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Abstract 

Since 2006, the moose population in northeastern Minnesota has declined by nearly 50%. 

While recent warming has been implicated as a primary cause of this decline, there is 

little evidence to support this relationship. More recent evidence suggests that the 

influences of warming and poor nutrition may predispose moose to increased risk of 

mortality, including mortality attributed to predation and disease. During summer, moose 

begin to experience the detrimental effects of high temperatures at around 14 to 17 ºC, 

and mean-maximum summer temperatures in this area range from 19.5 ºC along Lake 

Superior, to approximately 24.5 ºC in the more central part of the region. Thus, moose in 

northeastern Minnesota are likely dealing with the negative effects of high temperatures 

on a routine basis throughout summer. 

 While it has been suggested that nutrition and warming may be acting in concert 

to influence moose demographics in Minnesota, potential synergisms between these 

factors have not been investigated. Thus, I evaluated how spatial variation in the thermal 

landscape influences forage chemistry, the abundance and distribution of forage, and the 

spatial variation in moose diets and overwinter survival. To determine how high 

temperatures might influence the chemistry of moose forage, I used untargeted 

metabolomics to evaluate how varying combinations of temperature, moisture, and light 

in both experimental and natural conditions influence the production of plant secondary 

metabolites in moose forage. To investigate how the abundance and chemistry of moose 

forage varies across NEMN, I used a mixed-effects regression kriging framework to 

estimate spatial variation of δ13C and δ15N values in plants commonly eaten by moose, 
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and then refined these predictions using species-specific allometric equations to estimate 

above-ground biomass of moose forage. Finally, to investigate the interaction between 

spatial variation in high summer temperatures, moose diet, and over-winter survival, I 

used stable isotope values from forage and hair to estimate moose diet via Bayesian 

mixing models, and then evaluated if diet composition and quality vary as a function of 

mean-maximum summer temperature, season, or winter mortality. 

 In general, warming and high-temperatures had variable effects on the defensive 

chemistry of moose forage, only a minor influence on forage abundance, and a strong 

effect on diet quality, composition, and overwinter survival. Specifically, when 

investigating the influences of warming on PSM production in moose forage, I found that 

the influences of temperature can be modulated by the presence or absence of other 

abiotic factors, such as precipitation and light. As an example, the relative abundance of 

compounds known to negatively influence moose herbivory increased by 250% or more 

when high temperatures occurred in an open canopy setting. When modeling spatial 

heterogeneity in the chemistry and abundance of moose forage across northeastern 

Minnesota, I found that while mean-maximum summer temperature played a strong role 

in the isotopic composition of moose forage across the region, it had only a minor effect 

on distribution and abundance. Finally, when investigating interactions between spatial 

variation in high summer temperatures, moose diet, and over-winter survival, I found that 

the warmest parts of the moose range in Minnesota were those where moose diets were 

poorest and where winter mortality rates were highest. Specifically, I found that moose in 

the warmest parts of the range have diets containing the highest proportion of aquatic 



 

 vii 

forage and the lowest proportion of high-preference forage. Additionally, moose that did 

not survive winter had diets containing substantially greater proportions of aquatic forage 

throughout the entire growing season when compared to moose that survived, which 

consumed mostly high-preference forage during early summer but increased their 

consumption of aquatics during late summer. Finally, while I estimated overall mortality 

to be at approximately 30% throughout the entire study region, mortality in the warmest 

parts of the range (69%) was approximately 4.5 times higher than that in the coolest parts 

of the range (15%). 

Given the evidence I present here, habitat-improvement projects may want to 

focus on promoting the regeneration of forage species that can adapt to future warming 

scenarios, while still providing thermal refuge, and proper nutrition during late summer. 

Also, future studies should evaluate spatially explicit differences in habitat use as a 

function of the thermal landscape and how variation in habitat use-behavior (i.e., 

movement) within the thermal landscape may influence diet composition, quality, and 

nutritional restriction. Identifying mechanistic links between movement, diet, and 

nutritional condition within the thermal landscape would advance our basic knowledge of 

large mammal behavior and ecology, as well as help develop sound management 

strategies in how we plan for future warming.  
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Chapter 1: Summer Temperatures and Forage Chemistry may interact to influence 

Diet Composition and Moose Demographics in Northeastern Minnesota – An 

Introduction. 

With roughly 200 species of terrestrial vertebrates going extinct in the last 100 

years, there is evidence that we are currently in the midst of Earth’s sixth mass extinction 

event (Ceballos et al. 2017). Over this same time period, more than 40% of known 

terrestrial vertebrate species have exhibited severe population decline (> 80% range 

contraction; Ceballos et al. 2017), and from 1970 to 2014, populations of terrestrial 

vertebrates declined by an average of 60% (Barrett et al. 2018). In mammals, population 

declines are often attributed to habitat loss and degradation, overexploitation, invasive 

species, and disease, with recent changes in climate also thought to be a major contributor 

(Barrett et al. 2018, Ripple et al. 2015). Although mammal species in tropical regions 

appear to be most vulnerable to extinction, those at high latitudes are more vulnerable to 

climate change than anywhere else on the planet (Barrett et al. 2018), with large 

mammals more likely to experience the adverse effects of climate than their smaller 

counterparts (Mccain and King 2014).  

Global distributions of large herbivore diversity are associated with gradients of 

temperature and precipitation (Olff et al. 2002, Walther et al. 2002), with the negative 

influences of temperature largely attributed to the positive association between body size 

and temperature sensitivity (Gillooly et al. 2001). High-temperatures can influence large 

herbivores directly via a number of different mechanisms. For example, male ibex 

(Capra ibex) reduce feeding activity during periods of high temperatures (Aublet et al. 
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2009), presumably in an effort to minimize metabolic heat production (Turbill et al. 

2011), and moose have been shown to alter habitat-use behavior as a function of ambient 

temperature, choosing habitats that offer thermal refugia over those that provide high-

quality forage (van Beest and Milner 2013, Street et al. 2016). In addition to the direct 

physiological and behavioral effects that high temperatures can have on large mammals, 

the influences of recent warming are pervasive, thereby leading to a range of indirect 

effects as well (Parmesan 2006, Walther et al. 2002). 

The North American moose (Alces alces) is a cold-adapted species that is 

relatively intolerant of high temperatures (Renecker and Hudson 1990), and in recent 

years has experienced population declines across much of the southern edge of its 

geographic range (Timmermann and Rodgers 2017). In northwestern Minnesota, moose 

exhibited a precipitous decline starting in the mid 1980s, decreasing from about 4000 

animals in 1984 to less than 100 animals in 2007 (Lenarz et al. 2009, Murray et al. 2013). 

A study investigating this decline reported that the majority of moose fatalities (87% of 

radio-collared moose and 65% of non-collared moose) were ultimately due to parasites 

and infectious disease. However, the authors also noted that many of the recorded causes 

of mortality were likely acting in close association with poor nutrition and warming 

(Murray et al. 2006). Animals that died of natural causes exhibited notable signs of 

malnutrition and severe body fat depletion, and annual population growth in northwestern 

Minnesota from 1961-2000 was negatively correlated with mean summer temperature, 

which increased by 2.1 ºC during this time (Murray et al. 2006).  
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In recent years, the moose population in northeastern Minnesota (NEMN) has 

exhibited demographic trends similar to those observed in the northwestern part of the 

state, declining by more than 65% from 2006 to 2018 (DelGiudice 2018, Lenarz et al. 

2009). Because moose are heat intolerant, when they are exposed to prolonged periods of 

high temperatures, they increase metabolic and respiration rates and reduce forage intake, 

which can lead to malnutrition, decreased body condition, and immunosuppression 

(Lenarz et al. 2009, McCann et al. 2013, Murray et al. 2006, Renecker and Hudson 

1986). Although one study reported a negative correlation between high temperatures and 

survival in this population (Lenarz et al. 2009), there is little mechanistic evidence to 

explain a relationship between recent warming and moose declines. Moreover, the wolf 

population in this region has substantially increased since 2006, with a strong inverse 

relationship between wolf numbers and calf:cow ratios from 2001 to 2013 (Mech and 

Fieberg 2014). One study recently reported between 33 and 47% of monitored moose calf 

mortalities was due, at least in part, to wolf predation (Severud et al. 2015), while another 

reported that more than 30% of analyzed wolf scats from NEMN contained moose tissue 

(Chenaux-Ibrahim 2015). However, it is important to note that moose significantly 

reduce anti-predatory behavior during periods of resource limitation (Oates et al. 2019), 

and in a study summarizing necropsy results of 62 opportunistically collected moose 

carcasses from 2003 to 2013, 85% of animals were either moderately underweight or 

exhibiting signs of severe weight loss and muscle deterioration (Wünschmann et al. 

2015).  
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High-temperatures could also be indirectly impacting large herbivores through 

their forage. This impact could yield large-scale demographic consequences (Owen-

Smith 2002, Shi et al. 2003), the causes of which could be difficult to detect. At the plant 

level, temperature increases of < 2 ºC in Minnesota have been shown to significantly 

reduce crude protein and carbohydrates (Jamieson et al. 2015), while also leading to 

significant phenological advancement (Schwartzberg et al. 2014). At the animal level, 

warming of 3 to 6 ºC can lead to decreased forage intake and digestibility (Savsani et al. 

2015), as well as increased sensitivity to plant defensive compounds (Kurnath et al. 

2016), all of which have been shown to influence survival and reproduction in large 

mammals (Barboza and Parker 2008, Cook et al. 2004, Langvatn et al. 1996, McArt et al. 

2009). During summer, the moose range in Minnesota spans a 5 ºC mean-maximum 

summer temperature gradient, going from roughly 19.5 ºC in the northeastern-most part 

of the range, to approximately 24.5 ºC in the more central parts of the range (PRISM 

Climate Group 2017). Moose begin to experience the detrimental effects of high 

temperatures at around 14 to 17 ºC (McCann et al. 2013, Renecker and Hudson 1986). 

Thus, moose in NEMN are likely dealing with the negative effects of high temperatures 

on a routine basis. Together, the influences of warming on moose and their forage could 

have a profound negative impact on demographics via their specific, synergistic 

influences on survival and reproduction. 

  While it has been suggested that nutrition and warming may be acting in concert 

to influence moose demographics in Minnesota (Murray et al. 2006), potential 

synergisms between these factors have not been investigated. Thus, I evaluated how 
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warming and spatial variation in the thermal landscape influences forage chemistry, the 

abundance and distribution of forage, and the spatial variation in moose diets and 

overwinter survival. To determine how high temperatures influence the chemistry of 

moose forage (Ch. 1), I used untargeted metabolomics to evaluate how varying 

combinations of temperature, moisture, and light in both experimental and natural 

conditions influence the production of plant secondary metabolites in moose forage. To 

investigate how the abundance and chemistry of moose forage varies across NEMN (Ch. 

2), I used a mixed-effects regression kriging framework to estimate spatial variation of 

δ13C and δ15N values in plants commonly eaten by moose, and then refined these 

predictions using species-specific allometric equations to estimate above-ground biomass 

of moose forage. Finally, to investigate the interaction between spatial variation in high 

summer temperatures, moose diet, and over-winter survival (Ch. 3), I used stable isotope 

values from forage and hair to estimate moose diet via Bayesian mixing models, and then 

evaluated if diet composition and quality vary as a function of mean-maximum summer 

temperature, season, or winter mortality. 

 In general, warming and high-temperatures had variable effects on the defensive 

chemistry of moose forage, only a minor influence on forage abundance, and a strong 

effect on diet quality, composition, and overwinter survival. Specifically, when 

investigating the influences of warming on PSM production in moose forage (Ch. 1), I 

found that the influences of temperature can be modulated by the presence or absence of 

other abiotic factors, such as precipitation and light. As an example, the relative 

abundance of compounds known to negatively influence moose herbivory (i.e., diterpene 
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resin acids, Danell et al. 1990) increased by 250% or more when high temperatures 

occurred in an open canopy setting. When modeling spatial heterogeneity in the 

chemistry and abundance of moose forage across NEMN (Ch. 2), I found that while 

mean-maximum summer temperature played a strong role in the isotopic composition of 

moose forage across the region, it had only a minor effect on distribution and abundance. 

This suggests that any relationship we observe between moose diet and the thermal 

landscape is likely due to temperature-induced changes in behavior (i.e., habitat use and 

forage intake or selection) rather than variation in abundance. Finally, when investigating 

interactions between spatial variation in high summer temperatures, moose diet, and 

over-winter survival (Ch. 3), I found that the warmest parts of the moose range in 

Minnesota were those where moose diets were poorest and where winter mortality rates 

were highest. Specifically, I found that moose in the warmest parts of the range have 

diets containing the highest proportion of aquatic forage and the lowest proportion of 

high-preference forage. Additionally, moose that did not survive winter had diets 

containing substantially greater proportions of aquatic forage throughout the entire 

growing season when compared to moose that survived, which consumed mostly high-

preference forage during early summer but increased their consumption of aquatics 

during late summer. Finally, while I estimated overall mortality to be at approximately 

30% throughout the entire study region, mortality in the warmest parts of the range (69%) 

was approximately 4.5 times higher than that in the coolest parts of the range (15%).  

Collectively, the evidence I present here suggests that high summer temperatures 

may underlie the recent moose decline via the synergistic effects of warming on moose 
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behavior and forage. Habitat-improvement projects may want to focus on promoting the 

regeneration of forage species that can adapt to future warming scenarios, while still 

providing thermal refuge, and proper nutrition during late summer. For example, 

replanting efforts may want to consider genetic strains of paper birch, trembling aspen, 

and willow (i.e., high-preference moose forage) that are adapted to warmer climates, 

potentially helping buffer moose against some of the temperature-induced synergies I 

observed here. Also, future studies should evaluate spatially explicit differences in habitat 

use as a function of the thermal landscape and how variation in habitat use-behavior (i.e., 

movement) within the thermal landscape may influence diet composition, quality, and 

nutritional restriction. Also, creating landscape-scale models depicting an animal’s 

fundamental dietary niche (i.e., what the diet should be, given the composition of the 

landscape, in the absence of selection) and then comparing these models to spatial 

variation in diet would provide valuable insights into how different habitat covariates 

(e.g., temperature, landscape composition, predator densities) may influence diet 

selection. Identifying mechanistic links between movement, diet, and nutritional 

condition within the thermal landscape would advance our basic knowledge of large 

mammal behavior and ecology, as well as help develop sound management strategies in 

how we plan for future warming.  
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Chapter 2: Combinations of Abiotic Factors Differentially Alter Production of Plant 

Secondary Metabolites in Five Woody Plant Species in the Boreal-temperate 

Transition Zone. 

ABSTRACT Plant secondary metabolites (PSMs) are a key mechanism by which plants 

defend themselves against potential threats, and changes in the abiotic environment can 

alter the diversity and abundance of PSMs. While the number of studies investigating the 

effects of abiotic factors on PSM production is growing, we currently have a limited 

understanding of how combinations of factors may influence PSM production. The 

objective of this study was to determine how warming influences PSM production and 

how the addition of other factors may modulate this effect. 

We used untargeted metabolomics to evaluate how PSM production in five 

different woody plant species in northern Minnesota, USA are influenced by varying 

combinations of temperature, moisture, and light in both experimental and natural 

conditions. We also analysed changes to the abundances of two compounds from two 

different species – two resin acids in Abies balsamea and catechin and a terpene acid in 

Betula papyrifera. We used perMANOVA to compare PSM profiles and phytochemical 

turnover across treatments and NMDS to visualize treatment-specific changes in PSM 

profiles. We used linear mixed-effects models to examine changes in phytochemical 

richness and changes in the abundances of our example compounds. 

 Under closed-canopy, experimental warming led to distinct PSM profiles and 

induced phytochemical turnover in B. papyrifera. In open-canopy sites, warming had no 

influence on PSM production. In samples collected across northeastern Minnesota, 
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regional temperature differences had no influence on PSM profiles or phytochemical 

richness but did induce phytochemical turnover in B. papyrifera and Populus 

tremuloides. However, warmer temperatures combined with open canopy resulted in 

distinct PSM profiles for all species and induced phytochemical turnover in all but 

Corylus cornuta. Although neither example compound in A. balsamea was influenced by 

any of the abiotic conditions, both compounds in B. papyrifera exhibited significant 

changes in response to warming and canopy. Our results demonstrate that the metabolic 

response of woody plants to combinations of abiotic factors cannot be extrapolated from 

that of a single factor and will differ by species. This heterogeneous phytochemical 

response directly affects interactions between plants and other organisms and may yield 

unexpected results as plant communities adapt to novel environmental conditions. 

INTRODUCTION 

Plant secondary metabolites (PSMs) are one of the primary ways in which plants 

respond to environmental variability, and regulation of PSM production is strongly 

influenced by the local environment (Bennett and Wallsgrove 1994, Bray et al. 2000, Hirt 

and Shinozaki 2003, Wink 1988). Many interactions between plants and other organisms 

are mediated by PSMs (Farmer 2001, Karban 2008, Karban et al. 2006), and thus, the 

biochemical mechanisms that influence these interactions are modulated, at least in part, 

by the presence, absence, or magnitude of various environmental factors (DeLucia et al. 

2012, Jamieson et al. 2012). For instance, changes in the amount and seasonality of 

precipitation have been shown to influence concentrations of cyanogenic glycosides 

(Gleadow and Woodrow 2002, Vandegeer et al. 2013), and elevated concentrations of 
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atmospheric CO2 often result in increased concentrations of condensed tannins (Lindroth 

2012). Evidence is mounting that recent warming may also influence the production of 

PSMs (Kuokkanen et al. 2001). 

Studies investigating the influence of warming on PSM production suggest that 

temperature-induced changes to PSMs may be species, compound, or even context 

dependent. For example, warming has been shown to have no effect on levels of 

phenolics in red maple (Acer rubrum, (Williams et al. 2003), Norway spruce (Picea 

abies, (Sallas et al. 2003), and Scots pine (Pinus sylvestris, (Sallas et al. 2003) but 

resulted in decreased levels of phenolics in dark-leaved willow (Salix myrsinifolia, 

(Veteli et al. 2006) and silver birch (Betula pendula, (Kuokkanen et al. 2001). 

Additionally, warming has been shown to increase levels of terpene-based compounds in 

Norway spruce (Sallas et al. 2003), Ponderosa pine (Pinus ponderosa, (Constable et al. 

1999), and Scots pine (Sallas et al. 2003) but has been shown to both increase (Constable 

et al. 1999) and decrease (Snow et al. 2003) levels of monoterpenes in Douglas fir (Pinus 

menziesii). While evidence of warming-induced changes to phytochemistry is important 

to our understanding of how plants will respond to future climates, in natural settings, 

elevated temperature often combines with other abiotic conditions to influence PSM 

production and potentially modulate any changes to phytochemistry that might otherwise 

be induced by warming alone.  

As temperatures continue to rise, global precipitation patterns are expected to shift 

(Alexander et al. 2006, Hurrell 1995, IPCC 2014) and light availability to understory 

plants will likely be altered due to changes in the frequency and intensity of forest 
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disturbance patterns (Canham et al. 1990, Dale et al. 2001). While variability in each of 

these environmental factors has been shown to influence production of PSMs on their 

own (Bryant et al. 1983, Dudt and Shure 1994, Pavarini et al. 2012), combinations of 

factors can have a distinct effect (Mittler 2006, Rizhsky et al. 2002, 2004, Zandalinas et 

al. 2018). Moreover, plant responses to combinations of abiotic factors can be either 

synergistic or antagonistic (Bonham-Smith et al. 1987, Mittler 2006, Zandalinas et al. 

2018). For example, drought has been shown to enhance cold tolerance (Cloutier and 

Andrews 1984), but also exacerbate a plant’s intolerance of high temperatures (Rizhsky 

et al. 2002). Further, different combinations of salinity and high temperatures have been 

shown to have both positive and negative influences on the metabolism of reactive 

oxygen species and stomatal response (Zandalinas et al. 2018). Regardless, the vast 

majority of current research remains focused on the influences of individual conditions 

rather than considering potential interactions among them.  

Until recently, the majority of studies investigating the potential influence of 

different abiotic factors largely considered the effects of these factors on individual 

compounds or small groups of compounds. However, individual metabolites rarely, if 

ever, function in isolation (Gershenzon et al. 2012). Rather, the influence of any one 

compound is dependent on conditions within the local environment, as well as the 

relative abundance of numerous other metabolites within a plant’s array of chemical 

constituents (Dyer et al. 2003, Gershenzon et al. 2012, Jamieson et al. 2015, Richards et 

al. 2010). Thus, understanding how changes in the abiotic environment will influence a 
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plant’s metabolic profile is important for interpreting how these changes will influence 

the abundance and biological role of individual compounds as well.  

Phytochemical diversity influences how effective plants are when defending 

against a range of threats (Frye et al. 2013, Gershenzon et al. 2012, Richards et al. 2015). 

Compounds may act synergistically, thereby forming mixtures that can provide enhanced 

protection against potential hazards (Gershenzon 1984, Gershenzon et al. 2012, Harborne 

1987). Indeed, recent evidence suggests that the number of individual compounds 

comprising a plant’s phytochemical profile can even influence local biological diversity 

via the influence of changes in toxicity on rates of herbivory (Richards et al. 2015). 

Increased diversity of secondary metabolites may also allow for more precise 

communication between plants, thereby allowing for more robust protection against a 

range of conditions (Frye et al. 2013, Gershenzon et al. 2012, Iason et al. 2005, Poelman 

et al. 2008). Two metrics that are useful for assessing changes in phytochemical diversity 

are “phytochemical richness” (i.e., the absolute number of compounds produced) and 

“phytochemical turnover” (i.e., the degree of overlap among the compounds produced), 

as both measures provide different insights into the metabolic response of plants to a 

range of abiotic conditions.  

Variability in phytochemistry, even within the same species, may influence 

ecosystem structure and function through an array of chemically driven ecological effects 

(Bukovinszky et al. 2008, Gillespie et al. 2012, Sedio et al. 2017). The growth-

differentiation balance hypothesis (GDBH) suggests that as the local environment 

becomes increasingly stressful, growth processes will become limited and the production 
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of PSMs will increase until the point that PSM production also becomes limited by 

resource acquisition/availability (Lerdau et al. 1994)(Lewinsohn et al. 1993)(Lewinsohn 

et al. 1993) . While phytochemical diversity has not been explicitly tested in light of the 

GDBH, studies have shown that herbivore-induced secondary chemistry can be 

completely suppressed in some woody species under a range of  abiotic conditions 

(Lewinsohn et al. 1993), rendering them vulnerable to further invasion by pests and 

pathogens. While the number of studies investigating the effects of warming and other 

abiotic conditions on PSM production is rapidly growing, we currently have a limited 

understanding of how different abiotic factors may interact to influence phytochemical 

diversity (Bidart-Bouzat and Imeh-Nathaniel 2008, Jamieson et al. 2012, 2015). The 

objective of this study was to determine how elevated temperatures may influence the 

production of PSMs and to evaluate how the addition of other abiotic factors may 

modulate this effect.  

While a targeted approach uses standard model compounds to identify and 

observe changes in specific compounds selected a priori, an untargeted (i.e., global) 

approach makes no assumptions regarding specific metabolites, and therefore, allows one 

to observe global changes across the entire metabolic profile. Thus, the strength of an 

untargeted approach lies in the potential to discover unanticipated changes in metabolic 

profiles as a result of environmental perturbations (Crews et al. 2009). Although 

untargeted metabolomics have been used in medicine for clinical diagnosis of various 

diseases, including numerous forms of cancer (Jain et al. 2015, Sreekumar et al. 2009), 

this study is among the first to apply this method to an ecological setting.  



 

 14 

We used an untargeted metabolomics approach to evaluate how the 

phytochemical profiles of five different woody plant species are influenced by 

temperature, soil moisture, and light. Specifically, we tested the hypothesis that elevated 

temperatures alter the production of PSMs by leading to phytochemical profiles that are 

distinct from those found at ambient temperature (H1) and that warming will change 

phytochemical diversity via reductions in phytochemical richness or a high degree of 

turnover (H2). We also tested the hypothesis that the addition of other abiotic factors, 

specifically high light and drought, will either magnify or nullify temperature-induced 

changes in phytochemical profiles and PSM diversity (H3). Finally, because individual 

compounds may vary greatly in response to heterogeneity in the abiotic environment, we 

identified two ‘example compounds’ from balsam fir (Abies balsamea – two unspecified 

di-terpene resin acids) and paper birch (Betula papyrifera – catechin and another 

unspecified di-terpene resin acid) and analyzed the effects of different sets of abiotic 

factors (high-temperature, light, and drought) on their relative abundance. Specifically, 

we tested the hypothesis that individual compounds will respond to different conditions 

and combinations of conditions by either increasing or decreasing in relative abundance, 

potentially in a non-uniform and unpredictable manner (H4).  

MATERIALS AND METHODS 

Experimental Design —The Boreal Forest Warming at an Ecotone in Danger 

(B4WarmED) project is an ecosystem experiment that simulates both above- and below-

ground warming in a boreal forest community. The experiment was conducted at Cloquet 

Forestry Center (CFC; Cloquet, MN. USA) and was initiated in 2008. The experimental 
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design consists of a 2 (overstory – open and closed) × 3 (warming – ambient, ambient 

+1.7°C, and ambient +3.4°C) × 2 (precipitation – ambient and ambient -40%) factorial 

design with six replicates (two per block) per treatment combination, for a total of 72 – 

7.1 m2 plots (Rich et al. 2015). Within each plot, 121 seedlings of 11 tree species were 

planted into the remaining herbaceous vegetation in a gridded design (Rich et al. 2015). 

Above-ground biomass was warmed using a Temperature Free-Air-Controlled 

Enhancement System (T-FACE) and below-ground biomass was warmed via buried 

resistance-type heating cables (Rich et al. 2015). Above- and below-ground temperatures 

have been monitored and logged at 15-minute intervals since spring 2008. In 2012, event-

based rain exclosures were installed on nine plots in the open overstory replicates of the 

warming experiment, which allowed for safe and reliable removal of rainfall. Mean 

annual rainfall exclusion from June to September ranges from 42% to 45%. 

We collected plant samples from the B4WarmED project during two different 

time periods. On 14 July 2013, we collected samples of balsam fir and paper birch that 

were grown under closed overstory and three warming treatments, and on 15 July 2014, 

we collected samples of balsam fir, paper birch, trembling aspen (Populus tremuloides), 

and red maple (Acer rubrum) grown under open overstory in the three warming 

treatments and two precipitation treatments. Where possible, we collected recent-growth 

foliar tissue from two plants per species within each replicate plot. However, some 

replicates contained either one or no plants with enough leaf tissue to sample. Samples 

sizes were particularly small during 2014, so we were forced to group individual 

warming treatments (ambient, +1.7°C, +3.4°C) into a binary response (ambient 
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temperature vs. elevated temperature). All plant samples were collected within a two-

hour time period. Upon collection, samples were flash frozen with dry ice, and 

subsequently stored in a -80 °C freezer to minimize chemical degradation. We broadly 

refer to samples collected from the B4WArmED project as our “experimental” samples.  

To investigate how temperature and light conditions may interact to influence 

phytochemical production in a natural forest environment, we collected samples of 

balsam fir, paper birch, trembling aspen, and beaked hazel (Corylus cornuta) from open 

and closed canopy environments across two regions in northeastern Minnesota (Fig.1). 

These regions exhibit differences in mean-maximum summer temperature (maximum 

daily temperature averaged across June, July, and August) of approximately 5.5°C (Table 

S2-1). On 14 July 2015, we collected a minimum of 3 biological replicates from each 

species within each set of abiotic conditions. The sampling design consists of a 2 

(overstory – open and closed) × 2 (temperature – warm and cool) design with three plot 

replicates per treatment combination, for a total of 12 – 400 m2 plots. Open-canopy plots 

allowed us to evaluate high-light conditions on production of PSMs and were located in 

areas that were clear-cut in 2006 (i.e., open overstory), while closed-canopy plots were 

located in areas that experienced no known overstory disturbance since at least 1985 (i.e., 

closed overstory). Thus, light conditions for all plots were based on whether the overstory 

was open (i.e., high light) or closed (i.e., low light). Temperature logger data collected for 

a parallel study from similar plot types suggest that average high temperatures from 1 

May 2015 to 14 July 2015 ranged from 30.4°C in low-light plots in the cool region to 

36.6°C in high-light plots in the warm region. All field samples were collected on the 
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same day, within an 8-hour period. Upon collection, samples were flash frozen with dry 

ice, and subsequently stored in a -80 °C freezer. For brevity, we occasionally refer to 

samples collected throughout northeast Minnesota as “observational” samples.  

Study organisms — Balsam fir is a mid- to large-sized species of conifer, growing 

to 26 m in height, with shallow roots (Smith 2008). It is highly vulnerable to drought, 

fire, and spruce budworm (Choristoneuro fumiferana) infestations (Engelmark 1999), 

and modest climate warming has been shown to decrease net photosynthesis and growth 

by as much as 25% (Reich et al. 2015). Paper birch can grow to 28 m in height (Smith 

2008) and is drought and shade intolerant (Iverson et al. 2008, Iverson and Prasad 1998). 

While it can grow rapidly and live to be 250 years of age, seedlings need significant light 

to prosper (Kneeshaw et al. 2006). Elevated temperatures have been shown to influence 

foliar nitrogen, lignin, and condensed tannins in both paper birch and trembling aspen 

with the specific response varying as a function of species and climate (Jamieson et al. 

