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ABSTRACT 

Low circulating magnesium (Mg) or hypomagnesemia is thought to be common, and is 

traditionally measured by circulating total Mg. Proton pump inhibitor (PPI) medication use is also 

common and has been linked with low circulating Mg. Both low circulating Mg and PPI use have 

been associated with elevated cardiovascular disease (CVD) risk. This dissertation further 

characterizes the complex relationship between circulating Mg and CVD among older adults. 

Using data from a double-blind pilot Mg supplementation randomized controlled trial, the 

first manuscript characterizes the interrelationship of different circulating Mg status biomarkers 

(ionized and total Mg) at baseline and in response to Mg supplementation. Baseline ionized and 

total Mg were modestly and positively associated. Mg supplementation versus placebo over 10 

weeks resulted in increased concentrations of ionized and total Mg.  

In the second manuscript, we test cross-sectional associations of circulating total Mg with 

burden of atrial and ventricular arrhythmias as measured over 2 weeks on an ambulatory 

electrocardiographic monitoring patch in the Atherosclerosis Risk in Communities (ARIC) study. 

In this now elderly population, serum Mg was inversely associated with premature ventricular 

contraction burden. While effect estimates were in the hypothesized direction, we found little 

evidence of an association between circulating Mg and atrial arrhythmias. These findings were 

similar even among those without a history of CVD.  

The third manuscript explores cross-sectional associations of PPI use with circulating 

total Mg and prospective associations of PPI use, hypomagnesemia and CVD risk in the ARIC 

study. One in four participants had used a PPI within the last 2 weeks, and PPI users had a greater 

prevalence of hypomagnesemia than non-users. Additionally, PPI users had modestly elevated 

risk of CVD; however, presence of hypomagnesemia did not explain this elevated risk of CVD. 
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Collectively, this dissertation helps refine our understanding of Mg homeostasis in 

relation to CVD. 
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CHAPTER 1 – OVERVIEW OF MAGNESIUM AND HEALTH 

I. INTRODUCTION TO MAGNESIUM 

Magnesium (Mg) is the fourth most common mineral in the human body. Approximately 

75-90% of Mg is found within the bone and muscle, with the remaining found extra- or intra-

cellularly.1 Mg concentrations are reflective of a complex balance of intestinal absorption and 

renal handling.2 This mineral plays a role in over 300 enzymatic reactions in the body and, 

notably, is involved in insulin metabolism, DNA synthesis, blood pressure regulation and serves 

as a calcium antagonist.3,4 The first known use of Mg in medicine dates back to 1697 when Mg-

sulfate—the major ingredient of Epsom salts—was identified. Epsom salts were used to treat a 

variety of conditions at the time, such as abdominal pain and constipation.1 

The Institute of Medicine’s (now National Academies of Medicine) nutritional guidelines 

for Mg intake are defined by age and sex.5  The Estimated Average Requirement (EAR) for Mg 

intake—an intake value used for assessing population-level nutritional adequacy—is 350 mg/day 

for adult men and 265 mg/day for adult women. The Recommended Dietary Allowance (RDA) 

for Mg—a daily intake level thought to meet Mg requirements for 97.5% of the population—is 

420 mg/day for adult men and 320 mg/day for adult women. The 2015 Dietary Guidelines 

Advisory Committee labeled Mg as “shortfall nutrient”, as nearly 50% of Americans consume 

less than the EAR.6 As shown in Table 1.1, in 2011-12, the prevalence of daily total Mg intake 

below the EAR is pervasive in the nationally representative U.S.-based National Health and 

Nutrition Examination Survey (NHANES) for most adults and both sexes.  
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Table 1.1. Percent of American adults with daily total magnesium intake (dietary 

and supplement) below the EAR: NHANES 2011-2012 

 Age EAR† 

Men 
 

350 mg 

  30-50 47% 

  51-70 47% 

  ≥70 55% 

Women 265 mg 

  30-50 50% 

  51-70 36% 

  ≥70 48% 

† EAR: average daily level of intake estimated to meet the requirements of 50% of 

healthy individuals; estimated average requirement 

In research and clinical settings, serum total Mg (tMg) concentrations are traditionally 

used to assess magnesium status. tMg is reflective of a complex and dynamic interplay of dietary 

intake, bone exchange, excretion and intestinal reabsorption. Reasons for clinically low Mg 

concentrations may arise from a variety of factors, such as inadequate dietary Mg intake and 

mutations in the TRPM6 gene, which is related to Mg absorption. It can also be induced by 

certain medications (e.g. diuretics, proton pump inhibitors).  

The estimated prevalence of clinical hypomagnesaemia [traditionally defined by serum 

tMg <0.75 mmol/L (1.82 mg/dL; multiply mmol/L by 2.43 to convert to mg/dL)] in the U.S. is 

unclear, as serum tMg has not been measured in NHANES since 1974, though it appears 

common. The estimated prevalence in the U.S. may range from 3% to 15%, while in intensive 

care settings the prevalence may near 65%.10,11 In 2016, serum tMg was assessed among older 

participants (aged 66-90 years) of the Atherosclerosis Risk in Communities (ARIC) study and 

19.9% had clinical hypomagnesemia. Serum tMg was also measured in a nationally 
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representative Canadian sample in 2012-2013, in which 10-17% of adults across sex-age groups 

had clinical hypomagnesemia.7 

A. Magnesium homeostasis 

Mg undergoes regulation in the human body to ensure adequate stores. Mg homeostasis is 

based on complex feedback loops and is reflective of a balance of dietary intake, absorption, bone 

exchange and excretion. An overview of each aspect involved in Mg homeostasis is depicted in 

Figure 1.1.1  

 

Figure 1.1. Magnesium homeostasis, De Baaij, 2015 

 Diet 

As described earlier, the majority of American adults consumed less than their daily 

recommendation for dietary Mg intake.6 The RDA for adult men is 420 mg per day for men and 

for adult women is 320 mg per day. A variety of dietary sources include Mg, such as plant 
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sources, animal products, hard tap water and supplements. Plant sources (e.g. green leafy 

vegetables, beans, nuts, whole grains, dark chocolate) are among the richest sources of Mg. The 

majority of Mg is consumed in the form of vegetables, fruits, grains and nuts, with lesser amounts 

arising from milk, meat and eggs.8 Water intake also contributes a small amount to daily Mg 

consumption. Concentrations of Mg within water (in the form of Mg salts) is positively correlated 

with the degree of hardness of tap water.9  

Dietary supplements are commonly used among American adults. In 2011-2012, 28% of 

adult NHANES participants consumed at least one Mg-containing supplement.10 Notably, like 

many other nutrients, individuals who consume supplements also tend to have higher dietary 

intake of the nutrient than non-supplement users.11,12 The Upper Limit for Mg intake is 350 

mg/day of supplemental Mg. Mg toxicity is relatively rare, and generally only occurs from non-

food sources, such as antacids or laxatives.8  

 Absorption 

The majority of Mg is absorbed in the intestines through both passive and active 

transport. In the small intestine, Mg is primarily absorbed passively. Later, when passing through 

the large intestine, Mg is primarily absorbed transcellularly through the transient receptor 

potential melastatin type 6 (TRPM6) and the transient receptor potential melastatin type 7 

(TRPM7).1 Mg absorption depends on a variety of conditions such as usual Mg intake and 

concurrent intake of other nutrients such as fiber or protein. When Mg is consumed in the form of 

dietary supplements, the chemical composition also influences the fractional absorption in the 

intestines. Additionally, not all Mg that is consumed is absorbed within the body. Under adequate 

conditions, approximately 40-60% of dietary Mg is absorbed. When dietary Mg intake decreases, 

the fractional absorption of Mg increases. Conversely when dietary Mg increases, the fractional 
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absorption of Mg decreases.8  

 Bone exchange 

As described previously, the majority of Mg stores (~50-60%) in the human body reside 

in the bone. Bone metabolism is closely linked to circulating Mg concentrations. Exchangeable 

pools of Mg are found bound to the surface of hydroxyapatite crystals or within fluid surrounding 

the crystals.13 When circulating Mg and dietary Mg are low, Mg is excreted from bone into 

circulation to maintain physiological concentrations.1  Mg in the bone affects the solubility of 

phosphorus and calcium (found within hydroxyapatite crystals) and affects crystal size and 

formation.14  

 Excretion 

The kidneys serve as the primary organ involved in Mg balance and the rate of excretion 

is inversely related to circulating Mg concentrations. Mg undergoes a filtration-reabsorption 

process in the kidneys. The majority (65%) of renal Mg is reabsorbed in the loop of Henle, while 

20-30% is reabsorbed in the proximal convoluted tubule.9 When circulating Mg is high, the 

kidneys filter more Mg out of the blood to be excreted in urine. In the presence of kidney failure, 

Mg toxicity may occur due to impaired filtering of circulating Mg.8 The majority of unabsorbed 

Mg is excreted primarily through feces and also urination.1  Small amounts of Mg are excreted 

through perspiration.15  

B. Biomarkers of magnesium status 

While there are a variety of laboratory methods available to assess Mg status, currently, 

the most common method to assess Mg status is to measure total circulating Mg (tMg) in blood 
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specimens. Herein, we focus on circulating tMg and ionized Mg (iMg) concentrations followed 

by a brief discussion of other measurements for assessing Mg status. 

 Circulating total magnesium 

Mg status has traditionally been assessed using tMg (in serum or plasma), likely owing to 

its relatively inexpensive and straightforward assay. There are a few types of assays to quantify 

tMg: 1) atomic absorption spectrophotometry, 2) colorimetric methods, or 3) enzymatic 

methods.16 However, there are important limitations of tMg as a biomarker. As previously 

described, only <0.3% of total body Mg stores are in circulation. Of circulating tMg, ~30% is 

protein-bound and thought to be physiological inactive.1,17 Additionally, serum or plasma tMg 

can be impacted by time of day of the blood draw. Low albumin can also lead to spuriously low 

tMg concentrations.16  

 Circulating ionized magnesium 

iMg is thought to be the physiologically active form of circulating Mg, as protein-bound 

Mg is not active.18 To date, very few studies have incorporated measurement of iMg 

concentrations; similarly iMg is not widely used in clinical settings.16,18 This is likely because 

specialized equipment is required, it is recommended that laboratory analysis take place 

immediately after the blood draw and iMg measurement can be prone to interference (e.g. pH 

level, calcium). Ion selective electrodes are available to measure serum iMg concentrations 

(usually in whole blood), but results may be instrument dependent. However, recent advances in 

laboratory assays of ionic electrolytes and limitations of tMg as a biomarker of Mg status have 

contributed to growing research interest in iMg.16  Most epidemiologic studies that have 

examined iMg have done so cross-sectionally in populations with medical conditions (e.g. 
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chronic kidney disease, hypertension, pre-term labor).18 Whether iMg is better indicator of Mg 

adequacy and how iMg relates to health outcomes is an ongoing area of research. 16  

 Other 

As the contents of this dissertation revolve around circulating Mg measurements 

(specifically in serum), only brief mention of other Mg measurements are described. For a review 

of all measures available to assess Mg status, see a review by Costello et al (2017).16 Briefly, 

urinary Mg concentration is another relatively common method to assess Mg status. To minimize 

effects of circadian rhythm, 24-hour urinary samples are preferred. Urinary Mg concentrations are 

also influenced by co-morbidities (e.g. poor diabetic control or renal function), or use of certain 

medications (e.g. diuretics).16 In instances of short-term changes in Mg intake, urinary Mg 

responds more quickly than circulating concentrations. As such, urinary Mg might not be 

indicative of cumulative Mg intake.17 Several urinary Mg measurements over multiple time-

points may be more informative of Mg adequacy. 19 In instances of Mg loss, fractional excretion 

of Mg can be used to assess the route (gastrointestinal or renal).16  

C. Clinical cut-points of magnesium adequacy 

The reference interval for serum tMg cut-points was based on the distribution of 

concentrations in a healthy young population of NHANES participants between 1971-1974.20 In a 

recent review, it has been suggested that subclinical Mg deficiency may begin to occur with tMg 

concentrations between 0.75-0.85 mmol/L, which is within the current reference range of 0.75-

0.955 mmol/L or 1.82-2.32 mg/dL for normal Mg as found in healthy participants.17  

Clinical hypomagnesemia is traditionally defined by a serum tMg concentration of <0.75 

mmol/L (1.82 mg/dL; multiply mmol/L by 2.43 to convert to mg/dL). This is inclusive of both 
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asymptomatic hypomagnesemia 0.50-0.75 mmol/L (1.22-1.82 mg/dL) and symptomatic 

hypomagnesemia <0.50 mmol/L (<1.22 mg/dL). Symptomatic hypomagnesemia, while relatively 

rare, may warrant immediate medical attention and can result in adverse biochemical, 

neuromuscular or cardiac electrophysiology changes. Hypomagnesemia may manifest through 

largely non-specific symptoms such as convulsions, muscle cramps or coma. Other electrolyte 

disturbances, such as hypokalemia and hypocalcemia, may coexist or arise secondary to 

hypomagnesemia.21,22  

Hypermagnesemia is less common, particularly in clinical settings, relative to 

hypomagnesemia.23 Severe hypermagnesemia typically arises as a result of therapeutic use of Mg 

in cases of chronic renal failure and eclampsia, or from misuse of Mg-containing laxatives, 

antacids, or Epsom salts. Symptomatic hypermagnesemia (>2.00 mmol/L or >4.86 mg/dL) can 

also result in diarrhea, adverse ECG changes (e.g. prolonged PR interval) or coma.22  

The interval for iMg is not clear and can vary based on numerous components related to 

laboratory analysis, pH and the concentration of calcium in the sample.18 A recent review 

suggested a reference interval for iMg as 0.50-0.75 mmol/L.16 

D. Intervening upon low circulating magnesium 

Circulating Mg concentration is not necessarily a direct reflection of dietary intake and 

may not reflect intracellular stores.24 Despite the complexity of Mg homeostasis, serum tMg has 

generally been responsive to Mg supplementation.24-26 A meta-analysis of randomized controlled 

trials (RCT) indicates that supplementation with Mg increases serum tMg concentrations relative 

to control groups.26  

There are small randomized controlled trials (RCTs) that have looked at oral Mg 
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supplementation in relation to other biologic parameters (e.g. iMg), though these have generally 

been conducted in populations with existing health conditions and results have been 

inconsistent.26 Four small oral Mg supplement RCTs (Range Nrandomized = 26-60) have included 

measurements of both circulating iMg and tMg (summarized in Table 1.2).27-30 In a RCT of 

elderly participants with type 2 diabetes,27 those randomized to Mg supplementation had, after 1 

month of treatment, a statistically significant increase in iMg (but not tMg) from baseline. No 

changes in iMg or tMg from baseline were found in the placebo group.27 In contrast, other RCTs 

have found no effect of Mg supplementation on bio-distribution of circulating tMg or iMg.28-30 

Notably, these trials vary in regards to supplement formulation and dose as well as the duration of 

prescribed study treatment.  
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Table 1.2. Summary characteristics of oral magnesium supplement randomized controlled trials with both ionized and total magnesium 

measurements 

    Baselinea,b Post-interventiona,b 

Study population N c 

Treatment 

(Mg form) 

Duration 

(months) 

Mg (active) Placebo Mg (active) Placebo 

iMg tMg iMg tMg iMg tMg iMg tMg 

Elderly with type 

2 diabetes & 

hypertension27 

60 
Mg pidolate; 

368 mg/day 
1 

0.42 ± 

0.05 

0.91 ± 

0.05 

0.43 ± 

0.05 

0.92 ± 

0.05 

0.49 ± 

0.06 d 

0.93 ± 

0.05 

0.42 ± 

0.06 

0.91 ± 

0.05 

Adults with mild 

to moderate 

asthma28
 

55 
Mg citrate; 

340 mg/day 
6.5 

0.58 

(0.01) 

0.78 

(0.07) 

0.57 

(0.01) 

0.76 

(0.06) 

0.58 

(0.0) 

0.79 

(0.0) 

0.58 

(0.0) 

0.78 

(0.0) 

Idiopathic infertile 

men29
 

26 
Mg orotate; 

197 mg/day 
3 

0.51 ± 

0.05 

0.81 ± 

0.06 

0.54 ± 

0.02 

0.81 ± 

0.1 

0.56 ± 

0.04 

0.88 ± 

0.07 

0.45 ± 

0.03 

0.84 ± 

0.05 

Healthy male 

volunteers30
 

30 
Mg lactate; 

48 mg/day 
1 

0.47 ± 

0.06 

0.84 ± 

0.06 

0.49 ± 

0.05 

0.87 ± 

0.04 

0.45 ± 

0.06 

0.86 ± 

0.05 

0.48 ± 

0.07 

0.87 ± 

0.08 

a units=mmol/L; b mean ± SD or mean (SE); c N randomized, all studies used 1:1 randomization; d Statistically significant (p<0.05) 

change from baseline 
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Relatively few observational studies have examined both iMg and tMg,16,18 in part likely 

owing the iMg assay recommending immediate analysis of whole blood and iMg measurement, 

and also since it can be prone to interference by factors such as pH level and serum calcium. As 

such, little is known about a) the correlation of iMg and tMg in a relatively healthy population, b) 

whether iMg changes in response to Mg supplementation, or c) whether individuals with low iMg 

experience a greater change in iMg due to supplementation. Importantly, while Mg homeostasis 

is complex, it is possible that Mg levels can be intervened upon among those with 

hypomagnesemia. 

E. Correlates of low circulating magnesium 

Below we describe correlates of low serum Mg. To date, the majority of epidemiologic 

studies examined tMg. As such, except where indicated (e.g. iMg), herein we describe correlates 

of low serum tMg. For ease and convention, we refer to tMg as Mg in the remainder of this 

section. 

 Age 

As described previously, serum Mg has not been measured in a nationally representative 

sample of the United States since 1971-1974.20 In both men and women, serum Mg was highest 

in childhood with declines until adolescence or early adulthood. After early adulthood, average 

serum Mg tended to slightly increase thereafter.20 In 2012-2013, serum Mg was measured in a 

nationally representative sample of 5,561 Canadians aged 3-79.7 Within 11 sex-age categories, 

serum Mg followed a fairly normal distribution, though there were slight fluctuations in absolute 

levels across the lifespan. Notably, the prevalence of hypomagnesemia generally tended to be 

higher among older age categories for both sexes.7 Several characteristics of the elderly and/or 



 

25 

 

aging process may explain the higher prevalence of hypomagnesemia in this population, 

including: chronic low dietary Mg intake, reduced intestinal Mg absorption, increased urinary Mg 

excretion, or low Mg may arise secondary to other comorbidities or medications (which are more 

common among the elderly).31 

 Sex 

Differences in circulating Mg concentrations by sex across the lifespan are thought to be 

relatively small, based on a nationally representative Canadian sample in 2012-2013.7 However, 

women tend to have slightly lower serum Mg concentrations and higher prevalence of 

hypomagnesemia.20 In women, reproductive health is correlated with Mg status. In the NHANES 

1971-74 sample, serum Mg was measured in pregnant women, women taking oral contraceptives, 

post-menopausal women and reproductive aged women not on contraceptives (referent group). 

Pregnant women tended to have lower serum tMg than those who were not pregnant or taking 

oral contraceptives (the control group) regardless of age and race. To a lesser extent, women 

taking oral contraceptives had lower Mg concentrations than women not taking oral 

contraceptives. Post-menopausal women had higher serum Mg levels by 0.08 mmol/L compared 

with pre-menopausal women.32 Notably, Mg (in the form of intravenous MgSO4) is advocated by 

the World Health Organization is advocated for preventing and treating convulsions in severe 

pre-eclampsia and eclampsia.33 

 Race 

When serum Mg was measured in the 1971-74 NHANES survey cycle, concentrations 

were only measured in whites and blacks. Slight race differences were noted, whereby blacks 

tended to have lower serum Mg across all age groups and in both sexes.20 In the 2012-2013 

Canadian sample, racial diversity was limited to comparisons of white versus non-white. Similar 
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to white vs black comparisons in 1971-1974, non-white Canadians tended to have lower serum 

Mg concentrations as compared to whites.7 As race-specific Mg concentrations have not been 

previously measured in a large sample in race groups other than whites and blacks, it is unclear 

how serum Mg (including iMg) concentrations compare across other race/ethnic groups.  

 Diet and Supplements 

Low serum Mg can be reflective of inadequate Mg intake. Metabolic ward studies 

indicate Mg-deficient diets in the short term (e.g.  72-92 days) do not dramatically affect serum 

Mg. Mg supplementation in these Mg-depleted individuals resulted in increased serum Mg 

concentrations.  Notably, low dietary Mg intake over months or years may contribute to slow 

declines in serum Mg.34 However, Mg homeostasis is dynamic and depends on numerous 

conditions as described throughout this Chapter.  

In epidemiologic studies, Mg intake and circulating Mg tend to be poorly correlated. In 

the ARIC study, for example, the correlation between tMg and reported Mg intake as estimated 

from the Willet 61 item food-frequency questionnaire (FFQ) was poor35,36 (e.g. Pearson partial 

correlation coefficient r = 0.04 in white men, r = 0.06 black men, r = 0.01 white women, r = -0.02 

black women).35 A complicating factor to interpretation of epidemiologic studies is that 

individuals who consume Mg in the form of dietary supplements, which increase serum Mg 

concentrations, also tend to have higher intakes of minerals, such as Mg, from food sources.11,12 

Importantly, as described earlier in section I.D of this Chapter, circulating Mg concentrations 

appear responsive to supplements as reported in meta-analyses of RCTs of oral Mg 

supplementation effects of circulating Mg concentrations.26 

 Diabetes 
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Individuals with type 2 diabetes tend to have a higher prevalence of hypomagnesaemia, 

with an estimated prevalence of 14%-50% as compared to 3-15% among those without diabetes. 

