
ST-Hadoop: A MapReduce Framework for Big
Spatio-temporal Data Management

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Louai Alarabi

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Mohamed F. Mokbel

May, 2019

© Louai Alarabi 2019

ALL RIGHTS RESERVED

Acknowledgements

There are many people have earned my gratitude for their contribution and involve-

ment to my success in graduate school, including my parents, siblings, spouse, children,

doctoral adviser, examination committees, friends, colleagues, and sponsor.

I am incredibly thankful to Prof. Mohamed F. Mokbel for his guidance throughout

my stay in graduate school. I want to express my sincere gratitude for his generous

support. I consider myself highly fortunate to work with him closely. I always have

been inspired by his passion and commitment toward research and building systems. I

would not have become the scientist that I am today without his wisdom and assistance,

I have grasped from him critical thinking and hard working.

Besides the primary adviser, I am grateful to Prof. Shashi Shekhar, Prof. Steven

M Manson, Prof. Jon Weissman, and Prof. Abhishek Chandra for serving on my

preliminary and thesis committee. Very appreciative for their essential and constructive

feedback that shaped my final dissertation. I am thankful to Prof. Shashi Shekhar

for his insightful comments and for sharing with me his tremendous experience in the

spatial data management field. I am grateful to Prof. Steven Manson for his insightful

comments and for sharing his expertise in geographic information science all the way

through my Master and Ph.d program. I am thankful to Prof. Jon Weissman, and Prof.

Abhishek Chandra for their profound insight and knowledge in distributed frameworks.

I am grateful to Dr. Shana Watters for sharing with me her teaching experience and

being a role model. I am very thankful for her encouragement. I sincerely appreciate

all skills they imparted to my academic and professional life.

I am very thankful to Prof. Saleh M. Basalamah for his strong support and recom-

mendation to join Prof. Mokbels research group. I want to express my sincere appre-

ciation to (UQU) UMM AL-Qura University for their generous sponsorship during the

i

past eight years in grad school. I would also thank (SACM) the Saudi Cultural Mission,

(NSF) the National Science Foundation, and Microsoft for their generous grants and

financial support that otherwise I would not be able to share my scientific explorations

and be actively engage in conferences.

I am so grateful for my supportive and motivating family. I am honored to be a son

of a great man Mishal Alarabi, and wonderful mother Hanan Aqlan. I am very thankful

to my parents for their unconditional support and believing in me. I am a proud brother

to amazing siblings Lena, Wael, Walaa, Raied, and Raneem. I am genuinely indebted to

my cheerleader wife, Mada Sabbah, for her unlimited support and countless sacrifices.

Together, we celebrated every acceptance and moderated every rejection. Mada and

my children Aseel, Zain and the little unborn ones are the joy of my life and the special

blessing.

I would like to thank all members of Mokbel’s Lab, including alumni and current ones

for making my experience in data management lab and grad school fun and exciting.

In particular, Mohamed Sarwat, Abdeltawab Hendawi, Jie Bao, Ahmed Eldawy, Rami

Alghamdi, Saif Al-Harthi, Christopher Jonathan, Mashaal Musleh, Ibrahim Sabek, Har-

shada Chavan, Bin Cao, Prof. Kwang Woo Nam, Xiaochuang Yao, and Rana Forsati.

ii

Dedication

To those who held me up over the years. Thank you.

iii

Abstract

Apache Hadoop, employing the MapReduce programming paradigm, that has been

widely accepted as the standard framework for analyzing big data in distributed en-

vironments. Unfortunately, this rich framework was not genuinely exploited towards

processing large-scale spatio-temporal data, especially with the emergence and popular-

ity of applications that create them in large-scale. The huge volumes of spatio-temporal

data come from applications, like Taxi fleet in urban computing, Asteroids in astronomy

research studies, animal movements in habitat studies, neuron analysis in neuroscience

research studies, and contents of social networks (e.g., Twitter or Facebook). Managing

space and time are two fundamental characteristics that raised the demand for process-

ing spatio-temporal data created by these applications. Besides the massive size of data,

the complexity of shapes and formats associated with these data raised many challenges

in managing spatio-temporal data.

The goal of dissertation is centered on establishing a full-fledged big spatio-temporal

data management system that serves the need for a wide range of spatio-temporal ap-

plications. This involves indexing, querying, and analyzing spatio-temporal data. We

propose ST-Hadoop; the first full-fledged open-source system with a native support for

big spatio-temporal data, available to download http://st-hadoop.cs.umn.edu/. ST-

Hadoop injects spatio-temporal data awareness inside the highly popular Hadoop system

that is considered the state-of-the-art for off-line analysis of big data systems. Consider-

ing a distributed environment, we focus on the following: (1) indexing spatio-temporal

data and (2) Supporting various fundamental spatio-temporal operations, such as range,

kNN, and join. Throughout this document, we will touch base on the background and

related work, motivate for the proposed system, and highlight our contributions.

iv

Contents

Acknowledgements i

Dedication iii

Abstract iv

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Contribution and Organization . 4

2 Background and Related work 7

2.1 Architecture . 8

2.1.1 MapReduce . 8

2.1.2 Resilient Distributed Dataset (RDD) 9

2.1.3 Big Distributed Stream Platforms 9

2.1.4 Key-Value Store . 10

2.1.5 Parallel Database Systems . 11

2.2 Implementation Approach . 11

2.2.1 On-Top of the Framework . 12

2.2.2 Built inside the Framework . 12

2.2.3 Ad-hoc on Big Spatial System 13

2.2.4 Built From-Scratch . 13

v

2.3 Language . 14

2.4 Indexing Technique . 14

2.5 Spatio-temporal Operation . 15

2.6 ST-Hadoop Contribution . 16

3 ST-Hadoop Architecture Overview 20

4 Spatio-temporal Indexing in MapReduce Layer 23

4.1 Concept of Hierarchy . 25

4.2 Index Construction . 26

4.2.1 Phase I Sampling . 26

4.2.2 Phase II Temporal Slicing . 28

4.2.3 Phase III Spatial Indexing . 31

4.2.4 Phase IV Physical Writing . 31

4.3 Index Maintenance . 31

4.4 Experiments . 33

4.4.1 Experimental Settings . 33

4.4.2 Index Construction . 34

5 Spatio-temporal Operations on MapReduce 36

5.1 Spatio-temporal Range Query . 36

5.2 Spatio-temporal kNN Query . 37

5.3 Spatio-temporal Join . 46

5.4 Experiments . 47

5.4.1 Spatiotemporal Range Query . 47

5.4.2 K-Nearest-Neighbor Queries (kNN) 48

5.4.3 Spatiotemporal Join . 52

6 Spatio-temporal Query Optimizer in MapReduce 54

6.1 Heuristic Query Optimization . 55

6.2 Cost-based Optimization . 57

6.3 Experiments . 58

vi

7 Summit Trajectory library in ST-Hadoop 61

7.1 introduction . 62

7.2 background and related work . 64

7.3 System Overview . 68

7.4 Trajectory Indexing . 69

7.5 Trajectory Operations . 72

7.6 Trajectory Range Query (TRQ) . 75

7.7 Trajectory nearest neighbor Query (TKNN) 76

7.7.1 (TKNN) Point-based . 76

7.7.2 (TKNN) Trajectory-based . 81

7.8 Trajectory Similarity Query (TSQ) . 86

7.9 Experiments . 91

7.9.1 Experiments Settings . 92

7.9.2 Range Query . 93

7.9.3 Summit Stability . 96

7.9.4 Trajectory Nearest Neighbor query 98

7.9.5 Trajectory Similarity query . 101

8 Language Layer 104

8.1 Basic Spatio-temporal Data types . 104

8.2 Basic Functions and Operations . 105

8.3 Trajectory Spatio-temporal Data types 106

8.4 Trajectory Functions and Operations . 107

9 Conclusion 109

References 111

vii

List of Tables

2.1 Existing Work in the area of Big Spatial data 18

2.2 Existing Work in the area of Big Spatio-temporal data 19

4.1 Twitter Datasets . 33

4.2 ST-Hadoop Experiments Parameters . 34

7.1 New York Taxi and Limousine Dataset 92

7.2 Summit Experiments Parameters Settings 92

viii

List of Figures

1.1 Range query in SpatialHadoop vs. ST-Hadoop 2

3.1 ST-Hadoop system architecture . 21

4.1 HDFSs in ST-Hadoop VS SpatialHadoop 24

4.2 Indexing in ST-Hadoop . 27

4.3 Data-Slice . 29

4.4 Time-Slice . 30

4.5 Temporal Hierarchy Index . 32

5.1 Landscape of spatio-temporal kNN operation 40

5.2 Correctness check Final Answer . 41

5.3 Correctness Check when 0 ≤ α ≤ 1 . 42

5.4 Refinement Final Answer . 44

5.5 Spatio-temporal Join . 45

5.6 Range Query VS Input files (TB) . 48

5.7 Range Query VS Block size (MB) . 49

5.8 Range query with Block size VS Slicing ratio (α) 50

5.9 The execution of kNN query on different input files 51

5.10 kNN query with various k . 51

5.11 kNN throughput while varying (α) of Ranking Function 52

5.12 Spatio-temporal Join . 53

6.1 Conceptual representation of ST-Hadoop meta-data index 55

6.2 Spatio-temporal Range Query Interval Window 58

6.3 The effect of the spatio-temporal query ranges on the best value of M . 59

6.4 ST-Hadoop Greedy query optimizer VS heuristic M 60

7.1 Similarity query in ST-Hadoop vs. Summit 63

ix

7.2 Summit Architecture . 68

7.3 Temporal Slicing . 70

7.4 Trajectory Indexing . 71

7.5 Summit Trajectory Operations . 73

7.6 Local Computation: initial k answer . 76

7.7 Correctness Check Cylinder . 79

7.8 MBR Trajectory distance . 81

7.9 Nearest Neighbor Trajectory-based in Summit 83

7.10 Nearest Neighbor Trajectory-based correctness check 84

7.11 Abstract idea of similarity computation in Summit 88

7.12 Summit global computation of similarity query 89

7.13 Range Query . 94

7.14 Summit stability . 96

7.15 kNN Query . 99

7.16 DTW similarity Query . 101

x

Chapter 1

Introduction

The importance of processing spatio-temporal data has gained much interest in the last

few years, especially with the emergence and popularity of applications that create them

in large-scale. For example, Taxi trajectory of New York city archive over 1.1 Billion

trajectories [1], social network data (e.g., Twitter has over 500 Million new tweets

every day) [2], NASA Satellite daily produces 4TB of data [3, 4], and European X-Ray

Free-Electron Laser Facility produce large collection of spatio-temporal series at a rate

of 40GB per second, that collectively form 50PB of data yearly [5]. Beside the huge

achieved volume of the data, space and time are two fundamental characteristics that

raise the demand for processing spatio-temporal data.

The current efforts to process big spatio-temporal data on MapReduce environ-

ment either use: (a) General purpose distributed frameworks such as Hadoop [6] or

Spark [7], or (b) Big spatial data systems such as ESRI tools on Hadoop [8], Parallel-

Secondo [9], MD-HBase [10], Hadoop-GIS [11], GeoTrellis [12], GeoSpark [13], or Spa-

tialHadoop [14]. The former has been acceptable for typical analysis tasks as they

organize data as non-indexed heap files. However, using these systems as-is will results

in sub-performance for spatio-temporal applications that need indexing [15, 16, 17].

The latter reveal their inefficiency for supporting time-varying of spatial objects be-

cause their indexes are mainly geared toward processing spatial queries, e.g., SHAHED

system [18] is built on top of SpatialHadoop [14].

Even though existing big spatial systems are efficient for spatial operations, nonethe-

less, they suffer when they are processing spatio-temporal queries, e.g., ”find geo-tagged

1

2

Objects = LOAD ’points’ AS (id:int, Location:POINT, Time:t);
Result = FILTER Objects BY

Overlaps (Location, Rectangle(x1, y1, x2, y2))
AND t < t2 AND t > t1;

(a) Range query in SpatialHadoop

Objects = LOAD ’points’ AS (id:int, STPoint:(Location,Time));
Result = FILTER Objects BY

Overlaps (STPoint, Rectangle(x1, y1, x2, y2), Interval (t1, t2));

(b) Range query in ST-Hadoop

Figure 1.1: Range query in SpatialHadoop vs. ST-Hadoop

news in California area during the last three months”. Adopting any big spatial systems

to execute common types of spatio-temporal queries, e.g., range query, will suffer from

the following: (1) The spatial index is still illsuited to efficiently support time-varying of

spatial objects, mainly because the index are geared toward supporting spatial queries,

in which result in scanning through irrelevant data to the query answer. (2) The system

internal is unaware of the spatio-temporal properties of the objects, especially when

they are routinely achieved in large-scale. Such aspect enforces the spatial index to be

reconstructed from scratch with every batch update to accommodate new data, and

thus the space division of regions in the spatial-index will be jammed, in which require

more processing time for spatio-temporal queries. One possible way to recognize spatio-

temporal data is to add one more dimension to the spatial index. Yet, such choice is

incapable of accommodating new batch update without reconstruction the whole index

from scratch.

This paper introduces ST-Hadoop; the first full-fledged open-source MapReduce

framework with a native support for spatio-temporal data, available to download

from [19]. ST-Hadoop is a comprehensive extension to Hadoop and SpatialHadoop

that injects spatio-temporal data awareness inside each of their layers, mainly, index-

ing, operations, and language layers. ST-Hadoop is compatible with SpatialHadoop and

Hadoop, where programs are coded as map and reduce functions. However, running a

3

program that deals with spatio-temporal data using ST-Hadoop will have orders of mag-

nitude better performance than Hadoop and SpatialHadoop. Figures 1.1(a) and 1.1(b)

show how to express a spatio-temporal range query in SpatialHadoop and ST-Hadoop,

respectively. The query finds all points within a certain rectangular area represented by

two corner points ⟨x1, y1⟩ , ⟨x2, y2⟩, and a within a time interval ⟨t1,t2⟩. Running this

query on a dataset of 10TB and a cluster of 24 nodes takes 200 seconds on SpatialHadoop

as opposed to only one second on ST-Hadoop. The main reason of the sub-performance

of SpatialHadoop is that it needs to scan all the entries in its spatial index that overlap

with the spatial predicate, and then check the temporal predicate of each entry individ-

ually. Meanwhile, ST-Hadoop exploits its built-in spatio-temporal index to only retrieve

the data entries that overlap with both the spatial and temporal predicates, and hence

achieves two orders of magnitude improvement over SpatialHadoop.

ST-Hadoop is a comprehensive extension of Hadoop that injects spatio-temporal

awareness inside each layers of SpatialHadoop, mainly, language, indexing, MapReduce,

and operations layers. In the language layer, ST-Hadoop extends Pigeon language [20]

to supports spatio-temporal data types and operations. The indexing layer, ST-Hadoop

spatiotemporally loads and divides data across computation nodes in the Hadoop dis-

tributed file system. In this layer ST-Hadoop scans a random sample obtained from

the whole dataset, bulk loads its spatio-temporal index in-memory, and then uses the

spatio-temporal boundaries of its index structure to assign data records with its over-

lap partitions. ST-Hadoop sacrifices storage to achieve more efficient performance in

supporting spatio-temporal operations, by replicating its index into temporal hierar-

chy index structure that consists of two-layer indexing of temporal and then spatial.

The MapReduce layer introduces two new components of SpatioTemporalFileSplitter,

and SpatioTemporalRecordReader, that exploit the spatio-temporal index structures to

speed up spatio-temporal operations. Finally, the operations layer encapsulates the

spatio-temporal operations that take advantage of the ST-Hadoop temporal hierarchy

index structure in the indexing layer, such as spatio-temporal range, nearest neighbor,

and join queries.

The key idea behind the performance gain of ST-Hadoop is its ability to load the

data in Hadoop Distributed File System (HDFS) in a way that mimics spatio-temporal

index structures. Hence, incoming spatio-temporal queries can have minimal data access

4

to retrieve the query answer. ST-Hadoop is shipped with support for three fundamen-

tal spatio-temporal queries, namely, spatio-temporal range, nearest neighbor, and join

queries. However, ST-Hadoop is extensible to support a myriad of other spatio-temporal

operations. We envision that ST-Hadoop will act as a research vehicle where developers,

practitioners, and researchers worldwide, can either use it directly or enrich the system

by contributing their operations and analysis techniques.

1.1 Contribution and Organization

In this section, we will highlight our contribution in the area of scaling big spatio-

temporal data on MapReduce framework and outline a road map for this dissertation.

Our research in building a big spatio-temporal system has accomplished several notable

milestones. First, in February 2017 we released ST-Hadoop on a website for the public:

http://st-hadoop.cs.umn.edu/. Second, we received a certificate of recognition

from ACM SIGMOD (top-tier conference) for being selected as a finalist for the

student research competition [21]. Third, we published ST-Hadoop research study

with all technical details in SSTD 2017 [22]. Our paper was selected among the best

papers in the conference and invited for a special issue of GeoInformatica journal [23].

Both SSTD and GeoInformatica are top-tier conference and journal in the area of

spatial and spatio-temporal data management. Forth, we have demonstrated the

capability and the efficiency of ST-Hadoop to VLDB 2017 conference attendees [24].

In this demonstration, ST-Hadoop successfully managed to index and query billions

of spatio-temporal records. Fifth, we extend the infrastructure and operations of

ST-Hadoop to support trajectory data, and we received a certificate of recognition

from ACM SIGSPATIAL for being the first place winner of graduate student research

competition [25]. Sixth, our contribution in supporting trajectory data won a gold

medal from Microsoft and invited for a special issue of SIGSPATIAL newsletter [26].

Finally, our research got invited to participate in ACM grand final graduate students

research competition, where winners will be invited to ACM Banquet, i.e., ”Turing

Award Banquet” along with their adviser, where they receive formal recognition.

The overreaching goal of this dissertation is to conduct research, develop the

5

required knowledge to advance the state-of-the-art of Big Spatio-temporal data man-

agement on the MapReduce framework. This thesis is the first of its kind that provides

ST-Hadoop; a full-fledged open-source framework mainly to support a workload of

batch spatio-temporal analytic on MapReduce. The proposed system is extensible

to support a myriad of spatio-temporal indexing and operations. We envision that

open-source nature of the proposed framework will act as a research vehicle where

experts developers, domain practitioners, and researchers worldwide, can either use the

proposed framework directly or enrich it by contributing their operations and analysis

techniques. Given this general overview, this document is organized as follows:

• Chapter 2 gives a comprehensive survey of existing research studies from both

academia and industry in the area of supporting big spatio-temporal data.

• Chapter 3 presents the architecture design of our proposed framework ST-Hadoop;

as the first full-fledged open-source MapReduce framework with built-in support for

spatio-temporal data.

• Chapter 4 investigates the structural design of indexing in MapReduce that

supports spatio-temporal data. The proposed indexing approaches incorporate the

functionality of various big spatio-temporal batch workloads.

• Chapter 5 presents the implementation of three fundamental spatio-temporal

operations, namely, spatio-temporal range, nearest neighbor, and join queries. We

envision more operations can be added by professional developers, domain experts, and

researchers.

• Chapter 6 investigates the spatio-temporal query optimization. In particular,

this chapter we examined two standard query optimization model of heuristic and

cost-based models.

• Chapter 7 introduces an extension library to support analytic operation for a

large scale trajectory data in MapReduce. This extension is driven by the ubiquity

6

of location-based services, that produce a massive amount of trajectories. Querying

and analyzing trajectory data become a must for a wide range of applications. The

proposed extension is well-suited to efficiently support several basic trajectory queries,

such as range, kNN, and similarity queries. These queries and the architectural design

of the proposed library are extendable, in a way that it enables users to build various

applications on trajectories.

• Chapter 8 describes how casual users can interact with ST-Hadoop through

its language layer. We discussed basic spatio-temporal and trajectory data types,

functions, and operations. ST-Hadoop extends the state-of-the-art spatial SQL like

language that makes our system more usable.

• Chapter 9 concludes and summarizes our contributions.

Chapter 2

Background and Related work

Triggered by the needs to process large-scale spatio-temporal data, there is an increasing

recent interest in using big distributed frameworks, such as Hadoop [6], Spark [7], or

Flink [27] to support spatio-temporal operations. Classification is essential for the study

of any subject. Thus, this chapter classifies existing research studies by considering

five aspects of big spatio-temporal data systems. (1) The system architecture, which

identifies the storage paradigm designed for storing and retrieving data, such as RDBMS,

columnar DBMS, parallel DBMS, MapReduce, key-value store, RDD, or Discretized

Stream. (2) The implementation approach, which defines whether it’s implemented on

the top of the distributed framework, add-hoc using big systems, built inside the base

core of a distributed framework, or entirely developed from scratch. (3) The support of

a high-level scripting language. (4) The type of indexes employed by the system, if any

exists. (5) The supported spatio-temporal operations by the research study.

Table 2.1 depicts the existing work from both academia and industry in the area

of supporting big spatio-temporal data. Each row represents a system or a body of

work related to big spatio-temporal data, while each column represents one of the main

characteristic of big spatio-temporal data system. The rest of this chapter details over

each one of the five characteristic, namely, architecture, approach, language, indexing,

and operation.

7

8

2.1 Architecture

In this section we will briefly describe existing systems architecture design, that typ-

ically follow one of the standard approaches used in big distributed frameworks, such

as, relational DBMS [34, 36, 44], columnar DBMS [43], parallel DBMS [9, 37], MapRe-

duce [9, 11, 14, 15, 16, 17, 18, 23, 31, 32, 47, 49, 50, 60], key-value store [10, 41, 42], re-

silient distributed datasets (RDD) [12, 13, 45, 46, 59], Azure [52], or Discretized Stream

(DStream) [54], as described in the first column of Table 2.1 and Table 2.2 Some of these

systems modify the underlying system to better support spatial or spatio-temporal data

but they still keep the central architecture. In the meantime, some use the underlying

architecture as-is [47, 54]. In our proposed system ST-Hadoop we follow the MapReduce

architecture. However, it is the only system that modifies the MapReduce query pro-

cessing engine and modifies the file organization of the Hadoop Distributed File System

(HDFS) to better support indexing spatio-temporal data.

2.1.1 MapReduce

MapReduce [61] is one of the most popular distributed architecture commonly used for

processing and analyzing big analytic data. MapReduce is a shared-nothing distributed

system. It is has been widely adopted for various applications from both industry and

academia. The main idea of the MapReduce platform is to push the computation to

data, unlike other paradigms where data are brought to the main-memory platform for

computations.

Apache Hadoop [6] is an open source framework developed in Java based adopting

MapReduce paradigm, and it is used for distributed storage and processing massive

data. Hadoop platform can be viewed as a cluster of machines that consist of one

Master node and several worker nodes. Hadoop platform offers various tools, such

as Hadoop Distributed File System (HDFS), job scheduling and resource management

capabilities. The most critical component of Hadoop is its HDFS storage layer. Before

processing data in Hadoop, data need to be into the HDFS. Initially, Hadoop splits data

files into large blocs. Then, it distributes them through nodes in the cluster. After, it

transfers the packaged map-reduce tasks into nodes in parallel to process data. This

method aims to push the computation to data where they reside, which offers fast and

9

efficient processing for the massive scale of data.

2.1.2 Resilient Distributed Dataset (RDD)

UC Berkeley introduced and implemented a distributed memory abstraction that lets

programmers perform in-memory computations on large clusters in a fault-tolerant man-

ner [62]. This abstraction named resilient distributed datasets (RDD) that enables

clusters to stores intermediate results in-memory for scale-out complex computations,

such as iterative algorithms in Machine learning, graph processing, and interactive data

mining algorithms of clustering and regressions.

Apache Spark [7] released in 2010 as an open source frameworks. It has a simi-

lar programming model to MapReduce, but it extends it with in-memory data sharing

abstraction (RDD). Hence, Spark is classified as shared memory parallel distributed

system. When loading data into spark the same programming paradigm in MapReduce

is applied, where data is partitioned across a cluster and manipulated in-memory in

a parallel fashion by map, filter, and groupBy operations. Spark used in wide range

of applications, including graph processing [63], Machine learning [64], spatial comput-

ing [12, 13, 65], and spatio-temporal computing [46, 57, 58, 59].

To distinguish RDD and MapReduce, the power of MapReduce resides in the fact

that it enables parallel computations without directly share intermediate data. This

let MapReduce inefficient for the applications that reuse intermediate results, such as

iterative machine learning algorithms (e.g., as K-means clustering and logistic regres-

sion). In the meantime, RDD enables its users to store intermediate results inside the

RAM. In contrast to MapReduce where it would write intermediate data to the HDFS,

in which incur overhead disk I/O and serialization. Thus, RDD is up to 20X faster than

MapReduce for iterative applications.

2.1.3 Big Distributed Stream Platforms

In this section, we will discuss two frameworks that follows stream processing model,

namely, Storm [66] and Flink [27].

