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Abstract
Ectotherm growth is inextricably linked to both temperature and other aspects of life
history. In this dissertation, I leverage life history and bioenergetics theory to (1) justify
and standardize the use of metrics that adequately describe the effect of temperature on
ectotherm growth, and (2) develop and apply methods that leverage the links between
ectotherm growth and life history to extract life history information from growth data. I
focus on fishes as example ectotherms. Fish growth is driven by the amount of thermal
energy accrued over time (i.e., the thermal integral). Accordingly, numerous studies have
found strong linear relationships between fish growth and degree-days (DD), a thermal
integral metric. Despite these findings, fish science lags behind other fields in the
widespread adoption of DD, likely due to (1) a lack of theoretically-sound support for the
observed linear relationships between fish growth and DD, and (2) insufficient
justification for using DD derived from air temperatures in place of DD derived from
water temperatures in fish science. Moreover, there is limited guidance for selecting the
base temperature for growth (T,), an important parameter for calculating DD, among
fishes and scenarios. In Chapter 2, I combine empirical data and simulation modeling to
provide bioenergetic and limnological foundations for the linear relationship between fish
growth and DD, and I show that air-based DD can serve as an accurate proxy for water-
based DD for describing fish growth. In Chapter 3, I provide estimates of T,, for 82 fish
species using approaches that are rooted in fish biology. Together, these analyses will
help to justify and standardize the use of DD in fish science. Fish growth is also strongly

correlated with other aspects of life history (e.g., maturity, mortality). Recent advances in

v



life history theory have led to the development of biphasic growth models that allow for
the estimation of age-at-maturity, reproductive investment, and other life history traits
from growth data. However, these models can be difficult to fit in the absence of maturity
data. In Chapter 4, I develop a statistical framework for fitting biphasic growth models
using only length-at-age data. I show that this approach can provide accurate estimates of
age-at-maturity and other life history traits, and I evaluate the performance of the method
across various species and data quality scenarios. In Chapter 5, I use a similar approach
to investigate shifts in life history traits in an ecologically and economically important
fish stock (Gulf of Mexico red snapper Lutjanus campechanus) from 1941-2005. This
growth-based approach allows for the estimation of life history traits deeper into the past
than would have been possible using traditional approaches and provides a more holistic
understanding of how red snapper life histories have shifted in the face of fishing
pressure and other stressors. Taken together, this work has the potential to improve
fisheries research, promote sustainable fisheries management, increase global food

security, and encourage similar advances in other fields.

Supplementary Files
Supplementary Data File 1 describes the fish length-at-age dataset used for the empirical
growth analysis in Chapter 3. Supplementary Data File 2 describes the bioenergetics

model parameters and settings used for the 10 °C rule approach, also in Chapter 3.
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Chapter 1

General introduction: fish growth, temperature, and life history

Understanding individual growth is a central focus of modern biology and is key to a
wide range of biological inquiry. Growth influences population dynamics (Lorenzen and
Enberg 2002) and is strongly linked to evolutionary fitness (e.g., growth correlates with
maturity, reproduction, and mortality; Stearns 1992, Bernardo 1993, Lester et al. 2004).
In addition, growth and other aspects of life history often shift in response to
environmental drivers (e.g., temperature) and human activities (e.g., fishing; Hutchings
and Fraser 2008, Heino et al. 2015, Dunlop et al. 2018). These shifts can complicate
management (Heino et al. 2013), reduce yields from harvested populations (Heino 1998),
and increase the likelihood of population crashes (Anderson et al. 2008). Detecting and
accounting for these shifts requires a thorough understanding of growth and is crucial for
sustainable management (Hilborn and Walters 1992), particularly in the face of stressors
such as climate change (IPCC 2014). Unfortunately, conventional methods for
understanding growth are often limited both in their representation of important processes
(e.g., the effect of temperature on ectotherm growth) and their ability to provide
information on growth-correlated traits (e.g., maturity, mortality).

Ectotherm growth and other physiological processes are driven by ambient
temperature (Hazel and Prosser 1974, Atkinson 1994, Diana 2003). More specifically,

ectotherm metabolic processes and phenologies are closely linked with the amount of



thermal energy that is accrued over a given time period (i.e., the thermal integral;
Charnov and Gillooly 2003, Neuheimer and Taggart 2007). The integrated nature of the
effects of thermal energy on ectotherm metabolic processes also holds for many plant
species; as a result, plant biologists have used thermal integrals to describe plant
physiological processes for centuries (Réamur 1735). Some ectotherm-centered branches
of biology (e.g., entomology) have also used thermal integrals for many years (Seamster
1950, Allen 1976). In contrast, fish science lags behind in the widespread adoption of
thermal integrals despite the fact that they consistently outperform commonly-used
temperature metrics (e.g., mean temperatures over a given time period) and calendar time
in describing fish growth and other physiological processes (Neuheimer and Taggart
2007, Chezik et al. 2014a, 2014b). There are a number of potential reasons for this lag.
For example, high-resolution water temperature data are relatively scarce, and, although
air temperatures may serve as an accurate proxy for water temperatures in many cases,
sufficient justification for using thermal integrals derived from air temperatures to
describe fish growth is lacking. In addition, the appropriate value for the base
temperature for growth, an important parameter for thermal integral calculation, is
unknown for many fish species. As a result, fish scientists have used a variety of base
temperatures to calculate thermal integrals with little or no justification (Chezik et al.
2014b), which can complicate inference and lead to erroneous conclusions (e.g., the
apparent evolution of countergradient growth; Levins 1969, Conover and Present 1990).
Among the most pressing challenges that remain are to (1) explore the validity of using

air temperatures to calculate thermal integrals in fish science and (2) create an objective



and theoretically-sound framework for estimating base temperatures for growth for
various fishes.

The lifetime growth of ectotherms is not only coupled with temperature, but it is
also strongly correlated with other aspects of life history. For example, increases in
growth rates typically lead to earlier maturity, increased investment in reproduction, and
increased mortality rates (Stearns 1992). Moreover, growth rates often change throughout
life based on life history. For example, although ectotherms grow indeterminately (i.e.,
they continue growing throughout life), their growth typically slows after maturity due to
energetic investment in reproduction (Kozlowski 1996). Unfortunately, traditional
approaches for modeling ectotherm growth (e.g., the von Bertalanffy growth model; von
Bertalanffy 1938) smooth over these changes by describing lifetime growth as a single
curve. In response to this issue, researchers have proposed growth models that account
for changes in growth throughout life and include parameters that correspond with life
history traits (e.g., age-at-maturity; Lester et al. 2004, Quince et al. 2008, Mollet et al.
2010, Boukal et al. 2014). Regrettably, the application of these models is limited due to
their strict requirements for data on a variety of life history traits (but see Quince et al.
2008b, Mollet et al. 2013, Lester et al. 2014, Uusi-Heikkila et al. 2015, Chavarie et al.
2016). However, because growth is correlated with many other life history traits, it
should be possible to estimate multiple life history traits from growth data. The ability to
do so accurately would provide a wealth of relevant knowledge from common growth
data and allow us to address important questions related to life history plasticity and

evolution.



