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Thesis Abstract 

 This thesis applied spectroscopy and molecular dynamics simulation to study the 

structural biology of actin-binding domains (ABDs) from the spectrin superfamily of 

proteins as well as an intrinsically disordered region (IDR) of an integral membrane 

protein called synaptotagmin 1. In the former case, the structural hypothesis being tested 

was that actin-binding domains exist in distinct conformational states that are either 

permissive to or inhibitory towards binding of actin filaments. This question was probed 

using pulsed-EPR, which measured distances between the calponin homology (CH) 

domains that make up the ABD as proxy for conformation in the presence or absence of 

actin or with and without disease-causing mutation. The initial hypothesis of a closed 

compact state being unable to bind actin and an open extended state being binding-

competent was largely supported by the data. However, the hypothesis was ultimately 

refined to conclude that an “open” state is likely to still be a fairly collapsed structure that 

is dynamically disordered. With this model, future efforts will be able use the model to 

look for small molecules that perturb the conformational equilibrium of ABDs harboring 

disease-causing mutations in potentially therapeutically efficacious ways. Moreover, the 

model can be tested in other ABDs of the protein superfamily to assess similarities and 

differences in mechanism. 

In the case of the intrinsically disordered region of synaptotagmin 1, it was 

hypothesized that a post-translational modification, specifically phosphorylation of a 

threonine residue, caused a structural change in the IDR that then results in a change in 

neurotransmitter release. This hypothesis was also tested with spectroscopic methods, 

mainly FRET and circular dichroism, but also with molecular dynamics. It was found that 
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mimicking the low dielectric environment of the membrane with co-solvents in solution 

and artificially in silico caused the synaptotagmin 1 IDR to fold into helical structure. 

The post-translational modification, however, was found to interfere with the formation 

of helical structure, providing a still incomplete but novel molecular explanation for the 

effect it has on potentiation of neurotransmitter release observed in vivo. At the very 

least, the structural model provides a working hypothesis that can be further explored in 

further work. 
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 distribution of charged residues partially delineates the sequence into three 

 segments as indicated. Above the sequence is the ANCHOR predicted probability 

 for each residue potentially contributing to a binding site as described in ref. 141

 and 142.The modeled peptide below the sequence shows the location for covalent 

 attachment of acceptor dyes as well as location of the added tryptophan (yellow) 

 used in FRET experiments. Thr112, the phosphorylation site examined in this 

 study, is also indicated. 
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Sampling of a structurally collapsed state by the Syt 1 IDR in aqueous solution. 

 (A) Determining the number of lifetimes needed to fit tryptophan decays without 

 (blue) and with (red) acceptor dyes. In both cases, two lifetimes were considered 

 necessary and sufficient (asterisk). (B) Time-resolved FRET measurement of Syt 

 1 IDR synthesized peptide showing Trp-dansyl undergoing energy transfer in 10 

 mM sodium phosphate buffered to a pH of 7.4. Blue: donor-only.  Red: donor-

 acceptor. Error bars: SD of 4 replicates. Black: instrument response function 

 (IRF). The distance derived from the change in average lifetime (τD = 

 1.53±0.11, τDA = 1.06±0.10) is 2.40±0.05 nm (Eq. 4.4). Shown below the time-

 resolved data are residuals of fitting to bi-exponential functions. (C) A similar 

 FRET result was obtained from a recombinantly expressed Syt 1 IDR construct 
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 that was labeled with AEDANS acceptor. The slight increase in FRET in the 

 recombinant IDR is thought to be due to inclusion of a his-tag, which tend to 

 promote compaction in IDPs. 
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MD simulation of the full-length Syt 1 IDR (residues 80-141) with an implicit 

 solvent (ε=80) and salt concentration of 10 mM. (A) Radius of gyration (Rg) as a 

 function of simulation time indicates the IDR sequence samples both extended 

 and compact states. Dotted line indicates average Rg. (B) Inter-residue distance 

 (<Rj-i>) between first (i) and each subsequent (j) residue (Cαj-Cαi) in the Syt 1 

 IDR plotted as a function of simulation time. Plots suggest weak long-range 

 interactions promote sampling of more compact conformations. However, 

 compact conformers are not the dominant structural species in an aqueous 

 environment as indicated by the location of the average inter-residue distances 

 (black diamonds). (C) Representative conformers of different Rg. Structures, N- to 

 C-terminus, are color-coded blue to red. 
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 (GKNAINMKDVKDLGKTMKDQALKDDDAETGLTDG). (A) MRE of 

 unphosphorylated Syt 1 IDR core and (B) MRE of phosphorylated Syt 1 IDR core 

 as a function of increasing TFE (0-60% v/v going from red to violet) in 10 mM 

 sodium phosphate at a pH of 7.4. (C) Fitting of absorption profiles to linear 

 combinations of α-helix, β-sheet and random coil in each IDR construct at a 

 maximal TFE concentration of 60% v/v. (D) Simultaneous fitting of the 198 nm 

 coil minimum (solid circles, dark line) and 222 nm (open circles, lighter line) 

 signals during folding transition for unphosphorylated (purple), phosphorylated 

 (green) and full-length (orange) peptides. (E) Comparison of 222 nm/200 nm ratio 

 from full-length (orange), unphosphorylated core (purple) and phosphorylated 

 core (green). Removal of flanking charge shifts IDR from a pre-molten globule-

 like (PMG-like) state to a more coil-like state and phosphorylation accentuates 

 this effect. Figure modified from reference 164. 
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Simulated structural ensemble of unphosphorylated Syt 1 IDR core region. (A) 

 Representative conformers of the peptide at a dielectric constant of 80 with 

 secondary structure probability per residue is shown below (histogram). (B) 

 Representative conformers of the peptide at a dielectric constant of 20 and 
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 map showing change in all salt bridge interactions in going from dielectric 80 to 

 dielectric 20. An increased frequency of interaction between two charged residues 
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 is indicated by gradations of blue whereas decreased interactions are indicated by 

 gradations of red. Note increased frequency of i, i+3 and i, i+4 contacts. 
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 dielectric environment. (D) IDR core region sequence showing salt bridge 

 interactions inhibitory toward helices at a dielectric constant of ε=20. Green 

 residues are those that occupy helical conformers during the trajectory. (E) Heat 

 map showing change in salt bridge interactions in going from dielectric 80 to 

 dielectric 20. An increased frequency of interaction between two charged residues 

 is indicated by gradations of blue whereas decreased interactions are indicated by 

 gradations of red. 
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 formation. Note that the apparent ∆∆G computed from MD structural data is of 
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 distance for all conditions is shown in (D) along with representative conformers in 

 (E). Structures in (E), N- to C-terminus, are color-coded blue to red. 
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Potential factors influencing full-length IDR compaction. (A) FRET efficiency 
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 terminus, in addition to transiently interacting with the acidic C-terminus of the 

 IDR sequence, also interacts with acidic lipids in a synaptic vesicle membrane 

 and likely has two competing interactions (lipid – intermolecular; acidic C-

 terminus – intramolecular) that could influence propensity to exist in compact 

 structural state. 
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CHAPTER 1: PROTEIN STRUCTURAL DYNAMICS AND METHODS TO 

STUDY THEM 

 

1.1 - Protein folding, structure and conformational change in relation to function  

1.1.1 – Traditional structure-function relationship of proteins 

Proteins are a class of biomolecules that generally serve as major workhorses for 

molecular processes that underlie cellular function. This includes processes such as the 

catalysis of metabolism, ion transport of second messenger signaling and alteration of 

membrane potential, maintenance of cell shape and integrity with cytoskeletal protein 

filaments, and regulation of gene expression. Typically, proteins are able to carry out 

these distinct functions by virtue of having unique three-dimensional folded structures 

that are dictated by their primary amino acid sequence. A newly synthesized chain of 

amino acids folds into secondary structural elements that generally include α-helices, β-

sheets, and turns, which then form additional intramolecular contacts to stabilize a more 

globular, tertiary structure. In some cases, a protein in its tertiary structure combines with 

others to form a larger protein molecule that is then referred to as being in its quaternary 

structure. This then represents the final form of the molecule that consists of multiple 

subunits. Ultimately, these final unique three-dimensional structures are then able interact 

with specific ligands, ions, or macromolecule binding partners such as other proteins, 

nucleic acids, or lipids as a way of carrying out their functions.  

The three-dimensional structures of proteins are, however, not static. Proteins can 

exist in multiple conformational states. In many instances, distinct conformational subsets 

of a protein’s overall ensemble are what actually enable execution of functional activity 

and the transitioning between these conformations is what imparts regulation of function. 



2 
 

As a classic example, the ubiquitous class of motor proteins known as myosins generate 

the mechanical force of many molecular movements carried out in cells, but most 

famously movement in muscle cell contraction. Myosins undergo large-scale changes in 

their conformation that are tightly coupled to the binding, hydrolysis and subsequent 

release of an ATP molecule, ultimately allowing them to convert the chemical potential 

energy of a phosphodiester bond into mechanical energy that enables ratchetting along 

the length of actin filaments. 1-3 Another classic example where conformation of a protein 

regulates function is hemoglobin. Hemoglobin has a quaternary structure consisting of 

four subunits, each of which contains an iron-containing heme prosthetic group for 

binding molecular oxygen. Hemoglobin protein structure is designed to promote efficient 

loading and unloading of O2 as the red blood cell shuttling it passes from alveolar to 

tissue capillaries. This loading and unloading is mediated by binding cooperativity and 

allostery that are linked to each subunit’s conformation.4 When a molecule of O2 binds to 

one subunit, it causes small structural distortions to that subunit’s secondary and tertiary 

structure. Those distortions propagate to the adjacent subunits, altering their 

conformations in such a way that their subsequent binding of molecular O2 becomes 

easier. These O2 binding-induced changes that increase regional affinity for the ligand in 

adjacent subunits continue until hemoglobin is saturated at all four sites. In both 

examples, myosin and hemoglobin, changes in protein conformation ultimately change 

the way in which each molecule can bind their chemical substrate, which in turn enables 

execution of their molecular-level function. 
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1.1.2 – Intrinsically disordered proteins and protein regions 

 While the above examples illustrate roles of conformational change in regulating 

protein function, it is important to note that not all protein molecules exist in a stable and 

well-folded three-dimensional structure under native conditions. About 30-40% of 

eukaryotic genomes encode for proteins that are categorized as being intrinsically 

disordered or partially intrinsically disordered5, meaning their entire amino acid sequence 

or significant parts of their sequence lack stable tertiary and/or secondary structure most 

of their cellular lifetime and instead they more frequently occupy random coil-like 

conformations. When intrinsically disordered proteins (IDPs) and intrinsically disordered 

regions (IDRs) were first recognized as a separate entity within this class of bio-

molecule6, 7, it brought up several important questions. How do IDPs interact with their 

target macromolecule if they don’t have a well-folded surface that can form residue 

contacts at a molecule-molecule interface? Can something that mostly lacks three-

dimensional structure participate in important protein behaviors like allostery if there 

isn’t a clear occupation of discrete conformations in their ensemble? In the roughly two 

decades development of the IDP field, generalized answers to the above questions have 

begun to emerge. Consequently, our view of the protein structure-function relationship 

has expanded. What constitutes a functional protein “fold” is now viewed as a broader 

continuum ranging from highly stable ordered structure to complete disorder.8, 9  

A large determinant of why one protein molecule adopts a stable, folded state and 

another does not is the amino acid composition of the primary sequence. Typically, 

proteins that are intrinsically disordered have a notably low frequency of bulky, 

hydrophobic or aromatic amino acids and an enrichment in polar, charged or structure-
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breaking amino acids.10 A large driving force for protein folding is the burial of bulky, 

hydrophobic residues, where burial of residue side chains shields hydrophobic side chains 

from the surrounding polar solvent. Amino acid sequences of IDPs do not typically have 

this driving force because of their bias towards charged and polar residues. This does not 

mean, however, that disordered proteins never fold. Quite the contrary, IDPs will often 

undergo folding as part of the biological function they carry out in the cell.8 For example, 

IDPs often serve as hub proteins where they use short linear motifs in their primary 

sequence to bind multiple different folded proteins and, in doing so, help to organize the 

folded proteins into one central location.11, 12 The interaction of these short linear motifs 

with their target protein partners can often associated with regional folding into short 

helices or sheets. In this regard, the unfolded-to-folded transition frequently seen in IDPs 

is similar to the examples described above for well-folded proteins in that it is just 

another type of conformational transition that regulates function.  

In this thesis, research questions on the two ends of the protein structure-function 

continuum are examined. On one end, the very well-folded but conformationally flexible 

actin-binding domains from two representative members of the spectrin superfamily are 

probed to understand how conformation regulates their binding to filamentous actin 

(Chapters 2 and 3). On the other end, an intrinsically disordered linker region in the 

integral membrane protein synaptotagmin is examined, asking a more fundamental 

question about molecular determinants of secondary structure formation (Chapters 4). 

The relevance of these distinct avenues of research are further introduced in two 

subsequent sections below, but first methods for measuring folding and conformational 

change will be discussed. 
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1.2 – Spectroscopy as a measure of protein structure and conformation 

1.2.1 – Fluorescence and resonance energy transfer 

The conformational change of a protein is often studied through use of 

spectroscopy, a discipline primarily concerned with how different types of 

electromagnetic (EM) radiation interacts with matter. In the case of this thesis, we’re 

specifically concerned about the interaction of EM radiation (particularly ultraviolet and 

microwave regions of the spectrum) with protein molecules or probes that we attach to 

the protein molecules. Spectroscopy can be broadly categorized as being absorption-

based or emission-based. One of the main absorption-based spectroscopies used in 

Chapter 4 is circular dichroism. While perhaps simpler compared to other spectroscopies, 

circular dichroism is quite useful for studying folding reactions of IDPs and is always a 

good place to start study of an IDP before moving on to more laborious methods.  

EM radiation used in spectroscopy consists of waves that have electric (E) and 

magnetic (B) field components that oscillate in magnitude perpendicularly to each other 

and the direction of the wave’s propagation.  

 

Figure 1.1. Different polarizations of light used in this thesis.  
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Most EM radiation sources will emit waves whose oscillations occur in any direction 

about the axis of propagation and these waves are said to be unpolarized. When waves 

have their electric field component constrained to a single plane, they are said to be 

linearly polarized (Figure 1.1, left). In the circular dichroism spectrometer used in 

Chapter 4, waves have a constant electric field vector that rotates around the axis of wave 

propagation. These light waves are circularly polarized (Figure 1.1, right). The 

directionality of circular polarization can be either clockwise or counterclockwise. 

Ultimately, the relevance of light polarization in examining protein structure is 

that protein molecules differentially absorb right and left circularly polarized light. This 

stems from several factors including the chirality of their amino acids, the folded 

secondary structure of those amino acids and the wavelength of the incident light. Both 

right and left forms are directed at solutions containing the protein of interest. In the 

absence of any absorption of either form of circularly polarized light, the waves sum to a 

linearly polarized wave because each electric field component is unmodified. However, 

when greater absorption of one polarization occurs relative to the other, summation of 

right and left results in elliptically polarized light because of the difference in electric 

field component magnitudes resulting from differential absorption. This leads to the 

degree of ellipticity, θ, that is measured in the experiment as a function of wavelength: 

    tan(θ) = (El + Er)/(El - Er)    Eq. 1.1 

where El and Er represent the magnitudes of the electric field vectors in left and right 

circularly polarized light, respectively. Measurement of θ as a function of wavelength 

spanning from approximately 190-260 nm results in characteristic absorption profiles 

depending on the type of secondary structure present in the protein molecule (Figure 1.2).  
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Figure 1.2. Basis absorption spectra for random coil (purple), β-sheet (orange) and α-

helical protein secondary structures, where raw ellipticity is in degrees. 

 

Different types of secondary structure result in unique absorption profiles; this forms the 

basis for quantifying the relative amounts of secondary structure in regular protein 

samples. If a protein has a mixture of secondary structures, the absorption profile is just a 

linear combination of the individual components. Using basis data sets of purely α-

helical, purely β-sheet and purely random coil as references, a non-linear least squares fit 

of experimental data can be performed using coefficients for each form of secondary 

structure as the floating parameters: 

   θλ = ∑ fα*Sλα + fβ*Sλβ + frc*Sλrc    Eq. 1.2 

where θλ is ellipticity at a given wavelength in the spectrum, Sλα, Sλβ, Sλrc are the α-helix, 

β-sheet, and random coil basis spectra at that given wavelength, and fα, fβ, frc are the 

weighting factors for the basis spectra. Fitting data sets in this manner allows for the 

relative percentages of structure to be estimated in a sample.13 

Ultimately, this form of spectroscopy was used to study folding of an intrinsically 

disordered protein region in Chapter 4. Because of the absorption profile shifts with 

changes in protein secondary structure, addition of co-solvents or other chemical reagents 

that perturb the folding equilibrium of an IDP allows for this form of spectroscopy to 
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extract equilibrium thermodynamics parameters. These are useful for learning about 

global protein behavior and energetic barriers to folding and further details on how free 

energies are obtained from circular dichroism data is detailed in the supporting materials 

of Chapter 4. 

Aside from circular dichroism, another major type of spectroscopy used in this 

work is fluorescence, a form of emission spectroscopy. In fluorescence, EM radiation is 

directed at a protein molecule to excite an electronic transition that will soon after result 

in emission of a detectable photon of longer wavelength (Figure 1.3, blue and green 

transitions).  

 

Figure 1.3. Jablonski diagram of electronic states important for fluorescence and 

resonance energy transfer in distance measurements. 

 

The type of radiation used for fluorescence could be UV in origin if, for example, the 

intent is to excite natural fluorophores within the protein like tryptophan. Alternatively, it 

could come from the visible part of the electromagnetic spectrum if excitation of an 

extrinsic fluorophore is intended. In either case, the applied radiation excites an electron 

from its ground state within the fluorophore to a higher energy electronic state. 
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Occupancy of this higher energy level is short lived, due to loss of energy through 

vibrational relaxation which eventually brings the electron down to its lowest energy 

excited state. From here, the electron relaxes back to ground state and emits a photon in 

the process (Figure 1.3). The length of time the electron spends in an excited state is 

referred to as its lifetime, τ, which is typically only a few nanoseconds.  

 Fluorescence spectroscopy can ultimately be used for studying protein 

conformation because it is capable of making distance measurements through the process 

of resonance energy transfer. Fluorescence resonance energy transfer or Förster 

resonance energy transfer (FRET) is a form of spectroscopy that uses two fluorophores to 

make molecular measurements on the order of a few nanometers, a scale suitable for 

protein molecules. In FRET, these two fluorophores can be attached to the same molecule 

if the goal is to make intramolecular distance measurements, or they can be attached on 

two separate molecules to measure intermolecular distance. In either case, one 

fluorophore acts as a donor, the fluorescent probe being excited with some wavelength of 

light and then either emitting a photon or transferring energy non-radiatively to a second 

chromophore that acts as an acceptor. An acceptor is a molecule whose spectroscopic 

properties allow it to undergo electronic excitation to a higher energy level by non-

radiatively receiving transferred energy from the first fluorophore’s excited state (Figure 

1.3, gray transitions). This non-radiative transfer of energy has a strong dependence on 

distance between the two fluorophores, as defined by the Förster equation: 

   kT/kD= (R/R0)
-6      Eq. 1.3 

Here kT is the rate of non-radiative energy transfer from donor fluorophore to acceptor 

chromophore, kD is the natural rate of relaxation of the donor excited state to ground 
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state, R is the interprobe distance, and R0 is the Förster distance or the distance at which 

the two fluorophores in question have an energy transfer efficiency of 50%. The rate of 

donor relaxation when in the presence of an acceptor (kDA) can be represented as the sum 

of the intrinsic donor relaxation rate and the rate of non-radiative energy transfer as both 

processes contribute to depletion of the excited state: 

  kDA = kD + kT        Eq. 1.4 

Both the donor relaxation rate without (kD) and with (kDA) acceptor are inversely 

proportional to their respective excited-state lifetimes, which are readily measurable 

experimental parameters: 

  kD = 1/τD        Eq. 1.5 

  kDA = 1/τDA        Eq. 1.6 

If we substitute a rearranged Eq. 1.4 into Eq. 1.3 and move the exponent, 

  (kDA - kD/kD)-1/6 = (R/R0)      Eq. 1.7 

Based on Eq. 1.5 and Eq. 1.6, Eq. 1.7 becomes an expression for interprobe distance as a 

function of experimentally measurable donor lifetimes: 

  [(1/τDA – 1/τD)/(1/τD)]-1/6 = (R/R0)     Eq. 1.8 

Factoring out 1/τD and simplifying results in a more accessible expression: 

  [(τD /τDA) – 1]-1/6 = (R/R0)      Eq. 1.9 

Eq. 1.9 shows that a simple measurement of donor lifetime in the presence and absence 

of  acceptor should enable determination of R, the interprobe distance. The only other 

factor in Eq. 1.9 that must be determined is the Förster distance R0, which relies on 

several factors, as shown below: 

  R0 = (9.78 x 103)*(κ2n-4ϕDJ(λ))1/6              Eq. 1.10 
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Here κ is the relative orientation of fluorophore transition dipoles, n is the solution’s 

refractive index, ϕD is the quantum yield of the donor fluorophore, and J(λ) is the overlap 

integral, which is mathematically shown below and conceptually illustrated in Figure 1.4: 

  J(λ) = ∫ FD(λ)εA(λ)λ4dλ / ∫ FD(λ)dλ              Eq. 1.11 

 

Figure 1.4. Use of excitation and emission spectra of donor and acceptor fluorophores in 

the design of FRET experiments. Note regional overlap of donor emission and acceptor 

excitation spectrums. 

 

When all factors contributing to R0 are known, measurements of fluorescence lifetimes 

with and without an acceptor probe can be made for the purpose of inferring 

conformational change in a protein. If we consider an example of intramolecular FRET 

(Figure 1.5), where the protein of interest has two folded domains and a donor probe in 

one of those domains and an acceptor in the other, we can predict the expected outcome 

based on a structural hypothesis. If the example protein binds actin and, upon doing so, 

its domains become further separated from one another compared to the unbound state, 

then the interprobe distance will increase, resulting in both a decrease in energy transfer 

efficiency and an increase in the apparent donor lifetime (Figure 1.5). From these lifetime 
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measurements, a distance change can be determined using Eq. 1.9, and conformation 

change can subsequently be inferred. 

 

Figure 1.5. Use of lifetime-based FRET for measuring conformational change in a 

protein upon binding its target. 

 

1.2.2 – Electron paramagnetic resonance 

While both circular dichroism and FRET are using UV light (at least, in the 

chapter where these methods are relevant, Chapter 4), radiation from other regions of the 

electromagnetic spectrum can be used to assess protein conformation. The other major 

form of spectroscopy used in this thesis (Chapters 2 and 3) is a form of electron 

paramagnetic resonance (EPR). In this form of spectroscopy, rather than using high-

energy UV waves for exciting an electronic transition, low-energy microwaves are used 

to excite a spin transition of a free radical.  

 Since most proteins do not have an unpaired valence electron that would make 

them EPR active, we instead use an attachable probe that contains a stable free radical. 

These probes are referred to as “spin labels” and are covalently linked to a specific region 

of interest in the protein under study. Spin labels generally consist of a heterocyclic ring 

that contains a nitroxide bond (Figure 1.6). On the carbon atoms adjacent to the nitroxide 
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nitrogen are methyl groups that flank and help stabilize the free radical when in solution.  

Opposite the nitroxide is some type of reactive functional group such as maleimide (as 

used in MSL), iodoacetamide (as used in IASL) or methanesulfonothioate (as used in 

MTSSL) that serves the role of chemically attaching the probe to the protein’s sulfhydryl 

side chains found in cysteine residues. Once a spin label is attached to the protein, EPR 

spectroscopy can be performed. 

 

Figure 1.6. Commonly used nitroxide spin labels. The two left-most labels, MSL and 

IASL, are spin labels that become irreversibly covalently attached to the target protein. 

The right-most label, MTSSL, forms a disulfide linkage that can be reversed with 

reducing agent. MSL is the label used in this thesis. 

 

 In EPR, the end goal is to excite a spin transition in the nitroxide radical. These 

types of transitions have lower energy differences between states and thus require lower 

frequency radiation for excitation. This same reasoning dictates use of even lower 

frequency radiation in nuclear magnetic resonance (NMR), where the energy gap 

between nuclear spin states is smaller still compared to electron spin states. In either form 

of magnetic resonance, however, before you can excite the spin transition the sample 

must be subjected to an external magnetic field (B0). In the absence of this applied 

external magnetic field, the spin quantum states available for the nitroxide’s electron (ms 
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= +½, ms = -½) are degenerate, meaning there is no energy gap for excitation. However, 

in the presence of the external magnetic field, the Zeeman Effect causes splitting of spin 

state energy levels so that one becomes higher in energy. This occurs because one of the 

spin aligns parallel with B0 (resulting in lower energy) whereas the other aligns 

antiparallel (resulting in higher energy) (Figure 1.7). With this newly generated energy 

gap, application of microwaves can then excite the spin transition if the conditions for 

resonance are met:  

   ΔE = hν = geμBB0               Eq. 1.12 

ΔE is the energy difference between spin states, h is Planck’s constant (6.626 x 10-34 

m2kg/s), ν is the applied microwave frequency, ge is the g-factor (2.0023 for a free 

electron), μB is the Bohr magneton (9.274 x 10-24 J/T) and B0 is the external magnetic 

field strength. Absorption of incident microwaves that are being continuously applied in 

the EPR experiment (frequency of microwaves is usually ~9.5 GHz) only occurs at 

specific magnetic field strengths that generate energy gaps that exactly match that of the 

applied radiation frequency. 

One of the consequences of using a nitroxide as the source of a stable electron, 

however, is that the nuclear spin states of the 14N nucleus in the nitroxide bond influence 

the local magnetic field of the electron. This influence of the nitrogen’s nuclear spin on 

the electron magnetic field is referred as the hyperfine interaction and ultimately results 

in further splitting of the electron spin energy levels generating the characteristic three 

resonances typically seen in nitroxide spin label’s field swept spectrum (Figure 1.7). 
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Figure 1.7. Spin transitions of the nitroxide radical. Degeneracy of spin states is 

eliminated with application of an external magnetic field. The two spin states become 

further split by the local field of the nitrogen nucleus whose spin is I=1, resulting in 

possible mI spin states of -1, 0, and +1 which interact with the field experienced by the 

electron that causes hyperfine splitting. 

 

 While the resulting spectra described above can provide information on protein 

structure and dynamics14, the work in this thesis was focused more on use of a pulsed 

EPR experiment called double electron-electron resonance (DEER), rather than the 

continuous wave EPR experiment. In DEER experiments, the goal is to measure 

interprobe distance just like FRET in fluorescence spectroscopy. While making the same 

kind of distance measurement and inferring conformational change in a protein from it, 

DEER has a few advantages over FRET that make it an attractive spectroscopy to utilize. 

(1) DEER only requires use of a single label type, which makes labeling a protein, 

particularly for intramolecular distance measurements, considerably more 

straightforward. (2) A spin label is generally much smaller than a fluorescent probe, 

which usually makes it less perturbing to the protein’s structure and function. (3) DEER 

is more sensitive to conformational heterogeneity in the sample and can quantify degree 

of static disorder in the sample. And lastly, DEER can be done on more complex 

samples. DEER does have two principal disadvantages relative to FRET: (1) It is less 

sensitive, requiring much higher concentrations (micromolar vs nanomolar) and 
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acquisition time (hours vs seconds). (2) It’s distance dependence is less steep (R-3 vs R-6), 

making background correction a more significant problem.  

