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Finally, I am grateful to my family, and in particular my wife Lin Fickling; for her

support as I pursued my academic goals, but more importantly for always being there and

for all our wonderful times together. It is with great joy I look forward to the next chapter

in our life together.

i



Dedication

To Lin, Alma, and Oliver.

ii



Contents

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Multivariate regression models . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Vector autoregressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Metropolis–Hastings . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Gibbs samplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.3 Variance estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.4 Starting and stopping . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Consistent maximum likelihood estimation using subsets 18

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Consistency using subsets of the full data . . . . . . . . . . . . . . . . . . . 22

2.3 Application to multivariate mixed models . . . . . . . . . . . . . . . . . . . 27

2.3.1 Longitudinal linear mixed model . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Logit–normal MGLMM . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Maximum likelihood estimation of covariance matrices with separable cor-

relation 40

iii



Contents iv

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Maximum likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Convergence diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Data example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Convergence complexity analysis of a collapsed Gibbs sampler for Bayesian

vector autoregressions 58

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 A collapsed Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Geometric ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Asymptotic stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

References 80

A Consistent maximum likelihood estimation using subsets 88

A.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.1.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.1.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.2.1 Longitudinal linear mixed model . . . . . . . . . . . . . . . . . . . . 94

A.2.2 Logit–normal MGLMM . . . . . . . . . . . . . . . . . . . . . . . . . 98

B Maximum likelihood estimation of covariance matrices with separable cor-

relation 112

B.1 A model for sample means . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B.2 Additional simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

B.2.1 Convergence diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . 114



Contents v

C Convergence complexity analysis of a collapsed Gibbs sampler for Bayesian

vector autoregressions 116

C.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



List of Tables

3.1 Estimation Error and Test Size . . . . . . . . . . . . . . . . . . . . . . . . . 52

B.1 Estimation Error and Test Size II . . . . . . . . . . . . . . . . . . . . . . . . 114

B.2 Convergence proportions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

vi



List of Figures

1.1 Output from Metropolis–Hastings example . . . . . . . . . . . . . . . . . . 11

1.2 Output from Gibbs example . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Estimated covariances for dissolved oxygen data . . . . . . . . . . . . . . . 56

3.2 Estimated variances for dissolved oxygen data . . . . . . . . . . . . . . . . . 56

vii



Chapter 1

Introduction

Classical multivariate statistics focuses on vector-valued data where every element in a

vector is a measurement from the same object or individual [2]. Here we will use a more

encompassing definition and call a statistical model multivariate if it is a model for the joint

distribution of a collection of observations; the observations can but need not be from the

same object or individual, and the distribution of interest can be conditional on some other

set of variables. The unifying theme for the settings we consider is that there is dependence

between observations that motivates joint modeling. All models are classical in the sense

that observations are real-valued and the interest is in estimating and making inference

about an unknown parameter living in a finite-dimensional Euclidean space. We start with

an introduction to the multivariate regression models studied in Chapters 2 and 3.

1.1 Multivariate regression models

A multivariate regression is a model for the conditional distribution of a collection of re-

sponse variables (responses) Y given a collection of predictor variables (predictors) X. We

will work with two classes of such models: multivariate generalized linear mixed models

(MGLMMs), which serve as motivating examples in Chapter 2, and multivariate linear

regression models with separable correlation which are the focus of Chapter 3.

In Chapter 2 we develop a general theory for consistency of maximum likelihood estima-

tors (MLEs) that does not require the observations to be independent or from a stationary

1



1.1. Multivariate regression models 2

stochastic process, which is otherwise common in the literature. The theory is applied to

two MGLMMs, establishing consistency of MLEs. In an MGLMM, all responses are condi-

tionally independent given random effects and predictors. The responses can be of different

types, some discrete and some continuous, for example, and dependence between them is

modeled using the random effects. Thus, MGLMMs handle multivariate, mixed-type re-

sponse regressions without assuming that responses of different types are independent or

equally well modeled separately. More formally, given X = [x1, . . . , xn]T ∈ Rn×p, a de-

sign matrix Z ∈ Rn×r, and U ∈ Rr, a multivariate normal vector of random effects with

mean zero and covariance matrix Σ, the components (elements) in the vector of responses

Y = (Y1, . . . , Yn) are conditionally independent with exponential family densities

fβ,i(yi | u, x) = ki(yi, τi) exp

(
yiϑi(li)− ci(ϑi(li))

τi

)
,

where for β ∈ Rp and i = 1, . . . , n, li = xTi β + zTi u, ϑi is the natural parameter (as a

function of li), ci the cumulant function, τi a dispersion parameter, and ki(yi, τi) ensures

fβ,i(yi | u, x) integrates to one. We will often assume canonical links, which in our notation

means that ϑi is the identity function, for every i. Letting φΣ denote the density for the

multivariate normal distribution with mean 0 and covariance matrix Σ, the distribution for

Y | X has density

fθ(y | x) =

∫
Rr

n∏
i=1

fβ,i(yi | u, x)φΣ(u) du.

Without further restrictions, the (p + r(r + 1)/2)-dimensional parameter in this model is

θ = (β,Σ). More generally, we assume that θ ∈ Θ ⊆ Rd for some d ≤ p+ r(r+ 1)/2 and let

β = β(θ) and Σ = Σ(θ). The dispersion parameters τ1, . . . , τn are typically treated as known

and hence not included in θ (but see the LMM example in Chapter 2 for an exception).

When ki, τi, and ci are the same for all i, the MGLMM reduces to a GLMM where all

components of the response vector are of the same type. An important special case of the

GLMM is the LMM. In an LMM fβ,i(yi | u, x) is normal for every i, implying that Y | X,U
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is multivariate normal with diagonal covariance matrix diag(τ1, . . . , τn). Thus, Y | X is

multivariate normal as well, with mean Xβ and covariance matrix diag(τ1, . . . , τn)+ZΣZT.

Unless all responses are normal, i.e. the MGLMM is really a LMM, the r-dimensional

integral in the expression for fθ(y | x) typically does not admit a closed form expression.

When it does not, many things are more complicated. Likelihood-based estimation and

inference is often either time-consuming or inexact, depending on if the integral is evalu-

ated with numerical accuracy or crudely approximated, and theoretical properties of the

distribution of Y | X are often not well understood. In particular, in contrast to an LMM,

the effects of the random effects design (Z and Σ) on the distribution of Y | X can be

difficult to fully appreciate. Among other things, it is often difficult to assess what happens

as n tends to infinity. Recall, n is here the length of the vector of all responses and not

the number of independent observations, so it is not clear that classical asymptotics apply.

This is one reason MGLMMs serve as motivating examples for the theory in Chapter 2.

The multivariate linear regression in Chapter 3 can be formulated as a special case of the

LMM, and hence of the MGLMM. However, doing so leads to an awkward parameterization

and it is more natural to directly define the distribution of Y | X without using random

effects and without stacking all responses in one long vector. Thus, in Chapter 3 we instead

assume that there are n independent q−dimensional multivariate normal vectors Y1, . . . , Yn

with means E(Yi | X) = BTxi and common covariance matrix cov(Yi | X) = Σ, where B ∈

Rp×q and, as before, X = [x1, . . . , xn]T ∈ Rn×p. The parameterization in Chapter 3 further

assumes that the covariance matrix factors as Σ = W (V ⊗U)W , where ⊗ is the Kronecker

product, W is a diagonal matrix with positive entries, and U and V are correlation matrices

of smaller dimension than Σ. This parameterization, also known as separable correlation, is

often considered in the spatiotemporal literature. Our main contribution is a new algorithm

for maximum likelihood estimation of covariance matrices with separable correlation. We

also discuss some convenient properties of separable correlation that have been largely

ignored in the literature.

The next section introduces the model considered in Chapter 4.
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1.2 Vector autoregressions

For t = 1, . . . , n, let xt ∈ Rp be a vector of non-stochastic predictors and Yt ∈ Rr be a

stochastic process satisfying

Yt =

q∑
i=1

AT
i Yt−i + BTxt + εt,

where ε1, . . . , εn are i.i.d. N (0,Σ), Ai ∈ Rr×r (i = 1, . . . , q), and B ∈ Rp×r. We say that Yt is

a vector autoregression of order q, or a VAR(q). Upon defining A = [AT
1 , . . . ,AT

q ]T ∈ Rqr×r

and zt = [yTt−1, . . . , y
T
t−q]

T ∈ Rqr (t = 1, . . . , n) the defining equation for the VAR(q) can

be written more compactly as Yt = ATzt + BTxt + εt. If A = 0 then the VAR reduces to

a model for n independent observations of an r-dimensional response in the multivariate

linear regression model introduced earlier. More generally, the VAR can be thought of as

a regression model where the predictors include not only exogenous variables but also past

values of the response. This somewhat loose statement can be formalized by comparing

the likelihood functions of the two models. Indeed, assuming that the starting point of the

process, z1, is non-stochastic, the likelihood for Y = [y1, . . . , yn]T ∈ Rn×r from the VAR(q)

is

f(Y | A,B,Σ) ∝ |Σ|−n/2 exp

(
−1

2

n∑
i=1

[
Yt −ATzt − BTxt

]T
Σ−1

[
Yt −ATzt − BTxt

])
.

This is the same likelihood as that for n observations in the classical multivariate linear

regression with design matrix [Z,X] and coefficient matrix [AT,BT]T. It follows that once

the data is observed and treated as fixed, much of the analysis in a VAR can be carried

over without change to the multivariate linear regression model, and vice versa. However,

doing so is not always appropriate, as the work in Chapter 4 illustrates. There, we consider

a Bayesian version of the VAR that incorporates prior information on the parameters A,

B, and Σ . The prior distributions are motivated by applications to macroeconomic and

financial time series and are different from common choices for the multivariate linear re-

gression model. The main contributions in Chapter 4 are a new Markov chain Monte Carlo
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(MCMC) algorithm for Bayesian VARs with predictors and theoretical guarantees for that

algorithm. We prove that the Markov chain generated by our algorithm converges quickly

to its stationary distribution and that the algorithm can be expected to work well in both

small and large samples. The next section provides a relatively non-technical introduction

to MCMC.

1.3 Markov chain Monte Carlo

Many statistical methods at some stage require sampling from a probability distribution.

In ideal cases, one can generate independent and identically distributed (i.i.d.) observations

from the desired distribution. In many practically relevant models, however, this is either

not possible or prohibitively time consuming. Fortunately, in a wide range of settings,

Markov chain Monte Carlo (MCMC) can be used in place of i.i.d. sampling [cf. 8, 61].

Because of this, after the seminal paper by Gelfand and Smith [22], MCMC has become

integral to Bayesian analysis where such complicated distributions often arise, but is also

important in some frequentist settings [24].

We illustrate with one of the most common purposes of generating (pseudo-)random

numbers. If h is some real-valued function and X is a random variable, then we want to

calculate an expectation in the form

µh := E(h(X)) <∞.

For different choices of h, many problems both in statistics and other disciplines can be

written in this way. If µh is complicated to calculate analytically or by numerical integration,

an alternative is to generate X1, . . . , Xm, independent with the same distribution as X, and

approximate µh by

µ̂h :=
1

m

m∑
i=1

h(Xi).

Here, X can be a random vector or something more general, but the main points of our
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discussion are equally well grasped thinking of X as a random number. Several useful

properties of µ̂h are immediate from classical statistical results: (i) µ̂h is unbiased, (ii) the

law of large numbers (LLN) says that µ̂h is consistent as m tends to infinity, and (iii) if

E(h(X)2) < ∞, the central limit theorem (CLT) says that µ̂h is approximately normally

distributed for large m. The LLN is important because it says, loosely speaking, that we

can improve the estimate by simulating longer, and the the CLT is important because it

lets us quantify the uncertainty in the estimate. In particular, var(µ̂h) can be estimated

by s2
h/m, where s2

h = m−1
∑m

i=1(h(Xi) − µ̂h)2, and approximate confidence intervals for

µh can be created by appealing to the CLT. The only difference between this and classical

statistics is that the variables are generated in a computer. Methods that use the generation

of random numbers are called Monte Carlo (MC) methods and µ̂n is called a MC estimator

of µh. MC methods with i.i.d. variables are sometimes called ordinary MC or i.i.d. MC.

MCMC is similar to ordinary MC but with the key difference that the generated variables

X1, . . . , Xm need be neither independent, nor have the same distributions. Rather, as

the name suggests, they are generated as a Markov chain. Since i.i.d. variables form a

Markov chain, ordinary MC is a special case of MCMC. The power of MCMC, however,

is that the useful properties of µ̂h discussed above (LLN and CLT) continue to hold for

much more general chains. Such chains can be constructed in many cases where i.i.d.

sampling is infeasible and, hence, MCMC is more widely applicable than ordinary MC. For

an introduction to Markov chain theory see [54, 63].

We say that X1, X2, . . . is a Markov chain if the conditional distribution of Xi given

X1, . . . , Xi−1, i ≥ 2, depends only on Xi−1; this is known as the Markov property. It follows

from the Markov property that a Markov chain is characterized by its initial distribution

(the distribution of X1), and its transition kernel P defined by

P (x,A) = P(Xi ∈ A | Xi−1 = x),

for any subset A of the state space, the set in which the Markov chain takes its values. If the

initial distribution and kernel is such that the distribution of X2 is the same as that of X1
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we say that the initial distribution is invariant for the kernel. More generally, a distribution

F is invariant for the transition kernel P if Xi ∼ F implies Xi+1 ∼ F , i ≥ 1. Using this

definition it can be shown that if the initial distribution is invariant for P , then in fact

every Xi, i ≥ 1 has the same distribution. Such Markov chains are called stationary, and

they are indeed stationary in the usual sense for stochastic processes.

Let FX denote the distribution of X and suppose we generate a Markov chain with

initial distribution FX and a kernel P for which FX is invariant. Then by the preceding

discussion X1, . . . , Xm are possibly dependent but identically distributed random variables

with the same distribution as X. Hence, µ̂h is an unbiased estimator of µh. Moreover, it

can be shown that under additional conditions µ̂h is consistent and asymptotically normal

with variance κ2
h/m, where, with σ2

h = var(h(X)),

κ2
h = σ2

h + 2
∞∑
i=1

cov(h(X1), h(X1+i)).

Recall, however, that MCMC is often used precisely because sampling from FX is infeasible.

Hence, generating the stationary chain is also infeasible as it requires X1 ∼ FX . Fortunately,

it can be shown that if µ̂h is consistent and satisfies a CLT when the initial distribution

is FX , then the same is true for any other initial distribution. This tells us that if the

simulation is long enough (m is large enough), then the starting value X1, whether selected

at random or set to some fixed number, is unimportant. In practice this argument is

somewhat problematic because it is hard to know what long enough means, but let us

ignore that for now—we will return to the issue of starting values later. Next we outline

how to, given a target distribution, generate Markov chains for which that distribution is

invariant. The focus is on two of the most common algorithms, the Metropolis–Hastings

(MH) algorithm and the Gibbs sampler.

1.3.1 Metropolis–Hastings

Suppose that we want to estimate µh and know the target density only up to a normalizing

constant, or up to scaling. That is, we know that X has a distribution FX with density fX
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satisfying

fX(x) = cp(x)

for some c > 0 and function p. Of course, the fact that densities must integrate to one tells

us that c = 1/
∫
p(x) dx, but if p is complicated to integrate, c is not known in any practical

sense. Thus, even though p can be evaluated we cannot compute c or easily sample from

FX . Settings like this are exceedingly common in Bayesian statistics.

Given an unnormalized density like p, the MH algorithm (Algorithm 1.1) constructs a

Markov chain with a transition kernel for which FX is invariant. That is, the MH algorithm

lets us sample approximately from FX even though we only know the corresponding density

fX up to a normalizing constant. The algorithm transitions between states as follows: given

that the chain is at state Xi = xi, a move is proposed to a new state y drawn from some

distribution with density q(y | xi). Then, the move is either accepted, which happens with

a probability that depends on p(y), p(xi), q(y | xi), and q(xi | y), or rejected. If the move

is rejected, the chain stays in the same place for one iteration and then another move is

proposed. Since the proposal distribution and the acceptance probability depend on the

current state but no previous states the algorithm indeed generates a Markov chain.

To implement the MH algorithm one needs to select a proposal distribution (density)

q(· | ·). Any proposal distribution having support containing that of p will lead to the chain

having the right invariant distribution. However, the convergence properties of the chain

are in general affected by the choice. A discussion of standard strategies for selecting the

proposal distribution is provided by Robert and Casella [61].

The following example illustrates how the MH algorithm can be used in Bayesian statis-

tics. The example is chosen to be simple enough that no MCMC is actually required, which

makes the results easy to verify using numerical integration or i.i.d. sampling, but also

complicated enough to convey some key ideas.

Example 1.3.1 (Bayesian estimation of normal mean and variance with conjugate priors).

Suppose we have 30 independent observations y1, . . . , y30 drawn from a normal distribution
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Algorithm 1.1 Metropolis–Hastings

1: Input: Starting value X1 and length of chain m
2: for i = 1, . . . ,m do
3: Given Xi = xi, draw proposal y from a distribution with density q(y | xi).
4: Calculate the Hastings ratio

r(xi, y) =
p(y)q(xi | y)

p(xi)q(y | xi)
.

5: Randomly pick the next state Xi+1 by accepting or rejecting proposal y:

Xi+1 =

{
y w. prob. α(xi, y) = min[1, r(xi, y)]

xi w. prob. 1− α(xi, y)

6: end for

with the unknown mean µ? = 1 and variance 1/τ? = 1, where the stars are used to

indicate unknown population values. We wish to incorporate prior information about the

parameters and specify the prior distribution in two stages by letting µ | τ ∼ N (a, τ−1b−1)

and τ ∼ G(c, d), where G(c, d) denotes the gamma distribution with mean c/d. That is,

f(µ | τ) = (2π)−1/2(bτ)1/2e−bτ(µ−a)2/2 and f(τ) =
dc

Γ(c)
τ c−1e−τdI(τ > 0),

for hyperparameters a ∈ R, b > 0, c > 0, and d > 0, where Γ(·) denotes the gamma function.

In an application the hyperparameters would be chosen to reflect the prior beliefs about µ

and τ . For concreteness, we here somewhat arbitrarily set them to a = 0, b = c = d = 1.

In Bayesian statistics the interest is in the posterior density f(µ, τ | y). By standard

rules for probability densities, the posterior density satisfies

f(µ, τ | y) =
f(y | µ, τ)f(µ | τ)f(τ)

f(y)

∝ f(y | µ, τ)f(µ | τ)f(τ)

where ∝ means equality holds up to scaling by a quantity not depending on µ or τ . Multi-
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plying the prior densities by the likelihood

f(y | µ, τ) = (2π)−n/2τn/2 exp

(
−τ

2

n∑
i=1

(yi − µ)2

)

we find that the posterior satisfies

f(µ, τ | y) ∝ τn/2 exp

(
−τ

2

n∑
i=1

(yi − µ)2 − τµ2/2− τ

)
. (1.1)

Let us define θ = (µ, τ) and denote the expression in (1.1) by p(θ; y). The density from

which we want to sample is f(θ | y) = p(θ; y)/
∫
p(θ; y) dθ. In this example the state space

of the Markov chain to be generated is the parameter set of the model for the data y—this

is typical for Bayesian statistics. Accordingly, for the remainder of this example we let

Θ = R× (0,∞) denote the state space, θi = (µi, τi) the ith state of the Markov chain, and

ξ the proposed value with conditional density q(ξ | θi) in the MH algorithm, so as to not

confuse it with the observed data.

We are ready to define a MH algorithm for exploring the distribution with density

f(θ | y) on Θ, which as mentioned amounts to selecting a proposal distribution. We take

the proposal distribution to be multivariate normal and centered at the current state. More

precisely, ξ | θi ∼ N (θi, 0.25I2). The covariance matrix is selected with some experimen-

tation to result in an acceptance rate (the proportion of accepted proposals) of roughly

0.25 (see Rosenthal [66] for a motivation of this number). The starting value is set to

θ0 = (µ0, τ0) = (ȳ, 1/s2
y), where ȳ is the sample average and s2

y the biased sample vari-

ance; these are the MLEs of the parameters µ and τ . The hope is that the MLEs are in a

high-density region of the posterior.

Figure 1.1 shows the output from running the MH algorithm for 500 iterations. The

short, flat segments where the chain stays in the same place for a few iterations correspond to

rejected proposals. The sample paths can be used to get an MCMC estimate of
∫
h(θ)f(θ) dθ

for any function h for which the integral exists. If we are, for example, interested in the

Bayes estimate of µ, E(µ | y), then we can take h(θ) = h((µ, τ)) = µ and estimate
∫
h(θ)f(θ |
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Figure 1.1: Output from Metropolis–Hastings example

Horizontal dashed lines indicate sample averages of the plotted sample paths.

y) dθ =
∫
µf(µ | y) dµ by

∑500
i=1 h(θi)/500 =

∑500
i=1 µi/500. This sample average, which is

indicated by a dashed line in 1.1, is 0.73. This can be compared to the MLE ȳ = 0.77, and

the true mean µ? = 1. We will return to this example below when implementing a Gibbs

sampler.

1.3.2 Gibbs samplers

Suppose that the random variable X which distribution FX we would like to sample from

is multivariate, i.e. a random vector. We can then split X into sub-vectors, say X =

(X(1), . . . , X(s)); each X(i) can be univariate or multivariate. We will call X(1), . . . , X(s)

the components of X. To implement a Gibbs sampler, we need to be able to sample from the

conditional distribution of any one component given the rest, also known as the component’s

full conditional distribution. The Gibbs sampler proceeds by updating the states of the

components iteratively, drawing new states from the full conditional distributions as detailed

in Algorithm 1.2.

To implement a Gibbs sampler one has to select how to partition the vector X into

components. In other words, one has to select which elements of the Markov chain to
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update together. As an example, if we have a three-dimensional target distribution, then

Xi = (Xi,1, Xi,2, Xi,3) can be updated in four ways: (i) each element is updated separately,

(ii) Xi,1 and Xi,2 are updated together (and Xi,3 is updated by itself), (iii) Xi,1 and Xi,3 are

updated together, or (iv) Xi,2 and Xi,3 are updated together. Which elements are updated

together can affect the convergence properties of the chain and hence it can be worthwhile

to consider different configurations. There is no general rule to guide the selection, though

there is some evidence that strongly correlated components should be updated together.

We next illustrate how a Gibbs sampler can be implemented in practice.

Algorithm 1.2 Gibbs sampler

1: Input: Starting value X1 = x1 and length of chain m
2: for i = 1, . . . ,m do
3: for j = 1, . . . , s do

4: Draw x
(j)
i+1 from the distribution of

X(j) |
(
X(1) = x

(1)
i+1, . . . , X

(j−1) = x
(j−1)
i+1 , X

(j+1)
i = x

(j+1)
i , . . . , X(s) = x

(s)
i

)
5: end for
6: end for

Example 1.3.1 (continued). Recall, the posterior distribution that we are considering has

a density that is known up to scaling:

f(µ, τ | y) ∝ τn/2 exp

(
−τ

2

n∑
i=1

(yi − µ)2 − τµ2/2− τ

)
.

Since the chain is bivariate, our only choice is to update µ and τ separately if we want to

implement a Gibbs sampler—there is no other way to split the chain into components. To

find the necessary full conditional distributions, notice that for a fixed τ the exponent of

f(µ, τ | y) is a quadratic function in µ, and for for a fixed µ the exponent is linear in τ .

Using this, one can show that

µ | τ, y ∼ N

(
(n+ 1)−1

n∑
i=1

yi, τ
−1(n+ 1)−1

)
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Figure 1.2: Output from Gibbs example

Horizontal dashed lines indicate sample averages of the plotted sample paths.

and

τ | µ, y ∼ G(n/2 + 1,

n∑
i=1

(yi − µ)2/2 + µ2/2 + 1).

We implement a Gibbs sampler that first updates τ and then µ. There is no specific

reason for this choice—updating µ first works equally well. As with the MH algorithm,

the starting value is θ0 = (ȳ, 1/s2
y). Notice, however, that with the Gibbs sampler only the

starting value for µ matters since τ is updated first, and the distribution from which τ2 is

drawn does not depend on τ1. Figure 1.2 shows the output from running the Gibbs sampler

for 500 iterations. The sample paths there depicted can be used in the same way as those of

the MH algorithm. Of course, estimates based on the output in Figure 1.2 will be different

from those based on the output in Figure 1.1. In this particular case, one might prefer

estimates based on the Gibbs sampler since, for both µ and τ , the sample path depicted

in Figure 1.2 looks more like that of uncorrelated variables than that in Figure 1.1. This

indicates the variance of estimators based on the Gibbs chain may be lower than that of

those based on the MH chain in this example. The Gibbs chain is also exploring a larger

part of the state space than the MH chain in the first 500 iterations.
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1.3.3 Variance estimation

We have said that MCMC often leads to a consistent and asymptotically normal µ̂h, and

we have shown how to construct Markov chains that have the desired invariant distribution.

However, not all chains with the right invariant distribution give a consistent and asymptot-

ically normal µ̂h. Conditions that ensure these properties are fairly technical and in general

have to be verified on a case-by-case basis [40]. For the remainder of this introduction we

assume that µ̂h is both consistent and asymptotically normal. That is, we assume that

approximately for large m,

µ̂h ∼ N (µh, κ
2
h/m),

where as before

κ2
h = σ2

h + 2
∞∑
i=1

cov(h(X1), h(X1+i)). (1.2)

Under i.i.d. sampling, the infinite sum of autocovariances in (1.2) vanishes and κ2
h =

σ2
h can be estimated by the sample variance s2

h. In contrast, for more general MCMC

algorithms the infinite sum typically does not vanish and κ2
h is more challenging to estimate

than σ2
h. It is also important to notice that κ2

h and σ2
h quantify different things: σ2

h is a

characteristic of the invariant distribution only but κ2
h depends on the joint distribution of

all the variables in the chain. In particular, two stationary Markov chains with the same

invariant distribution but different autocovariances will lead to the same σ2
h but different

κ2
h. Since κ2

h directly determines the uncertainty in the estimate µ̂h, it is desirable to, all

else equal, pick an algorithm that leads to small (or negative) autocovariances. When we

return to our example below, we will see that two perfectly reasonable MCMC algorithms

can, for the same problem, generate chains that have the same invariant distribution but

substantially different autocovariances.

In most realistic settings κ2
h is unknown and must be estimated using the Markov chain

if we hope to say something about the uncertainty in µ̂h. There are several methods for
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estimating κ2
h that use the same chain used to estimate µh [20, 23, 75]. Here, we will give a

short introduction to the method of batch means which gives an estimator that is easy and

fast to compute. Suppose that b is a divisor of m and define, for k = 1, . . . ,mb = m/b, the

batch mean

µ̂h,k = b−1
b∑
i=1

h(Xb(k−1)+i).

Thus, µ̂h,1 is the MCMC estimator of µh based on only the first b variables in the chain,

µ̂h,2 is that based on only the next b variables, and so on. The batch means estimator of

κ2
h is

κ̂2
h =

√
b

mb

mb∑
i=1

(µ̂h,i − µ̂h)2.