My overarching goal is to improve our understanding of ectotherm growth and
life history through the development and application of methods that leverage the
inextricable links between temperature, growth, and life history. My first broad aim
focuses on temperature and fish growth. In Chapter 2, I use theoretically-sound and well-
supported models of both fish bioenergetics and annual lacustrine surface water
temperature cycles to provide physiological and limnological foundations for using
thermal integrals derived from air temperatures to describe fish growth. Specifically, I
show that thermal integrals derived from both air and water temperature data are roughly
linearly related to fish growth, highlighting their utility as metrics for describing fish
growth and physiology. In Chapter 3, [ meet the need for guidance in calculating thermal
integrals by providing estimates of the base temperature for growth for 82 fish species
using approaches that are rooted in fish biology. My results show that the appropriate
value for the base temperature for growth varies across species and life stages and can
also differ for calculating air- versus water-based thermal integrals within species. My
second broad aim centers on estimating life history traits from fish growth data. In
Chapter 4, I develop a statistical framework for estimating age-at-maturity and other life
history traits solely from growth data. I show that this method provides accurate estimates
of age-at-maturity in the absence of maturity data for fishes and other ectotherms. In
addition, I use simulation modeling to explore the ability of the method to recover ‘true’
life history trait values across various data quality scenarios, thereby providing guidance
to users. In Chapter 5, I use an approach similar to the one developed in Chapter 4 to

track changes in life history traits over time for Gulf of Mexico red snapper Lutjanus



campechanus, an economically important and historically overexploited fish stock. By
leveraging growth data, I provide otherwise unattainable estimates of life history traits for
red snapper during the expansion of the fishery in the 1940s-1960s. Moreover, I show
that red snapper life histories shifted dramatically toward a faster regime (i.e., faster
growth, earlier maturity) in the mid-20™ century, likely in response to fishing pressure.
Chapter 2 has been accepted for publication in the Canadian Journal of Fisheries
and Aquatic Sciences and is currently in press (dx.doi.org/10.1139/cjfas-2018-0051). As
such, Chapter 2 is referred to as Honsey et al. (in press) throughout this document. The
publication of this chapter by the University of Minnesota is granted by the Canadian
Journal of Fisheries and Aquatic Sciences Author Rights, which state the following:
“Authors may reuse all or part of their manuscript in other works created by them for
non-commercial purposes, provided the original publication in an NRC Research Press
journal is acknowledged through a note or citation.” Chapter 4 is published in Ecological
Applications (https://doi.org/10.1002/eap.1421) and is referred to as Honsey et al. (2017)
herein. A document granting permission to publish this material from John Wiley and
Sons has been submitted to the University of Minnesota Graduate Student Services and
Progress office alongside this dissertation. Chapters 3 and 5 are currently in preparation
for publication in peer-reviewed scientific journals. Co-authors on these manuscripts are
as follows: Chapter 2, Paul A.Venturelli and Nigel P. Lester; Chapter 3, Andrew L. Rypel
and Paul A. Venturelli; Chapter 4, David F. Staples and Paul A. Venturelli; and Chapter

5, Robert J. Allman, Gary R. Fitzhugh, and Paul A. Venturelli. I use plural pronouns (i.e.,



“we” and “our” instead of “I”” and “my”’) in Chapters 2-5 to reflect these authors’

contributions to the work.



Chapter 2

Bioenergetic and limnological foundations for using degree-days

derived from air temperatures to describe fish growth

Synopsis
Degree-days (DD) are an effective metric for quantifying the thermal opportunity for
ectotherm growth. There is strong empirical evidence to suggest that DD are useful for
describing fish growth, and that immature growth increases linearly with DD. However,
fish ecology lags behind other disciplines in the widespread adoption of DD. We provide
(1) a foundation for the observed linear relationship between immature fish growth and
DD, and (2) justification for using DD derived from air temperatures as a proxy for DD
derived from water temperatures in fish science. We use bioenergetics models and both
simulated and empirical water temperatures to show that immature annual and
interannual fish growth are approximately linear with water DD. We then use simulated
and empirical data to show that air and surface water temperatures are often highly
correlated, and that immature fish growth is also approximately linear with air DD. By
connecting the dots among air temperature, water temperature, and fish growth, we lay

the foundation for wider adoption of DD in fish science.



2.1 Introduction

There is an obvious link between ambient temperatures and physiological processes in
ectotherms (Hazel and Prosser 1974; Atkinson 1994; van der Have and de Jong 1996).
Less obvious is how one should measure temperature to best understand its influence on
ectotherm growth and other metabolic processes. Instantaneous metrics (e.g., mean
temperatures over a given time period; Pauly 1980; Doubleday et al. 2015) are often used
to explain ectotherm growth. These metrics are easy to calculate but may not adequately
index the effect of temperature on ectotherm growth and metabolism (Neuheimer and
Taggart 2007).

Degree-days (DD) are a summation of the metabolically-relevant thermal energy
that is experienced by an individual over time. As such, DD are a useful index of the
thermal scope for ectotherm growth (Chezik et al. 2014a). Other fields (e.g., agronomy,
entomology) have used DD extensively for decades to centuries (Neuheimer and Taggart
2007), and DD have been shown to outperform calendar time in describing ectotherm
growth (e.g., Colby and Nepszy 1981). Moreover, because DD integrate time and
temperature, they provide a physiologically-valid understanding of how growth responds
to temperature that can be particularly useful when comparing growth rates among
populations (e.g., for studies of countergradient variation in growth; Chezik et al. 2014b;
Snover et al. 2015).

The application of DD in fish science has become increasingly common, as has
the use of DD derived from air temperatures as a surrogate for DD calculated from water

temperatures (e.g., Fig. 1.1 in Chezik 2013). In particular, DD have been shown to be



useful for describing fish growth, with multiple empirical studies finding strong linear
relationships between DD and immature fish growth (e.g., Neuheimer and Taggart 2007;
Venturelli et al. 2010; Chezik et al. 2014a). Although fish culturists have used DD for
many decades (e.g., Wallich 1901; Soderberg 1992; Dumas et al. 2010), other fish
sciences, such as fish ecology, have yet to adopt DD in a widespread manner. Likely
reasons for this lack of widespread adoption include the relative scarcity of high-
resolution water temperature data compared to air temperature data, and insufficient
evidence to suggest that DD calculated from air temperatures can serve as an accurate
proxy for DD derived from water temperatures. Moreover, researchers who are familiar
with conventional, nonlinear fish growth models (e.g., the von Bertalanffy model; von
Bertalanffy 1938; Beverton and Holt 1957) may not be convinced by the evidence for
linear relationships between immature fish growth and DD (e.g., Malzahn et al. 2003;
Neuheimer and Taggart 2007; Chezik et al. 2014a).

Our objectives were to provide (1) a bioenergetic foundation for the linear
relationship between immature fish growth and DD that has been found in multiple
empirical studies, and (2) justification for using DD derived from air temperatures as a
proxy for DD derived from water temperatures. To accomplish these objectives, we
review existing knowledge and use simulated and empirical data to connect the dots
among air temperature, water temperature, and fish growth. First, we use bioenergetics
models to demonstrate the effect of water temperature on fish growth at daily, annual,
and interannual time scales. We then examine the relationships between air and surface

water temperatures, and we assess whether air-based DD can serve as an accurate proxy



for water-based DD. Finally, we compare the performance of air- and water-based DD in
describing fish growth, and we discuss the limits of using air-based DD to describe
growth (e.g., for coldwater fishes in thermally stratified systems). By providing a
theoretically-sound and empirically-supported basis for the expanded and appropriate use
of DD, our analyses promote a more thorough understanding of the growth and

physiology of fishes and other aquatic organisms.

