
Attack-Resistance and Reliability Analysis of
Feed-Forward and Feed-Forward XOR PUFs

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Satya Venkata Sandeep Avvaru

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Master of Science in Electrical Engineering

Prof. Keshab K. Parhi

May, 2019

c© Satya Venkata Sandeep Avvaru 2019

ALL RIGHTS RESERVED

Acknowledgements

I would like to express my sincere gratitude to my adviser Prof. Keshab Parhi for his

support, patience and invaluable guidance through the course of this research. I would

like to thank Prof. Chris Kim for his feedback and for providing the data that initiated

this work. I would also like to thank them along with Prof. Antonia Zhai, the thesis

committee, for taking their time to review my thesis.

I am extremely grateful to my parents for their unconditional love and their belief

in me.

I would like to extend my gratitude towards my current and past lab mates, Sandhya

Koteshwara, Bhaskar Sen, Nanda Kumar Unnikrishnan, Anoop Koyily and Lulu Ge for

their encouragement and suggestions. I am also very thankful for my friends, Krishna

Sandeep Prata, Ankit Moldgy and Anirudh Reddy Ravula and Teja Dasari for their

ongoing company, friendship and support.

i

Abstract

Physical unclonable functions (PUFs) are lightweight hardware security primitives

that are used to authenticate devices or generate cryptographic keys without using

non-volatile memories. This is accomplished by harvesting the inherent randomness

in manufacturing process variations (e.g. path delays) to generate random yet unique

outputs. A multiplexer (MUX) based arbiter PUF comprises two parallel delay chains

with MUXs as switching elements. An input to a PUF is called a challenge vector

and comprises of the select bits of all the MUX elements in the circuit. The output-

bits are referred to as responses. In other words, when queried with a challenge, the

PUF generates a response based on the uncontrollable physical characteristics of the

underlying PUF hardware. Thus, the overall path delays of these delay chains are

random and unique functions of the challenge.

The contributions in this thesis can be classified into four main ideas. First, a novel

approach to estimate delay differences of each stage in MUX-based standard arbiter

PUFs, feed-forward PUFs (FF PUFs) and modified feed-forward PUFs (MFF PUFs) is

presented. Test data collected from PUFs fabricated using 32 nm process are used to

learn models that characterize the PUFs. The delay differences of individual stages of

arbiter PUFs correspond to the model parameters. This was accomplished by employing

the least mean squares (LMS) adaptive algorithm. The models trained to learn the

parameters of two standard arbiter PUF-chips were able to predict responses with 97.5%

and 99.5% accuracy, respectively. Additionally, it was observed that perceptrons can

be used to attain 100% (approx.) prediction accuracy. A comparison shows that the

perceptron model parameters are scaled versions of the model derived by the LMS

algorithm. Since the delay differences are challenge independent, these parameters can

be stored on the server which enables the server to issue random challenges whose

responses need not be stored. By extending this analysis to 96 standard arbiter PUFs,

we confirm that the delay differences of each MUX stage of the PUFs follow a Gaussian

probability distribution.

Second, artificial neural network (ANN) models are trained to predict hard and

soft-responses of the three configurations: standard arbiter PUFs, FF PUFs and MFF

ii

PUFs. These models were trained using silicon data extracted from 32-stage arbiter

PUF circuits fabricated using IBM 32 nm HKMG process and achieve a response-

prediction accuracy of 99.8% in case of standard arbiter PUFs, approximately 97% in

case FF PUFs and approximately 99% in case of MFF PUFs. Also, a probability based

thresholding scheme is used to define soft-responses and artificial neural networks were

trained to predict these soft-responses. If the response of a given challenge has at least

90% consistency on repeated evaluation, it is considered stable. It is shown that the soft-

response models can be used to filter out unstable challenges from a randomly chosen

independent test-set. From the test measurements, it is observed that the probability

of a stable challenge is typically in the range of 87% to 92%. However, if a challenge

is chosen with the proposed soft-response model, then its portability of being stable is

found to be 99% compared to the ground truth.

Third, we provide the first systematic empirical analysis of the effect of FF PUF

design choices on their reliability and attack resistance. FF PUFs consist of feed-forward

loops that enable internally generated responses to be used as select-bits, making them

slightly more secure than a standard arbiter PUFs. While FF PUFs have been analyzed

earlier, no prior study has addressed the effect of loop positions on the security and

reliability. After evaluating the performance of hundreds of PUF structures in various

design configurations, it is observed that the locations of the arbiters and their outputs

can have a substantial impact on the security and reliability of FF PUFs. Appropriately

choosing the input and output locations of the FF loops, the amount of data required

to attack can be increased by 7 times and can be further increased by 15 times if two

intermediate arbiters are used. It is observed adding more loops makes PUFs more

susceptible to noise; FF PUFs with 5 intermediate arbiters can have reliability values

that are as low as 81%. It is further demonstrated that a soft-response thresholding

strategy can significantly increase the reliability during authentication to more than

96%.

It is known that XOR arbiter PUFs (XOR PUFs) were introduced as more secure

alternatives to standard arbiter PUFs. XOR PUFs typically contain multiple standard

arbiter PUFs as their components and the output of the component PUFs is XOR-ed

to generate the final response. Finally, we propose the design of feed-forward XOR

PUFs (FFXOR PUFs) where each component PUF is an FF PUF instead of a standard

iii

arbiter PUF. Attack-resistance analysis of FFXOR PUFs was carried out by employing

artificial neural networks with 2-3 hidden layers and compared with XOR PUFs. It is

shown that FFXOR PUFs cannot be accurately modeled if the number of component

PUFs is more than 5. However, the increase in the attack resistance comes at the cost

of degraded reliability. We also show that the soft-response thresholding strategy can

increase the reliability of FFXOR PUFs by about 30%.

iv

Contents

Acknowledgements i

Abstract ii

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Research overview . 1

1.2 Outline of the thesis . 3

2 Estimating Delay Differences of Standard and Feed-Forward Arbiter

PUFs 4

2.1 Introduction . 4

2.2 Background . 5

2.2.1 Arbiter Based PUFs . 5

2.2.2 Feed-Forward PUFs . 6

2.2.3 Modified Feed-Forward PUFs . 6

2.2.4 Least Mean Square (LMS) Algorithm 7

2.2.5 Single Layer Perceptrons . 8

2.3 Experimental Setup . 9

2.4 Estimating the Physical Parameters of Standard Arbiter PUFs 10

2.4.1 Model Accuracy . 10

2.4.2 Convergence of the Estimated Values 12

v

2.4.3 Distribution of the Delay Parameters 12

2.5 Estimating the Intermediate Bias of Feed-Forward PUFs 15

2.5.1 Results . 16

2.6 Discussion and Conclusion . 17

3 Predicting Hard and Soft-Responses of Feed-Forward PUFs using ANNs 20

3.1 Introduction . 20

3.2 Artificial Neural Network Models . 21

3.3 PUF Implementation and Data Extraction 23

3.4 Predicting Hard-Responses . 25

3.4.1 Results . 26

3.5 Predicting Soft-Responses . 27

3.5.1 Results . 27

3.6 Identifying Unstable Responses . 28

3.7 Conclusion . 34

4 Effect of Loop Positions on Attack-Resistance and Reliability of Feed-

Forward PUFs 35

4.1 Introduction . 35

4.2 Feed-Forward PUF Structures . 36

4.3 Reliability Definition . 37

4.4 Simulation Details . 38

4.5 Security Analysis . 39

4.5.1 Feed-Forward PUFs with One Intermediate Arbiter 40

4.5.2 Feed-Forward PUFs with Two Intermediate Arbiters 40

4.6 Entropy of Challenge-Response Deviation Metric 42

4.6.1 Definition . 42

4.6.2 Results . 44

4.7 Reliability Analysis . 45

4.7.1 Effect of Changing FF Loop Output Location 45

4.7.2 Soft-Response Thresholding . 45

4.7.3 Adding More FF Loops . 48

4.8 Discussion and Conclusion . 49

vi

5 Feed-Forward XOR PUFs: Attack-Resistance and Reliability Analysis 54

5.1 Introduction . 54

5.2 XOR Arbiter PUFs . 55

5.3 Setup . 55

5.4 Security Analysis . 56

5.4.1 Results . 57

5.4.2 Discussion . 57

5.5 Reliability Analysis . 60

5.5.1 FFXOR PUFs with Single-loop FF PUFs 60

5.5.2 Soft-response Thresholding . 62

5.5.3 FFXOR PUFs with Multi-loop FF PUFs 63

5.6 Conclusion . 65

6 Conclusion and Future Directions 67

References 69

vii

List of Tables

2.1 Estimated Intermediate Bias Values and the Corresponding Test Accu-

racies. 18

3.1 Results of the Hard-Response Models . 26

3.2 Percent of Stable Responses in the Test Set Before and After the Elimi-

nation . 33

3.3 Summary of ANN Models Used . 34

4.1 Percent of Stable Challenges and Reliability Before and After Thresh-

olding for FF PUFs with One Intermediate Arbiter. Threshold = 90%.

. 51

4.2 Percent of Stable Challenges and Reliability Before and After Threshold-

ing for FF PUFs with Multiple Intermediate Arbiters in Overlap Config-

uration. Threshold = 90%. 52

4.3 Percent of Stable Challenges and Reliability Before and After Threshold-

ing for FF PUFs with Multiple Intermediate Arbiters in Nested Config-

uration. Threshold = 90%. 53

5.1 Percentage of Stable Challenges and Reliability Before and After Thresh-

olding. Threshold = 90%. 66

viii

List of Figures

2.1 Structure of a standard arbiter based PUF. 5

2.2 Structure of a feed-forward PUF with one loop (FF PUF). 7

2.3 Structure of a Modified feed-forward PUF (MFF PUF). 7

2.4 Block diagram of the LMS algorithm . 8

2.5 Die photo of the PUF [1]. 9

2.6 Prediction accuracy of a model based on LMS and perceptron plotted

against total number of CRPs. 11

2.7 Estimated model parameters plotted against number of CRPs used for

modeling PUF-1 from chip 1 . 13

2.8 Comparison of parameters estimated using LMS and perceptron based

modeling of PUF-1 from chip 1 . 14

2.9 Distribution of estimated delay differences at the 17th stage 14

2.10 Accuracy of intermediate bias in the range -1 to +1 for feed-forward

configuration. 17

2.11 Accuracy of intermediate bias in the range -1 to +1 for modified feed-

forward configuration. 17

3.1 Structure of single layer perceptron. 22

3.2 Structure of multilayer perceptrons. 24

3.3 Soft-response model accuracy for std. arbiter PUFs. 29

3.4 Soft-response model accuracy of FF PUF models vs. number of CRPs

used for training. 30

3.5 Soft-response model accuracy of MFF PUF models vs. number of CRPs

used for training. 31

ix

3.6 Soft-response model outputs and ground truth of FF and MFF PUFs for

200 challenges. 32

4.1 Double-loop feed-forward PUF. Intermediate arbiter is located at stage

N1. The intermediate output is fed to stages N2 and N3. 37

4.2 Feed-forward PUFs with two intermediate arbiters. 38

4.3 Double-loop PUFs. Minimum number of CRPs required to predict with

92% accuracy vs. position of the FF loop output (N3). Each box repre-

sents 10 PUFs. 41

4.4 Nested and Overlap FF PUFs. Minimum number of CRPs required to

predict with 92% accuracy vs. position of the feed-forward loop output

stage (N22). Each box represents 10 PUFs. 43

4.5 δdev plotted as a function of varying FF loop output stage for double-loop,

nested and overlap configurations. The X-axis represents the position of

the feed-forward loop output stage. Each point is a mean value of 100

PUFs. 46

4.6 Mean reliability plotted as a function of varying FF loop output stage for

double-loop, nested and overlap configurations. The error bar represents

standard deviation. All values are computed across 100 PUFs. 47

5.1 XOR arbiter PUF. Each component could be either standard or FF PUF. 55

5.2 Prediction accuracy vs. training size of ANN models for standard XOR

PUFs and FFXOR PUFs. The number levels is varied from l = 2 to

l = 8. The FF PUFs contain one loop from N1 = 15 to N2 = 25. The

number of stages (N) is 32. 58

5.3 Prediction accuracy vs. number of levels (l) for 32-stage standard XOR

PUFs and FFXOR PUFs. Accuracy values are presented as a box-plot

of 10 instances. 59

5.4 Reliability vs. number of levels for 32-stage standard and FFXOR PUFs. 61

5.5 Histogram of soft-responses of a 64-stage FFXOR PUF showing stable

and unstable responses. l = 8 and noise level = 10%. 62

5.6 Reliability vs. number of levels(l) for 64-stage FFXOR PUFs before and

after thresholding. Threshold = 90%. N1 = 10, N2 = 40 and Noise level

= 10%. 63

x

5.7 Reliability of 8-level FFXOR PUFs after thresholding for different thresh-

olds and noise levels. 64

xi

Chapter 1

Introduction

1.1 Research overview

The rapid development of computing hardware has provided the software flexibility to

enable convenient mobile data processing. Indeed, devices such as smartphones have

become a unified platform capable of conducting financial transactions and storing a

user’s private information. Due to the mobile nature of electronic devices, privacy and

security are pressing concerns especially in cases where an adversary can gain physical

access to the devices. Traditional security measures involve storing a secret key in a

non-volatile memory such as an electrically erasable programmable read-only memory

(EEPROM) or a static random-access memory (SRAM) which can be expensive in

terms of their area and power consumption. Also, the secrecy is difficult to uphold in

practice. With embedded devices becoming more ubiquitous, there is a requirement for

low-power, low-area and low-cost hardware security alternatives.

Physical unclonable functions (PUFs) are light-weight, low-cost hardware security

primitives that can be used to securely authenticate devices or generate cryptographic

keys without the involvement of non-volatile memories. This is accomplished by harvest-

ing inherent randomness in manufacturing process variations of integrated circuits (ICs)

to create secret keys. PUFs were introduced in the very beginning of the twenty first

century, first as physical one-way functions [2], then as physical random functions [3]

and finally as physical unclonable functions or PUFs. Since then, numerous PUF re-

alizations have been proposed [4] [5]. Based on whether they are typically used for

1

2

authentication or key generation, PUFs can be broadly categorized as “strong PUFs”

or “weak PUFs”. One of the fundamental differences between strong PUFs and weak

PUFs is that weak PUFs support a small number of unique challenges while strong

PUFs can process a large number of challenges. As a result, strong PUFs make it un-

feasible for an adversary to access all the challenge-response pairs (CRPs) in a limited

time. Arbiter PUFs are an example of strong PUFs.

In this work, we analyze and evaluate the performance of various arbiter PUF struc-

tures that exploit the manufacturing variability in gate delay as the source of unclon-

able randomness. Unclonablity, reliability, uniqueness and randomness are fundamental

characteristics of PUFs [6] [7]. Unclonablity ensures resilience against attacks that can

replicate the behavior of a PUF. Reliability is a measure of robustness against noise

and environmental variations. Uniqueness ensures a PUF produces unique responses

compared to other PUFs with identical design and layout while randomness ensures

that responses of a PUF are not biased towards a 0 or a 1.

This work mainly focuses on attack-resistance and reliability analyses. As discussed

in [8], possible attacking strategies on PUFs can be classified into 3 kinds: Prediction

attacks, Reverse engineering attacks and Collision attacks. A Reverse engineering attack

attempts to learn the behavior of a PUF by studying the input-output relation between

several challenge response pairs. The knowledge of the PUF architecture and the amount

of CRPs available usually have a significant effect on the feasibility of an attack. Several

reverse engineering attack strategies have been proposed in the past. The authors in [9]

have demonstrated the vulnerability of arbiter PUFs to modeling attacks and executed

an attack strategy using a machine learning technique. In [10] and [11], responses from

silicon data have been used to model attacks on arbiter PUFs using machine learning

algorithms. Despite this limitation, they are used as building blocks in variants like

XOR arbiter PUFs [12], lightweight secure PUFs [13], and composite PUFs [14] because

of their low area overhead and availability of a large set of challenge-response pairs

(CRPs). Feed-forward arbiter PUFs and XOR arbiter PUFs were introduced as more

secure alternatives to standard arbiter PUFs. However, the added security comes at the

cost of degraded reliability, i.e., they are more susceptible to noise. In this thesis, we

study the attack resistance and reliability of various configurations of standard arbiter

PUFs, Feed-forward arbiter PUFs and XOR arbiter PUFs.

3

1.2 Outline of the thesis

• Chapter 2 describes the designs and the mathematical models of standard, feed-

forward and modified feed forward arbiter PUFs. It also presents methods to

estimate the physical parameters, that characterize these PUFs, using challenge-

response pairs.

• In Chapter 3, artificial neural network models to predict hard and soft-responses

are presented and their implications are discussed.