Apache Storm is an open source distributed real-time stream computation plat-

form. Initially developed by Twitter and now it is available on Apache projects. The

10

architecture design of Storm is similar to Spark, such that it is a shared-memory dis-

tributed system. However unlike Spark, Storm does not follow a MapReduce program-

ming paradigm; instead, Storm provides topology programming model. A topology in

Storm is defined as a directed graph where the vertices represent computation, and the

edges represent the data flow between computation components. This model distributes

stream partitions between processing nodes. Each node processes its input stream as if

its entire stream. In particular, Storm has two distinct vertices in its topology model

recognized as Spouts and Bolts. The Spout represents a source of stream tuples that

are used within the topology. Meanwhile, Bolts are serving as a processing components

for incoming data. The output of Bolts can be passed to a set of other bolts for fur-

ther computation, or stored in the cluster Storage. DSI [55] and DITIR [56] supports

spatio-temporal data on-top of Strom framework. The DSI [55] implemented Horizontal

and vertical Strip index to support nearest neighbor query on moving datasets. In the

meantime, DITIR [56] employs B+tree and R-tree to support spatio-temporal range

query.

Apache Flink is an open-source framework for real-time stream and batch process-

ing. Unlike Storm which only supports stream processing. In Flink’s parallel streaming

tasks are similar to Storm’s bolts. Storm and Flink have in common that they aim for

low latency stream processing by pipelined data transfers. Mobility Streaming [54] im-

plemented on-top of Flink Spatio-temporal Range query to support analyzing trajectory

data.

2.1.4 Key-Value Store

Several Systems adopted a simple data model, where data are stored corresponding to

key-value. In this model, each key is a unique, and value can be of any types and sizes,

unlike traditional relational databases where data types and number of attributes are

unified across all tuples in a table. This model enables big systems to store and retrieve

of a schema-less data by keys. Examples of popular key-value store systems, include

Accumulo [67], HBase [68], Dynamo DB [69], Cassandra [70]. Apache Accumulo and

HBase operate on-top of the Hadoop Distributed File System (HDFS). In the meantime,

Cassandra uses a storage structure similar to a log and stores directly into the file

system. Several research studies extends key-value stores to support spatial data, and

11

spatio-temporal data, such as MD-HBase [10] extended HBase, and GeoMesa [41] and

GeoWave [42] extended Accumulo.

2.1.5 Parallel Database Systems

Apache AsterixDB distinguished itself as the first open-source parallel Big Data Man-

agement System (BDMS) [71]. Before being incubated by the Apache Software Foun-

dation, AsterixDB has initially been developed by a team of faculty, staff, and students

at UC Irvine and UC Riverside [38, 39]. The project was initiated as NSF-sponsored

project in 2009, the goal of which was to combine the best ideas from the parallel

database world, the MapReduce paradigm, and the semi-structured (e.g., XML/JSON)

data world to create a next-generation BDMS.

AstrixDB aims to support ingesting, storing, indexing, querying and analyzing mas-

sive amounts of data efficiently. It uses Log-Structured Merge (LSM) trees [72] as the

primary underlying technology for all of its internal data storage and indexing. Also,

it adds several secondary indexing techniques with LSM, such as B+-tree, R-tree, and

inverted index. Entries inserted into an LSM-tree are temporary resides in the main

memory, and when in-memory data exceeds a specific capacity, data are flushed into

the index that resides on disk. In the meantime, computations and queries execution

is handled by Hyracks runtime. Jobs submitted to AstrixDB in the form of DAGs that

consists of operators and connectors. The operator is a computation component in the

DAG; meanwhile, the connector is similar to a pipeline that feeds the output of one

operator to the next operator.

2.2 Implementation Approach

In this section we will classify the existing works in the area of processing spatio-

temporal data based on the implementation approach used to build the system. The sec-

ond column of Table 2.1 shows four categories of the implementation approach: (1) on-

top of existing framework [15, 16, 17, 47, 48, 49, 50, 51, 54], (2) ad-hoc on big spatial

framework [18, 35, 60], (3) built inside existing system [9, 10, 11, 13, 14, 31, 32, 34, 41,

42, 43, 44, 45, 46], or (4) entirely built from-scratch [36, 37].

12

2.2.1 On-Top of the Framework

Existing work in this category has mainly focused on addressing a specific spatio-

temporal operation. The idea of on-top of MapReduce framework is to develop map and

reduce functions for the required operation, which will be executed on-top of existing

Hadoop cluster. The same idea applies to other frameworks, such Spark or Flink. Ex-

amples of these operations includes spatio-temporal range query [15, 16, 17, 49, 50, 54],

spatio-temporal join [47, 48, 51]. However, using Hadoop as-is results in a poor perfor-

mance for spatio-temporal applications that need indexing.

2.2.2 Built inside the Framework

The research studies in this category build their indexes or the operations inside the core

of the distributed framework. The main benefit of following such an approach is to make

the internal of the distributed framework is more aware of the nature and the character-

istic of the operations and structure of the data organization; and thus, achieves better

efficiency. This approach has been adopted by several systems including, GeoMesa [41],

GeoSpark [13], SpatialHadoop [14], SharkDB [43], Hippo [34], GeoWave [42], DITA [45],

ESRI tools on Hadoop [31], Parallel-Secondo [9], MD-HBase [10], Hadoop-GIS [11],

PITS [44], ScalaGiST [32], and Spatio-temporal Join [46].

Several spatio-temporal System in this category has mainly focused on combining

the three spatio-temporal dimensions (i.e., x, y, and time) into a single-dimensional

lexicographic key. For example, GeoMesa [41] and GeoWave [73] both are built upon

Accumulo platform [67] and implemented a space filling curve to combine the three

dimensions of geometry and time. Yet, these systems do not attempt to enhance the

spatial locality of data; instead they rely on time load balancing inherited by Accumulo.

Hence, they will have a sup-performance for spatio-temporal operations on highly skewed

data. Meanwhile, ST-Hadoop extends Hadoop framework to support spatio-temporal

data. ST-Hadoop temporally loads spatio-temporal data across computation nodes, in

a way that enables ST-Hadoop to utilize the spatial and temporal locality of data.

13

2.2.3 Ad-hoc on Big Spatial System

Several big spatial systems in this category are still ill-suited to perform spatio-

temporal operations, mainly because their indexes are only geared toward processing

spatial operations, and their internals are unaware of the spatio-temporal data prop-

erties [8, 9, 10, 11, 13, 14, 28, 30, 32, 74]. For example, SHAHED, TAGHREED and

GISQF systems, where all run spatio-temporal operations as an ad-hoc using Spatial-

Hadoop [18, 35, 60].

2.2.4 Built From-Scratch

Existing works in this category has mainly focused on building a complete infrastruc-

ture to leverage and advance the functionality to meet the need for a specific appli-

cation. Although, constructing a system from scratch gives the flexibility to gain a

solid performance, yet, the usability of that system is still only narrowed and limited

to support particular applications. This approach has mostly accepted for supporting

trajectory data, such as in BRACE [28], SciDB [29, 30], TrajStore [36], Elite [37], and

AstrixDB [38, 39]

The proposed ST-Hadoop is designed as a generic MapReduce system to support

spatio-temporal queries, and assist developers in implementing a wide selection of spatio-

temporal operations. In particular, ST-Hadoop leverages the design of Hadoop and

SpatialHadoop to loads and partitions data records according to their time and spatial

dimension across computations nodes, which allow the parallelism of processing spatio-

temporal queries when accessing its index. In this paper, we present two case study

of operations that utilize the ST-Hadoop indexing, namely, spatio-temporal range and

join queries. ST-Hadoop operations achieve two or more orders of magnitude better

performance, mainly because ST-Hadoop is sufficiently aware of both temporal and

spatial locality of data records.

14

2.3 Language

Several big systems ship a SQL-like language with their system, allowing non-technical

users to interact directly with their operations without any requirement of adding sig-

nificant code. As shown in the third column of Table 2.1, there are several SQL-

like high level languages were developed to interact with big distributed systems, such

as SQL [34, 36, 44], SQL-like [9, 11], HiveQL [31, 49, 50], Scala-based [12, 13], Pi-

geon [14, 18, 23], and CQL [41]. Since Pigeon language is compliant with GCC standard

[75], ST-Hadoop will not provide an entirely new language. Instead, it extends Pigeon

language [20] by adding spatio-temporal data types, functions, and operations.

2.4 Indexing Technique

General purpose distributed systems have been acceptable for typical analysis tasks as

they organize data as non-indexed heap files, where files are partitioned into chunks,

each of a specific size. This is typically done on any in-memory or the persistent storage

of any distributed frameworks, such as in RDD and HDFS. However, using these systems

as-is will result in sub-performance for applications that need indexing. The existing

works of supporting spatio-temporal data are either:

• Construct a three dimensional index, such as in CloST [16], SharkDB [43],

Elite [37], SciHive [49, 50]. The major problem with this approach is that re-

constructing the index is required with every batch update.

• Combine the three spatio-temporal dimensions (i.e., x, y, and time) into a single-

dimensional lexicographic key. For example, CoPST [48], GeoMesa [41], and Ge-

oWave [73]. GeoMesa and GeoWave both are built upon Accumulo platform [67]

and implemented a space-filling curve to combine the three dimensions of geome-

try and time. Yet, these systems do not attempt to enhance the spatial locality

of data; instead, they rely on time load balancing inherited by Accumulo. Hence,

they will have a sup-performance for spatio-temporal operations on highly skewed

data.

• Utilize a spatial index and filter on the fly the temporal query predicate. This

15

approach has been adopted by several systems including, PRADASE [15], Tra-

jStore [36], cloud-based [52], UlTraMan [59], SHAHED [18], TAGHREED [60],

DITA [45], PITS [44], Spatio-temporal Join [46], Big Climate [17], and PHiDJ [51].

• Maintain a Hierarchical indexing structure. ST-Hadoop [23] index consists of

two-layer indexing of a temporal and spatial. The temporal index disjoint the

time interval, meanwhile, the second layer preserve the spatial locality of the

spatio-temporal data. The two-layer in ST-Hadoop is replicated in a Temporal

Hierarchy. ST-Hadoop trade-off storage to achieve more efficient performance

through its index replication. Thus, ST-Hadoop temporally loads spatio-temporal

data across computation nodes, in a way that enables ST-Hadoop to utilize the

spatial and temporal locality of data.

2.5 Spatio-temporal Operation

In this section we will discuss various queries supported in both area of big spatial and

spatio-temporal systems. The main reason of listing spatial queries in this section is

that because domain experts who need to process spatio-temporal data tends to either

utilize big spatial or spatio-temporal systems for processing their spatio-temporal data.

Typically, when big spatial system used then additional temporal filter is added on the

top before retrieve the final answer.

As shown on the fifth column of Table 2.1, various fundamental queries supported by

the listed systems, namely spatial Range query (SRQ) [9, 10, 11, 13, 14, 31, 32, 34, 35],

spatial nearest neighbor queries (SkNN) [10, 11, 13, 14, 31, 32], spatial join query

(SJ) [9, 11, 13, 14], temporal range query (TRQ) [23, 52], spatio-temporal range query

(STRQ) [15, 16, 17, 18, 23, 36, 37, 41, 42, 43, 44, 49, 50, 52, 54, 59, 60], spatio-temporal

nearest neighbor queries (STkNN) [23, 37, 43, 59, 76], spatio-temporal nearest neighbor

join queries (STkNNJ) [47], spatio-temporal join query (STJ) [23, 46, 48, 51], and

spatio-temporal similarity join query (STSimilarity Join) [45].

ST-Hadoop with its architecture design is the only system that allows researcher,

developers, and domain experts to extends its functionality. Currently, ST-Hadoop

supports three main functionality of spatio-temporal range query, and spatio-temporal

nearest neighbor query, and spatio-temporal join query. More sophisticated operations,

16

such as similarity queries, or clustering can be realized following the same techniques

discussed later in this paper.

2.6 ST-Hadoop Contribution

In our proposed system ST-Hadoop we follow the MapReduce architecture, mainly

because most big data systems use the Hadoop Distributed File System (HDFS) as

backbone storage in their framework. ST-Hadoop distinguishes itself from other systems

discussed earlier in this chapter by the fact that ST-Hadoop is the only system that

modifies the MapReduce query processing engine and modifies the file organization of

the Hadoop Distributed File System (HDFS) to better support indexing spatio-temporal

data.

ST-Hadoop implementation approach is designed as built-in on a generic MapReduce

system to support spatio-temporal applications, and assist developers in implementing

a wide selection of spatio-temporal operations and indexing techniques. In particular,

ST-Hadoop leverages the design of Hadoop and SpatialHadoop to loads and partitions

data records according to their time and spatial dimension across computations nodes,

which allow the parallelism of processing spatio-temporal queries when accessing its

index. In this dissertation, we present several case study of operations that utilize

the ST-Hadoop indexing, namely, spatio-temporal range, nearest neighbor, join queries.

Besides, we have extended our design to support trajectory data (i.e., a particular type

of spatio-temporal data). Our proposed system operations achieve two or more orders

of magnitude better performance, mainly because ST-Hadoop is sufficiently aware of

both temporal and spatial locality of data records.

Research studies follows on-top approach previously mentioned in tables 2.1 and 2.2.

These studies use Hadoop as-is, in which their implementation incurred in poor perfor-

mance for spatio-temporal applications that need indexing. Meanwhile, ad-hoc tech-

nique on big spatial systems reveals its inefficiency for spatio-temporal operations,

mainly because spatial system indexes are geared toward supporting spatial queries.

In contrast, ST-Hadoop loads and partitions spatio-temporal data across computation

nodes, in a way that enables ST-Hadoop to utilize the spatial and temporal locality of

data on HDFS, which is not the case with other spatio-temporal systems that only rely

17

on time load balancing.

There are several SQL like language for Big data systems, such as [14, 18, 23], and

CQL [41]. Since Pigeon [20] language is compliant with spatial GCC standard [75],

ST-Hadoop will not provide an entirely new language. Instead, it extends the Pigeon

language by adding spatio-temporal data types, functions, and operations.

ST-Hadoop index is classified as a Hierarchical multi-version indexing structure. ST-

Hadoop [23] index consists of two-layer indexing of a temporal and spatial. The temporal

index disjoints the time interval; meanwhile, the second layer preserves the spatial

locality of the spatio-temporal data. The two-layer in ST-Hadoop is replicated in a

Temporal Hierarchy. ST-Hadoop trade-off storage to achieve more efficient performance

through its index replication. Thus, ST-Hadoop temporally loads spatio-temporal data

across computation nodes, in a way that mimic and utilize the spatial and temporal

locality of data, and achieve spatio-temporal load balancing to their partitions.

ST-Hadoop with its architecture layered design is the only system that allows re-

searcher, developers, and domain experts to extends its functionality. Currently, ST-

Hadoop supports several fundamental operations, namely, spatio-temporal range query,

spatio-temporal nearest neighbor query, spatio-temporal join query, nearest neighbor

trajectory queries, and trajectory similarity query. More sophisticated operations, such

as pattern-mining queries, or clustering can be realized following the same techniques

discussed later in this thesis.

18

T
ab

le
2.
1:

E
xi
st
in
g
W
or
k
in

th
e
ar
ea

of
B
ig

S
p
at
ia
l
d
at
a

A
rc
h
it
ec

tu
re

A
p
p
ro

a
ch

L
a
n
g
u
a
g
e

In
d
ex

O
p
er

a
ti
o
n
(s
)

B
R
A
C
E

[2
8]

M
ap

R
ed

u
ce

F
ro
m
-s
cr
at
ch

B
R
A
S
IL

G
ri
d

S
J

S
ci
D
B

[2
9,

30
]

A
rr
ay

D
B

F
ro
m
-s
cr
at
ch

A
Q
L
,
A
F
L

K
d
-t
re
e

S
R
Q
,
S
k
N
N

S
p
at
ia
lH

ad
oo

p
[1
4]

M
ap

R
ed

u
ce

B
u
il
t-
in

P
ig
eo
n

R
-t
re
e,
Q
u
ad

tr
ee
,
ot
h
er

S
R
Q
,
S
k
N
N
,
S
J

E
S
R
I
to
ol
s
on

H
ad

oo
p
[3
1]

M
ap

R
ed

u
ce

B
u
il
t-
in

H
iv
eQ

L
P
M
R

Q
u
ad

T
re
e

S
R
Q
,
S
k
N
N

H
ad

oo
p
-G

IS
[1
1]

M
ap

R
ed

u
ce

B
u
il
t-
in

S
Q
L
-l
ik
e

G
ri
d

S
R
Q
,
S
k
N
N
,
S
J

S
ca
la
G
iS
T

[3
2]

M
ap

R
ed

u
ce

B
u
il
t-
in

-
G
iS
T

S
R
Q
,
S
k
N
N

P
ar
al
le
l-
S
ec
on

d
o
[9
]

P
ar
al
le
l
D
B

+
M
ap

R
ed

u
ce

B
u
il
t-
in

S
Q
L
-L
ik
e

L
oc
al

R
-t
re
e

S
R
Q
,
S
J

S
p
h
in
x
[3
3]

P
ar
al
le
l
D
B

B
u
il
t-
in

S
Q
L

R
-t
re
e,

Q
u
ad

-t
re
e

S
R
Q
,
S
J

H
ip
p
o
[3
4]

R
el
at
io
n
al

D
B
M
S

B
u
il
t-
in

S
Q
L

B
it
m
ap

S
R
Q

M
D
-H

B
as
e
[1
0]

K
ey
-V
al
u
e
st
or
e

B
u
il
t-
in

-
Q
u
ad

-t
re
e,

K
d
-t
re
e

S
R
Q
,
S
k
N
N

G
eo
S
p
ar
k
[1
3]

R
D
D

B
u
il
t-
in

S
ca
la
-b
as
ed

R
-t
re
e,

Q
u
ad

-t
re
e

S
R
Q
,
S
k
N
N
,
S
J

G
eo
T
re
ll
is

[1
2]

R
D
D

O
n
-t
op

S
ca
la
-b
as
ed

-
M
ap

A
lg
eb

ra
G
IS
Q
F
[3
5]

M
ap

R
ed

u
ce

A
d
-h
oc

-
G
ri
d

S
R
Q

19

T
ab

le
2.
2:

E
xi
st
in
g
W
or
k
in

th
e
ar
ea

of
B
ig

S
p
at
io
-t
em

p
or
al

d
at
a

A
rc

h
it
e
c
tu

re
A
p
p
ro

a
ch

L
a
n
g
u
a
g
e

In
d
e
x

O
p
e
ra

ti
o
n
(s
)

T
ra

jS
to
re

[3
6]

R
el
at
io
n
al

D
B
M
S

F
ro
m
-s
cr
at
ch

S
Q
L

Q
u
ad

-t
re
e

S
T
R
Q

E
li
te

[3
7]

P
ar
al
le
l
D
B

F
ro
m
-s
cr
at
ch

-
O
ct
-t
re
e

S
T
R
Q
,
S
T
k
N
N

A
st
er
ix
D
B

[3
8
,
39

]
B
D
M
S

F
ro
m
-s
cr
at
ch

A
Q
L

R
-t
re
e

S
R
Q
,T
em

p
or
al

S
T
-H

ad
o
op

[2
3
]

M
ap

R
ed

u
ce

B
u
il
t-
in

P
ig
eo
n

H
ie
ra
rc
h
ic
al

tw
o-
L
ev
el

of
te
m
p
or
al

(e
.g
.,
eq

u
i-
w
id
th

or
eq

u
i-
d
ep

th
),

an
d
S
p
at
ia
l
in
d
ex

es
(e
.g
.,
R
-t
re
e,

Q
u
ad

-t
re
e,

ot
h
er
)

S
T
R
Q
,S
T
k
N
N
,S
T
J

Q
aD

R
-t
re
e
[4
0]

M
ap

R
ed

u
ce

B
u
il
t-
in

-
3D

q
u
ad

-t
re
e

S
T
R
Q

G
eo
M
es
a
[4
1]

K
ey

-V
al
u
e
st
or
e

B
u
il
t-
in

C
Q
L

G
eo
h
as
h
,S
F
C

S
T
R
Q

G
eo
W
av

e
[4
2]

K
ey

-V
al
u
e
st
or
e

B
u
il
t-
in

-
G
eo
h
as
h
,S
F
C

S
T
R
Q

S
h
ar
k
D
B

[4
3]

co
lu
m
n
-o
ri
en

te
d
D
B
M
S

B
u
il
t-
in

-
H
ie
ra
rc
h
ic
al

F
ra
m
e
b
as
ed

S
T
R
Q
,S
T
k
N
N

P
IT

S
[4
4]

R
el
at
io
n
al

D
B
M
S

B
u
il
t-
in

S
Q
L

G
ri
d
+

te
m
p
or
al

B
+
tr
ee

S
T
R
Q

D
IT

A
[4
5]

R
D
D

B
u
il
t-
in

-
R
-t
re
e

S
T
S
im

il
ar
it
y
J
oi
n

S
p
at
io
-t
em

p
or
al

J
oi
n
[4
6]

R
D
D

B
u
il
t-
in

-
P
ar
ti
al

L
o
ca
l
Q
u
ad

-t
re
e

S
T
J

C
lo
S
T

[1
6]

M
ap

R
ed

u
ce

O
n
-t
op

-
H
ie
ra
rc
h
ic
al

q
u
ad

-t
re
e

S
T
R
Q

P
R
A
D
A
S
E

[1
5
]

M
ap

R
ed

u
ce

O
n
-t
op

-
Q
u
ad

-t
re
e
+

In
ve
rt
ed

In
d
ex

S
T
R
Q

D
is
tr
ib
u
te
d
K
N
N
-J
oi
n
[4
7]

M
ap

R
ed

u
ce

O
n
-t
op

-
-

S
T
k
N
N
J

B
ig

C
li
m
at
e
[1
7]

M
ap

R
ed

u
ce

O
n
-t
op

-
G
ri
d

S
T
R
Q

C
oP

S
T

[4
8]

M
ap

R
ed

u
ce

O
n
-t
op

-
S
F
C

S
T
J

S
ci
H
iv
e
[4
9,

50
]

M
ap

R
ed

u
ce

O
n
-t
op

H
iv
eQ

L
A
rr
ay

S
T
R
Q

P
H
iD

J
[5
1]

M
ap

R
ed

u
ce

O
n
-t
op

-
G
ri
d

S
T
J

cl
ou

d
-b
as
ed

[5
2]

A
zu

re
[5
3
]

O
n
-t
op

E
x
te
n
d
ed

A
P
I

G
ri
d

T
R
Q
,
S
T
R
Q

M
ob

il
it
y
S
tr
ea
m
in
g
[5
4]

F
li
n
k
(D

S
tr
ea
m
)
[2
7]

O
n
-t
op

-
-

S
T
R
Q

D
S
I
[5
5]

S
to
rm

O
n
-t
op

-
S
tr
ip

In
d
ex

K
N
N

D
IT

IR
[5
6]

S
to
rm

O
n
-t
op

-
B
+
tr
ee

an
d
R
-t
re
e

S
T
R
Q

D
T
R
-t
re
e
[5
7]

R
D
D

O
n
-t
op

-
2D

R
-t
re
e

R
Q

D
M
T
R
-t
re
e
[5
8]

R
D
D

O
n
-t
op

-
2D

R
-t
re
e
+

In
ve
rt
ed

In
d
ex

S
k
y
li
n
e
Q
u
er
y

U
lT
ra
M
an

[5
9]

R
D
D

O
n
-t
op

-
R
-t
re
e

S
T
R
Q
,S
T
k
N
N

S
H
A
H
E
D

[1
8]

M
ap

R
ed

u
ce

A
d
-h
o
c

P
ig
eo
n

Q
u
ad

-t
re
e

S
T
R
Q

T
A
G
H
R
E
E
D

[6
0]

M
ap

R
ed

u
ce

A
d
-h
o
c

-
Q
u
ad

-t
re
e

S
T
R
Q

Chapter 3

ST-Hadoop Architecture

Overview

Figure 3.1 gives the high level architecture of our ST-Hadoop system; as the first full-

fledged open-source MapReduce framework with a built-in support for spatio-temporal

data. ST-Hadoop cluster contains one master node that breaks a map-reduce job

into smaller tasks, carried out by slave nodes. Three types of users interact with

ST-Hadoop: (1) Casual users who access ST-Hadoop through its spatio-temporal

language to process their datasets. (2) Developers, who have a deeper understanding

of the system internals and can implement new spatio-temporal operations, and

(3) Administrators, who can tune up the system through adjusting system parameters

in the configuration files provided with the ST-Hadoop installation. ST-Hadoop adopts

a layered design of four main layers, namely, language, Indexing, MapReduce, and

operations layers, described briefly below:

Language Layer: This layer extends Pigeon language [20] to supports spatio-temporal

data types (i.e., STPoint, time and interval) and spatio-temporal operations (e.g.,

overlap, and join). The Pigeon Language is a high level language complaint with

OGC standards. Details are given in chapter 8.

Indexing Layer: ST-Hadoop spatiotemporally loads and partitions data across

20

21

Indexing

MapReduce

Operations

MasterSlaves

Map/Reduce
Tasks

Configured MapReduce Job

Spatio-temporal
Queries

Query
Results

Index Information

Storage/Processing
Nodes

Language

Spatio-temporal
Operations

System AdminCasual UserDeveloper

Config
Files

File Data

System
Parameters

SpatioTemporalFileSplitter
SpatioTemporalRecordReader

Time-slicing
Data-slicing

 Multi-Resolution

ST-RangeQuery, ST-JOIN
ST-Aggregates , KNN

 TIME
INTERVAL

Figure 3.1: ST-Hadoop system architecture

computation nodes. In this layer ST-Hadoop scans a random sample obtained from the

input dataset, bulk-loads its spatio-temporal index that consists of two-layer indexing

of temporal and then spatial. Finally ST-Hadoop replicates its index into temporal

hierarchy index structure to achieve more efficient performance for processing spatio-

temporal queries. ST-Hadoop introduces two techniques for partitioning temporal

dimension of space and data partitioning namely, Time-slicing and Data-slicing. As for

the spatial level of partitioning, ST-Hadoop partitions the spatial dimensions using any

of the implemented spatial bull-loading partitioning techniques in ST-Hadoop, such as

R-tree, R+-tree, Z-Curve, Grid, Quad-tree, or KD-tree. Details of the index layer are

given in chapter 4.