2.2 Water temperature and fish growth

In this section, we use bioenergetics models to demonstrate the effects of water
temperature on fish growth (Kitchell et al. 1977; Jobling 1995; Hanson et al. 1997).
Bioenergetics models are based on an energy balance equation in which the potential for
growth is governed by energy acquired via consumption minus metabolism (e.g.,
respiration, specific dynamic action) and waste. The functions that describe these
processes often depend on water temperature. As a result, growth is also temperature-
dependent, and the nature of the growth-temperature relationship is shaped by species-
specific parameters (e.g., optimum temperature for consumption, upper lethal water
temperature; Hanson et al. 1997).

We used bioenergetics models to simulate juvenile growth for three fishes: yellow
perch Perca flavescens, brown bullhead Ameiurus nebulosus, and tiger muskellunge
(northern pike Esox lucius X muskellunge Esox masquinongy). These models encompass
diversity in two key areas. First, they use different combinations of model functions (i.e.,

equations) for the various model processes (Table 2.1). For instance, the brown bullhead
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model uses a respiration function that is exponential with temperature, whereas the
respiration function used in the other two models accounts for decreased respiration rates
at high temperatures. Therefore, any similarities in model results are unlikely to be driven
by similar functional response assumptions across model processes. Second, the thermal
regimes differ for each model species, with the three models encompassing a fair amount
of thermal diversity for cool- and warmwater species (thermal optima for consumption
ranging from 24-29 °C). Parameters, equations, and sources for these models are given in
Table 2.1. We excluded models for coldwater species because our analytical approaches
assumed that the simulated fish experienced epilimnetic temperatures year-round (see
below). As such, we chose models for cool- and warmwater fishes so that this assumption

would likely not be meaningfully violated.

1) Daily growth
We begin by showing how daily growth in length varies with water temperature across
levels of prey consumption and activity (a multiplier on respiration, with 1 = resting
metabolism). We did this to establish a foundation for how growth responds to these
factors over short time periods, which is an important first step in understanding how
growth relates to DD over longer time periods. We set initial sizes to 100 mm for yellow
perch and brown bullhead, and 150 mm for tiger muskellunge. We used geometric mean
parameters for the length-weight relationship from FishBase (Froese and Pauly 2016) for

length-weight conversions. We set the energy density of oxygen to 13556 J-g"! here and
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throughout (Elliott and Davison 1975). We conducted these and all additional
calculations and simulations in R version 3.4.1 (R Core Team 2017).

Our bioenergetics simulations produced typical results showing the non-linear
relationship between daily growth in length and temperature (Fig. 2.1). This relationship
is positive for most water temperatures and approximately linear across a midrange of
temperatures (e.g., 10-20 °C). The relationship appears to become more linear when
either activity is higher than resting metabolism or consumption is below satiation (Fig.
2.1a,b). However, if we consider growth as a proportion of maximum growth for a given
activity or consumption level (Fig. 2.1¢,d), we see that the relationship is nonlinear for all
scenarios examined, and among the most noticeable effects of increased activity or
reduced consumption is a decrease in the optimum temperature for growth (see Kitchell
et al. 1977). Fig. 2.1 shows results for the yellow perch bioenergetics model; results for

the other two models are shown in Appendix 1, Figs. Al.1 and A1.2.

i1) Annual growth
In fish science and other disciplines, samples are often collected at a relatively coarse
temporal resolution (e.g., once per year), and individual sizes across ages and/or sampling
events are compared to approximate growth patterns (Lorenzen 2016). Therefore, we
were primarily interested in examining the cumulative effect of water temperature on
growth at annual and interannual time scales.

For this portion of the analysis, our goal was to examine the effect of varying

temperature scenarios on the relationship between annual immature fish growth and DD
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derived from water temperatures (WDD). We first simulated annual surface water
temperature cycles using the Shuter water temperature model and empirical predictors for
maximum daily surface water temperature (75,,,) and the duration of the ice-free season

(DR; Shuter et al. 1983):

_ . 7—0.108 ,0.0437-AT—0.002-AT 2
Tmax =235-Z e

DR = 149 - 70.073 50.06-AT

t — (365 — DR))

Ty =4+ (Thpax — 4) - sin(m - DR

where Z is mean lake depth (or mean thermocline depth for stratified systems), AT is
mean annual air temperature, and T; is mean surface water temperature on day t. We
used simulated rather than empirical water temperatures for this portion of the analysis so
that we could encompass a broad range of climatic scenarios in a relatively
straightforward and analytically robust manner. We assumed that liquid water
temperature did not fall below 4 °C and that the year was 365 days long. Using these
equations, the annual water temperature cycle can be defined as a function of Z and AT.
We fixed Z at 8 m for the sake of simplicity and because variation in Z generally has a
smaller impact than variation in AT on the surface water temperature cycle (see Appendix
1, Section Al.1 and Fig. A1.3). We then simulated annual surface water temperature
cycles from 0 to 10 °C AT in increments of 0.5 °C.

We used these simulated daily water temperatures to drive the yellow perch,
brown bullhead, and tiger muskellunge bioenergetics models (Table 2.1). We assumed
that fish experienced surface water temperatures, which approximate the temperature of

the typically well-mixed epilimnion (e.g., Livingstone and Lotter 1998), throughout the
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ice-free season. We then summed daily growth in length throughout the ice-free season,
assuming that growth during winter was negligible (Pitcher and Macdonald 1973; Garcia-
Berthou et al. 2012). We subtracted initial length from final length to determine annual

growth. We then compared annual growth to WDD above 5 °C (WDD:s), calculated as
N

(D) WDD5=ZTt—5, T, >5
t=1

where N is the number of days (in this case, 365) and T; is the daily mean surface water
temperature on day t. We used 5 °C as a base temperature because it is highly correlated
with the length of the ice-free season (Shuter et al. 1983; Venturelli et al. 2010) and has
been used to describe growth in yellow perch and other fishes (e.g., Power and McKinley
1997; Purchase et al. 2005; Rennie et al. 2010).

We first simulated growth under the ‘ideal” bioenergetic scenario in which
individuals achieve satiation at resting metabolism. However, these results are unrealistic
because empirical data suggest that activity costs are often higher than resting
metabolism (e.g., Rowan and Rasmussen 1996). In addition, consumption can be highly
variable (e.g., Schaeffer et al. 1999) and is typically estimated at roughly 40-60% of
satiation in wild populations (Hartman and Margraf 1992; Petersen and Paukert 2005;
Hartman and Cox 2008). To explore the nature of the relationship between WDDs and
annual growth given reduced consumption and/or increased activity, we repeated the
simulations for three additional bioenergetics scenarios: (1) satiation with increased
activity (activity multiplier = 3); (2) lower consumption (50% of satiation) with resting

metabolism; and (3) lower consumption (85% of satiation) with increased activity
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(activity multiplier = 2). Our results show that the relationship between annual growth
and WDDs is approximately linear for all of these bioenergetic scenarios (all R? > 0.99),
with the most substantial change in the relationship among scenarios being a change in

the slope of the line (Fig. 2.2).

