Leibler divergence. We begin by introducing the definition

of the local metric entropy.

Definition 5 (Local Metric Entropy) Given a metric space (X , ⇢), let B(x, ✏) =

{x
0
2 X|⇢(x, x0)  ✏} be a ✏-ball around x. For 0 < a < 1, the a-local ✏-entropy at

x, denoted as logMa

x
(✏;X , ⇢), is defined as the a✏-packing entropy of B(x, ✏). The

a-local ✏-entropy, denoted as logMa

local (✏;X , ⇢), is then defined as the maximum

(or supremum if maximum does not exist) of logMa

x
(✏;X , ⇢) over all x in X , i.e.,

logMa

local (✏;X , ⇢) = max
x2X

logMa

x
(✏;X , ⇢). ⇤
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Important Subsets

Set the Hamming distance between any two vectors v, v
0
2 Rd as ⇢H(v, v0) =

P
d

i=1 vi 6=v
0
i
. Consider the set

H =
n
� 2 R̈pn

strong : � 2 {�1, 0, 1}pn+(
pn
2 ),

���(1)
��
0
 r1,

���(2)
��
0
 r2

o

and let H1 denote a subset of H where the the first r1 coordinates are fixed, i.e.,

H1 =

8
<

:� 2 H : �(1) = (1, ..., 1| {z }
r1

, 0, ..., 0| {z }
pn�r1

),
���(2)

��
0
= r2

9
=

; .

Let H2 denote another subset of H where no interaction e↵ect exists, i.e.,

H2 =
�
� 2 H :

���(1)
��
0
= r1,

���(2)
��
0
= 0

 
,

The following two lemmas of the metric entropy of the subsets H1 and H2 are

needed in the proof of ((4.5)).

Lemma 1 If r2 
2
3

�
r1

2

�
, then there exists a subset of H1 with its cardinality no less

than exp

✓
r2
2 log

(r12 )�r2/2

r2

◆
such that the pairwise Hamming distance of the points in

this subset is greater than r2/2. ⇤

Proof C.1

The proof is presented in Appendix C.1.3. ⇤

Lemma 2 If r1  2pn/3, then there exists a subset of H2 with its cardinality no less

than exp
⇣

r1
2 log pn�r1/2

r1

⌘
such that the pairwise Hamming distance of the points in

this subset is greater than r1/2. ⇤

Proof C.2

The proof is similar to that of Lemma 1. ⇤
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Proof of ((4.5))

It su�ces to prove under r2  (r21 � r1) /4. Since r2(1 + log(
�
r1

2

�
/r2)) ⇣

�
r1

2
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for

1
2
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 r2 
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�
, the monotonicity of the minimax risk in the function class reduces

the proof to the case r2  (r21 � r1) /4. Similarly it su�ces to prove under r1  pn/2.

Recall that B0(r1, r2; R̈pn
strong) =

n
� 2 R̈pn

strong :
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0
 r1,

���(2)
��
0
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o

is the coe�cient space of interest and F0(r1, r2; R̈
pn
strong) =n

h : h(z) = zT�, � 2 B0(r1, r2; R̈pn
strong)

o
is the mean regression function space.

For convenience, let h✓, h# denote the regression functions with coe�cents ✓,#

respectively, i.e., h✓(z) = zT ✓, h#(z) = zT#. Let

B0(r1, r2; R̈pn
strong)(✏) =

n
� : � 2 B0(r1, r2; R̈pn

strong), k�k2  ✏

o

be an l2-ball of radius ✏ around 0 in B0(r1, r2; R̈
pn
strong) and

F0(r1, r2; R̈
pn
strong)(h, ✏0) =

n
h
0 : h0(z) = zT�, � 2 B0(r1, r2; R̈pn

strong), d(h
0
, h)  ✏0

o

be the ball of radius ✏0 around the underlying regression function h. Without loss of

generality, we assume h = 0. The square root of the empirical l2-norm loss d(h✓, h#) :=q
1
n

P
n

i=1(h✓(zi)� h#(zi))2 =
1p
n
kZ(✓ � #)k2 is used to measure the distance between

any two functions h✓, h#. We prove the following two cases separately.