When deciding on the number of batches there is a trade-off between estimating the mean

in each batch precisely, which requires a large b, and estimating the variability among

batches precisely, which requires a large mb. Geyer [25] suggests that 20 – 30 batches is

enough for most applications. Another common choice is to pick the number of batches

to be approximately mb =
√
m. After computing κ̂2

h, confidence intervals for µh, and

corresponding tests, can be computed using a t-distribution; for α ∈ (0, 1), a 100(1 − α)%

confidence interval for µh is given by

µ̂h ± tb−1,1−α/2

√
κ̂2
h/m,

where tb−1,1−α/2 is the (1−α/2)th quantile of the t-distribution with b−1 degrees of freedom.

In practice, we are rarely interested in estimating just one characteristic of the target

distribution, so h is usually multivariate, or vector-valued. For such settings a multivariate

analysis that takes into account the dependence between the components of the multivariate

estimator m−1
∑m

i=1 h(Xi) is appropriate. Methods for multivariate output analysis are

available [74].

Example 1.3.1 (continued). We have previously in this example generated two Markov

chains that have the desired invariant distribution and either could be used to estimate µh

for some h of interest. Let us continue to focus on the choice h(θ) = h((µ, τ)) = µ, indicating
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the quantity of interest is the posterior mean E(µ | y). For both the MH algorithm and

the Gibbs sampler, we estimate the posterior mean by the sample mean of the generated

µ-chain, i.e. the first component of the bivariate chain. The 500 iterations of the chains

displayed in Figures 1.1 and 1.2 are not enough to get reliable estimates µh or κ2
h. After

running the chains for 50,000 iterations, the estimate of µh based on the MH chain is 0.743

and the estimate based on the Gibbs chain is 0.742. Moreover, if we calculate the sample

variance of each chain, s2
h, they are both approximately 0.024. However, the batch means

estimate of κ2
h is 0.160 for the MH chain and 0.021 for the Gibbs chain. This illustrates

what was mentioned before, namely that µh and σ2
h are the same for both chains, but κ2

h is

different since the autocovariances in the chains are different. The estimates of κ2
h indicate

that in this particular example, the infinite sum in (1.2) is larger for the MH chain than

the Gibbs sampler. Indeed, we noted earlier that the sample paths in Figure 1.2 look more

like those of uncorrelated variables than those in Figure 1.1.

1.3.4 Starting and stopping

Whether one is using a MH algorithm, a Gibbs sampler, or something else, deciding where

to start the algorithm and when to stop sampling is usually up to the user. It is generally a

good idea to pick a starting point in a high-density region of the target distribution. If we

could start the chain with the invariant distribution we would likely get a starting value in

such a region, and hence, intuition suggests, those points are good to start at. Of course, in

many problems we do not have a good guess for a high-density region and then this method

is not applicable. Another common practice is to discard a number of the early observations

in the chain, say X1, . . . , XB for some B < m, and instead estimate µh using only the last

m − B observations. This practice is known as burn-in and the idea is that the burn-in

should bring the chain closer to its stationary distribution, approximating a situation where

the initial value is drawn from the invariant distribution. This intuitive idea is not so easily

motivated formally, however, and many authorities consider burn-in questionable [25].

Having selected where to start, one also needs to decide when to stop. In general, a

longer chain is better and it is hence uncontroversial to say that m should be as large as
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possible. Even so, it is in many settings desirable to have an idea about when m is large

enough, in some quantifiable sense. There are ways to measure the distance between the

distribution of the chain and the target distribution that can in some cases be used to

determine an appropriate m before starting the simulation. This subject is rather technical

and we refer the reader to Jones and Hobert [42] for an introduction. One may also construct

stopping rules that use, for example, an estimate of var(µ̂h) to decide when to terminate a

simulation in real time [41, 74]. For example, one may calculate the width of the confidence

interval for µh, i.e. td−1,1−α/2

√
κ̂2
h/m, and terminate when it falls below some pre-specified

threshold. We illustrate this idea in the context of the running example.

Example 1.3.1 (continued). We have considered
∑m

i=1 µi/m as an estimator for the pos-

terior mean E(µ | y). In Figures 1.1 and 1.2 we used m = 500. When discussing variance

estimation we instead used m = 50000. To see how to employ a stopping rule to decide

on an appropriate m based on the batch means estimate of var(µ̂h), suppose we are con-

tent with a width of 0.05 for a 95 % confidence interval for E(µ | y). To avoid stopping

the simulation too early due to poor estimates of var(µ̂h) for small m, let us implement a

stopping rule as follows: for every m = 10000, 11000, 12000, . . . calculate a 95% confidence

interval for E(µ | y); if its width is less than 0.05, simulate for another 1000 iterations and

try again, and otherwise stop the simulation. Implementing this in our example, we find

that the MH algorithm stops after m = 142000 iterations while the Gibbs sampler stops

after m = 134000 iterations.



Chapter 2

Consistent maximum likelihood
estimation using subsets

2.1 Introduction

Mixed models are frequently used in applications and have been the subject of numerous

articles and books [15, 35, 53]. Yet, it was unknown until recently whether MLEs are consis-

tent even in some simple generalized linear mixed models (GLMMs) [37]. What complicates

proving consistency in some mixed models is the dependence among response variables in-

duced by certain random effects designs. Of course, not all types of dependence between

responses are problematic – there is a vast literature on maximum likelihood estimation

with dependent observations [5, 14, 30, 32, 68, 76, 79]. But, as we will discuss in more

detail below, for some commonly used random effects designs such as those with crossed

random effects, existing conditions for consistency of MLEs are hard to verify [37]. In a few

GLMMs with crossed random effects, consistency has been proved using a novel argument

that relates the likelihood for the full data to that of a subset consisting of independent and

identically distributed (i.i.d.) random variables, “the subset argument” [36].

Fundamentally, however, the issue is not unique to GLMMs or even mixed models; any

other parametric model appropriate for the same settings may present similar difficulties.

Accordingly, it was recognized in the first work on consistency using subsets that the idea

has the potential to be extended to more general models [36]. We address this by deriving

weaker conditions, based in part on the use of subsets, that are sufficient for consistency of

18
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MLEs, without assuming a particular model. They help explain formally what makes the

subset argument work, why it is useful in some settings where more classical ones are not,

and when it can fail. We illustrate the usefulness of our conditions by proving consistency

of MLEs in two multivariate GLMMs (MGLMMs) to which existing theory has not been

applied successfully.

To fix ideas, let Θ denote a parameter set, fnθ a joint density for the random vector

Y = (Y1, . . . , Yn), and θ0 the “true” parameter. Let also Ln(θ;Y ) = fnθ (Y )/fnθ0(Y ) and

Λn(θ;Y ) = logLn(θ;Y ). If Θ is a finite set, then since Ln(θ0;Y ) = 1, a necessary and

sufficient condition for consistency of MLEs is that, as n→∞,

P(Ln(θ;Y ) ≥ 1)→ 0 for all θ 6= θ0. (2.1)

When Θ is not a finite set, (2.1) needs to be amended by a uniformity argument to be suffi-

cient, but the main ideas are the same. There are many ways to establish (2.1). With i.i.d.

observations and regularity conditions, (2.1) or stronger results follow from the law of large

numbers applied to n−1Λn(θ;Y ) [12, 16, 18, 77]. More generally, if Y is a stochastic pro-

cess, Λn(θ;Y ) may, suitably scaled, satisfy an ergodic theorem, leading again to (2.1) under

regularity conditions. In the literature on maximum likelihood estimation with dependent

observations, it is often assumed that some such limit law holds, either for Λn(θ;Y ) or its

derivatives [14, 30, 32], or that the moments of Λn(θ;Y ) converge in an appropriate way

[5, 68]. Unfortunately, in many practically relevant settings, it is not clear that any such

convergence holds and proving that it does is arguably the main obstacle to establishing

consistency of MLEs. Let us illustrate using an MGLMM, commonly considered both in

statistics and applied sciences [10, 11, 28, 52, 78].

Let X = [x1, . . . , xn]T ∈ Rn×p be a matrix of non-stochastic predictors, Z = [z1, . . . , zn]T

∈ Rn×r a non-stochastic design matrix, and U ∈ Rr a multivariate normal vector of random

effects, with mean zero and covariance matrix Σ. For the MGLMM, Θ ⊆ Rd, for some

d ≥ 1, β = β(θ), and Σ = Σ(θ). The responses Y1, . . . , Yn are conditionally independent
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given U , with conditional densities in the form

fθ,i(yi | u) = ki(yi, τi) exp

(
yi[x

T
i β + zTi u]− ci(xTi β + zTi u)

τi

)
,

where, for i = 1, . . . , n, ci is the conditional cumulant function, τi a dispersion parameter,

and ki(yi, τi) ensures fθ,i(yi | u) integrates to one. Conditional independence implies fnθ (y |

u) =
∏n
i=1 fθ,i(yi | u). Several of the responses could be from the same subject, hence

the “multivariate”, and they can be of mixed type, some continuous and some discrete, for

example.

The dependence among the linear predictors is easily characterized since Xβ + ZU ∼

N (Xβ,ZΣZT). The relevant density for maximum likelihood estimation, however, is the

marginal density,

fnθ (y) =

∫
Rr
fnθ (y | u)φrθ(u)du,

where φrθ denotes the r-dimensional multivariate normal density with mean zero and covari-

ance matrix Σ = Σ(θ). The density fnθ (y) typically does not admit a closed form expression.

Moreover, the dependence among responses it implies is in general less transparent than

that among the linear predictors. What we can say in general is that two responses are

dependent only if their corresponding linear predictors are. That is, response component i

and j are independent if zTi Σzj = 0.

It is convenient if ZΣZT is, upon possible reordering of the responses, block diagonal

since in that case the full vector of responses can be partitioned into independent sub-

vectors. If these are of fixed length as n grows then one is back in the classical setting

where the full data consists only of an increasing number of independent vectors. This

setting is common to many articles on asymptotic theory in mixed models [29, 56, 57, 70].

Unfortunately, in applications the number of independent response vectors – the number

of diagonal blocks in ZΣZT – is often small. For example, Sung and Geyer [70] note that

in the famous salamander data [51] there are 3 independent vectors, each of length 120.

Thus, in their notation there are n = 3 independent observations, but in our notation there
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are n = 3 × 120 = 360 possibly dependent observations. It seems more reasonable, then,

to assume that n → ∞ without also assuming that the response vector Y consists only of

an increasing number of independent sub-vectors. This type of limiting process has, in the

context of mixed models, previously only been investigated carefully in special cases that

do not allow for predictors or mixed-type responses [36, 55]. To be sure, Jiang’s [36] general

theory does allow for predictors, but the specific applications do not.

The intuition behind the usefulness of the subset argument can be understood by consid-

ering the following simple LMM with crossed random effects. Suppose Yi,j = θ+U
(1)
i +U

(2)
j +

Ei,j , where U
(1)
i , U

(2)
j , and Ei,j are all i.i.d. standard normal, i = 1, . . . , N , j = 1, . . . , N .

It is easy to check that the Yi,js cannot be partitioned into independent subsets. How-

ever, there are many subsets that, even though there is dependence among them, consist

of independent random variables. For example, the two subsets (Y1,1, Y2,2, . . . , YN,N ) and

(Y1,2, Y2,3, . . . , YN−1,N ) are dependent, but taken separately they both consist of i.i.d. ran-

dom variables. The MLE of θ based on either subset, i.e. a subset sample mean, is consistent

as N →∞. Intuitively, then, the MLE based on all of the N2 variables should be too. Of

course, the subset argument is not needed to prove that in this simple example, but the

intuition is the same for models where a direct proof is harder. How to formalize this in-

tuition, without actually having to require the subset components to be either independent

or identically distributed, is the topic of Section 2.2.

The rest of the paper is organized as follows. We develop our theory for consistency of

MLEs using subsets in Section 2.2. These results do not assume any particular model. In

Section 2.3 we apply the theory from Section 2.2 to two MGLMMs. Section 2.4 contains a

brief discussion of our results and their implications. Many technical details are deferred to

the appendices.



2.2. Consistency using subsets of the full data 22

2.2 Consistency using subsets of the full data

Recall that Y = (Y1, . . . , Yn) denotes a collection of random variables and let

W = (W1, . . . ,Wm)

denote a collection of random variables that form a subset of those in Y , i.e. {W1, . . . ,Wm} ⊆

{Y1, . . . , Yn}. We will henceforth call W a subcollection of Y to avoid confusion with other

subsets introduced later. The main results in this section give conditions for when sub-

collections can be used to prove consistency of maximizers of Ln(θ;Y ). Unless otherwise

noted, all convergence statements are as n tends to infinity and the number of elements in

a subcollection, m = m(n), tends to infinity as a function of n.

All discussed random variables are defined on an underlying probability space (Ω,F ,P),

with the elements of Ω denoted ω. The parameter set Θ is assumed to be a subset of a metric

space (T , dT ). We write, for any t ∈ T and δ > 0, Bδ(t) = {t′ ∈ T : dT (t, t′) < δ}. For any

A ⊆ T , Ā denotes its closure and ∂A its boundary. We assume the true parameter θ0 is

the same for all n but the joint density fnθ (y) of Y , against a dominating, σ-finite product

measure ν = νn, can depend on n in an arbitrary manner. In particular, our setting allows

for a triangular array of responses, Yn,1, . . . , Yn,n, though for convenience we do not make

this explicit in the notation.

By θ0 being the true parameter we mean that P(Y ∈ A) =
∫
A f

n
θ0(y)ν(dy) for any

measurable A in the range space of Y . That is, expectations and probabilities with respect

to P are the same as those taken with respect to distributions indexed by θ0. Densities

for the subcollection and its components are denoted by g in place of f ; for example,

Lm(θ;W ) = gmθ (W )/gmθ0(W ).

We will use subcollections to establish the following sufficient condition for consistency

of maximizers of Ln(θ;Y ):

P

(
sup

θ∈Θ∩Bε(θ0)c
Ln(θ;Y ) ≥ 1

)
→ 0, ∀ ε > 0 . (2.2)
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The appeal of using subcollections to prove (2.2), instead of directly working with the full

data likelihood Ln(θ;Y ), can be explained using the following lemma.

Lemma 2.2.1. For every c ∈ (0,∞), θ ∈ Θ, and subcollection W , P-almost surely,

P (Ln(θ;Y ) ≥ c |W ) ≤ c−1Lm(θ;W ).

Versions of Lemma 2.2.1 are well known [36, 37], but Appendix A contains a proof

for completeness. From the lemma it follows that if Lm(θ;W ) → 0, then E[P(Ln(θ;Y ) ≥

1 | W )] = P(Ln(θ;Y ) ≥ 1) → 0 by dominated convergence. That is, up to a uniformity

argument, (2.2) can be established by showing that the likelihood of the subcollection

converges to zero in probability, outside of a neighborhood of θ0. Uniform versions of that

convergence will play a crucial role in our results.

Definition 2.2.1. We say that a subset A ⊆ Θ is identified by a subcollection W if

supθ∈A Lm(θ;W )
P→ 0. If supθ∈A Lm(θ;W ) = OP(an) for some sequence of constants {an},

n = 1, 2, . . . , we call an an identification rate.

To understand this definition better, consider the case where the subcollection W con-

sists of m i.i.d. random variables with common marginal density gθ,1. Suppose also that

there is no θ ∈ A for which gθ,1 = gθ0,1 ν-almost everywhere. That is, θ0 is an identified

parameter in the classical sense if we restrict attention to the parameter set A∪{θ0}. Then,

under regularity conditions [18, Theorems 16 and 17], one has supθ∈A E[Λm(θ;W )] < 0 and,

by a uniform strong law of large numbers,

lim
m→∞

m−1 sup
θ∈A
|Λm(θ;W )− E[Λm(θ;W )]| = 0.

Using this, it is straightforward to show that A is identified by W with an identification rate

that is exponentially fast inm. That is, with i.i.d. components and regularity conditions, the

classical definition of an identified parameter implies identification in the sense of Definition

2.2.1. However, we want to allow for subcollections that do not consist of i.i.d. components,

and in that case the classical definition is not as useful. For example, we have independent
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but not identically distributed components in one of our MGLMMs. In this and more

general cases, a parameter could be identified in the classical sense for all sample sizes n,

but, loosely speaking, the difference between the distributions for W indexed by some θ ∈ A

and that indexed by θ0 could vanish asymptotically, preventing W from identifying A in our

sense. Finally, notice also that A being identified by W is essentially equivalent to MLEs

based on W with the restricted parameter set A ∪ {θ0} being consistent.

We can now be more precise about how to use subcollections to establish (2.2). The

strategy is to first find a subcollection W that identifies Bε(θ
0)c ∩ Θ for every ε > 0, and

then use Lemma 2.2.1 to get the convergence for the full likelihood in (2.2). For this strategy

to be useful, showing that W identifies Bε(θ
0)c ∩ Θ has to be easier than showing that Y

does since the latter would directly imply (2.2). That is, one has to be able to pick out

a subcollection with more convenient properties than the full data. Our applications in

Section 2.3 illustrate how this can be done.

It is useful to allow for several subcollections W (i), consisting of mi components, and

subsets Ai, i = 1, . . . , s. By doing so, different subcollections can be used to identify

different subsets of the parameter set. For example, if the parameter set is a product space,

as is common in applications, then different subcollections can be used to, loosely speaking,

identify different elements of the parameter vector. Assumption 1 makes precise what we

need to identify Θ ∩Bε(θ0)c using several subcollections.

Assumption 1. For every small enough ε > 0, there are subsets Ai = Ai(ε) ⊆ Θ and

corresponding subcollections W (i), i = 1, . . . , s, such that ∪si=1Ai ⊇ Θ ∩ Bε(θ0)c and each

Ai is identified by W (i) with some identification rate an,i, n = 1, 2, . . . , i = 1, . . . , s.

This assumption is somewhat similar to assumptions A2 and A3 made by Jiang [36],

which are also assumptions about parameter identification using several subcollections.

However, those assumptions are stated in terms of E(Λmi(θ;W
(i))) and var(Λmi(θ;W

(i))), i =

1, . . . , s. The fact that we do not have to assume anything about the variances of the log-

likelihood ratios is an important improvement. For example, if subcollection i consists of

i.i.d. components, the convergence of m−1
i Λmi(θ;W

(i)) is immediate from the law of large
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numbers, but calculating its variance may be difficult.

For finite parameter sets, Assumption (1) is enough to give consistency of MLEs via

Lemma 2.2.1. For more general cases we also need to control the regularity of the log-

likelihood for the full data. The following two assumptions are made to ensure that the

uniformity of the convergence detailed in Assumption 1 and Definition 2.2.1 carries over to

Λn(θ;Y ), in the sense of (2.2).

Assumption 2. For every i ∈ {1, . . . , s} and n ∈ {1, 2, . . . }, Λn(θ;Y ) is P-almost surely

Lipschitz continuous in θ on the Ai defined in Assumption 1; that is, there exists a random

variable Kn,i not depending on θ such that, P-almost surely and for every θ, θ′ ∈ Ai,

|Λn(θ;Y )− Λn(θ′;Y )| ≤ Kn,idT (θ, θ′).

Assumption 3. Each Ai from Assumption 1 can be covered by Mn,i balls of radius δn,i

such that

Kn,iδn,i
P→ 0 and Mn,ian,i → 0,

where an,i and Kn,i, i = 1, . . . , s, n = 1, 2, . . . , are the same as in Assumptions 1 and 2,

respectively.

The assumptions give us the convergence in (2.2) and, consequently, the following lemma.

Lemma 2.2.2. If Assumptions 1 – 3 hold, then the probability that there exists a global

maximizer of Λn(θ;Y ) in Bε(θ
0)c ∩Θ tends to zero as n→∞, for every ε > 0.

Proof. We give an outline here and a detailed proof in Appendix A.1. Without loss of gener-

ality, we may assume s = 1, so there is one subcollection W that identifies A = Θ∩Bε(θ0)c,

for arbitrary, small ε > 0, with rate an. It suffices to prove that P(supθ∈A Ln(θ;Y ) ≥ 1)→ 0.

For j = 1, . . . ,Mn let θj be a point in the intersection of A and the jth ball in the cover of

A given by Assumption 3. Some algebra and Assumption 2 gives

P

(
sup
θ∈A

Ln(θ;Y ) ≥ 1

)
≤ P

(
max
j≤Mn

Ln(θj ;Y ) ≥ 1/2

)
+ P

(
eKnδn ≥ 2

)
.
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The second term is o(1) by Assumption 3. It remains to deal with the first. By conditioning

on the subcollection and using Lemma 2.2.1 one gets

P

(
max
j≤Mn

Ln(θj ;Y ) ≥ 1/2 |W
)
≤ 2Mn sup

θ∈A
Lm(θ;W ).

The right hand side is o(1) by Assumption 3, so the expectation of the left hand side is also

o(1) by dominated convergence, which finishes the proof.

We will use Lemma 2.2.2 to establish both a Wald-type consistency, meaning consistency

of sequences of global maximizers of Ln(θ;Y ), and a Cramér-type consistency, meaning

consistency of a sequence of roots to the likelihood equations ∇Λn(θ;Y ) = 0. It follows

almost immediately from the lemma that if Ln(θ;Y ) has a global maximizer θ̂n, P-almost

surely for every n, then θ̂n
P→ θ0. In particular, if Θ is compact one gets Wald-type

consistency with an additional continuity assumption. Since Assumption 2 implies Ln(θ;Y )

is continuous at every point except possibly θ0, assuming continuity also at the unknown

θ0 should be insignificant in any application of interest.

Theorem 2.2.3. If Θ is compact, Ln(θ;Y ) is P-almost surely continuous on Θ for every

n, and Assumptions 1 – 3 hold, then a maximizer θ̂n of Ln(θ;Y ) exists P-almost surely for

every n, and θ̂n
P→ θ0 for any sequence of such maximizers.

Proof. Since continuous functions attain their suprema on compact sets, Ln(θ;Y ) has a

maximizer on Θ, P-almost surely. By Lemma 2.2.2 all maximizers are in Bε(θ
0) with

probability tending to one, for all small enough ε > 0.

Though compactness is a common assumption [32, 80], it is sometimes too restrictive

or even unnecessary. If Ln(θ;Y ), or more commonly Λn(θ;Y ), is strictly concave in θ on a

convex Θ, then it is enough to verify the assumptions on a neighborhood of θ0 (c.f. Theorem

2.2.4) to get consistency of the unique global maximizer. However, a global maximizer need

not exist even as n→∞, or perhaps the assumptions cannot be verified for other reasons.

With a few additional assumptions, Lemma 2.2.2 can then be used to get the weaker Cramér-

type consistency, which also only requires verifying assumptions for neighborhoods of θ0.
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Theorem 2.2.4. If Θ ⊆ Rd for some d ≥ 1, Ln(θ;Y ) is almost surely differentiable in

θ on a neighborhood of an interior θ0 for every n, and Assumptions 1 – 3 hold with Θ

replaced by B̄ε(θ
0) for all small enough ε > 0, then, with probability tending to one as

n → ∞, there exists a local maximizer of Ln(θ;Y ), and hence a root to the likelihood

equation ∇Λn(θ;Y ) = 0, in Bε(θ
0), for all small enough ε > 0.

Proof. Since θ0 is interior we may assume ε > 0 is small enough that all points of B̄ε(θ
0)

are interior. Almost sure differentiability of Ln(θ;Y ) implies almost sure continuity. Thus,

Ln(θ;Y ) attains a local maximum on the compact B̄ε(θ
0), P-almost surely. By Lemma 2.2.2,

with probability tending to one, there are no such maximizers in B̄ε(θ
0)\Bε(θ0) = ∂Bε(θ

0).

Thus, with probability tending to one, there exists a local maximizer in Bε(θ
0). Since

Ln(θ;Y ) and hence Λn(θ;Y ) is P-almost surely differentiable, any such maximizer must be

a root to the likelihood equation ∇Λn(θ;Y ) = 0.

In the next section we apply Theorem 2.2.4 to two special cases of the MGLMM de-

scribed in Section 2.1. We also discuss in more detail how to think about the subcollections

and subsets in specific models.

2.3 Application to multivariate mixed models

2.3.1 Longitudinal linear mixed model

The first model we consider is an extension of the variance components model that has been

studied previously [55]. In addition to dependence between subjects induced by crossed

random effects the model incorporates autoregressive temporal dependence between mea-

surements from the same subject. To make the discussion clearer we assume easy-to-specify

fixed and random effect structures. This allows us to focus on the core issues, that is, on

how to select subcollections and subsets that can be used to verify the conditions of our

theory. Our model includes a baseline mean and a treatment effect. A general fixed effect

design matrix could be treated the same way as in our second example, discussed in Section

2.3.2. Before establishing consistency, we discuss the model definition and how to select
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appropriate subcollections.

Suppose for subjects (i, j), i = 1, . . . , N , j = 1, . . . , N , and time points t = 1, . . . , T we

observe the response Yi,j,t, where for convenience we assume both N and T are even. Let

the stacked vector of responses be

Y = [Y1,1,1, . . . , Y1,1,T , Y1,2,1, . . . , YN,N,T ]T ∈ Rn, n = TN2.

Recall from the introduction that the MGLMM is specified by the conditional distribution

fnθ (y | u) and the distribution of the random effects, φrθ(u). For a linear mixed model we

let fnθ (y | u) be a multivariate normal distribution with mean Xβ + Zu and covariance

matrix θ3In, θ3 > 0, where the two components of β = [θ1, θ2]T ∈ R2 are a baseline mean

and a treatment effect, respectively, and Ik denotes the k × k identity matrix. Note, in

the notation of the introduction, the dispersion parameter in the conditional distribution is

τi = θ3, for all i. We treat θ3 as a parameter to be estimated and not as known, which is

otherwise common in the literature.

Let hn be a vector of zeros and ones where the ith element is one if it corresponds to an

observation in time t ≤ T/2 and zero otherwise and let 1n denote an n-vector of ones. We

take X = [1n, hn] ∈ RTN2×2, which corresponds to a treatment being applied in the first

half of the experiment. Notice that unless T is fixed, which we do not assume, this setup

implies the predictors change with n. Indeed, as T grows, a particular observation can go

from being made in the latter half of the experiment to the earlier half. Thus, the responses

form a triangular array.

Partition U into three independent sub-vectors, U (1) ∼ N (0, θ4IN ), U (2) ∼ N (0, θ5IN ),

and U (3) ∼ N (0, θ6IN2 ⊗ Ψ), where Ψ = (Ψi,j) = (θ
|i−j|
7 ) is a first order autoregressive

correlation matrix, θi > 0, i = 4, 5, 6, and θ7 ∈ (−1, 1). We will use U (1) and U (2) as

crossed random effects, inducing dependence between subjects, and U (3) to get temporal

dependence within subjects. To that end, let Z1 = IN ⊗ 1N ⊗ 1T , Z2 = 1N ⊗ IN ⊗ 1T , and

Z = [Z1, Z2, ITN2 ]. Then, with Jk = 1k1
T
k , the covariance matrix of the linear predictors
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Xβ + ZU is

ZΣZT = θ4IN ⊗ JNT + θ5JN ⊗ IN ⊗ JT + θ6IN2 ⊗Ψ.