The way DEER measures an interprobe distance ultimately stems from a dipolar 

interaction between two spins that are in close proximity (R<10nm, as in FRET). The 

interaction is generated with a series of microwave pulses applied at different 

frequencies. The main pulse sequence used in the DEER experiment is a spin echo 

sequence.15 The spin echo pulse sequence first applies a 90° pulse to the sample to shift 

the net magnetization vector into the transverse plane. Since the sample is once again in 

an external magnetic field so that the Zeeman Effect can provide the necessary splitting 

for excitation of the spin transition, the net magnetization vector is initially going to be 

aligned with the external field. After the 90° pulse places the net magnetization vector in 

the transverse plane, different spins with different chemical environments begin to 

precess at different frequencies, and coherence is lost. This represents transverse, T2, 

relaxation. After some period of time, τ, has passed, a second pulse is applied at the same 

frequency though this time it’s a 180° pulse that inverts magnetization vectors. After the 

180° flip, each spin’s precession results in a building up and subsequent loss of 

magnetization along the axis of detection in the transverse plane, which constitutes the 

echo (Figure 1.8, top). This spin echo pulse sequence is only applied to a subpopulation 

of spins in the sample and the frequency at which it is applied is referred to as the observe 

frequency, νobs. However, as this observe frequency pulse sequence is being applied, a 

second frequency referred to as the pump frequency, νpump, is being used for application 

of additional pulses that invert spins of a different subpopulation of spins in the sample. 

This spin inversion is accomplished through application of a 180° pulse at νpump. If the 
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inverted spins are in close proximity to the spins being subjected to the spin echo pulse 

sequence, the precession of the spin echo spins is altered through the dipolar interaction, 

ultimately resulting in a decrease in the amplitude of the measured spin echo. The 

strength of the dipolar interaction is inversely proportional to the cube of the distance 

between spins, which is where interprobe distance will be derived. To ultimately extract 

the distance between spins from the change in echo amplitude, however, the νpump 180° 

pulse has to be applied at varied time points during the spin echo pulse sequence to 

assemble a DEER waveform. The DEER waveform is a plot of the echo amplitude as a 

function of time at which the 180° pump pulse is applied. As the time at which the pump 

pulse is increased, disruption of spin precession eventually reaches a maximum 

modulation depth at which point subsequent increases in the time at which the pump 

pulse is applied only promotes echo amplitude oscillation about a mean value (Figure 

1.8). The initial rate of echo amplitude decay and the frequency of its modulation are 

directly related to distance between two spins. The closer two spins are, the faster the 

decay and the higher the frequency of oscillations. The oscillations in the waveform are 

also a readout on order within the protein. If a protein is conformationally heterogeneous, 

the oscillations are dampened out. If the protein is highly ordered, oscillations are more 

prominent. 
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Figure 1.8. Four pulse DEER experiment.15 The observe frequency (νobs) moves the net 

magnetization vector of a subpopulation of spins to the transverse plane and during time 

τ1, coherence is lost. A refocusing pulse is then applied such that coherence transiently 

returns to generate a spin echo. It is during this period that the pump pulse at νpump is 

applied to invert spins in a second subpopulation of spins in the sample. Varying the time 

at which the pump pulse is applied during time period τ2 results in differing degrees of 

dipolar disruption to observe spin precession, resulting in loss of echo amplitude that 

generates the DEER waveform. 

 

 When a protein sample is labeled with two spin labels, performing DEER to 

obtain a waveform allows for a distance measurement to be made and for conformational 

changes to be subsequently inferred. In we consider the same example discussed above 

for FRET, if our two-domain protein exists in a compact conformation when not bound to 

actin filaments, the two spins will be in close proximity resulting in stronger dipolar 

interactions. This will lead to a DEER waveform with a faster decay and higher 

frequency oscillations (Figure 1.9). If the protein’s two domain then undergo separation 

upon binding actin, the distance between spins will increase and the dipolar interaction 

strength will decrease. Consequently, the rate of echo amplitude decay will slow and 

oscillations will have a lower frequency (Figure 1.9). 

 

Figure 1.9. Example of DEER-based distance measurement to determine conformation 

of a protein and the amount of conformational heterogeneity. 
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1.3 – Structural biology questions relevant to this thesis 

1.3.1 – The spectrin superfamily of proteins and their actin-binding domains 

 Actin-binding domains (ABDs) are found in several different cytoskeletal 

proteins found throughout many different cell types. Some notable examples of such 

proteins include dystrophin, utrophin, α-actinin, β-spectrin, fimbrin, plectin and nesprin.16 

These proteins all generally function as cytoskeletal integrators, meaning they bind some 

cytoskeletal structure such as actin or microtubules and link them to either other 

filaments or to membrane-embedded proteins which could be localized to either the 

plasma or nuclear membrane.16 The relevance of such linkages depends on the protein in 

question. In the case of dystrophin, its linkage of the muscle actin cytoskeleton to the 

dystroglycan complex in the sarcolemma17, 18 aids in the transmission of force from the 

sarcomere to the extracellular matrix through its indirect linkage to proteins like 

laminin.19, 20 The importance of this dystrophin linkage is readily apparent in the types of 

muscular dystrophy known as Duchenne and Becker muscular dystrophy (DMD and 

BMD, respectively), where missense or nonsense mutations lead to a loss of functional 

dystrophin resulting in loss of sarcolemma integrity and ultimately muscle fiber 

degeneration.21 In the case of β-spectrin (particularly βIII-spectrin), the protein links 

cortical actin to the plasma membrane of Purkinje cells in the cerebellum. Spectrin plays 

a similar membrane stabilizing role that, when disrupted, leads to fragility of membrane 

structures.22 Within Purkinje cells specifically, βIII-spectrin seems to be particularly 

important for maintenance of dendrite membrane structures, as an in-cell deletion of the 

protein results in dendrite degeneration.23 This functional role, similar the observation 

made for loss of dystrophin, is also readily appreciated in a disease context. Mutations 
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that alter βIII-spectrin’s interaction with actin change its ability to maintain dendrite 

processes24, resulting in spinocerebellar ataxia type 5 (SCA-5), a condition where motor 

coordination mediated by the cerebellum is impaired. Without the Purkinje cell’s normal 

expansive dendrite tree, the capacity for integration of motor sensory inputs is 

significantly diminished. In the case of the protein α-actinin, two α-actinin protein 

molecules form antiparallel dimers so that both ends of the molecule have ABDs that can 

bind actin filaments. This allows for α-actinin to act as an actin filament cross linker in 

several cell types.25 

Each of the proteins mentioned above ultimately binds to actin by utilizing 

calponin-homology (CH) domains termed CH1 (most N-terminal in sequence) and CH2 

(more C-terminal in sequence) which are located in tandem. The tandem CH domains 

thus comprise all ABDs found in the spectrin superfamily and are found at the N-

terminus of their filamentous structures. While other regions of certain spectrin 

superfamily proteins (particularly dystrophin and utrophin) do have other segments 

capable of binding actin despite not being made up of CH domains26, 27, these regions are 

found within the spectrin-like repeats that make up the rod domain of each protein and 

are not the focus of the thesis research. The focus of Chapters 2 and 3 will only be on the 

ABDs composed of tandem CH domains.  

Given their ubiquity and diverse roles in cytoskeletal functions, ABDs became of 

significant interest to biochemists and structural biologists and the mechanism by which 

these protein domains bound actin became the focus of intense research. In some of the 

earliest studies elucidating the mechanism of interaction between ABDs and actin, 

solution state NMR was the method of choice and it used small peptide fragments from 
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the putative ABD under study to define regions that associate with F-actin. These studies 

focused on dystrophin’s ABD and came up with the initial identification of residues that 

seemed important for association.28, 29 However, binding studies that systematically 

deleted these potential binding interface residues showed that not all residue regions 

contributed to binding and it was instead suggested that segments within the first 90-

residues were most important for the interaction with actin.30 When one of the first 

crystal structures of an ABD was solved from the protein fimbrin31 (Figure 1.10, left), the 

regions identified in these earlier peptide and regional deletion studies did not form a 

particularly obvious binding surface on the ABD molecule. The implicated regions were 

somewhat discontinuous and few of the residue segments were either contributing to the 

core fold of a CH domain or were partially buried at the interface between CH1 and CH2.  

 

 

Figure 1.10. Earlier crystal structures of ABDs showing possible variability in 

conformation of tandem CH domains. Fimbrin on the left (1AOA) and utrophin  on the 

right (1QAG) are shown as examples. 
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Not long after this structure, however, came the crystal structure of utrophin’s 

first ABD (Figure 1.10, right).32 Unlike fimbrin’s ABD, which crystalized as a compact 

monomer, utrophin’s ABD crystalized as a domain-swapped dimer where the two CH 

domains were in an extended conformation. Interestingly, the CH1 and CH2 domain 

interface identified in fimbrin was also found in the utrophin structure, it just involved 

CH1 and CH2 from different ABD molecules within the dimer. The structural 

comparison between fimbrin and utrophin lead to the hypothesis that utrophin’s ABD, 

and possibly dystrophin’s which crystalized in a similar manner33, might be more flexible 

compared to fimbrin and undergo some sort of conformational change in solution. What 

was not clear, however, was whether or not a more “open” extended conformation was 

what bound actin filaments or if the original, more compact “closed” conformation (as 

represented by fimbrin’s crystal structure) was binding competent. To answer this 

question, electron microscopy reconstructions of ABD-actin complexes were performed 

for a few ABDs. The results varied depending on the ABD studied with fimbrin 

appearing to bind in its “closed” conformation34 whereas utrophin exhibited a greater 

degree of diversity in its binding mode, though binding in an “open” conformation 

appeared to possible.35 As information accumulated on other ABDs, particularly disease-

causing mutations in α-actinin, electron microscopy was revisited to get a better 

mechanistic picture of binding and led to the proposal that CH2 sterically hinders binding 

and thus requires opening of the ABD for CH1-association.36 This was later supported by 

DEER experiments that, like the example depicted in Figure 1.9, used spin labels to 

measure inter-CH domain distance in utrophin’s ABD as a function of actin binding.37 It 

was found that, in the absence of actin, the interprobe distance was short, consistent with 
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CH1 and CH2 being in a “closed” state. However, when increasing concentrations of 

actin were added, the interprobe distance increased indicating separation of CH domains 

upon binding filaments. 

While the DEER experiments on utrophin’s ABD started to contribute more to the 

binding mechanism and were consistent with the CH domain-opening hypothesis, it was 

still unclear whether or not the binding mechanism was universal for all ABDs or even 

just similar to some ABDs. A continuation of this research question is what constitutes 

Chapter 3 of this thesis. DEER spectroscopy is once again used examine the ABD-actin 

binding mechanism but this time for utrophin’s homologue, dystrophin. 

The other element of the CH domain-opening hypothesis proposed from cryo-EM 

structures36 was in relation to the mechanism of disease-causing missense mutations. In 

α-actinin and many other ABDs of other spectrin superfamily of proteins38-40, several 

missense mutations are localized to the CH2 subdomain, the domain that was proposed to 

be a negative regulator of CH1 domain forming its binding interface with actin through 

steric hindrance. Importantly, most of these mutations result in a gain-of-function, where 

their affinity for actin is increased. Given this high frequency of mutations in CH2 and 

their common pattern of increasing ABD affinity for actin in vitro, it was proposed that 

these mutations promote opening of the CH domains, such that CH2 is less of a steric 

hindrance to CH1’s binding of actin.  

The content of Chapter 2 in this thesis contributes to the mechanistic 

understanding of these CH2-localized mutations. This missense-mutation opening 

hypothesis did not seem to match well with what crystallographers were seeing in their 

structural models. In α-actinin, for example, one of its gain-of-function mutations 
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(K255E) was shown to still crystalize in the canonical “closed” conformation41, 

ultimately being at odds with the proposed mechanism of disease.36 In Chapter 2, we try 

to help resolve this question by examining a different gain-of-function mutation but one 

that is from βIII-spectrin. This disease-causing mutation is localized CH2 and results in 

dramatically increased affinity for actin42, making it a good test subject for structural 

hypothesis testing. A combination of DEER spectroscopy, cryo-EM, and circular 

dichroism are all used synergistically in an attempt to elucidate the mechanism of CH2 

mutation-induced disease. 

 

1.3.2 – Synaptotagmins in exocytosis 

 Synaptotagmins are a class of integral membrane proteins that regulate vesicle 

trafficking events. The best-studied isoform of the family, synaptotagmin 1 (Syt 1), is 

specifically responsible for regulating synchronicity of neuronal exocytosis. Neuronal 

exocytosis of neurotransmitters is a complex process involving numerous synaptic 

proteins. Chief among the dozen or so proteins that promote docking, priming and 

ultimately fusion of a synaptic vesicle with the plasma membrane are synaptobrevin, 

SNAP-25, syntaxin, Munc18-1, Munc13, synaptotagmin 1 and complexin.43 The first 

three proteins mentioned are all SNARE proteins (soluble N-ethylmaleimide-sensitive 

factor attachment protein receptor) which zipper together into a four-helix bundle that’s 

thought to bring membranes into close proximity for fusion (Figure 1.11).44 Munc18-1 is 

crucial for helping the proper assembly of the SNARE complex and it works together 

with Munc13 to help position the docked vesicle. Complexin is a small IDP that contains 

regions that fold upon binding various targets (including other proteins and also 
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membranes). In part of its central sequence is a SNARE complex-binding region that 

tightly associates with assembled SNARE complexes and is thought to stabilize it before 

it progresses to its completely zippered state that promotes membrane merger.45 

Complexin works in some fashion with Syt 1 such that complexin becomes displaced 

when Syt 1 binds calcium ions (Ca2+).46  

 

Figure 1.11. Simplified model of SNARE-synaptotagmin-mediated fusion of a synaptic 

vesicle with the plasma membrane. As the vesicle docks (left) the v-SNARE 

synaptobrevin (Syb) folds upon binding syntaxin(Syn)-SNAP-25 complexes that were 

assembled through use of Munc proteins. Complete zippering of the SNARE complex to 

its state of promoting membrane fusion is promoted upon action potential-induced influx 

of Ca2+ (right). 

 

Syt 1 itself seems to play a role in sensing the Ca2+ influx that ultimately triggers 

complete fusion of vesicle and plasma membranes, but the mechanism is not entirely 

clear. Syt 1 contains a single-pass transmembrane helix that anchors tandem C2 domains, 

Ca2+ and lipid-binding β-sandwiches, to the vesicle membrane (structure detailed further 

in Chapter 4). Binding lipids seems to be promoted by Ca2+ association to each C2 

domain, so one hypothesis for Syt 1’s promotion of fusion is that each of its two C2 

domains binds to opposing membrane surfaces and helps pull them closer together for 

SNARE-mediated fusion. In conjunction with lipid interactions, several structural studies 

suggest that the C2 domain, specifically the C2B domain, can bind to SNARE complexes 
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directly and that this interaction works together with membrane bridging to promote 

fusion.47, 48 

While much work has been done on the structural biology of Syt 1 C2 domains, 

considerably less effort has been put into studying the structure and function of the ~60 

residues that span between the transmembrane helix and the tandem C2 domains. The 

main assumption in the field is that the sequence is inert and just a flexible tether. This 

region is intrinsically disordered in solution, but initial studies that looked at its 

interaction with synthetic membrane suggest structural potential.49 Chapter 4 of this 

thesis aims to address the question of what this 60-residue Syt 1 IDR might be doing for 

function by examining the structural biology of a post-translational modification that 

occurs in its central region of sequence.  



*This chapter was reproduced in its entirety with permissions from the following article: 

Avery AW, Fealey ME, Wang F, Orlova A, Thompson AR, Thomas DD, Hays TS, 

Egelman EH. Structural basis for high affinity actin binding revealed by a β-III spectrin 

SCA-5 missense mutation. Nat Comm. 2017 8:1350.  

 

CHAPTER 2: STRUCTURAL BASIS FOR HIGH-AFFINITY ACTIN BINDING 

REVEALED BY A Β-III-SPECTRIN SCA5 MISSENSE MUTATION* 

 

NOTE: My contribution to this project was the pulsed-EPR experiments that measured 
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measuring secondary structure and stability, and helping write the first draft and all 

subsequent drafts of the manuscript during the process of publishing. Project 

conceptualization and initiation was carried out by Adam W. Avery and Thomas S. Hays. 

Co-sedimentation experiments were carried out by Adam W. Avery. All cryo-EM 

analysis was carried out by Edward H. Egelman, Fengbin Wang, and Albina Orlova. 

 

2.1 – Section Summary  

Spinocerebellar ataxia type 5 (SCA5) is a neurodegenerative disease caused by 

mutations in the cytoskeletal protein β-III-spectrin. Previously, a SCA5 mutation 

resulting in a leucine-to-proline substitution (L253P) in the actin-binding domain (ABD) 

was shown to cause a 1000-fold increase in actin-binding affinity. However, the 

structural basis for this increase is unknown. Here we report a 6.9 Å cryo-EM structure of 

F-actin complexed with the L253P ABD. This structure, along with co-sedimentation and 

pulsed-EPR measurements, demonstrates that high-affinity binding caused by the CH2-

localized mutation is due to opening of the two CH domains. This enables CH1 to bind 

actin aided by an unstructured N-terminal region that becomes α-helical upon binding. 

This helix is required for association with actin as truncation eliminates binding. 

Collectively, these results shed light on the mechanism by which β-III-spectrin, and likely 

similar actin-binding proteins, interact with actin, and how this mechanism can be 

perturbed to cause disease.  
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2.2 – Introduction 

Spinocerebellar ataxia type 5 (SCA5) is a neurodegenerative disease that stems 

from autosomal dominant mutations in the cytoskeletal protein β-III-spectrin.50, 51 SCA5 

pathogenesis results from a functional deficit in Purkinje cells, in which the expression of 

β-III-spectrin is required for normal cerebellar control of motor coordination.52 β-III-

spectrin is thought to form a heterotetrameric complex with α-II-spectrin, and to cross-

link actin filaments to form a cytoskeleton localizing to the shafts and spines of Purkinje 

cell dendrites. β-III-spectrin is required for normal dendrite structure23 and synpatic 

transmission53, 54. Recently, our group reported that a SCA5 missense mutation, L253P, 

localized to the β-III-spectrin N-terminal actin-binding domain (ABD), causes a ~1000-

fold increase in actin-binding affinity.42 Here, we probe the structural mechanism of this 

mutation by studying the ABD with complementary biophysical techniques. 

The β-III-spectrin ABD is comprised of tandem calponin homology (CH) 

domains and the L253P mutation is localized to the second subdomain (CH2). Very little 

is known about the structural biology of β-III-spectrin’s ABD, with the closest related 

atomic model being the isolated CH2 domain of β-II-spectrin.55 Crystal structures of N-

terminal ABDs from the spectrin superfamily, including α-actinin, dystrophin and 

utrophin, invariably show that extensive contacts are made between CH1 and CH2, 

suggesting a tendency to exist in a “closed” conformation without actin.32, 33, 56, 57 A cryo-

EM structure of the fimbrin ABD shows that it associates with actin in a closed structural 

state.58 In contrast, cryo-EM showed that α-actinin associates with actin in an “open” 

structural state in which only a single CH domain is bound to the filament and the second 

domain is structurally disordered on account of it being dissociated from the interacting 
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CH domain.36 A similar conclusion was reached for filamin59, another member of the 

spectrin superfamily. Binding studies suggested that the CH1 domain of α-actinin has 

greater intrinsic affinity for actin in isolation60 and this suggested that it was CH1 bound 

in the cryo-EM structure. This led to the hypothesis that the CH2 domain functions to 

regulate the actin-binding function of CH1 through steric hindrance when the two 

domains are associated. Consistent with this, many mutations in the CH2 domains of both 

α-actinin and filamin impart modest gains in ABD affinity for actin.39, 61 Collectively, 

these studies suggest that the L253P mutation of β-III-spectrin, which is similarly 

localized to CH2, causes high-affinity actin binding by disrupting a regulatory 

mechanism that shifts the ABD structural equilibrium from a closed to more open 

binding-competent state. Here, we report cyro-EM, co-sedimentation and pulsed EPR 

data consistent with such a mechanism. 

 

2.3 – Results 

2.3.1 – Structure of L253P β-III-spectrin ABD bound to actin  

To begin testing our hypothesis, we first performed cryo-EM on the β-III-spectrin 

ABD bound to actin filaments. The actin-binding affinity of the wild-type (WT) β-III-

spectrin ABD is low (Kd =75µM), resulting in poorly decorated actin filaments that were 

of insufficient quality for analysis (Fig. 2.4a). The L253P ABD yielded high quality 

complexes of decorated filaments (Fig. 2.4b,c), enabling a three-dimensional 

reconstruction (Fig. 2.1a) of the mutant ABD-actin complex at 6.9  Å resolution (Fig. 

2.5). This represents a substantial improvement over previous ABD-actin 

reconstructions36, 58, 62, the best of which was 12 Å. The reconstruction and resulting 
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atomic model provide several mechanistic insights. First, the density map reveals that 

only a single CH domain is bound to actin, as observed previously for the α-actinin ABD. 

Second, the bound CH domain has an additional N-terminal helix that is tightly 

associated with actin (Fig. 2.1b, red). This helix was not identified in other ABD-actin 

cryo-EM complexes. However, reexamination of the α-actinin-actin reconstruction36 

suggests that extra density is present, consistent with such an N-terminal helical 

extension. By comparison, the higher resolution fimbrin-actin reconstruction58, 

containing closed CH domains, shows no extra density. The presence of this contiguous 

N-terminal helix unambiguously identifies the bound domain as CH1. Thus, high-affinity 

actin binding, caused by the L253P mutation in the CH2 domain, is mediated through the 

CH1 domain. The L253P mutation does not expose or generate a de novo high-affinity 

actin binding site in the CH2 domain, as has been suggested previously.63  

All N-terminal ABDs contain amino acid sequences of variable length and 

composition preceding the conserved CH1 domain. However, a structured N-terminal 

region preceding the globular fold of a CH domain has not been previously observed in 

most reported ABD crystal structures. This reflects either disorder in this region or the 

intentional truncation of the region based on predicted intrinsic disorder.64 However, 

when calmodulin was crystallized with the plectin ABD, calmodulin was bound to the N-

terminal region which had become α-helical.64 Solution studies confirmed that in the 

absence of calmodulin, the plectin N-terminal region is unstructured. The β-III-spectrin 

CH1 domain with the extended N-terminal helix built into the cryo-EM map 

superimposes very well with the corresponding plectin CH1 domain with calmodulin 

(Fig. 2.6), and shows that calmodulin would be involved in massive clashes with actin. 
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As proposed this explains how calmodulin, in the presence of Ca2+, dissociates the plectin 

ABD from actin since the binding of actin and calmodulin is competitive.65  

 

 

Figure 2.1. Cryo-EM map and model of L253P β-III-spectrin ABD bound to actin. (a) 

The map (left, gray transparent surface) has been fit with a model for actin (cyan) and the 

β-III-spectrin ABD (magenta). On the right, the surface of the reconstruction has been 

color coded for the two actin strands (blue and green) and the β-III-spectrin ABD 

(magenta). (b) Close-up view of (a) showing that the CH1 domain has an additional N-

terminal helix (red) interacting with F-actin. The actin subdomains (SD1, SD2, SD3 and 

SD4) have been labeled on one actin subunit, while SD1’ and SD2’ are labeled on a 

different subunit. 
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Figure 2.2. The β-III-spectrin N-terminus is required for actin binding. (a) Coomassie 

blue stained gel of purified wild-type ABD or wild-type ABD without the N-terminal 51 

amino acids (A52).  (b) F-actin co-sedimentation assays showing that the N-terminal 

truncation abolishes actin affinity.  (c) CD spectra demonstrating α-helical absorption 

profiles. The A52 ABD has a statistically significant increase in helicity (n=3). (d)  CD 

denaturation at 222nm.  The A52 ABD has a statistically significant increase in Tm (n=3). 

 

 

 

2.3.2 – N-terminal residues of β-III-spectrin ABD are essential for actin binding  

The β-III-spectrin cryo-EM structure showing the N-terminal helix bound to actin 

suggests that the helix must contribute to binding affinity. To test this, we measured 

affinity of WT ABD with and without the first 51 amino acids (A52). Strikingly, 

truncation of the N-terminal sequence abolished binding of the ABD to actin (Fig. 

2.2a,b). Circular dichroism (CD) indicates that this loss in binding is not due to 
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misfolding (Fig. 2.2c,d). On the contrary, the A52 ABD showed small but reproducible 

increases in helicity and stability, suggesting that the N-terminal residues contain intrinsic 

disorder, which we verified by CD (Fig. 2.7). Collectively, these data sets, combined with 

the cryo-EM structural model, indicate that the N-terminal sequence is critical to binding, 

both directly by interacting with actin and potentially indirectly through allosteric 

destabilization of the ABD, the latter of which may alter the ABD conformational 

ensemble to impact binding. Evidence supporting an allosteric contribution comes from 

recent folding and binding studies on the utrophin ABD1 which showed that the utrophin 

N-terminal residues destabilize ABD1 and are required for full ABD1 binding activity.  

The utrophin N-terminal residues alone do not bind actin.66 

 

Figure 2.3. DEER measurement showing the L253P mutation opens the β-III-spectrin 

ABD structure. Echo amplitude decays of WT ABD (blue) and L253P ABD (purple) 

along with their corresponding Tikhonov fits are shown on the left. The inter-probe 

distances derived from Tikhonov regularization (Fig. 2.9) for both WT and L253P ABDs 

are shown on the right. The WT ABD distance distribution is centered at 4.8 nm, 

consistent with the distance predicted in the homology model of the closed state shown in 

Fig. 2.8. Upon introduction of the L253P mutation, the distance distribution undergoes a 

shift to populate a longer inter-probe distance, visible as a shoulder to the right of the 4.8 

nm peak, consistent with structural opening of the ABD.  
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2.3.3 – L253P mutation in β-III-spectrin ABD promotes structural opening of CH 

domains  

Previously we demonstrated that the L253P mutation substantially destabilizes the 

ABD (ΔTm = -14.8 C).  If the open structural state of the ABD is responsible for high-

affinity actin binding, then decreased stability may facilitate opening of the CH domains 

from a closed state. In our previous structural homology model of the β-III-spectrin ABD 

in the closed structural state42, L253 is positioned at the CH domain interface (Fig. 2.8), 

suggesting that the L253P mutation could also perturb CH1-CH2 interactions that 

stabilize the closed structural state. To test this hypothesis, we used double electron-

electron resonance (DEER) to measure inter-CH domain distance with and without the 

L253P mutation. We exploited the native cysteine residues at positions 76 and 231 for 

irreversible attachment of spin labels. 

For WT ABD in the absence of actin, clear oscillations were present in the echo 

amplitude decay (Fig. 2.3). Analysis (Fig. 2.9) revealed an inter-probe distance centered 

at 4.8 nm (Fig. 2.3) which agrees well with the distance predicted for the closed structural 

state (Fig. 2.8). Upon introduction of the L253P mutation, the distance distribution 

undergoes a shift to populate a longer inter-probe distance, visible as a shoulder to the 

right of the 4.8 nm peak. This indicates that the ABD undergoes an opening as a result of 

the mutation (Fig. 2.3), consistent with the cryo-EM structure showing that CH1 

separates from CH2 upon associating with actin (Fig. 2.1). 

In the context of other ABDs harboring disease-causing mutations, a similar 

structural mechanism has been proposed for the K255E mutation of α-actinin-4, a 
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missense mutation also located at the CH domain interface. This mutation caused 

increased affinity for actin, but the crystal structure showed the ABD of mutant α-actinin-

4 to be in a closed state.41 While seemingly counter to our proposed mechanism here, the 

DEER-derived distance distributions indicate that the shift to an open conformer is not 

complete (Fig. 2.3). Only a small portion of the population exists in the more open state 

in the absence of actin, with the remaining ensemble occupying the closed conformer. 

Given that crystallographic conditions favor more stable conformers, the K255E mutant 

may open, similar to L253P β-III-spectrin, but crystallize in its more stable closed state 

because it is more significantly populated.  