2015). Trembling aspen is one of the most widespread tree species in North America and 

occurs on a wide-range of soil types and in various climatic conditions (Smith 2008). It is 

sensitive to both drought and shade (Iverson et al. 2008, Iverson and Prasad 1998) and 

may become increasingly vulnerable to other potential stressors under conditions of 

drought and high temperatures (Worrall et al. 2008). Red maple is a moderately large 

tree, growing to 29 m in height and is known to be tolerant to a wide-range of 

precipitation conditions, from drought to seasonal flooding (Smith 2008). While this 

species is expected to prosper under future climate scenarios (Iverson et al. 2008, Iverson 

and Prasad 1998) and performed well under experimental warming (Reich et al. 2015), 
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both prolonged flooding and severe drought have been shown to result in senescence and 

decreased growth, respectively (Nash and Graves 1993).  Beaked hazel, a shade-tolerant 

shrub that can grow to 4 m tall, is a common understory species in both conifer and 

deciduous forests and occurs almost exclusively in fire prone habitats (Smith 2008). 

Beaked hazel is highly sensitive to fire and previous work suggests that growth may be 

limited by soil moisture (Johnston and Woodard 1985).  

Metabolite Analysis — Tissue samples were lyophilized for 72 hours and then 

homogenized and extracted using 25 mg (+/- 2.5 mg) of each sample. Homogenization 

and extraction were performed for 5 min at a frequency of 1500 Hz with 1 mL of 70% 

isopropyl alcohol at –20 °C using a bead mill and 2.8 mm tungsten carbide beads (Sped 

Sample Prep GenoGrinder 2010, Metuchen, NJ). Samples were then subjected to 

centrifugation at 16,000 xg for 5 min.  The supernatant was then removed and subjected 

to an additional centrifugation step, 16,000 xg for an additional 5 minutes, and the 

supernatant was collected for subsequent analysis. Finally, 20 µL of each supernatant 

sample was removed and pooled to use as a control. All samples were then stored at –80 

°C.  

We analyzed samples with liquid chromatography mass spectrometry (LC-MS) 

using an Ultimate 3000 UHPLC (ultra-high-performance liquid chromatography) system 

coupled to a Q Enactive hybrid quadrupole-Orbitrap mass spectrometer with a heated 

electrospray ionization (HESI) source (Thermo Fisher Scientific, Bremen, Germany). We 

injected 1 µL of each sample per analysis onto an ACQUITY UPLC HSS T3 column, 

100 Å, 1.8 µm, 2.1 mm X 100 mm (Waters, Milford, MA, USA) using a gradient 
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composed of solvents A: 0.1% formic acid and B: acetonitrile. Specifically, 0-2 min, 2% 

B; 6 min, 24% B; 9 min, 33% B; 12 min, 65% B; 16 min, 80% B; 20 min 93% B; 21 min 

98% B; 22 min 98% B; 23 min 2% B; 23-25 min 2% B. Samples were analyzed in a 

randomized order to minimize systematic bias from instrument variability and carryover. 

Full-scan analysis was performed using positive/negative ion polarity switching, a 115-

1500 m/z scan range, a resolution of 70,000 (at m/z 200), maximum fill times of 100 ms, 

and target automatic gain control (AGC) of 1 × 106 charges. Ion fragmentation was 

performed using a higher-energy collision dissociation (HCD) cell and resulting MS/MS 

data were collected using a resolution of 17,500, maximum fill times of 100 ms, and an 

AGC target of 2 × 105 charges. Normalized collision energies (NCE) ranged from 10-45 

in increments of 5. All data were collected using Xcalibur version 2.2 (Thermo Fisher 

Scientific, Bremen, Germany).  

Example Compounds — To determine which chemical features varied 

consistently and significantly among each treatment and species group, we aligned, 

smoothed, background subtracted, and analysed all chromatographic data using analysis 

of variance (α = 0.001) via Genedata 7.1 (Genedata, Basel, Switzerland). We assigned 

putative metabolite identities only to the features found to be significantly abundant 

(ANOVA, α = 0.001) with an exact mass and higher-energy collisional dissociation 

(HCD) MS/MS fragmentation spectra. We determined molecular formulae by using exact 

mass to calculate the most probable elemental composition for each feature (Table S2-2). 

We then manually interpreted HCD spectra collected at numerous collision energies 

(Figs.S2-1 through S2-3), and compared these to the MassBank database using 
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MetFusion (Gerlich and Neumann 2013). Where possible, we confirmed the identity of 

individual compounds via comparison to an authenticated standard (Sigma-Aldrich) and 

assigned other putative identities by matching molecular formulae to those of previously 

observed metabolites in Betula (Julkunen-Tiitto et al. 1996) and Abies (Otto and Wilde 

2001). Specifically, we analyzed changes in the relative abundance of catechin and an 

unspecified terpene acid in paper birch and two unspecified diterpene resin acids in 

balsam fir. The identification of catechin was confirmed by comparison of accurate mass, 

LC-retention and MS/MS fragmentation properties of commercially available standard 

compounds for both catechin and its frequently associated isomer epicatechin which were 

distinguishable by chromatographic separation. There has been a great deal of work 

investigating the biological and ecological activity of catechin and terpenoid-based 

metabolites (Berg 2003, Gershenzon and Croteau 1992, Stolter et al. 2005, Tahvanainen 

et al. 1985); and as a result, we expect our results regarding these compounds to be 

broadly relevant. 

Data Processing & Statistical Analysis — Data processing and statistical analyses 

were conducted using R 3.5.0 (R Core Team 2018). To initiate data processing, we used 

the xcmsRaw function in the xcms package (Benton et al. 2010, Smith et al. 2006, 

Tautenhahn et al. 2008) to read our raw mzML files into R. After separating our data by 

polarity using the split function in the base package, we used the findPeaks.centwave 

function for peak detection, which we parameterized as follows: ppm = 2, peakwidth = 

c(5,20), prefilter = c(1,15000000), mzCenterFun = "apex", integrate = 1, mzdiff = -0.001, 

fitgauss = F, snthresh = 10. Once peak detection was complete, we trimmed the resulting 



 

 21 

polarity-specific data frames based on retention time and retained only those peaks 

detected between 1 and 21 minutes. 

A major shortfall of employing LC-MS to perform “untargeted profile analysis,” 

as we did here, is the production of two independent but partially overlapping datasets 

resulting from ion polarity switching. While polarity switching is useful for detection of 

features that can only be detected via either positive or negative ionization, some features 

are detectable under both ionization modes, therefore resulting in two independent data 

sets containing a small subset of common features. Moreover, interpretation of statistical 

results is challenging due to the presence of parallel sets of analyses with common 

features contributing to both. To alleviate these issues, we combined positive and 

negative polarities using the find.matches function in the Hmisc package (Harrell and 

Dupont 2018). The find.matches function allows one to identify which rows in a data 

matrix align with those in a separate, identically formatted matrix by allowing the user to 

define a tolerance level for the numerical columns in each matrix. Thus, to determine our 

common features in the positive and negative ionization datasets that result from LC-MS, 

we created two matrices for positive and negative polarity, containing three separate 

columns – the mass of each detected peak, an assigned name for each peak, and retention 

time. To ensure that corresponding features from each ionization mode were capable of 

alignment, we subtracted 2.1046, roughly the mass of two protons, from all masses in the 

positive polarity dataset. For those features identified as common among both ionization 

modes, we retained peak data from the polarity exhibiting greatest mean intensity across 

all samples. We then assigned new peak names to identify which peaks were present in 



 

 22 

either positive or negative polarity versus those that were found in both. All output 

created using the find.matches function was manually checked to ensure that all peaks 

identified as having a match in one polarity, had their mate identified as a match in the 

other. 

We used permutational MANOVA (perMANOVA, (Anderson 2001) to compare 

PSM profiles between abiotic conditions. When analyzing PSM profiles, differences were 

estimated using Canberra dissimilarity matrices (Dixon et al. 2009). Analysis was 

performed with the adonis function (from the vegan package(Oksanen et al. 2015), which 

allowed us to account for our blocked sampling design via the strata argument. Both 

differences in the centroids among conditions or differences in multivariate dispersion 

can lead to statistically significant results when using perMANOVA. To determine if 

differences among centroids were contributing to perMANOVA results, we created mean 

dissimilarity matrices using the meandist function and we used the betadisper function to 

assess multivariate homogeneity of variance (i.e., dispersion, (Oksanen et al. 2015). We 

used non-metric multidimensional scaling (NMDS, Kruskal, 1964) to visualize 

differences in PSM profiles among conditions, which we performed using the metaMDS 

function in the vegan package (Oksanen et al. 2015). We set our dimensionality 

parameter (k) to 2 and projected condition-specific effects onto NMDS plots using the 

ordiellipse function to plot 95% confidence ellipses based on standard error (Oksanen et 

al. 2015).  

To evaluate treatment-induced changes to PSM diversity, we calculated 

phytochemical richness based on the presence and absence of individual compounds, then 
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tested the main effect of treatment on richness with block (experimental samples) or site 

ID (observational samples) as our random effect using linear mixed-effects models (lme 

function within the nlme package, (Pinheiro et al. 2015). To analyze phytochemical 

turnover (i.e., the degree of overlap between the phytochemical profiles of individual 

plants across and between conditions) we created dissimilarity matrices based on binary 

datasets representing the presence or absence of each feature using Jaccard’s Index. We 

evaluated condition-specific differences in phytochemical turnover using perMANOVA 

via the adonis function, and evaluated the influence of multivariate centroids and 

homogeneity of variance on perMANOVA results as detailed above (Anderson 2001, 

Oksanen et al. 2015). 

Weather data from Cloquet Forestry Center (CFC) shows that ambient air 

temperature, cumulative precipitation from 1 Jan to collection date, and leaf surface 

temperature were not statistically different between 2012 and 2013 or between specific 

sample sets (2013 – closed overstory, 2014 – open overstory). However, soil moisture 

and soil temperature vary strongly between years and sample sets, and differences 

between experimental and observational samples are likely to be even greater. Thus, 

samples collected during different years were analyzed independently of one another as 

individual data sets. 

For analytical and visualization purposes, the condition or set of conditions 

assumed to impart the least amount of metabolic change during each year was labeled as 

our reference group, to which all other conditions were compared for that sample year. 

For Year 1 (2013), we designated “ambient” as our reference category, while samples 
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grown under ambient temperature and ambient precipitation were designated as our 

reference category for Year 2 (2014). We designated samples collected from cold region, 

low-light conditions as our reference category for Year 3 (2015).  To help visualize how 

different abiotic conditions may influence PSM production in different species, we 

calculated the number of chemical features that increased and decreased by ≥ 75%, 

relative to our reference category and created scaled Venn Diagrams representing these 

relationships. 

Finally, we used linear mixed-effects models to test the main effect of abiotic 

condition on the relative abundance of our example compounds, with sample block as our 

random effect for experimental samples and plot ID as our random effect for 

observational samples (lme function within the nlme package, Pinheiro et al., 2015). 

These models tested whether combinations of abiotic factors influence the abundance of 

our known example compounds.  

RESULTS 

Temperature 

The influence of temperature was both species and context dependent. In closed 

overstory (Year 1), when compared to ambient, warming-induced changes to the 

phytochemical profile of balsam fir were not statistically significant, whereas paper birch 

exhibited warming-induced shifts to phytochemical profiles, thereby leading to distinct 

PSM profiles for the warming treatment. Analysis of multivariate dispersion and mean-

dissimilarity matrices both suggest that differences in paper birch were due to 

temperature-induced changes in the centroid rather than dispersion (Table 1). NMDS 
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plots reveal minor overlap between temperature conditions in paper birch, and balsam fir 

grown under moderate and high-temperatures show strong overlap with plants grown in 

ambient temperatures but minor overlap with each other (Fig.2). Warming had no effect 

on phytochemical richness in either species but did influence phytochemical turnover in 

paper birch (Table 1). In open overstory (Year 2), warming had no influence on PSM 

profiles or PSM diversity (i.e., richness or turnover), regardless of species (Table 1). 

NMDS plots support these findings in that there is no discernible relationship between 

temperature and PSM profiles, regardless of species (Fig.3). In observational samples 

collected throughout northeast Minnesota (Year 3), temperature on its own had no 

influence on plant PSM profiles or phytochemical richness values. However, 

phytochemical turnover was significantly different in plants from different temperature 

regions in paper birch (perMANOVA, F = 5.912, r2 = 0.179, p = 0.0003) and trembling 

aspen (perMANOVA, F = 3.322, r2 = 0.156, p = 0.0012). NMDS plots suggest that each 

species responds differently to combinations of temperature and light (i.e., canopy; 

Fig.4). Balsam fir produces distinct PSM profiles as a function of ambient light 

conditions (i.e., open vs. closed canopy), but only within the cool region, while paper 

birch and trembling aspen appear to have distinct PSM profiles for each combination of 

conditions. Conversely, beaked hazel exhibits no discernible pattern across different 

conditions. 

Venn diagrams created to help visualize the influence of different abiotic 

conditions for Year-1 samples suggest that the high-temperature (+3.4°C) treatment 

induced a greater response from both balsam fir and paper birch than the moderate-
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temperature (+1.7°C) treatment. Specifically, the high-temperature treatment led to more 

features that either increased or decreased in relative abundance by 75% or more when 

compared to ambient or moderate-temperature treatments (Table 3; Fig.S2-4).  

Interactive Effects of Different Abiotic Conditions 

In our Year-2 samples, the combination of drought and elevated temperature had 

no influence on PSM profiles nor any aspect of phytochemical diversity, regardless of 

species (Table 1). These results were supported by NMDS plots (Fig.3). Additionally, 

Venn diagrams suggest large-magnitude increases or decreases in relative abundance of 

PSMs did not follow an obvious pattern that could be attributed to different conditions. 

There appears to be a high degree of overlap across conditions in those compounds that 

exhibit increases in relative abundance of ≥ 75%, while less overlap occurs among 

compounds exhibiting large declines in relative abundance. Furthermore, the influence of 

drought on the decline of relative abundance by ≥ 75% appears to be more distinct than 

that of either warming or warming and drought together (Table 2). 

In observational samples from throughout northeast Minnesota (Year 3), when 

evaluating the effects of high temperature and light combined, balsam fir appears to 

create unique PSM profiles in response to different light conditions (i.e., open vs. closed 

canopy), but only within the cool region, while paper birch and trembling aspen appear to 

have distinct PSM profiles for each condition. Beaked hazel exhibits no discernible 

pattern (Fig.4). Phytochemical richness did not vary as a function of light conditions or 

temperature region. However, phytochemical turnover in balsam fir was significantly 

influenced by conditions of high light (i.e., open canopy; Table 3). When analyzing the 
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interactive effects of light conditions and temperature region, all species exhibited 

significant differences in their PSM profile (Table 3), with only trembling aspen 

exhibiting significant differences in multivariate dispersion as a function of the 

combination of light condition and temperature region (Table 3). Although 

phytochemical richness was not influenced by the combined effects of temperature region 

and light conditions, phytochemical turnover was influenced in paper birch and trembling 

aspen and a marginal, non-significant trend was present in beaked hazel (Table 3). 

Patterns in Venn diagrams detailing the influences of different conditions during 

Year 2 are difficult to discern, as different plant species appeared to respond to varying 

conditions in different ways (Fig.S2-5). Drought led to more features increasing by ≥ 

75% in balsam fir and paper birch, while elevated temperature led to the large-magnitude 

increase of more features in trembling aspen (Table 2; Fig.S2-5). In red maple, the 

combination of drought and elevated temperature had the greatest influence on large-

magnitude increases in relative abundance (Table 2; Fig.S2-5). The combination of 

drought and warming led to more large-magnitude declines in relative abundance in 

balsam fir and paper birch, while drought had a greater impact on red maple and 

trembling aspen (Table 2; Fig.S2-5). In observational samples (Year 3), the combination 

of high-light conditions and warmer temperatures led to more large-magnitude shifts in 

relative abundance (i.e., increasing and decreasing by 75% or more), regardless of species 

(Table 2; Fig.S2-6).   

Example Compounds 
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 In closed-overstory conditions (Year 1), warming resulted in significant declines 

in both catechin and terpene acid in paper birch but had no influence on either compound 

in balsam fir (Fig.5, Table S2-3). In high-light conditions (Year 2), neither of the 

compounds in either species exhibited a significant, condition-specific change in relative 

abundance. However, terpene acid in paper birch was completely absent from all samples 

collected from high-light plots (Fig.6; Table S2-3). In observational samples from 

throughout northeast Minnesota (Year 3), neither compound in balsam fir exhibited 

significant changes in relative abundance due to light conditions, temperature region, or 

their interaction. In paper birch, however, the interactive effects of high-light conditions 

and warmer-temperatures resulted in a more than 250% increase in the relative 

abundance of catechin, while terpene acid exhibited no response, regardless of treatment 

(Fig.7; Table S2-3). 

 DISCUSSION 

Our study is among the first to explicitly show that combinations of abiotic 

drivers (often potential stressors) in forest plants can lead to broad phytochemical 

responses that are distinct from those that result from single abiotic factors and that 

different species of woody plants respond to complex sets of conditions in variable ways. 

In our experimental samples, warming under closed canopy led to distinct PSM profiles 

in paper birch but not balsam fir, with paper birch exhibiting increased phytochemical 

turnover. Warming under open canopy had no influence on PSM profiles or any aspect of 

phytochemical diversity. In our observational samples collected across northeast 

Minnesota, warmer temperatures had no influence on PSM profiles but did lead to 
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significant phytochemical turnover in paper birch and trembling aspen. When elevated 

temperature was combined with drought in Year 2 of our experimental samples, we found 

no influence on PSM profiles or phytochemical diversity. However, temperature variation 

combined with high-light conditions in our observational samples resulted in condition-

specific profiles for all species and led to significant phytochemical turnover in all but 

beaked hazel. In general, our results indicate that the phytochemical response of plants to 

varying combinations of abiotic factors cannot be directly extrapolated from the response 

of plants to individual factors. Perhaps more importantly, our results provide evidence 

that heterogeneity in the abiotic environment influences secondary metabolism in woody 

plants via a range of complex and highly variable responses.  

Few studies to date have explicitly studied the influences of heterogeneity in the 

abiotic environment on phytochemical diversity, and specifically, phytochemical 

turnover. However, it has been hypothesized that variability in which compounds are 

either present or absent may be an adaptation for variable environments, thereby 

decreasing vulnerability of plants to a range of potential stress conditions, including 

herbivory (Cheng et al. 2011, Laitinen et al. 2000). Here, we found that in some plant 

species, different combinations of abiotic factors can affect which compounds are either 

present or absent, thus leading to phytochemical turnover. For example, compounds that 

are absent in one set of conditions may become present within a slightly different set of 

conditions, or vice versa. The potential for this to occur was apparent when our example 

terpene acid decreased in paper birch plants subjected to experimentally elevated 

temperature in closed canopy but went completely undetected in plants subjected to 
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experimental warming and drought in open canopy and exhibited no change at all in our 

observational samples from throughout northeast Minnesota. Suppression of individual 

compounds due to varying stress conditions has been observed in other studies as well. 

For instance,  proline, which is thought to play an important role in protection from 

drought, is severely suppressed when plants are simultaneously subjected to drought and 

high temperatures (Rizhsky et al. 2004). While individual compounds can play an 

important role in the survival of plants subjected to a range of biotic and abiotic 

conditions, a plant’s phytochemical profile imparts a metabolic framework that can 

determine the biological role and strength of individual compounds (Dyer et al. 2003, 

Gershenzon et al. 2012, Jamieson et al. 2015, Richards et al. 2010). Here we show that 

individual compounds as well as the phytochemical context within which they operate 

can both be altered by variations in the abiotic environment.  

Plants produce thousands of individual compounds, and variations in the relative 

abundance of many of these compounds can have a wide-range of effects on the biotic 

interactions plants have with other organisms. Catechin, which is a phenol-based 

precursor to proanthocyanidins (i.e., condensed tannins), is widely considered an 

antiherbivore defensive compound (Berg 2003, Stolter et al. 2005, Tahvanainen et al. 

1985) and can have a significant, negative impact on the development of forest pests 

(Roitto et al. 2009). Catechin also has antimicrobial and allelopathic effects, and plants 

with decreased catechin production may be at a competitive disadvantage for nutrients 

within the soil as it can inhibit the growth and germination of neighboring plants (Inderjit 

et al. 2008, Veluri et al. 2004). Terpene acids, including diterpene resin acids, are 
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considered strong antifeedants (Ikeda et al. 1977), and the ingestion of forage with 

elevated concentrations of diterpenoids can result in slower development times and 

significantly higher mortality in herbivorous larvae (Larsson et al. 1986). Here we show 

that different compounds have individualized responses based on the micro-

environmental conditions that are present.  

In balsam fir, warming alone led to consistent, albeit non-significant declines in 

the mean relative abundances of both resin acids. When high temperatures were 

combined with other abiotic factors (i.e., drought and light), resin acid 1 exhibited 

consistent but non-significant increases, while resin acid 2 was more variable, exhibiting 

no consistent trend. In paper birch, both example compounds exhibited significant 

changes in relative abundance as a function of different factors. While elevated 

temperature alone led to significant declines in catechin, the combination of elevated 

temperature and high light led to a more than 250% increase in relative abundance. Our 

example terpene acid declined with warming and was undetectable when we tried to 

assess the effects of drought. This particular scenario provides an example of how 

individual compounds may “wink in or out” due to variation in the abiotic environment.  

Numerous studies have reported that high-temperature and drought interact to 

alter PSM production in plants (Craufurd and Peacock 1993, Jiang and Huang 2001, 

Rizhsky et al. 2002, 2004, Savin and Nicolas 1996). Thus, we were surprised to find no 

interaction between drought and warming in our study. It is important to note, however, 

that the extremes of those treatments employed by other studies are typically greater than 

what we test here, sometimes increasing temperature to more than 40ºC (Rizhsky et al. 
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2002) and withholding water altogether for extended periods (Jiang and Huang 2001). In 

our study, mean soil moisture was lower during 2014 than 2013, with mean soil 

temperatures being higher (unpublished data). Surprisingly, air temperature and leaf-

tissue surface temperature during late spring/early summer (May 1 to July 15) were 

indistinguishable between samples years and plot types (2013 closed canopy vs. 2014 

open canopy), and cumulative precipitation during the first half of each year (January 1 to 

July 15) was also indistinguishable (unpublished results). Combinations of abiotic factors 

can have one dominant factor that defines the phytochemical response of affected plants, 

and drought, when present, may dominate the influence of combinations of abiotic 

factors. Considering this, our inability to identify any treatment-specific influence on 

PSM profiles or phytochemical diversity may be due to low soil moisture during 2014. If 

plants from which samples were collected from in 2014 were experiencing some level of 

drought stress due to low soil moisture, this signal may have preempted any potential 

phytochemical response that might have occurred due to treatment.  

When considering the influence of abiotic conditions on large-scale shifts in 

relative abundance (increases or decreases ≥ 75% relative to our reference group), greater 

increases in temperature (+3.4°C) appeared to have a greater influence than moderate 

increases (+1.7°C). When present, drought, either alone or in combination with elevated 

temperature, dominated all but one of the large-scale shifts we assessed (Year 2), and in 

our observational samples, high-light conditions, either alone or in combination with 

elevated temperature, dominated all of the large-scale shifts we assessed in which it was 

present (Year 3). As noted above, numerous studies have reported that drought has a 
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defining impact on plants’ phytochemical profiles, even when in combination with other 

abiotic drivers, such as elevated temperature and high light. Moreover, in our Year 1 

samples, elevated temperature led to both large-scale increases and large-scale decreases 

in relative abundance. However, the number of compounds exhibiting these shifts were 

substantially smaller when compared to the number of compounds influenced by the 

abiotic conditions evaluated in either Year 2 of our experimental samples or our 

observational samples (Year 3). Outside of Year 1, during which we tested only the 

effects of elevated temperature, it was rare when the same abiotic condition 

simultaneously dominated both large-scale increases and large-scale decreases in relative 

abundance, suggesting that different combinations of abiotic factors may influence 

upregulation and downregulation of different compounds. 

Changes in the abundance and diversity of secondary metabolites within a plant’s 

phytochemical profile may alter biotic interactions, potentially leading to broad-scale 

ecological change. For example, while some herbivores respond negatively to forage with 

a higher diversity of PSMs, others appear to target these plants in an effort to alleviate 

costs associated with external stressors via their pharmacological benefits (Forbey and 

Hunter 2012). Additionally, numerous studies have reported that phytochemical diversity 

within a plant community is positively correlated with community diversity across 

multiple trophic levels (Jones and Lawton 1991, Richards et al. 2015), influencing 

invertebrate predators and parasitoids, and potentially extending to vertebrate predators 

as well (Dicke et al. 2012). 
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While the consequences of different abiotic conditions on phytochemical diversity 

remain unpredictable, our results demonstrate that the phytochemical response of plants 

to combinations of abiotic factors cannot be extrapolated from that of individual factors. 

For instance, while warming alone may have a very specific influence on some 

compounds, when in combination with additional abiotic factors such as drought and 

light, warming may lead to highly variable and unpredictable response (Mittler 2006), 

making it increasingly difficult to predict the performance of woody plants in a changing 

environment. Regardless, previous research suggests that changes in phytochemical 

production induced by variability in abiotic conditions can influence both tree resistance 

and pest performance traits (Jamieson et al. 2015), potentially altering the frequency and 

intensity of insect outbreaks (Schwartzberg et al. 2014). Elevated temperatures by 

themselves have been shown to reduce the competitive abilities of more southern boreal 

tree species when compared to co-occurring species adapted to warmer climates (Reich et 

al. 2015). Climate-induced changes to phytochemistry may lead to shifts in the 

competitive landscapes for cold-adapted trees and shrubs, potentially altering their ability 

to compete for resources and defend against pests and pathogens in novel climatic 

conditions. However, because individual compounds and the metabolic profiles of which 

they are a part are differentially influenced by abiotic factors and combinations of these 

factors, predicting how forest plants will respond to novel environmental conditions will 

be challenging. 

 The majority of biotic interactions between plants and other organisms are 

chemically mediated, and recent climate change has challenged our understanding of the 
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mechanisms underlying these interactions. The primary objective of this study was to 

determine how warming influences plant production of secondary metabolites and how 

combinations of additional abiotic factors may modulate this effect. Here, we show that 

heterogeneity in a range of abiotic factors broadly influence secondary chemistry in 

plants thereby leading to condition-specific phytochemical profiles. If our results are 

typical of plant responses, abiotically induced changes to secondary chemistry in woody 

plants could influence their rate of range expansion or contraction under novel climate 

scenarios. Additionally, our results contribute to current efforts to understand how 

continued warming will influence plants and the biotic interactions that serve as the 

foundation for a wide range of ecosystem processes. In the future, studies monitoring 

physiological changes in conjunction with global shifts in PSM profiles would provide 

insights into mechanisms underlying biotic interactions mediated by the local 

environment. As spatial and temporal patterns in the global abiotic environment continue 

to shift, it is imperative that we continue to learn as much as we can about the 

phytochemical response of plants to these changes. 
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Table 1. Summary of results for B4WarmED samples used to assess the influences of temperature and drought on PSM profiles and phytochemical diversity. For 
samples collected during 2013, “mod. temp.” includes all samples collected from plots warmed to ambient + 1.7ºC, while “high temp.” includes all samples 
collected from plots warmed to ambient + 3.4ºC. For a given condition, the mean number of chemical features identified within a species is listed under 
“features”. “Dispersion” represents the results of our multivariate homogeneity of variance test, while “centroid” represents the mean difference in dissimilarity 
matrices relative to our reference group (*). A larger D value indicates greater distance from the reference group than those with a smaller D. All statistical 
analyses were tested against a = 0.05, and statistically significant results are italicized and identified with an asterisk (*). Within the table, “na” indicates “not 
applicable”. 
 