MapReduce Layer: In this layer, new implementations added inside SpatialHadoop

22

MapReduce layer to enables ST-Hadoop to exploits its spatio-temporal indexes and

realizes spatio-temporal predicates. In particular, SpatioTemporalFileSplitter and

SpatioTemporalRecordReader, which allows to access the two-level of spatio-temporal

indexes in ST-Hadoop and reads spatio-temporal within partitions, respectively. We

are not going to discuss this layer any further, mainly because few changes made

to inject time awareness in this layer. The implementation of MapReduce layer was

already discussed in great details [14].

Operations Layer: This layer encapsulates the implementation of three common

spatio-temporal operations, namely, spatio-temporal range, nearest neighbor, and join

queries. More operations can be added to this layer by ST-Hadoop developers. Details

of the operations layer are discussed in chapter 5.

The goal of this thesis is to describe how Hadoop as big distributed Map-Reduce

systems can be modified in its internal components to support spatio-temporal data

and applications. In a nutshell, ST-Hadoop Cluster contains one master node and

several worker nodes. The Master node in ST-Hadoop triggers and manages the spatio-

temporal operations. Meanwhile, the worker nodes carry the computations as map-

reduce tasks. Through this document, we will describe the full stack of ST-Hadoop

starting from storage, indexing, operations, and language. In our architecture design, we

allow experts users and system administrators to tune ST-Hadoop configuration files, to

guide how spatio-temporal data partition, along with other basic cluster configurations.

We envision the layered design of ST-Hadoop will act as a research engine for domain

experts and research to extends its capability and builds applications on the top-of

ST-Hadoop.

Chapter 4

Spatio-temporal Indexing in

MapReduce Layer

Input files in Hadoop Distributed File System (HDFS) are organized as a heap structure,

where the input is partitioned into chunks, each of size 64MB. Given a file, the first

64MB is loaded to one partition, then the second 64MB is loaded in a second partition,

and so on. While that was acceptable for typical Hadoop applications (e.g., analysis

tasks), it will not support spatio-temporal applications where there is always a need to

filter input data with spatial and temporal predicates. Meanwhile, spatially indexed

HDFSs, as in SpatialHadoop [14] and ScalaGiST [32], are geared towards queries with

spatial predicates only. This means that a temporal query to these systems will need to

scan the whole dataset. Also, a spatio-temporal query with a small temporal predicate

may end up scanning large amounts of data. For example, consider an input file that

includes all social media contents in the whole world for the last five years or so. A

query that asks about contents in the USA in a certain hour may end up in scanning

all the five years contents of the USA to find out the answer.

ST-Hadoop HDFS organizes input files as spatio-temporal partitions that satisfy

one main goal of supporting spatio-temporal queries. ST-Hadoop imposes temporal

slicing, where input files are spatiotemporally loaded into intervals of a specific time

granularity, e.g., days, weeks, or months. Each granularity is represented as a level in

ST-Hadoop index. Data records in each level are spatiotemporally partitioned, such

23

24

(b) ST-Hadoop
Daily Level

day 1

(a) SpatialHadoop

All data

(c) ST-Hadoop
Monthly Level

month 1

Spatio-temporal query

day 365 month 12

Figure 4.1: HDFSs in ST-Hadoop VS SpatialHadoop

that the boundary of a partition is defined by a spatial region and time interval.

Figures 4.1(a) and 4.1(b) show the HDFS organization in SpatialHadoop and ST-

Hadoop frameworks, respectively. Rectangular shapes represent boundaries of the

HDFS partitions within their framework, where each partition maintains a 64MB of

nearby objects. The dotted square is an example of a spatio-temporal range query. For

simplicity, let’s consider a one year of spatio-temporal records loaded to both frame-

works. As shown in Figure 4.1(a), SpatialHadoop is unaware of the temporal locality of

the data, and thus, all records will be loaded once and partitioned according to their ex-

istence in the space. Meanwhile in Figure 4.1(b), ST-Hadoop loads and partitions data

records for each day of the year individually, such that each partition maintains a 64MB

of objects that are close to each other in both space and time. Note that HDFS parti-

tions in both frameworks vary in their boundaries, mainly because spatial and temporal

locality of objects are not the same over time. Let’s assume the spatio-temporal query

in the dotted square ”find objects in a certain spatial region during a specific month” in

Figures 4.1(a), and 4.1(b). SpatialHadoop needs to access all partitions overlapped with

query region, and hence SpatialHadoop is required to scan one year of records to get

the final answer. In the meantime, ST-Hadoop reports the query answer by accessing

25

few partitions from its daily level without the need to scan a huge number of records.

4.1 Concept of Hierarchy

ST-Hadoop imposes a replication of data to support spatio-temporal queries with differ-

ent granularities. The data replication is reasonable as the storage in ST-Hadoop cluster

is inexpensive, and thus, sacrificing storage to gain more efficient performance is not

a drawback. Updates are not a problem with replication, mainly because ST-Hadoop

extends MapReduce framework that is essentially designed for batch processing, thereby

ST-Hadoop utilizes incremental batch accommodation for new updates.

The key idea behind the performance gain of ST-Hadoop is its ability to load the

data in Hadoop Distributed File System (HDFS) in a way that mimics spatio-temporal

index structures. To support all spatio-temporal operations including more sophisti-

cated queries over time, ST-Hadoop replicates spatio-temporal data into a Temporal

Hierarchy Index. Figures 4.1(b) and 4.1(c) depict two levels of days and months in ST-

Hadoop index structure. The same data is replicated on both levels, but with different

spatio-temporal granularities. For example, a spatio-temporal query asks for objects

in one month could be reported from any level in ST-Hadoop index. However, rather

than hitting 30 days’ partitions from the daily-level, it will be much faster to access less

number of partitions by obtaining the answer from one month in the monthly-level.

A system parameter can be tuned by ST-Hadoop administrator to choose the number

of levels in the Temporal Hierarchy index. By default, ST-Hadoop set its index structure

to four levels of days, weeks, months and years granularities. However, ST-Hadoop users

can easily change the granularity of any level. For example, the following code loads taxi

trajectory dataset from ”NYC” file using one-hour granularity, Where the Level and

Granularity are two parameters that indicate which level and the desired granularity,

respectively.

trajectory = LOAD ’NYC’ as

(id:int, STPoint(loc:point, time:timestamp))

Level:1 Granularity:1-hour;

26

4.2 Index Construction

Figure 4.2 illustrates the indexing construction in ST-Hadoop, which involves two scan-

ning processes. The first process starts by scanning input files to get a random sample,

and this is essential because the size of input files is beyond memory capacity, and thus,

ST-Hadoop obtains a set of records to a sample that can fit in memory. Next, ST-

Hadoop processes the sample n times, where n is the number of levels in ST-Hadoop

index structure. The temporal slicing in each level splits the sample into m number

of slice (e.g., slice1.m). ST-Hadoop finds the spatio-temporal boundaries by applying

a spatial indexing on each temporal slice individually. As a result, outputs from tem-

poral slicing and spatial indexing collectively represent the spatio-temporal boundaries

of ST-Hadoop index structure. These boundaries will be stored as meta-data on the

master node to guide the next process. The second scanning process physically assigns

data records in the input files with its overlapping spatio-temporal boundaries. Note

that each record in the dataset will be assigned n times, according to the number of

levels.

ST-Hadoop index consists of two-layer indexing of a temporal and spatial. The con-

ceptual visualization of the index is shown in the right of Figure 4.2, where lines signify

how the temporal index divided the sample into a set of disjoint time intervals, and tri-

angles symbolize the spatial indexing. This two-layer indexing is replicated in all levels,

where in each level the sample is partitioned using different granularity. ST-Hadoop

trade-off storage to achieve more efficient performance through its index replication. In

general, the index creation of a single level in the Temporal Hierarchy goes through four

consecutive phases, namely sampling, temporal slicing, spatial indexing, and physical

writing.

4.2.1 Phase I Sampling

The objective of this phase is to approximate the spatial distribution of objects and

how that distribution evolves over time, to ensure the quality of indexing; and thus,

enhance the query performance. This phase is necessary, mainly because the input files

are too large to fit in memory. ST-Hadoop employs a map-reduce job to efficiently read

a sample through scanning all data records. We fit the sample into an in-memory simple

27

Sa
m

pl
in

g
Bu

lk-
loa

din
g

S
c
a
n

 I

S
ca

n
 I

I

 s
am

pl
e

Ti
m

e
S

lic
e

Le
ve

l 1

Sl
ic

e
1.

1

Sl
ic

e
1.

m

Sl
ic

e
1.

2

Sp
at

ia
l I

nd
ex

in
g

Sp
at

ia
l I

nd
ex

in
g

Sp
at

ia
l I

nd
ex

in
g

Sp
at

io
-te

m
po

ra
l

Bo
un

da
rie

s
Le

ve
l 1

Ph
ys

ic
al

 W
rit

in
g

Le
ve

l 1

Ph
ys

ic
al

 W
rit

in
g

Le
ve

l n

Ti
m

e
S

lic
e

Le
ve

l n

Sp
at

ia
l I

nd
ex

in
g

Sp
at

ia
l I

nd
ex

in
g

Sp
at

ia
l I

nd
ex

in
g

Sp
at

io
-te

m
po

ra
l

Bo
un

da
rie

s
Le

ve
l n

Le
ve

l 1

Le
ve

l n
Sl

ic
e

n.
1

Sl
ic

e
n.

m

Sl
ic

e
n.

2

F
ig
u
re

4.
2:

In
d
ex
in
g
in

S
T
-H

ad
oo

p

28

data structure of a length (L), that is an equal to the number of HDFS blocks, which

can be directly calculated from the equation L = (Z/B), where Z is the total size of

input files, and B is the HDFS block capacity (e.g., 64MB). The size of the random

sample is set to a default ratio of 1% of input files, with a maximum size that fits in

the memory of the master node. This simple data structure represented as a collection

of elements; each element consist of a time instance and a space sampling that describe

the time interval and the spatial distribution of spatio-temporal objects, respectively.

Once the sample is scanned, we sort the sample elements in chronological order to their

time instance, and thus the sample approximates the spatio-temporal distribution of

input files.

4.2.2 Phase II Temporal Slicing

In this phase ST-Hadoop determines the temporal boundaries by slicing the in-memory

sample into multiple time intervals, to efficiently support a fast random access to a se-

quence of objects bounded by the same time interval. ST-Hadoop employs two temporal

slicing techniques, where each manipulates the sample according to specific slicing char-

acteristics: (1) Time-partition, slices the sample into multiple splits that are uniformly

on their time intervals, and (2) Data-partition where the sample is sliced to the degree

that all sub-splits are uniformly in their data size. The output of this phase finds the

temporal boundary of each split, that collectively cover the whole time domain.

The rational reason behind ST-Hadoop two temporal slicing techniques is that for

some spatio-temporal archive the data spans a long time-interval such as decades, but

their size is moderated compared to other archives that are daily collect terabytes

or petabytes of spatio-temporal records. ST-Hadoop proposed the two techniques to

slice the time dimension of input files based on either time-partition or data-partition,

to improve the indexing quality, and thus gain efficient query performance. The

time-partition slicing technique serves best in a situation where data records are

uniformly distributed in time. Meanwhile, data-partition slicing best suited with data

that are sparse in their time dimension.

∗ Data-partition Slicing. The goal of this approach is to slice the sample to

29

HDFS

Figure 4.3: Data-Slice

the degree that all sub-splits are equally in their size. Figure 4.3 depicts the

key concept of this slicing technique, such that a slice1 and slicen are equally

in size, while they differ in their interval coverage. In particular, the temporal

boundary of slice1 spans more time interval than slicen. For example, consider

128MB as the size of HDFS block and input files of 1 TB. Typically, the data

will be loaded into 8 thousand blocks. To load these blocks into ten equally

balanced slices, ST-Hadoop first reads a sample, then sort the sample, and apply

Data-partition technique that slices data into multiple splits. Each split contains

around 800 blocks, which hold roughly a 100 GB of spatio-temporal records. There

might be a small variance in size between slices, which is expectable. Similarly,

another level in ST-Hadoop temporal hierarchy index could loads the 1 TB into

20 equally balanced slices, where each slice contains around 400 HDFS blocks.

ST-Hadoop users are allowed to specify the granularity of data slicing by tuning

α parameter. By default four ratios of α is set to 1%, 10%, 25%, and 50% that

create the four levels in ST-Hadoop index structure.

30

Size

 (GB)

1

....

Figure 4.4: Time-Slice

∗ Time-partition Slicing. The ultimate goal of this approach is to slices the input

files into multiple HDFS chunks with a specified interval. Figure 4.4 shows the

general idea, where ST-Hadoop splits the input files into an interval of one-month

granularity. While the time interval of the slices is fixed, the size of data within

slices might vary. For example, as shown in Figure 4.4 Jan slice has more HDFS

blocks than April.

ST-Hadoop users are allowed to specify the granularity of this slicing technique,

which specified the time boundaries of all splits. By default, ST-Hadoop finer gran-

ularity level is set to one-day. Since the granularity of the slicing is known, then a

straightforward solution is to find the minimum and maximum time instance of the

sample, and then based on the intervals between the both times ST-Hadoop hashes el-

ements in the sample to the desired granularity. The number of slices generated by the

time-partition technique will highly depend on the intervals between the minimum and

the maximum times obtained from the sample. By default, ST-Hadoop set its index

structure to four levels of days, weeks, months and years granularities.

31

4.2.3 Phase III Spatial Indexing

This phase ST-Hadoop determines the spatial boundaries of the data records within

each temporal slice. ST-Hadoop spatially index each temporal slice independently; such

decision handles a case where there is a significant disparity in the spatial distribution

between slices, and also to preserve the spatial locality of data records. Using the same

sample from the previous phase, ST-Hadoop takes the advantages of applying different

types of spatial bulk loading techniques in HDFS that are already implemented in

SpatialHadoop such as Grid, R-tree, Quad-tree, and Kd-tree. The output of this phase

is the spatio-temporal boundaries of each temporal slice. These boundaries stored as a

meta-data in a file on the master node of ST-Hadoop cluster. Each entry in the meta-

data represents a partition, such as < id,MBR, interval, level >. Where id is a unique

identifier number of a partition on the HDFS, MBR is the spatial minimum boundary

rectangle, interval is the time boundary, and the level is the number that indicates

which level in ST-Hadoop temporal hierarchy index.

4.2.4 Phase IV Physical Writing

Given the spatio-temporal boundaries that represent all HDFS partitions, we initiate

a map-reduce job that scans through the input files and physically partitions HDFS

block, by assign data records to overlapping partitions according to the spatio-temporal

boundaries in the meta-data stored on the master node of ST-Hadoop cluster. For each

record r assigned to a partition p, the map function writes an intermediate pair ⟨p, r⟩

Such pairs are then grouped by p and sent to the reduce function to write the physical

partition to the HDFS. Note that for a record r will be assigned n times, depends on

the number of levels in ST-Hadoop index.

4.3 Index Maintenance

This index structure can be described as a temporal hierarchy for spatio-temporal indices

as shown in Figure 4.5. ST-Hadoop merges a set of temporal slices from the lower

most layer to create a slice with a larger time interval. For simplicity let’s assume the

lowermost layer was sliced into days, then ST-Hadoop combines a set days to create a

32

Time
Hierarchy

spatio-temporal
indexes

t1

Low

High

GranularityGlobal
Index

day

week

month

Figure 4.5: Temporal Hierarchy Index

week-slice in the layer above. Likewise, ST-Hadoop reads a sample from the merged

set to bulk load its spatio-temporal index. Note that this step is necessary as the

size and the distribution of objects vary from a lower (i.e., day) to the above layer

(i.e., week). For each layer in the hierarchical index, ST-Hadoop iterates two-level bulk

loading techniques of a temporal and then spatial, with different time granularity. A

system parameter can be tuned by ST-Hadoop administrator to choose the number of

layers and their granularity. By default, ST-Hadoop set its temporal hierarchy index to

four layers with a resolution of days, weeks, months and years, respectively. Similarly,

the granularity of the four layers in Data-based slicing will have different slicing ratios

(α), such as 1%, 10%, 25%, and 50%.

ST-Hadoop in a regular base such as every day maintains its Temporal Hierarchy

Index, to reflects updates on the index with the incoming data. First, it creates a new

two-level indexing in the lowest layer using one MapReduce job to index spatio-temporal

records similar to the same granularity of that layer. Then check if the newly created

index will help to create an index in the above layer, if not then it will be carried out for

a next maintenance call. During the maintenance, if there is any indices contribute to

the above layer, then data of these indices will be merged, and a new two-level indexing

will be created with a bigger granularity.

33

Table 4.1: Twitter Datasets

Twitter Data Size Num-Records Time window
Large 10TB > 1 Billion > 3 years
Average-Large 6.7TB 692 Million 1 years
Medium-Large 3TB 152 Million 9 months
Moderate-Large (1TB) 115 Million 3 months

4.4 Experiments

This section provides an extensive experimental performance study of ST-Hadoop com-

pared to SpatialHadoop and Hadoop. We decided to compare with this two frameworks

and not other spatio-temporal DBMSs for two reasons. First, as our contributions are

all about spatio-temporal data support in Hadoop. Second, the different architectures

of spatio-temporal DBMSs have great influence on their respective performance, which

is out of the scope of this paper. Interested readers can refer to a previous study [77]

which has been established to compare different large-scale data analysis architectures.

In other words, ST-Hadoop is targeted for Hadoop users who would like to process large-

scale spatio-temporal data but are not satisfied with its performance. The experiments

are designed to show the effect of ST-Hadoop indexing and the overhead imposed by its

new features compared to SpatialHadoop. However, ST-Hadoop achieves two orders of

magnitude improvement over SpatialHadoop and Hadoop.

4.4.1 Experimental Settings

Cluster Setup. All experiments are conducted on a dedicated internal cluster of 24

nodes. Each has 64GB memory, 2TB storage, and Intel(R) Xeon(R) CPU 3GHz of 8

core processor. We use Hadoop 2.7.2 running on Java 1.7 and Ubuntu 14.04.5 LTS.

Table 4.2 summarizes the configuration parameters used in our experiments. Default

parameters (in parentheses) are used unless mentioned.

Datasets. To test the performance of ST-Hadoop we use the Twitter archived

dataset [2]. The dataset collected using the public Twitter API for more than three

years, which contains over 1 Billion spatio-temporal records with a total size of 10TB.

To scale out time in our experiments we divided the dataset into different time intervals

34

Table 4.2: ST-Hadoop Experiments Parameters

Parameter Values (default)
HDFS block capacity (B) 32, 64, (128), 256 MB
Cluster size (N) 5, 10, 15, 20, (23)
Selection ratio (ρ) (0.01), 0.02, 0.05, 0.1, 0.2, 0.5, 1.0
Data-partition slicing ratio(α) 0.01, 0.02, 0.025, 0.05, (0.1), 1
Time-partition slicing granularity(σ) (days), weeks, months, years
Spatio-temporal proximity (α) 0,0.2, (0.5), 0.6, 0.8, 1.0

and sizes, respectively as shown in Table 4.1. The default size used is 1TB which is big

enough for our extensive experiments unless mentioned.

4.4.2 Index Construction

Figure 4.6(a) gives the total time for building the spatio-temporal index in ST-Hadoop.

This is a one time job done for input files. In general, the figure shows excellent scal-

ability of the index creation algorithm, where it builds its index using data-partition

slicing for a 1TB file with more than 115 Million records in less than 15 minutes. The

data-partition technique turns out to be the fastest as it contains fewer slices than

time-partition. Meanwhile, the time-partition technique takes more time, mainly be-

cause the number of partitions are increased, and thus increases the time in physical

writing phase.

In Figure 4.6(b), we configure the temporal hierarchy indexing in ST-Hadoop to con-

struct five levels of the two-layer indexing. The temporal indexing uses Data-partition

slicing technique with different slicing ratio α. We evaluate the indexing time of each

level individually. Because the input files are sliced into splits according to the slicing

ratio, which directly effects on the number of partitions. In general with stretching the

slicing ratio, the indexing time decreases, mainly because the number of partitions will

be much less. However, note that in some cases the spatial distribution of the slice

might produce more partitions as in shown with 0.25% ratio.

35

 0

 200

 400

 600

 800

 1000

 1200

1 3 6.7 10

T
im

e
 (

m
in

)

Input Size (TB)

Data-partition
Time-partition

(a) Input Files)

 15

 20

 25

 30

 35

 40

 45

 50

 55

0.01 0.0125 0.025 0.05 0.1

T
im

e
 (

m
in

)

Slicing Ratio α

(b) Data-partition

Chapter 5

Spatio-temporal Operations on

MapReduce

The combination of the spatiotemporally load balancing with the temporal hierarchy

index structure gives the core of ST-Hadoop, that enables the possibility of efficient

and practical realization of spatio-temporal operations, and hence provides orders of

magnitude better performance over Hadoop and SpatialHadoop. In this section, we

discuss several fundamental spatio-temporal operations, namely, range (Section 5.1),

kNN (Section 5.2), and join (Sections 5.3) as case studies of how to exploit the spatio-

temporal indexing in ST-Hadoop. Other operations can also be realized following similar

approaches.

5.1 Spatio-temporal Range Query

A range query is specified by two predicates of a spatial area and a temporal interval, A

and T , respectively. The query finds a set of records R that overlap with both a region A

and a time interval T , such as ”finding geotagged news in California area during the last

three months” . ST-Hadoop employs its spatio-temporal index described in Section 4 to

provide an efficient algorithm that runs in three steps, temporal filtering, spatial search,

and spatio-temporal refinement, described below.

In the temporal filtering step, the hierarchy index is examined to select a subset

of partitions that cover the temporal interval T . The main challenge in this step is

36

37

that the partitions in each granularity cover the whole time and space, which means the

query can be answered from any level individually or we can mix and match partitions

from different level to cover the query interval T . Depending on which granularities are

used to cover T , there is a tradeoff between the number of matched partitions and the

amount of processing needed to process each partition. To decide whether a partition

P is selected or not, ST-Hadoop computes the coverage ratio along with the number of

partitions needed to be processed and then selects the granularity based on the minimum

number of partitions.

In the spatial search step, Once the temporal partitions are selected, the spatial

search step applies the spatial range query against each matched partition to select

records that spatially match the query range A. Keep in mind that each partition is

spatiotemporally indexed which makes queries run very efficiently. Since these partitions

are indexed independently, they can all be processed simultaneously across computation

nodes in ST-Hadoop, and thus maximizes the computing utilization of the machines.

Finally in the spatio-temporal refinement step, compares individual records re-

turned by the spatial search step against the query interval T , to select the exact match-

ing records. This step is required as some of the selected temporal partitions might

partially overlap the query interval T and they need to be refined to remove records

that are outside T . Similarly, there is a chance that selected partitions might partially

overlap with the query area A, and thus records outside the A need to be excluded from

the final answer.

5.2 Spatio-temporal kNN Query

The spatio-temporal nearest neighbor query takes a spatio-temporal point Q, a

spatio-temporal predicates θ, a spatio-temporal ranking function Fα, and an integer k

as an input, and returns the k spatiotemporally closest points to Q such that: (1) The

k points are within the temporal distance θtime. (2) The k points are not far from the

spatial distance θspace. (3) The top k points are ranked according to the spatio-temporal

ranking function Fα that combines the spatial proximity and the temporal closeness

of p ∈ P to the query point Q. For example, a crime analyst might be interested

to find the relationship between crimes, which can be described as ”find the top 10

38

closest crimes to a given crime Q in downtown that took place on the 2nd during last

year”. With the spatio-temporal information of the query point Q, ST-Hadoop adds a

spatio-temporal ranking function Fα to the kNN query. The ranking function allows

ST-Hadoop to compromise between spatial proximity and temporal closeness of its

top-k points to the the query point.

Definition Spatio-temporal Ranking Function.

The ranking function Fα indicates whether a user query leans toward spatial proximity

or temporal concurrency. If α = 1, then the user cares about spatial closeness, i.e.,

the top-k results will be spatially closest to the query point. If α = 0, then the user

cares about temporal recency, i.e., the top-k results will be temporally recent to query

point. Meanwhile, if α value is between zero and one, then the user cares about

spatio-temporal proximity. The spatio-temporal proximity can be computed with the

following mathematical equation.

Fα(Q, p) = α× SpatialDist(Q.loction, p.location)

+ (1− α)× TemporalDist(Q.timestamp, p.timestamp)

The spatio-temporal ranking function Fα dependents on both SpatialDist and the

TemporalDist functions, which they are normalized and monotonic. Each has a value

range from zero to one. The SpatialDist is the Euclidean distance between two points’

locations divided by the maximum spatial distance θspace, where θspace is the distance

from a query point Q to the kth furthest location. Meanwhile, the TemporalDist is

that ratio of delta times of Q and p to the total temporal interval θtime. The temporal

interval θtime is the time distance from the query point Q to the kth furthest point in

time.