 

2.4 – Discussion 

SCA5 pathology is characterized by atrophy of the cerebellum67, likely reflecting 

degeneration of dendritic arbors extended by Purkinje cells. Within dendrites, β-III-

spectrin binds to actin filaments to form a spectrin-actin skeleton underlying the plasma 

membrane.68 The low affinity of WT β-III-spectrin for actin suggests that normal 

membrane function requires a dynamic spectrin-actin cytoskeleton in which spectrin-

actin linkages form and dissociate. We suggest that the high affinity of L253P β-III-

spectrin for actin decreases dynamics of spectrin-actin linkages, resulting in reduced 

plasticity of the spectrin-actin cytoskeleton. We speculate that spectrin-actin cytoskeleton 

plasticity is important for the cytoskeleton to expand or retract within structurally 

dynamic regions of the dendritic arbor, such as growing or remodeling dendrites and 

spines. Recent work has highlighted the requirement of β-III-spectrin to support dynamic 

spine structure and post-synaptic signaling.54 In addition, disrupted microtubule-based 
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transport has been reported for the L253P mutation69, and these transport defects may 

disrupt arborization and contribute to SCA5 pathogenesis. Disrupted transport may be 

secondary to defects in microtubule tracts that are organized by the spectrin-actin 

cytoskeleton70-73, and/or result from the direct impact of high-affinity binding of L253P 

β-III-spectrin to the actin-related protein, ARP174, a component of the dynactin complex 

that facilitates cargo transport by microtubule motor proteins.75, 76 

Collectively, the 6.9 Å cryo-EM structure, binding studies, and DEER distance 

distributions converge on a structural mechanism for disease. The CH2 domain-localized 

L253P mutation perturbs a closed-open structural equilibrium in β-III-spectrin’s ABD by 

lowering the energetic barrier between structural states. The ABD is then relieved of its 

regulatory mechanism allowing for the CH1 domain to interact with actin filaments, 

aided by an additional N-terminal unstructured region that becomes helical upon binding 

actin. 

 

2.5 – Materials and Methods 

2.5.1 – Protein Purification 

For cryo-EM analyses, the wild-type or L253P human β-III-spectrin ABD coding 

sequences contained in pET-30a-ABD WT or pET-30a-ABD L253P vectors were 

expressed in E. coli BL21(DE3) (Novagen). ABD proteins were both purified using a 

HiTrap Q 5 mL ion-exchange column followed by a Superdex 200 size exclusion column 

(GE Healthcare Life Sciences).42   Elution fractions of the Superdex 200 column 

containing pure ABD proteins as assessed by SDS-PAGE were pooled and concentrated 

(Amicon Ultra-4 Centrifugal Filter, 10 K MWCO). A Bradford assay (Biorad) was then 
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used to determine protein concentrations which equaled 44.0 and 40.6 µM for wild-type 

and L253P, respectively. ABD proteins were stored on ice until preparation of ABD-F-

actin complexes.  

To test the contribution of the N-terminus to actin-binding affinity, the coding 

sequences for wild-type ABD (amino acids 1-284) or truncated wild-type ABD (amino 

acids 52-284) were PCR amplified using the forward primer 

AAACACCTGCAAAAAGGTATGAGCAGCACGCTGTCACCC or 

AAACACCTGCAAAAAGGTGCAGATGAACGAGAAGCTGTGC and reverse primer 

AAATCTAGACTACTTCATCTTGGAGAAGTAATGGTAGTAAG.  PCR products 

were digested with AarI and Xba1 restriction enzymes and ligated into the BsaI site of 

pE-SUMOpro (LifeSensors) containing His and SUMO tags.  The final constructs pE-

SUMO-ABD WT and pE-SUMO-A52-ABD WT were sequence verified and transformed 

into E. coli BL21 (DE3)pLysS (Agilent).  Transformed bacteria were incubated with 

rotation at 27C in flasks containing 1L LB media with 100 µg per mL ampicillin and 50 

µg per mL chloramphenicol until an absorbance of 0.5 at 550 nm was reached. Then 

flasks were placed in ice for 10 min before addition of IPTG to 0.5 mM final.  The flasks 

were then incubated with rotation for 4 h in a 22C water bath.  Bacteria were harvested 

at 5,000 x g and pellets stored at -20C.  Bacteria were lysed with lysozyme (Sigma) for 1 

h at 4C in buffer containing 50 mM Tris, pH 7.5, 300 mM NaCl, and 25% sucrose with 

protease inhibitors (Complete Protease Inhibitor tablet, EDTA-free, Roche), followed by 

a freeze-thaw cycle using an isopropanol-dry ice bath.  Then MgCl2 to 10 mM final and 

DNase1 (Roche) to 7.5 U per mL final were added and lysate incubated for 1 h at 4C.  

Lysate was clarified at 40,000 x g at 4C for 30 min.  Supernatants were collected and 
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passed through a 0.45 µm syringe filter before loaded onto a Poly-Prep (Biorad) 

chromatography column containing 1 mL Ni-NTA agarose (Qiagen) equilibrated in 

buffer containing 50 mM Tris, pH 7.5, 300 mM NaCl and 20 mM imidazole.  The 

column was washed with buffer containing 50 mM Tris, pH 7.5, 300 mM NaCl and 20 

mM imidazole, and proteins eluted in buffer containing 50 mM Tris, pH 7.5, 300 mM 

NaCl and 150 mM imidazole.  Fractions containing ABD proteins were pooled and 

loaded into a Slide-a-Lyzer, 10K MWCO, dialysis cassette (ThermoScientific), and 

dialysis performed at 4C in buffer containing 25 mM Tris, pH 7.5, 150 mM NaCl and 5 

mM β-mercaptoethanol.  To cleave off the SUMO tag, Ulp1 SUMO protease was added 

to dialyzed ABD proteins at a 1:14 (protease:ABD) mass ratio,  and digests incubated for 

1.5 h at 4C. To separate ABD proteins from the cleaved His-SUMO tag and His-tagged 

SUMO protease, ABD proteins were loaded onto a Poly-Prep chromatography column 

containing 0.5 mL Ni-NTA agarose equilibrated in 25 mM Tris, pH 7.5, 150 mM NaCl, 

and 5 mM β-mercaptoethanol.  Elution fractions containing ABD proteins were collected 

and then loaded onto a gel filtration column (Sephadex S100, GE) equilibrated in buffer 

containing 10 mM Tris, pH 7.5, 150 mM NaCl, 2 mM MgCl2 and 1 mM DTT at 4C.  

Fractions were analyzed by SDS-PAGE and Coomassie blue staining, and fractions 

enriched with ABD proteins were pooled and concentrated (Amicon Ultra-15 Centrifugal 

Filter, 10 K MWCO). 

For DEER analyses, the wild-type and L253P ABD proteins were modified to 

substitute a serine residue in place of cysteine 115.   Spin labeling was performed using 

native cysteines of which the β-III-spectrin ABD contains four (C76, C115, C186, C231), 

and C76, C115 and C231 are all solvent exposed.  Residues C76 and C231 were best 
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suited for DEER distance measurements, so C115 was mutated to serine to prevent non-

specific labeling at that site. The C186 site did not require mutagenesis because it is 

naturally buried in the core of CH2 and would thus not be accessible to free spin label in 

solution. PCR site-directed mutagenesis was performed on pET-30a-ABD WT and pET-

30a-ABD L253P vector templates using the oligonucleotides CATGCGGATCCACTC-

CCTGGAGAACGTG and CACGTTCTCCAGGGAGTGGATCCGCATG. The resulting 

constructs pET-30a-ABD WT C115S and pET-30a-ABD L253P C115S were sequence 

verified, and then transformed into E. coli BL21(DE3).  The ABD C115S proteins were 

purified as described above.42 For structural studies of the β-III-spectrin N-terminal 

residues, a small peptide corresponding to residues 

SSTLSPTDFDSLEIQGQYSDINNRWDLPDSDWDNDSSSARLFERSRIKALA was 

produced via solid-state synthesis through Selleck Chemicals LLC. 

 

2.5.2 – Cryo-EM ABD-actin  

5 µM of rabbit skeletal muscle G-actin was polymerized in 15 mM Hepes-HCl 

buffer, pH 7.5, 75 mM KCl, 1 mM MgCl2, and 0.5 mM ATP for 2 h at room temperature. 

For negatively stained samples 2 µM F-actin was incubated with 5-10 µM wild-type β-

III-spectrin or with 2-5µM β-III-spectrin mutant L253P for 2-20 min. For cryo-samples 

1.5 - 2µL of the mixture was applied to lacey carbon grids that were plasma cleaned 

(Gatan Solarus) and vitrified in a Vitrobot Mark IV (FEI, Inc.). Grids were imaged in a 

Titan Krios at 300 keV, and recorded with a Falcon II direct electron detector at 1.05 Å 

per pixel, with seven “chunks” per image. Each chunk, containing multiple frames, 

represented a dose of ~ 20 electrons per Å2. A total of 586 images (each 4k x 4k) were 
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selected that were free from drift or astigmatism, and had a defocus less than 3.0 μm. The 

program CTFFIND377 was used for determining the Contrast Transfer Function (CTF) 

and the range used was from 0.6 to 3.0 μm. The SPIDER software package78 was used for 

most subsequent steps. The CTF was corrected by multiplying each image by the 

theoretical CTF, both reversing phases where they need to be reversed and improving the 

Signal-to-Noise ratio. The program e2helixboxer within EMAN279 was used for boxing 

long filaments from the micrographs. Overlapping boxes, 384 px long with a 40 px shift 

between adjacent boxes (~ 1.5 times the axial rise per subunit) were extracted from these 

long filaments, yielding ~ 60,000 segments that were padded to 384 x 384 px. The CTF 

determination and particle picking came from the integrated images (all seven chunks), 

while the segments used for the initial alignments and reconstruction came from the first 

two chunks. 

An initial reconstruction using the IHRSR method80 showed clear decoration of 

actin, but the mass density due to β-III-spectrin was lower than that from the actin. This 

appeared to arise from incomplete occupation. We therefore used atomic models of pure 

actin and actin decorated with α-actinin36 to sort the segments. Only ~ one-third of the 

segments showed a higher cross-correlation with the decorated filament, and 20,340 

segments were used for further processing. The IHRSR cycles converged to a rotation of 

-166.9° and an axial rise of 27.3 Å per subunit. After excluding segments with a large 

out-of-plane tilt or poor orientation against the reference, 12,443 segments were used in 

the final reconstruction. 
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2.5.3 – Model building  

An actin-spectrin asymmetric unit was segmented from the filament map in 

Chimera.81 Model building began by docking cryo-EM structure of actin (5JLH)82 and a 

predicted model of spectrin CH1 domain into the experimental density data. This 

predicted spectrin model was generated by I-TASSER83 based on a crystal structure of 

plectin (1MB8)84. Then the actin-spectrin complex was rebuilt with RosettaCM 

protocols.85 A total of 1,500 models were generated, and the 10 best models (selected 

based on Rosetta’s energy function) were combined into one model by manual editing in 

Coot86 to yield the best overall fit to the density map. A filament model was subsequently 

generated from this and refined by Phenix real-space refinement.87 MolProbity88 was 

used to evaluate the quality of the model (Table 2.1). The MolProbity scores for the 

actin-spectrin filament models compare favorably (99th percentile) with structures of 

similar resolution. 

Although segments were sorted to exclude naked actin, Phenix refinement of the 

actin-spectrin reconstruction clearly shows that the occupancy by spectrin is not 100% 

percent, and the actual occupancy is ~ 75%. Therefore, the threshold chosen for the 

filament needed to show the full volume for spectrin shows a somewhat larger and lower 

resolution actin. 

 

2.5.4 – Co-sedimentation assays 

Actin was purified from acetone powder derived from the psoas muscle of New 

Zealand white rabbit.89 Acetone powder was hydrated in 4°C water for 30 minutes to 

extract actin. The resultant slurry was passed through a Whatman filter paper and 30 mM 
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KCl was added to the filtrate to polymerize actin for a period of 1 hr at room temperature.  

Filamentous actin was then pelleted by 30 minute centrifugation at 80,000 rpm in a TLA 

100.3 rotor. The actin pellet was resuspended in buffer containing 5 mM Tris pH 7.6, 0.5 

mM ATP, 0.2 mM MgCl2 and homogenized on ice. A 10 minute clarifying spin at 70,000 

rpm was then performed to pellet aggregate proteins. The G-actin containing supernatant 

was then isolated and polymerization was initiated by addition of 2 mM MgCl2 with a 30 

minute incubation at room temperature. The purified ABD proteins were clarified at 

100,000 x g at 4C for 30 min prior to setting up binding assays.  A Bradford assay was 

performed to determine F-actin and clarified ABD protein concentrations.  Binding 

assays were performed in F-buffer containing 10 mM Tris, pH 7.5, 150 mM NaCl, 0.5 

mM ATP, 2 mM MgCl2 and 1 mM DTT.  Binding reactions contained 3 µM ABD protein 

and F-actin ranging from 0 to 140 µM in a total volume of 60 µL.  Binding reactions 

were incubated at room temperature (23-24C) for 30 min to reach equilibrium, and then 

F-actin pelleted by centrifugation at 100,000 x g at 25C for 30 min.  Unbound ABD was 

measured by combining 45 µL of binding reaction supernatant with 15 µL 4x Laemmli 

sample buffer and performing SDS-PAGE followed by Coomassie blue staining.  After 

destaining, gels were scanned using the 700 nm channel in an Odyssey Imager (LI-COR 

Biosciences). The fluorescence intensities of the ABD protein bands were quantified in 

Image Studio Lite Ver 5.2 software (LI-COR Biosciences).90 Individual ABD band 

fluorescence intensities were converted to amount ABD protein.  This conversion was 

performed using a standard curve generated by linear regression (Prism 5 software) on 

ABD Coomassie blue fluorescence intensity values attained from a SDS-PAGE gel 
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loaded with varying amounts of ABD in F-buffer.  To determine the dissociation constant 

(Kd) value, data were fit by non-linear regression in Prism 5 software to the equation: 

 

 Y = X/(Kd +X)         Eq. 2.1 

 

Where Y equals fraction ABD bound and X equals free F-actin concentration.   

 

2.5.5 – Circular dichroism  

ABD proteins were clarified at 100,000 x g for 20 min at 4C.  A Bradford assay 

was performed to determine ABD protein concentrations, and ABD proteins were diluted 

to 250 ng/µL in buffer containing 10 mM Tris, pH 7.5, 150 mM NaCl, 2 mM MgCl2, 1 

mM DTT.  CD spectra were acquired in a Jasco J-815 Spectropolarimeter equipped with 

a Peltier temperature controller.  Immediately before analysis, the instrument was 

baseline-corrected using ABD protein buffer.  For secondary structure analyses, CD 

spectra were measured from 200 nm and 260 nm at 25C.  Thermal unfolding of the 

ABD protein sample was analyzed by recording CD spectra at 222 nm over the 

temperature range of 20C-85C.  CD analyses were performed three times for each ABD 

protein.  Non-linear regression analysis was performed in Prism 5 (GraphPad Software, 

Inc.) to determine the melting temperature using the following equation for a two-state 

transition, as reported previously91: 

 

Y = (αN + βNT)/(1 + e4T)        Eq. 2.2 
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For secondary structure analysis of the N-terminal peptide, a lyophilized powder was 

reconstituted in the same buffer system as that described for the ABD proteins. The 

reconstituted peptide was then diluted to a concentration of 99 ng per µL and 

subsequently scanned over the same wavelength range described above. In the case of 

both ABDs and peptide, raw ellipticity was normalized to each sample’s respective 

concentrations according to the following equation: 

 

MRE = [θ(MW/N – 1)]/(lc)        Eq. 2.3 

 

Where θ represents the raw ellipticity, MW represents the protein molecular weight, N is 

the number of amino acids, l is the path length, and c is the concentration in milligrams 

per milliliter. 

 

2.5.6 – Statistical analyses  

Unpaired t-tests were performed in Prism 5 software to determine whether 

significant differences existed in ABD protein melting temperatures or 222 nm/208 nm 

absorbance ratios determined by CD.  The n value was equal to three in all cases. 

 

2.5.7 – Spin labeling  

In the β-III-spectrin ABD constructs, 500 µM of the spin label 4-maleimido-

TEMPO (MSL, 4-maleimido-2,2,6,6-tetramethyl-1-piperidinyloxy; Sigma-Aldrich) was 

added to 25 µM protein and equilibrated on a rocker for 3 hours at 4 °C. Prior to addition 
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of MSL, the protein solution had been run over a Zeba desalting column pre-equilibrated 

with 10 mM Tris pH 7.5 and 150 mM NaCl to remove most of the 1 mM DTT left over 

from size exclusion. After the spin-label incubation period, the protein was once again 

subjected to a Zeba desalting column to remove any unreacted spin label. To ensure 

complete removal, however, the spin labeled protein was then subjected to three 4 h 

rounds of dialysis in 4 liter solutions contain 10 mM Tris pH 7.5, 150 mM NaCl and 1 

mM DTT. MSL was ultimately chosen over the more commonly used (1-oxyl-2,2,5,5,-

tetramethylpyrroline-3-methyl) methanethiosulfonate (MTSSL) because spin labeling of 

the β-III-spectrin ABD constructs was incomplete, requiring inclusion of DTT reducing 

agent post-labeling to prevent undesired ABD cross-linking. Incubation of the ABD 

constructs with spin label for periods longer than 3 hours resulted in significant protein 

loss due to precipitation. The spin labeled WT and L253P β-III-spectrin ABD constructs 

were concentrated down to 230 μM and 175 μM, respectively, prior to spin counting and 

DEER sample preparation. 

 

2.5.8 – EPR spectroscopy  

To verify labeling, a continuous wave (CW) electron paramagnetic resonance 

(EPR) spectrum was acquired with sample temperature of 296 K on the E500 Bruker 

EPR spectrometer operating at X-band (9.5 GHz) and equipped with a super high Q 

(SHQ) cavity. The derivative spectrum was then doubly integrated to determine spin 

concentration by comparing with the double integral of a 100 µM TEMPOL standard 

(Fig. 2.8b and 2.8c). For WT and L253P β-III-spectrin ABD constructs, spin 

concentrations were determined to be 98 μM and 75 μM, respectively, indicating a 



46 

 

labeling efficiency of ~43% for both. After spin counting, we performed double electron-

electron resonance (DEER) on β-III-spectrin ABD constructs doubly labeled with MSL. 

ABD samples were prepared by adding 7% v/v glycerol (as a cryoprotectant), loading 

samples into quartz capillaries (1.1 mm i.d., 1.6 mm o.d., 15 µL sample volume) and 

subsequently flash freezing samples in liquid nitrogen after which samples were stored at 

-80 °C until use. A Bruker E580 spectrometer operating at Q-band (34 GHz) with an 

EN5107 resonator was then used to implement a four-pulse DEER protocol with a π/2 

pulse width of 12 ns and an electron double resonance (ELDOR) pulse width of 24 ns.15 

The ELDOR frequency was set to the absolute maximum of the field swept nitroxide 

absorption spectrum and the observe position was set 24 G up-field. Experiments were 

run at a temperature 65 K. After data acquisition, background-corrected DEER decays 

were analyzed using the Tikhonov regularization method provided in DeerAnalysis2016 

to extract distance distributions encoded in the waveform (Fig. 2.9).92 To determine the 

stable components in the resulting Tikhonov distributions, we examined the impact of a 

range background models whose starting fit positions varied from 0.5 μs to 2.4 μs on the 

uncorrected waveform. The components that were invariable were used for structural 

interpretation of the ABD constructs. The component that was not stable (the peak at >7.0 

nm) was excluded from structural interpretation as it represents an artifact of background 

subtraction. 
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2.6 – Supporting Information 

 

a b

 
 

Figure 2.4. Electron microscopy of β-III-spectrin ABD-actin complexes. Negative 

staining of (a) WT ABD-actin showing poor decoration of filaments and (b) L253P 

ABD-actin. Cryo-EM was used (c) for the 3D reconstruction of the L253P ABD 

decorated actin filaments. Lacey carbon grids were used, with the filaments suspended in 

the holes within this carbon film. The carbon film is seen near the center of the image, 

with holes on both sides of it. The space bars in (a), (b) and (c) are 1,000 Å. 

 

c 
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Figure 2.5. Resolution of the Actin-spectrin filament reconstruction, estimated two 

different ways. (a) The resolution was derived from Fourier Shell Correlation (FSC) 

calculation between the refined atomic model and the map. (b) A “gold-standard” FSC is 

also calculated between two half maps. Given the relatively small number of segments 

used in the final reconstruction (~12k), splitting this into two halves to generate a 

conventional “gold standard” map:map FSC can be problematic, as the result from the 

half-maps is biased to a lower resolution than the full map.93 Nevertheless, this method 

yielded an estimate of 6.9 Å resolution at FSC=0.143. For the map:model comparison, 

we used FSC=0.38 where 0.38=√0.143. 

 

 

Figure 2.6. Comparison with calmodulin-bound plectin structure (4Q57). F-actin (gray), 

β-III-spectrin (pink), plectin (brown) and calmodulin (orange) are shown. Plectin model 

is aligned with spectrin using only the N-terminal helices (rmsd=0.8 Å), and a major 

clash would result between calmodulin and F-actin.    
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Figure 2.7. Circular dichroism spectra on a peptide corresponding to the β-III-spectrin N-

terminus.  The absorption profile is consistent with a disordered structure. 

 

 

Figure 2.8. Site-directed spin labeling of β-III-spectrin ABD. (a) Homology model 

generated for β-III-spectrin ABD from crystal structure of the closed state of α-actinin, 

indicating the approximate inter-probe distance (side chain-side chain distance of 4.5 nm, 

yellow dotted line) between two native cysteine residues (C76 and C231, magenta 

residues) and highlighting L253 in orange at the CH domain interface. (b and c) CW EPR 

spectrum (left) of MSL-labeled β-III-spectrin ABD and example spin count (right) for 

WT (blue) and L253P mutant (purple). Note probe mobility is as expected for cysteine 

residues located in loops. 
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Figure 2.9. DEER analysis of WT (blue) and L253P (purple) β-III-spectrin ABDs. (top 

row) Raw echo amplitude decays with optimal background. (middle rows) L-curve 

analysis indicating smoothing parameter chosen from Tikhonov fit of the echo amplitude 

decay. As the distance distributions from fitting the DEER waveform are highly sensitive 

to the choice of the background component, we examined the impact of a range 

background fits (varying the start of the fit from 0.5 μsec to 2.4 μsec on the uncorrected 

waveform). The components that were invariable with respect to choice of background 

were used for structural interpretation of the ABD constructs. The component that was 

not stable, and in some cases disappeared entirely (the peak(s) at >7.0 nm), was excluded 

from structural interpretation as it represents an artifact of background subtraction. 

(bottom row) Normalized echo amplitude decays fit with the Tikhonov model 

corresponding to the lowest RMSD.  
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 Actin-spectrin filament 

Clash score, all atoms  6.6 

Protein geometry  

  Ramachandran favored (%) 92.7 

  Ramachandran outliers (%) 0 

  Rotamer outliers (%) 0 

  Cβ deviations > 0.25 Å (%) 0 

RMS deviations  

  Bonds (Å) 0.01 

  Angles (°) 1.00 

MolProbity score 1.82 (99th, 3.25 Å – 7.25 Å) 

PDB ID 6ANU 

 

Table 2.1 – Refinement statistics for the actin-spectrin filament model by MolProbity.88 
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3.1 – Section Summary  

We have used pulsed EPR, calorimetry, and molecular dynamics simulations to 

examine the structural mechanism of binding for dystrophin’s N-terminal actin-binding 

domain (ABD1) and compare it to utrophin’s ABD1. Like other members of the spectrin 

superfamily, dystrophin’s ABD1 consists of two calponin-homology domains, CH1 and 

CH2. Several mutations within dystrophin’s ABD1 are associated with development of 

severe degenerative muscle disorders Duchenne and Becker muscular dystrophies, 

highlighting the importance of understanding its structural biology. To investigate 

structural changes within dystrophin ABD1 upon binding to actin, we labeled the protein 

with spin probes and measured changes in inter-CH domain distance using double 

electron-electron resonance (DEER). Previous studies on the homologous protein 

utrophin showed that actin binding induces a complete structural opening of the CH 

domains, resulting in a highly ordered ABD1-actin complex. In the present study, DEER 

shows that dystrophin ABD1 also undergoes a conformational opening upon binding F-

actin, but this change is less complete and significantly more structurally disordered than 

observed for utrophin.  Using molecular dynamics simulations, we identified a hinge in 

the linker region between the two CH domains that grants conformational flexibility to 

ABD1. The conformational dynamics of both dystrophin’s and utrophin’s ABD1 showed 
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that compact conformations driven by hydrophobic interactions are preferred, and that 

extended conformations are energetically accessible through a flat free energy surface. 

Considering that the binding free energy of ABD1 to actin is on the order of 6-7 

kcal/mole, our data are compatible with a mechanism in which binding to actin is largely 

dictated by specific interactions with CH1, but fine tuning of the binding affinity is 

achieved by the overlap between conformational ensembles of ABD1 free and bound to 

actin. 
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3.2 – Introduction 

Dystrophin (Dys) is a large muscle cytoskeletal protein of 427 kDa. Structurally, 

Dys consists of an N-terminal actin-binding domain (ABD1), 24 spectrin-like repeats that 

form the rod domain and house the second actin binding domain (ABD2), and a C-

terminal region containing a cysteine-rich domain that binds the dystroglycan complex.94 

The N- and C-terminal ends of the protein provide a biochemical picture of how Dys can 

link the costameric F-actin network to both the sarcolemmal membrane and extracellular 

matrix via the dystroglycan complex. This location in the cytoskeletal network of muscle 

is crucial for maintaining membrane and costamere integrity, a fact that is best 

appreciated in the context of Duchenne and Becker muscular dystrophies (DMD and 

BMD, respectively).95 In DMD and BMD, a multitude of mutations (missense and 

nonsense alike) in Dys lead to the development of muscle tissue degeneration. Patients 

with these forms of muscular dystrophy have elevated cytosolic calcium levels, indicative 

of an extracellular leakage of the ion through the sarcolemma due to focal membrane 

tears. Similarly, Dys-deficient model organisms, particularly mdx mice, show the same 

elevated cytosolic calcium phenotype.96  

The biophysical mechanism by which Dys protects the sarcolemma from 

mechanical stress is still an active research question. Dys contains several spectrin-like 

repeat domains (triple helix bundles) between the N-terminal ABD1 and C-terminal ZZ 

domain that anchors it to the dystroglycan complex. Atomic force microscopy has been 

used to unfold these types of protein domains from spectrin, showing that they have a low 

energy barrier to unfolding, which probably serves as a mechanical means to dissipate 

transduced force propagating through the costamere.97 However, independent of such a 
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mechanism is the impact Dys has on the actin cytoskeleton alone. Previously, it was 

shown that the large-scale bending and twisting motions of F-actin are greatly restricted 

when both Dys and its homologous partner utrophin (Utr) bind.98, 99 Intriguingly, the 

amplitude of these large scale motions is reduced, but the rate of motion is increased 

indicating that both Dys and Utr binding impart resilience to the actin cytoskeleton. Such 

an effect could be another means by which the two proteins dampen the laterally 

transduced force of contraction within the costamere. 

 

 

Figure 3.1. Proposed structural model for Dys ABD1 upon binding F-actin. In the 

absence of actin, the two adjacent CH domains are closely packed (closed state, blue). In 

the presence of actin, CH1 and CH2 can become more separated (open state, red) and 

sample multiple structural states. To see figure in color go on-line. 