• Chapter 4 studies the effect of feed-forward loops placement on attack-resistance

and reliability of feed-forward PUFs with multiple loops.

• Chapter 5 proposes and analyzes feed-forward XOR PUFs in terms of their attack-

resistance and reliability.

• Chapter 6 presents the main observations derived in the thesis and briefly discusses

the future directions.

Chapter 2

Estimating Delay Differences of

Standard and Feed-Forward

Arbiter PUFs

2.1 Introduction

In this chapter, a novel approach to estimate the delay difference of each MUX stage in

a PUF using measured data from PUF chips fabricated in 32 nm process is presented.

A total of six PUF chips were fabricated and 96 MUX PUF circuits were implemented

on each chip. The layout was identical for each PUF circuit. Challenge-Response test

data are used to model the delay differences of each MUX stage using a simple least

mean square (LMS) adaptive filtering algorithm. The advantage of this approach is that

the delay differences of arbiter PUFs can be estimated without using any sophisticated

machine learning techniques. Additionally, parameters involved in feed-forward and

modified feed-forward configurations are observed. It is shown that the delay differences

indeed follow a Gaussian distribution which is a standard assumption. It is also shown

that the delay differences of the various stages of the PUF circuits in each chip and

among all chips are unique. These delay differences have not been estimated in any

prior analysis of MUX PUFs. The fact that the delay differences belong to the same

Gaussian PDF has also not been confirmed from test data before. An approach to

4

5

0

1

1

0

0

1

1

0

. . .

0

1

1

0

0

1

1

0

Rising

edge

Arbiter
output

Challenge

Figure 2.1: Structure of a standard arbiter based PUF.

estimate arbiter delays utilizing these delay differences for feed-forward and modified

feed-forward PUFs is also presented in this chapter.

2.2 Background

2.2.1 Arbiter Based PUFs

Arbiter PUFs [15] [9] are delay based PUFs that use an arbiter circuit in order to

compare path delays of the circuit. Fig. 2.1 illustrates the basic structure of an arbiter

based MUX PUF. In a MUX PUF, the delay difference between the two possible paths of

a MUX stage is different for each stage in a chip. The challenge is typically a randomly

chosen binary vector whose length is same as the number of stages in the circuit. It can

be observed that there are two possible paths that are excited by the rising edge and

hence a race condition is established to reach the output. The choice of the challenge

vector affects the individual path delays at each stage of the PUF and hence the overall

path delays. The function of the arbiter circuit is to determine which rising edge arrives

first and assign the output, i.e., the response to 0 or 1, accordingly.

A standard arbiter PUF can be characterized by an additive linear delay model [15]

[13] [16]. An additive delay model is based on the assumption that the total delay in a

path is sum of the delays due to elementary components. This further implies that the

ultimate difference in path delays can be modeled as sum of individual delay differences

at each stage. The individual delay difference at the ith stage, denoted by ∆i, depends

on the ith bit of the challenge vector. Thus, the response of an arbiter based PUF

which is based on the overall delay difference between the paths is influenced by the

corresponding challenge vector. If Ci denotes the challenge bit at the i -th stage of an

6

arbiter PUF with N stages, the overall delay difference ∆ can be computed as

∆ =
N∑
i=1

(−1)Xi∆i, (2.1)

where each Xi is computed as a cumulative XOR of the successive challenge bits, i.e.,

Xi = Ci+1 ⊕ Ci+2... ⊕ CN for i = 1 to N − 1 and XN = 0. The response R is 0 or 1

depending on the sign of the overall delay difference.

R =

1,∆ ≥ 0

0,∆ < 0.
(2.2)

Like any physical circuit, PUFs are also subject to random noise. As a result of

uncertainty due to noise and manufacturing processes there may be setup-hold time

violations in the arbiter circuit leading to meta-stable outputs. The output or the

response in this case is referred to as an unstable response.

2.2.2 Feed-Forward PUFs

The ability to model arbiter PUFs as linear models makes it susceptible to modeling

attacks where an attacker tries to build a software clone of the PUF. As a way to make

arbiter PUFs more secure, feed-forward PUFs (FF PUFs) have been proposed [15] [9]

[16]. Structure of a simple feed-forward arbiter PUF is depicted in Fig. 2.2. In this

case, an additional arbiter, called intermediate arbiter, is used to determine the outputs

of one of the intermediate stages which is then used as a select bit for one of the later

stages. Note that multiple internal arbiters can also be used. This improves security

by introducing non-linearity into the model making it more complex since the additive

linear delay model is no longer valid. Moreover, this introduces uncertainty as the

locations of the internal feed-forward loops are hidden to the adversary making it more

difficult to build an accurate model. Multiple such feed-forward loops can be used to

make it more complex.

2.2.3 Modified Feed-Forward PUFs

One of the drawbacks of using FF PUFs is that reliability is degraded as compared to

a standard arbiter PUF of same size [7]. Reliability is the ability to produce a constant

7

0

1

1

0

0

1

1

0

. . .

0

1

1

0

Rising

edge

Arbiter
output

Challenge

0

1

1

0

Arbiter

. . .

N2N1 N

. . .

Figure 2.2: Structure of a feed-forward PUF with one loop (FF PUF).

0

1

1

0

0

1

1

0

. . .

0

1

1

0

Rising

edge

Arbiter

output

Challenge

0

1

1

0

Arbiter

. . .

0

1

1

0

Figure 2.3: Structure of a Modified feed-forward PUF (MFF PUF).

response to the same challenge under different environmental conditions. To improve

reliability, a modified feed-forward PUF (MFF PUF) structure shown in Fig. 2.3 was

proposed in [7]. In this configuration, the arbiter output from an intermediate stage is

used as a challenge bit for two consecutive later stages.

2.2.4 Least Mean Square (LMS) Algorithm

Gradient descent or the method of steepest descent [17] is an adaptive optimization

algorithm used to minimize (or maximize) a given function, referred as the cost function.

Starting from an arbitrary tap-weight vector (w), the solution improves iteratively. In

each iteration, the weight vector is adjusted in the direction of the steepest descent or the

direction opposite to the gradient of the cost function. Ultimately, under appropriate

conditions, the solution converges to the Wiener solution. The LMS algorithm is based

on an approximation of gradient descent where an instantaneous estimate of the gradient

computed from available data is used. Therefore, the LMS algorithm is essentially a

tool to estimate the parameters (called weights) which optimally express a given input-

output relation by minimizing a so called cost function.

In this context, the objective is to minimize the mean squared error between the

8

Cumulative

XOR
�

�

 −

µ
×

×

+

+�

D

D
w(n)

w(n-1)

F
y(n)

d(n)

e(n)

C(n)

µe(n)X(n)

X(n)

Figure 2.4: Block diagram of the LMS algorithm

predicted response and the desired response. In other words, we estimate the delay

differences by using challenges and responses as inputs and outputs of the desired model.

As described in the previous section, an arbiter PUF is a delay based model and can

be characterized by the additive linear delay model. These parameters, i.e., the delay

differences at each stage or the values of ∆i’s, are considered as the weights of an

adaptive filter. Fig. 2.4 shows the block diagram which illustrates the sequence of steps

involved in estimating these weights based on the LMS algorithm from a given set of

CRPs [18]. The input vector is concatenated with a ‘1’ to account for the bias. So, the

tap-weight vector is of size N + 1 if the MUX has N stages. The filter output y(n) is

then computed and compared to the desired response bit d(n). The difference e(n) is

then used to update the weights.

2.2.5 Single Layer Perceptrons

Artificial Neural Networks (ANN) were used to model the functionality of PUFs. These

models were then used to predict responses. We need to provide sufficiently large amount

of data to a machine learning algorithm, in order to learn a predictive model. The data

in this case are the available CRPs. The simplest version of an Artificial Neural Network

is called a single layer perceptron or, simply, a perceptron. A perceptron is the basic

processing element in any ANN and defines a hyper-plane which can be used to divide

the input space into two groups [19]. This can therefore be applied to train a binary

9

�����

�
�
��
�
�
�

��
�	

�
��
�

�
��
�
�

�

��
�

�
�

���	

�
�
�
�
�

�
�
�
�

�
�
�

�
�
�
�

��
	
�

�

Figure 2.5: Die photo of the PUF [1].

classifier. In this work, perceptron structures with a hard-limit transfer function were

implemented to train a software model of standard arbiter PUFs.

2.3 Experimental Setup

The PUFs under study were implemented in 32nm HKMG test chips in three different

configurations: standard arbiter based PUF, FF PUF (with one loop) and MFF PUF.

Each chip contains 96 PUF circuits and six such chips were tested. Each PUF can

be configured as a linear PUF, FF PUF, and MFF PUF by programming two control

bits [1]. The die photo is shown in Fig. 2.5. The PUFs thus manufactured were

observed to exhibit a high degree of uniqueness and randomness [1]. For the purpose

of estimating delay differences, 96 standard arbiter PUFs on a chip were tested and

their corresponding CRPs were extracted. Two standard arbiter PUFs are analyzed to

predict hard-responses and soft-responses. Four PUFs (two from each chip) from each

configuration are analyzed. Each PUF is a 32-stage MUX based PUF, i.e., multiplexers

are used as switching elements in each of the 32 stages. An on chip voltage-controlled

oscillator (VCO) and counter are used to measure responses reliably and efficiently. A

10

set of 10,000 and 20,000 unique challenges were randomly generated in order to evaluate

standard arbiter PUFs and FF PUFs, respectively.

2.4 Estimating the Physical Parameters of Standard Ar-

biter PUFs

2.4.1 Model Accuracy

As we have a 32 stage PUF, each challenge is a 32-bit vector. So, 33 tap-weights

are defined, including a weight for the bias term, and are initialized to random values

between 0 and 1. The number of CRPs used for training the model is varied in order to

observe its effect on model accuracy and model parameters. In order to obtain reliable

estimates, a five-fold cross validation scheme is used to validate the trained models.

This means that 80% of the available data is used to train the model and the remaining

20% is used to validate it, and this is repeated for five times, until all the data are

tested. The response of the model is decided to be either ‘0’ or ‘1’ based on whether

the output is positive or negative. These model responses are compared with the true

responses to compute classification accuracies. The average accuracy across the five

folds is considered as accuracy of the model.

This chapter considers modeling of the MUX PUF using perceptron and the LMS

algorithm. The results of the two modeling approaches are compared. The LMS al-

gorithm applies the gradient descent with adaptive learning rate to train the network.

Mean square error is used as the cost function. The data are divided into 5 folds out

of which, 3 folds are used for training while one fold is used for validation and the

remaining fold is used to test the accuracy of the model. The validation fold is required

in order to test the convergence of the network and decide when to stop training. These

are implemented using MATLAB neural network toolbox.

Fig. 2.6(a) shows how the accuracy of the models based on the LMS varies with

the number of CRPs available. Fig. 2.6(b) shows the variation of testing accuracy of

models trained using single layer perceptron, as a function of number of CRPs. Each

figure has two plots corresponding to the data from PUFs on two different chips.

11

Number of total CRPs used (including validation)

0 1000 2000 3000 4000 5000 6000 7000 8000

A
c
c
u
ra

c
y
 [
%

]

55

60

65

70

75

80

85

90

95

100

PUF #1

PUF #2

(a) LMS

Number of total CRPs

0 1000 2000 3000 4000 5000 6000 7000 8000

A
c
c
u
ra

c
y
 [
%

]

55

60

65

70

75

80

85

90

95

100

PUF #1

PUF #2

(b) Perceptron

Figure 2.6: Prediction accuracy of a model based on LMS and perceptron plotted against

total number of CRPs.

12

2.4.2 Convergence of the Estimated Values

The ∆ values cannot be considered as estimates of parameters of a PUF if they are not

reliable and consistent. In order to validate the reliability of these estimates, the PUFs

have been modeled multiple times and convergence of the estimates has been verified.

Initially they are assigned a random value between 0 and 1. As the training progresses,

they converge to their true values. Fig. 2.7(a) shows how the estimated delay differ-

ences change as more challenges are used for training. The values oscillate initially and

gradually attain a stable value. Fig. 2.7(b) shows the model parameters estimated

using the perceptron algorithm as a function of number of CRPs used. Initially, the

model parameters vary considerably with change in challenges but they gradually sta-

bilize as the CRPs increase in number. Moreover, the delay differences estimated using

LMS algorithm have been observed to be scaled versions of the model parameters of

perceptron.

Fig. 2.8 presents a comparison of estimated delay differences using both techniques.

Each value plotted corresponds to delay difference at a given stage (represented on the

X-axis). A scale factor of -100 has been multiplied to the LMS estimates. Fig. 2.8 clearly

illustrates a one-to-one correspondence between the models. Thus, delay differences can

be estimated from either the LMS model or the perceptron model.

2.4.3 Distribution of the Delay Parameters

Besides the susceptibility of arbiter PUFs to modeling attacks, the ability to characterize

the PUFs and estimate their individual delay differences at each stage is very significant.

96 PUFs were fabricated on a chip and 1000 CRPs were recorded for each of these PUFs.

Based on these CRPs, PUF parameters (∆ values) were estimated and recorded. Fig.

2.9 shows the distribution of the estimated delay differences for 96 PUFs from one chip

at the 17th stage. It has been observed that at every stage, the delay difference values

follow a similar Gaussian distribution. In a prior statistical analysis of MUX based

PUFs [7], the delays were modeled as an independently identically distributed (i.i.d.)

random variable. The histogram in Fig. 2.9 validates those assumptions.

13

Number of CRPs

0 1000 2000 3000 4000 5000 6000 7000 8000

S
te

a
d
y
-s

ta
te

 d
e
la

y
 d

if
fe

re
n
c
e
 e

s
ti
m

a
te

s

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a) LMS

Number of CRPs

0 1000 2000 3000 4000 5000 6000 7000 8000

M
o
d
e
l
p
a
ra

m
e
te

rs

-30

-25

-20

-15

-10

-5

0

5

10

15

20

(b) Perceptron

Figure 2.7: Estimated model parameters plotted against number of CRPs used for

modeling PUF-1 from chip 1

14

Stage number of the PUF

0 5 10 15 20 25 30 35

M
o
d
e
l
p
a
ra

m
e
te

rs

-40

-30

-20

-10

0

10

20

30

40

Perceptron

lms

Figure 2.8: Comparison of parameters estimated using LMS and perceptron based mod-

eling of PUF-1 from chip 1

Value of the estimated delay difference

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

0

5

10

15

20

25

Figure 2.9: Distribution of estimated delay differences at the 17th stage

15

2.5 Estimating the Intermediate Bias of Feed-Forward PUFs

The knowledge of knowing individual delay differences opens new possibilities. One

of them is the ability to learn other unknown physical characteristics of delay based

PUFs. The standard arbiter PUFs studied earlier were modified into feed-forward and

modified feed-forward structures as shown in Fig. 2.2 and Fig. 2.3. As a result, we now

have the knowledge of individual delay differences of FF PUFs. Using these values, we

claim that we can mathematically model different configurations of FF and MFF PUFs.

But the only missing piece of information is the path delays caused by the feed-forward

loops and the intermediate arbiters. We propose an approach to empirically estimate

the effect of these values based on CRPs of the FF PUFs.

In case of the FF PUFs, there is a loop which connects the output of 16th stage

to 26th stage, i.e., the challenge bit input of the 26th stage is now replace by the

intermediate output from the 16th stage. We know that the first 15 stages still act as a

standard arbiter PUF whose ∆ values are known. Therefore according to the additive

linear delay model, we can compute the intermediate output R16 as

R16 = sign(

16∑
i=1

(−1)Xi∆i +Bint), (2.3)

where Xi = Ci+1⊕Ci+2...⊕C16, for i=1 to 15 (X16 = 0) and Bint is the intermediate bias

that we need to estimate. Then we can use the additive linear delay model, described

in (2.1) and (2.2) to model FF PUF with 26th challenge bit input C26 replaced with

R16. Similarly in order to model MFF PUFs, we replace C26 and C27 with R16. Thus,

these formulations of feed-forward configurations have a direct correspondence to the

structure of their circuit.

The unknown value R16 is estimated by assuming search range is between -1 to +1.

So, for all values between -1 and +1 the final outputs for a set of challenges of the

PUF is computed using the model described above. For this purpose, we use a data

set of 18000 randomly chosen challenges with stable responses. These outputs are then

compared to the ground truth to calculate the accuracy of the model. The value of the

intermediate bias (Bint) is chosen as the one with maximum model accuracy. Moreover,

a five-fold cross validation is used to test the reliability of the estimated value of Bint

on a independent test set. A pseudo code for this algorithm is presented in Algorithm.

16

1.

