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Abstract

The turn of the decade has trademarked society and computing research with a “data deluge.”

As the number of smart, highly accurate and Internet-capable devices increases, so does the

amount of data that is generated and collected. While this sheer amount of data has the potential

to enable high quality inference, and mining of information, it introduces numerous challenges

in the processing and pattern analysis, since available statistical inference and machine learning

approaches do not necessarily scale well with the number of data and their dimensionality.

In addition to the challenges related to scalability, data gathered are often noisy, dynamic,

contaminated by outliers or corrupted to specifically inhibit the inference task. Moreover, many

machine learning approaches have been shown to be susceptible to adversarial attacks. At the

same time, the cost of cloud and distributed computing is rapidly declining. Therefore, there

is a pressing need for statistical inference and machine learning tools that are robust to attacks

and scale with the volume and dimensionality of the data, by harnessing efficiently the available

computational resources.

This thesis is centered on analytical and algorithmic foundations that aim to enable statistical

inference and data analytics from large volumes of high-dimensional data. The vision is to

establish a comprehensive framework based on state-of-the-art machine learning, optimization

and statistical inference tools to enable truly large-scale inference, which can tap on the available

(possibly distributed) computational resources, and be resilient to adversarial attacks. The

ultimate goal is to both analytically and numerically demonstrate how valuable insights from

signal processing can lead to markedly improved and accelerated learning tools.

To this end, the present thesis investigates two main research thrusts: i) Large-scale sub-

space clustering; and ii) unsupervised ensemble learning. The aforementioned research thrusts

introduce novel algorithms that aim to tackle the issues of large-scale learning. The potential of

the proposed algorithms is showcased by rigorous theoretical results and extensive numerical

tests.
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Chapter 1

Introduction

Data analytics and machine learning already have a ubiquitous presence in our daily lives [29].

Social networking sites, such as Facebook and LinkedIn, analyze user activity and automati-

cally adjust the content they offer. Services such as Amazon, Netflix or Spotify automatically

recommend new movies and music to their clients based on their past activity and the activity

of similar users. Banks and credit companies use machine learning to make credit decisions

as well as detect fraudulent activities. E-mail services have developed intelligent algorithms to

filter out unwanted emails (spam), but also automatically categorize incoming emails. In order to

facilitate all of the aforementioned services, ever increasing amounts of data have to be processed.

Aside from their social effect, machine learning and statistical inference have well documented

impact in the sciences. As sensors and scientific instruments become increasingly accurate, the

data produced by them increases in dimension, requiring increased computational resources for

their processing. While the computational demands of modern machine learning and statistical

inference tools increase dramatically, the cost of cloud computing is rapidly declining [101]. In

addition, the emergent Internet-of-Things (IoT) [153], which consists of numerous connected

devices, advocates data analytics methods that minimize the required communication. This

prompts us to seek tools that perform efficiently in the highly distributed setups of IoT and cloud

computing.

Adding to the challenges posed by the size and volume of the data, machine learning

algorithms have been shown to be vulnerable to attacks from adversaries [89]. For example,

spammers continuously try to outsmart the spam filtering algorithms deployed by email services.

These attacks pose a serious threat, especially in systems where machine learning systems

1
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perform critical tasks. Therefore, tools that are robust to and can detect adversarial attacks are of

paramount importance.

This thesis will leverage contemporary science and engineering tools from disciplines as

diverse as optimization, machine learning, signal processing, and big data processing, to put

forth analytic and algorithmic foundations for learning efficiently from large volumes of high-

dimensional data, possibly in the presence of adversaries.

The major challenge of large-scale learning is to design tools that are fast and efficient yet

retain the accuracy of their batch counterparts. Existing approaches [17, 95] have relied on paral-

lelization and stochastic optimization to develop efficient machine learning and data analytics

schemes. However, parallelizing a large problem typically requires a lot of communication

between computing nodes, and stochastic optimization suffers from slow convergence speeds,

especially for non-convex problems. Other approaches [18, 151] tackle high-dimensional data

by invoking the celebrated Johnson-Lindenstrauss (JL) lemma [67]. These methods reduce the

dimensionality of the data by multiplying them with a data-agnostic random projection matrix,

and then proceed with the learning task on the dimensionality reduced dataset. This approach

however, is not tailored for large volumes of data.

Another approach for large-scale learning is ensemble learning. Ensemble learning is the

task of creating a meta-learner, by combining the results of multiple individual learners [33].

Additionally, ensembling can significantly increase the performance of so-called “weak” learners,

that is learners performing slightly better than random [44]. Thus, instead of training a highly

complex algorithm, one can possibly use an array of simpler algorithms and combine their results

in an appropriate manner. At the same time, as different machine learning and statistical inference

algorithms operate under different assumptions, there is no “one-size-fits-all” algorithm. By

combining the results from multiple algorithms, ensemble learning complements the strengths of

each algorithm to produce a result that is better than the results provided from each individual

algorithm.

Regarding adversarial machine learning, recent research has mainly focused on deep neural

networks [52, 53], with only a few exploring how other machine learning algorithms are affected

by adversarial examples [104, 139]. In addition, the effect of adversaries in an ensemble learning

setup remains a basically uncharted territory.

The central goal of this thesis is to put forth algorithmic foundations and performance

analyses for optimally handling large-scale high-dimensional data as well as dealing with
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Figure 1.1: Example of a dataset with K = 2 clusters that are linearly separable.

adversarial agents that seek to undermine the machine learning task. The first line of research

will focus on methods to accelerate clustering, and in particular the popular subspace clustering

(SC) method, for general and tensor based data. The research in Chap. 2 is geared to address the

following question:

• How can we accelerate existing SC schemes while maintaining high clustering accuracy?

The second line of research focuses on ensemble learning, and in particular blind (unsu-

pervised) ensembles. Blind ensembles are well motivated when there is no knowledge of how

different algorithms will perform on a particular dataset, and the meta-learner has no access to

ground-truth data. In addition, the blind ensemble learning setup also emerges in fields such

as crowdsourcing and distrubuted detection/estimation among others. The key contribution of

this thrust will be to show that results from multiple heterogeneous learners can be judiciously

combined, even without the presence of ground-truth data at the meta-learner. To this end, our

research aims in Chapters 3 and 4 to answer the following question:

• How can we optimally and efficiently combine the answers of multiple algorithms/annotators

in the absence of ground-truth data?

• How can we incorporate information about data dependencies in the blind ensemble

learning task?

• How does the presence of adversaries affect the ensemble learning task?

The two main research thrusts of this thesis are briefly described in the following subchapters.
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Figure 1.2: Data drawn from a union of subspaces model.

1.1 Large-scale subspace clustering

Clustering (a.k.a. unsupervised classification) is a method of grouping data, without having

labels available. Also referred to as graph partitioning or community identification, it finds

applications in data mining, signal processing, and machine learning. Arguably, the most popular

clustering algorithm is K-means due to its simplicity [57]. However, K-means, as well as its

kernel-based variants, provide meaningful clustering results only when data, after mapped to an

appropriate feature space, form “tight” groups that can be separated by hyperplanes [57], see

e.g. Fig. 1.1. Its scope is further broadened by the so-termed probabilistic and kernel K-means,

with an instantiation of the latter being equivalent to spectral clustering – the popular tool for

graph-partitioning that can cope even with nonlinearly separable data [32]

Subspace clustering (SC) on the other hand, is a popular method for clustering nonlinearly

separable data which are generated by a union of (affine) subspaces in a high-dimensional

Euclidean space [145], see e.g. Fig. 1.2. SC has well-documented impact in applications, as

diverse as image and video segmentation, and identification of switching linear systems in

controls [145]. The more recent SC methods can offer high levels of clustering performance, at

the cost, however, of high computational complexity.
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Figure 1.3: Unsupervised ensemble learning setup, where the outputs of learners are combined
in parallel.

As the main issue with large-scale SC is the huge volume of data, to realize large-scale

subspace clustering, this thesis will leverage results from the well-studied field of random

projections. Specifically, random projections will be employed to reduce the number of data,

while at the same time maintaining high clustering performance. The proposed approach is

extended to distributed SC regimes.

1.2 Learning with blind (unsupervised) ensembles

Ensemble learning refers to the task of designing a meta-learner, by combining the results

provided by multiple different learners or annotators1; see Fig. 3.1. This meta-learner should

generally be able to outperform the individual learners. In particular, ensemble classification

refers to fusing the results provided by different classifiers. Each classifier observes data, decides

a class (out of K possible) each of these data belong to, and provides the meta-learner with those

decisions. Such a setup emerges in diverse disciplines including medicine [152], biology [96],

team decision making [102] and economics [130], and has recently gained attention with the

advent of crowdsourcing [19,61] as well as services such as Amazon’s Mechanical Turk [75] and

Clickworker, to name a few. In the crowdsourcing paradigm, multiple workers/annotators are

asked to perform simple tasks and then the annotator answers are fused. Crowdsourcing has been

successfully applied for mitosis detection in breast cancer images [80], MRI segmentation [10],
1The terms learner, annotator, and classifier will be used interchangeably.
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topic modeling [118], and remote sensing [45] among others. A rrelated problem has been

considered in the distributed detection or distributed estimation literature [141]. In this case,

sensors are observing a phenomenon, decide which one out of K possible hypotheses is true,

and transmit those decisions to a fusion center, which has to make a final decision. Additionally,

a similar problem, termed the CEO problem or multiterminal source coding, has been considered

in the information theory literature, albeit from a coding perspective [12].

When training data are available, a meta-learner can learn how to combine the results

from individual classifiers, based on these ground-truth labels [33]. One such approach is

boosting [42, 43], where multiple classifiers are combined according to their probability of error

on the training set. In the boosting regime, each classifier is also using information from the

rest. In many cases however, labeled data are not available to train the combining meta-classifier,

or, the individual classifiers cannot be retrained, justifying the need for unsupervised (or blind)

ensemble methods. One such paradigm is provided by crowdsourcing, where people are tasked

with providing classification labels. Accordingly, in a distributed detection setup, the fusion

center might not have access to the sensors, once they have been deployed. The task of blind

ensemble classification is then to assess the reliability of each annotator while at the same time

fusing their responses. Note that this setup is naturally more resilient to adversarial attacks than

traditional machine learning approaches, as adversaries can be detected by the fusion center/meta

learner. This thesis will use simple concepts from probability, optimization and detection theory

to develop new algorithms that judiciously fuse annotator responses, by taking advantage of the

special structure exhibited by annotator moments.

Furthermore, in many cases, there might be dependencies in the considered data. For example,

the data might form a sequence. Such a setup arises in many natural language processing tasks

such as part-of-speech tagging, where parts of a sentence have to be tagged as nouns, verbs, etc.;

named-entity recognition, where the named entities, such as locations or people in a sentence

have to be identified; and information extraction, to name a few [100]. In addition, more general

dependencies can be captured by a graph, where pairwise relationships between data are encoded

in the graph edges. Examples of such data include citation or brain networks to name a few. As

will be shown in the subsequent chapters of this thesis, these dependencies can be accounted for

in the blind ensemble classification task to enhance classification performance.
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Annotator response 1 Annotator response 2

Annotator response 3 Ground-Truth

Crowdsourcing result

Figure 1.4: Example of crowdsourcing for cerebellum segmentation [10].

Figure 1.5: Named entity recognition example [60].

1.3 Thesis Outline

The remainder of the thesis is organized as follows.

Chapter 2 of the present thesis deals with large-scale subspace clustering. A random projec-

tions based approach, termed Sketched SC, is developed. The proposed approach “compresses”

the data appropriately and can handle both high volumes, as well as high-dimensional data. Fur-

thermore, a distributed version of the proposed algorithms is provided. The proposed algorithms

are evaluated with a rigorous performance analysis and extended numerical tests on real datasets.
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Figure 1.6: Example of graph data with 8 classes.

Chapter 3 introduces a novel approach to multiclass blind ensemble classification for inde-

pendent and identically distributed (iid) data. The proposed approach is based on the PARAFAC

structure of third-order annotator moments and can readily handle multiple imbalanced classes

of data. A rigorous performance analysis is provided along with extended numerical simulations

on synthetic and real datasets.

Chapter 4 builds upon the algorithms and results of Chapter 3 and introduces blind ensemble

classification approaches for non-iid data. Two cases of dependent data are considered: sequential

data, for which a moment-based algorithm and an expectation maximization (EM) algorithm are

developed; and a generally dependent data case, where the dependencies are captured by a given

graph. For the latter, the algorithm of 3 is combined with a novel EM-based algorithm. Numerical

tests on synthetic and real data corroborate the effectiveness of the proposed algorithms.

Finally, Chapter 5 presents a concluding discussion of the proposed approaches, along with

future research directions.

1.4 Notational Conventions

Unless otherwise noted, lowercase bold letters, x, denote vectors, uppercase bold letters, X,

represent matrices, and calligraphic uppercase letters, X , stand for sets. The (i, j)th entry of
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matrix X is denoted by [X]ij ; and its rank by rank(X); X> denotes the transpose of matrix X;

R
D stands for the D-dimensional real Euclidean space, R+ for the set of positive real numbers.

Pr denotes probability, or the probability mass function; ∼ denotes ”distributed as, E[·] stands

for expectation, and ‖ · ‖ for the `2-norm. Underlined capital letters X denote tensors; while

[[A,B,C]]K is used to denote compactly a K-factor PARAFAC tensor [56, 126] with factor

matrices A = [a1, . . . ,aK ],B = [b1, . . . , bK ],C = [c1, . . . , cK ], that is [[A,B,C]]K =∑K
k=1 ak ◦ bk ◦ ck, where ◦ denotes the outer product. Symbol I(A) denotes the indicator

function of event A, i.e. I(A) = 1 if A occurs, and is 0, otherwise.



Chapter 2

Large-scale Subspace Clustering

The immense amount of daily generated and communicated data presents unique challenges in

their processing. Clustering, the grouping of data without the presence of ground-truth labels,

is an important tool for drawing inferences from data. Subspace clustering (SC) is a relatively

recent method that is able to successfully classify nonlinearly separable data in a multitude

of settings. In spite of their high clustering accuracy, SC methods incur prohibitively high

computational complexity when processing large volumes of high-dimensional data. Inspired

by random sketching approaches for dimensionality reduction, the present paper introduces a

randomized scheme for SC, termed Sketch-SC, tailored for large volumes of high-dimensional

data. Sketch-SC accelerates the computationally heavy parts of state-of-the-art SC approaches

by compressing the data matrix across both dimensions using random projections, thus enabling

fast and accurate large-scale SC. Performance analysis as well as extensive numerical tests on

real data corroborate the potential of Sketch-SC and its competitive performance relative to

state-of-the-art scalable SC approaches.

For the remainder of this chapter X = UρΣρV
>
ρ denotes the singular value decomposition

(SVD) of a rank ρ, D ×N matrix X, where Uρ is D × ρ, Σρ is ρ× ρ, and Vρ is N × ρ. For a

positive integer r < ρ, the SVD of X can be rewritten as

X = UρΣρV
>
ρ = [UrŪr]

[
Σr

Σ̄r

][
V>r

V̄>r

]
= Xr + X̄r

(2.1)

10
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where Σr is an r× r diagonal matrix with the largest r singular values of X in descending order,

and Xr = UrΣrV
>
r is the best rank-r approximation of X in the sense that Xr minimizes

‖X−Xr‖F . Accordingly, Σ̄r is a (ρ− r)× (ρ− r) diagonal matrix containing the remaining

singular values of X and X̄r = ŪrΣ̄rV̄
>
r . The D-dimensional real Euclidean space is denoted

by RD, the set of positive real numbers by R+, the set of positive integers by Z+, the expectation

operator by E[·], and the `2-norm by ‖ · ‖.

2.1 Preliminaries

2.1.1 SC problem statement

Consider N vectors {xi}Ni=1 of size D × 1 drawn from a union of K affine subspaces, each

denoted by Sk, adhering to the model

xi = C(k)ψ
(k)
i + µ(k) + vi , ∀xi ∈ Sk (2.2)

where dk (possibly with dk � D) is the dimensionality of Sk; C(k) is a D × dk matrix whose

columns form a basis of Sk; the dk-dimensional vectorψ(k)
i is the low-dimensional representation

of xi in Sk with respect to (w.r.t.) C(k); the D × 1 vector µ(k) is the “centroid” or intercept of

Sk; and, vi denotes the D × 1 noise vector capturing unmodeled effects. If Sk is linear, then

µ(k) = 0.

Let also pi denote the cluster assignment vector of xi, and [pi]k the kth entry of pi that is

constrained to satisfy [pi]k ≥ 0 and
∑K

k=1[pi]k = 1. If pi ∈ {0, 1}K , then xi lies in only one

subspace (hard clustering), while if pi ∈ [0, 1]K , then xi can belong to multiple clusters (soft

clustering). In the latter case, [pi]k can be thought of as the probability that xi belongs to Sk.

Clearly in the case of hard clustering, (2.2) can be rewritten as

xi =
K∑
k=1

[pi]k

(
C(k)ψ

(k)
i + µ(k)

)
+ vi. (2.3)

Given the D ×N data matrix X := [x1,x2, . . . ,xN ] and the number of subspaces K, the

goal is to find the data-to-subspace assignment vectors {pi}Ni=1, the subspace bases
{
C(k)

}K
k=1

,
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their dimensions {dk}Kk=1, the low-dimensional representations {ψ(k)
i }Ni=1, as well as the cen-

troids {µ(k)}Kk=1 [145]. SC can be formulated as follows

min
P,{C(k)},{ψ(k)

i },M

K∑
k=1

N∑
i=1

[pi]k‖xi −C(k)ψ
(k)
i − µ

(k)‖22

subject to (s.to) P>1 = 1; [pi]k ≥ 0, ∀(i, k)

(2.4)

where P := [p1, . . . ,pN ], M := [µ(1),µ(2), . . . ,µ(k)], and 1 denotes the all-ones vector of

matching dimensions.

The problem in (2.4) is non-convex as all of P, {C(k)}Kk=1, {dk}Kk=1, {ψ
(k)
i }, and M are

unknown. It is known that when K = 1 and C is orthonormal, (2.4) boils down to PCA [68]

min
C,{ψi},µ

N∑
i=1

‖xi −Cψi − µ‖22

s.to C>C = I

(2.5)

where I denotes the identity matrix of appropriate dimension. Notice that forK = 1, it holds that

[pi]k = 1. Moreover, if C(k) := 0, ∀k, looking for {µ(k)}Kk=1, {pi}Ni=1 with K > 1, amounts

to K-means clustering

min
P,M

K∑
k=1

N∑
i=1

[pi]k‖xi − µ(k)‖22

s.to P>1 = 1 .

(2.6)

2.1.2 Prior work

Various algorithms have been developed by the machine learning [145] and data-mining com-

munity [108] to solve (2.4). Generalizing the ubiquitous K-means [87] the K-subspaces al-

gorithm [2] builds on alternating optimization to solve (2.4). For Π and {dk}Kk=1 fixed, bases

of the subspaces can be recovered using the SVD on the data associated with each subspace.

Indeed, given X(k) := [xi1 , . . . ,xiNk
], belonging to Sk (

∑K
k=1Nk = N ), a basis C(k) can

be obtained from the first dk (from the left) singular vectors of X(k) − [µ(k), . . . ,µ(k)], where

µ(k) = (1/Nk)
∑

i∈Sk xi. On the other hand, when {C(k),µ(k)}Kk=1 are given, the assignment

matrix Π can be recovered in the case of hard clustering by finding the closest subspace to each
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datapoint; that is, ∀i ∈ {1, 2, . . . , N}, ∀k ∈ {1, . . . ,K}, we obtain

[pi]k =


1, if k = arg min

k′∈{1,...,K}

∥∥∥x̃(k′)
i −C(k′)C(k′)>x̃

(k′)
i

∥∥∥2

2

0, otherwise
(2.7)

where x̃(k)
i := xi−µ(k) and ‖x̃(k)

i −C(k)C(k)>x̃
(k)
i ‖2 is the distance of xi from Sk. Thus, the

K-subspaces algorithm operates as follows: (i) Fix P and solve for the remaining unknowns; and

(ii) fix {C(k),µ(k)}Kk=1, and solve for P. Since SVD is involved, SC entails high computational

complexity, whenever dk and/or Nk are massive.

A probabilistic (soft) counterpart of K-subspaces is the mixture of probabilistic PCA [131],

which assumes that data are drawn from a mixture of degenerate (zero-variance) Gaussians.

Building on the same assumption, the agglomerative lossy compression (ALC) minimizes

the required number of bits to “encode” each cluster, up to a certain distortion level [92].

Algebraic schemes, such as generalized (G)PCA approach SC from a linear algebra point

of view, but generally their performance is guaranteed only for independent and noise-less

subspaces [146]. Additional interesting methods recover subspaces by finding local linear

subspace approximations [161]; by thresholding the correlations between data [58]; or by

identifying the subspaces one by one [116]. Recently, multilinear methods for SC of tensor data

have also been advocated [137]; see also [124, 136, 160] for online clustering approaches to

handle streaming data.

Arguably the most successful class of solvers for (2.4) relies on spectral clustering [147]

to find the data-to-subspace assignments. Algorithms in this class generate first an N × N
symmetric weighted adjacency matrix W to capture the non-directional similarity between data

vectors, and then perform spectral clustering on W. Matrix W implies a graph G whose vertices

correspond to data and the weight of the edge connecting vertex i and vertex j is given by [W]ij .

Spectral clustering algorithms form the graph Laplacian matrix

L := diag(W1)−W (2.8)

where diag(W1) is a diagonal matrix holding W1 on its diagonal. The algebraic multiplicity of

the 0 eigenvalue of L yields the number of connected components in G, while the corresponding

eigenvectors are indicator vectors of these connected components [147]. Afterwards, having
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formed L, the K eigenvectors {vk}Kk=1 corresponding to the trailing eigenvectors of L are found,

and K-means is performed on the rows of the N × K matrix V := [v1, . . . ,vK ] to obtain

clustering assignments [147].