          PSM profile phytochemical diversity 
          perMANOVA dispersion centroid LMErichness perMANOVAturnover 

Year species stress 
condition n features f r2 P f P delta 

 D 

richness 
P f r2 P 

2013 balsam fir 
  
  

ambientª 12 1903 1.223 0.073 0.103 0.576 0.567 na na na 1.206 0.072 0.142 
  mod. temp. 13 1856           -25.800 -47 0.154       
  high temp.  9 1873           -68.500 -30 0.321       
  paper 

birch 
  
  

ambientª 11 1669 1.382 0.090 0.013* 0.765 0.470 na na na 1.444 0.093 0.019* 
  mod. temp. 12 1722           55.700 53 0.201       
  high temp. 8 1700           17.700 31 0.526       

        
 

            
  

      
2014 balsam fir 

  
  
  

ambientª 5 1937 1.016 0.105 0.428 0.346 0.810 na na na 1.076 0.110 0.308 
  temp. 11 2017           196.000 80 0.222       
  drought 5 2012           121.000 75 0.308       
  temp. + 

drought  
9 1992           118.000 55 0.308       

  red maple 
  
  
  

ambientª 5 1968 1.070 0.100 0.303 1.520 0.210 na na na 1.076 0.100 0.320 
  temp. 11 2002           29.300 34 0.800       
  drought 4 1998           97.600 30 0.857       
  temp. + 

drought  
13 1845           -251.300 -123 0.344       

  ambientª 6 1948 1.149 0.097 0.147 1.233 0.307 na na na 1.210 0.102 0.134 
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  paper 
birch 
  
  
  

temp. 12 2014           32.000 66 0.232       
  drought 7 1949           -112.000 1 0.973       
  temp. + 

drought  
11 2036           98.000 88 0.122       

  trembling 
aspen 
  
  
  

ambientª 4 2287 0.689 0.103 0.960 0.061 0.980 na na na 0.622 0.094 0.980 
  temp. 6 2282           17.000 -5 0.961       
  drought 5 2241           -44.000 -46 0.646       
  temp. + 

drought 
7 2282           16.000 -5 0.957       

ª reference group or baseline condition for the given sample year to which all other treatments within species were compared
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Table 2. Number of chemical features that increase and decrease in relative abundance by ≥ 75% as a function the dominant stress condition. In most 
scenarios, the stress condition that led to large-scale increases in relative abundance was different than that which led to large-scale decreases. “Number 
affected” displays the number of chemical features that either increased or decreased by ≥ 75% for the given species and stress condition. 
 

  increase by ≥ 75%  decrease by ≥ 75% 
year species stress condition number affected  stress condition number affected 
2013 balsam fir high temperature 6  high temperature 21 
 paper birch high temperature 28  high temperature 38 
       
2014 balsam fir drought 43  temperature + drought 35 
 paper birch drought 98  temperature + drought 31 
 red maple temperature + drought 36  drought 66 
 trembling aspen temperature 79  drought 37 
       
2015 balsam fir temperature + light 26  light 111 
 beaked hazel temperature + light 155  temperature + light 56 
 paper birch temperature + light 126  light 278 
 trembling aspen temperature + light 280  light 162 
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Table 3. Summary of results for observational samples (2015) used to assess the influences of temperature region and overstory on PSM profiles and 
phytochemical diversity. For a given condition, the mean number of chemical features identified within a species is listed under “features”. “Dispersion” 
represents the results of our multivariate homogeneity of variance test, while “centroid” represents the mean difference in dissimilarity matrices relative to our 
reference group (*). A larger D value indicates greater distance from the reference group than those with a smaller D. All statistical analyses were tested against a 
= 0.05, and statistically significant results are italicized and identified with an asterisk (*). Within the table, “na” indicates “not applicable”. 
 

          PSM profile phytochemical diversity 
          perMANOVA dispersion centroid LMErichness perMANOVAturnover 

species stress condition n features f r2 P f P delta  Drichn

ess 
P f r2 P 

balsam fir 
 
  

referenceª 10 1371 1.579 0.119 0.024* 0.334 0.807 na na na 2.152 0.156 0.004* 
light 8 1287           27.1 -84 0.228       
temp. 10 1373           -11.8 2 0.947       
temp. + light  11 1361           -40.1 -10 0.844       

paper birch 
 
  

referenceª 10 1185 2.029 0.196 0.002* 2.546 0.072 na na na 2.784 0.250 0.001* 
light 7 1168           -2.5 -17 0.675       
temp. 8 1205           88.5 20 0.708       
temp. + light  4 1223           143.4 38 0.537       

beaked 
hazel 
 
  

referenceª 3 1338 1.968 0.269 < 0.001* 0.242 0.863 na na na 1.313 0.120 0.109 
light 8 1220           -227.8 -118 0.467       
temp. 12 1194           -262.1 -144 0.303       
temp. + light  10 1252           -228.1 -86 0.546       

trembling 
aspen 
 
  

referenceª 3 1509 1.352 0.123 0.028* 2.92 0.040* na na na 2.696 0.336 <0.001* 
light 8 1466           -26.2 -43 0.556       
temp. 3 1531           -23.8 22 0.789       
temp. + light 6 1558           -36.4 49 0.537       

ª reference group or baseline condition (i.e., lower temperatures, low light) to which all other treatments were compared 
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Fig.1. Location of observational sites and the B4WarmED Project at the University of Minnesota’s Cloquet 
Forestry Center. The number of replicate plots for each set of abiotic conditions is n=3, and where only two 
can be seen for a given combination of abiotic factors (i.e., temperature + light conditions), locations are 
close enough in proximity that they appear to overlap when viewed at a broad scale. Inset map identifies 
the approximate location of the study area within the state of Minnesota and the boreal-temperate transition 
zone (Brandt, 2009).  
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Fig.2. Non-metric multidimensional scaling (NMDS) plots detailing the influence of moderate and high-
temperature on PSM profiles of (A) balsam fir and (B) paper birch in closed overstory. Ellipses represent 
95% confidence intervals, based on standard error. In balsam fir, both warming treatments exhibit less 
overlap with each other than with ambient. In paper birch, different temperatures lead to distinct profiles 
when compared to each other and ambient.  
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Fig.3. Non-metric multidimensional scaling (NMDS) plots detailing the influence of elevated temperature 
and drought on PSM profiles of (A) balsam fir, (B) red maple, (C) paper birch, and (D) trembling aspen in 
open overstory. Ellipses represent 95% confidence intervals, based on standard error. There appears to be 
no discernible pattern between sets of abiotic factors and PSM profiles, regardless of species.  
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Fig.4. Non-metric multidimensional scaling (NMDS) plots detailing the influence of varying light and 
temperature conditions on PSM profiles of (A) balsam fir, (B) paper birch, (C) beaked hazel, and (D) 
trembling aspen. Ellipses represent 95% confidence intervals, based on standard error. Each species 
appears to respond to different abiotic conditions in a unique manner. Balsam fir appears to create unique 
PSM profiles in high-light conditions when compared to our reference group (closed canopy, low-
temperature), while paper birch and trembling aspen appear to have distinct PSM profiles for each set of 
conditions. Beaked hazel exhibits no discernible pattern.  



 

 44 

 

Fig.5. Relative change in abundance (%) for specific PSM compounds when compared to our reference 
treatment for Year 1 (ambient temperature) for (A) balsam fir and (B) paper birch in closed overstory. 
Neither resin acid in balsam fir was influenced by warming. In paper birch, both catechin and terpene acid 
declined with warming relative to ambient. Error bars represent the 95% boot-strapped confidence intervals 
and relative abundances significantly different than those found in the baseline treatment are identified by 
an asterisk (*). 
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Fig.6. Relative change in abundance (%) for specific PSM compounds when compared to our baseline 
treatment for Year 2 (ambient temperature, ambient precipitation) for (A) balsam fir and (B) paper birch in 
open overstory. Neither resin acid in balsam fir was influenced by warming. In paper birch, relative 
abundance of catechin was not influenced by temperature, however, terpene acid was undetected. Error 
bars represent the 95% boot-strapped confidence intervals. 
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Fig.7. Relative change in abundance (%) for specific PSM compounds when compared to our baseline 
treatment for Year 3 (cold region, closed overstory) for (A) balsam fir and (B) paper birch. Neither resin 
acid in balsam fir was influenced by warming. In paper birch, relative abundance of catechin was only 
influenced by the combination of light and high temperatures, increasing by more than 250%. Terpene acid 
was unaffected, regardless of stress condition. Error bars represent the 95% boot-strapped confidence 
intervals and relative abundances significantly different than those found in the reference condition are 
identified by an asterisk (*). 
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Chapter 3: Incorporating Biomass Improves Predictions of Spatial Variation in d15N 

and d13C Across a Northern Mixed Forest. 

ABSTRACT As an ecological tool, understanding the spatial variation of isotope ratios 

(i.e., isoscapes) has become increasingly valuable in efforts to understand various aspects 

of organismal behavior and ecology. To capture the most fundamental elements of 

isotopic variation at large spatial scales, it is essential first to predict spatial variation in 

the relative abundance of the materials used to estimate the isotopic landscape. Methods 

used to predict spatial variation at smaller spatial scales, however, have yet to include 

relative abundances of different materials. Moreover, when estimating the isotopic 

landscape, traditional regression kriging methods fail to account for the influences of 

environmental grouping factors (i.e., random effects) that can impact our ability to 

predict spatial heterogeneity accurately. We use a mixed-effects model regression kriging 

framework to estimate spatial variation of δ13C and δ15N values in plants commonly eaten 

by moose in northeast Minnesota. We then refined these predictions using species-

specific allometric equations to estimate above-ground biomass of three different moose 

forage-preference groups. We determined our best-fitting mixed-effects models via two-

step, AIC-based model selection and then used these models to predict spatial variation in 

stable carbon and nitrogen isotopes across the study region. For our final models, we 

kriged the regression residuals across the study region and added them to our isoscape 

predictions. Finally, we evaluated our prediction accuracy via spatial hold-one-out cross 

validation. Different preference groups exhibited substantial variation in abundance and 

distinct isotopic signatures. Moreover, models incorporating biomass led to predictions 
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that were distinct from those that did not, and the use of mixed-effects models improved 

our ability to predict the isotopic landscape. Regression kriging using mixed-effects 

models and the refinement of model predictions using measures of abundance, provides a 

flexible, yet mechanistically driven approach to modeling variation across space and 

through time. Thus, the method we present here is broadly applicable and could be 

adapted to many scenarios in which kriging is part of the analytical process. 

INTRODUCTION  

Understanding how animals interact with their environment, specifically where 

they go and what they eat, is foundational to the fields of ecology and animal behavior 

(Kingsland 1991, Owen-Smith et al. 2010). One way to study animal behavior is by using 

stable isotope analysis, which has become increasingly common in studies of animal 

movement and foraging (Cerling et al. 2006). A major advantage of using stable isotope 

analysis over other methods is its flexibility in allowing us to reconstruct ecological 

processes and activities without witnessing them firsthand (West et al. 2006). For 

example, the isotopic signatures of plants are reflected in the biogenic materials of the 

herbivores that consume them, and as a result, we can determine not only what an 

herbivore ate and where it went, but also why it may have gone there (Cerling et al. 2006, 

Raynor et al. 2016). Based on this premise, stable isotope analysis has been used to 

evaluate nutritional outcomes of habitat-use and dietary choice in elk (Walter et al. 2010), 

to show important differences in feeding behavior between migrant and resident 

elephants in southern Kenya (Cerling et al. 2006), and to investigate diet segregation as a 

function of sex-specific nutritional demands in American bison in Yellowstone National 
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Park (Berini and Badgley 2017). When incorporated with animal isotopes, spatial 

variation in the isotopic values of animal resources can provide researchers with valuable 

insights into animal behavior. 

Spatial patterns in the variation of isotope ratios, recently described as isoscapes 

(West et al. 2009), have long been used to inform a range of biogeochemical and 

biological processes (Bowen 2010, West et al. 2009). As an ecological tool, isoscapes 

have become increasingly valuable in our efforts to gain a better understanding of various 

aspects of organismal behavior and ecology. For example, deuterium (dD) isoscapes have 

been used to investigate long-distance movements of butterflies across the Sahara desert 

(Stefanescu et al. 2016) and spatial variation in stable isotopes of strontium (87Sr/86Sr) 

and oxygen (d18O) have been used to reconstruct caribou migrations in Alaska (Britton et 

al. 2009). Spatial variation in values of dD and δ13C have been used to predict the most 

likely dispersal route of a radio-collared cougar (Puma concolor; Henaux et al. 2011), 

and heterogeneity of d15N and d13C values have been used to evaluate variation in protein 

inputs for geese (Anser anser) in Sweden (Fox et al. 2009). As the number and diversity 

of studies utilizing isoscapes increases, our ability to precisely and accurately predict 

heterogeneity in the isotopic landscape will continue to improve. 

To model isotopic variation at large spatial scales, it is essential first to predict 

spatial variation in the abundances of different isotopic substrates used to estimate this 

variation (if two or more substrates differ in their isotopic composition). For example, C3 

and C4 plants have distinct d13C signatures, and thus, the relative abundances of these two 

functional groups has become a critical consideration when predicting spatial variation of 
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d13C values (aggregated across functional groups) at regional to continental scales (Still 

and Powell 2010). Estimating geographic variation of d13C values at smaller spatial 

scales (i.e., within a single functional group), however, is more complicated, due in part 

to the intensive sampling required to establish relationships between d13C values and 

environmental covariates. Although early studies of isotopic variation in plants were 

unable to find significant differences in d13C among plant taxa (Craig 1953, 1954), recent 

work has identified differences in the isotopic composition both within and among plant 

species (Garten and Taylor 1992, Leavitt and Long 1986, Marshall et al. 2007). Royle & 

Rubenstein (2004) noted that geographic variation in species abundance is an important 

consideration when spatial variation in the isotopic landscape is highly non-uniform. 

Although their work focused on properly assigning the geographic origin of birds based 

on δD and δ13C values, many of the arguments they make for incorporating spatial 

variation in species abundance into isoscape models are broadly applicable. Nevertheless, 

models depicting isotopic heterogeneity at smaller spatial scales have yet to include 

variation in abundance of different taxonomic or functional groups. 

Traditionally, models depicting geographic variation in stable isotopes have relied 

on isotopic data derived from sampled locations, while locations without measurements 

were filled in via methods of spatial interpolation (Bowen and Wilkinson 2002, 

Cheesman and Cernusak 2016). However, the need to estimate error in isoscape models 

has led to the development of new geospatial modelling techniques (Bowen and 

Revenaugh 2003, Lott and Smith 2006). For example, regression models are now 

commonly used to inform spatial interpolation, which permits researchers to estimate and 
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potentially minimize prediction error by also kriging regression residuals (i.e., regression 

kriging, Bowen and Wilkinson 2002). Moreover, increased access to high-resolution 

spatial data has allowed for prediction of isotopic variation at higher resolutions over 

limited spatial extents (e.g., field-scale; Hellmann et al. 2016). With recent 

advancements, opportunities now exist to develop mechanistic isoscape models that have 

even greater accuracy and precision. 

When estimating the isotopic landscape, currently employed methods often fail to 

account for the potential effects of environmental, categorical variables that may 

influence model estimates. For example, known variation of d13C within species or 

functional groups could easily be incorporated as a random effect in a mixed-effects 

regression kriging framework. At the local level, d13C in leaf tissue is known to vary as a 

function of canopy height, irradiance levels, and water-use efficiency (Ometto et al. 

2006), all of which may be indirectly influenced by disturbance. Thus, by incorporating 

disturbance type as a random effect, we are better able to identify meaningful fixed-

effects that might otherwise be obscured by the unmeasured influences caused by 

different environmental variables. Regression kriging that incorporates mixed effects 

models makes it possible for researchers to account for these unmeasured (and likely 

complicated) influences while also improving upon the prediction accuracy of currently 

employed methods. 

As a case study, we used biomass-informed, mixed-effects models in a regression 

kriging framework to study how the isotopic composition of moose forage changes across 

space and to test whether our method improved upon the accuracy of more traditional 
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techniques. This study system provides a unique opportunity to test our method in a 

context that may also have conservation implications, as moose in this region have been 

declining since approximately 2005, with nutritional suppression suggested as a potential 

driver (Monteith et al. 2015, Wünschmann et al. 2015). While regression kriging with 

mixed-effects models has been applied to improve digital mapping of soil properties 

(Omuto and Vargas 2015), to our knowledge this method has not previously been used to 

predict spatial variation in stable isotopes. We use this approach to investigate four 

questions associated with the estimation of isotopic variation at the landscape scale. First, 

are different forage-preference groups isotopically distinct from one another (Q1) and 

second, are kriging predictions of the abundances of different preference groups distinct 

from one another and spatially heterogeneous (Q2)? Third, do mixed-effects models 

characterizing spatial variation in stable isotopes improve predictions over those created 

via simple linear models (Q3)? Finally, do biomass-informed isoscapes provide 

predictions that are distinct from those provided by uninformed isoscapes (i.e., isoscapes 

in which we assume equal abundance of all sampled species; Q4)? The answers to these 

questions will help refine our understanding of how stable isotopes vary across space and 

potentially, how to more accurately model this variation. 

MATERIALS AND METHODS 

Model System 

 Moose are cold-adapted, north-temperate ungulates that are at the southern edge 

of their bioclimatic envelope in northern Minnesota (Lenarz et al. 2009). In the 

northwestern part of the state moose have been all but extirpated since about 2007 
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(Murray et al. 2006). In the northeastern part of the state, moose have declined by more 

than 60% since 2005 (DelGiudice 2018), with recent warming suggested as a potential 

driver (Lenarz et al. 2009, 2010). Over the last century, temperatures in northern 

Minnesota have risen by an estimated 1.7 to 2°C (EPA 2016). While it has been 

hypothesized that increasing temperatures may be contributing to this decline (Lenarz et 

al. 2009, 2010, Murray et al. 2006), a clear connection between moose population 

declines and rising temperatures has yet to be established. 

The study area in northeastern Minnesota covers approximately 1.3-million 

hectares, and is composed primarily of southern boreal forest, including large portions of 

Superior National Forest and the Boundary Waters Canoe Area Wilderness (BWCAW). 

This region is a mosaic of upland and lowland forest types characterized by black spruce 

(Picea mariana) and northern white cedar (Thuja occidentalis) in the lowlands and 

balsam fir (Abies balsamea), trembling aspen (Populus tremuloides), and paper birch 

(Betula papyrifera) on the uplands, with large stands of jack (Pinus banskiana), red (P. 

resinosa) and white pine (P. strobus) occurring throughout. While large swaths of 

unlogged areas remain (i.e., 169,000 ha within the BWCAW), fire and logging are 

common and routine forms of disturbance in this ecosystem (Heinselman 1996). Mean 

annual temperature is approximately 2 ºC with mean annual precipitation (rain plus 

snowfall water equivalent) of around 70 cm (Heinselman 1996). Summers in this region 

are typically short and cool, with mean temperatures of around 17.5 ºC in mid-July and 

an average precipitation of approximately 10 cm. Winters are characterized as long and 

cold, with mean temperatures of roughly -17ºC and normal annual snowfall totals ranging 



 

 54 

from 1.4 to 1.8 m (Frelich 2002, Heinselman 1996). Topography across the study area 

varies from relatively flat to moderately hilly, with elevation ranging from 183 m at the 

surface of Lake Superior, to 701 m at Eagle Mountain, the highest point in the state. The 

area is sparsely inhabited, with few paved roads and much of the region accessible only 

by foot, logging road, or canoe (Lenarz et al. 2010).   

We established 0.04 ha plots throughout northeastern Minnesota (n=70) to 

characterize the isotope composition (i.e., δ13C and δ15N values) and biomass of plant 

species within each plot (Fig.1). Plots covered a range of disturbance ages (i.e., 13 years, 

9 years, 4 years, and undisturbed) and types (i.e., canopy burn, clear cut, and insect-

defoliation), as well as a range of landcover types (i.e., wetland and wetland forest, 

coniferous forest, deciduous forest, mixed forest, and regenerating forest). Because 

temperature has been implicated as one of the leading causes of decline for moose in 

Minnesota (Lenarz et al. 2009, Murray et al. 2006), plots were originally established as 

part of a parallel study investigating the influences of high summer temperatures on 

moose forage. Thus, our network of plots were distributed across the study region into 

three discrete temperature zones (cool, moderate, and warm) that span a mean-maximum 

summer temperature gradient of approximately 5.5 ºC (PRISM Climate Group 2017). 

Stable Isotopes 

We sampled summer forage in each of the 70 plots from late May to early August 

during each year from 2012 to 2016 (Fig.1). In total, we collected 2,694 summer forage 

samples from more than 30 species (Table S3-1). We categorized all species into one of 

three groups, based on dietary preference – high, medium, and low (Table S3-1; Peek et 
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al. 1976). These groups also vary according different quality metrics (e.g., %N and C:N), 

with high-preference, in general, being the highest quality and low-preference forage 

being the lowest quality (Table S3-1). Where possible, we collected up to five samples of 

each species we encountered in each plot, where each sample consisted of 5-7 leaves that 

we stripped from a peripheral stem located between 0.5 to 1.0 m from the forest floor. 

Once collected, samples were placed in a cloth bag labeled with the plot and sample ID. 

In preparation for stable isotopes analysis, samples were dried in a 60ºC oven for 

24 to 48 hours and subsequently placed in light-proof, tin containers. A small portion of 

each sample was collected and ground to a homogenous powder using a Spex 

SamplePrep GenoGrinder bead mill with 2.8 mm stainless steel grinding beads. Once 

homogenized, we weighed 2.5 ± 0.1 mg of each sample into a 5x9 mm Costech tin 

capsule. All samples were analyzed either at the Stable Isotope Laboratory in the 

Department of Earth Sciences at the University of Minnesota (UMN) or the Stable 

Isotope Laboratory in Earth and Planetary Sciences at the University of California, Santa 

Cruz (UCSC).  At UMN, samples were analyzed for δ15N and δ13C values via flash 

combustion in a Costech 4010 Elemental Analyzer (EA) coupled to a Thermo-Finnegan 

Delta V Plus isotope ratio mass spectrometer (IRMS). At UCSC, samples were analyzed 

via flash combustion in a CE Instruments NC2500 EA interfaced to a ThermoFinningan 

Delta Plus XP IRMS. At each location, the resulting gas was analyzed for elemental 

concentration of 13C/12C and 15N/14N ratios and expressed in standard δ notation, 

representing the differences between samples ratios and ratios found in international 

standards for carbon (VPDB) and nitrogen (atmospheric N2). Finally, because samples 
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were analyzed in two different laboratories, we alleviated concerns of machine or lab 

specific analytical biases by running five samples from six different species in each lab 

and creating offset and linearity corrections that we then applied to all samples analyzed 

at UCSC. 

Woody Biomass Calculations 

While moose are known to break stems with a diameter at breast height (DBH) of 

≤ 6cm in order to browse on terminal shoots, they also occasionally browse on plants that 

are relatively close to the forest floor (Renecker and Schwartz 2007). Thus, within each 

0.04 ha plot, we measured smaller woody stems (i.e., stems ≤ 6 cm of diameter at breast 

height, DBH, and ≥ 15 cm in height) within three nested subplots along the 30º, 150º, and 

270º azimuths, at 5.5 m from the plot centroid. Within a 25 m2 subplot, we tallied the 

number of individuals of each species having a DBH ≥ 2.5 cm and ≤ 6 cm (i.e., saplings), 

with tallies for each species recorded for each 0.5 cm DBH interval. Within a smaller, 10 

m2 subplot, we measured diameter at 15 cm height of all woody plants that were ≥ 15 cm 

in height but < 2.5 cm in DBH (i.e., shrubs or advanced regeneration). We tallied the 

number of individuals of each species within each 0.5 cm size class, from 0.5 cm to 2.5 

cm. Anything with a diameter < 0.5 cm at 15 cm height was omitted. 

 We calculated estimates of above-ground biomass using species-specific 

allometric equations based on the measurements detailed above. For saplings, we used 

species-specific equations from Jenkins et al. (2003), to estimate above-ground biomass 

using DBH. We also used species-specific equations for shrubs and small saplings, 

(Perala and Alban 1993, Smith and Brand 1983), which allowed us to estimate above 
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ground biomass based on stem diameter at 15 cm height. For some species, equations for 

whole, above-ground biomass were not available. For those species, we calculated 

biomass for stems and foliage separately, and then added those values to estimate total 

biomass of each species in each plot. All estimates were converted to kg/m2. 

Creating Isoscapes 

To model carbon and nitrogen isotopes across the landscape, we needed to 

aggregate the isotope data within each preference group at each plot. We did this in two 

ways. First, we took a traditional approach in which we simply averaged all isotope 

samples within a given preference group in each plot. This approach, which did not 

account for sample density or available biomass, we refer to as “biomass uninformed”. 

Our primary goal was to represent the isotopic composition of different groups of plants 

as those groups are perceived by a large herbivore. Because isotope samples were not 

collected in proportion to availability within plots or on the landscape, we used a 

“biomass-informed” approach, in which we generated bootstrapped samples of the 

isotope data (weighted by our biomass estimates) for each preference group in each plot 

(see “Bootstrap Sampling”). Once plot-level estimates were made for the biomass 

uninformed and informed approaches, we developed linear models (with and without 

random effects) to determine what biotic and abiotic factors influenced variation in 

isotope values (see “Model Selection”). Finally, we used regression kriging to make 

spatial predictions of how isotope compositions of each preference group vary across the 

landscape (see “Regression Kriging”), and then compared prediction accuracy using 

spatial leave-one out cross validation (see “Comparison of Models and Predictions”). 
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Bootstrap Sampling 

 We used the biomass estimates from each plot to generate bootstrapped data 

reflecting the mean stable isotope composition of each forage preference group as a 

function of the relative abundance of each group within each plot. To do this, we used the 

sample function in the base package of R (R Core Team 2018), which can use a vector of 

probability weights (referred to below as “selection probability vector”) for selecting 

individual values from the sampled data set (i.e., the prob argument within the sample 

function). Each plot had three selection probability vectors, one for each preference 

group. Within each plot, each vector consisted of a string of numbers representing the 

selection probabilities of all samples within a given preference group. Each sample had 

its own selection probability that was equal to the proportional abundance of that species 

within its preference group, divided by the number of samples collected for that species. 

As an example, in a hypothetical plot A, the low-preference forage samples consist of 3 

balsam firs, 2 speckled alders, and 1 beaked hazel, for 6 total samples in this preference 

group — each species making up 72%, 19%, and 9% of the low-preference forage 

biomass in plot A, respectively. Given this, our selection probability vector for low-

preference forage in plot A would be a string of 6 values: 3 values of 0.72/3 (0.24), 2 

values of 0.19/2 (0.095), and one value of 0.09, all of which sum to 1.00. Once our 

selection probability vectors were established, we sampled each plot-preference group 

combination 500 times, with replacement. We then calculated the mean of this sample, 

which represents the mean stable isotope composition of a preference group within a plot. 

To account for potential variation from one sampling effort to the next, we repeated this 
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procedure 1000 times, which yielded a single vector of 1000 means. We then calculated 

the mean of this vector and saved it as our “biomass-informed” isotope value for that 

forage-preference group, within the given plot. We repeated this procedure for each plot 

and each forage-preference group, for both δ13C and δ15N values.  

  To summarize our uninformed data, rather than simply use mean isotope values 

for each preference group in each plot (i.e., mean stable isotopes values not scaled by 

biomass), we used a procedure similar to that described above. However, rather than 

incorporating species-specific proportional abundances, we assumed equal abundance 

across all species found within each forage-preference group at each plot. Thus, in the 

example above, our vector of selection probabilities for low-preference forage in plot A 

for uninformed data would also be a string of 6 values – 3 values of 0.33/3, 2 values of 

0.33/2, and one value of 0.33, all of which sum to 1.00. 

Model Selection 

 We selected 15 landscape covariates, 13 fixed and 2 random (Table S3-2), and 

performed a two-step, AIC-based backward elimination to define the best fitting linear 

mixed-effects model for δ15N and δ13C for each forage-preference group, across all plots. 

Our “full model” contained all fixed and random effects, and for the first step of the 

model-selection process, we held our random effects constant and removed one fixed 

covariate at a time until we reached the fixed-effects structure yielding the lowest AIC 

score. Once we achieved the fixed-effects structure yielding the lowest possible AIC 

score, we performed AIC-based backward elimination on the random effects. We used 

the lmer function in the lme4 R package for all linear mixed-effects models (Bates et al. 
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2015). When defining our fixed-effects structure we set the REML argument in lmer to 

FALSE, and when defining our random effects structure we set this argument to TRUE 

(Faraway 2016). In one scenario (i.e., δ15N for low-preference forage), our best fitting 

model was rank deficient (i.e., insufficient data to estimate the chosen model due to too 

many covariates). To alleviate rank deficiency, we removed the set of factor covariates 

that altered the model’s AIC score the least.  

Regression Kriging 

To prepare our spatial data for regression kriging, all spatial covariate data that 

were originally formatted as shapefiles were converted into raster datasets in ArcGIS 

10.3.1 (ESRI 2011). Once all data were converted, we needed to make sure that the cell 

size of all raster datasets were equal. Thus, for any raster dataset with a cell size larger 

than 30x30 m, we used bilinear interpolation via the resample tool in ArcGIS to reduce 

the cell size without altering the raster’s extent. Next, we needed to ensure that all of our 

raster datasets were of the same extent. We accomplished this with the extract by mask 

function in ArcGIS, using the raster with the smallest extent as our “mask”. Finally, we 

used the raster to ASCII conversion tool in ArcGIS to convert each raster to an ASCII file 

that could then easily be read into R as a single, multi-layered spatial grid data frame. To 

initiate regression kriging in R, we used the readGDAL function from the rgdal package 

(Bivand et al. 2018) to read in our ASCII landscape covariate data and the read.csv 

function in the base package to read in our plot locational data (i.e., the easting and 

northing of each plot’s centroid). To align our plot location data with our landscape 

covariates, we used the over function from the sp package (Bivand et al. 2013, Pebesma 
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and Bivand 2005) and then combined the corresponding landscape covariate data with 

our plot locational data file. 

By definition, regression kriging is a method of spatial interpolation that 

combines regression modeling with kriging of the regression residuals (Omuto and 

Vargas 2015). Kriging the residuals has been shown to improve spatial predictions 

substantially by allowing for small-scale autocorrelation while also accounting for 

measurement and modelling error (Alsamamra et al. 2009, Omuto and Vargas 2015, 

Prudhomme and Reed 1999). For spatial interpolation of the residuals from our best-

fitting models, we used the autoKrige function in the automap package (Hiemstra et al. 