111) Interannual growth
We have shown that annual fish growth in length is roughly linear with WDDs across a
variety of scenarios. Here, we test whether interannual immature growth (i.e., length-at-
age) is also approximately linear with WDDs for many bioenergetic scenarios. We focus
on immature growth because the linear approximation of the length-at-age versus DD
relationship is typically only valid for growth leading up to maturity (Lester et al. 2004),
whereas adult length-at-age is often nonlinear due to investment in reproduction and
other factors (e.g., increasing activity costs with body size; Ware 1978; Kozlowski 1996;
Andersen and Beyer 2015).

We included empirical water temperature in this portion of the analysis by
retrieving five years of publicly-available daily mean water temperature data (1 m depth)
from two lakes: Sparkling Lake, WI, USA (2000, 2002-2005) and Lake Lacawac, PA,
USA (2010-2014; Fig. 2.3). The Sparkling Lake data were retrieved from the University
of Wisconsin’s North Temperate Lakes Long Term Ecological Research network (NTL
LTER 1991a). These data were continuous apart from eight gaps (mean + SD gap length
=2.875 £ 3.23 days; 1.3% of total sample size), which we filled using linear

interpolation. The Lake Lacawac data were retrieved from an electronic database
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maintained by Lehigh University (http://www.lehigh.edu/~brhO/pocono_mon/) and were
continuous.

We used the empirical water temperature data to drive multi-annual bioenergetics
simulations for each of our model species (Table 2.1). We summed growth throughout
the ice-free seasons (i.e., when water temperatures at I m were > 4 °C) and defined
length-at-age as the length on the last day of each year. We carried out a factorial
simulation to determine the effects of varying consumption (10-100% satiation in
increments of 5%), activity (1-4 in increments of 0.2), and initial size (yellow perch = 25,
50, and 75 mm; brown bullhead = 50, 100, 150 mm; tiger muskellunge = 100, 150, 200
mm) on interannual growth. We fit a linear model to the length versus WDDs relationship
and recorded the adjusted R? value after each simulation. We focused on R? because we
were primarily interested in the explanatory power of a metric (WDDs) in describing
interannual fish growth in a linear model framework across a wide range of bioenergetic
scenarios; we were not interested in, e.g., the relative performance of a given model, or
whether a particular relationship was statistically significant. We disregarded R? values
for scenarios in which individuals did not grow across all five years (e.g., fish losing
weight from one year to the next) because these scenarios would likely result in death.
Figure 2.4 shows example results from simulations with consumption set at 40% of
satiation and the activity multiplier set at 1.2. We acknowledge that simulating immature
growth across five years may be unrealistic because the model species may mature before
age 5 (e.g., Trippel 1995; Feiner et al. 2015); however, we argue that these simulations

are valid given our goal of better understanding how immature growth relates to DD, and
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we note that the relationship should be approximately linear leading up to maturity
regardless of age-at-maturity.

Our results suggest that immature interannual growth is approximately linear with
WDD:s for most bioenergetic scenarios across species (Fig. 2.5). The brown bullhead and
tiger muskellunge models displayed nearly linear (R? > 0.90) growth for all scenarios
examined. Simulated growth for the yellow perch model was less linear (R? < 0.90) in
some cases; however, most of these cases occurred when activity was unrealistically high
for immature yellow perch (e.g., ACT > 2; Rowan and Rasmussen 1996). The yellow
perch model was the most sensitive to initial fish size, with fewer cases of highly linear
growth at smaller initial sizes. Importantly, growth was approximately linear (R? > 0.90)
with WDDs for 95% of cases (n = 268) for which consumption was similar to empirical
estimates (40-60% of satiation, or p(Cmax) = 0.4-0.6; Hartman 2017). This percentage
increased to 98% (n = 256) for realistic levels of activity (ACT =~ 1-2.4 for immature
fishes; Rowan and Rasmussen 1996). These summaries and Fig. 2.5 describe the
simulations driven by Sparkling Lake water temperatures; results from the simulations

driven by Lake Lacawac temperatures were nearly identical (Appendix 1, Fig. A1.4).

23 Air temperature and fish growth

1) Air temperature as a proxy for water temperature
Air temperatures and surface water temperatures are often highly correlated in lacustrine
(Macan and Maudsley 1966; Livingstone and Lotter 1998; Livingstone and Dokuli 2001)

and riverine (Pilgrim et al. 1998; Mohseni and Stefan 1999; Erickson and Stefan 2000)

17



systems during open water periods. For this reason, air temperatures have been used in
place of surface water temperatures in fish science (e.g., Schlesinger and Regier 1982;
Rypel 2012; Honsey et al. 2016). Moreover, because heat flux at the air-water interface is
a major driver of lake temperatures (e.g., Edinger et al. 1968; Wetzel and Likens 2000;
Read et al. 2014), air temperatures are commonly included as drivers in limnological
models (e.g., Hondzo and Stefan 1993; Jacobson et al. 2010; Piccolroaz et al. 2017).

We first demonstrate the correlation between air and surface water temperatures
in Sparkling Lake and Lake Lacawac. To do this, we retrieved mean daily air temperature
data from weather stations near the two lakes that covered the same time periods as the
water temperature data. For Sparkling Lake, we retrieved air temperature data from
Woodruff Airport (-4.22 m elevation and 9.11 km from Sparkling Lake; NTL LTER
1991b). These data contained three gaps (mean + SD gap length = 7.33 + 10.12 days;
1.2% of total sample size). Because one of the gaps in these data was 19 days long and
because mean daily air temperature data from other nearby sites were unavailable, we
used a linear model to predict the unknown mean daily air temperatures as a function of
daily minimum and maximum air temperatures from another nearby weather station
(Minocqua Dam, -11.32 m elevation and 6.05 km from Woodruff Airport; Kratz 1983; n
= 1805, R? = 0.994). For Lake Lacawac, we retrieved continuous mean daily air
temperature data from the Wilkes Barre Scranton International Airport (-160.66 m
elevation and 35.97 km from Lake Lacawac) using the National Oceanic and
Atmospheric Administration Climate Data Online tool (https://www.ncdc.noaa.gov/cdo-

web/). Air and surface water temperatures were highly correlated for both lakes
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(Pearson’s p =0.87 and 0.91 for Sparkling and Lacawac, respectively; Fig. 2.3),
suggesting that mean daily air temperatures can serve as a good proxy for mean daily
surface water temperatures.

Our next goals were to examine the relationship between DD derived from air
temperatures (ADD) and WDD, and to determine whether ADD can serve as an accurate
proxy for WDD. Both the degree to which ADD correlates with WDD within lakes and
the nature of the ADD versus WDD relationship among lakes have important
implications for ADD applications (e.g., using ADD to describe fish growth and
physiology within and/or among lakes, using ADD to drive limnological models, etc.).
We used both simulated and empirical data to explore these relationships. For the
empirical comparisons, we calculated ADD above 5 °C (ADDs) using eq. 1 and the air
temperature data described above. We then calculated the Pearson correlation coefficient
between ADDs and WDDs derived from the empirical water temperature data from each
lake at both annual and cumulative (i.e., summed across years) time scales. For the
simulations, we once again used the Shuter model (Shuter et al. 1983) to generate annual
water temperature cycles across four values of Z (4, 8, 16, and 32 m) and with AT
ranging from -10 to 15 °C in increments of 0.5 °C. We used these water temperature data
and eq. 1 to calculate WDDs. We then collected air temperature data from 107 weather
stations in the United States and Canada using the National Oceanic and Atmospheric
Administration Climate Data Online tool (see Appendix 1, Section A1.2 for details), and

we used these data to generate an empirical relationship for predicting ADDs from AT:

ADDs = 1346.8 - ¢007294T
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We used this relationship to estimate ADDs for the simulated scenarios, and we
compared annual ADDs to WDDs across simulations.

