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EXECUTIVE SUMMARY 

Transportation planners and managers need information about crash risk to prioritize investments in 

street networks and address community priorities related to the development of efficient and equitable 

transportation systems. This case study uses data from Minneapolis, Minnesota, to illustrate how 

estimates of pedestrian and bicycle crash risk and assessments of inequities in distribution of that risk 

can inform prioritization of street improvement projects. Crash numbers and frequencies for pedestrian 

and bicycle crashes at intersections and mid-blocks in Minneapolis are determined for the 2005–2017 

period. We estimate new models of pedestrian and bicycle crash risk at intersections and mid-blocks in 

Minneapolis that control for vehicular, pedestrian, and bicycle exposure, use these models to predict 

crashes at all intersections and mid-blocks in the city, assess the equity of distribution of crash risk, show 

that crash risk is higher in neighborhoods with lower household incomes and higher populations of 

minorities, develop new indices of crash risk, and illustrate how findings and results can be used to 

inform ranking and prioritization of street improvement projects.  

Our approach is illustrative of “systemic” approaches used in the study of roadway safety and 

assessment of risk described by the FHWA (Federal Highway Administration, 2018a, 2018b) and others 

(Carlson et al., 2018; Lindsey et al., 2018). A distinctive feature of these crash models is that they 

provide a measure for estimating risk at each intersection or mid-block regardless of whether crashes 

have occurred at the location historically. A second distinctive feature is that the models incorporate 

measures of vehicular, pedestrian, and bicyclist exposure.  

Results show that pedestrian and bicycle crash risk at intersections and mid-blocks generally is 

correlated with exposure and that correlates of crash risk for different modes at intersections and mid-

blocks differ. These results confirm the value of disaggregate analyses in prioritizing investments in 

improvements to increase safety of street networks. Results also confirm that pedestrian and bicycle 

crash risk is distributed unevenly throughout the city, with higher risk at intersections in lower-income 

neighborhoods with majority-minority populations. These differences are magnified when the central 

business district is excluded from analyses, indicating even greater disparities among neighborhoods. 

These results affirm the importance of efforts by the Minneapolis Department of Public Works to 

prioritize equity in ranking of street improvement projects. Finally, results show that different rankings 

result when network segments in the city are ranked according to modeled pedestrian and bicycle crash 

risk rather than total crash rates based on historical numbers of crashes at particular locations. This 

result confirms there are viable strategies for increasing weight given to improvements that facilitate 

walking and bicycling. 

The study has several limitations that can be addressed over time as more data become available and 

additional research is undertaken. The crash models are based on a relatively small dataset, and the 

time periods for which the dependent and independent variables are measured are not consistent. 

Specifically, the years for the crash dataset and the pedestrian and bicycle counts used as measures of 

exposure are different, and the bicycle and pedestrian measures of exposure are two-hour, peak-hour 

counts, not year-round, 24-hour counts. Another limitation is that the measures of pedestrian exposure 

used in pedestrian mid-block crash models are estimates of pedestrians on sidewalks traveling parallel 



 

 

to streets, not actual mid-block pedestrian crossings. The new crash indices developed to inform project 

ranking could be modified or used to rank projects in many different ways. Simulation studies would be 

useful to assess how robust these indexes are. This study was limited to technical analyses. Future 

studies that involve community collaboration in developing and applying new measures of crash risk 

could inform future efforts to prioritize street improvements (City of Minneapolis, 2017a). 
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CHAPTER 1:   INTRODUCTION 

Local transportation planners and policy makers need information about variation in crash risk across 

street networks to prioritize projects, inform investments to increase traffic safety, and address issues of 

equity in communities. Using Minneapolis, Minnesota, as a case study, this report illustrates how 

estimates of pedestrian and bicyclist exposure to risk, estimates of crash risk, and analyses of inequities 

in the distribution of crash risk can inform prioritization of street improvements. Crash numbers and 

frequencies for pedestrian and bicycle crashes at intersections and mid-blocks in Minneapolis are 

determined for the 2005–2017 period. Our approach is illustrative of the “systemic” approaches used in 

the study of roadway safety and assessment of risk described by the FHWA (Federal Highway 

Administration, 2018a, 2018b). This report extends recent work supported by the Roadway Safety 

Institute (RSI) on methods for assessing exposure to risk (Hankey & Lindsey, 2016) and using pedestrian 

and bicycle counts to control for exposure when estimating crash risk (Lindsey et al., 2018). This report 

also contributes to streams of research that document inequities in the distribution of pedestrian and 

bicyclist collisions (Cottrill & Thakuriah, 2010; Loukaitou-Sideris et al., 2007; Siddiqui et al., 2014).   

Minneapolis has begun implementation of its 20-Year Streets Funding Plan (City of Minneapolis, 2017a). 

As part of its efforts to rank and prioritize potential projects, the Minneapolis Department of Public 

Works (DPW) conducted an outreach campaign to identify concerns of residents with its approach to 

project prioritization and implementation. The DPW identified the need to revise its approach to project 

ranking, specifically to increase emphases on pedestrian and bicycle facilities, place more “weight” on 

“high-pedestrian, bicycle, and transit volume streets,” and integrate equity considerations (specifically 

for “non-white majority and low-income population(s)”) (City of Minneapolis, 2017a). This research was 

designed to inform the city’s ongoing efforts to address issues raised by residents. Specifically, the 

research was designed to illustrate how estimates of pedestrian and bicyclist exposure to risk can be 

used to model crash risk and how measures of crash risk can be used to address issues of equity.  

Chapter 2 of this report is a brief literature review that focuses on approaches to modeling crash risk 

and studies of crash risk and equity. Chapter 3 presents our data and methods, including our models of 

exposure to risk, our models of crash risk, and the methods we use to assess the equity of the 

distribution of crash risk. Chapter 4 presents our results. These results include pedestrian and bicyclist 

numeric crash indices for each intersection and each mid-block in Minneapolis and the statistical tests 

that confirm the existence of spatial inequities in the distribution of crash risk in Minneapolis. To assess 

how these new measures of pedestrian and bicyclist crash risk would affect project ranking, we compare 

these measures with crash rates used by the city in its project ranking system. In Chapter 5, we discuss 

our major findings, their implications and limitations, and the need for additional research. Overall, our 

research confirms the importance of incorporation of estimates of exposure to risk in models of crash 

risk. Our research confirms that the spatial distribution of crash risk is inequitable. On average, after 

controlling for exposure and other factors, including the built environment and presence of traffic 

controls, crash risk at intersections is significantly higher in neighborhoods with higher concentrations of 

minority individuals and households in poverty. These findings underscore the importance of the work 

by the city to increase emphases on pedestrian and bicyclist traffic and to address issues of equity. 
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CHAPTER 2:  LITERATURE REVIEW 

The principal objectives of this study are to illustrate how estimates of crash risk and assessments of 

inequities in the distribution of crash risk can inform prioritization of street improvement projects. This 

brief literature review focuses on models of crash risk and assessments of the equity of distribution of 

crash risk. Specifically, we summarize studies that have used regression modeling to explain pedestrian 

or bicycle crash rates or predict pedestrian and bicycle crashes (Section 2.1) and planning-level studies 

that have explored the equity of distribution of crash risk (Section 2.2).  

Pedestrian crashes are collisions between a pedestrian and a motor vehicle or between a pedestrian and 

a bicycle. Similarly, bicycle crashes are collisions between a bicycle and a motor vehicle or between a 

bicycle and a pedestrian or another bicycle. Most crash datasets are incomplete and underestimate the 

prevalence of pedestrian and bicycle crashes because they are based on public safety records and many 

crashes involving pedestrians and bicyclists are not reported to the police. For example, a crash between 

a cyclist and a pedestrian at an intersection may not be reported unless injuries are involved.  

Crash risk has been defined in many ways. Federal Highway Administration (2018a) recently has 

provided general guidance for assessing risk to pedestrians and bicyclists. The FHWA (2018a), defines 

crash risk as the likelihood that a crash will occur given exposure to risk (i.e., taking into consideration 

the volumes of pedestrians, vehicles, and bicycles that are present). The FHWA defines exposure as “the 

number of potential opportunities for a crash to occur” (Federal Highway Administration, 2018a) and 

notes exposure often is measured as the volumes of vehicles, pedestrians, and cyclists present with the 

potential to be engaged in a collision. In practice, comprehensive measures of pedestrian and bicyclist 

exposure rarely are available, especially at the disaggregated level, so approximations or partial 

estimates often are used.  

Crash rates are the ratios between crash numbers and measures of exposure (i.e., traffic volumes). 

Crash frequency, which refers to the number of collisions at a location or in an area within a specified 

period of time, is used frequently in studies of crashes but technically is not a measure of risk because it 

does not control for exposure. Some of the studies summarized in this review analyzed crash rates and 

frequencies but technically not risk. We include these studies because factors associated with crash risk 

crash rates, and crash frequency are expected to be similar. 

2.1 CRASH RISK AND CORRELATES OF CRASH RISK 

A number of studies have investigated the impacts of different factors on crash risk and other outcomes 

(Table 2.1). These studies have been undertaken at different scales, ranging from area-wide analyses to 

disaggregated, facility-specific investigations. Area-wide analyses, or macro-level studies, often are 

undertaken to compare places or locations or to assess trends (Chen, 2015). Examples of units of 

analysis used in area-wide studies include census tracts, census block groups, or Travel Analysis Zones 

(Dumbaugh and Li, 2011; Siddiqui et al., 2012; Wei and Lovegrove, 2012). Examples of units of analysis in 

disaggregate studies include intersections (Daniels et al., 2009; Schepers et al., 2011) or corridors 

(Siddiqui et al., 2012; Strauss et al., 2013). The dependent variable in crash studies that use some types 
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of regression modeling typically is some measure or index of crash frequency (Siddiqui et al., 2012), 

crash probability, or injury severity (Kim et al., 2007). 

