
Fast exact algorithms for optimization problems in
resource allocation and switched linear systems

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Zeyang Wu

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Prof. Qie He, Advisor

June, 2019

c© Zeyang Wu 2019

ALL RIGHTS RESERVED

Acknowledgements

There are many people that have earned my gratitude for their contribution to my time

in graduate school.

Firstly, I would like to express my sincere gratitude to my advisor, Prof. Qie He, for

his continuous and invaluable support during the last five years not only in academic

research but also other aspects of life. I have been learning from his broad knowledge,

innovative thinking, and pursuit of mathematical rigor and integrity. This dissertation

would not have been possible without him. It has been an honor to be his first student.

Special thanks go to the rest of my thesis committee members: Prof. Ravi Janardan,

Prof. Jean-Philippe Richard, Prof. Shuzhong Zhang. I also want to thank Prof. Kevin

Leder for serving on my thesis proposal committee. I am grateful for their precious time

and insightful comments on my research proposal and dissertation.

My friends consist of a great part of my wonderful and exciting life at the University

of Minnesota. Special thanks go to Xiang Gao, Tianyi Chen, Ruizhi Shi, Zhiyuan Xu,

Guiyun Feng, Yuanchen Su, Xiaoye Su, Chenglong Ye, Kaiyu Wang, Wenbo Dong,

Zhenhuan Zhang, Xiaochen Zhang, Kameng Nip, Changning Wei, Zhuoxian Liang.

Finally, I would like to thank my parents and my sister for their endless love. This

dissertation is dedicated to them.

Zeyang Wu

Minneapolis, May 2019

i

Dedication

To those who held me up over the years

ii

Abstract

Discrete optimization is a branch of mathematical optimization where some of the

decision variables are restricted to real values in a discrete set. The use of discrete

decision variables greatly expands the scope and capacity of mathematical optimization

models. In the era of big data, efficiency and scalability are increasingly important in

evaluating the performance of an algorithm. However, discrete optimization problems

usually are challenging to solve. In this thesis, we develop new fast exact algorithms for

discrete optimization problems arising in the field of resource allocation and switched

linear systems.

The first problem is the discrete resource allocation problem with nested bound

constraints. It is a fundamental problem with a wide variety of applications in search

theory, economics, inventory systems, etc. Given B units of resource and n activities,

each of which associated with a convex allocation cost fi(·), we aim to find an allocation

of resources to the n activities, denoted by x ∈ Zn, to minimize the total allocation

cost
n∑
i=1

fi(xi) subject to the total amount of resource constraint as well as lower and

upper bound constraints on total resource allocated to subsets of activities. We develop

a Θ(n2 log B
n)-time algorithm for it. It is an infeasibility-guided divide-and-conquer

algorithm and the worst-case complexity is usually not achieved. Numerical experiments

demonstrate that our algorithm significantly outperforms a state-of-the-art optimization

solver and the performance of our algorithm is competitive compared to the algorithm

with the best worst-case complexity for this problem in the literature.

The second problem is the minimum convex cost network flow problem on the dy-

namic lot size network. In the dynamic lot size network, there are one source node and

n sink nodes with demand di, i = 1, . . . , n. Let B =
∑n

i=0 di be the total demand. We

aim to find a flow x to minimize the total arc cost and satisfy all the flow balance and

capacity constraints. Many optimization models in the literature can be seen as special

cases of this problem, including dynamic lot-sizing problem and speed optimization. It

is also a generalization of the first problem. We develop the Scaled Flow-improving

Algorithm. For the continuous problem, our algorithm finds a solution that is at most

ε away from an optimal solution in terms of the infinity norm in O(n2 log B
nε) time. For

iii

the integer problem, our algorithm terminates in O(n2 log B
n) time. Our algorithm has

the best worst-case complexity in the literature. In particular, it solves the discrete

resource allocation problem with nested bound constraints in O(n log n log B
n) time and

it also achieves the best worst-case complexity for that problem. We conduct extensive

numerical experiments on instances with a variety of convex objectives. The numerical

result demonstrates the efficiency of our algorithm in solving large-sized instances.

The last problem is the optimal control problem in switched linear systems. We

consider the following dynamical system that consists of several linear subsystems: K

matrices, each chosen from the given set of matrices, to maximize a convex function

over the product of the K matrices and the given vector. This simple problem has

many applications in operations research and control, yet a moderate-sized instance is

challenging to solve to optimality for state-of-the-art optimization software. We prove

the problem is NP-hard. We propose a simple exact algorithm for this problem. Our

algorithm runs in polynomial time when the given set of matrices has the oligo-vertex

property, a concept we introduce for a set of matrices. We derive several easy-to-verify

sufficient conditions for a set of matrices to have the oligo-vertex property. In particular,

we show that a pair of binary matrices has the oligo-vertex property. Numerical results

demonstrate the clear advantage of our algorithm in solving large-sized instances of the

problem over one state-of-the-art global solver. We also pose several open questions

on the oligo-vertex property and discuss its potential connection with the finiteness

property of a set of matrices, which may be of independent interest.

iv

Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Discrete optimization . 2

1.2 Nonlinear discrete optimization . 3

1.3 Computational complexity of an algorithm 4

1.3.1 Class P and class NP . 4

1.3.2 Exact, approximation, and meta-heuristic algorithms 6

1.4 Three nonlinear discrete optimization problems 8

1.4.1 Discrete resource allocation problem with nested bound constraints 8

1.4.2 Minimum convex cost flow problem over the dynamic lot size net-

work . 10

1.4.3 Optimal switch sequence for switched linear systems 12

1.5 Organization of the thesis . 14

1.6 Preliminary . 14

1.6.1 Model of computation . 15

1.6.2 Minimum cost network flow problems 25

v

1.6.3 Convex hull algorithms . 27

2 Discrete resource allocation with nested constraints 31

2.1 Introduction . 32

2.2 Literature review . 33

2.3 A recursive algorithm based on divide and conquer 35

2.3.1 DRAP(s, e) in Step 6 of Algorithm 1 37

2.3.2 Time complexity of Algorithm 1 38

2.4 Proof of Proposition 1 . 40

2.5 Numerical experiments . 43

2.5.1 Computational experiment with Gurobi 44

2.5.2 Computational experiment on convex objectives 47

2.5.3 Non-separable convex objective 55

2.5.4 Concluding remarks . 57

2.6 Conclusions . 59

3 Minimum convex cost network flow over the dynamic lot size network 60

3.1 Introduction . 62

3.2 Literature review . 63

3.2.1 Applications . 63

3.2.2 Existing algorithms . 65

3.3 Preliminaries . 66

3.3.1 Pseudoflow and residual network 67

3.3.2 Three algorithms . 68

3.3.3 Transforming MCCNFP to MCNFP 73

3.4 SFA: a scaling-based algorithm for (P2) 75

3.4.1 Correctness of SFA . 77

3.4.2 Complexity of SFA . 87

3.5 Faster implementation of SFA for RAP-NC 88

3.5.1 Transformation of RAP-NC to a minimum convex cost flow problem 88

3.5.2 Complexity of SFA for (P1) . 90

3.6 Computational experiments . 91

3.6.1 Discrete resource allocation with nested bound constraints 91

vi

3.7 Conclusions . 97

4 Switched linear systems 98

4.1 Introduction . 99

4.2 Related Work . 104

4.3 Computational Complexity . 105

4.3.1 Notations . 105

4.3.2 Complexity . 105

4.3.3 The Algorithm . 108

4.4 Polynomially Solvable Cases . 110

4.5 The 2× 2 Binary Matrices . 114

4.5.1 Σ1 = {A1, A2} . 117

4.5.2 Σ2 = {A1, A4} . 122

4.5.3 Σ3 = {A2, A3} . 124

4.5.4 Σ4 = {A4, A5} . 125

4.5.5 Σ5 = {A2, A4} . 125

4.6 Computational results . 125

4.7 Open Problems and Conclusions . 127

References 129

vii

List of Tables

1.1 The worst-case complexity of convex hull algorithms in R2 29

2.1 Solution statistics of DCA and Gurobi for instance with linear costs. 45

2.2 Solution statistics for DCA and Gurobi with quadratic cost. 47

2.3 Solution statistics of DCA and MDA for instances with convex cost objectives [F]. 51

2.4 Solution statistics of DCA and MDA for instances with convex cost objectives

[CRASH]. 52

2.5 Solution statistics of DCA and MDA for instances with convex cost objectives

[FUEL]. 54

2.6 Statistic of Grad-DCA and Grad-MDA on SVOREX benchmark instances 58

3.1 Solution statistics of MDA, DCA, and SFA for instances with linear costs. . . 92

3.2 Solution statistics of MDA, DCA, and SFA for instances with quadratic costs. 93

3.3 Solution statistics of MDA, DCA, and SFA for instances with convex cost ob-

jectives [F]. 94

3.4 Solution statistics of MDA, DCA, and SFA for instances with convex cost ob-

jectives [CRASH]. 95

3.5 Solution statistics of MDA, DCA, and SFA for instances with convex cost ob-

jectives [FUEL]. 96

4.1 The number of extreme points Nk(Σ, a) 116

4.2 The average running time of our algorithm and solution statistics of Baron127

viii

List of Figures

1.1 The dynamic lot size network. 10

1.2 The trajectory of x(k) under different matrix sequences 13

2.1 Solution time of DCA and Gurobi for instances with linear costs. 45

2.2 Solution time for DCA and Gurobi for instances with quadratic costs. . 46

2.3 Solution time and number of subproblems solved statistics of DCA and MDA

for instances with convex cost objectives [F]. 51

2.4 Solution time and number of subproblems solved statistics of DCA and MDA

for instances with convex cost objectives [CRASH]. 53

2.5 Solution time and number of subproblems solved statistics of DCA and MDA

for instances with convex cost objectives [FUEL]. 54

3.1 The dynamic lot size network. 61

3.2 The dynamic lot size network. 62

3.3 Illustrating the residual network G(x). 68

3.4 Illustrating the candidates of shortest paths 72

3.5 Illustrating the transformation of a MCCNFP to a MCNFP on a expand-

ed network. 73

3.6 Illustrating the construction of the residual network. 74

3.7 Illustrating the relation of the unit incremental cost. 81

3.8 Illustrating the relation of the unit incremental cost. 81

3.9 The network defined by (3.14). 89

3.10 Solution time of MDA, DCA, and SFA for instances with linear costs. 92

3.11 Solution time of DCA, MDA, and SFA for instances with quadratic costs. . . . 93

3.12 Solution time of MDA, DCA, and SFA for instances with convex cost objectives

[F]. 94

ix

3.13 Solution time of MDA, DCA, and SFA for instances with convex cost objectives

[CRASH]. 95

3.14 Solution time of MDA, DCA, and SFA for instances with convex cost objectives

[FUEL]. 96

4.1 The trajectory of x(k) under different matrix sequences 100

4.2 The nodes and arcs in GA and GB corresponding to the clause Cj =

y1 ∨ yc3 ∨ y4 with a total of 4 variables. 106

4.3 The number of extreme points Nk(Σ1, a) given different initial vector a’s. 116

4.4 Examples of polytopes Pk(Σ3, a) and associated sets of extreme points

Eik(Σ3, a) for i ∈ [0 : 4]. 117

4.5 Point p is a convex combination of r, s, and A2p. 123

x

Chapter 1

Introduction

1

2

1.1 Discrete optimization

This thesis is dedicated to developing fast exact algorithms for several nonlinear discrete

optimization problems. Discrete optimization is a branch of mathematical optimization

where some of the decision variables are restricted to real values in a discrete set. When

the discrete set is a set of integers, it is known as integer programming. When the

discrete set is a set of combinatorial structures, such as permutations, combination-

s, or paths and trees in a graph, it is known as combinatorial optimization. Integer

programming and combinatorial optimization are closely related: combinatorial opti-

mization problems can be modeled as integer programs and conversely, many integer

programming problems have meaningful combinatorial interpretations. In its generic

form, discrete optimization can be formulated as follows:

min f(x)

s.t. x ∈ S,

where f(x) is the objective function and S is the feasible set.

The use of discrete decision variables greatly expands the scope and capacity of

mathematical optimization models. Discrete optimization models are ubiquitous. Per-

haps the most well-known example is the traveling salesman problem (TSP), which

asks for the shortest tour to visit each city in a list exactly once [1, 2, 3]. This problem

attracted a lot of attention after the RAND Corporation offered prizes for solving the

problem in the 1950s. Since then, TSP and its variants have been studied extensively

and the related algorithms have been applied to solve these problems in many areas such

as logistics, transportation, and the semiconductor industry [4, 5, 6, 7]. Another exam-

ple is the shortest path problem (SPP), which asks for a path of shortest length from one

node to another node in a given network. Classic algorithms of SPP have been widely

implemented by companies such as Google, Uber, and Lyft to find the shortest path

between two locations. SPP also appears as a subproblem in many algorithms for other

problems, including vehicle routing problems and network flow problems. The third

example is the knapsack problem, which asks for the most profitable way of packing

items into a knapsack. Since its first appearance in [8], it has been studied as a classic

decision-making problem for more than one century with a variety of applications [9].

3

1.2 Nonlinear discrete optimization

In the simplest form of discrete optimization, the objective f(x) is often a linear func-

tion. However, a nonlinear objective function arises naturally in some applications as

it can provide a more accurate description of the relationship between the objective

and the decision variables. One example is the speed optimization problem over a

path [10, 11, 12], the goal of which is to find the optimal speed between two consecutive

nodes over a fixed path to minimize the total cost, including fuel and emission cost

over the arcs and possible customer inconvenience cost over the nodes. In maritime

transportation, the fuel cost can be modeled as a cubic function of the speed and the

customer inconvenience is usually modeled as a convex quadratic function of the ar-

rival time. In aircraft transportation, the fuel cost is a polynomial function of order

three [13, 14]. Another example is the resource allocation problem, a prototype problem

that asks to find an optimal allocation of a fixed amount of resources to activities so as

to minimize the cost incurred by the allocation [15]. The allocation cost is assumed to

be nonlinear in most of the literature.

Algorithm design is one of the central themes in nonlinear discrete optimization.

Nonlinear discrete optimization problems are very challenging to solve. The difficulty

mainly comes from two aspects: combinatorial explosion and nonlinearity. There are

two main directions in attacking such a problem. One direction is to formulate the prob-

lem as a mixed-integer nonlinear program (MINLP) and then solve it with off-the-shelf

optimization software, such as Gurobi [16] and Cplex [17]. The software employs numer-

ous algorithms and techniques developed for MINLP, including branch and bound, the

cutting planes, column generation, and different decomposition approaches [18, 19]. The

other direction is to exploit the problem structure and develop specialized algorithms.

Several general approaches such as dynamic programming and the greedy strategy can

be applied to assist the design of specialized algorithms. Examples in this direction

include many classic algorithms such as Dijkstra’s algorithm for SPP with nonnegative

arc costs [20], and Kruskal’s and Prim’s Algorithms for minimum spanning tree [21].

4

1.3 Computational complexity of an algorithm

Intuitively, algorithms are step-by-step strategies for solving a particular problem. In

1937, Turing introduced the first model of computation, the Turing machine, that defines

an algorithm in a precise way [22]. Thereafter, analyzing the efficiency of algorithms

attracted significant attention. One of the most popular measures of efficiency is the

asymptotic worst-case complexity. Based on this criterion, the Cobham-Edmonds the-

sis, named after Alan Cobham [23] and Jack Edmonds [24], asserts that a problem is

tractable if it has a polynomial-time algorithm.

Definition 1. [25] A polynomial-time algorithm is a Turing machine such that if n

is the number of symbols on the input tape (the size of the input), then the machine is

guaranteed to halt after a number of steps that is at most cnk + d, for some constants

k, c, and d.

Big-oh notation is adapted to distinguish the asymptotic performance of two algo-

rithms:

Definition 2. Given two scalar functions f and g defined on some subset of real num-

bers, we write f(x) = O(g(x)) as x → ∞, if there exist α and x0 ∈ R such that

|f(x)| ≤ α|g(x)| for all x ≥ x0.

Under the asymptotic performance criterion, an O(n2)-time algorithm is preferable

to an O(n3)-time algorithm regardless the constants hidden in the big-oh notation. The

notion of polynomial-time algorithm provides researchers a well-defined qualitative ap-

proach when attacking new problems. The race to obtain the best big-oh guarantees has

given rise to many of the fundamental algorithmic techniques. This notion is amazingly

successful in theory as well as practice.

1.3.1 Class P and class NP

Perhaps the most fundamental open question under this theme is the infamous P = NP

conjecture. Despite great efforts that have been dedicated to the conjecture, a positive

or negative answer is unfortunately absent. Class P and class NP are sets of decision

problems. A decision problem is a problem that has yes or no answers. For example,

5

the TSP decision problem is stated as follows: given a list of n cities and a given value

v, is there a TSP tour with a cost less than v? The short notion P denotes those

decision problems that have polynomial-time algorithms. In 1971, Cook [26] studied

class NP, a possibly more general class of decision problems for which a certificate to

the yes instance can be verified in polynomial time. The shorthand NP comes from

the view of non-deterministic Turing machines. For example, the TSP decision problem

is in this class: to verify the a “yes” instance, we can compute the cost of the given

certificate with O(n) additions. The P = NP conjecture essentially asks whether an

efficient polynomial-time algorithm exists for any decision problem in which each “yes”

instance has a certificate that can be verified in polynomial time. An important concept

in exploring the P = NP conjecture is NP-completeness. A problem is NP-complete if

it is a problem in class NP and any problem in class NP can be transformed into it in

polynomial time. The existence of a polynomial-time algorithm for any NP-complete

problem leads to a positive answer to the P = NP conjecture. In [26], Cook proved

that the boolean satisfiability problem is NP-complete. One year later in [27], Karp

proved the NP-completeness of a set of 21 problems. The list of NP-complete problems

has grown longer ever since, with thousands of computational problems in a variety

of disciplines. The TSP decision problem is also NP-complete. Finding an efficient

algorithm for any TSP instance seems hopeless unless P = NP.

The notion of polynomial-time relies on a specific model of computation. Class

NP may be equivalently defined as the set of decision problems that can be solved in

polynomial time on a non-deterministic Turing machine, while class P is class NP’s

counterpart on a deterministic Turing machine. Indeed, the “Turing machine” in the

previous definition of class P and NP can be replaced by some other machines, e.g.,

random-access machine. The meaning of P and NP will stay unchanged as long as

the basic operations of the new machine can be simulated by a Turing machine with a

polynomial number of operations. To avoid the over dependence of the low-level details

such as moving tapes or encoding, we may favor high-level basic operations such as

arithmetic operations. The worst-case running time of an algorithm, i.e., computational

complexity is the maximum number of basic operations the algorithm performs as a

function of its input length [28]. The basic operations vary among different models

of computation. In a deterministic Turing machine, the legal basic operations include

6

the arithmetic operations (e.g., addition, multiplication, division) of rational numbers

represented by finite binary strings. In a BSS machine [29], the legal basic operations

are arithmetic operations of real numbers. Under two models of computation, the

complexity of the same algorithm may be different, e.g., the polynomial-time solvable

class of the BSS machine is different from P. To be compatible with most of the literature,

complexity analysis in this thesis is always based on a variant of the deterministic Turing

machine: the oracle Turing machine. Oracle Turing machine is the standard Turing

machine with an extra oracle tape that can magically solve some decision problem

in one basic operation [28]. By its definition, the oracle could be too powerful to

be practical in the real world, e.g., solve TSP in O(1) time. We hereby restrict the

oracle to function oracles. In the presence of convex functions, a Turing machine with

function oracles is desired: a convex function is assumed to be an oracle through which

we can query its value at any point in constant time (O(1) time). This assumption is

reasonable from a practical viewpoint. Most of the functions in practical application are

polynomials, exponentials, and logarithms that can be evaluated with O(1) arithmetic

operations. In some scenarios where the explicit form of the cost function is not known,

the value can usually be estimated through some fixed procedure with O(1) arithmetic

operations. With such an oracle Turing machine, we can measure the complexity of an

algorithm as the maximum number of basic operations (including arithmetic operations

and function oracle queries) the algorithm performs as a function of its input length. We

will give a more detailed discussion on models of computation and complexity classes

in Section 1.6.1.

1.3.2 Exact, approximation, and meta-heuristic algorithms

A natural question for problems like TSP is: if an efficient algorithm seeking for the

optimal solution is unlikely to exist, can we efficiently find a solution that is “close” to

the optimal solution? Besides the theoretical complexity, people are also interested in

the practical performance of an algorithm. There have been extensive studies revolving

around this question from both theoretical and practical perspectives. For a particu-

lar discrete optimization problem, its algorithms can be roughly classified into three

categories:

7

(a) Exact algorithms that always solve the optimization problem to optimality.

(b) Approximation algorithms that find a solution with provable performance guar-

antees compared to the optimal one.

(c) Heuristic algorithms and meta-heuristic algorithms that find a solution without

any theoretical guarantee on its performance.

We illustrate these ideas with the example of a special case of TSP called symmetric

metric TSP, which we denote it by mTSP. In mTSP, the distance function is symmetric

and satisfies the triangle inequality.

At first glance, mTSP seems easy to solve by enumeration since the solution set is

finite. However, exhaustive search is not a tractable approach because of the combi-

natorial explosion: the cardinality of the solution set grows exponentially with respect

to the size of the problem. The solution set of mTSP can be viewed as a set of per-

mutations of n cities, the number of which is as many as (n−1)!
2 . When n = 30, the

number of possible solutions is around 1.32× 1032. Even with the fastest supercomput-

er in the world, it would take thousands of years to enumerate all possible solutions.

Such an enumeration algorithm is impractical even for a list of only 20 cities. A better

exact algorithm, the Bellman-Held-Karp algorithm [30, 31] uses the idea of dynamic

programming, has a complexity of O(2nn2) and it can solve instances with 30-40 cities.

Currently, the best exact algorithms are implementations of the branch-and-bound algo-

rithm and problem-specific cutting-planes [32, 7], which can solve instances with 85, 900

cities.

For approximation algorithms, instances of much larger size can be solved with some

sacrifice of quality of the solution. An α-approximation algorithm is an algorithm that

always outputs a solution whose cost is at most α-times the cost of the optimal solu-

tion [21]. A simple 2-approximation O(n2)-time algorithm based on minimum spanning

tree can solve any TSP instance of millions of nodes (approximately) in seconds. The al-

gorithm with the best approximation ratio so far, Christofides’ Algorithm [33], achieves

a 3
2 -approximation with an O(n3) running time.

Many other heuristic and meta-heuristic algorithms also have been applied to mTSP,

e.g., LinKernighan heuristics [34, 35], simulated annealing [36], tabu search [37], evo-

lution algorithms [38], etc. Modern heuristic methods can find solutions for extremely

8

large problems (millions of cities) within a reasonable amount of time whose value is

2-3% higher than the optimal solution with high probability [39]. Even though there

is no theoretical guarantee in general on how good the solution is, heuristic algorithm-

s provide a practical way to solve a hard problem and they do produce ans optimal

solution in many cases.

In general, we can loosely state that algorithm design is a pursuit of both efficiency

and solution quality. For some problems, the exact algorithms are too slow to be

practical and we then turn to the approximation algorithms, heuristic algorithms, or a

combination of them. For some problems, efficiency and quality of the solution can be

achieved simultaneously by well-designed algorithms.

For a nonlinear discrete optimization problem, we are interested in the following

questions:

• Which complexity class does the problem belong to?

• What algorithm can solve the problem exactly or approximately?

• What is the complexity of the algorithm?

• What is the performance of the algorithm for instances from real world applica-

tions?

In this thesis, we pursue fast exact algorithms for three particular nonlinear discrete

optimization problems. We introduce the problems and summarize our contribution in

the next section.

1.4 Three nonlinear discrete optimization problems

1.4.1 Discrete resource allocation problem with nested bound con-

straints

The first problem is a resource allocation problem (RAP) that asks to find an opti-

mal allocation of a fixed amount of resources to activities so as to minimize the cost

incurred by the allocation [15]. It has a wide variety of applications ranging from

portfolio selection, production planning, to video-on-demand batching and telecommu-

nications [15, 40, 41]. In its simplest form, RAP aims to minimize a separable convex

9

function under a single constraint concerning the total amount of resources to be allocat-

ed. In several applications, however, such single global resource bound is not sufficient

to model partial budget or investment limits, release dates and deadlines, or inventory

or workforce limitations. In these situations, additional constraints over the cumulative

resource allocated are desired. We are interested in the following discrete optimization

problem (P1):

Given B units of resource and n activities, each of which associated with a convex

allocation cost fi(·), find an allocation of resource to the n activities, denoted by

x ∈ Zn, to minimize the total allocation cost
∑n

i=1 fi(xi) subject to the total amount

of resource constraint as well as lower and upper bound constraints on total resource

allocated to subsets of activities.

Our interest of studying (P1) stems from the scheduling problem over a fixed route [12],

where the resource allocated to each activity is the time spent between two consecutive

customers over the route and the nested constraints correspond to the time-window

constraints imposed on the customers.

Our contributions. We develop a Θ(n2 log B
n)-time algorithm for (P1). Our algo-

rithm essentially combines the divide-and-conquer framework in [42] with the scaling-

based algorithm in [43]. It is an infeasibility-guided divide-and-conquer algorithm. The

worst-case time complexity of our algorithm is worse than the best time complexity

in the literature, O(n log n logB). z‘ For a specific instance, however, the number of

subproblems solved by our algorithm may be significantly fewer than the current best

algorithm, a pure divided-and-conquer algorithm that always divides the problems into

subproblems of equal size. The worst-case complexity is usually not achieved. Finally,

to the best of our knowledge, there are no numerical experiments on (P1) in the lit-

erature. We evaluate the performance of our algorithm on a set of test instances with

linear and quadratic functions, and then compare the results with the performance of

a state-of-the-art mixed-integer linear and quadratic optimization solver–Gurobi [16].

Our algorithm significantly outperforms Gurobi, solving instances of much larger sizes

with less computational time. Moreover, we perform a comprehensive numerical test on

10

test instances with three classes of convex objectives and compare the results with the

performance of another divide-and-conquer based algorithm, MDA, which has the best

worst-case time complexity for (P1) in the literature [44]. Our algorithm solves sub-

stantially fewer subproblems then MDA and the performance is competitive compared

to MDA on the benchmark instances in the literature.

1.4.2 Minimum convex cost flow problem over the dynamic lot size

network

The second problem is a generalization of (P1). It is a minimum convex cost network

flow problem on the dynamic lot size network G = (N,A):

0

1

d1

2

d2

· · ·

· · · dn−1

n

dn

Figure 1.1: The dynamic lot size network.

The dynamic lot size network is defined as follows: there are one source node 0

and n sink nodes 1, 2, · · · , n. Each arc e ∈ A is associated with a lower bound 0, an

upper bound ue, and a convex cost function fe(·). We are interested in the following

optimization problem (P2)

Given a dynamic lot size network G = (N,A) described in Figure 1.1, find a flow

x on G to minimize the total arc cost
∑

e∈A fe(xe) and satisfy all the flow balance

and capacity constraints.

We study the continuous version of (P2) as well as its restriction to integer flows.

Many optimization models in the literature can be seen as special cases of (P2). We

give three examples here. The first example is the dynamic lot-sizing model with linear

11

or convex production cost and holding cost. The second example is (P1), the resource

allocation problem with nested bound constraints on resourced consumed by consecutive

activities, which is the underlying model in many engineering applications [15, 41]. The

third example is the speed optimization problem over a path [12], which appears as a

subproblem in many transportation and logistics applications. The goal is to find the

optimal speed vi,i+1 between two consecutive nodes over a fixed route while subjected

to a prescribed time window to minimize the total cost (including fuel and emission

cost over the arcs, and possible customer inconvenience cost over the nodes). The speed

optimization problem can be transformed into a minimum convex cost problem over the

dynamic lot size network.

Our contributions. The best result known for the integer version of (P2) is

O(n2 log n log B
n), based on the capacity scaling algorithm for the minimum convex cost

network flow problem [45]. We design the Scaled Flow-improving Algorithm (SFA),

a new scaling-based algorithm. The running time of our algorithm is O(n2 log B
nε) for

the continuous problem for finding a solution that is at most ε away from an optimal

solution in terms of the infinity norm, and O(n2 log B
n) for the integer problem where

B =
∑n

i=0 di. The log n factor improvement over the current best algorithm is based

on two ingredients: (1) a new scaling framework that is not based on LP duality as ex-

isting capacity scaling algorithms; (2) a stronger proximity result between the optimal

solutions of the original problem and the scaled problem than the existing results on

the minimum convex cost flow problem.

In particular, for the resource allocation problem with nested constraints (P1),

our algorithm terminates in O(n log n log B
nε) time for the continuous problem and

O(n log n log B
n) time for the integer problem with B =

∑n
i=0 di. The speed up is

obtained by using the data structure segment tree and red-black tree for two key oper-

ations in our algorithm. The complexity matches the best result in the literature [44].

Finally, we conduct extensive numerical experiments on instances with a variety of

convex objectives. The numerical result demonstrates the efficiency of our algorithm in

solving large size instances.

12

1.4.3 Optimal switch sequence for switched linear systems

The third problem is the optimal control problem of discrete-time switched linear sys-

tems. Many real-world systems exhibit significantly different dynamics under various

modes or conditions, for example a manual transmission car operating at different gears,

a chemical reactor under different temperatures and flow rates of reactants, and a group

of cancer cells responding to different drugs. Such phenomena can be modeled under a

unified framework of switched systems. A switched system is a dynamical system that

consists of several subsystems and a rule that specifies the switching among the subsys-

tems. Finding a switching rule to optimize the dynamics of a switched system under

certain criteria has found numerous applications in power system operations, chemical

process control, air traffic management, and medical treatment design [46, 47, 48, 49].

We study the following discrete-time switched linear system:

x(k + 1) = Tkx(k), Tk ∈ Σ, k = 0, 1, . . . , (1.1)

where x(k) is an n-dimensional real vector that captures the system state at period k,

the set Σ contains m given n × n real matrices, each of which describes the dynamics

of a linear subsystem, and the initial vector x(0) is a given n-dimensional real vector

a. Such a system with switching only at fixed time instants appear in many practical

applications, and is also employed to approximate the more complex dynamics of a

continuous-time hybrid system with switching rules defined over the real line [46, 48].

We are interested in the following optimization problem (P3) related to the system

in 1.1:

Given a switched linear system described in (1.1), a positive integer K, and a

convex function f : Rn → R, find a sequence of K matrices T0, T1, . . . , TK−1 ∈ Σ to

maximize f(x(K)).

One type of such convex functions are the `p norms.

Example 1. Consider a switched linear system consisting of two subsystems with system

matrices A =

[
1 1

1 0

]
and B =

[
1 1

0 1

]
, an initial vector a = (2, 1)>, and K = 8.

13

Figure 1.2 illustrates the trajectory of x(k) under three switching sequences, with the

final state x(8) being (53, 23)>, (58, 41)>, and (71, 41)>, respectively.

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

(53, 23)

(58, 41) (71, 41)

(2,1)

A-B-B-A-B-B-A-B
B-A-B-A-B-A-B-A
A-A-B-A-A-B-A-A

Figure 1.2: The trajectory of x(k) under different matrix sequences

(P3) has many practical applications and is closely connected to several fundamental

problems in control and optimization. We give three examples here. Firstly, it can

model the process of mitigating antibiotic resistance, in which each component of x(k)

represents the percentage of a genotype of an enzyme produced by bacteria, each matrix

represents the mutation rates between different genotypes under certain antibiotic, and

the goal is to maximize the population of the wild type after K periods. Secondly, it

generalizes the matrix K-mortality problem which asks whether the zero matrix can be

expressed as a product of K matrices in Σ (duplication allowed). Thirdly, it is closely

related to computing the joint spectral radius of a set of matrices which generalizes the

spectral radius of one matrix and has found wide applications in a variety of seemingly

unrelated fields, such as wavelet functions, switched systems, constrained coding, and

network security management.

Our contributions. We show that (P3) is NP-hard for a pair of stochastic matrices

or binary matrices. We propose a polynomial-time exact algorithm for the problem

when all input data are rational and the given set of matrices Σ has the oligo-vertex

property, a new concept we introduce below. Let Pk(Σ, a) be the convex hull of all

14

possible values of x(k), i.e.,

Pk(Σ, a) := conv({x(k) | x(k) = Tk−1 · · ·T0a, Tj ∈ Σ, j = 0, . . . , k − 1}).

Let Nk(Σ, a) be the number of extreme point of Pk(Σ, a) and Nk(Σ) = sup
a∈Rn
{Nk(Σ, a)}.

A set of matrices Σ is said to has the oligo-vertex property if there exists some

constant d such that Nk(Σ) = O(kd). The oligo-vertex property indicates that the

number of extreme points of Pk(Σ, a) grows at most polynomially in k regardless of the

initial vector a, although the number of possible values of x(k) grows exponentially with

k in general.

We derive a set of sufficient and easy to verify conditions for a set of matrices to

have the oligo-vertex property: (1) A finite set of matrices that commute; (2) A finite

set of matrices containing at most one matrix with rank higher than one; (3) A pair

of 2 × 2 matrices sharing at least one common eigenvector; (4) A pair of 2 × 2 binary

matrices. We also show that the oligo-vertex property is invariant under a similarity

transformation. In particular, we show that Nk(Σ) = O(k4) when Σ is a pair of 2 × 2

binary matrices. Finally, we conjecture that any pair of 2 × 2 real matrices has the

oligo-vertex property.

1.5 Organization of the thesis

The remainder of this thesis is organized as follows. We first complete Chapter 1 with

a section of preliminary knowledge. Then we present fast exact algorithms for the

three nonlinear discrete optimization problem in Chapter 2, Chapter 3, and Chapter 4,

respectively.

1.6 Preliminary

In this section, we provide preliminary material for solving the three nonlinear discrete

optimization problems.

15

1.6.1 Model of computation

The model of computation forms the base of computational complexity theory. In this

section, we elaborate the mathematical definitions of problems, Turing machines, and

complexity classes. Most of the notations and definitions are adapted from [28].

Problems

In computational complexity theory, a problem refers to an abstract question to be

solved. In contrast, an instance of this problem is a concrete realization of the abstract

question. An instance serves as input of an algorithm and hence must provide the

necessary information (data) to answer the question. For example, an instance of TSP

includes a list of n cities and n2 pairwise distances between the them, which are given

by n2 rational numbers. Usually, the data of an instance is encoded as a string under

some pre-specified rules. The length of the string is called the size of the instance. We

use semi-group to describe such relation.

Definition 3. (Semi-group) A semigroup is a set S with a closed binary operation ·
on S that satisfies the associative property, i.e., ∀a, b, c ∈ S, we have

a · b ∈ S, a · (b · c) = (a · b) · c.

For example, the set of finite length binary strings is a semi-group with string con-

catenation as the associated binary operation. Let {0, 1}∗ denote the semigroup of finite

binary strings. For an instance (or a member) x ∈ {0, 1}∗, let |x| denote the length of

instance x. Since the solution of an instance can also be encoded in string, we hereby

use a function f : {0, 1}∗ → {0, 1}∗ to describe the mapping from the instances to their

solutions. Among these functions, of particular interest in computational theory are the

ones with binary output, which is also known as decision problems.