Our empirical results show that annual ADDs and WDDs are highly correlated for
both the Sparkling Lake and Lake Lacawac datasets (p = 0.97 and 0.87, respectively; Fig.
2.6). Moreover, although WDD:s is consistently higher than ADDs due to higher average
water temperatures (Fig. 2.3), the two cumulative metrics are almost linearly related for
both datasets (p > 0.99; Appendix 1, Fig. A1.7). These results suggest that ADDs can be
an accurate surrogate for WDDs both within and across years. Our simulation results
indicate that the relationship between WDDs and ADDs is nonlinear and not proportional
(Fig. 2.6). However, the relationship for a given Z value is approximately linear across
relatively broad ranges of temperatures (e.g., ~1300-3000 ADD:s), suggesting that the
slope of the relationship (and therefore the utility of ADDs as a proxy for WDDs) is not

likely to change within a given lake due to annual variation in temperature.

1) Annual growth
Our next aim was to investigate the relationship between annual growth and ADD across
a variety of temperature scenarios. To do this, we used the Shuter model to generate
water temperatures, with Z fixed at 8 m and with AT ranging from 0 to 10 °C in
increments of 0.5 °C. We used these simulated temperatures to drive the three
bioenergetics models (Table 2.1), summed daily growth throughout the ice-free season,
and subtracted initial length from final length to determine annual growth (Amm). We

calculated ADDs using the empirical relationship described above. We then regressed
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ADD:s against annual growth for four bioenergetic scenarios: (1) the ‘ideal’ case of
satiation at resting metabolism, (2) satiation with activity multiplier = 3, (3) 50% of
satiation at resting metabolism, and (4) 85% of satiation with activity multiplier = 2. Our
results show that annual growth is roughly linear with the empirically-derived ADDs for
all bioenergetic scenarios examined (all R? > 0.98), suggesting that ADDs can be as

effective as WDDs for describing annual growth within lakes (Fig. 2.7).

111) Interannual growth
We have shown that ADD and WDD can have nearly equivalent power in explaining
annual fish growth. Our final goal was to compare the performance of ADD to that of
WDD in describing interannual growth (i.e., length-at-age). To do this, we again used
five years of empirical water temperature data from Sparkling Lake and Lake Lacawac to
drive bioenergetics simulations for the three model species (Table 2.1), and we employed
the same factorial design used above to examine the effects of varying consumption,
activity, and initial size on the growth versus DD relationship. In this case, we calculated
ADD:s using the empirical air temperature datasets collected near each lake and eq. 1
(substituting ADDs for WDDs), and we fit linear models to the length versus ADDs
relationship for each simulation. Our results closely mirrored those of the length versus
WDDs comparisons for both Sparkling Lake (Fig. 2.8) and Lake Lacawac (Appendix 1,
Fig. A1.8). In some cases, adjusted R? values were higher for the length versus ADDs

regressions than they were for the length versus WDDs regressions (e.g., Fig. 2.8g,h,1).
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These results suggest that immature fish length-at-age is approximately linear with ADDs

across a wide range of bioenergetic scenarios.

24 Discussion

Our analysis provides bioenergetic foundations for the nearly linear relationship between
DD and immature fish growth, as well as justification for using ADD as a proxy for
WDD when describing growth. We show that, although daily growth rates are nonlinear
with temperature, the nonlinear increase in DD through time explains the nonlinear
nature of growth in a linear manner at annual and interannual time scales (Neuheimer and
Taggart 2007). In other words, growth occurs intermittently, but always along a trajectory
that is approximately linear with DD at relatively coarse (but highly relevant) time scales.
The fact that ADD can serve as an accurate proxy for WDD should facilitate the use of
DD and promote a more physiologically-valid understanding of how the growth of fishes
and other aquatic organisms responds to thermal energy.

A number of factors can limit the ability of surface WDD or ADD to describe fish
growth. For example, the growth versus ADD relationship may be nonlinear if ADD
become disentangled from WDD (e.g., due to wind, groundwater, shade, etc.). We also
assumed that our simulated fish experienced epilimnetic temperatures throughout the
growing season. This assumption was reasonable for our three model species, but
coldwater species in many stratified systems spend much of the growing season below
the epilimnion. As such, ADD and surface WDD may not provide an adequate

description of the thermal environments experienced by these fishes. We note that more
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adequate DD metrics could be calculated for fishes that do not inhabit the epilimnion
year-round, but that doing so would require both depth-specific water temperature data
and knowledge of the depths that individuals inhabit throughout the year, which may
render the calculation of such a metric impractical or impossible (although more complex
water temperature models could facilitate such efforts; e.g., Read et al. 2014). We also
note that any shortcomings of ADD in describing growth of coldwater fishes in stratified
systems would likely extend to any air temperature-based metric due to the often poor
correlation between air temperatures and meta- or hypolimnetic water temperatures (e.g.,
Robertson and Ragotzkie 1990). Importantly, Chezik et al. (2014a) showed that ADD can
still have a high degree of explanatory power in describing length-at-age for a coldwater
species (cisco Coregonus artedi), albeit a reduced amount compared to cool- and
warmwater fishes. Furthermore, if surface water temperatures exceed growth optima and
no refugia are present (e.g., in unstratified systems), then the growth versus surface WDD
or ADD relationship may become nonlinear; however, we expect that nonlinearities due
to this mechanism are relatively rare in nature because species seldom persist in systems
in which temperatures regularly exceed growth optima and in which no refugia are
present (e.g., coldwater species such as lake trout do not inhabit warm, unstratified lakes).
That being said, individuals may spend some amount of time in temperatures that are
above growth optima (e.g., Sellers et al. 1998), which can reduce the utility of DD
metrics in describing growth and other physiological processes. Future work should
address this shortcoming, perhaps by introducing an upper temperature limit for

calculating DD or incorporating a ‘penalty’ (i.e., reduction in DD) if temperatures exceed
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some (likely species-specific) value. Finally, growth may be nonlinear due to a variety of
other biological factors, including factors that cause large changes in consumption rates
or activity costs within or among years (e.g., substantial shifts in prey or predator density;
ontogenetic diet shifts, especially in very early life; etc.; Lorenzen and Enberg 2002).