More transparently, for the elements of E(Y | U) = Xβ + ZU , it holds that

cov[E(Yi,j,t | U),E(Yi′,j′,t′ | U)] =



θ4 + θ5 + θ6θ
|t−t′|
7 i = i′, j = j′

θ4 i = i′, j 6= j′

θ5 i 6= i′, j = j′

0 otherwise

.

The marginal density fnθ (y) admits a closed form expression in this example. Specifically, the

marginal distribution for Y is multivariate normal with mean m(θ) = Xβ(θ) and covariance

matrix C(θ) = θ3ITN2 + ZΣ(θ)ZT. Note that the structure of C(θ) is similar to that of

the covariance matrix of the linear predictors just discussed. In particular, there are many

zeros in the covariance matrix C(θ), i.e. there are many independent observations, but Y

cannot be partitioned into independent vectors.

Subcollection selection

The model definitions imply that Θ = R×R× (0,∞)× (0,∞)× (0,∞)× (0,∞)× (−1, 1),

a subset of (T , dT ) = (R7, ‖ · ‖), where ‖ · ‖ denotes the Euclidean norm when applied to

vectors. We write θ = (θ1, . . . , θ7).

Subcollections are selected for the purpose of verifying Assumption 1. The main idea

guiding selection is suggested by the fact that identification follows, under regularity condi-

tions, if the subcollection’s log-likelihood satisfies a law of large numbers. We will use s = 2

such subcollections and require that they together identify θ in the classical sense. By this

we mean that, letting νiθ denote the distribution of subcollection i implied by parameter θ,

{θ ∈ Θ : ν1
θ = ν1

θ0} ∩ {θ ∈ Θ : ν2
θ = ν2

θ0} = {θ0}.
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With these properties in mind, we take W (1) to consist of the vectors

W
(1)
i = (Y2i−1,2i−1,1, Y2i,2i,T ) ∈ R2, i = 1, . . . , N/2.

Because these vectors do not share any random effects, they are independent. In fact,

they are i.i.d. multivariate normal with common mean m1(θ) = [θ1 + θ2, θ1]T and common

covariance matrix C1(θ) = I2(θ3+θ4+θ5+θ6). Clearly, θ1 and θ2 are identified in the classical

sense by this subcollection, but not θ3, . . . , θ7. Note that even though the predictors, and

hence the distributions, do not change with N for this subcollection, it is strictly speaking

a triangular array unless T is fixed.

To identify the remaining parameters, take W (2) to consist of the vectors

W
(2)
i = (Y2i−1,2i−1,1, Y2i−1,2i−1,2, Y2i−1,2i−1,3, Y2i−1,2i,1, Y2i,2i−1,1), i = 1, . . . , N/2.

These are also i.i.d. multivariate normal, with common mean m2(θ) = (θ1 + θ2)15 and

common covariance matrix

C2(θ) =



∑6
i=3 θi θ4 + θ5 + θ6θ7 θ4 + θ5 + θ6θ

2
7 θ4 θ5

·
∑6

i=3 θi θ4 + θ5 + θ6θ7 θ4 θ5

· ·
∑6

i=3 θi θ4 θ5

· · ·
∑6

i=3 θi 0

· · · ·
∑6

i=3 θi


.

It is straightforward to check that C2(θ) = C2(θ′) implies θi = θ′i, i = 3, . . . , 7.

In summary, the two subcollections together identify θ in the classical sense. Moreover,

since both subcollections consist of i.i.d. multivariate normal vectors, their log-likelihoods

satisfy a law of large numbers as N → ∞. With this we are equipped to verify that

Assumptions 1 – 3 hold locally, leading to the main result of the section in Theorem 2.3.4.
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Consistency

The purpose of this section is to verify the conditions of Theorem 2.2.4. The interesting

part of that is to check that Assumptions 1 – 3 hold with Θ replaced by B̄ε(θ
0), for all small

enough ε > 0. For this purpose we will first prove two lemmas that roughly correspond to

Assumptions 1 and 2. The limiting process we consider is that N tends to infinity while

T can be fixed or tend to infinity with N , at rates discussed below. Thus, the statements

n → ∞ and N → ∞ are equivalent. We will need the following result which is proved in

Appendix A.2.

Proposition 2.3.1. If Θ is compact, Lmi(θ;W
(i)) is continuous in θ on Θ for every w(i)

in the support of W (i), i = 1, . . . , s, and ∩si=1{θ ∈ Θ : νiθ = νiθ0} = {θ0}, then for any ε > 0

there are compact sets Ã1, . . . , Ãs such that {θ ∈ Θ : νiθ = νiθ0} ∩ Ãi = ∅, i = 1, . . . , s, and

∪si=1Ãi = Θ ∩Bε(θ0)c.

Note, when applying the proposition in the present application, mi = N , s = 2, and

Θ is replaced by B̄ε(θ
0). The proposition is useful because the Ãis it gives are compact,

as we will see in the proof of the following lemma. This lemma formalizes verification of

Assumption 1.

Lemma 2.3.2. If θ0 is an interior point of Θ, then for all small enough ε > 0 there exist

subsets A1 and A2 such that A1 ∪A2 = ∂Bε(θ
0),

1. N−1 supθ∈Ai E[ΛN/2(θ;W (i))] = supθ∈Ai E[Λ1(θ;W
(i)
1 )]/2 < 0,

2. P-almost surely, N−1 supθ∈Ai |ΛN/2(θ;W (i)) − E[ΛN/2(θ;W (i))]| → 0, and, conse-

quently;

3. Ai is identified by W (i) with an identification rate an,i = o(e−εN(n)) for some ε > 0,

i = 1, 2.

Proof. We give an outline here and a detailed proof in Appendix A.2. It is easy to check

that the requirements of Proposition 2.3.1 are satisfied with Θ replaced by B̄ε(θ
0). By

taking the Ais to be the Ãis given by Proposition 2.3.1, proving points 1 – 2 is similar to
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proving that MLEs based on subcollection i are consistent if the parameter set is restricted

to the compact set Ai ∪ {θ0}, i = 1, 2. Since the subcollection components are i.i.d., this

is straightforward using classical ideas [18, Theorems 16 and 17]. The only difference from

the referenced work is that one subcollection is a triangular array and so we use a different

strong law. Point 3 follows from points 1 and 2.

Note that, in this lemma and elsewhere, ε is a small number that is defined in context

whereas ε always denotes the radius of the neighborhood of θ0 we are considering. It remains

to verify the assumptions concerned with the regularity of the log-likelihood of the full data.

When the log-likelihood is differentiable, Lipschitz continuity follows from the mean value

theorem if the gradient is bounded. The following lemma uses that to verify Assumption

2. The resulting Lipschitz constant, i.e. the bound of the gradient, is the same for both A1

and A2. The lemma also gives a probabilistic bound on the order of this Lipschitz constant

as n→∞ that will be useful when verifying Assumption 3.

Lemma 2.3.3. If θ0 is an interior point of Θ, then for every n and small enough ε > 0

there exists a random variable Kn such that, P-almost surely,

sup
θ∈B̄ε(θ0)

‖∇Λn(θ;Y )‖ ≤ Kn = oP(nb),

for some b > 0.

Proving Lemma 2.3.3 (see Appendix A.2) is largely an exercise in bounding the eigen-

values of the covariance matrix C(θ) and its inverse on interior points of Θ. We are ready

for the main result of the section.

Theorem 2.3.4. If θ0 is an interior point of Θ and T = O(Nk) for some k ≥ 0 as

N →∞, then, P-almost surely, there exists a sequence θ̂n of roots to the likelihood equations

∇Λn(θ;Y ) = 0 such that θ̂n
P→ θ0.

Proof. We verify the conditions of Theorem 2.2.4. Fix an arbitrary ε > 0. Since θ0 is

interior we may assume ε is small enough that all points in B̄ε(θ
0) are interior points
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of Θ. By Lemma A.2.3 `n(θ;Y ) is P-almost surely differentiable on B̄ε(θ
0), so Λn(θ;Y ) =

`n(θ, Y )−`n(θ0;Y ) is, too. By Lemma 2.3.2, Assumption 1 holds with what is there denoted

Θ replaced by B̄ε(θ
0). The identification rate is exponentially fast in N/2, an = o(e−Nε)

for some ε > 0. Lemma 2.3.3 shows that Λn(θ;Y ) is Kn-Lipschitz on both A1 and A2,

and that Kn = oP(nb) for some b > 0. This verifies Assumption 2. It remains only to

verify that the rate conditions in Assumption 3 hold. The δ-covering number of the sphere

∂Bε(θ
0) is O([ε/δ]d−1) as δ → 0 [7, Lemma 1]. Thus, since Ai ⊆ ∂Bε(θ

0), by picking

δi,n = n−b we can have Mn,i = O(n[d−1]b) as n → ∞, i = 1, 2. Our choice of δn,i ensures

Kn,iδn,i = Knδn = oP(1), which is the first rate condition. Since the identification rate is

exponential in N/2 for both subcollections, we have that Mn,ian,i = O(N2b[d−1]T b[d−1]e−εN )

for some ε > 0, which is o(1) as N →∞ since T is of (at most) polynomial order in N .

Two key components in the proof of Theorem 2.3.4 are that the subcollections consist

of i.i.d. random vectors that identify the parameters and that the gradient of the log-

likelihood is of polynomial order in n. We expect the same proof technique to work in

many other cases. Essentially, all that is needed is that the subcollections grow faster than

logarithmically in the total sample size n and that the gradient is of polynomial order, no

matter how large that order is.

It is possible that the assumption that T = O(Nk), k ≥ 0, could be relaxed by picking

other subcollections that also make use of the variation in the time dimension. It is not

trivial, however, since the dependence between any two responses sharing a random effect

does not vanish as time between the observations increases. In the next section we examine

how predictors and mixed-type responses affect the argument.

2.3.2 Logit–normal MGLMM

The model we consider in this section is an extension in several ways of the logistic GLMMs

for which the technique based on subcollections was first developed [36]. The random effect

structures are similar, i.e. crossed, but we have multivariate, mixed-type responses, and

predictors. The main ideas for verifying the assumptions of the theory from Section 2.2
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are the same as in our LMM example. However, due to the inclusion of predictors, we

use results from empirical process theory in place of the more classical strong laws used

for the LMM. Showing existence of appropriate subsets of the parameter space that the

subcollections identify also requires more work than with i.i.d. components. As before, we

discuss the model definition and subcollection selection before establishing consistency.

Suppose for subjects (i, j), i = 1, . . . , N, j = 1, . . . , N , there are two responses, Yi,j,1

which is continuous and Yi,j,2 which is binary. The vector of all responses is

Y = [Y1,1,1, Y1,1,2, Y1,2,1, . . . , YN,N,2]T ∈ Rn, n = 2N2.

For each subject we observe a vector of non-stochastic predictors xi,j ∈ Rp, the same for

both responses. Similarly, zi,j ∈ Rr is the same for both responses. Let li,j,k = xTi,jβk + zTi,ju

be the linear predictor, i = 1, . . . , N , j = 1, . . . , N , k = 1, 2, where β1 = [θ1, . . . , θp]
T,

β2 = [θp+1, . . . , θ2p]
T. We assume that ‖xi,j‖ ≤ 1 for all i, j. In practice this only rules out

the possibility that ‖xi,j‖ =∞ since our setting allows for the standardization of predictors.

The conditional density of the responses given the random effects that we consider is

fnθ (y | u) = (2π)−n/2 exp

∑
i,j

−(yi,j,1 − li,j,1)2/2 + yi,j,2li,j,2 − log
(

1 + eli,j,2
) .

Given the random effects, Yi,j,1 is normal with mean li,j,1 and variance 1, and Yi,j,2 is

Bernoulli with success probability 1/(1 + e−li,j,2) – a logistic GLMM. The choice of τi = 1

for all i is made for identifiability reasons for the Bernoulli responses, and for convenience for

the normal responses. Setting the τis to some other known constants does not fundamentally

change the results.

Consider two independent vectors, U (1) ∼ N (0, θdIN ) and U (2) ∼ N (0, θdIN ), and

corresponding design matrices Z1 = IN ⊗ 1N ⊗ 12 and Z2 = 1N ⊗ In ⊗ 12. With U =

[U (1)T, U (2)T]T and Z = [Z1, Z2] the linear predictors are li,j,k = xTi,jβk + u
(1)
i + u

(2)
j . Thus,

responses from the same subject share two random effects, responses from different subjects

with one of the first two indexes in common share one random effect, and other responses
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share no random effects and are hence independent. The covariance matrix for the linear

predictors is easily computed in the same way as in the LMM. The covariance matrix for

responses, however, is less transparent. It is for simplicity that we assume in this section

that all random effects have the same variance. It is not necessary for our theory to be

operational but this simplification shortens proofs considerably and allows us to focus on

the main ideas.

Subcollection selection

With p predictors the (2p + 1)-dimensional parameter set is Θ = Rp × Rp × (0,∞), a

subset of the metric space (Rd, ‖ · ‖). The intuition behind the selection of subcollections

is that the normal responses should identify the coefficient β1 and the variance parameter

θd. Similarly, the Bernoulli responses should identify the coefficient vector β2. With that

in mind we take W (i) = (Y1,1,i, Y2,2,i, . . . , YN,N,i), i = 1, 2. Both of these subcollections

consist of independent but not identically distributed random variables – independence

follows from the fact that no components in the same subcollection share random effects.

Notice that these subcollections are in practice often triangular arrays since the predictors

may need to be scaled by 1/maxi≤N,j≤N ‖xi,j‖ to satisfy ‖xi,j‖ ≤ 1. All responses in the

first subcollection have marginal normal distributions and all responses in the second have

marginal Bernoulli distributions.

Identification is more complicated than in our previous example. One issue is that there

can be many θd and β2 that give the same marginal success probability for the components

in the second subcollection. A second issue is that, since the predictors can change with n,

classical identification for a fixed n does not necessarily lead to identification in the sense of

Definition 2.2.1. Additionally, the approach used in the LMM to find appropriate subsets

A1 and A2 by means of Proposition 2.3.1 only works in general when the subcollection

components are i.i.d. Thus, we take a slightly different route to establishing consistency

compared to the LMM.
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Consistency

In this section we verify the conditions of Theorem 2.2.4. The limiting process is that

N →∞, which is equivalent to n→∞ since n = 2N2. We will first prove two lemmas that

roughly correspond to Assumptions 1 and 2.

Let λmin(·) denote the minimum eigenvalue of its matrix argument.

Lemma 2.3.5. If θ0 is an interior point of Θ and

lim inf
N→∞

λmin

(
N−1

N∑
i=1

xi,ix
T
i,i

)
> 0,

then for all small enough ε > 0 there exist A1 and A2 such that A1 ∪A2 = ∂Bε(θ
0),

1. lim supN→∞N
−1 supθ∈Ai E[ΛN (θ;W (i))] < 0,

2. supθ∈Ai N
−1
∣∣ΛN (θ;W (i))− E[ΛN (θ;W (i))]

∣∣ P→ 0, and, consequently;

3. Ai is identified by W (i) with an identification rate an,i = o(e−εN ) for some ε > 0,

i = 1, 2.

Proof. A detailed proof is Appendix B, we here give the proof idea. Let A2 = ∂Bε(θ
0)∩{θ :

|θd−θ0
d| ≤ η}∩{‖β2−β0

2‖ ≥ ε/2}, for some small η > 0. Let A1 be the closure of ∂Bε(θ
0)∩Ac2.

The idea is that if η is small enough, so that θd ≈ θ0
d and ‖β2 − β0

2‖ ≥ ε/2 on A2, then the

distributions of W (2) implied by θ ∈ A2 and θ0 are different if X = [x1,1, x2,2, . . . , xN,N ]T

has full column rank. That is, W (2) should be able to distinguish every θ ∈ A2 from θ0.

Moreover, one can show that on A1 it holds either that |θd − θ0
d| ≥ min(η, ε/4) or that

‖β1 − β0
1‖ ≥ ε/4. In either case, W (1) should be able to distinguish θ ∈ A1 from θ0.

Formalizing this idea leads to point 1. Point 2 follows from checking the conditions of a

uniform law of large numbers [59, Theorem 8.2] and point 3 from points 1 and 2.

The explicit construction of the subsets A1 and A2, as opposed to using Proposition

2.3.1, warrants an additional comment. Recall, the proposition gives compact Ã1 and Ã2

such that Ã1∪ Ã2 = ∂Bε(θ
0) and νiθ 6= νiθ0 , θ ∈ Ãi, i = 1, 2. If one takes Ai = Ãi, then point
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1 in Lemma 2.3.2 follows. Moreover, when the subcollection components are i.i.d., this in

turn leads to point 1 in Lemma 2.3.5, which is what is really needed. However, when the

distributions of the subcollection components are not identical, this last implication is not

true in general.

Having selected appropriate subcollections and subsets it remains only to check that the

log-likelihood for the full data satisfies the regularity conditions in Assumptions 2 – 3. The

following lemma verifies Assumption 2 and establishes a rate needed for the verification of

Assumption 3.

Lemma 2.3.6. If θ0 is an interior point of Θ, then for every n and small enough ε > 0

there exists a random variable Kn such that, P-almost surely,

sup
θ∈B̄ε(θ0)

‖∇Λn(θ;Y )‖ ≤ Kn = oP(nb),

for some b > 0.

Upon inspecting the proof one sees that b can be taken to be 1 + ε, for any ε > 0. This

is a better (slower) rate than that obtained in the linear mixed model (see the proof of

Lemma 2.3.3). We are now ready to state the main result of the section.

Theorem 2.3.7. If θ0 is an interior point of Θ and

lim inf
N→∞

λmin

(
N−1

N∑
i=1

xi,ix
T
i,i

)
> 0,

then, P-almost surely, there exists a sequence θ̂n of roots to the likelihood equations

∇Λn(θ;Y ) = 0

such that θ̂n
P→ θ0.

Proof. The proof is similar to that of Theorem 2.3.4 so we skip some details. We may assume

all points in B̄ε(θ
0) are interior points of Θ. By Lemma A.2.5 Λn(θ;Y ) is differentiable on
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B̄ε(θ
0). By Lemma 2.3.5, the identification rate is exponentially fast in N and Lemma 2.3.6

shows that Λn(θ;Y ) is Kn-Lipschitz on both A1 and A2, and that Kn = oP(nb) for some

b > 0. This verifies Assumption 2. By picking δi,n = n−b we can have Mn,i = O(n[d−1]b)

as n → ∞, i = 1, 2. Thus, Knδn = oP(1) and Mn,ian,i = O(N2b[d−1]e−εN ) for some ε > 0,

which is o(1) as N →∞ since n = 2N2.

2.4 Discussion

Our theory develops the current state-of-the-art asymptotic theory based on subcollections

to cover more general cases. The assumptions we make highlight what makes the use of

subcollections work. In particular, the interplay between the identification rates of subcol-

lections and the regularity of the likelihood function for the full data is made precise. We

note that when the subcollections consist of m ∈ {1, 2, . . . } independent random variables,

as in our examples, then if n = o(mb) for some b > 0 and ∇Λn(θ;Y ) = o(nb
′
) for some

b′ > 0, uniformly on a compact Θ, the rate conditions are satisfied. This so because, under

regularity conditions, the identification rate in a subcollection with m independent random

variables is exponential in m = n1/b. Since this argument works for arbitrarily large b and b′

our theory is operational in a wide range of models. Loosely speaking, if the score function

is of less than exponential order in the sample size and there are subcollections of indepen-

dent random variables that grow faster than logarithmically in the sample size, the MLE

is consistent. The conditions should be verifiable in many models since they often require

only standard asymptotic tools. For example, in the LMM example nothing more than a

uniform law of large numbers and strict positivity of the K–L divergence between distribu-

tions corresponding to distinct, identified parameters is needed. Though not pursued here,

by inspecting the assumptions of our theory one also sees that it has the potential to be

extended to allow the dimension of the parameter set, d, grow with n. The rates required

in our assumptions could be satisfied also if d grows, at least if at a slow enough rate.

Consistency of MLEs have not previously been established in either of the two models

to which we apply the general theory. In particular, previous work on asymptotic theory
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for MLEs in mixed models often either assumes independent replications of a response

vector, that there are no predictors, or no mixed-type responses. We have tried to keep

the models here as simple as possible while still illustrating key ideas. Crossed random

effects, temporal dependence, and predictors are included because they are challenging

theoretically and are commonly used in practice. We have refrained from including things

that do not require any new methods but make ideas less transparent. For example, it

would be straightforward to include random effects that are not crossed, possibly at the

expense of using more subcollections or subcollections consisting of independent vectors

of larger dimension than what is now necessary. Similarly, adding several crossed random

effects does not make things much harder, only less transparent.

Avenues for future research includes the rate of convergence of the MLEs as well as their

asymptotic distribution. Intuitively, one expects MLEs based on the full data to converge

at least as fast as the slowest of the subcollection MLEs, that is, the estimators one gets

from using only a subset of the full data. There is some evidence of this, namely that,

under regularity conditions, the Fisher information in the full data is always larger than

that in any subcollection [36]. On the other hand, it is easy to show that, for the simple

LMM example in the introduction, the full data MLE converges at the same rate as that

based on a subcollection of N =
√
n i.i.d. observations; that is, at the rate n1/4. Given the

similarities of the random effect structures, that convergence rate may in future work be a

reasonable working hypothesis for MLEs in the MGLMM considered here.



Chapter 3

Maximum likelihood estimation of
covariance matrices with separable
correlation

3.1 Introduction

Many statistical applications require the estimation of a covariance matrix Σ of some ran-

dom vector Y ∈ Rq. When the number of observations is not large enough to estimate an

unstructured covariance matrix with acceptable precision, it is common to assume that Σ

is a function of some lower-dimensional parameter vector, θ. If several different parame-

terizations are plausible, there is usually a balance to strike between estimation precision

and model flexibility. Classical structures such as diagonal with constant variance, first

order autoregressive, and compound symmetric require only one or two parameters and can

hence be reasonably estimated with few observations. On the other hand, they are too

restrictive for many situations. Here, we will focus on parameterizations that lie somewhere

between the classical ones just mentioned and an unstructured covariance matrix in terms

of flexibility and parameter counts; namely, covariance matrices that have corresponding

correlation matrices that are separable.

We say that a covariance matrix is separable, or simply that covariance is separable, if

Σ = Σ2 ⊗ Σ1 for some Σ1 ∈ Sr++ and Σ2 ∈ Sc++, where ⊗ denotes the Kronecker product,

Sk++ the set of k × k (k = 1, 2 . . . ) symmetric, positive definite matrices, and it is assumed

40
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that max(r, c) < q. Separable covariance requires r(r + 1)/2 + c(c + 1)/2 − 1 parameters,

to be compared with the rc(rc + 1)/2 required for unstructured covariance. Separable

covariance is commonly considered in, for example, spatiotemporal statistics [13, section

6.1.3]. We say that correlation is separable, or that Σ is a covariance matrix with separable

correlation, if it holds that Σ = W (V ⊗U)W for some W ∈ Dq++, U ∈ Cr++, and V ∈ Cc++,

where Dk++ and Ck++ are the sets of k × k diagonal positive definite matrices and positive

definite correlation matrices, respectively. It is immediate from standard rules of Kronecker

products that if Σ = W (V ⊗ U)W and W = W2 ⊗W1 for W1 ∈ Dr++ and W2 ∈ Dc++, then

Σ = (W2VW2)⊗(W1UW1), implying that separable covariance is a special case of separable

correlation.

In spatiotemporal applications the vector of responses Y can often be more intuitively

thought of as a matrix Y (m) = vec−1(Y ) ∈ Rr×c, where the rows index locations and the

columns index time points, for example. Here and elsewhere, vec(·) denotes the vector-

ization operator and vec−1(·) its inverse, the range of which should be clear from context.

Now, assuming that the matrix Y (m) is matrix normal with scale parameters Σ1 and Σ2

is equivalent to assuming that Y is multivariate normal with covariance Σ2 ⊗ Σ1. When

covariance is separable, Σ1 is sometimes interpreted as the common covariance matrix of

the columns of Y (m) and Σ2 as the common covariance matrix of the rows of Y (m) [13].

However, without further restrictions, this interpretation is problematic since Σ1 and Σ2 are

only identified up to scaling by a constant. Indeed, for any γ > 0, (Σ2/γ)⊗(γΣ1) = Σ2⊗Σ1.

Since Σ1 and Σ2 are unidentified one usually has to focus estimation and interpretation only

on their Kronecker product Σ1 ⊗ Σ2 [69]. For fitting purposes an identifiability constraint

such as ‖Σ1‖ = 1 (unit spectral norm) or (Σ1)1,1 = 1 (unit leading entry) is often imposed.

Though this may be computationally convenient it does not in general solve the issue of

interpretation unless one has reason to believe, e.g., that the leading element of Y has unit

variance. By contrast, with separable correlation the matrices U and V are indeed the cor-

relation matrices of the columns and rows, respectively, and W , U , and V are all identified

without further restrictions; this is proven in Section 3.2.

The idea of separable correlation is not new and it is well known that for certain appli-



3.2. Maximum likelihood 42

cations it is more appropriate than separable covariance [27]. In particular, the fact that

W is not in general separable means that the standard deviations of the elements in Y all

have their own parameter and they are in that sense unrestricted, unlike with separable

covariance. For this flexibility one pays the price of estimating an additional rc− r− c+ 1

parameters, which means that the number of parameters required for separable correlation

and covariance is of the same order as rc→∞. There are, however, some important differ-

ences between the two notions of separability that have not been stressed in the literature.

Most importantly for our discussion, algorithms for maximum likelihood estimation that

are designed for separable covariance matrices do not carry over in an obvious way to the

estimation of covariance matrices with separable correlation. One option is to use standard

descent methods such as Newton’s. However, Lu and Zimmerman [48] report that for the

separable covariance model, Newton’s algorithm is as much as 5000 times slower than the

popular flip-flop algorithm [17] when r = c = 6, and the difference seems to be increasing in

r and c. The flip-flop algorithm is comparatively fast because, up to a rescaling step, it is

a (block) coordinate descent algorithm where all coordinatewise optimization sub-problems

admit closed form solutions. Our algorithm builds on similar ideas. It is fully likelihood-

based and recovers true MLEs. The algorithm is also stable, decreasing the likelihood at

every iteration in a coordinate descent-type fashion.

In the next section we present the algorithm. Section 3.3 contains a brief discussion

of inference about covariance structures using a parametric bootstrap, Section 3.4 contains

simulations, and Section 3.5 a data example. Section 3.6 concludes with a discussion of the

proposed methods and the results.

3.2 Maximum likelihood

Assume that y1, . . . , yn are realizations of n independent, multivariate normal q-vectors

Y1, . . . , Yn with means E(Yi) = BTxi, for some vector of non-stochastic predictors xi ∈ Rp,

parameter matrix B ∈ Rp×q, and covariance matrix Σ = W (V ⊗ U)W ∈ Sq++. These

assumptions may be equivalently stated as: if Y
(m)
i is a matrix such that Yi = vec(Y

(m)
i )
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and Ỹ
(m)
i is the matrix obtained by subtracting the mean and dividing by the standard

deviation elementwise in Y
(m)
i , then Ỹ

(m)
i has a matrix normal distribution with mean 0

and scale matrices U and V .