Definition 4. (Decision problem) A decision problem f : {0, 1}∗ → {0, 1} is a

problem has yes or no answers.

Given a decision problem f : {0, 1}∗ → {0, 1}, let

Σ := {x | x ∈ {0, 1}∗, f(x) = 1}

16

denote all the yes-instances, i.e., the instances with a positive answer. In this perspec-

tive, the decision problem can be viewed as a membership problem that asks whether

a given instance x belongs to the set Σ or not. Σ is called a language. The term lan-

guage and decision problem are used interchangeably in the literature. Here are a few

examples of decision problem:

• The decision TSP problem: Given a list of n cities and a given value v, is

there a TSP tour whose cost is less than v?

• The decision version of the shortest path problem: Given a graph G =

(V,E) with associated cost, two nodes s and t, and a given value v, is there a path

from node s to node t such that the cost is less than v?

• The decision version of linear programming: Given a linear program

max{c>x : Ax ≤ b} and a given value v, is there a feasible solution such that

the objective value is greater than v?

Yet there are some computational problems not easily expressed as decision prob-

lems, the framework of decision problems turns out to be surprisingly expressive [28]. In

particular, the three problems above are examples of casting the original optimization

problem as a decision problem. By imposing a bound on the objective value, we can

transform the original optimization problem into a series of decision problems. The

number of decision problems is a logarithm of the bound if binary search is employed.

Big-oh notation

In the above definition, the data of an instance is assumed to be a finite-length binary

string. Furthermore, the encoding rules, are not specified. The length of the same

instance, however, may vary if different encoders are employed. To avoid such lower-

level detail, we introduce the big-oh notation:

Definition 5. (big-oh notation) Given two scalar functions f and g defined on some

subset of real numbers, we write f(x) = O(g(x)) as x→∞, if there exist α and x0 ∈ R
such that |f(x)| ≤ α|g(x)| for all x ≥ x0.

With big-oh notation, the length of the encoding is indifferent with respect to the

alphabet allowed, i.e., the {0, 1} can be replaced by other finite sets. For example, to

17

encode n positive integer numbers that are less than a thousand, we need a binary string

of length 8n = O(n). If we use {0, 1, · · · , 9}, the decimal encoding, the length of the

string should be at least 4n, which is also O(n).

Turing machine

The input and output of an instance are defined as strings in a semi-group. In compu-

tational complexity, an algorithm is a machine that computes the output based on the

input string fed to it. A Turing machine is a mathematical model of computation that

defines such abstract machine.

Definition 6. [28] (deterministic Turing machine) A deterministic Turing ma-

chine M is formally described by a tuple (Γ, Q, δ) containing:

• A set Γ of the symbols that Ms tapes can contain. We assume that Γ contains a

designated blank symbol, denoted �, a designated start symbol, denoted . and the

numbers 0 and 1. We call Γ the alphabet of M .

• A set Q of possible states Ms register can be in. We assume that Q contains a

designated start state, denoted qstart and a designated halting state, denoted qhalt.

• A function δ : Q × Γk → Q × Γk−1 × {L, S,R} describing the rule M uses in

performing each step. L is the movement to the left, S is no movement, and R is

the movement to the right This function is called the transition function of M .

With a deterministic Turing machine, we can then formalize the notion of running

time.

Definition 7. (Running time of a deterministic Turing machine) Let f :

{0, 1}∗ → {0, 1}∗ and let T : N → N be some functions, and let M be a deterministic

Turing machine. We say that M computes f in O(T (n))-time if for every x ∈ {0, 1}∗, if

M is initialized to the start configuration on input x, then after at most O(T (|x|)) steps

it halts with f(x) written on its output tape. We say that M computes f if it computes

f in O(T (n)) time for some function T : N → N .

18

Class P and Class NP

Complexity classes are sets of problems of related resource-based complexity. Class

P and class NP are time-complexity classes that classify the problems by bounding

the time used by the algorithm. The class P is considered to be the class of decision

problems that are efficiently solvable.

Definition 8. (Class P) A decision problem f : {0, 1}∗ → {0, 1} is in class P if and

only if there exist a deterministic Turing machine M , a polynomial function T (n) = nk

for some constant k, such that M computes f in O(T (n)) time.

The shorthand notion P stands for polynomial-time solvable. Such algorithms in

Definition 8 are also known as polynomial-time algorithms. One of the other most

well-known complexity classes is class NP. Class NP is a possibly more general class of

decision problems for which a certificate to the yes instance can be verified in polynomial

time.

Definition 9. [28] (Class NP) A decision problem f : {0, 1}∗ → {0, 1} is in class NP

if and only if there exist a deterministic Turing machine M , two polynomial function

T (n) = nk1 , p(n) = nk2 with constants k1, k2, such that

f(x) = 1⇔ ∃u ∈ {0, 1}O(p(|x|)),M(x, u) = 1.

and M computes M(x, u) in O(T (n)) time. If such u exists, we call u a certificate of

the problem f . Here {0, 1}O(p(|x|)) denotes the set of binary strings of length less than

O(p(|x|)).

A problem is in class NP if for every yes instance x, there exists a certificate, u,

whose size is polynomial in |x|, and an algorithm, M , that can verify this certificate

u in polynomial time. The infamous P = NP conjecture essentially asks whether the

existence of efficient algorithm that verifies a certificate to the yes instance implies

the existence of efficient algorithm that solves the problem. Equivalent to the above

verifier-based definition, class NP can be defined similarly as class P in the view of non-

deterministic Turing machine. Actually, the notation NP stands for non-deterministic

polynomial-time solvable.

19

Definition 10. [28] (non-deterministic Turing machine) A non-deterministic

Turing machine M is formally described by a tuple (Γ, Q, δ0, δ1) containing:

• A set Γ of the symbols that Ms tapes can contain. We assume that Γ contains a

designated blank symbol, denoted �, a designated start symbol, denoted . and the

numbers 0 and 1. We call Γ the alphabet of M .

• A set Q of possible states Ms register can be in. We assume that Q contains a

designated start state, denoted qstart, a designated halting state, denoted qhalt, and

a designated accept state, denoted qaccept.

• Two function δ0, δ1 : Q× Γk → Q× Γk−1 × {L, S,R} describing the rule M uses

in performing each step. L is the movement to the left, S is no movement, and

R is the movement to the right. These functions are called the transition function

of M .

A non-deterministic Turing machine is distinct from a deterministic Turing machine

as it have one more transition function. At each step of execution, the non-deterministic

Turing machine M makes an arbitrary choice on which of its two transition functions

to apply. It outputs 1 on a given input x if there is some sequence of these choices with

which M reaches qaccept on input x. Otherwise, if every sequence of choices makes M halt

without reaching qaccept, then M outputs 0. The running time of a non-deterministic

Turing machine is the maximum operation required under such sequences.

Definition 11. [28] (Running time of a non-deterministic Turing machine)

Let f : {0, 1}∗ → {0, 1} and let T : N → N be some functions, and let M be a non-

deterministic Turing machine. We say that M computes f in O(T (|x|))-time if for

every x ∈ {0, 1}∗, if M is initialized to the start configuration on input x, then after at

most O(T (|x|)) steps it either halts or reaches qaccept with f(x) written on its output

tape. We say that M computes f if it computes f in O(T (|x|)) time for some function

T : N → N .

The sequence of choices made by an accepting computation of a non-deterministic

Turing machine can be viewed as a certificate of the input x and vice versa. This

property characterizes class NP as the set of non-deterministic polynomial-time solvable

problems.

20

Definition 12. (Class NP) A decision problem f : {0, 1}∗ → {0, 1} is in class P if and

only if there exist a non-deterministic Turing machine M , a function T (n) = cnk + d

for some constants k, c, and d, such that M computes f in T (n) time.

Definition 12 and Definition 9 are equivalent. Class P and class NP are sets of

polynomial-time solvable decision problems under different machines. However, the

similarity in definition does not imply P = NP. Indeed, the algorithms defined by non-

deterministic Turing machine is different from those defined by deterministic Turing

machine. A non-deterministic Turing machine seems to be too powerful to be practical.

On the other hand, deterministic Turing machine, though still very abstract, turns out

to be expressive and the definition of computational complexity is flexible. Deterministic

Turing machine can simulate any algorithms written in modern machine languages and

in turn, any programming languages such as C, Java [28].

It is cumbersome to analyze the running time an algorithm with low-level operations

such as moving a tape. Instead, it is more convenient to measure the efficiency in terms of

high-level primitive operations e.g., arithmetic operations, insertion to a list. Therefore,

a machine that is similar to programming languages is more favorable. Fortunately,

unlike non-deterministic Turing machine, such machines will not affect the meaning of

polynomial-time solvable class (class P). Let’s elaborate on it here.

Oracle Turing machine

Recall that the computational complexity of an algorithm is defined as the maximum

number of basic operations the algorithm performs as a function of its input length.

Here, the basic operations, i.e., primitive operations, are the operations which have

unit cost in a model of computation. In the deterministic Turing machine, the basic

operations are very weak-the machine can read and write symbols, the head moves to

the left or to the right.

Consider a special model of computation U with a set ∆ of primitive operations

and a polynomial function T (n). For each primitive operation p ∈ ∆, there exists a

deterministic Turing machine that can stimulate p in O(T (n)) time. In this contex-

t, a deterministic Turing machine stimulate operation p means p can be replaced by

a sequence of basic operations of deterministic Turing machine. This replacement al-

ways takes the same input and produces the same output. For any machine U of U

21

whose running time is O(G(n)), it can be simulated by a Turing machine M whose

running O(G(n)T (n)) time. Since the function O(G(n)T (n)) is polynomial if and only

if O(G(n)) is polynomial, an algorithm on U is polynomial-time if it is polynomial-time

on a deterministic Turing machine. Therefore, class P also characterizes the complexity

class of decision problems that can be solved on machine U in polynomial time.

To formalize the above intuition, let’s consider a variant of Turing machine: the

oracle Turing machine.

Definition 13. [28] (oracle Turing machine) An oracle Turing machine is a Turing

machine M that has a special read/write tape we call Ms oracle tape and three special

states qquery, qyes, qno. To execute M , we specify in addition to the input a language

O ⊂ {0, 1}∗ that is used as the oracle for M . Whenever during the execution M enters

the state qquery, the machine moves into the state qyes if O(q) = 1 and qno if O(q) = 0,

where q denotes the contents of the special oracle tape. Note that, regardless of the

choice of O, a membership query to O counts only as a single computational step. If

M is an oracle machine, O ⊂ {0, 1}∗ a language, and x ∈ {0, 1}∗, then we denote the

output of M on input x and with oracle O by MO(x).

Oracle Turing machine is the standard Turing machine with an extra oracle tape

that can magically solve some decision problem in one basic operation [28]. Decision

problems might be too limited. In a broader context, the oracle is a “black box” that

is able to produce a solution for any instance of a given computational problem. We

omit the discussion as in this thesis we restrict the oracles to be rather simple ones.

The non-deterministic oracle Turing machine is defined similarly. Then we can define

the polynomial-time solvable classes on the oracle Turing machine.

Definition 14. [28] (Class PO and class NPO) For every O ⊂ {0, 1}∗, PO is the

set of languages decided by a polynomial-time deterministic TM with oracle access to

O and NPO is the set of languages decided by a polynomial-time nondeterministic TM

with oracle access to O.

The oracle in the oracle Turing machine could be too powerful to be practical in the

real world, e.g., solve TSP in O(1) time. In general, PO 6= P. Nevertheless, if we restrict

O to be decision problems in P ,

22

Claim 1. [28, ?] If O ∈ P , then PO = P.

Examples of oracles in P includes arithmetic operations of finite length binary

strings. Moreover, we are also interested in function oracles. In presence of convex

functions, a Turing machine with function oracles is desired: a convex function is as-

sumed to be an oracle through which we can query its value at any point in constant

time (O(1) time). This assumption is reasonable from a practical viewpoint. Most of

the functions in practical application are polynomials, exponentials, and logarithms that

can be evaluated with O(1) arithmetic operations. In some scenarios when the explicit

form of the cost function is not known, the value can usually be estimated through some

fixed procedure with O(1) arithmetic operations.

Model of computation in this thesis

In this thesis, our complexity analysis is based on a special oracle Turing machine. In

this model, we assume that

1. The basic arithmetic operations (addition, subtraction, multiplication, division,

and comparison) take a unit time step to perform, regardless of the sizes of the

operands.

2. A function oracle can evaluate the value of the function at any point x in a unit

time.

These assumption are widely used in measuring the complexity of optimization al-

gorithm. Strictly speaking, the time-complexity of addition or subtraction is O(logB)

where B the maximum bit-size of the operands. ing They are polynomial in the input

size.

In summary, with such an oracle Turing machine, we measure the computational

complexity of an algorithm as the maximum number of basic operations (including

arithmetic operations, function oracle queries) the algorithm performs as a function of

its input length. The complexity analysis in this thesis will follow this criterion.

23

BSS machine

BSS machine is a model of computation intend to describe computation over real num-

bers. Turing machine only works with finite strings and discrete symbols. However, real

numbers may not be represented by finite-length strings since the set R is uncountable.

Blum, Shub and Smale [29] introduced generalized Turing Machines (which refer to

BSS machine) that compute over R. In a standard Turing machine, the domain of the

function f is the semi-group {0, 1}∗, i.e., each cell of the string hold a binary symbol.

In the BSS machine, the domain of the function f is the semigroup R∗, i.e., each cell of

the string hold a real number. Similar to PO and NPO on oracle Turing machines, the

polynomial-time solvable classes on BBS machine, PR and NPR, are defined respectively.

It can be shown that P ⊂ PR.

Important concepts

Finally, we complete this section by a brief introduction to some important concept-

s in computational complexity theory: NP-completeness, NP-completeness, pseudo-

polynomial-time algorithm, and strongly polynomial-time algorithm.

NP-completeness and NP-hardness

NP-completeness and NP-hardness characterize the most difficult problems in class NP.

Definition 15. [28] (Reductions, NP-hardness and NP-completeness) We say

that a language A ⊂ {0, 1}∗ is polynomial-time Karp reducible to a language B ⊂ {0, 1}∗

(sometimes shortened to just “polynomial-time reducible”) denoted by A <p B if there

is a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such that for every

x ∈ {0, 1}∗, x ∈ A if and only if f(x) ∈ B.

We say that B is NP-hard if A <p B for every A in class NP. We say that B is

NP-complete if B is NP-hard and B is in class NP.

The concept of polynomial-time reduction enable us to show a problem B is at least

as hard as problem A. We say that A <p B if there exists some procedure f such that:

1. f terminates in polynomial time. ing

24

2. f transform any instance of problem A to an instance of problem B, i.e., f is a

mapping that embeds A into B.

3. The answer to an instance x of A is yes if and only if the answer of f(x), an

instance of B is yes.

In other words, to solve problem A, we can transform it to an instance of problem B in

polynomial time and solve the new instance independently. In this way, any algorithm

solving problem B can be adapted to solve problem A with an extra polynomial-time

preprocessing step.

The most challenging problems in class NP is the NP-complete problems since ev-

ery problem in class NP is polynomial-tine reducible to them. Indeed, an efficient

(polynomial-time) algorithm for any NP-complete problems will imply a positive an-

swer to the P = NP conjecture.

Pseudo-polynomial-time

Definition 16. (Pseudo-polynomial-time) An algorithm runs in pseudo-polynomial

time if its running time is a polynomial in the numeric value of the input (the largest

integer present in the input).

A pseudo-polynomial time is not necessary a polynomial-time algorithm since it is

only polynomial in the numeric value. The numeric value of the input is exponential

in the input length. For example, an O(n)-time algorithm of a input integer no larger

than n is pseudo-polynomial time but not polynomial-time.

Strongly and weakly polynomial-time algorithm

In some context where the input contains only integer values, we further differentiate

the concept of polynomial-time between strongly and weakly polynomial-time.

Definition 17. [50, 51](Strongly polynomial-time) The algorithm runs in strongly

polynomial time if (1) the number of operations in the arithmetic model of computation

is bounded by a polynomial in the number of integers in the input instance; and (2) the

space used by the algorithm is bounded by a polynomial in the size of the input.

25

An algorithm is a weakly polynomial-time algorithm if it runs in polynomial time

but not strongly polynomial time.

1.6.2 Minimum cost network flow problems

The minimum cost network flow problem (MCNFP) and the minimum convex cost

network flow problem (MCCNFP) are classic combinatorial optimization problems in

the field of operation research. In this section, we review the algorithms for two problems

in the literature.

Problem formulation

MCNFP minimizes the sum of linear cost over the arcs in a directed network. Suppose

G = (N,A) is a directed graph with n = |N | nodes and m = |A| arcs, the minimum

cost flow problem can be formulated as follows,

min
∑

(i,j)∈A

fij(xij) (1.2a)

s.t.
∑

{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji = b(i), ∀i ∈ N, (1.2b)

0 ≤ xij ≤ uij , ∀(i, j) ∈ A. (1.2c)

where fij(xij) = cijxij , ∀(i, j) ∈ A, and b(i) is the supply of node i if b(i) is positive,

and demand of node i otherwise. A natural generalization of MCNFP is MCCNFP. In

MCCNFP, the functions fij(·), (i, j) ∈ A in (1.2) are general convex functions. Let U

be the maximum capacity of an arc.

Algorithms for MCNFP

MCNFP is a linear program and is polynomial-time solvable. Most of the polynomial-

time algorithms for MCNFP are developed with the help of the scaling techniques. One

stream of studies scales the capacity. In [52], Edmonds and Karp introduced the succes-

sive shortest-path algorithm, the first weakly polynomial-time algorithm for MCNFP.

In 1988, Orlin introduced a variant of Edmonds and Karps algorithm, capacity-scaling

algorithm, which is an improved version of the successive shortest-path algorithm with

26

a scaling technique. Another stream of studies relies on the cost-scaling suggested by

Rock [53] and, independently, Bland and Jensen [54]. The best implementation is due

to Goldberg and Tarjan [55], which has a O(nm log n2

m log nC) where C is maximum

unit cost of an arc. The two scaling techniques can be combined. The double scaling al-

gorithm due to Ahuja et al. [56] achieved a complexity of O(nm log logU log nC). There

are also other algorithms based on nonlinear optimization, e.g., Bertsekas et al. [57] de-

veloped a class of relaxation methods which iteratively improves the dual cost. The first

strongly polynomial-time algorithms for MCNFPis proposed by Tardos [58]. Currently,

the fastest implementation is given by the enhanced capacity-scaling algorithm due to

Orlin [59] with a complexity of O((m log n)(m+ n log n)).

Algorithms for MCCNFP

Unlike MCNFP, MCCNFP does not admit any strongly polynomial-time algorithm

since the convex cost function may contain as many as O(U) linear pieces (See an

example in [43]). Strongly polynomial-time algorithms are only available for special

classes, e.g., convex quadratic objectives [60]. Moreover, we do not distinguish the

continuous MCNFP and the integer MCNFP for because of the integrality property of

the linear constraints. An optimal solution is always integral as long as the data are

integers. For MCCNFP, however, the integer restriction on the optimal solution does

make a difference. Continuous MCCNFP and integer MCCNFP need to be handled

more carefully.

For continuous MCCNFP, there are in general three approaches.

One possibility for dealing with the convex cost cases is to use differentiable smooth

optimization methods. For example, the Lagrangian dual of continuous MCCNFP is an

unconstrained convex optimization problem. If the cost function is differentiable and

strictly convex, there are many convex optimization methods available, e.g, coordinate

descent, conjugate gradient, Newton’s method, etc.

The second way is to reduce the problem to a linear cost problem by piece-wise

linearization of the convex arc cost functions, see [61]. As a special case, when the

cost function is piece-wise linear with integer break-points, the continuous MCCNFP is

equivalent to a MCNFP over a network that allows multiple arcs between two nodes.

27

The third and more general alternative, which applies to general convex cost func-

tion, is to extend the methods for MCNFP. For instance, Bertsekas et al. [62] extended

the ε-relaxation methods to solve MCCNFP in O(nm log n log ε0

ε) time where ε0 is the

initial accuracy and ε is the target accuracy. Scaling methods can also be extended to

MCCNFP by solving an integer MCCNFP first. This is done by scaling the data by 1
ε ,

find the integer solution to the transformed problem, and then scales the integer solu-

tion to a continuous solution to the original problem [45]. In this way, we can generalize

any algorithm for integer MCCNFP to solve continuous MCCNFP. We will discuss this

approach in the next section.

Now we first review the algorithms for integer MCCNFP. Many polynomial-time al-

gorithms of MCNFP can be extended to integer MCCNFP. In [63] and [64], Minoux ex-

tended capacity-scaling algorithm to find an integer optimal solution for minimum con-

vex cost flow problems. The complexity of capacity-scaling algorithm remains the same

for MCNFP and MCCNFP, which is O(m logU(m+n log n)). Goldberg and Tarjan [65]

generalized their cost-scaling algorithm to obtain an integer optimal solution of MCC-

NFP given that all fij(·) are integers at integer points in O(nm log n2

m log(nC)). Another

algorithm by Kanzanan and McCormick [66] has complexity O(mn log n log (nc)) where

c is related to the slope of the function near the bounds. Other scaling techniques are also

possible. In 1990, Hochbaum and Shanthikumar [67] proposed a scaling-based frame-

work for mixed-integer convex optimization problem with linear constraints and a sepa-

rable objective. Their framework can be applied to MCCNFP . A direct implementation

of the algorithm yields a complexity of O(log U
4mMCNF (multigraph with 4nm arcs))),

where MCNF (multigraph with 4nm arcs) denote the time of solve a MCNFP with 4nm

arcs. However, this complexity is worse than the algorithms above.

The algorithms for integer MCCNFP can obtain an ε-accurate continuous solution

via scaling the data. The complexity of solving continuous MCCNFP the complexity of

solving integer version with an extra 1
ε term on the data. For example, the complexity

of capacity scaling is O(m log U
ε (m+ n log n)).

1.6.3 Convex hull algorithms

A convex hull algorithm is an algorithm that finds the convex hull for a given set of

points. In this thesis, we focus on the convex hull of a finite set S, which is denoted by

28

conv(S). Intuitively, the convex hull is what you get by driving a nail into the plane

at each point and then wrapping a piece of string around the nails. There are several

mathematically equivalent definition of convex hull.

• Given a finite set S ⊂ Rn, conv(S) is the smallest convex set is the smallest convex

set that contains S.

• Given a finite set S ⊂ Rn, conv(S) is the set of all convex combinations of points

in S, i.e.,

conv(S) =

{
k∑
i=1

aixi | k ∈ N;

k∑
i=1

ai = 1; ai ≥ 0, xi ∈ S, i = 1, 2, · · · , k

}
.

• Given a finite set S ⊂ Rn, conv(S) is the set of weighted average of all points in

the set S:

conv(S) =

{ |S|∑
i=1

aixi |
|S|∑
i=1

ai = 1; ai ≥ 0, xi ∈ S, i = 1, 2, · · · , |S|

}
.

In the last definition, we can always reduce the size of S by eliminating the points in

S which is a convex combination of other points in S. Therefore, there exists a minimum

set ext(S) ⊂ S such that conv(S) = conv(ext(S)). We call the points in ext(S) the

extreme points or vertices of S. Geometrically speaking, the convex hull of S is the

convex polytope with vertices ext(S).

V-representation and H-representation

By “computing” the convex hull, we mean to find a representation of it. Two popular

representation of a convex hull are the vertex representation (V-representation) and

half-space representation (H-representation). In a V-representation, the convex hull

is described by its extreme points. Finding a V-representation is called the vertex-

enumeration problem. In an H-representation, the convex hull is described by a set of

half spaces in Rn. Such definition is called a half-space representation. A closed half

space in Rn can be written as a linear inequality. Hence, the H-representation can be

written concisely as matrix inequality: Ax ≤ b with a n× n matrix A and n× 1 vector

29

b. There exist infinitely many H-representations of a convex polytope. However, for

a full-dimensional convex polytope, the minimal H-description is in fact unique and is

given by the set of the facet-defining halfspaces. Finding a H-representation is called

the facet-enumeration problem. There are various algorithms deals with both of the

vertex-enumeration problem and the facet-enumeration problem. We mainly focus on

vertex enumeration problem and summarize the most well-known algorithms below.

Convex hull algorithm in R2

For a finite set S ⊂ R2, there are many efficient algorithms to find conv(S). Most of

them solve both the vertex-enumeration problem and the facet-enumeration problem at

the same time. Let n be the cardinality of the input set S and h be the cardinality of

the output set ext(S). Table 1.1, we summarize the convex hull algorithm with their

running time and algorithmic ideas.

Algorithm Complexity Algorithmic idea

Jarviss march (Gift-wrapping) O(nh) Repeatedly find the vertices
that goes in the next slot

Divide and conquer O(n2) Divide-and-conquer

Grahams Scan O(n log n) Sorts the points and find
the vertices by scanning

Incremental Insertion O(n log n) Sweeping line

Chans Algorithm (Shattering) O(n log h) A combination of divide-and-
conquer and gift-wrapping

QuickHull algorithm O(nh) Divide-and-conquer

Prune and Search O(n log h) Improved QuickHull

Table 1.1: The worst-case complexity of convex hull algorithms in R2

Linear programming methods for constructing convex hull in Rn

Some of those methods above can be extended to find the convex hull in three-

dimensional space. However, in n-dimensional space with n > 3, the H-representation

are much more complex. In R2, transformation between the two representations seem-

s particular easy. In Rn, , however, finding the corresponding H-representation with

30

a given V-representation is not a easy tasks. Hence, we have to discuss the vertex-

enumeration problem and the facet-enumeration problem separately for S ⊂ Rn.

Fortunately, the vertex-enumeration problem is still an easy problem in Rn: Given

a finite set S = {p1, . . . , pl} ⊂ Rn, checking if a point pj ∈ S is an extreme point of

conv(S) can be done by solving the linear program below.

v∗ = max
z,z0

(pj)>z − z0 (1.3a)

s.t. (pi)>z − z0 ≤ 0, i = 1, . . . , l, i 6= j (1.3b)

(pj)>z − z0 ≤ 1. (1.3c)

Problem (1.3) is always feasible and bounded. Suppose ((z∗)>, z∗0) is an optimal

solution and v∗ is the corresponding objective value. If v∗ > 0, then we find a hyperplane

(z∗)>x = z∗0 that separates pj and the set S\{pj}, and pj is an extreme point of conv(S).

Otherwise pj is not an extreme point of conv(S). Problem (1.3) can be solved by various

interior point methods in polynomial time, for example, Karmarkar’s algorithm [68].

Hence, we may solve O(n) instances of problem (1.3) to find the set of extreme points

ext(S).

Chapter 2

Discrete resource allocation with

nested constraints

31

32

In this chapter, we study a discrete resource allocation problem with nested con-

straints. Formally, it is the following discrete optimization problem (P1):

Given B units of resources and n activities, each of which associated with a

convex allocation cost fi(·), find an allocation of resources to the n activities, de-

noted by x ∈ Zn, to minimize the total allocation cost
∑n

i=1 fi(xi) subject to the

total amount of resources constraint as well as lower and upper bound constraints

on resources allocated to subsets of activities.

This problem appears as a subproblem in many optimization models employed in

production planning, transportation, and data analytics, and has to be solved many

times in iterative algorithms for these models, so a fast algorithm to this problem

is essential in reducing the overall solution time for those optimization models. We

develop a Θ(n2 log B
n)-time algorithm for the integer version of this problem. Although

the theoretical worst-case complexity of our algorithm is worse than the O(n log n logB)-

time algorithm MDA[44], the best-known algorithm in the literature, the performance

of our algorithm on all benchmark instances in the literature is competitive to that

of MDA. Both our algorithm and MDA are recursive algorithms based on divide and

conquer, but for all the benchmark instances the number of recursions our algorithm

incurs is significantly fewer than that of MDA. Two distinct features of our algorithm

are its simplicity and the adaptive use of infeasibility information of solutions found

during the algorithm to guide how division is done.

2.1 Introduction

We refer to (P1) as DRAP-NC to emphasize its discrete nature and its origin from the

resource allocation problem. The goal of this problem is to allocate B units of resources

to n activities in order to minimize the total allocation cost. For any positive integers

i ≤ j, let [i : j] denote the set {i, i + 1, . . . , j}. Without loss of generality, we require

that the amount of resources allocated to activity i is an integer within the interval

[0, di] and the allocation cost for activity i is given by a convex function fi : [0, di]→ R,

for i ∈ [1 : n]. We also require that the total amount of resources that can be allocated

to the first i activities should be within the interval [ai, bi], for i ∈ [1 : n]. We assume

33

that di is integral, ai is integral, bi is integral or ∞, for i ∈ [1 : n], and an = bn = B.

Then DRAP-NC can be formulated as the following mixed-integer convex program:

min
x

n∑
i=1

fi(xi) (2.1a)

s.t. ai ≤
i∑

k=1

xk ≤ bi, ∀i ∈ [1 : n− 1], (2.1b)

n∑
i=1

xi = B, (2.1c)

0 ≤ xi ≤ di, xi ∈ Z, ∀i ∈ [1 : n]. (2.1d)

2.2 Literature review

DRAP-NC has its origins in the resource allocation problem (RAP), which is a basic and funda-

mental problem in engineering. RAP has a wide variety of applications ranging from portfolio se-

lection, production planning, to video-on-demand batching and telecommunications [15, 40, 41].

With a separable convex allocation cost function, RAP falls within the realm of convex opti-

mization, so it can be solved efficiently. If the resource allocated to each activity is required to

be integral, then the problem, which we call the discrete resource allocation problem (DRAP),

has to be formulated as a mixed-integer convex program, which is NP-hard in general. Due to

the special problem structure, however, many variants of DRAP have been shown to be poly-

nomially solvable in the literature. Our interest of studying DRAP-NC stems from the speed

optimization problem over a fixed route [12], where the resources allocated to each activity is

the time spent between two consecutive customers over the route and the nested constraints

correspond to the time-window constraints imposed on serving the customers. Below we first

survey results on RAP with continuous variables and then DRAP.

RAP has been studied extensively in the literature. It is a convex optimization problem

of which the optimal solution may be irrational and cannot be represented by binary strings.

Therefore, we aim to find an ε-optimal solution of RAP.

Definition 18. (ε-optimal solution) Let ε > 0, then x is an ε-optimal solution of a continuous

optimization problem (P) if there exists some optimal solution x? of (P) such that ‖x−x?‖∞ ≤ ε.

In [43], Hochbaum proposed an O(n log B
ε)-time algorithm to obtain an ε-optimal solution

of RAP. If there are additional upper bound constraints on resources that can be consumed by

the first i activities for i ∈ [1 : n], then the problem is called the resource allocation problem

with linear ascending constraints (RAP-A). Padakandla and Sundaresan [69] proposed a dual

34

method for the problem with time complexity O(n2F), where F is the time complexity of solving

one RAP with n variables. The result was later improved by Wang [70] with time complexity

O(max{n2 log n, nF}) and Vidal et al. [71] with time complexity O(n log n log B
ε). There have

been growing interests on the resource allocation problems with nested constraints (RAP-NC),

which is the continuous relaxation of DRAP-NC. In a recent paper [42], van der Klauw et

al. proposed a divide-and-conquer algorithm for RAP-NC. The algorithm runs in O(n2) time

for quadratic cost functions and O(n2 log B
ε) for general convex cost functions. In [44], Vidal

et al. proposed an O(n log n log B
ε)-time divide-and-conquer algorithm for RAP-NC. For the

most up-to-date review on the applications and algorithms of RAP, we refer interested readers

to [40, 41].

For DRAP, Gross [72] and later Fox [73] derived greedy algorithms to find an optimal solution

in O(B) time, which is pseudo-polynomial time. If the function fi is linear or quadratic for

i ∈ [1 : n], then DRAP can be solved in linear time [74, 15]. Hochbaum [43] proposed the first

polynomial-time algorithm for DRAP with general cost functions—a scaling-based algorithm

with a greedy algorithm as a subroutine; the algorithm has a running time O(n log B
n). The

discrete version of RAP-A, which we call DRAP-A, can also be solved by Hochbaum’s algorithm

in O(n log n log B
n) time. For a more comprehensive review on RAP-A and DRAP-A, we refer

the readers to a recent survey [75]. There are very few results on DRAP-NC. van der Klauw et al.

studied a problem more general than DRAP-NC by replacing the integrality constraints (2.1d)

with constraints xi ∈ Si, where Si is an arbitrary discrete set, for each i ∈ [1 : n]. They proposed

an O(B log n)-time algorithm, which is pseudo-polynomial time. In the recent paper [44], Vidal

et al. showed that the framework of their algorithm for RAP-NC can also be modified to work

on DRAP-NC, and the corresponding algorithm runs in O(n log n logB) time. However, no

numerical results are reported on its performance on instances of DRAP-NC.

Our contribution

In this chapter, we develop a Θ(n2 log B
n)-time algorithm for DRAP-NC. Our algorithm essen-

tially combines the divide-and-conquer framework for RAP-NC in [42] with the scaling-based

algorithm for DRAP in [43]. It is an infeasibility-guided divide-and-conquer algorithm. The

worst-case time complexity of our algorithm is worse than the best time complexity in the lit-

erature, O(n log n logB) achieved by MDA [44]. For a specific instance, however, the number

of subproblems solved by our algorithm may be significantly fewer than MDA, a pure divided-

and-conquer algorithm that always divides the problems into subproblems of equal size. The

worst-case complexity is usually not reached. Finally, to the best of our knowledge, there are no

numerical experiments on DRAP-NC in the literature. We conduct extensive numerical experi-

ments to evaluate the performance of our algorithm on test instances with five classes of convex

35

objectives. Our algorithm significantly outperforms a state-of-the-art mixed-integer linear and

quadratic optimization solver–Gurobi [16]. Moreover, our algorithm solves substantially fewer

subproblems then MDA and the performance is competitive compared to MDA on benchmark

instances in the literature.

The remainder of this section is organized as follows. Section 2.3 describes our algorithm for

DRAP-NC and its correctness is proven in Section 2.4. We present extensive numerical results

on DRAP-NC instances with a variety of convex objectives in Section 2.5.

2.3 A recursive algorithm based on divide and conquer

In this section, we present an infeasibility-guided divide-and-conquer algorithm (DCA) to solve

DRAP-NC. The main idea is to solve a relaxation of DRAP-NC by dropping the nested con-

straints and divide the problem into two subproblems according to the obtained optimal solution.