Figure 5.1 gives a landscape of all possible ways to process the kNN operation in

ST-Hadoop. Without loss of generality, let's suppose that the ST-Hadoop indexes input

files into intervals of days, and a user is interested in discovering the top k points to a

given query point Q during the last year. As shown in the top of the Figure, One extreme

when α is equal to one, which indicates that the user cares about spatial proximity in

39

their k result. Hence, all partitions overlap with query point Q needs to be processed

from the last year. On the opposite side if α is equal to zero, then the user cares about

temporal closeness in their k result. This means that at most we are going to process

partitions at the same time interval. Between those two extremes reside the challenge,

such that to what extent we need to process partitions from other time intervals to find

the top-k points. ST-Hadoop applies a simple and efficient technique that capable of

pruning the search space to process only n number of partitions, which guarantee that

those partitions will have the final k answers.

In Hadoop, a kNN query scans entire points in input files, calculates their spatio-

temporal similarity distance to the query point Q, and provides the top-k to Q [78, 79].

Meanwhile, in spatially indexed HDFS's [8, 14, 32, 80], only spatial kNN is supported.

This means that the kNN operation on a spatially indexed HDFS also needs to scan

all points in input files to search for the temporal closeness. ST-Hadoop considers

both space and time; and thus, in its spatio-temporal kNN query exploits simple

pruning techniques to achieve orders of magnitude better performance. ST-Hadoop

kNN algorithm runs in three phases, kNN initial answer, correctness check, and kNN

refinement.

In the kNN initial answer phase, we come up with an initial answer of the k

closest points to Q within a single partition in the HDFS. ST-Hadoop first locates the

partition that includes Q, by feeding the SpatioTmeporalFileSplitter with a filter func-

tion that selects only the overlapping partition from the temporal interval. ST-Hadoop

exploits a SpatioTmeporalRecordReader to reads the selected partition, then executes a

traditional kNN algorithm to produce the initial k answers. The function Fα computes

the spatio-temporal distance between any points and the query point Q.

In the correctness check phase, we check if the initial k answer can be considered

final. The main idea of this phase is to draw a test Cylinder centered at Q with radius

r equal to the spatial distance from Q to its kth furthest neighbor in space. The height

l of the cylinder is equal to the temporal distance from Q to its kth furthest neighbor

in time. The radius and the height of the cylinder change only if there is potential

point dominate the score of the ranking functions of the furthest kth point in the initial

40

Query point Q
day 365day 1

Spatial

Spatio-temporal

Temporal
0

1

day 1

day 1 day nday 1-n

Figure 5.1: Landscape of spatio-temporal kNN operation

results in any dimension, i.e., space or time. If the cylinder does not overlap with any

partitions spatially or temporally, then we terminate the process, and the initial answer

is considered final. Otherwise, we proceed to the next phase.

Three cases encounter when we draw the test cylinder to check for correctness in

this phase as follows.

• Case 1 (α = 1): If a user specifies α with 1, then the user cares more about spatial

proximity than temporal. This means that we need to check the correctness of all time

intervals. As shown in the top of Figure 5.1, the query point Q overlap with all year

partitions. If input files only indexed in one level, then the cylinder height is equal to

the whole θtime. On the other hand, if the input files indexed into a temporal hierarchy,

then rather than accessing a huge number of partitions, ST-Hadoop feeds the temporal

query predicate θtime to its query optimizer. The query optimizer will generate an

execution plan that selects the overlap partition with Q from a lower granularity level,

i.e., yearly level. Next, we execute a traditional kNN algorithm to produce new initial

k answers again. The new height of the cylinder is going to be equal to zero. Next, we

draw a cylinder centered at Q with a radius equal to the furthest kth neighbor. If the

41

Figure 5.2: Correctness check Final Answer

cylinder does not overlap with any partition other than Q, then we terminate, and the

new initial answer considered final. Otherwise, we processed to the next phase.

• Case 2 (α = 0): If a user specifies α with zero, then the user cares more about

temporal proximity. This means that we need to check the correctness from the same

time interval. First, we draw a cylinder centered at Q with a radius equal to the

spatial distance from Q to its kth furthest neighbor, obtained from the initial answer.

The height of the cylinder is equal to zero. If the cylinder does not overlap with any

partition other than Q, then we terminate the process, and the initial answer considered

final. Otherwise, we processed to the next phase.

Figure 5.2 gives an example of a kNN query for point Q with a k = 3 and α is

equal to zero. The shaded partitions are the one considered in the processing. The

dotted test cylinder has a height equal to zero, composed from the initial answer p1,

p5, p16. The cylinder does not overlap with any other partitions than Q; thus, the

initial answer is considered final.

42

Figure 5.3: Correctness Check when 0 ≤ α ≤ 1

• Case 3 (0 ≤ α ≤ 1): If a user specifies any α value between zero and one, then

this means that the user cares about the spatio-temporal proximity. The main idea is

to gradually draw the cylinder and make sure that the kth furthest neighbor point is

not dominated by any other points in both dimensions, i.e., space and time. A point

dominates the kth point if it is as good or better in ranking score, and better at least

in one dimension of either spatial or temporal.

Figure 5.3 illustrates the idea of test cylinder. The query point Q initially overlap

with a single time interval, e.g., day 1. We check if some points either in the next or

previous interval can dominate the score of the kth furthest neighbor from the same

initial interval, e.g., day 1. If a dominance point exists, then we modify the cylinder

height and radius accordingly in the next interval. Notice that the radius of the

cylinder in next time interval is getting smaller, this is because we gradually draw

the test cylinder. We continue this process until we reach a time interval that has no

dominance point that can dominate the kth furthest point.

The cautiously drawing of the test cylinder algorithm has two consecutive steps as

43

follows.

Step I: In this step, we check if there is a point from a different partition(s) exist

within the same temporal interval, such that it can dominate the ranking score

of the initial furthest kth neighbor. In other words, in this step, we determine

the radius of the cylinder within the same temporal interval. First, Starting from

the partition that overlap with Q from the same time interval, we draw the circle

of the cylinder centered at Q with a radius equal to the spatial distance of the

kth furthest neighbor. If partitions overlap with the circle's MBR, then we check

if the nearest point from the overlapped partition(s) can dominate the score of

the initial furthest kth. If a dominance exists, then we consider processing this

partition, update our furthest kth in the initial answer with the dominating point,

and subsequently, we proceed to the next step.

Step II: In this step, we modify the height of the test cylinder by checking if there

is a point from the next or the previous temporal interval can dominate the furthest

kth neighbor. For the sake of simplicity, let's consider the next temporal interval in

our discussion. However, the presented technique is operated to examine interval

in both directions. First, we find the partition that overlaps with Q from the next

time interval. Then, we check if the temporal distance along with the minimum

spatial distance between Q and the new partition can dominate the furthest kth.

If the score beats the kth, then a dominance might exist in that partition. Thus,

we consider processing this partition by modifying the height of the cylinder.

Recursively we repeat the processing of the two steps with every new interval

appended to the cylinder height until no further dominance exist. Finally, if no

dominance point exists, then we can proceed to the next phase.

Figure 5.3 gives an example of a kNN query that finds the top-4 points for point Q

with α value equal to 0.2 over the last year. ST-Hadoop starts from the Q partition

on day 1. First, we find the top-4 neighbor from day 1, and then we insert the score

of the furthest 4th neighbor from day 1 to a priority queue, e.g., p16. Iterate over the

other overlap partitions from next temporal interval, e.g., days 2. In each iteration

ST-Hadoop checks if the ranking score of the minimum distance point of the new

partition can beat the ranking score of the p16. If it beats, then this new partition is

44

Figure 5.4: Refinement Final Answer

considered, and we modify the cylinder height and radius respectively. As depicted in

Figure 5.3, p6 in day 2 dominates p16. We repeat this process until no dominance point

can be found in the next temporal interval. As shown in the example after the third

day, we do not need to modify the height of the cylinder, since there is no dominance

point exist any further. Henceforward, other partitions will be ignored and no further

computation required, and we can proceed to the next phase.

In the kNN refinement phase, We check if there are points in the overlap parti-

tions might contribute to the final answer. If α is equal to zero or one, then we run a

spatial range query to get all points inside the MBR of the test circle, as the cylinder

height is equal to zero. Meanwhile, if 0 ≤ α ≤ 1, then we run we run a spatio-temporal

range query to get all points inside the MBR of the test cylinder. The cylinder radius

and height are obtained from the previous phase. Finally, we scan over the range query

result and process it with the traditional kNN algorithm to find the final answer.

Figure 5.4 and 5.3 gives two examples of refinement phase. The shaded partitions

are the ones that are considered in the range query. In Figure 5.4, the circle of the

45

Human
Trajectory

Birds
Trajectory

Overlapping
Partitions

d
t

Figure 5.5: Spatio-temporal Join

cylinder intersects with the three partitions from the same temporal interval. In that

case, the height of the cylinder is equal to zero. In Figure 5.3 we illustrate the test

cylinder with a height equal to 3 temporal intervals. Similarly, the shaded partitions

are the only one to be considered in the range query. For each time interval, a circle has

a different radius, which collectively forms the test cylinder. Once we get the results, we

apply the traditional kNN algorithm to find the final top-4 answers, i.e., {p5, p3, p6, p1}

in the refinement phase.

46

5.3 Spatio-temporal Join

Given two indexed dataset R and S of spatio-temporal records, and a spatio-temporal

predicate θ. The join operation retrieves all pairs of records ⟨r, s⟩ that are similar to

each other based on θ. For example, one might need to understand the relationship

between the birds death and the existence of humans around them, which can be

described as ”find every pairs from bird and human trajectories that are close to each

other within a distance of 1 mile during the last week”. The join algorithm runs in two

steps as shown in Figure 5.5, hash and join.

In the hashing step, the map function scans the two input files and hashes each

record to candidate buckets. The buckets are defined by partitioning the spatio-

temporal space using the two-layer indexing of temporal and spatial, respectively.

The granularity of the partitioning controls the tradeoff between partitioning over-

head and load balance, where a more granular-partitioning increases the replication

overhead, but improves the load balance due to the huge number of partitions, while

a less granular-partitioning minimizes the replication overhead, but can result in a

huge imbalance especially with highly skewed data. The hash function assigns each

point in the left dataset, r ∈ R, to all buckets within an Euclidean distance d and

temporal distance t, and assigns each point in the right dataset, s ∈ S, to the one

bucket which encloses the point s. This ensures that a pair of matching records

⟨r, s⟩ are assigned to at least one common bucket. Replication of only one dataset

(R) along with the use of single assignment, ensure that the answer contains no replicas.

In the joining step, each bucket is assigned to one reducer that performs a tradi-

tional in-memory spatio-temporal join of the two assigned sets of records from R and S.

We use the plane-sweep algorithm which can be generalized to multidimensional space.

The set S is not replicated, as each pair is generated by exactly one reducer, and thus

no duplicate avoidance step is necessary.

47

5.4 Experiments

In our experiments, we compare the performance of a ST-Hadoop spatio-temporal range,

kNN, and join query proposed in this chapter 5 to their spatial-temporal implementa-

tions on-top of SpatialHadoop and Hadoop. For range query, we use system throughput

as the performance metric, which indicates the number of MapReduce jobs finished per

minute. To calculate the throughput, a batch of 20 queries is submitted to the system,

and the throughput is calculated by dividing 20 by the total time of all queries. The

20 queries are randomly selected with a spatial area ratio of 0.001% and a temporal

window of 24 hours unless stated. This experimental design ensures that all machines

get busy and the cluster stays fully utilized. For spatio-temporal join, we use the pro-

cessing time of one query as the performance metric as one query is usually enough to

keep all machines busy. The experimental results for range, kNN, and join queries are

reported in Sections 5.4.1, 5.4.2 , and 5.4.3, respectively.

5.4.1 Spatiotemporal Range Query

In Figure 5.6, we increase the size of input from 1TB to 10TB, while measuring the job

throughput. ST-Hadoop achieves more than two orders of magnitude higher throughput,

due to the temporal load balancing of its spatio-temporal index. As for SpatialHadoop,

it needs to scan more partitions, which explain why the throughput of SpatialHadoop

decreases with the increase of data records in spatial space. Meanwhile, ST-Hadoop

throughput remains stable as it processes only partition(s) that intersect with both

space and time. Note that it is always the case that Hadoop needs to scan all HDFS

blocks, which gives the worst throughput compared to SpatialHadoop and ST-Hadoop.

Figure 5.7 shows the effect of configuring the HDFS block size on the job through-

put. ST-Hadoop manages to keep its performance within orders of magnitude higher

throughput even with different block sizes. This is mainly because ST-Hadoop parti-

tioning techniques utilize spatiotemporal data locality across HDFS blocks, in which

this will result in much performance. However, increasing the HDFS block size will

result in accommodates more data within the block; and thus, will incur overhead on

the range query performance.

Extensive experiments are shown in Figure 5.8, analyzed how slicing ratio (α) can

48

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

1 3 6.7 10

T
h

ro
u

g
h

p
u

t
(J

o
b

/m
in

)

Input Size (TB)

SpatialHadoop
ST-Hadoop

Hadoop

Figure 5.6: Range Query VS Input files (TB)

affect the performance of range queries. ST-Hadoop keeps its higher throughput around

the default HDFS block size, as it maintains the load balance of data records in its two-

layer indexing. As expected expanding the block size from its default value will reduce

the performance on SpatialHadoop and ST-Hadoop, mainly because blocks will carry

more data records.

5.4.2 K-Nearest-Neighbor Queries (kNN)

We extensively measure the performance of kNN query processing on Hadoop [78] and

ST-Hadoop for 10 TB of twitter dataset. In experiments, 20 query locations are set at

random points (i.e., random points in both date and time) sampled from the input file,

α is set to 0.4, the number of k is set to 100. Unless otherwise mentioned.

Figure 5.9 measures system throughput when increasing the input size from 1 TB to

10 TB. ST-Hadoop has one to two orders of magnitude higher throughput. Hadoop and

49

 0

 10

 20

 30

 40

 50

 60

 70

 80

32 64 128 256

T
h

ro
u

g
h

p
u

t
(J

o
b

/m
in

)

HDFS Block Size (MB)

Data-partition
Time-partition

Hadoop

Figure 5.7: Range Query VS Block size (MB)

SpatialHadoop performances decrease dramatically as they need to process the whole

file while ST-Hadoop maintains its performance as it processes one partition regardless

of the file size. Since SpatialHadoop is not aware of the temporal locality of the data,

it needs to process multiple partitions to finds the k nearest neighbor in a specific day,

and in a worst case it might end up processing all partitions. Hence, ST-Hadoop keeps

its speedup at two orders of magnitude.

Figure 5.10 gives the effect of increasing k from 1 to 40K on 10 TB dataset. ST-

Hadoop gives an order of magnitude performance with both single level index and op-

timized query plan that uses ST-Hadoop hierarchy index. ST-Hadoop achieves two or-

ders of magnitude performance compared to Hadoop kNN implementation. ST-Hadoop

efficiently handles spatio-temporal kNN operation. However, we notice that the job

throughput decreases when k is more than eight thousand, where more partitions are

required to be processed. ST-Hadoop is consistently better than Hadoop. While the

50

 0

 10

 20

 30

 40

 50

 60

 70

32 64 128 256

T
h

ro
u

g
h

p
u

t
(J

o
b

/m
in

)

HDFS Block Size (MB)

α = 0.1
α = 0.05
α = 0.025
α = 0.0125
α = 0.01

Figure 5.8: Range query with Block size VS Slicing ratio (α)

performance with single level index tends to decrease with the increased number of the

nearest neighbor k. In the meantime, the optimized query that uses the hierarchy index

remains stable for a higher number of neighbors. However, at some point, it will de-

crease. This is expected as the number of selected partitions increase with the increased

of the k number.

In Figure 5.11, shows how the job throughput affected by the value of α in the

ranking function. The query point Q is fixed at random location on the first day of

a month. The increase of α means that ST-Hadoop might need to process several

partitions from different days and also nearby partitions within the same days to find

the nearest neighbor. As the α value increases, the performance of ST-Hadoop stays at

two orders of magnitude higher than Hadoop. Without having ST-Hadoop hierarchy

index, the performance slightly decrease. This is expected as query cares more about

spatial proximity, and thus, 30 partitions will need to be processed. The reason for the

51

 0

 5

 10

 15

 20

1 3 6.7 10

T
h

ro
u

g
h

p
u

t
(J

o
b

/m
in

)

Input Size (TB)

SpatialHadoop
ST-Hadoop Hierarchy

Hadoop

Figure 5.9: The execution of kNN query on different input files

 0

 5

 10

 15

 20

1 10 100 1K 10K 40K

T
h

ro
u

g
h

p
u

t
(J

o
b

/m
in

)

k

ST-Hadoop Single Level
ST-Hadoop Hierarchy

Hadoop

Figure 5.10: kNN query with various k

steady throughput by ST-Hadoop goes to the execution plan supplied by ST-Hadoop

query optimizer. The query optimizer selects a single partition that overlap with the

query point Q, which best fit to cover the whole temporal range. When α = 0 the

query optimizer overlaps Q with a single partition from the highest granularity (e.g,

daily level). If α = 1, then the query optimizer selects a single partition from a lower

granularity level(e.g., month). Meanwhile, if α is in between that two extremes, then the

query optimizer selects a single partition that either extends over the whole temporal

range or partially cover it based on the ranking score of the furthest k.

52

 0

 5

 10

 15

 20

0 0.2 0.5 0.6 0.8 1

T
h

ro
u

g
h

p
u

t
(J

o
b

/m
in

)

Spatio-temporal proximity α

ST-Hadoop Single Level
ST-Hadoop Hierarchy

Hadoop

Figure 5.11: kNN throughput while varying (α) of Ranking Function

5.4.3 Spatiotemporal Join

Figure 5.12 gives the results of the spatio-temporal join experiments, where we compare

our join algorithm for ST-Hadoop with MapReduce implementation of the spatial hash

join algorithm [81]. Typically, in this join algorithm we perform the following query,

”find every pairs that are close within an Euclidean distance of 1mile and a temporal

distance of 2days”, this join query is executed on both ST-Hadoop and Hadoop and the

response times are compared. The y-axis in the figure represents the total processing

time, while the x-axis represents the join query on numbers of days×days in ascending

order. With the increase of joining number of days, the performance of ST-Hadoops

join increases, because it needs to join more indexes from the temporal hierarchy. In

general, ST-Hadoop gives the best results as ST-Hadoop index replicates data in several

layers, and thus ST-Hadoop significantly decreases the processing of non-overlapping

partitions, as only partitions that overlap with both space and time are considered in

the join algorithm. Meanwhile, the same joining algorithm without using ST-Hadoop

index gives the worst performance for joining spatio-temporal data, mainly because the

algorithm takes into its consideration all data records from one dataset. However, ST-

Hadoop only joins the indexes that are within the temporal range, which significantly

outperforms the join algorithm with double to triple performance.

53

 0

 100

 200

 300

 400

 500

2x2 3x3 5x5 30x30 2x2

T
im

e
 (

m
in

)

Number of Days

ST-Hadoop
Hadoop

Figure 5.12: Spatio-temporal Join

Chapter 6

Spatio-temporal Query Optimizer

in MapReduce

Figure 6.1 illustrates the conceptual visualization of ST-Hadoop index, where lines sig-

nify how the temporal index divided into a set of disjoint time intervals, e.g., months,

weeks, or days. Triangles symbolize the spatial indexing, e.g., R-tree. ST-Hadoop

stores its index information as a meta-data on the master node. The meta-data of the

ST-Hadoop index provides a rich statistics about the spatial and temporal locality of

partitions in the HDFS. Each record of the meta-data represents a partition, which con-

tains information about the minimum boundary rectangle, temporal interval, temporal

granularity (i.e., level), the number of data records within the HDFS block, and a unique

identifier that acts as an entry pointer to access the partition block. Data records are

replicated and spatiotemporally partitioned in each level. In ST-Hadoop we developed

two optimization models of heuristic and cost-based to minimize query response time,

respectively.

In a nutshell, the heuristic model deploys an algorithm to computes the coverage

ratio r, that defined as the ratio of the time interval of a partition that overlaps with

spatio-temporal query predicates. A partition was selected only if its coverage ratio is

above a specific threshold M. The algorithm runs in a top-down approach that starts

with the top level and selects partitions that cover the temporal query interval T , If

the query interval T is not covered at that granularity, then the algorithm continues to

54

55

Time
Hierarchy

spatio-temporal
indexes

t1

Low

High

GranularityGlobal
Index

fine Interval

Interval

coarse Interval

Temporal query coverage

Spatial proximity

Figure 6.1: Conceptual representation of ST-Hadoop meta-data index

the next level. If the bottom level is reached, then all partitions overlap with T will

be selected. Meanwhile, a cost-based model deploys a greedy algorithm that finds the

minimum number of partitions need to be processed for any spatio-temporal operations.

Similarly the algorithm starts from a lower granularity to the finest granularity on the

bottom of ST-Hadoop meta-data index. We discuss both model in more details in

the following sections 6.1 and 6.2. Followed by extensive experiments in section 6.3

comparing and verifying the two optimization models on queries response time.

6.1 Heuristic Query Optimization

The main goal of this optimization model is generate a constructive query plan based

on a collection of heuristic statistics gather from ST-Hadoop meta-data. W examine

the performance of the temporal hierarchy index in ST-Hadoop using both slicing tech-

niques. We evaluate different granularities of time-partition slicing (e.g., daily, weekly,

and monthly) with various data-partition slicing ratio. In the meantime, we fix the

spatial range to a smallest area unit and increase the temporal range from 1 day to

31 days, while measuring the response time .

56

ST-Hadoop utilizes its temporal hierarchy index to achieve the best performance

as it mixes and matches the partitions from different levels to minimize the running

time, as described ST-Hadoop provides good performance for both small and large

query intervals as it selects partitions from any level. When the query interval

is very narrow, it uses only the lowest level (e.g., daily level), but as the query

interval expand it starts to process the above level. The value of the parameter M

controls when it starts to process the next level. At M = 0, it always selects the

up level, e.g., monthly. If M increases, it starts to match with lower levels in the

hierarchy index to achieve better performance. At the extreme value of M = 1,

the algorithm only matches partitions that are completely contained in the query

interval, e.g., at 18 days it matches two weeks and four days while at 30 days

it matches the whole month. The optimal value in this experiment is M = 0.4

which means it only selects partitions from a specific granularity (i.e., level) if M is

at least 40% covered by the query temporal interval, as shown in the following equation.

M(Q) = α× Temporal Coverage(Q)
Interval Coverage(level) + (1− α) Spatial Coverage(Q)

Spaital P roximity(level)

The α is a parameter that gears the execution of the query towards spatially, tem-

porally, or spatio-temporally execution plan. This α parameter can be tuned from the

system configuration files, or it can be inserted when executing the query as discussed

in kNN operation 5.2. However, in ST-Hadoop the default value of the α is set to one,

which means in this heuristic model favors more the temporal coverage over spatial

approximation of any given queries.

In this query optimization model, we study the effect of the spatio-temporal query

range (σ) on the choice of M. To measure the quality of M, we define an optimal

running time for a query Q as the minimum of all running times for all values of

M ∈ [0, 1]. Then, we determine the quality of a specific value of M on a query workload

as the mean squared error (MSE) between the running time at this value of M and the

optimal running time. This means, if a value of M always provides the optimal value, it

will yield a quality measure of zero. As this value increases, it indicates a poor quality

57

as the running times deviates from the optimal.

6.2 Cost-based Optimization

Partitions in each level of ST-Hadoop index cover the whole time and space, which

means a query can be answered from any level individually or we can mix and match

partitions from different levels to cover the query predicates. To decide which partitions

should be selected and from which levels, highly depends on the selectivity of the query

predicates. Depending on which granularity is used to get the result, there is a trade-

off between the number of partitions containing the query results and the amount of

processing needed to process each partition. The HDFS block size is tuned in ST-

Hadoop configuration files, which means partitions block size are the same across all

computation nodes. Therefore, for any given query the bottleneck that hits the query

performance is the number of partitions that contain the query answer.

The primary goal of this query optimizer model is to minimize the number of parti-

tions that contain the final answer for each of its operation. We implemented in memory

greedy algorithm that recursively iterates over ST-Hadoop meta-data to find the opti-

mal execution plan. The algorithm runs in a top-down approach that starts from the

lowermost granularity (e.g., monthly level) to the highest one (e.g., daily level). In each

iteration, we examine the precise number of partitions N that contains the final answer

for the given spatio-temporal query predicates. The algorithm reports the global opti-

mal execution plan if the next granularity has a higher number of partitions, or it reaches

the highest level. For example, consider a query that asks about 22 days of data records

in a particular area. First, ST-Hadoop calculates the number overlap partitions from

the monthly level, and then compares it with the next level from its temporal hierarchy

index (e.g., week). ST-Hadoop query optimizer recursively computes and compares the

number of partitions until the next explored level has more partitions from the current

one. If the highest granularity is reached and has a fewer number of partitions, then all

partitions overlap with query predicates will be selected.