Sparse subspace clustering (SSC) [37] exploits the fact that under the union of subspaces

model (2.4), only a small percentage of data suffices to provide a low-dimensional affine

representation of xi; that is, xi =
∑N

j=1,j 6=iwijxj , ∀i ∈ {1, 2, . . . , N}. Specifically, SSC

solves the following sparsity-promoting optimization problem

min
Z

‖Z‖1 +
λ

2
‖X−XZ‖2F

s.to Z>1 = 1; diag(Z) = 0

(2.9)

where Z := [z1, z2, . . . ,zN ]; column zi is sparse and contains the coefficients for the rep-

resentation of xi; λ > 0 is the regularization coefficient; and ‖Z‖1 :=
∑N

i,j=1 |[Z]i,j |. The

constraint diag(Z) = 0 ensures that the solution of the optimization problem is not a trivial

one (Z = I), while Z>1 = 1 is employed to guarantee that the Z found is invariant to shifting

the data by a constant vector [145]. Matrix Z is used to create the weighted adjacency matrix

[W]ij := |[Z]ij | + |[Z]ji|. Finally, spectral clustering, is performed on W and cluster assign-

ments are identified. Using those assignments, M is found by taking sample means per cluster,

and {C(k)}Kk=1, {ψ(k)
i }Ni=1 are obtained by applying SVD on X(k) − [µ(k), . . . ,µ(k)].

The low-rank representation (LRR) approach to SC is similar to SSC, but replaces the `1-

norm in (2.9) with the nuclear one: ‖Z‖∗ :=
∑ρ

i=1 σi(Z), where ρ stands for the rank and σi(Z)

for the ith singular value of Z. Specifically, LRR solves the following optimization problem [85]

min
Z

‖Z‖∗ +
λ

2
‖X−XZ‖2,1 (2.10)

where ‖X‖2,1 :=
∑N

j=1 ‖xj‖2, and xj denotes the j-th column of X.

Another popular algorithm is termed least-squares regression (LSR) [90]. It solves an

optimization problem similar to (2.10), but replaces the `1/nuclear norm with the Frobenius one.

Specifically, LSR solves

min
Z

1

2
‖Z‖2F +

λ

2
‖X−XZ‖2F (2.11)

which admits the following closed-form solution Z∗ = λ
(
λX>X + I

)−1
X>X. Combining

SSC with LSR, the elastic net SC (EnSC) approaches employ a convex combination of `1-
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and Frobenius-norm regularizers [38, 103]. The high clustering accuracy achieved by these

self-dictionary methods comes at the price of high complexity. Solving (2.9), (2.10) or (2.11)

scales cubically with the number of data N , on top of performing spectral clustering across K

clusters, which renders these methods computationally prohibitive for large-scale SC. When

data are high-dimensional (D �), methods based on (statistical) leverage scores, random

projections [18, 59, 110, 149], preconditioning and sampling [112], or our recent sketching and

validation (SkeVa) [135] approach can be employed to reduce complexity to an affordable level.

Random projection based methods left multiply the data matrix X, with a d×D data-agnostic

random matrix, thereby reducing the dimensionality of the data vectors from D to d. This type

of dimensionality reduction has been shown to reduce computational costs while not incurring

significant clustering performance degradation when d = O(
∑K

k=1 dk) [59]. When the number

of data vectors is large (N �), the scalable SSC/LRR/LSR approach [109] involves drawing

randomly n < N data, performing SSC/LRR/LSR on them, and expressing the rest of the

data according to the clusters identified by that random draw of samples. While this approach

clearly reduces complexity, performance can potentially suffer as the random sample may not be

representative of the entire dataset, especially when n� N and clusters are unequally populated.

Other approaches focus on greedy methods, such as orthogonal matching pursuit (OMP), for

solving (2.9) [36, 156]. More recently, an active set method, termed Oracle guided Elastic Net

(ORGEN) [157], can be used to reduce the complexity of SSC and EnSC tasks, by solving only

for the entries of Z that correspond to data vectors that are highly correlated.

The present thesis introduces a novel approach based on random projections that creates a

compact yet expressive dictionary that can be employed by SSC/LRR/LSR to reduce the number

of optimization variables to O(nN) for n < N , thus yielding low computational complexity. In

addition, the proposed approach can be combined with random projection methods to reduce

data dimensionality, which further scales down computational costs.

2.2 Sketched Subspace Clustering

Consider the following unifying optimization problem

min
A∈C

h(A) + λL(X−BA) (2.12)
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Algorithm 2.1 Linear sketched data model for Sketch-SC
Input: D ×N data matrix X; Number of columns of R n; regularization parameter λ;
Output: Model matrix A;

1: Generate N × n JLT matrix R.
2: Form D × n dictionary B = XR.
3: Solve (2.12) for the cost in (2.14), (2.15), (2.16) to obtain A.

where B is an appropriate D × n known basis matrix (dictionary), h(A) is a regularization

function of the n×N matrix A, L(·) is an appropriate loss function, and C is a constraint set for

A. Eq. (2.12) will henceforth be referred to as Sketch-SC objective. As mentioned in Sec.2.1.2,

the ability of A, obtained from (2.12) to distinguish data for clustering depends on the choice

of h(·), and on B. For SSC, LSR and LRR, B = X, n = N and h(·) is ‖ · ‖1, 1
2‖ · ‖

2
F , ‖ · ‖∗,

and L(·) is 1
2‖ · ‖

2
F ,

1
2‖ · ‖

2
F and 1

2‖ · ‖
2
F or 1

2‖ · ‖2,1 respectively. The constraint set for SSC is

C = {A ∈ RN×N : A>1 = 1; diag(A) = 0}, while for LSR and LRR, we have C = R
N×N .

2.2.1 High volume of data

As the aim of the present thesis is to introduce scalable methods for subspace clustering, the

dictionaries considered from now on will have n � N , bringing the number of variables to

O(nN). In particular, the dictionaries employed will have the form, B := XR, where R is a

N ×n sketching matrix. The role of R is to “compress” X, while retaining as much information

from it as possible. To this end, the celebrated Johnson-Lindenstrauss lemma [67] will be

invoked.

Lemma 2.1. [67] Given ε > 0, for any subset V ⊂ R
N containing d vectors of size N × 1,

there exists a map q : RN → R
n such that for n ≥ n0 = O(ε−2 log d), it holds for all x,y ∈ V

(1− ε)‖x− y‖22 ≤ ‖q(x)− q(y)‖22 ≤ (1 + ε)‖x− y‖22. (2.13)

In particular, random matrices known as Johnson-Lindenstrauss transforms will be employed

since they exhibit useful properties.

Definition 2.1. [151, Def. 2.3], [18] AnN×n random matrix R forms a Johnson-Lindenstrauss

transform (JLT(ε, δ, d)) with parameters ε, δ, d if there exists a function f , such that for any
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ε > 0, δ < 1, d ∈ Z+ and d-element subset V ⊂ R
N , with n = Ω( log d

ε2
f(δ)), it holds that

Pr
{

(1− ε)‖x‖22 ≤ ‖x>R‖22 ≤ (1 + ε)‖x‖22
}
≥ 1− δ

for any 1×N vector x> ∈ V .

One example of a random JLT matrix is a matrix with independent and identically distributed

(i.i.d.) entries drawn from a normalN (0, 1) distribution scaled by a factor 1/
√
n [151]. Rescaled

random sign matrices, that is matrices with i.i.d. ±1 entries multiplied by 1/
√
n are also

JLTs [1, 18], and matrix products involving these matrices can be computed fast [82]. Another

class of JLTs that allows for efficient matrix multiplication includes the so-called Fast (F)JLTs.

This class of FJLTs samples randomly and rescales rows of a fixed orthonormal matrix, such as

the discrete Fourier transform (DFT) matrix, or, the Hadamard matrix [3,4]; see also [27,113,151]

where sparse JLT matrices have been advocated.

The following proposition proved in the appendix justifies the use of JLTs for constructing

our dictionary B in (2.12).

Proposition 2.1. Let X be a D×N matrix such that rank(X) = ρ, and define the D×n matrix

B := XR, where R is a JLT(ε, δ,D) of size N × n. If n = O(ρ log(ρ/ε)
ε2

f(δ)) then w.p. at least

1− δ, it holds that

range(X) = range(B).

This proposition asserts that with a proper choice of the sketching matrix R, the dictionary

B is as expressive as X for solving (2.12), as it preserves the column space of X with high

probability. The next proposition provides a similar bound on the reduced dimension n, when

n < rank(X) := ρ.

Proposition 2.2. Let X be a D×N matrix such that rank(X) = ρ, and define the D×n matrix

B := XR, where R is a JLT(ε, δ,D) of size N × n. If n = O(r log(r/ε)
ε2

f(δ)), then w.p. at least

1− 2δ it holds that

‖B(V>r R)† −UrΣr‖F ≤ (ε

√
1 + ε√
1− ε

+ 1 + ε)‖X̄r‖F .

Prop. 2.2 suggests that B approximately inherits the range of Xr.



18

Upon constructing a B adhering to Prop. 2.1 or Prop. 2.2, (2.12) can be solved for different

choices of h. When h(A) = 1
2‖A‖

2
F , the optimization task (termed henceforth Sketch-LSR)

min
A

1

2
‖A‖2F +

λ

2
‖X−BA‖2F (2.14)

is solved by A∗ = λ
(
λB>B + I

)−1
B>X, incurring complexity O(n3 + n2D + nDN).

Accordingly, our Sketch-SSC corresponds to h(A) = ‖A‖1 =
∑

ij |[A]ij | and relies on the

objective

min
A
‖A‖1 +

λ

2
‖X−BA‖2F (2.15)

that can be solved efficiently to obtain A using the alternating direction method of multipliers

(ADMM) [49], as per [37], or any other efficient LASSO solver. The ADMM solver for (2.15)

incurs complexity O(n3 + n2D + nDN + n2NI), where I is the required number of iterations

until convergence, and the constraint diag(A) = 0 is no longer required as I is not a trivial

solution of (2.15). Proceeding along similar lines, our Sketch-LRR objective, for h(A) = ‖A‖∗
aims at

min
A
‖A‖∗ +

λ

2
‖X−BA‖2F (2.16)

that can be solved using the augmented Lagrange multiplier (ALM) method of [85], which incurs

complexityO(n3 +n2D+nDN+(nDN+nN2 +n2N)I), where I is the number of iterations

until convergence. In addition, (2.16) can be solved using the `2,1 norm instead of the Frobenius

norm for the fitting term X−BA. The entire process to obtain the data model A is outlined in

Alg. 2.1. Detailed algorithms for solving (2.15) and (2.16) are described in Appendix D.

Remark 2.1. An optimal data-driven choice of R would be interesting only if finding it incurs

manageable complexity - a topic which goes beyond the scope of this submission and constitutes

a worthy future research direction.

Remark 2.2. Upon computing B, (2.14) and (2.15) can be readily parallelized across columns of

X. In the nuclear norm case of (2.16) one can employ the following identity [124, 132]

‖A‖∗ = min
Z=PQ>

1

2
(‖P‖2F + ‖Q‖2F ) (2.17)

where A is some n×N matrix of rank ρ and P and Q are n×ρ and N ×ρ matrices respectively.

This is especially useful when multiple computing nodes are available, or the data is scattered
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across multiple devices. Without (2.17), distributed solvers of (2.16) are challenged because as

columns of A are added the SVD needed to find the nuclear norm has to be recomputed, which

is not the case with (2.17).

Remark 2.3. Existing general guidelines for choosing the regularization parameter λ for SSC

and LRR [37, 85] rely on cross-validation and apply also to the proposed Algs. 2.1 and 2.2 here.

2.2.2 High-dimensional data

The complexity of all the aforementioned algorithms depends on the data dimensionality D. As

such, datasets containing high-dimensional vectors will certainly increase the computational

complexity. As mentioned in Sec. 2.1.2, dimensionality reduction techniques can be employed

to reduce the computational burden of SC approaches. Using PCA for instance, a d < D-

dimensional subspace that describes most of the data variance can be found. This, however, can

be prohibitively expensive for large-scale datasets where N �. For such cases, our idea is to

combine the method described in the previous section with randomized dimensionality reduction

techniques [59]. Let Ř be a d×D JLT matrix, where d� D is the target dimensionality, and

consider the d×N matrix X̌ := ŘX, which is a reduced dimensionality version of the original

data X. The Sketch-SC objective then becomes

min
A

h(A) + λL(X̌− B̌A) (2.18)

where B̌ := X̌R is a d × n dictionary of reduced dimension with R being an N × n JLT

matrix as in (2.12). Upon forming X̌ and B̌, (2.18) can be solved for different choices of h as in

Sec. 2.2.1. The steps of our algorithm for high-dimensional data are summarized in Alg. 2.2.

Remark 2.4. While carrying out the products XR, ŘX or X̌R can be computationally expensive

in cases, they can be accelerated using modern numerical linear algebra tools, such as the

Mailman algorithm [82] or by employing the Welsh-Hadamard transform [77, 112].

2.2.3 Obtaining cluster assignments

After obtaining the N ×N matrix Z in (2.9), (2.10) or (2.11), a typical post-processing step for

SSC, LSR, and LRR, is to perform spectral clustering, using W := |Z|+ |Z>| as the adjacency
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Algorithm 2.2 Linear sketched data model for Sketch-SC and D �
Input: D ×N data matrix X; Lower dimension d; Number of columns of R n; regularization

parameter λ;
Output: Model matrix A;

1: Generate d×D JLT matrix Ř.
2: Generate N × n JLT matrix R.
3: Form d×N matrix X̌ = ŘX.
4: Create d× n dictionary B̌ = X̌R.
5: Solve (2.18) to obtain sketched data model A.

matrix. This step however, is not possible for the matrix A obtained from (2.14), (2.15) or (2.16),

because it has size n×N , with n < N .

While A cannot be directly used for spectral clustering, a k-nearest neighbor graph [57] can

be constructed from the columns of A. Let ai denote the i-th column of A, and Ki the set of the

k columns of A that are closest to ai, in the Euclidean distance sense. The N ×N adjacency

matrix W can then be constructed with entries

[W]ij =

1, if aj ∈ Ki or ai ∈ Kj

0, otherwise.
(2.19)

In addition, non-binary edge weights can be assigned as

[W]ij =

wij , if aj ∈ Ki or ai ∈ Kj

0, otherwise.
(2.20)

where wij is some scalar that depends on ai and aj . For instance, if heat kernel weights are

used, then wij = exp(−‖ai − aj‖22/σ2), for some σ > 0. The resultant mutual k-nearest

neighbor matrix W can then be employed for spectral clustering. Note that the N ×N matrix W

emerging from (2.19) or (2.20) will be sparse with O(N) nonzero entries, which can accelerate

the eigendecomposition schemes employed for spectral clustering [69, 81]. The overall scheme

is tabulated in Alg. 2.3.

Remark 2.5. When N and n are large, computation of the k nearest neighbors can be com-

putationally taxing. Many efficient algorithms are available to accelerate the construction of



21

Algorithm 2.3 Obtaining clustering assignments from A

Input: n×N matrix A; Number of nearest neighbors k; Number of clusters K
Output: Clustering assignments

1: Find k-nearest neighbors for each column of A.
2: Create matrix W using (2.19) or (2.20).
3: Apply spectral clustering on W.

the k nearest neighbor graph [5, 107]. In addition, approximate nearest neighbor (ANN) meth-

ods [51, 63, 127] can be employed to speed up the post-processing step even further. Finally, this

post-processing step can be employed for regular SSC, LSR, and LRR.

2.3 Distributed sketched subspace clustering

In many cases it might be desirable to distribute the computational load of the subspace clustering

task to multiple computing nodes. Methods such as SSC and LSR can be easily parallelized, if

X is available to all computing nodes. However, if the data is scattered across multiple nodes,

this approach could incur prohibitive communication and storage costs. Here, we show how the

Sketched SC approach can be used to provide communication efficient distributed SC.

Note that upon obtaining B, (2.12) can be readily parallelized across columns of X. To

account for misses, (2.12) is rewritten as

min
A∈C

h(A) +
λ

2
‖PΩ(X−BA)‖2F (2.21)

where Ω ⊆ (1, 2, . . . , D) × (1, 2, . . . , N) is the set of indices of the observed (non-missing)

entries of X, and PΩ is a projection operator such that

[PΩ(X)]ij :=

[X]ij if (i, j) ∈ Ω

0 otherwise.
(2.22)

Suppose now that data are scattered across L computing nodes. Each node ` has a different

subset of the data X` ⊂ X of size N` (
∑L

`=1N` = N ). Suppose also without loss of generality
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that X = [X1,X2, . . . ,XL], in which case

B = XR =

L∑
`=1

X`R` =

L∑
`=1

B` (2.23)

where R` is a N` × n subset of the rows of R, and B` := X`R` is the D × n subdictionary

corresponding to the `-th computing unit. In order to facilitate a distributed algorithm, each

computing node `must find its own subdictionary B` and communicate it to the remaining nodes,

thus incurring communication complexity O(LDn). For certain classes of JLT, such as those

with i.i.d. Gaussian or Rademacher entries, each computing node can generate its own N` × n
matrix R`, without extra communication overhead. In other cases, a predetermined seed can

be used to generate R`. Upon constructing B as in (2.23), each node ` can solve the following

optimization problem

min
A`∈C`

h(A`) +
λ

2
‖PΩ`

(X` −
L∑

`′=1

X`′R`′A`)‖2F , ` = 1 . . . , L (2.24)

where the n×N` matrix A` is the subset of columns of A corresponding to the `-th computing

node, C` is the constraint set for A`, and Ω` ⊆ (1, 2, . . . , D)× (1, 2, . . . , N`) is the set of indices

of the observed entries of X`. The number of variables in (2.24) is O(nN`), which dramatically

reduces the computational burden per node; and, if h is separable across the columns of A, then

solving (2.24) for ` = 1, . . . , L is equivalent to solving the full problem (2.21). This holds for

h = ‖ · ‖2F and h = ‖ · ‖1, whereas in the nuclear norm case one can employ the following

identity [79, 124, 132]

‖Z‖∗ = min
Z=PQ>

1

2
(‖P‖2F + ‖Q‖2F ) (2.25)

where Z is some M × I matrix of rank ρ and P and Q are M ×ρ and I×ρ matrices respectively.

After finding {A`}L`=1, columns of A := [A1, . . . ,AL] can be clustered by collecting A

at a fusion center and performing spectral clustering, or, using distributed schemes, such as

distributed K-means [8, 39] or distributed spectral clustering [25]. The entire distributed SC

process is summarized in Alg.2.4.
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Algorithm 2.4 Distributed Sketched Subspace Clustering(SC)
Input: Data matrix per computing node {X`}L`=1; Number of columns of random matrix n;

regularization parameter λ;
Output: Clustered data;

1: for computing node ` do
2: Generate N` × n JLT matrix R`.
3: Create D × n subdictionary D` = X`R`.
4: Transmit D` to other nodes. Receive {D`′}`′ 6=`.
5: Form D =

∑L
`′=1 D`′

6: Solve (2.24) and obtain A`.
7: end for
8: Perform spectral clustering on columns of A = [A1, . . . ,AL].

2.4 Performance Analysis

In this section, performance of the proposed method will be quantified analytically. Albeit not

the tightest, the bounds to be derived will provide nice intuition on why the proposed methods

work. The following theorem bounds the representation error of Sketch-LSR in the noise less

case.

Theorem 2.1. Consider noise-free and normalized data vectors obeying (2.3) with vi ≡ 0, to

form columns of a D ×N data matrix X, with unit `2 norm per column, and rank(X) = ρ. Let

also R denote a JLT(ε, δ,D) of size N × n. Let g∗(x) := Xz∗ = x denote the representation

of x provided by LSR, and ĝ(x) := XRâ the representation given by Sketch-LSR. If n =

O(r log(r/ε)
ε2

f(δ)), then the following bound holds w.p. at least 1− 2δ

‖g∗(x)− ĝ(x)‖2 ≤ λ (1 +

√
1 + ε

1− ε
√
ρ− r σ2

r+1) +
1√

1 + ε

with λ as in (2.12), and σr+1 denotes the (r + 1)st singular value of X.

Theorem 2.1 implies that the larger n is, the smaller the upper bound becomes as a smaller

singular value of X is selected. This also suggests that datasets exhibiting lower rank can be

compressed more (with smaller n), while retaining representation accuracy. The following

corollaries extend the result of Thm. 2.1 to the Sketch-SSC and Sketch-LRR cases.

Corollary 2.1. Consider the setting of Thm. 2.1, and let ĝ(x) := XRâ be the representation
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of a datum given by Sketch-SSC. The following bound holds w.p. at least 1− 2δ

‖g∗(x)− ĝ(x)‖2 ≤ λ (1 +

√
1 + ε

1− ε
√
ρ− r σ2

r+1) +

√
n

1− ε

with λ as in (2.12), and σr+1 denotes the (r + 1)st singular value of X.

This corollary is a direct consequence of the fact that for any n × 1 vector x, it holds that

‖x‖1 ≤
√
n‖x‖2. Accordingly, the following corollary for Sketch-LRR holds because for any

rank n matrix X we have ‖X‖∗ ≤
√
n‖X‖F .

Corollary 2.2. Consider the setting of Thm. 2.1, and let g∗(X) := XZ and ĝ(X) := XRÂ

be the representations of all the data given by LRR and Sketch-LRR respectively. The following
bound holds w.p. at least 1− 2δ

‖g∗(X)− ĝ(X)‖F ≤ λ (
√
N +

√
1 + ε

1− ε
√
ρ− r σ2

r+1) +

√
n

1− ε

with λ as in (2.12), and σr+1 denotes the (r + 1)st singular value of X.

For the Sketch-SSC and Sketch-LRR, tighter bounds could possibly be derived by taking into

account the special structures of the `1 and nuclear norms, instead of invoking norm inequalities.

For a dataset X drawn from a union of subspaces model, batch methods such as SSC,

LSR and LRR, should produce a matrix of representations Z that is block-diagonal, under

certain conditions on the separability of subspaces [85, 90]. This, in turn, implies that for data

xi,xj ∈ Sk,x` ∈ Sk′ for k 6= k′, it holds that

‖zi − zj‖2 ≤ ‖zi − z`‖2 (2.26)

that is the representations of two points in the same subspace, are closer than the representations

of two points that lie in different subspaces. The following proposition suggests that this property

is approximately inherited by the Sketch-SC algorithms of Sec. 3.2, with high probability.

Proposition 2.3. Consider xi = Xzi and xj = Xzj , and their representation provided by SSC,

LRR or LSR zi and zj , respectively. Let ρ = rank(X) and ai, aj be the representation obtained

by the corresponding Sketch algorithm of Section 3.2; that is, xi = XRai, where the N × n
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matrix R is a JLT(ε, δ,D). If n = O(ρ log(ρ/ε)
ε2

f(δ)), then w.p. at least 1− δ it holds that

1√
1 + ε

‖zi − zj‖2 ≤ ‖ai − aj‖2 ≤
1√

1− ε
‖zi − zj‖2.