For the ease of exposition, we introduce two dummy parameters a0, b0, and set a0 = b0 = 0. We

define the problem DRAP-NC(s, e) below to be DRAP-NC with respect to activity s, s+1, . . . , e

for s, e ∈ [1 : n].

min

e∑
i=s

fi(xi) (2.2a)

s.t. ai − as−1 ≤
i∑

k=s

xk ≤ bi − as−1, ∀i ∈ [s : e], (2.2b)

e∑
k=s

xk = be − as−1, (2.2c)

0 ≤ xi ≤ di, xi ∈ Z, ∀i ∈ [s : e], (2.2d)

where we assume that as−1 = bs−1 and ae = be. Moreover, we define the problem DRAP(s, e)

to be a relaxation of DRAP-NC(s, e), by dropping the nested constraints (2.2b).

min

e∑
i=s

fi(xi) (2.3a)

s.t.

e∑
k=s

xk = be − as−1, (2.3b)

0 ≤ xi ≤ di, xi ∈ Z, ∀i ∈ [s : e]. (2.3c)

To solve DRAP-NC is equivalent to solve DRAP-NC(1, n). We sketch the idea of solving

DRAP-NC(s, e) for any s, e ∈ [1 : n] as follows: We first solve the relaxation DRAP(s, e) to

36

optimality. If the resulting optimal solution satisfies the nested constraints (2.2b), then we

stop and output it as the optimal solution of DRAP-NC(s, e). Otherwise, we find the index

K of the most violated nested constraint and fix the total resources consumed by the first K

activities to be aK or bK , depending on which side of the nested constraints is violated. In

particular, let x̄ be an optimal solution of DRAP(s, e). If
∑K
k=s x̄k > be − as−1, then we set∑K

k=s xk = be−as−1; otherwise we have
∑K
k=s x̄k < ae−as−1, and we set

∑K
k=s xk = ae−as−1.

With the above adjustment, we divide DRAP-NC(s, e) into two subproblems DRAP-NC(s,K)

and DRAP-NC(K+1, e), and solve each subproblem. Finally, we combine the optimal solutions

of DRAP-NC(s,K) and DRAP-NC(K + 1, e) to obtain an optimal solution of DRAP-NC(s, e).

Note that each of the subproblems DRAP-NC(s,K) and DRAP-NC(K + 1, e) is solved to op-

timality following the above procedure recursively. The details of the algorithm is described in

Algorithm 1.

Algorithm 1 DCA: A recursive algorithm for DRAP-NC(s, e)

1: Input: Nested bounds ai and bi for i ∈ [s − 1 : e] with as−1 = bs−1 and ae = be;

variable upper bound di and function oracle fi, for i ∈ [s : e].

2: Output: An optimal solution (x̂s, . . . , x̂e) of DRAP-NC(s, e).

3: function DRAP-NC(s, e)

4: if e = s then return xs = as − as−1
5: end if

6: Solve DRAP(s, e) and obtain the optimal solution: (x̄s, . . . , x̄e)

7: if (x̄s, . . . , x̄e) satisfies the nested bound constraints then return (x̄s, . . . , x̄e)

8: end if

9: Find index K of the most violated nested constraint. Break ties by choosing the

maximum index among all indices of most violated nested constraints.

10: if
∑K

k=s x̄k > bK − as−1 then aK ← bK . Update bounds for subproblems

11: else bK ← aK

12: end if

13: (x̂s, . . . , x̂K)← DRAP-NC(s,K)

14: (x̂K+1, . . . , x̂e)← DRAP-NC(K + 1, e)

15: return (x̂s, x̂s+1, . . . , x̂e−1, x̂e)

16: end function

We state our main result below.

37

Theorem 1. Algorithm 1 solves DRAP-NC correctly in Θ(n2 log B
n) time.

The correctness of Algorithm 1 follows directly from the Proposition 1 below.

Proposition 1. Suppose fi is convex for i ∈ [s : e] with s, e ∈ [1 : n]. Let (x̄s, x̄s+1, · · · , x̄e) be an

optimal solution of DRAP(s, e). Suppose (x̄s, x̄s+1, · · · , x̄e) violates at least one nested constraint

of DRAP-NC(s, e) and the index of the most violated nested constraint is K. Then there exists

an optimal solution (x̂s, x̂s+1, · · · , x̂e) of DRAP-NC(s, e) such that
∑K
k=s x̂k = aK − as−1 if∑K

i=s x̄i < aK − as−1 or
∑K
k=s x̂k = bK − as−1 if

∑K
i=s x̄i > bK − as−1.

We postpone the proof of Proposition 1 to Section 2.4, and explain first the detail of Step 6 in

Algorithm 1: how to solve the relaxation problem DRAP(s, e) to optimality.

2.3.1 DRAP(s, e) in Step 6 of Algorithm 1

We use Hochbaum’s scaling-based algorithm [43] to solve DRAP(s, e). Hochbaum’s algorithm

makes multiple calls to a subroutine that returns a solution that uses as many resources as

possible. The algorithm runs in O(n log B
n) time for n activities and B units of total resources.

For the completeness of our algorithm, we present Hochbaum’s algorithm for DRAP with our

notations in Algorithm 2 and Algorithm 3 below. Let e be a column vector of all one’s, 0 be a

column vector of all zeros, and ei be a unit vector with the i-th row being one.

Algorithm 2 Algorithm for DRAP(s, e) [43]

1: Input: An instance of DRAP(s, e) with variable upper bound di and value oracle

fi for i ∈ [s : e], and total amount of resources B = be − as−1.
2: Output: An optimal solution x? of DRAP(s, e).

3: function DRAP(s, e)

4: Initialization: δ ←
⌈
B
2n

⌉
,x← 0.

5: while δ > 1 do

6: x← Greedy(δ,x, B)

7: x← max{x− δe,0}, δ ←
⌈
δ
2

⌉
8: end while

9: x? ← Greedy(1,x, B)

10: return x?

11: end function

38

Algorithm 3 The greedy subroutine Greedy(δ,x, B) [43]

1: Input: Integer step size δ ≥ 1; a vector y that satisfies the variable bound con-

straints of DRAP(s, e), i.e., yi ∈ [0, di] for i ∈ [s : e]; the total amount of available

resources B = be − as−1; the value oracle fi for i ∈ [s : e].

2: Output: A solution x with the property that xi ∈ [0, di] for i ∈ [s : e] and∑e
i=s xi ≥

∑e
i=s yi.

3: function Greedy(δ,y, B)

4: Initialization: x← y, R← B − y>e, E ← {s, s+ 1, · · · , e}.
5: while R > 0 and E 6= ∅, do

6: Find i such that ∆i(xi) = minj∈E{∆j(xj)} where ∆j(xj) = fj(xj + 1) −
fj(xj). . Find out the greedy step

7: if xi + 1 < di then E ← E \ {i} . Check if the variable bound constraint is

violated

8: else if xi + δ > di or δ > R then

9: δ′ = min{R, di − xi}, xi ← xi + δ′, R← R− δ′

10: E ← E \ {i}
11: else xi ← xi + δ, R← R− δ
12: end if

13: end while

14: if δ > 1 or R = 0 then return x

15: else

16: return The instance DRAP(s, e) is infeasible.

17: end if

18: end function

2.3.2 Time complexity of Algorithm 1

The computational complexity of Algorithm 1 is given by th.

Proposition 2. The time complexity of Algorithm 1 is Θ(n2 log B
n).

Proof. By Proposition 1, Algorithm 1 correctly solves DRAP-NC.

For each subproblem DRAP-NC(s, e), it takes O((e − s + 1) log B
e−s+1) time to solve the

relaxation DRAP(s, e) by Hochbaum’s algorithm. In addition, it takes O(e− s+ 1) operations

to find the most violated nested constraint given an optimal solution to DRAP(s, e). Since each

39

recursion of Algorithm 1 fixes one nested constraint at equality, we have at most n − 1 nested

constraints to fix at equality. The depth of the recursion tree is bounded by n. At the same

level of the recursion tree, the total size of the subproblems is n. Therefore, the complexity of

Algorithm 1 is O(n2 log B
n).

Next, we show that by a constructed example that the time complexity O(n2 log B
n) is tight.

The depth of the recursion tree could be as deep as n. The example is proposed by Thibaut

Vidal [76]. Consider the following instance of DRAP-NC:

min

n∑
k=1

x2k (2.4a)

s.t.

i∑
k=1

xk = (−1)ii, ∀i ∈ [1 : n− 1], (2.4b)

n∑
k=1

xk = (−1)nn, (2.4c)

− 2n ≤ xi ≤ 2n, xi ∈ Z, ∀i ∈ [1 : n], (2.4d)

In this example, the nested upper and lower bounds of the same index are the same. The

instance (2.4) can be transformed into the Formulation (2.1) with B = 2n2 + (−1)nn by

variable substitution xi = x′i − 2n, i ∈ [1 : n]. It has a unique optimal solution x =

(−1, 3,−5, · · · , (−1)n(2n− 1))>.

Consider applying Algorithm 1 to instance (2.4). In the first iteration, the first n− 1 nested

constraints (2.4b) are relaxed and we obtain DRAP(1, n):

min

n∑
k=1

x2k (2.5a)

s.t.

n∑
k=1

xk = (−1)nn, (2.5b)

− 2n ≤ xi ≤ 2n, xi ∈ Z, ∀i ∈ [1 : n], (2.5c)

The optimal solution to DRAP(1, n) is x = ((−1)n, (−1)n, · · · , (−1)n)>. The index of the most

violated nested constraint is n− 1. Therefore, we divide the problem into DRAP-NC(1, n− 1)

and DRAP-NC(n, n).

40

1. DRAP-NC(n, n) is as follows

min x2n (2.6a)

s.t. xn = (−1)n(2n− 1), (2.6b)

− 2n ≤ xn ≤ 2n, xn ∈ Z. (2.6c)

The optimal solution is xn = (−1)n(2n− 1).

2. DRAP-NC(1, n− 1) is as follows

min
n−1∑
i=1

x2i (2.7a)

s.t.

i∑
k=1

xk = (−1)ii, ∀i ∈ [1 : n− 2], (2.7b)

n−1∑
k=1

xk = (−1)n−1(n− 1), (2.7c)

− 2n ≤ xi ≤ 2n, xi ∈ Z, ∀i ∈ [1 : n− 1]. (2.7d)

It has the same structure as DRAP-NC(1, n) with one less variable. It is solved recursive-

ly. By a similar discussion as above, the algorithm will divide DRAP-NC(1, n − 1) into

DRAP-NC(1, n− 2) and DRAP-NC(n− 1, n− 1).

Hence, we can fix only one variable at each level of the recursion tree. The depth of the

recursion tree is n. For the instance (2.4), the running time is Ω(n2 log B
n) with B = 2n2 +

(−1)nn. The complexity of Algorithm 1 is Θ(n2 log B
n).

2.4 Proof of Proposition 1

In this section, we provide a complete proof of Proposition 1. The proof is inspired by the proof

of the correctness of the algorithm for RAP-NC in [42]. In [42], the authors proved a proposition

very similar to Proposition 1 for the continuous counterpart of DRAP-NC. In particular, they

showed that Proposition 1 holds if the problems DRAP(s, e) and DRAP-NC(s, e) are replaced

with their continuous relaxations RAP(s, e) and RAP-NC(s, e), respectively.

We first introduce an auxiliary function that connects the discrete and continuous versions

of the resource allocation problems. Given a convex function f(x), we define a piecewise linear

41

function as follows:

fPL(x) = f(bxc) + (x− bxc)× (f(dxe)− f(bxc)). (2.8)

It can be easily verified that fPL(x) has the same values as f(x) at integer points. Con-

sider any instance of DRAP-NC(s, e). We define DRAP-NCPL(s, e) to be a problem by re-

placing the function fi in DRAP-NC(s, e) with function fPLi for i ∈ [s : e]. Similarly, we

define RAP-NCPL(s, e), DRAPPL(s, e), and RAPPL(s, e) to be the continuous relaxation of

DRAP-NCPL(s, e), DRAP-NCPL(s, e) without nested constraints, the continuous relaxation of

DRAP-NCPL(s, e) without nested constraints, respectively.

The proof of Proposition 1 can be outlined as follows: (To simplify the notation, we omit

the parameters (s, e) in all related problems below in the rest of this section.)

1. We prove that an optimal solution of DRAP-NC is an optimal solution of DRAP-NCPL

and vice versa, and an optimal solution of DRAP is an optimal solution of DRAPPL and

vice versa.

2. We prove that an optimal solution of DRAP-NCPL is also an optimal solution of

RAP-NCPL, and as a result, an optimal solution of DRAPPL is also an optimal solu-

tion of RAPPL.

3. We prove that Proposition 1 holds, with an idea inspired by Lemma 2 in [42] for the

continuous counterparts RAP-NC and RAP.

The first step is easy to show. Since fi(xi) and fPLi (xi) coincide in the integer domain for

each i, each feasible solution of DRAP-NC is a feasible solution of DRAP-NCPL with the same

objective value, and vice versa. Therefore, any optimal solution of DRAP-NC is an optimal

solution of DRAP-NCPL and vice versa. The second statement of the first step follows directly

from the fact that RAPPL and DRAPPL are special cases of RAP-NCPL and DRAP-NCPL

respectively by setting ai = −∞ and bi =∞ for each i.

The second step follows from Theorem 4 in [44] and is not difficult to prove. We state the

result below.

Proposition 3. [44, Theorem 4] Any optimal solution x? of DRAP-NCPL(s, e) is also an

optimal solution of the corresponding RAP-NCPL(s, e) without integrality constraints.

Finally, we give a proof of Proposition 1. The proof idea is inspired by Lemma 2 in [42],

which makes use of the KKT conditions for continuous problems RAP-NC and RAP.

Proof of Proposition 1. We will prove that there exists an optimal solution (x̂s, . . . , x̂e) of

DRAP-NC(s, e) satisfying
∑K
k=s x̂k = bK − as−1 if

∑K
k=s x̄k > bK − as−1. The result for

42

the other case in which
∑K
k=s x̄k < aK − as−1 can be proven analogously.

We prove the result by contradiction. Suppose that there does not exist any optimal solution

of DRAP-NC(s, e) such that the constraint
∑K
k=s xk ≤ bK − as−1 is satisfied at equality. Since

any instance of DRAP-NC(s, e) has only a finite number of optimal solutions, we select the

optimal solution that maximizes
∑K
k=s xk among all optimal solutions. Call this solution x̂ =

(x̂s, . . . , x̂e). Assume that
∑K
k=s x̂k < bK − as−1. Let I = arg max{i |

∑i
k=s x̂k = bi − as−1, s−

1 ≤ i < K} and J = arg min{i |
∑i
k=s x̂k = bi − as−1,K < i ≤ e}.

We claim that there exist integer p ∈ [I + 1 : K] and q ∈ [K + 1 : J] such that x̄p > x̂p and

x̄q < x̂q. To see this, since the index of the most violated nested constraint is K,
∑K
k=s x̄k−bK ≥∑I

k=s x̄k − bI . Then
∑K
k=s x̄k −

∑I
k=s x̄k ≥ bK − bI . Meanwhile,

∑K
k=s x̂k < bK − as−1 and∑I

k=s x̂k = bI−as−1. Thus
∑K
k=s x̄k−

∑I
k=s x̄k ≥ bK−bI > (

∑K
k=s x̂k+as−1)−bI =

∑K
k=s x̂k−∑I

k=s x̂k. Therefore
∑K
k=I+1 x̄k >

∑K
k=I+1 x̂k. Then there must exist some p ∈ [I + 1 : K] such

that x̄p > x̂p. Similarly, we can find some q ∈ [K + 1 : J] such that x̄q < x̂q.

The solution x̄ is an optimal solution of DRAP(s, e), so it is also an optimal solution of

RAPPL(s, e). In addition, x̄p > x̂p ≥ 0 and x̄q < x̂q ≤ dq. Therefore, the solution x̄ should

satisfy the KKT conditions for RAPPL(s, e) (see Chapter 28-30 of [77] for KKT conditions with

subdifferentials). There must exist some dual variable λ such that

inf ∂fPLp (x̄p) ≤ λ ≤ sup ∂fPLq (x̄q),

where ∂fPLi (x) is the subdifferential of fPLi (x) for i ∈ [s : e]. Then by the monotonicity of the

subdifferential of convex functions, we have

sup ∂fPLp (x̂p) ≤ inf ∂fPLp (x̄p) ≤ sup ∂fPLq (x̄q) ≤ inf ∂fPLq (x̂q). (2.9)

We create an integer vector x̃ = (x̃s, . . . , x̃e) such that x̃p = x̂p + 1, x̃q = x̂q − 1, and

x̃i = x̂i otherwise. We claim that x̃ is also an optimal solution of DRAP-NC(s, e). To check the

feasibility of x̃, note that x̂p < x̄p ≤ dp and x̂p and x̄p are integers, so x̃p ≤ dp. Similarly, we can

show that x̃q ≥ 0. To check that x̃ satisfies all nested constraints, note that by the choice of p and

q, for each j ∈ [p : q],
∑j
k=s x̂k < bj − as−1. Thus for each j ∈ [p : q],

∑j
k=s x̃k ≤ bj − as−1. To

check the optimality of x̃, note that fPLp and fPLq are both piecewise linear functions with break

points only at integer points. Then from 2.9 we have fPLp (x̃p) + fPLq (x̃q) ≤ fPLp (x̂p) + fPLq (x̂q).

But
∑K
k=s x̃k =

∑K
k=s x̂k + 1, contradicting to the choice of x̂ that it maximizes

∑K
k=s xk.

43

2.5 Numerical experiments

In this section, we evaluate the performance of DCA under three different settings. Firstly,

we test the performance of DCA on DRAP-NC instances with linear and quadratic costs and

compare that with the state-of-the-art solver Gurobi [16]. Note that our algorithm works for any

convex function and only requires access to value oracles of the cost functions. We choose linear

and quadratic cost functions only because Gurobi is handle mixed-integer linear and quadratic

optimization problems. According to the test result, DCA is on average 6 times faster on DRAP-

NC with linear objectives and five to six orders of magnitude faster on DRAP-NC with quadratic

objectives than Gurobi. In the second and the third part, we evaluate the performance of DCA

on instances with separable convex objectives with MDA, the algorithm with the best worst-case

time complexity of O(n log n logB) in the literature [44]. In the second part, the test instances

are DRAP-NC instances with three classes of separable general convex objectives. Lastly, we

evaluate the performance when DCA and MDA are used to solve the projection subproblems

in an application of RAP-NC with non-separable objectives. According to the test results, the

averaged solution time of DCA is at least 50% less than that of MDA.

The parameters of the test instances of DRAP-NC are generated in the following way.

• We introduce a parameter Vb to be the maximum range of any variable in DRAP-NC.

The variable upper bound di’s are drawn from a discrete uniform distribution over the

set {1, 2, · · · , Vb}.

• The bounds of the nested constraints ai’s and bi’s are generated following the procedure

introduced in [44]. In particular, we first introduce the following two sequences of random

numbers {vi} and {wi}.

v0 = w0 = 0,

vi = vi−1 +Xv
i ,

wi = wi−1 +Xw
i ,

where Xw
i and Xv

i are drawn independently from a uniform distribution over the interval

[0, di]. Finally, we set ai = min{vi, wi} and bi = max{vi, wi} for i = 1, 2, · · · , n. This

procedure guarantees the feasibility of each generated instance.

For each pair of (n, Vb) values, 10 instances are generated. In addition, when the solution time

is less than 1 millisecond, we solve each instance 100 times and report the average running

time. The time limit is set to be 1200s for each instance. All programs are coded in Java

and the experiment is conducted on a desktop with i7-8700k CPU, 32G memory, an Ubuntu

Linux system, and Gurobi 8.0.1. We also do a sanity check and compare the solutions obtained

44

by DCA, Gurobi, and MDA for all test instances that are solved within the time limit. The

solutions turn out to be the same for every instance in the test set.

2.5.1 Computational experiment with Gurobi

Linear costs

In each instance with linear costs, the function fi(x) has the form fi(x) = pix, where pi is drawn

from a uniform distribution over [−1, 1]. The parameter Vb is set to be 10 or 100. We test both

our algorithm and Gurobi on 24 different pairs of (n, Vb) values. Note that it is not difficult

to check that the constraint matrix of DRAP-NC is totally unimodular. Thus DRAP-NC with

linear costs can be solved as a linear program by dropping the integrality constraints on the

variables. To speed up the performance of Gurobi, we introduce the new variables yi =
∑i
k=1 xi

and reformulate the DRAP-NC problem as follows:

min

n∑
i=1

fi(xi) (2.10a)

s.t. y1 = x1 − a1, (2.10b)

yi = yi−1 + xi − (ai − ai−1), ∀i ∈ [2 : n− 1], (2.10c)

0 = xn−1 + xn − (an − an−1), (2.10d)

0 ≤ yi ≤ bi − ai, ∀i ∈ [1 : n− 1], (2.10e)

0 ≤ xi ≤ di, ∀i ∈ [1 : n]. (2.10f)

With such equivalent formulation with a sparse coefficient matrix, Gurobi is able to solve the

problem thirty to one hundred times faster than when it uses the dense formulation (2.1). We

summarize the performance of two algorithms in Table 2.1 and Figure 2.1. The running time is

averaged over 10 instances for each set of parameters.

45

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

5

10

15

20

25

30

35

40
Linear Objectives with VarBound = 10

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

5

10

15

20

25

30

35

40
Linear Objectives with VarBound = 100

Figure 2.1: Solution time of DCA and Gurobi for instances with linear costs.

Parameters DCA Gurobi Parameters DCA Gurobi

n Vb Time (s) Time (s) n Vb Time (s) Time (s)

3200 10 0.003 0.012 3200 100 0.003 0.012

6400 10 0.006 0.027 6400 100 0.006 0.026

9600 10 0.008 0.040 9600 100 0.010 0.040

12800 10 0.013 0.069 12800 100 0.014 0.069

25600 10 0.034 0.157 25600 100 0.032 0.155

52100 10 0.065 0.350 52100 100 0.061 0.348

102400 10 0.136 0.762 102400 100 0.132 0.762

204800 10 0.245 1.629 204800 100 0.273 1.697

409600 10 0.693 3.619 409600 100 0.687 3.437

819200 10 1.411 7.834 819200 100 1.877 7.994

1638400 10 3.318 16.232 1638400 100 3.428 16.695

3276800 10 5.313 35.591 3276800 100 8.005 36.572

Table 2.1: Solution statistics of DCA and Gurobi for instance with linear costs.

It can be seen that both algorithms can solve large-sized instances of DRAP-NC. The linear

46

programming solver of Gurobi is already very efficient in solving instances with more than three

million variables, but DCA is on average 6 times faster.

Quadratic costs

In each instance with quadratic costs, the function fi(x) has the form fi(x) = pix
2 + qix, where

pi is drawn from a uniform distribution over [0, 1] and qi is drawn from a uniform distribution

over [−1, 1]. The parameter Vb is set to be 10 or 100. We generate 20 pairs of (n, Vb) values and

10 instances for each pair of (n, Vb) value.

We summarize the performance of the two algorithms in Table 2.2 and Figure 2.2 below.

All statistics are obtained by averaging over 10 instances. In Table 2.2, the columns OptGap(%),

RootGap(%), and HGap(%) give the integrality gap when Gurobi reaches the time limit, the

integrality gap at the root node of the branch-and-bound tree, and the integrality gap at the

root node after Gurobi applies some heuristics, respectively. We set in Gurobi the tolerance for

the optimality gap to be 10−4, which means that Gurobi will report that an optimal solution is

found if the relative integrality gap falls below 10−4.

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

200

400

600

800

1000

1200

1400
Quadratic Objectives with VarBound = 100

(a) Solution time of DCA and Gurobi
for instances with quadratic costs

2.3 2.31 2.32 2.33 2.34 2.35 2.36 2.37 2.38 2.39 2.4
0

10

20

30

40

50

60

70
Quadratic Objectives with VarBound = 100

(b) Detailed solution time of DCA and
Gurobi for instances with quadratic
costs and 200 to 250 variables. (The
solution time of DCA is multiplied by
1000.)

Figure 2.2: Solution time for DCA and Gurobi for instances with quadratic costs. The largest
instance solved to optimality by DCA has 819, 200 variables.

47

Parameters DCA Gurobi

n Vb Time(s) Time(s) Explored Nodes OptGap(%) RootGap(%) HGap(%)

50 10 0.000156 0.0166 31.1 0.0045 20.4994 0.075

100 10 0.000268 0.1163 2062.5 0.0053 20.626 0.0978

200 10 0.000601 10.7616 571590.4 0.0096 23.259 0.0992

230 10 0.000775 68.7861 3999867.2 0.0098 22.9281 2.7767

250 10 0.000928 227.8887 10598736.5 0.0112 25.1479 0.0989

280 10 0.000855 442.2539 20844989 0.013 25.424 0.0984

300 10 0.001113 634.9682 25889488 0.0157 27.349 0.1023

320 10 0.001165 1105.4133 44173760.3 0.0217 25.182 0.1132

340 10 0.001113 1004.0611 37761076.5 0.0241 27.94 0.1065

360 10 0.001132 > 1200 32546604.2 0.0166 28.378 0.0918

50 100 0.000123 0.0157 50.6 0.0018 21.0764 0.102

100 100 0.000248 0.0859 1429.2 0.0069 23.3402 0.0984

200 100 0.000540 6.1296 248931.3 0.0098 25.222 2.2209

230 100 0.000687 20.8305 1071874.9 0.01 25.4477 0.1045

250 100 0.000725 155.6103 8529738.3 0.0103 25.2047 0.0998

280 100 0.000869 254.595 11572698.8 0.0113 26.565 0.1005

300 100 0.000859 759.4357 34022833.6 0.0179 26.841 0.1032

320 100 0.000986 285.6427 12557311.3 0.0107 26.2289 0.0933

340 100 0.001104 1076.565 39186584.9 0.0277 26.6789 0.1086

360 100 0.001041 > 1200 39181356 0.039 25.96 0.1138

Table 2.2: Solution statistics for DCA and Gurobi with quadratic cost.

It can be seen that Gurobi is only able to solve instances with less than 360 variables

within the 1200 second time limit. On the other hand, DCA can solve instances with 819, 200

variables in 30 seconds. The largest instance that can be solved by DCA is far beyond the size of

instances that can be handled by Gurobi. The root gap of the mixed-integer convex programming

formulation (2.1) is large (over 20%). Although Gurobi has very powerful heuristic methods,

it still requires a lot of time to prove that the obtained solution is optimal. In addition, the

running time of Gurobi increases significantly as the size of instance increases, accompanied by

a steep increase in the number of nodes explored in the branch-and-bound tree. On the other

hand, our algorithm DCA is five to six orders of magnitude faster than Gurobi, solving instances

for instances with no more than 360 variables in around 10−3s.

2.5.2 Computational experiment on convex objectives

In the next, we test the performance of DCA on DRAP-NC instances with three classes of

convex objectives and compare it with MDA [44], the best algorithm in the literature. MDA

48

has a time complexity of O(n log n logB), which is strictly better than the time complexity

Θ(n2 log B
n) of our algorithm. Nevertheless, the computational experiment indicates that the

DCA is competitive when compared to MDA. The rest of this section is organized as follows:

Firstly, we give a brief introduction to MDA and discuss possible advantages of DCA and

MDA; Then we present examples on which DCA is superior to MDA as it solves much fewer

subproblems; At last, we conduct a numerical experiment to test the performance of DCA and

MDA on three classes of convex objectives. We report the average solution time and average

number of subproblems solved. These statistics indicate that DCA has a better performance

than MDA on the test instances.

Introdution to MDA

MDA is currently the most efficient algorithm for DRAP-NC in the literature as it achieves a

worst-case time complexity of O(n log n logB) [44]. It is a divide-and-conquer algorithm. It

breaks down an instance of DRAP-NC with n variables into two subproblems of equal size,

i.e, two subproblems with dn2 e variables. The subproblems are solved recursively, with the

subproblem with exactly one variable solved trivially. Based on the solutions returned by the

two subproblems, MDA generates stronger variable bounds that dominates the original nested

bound constraints. With these stronger variable bounds, the original problem is essentially

reduced to four instances of DRAP and hence can be solved by any algorithm for DRAP (e.g.,

Hochbaum’s algorithm). Since MDA always divides the problem evenly, the total number of

calls to the DRAP subroutine in MDA is Θ(n).

On the other hand, the divide-and-conquer scheme used in DCA is fairly distinct. DCA is an

infeasibility-guided divide-and-conquer algorithm. At each recursion, it first ignores the nested

bound constraints and solves an RAP relaxation of the instance. Then it examines the optimal

solution of the relaxation and divides the problem into subproblems if and only if a maximum

violation of the nested bound constraints is found. If the optimal solution of RAP relaxation

is feasible with respect to the nested bound constraints, then the subproblem is already solved.

Hence, it is possible that the number of subproblems solved by DCA is substantially fewer than

Θ(n), the number of subproblems solved by MDA. Even though MDA is guaranteed to have a

better worst-case time complexity, DCA is may have a better performance under the criterion

of average-case complexity.

In the following, we provide constructed examples to demonstrate the idea above.

49

An example on which DCA is better than MDA

Consider the following instance:

min −Mxn+1 +

n+1∑
k=1

x2k (2.11a)

s.t. i ≤
i∑

k=1

xk ≤ i, ∀i ∈ [1 : n] (2.11b)

n+1∑
k=1

xk = n, (2.11c)

0 ≤ xi ≤ 2n, xi ∈ Z, ∀i ∈ [1 : n+ 1]. (2.11d)

where M is a sufficiently large number and the objective function fi(·) is convex for each i ∈
[1 : n + 1]. Note that DRAP-NC(1, n + 1) has a unique optimal solution in which xn+1 = 0

and xi = 1 otherwise, and its relaxation DRAP(1, n+ 1) has a unique optimal solution in which

xn+1 = n and xi = 0 for other i. The maximum violation of is achieved by the nested bound

constraint with index n. Then we set K = n and divide the problem into two subproblems

DRAP-NC(1, n) and DRAP-NC(n+ 1, n+ 1).

1. DRAP-NC(1, n):

min

n∑
k=1

x2k (2.12a)

s.t. i ≤
i∑

k=1

xk ≤ i, ∀i ∈ [1 : n− 1] (2.12b)

n∑
k=1

xk = n, (2.12c)

0 ≤ xi ≤ 2n, xi ∈ Z, ∀i ∈ [1 : n], (2.12d)

2. DRAP-NC(n+ 1, n+ 1):

min x2n+1 −Mxn+1 (2.13a)

s.t. xn+1 = 0, (2.13b)

0 ≤ xi ≤ 2n, xi ∈ Z. (2.13c)

Observe that the relaxed problem DRAP(1, n) has a unique optimal solution (1, . . . , 1) and

the the relaxed problem DRAP(n+ 1, n+ 1) has a unique optimal solution 0. In addition, these

50

solutions do not violated any of the nested bounds. Therefore, we can obtain the optimal solution

to the original problem DRAP-NC by solving exactly three subproblems. In comparison, MDA

still needs to solve Θ(n) subproblems to obtain the final solution.

Benchmark convex functions

We test the performance of DCA and MDA on randomly generated DRAP-NC instances with

three classes of benchmark convex objectives used in the paper [44]: [F], [CRASH], and [FUEL].

[F] :fi(x) =
x4

4
+ pix, (2.14)

[CRASH] :fi(x) = ki +
pi
x
, (2.15)

and [FUEL] :fi(x) = pi × ci × (
ci
x

)3. (2.16)

Convex objective [F]

[F] is a convex cost function that has the form

fi(x) =
x4

4
+ pix.

In each instance, the function fi(x) has the form fi(x) = x4

4 + pix, where pi is drawn from

a uniform distribution over [−1, 1]. The parameter Vb is set to 100. We generate 14 different n

values ranging from 800 to 6 millions and 10 instances for each value of n. The average running

time as well as the average number of calls of solving RAP subproblems are reported in Table 2.3

and Figure 2.3.

51

Parameters CPU time (s) Average number of subproblems solved

n DCA MDA DCA MDA

800 0.011 0.021 98.8 6396
1600 0.015 0.038 142.2 12796
3200 0.033 0.090 177.2 25596
6400 0.071 0.197 342.0 51196
12800 0.155 0.447 374.0 102396
25600 0.375 0.989 561.6 204796
51200 1.221 2.493 1310.2 409596
102400 2.199 4.945 1179.8 819196
204800 5.693 11.163 2598.2 1638396
409600 12.044 26.132 2230.4 3276796
819200 32.200 62.631 2762.6 6553596
1638400 80.897 149.035 4738.0 13107196
3276800 148.142 363.447 3731.2 26214396
6553600 431.889 868.560 9323.4 52428796

Table 2.3: Solution statistics of DCA and MDA for instances with convex cost objectives [F].

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

200

400

600

800

1000
[F] Cost Objectives with VarBound = 100

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

1

2

3

4

5

6
107 Number of subproblems solved

Figure 2.3: Solution time and number of subproblems solved statistics of DCA and MDA for
instances with convex cost objectives [F].

52

Convex objective [CRASH]

[CRASH] is a convex cost function that has the form

fi(x) = ki +
pi
x
.

In each instance, the function fi(x) has the form fi(x) = ki + pi
x , where pi and ki are drawn

from a uniform distribution over [0, 1]. The parameter Vb is set to 100. We generate 14 different

n values ranging from 800 to 6 millions and 10 instances for each value of n. The average

running time as well as the average number of calls of solving RAP subproblems are reported

in Table 2.4 and Figure 2.4.

Parameters CPU time (s) Average number of subproblems solved

n DCA MDA DCA MDA

800 0.011 0.021 110.2 6396
1600 0.016 0.040 130.8 12796
3200 0.039 0.089 256.6 25596
6400 0.097 0.202 361.4 51196
12800 0.229 0.446 654.4 102396
25600 0.454 1.077 636.6 204796
51200 1.165 2.266 1147.2 409596
102400 2.424 5.234 1010.8 819196
204800 6.704 12.115 1791.0 1638396
409600 16.761 27.381 2930.6 3276796
819200 39.872 62.899 3455.6 6553596
1638400 86.280 146.509 4758.8 13107196
3276800 222.655 346.476 9547.8 26214396
6553600 470.372 846.707 11013.2 52428796

Table 2.4: Solution statistics of DCA and MDA for instances with convex cost objectives
[CRASH].

53

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

200

400

600

800

1000
[CRASH] Cost Objectives with VarBound = 100

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

1

2

3

4

5

6
107 Number of subproblems solved

Figure 2.4: Solution time and number of subproblems solved statistics of DCA and MDA for
instances with convex cost objectives [CRASH].

Convex objective [FUEL]

[FUEL] is a convex cost function that has the form

fi(x) = pi × ci × (
ci
x

)3.

It is a function used in speed optimization to measure fuel costs [78].

In each instance, the function fi(x) has the form fi(x) = pi × ci × (cix)3, where pi and ci

are drawn from a uniform distribution over [0, 1]. The parameter Vb is set to 100. We generate

14 different n values ranging from 800 to 6 millions and 10 instances for each value of n. The

average running time as well as the average number of calls of solving RAP subproblems are

reported in Table 2.5 and Figure 2.5.

54

Parameters CPU time (s) Average number of subproblems solved

n DCA MDA DCA MDA

800 0.013 0.024 135.8 6396
1600 0.020 0.044 151.6 12796
3200 0.041 0.102 220.8 25596
6400 0.099 0.225 421.8 51196
12800 0.234 0.506 502.2 102396
25600 0.539 1.131 514.4 204796
51200 1.221 2.493 1310.2 409596
102400 2.665 5.829 912.2 819196
204800 7.333 12.982 2225.2 1638396
409600 18.617 30.030 2916.2 3276796
819200 40.721 72.228 2771.2 6553596
1638400 108.050 167.963 6643.6 13107196
3276800 237.597 402.043 7161.0 26214396
6553600 586.074 936.209 14240.2 52428796

Table 2.5: Solution statistics of DCA and MDA for instances with convex cost objectives
[FUEL].