Low serum tMg has been associated with higher fasting insulin, glucose40,41 and HbA1c.37 Among 

diabetic individuals, hypomagnesemia has been associated with diabetic complications.38 Based 

on a nationally representative sample of Canadian adults, individuals with diabetes had lower 

serum Mg concentrations than those without diabetes by an estimated 0.04-0.07 mmol/L.7 Some 

studies suggest that serum tMg is inversely associated with risk of diabetic complications, such as 

retinopathy and albuminuria.37-39 A study with both tMg and iMg measurements reported low iMg 

concentrations even in the presence of normal tMg concentrations among elderly individuals with 

type 2 diabetes.40 

Low circulating Mg has also been associated with a higher type 2 diabetes risk in 4 

prospective observational studies. A meta-analysis of these observational studies [31,284 total 

participants; 2,680 type 2 diabetes events; mean 9 years follow-up, reported a pooled relative risk 

for type 2 diabetes of 0.64 (95% CI: 0.50, 0.81) for the highest versus the lowest category of 

circulating Mg.41 

Furthermore, in meta-analyses of randomized controlled trials, oral Mg supplementation 

had beneficial effects as compared to placebo on insulin resistance42,43 and fasting glucose44 

among those with type 2 diabetes as well as on insulin sensitivity parameters45 and glucose 

concentrations46 among those with high diabetes risk. In an experimental Mg-depletion study, 

during glucose tolerance tests, serum glucose peaked at a higher concentration (and remained 

higher throughout the tolerance test) when the test was conducted during Mg-depletion as 

compared to after Mg repletion. The rate of decrease in glucose concentration or insulin response 

during the glucose tolerance test was not affected.47  
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There are several proposed mechanisms which may account for these findings of a 

relationship of Mg with glucose and insulin. Individuals with diabetes tend to have increased 

urinary Mg excretion. This higher renal excretion may arise from glucose-induced osmotic 

diuresis.38,48 In rats, Mg deficiency adversely influenced glucose homeostasis in vivo and in 

isolated islet cells in vitro.49 Interestingly, dietary Mg restriction in female rats lead to greater 

adiposity and insulin resistance in their rat pups as compared to pups born to rats fed a control 

diet.50  Other mechanisms include impaired signaling or secretion of insulin or altered glucose 

transport.38 

 Alcohol 

Numerous studies have examined Mg homeostasis following ethanol intake and among 

those with chronic alcoholism.51 Alcoholics are prone to developing hypomagnesemia, 

particularly when their Mg dietary intake is already deficient.52 Chronic alcohol intake tends to 

increase Mg excretion via the kidneys.9 Acute intake appears to influence Mg homeostasis in the 

short term within liver cells but to a lesser extent than in the context of chronic alcoholism. Mg 

content and transport in liver cells of male rats were restored following withdrawal from chronic 

ethanol exposure.53 In experimental studies of male rats, acute intravenous ethanol infusion 

resulted in minimal effects on Mg transport in hepatocytes;54 chronic alcohol impaired Mg 

transport mechanisms54 and Mg concentrations within hepatocytes.55 Two studies have measured 

both iMg and tMg in relation to alcohol. One study among chronic alcoholics found that the 

correlation between iMg and tMg was instrument dependent. When the NOVA CRT was used, 

iMg was significantly lower in alcoholics than controls. When the AVL 988-4 ion-selective 

electrode was used, iMg and tMg were not correlated.56 Another study among emergency care 

patients with confirmed ethanol ingestion found significantly lower iMg than hospitalized 

controls, while  concentrations of tMg did not significantly differ.52 
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 Genetics 

Hereditary Mg disorders are relatively rare, but when they exist they are generally more 

clinically important and are generally related to Mg transport disorders.57 Some examples of 

familial hypomagnesemia conditions include familial hypomagnesemia with hypercalciuria and 

nephrocalcinosis (FHHNC) and Bartter’s syndrome. Gene-linkage studies in families with 

hereditary hypomagnesemia played important roles in identifying Mg transport proteins (i.e. 

claudin 16, claudin 19) and advancing understanding of Mg homeostasis.57 

In the general population, Mg homeostasis is estimated to have a heritability estimate of 

approximately 30%.2,58  Single nucleotide polymorphisms (SNPs) associated with Mg 

concentrations have been identified in magnesium transporter genes, such as CNNM2.59 A 

genome wide association study (GWAS) in those of European ancestry within the Cohorts for 

Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium identified and 

replicated six loci (MUC1, TRPM6, SHROOM3, DCDC5, ATP2B1, PRMT7) statistically 

significantly associated with serum tMg, with MUC1 rs4072037 most strongly associated. 

Together these SNPs explained only 2% of variability in tMg.59  Another GWAS among ARIC 

participants of African ancestry identified and replicated three loci (MUC1, TRPM6, SHROOM3) 

that had been previously associated with tMg in those of European ancestry. Three SNPs met 

genome-wide significance in ARIC and the replication cohort (MUC1 rs2974937, SHROOM3 

rs9993810, TRPM6 rs113607577), with MUC1 rs2974937 most strongly associated with tMg. In 

this population, these SNPs explained 3% of variability in tMg concentrations.60  

 Medications 

There are numerous medications which are thought to affect Mg status. Relevant to this 

dissertation, proton pump inhibitors (PPIs) have been linked with hypomagnesemia.61 As 
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described further in Chapter 2, PPIs are a commonly used class of drugs used to treat 

gastroesophageal reflux disease (GERD) and other acid-related conditions.62 PPIs can be 

purchased over-the-counter or as a prescribed medication and are commonly used in the U.S..63 A 

series of case reports regarding long-term PPI use and hypomagnesemia prompted the U.S. Food 

and Drug Administration to publish a safety communication.61 PPIs are thought to reduce 

intestinal Mg absorption. Diuretics are also known to affect Mg status through increased urinary 

Mg excretion. Moreover, it has been suggested that concomitant diuretic and long-term PPI use 

may increase the risk for hypomagnesemia.64,65  

 Other 

Gastrointestinal issues such as vomiting and diarrhea are also common contributors to 

Mg deficiency. Low Mg may arise as a result of poor intestinal uptake of water, which is 

important for Mg reabsorption. Briefly, Mg homeostasis is intertwined in the metabolism of other 

minerals (e.g. calcium and potassium) and vitamin D. Briefly, Mg deficiency is related to low 

1,25-dihydroxyvitamin D [1,25(OH)2D] and reduced parathyroid hormone (PTH) response. 

1,25(OH)2D increases intestinal Mg absorption, though to a lesser extent than for calcium.8 That 

said, while relatively rare nowadays, when left unresolved, magnesium-related vitamin D 

resistant rickets can also occur.66   

II. MAGNESIUM AND ARRHYTHMIAS 

Mg plays an important role in cardiac electrophysiology,3,4 and extreme concentrations of 

circulating Mg can lead to ECG changes.67 Less is understood about the role, if any, that 

subclinical deficiencies in circulating Mg may have with atrial and ventricular arrhythmias. It 

warrants mention that ECG changes may not be specific to Mg, abnormal Mg homeostasis may 

coexist with (and/or exacerbate) other electrolyte abnormalities, namely abnormalities in 
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concentrations of calcium and potassium, which also themselves can result in ECG abnormalities 

as well.68 This first half of this section includes a summary of epidemiologic literature on 

circulating Mg and supraventricular arrhythmias followed by potential pathophysiologic 

mechanisms; the second half covers the epidemiologic and pathophysiologic literature on Mg and 

ventricular arrhythmias. Except where otherwise indicated, Mg refers to circulating total Mg 

concentrations. Associations between dietary intake of Mg and arrhythmias will not be discussed, 

given the low correlation between dietary and serum Mg (e.g. r ~ 0.03 in the ARIC study). 

A. Magnesium and atrial arrhythmias 

 Epidemiology of magnesium and atrial arrhythmias 

The majority of the epidemiologic literature on circulating Mg and supraventricular 

arrhythmias relates to atrial fibrillation (AF), likely in part because 1) AF is the most common 

sustained clinical arrhythmia69 and 2) AF is a common complication following cardiac surgery. 

Estimates of how common AF is after cardiac surgery vary widely, ranging from 10-65% of post-

operative patients.70 Mg supplementation is often administered as a prophylaxis to prevent AF 

events after cardiac surgeries. A Cochrane systematic review and meta-analysis of RCTs 

assessing high-dose intravenous Mg supplementation for post-operative AF prevention reported a 

pooled OR Mg vs placebo = 0.55 (95% CI 0.41, 0.73);71 however, its efficacy remains 

controversial.72,73  

Inverse associations between serum Mg and incident AF has also been suggested in three 

prospective observational studies.74-76 In the ARIC study, after multivariable adjustment, 

participants in the lowest serum Mg quintile had an HR for incident AF of 1.34 (95% CI: 1.16-

1.54) as compared to those in the middle quintile.74 Comparable effect estimates were reported in 

the Framingham Offspring study, whereby those in the lowest (versus highest) serum Mg quartile 



 

32 

 

had a HRAF=1.52 (95% CI: 1.00-2.31)].75 In an Israeli health maintenance organization, mild and 

moderate hypomagnesemia were both associated with higher AF risk over a follow-up of up to 25 

months. Neither mild nor moderate hypomagnesemia were associated with AF risk in the short 

term (e.g. 90 days).76  

Less has been published on circulating Mg and other supraventricular arrhythmias (e.g. 

premature atrial contractions (PACs) and supraventricular tachycardia (SVT)). Higher burden of 

these arrhythmias may be intermediate phenotypes of AF.77 While a PAC or SVT beat are 

common, there is appreciation that a higher burden of these arrhythmias can be associated with 

increased risk of clinically important outcomes (such as AF and stroke). A small RCT 

(Manuscript 1) found that oral Mg supplementation increased serum Mg relative to placebo, but 

no effect was found on PAC burden (though statistical power to detect an association was low).78 

Another small RCT with oral Mg supplements reported decreased intensity of PACs in 

individuals without known ischemic or structural cardiac diseases.79 Additionally, as described in 

Chapter 1 section II.B, decreases in premature ventricular contraction (PVC) intensity were also 

reported in that study. In an experimental study among patients with paroxysmal SVT, 

intravenous MgSO4 administration lead to termination or slowing of SVT (specifically when the 

atrioventricular node was in the reentrant circuit).80 Specifically, intravenous Mg atrioventricular 

node conduction was prolonged starting with 5 mmol (vs 0 mmol) intravenous Mg; effects were 

not further prolonged at higher doses (10 or 20 mmol).81 

A non-randomized experimental feeding study lends support to these epidemiologic 

findings. Of 14 healthy women who were fed an extremely low diet in Mg, 3 of the women 

developed AF. Their AF resolved quickly after Mg repletion.47 Whether intervening upon low Mg 

status (particularly subclinical Mg deficiency) is an effective primary prevention strategy for AF 

in the general population remains an ongoing area of research. 
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 Pathophysiology of magnesium and atrial arrhythmias 

The pathophysiology linking circulating Mg and supraventricular arrhythmias in the 

general population or following cardiac surgery is not well understood and may arise through 

many potential pathways. Plausibly, the association may act through traditional risk factors 

related to both low circulating Mg and supraventricular arrhythmias (namely hypertension or 

inflammation17), which predispose individuals to arrhythmogenesis.  

Beyond traditional risk factors, Mg is involved in hundreds of enzymatic reactions 

throughout the body and is important in cardiac electrophysiology.82 Ionic flow of electrolytes, 

including Mg as well as calcium and potassium, are important for generating action potentials and 

maintaining the membrane potential of cardiac cells.83 During phase 4 of the action potential, 

potassium flows into the cell at rate that can depend on Mg availability.67  

Mg may affect the cardiac substrate and promote increased atrial myocardial sensitivity, 

such as cardiac automaticity, sinus node recovery time and atrioventricular nodal conduction.84 

Additionally, Mg competes with calcium for membrane–binding sites to the L-type Ca2+ 

current.84,85 As a natural calcium antagonist, Mg blocks flow of calcium into the cell, which 

plausibly prolongs atrioventricular conductance and reduces the rate of sinus node firings. 

Experimental and animal studies provide insights into potential pathways connecting low 

circulating Mg to supraventricular arrhythmia occurrence and burden. In an experimental study 

conducted among individuals without known cardiac disease, intravenous Mg administration 

prolonged sinoatrial node conduction time and atrioventricular conduction time.86 Intravenous Mg 

may also increase atrial (and ventricular) refractoriness and sinus node function.87 In animal 

studies, severe Mg deficiency lead to changes in cardiac automaticity and conduction velocity.21 
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Additionally, specific to post-operative AF, intracellular Mg, which  is moderately 

correlated (r = 0.46) with serum tMg,88 is commonly depleted after cardiac surgery.89 Moreover, 

hypomagnesemia inhibits nitric oxide release from coronary endothelium after cardiac 

operations.90  

B. Magnesium and ventricular arrhythmias 

 Epidemiology of magnesium and ventricular arrhythmias 

 Intravenous Mg has widely used in managing torsade de pointes (also known as 

polymorphic ventricular tachycardia), a type of ventricular arrhythmia, in the setting of long QT-

interval syndrome. A few small studies in the 1980s suggested a benefit to Mg administration; 

however, no large-scale RCT has been conducted to test for its efficacy.1 

 In the context of the general population, low serum Mg has been cross-sectionally 

associated with a higher prevalence of PVCs in two studies conducted in community-based 

settings.91,92 Among 750 obese Canadians with type 2 diabetes, participants with low serum Mg 

(defined as ≤0.70 mmol/L) had a 2.5-fold higher prevalence of premature ventricular contraction 

(PVC) on a Holter monitor compared to those with serum Mg above 0.70 mmol/L (50% vs 

21%).91 In the Framingham Offspring Study, lower serum Mg concentrations (per 1 SD 0.08 

mmol/L decrement) were associated with lower odds of having ≥1 PVC during 1 hour ECG 

monitoring [adjusted OR=1.18 (1.02, 1.37)].92 As described in Chapter 1 section II.A, a small 

RCT with oral Mg supplements reported decreased intensity of PVCs in individuals without 

known ischemic or structural cardiac diseases.79 Little is known about the association of serum 

Mg with the prevalence or burden of non-sustained ventricular tachycardia in the general 

population.  
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 Among cardiac patients, more studies have been conducted evaluating Mg and 

ventricular arrhythmias. Typically, these studies have evaluated ventricular rate control in AF 

patients or in populations with other heart conditions (e.g. congestive heart failure (HF), 

myocardial infarction (MI)). Intravenous Mg has had conflicting results in reducing the frequency 

of ventricular arrhythmias after an acute MI. In a small RCT among 140 patients undergoing 

coronary artery bypass graft (CABG) surgery, randomization to intravenous Mg (70 mmol 

MgSO4) was associated with fewer PVCs (as measured over 48 hours of Holter monitoring).93 In 

individuals with HF, intravenous  MgSO4 had beneficial effects on the number of isolated and 

couplet PVCs and on the number of NSVT episodes compared to placebo infusions.94  

 Serum Mg has also been considered in relation to digitalis toxicity that arises due to AF 

treatment with digoxin—an anti-arrhythmic medication.67 Among digoxin-treated AF patients 

with low serum Mg concentrations, oral Mg supplementation was associated with a reduction in 

PVC prevalence.95 A small randomized uncontrolled trial among patients undergoing a CABG 

procedure found that intraoperative correction of plasma iMg (using MgSO4 infusion) was 

associated with lower occurrence of ventricular tachyarrhythmia and longer continuous sinus 

rhythm in the day following the procedure.96 

 Pathophysiology of magnesium and ventricular arrhythmias 

Similar to the potential pathophysiology of Mg and supraventricular arrhythmias, the 

mechanisms connecting Mg and ventricular arrhythmias are not fully understood. There is some 

overlap in the potential pathophysiologic mechanisms of circulating Mg to both supraventricular 

and ventricular arrhythmias. Herein, we briefly reiterate overlapping mechanisms (addressed in 

Chapter 1 section II.B) and then describe the potential mechanisms specific to ventricular 

arrhythmias.   
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As described earlier, Mg is important in energy utilization and its involvement in 

balancing potassium influx to cardiac cells. As electrolytes play important roles in sinus rhythm, 

disruptions in electrolyte balance can plausibly stimulate pro-arrhythmic or anti-arrhythmic 

effects.85 Mg is also a calcium antagonist and these electrolytes compete for binding sites on 

contractile proteins. Inadequate stores of Mg may in turn plausibly influence electrical activity 

and contractility of the myocardium.1  

Specific to the ventricular conduction path, intravenous Mg may prolong His-ventricular 

conduction and suppress ventricular ectopic activity.84  Mg helps regulate potassium (K) transport 

through channels into the cell and serves as a cofactor of Na/K ATPase, which transports 

potassium (K) into the cell during the action potential.  When cellular Mg is deficient, this makes 

the Na/K ATPase system less efficient. This results in a membrane potential that is less 

negative;67 82 this can result in QT interval prolongation, which may promote the development of 

ventricular arrhythmias.82 However, experimental and in vivo studies involving digitalis toxicity, 

Mg administration has yielded conflicting results on shortening the QT interval.97 In sum, much 

remains to be understood regarding the role of Mg in the development of ECG abnormalities.  

III. MAGNESIUM AND CARDIOVASCULAR DISEASES 

For the purposes of this section, we will focus on epidemiologic findings specific to 

circulating (plasma or serum) Mg and CVD. Associations between dietary intake of Mg and CVD 

will not be discussed, given the low correlation between dietary and serum Mg (e.g. r ~ 0.03) in 

the ARIC study. This section is followed by a summary of potential pathophysiologic pathways 

through which circulating Mg may influence cardiovascular function. 

A. Epidemiology of magnesium and cardiovascular diseases 
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The strongest evidence that serum Mg may be causally related to CVD risk comes from a 

Mendelian Randomization study published in 2018, which evaluated Mg-related SNPs in relation 

to CHD risk. Each 0.1 mmol/L (approximately 1 SD) higher increment of genetically predicted 

serum Mg concentrations was associated with a lower odds of coronary artery disease [OR=0.88 

(0.78, 0.99)].98  

Circulating Mg has been described in relation to CVD risk in 3 meta-analyses of 

prospective cohort studies.41,99,100 A 2013 meta-analysis by Del Gobbo et al found that each 0.2 

mmol/L higher increment in circulating Mg was associated with a 30% lower risk of total CVD 

(including stroke) (95% CI: 0.56, 0.88), and a non-statistically significant lower risk of ischemic 

heart disease [RR=0.83 (0.65, 1.05)] and fatal ischemic heart disease [0.61 (0.37, 1.00)].99 

Another 2013 meta-analysis by Qu et al found that each 0.05 mmol/L higher increment in 

circulating Mg was associated with a 9% lower risk of total CVD (0.85, 0.97).100 A 2017 meta-

analysis examined circulating Mg in relation to CHD risk, specifically. Wu et al found that 

highest category in circulating Mg was associated with a marginally statistically significant lower 

CHD risk as compared to the lowest category [RR=0.86 (0.74, 1.00)]. When circulating Mg was 

modeled linearly per 0.1 mmol/L, the Mg-CHD association was not statistically significant 

[RR=0.89 (0.77, 1.03)].41  

To our knowledge, four additional prospective or nested case-control studies have since 

been published and/or were not included in the previous meta-analyses. Low serum Mg has been 

associated with higher risk of fatal CHD [HR per 1SD increment = 0.82 (0.70-0.96)]101 and CVD 

mortality [HR Mg ≤ 0.73mmol/L vs >0.73mmol/L  = 2.30 (1.43-3.71)].102 Nested case-control studies within 

the Nurses’ Health Study reported that low plasma Mg (<0.82 mmol/L) was associated with a 

higher risk of ischemic stroke [RR=1.57 (1.03-2.65)]103 but was not associated with CHD after 

adjustment for traditional cardiovascular risk factors.104   
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Additionally, HF and AF were not included as an outcome in the prior meta-analyses on 

circulating Mg and CVD. In the ARIC study, those in the lowest serum Mg quintile (≤0.7 

mmol/L) were associated with a HR of 1.71 (95% CI: 1.46, 1.99) for incident HF as compared to 

those in the highest quintile (≥0.9 mmol/L).105 Among the older male participants of the British 

Regional Heart Study, low serum Mg was associated with higher risk of HF [HRQ5vsQ1 = 0.56 

(0.36, 0.86)].106 Low serum Mg has also been predictive of increases in left ventricular mass over 

5 years independently of clinical CVD risk factors in the Study of Health in Pomerania, which 

included German adults aged 45 years and older.107 Moreover, as described in Chapter 1 section 

II.A, low serum Mg has been associated with a higher risk of AF in 3 prospective observational 

studies.74-76 

Cross-sectionally, low serum Mg has been associated with markers of subclinical CVD. 

In the ARIC study, low serum Mg was associated with greater carotid wall thickness among 

women (but not men).35  Low serum Mg has also been associated with higher coronary artery 

calcification scores among Koreans with low CVD risk108 and among Mexican individuals with 

diabetes (Genetics of Atherosclerosis Disease Study).109 Additionally, low serum Mg was 

associated with carotid intima media thickness and mitral valve calcification in diabetic patients 

with mild to moderate chronic kidney disease.110 

Mg therapy has been examined as a secondary prevention strategy among patients with 

acute MI in two large trials—the Fourth International Study of Infarct Survival (ISIS-4)111 and 

Magnesium in Coronaries (MAGIC)112—but no survival benefit was found in either trial. The 

ISIS-4 trial, which included patients with suspected acute MI, had a 2x2x2 factorial design with 

one arm including randomization of 58,050 patients to an intravenous bolus of 8 mmol MgSO4 

administration followed by 72g MgSO4 (or matching placebo) over 24 hours (oral captopril and 

mononitrate were the other 2 arms). In the MAGIC trial of patients with acute ST-elevation MI, 
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6,213 patients were randomized to a 2g intravenous MgSO4 bolus followed by 17g over 24 hours 

or to a matching placebo treatment. Two meta-analyses of RCTs reported a dose dependent 

relationship of oral Mg supplementation on blood pressure reduction.113,114 To our knowledge, no 

RCT has examined Mg supplementation in relation to overall CVD risk. 

B. Pathophysiology of magnesium and cardiovascular diseases 

There are numerous potential mechanisms connecting low circulating Mg and increased 

CVD risk1,17,115,116 as depicted in Figure 1.2.115  

 

Figure 1.2. Potential mechanisms linking Mg to CVD, Rosique-Esteban, 2018. 

This may occur in part through established CVD risk factors such as hypertension, 

diabetes or inflammation.17 A recent meta-analysis of RCTs found that Mg supplementation at a 

dose of 300 mg/d was significantly associated with increased serum Mg and decreased blood 
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pressure.117 Oral Mg supplementation was found to raise high-density lipoprotein cholesterol 

among type 2 diabetics.44 In meta-analyses of RCTs, oral Mg supplementation had beneficial 

effects on fasting glucose among those with type 2 diabetes44 and those with or at high risk of 

type 2 diabetes46 (as described in Chapter 1 section I.E.5). 

Relatedly, Mg also plays roles in platelet formation,1,118 vascular smooth muscle tone, 

endothelial function,1,116 and in maintaining normal sinus rhythm.1 As described in Chapter 1 

section II, Mg acts as a natural calcium antagonist and helps regulate ion channel transport 

(namely, calcium and potassium influx) in cardiac cells.119 This in turn could influence 

electrophysiologic activity and predispose to arrhythmogenesis.1   

Findings from experimental studies lend support to the hypothesis that Mg inadequacy 

may induce atherosclerosis and other adverse cardiovascular effects. As described previously in 

Chapter 1 section II, experimental nutrition studies in metabolic wards indicate that extreme 

dietary Mg depletion led to glucose intolerance, heart rhythm changes (e.g. AF) and decreases in 

serum cholesterol, which resolved upon Mg repletion.47 An experimental study reported that low 

dietary Mg induced PACs,25 which have been associated AF.120-127 In mice, a long-term diet that 

is moderately deficient in Mg worsened cardiovascular risk factors and was related to increased 

mortality,128 as well as oxidative stress.129,130 

Hypomagnesemia inhibits oxidative DNA damage in cardiac tissue.131  Moreover, Mg 

concentration in cardiac muscle of those who died from heart disease were lower than those who 

died from an acute trauma.132 Mg concentrations within the affected myocardial tissue was 50% 

lower, while in the non-infarcted myocardial concentrations were 20% lower than controls.132 

Significant drops in serum Mg concentrations have been reported immediately after an infarction, 

with a return to normal levels within 12 days after the infarction.133  
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CHAPTER 2 – OVERVIEW OF PROTON PUMP INHIBITOR USE 

AND HEALTH 

I. INTRODUCTION TO PROTON PUMP INHIBITORS 

Proton pump inhibitors (PPIs) are medications used to treat gastroesophageal reflux 

disease (GERD) and other acid-related disorders, which are highly common and can substantially 

affect an individuals’ quality of life. The American College  of Gastroenterologists defines 

GERD, one of the most common gastroesophageal conditions, as “symptoms or complications 

resulting from the reflux of gastric contents into the esophagus or beyond, into the oral cavity 

(including larynx) or lung”.134 PPIs are generally considered superior in efficacy of treating 

GERD as compared to histamine 2 receptor antagonists (H2-blockers).134 

The first PPI commercially available in the U.S. was omeprazole (name brand = 

Prilosec), which was introduced in 1989. Since then, as of 2015, several other drugs of this class 

have been introduced: esomeprazole (Nexium), lansoprazole (Prevacid), dexlansoprazole 

(Dexilent), pantoprazole (Protonix) and rabeprazole (Aciphex). PPIs may be prescribed and some 

varieties are also available over-the-counter.62 

Chemical structures of the medications within this class vary slightly but have relatively 

similar pharmacologic profiles.62 The half-life of these products are generally short (ranging from 

0.5 to 2 hours), but can have longer lasting effects with a time to peak plasma level of up to 5 

hours (depending on dose). The primary route of metabolism is via the liver.62 PPIs act (as the 

name implies) by inhibiting acid secretion of the proton pump (H+/K+ ATPase pump) of the 

parietal cells in the stomach. PPIs are packaged (e.g. coated tablet or granule, gelatin capsule) to 

safeguard the inactivated medication as it passes through the stomach until activation in the small 

intestine. PPIs are generally consumed orally but intravenous formulations are available for 
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hospitalized patients in particular.62 

Since their introduction to the U.S. marketplace starting in the late 1980s, PPIs have 

become one of the most widely used medications among American adults.62 In 2009, an estimated 

9% of outpatient visits involved patients who use PPIs.63 PPI use has become increasingly 

common across the entire lifespan, ranging from as early as infancy to the elderly. The prevalence 

of PPI use among infants even rose 4-fold over the time period of 1999-2014.135 A claim-based 

analysis of Belgian pediatricians prescribing habits indicated that PPI prescriptions for children 

increased between 1997 and 2009 (as did prescriptions of H2-blockers, another drug class used 

for acid-related disorders) but the prevalence of GERD did not increase in this age group during 

this timeframe.136 In the 2004 U.S.-based National Nursing Home Survey, 27% of residents were 

using one or more PPI, of which an estimated 49% were not evidence-based in their usage of 

PPIs.137 Additionally, in unpublished data from ARIC visit 5, 25% of participants reported use of 

PPIs in the prior 2 weeks. 