 

While both Dys and Utr were found to restrict the amplitude of motion, the 

proteins were found to do so differentially, with Utr being the more restrictive of the two 

proteins.98, 99 Although it is unclear how such functional differences arise, a possibility is 

that they originate from differences in the structural binding modes of each protein’s 
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actin-binding domains. Previously, the Utr ABD1 was shown to undergo a 

conformational opening upon association with F-actin; Utr ABD1’s adjacent calponin-

homology (CH) domains transitioned from a more closed compact state to an open 

extended state forming a well-ordered and stable complex with F-actin.37 We propose 

here that the Dys ABD1 can also undergo a similar structural transition (Fig. 3.1), but 

with distinct nuances that could contribute to a less stable ABD1-F-actin complex and, in 

turn, a smaller restrictive contribution to overall filament motions. Indeed, spectroscopic 

evidence in support of Dys ABD1 having a distinct binding mode has been reported.100 

Several ABDs from proteins in the spectrin superfamily have been characterized 

in both open32, 33 and closed38, 41, 56 conformations using x-ray crystallography. Solution 

studies have converged on a similar finding; analytical ultracentrifugation41 and pyrene 

excimer fluorescence studies100 have identified ABDs in a closed conformation whereas 

pulsed-EPR experiments show an equilibrium between closed and more open 

conformations, specifically for utrophin’s ABD. This open/closed dichotomy persists 

when ABDs are bound to actin.  Both mutation studies101 and cosedimentation assays102 

suggest a predominant role played by CH1 to binding affinity, with CH2 adopting a 

regulatory role. Excimer fluorescence suggests that Dys ABD1 binds to actin in a closed 

conformation100, but DEER shows clearly that Utr ABD1 binds to actin in an open 

conformation37, and cryo-EM models suggest an open conformation for actin-bound α-

actinin and β-III-spectrin ABDs.36, 103 These observations suggest that ABDs are 

malleable domains whose conformations are susceptible to actin binding and, potentially, 

even to the small perturbations introduced by different experimental techniques. It is thus 
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appealing to hypothesize that the observed differences in Dys and Utr ABD1 interactions 

with actin stem from their distinct structural dynamics. 

To test this hypothesis in the present study, we have used a combination of double 

electron-electron resonance (DEER) experiments and molecular dynamics (MD) 

simulations to examine the conformational dynamics of Dys ABD1. By applying these 

methods in parallel, we were able to define a mechanism of Dys ABD1 binding to actin 

that is distinct from that of Utr ABD1, providing insight into the different physical 

properties of these two proteins that may contribute to physiological function. 

 

3.3 – Materials and Methods 

3.3.1 – Protein mutagenesis, expression, purification, and labeling 

A plasmid encoding the mouse Dys ABD1 protein fragment (residues 8-246) was 

subjected to mutagenesis using a Q5 ® Site-Directed Mutagenesis Kit (New England 

BioLabs) to remove the protein’s native cysteines and incorporate new cysteines at 

positions 120 and 239. These positions were chosen to mimic our previous study on Utr 

ABD1 and also because they were suitable for measuring the proposed distance changes. 

The mutated plasmid was then transformed into BL21 DE3 E. coli and subsequently 

grown to an OD of 0.7, at which point protein expression was induced with 2 mM IPTG 

per liter of growth. Use of mouse Dys ABD1 was chosen so that we could compare 

spectroscopic measurements to that of Utr ABD1 published previously, which was also 

from mouse.37 Expression was allowed to occur overnight at room temperature. After 

expression, cells were pelleted at 10,000 rpm. Cells were subsequently lysed in 50 mM 

Tris pH 8, 20% w/v sucrose, 1 mM EDTA and 1 mM DTT by incubation with lysozyme 
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for 1 hour at 4 °C, followed by freeze-thaw cycling in a dry ice isopropanol bath. The 

resulting lysate was then incubated with DNase I for 1 hour at 4 °C. All cell debris was 

removed from solubilized protein by centrifugation at 18,500 rpm in a SS-34 Sorvall 

rotor and was subsequently sterile-filtered through a 0.2 μm filter to ensure complete 

removal of particulates. The lysate was then loaded onto a GE 5 mL SP ion-exchange 

column and eluted over a linear gradient (0-500 mM) of NaCl buffered by 10 mM Tris 

pH 7.5, 1 mM EGTA, and 1 mM DTT. Elution fractions containing the ABD1 fragment 

were then concentrated and further purified using an S100 sepharose gel-filtration 

column. Protein fractions pooled after size exclusion were then dialyzed in buffer 

containing 10 mM Tris, 100 mM NaCl, 2 mM MgCl2 and 1 mM DTT at pH 8, buffer 

conditions under which actin-bundling does not occur.104 Final protein purity was verified 

by SDS-PAGE. 

For DEER experiments, a 5-fold excess (to cysteine residue concentration) of 4-

maleimido-TEMPO (MSL, 4-maleimido-2,2,6,6-tetramethyl-1-piperinyloxy; Sigma-

Aldrich) was added to a DTT-free Dys ABD1 sample and allowed to incubate for 3 h at 

25 °C. Free label was subsequently removed by 4 rounds of dialysis in 4 liters of 10 mM 

Tris, 100 mM NaCl, 2 mM MgCl2 and 1 mM DTT at pH 7.5. The resultant labeled 

protein was spin counted to determine the label concentration which, when compared to 

the protein concentration, resulted in ~84% labeling efficiency (Fig. 3.6). Spin labeled 

samples were then loaded into quartz capillary tubes (1.1 mm ID, 1.6 mm OD, 15 μL 

sample volume) containing 7% v/v glycerol as a cryo-protectant and flash frozen in liquid 

nitrogen and subsequently stored at -80 °C until use. 
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3.3.2 – Double electron-electron paramagnetic resonance (DEER) 

We performed DEER experiments to measure interprobe distances in the range of 

2-6 nm. Measurements were made on a Bruker E580 spectrometer (Billerica, MA) 

operating at Q-band (34 GHz) with an EN5107 resonator. A four-pulse DEER protocol 

with a π/2 pulse width of 12 ns and an electron double resonance (ELDOR) pulse width 

of 24 ns was implemented. The ELDOR frequency was placed on the pump position 

which corresponded to the absolute maximum of the nitroxide absorption spectrum. The 

observe position was placed 24 Gauss higher than the pump position on the field-swept 

spectrum. Experiments were performed at 65 K. The resulting DEER waveform was 

analyzed using the model-independent Tikhonov fit provided in DeerAnaylsis2013.2. 

The Tikhonov distribution was then fit to multiple Gaussian distance distributions 

(equations 3.1 and 3.2) assuming the existence of discrete structural states as described 

previously105: 

 

ρ(r) = 1/(σ√2π) exp((r-R)2/(2σ2))       Eq. 3.1 

σ = (FWHM)/(2√ln(2))        Eq. 3.2 

 

3.3.3 – Differential scanning calorimetry (DSC) 

DSC experiments were performed on a NanoDSC (TA Instruments, New Castle, 

DE) at a scan rate of 1 °C/min using micromolar protein concentrations. Buffers 

consisted of 20 mM MOPS, 100 mM KCl at a pH of 7.5. Solutions were extensively 

degassed under vacuum with gentle stirring prior to loading into the calorimeter. This 

helps prevent release of air bubbles from solution during the experiment. From the 
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thermodynamics parameters enthalpy of unfolding (ΔH), melting temperature (Tm), and 

change in baseline heat capacity (ΔCp), we calculated a free energy of unfolding (ΔG) 

using the Gibbs-Helmholtz equation: 

 

ΔG = ΔH(1-T/Tm) + ΔCp(T-Tm-Tln(T/Tm)      Eq. 3.3 

 

Further details of our analysis using multiple approaches to constrain each parameter are 

discussed in the Supporting Materials and Methods. 

 

3.3.4 – Molecular Dynamics Simulations 

Molecular dynamics simulations were performed using GROMACS 5.0.6106 

starting from chain A of the crystal structure of Dys ABD1 (PDB 1DXX33), 

corresponding to residues 9-246 of human Dys (Uniprot P11532). Similarly, for Utr the 

starting structure was taken from chain A of the PDB 1QAG32 of human utrophin. For the 

latter, using the Uniprot P46939 sequence, both the N- and C-termini were elongated 

with PyMOL by 6 and 5 residues, respectively, so that the resulting sequence 25-261 

aligns well with the one simulated for dystrophin (Fig. 3.7). For Dys ABD1, amino acids 

S10 and S188 were mutated back to cysteine residues using CHARMMGUI107, and for 

both systems water seen in crystals was preserved. All histidine residues were set to 

neutral charge with hydrogen on the Nε, except for Utr ABD1 His 88 and 190, which 

were neutral with proton on Nδ. Periodic boundary conditions were implemented through 

a rhombic dodecahedron box with a box vector length of 11.6 nm. The system was 

solvated in TIP3P water108 and KCl was added to achieve electroneutrality and an ionic 
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strength of 150 mM. Covalent hydrogen bonds were constrained with the LINCS109 

algorithm, and the equations of motion were propagated with a time step of 2.0 fs. 

Electrostatic interactions were treated with the particle-mesh Ewald110 algorithm with a 

real cut-off and a grid spacing of approximately of 1.2 nm and 0.12 nm, respectively. Van 

der Waals interactions were switched off between 1.2 nm and 1.0 nm. A constant 

temperature of 300.0 K was maintained with the V-rescale algorithm111 applied to the 

protein and solvent groups independently, and a constant pressure of 1 atm was 

maintained with the Parrinello-Rahman barostat.112 Simulations were run using two 

flavors of the CHARMM force field family: CHARMM36113 and CHARMM22*114, 115. 

For each system (Dys and Utr), 5 simulations were run with che CHARMM36 force 

field, and 5 with the CHARMM22* force field, for a total of 20 independent simulations. 

Comparisons of structural parameters derived from each force field are summarized in 

Fig. 3.8-3.11. For both force fields, the system was initially minimized to remove bad 

contacts, and then it was equilibrated for 1 ns at constant volume and temperature, 

followed by 3 ns at constant pressure and temperature during which the harmonic 

restraints on the protein’s heavy atoms were gradually reduced from 239 kcal mol-1 nm-2 

to zero. At this point, for each force field 5 independent simulations were started by 

randomizing the atoms’ velocities, and continued for 500 ns, resulting in a total 

simulation time of 5 µs for the ten total trajectories for each system. Coordinates of the 

trajectories were saved every 5 ps and additional analyses (see Supporting Information) 

indicated that to improve statistics the trajectories obtained with the two force fields 

could be pooled together. The trajectories were processed with GROMACS, data analysis 
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and plotting was performed with the software R116, and structures were visualized with 

PyMOL117. 

Principal component analysis (PCA)118 was performed on the protein’s backbone 

atoms to identify the main conformational changes that characterize ABD1’s dynamics. 

To directly compare the conformational states of Dys and Utr, the principal components 

were calculated by pooling the trajectories of both systems together, and then each 

system’s trajectories were projected on the common principal components. Residue Q189 

for Dys was omitted from the analysis because sequence alignment of Dys to Utr (Fig. 

3.7) shows a gap in Utr in that position. The trajectories were then binned along the first 

two principal components, and the relative density of the histograms was used to 

calculate the free energy difference through the Boltzmann distribution. To identify 

flexible regions in the protein backbone, the conformations of the Cα of 4 consecutive 

residues were binned using the MK32K25 structural alphabet119 and the corresponding 

Shannon entropy was calculated using the method of Pandini et al120. 

As a proxy for the distance between the two spin labels on residues 120 and 239, 

we monitored the distance between the two Cα carbons of these residues. Additionally, 

solvent accessible surface area (SASA)121 was measured for the total protein, and 

separated in the hydrophobic and hydrophilic contributions. The differences in SASA 

between the open conformation of ABD1 and the closed conformations were plotted on 

the closed conformation’s representative structure using PyMOL. 
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3.4 – Results 

3.4.1 – Dys ABD1’s structure transitions from a closed to open state, but with significant 

structural disorder 

To test the hypothesis that the CH domains of Dys ABD1 undergo a 

conformational opening upon binding of F-actin, we performed DEER experiments on a 

spin labeled ABD1 fragment. Application of DEER allows us to make a direct 

comparison to existing structural data on the homologous Utr ABD1 fragment.37 Using 

site-directed mutagenesis, we removed all native cysteine residues in the Dys ABD1 

construct and engineered in new cysteines at residue positions 120 and 239, positions 

similar to those used in Utr ABD1 in ref. 59. Based on the domain-swapped dimer crystal 

structure previously determined for Dys ABD133, these residue locations would be 

suitable for detecting a change in interdomain distance upon F-actin association. 

After spin-labeling the protein, we measured interprobe distances with and 

without varying concentrations of F-actin. In the absence of F-actin, DEER 

measurements identified a short interprobe distance, indicating that the CH1 and CH2 

domains of Dys ABD1 are in a more compact closed state (Fig. 3.2, top). This is apparent 

in the DEER echo amplitude, which shows a rapid decay and mild oscillations in the time 

domain, both of which indicate a short interprobe distance. In samples containing F-actin, 

the DEER echo amplitude decays more slowly, indicating longer distances. The 

oscillations initially present in the absence of F-actin are dampened out in its presence, 

indicating actin-induced structural disorder (Fig. 3.2, middle and lower panels). 
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Figure 3.2.  DEER data on 80μM MSL-labeled Dys ABD1 (blue data sets) in the 

presence of increasing F-actin from top to bottom. Molar ratio of F-actin (FA) to Dys 

ABD1 is shown above time domain data. Utr ABD1 DEER reported previously in ref37. 

(red data sets) is overlaid for comparison. Left: time-domain decays. Right: derived 

distance distributions. Tikhonov distributions for Dys ABD1 (black dotted lines) were fit 

to two discrete Gaussian distributions (blue solid lines) and indicate that F-actin shifts 

interprobe distance toward a more open structural state but there is considerable structural 

disorder. Note that this contrasts with Utr ABD1’s Gaussian distributions (shown as red 

solid lines) which are ordered. Moreover, Utr ABD1’s structural opening is complete. For 

complete time domains see Fig. 3.12. To see figure in color go on-line. 

 

When comparing these structural results to the previously examined Utr ABD1, 

several features stand out. First, both ABDs share a common mechanism of opening upon 

binding to F-actin. Second, the Dys ABD1 contains much more structural disorder than 
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seen previously in Utr ABD1. This is evident in the mild or complete lack of oscillations 

present in the echo amplitude decay of Dys which, in Utr ABD1, were very well 

resolved. Lastly, unlike the Utr ABD1, Dys ABD1 does not undergo a complete shift to 

the open structural state. This is evident by the fact that a shorter interprobe distance is 

still sampled even in the presence of excess of actin. This latter observation is consistent 

with previous work examining the DysABD1 open-closed structural transition upon 

binding actin100; Pyrene excimer fluorescence using residues C10 and C188 indicated that 

Dys ABD1 occupied a closed conformation when bound to actin. This method, however, 

would not have been able to detect the open conformers identified in this study by DEER. 

Collectively, the pulsed EPR data identifies a common binding mode for Dys and Utr 

ABD1, but simultaneously highlights distinct structural dynamics in the ABD-actin 

interaction. 

3.4.2 – MD simulations characterize a compact & conformationally heterogeneous ABD1 

To gain atomistic insight into the factors affecting the compact vs. extended 

conformational equilibrium, we performed MD simulations starting from the Dys and Utr 

ABD1 crystal structures, both of which are in an open conformation.32, 33 Ten 500 ns 

simulations were independently run for each ABD, and in 18 out of 20 simulations the 

ABD structures similarly collapsed to compact conformations. The results show that not 

all simulations sampled the same conformation and a small number of stable compact 

conformations were identified  for both Dys and Utr using principal component analysis 

(PCA) (Fig. 3.3, minima B-F). The free energy profiles in Fig 3.3 show that for both Dys 

and Utr at least 5-6 distinct compact and one extended conformations exist. Moreover, 
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these conformations have similar energies and the different structures can easily 

interconvert into each other by overcoming small free energy barriers (3-4 kcal/mol). 

 

Figure 3.3. Free energy landscape of Dys ABD1 (A), and Utr ABD1 (B) projected on the 

first two principal components. The two principal components describe a “bending” 

motion of the two CH domains around a central swivel (PC1) that allows the extended-to-

compact transition, and the “revolution” motion of one CH domain around the other 

(PC2). A representative structure for each of the major conformational minima are also 

plotted. Structural heterogeneity correlates with the measured structural disorder present 

in DEER distributions and low unfolding free energy. To see figure in color go on-line. 

 

Using the method of Pandini et al.120, we calculated the backbone Shannon 

entropy as a proxy of its conformational flexibility and projected the calculated entropy 

on the structure (Fig 3.4 A). The entropy of the linker region spanning from Gly-130 to 

Asn-135 is comparable to that of the disordered N- and C-termini, indicating that this 
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region is characterized by a great degree of conformational flexibility, as recently 

suggested by Chakravarty et al.122. This suggests that the linker region closer to the CH2 

domain acts as a swivel, allowing the conformational transitions between compact and 

extended conformations, as well as the revolution of one CH domain around the other. 

This role is supported by monitoring the change in φ/ψ dihedral angles between the 

extended (minimum A in Fig 3.3 A) and a compact conformation (minimum F in Fig 3.3 

A), which highlights the very same region as the one in which dihedrals change the most 

(Fig. 3.13). 

 

Figure 3.4. Structural collapse of dystrophin and utrophin ABD1, derived from MD 

simulations. (A) Dys ABD1 Shannon entropy calculated for macrodiehedrals formed by 4 

consecutive Cα carbons. (B) SASA averaged over the ensemble of structures defining 

each minimum identified in Figure 3.3, with error bars representing one standard 

deviation. Representative closed structural states of (C) Dys and (D) Utr ABD1. 

Hydrophobic residues that promote closure are highlighted. To see figure in color go on-

line. 
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Next, we aimed at identifying the driving force inducing the transition to compact 

conformations. Upon further analysis, all compact structures display a smaller solvent 

accessible surface area when compared to the extended conformation (Fig. 3.4 B). 

Although some of the residues involved may vary in each different compact structure, we 

observed that a core of hydrophobic residues on the same face of the amphipathic linker 

helix and a cluster of residues on the CH2 domain are predominantly involved in 

hydrophobic interactions in all compact conformations (Fig 3.4 C and D, Fig. 3.14). Such 

a pattern could indicate that the closed structural states are stabilized in part by 

interactions involving hydrophobic side chains. A similar mechanism was recently 

proposed for the ABD of β-III-spectrin42, and it is also supported by the fact that the same 

hydrophobic interactions are present in the extended crystal structure of Dys ABD1 

(1DXX), although because of the dimeric nature of the crystal they are domain-swapped 

(Fig. 3.15).  

3.4.3 – Experimental validation of MD simulations  

To directly test the MD results that the distribution of closed conformers is 

promoted by hydrophobic contacts, differential scanning calorimetry (DSC) experiments 

were performed. The increase in a protein’s heat capacity (∆Cp) during an unfolding 

transition correlates directly with increased exposure of apolar amino acids, based 

empirically on the free energy of transfer between organic and aqueous phases 

(Supporting Materials and Methods, ). Comparison of this calculated ∆Cp with that 

experimentally measured by DSC indicates the extent of hydrophobic residue exposure to 

water in the folded state. We found that the measured value of ∆Cp for thermal unfolding 

of Dys ABD1 (4.09 ± 0.07 kcal/mol) was substantially less than the calculated value (4.7 
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kcal/mol) (Table 3.1).  This is consistent with the MD conclusion that the native state of 

Dys ABD1 has an unusually large fraction of hydrophobic residues exposed to solvent.  

Next, to compare the ensemble of conformations generated by MD simulations to 

the experimental data obtained by DEER, we plotted for Dys ABD1 the probability 

density of the distance between the Cα of Val-120 and Leu-239, the residue positions 

where spin labels were inserted (Fig. 3.16). The plot shows a broad peak centered at 1.2 

nm with a shoulder at 2.0 nm, corresponding to the closed conformations. The features of 

the peak match the features of the same peak in the DEER experiments in absence of 

actin (Fig 3.2). We characterized the two underlying distributions as both due to compact 

conformations, differing only by the relative orientation of the two CH domains (Fig. 

3.16). In the DEER data, the peak is centered at about 1 nm longer distance than in the 

data from the simulations. This could be explained by the fact that in the simulations the 

distance was mapped between the two Cα rather than from the ends of the long TEMPO 

spin label. In addition, the two mutations introduced to add the spin labels may somewhat 

interfere with the hydrophobic patch between the linker and the CH2 domain (in 

particular perturbing Val-120 and Phe-236 which is only 3 residues away from Leu-239). 

Yet, it was reassuring to notice that the change in distances metric was preserved. In fact, 

the DEER data indicates an increase of about 2.5 nm upon transition from the compact to 

the extended conformations (Fig. 3.2 top and bottom panels) and a similar trend is 

observed in the simulated data when considering the small shoulder at 4.0 nm, which 

represents the extended conformation. 
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Figure 3.5. Modeling of MD simulation-derived Dys ABD1 conformers on actin 

filament. When the CH1 domain of Dys ABD1 conformers in free energy minima of Fig. 

3.3 are aligned with the CH1 domain of β-III-spectrin ABD from a recent 6.9 Ǻ cyro-EM 

structure (6ANU), some of the structural models are devoid of steric clashes (green, 

yellow, red). The open conformation (magenta) is similarly free of steric clashes. While 

some closed conformations of Dys ABD1 exhibit significant steric clashes with actin 

(blue), the fact that others do not suggests there are binding-compatible closed states for 

Dys ABD1 in agreement with previous structural measurements using pyrene excimer 

fluorescence.100 To see figure in color go on-line. 

 

3.5 – Discussion 

The diverse biophysical methods employed in this study were geared towards 

identifying structural differences in Dys and Utr ABD1-actin complexes and 

understanding how they, in turn, may contribute to differences in function. We found 

that, similar to Utr, the Dys ABD1 can exist in two main structural states: a compact state 
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where the CH domains are in close apposition and a more extended open state that is 

stabilized by actin. Unlike our previous study of Utr ABD137, Dys ABD1 did not shift 

completely to its extended open state; a significant mole fraction of ABD1 continued to 

sample compact states even with an excess actin concentration (Fig. 3.2). Moreover, the 

Dys ABD1-actin complex is much more structurally heterogeneous than Utr ABD1. This 

indicates that the two protein domains, though homologous, may functionally diverge in 

part due to distinct structural dynamics.  

Support for the distinct structural dynamics come not only from DEER (Fig. 3.2) 

where the full-width half max of Dys ABD1 distance distributions far exceed that of Utr 

ABD1, but also MD simulations (Fig. 3.3 and Fig. 3.4). In the latter case, for instance, an 

overlay of structural states derived from Fig. 3.3 indicates that Dys and Utr ABD1 are 

sampling distinct conformational spaces. If the CH1 domains of each ABD1 are aligned 

in pairwise fashion and the positions of the linker and CH2 are examined, not a single 

pair of structural states from the free energy minima orient exactly the same way (Fig. 

3.17). Although we observed several general similarities, even in the most favorable of 

cases the orientation of the two CH domains were still distinct such that no structure for 

the Dys ABD1 could be mapped onto a structure for Utr ABD1. 

When considering how these distinct ABD1 structural dynamics could impact 

function, two possibilities come to mind: alteration of ABD1 affinity for actin and 

alteration of actin structural dynamics when bound to filaments. With regard to 

modulation of affinity, recent work on Dys and Utr ABD1 indicate that actin binding is 

largely mediated by the CH1 domain102, 123 as has been suggested in other binding studies 

of ABDs or through inference from CH2 domain mutations that increase affinity for 
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actin.60, 103 We used this evidence to justify aligning our simulation-derived Dys ABD1 

structures with that of the CH1 domain of β-III-spectrin in a recently reported cryo-EM 

structure and assessed if any of the stable conformers were capable of docking without 

steric hindrance (Fig. 3.5).103 From this analysis, we found that docking the open 

extended conformers from the MD simulations is compatible with binding because the 

linker and CH2 domain protrude and point away from actin, avoiding any potential steric 

clash. Steric clash was one of the main reasons originally proposed for ABDs needing to 

open upon binding.36 We also found, however, that while many of the closed compact 

conformers result in steric clashes between the CH2 domain and actin, at least some 

compact conformations for either Dys or Utr are compatible with binding to actin 

(structure B in Fig. 3.3 A for Dys ABD1, and structures B, D, and E in Fig. 3.3 B for Utr 

ABD1). This is in agreement with the recent work of Shams et al.124, which suggests that 

various binding modes between ABD1 and actin could be accessible. Therefore, the 

conformational ensembles computationally characterized could explain how both 

compact and extended conformations of ABD1 are sampled when bound to actin.  

The notion that Dys and Utr ABD1 closed structural states have high degeneracy 

and that some are potentially “binding competent” whereas others are not suggest that 

ABD1’s structural dynamics could directly impact affinity for actin. If, for example, the 

most stable closed conformers of ABD1 are those that give raise to steric clashes when 

binding to actin, shifting the equilibrium to a binding competent conformer of higher free 

energy will result in a reduced binding affinity. Alternatively, if multiple closed 

conformers are free of steric clashes and thus binding competent, affinity for actin would 
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be increased. In this way, the shifting of conformational equilibria in the structurally 

dynamic unbound state could play a role in fine-tuning affinity for actin.  

It is important to point out that the energetics at play in such a binding model are 

compatible with existing measurements of ABD1 affinity. In Dys ABD1, for instance, the 

ΔG of actin binding derived from reported Kd that range from 10-50 M123, 125 is an 

energetically favorable 6-7 kcal/mole. Our calculations show that the energy difference 

between the various closed and open ABD1 conformers should be smaller than this range 

(Fig. 3.3) and thus be capable of an actin-induced redistribution of the structurally 

dynamic ensemble. Unfortunately, the computational precision of the free energy profile 

constructed from our unbiased simulations does not allow any further extrapolation. 

While there appears to be more than one conformer in the ABD1 ensembles that is 

potentially binding competent (Fig. 3.5), in the absence of simulation data that includes 

actin filaments, no conclusions can be drawn about which conformation is the most stable 

when bound. As such, it is not possible to directly explain the differences in the 

experimentally detected spin label distances in Dys and Utr (Fig. 3.2) as due to the 

binding of one specific more stable conformer identified by MD simulations. However, 

DEER measurements indicate that it is primarily an open conformation for Utr and a 

heterogeneous mixture for Dys. Future work could potentially probe this structural 

heterogeneity further using pressure perturbation EPR methods.126 

With regard to how Dys and Utr differentially alter actin dynamics, the structural 

behavior measured by DEER provides insights into a mechanistic contribution (Fig. 3.2). 

When full-length Dys and Utr bind actin, they each restrict the amplitude of bending and 

twisting motions of the filament, although Utr does so to a much greater degree. Part of 
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the difference is probably explained by binding of each protein’s ABD299. Each ABD2 

varies in its proximity to ABD126, 27. However, another contributing factor may be 

distinct structural dynamics within each protein complex. Because actin itself can adopt 

many conformations upon twisting and bending127, binding of ABDs in general may 

impose on the filament’s conformational exploration. If bound ABDs differ, however, in 

their ability to conformationally adapt to actin fluctuations, they may consequently have 

distinct restrictive capacities. If these dynamic differences persist in their full-length 

structures, they may locally contribute to the overall global differences measured 

previously.98, 99 Additionally, if bound ABDs differ in the degree to which they can adapt 

to structural changes of actin, distinct ABD dynamics may also contribute to ABD’s 

ability to remain bound under mechanical stress experienced by the filament. The fact 

that the computationally characterized ensembles of Dys and Utr ABD1 have similar 

general features, but differ in the specific orientation of the CH domains, supports this as 

a viable adaptation mechanism.  

Overall, the results presented in this study agree well with previous work on Dys 

ABD1 and other ABDs from the spectrin superfamily and simultaneously provide new 

insights. In a prior study examining the question of whether or not the Dys ABD1 opens 

upon binding, for instance, pyrene excimer fluorescence data indicated that the ABD1 

could bind in a closed conformation.100 While these results could not determine the 

distribution of conformational states when bound to actin, they are in agreement with our 

current findings. We showed in Fig. 3.2 that even in a 4:1 excess of actin, about 50% of 

the ABD1 is bound in a compact conformation. However, what our results show in 

addition is that the remaining ~50% of the bound population is present in an extended 
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conformation, making our findings complementary to that of Singh et al.100. We have 

already pointed out that different experimental techniques can capture ABD domains in 

both compact and extended conformations. Such differences, when considered in 

conjunction with a flat free energy landscape of easily interconvertible conformers, 

suggest that ABDs are malleable proteins responsive to small external perturbations. A 

perturbation on the order of just 1 kcal/mole could shift the equilibrium from one 

conformation to another (Fig. 3.3).  