Correlates of crash risk can be grouped within a relatively small set of categories. These categories 

include exposure, built environment, traffic facilities, road characteristics, sociodemographic 

characteristics, and other spatial variables (Table 2.1).  Measures of exposure include common, easily 

available measures of vehicular traffic volume such as annual average daily traffic (AADT) or comparable 

or related measures of pedestrian and bicycle traffic such as peak hour traffic. Researchers have found 

that AADT is positively associated with crash risk (Cottrill and Thakuriah, 2010; El-Basyouny and Sayed, 

2013; Loukaitou-Sideris et al., 2007; National Academies of Science Engineering and Medicine, 2008; 

Nordback et al., 2014; Park et al., 2015; Schepers et al., 2011; Turner et al., 2011; Yasmin and Eluru, 

2016). While many studies have explored the relationship between AADT and some measure of crash 

risk, fewer studies have tested relationships between pedestrian or bicycle counts and crash risk, mainly 

due to the lack of available data. The studies that have been completed indicate both pedestrian counts 

(National Academies of Science Engineering and Medicine, 2008; Thomas et al., 2017; Yasmin and Eluru, 

2016), and bicycle counts (Nordback et al., 2014; Schepers et al., 2011; Turner et al., 2011; Yasmin and 

Eluru, 2016) are positively associated with crash risk (Table 2.1).  

While the relationships between crashes and measures of exposure to risk have been found  to be 

positive, some research indicates that this relationship may be non-linear, and there is debate in the 

literature over what has come to be known as the “safety in numbers” phenomenon (Carlson et al., 

2018; Elvik, 2013, 2009; Jacobsen, 2003). The basic idea is that when pedestrian or bike traffic increases, 

the numbers of crashes do not increase proportionately, and the crash rate becomes smaller, indicating 

lower risk to individuals. Jacobsen (2003) found that the probability which a motorist collides with a 

pedestrian or bicyclist becomes smaller when more people walk or ride bikes. In an analysis of studies 

that have shown non-linearities in the risk of injury to pedestrians and bicyclists given volumes, Elvik 

(2009) concluded that there could be a reduction in total number of accidents if motorists shifted to 

walking or bicyling and that increases in non-motorized traffic volumes will not necessarily lead to 

increased numbers of crashes. Elvik (2013) subsequently showed that both a “safety-in-numbers” and a 

“hazard-in-numbers” could exist in a single crash dataset and that the researchers should differentiate 

between “partial” and “complete” safety-in-numbers analyses. More recently, in a systematic review 

and meta-analysis, Elvik and Bjørnskau (2017) concluded there is evidence of the safety-in-numbers 

effects for vehicles, pedestrians, and bicyclists but that causal mechanisms are not well understood. 

Carlson et al. (2018) concluded that the “safety in numbers” phenomenon exists in Minneaplis.  

Built environment variables include measure such as population density, job density, and various 

categories of land use.  Population and/or population density is positively associated with crash risk 

(Dumbaugh and Li, 2011; Gladhill and Monsere, 2012; Loukaitou-Sideris et al., 2007). Job or employment 

density also has been found to be positively associated with crash risk (Loukaitou-Sideris et al., 2007). 

Examples of measures land use include land use entropy and percentage or proportion of a specific land 

use such as commercial, retail, or open space. While land use entropy has been found to have a positive 

relationship with crash risk (Chen, 2015), other, different types of land use may have different impacts 

on crash risk. Commercial or business land use been shown to have a positive association with crash risk 
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(Cottrill and Thakuriah, 2010; Dumbaugh and Li, 2011; Gladhill and Monsere, 2012; Loukaitou-Sideris et 

al., 2007; Schneider et al., 2010; Thomas et al., 2017; Ukkusuri et al., 2012), while industrial land use 

may either a have negative association (Loukaitou-Sideris et al., 2007) or a positive one (Ukkusuri et al., 

2012). Intersection density appears to be positively correlated with crash risk (Dumbaugh and Li, 2011; 

Gladhill and Monsere, 2012; Ukkusuri et al., 2012). Transit-related variables such as transit ridership and 

transit stop or station number also appear to be positively correlated with crash risk (Gladhill and 

Monsere, 2012; Ukkusuri et al., 2012). 

Examples of traffic facilities include bike lanes (e.g., striped, buffered, or colored bike lanes), traffic 

signals, lighting, and measures of road geometry such as raised median (or island), road width or the 

number of lanes. The presence of bike lanes appears to be negatively associated with crash risk (Park et 

al., 2015; Schepers et al., 2011; Turner et al., 2011). Traffic signals have a mixed relationship with crash 

risk: while the density of traffic signals is positively associated with crash risk(Chen, 2015), the presence 

of a beacon may reduce the crash risk (Zegeer et al., 2017). Improving lighting fixtures at intersections or 

along roadway sections may reduce crash risk (Lee and Abdel-Aty, 2005; Zegeer et al., 2017). Raised 

medians or island are associated with lower crash risk (Schneider et al., 2010; Zegeer et al., 2017). Wider 

road width and  more road lanes also have been found to be positively associated with crash risk (Park 

et al., 2015; Schepers et al., 2011; Schneider et al., 2010; Ukkusuri et al., 2012). In addition, primary 

roads have been shown to be positively associated with crash risk (Ukkusuri et al., 2012). 

Socio-demographic characteristics include income levels, measures of numbers or density of children in 

nearby areas, and percentage of people of different ages, races, or ethnicities. The correlation between 

median household income and crash risk has differed across  studies(Thomas et al., 2017; Yasmin and 

Eluru, 2016). Higher percentages of children in nearby communities are  positively correlated with crash 

risk (Cottrill and Thakuriah, 2010; Schneider et al., 2010). Also, higher percentages of people of Hispanic 

ethnicity have been shown to have a positive relationship with crash risk (Loukaitou-Sideris et al., 2007). 

Policy variables include measures related to parking and speed limits. Long-term parking costs have a 

positive impact on crash risk (Siddiqui et al., 2012). Higher speed limits also are positively associated 

with crash risk (Chen, 2015). 
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Table 2.1 Selected studies on pedestrian and bicycle crashes 

Author 

Mode Analysis Units 
Dependent 

Variables 

Exposure 
Built 

environment 

Traffic 

facilities 
Socioeconomic Policy 

Others 

Pedestrian Bike 
Area-

wide 

Site-

specific 
Pedestrian Bike Vehicle VMT 

Average 

speed 
Bar 

Lee and Abdel-Aty (2005) √   √ Number of crashes     √ √     

Loukaitou-Sideris  et al. 

(2007) 
√  √  Crash rate √ √ √ √  √     

National Academies of 

Science Engineering and 

Medicine (2008) 

√   √ Number of crashes √  √ √ √ √     

Daniels et al. (2009)  √  √ Number of crashes     √  √    

Cottrill and  Thakuriah 

(2010) 
√  √  Crash rate   √ √  √     

Schneider et al. (2010) √   √ Crash rate √  √ √ √ √     

Dumbaugh and Li (2011) √ √ √  Number of crashes    √    √   

Turner et al. (2011)  √  √ Number of crashes  v √  √      

Scheper et al, (2011)  √  √ Number of crashes    √ √      

Siddiqui et al. (2012) √ √ √  Crash rate    √ √ √ √    

Ukkusuri et al. (2012) √  √  Crash rate    √ √ √     

Gladhill and Monsere 

(2012) 
√ √ √  Number of crashes   √ √  √  √ √  

El-Basyouny and Sayed 

(2013) 
√ √  √ Number of crashes   √        

Nordback et al. (2014)  √  √ Number of crashes  √ √        

Park et al. (2015)  √  √ Number of crashes   √ √ √ √     

Chen (2015)  √ √  Number of crashes  √ √ √ √ √ √    

Yasmin and Eluru (2016)  √ √  Crash rate √ √ √ √ √ √    √ 

Zegeer et al. (2017) √   √ Number of crashes √  √  √      

Thomas et al. (2017) √   √ Number of crashes √ √  √ √ √     



 

6 

Other factors such as vehicle mile traveled (VMT), number of road trips, average speed, and the location 

of bars or drinking establishments have been shown to be correlated with crash risk. VMT and number 

of road trips have a positive correlation with crash risk (Chen, 2015; Dumbaugh and Li, 2011; Gladhill 

and Monsere, 2012). However, average speed is negatively associated with crash risk (Gladhill and 

Monsere, 2012). One interesting result is that the number of bars is positively associated with crash risk 

(Yasmin and Eluru, 2016). 

These studies have greatly increased understanding of factors that influence the risk of crashes, but 

many have been limited because of the lack of data, particularly measures of exposure to risk. Use of 

exposure measures computed for large areas at the macro level (e.g., for cities (Robinson, 2005)) limits 

the specificity of conclusions. Many disaggregate studies have been limited to a few intersections or 

segments and not entire networks because of the lack of availability of counts. For example, Jonsson’s 

(2005) scope was limited to locations (i.e., intersections, segments) where manual counts were 

available). Additional research to develop methods for quantifying exposure and determining its relation 

to crash probabilities is warranted. Among other needs, researchers and practitioners need additional 

tools to estimate bicycle and pedestrian traffic volumes. 

2.2 CRASH RISK AND EQUITY 

Fewer scholars have explored the relationship between crash risk and equity. Nantulya and Reich (2003) 

concluded that poorer groups experience a “disproportionate” burden of road traffic injuries. Siddiqui et 

al. (2014) suggested that the areas with low-income and minority populations require “specific attention 

in the investigation of pedestrian-related crash factors.” Loukaitou-Sideris et al. (2007) found a 

statistically significant relationship between pedestrian crashes and the percentage of Latino population 

when they constructed models to explore the correlation between pedestrian crashes and socio-

demographic variables in Los Angeles. Cottrill and Thakuriah (2010) reported that pedestrian-vehicle 

crashes in Chicago increased in the areas with more lower-income and minority populations. 

In addition to these peer-reviewed research findings, studies in the grey literature report suggest that 

poorer people experience a disproportionately high pedestrian crash risk (Maciag, 2014). Most relevant 

to this research, a study by the city of Minneapolis has found that people living in areas with a majority 

of non-white and lower-income individuals experience higher crash rates than those in other areas (City 

of Minneapolis, 2017b). 

The findings reported in equity-focused studies tend to be consistent: people in neighborhoods that are 

poorer and predominantly minority experience higher crash risk. However, the number of studies is 

relatively small, and several of the studies have been limited by the lack of availability of data, especially 

measures of exposure to risk. Additional studies of the relationships between crash risk and equity are 

warranted.  
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CHAPTER 3:  APPROACH, DATA, AND METHODS 

In this chapter, we describe the approach, data, and methods used in our analyses. Our approach 

included four basic steps (Figure 3.1):  

 Assembly of data; 

 Estimation of pedestrian and bicyclist crash risk for intersections and mid-blocks;  

 Assessment of equity of distribution of crash risk; and  

 Assessment of implications for street improvement project rankings.  