58

 0

 2

 4

 6

 8

 10

 5 10 15 20 25 30

T
im

e
 (

s
e

c
)

Temporal Interval (Days)

α = 0.5
α = 0.2
α = 0.1

α = 0.025
α = 0.01

Non Temporal Index

(a) Data-partition Slicing

 0

 2

 4

 6

 8

 10

 5 10 15 20 25 30

T
im

e
 (

s
e

c
)

Temporal Interval (Days)

Daily
Weekly

Monthly ≡ ST-Hadoop(M=0.0)
ST-Hadoop(M=0.2)
ST-Hadoop(M=0.4)
ST-Hadoop(M=0.7)
ST-Hadoop(M=1.0)

Non Temporal Index

(b) Time-partition Slicing

Figure 6.2: Spatio-temporal Range Query Interval Window

6.3 Experiments

Experiments in Figure 6.2 examines the performance of the temporal hierarchy index in

ST-Hadoop using both slicing techniques. We evaluate different granularities of time-

partition slicing (e.g., daily, weekly, and monthly) with various data-partition slicing

ratio. In these two figures, we fix the spatial query range and increase the temporal

range from 1 day to 31 days, while measuring the total running time. As shown in the

Figures 6.2(a) and 6.2(b), ST-Hadoop utilizes its temporal hierarchy index to achieve the

best performance as it mixes and matches the partitions from different levels to minimize

the running time, as described in Section 6. ST-Hadoop provides good performance for

both small and large query intervals as it selects partitions from any level. When the

query interval is very narrow, it uses only the lowest level (e.g., daily level), but as the

query interval expand it starts to process the above level. The value of the parameter

M controls when it starts to process the next level. At M = 0, it always selects the up

level, e.g., monthly. If M increases, it starts to match with lower levels in the hierarchy

index to achieve better performance. At the extreme value of M = 1, the algorithm

only matches partitions that are completely contained in the query interval, e.g., at

18 days it matches two weeks and four days while at 30 days it matches the whole

month. The best choice of M value in this experiment is M = 0.4 which means it only

selects partitions that are at least 40% covered by the temporal query interval.

In Figure 6.3 we study the effect of the spatio-temporal query range (σ) on the choice

59

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

M
S

E

σ=1E-6
σ=1E-4
σ=0.1

M

(a) Tuning of M for query intervals from 1 to 30 days

 0

 2

 4

 6

 8

 10

 12

 0 0.1 0.2 0.3 0.4 0.5 0.6

M
S

E

σ=1E-6
σ=1E-4
σ=0.01

M

(b) Tuning of M for query intervals from 1 to 400

days

Figure 6.3: The effect of the spatio-temporal query ranges on the best value of M

of M. To measure the quality of M, we define the best running time for a query Q as

the minimum of all running times for all values of M ∈ [0, 1]. Then, we determine the

quality of a specific value of M on a query workload as the mean squared error (MSE)

between the running time at this value of M and the best running time. This means,

if a value of M always provides the best value, it will yield a quality measure of zero.

As this value increases, it indicates a poor quality as the running times deviates from

the best running time. In Figure 6.3(a), We repeat the experiment with three values

of spatial query ranges σ ∈ {1E − 6, 1E − 4, 0.1}. As shown in the figure, M = 0.4

provides the best performance for all the experimented spatial ranges. This is expected

as M is only used to select temporal partitions while the spatial range (σ) is used to

perform the spatial query inside each of the selected partitions. Figure 6.3(b), shows

the quality measures with a workload of 71 queries with time intervals that range from

1 day to 421 days. This experiment also provides a very similar result where the best

choice value of M is around 0.4.

In Figure 6.4 we evaluate ST-Hadoop greedy algorithm implemented in the new

query optimizer with the heuristic approach of M, on both slicing techniques supported

in ST-Hadoop. Certainly, the best choice of M is at least as far ahead as the optimal,

but it is not optimal. In the heuristic approach, a partition is selected only if its

coverage ratio is above a specific threshold M, which is around 0.4. Meanwhile, in our

new ST-Hadoop implementation we compute the exact number of partitions that need

60

 0

 5

 10

 15

 20

 25

1 4 7 16 25 30

N
u

m
b

e
r

o
f

P
a

rt
it

io
n

s

Temporal Interval (Days)

ST-Hadoop optimizer
M=0.4

(a) Selected HDFS blocks in Time-partition Slicing

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30

N
u

m
b

e
r

o
f

P
a

rt
it

io
n

s

Temporal Interval (Days)

M = 0.7
STHadoop optimizer

M = 0.4

(b) Selected HDFS blocks in Data-partition Slicing

Figure 6.4: ST-Hadoop Greedy query optimizer VS heuristic M

to be processed by employing a greedy algorithm that finds the minimum. ST-Hadoop

employs a top-down approach that starts with the top level and selects partitions that

cover query interval T , If the query interval T is not covered at that granularity, then

the algorithm continues to the next level. ST-Hadoop finds the local optimal from each

granularity until we reach the global optimal, i.e., the minimum number of partitions

that covers query interval.

Figure 6.4(a), compares the number of selected partitions between M and the greedy

algorithm. The input files indexed and sliced through Time-partition technique, i.e.,

daily, weekly, monthly levels. We fix the spatial range query and increase the temporal

range from 1 day to 31 days. In these experiments, we eliminate other M value, as

experimentally we found that the best choice of M value is equal to (0.4). As shown in

the figure, the greedy algorithm always beats M. As expected the algorithm selects the

global optimal, which is the minimal number of partitions that contain the final answer.

In Figure 6.4(b), we repeated the same experiment with various data-partition slicing

ratio. ST-Hadoop greedy algorithm provides the best performance for both small and

large query intervals as it selects the minimum number of partitions from any level.

When the query interval is very narrow, it uses only the lowest granularity level. As as

the query interval expand query optimizer starts to process the above level.

Chapter 7

Summit Trajectory library in

ST-Hadoop

Driven by the ubiquity of location-based services, that produce a massive amount of

trajectories. Querying and analyzing trajectory data become a must for a wide range of

applications. This chapter presents a scalable data management system for large scale

data. The proposed system is well-suited to efficiently support several basic queries,

such as range, kNN, and similarity queries. These queries and the architectural design

of the proposed library are extendable, in a way that it enables users to build various

applications on trajectories.

61

62

7.1 introduction

Recent advances in mobile computing, sensor, GPS, and satellite technology have made

it possible to produce a massive amount of trajectory data. This increasingly interests

scientist and domain experts in performing analysis tasks over such huge data [59]. For

example, NASA publicly archives over 4TB of stars and asteroids movement activity on

a daily basis [4]. Sloan Digital Sky Survey project collects over 156TB of motion data

from millions of outer-space objects [82]. MoveBank project gathers more than 20 years

of animal movements [83]. New York Taxi & Limousine archives over a Billion of taxi

trajectories [1]. National Hurricane Center stores comprehensive details of all storms’

trajectories every year [84]. Besides the enormous amount of data, users should be able

to explore and analyze trajectory data efficiently.

Domain experts who analyze trajectory data are either (a) use Heterogeneous multi-

ple platforms [85, 86], in which trajectory operations built on-top of generic platforms,

such as Hadoop, or Spark. Using these platforms as-is will result in sub-performance for

trajectory applications that require indexing, e.g., Marmaray project from Uber uses

Hadoop as a backbone platform for storing data as non-indexed heap files, or (b) use Big

Spatio-temporal Frameworks [23, 42], in which they are efficient for processing spatio-

temporal data on MapReduce platform. Yet, with a limited support for trajectory

operations, as their index unable to accommodate storing the entire topology of tra-

jectory objects, in which affects the performance of basic trajectory operations, such

as finding similarity between trajectories. Thus, processing trajectory on MapReduce

raised many challenges. Some of the most significant challenges are the inability of

these systems to preserve the spatio-temporal topology of trajectories, load balancing

efficiency, and the capability of supporting various trajectory operations.

This paper presents Summit; the first full open-source trajectory library on the

MapReduce framework, shipped with the source code of ST-Hadoop [23]. Summit

injects the trajectory data awareness inside each of ST-Hadoop layers, mainly, indexing,

operation, and language layers. However, running a program that deals with trajectory

data using Summit will have order(s) of magnitude better performance than ST-Hadoop.

ST-Hadoop treats the spatio-temporal information of trajectory as a stationary data,

as it loads only a basic geometrical feature (e.g., Point, Line, Rectangle) at a time.

63

Objects = LOAD 'point' AS (id:int, STPoint);
Intermediate = FILTER Objects BY

Overlaps (Rectangle(x1, y1, x2, y2)
,Interval (t1, t2);
GROUP Object BY (id)
FOREACH $Object(id) Search Trajectory(id)

Result = SIMILAR Object threshold:T From Intermediate;
(a) Similarity query in ST-Hadoop

Objects = LOAD ’trajectory’ AS (id:int, STTrajectory:
<STPoint1,STPointm >);

Result = FILTER Objects BY
Overlaps (Location,time,
Rectangle(x1, y1, x2, y2),Interval (t1, t2))
SIMILAR Object threshold:T ;

(b) Similarity query in Summit

Figure 7.1: Similarity query in ST-Hadoop vs. Summit

In the meantime, trajectories are consist of a correlated sequence of features that are

connected over time. This means that performing a basic trajectory operation such

as similarity queries might end up scanning the whole dataset to check for trajectory

connectivity before computing the similarity. Imagine a query that asks the similarity

between trajectories in the last two years or so.

Figures 7.1(a) and 7.1(b) show code snippets that load and query similar trajectories

from ST-Hadoop and Summit, respectively. The query finds similar trajectories within

a specific rectangular area represented by two corner points and within a time interval.

Running this query on ST-Hadoop will result in sub performance as opposed to Summit.

As shown in the code 7.1(a), ST-Hadoop loads trajectories as spatio-temporal points.

Next, it finds all overlap records from its index. The retrieved records need to be

group by their trajectory id and then order by their time before start computing the

similarity. This will incur significant I/O overhead, especially for a large spatio-temporal

range that expands years. Meanwhile, Summit loads the entire sequence of trajectory

and exploits its index to retrieve and compute the similarity between data records, and

hence, achieves orders of magnitude better performance over ST-Hadoop.

The key idea behind the performance gain of Summit is that it tunes the MapReduce

64

paradigm to efficiently archiving, indexing, and querying the massive amount of trajec-

tory data. In particular, Summit is powered by ST-Hadoop; an extension of MapReduce

framework that deals efficiently with spatio-temporal data. Yet, ST-Hadoop can only

manage stationary spatio-temporal geometrical shapes. In the meantime, analytical

tasks on trajectories consider a trajectory as a sequence of basic shapes in motion.

Thus, Summit design indexing techniques to support organizing trajectory data in the

Hadoop Distributed File System (HDFS) in a way that preserves their geometrical

shapes. Summit is open-source, and the code is available as a part of ST-Hadoop at

http://st-hadoop.cs.umn.edu. We envision that the open source nature will act as a

research vehicle for other researchers and application developers to build more complex

operations to Summit.

7.2 background and related work

Distributed Generic Systems, Generic platforms have been used extensively in

different analytic applications that include terabyte sorting [87], machine learning [88],

The current effort for processing trajectory data are either: (A) Use Heterogeneous

multiple platforms [52, 85, 86], in which trajectory operations built on-top of generic

platforms, such as Hadoop [6], Spark [7], Cassandra [70], Kafka [89], or Storm [66],

e.g., Marmaray project from Uber uses Hadoop as a backbone for storing data

as non-indexed heap files, while carrying the execution of trajectory operations

on another platform. (B) Implement specific operation on-top of a single Generic

framework [15, 16, 46, 47, 55, 56, 57, 58, 59, 76, 90]. For example, a most recent

research study investigated the kNN join query on Hadoop MapReduce employed five

isolated map-reduce jobs to execute a single kNN join operation without indexing

trajectory [47]. However, using generic distributed systems as-is will result in sub-

performance for trajectory applications that require indexing, mainly because they

store data as non-indexed heap files.

Distributed Spatial Systems, Extension of MapReduce platform has been developed

and dedicated for spatial analytic operations in the last few years, this including Spa-

tialHadoop [14], ScalaGiST [32], Hadoop-GIS [11], and ESRI-GIS tool on Hadoop [31].

65

There are also few systems extended Resilient Distributed Dataset(RDD) on Spark

to support spatial operations, such as GeoSpark [13] and Simba [91]. Although, these

big distributed spatial systems are efficient in spatial operations, yet they are not well

designed to efficiently process spatio-temporal data such as trajectories, mainly because

the infrastructure of their indexes and operations only support spatial queries.

Distributed Spatio-temporal Systems, There are some Big spatio-temporal

systems like ST-Hadoop [23] GeoWave [42], and GeoMesa [41] that focus on sup-

porting spatio-temporal applications. ST-Hadoop extends Hadoop and maintains a

Hierarchical indexing structure that consists of two-layer indexing of a temporal and

spatial. GeoMesa and GeoWave both are built upon Accumulo platform [67] and

implemented a space-filling curve to combine the three dimensions of space-geometry

and time. This class of systems did not attempt to enhance the contiguity and locality

of trajectory data. Although, distributed spatio-temporal systems are efficient for

processing basic spatio-temporal data (e.g., POINT, LINE, POLYGON), yet, they are

limited in supporting trajectory (i.e., a connected sequence of basic geometry). This

is mainly due to the inability of their index structure to accommodate storing the

entire topology of trajectory objects. This, in turn, will affect the performance of basic

trajectory operations, e.g., finding similarity between trajectories.

Distributed Time Series Systems Frameworks in this category are optimized for

time series or time-stamped data. There are a large number of distributed time series

systems, such as Informix [92], TSAR [93], OpenTSDB [94], and LittleTable [95].

Systems in this family of distributed frameworks significantly have different approaches

for handling data, such that they mainly focus on building indexes and operations to

efficiently performs analytical tasks on time series data. There is no sufficient support

for spatial or spatio-temporal indexes or operations, and hence they do not support

analysis tasks on trajectory data.

Distributed Graph Processing Systems, MapReduce has been extensively in-

vestigated for graph processing in both academia and industry [96, 97, 98, 99, 100].

The focus of these systems is to support basic graph models, where a graph consists

66

of a set of vertices and edges. Systems belong to this category are efficient for

graph operations, such as complex traversal queries. However, they do not sup-

port spatio-temporal or trajectory operations mainly because their indexing structures

are not well-suited for realizing both the spatial and the temporal property of trajectory.

Trajectory Operations, Existing research studies on trajectory implement opera-

tions on-top of distributed platforms, such as range [15, 16, 37, 40, 52, 54, 56, 57, 59],

k-nearest neighbor [55, 59], Skyline [58], similarity search [76, 90], and join [46, 47].

Most recent efforts focus on supporting similarity search on-top of Spark [76, 90] and

kNN join on Hadoop [47], yet they do not have any indexes in Hadoop Distributed

File Systems (HDFS). Notably, all these research studies are limited to support specific

operation. In the meantime, the Summit system is extendable in a way that it enables

users to build various applications on trajectories and extends its operations library.

Similarity Measurements, Measuring the similarity between a pair of trajectories

is essential for identifying portions that are common between two trajectories. The

similarity measurement must satisfy three main criteria: (1) The flexibility to identify

similar trajectories on various times, (2) Ignores outliers points in similarity computa-

tion, and (3) The ability to identify the similarity between portions of trajectories based

on some distance measurement. Formally, we can say that a similarity function takes

pairs of trajectories and it generates a score, that shows the closeness between their

sequences. There are over a dozen similarity measurements in literature like Dynamic

Time Warping (DTW) [90, 101, 102], Edit Distance on Real sequence (EDR) [103], Edit

distance with Real Penalty (ERP) [104, 105], Longest Common Subsequence distance

(LCSS) [106, 107], Fréchet similarity [108]. Interested readers can refer to previous

study [109], which discussed trajectory similarity in great detail. In this paper, we

are going to consider the Dynamic Time Warping (DTW) measurement. Originally

DTW developed for matching speech signals in speech recognition [110], ever since it

is considered as the one of the most rubst and wildly adopted similarity function for

trajectories and time series data [51, 76, 107, 111, 112, 113, 114, 115, 116, 117, 118].

This chapter describes Summit; a full-fledged MapReduce framework with native

67

support for big trajectory data. Summit is a comprehensive extension library that

injects trajectory data awareness inside ST-Hadoop layers.

68

Indexing

MapReduce

Operations

MasterSlaves

Map/Reduce
Tasks

Configured MapReduce Job

Index Information

Storage/Processing
Nodes

File Data

SpatioTemporalFileSplitter

SpatioTemporalRecordReader

Spatial-based
Segmentation-based

Hierarchy spatio-temporal index

ST-RangeQuery, ST-Join
milarity

Figure 7.2: Summit Architecture

7.3 System Overview

Figure 7.2 gives an overview of Summit system architecture. Summit is a full-fledged

open-source library on ST-Hadoop MapReduce framework [23] with built-in native sup-

port for trajectory data. Summit cluster contains one master node that breaks a map-

reduce job into smaller tasks, carried out by slave nodes. Summit modifies three core

layers of ST-Hadoop, namely, Language, Indexing, and Operations. The language layer

adds new SQL-Like interface for trajectory operations and data types. The modifica-

tions and the implementation of the indexing and operation layers will be explained in

the following sections.

69

7.4 Trajectory Indexing

Input files in Hadoop Distributed File System (HDFS) are organized as heap files, where

data is loaded into consecutive chunks, each of size 128MB. Though this was acceptable

for analysis tasks that do not require indexing, it will result in sub-performance for

applications, where indexing is essential. Recent efforts investigated in-memory indexing

on Spark [90], yet it does not have any HDFS indices. In the meantime, spatiotemporally

indexed HDFSs, as in ST-Hadoop [23, 42], are geared towards supporting queries with

spatio-temporal predicates for basic geometrical shape, e.g., Point, Line, and Rectangle.

On the other side, trajectories consist of a set of correlated sequence of spatio-temporal

points, where ST-Hadoop is unable to realize the correlation between these sequences.

Summit organizes input files in HDFS in a way that preserves the geometrical topol-

ogy of trajectories. In particular, data is spatiotemporally loaded and partitioned across

computational nodes. Each partition holds the full sequence of trajectories that over-

lap with its spatio-temporal boundaries. Summit sacrifices storage to achieve higher

performance by enforcing data replication across partitions. As a result, trajectory

operations can have minimal data access to retrieve the query answer, reduce the com-

putation complexity, and allow applications to run more sophisticated operations on the

entire trajectories.

Summit employs a two-level indexing scheme of temporal indexing followed by a

spatial one. The index is stored in the master node as auxiliary file, while actual

partitions are divided across computation nodes. The process of index construction in

Summit goes through the following three consecutive phases:

1. Sampling: The objective of sampling is to approximate the trajectory distribution

and ensure the quality of partitioning. Due to the mass volume of data, Summit scans

a representative sample that fits-in the main memory of the master node.

2. Bulkload Partitioning: Summit manipulates the sample to construct boundaries

of the two-level indexing of temporal and spatial, respectively. System parameters in a

configuration file guide the indexing of each level, such as the temporal granularity and

the spatial partitioning mechanism. Expert users and data practitioners that have good

70

Temporal Slicing

Trajectories
A

B

C

(a) ST-Hadoop

Temporal Slicing

(b) Summit

Figure 7.3: Temporal Slicing

understanding of Summit and the nature of their datasets can tune these parameters.

The construction of the two-level indexing scheme goes through two main steps:

1. Temporal Slicing : Figure 7.3 depicts the abstract idea of temporal slicing in Sum-

mit in comparison to ST-Hadoop. The temporal slicing mechanism in ST-Hadoop

breaks trajectory into sub-sequences. Meanwhile, Summit slicing replicates trajec-

tories if they overlap between temporal slices while maintaining non-overlapping

disjoint. As shown in figure 7.3(b), the lifetime of trajectory A overlaps both the

first and second slices, and thus, the entire trajectory will be replicated between

those two temporal slices. As opposed to ST-Hadoop in figure 7.3(a) where A

chopped into two sub-sequences, each stored separately in a different temporal

partition.

71

Partition
P1

P2

P3

Trajectory data

T7

T6

T5

T4

T3

T2

T1

T1 T7

T5 T6

T2 T3 T4

,

, ,

,P4

P5

T3 T4,

T7,

T5 T6,

(a) Spatial-based

Partition
P1

P2

P3

Trajectory data

T4

T3

T2

T1 T7

T5 T6

T2 T3 T4

,

, ,

,

P2

(b) Segmentational-based

Figure 7.4: Trajectory Indexing

2. Spatial Indexing : Summit is equipped with the following two spatial indexing

approaches for each temporal slice from the previous step, namely Spatial-based

or Segmentation-based. Figure 7.4 illustrates the logical design of both methods,

where rectangles represent the boundaries of the HDFS partitions while dots and

lines depict the trajectory information. (a) Spatial-based: This approach preserves

the spatio-temporal locality closeness between sub-trajectories. The boundaries of

the HDFS partition split trajectories as shown in figure 7.4(a). (b) Segmentation-

based: This is a data partitioning that guarantees that the entire trajectory is

stored in a single HDFS block, as shown in figure 7.4(b). The minimum bound-

aries rectangles of this index might overlap. When a trajectory intersects with

more than a single rectangle, its going to be replicated between partitions. This

72

partitioning is more in favor of operations that not only need to process the local-

ity of trajectories but also their semantic or shapes over time, such as Similarity

kNN and join queries.

3. Physical Assigning: The objective of this phase is to scan through the whole

data and assign each record to the boundaries layout constructed from the previous

phase. Summit initiates a map-reduce job that scans through the input file, physically

partitions HDFS block, and assigns records to all overlapping partitions.

7.5 Trajectory Operations

In this paper, we discuss the internal execution of three basic operations in Summit,

namely, range, nearest neighbor, and similarity queries. Other spatio-temporal

operations on trajectories, e.g., reverse kNN, aggregation, and path queries, can be

realized following similar approaches.

• Trajectory Range Query (TRQ): Given a three-dimensional query predicate,

this query retrieves all trajectories that overlap with the query region in both space

and time. Figure 7.5(a) shows an example of this type of query that ” Finds all taxis

in downtown Manhattan between January and March 2019”. Regardless of the type

of partitioning to answer the query, we employ an algorithm that runs in three steps

namely, temporal filtering, spatial search, and spatio-temporal refinement. In the

refinement phase, an extra processing is required to remove duplicates from the query

answer, as trajectories might be replicated between partitions.

• Trajectory k Nearest Neighbor Query (TkNN): Summit supports the following

two variants of the kNN operation:

• (1) kNN point-based. Given a query predicate that consists of query point

P(x,y), and time interval [t1, t2], find the k nearest trajectories to the query point

during the given time interval. For example, ”Find the closest four animals to a

Minnehaha waterfall between August and September”. Another example shown in

73

(a) Trajectory Range Query (b) kNN point-based Query

(c) kNN Trajectory-based Query (d) Similarity Query

Figure 7.5: Summit Trajectory Operations

Figure 7.5(b) of a kNN point-based query that ”finds 8-closest trajectories to New

York city hall”.

• (2) kNN trajectory-based. Given a query trajectory Trj that consists of a se-

quence of spatio-temporal points, find the kNN trajectories to the whole trajectory

points for every time instance according to some aggregate function, such as Min

or Max. Figure 7.5(c) illustrates an example of a kNN trajectory-based query that

”finds 4-closest taxi trips aligned with East River”. This type of query is essential

in many trajectory applications For example, environmental science a domain ex-

perts which to ”Find the closest two human traveled along a contaminated water

stream in Jun 2018” efficiently.

Answering both queries of kNN point-based or kNN trajectory-based, Summit

employs an algorithm that consists of three phases, namely, partitioning, local com-

putation, and global computation. In the partitioning phase, Summit decides which

partition technique will be used. Once data is partitioned, Summit triggers a local

computation algorithm to find a candidate set from the overlapping partitions. After

performing a local computation, each computation node in Summit cluster will have

74

its own candidate set. The global computation phase is implemented in Summit as a

reduce function, which runs on a single machine to compute the final result. Duplicate

elimination is applied in this phase.

• Trajectory Similarity Query (TSQ): The objective of this query is to find similar

trajectories to a given one based on some defined similarity function. This is a very

useful query for many applications, such as transportation and advance pattern mining

queries. A typical example of such queries shown in Figure 7.5(d) that ”Finds the k taxis

that share similar routes with a given trajectory (e.g., another taxi) during some time

interval (e.g., yesterday)”. Summit goes through two phases to find similar trajectories,

namely, partitioning and computation phases. The partitioning phase indexes data by

segmentation-based model. The computation phase runs in single map-reduce tasks for

local and global computation. Duplicate removal takes place in the reduce phase. In

Summit, we implemented the most robust and widely adopted similarity function, i.e.,

the Dynamic Time Warping [113], where we apply spatio-temporal thresholds. Other

similarity measurements can be realized following the same approach.

75

7.6 Trajectory Range Query (TRQ)

Trajectory range query is specified by two predicates of a spatial area and a temporal

interval, A and T , respectively. The query finds a set of trajectory records t that

overlap with both a region A and a time interval T , such as ”Find all taxis in downtown

Manhattan between January and March 2019”. Regardless of the type of trajectory

partitioning to answer the query, Summit employs an algorithm that runs in three

steps namely, temporal filtering, spatial search, and refinement with duplicate avoidance,

described below.