Acid suppressant medications can have important benefits, specifically when used as 

prescribed and when considered necessary. PPIs are generally regarded as having superior 

efficacy to H2-blockers in the treatment and symptom management of GERD and other acid-

related disorders.138  In the majority of cases, the standard treatment with PPIs can help abate 

symptoms or treat the condition. Common side effects of PPIs include headache, diarrhea, 

abdominal pain and nausea.139 However, over the last decade, PPIs have also been associated with 

serious clinical outcomes in case reports and other observational settings (e.g. bone fracture, 

community-acquired pneumonia, clostridium difficile infection, chronic kidney disease). 

Additionally, chronic high-dose use of PPIs can affect intestinal absorption of certain nutrients140 

(e.g. Mg, calcium, vitamin B12) as further described in section II of this Chapter. The elderly141,142 

and men142 are thought to have a higher risk of hypomagnesemia due to PPI use than their 
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counterparts. Additionally, drug interactions have been noted, whereby individuals who take 

diuretics may have a higher risk of hypomagnesemia compared to those only taking PPIs.143 This 

is particularly concerning as the elderly have a particularly high prevalence of PPI use as well as 

concomitant polypharmacy. That said, risks and benefits need to be weighed, particularly when 

considering high-dose and/or chronic use of PPIs.144 

Among those already on PPIs, the risks versus benefits of reducing dose or stopping 

treatment (also known as deprescribing) PPI use is an ongoing area of research. Oftentimes, acid-

related symptoms later recur and use may be on-demand as symptoms recur or continuous to 

prevent symptoms (or minimize severity). A 2017 Cochrane review suggested that in those with 

mild GERD, deprescribing ‘on-demand’ PPI users led to more GI symptoms as compared to 

continuous PPI users.145 In light of the important potential benefits and suggestions of adverse 

effects, the choice to treat and/or deprescribe can be a personal one (e.g. willingness to tolerate 

minor symptoms, fear of symptom recurrence, severity of symptoms, concern about adverse 

effects of PPI use) and is an important topic for patients to communicate with a health care 

provider.146  

A. Correlates of PPI use 

PPIs are used to treat acid-related disorders, namely for GERD, peptic ulcer disease, and 

dyspepsia, which affect the upper gastroesophageal region.147 PPIs may also be used as a 

component of Helicobacter pylori eradication treatment or for the prevention or treatment of 

gastric injury related to nonsteroidal anti-inflammatory drug use.142 PPIs are generally approved 

for short-term use (e.g. 4-8 weeks), though some may have an ongoing indication for longer term 

treatment (e.g. prevention of upper GI bleeding in high-risk patients, Barrett’s Esophagus). Yet, 

PPIs are often used without a specific ongoing indication, particularly as some PPIs are available 
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over-the-counter directly to patients.148 Plausible correlates of PPI use may relate to insurance and 

access to care (in relation to prescription PPI use in particular) or socioeconomic status (such as 

ability to pay for medications).  

Risk factors and correlates of conditions also serve as indication for medication. As 

GERD is one of the more common acid-related disorders, affecting an estimated 10-20% of 

individuals in the U.S. and Western Europe149, we focus on risk factors for GERD. Obesity is 

considered a strong modifiable risk factor for GERD.150,151 Possible pathways for the obesity-

GERD association are multiple and may relate to higher intra-abdominal pressure, more frequent 

sphincter relaxation or impaired gastric emptying.152 Other risk factors for GERD or exacerbating 

GERD symptoms relate to dietary habits (e.g. caffeine, spicy foods, alcohol), tobacco smoking, 

post-prandial body position or pregnancy.150,151 It appears GERD and related complications may 

be more common among men than in women; however, this has not been found consistently.151,153 

II. PROTON PUMP INHIBITORS AND LOW CIRCULATING 

MAGNESIUM 

A summary of the epidemiologic literature on PPI use and serum magnesium is described 

in Chapter 1 section II.A, which is followed by a discussion of the pathophysiology of PPI-

induced hypomagnesemia (in Chapter 1 section II.B). PPIs potentially also induce other 

nutritional deficiencies, including vitamin B12, iron and calcium.140 However, as the focus of this 

dissertation is on Mg, we focus our discussion on Mg. 

A. Epidemiology of PPI use and low circulating magnesium 

PPIs are commonly used and can have important benefits for those with acid-related diseases; 

however, this class of medication has been linked with several adverse health outcomes since 
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their introduction. Relevant to this dissertation, a series of case reports and studies regarding 

hypomagnesemia among PPI users were published143,154-165 prompting the U.S. Food and Drug 

Administration (FDA) to release a safety communication regarding potential for PPIs to induce 

hypomagnesemia when taken for a year or longer.61 It is thought that this may be a class effect 

(rather than for individual medications) as all 6 commercially available medications have had a 

case report published linking them with hypomagnesemia.142  

 After the series of case reports, other observational studies (9 in total; 3 cohort, 1 case-

control, 5 cross-sectional) have been conducted on the PPI-hypomagnesemia association in 

population-based settings, which individually yielded inconclusive findings (some null, some 

positive). In a meta-analysis of these 9 observational studies, PPI use was associated with a 

pooled RR for hypomagnesemia of 1.43 (95% CI: 1.08, 1.88) compared to those who do not use 

PPIs.165  

Additionally, a cross-sectional study was conducted among 48 hospitalized Italian 

patients with torsades de pointes. Torsades de pointes patients taking PPIs had lower serum Mg 

concentrations versus those not taking PPIs. In contrast, other electrolytes measured in serum 

(calcium, potassium, sodium) did not differ statistically by PPI user status among this patient 

group.166 

Since that meta-analysis, another cross-sectional study on PPI use and hypomagnesemia 

was published in the population-based Rotterdam Study, whereby serum Mg concentrations were 

slightly lower in PPI users versus non-users by 0.01 mmol/L (95% CI: 0.16, 0.01 mmol/L). PPI 

use was associated with hypomagnesemia (≤0.35 mmol/L) after prolonged use [OR=2.99 (1.73, 

5.15)] (range 182-2,618 days). The association of PPI use with hypomagnesemia was stronger 

among diuretic users than in non-diuretic users. H2-blockers — a medication with similar 
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indications as for PPIs but with no known link to hypomagnesemia— were associated with lower 

serum Mg concentrations than non-users and higher odds of hypomagnesemia as well.159  

Considering H2-blockers have not been linked with hypomagnesemia, this may be reflective of 

confounding and other biases inherent to observational examinations of medication effects.  

A population-based case-control was done using Ontario-based health care databases to 

examine the association of PPI use with hospitalization with hypomagnesemia. Among those 

hospitalized for hypomagnesemia, the odds of being a PPI user was OR=1.43 (1.06, 1.93) 

compared to those not hospitalized for hypomagnesemia. Effect measure modification was 

present by diuretic use, whereby the association was present in diuretic users [OR=1.73 (1.11, 

2.70)] but not among those who do not use diuretics [OR=1.25 (0.81-1.91)]. Moreover, H2-

blockers were not associated with hospitalization with hypomagnesemia.167 

Interestingly, a case-control study among 133 chronic PPI users (those with 

hypomagnesemia were cases and those without were controls) was conducted to see how 

common SNPs in the candidate gene TRPM6 relate to hypomagnesemia (SNPs included were 

rs2274925, rs2274924, rs3750425, rs45616231). Among PPI users, those with the TGAC 

haplotype had a nearly 6-fold (2.00-17.02) higher odds of hypomagnesemia compared to those 

with the wild-type haplotype (TAGC).168  

Last, an important concern is whether Mg status is restored upon de-prescribing PPI use. 

In many cases, it is thought that after stopping PPI use following prolonged use, hypomagnesemia 

tends to resolve.169 Moreover, hypocalcemia and/or hypokalemia may also arise secondary to 

hypomagnesemia. These electrolyte abnormalities were refractory to supplementation until after 

the circulating Mg was intervened upon.142 It is also unclear how or if PPIs are related to 

subclinical Mg deficiency and public health implications, if this is the case. 
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B. Pathophysiology of PPI use and low circulating magnesium 

Over the last decade, there has been a growing body of research related to mechanisms of 

PPI-induced hypomagnesemia, which is thought to be attributed to reduced intestinal absorption 

of dietary Mg.170,171 Much of the mechanistic research to date has focused on the active Mg 

transport channel, TRPM6. There is some evidence to suggest that PPIs may also interfere 

slightly with passive absorption.172,173 PPIs are not thought to majorly influence urinary Mg 

excretion or reabsorption in the kidneys.  

PPIs affect the H+/K+ ATPase enzyme. This enzyme helps pump a hydrogen ion into the 

stomach in exchange for a potassium ion, which lowers the acidity of the gastrointestinal region. 

As TRPM6 is a pH-dependent channel, PPI use plausibly affects affinity of TRPM6 for Mg. In 

less acidic environments, TRPM6 activity decreases. That said, since PPIs act by decreasing 

intestinal pH, a lower pH would plausibly downregulate TRPM6. As TRPM6 should over-express 

during times of Mg insufficiency, certain genetic profiles may help promote continued Mg 

absorption in the presence of PPI use. Yet not all PPI users develop hypomagnesemia and risk 

factors for developing PPI-induced hypomagnesemia are an ongoing area of research. Whether 

genetic or epigenetic factors play a role in why only some PPI users develop hypomagnesemia is 

largely unexplored, but there are suggestions of associations between common TRPM6 gene 

SNPs with hypomagnesemia among PPI users.168 

As PPI-induced hypomagnesemia is a relatively new phenomenon, there is much to be 

understood regarding mechanisms for this relatively rare but potentially serious side effect. PPI-

induced hypomagnesemia is generally thought to arise as a result of long-term or chronic PPI use. 

Yet, a modeling study of PPI use suggests that even short-term PPI use can slightly diminish 

intestinal Mg absorption rates.174  
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III. PROTON PUMP INHIBITORS AND CARDIOVASCULAR 

DISEASES 

 Considering the pervasiveness of PPI use and their implication with adverse outcomes, it 

is important to understand how or if their use may affect cardiovascular health. Herein, we first 

summarize the epidemiologic literature related to PPI use and CVD in section A, which is 

followed by section B with a description of possible pathophysiologic mechanisms accounting for 

the association. 

A. Epidemiology of PPI use and cardiovascular diseases 

PPIs have been controversially associated with increased risk of CVD outcomes. Initial 

discussion over whether PPI affect cardiovascular health arose primarily due to concerns over 

potential interactions with the antiplatelet drug, clopidogrel, in RCTs. PPIs were proposed to 

interfere with clopidogrel bioactivation by CYP2C19, as the medications compete for this same 

enzyme. However, the association is not thought to be causal as PPI users have been found to 

have a higher risk of CVD irrespective of clopidogrel use.175   

After initial concern over PPI-clopidogrel drug-drug interactions, several prospective 

studies examined PPI in relation to risk of CVD outcomes. In a meta-analysis of RCTs where 

incident CVD endpoints were reported, PPI users had a pooled RR for incident CVD of 1.70 

(1.13, 2.56) as compared to non-users. In subgroup analyses, the risk of CVD was higher among 

long-term PPI users [RR=2.33 (1.33, 4.08)].176  

In observational settings, PPI users tend to have a modestly higher stroke risk as 

compared non-users.177-179 PPI use was associated with a modestly higher risk of MI, by 16% 

(95% CI: 9-24%) versus non-users, but H2-blocker use was not associated with MI risk.180 In the 
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Taiwan National Health Insurance Research Database, PPI users were matched using propensity 

scores to non-users, and PPI users had a 1.58-fold higher risk of MI (1.11, 2.25) than non-

users.181 Another study among privately insured adults found no association between prescribed 

PPI use with risk of MI,182 while an analysis within a population-based database reported that PPI 

use was associated with higher odds of both MI (OR=1.8 (1.7-1.9)) and HF (1.8 (1.7-1.9)). 

However, medications with no known cardiac toxicity (H2-blockers and benzodiazepines) were 

both associated with higher odds of these adverse cardiac events.179  

PPI use has also been examined in relation to incident CVD outcomes in populations with 

other existing cardiac diseases, such as coronary artery disease and HF. Among 706 patients with 

coronary artery disease, PPI users (versus non-users) had a 5.71-fold (95% CI: 1.63-20.04) higher 

risk of a composite HF or mortality outcome but was not associated with acute ischemic events 

(acute coronary syndrome, stroke, or transient ischemic attack). In sensitivity analyses, similar 

results were found when users and non-users were matched using propensity scores.183 However, 

power was low and variance estimates were imprecise. In HF patients, PPI use was actually 

associated with a lower risk of CVD mortality compared to those in the H2-blockers and non-acid 

suppressive therapy group.184 

Among critically ill patients (n>8000), PPI use has been cross-sectionally associated with 

a marginally higher prevalence of any arrhythmias (as measured on a 12-lead ECG upon 

admission to the hospital) in crude models but after multivariable adjustment was no longer 

associated with arrhythmias. In subgroups, PPI use was not associated with arrhythmias that were 

atrial or ventricular in origin. Moreover, the null association did not differ by diuretic user 

status.185  

The relationship between PPI use and CVD risk has also been explored in populations 
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with GERD, the primary indication for PPI use. Among a population with diagnosed GERD, PPI 

use was associated with a higher risk of AF186 and CHD176 as compared to non PPI users. Little is 

known about the association of PPI use with AF.  The condition GERD has also been examined 

in relation to incident CVD, and it has been associated with a higher risk of AF187 and CHD.188 

As described in the next section, hypomagnesemia is one of the proposed mechanisms 

linking PPI use and CVD. One cross-sectional analysis examined PPIs in relation to serum Mg 

and prevalent arrhythmias among 421 intensive care or critical care unit patients with a MI or 

unstable angina diagnosis. Patients administered PPIs soon after hospital admission tended to 

have lower serum Mg concentrations and a greater prevalence of cardiac arrhythmias compared 

to those not exposed to PPIs.189 Notably, this study is in a selected sample of critically ill patients, 

was a cross-sectional design and data on diuretic use (which may increase risk of 

hypomagnesemia among PPI users) was not collected. Whether serum Mg mediates the PPI and 

CVD association has not yet been tested in an unselected population. 

B. Pathophysiology of PPI use and cardiovascular diseases 

There are several proposed mechanisms through which PPI use may increase risk of 

CVD, as shown in Figure 2.1.175  
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Figure 2.1. Potential mechanisms linking PPIs to CVD, Sukhovershin, 2016. 

As described throughout, low circulating Mg has been studied in relation to higher risk of 

arrhythmias as well as with other CVD outcomes.  Moreover, as PPIs can induce lower 

concentrations of circulating Mg, it is plausible that Mg may mediate (at least in part) the 

epidemiologic association between PPIs and CVD.  Specific to AF and other arrhythmias, Mg is a 

cofactor of the sodium-potassium ATP pump, which is important for myocardial excitability.190 

Abnormal Mg homeostasis (in this case via PPI-induced hypomagnesemia) could adversely 

influence electrophysiology.191  

Basic science studies with ex vivo human tissue lend support to epidemiologic findings. 

Other plausible mechanisms relate to greater endothelial dysfunction, such as accelerated 

endothelial senescence, telomere erosion192 and inhibition of a cardiac enzyme, 

dimethylaminohydrolase (DDAH), which is involved in reducing oxidative stress.193  Nitric oxide 

(NO) synthase has vasodilative effects. Reduced NO synthase activity can lead to oxidative stress 

and other adverse vascular effects. 175 Plasma asymmetrical dimethylarginine (ADMA) is 
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considered an inhibitor of NO. Elevated ADMA concentrations have been associated with higher 

CVD risk. In mice, PPI administration led to an increase in ADMA.193 

Aside from PPIs affecting Mg absorption, PPIs are also thought to decrease absorption of 

other nutrients, such as calcium and vitamin B12, which may themselves relate to an increased risk 

of CVD. PPIs have also been associated with acute kidney injury and chronic kidney disease, 

which, if PPIs truly affect renal health, may also explain epidemiologic associations between PPI 

and cardiovascular health. Additionally, presence of GERD or greater severity of GERD has been 

associated with an increased risk of AF, plausibly through increased inflammation or vagal nerve 

stimulation.186,194 Last, as H2-blockers which also suppress acid secretion through different 

mechanisms and have no known cardiac toxicity, it seems unlikely that the act of acid 

suppression itself exerts a direct role on cardiac health. 
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CHAPTER 3 – STUDY DESIGNS AND DATA COLLECTION  

I. OVERVIEW  

The objectives of this dissertation were evaluated using data from 2 sources. Manuscript 

#1, which examines interrelations between iMg and tMg, overall and in response to 

supplementation, used data from a pilot randomized controlled trial entitled ‘Magnesium 

Supplementation for the Prevention of Supraventricular Arrhythmias’. Manuscripts #2 and 3, 

which evaluated the association of tMg to arrhythmias and whether low tMg mediates the 

association between PPI use and CVD risk, used data from the ARIC study, an ongoing 

community-based prospective cohort that began in 1987. Within Chapter 3, section II describes 

the pilot randomized trial used for Manuscript #1; section III describes the ARIC study used for 

Manuscripts #2-3.  

II. MAGNESIUM SUPPLEMENTATION PILOT RANDOMIZED 

CONTROLLED TRIAL 

A. Study design 

Manuscript #1 was conducted using data from a double-blind pilot Mg supplementation 

trial, which sought to examine oral Mg supplementation in the primary prevention of 

supraventricular arrhythmias (assessed using 2-week portable heart monitor, Zio® XT Patch) 

[Clinical Trials Registration #: NCT02837328].78 Briefly, between March to August 2017, 59 

individuals from the general population aged >55 years and with no prior CVD history, were 

recruited using 4 methods: 1) fliers, 2) the University of Minnesota StudyFinder website, 3) 

ResearchMatch research volunteer database, and 4) invitations to University of Minnesota School 

of Public Health employees. Individuals with a history of CVD, kidney disease, inflammatory 
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bowel disease or any severe gastrointestinal disorder, or allergy/intolerance to Mg were excluded, 

as were those who reported use of type I or III antiarrhythmic drugs, digoxin, or Mg supplements. 

Use of multivitamins containing Mg was permitted, since these generally contain relatively low 

Mg doses (e.g. 50 mg Mg).   

Eligible participants were randomized to 400 mg/day of oral Mg oxide or lactose placebo 

for 12 weeks. Block randomization within two strata of age (<65y and ≥65y) was used. At the 

baseline visit, blood was drawn, weight, height and blood pressure were measured, and several 

questionnaires were administered. At the end of the visit, the Zio® XT Patch heart rhythm 

monitoring device was applied, which was worn for 2 weeks. The study treatment was mailed to 

participants 2 weeks after the baseline visit. After 10 weeks on study treatment, participants 

returned for a second blood draw, and a second Zio® XT Patch was applied. They continued on 

study treatment until the Zio® XT Patch was removed.  

Study participants and staff were blinded to the treatment status. The University of 

Minnesota Investigational Drug Service managed bottling of the active supplement and matched 

placebo in accordance with the randomization scheme. Participants provided written informed 

consent and the University of Minnesota Institutional Review Board approved the study protocol. 

Details of the trial (e.g. treatment compliance, assessment of blinding, adverse events) have been 

previously published.78  

B. Biomarker measurements 

In the pilot trial, participants were asked to fast for 8 hours prior to the blood draw. Blood 

samples were obtained at baseline and at the follow-up visit by a trained phlebotomist. Date and 

time of phlebotomy were recorded. iMg was measured in whole blood immediately after the 

blood draw using the pHOx® Ultra blood gas analyzer from Nova Biomedical. Centrifuged blood 
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samples yielded up to 3 aliquots of plasma and up to 6 aliquots of serum. Unused specimens were 

stored in the refrigerator and in the freezer at -80°C until analysis. Serum tMg was measured ‘in 

batch’ at the end of the study at the University of Minnesota Advanced Research and Diagnostics 

Laboratory (ARDL), using the Roche Cobas 6000 colorimetric analyzer (Roche Diagnostics; 

Indianapolis, Indiana).  Glucose was also measured in serum at ARDL using the Roche Cobas 

6000. In a subset of participants, iMg from previously frozen and refrigerated samples was 

measured in serum. Date and time of specimen storage and analysis was recorded. 

C. Other data collection 

At the baseline and follow-up visit, height (using a research stadiometer) and weight 

(using a scale with the participant in light clothing) were measured. Resting blood pressure (after 

5 minutes sitting) was measured using a random zero sphygmomanometer three times; the 

average of the three measurements was calculated.  

III. ATHEROSCLEROSIS RISK IN COMMUNITIES STUDY 

A. Study design 

The ARIC study195 began in 1987-89, when participants were aged 45-64 years old, and 

now has over 30 years of follow-up. Of the 15,792 ARIC study participants at baseline, 27% were 

black and 73% white, while 55% were women and 45% men. Participants were recruited from 4 

communities (suburbs of Minneapolis, MN; Forsyth County, NC; Jackson, MS; Washington 

County, MD). Since the baseline visit, there has been continuous surveillance for hospitalization 

(linkage with local hospitals, state and national death indices and through annual or semi-annual 

follow-up telephone calls). Several clinic visits have since been conducted (Visit 2: 1990-92, 
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Visit 3: 1993-95, Visit 4: 1996-98, Visit 5: 2011-13, Visit 6: 2016-2017, Visit 7: 2018-2019). At 

each visit, informed consent was obtained.  

Relevant to this dissertation, visit 5 was attended by 6,538 participants and visit 6 by 

4,003. At these visits, participants were interviewed, underwent anthropometric measurements 

and sitting blood pressure measurements, and a fasting blood draw. Participants were asked to 

bring bottles of current medications to each visit; medication information was transcribed and 

coded as described in the next section.  

B. Exposures 

 Magnesium 

Fasting blood samples were obtained at each ARIC visit, and were frozen until analysis. 

Specific to this dissertation, tMg was analyzed from previously frozen sera samples obtained at 

visit 5 (2011-13) and visit 6 (2016-17). As described in greater detail within the methods sections 

of Manuscripts #2-3, tMg was measured at ARDL using similar colorimetric methods from 

samples obtained at both visits 5 and 6 (Roche Cobas 6000 Chemistry Analyzer; Roche 

Diagnostics, Indianapolis, Indiana).  