Proposition 2.3 also justifies the use of the k-nearest neighbor graph as a post-processing step in

Sec. 2.2.3.

As will be seen in the ensuing section, the proposed approach has comparable performance

to other high-accuracy SC approaches while requiring markedly less time.

2.5 Numerical Tests

The proposed method is validated in this section using real datasets. Sketch-SC methods (termed

throught this section as Sketch-SSC, Sketch-LSR and Sketch-LRR) are compared to SSC, LSR,

LRR, the orthogonal matching pursuit method (OMP) for large-scale SC [156], as well as

ORGEN [157]. When datasets are large (N �), the proposed methods are only compared to

OMP and ORGEN. The figures of merit evaluated are following.

• Accuracy, i.e., percentage of correctly clustered data:

Accuracy :=
number of data correctly clustered

N
.

• Time (in seconds) required for clustering all data. For Algs. 2.1 and 2.2 this includes

the time required to generate the JLT matrices R, the time required for computing the

products B = XR, and in the case of Alg. 2.2 X̌ = ŘX, B̌ = X̌R, as well as the time

required for Alg. 2.3.

All experiments were performed on a machine with an Intel Core-i5 4570 CPU with 16GB

of RAM. The software used to conduct all experiments is MATLAB [94]. K-means and ANN

were implemented using the VLfeat package [143]. All results represent the averages of 10

independent Monte Carlo runs. The regularization scalar λ [cf. (2.9)] of SSC and Sketch-SSC is

computed as per [37, Prop. 1], and it is controlled by a parameter α. ORGEN has two parameters

that need to be specified, namely λ and α. LRR and Sketch-LRR employ the `2,1 norm for the

residual X−XZ. For LRR, LSR, Sketch-LRR, Sketch-LSR, OMP and ORGEN the parameters

are tuned to optimize empirically the performance of each method considered.
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The real datasets tested are Hopkins 155 [140], the Extended Yale Face dataset [47], the

COIL-100 database [98], and the MNIST handwritten digits dataset [78].

2.5.1 Assessing the effect of different JLTs

Before comparing the proposed scheme with state-of-the-art competing alternatives, the effect of

different JLT matrices on the SC task was tested on two datasets: the Extended Yale Face dataset

and the COIL-100 database. The different N × n JLT matrices assessed are: matrices with i.i.d.

±1 entries rescaled by 1/
√
n (denoted as Rademacher); matrices with i.i.d. N (0, 1) entries

rescaled by 1/
√
n (denoted as Normal); Sparse embedding matrices as described in [27, 151]

(denoted as Sparse); Fast JLTs using the Hadamard matrix as described in [3] (denoted as

Hadamard FJLT). Fig. 2.1 depicts the performance of Alg. 2.1 for different choices of JLT for

the two aforementioned datasets. All JLT matrices achieve comparable performance for the Yale

Face database. However, this is not true for the COIL-100 dataset, where the Rademacher JLT

seem to provide the most consistent performance.

For all tests in the rest of this section Algs. 2.1 and 2.2 use random matrices R, and Ř that

are generated having i.i.d. ±1 entries rescaled by 1/
√
n.

2.5.2 High volume of data

In this section the performance of Sketch-SC (Alg. 2.1) is assessed on all datasets. Hopkins 155

is a popular benchmark dataset for subspace clustering and motion segmentation. It contains 155

video sequences, with N points tracked in each frame of a video sequence. Clusters (K = 2 or

K = 3) represent different objects moving in the video sequence. The results for the Hopkins

155 dataset are listed in Tab. 2.1 for K = 2 and K = 3 clusters, with n = 0.15N for the

proposed methods. Here α = 800 was used for SSC and α = 100 for Sketch-SSC, λ = 1

for LRR and λ = 10 for Sketch-LRR, λ = 4.6 · 10−3 for LSR and Sketch-LSR. The number

of nearest neighbors for Alg. 2.3 is set to k = 5. As the size of the dataset is small, large

computational gains are not expected by using Alg. 2.1. Nevertheless, the Sketch-SC methods

achieve comparable accuracy to their batch counterparts, while in most cases (except one)

requiring less time.

The Extended Yale Face database contains N = 2, 414 face images of K = 38 people,

each of dimension D = 2, 016. Fig. 2.2 shows the results for this dataset for varying n, where
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Figure 2.1: Simulated tests on real datasets Extended Yale Face Database and COIL-100,
evaluating the clustering performance with different JLT matrix R.

α = 30 for SSC and α = 50 for Sketch-SSC, λ = 0.15 for LRR and Sketch-LRR, λ = 106

for LSR and Sketch-LSR, the number of non-zeros per column of Z for OMP is set to 5, while

λ = 0.7 and α = 200 for ORGEN. The number of nearest neighbors for Alg. 2.3 is set to k = 5.

The proposed algorithms exhibit comparable accuracy to their batch counterparts, in particular

SSC, and also achieve higher accuracy than the state-of-the-art large-scale algorithms OMP and

ORGEN, as n increases. Interestingly, with n ≈ 0.03 · N the proposed methods achieve the

accuracy of batch SSC. In addition, the proposed approach requires markedly less time than the

batch methods, and less time than OMP and ORGEN as well.

The Columbia object-image dataset (COIL-100) contains N = 7, 200 images of size 32× 32

corresponding to K = 100 objects. Each cluster corresponds to one object, and contains images

of it from 72 different angles. Fig. 2.3 shows the comparisons on this dataset for varying n, where

α = 25 for SSC and α = 500 for Sketch-SSC, λ = 0.9 for LRR and λ = 10−4 for Sketch-LRR,



28

10 20 30 40 50 60 70 80 90 100

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u
ra

c
y
 (

%
 o

f 
c
o
rr

e
c
tl
y
 c

lu
s
te

re
d
 d

a
ta

)

SSC

LRR

LSR

OMP

ORGEN

Sketched SSC

Sketched LRR

Sketched LSR

(a) Clustering accuracy

10 20 30 40 50 60 70 80 90 100

n

10
-1

10
0

10
1

10
2

10
3

T
im

e
 (

s
)

SSC

LRR

LSR

OMP

ORGEN

Sketched SSC

Sketched LRR

Sketched LSR

(b) Clustering time

Figure 2.2: Simulated tests on real dataset Extended Yale Face Database B, with N = 2, 414
data dimension D = 2, 016 and K = 38 clusters for varying n.

λ = 102 for LSR and Sketch-LSR, the number of non-zeros per column of Z for OMP is set to

2, while λ = 0.95 and α = 3 for ORGEN. The number of nearest neighbors for Alg. 2.3 is set to

k = 5. The proposed approaches exhibit performance comparable to the state-of-the-art as n

increases, while requiring significantly less time. Note that, OMP requires almost the same time

as the proposed approaches, however its clustering performance is significantly lower.

Fig. 2.4 plots the singular values of the Extended Yale Face Database and the COIL-100

dataset. For both, the largest singular values are approximately the first 70 ones. Note that

for the Extended Yale face database our proposed approaches attain their best performance for

approximately n = 70 yielding a compression ratio of 2414
70 ≈ 34.5, while for the COIL-100

database our proposed approaches reach their peak performance again for n = 70, but this time

the compression ratio is 7200
70 ≈ 102.85. This suggests that, indeed, datasets that exhibit low rank

can be compressed with a lower n.

Due to their large size, tests on the following three datasets compare Alg. 2.1 only to OMP and
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K = 2

Algorithm SSC LRR LSR Sketch-SSC Sketch-LRR Sketch-LSR
Accuracy 0.9839 0.9723 0.982 0.946 0.9435 0.9319

Time (s) 0.6902 0.9478 0.093 0.0795 0.0808 0.0787

K = 3

Algorithm SSC LRR LSR Sketch-SSC Sketch-LRR Sketch-LSR
Accuracy 0.9747 0.9253 0.9654 0.8942 0.9415 0.9242

Time (s) 1.566 1.295 0.1797 0.1755 0.1459 0.1829

Table 2.1: Results for K = 2 and K = 3 motions for the Hopkins155 dataset

Dataset OMP ORGEN Sketch-SSC Sketch-LRR Sketch-LSR

MNIST
Accuracy 0.47049 0.93788 0.85825 0.90644 0.90784
Time (s) 502.91 801.3954 155.1017 156.7709 99.4724

CoverType
Accuracy 0.4870 0.4873 0.42387 0.3277 0.4860
Time (s) 1.8947 ∗ 104 2.9893 ∗ 104 6064.8403 4468.5274 392.916

PokerHand
Accuracy 0.5009

-
0.5008 0.1833 0.44225

Time (s) 4.6654 ∗ 104 7.8 ∗ 103 3.6 ∗ 104 2.71 ∗ 103

Table 2.2: Results for the Preprocessed MNIST dataset (N = 70, 000), the CoverType dataset
(N = 581, 012) and the PokerHand dataset (N = 1, 000, 000)

ORGEN. The results for the following three datasets are listed in Tab. 2.2. The MNIST dataset

contains 70, 000 images of handwritten digits, each of dimension 28× 28, with K = 10 clusters,

one per digit. Here the dataset is preprocessed with a scattering convolutional network [21]

and PCA to bring each image dimension down to D = 500, as per [156, 157]. Here n = 200,

α = 12, 000 for Sketch-SSC, λ = 1 for Sketch-LRR, λ = 10−1 for Sketch-LSR, the number

of non-zeros per column of Z for OMP is set to 10, while λ = 0.95 and α = 120 for ORGEN.

The number of nearest neighbors for Alg. 2.3 is set to k = 3, and the set of nearest neighbors

for each datum is found using the ANN implementation of the VLfeat package. In this scenario

ORGEN showcases the best clustering performance, however Sketch-LRR and Sketch-LSR

exhibit comparable accuracy, while requiring markedly less time.

The CoverType dataset consists of N = 581, 012 data belonging to K = 7 clusters. Each

cluster corresponds to a different forest cover type. Data are vectors of dimension D = 54 that

contain cartographic variables, such as soil type, elevation, hillshade etc. Here n = 150, α = 1

for Sketch-SSC, λ = 10−8 for Sketch-LRR, λ = 104 for Sketch-LSR, the number of non-zeros

per column of Z for OMP is set to 15, while λ = 0.95 and α = 500 for ORGEN. The number of
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Figure 2.3: Simulated tests on real dataset COIL-100, with N = 7, 200 data dimension D =
1, 025 and K = 100 clusters for varying n.

nearest neighbors for Alg. 2.3 is set to k = 10, and the set of nearest neighbors for each datum is

found using the ANN implementation of the VLfeat package.

The PokerHand database contains N = 106 data, belonging to K = 10 classes. Each datum

is a 5-card hand drawn from a deck of 52 cards, with each card being described by its suit (spades,

hearts, diamonds, and clubs) and rank (Ace, 2, 3, . . . , Queen, King). Each class represents a

valid Poker hand. Here n = 30, α = 10 for Sketch-SSC, λ = 1 for Sketch-LRR, λ = 102

for Sketch-LSR, the number of non-zeros per column of Z for OMP is set to 10. The number

of nearest neighbors for Alg. 2.3 is set to k = 20, and the set of nearest neighbors for each

datum is found using the ANN implementation of the VLfeat package. Results are not reported

for ORGEN as the algorithm did not converge within 24 hours. For both the CoverType and

PokerHand datasets, most algorithms exhibit comparable accuracy, while Alg. 2.1 requires again

less time than OMP or ORGEN.
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Figure 2.4: Singular value plots for the Extended Yale Face database and the COIL-100 dataset.

2.5.3 High-dimensional data

In this section, the performance of Sketch-SC approaches combined with randomized dimension-

ality reduction (Alg. 2.2) is assessed, for the Extended Yale Face database.

Fig. 2.5 depicts the simulation results on the Extended Yale Face database, when performing

dimensionality reduction, for varying d. Here Alg. 2.2, with fixed n = 70 is compared to its

batch counterparts, OMP and ORGEN. LRR and Sketch-LRR are not included in this simulation

as the algorithm failed for small values of d. All parameters are the same as the corresponding

experiment in Sec. 2.5.2. In this experiment, Sketch-LSR and Sketch-SSC outperform their

competing alternatives in terms of clustering accuracy, while maintaining a low computational

overhead. OMP also exhibits low computational time, at the expense of clustering accuracy.

2.5.4 Distributed SC

Next we evaluate the performance of the proposed Distributed sketched SC scheme, using

real datasets. Let d denote the number of observed entries per column of X. Distributed

sketched SC methods (denoted by DS-LSR, DS-SSC and DS-LRR) are compared to batch LSR

[cf. (2.21)] across variable percentages of available data d/D. The metrics evaluated are the

clustering accuracy, expressed as the percentage of correctly clustered data given by the rate

(number of data correctly clustered)/N , and the computational time per node in seconds, that is

the average time required by a single node to solve (2.24). The D ×N dataset X is distributed

across L different computational nodes, each required to process approximately N` = bN/Lc
data. The N × n random matrices R in all experiments have i.i.d. normal entries rescaled by a

factor 1/
√
n. As matrix A resulting from Alg. 2.4 is not N ×N , a k-nearest neighbor (k-NN)

graph, with adjacency matrix W, is created using the columns of A. The edge weights of this

graph are given by [W]ij = exp(−‖ai − aj‖22/2σ2), where ai is one of the k nearest neighbors
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Figure 2.5: Simulated tests on real dataset Extended Yale Face Database B, with N = 2, 414
data dimension D = 2, 016 and K = 38 clusters for varying d and fixed n = 70.

of aj . Here σ is the average distance between all the columns of A involved in the k nearest

neighbor computation. For all tests, the number of nearest neighbors for the graph construction

is set to k = 5. Tests were performed using 2 real datasets of the previous subsections: Extended

Yale Face database B [47], and the MNIST handwritten digits dataset [78].

Fig. 2.6 shows the results for the Extended Yale Face database. Here, L = 50 computing

nodes are considered and n = 150, λ = 100 for DS-SSC, λ = 0.15 for DS-LRR, and λ = 106

for LSR and DS-LSR. Fig. 2.7 shows the results for the preprocessed MNIST dataset. Again,

here L = 50, while λ = 0.6 for DS-SSC λ = 0.3 for DS-LRR, and λ = 1.2 · 104 for LSR and

DS-LSR.

From all the tests it can be seen that distributed sketched SC approaches exhibit comparable

clustering accuracy with their batch counterparts, even in the presence of missing data, while

requiring markedly less computational time per node, thus corroborating their merits in large-

scale and distributed settings. Also note that as L increases, computational time per node is
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Figure 2.6: Simulated tests on ‘Extended Yale Face Database B,’ with N = 2, 414 data;
D = 2, 016; and K = 38.

expected to decrease.

2.6 Conclusion

The present chapter introduced a novel data-reduction scheme for subspace clustering, namely

Sketch-SC, that enables grouping of data drawn from a union of subspaces based on a random

sketching approach for fast, yet-accurate subspace clustering. Performance of the proposed

scheme was evaluated both analytically and through simulated tests on multiple real datasets.
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Figure 2.7: Simulated tests on a preprocessed subset of MNIST dataset with N = 5, 000 data;
D = 500; and K = 10.



Chapter 3

Learning with Blind Ensembles of
Classifiers for iid data

The rising interest in pattern recognition and data analytics has spurred the development of

innovative machine learning algorithms and tools. However, as each algorithm has its strengths

and limitations, one is motivated to judiciously fuse multiple algorithms in order to find the “best”

performing one, for a given dataset. The present chapter introduces a blind scheme for learning

from ensembles of classifiers, using a moment matching method that leverages joint tensor and

matrix factorization. Blind refers to the combiner who has no knowledge of the ground-truth

labels that each classifier has been trained on. A rigorous performance analysis is derived and

the proposed scheme is evaluated on synthetic and real datasets.

3.1 Problem Statement and Preliminaries

Consider a dataset consisting of N data (possibly vectors) {xn}Nn=1 each belonging to one of

K possible classes with corresponding labels {yn}Nn=1, e.g. yn = k if xn belongs to class k.

The pairs {(xn, yn)} are drawn independently from an unknown joint distribution D, and X and

Y denote random variables such that (X,Y ) ∼ D. Consider now M annotators that observe

{xn}Nn=1, and provide estimates of labels. Let fm(xn) ∈ {1, . . . ,K} denote the label assigned

to datum xn by the m-th annotator. All annotator responses are then collected at a centralized

meta-learner or fusion center. Collect all annotator responses in the M ×N matrix F, that has

entries [F]mn = fm(xn), and all ground-truth labels in the N × 1 vector y = [y1, . . . , yN ]>

35
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Data x

Learner 1 Learner 2 . . . Learner M

Meta-learner/Fusion center

ŷ

f1(x) f2(x) fM (x)

Figure 3.1: Unsupervised ensemble classification setup, where the outputs of learners are
combined in parallel.

. The task of unsupervised ensemble classification is: Given only the annotator responses

{fm(xn),m = 1, . . . ,M}Nn=1, we wish to estimate the ground-truth labels of the data {yn}; see

Fig. 3.1.

Similar to unsupervised ensemble classification, crowdsourced classification seeks to estimate

ground-truth labels of the data {yn} from annotator responses {fm(xn)}, with the additional

caveat that each annotator m may choose to provide labels for only a subset Nm < N of data.

3.1.1 Prior work

Probably the simplest scheme for blind or unsupervised ensemble classification is majority

voting, where the estimated label of a datum is the one that most annotators agree upon. Majority

voting has been used in popular ensemble schemes such as bagging, and random forests [20].

While relatively easy to implement, majority voting presumes that all annotators are equally

“reliable,” which is rather unrealistic, both in crowdsourcing as well as in ensemble learning

setups. Other blind ensemble methods aim to estimate the parameters that characterize the

annotators’ performance. A joint maximum likelihood (ML) estimator of the unknown labels

and these parameters has been reported using the expectation-maximization (EM) algorithm [31].

As the EM algorithm does not guarantee convergence to the ML solution, recent works pursue

alternative estimation methods. For binary classification, [48] assumes that annotators adhere

to the “one-coin” model, meaning each annotator m provides the correct (incorrect) label with
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probability δm (1 − δm); see also [30] when annotators do not label all the data, and [71] for

an iterative method. Recently, [106], [65] advocated a spectral decomposition technique of the

second-order statistics of annotator responses for binary classification, that yields the reliability

parameters of annotators, when class probabilities are unknown, while [16] introduced a minimax

optimal algorithm that can infer annotator reliabilities. In the multiclass setting, [71] solves

multiple binary classification problems. In addition, [66] and [162] utilize third-order moments

and orthogonal tensor decomposition to estimate the unknown reliability parameters and then

initialize the EM algorithm of [31]. This procedure however, can be numerically unstable,

especially when the number of classes K is large, and classes are unequally populated. Finally,

all the methods mentioned in this section employ ML estimation, which implicitly assumes that

the dataset is balanced, meaning classes are roughly equiprobable. Another interesting approach

is presented in [74], where a joint moment matching and maximum likelihood optimization

problem is solved.

The present work puts forth a novel scheme for multiclass blind ensemble classification,

built upon simple concepts from probability and detection theory. It relies on a joint PARAFAC

decomposition approach, which lends itself to a numerically stable algorithm. At the same time,

our novel approach takes into account class prior probabilities to yield accurate estimates of

class labels. Compared to our conference precursor in [138], here we do not require the prior

probabilities to be known, and we present comprehensive numerical tests, along with a rigorous

performance analysis.

3.1.2 Canonical Polyadic Decomposition/PARAFAC

This subsection will outline tensor decompositions, which will be used in the following sections

to derive the proposed scheme. Consider a 3-mode I × J × L tensor X , which can be described

by a matrix in 3 different ways

X(1) := [vec(X(1, :, :)), . . . , vec(X(I, :, :))] (3.1a)

X(2) := [vec(X(:, 1, :)), . . . , vec(X(:, J, :))] (3.1b)

X(3) := [vec(X(:, :, 1)), . . . , vec(X(:, :, L))] (3.1c)
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where X(1) is of dimension JL× I , X(2) is IL× J and X(3) is IJ × L. Under the Canonical

Polyadic Decomposition(CPD)/Parallel Factor Analysis (PARAFAC) model [56], X can be

written as a sum of R rank one tensors (a.k.a. factors)

X =
R∑
r=1

ar ◦ br ◦ cr (3.2)

where ar, br, cr are I×1, J×1 andL×1 vectors, respectively. Letting A := [a1, . . . ,aR],B :=

[b1, . . . , bR], and C := [c1, . . . , cR] be the so-called factor matrices of the CPD model, we write

(3.2) compactly as

X = [[A,B,C]]R (3.3)

and (3.1) can be equivalently written as

X(1) = (C�B) A> (3.4a)

X(2) = (C�A) B> (3.4b)

X(3) = (B�A) C> (3.4c)

where we have used the fact that for matrices A,B and a vector c of appropriate dimensions, it

holds that vec(Adiag(c)B>) = (B�A)c. By vectorizing X(3), it is easy to show that the vec-

torization of the entire tensor will be of the form x := vec(X) = vec(X(3)) = (C�B�A) 1.

Accordingly, vectorizing X(1) or X(2) produces different vectorizations of the entire tensor,

where the order of factor matrices in the Khatri-Rao product is permuted. Recovery of the factor

matrices A,B and C, can be done by solving the following non-convex optimization problem

[Â, B̂, Ĉ] = arg min
A,B,C

‖X − [[A,B,C]]R‖2F . (3.5)

Similar to the matrix case, the Frobenius norm here can be defined as ‖X‖F :=
√∑

i,j,lX(i, j, l)2,

and as (3.4) is just a rearrangement of the terms in X , it holds that

‖X‖F = ‖X(1)‖F = ‖X(2)‖F = ‖X(3)‖F . (3.6)
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Typically, (3.5) is solved using alternating optimization (AO) or gradient descent [126]. Multiple

off-the-shelf solvers are available for PARAFAC tensor decomposition; see e.g. [6, 144]. Further-

more, depending on extra properties of X , constraints can be enforced on the factor matrices,

such as nonnegativity and sparsity to name a few, which can be effectively handled by popular

solvers such as AO-ADMM [62]. Under certain conditions, the factorization of X into A,B,

and C, is essentially unique, or essentially identifiable, that is Â, B̂, and Ĉ can be expressed as

Â = APΛa, B̂ = BPΛb, Ĉ = CPΛc (3.7)

where P is a common permutation matrix, and Λa,Λb,Λc are diagonal scaling matrices such

that ΛaΛbΛc = I [126]. For more details regarding the PARAFAC decomposition and tensors

with more than 3 modes, interested readers are referred to the comprehensive tutorial in [126]

and references therein.