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

200

400

600

800

1000
[FUEL] Cost Objectives with VarBound = 100

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

1

2

3

4

5

6
107 Number of subproblems solved

Figure 2.5: Solution time and number of subproblems solved statistics of DCA and MDA for
instances with convex cost objectives [FUEL].

55

It can be seen that for all the test instances, DCA solved significantly fewer subproblems

than MDA and the average running time of DCA is at least 50% less than that of MDA on

the same instance. Though MDA has a strictly better worst-case complexity, on the benchmark

instances in the literature, DCA is competitive compared to MDA.

2.5.3 Non-separable convex objective

Our last numerical experiment is on the Support Vector Ordinal Regression (SOVREX) model.

SOVREX aims to optimize multiple thresholds to define parallel discriminant hyperplanes to

classify samples with ordinal scales [79]. Vidal et al. [44] show that the dual problem of

SOVREX in [79] is a non-separable convex optimization problem over a special case of the

RAP-NC constraint polytope (2.17):

max

r∑
j=1

nj∑
i=1

(αji + αj∗i) +

r∑
j=1

nj∑
i=1

r∑
j′=1

nj∑
i′=1

(αji − α
j∗
i)(αj

′

i′ − α
j′∗
i′)]K(xji , x

j′

i′)

(2.17a)

s.t. 0 ≤ αji ≤ C, ∀i ∈ [1 : nj], j ∈ [1 : r − 1], (2.17b)

0 ≤ αj∗i ≤ C, ∀i ∈ [1 : nj], j ∈ [2 : r], (2.17c)

αri = 0, ∀i ∈ [1 : nr], (2.17d)

α1∗
i = 0, ∀i ∈ [1 : n1], (2.17e)

j∑
k=1

(

nj∑
i=1

αji −
nj+1∑
i=1

αj+1∗
i) ≥ 0, j ∈ [1 : r − 1], (2.17f)

where K(xji , x
j′

i′) is the kernel function and xji is the feature of sample (i, j). It is not difficult to

see that (2.17) can be transformed into RAP-NC with a variable substitution of α∗ and (2.17f)

becomes the nested bound constraints. In [44], Vital et al. evaluate the performance of MDA

with a projected gradient procedure for finding the optimal value of the dual of SOVREX. The

procedure is a type of block coordinate ascent method that maintains a small-sized working

set of variables to optimize while the other variables remain fixed. In particular, instances of

RAP-NC are solved by MDA in the projection step. To ensure convergence, a minimal working

set may need to contain the two variables which most violate the KKT conditions [79]. When

the working set contains only two samples, the projection subproblem can be solved analytically.

However, an analytic solution for the projection subproblem is not available if the working set

contains more than two samples. Larger working set can reduce the total number of iterations

while the cost of each projected gradient step is more expensive. Hence, a fast algorithm for the

projection subproblem is critical.

56

The projected gradient procedure is summarized in Algorithm 4. It is adapted from [44].

We follow most of the general settings in [44] (data preparation, a step size of γ = 0.2, working

set size nws = {2, 4, 6, 8, 10}, training set size, etc) and evaluate the performance on the same

eight instances1. In the working set selection, we select the most-violated samples pairs for each

hyperplane rather than the most-violated sample pairs as in [44]. We also use Gaussian kernel

K(x, x′) = exp(−κ2
∑d
s=1(xs − x′s)2). More detailed guidelines can be found in [79] and [44].

Algorithm 4 A projected gradient ascent approach to solve SVOREX (Adapted from
[44, Algorithm 4])

1: Settings: Gaussian kernel with parameter κ, penalty parameter C, working set size

nws ∈ {2, 4, 6, 8, 10}, step size γ = 0.2, ngrad = 20. Let n be the number of samples

and m be the size of working set.

2: Initialization: Set initial feasible solution (α,α∗) = 0. Precompute the gradient.

(O(n2) operations)

3: while there exist samples that violate the KKT conditions do

4: Select a working set W containing the most-violated samples pairs for each

hyperplane with maximum size nws. (O(n) operations)

5: for ngrad iterations do

6: Perform a gradient ascent update for variables (αji , α
j∗
i), (i, j) ∈ W . (O(m)

operations)

7: Project the solution to the feasible region by solving a quadratic RAP-NC.

8: Update the gradient for (αji , α
j∗
i), (i, j) ∈ W incrementally. (O(m2) opera-

tions)

9: end for

10: Update the gradient for all the variables incrementally. (O(nm) operations)

11: Check whether the stopping criteria is satisfied based on the gradient. (O(n)

operations)

12: end while

Since projection problem is a continuous RAP-NC, we implement a bisection method on the

dual variables to solve the continuous RAP subproblems to obtain faster solution time. The

solution statistics is summarized in Table 2.6. For each of the eight instances, the first column

1The data sets are available at https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.

html[80]

https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html

57

reports the number of samples N in the training set and the dimension D of the samples. We

select the first N samples in the data set. The second column is the size of the working set. We

run two tests, Grad-MDA and Grad-DCA, in which MDA and DCA are implemented to solve

the projection subproblems in the projected gradient ascent procedure. In the third and the

fourth column, we report the total number of iterations Iws, total solution time T , time spent

in the projection step Tpro, and the total number of RAP subproblems solved for Grad-MDA

and Grad-DCA, respectively. Notice that if every subproblem is solved exactly, the Grad-MDA

and Grad-DCA should have the same number of iterations Iws for the same set of parameters.

However, in general an exact solution is not possible for continuous problems. The number

of iteration Iws is slightly different due to the fact that solutions returned by the MDA and

DCA are slightly different within the precision tolerance. Finally, we perform a sanity check

by comparing the solutions obtained by different working set size and algorithms for projection

subproblems. For the same data set, all the solutions turn out to be the same. In the gradient

ascent procedure, the most expensive operations in Algorithm are Step 10 and Step 10. For

all the eight data sets, as indicated by the test results, larger working set size can reduce the

total number of iterations significantly and in turn reduce such expensive operations. For all the

test instances, the solution time of Grad-DCA is competitive to Grad-MDA as it solves much

fewer RAP subproblems, though the average size of the RAP subproblems of Grad-DCA might

be larger. If we only compare the time spent in solving projection subproblems, DCA takes at

least 50% less time than MDA.

2.5.4 Concluding remarks

According to the test results above, DCA is on average six times faster on DRAP-NC with linear

objectives and five to six orders of magnitude faster on DRAP-NC with quadratic objectives

than Gurobi. For DRAP-NC with general convex objectives, the averaged solution time of

DCA is at least 50% less than that of MDA. For the RAP-NC subproblems in the projected

gradient procedure for solving SOVREX, the solution time in solving projection subporblems

of DCA is also at least 50% less than that of MDA. Even though MDA has a strictly better

worst-case time complexity, DCA takes advantage of its simple infeasibility-guided divide-and-

conquer framework and usually solve much fewer RAP subproblems. The solution time of DCA

is competitive to that of MDA in solving RAP-NC and DRAP-NC on the test instances.

A natural question to ask is: in which case will DCA perform better than MDA and vice

versa? Although we have already provided examples to show one way or the other, these

instances are very specific. It is an interesting question that whether other factors, e.g., types

of objectives, will have impact on the performance of the two algorithms. We do not have a

definite answer to the question. We will leave the practitioners to decide which algorithm to use

58

based on their applications.

Dataset nws Grad-MDA Grad-DCA

Name N D Iws T (s) Tpro(s) NRAP Iws T (s) Tpro(s) NRAP

Abalone 1000 8

2 118467 14.166 7.938 66341520 118654 9.85 3.313 6579104

4 124855 31.075 21.776 149826000 124498 18.433 9.87 13955896

6 83350 31.973 24.022 153364000 84007 17.451 10.09 11481052

8 70642 37.422 28.725 175158560 70449 17.543 10.284 9861040

10 61604 40.157 31.786 191843840 58835 18.083 9.978 8233582

Bank 3000 32

2 57348 12.069 3.498 32114880 57348 11.105 2.012 4730000

4 19158 8.284 3.371 22989600 19161 6.665 1.644 2480272

6 7819 4.954 2.014 14386960 7765 3.702 0.926 1077764

8 5087 4.296 1.947 12615760 5055 3.082 0.726 707584

10 4335 4.632 2.271 13519760 4332 3.05 0.755 605792

Boston 300 13

2 11028 0.999 0.819 6175680 11028 0.815 0.444 746994

4 6771 1.407 1.252 8125200 6768 0.729 0.579 864346

6 4064 1.339 1.251 7477760 3895 0.584 0.484 542676

8 2990 1.334 1.255 7407520 2876 0.525 0.437 402592

10 2413 1.394 1.309 7471280 2377 0.499 0.411 332702

California 5000 8

2 359895 127.864 23.733 201541200 359325 116.138 12.134 24027962

4 237386 146.917 41.531 284863200 236167 120.703 19.814 28281968

6 172963 148.31 48.984 318251920 175589 122.193 20.312 24186180

8 154286 175.368 63.189 382608160 152036 129.443 21.041 21282832

10 139432 199.435 73.463 434853760 137885 141.489 24.178 19301354

Census 6000 16

2 171790 71.372 11.393 96202400 171790 68.202 6.261 13734990

4 137168 96.736 25.13 164601600 137239 82.837 12.064 17437806

6 98126 99.027 29.567 180551520 98727 80.665 12.425 13762340

8 81162 106.582 33.925 201260000 81108 83.59 13.025 11354772

10 70869 113.658 37.932 221018480 70701 88.648 12.204 9897152

Computer 4000 21

2 349175 99.381 23.988 195538000 349116 88.383 11.758 22475546

4 213392 111.045 39.995 256070400 215489 88.985 17.597 25757486

6 152462 115.837 45.81 280530080 150138 86.438 18.171 20829324

8 132024 131.732 56.471 327411200 130958 93.271 18.742 18333576

10 115968 144.582 64.051 361657920 116843 97.942 19.364 16357458

Machine CPU 150 6

2 28467 2.309 2.0 15941520 28621 1.51 1.048 1911252

4 13569 2.584 2.394 16282800 13430 1.36 1.154 1666230

6 7932 2.472 2.294 14594240 7897 1.128 0.969 1094396

8 6619 2.786 2.628 16339920 6199 1.052 0.919 867636

10 5863 3.176 2.978 18008400 5834 1.129 0.983 816334

Pyrimidines 50 27

2 629 0.119 0.096 352240 629 0.158 0.073 50180

4 295 0.084 0.074 354000 295 0.043 0.031 39224

6 168 0.083 0.068 308480 154 0.034 0.023 21464

8 128 0.072 0.067 308800 131 0.034 0.023 18304

10 108 0.06 0.055 321920 115 0.023 0.02 15994

Table 2.6: Statistic of Grad-DCA and Grad-MDA on SVOREX benchmark instances

59

2.6 Conclusions

In the chapter, we proposed a simple and efficient exact algorithm to solve the discrete resource

allocation problem with nested constraints. The algorithm is an infeasibility-guided divide-and-

conquer algorithm which makes multiple calls to a scaling-based subroutine. The algorithm does

not require any additional assumption on the cost function other than convexity, so it can be

applied to many applications where the form of the cost function is not known. We conducted

extensive computational experiments on instances with a variety of convex objectives. The

numerical results demonstrate the efficiency of our algorithm in solving large-sized DRAP-NC

instances compared to Gurobi the state-of-the-art commercial solver, and MDA, the algorithm

with the best worse case complexity in the literature.

Chapter 3

Minimum convex cost network

flow over the dynamic lot size

network

60

61

In this chapter, we study a minimum convex cost network flow problem on the dynamic lot

size network G = (N,A) as shown in Figure 3.1.

0

1

d1

2

d2

· · ·

· · · dn−1

n

dn

Figure 3.1: The dynamic lot size network.

The dynamic lot size network is defined as follows: there are one source node 0 and n sink

nodes 1, 2, . . . , n, with demands d1, d2, . . . , dn. Each arc e ∈ A is associated with a lower bound

0, an upper bound ue, and a convex cost function fe(·). We are interested in the following

convex optimization problem (P2):

Given a dynamic lot size network G = (N,A) described in Figure 3.1, find a flow x on

G to minimize the total arc cost
∑
e∈A fe(xe) and satisfy all the flow balance and capacity

constraints.

As it will be demonstrated in Section 3.2.1, (P2) is a generalization of (P1) with additional

convex costs on the amount of resources allocated to the subsets of activities. To solve (P2)

efficiently, we design a scaling-based algorithm, the Scaled Flow-improving Algorithm (SFA).

SFA is designed for (P2) with restriction to integer flows but it can be easily extended to solve

the continuous problem. The running time of our algorithm is O(n2 log B
n) for the integer

problem and O(n2 log B
nε) for the continuous problem for finding an ε-optimal solution where

B =
∑n
i=0 di. In particular, for (P1) that was considered in the last chapter, our algorithm

terminates in O(n log n log B
nε) time for the continuous problem and O(n log n log B

n) time for the

integer problem. The speed up is obtained by using data structures segment tree and red-black

tree for two key operations in our algorithm. The complexity matches the best result for (P1)

in the literature [44]. We evaluate the performance of our algorithm on test instances of (P1)

with a variety of convex objectives, and then compare the results with the performance of DCA

in Chapter 2 and MDA [44], which has the best worst-case time complexity for (P1). Numerical

experiments demonstrate that SFA has the best performance among the three algorithms on

62

the benchmark instances.

3.1 Introduction

In this chapter, we are interested in (P2), a minimum convex cost network flow problem on the

dynamic lot size network in Figure 3.2. For each positive integer i ≤ j, let [i : j] denote the set

{i, i+1, . . . , j}. For i ∈ [1 : n], let xi denote the flow on the vertical arc (0, i). For i ∈ [1 : n−1],

let yi denote the flow on the horizontal arc (i, i+ 1).

0

1

d1

2

d2

· · ·

· · ·

n-1

dn−1

n

dn

(f1(x1), u01) (f2(x2), u02)

(f1(xn), u0n)

(g1(y1), u12) (g2(y2), u23)

Figure 3.2: The dynamic lot size network. The pair (f(x), u) alongside each arc indicates the
arc incurs a cost f(x) with x units of flow and its capacity is u.

(P2) can be formulated as a convex program with a separable objective function and linear

constraints (3.1):

min

n∑
i=1

fi(xi) +

n−1∑
i=1

gi(yi) (3.1a)

s.t. y1 = x1 − d1, (3.1b)

yi = yi−1 + xi − di, ∀i ∈ [2 : n− 1], (3.1c)

0 = yn−1 + xn − dn, (3.1d)

0 ≤ xi ≤ u0,i, ∀i ∈ [1 : n], (3.1e)

0 ≤ yi ≤ ui,i+1, ∀i ∈ [1 : n− 1]. (3.1f)

where the cost functions fi(·), i ∈ [1 : n] and gi(·), i ∈ [1 : n− 1] are convex.

63

3.2 Literature review

3.2.1 Applications

(P2) appears in many applications. We give three examples below.

1. (P2) is the underlying optimization model of the dynamic lot-sizing problem, which is a

classic problem in operation research. In [81], Ahuja and Hochbaum viewed the dynamic

lot-sizing problem as a minimum linear cost network flow problem on the dynamic lot size

network in Figure 3.1. Instead of solving it with classic polynomial-time algorithms for

minimum cost network flow problems, they developed a faster algorithm that solves the

problem in O(n log n) time. Their algorithm only solves the linear model with production

cost and back-orders. (P2) essentially extends the models in [81] to convex production

cost and convex holding cost.

2. The second example is the resource allocation problem, a fundamental problem with a

wide variety of applications in search theory, economics, inventory systems, etc [41]. It

aims to allocate a fixed amount of resources to a set of activities so as to minimize the

allocation cost subjective to certain constraints. We refer the readers to [15] [40] [41]

for a comprehensive review of the resource allocation problem and its algorithms. The

resource allocation problem (RAP-NC) studied in [44] and Chapter 2 is a resource alloca-

tion problem with additional constraints on the amount of resources allocated to subsets

of activities. It can be formulated as the following convex optimization problem:

min
x

n∑
i=1

fi(xi) (3.2a)

s.t. ai ≤
i∑

k=1

xk ≤ bi, ∀i ∈ [1 : n− 1], (3.2b)

n∑
i=1

xi = B, (3.2c)

0 ≤ xi ≤ di, ∀i ∈ [1 : n]. (3.2d)

where the allocation cost for activity i is given by a convex function fi : [0, di] → R, for

i ∈ [1 : n]. We introduce new variables yi =
∑i
k=1 xk − ai, i ∈ [1 : n − 1] and reorganize

64

the constraints in (3.2) as follows,

min

n∑
i=1

fi(xi) (3.3a)

s.t. y1 = x1 − a1, (3.3b)

yi = yi−1 + xi − (ai − ai−1), ∀i ∈ [2 : n− 1], (3.3c)

0 = xn−1 + xn − (an − an−1), (3.3d)

0 ≤ yi ≤ bi − ai, ∀i ∈ [1 : n− 1], (3.3e)

0 ≤ xi ≤ di, ∀i ∈ [1 : n]. (3.3f)

It is a special case of (P2) without the cost functions gi(·)’s in Formulation (3.1).

3. The third example is the speed optimization problem arising in transportation sci-

ence [10] [11] [12]. The goal of the problem is to find optimal speeds between two consec-

utive nodes over a fixed route while subjected to minimize the total cost, e.g., fuel cost,

emission cost, and customer inconvenience cost. The speed optimization problem can be

formulated as follows:

min
v,t

n−1∑
i=1

difi(vi) +

n∑
i=1

gi(ti) (3.4a)

s.t. ai ≤ ti ≤ bi, ∀i ∈ [1 : n], (3.4b)

ti +
di
vi
≤ ti+1, ∀i ∈ [1 : n− 1], (3.4c)

li ≤ vi ≤ ui, ∀i ∈ [1 : n− 1], (3.4d)

where fi(·)’s are convex cost functions representing the fuel cost per mile and gi(·)’s are

convex functions representing customer inconveniences. In [10], Dumas et al. studied the

speed optimization whose goal is to minimize total customer inconvenience cost. In [11],

Fagerholt et al. aimed to find the optimal speed to minimize the total fuel cost while

the fuel cost functions per mile over each arc are the same. In [12], He et al. developed

an efficient divide-and-conquer algorithm for the problem with heterogeneous convex fuel

costs. Let v∗i denote the minimizer of fi(·) for i ∈ [1 : n − 1]. The speed optimization

65

problem (3.4) can be transformed into an equivalent optimization model as follows:

min
x,t

n−1∑
i=1

hi(
di
xi

) +

n∑
i=1

gi(ti) (3.5a)

s.t. ti+1 = xi+1 + ti, ∀i ∈ [1 : n− 1], (3.5b)

ai ≤ ti ≤ bi, ∀i ∈ [1 : n], (3.5c)

di
ui
≤ xi+1, ∀i ∈ [1 : n− 1], (3.5d)

where

hi(v) =

fi(v∗i) if v ≤ v?i ,

fi(v) if v > v?i .

It can be showed that hi(·) is convex and therefore, (3.5) is a special case of (P2). An

efficient algorithm is critical to the speed optimization problem, which needs to be solved

as a subproblem many times in route-planning algorithms [82].

3.2.2 Existing algorithms

(P2) is a minimum convex cost network flow problem (MCCNFP) on a structured network. In

this section, we review some algorithms for the minimum cost network flow problems (MCNFP)

and MCCNFP on other structured networks.

In [83], Vaidyanathan and Ahuja considered MCNFP on lines and circles. In [84], Orlin and

Vaidyanathan extended the result to problems with convex piece-wise cost functions. Under the

assumption that the cost functions have at most O(n) pieces, their algorithms are able to achieve

an O(n log n) speed up over the general algorithms on structured networks of lines, circles, and

trees. Their algorithm also solves (P2) when the vertical arcs have identical linear cost and the

horizontal arcs have convex piece-wise linear cost.

In [81], Ahuja and Hochbaum studied the dynamic lot-sizing problems with linear produc-

tion costs and back-orders. They proposed an efficient algorithm which we refer to as A-H

algorithm. A-H algorithm is a special implementation of the successive shortest path algorithm

for MCNFP that leverages the underlying network structure with two data structures. It is

strongly polynomial with a time complexity of O(n log n).

In general, however, these algorithms can not be applied to (P2) directly. To the best of our

knowledge, the best worst-case time complexity for (P2) is O(n2 log n logB) for integer problem

and O(n2 log n log B
ε) for continuous problem, achieved by the capacity scaling algorithm [45].

66

Our contribution

In this chapter, we develop a new scaling-based algorithm, the Scaled Flow-improving Algorithm

(SFA). The running time of our algorithm is O(n2 log B
n) for the integer problem and O(n2 log B

nε)

for the continuous problem for finding an ε-optimal solution. It has a log n factor improvement

over the current best algorithm. The algorithm is based on two ingredients: (1) a new scaling

framework [67] that is not based on LP duality in the existing capacity scaling algorithm; (2) a

stronger proximity result between the optimal solutions of the original problem and the scaled

problem than the existing results on minimum convex cost flow problem.

In particular, for DRAP-NC and RAP-NC that were considered in Chapter 2, our algorithm

terminates in O(n log n log B
n) time for the integer problem and O(n log n log B

nε) time for the

continuous problem with B =
∑n
i=0 di. The speed up is obtained by using the data structures

segment tree and red-black tree for two key operations in our algorithm. The complexity of SFA

for RAP-NC and DRAP-NC matches the best known result in the literature [44].

We evaluate the performance of our algorithm on DRAP-NC test instances with a variety

of convex objectives, and then compare the results with the performance of DCA in Chapter 2

and MDA [44], which has the best worst-case time complexity for DRAP-NC. The numerical

experiment demonstrates that SFA has the best performance among the three algorithms.

The rest of this chapter is organized as follows: In Section 3.3, we give the general idea of

SFA and briefly introduce three algorithms that are closely related to SFA. In Section 3.4, we

present SFA and prove its correctness. In Section 3.5, we present a faster implementation of

SFA for DRAP-NC and RAP-NC. In Section 3.6, we evaluate the performance of our algorithm

with DCA and MDA on DRAP-NC test instances with a variety of convex objectives.

3.3 Preliminaries

In this section, we first sketch the idea of SFA and then briefly introduce three algorithms that

are closely related to SFA. Based on the discussion in Section 1.6.2, to find an ε-solution forr

the continuous MCCNFP, we can solve an integer MCCNFP with scaled data. In the following,

we will focus on integer problem of (P2).

SFA falls in the scaling framework for separable convex optimization with linear constraints

in [67]. It consists of several scaling phases. Each scaling phase is associated with a scaling

parameter s ∈ Z and a flow z. Initially, we start with sufficiently large s and zero flow. In an s-

scaling phase, the flow z serves as a lower bound on the optimal flow of the original problem. In

particular, each convex function in the objective of (3.1) is approximated by a piece-wise linear

function with pieces of length s. We then employ an MCNFP algorithm to solve a piece-wise

linear approximation of the original problem with z as the initial flow. A proximity theorem

67

indicates that a better lower bound z can be obtained by decrease each flow in the approximate

solution. Then we decrease s by half and move to the next scaling phase with the new z. When

s = 1, an integer optimal solution can be found.

In the rest of this section, we briefly introduce three related algorithms. Two of them, the

successive shortest path algorithm and the capacity scaling algorithm are general algorithms for

MCNFP. The last one is the A-H algorithm [81], which is a specialized algorithm for MCNFP on

the dynamic lot size network. Then we present a general approach for generalizing these algo-

rithms to solve the problem with convex objectives, i.e., MCCNFP. These are building blocks

of SFA. In fact, both of SFA and capacity scaling algorithm are scaling algorithms. Moreover,

SFA adapts a generalized version of the A-H algorithm to solve the approximation problem

efficiently. Finally, both of the capacity scaling algorithm and the A-H algorithm are based on

the successive shortest path algorithm.

3.3.1 Pseudoflow and residual network

We start with the basic concepts in these algorithms: pseudoflow and residual network. Suppose

G = (N,A) is a directed graph with n = |N | nodes and m = |A| arcs, recall that MCCNFP can

be formulated as the following convex optimization problem,

min
∑

(i,j)∈A

fij(xij) (3.6a)

s.t.
∑

{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji = b(i), ∀i ∈ N, (3.6b)

0 ≤ xij ≤ uij , ∀(i, j) ∈ A. (3.6c)

where fij(xij), (i, j) ∈ A are general convex functions, and b(i) is the supply of node i if b(i) is

positive, and demand of node i otherwise.

Definition 19. (Pseudoflow [45]) A pseudoflow x is a solution of (3.6) that satisfies the

nonnegativity and capacity constraints (3.6c), but may violate the mass balance constraints (3.6b)

of the nodes.

For any pseudoflow x, the imbalance of each node i ∈ N is defined as

e(i) = b(i)− (
∑

{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji).

We say a node i is an excess node if e(i) > 0 and is a deficit node if e(i) < 0.

68

i j i j
(fij(xij), uij)

(fij(xij + 1)− fij(xij), uij − xij)

(fij(xij − 1)− fij(xij), xij)

Figure 3.3: Illustrating the residual network G(x). If 0 ≤ xij ≤ uij , xij is a pseudoflow on
arc (i, j). In the residual network, there is a regular if xij < uij and a reverse arc is created if
xij > 0. The cost in the residual network is defined as unit incremental cost.

The residual network G(x) is defined on the network G corresponding a pseudoflow x. Every

arc (i, j) inG is replaced by two arcs (i, j) and (j, i). The new arc (i, j) has cost cij = fij(xij+1)−
fij(xij) and residual capacity rij = uij−xij and the arc (j, i) has cost cji = fij(xij−1)−fij(xij)
and residual capacity rji = xij . In linear problems, cij = −cji. We refer to an arc (i, j) ∈ A
as a regular arc and its reversal (j, i) as a reverse arc. Finally, the residual network consists of

only arcs with strictly positive capacities. In some scaling algorithms, we are interested in the

s-residual network. Given a positive integer s, the s-residual network, denoted by G(x, s), is

defined as the subgraph of the residual network G(x) containing only arcs with capacity at least

s. In G(x, s), the cost of an arc is the average incremental cost of the next s units of flow over

that arc when the current flow in the network is x, i.e., cij =
fij(xij+s)−fij(xij)

s for a regular arc

and cji =
fij(xij−s)−fij(xij)

s for a reverse arc.

3.3.2 Three algorithms

In the following, we give an overview of the successive shortest path algorithm and the capacity

scaling algorithm for MCNFP, and the A-H algorithm for MCNFP on the dynamic lot size

network. For more detailed and rigorous discussions, we refer readers to Chapter 9, 10, 14

of [45] and [81]. The successive shortest path algorithm is a classic pseudo-polynomial-time

algorithm for MCNFP that is developed independently in [85], [86], and [87]. The capacity

scaling algorithm by Orlin [59] is an improved version of the successive shortest path algorithm

with a scaling technique. In [63] and [64], Minoux extended the capacity scaling algorithm to find

the integer optimal solution for MCCNFP. The A-H algorithm [81] is a special implementation

of the successive shortest path algorithm MCNFP on the dynamic lot size network.

The successive shortest path algorithm

The successive shortest path algorithm maintains a pseudoflow that satisfies the reduced cost

optimality conditions. Initially, the pseudoflow is set to zero flow and the reduced cost optimality

69

is satisfied automatically. A pseudoflow is an optimal solution if it is a flow and satisfies the

reduced cost optimality conditions at the same time. In each elementary iteration, we send flows

along the shortest path from some excess node to some deficit node in the residual network. It can

be showed that the new pseudoflow maintains the reduced cost optimality conditions. Finally,

the pseudoflow becomes a flow and we obtain a feasible solution that is optimal. The algorithm

is summarized in Algorithm 5.

Algorithm 5 The successive shortest path algorithm

1: Input: An instance of MCNFP over the network G = (N,A).

2: Output: An optimal solution x?.

3: Initialization: Set xij = 0, (i, j) ∈ A.

4: while x is not a flow do

5: Select an excess node s and a deficit node t. . If there is no excess node or

deficit node, then x must be a flow.

6: Find the shortest path P from node s to node t in the residual network G(x).

7: Augment maximum possible flow along P and update the residual network G(x).

8: end while

9: return x.

The successive shortest path algorithm is a pseudo-polynomial-time algorithm in general.

Yet it is very flexible. With carefully designed rules of selecting the excess and deficit node, we

can greatly improve the asymptotic running time. The capacity scaling algorithm and the A-H

algorithm are two examples.

The capacity scaling algorithm

The capacity scaling algorithm is an improved version of the successive shortest path algorithm

for MCNFP. It suggests that focusing on the subgraph in which we can augment more flows is

beneficial. It is a scaling-based algorithm.

70

Algorithm 6 The capacity scaling algorithm

1: Input: An instance of MCCNFP.

2: Output: An optimal solution x?.

3: Initialization: Set x = 0, node potential π = 0, scaling parameter s = 2blogUc

where U = max{uij , (i, j) ∈ A}.
4: while s ≥ 1 do . s-scaling phase

5: Restore the invariant property based on x and π. (O(m) operation.)

6: Excess nodes S(s) := {i ∈ N : e(i) ≥ s}; Deficit nodes T (s) := {i ∈ N : e(i) ≤
−s};

7: while S(s) 6= ∅ and T (s) 6= ∅ do

8: Select an excess node s ∈ S(s) and a deficit node t ∈ T (s);

9: Find the shortest path P from node s to node t in the s-residual network

G(x, s);

10: Update the node potential π : π − d where d(i) is the shortest distance

from the excess node s to node i in G(x, s);

11: Augment s unit flow along P and update G(x, s), S(s), T (s).

12: end while

13: end while

14: return x.

It consists of several scaling phases, each of which is associated with a scaling parameter s

and a pseudoflow. In each s-scaling phase, the algorithm maintains a pseudoflow that satisfies

the reduced cost optimality conditions on the s-residual network G(x, s).Initially, we start with

sufficiently large s and a zero flow. In each elementary iteration of the s-scaling phase, we send

s units of flow along the shortest path from an excess node and a deficit node with demand at

least s whenever it is possible. Then we decrease s by half and update the s-residual network.

This may introduce new arcs that do not satisfy the reduced cost optimality conditions as we

have changed s and arcs costs. We can somehow slightly modify the current pseudoflow to

restore the optimality conditions. When s = 1, an integer optimal solution can be found.

The algorithm is summarized in Algorithm 6. It is adapted from Chap 10.2 and Chap 14.5

of [45]. Essentially, the capacity scaling algorithm is seeking for a primal feasible solution while

it maintains the dual feasibility. It requires that the shortest-path algorithm used in the inner

loop is a single-source-to-all-nodes shortest path algorithm. With the single-source-to-all-nodes

distances, the algorithm maintains and updates the dual variables π in each iteration. The

71

capacity scaling algorithm terminates in O(m logU(m+n log n)) time where n is the number of

nodes, m is the number of arcs, and U is largest capacity in the network.

The A-H algorithm

The A-H algorithm is a special implementation of the successive shortest path algorithm for

MCNFP on the dynamic lot size network. It selects the n deficit nodes in the order of increasing

index, i.e., i = 1, 2, · · · , n. With such an order, the algorithm maintains a simple residual

network. Moreover, two data structures can speed up Step 6 and Step 7 of Algorithm 5 to

O(log n) time.We summarize A-H algorithm in Algorithm 7.

Algorithm 7 The A-H algorithm

1: Input: An instance of the dynamic lot-sizing problem: the network G = (N,A) as
in Figure 1.1.

2: Output: An optimal solution x?.
3: Initialization: Set xi = 0, i ∈ [1 : n].
4: for i = 1, 2, · · · , n do
5: while e(i) < 0 do
6: Select the excess node 0 and the deficit node i;
7: Find the shortest path P from node 0 to node i in the residual network G(x);

8: Augment maximum possible flow along P and the residual network G(x).
9: end while

10: end for
11: return x.

Now we elaborate the details of step 7 and 8 in Algorithm 7. At iteration i, demand at

nodes 1, · · · , i − 1 is satisfied and we send a flow along the shortest path until the demand at

node i is met. On the other hand, demand at node i + 1 is not yet satisfied. Therefore, there

is zero flow on the arc (i, i + 1). By the definition of residual network, there is no reverse arc

(i + 1, i) in the residual network. Hence, the shortest path from node 0 to node i must be one

of the following paths,

0→ k → (k + 1) · · · → i, k ∈ [1 : i].

Using the notation in [81], we refer to these paths as Pki, k ∈ [1 : i]. In iteration i of the outer

loop, we can maintain a list of all the possible paths, each of which is associated with a unit cost

c0k of the arc (0, k). Since all the horizontal arcs have zero cost, Pki and Pk,i+1 have the same

cost. Therefore, when we move to iteration i+ 1 of the outer loop, only one new path Pi+1,i+1

72

is added into the list while all the other path costs stay unchanged. We implement the list with

a red-black tree and Step 7 can be executed in O(log n) time.

0

1 2 3 4 5

P13
P23

P33

Figure 3.4: Illustrating the candidates of shortest paths from node 0 to 3 when i = 3. The
possible paths are the following solid lines: (a) P13 : 0 → 1 → 2 → 3; (b) P23 : 0 → 2 → 3;
(c) P33 : 0 → 3. The reverse arcs in the residual network G(x) are omitted to keep the graph
simple. Notice that there is no reverse arc (4, 3) in the residual network G(x) due to zero flow
on the arc (3, 4).

In Step 8, we need to figure out the maximum flow that can be augmented along the shortest

path. If Pki is selected, then the maximum amount is the minimum residual capacity among

the arcs of the path and the deficit of the node i, i.e.,

δ = min{r0k, rk,k+1, · · · , ri−1,i,−e(i)}.

In [81], the data structure dynamic tree is used to make this step efficient. Alternatively, we

may use a simpler data structure, segment tree, to achieve the same worst-case complexity. A

segment tree, also known as a statistic tree, is a tree data structure used for storing information

about intervals, or segments. It allows querying which of the stored segments contain a given

point [88]. For a list of n values with fixed indices, zi ∈ R, i ∈ [1 : n], it takes O(n log n) time

to build a segment tree of these n values. Once it is built, we can perform the following two

operations in O(log n) time:

1. rangeMin(i, j): return the index of the minimum among the values {zi, zi+1, · · · , zj}.
Return None if j < i.

2. rangeAdd(i, j, v): augment a value v to each of the value in the set {zi, zi+1, · · · , zj}. Do

nothing if j < i.

If we build a segment tree of the residual capacities of the horizontal arcs, we can find

the bottleneck along the path Pki by calling the rangeMin(k, i − 1), and one extra minimum

73

operation with the value min{r0k,−e(i)}. Furthermore, to update the costs on the residual

network, we execute a single call of rangeAdd(k, i− 1, δ).