Case 1: r1
2 log((pn � r1/2)/r1) 

r2
2 log((

�
r1

2

�
� r2/2)/r2). We consider the subset

H
0
1 = {✏ � � : � 2 H1} of the l2-ball B0(r1, r2; R̈pn

strong)(✏), where � is the point-wise

product of two vectors,

✏ =
✏
p
2
(1/

p
r1, ..., 1/

p
r1| {z }

pn

, 1/
p
r2, ..., 1/

p
r2| {z }

(p2n�pn)/2

)

and

H1 =

8
<

:� 2 H : �(1) = (1, ..., 1| {z }
r1

, 0, ..., 0| {z }
pn�r1

),
���(2)

��
0
= r2

9
=

; .
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From Lemma 1, there exists a subset Hsub of H1 such that |Hsub| �

exp( r22 log
(r12 )�r2/2

r2
) and the pairwise Hamming distance of the elements within Hsub

is greater than r2/2. Set H0
sub

:= {✏ � � : � 2 Hsub}. For any ✓0,#0
2 H

0
sub

, there exist

✓,# 2 Hsub such that k✓0 � #
0
k2 = k✏ � ✓ � ✏ � #k2 �

✏p
2r2

p
⇢H(✓,#) �

✏p
2r2

p
r2/2 =

✏

2 . We also have |H
0
sub

| = |Hsub| since it is a one-to-one mapping from Hsub to H
0
sub

.

Thus, we have H
0
sub

✓ B0(r1, r2; R̈pn
strong)(✏) and the pairwise l2-distance of the ele-

ments in H
0
sub

is greater than ✏/2.

For any ✓
0
,#

0
2 H

0
sub

✓ B0(r1, r2; R̈pn
strong)(✏), let h✓0 , h#0 be such that h✓0(z) =

zT ✓0, h#0(z) = zT#0. By SRC assumption with l1 = r1, l2 = r2, we have

b1
✏

2
 b1 k(✓

0
� #

0)k2  d(h✓0 , h#0)

d(h, h#0)  b2 k(0� #
0)k2  b2✏.

Let ✏0 = b2✏, it follows that F0(r1, r2; R̈
pn
strong)(h, ✏0) has a subset

Fsub :=
�
h
0 : h0(z) = zT�, � 2 H

0
sub

, d(h0
, h)  ✏0

 
,

in which the pairwise distance (in terms of d) of the functions are no less than
b1
2b2
✏0. This implies that the b1

2b2
-local ✏0-packing entropy of F0(r1, r2; R̈

pn
strong)(h, ✏0)

is lower bounded by log |Fsub| = log |H0
sub

| �
r2
2 log

(r12 )�r2/2

r2
. So logM b1/(2b2)

local (✏0) of

F0(r1, r2; R̈pn
strong) is no less than r2

2 log((r21 � r1 � r2)/2r2). Then by (7) in Yang and

Barron (1999), the minimax risk is lower bounded by

c1

�
2 r2
2 log( r

2
1�r1�r2

2r2
)

n
= c1

�
2

n

 
r1

2
log

pn � r1/2

r1
_
r2

2
log

�
r1

2

�
� r2/2

r2

!
,

where c1 > 0 is a constant that depends on b1 and b2 only.

Case 2: r1
2 log((pn � r1/2)/r1) �

r2
2 log((

�
r1

2

�
� r2/2)/r2). We consider the subset

H
0
2 = ✏

0
1H2 of B0(r1, r2; R̈pn

strong)(✏), where ✏
0
1 = ✏/

p
r1 and

H2 :=
�
� 2 H :

���(1)
��
0
= r1,

���(2)
��
0
= 0

 
.



C.1. Proof of Theorem 7 132

Following the same arguments above, we conclude that the minimax is lower bounded

by

c2
�
2

n

r1

2
log

pn � r1/2

r1
= c2

�
2

n

 
r1

2
log

pn � r1/2

r1
_
r2

2
log

�
r1

2

�
� r2/2

r2

!
,

where c2 > 0 is a constant that depends on b1 and b2 only.

Notice that when pn/r1 � 2, we have log(pn/r1�
1
2) �

1
10(1+log(pn/r1)). Similarly,

we have log
��

r1

2

�
/r2 �

1
2

�
�

1
10

�
1 + log

��
r1

2

�
/r2

��
when

�
r1

2

�
/r2 � 2. Together with

the fact that the lower bounds for the two cases are the same, the minimax risk is

lower bounded by

c
�
2

n

 
r1(1 + log(

pn

r1
)) _ r2(1 + log

�
r1

2

�

r2
)

!
.

Thus the desired lower bound holds.

C.1.3 Proof of Lemma 1

First we have |H1| =
�(r21�r1)/2

r2

�
2r2 since the main e↵ects are fixed. Fix z 2 H1, let

A denote the collection of all the points in H1 that are within
r2
2 Hamming distances

to z, i.e., A = {z
0
2 H1 : ⇢H(z, z0)  r2/2}. It follows that the cardinality of A is

bounded above:

|A| 

✓�
r1

2

�

r2/2

◆
3r2/2.