3.2 Unsupervised Ensemble Classification

Each annotator in our model has a fixed probability of deciding that a datum belongs to class k′,

when presented with a datum of class k. Thus, each annotator m can be characterized by a so

called confusion matrix Γm, whose (k′, k)-th entry is

[Γm]k′k := Γm(k′, k) = Pr
(
fm(X) = k′|Y = k

)
. (3.8)

The K × K matrix Γm has non-negative entries that obey the simplex constraint, since∑K
k′=1 Pr (fm(X) = k′|Y = k) = 1, for k = 1, . . . ,K; hence, entries of each Γm column

sum up to 1, that is, Γ>m1 = 1 and Γm ≥ 0. The confusion matrix showcases the statistical

behavior of an annotator, as each column provides the annotator’s probability of deciding the

correct class, when presented with a datum from each class. Before proceeding, we adopt the

following assumptions.

As1. Responses of different annotators per datum, are conditionally independent, given the

ground-truth label Y of the same datum X; that is,

Pr (f1(X) = k1, . . . , fM (X) = kM |Y = k) =

M∏
m=1

Pr (fm(X) = km|Y = k)
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Y

f2(X)f1(X) fM (X). . .

Figure 3.2: Graphical representation of the Dawid and Skene model for i.i.d. data. Shaded
ellipses indicate observed variables, i.e. annotator responses.

As2. Most annotators are better than random; e.g., most have probability of correct detection

exceeding 0.5 for K = 2.

Clearly, for annotators that are better than random, the largest elements of each column of their

confusion matrix will be those on the diagonal of Γm; that is

[Γm]kk ≥ [Γm]k′k, for k′, k = 1, . . . ,K.

As1, which is also known as the Dawid and Skene model, suggests that annotators make

decisions independently of each other, which is rather a standard assumption [31, 65, 162]. A

graphical representation of the resulting model is shown in Fig. 3.2. Likewise, As2 is another

standard assumption, used to alleviate the inherent permutation ambiguity of the confusion

matrix estimates provided by our algorithm. Note that As2 is slightly more relaxed than the

corresponding assumption in [162], which splits annotators into 3 groups and requires most

annotators in each group to be better than random.

3.2.1 Maximum a posteriori label estimation

Given only annotator responses for all data, a straightforward approach to estimating their

ground-truth labels is through a maximum a posteriori (MAP) classifier [73]. In particular, for

datum X the MAP classifier is

ŷMAP(X) = arg max
k∈{1,...,K}

L(X|k) Pr(Y = k) (3.9)

where L(X|k) := Pr (f1(X) = k1, . . . , fM (X) = kM |Y = k) is the conditional likelihood of

X . As annotators make independent decisions, it holds thatL(X|k) =
∏M
m=1 Pr (fm(X) = km|Y = k),
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and thus the MAP classifier can be rewritten as

ŷMAP(X) = arg max
k∈{1,...,K}

log πk +
M∑
m=1

log(Γm(km, k)) (3.10)

where πk := Pr(Y = k). It is well known from detection theory [73] that the MAP classifier

(3.10) minimizes the average probability of error Pe, given by

Pe =
K∑
k=1

πk Pr(ŷMAP = k′ 6= k|Y = k). (3.11)

If all classes are equiprobable, that is πk = 1/K for all k = 1, . . . ,K, then (3.10) reduces to the

ML classifier. In order to obtain the MAP or ML classifier, {Γm}Mm=1 must be available, while

in the MAP classifier case π := [π1, . . . , πK ]> is also required. Interestingly, the next section

will illustrate that {Γm}Mm=1 and π show up in (and can thus be estimated from) the moments of

annotator responses.

3.2.2 The Expectation Maximization algorithm

As mentioned in Sec. 3.1.1, a popular method for ML estimation of the unknown labels and

annotator performance parameters is the EM algorithm. The EM algorithm seeks to iteratively

maximize the marginal log-likelihood of the observed annotator responses, that is log Pr(F|θ),

where θ is used to simplify notation, and concatenates all the annotator confusion matrices.

Each iteration of the EM algorithm consists of two steps, the Expectation (or E-)step and the

Maximization (or M-)step. At the E-step of the i+ 1-th iteration, and given current parameter

estimates θ(i), the so-called Q-function is derived, defined as

Q(θ;θ(i)) = Ey|F;θ(i) [log Pr(y,F;θ)] (3.12)

= Ey|F;θ(i) [log Pr(F|y;θ)] + Ey|F;θ(i) [log Pr(y;θ)].

Since the data are i.i.d. and using As 1 we have that

Ey|F;θ(i) [log Pr(F|y;θ)] =

N∑
n=1

K∑
k=1

M∑
m=1

log Γm(fm(xn), k)qnk
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and

Ey|F;θ(i) [log Pr(y;θ)] =
N∑
n=1

K∑
k=1

log Pr(yn = k;θ)qnk

where we have defined qnk := Pr(yn = k|F;θ(i)) = Pr(yn = k|{fm(xn)}Mm=1;θ(i)). Under

our model, it can be shown [31, 162] that

q
(i+1)
nk =

1

Z
exp

(
M∑
m=1

K∑
k′=1

I(fm(xn) = k′) log(Γ(i)
m (k′, k))

)
(3.13)

where Z is the normalization constant. At the M-step, annotator confusion matrices are updated

by maximizing the Q-function, that is

θ(i+1) = arg max
θ

Q(θ;θ(i)). (3.14)

Accordingly, it can be shown that, per annotator m, (3.14) boils down to

[Γ(i+1)
m ]k′k =

∑N
n=1 q

(i+1)
nk I(fm(xn) = k′)∑K

k
′′

=1

∑N
n=1 q

(i+1)
nk I(fm(xn) = k′′)

. (3.15)

The E- and M-steps are then repeated until convergence. Afterwards, ML estimates of data labels

can be obtained as follows:

ŷ(xn) = arg max
k∈{1,...,K}

Pr({fm(xn)}Mm=1, yn = k)⇒ ŷ(xn) = arg max
k∈{1,...,K}

qnk.

As the EM algorithm solves a nonconvex optimization problem, the accuracy of its results

depends on the initialization. Interestingly, the next section will illustrate that {Γm}Mm=1 and π

show up in (and can thus be estimated from) the moments of annotator responses. The parameters

estimated from these moments can then be used directly with the MAP estimator of Sec. 3.2.1 or

to initialize the aforementioned EM algorithm.

3.2.3 Statistics of annotator responses

Consider each label represented by the annotators using the canonical K × 1 vector ek, denoting

the k-th column of the K × K identity matrix I. Let fm(X) denote the m-th annotator’s

response in vector format. Since fm(X) is just a vector representation of fm(X), it holds that
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Pr (fm(X) = k′|Y = k) ≡ Pr (fm(X) = ek′ |Y = k). With γm,k denoting the k-th column of

Γm, it thus holds that

E[fm(X)|Y = k] =

K∑
k′=1

ek′ Pr
(
fm(X) = k′|Y = k

)
= γm,k (3.16)

where the first equality comes from the definition of conditional expectation, and the second one

because ek’s are columns of I. Using (3.16) and the law of total probability, the mean vector of

responses from annotator m, is hence

E[fm(X)] =

K∑
k=1

E[fm(X)|Y = k] Pr (Y = k) = Γmπ. (3.17)

Upon defining the diagonal matrix Π := diag(π), the K ×K cross-correlation matrix between

the responses of annotators m and m′ 6= m, can be expressed as

Rmm′ := E[fm(X)f>m′(X)] =

K∑
k=1

E[fm(X)|Y = k]E[f>m′(X)|Y = k] Pr (Y = k)

= Γmdiag(π)Γ>m′ = ΓmΠΓ>m′ (3.18)

where we successively relied on the law of total probability, As1, and (3.16). Consider now

the K ×K ×K cross-correlation tensor between the responses of annotators m, m′ 6= m and

m′′ 6= m′,m, namely

Ψmm′m′′ = E[fm(X) ◦ fm′(X) ◦ fm′′(X)]. (3.19)

It can be shown that Ψmm′m′′ obeys a CPD/PARAFAC model [cf. Sec. 3.1.2] with factor matrices

Γm,Γm′ and Γm′′ ; that is,

Ψmm′m′′ =

K∑
k=1

πkγm,k ◦ γm′,k ◦ γm′′,k = [[ΓmΠ,Γm′ ,Γm′′ ]]K . (3.20)

Note here that the diagonal matrix Π can multiply any of the factor matrices Γm,Γm′ , or, Γm′′ .
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With F̄m := [fm(x1), fm(x2), . . . , fm(xN )] the sample mean of the m-th annotator re-

sponses can be readily obtained as

µm =
1

N

N∑
n=1

fm(xn) =
1

N
F̄m1. (3.21)

Accordingly, the K × K sample cross-correlation Smm′ matrices between the responses of

annotators m and m′ 6= m, are given by

Smm′ =
1

N

N∑
n=1

fm(xn)f>m′(xn) =
1

N
F̄mF̄>m′ . (3.22)

Lastly, the sample K × K × K cross-correlation tensors Tmm′m′′ between the responses of

annotators m,m′ 6= m and m′′ 6= m,m′ are

Tmm′m′′ =
1

N

N∑
n=1

fm(xn) ◦ fm′(xn) ◦ fm′′(xn) =
1

N
F̄m ◦ F̄m′ ◦ F̄m′′ . (3.23)

Clearly, Smm′ = S>m′m, T
(2)
m′mm′′ = T

(3)
m′m′′m = T

(1)
mm′m′′ . In addition, as N increases, the law

of large numbers (LLN) implies that, {µm}, {Smm′}, and {Tmm′m′′} approach their ensemble

counterparts in (3.17), (3.18), and (3.19).

Having available first-, second-, and third-order statistics of annotator responses, namely

{µm}Mm=1, {Smm′}Mm,m′=1, and {Tmm′m′′}
M
m,m′,m′′=1

, estimates of {Γm}Mm=1 and π can be

readily extracted from them [cf. (3.17), (3.18), (3.19)]. This procedure corresponds to the

method-of-moments estimation [72]. Upon obtaining {Γ̂m}Mm=1 and π̂, the MAP classifier of

Sec. 3.2.1 can be subsequently employed to estimate the label for each datum. That is, for

n = 1, . . . , N ,

ŷMAP(xn) = arg max
k∈{1,...,K}

log π̂k +
M∑
m=1

log Γ̂m(fm(xn), k) (3.24)

where Γ̂m(k′, k) = [Γ̂m]k′k, and π̂k = [π̂]k. The following section provides an algorithm to

estimate these unknown quantities.
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3.2.4 Moment matching for confusion matrix and prior probability estimation

To estimate the unknown confusion matrices and prior probabilities consider the following

non-convex constrained optimization problem,

min
π

{Γm}Mm=1

hN ({Γm}Mm=1,π) (3.25)

s.to Γm ≥ 0, Γ>m1 = 1, m = 1, . . . ,M

π ≥ 0, π>1 = 1

where

hN ({Γm},π) :=
1

2

M∑
m=1

‖µm − Γmπ‖22

+
1

2

M∑
m=1
m′>m

‖Smm′ − ΓmΠΓ>m′‖2F

+
1

2

M∑
m=1
m′>m
m′′>m′

‖Tmm′m′′ − [[ΓmΠ,Γm′ ,Γm′′ ]]K‖2F

and the subscript N in hN denotes the number of data used to obtain annotator statistics. Collect

the set of constraints per matrix to the convex set C := {Γ ∈ RK×K : Γ ≥ 0,Γ>1 = 1}, where

essentially each column lies on a probability simplex, and let Cp := {u ∈ RK : u ≥ 0,u>1 =

1} denote the constraint set for π.

As (3.25) is a non-convex problem, alternating optimization will be employed to solve it.

Specifically the alternating optimization-alternating direction method of multipliers (AO-ADMM)

will be employed; see [62], and also [70] where a similar formulation appears. Under the AO-

ADMM paradigm, hN is minimized per block of unknown variables {Γm} or π while the other

blocks remain fixed, as in block coordinate descent schemes. Solving for one block of variables

with the remaining fixed is a convex constrained optimization problem under convex C and Cp
constraint sets. These optimization problems are pretty standard and several solvers are available,

including proximal splitting methods, projected gradient descent or ADMM [13, 49, 86, 105].

Here, the solver of choice for each block of variables will be ADMM.
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Algorithm 3.1 Confusion matrix and prior probability estimation algorithm
Input: Annotator responses {Fm}Mm=1, λ > 0, ν > 0; maximum number of iterations I ∈ Z+

Output: Estimates of {Γ̂m}Mm=1 and π̂
1: Compute {µm}, {Smm′}, {Tmm′m′′} using (3.21), (3.22), and (3.23).
2: Initialize {Γm} and π randomly.
3: do
4: for m = 1, . . . ,M do
5: Update Γm using (3.27)
6: Γ

(prev)
m ← Γm

7: end for
8: Update π using (3.26)
9: π(prev) ← π

10: i← i+ 1
11: while not converged and i < IT
12: Find permutation matrix P̂, such that the majority of {Γ̂mP̂}Mm=1 satisfy As2.

Algorithm 3.2 Unsupervised multiclass ensemble classification
Input: Annotator responses {Fm}Mm=1

Output: Estimates of data labels {ŷn}Nn=1

1: Find estimates {Γ̂m}Mm=1 and π̂ using Alg. 3.1
2: for n = 1, . . . , N do
3: Estimate label yn using (3.24).
4: end for

The update for π involves minimizing hN with {Γm}Mm=1 fixed. Specifically, the following

problem is solved

min
π∈Cp

gN,π(π) (3.26)

where

gN,π(π) :=
1

2

M∑
m=1

‖µm − Γmπ‖22 +
ν

2
‖π − π(prev)‖22

+
1

2

M∑
m=1
m′>m

‖smm′ − (Γm′ � Γm)π‖22
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+
1

2

M∑
m=1
m′>m
m′′>m′

‖tmm′m′′ − (Γm′′ � Γm′ � Γm)π‖22

smm′ = vec(Smm′), tmm′m′′ = vec(T
(3)
mm′m′′) [cf. (3.4)], ν is a positive scalar, and ewe have

used vec(Γmdiag(π)Γ>m′) = (Γm′ � Γm)π and vec([[Γmdiag(π),Γm′ ,Γm′′ ]]K) = (Γm′′ �
Γm′ � Γm)π. Note that gN,π contains all of the terms in hN along with (ν/2)‖π − π(prev)‖22,

which is included to ensure convergence of the AO-ADMM iterations to a stationary point of

(3.25) [62, 117]. Here, π(prev) denotes the estimate of π obtained by the previous solutions of

(3.26).

Accordingly per Γm, the following subproblem is solved with {Γm′}Mm′ 6=m and π fixed

min
Γm∈C

gN,m(Γm) (3.27)

where

gN,m(Γm) :=
1

2
‖µm − Γmπ‖22 +

ν

2
‖Γm − Γ(prev)

m ‖2F

+
1

2

M∑
m′ 6=m

‖Sm′m − Γm′ΠΓ>m‖2F

+
1

2

M∑
m′>m
m′′>m′

‖T(1)
mm′m′′ − (Γm′′ � Γm′)ΠΓ>m‖2F

T
(1)
mm′m′′ = [vec(T (1, :, :)), . . . , vec(T (K, :, :))], Γ

(prev)
m denotes the estimate of Γm obtained

by the previous solution of (3.27), ν is a positive scalar, and we have used (3.6). Here, gN,m
contains all the terms of hN that involve Γm with the additional term (ν/2)‖Γm − Γ

(prev)
m ‖2F ,

which ensures convergence of the AO-ADMM iterations.

Detailed derivations of the ADMM iterations for solving (3.27) and (3.26) are provided in

Appendix D, while the AO-ADMM is summarized in Alg. 3.1. The computational complexity

of the entire AO-ADMM scheme is approximately O(ITM
3K4), where IT is the number of

required iterations until convergence (see Appendix D.3). The entire unsupervised ensemble

classification procedure is listed in Alg. 3.2.
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3.2.5 Convergence and identifiability

Convergence of the entire AO-ADMM scheme for (3.25), follows readily from results in [62, Prop.

1], stated next for our setup.

Proposition 3.1. [62, Prop. 1] Alg. 3.1 for M ≥ 3, and ν > 0 converges to a stationary point

of (3.25).

Having established the convergence of Alg. 3.1 to a stationary point of (3.25) using Prop. 3.1,

the suitability of the estimates provided by Alg. 3.1 for the ensemble classification task needs

to be assessed. As (3.25) involves joint tensor decompositions, under certain conditions the

solutions {Γ̂m}, π̂ of (3.25) will be, similar to the PARAFAC decomposition of Sec. 3.1.2,

essentially unique. Thus, in order to assess the suitability of the estimates provided by Alg. 3.1

the conditions under which the model employed in (3.25) is identifiable have to be established.

Luckily, identifiability claims for the present problem can be easily derived from recent results

in joint PARAFAC factorization [70, 129].

Lemma 3.1. Let {Γ∗m}, π∗ be the optimal solutions of (3.25), and {Γ̂m}, π̂ the estimates

provided by Alg. 3.1. If at least three {Γm}Mm=1 have full column rank, there exists a permutation

matrix P̂ such that

Γ̂mP̂ = Γ∗m, m = 1, . . . ,M, P̂>π̂= π∗.

Lemma 3.1 essentially requires that at least three annotators respond differently to different

classes, that is no two columns of at least three confusion matrices are colinear. Possibly more

relaxed identifiability conditions could be derived using techniques mentioned in [129]. Unlike

the tensor decomposition mentioned in Sec. 3.1.2, here we have no scaling ambiguity on the

confusion matrices or prior probabilities. This is important because there are infinite scalings,

but finite permutation matrices since K is finite. Under As2, P̂ can be easily obtained since the

largest elements of each column of a confusion matrix must lie on the diagonal for the majority

of annotators. Each Γ̂m can be multiplied by a permutation matrix P̂m, such that the largest

elements are located on the diagonal. The final P̂ can be derived as the most commonly occurring

permutation matrix out of {P̂m}Mm=1.

Remark 3.1. While we relied on statistics of annotator responses up to order three, higher-order

statistics can also be employed. Higher-order moments however, will increase the complexity of
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the algorithm, as well as the number of data required to obtain reliable (low-variance) estimates.

Remark 3.2. Estimates of annotator confusion matrices {Γ̂m} and data labels {ŷn}, provided by

Alg. 3.2, can be used to initialize the EM algorithm of Sec. 3.2.2 [31].

Remark 3.3. The orthogonal tensor decomposition used by [66, 162] is a special case of the

PARAFAC decomposition employed in this work.

Remark 3.4. When π is known, (3.26) can be skipped, and correspondingly steps 8 and 9 of

Alg. 3.1.

3.2.6 Reducing complexity

When K and M are large Alg. 3.1 may require long computational time to converge. Our

idea in this case is to split the annotators into L groups, and solve (3.25) for each group.

For simplicity of exposition, consider non-overlapping groups, each with M` ≥ 3 annotators

(
∑L

`=1M` = M ). Let µ(`)
m ,S

(`)
mm′ and T (`)

mm′m′′ denote the sample statistics for annotators in

group `, and {Γ(`)
m }M`

m=1 the confusion matrices in group `.

For each group ` ∈ {1, . . . , L} confusion matrices {Γ̂(`)
m }M`

m=1 and prior probabilities π(`)

are estimated by solving a smaller version of (3.25), namely

min
π(`)

{Γ(`)
m }Mm=1

h
(`)
N ({Γ(`)

m }Mm=1,π
(`)) (3.28)

s.to Γ(`)
m ≥ 0, 1>Γ(`)

m = 1>, m = 1, . . . ,M`

π(`) ≥ 0, 1>π(`) = 1

where

h
(`)
N ({Γm},π) :=

1

2

M∑̀
m=1

‖µ(`)
m − Γmπ‖22

+
1

2

M∑̀
m=1
m′>m

‖S(`)
mm′ − ΓmΠΓ>m′‖2F

+
1

2

M∑
m=1
m′>m
m′′>m′

‖T (`)
mm′m′′ − [[ΓmΠ,Γm′ ,Γm′′ ]]K‖2F .
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Upon solving (3.28) for all L groups, estimates of {Γm}Mm=1 are readily obtained, since

we have assumed non-overlapping groups. A final estimate of the prior probabilities π can be

obtained by averaging the L estimates {π`}L`=1.

As (3.28) incurs a complexity of O(IM3
`K

3), the worst-case complexity of this approach is

O(IMK
3
∑L

`=1M
3
` ), where IM is the largest number of iterations required to converge among

all L groups. Since M3 = (
∑L

`=1M`)
3 >

∑L
`=1M

3
` this approach reduces the computational

and memory overhead significantly compared to Alg. 3.1. Note however, that this method is

expected to perform well when As1 and As2, as well as the conditions outlined in Lemma 3.1

are satisfied for all L groups of annotators, and N is sufficiently large. The effectiveness of this

complexity reduction scheme is tested in Sec. 2.5.

3.2.7 Application to crowdsourcing

While crowdsourced classification is a task related to ensemble classification, it presents addi-

tional challenges. So far it has been implicitly assumed that all annotators provide labels for all

{xn}Nn=1. In the crowdsourcing setup however, an annotator m could provide labels just for a

subset of Nm < N data.

Next, we outline a computationally attractive approach, that takes into account only the

available annotator responses. If an annotator m does not provide a label for a datum, his/her

response is fm(x) = 0 or fm(x) = 0 in vector format. Let Jm(xn) be an indicator function that

takes the value 1 when annotator m provides a label for xn, and 0 when fm(xn) = 0. To account

for such cases, the annotator sample statistics become

µm =
1∑N

n=1 Jm(xn)

N∑
n=1

Jm(xn)fm(xn) (3.29a)

Smm′ =

∑N
n=1 Jm(xn)Jm′(xn)fm(xn)f>m′(xn)∑N

n=1 Jm(xn)Jm′(xn)
(3.29b)

Tmm′m′′ =

∑
n Jm(xn)Jm′(xn)Jm′′(xn)fm(xn) ◦ fm′(xn) ◦ fm′′(xn)∑N

n=1 Jm(xn)Jm′(xn)Jm′′(xn)
. (3.29c)

Upon computing the modified sample statistics of (3.29), we can obtain estimates of the confusion
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matrices and prior probabilities in the crowdsourcing setup, via Alg. 3.1. Finally, the MAP

classifier in (3.24) has to be modified as follows

ŷMAP(x) = arg max
k∈{1,...,K}

log π̂k +

M∑
m=1

Jm(x) log Γ̂m(fm(x), k) (3.30)

to take into account only the available annotator responses for each x.