Algorithm 1 Estimating intermediate bias of feed-forward PUFs

Input: CRPs (C, R), ∆ values

Output: Bint

for Bint = values between -1 and +1 do

for each challenge vector C in the training set do

Compute R16 according to (2.3)

Replace C26 with R16

Replace C27 with R16 (In the case of modified feed-forward configuration)

Compute R according to (2.1) and (2.2)

end for

Compare with ground truth and compute accuracy

end for

B∗int ← Bint with maximum accuracy return B∗int

2.5.1 Results

12000 stable challenge responses pairs were used to analyze two PUFs in multiple con-

figurations. 10000 CRPs were used for estimation and 2000 CRPs were used to test

the estimated bias. As mentioned earlier, the values of overall bias which encompasses

the effect of the final arbiter were estimated to be -0.1931 and 0.0245 for PUF-1 and

PUF-2, respectively. The accuracies for each assumed value in the range +1 and -1 is

plotted in Fig. 2.10. As the effect of intermediate arbiter is same for both feed-forward

and modified feed-forward, the value of Bint should be the same. As expected, similar

analysis of modified feed-forward configuration of the same PUFs resulted in the same

estimates as depicted in Fig. 2.11. It can be observed that there is only one peak and

the accuracy drops as we go away from the optimal value.

The values of the internal bias, Bint, are estimated as 0.2525 for PUF-1 and 0.1313

for PUF-2. These estimated values were tested on independent test sets based on five-

fold cross validation. Four folds were used for estimation and one fold for testing. The

test accuracies and the estimates for the five folds are shown in Table 2.1 to demonstrate

consistency of the approach.

17

Intermediate bias

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

A
c
c
u

ra
c
y

0.4

0.5

0.6

0.7

0.8

0.9

1
Feed-forward confuguration

PUF 1

PUF 2

X: 0.1313

Y: 0.9979

X: 0.2525

Y: 0.9974

Figure 2.10: Accuracy of intermediate bias in the range -1 to +1 for feed-forward

configuration.

Intermediate bias

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

A
c
c
u

ra
c
y

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1
Modified feed-forward confuguration

PUF 1

PUF 2

X: 0.1313

Y: 0.999
X: 0.2525

Y: 0.9986

Figure 2.11: Accuracy of intermediate bias in the range -1 to +1 for modified feed-

forward configuration.

2.6 Discussion and Conclusion

Even though predicting responses of an arbiter PUF has been studied previously, the

LMS algorithm based approach establishes that sophisticated machine learning tech-

niques are not required for creating a model for a MUX PUF. As we can observe from

Fig. 2.6(b), by exploiting a slightly more complex structure of neural networks, we

18

Table 2.1: Estimated Intermediate Bias Values and the Corresponding Test Accuracies.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean

Feed-Forward PUF-1

Bint 0.2525 0.2525 0.2525 0.2525 0.2525 0.2525

Acc. 0.9971 0.9958 0.9975 0.9979 0.9967 0.9970

Feed-Forward PUF-2

Bint 0.1313 0.1313 0.1313 0.1313 0.1313 0.1313

Acc. 0.9967 0.9983 0.9979 0.9971 0.9992 0.9978

Modified Feed-Forward PUF-1

Bint 0.2525 0.2525 0.2525 0.2525 0.2525 0.2525

Acc. 0.9975 0.9983 0.9983 0.9992 0.9975 0.9982

Modified Feed-Forward PUF-2

Bint 0.1313 0.1313 0.1313 0.1313 0.1313 0.1313

Acc. 0.9975 0.9992 1.0 0.9983 0.9988 0.9988

are able to predict the response almost with certainty. Though the LMS approach is

not 100% accurate, it provides a significant accuracy of around 97.5% for one PUF

and around 99.5% for the other. A notable advantage of this approach, as compared

to machine learning methods, is its simplicity. It has also been observed that LMS

method requires considerably less training time per iteration as compared to the above

mentioned ANNs.

Usually, a large set of CRPs corresponding to each chip is stored in a server for the

purpose of authenticating the ICs. But storing these ∆ values (and the intermediate

arbiter bias) instead of CRPs provides certain benefits. First, the storage memory

requirement is considerably reduced. Moreover, it is impractical to store all the possible

CRPs since the number increases exponentially as the size (number of stages) of the

PUF increases. Storing the ∆ values enables the server to verify the responses of an

arbitrary subset of challenges on demand. These model parameters can also be used to

19

choose preferable (more reliable) challenges which will be discussed in the later chapters.

Chapter 3

Predicting Hard and

Soft-Responses of Feed-Forward

PUFs using ANNs

3.1 Introduction

The ability to model arbiter PUFs as linear models makes it susceptible to modeling

attacks where an attacker tries to build a software clone of the PUF. As a way to make

arbiter PUFs more secure, FF PUFs have been proposed [15] [16]. As described in

Chapter 2, an additional arbiter (called intermediate arbiter) is used in FF PUFs to

determine the response in one of the intermediate stages. This intermediate response

is then used as a challenge bit for one of the later stages. Note that multiple internal

arbiters can also be used to improve security by introducing non-linearity. This chap-

ter studies the unpredictability of PUFs by adopting a black-box approach to model

standard, FF and MFF arbiter PUFs using ANNs. Unpredictability is estimated in

terms of number of CRPs required to train an accurate model of the PUF. Most of the

literature on modeling arbiter PUFs is based on simulations [20]. Even though real data

is utilized in some studies [10] [21] [11], they are confined to standard arbiter PUFs. In

this work, we present models to predict responses of the three types of arbiter PUFs

based on silicon data [1] [15] [16].

20

21

Like any physical circuit, PUFs are also subject to random noise. As a result of

uncertainty due to noise and manufacturing processes there may be setup-hold time

violations in the arbiter circuit leading to meta-stable outputs. The output or the

response in this case is referred to as an unstable response. The issue of unreliable

responses and possible counter-measures were discussed in [22]. One of the drawbacks

of using FF PUFs is that reliability is degraded as compared to a standard arbiter PUF

of same size [7]. Reliability is the ability to produce a constant response to the same

challenge under different environmental conditions. To improve reliability, MFF PUFs

were proposed in [7].

This chapter also presents models that are able to accurately predict, for a given

challenge, probability of its response being a ‘1’. This probability is called a soft-response

and these models are called soft-response models. To the best of our knowledge, this

is the first time models are proposed to predict soft-responses. Storing hard-response

models in the server has been addressed in prior literature [23] [18]. However, we

show that the soft-response models can be stored in the server to detect and discard

unstable responses. Using these soft-response models, the probability of choosing a

stable challenge increases from 89% to more than 98%. Additionally, we show that

these soft-response models achieve high accuracy and hence can be used to predict

response-bits.

3.2 Artificial Neural Network Models

Machine learning (ML) techniques are computer algorithms used to construct complex

input-output mappings. In other words, we use machine learning algorithms to learn

a model from a given subset of inputs and outputs which makes machine learning a

natural approach to model PUFs. In particular, as the response is either 0 or 1, building

a predictor is same as building a binary classifier. Several ML algorithms have been used

in the past to model PUFs. We implement Artificial Neural Networks (ANNs) which are

mathematical structures inspired from neural connectivity in human brain. The inputs

and outputs in this case correspond to challenge vectors and responses, respectively.

Single layer perceptron (SLP) is the simplest version of an ANN and is the basic

processing element of any ANN. A perceptron is used to construct a generalized linear

22

�

w1

�

�

�

�

�

�

�

�

�

�

��

��

�

���	
�

y

�

�

�

�	���������	�
������

��

��

(a) Perceptron with hard-limit transfer function as the activa-

tion function

�

w1

�

�

�

�

�

�

�

�

�

�

��

��

�

���	
�

y

�

�

�

���������	�
�������

��

��

(b) Perceptron with sigmoid transfer function as the activation

function

Figure 3.1: Structure of single layer perceptron.

model [24], i.e., a hyperplane in the space of input vectors, of the form given by

y(x) = f(wTx), (3.1)

where x is the feature vector derived from inputs and f is called the activation function.

The model parameters w are trained using a training algorithm such that a cost function

is minimized. The structure of a perceptron can be observed in Fig. 3.1. Either the

activation function shown in Fig. 3.1(a) or Fig. 3.1(b) can be used depending on

whether we need a continuous or a discrete output.

In situations where a linear model is no longer valid, more complex structures called

multilayer perceptrons (MLPs) are required. Multilayered neural networks are able to

23

approximate an arbitrary non-linear model by using multiple perceptrons as building

blocks. Optimized parameters of the model are calculated by adapting the model it-

eratively until the cost function reaches a desired value (ideally zero). The model is

usually trained using a form of gradient descent based algorithm called error backprop-

agation [24].

Perceptrons have been used to predict reponses of a linear PUF whose structure

is depicted in Fig. 3.1. In case of standard arbiter PUFs (linear PUFs), a hard-limit

activation function is used for hard-response prediction and for soft-response prediction

a sigmoid activation is used to achieve a continuous output. In case of FF PUFs, we

implement MLPs with one hidden layer to predict hard-responses and a sigmoid transfer

function is used at the output. Equation for the sigmoid transfer function f(.) is given

by f(y) = 1/(1 + exp(−y)). The final outputs are thresholded to be 1 if it is more than

0.5 and 0 otherwise. Predicting soft-responses of FF PUFs is a harder problem and

requires more complex models. To accomplish this, MLPs with two hidden layers have

been employed. In the case of predicting soft-response of FF PUFs, the output layer

uses a linear transfer function. As the outputs are probability values, the model outputs

are restricted to the range between 0 and 1 during the testing phase. Architecture

of MLP with one hidden layer used for hard-response prediction and MLP with two

hidden layers used for soft-response prediction of the FF configurations are depicted

in Fig. 3.2(a) and 3.2(b), respectively. In all the cases, hidden neurons comprise a

hyperbolic tangent sigmoid activation function. Equation for the hyperbolic tangent

sigmoid transfer function g(.) is given by g(y) = 2/(1 + exp(−2y)) − 1. In order to

train the neural networks, a variant of the backpropagation algorithm called resilient

backpropagation (RProp) [25] has been used for its efficiency.

3.3 PUF Implementation and Data Extraction

The PUFs under study were implemented in 32nm HKMG test chips in three different

configurations: standard arbiter based PUF, FF PUF (with one loop) and MFF PUF.

Each PUF can be configured as a linear PUF, FF PUF, and MFF PUF by programming

two control bits [1]. Each PUF is a 32-stage MUX based PUF. A set of 10,000 and 20,000

unique challenges were randomly generated in order to evaluate standard arbiter PUFs

24

�

�

�

�

�

�

�

�

�

�

�

�

�

���������	
�

�������	
�

����
���	
�

�������������
����

��

��

(a) MLP with one hidden layer used for hard-response predic-

tion of FF and MFF PUFs. The hidden units contain a bias

term as an input (not shown above) and have a hyperbolic tan-

gent sigmoid activation function.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���������	
�

�������	
�

����
���	
���

����
���	
���

��
��������
����

�

��

��

(b) MLP with two hidden layers used for soft-response prediction

of FF and MFF PUFs. The hidden units contain a bias term

as an input (not shown above) and have a hyperbolic tangent

sigmoid activation function.

Figure 3.2: Structure of multilayer perceptrons.

25

and FF PUFs, respectively. About 100,000 repetitive tests were performed for each

challenge and the number of 0’s and the number of 1’s were counted. The soft-response

probabilities are based on these 100k measurements. As environmental variations may

cause changes in the PUF responses, all the measurements were collected at a source

voltage of 0.9 volts and an ambient temperature of 25 degrees Celsius. As a convention,

90-10 thresholding is used to assess stability of the responses. For instance, if the number

of 1’s is less than 10%, the response is considered a stable 0, and if it is greater than

90% it is considered a stable 1. If the value is between 10 and 90, it is considered an

unstable response. Models computed to predict the hard-responses are trained based

on stable responses. For each PUF, the corresponding data set is randomly split into

5 equally sized subsets and five-fold cross validation was employed. 3 of the 5 folds

were used for training while one fold was used for validation and the remaining fold was

used for testing. This was repeated until the entire data set, i.e., all the five folds, were

tested.

3.4 Predicting Hard-Responses

Solution to a classification problem involves finding out the best model from a chosen

set of models called hypothesis space. While dealing with standard arbiter PUFs, the

hypothesis space is the set of all linear models or the set of all 33 dimensional hy-

perplanes. This is because it is established that all standard arbiter PUFs follow the

additive linear delay model. In this case, we implement single layer perceptrons with

hard-limit transfer function, trained according to the perceptron algorithm [24].

In case of the other two configurations, i.e., FF and MFF PUFs, the additive linear

delay model - a linear hypothesis space - is no longer valid. Therefore we employ

multilayer perceptrons with one hidden layer to train these models. The hidden layer

has 30 hidden units. The positions of FF loops are assumed to be unknown to the

attacker and cumulative XOR-ed challenges [15] [16] [11] are used as inputs even in

this case. The neural networks were adapted to minimize mean square error using

resilient backpropagation (RProp) [25] as the training algorithm. RProp was chosen for

its faster and more stable convergence as compared to standard backpropagation. All

hidden neurons have hyperbolic tangent activation functions and the output neuron has

26

Table 3.1: Results of the Hard-Response Models

Configuration Chip PUF Mean Acc. Std. Dev. No. of CRPs

Std. 1 1 99.8% 0.11% 1500

2 1 99.7% 0.22% 1500

FF 1 1 97.14% 1.35% 10200

2 96.8% 0.94% 10200

2 1 96.7% 0.84% 9000

2 96.8% 0.49% 9600

MFF 1 1 98.32% 0.18% 7800

2 99.7% 0.26% 7200

2 1 98.6% 0.18% 7800

2 98.35% 0.39% 7200

a sigmoid activation. The final outputs are thresholded to be 1 if it is more than 0.5

and 0 otherwise.

3.4.1 Results

Two standard arbiter PUFs have been investigated. For each PUF, models have been

trained by increasing the amount of available stable CRPs in each case. For every model,

mean accuracy of the five-folds along with its corresponding standard deviations were

observed. It was eventually observed that both the PUFs can be modeled almost with

certainty (99.8% accuracy) by using 1200 CRPs for training.

Four PUFs (two from each chip) in FF configuration and four PUFs in MFF config-

uration are analyzed. For each PUF, multiple models were computed by increasing the

size of the data set from 2000 CRPs to 17000 CRPs, i.e, the number of CRPs used for

training is increased from 1200 to 10200 (60% of the total). In each case, the five-fold

cross validation scheme results in five sub-models. Mean of the classification accuracies

is used as evaluation metric for each model. The corresponding standard deviations

are also observed to verify convergence of the sub-models. In the case of FF PUFs, on

27

average, all models reach a maximum accuracy of about 97% by using approximately

10000 CRPs for training. High values of accuracy accompanied by very small standard

deviation indicates robustness of the models. In the case of MFF PUFs, all PUFs attain

a maximum accuracy of approximately 98.5% while reaching a significant value of 98%

at only 6000 CRPs. These results for all configurations are summarized in Table 3.1. It

can be observed that MFF PUFs are less secure than FF PUFs in spite of the additional

non-linearity.

3.5 Predicting Soft-Responses

The objective of a soft-response model is to predict the probability of response being 1,

P (R = 1). In this case, the output is no longer a single bit response but a real number

between 0 and 1. In other words, this is a regression problem instead of a binary

classification problem and hence requires more accurate modeling. Moreover, unstable

responses are also taken into consideration while predicting soft-responses. Models are

evaluated based on mean absolute error (MAE) of the test set and accuracy is defined

as 1−MAE.

In case of standard arbiter PUF, we employed a single layer perceptron with sigmoid

transfer function at the output. In case of FF PUFs, MLPs with one hidden layer were

not able to attain accuracies of more than 90%. To this end, we used two-hidden layer

MLPs with 30 and 10 units in the first and second hidden layers, respectively. These

MLPs were trained using resilient backpropagation. All hidden neurons have hyperbolic

tangent activation functions and the output neuron has a linear activation. As the

outputs are probability values, the model outputs are restricted to the range between

0 and 1 during the testing phase. Mean and standard deviation of the accuracy values

for 5 folds were computed while increasing the training size from 1000 CRPs to 18000

CRPs. Correspondingly the number of CRPs required for training was increased from

600 to 10800 as three of the five folds were used for this purpose.

3.5.1 Results

Soft-response prediction accuracies of the two standard arbiter PUFs are displayed in

Fig. 3.3(a). Y-axis represents the mean test accuracy of five folds and X-axis represents

28

the number of CRPs used for training or three folds. Accuracy is evaluated based on

mean absolute error. Vertical bar at each data-point represents the standard deviation

of accuracy values across the five folds. It is observed from the plot that both the PUFs

achieve a high accuracy of approximately 98.5% accuracy using only 500 CRPs and

attain a steady-state accuracy of 98.8% eventually. It can also be noted that along with

increased accuracy standard deviation for the five sub-models becomes closer to zero.