In each iteration of the while loop in Algorithm 7, we either reduce the capacity of a path to

0 or set e(i) to 0. Since there are O(n) candidate paths and O(n) deficit nodes in the dynamic

lot size network, the total number of iterations in the while loop is bounded by O(n). Moreover,

each iteration in the while loop takes O(log n) time. Hence, the complexity of the A-H algorithm

is O(n log n).

3.3.3 Transforming MCCNFP to MCNFP

The successive shortest path algorithm and the A-H algorithm cannot be applied to the network

flow problem with convex arc costs directly. However, we can transform any instance of MCC-

NFP into an instance of MCNFP on an expanded network G′ = (N ′, A′), and solve it by any

MCNFP algorithm. We now give the general idea of the transformation. We refer readers to

Chapter 14.3 of [45] for a rigorous discussion. Suppose we have an instance of MCCNFP on a di-

rected graph G = (N,A). In the transformation, for each arc (i, j) ∈ A with a convex arc cost, we

introduce uij parallel arcs in G′, one arc corresponding to a unit incremental cost. The capacity

of each parallel arc is one and their cost are fij(1)−fij(0), fij(2)−fij(1), · · · , fij(uij)−fij(uij−1).

It has been shown in [45] that solving the minimum convex cost flow problem in G is equivalent

to solving the minimum cost flow problem in G′.

i j i j
(fij(xij), uij)

(fij(1)− fij(0), 1)

(fij(2)− fij(1), 1)

· · ·

(fij(uij)− fij(uij − 1), 1)

Figure 3.5: Illustrating the transformation of a MCCNFP to a MCNFP on an expanded net-
work. For every arc (i, j) ∈ A with capacity uij , there are uij arcs in the expanded network.

Usually, the parallel arcs of the graph G′ can be handled implicitly. Because of the convexity

of the cost function, the uij arcs have to be used in order. For instance, suppose we are trying

to find the shortest path within the expanded network as defined in Figure 3.6. Even though

in the residual network there are five arcs between node i and node j, only the third and the

fourth (the first reverse arc) are the possible arcs that are in a shortest path due to convexity

of the cost function. It suffices to consider a residual network with those two arcs instead of the

whole expanded graph.

74

i j i j i j i j
xij = 3

uij = 5

1
1

1

0

0

Figure 3.6: Illustrating the construction of the residual network. The four networks form left
to right are the original network, the expanded network, the residual network of the expanded
network, the residual network of the original network, respectively. Notice that arcs with zero
capacity are excluded in the residual network. The capacity of each arc in the two residual
networks is one.

Therefore, the residual network of the original network indeed handles the expanded network

implicitly. Notice that all the arcs have unit capacity, one needs to modify Algorithm 5 to

solve MCCNFP by sending exactly one unit of flow on each augmentation. The algorithm is

summarized in Algorithm 8.

Algorithm 8 The successive shortest path algorithm with unit step size for MCCNFP

1: Input: An instance of MCCNFP.

2: Output: An optimal solution x?.

3: Initialization: Set xij = 0, (i, j) ∈ A.

4: while x is not a flow do

5: Select an excess node s and a deficit node t;

6: Find the shortest path P from node s to node t in the residual network G(x);

7: Augment one unit of flow along P and update G(x). . The arc cost in G(x)

needs to be updated

8: end while

9: return x.

The only difference is that we send one unit flow and update the arc costs in the residual

network G(x) in Step 6 as the capacity is one for any arc in expanded network G′. Since

only one unit is allowed in each elementary iteration, the time complexity of Algorithm 8 is

O(U(m + n log n)) where U is the total supply. The same idea can be applied to the A-H

algorithm to the dynamic lot-sizing problem with convex production costs as well. The running

time of the A-H algorithm, however, becomes O(U log n).

The capacity scaling algorithm suggests that it may be beneficial to send larger units, say

step size s, in the early elementary iterations. Even though we may not obtain an optimal

solution after the s-phase, we can modify the solution to restore some loop invariant. Then we

75

decrease the step size by a factor two and start another scaling phase. Finally, we can obtain

the optimal solution in the last scaling phase with step size s = 1. Inspired by the above

ideas, we develop the Scaled Flow-improving Algorithm (SFA), a scaling-based algorithm to

solve (P2) efficiently.

3.4 SFA: a scaling-based algorithm for (P2)

In this section, we present the Scaled Flow-improving Algorithm (SFA), a scaling-based algo-

rithm for (P2). It combines an adapted version of the A-H algorithm in [81] and the scaling

framework for convex optimization with a separable objective in [67]. For the ease of exposition,

we reorganize the constraints of the integer problem as follows,

min

n∑
i=1

fi(xi) +

n−1∑
i=1

gi(yi) (3.7a)

s.t. yi =

i∑
k=1

xk −
i∑

k=1

di, ∀i ∈ [1 : n], (3.7b)

yn = 0, (3.7c)

0 ≤ yi ≤ ui,i+1, ∀i ∈ [1 : n− 1], (3.7d)

0 ≤ xi ≤ u0,i, xi ∈ Z, ∀i ∈ [1 : n]. (3.7e)

We summarize SFA in Algorithm 9 and sketch the idea here: SFA consists of several scaling

phases. Each of its scaling phase is associated with a scaling parameter s ∈ Z and a flow z.

Algorithm 9 Scaled Flow-improving Algorithm for integer (P2) (SFA)

1: Input: An instance of (3.7).

2: Output: An optimal solution (x?,y?).

3: Initialization: s←
⌈
B
2n

⌉
, z ← 0.

4: while s > 1 do

5: (x,y)← FAC(s, z);

6: z ← max{x− se,0}. . Element-wise maximum operation.

7: s←
⌈
s
2

⌉
.

8: end while

9: return FAC(1, z).

Initially, we start with sufficiently large s and zero flow. In the s-scaling phase, we execute

76

Algorithm 10 which is adapted from the A-H algorithm (Algorithm 7). It starts with initial flow

z. In the elementary iteration of Algorithm 10, we find the shortest path with respect to the

unit incremental cost, and then send at most s units of flow along that path. A feasible solution

for the original problem is obtained at the end of each s-scaling phase. Then we modify the

solution so that it becomes a lower bound on some optimal solution for the optimal solution,

decrease s by half, and start the next scaling phase. At the end, the optimal solution can be

found with in the last s-scaling phase with s = 1.

The subroutine FAC(1, z) is adapted from Algorithm 7 and it is summarized in Algorithm 10:

Algorithm 10 FlowAugmenting-Convex(s, z) (FAC(s, z))

1: Input: Step size s, initial pseudoflow z.

2: Output: A solution (x,y).

3: Initialization: Set x = z and compute the horizontal flow y, and the imbalance

e(i), i ∈ [1 : n] based on the flow balance constraints.

4: for i = 1, 2, · · · , n do

5: while e(i) < 0 do

6: Find the path from node 0 to node i with the minimum unit incremental

cost, break ties with the largest index rule;

7: Augment at most s units along the path; if the path has a remaining capacity

δ < s, augment δ units; update the cost of each arc; remove arcs with capacity zero.

8: end while

9: end for

10: return the flow (x,y).

Even though SFA is also a scaling-based algorithm, it is different from and more efficient

than the capacity scaling algorithm. We illustrate the distinction between the two algorithms

below. At a high level, the loop invariants of the two algorithms are different. The capacity

scaling algorithm maintains a pseudoflow that is dual feasible. Moreover, it also maintains the

dual variables in order to restore the loop invariant. On the other hand, as we will see in the

next section, SFA maintains a pseudoflow which is a lower bound on some optimal solution,

which is not necessarily dual feasible. A simple element-wise maximization operation (Step 6 of

Algorithm 9) restores the loop invariant between two consecutive scaling phases.

The two algorithms are also different in their elementary iterations in the while loop. SFA

finds the shortest-path w.r.t the unit incremental cost, instead of the criterion of average incre-

mental cost of the next s units (in the s-residual network) in the capacity scaling algorithm.

77

Finally, SFA augments at most s units of flow in each elementary iteration, while the capacity

scaling algorithm sends exactly s units of flow. In this way, SFA obtains a (primal) feasible so-

lution at the end of each scaling phase while the capacity scaling algorithm finds a dual feasible

solution that may not be primal feasible.

SFA is more efficient as it handles the residual graph in a more dedicated and implicit

manner. It avoids implementation of the sophisticated single-source shortest-path algorithms

since it does not maintain the dual variables.

3.4.1 Correctness of SFA

In this section, we show that SFA finds the optimal solution of (3.7). In Algorithm 9, we try to

maintain the following loop invariant at the beginning of each s-scaling phase:

• After Step 6 in Algorithm 9, the vector z is a lower bound on some optimal solution

(x?,y?) of the (P2) instance in the sense that z ≤ x?.

Firstly, we show that the subroutine Algorithm 10 can find the optimal solution to any

instance of (3.7) if s = 1 and if the initial pseudoflow z is a lower bound on the optimal

solution. Here, we introduce the notation FAC(s, z, P) to indicate that Algorithm 10 is applied

to an instance P of problem (3.7).

Proposition 4. Suppose an instance P of problem (3.7) is feasible and z is a lower bound on

an optimal solution (x?,y?) of P in the sense that z ≤ x?, then FAC(1, z, P) will return an

optimal solution of P .

Proof. The proof is straightforward. We add the lower bound z as a constraint to (3.7).

min

n∑
i=1

fi(xi) +

n−1∑
i=1

gi(yi) (3.8a)

s.t. yi =

i∑
k=1

xk −
i∑

k=1

di, ∀i ∈ [1 : n], (3.8b)

yn = 0, (3.8c)

0 ≤ yi ≤ ui,i+1, ∀i ∈ [1 : n− 1], (3.8d)

0 ≤ xi ≤ u0,i, xi ∈ Z, ∀i ∈ [1 : n] (3.8e)

z ≤ x. (3.8f)

An optimal solution of (3.8) is also an optimal solution of P . Substituting the variable x

by t = x − z, we obtain a new instance P̄ of (3.7), with slightly different parameters from P .

Then sequence of flow augmentations the procedure FAC(1, z, P) is exactly the same as that of

78

FAC(1,0, P̄), which is the successive shortest path algorithm with unit step size. Suppose the

flow on the vertical arcs in the output of FAC(1,0, P̄) is t∗, then x∗ = t∗+z is the vertical flow

in some optimal solution of P . Hence, FAC(1, z, P) finds the optimal solution to P correctly.

Now we discuss how the invariant property can be maintained between two scaling phases.

At the first period, the flow z = 0 obviously satisfies the loop invariant. Notice that as long as

(3.7) is feasible, the procedure FAC(s,y) will always return a feasible solution. We argue that

only the last increment in the last s-phase on each x′is may be incorrect. We can restore the

invariant by executing Step 6 of Algorithm 9. In the following, we give a theorem proving the

correctness of Algorithm 9. Here, we use P (d) in FAC(s, z, P (d)) to indicate the dependence of

instance with demand d. Let e be the n-dimensional vector of all ones.

Theorem 2. Suppose an instance P (d) of problem (3.7) is feasible, z is a lower bound on some

optimal solution (x,y) of P (d) such that z ≤ x, s is any positive integer, and α? is the output of

FAC(s, z, P (d)), then there exists an optimal solution (x?,y?) of (3.7), such that x? ≥ α?−se.

Notice that the lower bound in Theorem 2 is stronger than that in the proximity theorem

on the scaling framework for convex optimization with a separable objective in [67], which

essentially states that the optimal solution x is bounded below by z − nse where n is the

dimension of the problem.

We will prove Theorem 2 by contradiction. In the subroutine Algorithm 10, we break ties

with the largest index rule. Without loss of generality, we assume that z = 0 because we can

always redefine variables by a linear transformation.. We assume that there are no upper bound

capacity constraints since they can be interpreted as huge unit incremental cost in the cost

function. The proof is organized as follows:

1. We assume that there exists some counterexample P (d) of Theorem 2 and we construct

a special counterexample P (d̄) of Theorem 2 based on P (d).

2. We prove several propositions that connect the outputs of FAC(1,0, P (d̄)) and

FAC(s,0, P (d̄)).

3. We then derive a contradiction on the amount of flow augmented in the procedures

FAC(1,0, P (d̄)) and FAC(s,0, P (d̄)).

Suppose there exists some instance P (d) of (3.7) that violates Theorem 2. In

FAC(1,0, P (d)), we apply Algorithm 10 to P (d) with step size 1. Let (xt(d),yt(d)) denote

the pseudoflows of the vertical and horizontal arcs in the network at the t-th iteration of

FAC(1,0, P (d)), and (x?(d),y?(d)) be the final output of FAC(1,0, P (d)).

79

Similarly, in FAC(s,0, P (d)), we apply Algorithm 10 to P (d) with step size s. Let

(αt(d),βt(d)) be the pseudoflow of the vertical and horizontal arcs in the network at the t-

th iteration of FAC(s,0, P (d)) and (α?(d),β?(d)) be the final output of FAC(s,0, P (d)).

Since P (d) violates Theorem 2 and x? is an optimal solution of P (d). There exists an index

I such that

x?I(d) < α?I(d)− s.

Let T be the greatest index t such that at the t-th iteration of FAC(s,0, P (d)), αtI(d) < α?I(d).

Let d̄ be the demand following the flow balance constraints with (αT+1(d),βT+1(d)) in the

network, i.e., the demand that has been satisfied by the pseudoflow (αT+1(d),βT+1(d)) after

the T -th iteration. In FAC(s,0, P (d)), we always select the deficit node (a node with demand)

in the order of increasing indices. Therefore, d̄ has the following structure,

d̄i = di, i ∈ [1 : p− 1],

d̄p ≤ dp,

d̄i = 0, i ∈ [p+ 1;n].

where p is the index of the selected deficit node at the T -th iteration of FAC(s,0, P (d)). We

defined a “truncated” instance P (d̄) with the same network structure and cost as P (d) excep-

t the demand vector is d̄. For instance P (d̄), let’s define (x?(d̄),y?(d̄)), (xt(d̄),yt(d̄)), and

(α?(d̄),β?(d̄)), (αt(d̄),βt(d̄)) similarly. Since P (d̄) has a truncated demand of P (d), we have

(αT+1(d),βT+1(d)) = (α?(d̄),β?(d̄)).

There exists an integer q such that at the q-th iteration of

(xq(d),yq(d)) = (x?(d̄),y?(d̄)).

For index I, we have

x?I(d̄) = xqI(d) ≤ x?I(d) < α?I(d)− s = α?I(d̄)− s.

where the second inequality is based on the fact that the pseudoflow is non-decreasing in Algo-

rithm 12.

Hence, P (d̄) also violates Theorem 2. Now we will focus on P (d̄) to derive a contradiction.

In the following, we omit the dependence of d̄ to simplify the notation.

80

In the procedure FAC(1,0, P), let’s denote the pseudoflows in the elementary iterations by

(x0,y0) = (0,0), (x1,y1), (x2,y2), · · · , (xr,yr) = (x?,y?),

for some finite integer r. In the last iteration of FAC(s,0, P), i.e., the T -th iteration, we choose

to send s1 = αT+1
I − αTI ≤ s units of flow to the deficit node p. We can remove the nodes

j > p since they has a demand dj = 0 and they won’t affect the solution of both FAC(1,0, P)

and FAC(s,0, P). Hence, without loss of generality, we can assume the deficit node at the T -th

iteration of FAC(s,0, P) is n. Based on the fact that we choose the path 0→ I → I + 1→ · · ·n
at the T -th iteration, we claim that the unit incremental cost along this path is minimal among

all the paths. In other words, we have the following result.

Proposition 5. Let (α?,β?) be the final output of procedure FAC(s,0, P) and I be the selected

index in the last elementary iteration. Then we have,

• For j ∈ [1 : I − 1],

∇fI(α?I − s) ≤ ∇fj(α?j) +

I−1∑
k=j

∇gk(β?k). (3.9)

• For j ∈ [I + 1 : n],

∇fI(α?I − s) +

j−1∑
k=I

∇gk(β?k − s) < ∇fj(α?j). (3.10)

where ∇f(x) = f(x+ 1)− f(x) denotes the unit incremental cost of an arc.

Proof. By the definition of T , we send s1 units of flow along the path 0→ I → I + 1→ · · ·n at

the T -th iteration of FAC(s,0, P (d̄)). Since the maximum step size is s, s1 ≤ s. Therefore,

αTI = αT+1
I − s1 = α?I − s1 ≤ α?I − s.

Now let’s consider the cost of all other paths from node 0 to node n. For j ∈ [1 : I − 1], the

unit incremental cost of the path 0 → j → · · · I → · · ·n should be no less than the cost of the

selected path 0→ I → I + 1→ · · ·n, and it yields

∇fI(α?I − s) ≤ ∇fI(αTI) ≤ ∇fj(α?j) +

I−1∑
k=j

∇gk(β?k)

where the first inequality is due to αTI = α?I−s1 ≥ α?I−s and the convexity of the cost function.

81

0

1 2 3 4 5

Figure 3.7: Illustrating the relation of the unit incremental cost. In this network, I = 3. At
iteration t, we prefer the path 0 → 3 → 4 → 5 to the path 0 → 2 → 3 → 4 → 5. The costs on
path 3→ 4→ 5 can be ignored as it appears in both path.

For j ∈ [I + 1 : n], the path 0→ I → I + 1→ · · · j → · · ·n has a lower unit incremental cost

than the path 0→ j → · · ·n, and it yields

∇fI(α?I − s) +

j−1∑
k=I

∇gk(β?k − s) ≤ ∇fI(αTI) +

j−1∑
k=I

∇gk(β?k − s1) < ∇fj(α?j).

where the first inequality is due to α?I = α?I − s1 ≥ α?I − s.

0

1 2 3 4 5

Figure 3.8: Illustrating the relation of the unit incremental cost. In this network, I = 3. At
iteration t, we prefer the path 0→ 3→ 4→ 4 to the path 0→ 4→ 5. The costs on path 4→ 5
can be ignored as it appears in both path.

In the following, we prove a proposition that connects (xt,yt) and (α?,β?).

Proposition 6. For any index 1 ≤ j < n, if xtj+1 < α?j+1 and the value of ytj, i.e., the flow

on the arc (j, j + 1), is increased from β?j to β?j + 1 at the t-th iteration, then there exists some

index q ≤ j such that

∇fj+1(xtj+1) > ∇fq(α?q) +

j∑
k=q

∇gk(β?k)

where ∇f(x) = f(x+ 1)− f(x) denotes the unit incremental cost of an arc.

Proof. We will prove this claim by an induction on the node indices j ∈ [1 : n− 1]. Notice that

when we start to satisfy the demand of node j + 1, the flow on the arc (j, j + 1) is always zero,

82

i.e., yj = 0 ≤ β?j . In other words, the path 0→ (j + 1)→ (j + 2)→ · · · becomes available since

then. Let m be the deficit node at the t-th iteration. When we increase the value of ytj from β?j

at iteration t, since this path 0 → (j + 1) → (j + 2) → · · · is available and is not selected, it

must has greater unit incremental cost than the selected path.

1. Base case j = 1. Notice that β?1 = α?1 − d̄1. At iteration t, we increase yt1 from β?1 to

β?1 +1, i.e., we increase xt1 from α?1 to α?1 +1. Since we prefer the path 0→ 1→ 2 · · · → m

to the path 0→ 2→ 3 · · · → m, we have

∇f2(xt2) > ∇f1(α?1) +∇g1(β?1).

Hence, q = 1 in this case.

2. Now suppose that the statement is true for indices 1, 2, · · · , j, we will prove it is also true

for index j + 1 with j + 1 ≤ n. Suppose that we choose to increase xti with i ≤ j + 1 at

iteration t such that ytj+1 is increased from β?j+1 to β?j+1 + 1. Let’s define a special index

J = arg max{k : xtk > α?k, k ≤ j + 1}.

If such J does not exist, it implies xtk ≤ α?k for k ∈ [1 : j + 1]. Then it means xtk = α?k

for k ∈ [1 : j + 1]. Since we prefer the path 0 → i → i + 1 · · · j + 2 · · · → m to the path

0→ j + 2→ j + 3 · · · → m,

∇fj+2(xtj+2) > ∇fi(xtq) +

j+1∑
k=i

∇gk(ytk)

= ∇fi(α?i) +

j+1∑
k=i

∇gk(β?k).

The index q = i in this case.

If J is well-defined, we can make some observation about ytl and βtl , the flow on the

horizontal arcs (l, l + 1) for l ∈ [J, J + 2]. By the definition of J ,

xtk ≤ α?k,

for k ∈ [J + 1 : j + 1]. Let’s expand ytj+1 = β?j+1,

j+1∑
k=1

xtk −
j+1∑
k=1

dk = ytj+1 = β?j+1 =

j+1∑
k=1

α?k −
j+1∑
k=1

dk.

83

Since the tails xtk ≤ α?k for k ∈ [J + 1 : j + 1], we have

l∑
k=1

xtk ≥
l∑

k=1

α?k,

for l ∈ [J : j + 1], which implies

ytl ≥ β?l , (3.11)

for l ∈ [J : j + 1]. Moreover, if xtl < α?l , the inequality ytl ≥ β?l becomes strict.

Now let’s discuss the chosen path 0→ i→ i+1→ · · · → m through four cases of possible

i.

(a) i = J . Since we prefer the path 0 → J → J + 1 · · · j + 2 · · · → m to the path

0→ j + 2→ j + 3 · · · → m,

∇fj+2(xtj+2) > ∇fJ(xtJ) +

j+1∑
k=J

∇gk(ytk)

≥ ∇fJ(α?J) +

j+1∑
k=J

∇gk(β?k),

where the second inequality is due to the convexity of the cost function. The index

q = J in this case.

(b) i < J . Since xtJ > α?J , there is an earlier iteration p < t at which we choose to

increment xpJ from α?J to α?J + 1. At iteration p, we prefer the path 0 → J →
J + 1→ · · · to the path 0→ i→ · · · J → · · · ,

∇fJ(α?J) = ∇fJ(xpJ) ≤ ∇fj(xpi) +
J−1∑
k=i

∇gk(ypk)

≤ ∇fi(xti) +

J−1∑
k=i

∇gk(ytk),

where the second inequality is due to the fact that the pseudoflow is non-decreasing

throughout the procedure FAC(1,0, P (d̄)). At iteration t, we prefer the path 0 →

84

i→ · · · j + 2→ · · ·m,

∇fj+2(xtj+2) > ∇fi(xti) +

j+1∑
k=i

(∇gk(ytk))

≥ ∇fi(xti) +

J−1∑
k=i

∇gk(ytk) +

j+1∑
k=J

∇gk(ytk)

≥ ∇fJ(α?J) +

j+1∑
k=J

∇gk(β?k).

Hence, the index q = J in this case.

(c) i > J, xti = α?i .

By (3.11), ytl ≥ β?l for l ∈ [i : j + 1]. Since we prefer the path 0 → i → · · · j + 2 →
· · ·m,

∇fj+2(xtj+2) > ∇fi(xti) +

j+1∑
k=i

∇gk(ytk)

≥ ∇fi(α?i) +

j+1∑
k=i

+∇gk(β?k).

Hence, the index q = i in this case.

(d) i > J, xti < α?i .

By (3.11), yti > β?i . There must be an earlier iteration p at which we increase ypi

from β?i to β?i + 1. Moreover, since xpi ≤ xti < αtq, by the induction hypothesis, there

exists some i′ < i such that

∇fi(ypi) > ∇fi′(α?i′) +

i−1∑
k=i′

(∇gk(β?k)).

85

At iteration t, we prefer the path 0→ q → · · · j + 2→ · · ·m,

∇fj+2(xtj+2) > ∇fi(xti) +

j+1∑
k=i

∇gk(ytk)

≥ ∇fi(xpi) +

j+1∑
k=i

∇gk(β?k)

> ∇fi′(α?i′) +

i−1∑
k=i′

∇gk(β?k) +

j+1∑
k=i

∇gk(β?k)

= ∇fi′(α?i′) +

j+1∑
k=i′

∇gk(β?k).

Hence, the index q = i′ in this case.

We prove the induction step and the proof is complete.

An immediate corollary from the last proposition is

Proposition 7. If x?I < α
(s)
I − s, for any elementary iteration t of FAC(1,0, P (d̄)), we have

I−1∑
k=1

xtk ≤
I−1∑
k=1

α?k. (3.12)

Proof. We proof this by contradiction. Assume that there is some iteration such that yI−1 >

β?I−1, there must be an iteration t at which we increase ytI−1 from β?I−1 to β?I−1 + 1. Since

xtI < αtI − s, there exists a q < I such that

∇fI(xtI) > ∇fq(α?q) +

I−1∑
k=q

∇gk(β?k),

which contradicts (3.9) since ∇fI(xtI) ≤ ∇fI(α?I − s). Hence,

I−1∑
k=1

xtk −
I−1∑
k=1

dk = ytI−1 ≤ β?k =

I−1∑
k=1

α?k −
I−1∑
k=1

dk,

which is,

I−1∑
k=1

xtk ≤
I−1∑
k=1

α?k.

86

Now we are ready to prove Theorem 2.

Proof of Theorem 2. We prove it by contradiction. We claim that if x?I < α
(s)
I − s, then for any

iteration t of FAC(1,0, P (d̄)) and j ∈ [I + 1 : n], we have

xtj ≤ α?j . (3.13)

We prove the claim above by an induction on

(x0,y0) = (0,0), (x1,y1), (x2,y2), · · · , (xr,yr) = (x?,y?).

The base case is trivial since we start with initial flow 0. Suppose for j ∈ [I + 1 : n], we have

xtj ≤ α?j . Since
∑I−1
k=1 x

t
k ≤

∑I−1
k=1 α

?
k, we have ytl ≤ β?l − s for l ∈ [I : n]. Hence, for any

j ∈ [I + 1 : n] we have

∇fI(xtI) +

j−1∑
k=I

∇gk(ytk)

≤ ∇fI(α?I − s) +

j−1∑
k=I

∇gk(β?k − s)

< ∇fj(α?j),

where the last inequality is due to (3.10).

Hence, if xtj = α?j , we will prefer the path 0→ I → · · · j · · ·n to the path 0→ j → · · ·n, i.e.,

we would not increase xtj at this iteration and hence xtj = xt+1
j . Now that we prove the induction

step, we can conclude that the induction statement is true for the last iteration (x?,y?).

Combining (3.12) with (3.13), at iteration r we have,

n∑
k=1

d̄k =

n∑
k=1

x?k =

I−1∑
k=1

x?k + x?I +

n∑
k=I+1

x?k

<

I−1∑
k=1

α?k + α?I − s+

n∑
k=I+1

α?k

=

n∑
k=1

α?k − s

=

n∑
k=1

d̄k − s,

87

which is a contradiction. The proof is complete.

3.4.2 Complexity of SFA

The following proposition states the complexity of SFA.

Proposition 8. The running time of Algorithm 9 is O(n2 log B
n) for integer (P2) and

O(n2 log B
nε) for continuous (P2).

Proof. To analyze the complexity, notice that FAC(s, z) is called for at most dlog B
2ne times.

Suppose in the j-th call of FAC(s, z) we obtain the flow vector zj with step size sj .

In the (j + 1)-th call, we start with zj+1 = max{zj − sje,0} and use step size sj+1 = 1
2sj .

The preprocessing step takes O(n) time. The flow is augmented several times as described in

Step 7 of Algorithm 10. The size of the increments can be either s or less than s.

• Type A: the size of the increment is strictly less than s.

In this case, either one arc on the path has reached its capacity or the demand is satisfied.

Because we have 2n − 1 arcs and n deficit nodes, the number of Type A increment is

upper bounded by 3n.

• Type B: the size of the increment is s.

The number of Type B increment can be bounded by the remaining supply in the source

node, i.e.,

B − e>zj+1

sj+1
,

where the numerator is the remaining supply of node 0 after initialization. Notice that

e>zj+1 = e>max{zj − sje,0} ≥ e>(zj − sje) = B − 2nsj ,

Hence, the number of Type B increments is bounded by d 2nsjsj+1
e ≤ 4n.

Therefore, the number of augmentations within a single call of FAC(s, z) is bounded by

O(n). If we maintains an n-dimension array with prefix-sum implementation to keep track of

the cost for path 0 → k → k + 1 → · · · → i, k ∈ [1 : i], it takes O(n) time to find the path

to node i with the minimum unit incremental cost. Moreover, it takes O(n) time to find the

minimum capacity along the path and update the unit incremental cost of all paths. Therefore,

each call of FAC(s, z) takes O(n2) time. Finally, the complexity of SFA for solving integer

(P2) is O(n2 log B
n).

88

To obtain an ε-accurate solution to continuous (P2), we can scale the data by 1
ε and the

complexity of SFA for solving continuous (P2) is O(n2 log B
nε).

3.5 Faster implementation of SFA for RAP-NC

RAP-NC is a special case of (P2) where the cost functions gi(·)’s over the horizontal arcs

(i, i+ 1), i ∈ [1 : n− 1] are zero. In this section, we show that with the data structure segment

tree introduced in Section 2, SFA can be sped up in solving RAP-NC and its complexity matches

the best complexity in the literature for RAP-NC.

3.5.1 Transformation of RAP-NC to a minimum convex cost flow

problem

Recall that RAP-NC can be transformed into a minimum convex cost flow problem defined on

the directed network in Figure 3.9.

min

n∑
i=1

fi(xi) (3.14a)

s.t. y1 = x1 − a1, (3.14b)

yi = yi−1 + xi − (ai − ai−1), ∀i ∈ [2 : n− 1], (3.14c)

0 = xn−1,n + xn − (an − an−1), (3.14d)

0 ≤ yi ≤ bi − ai, ∀i ∈ [1 : n− 1], (3.14e)

0 ≤ xi ≤ di, ∀i ∈ [1 : n]. (3.14f)

In the directed graph G = (N,A), there are n+ 1 nodes with node i representing activity i for

i = 1, 2, · · · , n and an additional source node 0. The supply at source node 0 is
∑n
i=1(ai−ai−1) =

an = B. The demand at node i is ai − ai−1 for i ∈ [1 : n]. There is an arc from node 0 to node

i for i ∈ [1 : n]. The flow xi on this arc has an upper bound of di and incurs a cost of fi(xi).

There is an arc from node i to node i+ 1 for i ∈ [1 : n− 1]. The flow xi,i+1 on this arc has an

upper bound of bi − ai and has zero cost.

89

0

b(0) = B

1

−(a1 − a0)

2

−(a2 − a1)

· · ·

· · ·

n-1

−(an−1 − an−2)

n

−(an − an−1)

(f1(x1), d1) (f2(x2), d2)

(f1(xn), dn)

(0, b1 − a1) (0, b2 − a2) (0, bn−1 − an−1)

Figure 3.9: The network defined by (3.14). The pair (c, u) alongside each arc means the arc
has a cost c and a capacity of u units.

Now we present SFA for integer (P1), i.e., DRAP-NC. It is a special implementation of SFA

using data structure segment tree and red-black tree.

Algorithm 11 Scaled Flow-improving Algorithm for (P1) (SFA for DARP-NC)

1: Input: An instance of (3.14).

2: Output: An optimal solution (x?,y?).

3: Initialization: s←
⌈
B
2n

⌉
, z ← 0.

4: while s > 1 do

5: (x,y)← FAC(s, z);

6: z ← max{x− se,0}. . The maximum operation is element-wise.

7: s←
⌈
s
2

⌉
.

8: end while

9: return FAC-E(1, z).

The subroutine Algorithm 12 is Algorithm 10 with use of segment tree and red-black tree.

90

Algorithm 12 FAC(s, z) for DRAP-NC

1: Input: An instance of (3.14); step size s, initial pseudoflow z.

2: Output: An solution (x,y).

3: Initialization: Initialize an empty red-black tree F ← ∅ to store the unit produc-

tion cost;

4: Compute the residual network G(z). . O(n) time.

5: Build a segment tree C with the residual capacity of the horizontal arcs; .

O(n log n) time

6: for i = 1, 2, · · · , n do

7: Add a candidate shortest path: insert the path Pii into the red-black tree F ;

8: while e(i) < 0 do

9: Use F to find the shortest path, break ties with the largest index rule;

10: Use the segment tree C to find the bottleneck capacity δ along the path and

augment it along the path.

11: Augment min{δ, s,−e(i)} units of flow along the path, update the residual

capacity and remove the paths in F with zero capacity.

12: end while

13: end for

14: return the flow (x,y).

3.5.2 Complexity of SFA for (P1)

The following proposition establishes the complexity of SFA for (P1). Its proof is similar to that

of SFA for (P2).

Proposition 9. Algorithm 11 is correct and the running time is O(n log n log B
n) for DRAP-NC

and O(n log n log B
nε) for RAP-NC.

Proof. The correctness follows directly from Theorem 2. We analyze the complexity of Algorith-

m 11 below. First notice that the transformation from a DRAP-NC instance to a (P2) instance

can be done in O(n) time. To analyze the complexity of the algorithm, notice that FAC(s, z)

is called for at most dlog B
2ne times. Suppose in the j-th call of FAC(s, z) we obtain the flow

vector zj with step size sj .

In the (j+1)-th call, we start with zj+1 = max{zj−sje,0} and use step size sj+1 = 1
2sj . A

segment tree of n− 1 values is built and it takes O(n log n) time. The preprocessing step takes

91

O(n) time. The flow is augmented several times as described in Step 11 of Algorithm 12. The

size of the increments can be either s or less than s.

• Type A: the size of the increment is strictly less than s.

In this case, either one arc on the path has reached its capacity or the demand is satisfied.

Because we have 2n − 1 arcs and n deficit nodes, the number of Type A increment is

upper bounded by 3n.

• Type B: the size of the increment is s.

The number of Type B increment can be bounded by the remaining supply in the source

node, i.e.,

B − e>zj+1

sj+1
,

where the numerator is the remaining supply of node 0 after initialization. Notice that

e>zj+1 = e>max{zj − sje,0} ≥ e>(zj − sje) = B − 2nsj ,

Hence, the number of Type B increments is bounded by d 2nsjsj+1
e ≤ 4n.

Therefore, the number of increments within a single call of FAC(s, z) is bounded by O(n).

In each increment, the operations of the red-black tree and the segment tree take O(log n) time.

There are only O(1) calls of these operations except Step 11 of Algorithm 12. In Step 11, a path

is removed whenever we exhaust the capacity of some arc of it. However, these removals will

happen for at most n times during a single call of FAC(s, z). Therefore, each call of FAC(s, z)

takes O(n log n) time. Finally, the complexity of SFA for solving DRAP-NC is O(n log n log B
n).

To obtain an ε-accurate solution to RAP-NC, we need to scale the data by 1
ε . Hence, the

complexity of SFA for solving RAP-NC is O(n log n log B
nε).

3.6 Computational experiments

3.6.1 Discrete resource allocation with nested bound constraints

In this section, we evaluate the performance of SFA on test instances of DRAP-NC. We compare

the performance of our algorithm with DCA in Chapter 2 and MDA in [44]. The latter has the

best worst-case time complexity for DRAP-NC. SFA achieves the same time complexity as well.

Since all the three algorithms are able to solve instances with arbitrary convex functions and

only require access to value oracles of these functions, we generate test instances with linear cost

objectives, quadratic cost objectives, and three classes of more general objectives.

92

The parameters of the DRAP-NC test instances are generated in the same way as Chapter 2.