Having completed the algorithmic aspects of our approach, we proceed with performance

analysis.

3.3 Performance Analysis

In this section, performance of the proposed method will be quantified analytically. First, the

consistency of the estimates provided by Alg. 3.1 as N →∞ will be established, followed by a

performance analysis for the MAP classifier of Sec. 3.2.1.

3.3.1 Consistency of Alg. 3.1 estimates

As N →∞, the sample statistics in (3.21), (3.22), and (3.23) approach their ensemble counter-

parts, and we end up with the following optimization problem for extracting annotator confusion

matrices and prior probabilities

min
π

{Γm}Mm=1

h∞({Γm}Mm=1,π) (3.31)

s.to Γm ∈ C, m = 1, . . . ,M, π ∈ Cp.

Clearly, the optimal solutions to (3.31) are the true confusion matrices and prior probabilities.

As N increases, it is desirable to show that the solutions obtained from Alg. 3.1 converge to the

true confusion matrices and prior probabilities. To this end, techniques from statistical learning

theory and stochastic optimization will be employed [123, 142]. Specifically, we will establish

the uniform convergence of hN to h∞, which implies the consistency of the solutions. Define the

distance between two setsA,B ⊆ R
q, for some q > 0, asD(A,B) = supx∈A{infy∈B ‖x−y‖2}.

The following theorem shows that as N increases, the solutions of (3.25) approach those of

(3.31).
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Theorem 3.1. If S∗ and SN denote the sets of solutions of problems (3.31) and (3.25), respec-

tively, then D(SN ,S∗)→ 0, as N →∞ almost surely.

Under As2 and the conditions outlined in Lemma 3.1, Alg. 3.1 can recover the true solutions of

(3.25) or (3.31). Then, by Thm. 3.1 we know that as N →∞ the solutions of (3.25) converge

to the solutions of (3.31), which together with the result of Lemma 3.1 implies the statistical

consistency of the solutions of Alg. 3.1. As a result, the estimates {Γ̂m}Mm=1, and π̂ from Alg. 3.1

will converge to their true values w.p. 1 as N →∞.

3.3.2 MAP classifier performance

With consistency of the confusion matrix and prior probability estimates established, the perfor-

mance of the final component of the proposed algorithm has to be studied. The behavior of the

MAP classifier of Sec. 3.2.1 can be quantified in terms of its average probability of error

Pe =
K∑
k=1

Pr(ŷMAP = k′ 6= k|Y = k) Pr(Y = k)

Here, a well-known asymptotic result for distributed binary detection under the MAP detec-

tor [141] is extended to the multiclass case.

Theorem 3.2. Under As1, and given {Γm}Mm=1 and π, there exist constants α > 0, β > 0 such

that the MAP classifier of Sec. 3.2.1 satisfies

Pe ≤ αe−βM .

In words, Theorem 3.2 suggests that when accurate estimates of {Γm}Mm=1 and π are

available, the error rate decreases at an exponential rate with the number of annotators M .

In order to validate our theoretical results and evaluate the performance of the proposed

scheme, the following section 3.4 presents numerical tests with synthetic and real data.
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3.4 Numerical Tests

For K ≥ 2, Alg. 3.2, using both MAP and ML criteria in step 3, (denoted as Alg. 3.2 MAP

and Alg. 3.2 ML respectively) is compared to majority voting, the algorithm of [71] (denoted as

KOS), and the EM algorithm initialized both with majority voting and with the spectral method

of [162] (denoted as EM + MV and EM + Spectral, respectively). For K = 2, Alg. 3.2 is also

compared to the binary ensemble learning methods of [65], [16] and [30], denoted as SML,

TE and EigenRatio, respectively. For synthetic data, the performance of “oracle” estimators,

that is MAP/ML classifiers with true confusion matrices of the annotators, and the true class

priors, is also evaluated for benchmarking purposes. The metric utilized in all experiments is the

classification error rate (ER), defined as the percentage of misclassified data,

ER =
# of misclassified data

N
× 100%,

where ER = 100% indicates that all N data have been misclassified, and ER = 0% indicates

perfect classification accuracy. For synthetic data, the average confusion matrix and prior

probability estimation error is also evaluated

ε̄CM :=
1

M

M∑
m=1

‖Γm − Γ̂m‖1
‖Γm‖1

=
1

M

M∑
m=1

‖Γm − Γ̂m‖1

ε̄π := ‖π − π̂‖1.

All results represent averages over 10 independent Monte Carlo runs, using MATLAB [94]. In

all experiments, the parameters λ and ν of Alg. 3.1 are set as suggested in [62, 117]. Vertical

lines in some figures indicate standard deviation. For some experiments, classification times (in

seconds) required by the ensemble algorithms are also reported. Note that classification times

for majority voting and oracle estimators are not reported as the time required by these methods

is negligible compared to the rest of the algorithms.

3.4.1 Synthetic data

For the synthetic data tests, N ground-truth labels {yn}Nn=1, each corresponding to one out

of K possible classes, were generated i.i.d. at random according to π, that is yn ∼ π, for

n = 1, . . . , N . Afterwards, {Γm}Mm=1 were generated at random, such that Γm ∈ C, for all
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m = 1, . . . ,M , and annotators are better than random, as per As2. Then annotators’ responses

were generated as follows: if yn = k, then the response of annotator m will be generated

randomly according to the k-th column of its confusion matrix, γm,k [cf. Sec. 3.1], that is

fm(xn) ∼ γm,k.

Tab. 3.1 lists the classification ER of different algorithms, for a synthetic dataset with K = 2

classes with prior probabilities π = [0.9003, 0.0997]>, and M = 10 annotators. Tab. 3.2 lists

the results for a similar experiment, with K = 2 classes, priors π = [0.5856, 0.4144]>, and

M = 10 annotators, while Tab. 3.3 shows the clustering time required by all algorithms. Note

that when the class probabilities are similar, the ML and MAP classifiers perform comparably as

expected. Furthermore, majority voting gives good results for a reduced number of instances N .

Fig. 3.3 depicts the average estimation errors for the confusion matrices and prior probabilities in

the two aforementioned experiments. Clearly, as N increases, the proposed classifiers approach

the performance of the oracle ones, and as suggested by Thm. 3.1, the estimation error for the

confusion matrices and prior probabilities approaches 0.

The next synthetic data experiment investigates how the proposed method performs when

presented with multiclass data. Furthermore, to showcase that accurate estimation of π

is beneficial, we also compare against Alg. 3.2 with π fixed to the uniform distribution, i.e.

π = 1/K (denoted as Alg. 3.2 - fixed π.) Fig. 3.4 shows the simulation results for a synthetic

dataset with K = 5 classes, prior probabilities π = [0.2404, 0.2679, 0.0731, 0.1950, 0.2236]>,

and M = 10 annotators, while Fig. 3.5 shows the simulation results for a synthetic dataset

with K = 7 classes, priors π = [0.2347, 0.0230, 0.0705, 0.1477, 0.2659, 0.0043, 0.2539]> and

M = 10 annotators. Tabs. 3.4 and 3.5 show classification times for the K = 5 and K = 7

experiments, respectively. Fig. 3.6 shows the average estimation errors for the confusion matrices

and prior probabilities in the two aforementioned multiclass experiments. Note that for K = 5

for small values of N and K = 7 the EM+Spectral approach of [162] suffers from numerical

issues during the tensor whitening procedure, which explains its worst classification ER and slow

runtimes. Here, the proposed approaches exhibit similar behavior to the binary case, as expected

from Thm. 3.1; as the number of data increases, their performance approaches the clairvoyant

“oracle” estimators, and the estimation accuracy of the confusion matrices and prior probabilities

increases. In addition, our methods outperform the competing alternatives for almost all values

of N . Here we also see that running Alg. 3.2 with fixed π = 1/K produces lower quality

estimates than Alg. 3.2 that solves for π. Specifically, Alg. 3.2 with fixed π performs similarly
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to the EM algorithm when initialized with majority voting.

Next, we evaluate how the number of annotators M affects the classification ER, for fixed

N = 106. Fig. 3.7 depicts an experiment forK = 3 classes with priorsπ = [0.2318, 0.4713, 0.2969]>,

while Fig. 3.8 shows an experiment forK = 5 classes with priorsπ = [0.3596, 0.1553, 0.1229, 0.3258, 0.0364]>.

Tabs. 3.6 and 3.7 list classification times for the K = 3 and K = 5 experiments, respectively.

Fig. 3.9 plots the results of an experiment with K = 5 classes with the same priors as those

in Fig. 3.8 and N = 5, 000 data, for varying number of annotators. The average estimation

error for the confusion matrices and prior probabilities, for the aforementioned tests, is shown in

Fig. 3.10. As expected from Thm. 3.2, the classification ER decreases as the number of anno-

tators increase, for all methods considered. In addition, our proposed algorithm outperforms

the competing alternatives for all values of M . Furthermore, the results of Fig. 3.9 indicate

that when the number of data is small, increasing the number of annotators provides a boost to

the classification performance. Fig. 3.10 shows another interesting feature: as the number of

annotators increases the estimation accuracy of {Γm} and π also increases.

The following experiment evaluates the effectiveness of the complexity reduction scheme

of Sec. 3.2.6, for a dataset with M = 30 annotators with K = 3 classes with priors π =

[0.3096, 0.3416, 0.3488]>, and a varying number of data N . Annotators are split into L =

{1, 2, 4, 5} non-overlapping groups. Fig. 3.11 shows the classifcation ER and time (in seconds)

required for the ensemble classification task, for different group sizes. When N is large we

observe similar ER for all L, however larger number of groups require significantly less time

than L = 1.

In all aforementioned experiments, all annotators were generated to be better than random.

The next experiment, investigates the effect of adversarial annotators, that is annotators for

who the largest values of the confusion matrix are not located on its diagonal. Let α denote

the percentage of adversarial annotators. Fig. 3.12 shows the classification ER on a synthetic

dataset with K = 3, N = 106, π = [0.31, 0.34, 0.35]> and M = 10 annotators, for varying α.

While all approaches, with the exception of majority voting, seem to be robust to a small number

of adversarial annotators, Alg. 3.2 can handle values of α of up to 50%, which speaks for the

potential of the novel approach in adversarial learning setups [15, 26].



56

Algorithm N = 100 N = 1000 N = 104 N = 105

Majority Voting 6.3 7.08 7.04 7.13

KOS 27.70 33.33 32.21 32.53

EigenRatio 6.30 5.75 5.69 5.64

TE 4.20 4.91 4.61 4.67

SML 15.80 11.38 11.82 12.26

EM + MV 21.2 27.67 26.50 27.01

EM + Spectral 17.7 27.72 26.50 27.01

Alg. 3.2 ML 6.30 2.70 1.97 1.87

Alg. 3.2 MAP 2.40 1.40 1.13 1.11

Oracle ML 1.6 2.05 1.81 1.86

Oracle MAP 1.1 1.31 1.11 1.11

Table 3.1: Classification ER for a synthetic dataset with K = 2, prior probabilities π =
[0.9003, 0.0997]> and M = 10 annotators.

3.4.2 Real data

Further tests were conducted using real datasets. In this case, in addition to other ensemble

learning algorithms, the proposed methods are also compared to the single best annotator, that is

the classifier that exhibited the highest accuracy. For all experiments, a collection of M = 15

classification algorithms from MATLAB’s machine learning toolbox were trained, each on a

different randomly selected subset of the dataset. Afterwards, the algorithms provided labels

for all data in each dataset. The classification algorithms considered were k-nearest neighbor

classifiers, for varying number of neighbors k and different distance measures; support vector

machine classifiers, utilizing different kernels; and decision trees with varying depth. The

real datasets considered are the MNIST dataset [78], and 5 UCI datasets [83]: the CoverType

database, the PokerHand dataset, the Connect-4 dataset, the Magic dataset and the Dota 2 dataset.

MNIST contains N = 70, 000 28× 28 images of handwritten digits, each belonging to one of

K = 10 classes (one per digit). For this dataset, each classification algorithm was trained on

subsets of 2, 000 instances. The CoverType dataset consists of N = 581, 012 data belonging to

K = 7 classes. Each cluster corresponds to a different forest cover type. Data are vectors of

dimension D = 54 that contain cartographic variables, such as soil type, elevation, hillshade etc.

Here, each classification algorithm was trained on a subset of 1, 000 instances. The PokerHand

database contains N = 106 data belonging to K = 10 classes. Each datum is a 5-card hand
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Algorithm N = 100 N = 1000 N = 104 N = 105

Majority Voting 8.10 8.27 8.27 8.19

KOS 8.30 6.46 6.65 6.58

EigenRatio 7.40 6.35 6.39 6.21

TE 10.20 6.04 6.35 6.20

SML 13.10 8.47 4.66 4.61

EM + MV 6.60 5.15 4.93 4.87

EM + Spectral 6.60 5.15 4.93 4.87

Alg. 3.2 ML 6.50 4.86 4.66 4.61

Alg. 3.2 MAP 6.20 4.85 4.59 4.51

Oracle ML 4.10 4.86 4.66 4.61

Oracle MAP 3.90 4.81 4.58 4.50

Table 3.2: Classification ER for a synthetic dataset with K = 2, prior probabilities π =
[0.5856, 0.4144]> and M = 10 annotators.

drawn from a deck of 52 cards, with each card being described by its rank and suit (spades,

hearts, diamonds, and clubs). Each class represents a valid Poker hand. For this experiment the 3

most prevalent classes are considered. Here, each classification algorithm was trained on a subset

of 10, 000 instances. Connect-4 contains N = 67, 557 vectors of size 42× 1, each representing

the possible positions in a connect-4 game. These vectors belong to one of K = 3 classes,

indicating whether the first player is in a position to win, lose, or, tie the game. Here, each

classification algorithm was trained on a subset of 300 instances. The Magic dataset contains

N = 19, 020 data captured by ground-based atmospheric Cherenkov gamma-ray detector. The

Algorithm N = 100 N = 1000 N = 104 N = 105

KOS 0.013 0.004 0.005 0.05

EigenRatio 0.003 0.002 0.005 0.03

TE 0.003 0.001 0.012 0.10

SML 0.04 0.09 0.76 11.98

EM + MV 0.01 0.02 0.12 1.47

EM + Spectral 1.48 1.55 1.58 3.00

Alg. 3.2 1.82 2.32 2.05 3.01

Table 3.3: Classification time (in seconds) for a synthetic dataset with K = 2, prior probabilities
π = [0.5856, 0.4144]> and M = 10 annotators.
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Figure 3.3: Average estimation errors of confusion matrices (top); and prior probabilities
(bottom), for two synthetic datasets with K = 2 and M = 10 annotators

dataset contains K = 2 classes, each indicating the presence or abscence of Gamma rays. For

this dataset, each classification algorithm was trained on subsets of 100 instances. The Dota 2

dataset contains N = 102, 944 data, corresponding to different Dota 2 games played, between

two teams of 5 players. The dataset is split into K = 2 classes, corresponding to the team that

won the game. Each datum consists of the starting parameters of each game, such as the game

type (ranked or amateur) and which heroes were chosen from the players. Finally, for this dataset,

each classification algorithm was trained on subsets of 5, 000 instances.

Table 3.8 lists classification ER results for the real data experiments. For most datasets, the

proposed approaches outperform the competing alternatives, as well as the single-best classifier.

For the MNIST dataset the EM methods of [162] outperform our approaches. Nevertheless,

Alg. 3.1 comes very close to the performance of the EM schemes and if the confusion matrix

estimates {Γ̂m}Mm=1 of Alg. 3.2 are refined using EM, we also reach a classification ER of

6.23%.
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Figure 3.4: Classification ER for a synthetic dataset with K = 5 classes, priors π =
[0.2404, 0.2679, 0.0731, 0.1950, 0.2236]> and M = 10 annotators.
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Figure 3.5: Classification ER for a synthetic dataset with K = 7 classes, priors π =
[0.2347, 0.0230, 0.0705, 0.1477, 0.2659, 0.0043, 0.2539]> and M = 10 annotators.

3.4.3 Crowdsourcing data

In this section, the proposed scheme of Sec. 3.2.7 is evaluated on crowdsourcing data. The

datasets considered are the Adult dataset [125], the TREC dataset [22] and the Bird dataset [150].

In most datasets, only a small set of ground-truth labels was available, and the performance of

each method was evaluated on this set.

For the Adult dataset, annotators were tasked with classifying N = 11, 028 websites into

K = 4 different classes, using Amazon’s Mechanical Turk [75]. The 4 classes correspond to

different levels of adult content of a website. To maintain reasonable computational complexity,

we only considered annotators that had given labels for all 4 classes and provided labels for more

than 370 websites.
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Figure 3.6: Average estimation errors of confusion matrices (top); and prior probabilities (bottom)
for two synthetic datasets with K = 5 and K = 7 classes and M = 10 annotators

For the TREC dataset, annotators from Amazon’s Mechanical Turk [75] were tasked with

classifying N = 19, 033 websites into K = 2 classes: “relevant” or “irrelevant” to some search

queries. Again, to maintain reasonable computational complexity for our approach, we only

considered annotators that had given labels for both classes and provided labels for more than

708 websites.

For the bird dataset, annotators from Amazon’s Mechanical Turk were tasked with classifying

N = 108 images of birds into K = 2 classes: “Indigo Bunting” or “Blue Grosbeak”.

Table 3.9 lists classification ER for the two crowdsourcing experiments. The column “Labels”

denotes the number of ground-truth labels available. As with the previous experiments, our

approach exhibits lower classification ER than the competing alternatives, in both multiclass and

binary classification settings.
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Algorithm N = 1000 N = 104 N = 105 N = 106

KOS 0.016 0.02 0.17 2.03

EM + MV 0.04 0.27 3.43 37.27

EM + Spectral 119.35 124.94 119.35 160.54

Alg. 3.2 28.27 40.23 36.08 47.17

Alg. 3.2 fixed π 13.34 6.23 6.11 18.16

Table 3.4: Classification time (in seconds) for a synthetic dataset with K = 5 classes, priors
π = [0.2404, 0.2679, 0.0731, 0.1950, 0.2236]> and M = 10 annotators.

Algorithm N = 1000 N = 104 N = 105 N = 106

KOS 0.017 0.025 0.23 2.83

EM + MV 0.05 0.30 4.80 48.87

EM + Spectral 619.61 616.47 621.30 676.95

Alg. 3.2 46.19 52.66 54.50 69.99

Alg. 3.2 fixed π 34.94 38.88 39.11 40.17

Table 3.5: Classification time (in seconds) for a synthetic dataset with K = 7 classes, priors
π = [0.2347, 0.0230, 0.0705, 0.1477, 0.2659, 0.0043, 0.2539]> and M = 10 annotators.

3.5 Conclusions

This chapter introduced a novel approach to blind ensemble and crowdsourced classification that

relies solely on annotator responses to assess their quality and combine their answers. Compact

expressions of annotator moments, based on PARAFAC tensor decompositions were derived,

and a novel moment matching scheme was developed using AO-ADMM. The performance of

the novel algorithm was evaluated on real and synthetic data.

Algorithm M = 5 M = 10 M = 20 M = 30

KOS 0.44 0.96 4.13 5.29

EM + MV 11.48 21.67 41.88 62.19

EM + Spectral 21.92 32.77 53.88 75.24

Alg. 3.2 4.85 15.43 83.73 271.71

Table 3.6: Classification time (in seconds) for a synthetic dataset with K = 3 classes, priors
π = [0.2318, 0.4713, 0.2969]> and N = 106 data.
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Figure 3.7: Classification ER for a synthetic dataset with K = 3 classes, priors π =
[0.2318, 0.4713, 0.2969]> and N = 106 data.
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Figure 3.8: Classification ER for a synthetic dataset with K = 5 classes, priors π =
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Algorithm M = 5 M = 10 M = 20 M = 30

KOS 0.85 1.90 8.99 11.11

EM + MV 18.47 34.68 67.14 99.82

EM + Spectral 136.30 153.35 186.99 221.50

Alg. 3.2 12.92 28.89 150.33 471.22

Table 3.7: Classification time (in seconds) for a synthetic dataset with K = 5 classes, priors
π = [0.3596, 0.1553, 0.1229, 0.3258, 0.0364]> and N = 106 data.
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Chapter 4

Blind Ensemble Classification for
Dependent Data

While the assumption that data are iid is convenient and often leads to elegant algorithms, in

many cases it is violated. Examples of such cases are data that form a sequence, e.g. data

arising from natural language processing tasks, or graph data such as citation networks. The

present chapter builds upon the algorithms and results of the previous chapter and shows how

information regarding data dependencies can be incorporated in the blind ensemble classification

task and enhance its performance.

4.1 Prior work

Most works have attacked the blind ensemble classification problem under the assumption that

data are independent and identically distributed (i.i.d.), see Chap. 3.1.1. Recent works advocate

blind ensemble approaches for sequential data. [119] proposed a method for aggregating annotator

labels for sequential data using conditional random fields (CRFs). However, this method operates

under strong and possibly unrealistic assumptions, such as the assumption that only one annotator

provides the correct label for each datum. Relaxing the assumptions of [119], [99] extended

the standard hidden markov model (HMM) to incorporate annotator responses, and employs

a variational EM [9] algorithm to aggregate them. As both aforementioned methods require

tuning of hyperparameters, a cross-validation step is necessary, which might be unrealistic in

unsupervised settings.

67
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Regarding networked data, recent works have employed Gaussian Processes to classify the

data based on annotator responses [120, 121, 154]. In addition to requiring the data features

at the meta-learner, these methods need extensive training and as such are not suited for an

unsupervised setting.

The present work puts forth two novel schemes for blind ensemble learning of dependent

data. For sequential data, the proposed scheme presumes data are drawn from a hidden markov

model (HMM) and employs decoupling and moment-matching to enable the assessment of

annotator reliability and judiciously fuse their responses, in a two-step approach. In addition,

an EM algorithm is developed. For networked data, the proposed scheme presumes data are

drawn from a hidden markov random field (HMRF.) The dependencies are captured through

a graph, and an EM algorithm is developed to infer annotator reliability and data labels. Our

novel approaches do not require the tuning of hyperparameters, making them suitable for truly

unsupervised settings, and the presence of dependencies between data markedly extends the

scope of our previous work in Chap. 3. The following two sections of this chapter will introduce

our approaches for ensemble classification with sequential and networked data. Throughout this

chapter we assume that As1 and As2 from Chap. 3 hold.