 Medication use 

Participants were asked to bring bottles of medications (including over-the-counter and 

prescription) used during the prior two weeks to the visit; medications were transcribed and 

coded. From 2006 to 2011, medication use was also assessed over the telephone annually where 

participants reported medication names from prescription bottles. Use of PPIs was identified at 

this time as well.  
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C. Outcomes 

 Arrhythmias 

Data from the Zio® XT Patch was processed using the ZEUS algorithm.196 Physician 

ECG readers at EPICARE downloaded the iRhythm reports and verified the accuracy of reports, 

which were then sent to the ARIC Coordinating Center. Details of definitions and modeling 

approaches to arrhythmias are described further within Manuscript #2’s methods section. 

 Cardiovascular diseases 

Prevalent CVD was defined by a history of CHD, heart failure (HF), stroke or AF based 

on ARIC ascertainment on or prior to the participants’ clinic visit date. Specific to Manuscript 3, 

we define incident CVD events by: incident CHD, HF, stroke, AF and CVD mortality (both as a 

composite outcome and individual outcomes) through December 31, 2017. Detailed descriptions 

of prevalent and incident CVD events are described within the methods sections of Manuscripts 

#2 and #3. Briefly, potential CHD events were identified by (1) recent hospitalizations identified 

during follow-up phone calls to participants (twice annually since 2012); (2) ongoing surveillance 

of community hospital discharge lists and death certificates; and (3) linkage to State and National 

Death Indices. International Classification of Disease (ICD) codes were recorded from all 

hospitalizations.  

D. Covariate measurements 

Similar methods for covariate measurement were used across study visits. Participants 

self-reported their sociodemographic characteristics and lifestyle habits (including smoking 

status, alcohol consumption, physical activity), underwent measurements of anthropometry and 

blood pressure, as well as a fasting blood draw. Alcohol consumption habits were used to 
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estimate ethanol intake in grams per week. Physical activity (sports index) was quantified using 

the validated Baecke questionnaire.197 Height and weight were measured and used to calculate 

BMI (kg/m2). After 5 minutes rest, blood pressure was measured three times using a random zero 

sphygmomanometer. Systolic and diastolic blood pressure was quantified based on the mean of 

the second and third blood pressure measurements. Fasting (>8hrs) serum glucose was measured 

using a hexokinase method at visit 5 and 6. Diabetes was defined as a having a fasting glucose 

level ≥126 mg/dL, non-fasting glucose level ≥200 mg/dL, self-reported use of diabetes 

medication or self-reported physician diagnosis. Serum potassium was measured using an indirect 

ion selective electrode (refer to Chapter 5 section III for more detail).  
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CHAPTER 4 (MANUSCRIPT 1) – CIRCULATING IONIZED 

MAGNESIUM: COMPARISONS WITH CIRCULATING TOTAL 

MAGNESIUM AND RESPONSE TO MAGNESIUM 

SUPPLEMENTATION IN A RANDOMIZED CONTROLLED TRIAL 

I. OVERVIEW 

Introduction: Ionized Mg (iMg) is considered the biologically active fraction of circulating total 

Mg (tMg). It is possible that iMg may be a more physiologically relevant marker than tMg. 

 

Objectives: Using data from a double blind pilot randomized controlled trial, we tested 1) 

whether oral Mg supplementation will increase iMg concentrations compared to placebo, and 2) 

the relationship between iMg and tMg cross-sectionally at baseline and in response to 

supplementation. Additionally, we evaluated the agreement between iMg measured in fresh 

whole blood versus stored samples. 

 

Methods: Participants were randomized to oral Mg supplementation (400 mg/day, Mg Oxide) or 

placebo for 10 weeks. Fasting blood samples were obtained at baseline and the follow-up visit. 

The analysis used linear regression and an intent-to-treat approach. 

 

Results: The 59 participants were generally healthy, mean aged 62 years old and 73% female. 

Baseline iMg and tMg were modestly and positively associated; the ratio of baseline iMg to tMg 

was 53%. The mean supplement effect on iMg was 0.03 mmol/L (95% CI: 0.01, 0.05) for those 

randomized to Mg supplementation as compared to placebo. The supplement effect on iMg did 

not differ significantly by baseline iMg. For lab stability, iMg was consistently higher in 

previously refrigerated and frozen samples by 0.14 and 0.20 mmol/L, respectively, versus fresh 
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samples. 

 

Discussion: In this relatively healthy adult population, Mg supplementation over 10 weeks 

resulted in increased iMg concentrations. Whether iMg is a more appropriate measure of Mg 

status than tMg and the public health or clinical utility of measuring iMg remains to be 

determined. 
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II. INTRODUCTION 

Magnesium (Mg) homeostasis reflects a complex and dynamic interplay between dietary 

intake, absorption and excretion.8,9 The majority of total body Mg resides within the bone tissue 

while less than 1% of total body Mg lies extra-cellularly. Serum total Mg (tMg) has traditionally 

been used to assess Mg status in both clinical and research settings, with a reference range of 

0.75-0.95 mmol/L (multiply mmol/L by 2.43 for mg/dL; 1.82-2.31 mg/dL).16 There are important 

considerations to be cognizant of when using tMg to reflect Mg status. Of the circulating tMg in 

serum, approximately 20-30% is bound to proteins, and is thought to be physiologically inactive. 

Ionized Mg (iMg) constitutes approximately60-70% of circulating tMg18,66 and is considered the 

biologically active form of circulating Mg.198 It is possible that iMg may be a more 

physiologically relevant marker than tMg.18,66  

iMg is infrequently measured in research or clinical settings,16,18 likely because the iMg 

assay protocol recommends immediate analysis of whole blood, specialized equipment is required 

for measurement, and iMg measurement can be prone to interference by individual-level factors 

such as pH level and serum calcium. While tMg and iMg are generally thought to be correlated, 

the literature has been mixed in both observational studies and randomized controlled trials 

(RCTs) of Mg supplementation. 27-30 Furthermore, these studies have primarily been conducted in 

populations with comorbidities thought to influence Mg homeostasis.  

Since relatively little is known about iMg in healthy populations, using data from a Mg 

supplementation RCT we tested the following hypotheses: 1) oral Mg supplementation will 

increase iMg and tMg concentrations compared to placebo, particularly in those with low baseline 

iMg and tMg concentrations, respectively; and 2) iMg and tMg will be modestly associated at 

baseline and in response to supplementation. Additionally, to better understand considerations 
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related to iMg laboratory measurement, we evaluated the agreement between iMg concentrations 

measured in fresh whole blood as compared to refrigerated or frozen samples. 

III. METHODS 

A. Study design 

We examined interrelations between iMg and tMg, overall and in response to 

supplementation. To do this we used data from a pilot RCT entitled ‘Magnesium 

Supplementation for the Prevention of Supraventricular Arrhythmias’ [Clinical Trials 

Registration #: NCT02837328].78 This double-blind trial examined oral Mg supplementation for 

the primary prevention of supraventricular arrhythmias. 

Between March and June of 2017, 59 individuals from the general population aged >55 

years and with no prior history of CVD were randomized to 400 mg/day of oral Mg (in the form 

of Mg oxide) or lactose placebo for 10 weeks. Block randomization within two strata of age 

(<65y and ≥65y) was used. Within each stratum randomly permuted block sizes of 2, 4 or 6 were 

used to generate the randomization schedule. 

At the baseline visit, blood was drawn, weight, height and blood pressure were measured, 

and several questionnaires administered. The study treatment was mailed to participants 2 weeks 

after the baseline visit, and the intervention then ensued. After 10 weeks on study treatment, 

participants returned for a second blood draw.  

At the follow-up visit, participants brought the bottle containing the supplement or 

matching placebo, and treatment compliance was estimated by a pill count. Further details of the 

trial have been previously published78 including measures of adverse effects and assessment of 
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blinding. 

B. Biomarker measures  

Fasting (>8 hours) blood samples were obtained at baseline and at the follow-up visit. 

Time of blood draw was recorded. iMg was measured in whole blood approximately 10 minutes 

after the blood draw using the pHOx® Ultra blood gas analyzer (machine and reagents were 

donated by Nova Biomedical; Waltham, MA). The pHOx® Ultra blood gas analyzer provides 

both crude iMg concentration and iMg concentration adjusted for pH (i.e. normalized iMg 

concentrations). As the concentration and activity of iMg can differ by sample pH, herein we 

present normalized iMg concentrations, except where indicated otherwise. Blood specimens were 

centrifuged and separated into plasma and serum. Serum tMg was measured ‘in batch’ at the end 

of the study using the Roche colorimetric analyzer at the University of Minnesota Advanced 

Research and Diagnostics Laboratory. Ionized calcium also measured in whole blood using the 

pHOx® Ultra blood gas analyzer.  

In order to evaluate the impact of specimen storage on iMg concentrations, for a sub-

sample (n=39) and using split specimens, iMg was also measured in serum that had been 

refrigerated for approximately 1 hour and serum that had been stored in the freezer. Freezer 

specimens were measured ‘in batch’ at the end of the study. The time that whole blood samples 

were placed in the refrigerator and freezer was recorded, as was time of iMg measurements.  

C. Statistical analysis 

Mean and median iMg concentrations at baseline are reported overall and by treatment 

group. Baseline characteristics across study treatment arms and across baseline iMg 

concentrations above/below the median are also reported.  
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We used a linear regression model to test whether change in iMg differs by treatment 

group. Change in iMg was the dependent variable with treatment group as an indicator variable 

adjusted for age stratum (randomization stratification factor, <65y vs ≥65y) and baseline iMg 

concentration. Baseline iMg was included as a covariate for added precision.199,200 Confidence 

intervals were based on robust variance estimation. Pre-specified subgroup analyses to assess 

whether the intervention effect differs by baseline iMg status (above/below median) were also 

conducted by including a cross-product term in the model (treatment group*baseline iMg status). 

We also report baseline, follow-up and change in the iMg to tMg ratio by treatment group, as well 

as testing whether the intervention effect differs by baseline ratios. Additionally, results for 

change in tMg are also provided as previously reported,78 using this approach. Our primary 

analysis for change in iMg was based on the intent-to-treat principle. In secondary analyses, we 

excluded those who did not take at least 80% of the supplements as instructed. In post-hoc 

analyses we additionally adjusted for sex and ionized calcium (separately).  

To examine baseline associations of iMg with tMg, we used a linear model with iMg as 

the dependent variable, with tMg as the predictor variable as well as treatment group, age stratum 

(<65y vs ≥65y) and baseline iMg concentration. We used the slope to examine the association 

between iMg and tMg. Additionally, we used Pearson’s partial correlation coefficients for 

baseline iMg and tMg, overall (adjusted for treatment arm, age and sex) and by treatment group 

(adjusted for age and sex). A scatter plot was used to visualize the association of baseline iMg 

and tMg. Additionally, Bland-Altman plots were used to visualize the comparative agreement of 

iMg in response to supplementation stratified by treatment arm. A similar set of Bland-Altman 

plots were used for tMg. 

To evaluate whether iMg concentrations differ according to sample processing method 

we report mean/median concentrations for iMg measured from fresh whole blood, after 
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refrigeration and after one freeze-thaw cycle. We report, by processing method, the mean 

difference (95% confidence intervals) in iMg concentrations and distribution of the difference in 

percentiles. We also report mean time from blood draw to processing. We used Bland-Altman 

plots to visualize the agreement between iMg quantified in whole blood soon after blood draw 

with serum iMg as measured from samples stored in the refrigerator and samples stored in the 

freezer. 

Two-tailed p-values<0.05 were considered statistically significant. STATA version 14.1 

was used for analyses (College Station, TX). 

IV. RESULTS 

A. Study participants 

Table 4.1 describes study participant characteristics at baseline by treatment group and 

by baseline iMg status (above and below median). Baseline characteristics by treatment group 

were largely similar but for sex; the group randomized to Mg supplements was comprised of 

86.2% women, while the group randomized to placebo was 60.0% women.  

The average baseline iMg to tMg ratio was 64%. The median baseline iMg and tMg 

concentrations in the treatment group were 0.56 mmol/L (Percentile: 25th = 0.50 mmol/L, 75th = 

0.60 mmol/L), and 0.86 mmol/L (25th = 0.82 mmol/L, 75th = 0.90 mmol/L), respectively. In the 

placebo group, baseline iMg was 0.54 mmol/L (25th = 0.52 mmol/L, 75th = 0.57 mmol/L) and tMg 

was 0.86 mmol/L (25th = 0.82 mmol/L, 75th = 0.90 mmol/L). Baseline characteristics stratified by 

baseline iMg status above or below the median were comparable. 

B. Effect of magnesium supplementation on magnesium biomarkers 
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In Table 4.2 are mean and standard deviations for iMg and tMg at baseline, follow-up, 

and change in iMg and tMg by treatment arm. Also presented in Table 4.2 are age- and baseline-

adjusted differences by assigned treatment arm. At the end of intervention period, the change in 

iMg for those randomized to 400 mg/day of supplemental Mg was significantly higher than the 

change for those randomized to placebo [mean supplement effect=0.03 mmol/L (95% CI: 0.01, 

0.05); p-value=0.009]. The supplement effect on iMg did not statistically significantly differ by 

baseline iMg concentrations (above vs below the median, p-interaction=0.86). There was not a 

significant effect on the ratio of iMg to tMg [mean supplement effect of 0.6% (95% CI: -1.7%, 

3.0%); p-value=0.58]; the supplement effect did not differ by the ratio of baseline iMg to tMg (p-

interaction=0.47). As previously reported,78 there was a significant supplement effect on tMg of 

0.04 mmol/L (0.01, 0.06); p-value=0.004; which also did not differ significantly by baseline tMg 

status (p-interaction=0.23).  

In secondary analyses, among those with compliance >80% (based on pill count), results 

were largely similar (Supplemental Table 4.1). When we adjusted the intervention effect for sex 

and baseline ionized calcium, results were also largely similar (data not shown).  

C. Relationship between magnesium biomarkers 

Baseline concentrations of iMg and tMg were correlated at r = 0.50 (p-value<0.001) 

overall, while in the treatment group it was r = 0.47 (p-value=0.02) and in the placebo group it 

was r = 0.58 (p-value=0.002). Using linear regression, the slope between iMg (outcome) and tMg 

(predictor) was 0.417 (intercept=0.187); the slope was 0.422 (intercept=0.186) when adjusted for 

treatment group and age stratum. Figure 4.1 provides a scatterplot of iMg and tMg measurements 

at baseline, which shows a positive and even scatter across the association between baseline iMg 

and tMg. Bland-Altman plots show the comparative agreement between change in iMg and tMg 
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in response to supplementation stratified by treatment group (Figure 4.2). In the treatment group, 

there was slight variation between change in iMg across the mean of iMg measurements. 

Specifically, those with lower averaged iMg measurements tended to have positive change in 

iMg. There were not clear patterns for iMg in the placebo group or change in tMg.  

D. Comparisons of iMg in fresh, refrigerated and frozen blood samples 

There were 39 participants with baseline iMg measured in fresh as well as in stored 

samples. The average time from blood draw to analysis of baseline samples was 71 ± 29 minutes 

for refrigerated serum while for frozen serum it was 84 ± 15 days. Overall, the average iMg 

concentration was 0.54 ± 0.05 mmol/L in fresh whole blood samples; 0.68 ± 0.04 when measured 

in the refrigerated samples and 0.73 ± 0.05 in the frozen serum samples, respectively. The mean 

pH was also higher in previously refrigerated samples (7.45) and frozen samples at (7.53) than in 

fresh baseline samples (7.38).  

After refrigeration, iMg concentrations were higher by, on average, 0.14 mmol/L (95% 

CI: 0.12, 0.16) than iMg in fresh whole blood. After one freeze-thaw cycle, serum iMg was 

higher than in fresh whole blood by an average of 0.20 mmol/L (95% CI: 0.18, 0.21). Bland-

Altman plots depict the comparative agreement between iMg in whole blood measured soon after 

blood draw against iMg in serum refrigerated for approximately 1 hour (Figure 4.3A) and iMg 

after one freeze-thaw cycle (Figure 4.3B). The difference in iMg measured in refrigerated vs 

fresh was higher by about 0.14 mmol/L and did not appreciably differ by the average of the two 

measurements (Figure 4.3A), while previously frozen vs fresh was consistently higher by about 

0.20 mmol/L. The difference between iMg using refrigerated vs fresh samples ranged from 0.07 

mmol/L to 0.30 mmol/L, while for frozen vs fresh differences ranged from 0.11 to 0.29 mmol/L. 

Pearson’s partial correlations were r = 0.34 (p-value=0.04) for refrigerated versus fresh samples 
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and r = 0.46 (p-value=0.005) for frozen versus fresh samples.  

V. DISCUSSION 

In this randomized controlled trial, oral Mg supplementation over 10 weeks increased 

iMg in whole blood compared to placebo. The change did not differ by baseline iMg 

concentration, though we were not powered to detect subgroup differences. Mg supplementation 

did not have an effect on the ratio of iMg/tMg, and as previously reported,78 Mg supplementation 

resulted in increased tMg. With regard to lab stability, concentrations of iMg measured in 

refrigerated serum were consistently overestimated based on previously refrigerated and frozen 

sera samples.  

The distribution of iMg in this relatively healthy population is largely consistent with 

those from other studies. One study suggested a reference interval for whole blood iMg of 0.44-

0.59 among 125 healthy participants, while among 200 consecutively recruited ICU patients, the 

range of iMg concentrations was wider (0.35-0.78 mmol/L).201 Another study measured iMg in 

plasma using the same assay in the previous study201 and reported a higher range of 0.53-0.67 

mmol/L.202 Currently, however, there is not an established threshold for defining optimal iMg, 

particularly in relation to predicting longer term health outcomes. 

Four small oral Mg supplement RCTs (range N randomized = 26-60), conducted 

primarily in populations with comorbidities, have included both blood measurements of iMg and 

tMg.27-30 Also complicating the ability to draw comparisons between RCTs incorporating iMg is 

that some of these studies utilized different iMg assays. In a RCT of 60 elderly participants with 

type 2 diabetes,27 those randomized to 1 month of Mg supplementation had experienced a 

statistically significant increase in iMg (but not tMg) from baseline, relative to placebo.27 Other 

RCTs have found no effect of Mg supplementation on biodistribution of circulating tMg or 
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iMg.28-30 However, in addition to being small, the studies are heterogeneous (Mg 

dose/formulation, population, duration) and thus are difficult to directly compare.27-30 

Most observational studies that have examined iMg in populations with medical 

conditions (e.g. chronic kidney disease, hypertension, pre-term labor) have done so cross-

sectionally.18 Many of these conditions are known to influence tMg concentrations.18 A pilot 

study among 173 surgical intensive care unit patients reported poor agreement (weighted 

kappa=0.35) between iMg and tMg status.203 It warrants mention, importantly, that classifications 

of low, normal or high tMg were based on established clinical cut-points, while classifications of 

iMg as low, normal or high were based on a reference interval in a healthy population.201 

In the present manuscript we also evaluated the impact of processing on iMg 

concentrations. When iMg was measured using previously refrigerated and frozen samples, iMg 

concentrations were higher when compared to iMg measured soon after blood draw as 

recommended by the assay manufacturer. When compared to the gold standard processing 

(measurements made <15 minutes after blood draw), the pattern of higher iMg in refrigerated and 

frozen samples did not vary across iMg concentrations. If iMg were found to be a stronger 

biomarker of ‘true’ Mg status, then plausibly iMg could be measured using stored samples and 

then corrected for processing method. It would also be important to compare similarities or 

differences in circulating iMg by sample type (i.e. whole blood, serum, plasma). Previously, in a 

study published in 1996 using an earlier generation of this assay, the laboratory stability of iMg 

was tested in a cross-sectional analysis among relatively healthy participants under a variety of 

conditions (uncapped at room temperature, capped at room temperature and capped at 4○C) after 

2, 4 and 6 hours storage. 201 Average fresh whole blood iMg (0.52 mmol/L) was similar when 

measured after storage in capped tubes for 2-6 hours at room temperature or at 4○C. Mean iMg 

concentrations were lower in uncapped room temperature samples. The pH of the blood increased 
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over time, particularly in uncapped samples. In that study, iMg was not corrected to pH of 7.4.201 

Further research is needed to determine if iMg is more strongly associated with health outcomes, 

and if so, enough so that it outweighs challenges of using stored samples. 

It is important to be cognizant of limitations of this analysis. First, given how little 

research has been conducted on iMg, optimal concentrations of iMg, specifically in relation to 

health outcomes, are not well characterized. Second, the sample in the present analysis is of 

modest size. We were powered to detect overall supplement effects, but not subgroup 

comparisons such as differences by baseline iMg concentrations. Last, fresh iMg (i.e. iMg 

measured soon after blood draw) was measured in whole blood, while serum was used for 

measurements of iMg in previously refrigerated and frozen samples. It is possible differences in 

specimen may account for the apparent difference in fresh iMg versus iMg in stored serum. 

However, previously one study noted minimal differences in fresh iMg as measured in whole 

blood, plasma or serum.204 Nevertheless, the major strengths of this analysis are that it is one of 

the first randomized controlled supplement trials to examine both tMg and iMg in a relatively 

healthy population. Additionally, we were able to examine the (lack of) laboratory stability of 

iMg when measured soon after blood draw and when using previously refrigerated or frozen 

samples in a RCT.  

In conclusion, we found that Mg supplementation over 10 weeks resulted in increased 

iMg concentrations. Baseline concentrations of iMg and tMg were modestly and positively 

associated. Using refrigerated and frozen samples, iMg concentrations consistently overestimated 

iMg as measured in fresh whole blood. Whether iMg is a more appropriate measure of Mg status 

than tMg and the public health or clinical utility of measuring iMg remains to be determined. 