Twice the negative log-likelihood is, up to an additive constant,

gf (B, U, V,W ; y) = log |W (V ⊗ U)W |+ tr
(
S(B)[W (V ⊗ U)W ]−1

)
, (3.1)

where S(B) =
∑n

i=1(yi−BTxi)(yi−BTxi)T/n, | · | denotes the determinant when applied to

matrices, and subscript f stands for full, so as to distinguish gf from a partially minimized

version to be defined shortly. For simplicity the dependence on the sample y = (y1, . . . , yn)

is often implicit and we write gf (B, U, V,W ) = gf (B, U, V,W ; y). Formally, gf is defined on

the parameter set Θ = Rp×q × Cr++ × Cc++ × Dq++.

Allowing for general non-stochastic predictors xi ∈ Rp makes the development no more

difficult than assuming xi ≡ 1. Indeed, assuming that n > p, gf (B, U, V,W ) is uniquely

partially minimized in B at the least squares estimate B̂ = (XTX)−1XT[y1, . . . , yn]T, where

X = [x1, . . . , xn]T ∈ Rn×p. Thus, after partially minimizing in B, the objective function of

interest is

g(U, V,W ) = gf (B̂, U, V,W ).

Minimizing g over Ψ = Cr++ × Cc++ × Dq++ gives the maximum likelihood estimates of the

true parameters that we henceforth denote by U?, V ?, and W ? to distinguish them from the

corresponding optimization variables. We write g(ψ) for g evaluated at ψ = (U, V,W ) ∈ Ψ.

It is immediate from the introductory discussion that if W is restricted to be sepa-

rable, with dimensions conforming to those of U and V , then the optimization problem

is equivalent to maximizing the matrix normal likelihood. This can often be done using

the popular flip-flop algorithm, assuming that n is large enough in comparison to r and c

[17, 69]. Several useful properties have been proven about the likelihood for the separable

covariance model, including conditions that ensure existence of MLEs and the convergence

of optimization algorithms to that MLE [69]. Unfortunately, the proofs of those results
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do no carry over in an obvious way to the separable correlation model. One issue is that

the separable covariance model has a geodesically convex log-likelihood [81], but this is not

known to be true for the separable correlation model. Instead, we get by other means the

following theorem that gives two useful theoretical properties of gf .

Theorem 3.2.1. If X has full column rank and S(B̂) ∈ Sq++, then the parameter vector

θ = (B,W,U, V ) is identified and gf has a global minimizer over Θ.

Proof. Take arbitrary θ = (B,W,U, V ) and θ′ = (B′,W ′, U ′, V ). We must show that if

θ 6= θ′, then gf (θ; y) and gf (θ′; y) are different on a set of ys with positive Lebesgue measure.

Since the multivariate normal distribution is characterized by its mean vector and covariance

matrix, it suffices to show that θ 6= θ′ implies either different means or different covariance

matrices. If B 6= B′, then since X has full column rank XB 6= XB′, and we are done.

Similarly, if W 6= W ′ then there is at least one diagonal entry where Σ = W (V ⊗ U)W

differs from Σ′ = W ′(V ′ ⊗ V ′)W ′, and again we are done. Suppose next that W = W ′ but

U 6= U ′. Since W is invertible, Σ = Σ′ if and only if V ⊗ U = V ′ ⊗ U ′. But the leading

r× r blocks of the two sides are U and U ′, and hence V ⊗U 6= V ′⊗U ′. A similar argument

shows that W = W ′ and V 6= V ′ leads to different covariance matrices, which finishes the

proof of identifiability.

The second conclusion of the theorem uses sufficient conditions for existence of MLEs

due to Burg et al. [9]. The proof is similar to the proof of Theorem 2 in Roś et al. [64].

The sufficient conditions are that (i) S(B̂) is invertible and that (ii) for any converging

sequence Σk, k = 1, 2 . . . , such that Σk = W k(V k ⊗ Uk)W k, W k ∈ Dq++, Uk ∈ Cr++, and

V k ∈ Cc++, it holds that its limit Σ̄ is either non-negative definite and singular or can be

written as W̄ (R̄2 ⊗ R̄1)W̄ , for some W̄ ∈ Dq++, R̄1 ∈ Cr++, and R̄2 ∈ Cc++. Condition (i) is

by assumption so let us prove that (ii) is satisfied. It is immediate from positive definiteness

of Σk, k = 1, 2, . . . , that lim infk→∞ v
TΣkv ≥ 0 for any v ∈ Rn. Thus, since Σ 7→ vTΣv

is a continuous mapping, Σ̄ is non-negative definite. Suppose Σ̄ is positive definite. Since

Σk converges, so do its diagonal entries. Thus, since the entries of W k, for any k, and W̄

are positive, W k → W̄ . Thus, since Σk is convergent, the sequence Rk = V k ⊗ Uk is a
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convergent sequence of separable covariance matrices. Theorem 2 in Roś et al. [64] says

the limit R̄ of Rk is also a separable covariance matrix, though not necessarily a correlation

matrix. But the diagonal entries of Rk are all unity, for all k, so it must be true also for its

limit R̄, which finishes the proof.

Algorithm 3.1 Maximum Likelihood with Separable Correlation

1: Input: U0, V 0, w0
1, . . . , w

0
q , k = 0

2: repeat
3: Set Ũk+1 = arg minU∈Sc++

g(U, V k, wk1 , . . . , w
k
q )

4: Set Ṽ k+1 = arg minV ∈Sr++
g(Ũk+1, V, wk1 , . . . , w

k
q )

5: Set Uk+1 = (Ũk+1 ◦ Ir)−1/2Ũk+1(Ũk+1 ◦ Ir)−1/2

6: Set V k+1 = (Ṽ k+1 ◦ Ic)−1/2Ṽ k+1(Ṽ k+1 ◦ Ic)−1/2

7: Set W̃ k+1 = W k[(Ũk+1 ⊗ Ṽ k+1) ◦ Iq]1/2
8: for j = 1, . . . , q do
9: Set wk+1

j = arg minw∈(0,∞) g(Uk+1, V k+1, wk+1
1 , . . . , w, w̃k+1

j+1 , . . . , w̃
k+1
q )

10: end for
11: k ← k + 1
12: until |g(Uk, V k,W k)− g(Uk−1, V k−1,W k−1)| ≤ ε

Our algorithm that we now describe is summarized in Algorithm 3.1. The algorithm

uses (block) coordinatewise updating of the optimization variables together with rescaling.

When deriving updates for W we consider the diagonal entries individually and write,

with some overloading of notation, g(U, V,w1, . . . , wq) = g(U, V, diag(w1, . . . , wq)), where

diag(w1, . . . , wq) = W . Some steps in the derivation of the algorithm we propose require

extending the function g to the larger domain Ψ̄ = Sr++ × Sc++ × Dq++. That is, in some

steps we allow U and V to be covariance matrices rather than only correlation matrices.

On this larger domain there are infinitely many points that give the same Σ. Indeed, by

the same argument as for separable covariance matrices, if the diagonal entries of U and V

are not necessarily unity, then one can scale either by a factor γ > 0 and the other by a

factor 1/γ without affecting the value of the objective function g. However, the following

proposition shows that we can identify each point in Ψ̄ with exactly one point in Ψ that

results in the same covariance matrix, and hence objective function value.
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Proposition 3.2.2. To every W ′ ∈ Dq++, U ′ ∈ Sr++, and V ′ ∈ Sc++ there correspond unique

W ∈ Dq++, U ∈ Cr++, and V ∈ Cc++ such that W ′(V ′ ⊗ U ′)W ′ = W (U ⊗ V )W .

Proof. Take W = W ′(Iq ◦ [V ′⊗U ′])1/2, U = U ′(Ir ◦U ′)−1/2, and V = V ′(Ir ◦V ′)−1/2. Now

the existence part follows from standard properties of Kronecker products and uniqueness

follows from Theorem 3.2.1

It is clear from the constructive proof of existence in Proposition 3.2.2 that if we are

given a point in Ψ̄, the equivalent point in Ψ is easy to compute in practice. We will use

this in the derivation of the algorithm that now follows.

Let ψk = (Uk, V k, wk1 , . . . , w
k
q ) ∈ Ψ be the current iterate and let Ũk+1 be the solution to

∇U−1g(U, V k, wk1 , . . . , w
k
q ) = 0. It is useful for this update to note that g can be equivalently

written as

g(U, V,W ) = log |W (V ⊗ U)W |+ n−1
n∑
i=1

tr
[
EiV

−1ET
i U
−1
]
, (3.2)

where the Ei are r × c matrices defined by vec(Ei) = W−1(yi − B̂Txi) (i = 1, . . . , n). By

differentiating (3.2) and solving the resulting first order condition one finds that

Ũk+1 =
1

nc

n∑
i=1

Eki (V k)−1(Eki )T,

where vec(Eki ) = (W k)−1(yi−B̂Txi). When Ũk+1 has full rank, it is the unique partial min-

imizer of g—this is straightforward to prove formally by differentiating again and noticing

that the Hessian for vec(U−1) is positive definite. The matrix Ũk+1 is symmetric, positive

semi-definite by construction; we have not been able to prove that Ũk+1 is positive definite

with probability one in general. In practice Ũk+1 is positive definite for all k whenever n

is large enough, both in our data example and simulations. From here on, unless otherwise

noted, we assume that the iterates Ũk are indeed positive definite for all k.
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Next let Ṽ k+1 be the solution to ∇V −1g1(Ũk+1, V, wk1 , . . . , w
k
q ) = 0, which implies that

Ṽ k+1 =
1

nr

n∑
i=1

(Eki )T(Ũk+1)−1Eki .

The properties of Ṽ k+1 are analogous to those of to Ũk+1. Most importantly, Ṽ k+1 is the

unique partial minimizer of g whenever it has full rank.

The point ψ̃k+1 = (Ũk+1, Ṽ k+1, wk1 , . . . , w
k
q ), typically lies in Ψ̄ but not in Ψ, meaning

Ũk+1 and Ṽ k+1 are not correlation matrices. However, by construction, g(ψ̃k+1) ≤ g(ψk).

Using the results in Proposition 3.2.2, the updates Uk+1 and V k+1 are now found by rescal-

ing Ũk+1 and Ṽ k+1 to be correlation matrices, and W k is rescaled accordingly so as to make

sure the rescaling does not affect the value of the objective function (see lines 5 – 7 in Al-

gorithm 3.1). Let us denote the rescaled version of W k by W̃ k. Lastly, wk+1
j (j = 1, . . . , q)

are set to the positive solutions of

∇w−1
j
g(Uk+1, V k+1, wk+1

1 , . . . , wk+1
j−1 , wj , w̃

k
j+1, . . . , w̃

k
q ) = 0.

For less cluttered notation, we ignore the iteration index when motivating this update.

Differentiating g with respect to w−1
j twice gives

∇w−1
j
g = −2n

[
wj −

rc∑
l=1

R−1
j,l w

−1
l Sl,j

]
and ∇2

w−1
j
g = n[w2

j +R−1
j,j Sj,j ],

where R = V ⊗ U . Multiplying through the first order condition by wj gives the quadratic

equation w2
j − wj

∑
l 6=j Rj,lw

−1
l Sl,j − R−1

j,j Sj,j = 0. Thus, since wj has to be positive,

wj = (a +
√
a2 + b)/2, where a =

∑
l 6=j R

−1
j,l w

−1
l Sl,j and b = 4R−1

j,j Sj,j ≥ 0. This root is

almost surely positive when the iterates Uk+1 and V k+1 are positive definite, since then

(Uk+1 ⊗ V k+1)−1
j,j > 0, and Sj,j > 0 almost surely when n > 1. By the same argument, the

second derivative is positive, and thus the updates are the unique partial minimizers.

The proposed algorithm by design weakly decreases the objective function at every

successful iteration. Every iteration requires of the order r3 + c3 + n(cr2 + rc2) floating
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point operations, where the cubic terms come from Cholesky decompositions of the iterates

of U and V , and the squared terms from matrix multiplications and solving linear systems

when updating U and V . The algorithm can be terminated when, for example, the decrease

in the objective function reaches below a certain threshold or when the change in the iterates

does. Of course, relative changes may also be considered in place of absolute ones.

3.3 Inference

In applications it is often of interest to determine if the assumption of separable correlation

is reasonable before proceeding to fitting the model. We will consider two hypothesis tests

relevant for this purpose, namely (a) H0: Separable correlation v. HA : Non-separable

correlation, and (b) H0 : Separable covariance v. HA : Separable correlation. For both (a)

and (b) we suggest using bootstrapped likelihood ratio tests since, as will be clear from the

simulation results, classical likelihood ratio tests for (a) and (b) are in general conservative.

For testing (a) we assume that S(B̂) ∈ Sq++ since otherwise the log-likelihood under the

alternative is unbounded, implying the test would reject with probability one.

Some more notation is needed to define the parametric bootstrap we consider. Let Σ̂0
N

denote the MLE of Σ under the null hypothesis, using the original data (yi, xi), i = 1, . . . , n.

For test (a) Σ̂0
N is the separable correlation MLE, and for test (b) it is the separable

covariance MLE. Let also Σ̂0
A be the MLE under the alternative, which for test (a) means

the sample covariance and for test (b) the separable correlation MLE. For any other integer

k ≥ 1, the estimates Σ̂k
N and Σ̂k

A are similarly defined but with the original data replaced

by the kth bootstrapped dataset (yki , xi), i = 1, . . . , n. The parametrically bootstrapped

responses yk1 , . . . , y
k
n are generated from the null hypothesis model with B and Σ replaced

by B̂ and Σ̂0
N . Finally, let ξk = ξ(Σ̂k

N , Σ̂
k
A) denote the likelihood ratio based on the kth

bootstrapped dataset, where as before k = 0 means the original data. The bootstrap

procedure is presented in Algorithm 3.2

We examine the performance of this testing procedure in the next section.
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Algorithm 3.2 Parametric Bootstrap Test

1: Input: (yi, xi) ∈ Rq × Rp, i = 1, . . . , n, nominal level α ∈ (0, 1), and B ∈ {1, 2, . . . }
2: Compute B̂ and Σ̂0

N using (yi, xi), i = 1, . . . , n
3: for k = 1, . . . , B do
4: Generate yk1 , . . . , y

k
n as independent multivariate normal random variables with

means B̂Txi, i = 1, . . . , n, and common covariance matrix Σ̂0
N

5: Compute Σ̂k
N and Σ̂k

A using (yki , xi), i = 1, . . . , n
6: Compute and store the kth likelihood ratio ξk

7: end for
8: Reject the null hypothesis if ξ0 is smaller than the αth empirical quantile of {ξ1, . . . , ξB}.

3.4 Simulations

All simulation results are summarized in Table 3.1. We present simulation-based estimates

of rejection rates of the statistical tests and of spectral norm errors of MLEs of Σ.

The data generating process in the simulations is a separable correlation model with

xi = 1, B = 0, U? = (U?i,j) = (1/2|i−j|) (i = 1, . . . , r, j = 1, . . . , r), and V ? = (V ?
i,j) =

(1/2|i−j|) (i = 1, . . . , c, j = 1, . . . , c). That is, both correlation matrices have a first order

autoregressive structure with correlation parameter 1/2. The standard deviation matrix

is either W ? = Iq, the q × q identity matrix, so that the separable covariance model is

also correct, or the diagonal entries of W ? are evenly spaced numbers between 0.1 and 10,

which is not separable. We also considered other generating processes with, for example,

compound symmetric correlation matrices or those drawn randomly from a Wishart dis-

tribution rescaled to have unit diagonal entries, and the results were qualitatively similar.

Some additional simulation results can be found in Appendix B. The maximum number

of iterations in the algorithm was set to 10000, and the algorithm was terminated if the

absolute change in the objective function was less than ε = 10−10 in an iteration.

The reported average spectral norm error for any given configuration (n, r, c) is errcor =

m−1
∑m

j=1 ‖Σ̂
j
cor − Σ?‖, where Σ̂j

cor is the separable correlation estimator based on the jth

simulated dataset. The definitions of errcov and errur are similar but with the separable

correlation estimate replaced by the separable covariance estimate, and the sample covari-

ance (unrestricted ML) estimate, respectively. The columns labeled rej with subscript cov,
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(cov, b), cor, or (cor, b) are estimated rejection rates for statistical tests. The subscript

cov or cor indicates if the null hypothesis is separable covariance or correlation, and the

subscript b indicates the bootstrap procedure in Algorithm 3.2 was used. If the bootstrap

was not used, then the tests are usual likelihood ratio tests. Next we summarize the results

and start with the estimation error.

For all configurations where the separable covariance model is correct, the average spec-

tral norm errors are lower for the estimates using this assumption than those assuming

only separable correlation (upper panel, Table 3.1). This is unsurprising since separable

correlation requires the estimation of more parameters. Comparisons to the unrestricted

maximum likelihood estimator are only made when n − p > q, i.e. when it exists. The

unrestricted estimates have at worst about five times higher average error than the ones

based on separable correlation (n = 320, r = c = 15), and at best about two times higher

(n = 160, r = c = 5).

When data is generated with separable correlation (lower panel, Table 3.1), the separable

covariance estimates have lower average spectral norm errors when the sample size is small

in comparison to r and c. For larger sample sizes, the separable correlation estimates have

lower average errors. That is, there is a bias-variance trade-off in that fitting the incorrect

model may yield lower errors due to higher precision in the estimates when the sample size

is small.

Consider next columns 7 – 10 in the upper panel. The parametric bootstrap based

test has close to nominal size, 0.05, in all settings considered, whether the null hypothesis

is separable covariance or separable correlation. Notice, both of these are correct when

covariance is separable. On the other hand, the standard likelihood ratio test only has

nominal size when n is large in comparison to r and c and the null hypothesis is separable

covariance. When the null hypothesis is separable correlation, the usual likelihood ratio

test is very conservative for almost all configurations. Only when n = 320 and r = c = 5 is

the size close to nominal, 0.12 compared to 0.05. To assess large sample validity of the test,

we also ran a simulation with n = 1000, r = c = 5, and that sample size was large enough

to yield near-nominal rejection rates for the usual likelihood ratio test.
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When data is generated with separable correlation but not separable covariance (lower

panel), then the empirical rejection rates for the bootstrap based test with the null hypoth-

esis that covariance is separable varies between 0.04 and 1.0. Power is low when either the

number of observations is small in comparison to r and c, or one of r and c is small, or

both. For small n, here n = 10 or n = 20, the power is lower when r = 5, c = 15 than

when r = c = 15 even though n is smaller in comparison to q = rc in the latter case. The

difference in parameter counts between the two models is 15× 5− (15 + 5− 1) = 56 in the

former case but 152 − (15 + 15− 1) = 196 in the latter, which is likely the reason rejection

rates are higher under the latter regime.

It is illuminating that in some settings, for example when n = 20 and r = c = 5, the

separable covariance model seems the better choice if one is interested in estimating the

covariance matrix with small error, but our simulations indicate statistical testing rejects

that model with high probability. Thus, the choice between the models should depend on

the purpose for which they are to be used, not only on which model is correct.

3.4.1 Convergence diagnostics

The proposed algorithm can terminate in four ways: it converges, meaning the change

between two iterations in the objective function is less than some threshold ε, the maximum

number of iterations are reached, an update of U is indefinite, or an update of V is indefinite.

We have performed extensive simulations examining what causes the algorithm to terminate

for different values of n, r, and c. A summary of these results are in Appendix B. In

general, the algorithm always converges when n − p is slightly greater than max(r/c, c/r).

For example, when xi = 1, c = 9, and r = 2, simulations indicate the algorithm always

converges when n ≥ 10. For n ≤ 4, the algorithm terminates because an iterate of U is

indefinite in almost every simulation run. For n = 6, the algorithm either converges (about

60% of the time), reaches the maximum number of iterations (about 10% of the time),

or terminates because and update for U is indefinite. For n = 8 all updates are positive

definite, but sometimes the algorithm does not converge before the maximum number of

iterations (1000) is reached (about 20% of the time). The pattern is similar for different
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Table 3.1: Estimation Error and Test Size

Data generated with separable covariance
n r c errcor errcov errur rejcov rejcov,b rejcor rejcor,b

10 5 5 2.74 2.20 - 0.29 0.06 - -
10 5 15 5.60 3.50 - 0.90 0.02 - -
10 15 15 5.52 3.58 - 0.97 0.03 - -
20 5 5 1.67 1.49 - 0.12 0.05 - -
20 5 15 2.70 2.34 - 0.37 0.06 - -
20 15 15 2.92 2.39 - 0.51 0.04 - -

160 5 5 0.57 0.52 1.19 0.06 0.06 0.21 0.06
160 5 15 0.87 0.81 2.44 0.06 0.05 1.00 0.05
160 15 15 0.92 0.81 - 0.09 0.07 - -
320 5 5 0.39 0.36 0.84 0.05 0.05 0.12 0.06
320 5 15 0.62 0.58 1.70 0.07 0.07 0.97 0.05
320 15 15 0.65 0.58 3.51 0.05 0.05 1.00 0.04
Data generated with separable correlation
10 5 5 15.62 13.41 - 0.87 0.50 - -
10 5 15 34.73 20.35 - 0.95 0.04 - -
10 15 15 33.86 22.43 - 1.00 0.14 - -
20 5 5 9.87 9.69 - 0.99 0.97 - -
20 5 15 15.95 13.89 - 0.82 0.36 - -
20 15 15 18.48 15.23 - 0.94 0.50 - -

160 5 5 3.28 5.16 6.53 1.00 1.00 0.23 0.06
160 5 15 5.31 5.46 13.86 1.00 1.00 1.00 0.05
160 15 15 6.01 6.37 - 1.00 1.00 - -
320 5 5 2.37 4.82 4.63 1.00 1.00 0.12 0.06
320 5 15 3.68 4.19 9.63 1.00 1.00 0.97 0.05
320 15 15 4.23 5.17 19.59 1.00 1.00 1.00 0.05

Columns labeled err show average spectral norm errors. Subscripts indicate sep-
arable correlation, separable covariance, and unrestricted estimators. Columns
with label rej show empirical rejection rates. The subscripts indicate the null
hypotheses covariance separability and correlation separability. A second sub-
script b indicates the parametric bootstrap was used. With one exception, the
largest standard errors for entries in columns 4 – 10 are, respectively, 0.04,
0.001, 0.02, 0.02, 0.02, 0.02, and 0.01. The standard error for errcor with
n = 10, r = c = 15 is 0.08.
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configuration of our model. If we take reaching the maximum number of iterations as a sign

of there not existing a unique maximum of the log-likelihood, these results are qualitatively

consistent with theory developed by Soloveychik and Trushin [69], who show that, with

separable covariance and xi = 1, no unique minimum exists if n < max(r/c, c/r) + 1,

whereas if n > r/c + c/r + 1 a unique minimum exists almost surely, and the flip-flop

algorithm converges to this unique minimum almost surely from any starting point. For n

in the gap between these two cutoffs, a unique minimum exists with positive probability

strictly less than one.

3.5 Data example

We illustrate our model using data on dissolved oxygen concentration in the Mississippi

River and are interested estimating the covariance matrix for measurements from a number

of different areas and time points. Additional details on the modeling choices can be found

in Appendix B. We consider a mean structure where the regressors xi (i = 1, . . . , n) are

those resulting from fitting cubic splines in the year index. Since the choice of predictors

does not affect the estimation procedure for Σ, we do not discuss it in detail.

Our data consist of n = 21 years (1994 – 2002, 2004 – 2015) of quarterly measurements

from r = 16 areas of the Upper Mississippi River. Observations from winter are excluded

since water is typically mostly frozen in the northernmost sampling areas in winter, so c = 3.

The areas represent sampling strata-river reach combinations; the data were collected by

the US Army Corps of Engineers’ Upper Mississippi River Restoration Program Long Term

Resource Monitoring element [39].

We treat dissolved oxygen measurements as independent between years. In the raw data

there are several measurements for every year, season, and area. For convenience, we model

the sample means of these measurements. That is, we let Yi,j,k (i = 1, . . . , n, j = 1, . . . , 16,

k = 1, 2, 3) denote the sample mean of the dissolved oxygen measurement in season k, area

j, and year i. For the sample means data, the separable correlation model says that the

correlations between mean dissolved oxygen concentrations in spring, summer, and fall are
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the same for all areas. Additionally, the correlations between mean concentrations from

different areas are the same in all seasons. If separability or some other restrictions were

not imposed in addition to independence between years, then the covariance matrix Σ

would be of size 48× 48 in this example, and we only have n = 21 years of data. Thus, in

this example, correlation separability is motivated both as a parsimonious parameterization

enabling maximum likelihood estimation, and as a reflection of the spatiotemporal structure

of the data. It is also of scientific interest to examine whether, in fact, the separable

covariance model can be applied to our data.

We ran the the parametric bootstrap test of H0 : Separable covariance v. HA : Separable

correlation with B = 10000. In none of these datasets did we observe a likelihood ratio

test statistic larger than what was observed in the real data, suggesting a p−value less than

0.0001. The parametric bootstrap of course relies on the model being a good approximation

for the data generating process. It is outside the scope of this article to examine this

rigorously, but as a quick check we plotted quantiles of the standardized residuals ri =

Σ̂
−1/2
cor (yi − B̂Txi) (i = 1, . . . , n) against those of a normal distribution. This revealed a

somewhat heavy left tail but otherwise good agreement between theoretical and empirical

quantiles; the plot is excluded for brevity.

The null hypothesis of correlation separability cannot be formally tested with a likelihood

ratio test since n = 21 < 48 = q. However, inspecting the residual covariance matrix S(B̂)

and comparing it to the estimate from the separable correlation model may still give some

informal indications of how well the model fits. In the heatmap of the residual covariance

matrix S in Fig. 3.1, there is a larger variation in off-block-diagonal covariances than in

the heatmap of the separable correlation estimate. The block-diagonal structure with three

main blocks is more pronounced in the plot of the estimate with separable correlation.

These differences may indicate either a lack of fit or that the residual covariance matrix is

picking up on noise in the data. The three blocks, from lower left to upper right, correspond

to measurements from spring, summer, and fall. The lower off-block-diagonal covariances

indicate dependence between observations from different seasons is in weak in general. The

estimated variance of the 46th response element is particularly large, this can be seen also
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in Fig. 3.2. At the sampling location corresponding to this element, the river exhibits an

unusual combination of deep water and low flow; measurements are also taken in fall when

flow is generally lower than in spring and summer 1. Together, these characteristics might

lead to larger swings in average concentrations of dissolved oxygen among years than for

other reach-stratum combinations in fall, thus offering a possible physical explanation for

our finding. Assuming it is a real finding, it is an important discovery that is inconsistent

with separable covariance where any season effect on the variance of measurements has to be

the same for every sampling location. Plots of the variance estimates in Fig. 3.2 reveal other

elements of the response vector where the difference between the models is even greater.

For example, the separable correlation estimates indicate variation is particularly large at

sampling location 11 in spring, that is, for element 11 of the response vector. Although

outside the scope of this article, investigating further why variability in measurements is

particularly large at this location and season can potentially lead to interesting scientific

findings that would not be discovered if assuming separable covariance.

1J. Rogala, personal communication with Brian Gray, 29 Jan 2018
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Figure 3.1: Estimated covariances for dissolved oxygen data
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(a) Residual covariance matrix
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(b) Estimate with separable correlation

Grayscale indicates covariance.