2009). We determined the best fitting variogram model both by means of visual 

inspection and the sum of squared errors of the fitted model, and then incorporated the 

best fitting variogram model into the autoKrige function via the model argument. We 

then used the predict function in the stats package (R Core Team 2018) to predict δ13C 

and δ15N values across the entire study area and summed these predictions with our 

kriged residuals, which helps to account both for local autocorrelation and measurement 

and modelling error. We saved the resulting data as grid files using the write.asciigrid 

function in the sp package (Bivand et al. 2013, Pebesma and Bivand 2005). For 

visualization purposes, we then converted these ASCII files into raster data sets in 

ArcGIS using the ASCII to raster conversion tool. All R code, sample data, and resulting 

output for this portion of our analysis can be found at the Date Repository for the 

University of Minnesota (DRUM). 

Comparison of Models and Predictions 
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 In general, accounting for variation in the abundance of different substrates (e.g., 

forage biomass) should inherently result in estimates of the isotopic landscape that more 

accurately reflect the true isotopic mean at any point in space. Thus, we assume that 

models accounting for biomass are a better reflection of reality (i.e., the average isotope 

value of any point in space) than those that do not. Regardless, we used both qualitative 

and quantitative methods to determine which models provide better fits and predictions. 

We used one-way ANOVA followed by Tukey’s Test for Honestly Statistical Differences 

to determine if different forage-preference groups are isotopically distinct from one 

another (Q1). To visualize spatially explicit differences in the amount and relative 

abundance of different forage preference groups (Q2), we calculated the absolute 

difference between each preference group and mapped these differences using the raster 

calculator in ArcGIS 10.3.1. To evaluate if mixed-effects models characterizing spatial 

variation in stable isotopes improve predictions over those created via simple linear 

models (Q3), we calculated marginal and conditional r2. Marginal r2 describes the 

proportion of variance explained by the fixed effects, while conditional r2 describes the 

proportion of variance explained by both the fixed and random effects combined. Finally, 

to determine if biomass-informed isoscapes provide predictions that are distinct from 

those provided by uninformed isoscapes (Q4), we performed spatially referenced hold-

one-out cross validation. Specifically, we held out an individual plot and re-kriged δ13C 

and δ15N for each preference group using the remaining plots and our best fitting linear 

mixed-effects models. We then compared the predicted values of the held-out plots (i.e., 

δ13C and δ15N for high-, medium-, and low-preference forage) to the true values, and 
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continued this process across all plots. We then calculated the root-mean-squared error 

(RMSE) to determine how well our regression-kriging process predicted the values of our 

held-out sites, for both uninformed and biomass-informed isotopes. By comparing the 

modeled values at each site to the “true” values, RMSE provides us with a measure of 

how well each model performed. Values of RMSE are in the same units as the quantities 

being estimated, and values closer to zero indicate better predictive power. Finally, to 

visualize differences among uninformed and biomass-informed models, we calculated the 

absolute difference between uninformed and biomass-informed isoscapes for each 

preference group and mapped these differences using the raster calculator in ArcGIS 

10.3.1. 

RESULTS 

In general, different preference groups exhibited both distinct isotopic signatures 

and substantial variation in abundance across northeastern Minnesota (Fig.2). Moreover, 

the use of mixed-effects models helped improve isoscape predictions and models 

incorporating biomass led to predictions that were distinct from those that did not. When 

evaluating raw isotope data to determine if different forage preference groups were 

distinct (Q1, Fig.2), results of one-way ANOVA for δ13C (F2,2691 = 129.9, p < 0.00001, η2 

= 0.084) and δ15N (F2,2691 = 24.9, p < 0.00001, η2 = 0.085) were statistically significant. 

Furthermore, Tukey HSD Tests comparing preference groups against one another for 

both δ13C and δ15N revealed that all groups were isotopically distinct, with each 

comparison yielding p < 0.0001. 
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When inspecting model predictions for the proportional and absolute abundance 

of different forage preference groups (Q2), both measures of abundance exhibited 

substantial variation across all preference groups (Fig.3). Predictions of low-preference 

forage exhibited the greatest mean abundance across the study region (49%) and 

predictions of medium-preference forage exhibited the smallest mean abundance (18%). 

Mean abundance of high-preference forage across the study region was approximately 

31%. Additionally, each preference group exhibited a high degree of spatial 

heterogeneity across the study region. For example, proportional abundance of low-

preference forage ranged from 0% to 100% with a standard deviation of 28%, while the 

proportional abundance of high-preference forage also ranged from 0% to 100% with a 

standard deviation of 23%%. Medium-preference forage ranged from 0% to 100%, with a 

standard deviation of 21% (Fig.3). Additionally, only two of the thirteen fixed effects 

(i.e., northing and mean annual precipitation) appeared in all models used to predict the 

abundance of different forage groups (Table 1). Furthermore, differences in abundance 

between low and medium-preference forage appeared to be inversely related to 

differences exhibited between medium- and high-preference forage. For example, those 

areas exhibiting large differences between low- and medium-preference forages exhibited 

relatively small differences when comparing medium- and high-preference foods. In 

general, lower-preference forages were more abundant throughout the study region than 

higher-preference forages (Fig.3). 

When evaluating the ability of mixed-effects models to improve our predictive 

power (Q3), we found that incorporating random effects improved our ability to predict 
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δ13C for medium-preference forage for our uninformed models (Table 2), and both low 

and medium-preference forage for our biomass-informed (Table 3) models. For δ15N, we 

found that mixed-effects models improved our ability to predict all forage-preference 

groups, for both uninformed (Table 4) and biomass-informed (Table 5) models. The 

inclusion of random effects improved r2 values by as much as 0.20 for δ13C values and by 

as much as 0.876 for δ15N.  

In general, uninformed and biomass-informed isoscapes were best characterized 

by models that were distinct across different preference groups (Q4, Tables 2 – 4). 

However, there were varying degrees of overlap in the fixed effects of the best fitting 

models for different preference groups, and this was true for both uninformed and 

biomass-informed models. For example, δ15N for medium-preference forage had a single 

fixed effect in the uninformed model, while the biomass-informed model for δ15N values 

of the medium-preference group had six fixed effects (Tables 4 and 5). Conversely, 

models characterizing δ15N for high-preference forage for both uninformed and biomass-

informed had identical structures (Tables 4 and 5). When predicting held out data, RMSE 

estimates ranged from 0.69‰ to 1.05‰ for δ13C and from 0.92‰ to 1.70‰ for δ15N 

(Tables 2-5). Maps depicting the differences between uninformed and biomass informed 

isotopes suggest strong differences between different prediction methods. While 

differences among uninformed and biomass-informed isoscapes for low and high-

preference foods are less pronounced for δ15N, predictions of the isotopic landscape for 

these preference groups differ by as much as 1.5 ‰ and 1.3 ‰, respectively (Fig. 6). 

Maps depicting the absolute difference between uninformed and biomass-informed 
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predictions show that accounting for biomass when estimating the isotopic landscape can 

yield substantially different predictions (Fig.6) that may vary by 10‰ or more (Fig.6e). 

DISCUSSION 

When estimating the isotopic landscape, accounting for the relative abundance of 

different substrates used to estimate the landscape will inherently lead to isoscape models 

that more accurately represent reality. The modeling approach we present here is among 

the first to incorporate biomass data to refine predictions of isotopic variation in plants at 

the landscape scale. In this study, isoscape estimates based on plant groups that vary both 

in their abundance and isotopic composition exhibit substantial variation between models 

that account for abundance (i.e., biomass) and those that do not (Tables 2-5). Moreover, 

accounting for the abundances of different plant groups often led to the inclusion or 

omission of landscape covariates resulting in models that better predict variation in the 

isotopic landscape (Tables 2-5). However, even though some models had identical 

structures (e.g., δ15N for high-preference forage, both informed and uninformed), 

accounting for site-to-site variation in the abundance of different preference groups still 

led to differences in isoscape estimates (e.g., differences of up to 1.3‰, Fig.6f) that could 

influence the results of any study utilizing these data as an important source of inference. 

Overall, our results suggest that accounting for variation in the abundance of different 

isotopic substrates, can lead to isoscape estimates that are distinct from those that do not 

(Fig.6), and therefore, better reflect the actual isotopic variation present across the 

landscape (i.e., CVLMER RMSE values in Tables 2-5). 
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Currently, the majority of models used to characterize variation in the isotopic 

landscape use simple linear models, however, we show here that incorporating 

environmental grouping factors (i.e., random effects) can substantially improve model fit. 

Incorporating random effects via the use of mixed-effects models improved the 

performance of nine of our 12 isoscape models, and improved model predictive ability by 

as much as 87% in one instance (i.e., uninformed δ15N for mid-preference forage, RMSE 

= 0.92 ‰). While the inclusion of random covariates had no influence on the 

performance of three of our models, this could change with the inclusion of different 

covariates. We utilized bedrock geology and disturbance as random effects for both δ13C 

and δ15N values. However, given our results, values of δ15N are clearly more impacted by 

these covariates than those of δ13C. The inclusion of different random covariates would 

likely influence how well these models perform. For instance, due to the influence of sub-

canopy CO2 recycling on δ13C values (van der Merwe and Medina 1989), accounting for 

the amount, structure, and complexity of the space between the forest floor and the 

canopy could substantially improve model performance for δ13C values. While the 

incorporation of random effects did not always help explain more of the variance, mixed-

effects models are easy to implement and provide researchers with a relatively simple 

approach to investigating mechanistic drivers underlying spatial heterogeneity. 

Different plant species vary in their isotopic composition and therefore, methods 

that do not account for spatial variation in the abundance of these species may lead to a 

misrepresentation of the isotopic landscape. Accounting for variation in the relative 

abundance of different preference groups altered our estimates of the isotopic landscape 
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by as much as 10‰ (i.e., the maximum difference between uninformed and informed 

isoscapes for δ15N for mid-preference forage), and the average difference between 

uninformed and biomass-informed isoscapes ranged from 0.11‰ to 1.95‰. A more 

important consideration than differences in our average estimates, however, may be the 

refined depictions of spatial heterogeneity in these models and how it may inform our 

knowledge of ecological systems. For example, performance of the moose population 

across northeastern Minnesota is relatively heterogeneous, with some areas performing 

relatively well and others performing poorly (DelGiudice 2018). Because different 

forage-preference groups are isotopically distinct and the isotopic values for these groups 

are heterogeneous across the study region, moose traveling through this landscape will 

carry with them an isotopic signature of where they have been and what they have eaten. 

Thus, models that accurately characterize spatial heterogeneity in the isotopic landscape 

could be beneficial when evaluating how diet and habitat-use behavior of moose may be 

contributing to spatial heterogeneity in population performance. It is also important to 

note that utilizing biomass to help refine isoscape predictions will be even more useful 

for landscapes in which substrate groups are more isotopically distinct than that which we 

use here (e.g., landscapes that include C4 grasses). 

While the primary goal of this study was to provide a more accurate and precise 

means for modeling the isotopic landscape, models characterizing spatial variation in the 

abundance of different groups of plants is an additional benefit of this method. For 

example, data that characterize how dietary components vary in their abundance across 

space can provide insights into potential contributors to population decline and, therefore, 
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may help focus research and management efforts. In the case study we present here, 

statistical models characterizing spatial variation of different forage-preference groups 

allows us to determine which landscape covariates influence the abundance and 

distribution of moose forage. Those areas where the moose population is performing 

poorly appear to correlate with areas in which high-preference forage is relatively less 

abundant, and vice versa (DelGiudice 2018). If managers want to increase the abundance 

of high-preference moose forage, they may want to manage for high-preference species 

(e.g., paper birch, trembling aspen, willow) in areas with optimal solar insolation. Our 

models also corroborate other studies that show both temperature and precipitation 

influence the abundance and distribution of different boreal plants (Castro et al. 2004, 

Kleidon et al. 2009, Lesica and Crone 2017). Thus, changes in climate expected to occur 

in northeastern Minnesota over the coming decades should be considered when thinking 

about how to manage habitat in a way that is optimized for the future success of moose in 

Minnesota.  

Animal behavior is, at least in part, a manifestation of how individuals respond to 

heterogeneity in their environment (Dall et al. 2005), and stable isotopes are a powerful 

tool that makes it possible to evaluate the behavioral response of animals to this 

heterogeneity (Rubenstein and Hobson 2004). Although we use a declining moose 

population in northeast Minnesota as our model system, the principles, concepts, and 

methods we apply throughout are applicable to a range of species across a variety of 

habitat types. For example, in order to reconstruct an herbivore’s diet using stable 

isotopes, one needs only to know the stable isotope composition of the herbivore and its 
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potential forage (Parnell et al. 2013). However, even without stable isotope data from an 

herbivore, researchers could feasibly use the method we present here to create landscape-

scale models depicting an animal’s fundamental dietary niche (i.e., what the diet should 

be given the composition of the landscape, in the absence of selection). Comparing 

spatially explicit estimates of an animal’s fundamental dietary niche to that which the 

animal actually consumed could provide insights that help us understand the mechanisms 

that drive movement and foraging behavior across a range of different model systems.  

The approach to kriging that we describe here is highly flexible and broadly 

applicable to many scenarios in which kriging is part of the analytical process. As a 

result, this method could be used to model spatial variation of a range of continuous 

variables, not just isotopic compositions, at a wide range of spatial scales. Regression 

kriging using mixed-effects models has previously been applied in soil sciences (Omuto 

and Vargas 2015) and incorporating abundance measures like biomass of various plant 

species could be used to refine spatially explicit predictions of forage quality (i.e., crude 

protein, C:N ratios, plant secondary metabolites). Regardless of the application, 

regression kriging using mixed-effects models and the refinement of model predictions 

using measures of abundance, provides a flexible, yet mechanistically driven approach to 

modeling environmental covariates that vary both across space and through time.  
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Table 1. Model structure for mixed-effects models characterizing biomass of different moose forage-preference groups. All values were truncated to three 
significant digits. Covariates with no values under a given preference group indicates that the covariate was not a part of the best fitting model. Marginal r2 

explains the proportion of the variance explained by the main effects, whereas conditional r2 explains the proportion of the variance explained by both the main 
and the random effects combined. Where marginal r2 is equal to the conditional r2, there was no benefit to using mixed-effects models over simple linear models. 
RMSE for cross validation (CVLMER, RMSE) was derived via hold-one-out cross validation. For metadata associated with model covariates, see Table S3-2. 
“MMST” and “DEM” correspond to “mean maximum summer temperature” and “digital elevation map,” respectively.  
 

 low preference  medium preference  high preference 
fixed effects β SE P  β SE P  β SE P 
covertype            

wetland forest — — —  -10.55 11.491 0.375  — — — 
coniferous forest — — —  -11.39 11.553 0.342  — — — 
deciduous forest — — —  -10.17 11.447 0.391  — — — 

mixed forest — — —  -10.14 11.408 0.391  — — — 
regenerating forest — — —  -10.02 11.416 0.396  — — — 

            
disturbance type            

fire — — —  -0.50 0.515 0.344  — — — 
mechanical add — — —  0.38 0.495 0.451  — — — 

mechanical remove — — —  -0.56 0.437 0.217  — — — 
            
disturbance severity            

low -5.90 2.864 0.044*  — — —  — — — 
medium -5.79 2.841 0.046*  — — —  — — — 

high -6.16 2.829 0.033*  — — —  — — — 
            

disturbance age <0.01 0.038 0.986  0.01 0.040 0.777  — — — 
easting — — —  0.27 0.302 0.375  0.151 0.127 0.252 

northing 0.22 0.067 0.001*  -0.17 0.189 0.362  — — — 
precipitation 0.27 0.123 0.027*  -0.13 0.269 0.621  — — — 

DEM <0.01 <0.001 0.091  — — —  — — — 
MMST — — —  0.58 0.293 0.059  — — — 

solar insolation — — —  -0.07 0.088 0.414  0.112 0.079 0.079 
water table depth — — —  — — —  — — — 
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aspect <0.01 <0.001 0.993  — — —  — — — 
slope -0.03 0.033 0.310  — — —  — — — 

            
random effects disturbance  bedrock geology  bedrock geology 

            
marginal r2 0.339  0.236  0.064 

conditional r2 0.339  0.736  0.374 
CVLMER RMSE 

(kg/m2) 
0.43  0.20  0.52 
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Table 2. Model structure for best-fitting mixed-effects models for uninformed δ13C. All values were truncated to three significant digits. Covariates with no 
values under a given preference group indicates that the covariate was not a part of the best fitting model. Marginal r2 explains the proportion of the variance 
explained by the main effects, whereas conditional r2 explains the proportion of the variance explained by both the main and the random effects combined. 
Where marginal r2 equals the conditional r2, there was no benefit to using mixed-effects models over simple linear models. RMSE was derived via spatial hold-
one-out cross validation for our linear mixed-effects models (CVLMER). For metadata associated with model covariates, see Table S3-2. “MMST” and “DEM” 
correspond to “mean maximum summer temperature” and “digital elevation map,” respectively. 
 

 low preference  medium preference  high preference 
fixed effects β SE P  β SE P  β SE P 
covertype            

wetland forest -29.43 0.200 <0.001*  -36.66 3.875 <0.001*  -29.05 11.483 0.001* 
coniferous forest -29.64 0.274 <0.001*  -37.25 3.885 <0.001*  -30.17 11.532 0.001* 
deciduous forest -29.71 0.264 <0.001*  -36.95 3.867 <0.001*  -29.09 11.445 0.001* 

mixed forest -30.01 0.164 <0.001*  -37.50 3.914 <0.001*  -29.57 11.387 0.001* 
regenerating forest -28.66 0.153 <0.001*  -36.41 3.890 <0.001*  -29.03 11.535 0.001* 

            
disturbance type            

fire — — —  — — —  -0.46 0.340 0.174 
mechanical add — — —  — — —  0.38 0.465 0.410 

mechanical remove — — —  — — —  0.65 0.427 0.129 
            
disturbance severity            

low — — —  — — —  — — — 
medium — — —  — — —  — — — 

high — — —  — — —  — — — 
            

disturbance age — — —  0.07 0.029 0.009*  — — — 
easting -0.19 0.088 0.028*  — — —  1.37 0.446 0.003* 

northing — — —  — — —  -1.01 0.281 <0.001* 
precipitation — — —  0.25 0.128 0.065  -1.34 0.368 <0.001* 

DEM — — —      — — — 
MMST — — —  — — —  1.67 0.540 0.002* 

solar insolation 0.14 0.093 0.125  — — —  — — — 
water table depth — — —  — — —  -0.02 0.006 <0.001* 
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aspect — — —  — — —  — — — 
slope — — —  — — —  — — — 

            
random effects disturbance, bedrock 

geology 
 bedrock geology  bedrock geology 

            
marginal r2 0.452  0.450  0.497 

conditional r2 0.452  0.544  0.497 
CVLMER RMSE (‰) 0.69   0.69  0.83 
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Table 3. Model structure for best-fitting mixed-effects models for biomass-informed δ13C. All values were truncated to three significant digits. Covariates with 
no values under a given preference group indicates that the covariate was not a part of the best fitting model. Marginal r2 explains the proportion of the variance 
explained by the main effects, whereas conditional r2 explains the proportion of the variance explained by both the main and the random effects combined. 
Where marginal r2 equals the conditional r2, there was no benefit to using mixed-effects models over simple linear models. RMSE was derived via spatial hold-
one-out cross validation for our linear mixed-effects models (CVLMER). For metadata associated with model covariates, see Table S3-2. “MMST” and “DEM” 
correspond to “mean maximum summer temperature” and “digital elevation map,” respectively. 
  

 low preference  medium preference  high preference 
fixed effects β SE P  β SE P  β SE P 
covertype            

wetland forest -27.13 1.087 <0.001*  -43.12 6.234 < 0.001*  -28.64 0.010 0.010* 
coniferous forest -27.20 1.057 <0.001*  -43.65 6.233 < 0.001*  -28.55 0.010 0.010* 
deciduous forest -27.32 1.070 <0.001*  -43.44 6.222 < 0.001*  -27.63 0.010 0.010* 

mixed forest -27.47 1.097 <0.001*  -43.81 6.245 < 0.001*  -27.61 0.010 0.010* 
regenerating forest -26.14 1.133 <0.001*  -42.44 6.188 < 0.001*  -26.71 0.010 0.010* 

            
disturbance type            

fire — — —  — — —  — — — 
mechanical add — — —  — — —  — — — 

mechanical remove — — —  — — —  — — — 
            
disturbance severity            

low 0.08 0.300 0.856  — — —  — — — 
medium 1.03 0.551 0.161  — — —  — — — 

high -0.25 0.358 0.636  — — —  — — — 
            

disturbance age — — —  0.040 0.036 0.270  — — — 
easting — — —  — — —  <0.01 <0.001 0.014* 

northing — — —  — — —  <0.01 <0.001 0.005* 
precipitation — — —  0.60 0.260 0.027*  -0.92 0.400 0.025* 

DEM -0.01 <0.001 0.012*  <0.01 0.001 0.078  <0.01 0.001 0.089 
MMST — — —  — — —  1.31 0.581 0.029* 

solar insolation -0.01 <0.001 0.276  — — —  — — — 
water table depth — — —  — — —  -0.01 0.007 0.052 
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aspect — — —  — — —  — — — 
slope — — —  — — —  — — — 

            
random effects disturbance  bedrock geology  bedrock geology 

            
marginal r2 0.462  0.388  0.415 

conditional r2 0.473  0.588  0.415 
CVLMER RMSE (‰) 0.87  0.90  1.05 
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Table 4. Model structure for best-fitting mixed-effects models for uninformed δ15N. All values were truncated to three significant digits. Covariates with no 
values under a given preference group indicates that the covariate was not a part of the best fitting model. Marginal r2 explains the proportion of the variance 
explained by the main effects, whereas conditional r2 explains the proportion of the variance explained by both the main and the random effects combined. 
Where marginal r2 equals the conditional r2, there was no benefit to using mixed-effects models over simple linear models. RMSE was derived via spatial hold-
one-out cross validation for our linear mixed-effects models (CVLMER). For metadata associated with model covariates, see Table S3-2. “MMST” and “DEM” 
correspond to “mean maximum summer temperature” and “digital elevation map,” respectively. 
 

 low preference  medium preference  high preference 
fixed effects β SE P  β SE P  β SE P 
covertype            

wetland forest — — —  — — —  -7.674 19.431 0.699 
coniferous forest — — —  — — —  -9.349 19.483 0.639 
deciduous forest — — —  — — —  -7.826 19.400 0.693 

mixed forest — — —  — — —  -7.220 19.342 0.715 
regen forest — — —  — — —  -7.135 19.490 0.720 

            
disturbance type            

fire — — —  — — —  1.250 0.816 0.131 
mechanical add — — —  — — —  2.774 0.865 0.002* 

mechanical remove — — —  — — —  1.297 0.916 0.162 
            
disturbance severity            

high -
3.0941 0.587 

< 
0.001* 

 — — —  — — — 

low -
2.0355 0.844 0.031* 

 — — —  — — — 

moderate -
1.6986 0.662 0.031* 

 — — —  — — — 

            
disturbance age — — —  — — —  -0.257 0.085 0.004* 

easting 0.342 0.139 0.001*  — — —  1.615 0.647 0.017* 
northing -0.405 0.129 0.002*  — — —  -1.028 0.408 0.017* 

precipitation — — —  — — —  -1.173 0.567 0.049* 
DEM — — —  — — —  — — — 

MMST — — —  — — —  1.679 0.709 0.021* 
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solar insolation — — —  — — —  — — — 
water table depth — — —  -0.031 0.008 < 0.001*  -0.029 0.008 0.001* 

aspect — — —  — — —  — — — 
slope — — —  — — —  — — — 

            
random effects disturbance  disturbance, bedrock geology  bedrock geology 

            
marginal r2 0.186  0.030  0.359 

conditional r2 0.647  0.906  0.496 
CVLMER RMSE (‰) 0.92   0.92  0.98 
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Table 5. Model structure for best-fitting mixed-effects models for biomass-informed δ15N. All values were truncated to three significant digits. Covariates with 
no values under a given preference group indicates that the covariate was not a part of the best fitting model. Marginal r2 explains the proportion of the variance 
explained by the main effects, whereas conditional r2 explains the proportion of the variance explained by both the main and the random effects combined. 
Where marginal r2 equals the conditional r2, there was no benefit to using mixed-effects models over simple linear models. RMSE was derived via spatial hold-
one-out cross validation for our linear mixed-effects models (CVLMER). For metadata associated with model covariates, see Table S3-2. “MMST” and “DEM” 
correspond to “mean maximum summer temperature” and “digital elevation map,” respectively. 
 

 low preference  medium preference  high preference 
fixed effects β SE P  β SE P  β SE P 
covertype            

wetland forest — — —  — — —  306.20 20.64 0.160 
coniferous forest — — —  — — —  304.50 20.64 0.163 
deciduous forest — — —  — — —  306.10 20.64 0.161 

mixed forest — — —  — — —  306.70 20.64 0.160 
regenerating forest — — —  — — —  307.00 20.64 0.160 

            
disturbance type            

fire — — —  — — —  1.39 1.162 0.238 
mechanical add — — —  — — —  3.05 1.155 0.012* 

mechanical remove — — —  — — —  1.58 1.208 0.197 
            
disturbance severity            

low 172.80 95.88 0.078  — — —  — — — 
medium 172.60 95.98 0.077  — — —  — — — 

high 173.10 95.89 0.075  — — —  — — — 
            

disturbance age — — —  — — —  -3.05 0.122 0.015* 
easting <0.01 <0.001 0.135  — — —  <0.01 <0.001 0.090 

northing <0.01 <0.001 0.062  <0.01 <0.001 0.693  <0.01 <0.001 0.129 
precipitation -0.37 0.417 0.367  -0.21 0.402 0.603  -1.21 0.755 0.126 

DEM <0.01 0.001 0.745  <0.01 0.002 0.111  — — — 
MMST — — —  — — —  1.56 0.885 0.084 

solar insolation — — —  <0.01 <0.001 0.018  — — — 
water table depth — — —  -0.01 0.009 0.270  -0.02 0.012 0.025* 
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aspect — — —  — — —  — — — 
slope — — —  -0.07 0.058 0.182  — — — 

            
random effects disturbance  disturbance, bedrock geology  bedrock geology 

            
marginal r2 0.146  0.142  0.243 

conditional r2 0.583  0.666  0.512 
CVLMER RMSE (‰) 1.24    1.41  1.70 
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Fig.1. Forage sampling plots across northeastern Minnesota. Dark grey area in inset map represents the 
study region and Minnesota Moose Management Area as determined by the Minnesota Department of 
Natural Resources.  
 



 

 82 

 
Fig.2. Isotopic variation of raw δ13C and δ15N values (‰) across preference groups. Mean values are 
represented by symbols, while error bars represent standard error.  
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Fig.3. Predictions of proportional abundances and absolute amounts (kg/m2) of biomass for low (a. and d., respectively), medium (b. and e., 
respectively), and high-preference forage (c. and f., respectively). Visual inspection of these maps suggests substantial differences in both the 
proportional abundances and the absolute amounts of biomass of all three forage-preference groups. 
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Fig.4. Isoscapes depicting spatial variation in δ13C (‰) across northeastern Minnesota. Visual inspection of prediction maps reveals distinct differences 
when comparing uninformed isoscapes for low (a), medium (b), and high-preference forage (c) to those derived from biomass-informed models for low 
(d), medium (e), and high-preference forage (f). 
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Fig.5. Isoscapes depicting spatial variation in δ15N (‰) across northeastern Minnesota. Visual inspection of prediction maps reveals distinct differences 
when comparing uninformed isoscapes for low (a) and medium-preference forage (b) to those informed by biomass estimates (d and e, respectively). 
However, isoscapes predictions for high-preference forage, both uninformed (c), and biomass-informed (f), appear to be very similar. 
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Fig.6. Differences in isoscape predictions (‰) utilizing uninformed-isotope data and biomass-informed isotopes. Maps depict the absolute values of 
unformed predictions minus biomass-informed predictions for δ13C and δ15N for low (a. and d., respectively), mid (b. and e., respectively), and high-
preference forage (c. and f., respectively). Darker colors represent those areas of the study region in which predictions based on uninformed isotopes are 
farthest away from biomass-informed predictions, whereas lighter colors represent those areas of the study region where predictions are more similar.
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Chapter 4: High Temperatures and Diet During Summer Influence Overwinter 

Survival in a Declining Moose Population. 

ABSTRACT The North American moose (Alces alces) is a cold-adapted species that has 

recently experienced population declines at various points along the southern edge of its 

range. The moose population in northeast Minnesota (NEMN) declined by more than 

65% from 2006 to 2018, and the combined effects of poor nutrition and high 

temperatures may predispose moose to higher risk of mortality. The primary objective of 

this study was to investigate the interaction between spatial variation in summer 

temperatures and moose diet and to evaluate if the relationship between these variables 

influenced over-winter survival. 

We collected terrestrial and aquatic plant samples as well as hair samples from 

dead and living moose and categorized all samples into one of three temperature regions 

(i.e., warm, moderate, and cool) based on collection location within the thermal 

landscape. We also categorized forage into one of four groups based primarily on 

preference (high-, medium-, low-preference, and aquatics). We analyzed all forage 

samples for %N, δ13C and δ15N values, and all hair samples for δ13C and δ15N values. We 

estimated nitrogen availability in forage throughout the study region and used Bayesian 

mixing models to estimate diet composition. We then tested whether diets varied as a 

function of temperature region, winter mortality, or season, and evaluated if winter 

mortality varied as a function of temperature region.   