In the temporal filtering step, the hierarchy index is examined to select a subset

of partitions that cover the temporal interval T . The main challenge in this step is

that the partitions in each granularity cover the whole time and space, which means the

query can be answered from any level individually or we can mix and match partitions

from different level to cover the query interval T . Depending on which granularities

are used to cover T , there is a trade-off between the number of matched partitions

and the amount of processing needed to process each partition. To decide whether a

partition P is selected or not, ST-Hadoop computes the coverage ratio along with the

number of partitions needed to be processed and then selects the granularity based on

the minimum number of partitions.

In the spatial search step, Once the temporal partitions are selected, the spatial

search step applies the spatial range query against each matched partition to select

trajectories that spatially match the query range A. As partitions are indexed and

distributed across nodes, computation carry out across Summit cluster for processing

partitions, and thus maximizes the computing utilization of the machines.

Finally in the refinement step, compares individual records returned by the spatial

search step against the query interval T , to select the exact matching records. This

step is required as some of the selected temporal partitions might partially overlap the

query interval T and they need to be removed. Similarly, Summit refines on the spatial

query area A. In this refinement step duplicates avoidance take place, as trajectories

are replicated between partitions.

76

Figure 7.6: Local Computation: initial k answer

7.7 Trajectory nearest neighbor Query (TKNN)

7.7.1 (TKNN) Point-based

The trajectory point-based nearest neighbor query takes a trajectory Q, a spatio-

temporal predicates θ, a spatio-temporal ranking function Fα, and an integer k as

an input, and returns the k spatiotemporally closest points to Q such that: (1) The

k points are within the temporal distance θtime. (2) The k points are not far from

any trajectory sequence with a spatial distance θspace. (3) The top k points are

ranked according to the spatio-temporal ranking function Fα that combines the spatial

proximity and the temporal closeness of p ∈ P to the a query point q ∈ Q. For example,

”Find the closest ten persons to a Jon commute to work in the last three months”. With

the spatio-temporal information of the trajectory Q, Summit adds a spatio-temporal

ranking function Fα to the kNN point-based query. The ranking function allows

77

Summit to compromise between spatial proximity and temporal closeness of its top-k

points to the the trajectory query Q.

Definition Trajectory Spatio-temporal Ranking Function.

The ranking function Fα indicates whether a user query leans toward spatial proximity

or temporal concurrency. If α = 1, then the user cares about spatial closeness, i.e., the

top-k results will be spatially closest to the trajectory query Q. If α = 0, then the user

cares about temporal concurrency, i.e., the top-k results will be temporally recent to

trajectory query. Meanwhile, if α value is between zero and one, then the user cares

about spatio-temporal proximity. The spatio-temporal proximity between any points in

a trajectory to other points can be computed with the following mathematical equation.

Fα(Q, p) = α× SpatialDist(Q0, Qn, p.location)

+ (1− α)× TemporalDist(Q.interval, p.timestamp)

The spatio-temporal ranking function Fα dependents on both SpatialDist and the

TemporalDist functions, which they are normalized and monotonic. Each has a value

range from zero to one. The SpatialDist is the Euclidean distance between trajectory Q

and a location of p divided by the maximum spatial distance θspace, where θspace is the

distance from a trajectory Q to the kth furthest location. Meanwhile, the TemporalDist

is that ratio of delta times of Q and p to the total temporal interval θtime. The temporal

interval θtime is the time distance from the trajectory Q to the kth furthest point in time.

Summit applies a simple and efficient technique that capable of pruning the search

space to process only n number of partitions, which guarantee that those partitions

will have the final k answers. Summit kNN point-based algorithm runs in three phases,

partitioning, local computation, and global computation. Details of each phase discussed

as following.

Phase 1: Partitioning

In this phase, Summit is spatiotemporally aware of trajectory locality in HDFS par-

titions. Summit applies spatial-based partitioning technique discussed in section 7.4.

This partitioning technique is well suited with the point-based nearest neighbor query,

78

mainly because there is no need to preserve the trajectory sequences in kNN computa-

tion. Although other partitioning technique could be used in this step, they will result

in sub-performance for any kNN point-based query.

Phase 2: Local computation

The objective of this phase is to find a set of candidate k result form overlapping par-

titions with trajectory query Q. Since a trajectory Q could intersect with multiple

partitions, in the local computation Summit finds the initial answer for from each par-

tition. Then it feeds each initial answer to the global computation, where it checks for

the correctness of the final answer.

First, Summit search for overlapping partitions with the trajectory query Q. Then

for each partition it finds the initial k answer. Summit locates the partition that inter-

sects with trajectory Q, by feeding the SpatioTmeporalFileSplitter with a filter function

that selects only the overlapping partition from the temporal interval. Summit exploits

a SpatioTmeporalRecordReader to reads the selected partition, then executes a tradi-

tional kNN algorithm for every sequence in Q to produce the initial k answers. The

function Fα computes the spatio-temporal distance between any trajectory points in

the partition and trajectory Q.

Figure 7.6 shows an example of how Summit finds the initial k in the local compu-

tation. After executing a traditional kNN algorithm, Summit draw a local test circle to

check for the correctness of the local kNN computations. The radius of the test circle is

equal to the distance between the furthest k initial point in the answer with the furthest

point in trajectory Q. The center of the circle is the midpoint of the diagonal trajec-

tory query rectangle. If partitions overlap with the test circle, then Summit exploits

its SpatioTmeporalRecordReader to reads the overlapped partitions, until the furthest k

test circle does not overlap with any additional partitions.

Phase 3: Global Computation

The input of this phase is the initial k answers from all partitions overlapped with the

trajectory query Q. Summit primary check for the correctness of the initial answer, and

applies a kNN refinement to remove duplicates in the final answers.

79

Figure 7.7: Correctness Check Cylinder

In the correctness check step, Summit checks if the initial k answer can be

considered final. The main idea is similar to ST-Hadoop, where we draw a test Cylinder

centered at Q with some radius r. The only different is in the radius computation,

such that it consider trajectory query rather than query point. As shown in Figure 7.7,

Summit radius is equal to the distance between the furthest k initial point in the answer

with the furthest point in trajectory Q within a single temporal interval. The height l

of the cylinder is equal to the temporal distance from Q to its kth furthest neighbor in

time. The radius and the height of the cylinder change only if there is potential point

dominate the score of the ranking functions of the furthest kth point in the initial results

in any dimension, i.e., space or time. If the cylinder does not overlap with any partitions

spatially or temporally, then we terminate the process, and the remove duplicates from

the initial answer and it is considered as final answer.

Figure 7.7 illustrates the idea of test cylinder. The query point Q initially overlap

with a single time interval. Summit check if some points either in the next or previous

interval can dominate the score of the kth furthest neighbor from the same initial interval,

e.g., interval 1. If a dominance point exists, then Summit modifies the cylinder height

80

and radius accordingly in the next interval. Notice that the radius of the cylinder in

next time interval is getting smaller, this is because we gradually draw the test cylinder.

We continue this process until we reach a time interval that has no dominance point

that can dominate the kth furthest point.

In the kNN refinement step, The cylinder radius and height are obtained from

the previous step. Summit locates partitions that overlap with test cylinder, by feed-

ing the MBR of each circle in a temporal interval to the SpatioTmeporalFileSplitter.

Finally, we scan over the trajectory records by reading partitions through SpatioTem-

poralRecordReader and process it with the traditional kNN algorithm to find the final

answer. duplicate avoidance is applied in this step.

81

Figure 7.8: MBR Trajectory distance

7.7.2 (TKNN) Trajectory-based

The kNN trajectory-based query takes a trajectory Q, a spatio-temporal predicates θ,

a spatio-temporal ranking function Fα, and an integer k as an input, and returns the k

spatiotemporally closest trajectory to Q such that: (1) The k trajectories are within the

temporal distance θtime. (2) The k trajectories are not far from any Q with a spatial

distance θspace. (3) The top k trajectories are ranked according to the spatio-temporal

ranking function Fα that combines the spatial proximity and the temporal closeness of

t ∈ T . For example, ”Find the closest ten people commute along Hudson river in the

last month”. With the trajectory query Q, Summit adds a spatio-temporal ranking

function Fα to the kNN point-based query. The ranking function allows Summit to

compromise between spatial proximity and temporal closeness of its top-k points to the

the trajectory query Q.

The computation of the trajectory ranking function Fα discussed great details in

section 7.7. The main modification to the ranking function is they way we compute the

the spatial distance between two trajectories. In literature the distance between two

trajectories are usually measured by some kind of aggregation function [119]. In Summit

we consider the distance between the minimum bounding rectangles (MBR) of the two

trajectories as a measurement [120], mainly because this will incur less computation

than other aggregate distance measurements. Other aggregate measurements can be

easily added to Summit library. Figure 7.8 illustrates the main idea of MBR distance

82

between two trajectories. Each MBR is identified by lower and upper bound points

of (x1, y1),and (x2, y2), respectively. The equation of the distance between the two

trajectories Distance(Q,T) calculated as following:

√

(∆ ([Qx1, Qx2], [Tx1, Tx2]))
2 + (∆ ([Qy1, Qy2], [Ty1, Ty2]))

2

Summit employs a simple and efficient technique that prune the search space to

process fewest number of partitions, that guarantee having the final k nearest neighbor

answers. Summit kNN trajectory-based algorithm runs in three phases, partitioning,

local computation, and global computation. Details of each phase discussed as following.

Phase 1: Partitioning

In partitioning phase, Summit favor organizing the full sequence of a trajectory within

the boundary of the HDFS partitions. Summit applies segmentational-based parti-

tioning technique discussed in section 7.4, as this partitioning techniques preserves the

shape and the full sequence of trajectories. Although spatial-based partitioning tech-

nique could be used in this step, it will result in sub-performance, especially that the

full sequence of trajectory must be obtained and considered in the kNN computation

to find the final answer.

Phase 2: Local computation

The objective of this phase is to find a set of candidate k result form overlapping

partitions with trajectory query Q. The computation of finding the local candidates

will be distributed, such that each map task will process a single partition and reports

its initial k candidates set to the next phase. The local computation goes through two

consecutive steps, of finding initial k and check the k set correctness. The two steps are

described as following:

In the local initial k step, Summit assign a partitions to a map tasks, and each

map task finds k candidate set. Figure 7.9 illustrates the algorithm for the local com-

putation of kNN trajectory-based in Summit. As depicted the trajectory overlap with

3 partitions. Finding the initial answer of each overlapped partition will be carried

by a separate map task. Summit locates partitions that intersect with trajectory Q,

83

Sp
at

io
te

m
po

ra
l

Fil
e

Sp
lit

te
r

Sp
at

io
em

po
ra

l
ec

or
d

ea
de

r

oc
al

KN
N

Fil
te

r
Fu

nc
tio

n

pa
rt

it
io

n
1

Q

F A

pa
rt

it
io

n
3

A

pa
rt

it
io

n
2

A

Ma
p t

as
k

Pa
rti

tio
n

1
oc

al

e
re

ct
n

oc
al

KN
N

Pa
rti

tio
n

n

Ma
p t

as
k# 1 # n

(n
)

Sp
at

io
em

po
ra

l
ec

or
d

ea
de

r

re
ct

n

e e
oc

al

e

Re
du

ce
r

KN
N

em
ov

e

Fin
al

F
ig
u
re

7.
9:

N
ea
re
st

N
ei
gh

b
or

T
ra
je
ct
or
y-
b
as
ed

in
S
u
m
m
it

84

Figure 7.10: Nearest Neighbor Trajectory-based correctness check

by feeding the SpatioTmeporalFileSplitter with a filter function that selects only the

overlapping partitions. Summit assign each partition to a map task, in which a sin-

gle node in the cluster will carry the processing of that task. Each map task exploits

a SpatioTmeporalRecordReader to reads the trajectories within its assigned partition,

and performs a traditional kNN algorithm, to produce the initial k answer within the

selected partition.

In the correctness check step, a map task check the correctness of its initial

answer and feeds the k final candidate set to the next phase. Figure 7.10 shows an

example of how Summit draw a local test circle to check for the correctness of the local

kNN computations carried by the map task. The radius of the test circle is equal to

the distance between the furthest k trajectory in the initial the answer and trajectory

Q. The center of the circle is the midpoint of the diagonal trajectory query rectangle.

If partitions overlap with the test circle, then only new partitions that have not been

assigned to any other map task will be explored. Partitions that overlap with the test

circle and already have been assigned to another map task by Summit will be ignored.

For example as shown on the left most bottom of figure 7.10. A map-task 2 is already

85

processing a partition that overlap with the test circle of map-task 1. When map-task

1 check the correctness it will ignore map-task 2 partition. According to the value

of function Fα, the drawing of the cylinder test follows the same technique discussed

earlier in section 7.7. Summit exploits its record reader to reads trajectories from new

partitions and executes a traditional kNN algorithm to recompute the k initial candidate

sets. The final initial candidates will progress to the next phase.

Phase 3: Global Computation

In this phase Summit employs a reduce task to handle the processing of combining the

output from each map task, remove duplicates, and generate the final answer. Each

record from the previous phases represents a pair of the k trajectory and closeness

score. There is no extra processing needed to check for the correctness or recompute

the distance between trajectory Q and any of the initial candidates answer. The single

reducer employs a priority heap to remove duplicates and generate the final results fast

while scanning through the candidate sets generated from the previous phase.

86

7.8 Trajectory Similarity Query (TSQ)

The objective of this query is to find similar trajectories to a given one based on

some defined similarity function. This is a very useful query for many applications,

such as transportation and advance pattern mining [119, 120, 121, 122, 123, 124].

The similarity query takes a trajectory Q, a spatio-temporal predicates boundary,

a similarity ranking function Similarity, and an integer k as an input, and returns

the k most similar trajectories to a trajectory Q such that: (1) The k trajectories

are within a temporal interval. (2) The k trajectories are inside a spatial area of the

query predicate. For example, ”Find the three taxis that share similar routes with

a given trajectory (e.g., another taxi) in downtown New York between January and

March”. In Summit, we implemented the most robust and widely adopted similarity

function, i.e., the Dynamic Time Warping [113]. Other similarity measurements can be

realized following the same approach, such as Longest Common Sub-Sequence (LCSS),

Edit Distance, Euclidean Distance, or Fréchet similarity functions. Interested readers

can refer to a previous research study covers trajectory similarity functions in great

details [107].

• Concept of Similarity Between Trajectories:

Measuring similarity between a pair of trajectories is essential for identifying portions

that are common between the two. The similarity measurement must satisfy three main

criteria: (1) The flexibility to identify similar trajectories on various times, (2) Ignores

outliers points in similarity computation, and (3) The ability to identify the similarity

between portions of trajectories. A couple of more complex metrics inspired from the

sequence of similarity measures introduced in the literature [109]. Formally, we can say

that a similarity function takes two trajectories and it generate a score indicating how

the are similar based on some specification and criteria.

• Dynamic Time Warping (DTW):

The DTW was originally developed for matching speech signals in speech recogni-

tion [110], ever since it is consider as the one of the most robust and broadly adopted

similarity function for trajectories and time series data [113, 117, 118] Formally, the

87

dynamic time warping con be defined as follow.

Given two trajectories P (p1, p2, ..., pn) and Q(q1, q2, ..., qm), every points in both

pi ∈ P and qi ∈ Q is a spatio-temporal point. The distance between two pair points

can be computed by any distance measurement between two points, such as Euclidean

distance or Manhattan distance. In this paper we will consider using Euclidean distance.

The following equation shows how the dynamic time warping computed. In Summit we

use the Euclidean distance as dist function between two points.

DTW (P,Q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑n
i=1 dist(pi, q1) if m = 1

∑m
i=1 dist(p1, qi) if n = 1

dist(pn, qm) +min
(

DTW (Pn−1, Qm−1),

DTW (Pn−1, Q),DTW (P,Qm−1)
)

otherwise

(7.1)

Summit Similarity operation runs into two phases to find most similar tra-

jectories, namely, partitioning and computation phases. The partitioning phase

indexes data using segmentation-based technique. The computation phase runs as a

single map-reduce tasks for local and global computation, respectively. Duplicate re-

moval takes place in the reduce computation. Details of each phase discussed as follows.

Phase 1: Partitioning

In partitioning phase, Summit organizes the full sequence of a trajectory within a single

HDFS partitions as shown in left most of Figure 7.11. In particular, Summit applies

segmentational-based partitioning technique discussed in section 7.4, as this partitioning

techniques preserves the shape and the full sequence of trajectories. Trajectory that

overlaps with more than one partition will be replicated. The choice of this partitioning

techniques will allows trajectory operations to have minimal data access when retrieve

the query answer, reduce the computation complexity, and allow applications to run

more sophisticated operations on the entire trajectories, such as finding similarity.

88

Sp
at

io
-

te
m

po
ra

l
ile

Sp
lit

te
r

ilt
er ct
io

pa
rt

it
io

n
1

Q

A

pa
rt

it
io

n
3

A

pa
rt

it
io

n
2

A
M

ap
 t

as
k
#

 n

of
 p

ar
ti

R
ed

uc
er

S
pa

tio
-

l
S
im

ila
ri
ty

M
ap

 t
as

k

i

#
 1

ob
al

S
im

ila
ri
ty

i

S
pa

tio
-

l
S
im

ila
ri
ty

i

F
ig
u
re

7.
11
:
A
b
st
ra
ct

id
ea

of
si
m
il
ar
it
y
co
m
p
u
ta
ti
on

in
S
u
m
m
it

89

Reducer Node

Node 3 Node 4

QQ

A

B

B

A
F

F

A

Figure 7.12: Summit global computation of similarity query

Phase 2: Local computation

The objective of this phase is to distribute the computation of the similarity mea-

surements between nodes in cluster. The intermediate output of this phase is a pair

of trajectory ID and similarity score, respectively. The score describes how similar a

trajectory to the trajectory query Q. Summit exploits its SpatioTemporalFileSplitter

to finds overlapping partitions with trajectory query Q. Next as illustrated in the Fig-

ure 7.11, Summit assign each overlapped partitions to a map tasks. The primary task of

the map is to perform the similarity computation on all trajectories within its assigned

partition.

Figure 7.11 illustrates the abstract idea of the algorithm for the local computation

of similarity in Summit. First, Summit locates partitions that intersect with trajectory

Q, by feeding the SpatioTmeporalFileSplitter with a filter function that selects only the

overlapping partitions. As depicted the trajectory query Q overlaps with two partitions.

Each map task exploits a SpatioTmeporalRecordReader to reads the trajectories within

its assigned partition, and triggers a similarity computation measurement.

90

Phase 3: Global Computation

In this phase, as shown in Figure 7.12 Summit employs a reduce task to handle the

processing of combining the intermediate output from each map task, remove duplicates,

and generate the final answer. Each record from the previous phases represents a pair

of a trajectory with its similarity score. There is no extra processing needed to check

for the correctness or recompute the similarity between trajectories. The single reducer

employs a priority heap of a length k, such that it scans through the intermediate output

from the previous phase, removes duplicates on the fly, and generates the final result.

91

7.9 Experiments

This section provides an extensive experimental performance study of Summit com-

pared to SpatialHadoop and Hadoop. We decided to compare with this two frameworks

and not other spatio-temporal DBMSs for two reasons. First, as our contributions are

all about supprting spatio-temporal trajectory data in Hadoop. Second, the different

architectures of spatio-temporal DBMSs have great influence on their respective

performance, which is out of the scope of this paper. Interested readers can refer to

a previous study [77] which has been established to compare different large-scale data

analysis architectures. In other words, Summit is targeted for Hadoop users who would

like to process large-scale trajectory data but are not satisfied with its performance.

The experiments are designed to show the efficient performance of Summit indexing

and the overhead imposed by its new features compared to SpatialHadoop. However,

Summit achieves two orders of magnitude improvement over SpatialHadoop and

Hadoop.

In our experiments, we compare the performance of querying trajectories on Summit

for spatio-temporal range, kNN-point, kNN-similarity, and join queries proposed in Sec-

tion 5 to their spatio-temporal implementations on-top of SpatialHadoop and Hadoop,

respectively. For range query, we use system throughput as the performance metric,

which indicates the number of MapReduce jobs finished per minute. To calculate the

throughput, a batch of 30 queries is submitted to the system, and the throughput is

calculated by dividing 30 by the total time of all queries. The 30 queries are randomly

selected with a spatial area ratio of 0.005% of New York City and a temporal window

of 24 hours unless stated. This experimental design ensures that all machines get busy

and the cluster stays fully utilized. For spatio-temporal join, we use the processing

time of one query as the performance metric as one query is usually enough to keep

all machines busy. The experimental results for range, nearest neighbor, and similarity

queries are reported in Sections 7.9.2, 7.9.4, and 7.9.5, respectively. Meanwhile, Sec-

tion 7.9.3 evaluates Summit the best execution plans for different workloads in Summit

query optimizer.

92

Table 7.1: New York Taxi and Limousine Dataset

NYC Size #Records #Points Time segment
(Green+Yellow) >2.6TB 1.3 Billion > 77 Billion 2009-2016
Yellow 2.55TB 1.27 Billion > 75 Billion 2009-2016
Green all 80GB 43 Million 2 Billion 2013-2016
Green-small 3GB 1.5 Million 180 Million OCT-2016

Table 7.2: Summit Experiments Parameters Settings

Parameter Values (default)
HDFS block capacity (B) 32, 64, (128), 256 MB
Cluster size (N) 5, 10, 15, 20, (24)
Selection ratio (ρ) (0.01), 0.02, 0.05, 0.1, 0.2, 0.5, 1.0
Data-partition slicing ratio(α) 0.01, 0.02, 0.025, 0.05, (0.1), 1
Time-partition slicing granularity(σ) (days), weeks, months, years
Similarity proximity (α) 0,0.2, (0.5), 0.6, 0.8, 1.0

7.9.1 Experiments Settings

Cluster Setup.

All experiments are conducted on a dedicated internal cluster of 24 nodes. Each has

64GB memory, 2TB storage, and Intel(R) Xeon(R) CPU 3GHz of 8 core processor.

We use Hadoop 3.2.0 running on Java 10.0.2 and Ubuntu 18.04.1 LTS. Table 7.2

summarizes the configuration parameters used in our experiments. Default parameters

(in parentheses) are used unless mentioned.

Datasets.

To test the performance of Summit we use the New York Taxi and Limousine commis-

sion (TLC) archived dataset [1]. The NYC (TLC) publicly released a dataset of taxi

trips from January 2009 to June 2016 with GPS coordinates for both pick up and drop

off locations. Later than Jun 2016 officials jeopardize GPS locations with area zone for

commuters’ privacy. However, the collected dataset contains over 1.3 Billion trips, were

each trip spatiotemporally tagged with starting and ending for both location and time.

The full trajectory of each trip is computed by dijkstra’s algorithm on the New York

road network obtained from [125]. The process of obtaining the full path of trajectories

generated over 77 Billion spatio-temporal sequance for the 1.3 Billion trips with a

93

total size of 2.6 TB. To scale out time in our experiments we divided the dataset into

different time segments and sizes, respectively as shown in Table 7.1. The default size

used is grater than 2.6 TB which is big enough for our extensive experiments unless

mentioned.

7.9.2 Range Query

In Figure 7.13(a), we increase the file size from 3GB to 2.6TB, while measuring

the job throughput of Summit, SpatialHadoop, and Hadoop. Both partitioning

techniques in Summit achieve more than two orders of magnitude higher throughput,

due to its temporal load balancing of its spatio-temporal index. As the spatial-based

technique retreives sub-sequance of trajectories, it achieves better performance than

the segmentation-based in Summit. The main reason of this that in spatial-based

partitioning technique all objects must be spatio-temporally contained inside the

query predicate. In the meantime, Summit segmentation-based retreives the full

trajectories that overlap with the spatio-temporal boundary of the query. As Hadoop

needs to scan the whole file, its job throughput decreases with the increase of input

file, which gives the worst throughput compared to SpatialHadoop and Summit. On

the other hand, SpatialHadoop job thoughput decreases dramatically by adding the

temporal predicate to the queries. As SpatialHadoop, needs to scan more partitions,

which explain why the throughput of SpatialHadoop decreases with the increase of data

records in the same spatial area over several years. Meanwhile, Summit throughput

remains stable as it processes only partition(s) that intersect with both space and time.