Although the adult fish growth versus DD relationship may be nonlinear due to
investment in reproduction and other factors (e.g., Lester et al. 2004; Andersen and Beyer
2015; Honsey et al. 2017), using DD to describe lifetime growth is still useful,
particularly when comparing growth among populations that experience different thermal
regimes (Chezik et al. 2014b; Lester et al. 2014). That being said, daily growth for adult
fishes is often a near-linear function of temperature over a midrange of temperatures,
much as it is for immature fishes (see Appendix 1, Section A1.3). Indeed, many fish
bioenergetics models are intended to apply to both juvenile and adult growth for a given
species, as is the case for the brown bullhead model used herein (Hartman 2017; see also,
e.g., Madon et al. 2001; Padkkonen et al. 2003). As such, many of our results
(particularly the linearity of annual growth versus DD) may also extend to adult fish
growth.

Both our simulated and empirical comparisons of ADD and WDD highlight the
potential for the ADD versus WDD relationship to vary among lakes. For instance, in
Lake Lacawac, WDD5 =~ 1.2 X ADDs. In contrast, WDDs =~ 1.3 X ADD; for
Sparkling Lake. This result is intuitive because water temperatures in lakes with different
characteristics (e.g., Secchi depth, morphometry) will respond differently to air

temperatures (e.g., Rose et al. 2016). These differences are important to consider for a
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number of applications, including using ADD to (1) describe growth and other
physiological processes among lakes and (2) drive limnological models of lake thermal
regimes. Future work should examine the degree to which the ADD versus WDD
relationship varies among lakes, and explore whether that variation introduces substantial
error and/or bias in among-lake comparisons of growth and other physiological
processes.

If DD are an accurate index for the thermal scope for growth, then growth should
be proportional to DD given that they are calculated using the correct base temperature
for growth, i.e., the temperature below which growth is negligible. This base temperature
for growth (T}) is a key parameter for calculating DD; incorrect T, values can bias
growth rate estimates, which can be particularly problematic for among-population
comparisons (Chezik et al. 2014b). Unfortunately, T,, has not been estimated for most fish
species. It may be possible to use bioenergetics models to estimate T, by finding the T,
value for which the growth versus DD relationship is proportional (i.e., passes through
the origin). We provide an example of this approach using the yellow perch bioenergetics
model in the annual growth simulation framework described above (see Appendix 1,
Section A1.4). Our results indicate that the appropriate T, value for yellow perch when
using ADD is ~9 °C (Fig. 2.9), which agrees with two other independent estimates for
this species (Chezik et al. 2014b).

In our view, DD remain underutilized in fish science (but see, e.g., Rypel and
David 2017; Ward et al. 2017). Our results suggest that the empirically-observed, linear

relationship between DD and immature fish growth is rooted in bioenergetics. As such,
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DD are an effective metric for quantifying the thermal scope for growth in fishes. In
addition, ADD can serve as an accurate proxy for WDD. Given that high-resolution air
temperature data are more common than water temperature data, this result provides a
foundation for expanding the use of DD in fish science and other aquatic disciplines. This
expanded use of DD should, in turn, promote a better understanding of the growth and
physiology of aquatic organisms and may be particularly useful for assessing and
predicting the impacts of global change. In addition to the suggestions mentioned above,
future work should focus on (1) standardizing DD calculation (e.g., by estimating T,, for
many fishes) and (2) assessing whether ADD can serve as an accurate proxy for WDD in

lotic and marine systems.

26



Table 2.1 Bioenergetics equations and parameters used for simulation. All models follow

the Wisconsin bioenergetics framework; see Hanson et al. (1997) for equations and

details. Sources are listed in footnotes.

Model component Model species

Yellow perch’ Brown bullhead®>  Tiger muskellunge?
Consumption equation 2 3 2
CA 0.25 0.12 0.2215
CB -0.27 -0.225 -0.18
CQ 2.3 15 2.53
CTO 29 24 26
CT™M 32 26 34
CTL - 30 -
CK1 - 0.473 -
CK4 - 0.55 -
Respiration equation 2 1 1
RA 0.0108 0.0007 0.00246
RB -0.2 -0.271 -0.18
RQ 2.1 0.0915 0.055
RTO 32 0.4055 0
RTM 35 0 0
RTL - 0 0
RK1 - 1 0
RK4 - 0 0
ACT variable variable variable
BACT - 0 0
SDA 0.172 0.172 0.14
Egestion-excretion equation 2 1 1
FA 0.158 0.2 0.13
FB -0.222 - -
FG 0.631 - -
UA 0.0253 0.07 0.07
UB 0.58 - -
UG -0.299 - -
Energy density equation 1 1 1
Predator energy density (J-g!) 4186 6700 3600
Prey energy density (J-g') 3770* 43923 3874°

'Hanson et al. (1997)
2Hartman (2017)
3Schoenebeck et al. (2008)

4Approximate energy density of Daphnia sp. (Luecke and Brandt 1993, Tabor et al. 1996)

SEnergy density of Chironomidae larvae (Myrvold and Kennedy 2015)
®Energy density of fathead minnow Pimephales promelas (Chipps et al. 2000, Schoenebeck et al. 2008)
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Figure 2.3 Daily mean surface water (1 m depth; blue line) and air (gray line)
temperatures across five years in/near (a) Sparkling Lake, WI (2000, 2002-2005) and (b)
Lake Lacawac, PA (2010-2014). Surface water and air temperatures were highly
correlated in both cases (p = 0.87 and 0.91 for (a) and (b), respectively). The horizontal
dashed line at 5 °C indicates the base temperature for degree-day calculations used
herein.

30



"SOLIBUQDS d1393I19Ud01q JO AJoLreA & 10J diysuorne[or Aep-02133p "sA

98e-1e-yI3ud] Y} JO AJLIBUI] SY) SIBN[BAD 0} PISN SIOM S} S YINS S} WOLJ SanJeA . paisnipy  A10300(en yoes 03 siy
[opow Jeaur] ym ‘(d3unyaysnw 1031 J0oJ Wk ) PUB ‘0ST ‘001 ‘PeIY[ING UMO0Iq IO} W ()G PUe ‘001 ‘0S Yyo1od moqeA
IO} WW G/ PUB ()G ‘G7) SOZIS [NIUI dIY} SSOIOB SALI030a[e1) Y1moi13 smoys [oued yoeyg 7’1 03 39s sem (1DV) 1o dnnw
£1Aanoe 3y} pue ‘(470 = (xewr))d) uonenes Jo 9,04 1e 19s sem uondunsuod ‘Qrdwexa SIy) uf ‘S[OPOW SANAFIAUI0IQ UO PISeq
‘ABuouinbsvw xos5 ¥ sn1onj xXos d3unjaysnwt 1931} (9) pue ‘snsojngau sninipuly pedy[ng umoliq (q) ‘suadsaavyf voiag
[yo1ad mo[[a£ () 10§ sa110303(e1) (SQAM) Do S 2A0QE SABP-0213p JoJem dAIIB[NWND SA dFe-1e-yi3ud] ojdwexy g 3In3Ig

Saam eAeInwng Saam sAneInwng Saam eAneInwng
00001 0052 000S 0052 0 00001 00S. 000S 00S¢ 0 00001 00SZ 000G 00S¢ 0
O 0 Lo
[ )
0S¢
F00L
FoOL —
o
g
) o}
L 00g a
5
00¢C —
3
F00C <=
F0S.
F00€
000} F00€
2 q e