Further research is needed to learn how (or if) iMg relates to longer-term health outcomes, and 

whether iMg is a better predictor of health outcomes than tMg.  
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Table 4.1. Baseline participant characteristics stratified by study arm, and by baseline ionized magnesium 

concentration (above vs. below median), n=59 

 
Intervention status 

 
Baseline iMg concentration 

 Magnesium  

(400 mg daily) 
Placebo 

 
≥ mediana < median 

N 29 30  28 26 

Age, years b 61.3 ± 5.3 61.6 ± 5.2  61.0 ± 4.3 62.2 ± 6.0 

Age category      

    ≥65 years 6 (20.7) 8 (26.7)  5 (17.9) 8 (30.8) 

    <65 years 23 (79.3) 22 (73.3)  23 (82.1) 18 (69.2) 

Sex      

    Female 25 (86.2) 18 (60.0)  23 (82.1) 16 (61.5) 

    Male 4 (13.8) 12 (40.0)  5 (17.9) 10 (38.5) 

Race      

    White 27 (93.1) 29 (96.7)  26 (92.9) 25 (96.2) 

    Non-white 2 (6.9) 1(3.3)  2 (7.1) 1(3.8) 

Education      

    High school graduate or GED 0 (0.0) 1 (3.3)  0 (0.0) 0 (0.0) 

    Some college 6 (20.7) 4 (13.3)  4 (14.3) 5 (19.2) 

    College graduate 10 (34.5) 16 (53.3)  10 (35.7) 14 (53.9) 

Graduate or professional school 13 (44.8) 9 (30.0)  13 (46.4) 7 (26.9) 

BMI, kg/m2 27.7 ± 4.9 28.0 ± 4.5  26.9 ± 3.2 28.4 ± 5.4 

Systolic blood pressure, mmHg 118.4 ± 14.9 119.3 ± 18.4  116.8 ± 12.1 122.0 ± 20.4 

Diastolic blood pressure, mmHg 71.9 ± 8.7 71.2 ± 10.2  71.0 ± 7.0 72.46 ± 11.2 

Glucose, mg/dL 94.2 ± 10.6 103.2 ± 40.2  94.1 ± 9.4 104.9 ± 43.1 

    Sensitivity analysis c 94.2 ± 10.6 96.2 ± 11.64  94.1 ± 9.4 96.8 ± 12.7 

pH 7.38 ± 0.02 7.38 ± 0.03  7.38 ± 0.02 7.38 ± 0.03 

Total magnesium, mmol/L 0.86 ± 0.06 0.85 ± 0.05  0.87 ± 0.05 0.84 ± 0.06 

Ionized magnesium, mmol/L d 0.56 ± 0.06 0.55 ± 0.04  0.59 ± 0.03 0.51 ± 0.04 

Total calcium, mmol/L 2.35 ± 0.09 2.34 ± 0.09  2.34 ± 0.09 2.35 ± 0.08 

Ionized calcium, mmol/L d 1.19 ± 0.03 1.18 ± 0.03  1.19 ± 0.03 1.18 ± 0.03 

Abbreviations: GED, general education diploma; BMI, body mass index; iMg, ionized magnesium; a iMg 

median = 0.55 mmol/L; b N (%) or mean ± standard deviation; c Omission of one participant with a baseline 

glucose value of 307 mg/dL; d Ionized calcium and magnesium are both ‘normalized’ to pH 7.4 
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Table 4.2. Ten-week change in ionized and total magnesium concentrations by treatment group, overall and stratified by baseline magnesium concentrations, 

n=59 

 
Intervention status   

Baseline Mg concentrationa  

≥ median < median 

 

Magnesium 

(400 mg daily) 

Mean (SD) 

Placebo 

Mean (SD) 

Mean 

Intervention 

Effect (95% CI)b 

p-value 

Mean 

Intervention 

Effect (95% CI) 

p-value 

Mean 

Intervention 

Effect (95% CI) 

p-value p-interaction 

N 29 30        

iMg,c mmol/L 22 27 0.03 (0.01, 0.05) 0.009 0.03 (0.00, 0.07) 0.07 0.03 (0.00, 0.07) 0.07 0.86 

    Baseline 0.56 (0.06) 0.54 (0.04)        

    Follow-upd 0.57 (0.03) 0.53 (0.04)        

    Change 0.01 (0.05) -0.01 (0.05)        

tMg, mmol/L 24 30 0.04 (0.01, 0.06) 0.004 0.05 (0.01, 0.08) 0.01 0.02 (-0.00, 0.05) 0.08 0.27 

    Baseline 0.86 (0.06) 0.85 (0.05)        

    Follow-upd 0.89 (0.06) 0.85 (0.05)        

    Change 0.03 (0.05) 0.00 (0.05)        

Abbreviations: SD, standard deviation; CI, confidence interval; iMg, ionized magnesium; tMg, total magnesium; a iMg median = 0.55 mmol/L; tMg median = 

0.86 mmol/L; b Adjusted for age (≥65 or <65), and baseline concentration (e.g. when change in iMg is the outcome, models were adjusted for baseline iMg). The 

numbers of observations included in linear models are 49 and 54 for the outcomes ionized magnesium (whole blood) and total magnesium (serum); c Normalized 

iMg concentration which is adjusted for blood pH; d Follow-up information obtained at intervention week 10   
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Table 4.3. Mean ionized magnesium concentrations in fresh, refrigerated and frozen blood samples and mean difference from baseline (fresh) after refrigeration 

and freezing, n=39 

 
Time from draw 

to analysis a pH a 
Concentrations,a  

mmol/L 

Mean Difference 

(95% CI), mmol/L 

Percentiles of Difference from 

Fresh iMg,c mmol/L 

1st 25th 50th 75th 99th 

iMg (normalized)          

    Freshb 4.8 min (3.4) 7.38 (0.03) 0.54 (0.05) Reference - - - - - 

    Refrigerated 69.6 min (25.3) 7.45 (0.04) 0.68 (0.04) 0.14 (0.12,0.16) 0.07 0.10 0.13 0.17 0.31 

    Frozen 82.2 days (15.4) 7.51 (0.04) 0.73 (0.05) 0.19 (0.18,0.21) 0.11 0.15 0.19 0.25 0.29 

iMg (not normalized)          

    Fresh 4.8 min (3.4) 7.38 (0.03) 0.54 (0.05) Reference - - - - - 

    Refrigerated 69.6 min (25.3) 7.45 (0.04) 0.65 (0.04) 0.11 (0.10,0.13) 0.04 0.07 0.09 0.13 0.25 

    Frozen 82.2 days (15.4) 7.51 (0.04) 0.68 (0.05) 0.14 (0.12,0.15) 0.05 0.09 0.13 0.18 0.20 

Abbreviations: CI, confidence interval; iMg, ionized magnesium; tMg, total magnesium; a Mean (standard deviation); b Refrigerated and frozen blood samples 

were measured in serum, while fresh was measured in whole blood; c The distribution (in percentiles) of the difference between refrigerated vs fresh and frozen 

vs fresh. A value of 0 indicates that iMg measured in refrigerated (or frozen) and fresh were identical.  
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Supplemental Table 4.1. Ten-week change in ionized and total magnesium concentrations by treatment group, overall and stratified by baseline magnesium 

concentrations, excluding those who did not take >80% capsules as assigned, n=38 

 
Treatment arm   

Baseline Mg concentrationsa  

≥ median < median 

 

Magnesium 

(400 mg daily) 

Mean (SD) 

Placebo 

Mean (SD) 

Mean 

Intervention 

Effect (95% CI)b 

p-

value 

Mean 

Intervention 

Effect (95% CI) 

p-

value 

Mean 

Intervention 

Effect (95% CI) 

p-

value 

p-

interaction 

N 15 23        

iMg,c mmol/L 11 22 0.04 (0.01, 0.06) 0.007 0.04 (-0.01, 0.09) 0.14 0.06 (0.01, 0.10) 0.02 0.37 

    Baseline 0.57 (0.06) 0.54 (0.04)        

    Follow-upd 0.58 (0.02) 0.54 (0.04)        

    Change 0.01 (0.05) -0.01 (0.05)        

tMg, mmol/L 13 23 0.05 (0.02, 0.08) 0.003 0.05 (0.01, 0.10) 0.02 0.03 (-0.00, 0.07) 0.07 0.47 

    Baseline 0.85 (0.05) 0.85 (0.05)        

    Follow-upd 0.89 (0.06) 0.84 (0.06)        

    Change 0.04 (0.04) -0.01 (0.05)        

Abbreviations: SD, standard deviation; CI, confidence interval; iMg, ionized magnesium; tMg, total magnesium; a iMg median = 0.55 mmol/L; tMg median = 

0.86 mmol/L; b Adjusted for age (≥65 or <65), and baseline concentration (e.g. when change in iMg is the outcome, models were adjusted for baseline iMg). The 

numbers of observations included in linear models are 49 and 54 for the outcomes ionized magnesium (whole blood) and total magnesium (serum); c Normalized 

iMg concentration which is adjusted for blood pH; d Follow-up information obtained at intervention week 10
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Figure 4.1. Scatterplot and linear fitted line between ionizeda and total magnesium at baseline, unadjusted, n=49 

   

a Normalized iMg concentration which is adjusted for blood pH
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Figure 4.2. Bland-Altman plots assessing the association between change in ionized and total magnesium 

in response to magnesium supplementation over 10 weeks, stratified by treatment arma,b 

a) Change in ionized magnesium (iMg) in treatment group, n=22 
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b) Change in total magnesium (tMg) in treatment group, n=24 
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c) Change in ionized magnesium (iMg) in placebo group, n=27  
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d) Change in total magnesium (tMg) in placebo group, n=30 

 

a Normalized iMg concentration which is adjusted for blood pH 
b Solid lines (black) are mean difference ± 3 standard deviations; Long dash line (gray) are fitted values; 

short dash line (black) is reference line for mean difference of 0 mmol/L  
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Figure 4.3. Bland-Altman plots assessing the association between concentrations of ionized magnesium at 

baseline in fresh whole blood and in serum after refrigeration and freezinga,b,c 

a) Ionized magnesium (iMg) concentrations in fresh whole blood vs refrigerated serum, n=39 

 

  



 

81 

 

b) Ionized magnesium (iMg) concentrations in fresh whole blood vs frozen serum, n=39 

 

a Normalized iMg concentration which is adjusted for blood pH 

b Median time in fridge = 71 minutes; median time frozen = 81 days 
c Solid lines (black) are mean difference ± 3 standard deviations; Long dash line (gray) are fitted values; 

short dash line (black) is reference line for mean difference of 0 mmol/L 
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CHAPTER 5 (MANUSCRIPT 2) – SERUM MAGNESIUM AND 

BURDEN OF ATRIAL AND VENTRICULAR ARRHYTHMIAS: THE 

ATHEROSCLEROSIS RISK IN COMMUNITIES (ARIC) STUDY 

I. OVERVIEW 

Introduction: Magnesium (Mg) is thought to play a role in cardiac electrophysiology. Little is 

known about Mg in relation to subclinical atrial and ventricular arrhythmias among a community-

based population of elderly individuals. 

  

Objectives: To evaluate cross-sectional associations of serum Mg with atrial arrhythmias [atrial 

fibrillation (AF), premature atrial contractions (PAC), supraventricular tachycardia (SVT)], and 

ventricular arrhythmias [premature ventricular contractions (PVC), non-sustained ventricular 

tachycardia (NSVT)]. 

 

Methods: We included 2,513 ARIC study visit 6 participants who wore a leadless, ambulatory 

ECG-monitoring device. Serum Mg was modeled using cut-points and continuously. AF burden 

was categorized as intermittent or continuous based on the percent of analyzable time spent in 

AF. Other arrhythmia burdens were defined by the average number of abnormal beats per day. 

Linear regression was used to evaluate associations with continuous outcomes; while logistic and 

multinomial regression was used for binary and categorical outcomes, respectively. 

 

Results: Participants were mean±SD age 79±5 years, 59% were women and 28% black. Mean 

serum Mg was 0.82±0.08 mmol/L and 19% had hypomagnesemia (<0.75 mmol/L). Across all 

models, serum Mg was inversely and monotonically associated with PVC burden. In the 
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demographic-adjusted model, serum Mg was inversely associated with odds of both continuous 

and intermittent AF. The association was no longer statistically significant with further 

adjustment for lifestyle characteristics and traditional AF risk factors. There was no statistically 

significant evidence of an association between serum Mg and other arrhythmias examined. 

 

Conclusions: In this elderly population, low serum Mg was cross-sectionally associated with 

greater PVC burden. We found little evidence of an association between serum Mg and atrial 

arrhythmias. Whether Mg is associated with subclinical arrhythmia burden in mid-life is unclear. 
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II. INTRODUCTION 

Magnesium (Mg) plays many essential physiologic functions, including having a role in 

cardiac electrophysiology.3,4 The reference interval for normal serum Mg concentrations is 

traditionally defined by serum Mg concentrations between 0.75-0.95 mmol/L; however, some 

experts have suggested that individuals with serum Mg concentrations of 0.75-0.85 mmol/L may 

also exhibit subclinical or chronic latent magnesium deficiencies.17 In nutrition sciences, severe 

Mg deficiency is widely thought to result in dysrhythmias, including atrial fibrillation (AF).8,205 

While extreme Mg concentrations are also thought to lead to adverse electrocardiographic (ECG) 

changes,67 less is understood about subclinical deficiencies in circulating Mg in relation to burden 

of atrial and ventricular arrhythmias.  

Most research on Mg and arrhythmias in the community have examined clinically 

recognized AF as the outcome. Three prospective observational studies, including ARIC,8 have 

documented associations between low serum Mg and an increased risk of developing AF.74-76 In 

ARIC, serum Mg was examined in relation to incident AF, as identified by study visit 12-lead 

ECGs and ICD codes on hospital discharges and death certificates. The other studies used similar 

AF ascertainment approaches.  

Whether Mg is related to subclinical arrhythmias is unclear, particularly because these 

arrhythmias can often be asymptomatic and intermittent in nature. Current ECG technology has 

evolved to allow continuous monitoring for longer periods, such as 2 weeks,206-208 which leads to 

the identification of additional arrhythmic events.209 As such, relatively little research has 

explored the association between Mg and subclinical atrial arrhythmias [e.g. intermittent AF, 

premature atrial contractions (PAC) or supraventricular tachycardia (SVT)] or subclinical 

ventricular arrhythmias [e.g. premature ventricular contractions (PVC) or non-sustained 
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ventricular tachycardia (NSVT)] in the community.  

Using data from over 2,000 ARIC participants we characterized cross-sectional 

associations of serum Mg concentrations across the spectrum of AF burden and other arrhythmias 

(PAC, SVT, PVC, NSVT) based on up to 2 weeks of continuous ECG recording. We 

hypothesized that low serum Mg concentrations were associated with a higher prevalence and 

burden of atrial and ventricular arrhythmias in this elderly community-dwelling population. 

III. METHODS 

A. Study design 

The multi-center prospective ARIC study195 began in 1987-89, when the eventual 15,792 

participants were aged 45-64 years old. Participants were recruited from 4 communities (suburbs 

of Minneapolis, MN; Forsyth County, NC; Jackson, MS; Washington County, MD). Since the 

baseline visit, several clinic visits have been conducted.  There has also been continuous 

surveillance for hospitalizations. At each ARIC visit, written informed consent was obtained.  

Relevant to this manuscript, visit 6 occurred in 2016-17 and was attended by 4,003 

participants (48% of those living). At visit 6, ARIC participants were invited to wear the Zio® 

XT Patch for 2 weeks provided they did not report a history of an allergic reaction to skin 

adhesive. Participants completed a brief questionnaire which asked about prior arrhythmias and 

treatments (e.g. previous arrhythmia diagnosis, anticoagulation status), and the device was 

applied to the upper left chest. Participants returned the devices by mail, in a pre-paid and labeled 

envelope to iRhythm (the manufacturer) for processing. Of the 2,650 participants who received a 

device, 17 devices were lost, and 17 devices were returned without data; thus resulting in 2,616 
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devices returned with analyzable data. Individuals who wore the Zio® XT Patch and had serum 

Mg measurement at visit 6 were eligible for this analysis. For analyses of atrial arrhythmias other 

than AF, we excluded those with prevalent AF as detected during Zio monitoring, or identified by 

prior ARIC AF diagnosis.210 

 Biomarker Measures  

Fasting blood samples were obtained at ARIC visit 6, and were frozen until analysis. 

Serum total Mg was measured using colorimetric methods on the Roche Cobas 6000 Chemistry 

Analyzer (Roche Diagnostics; Indianapolis, Indiana). Serum potassium was measured using an 

ion selective electrode (Roche C501 Chemistry Analyzer). Serum glucose was measured using a 

hexokinase assay (Roche Cobas 6000 Chemistry Analyzer). Coefficients of variations (based on 

duplicate samples) were 1.6%, 2.2%, and 2.0%, for Mg, potassium, and glucose, respectively. 

 Covariates 

At ARIC clinic visit 6, participants were interviewed, underwent anthropomorphic 

measurements and sitting blood pressure measurements, as well as a blood draw. Participants 

were asked to bring bottles of current medications to the visit, where medication information was 

transcribed and coded. Diabetes was defined as a having a fasting glucose level ≥126 mg/dL, 

non-fasting glucose level ≥200 mg/dL, self-reported use of diabetes medication or self-reported 

physician diagnosis. Systolic blood pressure was quantified based on the mean of the second and 

third blood pressure measurements. Body mass index (BMI) was calculated based on weight (kg) 

divided by height (m2) squared. Physical activity (sports index) was quantified using the validated 

Baecke questionnaire.197 Detailed definitions of coronary heart disease (CHD),211 heart failure 

(HF)212 and stroke213 have been previously published. Briefly, trained staff abstracted possible 
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hospitalized CHD and stroke events onto standardized forms, which were classified by physicians 

using computer-assisted classification algorithms. HF was classified based on a prior hospital 

discharge code including ‘428’ (428.0 – 428.9) or outpatient HF using previously published 

criteria.212 

 Outcomes 

AF was defined by an irregularly irregular rhythm with absent P-waves lasting >30 

seconds. AF burden was defined by percent of recording time spent in AF, which we categorized 

as no AF (0%), intermittent AF (0 to <100%) and continuous AF (100%). 

SVT was defined by narrow complex tachycardia >4 beats with a rate >100/min, while 

NSVT was defined by wide complex tachycardia >4 beats with a rate >100/min. PAC count 

refers to the number of isolated PACs, while PVC count refers to the number of isolated PVCs. 

PAC, SVT, NSVT and PVC burden refer to the average number of arrhythmic beats per day (e.g. 

PAC count divided by duration of recording time).  

B. Statistical analysis 

We used multiple imputation with chained equations to avoid dropping observations due 

to missing covariates (<10% of observations for each covariate were missing).214 The imputation 

model included the exposure (Mg, continuous) and all other covariates adjusted for in Model 3, as 

listed below. We created 10 imputed data sets using SAS PROC MI, separately analyzed each 

dataset, and used SAS PROC MIANALYZE to combine these results. 

Restricted cubic splines were used initially to visualize the association between Mg and 

arrhythmias. We present unadjusted mean ± SD and proportions for the covariates stratified by 
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serum Mg categories. Specifically, we modeled Mg using clinical cut-points (i.e. >0.95 mmol/L 

hypermagnesemia, 0.85-0.95 mmol/L normal, 0.75-<0.85 mmol/L subclinical hypomagnesemia, 

<0.75 mmol/L hypomagnesemia).17  

Linear regression was used for analyses involving continuous outcomes. We log-

transformed PAC and PVC burden due to the right-skew distribution of these variables. 

Unconditional logistic regression was used to assess the association between serum Mg and 

binary measures of arrhythmias (NSVT). Multinomial logistic regression was used for categorical 

outcomes (AF burden). Confidence intervals were estimated based on model-based standard 

errors. In Model 1, we adjusted for demographic characteristics: age, sex and race-center (white-

Minneapolis, MN; black-Jackson, MS; black-Forsyth County, NC; white-Forsyth County, NC; 

white-Washington County, MD). In Model 2, we additionally adjusted for educational attainment 

(less than high school; high school or GED; high school or more), smoking status (current, 

former, never), and ethanol intake (grams per week). In Model 3 (our fully adjusted model), we 

further adjusted for diabetes, systolic and diastolic blood pressure (continuous), and 

antihypertensive medication use. Additionally, circulating potassium plays an important role in 

cardiac electrophysiology and hypokalemia can frequently co-occur with hypomagnesemia. We 

added serum potassium (continuous) to Model 3 to test whether the serum Mg-arrhythmia 

associations are independent of serum potassium concentrations (Model 4).  

To test the robustness of our findings, we conducted several sensitivity analyses: 1) 

excluding those taking antiarrhythmic medications, 2) excluding users of ACEI/ARBs and 

diuretics, 3) excluding users of proton pump inhibitors (PPIs) as well as 4) excluding those with a 

history of CVD (CHD, HF, stroke). 

IV. RESULTS 
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The 2,513 participants were mean±SD aged 79±5 years, 58% were women and 25% were 

black. Mean serum Mg was 0.82±0.08 mmol/L and hypomagnesemia (<0.75 mmol/L) prevalence 

was 19%. Median analyzable time was 13.7 days (IQR=12.7-13.9). As shown in Table 5.1, 

participants with low serum Mg tended to take more medications and have a higher prevalence of 

cardiometabolic diseases as compared to those with normal magnesium (0.75-0.95 mmol/L). 

As shown in Figure 5.1, low serum magnesium tended to be associated with higher 

model-predicted probability of any AF. Odds ratios (95% CIs) from multinomial logistic 

regression between serum Mg clinical categories with supraventricular arrhythmias are shown in 

Table 5.2. Due to small numbers individuals with AF among those with hypermagnesemia 

(>0.95 mmol/L), results are not reported for AF. In the demographic adjusted model, compared to 

those with hypomagnesemia (<0.75 mmol/L) the odds of having continuous AF were lower 

among those with serum Mg between 0.75-0.85 mmol/L [OR (95% CI) 0.59 (0.37, 0.95)] and 

0.85-0.95 mmol/L [0.53 (0.33, 0.85)]. The association was attenuated with adjustment for 

lifestyle characteristics and particularly after further adjustment for traditional CVD risk factors. 

Similarly, each 0.1 mmol/L increment (approximately 1 SD) of serum Mg was associated with a 

0.79 (0.74, 0.84) lower odds of continuous AF in the demographic-adjusted model. This 

association was also attenuated with further adjustment.  

Effect estimates for intermittent versus no AF were in the hypothesized direction but 

smaller, and in most instances not statistically significant. No statistically significant associations 

were observed for serum Mg clinical cut-points in relation to intermittent versus no AF. Each 0.1 

mmol/L increment was associated with lower odds of having intermittent AF [0.92 (0.84, 1.00)] 

with demographic adjustment. The effect estimate per 0.1 mmol/L was largely unchanged with 

further adjustment, but confidence intervals were wider. Among those with no AF, we also found 
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little evidence of an association of serum Mg with either PAC burden or SVT burden. 

Associations between serum Mg and ventricular arrhythmias are presented in Table 5.3. 

Across all models, there was a monotonically inverse association between serum Mg clinical cut-

points in relation to PVC burden. Similarly, when Mg was modeled continuously, each SD 

increment was associated with a lower PVC burden.  There was no evidence of an association 

between serum Mg and the presence of NSVT. 

In sensitivity analyses, the primarily null results for serum Mg and atrial arrhythmias 

were largely unchanged after we excluded participants taking anti-arrhythmic medications 

(Supplemental Table 5.1a), participants taking ACEi, ARB, and diuretics (Supplemental Table 

5.1b), as well as participants taking PPIs (Supplemental Table 5.1c). The association was also 

similar when examined among those without a history of CVD (Supplemental Table 5.2). A 

similar set of sensitivity analyses were conducted for ventricular arrhythmias outcomes as shown 

in Supplemental Tables 5.3-5.4, and these results were largely similar to those in the main 

analyses.  

V. DISCUSSION 

In this community-based study of elderly individuals, we found that higher serum Mg 

was cross-sectionally associated with a lower burden of PVCs based on 2 week ambulatory ECG 

monitoring. We also found that participants with low magnesium concentrations had higher odds 

of continuous and intermittent AF in the demographic adjusted model; however, this association 

was attenuated and no longer statistically significant with further adjustment for lifestyle and 

CVD risk factors. These findings were similar even among those without a history of CVD. 

A. Magnesium & atrial arrhythmias 
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Three prospective observational studies, including a prior ARIC publication,74 have 

documented associations between low serum Mg and an increased risk of developing AF.74-76 In 

ARIC, serum Mg was examined in relation to incident AF (hospital discharge, study visit ECGs 

and death certificates). Those in the lowest serum Mg quintile had a hazard ratio (HR) of 1.34 

(95% CI: 1.16-1.54) compared to those in the middle quintile after multivariable adjustment.74 

Similarly, in the Framingham Offspring study, participants in the lowest serum Mg quartile had a 

higher AF risk compared to participants in the highest quartile [HR=1.52 (95% CI: 1.00-2.31)].75 

In an Israeli HMO, both mild and moderate hypomagnesemia were associated with higher AF 

risk over a follow-up period of about 2 years but not with AF risk over a short-term (3 month) 

follow-up.76 However, outcomes in these studies were based on clinically recognized AF and/or  

shorter term ECG monitoring (e.g. 12-lead ECG), which might not capture those with intermittent 

AF episodes.215,216 Additionally, an experimental feeding study lends support to these 

epidemiologic findings. Of 14 healthy women who were fed an extremely low diet in Mg, 3 of 

the women developed AF. Their AF resolved quickly after Mg repletion.47 Furthermore, 

intravenous (high dose) Mg is used in the context of cardiac surgery to prevent post-operative 

AF.217 

 The pathophysiology linking circulating Mg and supraventricular arrhythmias is not well 

characterized. Mg is involved in hundreds of enzymatic reactions throughout the body.82 Ionic 

flow of Mg, as well as calcium and potassium, are important for generating action potentials and 

maintaining the membrane potential of cardiac cells.83 Mg is also considered a natural calcium 

antagonist, as Mg competes with calcium for membrane–binding sites to the L-type Ca2+ 

current.84,85 Additionally, it is possible that low circulating Mg could act through known AF risk 

factors (namely hypertension, inflammation, or diabetes17) to promote arrhythmogenesis. The 

lack of a robust association in the present analysis is surprising and may be related to the 
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agedness of our study population when they wore the Zio® XT Patch. Prospective evaluations of 

Mg and AF began when participants were middle-aged; the present study population was on 

average 79 years old.  