Figure 3.2: Estimated variances for dissolved oxygen data
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Dots and triangles correspond to estimates from separable correlation and separable covariance models,
respectively. The three panels are, from left to right, spring, summer, and fall.



3.6. Discussion 57

3.6 Discussion

In settings where the data have a two-dimensional structure, the separable correlation model

is a natural alternative to consider; it occupies a middle ground between separable and

unstructured covariance.

Ours is the first algorithm for maximum likelihood estimation specifically designed for

covariance matrices with separable correlation. By updating optimization variables in blocks

and using rescaling we circumvent the need for constrained optimization methods over sets

of correlation matrices. Our algorithm also has closed form updates at every iteration,

making it computationally convenient. Lu and Zimmerman [48] mention that the flip-flop

algorithm is between 50 and 5000 times faster than a Newton–Raphson algorithm applied to

their problem with separable covariance, and the difference increases with the dimension of

the optimization problem. Given the similarities between our setting and theirs, we expect

our algorithm to also outperform second order descent algorithms even though updating

W and rescaling U and V is more time-consuming in our model than in the separable

covariance model. We also note that our algorithm can be extended to handle constraints

on the correlation matrices U and V by simply changing the corresponding update, without

having to change anything else.

Deriving analytical bounds for when minima exist and are unique in our model, similar

to those in [69], is an avenue for future research. Their proof does not immediately carry

over to our setting since the negative log-likelihood of our model is not geodesically convex

in the sense that of the separable covariance model is.

Further years of sampling would permit formal testing of the validity of the assumed

separability against an unstructured covariance matrix in our data example. Restrictions

on either the spatial or temporal autocorrelation could also be incorporated in such a study,

building on the work of [71], as could the inclusion of habitat predictors and an analysis of

how the assumed covariance structure affects inference about the regression coefficient B.



Chapter 4

Convergence complexity analysis of
a collapsed Gibbs sampler for
Bayesian vector autoregressions

4.1 Introduction

Markov chain Monte Carlo (MCMC) is frequently used in Bayesian statistics to explore

the posterior distribution of a parameter θ given data Y . In order to assess or ensure

the reliability of an analysis using MCMC it is essential to understand some convergence

properties of the chain in use [19, 42, 74]. Here we will only consider irreducible, aperiodic,

and Harris recurrent chains and focus the discussion on the rate at which they converge to

their stationary distribution. To be more precise, let ν = νY denote a probability measure

with density f(θ | Y ) on a set Θ, and let P h (P ≡ P 1) be the h-step transition kernel for

a Markov chain with state space Θ, started at a point θ ∈ Θ. Throughout, sets on which

measures are defined are assumed to be topological and equipped with their Borel σ-algebra,

with the dominating measures for densities being clear from context. In our analysis the

set in question will be a subset of Rd for some d ≥ 1 and the dominating measure Lebesgue

measure. Now, by a chain’s convergence rate we mean the rate at which ‖P h(θ, ·)−ν(·)‖TV

approaches zero as h tends to infinity, where ‖·‖TV denotes the total variation norm. If this

convergence happens at a geometric (or exponential) rate, meaning there exist a ρ ∈ [0, 1)

58
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and an M : Θ→ [0,∞) such that for every θ ∈ Θ and h ∈ {1, 2, . . . }

‖P h(θ, ·)− ν(·)‖TV ≤M(θ)ρh, (4.1)

then the chain, or the kernel P , is said to be geometrically ergodic. Following Qin and

Hobert [60] we also define the geometric convergence rate ρ? to be the infimum of the set

of ρ ∈ [0, 1] such that (4.1) holds. Since all probability measures have unit total variation

norm, ρ? is always in [0, 1], and P is geometrically ergodic if and only if ρ? < 1. Geometric

ergodicity plays an important role in the theory of Markov chains as well as in the MCMC

literature. Functionals of geometrically ergodic Markov chains satisfy a central limit theo-

rem (CLT) under relatively weak additional conditions [40], and under additional moment

conditions the variance in the limiting distribution given by the CLT can be consistently

estimated [20, 75]. Numerous articles have been written that establishes geometric ergod-

icity or similar convergence results for MCMC algorithms used for Bayesian models [e.g.

1, 3, 33, 38, 60, 73]. Lately, there has also been an increasing interest in convergence com-

plexity analysis of MCMC algorithms, the goal of which is an understanding of how the

convergence rate ρ? behaves as the number of parameters or the number of observations

in the underlying model varies [60, 82]. Here, that model will be a vector autoregression

(VAR). We will consider a fixed number of parameters and vary the sample size. We estab-

lish conditions that ensure ρ? < 1, both for fixed n and as n tends to infinity. To facilitate

an introductory discussion of these results, let us first define the VAR.

A stochastic process Yt ∈ Rr, t = 1, . . . , n, is a VAR of order q (VAR(q)) if it satisfies

Yt =

q∑
i=1

AT
i Yt−i + BTxt + εt, (4.2)

where ε1, . . . , εn are i.i.d. N (0,Σ), xt ∈ Rp is a vector of non-stochastic predictors, Ai ∈

Rr×r (i = 1, . . . , q), and B ∈ Rp×r. We assume that the starting point (Y−q+1, . . . , Y0) is

non-stochastic. To define prior distributions, let m ∈ Rqr2 , C ∈ Sqr
2

+ , D ∈ Sr+, and a ≥ 0 be

hyperparameters, where Sr+ denotes the set of (real) r × r symmetric positive semi-definite
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(SPSD) matrices; we use Sr++ to denote the symmetric positive definite (SPD) ones. Let

also A = [AT
1 , . . . ,AT

q ]T ∈ Rqr×r and α = vec(A), where vec(·) is the vectorization operator.

The vectorization α will often, with some abuse of notation, be used interchangeably with

A as a function argument. We consider priors on θ = (α,B,Σ) ∈ Θ = Rqr2 × Rp×r × Sr++

that have densities in the form f(θ) = f(α)f(B)f(Σ), with

f(α) ∝ exp

(
−1

2
[α−m]TC[α−m]

)
,

f(B) ∝ 1,

and

f(Σ) ∝ |Σ|−a/2 etr

(
−1

2
DΣ−1

)
ISr++

(Σ),

where etr(·) = exp(tr(·)) and | · | means the determinant when applied to matrices. The flat

prior on B is standard in multivariate scale and location problems, including in particular

the multivariate regression model which is recovered when A = 0 in our model. The priors

on α and Σ are common in macroeconomics [44]. Sometimes A and B are grouped as Ψ =

[AT,BT]T and a proper multivariate normal prior is assigned to vec(Ψ) [46]. Here, however,

we treat A and B separately since doing so allows for the use of the standard improper prior

on B, while using a proper prior on A leads to a proper posterior even when n is small in

comparison to r and q. Consequently, many high-dimensional, or large, VARs considered

in the literature are compatible with our assumptions [4, 26, 45]. Finally, the prior on Σ

includes the inverse Wishart (D ∈ Sr++, a > 2r) and Jeffreys prior (D = 0, a = r + 1) as a

special cases.

The literature on convergence properties of MCMC algorithms for Bayesian vector au-

toregressions is limited. Hobert et al. [33] analyze the convergence of a MCMC algorithm

for a multivariate linear regression model that, considering the data as fixed, includes our

VAR as a special case. However, they consider the (improper) prior f(θ) ∝ |Σ|−a which

is not compatible with the large VARs we allow for in the fixed n setting. In the large n
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setting, i.e. when doing convergence complexity analysis, the data is no longer considered

fixed and, hence, the VAR is no longer a special case of the multivariate linear regression.

Kadiyala and Karlsson [43] investigate numerical properties of a two-component (A and

Σ) Gibbs sampler for Bayesian vector autoregressions without predictors. Their analysis is

simulation-based and as such does not provide any theoretical guarantees. Our results ad-

dress this since, as we will discuss in more detail below, the algorithm we propose simplifies

to the Gibbs sampler they consider when there are no predictors.

The algorithm we propose (Section 4.2) is a collapsed three-component Gibbs sampler

that updates A, B, and Σ in separate steps. Our investigation of its properties can be

divided into two parts—one in which n is fixed and the data conditioned on (Section 4.3),

as is historically more common in the MCMC literature, and one in which n tends to

infinity (Section 4.4). In the former case the data can be treated as fixed but in the latter

case the stochastic properties of the data are of critical importance. To appreciate the

differences between the two settings, suppose first that n is fixed and that having observed

Y = [Y1, . . . , Yn]T ∈ Rn×r we want to explore the posterior density f(θ | Y ). Let Pn denote

the kernel of the Markov chain generated by our collapsed Gibbs sampler and recall that

the Markov chain is geometrically ergodic if and only if its geometric convergence rate

ρ? = ρ?n is less than one. Geometric ergodicity is often established by using the celebrated

drift and minorization conditions due to Rosenthal [65] to get an upper bound ρ̄n such

that ρ?n ≤ ρ̄n < 1. In many settings, including ours, the bound ρ̄n one obtains from the

drift and minorization conditions depends on Y . This is only of minor interest when n

and Y are treated as fixed. However, as n varies it is unnatural to consider Y as fixed.

Thus, in convergence complexity analysis the stochastic properties of ρ̄n as a function of

Y are of primary interest. Our analysis leads to conditions that ensure lim supn→∞ ρ̂n < 1

almost surely or P(ρ̂n < 1) → 1 as n → ∞; when one of these holds we say that the

geometric ergodicity is asymptotically stable almost surely or in probability. Such results

have previously been established only for a few practically relevant MCMC algorithms [60].

The rest of the paper is organized as follows. In Section 4.2 we propose a collapsed

Gibbs sampler. Conditions for geometric ergodicity for a fixed n are presented in Section
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4.3 and conditions for asymptotically stable geometric ergodicity are given in Section 4.4.

Some concluding remarks are given in Section 4.5.

4.2 A collapsed Gibbs sampler

Let Y = [Y1, . . . , Yn]T ∈ Rn×r, X = [x1, . . . , xn]T ∈ Rn×p, Zt = [Y T
t−1, . . . , Y

T
t−q]

T ∈ Rqr

(t = 1, . . . , n), and Z = [Z1, . . . , Zn]T ∈ Rn×qr. The joint density for a sample path of

length n from the VAR(q) is

f(Y | A,B,Σ) ∝ |Σ|−n/2 etr
[
−n

2
Σ−1S(A,B)

]
, (4.3)

where S = n−1(Y − ZA − XB)T(Y − ZA − XB) [49]. This is the same density as that

for n observations in the classical multivariate linear regression with design matrix [Z,X] ∈

Rn×(qr+p) and coefficient matrix [AT,BT]T. Thus, those of our results that hold for fixed

n, with the data treated as observed, can be applied without change to a multivariate

regression model where the design matrix is partitioned into two parts—one which has a

flat prior for its coefficient, and one which has a proper prior for its coefficient. Partitioning

the design matrix in this way leads to a proper posterior even when Z is a wide matrix, or

high-dimensional. This configuration is unlike those in other work on similar models which

typically assume either that [Z,X] has full rank or that the prior for [AT,BT]T is proper

[1, 3, 26, 33, 72].

Straightforward calculations show that, assuming it exists, the posterior distribution in

our model has density

f(A,B,Σ | Y ) ∝ |Σ|−
n+a
2 etr

(
−1

2
Σ−1[D + nS]− 1

2
(α−m)TC(α−m)

)
. (4.4)

If C = 0, then one can show that this posterior is a normal-(inverse )Wishart for which

no MCMC is necessary. For the case C ∈ Sqr
2

++ but B = 0, i.e. there are no predictors

in the model, Karlsson [44] suggests using a two-component Gibbs sampler to explore the

posterior. Our algorithm specializes to this two-component Gibbs sampler when B = 0 and,
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as a consequence, our results apply almost verbatim to that sampler.

The following lemma gives two different sets of conditions that lead to a proper posterior.

For this result, the prior on α need not be normal or flat—any priors satisfying the conditions

laid out in the lemma work.

Lemma 4.2.1. The posterior distribution is proper if either

1. D ∈ Sr++, X has full column rank, n+ a > 2r + p, and f(α) is proper; or

2. [Y,Z,X] ∈ Rn×(r+qr+p) has full column rank, n+a > (2+q)r+p, and f(α) is bounded.

Proof. Appendix C.

Notice that if f(Σ) is a proper inverse Wishart density, then necessarily a > 2r and

D ∈ Sr++, and hence the first set of conditions in Lemma 4.2.1 holds if n > p and f(α)

is proper, assuming no superfluous predictors are included in X. In particular, r or q can

be arbitrarily large in comparison to n. The second set of conditions allows for the use of

improper priors also on α and Σ when n is large in comparison to all of r, q, and p. The

full column rank of [Y, Z,X] is natural in large n settings. In practice, one expects it to

hold unless X includes superfluous predictors or the sample is so small that a least squares

regression of Y on Z and X gives residuals that are identically zero. In what follows we

assume the posterior is proper unless otherwise noted.

There are many MCMC algorithms that can be used to explore the posterior in (4.4).

For example, all full conditional distributions have familiar forms so it is straightforward

to implement a three-component Gibbs sampler. Another sensible option mentioned in the

introduction is to group A and B and update them together. Here, we will instead make use

of the particular structure the partitioned matrix [Z,X] offers and devise a collapsed Gibbs

sampler. The results of Liu et al. [47] imply that the algorithm we propose generates a chain

that converges to its stationary distribution at least as fast as both the three-component

Gibbs sampler and the two-component sampler that groups A and B. Moreover, as we will

see in the next section, considering the collapsed sampler lets us work with a convenient

transition kernel when establishing convergence rates. A formal description of our algorithm
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is given in Algorithm 4.1. We next derive the conditional distributions necessary for its

implementation.

Algorithm 4.1 Collapsed Gibbs sampler

1: Input: Starting values (α0,B0,Σ0), k = 0, K ≥ 1

2: while : k < K do

3: Draw Σk+1 from the distribution of Σ | Ak, Y

4: Draw αk+1 from the distribution of α | Σk+1, Y

5: Draw Bk+1 from the distribution of B | Ak+1,Σk+1, Y

6: Set k = k + 1

7: end while

LetM(M,U, V ) denote the matrix normal distribution with mean M and scale matrices

U and V (see Definition C.1.1), and let W−1(U, c) denote the inverse Wishart distribution

with scale matrix U and c degrees of freedom. For any real matrix F , define PF to be the

projection onto its column space and QF the projection onto the orthogonal complement

of its column space. Let also ⊗ denote the Kronecker product and define B = B(Σ) =

C + Σ−1 ⊗ ZTQXZ and u = u(Σ) = B−1[Cm+ (Σ−1 ⊗ ZTQX) vec(QXY )].

Lemma 4.2.2. If at least one of the two sets of conditions in Lemma 4.2.1 holds, then

Σ | A, Y ∼ W−1
(
D + (Y − ZA)TQX(Y − ZA), n+ a− p− r − 1

)
α | Σ, Y ∼ N (u,B−1), and

B | A,Σ, Y ∼M
(

[XTX]−1XT(Y − ZA), [XTX]−1,Σ
)
.

Proof. Appendix C.

It is useful for the coming discussion to notice from the proofs of Lemmas 4.2.1 and

4.2.2 that f(α,Σ | Y ) is in the form of a posterior density in a VAR without predictors, but
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with the data Y and Z replaced by QXY and QXZ:

f(α,Σ | Y ) ∝ |Σ|−
a+n−p

2 etr

(
−1

2
Σ−1[D + (Y − ZA)TQX(Y − ZA)]

)
f(α). (4.5)

In the next section we prove that the proposed algorithm generates a geometrically ergodic

Markov chain.

4.3 Geometric ergodicity

For the work in this section n is fixed and the data Y and X observed, and hence treated

as constant. Accordingly, we do not use a subscript for the sample size on the transition

kernels. The one-step transition kernel for the collapsed Gibbs sampler in Algorithm 4.1 is,

for any measurable A ⊆ Θ = Rqr2 × Rp×r × Sr++,

PC(θ′, A) =

∫∫∫
IA(α,B,Σ)f(Σ | α′, Y )f(α | Σ, Y )f(B | α,Σ, Y ) dΣ dα dB,

where the subscript C is short for collapsed. By construction, the invariant distribution νC

has density f(α,B,Σ | Y ). Instead of working directly with PC we will use its structure to

reduce the problem in a convenient way. To that end, consider the sequence ξk = (αk,Σk),

k = 1, 2, . . . obtained by ignoring the component for B in the chain generated by Algorithm

4.1. The sequence ξk is generated as a two-component Gibbs sampler exploring f(α,Σ | Y ),

and hence its transition kernel is, for any measurable A ⊆ Rqr2 × Sr++,

PG((α′,Σ′), A) =

∫∫
IA(α,Σ)f(α | Σ, Y )f(Σ | α′, Y ) dα dΣ,

and its invariant distribution νG has density f(α,Σ | Y ), where subscript G stands for

Gibbs.

The following lemma says that we can analyze PG in place of PC , thereby reducing the

complexity of the problem. Its proof, which for completeness can be found in Appendix

C, uses only well known results about de-initializing Markov chains due to Roberts and
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Rosenthal [62].

Lemma 4.3.1. For any θ = (α,B,Σ) ∈ Θ, and h ∈ {1, 2, . . . },

‖P hC(θ, ·)− νC(·)‖TV = ‖P hG((α,Σ), ·)− νG(·)‖TV

Proof. Appendix C.

We next present some preliminary results that will lead geometric ergodicity of PC and

PG. The following well known result due to Rosenthal [65], here simplified and specialized

to our setting using a calculation in Qin and Hobert [60], is instrumental.

Lemma 4.3.2. If P is a transition kernel with state space X and there exist V : X→ [0,∞),

λ < 1, L ≥ 0, T > 2L/(1−λ), ε > 0, and a measure R on X such that for every x′ ∈ X and

every x′′ ∈ X ∩ {x ∈ X : V (x) ≤ T},

∫
V (x)P (x′, dx) ≤ λV (x′) + L (4.6)

and

P (x′′, ·) ≥ εR(·), (4.7)

then there exists a c ∈ (0, 1) such that the geometric convergence rate ρ? of P is upper

bounded by

ρ̄ := (1− ε)c ∨
(

1 + 2L+ λT

1 + T

)1−c
(1 + 2L+ 2λT )c < 1.

For now it is enough to take from Lemma 4.3.2 that if the drift condition in (4.6) and the

minorization condition in (4.7) are satisfied, then P is geometrically ergodic—the specific

form of the upper bound ρ̄ will be useful in the next section. The next lemma verifies

that the drift condition in (4.6) holds for PG, which has state space X = Rqr2 × Sr++. We

use ‖ · ‖ for the Euclidean norm when applied to vectors and the spectral (induced) norm

when applied to matrices, ‖ · ‖F denotes the Frobenius norm for matrices, and superscript

+ denotes the Moore–Penrose pseudo-inverse.
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Lemma 4.3.3. If C ∈ Sqr
2

++ and at least one of the two sets of conditions in Lemma 4.2.1

holds, then the transition kernel PG satisfies (4.6) with V : Rqr2 × Sr++ → [0,∞) defined by

V (α,Σ) = ‖α‖2, λ = 0, and

L =
(
‖C−1‖‖Cm‖+ ‖C−1/2‖‖C1/2‖‖Â‖F

)2
+ tr(C−1),

where Â = (ZTQXZ)+ZTQXY .

Proof. Assume without loss of generality that QX = In, where In denotes the n×n identity

matrix; the general case is recovered by replacing Z and Y by QXZ and QXY everywhere.

Let also y = vec(Y ). By Lemma 4.2.2 and standard results for the multivariate normal

distribution, ∫
‖α‖2f(α | Σ, Y ) dα = ‖u‖2 + tr(B−1).

Since Σ−1 ⊗ ZTZ is SPSD we have tr(B−1) ≤ tr(C−1), so it remains only to deal with the

first term. The triangle inequality gives ‖u‖ ≤ ‖B−1Cm‖ + ‖B−1(Σ−1 ⊗ ZT)y‖. Again

using that Σ−1 ⊗ ZTZ is SPSD,

‖B−1Cm‖ ≤ ‖C−1‖‖Cm‖.

For the remaining term we have

‖B−1(Σ−1 ⊗ ZT)y‖ = ‖C−1/2(Iqr2 + C−1/2(Σ−1 ⊗ ZTZ)C−1/2)−1C−1/2(Σ−1 ⊗ ZT)y‖

≤ ‖C−1/2‖‖(Iqr2 + C−1/2(Σ−1 ⊗ ZTZ)C−1/2)−1C−1/2(Σ−1 ⊗ ZT)y‖

By Lemma C.1.2, with (Σ−1/2⊗In)y and (Σ−1/2⊗Z)C−1/2 taking the roles of what is there

denoted y and X, we have for any generalized inverse (denoted by superscript g) that

‖(Iqr2 + C−1/2(Σ−1 ⊗ ZTZ)C−1/2)−1C−1/2(Σ−1 ⊗ ZT)y‖
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is upper bounded by

‖(C−1/2(Σ−1 ⊗ ZTZ)C−1/2)gC−1/2(Σ−1 ⊗ ZT)y‖. (4.8)

Lemma C.1.3 says that C1/2(Σ−1⊗ZTZ)+C1/2 is one such generalized inverse. Using that

the Moore–Penrose pseudo-inverse distributes over the Kronecker product [50], the middle

part of this generalized inverse can be written as (Σ−1 ⊗ ZTZ)+ = Σ⊗ (ZTZ)+. Thus, for

this particular choice of generalized inverse (4.8) is equal to

‖C1/2(Σ⊗ [ZTZ]+)(Σ−1 ⊗ ZT)y‖ = ‖C1/2(Ir ⊗ [ZTZ]+ZT)y‖,

which is upper bounded by

‖C1/2‖‖(Ir ⊗ [ZTZ]+ZT)y‖.

Finally, notice that ‖(ZTZ)+ZTY ‖F = ‖ vec((ZTZ)+ZTY )‖ = ‖(Ir⊗(ZTZ)+ZT)y‖. Thus,

we have proven that, for every Σ,

‖u‖2 + tr(B−1) ≤
(
‖C−1‖‖Cm‖+ ‖C−1/2‖‖C1/2‖‖(ZTZ)+ZTY ‖F

)2
+ tr(C−1),

and the proof is completed upon integrating both sides with respect to f(Σ | α′, Y ) dΣ.

Lemma 4.3.4. For any T > 0, there exists a probability measure R such that, whenever

V (α,Σ) ≤ T ,

PG((α,Σ), ·) ≥ εR(·)

with

ε =
|D + Y TQ[Z,X]Y |(n+a−p−r−1)/2

|D + Ir(‖QXY ‖+ ‖QXZ‖
√
T )2|(n+a−p−r−1)/2

.

Proof. Let c = n+ a− p− r− 1 and consider f(Σ | A, Y ) on sets where V (α) = ‖A‖2F ≤ T .
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For such A,

f(Σ | A, Y )

=
|D + (Y − ZA)QX(Y − ZA)|c/2

2cr/2Γr(c/2)
|Σ|−

n+a−p
2 etr

(
−1

2
Σ−1[D + (Y − ZA)QX(Y − ZA)]

)
≥
|D + Y TQ[Z,X]Y |

2cr/2Γr(c/2)
|Σ|−

n+a−p
2 etr

(
−1

2
Σ−1[D + Ir(‖QXY ‖+ ‖QXZ‖

√
T )2]

)
=: g(Σ),

where Γr denotes the r-variate gamma function. The inequality uses two bounds: tr(Σ−1(Y−

ZA)TQX(Y − ZA)) = tr(Σ−1/2(Y − ZA)TQX(Y − ZA)Σ−1/2) ≤ tr(Σ−1/2Ir‖QX(Y −

ZA)‖2Σ−1/2) and (Y − ZA)TQX(Y − ZA) − (Y − ZA)TQ[Z,X](Y − ZA) is SPSD. Now,

upon defining the measure R̃ by

R̃(A) =

∫∫
IA(α,Σ)f(α | Σ, Y )g(Σ) dα dΣ

and letting ε = R̃(Rqr2×Sr++) = |D+Y TQ[Z,X]Y |c/2|D+Ir(‖QXY ‖+‖QXZ‖
√
T )2|−c/2 > 0

and R = R̃/ε, we are done. Indeed, ε > 0 since under the first set of conditions in Lemma

4.2.1 D is SPD, and under the second set of conditions Y TQ[Z,X]Y is SPD by Lemma

C.1.1.

Theorem 4.3.5. If C ∈ Sqr
2

++ and at least one of the two sets of conditions in Lemma 4.2.1

holds, then the transition kernels PC and PG are both geometrically ergodic.

Proof. By Lemma 4.3.1 it suffices to show it for PG. Lemma 4.3.3 establishes that (4.6)

holds for PG with V (α,Σ) = ‖α‖2 and λ = 0 and Lemma 4.3.4 verifies (4.7). The result

now follows from Lemma 4.3.2.

4.4 Asymptotic stability

The geometric ergodicity in Theorem 4.3.5 holds for any fixed n. In this section we establish

asymptotically stable geometric ergodicity as n→∞. Formally, we say that the geometric
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ergodicity of a sequence of transition kernels P1, P2, . . . with geometric convergence rates

ρ?1, ρ
?
2, . . . is asymptotically stable almost surely if there exists a sequence of random vari-

ables ρ̄1, ρ̄2, . . . such that ρ?n ≤ ρ̄n for every n and lim supn→∞ ρ̄n < 1 almost surely. If

instead P(ρ̄n < 1) → 1, we say that the geometric ergodicity is asymptotically stable in

probability. Here, the sequence of kernels under consideration is PG,1, PG,2, . . . , where PG,n

is the kernel PG from the previous section with the dependence on the sample size n made

explicit; we will continue to use PG when n is arbitrary but fixed.

It is clear that as n changes so do the data Y and X. Hence, treating Y as fixed (ob-

served) is not appropriate unless we only want to discuss asymptotic properties holding

pointwise, i.e. for particular paths of the stochastic process Y1, Y2, . . . , which is unnecessar-

ily restrictive. Let (Ω,P,F) denote an underlying probability space on which Y1, Y2, . . . are

defined. The joint distribution of the whole stochastic process (Y1, Y2, . . . ), which is charac-

terized by the true parameters A?, B?, and Σ?, and the non-stochastic sequence x1, x2, . . . ,

is a push-forward measure of P. In what follows, probabilistic statements made without

specifying a measure are taken to be with respect P so that ”almost surely” (a.s.) can often

also be read as ”for almost all sample paths of the VAR”.

Like in the fixed n setting, Lemma 4.3.2 is instrumental to our strategy: if PG,n satisfies

Lemma 4.3.2 with some V = Vn, λ = λn, L = Ln, ε = εn, and T = Tn, then there exists

a ρ̄n < 1 that upper bounds ρ?n. Our exposition focuses on the properties of those ρ̄n,

n = 1, 2, . . . , as n tends to infinity. Throughout the section we assume that the priors, and

in particular the hyperparameters, are the same for every n.

Clearly, the choice of drift function Vn is important for the upper bound ρ̂n one obtains.