For this upper bound, since the main e↵ects are fixed for any point in H1, we only

need to pick r2/2 positions of the interaction e↵ects where z
0 is di↵erent from z. In

the remaining interaction e↵ect positions, z0 is the same as z. It gives us at most
�(r12 )
r2/2

�
possible choices of the r2/2 positions out of the

�
r1

2

�
coordinates. For these r2/2

positions, z0 can take any values in {�1, 1, 0}, thus the desired upper bound follows.

Let B be a subset ofH1 such that |B|  m :=
�(r12 )

r2

�
/
�(r12 )
r2/2

�
. Consider the collection

of the points in H1 that are within r2/2 Hamming distance to some element in B,
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i.e., {z 2 H1 : ⇢H(z, z0) 
r2
2 for some z

0
2 B}. We have

���
n
z 2 H1 : ⇢H(z, z

0) 
r2

2
for some z

0
2 B

o���

 |B| |A|



�(r12 )
r2

�

�(r12 )
r2/2

� ·

✓�
r1

2

�

r2/2

◆
3r2/2

<

✓�
r1

2

�

r2

◆
2r2

= |H1| .

The strictly less inequality implies that for any set B ⇢ H1 with |B|  m, 9z 2 H1

such that ⇢H(z, z0) >
1
2r2 for all z0 2 B. By induction, we can create a set B ⇢ H1

with |B| > m such that Hamming distance between any two elements in B exceeds
1
2r2. Next, we introduce one useful inequality. When 0  B 

2
3A for A,B 2 N, we

have
�
A

B

�
�
A
B
2

� =
(A�

B

2 )!(
B

2 )!

(A� B)!(B)!
=

B/2Y

j=1

A� B + j

B

2 + j
�

B/2Y

j=1

A� B + B

2
B

2 + B

2

= (
A�

B

2

B
)B/2

.

When r2  (r21 � r1)/3, we have

m =

�(r12 )
r2

�

�(r12 )
r2/2

� �

 �
r1

2

�
� r2/2

r2

!r2/2

.

Thus,

logm �
r2

2
log

�
r1

2

�
�

r2
2

r2
.

The desired result follows.
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C.2 Proof of Theorem 8
Proof C.3

The proofs are similar to the arguments for strong heredity with slight di↵erences.

To prove the upper bound under weak heredity, we instead consider the model

Î = argminI2Iweak
r1,r2

P
n

i=1(Yi � Ŷ
I
i
)2 that minimizes the residual sum of squares over

all the models that have r1 non-zero main e↵ects and r2 non-zero interaction e↵ects

under weak heredity. The model descriptive complexity is thus di↵erent from the

strong heredity. In this case, CIweak
r1,r2

= log
�
pn

r1

�
+ log

�
K

r2

�
with K = r1(pn� (r1+1)/2)

for 1  r1  pn ^ n and 0  r2  (r1pn �
�
r1

2

�
� r1) ^ n. The ABC criteria for the

models are defined as in ((4.10)). The same arguments in the proof of ((4.4)) can

then be used.

To prove the lower bound under weak heredity, we consider the set

Hweak =
n
� 2 R̈pn

weak
: � 2 {�1, 0, 1}pn+(

pn
2 ),

���(1)
��
0
 r1,

���(2)
��
0
 r2

o
.

Then the two important subsets are instead

H1 =

8
<

:� 2 Hweak : �
(1) = (1, ..., 1| {z }

r1

, 0, ..., 0| {z }
pn�r1

),
���(2)

��
0
= r2

9
=

;

and

H2 =
�
� 2 Hweak :

���(1)
��
0
= r1,

���(2)
��
0
= 0

 
.

Similar metric entropy results of the above two subsets can be derived in the same

fashion as in Lemmas 1 and 2. Other arguments are the same as in the proof of

((4.5)). ⇤

C.3 Proof of Theorem 9
Proof C.4

For the upper bound under no heredity, we consider the model Î =

argminI2Ino
r1,r2

P
n

i=1(Yi � Ŷ
I
i
)2 with the model descriptive complexity CIno

r1,r2
=
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log
�
pn

r1

�
+ log

�(pn2 )
r2

�
for 1  r1  pn ^ n and 0  r2 

�
pn

2

�
^ n. The ABC crite-

ria for the models are defined as in ((4.10)).

For the lower bound under no heredity, we consider the set

Hno =
n
� 2 R̈pn : � 2 {�1, 0, 1}pn+(

pn
2 ),

���(1)
��
0
 r1,

���(2)
��
0
 r2

o
.