B. Magnesium & ventricular arrhythmias 

Intravenous Mg is commonly used to manage torsade de pointes, a type of ventricular 

arrhythmia, in the setting of long QT-interval syndrome.218 Generally, there has been little 

characterization of any relationship of serum Mg concentrations and ventricular arrhythmias in 

the community. A small oral Mg supplement RCT reported decreased PVC intensity among 

participants without prior cardiac diseases.79 In the Framingham Offspring Study, each SD (0.08 

mmol/L) decrement was associated with lower odds of having a PVC identified over 1 hour ECG 

monitoring.92  

Aside from the aforementioned studies, much of the research on Mg and ventricular 

arrhythmias has been conducted in populations with existing medical conditions (e.g. congestive 

HF, MI, diabetes). For example, among 750 obese Canadian participants with type 2 diabetes, 

participants with serum Mg ≤0.70 mmol/L had a 2.5-fold higher prevalence of premature 

ventricular contraction (PVC)—as measured using a Holter monitor—than those with serum Mg 

>0.70 mmol/L (50% vs 21%).91 This is similar to our findings among individuals either with or 

without prior cardiometabolic disease as detected over 2 weeks ECG monitoring. 

Similar to supraventricular arrhythmias, potential mechanisms between low Mg and 

ventricular arrhythmias are not fully understood. There is some overlap in the potential 

pathophysiologic mechanisms of circulating Mg to both supraventricular and ventricular 

arrhythmias, as described in the previous section. However, specific to ventricular arrhythmias, 
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intravenous Mg administration may lead to suppression of ventricular ectopic activity.84  Mg 

serves as a cofactor to Na/K ATPase, which, during the action potential, acts to aid transport of 

potassium into cardiac cells.  When cellular Mg is deficient, this results in a less efficient Na/K 

ATPase system and influences the membrane potential.67,82 As such, it is possible that QT interval 

prolongation could arise, and could promote abnormal ventricular rhythm.82  

C. Strengths & limitations 

There are strengths and limitations to the present study. First, given the small number of 

participants with intermittent AF, precision was limited to detect an association (if one truly 

exists). Second, as this analysis was cross-sectional the temporality of the association is difficult 

to disentangle, particularly considering the complexity of Mg homeostasis and cardiac 

electrophysiology. Third, residual confounding is another limitation of the cross-sectional design; 

it is plausible that those with arrhythmias are sicker and have other confounding characteristics 

shared by those with low circulating Mg. Relatedly, ECG abnormalities may not be specific to 

Mg. For example, abnormal Mg homeostasis may coexist with (and/or exacerbate) other 

electrolyte abnormalities, particularly calcium and potassium, which themselves are known to be 

involved in cardiac electrophysiology.68  Fourth, this time frame in late-life may not be the 

optimal time to characterize associations between Mg and arrhythmias, as opposed to younger 

adults. Lastly, like virtually all studies of Mg and arrhythmias, we did not measure ionized Mg, 

which may be the more physiologically relevant form of circulating Mg.16 Nevertheless, there are 

important strengths to these findings. Major strengths are the community-based population and 

the extensive characterization of arrhythmia burden using a novel ECG monitor worn for up to 2 

weeks. 
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D. Conclusions 

In conclusion, we found that low serum magnesium was associated with greater PVC 

burden as measured over 2 weeks of ECG monitoring. We found little evidence of a cross-

sectional association between serum Mg and atrial arrhythmias in this elderly community-

dwelling population. Future research should test whether serum Mg is associated with subclinical 

arrhythmia burden in younger adults and further explore the possible Mg-PVC association 

prospectively.  
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Table 5.1.  Descriptive characteristics by serum magnesium cut-points, the ARIC study, 2016-2017 

 Serum magnesium, mmol/La 

 <0.75 0.75-0.85 0.85-0.95 >0.95 

N 478 986 1004 45 

Serum magnesium, mmol/Lb 0.70  

(0.37-0.74) 

0.82  

(0.78-0.82) 

0.86 

 (0.86-0.95) 

0.99 

(0.99-1.11) 

Age, y 79.0 ± 4.6 79.2 ± 4.6 79.3 ± 4.7 79.9 ± 4.4 

Women 285 (59.6) 5549 (55.7) 581 (57.9) 30 (66.7) 

Race     

    White 330 (69.0) 734 (74.4) 796 (79.3) 33 (73.3) 

    Black 148 (31.0) 252 (25.6) 208 (20.7) 12 (26.7) 

Educational attainment     

    <High school 70 (14.6) 121 (12.3) 116 (11.6) 4 (8.9) 

     High school or GED 213 (44.5) 390 (39.5) 425 (42.3) 24 (52.7) 

     >High school 195 (40.9) 475 (48.2) 463 (46.1) 17 (38.4) 

Current smoker 35 (7.2) 70 (7.1) 66 (6.6) 5 (11.6) 

Current drinking status 213 (44.5) 501 (50.8) 538 (53.6) 22 (48.4) 

Ethanol intake, g/week 25.4 ± 39.0 27.9 ± 36.6 28.3 ± 36.0 26.5 ± 32.7 

Body mass index, kg/m2 29.7 ± 5.7 28.3 ± 5.2 27.7 ± 5.0 27.0 ± 4.7 

Diabetes 257 (53.8) 209 (21.2) 115 (11.4) 7 (15.6) 

Systolic blood pressure, mmHg 136.7 ± 19.7 134.6 ± 18.3 134.7 ± 18.9 134.7 ± 20.1 

Diastolic blood pressure, mmHg 67.7 ± 10.6 67.2 ± 10.6 67.2 ± 10.4 61.9 ± 10.5 

Antihypertensive medication use 438 (91.7) 747 (75.7) 702 (69.9) 40 (88.9) 

   Diuretics 177 (37.1) 261 (26.4) 208 (20.7) 15 (33.3) 

   ACEi/ARB 314 (65.7) 467 (47.4) 392 (39.0) 22 (48.9) 

Antiarrhythmic medication use 7 (1.5) 15 (1.5) 20 (2.0) 1 (2.2) 

Serum potassium, mmol/L 4.1 ± 0.4 4.1 ± 0.4 4.2 ± 0.4 4.2 ± 0.4 

Prevalent coronary heart disease 43 (9.0) 75 (7.6) 79 (7.9) 7 (15.6) 

Prevalent heart failure 49 (10.3) 72 (7.3) 65 (6.5) 7 (15.6) 

Prevalent stroke 15 (3.1) 40 (4.1) 44 (4.4) 1 (2.2) 

PPI medication use 167 (34.9) 253 (25.7) 210 (20.9) 70 (15.6) 

Abbreviations: Atherosclerosis Risk in Communities, ARIC; general education development, GED; 

angiotensin converting enzyme inhibitor / angiotensin receptor blocker, ACEi/ARB; proton pump inhibitor, 

PPI.  
a N (%) or mean ± standard deviation except where indicated otherwise 
b Median (Range) 
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Table 5.2. Associations of serum magnesium with atrial arrhythmias: the ARIC study, 2016-2017a 

 Serum magnesium, mmol/L 

 <0.75 0.75-0.85 0.85-0.95 >0.95 Per 0.1 mmol/L 

AF Burden OR (95% CI) b 

N  478 986 1004 45  

Continuous AF vs. no AF      

Continuous AF, N 33 46 43 1  

Model 1 1 (Ref) 0.59 (0.37,0.95) 0.53 (0.33,0.85) - 0.79 (0.74,0.85) 

Model 2 1 (Ref) 0.88 (0.68,1.14) 0.80 (0.62,1.04) - 0.81 (0.65,1.01) 

Model 3 1 (Ref) 0.90 (0.69,1.18) 0.89 (0.67,1.18) - 0.89 (0.69,1.14) 

Model 4 1 (Ref) 0.90 (0.68,1.18) 0.90 (0.67,1.19) - 0.90 (0.70,1.15) 

Intermittent AF vs. no AF      

Intermittent AF, N 17 32 32 0  

Model 1 1 (Ref) 0.83 (0.45,1.51) 0.77 (0.42,1.41) - 0.92 (0.84,1.00) 

Model 2 1 (Ref) 0.96 (0.70,1.30) 0.90 (0.66,1.20) - 0.91 (0.69,1.20) 

Model 3 1 (Ref) 0.95 (0.69,1.30) 0.89 (0.64,1.23) - 0.90 (0.67,1.21) 

Model 4 1 (Ref) 0.95 (0.69,1.30) 0.90 (0.65,1.25) - 0.91 (0.67,1.22) 

 Ratio of Geometric Means (95% CI) 

N b  400 851 870 42  

Isolated PAC burden      

Geometric Mean 226 234 192 159  

Model 1 1 (Ref) 1.01 (0.82,1.25) 0.84 (0.68,1.02) 0.68 (0.39,1.19) 0.92 (0.90,0.95) 

Model 2 1 (Ref) 1.02 (0.84,1.26) 0.84 (0.69,1.04) 0.68 (0.39,1.19) 0.92 (0.84,1.01) 

Model 3 1 (Ref) 1.01 (0.81,1.26) 0.84 (0.66,1.04) 0.71 (0.41,1.23) 0.91 (0.84,1.01) 

Model 4 1 (Ref) 1.02 (0.82,1.27) 0.84 (0.68,1.06) 0.72 (0.41,1.26) 0.92 (0.84,1.02) 

SVT burden      

Geometric Mean 1.9 2.2 2.2 1.9  

Model 1 1 (Ref) 1.11 (1.07,1.14) 1.12 (1.08,1.15) 0.94 (0.87,1.02) 1.04 (1.03,1.05) 

Model 2 1 (Ref) 1.11 (1.00,1.21) 1.01 (1.11,1.22) 0.94 (0.73,1.21) 1.04 (1.00,1.08) 

Model 3 1 (Ref) 1.05 (0.95,1.16) 1.03 (0.97,1.15) 0.91 (0.71,1.19) 1.01 (0.96,1.05) 

Model 4 1 (Ref) 1.05 (0.95,1.16) 1.04 (0.96,1.15) 0.91 (0.71,1.19) 1.01 (0.96,1.05) 

Abbreviations: Atherosclerosis Risk in Communities, ARIC; standard deviation, SD; confidence interval, CI; atrial fibrillation, AF; premature atrial contraction, 
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PAC; supraventricular tachycardia, SVT. 
a Model 1 = age, sex, race-center 

Model 2 = Model 1 + educational attainment, smoking status, ethanol intake, physical activity, body mass index 

Model 3 = Model 2 + diabetes, systolic and diastolic blood pressure, antihypertensive medication use 

Model 4 = Model 3 + serum potassium 
b Excluding those with atrial fibrillation
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Table 5.3. Associations of serum magnesium with ventricular arrhythmias: the ARIC study, 2016-2017a 

 Serum magnesium, mmol/L 

 <0.75 0.75-0.85 0.85-0.95 >0.95 Per 0.1 mmol/L 

N 478 986 1004 45  

 OR (95% CI) 

NSVT (yes/no)      

NSVT N 150 311 281 13  

Model 1 1 (Ref) 0.97 (0.77,1.24) 0.83 (0.65,1.06) 0.90 (0.45,1.79) 0.94 (0.84,1.04) 

Model 2 1 (Ref) 1.05 (0.86,1.29) 0.90 (0.73,1.11) 0.98 (0.59,1.61) 0.94 (0.85,1.05) 

Model 3 1 (Ref) 1.06 (0.86,1.30) 0.92 (0.74,1.13) 1.01 (0.61,1.66) 0.97 (0.86,1.09) 

Model 4 1 (Ref) 1.06 (0.86,1.30) 0.92 (0.74,1.13) 1.01 (0.61,1.66) 0.97 (0.86,1.09) 

 Ratio of Geometric Means (95% CI) 

Isolated PVC burden      

Geometric Mean 94.6 68.6 64.6 44.3  

Model 1 1 (Ref) 0.68 (0.53,0.87) 0.65 (0.51,0.83) 0.46 (0.23,0.92) 0.82 (0.73,0.91) 

Model 2 1 (Ref) 0.69 (0.54,0.89) 0.66 (0.52,0.85) 0.47 (0.24,0.94) 0.83 (0.74,0.92) 

Model 3 1 (Ref) 0.67 (0.52,0.87) 0.64 (0.49,0.84) 0.45 (0.23,0.91) 0.81 (0.72,0.90) 

Model 4 1 (Ref) 0.68 (0.53,0.87) 0.65 (0.50,0.85) 0.46 (0.23,0.92) 0.81 (0.72,0.91) 

Abbreviations: Atherosclerosis Risk in Communities, ARIC; standard deviation, SD; confidence interval, CI; non-sustained ventricular tachycardia, NSVT; 

premature ventricular contraction, PVC. 
a Model 1 = age, sex, race-center 

Model 2 = Model 1 + educational attainment, smoking status, ethanol intake, physical activity, body mass index 

Model 3 = Model 2 + diabetes, systolic and diastolic blood pressure, antihypertensive medication use 

Model 4 = Model 3 + serum potassium 
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Figure 5.1. Restricted cubic splines for serum magnesium with atrial fibrillation (intermittent or 

continuous) detected over 2 weeks ambulatory ECG monitoringa 

 

a Serum magnesium modeled as restricted cubic splines with knots at the 5th, 27.5th, 50th, 72.5th, and 95th 

percentiles with adjustment for age, race-center, sex. Dashed line reflects average probability of atrial 

fibrillation equal to 0.07. 
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Supplemental Table 5.1. Sensitivity analyses for the associations of serum magnesium with atrial arrhythmias, excluding a) anti-arrhythmic, b) 

ACEi/ARB/diuretic and c) PPI users: the ARIC study, 2016-2017a 

A) Excluding anti-arrhythmic medication users 

 Serum magnesium, mmol/L 

 <0.75 0.75-0.85 0.85-0.95 >0.95 Per 0.1 mmol/L 

AF Burden OR (95% CI)  

N  467 966 981 44  

Continuous AF vs. no AF      

Continuous AF, N 33 46 42 1  

Model 3 1 (Ref) 0.90 (0.69,1.19) 0.90 (0.67,1.20) - 0.90 (0.70,1.15) 

Intermittent AF vs. no AF      

Intermittent AF, N 16 28 29 0  

Model 3 1 (Ref) 0.96 (0.69,1.32) 0.87 (0.62,1.23) - 0.89 (0.66,1.21) 

 Ratio of Geometric Means (95% CI)  

N b  395 845 862 42  

Isolated PAC burden      

Geometric Mean 222 234 193 159  

Model 3 1 (Ref) 1.02 (0.82,1.26) 0.84 (0.68,1.05) 0.71 (0.41,1.25) 0.91 (0.84,1.01) 

SVT burden      

Geometric Mean 1.9 2.2 2.2 1.9  

Model 3 1 (Ref) 1.05 (0.95,1.16) 1.03 (0.93,1.15) 0.91 (0.71,1.19) 1.01 (0.96,1.05) 

B) Excluding ACEi/ARB and diuretic users 

 Serum magnesium, mmol/L 

 <0.75 0.75-0.85 0.85-0.95 >0.95 Per 0.1 mmol/L 

AF Burden OR (95% CI) 

N  95 382 510 14  

Continuous AF vs. no AF      

Continuous AF, N 6 11 16 1  

Model 3 1 (Ref) 0.75 (0.40,1.39) 0.90 (0.50,1.60) - 1.06 (0.60,1.85) 

Intermittent AF vs. no AF      
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Intermittent AF, N 4 12 18 0  

Model 3 1 (Ref) 0.93 (0.53,1.62) 0.96 (0.56,1.65) - 0.99 (0.58,1.67) 

 Ratio of Geometric Means (95% CI) 

N b  78 340 446 13  

Isolated PAC burden       

Geometric Mean 203 243 188 218  

Model 3 1 (Ref) 1.08 (0.70,1.68) 0.84 (0.54,1.31) 0.92 (0.34, 2.51) 0.85 (0.71,1.02) 

SVT burden       

Geometric Mean 2.0 2.4 2.2 2.2  

Model 3 1 (Ref) 1.01 (0.80,1.27) 0.93 (0.73,1.17) 0.90 (0.55,1.49) 0.95 (0.87,1.04) 

C) Excluding PPI users 

 Serum magnesium, mmol/L 

 <0.75 0.75-0.85 0.85-0.95 >0.95 Per 0.1 mmol/L 

AF Burden OR (95% CI) 

N  308 730 791 38  

Continuous AF vs. no AF      

Continuous AF, N 27 36 37 1  

Model 3 1 (Ref) 0.81 (0.59,1.10) 0.84 (0.61,1.15) - 0.80 (0.59,1.07) 

Intermittent AF vs. no AF      

Intermittent AF, N 9 20 26 0  

Model 3 1 (Ref) 0.88 (0.59,1.31) 0.89 (0.60,1.33) - 0.87 (0.59,1.29) 

 Ratio of Geometric Means (95% CI) 

N b  255 638 687 36  

Isolated PAC burden      

Geometric Mean 195 238 194 196  

Model 3 1 (Ref) 1.13 (0.87,1.48) 0.91 (0.70,1.20) 0.97 (0.53,1.79) 0.95 (0.85,1.07) 

SVT burden       
Geometric Mean 1.9 2.1 2.2 2.0  

Model 3 1 (Ref) 1.09 (0.97,1.22) 1.08 (0.96,1.22) 1.00 (0.76,1.31) 1.02 (0.97,1.07) 
a Model 3 = age, sex, race-center, educational attainment, smoking status, ethanol intake, body mass index, physical activity, diabetes, systolic and diastolic blood 

pressure, antihypertensive medication use 
b Excluding those with atrial fibrillation  



 

102 

 

Supplemental Table 5.2. Sensitivity analyses for associations of serum magnesium with atrial arrhythmias, excluding those with a history of cardiovascular 

diseases: the ARIC study, 2016-2017a 

 Serum magnesium, mmol/L 

 <0.75 0.75-0.85 0.85-0.95 >0.95 Per 0.1 mmol/L 

AF Burden OR (95% CI) 

N  393 829 841 35  

Continuous AF vs. no AF      

Continuous AF, N 22 25 25 0  

Model 3 1 (Ref) 0.75 (0.52,1.08) 0.83 (0.57,1.21) - 0.76 (0.54,1.07) 

Intermittent AF vs. no AF      

Intermittent AF, N 13 26 30 0  

Model 3 1 (Ref) 0.91 (0.64, 1.29) 1.02 (0.72,1.45) - 1.02 (0.73,1.42) 

 Ratio of Geometric Means (95% CI) 

N b  344 739 752 34  

Isolated PAC burden      

Geometric Mean 209 235 189 124  

Model 3 1 (Ref) 1.12 (0.89,1.42) 0.90 (0.71,1.15) 0.64 (0.35,1.17) 0.93 (0.84,1.03) 

SVT burden      

Geometric Mean 2.0 2.2 2.2 1.9  

Model 3 1 (Ref) 1.06 (0.95,1.19) 1.06 (0.95,1.19) 0.92 (0.70,1.23) 1.01 (0.95,1.06) 
a Model 3 = age, sex, race-center, educational attainment, smoking status, ethanol intake, body mass index, physical activity, diabetes, systolic and diastolic 

blood pressure, antihypertensive medication use 
b Excluding those with atrial fibrillation
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Supplemental Table 5.3. Sensitivity analyses for the associations of serum magnesium with ventricular arrhythmias, excluding a) anti-arrhythmic, b) 

ACEi/ARB and diuretic and c) PPI medication users: the ARIC study, 2016-2017a 

A) Excluding anti-arrhythmic medication users 

 Serum magnesium, mmol/L 

 <0.75 0.75-0.85 0.85-0.95 >0.95 Per 0.1 mmol/L 

N 467 966 981 44  

 OR (95% CI) 

NSVT (yes/no)      

NSVT, N 143 306 275 13  

Model 3 1 (Ref) 1.05 (0.86,1.29) 0.92 (0.74,1.13) 1.03 (0.62,1.71) 0.97 (0.86,1.09) 

 Ratio of Geometric Means (95% CI) 

Isolated PVC burden      

Geometric Mean 94.1 70.0 65.5 46.8  

Model 3 1 (Ref) 0.68 (0.52,0.88) 0.64 (0.49,0.84) 0.48 (0.24,0.96) 0.81 (0.72,0.91) 

B) Excluding ACEi/ARB and diuretic users 

 Serum magnesium, mmol/L 

 <0.75 0.75-0.85 0.85-0.95 >0.95 Per 0.1 mmol/L 

N 95 382 510 14  

 OR (95% CI) 

NSVT (yes/no)      

NSVT, N 24 110 131 2  

Model 3 1 (Ref) 1.39 (0.90,2.17) 1.24 (0.80,1.93) 0.50 (0.16,1.58) 0.96 (0.76,1.21) 

 Ratio of Geometric Means (95% CI) 

Isolated PVC burden      

Geometric Mean 91.3 64.7 56.1 53.1  

Model 3 1 (Ref) 0.69 (0.40,1.19) 0.59 (0.34,1.00) 0.50 (0.14,1.82) 0.84 (0.67,1.04) 
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C) Excluding PPI users 

 Serum magnesium, mmol/L 

 <0.75 0.75-0.85 0.85-0.95 >0.95 Per 0.1 mmol/L 

N 308 730 791 38  

 OR (95% CI) 

NSVT (yes/no)      

NSVT, N 93 227 220 12  

Model 3 1 (Ref) 0.99 (0.79,1.25) 0.87 (0.69,1.09) 1.16 (0.68,1.98) 0.95 (0.83,1.10) 

 Ratio of Geometric Means (95% CI) 

Isolated PVC burden       

Geometric Mean 91.2 69.4 66.5 44.7  

Model 3 1 (Ref) 0.64 (0.47,0.89) 0.61 (0.44,0.84) 0.44 (0.20,0.94) 0.81 (0.70,0.94) 
a Model 3 = age, sex, race-center, educational attainment, smoking status, ethanol intake, body mass index, diabetes, physical activity, systolic and diastolic 

blood pressure, antihypertensive medication use 
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Supplemental Table 5.4. Sensitivity analyses for associations of serum magnesium with ventricular arrhythmias, excluding those with a history of 

cardiovascular diseases: the ARIC study, 2016-2017a 

 Serum magnesium, mmol/L 

 <0.75 0.75-0.85 0.85-0.95 >0.95 Per 0.1 mmol/L 

N 383 829 841 35  

 OR (95% CI) 

NSVT (yes/no)      

NSVT, N 107 239 214 9  

Model 3 1 (Ref) 1.06 (0.83,1.34) 0.93 (0.73,1.19) 1.06 (0.59,1.92) 0.99 (0.87,1.14) 

 Ratio of Geometric Means (95% CI) 

Isolated PVC burden      

Geometric Mean 81.8 59.8 58.0 29.4  

Model 3 1 (Ref) 0.64 (0.49,0.85) 0.66 (0.49,0.88) 0.39 (0.18,0.85) 0.79 (0.70,0.90) 
a Model 3 = age, sex, race-center, educational attainment, smoking status, ethanol intake, body mass index, physical activity, diabetes, systolic and diastolic blood 

pressure, antihypertensive medication use
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CHAPTER 6 (MANUSCRIPT 3) – PROTON PUMP INHIBITOR USE, 

HYPOMAGNESEMIA AND RISK OF CARDIOVASCULAR 

DISEASES: THE ATHEROSCLEROSIS RISK IN COMMUNITIES 

(ARIC) STUDY 

I. OVERVIEW 

Introduction: Use of proton pump inhibitors (PPI) has been associated with hypomagnesemia, 

primarily in case reports or within insurance databases. Both PPI use and low serum magnesium 

(Mg) have been associated with modestly higher cardiovascular disease (CVD) risk. Yet, the 

interrelation between PPI use and Mg in relation to CVD risk is unclear.  