The drift function used for the fixed n regime is not well suited for the asymptotic analysis

in this section. For example, as our next result shows, the sequence of ε = εn given in

the proof of Theorem 4.3.5 converges to zero almost surely as n→∞ for many reasonable

configurations of the VAR, and hence the corresponding upper bounds satisfy limn→∞ ρ̄n =

1 almost surely.
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Proposition 4.4.1. If, almost surely as n→∞,

‖Q[X,Z]Y ‖2/‖QXZ‖2 = o(n)

then the ε = εn in Theorem 4.3.5 tends to zero almost surely as n → ∞. In particular,

εn → 0 a.s. if n−1Y TQ[Z,X]Y and n−1ZTQXZ have positive definite limits a.s.

Proof. It suffices to show that ζn := ε
2n/c
n → 0 a.s. since 2n/c→ 2. We have

ζn =

[
|D + Y TQ[Z,X]Y |

|D + Ir(‖QXY ‖+ ‖QXZ‖
√
T )2|

]n
.

Let κ1 ≥ κ2 ≥ · · · ≥ κr denote the eigenvalues of D. Expanding the square and using that

‖Y TQXY ‖ ≥ ‖Y TQ[Z,X]Y ‖, we have

ζn ≤

[
|D + Ir‖Q[Z,X]Y ‖2|

|D + Ir‖QXY ‖2 + Ir‖QXZ‖2T |

]n

=

[
r∏
i=1

κi + ‖Q[Z,X]Y ‖2

κi + ‖QXY ‖2 + ‖QXZ‖2T

]n

≤
r∏
i=1

[
1 + ‖QXZ‖2T/(κi + ‖Y TQ[Z,X]Y ‖2)

]−n
.

Since T > 2L > 2‖C−1‖2‖Cm‖2 > 0 and κi < ∞ for all i and independently of n,

the first and main conclusion follows from that (1 + b/n)−n → e−b for any b ∈ R as

n→∞. The second conclusion follows from the first upon noticing that if n−1Y TQ[Z,X]Y

and n−1ZTQXZ have positive definite limits a.s., then ‖Q[X,Z]Y ‖2/‖QXZ‖2 = O(1).

The intuition as to why the drift function that works in the fixed n regime is not suitable

for convergence complexity analysis is provided by Qin and Hobert [60]: they argue that

the drift function should be centered (minimized) at a point the chain in question can be

expected to visit often. The function defined by V (α,Σ) = ‖α‖2 is minimized in any point

were α = 0, but there is in general no reason to believe the α-component of the chain will

visit a neighborhood of the origin often. On the other hand, if the number of observations
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grows fast enough in comparison to other quantities, then we expect the posterior density

f(A | Y ) to concentrate around A?. We also expect that for large n the least squares and

maximum likelihood estimator Â = (ZTQXZ)+ZTQXY is close to A?. Thus, intuitively,

the α-component of the chain should visit the vicinity of α̂ = vec(Â) often. Formalizing

this intuition leads to the main result of the section.

Let us re-define V : Rqr2 × Sr++ → [0,∞) by V (α,Σ) = ‖QXZA − QXZÂ‖2F = ‖(Ir ⊗

QXZ)(α − α̂)‖2. The following lemma establishes a result that will lead to verification of

the drift condition in (4.9) for all large enough n and almost all sample paths of the VAR

under appropriate conditions. Notice, however, that the λ given here need not be less than

unity for a fixed n or particular sample path of the VAR.

Lemma 4.4.2. If [Z,X] has full column rank, C ∈ Sqr
2

++, and at least one of the two sets

of conditions in Lemma 4.2.1 holds, then

∫
V (α,Σ)PG(α′, d(α,Σ)) =

∫∫
V (α,Σ)f(α | Σ, Y )f(Σ | α′, Y ) dα dΣ ≤ λV (α′,Σ′) + L,

with

λ =
qr +

(
‖C‖1/2‖Â‖F + ‖C−1‖1/2‖Cm‖

)2

n+ a− 2r − p− 2
and L = λ tr(D) + λ‖Q[Z,X]Y ‖2F

Proof. Suppose first that QX = In and notice that by the assumptions Z has full column

rank, and hence (ZTZ)−1 exists. Since f(α | Σ, Y ) is a multivariate normal density,

∫
V (α,Σ)f(α | Σ, Y ) dα = ‖(Ir ⊗ Z)(u− α̂)‖2 + tr((Ir ⊗ Z)B−1(Ir ⊗ Z)T). (4.9)
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For the second term we have since C is SPSD (even SPD) that

tr
(

(Ir ⊗ Z)B−1(Ir ⊗ Z)T
)

= tr
[
(Ir ⊗ Z)(C + Σ−1 ⊗ ZTZ)−1(Ir ⊗ Z)T

]
≤ tr

[
(Ir ⊗ Z)(Σ−1 ⊗ ZTZ)−1(Ir ⊗ Z)T

]
= tr

[
Σ⊗ Z(ZTZ)−1ZT

]
= tr(Σ) tr[Z(ZTZ)−1ZT]

= tr(Σ)qr,

where the last line uses that the trace of a projection matrix is the dimension of the space

onto which it is projecting. Focusing now on the first term on the right hand side in (4.9)

we have, defining H = Σ−1 ⊗ ZTZ and using α̂ = H−1(Σ−1 ⊗ ZT)y, that

‖(Ir ⊗ Z)(u− α̂)‖ = ‖(Ir ⊗ Z)(α̂−B−1(Cm+ [Σ−1 ⊗ ZTZ]y))‖

is upper bounded by

‖(Ir ⊗ Z)(H−1 −B−1)(Σ−1 ⊗ ZT)y‖+ ‖(Ir ⊗ Z)B−1Cm‖. (4.10)

Moreover, since B = C + H the Woodbury identity gives H−1 − B−1 = H−1(C−1 +

H−1)−1H−1 so that the first term in (4.10) can be upper bounded as follows:

‖(Ir ⊗ Z)(H−1 −B−1)(Σ−1 ⊗ ZT)y‖ = ‖(Ir ⊗ Z)H−1(H−1 + C−1)−1H−1(Σ−1 ⊗ ZT)y‖

= ‖(Ir ⊗ Z)H−1(H−1 + C−1)−1α̂‖

≤ ‖(Ir ⊗ Z)H−1/2‖‖H−1/2(H−1 + C−1)−1‖‖α̂‖.

Here, the power Gt, t ∈ R, for a SPD matrix G is defined by taking the spectral decompo-

sition G = UG diag(λmax(G), . . . , λmin(G))UT
G, where λmax(·) and λmin(·) denote the largest
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and smallest eigenvalues, respectively, and setting

Gt = UG diag(λtmax(G), . . . , λtmin(G))UT
G.

Now by standard properties of eigenvalues and eigenvectors of Kronecker products we get

‖(Ir ⊗ Z)H−1/2‖ = ‖(Ir ⊗ Z)(Σ1/2 ⊗ [ZTZ]−1/2)‖ = ‖Σ1/2‖‖Z(ZTZ)−1/2‖ = ‖Σ1/2‖.

In addition,

‖H−1/2(H−1 + C−1)−1‖ = λ1/2
max

(
(H−1 + C−1)−1)H−1(H−1 + C−1)−1

)
≤ λ1/2

max

(
(H−1 + C−1)−1)(H−1 + C−1)(H−1 + C−1)−1

)
= λ1/2

max

(
(H−1 + C−1)−1

)
≤ λ1/2

max(C)

= ‖C‖1/2.

It remains to deal with the second term in (4.10). Using a similar technique as with the

previous term, we have

‖(Ir ⊗ Z)B−1Cm‖ = ‖(Σ1/2 ⊗ In)(Σ−1/2 ⊗ In)(Ir ⊗ Z)B−1Cm‖

≤ ‖Σ1/2‖‖(Σ−1/2 ⊗ Z)(C + Σ−1 ⊗ ZTZ)−1‖‖Cm‖

= ‖Σ1/2‖λ1/2
max

(
[C + Σ−1 ⊗ ZTZ]−1[Σ−1 ⊗ ZTZ][C + Σ−1 ⊗ ZTZ]−1

)
‖Cm‖

≤ ‖Σ1/2‖λ1/2
max([C + Σ−1 ⊗ ZTZ]−1)‖Cm‖

≤ ‖Σ1/2‖‖C−1‖1/2‖Cm‖

Putting things together we have shown that, for any Σ,

‖(Ir ⊗ Z)(α̂− u)‖ ≤ ‖Σ1/2‖
(
‖C‖1/2‖α̂‖+ ‖C−1‖1/2‖Cm‖

)
,
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and hence we get from (4.9)

∫
V (α,Σ)f(α | Σ, Y ) dα ≤ ‖Σ‖

(
‖C‖1/2‖α̂‖+ ‖C−1‖1/2‖Cm‖

)2
+ qr tr(Σ).

The proof for the case QX = In is completed by upper bounding ‖Σ‖ ≤ tr(Σ), integrating

both sides with respect to f(Σ | α′, Y ) dΣ, and noting that

∫
tr(Σ)f(Σ | α′, Y ) dΣ =

1

n+ a− 2r − p− 2
tr
(
D + (Y − ZA′)T(Y − ZA′)

)
=

1

n+ a− 2r − p− 2

(
tr(D) + ‖QZY ‖2F + ‖ZÂ − ZA′‖2F

)
,

where we have used that (Y − ZA′)T(Y − ZA′) = (Y − ZA′)TPZ(Y − ZA′) + (Y −

ZA′)TQZ(Y − ZA′), and that PZY = ZÂ. The general case is recovered by replacing

Z and Y by QXZ and QXZ everywhere and invoking Lemma C.1.1. That ZTQXZ is

invertible also in the general case follows from the same lemma.

Lemma 4.4.3. For any T > 0, there exists a probability measure R such that, whenever

V (α,Σ) ≤ T ,

PG((α,Σ), ·) ≥ εR(·),

with

ε =
[
1 + Tλ−1

min

(
D + Y TQ[Z,X]Y

)]−r(n+a−p−r−1)/2
.

Proof. Assume first that QX = In and let c = n+a− r− p− 1 be the degrees of freedom in

the full conditional distribution for Σ. On sets where V (α,Σ) = ‖ZÂ −ZA‖2F ≤ T we also

have ‖ZÂ−ZA‖2 ≤ T . Thus, using that PZY = ZÂ, and hence that (Y −ZA)T(Y −ZA) =
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Y TQZY + (ZÂ − ZA)T(ZÂ − ZA), we get

f(Σ | A, Y )

=
|D + (Y − ZA)T(Y − ZA)|c/2

2cr/2Γr(c/2)
|Σ|−

n+a−p
2 etr

(
−1

2
Σ−1[D + (Y − ZA)T(Y − ZA)]

)
≥ |D + Y TQZY |c/2

2cr/2Γr(c/2)
|Σ|−

n+a−p
2 etr

(
−1

2
Σ−1[D + Y TQZY + IrT ]

)
=: g(Σ),

where Γr denotes the r-variate gamma function. Take now

ε̃ =

∫
g(Σ) dΣ =

(
|D + Y TQZY |

|D + Y TQZY + IrT |

)c/2
and R defined by

R(A) =

∫∫
IA(α,Σ)f(α | Σ, Y )g(Σ) dα dΣ/ε̃.

By construction, ε̃ and R satisfy the minorization condition. Let κ1 ≥ κ2 ≥ · · · ≥ κr > 0

denote the eigenvalues of D + Y TQZY so that

ε̃ =

(
r∏
i=1

κi
κi + T

)c/2

≥
(

1

1 + T/κr

)rc/2
= ε.

Since the minorization condition is satisfied with ε̃, it is satisfied with its lower bound ε

and that completes the proof for the case QX = In. The general case is recovered upon

replacing Z and Y by QXZ and QZY everywhere and invoking Lemma C.1.1.

We are ready to state the main result of the section.

Theorem 4.4.4. If

(a) C ∈ Sqr
2

++,
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(b) [Y,Z,X] has full column rank for all large enough n almost surely,

(c) ‖α̂‖2 = O(1) almost surely as n→∞, and

(d) there exists a random variable K : Ω→ (0,∞) such that, almost surely,

K−1 ≤ lim inf
n→∞

n−1λmin(Y TQ[Z,X]Y ) ≤ lim sup
n→∞

n−1λmax(Y TQ[Z,X]Y ) ≤ K,

then lim supn→∞ ρ̄n < 1 almost surely.

Proof. Inspecting the definition of ρ̄n one sees that it suffices to show that Lemmas 4.4.2 and

4.4.3 apply and that the λ = λn, L = Ln, T = Tn, and ε = εn they give almost surely satisfy,

respectively: (i) lim supn→∞ λn < 1, (ii) lim supn→∞ Ln <∞, (iii) lim supn→∞ Tn <∞, and

(iv) lim infn→∞ εn > 0. Assumption (a) and (b) ensure Lemma 4.4.2 applies and assumption

(c) gives λn = O(1/n), so (i) holds. That λn = O(1/n) and assumption (d) give Ln = O(1),

i.e. (ii) holds, and hence we can pick a sequence Tn > 2Ln(1− λn), n = 1, 2, . . . , such that

(iii) holds. For (iv), notice that (iii), assumption (d), and that [r(n+a−p−r−1)/2]/n→ r/2

imply that we can find random variables K1,K2 > 0 such that, almost surely,

εn ≥ (1 +K1/n)−K2n → e−K1K2 > 0, n→∞,

which gives (iv).

Assumption (b) is weak in the large n setting we are currently considering. In fact, if the

non-stochastic design matrix X has full column rank then [Z,X] has full column rank almost

surely for all large enough n if the true covariance matrix Σ? has full rank. Assumption (c)

holds if, for example, the least squares estimator α̂ is strongly consistent, which it is under

many common assumptions on the true parameters in the VAR [58]. Assumptions (d) holds

if, for example, the MLE n−1Y TQ[Z,X]Y of Σ? is strongly consistent, or more generally if

it converges to a positive definite matrix almost surely.

If some of the assumptions in Theorem 4.4.4 are relaxed to hold in probability, or with

probability tending to one, instead of almost surely, then the conclusion can be weakened
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accordingly to give the following corollary.

Corollary 4.4.1. If

(a) C ∈ Sqr
2

++

and, as n→∞,

(b) [Y,Z,X] has full column rank with probability tending to one,

(c) ‖α̂‖2 = OP(1), and

(d) there exists a constant K > 0 such that, with probability tending to one,

K−1 ≤ n−1λmin(Y TQ[Z,X]Y ) ≤ n−1λmax(Y TQ[Z,X]Y ) ≤ K,

then ρ̄n < 1 with probability tending to one.

4.5 Discussion

Markov chain Monte Carlo is used in a wide range of problems, including but not limited

to the Bayesian settings considered here. However, the theoretical properties of algorithms

used by practitioners are not always well understood. Here we have focused on the case

of Bayesian vector autoregressions. This is one of the most common models in time series,

and in particular in the analysis and forecasting of macroeconomic time series. The Gibbs

sampler has been suggested to explore the posterior distribution of the parameters A and

Σ when there are no predictors [44], but there has been a lack of theoretical support for

its appropriateness. We have addressed this by proposing a collapsed Gibbs sampler that

handles predictors and deriving theoretical guarantees for that sampler. Since our algorithm

simplifies to the usual Gibbs sampler when there are no predictors, our results also offer a

peace of mind to practitioners using that sampler.

We have proven that our algorithm generates a geometrically ergodic Markov chain

under reasonable assumptions (Theorem 4.3.5). This result is applicable both in classical
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settings where the sample size is large (but fixed) in comparison to the number of parame-

ters, and in large VARs where the dimension of the process or the lag length is (much) larger

than the number of observations. Thus, with the algorithm we propose, Bayesian analysis

of VARs can be carried out with confidence, knowing that characteristics of the posterior

distribution can be reasonably estimated and that asymptotically valid confidence intervals

can be constructed for those estimates, among other things [19, 42, 74]. Our asymptotic

analysis, or convergence complexity analysis, indicates our algorithm should perform well

in large samples; we have proven that, as the sample size tends to infinity, the geometric

ergodicity of the sequence of transition kernels corresponding to our algorithm is asymp-

totically stable. This result is one of the first of its kind for practically relevant MCMC

algorithms [60].

Avenues for future research includes convergence complexity analysis of cases where the

dimension of the process or the lag length tends to infinity, either together with the sample

size or for a fixed sample size. By inspecting the proof of Theorem 4.4.4 one sees that the

same proof idea can work also if the dimension of the process or the lag length changes,

as long as the sample size grows fast enough. However, the proof relies on formalizing the

intuition that as the sample size increases, the posterior mode of the α-chain and the least

squares estimator of α are close—if the sample size is fixed or grows slowly in comparison

to other quantities, then we do not expect this to be the case. For such settings one would

likely have to use a different drift function than the one used in Theorem 4.4.4.
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Appendix A

Consistent maximum likelihood
estimation using subsets

A.1 Theory

A.1.1 Preliminary results

We first present some lemmas that will be useful when proving the main results.

Lemma A.1.1. For any positive random variables X, Y , Z, defined on the same probability

space, and c > 0, P(XY ≥ Z) ≤ P(X ≥ c) + P(Y ≥ Z/c).

Proof. If for positive constants x, y, z, c it holds that xy ≥ z, then either x ≥ c or y ≥ z/c,

since otherwise xy < c(z/c) = z. Thus, {ω : X(ω)Y (ω) ≥ Z(ω)} ⊆ {ω : X(ω) ≥ c} ∪ {ω :

Y (ω) ≥ Z(ω)/c}. By sub-additivity of measures, P(XY ≥ Z) ≤ P({X ≥ c}∪{Y ≥ Z/c}) ≤

P(X ≥ c) + P(Y ≥ Z/c).

Lemma A.1.2. Suppose Ai, i = 1, . . . , n are compact subsets of some metric space (T , dT )

such that ∩ni=1Ai = ∅, then the open covers Ci = ∪x∈AiBδ(x), i = 1, . . . , s, also have an

empty intersection for all small enough δ > 0.

Proof. Consider the covers Ck,i = ∪x∈AiB1/k(x), k = 1, 2, . . . , i = 1, . . . , n. If Ck = ∩iCk,i =

∅ for some k <∞, then we are done. Suppose for contradiction Ck is non-empty for every

k < ∞. By construction, every point xk ∈ Ck is within 1/k of at least one point in every

Ai. That is, we can pick, for every k ≥ 1 and i = 1, . . . , n, an xk ∈ Ck and yk,i ∈ Ai such
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that d(xk, yk,i) ≤ 1/k. Thus, by the triangle inequality, for every k, d(yk,i, yk,j) ≤ 2/k.

By compactness of A1, say, yk,1 has a convergent subsequence ykm,1 → y1 as m → ∞, for

some y1 ∈ A1 by the fact that A1 is closed as a compact subset of a metric space. But

then, for every i, by the triangle inequality, d(ykm,i, y1) ≤ d(ykm,i, ykm,1) + d(ykm,1, y1) ≤

2/km + d(ykm,1, y1) → 0 as m → ∞. Thus, since every Ai is closed, y1 ∈ Ai for every i,

which is the desired contradiction.

Lemma A.1.3. Suppose Θ is a compact subset of some metric space and, for every θ ∈ Θ,

fθ is a probability density against some dominating measure ν which does not depend on

θ. Suppose also that fθ(x) is continuous in θ for every x and define the measures νθ by

νθ(A) =
∫
A fθ(x)dν(x) for any ν-measurable A. Then for any θ0 ∈ Θ, the set Θ0 = {θ ∈

Θ : νθ = νθ0} is compact.

Proof. Because Θ is a compact subset of a metric space, it suffices to show that Θ0 is

closed. Note that Θ0 always includes the point θ0 and is thus non-empty. Pick an arbitrary

converging sequence θn ∈ Θ0, call the limit point θ?. By continuity of θ 7→ fθ(x) for every x,

fθn → fθ? pointwise. Now for any ν-measurable A, |νθ?(A)− νθ0(A)| ≤ |νθ?(A)− νθn(A)|+

|νθ0(A)−νθn(A)| = |νθ?(A)−νθn(A)|, which vanishes as n→∞ by a generalized dominated

convergence theorem [67, Theorem 19] – the dominating sequence of functions for which

the integrals converge can be fθn(x) ≥ fθn(x)IA(x) – so indeed θ? ∈ Θ0.

A.1.2 Main results

For economical notation in the proofs we write fθ(y) = fnθ (y), fθ(yi) = fθ,i(yi), fθ(w) =

gθ(w), fθ(u) = φrθ(u), and so on. That is, the letter f is overloaded and the argument

indicates which density we are referring to.

Proof Lemma 2.2.1. Let Y = (W,Z), where Z consists of the components of Y that are not

in the subcollection W . Then fθ(y) = fθ(w, z) and by (conditional) Markov’s inequality,
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for any k > 0,

P (Ln(θ;Y ) ≥ c |W ) ≤ c−1E (Ln(θ;Y ) |W ) = c−1E
(
fθ(W,Z)

fθ0(W,Z)
|W

)
.

Now the following calculation shows the random variable Lm(θ;W ) = fθ(W )/fθ0(W ) is a

version of E (fθ(W,Z)/fθ0(W,Z) |W ):

∫
Z

fθ(w, z)

fθ0(w, z)
fθ0(z | w)νZ(dz) =

∫
Z

fθ(w, z)

fθ0(w, z)

fθ0(w, z)

fθ0(w)
νZ(dz)

=

∫
Z

fθ(w, z)

fθ0(w)
νZ(dz)

=
fθ(w)

fθ0(w)
,

where νZ is the measure against which the components in Z have joint density fθ(z) and Z

is the range space of Z. Since the conditional expectation is unique up to P-null sets, this

finishes the proof.

Proof of Lemma 2.2.2. Fix some arbitrary ε > 0. If supθ∈Ai Ln(θ;Y ) < 1 for i = 1, . . . , s,

then, since Ln(θ0;Y ) = 1, there are no global maximizers in ∪si=1Ai ⊇ Θ ∩ Bε(θ0)c. Thus,

it suffices to prove

P

(
s⋃
i=1

{
sup
θ∈Ai

Ln(θ;Y ) ≥ 1

})
≤

s∑
i=1

P

(
sup
θ∈Ai

Ln(θ;Y ) ≥ 1

)
→ 0.

Since s is fixed it is enough that P
(
supθ∈Ai Ln(θ;Y ) ≥ 1

)
→ 0 for every i = 1, . . . , s.

Without loss of generality, consider i = 1. Pick a cover of A1 as given by Assumption 3

and, for every ball in the cover, pick a θj in the intersection of that ball with A1. If there

are some balls that do not intersect A1, they may be discarded from the cover, so we assume

without loss of generality that all balls do intersect A1. We then get Mn,1 points such that

every point in A1 is within δn,1 of at least one of them. For any θ ∈ A1, let θj(θ) denote

the θj closest to it (pick an arbitrary one if there are many). Using the Lipschitz continuity
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given by Assumption 2 and that x 7→ ex is increasing we have,

P

(
sup
θ∈A1

Ln(θ;Y ) ≥ 1

)
= P

(
sup
θ∈A1

Λn(θ;Y ) ≥ 0

)
= P

(
sup
θ∈A1

`n(θ;Y ) ≥ `n(θ0;Y )

)
≤ P

(
sup
θ∈A1

[
`n(θj(θ);Y ) +Kn,1dT (θ, θj(θ))

]
≥ `n(θ0;Y )

)
.

Because there are only Mn,1 points θj , and dT (θj(θ), θ) ≤ δn,1 since θj(θ) is the one closest

to θ, we get that the last line is upper bounded by

P

(
max
j≤Mn,1

[
`n(θj ;Y ) +Kn,1δn,1

]
≥ `n(θ0;Y )

)
= P

(
max
j≤Mn,1

fθj (Y )eKn,1δn,1 ≥ fθ0(Y )

)
.

But by applying Lemma A.1.1 with c = 2,

P

(
max
j≤Mn,1

fθj (Y )eKn,1δn,1 ≥ fθ0(Y )

)
≤ P

(
2 max
j≤Mn,1

fθj (Y ) ≥ fθ0(Y )

)
+ P

(
eKn,1δn,1 ≥ 2

)
= P

(
2 max
j≤Mn,1

fθj (Y ) ≥ fθ0(Y )

)
+ o(1)

where the last line uses Assumption 3. The choice of the constant 2 in the application

of Lemma A.1.1 is arbitrary – any number with positive logarithm works. The remaining

term,

P

(
2 max
j≤Mn,1

fθj (Y ) ≥ fθ0(Y )

)
= P

(
max
j≤Mn,1

Ln(θj ;Y ) ≥ 1/2

)
,

we will deal with using Lemma 2.2.1 and dominated convergence. After conditioning on

W (1) we have

P

(
max
j≤Mn,1

Ln(θj ;Y ) ≥ 1/2 |W (1)

)
≤

Mn,1∑
i=1

2Lm1(θj ;W (1))

≤ 2Mn,1 sup
θ∈A1

Lm1(θ,W (1)),

P-almost surely, where the first inequality is by subadditivity and Lemma 2.2.1, and the
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second uses that Ln(θj ;W (1)) ≤ supθ∈A1
Lm1(θ;W (1)) by definition. The expression in the

last line vanishes as n→∞ by Assumption 3. Thus,

P

(
max
j≤Mn,1

Ln(θj ;Y ) ≥ 1/2

)
→ 0

by dominated convergence. The dominating function can be the constant 1. This finishes

the proof.

A.2 Applications

Let λmax(·) and λmin(·) denote the maximum and minimum eigenvalue of its matrix argu-

ment, respectively. For matrices, ‖ · ‖ denotes the spectral norm and ‖ · ‖F the Frobenius

norm. Differentiation with respect to θi is denoted ∇i.

We will use the following well known fact repeatedly. It is stated as a lemma for easy

reference.

Lemma A.2.1. If h is a continuous function from some metric space X to R and A is a

compact subset of X , then supx∈A h(x) = h(x?) for some x? ∈ A. In particular, if h(x) < c

for some constant c and every x ∈ A, then supx∈A h(x) < c.

Of course, the same holds if the supremum is replaced by an infimum or if less than is

replaced by greater than.

Lemma A.2.2. Let Xn,1, . . . , Xn,n be a triangular array with rows of i.i.d. multivariate

normal q-vectors with mean E(Xn,i) = µ = µ(θ) and covariance matrix cov(Xn,i) = Σ =

Σ(θ), θ ∈ Θ. Suppose that

0 < 1/c1 ≤ inf
θ∈Θ

λmin(Σ(θ)) ≤ sup
θ∈Θ

λmax(Σ(θ)) ≤ c1 <∞

and supθ∈Θ ‖µ(θ)‖ ≤ c2 for some c1, c2 ∈ (0,∞), then

sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

{Λi(θ;Xn,i)− E[Λ1(θ;Xn,1)]}

∣∣∣∣∣→ 0,
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P-almost surely, where Λi(θ;Xn,i) = log fθ(Xn,i)/fθ0(Xn,i), and fθ(Xn,i) means the density

for Xn,i evaluated at Xn,i.