4.2 Blind Ensemble Classification of Sequential Data

Suppose now, that for our dataset, it is known that the data are sequential, i.e., the n-th datum

depends on the n − 1-st datum. In order to take advantage of this fact, we will encode this

knowledge in the marginal pmf of data labels Pr(y). Specifically, the sequence of labels {yn}Nn=1

forms a one-step time-homogeneous Markov chain; that is, variable yn depends only on its

immediate predecessor yn−1. This Markov chain is characterized by a K ×K transition matrix

T, whose (k, k′)-th entry is given by

[T]kk′ = T (k, k′) = Pr(yn = k|yn−1 = k′).

Matrix T has non-negative entries that satisfy the simplex constraint; hence, T ∈ C. Then the

marginal probability of {yn}Nn=1 can be written as

Pr (y = k) = Pr(y1 = k1)
N∏
n=2

T (kn, kn−1) (4.1)
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. . . yn−1

f2(xn−1)f1(xn−1) fM (xn−1). . . f1(xn) f2(xn) fM (xn). . .

yn . . .

Figure 4.1: Graphical representation of the proposed model for sequential data. Shaded ellipses
indicate observed variables, i.e. annotator responses.

where k := [k1, . . . , kN ]>. Accordingly, the data {xn}Nn=1 depend only on their corresponding

yn, and are generated from an unknown conditional pdf as xn ∼ Pr(xn|yn = kn). The data

pairs {(xn, yn)}Nn=1 form a hidden markov model (HMM), where the labels {yn}Nn=1 correspond

to the hidden variables of the HMM, while {xn}Nn=1 correspond to the observed variables of the

HMM.

As with the i.i.d. case of Chap. 3, M annotators observe {xn}Nn=1, and provide estimates of

their labels fm(xn). Under As1, the responses of different annotators per datum are conditionally

independent, given the ground-truth label yn of the same datum xn; that is

Pr (f1(xn) = k1, . . . , fM (xn) = kM |yn = k)

=

M∏
m=1

Pr (fm(xn) = km|yn = k) for n = 1, . . . , N. (4.2)

A graphical representation of this model is provided in Fig. 4.1. At this point, we require an

additional assumption.

As3. The Markov chain formed by the labels {yn} has a unique stationary distribution π :=

[π1, . . . , πK ]> = [Pr(Y = 1), . . . ,Pr(Y = K)]>, and is also irreducible.

As3 here will lead to our two-step moment matching algorithm.

Building on the aforementioned model, we will now present our novel moment-matching

approach to blind ensemble learning for classifying sequential data. Similar to [76], our method

decouples the problem of learning the parameters of interest in two steps. First, estimates of the

confusion matrices {Γ̂m}Mm=1 and stationary distribution π̂ are obtained; and subsequently, the

transition matrix is estimated as T̂ before obtaining an estimate of the labels {ŷn}Nn=1.
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4.2.1 Label estimation

Given only annotator responses for all data in a sequence, an approach to estimating the labels of

each datum, meaning the hidden variables of the HMM, is to find the sequence k that maximizes

the joint probability of the labels y and the annotator responses F, namely

Pr (y = k,F) = Pr(y1 = k1)

N∏
n=2

T (kn, kn−1)

M∏
m=1

Γm(fm(xn), kn) (4.3)

where the equality is due to (4.1) and (4.2). This can be done efficiently using the Viterbi

algorithm [40,114]. In order to obtain estimates of the labels, {Γm}Mm=1 and T must be available.

The next subsection will show that {Γm}Mm=1 and T can be recovered by the statistics of

annotator responses, using the aforementioned two-step procedure.

4.2.2 Confusion and Transition matrix estimation

Under As3, the HMM is mixing and assuming that y0 is drawn from the stationary distribution

π, the responses of an annotator m can be considered to be generated from a mixture model,

i.e [76].

fm(X) ∼
K∑
k=1

πk Pr(fm(X)|Y = k)

Based on this, for the remainder of this subsection we will treat the labels {yn}Nn=1, as if they

had been drawn i.i.d. from the stationary distribution π, that is yn ∼ π for n = 1, . . . , N . Then,

the procedure presented in Chap. 3 can be readily applied to obtain estimates of the stationary

distribution π̂ and the confusion matrices {Γ̂m}Mm=1.

With estimates of annotator confusion matrices {Γ̂m} and stationary probabilities π̂ at hand,

we turn our attention to the estimation of the transition matrix T. In order to estimate the

transition matrix T of the HMM, consider the crosscorrelation matrix of subsequent vectorized

observations between annotators m and m′, namely R̃mm′ = E[fm(xn)f>m′(xn−1)]. Under the

HMM of Sec. 4.2, R̃mm′ can be written as

R̃mm′ = ΓmTdiag(π)Γ>m′ = ΓmAΓ>m′ (4.4)

where A := Tdiag(π). Letting S̃mm′ denote the sample counterpart of (4.4), and with
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{Γ̂m}Mm=1 available, we can recover T as follows. First, we solve the convex moment-matching

optimization problem

min
A∈CS

M∑
m=1
m′>m

‖S̃mm′ − Γ̂mAΓ̂>m′‖2F (4.5)

where CS is the set of matrices whose entries are positive and sum to 1, namely CS := {X ∈
R
K×K : X ≥ 0,1>X1 = 1}. The constraint is due to the fact that 1>T = 1>, diag(π)1 = π,

and π>1 = 1. Note that (4.5) is a standard constrained convex optimization problem that can be

solved with off-the-shelf tools, such as CVX [54]. Having obtained Â from (4.5), we can then

estimate the transition matrix as

T̂ = Â(diag(π̂))−1. (4.6)

Note here that explicit knowledge of π is not required, as its estimate can be recovered from Â

as follows

π̂ = 1>Â = 1>T̂diag(π̂) = 1>diag(π̂).

The following proposition argues the consistency of the transition matrix estimates T̂.

Proposition 4.1. Given accurate estimates of {Γm},π, the estimate T̂ given by (4.5) and (4.6)

approaches T as N →∞.

Proof. By the LLN S̃mm′ → R̃mm′ as N → ∞ for all m,m′. Since the objective function

of (4.5) is convex, from [142], we have that Â will converge to A = Tdiag(π) as N → ∞.

Finally, as T̂ can be recovered from Â in closed form [cf. (4.6)], the claim of the proposition

follows.

With estimates of {Γ̂m}, π̂ and T̂ at hand, estimates of the labels {yn}Nn=1 can be obtained

using the method described in Sec. 4.2.1. Futhermore, the estimates of {Γ̂m}, π̂ and T̂ can be

used to initialize an EM algorithm (a.k.a. Baum-Welch,) whose details are provided in the next

subsection.

Remark 4.1. While here we employed the algorithm of [134] to estimate annotator confusion

matrices {Γm}, any other blind ensemble classification algorithm, such as [31, 162], can be

utilized.
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Algorithm 4.1 EM for Sequential Data

Input: Annotator responses {fm(xn)}M,N
m=1,n=1, initial estimates T(0), {Γ(0)

m }Mm=1.
Output: Estimates T̂, {Γ̂m}Mm=1.

1: while not converged do
2: Estimate q̂(i+1)

nk and ξ̂(i+1)
n (k, k′) using the forward-backward algorithm (App. E).

3: Estimate {Γ̂(i+1)
m }Mm=1 via (4.10).

4: Estimate T̂(i+1) via (4.9).
5: i← i+ 1
6: end while

Algorithm 4.2 Blind Ensemble Classifier for Sequential Data

Input: Annotator responses {fm(xn)}M,N
m=1,n=1.

Output: Estimates of data labels {ŷn}Nn=1.
1: Estimate π, {Γm}Mm=1 via Alg. 3.1.
2: Estimate T̂ via (4.5) and (4.6).
3: Estimate ŷn using the Viterbi algorithm [cf. Chap. 4.2.1].
4: If needed refine estimates of T̂, {Γ̂m} and {ŷn} using Alg. 4.1.

4.2.3 EM algorithm for sequential data

As with the i.i.d. case of Chap. 3, the EM algorithm of this section seeks to iteratively maximize

the marginal log-likelihood of observed annotator responses. In each iteration, in order to update

the parameters of interest θ = [T,Γ1, . . . ,ΓM ], the following quantities have to be computed:

qnk = Pr(yn = k|F,θ) (4.7)

and

ξn(k, k′) = Pr(yn = k, yn+1 = k′|F,θ) (4.8)

Luckily, due to the causal structure of Pr(y), the aforementioned quantities can be estimated effi-

ciently using the forward-backward algorithm [114], whose details are provided in Appendix E.

At iteration i, after obtaining q(i+1)
nk , ξ

(i+1)
n (k, k′) for k, k′ = 1, . . . ,K and n = 1, . . . , N ,

via the forward-backward algorithm, the transition and confusion matrix estimates can be updated

as follows

[T̂(i+1)]k′k =

∑N−1
n=1 ξ

(i+1)
n (k′, k)∑N−1

n=1 q
(i+1)
nk′

(4.9)
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[Γ̂(i+1)
m ]k′k =

∑N
n=1 q

(i+1)
nk I(fm(xn) = k′)∑K

k′′=1

∑N
n=1 q

(i+1)
nk I(fm(xn) = k′′)

. (4.10)

The EM process for sequential data is summarized in Alg. 4.1, while the entire ensemble

classification process for sequential data is tabulated in Alg. 4.2.

4.3 Blind Ensemble Classification of Networked data

In many cases, additional information pertaining to the data is available in the form of an

undirected graph G(V, E), where V and E denote the vertex (or node) and edge sets of G
respectively. Each node of this graph corresponds to a data point, thus |V| = N , and the edges

encode pairwise relationships between the data. This graph can also be characterized using the

(typically sparse) N ×N adjacency matrix A, whose (n, n′)-th entry [A]nn′ = 1 if there exists

an edge between nodes n and n′ and is 0 otherwise.

As with Sec. 4.2, we will encode data dependence, that is, the pairwise relationships provided

by the graph G, in the marginal pmf of the labels Pr(y). Specifically, we model the labels

{yn}Nn=1 as being drawn from an MRF, and as such we require the following assumption

As4. The conditional pmf of yn, for all n = 1, . . . , N , satisfies the local Markov property

Pr(yn|y−n) = Pr(yn|yNn) (4.11)

where y−n is a vector containing all labels except yn and yNn is a vector containing the labels

of the neighbors of node n.

Under As 4, the joint pmf of all labels can be expressed as

Pr(y) =
1

Z
exp(−U(y)) (4.12)

where Z =
∑
y exp(−U(y)) is the normalization constant, and U(y) is the so-called energy

function. Note that, computing the normalization constant Z, involves all possible configurations
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of y, and thus is intractable for situations involving large numbers of data. By the Hammersley-

Clifford theorem [55] this energy function can be written as

U(y) =
1

2

∑
(n,n′)∈E

V (yn, yn′) (4.13)

where V (yn, yn′) denotes the so-called clique potential of the (n, n′)-th edge. Here, we define

the clique potentials as

V (yn, yn′) =

0 if yn = yn′

δn if yn 6= yn′
, (4.14)

where δn > 0 is some predefined parameter. The local energy at node (datum) n of the graph is

then defined as

Un(yn) =
1

2

∑
n′∈Nn

V (yn, yn′). (4.15)

As with the previous sections, As1 holds, that is, annotator responses are conditionally inde-

pendent given the label Y . Then, we can express the joint probability of the label yn and

corresponding annotator responses {fm(xn)}Mm=1 given the neighborhood yNn of node n as

Pr
(
{fm(xn)}Mm=1, yn = k|yNn = kNn

)
=

M∏
m=1

Γm(fm(xn), k) Pr(yn = k|yNn = kNn)

(4.16)

and accordingly

Pr
(
yn = k|{fm(xn)}Mm=1,yNn = kNn

)
∝

M∏
m=1

Γm(fm(xn), k) Pr(yn = k|yNn = kNn)

= exp

(
−Un(k) +

M∑
m=1

log Γm(fm(xn), k)

)
. (4.17)
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4.3.1 Label estimation in MRFs

Finding ML estimates of the labels ŷ, under the aforementioned model, involves the following

optimization problem

ŷ = arg max
y

Pr(F,y) = arg max
y

Pr(F|y) Pr(y) (4.18)

= arg max
y

1

Z
exp(−U(y)) Pr(F|y). (4.19)

Unfortunately, (4.18) is an intractable problem even for relatively small N , due to the structure

of (4.12), and as such, we will have to rely on approximation techniques to obtain estimates of

the labels.

Popular approximation methods include Gibbs sampling [24] and mean-field approxima-

tions [158]. Here, we opted for an iterative method called Iterated Conditional Modes (ICM),

which has been used successfully in image segmentation [14]. Under the ICM paradigm, per

iteration and given current estimates {Γ̂m}Mm=1, the label for datum n is updated by finding the

k that maximizes its local posterior probability, that is

ỹ(t)
n = arg max

k∈{1,...,K}
Pr
(
yn = k|{fm(xn)}Mm=1, ỹ

(t−1)
Nn

)
= arg min

k∈{1,...,K}
Un(k)−

M∑
m=1

log
(

Γ̂m(fm(xn), k)
)

(4.20)

where the superscript denotes the iteration index, ỹNn denotes the label estimates provided by

the previous ICM iteration, and the second equality is due to (4.17). The optimization in (4.20)

is carried out for n = 1, . . . , N until the values of ỹ have converged or until a maximum number

of iterations Tmax has been reached.

The next subsection puts forth an EM-type algorithm for estimating {ŷn}Nn=1 and {Γ̂m}Mm=1.

4.3.2 EM algorithm for networked data

As with the i.i.d. case of Chap. 3 and the sequential case of Sec. 4.2, the EM algorithm of this

section seeks to iteratively maximize the marginal log-likelihood of observed annotator responses.

Due, however, to the MRF structure of y, the Q-function of the E-step [cf. Chap. 3.2.2], is hard

to compute.
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As such, we have to rely on the approximation technique of the previous subsection to

compute estimates of qnk = Pr(yn = k|{fm(xn)}Mm=1;θ). Specifically, per EM iteration i, let

ŷ(i) := [ŷ
(i)
1 , . . . , ŷ

(i)
N ] denote the estimates obtained by the iterative procedure of Sec. 4.3.1.

Then, estimates q̂(i+1)
nk are obtained as follows [cf. 4.17]

q̂
(i+1)
nk =

1

Z ′
exp

(
−U (i+1)

n (k) +
M∑
m=1

log
(

Γ̂(i)
m (fm(xn), k)

))
(4.21)

where

Z ′ =
∑
k

exp

(
−U (i+1)

n (k) +

M∑
m=1

log
(

Γ̂(i)
m (fm(xn), k)

))

is the normalization constant, and U (i+1)
n (k) is defined using ŷ(i) as

U (i+1)
n (k) =

1

2

∑
n′∈Nn

V (k, ŷ
(i+1)
n′ ). (4.22)

Finally, the M-step, which involves finding estimates of {Γm}Mm=1 is identical to the M-step of

the EM algorithm of Chap. 3.2.2 for i.i.d. data, i.e.

[Γ̂(i+1)
m ]k′k =

∑N
n=1 q̂

(i+1)
nk I(fm(xn) = k′)∑K

k′′=1

∑N
n=1 q̂

(i+1)
nk I(fm(xn) = k′′)

. (4.23)

Similar to the i.i.d. case, the aforementioned EM procedure tries to solve a non-convex

problem. In addition, the ICM method outlined in Sec. 4.3.1 is a deterministic approach that

performs greedy optimization. Therefore, proper initialization is crucial for obtaining accurate

estimates of the labels and annotator confusion matrices.

Similarly to the decoupling approach of Sec. 4.2, here we first obtain estimates of annotator

confusion matrices {Γ̂m}Mm=1 and labels ŷ, using the moment-matching algorithm of Chap. 3.

These values are then provided as initialization to Alg. 4.3. In cases where N is small to have

accurate moment estimates, majority voting can be used instead to initialize Alg. 4.3. The entire

procedure for blind ensemble classification with networked data is tabulated in 4.4.

The next section will evaluate the performance of our proposed schemes.
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Algorithm 4.3 EM algorithm for MRFs

Input: Annotator responses {fm(xn)}M,N
m=1,n=1, initial y(0), {Γ(0)

m }Mm=1, Data graph G(V, E).

Output: Estimates of data labels {ŷn}Nn=1.
1: while not converged do
2: while not converged AND t < Tmax do
3: for n = 1, . . . , N do
4: Update ỹ(t)

n using (4.20).
5: end for
6: t← t+ 1
7: end while
8: Compute q̂(i+1)

nk using (4.21).
9: Compute {Γ̂(i+1)

m }Mm=1 using (4.23).
10: i← i+ 1
11: end while

Algorithm 4.4 Blind Ensemble Classifier for networked data

Input: Annotator responses {fm(xn)}M,N
m=1,n=1, Data graph G(V, E)

Output: Estimates of data labels {ŷn}Nn=1

1: Estimate initial values of {Γm}Mm=1 via Alg. 3.1.
2: Estimate initial values of {ŷn}Nn=1 using (3.24).
3: Refine estimates of {ŷn}Nn=1 and {Γ̂m}Mm=1 using Alg. 4.3.

4.4 Numerical Tests

The performance of the proposed algorithms for both sequential and networked data is evaluated

in this section using synthetic and real datasets. The metric utilized in all experiments is the

F-score, defined as follows

F-score =
1

K

K∑
k=1

2
Precisionk ∗ Recallk
Precisionk + Recallk

(4.24)

where we have defined the per-class Precision and Recall as

Precisionk =
TPk

TPk + FPk
(4.25)

Recallk =
TPk

TPk + FNk
(4.26)
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and the per-class True Positive (TP), False Positive (FP) and False Negative (FN) quantities as

TPk =
N∑
n=1

I(ŷn = k, yn = k) (4.27)

FPk =
N∑
n=1

I(ŷn 6= k, yn = k) (4.28)

FNk =

N∑
n=1

I(ŷn = k, yn 6= k) (4.29)

For synthetic data, the average confusion matrix estimation error is also evaluated

ε̄CM :=
1

M

M∑
m=1

‖Γm − Γ̂m‖1
‖Γm‖1

=
1

M

M∑
m=1

‖Γm − Γ̂m‖1 (4.30)

All results represent averages over 10 independent Monte Carlo runs, using MATLAB [94].

Vertical lines in some figures indicate standard deviation.

4.4.1 Sequential data

For the sequential data case Alg. 4.2 with and without EM refinement (denoted as Alg. 4.2 +

Alg. 4.1 and Alg. 4.2 respectively) is compared to majority voting (denoted as MV), the moment-

matching method of [134] described in Chap. 3 (denoted as MM), Alg. 4.1 initialized with

majority voting (denoted as MV + Alg. 4.1), and ”oracle” classifiers, i.e. a Viterbi classifier

that uses the ground-truth confusion and transition matrices. In addition, for synthetic data, the

transition matrix estimation error ‖T− T̂‖1 is also evaluated.

All datasets in this subsection are split into sequences of data. Here, we assume that per

dataset these sequences have been drawn from the same ensemble HMM [cf. 4.2]. The reported

F-score represents the averaged F-score of each sequence.

Synthetic data

For the synthetic data tests, S sequences of Ns, s = 1, . . . S, ground-truth labels each, were

generated from a Markov chain, whose transition matrix was generated at random such that

T ∈ C. Each of the N =
∑

sNs ground-truth labels {yn}Nn=1 correspond to one out of K
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Figure 4.2: Average F-score for a synthetic dataset with K = 4 and M = 10 annotators

possible classes. Afterwards, {Γm}Mm=1 were generated at random, such that Γm ∈ C, for all

m = 1, . . . ,M , and bM/2c+ 1 annotators are better than random, as per As2. Then annotators’

responses were generated as follows: if yn = k, then the response of annotator m will be

generated randomly according to the k-th column of its confusion matrix, γm,k [cf. Sec. 3.1],

that is fm(xn) ∼ γm,k.

Fig. 4.2 shows the average F-score for a synthetic dataset with K = 4, M = 10 annotators

and varying number of data N . Fig. 4.3 shows the average confusion and transition matrix

estimation errors for varying N . As the number of data N increases the performance of

the proposed methods approaches the performance of the “oracle” one. Accordingly, the

confusion and transition matrix estimates are approaching the true ones as N increases. This

is to be expected, as noted in [134], since the estimated moments are more accurate for large

N . Interestingly, Alg. 4.1 performs well when initialized with majority voting, even though it

reaches a performance plateau as N increases. For small N however, it outperforms the other

proposed methods. This suggests that, when N is small to have accurate moment estimation, it

is preferred to initialize Alg. 4.1 with majority voting.

The next experiment evaluates the influence of the number of annotatorsM for the sequential

classification task. Figs. 4.4 and 4.5 showcase results for an experiment with K = 4, fixed

number of data N = 103 and varying number of annotators M . Clearly, the presence of multiple

annotators is beneficial, as the F-score increases for all algorithms, while the confusion and

transition matrix errors decrease. As with the previous experiment, Alg. 4.1 + Alg. 4.2 exhibits

the best performance in terms of F-score, when M increases.
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Figure 4.3: Average estimation errors of confusion matrices and prior probabilities for a synthetic
dataset with K = 4 and M = 10 annotators

Real data

Further tests were conducted on two real datasets, the Part-of-Speech (POS) tagging dataset and

the Biomedical Information Extraction (IE) [99] dataset. For these datasets the moment matching

method of Chap. 3 is used to initialize the EM algorithm of Chap. 3.2.2 and is denoted as DS.

For the POS dataset M = 10 classifiers were trained using NLTK [88] on subsets of the

Brown coprus [41] to provide part-of-speech (POS) tags of text. The number of tags is K = 12.

Then the classifiers provided POS tags for all words in the Penn Treebank corpus [93], which

contains N = 100, 676 words. Results for this dataset are tabulated in Tab. 4.1.

The Biomedical IE dataset consists of 5, 000 medical paper abstracts. M = 91 annotators

were tasked with marking all text spans in a given abstract that identify the population of a

randomized controlled trial. The dataset consists of N = 304, 629 words belonging into K = 2

classes: in a span identifying the population or outside. For this particular dataset we evaluate
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Metric MV DS Alg. 4.2 Alg. 4.1 + Alg. 4.2 MV + Alg. 4.1
Precision 0.22916 0.23406 0.24785 0.25856 0.22972

Recall 0.23518 0.25629 0.24396 0.26638 0.24497

F-score 0.22598 0.22264 0.23352 0.24735 0.23007

Table 4.1: Results for the POS dataset with N = 100, 676, M = 10 and K = 12.