 

Objective: To evaluate whether PPI use is cross-sectionally associated with hypomagnesemia and 

whether hypomagnesemia mediates the prospective association between PPIs and CVD risk in the 

Atherosclerosis Risk in Communities (ARIC) study. 

  

Methods: The 4,431 ARIC participants without prevalent CVD at visit 5 (baseline, 2011-13) were 

included. Multivariable relative risk regression was used for cross-sectional analyses between PPI 

and hypomagnesemia prevalence (≤0.75 mmol/L). Incident CVD (defined by atrial fibrillation, 

coronary heart disease, CVD mortality, heart failure, stroke) was identified through 2017. 

Multivariable Cox regression was used to examine the PPI-CVD association.  

  

Results: Participants were mean±SD aged 75±5 years; 63% were women, 23% black, and 24% 

were PPI users. Cross-sectionally, PPI users had 1.24-fold (95% CI: 1.08-1.44) higher prevalence 

of hypomagnesemia than non-users. Over a median 5 years of follow-up, 712 incident CVD 
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events occurred. PPI users had higher CVD risk [HR (95% CI) 1.30 (1.10-1.55))] than non-users. 

The effect estimate was largely unchanged when hypomagnesemia was added to the model as a 

potential mediator.  

 

Discussion: In this elderly community-based study, PPI users had a higher prevalence of 

hypomagnesemia than in non-users. PPI users also had higher CVD risk than non-users; however, 

it appears unlikely that hypomagnesemia explains associations of PPIs with CVD risk. 
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II. INTRODUCTION 

 Proton pump inhibitors (PPIs) are medications used to treat gastroesophageal reflux 

disease (GERD) and other acid-related disorders, and may be prescribed or purchased over-the-

counter.62 PPIs are approved for short-term use, though are often misused.148  This class of 

medication was first introduced into the U.S. marketplace in the late 1980s. Since then, PPI use 

has increased dramatically. They are among the most widely used medications among American 

adults.62 In 2009, an estimated 9% of outpatient visits involved patients who use PPIs.63  

 Since their introduction, there has been concern over PPI-induced hypomagnesemia as 

evident by numerous case reports and case series,155,157,160-164 particularly among long-term PPI 

users. In 2011, the U.S. Food and Drug Administration released a warning regarding potential for 

PPI-induced hypomagnesemia.61 While risk factors for PPI-induced hypomagnesemia are not yet 

well characterized, the elderly and men are thought to have a higher risk of hypomagnesemia due 

to PPI use than their counterparts.142 Additionally, drug interactions have been noted. Individuals 

who take diuretics may have a higher risk of hypomagnesemia compared to those only taking 

PPIs.143 It is also unclear how or if PPIs are related to subclinical Mg deficiency, and the public 

health implications, if this is the case. 

 PPIs have also been controversially associated with increased risk of CVD outcomes in 

observational studies.176-182,186 Additionally, low circulating Mg has been associated with elevated 

CVD risk.99 As such, an intriguing possibility exists that hypomagnesemia may link PPI use to 

CVD outcomes. To our knowledge, whether hypomagnesemia mediates associations between PPI 

use and elevated CVD risk has not yet been tested. 

 The two primary aims of this paper were to evaluate 1) whether PPIs are cross-sectionally 
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associated with hypomagnesemia in a community-based population, and 2) whether low serum 

Mg mediates the prospective association between PPIs and CVD risk using up to 6 years of 

longitudinal data in the Atherosclerosis Risk in Communities (ARIC) study. In exploratory 

analyses, we also assessed whether this association was stronger among diuretic users. H2-

blockers are medications with similar indications as PPIs and no known link with 

hypomagnesemia or with cardiac toxicity. As a “negative control”, we repeated the analyses 

using H2-blockers instead of PPIs. We hypothesized that H2-blockers are not associated with 

hypomagnesemia and that hypomagnesemia does not mediate the null relationship between H2-

blocker use and CVD risk. 

III. METHODS 

A. Study design 

The ARIC study195 is an ongoing longitudinal cohort study which includes white and 

black men and women who were aged 45-64 years at baseline in 1987-1989 (n=15,792) and were 

recruited from 4 US communities (Forsyth County, NC; Jackson, MS; suburbs of Minneapolis, 

MN; Washington County, MD). Several clinic visits have occurred since then. A total of, 6,538 

participants attended visit 5, which occurred in 2011-2013 and serves as baseline for this analysis. 

To obtain information on CVD events, follow-up phone calls to participants (twice annually since 

2012) has occurred as has continuous surveillance of hospitals in ARIC communities and linkage 

to vital statistics. 

Of the 6,538 participants who attended visit 5, we excluded participants with prevalent 

CVD at visit 5 (n=1,837), missing information needed to adjudicate prevalent or incident CVD 

(n=171), or missing serum Mg measurements (n=56). Additionally, due to small numbers, we 
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excluded participants who were neither black nor white (n=18) and blacks at the MN and MD 

centers (n=25). This resulted in a final analytic sample of 4,431 participants.  

 Exposure and covariate data collection 

At visit 5, participants were interviewed, answered questionnaires, underwent 

anthropomorphic measurements and provided fasting (>8 hour) blood samples. Participants self-

reported their smoking habits and alcohol intake. Participants were asked to bring the containers 

of all prescription and over-the-counter medications (including dietary supplements) used during 

the previous 2 weeks to the visit. Information on these containers was transcribed and coded. 

Physical activity was quantified as a continuous sports index based on the validated Baecke 

questionnaire, with possible scores of 1 (low) to 5 (high).197 Body mass index (BMI) was derived 

based on measured weight (kg) divided by height squared (m2). Systolic blood pressure was 

measured 3 times after 5 minutes of rest; the average of the second and third measurements was 

used.  

Serum Mg was measured using colorimetric methods on the Roche Cobas 6000 

Chemistry Analyzer at visit 5 (Roche Diagnostics; Indianapolis, Indiana). The laboratory intra-

assay coefficient of variation (CV) based on blind duplicate samples for serum Mg was 1.9%. 

Serum glucose was analyzed using a hexokinase assay (Roche Cobas 6000 Chemistry Analyzer). 

Diabetes was defined by a fasting glucose ≥126 mg/dL, non-fasting glucose ≥200 mg/dL, self-

reported physician diagnosis or use of diabetes medication. High-density lipoprotein (HDL) 

cholesterol was measured at visit 5 using colorimetric methods (Beckman Coulter Olympus 

AU400®), and total cholesterol using enzymatic methods (Beckman Coulter Olympus 

AU400e®). Serum creatinine was quantified using the Jaffe method (soon after visit 5), and 

cystatin C was estimated using the Gentian cystatin C reagent (analyzed in 2012-13 from 
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previously frozen visit 5 samples). Both creatinine and cystatin C were used to determine 

estimated glomerular filtration rate (eGFR) based on the Chronic Kidney Epidemiology 

Collaboration formula.219  

 Outcome ascertainment 

We defined incident CVD events by: incident CHD, heart failure (HF), stroke, AF and 

CVD mortality through December 31, 2017. Both the composite and individual outcomes were 

analyzed. Definitions of CVD events have been described previously. Briefly, potential CVD 

events were identified by (1) recent hospitalizations identified during follow-up phone calls to 

participants; (2) ongoing surveillance of community hospital discharge lists and death certificates; 

and (3) linkage to State and National Death Indices. International Classification of Disease (ICD) 

codes were recorded from all hospitalizations. Any possible coronary deaths occurring out-of-

hospital were investigated through physician questionnaires and next-of-kin interviews. Then, 

possible CHD events were abstracted onto standardized forms, and adjudicated by physician 

review. CHD events were defined as definite or probable myocardial infarction (MI) or definite 

fatal CHD based on ARIC criteria or coronary revascularization. Fatal CHD was determined by 

history of CHD or chest pain with consistent underlying cause of death or no non-cardiac 

cause.211 Heart failure was identified by hospitalization with an ICD-9 code of 428 or death with 

ICD-9 428 or ICD-10 I50 as the underlying cause; outpatient HF has also been captured using 

previously described criteria.212 Stroke was classified based on a computer algorithm and 

physician review using National Survey of Stroke criteria.213 Incident AF was based on a hospital 

discharge diagnosis for atrial fibrillation or flutter.210 CVD mortality was defined by deaths with 

an underlying cause in ICD-9 codes 390 to 459 or ICD-10 codes I00 to I99. Prevalent CVD was 

defined by a history of CHD, heart failure, stroke or AF based on ARIC ascertainment on or 
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before the participants’ visit 5 clinic date. 

B. Statistical analysis 

Visit 5 serves as baseline for the present analysis. All covariates were assessed at visit 5 

except educational attainment (visit 1). We present baseline characteristics, including mean serum 

Mg concentrations, stratified by PPI use at visit 5. PPI use was modeled as a binary variable 

based on use in the 2 weeks prior to the ARIC clinic visit. Two-tailed p-values of 0.05 were used 

for cut-offs of statistical significance. SAS 9.4 (SAS Institute Inc.; Cary, NC) was used to 

conduct these analyses. 

 Cross-sectional Association of PPI use and Hypomagnesemia 

We used relative risk regression (generalized linear model with log link, model-based 

standard errors) to compare the adjusted prevalence of hypomagnesemia in PPI users versus non-

users. Hypomagnesemia was modeled as <0.75 mmol/L vs 0.75-0.95 mmol/L; participants with 

clinical hypermagnesemia >0.95 mmol/L were not included due to small numbers (n=95). In 

model 1, we adjusted for age, race-center and sex. In model 2, we additionally adjusted for 

education (<high school, high school or GED, >high school); smoking status (current, former, 

never, unknown); drinking status (current, former, never, unknown); physical activity sports 

index (continuous), and obesity (≥30 kg/m2 vs <30 kg/m2). Also, as a “negative control”, we 

compared the adjusted prevalence of hypomagnesemia among H2-blocker users versus non-users, 

using similar models. 

 Prospective Association of PPI use and Incident CVD 

Multivariable Cox proportional hazards regression (model-based standard errors) was 
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used to examine the association between PPI use and incident CVD composite and individual 

endpoints (incident CHD, heart failure, stroke, AF and CVD mortality) through December 31, 

2017.  Person-years were calculated from baseline (date of visit 5 participation) to the first 

outcome of interest, death, loss-to-follow-up or the end of 2017, whichever came first.  

We used a series of models to adjust for potential confounders and the hypothesized 

mediator (serum Mg). In model 1, we adjusted for age, race-center and sex. In model 2, we 

additionally adjusted for education (<high school, high school or GED, >high school); smoking 

status (current, former, never, unknown); drinking status (current, former, never, unknown); 

physical activity sports index (continuous), obesity (≥30 kg/m2 vs <30 kg/m2). In model 3, we 

further adjusted for established CVD risk factors: diabetes, systolic blood pressure, 

antihypertension medication use, lipid-lowering medication use, HDL-c, total cholesterol, eGFR 

clinical categories (≥90, 60-<90, <60 mL·min–1·1.73 m–2). Model 4 additionally included 

serum Mg (modeled categorically as hypomagnesemia vs not using the clinical cut-point of <0.75 

mmol/L17). After including serum Mg (the hypothesized mediator) in the model, we qualitatively 

inspected for attenuation of the PPI-CVD association, and quantitatively estimated the proportion 

of the association mediated by hypomagnesemia.220 There was no statistical evidence of an 

exposure-mediator interaction (p-value=0.20). 

To test the robustness of our findings, we conducted sensitivity analyses including: 1) 

using H2-blockers as an active comparator to test the specificity of the association,221 and 2) 

matching PPI users and non-users using propensity scores to help balance potential confounding 

characteristics.222 Propensity scores were generated based on all covariates included in Model 3 

(age, race-center, sex, education, smoking status, drinking status, physical activity, obesity, 

diabetes, systolic blood pressure, antihypertension medication use, lipid-lowering medication use, 
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HDL, total cholesterol, eGFR). 

We tested for multiplicative interactions with diuretic use, race and sex by including a 

cross-product term [e.g. PPI*diuretic] in the model. Additive interactions were tested by 

calculating the relative excess risk due to interaction (RERI) using model-based differences in 

probability, and 95% confidence intervals.223 As we may not have sufficient power to examine 

interactions, we interpret these findings as exploratory in nature. 

IV. RESULTS 

A. Cross-sectional association of PPI use and hypomagnesemia 

 The 4,431 ARIC participants in this analysis were mean aged 75.2±5.1 years, 63.2% were 

women and 23.2% were black. At visit 5, 24.1% of participants were PPI users and 5.6% were 

H2-blocker users. A small proportion were on both PPI and H2-blockers at visit 5 (1.0%; n=44). 

Mean serum Mg (expressed as mmol/L) was 0.81±0.09 and 0.83±0.08 among PPI users and non-

users, respectively. Specifically, serum Mg was 0.02 (95% CI: 0.01, 0.02) lower among PPI users 

than non-users. Overall, PPI users tended to be female, obese, taking other medications (lipid and 

blood pressure lowering medications), have poorer kidney function and have a higher prevalence 

of clinical hypomagnesemia (Table 6.1). Among H2-blocker users serum Mg was 0.82±0.08 and 

among non-users was 0.83±0.08 [mean difference = 0.01 (95% CI: -0.00, 0.02)]. 

Table 6.2 shows the prevalence of clinical hypomagnesemia by PPI and H2-blocker use 

status. After adjusting for demographic characteristics, PPI users had a 1.37-fold (95% CI: 1.17-

1.55) higher prevalence of clinical hypomagnesemia than non-users. The association remained 

after additional adjustment for educational attainment and health behaviors [1.24 (1.08-1.44)]. No 
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statistically significant associations were found between H2-blocker use and clinical 

hypomagnesemia, although the direction and magnitude of association [PR=1.19 (0.93-1.53)] was 

similar to that observed for PPI use.  

B. Prospective association of PPI use and incident CVD 

Over a median 5.6 years of follow-up, 712 incident cardiovascular events occurred (CHD 

n=112; heart failure n=285; stroke n=121; AF n=376; CVD mortality n=121). Table 6.3 presents 

adjusted HRs (95% CIs) for the association of PPI use with incident CVD as well as the 

individual endpoints (AF, CHD, HF, CVD mortality, stroke).  With adjustment for demographic 

characteristics, PPI users were at higher risk of CVD [1.38 (1.18-1.63)] as compared to non-users. 

The association was slightly attenuated with further adjustment for educational attainment and 

health behaviors [1.32 (1.11-1.55)] and established CVD risk factors [1.29 (1.09-1.54)].  Clinical 

hypomagnesemia did not substantially mediate the association between PPI use and elevated 

CVD risk (proportion mediated = -0.8%, total effect = 1.30, controlled direct effect = 1.29).  

We tested whether the PPI and CVD composite association differed by diuretic use, sex 

or race on both the additive and multiplicative scales. For diuretic use, there was statistical 

evidence to suggest effect measure modification on the additive scale [RERI (95% CI) 0.13 (0.05-

0.22)] but not on the multiplicative scale (p-interaction=0.15).As shown in Supplemental Table 

6.1, the association between PPI use and incident CVD was somewhat stronger among diuretic 

users [HR (95% CI) 1.59 (1.17-2.16)] than nonusers [1.21 (0.98-1.50)]. When clinical 

hypomagnesemia was added to Model 3, results were largely unchanged among both diuretic 

users and non-users. There was no statistical evidence of effect measure modification by sex or 

race on either the additive scale or the multiplicative scale. 
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Precision was poor when evaluating the CVD endpoints individually, and PPI use was 

not consistently statistically significantly associated with the individual CVD endpoints. PPI use 

was associated with higher risk of AF with adjustment for demographic and lifestyle behaviors, 

but not after adjustment for traditional CVD risk factors. For CVD mortality and heart failure, 

PPI use was associated with elevated risk in model 1, but not after multivariable adjustment.  

Participants with clinical hypomagnesemia (<0.75 mmol/L) had a higher risk of CVD 

after demographic adjustment [1.44 (1.18-1.76)] compared to those with concentrations between 

0.85-0.95 mmol/L. The association was attenuated with further adjustment [Model 2 1.25 (1.01-

1.56); Model 3 1.20 (0.95-1.50)]. For individual CVD endpoints, clinical hypomagnesemia was 

associated with higher risk of AF, CHD, CVD mortality and heart failure with demographic 

adjustment. The statistical association between hypomagnesemia and heart failure persisted after 

multivariable adjustment (Supplemental Table 6.2). CVD risk was similar among those with 

concentrations between 0.75-0.85 mmol/L to those with 0.85-0.95 mmol/L. Additionally, 

participants with hypermagnesemia (>0.95 mmol/L) had higher risk of CVD than those with 

concentrations between 0.85-0.95 mmol/L.  

We conducted several sensitivity analyses. Of note, we tested whether H2-blockers (a 

similar drug with no known cardiac toxicity) were associated with incident CVD, as a negative 

control. As shown in Supplemental Table 6.3, we detected no association between H2-blocker 

use and incident CVD. Results were also largely similar when we matched PPI users and non-

users using propensity scores to help balance potential confounding characteristics 

(Supplemental Table 6.4). 

V. DISCUSSION 
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In this community-based study of elderly individuals, serum Mg was lower among PPI 

users than among non-users, however H2-blocker user status was not significantly associated with 

serum Mg concentrations. Additionally, PPI use was associated with higher CVD risk. Counter to 

our hypothesis, low serum Mg concentrations did not explain the association of PPI use with 

elevated risk of CVD in these data.  

A. PPI use and hypomagnesemia 

In 2011, the U.S. FDA released a safety communication regarding the  potential for PPIs 

to lead to reductions in circulating magnesium.61 Case reports have tended to be written about 

individuals who did not adhere to label instructions and either took higher doses than instructed 

or took PPIs for extended periods. Yet, a modeling study indicated that even short-term PPI use, 

which would coincide with recommended intake for most, can diminish rates of intestinal 

absorption of Mg.174 

PPI-induced clinical hypomagnesemia is a potentially serious side effect albeit relatively 

rare. A case-control performed within Ontario-based health care databases reported that among 

those hospitalized for hypomagnesemia, the odds of being a PPI user was 1.43 (1.06-1.93) 

compared to those hospitalized for reasons other than hypomagnesemia.167 When stratified by 

diuretic use, the PPI-hypomagnesemia association was present only among diuretic users. This 

study also used H2-blockers as a negative control; H2-blocker use was not associated with 

hospitalization involving hypomagnesemia.167 In a meta-analysis of 9 generally small 

observational studies (3 cohort, 1 case-control, 5 cross-sectional), the pooled RR (95% CI) for 

hypomagnesemia (cut-points were generally ≤0.7 mmol/L) was 1.43 (1.08-1.88) for PPI users 

compared non-users.165 Since that meta-analysis, the population-based Rotterdam Study 

examined PPI use and hypomagnesemia cross-sectionally, and reported that serum Mg 
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concentrations were 0.01 mmol/L (95% CI: 0.02, 0.01 mmol/L) lower in PPI users as compared 

to non-users (though this difference may not be of clinical significance). PPI use was more 

strongly associated with hypomagnesemia among diuretic users than in non-diuretic users.159  In 

the present analysis, serum Mg concentrations were 0.02 mmol/L (95% CI: 0.02, 0.01 mmol/L) 

lower among PPI users than non-users. In contrast to our findings, they found that users of H2-

blockers also had lower serum Mg as well as with higher odds of hypomagnesemia in comparison 

with those who do not use H2-blockers.159  This may be indicative of confounding and other 

biases inherent studying medication effects in observational settings.  

Mechanisms by which PPIs may induce hypomagnesemia are an area of active scientific 

inquiry. PPI-induced hypomagnesemia is thought to arise from reductions in the absorption of 

dietary Mg within the intestines.170,171 PPIs influence the enzyme, H+/K+ ATPase, which pumps a 

hydrogen ion into the stomach in exchange for a potassium ion. This exchange results in 

reductions in gastrointestinal acidity. To date, much of the mechanistic research has focused on 

the active Mg transport channel, TRPM6, which is a pH-dependent channel (i.e. TRPM6 activity 

decreases in less acidic environments). When considered together with the concept that the gene 

for TRPM6 should be over-expressed during times of Mg insufficiency, this suggests that certain 

genetic profiles may help promote continued Mg absorption in the presence of PPI use. Yet, this 

hypothesis has yet to be tested in large-scale human studies and the identification of potential risk 

factors for developing PPI-induced hypomagnesemia are ongoing areas of research. 

B. PPI use, hypomagnesemia and incident CVD 

PPIs have been inconsistently associated with increased CVD risk in several prospective 

studies. In a meta-analysis of RCTs which included incident CVD endpoints, PPI users had a 

higher risk of CVD RR=1.70 (1.13-2.56) when compared to non-users. In observational settings, 
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PPI users versus non-users have a similar modestly higher risk of stroke177-179 and MI.180-182 

Observational studies examining the PPI and CVD association have generally been conducted 

within insurance databases, which are based on data collected during routine clinical encounters. 

A limitation of these studies is that circulating Mg is not routinely measured. One study, within 

the Taiwan National Health Insurance Research Database used propensity scores to match PPI 

users to non-users, and found that PPI users had a 1.58-fold higher risk of MI (1.11-2.25) than 

non-users.181 The relationship between PPI use and CVD risk has also been characterized among 

individuals with GERD—the primary indication for PPI use. In populations with previously 

diagnosed GERD, PPI use was associated with a higher risk of AF186 and CHD176 as compared to 

nonuse. 

A cross-sectional analysis within the National Health and Nutrition Examination Survey 

(NHANES), which has extensive data measurements on confounding characteristics, reported that 

PPI users tended to have slightly higher LDL cholesterol and apolipoprotein B than those who do 

not use PPIs, but no differences were found in total cholesterol, HDL cholesterol or 

triglycerides.224 One cross-sectional study has examined PPIs in relation to serum Mg and 

arrhythmias. In this study of 421 intensive care or critical care unit patients with a MI or unstable 

angina diagnosis, patients administered PPIs soon after hospital admission tended to have lower 

serum Mg concentrations and a greater prevalence of cardiac arrhythmias compared to those not 

exposed to PPIs. This study did not collect data on diuretic use.189  

No prospective studies, to date, have tested the hypothesis that hypomagnesemia 

underlies the observation that PPI use is associated with CVD. This mechanism is plausible 

considering that PPIs can induce hypomagnesemia, and low circulating Mg has been associated 

with greater risk of CVD.99 Low Mg may exert adverse cardiovascular effects through poor CVD 
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risk factors, such as elevated blood pressure, chronic inflammation and hyperglycemia.17,225  

Mg also plays important roles in cardiovascular processes, such as in platelet formation,1,118 

vascular smooth muscle tone, and endothelial function.1,116 Reductions in Mg (in this case arising 

due to PPI use) could thereby contribute to adverse vascular effects such as atherosclerosis and as 

a result CVD. Relatedly, Mg plays important roles in maintaining myocardial excitability, as Mg 

serves as cofactor of the sodium-potassium ATP pump.190 Alterations in Mg homeostasis (via 

PPI-induced hypomagnesemia) could adversely influence electrophysiology and lead to 

arrhythmogenesis.191 However our findings do not provide evidence that low Mg mediates the 

associations between PPI use and CVD. 