Fig. 3.3(b) shows that model outputs closely resembles the ground truth.

Results of the four FF PUFs are illustrated in Fig. 3.4. While the accuracy values

differ among the PUFs, all models attain more than 95% accuracy. Models of PUF-

1 and PUF-2 on the first chip have 95.77% and 96.6% accuracy, respectively, while

the models of the PUFs on chip-2 achieve 95.3% accuracy. Overall, we can say that

soft-responses of FF PUFs can be predicted with an accuracy of 95-96% using 10,000

training samples.

The soft-response models of MFF PUFs are evaluated as shown in Fig. 3.5. On

chip-1, models of PUF-1 and PUF-2 eventually attain maximum accuracies of 96%

and 97.4%, respectively. In case of chip-2, both the PUFs attain 96.2%. A subset of

model outputs for a FF PUF and a MFF PUF are plotted in Fig. 3.6 along with the

ground truth as a reference. This depicts the similarity between predicted and actual

soft-responses.

3.6 Identifying Unstable Responses

During a typical authentication process, a randomly chosen set of challenges are tested

and Hamming distance of the response string is used for validation. A large portion

of these challenges could lead to unstable responses. 8-13% of the responses have been

observed to be unstable according to the test data. The ability to tell beforehand if a

given challenge can produce a stable response could be useful. In a 32-bit challenge, the

total number of challenges is 232 or approximately 4.3 billion. Based on experimental

data, the percent of stable challenges was found to be about 90%. Thus, the number of

stable challenges is approximately 3.86 billion. The unstable challenges are unreliable

for authentication. We claim that the predicted soft-responses using our models are

accurate enough to validate stability of a response without actually testing them on the

29

Number of CRPs used for training

0 500 1000 1500 2000 2500 3000 3500

A
c
c
u
ra

c
y
 [
%

]

50

55

60

65

70

75

80

85

90

95

100
Soft-response prediction - standard arbiter PUF

PUF 1

PUF 2

(a) Accuracy vs. number of CRPs used for training.

Sample number

10 20 30 40 50 60 70 80 90

s
o

ft
 r

e
s
p

o
n

s
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Regression fit - standard arbiter PUF

Ground truth

Model prediction

(b) A subset of model outputs and ground truth responses

Figure 3.3: Soft-response model accuracy for std. arbiter PUFs.

30

Number of CRPs used for training

0 2000 4000 6000 8000 10000 12000

A
c
c
u

ra
c
y
 [

%
]

50

55

60

65

70

75

80

85

90

95

100
Soft-response prediction - Feed-forward PUF Chip-1

PUF 1

PUF 2

(a) Chip-1

Number of CRPs used for training

0 2000 4000 6000 8000 10000 12000

A
c
c
u

ra
c
y
 [

%
]

50

55

60

65

70

75

80

85

90

95

100
Soft-response prediction - Feed-forward PUF Chip-2

PUF 1

PUF 2

(b) Chip-2

Figure 3.4: Soft-response model accuracy of FF PUF models vs. number of CRPs used

for training.

31

Number of CRPs used for training

0 2000 4000 6000 8000 10000 12000

A
c
c
u

ra
c
y
 [

%
]

50

55

60

65

70

75

80

85

90

95

100
Soft-response prediction - Modified feed-forward PUF Chip-1

PUF 1

PUF 2

(a) Chip-1

Number of CRPs used for training

0 2000 4000 6000 8000 10000 12000

A
c
c
u

ra
c
y
 [

%
]

50

55

60

65

70

75

80

85

90

95

100
Soft-response prediction - Modified feed-forward PUF Chip-2

PUF 1

PUF 2

(b) Chip-2

Figure 3.5: Soft-response model accuracy of MFF PUF models vs. number of CRPs

used for training.

32

Sample number

20 40 60 80 100 120 140 160 180

s
o
ft
 r

e
s
p
o
n
s
e

0

0.2

0.4

0.6

0.8

1

Regression fit - feed-forward arbiter PUF

Ground truth

Model prediction

(a) FF PUF

Sample number

20 40 60 80 100 120 140 160 180 200

s
o
ft
 r

e
s
p
o
n
s
e

0

0.2

0.4

0.6

0.8

1

Regression fit - modified feed-forward arbiter PUF

Ground truth

Model prediction

(b) MFF PUF

Figure 3.6: Soft-response model outputs and ground truth of FF and MFF PUFs for

200 challenges.

33

Table 3.2: Percent of Stable Responses in the Test Set Before and After the Elimination

Config.

Original set New set

Chip/ No. of % # CRPs %

PUF CRPs Stable Chosen Stable

Std. 1/1 1000 91.4% 905 99.7%

2/1 1000 91.7% 909 99.1%

FF 1/1 4000 86.9% 3162 98.2%

1/2 4000 87.25% 3374 98.3%

2/1 4000 89.52% 3301 98.7%

2/2 4000 90.85% 3424 98.8%

MFF 1/1 4000 86.95% 3293 97.4%

1/2 4000 89.75 3536 98.3%

2/1 4000 91.62 3393 98.9%

2/2 4000 92.2 3487 99.3%

circuit.

For a given challenge, the first step is to use the models to determine the soft-

response which is then used to determine if the response is unstable based on 0.1-0.9

thresholds. This allows the server to issue unstable challenges but not use them for

authentication. This approach enhances the security of the PUF. Table 3.2 provides a

comparison between proportion of stable responses in the original data and proportion

of stable responses in the new set, after the elimination process. Moreover, we argue

that these soft-response models can be simultaneously used to predict hard-responses

by simply thresholding the predicted soft-responses. It is to be noted that the results

are based on evaluation over an independent test set whose sizes are reported in the

table (3rd column). For instance, consider PUF-1 in the first chip in FF configuration.

4000 independent random challenges are examined out of which only 86.9% are stable

according to the test measurements. Using the soft-response model 3162 (out of the

34

Table 3.3: Summary of ANN Models Used

Type of Type of #Hidden Intermediate Final

PUF response neurons activation activation

Std. Hard 0 - Hard-limit

Soft 0 - Sigmoid

FF Hard 30 tanh Sigmoid

Soft 30, 10 tanh Linear

MFF Hard 30 tanh Sigmoid

Soft 30, 10 tanh Linear

4000) are found to be stable. By comparing with the ground truth, it turns out that

98.2% of these 3162 CRPs are in fact stable. Using this approach, the proportion of

unstable CRPs in the new set falls to less than 3%. This enables the server to issue and

verify the response for any randomly chosen challenge at will by storing these models.

3.7 Conclusion

Since a typical application of a PUF is to generate cryptographic keys, unpredictability

is a vital security property of any PUF. One way to compare PUFs in terms of their

practical unpredictability is to build modeling attacks and compare the ease of attack

[26]. In terms of security, it is observed that Standard < MFF < FF; however, this

is valid for the specific configurations evaluated and may not be valid for arbitrary

configurations. We have shown that hard and soft-response models can be trained for

linear and nonlinear PUFs. The ANN models used for training of various PUFs are

summarized in Table 3.3. The soft-response models can be used to eliminate unstable

challenges and substantially increase the proportion of stable CRPs from about 90% to

99%. Furthermore, these models can be used to predict the stable hard-responses by

thresholding the soft-response model outputs, thereby enabling the server to test any

random challenge without having to store a large set of CRPs.

Chapter 4

Effect of Loop Positions on

Attack-Resistance and Reliability

of Feed-Forward PUFs

4.1 Introduction

FF PUFs containing one to five intermediate arbiters [16] [7] are considered in this chap-

ter. Several prior studies [10] [11] [27] [28] have demonstrated vulnerability of FF PUFs

to attacks. However, the structure of FF PUFs in these studies was chosen arbitrarily

and focused on FF PUFs with loops cascaded with each other or placed separately from

each other. In this work, we explore various configurations and determine how changing

the location of feed-forward loop inputs and outputs affects the security and reliabil-

ity. Also, most of the prior studies employ evolutionary strategies to learn a predictive

model of a FF PUF. The limitation of this approach is that the attacker is assumed

to have the knowledge of the PUF design, i.e., number of feed-forward loops and the

location of their inputs and outputs. We do not make any such assumptions in this

work and incorporate a black-box approach. We also do not focus on the class of attack

strategies that use side-channel information [21] [28] [29].

Unpredictability, reliability and uniqueness are fundamental characteristics of PUFs.

Unpredictability ensures resilience against cloning attacks and reliability is a measure

35

36

of robustness to environmental noise. Uniqueness makes sure that the outputs of PUFs

with identical design and layout produce unique responses. A major limitation of FF

PUFs is that reliability is degraded in comparison with standard arbiter PUFs of same

size [7]. Reliability is the ability to produce a constant response to the same challenge

under different environmental conditions. To improve the reliability, a modified FF PUF

structure was proposed in [7]. It has been shown in [27] that modified FF PUFs have

a degraded security in spite of having two loops which accounts for more non-linearity.

One of the goals of this work is to see if changing the FF loop location could be an

effective countermeasure to improve the security of FF PUFs. Additionally, we propose

an entropy based metric to estimate the unpredictability of a PUF structure. It is based

on the idea of measuring entropy of challenge and response deviations between standard

and FF-PUFs. Since, standard arbiter PUFs are known to be predictable, we believe

that higher degree of entropy is an indication of higher unpredictability.

We also empirically estimate the reliability of FF PUFs and how it is affected by

the choice of feed-forward loop positions. While FF PUFs have been analyzed earlier,

no prior study has addressed the effect of loop positions on the security and reliability.

It is shown that the locations of the arbiters and their outputs can affect the security

and reliability of the FF PUF. Additionally, we incorporate a soft-response thresholding

strategy [27] to identify stable challenges and show that reliability can be increased

significantly for authentication.

4.2 Feed-Forward PUF Structures

Due to their lack of uniqueness, FF PUFs with one loop are not considered in this

study [30]. However, FF PUFs with two loops are considered. In case of double-loop

FF PUFs there is one intermediate arbiter with two outputs, i.e., the output of the

intermediate arbiter is used to replace the select bit of two later stages as shown in Fig.

4.1. The output of the intermediate arbiter located at stage N1 is fed to stages N2 and

N3. If the two output stages are adjacent, i.e., if N3 = N2 + 1, it is referred to as a

modified FF PUF [7].

Alternatively, we could generate the two intermediate responses from two different

arbiters. We denote the input and output stage locations of the first FF loop as N11 and

37

0

1

1

0

0

1

1

0

. . .

0

1

1

0

Rising

edge

Arbiter

output

Challenge

0

1

1

0

Arbiter

. . .

0

1

1

0

. . .

N3N2N1

. . .

N

Figure 4.1: Double-loop feed-forward PUF. Intermediate arbiter is located at stage N1.

The intermediate output is fed to stages N2 and N3.

N12, respectively. The input and output positions of the second loop are denoted as N21

and N22, respectively (see Fig. 4.2). Depending on the relative positions of these two FF

loops, there are four possible configurations: FF overlap, FF cascade, FF separate [31]

and FF nested. If one loop is enclosed by the other loop, it is referred to as FF nested

configuration. If there is at least one stage overlapped between the two loops it is called

feed-forward overlap structure. If the output stage of the first loop is same as the input

stage of the second loop, it is called feed-forward cascade structure. When there is at

least one stage separation between the output of the first loop and input of the second

loop it is called feed-forward separate. Cascade and overlap configurations with two

loops were shown to exhibit poor uniqueness properties and hence we do not consider

these structures in this work. The structures of nested and overlap configurations are

depicted in Fig. 4.2.

4.3 Reliability Definition

Depending on the challenge bits, the path delays of the two paths of an arbiter PUF

can be similar. Under these circumstances, as a result of uncertainty due to noise and

manufacturing processes there may be setup-hold time violations in the arbiter leading

to meta-stable outputs. The susceptibility of a PUF to these effects can be characterized

by reliability. Reliability of a PUF gives an estimate of how consistent the response is

for a given challenge under noise. For each of thr PUFs examples considered, 100 noisy

responses are generated. To emulate the effect of environmental and measurement noise,

Gaussian noise is added to the delay difference parameter at every stage. To compute the

stability of a PUF circuit, the same challenge is provided as input under different values

38

0

1

1

0

������
������
������
������

�������
�������
�������
�������

������
������

�������
�������

0

1

1

0

�������
�������
�������
�������

������
������

�������
�������

������
������
������
������

0

1

1

0

Arb

Arb

������
������
������
������

������
������
������
������

������
������
�������
�������

0

1

1

0

������
������

�������
�������

������
������
������
������

������
������
�������
�������

0

1

1

0

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Arb Out

N11 N21 N12N22 N

0

1

1

0

Challenge

������
��������
��������
��������

������
��������
��������
��������

������
��������
��������
��������

(a) Feed-forward nested.

0

1

1

0

������
������
������
������

������
������
�������
�������

������
������
�������
�������

0

1

1

0

������
������
�������
�������

������
������
�������
�������

������
������
������
������

0

1

1

0

Arb

Arb

������
������
�������
�������

������
������
������
������

������
������
�������
�������

0

1

1

0

������
������

�������
�������

������
������
������
������

������
������
�������
�������

0

1

1

0

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Arb Out

N21 N12 NN22N11

0

1

1

0

Challenge

������
��������
��������
��������

������
��������
��������
��������

������
��������
��������
��������

(b) Feed-forward overlap.

Figure 4.2: Feed-forward PUFs with two intermediate arbiters.

of noise and the associated responses are recorded. Reliability metric is mathematically

defined in terms of intra-chip variation (or intra-chip Hamming distance) [6]. Assume

R is an n-bit response vector used as a reference and the noisy response-vectors are

denoted by R′. An empirical estimate of intra-chip variation, Pintra, is given by,

Pintra =
1

m

m∑
i=1

HD(R,R′i)

n
(4.1)

where m is the number of noisy response-vectors that represent different environmental

conditions. Reliability can be computed as (1− Pintra)× 100%.

4.4 Simulation Details

Variants of the additive linear delay model are used to simulate several FF PUF con-

figurations. As mentioned in previous literature, i.i.d. standard normal distributions

can be used to model delay difference values at each stage of the PUF [11]. It is known

that a Gaussian distribution with non-zero mean and unit variance captures the effect

of arbiter [18]. So, we sample arbiter delays from a Gaussian distribution with mean 0.1

and variance 1. We believe that the non-zero mean emulates the effect of arbiter bias.

Additionally, noise has been added to all the simulation models to make them more

39

realistic and to observe its effect. An additive Gaussian noise with zero mean and 5%

noise level is added to delay difference parameters (∆i) at each stage and to the arbiter

delay (∆arb) [7] [32]. Noise level is defined as the ratio of the standard deviation of the

noise to the standard deviation of delay differences at each stage.

We consider two FF PUF configurations: one intermediate arbiter with two outputs

(double-loop), and two intermediate arbiters each with its own output (two loops). Feed-

forward arbiter PUFs with one intermediate arbiter and two intermediate arbiters are

shown in Figs. 4.1 and 4.2, respectively. In case of double-loop configurations, the input

stage (N1) is considered to be 15. The 25th, 35th and 45th stages are considered as the

candidates for the first output stage of the FF loop (N2) and the second output stage

(N3) is varied from N2 + 1 to 64 in increments of one position. For configurations with

two intermediate arbiters, the first loop is kept constant with N11 = 15 and N12 = 45.

The second intermediate arbiter is placed at stage N21 = 30 and the output location

(N22) is changed from 31 to 64. If N22 is between 31 and 44, it is considered as a

FF nested configuration and if it is between 45 and 64, it is considered as an overlap

configuration.

4.5 Security Analysis

FF PUF structures presented above are considered for the security analysis. To assess

the unpredictability, PUFs in each configuration are attacked using machine learning.

For a given configuration, 10 PUF instances (PUFs with identical design) are simulated

to ensure consistency in the results. For each PUF instance, multilayered perceptrons

with one hidden layer are trained to accurately predict the responses. 20,000 CRPs

each are used for validation and testing while varying the number of CRPs required

for training. The hidden layer comprised of 50 neurons and 80 neurons for structures

with one intermediate arbiter and two intermediate arbiters, respectively. Since an

attacker can easily identify the noisy challenges, we only used the CRPs that have at

least 90% consistency in the presence of noise. As more data are used for training, the

prediction accuracy naturally increases until it reaches a maximum value after which it

gets saturated. Convergence of training, validation and testing errors are examined to

avoid over-training. All the models achieved more than 92% accuracy. Therefore, 8%

40

tolerance level is chosen as the threshold to decide if a model is accurate. Minimum

Number of CRPs (approximated to the nearest multiple of 5000) required to reach

92% test accuracy is considered as the evaluation metric to compare unpredictability of

various configurations studied.