This proposed mechanism may not only contribute to our understanding of ABDs 

being found in a variety of conformations, but also the impact of disease-causing 

mutations. If the conformational ensembles of ABDs are easily perturbed, defects such as 

missense mutations could significantly alter the distribution of structural states. If such 

mutations redistributed the conformational ensemble in a way that more readily populates 

binding competent conformers, for instance through the mechanism discussed above, it 

could help explain the modest to significant gains in affinity observed in ABDs 

associated with disease.39, 42 In addition, mutation-induced redistribution may alter the 

conformational ensemble in such a way that there is a gain conformational adaptability 

that allow binding to persist despite structural fluctuations of the filament.  

Application of this generalized ABD model to DMD and BMD mutations in Dys 

requires some caution. Many DMD and BMD missense mutations that have been studied 

previously are mutations that have substituted CH domain core hydrophobic residues for 

charged or polar residues.33 When such mutations were studied in the isolated Dys ABD1 

fragment, the main affect seemed to be misfolding of the domain rather than change in 

binding affinity.128 Indeed, when many of the same missense mutations were examined in 
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full-length Dys, changes in binding affinity were modest or statistically insignificant.129 

This suggests that for DMD and BMD, missense mutations that perturb the core fold of 

ABD1 CH domains are promoting disease via a misfolding-induced degradation 

mechanism.130 For some missense mutations, perhaps those that are more superficially 

located within the ABD1 or those that do not misfold the ABD1 but perturb stability, a 

functional impact like that discussed above for ABDs in general may become relevant. 

However, without clear examples of DMD and BMD missense mutations that alter 

binding affinity while simultaneously preserving the ABD1 fold, this potential 

mechanism will remain speculative and bare most relevance to other ABDs in which 

missense mutation stability-structure-affinity relationships are better established.103   

One of the observations made here points to an interesting feature of Dys ABD1 

that will probably require further investigation in future studies. While DSC measurement 

of heat capacity helped validate the MD-suggested use of surface hydrophobicity in 

modulating closed conformer sampling, it also revealed a rather complex endothermic 

transition (Fig. 3.18). The absolute heat capacity of a protein is a measure of underlying 

structural diversity in the folded and unfolded states, but can also be used to evaluate the 

presence of intermediate states. It is not known whether the distribution of conformers 

identified for Dys ABD1 reflect a distribution of equivalent distinct states or arise as a 

distribution or sampling of partially folded intermediate states. We find that the diversity 

of open and closed conformers corresponds energetically to a two-state model comprised 

of a folded and unfolded state. The unfolded state retains a surprising amount of order, 

consistent with retaining hydrophobic contacts even under extreme conditions. This 

suggests that the energetic functional landscape of Dys ABD1 may be capable of 
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absorbing much more energy than anticipated from the distribution of open and closed 

conformers identified. However, further quantitative assessment of such a 

thermodynamic prediction will require application of additional biophysical techniques. 

 

3.6 – Conclusions 

We have probed Dys ABD1 dynamics with complementary experimental and 

computational techniques. We have characterized free ABD1 in solution as adopting a 

compact conformation. With computer simulations we have shown that both Dys and Utr 

ABD1 are conformationally malleable proteins for which low-energy compact and 

extended conformations are easily accessible through a flat free energy landscape. We 

have identified the region of the linker that grants conformational flexibility to the protein 

and the hydrophobic patches responsible for stabilizing the compact conformations. We 

have characterized the conformational ensemble of actin-bound Dys ABD1 as originating 

from an equal contribution of compact and extended structures. Finally, we have linked 

our findings and proposed a model for how unique structural dynamics of Dys and Utr 

ABD1 contribute to their distinct functions. 
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3.7 – Supporting Materials and Methods 

3.7.1 – Multifaceted approach to DSC analysis 

MD simulations revealed that surface exposed hydrophobic residues drive the 

open to closed conformational fluctuations of ABD1. The extent of hydrophobic and 

hydrophilic exposure is directly proportional to the change in heat capacity.131 

Differential scanning calorimetry (DSC) is a direct means to measure the change in heat 

capacity and relate it to the solvent exposed surface area.131-137 DSC analysis also 

provided a free energy of unfolding of 4.45 ± 0.07 kcal/mol for DysABD1. This energy 

sets an upper limit to the free energy difference between different folded conformations, 

as higher energies would start depleting the folded population in favor of the unfolded. 

Comparing the experimental to the maximal change in heat capacity, we determined the 

percent unfolding of Dys ABD1 to be 87% or, conversely, that 13% residual structure 

remains in the unfolded state. Because simulations have shown that surface exposed 

hydrophobic residues are present in Dys ABD1 and play a key role in defining its tertiary 

structure, it is consistent to think that the structure of this protein is more resilient to 

unfolding. That is, because the folded structure is relatively stable with exposed 

hydrophobic residues, the thermal unfolding, which coincides with the exposure of core 

hydrophobic residues, may bring a lesser perturbation to the structure than in other 

proteins that have lower content of exposed hydrophobic residues. As a result, a large 

portion of residual structure is then likely resultant of hydrophobic contacts recapitulating 

the role of hydrophobic contacts as a driving force for Dys ABD1 reconfiguration.  

MD revealed the Dys ABD1 ensemble of closed conformations is stabilized by 

hydrophobic interactions involving mainly the CH2 domain and the flexible linker. We 
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tested whether Dys ABD1 is enriched in hydrophobic residues that affect the change in 

heat capacity between the folded and unfolded states when compared to other 

proteins.  Specifically, calorimetric values were compared to predictive models relating 

changes in solvent exposed surface areas to changes in heat capacity using DSC. The last 

three columns of Table 3.1 contain thermodynamic values obtained by fitting our DSC 

data using three different methods, and in the first two columns are theoretical predictions 

obtained using models from Spolar131 and Freire132. Although each fitting method is 

discussed in detail in the following sections of the supplement, it is relevant to point out 

here that the Spolar131 method predicts the change in heat capacity from the molecular 

weight of the protein, whereas the Freire132 model utilizes the protein amino acid 

sequence.  

Table 3.1 shows that the change in heat capacity of Dys ABD1 upon unfolding 

fitted from DSC data is greater than theoretical prediction based on molecular weight 

using the method outlined by Spolar131, but it is smaller than the heat capacity predicted 

by Freire’s model that includes the protein’s sequence. These deviations are consistent 

with the high concentration of aromatic residues (~3 times expected for a protein of this 

size) while simultaneously having some of the aromatic residues already solvent exposed 

in the 1DXX crystal structure reported by PDB. 

 

3.7.2 – Text S1, Predicting ΔCp and ΔHTm from molecular weight and sequence 

Sequence based change in heat capacity prediction 

In a two-state unfolding process, the initial state is the folded state (or ensemble 

of states) and the final state is the unfolded state. The unfolded state is relatively, but not 
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completely, devoid of higher order structure. Thus, it is necessary to estimate the residual 

structure in the unfolded state to characterize the unfolding process. Using models for 

determining the absolute heat capacity of previously studied proteins, the maximum 

change in heat capacity for Dys ABD1 was compared to determine residual structure 

from the experimentally determined change in heat capacity.132 The maximum change in 

heat capacity was predicted to be 5.9 kcal/mol/°C.132-135 This overestimation reflects that 

hydration effect does not take the role of configurational entropy of the unfolded protein 

into consideration, as has been noted in reference138. Another oversimplification is that 

the geometry of Dys ABD1 is not globular.132 Adjustments were made to the absolute 

folded heat capacity based on the change in surface areas of a sphere (approximating 

globular geometry) and two smaller spheres of equal volume (approximating Dys ABD1 

geometry). This adjustment resulted in a predicted change in heat capacity of 4.7 

kcal/mol/°C. Then, by normalizing the experimental change in heat capacity to the 

theoretical maximum change in heat capacity we can determine the role of 

configurational entropy in the unfolded state. Analysis yielded 87% unfolding for Dys 

ABD1 and is calculated by the following equation. 

 

𝑢𝑛𝑓𝑜𝑙𝑑𝑒𝑑 =
∆𝐶𝑝,𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙(𝑇)

𝐶𝑝,𝑢(𝑇)−𝐶𝑝(𝑇)
∗ 100        Eq. 3.4 

 

Where 𝐶𝑝,𝑢(𝑇) and 𝐶𝑝,𝑓(𝑇) were determined using previously established models. The 

heat capacity of any amino acid residue or backbone species (x) has been estimated as a 

third order polynomial.132 
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𝐶𝑝,𝑥 = 𝐴𝑥 + 𝐵𝑥𝑇 + 𝐶𝑥𝑇2 + 𝐷𝑥𝑇3       Eq. 3.5 

 

The total heat capacity of the unfolded state will then be the additive heat capacities of all 

components 

 

𝐶𝑝,𝑢(𝑇) = ∑ 𝑛𝑥𝐶𝑝,𝑥 + (𝑁 − 1)𝐶𝑝,𝑏𝑏 + 𝐶𝑝,𝑁𝐻2
+ 𝐶𝑝,𝐶𝑂𝑂𝐻

20
𝑥=1     Eq. 3.6 

𝐶𝑝,𝑓(𝑇) = (𝑎 + 𝑏𝑇)𝑀𝑊         Eq. 3.7 

 

Where the summation from 1 to 20 represents a summation over the 20 amino acid 

residue types, 𝐶𝑝,𝑏𝑏 represents the heat capacity of the backbone species, and the last two 

terms in equation 3.29 account for the N- and C- termini, respectively. All coefficients A, 

B, C, D, a, and b have been determined and tabulated.132  

 

Predictions based on Molecular Weight 

The overall change in heat capacity (ΔCp) was estimated from molecular weight, 

utilizing the fact that the change in hydrophobic and hydrophilic surface areas dictate 

changes in heat capacity and are linearly dependent on molecular weight for proteins 

spanning 4 kDa to 40 kDa given by the set of equations listed below131: 

 

∆𝐴𝑁𝑃 = 0.636𝑀𝑊 − 2120Å2        Eq. 3.8 

∆𝐴𝑃 = 0.309𝑀𝑊 − 40Å2         Eq. 3.9 

∆𝐶𝑃,𝐶𝑎𝑙𝑐 = −0.32∆𝐴𝑁𝑃 + 0.14∆𝐴𝑃𝑐𝑎𝑙𝑚𝑜𝑙−1𝐾−1               Eq. 3.10 
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Where equations 3.8 and 3.9 calculate the expected change in exposed nonpolar and polar 

surfaces, respectively and are used in equation 3.10 to calculate the resulting change in 

heat capacity between folded and unfolded states. For Dys ABD1 which has a molecular 

weight of 27.355 kDa (determined via ExPASy ProtParam), the change in heat capacity 

was predicted to be 3.7 ± 0.7 (kcal/mol°C). Because this model is based on globular 

proteins, the values reported are interpreted as an upper estimate for the total change in 

heat capacity of a protein, because globular proteins are mostly spherical and therefore 

have the highest volume to surface area ratio. However, since the prediction based off of 

molecular weights assumes a normal distribution of amino acids (whereas, Dys ABD1 

has ~3x higher content of aromatic residues) Dys ABD1 is likely to deviate from this 

value. 

The enthalpy of unfolding was estimated with respect to the same work noting 

that enthalpy was similarly proportional to molecular weight and temperature given the 

following equation131, 

 

   ∆𝐻°𝑓𝑜𝑙𝑑(𝑇) = (−0.161𝑇𝑀𝑊) + 47.24𝑀𝑊 + 672.8𝑇 − 232010𝑐𝑎𝑙𝑔−1           Eq. 3.11 

 

where, T is the transition temperature of the protein, and MW is the molecular weight of 

the protein. For Dys ABD1 the model yielded a value of 118.5 ± 0.4 kcal/mol at 55°C. 

Once again, the enthalpy predicted serves as an upper limit, as the predictive model was 

developed largely off globular proteins, whereas Dys ABD1 is non-globular. 
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3.7.3 – Text S2, Calorimetric features of the experimental endotherm 

To further narrow down the parameter space for the Gibbs-Helmholtz equation to 

model heat capacity it can be seen that the three necessary variables (ΔHTm, ΔCp, and Tm) 

all manifest in distinct parts of the endotherm (Fig. 3.18A). The enthalpy of transition is 

contained within the large spike in heat capacity represented by the shaded red region in 

the plot. The region has an upper boundary described by the raw instrumental readout, 

whereas the lower boundary is described by the shift in populations from the folded state 

to the unfolded state, which is represented by the sigmoidal baseline (i.e. the shift in 

equilibrium). Comparison of transition enthalpy between the first and second scans on the 

same sample allow for the determination of reversibility, which was 15%. The sigmoidal 

baseline is representative of the population shift from folded to unfolded (
𝑑𝜃𝑢

𝑑𝑇
) and when 

scaled by the change in heat capacity between the two states it gives the lower bound for 

the excess heat capacity. Then, the temperature at which the enthalpy equals half the 

complete excess enthalpy of transition (∆𝐻𝑇𝑚) is the melting point (Tm). This also 

corresponds to the point at which the baseline change in heat capacity takes its half-

maximal value. 

 

The change in heat capacity (ΔCp) 

 After baseline subtraction, the baselines should be parallel to the x-axis. The 

folded baseline was extrapolated beyond the transition to the same region used for the 

unfolded baseline definition. The difference in heat capacity is then the change in heat 

capacity (ΔCp) given by the following equation: 
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 ∆𝐶𝑝(𝑇) = 𝐶𝑝,𝑢(𝑇) − 𝐶𝑝,𝑓(𝑇)                            Eq. 3.12 

 

where the heat capacities on the right hand side of the equation are the heat capacities 

after baseline subtraction, thus 𝐶𝑝,𝑓(𝑇) = 0 by definition.  

 

The excess transition enthalpy (ΔHTm) 

The excess enthalpy of transition was analyzed utilizing the approach developed 

by Freire.132 The Enthalpy of transition (Fig. 3.18A) represents the area defined by 

endotherm and the baseline heat capacities of the two states. To determine the sigmoidal 

baseline, the total change in enthalpy (∆𝐻𝑡𝑜𝑡(𝑇)) was determined using Riemann sums. 

 

∆𝐻𝑡𝑜𝑡(𝑇) = ∑ 𝐶𝑝,𝑑𝑎𝑡𝑎(𝑇) − 𝐶𝑝,𝑓(𝑇)𝑇
𝑇=𝑇𝐿

                                Eq. 3.13 

 

Where ∆𝐻𝑡𝑜𝑡(𝑇) describes the total change in enthalpy due to both the excess heat 

capacity (∆𝐻𝑇𝑚) and the basal heat capacity (𝐶𝑝,𝑏𝑎𝑠𝑎𝑙) defined by the lower transition 

temperature (TL) and T. The maximal change in enthalpy is the summation from the 

lower limit to the upper limit of the transition (TU): 

 

∆𝐻𝑚𝑎𝑥 = ∑ 𝐶𝑝,𝑑𝑎𝑡𝑎(𝑇) − 𝐶𝑝,𝑓(𝑇)
𝑇𝑈
𝑇=𝑇𝐿

                Eq. 3.14 

 

Normalizing ∆𝐻𝑡𝑜𝑡(𝑇)  to the total change in ΔCp (3.5 ± 0.3 kcal/mol°C) yields the 

following equation for approximating the basal heat capacity (Cp,basal) of the protein as a 

function of temperature: 
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𝐶𝑝,𝑏𝑎𝑠𝑎𝑙(𝑇) =
∆𝐻𝑡𝑜𝑡(𝑇)

∆𝐻𝑚𝑎𝑥
∗ ∆𝐶𝑝                            Eq. 3.15 

 

Then, the excess enthalpy is the difference between the total change in enthalpy (∆𝐻max ) 

and basal change in enthalpy: 

 

∆𝐻𝑇𝑚 = ∆𝐻𝑚𝑎𝑥 − ∆𝐻𝑏𝑎𝑠𝑎𝑙                            Eq. 3.16 

 

Which can be solved with the above described parameters as an area integral bounded by 

the experimental heat capacity and the basal heat capacity: 

 

∆𝐻𝑇𝑚 = ∫ 𝐶𝑝,𝑡𝑜𝑡(𝑇) − 𝐶𝑝,𝑏𝑎𝑠𝑎𝑙(𝑇)𝑑𝑇
𝑇𝑈

𝑇𝐿
                Eq. 3.17 

 

The sigmoidal baseline and ΔHTm will vary minimally on the definition of the 

temperature bounds (TU and TL).  

 

Melting temperature (Tm) 

 The melting temperature is the point along the transition at which the distribution 

between folded and unfolded populations is 1:1. Therefore, this lies at the temperature for 

which: 

 

𝛥𝐻(𝑇𝑚) =
𝛥𝐻𝑇𝑚

2
                             Eq. 3.18 
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Where 

 

∆𝐻𝑇𝑚

2
= ∫ (𝐶𝑝,𝑡𝑜𝑡(𝑇) − 𝐶𝑝,𝑏𝑎𝑠𝑎𝑙(𝑇))𝑑𝑇

𝑇𝑚

𝑇𝑈
                          Eq. 3.19 

 

And can be solved directly by finding the solution to the following equation: 

 

∆𝐻𝑇𝑚 = 2(∆𝐻𝑡𝑜𝑡(𝑇𝑚) − ∆𝐻𝑏𝑎𝑠𝑎𝑙(𝑇𝑚))                          Eq. 3.20 

 

Where  𝑇𝑚 will also correspond to the half max of ∆𝐻𝑏𝑎𝑠𝑎𝑙(𝑇). 

 

3.7.4 – Text S3, Nonlinear least squares regression  

The values from analysis of the calorimetric features (Text S2) and constraints 

from predictive models (Text S1), along with a comparison to the Van’t Hoff fit  strictly 

describe where in the three-dimensional parameter space to fit to the Gibbs-Helmholtz 

model. From this, the nonlinear regression analysis was performed with equation 3.31 

and run in R using a Gauss-Newton algorithm to minimize the squared residuals. This 

yielded the following model fit (Fig. 3.18B). The next sections describe how the fitting is 

performed. 

 

3.7.5 – Two-state model analysis of heat capacity 
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As a protein denatures in solution, thereby exposing hydrophobic residues buried 

within the interior of the protein, the heat capacity (Cp(T)) of the sample cell increases 

according to the following expression: 

 

 𝐶𝑝(𝑇) = 𝜃𝑢𝐻(𝑇)
𝑑

𝑑𝑇
= (𝜃𝑢)

𝑑

𝑑𝑇
𝐻(𝑇) + 𝜃𝑢(𝐻(𝑇))

𝑑

𝑑𝑇
                        Eq. 3.21 

 

For Dys ABD1, the simplest model that can be applied is a two-state model from the 

native/folded (𝜃𝑓) state to denatured/unfolded (𝜃𝑢) state as Dys ABD1 underwent thermal 

denaturation. This means that the occupancy of intermediate states is negligible, therefore 

simplifying an equilibrium expression to two discrete ensembles:  

 

𝐾 =
[𝑢]

[𝑓]
                    Eq. 3.22 

𝐾 = 𝑒(
−∆𝐺

𝑅𝑇
)
                    Eq. 3.23 

 

Where [u] and [f] are concentrations of folded and unfolded ensembles and K is the 

equilibrium constant between the two states. Because the entire population, [P], of the 

protein is distributed between the unfolded and folded state the total protein concentration 

and fraction (𝜃) of each state can be written as follows: 

[𝑃] = [𝑢] + [𝑓]                            Eq. 3.24 

𝜃𝑢 =
𝐾

𝐾+1
                    Eq. 3.25 

𝜃𝑁 =
1

𝐾+1
                    Eq. 3.26 
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The free energy may be represented as both a function of the temperature dependent 

enthalpic and entropic contributions (ΔH(T) and ΔS(T), respectively) and as a 

consequence of the two-state model the change in heat capacity (ΔCp) simplifies to a 

discrete value as shown in equation 3.30132, 135: 

∆𝐻(𝑇) = ∆𝐻𝑇𝑚 + ∫ 𝐶𝑝(𝑇)𝑑𝑇
𝑇

𝑇𝑚
                           Eq. 3.27 

∆𝐺(𝑇) = −𝑅𝑇𝑙𝑛(𝐾)                            Eq. 3.28 

∆𝐺(𝑇) = ∆𝐻(𝑇) − 𝑇∆𝑆(𝑇)                           Eq. 3.29 

∆𝐺(𝑇) = ∆𝐻𝑇𝑚(1 −
𝑇

𝑇𝑚
) + ∆𝐶𝑝(𝑇 − 𝑇𝑚 − 𝑇 (ln (

𝑇

𝑇𝑚
)))                       Eq. 3.30 

 

Where the limit as ∆𝐶𝑝 approaches 0 is the Van’t Hoff equation for free energy. By 

substituting equations 3.30 and 3.23 into equation 3.21 and differentiating with respect to 

temperature the final fit expression of heat capacity as a function of temperature is as 

follows: 

 

𝐶𝑝(𝑇) = 𝛥𝐻(𝑇)
(𝛥𝐶𝑝−

𝛥𝐶𝑝𝑇𝑚

𝑇
+

𝛥𝐻

𝑇
)

𝐾

𝑅𝑇

(𝐾+1)2 +
𝛥𝐶𝑝𝐾

𝐾+1
+ 𝐹𝐵𝐿              Eq. 3.31 

 

Where FBL (folded baseline) describes the initial baseline heat capacity of the folded 

state, which we model using either a first or second order polynomial. The difference 

between the endotherm and the baseline heat capacity is equivalent to the instantaneous 

rate of change of the fraction folded (or unfolded) with respect to temperature 
𝑑𝜃

𝑑𝑇
. 

Therefore, the two-state equilibrium can be modeled by three thermodynamic parameters: 

the excess enthalpy needed to transition a population from a folded to an unfolded state 
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(ΔHTm), the overall change in heat capacity between the folded and unfolded states (ΔCp), 

and the melting temperature (Tm). For a two-state transition model, the largest rate of 

change occurred at the melting temperature (
𝑑𝜃

𝑑𝑇𝑚
), where both 𝜃𝑓  and 𝜃𝑢 equal 0.5. The 

maximal rate of change of folded proteins relates to the overall enthalpy of the unfolding 

process in that, 

 

∆𝐻𝑉𝐻 = 4𝑅𝑇𝑚
2 (

𝑑𝜃𝑢

𝑑𝑇
)                  Eq. 3.32 

 

where ΔHVH is the Van’t Hoff enthalpy. Thus, through comparison of the Van’t Hoff, it is 

possible to determine the validity of a two-state model.135 For Dys ABD1, the Van’t Hoff 

enthalpy (110 kcal/mol) was not extremely different from the enthalpy determined via a 

nonlinear regression, NLS, model (118.5 ± 0.4 kcal/mol) described later in the 

supplement, thus supporting the use of a two-state model. However, the Van’t Hoff 

comparison is not sufficient for defining a two-state model. Further support for the two-

state model comes from the comparison of the changes in heat capacity calculated 

between the different folded conformers of ABD1, which varied by approximately 0.05 

kcal/mol°C between open conformers and approximately 0.1 kcal/mol°C between open 

and closed ensembles, which MD simulations characterized as having free energy 

differences smaller than a couple kcal/mol. Finally, error surface and confidence region 

mapping were used to estimate nonlinear confidence regions to address the uncertainty in 

the folded baseline as has been noted in protein folding energetics studied by DSC.139, 140 

 

3.7.6 – Text S4, Disorder Prediction Modeling 
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In order to extend our results to WT Dys ABD1, we first needed to assess the role 

of cloning material to the folding energetics. This was done using predictive models to 

determine how ordering within the construct would be affected by cloning material left 

behind after purification. Because the construct was separated from the 6x His tag using a 

TEV protease, it is expected that two extra residues, glycine and serine, were left over 

after TEV cleavage. Disorder calculations were compared between the WT sequence and 

the construct containing the extra two amino acids.141, 142 There is minimal predicted 

change in disorder with the addition of the two extra amino acids (Fig. 3.19). 

 

3.7.7 – Analysis of the Molecular Dynamics Trajectories 

In our simulations, two versions of the CHARMM force field were used because 

evidence shows that the standard CHARMM36 force field may not perform as well as the 

CHARMM22* force field when simulating intrinsically disordered protein.143 Although 

ABD1 is not an IDP, our calorimetric measurements indicated that it may be considered 

marginally stable. We chose to use the CHARMM22* force field to be able to capture 

any region of the protein that showed marginal stability. At the same time, we recognize 

that the CHARMM22* is a more specialized force field, and thus has not been field-

tested as extensively as CHARMM36. We performed additional analyses with the goal of 

testing whether significant differences in the secondary structure, backbone dynamics, 

and conformational space sampled arise between the two force fields. 

To evaluate differences in secondary structure sampled by the two force fields, 

Figure 3.8 shows a comparison of the secondary structure elements calculated with the 

DSSP algorithm.144 The figure shows that, for both Dys and Utr, in the flexible regions 
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CHARMM36 displays a higher α-helical content than CHARMM22*, which in turn 

displays a higher component of turn, bend, and coil.  

To evaluate difference in the backbone dynamics, Figure 3.9 shows a comparison 

of the backbone φ/ψ dihedral order parameter calculated accordingly to the method of 

van der Spoel and Berendsen.145 Dihedral angles autocorrelation functions were 

calculated over each individual 500 ns trajectory, and the mean of the φ/ψ order 

parameters was averaged over all 5 trajectories for a given system and force field. For 

each amino acid, t-test statistics was performed between the 2 sets of 5 trajectories to 

evaluate whether the observed backbone order parameters were significantly different 

between the two force fields. In Figure 3.9, all amino acids that resulted in a p-value 

lower than 0.05 are marked with a black dot. We notice that the majority of the amino 

acids showing a statistically significant difference are those belonging to ordered regions, 

for which a negligible absolute difference in the order parameter between the two force 

fields is present. The less ordered regions show larger differences between the two force 

fields, but the larger variability is present also among trajectories of the same force field. 

As a result, from these analyses it is not possible to establish whether the disordered 

regions are characterized by a statistically significant difference in dynamics between the 

two force fields. 

As an alternative approach to using the backbone order parameter to map the 

conformational flexibility of different regions of the protein we use the Shannon entropy 

as described in the main text.  Figure 3.10 shows a comparison of the Shannon Entropy 

for the two force fields, which suggests that the flexible linker region could experience a 

higher conformational dynamics in the CHARMM22* simulations. 
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The previous analyses showed some differences between the CHARMM36 and 

CHARMM22* trajectories both in terms of secondary structure and in terms of backbone 

conformational dynamics. To test whether these differences significantly affect the 

conformational space sampled by the trajectories, we used the root mean square deviation 

(RMSD) as a metric to test the difference between the various trajectories. In Figure 3.11 

(panels A and C) we have plotted the RMSD matrices between all the trajectories. In 

short, each frame of each trajectory is here compared (by calculating the RMSD) with 

each frame of each trajectory. The bottom-left quadrant compares the 5 CHARMM36 

trajectories with each other, and the top-right quadrant compares the 5 CHARMM22* 

trajectories. The other two quadrant identically compare the CHARMM36 trajectories 

with the CHARMM22* ones. The figure shows that for both Dys and Utr there are 

trajectories within the same force field that are similar to each other (for example Dys 

c36(2), c36(3), and c36(5)), as well as very dissimilar (for example Dys c36(1) with 

c36(4)). When comparing trajectories obtained with different force fields, we see a 

similar distribution of similar and dissimilar trajectories as those within the same force 

field, which suggests that the two force fields do not greatly differ in the conformational 

space sampled. To better exemplify this, we plotted (panels B and D) the probability 

density of the RMSD for each subset (within c36, within c22, and the cross-comparison 

c36-c22). Again, what we observe is that the distribution of the cross-comparison c36 vs 

c22 is similar to those within the c36 or within the c22 force fields. Together, these 

results support the view that the differences between the force fields highlighted by the 

secondary structure and backbone dynamics analyses do not significantly affect the 

conformational space sampled by the trajectories. In view of these observations, to 
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improve the statistics of our principal component analyses, we have pooled together the 

trajectories obtained with the two force fields. 