We omit the procedure here.

Linear costs

In each instance with linear costs, the function fi(x) has the form fi(x) = pix, where pi is

drawn from a uniform distribution over [−1, 1]. The parameter Vb is set to 100. We generate 14

different n values and 10 instances for each value of n. We summarize the performance of the

three algorithms in Table 3.1 and Figure 3.10. The running time is averaged over 10 instances

for each set of parameters.

Parameters CPU time (s) Parameters CPU time (s)

n MDA DCA SFA n MDA DCA SFA

800 0.006 0.003 0.006 102400 0.597 0.109 0.119
1600 0.009 0.003 0.003 204800 1.278 0.209 0.256
3200 0.015 0.003 0.003 409600 2.671 0.465 0.547
6400 0.031 0.006 0.003 819200 5.883 0.937 1.381
12800 0.053 0.009 0.016 1638400 13.836 2.536 3.171
25600 0.131 0.022 0.028 3276800 28.599 6.214 7.142
51200 0.291 0.056 0.053 6553600 64.158 11.694 15.831

Table 3.1: Solution statistics of MDA, DCA, and SFA for instances with linear costs.

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
0

20

40

60

80

100

120

140

160
Linear Objectives with VarBound = 100

Figure 3.10: Solution time of MDA, DCA, and SFA for instances with linear costs.

93

Quadratic costs

In each instance with quadratic costs, the function fi(x) has the form fi(x) = pix
2 + qix, where

pi is drawn from a uniform distribution over [0, 1] and qi is drawn from a uniform distribution

over [−1, 1]. The parameter Vb is set to 100. We generate 12 different n values and 10 instances

for each value of n.

We summarize the performance of the three algorithms in Table 3.2 and Figure 3.11 below.

All statistics are obtained by averaging over 10 instances.

Parameters CPU time (s) Parameters CPU time (s)

n MDA DCA SFA n MDA DCA SFA

1600 0.041 0.022 0.013 102400 5.473 3.679 1.575
3200 0.097 0.034 0.031 204800 12.258 10.358 3.062
6400 0.203 0.110 0.062 409600 29.355 25.200 7.203
12800 0.468 0.250 0.141 819200 71.690 59.557 17.064
25600 1.043 0.497 0.316 3276800 361.683 282.398 76.899
51200 2.445 1.304 0.696 6553600 886.682 699.724 156.630

Table 3.2: Solution statistics of MDA, DCA, and SFA for instances with quadratic costs.

3 3.5 4 4.5 5 5.5 6 6.5 7
0

100

200

300

400

500

600

700

800

900
Quadratic Objectives with VarBound = 100

Figure 3.11: Solution time of DCA, MDA, and SFA for instances with quadratic costs.

Convex objective: [F]

[F] is a convex cost function that has the form

fi(x) =
x4

4
+ pix.

94

In each instance, the function fi(x) has the form fi(x) = x4

4 + pix, where pi is drawn from

a uniform distribution over [−1, 1]. The parameter Vb is set to 100. We generate 14 different

n values ranging from 800 to 6 millions and 10 instances for each value of n. We summarize

the performance of the three algorithms in Table 3.3 and Figure 3.12 below. All statistics are

obtained by averaging over 10 instances.

Parameters CPU time (s) Parameters CPU time (s)

n MDA DCA SFA n MDA DCA SFA

800 0.021 0.011 0.011 102400 4.945 2.199 1.384

1600 0.038 0.015 0.012 204800 11.163 5.693 3.038

3200 0.090 0.033 0.027 409600 26.132 12.044 7.098

6400 0.197 0.071 0.059 819200 62.631 32.200 15.854

12800 0.447 0.155 0.139 1638400 149.035 80.897 35.024

25600 0.989 0.375 0.296 3276800 363.447 148.142 79.684

51200 2.493 1.221 0.617 6553600 868.560 431.889 161.210

Table 3.3: Solution statistics of MDA, DCA, and SFA for instances with convex cost objectives
[F].

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
0

500

1000

1500

2000

2500
[F] Cost Objectives with VarBound = 100

Figure 3.12: Solution time of MDA, DCA, and SFA for instances with convex cost objectives
[F].

95

Convex objective [CRASH]

[CRASH] is a convex cost function that has the form

fi(x) = ki +
pi
x
.

In each instance, the function fi(x) has the form fi(x) = ki + pi
x , where pi and ki are drawn

from a uniform distribution over [0, 1]. The parameter Vb is set to 100. We generate 14 different

n values ranging from 800 to 6 millions and 10 instances for each value of n. We summarize the

performance of the three algorithms in Table 3.4 and Figure 3.13 below.

Parameters CPU time (s) Parameters CPU time (s)

n MDA DCA SFA n MDA DCA SFA

800 0.024 0.013 0.011 102400 5.829 2.665 1.504

1600 0.044 0.020 0.012 204800 12.982 7.333 3.151

3200 0.102 0.041 0.029 409600 30.030 18.617 7.005

6400 0.225 0.099 0.062 819200 72.228 40.721 16.859

12800 0.506 0.234 0.133 1638400 167.963 108.050 35.610

25600 1.131 0.539 0.290 3276800 402.043 237.597 76.527

51200 2.493 1.221 0.617 6553600 936.209 586.074 159.689

Table 3.4: Solution statistics of MDA, DCA, and SFA for instances with convex cost objectives
[CRASH].

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

100

200

300

400

500

600

700

800

900

1000
[CRASH] Cost Objectives with VarBound = 100

Figure 3.13: Solution time of MDA, DCA, and SFA for instances with convex cost objectives
[CRASH].

96

Convex objective: [FUEL]

[FUEL] is a convex cost function that has the form

fi(x) = pi × ci × (
ci
x

)3.

In each instance, the function fi(x) has the form fi(x) = pi × ci × (cix)3, where pi and ci

are drawn from a uniform distribution over [0, 1]. The parameter Vb is set to 100. We generate

14 different n values ranging from 800 to 6 millions and 10 instances for each value of n. We

summarize the performance of the three algorithms in Table 3.5 and Figure 3.14 below.

Parameters CPU time (s) Parameters CPU time (s)

n MDA DCA SFA n MDA DCA SFA

800 0.021 0.011 0.009 102400 5.234 2.424 1.432

1600 0.040 0.016 0.012 204800 12.115 6.704 3.244

3200 0.089 0.039 0.027 409600 27.381 16.761 6.698

6400 0.202 0.097 0.060 819200 62.899 39.872 15.158

12800 0.446 0.229 0.127 1638400 146.509 86.280 32.854

25600 1.077 0.454 0.294 3276800 346.476 222.655 69.194

51200 2.266 1.165 0.597 6553600 846.707 470.372 158.158

Table 3.5: Solution statistics of MDA, DCA, and SFA for instances with convex cost objectives
[FUEL].

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

100

200

300

400

500

600

700

800

900

1000
[FUEL] Cost Objectives with VarBound = 100

Figure 3.14: Solution time of MDA, DCA, and SFA for instances with convex cost objectives
[FUEL].

97

It can be seen that for all test instances, the performance of SFA is better than MDA and

DCA. Moreover, SFA can solve large size of instances with several millions of variables.

3.7 Conclusions

In this chapter, we study a minimum convex cost network flow problem on the dynamic lot

size network. This problem appears in many applications, including dynamic lot-sizing, speed

optimization and resource allocation with nested bound constraints. We develop a new scaling-

based algorithm to solve the continuous problem as well as its restriction on integer flows. Our

algorithm is efficient and it has best worst-case time complexity in the literature. In particular,

for the resource allocation problem studied in Chapter 2, the key operations in this algorithm

can be accelerated with data structures. The improved complexity matches the best result for

that problem in the literature. We conduct extensive computational experiments to evaluate the

performance of our algorithm on instances with five classes of benchmark convex cost objectives

in the literature. Numerical results demonstrate the efficiency of our algorithm in solving large-

sized instances.

Chapter 4

Switched linear systems

98

99

In this chapter, we study an NP-hard problem: the optimal control problem of discrete-time

switched linear systems. Consider a switched linear system

x(k + 1) = Tkx(k), Tk ∈ Σ, k = 0, 1, . . . , (4.1)

where x(k) is an n-dimensional real vector that captures the system state at period k, the

set Σ contains m given n × n real matrices, each of which describes the dynamics of a linear

subsystem, and the initial vector x(0) is a given n-dimensional real vector a. We are interested

in the following optimization problem (P3)

Given a switched linear system described in (4.1), a positive integer K, and a convex

function f : Rn → R, find a sequence of K matrices T0, T1, . . . , TK−1 ∈ Σ to maximize

f(x(K)).

We show that (P3) is NP-hard for a pair of stochastic matrices or binary matrices. We

propose a polynomial-time exact algorithm for the problem when all input data are rational

and the given set of matrices Σ has the oligo-vertex property, a new concept we introduce. We

derive a set of sufficient and easy to verify conditions for a set of matrices to have the oligo-

vertex property. In particular, we show that a pair of 2× 2 binary matrices has the oligo-vertex

property. Finally, we conjecture that any pair of 2×2 real matrices has the oligo-vertex property.

4.1 Introduction

Many real-world systems exhibit significantly different dynamics under various modes or con-

ditions, for example a manual transmission car operating at different gears, a chemical reactor

under different temperatures and flow rates of reactants, and a group of cancer cells responding

to different drugs. Such phenomena can be modeled under a unified framework of switched

systems. A switched system is a dynamical system that consists of several subsystems and a

rule that specifies the switching among the subsystems. Finding a switching rule to optimize

the dynamics of a switched system under certain criteria has found numerous applications in

power system operations, chemical process control, air traffic management, and medical treat-

ment design [46, 47, 48, 49]. In this chapter, we study the following discrete-time switched linear

system:

x(k + 1) = Tkx(k), Tk ∈ Σ, k = 0, 1, . . . , (4.2)

where x(k) is an n-dimensional real vector that captures the system state at period k, the

set Σ contains m given n × n real matrices, each of which describes the dynamics of a linear

100

subsystem, and the initial vector x(0) is a given n-dimensional real vector a. Such a system

with switching only at fixed time instants appear in many practical applications, and is also

employed to approximate the more complex dynamics of a continuous-time hybrid system with

switching rules defined over the real line [46, 48].

We are interested in the following optimization problem (P3) related to the system in (4.2):

Given a switched linear system described in (4.2), a positive integer K, and a convex

function f : Rn → R, find a sequence of K matrices T0, T1, . . . , TK−1 ∈ Σ to maximize

f(x(K)).

One of such convex functions is the `p norm.

Example 2. Consider a switched linear system consisting of two subsystems with system ma-

trices A =

[
1 1

1 0

]
and B =

[
1 1

0 1

]
, an initial vector a = (2, 1)>, and K = 8. Figure 4.1

illustrates the trajectory of x(k) under three switching sequences, with the final state x(8) being

(53, 23)>, (58, 41)>, and (71, 41)>, respectively.

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

(53, 23)

(58, 41) (71, 41)

(2,1)

A-B-B-A-B-B-A-B
B-A-B-A-B-A-B-A
A-A-B-A-A-B-A-A

Figure 4.1: The trajectory of x(k) under different matrix sequences

We give three examples below to illustrate the applications of Problem (P3) and its connection

to other problems in control and optimization.

The first example is on design of treatment plans. Antibiotic resistance renders diseases that

were once easily treatable dangerous infections, and has become one of the most pressing public

health problems around the world. Several groups of researchers studied how to design sequential

antibiotic treatment plans to restore susceptibility after bacteria develop resistance [89, 90].

101

They model the percentages of n genotypes of an enzyme produced by bacteria in a population

with vector x(k) after k periods of treatment, and a probability transition matrix to model the

mutation rates among n genotypes under each antibiotic. The goal is to design a sequence of

antibiotics to maximize the percentage of the wild type at the end of the treatment, which is

sensitive to all antibiotics. The treatment design problem is equivalent to solve (P3) with a = e1,

a unit vector with the first component being 1 which denotes 100% wild type in the beginning,

and f(x(K)) = −e>1 x(K). In the same vein, (P3) can model the sequential therapy design

problem for many other diseases when x(k) describes related biometrics of a patient at period

k and each matrix models the evolution of patient biometrics under a particular treatment [49].

The second example is the matrix mortality problem in control [91, 92]. Given a positive

integer k, a set of matrices is said to be k-mortal if the zero matrix can be expressed as a product

of k matrices in the set (duplication allowed). A set of matrices is said to be mortal if it is k-

mortal for some finite k. The matrix mortality problem captures the stability of switched linear

systems under certain switching rules. It can be shown that a finite set of n × n non-negative

matrices is k-mortal if and only if the optimal objective value of (P3) is 0 with a = 1, K = k,

and f(x(K)) = −1>x(K), where 1 is a n-dimensional vector with each component being 1.

The third example concerns the joint spectral radius of a set of matrices, an important quan-

tity which has found many applications in wavelet functions, constrained coding, and network

security management, etc [93]. The joint spectral radius of a finite set Σ of matrices [94] is

defined as ρ(Σ) = lim supk→∞ ρ̂k(Σ, ‖ · ‖), where

ρ̂k(Σ, ‖ · ‖) = max{‖Tk−1Tk−2 . . . T0‖1/k | Tj ∈ Σ, j = 0, . . . , k − 1} (4.3)

and ‖ · ‖ is some matrix norm. If we select the matrix norm in (4.3) to be induced by the `p

norm of a vector, then

(ρ̂k(Σ, ‖ · ‖))k = sup
‖a‖p=1

max{‖x(K)‖p | (4.2)}. (4.4)

Observe that the inner optimization problem of the right-hand side of (4.4) is a special case of

(P3) with the convex function f(x) = ‖x‖p. In general, let v∗ be the optimal objective value of

(P3) with f(x) = ‖x‖ for some norm ‖ · ‖ and an initial vector a. Then (v∗)1/k provides a lower

bound of the quantity ρ̂k(Σ, ‖ · ‖).
A simple way to solve (P3) is to enumerate all possible matrix sequences, but such an

approach quickly becomes impractical as m and K increase. Even for m = 5 and K = 30, we

need to enumerate 530 solutions, which is unrealistic in practice. Another general approach to

solve (P3) is to formulate it as a mixed-integer nonlinear optimization problem, which can be

102

solved by global optimization solvers, but the problem size that can be handled by state-of-

the-art commercial solvers is also limited. In addition, the time complexity of the tree-based

search algorithms employed by these global solvers is difficult to analyze in general. In many

applications, problem (P3) has to be solved repeatedly with different parameters, so it is of vital

importance to have a fast algorithm for (P3).

We now introduce our results. We develop a simple dynamic programming algorithm to

solve (P3) exactly, where several linear programs are solved at each iteration. One advantage

of our algorithm is that it does not require any additional property of f such as smoothness or

strong convexity. Our algorithm is very efficient in practice, based on computational results in

Section 4.6. To analyze the time complexity of the algorithm, we assume that all input data are

integers and the value of the convex function f can be queried through an oracle in constant

time; we adopt the random-access machine [95] as the model of computation, in which each

basic operation (addition, comparison, multiplication, etc.) is assume to take the same amount

of time and the time complexity of an algorithm is the number of steps/operations required

to execute the algorithm. We define the following notations that are useful for presenting the

time-complexity results. Given a finite set Σ of n× n real matrices and a vector a ∈ Rn, let

Pk(Σ, a) := conv({x(k) | x(k) = Tk−1 · · ·T0a, Tj ∈ Σ, j = 0, . . . , k − 1})

be the convex hull of all possible values of x(k) in (4.2) for each integer k ≥ 0. Let Nk(Σ, a) be

the number of extreme points of Pk(Σ, a) and

Nk(Σ) = sup
a∈Rn

{Nk(Σ, a)}.

We introduce the following concept for a set of matrices.

Definition 20. A set of matrices Σ is said to have the oligo-vertex property if there exists

α > 0, positive integer k0, and positive constant d such that Nk(Σ) ≤ αkd for any k ≥ k0.

The oligo-vertex property of a set of matrices indicates the number of extreme points of Pk(Σ, a)

grows at most polynomially in k for any initial vector a, despite the number of possible values

of x(k) grows exponentially with k in general. With the Big-oh notation commonly used in

computer science, the oligo-vertex property basically states that Nk(Σ) = O(kd) as k → ∞ for

some positive constant d.

Our contributions

We summarize the contributions of this chapter as follows.

103

1. We present a simple dynamic programming algorithm to solve (P3) exactly. Our algo-

rithm does not require any additional property of f other than convexity. The running

time of our algorithm is O(m2n4.5(log n + logM)
∑K−1
k=0 kNk(Σ)2), and can be reduced

to O(m logm
∑K−1
k=0 Nk(Σ) + m

∑K−1
k=0 Nk(Σ) logNk(Σ)) when n = 2, where M is the

maximum absolute value of the entries of A1, . . . , Am, and a.

2. We introduce the concept of the oligo-vertex property for a finite set of matrices, and

show that our algorithm runs in polynomial time if the given set of matrices has the

oligo-vertex property. To the best of our knowledge, this is the first time such a property

is introduced for a set of matrices. We derive several sufficient conditions for a set of

matrices to have this property. On the other hand, we show that (P3) is NP-hard for a

pair of stochastic matrices or a pair of binary matrices, which implies that the oligo-vertex

property is unlikely to hold for an arbitrary pair of n× n integer matrices unless P=NP.

3. Numerical experiments demonstrate that our proposed algorithm is very efficient in prac-

tice, and has significant advantages over state-of-the-art global optimization software in

solving large size instances.

The oligo-vertex property we propose may be of independent interest to readers. We want to

point out some similarities between the oligo-vertex property and another important property

for a set of matrices that is also concerned with long matrix products—the finiteness property.

A finite set Σ of matrices is said to have the finiteness property if the joint spectral radius ρ(Σ)

is equal to (ρk(Tk−1Tk−2 . . . T0))1/k with Tk−1, Tk−2, . . . , T0 ∈ Σ for some finite integer k, where

ρ(T) denotes the spectral radius of the matrix T . The finiteness property has been studied

extensively for different families of matrices [96, 97], as it has many implications on stability

and stabilization of switched systems. The finiteness property and the oligo-vertex property

both hold for the following sets of matrices: commuting matrices, any finite set of matrices with

at most one matrix’s rank being greater than one [98], and a pair of 2× 2 binary matrices [99].

We suspect that there might be a deeper connection between these two properties. Finally we

pose several open questions on the oligo-vertex property at the end of this chapter.

The rest of the chapter is organized as follows. In Section 4.2, we review results related

to the problem we study, with a main focus on computational complexity. In Section 4.3, we

first prove that (P3) is NP-hard for a pair of stochastic matrices or binary matrices, and then

introduce an exact algorithm for (P3) and analyze its time complexity for general n and n = 2.

In Section 4.4, we introduce the oligo-vertex property and present several sufficient conditions

for a set of matrices to have the oligo-vertex property. In Section 4.5, we prove that a pair of

2× 2 binary matrices has the oligo-vertex property. We present some computational results in

Section 4.6 and conclude in Section 4.7 with some open problems.

104

4.2 Related Work

Our problem aims to find the optimal switching rule of a discrete-time switched linear system

without continuous control input. There have been a rich body of theoretical and computational

results on optimal control of switched linear systems, such as finding optimal switching instants

given a fixed switching sequence [100], minimizing the number of switches with known initial

and final states [101], finding suboptimal policies [102], study of the exponential growth rates

of the trajectories under different switching rules [103], and characterizing the value function of

switched linear systems with linear and quadratic objectives [104]. We refer interested readers

to the books [46, 48] and recent surveys [105, 106] for more details on switched linear systems.

Finding the optimal switching sequence for a switched linear system also belongs to a broader

class of problems called mixed-integer optimal control [107, 108] or optimal control of hybrid

systems [109], which can be reformulated as a mixed-integer nonlinear optimization problem

and solved by general mixed-integer optimization solvers.

We now survey computational complexity results related to the problem we study. Blondel

and Tsitsiklis showed that the matrix mortality problem is undecidable for a pair of 48 × 48

integer matrices and the matrix k-mortality problem is NP-complete for a pair of n × n bina-

ry matrices with n being an input parameter [91]. The complexity of the matrix k-mortality

problem is however unknown when the matrix dimension n is fixed. For the antibiotics time

machine problem, Mira et al. used exhaustive search to find the optimal sequence of antibiotics

for a small sized problem [89]. Tran and Yang showed that the antibiotics time machine problem

is NP-hard when the number of matrices and the matrix dimension are both input parameter-

s [110]. The antibiotics time machine can be also seen as a special finite-horizon discrete-time

Markov decision process in which no state is observable. It has been shown in [111] that the

finite-horizon unobservable Markov decision process is NP-hard. Therefore, our results identify

several polynomially solvable cases of finite-horizon unobservable Markov decision processes.

Computing the joint spectral radius for a finite set of matrices either exactly or approximately

has been shown to be NP-hard [112], and has been a topic of active research [113, 114, 115]. The

finiteness conjecture [96], which states that the finiteness property holds any set of real matrices,

had remained a major open problem in the control community until early 2000s when a group

of researchers showed that there exists a pair of 2× 2 matrices that does not have the finiteness

property [116, 117, 118]. The first constructive counterexample for the finiteness conjecture was

proposed in [119]. The finiteness conjecture was shown to be true for a pair of 2 × 2 binary

matrices [99] and a finite set of matrices with at most one matrix’s rank being greater than

one [98].

105

4.3 Computational Complexity

4.3.1 Notations

We first introduce some notations that will be used throughout this paper. Let N, Z, R, R+, and

R− denote the sets of natural numbers (including 0), integers, real numbers, non-negative real

numbers, and non-positive real numbers, respectively. We use xi to denote the i-th component

of a given vector x. Let ‖x‖∞ and ‖T‖∞ denote the infinity norm of vector x and matrix T ,

respectively. Given two positive integers i, j, let [i : j] denote the set of integers {i, i+1, . . . , j} if

i ≤ j and ∅ if i > j. Given two scalar functions f and g defined on some subset of real numbers,

we write f(x) = O(g(x)) as x → ∞, if there exist α and x0 ∈ R such that |f(x)| ≤ α|g(x)| for

all x ≥ x0. Given a set S, let |S| denote the cardinality of S, conv(S) denote the convex hull of

S, int(S) denote the interior of S, and ∂S denote the boundary of S, respectively. Let ext(S)

denote the set of extreme points of a convex set S. Given a set S ⊆ Rn and a matrix T ∈ Rn×n,

let TS := {Tx | x ∈ S} be the image of S under the linear mapping defined by T . Let Qi
denote the i-th quadrant of the plane under the standard two-dimensional Cartesian system, for

i = 1, 2, 3, 4. For example, Q1 = {x ∈ R2 | x1 ≥ 0, x2 ≥ 0}.

4.3.2 Complexity

Theorem 3. (P3) is NP-hard for a pair of left (right) stochastic matrices and a linear function

f .

Proof. We prove the result based on a reduction from the 3-SAT problem. A 3-SAT problem

asks whether there exists a truth assignment of several variables such that a given set of clauses

defined over these variables, each with three literals, can all be satisfied. The 3-SAT problem is

known to be NP-complete [120].

Given an instance of the 3-SAT problem with n variables y1, . . . , yn and m clauses

C1, . . . , Cm, we construct an instance of (P3) with Σ = {A,B} as follows. Matrices A and

B are m(2n+ 1)×m(2n+ 1) adjacency matrices of two directed graphs GA and GB , respective-

ly. The construction of GA and GB will be explained in detail below. We set the total number

of periods K = n. Let ek ∈ Rm(2n+1) be a vector with the k-th entry being 1 and all other

entries being 0. We set x(0) =
∑m
j=1 e(j−1)(2n+1)+1 and f(x) = c>x with c = −

∑m
j=1 ej(2n+1).

We claim that the 3-SAT instance is satisfiable if and only if the optimal objective value of the

constructed instance of (P3) is −m.

Graph GA is constructed as follows. It contains m(2n + 1) nodes, divided equally into m

groups, each group corresponding to a clause. There is no arc between nodes in different groups.

Let uj,1, uj,2, . . . , uj,2n+1 be the 2n+ 1 nodes corresponding to clause j. The arcs among these

106

nodes are as follows. Node uj,2n+1 has a self loop. There is an arc from uj,l+1 to uj,l for

l = [1 : 2n] unless literal yl is included in clause Cj ; in that case, there will be an arc from node

uj,n+l+1 to node uj,l. Graph GB is constructed similarly with the same set of nodes. There is

an arc from uj,l+1 to uj,l for l = [1 : 2n] unless literal ycl is included in clause Cj ; in that case,

there will be an arc from node uj,n+l+1 to node uj,l. An example for the clause Cj = y1∨yc3∨y4
with a total of 4 variables is shown in Figure 4.2.

uj,1

uj,2

uj,3

uj,4

uj,5

uj,6

uj,7

uj,8

uj,9

Part of GA

uj,1

uj,2

uj,3

uj,4

uj,5

uj,6

uj,7

uj,8

uj,9

Part of GB

Figure 4.2: The nodes and arcs in GA and GB corresponding to the clause Cj =
y1 ∨ yc3 ∨ y4 with a total of 4 variables.

For j ∈ [1 : n], let Aj (Bj) be the adjacency matrix of the component of GA (GB) corre-

sponding to the j-th clause. Since each node has in-degree 1, each column of Aj (Bj) has exactly

one entry being 1, so Aj (Bj) is a left stochastic matrix. We can associate each truth assignment

of y1, . . . , yn with a sequence of matrices T j0 , . . . , T
j
n−1 with T jt ∈ {Aj , Bj} for t ∈ [0 : n− 1]. In

particular, if yt is true (false), then T jt−1 is A (B). Consider the product

[0, · · · , 0,−1]T jn−1T
j
n−2 · · ·T

j
0


1

0
...

0

 .

It can be verified that this product is −1(0) if any only if the truth assignment of y1, . . . , yn

107

makes clause j satisfied (unsatisfied).

Order the nodes of GA or GB lexicographically, i.e.,

u1,1, u1,2, . . . , u1,2n+1, u2,1, . . . , u2,2n+1, . . . , um,2n+1.

Let A and B be the adjacency matrix of GA and GB , respectively. Then both A and B are

block diagonal matrices with m blocks of (2n+ 1)× (2n+ 1) matrices. In particular,

A =


A1

A2

. . .

Am

 , B =


B1

B2

. . .

Bm

 . (4.5)

Both A and B are left stochastic matrices. When x(0) =
∑m
j=1 e(j−1)(2n+1)+1, c =

−
∑m
j=1 ej(2n+1), Tt ∈ {A,B} for t ∈ [0 : n− 1],

c>Tn−1 . . . T0x(0) =

m∑
j=1

[0, · · · , 0,−1]T jn−1T
j
n−2 · · ·T

j
0


1

0
...

0

 .

Therefore, there exists a truth assignment such that the 3-SAT instance is satisfied if and only

if the optimal objective value of the constructed instance of (P3) is −m. This reduction is done

in time polynomial in m and n.

To prove that (P3) is NP-hard for a pair of right stochastic matrices, we can construct an

instance of (P3) in a similar way to the case of left stochastic matrices and show that there

exists a truth assignment such that the 3-SAT instance is satisfied if and only if the optimal

objective value of the constructed instance is −m. In particular, we let x(0) = −
∑m
j=1 ej(2n+1)

(the vector c in the instance of (P3) with left stochastic matrices above), f(x) = c>x with

c =
∑m
j=1 e(j−1)(2n+1)+1 (the initial vector x(0) in the instance of (P3) with left stochastic

matrices above), and the two matrices be the transpose of the two matrices A and B defined

in (4.5).

Since the matrices constructed in the proof of Theorem 3 are also binary matrices, we have the

following result.

Corollary 1. (P3) is NP -hard for a pair of binary matrices and a linear function f .

108

4.3.3 The Algorithm

In this section, we present a simple forward dynamic programming algorithm to solve (P3)

exactly, described in Algorithm 13. The critical step of Algorithm 13 is Step 6, which constructs

Ek, the set of extreme points of Pk(Σ, a), sequentially for k = 0, 1, . . . ,K.

Algorithm 13 A forward dynamic programming algorithm to solve (P3).

1: Input: Matrices Σ = {A1, . . . , Am} ∈ Zn×n, initial vector a ∈ Zn, value oracle f ,
and positive integer K.

2: Output: A sequence of matrices T0, . . . , TK−1 ∈ Σ that maximize
f(Tk−1Tk−2 · · ·T0a).

3: Initialize: Set E0 = {a}.
4: for k = 0, 1, . . . ,K − 1 do
5: Set F ik = AiEk for i = 1, . . . ,m.
6: For each point x ∈ ∪mi=1F

i
k, check if x is an extreme point of conv(∪mi=1F

i
k), by

solving a linear program. Let Ek+1 be the set of all extreme points of conv(∪mi=1F
i
k).

7: end for
8: Find an x∗(K) ∈ arg max{f(x) | x ∈ EK} by enumeration.
9: Retrieve the optimal matrix sequence TK−1, TK−2, . . . , T0 from x∗(K).

We specify the details of Step 6 later. In fact, Step 6 can be any algorithm that takes a set of

points S as input and output ext(conv(S)). There are several efficient algorithms the construct

the convex hull of a set of points on the plane, more efficient than linear programs. It is,

however, difficult to construct conv(S) efficiently in higher dimensional space. The correctness

of Algorithm 13 follows directly from the proposition below.

Proposition 10. Algorithm 13 solves (P3) correctly.

Proof. First it is not difficult to show by induction that the set Ek constructed in Algorithm 13

is the set of extreme points of Pk(Σ, a) for each k ∈ [0 : K]. Since maximizing a convex function

f over a finite set S is equivalent to maximizing f over conv(S) as well as maximizing f over

ext(conv(S)) [121], (P3) is equivalent to max{f(x) | x ∈ PK(Σ, a)} = max{f(x) | x ∈ EK}.
Then the result follows.

Remark 1. The fact that we are maximizing a convex function in the objective is critical for

the correctness of Algorithm 13. If we minimize f(x(K)) in (P3) instead, then Algorithm 13

will not give the correct optimal solution in general.

We now specify the linear program in Step 6 of Algorithm 13. Given a finite set S =

{p1, . . . , pl} ⊆ Rn, checking if a point pj ∈ S is an extreme point of conv(S) can be done by

109

solving the linear program below:

v∗ = max
z,z0

(pj)>z − z0 (4.6a)

s.t. (pi)>z − z0 ≤ 0, i = 1, . . . , l, i 6= j (4.6b)

(pj)>z − z0 ≤ 1. (4.6c)

Problem (4.6) is always feasible and bounded. Suppose ((z∗)>, z∗0) is an optimal solution and

v∗ is the corresponding objective value. If v∗ > 0, then we find a hyperplane (z∗)>x = z∗0 that

separates pj and the set S \ {pj}, and pj is an extreme point of conv(S). Otherwise pj is not

an extreme point of conv(S). Problem (4.6) can be solved by various interior point methods in

polynomial time, for example Karmarkar’s algorithm. Recall that M is the maximum absolute

value of the entries of A1, . . . , Am, and a.

Proposition 11. If Karmarkar’s algorithm is employed to solve the linear programs at Step 6,

the running time of Algorithm 13 is O(m2n4.5(log n+ logM)
∑K−1
k=0 kNk(Σ)2).

Proof. We first show that the sizes of all data in Algorithm 13 are polynomial in the problem

input size, which is polynomial in K, n, and logM . To see this, for any integer k ≥ 0,

‖x(k)‖∞ = max{‖Aix(k − 1)‖∞ | Ai ∈ Σ} ≤ max{‖Ai‖∞ | Ai ∈ Σ} · ‖x(k − 1)‖∞

≤ (max{‖Ai‖∞ | Ai ∈ Σ})k · ‖a‖∞ ≤ (nM)kM.

Therefore, the size of x(k) is O(n log ‖x(k)‖∞) = O(kn(log n+ logM)).

At Step 6 of iteration k, the number of operations of solving one linear program (4.6)

with S = ∪mi=1F
i
k using Karmarkar’s algorithm is O(n3.5L) [68], where the input length

L = O(
∑m
i=1 |F ik|n log ‖x(k)‖∞) = O(kmn(log n + logM)|Ek|). Since we need to solve m|Ek|

linear programs, one for each point in S, the running time of Step 6 is m|Ek|O(n3.5L) =

O(km2n4.5(log n + logM)|Ek|2). At iteration k, Step 5 takes O(mn2) time, Step 8 takes |EK |
queries to the value oracle of function f , and Step 9 can be performed in K steps if a m-ary tree is

used to store the values of x(k) for each k. Therefore, the step with the dominating complexity is

Step 6, and the overall running time of Algorithm 13 is O(m2n4.5(log n+ logM)
∑K−1
k=0 k|Ek|2).

Since |Ek| ≤ Nk(Σ), the result follows.

Speeding up Algorithm 13 when n = 2

When n = 2, there are many efficient algorithms to construct the convex hull of a set of points

directly, such as Graham’s scan and Jarvis’s march [21]. Graham’s scan constructs the convex

110

hull of l points on the plane in O(l log l) time [122]. With a similar analysis as in Proposition 11,

we have the result below.

Proposition 12. When n = 2 and Graham’s scan is employed at Step 6 of Algorith-

m 13 to construct Ek+1, the running time of Algorithm 13 is O(m logm
∑K−1
k=0 Nk(Σ) +

m
∑K−1
k=0 Nk(Σ) logNk(Σ)).

4.4 Polynomially Solvable Cases

In this section, we focus on discovering conditions on a set of matrices for which (P3) is polyno-

mially solvable. Propositions 11 and 12 indicate that (P3) is polynomially solvable if Nk(Σ) is

polynomial in k. This is the motivation that we introduce the concept of the oligo-vertex proper-

ty in Section 4.1. Recall that a set of matrices Σ has the oligo-vertex property if Nk(Σ) = O(kd)

for some constant d. The following proposition gives the detailed time complexity of our al-

gorithms for matrices with the oligo-vertex property, following directly from Propositions 11

and 12.

Proposition 13. If the set of matrices Σ in (P3) has the oligo-vertex property and Nk(Σ) =

O(kd) for some constant d, then (P3) can be solved in O(m2n4.5K2d+2(log n+ logM)) time for

general n and in O(mKd+1(logm+ logK)) time when n = 2.

Thus our focus in this section is to discover conditions for a set of matrices to have the

oligo-vertex property. We introduce additional notations that will be used in the rest of the

paper. Given a set of matrices Σ = {A1, A2, . . . , Am} ⊆ Rn and a vector a ∈ Rn, define

Xk(Σ, a) = {x(k) | x(k) = Tk−1 · · ·T0a, Tj ∈ Σ, j ∈ [0 : k − 1]} (4.7)

Ek(Σ, a) = ext(Pk(Σ, a)) (4.8)

for each integer k ≥ 0. Recall that Pk(Σ, a) = conv(Xk(Σ, a)), Nk(Σ, a) = |Ek(Σ, a)|, and

Nk(Σ) = supa∈Rn{Nk(Σ, a)}. Since Pk(Σ, a) is the convex hull of at most mk points, both

Nk(Σ, a) and Nk(Σ) are well defined and bounded above by mk.