94

 0

 10

 20

 30

 40

 50

 60

 70

 80

3GB 80GB 2.55TB 2.6TB

T
h

ro
u

g
h

p
u

t
(J

o
b

/m
in

)

Input Size

Spatial-based
Segmentation-based

SpatialHadoop
Hadoop

ST-Hadoop

(a) File size

 0

 10

 20

 30

 40

 50

 60

 70

 80

10 32 64 128 256

T
h

ro
u

g
h

p
u

t
(J

o
b

/m
in

)

HDFS Block Size (MB)

Spatial-based
Segmentation-based

SpatialHadoop
Hadoop

ST-Hadoop

(b) Block size (MB)

 10
 20
 30
 40
 50
 60
 70
 80
 90

6 12 18 24

T
h

ro
u

g
h

p
u

t
(J

o
b

/m
in

)

Cluster Size

Spatial-based&ST-Hadoop

Segmentation-based

SpatialHadoop

Hadoop

(c) Cluster Size

 4

 16

 64

 256

 1024

 4096

 16384

 65536

3GB 80GB 2.55TB 2.6TB

A
c
c
e
s
s
e
d

 P
a
rt

it
io

n
s

Input Size

segmentation-based
spatial-based

ST-Hadoop
spatialHadoop

Hadoop

(d) Accessed Partitions

 20

 40

 60

 80

 100

3GB 80GB 2.55TB 2.6TBP
e

rc
e

n
ta

g
e

 o
f

s
c

a
n

n
e

d
 o

b
je

c
ts

S
p

li
tt

e
d

 T
ra

je
c

to
ry

spatial-based
spatialHadoop

Hadoop

(e) Spatial-based

 20

 40

 60

 80

 100

3GB 80GB 2.55TB 2.6TBP
e

rc
e

n
ta

g
e

 o
f

s
c

a
n

n
e

d
 o

b
je

c
ts

C
o

m
p

le
te

T
ra

je
c

to
ry

Segmentation-based
spatialHadoop

Hadoop

(f) Segmentation-based

Figure 7.13: Range Query

Figure 7.13(b) gives the impact of configuring the HDFS block size on the job

throughput. Non-temporal index referred to both SpatialHadoop and Hadoop. Summit

managed to keep its performance within orders of magnitude higher throughput even

with various block sizes. The significance of this experiment confirms the outstanding

95

performance of Summit with increasing the HDFS block size. In the meantime, with

decreasing the block size less than 32MB, the throughput slightly declines in Summit.

As expected when minimizing HDFS block size, Summit performance slightly decreases

for both segmentation-based and spatial-based, mainly because a query will require

more blocks to process that leads to extra computation overhead in Summit cluster.

Figure 7.13(c), shows how Summit scales out with cluster size changing from 6 to

24 nodes when executing range queries with a spatio-temporal selection ratio of 0.01%.

Summit, SpatialHadoop, and Hadoop smoothly scale with cluster size, while Summit

is consistently more efficient than others. To scale-out the storage of 2.6TB on smaller

clusters, we tuned the number of replica to zero in Summit cluster.

Extensive experiments are shown in Figure 7.13(d), analyzed the maximum number

of accessed partitions of 30 queries submitted to each system. The queries are not

overlapping and are randomly selected with a spatial area ratio of 0.005% of New

York City and a temporal window of one month. Hadoop needs to access and scans

all partitions for any input file. As for SpatialHadoop it slightly performs better by

filtering partitions that do not overlap with the query. Yet, SpatialHadoop needs to

access more than 40% of the total partitions. As the dataset is sparse and dense in a

limited geographical space, SpatialHadoop fails to filter out partitions that overlap with

the selected spatial boundary of a query. On the other hand, the number of accessed

partitions in Summit remains stable as it only processes a fixed spatiotemporal area of

the input file.

In Figures 7.13(e) and 7.13(f), we compute the average percent of the number of

scanned objects to the total objects in each input file. Hadoop needs to scan all objects

for any input files; thus, it scans 100% of records. As for SpatialHadoop, the percentage

of scanned records increases with the increasing size of the input file. Expanding the

size of the input file will lead to the fact that more data are being inserted to the same

spatial region, in which SpatialHadoop adds more partitions within the same region.

In the meantime, Summit recognize both space and time in its partitioning techniques,

and thus, it only needs to scan less than 1% of data records.

96

7.9.3 Summit Stability

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 5 10 15 20 25 30

T
im

e
 (

S
e
c
)

Temporal Interval (Days)

day-level
week-level

month-level
SUMMIT

SpatialHadoop
Hadoop

(a) Temporal hierarchy vs. Time window

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30

T
im

e
 (

s
e
c
)

Temporal Interval (Days)

α = 0.5
α = 0.2
α = 0.1

α = 0.025
α = 0.01

SpatialHadoop

(b) Slicing ratio (α) vs. Time window

 0

 20

 40

 60

 80

 100

 120

0.01 0.02 0.025 0.05 0.1 0.2 0.5 1

T
h

ro
u

g
h

p
u

t
(J

o
b

/m
in

)

Selection Ratio

Spatial-based
Segmentation-based

SpatialHadoop
Hadoop

ST-Hadoop

(c) Selection ratio (ρ)

Figure 7.14: Summit stability

Extensive experiments in Figure 7.14 take Summit to an extreme edge by varying the

temporal window and fluctuating the spatial minimum boundary rectangle in the query

predicate. We analyzed the performance of trajectory indexing techniques on both

space partitioning and data partitioning approach supported in Summit. When space

partitioning is being adopted in Summit, a temporal hierarchy of trajectory index is

created in the distributed file system as discussed earlier in Chapter 4 and Section 7.4.

In contrary to the data partitioning technique, in which data are equally divided across

computation nodes in each temporal level. Our experiments verify the efficiency and

97

the robustness of Summit compared to SpatialHadoop and Hadoop for every edge case.

Experiments in Figure 7.14(a) examines the performance of the temporal hierarchy

index in Summit employing a temporal slicing with the segmentation-based for

partitioning trajectory. We evaluate different granularities of time-partition slicing

(i.e., daily, weekly, and monthly). In this figure, we fix the spatial query range and

increase the temporal interval from 1 day to 30 days, while measuring the total running

time. As shown in the Figures 7.14(a), Summit utilizes its temporal hierarchy index

to achieve the best performance as it mixes and matches the partitions from different

levels to minimize the running time.

Summit provides excellent performance for both small and large query intervals as

it selects partitions from the level with the least number of partitions to process. When

the query interval is very narrow, it uses only the lowest level (e.g., daily level), but as

the query interval expand it starts to process the above level. In an edge case, when

a query interval span two or more of the highest level in the temporal hierarchy (e.g.,

month), Summit computes the exact number of partitions that need to be processed by

employing a greedy algorithm that finds the minimum number of partitions. Summit

uses a top-down approach that starts with the top level and selects partitions that cover

query temporal interval, If the query interval is not included at that granularity, then

the algorithm continues to the next level. Summit finds the local optimal from each

granularity until it reaches the global optimal, i.e., the minimum number of partitions

that covers query predicate.

In Figure 7.14(b), we investigate the impact of various data-partition slicing ratio

(α) on the query performance. Similarly to the previous experiments, we fix the spatial

query range and increases the temporal interval up to a month. The trajectory data

are sliced based on a different value of α. in which each ratio represents a level (i.e., a

granularity) in Summit. The best query performance is shown around a slicing ratio of

α = 0.1. In case the query is less than a five days interval a higher slicing ratio might

shine better than α = 0.1, this is mainly a fewer HDFS block needed to be accessed for

the query. However, this will dramatically change when the temporal query interval

98

expand.

Experiment in figure 7.14(c) examines the performance of the range query with

varying the spatial selection ratio from 0.01% to 1% of the entire area of New York

City. We compute the average of time in seconds of 30 randomly selected queries, in

which for each selection ratio we re-compute the spatial boundaries of the same selected

queries. Regardless of the spatial selectivity Hadoop always scans the whole data file

and filter in the reduce phase with the spatio-temporal predicate, in which it leads to

the least performance. As for SpatialHadoop as expected the increase of the spatial

ratio area demolish the performance dramatically.

In all cases, Summit empirically gives more than two orders of magnitude better

throughput than Hadoop. The job throughput of all systems decreases with the

increases of the query area, where more partitions needed to be accessed. Since Summit

spatial-based retrieve sub-sequence of trajectories that entirely contained in the spatial

predicate, it outperforms Summit segmentation-based. Thus, in segmentation-based

(a) more partitions need to be accessed, and (b) the size of the result file is much larger.

7.9.4 Trajectory Nearest Neighbor query

In Figures 7.15 we extensively measure the performance of kNN-point and kNN-

trajectory based queries implemented on Hadoop [78], SpatialHadoop, ST-Hadoop,

and Summit for 2.6TB of NYC Taxi dataset. In these experiments, 30 query locations

are set at random points (i.e., random points in both date and time) sampled from the

whole input file, the number of k is set to 100. Unless otherwise mentioned.

Figure 7.15(a) measures system throughput with increasing the input file size.

Summit has one to two orders of magnitude higher throughput. Hadoop and Spa-

tialHadoop performances decrease dramatically as they need to process the whole file

while Summit maintains its performance as it processes one partition regardless of the

file size. As SpatialHadoop is not aware of the temporal locality of the data, it needs

to process multiple partitions to finds the k nearest neighbor in a specific day, and in a

99

 0

 20

 40

 60

 80

 100

 120

3GB 80GB 2.55TB 2.6TB

T
h

ro
u

g
h

p
u

t
(J

o
b

/m
in

)

Input Size (TB)

Spatial-based
Segmentation-based

SpatialHadoop
Hadoop

ST-Hadoop

(a) File Size

 0

 20

 40

 60

 80

 100

 120

1 10 100 1K 10K 40K

T
h

ro
u

g
h

p
u

t
(J

o
b

/m
in

)

k

Spatial-based
Segmentation-based

SpatialHadoop
Hadoop

ST-Hadoop

(b) kNN pint-based

 0

 5

 10

 15

 20

 25

 30

 35

1 10 100 1K 10K 40K

T
h

ro
u

g
h

p
u

t
(J

o
b

/m
in

)

k

Spatial-based
Segmentation-based

SpatialHadoop
Hadoop

ST-Hadoop

(c) kNN trajectory-based

 0

 20

 40

 60

 80

 100

32 64 128 256

T
h

ro
u

g
h

p
u

t
(J

o
b

/m
in

)

HDFS block size (MB)

Spatial-based
Segmentation-based

SpatialHadoop
Hadoop

ST-Hadoop

(d) Block size (MB)

Figure 7.15: kNN Query

worst case it might end up processing all partitions. In the meantime, Summit keeps

its speedup at two orders of magnitude, in which its index are spatio-temporally aware

of trajectories locality.

Figures 7.15(b) and 7.15(c) give the effect of increasing k from 1 to 40K on the entire

dataset. Summit gives an order of magnitude performance with both segmentation-

based and spatial-based indexing. When varying the time window of the query Summit

optimizes a query plan that uses the hierarchy index; thus, it achieves two orders of

magnitude better performance compared to Hadoop kNN implementation. Summit

efficiently handles spatio-temporal kNN operation. However, we notice that the job

throughput decreases when k is roughly around and more than a thousand. This is

expected as increasing the number of k will requires more partitions to be processed.

100

Summit is consistently better than the other systems. Since SpatialHadoop shortage in

recognizing the temporal predicate of a query, the proposed algorithm needs to scan all

neighbor partitions until the desire k is reached. Although, job throughput apparently

decreases with the increased number of the nearest neighbor k, Summit optimize the

execution of the query uses the hierarchy index to keep the performance stable. At

some point of k, it will decrease, in which this is expected as the search area in both

space and time will expand.

In Figure 7.15(d), shows the effects of different HDFS block size configuration on

the job throughput. Thirty queries are fixed at a random location on the first day

of a month. More trajectories can be stored when the size of the HDFS increases.

Tuning the configuration of the HDFS block size does not influenced the performance

of Summit kNN operation. The bottleneck of the performance is not the number

of trajectories that fit a single block. Instead, it gets affected by how many blocks

need to be accessed by a specific operation. In a case of kNN point-based, a query

finds the nearest trajectory to a given trajectory in both space and time. Since

Summit already consider the spatio-temporal locality of trajectories and the query

time interval has been fixed in the queries, a kNN operation can efficiently locate the

nearest trajectory from the same block that intersects with the trajectory query. As for

comparing the two partitioning techniques in Summit, the spatial-based outperforms

the segmentation-based, mainly because the spatial-based retrieve sub-sequence of

a trajectory rather than the full trajectory as in the segmentation-based. Overall,

Summit achieve orders of magnitude better performance than SpatialHadoop and

Hadoop.

101

7.9.5 Trajectory Similarity query

 0

 2

 4

 6

 8

 10

 12

 14

 16

3GB 80GB 2.55TB 2.6TB

T
h

ro
u

g
h

p
u

t
(J

o
b

/m
in

)

Input Size (TB)

Spatial-based
Segmentation-based

SpatialHadoop
Hadoop

ST-Hadoop

(a) File Size

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 10 100 1K 10K 40K

T
h

ro
u

g
h

p
u

t
(J

o
b

/m
in

)

k

Spatial-based

Segmentation-based

SpatialHadoop

Hadoop

ST-Hadoop

(b) DTW k

 0

 2

 4

 6

 8

 10

 12

 14

 16

32 64 128 256

T
h

ro
u

g
h

p
u

t
(J

o
b

/m
in

)

HDFS block size (MB)

Spatial-based
Segmentation-based

SpatialHadoop
Hadoop

ST-Hadoop

(c) Block size (MB)

Figure 7.16: DTW similarity Query

Experiments in figures 7.16 depict the processing performance of kNN-similarity

query on Hadoop, SpatialHadoop, and Summit for 2.6TB of NYC Taxi dataset. In

these experiments, we implemented the most robust and widely adopted non-metric

similarity algorithm DTW on the top of Hadoop and SpatialHadoop. To compare the

performance of other systems with Summit, thirty trajectories sampled from the whole

input file. The location and the shape of each sampled trajectory are diverse, such

that a trajectory Trj has a distinct neighborhood and journey from other ones in the

sample. The number of k is set to 100. Unless otherwise mentioned.

Figure 7.16(a) measures the three system job throughput with increasing the input

102

file size. The query predicate consists of trajectory Trj and time window equivalent to

the start and end time of Trj. Summit has a higher job throughput than Hadoop and

SpatialHadoop. Evidently, the job throughput of Hadoop and SpatialHadoop decreases

with increasing input files, as they need to process the whole file while Summit

maintains its performance as it processes fewer partition(s) regardless of the input file

size. Since SpatialHadoop is not aware of the temporal locality of the data, it needs

to process multiple partitions to access trajectories that overlap with query trajectory

Trj to finds the k similar ones from a specific day. In the meantime, Summit keeps its

speedup at two orders of magnitude, in which its index are spatiotemporally aware of

trajectories locality. Thus, a similarity query will access only partitions that overlap

with the spatial and temporal query predicates, precisely, query trajectory Trj and time.

Figure 7.16(b) gives the effect of increasing k from 1 to 40K on the entire dataset.

Summit gives an order of magnitude performance with both segmentation-based

and spatial-based indexing. Summit gains its performance from its query optimizer,

where a generated query plan selects few partitions from the hierarchy index; thus, it

achieves two orders of magnitude better performance compared to Hadoop kNN DTW

implementation. Summit efficiently handles spatio-temporal kNN-DTW similarity.

However, we notice that the job throughput decreases when k is around and more

than a thousand. This is expected as increasing the number of k will requires more

partitions to be processed. Summit is consistently better than the other systems. Since

SpatialHadoop shortage in recognizing the temporal predicate of a query, the proposed

algorithm needs to scan all neighbor partitions until the desire k is reached. The

length of trajectories in the similarity computation influences the job throughput, and

that explains the small variance in job throughput between Summit spatial-based, and

segmentation-based. In segmentation-based, the full trajectories are examined in the

similarity computations. In contrary to the spatial-based, where a subset of trajectories

gets to be analyzed by the similarity function.

In Figure 7.16(c), shows the effects of varying the HDFS block size on the job

throughput. The time window in the query predicate of the thirty trajectory queries

is fixed on the first day of a month. The kNN similarity operation, finds the k

103

nearest similar trajectory to a given trajectory Trj in both space and time. Since

Summit already consider the spatio-temporal locality of trajectories and the query

time interval has been fixed in the query predicate, a kNN similarity operation can

efficiently locate the HDFS block that spatially intersects with Trj. As for comparing

the two partitioning techniques in Summit, the spatial-based slightly outperforms the

segmentation-based, mainly because the similarity function on spatial-based operates

on sub-sequence of trajectories rather than the full sequence of trajectories as in the

segmentation-based. Experimentally, Summit achieve orders of magnitude better

performance than SpatialHadoop and Hadoop.

Chapter 8

Language Layer

ST-Hadoop and Summit do not provide a completely new language. Instead, they

extend Pigeon language [20] by adding spatio-temporal data types, functions, and op-

erations. Spatio-temporal data types are used to define the schema of input files upon

their loading process. Meanwhile, spatio-temporal functions are used as interface to

built-in operations that carry the processing on spatio-temporal data. Summit is a tra-

jectory library added to ST-Hadoop; thus, both are going to be used interchangeably in

this chapter, because they share the same language layer. In particular, we have added

the following:

8.1 Basic Spatio-temporal Data types

ST-Hadoop extends basic geometrical shapes, such STPoint, STLine, and STRectangle.

Also added TIME, and INTERVAL. The TIME instance is used to identify the temporal

dimension of the data, while the time INTERVAL mainly provided to equip the query

predicates. The following code snippet loads Twitter data from ’Twitter’ file with a

column of type STPoint.

tweets = LOAD ’Twitter’ as

(id:int, STPoint(location:point, time:timestamp));

Twitter and tweets are the paths to the non-indexed heap file and the destination

104

105

indexed file, respectively. location and time are the columns that specify both spatial

and temporal attributes.

Similarly if the shape of the spatio-temporal data is rectangle, then ST-Hadoop

identifies the column of the rectangular shape as STRectangle. ST-Hadoop augment

the basic spatial shape with time attributes. The following code snippet loads building

shapes from OpenStreetMap (OSM) [125, 126] raw file, where Rectangle and Time are

the geometrical shape of the building and the timestamp when building was added to

OSM.

tweets = LOAD ’Building’ as

(id:int, STRectangle(Shape:Rectangle, time:timestamp));

8.2 Basic Functions and Operations

Pigeon already equipped with several basic spatial predicates. ST-Hadoop changes the

overlap function to support spatio-temporal operations. The other predicates and

their possible variation for supporting spatio-temporal data are discussed in great de-

tails in [127]. ST-Hadoop encapsulates the implementation of three commonly used

spatio-temporal operations, i.e., range, nearest neighbor, and Join queries, that take the

advantages of the spatio-temporal index. The following example ”retrieves all tweets in

Minneapolis city represented by its minimum boundary rectangle during the time interval

of August 25th and September 6th” from twitter indexed file.

tweets = FILTER twitter

BY OVERLAP(STPoint,

RECTANGLE(x1,y1,x2,y2),

INTERVAL(08-25-2016, 09-06-2016));

ST-Hadoop extended the JOIN to take two spatio-temporal indexes as an input. The

processing of the join invokes the corresponding spatio-temporal procedure. For ex-

ample, one might need to understand the relationship between the birds death and the

existence of humans around them, which can be described as ”find every pairs from

106

birds and human trajectories that are close to each other within a distance of 1 mile

during the last year”.

human_bird_pairs = JOIN human_trajectory, bird_trajectory

PREDICATE = overlap(RECTANGLE(x1,y1,x2,y2),

INTERVAL(01-01-2016, 12-31-2016),

WITHIN_DISTANCE(1));

ST-Hadoop extends KNN operation to finds top-k points to a given query point Q in

space and time. ST-Hadoop computes the nearest neighbor proximity according to

some α value that indicates whether the kNN operation leans toward spatial, temporal,

or spaito-temporal closeness. The α can be any value between zero and one. A ranking

function Fα(Q, p) computes the proximity between query point Q and any other points

p ∈ P . The following code gives an example of kNN query, where a crime analyst is

interested to find the relationship between crimes, which can be described as ”find the

top 100 closest crimes to a given crime Q located in downtown that took place on the

2nd during last year, with α = 0.3”.

k_crimes = KNN crimes_data

PREDICATE = WITH_K=100

WITH_alpha=0.3

USING F(Q, crime);

8.3 Trajectory Spatio-temporal Data types

Additional to the basic spatio-temporal data types in ST-Hadoop, we have added A

trajectory data type STTrajectory. The trajectory data type consists of a sequence of

any of a basic spatio-temporal data type, such as STPoint, STRectangle, or STLine.

Trajectory data types are fundamentally different than basic spatio-temporal shapes,

where each sequence in trajectory have a different timestamp associated with it. Hence,

a trajectory is defined by a set of basic geometrical shapes bounded by finite time

interval derived for the trajectory sequence itself. The following code snippet loads

107

NYC taxi trajectories from ’NYC’ file. Where index, Level, and Granularity are

three parameters that indicate the trajectory partitioning techniques in the HDFS.

trajectory = LOAD ’NYC’ as

(id:int, STTrajectory: <STPoint 1 - STPoint n >)

index:partition Level:1 Granularity:1-hour;

NYC and trajectory are the paths to the non-indexed heap file and the destination

indexed file, respectively. The temporal interval are derived from the basic sequence

shape, such that the Interval of a trajectory is equal to the period between the first

entry and the last of a trajectory record.

8.4 Trajectory Functions and Operations

ST-Hadoop already added several basic spatio-temporal operation predicates. To

exploit the Summit indexing and operations for processing trajectory, we added three

function to support trajectory operations, namely, KNN-point, KNN-trajectory,

and Similarity. Summit encapsulates the implementation of three commonly

used spatio-temporal operations, i.e., nearest neighbor point-based, nearest neighbor

trajectory-based, and similarity queries, that take the advantages of the trajectory

index. In the meantime, Summit did not change the spatio-temporal OVERLAP predicate,

as it is already recognize both basic and trajectory shapes.

The following example ”retrieves all cars in State Fair area represented by its minimum

boundary rectangle during the time interval of August 25th and September 6th” from

trajectory indexed file.

cars = FILTER trajectory

BY OVERLAP(STTrajectory,

RECTANGLE(x1,y1,x2,y2),

INTERVAL(08-25-2019, 09-06-2019));

Summit extends KNN operation to support two trajectory operations, of point-based and

trajectory-based. In the KNN-point finds the top-k points to a given trajectory query

108

Q. Meanwhile, KNN-trajectory finds the top-k trajectory to the given trajectory Q.

Summit for both version of the KNN operation computes the nearest neighbor proximity

according to some α value that indicates whether the kNN operation leans toward

spatial, temporal, or spaito-temporal closeness. The α can be any value between zero

and one. A ranking function Fα computes the proximity between trajectory query Q

and any other trajectory records.

The following code gives an example of kNN-point-based query, where a crime analyst

is interested to find the relationship between crimes, with trajectory of specific person

which can be described as ”find the top 3 closest crimes to a person trajectory Q on the

2nd during last year, with α = 0.5”.

k_crimes = KNN-point crimes_data

PREDICATE = WITH_K=100

WITH_alpha=0.3

INTERVAL(TIME)

USING F(Q, crime);

The following code gives an example of Similarity query, where a zoologist is interested

to find the migration of species, according to specified movement pattern which can be

described as ”find the top 1000 animals traveled similarity to trajectory Q during last

year”.

species = FILTER animals_movment

By OVERLAP(STTrajectory,

RECTANGLE(x1,y1,x2,y2),

INTERVAL(08-25-2019, 09-06-2019)

SIMILAR(Q));

Chapter 9

Conclusion

In this thesis, we introduced ST-Hadoop [19] as a novel system that acknowledges the

fact that space and time play a crucial role in query processing. ST-Hadoop is an exten-

sion of a Hadoop framework that injects spatio-temporal awareness inside MapReduce

layers. The key idea behind the performance gain of ST-Hadoop is its ability to load

the data in the Hadoop Distributed File System (HDFS) in a way that mimics spatio-

temporal index structures. Hence, incoming spatio-temporal queries can have minimal

data access to retrieve the query answer. ST-Hadoop is shipped with support for several

fundamental spatio-temporal and trajectory operations, namely, spatio-temporal range,

top-k nearest neighbor, similarity, and join queries. However, ST-Hadoop is extensible

to support a myriad of other spatio-temporal operations. We envision that ST-Hadoop

will act as a research vehicle where developers, practitioners, and researchers worldwide,

can either use directly or enrich the system by contributing their operations and analysis

techniques.

In Chapter 2 we provided a landscape and a comprehensive overview of existing

research studies from both academia and industry in the area of supporting big spatio-

temporal data. We have classified current works based on several criteria. In particular,

the implementation approach, indexing techniques, operations, and language support.

In Chapter 3 we presented the architecture design of our proposed framework ST-

Hadoop; as the first full-fledged open-source MapReduce framework with a built-in

support for spatio-temporal data. The design distinguishes itself from existing work in

the area of supporting spatio-temporal data.

109

110

In Chapter 4 we investigated two basic design of indexing in MapReduce to supports

spatio-temporal data. The proposed indexing approaches incorporate the functionality

of various big spatio-temporal batch workloads. In particular, we introduced data and

space partitioning techniques for big spatio-temporal data. Also, we focus on supporting

the incremental batch update nature of data in our design.

In Chapter 5 we detailed the implementation of three basic spatio-temporal oper-

ations, namely, spatio-temporal range, nearest neighbor, and join queries. We envi-

sion more operations can be added by professional developers, domain experts, and

researchers following similar approaches discussed in this chapter.

In Chapter 6 we investigated the spatio-temporal query optimization. In particu-

lar, we developed two common query optimization models of heuristic and cost-based

models.

In Chapter 7 we extend ST-Hadoop capability to support analytic operation on

large scale trajectory data. We proposed a new extension Summit that is well-suited to

efficiently support several basic trajectory queries, such as range, nearest neighbor, and

similarity queries. These queries and the architectural design of the proposed library are

extendable, in a way that it enables users to build various applications on trajectories

and extends its functionality.

In Chapter 8 we described how casual users could interacts with ST-Hadoop through

its language layer. We discussed basic spatio-temporal and trajectory data types, func-

tions, and operations.

References

[1] Data from NYC Taxi and Limosuine Commission.

http://www.nyc.gov/html/tlc/, 2019. accessed on April.