In general, the warmest parts of the moose range in Minnesota are those that 

offered forage of lower quality, where moose diets were poorest, and where winter 
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mortality was highest. Nitrogen availability in terrestrial forage declined with mean-

maximum summer temperature, and moose in the warmest parts of the range had diets 

containing the highest proportion of aquatic forage and the lowest proportion of high-

preference forage. Additionally, winter mortality was almost 4.5 times greater in the 

warmest parts of the range when compared to the coolest. Finally, probability of over-

winter survival increased with increasing proportions of high- and medium preference 

forage during early summer and high- and low-preference forage during late summer. 

Collectively, our results suggest that the interaction between temperature and diet during 

summer may increase risk of over-winter mortality, including mortality associated with 

predation and disease. 

INTRODUCTION 

Large mammalian herbivores are declining globally at an unprecedented rate, and 

while hunting, competition with livestock, and habitat loss have been listed as some of 

the leading causes of decline (Ripple et al. 2015), the pervasive influences of recent 

climate change have also been associated with negative demographic trends of large 

herbivores (Olff et al. 2002). Fluctuations in the North Atlantic Oscillation have been 

linked to changes in body condition in sheep (Ovis aries, Mysterud et al. 2001), severe 

snowpack conditions have been associated with the near elimination of juvenile cohorts 

in elk (Cervus elaphus, Garrott et al. 2003), and changes in precipitation have been 

tightly correlated with changes in population size in African herbivores (Berger 1997). 

Global distributions of large herbivore diversity are strongly correlated with gradients of 

temperature and precipitation (Olff et al. 2002). Thus, spatiotemporal shifts in global 



 
 
 
 

 89 

patterns of these and other climatic variables are expected to influence the abundance and 

distribution of large herbivores (Schloss et al. 2012), with high-latitude species at greater 

risk of climate-induced declines than their more southerly counterparts (ACIA 2004, 

Garcia et al. 2014, Walther et al. 2002). Northern latitudes are likely to experience 

disproportionate warming compared to the rest of the globe (IPCC 2007), and large 

mammals are thought to be incapable of rapid micro-evolution or sufficient range shifts 

necessary to adjust to increasing temperatures (Hetem et al. 2014).  

The North American moose (Alces alces) is a cold-adapted species that is 

relatively intolerant of high temperatures (Renecker and Hudson 1990), and has 

experienced population declines at various points along the southern edge of its 

geographic range (Timmermann and Rodgers 2017). In northwestern Minnesota, moose 

exhibited a precipitous decline starting in the mid 1980s, decreasing from about 4000 

animals in 1984 to less than 100 animals in 2007 (Lenarz et al. 2009, Murray et al. 2013). 

A study investigating the potential causes of this decline reported that the majority of 

moose fatalities (87% of radio-collared moose and 65% of non-collared moose) were 

ultimately due to parasites and infectious disease. However, the authors also noted that 

many of the recorded causes of mortality were likely facilitated by a combination of poor 

nutrition and warmer ambient temperatures. Animals that died of natural causes exhibited 

notable signs of malnutrition and severe body fat depletion, and annual population 

growth in northwestern Minnesota from 1961-2000 was negatively correlated with mean 

summer temperature, which increased by 2.1 ºC during this time (Murray et al. 2006).  
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Since 2006, demographic trends of moose in northeast Minnesota (NEMN) have 

resembled those previously observed in the northwestern part of the state, with one study 

reporting a negative correlation between ambient temperature and annual survival 

(Lenarz et al. 2009). Because moose are heat intolerant, when they are exposed to even 

modestly warm temperatures (e.g., 14 to 17 ºC), they increase metabolic and respiration 

rates and reduce forage intake, which can lead to malnutrition, decreased body condition, 

and immunosuppression (Lenarz et al. 2009, McCann et al. 2013, Murray et al. 2006, 

Renecker and Hudson 1986). Despite these relationships, there is little mechanistic 

evidence directly linking increasing temperatures with the observed population decline.  

While changing climate over the last decade has been implicated as a major driver 

of moose demographics in NEMN, the wolf population in this region has substantially 

increased over this same time period, potentially contributing to the current decline 

(Mech and Fieberg 2014). One study recently reported between 33 and 47% of monitored 

moose calf mortalities were due, at least in part, to wolf predation (Severud et al. 2015), 

and another study reported that more than 30% of analyzed wolf scats from NEMN 

contained moose tissue (Chenaux-Ibrahim 2015). However, there is evidence that wolf 

predation on moose is spatially heterogeneous, with higher rates of predation in the 

coolest parts of the range and lower predation rates in warmer parts of the range 

(Chenaux-Ibrahim 2015). Additionally, a study summarizing necropsy results of 62 

opportunistically collected moose carcasses from 2003 to 2013, 85% of animals were 

either moderately underweight or exhibiting signs of severe weight loss and muscle 
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deterioration (Wünschmann et al. 2015). The authors noted the important role that 

nutritional state likely played in the fates of these animals (Wünschmann et al. 2015).  

Evidence suggests that as ambient temperatures increase, large herbivores may 

alter habitat-use in a way that decreases thermal loads, while also leading to a lower 

nutritional state (Albon and Langvatn 1992). Moose are well-adapted for cold, but 

become heat stressed and potentially hyperthermic when temperatures rise above 14 ºC in 

the summer (Renecker and Hudson 1986). Typically, moose respond to high 

temperatures in one of two ways, both of which may result in important nutritional 

tradeoffs. First, moose may increase their use of densely forested conifer habitat 

(Renecker and Hudson 1990, Street et al. 2016), bedding down in lowland forest canopies 

with high soil-water content (McCann et al. 2016), presumably in an effort to dissipate 

metabolic heat by increasing contact with the cool ground (Merrill 1991). During 

prolonged periods of extreme heat, moose may remain bedded for extended periods of 

time and forgo multiple feeding bouts, thereby putting themselves at risk of starvation 

(Renecker and Hudson 1986). Alternatively, moose may increase their use of aquatic or 

wetland habitats during extended periods of high temperatures (Renecker and Hudson 

1989, Street et al. 2016). While these habitats can offer an abundance of forage, aquatic 

forage tends to be high in protein but low in carbohydrates compared to terrestrial forage 

(Tischler 2004). If moose are spending extended periods of time either bedded in dense 

cover or in aquatic habitats, they may have a difficult time accumulating enough body fat 

to survive winter (Chan-McLeod et al. 2000, Julander et al. 1961, Parker et al. 2009).  
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A recent study investigating the relationship between winter nutritional status of 

moose in NEMN and regional population growth reported that estimates of abundance 

and calf production were closely correlated with population-wide nutrition (DelGiudice et 

al. 2017). Moreover, from 2013 to 2015, winter nutritional restriction was closely related 

to high temperatures during winter (DelGiudice et al. 2017). Although studies of other 

large herbivores suggest that poor summer nutrition can also detrimentally impact 

reproduction and overwinter survival (Cook et al. 2004), the impact of summer diet on 

the moose population in NEMN is unknown. 

The primary objective of this study is to investigate the interaction between 

spatial variation in high summer temperatures and moose diet, and to evaluate if the 

relationship between these two variables might influence over-winter survival. Northeast 

Minnesota is an ideal location in which to evaluate this relationship because there is a ~ 

5.5 ºC gradient in mean-maximum temperature across the region (Fig.1). To evaluate 

how high temperatures and diet may interact during summer to influence over-winter 

survival, we hypothesized that: 1) Forage quality is greater in areas with cooler 

temperatures, 2) Moose in cooler parts of the range have diets of higher quality than those 

from warmer parts of the range, 3) The number of moose that do not survive winter is 

disproportionately higher in the warmest parts of the range, and 4) The diets of moose 

that do not survive winter are of lower quality than those that do.  

STUDY AREA 

Our study area in northeastern Minnesota covers approximately 1.3-million hectares, and 

is composed primarily of southern boreal forest, including large portions of Superior 
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National Forest and the Boundary Waters Canoe Area Wilderness (BWCAW). This 

region is a mosaic of upland and lowland forest types characterized by black spruce 

(Picea mariana) and white cedar (Thuja occidentalis) in the lowlands and balsam fir 

(Abies balsamea), trembling aspen (Populus tremuloides), and paper birch (Betula 

papyrifera) on the uplands, with large stands of jack (Pinus banskiana), red (P. resinosa) 

and white pine (P. strobus) occurring throughout. While large swaths of unlogged areas 

remain (i.e., 169,000 ha within the BWCAW), fire and logging are common and routine 

forms of disturbance in this ecosystem (Heinselman 1996). Mean annual temperature is 

approximately 2ºC with mean annual precipitation (rain plus snowfall water equivalent) 

of 70 cm (Heinselman 1996). Summers in this region are typically short and cool, with 

mean temperatures of 17.5 ºC in mid-July and an average precipitation of 10 cm. Winters 

are characterized as long and cold, with mean temperatures of -17ºC and normal winter 

snowfall ranging from 50 to 70 cm (Frelich 2002, Heinselman 1996). Topography across 

the study area varies from relatively flat to moderately hilly, with elevation ranging from 

the 183 m at the surface of Lake Superior, to 701 m at Eagle Mountain, the highest point 

in the state. The area is sparsely inhabited, with few paved roads and much of the region 

accessible only by foot, logging road, or canoe.   

METHODS 

Overview 

We used a variety of sampling and analytical techniques to evaluate how warmer summer 

temperatures and diet may interact to influence over-winter survival in moose across 

northeast Minnesota. We sampled terrestrial forage from 0.4 ha plots (n = 70) located 
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across the study region (Fig.1), and aquatic forage from 17 different lakes across the 

study region. We also collected moose hair samples from living and dead moose during a 

parallel study designed to evaluate adult moose mortality (see Sample Collection below). 

We measured woody plants in all plots and used species and size-class-specific allometric 

equations to estimate forage biomass within each plot (see Woody Biomass Calculations 

below), and used elemental and stable isotope analysis to determine values of %N, δ13C, 

and δ15N in forage and values of δ13C and δ15N in hair (see Stable Isotopes Analysis 

below). We used stable isotope values from forage and hair to estimate the contributions 

of each forage group to moose diets using Bayesian mixing models, and then tested 

whether diets vary as a function of temperature region, winter mortality, and season (see 

Data Analysis below). 

Sample Collection 

We established 70 circular plots, each 0.4 ha in size, throughout northeast 

Minnesota and collected samples of known and potential forage species to characterize 

the isotopic composition of moose forage throughout the study region. Sample plots 

covered a range of disturbance ages (i.e., 13 years, 9 years, 4 years, and undisturbed) and 

types (i.e., canopy burn, clear cut, and insect-defoliation), as well as a range of landcover 

types (i.e., wetland and wetland forest, coniferous forest, deciduous forest, mixed forest, 

and regenerating forest). From 2012 to 2016, we collected annual samples of forage 

species in each of the plots from late May to early August, with a small subset of 

individual plants collected at multiple time periods throughout summer. In total, we 

collected 2,694 terrestrial forage samples from more than 30 species (Table S4-1). We 
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categorized all species into one of three groups, based primarily on dietary preference: 

high-, medium-, and low-preference (Table S4-1; Peek et al. 1976). Where possible, we 

collected up to five samples of each species in each plot, where a sample consisted of 5-7 

leaves that we stripped from a peripheral stem located between 0.5 to 1.0 m from the 

forest floor. Once collected, samples were placed in a cloth bag, which was then labeled 

with the plot and sample ID. For diet composition estimates, we also collected samples of 

submerged and emergent aquatic forage (n=105) from 17 different lakes throughout the 

warm (n=7) and cold (n=10) temperature regions. We collected aquatic samples by 

dragging an aquatic sampling rake at depths ranging from 1 to 2 meters. Where possible, 

we collected up to five samples of each species from each lake. Once collected, samples 

were placed in a cloth bag, which was then labeled with the lake name and sample ID. 

Moose hair samples were collected from both live and dead animals by the 

Minnesota Department of Natural Resources (MNDNR) from 2012 to 2017 (Fig.1a). Hair 

from live animals (n = 127) was collected during radio-collar deployment, which took 

place as part of a parallel study to investigate adult moose mortality (Carstensen et al. 

2015). Hair from animals that died during winter (n=35) was collected from a 

combination of radio-collared animals (n=18) and opportunistically sampled carcasses 

(n=17). Because we wanted to focus solely on the potential influences of diet on winter 

mortality, we included only those animals that died between November 1st and May 1st of 

each year.  

Woody Biomass Calculations 
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Moose are known to break stems with a diameter at breast height (DBH) of ≤ 6cm 

in order to browse on terminal shoots, but also occasionally browse on plants that are 

relatively close to the forest floor (Renecker and Schwartz 2007). Thus, within each 0.4 

ha plot, we measured smaller woody stems (i.e., stems ≤ 6 cm of diameter at breast 

height, DBH, and ≥ 15 cm in height) within three, nested, 25 m2 subplots along the 30º, 

150º, and 270º azimuths, at 5.5 m from the plot centroid. Within a 25 m2 subplot, we 

tallied the number of individuals of each species having a DBH ≥ 2.5 cm and ≤ 6 cm (i.e., 

saplings), with tallies for each species recorded for each 0.5 cm DBH interval. Within a 

smaller, 10 m2 subplot, we measured diameter at 15 cm height of all woody plants that 

were ≥ 15 cm in height but < 2.5 cm in DBH (i.e., shrubs or advanced regeneration). We 

tallied the number of individuals of each species within each 0.5 cm size class, from 0.5 

cm to 2.5 cm. Anything with a diameter < 0.5 cm at 15 cm height was omitted. 

 We calculated estimates of above-ground biomass using species-specific biomass 

equations based on the measurements detailed above. For saplings, we used species-

specific equations from Jenkins et al. (2003) to estimate above-ground biomass using 

DBH. We also used species-specific equations for shrubs and advanced regeneration, 

(Perala and Alban 1993, Smith and Brand 1983), which allowed us to estimate above 

ground biomass based on stem diameter at 15 cm height. For some species, equations for 

whole, above-ground biomass were not available. For those species, we calculated 

biomass for stems and foliage separately, and then added those values to estimate total 

biomass of each species in each plot. All estimates were converted to kg/m2. 

Stable Isotope Analysis 
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In preparation for stable isotopes analysis, plant samples were dried in a 60ºC 

oven for 24 to 48 hours and subsequently placed in light-proof, tin containers. A small 

portion of each sample was collected and ground to a homogenous powder using a Spex 

SamplePrep GenoGrinder bead mill with 2.8 mm stainless steel grinding beads. Once 

homogenized, we weighed 2.5 ± 0.1 mg of each sample into a 5x9 mm Costech tin 

capsule. All samples were analyzed either at the Stable Isotope Laboratory in the 

Department of Earth Sciences at the University of Minnesota (UMN) or the Stable 

Isotope Laboratory in Earth and Planetary Sciences at the University of California, Santa 

Cruz (UCSC). At UMN, samples were analyzed for %N, %C, δ15N and δ13C values via 

flash combustion in a Costech 4010 Elemental Analyzer (EA) coupled to a Thermo-

Finnegan Delta V Plus isotope ratio mass spectrometer (IRMS). At UCSC, samples were 

analyzed via flash combustion in a CE Instruments NC2500 EA interfaced to a 

ThermoFinningan Delta Plus XP IRMS. At each location, the resulting gas was analyzed 

for elemental concentration of 13C/12C and 15N/14N ratios and expressed in standard δ 

notation, representing the differences between samples ratios and ratios found in 

international standards for carbon (VPDB) and nitrogen (atmospheric N2). Finally, 

because samples were analyzed in two different laboratories, we addressed machine or 

lab specific analytical biases by running five samples from six different species in each 

lab and creating offset and linearity corrections that we then applied to all samples 

analyzed at UCSC. 

The isotopic composition of animal materials (e.g., scat, hair, bone) reflects that 

of the food that was ingested and assimilated during the formation of these materials 
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(Cerling and Harris 1999, Deniro and Epstein 1978). Moose begin molting their winter 

coat during mid- to late-May and completely replace their winter coat with a thinner, 

lighter coat by late June (Franzmann et al. 1975, Samuel 1991, Tankersley and Gasaway 

1983, Welch et al. 1990). Beginning in early June, moose also begin to develop winter 

hair, including that which is grown on their withers, with their winter coat typically 

complete by mid- to late September (Samuel et al. 1986). Because hair growth occurs 

only during summer, hair collected from late fall through early spring can be used to 

evaluate the diet from the previous summer, with stable isotopes in the proximal end of 

the hair reflecting that of late-summer diet and the distal end reflecting that of early-

summer diet. Differences in mean δ13C values have been used to analyze population 

differences in diet (Angerbjörn et al. 1994), and individual variation in values of δ13C 

from animal materials provides a measure of dietary breadth within a group or population 

(Berini and Badgley 2017). As animals ingest a greater range of plant species and plant 

parts, the variance of δ13C increases (Newsome et al. 2009, Stewart et al. 2003). In 

general, the mean δ15N of animal tissues reflects the protein content of the animal’s diet 

(Ambrose 1991, Schoeninger and DeNiro 1984), with a negative correlation between the 

nitrogen content of ingested plants and δ15N values of herbivore tissues (Adams and 

Sterner 2000). Thus, animals consuming forage with greater N content will have more 

negative δ15N values in their tissues, with N limitation indicated via more positive δ15N 

values (Sealy et al. 1987). 

To prepare moose hair samples for stable isotope analysis, we rinsed all hairs with 

deionized (DI) water and sonicated them in a DI water bath for approximately 10 
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minutes. Samples were then given another rinse and placed in a 2:1 chloroform/methanol 

mixture for approximately 2 hours to remove lipids. Once lipid extraction was complete, 

we rinsed off any residual solution with DI water, soaked the hairs in a DI bath for an 

additional 30 minutes, and then gave them a final rinse. All samples were then dried in an 

oven at 40ºC for a minimum of 48 hours.  

Hair samples were analyzed for stable isotopes of carbon and nitrogen either at 

UMN or the Center for Stable Isotopes at the University of New Mexico (CSI-UNM). 

We clipped and weighed 0.7 ± 0.1 mg at UMN and 0.5 ± 0.1 mg at CSI-UNM from the 

proximal and distal ends of each hair. At both laboratories, samples were then loaded into 

5x9 mm Costech tin capsules and analyzed for δ15N and δ13C values via flash combustion 

in a Costech 4010 Elemental Analyzer (EA) coupled to a Thermo-Finnegan Delta V Plus 

isotope ratio mass spectrometer (IRMS). The resulting gas was analyzed for elemental 

concentration of 13C/12C and 15N/14N ratios and expressed in standard δ notation, 

representing the differences between samples ratios and ratios found in international 

standards for carbon (VPDB) and nitrogen (atmospheric N2). Because samples were 

analyzed in two different laboratories, we addressed machine or lab specific analytical 

biases by running hair samples from five different animals in each lab and created offset 

and linearity corrections that we then applied to all samples analyzed at CSI-UNM. 

Finally, to account for minor isotopic differences between hairs from the same animal, 

we analyzed the ends of each hair, from each animal, in replicates of two. We then 

calculated the average of the two replicates and saved these values as our final δ13C and 

δ15N values, which we then used to estimate diet for early and late summer. 
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Data Analysis 

To determine if forage quality is greater in areas with cooler temperatures (H1), 

we evaluated how the amount of N in moose forage varies as a function of mean-

maximum summer temperature (i.e., mean maximum daily temperature over June, July, 

and August each year from 1980-2010). Because both %N and the abundance of different 

forage groups can vary differently across the study region, we needed to estimate how the 

amount of N available in moose forage may change as a function of our different 

preference groups within each plot. To do this, we multiplied the mean proportional 

abundance of N of each forage group within each plot by their respective biomass 

estimates (kg/m2) and added these values together. Then, using the get_prism_normals 

function from the prism package in R (Hart and Bell 2015), we imported the 30-year 

averages (1981-2010) for mean-maximum summer temperature (MMST) from the 

PRISM Climate Group at Oregon State University (PRISM Climate Group 2017). We 

extracted the temperature data at each of our forage-sampling plots using the extract 

function from the raster package in R (Hijmans 2019). Finally, to determine if there was 

a significant statistical relationship (p < 0.05) between the amount of N available and 

MMST, we fit generalized linear models using the glm function in the base package of R 

(R Core Team 2018). We fit four different models – one to evaluate the total N (kg/m2) in 

each plot as a function of MMST and one model for each forage group (i.e., high-, 

medium-, and low-preference). For each model, we set MMST as our independent 

variable and total N as our dependent variable.  
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To determine if moose in cooler parts of the range have diets of higher quality 

than those from warmer parts of the range (H2), we analyzed how diet composition and 

stable isotope values of moose hair vary as a function of MMST. First, we categorized 

moose hair samples from living moose into one of three temperature regions (e.g., warm, 

medium, cool) based on their collection location within the thermal landscape (Fig.1). 

We estimated diet composition during early and late summer by fitting Bayesian mixing 

models using the MixSIAR package in R (Parnell et al. 2013, Stock and Semmens 2016). 

MixSIAR allows estimation of the contributions of different isotopic sources to the 

composition of a material that reflects a mixture of these different sources, while also 

allowing the user to account for both residual and process error (Parnell et al. 2013, Stock 

and Semmens 2016). In our study, source data was the δ13C and δ15N values from plants, 

whereas mixture data was the δ13C and δ15N values from moose hair. Trophic enrichment 

factors (i.e., the net isotopic difference between source and mixture; Martínez del Rio et 

al. 2009) were based on those in Drucker et al. (2010). We arrived at the most efficient 

Markov chain Monte Carlo (MCMC) length by fitting our models repeatedly, starting 

with the shortest chain-length allowable (i.e., run = “test”, chainLength = 1000), and 

gradually increasing the chain-length until we achieved a Gelman-Rubin score of < 1.10, 

indicating that sampling variability is negligible (Brooks and Gelman 1998). Our final 

models had the following MCMC parameters: chainLength=100000, burn=50000, 

thin=50, chains=3, calcDIC=TRUE. We saved the mean estimates from our posterior 

distributions as our final diet composition estimates.  
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We fit two MANOVA models that evaluated diet composition as a function of 

temperature region, for both early and late summer, to evaluate if animals from different 

temperature regions exhibit significant differences in diet composition. However, because 

our data are compositional in nature and therefore bound by 0 and 1, we performed an 

isometric log ratio transformation on our diet estimate data using the ilr function in the 

compositions package (van den Boogaart et al. 2018). In the event that we encountered 

MANOVA models resulting in p < 0.05, we fit univariate ANOVAs to evaluate how the 

proportion of each forage group (i.e., aquatic, high-, medium-, and low-preference) 

changes between temperature regions (R Core Team 2018). Prior to conducting 

univariate ANOVA, we used a centered log ratio transformation via the clr command 

(also in the compositions package) because isometric log transformations reduce the 

dimensionality of a dataset by one (van den Boogaart et al. 2018). To evaluate if animals 

from different temperature regions exhibit significant differences in variance of δ13C (i.e., 

dietary breadth), we conducted Bartlett’s test for homogeneity of variance via the 

bartlett.test command in the stats package of R (R Core Team 2018). To evaluate if 

animals from different regions exhibit differences in mean δ15N values (i.e., nitrogen 

intake), we conducted analysis of variance (ANOVA) via the aov function (R Core Team 

2018). For ANOVA tests with statistically significant outcomes (p < 0.05), we used the 

TukeyHSD function (R Core Team 2018) to conduct Tukey’s test for honestly significant 

differences, which allowed us to determine which temperature regions were significantly 

different from one another.  
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To determine if the number of moose that do not survive winter is 

disproportionately higher in the warmest parts of the range (H3), we compared the 

number of moose that were radio collared in each temperature region, with the number of 

collared animals that died. We conducted a Pearson’s χ2 test using the chisq.test function 

in the stats package and applied Yate’s correction for small sample sizes (Yates 1934) by 

setting correct=T (R Core Team 2018).  

We evaluated differences in diet composition as a function of winter survival (H4) 

using logistic regression via the glm function (family = “binomial”), for both early and 

late summer (R Core Team 2018). We performed centered log-ratio transformations prior 

to logistic regression, as described above (van den Boogaart et al. 2018). We used 

MANOVA to evaluate seasonal dietary shifts from early to late summer, for animals that 

survived winter and for those that did not, with diet composition as our dependent 

variable and season as our independent variable. In the event that a MANOVA resulted in 

p < 0.05, we conducted univariate ANOVA to determine which dietary items exhibited 

significant shifts between early and late summer. Again, we used an isometric log ratio 

transformation prior to conducting MANOVA and centered log ratio transformation prior 

to conducting ANOVA (van den Boogaart et al. 2018). To evaluate dietary breadth using 

δ13C values, we used Bartlett’s test for homogeneity of variance and to investigate 

nitrogen limitation using δ15N, we used ANOVA. Finally, we subset our diet composition 

estimates for those animals that we collected both live and dead hair samples from, and 

evaluated diet composition as a function of over-winter mortality and seasonal dietary 

shifts throughout summer. These analyses were conducted exactly as described above, 
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and allowed us to compare the diets of the same individuals both before and after their 

death. 

RESULTS 

 Generalized linear models evaluating the influence of mean-maximum summer 

temperature on the availability of N throughout the study region (H1) revealed a 

statistically significant decline in overall N availability as MMST increased (Table 1). 

Within individual groups of terrestrial forage (i.e., high-, medium-, and low-preference 

forage), N availability exhibited a negative, non-significant trend with increasing MMST 

in high- and medium-preference forage, while low-preference forage exhibited no 

relationship (Table 1).  

 MixSIAR results revealed that during early summer, the average diet for moose 

that survived winter consisted of 38% high-preference forage, 28% aquatics, 22% 

medium-preference forage, and 11% low-preference forage. During late summer, mean 

estimates changed to 31% high-preference, 35% aquatics, 13% medium-preference, and 

21% low-preference. For moose that did not survive winter, the average early-summer 

diet consisted of 27% high-preference forage, 38% aquatics, 17% medium-preference 

forage, and 17% low-preference forage. While during late summer, mean estimates 

changed to 25% high-preference, 40% aquatics, 15% medium-preference, and 20% low-

preference.  

MANOVA tests evaluating diet as a function of temperature region for animals 

that survived winter (H2) revealed significant differences in diet composition among 

temperature regions during early (F2,123 = 3.20, p = 0.004) and late summer (F2,124 = 6.83, 
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p < 0.0001). During both time periods, moose from the warm and moderate-temperature 

regions consumed proportionally more aquatics, but generally less high-, medium-, and 

low-preference forage compared to moose from the cool region (Table 2, Fig.2). Diet 

composition estimates of different forage groups were not significantly different between 

the warm and moderate regions during early or late summer. Variance of δ13Chair values 

(i.e., dietary breadth) increased with temperature during early summer but not during late 

summer (Table 3, Fig.3) and ANOVA results revealed a significant difference in δ15Nhair 

(i.e., dietary N limitation) among temperature regions, but only during late summer (F2,126 

= 4.302, p = 0.0156). Tukey’s HSD test revealed that mean values of δ15Nhair during late 

summer were greater in the moderate region when compared to cool (Table 4, Fig.3). 

Our χ2 test evaluating over-winter mortality as a function of temperature region 

revealed that mortality was disproportionately higher in the warmest parts of the range 

(H3; χ2 = 6.722, df = 2, p < 0.0347). While overall mortality for collared moose was 

29.9% across the entire study area, 15.6% and 28.6% of radio-collared moose did not 

survive winter in the cool and moderate temperature regions, respectively, but 68.8% of 

radio-collared moose from the warm region did not survive winter. 

Logistic regression analyses comparing the diets of animals with different winter 

fates revealed that the diet composition of moose that survived winter was significantly 

different than those that did not, both during early and late summer (Fig.4). Probability of 

overwinter survival increased with increasing contributions of high- and medium-

preference forage to the overall diet during early summer, but decreased with increasing 

contributions of low-preference forage (Table 5, Fig.4). During late summer, probability 
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of survival increased with increasing contributions of high- and low-preference forage 

(Table 5, Fig.4). Pairwise logistic regressions comparing diets of the same animals before 

and after death revealed that during early summer, medium-preference forage was 

associated with increased probability of over-winter survival (Table 6, Fig.5). During late 

summer, as the proportional contributions of high-preference and aquatic forage 

increased, probability of overwinter survival also increased (Table 6, Fig.5). As the 

proportional contributions of low-preference forage increased, probability of overwinter 

survival decreased (Table 6, Fig.5). 

MANOVA tests evaluating dietary shifts from early to late summer revealed that 

animals that survived winter exhibited temporal changes in diet (F1,251 = 7151, p < 

0.0001) as did animals that died (F1,69 = 15.62, p < 0.0001). Animals that survived winter 

consumed mostly high-preference forage during early summer, but then shifted their diets 

in late summer to include greater proportions of aquatic forage (Table 7, Fig.6a). Despite 

the fact that MANOVA results suggests a significant dietary shift between seasons for 

animals that died, univariate ANOVAs revealed no shifts from early to late summer, with 

aquatic forage representing the largest proportion of their diet among all forage groups, 

during both time periods (Table 7, Fig.6b). During both early and late summer, moose 

that survived winter had smaller variance in values of δ13Chair (Table 8, Fig.7a) and lower 

mean δ15Nhair values (Table 8, Fig.7b) than moose that died. To ensure that the 

differences in variance we observed were not due to our small number of mortalities, we 

created a bootstrapped sample of 35, δ13Chair values from our live sample set, calculated 

the variance and repeated this procedure 500 times. We then calculated the mean of these 
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500 variance values and the 95% confidence intervals around the mean. The resulting 

value for the mean variance (0.9268) and the 95% confidence interval (upper = 0.8644, 

lower = 0.9891) suggests that the differences we observed above were not due to the 

small number of mortalities. 