Some obvious cases that have the oligo-vertex property include a set Σ of m pairwise com-

muting matrices with constant m (for which Nk(Σ) = O(km−1) since there are at most
(
k+m−1
m−1

)
elements in Xk(Σ, a)), and a pair of projection matrices since there are at most 2k elements in

Xk(Σ, a).

Proposition 14. A set Σ of m matrices in Rn×n with at most one matrix with rank greater

than one has the oligo-vertex property and Nk(Σ) = O(mk).

111

Proof. Let Σ = {A1, . . . , Am}. With loss of generality, assume that no Ai is the zero matrix, and

A1, A2, . . . , Am−1 are of rank one. Then for any a ∈ Rn the set AiPk(Σ, a) contains at most two

extreme points for i = 1, . . . ,m−1. For each integer k ≥ 0, Pk+1(Σ, a) = conv(∪mi=1AiPk(Σ, a)),

so Nk+1(Σ, a) ≤
∑m
i=1 |ext(AiPk(Σ, a))| ≤ 2(m− 1) +Nk(Σ, a). Then Nk+1(Σ, a) ≤ N0(Σ, a) +

2k(m− 1), so Nk(Σ) = O(mk).

Proposition 15. A set Σ of two 2× 2 matrices that share at least one common eigenvector has

the oligo-vertex property and Nk(Σ) = O(k).

Proof. If matrices A and B in Σ share two eigenvectors, then they commute and there are at

most k+ 1 different points in Xk(Σ, a) for any a. Now suppose that A and B in Σ share exactly

one eigenvector q1. Then q1 must be a real vector. Assume the corresponding eigenvalues of q1

in A and B are λ11 and µ11, respectively. Since q1 is a real vector, λ11 and µ11 are both real-

valued. Without loss of generality, assume ‖q1‖2 = 1. Let q2 ∈ R2 be a unit vector orthogonal

to q1. Consider the vector Aq2. Since q1 and q2 form a basis of R2, we have Aq2 = λ12q1 +λ22q2

for some λ12, λ22 ∈ R. Similarly, we have Bq2 = µ12q1 + µ22q2 for some µ12, µ22 ∈ R. Let

Q =
[
q1 q2

]
, Λ =

[
λ11 λ12

0 λ22

]
, M =

[
µ11 µ12

0 µ22

]
. We have Λ and M as real matrices,

QQ> = I, A = QΛQ>, and B = QMQ>.

Any product of k matrices with A and B can be written in the form of

Al1Bm1Al2Bm2 . . . AlsBms with l1,ms ∈ N, l2, . . . , ls,m1, . . . ,ms−1 > 0 for some s ≥ 1, and∑s
j=1(lj +mj) = k. We simplify the product as follows.

Al1Bm1Al2Bm2 . . . AlsBms

= Q

[
λl1+...+ls11 µm1+...+ms

11 ∗
0 λl1+...+ls22 µm1+...+ms

22

]
Q>

= Q

[
λp11µ

k−p
11 ∗

0 λp22µ
k−p
22

]
Q>,

where p = l1 + . . . + ls and ∗ represents some real number. Let Πp be the set of all matrices

in the form of

[
λp11µ

k−p
11 ∗

0 λp22µ
k−p
22

]
calculated from a product of k matrices with p matrix

A’s and (k − p) matrix B’s. The set Π0 contains one matrix in the form of

[
µk11 ∗
0 µk22

]
. Call

this matrix C0. The set Πk contains one matrix in the form of

[
λk11 ∗
0 λk22

]
. Call this matrix

Ck. For 1 ≤ p ≤ k − 1, any matrix in Πp can be represented as a convex combination of two

matrices in Πp, the ones with the smallest and largest ∗ entries. Call these two matrices Cp

112

and Dp. Then for any p ∈ [1 : k − 1], the vector x(k) = Al1Bm1Al2Bm2 . . . AlsBmsa with∑s
j=1 lj = p can be represented by a convex combination of Cpa and Dpa. Hence Pk(Σ, a) =

conv({C0a,C1a,D1a,C2a,D2a, . . . , Cka}). Therefore Nk(Σ, a) ≤ 2k and Nk(Σ) = O(k).

Remark 2. Each right stochastic matrix has an eigenvector (1, 1)>. Therefore, any pair of

2× 2 right stochastic matrices has the oligo-vertex property and the corresponding problem (P3)

is polynomially solvable.

We present a lemma showing that the oligo-vertex property is invariant under any similarity

transformation.

Lemma 1. A finite set of n× n matrices Σ has the oligo-vertex property if and only if SΣS−1

has the oligo-vertex property for any nonsingular real matrix S.

Proof. It suffices to show that Nk(Σ) = Nk(SΣS−1). We claim that Pk(Σ, a) = Pk(SΣS−1, Sa)

for any a ∈ Rn. To see this, note that any extreme point p of Pk(Σ, a) can be written as

p = Tk−1Tk−2 · · ·T0a with Tj ∈ Σ or j ∈ [0 : k − 1]. Then

p = Tk−1Tk−2 · · ·T0a = S−1(STk−1S
−1)(STk−2S

−1) · · · (ST0S−1)Sa.

We have p ∈ S−1Pk(SΣS−1, Sa). Therefore, Pk(Σ, a) ⊆ S−1Pk(SΣS−1, Sa). Similarly, we

can show that Pk(Σ, a) ⊇ S−1Pk(SΣS−1, Sa), so Pk(Σ, a) = S−1Pk(SΣS−1, Sa). Since S is

nonsingular, the number of extreme points of Pk(Σ, a) equals the number of extreme points

of Pk(SΣS−1, Sa), i.e., Nk(Σ, a) = Nk(SΣS−1, Sa). Thus Nk(Σ) = supa∈Rn Nk(Σ, a) =

supa∈Rn Nk(SΣS−1, Sa) ≤ Nk(SΣS−1). By symmetry, we can show that Nk(SΣS−1) ≤ Nk(Σ).

Therefore, Nk(Σ) = Nk(SΣS−1).

Finally, we present a proposition that the oligo-vertex property is invariant under union of

a rank one matrix.

Proposition 16. Suppose Σ is a set of matrices that has the oligo-vertex property and M is a

rank one matrix, then the set Σ0 = Σ ∪ {M} has the oligo-vertex property.

Proof. For a switched linear system (Σ0, u), Xk(Σ0, u) is the set of all possible values of x(k)

and Pk(Σ0, u) is the convex hull of all possible values of x(k).

For any control sequence of length k that is drawn from Σ0,

T0, T1, · · · , Tk−1, Ti ∈ Σ0, i = 0, 1, . . . , k − 1

113

let I(T0, T1, · · · , Tk−1) be the index of the last appearance of M in this sequence. We define

I(T0, T1, · · · , Tk−1) =

max{i | Ti = M}, if M is in the sequence,

k, otherwise.

With the notation I(T0, T1, · · · , Tk−1), we can partition the points in Xk(Σ0, u) based on the

last appearance of M in their control sequence. Let

Ej = {Tk−1 · · ·T1T0u |Ti ∈ Σ0, i = 0, 1, . . . , k − 1; I(T0, T1, · · · , Tk−1) = j},

we have

Pk(Σ0, u) = conv(Xk(Σ0, u)) = conv(∪kj=0E
j).

Hence, Nk(Σ0, u) ≤
∑k
j=0 |ext(conv(Ej))|.

• Notice that by definition,

Ek = Xk(Σ, u).

Hence, |ext(conv(Ek))| = |ext(=)Nk(Σ, u)| ≤ Nk(Σ).

• For j = 0,

E0 ={Tk−1 · · ·T1Mu | Ti ∈ Σ0, i = 1, . . . , k − 1}

= Xk−1(Σ,Mu).

Hence, |ext(conv(E0))| ≤ Nk−1(Σ).

• For 1 ≤ j < k,

Ej ={Tk−1 · · ·T1T0u | Ti ∈ Σ0, i = 0, 1, . . . , j − 1;Tj = M ;Ti ∈ Σ, i = j + 1, j + 2, . . . , k − 1}

={Tk−1 · · ·Tj+1Tjx | x ∈ Xj−1(Σ0, u);Tj = M ;Ti ∈ Σ, i = j + 1, j + 2, . . . , k − 1}

={Tk−1 · · ·Tj+1x | x ∈MXj−1(Σ0, u);Ti ∈ Σ, i = j + 1, j + 2, . . . , k − 1}.

Since M is a rank one matrix, the points in the set MXj−1(Σ0, u) lay on a line. The

convex hull of MXj−1(Σ0, u) has at most two extreme points, which we denote by u1, u2

114

(If there is only one extreme point, we have u1 = u2). Hence,

conv(Ej) =conv({Tk−1 · · ·Tj+1x | x{u1, u2};Ti ∈ Σ, i = j + 1, j + 2, . . . , k − 1})

=conv(conv(Xk−j−1(Σ, u1)) ∪ conv(Xk−j−1(Σ, u2)))

=conv(Pk−j−1(Σ, u1) ∪ Pk−j−1(Σ, u2)),

which implies

|ext(Ej)| ≤ |ext(Pk−j−1(Σ, u1))|+ |ext(Pk−j−1(Σ, u2))|

= Nk−j−1(Σ, u1) +Nk−j−1(Σ, u2)

≤ 2Nk−j−1(Σ).

Since Σ has the oligo-vertex property, there exist constants c, d, k0 ∈ Z+ such that Nk(Σ) ≤
ckd for k ≥ k0. When k < k0, Nk(Σ) ≤ mk ≤ mk0 where m = |Σ|. Hence, we can choose

sufficiently large c, d such that Nk(Σ) ≤ ckd for k ≥ 0. Therefore,

Nk(Σ0, u) ≤
k∑
j=0

|ext(conv(Ej))|

= |ext(conv(Ek))|+
k−1∑
j=0

|ext(conv(Ej))|

≤ Nk(Σ) + 2

k−1∑
j=0

Nk−j−1(Σ)

≤ ckd + 2

k−1∑
j=0

cjd

≤ (c+ 2kc)kd

= O(kd+1).

Hence, the set Σ0 has the oligo-vertex property.

4.5 The 2× 2 Binary Matrices

Our main result in this section is the following theorem.

Theorem 4. A pair of 2× 2 binary matrices has the oligo-vertex property.

115

The seemingly innocent looking statement above is the most difficult to prove in this paper. In

fact, we are unable to provide a unified argument for all 2× 2 binary matrices. This is not too

surprising, however, since to the best of our knowledge there is no unified argument to show

that any pair of 2× 2 binary matrices has the finiteness property either [99]. We hope that the

techniques we develop in this paper can be useful in proving the oligo-vertex property for other

matrices in the future.

There are a total of 16 binary matrices, resulting in a total of 120 different pairs of 2 × 2

binary matrices. To prove Theorem 4, we first show that the result holds for most of the 120

pairs, and then provide separate proofs for each of the remaining pairs. Among the 16 binary

matrices, one matrix has rank zero, nine matrices have rank one, and six matrices have rank

two. The pair of matrices has the oligo-vertex property if one matrix is the zero or identity

matrix. According to Proposition 14, the pair of matrices has the oligo-vertex property if one

matrix is singular. Therefore, only the following five binary matrices of rank two give rise to

interesting pairs:

A1 =

[
0 1

1 0

]
, A2 =

[
1 1

0 1

]
, A3 =

[
1 0

1 1

]
, A4 =

[
1 1

1 0

]
, A5 =

[
0 1

1 1

]
.

The five matrices above give rise to ten different pairs of binary matrices. Observe that

A1A1A
−1
1 = A1, A1A2A

−1
1 = A3, A1A4A

−1
1 = A5, A2A5A

−1
2 = A4.

Then by Lemma 1, we can group the ten pairs of matrices into the following five clusters:

1. {A1, A2}, {A1, A3}

2. {A1, A4}, {A1, A5}

3. {A2, A3}

4. {A4, A5}

5. {A2, A4}, {A3, A5}, {A2, A5}, {A3, A4},

and it suffices to show that one pair of matrices within each cluster has the oligo-vertex property.

In the rest of this section, we are going to show separately that each of the following five pairs

of matrices has the oligo-vertex property.

Σ1 = {A1, A2},Σ2 = {A1, A4},Σ3 = {A2, A3},Σ4 = {A4, A5},Σ5 = {A2, A4}.

We first present in the table below a complete description of how Nk(Σ, a) grows with k for the

five pairs of matrices, according to the location of the initial vector a.

116

Σ1 Σ2 Σ3 Σ4 Σ5

a ∈ Q1 ∪Q3 O(k2) O(k) O(k) O(k) O(k)
a ∈ int(Q2) ∪ int(Q4) O(k4) O(k) O(k2) O(k2) O(k2)

Table 4.1: The number of extreme points Nk(Σ, a)

The results in Table 4.1 show that the number of extreme points of Pk(Σ, a) grows linearly with

k when the initial vector is in the first or the third quadrant for most pairs of binary matrices

except Σ1.

Example 3. Figure 4.3 illustrates how the number of extreme points Nk(Σ1, a) changes with k

given different initial vector a’s. For the chosen a’s, the growth is at most linear in k for k ≤ 40.

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

Figure 4.3: The number of extreme points Nk(Σ1, a) given different initial vector a’s.

To prove the results in Table 4.1, we first introduce a few notations that will be used in the

rest of this section. Given a pair Σ of matrices and a vector a ∈ R2, we divide the set of extreme

points Ek(Σ, a) of Pk(Σ, a) into five groups.

Definition 21. Let Eik(Σ, a) be the set of extreme points of Pk(Σ, a) that are maximizers of the

linear program max{cx | x ∈ Pk(Σ, a)} for some c ∈ int(Qi), for i = 1, 2, 3, 4. Let E0
k(Σ, a) be

the set of extreme points of Pk(Σ, a) that are maximizers of the linear programs max{cx | x ∈
Pk(Σ, a)} where c ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)}.

Then

Ek(Σ, a) = ∪4i=0E
i
k(Σ, a) and Nk(Σ, a) ≤

4∑
i=0

|Eik(Σ, a)|. (4.9)

117

Example 4. Figure 4.4 illustrates the polytopes Pk(Σ3, a) and the sets of extreme points

Eik(Σ3, a) for i ∈ [0 : 4] with a = (2, 1)>, for k = 5 and k = 7.

5 10 15 20 25
0

5

10

15

20

25

30

(a) P5(Σ3, (2, 1)>) and Ei5(Σ3, (2, 1)>)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

(b) P7(Σ3, (2, 1)>) and Ei7(Σ3, (2, 1)>)

Figure 4.4: Examples of polytopes Pk(Σ3, a) and associated sets of extreme points
Eik(Σ3, a) for i ∈ [0 : 4].

4.5.1 Σ1 = {A1, A2}

Proposition 17. The pair Σ1 has the oligo-vertex property and Nk(Σ1) = O(k4).

Proposition 17 is an immediate consequence of the following propositions.

Proposition 18. For any a ∈ int(Q1) ∪ int(Q3), Nk(Σ1, a) = O(k2).

Proposition 19. For any a ∈ ∂Q1 ∪ ∂Q3, Nk(Σ1, a) = O(k2).

Proposition 20. For any a ∈ int(Q2) ∪ int(Q4), Nk(Σ1, a) = O(k4).

We first focus on proving Proposition 18. Our strategy is to bound the cardinality of Eik(Σ1, a)

for each i. Then according to (4.9), Nk(Σ1) will be bounded as well.

Lemma 2. For any a ∈ int(Q1) and integer k ≥ 2, |E1
k(Σ1, a)| ≤ k + 2.

Proof. To simplify the notations, we write E1
k and Pk instead of E1

k(Σ1, a) and Pk(Σ1, a) re-

spectively in the rest of the proof. We claim that |E1
k| ≤ |E1

k−1| + 1 for k ≥ 2. Then

|E1
k| ≤ |E1

1 | + (k − 1) ≤ 2 + (k − 1) = k + 1. To prove the claim, we first show that

E1
k ⊆ A1E

1
k−1 ∪A2E

1
k−1. Note that

max{cx | x ∈ Pk} = max{max{cA1x | x ∈ Pk−1},max{cA2x | x ∈ Pk−1}}. (4.10)

118

Given c ∈ int(Q1), both cA1 and cA2 are in the interior of Q1, so the maximizers of linear

programs on the right are in the set E1
k−1. Therefore, E1

k ⊆ A1E
1
k−1 ∪A2E

1
k−1.

Next we show that some points in A1E
1
k−1∪A2E

1
k−1 cannot belong to E1

k. Let p = (p1, p2)> ∈
E1
k−1 be the maximizer of the linear program max{x1 + x2 | x ∈ Pk−1} with the smallest x2-

coordinate. Note that there is no other point in E1
k−1 whose x2-coordinate is p2. Otherwise

suppose that there is such a point p′. The fact that p is the maximizer of max{x1+x2 | x ∈ Pk−1}
implies p1 > p′1. Then cp′ < cp for any c ∈ int(Q1), which contradicts that p′ ∈ E1

k−1.

Now we can partition E1
k−1 into three sets S1 = {x | x ∈ E1

k−1, x2 > p2}, S2 = {p}, and

S3 = {x | x ∈ E1
k−1, x2 < p2}. Then E1

k ⊆ A1S1 ∪A1S2 ∪A1S3 ∪A2S1 ∪A2S2 ∪A2S3. We show

below that the points in A1S1 or A2S3 cannot be in E1
k.

First consider any point x ∈ S1.

• If x1 < x2, we have cA2x− cA1x = c1x1 + c2(x2 − x1) > 0.

• Suppose x1 ≥ x2 and c1 < c2. Since x1 + x2 ≤ p1 + p2, we have x1 − p1 ≤ p2 − x2 < 0.

Therefore, cA1p − cA1x = c1(p2 − x2) + c2(p1 − x1) ≥ c1(x1 − p1) + c2(p1 − x1) =

(c1 − c2)(x1 − p1) > 0.

• Suppose x1 ≥ x2 and c1 ≥ c2. Since x1 + x2 ≤ p1 + p2, p2 − x1 ≥ x2 − p1. Since

x1 ≥ x2 > p2 and x1 +x2 ≤ p1 +p2, we have p1 ≥ x2. Then cA2p− cA1x = c1p1 + c1(p2−
x2) + c2(p2 − x1) ≥ c1p1 + c1(p2 − x2) + c2(x2 − p1) = (c1 − c2)(p1 − x2) + c1p2 > 0.

Therefore, A1x ∈ A1S1 cannot be a maximizer of linear program (4.10) with c ∈ int(Q1).

Now consider any point x ∈ S3. Since p2 − x2 > 0 and p1 + p2 ≥ x1 + x2, cA2p − cA2x =

c1(p1 + p2 − x1 − x2) + c2(p2 − x2) > 0. Therefore, A2x ∈ A2S3 cannot be a maximizer of

linear program (4.10) with c ∈ int(Q1). Hence, |E1
k| ≤ |A1S2| + |A1S3| + |A2S1| + |A2S2| =

|S1|+ |S2|+ |S3|+ |S2| = |E1
k−1|+ 1.

Lemma 3. For any a ∈ int(Q1) and integer k ≥ 2, |E3
k(Σ1, a)| ≤ 2.

Proof. To simplify the notations, we write E3
k instead of E3

k(Σ1, a) in the rest of the proof. Let

a = (a1, a2)> ∈ int(Q1). Assume that a1 ≤ a2. The case in which a1 > a2 can be proved

similarly. We show below by induction that E3
k ⊆ {Ak1a,A

k−2
1 A2A1a} for any k ≥ 2. For

the base case k = 2, given any c ∈ int(Q3), cA2
1a − cA2

2a = −2c1a2 > 0, cA2
1a − cA1A2a =

c1(a1 − a2)− c2a1 > 0. Hence, E3
2 ⊆ {A2

1a,A2A1a}.
Now suppose that E3

t ⊆ {At1a,At−21 A2A1a} for some t ≥ 2. We want to show that

E3
t+1 ⊆ {At+1

1 a,At−11 A2A1a}. We assume that t is even (a similar argument can be used

to prove the result when t is odd). Similar to the proof of (4.10) in Lemma 2, we have

E3
k ⊆ A1E

3
k−1 ∪ A2E

3
k−1 for k ≥ 2. Then by the induction hypothesis, we have E3

t+1 ⊆
{At+1

1 a,At−11 A2A1a,A2A
t
1a,A2A

t−2
1 A2A1a. Since t is even, At1a = a and At−21 A2A1a =

119

(a1 + a2, a1)>. For any c ∈ int(Q3), cAt+1
1 a − cA2A

t
1a = −c1a1 + c2(a1 − a2) > 0, and

cAt+1
1 a− cA2A

t−2
1 A2A1a = −2c1a1 > 0.

Hence, E3
t+1 ⊆ {At+1

1 a,At−11 A2A1a}. We conclude that |E3
k| ≤ 2 for any integer k ≥ 2.

Lemma 4. For any a ∈ int(Q1) and integer k ≥ 2, |E4
k(Σ1, a)| ≤ E4

k−1(Σ1, a)|+|E1
k−1(Σ1, a)|+2

and |E2
k(Σ1, a)| ≤ |E4

k−1(Σ1, a)|.

Proof. To simplify the notations, we omit the dependence of Σ1 and a in the rest of the proof.

We first prove that |E4
k| ≤ |E4

k−1|+ |E1
k−1|+ 2. Note that

max{cx | x ∈ Pk} = max{max{cA1A1x | x ∈ Pk−2},max{cA1A2x | x ∈ Pk−2},

max{cA2A1x | x ∈ Pk−2},max{cA2A2x | x ∈ Pk−2}}.

Since Pk−2 ⊆ int(Q1), for any c with c1 > 0 and c2 < 0 and x ∈ Pk−2, cA2
2x = (c1, 2c1 + c2)x >

(c1, c2)x = cA2
1x, cA

2
2x = (c1, 2c1 + c2)x > (c2, c1 + c2)x = cA1A2x. Therefore, max{cx | x ∈

Pk} = max{max{cA2A1x | x ∈ Pk−2},max{cA2A2x | x ∈ Pk−2}} = max{cA2x | x ∈ Pk−1}.
Now that cA2 = (c1, c1 + c2) is a vector in the first or the fourth quadrant, the maximizers of

max{cx | x ∈ Pk} must be in A2E
1
k−1 ∪ A2E

4
k−1 ∪ A2S, where S is the set of extreme points

of Pk−1 that are maximizers of max{x1 | x ∈ Pk−1}. Therefore, |E4
k| ≤ |A2E

4
k−1|+ |A2E

1
k−1|+

|A2S| ≤ |E4
k−1|+ |E1

k−1|+ 2.

To prove that |E2
k| ≤ |E4

k−1|, consider c = (c1, c2) with c1 < 0 and c2 > 0. For any x ∈ Pk−2,

cA1A2x = (c2, c1 + c2)x > (c1 + c2, c1)x = c>A2A1x,

cA1A2x = (c2, c1 + c2)x > (c1, 2c1 + c2)x = c>A2A2x.

Thus we have max{cx | x ∈ Pk} = max{max{cA1A1x | x ∈ Pk−2},max{cA1A2x | x ∈ Pk−2}} =

max{cA1x | x ∈ Pk−1}. Since cA1 = (c2, c1) is a vector in the interior of the fourth quadrant,

the optimal solutions of max{cx | x ∈ Pk} must be in A1E
4
k−1. Therefore, |E2

k| ≤ |E4
k−1|.

Now we are ready to prove Proposition 18,

Proof of Proposition 18. We only need to prove the case where a ∈ int(Q1). When a ∈ int(Q3),

it is easy to verify that Nk(Σ1, a) = Nk(Σ1,−a). By Lemma 2 and Lemma 3, we have

|E1
k(Σ1, a)| ≤ k + 1 and |E3

k(Σ1, a)| ≤ 2 for any a ∈ int(Q1) and integer k ≥ 2. By Lemma

4, for any a ∈ int(Q1) and integer k ≥ 3, |E4
k(Σ1, a)| ≤ |E4

k−1(Σ1, a)| + |E1
k−1(Σ1, a)| + 2 ≤

|E4
k−1(Σ1, a)| + (k + 2) ≤ |E4

2(Σ1, a)| +
∑k−1
i=2 (i + 3) ≤ 1

2k
2 + 5

2k − 3, and |E2
k(Σ1, a)| ≤

|E4
k−1(Σ1, a)| ≤ 1

2k
2 + 3

2k − 5. Therefore, Nk(Σ1, a) ≤ |E1
k(Σ1, a)|+ |E2

k(Σ1, a)|+ |E3
k(Σ1, a)|+

|E4
k(Σ1, a)|+ |E0

k(Σ1, a)| = O(k2).

120

The conclusion Nk(Σ1, a) = O(k2) can be easily extended to the case where a is on the boundary

of the first or third quadrant.

Proof of Proposition 19. We only need to prove the case where a ∈ ∂Q1. The case where

a ∈ ∂Q3 follows from the fact Nk(Σ1, a) = Nk(Σ1,−a). We first prove the result when a is on

the positive x1-axis. Without loss of generality, assume that a = (1, 0)>. We claim that for any

integer k ≥ 3,

Xk(Σ1, (1, 0)>) = Xk−2(Σ1, (1, 1)>) ∪ {(1, 0)>, (0, 1)>}.

To see this, consider any value of x(k) in Xk(Σ1, (1, 0)>) that is different from (1, 0)> and (0, 1)>.

Since At1a = (0, 1)> for odd integer t ≥ 1, At1a = (1, 0)> for even integer t ≥ 1, At2a = (1, 0)>

for any integer t ≥ 1, and A2A1a = (1, 1)>. For x(k) to take a value different from (0, 1)> and

(1, 0)>, x(k) must be in the form of Tk−1 · · ·Tlx(l) with Tj ∈ Σ1 for j ∈ [l : k − 1] and x(l) =

(1, 1)> for some l ≥ 2. But when x(l) = (1, 1)>, we have Aj1x(l) = x(l) for any integer j ≥ 1.

Then x(k) = Tk−1 · · ·TlAl−21 x(l), which is a point in Xk−2(Σ1, (1, 1)>). Thus Xk(Σ1, (1, 0)>) ⊆
Xk−2(Σ1, (1, 1)>) ∪ {(1, 0)>, (0, 1)>}. On the other hand, given a point in Xk−2(Σ1, (1, 1)>)

written in the form of Tk−3 · · ·T0(1, 1)> with Tj ∈ Σ1 for j ∈ [0 : k−3], we can also write it in the

form of Tk−3 · · ·T0A2A1(1, 0)>. Thus Xk(Σ1, (1, 0)>) ⊇ Xk−2(Σ1, (1, 1)>) ∪ {(1, 0)>, (0, 1)>}.
Therefore, Nk(Σ1, (1, 0)>) ≤ Nk−2(Σ1, (1, 1)>) + 2 = O(k2). The last equality follows from

Proposition 18. The case where a is on the positive x2-axis can be proved similarly.

We proceed to prove Proposition 20. Let X2,4
k (Σ1, a) be the set of points in Xk(Σ1, a) that

are in the interior of the second or fourth quadrant, i.e.,

X2,4
k (Σ1, a) = Xk(Σ1, a) ∩ (int(Q2) ∪ int(Q4)).

Lemma 5. For any a ∈ int(Q4) and integer k ≥ 2, X2,4
k (Σ1, a) contains no more than 4k + 4

points.

Proof. Without loss of generality, assume a = (1, a2)> with a2 < 0. Let u0 = max{1,−a2}
and v0 = min{1,−a2}. Define the following sequence of non-negative numbers recursively

uj = max{vj−1, uj−1−vj−1} and vj = min{vj−1, uj−1−vj−1} for j ∈ [1 : k]. For each t ∈ [0 : k],

define St = {(ut,−vt)>, (−ut, vt)>, (vt,−ut)>, (−vt, ut)>}. Given any sk ∈ X2,4
k (Σ1, a), assume

that sk = Tk−1 · · ·T0a with Tj ∈ Σ1 for j ∈ [0 : k − 1].

We claim that for any integer k ≥ 0, if t out of the k matrices T0, · · · , Tk−1 are A2, then

sk ∈ St. We prove the claim by induction on k. First consider the base case k = 0. If |a2| ≥ 1,

then u0 = −a2 and v0 = 1, so sk = a = (v0,−u0)> ∈ S0. If |a2| < 1, then u0 = 1 and

v0 = −a2, so sk = a = (u0,−v0)> ∈ S0. Now suppose that the claim holds for integer k = l ≥ 0.

Specifically, sl = Tl−1 · · ·T0a ∈ St if t ∈ [0 : l] out of the l matrices T0, · · · , Tl−1 are A2. We want

121

to prove that any point sl+1 = Tl+1 · · ·T0a in X2,4
l+1(Σ1, a) also belongs to St, if t ∈ [0 : l+ 1] out

of the l + 1 matrices T0, · · · , Tl+1 are A2. If Tl+1 = A1, then t out of the l matrices Tl, . . . , T0

are A2. Based on the induction hypothesis, the point s = Tl · · ·T0a ∈ St. Since A1St = St,

sl+1 = A1s must be in St as well. If Tl+1 = A2, then (t− 1) out of the l matrices Tl, . . . , T0 are

A2. Based on the induction hypothesis, the point s = Tl · · ·T0a ∈ St−1. The set St contains four

points. We consider one case s = (ut−1,−vt−1)> here, and the result for the other cases can be

proved similarly. We have sl+1 = A2s = (ut−1 − vt−1,−vt−1)>. Since sl+1 is in the interior of

second or fourth quadrant and −vt−1 < 0, we must have ut−1− vt−1 > 0. If vt−1 ≥ ut−1− vt−1,

then ut = vt−1, vt = ut−1 − vt−1, and sl+1 = (vt,−ut)> ∈ St. If vt−1 < ut−1 − vt−1, then

ut = ut−1 − vt−1, vt = vt−1, and sl+1 = (ut,−vt)> ∈ St. With the claim, we conclude that

X2,4
k (Σ1, a) contains at most 4k + 4 different points.

Proof of Proposition 20. We omit the dependence of Σ1 in the rest of the proof to simplify the

notation. Given a set S ⊆ R2, define Xk(S) = ∪a∈SXk(a).

First note that for any x in the first (third) quadrant, A1x and A2x are both in the first

(third) quadrant. Thus the points in X2,4
i+1(a) can only be linear transformations of points in

X2,4
i (a) under A1 or A2. In addition, for any x in the second or fourth quadrant, A1x is also

in the second or fourth quadrant. Therefore, for any integer i ≥ 0, A1X
2,4
i (a) ∪ A2X

2,4
i (a) =

X2,4
i+1(a)∪ (A2X

2,4
i (a)∩ (Q1 ∪Q3)). Given any a in the interior of the second quadrant, we have

Xk(a) =Xk(X2,4
0 (a)) = Xk−1(A1X

2,4
0 (a) ∪A2X

2,4
0 (a))

=Xk−1(X2,4
1 (a)) ∪Xk−1(A2X

2,4
0 (a) ∩ (Q1 ∪Q3))

=(Xk−2(X2,4
2 (a)) ∪Xk−2(A2X

2,4
1 (a) ∩ (Q1 ∪Q3)))

∪Xk−1(A2X
2,4
0 (a) ∩ (Q1 ∪Q3))

· · ·

=Xl(X
2,4
k−l(a)) ∪ ∪k−1j=l Xj(A2X

2,4
k−1−j(a) ∩ (Q1 ∪Q3))

(4.11)

for any l ≥ 1.

On the other hand, for any x in the first or third quadrant, we have shown that there exists

some integer k0 and α > 0 such that Nk(x) ≤ αk2 for any integer k ≥ k0. Setting l = k0

in equation (4.11) we have Xk(a) = Xk0(X2,4
k−k0(a)) ∪ ∪k−1j=k0

Xj(A2X
2,4
k−1−j(a) ∩ (Q1 ∪ Q3)).

122

Therefore,

Nk(a) ≤ |Xk0(X2,4
k−k0(a))|+

k−1∑
j=k0

∑
x∈A2X

2,4
k−1−j(a)∩(Q1∪Q3)

Nj(x)

≤
∑

x∈X2,4
k−k0

(a)

|Xk0(x)|+
k−1∑
j=k0

|A2X
2,4
k−1−j(a)|αj2

≤ |X2,4
k−k0(a)|2k0 +

k−1∑
j=k0

|X2,4
k−1−j(a)| · αj2

≤ (4k − 4k0 + 4)2k0 +

k−1∑
j=k0

(4k − 4j)αj2 ≤ βk4,

for some constant β. The second last inequality follows from Lemma 5. Therefore Nk(a) =

O(k4).

4.5.2 Σ2 = {A1, A4}

In this section, we will prove that Nk(Σ2) = O(k).

Lemma 6. Given any polytope P ⊆ R× R+ or P ⊆ R× R−, the number of extreme points of

conv(P ∪A2P) is at most two more than the number of extreme points of P .

Proof. We first prove the case where P ⊆ R×R+. The result is easy to show if P is a singleton

or a line segment. Now suppose P is full dimensional. Let r = (r1, r2)> be the extreme point

of P with the largest x2-coordinate; if there are two such extreme points, let r be the one with

a larger x1-coordinate. Similarly, let s = (s1, s2)> be the extreme point of P with the smallest

x2-coordinate; let s be the one with a larger x1-coordinate if there are two such extreme points.

Divide the extreme points of P other than r and s into two sets: (1) Set Q1 consisting of

extreme points visited if we walk clockwise along the boundary of P from s to r; (2) Set Q2

consisting of extreme points visited if we walk clockwise along the boundary of P from r to

s. Let R = {r, s, A2r,A2s}. Since ext(P) = Q1 ∪ Q2 ∪ {r, s}, the possible extreme points of

conv(P ∪A2P) are among Q1, Q2, A2Q1, A2Q2, and R.

We claim that any point in Q2 can be represented as a convex combination of points in

Q1 ∪ A2Q2 ∪ R. To see this, first consider any point p = (p1, p2)> ∈ Q2. By the definition

of Q2, we have p2 > 0 and there exists a point h = (h1, h2)> on the line segment connecting

r and s such that h1 < p1 and h2 = p2. See the illustration in Figure 4.5. We can verify

that p = λA2p + (1 − λ)h with λ = p1−h1

p1+p2−h1
∈ (0, 1). Thus p can be represented as a convex

combination of A2p and h. Since h can also be represented by a convex combination of r and

123

s, p can be represented as a convex combination of A2p, r, and s. Therefore, we show that any

point in Q2 is a convex combination of points in Q1 ∪A2Q2 ∪R.

Figure 4.5: Point p is a convex combination of r, s, and A2p.

Similarly, we can show that any point in A2Q1 is a convex combination of points in Q1 ∪
A2Q2∪R. Then we have conv(P ∪A2P) = conv(Q1∪A2Q2∪R). Thus |ext(conv(P ∪A2P))| =
|ext(conv(Q1 ∪A2Q2 ∪R))| ≤ |Q1|+ |A2Q2|+ |R| ≤ (|Q1|+ |Q2|+ |{r, s}|) + 2 ≤ |ext(P)|+ 2.

The result for any P ⊆ R× R− can be proved similarly.

Proposition 21. The pair Σ2 has the oligo-vertex property and Nk(Σ2) = O(k).