 
Figure 3.6. Spin labeling Dys ABD1 (120:239) with 4-maleimide-TEMPO. Shown are 

the double integrals of 100 μM TEMPOL standard (blue) and DysABD1 labeled with 

MSL (red). This sample was used to determine the spin concentration of Dys ABD1 

(120:239), where the ratio of max intensities from the double integral indicate a spin 

concentration of approximately 67.6 μM. When compared to the Bradford determined 

protein concentration of 80 μM, this corresponds to a labeling efficiency near 84%. 
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Dys 

#         
9 10 11 12 13 14 15 16 17 18 19 20 

Dys 
        

D C Y E R E D V Q K K T 

Utr 
        

R S D E H N D V Q K K T 

Utr 

#         
25 26 27 28 29 30 31 32 33 34 35 36 

 

Dys 

# 
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

Dys F T K W V N A Q F S K F G K Q H I E N L 

Utr F T K W I N A R F S K S G K P P I N D M 

Utr 

# 
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 

 

Dys 

# 
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

Dys F S D L Q D G R R L L D L L E G L T G Q 

Utr F T D L K D G R K L L D L L E G L T G T 

Utr 

# 
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 

 

Dys 

# 
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 

Dys K L P K E K G S T R V H A L N N V N K A 

Utr S L P K E R G S T R V H A L N N V N R V 

Utr 

# 
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 

 

Dys 

# 
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 

Dys L R V L Q N N N V D L V N I G S T D I V 

Utr L Q V L H Q N N V E L V N I G G T D I V 

Utr 

# 
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 
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Dys 

# 
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 

Dys D G N H K L T L G L I W N I I L H W Q V 

Utr D G N H K L T L G L L W S I I L H W Q V 

Utr 

# 
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 

 

Dys 

# 
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 

Dys K N V M K N I M A G L Q Q T N S E K I L 

Utr K D V M K D V M S D L Q Q T N S E K I L 

Utr 

# 
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 

 

Dys 

# 
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 

Dys L S W V R Q S T R N Y P Q V N V I N F T 

Utr L S W V R Q T T R P Y S Q V N V L N F T 

Utr 

# 
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 

 

Dys 

# 
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 

Dys T S W S D G L A L N A L I H S H R P D L 

Utr T S W T D G L A F N A V L H R H K P D L 

Utr 

# 
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 

 

Dys 

# 
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 

Dys F D W N S V V C Q Q S A T Q R L E H A F 

Utr F S W D K V V K - M S P I E R L E H A F 

Utr 

# 
197 198 199 200 201 202 203 204 

 
205 206 207 208 209 210 211 212 213 214 215 
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Dys 

# 
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 

Dys N I A R Y Q L G I E K L L D P E D V D T 

Utr S K A Q T Y L G I E K L L D P E D V A V 

Utr 

# 
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 

 

Dys 

# 
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 

Dys T Y P D K K S I L M Y I T S L F Q V L P 

Utr R L P D K K S I I M Y L T S L F E V L P 

Utr 

# 
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 

 

Dys 

# 
241 242 243 244 245 246               

Dys Q Q V S I E               

Utr Q Q V T I D               

Utr 

# 
256 257 258 259 260 261               

 

Figure 3.7. Alignment of Dys and Utr ABD1 sequences. Green, yellow, and red shadings 

indicate conservative, semi-conservative, and non-conservative mutations. Cell border 

colors indicate the domains: CH1 (purple), linker (blue), CH2 (green). 
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Figure 3.8. Structure comparison between CHARM22* and CHARM36 force fields. 
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Figure 3.9. Dihedral order parameter. Black dots mark the amino acids for which a t-test 

between the order parameter of the two force fields resulted in a p-value of less than 0.05. 
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Figure 3.10. Shannon Entropy comparison between force fields. 
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Figure 3.11. (A, C): Pairwise RMSD matrices for the 5 CHARMM36 and the 5 

CHARMM22* trajectories. (B, D): Probability density plots of the RMSD from panels 

(A, C), calculated within a single force field (orange and gray lines), and across force 

fields (blue lines).  
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Figure 3.12. Double electron-electron resonance (DEER) on Dys ABD1 (120:239) at 

various actin concentrations. Shown here are the complete time domains of each 

background-corrected DEER waveform. The Fig. 3.2 shown in the main text shows the 

waveforms up to 1.6 μs to help emphasize the changes in waveform decay with 

increasing actin concentrations. 
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Figure 3.13. Dihedral angle analysis for Dys ABD1 extended state (top panel, 

conformation A in Figure 3.3) and for the most compact states based on SASA analysis 

(middle panel, conformation F in Figure 3.3). The bottom panel represents the difference 

between the dihedral angles of the two conformations. The red box highlights the linker 

region where the backbone is changing conformation, which overlaps with the region 

identified in Figure 3.4A. 
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Figure 3.14. Difference in solvent accessible surface area (SASA) between the main 

open conformer of Dys ABD1 (Group A) and each major closed conformer (Groups B-

F), where Groups A-F are those identified in Fig. 3.3 of the main text. Hydrophobic 

residues are shown as yellow bars whereas all other residues are gray. The specific 

residues pointed out in Fig. 3.4C of the main text are highlighted in the panels above with 

a light yellow strip.  
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Figure 3.15. Dys ABD1 crystal structure 1DXX showing the swapped domains between 

chains A and B. In spheres are the hydrophobic residues identified as forming 

interactions in the compact structures identified by MD simulations in Figure 3.4. 

 

I127 
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Figure 3.16. Probability density plot of the distance between the Cα atoms of the two 

spin labels V120 and L239 in Dys ABD1, calculated over the entire conformational 

ensemble. Representative structures for selected distances are also shown. 

 

  

V120-L239 Cα Distance (nm) 
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Figure 3.17. Overlap between Dys ABD1 and Utr ABD1 conformational ensembles. 

Structures were aligned using the CH1 domain as a reference (purple). Lighter cyan and 

green colors are used for Dys ABD1, darker colors for Utr ABD1. The two axes label the 

specific conformer as described in Figure 3.3 of Dys ABD1 (horizontally) and of Utr 

ABD1 (vertically). 
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Figure 3.18. Graph A illustrates the calorimetric features of the thermal denaturation of 

Dys ABD1 using averaged DSC data from Dys ABD1. The key features ΔH, Tm, and 

ΔCp are representative of the total area under the curve (shaded red), the temperature at 

the half integral, and the overall heat capacity baseline shift of the process, respectively. 

Graph B represents the averaged triplicate scans (where the width represents the standard 

deviation) in dark blue and the model fit in light blue. 

 

 

Figure 3.19. Theoretical calculations from the Uversky lab determining the likelihood of 

disorder throughout the Dys ABD1 construct.141, 142 This was utilized to provide a metric 

with which to determine the effect of cloning material left behind (which was a glycine 

and a serine after TEV cleavage) on the purified construct. The similarities between 

ABD1 with cloning remnants (orange) and without cloning remnants (blue) is predicted 

to be minimal based on these calculations.  

A B 
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Dys ABD1 

Prediction  

(Freire) 

Prediction 

(Spolar) Calorimetric 

Van’t 

Hoff NLS Fit 

ΔHTm (kcal/mole) NA 160 ± 30 142 ± 3 110 118.5 ± 0.4 

ΔCp  

(kcal/mole/°C) 

4.7 

3.7 ± 0.7 3.5 ± 0.5 NA 4.09 ± 0.07 

Tm (°C) NA NA 55.13± 0.02 NA 55.07±0.02 

ΔG(37°C) 

(kcal/mole) 

NA 

NA 6.1 ±0.4 NA 4.45 ± 0.07 

  

Table 3.1. List of fitted thermodynamic parameters for Dys ABD1 with associated errors. 

From left to right, the columns contain the list of thermodynamic values being 

represented, values from the nonlinear least squares (NLS) model fit, thermodynamic 

values taken from the calorimetric features of the raw data, excess enthalpy from the 

Van’t Hoff analysis, predictions for excess enthalpy and change in heat capacity based on 

molecular weight, and a prediction for the change in heat capacity based on differences in 

the predicted absolute heat capacities of the folded and unfolded states. Values that were 

not described by the given model are listed as ‘NA’. Errors for the Van’t Hoff enthalpy 

and Freire prediction model are not included. 

 

  



*This chapter was reproduced in its entirety with permission from the following article: 

Fealey ME, Binder BP, Uversky VN, Hinderliter A, Thomas DD. Structural impact of 

phosphorylation and dielectric constant variation on synaptotagmin’s IDR. Biophys J. 

2018 114:550-561. 

CHAPTER 4: STRUCTURAL IMPACT OF PHOSPHORYLATION AND 

DIELECTRIC CONSTANT VARIATION ON SYNAPTOTAGMIN’S 

INTRINSICALLY DISORDERED REGION* 

4.1 – Section Summary 

We used time-resolved Förster resonance energy transfer, circular dichroism, and 

molecular dynamics simulation to investigate the structural dependence of synaptotagmin 

1’s intrinsically disordered region (IDR) on phosphorylation and dielectric constant. We 

found that a peptide corresponding to the full-length IDR sequence, a ~60-residue strong 

polyampholyte, can sample structurally collapsed states in aqueous solution, consistent 

with its κ-predicted behavior, where κ is a sequence-dependent parameter that is used to 

predict IDR compaction. In implicit solvent simulations of this same sequence, lowering 

the dielectric constant to more closely mimic the environment near the surface of a lipid 

bilayer promoted further sampling of collapsed structures. We next examined the 

structural tendencies of central region residues of the IDR in isolation. We found that the 

exocytosis-modulating phosphorylation of Thr112 disrupts a local disorder-to-order 

transition induced by trifluoroethanol/water mixtures that decrease the solution dielectric 

constant and stabilize helical structure. Implicit solvent simulations on these same central 

region residues testing the impact of dielectric constant alone converge on a similar 

result, showing that helical structure is formed with higher probability at a reduced 

dielectric. In these helical conformers, lysine-aspartic acid salt bridges contribute to 

stabilization of transient secondary structure. In contrast, phosphorylation results in 

formation of salt bridges unsuitable for helix formation. Collectively, these results 

suggest a model in which phosphorylation and compaction of the IDR sequence regulate 

structural transitions that in turn modulate neuronal exocytosis.  
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4.2 – Introduction 

Synaptotagmin 1 (Syt 1) is the calcium ion (Ca2+) sensor for neurotransmitter 

release, chelating Ca2+ upon action potential-induced entry and consequently triggering 

fast synchronous release.146 The underlying mechanisms by which Syt 1 mediates this 

biological event remain incompletely understood. Our goal has been to investigate the 

allosteric network of Syt 1 to elucidate regulatory mechanisms that underlie controlled 

neurotransmitter release.49, 147, 148 Our group found that an intrinsically disordered region 

(IDR) within Syt 1 (residues ~80-141) exerts allosteric influence over the adjacent C2 

domain referred to as C2A (Fig. 4.1A). Until recently, this IDR had received little 

attention and its structural biology still represents a significant gap in our understanding 

of Syt 1 function. Because the Syt 1 IDR exerts allosteric influence over C2A, structural 

or disordered ensemble transitions that occur there may be important for modulating C2 

domain functions that in turn influence exocytosis.149 Additionally, the IDR was recently 

shown to bind to the pleckstrin homology (PH) domain of dynamin 1, implicating its 

sequence in an important protein-protein interaction of endocytosis.150 
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Figure. 4.1. Model of Syt 1 and amino acid sequence of its IDR. (A) Syt 1 consists of a 

short luminal domain (LD), a single transmembrane helix (TM), a ~60 residue IDR, and 

two calcium ion- and phospholipid-binding C2 domains in tandem, C2A and C2B. 

Approximate dielectric constants for the bilayer core (ε=2), interfacial region (ε=4-20), 

and bulk solution (ε=80) are shown to indicate environments the polyampholytic IDR 

may experience. (B) The IDR sequence (residues 80-141) is shown with the basic 

residues in blue and the acidic residues in red. The distribution of charged residues 

partially delineates the sequence into three segments as indicated. Above the sequence is 

the ANCHOR predicted probability for each residue potentially contributing to a binding 

site as described in ref. 151 and 152.The modeled peptide below the sequence shows the 

location for covalent attachment of acceptor dyes as well as location of the added 

tryptophan (yellow) used in FRET experiments. Thr112, the phosphorylation site 

examined in this study, is also indicated. 

 

When examining the amino acid sequence of this IDR to make initial structural 

predictions, it appears to be a strong polyampholyte with ~50% of its residues consisting 

of an almost equal number of oppositely charged amino acids (Fig. 4.1 B).153, 154 

However, the distribution of charged residues divides the IDR into three main segments: 

a highly positive N-terminal region (~80-96), a more sequence-diverse central region 

with dispersed lysine-aspartic acid repeat motifs (~97-120), and a highly negative C-
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terminal region (~121-141) (Fig. 4.1 B). Intrinsically disordered proteins (IDPs) that have 

a high degree of charge separation sample more compact structural states, and the degree 

of compactness can be predicted with the calculated κ. This κ varies from 0 (less 

compact) to 1 (most compact) and, in model 50-mer peptides consisting of an equal 

number of lysine and glutamic acid residues, correlates to radii of gyration (Rg) that range 

from 3.0 nm to 1.7 nm.155 When we performed this calculation for Syt 1’s IDR sequence, 

we determined a κ value of 0.22, suggesting that the IDR can sample more compact 

structural states whose Rg approaches 2.3 nm (Tables 4.3 and 4.4, Supporting Materials 

and Methods Chapter 4). Further application of the sequence-dependent analysis 

software, CIDER, places the Syt 1 IDR in a chimeric region of the IDP phase diagram, 

predicting exploration of both coil and hairpin structures (Fig. 4.9).156 Recently it was 

proposed that this IDR functions in Syt 1 as an “electrostatic zipper” that opens and 

closes to mediate docking of synaptic vesicles and fusion pore opening, respectively, 

though no distance measurement was made.157 Chimeric behavior of the IDR would be 

appropriate for such opening and closing and can be experimentally measured using 

Förster resonance energy transfer (FRET), an approach we have explored here (Fig. 4.1 

B). 

While the calculated κ term for the Syt 1 IDR probably stems from the N- and C-

terminal regions with high charge density, the central region has its charged residues 

more evenly distributed, suggestive of more local coil disorder. Within this central region 

there is a series of KD-repeats with the exception of a KT sequence at residue positions 

111 and 112. Many of these charged residues are in i,i+4 positions, suggesting they could 

stabilize helical secondary structure through salt bridge formation. Intriguingly, Thr112 is 
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a site of phosphorylation that was recently shown to promote PKC-mediated potentiation 

of synaptic transmission (Fig. 4.1 B).158 Addition of a phosphate at this site would 

complete a positive-negative repeat pattern in this central region of the IDR, impact the 

local electrostatics of the region, and probably alter its structural propensity. Furthermore, 

this central region contains a predicted binding site that is adjacent to Thr112 (Fig. 4.1 B), 

suggesting that phosphorylation of Thr112 could initiate a structural transition that 

modulates binding.151, 152 Such a mechanism could help explain how phosphorylation in 

vivo promotes synaptic plasticity. Collectively, this differential distribution of charged 

residues suggests that electrostatics serve more than one structural role in IDR-

modulation of neuronal exocytosis. 

The polyampholyte nature of this IDR is of further significance because it is part 

of an integral membrane protein. The lipid bilayer core and interfacial regions have low 

dielectric constants (ε=2-20) compared to bulk aqueous solution (ε=80), so the potential 

structural impact of charged residues in the IDR sequence is likely to be more 

pronounced in Syt 1’s native local environment (Fig. 4.1 A). In the current study, we 

aimed to answer the above questions in an attempt to establish basic principles of this 

IDR’s behavior.  

 

4.3 – Materials and Methods 

4.3.1 – Reagents 

Potassium chloride (KCl), sodium phosphate monobasic (NaH2PO4) and sodium 

phosphate dibasic (Na2HPO4) were obtained from ThermoFisher Scientific. 2,2,2-

trifluoroethanol (TFE) ≥99.0% was obtained from Sigma-Aldrich. N-[2-
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(dansylamino)ethyl]maleimide and N-(iodoacetaminoethyl)-1-naphthylamine-5-sulfonic 

acid (IAEDANS) acceptor labels were obtained from Sigma-Aldrich. Three peptides 

corresponding to the full-length Syt 1 IDR (residues 80-141) with a C-terminal 

tryptophan as well as the core region of the IDR with some of the acidic C-terminus 

(residues 97-130) in both unphosphorylated and phosphorylated form (phosphorylated at 

threonine 112) were obtained from Selleck Chemicals at a purity of 95% based both on 

mass spectrometry and HPLC. Numbering of residues assumes start codon methionine is 

removed. The amino acid sequences for each of the three peptides correspond to the 

following: (full-length IDR) KKCLFKKKNKKKGKEKGGKNAINMKDVKDLGKT- 

MKDQALKDDDAETGLTDGEEKEEPKEEEKW; (unphosphoryl-ated core of IDR) 

GKNAINMKDVKDLGKTMKDQALKDDDAETGLTDG; (phosphorylated core of 

IDR) GKNAINMKDVKDLGK(pT)MKDQALKDDDAETGLTDG. The core region 

peptides included a few residues from the acidic terminus of the IDR to help ensure 

adequate solubility. Despite this inclusion of C-terminal residues, these peptides are 

referred to as the “core region” throughout the manuscript. The peptides did not include 

N- or C-terminal caps in an attempt to avoid potential perturbations to helicity.159 

In the full-length IDR construct, the tryptophan was added to both enable UV 

measurement for concentration determination and also to act as a donor probe in time-

resolved FRET experiments. Use of tryptophan and dansyl was also chosen as a way of 

minimizing structural perturbation to system with fluorescent probes, only requiring 

addition of one residue and exploiting the single native cysteine. 
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4.3.2 – Tryptophan Lifetime FRET 

For the time-resolved FRET, we first reconstituted full-length IDR peptide in 10 

mM NaH2PO4/Na2HPO4 buffer with the pH adjusted to 7.4. Measuring the A280 and 

using a calculated extinction coefficient of 5600 cm-1M-1, the concentration of peptide 

was determined. A 4-fold excess of maleimide-dansyl (in the case of the full-length 

synthetic peptide) or AEDANS (in the case of the recombinant full-length IDR) acceptor 

probe that had been reconstituted in dimethylformamide (DMF) was then added to the 

peptide solution and allowed to incubate with the full-length IDR for 3 hours at room 

temperature (~23 °C) in the presence of 1 mM tris(2-carboxyethyl)phosphine (TCEP) 

reducing agent to prevent cysteine cross-linking. During the reconstitution of full-length 

IDR, the peptide forms a dimer that is in equilibrium with its monomeric form. To isolate 

the acceptor-labeled monomer for FRET and simultaneously separate labeled peptide 

from free dye, we subjected the peptide solution to size exclusion chromatography using 

a pre-packed S100 sephadex column from G&E. Because of the large molecular weight 

difference between the peptide dimer (~14 kDa), peptide monomer (~7 kDa) and free 

maleimide-dansyl probe (~370 Da), all three species can be resolved into separate 

fractions. The elution fractions containing just acceptor-labeled full-length IDR peptide 

were identified by UV absorption, pooled, and concentrated using an Amicon Ultra-4 

centrifugal filter unit from Millipore whose molecular weight cut-off was 3 kDa. The 

final concentration of full-length peptide as well as the extent of labeling with maleimide-

dansyl were determined with UV absorption using the approach described by 

Gustiananda et al.160. In this approach, the peptide concentration is determined by 
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measuring the donor-acceptor peptide and subtracting the contribution from dansyl with a 

correction factor previously described161: 

 

[IDR peptide] = (A280 – (A331x0.386))/5500     Eq. 4.1 

[maleimide-dansyl] = A331/4000       Eq. 4.2 

  

The ratio of [IDR peptide] and [maleimide-dansyl] enables an assessment of labeling 

efficiency and for the full-length IDR peptide, this ratio was near unity indicating 

complete labeling. This seemed reasonable considering the IDR is unfolded, allowing for 

the cysteine to be well exposed to free acceptor dye in bulk solution. 

Tryptophan lifetimes were measured on a custom made spectrometer from 

Fluorescence Innovations147, 162, which uses an Nd:Yag laser for excitation of 

pyrromethene 597 with a 532 nm wavelength. The emission from pyrromethene passes 

through a doubling crystal to create a 295 nm wavelength specific for tryptophan 

excitation. Syt 1 IDR with a C-terminal tryptophan was synthesized (or expressed 

recombinantly) and subjected to lifetime measurements at 23°C in the absence and 

presence of dansyl (or AEDANS in the case of the recombinant IDR) acceptor probe 

irreversibly linked to the N-terminal cysteine residue present in the natural sequence (Fig. 

4.1 B). Tryptophan emission from samples at concentrations of 1-3 μM was monitored at 

340 nm. 
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Tryptophan waveforms with and without covalently attached acceptor dye were 

fit to multiexponential decays using a custom-made fitting program FargoFit.163 The 

general description of the waveform is a sum of exponentials: 

 

F(t) = ∑ ai e-t/τin
i=1 ,          Eq. 4.3 

 

where ai represents the amplitude of each ith component, n represents the number of 

components, and τi is the fluorescence lifetime. The tryptophan waveforms were 

sufficiently described by two exponentials (Fig. 4.2 A). To determine the distance R 

between tryptophan and dansyl probes, amplitude-weighted average lifetimes τ were 

calculated and subsequently used to determine the efficiency of energy transfer (E) which 

was then used in a rearranged Förster equation with 2.1 nm for the tryptophan-dansyl R0: 

 

E = 1 - τDA/τD,  R = R0(1/E – 1)1/6       Eq. 4.4 

 

4.3.3 – Circular Dichroism 

Peptides were reconstituted in buffer containing 10 mM sodium phosphate (pH 

7.4), and stock solution concentrations were determined using BCA microplates and UV 

absorption (for full-length peptides). TFE was added at incremental percentages v/v over 

a range of 0-60%. Each raw data set of absorption had a corresponding buffer scan 
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subtracted from it to remove any absorption contributions from buffer or TFE co-solvent. 

Resulting data sets were plotted as mean residue ellipticity (MRE) according to the 

following equation: 

 

MRE = θx(MW/(N – 1))/lc ,        Eq. 4.5 

 

where [θ] is raw ellipticity, MW is the molecular weight of the peptide, N is the number 

of residues, l is the cuvette path length, and c is the peptide concentration in mg/mL. 

Concentrations of core region peptide samples ranged from 18-20 μM for all experiments 

whereas full-length IDR peptides were at a concentration of 10 μM. To extract the free 

energy of folding for Syt 1 IDR peptides, a simultaneous non-linear least squares fit of 

198 nm and 222 nm wavelengths was performed (mathematical derivation in Supporting 

Materials and Methods Chapter 4). Four replicate measurements of TFE gradients for 

each Syt 1 IDR peptide were individually fit and then averaged to determine standard 

deviations. Estimates of helicity were obtained by fitting data sets to linear combinations 

of α-helix, β-sheet, and random coil secondary structures as described previously.13, 164  

4.3.4 – Atomistic MD simulation of Syt 1 IDR 

Peptides corresponding to both the full-length Syt 1 IDR and the core region were 

generated in Discovery Studio 2.0. Molecular Dynamics (MD) simulations were 

performed with NAMD 2.9165 using the CHARMM36 force field166, the Generalized 

Born Implicit Solvent (GBIS) model167, and 2-fs time steps. Peptide termini were left 
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charged to mimic the state of the peptides used in CD experiments. The peptide systems 

were maintained at constant temperature with a Langevin thermostat (298 K). Peptides 

corresponding to residues 80-141 in the unphosphorylated state or residues 97-129 of the 

Syt 1 IDR with and without phosphorylation at Thr112, were subjected to energy 

minimization and gradually warmed up over a period of 200 ps prior to equilibration. All 

systems subsequently achieved RMSD convergence within 50 ns (Fig. 4.10). We 

performed a total of eight different simulations. For the full-length Syt 1 IDR sequence, 

the peptide was subjected to two different salt concentrations (10 mM and 100 mM) at 

two GBIS solvent dielectric constants (ε = 80 and ε = 20). For the core region residues 

alone, we simulated the peptide with and without phosphorylation of Thr112 at the two 

dielectric constant values described above at a salt concentration of 100 mM. A ε value of 

80 was used to mimic an aqueous solution environment, while a value of 20 was used to 

mimic the upper limit of the membrane interfacial region.168, 169 The full-length IDR 

peptide was simulated at ε = 80 for 970 ns with either a 10 mM salt concentration or a 

100 mM salt concentration. At ε = 20, the full-length peptide was simulated for 480 ns 

and 760 ns at salt concentrations of 10 mM and 100 mM, respectively.  The 

unphosphorylated core region peptide was simulated with ε = 20 for 1 μs and with ε = 80 

for 1.08 µs. The phosphorylated core region peptide was simulated with ε = 20 for 1.0 μs 

and with ε = 80 for 1.1 µs. Trajectories were analyzed using VMD 1.9.1.170 The program 

STRIDE, included within VMD, was used to monitor secondary structure throughout 

each trajectory.171 When calculating the probability of existing in different types of 

secondary structure (coil, beta sheet, turn, and helix), we combine 310-helicies with α-
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helices under the assumption that 310-helical structure is an on-path transition point 

between coil and α–helix.172 

4.3.5 – Protein Purification 

For FRET studies on the recombinant IDR construct, a nucleotide sequence 

encoding residues 80-141 with a C-terminal tryptophan followed by a His-tag, was 

cloned into a pET28a vector and subsequently transformed into BL21 E. coli using the 

New England BioLabs heat-shock protocol. Transformed cells were plated onto a 

kanamycin-containing agar plate with an antibiotic concentration of 50 μg/mL and 

subsequent colonies were used to generate inoculate for large-scale bacterial growth and 

protein expression, induced with 1 mM IPTG. After 12 hours at 25 °C, cells were 

harvested by centrifugation. Cell pellets were resuspended in 20 mM MOPS, 200 mM 

KCl, 4 M urea, 1 mM PMSF at pH 7.4 (4 °C), then lysed by sonication. The resulting 

lysate was treated with DNAse and 1 mM MgCl2 and allowed to stir at 4 °C for 1 hour, 

followed by centrifugation to remove cellular debris. The supernatant was passed through 

a ThermoScientific Nalgene prefilter plus GFP sterile filter with a pore size of 0.2 μm to 

remove further particulate matter. The filtered solution was then slurried with TALON 

metal affinity resin buffered in 20 mM MOPS, 200 mM KCl, 4 M urea, pH 7.4. The 

slurry was gently stirred at 4 °C for 2 hours, then transferred into a column to remove 

unbound protein and nucleic acid. Settled resin was subsequently rinsed with four column 

volumes of buffer containing 20 mM MOPS, 200 mM KCl, 4 M urea, and 10 mM 

imidazole (to remove non-specifically bound proteins) at pH 7.4. Resin was then rinsed 

with a high salt buffer (20 mM MOPS, 1 M KCl, 4 M urea, 10 mM imidazole at pH 7.4) 

to separate nucleic acid bound to linker region peptide (specifically, the region containing 
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a high number of lysine residues). The resin was then rinsed with four column volumes of 

buffer containing 20 mM MOPS, 200 mM KCl, 4 M urea, and 10 mM imidazole at pH 

7.4. The linker region protein was then eluted with buffer containing 20 mM MOPS, 100 

mM KCl, 4 M urea and 300 mM imidazole at pH 7.4. Fractions of eluted protein were 

run on SDS-PAGE and pure fractions whose 260 nm/280 nm ratio was <0.7 (which 

indicates >95% purity with respect to nucleic acid contamination) were pooled and 

concentrated. Syt 1 IDR was then dialyzed against 4 liters of buffer containing 10 mM 

sodium phosphate at pH 7.4 four times, each with an equilibration time of 6 hours to 

ensure complete exchange. The Syt IDR was then subjected to size-exclusion 

chromatography as described above for the Syt IDR synthesized peptide to isolate 

monomers. 