4.5.1 Feed-Forward PUFs with One Intermediate Arbiter

Double loop PUFs with N1 = 15 have been trained with varying values of the first

output stage (N2) and the second output stage (N3). The number of CRPs required

to attain 92% accuracy has been recorded for 10 instances in each design. For a given

value of N1 and N2, box-plots illustrating the effect of changing the value of N3 are

shown in Fig. 4.3. In Fig. 4.3(a), it can be observed that as the value of N3 increases,

training data size required to train an accurate model increases until a certain position,

seen to be the 36th stage in this case. After the 60th stage, as we get closer to the

output stage, we need less training information. We can further observe that by just

selecting a better choice of feed-forward loop positions we can increase the number of

required CRPs to train an accurate model by more than 7 times: from 15,000 (N2 = 25

and N3 = 26 - modified FF PUF) to 107,500 (N2 = 25 and N2 = 50).

A similar “inverted-U” trend can be observed in all three cases. It can be observed

that the change in output position of the feed-forward loop has significant effect on

the security of the PUF. These results indicate that the feed-forward loop output stage

should be chosen as far as possible from the input location of the loop as well as the

final stage for better attack-resistance.

4.5.2 Feed-Forward PUFs with Two Intermediate Arbiters

ANN models for feed-forward overlap (Fig. 4.2(a)) and nested (Fig. 4.2(b)) configura-

tions are trained using multilayered perceptrons with one hidden layer. These models

were relatively more complex and required 80 neurons instead of 50 to reach good pre-

diction accuracies. The size of the training data required to attain 92% accuracy was

measured. The effect of changing the second FF loop output stage on this value is shown

in Fig. 4.4(a) and Fig. 4.4(b) for nested and overlap structures, respectively. It can be

noted that the observed values imply that the PUFs with 2 intermediate arbiters are

41

26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
0

0.5

1

1.5

2

2.5

N
u

m
b

e
r

o
f

C
R

P
s
 r

e
q

u
ir
e

d

10
5

feed-forward loop output stage (x)

(a) N1=15, N2=25 and N3=x.

36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
0

0.5

1

1.5

2

2.5

N
u

m
b

e
r

o
f

C
R

P
s
 r

e
q

u
ir
e

d

10
5

feed-forward loop output stage (x)

(b) N1=15, N2=35 and N3=x.

46 48 50 52 54 56 58 60 62 64
0

0.5

1

1.5

2

2.5

N
u

m
b

e
r

o
f

C
R

P
s
 r

e
q

u
ir
e

d

10
5

feed-forward loop output stage (x)

(c) N1=15, N2=45 and N3=x.

Figure 4.3: Double-loop PUFs. Minimum number of CRPs required to predict with

92% accuracy vs. position of the FF loop output (N3). Each box represents 10 PUFs.

42

more secure than double-loop PUFs. More importantly, similar to the previous case,

we can note that the output positions closer to other FF loop inputs/outputs require

relatively less training data.

4.6 Entropy of Challenge-Response Deviation Metric

Unpredictability of a PUF is a measure of complexity of the input output mapping

between inputs and ouputs of a predictive model. It is known that linear PUFs can

be easily learned [10] [11] [18]. So, the further the function of a FF-PUF deviates

from the function of a linear PUF, the harder it becomes to learn an accurate predictive

model. With this premise in mind, we propose an entropy based unpredictability metric

to estimate the effect of FF loop position for a given FF structure. The entropy of

challenge-response deviation metric is based on two terms: the entropy of the XOR-ed

challenge deviation and the entropy of the response deviation.

4.6.1 Definition

The first metric, δXdev, is based on comparing the input vector of a given FF-PUF (XFF)

to that of a linear PUF (Xlin) with same delay difference parameters. It is known

that a standard MUX PUF can be modeled as a linear function of cumulative XOR-ed

challenges (X) as described in (2.1). Assume a standard MUX PUF is converted to a

feed-forward PUF such that the intermediate output replaces the challenge-bit of stage

N2. For a given challenge, there are only two possible ways in which this conversion can

alter the values of a certain bit in X. Case-1: The intermediate arbiter output is same

as the challenge-bit at N2 and none of the XOR-ed challenge-bits is affected. Case-2:

The intermediate arbiter output is different from the challenge-bit. This leads to a more

complex mapping between the input vector X and the response, which makes it harder

to learn a predictive model.

Let us define a Bernoulli random variable Xdev that indicates whether a given input-

bit (Xi) deviates (flips) from its original value due to change in the structure from

linear to feed-forward. Entropy quantifies the degree of randomness in Xdev. For a

given challenge (C), the probability of deviation can be computed by using normalized

Hamming distance between Xlin and XFF , i.e., PXdev = HD(Xlin,XFF)
N where N is the

43

31 33 35 37 39 41 43
0

0.5

1

1.5

2

2.5

3

N
u
m

b
e
r

o
f
C

R
P

s
 r

e
q
u
ir
e
d

10
5

feed-forward loop output stage (x)

(a) Nested configuration. N11=15, N12=45, N21=30 and

N22=x

46 48 50 52 54 56 58 60 62 64
0

0.5

1

1.5

2

2.5

3

N
u
m

b
e
r

o
f
C

R
P

s
 r

e
q
u
ir
e
d

10
5

feed-forward loop output stage (x)

(b) Overlap configuration. N11=15, N12=45, N21=30 and

N22=x

Figure 4.4: Nested and Overlap FF PUFs. Minimum number of CRPs required to

predict with 92% accuracy vs. position of the feed-forward loop output stage (N22).

Each box represents 10 PUFs.

44

number of stages. The XOR-ed challenge deviation metric (δXdev) is defined as the mean

entropy of Xdev over a set of challenges. This can be expressed as

δXdev =
1

M

∑
C∈M

−PXdevlog2(PXdev)− (1− PXdev)log2(1− PXdev), (4.2)

whereM is a randomly chosen subset of challenges and M is the number of challenges.

Similarly, a metric can be defined to measure the dissimilarity between the response

signatures of a linear PUF and a FF-PUF. Define a Bernoulli random variable Rdev

which indicates whether or not the response of the FF-PUF is different from that of

the linear PUF for the same challenge. The probability of response changing can be

computed as PRdev = HD(Rlin,RFF)
M where Rlin and RFF are the response signatures of

linear and FF-PUFs, respectively and M is the number of bits in the response signature.

The response deviation metric (δRdev) is then computed as the entropy of Rdev. This can

be expressed as

δRdev = −PRdevlog2(PRdev)− (1− PRdev)log2(1− PRdev), (4.3)

The unpredictability metric (δdev) is the average value of δXdev and δRdev, i.e., δdev =
δXdev+δ

R
dev

2 .

4.6.2 Results

All configurations evaluated for the security analysis are considered here. δdev is com-

puted for 100 instances for each of the double-loop, nested and overlap configurations.

The set M consists of 10,000 randomly chosen challenges. δdev plotted as a function

of varying FF loop output stage is presented in Fig. 4.5(a) for the case of double loop

PUFs. Fig. 4.5(b) depicts the results for nested and overlap configurations. Each value

is the mean of 100 instances. All the 100 instaces were observed to have similar values:

the variance of δdev for these 100 PUF instances is observed to be in the order of 10−6.

In other words, the metric is invariant to the parameters of the PUF and only depends

on the design. It can be observed that δdev increases as the value of FF loop output

stage is increased upto a certain point and then starts decreasing as we get closer to

the final stage. The peak value is attained when the output position is chosen away

from the final stage and other inputs/outputs of FF loop(s). The inverted-U trend seen

45

here roughly explains the results in Fig. 4.3 and Fig. 4.4. Thus, this metric can be

used to estimate and compare the effect of changing FF loop positon on the security

of FF-PUFs. It is to be noted that this metric is limited to estimating and comparing

the unpredictability among different PUFs with same structure but varying FF loop

locations. It cannot be used to compare arbitrary FF-PUF structures and hence cannot

be considered as a universal metric for unpredictability of FF-PUFs.

4.7 Reliability Analysis

4.7.1 Effect of Changing FF Loop Output Location

For each configuration, i.e., for a given PUF design, 100 PUF instances are evaluated

using 1000 CRPs. The mean and standard deviation across the 100 PUF instances are

recorded. For double loop configurations, reliability as a function of feed-forward loop

output position is shown in Fig. 4.6(a). It can be seen that the reliability decreases as the

value of N1 or N2 is increased. The mean reliability decreases approximately linearly

as the second output stage (N2) is pushed further towards the right. The standard

deviation values were observed to be always less than 0.2%. Reliability values of nested

and overlap FF PUFs are shown in Fig. 4.6(b). The expected linearly decreasing trend

is observed again. This trend is in accordance with previous statistical analysis [7].

4.7.2 Soft-Response Thresholding

When the same challenge is applied to a PUF multiple times, it may not result in the

same output due to the effect of noise. As a consequence of the path delays in the circuit,

some challenges are more prone to generate an inconsistent response. By identifying

those challenges, we can increase the reliability during authentication. For a given

challenge, soft-response is defined as the probability that the response is 1 (Pr(R =

1)) under environmental variations. Empirically, the soft-responses were computed by

applying the same challenge 100 times under the presence of noise. As a convention, we

use 90% as a threshold to measure the consistency of a response. That is, if the response

is 0 or 1 in at at least 90% of the cases, it is considered a stable response. Otherwise,

it is referred to as an unstable response. Therefore if Pr(R = 1) is less than 10%, the

46

feed-forward loop output stage(x)

25 30 35 40 45 50 55 60 65

δ
v

ar

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
1
=15, N

2
=25, N

3
=x

N
1
=15, N

2
=35, N

3
=x

N
1
=15, N

2
=45, N

3
=x

(a) Double-loop PUFs.

feed-forward loop output stage(x)

30 35 40 45 50 55 60 65

δ
v

ar

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Nested

Overlap

(b) Nested and overlap PUFs. N11=15, N12=45, N21=30 and

N22=x

Figure 4.5: δdev plotted as a function of varying FF loop output stage for double-loop,

nested and overlap configurations. The X-axis represents the position of the feed-forward

loop output stage. Each point is a mean value of 100 PUFs.

47

feed-forward loop output stage(x)

25 30 35 40 45 50 55 60 65

R
el

ia
b
il

it
y
(%

)

94

95

96

97

98

99

100

N
1
=15, N

2
=25, N

3
=x

N
1
=15, N

2
=35, N

3
=x

N
1
=15, N

2
=45, N

3
=x

(a) Double-loop PUFs.

feed-forward loop output stage(x)

30 35 40 45 50 55 60 65

R
el

ia
b
il

it
y
(%

)

94

95

96

97

98

99

100

Nested

Overlap

(b) Nested and overlap PUFs. N11=15, N12=45, N21=30 and

N22=x

Figure 4.6: Mean reliability plotted as a function of varying FF loop output stage

for double-loop, nested and overlap configurations. The error bar represents standard

deviation. All values are computed across 100 PUFs.

48

response is considered a stable 0, and if it is greater than 90% it is considered a stable

1. If the value is between 10% and 90%, it is considered an unstable response. Soft-

responses of several FF PUFs were computed by assigning each challenge 100 times.

A subset of challenges was then chosen by thresholding the soft-responses using 90-10

thresholding. The challenges that generate stable responses are referred to as stable

challenges. Thus, stable challenges can be identified and used to increase reliability of

authentication.

4.7.3 Adding More FF Loops

We know that adding more loops and more internal arbiters adds complexity to the

PUF models making them more resistant to modeling attacks. But this comes at the

cost of degraded reliability. So, we extend the above reliability analysis to analyze

FF PUFs with more than 2 loops. FF PUFs with multiple loops and varying number

of intermediate arbiters were simulated in overlap and nested configurations and their

mean reliability values were computed. Further, soft-response thresholding is applied to

these configurations under different noise levels (5%, 10% and 15%) and the reliability

was computed before and after thresholding i.e., using 1000 randomly chosen challenges

and by using 1000 stable challenges. These results are presented in Tables 4.1-4.3.

In case of FF PUFs with a single intermediate arbiter, placing the FF loop outputs

closer to each other results in higher reliability compared to spreading them apart. In

spite of adding more loops, the change in reliability is not significant since the inter-

mediate response is generated by the same arbiter. Therefore, multiple intermediate

arbiters were used to generate independent intermediate responses. We know that mul-

tiple arbiters can be configured in overlap or nested fashion (see Fig. 4.2). In general,

it can be noticed that adding more loops makes the circuit more susceptible to noise

which leads to less reliability and less proportion of stable challenges. However, less

proportion of stable challenges is not directly a concern as the total number of avail-

able challenges is huge for arbiter PUFs and increases exponentially with the number

of stages. For 64-bit PUFs, assuming a meager 10% of the challenges are stable, the

server still has 1.8 × 106 trillion (10% of 264) stable challenges. For nested and over-

lap FF PUFs, the results show that reliability can be improved by replacing the FF

loops with modified FF loops. For example, FF PUF with 5 intermediate arbiters and

49

5 loops in overlap configuration has 84.8% reliability (15% noise level). If the 5 loops

are replaced by modified FF loops, i.e, the same output is provided to two consecutive

stages, the reliability increases to 92%. These results also illustrate that soft-response

thresholding can significantly increase the reliability to more than 96% in every case.

Considering nested configuration with 5 loops, we can see that mean reliability is 81.6%

(15% noise) and 57% of the challenges are stable. By choosing these stable challenges

for authentication, reliability can be increased to 96.3%.

4.8 Discussion and Conclusion

An empirical analysis of the effect of loop positioning in FF PUFs on their and attack-

resistance and reliability is presented in this chapter. We show that location of the loop

can have significant effect on attack-resistance. In case of double loop PUFs, the number

of CRPs required by an attacker to train an accurate model can be increased from 15,000

(N2 = 25 and N3 = 26 - modified FF PUF) to 107,500 (N2 = 25 and N3 = 50), i.e.,

more than 7 times, by just changing the location of feed-forward loop output stage

(N3). Similar observations can be made for nested and overlap configurations. In

general, output stages for FF loops should be chosen away from the input stages and

other output stages to attain better security characteristics. We believe that FF PUFs

can be used as a better alternative to standard arbiter PUFs as components of an XOR

PUF since FF PUFs are inherently nonlinear and a linear approximation similar to

the cases of standard XOR PUFs or Interpose PUFs is not applicable [11] [33]. The

above observations can play an important role in appropriately choosing the design of

FF PUFs for better reliability and security.

We also propose an entropy based metric to determine the more secure FF loop

positions by comparing the inputs and outputs of a FF-PUF to that of a linear PUF.

This enables designers to enhance the security of FF-PUFs by choosing better locations

for input and output stages of FF loops without having to train attack models. The

drawbacks of this metric are that it is a rough estimate and also is limited to comparing

FF-PUFs with similar structures but different FF loop positions. Thus, it cannot be

considered as a universal unpredictability metric. The following conclusions can be

made regarding the reliability of FF PUFs. First, as FF output stage is chosen further

50

away, the value of reliability decreases. This can be attributed to the fact that FF loop

output has more impact on the final response as it is positioned closer the final stage.

Second, as more intermediate arbiters are added, the PUFs tend to be more susceptible

to noise in general. Third, replacing FF loops with modified FF loops can increase the

reliability. The loss of reliability can be addressed by identifying unstable challenges.

We show that applying soft-response thresholding can effectively increase the reliability

to more than 96%. Since this is based on simple thresholding, the added complexity is

negligible.

51

T
a
b

le
4.

1:
P

er
ce

n
t

o
f

S
ta

b
le

C
h

al
le

n
ge

s
a
n

d
R

el
ia

b
il

it
y

B
ef

or
e

an
d

A
ft

er
T

h
re

sh
ol

d
in

g
fo

r
F

F
P

U
F

s
w

it
h

O
n

e
In

te
rm

e-

d
ia

te
A

rb
it

er
.

T
h

re
sh

ol
d

=
90

%
.

N
u

m
.

N
u

m
.

F
F

lo
o
p

N
o
is

e
L

ev
el

=
5
%

N
o
is

e
L

ev
el

=
1
0
%

N
o
is

e
L

ev
el

=
1
5
%

o
f

o
f

lo
ca

ti
o
n

s
%

S
ta

b
le

R
el

.
R

el
.

%
S

ta
b

le
R

el
.

R
el

.
%

S
ta

b
le

R
el

.
R

el
.