The data include pedestrian and bicycle crash data (Section 3.1), exposure data (i.e., measures of 

vehicular, pedestrian, and bicycle traffic volumes; Section 3.2), and data used as independent variables 

in modeling crash risk (Section 3.3). We use negative binomial regression modeling to estimate 

pedestrian and bicycle crash risk for each intersection and each mid-block in Minneapolis (Section 3.4). 

We use both standard t-tests and Lorenz curves and Gini Coefficients to assess the equity of distribution 

of crash risk (Section 3.5). To assess the implications of our estimates of crash risk for project ranking, 

we illustrate how our measures of crash risk can complement crash rates currently used by the 

Minneapolis DPW in its ranking system (Section 3.6).   

 

 

 

Figure 3.1 Working flow map of the method 
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3.1 PEDESTRIAN AND BICYCLE CRASH DATA 

We define crash risk as the number (or frequency) of pedestrian and bicycle crashes that occurred at 

intersections and mid-blocks for the time period 2005 – 2017. We acquired our pedestrian and bicycle 

crash dataset from Minnesota Department of Public Safety (Department of Public Safety, 2018).   The 

DPS dataset is compiled from police reports and includes all crashes for which a police report was filed. 

Some crashes, including some crashes that involve injury and visits to hospitals, are not reported to 

police. Hence, our dataset and analyses do not include all pedestrian or bicycle crashes that have 

occurred in Minneapolis during the period of interest. We analyze only pedestrian and bicycle crashes, 

which we define simply as a crash that involved pedestrian or bicyclist as coded in the DPS dataset. 

Given definitions in documentation, the dataset theoretically includes crashes between pedestrian and 

bicyclists that did not involve vehicles. However, none of these exist for these years, and all the crashes 

analyzed here involve vehicles. The dataset includes crash location, level of severity, time of the crash, 

and other details regarding the circumstances of the crash. We analyzed all pedestrian and bicycles 

crashes that occurred between 2005 and 2017 (13 years). We chose a long period of analyses because 

the longer period provides more observations and better insight into the spatial distribution of crashes. 

A tradeoff associated with the use of a longer period of analyses is that some factors associated with 

crashes may change over time, thus confounding or limiting the validity of correlation analyses.  

Table 3.1 and Figure 3.2, respectively, summarize the distribution of crashes and show the ranges in 
numbers of crashes in each census block group in three spatial areas in the city: 

 The Minneapolis central business district, or downtown; 

 Areas of Concentrated Poverty (ACP50) designated by the Metropolitan Council. These are 

census tracts in which 50% or more of residents are people of color, and 40% or more of the 

residents have family or individual incomes that are less than 185% of the federal poverty 

threshold. The Metropolitan Council and cities in the region, including Minneapolis, often 

consider these areas when spatially targeting equity initiatives.  

 Other areas in Minneapolis (i.e., areas that are not in the CBD and designated as APC50).   

Between 2005 and 2017, 3,812 pedestrian crashes and 3,490 bicycle crashes occurred in Minneapolis 

(Table 3.1). The crashes are not distributed evenly across areas within the city (Table 3.1). The density of 

crashes is highest in the CBD, and the density of crashes in the APC50 is higher than in other more 

affluent, majority-white areas of the city. Pedestrian crashes have slightly higher densities than bicycle 

crashes across in the CBD and APC50 tracts, but not in other areas of the city. 
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Table 3.1 Pedestrian and bicycle crashes in different areas in Minneapolis 

City of 
Minneapolis 

Central Business District 
Area 

ACP50 
Tracts 

 All Other 
Areas 

Area (square miles) 57.4 3 12.3 42.3 

Pedestrian crashes (2005-2017) 3,812 904 1,490 1,443 

Pedestrian crash density (per sq mi) 66.4 301.3 121.1 34.1 

Bike crashes (2005-2017) 3,490 677 1,164 1,684 

Bike crash density (per sq mi) 60.8 225.7 94.6 39.8 

Figure 3.2 Distribution of pedestrian (a) and bicycle (b) crashes (2005-2017) in each block group in Minneapolis. 

Note: the dataset for ACP50 area boundaries was extracted from the Minnesota Geospatial Commons (http:// 

gisdata.mn.gov) 

(a)   (b) 

We used ArcGIS to categorize each crash as either an intersection-related crash or a mid-block crash. 

Mid-blocks are those street segments that connect consecutive intersections. Our rationale for this 

distinction is that different factors may be associated with these two types of locations. We used 

different buffers for different types of roads to account for different road widths. We defined an 

intersection-related crash as a crash that occurred within a 35-meter buffer of the center of an 

intersection on major roads (e.g., arterials and collectors) and within a 15-meter buffer of the center of 

an intersection on local roads. We used the “intersect” function in ArcGIS to categorize or identify the 

intersection crashes. All crashes that were not classified as an intersection crash were classified as mid-

block crashes; we used the “near” function in ArcGIS to assign these crash to the nearest mid-block.  
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We next identified the intersections and mid-blocks where one or more crashes occurred.  Figure 3.3 

summarizes the numbers and percentages of intersections or mid-blocks where zero, one, or multiple 

crashes occurred during the period of analyses.  No pedestrian or bicycle crashes occurred at the vast 

majority of intersections (more than 78%) or mid-blocks (more than 95%).  Only about five percent of 

the intersections experienced three or more pedestrian or three or more bicycle crashes. Three or more 

crashes occurred at less than one percent of the mid-block locations.  

Figure 3.3 Number of intersections (a) and mid-blocks with zero, one, two, or three more crashes between 2005 

and 2017 

  

(a) 

 
 (b) 

We also categorized crashes based the severity of injury (Figure 3.4). Categories include fatality or killed, 

severe injury, moderate injury, minor injury, and property damage only. A majority of both pedestrian 

(51.6%) and bicycle (56.9%) crashes resulted in minor injuries. Fewer than 2% of both pedestrian (1.5%) 

and bicycle (0.5%) crashes resulted in fatalities. 
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Figure 3.4 Crash severity distribution 

 

57

383

1,275

1,966

131
17

182

1,137

1,986

168

0

500

1000

1500

2000

Killed Severe injury crash Moderate injury
crash

Minor injury crash Property damage
crash

Crash severity distribution

Pedestrian Bike

3.2 MEASURES OF EXPOSURE TO RISK 

As noted in our literature review, analyses of pedestrian and bicycle crashes historically have been 

hampered by the lack of measures of pedestrian and bicyclist exposure to risk. Although vehicle 

counting programs provide relatively fine-grained or disaggregate measures of vehicular exposure to 

risk, most communities have not implemented pedestrian or bicycle traffic monitoring programs to 

produce counts from which measures of exposure can be estimated. The Minneapolis DPW is distinctive 

among transportation agencies in major cities in the U.S. in that it has counted peak-hour pedestrian 

and bicycle traffic at multiple locations in the city for a number of years. A novel aspect of our research 

is that we use demand models estimated from DPW pedestrian and bicycle counts to produce estimates 

of pedestrian and bicyclist exposure to risk for every intersection and mid-block in the city (Hankey and 

Lindsey, 2016; Lindsey et al., 2018). These estimates, as will be explained below, are used with 

motorized traffic counts as measures of exposure to risk in our crash models 

Minneapolis DPW Bicycle and Pedestrian Counts. The Minneapolis DPW, in collaboration with the 

nonprofit Transit for Livable Communities, initiated a manual, peak-hour pedestrian and bicycle 

monitoring program based on protocols developed by the National Bicycle and Pedestrian 

Documentation Project in 2007. These protocols call for counting bicyclists and pedestrian at mid-block 

locations in good weather in fall (mostly September) from 4:00 p.m. to 6:00 p.m. (Minneapolis Bicyclist 

and Pedestrian Count Report). For our measures of exposure, we use counts taken between 2007 and 

2014, a time period that roughly corresponds to the time period for our crash data. We identified 437 

unique mid-block locations where counts had been taken (Figure 3.5). For sites at which more than one 

count had been taken, we averaged counts to obtain a single value for analysis. These DWP counts are 

used directly as measures of exposure in our mid-block crash models.  
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Our measures of pedestrian and bicycle exposure have several limitations. One limitation is that two-

hour, peak-hour weekday counts do not capture the variation in pedestrian and bicycle volumes that 

occurs throughout the day, by day-of-week, across seasons, or in response to weather. The time periods 

for the measures of exposure therefore do not match the time periods in the crash dataset (which 

includes crashes at all times of the day on all days of the week throughout the year). Another limitation 

is specific to analyses of mid-block pedestrian crashes. The DPW pedestrian counts measure pedestrians 

on sidewalks parallel to the street or roadway, not street crossings. The number of pedestrian crossings 

at each mid-block likely is substantially smaller than the number of pedestrians on the sidewalk. Our 

rationale for using these measures as estimates or proxies for exposure is that we believe them to be 

correlated with, and follow a similar distribution as, the desired measures (i.e., total pedestrian and 

bicycle volumes or mid-block crossing volume).  

Because the DPW count database did not include intersection counts, we aggregated mid-block, or 

segment counts, to obtain intersection counts for analysis.  We used the following procedures to 

aggregate segment counts to intersection counts for measures of exposure in our crash models. 

Specifically, we used Equation (1) to obtain measures of exposure for intersections linked with 𝑁 mid-

blocks. 

1
𝐶 𝑁
𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = ∑𝑖=1𝐶𝑖                                                                        (1) 

2

Where, 𝐶𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 is an intersection’s pedestrian or bicycle count, and 𝐶𝑖 is the pedestrian and 

bicycle count of 𝑖th mid-block linked to the intersection. 

 

We used Equation (2) to estimate counts for intersections if counts were not available for all mid-blocks 

leading to an intersection. For example, if one intersection had N mid-blocks linked to it, and M of them 

had actual counts, we estimated exposure as:  

𝑁
𝐶 = ∑𝑀
𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑖=1𝐶𝑖                                                                   (2) 

2𝑀
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Figure 3.5 Distribution of the count locations 

 

Use of these procedures resulted in counts, or measures of exposure, for 173 intersections. These 

counts were used to estimate crash models that subsequently were used to estimate crashes for all 

intersections. As a result of these procedures, our intersection and mid-block crash models have sample 

sizes of 173 and 437, respectively.   