 

4.4 – Results 

4.4.1 – Full-length IDR peptide can sample compact structural states in aqueous solution 

To first test the hypothesis that the Syt 1 IDR can sample compact structural states 

consistent with an “electrostatic zipper”, we used tryptophan (Trp)-dansyl FRET, placing 

the aromatic amino acid at the C-terminus of an IDR peptide and dansyl at the N- 

terminus using the sequence’s single native cysteine for irreversible attachment (Fig. 4.1 

B). The Trp-dansyl probe pair has an R0 of 2.1 nm, a value suitable for detecting IDR 

compaction based on the κ prediction if it occurs. We measured the Trp lifetime decay 

with and without acceptor dansyl and found the lifetime to be shortened by proximity of 

the acceptor probe. When fit to bi-exponential functions (Fig. 4.2 A), it was found that the 
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Trp and dansyl probes were a mean distance of 2.40±0.05 nm apart (Fig. 4.2 B), which 

represents the average inter-probe distance but only for compact conformers detected by 

this dye pair. 

 

 

Figure. 4.2. Sampling of a structurally collapsed state by the Syt 1 IDR in aqueous 

solution. (A) Determining the number of lifetimes needed to fit tryptophan decays 

without (blue) and with (red) acceptor dyes. In both cases, two lifetimes were considered 

necessary and sufficient (asterisk). (B) Time-resolved FRET measurement of Syt 1 IDR 

synthesized peptide showing Trp-dansyl undergoing energy transfer in 10 mM sodium 

phosphate buffered to a pH of 7.4. Blue: donor-only.  Red: donor-acceptor. Error bars: 

SD of 4 replicates. Black: instrument response function (IRF). The distance derived from 

the change in average lifetime (τD = 1.53±0.11, τDA = 1.06±0.10) is 2.40±0.05 nm (Eq. 

4.4). Shown below the time-resolved data are residuals of fitting to bi-exponential 

functions. (C) A similar FRET result was obtained from a recombinantly expressed Syt 1 

IDR construct that was labeled with AEDANS acceptor. The slight increase in FRET in 

the recombinant IDR is thought to be due to inclusion of a his-tag, which tend to promote 

compaction in IDPs.173  

 

Given the ~60 residue separation between the two probes, such a measurement 

indicates that the IDR peptide can sample compact structural states in aqueous solution, 

though this measurement cannot differentiate between hairpin and globular structures. 

Additionally, by using our minimally perturbing probe pair, we are not able to measure 
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occupation of conformers adopted beyond a ~3.4 nm inter-probe distance, where FRET 

efficiency between Trp-Dansyl is below 5%. Thus, to complement our FRET 

measurements characterizing the structural behavior of the IDR in an aqueous 

environment with low salt, we next performed MD simulations on a peptide 

corresponding to the full-length Syt 1 IDR sequence (residues 80-141). We used an 

implicit solvent model with a dielectric constant of ε = 80 and a 10 mM salt 

concentration. The simulated IDR structure sampled a wide range of conformers under 

these conditions as indicated by its fluctuating Rg during the trajectory (Fig. 4.3A). 

Intriguingly, while FRET indicates that sampling of compact conformers does occur (Fig. 

4.2), MD simulations suggest that compact conformers are not the dominant structural 

species in the overall aqueous environment ensemble (Fig. 4.3B). On average, the IDR 

sequence samples extended coils more frequently (Fig. 4.3C). Collectively, FRET and 

MD results correlate with the IDR’s predicted behavior based on amino acid sequence 

alone and is consistent with the previously proposed “electrostatic zipper” model in 

which the IDR samples both open (extended) and closed (compact) conformers.156, 157  
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Figure. 4.3. MD simulation of the full-length Syt 1 IDR (residues 80-141) with an 

implicit solvent (ε=80) and salt concentration of 10 mM. (A) Radius of gyration (Rg) as a 

function of simulation time indicates the IDR sequence samples both extended and 

compact states. Dotted line indicates average Rg. (B) Inter-residue distance (<Rj-i>) 

between first (i) and each subsequent (j) residue (Cαj-Cαi) in the Syt 1 IDR plotted as a 

function of simulation time. Plots suggest weak long-range interactions promote 

sampling of more compact conformations. However, compact conformers are not the 

dominant structural species in an aqueous environment as indicated by the location of the 

average inter-residue distances (black diamonds). (C) Representative conformers of 

different Rg. Structures, N- to C-terminus, are color-coded blue to red. 

 

4.4.2 – TFE-water mixtures promote partial helicity in core IDR residues 

Next, to assess the structural potential of the more sequence-diverse central 

region, we used circular dichroism and the helix-promoting co-solvent trifluoroethanol 

(TFE) (Fig. 4.4 and Fig. 4.11). Several of the residues in the central region, because they 

have hydrophobic side chains, would likely have low free energy barriers to desolvation, 

which often occurs upon protein-protein binding. This, coupled with the core region’s 

predicted binding site and phosphorylation (Fig. 4.1 B), make it a potential site of 

ordering. Moreover, TFE/water mixtures allow for creation of low dielectric 

environments that more closely mimic that found near a lipid bilayer surface. For these 
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reasons, TFE is a useful perturbing agent to study structural transitions of a membrane-

localized polyampholyte IDR.174 In the unphosphorylated state, increasing TFE 

concentration results in partial folding into helical structure (Fig. 4.4 A). This transition 

exhibits 2-state behavior exemplified by the isodichroic point (vertical dotted line). When 

we fit the transition to a 2-state model (Fig. 4.4 D, Supporting Material and Methods) we 

measured a folding free energy (ΔG0) of 1.0±0.2 kcal/mole (Table 4.1).  

 

 

Figure. 4.4. Impact of Thr112 phosphorylation on Syt 1 IDR core region 

(GKNAINMKDVKDLGKTMKDQALKDDDAETGLTDG). (A) MRE of 

unphosphorylated Syt 1 IDR core and (B) MRE of phosphorylated Syt 1 IDR core as a 

function of increasing TFE (0-60% v/v going from red to violet) in 10 mM sodium 

phosphate at a pH of 7.4. (C) Fitting of absorption profiles to linear combinations of α-

helix, β-sheet and random coil in each IDR construct at a maximal TFE concentration of 

60% v/v. (D) Simultaneous fitting of the 198 nm coil minimum (solid circles, dark line) 

and 222 nm (open circles, lighter line) signals during folding transition for 

unphosphorylated (purple), phosphorylated (green) and full-length (orange) peptides. (E) 

Comparison of 222 nm/200 nm ratio from full-length (orange), unphosphorylated core 

(purple) and phosphorylated core (green). Removal of flanking charge shifts IDR from a 

pre-molten globule-like (PMG-like) state to a more coil-like state and phosphorylation 

accentuates this effect. Figure modified from reference175. 
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To assess the impact of phosphorylation, we repeated the TFE titration with a 

phosphorylated peptide (phosphothreonine, pThr112) of identical sequence (Fig. 4.4 B). 

This approach of using TFE-induced folding has been successfully applied in other 

disordered systems to discern differences in folding propensity upon residue 

phosphorylation.176, 177 Upon inclusion of the post-translational modification, TFE-

induced folding was somewhat restricted as evident in the absorption profile (Fig. 4.4 B, 

Fig. 4.11). When the structural transition was fit to a 2-state model as before, a ΔG0 of 

0.36±0.09 kcal/mole was found (Fig. 4.4 D) indicating that phosphorylation increases the 

ease with which helical structure forms with increasing TFE concentration (the ΔΔG0 is 

equal to -0.6±0.2 kcal/mole). However, when we quantified the helical content of 

unphosphorylated and phosphorylated peptides in the presence of maximal TFE (Fig. 4.4 

C), the phosphorylated peptide did not reach the same level of helicity as that of the 

unphosphorylated peptide (Table 4.2), giving rise to an apparent lowering of the folding 

free energy. Collectively, these findings indicate that phosphorylation interferes with 

TFE-induced helix formation in the core region residues. 

 m-value 

(cal/mol·TFE) 

ΔG0 

(cal/mol) 

[θ]U 

(198nm) 

[θ]F 

(198nm) 

[θ]U 

(222nm) 

[θ]F 

(222nm) 

Unphosphorylated -55±2 1000±200 -12±1 -4.9±0.2 -0.8±0.2 -4.3±0.2 

Phosphorylated -48±4 360±90 -14.9±0.9 -7.3±0.9 -1.1±0.5 -4.2±0.7 

Full-length IDR -82±20 1500±300 -9.3±0.5 -3.6±0.3 -2.1±0.4 -4.8±0.2 

 

Table 4.1. Fit parameters from TFE-induced folding of Syt 1 IDR constructs. 

When examining the CD absorption profile of IDPs, another useful parameter in 

assessing structure is the 222 nm/200 nm ratio, which can help discern whether or not a 
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particular IDP is in a more compact pre-molten globule state or in a disordered coil 

state.175, 178 When we compare the full-length Syt 1 IDR with the unphosphorylated and 

phosphorylated core region peptides, a trend becomes apparent (Fig. 4.4 E).  

In the full-length IDR, the 222 nm/200 nm ratio is consistent with its predicted 

chimeric behavior existing in a region of space between purely coil and purely pre-

molten globule, which is consistent with the FRET measurement of compactness (Fig. 

4.2) and MD simulation sampling of extended coils (Fig. 4.3). However, when the 

flanking positive and negative regions are largely removed to generate a peptide that 

includes core region residues, the 222 nm/200 nm ratio is shifted more definitively in the 

direction of coil disorder and phosphorylation shifts the ratio further still (Fig. 4.4 E). 

This indicates that the central region, where positive and negative charges are more 

evenly distributed, imparts more coil behavior and phosphorylation enhances that 

behavior. However, with the flanking densely positive and densely negative regions, 

structural states intermediate between pre-molten globule and coil are preferred.  

This suggests that, if the central region transitions to structural ensembles 

containing more ordered elements, the flanking charged regions that promote sampling of 

compact structural states may exert regulatory control over accessibility of those core 

region conformers. TFE-induced folding of full-length Syt 1 IDR has a larger ΔG0 of 

1.5±0.3 kcal/mole compared to the unphosphorylated core peptide, which supports the 

hypothesis that flanking basic and acidic termini can limit core region folding (Fig. 4.4 D, 

orange; Table 4.1). Also consistent with this hypothesis is the observation that estimated 

helical content of the full-length peptide is statistically indistinguishable from that of the 

unphosphorylated core peptide (fraction helical in 60% v/v TFE, full-length 0.45±0.02 vs 
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core 0.42±0.01). However, because we did not measure TFE-induced folding of the 

flanking basic and acidic regions in isolation, we cannot conclusively say the core region 

residues are the only residues that become helical in the full-length IDR peptide. 

Regardless, mechanisms where structural compaction in IDPs limit accessibility of 

internal regions of sequence have been proposed in other systems179, 180 and may still bear 

relevance to the Syt 1 IDR structure within the context of the whole protein embedded in 

a synaptic vesicle. 

 Fraction 

helix 

(experiment) 

Fraction total 

helix (MD 

sim) 

Fraction α-helix  

(MD sim) 

Fraction 310-helix  

(MD sim) 

Unphosphorylated 0.42±0.01 0.16 0.12 0.04 

Phosphorylated 0.37±0.03 0.09 0.04 0.05 

 

Table 4.2. Estimated helical content of unphosphorylated and phosphorylated Syt 1 IDR 

core regions under maximum (60% v/v) TFE concentration (experiment) or lowest 

(ε=20) dielectric constant (MD sim). 

 

4.4.3 – Implicit solvent simulations show increased helicity in unphosphorylated core 

residues upon reducing dielectric constant 

While CD provides global information on Syt 1 IDR core region structure, we 

also sought atomistic details from MD simulation similar to our FRET experiments.165, 166 

In the in vitro studies, both unphosphorylated and phosphorylated peptides formed helical 

structures in the lower dielectric environments of TFE-water mixtures (Fig. 4.4). While 

TFE is known to stabilize helical structure181, 182, helical conformers would be a 

reasonable form of secondary structure for this IDR to adopt. Several of its residues have 

high to intermediate helical propensity.183, 184 Moreover, several oppositely charged 

residues in the core region are positioned in i, i+4 locations, suggesting a role for salt 
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bridges in the stabilization of helical structure. In the low dielectric environment of the 

interfacial region of the bilayer, there should be a higher propensity to form such salt 

bridges. We tested this hypothesis using an implicit solvent, first simulating the IDR core 

region at ε=80 (similar to that of water) and then with ε=20 (closer to that of the 

interfacial region). In both simulations, salt concentration was 100 mM to more closely 

mimic in vivo conditions. At ε=80, the unphosphorylated peptide largely occupied coil or 

turn secondary structure (Fig. 4.5 A and Table 4.5), consistent with CD measurements of 

the synthetic peptide (Fig. 4.4). When the unphosphorylated peptide was simulated again 

with ε=20, there was a large increase in the probability of helical conformers (Fig. 4.5 B 

and Table 4.5). When examining the 1.0 µsec trajectory, the helical conformers formed 

were often stabilized by lysine-aspartic acid salt bridges (Fig. 4.5 C). In particular, K111 

and D115 as well as K104 and D108 were among the longer-lived interactions within 

continuous helices (Fig. 4.5 D) though several other electrostatic interactions were also 

observed (Fig. 4.5 E), not all of which were helix stabilizing. 

 

4.4.4 – Implicit solvent simulations indicate Thr112 phosphorylation disrupts formation 

of helical conformers in IDR core residues 

To assess the impact of phosphorylation on the structural propensity of the IDR 

core residues, we repeated the implicit solvent simulations on a phosphorylated peptide 

of identical sequence. At ε=80 and 100 mM salt, the peptide was largely disordered and 

residual helical content was minimal (Fig. 4.6 A and Table 4.5). When the phosphorylated 

peptide was simulated at ε=20, helical structure formed but to a lesser degree compared 

to the unphosphorylated peptide (Fig. 4.6 B and Table 4.5) which is consistent with CD 
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data (Fig. 4.4). This difference is more pronounced when the total helical content is 

separated back into α- and 310-helices. The unphosphorylated peptide’s total helical 

content is largely dominated by α-helix (Table 4.2). In the phosphorylated peptide, the 

ratio of α- to 310-helices is closer to 50:50 with a slight preference toward the 310-helix 

(Table 4.2). 

 

Figure. 4.5. Simulated structural ensemble of unphosphorylated Syt 1 IDR core region. 

(A) Representative conformers of the peptide at a dielectric constant of 80 with secondary 

structure probability per residue is shown below (histogram). (B) Representative 

conformers of the peptide at a dielectric constant of 20 and secondary structure 

probability per residue shown below (histogram). Note increase in helical probability. (C) 

Close-up of example salt bridge that forms to stabilize helix in low dielectric 

environment. (D) IDR core region sequence showing sample salt bridge interactions 

found in helices at a dielectric constant of ε=20. Residues highlighted in purple occupy 

helical secondary structure. (E) Heat map showing change in all salt bridge interactions in 

going from dielectric 80 to dielectric 20. An increased frequency of interaction between 

two charged residues is indicated by gradations of blue whereas decreased interactions 

are indicated by gradations of red. Note increased frequency of i, i+3 and i, i+4 contacts. 
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The region of highest helicity in the unphosphorylated peptide was significantly 

disrupted by phosphorylation, as indicated by a sharp rise in turn/coil secondary 

structures in the residues immediately adjacent to and including Thr112 (Fig. 4.6 A and 

B). Similar to the unphosphorylated peptide under ε=20 simulation conditions, several 

salt bridges were prevalent during the course of the 1.0 µsec trajectory. In this case, 

however, the salt bridges involved the phosphate and several different lysine residues, 

none of which were in optimal positions for stabilizing helical structure (Fig. 4.6 C and 

D). For example, K111 (i, i+1), K107 (i, i+5), K104 (i, i+8) and K98 (i, i+14) all form 

salt bridges with the phosphate (Fig. 4.6 E). In addition to these unfavorable 

intramolecular interactions, phosphothreonine itself is thought to have a lower helical 

propensity which may further contribute to reduced helix formation.185 Moreover, in 

other model helical peptides, phosphorylation events that are centrally localized in the 

helix are more destabilizing to structure.186 

After examining unphosphorylated and phosphorylated peptides individually, we 

next considered them simultaneously as part of a thermodynamic cycle for the core 

region structural states (Fig. 4.7). Using the simulation-derived secondary structure 

probabilities, we calculated energetics for structural transitions that could then be 

compared to those derived from CD. Overall, the energetic trends were similar to those 

extracted from TFE folding experiments. Transitioning from high to low dielectric 

constant was energetically favorable for both unphosphorylated and phosphorylated 

states. However, like the CD experiments, the phosphorylated peptide had a more 

energetically favorable transition (∆∆GU→F = -0.88 kcal/mole) despite having less overall 
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helicity in each dielectric environment. In both dielectric environments, phosphorylation 

was energetically unfavorable for helix formation. 

 

 

Figure. 4.6. Structural ensemble of phosphorylated Syt 1 IDR core. (A) Representative 

conformers of the peptide at a dielectric constant of 80. Secondary structure probability 

per residue is shown below (histogram). Note reduced helicity compared to 

unphosphorylated peptide. (B) Representative conformers of the peptide at a dielectric 

constant of 20. Secondary structure probability per residue is shown below (histogram). 

Note that residues 107-118, which formed a continuous helix in the unphosphorylated 

peptide, is disrupted by coil secondary structure immediately adjacent to phosphorylation 

site. (C) Close-up of example salt bridge that distorts peptide backbone and limits helix 

formation in low dielectric environment. (D) IDR core region sequence showing salt 

bridge interactions inhibitory toward helices at a dielectric constant of ε=20. Green 

residues are those that occupy helical conformers during the trajectory. (E) Heat map 

showing change in salt bridge interactions in going from dielectric 80 to dielectric 20. An 

increased frequency of interaction between two charged residues is indicated by 

gradations of blue whereas decreased interactions are indicated by gradations of red. 
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Figure. 4.7. Simulation-derived thermodynamic cycle of structural states adopted by Syt 

1 IDR core region (residues 97-129). Folding free energies of each structural state 

(Unphos80, Phos80, Unphos20, Phos20) were determined by applying the equation ∆G = 

-RTln(fH/fNH), where fH is the fraction of helical conformers and fNH is the fraction of 

non-helical conformers. The free energy changes associated with transitioning between 

each state were then calculated and are shown in the figure above. Note that for both 

unphosphorylated and phosphorylated peptides, lowering the dielectric constant is 

favorable toward helix formation. The fraction of helical content is shown parenthetically 

below each structural state. At a given dielectric constant, phosphorylation is generally 

unfavorable toward helix formation. Note that the apparent ∆∆G computed from MD 

structural data is of similar magnitude to that derived from CD. 

 

4.4.5 – Sampling compact structural states in full-length IDR simulations can limit core 

region folding 

After obtaining data on full-length IDR compaction and helix formation in the 

core region residues separately, we next considered how sampling of compact structural 

states may influence core region helix propensity. We simulated the full-length IDR 

sequence at ε=80 and ε=20 at high (100 mM) and low (10 mM) salt concentrations and 

compared their structural behaviors. As suggested by the CD TFE-folding data, inclusion 

of the flanking N- and C-terminal regions seem to reduce probability of core region helix 

formation (Fig. 4.8A). This conclusion stems in part from comparison of the helix 

probability seen for the core region alone (Fig. 4.5A) with the same core region residues 
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within the full-length sequence. Comparison of core region and full-length peptides at 

ε=20 was less supportive in this regard (Fig. 4.8B). However, when full-length IDR 

peptides at ε=80 and ε=20 are examined at high and low salt concentrations, the 

correlation becomes more apparent. At ε=80 and 100 mM salt, there is a decrease in the 

sampling of compact structural states (Fig. 4.12) which coincides with a modest increase 

in helix probability in the core region residues (Fig. 4.13). The decrease in sampling of 

compact structural states is still subtle at ε=80 (Fig. 4.8C-E), which may in part explain 

why we did not measure a significantly different change in FRET efficiency under 

increasing salt concentration (Fig. 4.14A). This same salt-induce change was, however, 

more pronounced in simulations performed at ε=20 (Fig. 4.12 and 4.13). In general, the 

IDR more readily samples compact/hairpin structural states at ε=20 as evidenced by Rg 

and polymer chain behaviors (Fig. 4.8C-E). 

While salt influences compaction at ε=20, another likely competitor for 

intramolecular interactions within the IDR is intermolecular interactions with the lipid 

bilayer. Previous EPR spin label accessibility measurements indicate that the basic N-

terminal region can partially penetrate into a POPC:POPS lipid bilayer when 

reconstituted.187 This suggests that the basic N-terminus is the IDR region most likely 

responsible for direct lipid binding. To assess this potential contribution, we measured 

membrane binding of IDR peptides representing either the full-length IDR sequence or 

core region (residues 97-130) to large unilamellar vesicles whose lipid composition 

mimics that of a synaptic vesicle. Consistent with our hypothesis, only the full-length 

IDR peptide that includes the basic N-terminus was found to bind membrane (Fig. 4.14B 

and Fig. 4.14C, Supporting Materials and Methods Chapter 4). Though the core region 
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undergoes structural changes when the full-length IDR is associated with a synaptic 

vesicle mimic49, these co-sedimentation results suggest that the basic N-terminus is 

largely responsible for lipid binding. Because of this binding and the high local 

concentration of acidic phospholipids normally experienced by Syt 1 in the bilayer, lipid 

binding may be able to compete with intramolecular association of N- and C-terminal 

regions. Collectively, the simulations of the full-length IDR and binding results point to 

the possibility of a structural interplay between IDR compaction and occupation of 

transient helical conformers in the core region residues. 

 

 

Figure. 4.8. Structural impact of dielectric constant and salt on full-length Syt 1 IDR. 

Comparison of core region helix propensity in full-length (black histograms) and core 

region (purple or green histograms) peptides at (A) ε = 80 and (B) ε = 20 when salt 

concentration is 100 mM. The full-length IDR shows (C) variable Rg depending on 

simulation conditions where L and H represent 10 mM and 100 mM salt. Inset shows 

average Rg for entire trajectory. The average inter-residue distance for all conditions is 

shown in (D) along with representative conformers in (E). Structures in (E), N- to C-

terminus, are color-coded blue to red. 
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4.5 – Discussion 

In the current study, we probed the structural propensity of Syt 1’s IDR, 

examining the dependence on dielectric constant and phosphorylation. These are 

important goals because, in the former case, the type of intrinsic disorder exploited by Syt 

1 (strong polyampholyte) is naturally subjected to a low dielectric environment by virtue 

of being embedded in a lipid bilayer. This makes the impact of electrostatics more 

pronounced, enhancing any effect charged residues exert on local protein structure. In the 

latter case, phosphorylation at Thr112 has been shown to potentiate synaptic transmission 

in hippocampal neurons158, but a molecular rationale for this cellular change is lacking. 

With regard to dielectric constant, we found both through experiment (Fig. 4.4) 

and simulation (Fig. 4.5 and Fig. 4.6) that reduced dielectric constant promotes helix 

formation in core region residues. These results are of biological interest because we 

previously reported that the IDR remains largely disordered when associated with a lipid 

bilayer.49 While we could not rule out the possibility of the IDR peptide undergoing 

oligomerization on the membrane surface, which could alter structural propensity, 

another possibility for lack of structure is lipid-induced unfolding. While the bilayer 

provides a constant low dielectric environment that should promote folding in the core 

region of the IDR, other chemical factors undoubtedly still influence secondary structure. 

The vesicles we used previously were composed of nine lipid species in specific mole 

fractions designed to mimic the outer leaflet of the native organelle. IDR interaction with 

this cocktail of lipid headgroups may favor a more disordered state as part of a regulatory 

mechanism. Many IDPs and IDRs that interact with membranes are sensitive to lipid 

composition and have their secondary structure altered by different lipid mixtures.188 In 
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the single-pass integral membrane protein phospholamban, for example, this type of lipid 

modulation of structure has been directly linked to altered functionality. In response to 

cationic phospholipids, phospholamban’s cytoplasmic domain becomes more disordered 

and this structural shift consequently decreases the protein’s inhibitory potency towards 

the sarcoplasmic reticulum Ca2+-ATPase (SERCA) that it normally regulates.189 

Another possible explanation for the full-length IDR being more disordered when 

associated with a membrane could relate to an increased tendency to sample compact 

structural states (Fig. 4.8). Increased population of compact states due to low dielectric 

constant was inversely correlated with core region helix formation. This suggests that, in 

addition to possible lipid-regulation of folding, there may also be suppression of structure 

from intramolecular interactions between basic and acidic termini. 

Another finding of biological interest in this study is the site of apparent helix 

formation (Fig. 4.5 and Fig. 4.6). The position where helical structure forms is intriguing 

because it correlates with a disorder-based predicted binding site (Fig. 4.1). In a study by 

de Jong et al158, residues 109-116 were identified as being inhibitory toward synaptic 

release when unphosphorylated and permissive when phosphorylated. Our results suggest 

a potential structural model for this altered function. In the absence of phosphorylation, 

these residues (which form part of a predicted binding site) have a tendency to form an α-

helix which may be necessary for association with an as yet unidentified partner. When 

phosphorylated, however, there is a local disruption of helix formation that may then 

limit binding. This mode of regulation for binding interactions is common. There are 

examples in other IDP systems where single phosphorylation events similarly break 

helices190 or, in extreme cases, sequester a partially helical binding site into a different 
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form of secondary structure.191 In some instances, phosphorylation does not have a 

significant impact on secondary structure, but rather shifts local and global disordered 

ensembles to regulate interactions.179 And in other cytoplasmic regions of integral 

membrane proteins, phosphorylation can rearrange salt bridge interaction networks to 

switch local structure.177 Alternatively, a core region helix may form part of an interaction 

surface that contributes to Syt oligomerization, in which case helix disruption could alter 

the oligomeric state.187 These possibilities are also worth considering in the context of 

other synaptotagmin isoforms. In synaptotagmin 7, for instance, phosphorylation of 

Ser103 (a residue in its putative IDR) also potentiates exocytosis, in this case, of 

insulin.192 Such a similarity suggests that findings on Syt 1’s IDR may help inform future 

study of other synaptotagmin IDR isoforms. 

The structural differences between unphosphorylated and phosphorylated core 

region residues in Syt 1 also provide potential insight into a recent report of the IDR 

interacting with the PH domain of dynamin 1, a GTPase known for facilitating fission of 

vesicles that are being endocytosed.150 That study showed that a T112E missense 

mutation in the IDR abolishes the binding interaction, suggesting that phosphorylation is 

a regulatory mechanism for the interaction. However, that study also showed that deletion 

of residues 117-119 (ALK) or 111-119 (KTMKDQALK) did not disrupt binding of the 

IDR to the PH domain. Given that the KTMKDQALK residues are among those that 

adopt helical conformers in the absence of phosphorylation, the binding interaction with 

dynamin’s PH domain may not involve a specific structured helix in the Syt 1 IDR, but 

instead rely on a mechanism involving local electrostatic interactions.  
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On a more global level, the full-length IDR seems to sample collapsed structures 

(Fig. 4.2 and Fig. 4.8), consistent with both computational predictions155, 156 and effects 

of site-directed mutagenesis on the basic and acidic regions of the IDR in vesicle-vesicle 

docking/fusion assays.157 The other two sites of phosphorylation within the IDR (Thr125 

and Thr128), are located in the acidic C-terminal region, suggesting their placement 

could enhance compaction.193, 194 This may be particularly relevant in a low dielectric 

environment like that near the membrane surface, which already enhances occupation of 

compact conformations (Fig. 4.8). 