A
rb

L
o
o
p

s
B

ef
o
re

A
ft

er
B

ef
o
re

A
ft

er
B

ef
o
re

A
ft

er

1
*

2
1
5
→

2
5
,2

6
9
4
.7

0
9
7
.6

2
9
9
.6

0
8
9
.5

8
9
5
.3

5
9
9
.1

6
8
4
.6

0
9
3
.0

7
9
8
.7

3

1
2

1
5
→

2
5
,3

0
9
4
.1

5
9
7
.3

7
9
9
.5

5
8
8
.5

9
9
4
.9

0
9
9
.0

4
8
3
.1

8
9
2
.4

3
9
8
.6

0

1
4

1
5
→

2
5
,2

6
,3

0
,3

1
9
4
.5

4
9
7
.5

0
9
9
.5

9
8
9
.3

4
9
5
.2

4
9
9
.1

5
8
4
.2

5
9
2
.9

4
9
8
.6

1

1
4

1
5
→

2
5
,3

5
,4

5
,5

5
9
3
.1

0
9
6
.9

8
9
9
.4

7
8
6
.4

6
9
3
.9

9
9
8
.8

9
8
0
.0

6
9
1
.0

6
9
8
.2

5

1
8

1
5
→

2
5
,2

6
,3

5
,3

6
,4

5
,4

6
,5

5
,5

6
9
4
.2

5
9
7
.4

5
9
9
.5

6
8
8
.7

1
9
4
.9

9
9
9
.0

7
8
3
.4

3
9
2
.6

0
9
8
.6

2

1
8

1
5
→

2
5
,3

0
,3

5
,4

0
,4

5
,5

0
,5

5
,6

0
9
3
.1

2
9
6
.9

1
9
9
.5

0
8
6
.5

3
9
3
.9

5
9
8
.9

1
8
0
.1

5
9
1
.1

1
9
8
.2

6

1
1
6

1
5
→

2
5
,2

6
,3

0
,3

1
,3

5
,3

6
,4

0
,

9
3
.9

6
9
7
.3

1
9
9
.5

4
8
8
.1

1
9
4
.6

0
9
9
.0

6
8
2
.5

1
9
2
.2

1
9
8
.5

3

4
1
,4

5
,4

6
,5

0
,5

1
,5

5
,5

6
,6

0
,6

1
∗

T
h
e

in
te

rm
ed

ia
te

a
rb

it
er

s
a
re

co
n
n
ec

te
d

to
m

o
d
ifi

ed
F

F
lo

o
p
s.

52

T
a
b

le
4
.2

:
P

er
ce

n
t

o
f

S
ta

b
le

C
h

al
le

n
ge

s
an

d
R

el
ia

b
il

it
y

B
ef

or
e

an
d

A
ft

er
T

h
re

sh
ol

d
in

g
fo

r
F

F
P

U
F

s
w

it
h

M
u

lt
ip

le

In
te

rm
ed

ia
te

A
rb

it
er

s
in

O
ve

rl
ap

C
on

fi
g
u
ra

ti
on

.
T

h
re

sh
ol

d
=

90
%

.

N
u
m

.
N

u
m

.
F

F
lo

o
p

N
o
is

e
L

ev
el

=
5
%

N
o
is

e
L

ev
el

=
1
0
%

N
o
is

e
L

ev
el

=
1
5
%

o
f

o
f

lo
ca

ti
o
n
s

%
S
ta

b
le

R
el

.
R

el
.

%
S
ta

b
le

R
el

.
R

el
.

%
S
ta

b
le

R
el

.
R

el
.

A
rb

L
o
o
p
s

B
ef

o
re

A
ft

er
B

ef
o
re

A
ft

er
B

ef
o
re

A
ft

er

2
2

1
0
→

2
0
;1

5
→

3
0
,

9
2
.1

5
9
6
.4

9
9
9
.3

7
8
4
.8

8
9
3
.1

1
9
8
.7

1
7
8
.1

8
9
0
.3

7
9
8
.1

1

2
*

4
1
0
→

2
0
,2

1
;1

5
→

3
0
,3

1
9
4
.4

7
9
7
.5

3
9
9
.5

5
8
9
.3

0
9
5
.1

9
9
9
.1

4
8
4
.2

6
9
2
.8

9
9
8
.6

5

3
3

1
0
→

2
0
;1

5
→

3
0
;2

5
→

4
0

9
0
.4

7
9
5
.6

3
9
9
.2

2
8
1
.9

2
9
2
.0

2
9
8
.4

6
7
4
.2

9
8
8
.5

8
9
7
.7

3

3
*

6
1
0
→

2
0
,2

1
;1

5
→

3
0
,3

1
9
4
.1

5
9
7
.3

7
9
9
.5

6
8
1
.9

2
9
1
.9

7
9
8
.4

5
8
3
.7

4
9
2
.6

4
9
8
.6

1

2
5
→

4
0
,4

1

4
4

1
0
→

2
0
;1

5
→

3
0
;2

5
→

4
0

8
8
.2

3
9
4
.6

8
9
9
.0

7
7
8
.1

0
9
0
.2

1
9
8
.1

3
6
9
.2

9
8
6
.3

2
9
7
.2

6

3
5
→

5
0

4
*

8
1
0
→

2
0
,2

1
;1

5
→

3
0
,3

1
;

9
3
.6

6
9
7
.1

8
9
9
.5

2
7
8
.1

0
9
0
.3

9
9
8
.1

6
8
2
.9

4
9
2
.3

3
9
8
.5

3

2
5
→

4
0
,4

1
;3

5
→

5
0
,5

1
;

5
5

1
0
→

2
0
;1

5
→

3
0
;2

5
→

4
0
;

8
6
.3

9
9
3
.8

1
9
8
.9

0
7
5
.2

0
8
9
.0

7
9
7
.8

6
6
5
.8

1
8
4
.7

6
9
6
.8

7

3
5
→

5
0
;4

5
→

5
5

5
*

1
0

1
0
→

2
0
,2

1
;1

5
→

3
0
,3

1
;

9
3
.1

7
9
6
.9

4
9
9
.4

9
8
7
.4

3
9
4
.3

6
9
9
.0

0
8
2
.2

3
9
2
.0

1
9
8
.4

3

2
5
→

4
0
,4

1
;3

5
→

5
0
,5

1
;

4
5
→

5
5
,5

6
∗

T
h
e

in
te

rm
ed

ia
te

a
rb

it
er

s
a
re

co
n
n
ec

te
d

to
m

o
d
ifi

ed
F

F
lo

o
p
s.

53

T
a
b

le
4
.3

:
P

er
ce

n
t

o
f

S
ta

b
le

C
h

al
le

n
ge

s
an

d
R

el
ia

b
il

it
y

B
ef

or
e

an
d

A
ft

er
T

h
re

sh
ol

d
in

g
fo

r
F

F
P

U
F

s
w

it
h

M
u

lt
ip

le

In
te

rm
ed

ia
te

A
rb

it
er

s
in

N
es

te
d

C
o
n

fi
g
u

ra
ti

on
.

T
h

re
sh

ol
d

=
90

%
.

N
u
m

.
N

u
m

.
F

F
lo

o
p

N
o
is

e
L

ev
el

=
5
%

N
o
is

e
L

ev
el

=
1
0
%

N
o
is

e
L

ev
el

=
1
5
%

o
f

o
f

lo
ca

ti
o
n
s

%
S
ta

b
le

R
el

.
R

el
.

%
S
ta

b
le

R
el

.
R

el
.

%
S
ta

b
le

R
el

.
R

el
.

A
rb

L
o
o
p
s

B
ef

o
re

A
ft

er
B

ef
o
re

A
ft

er
B

ef
o
re

A
ft

er

2
2

2
5
→

4
5
;3

0
→

4
0

9
1
.3

8
9
6
.1

1
9
9
.3

2
8
3
.5

6
9
2
.7

2
9
8
.6

3
7
6
.5

9
8
9
.5

9
9
8
.0

4

2
*

4
2
5
→

4
5
,4

6
;3

0
→

4
0
,4

1
9
4
.4

3
9
7
.4

8
9
9
.5

7
8
9
.2

1
9
5
.1

8
9
9
.1

6
8
4
.2

0
9
2
.8

9
9
8
.6

6

3
3

2
0
→

5
0
;2

5
→

4
5
;3

0
→

4
0

8
8
.8

9
9
4
.9

2
9
9
.1

0
7
9
.3

4
9
0
.8

3
9
8
.3

6
7
1
.2

3
8
7
.3

6
9
7
.5

3

3
*

6
2
0
→

5
0
,5

1
;2

5
→

4
5
,4

6
;

9
4
.0

4
9
7
.3

0
9
9
.5

2
8
8
.6

4
9
4
.9

4
9
9
.1

0
8
3
.5

5
9
2
.5

6
9
8
.6

0

3
0
→

4
0
,4

1

4
4

1
5
→

5
5
;2

0
→

5
0
;2

5
→

4
5
;

8
5
.9

7
9
3
.7

5
9
8
.9

5
7
4
.4

5
8
8
.8

3
9
7
.9

1
6
4
.9

2
8
4
.7

1
9
7
.0

2

3
0
→

4
0

4
*

8
1
5
→

5
5
,5

6
;2

0
→

5
0
,5

1
;

9
3
.7

2
9
7
.1

5
9
9
.4

8
8
8
.1

7
9
4
.7

1
9
9
.0

0
8
2
.9

7
9
2
.3

6
9
8
.5

6

2
5
→

4
5
,4

6
;3

0
→

4
0
,4

1
;

5
5

1
0
→

6
0
;1

5
→

5
5
;2

0
→

5
0
;

8
2
.6

8
9
2
.2

4
9
8
.6

3
6
8
.7

4
8
6
.2

9
9
7
.4

1
5
7
.6

2
8
1
.6

1
9
6
.3

4

2
5
→

4
5
;3

0
→

4
0
;

5
*

1
0

1
0
→

6
0
,6

1
;1

5
→

5
5
,5

6
;

9
3
.4

8
9
7
.0

5
9
9
.5

0
8
7
.8

3
9
4
.5

2
9
8
.9

9
8
2
.5

7
9
2
.1

9
9
8
.5

1

2
0
→

5
0
,5

1
;2

5
→

4
5
,4

6
;

3
0
→

4
0
,4

1

∗

T
h
e

in
te

rm
ed

ia
te

a
rb

it
er

s
a
re

co
n
n
ec

te
d

to
m

o
d
ifi

ed
F

F
lo

o
p
s.

Chapter 5

Feed-Forward XOR PUFs:

Attack-Resistance and Reliability

Analysis

5.1 Introduction

This chapter evaluates XOR PUFs in terms of their resilience against attacks (security)

and their resilience against noise (reliability). Authors in [10, 11, 34, 35] have presented

methods to attack XOR PUFs using machine learning. One major issue with XOR

PUFs is that their models can be expressed as linear decision boundaries [11] which

makes it easier to learn an accurate model. Also, evolutionary strategy based attacks

were presented in [34, 36] which are based on the assumption that the structure of

each component PUF, i.e., the number of model parameters are known to the attacker.

A black-box approach is adopted to modeling XOR PUFs where the attacker does

not have any access to any side-channel information. Additionally, the existing studies

[10,11,34,35,37] are only limited to XOR PUFs with standard arbiter PUFs as elements,

called standard XOR PUFs. In this chapter, we simulate and analyze XOR PUFs with

FF PUFs as elements, called feed-forward XOR PUFs (FFXOR PUFs), and assess their

security and reliability in comparison with standard XOR PUFs. Since FF PUFs are

inherently nonlinear, a linear approximation similar to the cases of standard XOR PUFs

54

55

PUF-1

PUF-1

PUF-l

•

•

•

XOR

R

C

n
•

Figure 5.1: XOR arbiter PUF. Each component could be either standard or FF PUF.

or Interpose PUFs [33] is not applicable. Artificial neural networks (ANNs) [24] are used

to learn the models and the security of a PUF is estimated in terms of the amount of

data an attacker requires to learn an accurate predictive model. It is important to

note that our work is limited to modeling attacks and does not focus on side-channel

attacks [38–40].

5.2 XOR Arbiter PUFs

To make arbiter PUFs less susceptible to modeling attacks, the idea of XORing outputs

of multiple arbiter PUFs to generate the final response was suggested in [12]. The

structure of an XOR PUF with l levels, i.e., with l MUX PUFs as elements is depicted in

Figure 5.1. The same n-bit challenge vector C is provided as input to all the component

n-stage arbiter PUFs. XORing the intermediate responses adds non-linearity to the

system making it more difficult to learn a model.

5.3 Setup

For security analysis, XOR PUFs and FFXOR PUFs with number of levels l = 2 to

l = 8 are simulated and their neural network models are trained. 32-stage MUX PUFs

were used as the components for each XOR PUF. FF PUFs containing a feed-forward

loop (see Figure 2.2) whose intermediate response is computed at the 15th stage (N1)

and is fed into the 25th stage (N2) were used as components of FFXOR PUFs. XOR

56

PUFs with l ≥ 8 were found to be attack resistant. For each of these configurations,

data for 10 PUF instances were generated. For each instance, 1.2 million challenge-

response pairs (CRPs) are extracted. 1 million CRPs are used to train the model and

100,000 CRPs are used for testing and validation each.

For reliability analysis, noisy responses were generated by adding Gaussian noise

with varying standard deviation to the delay difference at each stage. As a result, the

distribution is modified to ∆i ∼ N (0, 1) +N (0, (σn)2). Here, σn denotes the standard

deviation of the noise. Once again, XOR PUFs with 2 levels to 8 levels were evaluated

for the reliability analysis. To emulate the effect of environmental and measurement

noise, Gaussian noise with zero mean and a standard deviation corresponding to 5%,

10% and 15% noise level is added to the delay difference parameters (∆i) at each stage

and to the arbiter delay (∆arb) [7,32]. Noise level is defined as the ratio of the standard

deviation of the noise to the standard deviation of delay differences at each stage. For

a given design configuration, 100 PUF instances were generated. 1000 randomly chosen

unique challenges are used to extract a 1000-bit response-vector for each instance. 100

noisy response vectors are generated for each of the 100 PUF instances for the purpose

of computing reliability. FFXOR PUFs with multiple loops were also analyzed.

5.4 Security Analysis

For every PUF instance, several models were trained by increasing the size of the training

set from 100k to 1M and the prediction accuracy on an independent test-set is reported.

The randomly chosen test challenges are kept consistent across all the models to have an

unbiased comparison. For configurations with standard arbiter PUFs as components,

mutlilayer perceptrons with 2 hidden layers were implemented with 60 and 30 neurons

in each hidden layer, respectively. Since ANNs with 2 hidden layers were unable to

accurately model FFXOR PUFs, 3 hidden layer structures with 120, 30 and 15 neurons,

respectively, were trained. The training and testing errors are compared for each model

to make sure that there is no over-training.

57

5.4.1 Results

Prediction accuracies of standard arbiter XOR PUFs were evaluated by increasing the

size of the training set from 100,000 CRPs to 1 million CRPs. Figure 5.2(a) and Figure

5.2(b) show how prediction accuracies of attack models vary with respect to training size

for standard and FFXOR PUFs, respectively. The number of levels is varied from l = 2

to l = 8. As expected, the prediction accuracy increases with increase in the training

size and smaller XOR PUFs are easier to model as compared to higher number of XOR

inputs (say l = 7, 8). Each accuracy value is the median of 10 PUF instances. In case

of the standard XOR PUFs, it can be observed that for l = 2 to l = 7, models can be

trained with more than 95% accuracy. For l = 8, the model is stuck at 50% accuracy.

In case of FF PUFs, l = 2, 3, 4 achieve more than 90% accuracy while the models for

PUFs with l ≥ 5 are not as accurate. The maximum accuracy values attained using 1

million CRPs as a function of number of component PUFs in the circuit are presented

in Figure 5.3. The model accuracies of standard and feed-forward XOR PUFs can be

observed. Each value is presented in the form of a box-plot of 10 instances.

5.4.2 Discussion

It can be observed that FFXOR PUFs require significantly more resources to attack

as compared to standard XOR PUFs. This follows from the fact that the number of

ANN parameters required to train standard arbiter PUFs is 33× 60× 30× 1 = 59, 400

and for FF PUFs, it is 33 × 120 × 30 × 15 × 1 = 1, 782, 000. Note that the input

layer has 33 parameters, including the bias, since the input size is 32 bits. This costs

more computational resources and processing time for the attacker. This difference is

expected to be more significant when dealing with XOR PUFs with more than 128

or 256 bit-challenges. The results in Figure 5.3 show that the standard XOR PUFs

can be trained with more than 95% prediction accuracy up to 7 levels while FFXOR

PUFs with 5 levels only attain a maximum prediction accuracy of 80% and the models

for more than 5 levels are just as good as random guessing (50% accuracy). These

observations offer an important insight that more secure XOR PUFs that have much

less area overhead can be designed by replacing standard arbiter PUFs with FF PUFs

as elements. This is especially important as practical PUFs are expected to be lighter,

58

Number of total CRPs used for training ×10
5

1 2 3 4 5 6 7 8 9 10

P
re

d
ic

ti
o
n
 A

c
c
u
ra

c
y

[%

]

40

50

60

70

80

90

100

110

l = 2,3,4,5

l = 6

l = 7

l = 8

(a) Standard XOR arbiter PUFs

Number of total CRPs used for training ×10
5

1 2 3 4 5 6 7 8 9 10

P
re

d
ic

ti
o
n
 A

c
c
u
ra

c
y

[%

]

40

50

60

70

80

90

100

110

l = 2

l = 3

l = 4

l = 5

l = 6,7,8

(b) Feed-forward XOR arbiter PUFs

Figure 5.2: Prediction accuracy vs. training size of ANN models for standard XOR

PUFs and FFXOR PUFs. The number levels is varied from l = 2 to l = 8. The FF

PUFs contain one loop from N1 = 15 to N2 = 25. The number of stages (N) is 32.