Because DPW identified the need to increase emphases on pedestrian and bicycle traffic and equity in 

its project ranking system, one of our research objectives was to estimate crash risk for every 

intersection (n=6,639) and mid-block (n=12,589) in the city. To do so required estimating pedestrian and 

bicyclist exposure to risk for all locations where actual counts were not available. To achieve this 

objective, we adapted estimates of pedestrian and bicycle peak-hour, mid-block traffic produced by 

pedestrian and bicycle demand models previously published by Hankey and Lindsey (2016). These 

models, which are based on counts at the 437 locations shown in Figure 3.5, estimate mid-block traffic 

as a function of adjacent land use, street functional class, and other variables  (Hankey and Lindsey, 

2016). After obtaining estimates for the 12,152 mid-blocks for which counts were not available by using 

these models, we then used equations 1 and 2 to obtain estimates for the remaining 6,466 

intersections. A limitation of this method of estimating exposure at intersections is that we do not have 

actual measurements of crossings that enable detailed analyses of specific types of crashes. 
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For measures of vehicular exposure to risk, we obtained vehicle AADT of mid-blocks in Minneapolis from 

DPW. For mid-blocks or street segments where counts were not available, we used an estimated value 

of 500 passenger car units per day (pcu/day).  We used Equation (1) to calculate the vehicle AADT for 

each intersection in Minneapolis. 

3.3 CORRELATES OF CRASH RISK 

Previous studies have shown that the probability or frequency of crashes is associated with 

characteristics of the roadway network, traffic controls, built environment, and socio-demographics of 

neighborhoods in addition to measures of exposure. Based on their findings, we assembled a number of 

different variables for the development of our crash models. The definitions and sources of the 

independent variables used in our models are listed in Table 3.2. Table 3.3 presents descriptive statistics 

(i.e., mean standard deviation) for these same variables for both intersections and mid-block locations.  

Many characteristics of the built environment, roadway networks, and traffic control infrastructure are 

correlated, thus raising the potential for multi-collinearity in models. To address this potential, we 

constructed a correlation matrix of potential independent variables and excluded potential variables 

with correlation coefficients greater than 0.7 (e.g., % black population, which was highly correlated with 

% white population, and % other land use which was highly correlated with other land use categories.  

Figure 3.6 and Figure 3.7, respectively, show the correlations among the independent variables retained 

for use in our mid-block (n=437) and intersection (n=173) models. The darker shades represent higher 

correlations among variables; the lighter shades show weaker correlation. The matrixes also include the 

values of the correlation coefficients.  None of the values exceeds 0.6, which is considered moderate 

correlation and acceptable for inclusion when modeling.  

Inspection of our measures of exposure (i.e., estimates of vehicle, pedestrian, and bicycle volumes) 

revealed that distributions were skewed. Therefore, prior to modeling, we look the natural log of each 

measure to normalize its distributions. Figure 3.8 illustrates the distributions of pedestrian counts, bike 

counts, and AADT before and after taking the natural logarithm of each measure. As is evident in the 

graphs, the shape of each distribution after this procedure better approximates the normal distribution. 

For the measure of vehicular exposure (i.e., is AADT), one value has many more observations than 

others. This result occurs because, for residential and other low-volume streets where no counts have 

been taken, DPW assigns a standard AADT estimate of 500. Because no crashes have been reported on 

most of these mid-blocks, this limitation is not believed to have important effects on the modeling.   

3.4 MODELS OF INTERSECTION AND MID-BLOCK CRASH RISK 

We use regression analysis to model pedestrian and bicycle crash risk at mid-blocks (n=437) and 

intersections (n=173) where measures of exposure are available. Our dependent variables are the 

number of crashes at the intersections and mid-blocks, respectively. Because the distribution of crashes 

by location is positively (right-tail) skewed with many zeroes (i.e., no crashes have occurred at most mid-

blocks and intersections), we use negative binomial regression models.  
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Our models include measures of exposure, the built environment, traffic control facilities, 

sociodemographic variables, and a binary, geographic variable for the CBD (Table 3.2 and Table 3.3). 

Each of our pedestrian and bicycle crash models includes three measures of exposure (i.e., pedestrian, 

bicycle, and motorized vehicle) because theory suggests interactions among all three modes of travel 

could affect the likelihood of crashes. Incorporation of these measures also is consistent with the DPW’s 

goal of increasing emphases on pedestrian and bicycle traffic in its street project prioritization system. 

The other independent variables were selected based on previous research findings (Table 2.1). 

We present two sets of pedestrian and bicycle crash models for intersections and mid-blocks. The first 

set comprises base models without sociodemographic variables that we use to assess the equity of 

distribution of crash risk between APC50 and other areas. Our rationale for excluding sociodemographic 

variables in our base models is that the spatial areas that we are comparing (i.e., the APC50 and other 

areas) were identified by the Metropolitan Council based on systematic differences in income and race. 

The inclusion of the socio-economic variables in the base models has the potential to confound results. 

Our second set of models, which we refer to as our final crash models, were estimated after completing 

this equity analysis. We added two variables, income and race, to our base models prior to estimating 

crashes at all intersections and mid-blocks throughout the city for project ranking. We do not analyze 

APC50 areas separately in this step in our analysis.  

3.5 ASSESSING CRASH RISK AND EQUITY 

We develop two measures to assess the equity of the spatial distribution of crash risk. The first is the 

average predicted number of crashes for different areas of the city, specifically, the CBD, the APC50 

census tracts, and other areas. This measure is constructed separately for both pedestrian and bicycle 

crashes at both intersections and mid-blocks. The second measures, which also are computed separately 

for pedestrian and bicycle crashes at both intersections and mid-blocks, are Lorenz curves and GINI 

coefficients. These two indicators are measures of how far the distributions of crashes vary from perfect 

equality.  

As noted in Section 3.4, we estimated base intersection (n=173) and mid-block (n=437) pedestrian and 

bicycle crash models without sociodemographic variables for purposes of testing for significant 

differences in indexes of crash risk between APC50 and other areas. After estimating the base models, 

we used them to predict crashes at all intersections and mid-blocks in the city. This procedure 

incorporated estimates of pedestrian, bicycle, and motorized traffic exposure as explained in Section 

3.2. To assess equity of distribution of crash risk between the APC50, CBD, and other areas, we then 

averaged the crash numbers for all intersections and mid-blocks in each area, respectively, and 

conducted simple t-tests. As discussed in Chapter 4, this procedure revealed significant differences 

among areas, including significantly higher crash indexes in APC50 census tracts. 
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Table 3.2 Variable definitions and their data sources 

Variables Definition Data source Year 

 Pedestrian or bicycle 
crash numbers 

Number of bicycle or pedestrian crashes occurs at an intersection or mid-block 
Minnesota Department 
of Public Safety (DPS) 

2005-2017 

Exposure 

Actual pedestrian or 
bicycle counts 

Natural logarithm of PM peak hour (4-6 pm) bicycle or pedestrian counts Minneapolis (DPW) 2007-2014 

AADT Natural logarithm of vehicle average annual daily traffic (AADT) DPW 2005-2015 

Built environment 

Population density The number of people per acre of the block where an intersection or mid-block centroid is located U.S. Census Bureau 2010 

Job density The number of jobs per acre of the block where an intersection or mid-block centroid is located U.S. Census Bureau 2015 

Intersection number The number of intersections within 400-meter buffer of an intersection or mid-block centroid DPW - 

Transit stop A dummy variable indicating whether there is a transit stop within 30-meter buffer of an intersection or mid-block. 
Minnesota Geospatial 
Commons (MGC) 

2018 

Commercial area Percentage of commercial land use within 100-meter of an intersection or mid-block centroid. MGC 2016 

Office area Percentage of official land use within 100-meter of an intersection or mid-block centroid. MGC 2016 

Industrial area Percentage of industrial land use within 100-meter of an intersection or mid-block centroid. MGC 2016 

Open space Percentage of open space within 100-meter of an intersection or mid-block centroid. MGC 2016 

Land use entropy Land use entropy index within 100-meter buffer of an intersection or mid-block centroid MGC 2016 

Geographical location Downtown area A dummy variable indicating whether an intersection or mid-block is in the downtown area DPW 2018 

Traffic facilities 

Sidewalk A dummy variable indicating whether there is a sidewalk linked to an intersection or in a mid-block DPW - 

Bicycle lane A dummy variable indicating whether there is a bicycle lane linked to an intersection or in a mid-block DPW 2011 

Trail A dummy variable indicating whether there is a trail linked to an intersection. City of Minneapolis 2014 

Street light A dummy variable indicating whether there is a street light in the 10-meter buffer of an intersection DPW 2018 

Traffic signal A dummy variable indicating whether there is a traffic signal in the 10-meter buffer of an intersection DPW 2018 

Main road 
A dummy variable indicating whether the mid-block is main road (e.g., arterials or collectors or other high volume 
roadways), or whether the intersection is linked with one main road 

DPW - 

Secondary road 
A dummy variable indicating whether the mid-block is secondary road (e.g., a local, neighborhood, or other low-
volume road), or whether the intersection is linked with one main road 

DPW - 

Socioeconomic 

Child population 
Percentage of children (age 14 -) in total population of the block group where an intersection or mid-block centroid 
is located 

U.S. Census Bureau 2016 

Old population 
Percentage of old people (age 65 +) in total population of the block group where an intersection or mid-block 
centroid is located 

U.S. Census Bureau 2016 

Male population 
Percentage of male people in total population of the block group where an intersection or mid-block centroid is 
located 

U.S. Census Bureau 2016 

Average household 
size 

Average household size in square feet of the block group where an intersection or mid-block centroid is located U.S. Census Bureau 2016 

Average vehicle 
numbers 

Average vehicle numbers per household of the block group where an intersection or mid-block centroid is located U.S. Census Bureau 2016 

White population Percentage of white population in the block group where an intersection or mid-block centroid is located U.S. Census Bureau 2016 

Poverty population Percentage of poverty population in the block group where an intersection or mid-block centroid is located U.S. Census Bureau 2016 
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Table 3.3 Descriptive statistics 

Variables 
Intersection (size = 173) Mid-block (size = 437) 

Mean Std. Dev. Mean Std. Dev. 