Precision and Recall per sequence in the following way, which was suggested in [99]

Precision =
# true positive words

# words in a predicted span

Recall =
# words in a predicted span

# words in ground-truth span

Results for this dataset are listed in Tab. 4.2. It can be seen that while majority voting achieves

the best precision of all algorithms, due to its low recall, the overall F-score is low. However,

Alg. 4.1 + Alg. 4.2 outperforms competing alternatives with regards to recall and F-score.

Metric MV DS Alg. 4.2 Alg. 4.1 + Alg. 4.2 MV + Alg. 4.1
Precision 1 0.8344 0.8334 0.8750 0.8334

Recall 0.5575 0.6 0.6 0.8 0.6

F-score 0.7159 0.6980 0.6977 0.8358 0.6977

Table 4.2: Results for the Biomedical IE dataset with N = 304, 629, M = 91 and K = 2.
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Figure 4.5: Average estimation errors of confusion matrices and prior probabilities for a synthetic
dataset with K = 2 and π = [0.9003, 0.0997]> and M = 10 annotators

4.4.2 Networked data

For the networked data case Alg. 4.4 (denoted as Alg. 4.4) is compared to majority voting

(denoted as MV), the Dawid and Skene model that assumes i.i.d. data described in Chap. 3

that uses moment-matching [134] as initialization (denoted as DS) and Alg. 4.4 initialized with

majority voting (denoted as MV + Alg. 4.3).

The tests were conducted on five real datasets. For the Cora, Citeseer [91] and Pubmed [97]

datasets the graph G and data features {xn} are provided with the dataset. In these cases,M = 10

classification algorithms from MATLAB’s machine learning toolbox were trained on different

randomly selected subsets of the datasets. Afterwards, these algorithms provided labels for

all data in the dataset. For these datasets, we set δn = M . For the Music genre and Sentence

Polarity datasets [120] the features {xn} and annotator responses F are provided with the dataset.

In these cases, the graphs were generated from the data features using k-nearest neighbors.
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Dataset K M N MV DS Alg. 4.4 MV + Alg. 4.3

Cora 10 10 2, 708 0.2785 0.4228 0.6412 0.336

CiteSeer 7 10 3, 312 0.4257 0.4449 0.5244 0.5224

Pubmed 3 10 19, 717 0.6968 0.7437 0.7667 0.7595

Music Genre 10 44 700 0.7046 0.4746 0.7649 0.8029

Sen. Polarity 2 203 5, 000 0.8895 0.9129 0.9153 0.9139

Table 4.3: F-score for Real data experiments with Networked data.

For these datasets, δn = Mn/2, where Mn denotes the number of annotators that provided a

response for the n-th datum.

The Cora, CiteSeer and Pubmed datasets are citation networks and the versions used here

are preprocessed by [11]. The Cora dataset consists of N = 2, 708 scientific publications

classified into K = 7 classes. The features {xn} of this dataset are sparse 1, 433-dimensional

vectors and for this dataset each classification algorithm was trained on a random subset of 150

instances. The CiteSeer dataset consists of N = 3, 312 scientific publications classified into one

of K = 6 classes. The features {xn} of this dataset are sparse 3, 703-dimensional vectors, and

each classification algorithm was trained on a subset of 100 instances. The Pubmed dataset is a

citation network that consists of N = 19, 717 scientific publications from the Pubmed database

pertaining to diabetes, classified into one of K = 3 classes. The features {xn} of this dataset

are 500-dimensional vectors, and each classification algorithm was trained on a subset of 300

instances. The Music genre dataset contains N = 700 30-second song samples, belonging into

K = 10 music categories, annotated by M = 44 annotators. The graph for this dataset was

generated using k = 3 nearest neighbors. The sentence polarity dataset contains N = 5, 000

sentences from movie reviews, classified into K = 2 categories (positive or negative), annotated

by M = 203 annotators. The graph for this dataset was generated using k = 1 nearest neighbor.

The results for these datasets are tabulated in Tab. 4.3. In most datasets Alg. 4.4 exhibits the

best performance in terms of F-score followed closely by MV+Alg. 4.3. For the Music Genre

dataset however, MV+Alg. 4.3 outperforms Alg. 4.4. This is to be expected, as N is relatively

small for this dataset and as such the estimated annotator moments are not very accurate, that is

MV outperforms DS.
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4.5 Conclusions

This chapter introduced two novel approaches to blind ensemble and crowdsourced classification

in the presence of data dependencies. Two types of data dependencies were investigated: i)

Sequential data; and ii) networked data, where the dependencies are encoded in a known graph.

The performance of our novel schemes was evaluated on real and synthetic data.



Chapter 5

Summary and Future Directions

Backed by rigorous theoretical and extensive experimental results, the present thesis has intro-

duced novel algorithms that help realize the goal of scalable learning for big data. The following

subsections provide a summary of the work presented in this thesis, as well as possible future

research directions.

5.1 Thesis Summary

In order to accelerate the task of subspace clustering, Chapter 2 aimed at devising high perfor-

mance algorithms that enjoy low computational complexity. To realize this, a random projections

based approach was developed that can handle both high volumes and high dimensionality of

data. The proposed scheme can achieve state-of-the-art performance while requiring markedly

less computational resources, and can be readily parallelized across multiple computing nodes.

A rigorous performance analysis as well as extensive numerical tests on real data corroborated

the potential of the proposed method.

Chapter 3 dealt with unsupervised ensemble classification. In such a setup, which arises

naturally in crowdsourcing and distributed detection, the outputs of multiple, possibly hetero-

geneous algorithms or annotators have to be fused, in the absence of ground-truth labels at

the fusion center/meta-learner. Assuming iid data and conditionally independent annotators an

algorithm based on the PARAFAC structure of annotator moments was developed. Insights into

the performance of the proposed algorithm and the unsupervised ensemble classification task

are provided by a rigorous performance analysis and the proposed algorithm is compared to the

85
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current state-of-the-art with extensive numerical tests on synthetic and real data. In addition, the

effect of adversaries on the unsupervised ensemble classification task was briefly evaluated.

Finally, Chapter 4 builds on the results and algorithms of Chapter 3 to enable blind ensemble

classification for dependent data. Two types of data dependencies were considered here: sequen-

tial data and generally dependent data, whose dependencies are captured by a graph. Expectation

Maximization based approaches were developed for both cases and their performance was

evaluated with extensive numerical tests on real and synthetic data.

5.2 Future Research

The promising results in this thesis open up interesting directions for a number of future research

topics. The following subsections discuss a few of these directions.

5.2.1 Large-scale subspace clustering

Following the success of the results of Chap. 2, it is natural to consider online extensions, along

the lines of [124, 136], that can handle truly massive and streaming data. Several technically

challenging, yet pertinent research directions also emerge.

• Kernel-based nonlinear randomized subspace clustering. While SC thrives when data

lie on a union of subspaces, many datasets might not exhibit that property. In such cases,

the theory of reproducing kernel hilbert spaces (RKHS) [128] and its recent advances

that have rendered it an invaluable tool for nonlinear signal processing and machine

learning. As the solutions to SSC/LRR/LSR and (2.12) rely on inner products, these

algorithms can be readily extended to deal with data where standard SC methods fail.

Specifically, the solutions of SSC/LRR/LSR depend on the matrix K = X>X. Extending

these SC algorithms to the nonlinear case involves using K = φ>(X)φ(X) instead,

where φ is a predetermined nonlinear function applied on each column of X, and thus

the approach outlined in the previous subsection can be readily applied. Performance

of this scheme depends critically on the choice of φ. To alleviate this drawback, multi-

kernel methods [50, 159] can be employed, where the kernel function is selected from

a “dictionary” containing multiple predetermined kernels. In addition, the bottleneck of

large-scale kernel methods is that they require the entire kernel matrix to be instantiated.
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As such, it is of interest investigate whether the generation of the full kernel matrix can be

avoided using recent advances in kernel learning, such as random features [115].

• Randomized clustering for tensor data. Current state-of-the-art approaches to SC, deal

with data that are vectorized. However, many types of data, such as images or video, can

be considered as slabs of a tensor X . By taking advantage of this multilinear relationship

between the data, the performance of the SC task can be enhanced at the price of increased

computational complexity, as was shown in our recent work [137]. Thus, an extension of

the randomized SC scheme presented in this thrust for tensor data is well motivated. Tensor

data clustering methods include multilinear clustering [137] and tensor “self-dictionary”

methods, resembling SSC/LRR/LSR [46]. Subsequently, one can investigate the clustering

performance of the aforementioned tensor based clustering algorithms when the tensor

is compressed randomly, i.e. when its dimensionality is reduced using JLTs. As the

resulting tensor will be smaller in size, the tensor based clustering task will be accelerated

significantly.

• Large-scale randomized learning. The proposed approach may be tailored for large-

scale SC, however, it can fundamentally be applied to any machine learning algorithm that

depends on inner products between data. As such, the scope of the randomized data reduc-

tion approach of Chap. 3 can be broadened to encompass classification/regression/anomaly

detection tasks. To this end, algorithms are suitable for the data reduction scheme outlined

in Chap. 3 have to be identified. The resulting efficient yet accurate methods could be

instrumental in realizing a truly large-scale learning scheme when combined with the

distributed learning paradigm proposed in the next sections, as the computational cost per

node will decrease dramatically.

5.2.2 Learning with Blind Ensembles

The encouraging results of Chapters 3 and 4 prompt us to investigate several exciting research

directions.

• Learning with dependent annotators. In the blind ensemble classification task, in many

cases one cannot assume conditionally independent annotators, as classification algorithms

might be trained on overlapping datasets or in the crowdsourcing case annotators might
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influence each other. Correlations between annotator responses can be employed to detect

dependencies between annotators [64, 133]. Highly correlated annotators can be assigned

to the same “group” or cluster. Assuming that within the same group, annotators make

independent decisions, the proposed algorithm in Chap. 3 can be generalized to estimate

the corresponding confusion matrices.

• Ensemble regression. In addition to classification, it is of interest to develop tools for

blind ensemble regression [34]. The approach put forth in this thrust will have to be

altered to extract continuous distributions from annotator statistics, as gm := Pr(fm(X))

is generally a continuous distribution in the regression setup. To this end, one promising

idea is to consider using kernel density estimation tools [148] alongside the algorithm

described earlier. Kernel density estimators, similar to the histogram and unlike parametric

estimators, make minimal assumptions about the unknown pdf. For data {zi}Ii=1 ∼ g,

drawn from g the kernel density estimator is given by

ĝ(z) =
1

I

I∑
i=1

k(z, zi) (5.1)

where k(z, zi) denotes a predetermined kernel function, typically chosen to be a density.

Naturally, the performance of this density estimator, for finite number of data I , depends

on the choice of k. Typically, kernel choice reflects some prior knowledge on the form

of the pdf that is to be approximated. When such prior information is not available,

multi-kernel [50, 159] approaches, where the pdf is approximated using a dictionary

of appropriately weighted kernel functions, can be employed. Finally, the analytical

performance of this method is worth investigating, using techniques derived from the

previous subsection and tools from kernel density estimation theory.

• Ensemble clustering. While clustering is the blind counterpart of classification, combin-

ing results from multiple clustering algorithms presents additional challenges. In particular,

clustering algorithms generally do not agree in their class labeling; what is referred to as

class ”1” from annotator m, might be class ”2” for annotator m′. This limitation, however,

can be circumvented by considering an alternative representation of class labeling from the

annotators. For each annotator m define an N -node graph Gm, with corresponding adjan-

cency matrix Am. Then let the (i, j)-th entry of Am be [Am]ij = 1, if fm(xi) = fm(xj),
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that is, if annotator m assigned xi and xj to the same cluster, and 0 otherwise. This new

representation does not depend on the particular class labeling of an annotator. Building

on the results of Chaps. 3 and 4 it is of interest to develop a probabilistic scheme similar to

the one outlined for classification. The emerging challenge in this task is to find a proper

decomposition of Pr([Am]ij) into conditional probabilities that characterize annotators.

Upon developing the scheme for unsupervised ensemble clustering it will be interesting to

quantify its performance analytically.

• Semi-supervised ensemble learning. The approach described in Chap. 3 requires no

information at the meta-learner, besides annotator responses. Inclusion of prior information

can be certainly beneficial to the ensemble classification task. Such prior information can

be of the form of ground-truth labels for a few data. In this case, knowledge of the ground-

truth labels allows one to provide initial estimates of the annotator confusion matrices and

class prior probabilities, potentially enabling faster convergence of the algorithm described

in Chap. 3. The proposed research further offers the potential to answer several interesting

questions that arise in this context, regarding the number of required ground-truth labels

and their distribution relative to the number of annotators and the number of classes. Prior

information can also be provided in terms of must- and cannot-link constraints. This type

of information can be encoded in a graph, and the algorithms of Chap. 4 can be readily

employed. While incorporating this prior knowledge is technically more challenging, this

scenario is more realistic: correlations can be derived from the data themselves, or similar

data can be inserted in the dataset. In addition to enhancing the performance of the meta-

learner, this prior information will also enhance the detection of adversarial annotators,

even when they are numerous. Finally, the effect of prior information will be considered on

other ensemble learning tasks such as clustering, regression and dimensionality reduction.

• Adversarial attacks on ensembles and remedies. For this task, it is of interest to in-

vestigate the effect of adversarial annotators in an ensemble learning setup. As most

algorithms require the number of adversarial annotators to be less than M/2, development

and evaluation of adversarial attack strategies is important in this scenario. In particular,

the effect of adversaries on the performance of an ensemble learning scheme, when each

of them acts individually and when they are cooperating, should be investigated along with

adversarial attack techniques against ensembles of learners, and possible remedies. This
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adversarial/ensemble learning can also be modeled as a game between the adversaries, that

want to inhibit the machine learning task, and the meta-learner/fusion center, that seeks

to identify the adversaries and produce reliable results. All in all, it will be exciting to

complement the tools developed with game and information-theoretic analyses.
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Appendix A

Proofs for Chapter 2

A.1 Supporting Lemmata

The following lemmata will be used to assist in the proofs of the propositions and theorems.

Lemma A.1. [122, Corollary 11] Consider an N × k orthonormal matrix V with N ≥ k, and

a JLT(ε, δ, k) matrix R of size N × n. If n = O(k log(k/ε)
ε2

f(δ)), then the following holds w.p.

at least 1− δ
1− ε ≤ σ2

i (V
>R) ≤ 1 + ε for i = 1, . . . , k (A.1)

where σi(V>R) denotes the i-th singular value of V>R.

Lemma A.2. [18, Lemma 8] Let ε > 0, and consider the n× k orthonormal matrix V with

n > k, as well as the n × r matrix R, with r > k satisfying 1 − ε ≤ σ2
i (V

>R) ≤ 1 + ε for

i = 1, . . . , k. It then holds deterministically that

‖(V>R)† − (V>R)>‖2 ≤
ε√

1− ε
. (A.2)

A.2 Main proofs

Proposition 2.1. Let X be a D×N matrix such that rank(X) = ρ, and define the D×n matrix

B := XR, where R is a JLT(ε, δ,D) of size N × n. If n = O(ρ log(ρ/ε)
ε2

f(δ)) then w.p. at least

1− δ, it holds that

range(X) = range(B).
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Proof. Let X = UρΣρV
>
ρ be the SVD of X. Since Vρ is invertible and Σρ is diagonal, it holds

that

range(X) = range(Uρ) (2.3)

i.e., the columns of X can be written as linear combinations of the columns of Uρ and vice versa.

Now consider B = XR = UρΣρV
>
ρ R = UρΣρṼ

>
ρ , where Ṽρ := R>Vρ, which implies

range(B) ⊆ range(Uρ). By Lemma A.1 Ṽ>ρ := V>ρ R is full row rank w.p. at least 1− δ and

thus

B(Ṽ>)† = UρΣρ (2.4)

which implies that range(Uρ) = range(B) = range(X), where the last equality is due to

(2.3).

Proposition 2.2. Let X be a D×N matrix such that rank(X) = ρ, and define the D×n matrix

B := XR, where R is a JLT(ε, δ,D) of size N × n. If n = O(r log(r/ε)
ε2

f(δ)), then w.p. at least

1− 2δ it holds that

‖B(V>r R)† −UrΣr‖F ≤ (ε

√
1 + ε√
1− ε

+ 1 + ε)‖X̄r‖F .

Proof. From the first part of the proof of Prop. 2.1 we have that range(B) ⊆ range(Uρ). Now

consider

B = XR = UrΣrV
>
r R + ŪrΣ̄rV̄

>
r R (2.5)

By Lemma A.1 V>r R is full row rank w.p. at least 1 − δ; thus, right multiplying (2.5) with

(V>r R)† yields B(V>r R)† = UrΣr + ŪrΣ̄rV̄
>
r R(V>r R)†, or

B(V>r R)† −UrΣr = ŪrΣ̄rV̄
>
r R(V>r R)†

which upon substituting X̄r boils down to

B(V>r R)† −UrΣr = X̄rR(V>r R)† − X̄rR(V>r R)> + X̄rR(V>r R)>. (2.6)

Using the triangle inequality, and the spectral submultiplicativity of the Frobenius norm, yields

‖B(V>r R)† −UrΣr‖F = ‖X̄rR
(

(V>r R)† − (V>r R)>
)
‖F + ‖X̄rR(V>r R)>‖F (2.7)
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≤ ‖X̄rR‖F ‖(V>r R)† − (V>r R)>‖2 + ‖X̄rR‖F ‖(V>r R)>‖2.

We have from Def. 2.1 ‖X̄rR‖F ≤
√

1 + ε‖X̄r‖F w.p. at least 1 − δ, while Lemma A.1

ensures ‖(V>r R)>‖2 ≤
√

1 + ε w.p. at least 1 − δ. Since Lemma A.2 also implies that

‖(V>r R)† − (V>r R)>‖2 ≤ ε√
1−ε we arrive at [cf. 2.7]

‖B(V>r R)† −UrΣr‖F ≤ (ε

√
1 + ε√
1− ε

+ 1 + ε)‖X̄r‖F . (2.8)

Theorem 2.1. Consider noise-free and normalized data vectors obeying (2.3) with vi ≡ 0, to

form columns of a D × N data matrix X, with unit `2 norm per column, and rank(X) = ρ.

Let also R denote JLT(ε, δ,D) of size N × n. Let g∗(x) := Xa∗ = x denote the ground-

truth representation of x, and ĝ(x) := XRâ the representation given by Sketch-LSR. If

n = O(r log(r/ε)
ε2

f(δ)), then the following bound holds w.p. at least 1− 2δ

‖g∗(x)− ĝ(x)‖2 ≤ λ (1 +

√
1 + ε

1− ε
√
ρ− r σ2

r+1) +
1√

1− ε

with λ as in (2.12), and σr+1 denotes the (r + 1)st singular value of X.

Proof. The proof will follow the steps in [155]. Consider the Sketch-LSR objective for x,

namely
λ

2
‖x−XRa‖22 + ‖a‖22 (2.9)

and the SVD X = UΣV>. As U is unitary, minimizing (2.9) is equivalent to minimizing

λ

2
‖U>x−ΣṼ>a‖22 + ‖a‖22 (2.10)

where Ṽ> := V>R. Now, decompose the dataset as

X = Xr + X̄r (2.11)
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where Xr := UrΣrV
>
r and X̄r := ŪrΣ̄rV̄

>
r . Using (2.11), we can rewrite (2.10) as

λ

2
‖χr −ΣrṼ

>
r a‖22︸ ︷︷ ︸

:=T 2
1

+
λ

2
‖χ̄r − Σ̄r

¯̃V>r a‖22︸ ︷︷ ︸
:=T 2

2

+ ‖a‖22︸︷︷︸
:=T 2

3

(2.12)

where χr := U>r x, and χ̄r := Ū>r x. Selecting a as

a = Ṽr(Ṽ
>
r Ṽr)

−1Σ−1
r χr

T 2
1 vanishes, and T2 reduces to

T2 = ‖χ̄r − Σ̄r
¯̃V>r Ṽr(Ṽ

>
r Ṽr)

−1Σ−1
r χr‖2. (2.13)

The triangle inequality and the submultiplicativity of the `2 norm, allows us to bound T2 as

T2 ≤ ‖χ̄r‖2 + ‖Σ̄r
¯̃V>r ‖2 ‖Ṽr(Ṽ

>
r Ṽr)

−1‖2‖Σ−1
r χr‖2. (2.14)

Now note that ‖Σ̄r
¯̃V>r ‖2 ≤ ‖Σ̄r

¯̃V>r ‖F = ‖ŪrΣ̄r
¯̃V>r ‖F = ‖X̄rR‖F and recall from Def. 2.1

that ‖X̄rR‖F ≤
√

1 + ε‖X̄r‖F ≤
√

1 + ε
√
ρ− r‖X̄r‖2 ≤

√
1 + ε

√
ρ− r σ2

r+1 w.p. at least

1− δ. By Lemma A.1 Ṽ>r = V>r R is full row rank w.p. at least 1− δ; thus, Ṽr(Ṽ
>
r Ṽr)

−1 =

Ṽ†r, and ‖Ṽ†r‖2 ≤ 1√
1−ε . Furthermore, ‖Σ−1

r χr‖2 = ‖VrΣ
−1
r U>r x‖2 ≤ 1, and ‖χ̄r‖2 =

‖Ū>r x‖2 = 1. Similarly, T3 in (2.12) can be bounded w.p. at least 1− δ due to Lemma A.1 as

T3 = ‖Ṽr(Ṽ
>
r Ṽr)

−1Σ−1
r χr‖2 = ‖Ṽ†rΣ−1

r χr‖2 ≤ ‖Ṽ†r‖2 ‖Σ−1
r χr‖2 ≤

1√
1− ε

(2.15)

Finally, since the chosen a in (2.12) satisfies (2.14) and (2.15), so will do any minimizer â of

(2.9).

Corollary 2.1. Consider the setting of Thm. 2.1, and let ĝ(x) := XRâ be the representation

of a datum given by Sketch-SSC. The following bound holds w.p. at least 1− 2δ

‖g∗(x)− ĝ(x)‖2 ≤ λ (1 +

√
1 + ε

1− ε
√
ρ− r σ2

r+1) +

√
n

1− ε

with λ as in (2.12), and σr+1 denotes the (r + 1)st singular value of X.
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Proof. Consider the Sketch-SSC objective for x, namely

λ

2
‖x−XRa‖22︸ ︷︷ ︸

:=T 2
1

+ ‖a‖1︸︷︷︸
:=T2

. (2.16)

From Thm. 2.1 we have T1 ≤ λ (1 +
√

1+ε
1−ε
√
ρ− r σ2

r+1), and ‖a‖2 ≤ 1√
1−ε . Since for any

n × 1 vector z it holds that ‖z‖1 ≤
√
n‖z‖2, we have T2 ≤

√
n‖a‖2 ≤

√
n

1−ε yielding the

claim of the corollary.