59

Num. of levels (l)

2 3 4 5 6 7 8

P
re

d
ic

ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

40

50

60

70

80

90

100

Std. XOR PUF

FF XOR PUF

Figure 5.3: Prediction accuracy vs. number of levels (l) for 32-stage standard XOR

PUFs and FFXOR PUFs. Accuracy values are presented as a box-plot of 10 instances.

i.e., have low hardware resources thus requiring less computations and lower power

consumption.

Logistic regression based attack strategies as shown in [41] are not valid for FFXOR

PUFs since the component PUFs are not linear. Even though we know that alternatives

such as evolutionary strategies or multi-layer perceptrons can be used to train FF PUFs,

it has been shown that training FF PUFs is much harder compared to training standard

arbiter PUFs [11,27]. For example, a 128-bit standard arbiter PUF requires 2.10 seconds

while a FF PUF requires 3:15 hours using evolutionary strategy [11]. In recent work

by Becker, it has been shown that XOR PUFs can be attacked by using evolutionary

strategies [34]. However, this method may not be applicable to attack FFXOR PUFs

unless the internal arbiter output locations are known to the attacker. The attacker

could potentially examine all possible FF loop positions and identify the design via

trial and error. But this requires a significant increase in the attack time. For FFXOR

PUFs composed of N-stage FF PUFs as components, there are N(N−1)
2 possible FF loop

placements for one loop. Therefore, the number of machine learning runs increases by

496 times for 64 bits and 2016 times for 128 bits. In general, for FF PUFs with K loops,

it would increase by a factor of
(
N
K+1

)
. It is worth noting that reliability based machine

learning attacks have been shown to outperform other machine learning attacks on XOR

60

PUFs. This is because they utilize a divide-and-conquer approach which reduces the

number of model parameters from l(N +1) to N +1, for XOR PUFs with l components

of N -stages each. But, the divide-and-conquer approach used in reliability based attacks

is dependent on the fact that reliability of a response bit depends equally on each of the

component PUFs [34]. But this would not be the case if FF PUFs with non-identical

structures are used as components, making them more attack resistant. It has been

suggested in [40] that machine learning attacks on XOR PUFs can be made even harder

by using different challenges for each component PUF.

5.5 Reliability Analysis

5.5.1 FFXOR PUFs with Single-loop FF PUFs

Reliability of XOR PUFs up to 8 levels are computed by adding noise to each of the

32 stages in the component PUFs. The component PUFs are FF PUFs with a FF loop

placed between stages N1 = 10 and N2 = 20. For each case, i.e., for each value of l,

100 PUF instances with the same circuit design are simulated. For each instance, 100

noisy 1000-bit response signatures are generated. Intra-chip variation is computed (see

equation (4.1)) and the change in reliability with increase in the number of XOR levels

is shown in Figure 5.4. It can be observed that it decreases as the number of levels

increases and FFXOR PUFs have less reliability compared to standard XOR PUFs of

the same size (see Figure 5.4). Moreover, the reliability values of FFXOR PUFs drop

at a slightly higher rate with respect to the value of l. These values can be used to

extrapolate the trend to estimate how reliability scales with the increase in the number

of arbiter PUFs used. This demonstrates that reliability of XOR PUFs can be as low

as 60% (for l = 8). It has been shown in [7] that reliability of an N -stage FF PUF

depends on arctan(
√

N2−1
N−N2+1). We considered 64-bit feed-forward PUFs (N = 64) with

the intermediate output measured at the 10th stage (N1 = 10) and feeding into the 40th

stage (N2 = 40) and verified that they have similar reliability to 32-stage PUFs shown

in Figure 5.4 . Note that the value of arctan(
√

N2−1
N−N2+1) is equal to 0.88 and 0.895 for

the 32-bit and the 64-bit FF PUFs, respectively.

61

2 3 4 5 6 7 8

Num. of levels (l)

50

60

70

80

90

100
R

e
li
a
b

il
it

y
 (

%
)

Noise rate= 5%

Noise rate= 10%

Noise rate= 15%

(a) Standard XOR PUFs

2 3 4 5 6 7 8

Num. of levels (l)

50

60

70

80

90

100

R
e
li
a
b

il
it

y
 (

%
)

Noise rate= 5%

Noise rate= 10%

Noise rate= 15%

(b) Feed-forward XOR PUFs

Figure 5.4: Reliability vs. number of levels for 32-stage standard and FFXOR PUFs.

62

Figure 5.5: Histogram of soft-responses of a 64-stage FFXOR PUF showing stable and

unstable responses. l = 8 and noise level = 10%.

5.5.2 Soft-response Thresholding

Soft-responses were defined in Chapter 3. For a given challenge, soft-response is defined

as the probability that the response is 1 (Pr(R = 1)) under environmental variations.

Empirically, the soft-responses were computed by applying the same challenge 100 times

under the presence of noise. As a convention, we use 90% as a threshold to measure

the consistency of a response. That is, if the response is 0 or 1 in 90% of the cases,

it is considered a stable response. Otherwise, it is referred to as an unstable response.

Therefore if Pr(R = 1) is less than 10%, the response is considered a stable 0, and if it

is greater than 90% it is considered a stable 1. If the value is between 10% and 90%, it

is considered an unstable response.

In case of XOR PUFs, a fundamental limitation is that a large portion of the chal-

lenges could lead to unstable responses, resulting in low reliability as illustrated in Figure

5.4. For a FFXOR PUF with 8 levels, the soft-response values associated with 20,000

challenges are shown in Figure 5.5. It can be observed that 25.9% of the responses

are stable. We know that soft-responses can be computed by repetitive measurement

of responses. Soft-responses of the 8-level FFXOR PUF were computed by assigning

each challenge 100 times. A subset of challenges were then chosen by thresholding the

soft-responses using 90-10 thresholding. The challenges that generate stable responses

63

2 3 4 5 6 7 8

Num. of levels (l)

50

55

60

65

70

75

80

85

90

95

100

R
e
lia

b
ili

ty
 (

%
)

Before Thresholding

After Thresholding

Figure 5.6: Reliability vs. number of levels(l) for 64-stage FFXOR PUFs before and

after thresholding. Threshold = 90%. N1 = 10, N2 = 40 and Noise level = 10%.

are referred to as stable challenges. Instead of using a set of 1000 randomly chosen chal-

lenges, 1000 stable challenges were used to compute the reliability. Reliability values

of a FFXOR PUF before and after thresholding are presented in Figure 5.6. It shows

that reliability of XOR PUFs during authentication can be significantly increased by

thresholding the soft-responses and identifying stable challenges. For example, the reli-

ability of an 8-level FFXOR PUF can be increased from 66% to 93.5%. The resultant

reliability achieved by thresholding depends on the value of the threshold used. If the

threshold is reduced the number of stable challenges will increase but this may cause a

degradation in reliability. The effect of varying the threshold value on the reliability of

8-level FFXOR PUFs is shown in Figure 5.7 for different noise levels.

5.5.3 FFXOR PUFs with Multi-loop FF PUFs

As a counter-measure to reliability of FF PUFs compared to standard arbiter PUFs, a

modified FF PUF (MFF PUF) structure was proposed in [7]. The idea is to have the

intermediate arbiter output feeding into two consecutive stages instead of one. FFXOR

PUFs with MFF PUFs as the components were simulated and their reliability was

computed. Furthermore, we extend the analysis to FFXOR PUFs consisting of FF

64

90% 85% 80%

Threshold

5%

10%

15%

N
o

is
e

 l
e

v
e

l

91.51

89.94

86.82

91.88

86.47

82.44

96.21

93.48

93.97

84

86

88

90

92

94

96

Figure 5.7: Reliability of 8-level FFXOR PUFs after thresholding for different thresholds

and noise levels.

PUFs with multiple loops. Component FF PUFs where the output from an intermediate

stage is used as the challenge bit to multiple MUX stages were considered. The results

of reliability analysis of 8-level FFXOR PUFs up to 8 loops is presented in Tables 5.1. In

particular, the proportion of stable challenges and the reliability values computed before

and after thresholding are presented for various structures under different noise levels.

These values were computed using 90% threshold and each value is the median of 100

PUF instances. The results show that MFF PUFs can be used to attain reliability close

to standard XOR PUFs. In case of PUFs with one intermediate arbiter, having 1,3 or 5

loops results in less reliability compared to having even number of loops. The reliability

and the proportion of stable challenges can be substantially low, 53% (approx.) and

1-3%, respectively, when multiple intermediate arbiters are used. Two such examples

can be noticed in the Table. However, having MFF loops leads to better reliability.

The results confirm that the soft-response thresholding strategy can be employed to

significantly increase the reliability of response signatures to at least 89%. It is also

important to note that XOR PUFs have a huge set of challenges to choose from, i.e., 2N

challenges for N-bit PUFs. For 64-bit XOR PUFs, if we assume that a mere 1% of the

challenges are stable, the server still has 1.8× 105 trillion (1% of 264) stable challenges.

65

5.6 Conclusion

FFXOR PUFs are better alternatives to standard XOR PUFs, in terms of their attack-

resistance. Standard XOR PUF and FF XOR PUFs with 32-bit challenges, up to 8 XOR

levels are evaluated using multi-layer perceptrons and the results are compared. The

divide-and-conquer approach used in reliability based attacks is dependent on the fact

that reliability of a response bit depends equally on each of the component PUFs [34].

This would not be the case if the component PUFs are non-identical, i.e., these com-

ponents could be different FF PUF structures with different number of arbiters and

loops. The effect of number of XOR levels and the number of FF loops on the reliability

of FFXOR PUFs under different noise levels is presented and a soft-response thresh-

olding strategy is demonstrated as an effective counter-measure to degraded reliability.

Reliability values as low as 52% were increased to 89%.

66
T

a
b

le
5
.1

:
P

er
ce

n
ta

g
e

of
S
ta

b
le

C
h

al
le

n
ge

s
an

d
R

el
ia

b
il

it
y

B
ef

or
e

an
d

A
ft

er
T

h
re

sh
ol

d
in

g.
T

h
re

sh
ol

d
=

90
%

.

N
o
.

o
f

F
F

L
o
o
p

s
N

o
is

e
L

ev
el

=
5
%

N
o
is

e
L

ev
el

=
1
0
%

N
o
is

e
L

ev
el

=
1
5
%

A
rb

s/
L

o
ca

ti
o
n

s
%

S
ta

b
le

R
el

.(
%

)
R

el
.(

%
)

%
S

ta
b

le
R

el
.(

%
)

R
el

.(
%

)
%

S
ta

b
le

R
el

.(
%

)
R

el
.(

%
)

L
o
o
p
s

B
ef

o
re

A
ft

er
B

ef
o
re

A
ft

er
B

ef
o
re

A
ft

er

0
/
0

-
6
5
.5

8
4
.6

3
9
7
.3

6
4
0
.6

9
7
3
.4

8
9
5
.2

6
2
3
.8

8
6
5
.6

7
9
3
.4

5

1
/
1

1
0
→

4
0

5
2
.1

7
8
.6

5
9
6
.2

2
4
.7

3
6
6
.0

9
9
3
.4

5
1
0
.6

3
5
8
.9

3
9
1
.2

6

1
/
2

1
0
→

4
0
,4

1
(M

F
F

)
6
3
.7

8
8
3
.9

8
9
7
.2

1
3
8
.9

4
7
2
.6

3
9
4
.9

5
2
2
.6

2
6
5
.1

8
9
3
.0

9

1
/
2

1
0
→

3
0
,4

0
5
8
.4

5
8
1
.3

5
9
6
.7

5
3
2
.0

7
6
9
.6

7
9
4
.2

5
1
6
.5

4
6
2
.4

9
2
.4

1

1
/
3

1
0
→

3
0
,4

0
,5

0
5
2
.1

4
7
8
.6

6
9
6
.2

6
2
4
.6

5
6
5
.9

9
9
3
.4

1
1
0
.5

5
9
.0

7
9
1
.3

4

1
/
4

1
0
→

3
0
,3

1
,4

0
,4

1
6
2
.7

4
8
3
.2

7
9
7
.1

8
3
7
.7

0
7
2
.2

1
9
4
.8

2
2
1
.4

5
6
4
.5

8
9
2
.8

6

1
/
4

1
0
→

2
0
,3

0
,4

0
,5

0
5
4
.8

1
7
9
.9

2
9
6
.4

3
2
7
.7

3
6
7
.6

1
9
3
.7

6
1
2
.8

5
6
0
.1

6
9
1
.7

5

1
/
5

1
0
→

2
0
,3

0
,4

0
,5

0
,6

0
5
2
.3

4
7
8
.7

4
9
6
.1

5
2
4
.6

1
6
6
.3

7
9
3
.3

7
1
0
.6

5
9
.0

3
9
1
.2

8

1
/
6

1
0
→

3
0
,3

1
,4

0
,4

1
,5

0
,5

1
6
1
.8

1
8
3
.1

2
9
7
.1

3
6
.6

4
7
1
.7

3
9
4
.7

5
2
0
.6

1
6
4
.2

6
9
2
.7

1
/
6

1
0
→

3
0
,3

5
,4

0
,4

5
,5

0
,5

5
5
6
.5

2
8
0
.4

9
9
6
.5

2
2
9
.4

4
6
8
.4

4
9
4

1
4
.3

5
6
1
.1

1
9
1
.9

6

1
/
8

1
0
→

2
0
,2

1
,3

0
,3

1
,4

0
,4

1
,5

0
,5

1
6
1
.4

3
8
2
.7

2
9
6
.9

6
3
5
.7

6
7
1
.5

2
9
4
.5

9
1
9
.7

4
6
3
.9

3
9
2
.7

2

1
/
8

1
0
→

2
0
,2

5
,3

0
,3

5
,4

0
,4

5
,5

0
,5

5
5
4
.8

2
7
9
.6

7
9
6
.5

1
2
7
.5

5
6
7
.4

8
9
3
.7

9
2
0
.7

3
6
0
.3

9
9
1
.6

8

4
/
4

1
0
→

2
0
;1

5
→

3
0
;2

5
→

4
0

3
3
.4

7
7
0
.4

0
9
4
.6

6
9
.9

8
5
8
.7

4
9
1
.4

4
2
.7

2
5
3
.4

2
8
9
.5

3
5
→

5
0

4
*
/
8

1
0
→

2
0
,2

1
;1

5
→

3
0
,3

1
;

5
7
.7

3
8
1
.1

4
9
6
.7

5
3
3
.0

9
7
0
.0

4
9
4
.3

0
1
8
.1

8
6
3
.0

2
9
2
.5

6

2
5
→

4
0
,4

1
;3

5
→

5
0
,5

1
;

4
/
4

1
5
→

5
5
;2

0
→

5
0
;2

5
→

4
5
;

2
6
.1

7
6
6
.9

2
9
4
.0

1
6
.1

6
5
6
.2

1
9
0
.8

9
1
.4

5
5
2
.4

8
8
8
.8

0

3
0
→

4
0

4
*
/
8

1
5
→

5
5
,5

6
;2

0
→

5
0
,5

1
;

5
8
.0

1
8
1
.2

6
9
6
.8

5
3
3
.3

6
7
0
.1

8
9
4
.5

2
1
8
.3

6
6
3
.3

2
9
2
.5

8

2
5
→

4
5
,4

6
;3

0
→

4
0
,4

1
; ∗

T
h
e

in
te

rm
ed

ia
te

a
rb

it
er

s
a
re

co
n
n
ec

te
d

to
m

o
d
ifi

ed
F

F
lo

o
p
s.