Pairwise t-tests for those animals that we collected both live and dead hair 

samples from revealed that the summer before an animal died, the proportional 

contributions of both high- and medium-preference forage decreased while the 

contributions of low-preference forage increased (Table 9, Fig.8). We also found a non-

significant trend of increasing aquatic forage in the diet the summer preceding winter 

mortality (Table 9, Fig.8). 

DISCUSSION 

Here we report that, in northeast Minnesota, the warmest parts of the moose range 

are those that offer forage of lesser quality, where moose diets are poorest, and where 

winter mortality is highest. Moreover, animals that do not survive winter have diets of 

lower quality compared to those that do, especially during late summer. While warming 

has been implicated as a potential driver of recent moose declines in Minnesota, our 

results directly link higher temperatures with negative demographic trends. Collectively, 

our results suggest that temperature-induced changes to summer diet are, at the very least, 

a contributing factor to the recent declines observed in this population. 

Temperature-induced changes to forage quality are widely documented for large 

herbivores (Cebrian et al. 2008, Doiron et al. 2014, Lenart et al. 2002). For example, in 

southeastern Alaska, warmer temperatures during summer led to a decline in crude 
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protein and digestibility of moose forage (Lenart et al. 2002), while on Seward Peninsula, 

high temperatures resulted in an influx of high-quality forage for caribou during early 

spring due to earlier green-up dates (Cebrian et al. 2008). While earlier green-up, could 

benefit animals experiencing severe nutritional restriction toward the end of winter, more 

rapid phenology due to warming may lead to decreased nitrogen concentrations in some 

forage species at the end of summer (Cebrian et al. 2008, Doiron et al. 2014). Throughout 

the duration of this study, our experience suggests that warmer regions of NEMN may 

green-up as much as 7 – 10 days earlier than cooler regions, where temperatures during 

early summer are moderated by Lake Superior. However, a study investigating spatial 

heterogeneity in the phenology of NEMN would be a useful contribution in efforts to 

understand how the distribution and abundance of high-quality forage varies for moose 

and how this might influence spatially explicit demographic rates.  

While it is true that only a small amount of variance in total N throughout NEMN 

is explained by MMST (R2 = 0.07), our intentions for this model were not to predict total 

N based on MMST, but rather to investigate the strength of this relationship. Considering 

the range of different variables that are known to influence nitrogen in plants (e.g., slope, 

Tateno et al. 2004; canopy cover, Zackrisson et al. 2004; soil composition, Côté et al. 

2000; precipitation, Yin 1993; salinity, Cheng et al. 2013), the fact that MMST explained 

more than 7% of this variation is surprising. It is possible that the relationship we 

identified here is the result of a correlation with some unmeasured variable. Regardless, if 

our goal was to predict spatial variation in N availability across NEMN, it is likely that 

MMST would be one of the variables included in the best fitting model (Berini et. al. IN 
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REVIEW). Heterogeneity in the thermal landscape and its effect on forage quality could 

lead to spatial variation in the foraging behavior of moose, and ultimately, spatially 

explicit differences in how animals interact with their environment. These differences, in 

turn, could relate to factors that influence demographic vital rates (Cook et al. 2004, 

Robert A. Garrott et al. 2003). 

A recent study in NEMN indicated that moose increase their use of aquatic or 

wetland habitats with increased exposure to high temperatures (Street et al. 2016). That 

study suggested that use of these habitats could lead to reduced foraging efficiency if the 

quality of forage is lower than in other habitats (Street et al. 2016). Here, we show that 

moose in the warmest parts of the range consume greater quantities of aquatic forage 

throughout the summer. Stable isotopes of nitrogen in herbivore tissues are inversely 

related to N content of ingested forage (Adams and Sterner 2000), and in our study, 

moose from warmer regions had higher values of δ15Nhair (i.e., lower dietary N) during 

late summer, when compared to animals from cooler regions. Interestingly, although our 

models show that moose in warmer areas are ingesting more aquatic forage, which tends 

to have higher N content then terrestrial forage (Tischler 2004), they are exhibiting signs 

of lower dietary N than moose from cooler areas. Moose are intolerant of high 

temperatures, and if individuals in the warmest parts of the range are becoming heat 

stressed, it is possible that they are limiting forage intake, which is one of the most 

common side effects of heat stress in large mammals (Collier and Beede 1985, Renecker 

and Hudson 1986) . Thus, it may be that moose are consuming the same amount of 

aquatic forage, but less terrestrial forage, leading to an increase in the proportional 
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contribution of aquatics to the overall diet. While beyond the scope of what we present 

here, a study comparing the body fat content of moose during winter to their diet 

composition during early and late summer could provide valuable insights into this 

relationship. Additionally, although we did not evaluate the influences of high 

temperatures on aquatic forage, Peek et al. (1976) suggested that higher water 

temperatures could lead to a reduction in quality of aquatic forage. Finally, we found that 

total N availability declines with increasing temperatures across the study region. 

Together, reduced intake along with reduced forage quality could lead to the relationship 

we observed here. Regardless, our results show that animals in the warmest parts of the 

range consume proportionally more aquatics than any other forage group during late 

summer, and moose with diets dominated by aquatic forage are less likely to survive 

winter. While aquatic forage is an important part of the moose diet, it is one of many 

important dietary items required for healthy moose (Belovsky 1978). 

While the leading proximate causes of mortality for moose in NEMN have been 

attributed to predation, parasitic and bacterial infections, and severe malnutrition, these 

same studies have also noted that temperature and diet likely interact to predispose moose 

to winter mortality (Carstensen et al. 2015, Lenarz et al. 2010, 2010, Mech and Fieberg 

2014, Wünschmann et al. 2015). In this study, moose that died during winter are not only 

exposed to higher temperatures than those that survived, but also had consistently poorer 

diets heading into winter. Previous work on elk has shown that body condition at the start 

of winter is a key determinant for overwinter survival (Cook et al. 2004), and the rate of 

moose mortality in the warmest parts of the range (68%) was almost 4.5 times higher 
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than the rate we found in the coolest parts of the range (15%). Additionally, moose that 

survived winter exhibited dietary shifts throughout the growing season that appear to be 

important for overwinter survival.  

During early summer, moose that survive the following winter are consuming 

mostly high-preference forage (38% of their total diet), with about a quarter of their diet 

consisting of aquatics (27%). As summer progresses, the relative contributions of these 

two dietary elements becomes more equivalent, with aquatic plants making up a little 

more than a third of the diet (35%) and high-preference forage making up slightly less 

than a third (31%). Moose that die the following winter are consuming significantly less 

high-preference forage during early summer (27%, Fig.4a) while also consuming 

significantly more low-preference forage (17%, Fig.4a), with the contributions of these 

two elements to the overall diet changing little as summer progresses (Fig.6b). 

Collectively, our results provide evidence that early-summer diet is important to over 

winter survival in this population. It also suggests that animals consuming relatively large 

amounts of aquatic forage throughout the entire summer have poorer nutrition, as 

exhibited by higher δ15Nhair, thereby contributing to higher risk of mortality the following 

winter. It is possible that moose ingesting more aquatics at the beginning of summer are 

already experiencing heat stress due to a temporal mismatch between the shedding of the 

winter coat and the onset of high temperatures (Dou et al. 2013). If this is true, these 

animals could be at a nutritional disadvantage at the beginning of summer, and 

potentially fail to acquire critical nutritional stores prior to the end of the growing season 

and the onset of winter. The results we present here suggest that poor diet increases risk 
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of mortality, and high temperatures interact with, and even appear to exacerbate this 

effect.  

It is possible that the early to late summer dietary patterns we observed here were 

due to behavioral predispositions rather than actual changes in behavior from one 

summer to the next. While hair samples from animals with different winter fates make it 

possible to evaluate potential correlations between summer diet and winter survival, 

samples from the same animal but collected before and after their death allow us to 

evaluate if animals that die during winter are changing their foraging behavior the 

summer prior to dying. While the number of animals for which we had paired samples for 

was small (n = 18), during summers that preceded winter mortality, moose decreased 

their use of medium-preference forage during early summer (Fig.5a). During late 

summer, these same animals decreased their use of aquatic and high-preference forage 

the summer prior to their death, but increased their use of low-preference forage (Fig.5b). 

Moreover, these same individuals exhibited no change in diet throughout the growing 

season – eating proportionally more aquatic forage than any other forage group 

throughout the entire summer.  

Although the changes in diet we observed could be related to changes in forage 

availability, this is unlikely for multiple reasons. First, while we show above that MMST 

influences overall N availability, we did not observe differences within individual forage 

groups. Second, moose that died during winter came from all three temperature regions, 

yet show significant differences in their proportional consumption of all preference 

groups when compared to those that survived, which also come from all three 
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temperature regions. Finally, by evaluating differences in diet composition for those 

animals that we have paired hair samples for, we show that animals actually change their 

foraging behavior the summer prior to their death. Thus, while the small number of 

mortalities limits our ability to draw robust conclusions, our results suggest that over-

winter survival is more likely to be influenced by temperature-induced changes to 

behavior than spatial variation in the availability of forage.  

Although we investigated how high-summer temperatures and diet interact to 

specifically influence overwinter survival, potential synergies between temperature and 

diet could have broader impacts than what we investigate here. Prior work has found that 

small differences (10-20%) in digestible energy (DE) intake during summer-autumn can 

have substantial implications for fat accretion and growth rates in adults and calves in elk 

(Cook et al. 2004), and differences of roughly 13% have been reported for DE of aquatic 

and terrestrial forage (MacCracken et al. 1993). Additionally, previous work has 

suggested that fertility may be compromised by poor summer-autumn nutrition for moose 

in NEMN (DelGiudice et al. 2011), and in northwest Minnesota, poor nutrition was 

associated with pregnancy rates that were consistently below 50% (Murray et al. 2006). If 

high-summer temperatures are forcing moose to decide between habitats that offer 

thermal refugia versus those that offer high-quality food, then the thermal environment 

during mid to late summer may be influencing demographic rates throughout the entire 

year, especially during winter and early spring. While the results we present here indicate 

that moose in the warmest parts of their range are consuming more aquatic forage than 

those from the cooler parts of the range, these animals may simply be eating less 
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terrestrial forage in response to heat stress. Regardless of the cause, ingesting less 

terrestrial forage could make it difficult for moose to accrue enough body prior to the 

onset of winter, thereby increasing risk of over-winter mortality and other negative 

demographic consequences. 

For animals at the southern edge of their geographic range, the detrimental effects 

of higher temperatures may be pervasive, having a wide range of both direct and indirect 

influences on demographic rates. During summer, moose experience heat stress between 

17 and 24 ºC (McCann et al. 2013), and mean-maximum summer temperatures in NEMN 

from 1981 to 2010 ranged from roughly 20 to 25 ºC, suggesting that moose in NEMN 

routinely experience heat stress during summer. While numerous studies have suggested 

that warming and nutrition likely interact to influence moose declines in Minnesota, a 

clear link between these variables and demographic rates has not been established. In this 

study, we provide evidence that high temperatures negatively influence forage quality, 

foraging behavior, and nutrition, and that the interaction of these factors negatively 

affects overwinter survival. While moose mortality throughout NEMN has been 

attributed to a range of different causes, the evidence we present here suggests that high 

temperatures and diet during summer may, together, be a driver that predisposes moose 

to predation, disease, and malnutrition, along with other potential causes of winter 

mortality. 
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Table 1. Results of generalized linear models evaluating the influence of mean-maximum summer 
temperature on N availability for individual forage groups and for all groups combined (i.e., total N). 
Comparisons yielding a statistically significant difference (p < 0.05) are identified via italics and an asterisk 
(*). 
 

forage group  β df r2 p 

low  -0.6427 68 0.0421 0.0885 
medium  -0.1804 68 0.0359 0.1163 

high  -0.3927 68 0.0526 0.0562 
      

total N  -0.0288 68 0.0725 0.0242* 
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Table 2. Results of Tukey’s test for honestly significant differences comparing individual forage groups between temperature regions during late 
summer. “Comparison” indicates the temperature regions being compared, while “difference” indicates the mean difference between the two 
temperature regions being compared for the respective preference group.  “Upper” and “lower” represent the upper and lower limits of 95% confidence 
interval of the mean difference. Comparisons yielding a statistically significant difference (p < 0.05) are identified via italics and an asterisk (*). All 
values were truncated to four significant digits. 
 

time period preference group comparison difference lower upper p 
early summer       

 aquatic      
  mod-cool 0.1525 0.0451 0.2600 0.0028* 
  warm- cool 0.2649 0.0762 0.4537 0.0032* 
  warm-mod 0.1124 -0.0690 0.2938 0.3090 
       
 high      
  mod- cool -0.0517 -0.1271 0.0237 0.2380 
  warm- cool -0.0965 -0.2290 0.0360 0.1989 
  warm-mod -0.0448 -0.1721 0.0826 0.6827 
       
 medium      
  mod- cool -0.1184 -0.2092 -0.0277 0.0068* 
  warm- cool -0.1435 -0.3030 0.0159 0.0870* 
  warm-mod -0.0251 -0.1784 0.1282 0.9203 
       
 low      
  mod- cool -0.1051 -0.1829 -0.0272 0.0049* 
  warm- cool -0.1420 -0.2788 -0.0051 0.0401* 
  warm-mod -0.0369 -0.1685 0.0946 0.7838 
       

late summer       
 aquatic      
  mod-cool 0.0423 0.0181 0.0664 0.0001* 
  warm- cool 0.0671 0.0261 0.1081 0.0004* 
  warm-mod 0.0248 -0.0144 0.0641 0.2955 
       
 high      
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  mod- cool -0.0110 -0.0205 -0.0015 0.0186* 
  warm- cool -0.0232 -0.0393 -0.0071 0.0025* 
  warm-mod -0.0122 -0.0276 0.0033 0.1516 
       
 medium      
  mod- cool -0.0196 -0.0348 -0.0043 0.0080* 
  warm- cool -0.0253 -0.0512 0.0006 0.0572 
  warm-mod -0.0057 -0.0305 0.0191 0.8484 
       
 low      
  mod- cool -0.0379 -0.0574 -0.0184 < 0.0001* 
  warm- cool -0.0586 -0.0917 -0.0255 0.0001* 
  warm-mod -0.0207 -0.0525 0.0110 0.2712 
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Table 3. Variance in δ13C values for different temperature regions and results of Bartlett’s test for 
homogeneity of variance comparing these values. Comparisons yielding a statistically significant difference 
(p < 0.05) are identified via italics and an asterisk (*). 
 

 variance  Bartlett’s test 
period cool moderate warm  df Bartlett’s K2 p 

early summer 0.1183 0.7509 0.3421  2 99.6650 < 0.0001* 
late summer 0.4480 0.3379 0.3269  2 1.1742 0.5559 
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Table 4. Results of Tukey’s test for honestly significant differences comparing of mean values of δ15Nhair 
between different temperature regions for early and late summer. “Comparison” indicates the temperature 
regions being compared, while “difference” indicates the mean difference between the two temperature 
regions being compared for the respective preference group.  “Upper” and “lower” represent the upper and 
lower limits of 95% confidence interval of the mean difference. Comparisons yielding a statistically 
significant difference (p < 0.05) are identified via italics and an asterisk (*). All values were truncated to 
four significant digits. 
 

summer period comparison difference lower upper p 
early      

 mod-cool 0.4903 -0.0360 1.0168 0.0734 
 warm- cool 0.2644 -0.6648 1.1938 0.7783 
 warm-mod -0.2258 -1.1211 0.6694 0.8211 
      

late      
 mod-cool 0.6488 0.1195 1.1781 0.0119* 
 warm-cool 0.5423 -0.3608 1.4454 0.3316 
 warm-mod -0.1065 -0.9704 0.7572 0.9539 
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Table 5. Results of logistic regressions detailing the influence of each forage group on the probability of 
overwinter survival. Odds ratios < 1 indicate a negative effect of that forage group on survival, while an 
odds ratio > 1 indicates a positive effect on winter survival. Comparisons yielding a statistically significant 
difference (p < 0.05) are identified via italics and an asterisk (*).  
 

summer period forage group odds ratios z p 
early     

 aquatics 3.6773 -1.5690 0.1170 
 high 1.9758 3.7260 < 0.0001* 
 medium 3.8050 3.3230  0.0008* 
 low -3.8171 -1.9760  0.0482* 

late     
 aquatics 3.5286 -0.1620 0.8720 
 high 0.0685 4.8430 < 0.0001* 
 medium 3.5800 1.5310 0.1260 
 low -3.6518 2.7000 0.0069* 
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Table 6. Results of pairwise logistic regressions comparing diets of the same animals before and after 
death. Odds ratios < 1 indicate a negative effect of that forage group on survival, while an odds ratio > 1 
indicates a positive effect on winter survival. Comparisons yielding a statistically significant difference (p < 
0.05) are identified via italics and an asterisk (*).  
 

summer period forage group odds ratios z p 
early     

 aquatics 1.0003 0.8080 0.4190 
 high 2.8180·10-6 0.0010 0.9990 
 medium 0.9229 2.3560  0.0185* 
 low 3.9219·10-5 -1.2540  0.2100 

late     
 aquatics 0.6847 2.7730 0.0055* 
 high 0.4631 3.1790  0.0014* 
 medium 0.0057 -1.8930 0.0583 
 low -0.8619 -2.6870 0.0072* 
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Table 7. Results of univariate ANOVAs comparing the dietary contributions of individual forage groups as 
a function of season, for animals that survived winter and those that died. 
 

  early summer  late summer   
winter 

fate 
forage 
group 

mean (%) sd  mean (%) sd F p 

alive         
 aquatics 27.9 0.08  34.5 0.02 117.500 < 0.0001* 
 high 38.5 0.03  31.0 0.01 193.100 < 0.0001* 
 medium 22.5 0.03  13.1 0.01 796.500 < 0.0001* 
 low 10.9 0.01  21.0 0.01 1687.000 < 0.0001* 

dead         
 aquatics 38.0 0.28  40.2 0.25 1.015 0.3170 
 high 27.0 0.12  24.9 0.09 0.042 0.8390 
 medium 17.3 0.09  14.6 0.06 0.267 0.1590 
 low 17.4 0.09  20.1 0.09 2.100 0.2300 
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Table 8. Variance in δ13Chair values for animals with different winter fates, for both early and late 
summer and results of Bartlett’s test for homogeneity of variance comparing these values. Comparisons 
yielding a statistically significant difference (p < 0.05) are identified via italics and an asterisk (*). 
 

 variance  Bartlett’s test 
period alive dead  df Bartlett’s K2 p 

early summer 0.5189 2.7467  1 45.034 < 0.0001* 
late summer 0.4415 13.2210  1 195.520 < 0.0001* 
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Table 9. Results of pairwise t-tests for comparing differences between early and late summer diet for those 
animals that we collected both live and dead hair samples. The column entitled “mean difference” 
represents the mean difference between early and late summer, and statistical significance for each test is 
identified via italics and asterisk (*). 
 
 

 mean difference (%)    
forage group alive dead df t p 
aquatic -8.88 -5.08 18 -1.9471 0.0673 
high 8.11 3.97 18 9.5419 < 0.0001* 
medium 10.97 3.91 18 6.7522 < 0.0001* 
low -10.20 -2.79 18 -6.3695 < 0.0001* 
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Fig.1. Sampling locations of vegetation and hair throughout the moose range of NEMN (a) and thermal 
landscape as depicted by mean-maximum summer temperature (JJA) from 1981-2010 (PRISM Climate 
Group 2017) with temperature regions (b). All sampling plots and moose hair were categorized into one of 
three different temperature regions (inset map, panel b) based on their location within the thermal 
landscape. 

a) 

 
 
b) 
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Fig.2. Variation in moose diets as a function of temperature region during both early (a) and late summer 
(b). MANOVA results suggest that diet composition does not vary by temperature region during early 
summer, but does during late summer. Points represent mean and bars ± one standard error. 
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Fig.3. Mean and variance for values of δ13Chair and δ15Nhair across each temperature region for early (a) 
and late summer (b). Greater variance in values of δ13Chair suggests greater dietary breadth, while higher 
mean values of δ15Nhair represent greater nitrogen limitation. Points represent mean values while error bars 
represent ± one standard deviation. 
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Fig.4. Results of logistic regressions evaluating how consumption of different dietary groups varies 
between animals that survived winter and those that did not, for both early (a) and late summer (b). 
Weighted lines identify significant changes (p < 0.05) in consumption as a function of winter mortality, 
while lighter, dashed lines indicate no significant relationship. 



 

 129 

  
Fig.5. Results of pairwise logistic regressions for those animals that we collected both live and dead hair 
samples from, comparing diets before and after death, for early (a) and late summer (b). Weighted, solid 
lines identify significant changes (p < 0.05) in consumption as a function of winter mortality, while lighter, 
dashed lines indicate no significant relationship. 
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Fig.6. Bar plots representing seasonal shifts in diet for animals that survived winter (a) and those that died 
(b). Error bars represent ± 1 standard deviation, while bars represent the mean value. Astrices (*) represent 
statistically significant differences (p < 0.05) between the mean values of individual forage groups for early 
and late-summer. 
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Fig.7. Mean and variance for values of δ13Chair (a) and δ15Nhair (b). Greater variance in values of δ13Chair 
suggests greater dietary breadth, while higher mean values of δ15Nhair represent greater nitrogen limitation. 
Points represent mean values while error bars represent ± one standard deviation. 
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Fig.8. Mean differences in seasonal diet for those animals that we collected both live and dead hair samples 
from. Points represent mean difference between early and late summer diet while bars represent ± 1 
standard deviation. Values below zero indicate greater proportional contributions during late summer, 
while values above zero indicate greater contributions of individual forage groups during early summer. 
Substantial overlap between paired, alive-dead error bars (i.e., aquatic) suggests no change in the 
contribution of that forage group during summers preceding winter survival and summers preceding winter 
mortality. Statistically significant differences (p < 0.05) are represented by an asterisk (*). 



 

 133 

Literature Cited 

ACIA. 2004. Impacts of a warming Arctic-Arctic climate impact assessment. Impacts of 

a Warming Arctic-Arctic Climate Impact Assessment, by Arctic Climate Impact 

Assessment, pp. 144. ISBN 0521617782. Cambridge, UK: Cambridge University 

Press, December 2004. 144. 

Adams, T. S., and R. W. Sterner. 2000. The effect of dietary nitrogen content on trophic 

level 15N enrichment. Limnology and Oceanography 45: 601–607. 

Albon, S. D., and R. Langvatn. 1992. Plant phenology and the benefits of migration in a 

temperate ungulate. Oikos 502–513. 

Alexander, L. V., X. Zhang, T. C. Peterson, J. Caesar, B. Gleason, A. M. G. Klein Tank, 

M. Haylock, D. Collins, B. Trewin, F. Rahimzadeh, A. Tagipour, K. Rupa Kumar, 

J. Revadekar, G. Griffiths, L. Vincent, D. B. Stephenson, J. Burn, E. Aguilar, M. 

Brunet, M. Taylor, M. New, P. Zhai, M. Rusticucci, and J. L. Vazquez-Aguirre. 

2006. Global observed changes in daily climate extremes of temperature and 

precipitation. J. Geophys. Res. 111: D05109. 

Alsamamra, H., J. A. Ruiz-Arias, D. Pozo-Vázquez, and J. Tovar-Pescador. 2009. A 

comparative study of ordinary and residual kriging techniques for mapping global 

solar radiation over southern Spain. Agricultural and Forest Meteorology 149: 

1343–1357. 

Ambrose, S. H. 1991. Effects of diet, climate and physiology on nitrogen isotope 

abundances in terrestrial foodwebs. Journal of Archaeological Science 18: 293–

317. 



 

 134 

Anderson, M. J. 2001. A new method for non-parametric multivariate analysis of 

variance. Austral Ecology 26: 32–46. 

Angerbjörn, A., P. Hersteinsson, K. Lidén, and E. Nelson. 1994. Dietary variation in 

arctic foxes (Alopex lagopus)-an analysis of stable carbon isotopes. Oecologia 99: 

226–232. 

Aublet, J.-F., M. Festa-Bianchet, D. Bergero, and B. Bassano. 2009. Temperature 

constraints on foraging behaviour of male Alpine ibex (Capra ibex) in summer. 

Oecologia 159: 237–247. 

Barboza, P. S., and K. L. Parker. 2008. Allocating Protein to Reproduction in Arctic 

Reindeer and Caribou. Physiological and Biochemical Zoology 81: 835–855. 

Barrett, M., A. Belward, S. Bladen, T. Breeze, N. Burgess, S. Butchart, H. Clewclow, S. 

Cornell, A. Cottam, and S. Croft. 2018. Living Planet Report 2018: Aiming 

Higher.  

Bates, D., M. Maechler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects 

models using lme4. Journal of Statistical Software 67: 1–48. 

Belovsky, G. E. 1978. Diet optimization in a generalist herbivore: The moose. 

Theoretical Population Biology 14: 105–134. 

Bennett, R. N., and R. M. Wallsgrove. 1994. Secondary metabolites in plant defence 

mechanisms. New Phytologist 127: 617–633. 

Benton, H. P., E. J. Want, and T. M. Ebbels. 2010. Correction of mass calibration gaps in 

liquid chromatography–mass spectrometry metabolomics data. Bioinformatics 26: 

2488–2489. 



 

 135 

Berg, T. B. 2003. Catechin content and consumption ratio of the collared lemming. 

Oecologia 135: 242–249. 

Berger, J. 1997. Population constraints associated with the use of black rhinos as an 

umbrella species for desert herbivores. Conservation Biology 11: 69–78. 

Berini, J. L., and C. Badgley. 2017. Diet segregation in American bison (Bison bison) of 

Yellowstone National Park (Wyoming, USA). BMC Ecology 17: 27. 

Bidart-Bouzat, M. G., and A. Imeh-Nathaniel. 2008. Global change effects on plant 

chemical defenses against insect herbivores. Journal of Integrative Plant Biology 

50: 1339–1354. 

Bivand, R. S., E. J. Pebesma, and V. Gomez-Rubio. 2013. Applied spatial data analysis 

with R, 2nd ed. Springer, New York. 

Bivand, R., T. Keitt, and B. Rowlingson. 2018. rgdal: bindings for the “geospatial” data 

abstraction library. 

Bonham-Smith, P. C., M. Kapoor, and J. D. Bewley. 1987. Establishment of 

thermotolerance in maize by exposure to stresses other than a heat shock does not 

require heat shock protein synthesis. Plant Physiology 85: 575–580. 

Bowen, G. J. 2010. Isoscapes: spatial pattern in isotopic biogeochemistry. Annual 

Review of Earth and Planetary Sciences 38: 161–187. 

Bowen, G. J., and B. Wilkinson. 2002. Spatial distribution of δ18O in meteoric 

precipitation. Geology 30: 315–318. 

Bowen, G. J., and J. Revenaugh. 2003. Interpolating the isotopic composition of modern 

meteoric precipitation. Water Resources Research 39. 



 

 136 

Bray, E. A., J. Bailey-Serres, and E. Weretilnyk. 2000. Responses to abiotic stresses. 

Biochemistry and Molecular Biology of Plants 1158: e1203. 

Britton, K., V. Grimes, J. Dau, and M. P. Richards. 2009. Reconstructing faunal 

migrations using intra-tooth sampling and strontium and oxygen isotope analyses: 

a case study of modern caribou (Rangifer tarandus granti). Journal of 

Archaeological Science 36: 1163–1172. 

Brooks, S. P., and A. Gelman. 1998. General methods for monitoring convergence of 

iterative simulations. Journal of Computational and Graphical Statistics 7: 434–

455. 

Bryant, J. P., F. S. Chapin, and D. R. Klein. 1983. Carbon/nutrient balance of boreal 

plants in relation to vertebrate herbivory. Oikos 40: 357–368. 

Bukovinszky, T., F. F. van Veen, Y. Jongema, and M. Dicke. 2008. Direct and indirect 

effects of resource quality on food web structure. Science 319: 804–807. 

Canham, C. D., J. S. Denslow, W. J. Platt, J. R. Runkle, T. A. Spies, and P. S. White. 

1990. Light regimes beneath closed canopies and tree-fall gaps in temperate and 

tropical forests. Canadian Journal of Forest Research 20: 620–631. 

Carstensen, M., E. C. Hildebrand, D. Plattner, M. H. Dexter, C. Jennelle, and R. G. 

Wright. 2015. Determining cause-specific mortality of adult moose in northeast 

Minnesota. Summaries of wildlife research findings. St. Paul: Minnesota 

Department of Natural Resources 161: 71. 

Castro, J., R. Zamora, J. A. Hódar, and J. M. Gómez. 2004. Seedling establishment of a 

boreal tree species (Pinus sylvestris) at its southernmost distribution limit: 



 

 137 

consequences of being in a marginal Mediterranean habitat. Journal of Ecology 

92: 266–277. 

Ceballos, G., P. R. Ehrlich, and R. Dirzo. 2017. Biological annihilation via the ongoing 

sixth mass extinction signaled by vertebrate population losses and declines. 

Proceedings of the National Academy of Sciences 114: E6089–E6096. 