Crash risk 
Pedestrian crash number 3.13 5.16 0.24 0.83 

Bicycle crash number 2.21 3.03 0.24 0.75 

Exposure 

Ln Pedestrian count 6.72 1.20 5.91 1.27 

Ln Bicycle count 6.10 0.90 5.41 1.11 

Ln AADT 9.49 0.63 8.71 0.79 

Built environment 

Population density 14.16 24.22 13.71 19.81 

Job density 67.02 380.66 62.44 380.13 

Intersection number 29.13 7.83 28.92 8.50 

Transit stop 0.60 0.49 0.12 0.32 

Commercial area 0.21 0.25 0.17 0.24 

Office area 0.14 0.18 0.12 0.19 

Industrial area 0.04 0.13 0.05 0.17 

Open space 0.06 0.15 0.09 0.20 

Land use entropy 0.23 0.11 0.21 0.11 

Downtown Downtown area 0.17 0.37 0.16 0.37 

Traffic facilities 

Sidewalk 0.97 0.18 0.81 0.40 

Bicycle lane 0.64 0.48 0.21 0.41 

Trail 0.06 0.23 - - 

Street light 0.77 0.42 - - 

Traffic signal 0.66 0.47 - - 

Main road 0.04 0.20 0.04 0.19 

Secondary road 0.61 0.49 0.41 0.49 

Socio-demographic 

Child population 0.15 0.10 0.15 0.11 

Old population 0.09 0.07 0.09 0.07 

Male population 0.52 0.08 0.52 0.07 

Average household size 2.23 0.67 2.26 0.69 

Average vehicle number 1.26 0.42 1.28 0.42 

White population 0.60 0.27 0.62 0.26 

Poverty population 3.24E-04 2.46E-04 3.22E-04 2.40E-04 
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Figure 3.6 Correlation distribution among variables of mid-blocks (n = 437) 
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Figure 3.7 Correlation distribution among variables of intersections (n = 173)  



 

20 

 

 

 

 

 

Figure 3.8 Comparison between the distribution of bike, pedestrian counts, and AADT before and after natural logarithm 
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Following this procedure, we re-estimated the base models, this time including independent variables 

for income and race, to obtain our final crash models. These final models then were used to predict 

pedestrian and bicycle crashes at all intersections and mid-blocks in the city (i.e., to produce our final 

crash indexes). Our rationale for incorporating the income and race variables in the final models is that, 

after controlling for other factors, the base models indicated that poverty and race likely are correlated 

with crashes.  

We then used the crash indexes to construct Lorenz curves and Gini coefficients for both pedestrian and 

bicycle crashes at both intersections and mid-blocks for the entire city. Lorenz curves, which have been 

widely used in the field of economics, graphically represent the cumulative distribution of a resource 

across a population. The GINI coefficient is derived from Lorenz curves and take on a value from 0 to 1. 

The higher the value, the greater the inequality of the distribution. The GINI coefficient often is used to 

compare income inequality. For example, the GINI coefficient of income inequality in Minnesota is 0.45 

while that in California is 0.49, indicating that the income distribution is somewhat more equal in 

Minnesota. Though their use in economics is most common, Gini coefficients also have been used in 

transportation to assess inequities in accessibility to bikeways (Wang and Lindsey, 2017). In this study, 

we used Lorenz curves and GINI coefficients to assess the distributions of pedestrian and bicycle crash 

risk. The Lorenz curve represents the relationship between the cumulative proportion of population and 

the cumulative proportion of crash risk to that population. We used the census block group as the areal 

unit of analysis for this procedure. We also calculated the corresponding GINI coefficients. Higher values 

of the GINI coefficient show greater inequality in the distribution of predicted crashes.   

3.6 USING THE CRASH INDEXES IN PROJECT RANKING   

The Minneapolis DPW uses an index, estimated crash rate, as a safety-related factor in its overall project 

ranking system. The DPW measure is constructed as the total number of all crashes at a location over a 

three-year period divided by the total estimated vehicular, transit, pedestrian, and bicycle traffic. 

Because vehicle-only crashes and vehicular traffic volumes are much higher than pedestrian and bicycle 

crashes and traffic volumes, this measure is weighted towards motorized traffic volumes, with the result 

that, all else equal, locations with the highest rate of vehicular crashes are prioritized. DPW does not 

apply its estimated crash rates directly in ranking. Instead, the crash rates are divided into four 

categories, and locations in each category are assigned points. Specifically, the factor for safety (i.e., the 

crash rate), is assigned up to 12 points in the overall ranking system.  The points for the street average 

crash rate are awarded as follows:  

 >5 crashes per million users per year:    12 points 

 2.5-4.9 crashes per million users per year:   8 points  

 1.0-2.5 crashes per million users per year:   4 points  

 0-0.9 crashes per million users per year:    0 points 

This approach is an effective way to address safety-related concerns in project prioritization.  



 

22 

To address the DPW objective of increasing emphases on pedestrian and bicycle traffic, we explore the 

use of our pedestrian and bicycle crash indexes as a potential complement to the DPW indices. 

Specifically, we use our predicted crashes (for both pedestrians and bicycles at both intersections and 

mid-blocks), as an index, rank all locations from high to low, divide the ranked locations into quartiles, 

and assign points to locations in each quartile for purses of ranking. We then compare the ranking of 

locations (and potential projects) to the ranking based on the DPW crash rate and discuss the 

implications of the differences associated with these distinct, but related measures. 

 



 

23 

CHAPTER 4:  RESULTS AND DISCUSSION 

We present our results in this chapter. We begin with the presentation of our base crash models 

(Section 4.1) that we use to predict crashes and assess the equity of the distribution of crash risk 

between APC50 and other areas in Minneapolis (Section 4.2). We then present our crash models for 

project ranking that include neighborhood income and race (Section 4.3). We apply these models to 

predict crashes at all intersections and mid-blocks in the city. These predicted values form our estimates 

of crash risk that we ultimately use to explore implications for project ranking. We present Lorenz curves 

and Gini coefficients to illustrate the extent to which the distributions of pedestrian and bicycle crashes 

at intersections and mid-blocks across the city depart from perfect equality (Section 4.4). Next, we 

illustrate how our crash indexes can be divided into quartiles, assigned points, and used to complement 

the crash rates used by DPW to rank or prioritize projects (Section 4.5). Specifically, we show how the 

use of new measures might change rankings based solely on the DPW estimated crash rate.  

4.1 BASE CRASH MODELS 

We estimated four base crash models: pedestrian intersection and mid-block models and bicycle 

intersection and mid-block models (Table 4.1). Each of the models includes exposure, built environment, 

traffic facility, the CBD, and socio-demographic variables. With the exception of three traffic facility 

variables, we include the same variables in each model to illustrate how pedestrian and bicycle crashes 

at intersections and mid-blocks are correlated with different variables. The pseudo R2 values for the four 

models range from 0.13 to 0.31. The pedestrian intersection model has the best fit. These values cannot 

be interpreted as the percentage of variation in the dependent variable explained by the independent 

variables as can R2 values used as goodness-of-fit statistics in ordinary least squares regression. The 

larger the value, the better the fit. The pseudo R2 statistics show that the intersection models have 

better fit than the mid-block models. That is, more of the observed variation in the number of crashes is 

correlated with variation in the independent variables in the models. This result is consistent with prior 

expectations because mid-block crashes are rarer events.  

A distinctive feature of these models is that we use vehicular (i.e., AADT), pedestrian, and bicycle counts 

to control for exposure in each model. This specification of the models yields interesting results. Our 

measure of vehicular exposure is significant in three of the models and nearly significant in the fourth 

model (i.e., the bicycle mid-block model; p=0.061; Table 4.1). The correlation in each model is positive, 

indicating that increased numbers of crashes are associated with higher vehicular traffic volumes. The 

significance of the pedestrian and bicycle exposure measures varies across the four models. 

In the pedestrian intersection crash model, the pedestrian and vehicular measures of exposure both are 

correlated positively and significantly with the number of crashes. The bicycle exposure measure is 

inversely (negatively) correlated with the number of pedestrian crashes (Table 4.1).  In the bicycle 

intersection crash model, both the bicycle and vehicular measures of exposure are positively correlated 

with the number of bicycle crashes, but the pedestrian exposure variable is not significantly correlated 

with the number of bike crashes. One hypothesis that could account for the inverse correlation between 

pedestrian crashes and bicycle exposure is that increased numbers of bicycles at intersections increases 
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congestion, which leads to slower traffic and fewer conflicts and crashes between pedestrians and 

vehicles. The lack of significance of pedestrian exposure in the bicycle crash intersection model may be 

because some crashes between bicycles and vehicles occur at places in intersections outside of 

pedestrian crosswalks. 

Table 4.1 Base models for pedestrian and bicycle crashes at intersections and mid-blocks. 