Basic science studies also suggest other plausible mechanisms relating PPIs to CVDs 

beyond magnesium. For example, in ex vivo human tissue, PPIs may accelerate endothelial 

senescence, telomere erosion192 and inhibit the cardiac enzyme, dimethylaminohydrolase 

(DDAH), which helps mitigate oxidative stress.193  In mice, administration of PPIs led to 

increases in asymmetrical dimethylarginine (ADMA), which is considered an inhibitor of the 

vasodilator, nitric oxide. Elevated ADMA concentrations have been associated with higher CVD 

risk. 193 

C. Strengths and limitations 

There are limitations to this analysis. First, our study was conducted among elderly 

individuals, and it is possible that this was not the optimal age-group in which to test this 

hypothesis. Our design was driven by, in ARIC, the availability of serum Mg concentrations 

following the widespread use of PPIs. Second, precision of the analyses of PPI use and the 

composite CVD outcome was modest, and precision was poor for analyses of the individual CVD 

endpoints. Additionally, H2-blockers had a lower prevalence of use resulting in lower precision 
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for this sensitivity analysis. Third, misclassification of exposure may occur as PPIs are intended 

to be used on a short-term basis (e.g. 2-4 weeks at a time). Our modeling of PPIs was based on 

reported use in the past 2 weeks. Participants may stop or start using PPI over the follow-up 

period, and many may use PPIs chronically148—potentially elevating their risk of 

hypomagnesemia.61  Nevertheless, this analysis has important strengths. The ARIC study was 

uniquely suited to address this research question with a prospective design and wealth of high-

quality measurements. Considering the pervasiveness of PPI use and their implication with 

adverse outcomes, it is important to understand how or if their use may affect cardiovascular 

health. 

D. Conclusion 

In this community-based population of elderly individuals, PPI use was cross-sectionally 

associated with lower serum Mg and was prospectively associated with higher risk of CVD. We 

found little evidence that hypomagnesemia mediates the association between PPI use and CVD 

risk. Future research might explore risk factors and mechanisms for hypomagnesemia among PPI 

users.  
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Table 6.1. Unadjusted baseline characteristics by proton pump inhibitor (PPI) use: the ARIC study, 2011-

2013, N=4431 a 

 PPI user status  

Characteristic Yes No 

N 1066 3365 

Age, y 75.3 ± 5.1 75.2 ± 5.1 

Gender   

   Women 716 (67.2) 2084 (61.9) 

   Men 350 (32.8) 1281 (38.1) 

Race   

   White 850 (79.7) 2554 (75.9) 

   Black 216 (20.3) 811 (24.1) 

Education   

    > High School 423 (39.7) 1607 (47.8) 

   High School or GED 498 (46.7) 1345 (40.0) 

   < High School 144 (13.5) 409 (12.2) 

Diabetes 324 (30.4) 916 (27.2) 

Body mass index, kg/m2 29.5 ± 5.5 28.2 ± 5.5 

   Obese >30 kg/m2 404 (37.9) 1043 (31.0) 

   Overweight 25.0-29.9 kg/m2 424 (39.8) 1283 (38.1) 

   Normal 18.5-25.0 kg/m2 184 (17.3) 892 (26.5) 

   Underweight <18.5 kg/m2 12 (1.1) 83 (2.5) 

Smoking status   

    Current 43 (4.0) 201 (6.0) 

    Former 478 (44.8) 1482 (44.0) 

    Never 426 (40.0) 1343 (39.9) 

    Unknown 119 (11.2) 339 (10.1) 

Drinking status   

    Current 462 (43.3) 1668 (49.6) 

    Former 302 (28.3) 870 (25.9) 

    Never 238 (22.3) 680 (20.2) 

    Unknown 64 (6.0) 147 (4.4) 

Physical activity score 2.5 ± 0.8 2.7 ± 0.8 

Systolic blood pressure, mmHg 131.0 ± 17.1 130.3 ± 17.8 

Antihypertension medication use 828 (77.7) 2241 (66.6) 

HDL cholesterol, mg/dL 51.9 ± 13.4 53.9 ± 14.2 

LDL cholesterol, mg/dL 105.8 ± 33.0 109.8 ± 33.9 

Total cholesterol, mg/dL 183.5 ± 40.8 188.3 ± 40.8 

Lipid-lowering medication use 626 (58.7) 1568 (46.6) 

eGFR mL/min/1.73m2 64.9 ± 18.1 68.4 ± 17.1 

    >90 mL/min/1.73m2 82 (7.7) 318 (9.5) 

    60-90 mL/min/1.73m2 565 (53.0) 2021 (60.1) 

    <60 mL/min/1.73m2 419 (39.3) 1026 (30.5) 

H2-blocker medication use 44 (4.1) 205 (6.1) 

Diuretic use 310 (29.1) 847 (25.2) 

Serum magnesium, mmol/L 0.81 ± 0.09 0.83 ± 0.08 

   Clinical hypomagnesemia b 225 (21.1) 525 (15.6) 

   Subclinical hypomagnesemia 396 (37.2) 1258 (37.4) 
a Data presented as n (%) or mean ± standard deviation 
b Clinical hypomagnesemia, <0.75 mmol/L; Subclinical hypomagnesemia-0.75-<0.85 mmol/L   



 

123 

 

Table 6.2. Prevalence ratios (95% CI) for proton pump inhibitor and H2-blocker use in relation to clinical 

hypomagnesemia using relative risk regression: the ARIC Study, 2011-2013, N=4336 

 PPI user 

 No Yes 

N 3284 1052 

Clinical hypomagnesemia, N (%) 525 (16.0) 225 (21.4) 

Model 1a,b 1 (ref) 1.37 (1.17-1.55) 

Model 2 1 (ref) 1.24 (1.08-1.44)  
H2-blocker user 

 No Yes 

N 4092 244 

Clinical hypomagnesemia, N (%) 701 (17.1) 49 (20.1) 

Model 1a,b 1 (ref) 1.18 (0.91-1.52) 

Model 2 1 (ref) 1.19 (0.93-1.53) 
a Hypomagnesemia (<0.75 mmol/L vs 0.75-0.95 mmol/L); participants with clinical hypermagnesemia 

>0.95 mmol/L not included due to small numbers 
b Model 1 = age, race-center, sex 

Model 2 = Model 1 + education, smoking status, drinking status, physical activity index score, obesity 
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Table 6.3. Hazard ratios (95% CI) for proton pump inhibitor use and cardiovascular disease risk: the ARIC 

study, 2011-2017, N=4431 

 PPI user status Proportion mediated 

by hypomagnesemiab  No Yes 

N 3365 1066  
CVD composite    
# events 502 210  
Model 1 1 (Ref) 1.38 (1.18-1.63) -- 
Model 2 1 (Ref) 1.32 (1.11-1.57) -- 
Model 3 1 (Ref) 1.30 (1.10-1.55) -- 
Model 4 1 (Ref) 1.29 (1.09-1.54) -0.8% 
Individual CVD endpoints    
Atrial fibrillation    
# events 269 107  
Model 1 1 (Ref) 1.25 (1.00-1.57) -- 
Model 2 1 (Ref) 1.29 (1.02-1.63) -- 
Model 3 1 (Ref) 1.25 (0.99-1.59) -- 
Model 4 1 (Ref) 1.24 (0.98-1.58) -0.9% 
Coronary heart disease    
# events 79 33  
Model 1 1 (Ref) 1.36 (0.90-2.05) -- 
Model 2 1 (Ref) 1.24 (0.80-1.91) -- 
Model 3 1 (Ref) 1.19 (0.76-1.84) -- 
Model 4 1 (Ref) 1.17 (0.75-1.82) -1.0% 
CVD mortality    
# events 82 39  
Model 1 1 (Ref) 1.49 (1.01-2.14) -- 
Model 2 1 (Ref) 1.31 (0.84-2.02) -- 
Model 3 1 (Ref) 1.36 (0.87-2.12) -- 
Model 4 1 (Ref) 1.34 (0.86-2.09) -2.4% 
Heart failure    
# events 199 86  
Model 1 1 (Ref) 1.36 (1.06-1.76) -- 
Model 2 1 (Ref) 1.30 (1.01-1.68) -- 
Model 3 1 (Ref) 1.21 (0.91-1.61) -- 
Model 4 1 (Ref) 1.19 (0.90-1.58) 2.0% 
Stroke    
# events 94 27  
Model 1 1 (Ref) 0.93 (0.60-1.42) -- 
Model 2 1 (Ref) 0.95 (0.61-1.48) -- 
Model 3 1 (Ref) 0.93 (0.60-1.45) -- 
Model 4 1 (Ref) 0.92 (0.59-1.44) -0.8% 
a Model 1 = age, race-center, sex 

Model 2 = Model 1 + education, smoking status, drinking status, physical activity, obesity 

Model 3 = Model 2 + diabetes, systolic blood pressure, antihypertension medication use, lipid-lowering 

medication use, HDL, total cholesterol, eGFR 

Model 4 = Model 3 + clinical hypomagnesemia 
b Proportion of the total effect of PPI use on CVD endpoint that can be explained through the indirect 

effect, hypomagnesemia; [RRNDE*(RRNIE-1)/(RRNDE-RRNIE-1)]   
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Supplemental Table 6.1. Hazard ratios (95% CI) for proton pump inhibitor use and cardiovascular disease 

risk, stratifying by diuretic use: the ARIC study, 2011-2017, N=4431 

 PPI user status 

Diuretic users No Yes 

N 847 310 

CVD composite   

# events 157 79 

Model 1 a 1 (Ref) 1.63 (1.24-2.14) 

Model 2 1 (Ref) 1.49 (1.11-2.01) 

Model 3 1 (Ref) 1.59 (1.17-2.16) 

Model 4 1 (Ref) 1.59 (1.17-2.16) 

 PPI user status 

Not Diuretic users No Yes 

N 2518 756 

CVD composite   

# events 345 131 

Model 1 a 1 (Ref) 1.25 (1.03-1.54) 

Model 2 1 (Ref) 1.23 (1.00-1.52) 

Model 3 1 (Ref) 1.21 (0.98-1.50) 

Model 4 1 (Ref) 1.19 (0.96-1.48) 
a Model 1 = age, race-center, sex 

Model 2 = Model 1 + education, smoking status, drinking status, physical activity, obesity 

Model 3 = Model 2 + diabetes, systolic blood pressure, antihypertension medication use, lipid-lowering 

medication use, HDL, total cholesterol, eGFR 

Model 4 = Model 3 + clinical hypomagnesemia 
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Supplemental Table 6.2. Hazard ratios (95% CI) for serum magnesium clinical cut-point categories and 

cardiovascular disease risk: the ARIC study, 2011-2017, N=4431 

  Serum Magnesium, mmol/L  

 <0.75  0.75-0.85 0.85-0.95 >0.95 

N 750 1654 1932 95 

CVD composite     

# events 151 250 291 20 

Model 1 a 1.44 (1.18-1.76) 1.02 (0.86-1.21) 1 (Ref) 2.12 (1.35-3.34) 

Model 2 1.25 (1.01-1.56) 1.01 (0.84-1.21) 1 (Ref) 1.97 (1.21-3.20) 

Model 3 1.20 (0.95-1.50) 0.97 (0.81-1.16) 1 (Ref) 1.89 (1.15-3.10) 

Individual CVD endpoints     

Atrial fibrillation     

# events 74 131 163 8 

Model 1 1.32 (1.00-1.74) 0.97 (0.77-1.22) 1 (Ref) 1.06 (0.52-2.16) 

Model 2 1.21 (0.90-1.62) 0.97 (0.76-1.23) 1 (Ref) 1.16 (0.57-2.36) 

Model 3 1.20 (0.88-1.64) 0.96 (0.75-1.22) 1 (Ref) 1.13 (0.55-2.31) 

Coronary heart disease     

# events 25 37 46 4 

Model 1 1.63 (1.00-2.67) 0.99 (0.64-1.53) 1 (Ref) 1.50 (0.47-4.83) 

Model 2 1.49 (0.88-2.52) 1.01 (0.64-1.59) 1 (Ref) 1.71 (0.53-5.55) 

Model 3 1.23 (0.69-2.18) 0.90 (0.56-1.45) 1 (Ref) 1.74 (0.54-5.66) 

CVD mortality     

# events 30 40 48 3 

Model 1 1.66 (1.04-2.63) 0.95 (0.62-1.45) 1 (Ref) 1.39 (0.43-4.36) 

Model 2 1.49 (0.88-2.52) 1.01 (0.64-1.59) 1 (Ref) 1.71 (0.53-5.55) 

Model 3 1.23 (0.69-2.18) 0.90 (0.56-1.45) 1 (Ref) 1.74 (0.54-5.66) 

Heart failure     

# events 82 97 97 9 

Model 1 2.24 (1.66-3.02) 1.16 (0.87-1.54) 1 (Ref) 2.07 (1.66-3.02) 

Model 2 1.81 (1.30-2.51) 1.10 (0.81-1.50) 1 (Ref) 1.81 (0.84-3.93) 

Model 3 1.57 (1.10-2.24) 1.02 (0.74-1.40) 1 (Ref) 1.70 (0.78-3.69) 

Stroke     

# events 29 38 50 4 
Model 1 1.44 (0.91-2.30) 0.87 (0.57-1.33) 1 (Ref) 1.81 (0.65-5.02) 

Model 2 1.23 (0.75-2.01) 0.80 (0.52-1.25) 1 (Ref) 1.89 (0.68-5.26) 

Model 3 1.16 (0.68-1.97) 0.77 (0.49-1.22) 1 (Ref) 1.96 (0.70-5.47) 
a  Model 1 = age, race-center, sex 

Model 2 = Model 1 + education, smoking status, drinking status, physical activity, obesity 

Model 3 = Model 2 + diabetes, systolic blood pressure, antihypertension medication use, lipid-lowering 

medication use, HDL, total cholesterol, eGFR  



 

127 

 

Supplemental Table 6.3. Hazard ratios (95% CI) for H2-blocker use and cardiovascular disease risk: the 

ARIC study, 2011-2017, N=4431 a 

 H2-blocker user status Proportion mediated 

by hypomagnesemiab  No Yes 

N 4182 249  

CVD composite    

# events 666 46  

Model 1 1 (Ref) 1.16 (0.86-1.57) -- 

Model 2 1 (Ref) 1.15 (0.84-1.55) -- 

Model 3 1 (Ref) 1.10 (0.81-1.51) -- 

Model 4 1 (Ref) 1.10 (0.80-1.50) -0.4% 

Individual CVD endpoints    

Atrial fibrillation    

# events 359 17  

Model 1 1 (Ref) 0.80 (0.49-1.29) -- 

Model 2 1 (Ref) 0.78 (0.48-1.27) -- 

Model 3 1 (Ref) 0.78 (0.48-1.28) -- 

Model 4 1 (Ref) 0.78 (0.48-1.28) -0.2% 

Coronary heart disease    

# events 104 8  

Model 1 1 (Ref) 1.37 (0.67-2.82) -- 

Model 2 1 (Ref) 1.41 (0.68-2.91) -- 

Model 3 1 (Ref) 1.37 (0.66-2.84) -- 

Model 4 1 (Ref) 1.37 (0.66-2.85) -1.0% 

CVD mortality    

# events 109 12  

Model 1 1 (Ref) 1.94 (1.07, 3.52) -- 

Model 2 1 (Ref) 2.26 (1.23, 4.14) -- 

Model 3 1 (Ref) 2.16 (1.14, 4.08) -- 

Model 4 1 (Ref) 2.17 (1.14, 4.11) 9.9% 

Heart failure    

# events 270 15  

Model 1 1 (Ref) 0.96 (0.57-1.61) -- 

Model 2 1 (Ref) 0.90 (0.53-1.55) -- 

Model 3 1 (Ref) 0.73 (0.41-1.31) -- 

Model 4 1 (Ref) 0.72 (0.40-1.29) -0.5% 

Stroke    

# events 113   8  

Model 1 1 (Ref) 1.18 (0.57-2.42) -- 

Model 2 1 (Ref) 1.14 (0.55-2.36) -- 

Model 3 1 (Ref) 1.14 (0.55-2.36) -- 

Model 4 1 (Ref) 1.14 (0.55-2.34) -0.7% 
a Model 1 = age, race-center, sex 

Model 2 = Model 1 + education, smoking status, drinking status, physical activity, obesity 

Model 3 = Model 2 + diabetes, systolic blood pressure, antihypertension medication use, lipid-lowering 

medication use, HDL, total cholesterol, eGFR 

Model 4 = Model 3 + clinical hypomagnesemia 
b Proportion of the total effect of H2-blocker use on CVD endpoint that can be explained though the indirect 

effect, hypomagnesemia; [RRNDE*(RRNIE-1)/(RRNDE-RRNIE-1)] 
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Supplemental Table 6.4. Hazard ratios (95% CI) for proton pump inhibitor use and cardiovascular disease 

risk, sensitivity analyses of 1:3 propensity score matching: the ARIC study, 2011-2017, N=3912 a 

 PPI user status 

 No Yes 

N 2934 978 

CVD composite   

# events 418 186 

Model 1 b 1 (ref) 1.39 (1.17-1.66) 

Model 2 1 (ref) 1.35 (1.14-1.61) 

Individual CVD endpoints   

Atrial fibrillation   

# events 226 101 

Model 1 1 (ref) 1.34 (1.06-1.70) 

Model 2 1 (ref) 1.32 (1.05-1.68) 

Coronary heart disease   

# events 65 29 

Model 1 1 (ref) 1.39 (0.90-2.16) 

Model 2 1 (ref) 1.36 (0.87-2.11) 

CVD mortality   

# events 63 29 

Model 1 1 (ref) 1.38 (0.89-2.15) 

Model 2 1 (ref) 1.34 (0.86-2.09) 

Heart failure   

# events 158 71 

Model 1 1 (ref) 1.34 (1.02-1.78) 

Model 2 1 (ref) 1.27 (0.96-1.69) 

Stroke   

# events  83 26 

Model 1 1 (ref) 0.95 (0.61-1.47) 

Model 2 1 (ref) 0.92 (0.59-1.44) 
a Matched on age, race-center, sex, education, smoking status, drinking status,  physical activity, obesity, 

diabetes, systolic blood pressure, antihypertension medication use, lipid-lowering medication use, HDL, 

total cholesterol, eGFR 
b Model 1 = Adjusted for age, race-center, sex 

Model 2 = Model 1 + clinical hypomagnesemia 
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CHAPTER 7 – SYNTHESIS 

To briefly summarize, this dissertation includes 3 manuscripts, which served to 1) better 

characterize the interrelationship of Mg status biomarkers (circulating ionized and total 

magnesium) using data from a double-blind pilot Mg supplementation RCT; 2) test cross-

sectional associations of circulating Mg with burden of atrial and ventricular arrhythmias among 

elderly ARIC study participants; and 3) explore cross-sectional and longitudinal associations of 

PPI use with circulating Mg and CVD risk in the ARIC study. The remainder of this dissertation 

summarizes and discusses the potential public health (Section I) and clinical (Section II) 

implications of these findings. 

I. PUBLIC HEALTH IMPLICATIONS 

As presented in this dissertation, approximately 1 in 5 elderly ARIC study participants 

had clinical hypomagnesemia and nearly 2 in 5 may have a subclinical Mg deficiency.17 

Considering clinical and subclinical hypomagnesemia have been associated with adverse 

cardiovascular risk profiles as well as cardiovascular disease; this has potentially important public 

health implications.  

As shown in Manuscript 1, Mg supplementation can increase circulating iMg and tMg as 

compared to placebo. Whether this effect translates into an effective primary prevention strategy 

for CVD in the general population is unclear, particularly because there is not clinically 

established cut-points for defining iMg status. Nevertheless, if improving Mg concentrations 

(even small beneficial changes) within healthy limits translates to improvements in 

cardiovascular health, it may have notable effects when viewed at the population level.  

Manuscript 2 reported that low Mg was associated with greater PVC burden, but 
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documented weak associations with continuous and intermittent AF burden based on 2 week 

ambulatory ECG monitoring. It is possible the lack of robust association in our elderly population 

may not generalize to mid-life.  Nevertheless, in light of the expected rise in AF incidence226 and 

the current lack of primary prevention strategies, further research is still needed.  

Manuscript 3 suggests that individuals who take PPIs have a higher prevalence of clinical 

hypomagnesemia compared to those who do not take PPIs. Considering the widespread use of 

PPIs and the link between PPIs and low circulating Mg, it is possible that PPIs are shifting the 

population level curve of circulating Mg lower. If this is the case, implications of this shift on 

CVD (including cardiac arrhythmias) and other outcomes are unclear. However, as reported in 

Manuscript 3, PPI use was associated with only modestly elevated CVD risk in this elderly 

community-based population, and we did not find statistical evidence that low circulating Mg 

mediated the association. 

Taken together, this dissertation supports the notion that hypomagnesemia and PPI use 

are both highly prevalent among elderly individuals, as well as that Mg homeostasis is complex. 

Importantly, low Mg can be intervened upon through dietary modification or supplementation. 

While the focus of this dissertation was on circulating Mg, relatedly, most American adults do not 

meet nutritional guidelines for adequate Mg intake  (similar to many other vitamins and 

minerals).6 Efforts to improve dietary quality and the promotion of Mg-rich foods should 

continue to be emphasized for cardiovascular health. To date, however, no RCT has tested 

whether intervening on low circulating Mg is an effective primary prevention strategy for CVD. 

II. CLINICAL IMPLICATIONS 

Mg status tends to be most commonly assessed based on circulating tMg, as discussed 
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throughout this dissertation; however, there are important limitations to tMg as a biomarker. In 

contrast, there has been relatively little characterization of circulating iMg, which is the 

physiologically active form of Mg in circulation.  

Whether iMg is the more clinically relevant biomarker of ‘true’ Mg status needs to be 

clarified, as it is possible that there may be substantial misclassification with tMg, resulting in 

attenuated effect estimates of evaluations of the association between Mg and CVD, and 

misidentification and treatment of hypomagnesemia in clinical settings. That said, whether it is 

practical to measure iMg in clinical settings is also unclear. As such, in Manuscript 1 we 

evaluated the feasibility of measuring iMg under different specimen-processing scenarios.  We 

found that measurement of iMg after brief refrigeration and freezing was substantially higher than 

iMg measured soon after blood draw. However, it is possible that if iMg is found to be a stronger 

predictor of outcomes, then this may outweigh the inconvenience of testing iMg soon after blood 

draw in certain clinical or research settings. 

In Manuscript 2, we found that low tMg was associated with a higher burden of PVCs as 

compared to those with normal tMg concentrations. Additionally, we found little evidence of 

associations between tMg with AF burden categories and other arrhythmias examined (PAC, 

SVT, NSVT). However, relevant to both Manuscripts 2 and 3, assessments were conducted in the 

elderly, and old-age may not be the optimal time-frame in the aging process to assess these 

questions. It is possible that Mg status may be of greater relevance when measured in mid-life 

rather than late-life.  

PPI use is common among the elderly, as reported in Manuscript 3; approximately 1 in 4 

ARIC study participants were PPI users. PPI users had a higher prevalence of hypomagnesemia 

when compared to non-users. While we did find an association between PPI use and elevated 
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CVD risk, it appears unlikely that hypomagnesemia is the mechanism (or at least the primary 

mechanism) through which PPIs may affect cardiovascular health. Nevertheless, it is important 

for clinicians and patients to be aware of potential side effects of PPI use and, where possible, 

minimize the use (or duration) of this class of medication. Whether health care providers should 

screen PPI users—especially long-term users—for low circulating Mg is unclear. Such screening 

might be considered if the patient presents with the relatively vague symptoms that can 

accompany severely low circulating Mg concentrations.  

Overall, this dissertation helps address knowledge gaps in research on circulating Mg and 

CVD. Collectively, the findings reported in this dissertation help refine our understanding of the 

relationship between altered Mg homeostasis and CVD. 
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