Cebrian, M. R., K. Kielland, and G. Finstad. 2008. Forage quality and reindeer 

productivity: multiplier effects amplified by climate change. Arctic, Antarctic, 

and Alpine Research 40: 48–54. 

Cerling, T. E., G. Wittemyer, H. B. Rasmussen, F. Vollrath, C. E. Cerling, T. J. 

Robinson, and I. Douglas-Hamilton. 2006. Stable isotopes in elephant hair 

document migration patterns and diet changes. Proceedings of the National 

Academy of Sciences 103: 371–373. 

Cerling, T., and J. Harris. 1999. Carbon isotope fractionation between diet and bioapatite 

in ungulate mammals and implications for ecological and paleoecological studies. 

Oecologia 120: 347–363. 

Chan-McLeod, A. C. A., R. G. White, and D. E. Russell. 2000. Comparative body 

composition strategies of breeding and nonbreeding female caribou. Canadian 

Journal of Zoology 77: 1901–1907. 

Cheesman, A. W., and L. A. Cernusak. 2016. Isoscapes: a new dimension in community 

ecology. Tree Physiology 36: 1456–1459. 



 

 138 

Chenaux-Ibrahim, Y. 2015. Seasonal  diet  composition  of  gray  wolves  (Canis  lupus)  

in  northeastern  Minnesota  determined  by  scat  analysis. Ph.D. Dissertation. 

University of Minnesota, Duluth.  

Cheng, D., K. Vrieling, and P. G. Klinkhamer. 2011. The effect of hybridization on 

secondary metabolites and herbivore resistance: implications for the evolution of 

chemical diversity in plants. Phytochemistry Reviews 10: 107–117. 

Cheng, Y., J. Wang, B. Mary, J. Zhang, Z. Cai, and S. X. Chang. 2013. Soil pH has 

contrasting effects on gross and net nitrogen mineralizations in adjacent forest and 

grassland soils in central Alberta, Canada. Soil Biology and Biochemistry 57: 

848–857. 

Cloutier, Y., and C. J. Andrews. 1984. Efficiency of cold hardiness induction by 

desiccation stress in four winter cereals. Plant Physiology 76: 595–598. 

Collier, R. J., and D. K. Beede. 1985. Thermal stress as a factor associated with nutrient 

requirements and interrelationships. Nutrition of grazing ruminants in warm 

climates 59–71. 

Constable, J., M. E. Litvak, J. P. Greenberg, R. K. Monson, and others. 1999. 

Monoterpene emission from coniferous trees in response to elevated CO2 

concentration and climate warming. Global Change Biology 5: 252–267. 

Cook, J. G., B. K. Johnson, R. C. Cook, R. A. Riggs, T. I. M. Delcurto, L. D. Bryant, and 

L. L. Irwin. 2004. Effects of summer-autumn nutrition and parturition date on 

reproduction and survival of elk. Wildlife Monographs 155: 1–61. 



 

 139 

Côté, L., S. Brown, D. Paré, J. Fyles, and J. Bauhus. 2000. Dynamics of carbon and 

nitrogen mineralization in relation to stand type, stand age and soil texture in the 

boreal mixedwood. Soil Biology and Biochemistry 32: 1079–1090. 

Craig, H. 1953. The geochemistry of the stable carbon isotopes. Geochimica et 

Cosmochimica Acta 3: 53–92. 

Craig, H. 1954. Carbon 13 in plants and the relationships between carbon 13 and carbon 

14 variations in nature. The Journal of Geology 62: 115–149. 

Craufurd, P. Q., and J. M. Peacock. 1993. Effect of heat and drought stress on sorghum 

(Sorghum bicolor). II. Grain yield. Experimental Agriculture . 

Crews, B., W. R. Wikoff, G. J. Patti, H.-K. Woo, E. Kalisiak, J. Heideker, and G. 

Siuzdak. 2009. Variability analysis of human plasma and cerebral spinal fluid 

reveals statistical significance of changes in mass spectrometry-based 

metabolomics data. Analytical Chemistry 81: 8538–8544. 

Dale, V. H., L. A. Joyce, S. McNulty, R. P. Neilson, M. P. Ayres, M. D. Flannigan, P. J. 

Hanson, L. C. Irland, A. E. Lugo, C. J. Peterson, and others. 2001. Climate 

change and forest disturbances. BioScience 51: 723–734. 

Dall, S. R. X., L.-A. Giraldeau, O. Olsson, J. M. McNamara, and D. W. Stephens. 2005. 

Information and its use by animals in evolutionary ecology. Trends in Ecology & 

Evolution 20: 187–193. 

Danell, K., R. Gref, and R. Yazdani. 1990. Effects of mono- and diterpenes in scots pine 

needles on moose browsing. Scandinavian Journal of Forest Research 5: 535–539. 



 

 140 

DelGiudice, G. 2018. 2018 aerial moose survey. Minnesota Department of Natural 

Resources, St. Paul. 

DelGiudice, G. D., B. A. Sampson, M. S. Lenarz, M. W. Schrage, and A. J. Edwards. 

2011. Winter body condition of moose (Alces alces) in a declining population in 

northeastern Minnesota. Journal of Wildlife Diseases 47: 30–40. 

DelGiudice, G. D., W. J. Severud, and T. R. Obermoller. 2017. Climate change, winter 

nutritional restriction, and the decline of moose in northeastern Minnesota, 

winters 2013-2017. Minnesota Department of Natural Resources, St. Paul, MN. 

DeLucia, E. H., P. D. Nabity, J. A. Zavala, and M. R. Berenbaum. 2012. Climate change: 

resetting plant-insect interactions. Plant Physiology 160: 1677–1685. 

Deniro, M., and S. Epstein. 1978. Influence of diet on the distribution of carbon isotopes 

in animals. Geochimica et Cosmochimica Acta 42: 495–506. 

Dicke, M., R. Gols, and E. H. Poelman. 2012. Dynamics of plant secondary metabolites 

and consequences for food chains and community dynamics. The Ecology of 

Plant Secondary Metabolites: From Genes to Global Processes 308. 

Dixon, P. M., L. Wu, M. P. Widrlechner, and E. S. Wurtele. 2009. Weighted distance 

measures for metabolomic data. Ames, IA ; 1–8. 

Doiron, M., G. Gauthier, and E. Lévesque. 2014. Effects of experimental warming on 

nitrogen concentration and biomass of forage plants for an arctic herbivore. 

Journal of Ecology 102: 508–517. 



 

 141 

Dou, H., G. Jiang, P. Stott, and R. Piao. 2013. Climate change impacts population 

dynamics and distribution shift of moose (Alces alces) in Heilongjiang Province 

of China. Ecological Research 28: 625–632. 

Drucker, D. G., K. A. Hobson, J. P. Ouellet, and R. Courtois. 2010. Influence of forage 

preferences and habitat use on 13C and 15N abundance in wild caribou (Rangifer 

tarandus caribou) and moose (Alces alces) from Canada. Isotopes in 

Environmental and Health Studies 46: 107–121. 

Dudt, J. F., and D. J. Shure. 1994. The influence of light and nutrients on foliar phenolics 

and insect herbivory. Ecology 75: 86–98. 

Dyer, L. A., C. D. Dodson, J. O. Stireman Iii, M. A. Tobler, A. M. Smilanich, R. M. 

Fincher, and D. K. Letourneau. 2003. Synergistic effects of three Piper amides on 

generalist and specialist herbivores. Journal of Chemical Ecology 29: 2499–2514. 

Engelmark, O. 1999. Boreal forest disturbances. Ecosystems of the World 161–186. 

EPA. 2016. What climate change means for Minnesota. Environmental Protection 

Agency. 

ESRI. 2011. ArcGIS 10.3.1. ESRI, Redlands, CA. 

Faraway, J. J. 2016. Extending the linear model with R: generalized linear, mixed effects 

and nonparametric regression models, second edition. CRC Press, Boca Raton. 

Farmer, E. E. 2001. Surface-to-air signals. Nature 411: 854–856. 

Forbey, J., and M. D. Hunter. 2012. The herbivore’s prescription: a pharm-ecological 

perspective on host-plant use by vertebrate and invertebrate herbivores in The 



 

 142 

Ecology of Plant Secondary Metabolites: From Genes to Global Processes. 

Cambridge University Press, New York. 

Fox, A. D., K. A. Hobson, and J. Kahlert. 2009. Isotopic evidence for endogenous protein 

contributions to greylag goose Anser anser flight feathers. Journal of Avian 

Biology 40: 108–112. 

Franzmann, A. W., A. Flynn, and P. D. Arneson. 1975. Levels of some mineral elements 

in Alaskan moose hair. The Journal of Wildlife Management 374–378. 

Frelich, L. E. 2002. Forest dynamics and disturbance regimes: studies from temperate 

evergreen-deciduous forests. Cambridge University Press, New York. 

Frye, G. G., J. W. Connelly, D. D. Musil, and J. S. Forbey. 2013. Phytochemistry predicts 

habitat selection by an avian herbivore at multiple spatial scales. Ecology 94: 

308–314. 

Garcia, R. A., M. Cabeza, C. Rahbek, and M. B. Araújo. 2014. Multiple dimensions of 

climate change and their implications for biodiversity. Science 344: 1247579. 

Garrott, Robert A, L. L. Eberhardt, P. J. White, and J. Rotella. 2003. Climate-induced 

variation in vital rates of an unharvested large-herbivore population. Canadian 

Journal of Zoology 81: 33–45. 

Garrott, Robert A., L. L. Eberhardt, P. J. White, and J. Rotella. 2003. Climate-induced 

variation in vital rates of an unharvested large-herbivore population. Canadian 

Journal of Zoology 81: 33–45. 

Garten, C. T., and G. E. Taylor. 1992. Foliar δ13C within a temperate deciduous forest: 

spatial, temporal, and species sources of variation. Oecologia 90: 1–7. 



 

 143 

Gerlich, M., and S. Neumann. 2013. MetFusion: Integration of compound identification 

strategies. Journal of Mass Spectrometry 48: 291–298. 

Gershenzon, J. 1984. Changes in the levels of plant secondary metabolites under water 

and nutrient stress in Phytochemical Adaptations to Stress. Springer, New York. 

Gershenzon, J., A. Fontana, M. Burow, U. T. E. Wittstock, and J. Degenhardt. 2012. 

Mixtures of plant secondary metabolites: metabolic origins and ecological 

benefits in The Ecology of Plant Secondary Metabolites: From Genes to Global 

Processes. Cambridge University Press, New York. 

Gershenzon, J., and R. Croteau. 1992. Terpenoids in Herbivores: Their Interactions With 

Secondary Plant Metabolites, 2nd ed, Vol. 1: The Chemical Participants. 

Academic Press, Cambridge. 

Gillespie, D. R., A. Nasreen, C. E. Moffat, P. Clarke, and B. D. Roitberg. 2012. Effects 

of simulated heat waves on an experimental community of pepper plants, green 

peach aphids and two parasitoid species. Oikos 121: 149–159. 

Gillooly, J. F., J. H. Brown, G. B. West, V. M. Savage, and E. L. Charnov. 2001. Effects 

of size and temperature on metabolic rate. Science 293: 2248–2251. 

Gleadow, R. M., and I. E. Woodrow. 2002. Defense chemistry of cyanogenic Eucalyptus 

cladocalyx seedlings is affected by water supply. Tree Physiology 22: 939–945. 

Harborne, J. B. 1987. Chemical signals in the ecosystem. Annals of Botany 60: 39–57. 

Harrell, F. E., and C. D. Dupont. 2018. Hmisc: Harrell Miscellaneous. 

Hart, E. M., and K. Bell. 2015. prism: Download data from the Oregon prism project. 



 

 144 

Heinselman, M. L. 1996. The boundary waters wilderness ecosystem. University of 

Minnesota Press, St. Paul. 

Hellmann, C., K. G. Rascher, J. Oldeland, and C. Werner. 2016. Isoscapes resolve 

species-specific spatial patterns in plant–plant interactions in an invaded 

Mediterranean dune ecosystem. Tree Physiology 36: 1460–1470. 

Henaux, V., L. A. Powell, K. A. Hobson, C. K. Nielsen, and M. A. LaRue. 2011. 

Tracking large carnivore dispersal using isotopic clues in claws: an application to 

cougars across the Great Plains. Methods in Ecology and Evolution 2: 489–499. 

Hetem, R. S., A. Fuller, S. K. Maloney, and D. Mitchell. 2014. Responses of large 

mammals to climate change. Temperature 1: 115–127. 

Hiemstra, P. H., E. J. Pebesma, C. J. Twenhöfel, and G. B. Heuvelink. 2009. Real-time 

automatic interpolation of ambient gamma dose rates from the Dutch radioactivity 

monitoring network. Computers & Geosciences 35: 1711–1721. 

Hijmans, R. J. 2019. raster: Geographic data analysis and modeling. 

Hirt, H., and K. Shinozaki. 2003. Plant responses to abiotic stress. Springer Science & 

Business Media. 

Hurrell, J. W. 1995. Decadal trends in the North Atlantic Oscillation: regional 

temperatures and precipitation. Science 269: 676–679. 

Iason, G. R., J. J. Lennon, R. J. Pakeman, V. Thoss, J. K. Beaton, D. A. Sim, and D. A. 

Elston. 2005. Does chemical composition of individual Scots pine trees determine 

the biodiversity of their associated ground vegetation? Ecology Letters 8: 364–

369. 



 

 145 

Ikeda, T., F. Matsumura, and D. M. Benjamin. 1977. Mechanism of feeding 

discrimination between matured and juvenile foliage by two species of pine 

sawflies. J Chem Ecol 3: 677–694. 

Inderjit, J. L. Pollock, R. M. Callaway, and W. Holben. 2008. Phytotoxic effects of (±)-

catechin in vitro, in soil, and in the field. PLoS ONE 3: e2536. 

IPCC. 2007. Intergovernmental Panel on Climate Change, Climate Change 2007: 

Synthesis Report. Contribution of Working Groups I, II and III to the Fourth 

Assessment Report of the Intergovernmental Panel on Climate Change. . 

IPCC. 2014. Climate change 2014–impacts, adaptation and vulnerability: regional 

aspects. Cambridge University Press, New York. 

Iverson, L. R., A. M. Prasad, S. N. Matthews, and M. Peters. 2008. Estimating potential 

habitat for 134 eastern US tree species under six climate scenarios. Forest 

Ecology and Management 254: 390–406. 

Iverson, L. R., and A. M. Prasad. 1998. Predicting abundance of 80 tree species following 

climate change in the eastern United States. Ecological Monographs 68: 465–485. 

Jain, N. S., U. H. Dürr, and A. Ramamoorthy. 2015. Bioanalytical methods for 

metabolomic profiling: Detection of head and neck cancer, including oral cancer. 

Chinese Chemical Letters 26: 407–415. 

Jamieson, M. A., A. M. Trowbridge, K. F. Raffa, and R. L. Lindroth. 2012. 

Consequences of climate warming and altered precipitation patterns for plant-

insect and multitrophic interactions. Plant physiology 160: 1719–1727. 



 

 146 

Jamieson, M. A., E. G. Schwartzberg, K. F. Raffa, P. B. Reich, and R. L. Lindroth. 2015. 

Experimental climate warming alters aspen and birch phytochemistry and 

performance traits for an outbreak insect herbivore. Global Change Biology 24: 

2698–2710. 

Jenkins, J. C., D. C. Chojnacky, L. S. Heath, and R. A. Birdsey. 2003. National-scale 

biomass estimators for United States tree species. Forest Science 49: 12–35. 

Jiang, Y., and B. Huang. 2001. Drought and heat stress injury to two cool-season 

turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop 

Science 41: 436–442. 

Johnston, M., and P. Woodard. 1985. The effect of fire severity level on postfire recovery 

of hazel and raspberry in east-central Alberta. Canadian Journal of Botany 63: 

672–677. 

Jones, C. G., and J. H. Lawton. 1991. Plant chemistry and insect species richness of 

British umbellifers. The Journal of Animal Ecology 767–777. 

Julander, O., W. L. Robinette, and D. A. Jones. 1961. Relation of summer range 

condition to mule deer herd productivity. The Journal of Wildlife Management 

25: 54–60. 

Julkunen-Tiitto, R., M. Rousi, J. Bryant, S. Sorsa, M. Keinänen, and H. Sikanen. 1996. 

Chemical diversity of several Betulaceae species: comparison of phenolics and 

terpenoids in northern birch stems. Trees 11: 16–22. 

Karban, R. 2008. Plant behaviour and communication. Ecology Letters 11: 727–739. 



 

 147 

Karban, R., K. Shiojiri, M. Huntzinger, and A. C. McCall. 2006. Damage-induced 

resistance in sagebrush: volatiles are key to intra-and interplant communication. 

Ecology 87: 922–930. 

Kingsland, S. E. 1991. Defining ecology as a science. Foundations of Ecology. Classic 

papers with commentaries. The University of Chicago Press, Chicago & London 

1–13. 

Kleidon, A., J. Adams, R. Pavlick, and B. Reu. 2009. Simulated geographic variations of 

plant species richness, evenness and abundance using climatic constraints on plant 

functional diversity. Environmental Research Letters 4: 014007. 

Kneeshaw, D. D., R. K. Kobe, K. D. Coates, and C. Messier. 2006. Sapling size 

influences shade tolerance ranking among southern boreal tree species. Journal of 

ecology 94: 471–480. 

Kruskal, J. B. 1964. Multidimensional scaling by optimizing goodness of fit to a 

nonmetric hypothesis. Psychometrika 29: 1–27. 

Kuokkanen, K., R. Julkunen-Tiitto, M. Keinänen, P. Niemelä, and J. Tahvanainen. 2001. 

The effect of elevated CO2 and temperature on the secondary chemistry of Betula 

pendula seedlings. Trees 15: 378–384. 

Kurnath, P., N. D. Merz, and M. D. Dearing. 2016. Ambient temperature influences 

tolerance to plant secondary compounds in a mammalian herbivore in Proc. R. 

Soc. B vol. 283. The Royal Society. 



 

 148 

Laitinen, M.-L., R. Julkunen-Tiitto, and M. Rousi. 2000. Variation in phenolic 

compounds within a birch (Betula pendula) population. Journal of Chemical 

Ecology 26: 1609–1622. 

Langvatn, R., S. D. Albon, T. Burkey, and T. H. Clutton-Brock. 1996. Climate, plant 

phenology and variation in age of first reproduction in a temperate herbivore. 

Journal of Animal Ecology 653–670. 

Larsson, S., C. Björkman, and R. Gref. 1986. Responses of Neodiprion sertifer (Hym., 

Diprionidae) larvae to variation in needle resin acid concentration in Scots pine. 

Oecologia 70: 77–84. 

Leavitt, S. W., and A. Long. 1986. Stable-carbon isotope variability in tree foliage and 

wood. Ecology 67: 1002–1010. 

Lenart, E. A., R. T. Bowyer, J. V. Hoef, and R. W. Ruess. 2002. Climate change and 

caribou: effects of summer weather on forage. Canadian Journal of Zoology 80: 

664–678. 

Lenarz, M. S., J. Fieberg, M. W. Schrage, and A. J. Edwards. 2010. Living on the edge: 

viability of moose in northeastern Minnesota. Journal of Wildlife Management 

74: 1013–1023. 

Lenarz, M. S., M. E. Nelson, M. W. Schrage, and A. J. Edwards. 2009. Temperature 

mediated moose survival in northeastern Minnesota. The Journal of Wildlife 

Management 73: 503–510. 



 

 149 

Lerdau, M., M. Litvak, and R. Monson. 1994. Plant chemical defense: monoterpenes and 

the growth-differentiation balance hypothesis. Trends in Ecology & Evolution 9: 

58–61. 

Lesica, P., and E. E. Crone. 2017. Arctic and boreal plant species decline at their southern 

range limits in the Rocky Mountains. Ecology Letters 20: 166–174. 

Lewinsohn, E., M. Gijzen, R. M. Muzika, K. Barton, and R. Croteau. 1993. Oleoresinosis 

in Grand Fir (Abies grandis) saplings and mature trees (modulation of this wound 

response by light and water stresses). Plant Physiology 101: 1021–1028. 

Lindroth, R. L. 2012. Atmospheric change, plant secondary metabolites and ecological 

interactions. The ecology of plant secondary metabolites: from genes to global 

processes. Cambridge University Press, Cambridge, New York. 

Lott, C. A., and J. P. Smith. 2006. A geographic-information-system approach to 

estimating the origin of migratory raptors in North America using stable hydrogen 

isotope ratios in feathers. The Auk 123: 822–835. 

MacCracken, J. G., V. V. Ballenberghe, and J. M. Peek. 1993. Use of aquatic plants by 

moose: sodium hunger or foraging efficiency? Canadian Journal of Zoology 71: 

2345–2351. 

Marshall, J. D., J. R. Brooks, and K. Lajtha. 2007. Sources of variation in the stable 

isotopic composition of plants in Stable Isotopes in Ecology and Environmental 

Science. Blackwell Publishing, Malden. 



 

 150 

Martínez del Rio, C., N. Wolf, S. A. Carleton, and L. Z. Gannes. 2009. Isotopic ecology 

ten years after a call for more laboratory experiments. Biological Reviews 84: 91–

111. 

McArt, S. H., D. E. Spalinger, W. B. Collins, E. R. Schoen, T. Stevenson, and M. Bucho. 

2009. Summer dietary nitrogen availability as a potential bottom-up constraint on 

moose in south-central Alaska. Ecology 90: 1400–1411. 

Mccain, C. M., and S. R. King. 2014. Body size and activity times mediate mammalian 

responses to climate change. Global Change Biology 20: 1760–1769. 

McCann, N. P., R. A. Moen, and T. R. Harris. 2013. Warm-season heat stress in moose 

(Alces alces). Canadian Journal of Zoology 91: 893–898. 

McCann, N. P., R. A. Moen, S. K. Windels, and T. R. Harris. 2016. Bed sites as thermal 

refuges for a cold-adapted ungulate in summer. Wildlife Biology 22: 228–237. 

Mech, L. D., and J. Fieberg. 2014. Re-evaluating the northeastern Minnesota moose 

decline and the role of wolves. The Journal of Wildlife Management 78: 1143–

1150. 

Merrill, E. H. 1991. Thermal constraints on use of cover types and activity time of elk. 

Applied Animal Behaviour Science 29: 251–267. 

Mittler, R. 2006. Abiotic stress, the field environment and stress combination. Trends in 

Plant Science 11: 15–19. 

Monteith, K. L., R. W. Klaver, K. R. Hersey, A. A. Holland, T. P. Thomas, and M. J. 

Kauffman. 2015. Effects of climate and plant phenology on recruitment of moose 

at the southern extent of their range. Oecologia 178: 1137–1148. 



 

 151 

Murray, B. D., C. R. Webster, and J. K. Bump. 2013. Broadening the ecological context 

of ungulate-ecosystem interactions: the importance of space, seasonality, and 

nitrogen. Ecology 94: 1317–1326. 

Murray, D. L., E. W. Cox, W. B. Ballard, H. A. Whitlaw, M. S. Lenarz, T. W. Custer, T. 

Barnett, and T. K. Fuller. 2006. Pathogens, nutritional deficiency, and climate 

influences on a declining moose population. Wildlife Monographs 1–30. 

Mysterud, A., N. C. Stenseth, N. G. Yoccoz, R. Langvatn, and G. Steinheim. 2001. 

Nonlinear effects of large-scale climatic variability on wild and domestic 

herbivores. Nature 410: 1096–1099. 

Nash, L. J., and W. R. Graves. 1993. Drought and flood stress effects on plant 

development and leaf water relations of five taxa of trees native to bottomland 

habitats. Journal of the American Society for Horticultural Science 118: 845–850. 

Newsome, S. D., M. T. Tinker, D. H. Monson, O. T. Oftedal, K. Ralls, M. M. Staedler, 

M. L. Fogel, and J. A. Estes. 2009. Using stable isotopes to investigate individual 

diet specialization in California sea otters (Enhydra lutris nereis). Ecology 90: 

961–974. 

Oates, B. A., J. A. Merkle, M. J. Kauffman, S. R. Dewey, M. D. Jimenez, J. M. 

Vartanian, S. A. Becker, and J. R. Goheen. 2019. Antipredator response 

diminishes during periods of resource deficit for a large herbivore. Ecology 

100(4): e02618. 



 

 152 

Oksanen, J., G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, G. L. Simpson, P. 

Solymos, M. H. H. Stevens, and H. Wagner. 2015. vegan: Community Ecology 

Package. 

Olff, H., M. E. Ritchie, and H. H. Prins. 2002. Global environmental controls of diversity 

in large herbivores. Nature 415: 901–904. 

Ometto, J. P. H. B., J. R. Ehleringer, T. F. Domingues, J. A. Berry, F. Y. Ishida, E. 

Mazzi, N. Higuchi, L. B. Flanagan, G. B. Nardoto, and L. A. Martinelli. 2006. 

The stable carbon and nitrogen isotopic composition of vegetation in tropical 

forests of the Amazon Basin, Brazil. Biogeochemistry 79: 251–274. 

Omuto, C. T., and R. R. Vargas. 2015. Re-tooling of regression kriging in R for improved 

digital mapping of soil properties. Geosciences Journal 19: 157–165. 

Otto, A., and V. Wilde. 2001. Sesqui-, di-, and triterpenoids as chemosystematic markers 

in extant conifers—a review. The Botanical Review 67: 141–238. 

Owen-Smith, N. 2002. Adaptive herbivore ecology: from resources to populations in 

variable environments. Cambridge University Press, New York. 

Owen-Smith, N., J. M. Fryxell, and E. H. Merrill. 2010. Foraging theory upscaled: the 

behavioural ecology of herbivore movement. Philosophical Transactions of the 

Royal Society of London B: Biological Sciences 365: 2267–2278. 

Parker, K. L., P. S. Barboza, and M. P. Gillingham. 2009. Nutrition integrates 

environmental responses of ungulates. Functional Ecology 23: 57–69. 

Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. 

Annual Review of Ecology Evolution and Systematics 37: 637–669. 



 

 153 

Parnell, A. C., D. L. Phillips, S. Bearhop, B. X. Semmens, E. J. Ward, J. W. Moore, A. L. 

Jackson, J. Grey, D. J. Kelly, and R. Inger. 2013. Bayesian stable isotope mixing 

models. Environmetrics 24: 387–399. 

Pavarini, D. P., S. P. Pavarini, M. Niehues, and N. P. Lopes. 2012. Exogenous influences 

on plant secondary metabolite levels. Animal Feed Science and Technology 176: 

5–16. 

Pebesma, E. J., and R. Bivand. 2005. Classes and methods for spatial data in R. 

Peek, J.M., D. L. Urich, and R. J. Mackie. 1976. Moose habitat selection and 

relationships to forest management in northeastern Minnesota. Wildlife 

Monographs 3–65. 

Peek, James M., D. L. Urich, and R. J. Mackie. 1976. Moose habitat selection and 

relationships to forest management in northeastern Minnesota. Wildlife 

Monographs 3–65. 

Perala, D. A., and D. Alban. 1993. Allometric biomass estimators for aspen-dominated 

ecosystems in the upper Great Lakes. U.S. Dept. of Agriculture, Forest Service, 

North Central Forest Experiment Station, St. Paul, MN. 

Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Core Team. 2015. nlme: Linear and 

nonlinear mixed-effects models. 

Poelman, E. H., J. J. van Loon, and M. Dicke. 2008. Consequences of variation in plant 

defense for biodiversity at higher trophic levels. Trends in Plant Science 13: 534–

541. 

PRISM Climate Group. 2017. PRISM Climate Group. Oregon State University. 



 

 154 

Prudhomme, C., and D. W. Reed. 1999. Mapping extreme rainfall in a mountainous 

region using geostatistical techniques: a case study in Scotland. International 

Journal of Climatology 19: 1337–1356. 

R Core Team. 2018. R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. 

Raynor, E. J., A. Joern, J. B. Nippert, and J. M. Briggs. 2016. Foraging decisions 

underlying restricted space use: effects of fire and forage maturation on large 

herbivore nutrient uptake. Ecology and Evolution 6: 5843–5853. 

Reich, P. B., K. M. Sendall, K. Rice, R. L. Rich, A. Stefanski, S. E. Hobbie, and R. A. 

Montgomery. 2015. Geographic range predicts photosynthetic and growth 

response to warming in co-occurring tree species. Nature Climate Change 5: 148-

152. 

Renecker, L. A., and C. C. Schwartz. 2007. Food habits and feeding behavior in Ecology 

and management of the North American moose, 2nd ed. Smithsonian Institution 

Press, Washington. 

Renecker, L. A., and R. J. Hudson. 1986. Seasonal energy expenditure and 

thermoregulatory response of moose. Canadian Journal of Zoology 64: 322–327. 

Renecker, L. A., and R. J. Hudson. 1989. Seasonal activity budgets of moose in aspen-

dominated boreal forests. The Journal of Wildlife Management 296–302. 

Renecker, L., and R. Hudson. 1990. Behavioral and thermoregulatory responses of moose 

to high ambient-temperatures and insect harassment in aspen-dominated forests. 



 

 155 

ALCES, 26, 1990 – 26th North American Moose COnverence and Workshops 66-

72. 

Rich, R. L., A. Stefanski, R. A. Montgomery, S. E. Hobbie, B. A. Kimball, and P. B. 

Reich. 2015. Design and performance of combined infrared canopy and 

belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone 

in Danger) experiment. Global Change Biology 21(6): 2334-2348.. 