When comparing the CD and MD estimates of helical structure in lowest 

dielectric environments, there are differences in the absolute fractions determined by each 

method. While CD and MD do not quantitatively converge, they both indicate that 

phosphorylation is inhibitory toward helix formation. The lack of quantitative agreement 

is not surprising, since the MD simulations consider only the change in dielectric 

constant, ignoring other helix-stabilizing properties of TFE that involve alterations of 

peptide-water interactions which would likely require explicit treatment of both TFE and 

water.195-197 

 

4.6 – Conclusions 

We examined the structural impact of dielectric constant and phosphorylation on 

Syt 1’s IDR. The general sequestration of positive and negative residues at the N- and C-

termini promotes sampling of collapsed structural states in aqueous solution (Fig. 4.2) 

although compact states are more minor compared to extended coil states (Fig. 4.3). The 

more sequence-diverse core region of the IDR, where charge is more uniformly 
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distributed, can form short helices when subjected to TFE (Fig. 4.4) or a simulated low 

dielectric environment (Fig. 4.5). Phosphorylation at Thr112, however, disrupts this 

helical tendency both folding experiments in TFE and in implicit solvent simulations 

(Fig. 4.4 and Fig. 4.6). In addition to phosphorylation alteration of folding (Fig. 4.7), the 

helical propensity of these same core region residues may also be limited in the full-

length sequence as compact structural states are sampled (Fig. 4.8). Collectively, these 

results argue that the Syt 1 IDR is influenced by the low dielectric environment near the 

membrane surface and that altered charge distribution through post-translational 

modification can exert local alterations to its structural propensity. 
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4.7 – Supporting Material 

4.7.1 – Calculation of Compaction Predictor κ  

Polyampholytes are a class of intrinsically disordered proteins that have a high 

frequency of positively and negatively charged amino acids. The Syt 1 IDR falls into this 

category with ~56% of the amino acids being charged. In the predictive framework 

developed by Das and Pappu155, a polyampholyte IDP will adopt linear/extended or 

compact/globular random coils, depending on the distribution of charged side chains in 

sequence. The physical observable for measurement of compaction in this model is radius 

of gyration Rg, which is correlated with a computable predictive parameter called κ. The 

κ term depends on two main terms: σ, the overall charge asymmetry, and σi, the local 

charge asymmetry within a “blob” of linear sequence (usually 5 or 6 residues). How κ 

was calculated and used to predict the possible compactness of the Syt 1 IDR is shown 

below (Table 4.3 and Table 4.4). The fraction of positive (f+) and negative (f-) within 

each 5 or 6 residue i-th blob was used to determine σi: 

 

σi = (f+ - f-)i
2/(f+ + f-)i         Eq. 4.6 

 

Each blob’s charge asymmetry was compared to the IDR’s overall charge asymmetry 

(Eq. 4.7) to determine the squared deviation (δ) using Eq. 4.8: 

 

σ = (f+ - f-)
2/(f+ + f-)         Eq. 4.7 

δ = ∑ (𝜎𝑖 − 𝜎)2/𝑁𝑏𝑙𝑜𝑏Nblob
i=1         Eq. 4.8 
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Where Nblob is the number of blobs in the IDR sequence. Next, δ was determined for a 

rearranged primary sequence of the IDR amino acids that represents the maximum 

possible charge segregation. This value (δmax = 0.503) was then used to calculate κ, the 

parameter used to predict degree of compaction based on Figure 2 from155: 

 

κ = (δ/δmax)          Eq. 4.9 

 

4.7.2 – IDR peptide binding to large unilamellar vesicles (LUVs) 

To test if the IDR core region bound LUVs whose lipid composition mimicked 

that of a synaptic vesicle, we prepared liposomes using our previously developed lipid 

cocktail. This lipid composition was designed to mimic the outer leaflet of a synaptic 

vesicle organelle: 1-stearoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (18:0-18:1 PE); 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (16:0-18:1 PE); 1-stearoyl-2-

docosahexaenoyl-sn-glycero-3-phosphoethanolamine (18:0-22:6 PE); 1-stearoyl-2-

docosahexaenoyl-sn-glycero-3-phosphoserine (18:0-22:6 PS); 1-stearoyl-2-oleoyl-sn-

glycero-3-phosphoserine (18:0-18:1 PS); 1-stearoyl-2-arachidonoyl-sn-glycero-3-

phospho-(1’-myo-inositol-4’,5’-bisphosphate) (18:0-20:4 PI(4,5)P2); 1,2-dioleoyl-sn-

glycero-3-phospho-(1’-myo-inositol-4’,5’-bisphosphate) (18:1-18:1 PI(4,5)P2); 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphoinositol (16:0-18:1 PI); cholesterol. For further 

details preparation, see references49, 198. 

Co-sedimentation with synaptic vesicle mimic LUVs were performed by 

incubating 15 μM of either the full-length IDR (a synthetic peptide corresponding to 

residues 80-156) or the IDR core with part of the acidic C-terminus (residues 97-130) 
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with LUVs for 30 minutes at 22 °C. The concentration of LUVs for each sample ranged 

from 0-6 mM and total sample volume was 60 μL. After incubation, samples were 

subsequently spun down in a TLA 100 rotor for 1 hour at 22 °C to pellet LUVs and 

bound peptide. Depletion of peptide from the resultant supernatants was then used to 

assess membrane binding, where 20 μL aliquots were taken from the supernatants and 

run on SDS-PAGE (Fig. 4.14). 

 

4.7.3 – Nonlinear fitting to two-state folding model 

To determine the free energy of folding, we fit CD signal change to a two-state 

folding model. In a two-state model, there is equilibrium between unfolded (U) and 

folded (F) states of the protein: 

 

Keq = [U]/[F]                   Eq. 4.10 

 

The equilibrium constant is directly related to free energy through the Gibbs equation 

(Eq. 4.11): 

 

ΔG = -RTln(Keq)                  Eq. 4.11 

 

In cases where protein folding equilibria are monitored as a function of osmolyte, 

co-solvent (such as trifluoroethanol, TFE), or denaturant it can be assumed that the 

equilibrium between unfolded and folded states is linearly dependent on the added solute. 

This is an assumption of the linear extrapolation method199 which we employ here: 
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ΔG%TFEv/v = m x (%TFE v/v) + ΔG0                Eq. 4.12 

 

Where ΔG%TFEv/v is the free energy of the folded-unfolded equilibrium at some specified 

volume percentage of TFE, m is the proportionality constant by which the folding 

equilibrium free energy changes with addition of TFE, and ΔG0 is the equilibrium folding 

free energy in the absence of any TFE. In the case of circular dichroism measurements, 

there is a change in absorption of circularly polarized light with a change in structure. 

This signal change, when plotted as a function of % TFE v/v, creates a sigmoidal 

transition from which the fraction of unfolded species (fU) can be represented: 

 

fU = ([θ]%TFEv/v – [θ]min)/([θ]max – [θ]min)               Eq. 4.13 

 

Where [θ]%TFEv/v is the absorption of circularly polarized at different volume percentages 

of TFE, [θ]min is the absorption in the absence of TFE where there is no folded structure, 

and [θ]max is the absorption where there is constant helical structure with addition of TFE. 

By calculating fU at all volume percentages of TFE, equilibrium constants (Keq, %TFE) and 

folding free energies (ΔG%TFEv/v) can be calculated for each data point: 

 

Keq, %TFE = fU/(1-fU)                  Eq. 4.14 

ΔG%TFEv/v = -RTln(Keq, %TFE)                 Eq. 4.15 
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A plot of ΔG%TFEv/v from Eq. 4.15 versus % TFE v/v yields a linear correlation upon 

which linear regression analysis can be performed to obtain the slope (m) and intercept 

(ΔG0) of Eq. 4.12 above.  

While the above approach provides the desired value for the folded-unfolded 

equilibrium in the absence of TFE, we further analyzed the data with a non-linear least 

squares regression fitting of the raw data so that we could simultaneously fit two 

wavelengths reporting on the transition (198 nm and 222 nm) to a single set of m-values 

and ΔG0. The signal measured by circular dichroism is dependent on the fraction of 

unfolded protein. To model the folding transition, we use the following expression to 

describe the experimental data: 

 

[θ]fit = fU x ([θ]F – [θ]U) + [θ]U                Eq. 4.16 

 

Where [θ]fit is the modeled signal, [θ]F is the absorption for maximally folded protein, 

and [θ]U is the absorption for unfolded protein. In the non-linear least squares regression 

fitting, both [θ]F and [θ]U are fit parameters. However, absorption values taken directly 

from the raw data both in the absence of TFE (for [θ]U) and when there is no additional 

gain of folded structure upon addition of TFE (for [θ]F) can be used as close starting 

values. These parameters did not change substantially during the fitting process (Table 

4.1). Since fU is directly related to the folded-unfolded equilibrium constant (Eq. 4.14) 

and the equilibrium constant is related to free energy in the presence of TFE (Eq. 4.15) 

which in turn is linearly related to % TFE v/v (Eq. 4.12), then simple rearrangement and 
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substitution of equations will give a modified expression for [θ]fit in terms of the four fit 

parameters used for non-linear regression: 

 

[θ]fit = ((e-(m*(%TFEv/v)+ΔG0)/(RT))/(e-(m*(%TFEv/v)+ΔG0)/(RT) + 1)) x ([θ]F – [θ]U) + [θ]U     Eq. 4.17 

 

With Eq. 4.17 used to calculate the theoretical absorption of circularly polarized 

light as a function of % TFE v/v, we used the solver function of Excel to minimize the 

sum of the square differences between experimental and calculated fit values by 

manipulating the four parameters of m, ΔG0, [θ]F and [θ]U in a manner similar to that 

described previously.147, 162 In addition to using absorption values from the raw data for 

[θ]F and [θ]U as described above, we also used m and ΔG0 parameters obtained from the 

initial linear regression analysis of the linear-extrapolation method. Using these four 

starting parameters in Eq. 4.17 already does a reasonable job of describing the data. 

However, application of solver for further error minimization improves the total sum of 

the square differences between raw and fit values. After fitting the raw data sets, both the 

data and fit were normalized for side-by-side comparison in the main text.  
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Figure 4.9. Position of Syt 1 IDR in sequence charge-dependent phase diagram of 

structural states. Note that location of the Syt 1 IDR, indicated by Seq 1 data point, 

suggests it likely samples coil and/or hairpin-like structural states in an environment 

whose dielectric constant is similar to water. 
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Figure 4.10. RMSD of Syt 1 IDR constructs used in MD simulations. Core region 

peptides (residues 97-129) in unphosphorylated (purple) and phosphorylated (green) 

states and at dielectric constants of both ε=80 and ε=20 are shown in top four panels. The 

full-length peptides (residues 80-141) at dielectric constant and salt concentration of ε=80 

and 10 mM (blue), ε=80 and 100 mM (green), ε=20 and 10 mM (red), ε=20 and 100 mM 

(orange) are shown in the bottom four panels. Note that each peptide reaches equilibrium 

rapidly.  
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Figure 4.11. TFE-induced folding of Syt1 IDR. The left column shows partial folding of 

the IDR core residues (97-130) with Thr112 phosphorylated. Note its restricted transition. 

The middle column shows partial folding of IDR core residues (97-130) with Thr112 in 

its unphosphorylated state. The right column shows partial folding of the full length IDR 

(residues 80-140). Note that the top three panels in this column are replicates of the 

synthesized peptide and the bottom panel is the recombinantly expressed IDR that 

includes a C-terminal his-tag. Violet to red corresponds to a 0-60% v/v TFE range in 

increments of 3%. 
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Figure 4.12. Simulated inter-residue distances of full-length Syt 1 IDR under varied 

dielectric constant and salt conditions during the course of each trajectory. Black 

diamonds indicate the average structure. 
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Figure 4.13. Helix probability histograms (determined as described in main text) for full-

length Syt 1 IDR sequence. Black arrows for all four histograms indicate approximate 

core residue region. In all cases, arrows align with 0.1 on the probability axis to aid 

comparison. Also noteworthy is that, under all four conditions, helical content in the 

acidic C-terminus was markedly low. 
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Figure 4.14. Potential factors influencing full-length IDR compaction. (A) FRET 

efficiency was not significantly affected by salt. (B) Core region Syt 1 IDR 

(representative of n=2) as a synthetic peptide in a co-sedimentation assay with synaptic 

vesicle mimic LUVs. (C) Full-length Syt 1 IDR (left, representative of n=3) as a synthetic 

peptide in a co-sedimentation assay with synaptic vesicle mimic LUVs and (right) the 

resultant binding curve (KD = 169±82 μM). Collectively, the presence of either peptide in 

the supernatant indicates that the peptide containing the polybasic N-terminus is binding 

competent. This suggests that the basic N-terminus, in addition to transiently interacting 

with the negative C-terminus of the IDR sequence, also interacts with acidic lipids in a 

synaptic vesicle membrane and likely has two competing interactions (lipid – 

intermolecular; negative C-terminus – intramolecular) that could influence propensity to 

exist in compact structural state. 
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Table 4.3. Calculated kappa for blob g=5. 

For g = 5 

i + - f+ f- σi (σi - σ)2 ∑Nblob # of blobs δ κg=5 

1 2 0 0.4 0 0.400 0.157 6.927 58 0.119 0.238 

2 2 0 0.4 0 0.400 0.157  

3 2 0 0.4 0 0.400 0.157 

4 3 0 0.6 0 0.600 0.355 

5 3 0 0.6 0 0.600 0.355 

6 4 0 0.8 0 0.800 0.633 

7 4 0 0.8 0 0.800 0.633 

8 4 0 0.8 0 0.800 0.633 

9 3 0 0.6 0 0.600 0.355 

10 4 0 0.8 0 0.800 0.633 

11 3 1 0.6 0.2 0.200 0.038 

12 3 1 0.6 0.2 0.200 0.038 

13 2 1 0.4 0.2 0.067 0.004 

14 2 1 0.4 0.2 0.067 0.004 

15 2 1 0.4 0.2 0.067 0.004 

16 2 0 0.4 0 0.400 0.157 

17 1 0 0.2 0 0.200 0.038 

18 1 0 0.2 0 0.200 0.038 

19 1 0 0.2 0 0.200 0.038 

20 0 0 0 0   

21 1 0 0.2 0 0.200 0.038 

22 1 1 0.2 0.2 0.000 0.000 

23 1 1 0.2 0.2 0.000 0.000 

24 2 1 0.4 0.2 0.067 0.004 

25 2 2 0.4 0.4 0.000 0.000 

26 1 2 0.2 0.4 0.067 0.004 

27 1 1 0.2 0.2 0.000 0.000 

28 2 1 0.4 0.2 0.067 0.004 

29 1 1 0.2 0.2 0.000 0.000 

30 1 0 0.2 0 0.200 0.038 

31 2 0 0.4 0 0.400 0.157 

32 2 1 0.4 0.2 0.067 0.004 

33 1 1 0.2 0.2 0.000 0.000 

34 1 1 0.2 0.2 0.000 0.000 

35 1 1 0.2 0.2 0.000 0.000 

36 1 1 0.2 0.2 0.000 0.000 

37 1 1 0.2 0.2 0.000 0.000 

38 1 2 0.2 0.4 0.067 0.004 

39 1 3 0.2 0.6 0.200 0.038 

40 1 3 0.2 0.6 0.200 0.038 

41 0 4 0 0.8 0.800 0.633 
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42 0 3 0 0.6 0.600 0.355 

43 0 2 0 0.4 0.400 0.157 

44 0 1 0 0.2 0.200 0.038 

45 0 1 0 0.2 0.200 0.038 

46 0 1 0 0.2 0.200 0.038 

47 0 1 0 0.2 0.200 0.038 

48 0 2 0 0.4 0.400 0.157 

49 0 3 0 0.6 0.600 0.355 

50 1 3 0.2 0.6 0.200 0.038 

51 1 3 0.2 0.6 0.200 0.038 

52 1 4 0.2 0.8 0.360 0.127 

53 1 3 0.2 0.6 0.200 0.038 

54 2 2 0.4 0.4 0.000 0.000 

55 1 3 0.2 0.6 0.200 0.038 

56 1 3 0.2 0.6 0.200 0.038 

57 1 3 0.2 0.6 0.200 0.038 

58 2 3 0.4 0.6 0.040 0.001 
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Table 4.4. Calculated kappa for g=6. 

 

for g=6 

i + - f+ f- σi (σi - σ)2 ∑Nblob # of blobs δ κg=6 

1 3 0 0.500 0.000 0.500 0.246 6.170 57 0.108 0.215 

2 3 0 0.500 0.000 0.500 0.246  

3 3 0 0.500 0.000 0.500 0.246 

4 3 0 0.500 0.000 0.500 0.246 

5 4 0 0.667 0.000 0.667 0.439 

6 5 0 0.833 0.000 0.833 0.688 

7 5 0 0.833 0.000 0.833 0.688 

8 4 0 0.667 0.000 0.667 0.439 

9 4 0 0.667 0.000 0.667 0.439 

10 4 1 0.667 0.167 0.300 0.088 

11 4 1 0.667 0.167 0.300 0.088 

12 3 1 0.500 0.167 0.167 0.026 

13 2 1 0.333 0.167 0.056 0.003 

14 3 1 0.500 0.167 0.167 0.026 

15 2 1 0.333 0.167 0.056 0.003 

16 2 0 0.333 0.000 0.333 0.108 

17 1 0 0.167 0.000 0.167 0.026 

18 1 0 0.167 0.000 0.167 0.026 

19 1 0 0.167 0.000 0.167 0.026 

20 1 0 0.167 0.000 0.167 0.026 

21 1 1 0.167 0.167 0.000 2.E-05 

22 1 1 0.167 0.167 0.000 2.E-05 

23 2 1 0.333 0.167 0.056 0.003 

24 2 2 0.333 0.333 0.000 2.E-05 

25 2 2 0.333 0.333 0.000 2.E-05 

26 1 2 0.167 0.333 0.056 0.003 

27 2 1 0.333 0.167 0.056 0.003 

28 2 1 0.333 0.167 0.056 0.003 

29 1 1 0.167 0.167 0.000 2.E-05 

30 2 0 0.333 0.000 0.333 0.108 

31 2 1 0.333 0.167 0.056 0.003 

32 2 1 0.333 0.167 0.056 0.003 

33 1 1 0.167 0.167 0.000 2.E-05 

34 1 1 0.167 0.167 0.000 2.E-05 

35 2 1 0.333 0.167 0.056 0.003 

36 1 2 0.167 0.333 0.056 0.003 

37 1 2 0.167 0.333 0.056 0.003 

38 1 3 0.167 0.500 0.167 0.026 

39 1 3 0.167 0.500 0.167 0.026 

40 1 4 0.167 0.667 0.300 0.088 

41 0 4 0.000 0.667 0.667 0.439 
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42 0 3 0.000 0.500 0.500 0.246 

43 0 2 0.000 0.333 0.333 0.108 

44 0 1 0.000 0.167 0.167 0.026 

45 0 2 0.000 0.333 0.333 0.108 

46 0 1 0.000 0.167 0.167 0.026 

47 0 2 0.000 0.333 0.333 0.108 

48 0 3 0.000 0.500 0.500 0.246 

49 1 3 0.167 0.500 0.167 0.026 

50 1 4 0.167 0.667 0.300 0.088 

51 1 4 0.167 0.667 0.300 0.088 

52 1 4 0.167 0.667 0.300 0.088 

53 2 3 0.333 0.500 0.033 0.001 

54 2 3 0.333 0.500 0.033 0.001 

55 1 4 0.167 0.667 0.300 0.088 

56 1 4 0.167 0.667 0.300 0.088 

57 2 3 0.333 0.500 0.033 0.001 
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Table 4.5. MD-derived secondary structure for Syt 1 IDR core region. Turn (T), β-sheet 

(B), helix (H) and coil (C) are shown as fractions for each residue. 

 

 Unphosphorylated Dielec80 Unphosphorylated Dielec20 Phosphorylated Dielec80 Phosphorylated Dielec20 

Res T B H C T B H C T B H C T B H C 

97 
0.120 0.000 0.000 0.880 0.104 0.000 0.000 0.896 0.126 0.000 0.000 0.874 0.270 0.000 0.000 0.730 

98 
0.229 0.000 0.005 0.766 0.208 0.027 0.008 0.751 0.244 0.002 0.003 0.750 0.320 0.001 0.003 0.676 

99 
0.359 0.000 0.020 0.621 0.380 0.027 0.040 0.505 0.379 0.002 0.014 0.605 0.652 0.002 0.006 0.340 

100 
0.457 0.000 0.083 0.460 0.547 0.000 0.144 0.305 0.500 0.000 0.064 0.435 0.676 0.084 0.039 0.202 

101 
0.442 0.000 0.097 0.460 0.551 0.000 0.173 0.277 0.484 0.000 0.077 0.438 0.686 0.099 0.045 0.169 

102 
0.443 0.000 0.104 0.454 0.540 0.000 0.194 0.265 0.486 0.000 0.078 0.436 0.711 0.089 0.064 0.135 

103 
0.519 0.000 0.092 0.389 0.559 0.000 0.185 0.253 0.550 0.000 0.045 0.405 0.614 0.118 0.061 0.208 

104 
0.445 0.000 0.093 0.462 0.404 0.024 0.179 0.348 0.474 0.002 0.030 0.494 0.682 0.107 0.052 0.159 

105 
0.394 0.000 0.089 0.517 0.355 0.024 0.194 0.419 0.448 0.002 0.035 0.515 0.604 0.000 0.048 0.348 

106 
0.418 0.000 0.128 0.454 0.361 0.000 0.307 0.331 0.482 0.000 0.059 0.459 0.664 0.084 0.034 0.218 

107 
0.352 0.000 0.153 0.495 0.355 0.000 0.335 0.310 0.440 0.000 0.073 0.487 0.612 0.094 0.181 0.113 

108 
0.342 0.000 0.158 0.499 0.412 0.000 0.327 0.261 0.414 0.000 0.065 0.522 0.228 0.193 0.170 0.409 

109 
0.354 0.000 0.149 0.497 0.373 0.000 0.336 0.287 0.359 0.000 0.044 0.597 0.234 0.115 0.174 0.478 

110 
0.486 0.000 0.102 0.412 0.458 0.000 0.287 0.252 0.331 0.000 0.009 0.660 0.220 0.000 0.000 0.780 

111 
0.448 0.001 0.141 0.411 0.445 0.006 0.295 0.253 0.193 0.000 0.007 0.799 0.087 0.000 0.033 0.879 

112 
0.448 0.001 0.147 0.404 0.422 0.010 0.285 0.282 0.160 0.000 0.010 0.830 0.502 0.000 0.123 0.374 

113 
0.520 0.000 0.162 0.317 0.485 0.011 0.288 0.215 0.324 0.000 0.026 0.650 0.612 0.000 0.221 0.167 

114 
0.527 0.000 0.203 0.270 0.484 0.010 0.323 0.182 0.462 0.000 0.057 0.482 0.621 0.000 0.343 0.035 

115 
0.520 0.000 0.226 0.255 0.531 0.000 0.324 0.146 0.492 0.000 0.086 0.421 0.578 0.000 0.398 0.024 

116 
0.525 0.001 0.205 0.269 0.516 0.000 0.295 0.190 0.522 0.000 0.083 0.395 0.591 0.000 0.350 0.059 

117 
0.482 0.001 0.122 0.395 0.501 0.011 0.124 0.362 0.484 0.000 0.053 0.464 0.623 0.000 0.120 0.258 

118 
0.380 0.000 0.058 0.562 0.388 0.015 0.060 0.534 0.384 0.000 0.022 0.593 0.393 0.000 0.018 0.589 

119 
0.284 0.000 0.019 0.697 0.309 0.013 0.024 0.652 0.296 0.000 0.008 0.696 0.243 0.000 0.007 0.750 

120 
0.228 0.000 0.022 0.750 0.257 0.005 0.052 0.685 0.242 0.000 0.011 0.747 0.330 0.000 0.013 0.658 

121 
0.190 0.000 0.024 0.787 0.237 0.000 0.070 0.693 0.211 0.000 0.017 0.773 0.305 0.000 0.067 0.628 

122 
0.220 0.000 0.026 0.754 0.268 0.000 0.073 0.659 0.237 0.000 0.019 0.744 0.349 0.000 0.084 0.567 

123 
0.335 0.000 0.023 0.642 0.363 0.000 0.061 0.574 0.333 0.000 0.016 0.650 0.446 0.005 0.091 0.459 

124 
0.309 0.000 0.019 0.672 0.350 0.000 0.056 0.593 0.312 0.000 0.016 0.672 0.467 0.006 0.079 0.449 
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125 
0.308 0.000 0.016 0.676 0.338 0.001 0.040 0.620 0.312 0.000 0.013 0.676 0.420 0.003 0.060 0.518 

126 
0.260 0.000 0.009 0.731 0.288 0.000 0.018 0.691 0.255 0.000 0.006 0.739 0.349 0.000 0.021 0.630 

127 
0.122 0.000 0.004 0.875 0.146 0.000 0.008 0.845 0.126 0.000 0.002 0.872 0.150 0.000 0.005 0.846 

128 
0.057 0.000 0.000 0.943 0.067 0.000 0.000 0.932 0.053 0.000 0.000 0.947 0.065 0.000 0.000 0.935 

129 
0.001 0.000 0.000 0.999 0.001 0.000 0.000 0.999 0.001 0.000 0.000 0.999 0.001 0.000 0.000 0.999 
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CHAPTER 5: FUTURE DIRECTIONS 

5.1 – Actin-binding domains 

 The results presented in Chapters 2 and 3 of this thesis provide several potential 

avenues for future studies. One of the first is exploration of the N-terminal residues 

upstream the CH1 domain. In Chapter 2, the truncation of the 50 N-terminal disordered 

region abolished binding. This finding is intriguing, because the ABD is typically defined 

as consisting of the tandem CH domains. Yet, in this example, the CH domains are 

present but no binding occurs. This opens the question about how significantly the N-

terminal residues of other ABDs in the spectrin superfamily contribute to their respective 

binding affinities. Similar truncation experiments could address this. Another facet to this 

question is post-translational modifications. The N-terminal residues sometimes contain 

phosphorylation sites within the sequence. If the N-terminal sequence contributes to the 

actin-binding interface and PTMs occur there, is affinity being tuned up or down? Some 

research groups have already begun probing this question with simulation approaches200, 

but it is well known that phosphorylation is typically an on/off switch for tuning 

functions. 

 Another possible question to explore is whether or not the βIII-spectrin mutation 

could be used to help in the generation of more high-resolution cryo-EM models, but for 

other ABDs. The wild-type affinity of the βIII-spectrin ABD was too low to decorate 

filaments and generate a model. Other ABDs may face similar problems, but if their 

affinities could be increased through introduction of mutations that increase affinity by 

perturbing the closed-open equilibrium (but the not fold) of CH domains, perhaps high-
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resolution models would become attainable. Indeed, a more recent cryo-EM structural 

study201 that generated ABD-actin models of even higher resolution than that of βIII-

spectrin utilized ABD mutants that had elevated affinity. Those structural models also 

stabilized F-actin with phalloidin, which may contribute to improved resolution in the 

model. Either way, the cryo-EM models could reveal more information on ABD-actin 

interactions, particularly the N-terminal residues, which might otherwise be difficult to 

study structurally when bound to actin filaments. 

5.2 – The IDR of synaptotagmin 1 

 For Chapter 4, the results of the study are of interest because they suggest that 

structural modifications outside the C2 domains are biologically relevant to the function 

of the protein. How, exactly, is still not known and will require design of exploratory 

experiments to generate new hypotheses. It is possible that the structural change is having 

an allosteric effect that impacts Ca2+-sensing, but it also seems plausible that this region 

of synaptotagmin might form a binding site for some other exocytosis effector protein. 

Ultimately, this topic will be something I will explore during my postdoc.  
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