Proof. To simplify the notation, we omit the dependence of Σ2 in Nk(Σ2, a) and Pk(Σ2, a) in

the rest of this proof. We claim that Nk+1(a) ≤ Nk(a) + 8 for any a ∈ R2 and integer k ≥ 2.

Then Nk(a) ≤ Nk−1(a) + 8 ≤ · · · ≤ N2(a) + 8(k−2) ≤ 4 + 8(k−2) = 8k−12. Thus Nk = O(k).

To prove the claim, first observe that Pk+1(a) = conv(A1Pk(a)∪A4Pk(a)) = conv(A1Pk(a)∪
A2A1Pk(a)). Define P+ = A1Pk(a) ∩ {x | x2 ≥ 0} and P− = A1Pk(a) ∩ {x | x2 ≤ 0}. Notice

that P+ is a polytope in R× R+ and P− is polytope in R× R−, and |ext(P+)|+ |ext(P−)| ≤
|ext(A1Pk(a))|+ 4 = Nk(a) + 4. The first inequality above follows from the fact the line x2 = 0

may introduce two new extreme points for both P+ and P−. On the other hand,

Pk+1(a) = conv(A1Pk(a) ∪A2A1Pk(a))

= conv(P+ ∪ P− ∪A2(P+ ∪ P−))

= conv(conv(P+ ∪A2P
+) ∪ conv(P− ∪A2P

−)).

Thus Nk+1(a) ≤ |ext(conv(conv(P+ ∪ A2P
+)))| + |ext(conv(P− ∪ A2P

−))|. By Lemma 6,

|ext(conv(P+ ∪ A2P
+))| ≤ |ext(P+)| + 2 and |ext(conv(P− ∪ A2P

−))| ≤ |ext(P−)| + 2. Thus

we have Nk+1(a) ≤ |ext(conv(P+))|+ 2 + |ext(conv(P−))|+ 2 ≤ Nk(a) + 8.

124

4.5.3 Σ3 = {A2, A3}

We first prove the following result when the initial vector a is in the first quadrant.

Proposition 22. For any a ∈ Q1, Nk(Σ3, a) = O(k).

Proof. The proof is similar to the proof of Proposition 18 for Σ1. We first bound the cardinality

of Eik(Σ3, a) for each i. Similar to the proofs of Lemmas 2, 3, and 4, we can show that for

any a ∈ Q1, |E1
k(Σ3, a)| ≤ 4 when k ≥ 3, E3

k(Σ3, a) ⊆ {Ak2a,Ak3a} when k ≥ 1, |E4
k(Σ3, a)| ≤

|E4
k−1(Σ3, a)|+ |E1

k−1(Σ3, a)|+2 and |E2
k(Σ3, a)| ≤ |E2

k−1(Σ3, a)|+ |E1
k−1(Σ3, a)|+2 when k ≥ 1,

respectively. Then |E4
k(Σ3, a)| ≤ |E4

k−1(Σ3, a)|+ 6 ≤ |E4
3(Σ3, a)|+ 6(k− 3) ≤ 6k− 10. Similarly,

|E2
k(Σ3, a)| ≤ 6k−10. Finally, for any a ∈ Q1 and integer k ≥ 3, Nk(Σ3, a) ≤

∑4
i=0 |Eik(Σ3, a)| ≤

8 + 4 + (6k − 10) + 2 + (6k − 10) + 8 = 12k − 6.

Proposition 23. The pair Σ3 has the oligo-vertex property and Nk(Σ3) = O(k2).

Proof. We only need to prove that Nk(Σ3, a) = O(k2) for any a ∈ int(Q4). Define fk =

sup{Nk(Σ3, a) | a ∈ int(Q4)} for any integer k ≥ 1. Note that fk = sup{Nk(Σ3, a) | a ∈
int(Q2)} for k ≥ 1 as well. Since Pk(Σ3, a) = conv(Pk−1(Σ3, A2a) ∪ Pk−1(Σ3, A3a)), we have

Nk(Σ3, a) ≤ Nk−1(Σ3, A2a) + Nk−1(Σ3, A3a). Consider a vector a = (a1, a2)> ∈ int(Q4) with

a1 > 0 and a2 < 0.

1. If a1 = −a2, we have A2a = (0, a2)> ∈ Q3 and A3a = (a1, 0)> ∈ Q1. Then there

exists α > 0 and integer k0 such that for any integer l ≥ k0, Nl(Σ3, A2a) ≤ αl and

Nl(Σ3, A3a) ≤ αl. Thus for any integer k ≥ k0 + 1, Nk(Σ3, a) ≤ Nk−1(Σ3, A2a) +

Nk−1(Σ3, A3a) ≤ α(k − 1) + α(k − 1) ≤ 2αk. Therefore, Nk(Σ3, a) = O(k).

2. If a1 < −a2, we have A2a = (a1 + a2, a2)> ∈ Q3 and A3a = (a1, a1 + a2)> ∈ int(Q4).

Then there exists α > 0 and integer k0 such that for any integer l ≥ k0, Nl(Σ3, A2a) ≤ αl.
For any k ≥ k0 +1, Nk(Σ3, a) ≤ Nk−1(Σ3, A2a)+Nk−1(Σ3, A3a) ≤ α(k−1)+fk−1. Then

for any k ≥ k0 + 1, fk ≤ α(k − 1) + fk−1. Thus for any k ≥ 2k0,

fk ≤ α(k − 1) + fk−1 ≤ α(k − 1) + α(k − 2) + fk−2

· · · ≤ α(k − 1) + α(k − 2) + · · ·+ αk0 + fk0

≤ α (k − 1 + k0)(k − k0)

2
+ 2k0 ≤ βk2,

for some β > 0. Therefore, fk = O(k2).

3. If a1 > −a2, it can be proved that fk = O(k2) with a similar argument as in the case

a1 < −a2.

125

4.5.4 Σ4 = {A4, A5}

Proposition 24. The pair Σ4 has the oligo-vertex property and Nk(Σ4) = O(k2).

Proof. First observe that A4A5 = A2A2, A4A4 = A2A3, A5A5 = A3A2, and A5A4 = A3A3.

When k is an even integer, every product of k matrices with A2 and A3 can be represented

by a product of k matrices with A4 and A5 and vice versa. Therefore, for any given a ∈ R2,

Pk(Σ4, a) = Pk(Σ3, a) and Nk(Σ4, a) = Nk(Σ3, a). When k is an odd integer, Pk(Σ4, a) =

conv(A4Pk−1(Σ4, a) ∪ A5Pk−1(Σ4, a)) and Nk(Σ4, a) ≤ 2Nk−1(Σ4, a) = 2Nk−1(Σ3, a). Since

there exists α > 0 and integer k0 such that Nk(Σ3, a) ≤ αk2 for any integer k ≥ k0, we have

Nk(Σ4, a) ≤ 2αk2 for any integer k ≥ k0. Therefore, Nk(Σ4) = O(k2).

4.5.5 Σ5 = {A2, A4}

Proposition 25. For any a ∈ Q1 with a1 ≥ a2, Nk(Σ5, a) = O(k).

Proof. First similar to the proofs of Lemmas 2, 3, and 4, we can show by induction that for any

a ∈ Q1 with a1 ≥ a2, E1
k(Σ5, k) = {Ak4a} and E3

k(Σ5, a) = {Ak2a} when k ≥ 0, and |E4
k(Σ5, a)| ≤

|E4
k−1(Σ5, a)|+ |E1

k−1(Σ5, a)|+2 and |E2
k(Σ5, a)| ≤ |E2

k−1(Σ5, a)|+ |E1
k−1(Σ5, a)|+2 when k ≥ 1,

respectively. Then |E4
k(Σ5, a)| ≤ |E4

k−1(Σ5, a)|+ 3 ≤ |E4
1(Σ5, a)|+ 3(k − 1) ≤ 3k − 1. Similarly,

|E2
k(Σ5, a)| ≤ 3k− 1. Finally, for any integer k ≥ 1, Nk(Σ5, a) ≤

∑4
i=0 |Eik(Σ5, a)| ≤ 6k+ 8.

We now extend Proposition 25 to the case where a is in the first quadrant.

Proposition 26. For any a ∈ Q1, Nk(Σ5, a) = O(k).

Proof. For any a = (a1, a2)> with a1 ≥ 0 and a2 ≥ 0, both A2a and A4a are contained in

{x ∈ R2
+ | x1 ≥ x2}. By Proposition 25, there exists α > 0 and integer k0 such that for

any integer l ≥ k0, Nl(Σ5, A2a) ≤ αl and Nl(Σ5, A4a) ≤ αl. Thus for any integer k ≥ k0 + 1,

Nk(Σ5, a) ≤ Nk−1(Σ5, A2a)+Nk−1(Σ5, A4a) ≤ α(k−1)+α(k−1) ≤ 2αk. Therefore, Nk(Σ5, a) =

O(k).

Finally, we extend the result to a ∈ R2, similar to Proposition 23 for the case Σ3.

Proposition 27. The pair Σ5 has the oligo-vertex property and Nk(Σ5) = O(k2).

4.6 Computational results

In this section, we compare the performance of our algorithm with one state-of-the-art global

optimization solver Baron [123]. We randomly generate 10 instances for each of the 10 sets of

parameters (n,m,K) for (P3), with 100 instances in total. The parameters are summarized in

126

Table 4.2. The entries of each matrix are randomly drawn from a uniform distribution over

[−1, 1], and the entries of the initial vector a are randomly drawn from a uniform distribution

over [0, 1]. Note that our algorithm does not rely on any additional property of f other than

convexity. In order for Baron to gain a better performance, we choose a simple smooth objective

function f(x) = ‖x‖22. All test instances can be downloaded at https://github.com/qqqhe.

The mixed-integer nonlinear programming (MINLP) formulation of (P3) is given in (4.12) and

solved by Baron, where Alij denotes the (i, j)-th entry of the l-th matrix for l ∈ [m]. Note

that we also tried to linearize the constraints in the MINLP formulation by introducing big-

M constants, but we observed that Baron easily run into numerical issues with many big-M

constants in the constraints, even for a small-sized instance.

max
x,z

n∑
i=1

x2i (K)

s.t. xi(k) =

m∑
l=1

n∑
j=1

Alijxj(k − 1)zk,l, i ∈ [n], k ∈ [K],

m∑
l=1

zk,l = 1, k ∈ [K],

zk,l ∈ {0, 1}, l ∈ [m], k ∈ [K],

x(0) = a.

(4.12)

Our algorithm is coded in Matlab. Computational experiments are conducted on a Laptop

with Intel i7-6560U 2.20 GHz and 8 GB of RAM memory, under Windows 10 Operating System.

The MINLP formulation is coded in AMPL and solved by Baron 18.5.8. The time limit for

each instance is set to 600s. When n ≤ 5, our algorithm employs Matlab’s build-in function

convhulln to construct the set of extreme points directly. When n ≥ 6, our algorithm solves

a linear program with the commercial solver Gurobi [16] to identify each extreme point. The

computational results are summarized in Table 4.2. All test instances are solved to optimality

by our algorithm within the time limit. The average solution time of our algorithm is reported

in the rows “Our algorithm (s)”. On the other hand, Baron cannot solve most instances to

optimality, and has a variety of output for instances of different sizes. Instead of reporting

the solution time, we report the number of instances with different outputs by Baron in three

categories that were described in [124]: The symbol G (G!) denotes that Baron finds a global

optimal solution and proves (cannot prove) its optimality within the time limit; The symbol

Limit denotes that Baron finds some feasible solution within the time limit; The symbol Wrong

denotes that Baron reports infeasibility or failure.

Our proposed algorithm has a clear advantage over Baron in solving (P3). Our algorithm is

https://github.com/qqqhe

127

(n,m,K) (2,2,20) (2,2,50) (2,2,500) (2,5,500) (2,10,500)

Our algorithm (s) 0.013 0.031 0.300 0.298 0.289

Baron
G/G! 4/6 2/5 4/2 0/0 0/0
Limit 0 2 1 7 7
Wrong 0 1 3 3 3

(n,m,K) (5,2,100) (5,5,100) (5,10,100) (8,2,50) (10,2,20)

Our algorithm (s) 1.094 2.456 2.405 59.457 58.357

Baron
G/G! 0/0 0/0 0/0 0/0 0/0
Limit 0 0 1 0 10
Wrong 10 10 9 10 0

Table 4.2: The average running time of our algorithm and solution statistics of Baron

very efficient in solving instances with n = 2 and large m and K, requiring less than one second.

When n increases to 8 and 10, our algorithm is able to solve instances with K = 50 and K = 20

respectively in less than one minute. On the other hand, Baron is only able to solve several

instances with a pair of 2 × 2 matrices to optimality. When n or m is larger than 2, it either

cannot find the optimal solution within the time limit or runs into numerical issues. Finally, we

observe that when the problem dimension n ≥ 8, our algorithm is not able to solve instances

with K = 100 within the time limit, since the running time grows rapidly with K. We suspect

the reason to be that the set of randomly generated matrices no longer has the oligo-vertex

property for larger n. This observation is also consistent with the fact that (P3) is NP-hard for

general n.

4.7 Open Problems and Conclusions

The problem (P3) has many applications in operations research and control, and can also be

seen as an approximation to the dynamics of more general continuous-time nonlinear switched

systems. In this chapter, we preset an efficient exact algorithm to solve large-sized instances

of (P3) that cannot be handled by state-of-the-art optimization software. We introduce an

interesting property—the oligo-vertex property—for a set of matrices. We now present several

open questions on the oligo-vertex property, which we believe may be of independent interest.

1. Does any set of 2× 2 rational matrices have the oligo-vertex property?

2. Does any set of 2× 2 real matrices have the oligo-vertex property?

3. Is there an “easy-to-check” necessary condition for a set of matrices to have the oligo-

vertex property? Is there a finite-time algorithm to test the oligo-vertex property for a

128

given set of matrices with rational entries? If so, is deciding whether a set of matrices has

the oligo-vertex property in P or NP?

4. Does the finiteness property imply the oligo-vertex property, and vice versa?

5. Is Nk(Σ) = O(k) for any pair of 2× 2 binary matrices?

The last question comes from our observation that Nk(Σ, a) grows linearly with k for any 2× 2

binary matrices in the computational experiment. We believe answers to any of the above

questions will lead to a faster exact algorithm for (P3).

References

[1] Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman

problem. Proceedings of the American Mathematical society, 7(1):48–50, 1956.

[2] Eugene L Lawler, Jan Karel Lenstra, and Alexander HG Rinnooy Kan. The traveling

salesman problem. 1985.

[3] Marco Dorigo and Luca Maria Gambardella. Ant colony system: a cooperative learning

approach to the traveling salesman problem. IEEE Transactions on evolutionary compu-

tation, 1(1):53–66, 1997.

[4] Gregory Gutin and Abraham P Punnen. The traveling salesman problem and its varia-

tions, volume 12. Springer Science & Business Media, 2006.

[5] William J Cook. In pursuit of the traveling salesman: mathematics at the limits of com-

putation. Princeton University Press, 2011.

[6] John Gunnar Carlsson and Siyuan Song. Coordinated logistics with a truck and a drone.

Management Science, 2017.

[7] David L Applegate, Robert E Bixby, Vasek Chvatal, and William J Cook. The traveling

salesman problem: a computational study. Princeton university press, 2006.

[8] George B Mathews. On the partition of numbers. Proceedings of the London Mathematical

Society, 1(1):486–490, 1896.

[9] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Multidimensional knapsack problems.

In Knapsack problems, pages 235–283. Springer, 2004.

[10] Yvan Dumas, François Soumis, and Jacques Desrosiers. Optimizing the schedule for a

fixed vehicle path with convex inconvenience costs. Transportation Science, 24(2):145–

152, 1990.

129

130

[11] Kjetil Fagerholt, Gilbert Laporte, and Inge Norstad. Reducing fuel emissions by optimizing

speed on shipping routes. Journal of the Operational Research Society, 61(3):523–529,

2010.

[12] Qie He, Xiaochen Zhang, and Kameng Nip. Speed optimization over a path with hetero-

geneous arc costs. Transportation Research Part B: Methodological, 104:198–214, 2017.

[13] M Selim Aktürk, Alper Atamtürk, and Sinan Gürel. Aircraft rescheduling with cruise

speed control. Operations Research, 62(4):829–845, 2014.

[14] Angela Nuic. User manual for the base of aircraft data (bada) revision 3.10. Atmosphere,

2010:001, 2010.

[15] Toshihide Ibaraki and Naoki Katoh. Resource allocation problems: algorithmic approaches.

MIT press, 1988.

[16] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2019.

[17] IBM Data Science. Ibm ilog cplex optimization studio, 2019.

[18] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer programming, volume

271. Springer, 2014.

[19] Laurence A Wolsey and George L Nemhauser. Integer and combinatorial optimization.

John Wiley & Sons, 2014.

[20] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische

mathematik, 1(1):269–271, 1959.

[21] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction

to Algorithms. McGraw-Hill, 2001.

[22] Alan Mathison Turing. On computable numbers, with an application to the entschei-

dungsproblem. Proceedings of the London mathematical society, 2(1):230–265, 1937.

[23] Alan Cobham. The intrinsic computational difficulty of functions. In Proceedings of the

1964 International Congress for Logic, Methodology, and Philosophy of Science, page 2430,

1965.

[24] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449–467,

1965.

[25] David L Applegate, William J Cook, Sanjeeb Dash, and David S Johnson. A practical

guide to discrete optimization, 2014.

131

[26] Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings of the

third annual ACM symposium on Theory of computing, pages 151–158. ACM, 1971.

[27] Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer

computations, pages 85–103. Springer, 1972.

[28] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cam-

bridge University Press, 2009.

[29] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation over the real

numbers; np completeness, recursive functions and universal machines. In [Proceedings

1988] 29th Annual Symposium on Foundations of Computer Science, pages 387–397. IEEE,

1988.

[30] Richard Ernest Bellman. Dynamic programming treatment of the traveling salesman

problem. 1961.

[31] Michael Held and Richard M Karp. A dynamic programming approach to sequencing

problems. Journal of the Society for Industrial and Applied Mathematics, 10(1):196–210,

1962.

[32] Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for the resolution of

large-scale symmetric traveling salesman problems. SIAM review, 33(1):60–100, 1991.

[33] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman

problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences

Research Group, 1976.

[34] Shen Lin and Brian W Kernighan. An effective heuristic algorithm for the traveling-

salesman problem. Operations research, 21(2):498–516, 1973.

[35] Keld Helsgaun. An effective implementation of the lin–kernighan traveling salesman

heuristic. European Journal of Operational Research, 126(1):106–130, 2000.

[36] Emile Aarts and Jan Korst. Simulated annealing and boltzmann machines. 1988.

[37] Fred Glover. Future paths for integer programming and links to artificial intelligence.

Computers & operations research, 13(5):533–549, 1986.

[38] Zbigniew Michalewicz. Genetic algorithms+ data structures= evolution programs. Springer

Science & Business Media, 2013.

[39] César Rego, Dorabela Gamboa, Fred Glover, and Colin Osterman. Traveling salesman

problem heuristics: Leading methods, implementations and latest advances. European

Journal of Operational Research, 211(3):427–441, 2011.

132

[40] Michael Patriksson. A survey on the continuous nonlinear resource allocation problem.

European Journal of Operational Research, 185(1):1–46, 2008.

[41] Michael Patriksson and Christoffer Strömberg. Algorithms for the continuous nonlinear

resource allocation problemnew implementations and numerical studies. European Journal

of Operational Research, 243(3):703–722, 2015.

[42] Thijs van der Klauw, Marco ET Gerards, and Johann L Hurink. Resource allocation

problems in decentralized energy management. OR Spectrum, 39(3):749–773, 2017.

[43] Dorit S Hochbaum. Lower and upper bounds for the allocation problem and other non-

linear optimization problems. Mathematics of Operations Research, 19(2):390–409, 1994.

[44] Thibaut Vidal, Daniel Gribel, and Patrick Jaillet. Separable convex optimization with

nested lower and upper constraints. INFORMS Journal on Optimization, 2018.

[45] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network Flows: Theory,

Algorithms, and Applications. Prentice hall, 1993.

[46] Zhendong Sun. Switched linear systems: control and design. Springer Science & Business

Media, 2006.

[47] Hai Lin and Panos J Antsaklis. Stability and stabilizability of switched linear systems: a

survey of recent results. IEEE Transactions on Automatic control, 54(2):308–322, 2009.

[48] Daniel Liberzon. Switching in systems and control. Springer Science & Business Media,

2012.

[49] Qie He, Junfeng Zhu, David Dingli, Jasmine Foo, and Kevin Zox Leder. Opti-

mized treatment schedules for chronic myeloid leukemia. PLoS computational biology,

12(10):e1005129, 2016.

[50] Martin Grötschel, László Lovász, and Alexander Schrijver. Complexity, oracles, and nu-

merical computation. In Geometric Algorithms and Combinatorial Optimization, pages

21–45. Springer, 1988.

[51] Alexander Schrijver. Preliminaries on algorithms and complexity. Combinatorial Opti-

mization: Polyhedra and Efficiency, 1, 2003.

[52] Jack Edmonds and Richard M Karp. Theoretical improvements in algorithmic efficiency

for network flow problems. Journal of the ACM (JACM), 19(2):248–264, 1972.

[53] Hans Rock. Scaling techniques for minimal cost network flows. Discrete structures and

algorithms, 1980.

133

[54] Robert G Bland and David L Jensen. On the computational behavior of a polynomial-time

network flow algorithm. Mathematical Programming, 54(1-3):1–39, 1992.

[55] Andrew V Goldberg and Robert E Tarjan. A new approach to the maximum-flow problem.

Journal of the ACM (JACM), 35(4):921–940, 1988.

[56] Ravindra K Ahuja, Andrew V Goldberg, James B Orlin, and Robert E Tarjan. Finding

minimum-cost flows by double scaling. Mathematical programming, 53(1-3):243–266, 1992.

[57] Dimitri P Bertsekas, Patrick A Hosein, and Paul Tseng. Relaxation methods for net-

work flow problems with convex arc costs. SIAM Journal on Control and Optimization,

25(5):1219–1243, 1987.

[58] Eva Tardos. A strongly polynomial algorithm to solve combinatorial linear programs.

Operations Research, 34(2):250–256, 1986.

[59] James B Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations

research, 41(2):338–350, 1993.

[60] László A Végh. A strongly polynomial algorithm for a class of minimum-cost flow problems

with separable convex objectives. SIAM Journal on Computing, 45(5):1729–1761, 2016.

[61] PV Kamesam and Robert R Meyer. Multipoint methods for separable nonlinear networks.

In Mathematical Programming at Oberwolfach II, pages 185–205. Springer, 1984.

[62] Dimitri P Bertsekas, Lazaros C Polymenakos, and Paul Tseng. An ε-relaxation method for

separable convex cost network flow problems. SIAM Journal on Optimization, 7(3):853–

870, 1997.

[63] Michel Minoux. A polynomial algorithm for minimum quadratic cost flow problems. Eu-

ropean Journal of Operational Research, 18(3):377–387, 1984.

[64] Michel Minoux. Solving integer minimum cost flows with separable convex cost objective

polynomially. In Netflow at Pisa, pages 237–239. Springer, 1986.

[65] Andrew V Goldberg and Robert E Tarjan. Finding minimum-cost circulations by succes-

sive approximation. Mathematics of Operations Research, 15(3):430–466, 1990.

[66] Alexander V Karzanov and S Thomas McCormick. Polynomial methods for separable

convex optimization in unimodular linear spaces with applications. SIAM Journal on

Computing, 26(4):1245–1275, 1997.

[67] Dorit S Hochbaum and J George Shanthikumar. Convex separable optimization is not

much harder than linear optimization. Journal of the ACM (JACM), 37(4):843–862, 1990.

134

[68] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In

Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages 302–

311. ACM, 1984.

[69] Arun Padakandla and Rajesh Sundaresan. Separable convex optimization problems with

linear ascending constraints. SIAM Journal on Optimization, 20(3):1185–1204, 2009.

[70] Zizhuo Wang. On solving convex optimization problems with linear ascending constraints.

Optimization Letters, 9(5):819–838, 2015.

[71] Thibaut Vidal, Patrick Jaillet, and Nelson Maculan. A decomposition algorithm for nested

resource allocation problems. SIAM Journal on Optimization, 26(2):1322–1340, 2016.

[72] O. Gross. A Class of Discrete Type Minimization Problems. RM-1644, Rand Corporation,

1956.

[73] Bennett Fox. Discrete optimization via marginal analysis. Management Science,

13(3):210–216, 1966.

[74] Peter Brucker. An O(n) algorithm for quadratic knapsack problems. Operations Research

Letters, 3(3):163–166, 1984.

[75] P. T. Akhil and Rajesh Sundaresan. A survey of algorithms for separable convex opti-

mization with linear ascending constraints. arXiv preprint arXiv:1608.08000, 2016.

[76] Thibaut Vidal. Private communication, 2018.

[77] Ralph Tyrell Rockafellar. Convex analysis. Princeton university press, 1970.

[78] David Ronen. The effect of oil price on the optimal speed of ships. Journal of the

Operational Research Society, 33(11):1035–1040, 1982.

[79] Wei Chu and S Sathiya Keerthi. Support vector ordinal regression. Neural computation,

19(3):792–815, 2007.

[80] Luis Torgo. Liacc regresion dataset, 2019.

[81] Ravindra K Ahuja and Dorit S Hochbaum. Solving linear cost dynamic lot-sizing problems

in o (n log n) time. Operations research, 56(1):255–261, 2008.

[82] Harilaos N Psaraftis and Christos A Kontovas. Ship speed optimization: Concepts, mod-

els and combined speed-routing scenarios. Transportation Research Part C: Emerging

Technologies, 44:52–69, 2014.

[83] Balachandran Vaidyanathan and Ravindra K Ahuja. Fast algorithms for specially struc-

tured minimum cost flow problems with applications. Operations research, 58(6):1681–

1696, 2010.

135

[84] James B Orlin and Balachandran Vaidyanathan. Fast algorithms for convex cost flow

problems on circles, lines, and trees. Networks, 62(4):288–296, 2013.

[85] William S Jewell. Optimal flow through networks. In Operation Research, volume 6, pages

633–633, 1958.

[86] Masao Iri. A new method of solving transportation-network problems. Journal of the

Operations Research Society of Japan, 3(1):2, 1960.

[87] Robert G. Busaker and Paul J. Gowen. A procedure for determining minimal-cost flow

network patterns. Technical report, Tech. Rep. ORO-15, Operational Research Office,

Johns Hopkins University, Baltimore, MD, 1961.

[88] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computa-

tional geometry. In Computational geometry, pages 1–17. Springer, 1997.

[89] Portia M Mira, Kristina Crona, Devin Greene, Juan C Meza, Bernd Sturmfels, and Miriam

Barlow. Rational design of antibiotic treatment plans: a treatment strategy for managing

evolution and reversing resistance. PloS One, 10(5):e0122283, 2015.

[90] Daniel Nichol, Peter Jeavons, Alexander G Fletcher, Robert A Bonomo, Philip K Maini,

Jerome L Paul, Robert A Gatenby, Alexander RA Anderson, and Jacob G Scott. S-

teering evolution with sequential therapy to prevent the emergence of bacterial antibiotic

resistance. PLoS computational biology, 11(9):e1004493, 2015.

[91] Vincent D Blondel and John N Tsitsiklis. When is a pair of matrices mortal? Information

Processing Letters, 63(5):283–286, 1997.

[92] Olivier Bournez and Michael Branicky. The mortality problem for matrices of low dimen-

sions. Theory of Computing Systems, 35(4):433–448, 2002.

[93] Raphaël Jungers. The joint spectral radius: theory and applications, volume 385. Springer

Science & Business Media, 2009.

[94] Gian-Carlo Rota and W. Gilbert Strang. A note on the joint spectral radius. Proceedings

of the Netherlands Academy, 22:379–381, 1960.

[95] Christos H Papadimitriou. Computational complexity. John Wiley and Sons Ltd., 2003.

[96] Jeffrey C Lagarias and Yang Wang. The finiteness conjecture for the generalized spectral

radius of a set of matrices. Linear Algebra and its Applications, 214:17–42, 1995.

[97] Raphaël Jungers. On the finiteness property for rational matrices. In The Joint Spectral

Radius, pages 63–74. Springer, 2009.

136

[98] Jun Liu and Mingqing Xiao. Rank-one characterization of joint spectral radius of finite

matrix family. Linear Algebra and its Applications, 438(8):3258–3277, 2013.

[99] Raphaël M Jungers and Vincent D Blondel. On the finiteness property for rational ma-

trices. Linear Algebra and its Applications, 428(10):2283–2295, 2008.

[100] Chengzhi Yuan and Fen Wu. Hybrid control for switched linear systems with average

dwell time. IEEE Transactions on Automatic Control, 60(1):240–245, 2015.

[101] Magnus Egerstedt, Yorai Wardi, and Florent Delmotte. Optimal control of switching times

in switched dynamical systems. In Proceedings of the 42nd IEEE Conference on Decision

and Control, volume 3, pages 2138–2143. IEEE, 2003.

[102] Duarte Antunes and WP Maurice Heemels. Linear quadratic regulation of switched sys-

tems using informed policies. IEEE Transactions on Automatic Control, 62(6):2675–2688,

2017.

[103] Jianghai Hu, Jinglai Shen, and Wei Zhang. Generating functions of switched linear sys-

tems: analysis, computation, and stability applications. IEEE Transactions on Automatic

Control, 56(5):1059–1074, 2011.

[104] Wei Zhang, Jianghai Hu, and Alessandro Abate. On the value functions of the discrete-

time switched lqr problem. IEEE Transactions on Automatic Control, 54(11):2669–2674,

2009.

[105] Zhendong Sun and Shuzhi Sam Ge. Analysis and synthesis of switched linear control

systems. Automatica, 41(2):181–195, 2005.

[106] Feng Zhu and Panos J Antsaklis. Optimal control of hybrid switched systems: A brief

survey. Discrete Event Dynamic Systems, 25(3):345–364, 2015.

[107] Sebastian Sager. Numerical methods for mixed-integer optimal control problems. PhD

thesis, University of Heidelberg, 2005.

[108] Sebastian Sager, Hans Georg Bock, and Moritz Diehl. The integer approximation error in

mixed-integer optimal control. Mathematical programming, 133(1-2):1–23, 2012.

[109] Panos J Antsaklis. A brief introduction to the theory and applications of hybrid systems.

In Proceedings of the IEEE, Special Issue on Hybrid Systems: Theory and Applications,

pages 879–887, 2000.

[110] Ngoc Mai Tran and Jed Yang. Antibiotics time machine is NP-hard. Notices of the

American Mathematical Society, 64:1136–1140, 2017.

137

[111] Christos H Papadimitriou and John N Tsitsiklis. The complexity of markov decision

processes. Mathematics of operations research, 12(3):441–450, 1987.

[112] John N Tsitsiklis and Vincent D Blondel. The lyapunov exponent and joint spectral

radius of pairs of matrices are hard–when not impossible–to compute and to approximate.

Mathematics of Control, Signals and Systems, 10(1):31–40, 1997.

[113] Vincent D Blondel and Yurii Nesterov. Computationally efficient approximations of the

joint spectral radius. SIAM Journal on Matrix Analysis and Applications, 27(1):256–272,

2005.

[114] Pablo A Parrilo and Ali Jadbabaie. Approximation of the joint spectral radius using sum

of squares. Linear Algebra and its Applications, 428(10):2385–2402, 2008.

[115] Amir Ali Ahmadi, Raphaël M Jungers, Pablo A Parrilo, and Mardavij Roozbehani. Joint

spectral radius and path-complete graph lyapunov functions. SIAM Journal on Control

and Optimization, 52(1):687–717, 2014.

[116] Thierry Bousch and Jean Mairesse. Asymptotic height optimization for topical ifs, tetris

heaps, and the finiteness conjecture. Journal of the American Mathematical Society,

15(1):77–111, 2002.

[117] Vincent D Blondel, Jacques Theys, and Alexander A Vladimirov. An elementary coun-

terexample to the finiteness conjecture. SIAM Journal on Matrix Analysis and Applica-

tions, 24(4):963–970, 2003.

[118] Victor Kozyakin. A dynamical systems construction of a counterexample to the finiteness

conjecture. In Proceedings of the 44th IEEE Conference on Decision and Control, pages

2338–2343. IEEE, 2005.

[119] Kevin G Hare, Ian D Morris, Nikita Sidorov, and Jacques Theys. An explicit counterex-

ample to the lagarias–wang finiteness conjecture. Advances in Mathematics, 226(6):4667–

4701, 2011.

[120] Michael R Garey and David S Johnson. Computers and intractability: a guide to the

theory of NP-completeness. W. H. Freeman, 1979.

[121] Ralph Tyrell Rockafellar. Convex analysis. Princeton University Press, 2015.

[122] Ronald L Graham. An efficient algorith for determining the convex hull of a finite planar

set. Information Processing Letters, 1(4):132–133, 1972.

[123] Mustafa R Kılınç and Nikolaos V Sahinidis. Exploiting integrality in the global optimiza-

tion of mixed-integer nonlinear programming problems with baron. Optimization Methods

and Software, 33(3):540–562, 2018.

138

[124] Arnold Neumaier, Oleg Shcherbina, Waltraud Huyer, and Tamás Vinkó. A comparison of

complete global optimization solvers. Mathematical programming, 103(2):335–356, 2005.

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Discrete optimization
	Nonlinear discrete optimization
	Computational complexity of an algorithm
	Class P and class NP
	Exact, approximation, and meta-heuristic algorithms

	Three nonlinear discrete optimization problems
	Discrete resource allocation problem with nested bound constraints
	Minimum convex cost flow problem over the dynamic lot size network
	Optimal switch sequence for switched linear systems

	Organization of the thesis
	Preliminary
	Model of computation
	Minimum cost network flow problems
	Convex hull algorithms

	Discrete resource allocation with nested constraints
	Introduction
	Literature review
	A recursive algorithm based on divide and conquer
	DRAP(s,e) in Step 6 of Algorithm 1
	Time complexity of Algorithm 1

	Proof of Proposition 1
	Numerical experiments
	Computational experiment with Gurobi
	Computational experiment on convex objectives
	Non-separable convex objective
	Concluding remarks

	Conclusions

	Minimum convex cost network flow over the dynamic lot size network
	Introduction
	Literature review
	Applications
	Existing algorithms

	Preliminaries
	Pseudoflow and residual network
	Three algorithms
	Transforming MCCNFP to MCNFP

	SFA: a scaling-based algorithm for (P2)
	Correctness of SFA
	Complexity of SFA

	Faster implementation of SFA for RAP-NC
	Transformation of RAP-NC to a minimum convex cost flow problem
	Complexity of SFA for (P1)

	Computational experiments
	Discrete resource allocation with nested bound constraints

	Conclusions

	Switched linear systems
	Introduction
	Related Work
	Computational Complexity
	Notations
	Complexity
	The Algorithm

	Polynomially Solvable Cases
	The 2 2 Binary Matrices
	1={A1, A2}
	2={A1, A4}
	3={A2, A3}
	4={A4, A5}
	5={A2, A4}

	Computational results
	Open Problems and Conclusions

	References