Proof. Theorem 16 in Ferguson [18] applies almost verbatim to triangular arrays in place

of i.i.d. sequences. The only necessary modification to its proof is that the pointwise strong

law of large numbers needs to be motivated. Write

sup
θ∈Θ
|Λ1(θ;x)| ≤ sup

θ∈Θ
| log fθ(x)|+ | log fθ0(x)|

≤ sup
θ∈Θ
| log det Σ|+ sup

θ∈Θ
‖x− µ‖2‖Σ−1‖+ | log fθ0(x)|

≤ sup
θ∈Θ
| log det Σ|+ sup

θ∈Θ
(‖x‖+ ‖µ‖)2 sup

θ∈Θ
‖Σ−1‖+ | log fθ0(x)|

≤ | log(qc1)|+ (‖x‖+ c2)2c1 + | log fθ0(x)|

=: K(x),

which is a quadratic function of x, not depending on θ. Thus, since the Xn,is are i.i.d. and

normal random variables have all finite moments, Λi(θ;Xn,i) has bounded fourth moment,

uniformly in i, n, and θ. Classical proofs for a strong law with finite fourth moment applies

without change to triangular arrays. The other conditions of Ferguson’s Theorem 16 are

easy to verify, using K(x) as the dominating function.

Proof Proposition 2.3.1. Lemma A.1.3 gives that {θ ∈ Θ : νiθ = νiθ0} is a closed set, i =

1, . . . , s. Thus, the sets Di = {θ ∈ Θ : νiθ = νiθ0} ∩ Bε(θ
0)c, i = 1, . . . , s, are closed

as intersections of closed sets and compact as a closed subsets of a compact set, Θ. By

Lemma A.1.2 we can pick δ small enough that the open covers Bi = ∪θ∈DiBδ(θ) ⊇ Di

have an empty intersection, ∩si=1Bi = ∅. Let Ai = Θ ∩ Bε(θ0)c ∩ Bc
i and note ∪si=1Ai =

Θ ∩ Bε(θ0)c ∩ (∪si=1B
c
i ) = Θ ∩ Bε(θ0)c ∩ (∩si=1Bi)

c = Θ ∩ Bε(θ0)c. Each Ai closed as

the intersection of closed sets, and compact as a closed subset of a compact set, Θ. By

construction, for any θ ∈ Ai it must be that θ ∈ Bc
i ⊆ Dc

i . Since Ai is a subset of Bε(θ
0)c

by construction this implies θ ∈ {θ ∈ Θ : νiθ = νiθ0}
c, which finishes the proof.
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A.2.1 Longitudinal linear mixed model

Lemma A.2.3. The log-likelihood `n(θ; y) is differentiable in θ at any interior point of Θ,

for every n ≥ 1 and every y in the support of Y .

Proof. The multivariate normal log-likelihood `n(θ;Y ) is differentiable in its mean m and

covariance matrix C everywhere C = C(θ) is positive definite [50]. It is easy to see that

C is positive definite on all interior point since Ψ is (c.f. Lemma A.2.4). Now `n(θ;Y ) is

differentiable on all interior points by the chain rule since the elements of m and C are

differentiable in θ.

Proof Lemma 2.3.2. Fix an ε > 0 small enough that all points of B̄ε(θ
0) are interior. By

construction of the subcollections, the assumptions of Proposition 2.3.1 are satisfied with

what is there denoted Θ replaced by B̄ε(θ
0). Take A1 and A2 to be the compact sets given by

that proposition. The proof of point 1 is standard [18, p. 115] and hence omitted. Point 2 is

proven by checking the conditions of Lemma A.2.2 with what is there denoted Θ replaced by

the compact Ai, i = 1, 2. The following argument works for either subcollection. First note

λmax(Ci) = ‖Ci(θ)‖ ≤ ‖Ci(θ)‖F [6]. Since the Frobenius norm is the square root of the sum

of squared entries and the entries are continuous functions of θ, θ 7→ ‖Ci(θ)‖F is continuous

and attains its supremum on the compact set Ai, so ‖C(θ)‖ is bounded above on B̄ε(θ
0).

By spectral decomposition of Ci it is immediate that λmin(Ci) = 1/λmax(C−1
i ). Thus,

since Ci(θ) is clearly positive definite on all interior points and the inverse is a continuous

mapping at points where Ci is positive definite [50], we get by the same arguments that

λmax(C−1
i (θ)) is bounded on Ai. It is obvious that θ 7→ mi(θ) is continuous and hence

attains its supremum on Ai. This concludes the proof of point 2.

It remains to prove point 3. By point 1 we may pick an ε > 0 such that, for either

subcollection,

sup
θ∈Ai

N−1E[ΛN/2(θ;W (i))] = sup
θ∈Ai

E[Λ1(θ;W
(i)
1 )]/2 < −3ε.
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By point 2 we have, P-almost surely and for all large enough N ,

sup
θ∈Ai

N−1|ΛN/2(θ;W (i))− E[ΛN/2(θ;W (i))]| ≤ ε.

Thus we have that supθ∈Ai ΛN/2(θ;W (i)) < −2Nε, and hence that

sup
θ∈Ai

LN/2(θ;X(i)) ≤ e−2Nε,

for all large enough N , P-almost surely. The last right hand side is clearly o(e−εN ) as

N →∞.

We will use the following results in the proof of Lemma 2.3.6.

Lemma A.2.4. The following hold when all points in B̄ε(θ
0) are interior (the first inequality

in 1 holds always):

1. ‖Ψ‖F ≤ T and supθ∈B̄ε(θ0) ‖Ψ−1‖F ≤ c
√
T for some c > 0,

2. supθ∈B̄ε(θ0) ‖C(θ)‖ ≤ c1NT + c2T + c3 for some c1, c2, c3 > 0,

3. supθ∈B̄ε(θ0) ‖C(θ)−1‖ ≤ c for some c > 0,

4. supθ∈B̄ε(θ0) ‖∇iΣ‖ ≤ NT + cT 2 for some c > 0 and every i ≥ 3.

5. supθ∈B̄ε(θ0) ‖Y −m(θ)‖ = oP(n), and

Proof. 1. The Frobenius norm is the square root of the sum of squared elements, and

all elements of Ψ are in the form θk7 for some integer k – this establishes the first

inequality. The inverse of Ψ can be written as (1− θ2
7)−1 times a tri-diagonal matrix

where the diagonal entries are 1 or 1 + θ2
7, and the leading off-diagonals have entries

−θ7. Thus, ‖Ψ−1‖F is the square root of the sum of 3T possibly non-zero elements,

each a continuous function of θ. The inequality now follows from Lemma A.2.1.

2. Using that eigenvalues of the sum of two positive, semi-definite matrices must be

at least as large as those of either summand and that the eigenvalues of Kronecker
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products are the products of the multiplicands’ eigenvalues [50], we get

λmax (C) ≤ λmax(θ3In) + λmax(θ4IN ⊗ JNT ) + λmax(θ5JN ⊗ IN ⊗ JT )

+ λmax(θ6IN2 ⊗Ψ)

≤ θ3 + θ4NT + θ5NT + θ6T,

where in the last step we also used λmax(Ψ) ≤ ‖Ψ‖F ≤ T by 1. The existence of the

constants c1, c2, c3 now follows from Lemma A.2.1.

3. Since ZΣZT is positive definite, we get λmin(C) = λmin(θ3In + ZΣZT) ≥ θ3. Since

all points in B̄ε(θ
0) are interior, θ3 is lower bounded by some c−1 > 0 on it (Lemma

A.2.1). Thus, using that the eigenvalues of C−1 are the reciprocals of the eigenvalues

of C, we get ‖C−1‖F ≤ (nc2)1/2 = N
√
Tc.

4. Clearly, ∇3C(θ) = In which has eigenvalue 1 with multiplicity n. If i = 4 or i = 5,

then the derivative is either IN ⊗JN ⊗JT or JN ⊗ IN ⊗JT , which both have maximal

eigenvalue NT . If i = 6, then the derivative is Ψ⊗IN2 , which has maximal eigenvalue

less than T by 1. If i = 7, then the derivative is θ6∇7Ψ. We have ∇7Ψi,j = |i −

j|θ|i−j|−1
7 if |i−j| ≥ 1 and ∇7Ψi,j = 0 otherwise. Thus, ∇7Ψi,j ≤ T and, consequently,

‖∇7Ψ‖F ≤ T 2. We conclude, by Lemma A.2.1, ∇7C(θ) ≤ cT 2 for some c > 0.

5. Let UΛUT be the spectral decomposition of C. Then ‖Y −m(θ)‖ = ‖UT(Y −m(θ))‖.

The vector UT(Y −m(θ)) is multivariate normal with mean 0 and covariance matrix Λ.

Thus, since a Gaussian process is determined by its finite dimensional distributions,

the stochastic process ‖Y − m(θ)‖2, θ ∈ B̄ε(θ
0), has the same distribution as the

process
∑n

i=1 Λi,i(θ)ξ
2
i , where ξ1, . . . , ξn are i.i.d. standard normal. By point 2, the

supremum of the latter process satisfies supθ∈Bε(θ0)

∑n
i=1 Λi,i(θ)ξ

2
i ≤ (c1NT + c2T +

c3)
∑n

i=1 ξ
2
i = oP(n2), which follows from that the last sum is a positive random

variable with mean n, and hence it converges to zero in L1 when divided by anything

of higher order than n.
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Proof Proposition 2.3.3. Let e = e(θ) = Y −m(θ) and let ∇e and ∇C denote differentiation

with respect to e and C. Since e is linear in θ1 and θ2, and C(θ) is differentiable in each θi,

i ≥ 3, bounding the gradient for θ is easily done after establishing bounds for ∇C`n(θ;Y )

and ∇e`n(θ). These derivatives exist for every n because the covariance matrix C(θ) is

positive-definite on B̄ε(θ
0) by Lemma A.2.4 and the multivariate normal log-likelihood is

differentiable wherever the covariance matrix is non-singular [50]. We have

∇C`n(θ;Y ) = −1

2

[
C−1 + C−1eeTC−1

]
and ∇e`n(θ) = −C−1e.

Thus,

|∇1`n(θ)| = |∇e`n(θ)T∇1e(θ)| = |eTC−11n| ≤ ‖e‖‖C−1‖N2T,

|∇2`n(θ)| = |∇e`n(θ)T∇2e(θ)| = |eTC−1hn| ≤ ‖e‖‖C−1‖N2T/2,

and, for i ≥ 3,

|∇i`n(θ)| = | vec[∇C`n(θ)]T vec[∇iC]| = 1

2
vec
[
C−1 + C−1eeTC−1

]T
vec [∇iC] |

= tr
[
(C−1 + C−1eeTC−1)∇iC

]
≤ ‖C−1‖F ‖∇iC‖F + |eTC−1∇iC−1e|

≤ ‖C−1‖F ‖∇iC‖F + ‖e‖2‖C−1‖2‖∇iC‖,

where vec(·) denotes the vectorization operator stacking the columns of its matrix argument.

Thus, by Lemma A.2.4,

sup
θ∈B̄ε(θ)

|∇1`n(θ)| ≤ sup
θ∈B̄ε(θ)

‖e‖‖C−1‖N2T ≤ oP(n)O(NT + T )TN2 = oP(T 3N5),

sup
θ∈B̄ε(θ)

|∇2`n(θ)| ≤ sup
θ∈B̄ε(θ)

‖e‖‖C−1‖N2T/2 ≤ oP(n)O(NT + T )TN2 = oP(T 3N5),
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and, for i ≥ 3,

sup
θ∈B̄ε(θ)

|∇i`n(θ)| ≤ sup
θ∈B̄ε(θ)

(‖C−1‖F ‖∇iC‖F + ‖e‖2‖C−1‖2‖∇iC‖).

By Lemma A.2.4 the supremum of each of the terms in the last line are of at most polynomial

order, which finishes the proof.

A.2.2 Logit–normal MGLMM

Lemma A.2.5. The log-likelihood `n(θ; y) is differentiable in θ on B̄ε(θ
0), for every n ≥ 1

and every y in the support of Y .

Proof. To prove differentiability of fθ(y) in θ on B̄ε(θ
0), checking the usual conditions for

differentiation under the integral are sufficient [21, Theorem 2.27]. It’s obvious that fθ(y |

u)fθ(u) is differentiable in θ on every interior point of Θ, so it suffices to find, for i = 1, . . . , d,

functions Ki : R2n × R2N → [0,∞), not depending on θ, such that |∇ifθ(y | u)fθ(u)| ≤

Ki(y, u) and
∫
Ki(y, u)du <∞. Clearly, |∇ifθ(y | u)fθ(u)| ≤ ‖∇β1fθ(y | u)fθ(u)‖, for any i

such that θi is a component of β1, and similarly for the components of β2. Thus, it suffices

to find bounds for ‖∇βifθ(y | u)fθ(u)‖, i = 1, 2, and |∇θdfθ(y | u)fθ(u)|. For the purposes

of this integration, the responses yi,j,k are constant and the sample size n is fixed. We prove

the existence of integrable bounds in the following forms, where c1, . . . , c4 > 0,

1. K1(y, u) = c1 exp
(
− 1

2c2
uTu

)∑
i,j

(
|yi,j,1|+ 1 + |u(1)

i |+ |u
(2)
j |
)
≥ ‖∇β1fθ(y | u)fθ(u)‖,

2. K2(y, u) = c3 exp
(
− 1

2c2
uTu

)
≥ ‖∇β2fθ(y | u)fθ(u)‖, and

3. K3(y, u) = c4 exp
(
− 1

2c2
uTu

)
(uTu+ 1) ≥ |∇θdfθ(y | u)fθ(u)|.

It is clear that K1,K2,K3 so defined are integrable because they are, up to scaling, moments

of multivariate normal distributions. Thus, it remains only to prove the stated inequalities

indeed hold.

By the triangle inequality, that fθ(y | u) ≤ (2π)−n/2, and the fact that fθ(u) does not
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depend on β1, we have

‖∇β1fθ(y | u)fθ(u)‖ =

∥∥∥∥∥∥fθ(y | u)fθ(u)
∑
i,j

(yi,j,1 − li,j,1)xi,j

∥∥∥∥∥∥
≤ (2π)−n/2(2πθd)

−N exp

(
− 1

2θd
uTu

)∑
i,j

(|yi,j,1|+ ‖β1‖‖xi,j‖+ |u(1)
i |+ |u

(2)
j |)‖xi,j‖

The inequality in the definition of K1 follows from Lemma A.2.1 upon noting that θd is

bounded both away from zero and above on interior points, that ‖β1‖ is similarly upper

bounded on such points, and that ‖xi,j‖ ≤ 1 by assumption.

For the inequality in the definition of K2 we use that fθ(y | u) ≤ (2π)−n/2 and that

|yi,j,2 − 1/(1 + e−li,j,2)| ≤ 1. The latter assertion follows from that yi,j,2 ∈ {0, 1} and that

1/(1 + et) ∈ (0, 1) for all t ∈ R. Thus, since fθ(u) does not depend on β2,

‖∇β2fθ(y | u)fθ(u)‖ =

∥∥∥∥∥∥fθ(y | u)fθ(u)
∑
i,j

(yi,j,2 − 1/(1 + e−li,j,2))xi,j

∥∥∥∥∥∥
≤ n(2π)−n/2(2πθd)

−N exp

(
− 1

2θd
uTu

)
‖xi,j‖.

Now the desired inequality follows from again noting the bounds from below and above of

θd and that ‖xi,j‖ ≤ 1.

The inequality in the definition of K3 follows similarly. First, fθ(y | u) does not depend

on θd so we get

|∇θdfθ(y | u)fθ(u)| =
∣∣∣∣fθ(y | u)fθ(u)

(
−N
θd

+
uTu

2θ2
d

)∣∣∣∣
≤ (2π)−n/2(2πθd)

−N exp

(
−u

Tu

2θd

)(
N

θd
+
uTu

2θ2
d

)
.

Now we are done upon again appealing to the lower and upper bounds of θd on B̄ε(θ
0).

For the proof of Lemma 2.3.5 we will need the following lemmas.

Lemma A.2.6. Let X be a metric space and f : X×Rd → R, for some d > 0, be continuous
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under the product metric. If X is compact, then h(y) = supx∈X f(x, y) is continuous.

Proof. Fix some y and consider the compact set A = X × B̄1(y). Since A is compact,

f is uniformly continuous on A. Thus, for any ε > 0 we can pick δ such that for every

(x′, y′), (x′′, y′′) ∈ A, it holds that if d((x′, y′), (x′′, y′′)) < δ, then |f(x′, y′)− f(d′′, y′′)| < ε.

Thus, for any y′ ∈ Bδ(y) ⊆ B1(y), we have |h(y)−h(y′)| = | supx∈X f(x, y)−supx∈X f(x, y′)| ≤

supx∈X |f(x, y)− f(x, y′)| = |f(x?(y, y′), y)− f(x?(y, y′), y′)| < ε, where

x?(y, y′) = arg max
x∈X
|f(x, y)− f(x, y′)|.

The arg max exists by Lemma A.2.1 since continuity of f implies continuity in x for every

y.

Lemma A.2.7. The K–L divergence from a Bernoulli distribution with parameter p to one

with parameter q is lower bounded by 2(p− q)2.

Proof. By direct computation, the K–L divergence is p log(p/q) + (1−p) log([1−p]/[1− q]).

Now using that t(1− t) ≤ 1/4 for all t ∈ R and assuming p > q we get

p log(p/q) + (1− p) log([1− p]/[1− q]) =

∫ p

q

(
p

t
− 1− p

1− t

)
dt

=

∫ p

q

(
p− t
t(1− t)

)
dt

≥ 4

∫ p

q
(p− t)dt

= 2(p− q)2

If instead q > p, then the same inequality results from letting 1− p and 1− q take the roles

of p and q. If p = q, then the inequality is an equality.

Let C(δ,G, ‖·‖) denote the δ-covering number of the set G under the distance associated

with the norm ‖ · ‖, that is, the least number of open balls of radius δ needed to cover G.

Lemma A.2.8 (Theorem 8.2 [59]). Let h1(ω, θ), h2(ω, θ), . . . , θ ∈ A ⊆ Θ, be independent

processes with integrable envelopes H1(ω), H2(ω), . . . , meaning |hi(ω, θ)| ≤ H1(ω), for all i



A.2. Applications 101

and θ ∈ A. Let H = (H1, . . . ,HN ) and HN,ω = {[h1(ω, θ), . . . , hN (ω, θ)] ∈ RN : θ ∈ A}. If

for every ε > 0 there exists a K > 0 such that

1. N−1
∑N

i=1 E[HiI(Hi > K)] < ε for all N , and

2. log C(ε‖H‖1,HN,ω, ‖ · ‖1) = oP(N) as N →∞,

then

sup
θ∈A

N−1

∣∣∣∣∣
N∑
i=1

hi(ω, θ)− E(hi(ω, θ))

∣∣∣∣∣ P→ 0.

Proof. Pollard [59] proves this result with packing numbers replaced by covering numbers.

Since [59, p. 10]

C(ε,HN,ω, ‖ · ‖1) ≤ D(ε,HN,ω, ‖ · ‖1) ≤ C(ε/2,HN,ω, ‖ · ‖1),

where D denotes packing numbers, there is nothing more to prove.

Proof Lemma 2.3.5. Let us first prove that, given ε > 0, there exists an η > 0, and hence

Ai = Ai(ε, η), i = 1, 2, such that point 1 in the lemma holds. The definition of Ai(ε, η) is

as in the main text. Let c(t) = log(1 + et) denote the cumulant function in the conditional

distribution of Yi,i,2 given the random effects and define

pi(β2, θd) = E
[
c′
(
xTi,iβ2 +

√
θd/θ

0
d

(
U

(1)
i + U

(2)
j

))]
.

Recall, E denotes expectation with respect to the distributions indexed by θ0, so pi(β2, θd)

is the success probability of Yi,i,2 when β2 and θd are the true parameters.

Note that because the components in W (2) are independent, E[ΛN (θ;W (2))] is a sum of

N terms, each summand being the negative K–L divergence between two Bernoulli variables

with parameters pi(β2, θd) and pi(β
0
2 , θ

0
d). Thus, by Lemma A.2.7, Jensen’s inequality, the
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reverse triangle inequality, and the triangle inequality, respectively,

N−1E[ΛN (θ;W (2))]

≤ −2N−1
N∑
i=1

[pi(β2, θd)− pi(β0
2 , θ

0
d)]

2

≤ −2

[
N−1

N∑
i=1

|pi(β2, θd)− pi(β0
2 , θ

0
d)|

]2

≤ −2

[
N−1

N∑
i=1

∣∣|pi(β2, θd)− pi(β2, θ
0
d)| − |pi(β0

2 , θ
0
d)− pi(β2, θ

0
d)|
∣∣]2

≤ −2

[
N−1

N∑
i=1

|pi(β2, θd)− pi(β2, θ
0
d)| −N−1

N∑
i=1

|pi(β0
2 , θ

0
d)− pi(β2, θ

0
d)|

]2

. (A.1)

Let us work separately with the averages in the last line. We will show that the sec-

ond can be made arbitrarily small on A2 by selecting η small enough, and that the first

is bounded away from zero on the same A2, leading to an asymptotic upper bound on

supθ∈A2
N−1E[ΛN (θ;W (2))] away from zero. We start with the first average.

Let H be a compact subset of R such that xTi,iβ2 ∈ H for all i and θ ∈ B̄ε(θ0). Such

H exists because the predictors are bounded and β2 is bounded on B̄ε(θ
0). Then, defining

p̃i(γ, θd) as pi(β2, θd) but with xTi,iβ2 replaced by γ, we get

sup
θ∈A2

|pi(β2, θd)− pi(β2, θ
0
d)| ≤ sup

θ∈A2

sup
γ∈H
|p̃i(γ, θd)− p̃i(γ, θ0

d)|.

Since the random variable in the expectation defining p̃i is bounded by 1 (it is the mean of

a Bernoulli random variable), p̃i is continuous by dominated convergence. Thus, since H

is compact, supγ∈H |p̃i(γ, θd) − p̃i(γ, θ0
d)| is continuous in θd by Lemma A.2.6. That is, we

can make supγ∈H |p̃i(γ, θd)− p̃i(γ, θ0
d)| arbitrarily small on A2 = A2(η, ε) by picking η small

enough, which is what we wanted to show. We next work with the second average in (A.1).

By the mean value theorem, for some β̃2,i between β2 and β0
2 , |pi(β0

2 , θ
0
d)− pi(β2, θ

0
d)| =

|E(c′′(xTi,iβ̃2,i + U
(2)
i + U

(2)
j ))xTi,i(β2 − β0

2)|. Here, differentiation under the expectation is

permissible since c′′ is the variance of a Bernoulli random variable, hence bounded by 1/4,
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and |xTii(β2 − β0
2)| ≤ ‖xi,i‖‖β2 − β0

2‖2 ≤ ε on B̄ε(θ
0). By the same bound on c′′ we get that

E(c′′(γ + U
(1)
i + U

(2)
j )) is continuous in γ. Thus, by Lemma A.2.1, infγ∈H E(c′′(γ + U

(1)
i +

U
(2)
j )) ≥ c1 > 0. That c1 must be positive follows from that c′′ is strictly positive on all of

R. We have thus proven that |pi(β0
2 , θ

0
d)−pi(β2, θ

0
d)| ≥ c1|xTi (β2−β0

2)|, uniformly on B̄ε(θ
0).

Using this and that |xTi,i(β2 − β0
2)| ≤ ‖xi,i‖‖β2 − β0

2‖ ≤ ε ≤ 1 so that squaring it makes it

smaller,

N−1
N∑
i=1

|pi(β0
2 , θ

0
d)− pi(β2, θ

0
d)| ≥ c1N

−1
N∑
i=1

|xTi,i(β2 − β0
2)|

≥ c1N
−1(β2 − β0

2)T

(
N∑
i=1

xi,ix
T
i,i

)
(β2 − β0

2)

≥ c1‖β2 − β0
2‖2N−1λmin

(
N∑
i=1

xi,ix
T
i,i

)

which lower limit as N → ∞ is bounded below by some strictly positive constant, say c2,

since lim infN→∞N
−1λmin

(∑N
i=1 xi,ix

T
i,i

)
≥ c3 > 0, for some c3, and ‖β2 − β0

2‖ ≥ ε/2 > 0

on A2. To summarize, we may pick η so small that the second average in (A.1) is less than

c2/2, say, and hence get supθ∈A2
N−1E[ΛN (θ;W (2))] ≤ −2(c2 − c2/2)2 < 0, for all but at

most finitely many N . This proves point 1 as it pertains to A2.

Consider next

A1 = ∂Bε(θ
0) ∩

(
{θ : |θd − θ0

d| ≥ η} ∪ {θ : ‖β2 − β0
2‖ ≤ ε/2}

)
and W (1). Similarly to for W (2), E[ΛN (θ;W (1))] can due to independence be written as a

sum of N terms in the form

E{log[fθ(Yi,i,1)/fθ0(Yi,i,1)]} = −1

2

[
log

(
1 + 2θd
1 + 2θ0

d

)
+

1 + 2θ0
d + [xTi (β2 − β0

2)]2

1 + 2θd
− 1

]
, (A.2)

which is the negative K–L divergence between two univariate normal distributions. Let us

consider the possible values this can take for θ ∈ A1. If |θd − θ0
d| ≥ η, then (A.2) is upper

bounded by what is obtained when β1 = β0
1 . This in turn is a continuous function in θd
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and hence attains its supremum on the compact set {θd : η ≤ |θd − θ0
d| ≤ ε}, and hence on

A1. This supremum is strictly positive because the divergence can be zero only if θd = θ0
d.

If instead ‖β2− β0
2‖ ≤ ε/2. Then either |θd− θ0

d| ≥ ε/4 or ‖β1− β0
1‖ ≥ ε/4, for otherwise it

cannot be that ‖θ − θ0‖ = ε. If |θd − θ0
d| ≥ ε/4 the divergence in (A.2) has a lower bound

away from zero by the same argument as for the cases |θd− θ0
d| ≥ η. It remains to deal with

the case ‖β1 − β0
1‖ ≥ ε/4.

Write [xTi,i(β
0
1 −β1)]2 = (β0

1 −β1)Txix
T
i (β0

1 −β1) to see that −2N−1ΛN (θ;W (1)) is equal

to

log

(
1 + 2θd
1 + 2θ0

d

)
+

1 + 2θ0
d +N−1

∑N
i=1(β0

1 − β1)Txix
T
i (β0

1 − β1)

1 + 2θd
− 1,

which has a lower limit that is greater than

log

(
1 + 2θd
1 + 2θ0

d

)
+

1 + 2θ0
d + c3(ε/4)2

1 + 2θd
− 1.

This expression is in turn maximized in θd at θd = θ0
d + c3(ε/16)2; this follows from a

straightforward optimization in 1 + 2θd. The corresponding maximum evaluates to log(1 +

2θ0
d + c3(ε/4)2)− log(1 + 2θ0

d) > 0. This finishes the proof of point 1.

The proof of point 2 consists of checking the conditions of Lemma A.2.8. We first work

with A1 and W (1). Let hi(ω, θ) = log[fθ(Yi,i,1(ω))/fθ0(Yi,i,1(ω))] be the log-likelihood ratio

for the ith observation in the first subcollection, i = 1, . . . , N . We equip HN,ω with the L1

norm ‖ · ‖1, and Θ is equipped with the L2 norm as before. To facilitate checking the two

conditions we will first derive envelopes with the following properties: sup−∞<i<∞ EHk
i <∞

for every k ≥ 0, sup−∞<i<∞ P(Hi ≥ K) → 0 as K → 0, and each hi(ω, θ) is Hi-Lipschitz

in θ on B̄ε(θ
0), and hence on A1, for every ω. We start with the Lipschitz property.