Chapter 6

Conclusion and Future Directions

Physical unclonable functions exploit intrinsic physical properties of integrated circuits

to enhance the security of devices by replacing or complimenting the traditional cryp-

tographic techniques. Their practical relevance has lead to a substantial rise in the

interest making PUFs a hot topic in the field of hardware security. A variety of PUFs

have been proposed in the literature starting from optical PUFs [2] and arbiter PUFs [3]

to the emerging nanotechnology based PUFs [42]. Even though this makes it difficult to

provide a formal unifying definition of PUFs, there are certain fundamental necessary

properties [5]. This thesis studies two such properties: unpredictability and reliability,

in the context of arbiter PUFs. Unpredictability is a relaxed form of unclonability, i.e.,

if one can predict the outcome of a PUF for a random challenge, only by observing a

set of CRPs, it is easy to build a mathematical clone. Reliability ensures consistency of

the responses for repeated evaluation of a challenge. We prove that the inherent physi-

cal parameters of standard arbiter PUFs, FF PUFs and MFF PUFs can be accurately

estimated and ANN models can be trained to predict their hard and soft-responses [27].

We show that these models can be used to choose reliable challenges for authentication.

We also provide important insights on the impact of FF PUFs’ design choices, i.e., the

number of loops and location of the loops, on their attack-resistance and reliability [43].

XOR PUFs were considered the most secure version of arbiter PUFs since the num-

ber of challenge-response pairs required by an attacker increases exponentially with the

number of component PUFs [11] [35]. But this observation was discredited later [34].

67

68

To this end, we propose and evaluate FFXOR PUFs as a viable, potentially more se-

cure, alternative to the existing XOR PUFs [44]. We believe that state-of-the-art attack

methods like CMA-ES [34] are not directly applicable to FFXOR PUFs and also that

they can be made more resilient by using non-identical component PUFs such as a FF

PUFs with different designs. A drawback of our analysis is that the attack-resistance

evaluation is based only on ANNs and does not include side-channel attacks. Future

work can be focused on studying the security of FFXOR PUF using other attack strate-

gies. Even though FF XOR PUFs and some versions of MXPUFs [45] are shown to be

secure to some extent, it is known that silicon PUFs are still vulnerable to physical at-

tacks [40] such as photon emission analysis. Hence, the emerging area of nanotechnology

based PUFs can be an exciting new direction for PUFs [42].

An entropy based metric was presented in Chapter 3 but it is specific to the PUF

configurations considered. There has been some effort to formalize security evaluation of

PUFs theoretically in the past [26] [46] [47]. However, the metrics are either insufficient

or specific to a certain type of PUF and hence cannot be generalized. A universal

theoretical metric or model to estimate unpredictability can be very useful to compare

the security of different PUFs without undergoing an attack process.

Several solutions have been proposed to increase the reliability of PUFs using error-

correcting codes [48]. However they either incur large area and computational costs [49]

or leak security information [50] [51]. In this work, we demonstrate that soft-response

thresholding is a simple yet effective counter-measure to the degraded reliability of FF

and FFXOR PUFs. The limitation of this approach is that in some cases, a large

number of measurements might be required for a single authentication.

This thesis provides interesting insights on security and reliability of arbiter PUFs.

However, the task of realizing secure and reliable PUFs with low energy and area over-

head is still an active research challenge.

References

[1] Chen Zhou, Saroj Satapathy, Yingjie Lao, Keshab K Parhi, and Chris H Kim. Soft

response generation and thresholding strategies for linear and feed-forward MUX

PUFs. In Proceedings of International Symposium on Low Power Electronics and

Design (ISLPED), Aug 2016.

[2] Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershen-

feld. Physical one-way functions. Science, 297(5589):2026–2030, 2002,

http://science.sciencemag.org/content/297/5589/2026.full.pdf.

[3] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas. Silicon

physical random functions. In Proceedings of the 9th ACM Conference on Computer

and Communications Security, pages 148–160, 2002.

[4] C. Herder, Meng-Day Yu, F. Koushanfar, and S. Devadas. Physical unclonable

functions and applications: A tutorial. In Proceedings of the IEEE, pages 1126–

1141, Aug 2014.

[5] Roel Maes and Ingrid Verbauwhede. Physically Unclonable Functions: A Study on

the State of the Art and Future Research Directions, pages 3–37. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2010.

[6] Abhranil Maiti, Vikash Gunreddy, and Patrick Schaumont. A systematic method

to evaluate and compare the performance of physical unclonable functions. IACR

Cryptology ePrint Archive, 2011:657, 2011.

69

70

[7] Yingjie Lao and Keshab K. Parhi. Statistical analysis of MUX-based physical

unclonable functions. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 33(5):649–662, May 2014.

[8] Mehrdad Majzoobi, Farinaz Koushanfar, and Miodrag Potkonjak. Testing tech-

niques for hardware security. In Proceedings of IEEE International Test Conference

(ITC), pages 1–10, Oct 2008.

[9] J.W. Lee, D. Lim, B. Gassend, G.E. Suh, M. van Dijk, and S. Devadas. A technique

to build a secret key in integrated circuits for identification and authentication

applications. In Symposium on VLSI Circuits Digest of Technical Papers, pages

176–179, June 2004.

[10] G. Hospodar, R. Maes, and I. Verbauwhede. Machine learning attacks on 65nm

arbiter PUFs: Accurate modeling poses strict bounds on usability. In IEEE Inter-

national Workshop on Information Forensics and Security (WIFS), pages 37–42,

Dec 2012.

[11] U. Rührmair, J. Sölter, F. Sehnke, Xiaolin Xu, A. Mahmoud, V. Stoyanova,

G. Dror, J. Schmidhuber, W. Burleson, and S. Devadas. PUF modeling attacks

on simulated and silicon data. IEEE Transactions on Information Forensics and

Security, 8(11):1876–1891, Nov 2013.

[12] G. E. Suh and S. Devadas. Physical unclonable functions for device authentication

and secret key generation. In 44th ACM/IEEE Design Automation Conference,

June 2007.

[13] M. Majzoobi, F. Koushanfar, and M. Potkonjak. Lightweight secure PUFs. In

IEEE/ACM International Conference on Computer-Aided Design, pages 670–673,

Nov 2008.

[14] D. P. Sahoo, S. Saha, D. Mukhopadhyay, R. S. Chakraborty, and H. Kapoor.

Composite PUF: A new design paradigm for physically unclonable functions on

FPGA. In IEEE International Symposium on Hardware-Oriented Security and

Trust (HOST), pages 50–55, May 2014.

71

[15] Blaise Gassend, Daihyun Lim, Dwaine Clarke, Marten van Dijk, and Srinivas

Devadas. Identification and authentication of integrated circuits: Research arti-

cles. Concurrency and Computation: Practice & Experience - Computer Security,

16(11):1077–1098, sep 2004.

[16] D. Lim, J.W. Lee, B. Gassend, G.E. Suh, M. van Dijk, and S. Devadas. Extract-

ing secret keys from integrated circuits. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 13(10):1200–1205, Oct 2005.

[17] Simon Haykin. Adaptive Filter Theory (3rd Ed.). Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 1996.

[18] S. V. Sandeep Avvaru, Chen Zhou, Saroj Satapathy, Yingjie Lao, Chris H. Kim,

and Keshab K. Parhi. Estimating delay differences of arbiter PUFs using silicon

data. In Proceedings of Design, Automation and Test in Europe (DATE), pages

543–546, Mar 2016.

[19] Ethem Alpaydin. Introduction to Machine Learning. The MIT Press, 2nd edition,

2010.

[20] Georg T. Becker. On the pitfalls of using arbiter-PUFs as building blocks.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

34(8):1295–1307, Aug 2015.

[21] Jeroen Delvaux and Ingrid Verbauwhede. Side channel modeling attacks on 65nm

arbiter PUFs exploiting CMOS device noise. In IEEE International Symposium on

Hardware-Oriented Security and Trust (HOST), pages 137–142, June 2013.

[22] X. Xu, W. Burleson, and D. E. Holcomb. Using statistical models to improve the

reliability of delay-based PUFs. In IEEE Computer Society Annual Symposium on

VLSI, pages 547–552, July 2016.

[23] Yansong Gao, Damith C. Ranasinghe, Gefei Li, Said F. Al-Sarawi, Omid Kavehei,

and Derek Abbott. A challenge obfuscation method for thwarting model building

attacks on PUFs. Cryptology ePrint Archive: Report 2015/471, 2015.

72

[24] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[25] M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation

learning: the RPROP algorithm. In IEEE International Conference on Neural

Networks, pages 586–591, 1993.

[26] Stefan Katzenbeisser, Ünal Kocabaş, Vladimir Rožić, Ahmad Reza Sadeghi, Ingrid

Verbauwhede, and Christian Wachsmann. Pufs: Myth, fact or busted? a security

evaluation of physically unclonable functions (pufs) cast in silicon. In Proceedings

of 14th International Workshop on Cryptographic Hardware and Embedded Systems

(CHES), pages 283–301, Sep 2012.

[27] S. V. S. Avvaru, C. Zhou, C. H. Kim, and K. K. Parhi. Predicting hard and

soft-responses and identifying stable challenges of MUX PUFs using ANNs. In

60th International Midwest Symposium on Circuits and Systems (MWSCAS), pages

934–937, Aug 2017.

[28] Raghavan Kumar and Wayne Burleson. Side-channel assisted modeling attacks on

feed-forward arbiter PUFs using silicon data. In Stefan Mangard and Patrick Schau-

mont, editors, International workshop on Radio Frequency Identification, pages

53–67. Springer International Publishing, 2015.

[29] X. Xu and W. Burleson. Hybrid side-channel/machine-learning attacks on PUFs: A

new threat? In Design, Automation Test in Europe Conference Exhibition (DATE),

pages 1–6, March 2014.

[30] A. Ayling, S. V. S. Avvaru, and K. K. Parhi. Not all feed-forward MUX PUFs

generate unique signatures. In Proc. IEEE Computer Society Annual Symposium

on VLSI (ISVLSI), July 2019.

[31] Y. Lao and K. K. Parhi. Reconfigurable architectures for silicon physical unclonable

functions. In IEEE International Conference on Elctro/Information Technology,

pages 1–7, May 2011.

73

[32] A. Koyily, S. V. S. Avvaru, C. Zhou, C. H. Kim, and K. K. Parhi. Effect of aging

on linear and nonlinear mux pufs by statistical modeling. In Asia and South Pacific

Design Automation Conference (ASP-DAC), pages 76–83, Jan 2018.

[33] Phuong Ha Nguyen, Durga Prasad Sahoo, Chenglu Jin, Kaleel Mahmood, Ul-

rich Rührmair, and Marten van Dijk. The interpose PUF: Secure PUF design

against state-of-the-art machine learning attacks. IACR Cryptology ePrint Archive,

2018:350, 2018.

[34] George T. Becker. The gap between promise and reality: On the insecurity of

XOR arbiter PUFs. In International Workshop on Cryptographic Hardware and

Embedded Systems, pages 235–255, September 2015.

[35] C. Zhou, K. K. Parhi, and C. H. Kim. Secure and reliable XOR arbiter PUF design:

An experimental study based on 1 trillion challenge response pair measurements. In

54th ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, June

2017.

[36] George T. Becker. On the pitfalls of using arbiter-PUFs as building blocks.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

34(8):1295–1307, Aug 2015.

[37] Fatemeh Ganji, Shahin Tajik, and Jean-Pierre Seifert. Why attackers win: On the

learnability of XOR arbiter PUFs. In Mauro Conti, Matthias Schunter, and Ioannis

Askoxylakis, editors, Trust and Trustworthy Computing, pages 22–39, Cham, 2015.

Springer International Publishing.

[38] Ahmed N Mahmoud, Ulrich Rührmair, Mehrdad Majzoobi, and Farinaz Koushan-

far. Combined modeling and side channel attacks on strong pufs. IACR Cryptology

ePrint Archive, 2013:632, 2013.

[39] Ulrich Rührmair, Xiaolin Xu, Jan Sölter, Ahmed Mahmoud, Mehrdad Majzoobi,

Farinaz Koushanfar, and Wayne Burleson. Efficient power and timing side channels

for physical unclonable functions. In Lejla Batina and Matthew Robshaw, editors,

Cryptographic Hardware and Embedded Systems – CHES, pages 476–492, Berlin,

Heidelberg, 2014. Springer Berlin Heidelberg.

74

[40] Shahin Tajik, Enrico Dietz, Sven Frohmann, Jean-Pierre Seifert, Dmitry Ne-

dospasov, Clemens Helfmeier, Christian Boit, and Helmar Dittrich. Physical char-

acterization of arbiter PUFs. In Cryptographic Hardware and Embedded Systems

(CHES), pages 493–509, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[41] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas Devadas, and

Jürgen Schmidhuber. Modeling attacks on physical unclonable functions. In Pro-

ceedings of the 17th ACM Conference on Computer and Communications Security,

CCS ’10, pages 237–249, New York, NY, USA, 2010. ACM.

[42] Y. Gao, D. C. Ranasinghe, S. F. Al-Sarawi, O. Kavehei, and D. Abbott. Emerging

physical unclonable functions with nanotechnology. IEEE Access, 4:61–80, 2016.

[43] S. V. S. Avvaru and K. K. Parhi. Effect of loop positions on reliability and attack

resistance of feed-forward pufs. In Proc. IEEE Computer Society Annual Sympo-

sium on VLSI (ISVLSI), July 2019.

[44] S. V. S. Avvaru and K. K. Parhi. Feed-forward XOR PUFs: Reliability and attack-

resistance analysis. In Proc. ACM Great Lakes Symposium on VLSI, May 2019.

[45] Phuong Ha Nguyen, Durga Prasad Sahoo, Chenglu Jin, Kaleel Mahmood, and

Marten van Dijk. MXPUF: Secure puf design against state-of-the-art modeling

attacks. IACR Cryptology ePrint Archive, 2017:572, 2017.

[46] F. Armknecht, R. Maes, A. Sadeghi, F. Standaert, and C. Wachsmann. A for-

malization of the security features of physical functions. In IEEE Symposium on

Security and Privacy, pages 397–412, May 2011.

[47] Frederik Armknecht, Daisuke Moriyama, Ahmad-Reza Sadeghi, and Moti Yung.

Towards a unified security model for physically unclonable functions. In Kazue

Sako, editor, Topics in Cryptology - CT-RSA 2016, pages 271–287, Cham, 2016.

Springer International Publishing.

[48] M. Yu and S. Devadas. Secure and robust error correction for physical unclonable

functions. IEEE Design Test of Computers, 27(1):48–65, Jan 2010.

75

[49] Mudit Bhargava and Ken Mai. An efficient reliable puf-based cryptographic key

generator in 65nm CMOS. In Proceedings of the Conference on Design, Automation

& Test in Europe, DATE ’14, pages 70:1–70:6, 3001 Leuven, Belgium, Belgium,

2014. European Design and Automation Association.

[50] Jeroen Delvaux and Ingrid Verbauwhede. Attacking PUF-based pattern matching

key generators via helper data manipulation. In Josh Benaloh, editor, Topics in

Cryptology – CT-RSA 2014, pages 106–131, Cham, 2014. Springer International

Publishing.

[51] Srinivas Devadas and Meng-Day (Mandel Yu. Recombination of physical unclonable

functions. 03 2010.

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Introduction
	Research overview
	Outline of the thesis

	Estimating Delay Differences of Standard and Feed-Forward Arbiter PUFs
	Introduction
	Background
	Arbiter Based PUFs
	Feed-Forward PUFs
	Modified Feed-Forward PUFs
	Least Mean Square (LMS) Algorithm
	Single Layer Perceptrons

	Experimental Setup
	Estimating the Physical Parameters of Standard Arbiter PUFs
	Model Accuracy
	Convergence of the Estimated Values
	Distribution of the Delay Parameters

	Estimating the Intermediate Bias of Feed-Forward PUFs
	Results

	Discussion and Conclusion

	Predicting Hard and Soft-Responses of Feed-Forward PUFs using ANNs
	Introduction
	Artificial Neural Network Models
	PUF Implementation and Data Extraction
	Predicting Hard-Responses
	Results

	Predicting Soft-Responses
	Results

	Identifying Unstable Responses
	Conclusion

	Effect of Loop Positions on Attack-Resistance and Reliability of Feed-Forward PUFs
	Introduction
	Feed-Forward PUF Structures
	Reliability Definition
	Simulation Details
	Security Analysis
	Feed-Forward PUFs with One Intermediate Arbiter
	Feed-Forward PUFs with Two Intermediate Arbiters

	Entropy of Challenge-Response Deviation Metric
	Definition
	Results

	Reliability Analysis
	Effect of Changing FF Loop Output Location
	Soft-Response Thresholding
	Adding More FF Loops

	Discussion and Conclusion

	Feed-Forward XOR PUFs: Attack-Resistance and Reliability Analysis
	Introduction
	XOR Arbiter PUFs
	Setup
	Security Analysis
	Results
	Discussion

	Reliability Analysis
	FFXOR PUFs with Single-loop FF PUFs
	Soft-response Thresholding
	FFXOR PUFs with Multi-loop FF PUFs

	Conclusion

	Conclusion and Future Directions
	References