31



"SIBOA OATJ [[B SSOIOB MOI3 10U PIP S[BNPIAIPUI YOIYM UL SOSEI 930UdP (., VN,,) S[[99 AMYM VS ‘IM OeT Surppredg

woy (ypdop w 1) ejep arnjeradurd) 19yem [eorndurd pajerodioour suone[nIs songIdudorg wi )¢ (1) pue ‘wwr 061 () ‘wwr o1 (3) Jo sozis
[enIUI [PIM ‘[Opow SO1F1aud01q (ASuoutnbspus xos7 dJun[snw X sniony xosqg ay1d uidyiiou) agunjoxsnw 10313 oY) wolj s)nsay (1-3) "w oG |
) pue ‘ww o[ (9) ‘wiwx G (P) JO SIZIS [BIIUL IIM ‘[9POW SOIIFISOUI0I] SNSOJNGaU SnantauLy peay[[ng umoliq 3y} woyj sjnsay (J-p) ‘ww G/ (9)
pue ‘ww ()G (q) ‘W G (B) JO SIZIS [BNIUI M TIPOW SINSIQU0I] SU2IS2AD]) D242 Y21dd MO[[2A a1} WIOIJ SINSAY (0-8) *(SUWN[02) JZIS [enIul
pue ‘(1OVv) L&1anoe {((**v9)d ‘vondwnsuos wnwrxew Jo uoniodoid) uordwnsuod Jo SUOIIBUIQUIOD SNOLIBA USAIS SUONB[NUILS [JMOIS JBIK QL)
woy digsuone[ar (SQaM) Aep-92139p paseq-Iarem ‘s YISUS] Ay} 0 SIIJ [SPOW Jeaul] woy (3 pAsn[pe) UONRUILLINIP JO SIUSIOLJI0)) §°T NI

o
P
)
=]
3
L)
6
WN
080
68'0-18'0
06°0-98°0 =
m "
se0-160 g
N
1-96'0 .
p
k=]
P
R
3
i)
ﬂ.\

32



Ul -1 & ST oUl[ PI[OS

AU L “(S[re1dp 10§ €7 uondag 29s) sV pue dumerodwad) e fenuue uedw udamidq diysuone[dl poaALdp-A[[edurdw ue pue
[opow dxjerddud) 1o3em 19INyS Ay SuIsn pPIjeIouds Bjep pPaje[nuIs JJOUIP SAUI PAYSep pue pano (A[0Anddsar ‘£8°0
pue £L6°0 = d) VSN ‘Vd Oemede] e pue VSN TA ‘O3] Sulpieds woiy sjosejep [eonndwd 9joudp sjurod ‘sormeroduo)
(SaQam) 1orem pue (SQQV) 1€ WOIJ PIALIIP D), S 9A0QE SABP-02139p [enuue udamidq sdiysuone[oy 9°g .angig

‘aav
0008 000% 000¢ 0002 0001} 0
1 1 1 1 1 o
&u
\.m\\
2
.V\
/-
47
K&
LY - 000}
Y
.\..
%7
. ..x\
\...\\
R4
’ .M\\
G - 0002
7. ‘
\\\\ m]
7
\...\\% m
S/ O
4 o
A4 OBMEOET] 9% O
o Ll - 000€
° m.w \\\\ ayet buipeds o
w\...x\‘\\ ejep |eouidwg
. P \\\ /
- A \.\.\‘..t‘\‘\\ wee=2 - —-
. \\ \
‘\\\\ wgL=7 . - 000%
.......... \\ 7/
Ry W=7 cme-
.l.\.\.\\\\ -
P Wp=7 - —
7~
- ejep pajejnwig
- 0005

33



S)1J Teaul] [[ 10§ 86°() < ¥ PAISnIpy ‘7 = Iardnnu A)IADOR YIIm UOTIRIIES %,¢] ‘SPUOWRIP ‘WIS[[0qRIour

3unsar ypm uonenes 9,(¢ :sa[dueLn (¢ = 1dnmnu AjIAnoR (I uonenes sarenbs (wsijoqeidw Sunsal je uonenes
:S9[0a1) “ABuoumbsvw xos:y X sn1ony xosyy dgun[[asnuwi 1930 (9) pue ‘snsonqau sniniauly pedy[ng umolq (q) ‘suaosaavyf
pou24 yo1dd MO[[2A () J0J uondwnsuod pue ANATIOR JO S[OAJ[ $SOIIE (dunjerdduud) Jie [enuue UBdW pue SV U9IMIdq
diysuonear reoundwd ue WO PIALIP SAAYV) Do S 2A0QR SABP-92139p 118 “SA IMOI3 [enuue pIje[nuIs /g 3IN31

saav saav ‘aav
000¢ 00S¢ 0002 00S1) 000¢ 00S¢ 000¢ 00S1 000¢ 0082 000C 00S1

r 00G
F 00l

0001 F 00l

F00C

(wwy) ymoib [enuuy

0051 F 0S5l

F00€

34



‘SIBOA QALJ [[B SSOIOB MOIF JOU PIP S[ENPIAIPUI YOIYM UI SOSBD 9J0UdP (. VN,,) S[[20 AMYM VSN TM “OeT
Surppreds woxy (ypdop w 1) viep armerodwa) 19jem Jeorndwe pajerodioour suonenuwis sonodrousorg ww (g (1) pue ‘ww ST () ‘wuw go[ (3)

JO S9ZIS [enIUI YA ‘[9pow $o139310U001q (ASuouinbspwu xoss dFunyjaysnu X snzong xosyy d1d uraypou) oFunyrasnur 1281 ) woiy synsay (1-3)
ww OGT () pue ‘ww o1 (9) ‘W (oS (p) JO SIZIS [ENIUI YIIM [OPOW SO10FIOUS0Iq SHSOJNGaU SNiniauly Peday[ng uUmoIq oy} woij s)nsay (J-p) w
G/ (0) pue ‘wwx (oS (q) ‘ww g (B) JO SZIS [ENIUI YIIM [OPOU SO1}OFIOUI0Iq SU2IS2AD]f Do1o [019d MO[[oA o) WO S)NSAY (9-8) *(SUWN[09) JZIS
[entut pue ‘(1OVv) Ananoe ((*w))d ‘vondwnsuos wnuwirxew jo uontodord) uondwnsuod Jo SUOHBUIqUIOD SNOLIBA UJAIS SUOR[NWIS YJMOIS JBIA
oAy woy drysuone|a1 ((QV) Aep-99139p paseq-1re "SA (ISUS[ dY) 0} SIJ [9POW Iedul] wolf (3 paIsnipe) UOHBUILLINAP JO SIUIIOLIS0)) §'7 AN
1ov

jike) 10V

o
—
(@)
3
i)
ﬂ\
§]
VN
080>
G8'0-18°0
=
—~
(@)
3
ﬂ\
p
=
—~
(@]
3
i)
“u\

35



50 ’ , . p
Base temperature ( °C) / ke 7
/s |

7
8
9
7110

40 4 C

301

20+

Annual growth rate (Amm)

0 500 1000 1500
ADD,

Figure 2.9 Air-based degree-days calculated using various base temperatures for growth
(ADDx; base temperatures from 6-10 °C) vs. annual growth (Amm) from a yellow perch
Perca flavescens bioenergetics model. The growth vs. degree-day relationship is roughly
proportional when the base temperature is 9 °C, suggesting that this base temperature is
most appropriate for among-population studies of yellow perch growth.
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Chapter 3