Let us use the slight abuse of notation that yi,i,1 = Yi,i,1(ω). Since the distribution of

W (1) does not depend on β2 we have ∇β2hi(ω, θ) = 0, and for some c1, c2, c3, c4, c5 > 0
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(depending on ε), and every θ ∈ B̄ε(θ0),

‖∇β1hi(ω, θ)‖ = ‖(yi,i,1 − xTi,iβ1)xi,i/(1 + 2θd)‖ ≤ c1|yi,i,1|+ c2

|∇θdhi(ω, θ)| =
1

2

∣∣∣∣ 1

1 + 2θd
− (yi,i,1 − xTi,iβ1)2/(1 + 2θd)

2

∣∣∣∣ ≤ c3 + c4(|yi,i,1|+ c5)2.

The existence of these constants follow from Lemma A.2.1. Let Hi be the sum of the

bounds, i.e.

Hi(ω) = c1|yi,i,1|+ c2 + c3 + c4(|yi,i,1|+ c5)2.

By the mean value theorem, |hi(ω, θ) − hi(θ′, ω)| = |(θ − θ′)T∇hi(ω, θ̃)| ≤ ‖θ − θ′‖Hi for

some θ̃ between θ and θ′. That is, hi is Hi-Lipschitz on B̄ε(θ
0). That Hi is an envelope for

hi follows from noting that hi(ω, θ
0) = 0 so by taking θ′ = θ0 in the previous calculation,

|hi(ω, θ)| ≤ Hi‖θ − θ0‖ ≤ Hi on B̄ε(θ
0). That supi E(Hk

i ) < ∞ for every k > 0 and

supi P(Hi > K)→ 0 as K →∞ follow from that Yi,i,1 is normally distributed with variance

1+2θ0
d, not depending on i, and mean satisfying −‖β0

1‖ ≤ xTi,iβ0
1 ≤ ‖β0

1‖. We are now ready

to check the conditions of Lemma A.2.8.

By the Cauchy–Schwartz inequality and the properties just derived, we have for every

fixed N that

N−1
N∑
i=1

E[HiI(Hi > K)] ≤ sup
i

E[H2
i ] sup

i
P(Hi ≥ K)→ 0, K →∞,

which verifies the first condition.

For the second condition, note that the derived Lipschitz property gives, for arbitrary



A.2. Applications 106

h = (h1(ω, θ), . . . , hN (ω, θ)) and h′ = (h1(ω, θ′), . . . , hN (ω, θ′)) in HN,ω:

‖h− h′‖1 =
N∑
i=1

|hi(ω, θ)− hi(ω, θ′)|

≤
N∑
i=1

‖θ − θ′‖Hi(ω)

= ‖θ − θ′‖‖H‖1.

Thus, if we cover ∂Bε(θ
0) with ε-balls with centers θj , j = 1, . . . ,M , then the corresponding

L1 balls in RN of radius ε‖H‖1 with centers hj = (h1(ω, θj), . . . , hN (ω, θj)) cover HN,ω.

This is so because for every θ ∈ ∂Bε(θ0) there is a θj such that ‖θ − θj‖ ≤ ε, and hence

by the Lipschitz property ‖h(ω, θ) − h(ω, θj)‖1 ≤ ‖H‖1ε. Thus, C(ε‖H‖1,HN,ω, ‖ · ‖1) ≤

C(ε, ∂Bε(θ
0), ‖·‖). Since C(ε, ∂Bε(θ

0), ‖·‖) is constant in N , the second condition of Lemma

A.2.8 is verified for A1 and W (1).

The arguments for A2 and W (2) are similar, redefining hi(ω, θ) with Yi,i,1 replaced by

Y1,1,2, taking A2 in place of A1, and so on. We need only prove the existence of envelopes

H1, . . . ,HN with the desired properties. Using that |yi,j,2− c′(li,2,1)]| ≤ 1 and that fθ(yi,i,2 |

u)fθ(u)/fθ(yi,i,2) = fθ(u | yi,i,2) one gets,

‖∇β2hi(ω, θ)‖ =

∥∥∥∥∇β2 log

∫
fθ(yi,i,2 | u)fθ(u)du

∥∥∥∥
=

∥∥∥∥ 1

fθ(yi,i,2)

∫
fθ(yi,i,2 | u)fθ(u)[yi,i,2 − c′(li,j,2)]xi,idu

∥∥∥∥
≤ ‖xi,i‖ ≤ 1.

Using that U
(1)
i and U

(2)
j are the only random effects entering the linear predictor li,j,2, and
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that fθ(yi,j,2 | u) ≤ 1,

|∇θdhi(ω, θ)| =

∣∣∣∣∣ 1

fθ(yi,i,2)

∫
fθ(yi,i,2 | u)fθ(u

(1)
i , u

(2)
j )

(
(u

(1)
i )2 + (u

(2)
j )2

2θ2
d

− 1

θd

)
du

∣∣∣∣∣
≤ 1

2θdfθ(yi,i,2)

∫
fθ(u

(1)
i , u

(2)
j )

(
(u

(1)
i )2 + (u

(2)
j )2

θd

)
du+

1

θd

=
1

θdfθ(yi,j,2)
+

1

θd
.

By Lemma A.2.1 the quantity in the last line attains its supremum on B̄ε(θ
0). This maxi-

mum is finite for both yi,i,2 = 1 and yi,i,2 = 0 since the marginal success probability cannot

be one or zero on interior points of Θ. Thus, on B̄ε(θ
0), ‖∇hi(ω, θ)‖ is bounded by a

constant, say H, the largest needed for the two cases yi,i,2 = 0 and yi,i,2 = 1. By setting

Hi = H, i = 1, . . . , N , we have envelopes with the right properties and this completes the

proof of point 2.

Finally, we prove point 3. Consider without loss of generality the first subset and subcol-

lection. For economical notation we write LN (θ) = LN (θ;W (1)) and ΛN (θ) = ΛN (θ;W (1)).

Point 1 gives that supθ∈A1
E[ΛN (θ)] < −3ε for some ε > 0 and all large enough N . Assuming

that N is large enough that this holds, we get

P

(
eεN sup

θ∈A1

LN (θ) > e−εN
)

= P

(
N−1 sup

θ∈A1

ΛN (θ) > −2ε

)
≤ P

(
N−1 sup

θ∈A1

ΛN (θ) > ε+ sup
θ∈A1

E[ΛN (θ)]

)
= P

(
N−1 sup

θ∈A1

ΛN (θ)− sup
θ∈A1

E[ΛN (θ)] > ε

)
≤ P

(
N−1 sup

θ∈A1

|ΛN (θ)− E[ΛN (θ)]| > ε

)
,

which vanishes as N →∞ by point 2. Thus, since e−εN → 0, eεN supθ∈A1
Ln(θ)

P→ 0.

Proof Proposition 2.3.6. We will find a Lipschitz constant (random variable) with the de-

sired properties by bounding ‖∇ log fθ(y)‖. We first consider derivatives with respect to θd.
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Define

Jn(θ) = (2πθd)
Nfθ(y) =

∫
fθ(y | u) exp

(
−u

Tu

2θd

)
du

and

Kn(θ) =

∫
fθ(y | u) exp

(
−u

Tu

2θd

)
uTu

2θ2
d

du.

Then ∇θdJn(θ) = Kn(θ), and hence

∇θd log fθ(y) = ∇θd log[(2πθd)
−NJn(θ)] = −N

θd
+

Kn(θ)

Jn(θ)
.

We focus on the second term first. Let An = {u ∈ R2N : uTu ≤ an} for some constant an

(depending on the total sample size n). Let Kn
1 (θ) be the integral defining Kn(θ) restricted

to An, and let Kn
2 (θ) be the same integral but instead restricted to Acn so that Kn(θ) =

Kn
1 (θ) + Kn

2 (θ). Then, since the integrands are non-negative,

Kn
1 (θ)/Jn(θ) =

∫
An
fθ(y | u) exp

(
−uTu

2θd

)
uTu
2θ2d

du∫
fθ(y | u) exp

(
−uTu

2θd

)
du

≤ an
2θ2
d

and, hence,

|∇θd log fθ(y)| ≤ N

θd
+
an
2θ2
d

+
Kn

2 (θ)

Jn(θ)
.

On Acn we have by definition that uTu ≥ uTu/2 + an/2. Thus, using that fθ(y | u) ≤
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(2π)−n/2,

Kn
2 (θ) ≤

∫
Acn

fθ(y | u) exp

(
− 1

2θd
(uTu/2 + an/2)

)
uTu

2θ2
d

du

≤ 1

2θ2
d

e
− an

4θd

∫
fθ(y | u) exp

(
−u

Tu

4θd

)
uTu du

≤ 1

2θ2
d

e
− an

4θd (2π)−n/2
∫

exp

(
−u

Tu

4θd

)
uTu du

=
1

2θ2
d

e
− an

4θd (2π)−n/2(4πθd)
N

∫
(4πθd)

−N exp

(
−u

Tu

4θd

)
uTu du

=
4Nθd
2θ2
d

e
− an

4θd (2π)−n/2(4πθd)
N . (A.3)

Using Lemma A.2.1, (A.3) can be upper bounded on B̄ε(θ
0) by hn1 = exp(c1an + c2n +

c3N + c4 logN + c5) for some constants c1, . . . , c5. It will be important later to note that

the constant c1 is negative in this expression.

We next derive a lower bound on Jn(θ). To that end, let Bn = {u ∈ R2N : |ui| ≤ 1, i =

1, . . . , N}. Since the integrand in Jn(θ) is positive, we may lower bound it by the same

integral restricted to Bn. We then get, using that exp(−uTu/(2θd)) ≥ exp(−N/θd)) on Bn

and that Lebesgue measure of Bn is 4N ,

Jn(θ) ≥ exp

(
−N
θd

)∫
Bn

fθ(y | u)du

≥ e−
N
θd (2π)−n/2 exp

−∑
i,j

y2
i,j,1/2 + |yi,j,1|(|xTi,jβ1|+ 2) + (|xTi,jβ1|+ 2)2


× exp

−∑
i,j

|yi,j,2|(|xTi,jβ2|+ 2) + log(1 + e|x
T
i,jβ2| + 2)

 4N . (A.4)

Here, the last inequality lower bounds all terms in the exponent by minus their absolute

values. Again using Lemma A.2.1, that the predictors are bounded, and that |yi,j,2| ≤ 1,

we thus see that Jn(θ) can be lower bounded on B̄ε(θ
0) by hn2 (y) = exp(c6N + c7n +

c8
∑

i,j y
2
i,j,1 + c9

∑
i,j |yi,j,1|+ c10), for some constants c6, . . . , c10. Thus, by lower bounding
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θd > c−1
11 on B̄ε(θ

0) for some c11 > 0 we get

sup
θ∈B̄ε(θ0)

|∇θd log fθ(y)| ≤ c11N + c2
11an/2 +

hn1
hn2 (y)

.

Now, take an = n1+ε/2 for some ε > 0. Then the first two terms are O(an) as n → ∞.

Moreover, since
∑

i,j EY 2
i,j,1 ≤ n(1+2θ0

d)+n‖β0
1‖ = O(n) by boundedness of the predictors,

both sums in the exponent of hn1/h
n
2 (y) converges to zero in L1 if divided by an, and hence

also in probability. It follows from the continuous mapping theorem that h1/h
n
2 (y) = OP(1)

since, as remarked above, c1 < 0. We have thus proven that supθ∈B̄ε(θ0) |∇θd log fθ(y)| =

OP(an) = oP(n1+ε), for every ε > 0.

For β1 we get by using the triangle inequality, boundedness of the predictors, t(1− t) ≤

1/4, t ∈ R, and fθ(y | u)fθ(u)/fθ(y) = fθ(u | y),

‖∇β1 log fθ(y)‖ =

∥∥∥∥∥∥ 1

fθ(y)

∫
fθ(y | u)fθ(u)

∑
i,j

[yi,j,1 − li,j,1]xi,jdu

∥∥∥∥∥∥
≤

∣∣∣∣∣∣
∑
i,j

(yi,j,1 − xTi,jβ1)

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

fθ(y)

∫
fθ(y | u)fθ(u)

∑
i,j

|u(1)
i + u

(2)
j |du

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
i,j

(yi,j,1 − xTi,jβ1)

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

fθ(y)

∫
fθ(y | u)fθ(u)

∑
i,j

[1/2 + (u
(1)
i )2 + (u

(2)
j )2]du

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i,j

(yi,j,1 − xTi,jβ1)

∣∣∣∣∣∣+ n/2 +
1

fθ(y)

∫
fθ(y | u)fθ(u)uTudu

=

∣∣∣∣∣∣
∑
i,j

(yi,j,1 − xTi,jβ1)

∣∣∣∣∣∣+ n/2 + 2θ2
d

Kn(θ)

Jn(θ)

Thus, by Lemma A.2.1 and the same arguments as for ∇θd log fθ(y) we get that

sup
θ∈Bε(θ0)

‖∇β1 log fθ(Y )‖ = oP(n1+ε)

for any ε > 0.
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Finally, by the triangle inequality and that |yi,j,2 − c′(li,j,2)| ≤ 1 for all i and j,

‖∇β2 log fθ(y)‖ =

∥∥∥∥∥∥ 1

fθ(y)

∫
fθ(y | u)

∑
i,j

[yi,j,2 − c′(li,j,2)]xi,jfθ(u)du

∥∥∥∥∥∥
≤ n



Appendix B

Maximum likelihood estimation of
covariance matrices with separable
correlation

B.1 A model for sample means

The decision to model data from different years as independent reflects inspection of sample

means; that dissolved oxygen is driven by flow, photosynthesis, respiration and other vari-

ables that themselves vary considerably within and among years; and that sampling sites

are re-selected annually, thereby precluding dependence among years at the sampling unit

scale. Strata are defined geomorphically, while reaches denote navigation pools that are

routinely sampled by the U.S. Army Corps of Engineers’ Long Term Resource Monitoring

Element.

Let Yi,j,k,l denote the lth measurement in year i, area j, and season k. Assume that

correlation between different measurements only depend on in which area and season those

measurements are taken. For example, any two distinct measurements from the same area

112
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and season are assumed equally correlated. Mathematically,

cov(Yi,j,k,l, Yi′,j′,k′,l′) =


0, if i 6= i′

σ2
j,k, if i = i′, j = j′, k = k′, l = l′

ρj,k;j′,k′

√
σ2
j,kσ

2
j′,k′ , otherwise,

(B.1)

where σ2
j,k is a variance parameter depending on season and location, and ρj,k;j′,k′ is the

correlation between measurements from location-area combinations (j, k) and (j′, k′).

The sample means we model are Yi,j,k = n−1
i,j,k

∑ni,j,k
l=1 Yi,j,k,l. Every year, each season-

area combination is sampled between 8 – 82 times, so 8 ≤ ni,j,k ≤ 82 for all i, j, k. The

average number of measurements on which the sample means are based, ni,j,k, is 39.5. The

response vector in our model is taken to be all the measurements from the same year,

Yi = [Yi,1,1, . . . , Yi,3,16]T ∈ R48 (i = 1, . . . , n), since #seasons×#areas = 3 × 16 = 48. We

have 21 independent observations (years) of that response vector.

The dependence structure assumed in (B.1) implies:

cov(Yi,j,k, Yi′,j′,k′) =


0, if i 6= i′

σ2
j,k[n

−1
i,j,k + (1− n−1

i,j,k)ρj,k], if i = i′, j = j′, k = k′

σj,k,j′,k′ , otherwise.

The second term in the expression for variances of sample means, κi,j,k = [n−1
i,j,k + (1 −

n−1
i,j,k)ρj,k], changes by years, which complicates modeling. This complication does not arise

in applications where one is modeling raw data rather than sample means, or where ni,j,k in

fact does not depend on i. Treating the covariance matrix as constant in years in our data

example is an approximation, which error depends on how much κi,j,k differs among years.

Exploratory analysis of the full data indicates ρj,k ≈ 0.5 for all j, k. Using this estimate,

we examined the ratio [maxi κi,j,k −mini κi,j,k]/κ̄j,k, where κ̄j,k is the average κ for season

k and location j over the n = 21 years. The maximum such ratio was around 0.08, with

only two being grater than 0.05. For 42/48 season-location combinations, the ratio was less
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Table B.1: Estimation Error and Test Size II

Data generated with separable correlation and compound symmetry
n r c errcor errcov errur rejcov rejcov,b rejcor rejcor,b

10 5 5 20.16 17.68 - 0.97 0.77 - -
10 5 15 54.78 37.51 - 0.98 0.13 - -
10 15 15 107.76 75.05 - 1.00 0.33 - -
20 5 5 12.54 12.05 - 1.00 1.00 - -
20 5 15 29.79 25.25 - 0.96 0.68 - -
20 15 15 64.23 50.64 - 1.00 0.91 - -

160 5 5 4.25 6.45 7.85 1.00 1.00 0.24 0.05
160 5 15 9.82 9.96 21.27 1.00 1.00 1.00 0.05
160 15 15 21.12 20.47 - 1.00 1.00 - -
320 5 5 3.03 5.83 5.53 1.00 1.00 0.12 0.06
320 5 15 6.93 7.96 15.15 1.00 1.00 0.98 0.05
320 15 15 14.91 16.89 42.98 1.00 1.00 1.00 0.06

Columns labeled err show average spectral norm errors. Subscripts indicate sepa-
rable correlation, separable covariance, and unrestricted estimators. Columns with
label rej show empirical rejection rates. The subscripts indicate the null hypotheses
covariance separability and correlation separability. A second subscript b indicates
the parametric bootstrap was used.

than 0.02.

B.2 Additional simulations

Table B.1 shows simulation results similar to those of the lower panel of Table 3.1. In these

simulations, B = 0, xi = 1 (i = 1, . . . , n), U and V have all off-diagonal entries set to 1/2,

and W is diagonal with entries evenly spaced between 0.1 and 10. Qualitatively the findings

are similar to those of Table 3.1 in that i) the separable covariance model does better in

terms of spectral error when the sample size is small, ii) the separable correlation model

does better when sample size is larger, and iii) the bootstrap based likelihood ratio test

with H0 : separable correlation has near nominal size in all settings where it is applicable.

B.2.1 Convergence diagnostics

For each setting in Table B.2, 10000 datasets were generated from the separable correlation

model, using the same configuration as in our other simulations. The model was then fit,
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Table B.2: Convergence proportions

r c n Conv. Max V U
2 2 2 0.18 0.00 0.82 0.01
2 2 4 0.76 0.24 0.00 0.00
2 2 10 1.00 0.00 0.00 0.00
2 4 2 0.01 0.00 0.99 0.00
2 4 4 0.07 0.92 0.01 0.00
2 4 10 1.00 0.00 0.00 0.00

15 15 2 0.01 0.00 0.91 0.07
15 15 4 0.00 1.00 0.00 0.00
15 15 10 1.00 0.00 0.00 0.00

Columns 4 – 7 are proportions out of 10,000
simulated datasets in which the algorithm
terminated because it converged, reached
the maximum number of iterations, an up-
date of V was singular, or an update of U
was singular, respectively.

using our algorithm, to each of these datasets. The maximum number of iterations was set

to 1000 and the tolerance parameter ε in our algorithm to 10−10.



Appendix C

Convergence complexity analysis of
a collapsed Gibbs sampler for
Bayesian vector autoregressions

C.1 Preliminary results

Definition C.1.1. We say that X ∈ Rn×m has a matrix normal distribution with mean

M ∈ Rn×m and scale matrices U ∈ Sn+ and V ∈ Sm+ if vec(X) ∼ N (vec(M), V ⊗ U). We

write X ∼M(M,U, V ).

Lemma C.1.1. If Xi ∈ Rn×mi, mi ∈ {1, 2, . . . }, i = 1, 2, 3, and X = [X1, X2, X3] ∈

Rn×(m1+m2+m3) has full column rank, then with X̃i = QX2Xi, i = 1, 2, 3,

1. XT
1 QX2X1 is invertible,

2. XT
1 Q[X2,X3]X1 is invertible, and

3. XT
1 Q[X2,X3]X1 = X̃T

1 QX̃3
X̃1.

Proof. We start with 1. Suppose for contradiction that there exists v ∈ Rm1 \{0} such that

XT
1 QX2X1v = 0, which is equivalent to QX2X1v = 0. This can happen either if X1v = 0,

which contradicts the full column rank of X, or if w = X1v is a non-zero vector in the

column space of X1 that also lies in the column space of X2, which again contradicts the

full column rank of X. The proof for 2 is exactly the same as that of 1 but with [X2, X3]

116
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in place of X2. Point 3 is an immediate consequence the Frisch–Waugh–Lovell theorem [34,

Section 2.4], which says among other things that QX̃3
X̃1 = Q[X2,X3]X1.

Lemma C.1.2. For any X ∈ Rn×p, y ∈ Rn, and c > 0,

‖(Ipc+XTX)−1XTy‖ ≤ ‖(XTX)gXTy‖,

where superscript g denotes an arbitrary generalized inverse.

Proof. Consider the optimization problem of minimizing gc : Rp → [0,∞) defined by

gc(b) := ‖y −Xb‖2 + c‖b‖2.

If c = 0, then any b such that XTXb = XTy is a solution. Thus, for any generalized

inverse, b1 = (XTX)gXTy solves the problem [31, Theorem 9.1.2]. On the other hand, if

c > 0 then since Ic + XTX has full rank, the unique solution is b2 = (cI + XTX)−1XTy.

Now a contradiction arises if for some c > 0, ‖b1‖ < ‖b2‖, which finishes the proof.

Lemma C.1.3. For A ∈ Rn×n and B ∈ Sn++, we have that B−1AgB−1 is a generalized

inverse of BAB, where superscript g indicates a generalized inverse.

Proof. We check the definition, namely that BABB−1AgB−1BAB = BAB. Indeed, using

that AAgA = A, BABB−1AgB−1BAB = BAAgAB = BAB.

C.2 Main results

Proof 4.2.1. Under either of the two sets of conditions, X has full column rank so XTX is

invertible and we may define HX = (XTX)−1XT, PX = XHX , and QX = In − PX . Let
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also W = Y − ZA and use QX + PX = In to write

f(Y | A,B,Σ) ∝ |Σ|−
n
2 etr

(
−1

2
[XB −W ]T[XB −W ]Σ−1

)
= |Σ|−

n
2 etr

(
−1

2
[XB −W ]T(QX + PX)[XB −W ]Σ−1

)
= |Σ|−

n
2 etr

(
−1

2
WTQXWΣ−1

)
etr

(
−1

2
[B −HXW ]TXTX[B −HXW ]Σ−1

)
.

(C.1)

The right-most term is the kernel of a matrix normal density for B with mean HXW and

scale matrices (XTX)−1 and Σ. Thus, integrating with respect to B gives,

∫
f(Y | A,B,Σ) dB ∝ |Σ|−

n
2 etr

(
−1

2
WTQXWΣ−1

)
(2π)rp/2|XTX|−r|Σ|p

∝ |Σ|−
n−p
2 etr

(
−1

2
WTQXWΣ−1

)
.

Thus, to show that f(Y | A,B,Σ)f(α)f(Σ) can be normalized to a proper posterior, we

need only show that

∫∫
|Σ|−

n−p
2 etr

(
−1

2
WTQXWΣ−1

)
f(α)f(Σ) dα dΣ <∞. (C.2)

Let us consider the two sets of conditions separately, starting with the first. Since

tr(WTQXWΣ−1) = tr(Σ−1/2WTQXWΣ−1/2) ≥ 0,

we can upper bound the integrand in (C.2) by

|Σ|−
n−p
2 f(α)f(Σ) = |Σ|−

n+a−p
2 etr

(
−1

2
Σ−1D

)
f(α),

which since we are assuming that n − p + a − r − 1 > r − 1, i.e. that n + a > 2r + p and

that D is SPD, is the product of a proper inverse Wishart and a proper density for α. This

finishes the proof for the first set of conditions.
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For the second set of conditions, notice that for (C.2) it suffices, since D is SPSD, and

hence f(Σ) and f(α) both bounded, to show that

∫∫
|Σ|−

n+a−p
2 etr

(
−1

2
WTQXWΣ−1

)
dα dΣ <∞.

Let Ỹ = QXY and Z̃ = QXZ so that QXW = Ỹ − Z̃A. Using the same decomposition as

before we have for the last integrand

|Σ|−
n+a−p

2 etr

(
−1

2
WTQXWΣ−1

)
= |Σ|−

n+a−p−qr
2 etr

(
−1

2
Ỹ TQZ̃ Ỹ Σ−1

)
|Σ|−

qr
2 etr

(
−1

2
[A−HZ̃ Ỹ ]TZ̃TZ̃[A−HZ̃ Ỹ ]Σ−1

)
.

Under the second set of assumptions, the last line is proportional to the product of an

inverse Wishart density for Σ with scale matrix Ỹ TQZ̃ Ỹ and n+ a− p− qr− r− 1 degrees

of freedom and a matrix normal density for A with mean HZ̃ Ỹ and scale matrices (Z̃TZ̃)−1

and Σ, and hence integrable. The assumption that [Y,X,Z] has full column ensures that,

by Lemma C.1.1, Ỹ TQZ̃ Ỹ and Z̃TZ̃ are positive definite matrices.

Proof of Lemma 4.2.2. The full conditional distribution of B is immediate from dropping

terms not depending on B in (C.1). Consider next the integrand in (C.2). The first term

in the exponential is tr([Y −ZA]TQX [Y −ZA]Σ−1) = ‖QX(Y −ZA)Σ−1/2‖2F = ‖(Σ−1/2⊗

In)(vec(QXY ) − vec(QXZA))‖2 = ‖(Σ−1/2 ⊗ In)(vec(QXY ) − [Ir ⊗ QXZ]α)‖2. Thus, the

log of the integrand is quadratic as a function of α, with Hessian −B = −Σ−1⊗ZTQXZ−C

and gradient −(Σ−1 ⊗ ZTQX) vec(QXY )− Cm, which implies the desired distribution for

α | Σ, Y . Finally, the distribution of Σ | α, Y is immediate from dropping terms in the

integrand in (C.2) not depending on Σ.

Proof Lemma 4.3.1. Assume αk,Bk,Σk, k = 1, 2, . . . are generated by the collapsed Gibbs

sampler in Algorithm 4.1 started at some point θ0 ∈ Θ. The equality follows from showing

that ξk = (αk,Σk) and θk are co-de-initializing Markov chains [62, Corollary 1]. That they

are both Markov chains is clear from the construction of the updates in Algorithm 4.1. That
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θk is de-initializing for ξk, i.e. that the distribution of ξk | θk, ξ0 does not depend on ξ0,

is immediate from that ξk is a function (coordinate projection) of θk. The other direction,

that ξk is de-initializing for θk, is by construction of the algorithm: since ξk is a coordinate

projection of θk, the distribution of θk | ξk, θ0 is determined by that of Bk | ξk, θ0, and

the distribution from which this value is drawn (line 5, Algorithm 4.1) does not depend on

θ0.
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