Variables 
Pedestrian models Bike models 

Intersection 
(size = 173) 

Mid-block 
(size = 437) 

Intersection 
(size = 173) 

Mid-block 
(size = 437) 

Exposure 

Ln Pedestrian count 0.67*** 0.49* 0.10 0.12 

Ln Bike count -0.27** -0.05 0.54*** 0.48** 

Ln AADT 1.17*** 0.84** 0.52** 0.43 

Built environment 

Population density 4.91E-03** 0.02** 4.52E-03 0.01 

Job density -3.01E-04 2.50E-04 -9.26E-05 -5.50E-04 

Intersection number 0.01 0.01 -0.02 2.09E-03 

Transit stop 0.54** -0.92 -0.02 -0.27 

Commercial area -0.47 -0.27 -0.11 1.72* 

Office area -0.60 -0.44 -0.07 -0.15 

Industrial area -1.14 0.71 0.56 1.54 

Open space -2.90*** -0.27 -1.29 2.22** 

Land use entropy -0.29 -0.55 1.04 -0.22 

Geographical 
location 

Downtown area -0.24 0.30 -0.34 1.17** 

Traffic facilities 

Sidewalk or bike 
lane 

-0.48 0.80 -0.06 -0.16 

Trail 0.61 - -0.51 - 

Street light 0.14 - 0.34 - 

Traffic signal 0.68** - 0.43 - 

Main road 0.99*** 0.66 -0.58 -1.14 

Secondary road 0.39 0.36 0.47 0.45 

Socioeconomic 

Child population 2.45** 0.08 0.33 -0.09 

Old population -4.39*** 0.33 -1.42 3.21 

Male population -0.90 0.57 -0.75 -0.18 

Average household 
size 

-0.48*** -0.21 -0.24 0.37 

Average vehicle 
numbers 

0.01 -0.39 -0.14 -0.13 

 Constant -12.90*** -12.53*** -7.74*** -10.78*** 

Model fitness 
Pseudo R2 0.31 0.13 0.18 0.13 

Log likelihood -261 -213 -282 -225 

Note: *P>z at 95% level; ** P>z at 99% level; *** P>z at 99.9% level 

In the pedestrian mid-block model, in addition to vehicular exposure, pedestrian exposure is significantly 

correlated with pedestrian crashes. In the bicycle mid-block model, only bicycle exposure is significantly 

correlated with the number of bicycle crashes.  The lack of significance of the pedestrian exposure 
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variable in the bike model (and vice-versa) may be because these modes are unlikely to interact or 

complicate interactions of other modes at mid-blocks.  

We follow Elvik (2013) to interpret the implications of these results for the safety-in-numbers 

hypothesis. For the pedestrian intersection model (Table 4.1), the coefficient of ln-pedestrian count is 

positive but less than 1, which is consistent with the “safety in numbers” hypothesis and findings in 

previous papers (Elvik, 2013, 2009; Elvik and Bjørnskau, 2017; Schneider et al., 2010). At the same time, 

the coefficient on vehicular exposure (i.e., ln-AADT) is greater than one, indicating the presence of a 

“hazard-in-numbers” effect. Elvik (2013) characterizes this type of outcome (i.e., with both safety- and 

hazard-in-numbers in the same dataset) as “partial” as opposed to “complete” safety-in-numbers. All 

the coefficients in the three other models are less than one, which may be interpreted of existence of at 

least partial safety-in-numbers in the models. Elvik (2013, p. 58) cautions: “If pedestrian or cyclist 

volume is highly correlated with motor vehicle volume, there will be no overall safety-in-numbers effect 

with respect to total traffic volume if the sum of the coefficients is greater than 1.” None of correlation 

coefficients among measures of exposure exceeded 0.6, which reflects only moderate correlation Figure 

3.6 and Figure 3.7). Thus, the other three models potentially constitute evidence of complete safety-in-

numbers effects. This evidence appears strongest in the bicycle mid-block model: the coefficients of the 

pedestrian, bicycle, and vehicular exposure measures sum to 1.03 (Table 4.1). The sums of coefficients 

for the exposure variables for the bicycle intersection and pedestrian midblock models, respectively, are 

1.16 and 1.28 (Table 4.1). 

We include nine different built environment variables in each base model (Table 4.1). The pedestrian 

model has the best fit overall. Comparatively few of the built environment variables are significantly 

associated with crashes overall. Pedestrian crashes at intersections are positively and significantly 

associated with population density and transit stops. Pedestrian intersection crashes are negatively and 

significantly associated with the percentage of nearby land in open space. Pedestrian mid-block crashes 

are positively and significantly correlated with population density. Bicycle crashes at intersections are 

not significantly correlated with any of the variables in the model other than bicycle and vehicle 

exposure. Mid-block bicycle crashes, however, appear to be associated with features of the built 

environment. These crashes are positively and significantly correlated with the percentage of nearby 

commercial area and the percentage of nearby land in open space.  

Most of the significant correlations between crashes and elements of the built environment are in the 

hypothesized direction. For example, it is expected that more pedestrian intersection crashes will occur 

in areas with higher population density. More bicycle crashes may occur at mid-blocks near commercial 

areas because of interactions between drivers who are parking and cyclists (e.g., crashes associated with 

drivers opening doors as bicyclists are passing by). The inverse relationship between pedestrian 

intersection crashes and open space may be because pedestrians are more visible to drivers.   Additional 

study is needed to explain the positive correlation between mid-block bicycle crashes and nearby open 

space.  

A surprising outcome given the descriptive results presented in Section 3.1 that show the density of 

crashes is higher in the CBD is that the binary CBD variable is significant in only the bicycle mid-block 
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model. This result may be because, after controlling for exposure and other variables, the underlying 

factors that affect the likelihood of crashes are not substantially different.  

Only two of the traffic facility variables are significant in the four models. Pedestrian intersection crashes 

are significantly and positively associated with the main road variable, which includes arterials and 

collectors, and with the presence of traffic signals.   

Pedestrian intersection crashes are more likely to be associated with nearby socio-demographic 

characteristics than other types of crashes. The percentage of children in nearby areas is positively and 

significantly associated with numbers of crashes while the percentage of elderly in nearby populations is 

negatively and significantly associated with pedestrian intersection crashes. Average household size also 

is inversely associated with both pedestrian intersection crashes.    

4.2 PREDICTED CRASHES IN APC50 TRACTS, THE CBD, AND OTHER AREAS 

We used our four base models to predict numbers of bicycle and pedestrian crashes for all intersections 

and mid-blocks in Minneapolis. We then averaged projected number of crashes for all intersections and 

mid-blocks, respectively in three areas with the city: Metropolitan Council designated APC50s, non-

APC50 areas, and the CBD. We used simple t-tests to determine if the predicted crashes for the different 

areas are significantly different.  

All neighborhoods in the city (i.e., census block groups) have been classified as either APC50 or non-

APC50. The CBD, however, includes both APC50 and non-APC50 areas. As shown in Figure 3.2, the 

density of crashes in the CBD is much higher. We therefore first test APC50 versus non-APC50 areas. 

Then, we remove the subareas that are within the CBD and repeat the test. The rationale for this 

approach is that APC50 and non-APC50 areas within the CBD are more to be similar and, potentially, 

mask differences between the areas.  

Overall, the results show that, on average, predicted pedestrian and bicycle intersection crashes are 

significantly higher in APC50 than in non-APC50 areas. With respect to mid-block crashes, differences 

depend on whether the CBD is included or excluded from the test. When the CBD is included, there are 

no significant differences in crash risk between APC50 and non-APC50 areas. However, when the CBD is 

excluded, both pedestrian and bicycle mid-block crash risk is significantly higher in APC50 areas   

To illustrate the magnitude of differences, we can compare differences in crash indexes. The mean 

APC50 pedestrian and bicycle intersection crash indexes are 31% and 25% higher, respectively, than the 

comparable measures for the non-APC50 areas (Table 4.2). The differences in mean pedestrian and 

bicycle crash indexes for mid-blocks between APC50 and non-APC50 areas are, respectively, 0% and 6% 

(Table 4.3).   

The differences in mean predicted crashes between APC50 and non-APC50 areas become even more 

pronounced when the CBD is not included in the comparisons. The mean APC50 pedestrian and bicycle 

intersection crash indexes are 80% and 38% higher, respectively, than the comparable measures for the 
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non-APC50 areas (Table 4.4). The differences in mean pedestrian and bicycle crash indexes for mid-

blocks between APC50 and non-APC50 areas are, respectively, 35% and 25% (Table 4.5).  

People in Minneapolis who live in lower-income neighborhoods in which more than half the population 

is minority face higher crash risk than those individuals who live in more affluent, majority-white 

neighborhoods, especially at intersections. 

Table 4.2 T-test result between bicycle and pedestrian crash number at intersections (including CBD) 

Intersection ACP50 area mean Non-ACP50 area mean Difference P-value 

Pedestrian 0.4381 0.3349 31% ↑ 0.0018 

Bicycle 0.3164 0.2535 25% ↑ 0.0001 

 

 

 

Table 4.3 T-test results between bicycle and pedestrian crash number in mid-blocks (including CBD) 

Mid-block ACP50 area mean Non-ACP50 area mean Difference P-value 

Pedestrian 0.0484 0.0481 0% - 0.9388 

Bicycle 0.0419 0.0447 6% ↓ 0.1823 

Table 4.4 T-test results between bicycle and pedestrian crash number at intersections (without CBD) 

Intersection ACP50 area mean Non-ACP50 area mean Difference P-value 

Pedestrian 0.4404 0.2453 80% ↑ 0 

Bicycle 0.3159 0.2286 38% ↑ 0 

Table 4.5 T-test results between bicycle and pedestrian crash number in mid-blocks (without CBD) 

Mid-block ACP50 area mean Non-ACP50 area mean Difference P-value 

Pedestrian 0.0460 0.0341 35% ↑ 0 

Bicycle 0.0405 0.0324 25% ↑ 0 
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4.3 CRASH MODELS FOR PROJECT RANKING 

We present in Table 4.6 the crash models we use to develop indexes to inform ranking of street 

improvement projects. As noted in Sections 3.4 and 4.1, our base models did not include income and 

race variables because we estimated them specifically to compare APC50 and non-APC50 areas that are 

defined on the basis of income and race. These two variables are included in the models presented in 

Table 4.6 so that these factors are controlled for in the final estimation process.  