[2] https://about.twitter.com/company, 2019. accessed on April.

[3] Land Process Distributed Active Archive Center.

https://lpdaac.usgs.gov/about, 2019. accessed on April.

[4] Data from NASA’s Missions, Research, and Activities.

http://www.nasa.gov/open/data.html, 2019. accessed on April.

[5] European XFEL: The Data Challenge. http://www.xfel.eu/news/2012/the_data_challenge,

September 2012.

[6] http://hadoop.apache.org, 2019. accessed on April.

[7] http://spark.apache.org, 2019. accessed on April.

[8] Randall T. Whitman, Michael B. Park, Sarah M. Ambrose, and Erik G. Hoel.

Spatial indexing and analytics on hadoop. In SIGSPATIAL, pages 73–82. ACM,

2014.

[9] Jiamin Lu and Ralf Hartmut Güting. Parallel secondo: Boosting database engines

with hadoop. In ICPADS, pages 738–743. IEEE Computer Society, 2012.

[10] Shoji Nishimura, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. MD-

HBase: Design and Implementation of an Elastic Data Infrastructure for Cloud-

scale Location Services. DAPD, 31(2):289–319, 2013.

111

112

[11] Ablimit Aji, FushengWang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,

and Joel H. Saltz. Hadoop-gis: A high performance spatial data warehousing

system over mapreduce. PVLDB, 6(11):1009–1020, 2013.

[12] Ameet Kini and Rob Emanuele. Geotrel-

lis: Adding Geospatial Capabilities to Spark.

http://spark-summit.org/2014/talk/geotrellis-adding-geospatial-capabilities-to-spark

2014.

[13] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. Geospark: a cluster computing

framework for processing large-scale spatial data. In SIGSPATIAL, pages 70:1–

70:4. ACM, 2015.

[14] Ahmed Eldawy and Mohamed F. Mokbel. Spatialhadoop: A mapreduce frame-

work for spatial data. In ICDE, pages 1352–1363. IEEE Computer Society, 2015.

[15] Qiang Ma, Bin Yang, Weining Qian, and Aoying Zhou. Query processing of

massive trajectory data based on mapreduce. In CLOUDDB, pages 9–16. ACM,

2009.

[16] Haoyu Tan, Wuman Luo, and Lionel M. Ni. Clost: a hadoop-based storage system

for big spatio-temporal data analytics. In CIKM, pages 2139–2143. ACM, 2012.

[17] Zhenlong Li, Fei Hu, John L. Schnase, Daniel Q. Duffy, Tsengdar Lee, Michael K.

Bowen, and Chaowei Yang. A spatiotemporal indexing approach for efficient

processing of big array-based climate data with mapreduce. International Journal

of Geographical Information Science, 31(1), 2017.

[18] Ahmed Eldawy, Mohamed F. Mokbel, Saif Al-Harthi, Abdulhadi Alzaidy, Kareem

Tarek, and Sohaib Ghani. SHAHED: A mapreduce-based system for querying

and visualizing spatio-temporal satellite data. In ICDE, pages 1585–1596. IEEE

Computer Society, 2015.

[19] ST-Hadoop website. http://st-hadoop.cs.umn.edu/.

[20] Ahmed Eldawy and Mohamed F. Mokbel. Pigeon: A spatial mapreduce language.

In ICDE, pages 1242–1245. IEEE Computer Society, 2014.

113

[21] Louai Alarabi. St-hadoop: A mapreduce framework for big spatio-temporal data.

In SIGMOD, pages 40–42. ACM, 2017.

[22] Louai Alarabi, Mohamed F. Mokbel, and Mashaal Musleh. St-hadoop: A mapre-

duce framework for spatio-temporal data. In SSTD, pages 84–104. Springer, 2017.

[23] Louai Alarabi, Mohamed F. Mokbel, and Mashaal Musleh. ST-Hadoop: A

MapReduce Framework for Spatio-temporal Data. GeoInformatica, 22(4):785–

813, 2018.

[24] Louai Alarabi and Mohamed F. Mokbel. A demonstration of st-hadoop: A mapre-

duce framework for big spatio-temporal data. PVLDB, 10(12):1961–1964, 2017.

[25] Louai Alarabi. Summit: a scalable system for massive trajectory data manage-

ment. In SIGSPATIAL, pages 612–613. ACM, 2018.

[26] Louai Alarabi. Summit: a scalable system for massive trajectory data manage-

ment. SIGSPATIAL Special, 10(3):2–3, 2018.

[27] https://flink.apache.org/, 2019. accessed on April.

[28] Guozhang Wang, Marcos Antonio Vaz Salles, Benjamin Sowell, Xun Wang, Tuan

Cao, Alan J. Demers, Johannes Gehrke, and Walker M. White. Behavioral simu-

lations in mapreduce. PVLDB, 3(1):952–963, 2010.

[29] Gary Planthaber, Michael Stonebraker, and James Frew. Earthdb: scalable anal-

ysis of MODIS data using scidb. In Varun Chandola, Ranga Raju Vatsavai, and

Chetan Gupta, editors, Proceedings of the 1st ACM SIGSPATIAL International

Workshop on Analytics for Big Geospatial Data, BigSpatial@SIGSPATIAL 2012,

Redondo Beach, CA, USA, November 6, 2012, pages 11–19. ACM, 2012.

[30] Michael Stonebraker, Paul Brown, Donghui Zhang, and Jacek Becla. SciDB: A

Database Management System for Applications with Complex Analytics. Com-

puting in Science and Engineering, 15(3):54–62, 2013.

[31] GIS Tools for Hadoop. http://esri.github.io/gis-tools-for-hadoop/,

February 2014.

114

[32] Peng Lu, Gang Chen, Beng Chin Ooi, Hoang Tam Vo, and Sai Wu. ScalaGiST:

Scalable Generalized Search Trees for MapReduce Systems. PVLDB, 7(14):1797–

1808, 2014.

[33] Ahmed Eldawy, Ibrahim Sabek, Mostafa Elganainy, Ammar Bakeer, Ahmed Ab-

delmotaleb, and Mohamed F. Mokbel. Sphinx: Empowering impala for efficient

execution of SQL queries on big spatial data. In SSTD, volume 10411 of Lecture

Notes in Computer Science, pages 65–83. Springer, 2017.

[34] Jia Yu, Raha Moraffah, and Mohamed Sarwat. Hippo in action: Scalable indexing

of a billion new york city taxi trips and beyond. In ICDE, pages 1413–1414. IEEE

Computer Society, 2017.

[35] Khaled Mohammed Al-Naami, Sadi Evren Seker, and Latifur Khan. GISQF: An

Efficient Spatial Query Processing System. In CLOUDCOM, pages 681–688. IEEE

Computer Society, 2014.

[36] Philippe Cudré-Mauroux, Eugene Wu, and Samuel Madden. Trajstore: An adap-

tive storage system for very large trajectory data sets. In ICDE, pages 109–120.

IEEE Computer Society, 2010.

[37] Xike Xie, Benjin Mei, Jinchuan Chen, Xiaoyong Du, and Christian S. Jensen.

Elite: an elastic infrastructure for big spatiotemporal trajectories. VLDBJ,

25(4):473–493, 2016.

[38] Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander Behm,

Vinayak R. Borkar, Yingyi Bu, Michael J. Carey, Inci Cetindil, Madhusudan

Cheelangi, Khurram Faraaz, Eugenia Gabrielova, Raman Grover, Zachary Heil-

bron, Young-Seok Kim, Chen Li, Guangqiang Li, Ji Mahn Ok, Nicola Onose,

Pouria Pirzadeh, Vassilis J. Tsotras, Rares Vernica, Jian Wen, and Till West-

mann. Asterixdb: A scalable, open source BDMS. PVLDB, 7(14):1905–1916,

2014.

[39] Sattam Alsubaiee, Alexander Behm, Vinayak R. Borkar, Zachary Heilbron,

Young-Seok Kim, Michael J. Carey, Markus Dreseler, and Chen Li. Storage man-

agement in asterixdb. PVLDB, 7(10):841–852, 2014.

115

[40] Laipeng Han, Lan Huang, Xueyi Yang, Wei Pang, and Kangping Wang. A novel

spatio-temporal data storage and index method for arm-based hadoop server. In

Xingming Sun, Alex X. Liu, Han-Chieh Chao, and Elisa Bertino, editors, Cloud

Computing and Security - Second International Conference, ICCCS 2016, Nan-

jing, China, July 29-31, 2016, Revised Selected Papers, Part I, volume 10039 of

Lecture Notes in Computer Science, pages 206–216, 2016.

[41] Anthony D. Fox, Christopher N. Eichelberger, James N. Hughes, and Skylar Lyon.

Spatio-temporal indexing in non-relational distributed databases. In BIGDATA,

pages 291–299. IEEE Computer Society, 2013.

[42] Michael A. Whitby, Rich Fecher, and Chris Bennight. Geowave: Utilizing dis-

tributed key-value stores for multidimensional data. In SSTD, pages 105–122.

Springer, 2017.

[43] Haozhou Wang, Kai Zheng, Jiajie Xu, Bolong Zheng, Xiaofang Zhou, and

Shazia Wasim Sadiq. Sharkdb: An in-memory column-oriented trajectory storage.

In CIKM, pages 1409–1418. ACM, 2014.

[44] Viorica Botea, Daniel Mallett, Mario A. Nascimento, and Jörg Sander. PIST:

an efficient and practical indexing technique for historical spatio-temporal point

data. GeoInformatica, 12(2):143–168, 2008.

[45] Zeyuan Shang, Guoliang Li, and Zhifeng Bao. DITA: A distributed in-memory

trajectory analytics system. In SIGMOD, pages 1681–1684. ACM, 2018.

[46] Randall T. Whitman, Michael B. Park, Bryan G. Marsh, and Erik G. Hoel. Spatio-

temporal join on apache spark. In SIGSPATIAL, pages 20:1–20:10. ACM, 2017.

[47] Yixiang Fang, Reynold Cheng, Wenbin Tang, Silviu Maniu, and Xuan S. Yang.

Scalable algorithms for nearest-neighbor joins on big trajectory data. TKDE,

28(3):785–800, 2016.

[48] Wook-Shin Han, Jaehwa Kim, Byung Suk Lee, Yufei Tao, Ralf Rantzau, and

Volker Markl. Cost-based predictive spatiotemporal join. TKDE, 21(2):220–233,

2009.

116

[49] Yifeng Geng, Xiaomeng Huang, Meiqi Zhu, Huabin Ruan, and Guangwen Yang.

Scihive: Array-based query processing with hiveql. In 12th IEEE International

Conference on Trust, Security and Privacy in Computing and Communications,

TrustCom 2013 / 11th IEEE International Symposium on Parallel and Distributed

Processing with Applications, ISPA-13 / 12th IEEE International Conference on

Ubiquitous Computing and Communications, IUCC-2013, Melbourne, Australia,

July 16-18, 2013, pages 887–894. IEEE Computer Society, 2013.

[50] Yifeng Geng, Xiaomeng Huang, and Guangwen Yang. Adaptive indexing for

distributed array processing. In IEEE International Congress on Big Data,, pages

331–338. IEEE Computer Society, 2014.

[51] Sergej Fries, Brigitte Boden, Grzegorz Stepien, and Thomas Seidl. Phidj: Parallel

similarity self-join for high-dimensional vector data with mapreduce. In ICDE,

pages 796–807. IEEE Computer Society, 2014.

[52] Jie Bao, Ruiyuan Li, Xiuwen Yi, and Yu Zheng. Managing massive trajectories

on the cloud. In SIGSPATIAL, pages 41:1–41:10. ACM, 2016.

[53] Microsoft. Azure. https://azure.microsoft.com/, 2019. accessed on April.

[54] Zdravko Galic, Emir Meskovic, and Dario Osmanovic. Distributed processing of

big mobility data as spatio-temporal data streams. GeoInformatica, 21(2):263–

291, 2017.

[55] Ziqiang Yu, Yang Liu, Xiaohui Yu, and Ken Q. Pu. Scalable distributed processing

of K nearest neighbor queries over moving objects. TKDE, 27(5):1383–1396, 2015.

[56] Ruichu Cai, Zijie Lu, Li Wang, Zhenjie Zhang, Tom Z. J. Fu, and Marianne

Winslett. DITIR: distributed index for high throughput trajectory insertion and

real-time temporal range query. PVLDB, 10(12):1865–1868, 2017.

[57] Hongzhi Wang and Amina Belhassena. Parallel trajectory search based on dis-

tributed index. Inf. Sci., 388:62–83, 2017.

[58] Amina Belhassena and Hongzhi Wang. Distributed skyline trajectory query pro-

cessing. In John C. S. Lui, Xinbing Wang, Alexander Wolf, Yunhao Liu, and

117

Chuanping Hu, editors, Proceedings of the ACM Turing 50th Celebration Confer-

ence - China, TUR-C 2017, Shanghai, China, May 12-14, 2017, pages 19:1–19:7.

ACM, 2017.

[59] Xin Ding, Lu Chen, Yunjun Gao, Christian S. Jensen, and Hujun Bao. Ultraman:

A unified platform for big trajectory data management and analytics. PVLDB,

11(7):787–799, 2018.

[60] Amr Magdy, Louai Alarabi, Saif Al-Harthi, Mashaal Musleh, Thanaa M. Ghanem,

Sohaib Ghani, and Mohamed F. Mokbel. Taghreed: a system for querying, an-

alyzing, and visualizing geotagged microblogs. In SIGSPATIAL, pages 163–172.

ACM, 2014.

[61] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. Commun. ACM, 51(1):107–113, 2008.

[62] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient

distributed datasets: A fault-tolerant abstraction for in-memory cluster comput-

ing. In Steven D. Gribble and Dina Katabi, editors, Proceedings of the 9th USENIX

Symposium on Networked Systems Design and Implementation, NSDI 2012, San

Jose, CA, USA, April 25-27, 2012, pages 15–28. USENIX Association, 2012.

[63] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica. Graphx:

a resilient distributed graph system on spark. In Peter A. Boncz and Thomas

Neumann, editors, First International Workshop on Graph Data Management

Experiences and Systems, GRADES 2013, co-loated with SIGMOD/PODS 2013,

New York, NY, USA, June 24, 2013, page 2. CWI/ACM, 2013.

[64] Matthias Boehm, Michael Dusenberry, Deron Eriksson, Alexandre V. Evfimievski,

Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Frederick Reiss,

Prithviraj Sen, Arvind Surve, and Shirish Tatikonda. Systemml: Declarative

machine learning on spark. PVLDB, 9(13):1425–1436, 2016.

[65] Zhou Huang, Yiran Chen, Lin Wan, and Xia Peng. Geospark SQL: an effective

framework enabling spatial queries on spark. ISPRS, 6(9):285, 2017.

118

[66] http://storm.apache.org, 2019. accessed on April.

[67] https://accumulo.apache.org/, 2019. accessed on April.

[68] http://hbase.apache.org/, 2019. accessed on April.

[69] https://aws.amazon.com/dynamodb, 2019. accessed on April.

[70] http://cassandra.apache.org, 2019. accessed on April.

[71] https://asterixdb.apache.org/, 2019. accessed on April.

[72] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. The

log-structured merge-tree (lsm-tree). Acta Inf., 33(4):351–385, 1996.

[73] https://ngageoint.github.io/geowave/, 2019. accessed on April.

[74] Xiangyu Zhang, Jing Ai, Zhongyuan Wang, Jiaheng Lu, and Xiaofeng Meng.

An efficient multi-dimensional index for cloud data management. In CLOUDDB,

pages 17–24. ACM, 2009.

[75] Open Geospatial Consortium. http://www.opengeospatial.org/, 2019. ac-

cessed on April.

[76] Dong Xie, Feifei Li, and Jeff M. Phillips. Distributed trajectory similarity search.

PVLDB, 10(11):1478–1489, 2017.

[77] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt,

Samuel Madden, and Michael Stonebraker. A comparison of approaches to large-

scale data analysis. In SIGMOD, pages 165–178. ACM, 2009.

[78] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Shengzhong Feng. Spa-

tial queries evaluation with mapreduce. In GCC, pages 287–292. IEEE Computer

Society, 2009.

[79] Takuya Yokoyama, Yoshiharu Ishikawa, and Yu Suzuki. Processing all k-nearest

neighbor queries in hadoop. In WAIM, pages 346–351. Springer, 2012.

119

[80] Yunqin Zhong, Xiaomin Zhu, and Jinyun Fang. Elastic and effective spatio-

temporal query processing scheme on hadoop. In BIGSPATIAL, pages 33–42.

ACM, 2012.

[81] Ming-Ling Lo and Chinya V. Ravishankar. Spatial hash-joins. In SIGMOD, pages

247–258. ACM Press, 1996.

[82] Sloan Digital Sky Survey. http://www.sdss.org/dr14/data_access/volume/,

2019. accessed on April.

[83] Wikelski, M., and Kays, R. Movebank:s archive, analysis and sharing of an-

imal movement data. Hosted by the Max Planck Institute for Ornithology.

www.movebank.org, 2019. accessed on April.

[84] The National Hurricane Center. www.nhc.noaa.gov, 2019. accessed on April.

[85] Sijie Ruan, Ruiyuan Li, Jie Bao, Tianfu He, and Yu Zheng. Cloudtp: A cloud-

based flexible trajectory preprocessing framework. In ICDE, pages 1601–1604.

IEEE Computer Society, 2018.

[86] https://github.com/uber/marmaray, 2019. accessed on April.

[87] http://sortbenchmark.org, 2019. accessed on April.

[88] Amol Ghoting, Rajasekar Krishnamurthy, Edwin P. D. Pednault, Berthold Rein-

wald, Vikas Sindhwani, Shirish Tatikonda, Yuanyuan Tian, and Shivakumar

Vaithyanathan. SystemML: Declarative Machine Learning on MapReduce. In

ICDE, pages 231–242. IEEE Computer Society, 2011.

[89] https://kafka.apache.org, 2019. accessed on April.

[90] Zeyuan Shang, Guoliang Li, and Zhifeng Bao. DITA: distributed in-memory

trajectory analytics. In SIGMOD, pages 725–740. ACM, 2018.

[91] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Liang Zhou, and Minyi Guo. Simba:

Efficient in-memory spatial analytics. In SIGMOD, pages 1071–1085. ACM, 2016.

120

[92] Sheng Huang, Yaoliang Chen, Xiaoyan Chen, Kai Liu, Xiaomin Xu, Chen Wang,

Kevin Brown, and Inge Halilovic. The next generation operational data historian

for iot based on informix. In SIGMOD, pages 169–176. ACM, 2014.

[93] Peilin Yang, Srikanth Thiagarajan, and Jimmy Lin. Robust, scalable, real-time

event time series aggregation at twitter. In SIGMOD, pages 595–599. ACM, 2018.

[94] OpenTSDB. http://opentsdb.net, 2019. accessed on April.

[95] Sean Rhea, Eric Wang, EdmundWong, Ethan Atkins, and Nat Storer. Littletable:

A time-series database and its uses. In SIGMOD, pages 125–138. ACM, 2017.

[96] Lu Qin, Jeffrey Xu Yu, Lijun Chang, Hong Cheng, Chengqi Zhang, and Xuemin

Lin. Scalable big graph processing in mapreduce. In SIGMOD, pages 827–838.

ACM, 2014.

[97] Wenqing Lin, Xiaokui Xiao, and Gabriel Ghinita. Large-scale frequent subgraph

mining in mapreduce. In ICDE, pages 844–855. IEEE Computer Society, 2014.

[98] Jun Gao, Jiashuai Zhou, Chang Zhou, and Jeffrey Xu Yu. Glog: A high level

graph analysis system using mapreduce. In ICDE, pages 544–555. IEEE Computer

Society, 2014.

[99] https://janusgraph.org, 2019. accessed on April.

[100] http://titan.thinkaurelius.com, 2019. accessed on April.

[101] Byoung-Kee Yi, H. V. Jagadish, and Christos Faloutsos. Efficient retrieval of sim-

ilar time sequences under time warping. In ICDE, pages 201–208. IEEE Computer

Society, 1998.

[102] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast subsequence

matching in time-series databases. In SIGMOD, pages 419–429. ACM Press, 1994.

[103] Lei Chen, M. Tamer Özsu, and Vincent Oria. Robust and fast similarity search

for moving object trajectories. In SIGMOD, pages 491–502. ACM, 2005.

[104] Lei Chen and Raymond T. Ng. On the marriage of lp-norms and edit distance.

In VLDB, pages 792–803. Morgan Kaufmann, 2004.

121

[105] Elias Frentzos, Kostas Gratsias, and Yannis Theodoridis. Index-based most similar

trajectory search. In ICDE, pages 816–825. IEEE Computer Society, 2007.

[106] Michail Vlachos, Dimitrios Gunopulos, and George Kollios. Discovering similar

multidimensional trajectories. In ICDE, pages 673–684. IEEE Computer Society,

2002.

[107] Kevin Toohey and Matt Duckham. Trajectory similarity measures. SIGSPATIAL

Special, 7(1):43–50, 2015.

[108] Helmut Alt and Michael Godau. Computing the fréchet distance between two

polygonal curves. IJCGA, 5:75–91, 1995.

[109] Joachim Gudmundsson, Patrick Laube, and Thomas Wolle. Computational move-

ment analysis. In Barbara Frank-Job, Alexander Mehler, and Tilmann Sutter, ed-

itors, Die Dynamik sozialer und sprachlicher Netzwerke, Konzepte, Methoden und

empirische Untersuchungen an Beispielen des WWW, pages 423–438. Springer,

2012.

[110] Lawrence R. Rabiner and Biing-Hwang Juang. Fundamentals of speech recognition.

Prentice Hall signal processing series. Prentice Hall, 1993.

[111] Yutaka Yanagisawa, Jun-ichi Akahani, and Tetsuji Satoh. Shape-based similar-

ity query for trajectory of mobile objects. In MDM, volume 2574, pages 63–77.

Springer, 2003.

[112] Jung-Rae Hwang, Hye-Young Kang, and Ki-Joune Li. Searching for similar tra-

jectories on road networks using spatio-temporal similarity. In ADBIS, pages

282–295. Springer, 2006.

[113] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn J.

Keogh. Querying and mining of time series data: experimental comparison of

representations and distance measures. PVLDB, 1(2):1542–1552, 2008.

[114] Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel set-similarity

joins using mapreduce. In SIGMOD, pages 495–506. ACM, 2010.

122

[115] Han Su, Kai Zheng, Haozhou Wang, Jiamin Huang, and Xiaofang Zhou. Cali-

brating trajectory data for similarity-based analysis. In SIGMOD, pages 833–844.

ACM, 2013.

[116] Michael R. Evans, Dev Oliver, Shashi Shekhar, and Francis Harvey. Fast and

exact network trajectory similarity computation: a case-study on bicycle corridor

planning. In SIGKDD,Computing, UrbComp@KDD, pages 9:1–9:8. ACM, 2013.

[117] Haozhou Wang, Han Su, Kai Zheng, Shazia Wasim Sadiq, and Xiaofang Zhou.

An effectiveness study on trajectory similarity measures. In ADC, pages 13–22.

Australian Computer Society, 2013.

[118] Xiaoyue Wang, Abdullah Mueen, Hui Ding, Goce Trajcevski, Peter Scheuermann,

and Eamonn J. Keogh. Experimental comparison of representation methods and

distance measures for time series data. Data Min. Knowl. Discov., 26(2):275–309,

2013.

[119] Yu Zheng. Trajectory data mining: An overview. ACM TIST, 6(3):29:1–29:41,

2015.

[120] Hoyoung Jeung, Man Lung Yiu, and Christian S. Jensen. Trajectory pattern

mining. In Computing with Spatial Trajectories, pages 143–177. Springer, 2011.

[121] Fosca Giannotti, Mirco Nanni, Dino Pedreschi, Fabio Pinelli, Chiara Renso, Salva-

tore Rinzivillo, and Roberto Trasarti. Unveiling the complexity of human mobility

by querying and mining massive trajectory data. VLDBJ, 20(5):695–719, 2011.

[122] Mark D. Rintoul and Andrew T. Wilson. Trajectory analysis via a geometric

feature space approach. Statistical Analysis and Data Mining, 8(5-6):287–301,

2015.

[123] Chih-Chieh Hung, Wen-Chih Peng, and Wang-Chien Lee. Clustering and aggre-

gating clues of trajectories for mining trajectory patterns and routes. VLDBJ,

24(2):169–192, 2015.

[124] Guojun Wu, Yichen Ding, Yanhua Li, Jie Bao, Yu Zheng, and Jun Luo. Mining

123

spatio-temporal reachable regions over massive trajectory data. In ICDE, pages

1283–1294. IEEE Computer Society, 2017.

[125] Louai Alarabi, Ahmed Eldawy, Rami Alghamdi, and Mohamed F. Mokbel.

TAREEG: a mapreduce-based system for extracting spatial data from open-

streetmap. In SIGSPATIAL, pages 83–92. ACM, 2014.

[126] Louai Alarabi, Ahmed Eldawy, Rami Alghamdi, and Mohamed F. Mokbel.

TAREEG: a mapreduce-based web service for extracting spatial data from open-

streetmap. In SIGMOD, pages 897–900. ACM, 2014.

[127] Martin Erwig and Markus Schneider. Spatio-temporal predicates. TKDE,

14(4):881–901, 2002.