Richards, L. A., L. A. Dyer, A. M. Smilanich, and C. D. Dodson. 2010. Synergistic 

effects of amides from two Piper species on generalist and specialist herbivores. 

Journal of Chemical Ecology 36: 1105–1113. 

Richards, L. A., L. A. Dyer, M. L. Forister, A. M. Smilanich, C. D. Dodson, M. D. 

Leonard, and C. S. Jeffrey. 2015. Phytochemical diversity drives plant–insect 

community diversity. Proceedings of the National Academy of Sciences 112: 

10973–10978. 

Ripple, W. J., T. M. Newsome, C. Wolf, R. Dirzo, K. T. Everatt, M. Galetti, M. W. 

Hayward, G. I. Kerley, T. Levi, P. A. Lindsey, and others. 2015. Collapse of the 

world’s largest herbivores. Science Advances 1: e1400103. 

Rizhsky, L., H. Liang, and R. Mittler. 2002. The combined effect of drought stress and 

heat shock on gene expression in tobacco. Plant Physiology 130: 1143–1151. 

Rizhsky, L., H. Liang, J. Shuman, V. Shulaev, S. Davletova, and R. Mittler. 2004. When 

defense pathways collide. The response of Arabidopsis to a combination of 

drought and heat stress. Plant Physiology 134: 1683–1696. 



 

 156 

Roitto, M., P. Rautio, A. Markkola, R. Julkunen-Tiitto, M. Varama, K. Saravesi, and J. 

Tuomi. 2009. Induced accumulation of phenolics and sawfly performance in 

Scots pine in response to previous defoliation. Tree Physiology 29: 207–216. 

Royle, A. J., and D. R. Rubenstein. 2004. The role of species abundance in determining 

breeding origins of migratory birds with stable isotopes. Ecological Applications 

14: 1780–1788. 

Rubenstein, D. R., and K. A. Hobson. 2004. From birds to butterflies: animal movement 

patterns and stable isotopes. Trends in Ecology & Evolution 19: 256–263. 

Sallas, L., E.-M. Luomala, J. Utriainen, P. Kainulainen, and J. K. Holopainen. 2003. 

Contrasting effects of elevated carbon dioxide concentration and temperature on 

Rubisco activity, chlorophyll fluorescence, needle ultrastructure and secondary 

metabolites in conifer seedlings. Tree Physiology 23: 97–108. 

Samuel, W. M. 1991. Grooming by moose (Alces alces) infested with the winter tick, 

Dermacentor albipictus (Acari): a mechanism for premature loss of winter hair. 

Canadian Journal of Zoology 69: 1255–1260. 

Samuel, W. M., D. A. Welch, and M. L. Drew. 1986. Shedding of the juvenile and winter 

hair coats of moose (Alces alces) with emphasis on the influence of the winter 

tick, Dermacentor albipictus. Alces 22: 345–360. 

Savin, R., and M. E. Nicolas. 1996. Effects of short periods of drought and high 

temperature on grain growth and starch accumulation of two malting barley 

cultivars. Functional Plant Biology 23: 201–210. 



 

 157 

Savsani, H. H., R. J. Padodara, A. R. Bhadaniya, V. A. Kalariya, B. B. Javia, S. N. 

Ghodasara, and N. K. Ribadiya. 2015. Impact of climate on feeding, production 

and reproduction of animals-A Review. Agricultural Reviews 36. 

Schloss, C. A., T. A. Nuñez, and J. J. Lawler. 2012. Dispersal will limit ability of 

mammals to track climate change in the Western Hemisphere. Proceedings of the 

National Academy of Sciences 109: 8606–8611. 

Schoeninger, M. J., and M. J. DeNiro. 1984. Nitrogen and carbon isotopic composition of 

bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica 

Acta 48: 625–639. 

Schwartzberg, E. G., M. A. Jamieson, K. F. Raffa, P. B. Reich, R. A. Montgomery, and 

R. L. Lindroth. 2014. Simulated climate warming alters phenological synchrony 

between an outbreak insect herbivore and host trees. Oecologia 175: 1041–1049. 

Sealy, J. C., N. J. van der Merwe, J. A. L. Thorp, and J. L. Lanham. 1987. Nitrogen 

isotopic ecology in southern Africa: Implications for environmental and dietary 

tracing. Geochimica et Cosmochimica Acta 51: 2707–2717. 

Sedio, B. E., J. C. Rojas Echeverri, P. Boya, A. Cristopher, and S. J. Wright. 2017. 

Sources of variation in foliar secondary chemistry in a tropical forest tree 

community. Ecology 98: 616–623. 

Severud, W. J., G. D. Giudice, T. R. Obermoller, T. A. Enright, R. G. Wright, and J. D. 

Forester. 2015. Using GPS collars to determine parturition and cause-specific 

mortality of moose calves. Wildlife Society Bulletin 39: 616–625. 



 

 158 

Shi, J., R. I. M. Dunbar, D. Buckland, and D. Miller. 2003. Daytime activity budgets of 

feral goats (Capra hircus) on the Isle of Rum: influence of season, age, and sex. 

Can. J. Zool. 81: 803–815. 

Smith, C. A., E. J. Want, G. O’Maille, R. Abagyan, and G. Siuzdak. 2006. XCMS: 

processing mass spectrometry data for metabolite profiling using nonlinear peak 

alignment, matching, and identification. Analytical chemistry 78: 779–787. 

Smith, W. B., and G. J. Brand. 1983. Allometric biomass equations for 98 species of 

herbs, shrubs, and small trees. Research Note NC-299. St. Paul, MN: US Dept. of 

Agriculture, Forest Service, North Central Forest Experiment Station 299. 

Smith, W. R. 2008. Trees and shrubs of Minnesota. University of Minnesota Press, St. 

Paul. 

Snow, M. D., R. R. Bard, D. M. Olszyk, L. M. Minster, A. N. Hager, and D. T. Tingey. 

2003. Monoterpene levels in needles of Douglas fir exposed to elevated CO2 and 

temperature. Physiologia Plantarum 117: 352–358. 

Sreekumar, A., L. M. Poisson, T. M. Rajendiran, A. P. Khan, Q. Cao, J. Yu, B. Laxman, 

R. Mehra, R. J. Lonigro, Y. Li, M. K. Nyati, A. Ahsan, S. Kalyana-Sundaram, B. 

Han, X. Cao, J. Byun, G. S. Omenn, D. Ghosh, S. Pennathur, D. C. Alexander, A. 

Berger, J. R. Shuster, J. T. Wei, S. Varambally, C. Beecher, and A. M. 

Chinnaiyan. 2009. Metabolomic profiles delineate potential role for sarcosine in 

prostate cancer progression. Nature 457: 910–914. 



 

 159 

Stefanescu, C., D. X. Soto, G. Talavera, R. Vila, and K. A. Hobson. 2016. Long-distance 

autumn migration across the Sahara by painted lady butterflies: exploiting 

resource pulses in the tropical savannah. Biology Letters 12: 20160561. 

Stewart, K. M., R. T. Bowyer, J. G. Kie, B. L. Dick, and M. Ben-David. 2003. Niche 

partitioning among mule deer, elk, and cattle: Do stable isotopes reflect dietary 

niche? Ecoscience 10: 297–302. 

Still, C. J., and R. L. Powell. 2010. Continental-scale distributions of vegetation stable 

carbon isotope ratios in isoscapes. Springer, New York. 

Stock, B. C., and B. X. Semmens. 2016. Unifying error structures in commonly used 

biotracer mixing models. Ecology 97: 2562–2569. 

Stolter, C., J. P. Ball, R. Julkunen-Tiitto, R. Lieberei, and J. U. Ganzhorn. 2005. Winter 

browsing of moose on two different willow species: food selection in relation to 

plant chemistry and plant response. Canadian Journal of Zoology 83: 807–819. 

Street, G. M., J. Fieberg, A. R. Rodgers, M. Carstensen, R. Moen, S. A. Moore, S. K. 

Windels, and J. D. Forester. 2016. Habitat functional response mitigates reduced 

foraging opportunity: implications for animal fitness and space use. Landscape 

Ecology 1–15. 

Sumner, L. W., A. Amberg, D. Barrett, M. H. Beale, R. Beger, C. A. Daykin, T. W.-M. 

Fan, O. Fiehn, R. Goodacre, and J. L. Griffin. 2007. Proposed minimum reporting 

standards for chemical analysis. Metabolomics 3: 211–221. 



 

 160 

Tahvanainen, J., E. Helle, R. Julkunen-Tiitto, and A. Lavola. 1985. Phenolic compounds 

of willow bark as deterrents against feeding by mountain hare. Oecologia 65: 

319–323. 

Tankersley, N. G., and W. C. Gasaway. 1983. Mineral lick use by moose in Alaska. 

Canadian Journal of Zoology 61: 2242–2249. 

Tateno, R., T. Hishi, and H. Takeda. 2004. Above-and belowground biomass and net 

primary production in a cool-temperate deciduous forest in relation to 

topographical changes in soil nitrogen. Forest Ecology and Management 193: 

297–306. 

Tautenhahn, R., C. Boettcher, and S. Neumann. 2008. Highly sensitive feature detection 

for high resolution LC/MS. BMC bioinformatics 9: 504. 

Timmermann, H. R., and A. R. Rodgers. 2017. The status and management of moose in 

North America-circa 2015. Alces 53. 

Tischler, K. B. 2004. Aquatic plant nutritional quality and contribution to moose diet at 

Isle Royale National Park. Ph.D. Dissertation. Michigan Technological 

University. 

Turbill, C., T. Ruf, T. Mang, and W. Arnold. 2011. Regulation of heart rate and rumen 

temperature in red deer: effects of season and food intake. Journal of 

Experimental Biology 214: 963–970. 

van Beest, F. M., and J. M. Milner. 2013. Behavioural responses to thermal conditions 

affect seasonal mass change in a heat-sensitive northern ungulate. PloS one 8: 

e65972. 



 

 161 

van den Boogaart, K. G., R. Tolosana-Delgado, and M. Bren. 2018. compositions: 

Compositional Data Analysis. 

van der Merwe, N. J., and E. Medina. 1989. Photosynthesis and 13C/12C ratios in 

Amazonian rain forests. Geochimica et Cosmochimica Acta 53: 1091–1094. 

Vandegeer, R., R. E. Miller, M. Bain, R. M. Gleadow, and T. R. Cavagnaro. 2013. 

Drought adversely affects tuber development and nutritional quality of the staple 

crop cassava (Manihot esculenta Crantz). Functional Plant Biology 40: 195–200. 

Veluri, R., T. L. Weir, H. P. Bais, F. R. Stermitz, and J. M. Vivanco. 2004. Phytotoxic 

and antimicrobial activities of catechin derivatives. Journal of Agricultural and 

Food Chemistry 52: 1077–1082. 

Veteli, T. O., J. Koricheva, P. Niemelä, and S. Kellomäki. 2006. Effects of forest 

management on the abundance of insect pests on Scots pine. Forest Ecology and 

Management 231: 214–217. 

Walter, W. D., D. M. Leslie, E. C. Hellgren, and D. M. Engle. 2010. Identification of 

subpopulations of North American elk (Cervus elaphus L.) using multiple lines of 

evidence: habitat use, dietary choice, and fecal stable isotopes. Ecol Res 25: 789–

800. 

Walther, G. R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J. M. 

Fromentin, O. Hoegh-Guldberg, and F. Bairlein. 2002. Ecological responses to 

recent climate change. Nature 416: 389–395. 



 

 162 

Welch, D. A., W. M. Samuel, and R. J. Hudson. 1990. Bioenergetic consequences of 

alopecia induced by Dermacentor albipictus (Acari: Ixodidae) on moose. Journal 

of Medical Entomology 27: 656–660. 

West, J. B., G. J. Bowen, T. E. Cerling, and J. R. Ehleringer. 2006. Stable isotopes as one 

of nature’s ecological recorders. Trends in Ecology & Evolution 21: 408–414. 

West, J. B., G. J. Bowen, T. E. Dawson, and K. P. Tu. 2009. Isoscapes: understanding 

movement, pattern, and process on Earth through isotope mapping. Springer, New 

York. 

Williams, R. S., D. E. Lincoln, and R. J. Norby. 2003. Development of gypsy moth larvae 

feeding on red maple saplings at elevated CO2 and temperature. Oecologia 137: 

114–122. 

Wink, M. 1988. Plant breeding: importance of plant secondary metabolites for protection 

against pathogens and herbivores. Theoretical and Applied Genetics 75: 225–233. 

Worrall, J. J., L. Egeland, T. Eager, R. A. Mask, E. W. Johnson, P. A. Kemp, and W. D. 

Shepperd. 2008. Rapid mortality of Populus tremuloides in southwestern 

Colorado, USA. Forest Ecology and Management 255: 686–696. 

Wünschmann, A., A. G. Armien, E. Butler, M. Schrage, B. Stromberg, J. B. Bender, A. 

M. Firshman, and M. Carstensen. 2015. Necropsy findings in 62 opportunistically 

collected free-ranging moose (Alces alces) from Minnesota, USA (2003–13). 

Journal of Wildlife Diseases 51: 157–165. 

Yates, F. 1934. Contingency tables involving small numbers and the χ 2 test. Supplement 

to the Journal of the Royal Statistical Society 1: 217–235. 



 

 163 

Yin, X. 1993. Variation in foliar nitrogen concentration by forest type and climatic 

gradients in North America. Canadian Journal of Forest Research 23: 1587–1602. 

Zackrisson, O., T. H. DeLuca, M.-C. Nilsson, A. Sellstedt, and L. M. Berglund. 2004. 

Nitrogen fixation increases with successional age in boreal forests. Ecology 85: 

3327–3334. 

Zandalinas, S. I., R. Mittler, D. Balfagón, V. Arbona, and A. Gómez-Cadenas. 2018. 

Plant adaptations to the combination of drought and high temperatures. 

Physiologia Plantarum 162: 2–12. 



 

 164 

Supplemental Information 

Table S2-1. Location and treatment data of field sampling locations. Light conditions were a binary 
response of whether a plot was in an area that was recently clear cut (i.e., high) or areas that have 
experienced no known overstory disturbance since at least 1985 (i.e., low). Mean-maximum summer 
temperature (MMST) is the maximum daily temperature averaged across June, July, and August from 1981 
to 2000 (Sumner et al. 2007). 
 

plot ID easting northing light conditions MMST 

1 700598 5303917 high 23.86 
2 700283 5308537 high 25.30 
3 698786 5308655 high 25.05 
4 685385 5304339 low 24.70 
5 685160 5295714 low 22.86 
6 678345 5291770 low 22.36 
7 614050 5313377 low 25.40 
8 611435 5315050 low 25.62 
9 610716 5314932 low 25.68 
10 599534 5312110 high 25.51 
11 599427 5312111 high 25.51 
12 598718 5310922 high 25.43 
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Table S2-2. Experimental exact mass, hypothetical mass, molecular formula and PPM error for all metabolites found to be significantly abundant (ANOVA, α = 
0.001). “Level of Confidence” signifies the level of confidence in metabolite ‘identification’, as defined by the Chemical Analysis Working Group of the 
Metabolomics Standards Initiative (Sumner et al. 2007). Catechin was found to be significant in both positive and negative ionization modes, and its identity was 
confirmed via an authentic standard.  
 

Identification Species Ionization 
mode 

Experimental exact 
mass 

Hypothetical 
exact mass Molecular formula PPM error Level of 

Confidence 
catechin paper birch - 289.0729 289.0712 C15H13O6 5.8809 1 

        
catechin paper birch + 291.0861 291.0868 C15H15O6 2.4048 1 

        
putative 

diterpene resin acid 1 balsam fir + 317.1382 317.1389 C18H21O5 2.2072 3 

        
putative 

diterpene resin acid 2 balsam fir + 331.1541 331.1545 C19H23O5 1.2079 3 

        
putative 

diterpene resin acid 3 paper birch + 337.1435 337.1439 C21H21O4 1.1864 3 
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Table S2-3. Results of linear mixed-effects models comparing changes in relative abundance of example compounds for different stress conditions. Statistically 
significant results (a = 0.05) are identified with an asterisk (*) and change values preceded by “-” indicate a decline in mean relative abundance relative to our 
reference group, where as a “+” indicates an increase in mean relative abundance. 
 

species compound year stress condition df change (%) t P 
balsam fir resin acid 1 1 moderate 

temperature 
29 -16.5 -0.724 0.4751 

 1 high temperature 29 -15.9 -0.372 0.7126 
       
 2 drought 25 +21.9 0.795 0.4343 
 2 temperature 25 +28.7 1.238 0.2272 
 2 drought + 

temperature 
25 +30.0 1.234 0.2288 

       
 3 light 8 +83.7 0.977 0.3570 
 3 temperature 8 +120.2 1.484 0.1761 
 3 temperature + 

light 
8 +70.2 0.878 0.4057 

       
resin acid 2 1 moderate 

temperature 
29 -14.2 -1.068 0.2944 

 1 high temperature 29 -13.6 -0.919 0.3657 
       
 2 drought 25 -3.0 -0.103 0.9188 
 2 temperature 25 +5.4 0.333 0.7417 
 2 drought + 

temperature 
25 +13.1 0.736 0.4685 

       
 3 light 8 -17.9 -0.586 0.5739 
 3 temperature 8 +20.8 0.815 0.4389 
 3 temperature + 

light 
8 +39.5 1.495 0.1734 

        
paper 
birch 

catechin 1 moderate 
temperature 

26 -54.3 -3.933 < 0.0001* 

 1 high temperature 26 -66.4 -4.322 0.0002*  
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 2 drought 30 -23.9 -1.070 0.2931 
 2 temperature 30 -33.8 -1.618 0.1161 
 2 drought + 

temperature 
30 -32.2 -1.489 0.1469 

       
 3 light 6 +22.0 0.310 0.7670 
 3 temperature 6 +44.5 0.626 0.5538 
 3 temperature + 

light 
6 +251.1 2.837 0.0297* 

       
terpene acid 1 moderate 

temperature 
26 -75.8 -3.015 0.0057* 

 1 high temperature 26 -71.4 -2.877 0.0079* 
       
 2 drought 

feature undetected   2 temperature 
 2 drought + 

temperature 
       
 3 light 6 -98.0 -1.504 0.1832 
 3 temperature 6  24.9 0.283 0.7870 
 3 temperature + 

light 
6      149.1 1.664 0.1470 
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Table S3-1. Summary information for different forage-preference groups. For low-preference forage, “other” includes plant species that are not considered part 
of the routine diet of moose in Minnesota, but possibly still sampled, such as Alnus spp., Populus balsamifera, Populus grandidentata, Fraxinus nigra, Thuja 
occidentalis, etc. 
 
 

   δ13C (‰)  δ15N (‰)  %N  C:N 
preference group species n mean sd  mean sd  mean sd  mean sd 
high Betula papyrifera 348 -28.99 1.48  -2.32 2.02  2.81 0.94  18.42 6.09 
 Populus tremuloides 293 -28.55 1.42  -1.78 2.19  2.92 1.18  18.76 5.72 
 Salix spp. 150 -27.84 1.34  -1.58 2.12  2.82 0.96  18.92 6.30 
 all species 791 -28.61 1.50  -1.96 2.15  2.85 1.04  18.63 5.99 
              
medium Acer spp. 281 -28.80 1.60  -4.42 2.31  2.53 0.85  19.30 6.24 
 Prunus spp. 171 -28.83 1.18  -2.81 2.11  2.81 0.78  17.90 6.43 
 Sorbus americana 144 -29.50 1.50  -3.61 1.98  2.71 0.71  17.92 4.76 
 all species 596 -28.98 1.49  -3.77 2.27  2.66 0.81  18.57 6.01 
              
low Abies balsamea 344 -30.12 1.19  -3.38 2.13  1.38 0.42  38.43 9.71 
 Amelanchier spp. 388 -29.57 1.42  -3.11 2.14  2.79 0.86  17.97 5.45 
 Corylus cornuta 381 -29.45 1.56  -3.17 1.88  2.50 0.67  18.67 4.44 
 Cornus spp. 124 -29.76 1.98  -2.43 2.07  2.41 0.68  19.66 5.64 
 other 94 -28.92 1.47  -2.45 2.37  2.37 1.01  25.69 16.74 
 all species 1331 -29.65 1.51  -3.08 2.10  2.28 0.90  24.17 11.69 
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Table S3-2.  Summary information for fixed and random effects. When necessary, spatial covariates were converted from their original format, first into raster 
datasets for manipulation of resolution and extent, then into ASCII datasets for analysis in R 3.5.2. All data format conversions were performed in ArcGIS 
10.3.1. Random effects are identified with an asterisk (*). In addition to the covariates listed below, we also incorporated both easting and northing as fixed 
effects. 
 

covariate definition units 
description 

original 
format source 

aspect downslope direction with values ranging from 
0.0 to 359.0 degrees 

degrees grid LANDFIRE. 2018. Aspect. 
<www.landfire.gov/aspect.php> Accessed 01 May 
2018. 

     
bedrock 
geology* 

primary and secondary bedrock type combined 
into a single, categorical code 

categorical 
code 

shapefile Minnesota Geologic Survey. 2011. Geologic Map 
of Minnesota - Bedrock Geology (MGS Map S-21).  
<gisdata.mn.gov/dataset/geos-bedrock-geology-
mn> Accessed on 01 May 2018.  

     
covertype updated classification of 2013 national landcover 

database using a combination of Landsat 8 data 
and LiDAR data 

categorical 
code 

raster Rampi, L. P., Knight, J. F. and M. Bauer. 2016. 
Minnesota Land Cover Classification and 
Impervious Surface Area by Landsat and Lidar: 
2013 Update. Retrieved from the Data Repository 
for the University of Minnesota 
<http://doi.org/10.13020/D6JP4S> Accessed on 01 
May 2016. 

     
digital elevation 
(DEM) 

elevation in feet above mean sea level feet raster USGS. 2014. Minnesota Digital Elevation Model - 
30 Meter Resolution. 
<gisdata.mn.gov/dataset/elev-30m-digital-elevation-
model> Accessed on 01 May 2018. 

     
disturbance age disturbance age as of 2014, characterized as 

discrete time periods — 1 year, 2-5 years, or 6-
10 years 

categorical 
code 

raster LANDFIRE. 2016. Disturbance. 
<www.landfire.gov/disturbance_2.php> Accessed 
01 May 2018. 
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disturbance 
severity 

disturbance severity, characterized as high, low, 
or moderate 

categorical 
code 

raster LANDFIRE. 2016. Disturbance. 
<www.landfire.gov/disturbance_2.php> Accessed 
01 May 2018. 

     
disturbance 
type 

disturbance type of original disturbance, 
characterized as fire, mechanical addition, 
mechanical removal, or chemical 

categorical 
code 

raster LANDFIRE. 2016. Disturbance. 
<www.landfire.gov/disturbance_2.php> Accessed 
01 May 2018. 

     
disturbance* three-digit code combining disturbance type, 

severity, and age as described above 
categorical 
code 

raster LANDFIRE. 2016. Disturbance. 
<www.landfire.gov/disturbance_2.php> Accessed 
01 May 2018. 

     
mean-
maximum 
summer 
temperature 
(MMST) 

average daily maximum from 01 June through 
August 31, from 1981 to 2010 

ºC ASCII PRISM Climate Group, Oregon State University, 
http://prism.oregonstate.edu, created 4 Feb 2004. 
Accessed on 01 May 2018. 

     
precipitation average annual precipitation from 1981-2010 inches raster State Climatology Office, DNR, MDA. 2015. 

Normal Annual Precipitation Average, Minnesota, 
1981-2010.  

     
slope represents deviation from horizontal elevation, 

values range from 0.0 to 90.0 degrees 
degrees grid LANDFIRE. 2018. Slope. 

<www.landfire.gov/slope.php> Accessed 01 May 
2018. 

     
solar insolation characterizes the amount of direct and indirect 

sunlight that reaches the surface 
kWh/m2 raster Brink, C, Gosack, B, Kne, L, Luo, Y, Martin, C, 

McDonald, M, Moore, M, Munsch, A, Palka, S, 
Piernot, D, Thiede, D, Xie, Y, and A. Walz. 2015. 
Solar Insolation, Minnesota (2006-2012).  
<conservancy.umn.edu/handle/11299/172642> 
Accessed on 01 May 2018 
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water table 
depth 

depth to water table, categorized into seven 
discrete depth classes that describe distance in 
feet below land surface 

discrete 
depth 
classes 

raster Minnesota Department of Natural Resources 
(DNR), County Geologic Atlas Program. 2016. 
Water-Table Elevation and Depth to Water Table, 
Minnesota Hydrogeology Atlas series HG-03.  
<gisdata.mn.gov/dataset/geos-hydrogeology-atlas-
hg03> Accessed on 01 May 2018. 
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Table S4-1. Summary information for different forage-preference groups. For low-preference forage, “other” includes plant species that are not considered part 
of the routine diet of moose in Minnesota, but possibly still sampled, such as Alnus spp., Populus balsamifera, Populus grandidentata, Fraxinus nigra, Thuja 
occidentalis, etc. For the purposes of this study, we did not differentiate among species of aquatic plants.  
 

   δ13C (‰)  δ15N (‰)  %N 
forage group species n mean sd  mean sd  mean sd 
high Betula papyrifera 348 -28.99 1.48  -2.32 2.02  2.81 0.94 
 Populus tremuloides 293 -28.55 1.42  -1.78 2.19  2.92 1.18 
 Salix spp. 150 -27.84 1.34  -1.58 2.12  2.82 0.96 
           
medium Acer spp. 281 -28.80 1.60  -4.42 2.31  2.53 0.85 
 Prunus spp. 171 -28.83 1.18  -2.81 2.11  2.81 0.78 
 Sorbus americana 144 -29.50 1.50  -3.61 1.98  2.71 0.71 
           
low Abies balsamea 344 -30.12 1.19  -3.38 2.13  1.38 0.42 
 Amelanchier spp. 388 -29.57 1.42  -3.11 2.14  2.79 0.86 
 Corylus cornuta 381 -29.45 1.56  -3.17 1.88  2.50 0.67 
 Cornus spp. 124 -29.76 1.98  -2.43 2.07  2.41 0.68 
 other 94 -28.92 1.47  -2.45 2.37  2.37 1.01 
           
aquatic n/a 105 -26.97 2.65  0.62 2.43  3.10 0.77 
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Fig.S2-1. Mirrored HCD fragmentation spectra of endogenous catechin from Year 1 paper birch (above) 
and a catechin standard (below) from negative ionization mode. Catechin was identified and shown to be 
distinct from its isomer, epicatechin, as commercial standards of each of these compounds were 
chromatographically resolved. HCD fragmentation was performed at a normalized collision energy of 25. 
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Fig.S2-2. Positive ionization mode HCD fragmentation spectra of putative diterpene resin acids with m/z 
values of 317.1382 (A) and 331.1542 (B) from balsam fir. HCD fragmentation was performed at a 
normalized collision energy of 10. The spectra are very similar except for a 14 AMU shift (denoted with a 
*), suggesting these molecules are structurally related and differ only in the length of a hydrocarbon chain 
or presence/absence of a methylation.  

(A) 

(B) 
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Fig.S2-3. Positive ionization mode HCD fragmentation spectra of putative diterpene resin acid from paper 
birch. HCD fragmentation was performed at a normalized collision energy of 25. 
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Fig.S2-4. Venn diagrams for Year 1 samples detailing the number of compounds that increase or decrease 
by ≥ 75% in balsam fir (A and B, respectively) and paper birch (C and D, respectively). Circles are scaled 
and comparable across species and treatments. Areas in which circles are overlapping are relative to the 
number of compounds effected by both treatments. High-temperatures appears to have a greater influence 
on large scale shifts in the relative abundance of compounds than moderate temperatures. 

(A) (B) 

(C) (D) 
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Fig.S2-5. Venn diagrams for Year 2 samples detailing the number of compounds that increase or decrease 
by ≥ 75% in balsam fir (A and B, respectively), red maple (C and D, respectively), paper birch (E and F, 
respectively), and trembling aspen (G and H, respectively). Circles are scaled and comparable across 
species and treatments. Areas in which circles are overlapping are relative to the number of compounds 
affected by all treatments. 
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Fig.S2-6. Venn diagrams for Year 3 samples detailing the number of compounds that increase or decrease 
by ≥ 75% in balsam fir (A and B, respectively), paper birch (C and D, respectively), beaked hazel (E and F, 
respectively), and trembling aspen (D and H, respectively). Circles are scaled and comparable across 
species and treatments. Areas in which circles are overlapping are relative to the number of compounds 
affected by all treatments. In general, the combination of high-light and high-temperature results in the 
large-scale increase of more compounds, on average, than any other treatment. While high-light conditions 
result in the large-scale decrease of more compounds, on average, than any other treatment.  
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Fig.S3-1.  Relationship between predicted and true values for hold-one-out cross validation from linear 
mixed-models predicting uninformed isotopes for δ13C and δ15N. Points (n=67) represent predicted and true 
values at individual sites, while the line characterizes the linear regression between predicted and true 
values.  RMSE is the root-mean squared error for spatial hold-one out cross validation.  
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Fig.S3-2. Relationship between predicted and true values for hold-one-out cross validation from linear 
mixed-models predicting biomass-informed isotopes for δ13C and δ15N. Points (n=67) represent predicted 
and true values at individual sites, while the line characterizes the linear regression between predicted and 
true values.  RMSE is the root-mean squared error for spatial hold-one out cross validation. 
 
 