Corollary 2.2. Consider the setting of Thm. 2.1, and let g∗(X) := XZ and ĝ(X) := XRÂ

be the representations of all the data given by LRR and Sketch-LRR respectively. The following
bound holds w.p. at least 1− 2δ

‖g∗(X)− ĝ(X)‖F ≤ λ (
√
N +

√
1 + ε

1− ε
√
ρ− r σ2

r+1) +

√
n

1− ε

with λ as in (2.12), and σr+1 denoting the (r + 1)st singular value of X.

Proof. Consider the Sketch-LRR objective for X, namely

λ

2
‖X−XRA‖2F︸ ︷︷ ︸

:=T 2
1

+ ‖A‖∗︸ ︷︷ ︸
:=T2

. (2.17)

As with Corr. 2.1, T1 can be bounded using the results of Thm. 2.1, and ‖A‖F ≤ 1√
1−ε . Since

for any rank n matrix Z it holds that ‖Z‖∗ ≤
√
n‖Z‖F we have T2 ≤

√
n‖A‖F ≤

√
n

1−ε ,

yielding the claim of the corollary.

Proposition 2.3. Consider xi = Xzi and xj = Xzj , and their representation provided by SSC,

LRR or LSR zi and zj , respectively. Let ρ = rank(X) and ai, aj be the representation obtained

by the corresponding Sketch algorithm of Section 3.2; that is, xi = XRai, where the N × n
matrix R is a JLT(ε, δ,D). If n = O(ρ log(ρ/ε)

ε2
f(δ)), then w.p. at least 1− δ it holds that

1√
1 + ε

‖zi − zj‖2 ≤ ‖ai − aj‖2 ≤
1√

1− ε
‖zi − zj‖2.

Proof. By definition, we have xi = Xzi = XRai, and thus

X(zi − zj) = XR(ai − aj) = xi − xj . (2.18)



112

Let X = UρΣρV
>
ρ , and rewrite (2.18) as

UρΣρV
>
ρ (zi − zj) = UρΣρV

>
ρ R(ai − aj). (2.19)

Left-multiplying by Σ−1
ρ U>ρ reduces (2.19) to

V>ρ (zi − zj) = V>ρ R(ai − aj). (2.20)

Taking the norm of both sides, and noting that V is an orthonormal matrix implies that

‖zi − zj‖2 = ‖R(ai − aj)‖2 (2.21)

which upon recalling Def. 2.1 yields

‖zi − zj‖2 ≤
√

1 + ε‖ai − aj‖2,
√

1− ε‖ai − aj‖2 ≤ ‖zi − zj‖2
(2.22)

w.p. at least 1− δ.



Appendix B

Algorithmic details for Chapter 2

B.1 ADMM algorithm for (2.15)

Consider the Sketch-SSC for a single datum x

min
a

λ

2
‖x−Ba‖22 + ‖a‖1 (B.1)

The optimization problem of (B.1) will be solved using the alternating direction method of

multipliers [49]. Define a new n× 1 vector of auxiliary variables c, and consider the following

optimization problem that is equivalent to (B.1)

min
a,c

λ

2
‖x−Ba‖22 + ‖c‖1 (B.2)

s. to. a = c.

The augmented Lagrangian of (B.2) is

L =
λ

2
‖x−Ba‖22 + ‖c‖1 +

ν

2
‖a− c+ δ‖22 (B.3)

where δ is a n× 1 vector of dual variables and ν > 0 is a penalty parameter. At each ADMM

iteration the variables a, c are updated by setting the gradient of L w.r.t. a and c respectively to

0. Furthermore, the dual variables δ are updated using a gradient ascent step at each iteration.
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Algorithm B.1 ADMM solver of Sketch-SSC [cf. (2.15)]
Input: D ×N data matrix X; D × n basis B; regularization parameter λ;
Output: Model matrix A;

1: for Each datum xj to xN do
2: Initialize aj [0], c[0], δ[0]
3: repeat
4: Compute aj [i+ 1] using (B.4)
5: Compute c[i+ 1] using (B.5)
6: Compute δ[i+ 1] using (B.7)
7: Update iteration counter i← i+ 1
8: until convergence
9: end for

10: A = [a1, . . . ,aN ].

The update of a at the i-th iteration is given by

∂L
∂a

= −λB>(x−Ba) + ν(a− c+ δ) = 0⇒

a[i+ 1] = (λB>B + νI)−1(λB>x+ ν(c[i]− δ[i])) (B.4)

where brackets indicate ADMM iteration indices. Accordingly, the update for c is given by

c[i+ 1] = T1/ν(a[i+ 1] + δ[i]) (B.5)

where Tσ(·) denotes the element-wise soft-thresholding operator

Tσ(z) :=


z − σ if z > σ

0 if |z| ≤ σ

z + σ if z < −σ

. (B.6)

Finally, δ is updated as

δ[i+ 1] = δ[i] + a[i+ 1]− c[i+ 1]. (B.7)

The entire process is listed in Alg. B.1.
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B.2 ALM algorithm for (2.16)

Consider the Sketch-LRR

min
A

λ

2
‖X−BA‖2F + ‖A‖∗ (B.8)

The optimization problem of (B.8) will be solved using the augmented Lagrangian method

(ALM) [84,85]. Define a new n×N matrix of auxiliary variables C, and consider the following

optimization task that is equivalent to (B.8)

min
A,C

λ

2
‖X−BA‖2F + ‖C‖∗ (B.9)

s. to. A = C

The augmented Lagrangian of (B.9) is

L =
λ

2
‖X−BA‖2F + ‖C‖∗ +

ν

2
‖A−C + ∆‖2F (B.10)

where ∆ is a n×N matrix of dual variables and ν > 0 is a penalty parameter. At each ALM

iteration the variables A,C are updated by setting the gradient of L w.r.t. A and C respectively

to 0. Furthermore, the dual variables ∆ are updated using a gradient ascent step per iteration.

The update of A at the i-th iteration is given by

∂L
∂A

= 0⇒ (B.11)

A[i+ 1] = (λB>B + νI)−1(λB>X− ν(C[i]−∆[i]))

where brackets indicate ALM iteration indices. Accordingly, the update for C is given by

C[i+ 1] = arg min
C

1

ν
‖C‖∗ +

1

2
‖C− (A[i+ 1] + ∆[i])‖2F . (B.12)

Note that the update (B.12) can be performed using the Singular Value Thresholding algo-

rithm [23]. Finally ∆ is updated as

∆[i+ 1] = ∆[i] + A[i+ 1]−C[i+ 1] (B.13)
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Algorithm B.2 ALM solver of Sketch-LRR [cf. (2.16)]
Input: D ×N data matrix X; D × n basis B; regularization parameter λ;
Output: Model matrix A;

1: Initialize A,C,∆
2: repeat
3: Compute A[i+ 1] using (B.11)
4: Compute C[i+ 1] using (B.12)
5: Compute δ[i+ 1] using (B.13)
6: Update ν using (B.14)
7: Update iteration counter i← i+ 1
8: until convergence

and the penalty parameter is also updated as

ν = min(pν, νmax) (B.14)

where p > 1 is a prescribed constant, and νmax is a predefined maximum limit for ν.



Appendix C

Proofs for Chapter 3

Proof of Lemma 3.1. Suppose that rank(Γm) = rank(Γm′) = rank(Γm′′) = K, for some

m 6= m′,m′′ and m′ 6= m′′. Then by [126, Thm. 2] the decomposition of Ψmm′m′′ is essentially

unique. Invoking [129, Prop 4.10] the joint tensor decomposition of (3.25) is essentially unique,

meaning the solutions of (3.25) will be of the form

Γ̂m = Γ∗mPΛm, m = 1, . . . ,M, π̂ = ΛP>π∗

where P is a permutation matrix, and {Λm}Mm=1, Λ are diagonal scaling matrices such that

ΛmΛm′Λm′′ = Λ−1, form 6= m′,m′′, m′ 6= m′′. Since {Γ̂m} and π̂ are the solutions to (3.25),

they must satisfy the constraints of the optimization problem; that is Γ̂m ∈ C m = 1, . . . ,M

and π̂ ∈ Cp. Since Γ∗m
>1 = 1 for all m, and P>1 = 1, we have

Γ̂>m1 = 1⇒ ΛmP>Γ∗m
>1 = 1⇒ Λm1 = 1 m = 1, . . . ,M

which implies that Λm = I for m = 1, . . . ,M . Since ΛmΛm′Λm′′ = Λ−1, for m 6= m′,m′′,

m′ 6= m′′, we arrive at Λ = I. Thus, the constraints of (3.25) solve the possible scaling

ambiguities. Letting P̂ = P> = P−1, we arrive at the statement of the lemma.

Proof of Theorem 3.1. For notational convenience, collect all optimization variables in θ, and

denote the aggregated constraint set as C̄. Note that C̄ is a compact set, since the probability

simplex is compact and C̄ is an intersection of simplexes. Since hN (θ) is continuous and C̄ is

compact, hN (θ) is uniformly continuous on C̄, that is, ∀ε > 0 there exists a neighborhood V of
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θ̃ such that

sup
θ∈V∩C̄

|hN (θ)− hN (θ̃)| < ε/2. (C.1)

Due to the compactness of C̄ there exist a finite number of points θ1, . . . ,θL ∈ C̄, with corre-

sponding neighborhoods V1, . . . ,VL that cover C̄, that is

sup
θ∈V`∩C̄

|hN (θ)− hN (θ`)| < ε/2, for ` = 1, . . . , L. (C.2)

Invoking the LLN, it is straightforward to show that, for sufficiently large N , w.p. 1

|hN (θ`)− h∞(θ`)| < ε/2, for ` = 1, . . . , L. (C.3)

Using the triangle inequality along with (C.2), and (C.3) we have

sup
θ∈C̄
|hN (θ)− h∞(θ)| < ε, (C.4)

that is, for sufficiently large N , hN converges uniformly to h∞ on C̄. Then, by [123, Thm. 5.3]

we have that D(SN ,S∗)→ 0 as N →∞.

Proof of Theorem 3.2. Let L̄(x|k) = L(x|k)πk, with L(x|k) as defined in Sec. 3.2.1. Then the

average probability of error of the MAP detector can be expressed as

Pe =

K∑
k=1

Pe,kπk (C.5)

where Pe,k = Pr(L̄(x|k) < L̄(x|k′), k′ 6= k|Y = k). By applying a union bound on Pe,k it is

easy to show that

Pe,k ≤
∑
k′ 6=k

Pr(L̄(x|k) < L̄(x|k′)|Y = k). (C.6)

Defining PL̄(k, k′) := Pr(L̄(x|k) < L̄(x|k′)|Y = k), substituting (C.6) in (C.5) and grouping

terms we have

Pe ≤
K∑
k=1

K∑
k′>k

πkPL̄(k, k′) + πk′PL̄(k′, k). (C.7)
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Consider now the binary hypothesis testing problem between classes k and k′ 6= k. The average

probability of error of a MAP detector for the binary problem is

Pe(k, k
′) =

πk
πk + πk′

PL̄(k, k′) +
πk′

πk + πk′
PL̄(k′, k). (C.8)

Then

πkPL̄(k, k′) + πk′PL̄(k′, k) = (πk + πk′)Pe(k, k
′) ≤ Pe(k, k

′) (C.9)

where the inequality is due to πk + πk′ ≤ 1. Combining (C.9) with (C.7) yields

Pe ≤
K∑
k=1

K∑
k′>k

Pe(k, k
′). (C.10)

Therefore, we have upper bounded the average probability of error of our M -class hypothesis

testing problem by the average error probabilities of binary hypothesis testing problems. For the

binary hypothesis testing problem between classes k and k′ 6= k, collect all annotator responses

in an M × 1 vector f̃ and define two complementary regionsR andRC as

R = {f̃ : L̄(x|k) < L̄(x|k′)} (C.11a)

RC = {f̃ : L̄(x|k′) < L̄(x|k)}. (C.11b)

Upon defining π̃k,k′ = πk
πk+πk′

and using (C.11), (C.8) can be rewritten as

Pe(k, k
′) = Pr(f̃ ∈ R|Y = k)π̃k,k′ + Pr(f̃ ∈ RC |Y = k′)π̃k′,k

=

M∏
m=1

Pr([f̃ ]m ∈ Rm|Y = k)π̃k,k′ +

M∏
m=1

Pr([f̃ ]m ∈ RCm|Y = k′)π̃k′,k (C.12)

where the second equality follows from As. 1 and Rm,RCm denote the subsets of R,RC

corresponding to the m-th entry of f̃ , respectively. Now let

m∗ = arg max
m

Pr([f̃ ]m ∈ Rm|Y = k)M π̃k,k′ + Pr([f̃ ]m ∈ RCm|Y = k′)M π̃k′,k (C.13)
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and define

P̄e(k, k
′) = Pr([f̃ ]m∗ ∈ Rm∗ |Y = k)M π̃k,k′ + Pr([f̃ ]m∗ ∈ RCm∗ |Y = k′)M π̃k′,k. (C.14)

Clearly Pe(k, k
′) ≤ P̄e(k, k

′). From standard results in detection theory (C.14) can be bounded

as [28, 111]

P̄e(k, k
′) ≤ exp(−Md(p||q)) (C.15)

where p := Pr([f̃ ]m∗ ∈ Rm∗ |Y = k), q := Pr([f̃ ]m∗ ∈ RCm∗ |Y = k′), and d(p||q) denotes the

Chernoff information between pdfs p and q. Combining (C.15) with (C.10) yields the claim of

the theorem.



Appendix D

Algorithmic details for Chapter 3

D.1 ADMM subproblem for prior probabilities

Consider the following problem that is equivalent to (3.26)

min
π,φ

gN,π(φ) + ρCp(π) (D.1)

s.to π = φ

where φ is an auxiliary variable used to capture the smooth part of the optimization problem,

and ρCp is an indicator function for the constraints of (3.26), namely

ρCp(u) :=

0 if u ∈ Cp

∞ otherwise.
(D.2)

The augmented Lagrangian of (D.1) is then

` = gN,π(φ) + ρCp(π) +
λ

2
‖π − φ+ δ‖22 (D.3)

where the K × 1 vector δ contains the scaled Lagrange multipliers for subproblem (3.26). Per

ADMM iteration, (D.3) is minimized w.r.t. φ and π before performing a gradient ascent step for

δ. Specifically, the update for φ at iteration i+ 1 is obtained by setting the gradient of ` w.r.t. φ
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to 0, and solving for φ; that is,

(
(λ+ ν)I +

M∑
m=1

Γ>mΓm +
M∑
m=1
m′>m

K>m′mKm′m

+
M∑
m=1
m′>m
m′′>m′

(Γm′′ �Km′m)>(Γm′′ �Km′m)

)
φ[i+ 1]

=
M∑
m=1

Γ>mµm +
M∑
m=1
m′>m

K>m′msmm′ + νπ(prev)

+ λ(π[i] + δ[i]) +
∑
m=1
m′>m
m′′>m′

(Γm′′ �Km′m)>tmm′m′′ , (D.4)

where Kmm′ := Γm � Γm′ . Brackets here indicate ADMM iteration indices. Accordingly, the

update for π is given by

π[i+ 1] = PCp
(
φ[i+ 1]− δ[i]

)
(D.5)

where PCp is the projection operator onto the convex set Cp; that is, φ[i+ 1]− δ[i] is projected

onto the probability simplex. This projection can be performed using efficient methods [35].

Finally, a gradient ascent step is performed for δ as

δ[i+ 1] = δ[i] + π[i+ 1]− φ[i+ 1]. (D.6)

Note that products of the form K>m′mKm′m = (Γm � Γm′)
>(Γm � Γm′) can be efficiently

computed by using the following observation: (Γm�Γm′)
>(Γm�Γm′) = (Γ>mΓm)∗(Γ>m′Γm′),

where ∗ denotes the elementwise matrix product [126]. In addition, the products Γ>mΓm do

not have to be explicitly computed each time (D.1) is solved, as they can be cached every time

(D.7) is solved. As suggested in [62], the maximum number of ADMM iterations, I , for each

subproblem can be set to be small, e.g. I = 10.
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D.2 ADMM subproblem for confusion matrices

Proceeding along similar lines with the previous subsection, consider the following problem

which is equivalent to (3.27)

min
Γm,Φ

ḡN,m(Γm,Φ) (D.7)

s.to Γm = Φ>

where Φ is an auxiliary variable used to capture the smooth part of the optimization problem

in (3.27), and

ḡN,m(Γm,Φ) = gN,m(Φ>) + ρC(Γm).

The augmented Lagrangian of (D.7) is then

`′ = ḡN,m(Γm,Φ) +
λ

2
‖Γm −Φ> + ∆m‖2F (D.8)

where the K ×K matrix ∆m contains the scaled Lagrange multipliers for subproblem (3.27),

and λ is a positive scalar. As in the previous section, per ADMM iteration, (D.8) is minimized

with respect to (w.r.t.) Φ and Γm before performing a gradient ascent step for ∆m. Specifically,

the update for Φ at iteration i + 1 is obtained by setting the gradient of `′ w.r.t. Φ to 0, and

solving for Φ. Since Sm′m = S>mm′ and Π = Π>, it is easy to see that the update w.r.t. Φ can

be expressed as

(
(λ+ ν)I + ππ> +

M∑
m′ 6=m

ΠΓ>m′Γm′Π

+
∑
m′>m
m′′>m′

ΠK>m′′m′Km′′m′Π

)
Φ[i+ 1]

= πµ>m +

M∑
m′ 6=m

ΠΓ>m′Sm′m +
∑
m′>m
m′′>m′

ΠK>m′′m′T
(1)
mm′m′′

+ νΓ(prev)
m

> + λ(Γm[i] + ∆m[i])>. (D.9)
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Accordingly, the update for Γm is given by

Γm[i+ 1] = PC
(
Φ>[i+ 1]−∆m[i]

)
(D.10)

where PC is the projection operator onto the convex set C with each column of Φ>[i+ 1]−∆m[i]

projected onto the probability simplex. Finally, a gradient ascent step is performed per ∆m, as

follows

∆m[i+ 1] = ∆m[i] + Γm[i+ 1]−Φ>[i+ 1]. (D.11)

D.3 Algorithm complexity

For the ADMM subproblems of Apps. D.1 and D.2 the complexity per iteration is dominated by

the matrix inversions required in (D.4) and (D.9) respectively, that is O(K3). However, in order

to instantiate the left- and right-hand sides of (D.4), O(M3K2) and O(M3K4) operations are

required respectively. These operations have to be performed only once and cached to be used in

each iteration. The increased complexity of the right-hand side is due to the matricized tensor

times Khatri-Rao product (MTTKRP) (Γm′′�Km′m)>tmm′m′′ . These MTTKRPs however, can

be computed efficiently due to the Khatri-Rao structure, and are easily parallelizable, see e.g. [7].

This brings the overall complexity of App. D.1 toO(M3K4 +IK3), with I denoting the number

of ADMM iterations. Accordingly, the operations required to instantiate the left- and right-hand

sides of (D.9) are O(M2K2) and O(M2K4) respectively. This brings the total complexity

of App. D.2 to O(M2K4 + IK3). As the number of iterations for the ADMM algorithms

of Apps. D.1 and D.2 is set to be small the overall computational complexity of Alg. 3.1 is

O(ITM
3K4), where IT is the number of AO-ADMM iterations required until convergence.

Furthermore, the number of tensors Tmm′m′′ required to solve (21) is
(
M
3

)
, while the

number of matrices Smm′ required is
(
M
2

)
, and the number of vectors µm is M . Thus, for

K classes, the memory needed for storing all the tensors, matrices and vectors involved is

O
((

M
3

)
K3 +

(
M
2

)
K2 +MK

)
. Finally, computing the cross-correlation tensors, matrices and

mean vectors of annotators incurs a complexity of O(M3KN) as each of the annotator response

matrices {Fm}Mm=1 is of size K ×N and has N nonzero entries.



Appendix E

The forward-backward algorithm

Let bn,k denote the probability of observing {fm(xn)}Mm=1 given that yn = k, that is

bn,k =
M∏
m=1

Pr(fm(xn)|yn = k) =
M∏
m=1

Γm(fm(xn), k). (E.1)

The forward-backward algorithm [114] seeks to efficiently calculate the probability of the

observed variable sequence {fm(xn)}N,Mn=1,m=1, given current HMM parameter estimates θ. The

forward backward algorithm takes advantage of the fact that the past and future states of a

Markov chain are independent given the current state. Specifically in our ensemble HMM case

we can write

Pr(F|θ) =

K∑
k=1

Pr(F1:n, yn = k;θ) Pr(Fn+1:N |yn = k;θ), (E.2)

where F1:n is a matrix collecting all annotator responses for n′ = 1, . . . , n, and Fn+1:N is a

matrix collecting annotator responses for n′ = n+ 1, . . . , N .

The forward backward algorithm computes the probability of the observed sequence itera-

tively using so-called forward and backward variables. Define the forward variable as

αn,k = Pr(F1:n, yn = k;θ) (E.3)

Then let

α1,k = Pr(y1 = k)b1,k for k = 1, . . . ,K. (E.4)
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and for n = 1, . . . , N

αn+1,k = bn+1,k

K∑
k′=1

αn,k′T (k, k′) (E.5)

The backward variables are defined as

βn,k = Pr(Fn+1:N |yn = k;θ) (E.6)

βN,k = 1 for k = 1, . . . ,K (E.7)

then for n = N − 1, . . . , 1

βn,k =
K∑
k′=1

T (k, k′)βn+1,k′bn+1,k′ . (E.8)

All forward and backward variables can be computed iteratively using (E.5), (E.8). Having

computed all forward and backward variables the probability of the observed variable sequence

is given by

Pr(F|θ) =
K∑
k=1

αn,kβn,k. (E.9)

which holds for any n ∈ {1, . . . , N}. Then the variables of interest qnk, ξn(k, k′) can be

computed as follows:

qnk = Pr(yn = k|F,θ) =
αn,kβn,k∑K

k′=1 αn,k′βn,k′
, (E.10)

ξn(k, k′) = Pr(yn = k, yn+1 = k′|F,θ) =
αn,kT (k, k′)bn+1,k′βn+1,k′∑K

k′,k′′=1
αn,k′T (k′, k′′)bn+1,k′′βn+1,k′′

. (E.11)
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