Then the two important subsets are instead

H1 =

8
<

:� 2 Hno : �
(1) = (1, ..., 1| {z }

r1

, 0, ..., 0| {z }
pn�r1

),
���(2)

��
0
= r2

9
=

;

and

H2 =
�
� 2 Hno :

���(1)
��
0
= r1,

���(2)
��
0
= 0

 
.

Similar metric entropy results of the above two subsets can be derived in the same

fashion as Lemmas 1 and 2.

Other arguments are the same as in the proofs of ((4.4)) and ((4.5)). ⇤

C.4 Proof of Theorem 10

The model descriptive complexity term ��
2
CI plays a fundamental role in model

selection theory Barron and Cover (1991); Barron et al. (1999); Yang (1999); Wang

et al. (2014). Since we are considering models with interaction terms, the model

descriptive complexity CI reflects our comprehension of the model complexity other

than the total number of parameters only. The detailed designation of the descriptive

complexity usually depends on the class of models of interest. Instead of interpreting

CI as the code length (or description length) of describing the model index, one can

also treat exp(�CI) as the prior probability assigned to the model from a Bayesian

viewpoint.
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Proof C.5

The candidate set can be represented as the union of the candidate sets under three

heredity conditions, i.e., F̄ = Fstrong [ Fweak [ Fno, with

Fstrong := {Ipn,(p2n�pn)/2} [ {I
strong

k1,k2
},

Fweak := {Ipn,(p2n�pn)/2} [ {I
weak

k1,k2
},

Fno := {Ipn,(p2n�pn)/2} [ {I
no

k1,k2
}.

When h 2 F0(r1, r2; R̈pn
strong), there exists a specific model in Fstrong such that the

projection estimator of this model is equal to h. Also, the projection of h onto the

full design matrix is still h. We denote the two models as Ir1,r2 and Ipn,(pn)(pn�1)/2

respectively. It follows that

E(L(Ŷ F̄ ))  c inf
I2F̄

✓
1

n
khI � hk22 +

�
2
rI

n
+
��

2
CI

n

◆

 c inf
I2Fstrong

✓
1

n
khI � hk22 +

�
2
rI

n
+
��

2
CI

n

◆
(C.2)

 c

✓��hIr1,r2
� h

��2 +
�
2
rIr1,r2

n
+
��

2
CIr1,r2

n

◆

^ c

✓���hIpn,pn(pn�1)/2
� h

���
2

+
�
2
RZ

n
+

���
2 log ⇡0
n

◆

=
c

n

�
�
2
rIr1,r2

+ ��
2
CIr1,r2

�

| {z }
(i)

^
c

n

�
�
2
RZ � ��

2 log ⇡0
�

| {z }
(ii)

, (C.3)

where RZ is the rank of the full design matrix, the first inequality follows from ((C.1)),

the second inequality follows from Fstrong ✓ F̄ and the third inequality results from

the evaluation of ((C.2)) at Ir1,r2 and Ipn,pn(pn�1)/2. The two terms (i) and (ii) are
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bounded as follows:

(i) 
c1�

n
�
2

✓
r1 + r2

�
� log ⇡1 + log pn + log

✓
r1

2

◆
+ log

✓
pn

r1

◆
+ log

✓�
r1

2

�

r2

◆◆


c1�

n
�
2

✓
r1 + r2

�
� log ⇡1 + r1(1 + log

pn

r1
)

+ log r21 + r1(1 + log
pn

r1
) + r2(1 + log

�
r1

2

�

r2
)

!


c2

n
�
2

 
r1(1 + log

pn

r1
) + r2(1 + log

�
r1

2

�

r2
)

!
,

and

(ii) 
c

n

�
�
2
RZ � ��

2 log ⇡0
�


c3

n
�
2
RZ.

Therefore, we have

E(L(Ŷ F̄ )) 
max(c2, c3) · �2

n

" 
r1(1 + log

pn

r1
) + r2(1 + log

�
r1

2

�

r2
)

!
^RZ

#
,

where c1, c2, c3 are some constants that depend only on the constant �. Thus the

desired minimax upper bound follows.