Table 4.6 Crash Models for Project Ranking (with racial and poverty variables) 

Variables 

Pedestrian models Bike models 

Intersection 
(size = 173) 

Mid-blocks 
(size = 437) 

Intersection 
(size = 173) 

Mid-blocks 
(size = 437) 

Exposure 

Ln Pedestrian count 0.76*** 0.52* 0.12 0.11 

Ln Bike count -0.27** -0.05 0.56*** 0.48** 

Ln AADT 1.15*** 0.84** 0.44* 0.43 

Built environment 

Population density 0.01** 0.02** 3.83E-03 0.01 

Job density -3.48E-04* 2.33E-04 -1.32E-04 -5.32E-04 

Intersection number 1.95E-03 0.01 -0.02 2.19E-03 

Transit stop 0.52** -0.86 -0.05 -0.28 

Commercial area -0.60* -0.35 -0.16 1.76* 

Office area -0.46 -0.45 -0.06 -0.14 

Industrial area -1.01 0.68 0.59 1.57 

Open space -3.02*** -0.25 -1.44* 2.24** 

Land use entropy -0.07 -0.49 1.00 -0.26 

Downtown Downtown area -0.36 0.32 -0.45 1.18** 

Traffic facilities 

Sidewalk or bike lane -0.39 0.79 -0.10 -0.16 

Trail 0.63 - -0.43 - 

Street light -0.05 - 0.27 - 

Traffic signal 0.80** - 0.50 - 

Main road 1.22*** 0.77 -0.46 -1.16 

Secondary road 0.30 0.31 0.51* 0.47 

Socioeconomic 

Child population 0.70 -0.82 -0.94 0.34 

Old population -4.77*** 0.34 -1.74 3.23 

Male population -1.33 0.44 -1.41 -0.08 

Average household size -0.71*** -0.28 -0.31 0.40 

Average vehicle numbers 0.69* -0.07 0.03 -0.26 

White population -1.32** -0.49 -1.00 0.34 

Poverty population 220.37 294.29 -601.93 48.94 
 Constant -12.23*** -12.49*** -5.91** -11.04*** 

Model fitness 
Pseudo R2 0.32 0.13 0.19 0.13 

Log likelihood -256 -213 -280 -225 

Note: *P>z at 95% level; ** P>z at 99% level; *** P>z at 99.9% level 
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Overall, these models are quite similar to the base models, although some changes in the significance of 

variables occur. More variables become significant in the pedestrian intersection model:  job density 

(negative), percentage of commercial area (negative), average number of vehicles (positive, and 

percentage white population (negative). The negative correlations between job density and commercial 

areas, respectively, and pedestrian crashes is the opposite of what is expected, but may because 

another variable (i.e., downtown area) controls for the CBD. Evidence of both safety-in-numbers and 

hazard-in-numbers is retained in the pedestrian intersection model. An interesting outcome is that the 

race variable (i.e., percent white population) is significant in only pedestrian intersection model and the 

income variable is not significant in any of the four models (Table 4.6). Pedestrian crashes at 

intersections are negatively and significantly correlated with the percentage of the nearby population 

that is white. The lack of significance of the race and income variables in the other models may be 

associated with the relatively small area (census block group) for which these variables were measured.   

We used our crash models to predict crashes for every intersection (n= 6,639) and mid-block (n= 12,589) 

in Minneapolis. To illustrate the distribution of predicted crashes, we divided values into quartiles and 

prepared heat maps of these quartiles (Figure 4.1). These maps show that predicted crashes are highest 

in the CBD and along arterials throughout the city. A comparison of these maps with actual crash 

locations (Figure 3.1) shows that patterns generally are similar. One value of these maps is that they 

illustrate potential risk at locations where no crashes ever have occurred. This feature of our approach 

enables comparison and ranking of these sites in a systematic way. 

We also constructed quantile-quantile (q-q) plots to compare the distribution of predicted crashes at 

intersections and mid-blocks to their corresponding, actual values (Figure 4.2).   The dashed line 

represents perfect prediction, or correlation, between predicted and actual crashes.  These plots show 

that the predicted and actual crashes have similar density distributions, but differences emerge at the 

upper ends of the distributions. For the intersection plots, the predicted values are higher than actual 

values at sites with the most crashes, while for the mid-block plots, the predicted values appear to be 

closer. Because our purpose in constructing these measures is to rank and prioritize locations, the 

absolute differences in magnitude between predicted and actual are not as important as they might be 

with other applications. 
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Figure 4.1 Crash numbers distribution in Minneapolis: pedestrian and bicycle crash numbers at intersections and 

mid-blocks 

 
(a)                                                                                (b) 

 
(c)                                                                     (d) 
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Figure 4.2 Quantile-Quantile plots for actual crash number v. predicted crash number (the yellow line is linearly 

fitted line) 

4.4 EQUITY OF DSITRIBUTION OF PREDICTED CRASHES 

The statistical tests in Section 4.2 and the heat maps in Figure 4.1 show clearly that crash risk, as 

measured by predicted crashes, is not distributed evenly throughout Minneapolis. To provide additional 

insight into the distribution of crash risk, we plotted Lorenz curves and calculated Gini Coefficients for 

pedestrian and bicycle intersection and mid-block predicted crashes, respectively (Figure 4.3). These 

plots show that (a) the distributions of intersection crash risk depart more from perfect equality than do 

the distributions of mid-block crash risk, and (b) predicted pedestrian crashes are less evenly distributed 

than predicted bicycle crashes. A useful feature of these plots is that they can be used to estimate 

relative shares, or burden, of risk.  For example, 20% of intersections account for approximately 85% of 
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predicted pedestrian intersection crashes. Predicted bicycle crashes are more evenly distributed: 

approximately 40% of intersections account for 85% of predicted crashes. Patterns are similar for mid-

blocks predicted crashes, but differences between pedestrians and bicycle crashes are smaller.   

Figure 4.3 Lorenz curves for predicted pedestrian and bicycle crashes at intersections (a) and mid-blocks (b) 

 
(a) 

 

 
(b) 

 

4.5 CRASH RISK INDEXES FOR PROJECT RANKING 

An important objective of this research is to develop measures of pedestrian and bicycle crash risk and 

equity that can be used to complement or augment criteria being used by the Minneapolis DPW to rank 

street improvement projects. As noted in Section 3.6, the DPW presently uses estimated crash rates as 

indexes to assign points and prioritize safety in its ranking system. Locations with higher crash rates are 

assigned higher point totals, indicating higher priority. Crash rates are grouped into four levels; locations 

with the highest crash rates received 12 points, and, in descending order, the three lower levels receive 

8, 4, or 0 points. This approach is effective in addressing safety but it has limitations. One limitation is 
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that numbers of vehicle-only crashes are substantially greater than numbers of pedestrian and bicycle 

crashes. As a result, the numbers of bicycle and pedestrian crashes do not greatly influence overall 

project rankings. A second limitation is that because the rate is calculated using actual crash numbers, 

and because no crashes have occurred at many sites, many locations have no crash risk. Although the 

DWP addresses this limitation in project selection by selecting locations with maximum values along 

corridors, risk at locations where no crashes have occurred is not considered directly in ranking. We 

illustrate here how our predicted crash numbers can be used as an index to assign points with the DPW 

ranking system.  

Thus far, we have presented separate models and analyses of predicted pedestrian and bicycle 

intersection and mid-block crashes. To simplify incorporation of our results in a ranking example, we 

combine measures from the four models into a single average for purposes of assigning points. 

Specifically, we average our predicted crash values to create a combined pedestrian and bicycle crash 

index for purposes of assigning points. We also illustrate how we can adapt Gini coefficients to inform 

ranking.   

4.5.1 Combined Pedestrian and Bicycle Crash Index 

We calculated our combined pedestrian and bicycle crash index for all mid-blocks in the city. The reason 

for aggregating to mid-blocks is to be consistent with DPW procedures. Figure 4.4 depicts graphically 

how the predicted pedestrian and bicycle crashes at intersections and mid-blocks were averaged to 

produce this index.  In typical, but not all cases, each mid-block is a street segment between two 

intersections. Each intersection and mid-block has two predicted crash numbers. In Figure 4.4, in total 

six predicted crash numbers are associated with the two intersections and single mid-block. In this 

example, we would average these six numbers and use this average as the combined pedestrian and 

bicycle crash index.   

 

Figure 4.4 Construction of combined pedestrian and bicycle crash index for one mid-block and two intersections 

To be consistent with current DPW procedures, we next divided the combined index into quartiles and 

assigned points based on those quartiles, using the same point totals as DPW uses in assigning points for 

safety (Table 4.7).  To illustrate the uneven nature of the distribution of the combined index, we plotted 

the quartiles (Figure 4.5). The plot confirms that a relatively small proportion of all mid-blocks in the city 

have high index values (or, more practically, comparatively high risk).  To assess the validity of our 

combined crash index, we test the correlation between its value and the corresponding average actual 

crash numbers (i.e., the total number of pedestrian and bicycle crashes that occurred in the 

intersections and mid-block included in the corresponding index. The correlation coefficient is 0.47, 

which indicates moderate correlation. 
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Table 4.7 Points awarded for different groups with different averaged predicted crash number 

Averaged predicted crash number Median value Points awarded 

Quantile 1: 0.0 - 0.04 0.03 0 

Quantile 2: 0.04 - 0.06 0.05 4 

Quantile 3: 0.06 - 0.16 0.09 8 

Quantile 4: 0.16 – 9.05 0.39 12 

  

  

Figure 4.5 Distribution of points given by averaged predicted crash number 

4.5.2 Gini Coefficient for Combined Crash Index 

We used Gini Coefficients to demonstrate how pedestrian and bicycle crashes at intersections and mid-

blocks are unevenly distributed throughout the city of Minneapolis (Section 4.4). Analyses of evenness in 

distribution of phenomena of interest – in this case crash indexes – vary depending on the areal unit of 

analysis. Within more fine-grained areal units, different patterns or distributions may emerge. To 

illustrate this phenomenon, and to provide an example of now unevenness in predicted crashes in 

smaller project areas could be used to rank projects, we calculated Gini coefficients for each census 

block group in the city using our combined crash index. This procedure involved determining the 

number of mid-blocks within each census block group and then using the combined crash indices to 

compute the Gini coefficients for each block group. The distribution of Gini coefficients across census 

block groups is shown in Figure 4.6.  
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Table 4.8 presents point totals associated with each quartile, again using overall point totals consistent 

with DPW values for safety. The idea here is that prioritization of projects in small areas with wide 

disparities in crash risk may be in the public interest. 

 

 

 

Figure 4.6 Distribution of points given by crash risk Gini coefficient 

Table 4.8 Points awarded for different groups with different crash risk Gini coefficient 

Averaged predicted crash number Median value Points awarded 

Quantile 1: 0.0 - 0.32 0.24 0 

Quantile 2: 0.32 - 0.45 0.39 4 

Quantile 3: 0.45 - 0.56 0.50 8 

Quantile 4: 0.56 - 0.78 0.61 12 

 

4.5.3 Use of the Combined Crash Indexes in Project Ranking  

In this section, we present two examples of how our indices can be used to revise or augment the DPW 

ranking systems. The first example involves replacing the safety index (i.e., crash rate) used by DPW with 

the two new indices and comparing the two distributions. The second involves adding the two new 

indexes to the safety index and comparing the three-dimensional index to the current safety index. 