When h 2 F0(r1, r2; R̈pn

weak
) or h 2 F0(r1, r2; R̈pn), with I 2 Fweak or I 2 Fno

replacing I 2 Fstrong in ((C.2)), the quantity (i) in ((C.3)) will instead be no greater

than
c1�

n
�
2

✓
r1 + r2

�
� log ⇡2 + log pn + logK + log

✓
pn

r1

◆
+ log

✓
K

r2

◆◆

with K = r1pn �
�
r1

2

�
� r1 under weak heredity h 2 F0(r1, r2; R̈pn

weak
), or

(i) 
c1�

n
�
2

✓
r1 + r2

�
� log ⇡3 + log pn + log

✓
pn

2

◆
+ log

✓
pn

r1

◆
+ log

✓�
pn

2

�

r2

◆◆

under no heredity h 2 F0(r1, r2; R̈pn). The di↵erent constants ⇡2, ⇡3 does not a↵ect
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the conclusion in terms of order. Following the same arguments in the proof of strong

heredity, the desired results follow when the underlying heredity condition is weak

heredity or no heredity. ⇤

C.5 An example when SRC is not satisfied

For simplicity, let us consider an example where the regression mean function includes

only one main e↵ect term, i.e., r1 = 1, r2 = 0. The corresponding SRC assumption

with l1 = r1 = 1, l2 = r2 = 0 will be that there exist constants b1, b2 > 0 (not depend

on n) such that for any � 2 Rpn with k�k0  2, we have

b1 k�k2 
1
p
n
kZ�k2  b2 k�k2 , (C.4)

where the design matrix Z = X is the matrix that contains the main e↵ects.

Assume the first RZ columns of Z are linearly independent and denote Z =

(Z1
,Z2), where Z1 = (Z1, ...,ZRZ) is the n ⇥ RZ submatrix with rank(Z1) = RZ.

Suppose the submatrix Z1 satisfies the SRC assumption. Assume that kZik2 = f(n)

for 1  i  pn. For the purpose of illustration, we set f(n) =
p
n.

Let A be the collection of all columns in Z2, then A is a subset of {z|z =

Z1
↵,↵ 2 RRZ , kzk2 = f(n)}. Then A should satisfy that 8z, z

0
2 A, we have

b1 
1p
n
ka1z + a2z

0
k2  b2 for all a1, a2 2 R and a

2
1 + a

2
2 = 1. We know

1
p
n
ka1z + a2z

0
k2 =

1
p
n

q
a21 kzk

2
2 + a22 kz

0k
2
2 + 2a1a2 kzk2 kz

0k2 cos ✓,

where ✓ is the angle between the two n-dimensional vectors z and z
0.
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Thus we have

1
p
n

q
a21 kzk

2
2 + a22 kz

0k
2
2 + 2a1a2 kzk2 kz

0k2 cos ✓

=
f(n)
p
n

q
a21 + a22 + 2a1a2 cos ✓

=
p

1 + 2a1a2 cos ✓.

Then
p
1 + 2a1a2 cos ✓ � b1 for all a21 + a

2
2 = 1 (otherwise 1p

n
ka1z + a2Zik2 is less

than b1, which violates the SRC assumption). Since �1  2a1a2  1 for a21 + a
2
2 = 1,

we have b1 
p

1� |cos ✓|, which implies |cos ✓|  1� b
2
1. Thus, we have

b1 
1
p
n
ka1z + a2z

0
k2 =

p
1 + 2a1a2 cos ✓ 

p
1 + | cos ✓| 

q
1 + 1� b21. (C.5)

By setting a1 = a2 = 1p
2
in ((C.5)), the the pairwise l2 distance between any two

elements z, z0 in A should satisfy
p
2b1 

1p
n
kz � z

0
k2 

p
4� 2b21. It is well known

that the ✏-covering entropy of the RZ-dimensional unit ball B is of order RZ log(1/✏).

We denote
p
nB as a ball of radius

p
n. Let ✏ =

p
2nb1/2, there exists a positive

constant c1 such that logN(✏;
p
nB, l2)  c1RZ log(

p
n/✏) = c1RZ log(

p
2/b1). Since

A is a 2✏-packing set of a ball of radius f(n) =
p
n, its cardinality satisfies log |A| 

logM(2✏;
p
nB, l2). The covering number and the packing number are closely related

as in the well-known inequality M(✏;X , ⇢)  N( ✏2 ;X , ⇢)  M( ✏2 ;X , ⇢). Thus we have

log |A|  logM(2✏;
p
nB, l2)  logN(✏;

p
nB, l2)  c1RZ log(

p
2/b1), which implies

A has at most (
p
2/b1)c1RZ elements under the SRC assumption. Thus, as long

as pn > (
p
2/b1)c1RZ , the SRC assumption will not be satisfied because the SRC

assumption requires that ((C.4)) must hold for any pair of columns in Z. In this case,

the lower bound r1(1 + log(pn/r1))/n in our theorems does not apply.
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