Because all measures are related to crashes, we computed correlation coefficients between the DPW 
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safety index and the combined crash index and between the DPW safety index and our census block 

group Gini coefficient index. The two correlation coefficients were, respectively, 0.25 and 0.16, which 

indicate a weak correlation. The implication is that ranking systems based on these different measures 

will result in different project prioritization.  

We follow ranking procedures used by DPW to illustrate the implications of augmenting the safety 

index. DPW uses street segments as the unit of analysis for street improvement prioritization. DPW first 

combines mid-blocks to obtain segments and then assigns scores, or point totals, to reflect the priority 

of individual segments. The DPW has identified 3,515 segments in Minneapolis.  

We assigned point totals associated with our two new indices to the same segments identified by DPW 

and then compared the distributional outcomes, or rankings, to the DPW rankings based on its safety 

index. Specifically, we ranked segments using the two new indexes in place of the DPW safety index 

(Scenario 1) and by adding the two new indexes to the DPW index to create a three-dimensional index 

(Scenario 2). As expected, both Scenarios result different prioritization of segments.  If the new indexes 

are used in place of the DPW safety index, 7.4% of all segments in the city retain their ranks, 57.2% have 

higher ranks, and 35.4% have lower ranks (Table 4.9). If the new indexes are used to create a three-

dimensional index, 7.4% of segments retain their ranking, but 61.8% rise in the ranking, and 30.8% drop 

(Table 4.9). It is clear that use of different measures to address issues of safety (i.e., pedestrian and 

bicycle crash risk, and evenness in the distribution of risk) has the potential to change current rankings 

and prioritization based on safety.  

 

Table 4.9 Comparison between different applications of new indices 

 Not change Ranking increased Ranking decreased 

Safety (Scenario 0) v. Averaged 

predicted crash number + Crash risk 

Gini coefficient (Scenario 1) 

258 (7.4%) 2,011 (57.2%) 1,246 (35.4%) 

Safety (Scenario 0) v. Safety + 

Averaged predicted crash number + 

Crash risk Gini coefficient (Scenario 2) 

258 (7.4%) 2,174 (61.8%) 1,083 (30.8%) 

 

To further illustrate the implications of changing the safety index used in ranking, we produced two 

visualizations, one to illustrate segments that change in rankings (Figure 4.7) and one to illustrate 

segments with the highest point totals (Figure 4.8). Neither visualization shows dramatic change. In 

Figure 4.7, the green segments, which are those that increase in ranking, appear to be predominantly 

local streets, while the red segments (i.e., those that drop in rankings) appear to include many higher 

functional class roads (i.e., arterials and collectors). This result indicates that that the principal change 

associated with both Scenarios 1 and 2 would be higher prioritization of local roads and lower 

prioritization of higher functional class roads.  
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Figure 4.7 Distribution of ranking change in Minneapolis for different scenarios 

 
(a)                                                                                             (b) 

 

Our second visualization (Figure 4.8) depicts segments with the highest scores in the DPW ranking and 

the two new scenarios. The highest score is defined slightly differently for different scenarios because 

Scenarios 1 and 2 involve multidimensional indexes. In the DPW ranking (Scenario 0), the high score, or 

priority point total, is 12. DPW assigned this score to about 33% of all segments scored. For Scenario 1, 

we assigned a point total of 20 as the threshold for the highest score. This threshold results in about 

37% of all the segments ranked in highest point category. We assigned a threshold of 28 in Scenario 2 

(i.e., the three dimensional index); use of this threshold also results in about 37% of all the segments in 

the highest point category. As shown in Figure 4.8, the variation in the spatial distribution of the highest 

ranked segments is relatively small. One noticeable difference is that fewer segments in the northern 

and southeastern peripheries of the city appear to be ranked highly in Scenarios 1 and 2.  Because safety 

rankings account for only a fraction of total points used by DPW in the overall ranking of street 

improvement projects, additional research is required to determine if these new indexes would affect 

overall project prioritization. 
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Figure 4.8 Distribution of segments with high scores in Minneapolis for different scenarios 
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CHAPTER 5:  CONCLUSIONS AND IMPLICATIONS 

We estimated new models of pedestrian and bicycle crash risk at intersections and mid-blocks in 

Minneapolis, used these models to predict crashes at all intersections and mid-blocks in the city, and 

assessed the equity of distribution of crash risk. Our results show that crash risk, especially risk at 

intersections, is higher in neighborhoods that have lower incomes and higher populations of minorities 

than the rest of the city. We also developed new indices of crash risk and illustrated how findings and 

results could be used to inform ranking and prioritization of street improvement projects. Our crash 

models are distinctive relative to other models of crashes and crash risk reported in the literature (Table 

2.1) in that they control simultaneously for vehicular, pedestrian, and bicycle exposure to risk across an 

entire street network in a major U.S. city. Our models show that, in most cases, crashes are correlated 

positively and significantly with exposure. Our crash models also confirm that different factors are 

associated with pedestrian and bicycle crashes and that these factors differ for both modes at 

intersections and mid-blocks. An implication of our results is that interventions and countermeasures to 

address crash risk need to be disaggregated and address simultaneously different risks faced by drivers, 

pedestrians, and bicyclists.  

We assessed the equity of distribution of crash risk by using our crash models to predict pedestrian and 

bicycle crashes for all intersections and mid-blocks in the city and conducting significance tests between 

areas. A useful feature of our models is that by using the same factors to predict crashes for all 

locations, we obtain measures of risk at locations where no crashes historically have occurred. This 

feature helps to address a historical problem in crash analysis, specifically how to compare risk at 

locations where crashes have not occurred. We confirmed that crashes are distributed unevenly. Most 

intersections and mid-blocks have small crash risk, and crash risk is concentrated at a relatively small 

proportion of sites. We tested for significant differences in mean predicted crashes between racially-

concentrated areas of poverty (APC50s) and other areas in the city, both inclusive and exclusive of the 

central business district (CBD). Mean predicted pedestrian and bicycle crashes at intersections were 

substantially higher in APC50s than in non-APC50 areas. These differences increased substantially for 

pedestrian and bicycle crashes when the CBD was excluded from the analyses. These analyses of crash 

risk corroborated findings reported by the city based solely on locations of existing crashes and affirm 

efforts to address inequities in crash risk.   

To illustrate how increased emphases can be placed on pedestrian and bicycle crashes in the 

prioritization of street improvement projects, we used our predicted crash estimates to create a 

combined pedestrian and bicycle crash index for all mid-blocks in the city. We also used our predicted 

crashes to calculate Gini Coefficients at the census block level to obtain another index of unevenness in 

the distribution of crash risk. We then showed how these two indices could be used to complement or 

augment rankings currently used by the city to prioritize street improvement projects that are based on 

crash rates calculated using all types of crashes, not only pedestrian and bicycle crashes. The results, not 

surprisingly, showed that introduction of new criteria for ranking, specifically new measures of 

pedestrian and bicycle crash risk, could change the order of ranking and therefore project prioritization. 



 

40 

Our research has a number of limitations that can be addressed over time through additional analyses 

and as more data are collected. Our crash models are based on a limited number of locations where we 

have both crash records and estimates of exposure for vehicles, pedestrian, and cyclists. Over time, as 

Minneapolis expands its pedestrian and bicycle monitoring program, we can obtain a larger sample and 

re-estimate our crash models. Another limitation of our models is that the time periods for our crash 

data, our estimates of exposure, and our other independent variables are different. Most important, we 

use estimates of peak-hour, weekday, summer and fall exposure in our models, while our crash data 

includes crashes throughout the year, for all days of the week, and for all times of day. Our rationale for 

using these measures of pedestrian and bicycle exposure is that we believe the distributions of peak-

hour and total are similar. Nevertheless, this temporal mismatch means our results must be interpreted 

with caution. Another limitation of our pedestrian mid-block model is that our estimate of pedestrian 

exposure is of pedestrians on the sidewalk, not pedestrians actually in the street or crossing at mid-

block. We believe these two measures also are likely to be correlated, but field studies would be 

required to confirm this hypothesis. More generally, new data collection initiatives could help to address 

each of these limitations. Another approach to addressing these limitations is to conduct scenario and 

simulation analyses based on subsets of our data to assess the stability of these results. These types of 

analyses are beyond the scope of this study. We also believe our models can be strengthened by refining 

the sets of variables within them and by addressing potential issues such as spatial autocorrelation. As 

noted, our models of pedestrian and bicycle crash risk at both intersections and mid-blocks generally 

include the same variables. We retained variables that proved to be insignificant both for theoretical 

reasons and to illustrate differences in factors associated with different types of crashes at different 

locations. Refinement of these models potentially can add to findings.  

With respect to the implications of our research for ranking, our results show that the addition of 

additional criteria to existing safety-related criteria has the potential to change rankings. As we have 

already noted, this finding in and of itself is not surprising. The important insight from this finding is that 

viable methods of increasing emphases on pedestrian and bicycle safety exist and potentially could be 

incorporated into rankings. A limitation of our work is that we did not simulate effects of our new 

indices on overall project ranking. The Minneapolis DPW currently uses an array of factors such as street 

pavement condition in its ranking system; safety and equity are only two of the factors. Our analyses are 

limited to a marginal assessment, primarily because of time limitations for the study. In addition, in our 

illustration of the effects of using our pedestrian and bicycle crash indexes in ranking, we follow DPW 

procedures and use four categories for assignment points. Different methods of assigning points that 

better reflect the distribution of crash risk are available and potentially could be incorporated. Future 

studies also can address this avenue of research. 

Last, our emphases in this report have been on technical methods of assessing crash risk with the goal of 

informing project prioritization. All measures of crash risk are limited and imperfect and therefore entail 

uncertainty. These facts mean that measures of crash risk incorporated in project ranking systems 

introduce error and uncertainty that, potentially, can confound rankings. The choice of which factors to 

include in project ranking is a professional, subjective choice, informed both by technical analyses and 

community values. In response to feedback from community outreach, Minneapolis is seeking strategies 
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to make its rankings place additional emphases on safety and equity, among other factors. One 

approach to assessing the desirability of measures like those developed in this research could involve 

collaboration with community residents to obtain additional, specific feedback on measures and 

procedures used for ranking.  
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