Advice for selecting base temperatures when using degree-days to

describe fish growth

Synopsis
Degree-days (DD) are becoming increasingly popular as a metric for describing fish
growth and other physiological processes. However, there is a lack of advice regarding
how to calculate DD for different fish species. In particular, appropriate values for the
base temperature for growth (T},) are unknown for most fish species. Previous work
showed that error in the value of T, can bias growth rate estimates and lead to erroneous
conclusions when comparing growth among populations. It is therefore critical to use
appropriate and biologically-valid T;, values when calculating DD. We used two
approaches that leverage empirical growth data and bioenergetics models to estimate T,
for 82 fish species. We found that T, varied among fish species and across thermal
guilds, with coldwater species having relatively low T, values and warmwater species
having higher T, values. In addition, we found that T,, varied across life stages and
depending on whether one uses air or water temperature data to calculate DD. Our results

provide guidance for calculating DD in fish science for many species and scenarios.
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3.1 Introduction
Ambient temperature drives ectotherm growth and other physiological processes (Hazel
and Prosser 1974, Atkinson 1994, Diana 2003). More specifically, ectotherm metabolic
processes and phenologies are tightly linked to the amount of thermal energy accrued
over a given time period, i.e., the thermal integral (Charnov and Gillooly 2003,
Neuheimer and Taggart 2007). Recent studies have found strong relationships between
thermal integrals and fish growth and physiology (Honsey et al. in press, Venturelli et al.
2010a, Chezik et al. 2014b, 2014a). As such, the application of thermal integrals in the
aquatic sciences is becoming increasingly common (e.g., Kumar et al. 2009, Hansen et al.
2017, Rypel and David 2017, Ward et al. 2017).

The degree-day (DD) is perhaps the most commonly-used and well-supported

thermal integral metric. DD are calculated as

N
DD:ZTTS_TO’ Tt>T0

t=1
where N is the number of days, T; is the mean temperature on day t, and T, is the base
temperature below which thermal energy is assumed to be irrelevant to the physiological
process in question (e.g., growth, maturity). DD can provide an accurate description of
the thermal energy available for fish growth and are an increasingly popular metric in fish
science (Neuheimer and Taggart 2007, Righton et al. 2010, Venturelli et al. 2010, Chezik
et al. 2014a, 2014b, Lester et al. 2014).

Although DD are a useful metric and are becoming more popular, there are few

guidelines in fish science for how to apply DD or interpret results. For example, there are
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competing approaches to determining the base temperature for growth () and a
relatively poor understanding of the effect that the choice of T has on our ability to
describe growth. As a result, fish scientists have used a variety of base temperatures to
calculate DD, often with little or no justification (Chezik et al. 2014a). Chezik et al.
(2014b) combined theory, simulations, and empirical data to show that error in the value
of Ty can complicate inference and lead to erroneous conclusions when comparing
growth rates among populations (e.g., the apparent evolution of countergradient growth;
Levins 1969, Conover and Present 1990). These results highlight the need for objective,
biologically-sound estimates of T, among fishes.

Our goal was to provide guidance for calculating DD in fish science by estimating
T, for as many fish species as possible. We used two approaches to do this. Our first
approach used empirical fish growth data and model-estimated air temperatures to
provide T, estimates that are most appropriate for calculating DD using air temperature
data (ADD). Our second approach used fish bioenergetics models and hypothetical water
temperatures to generate T, estimates that are most appropriate for calculating DD using
water temperature data (WDD). Our results provide advice for calculating DD across a
broad range of scenarios and should help to facilitate the interpretation and comparability

of analyses using DD in fish science.

3.2 Methods

1) Empirical growth analysis
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Our first approach for estimating T, hinges on the notion that growth should respond
similarly to accumulated thermal energy among populations of a given fish species, and
that variation in growth rates (in terms of thermal time, e.g., mm-DD™!) among
populations should be largely due to local factors such as habitat quality and food
availability (but see Conover and Present 1990 and discussion below). We can therefore
estimate T by finding the value for Ty that minimizes variation in growth rates among
populations (Chezik et al. 2014b). To do this, we compiled empirical mean length-at-age
data for freshwater fish species across lentic systems in North America and Europe from
the literature, agency sources, and personal communication (see Supplementary Data File
1 for more details). We excluded lotic, marine, estuarine, and very large lentic (i.e., the
Laurentian Great Lakes, Great Bear Lake, Great Slave Lake, Lake Athabasca, Lake
Winnipeg, Lake Winnipegosis, and Lake Manitoba) systems because (1) we used air
temperatures to approximate the thermal energy available to individuals at each location
(see below), and (2) air and surface water temperatures can become decoupled in these
systems due to physical factors (e.g., flow, wind; Ward 1985, Rouse et al. 2005, Desai et
al. 2009).

We indexed thermal energy using air temperatures because we were unable to
find water temperature data for all locations in our dataset, and because air temperatures
are often highly correlated with surface water temperatures in lacustrine systems (e.g.,
Macan and Maudsley 1966, Livingstone and Lotter 1998, Livingstone and Dokuli 2001).
Moreover, ADD can serve as an accurate proxy for WDD (Honsey et al. in press).

Estimates of T,, generated using this approach are therefore most appropriate for
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calculating ADD. Given that our samples covered a broad temporal range (see Section
3.3), our goal was to generate estimates of mean annual thermal energy over a relatively
long period of time. To do this, we used the ClimateNA v5.21
(http://tinyurl.com/ClimateNA; Wang et al. 2016) and ClimateEU v4.63
(http://tinyurl.com/ClimateEU; based on the methodology described by Hamann et al.
2013; see also Hamann and Wang 2005, Wang et al. 2006, 2012, Mbogga et al. 2009)
software tools to generate estimates of mean annual ADD for each location at integer T,
values from 0-20 °C, based on the 1970-2000 climate normal. We then converted fish
calendar ages to thermal ages by multiplying calendar age by the mean annual ADD
values for each location and T, value.

We used a linear model to regress the mean length data against thermal age (in
ADD). This approach is appropriate because immature fish growth is approximately
linear with ADD (Honsey et al. in press). However, this linear approximation may not
hold for adults due to energetic investment in reproduction and other factors (Lester et al.
2004, Honsey et al. 2017). We therefore made an effort to exclude data describing adult
growth. Unfortunately, doing so is not straightforward because age at maturity can vary
among populations (e.g., due to varying annual DD, local biotic factors, etc.; Venturelli et
al. 2010a, Lester et al. 2014, Feiner et al. 2015). In an effort to mitigate bias due to
incidental inclusion of adult growth data, we fit linear models to 2-3 sets of ages per
species and compared results. For example, walleye Sander vitreus mature at ages 3-6+
in most systems (Bozek et al. 2011, Honsey et al. 2017). In an attempt to exclude adult

growth data for walleye, we fit linear models to mean lengths-at-ages <3,<4,and <5
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(converted to ADD) and compared results. We provide a complete list of the age ranges
used for each species in Table A2.1. We then calculated the coefficient of variation (CV)
in growth rate estimates (i.e., slope estimates in mm-ADD"!) across locations for each
combination of species, age range, and T, value. We estimated T, by finding the T, value
for which the CV in growth rate estimates was minimized. In addition, we used the
modified signed likelihood ratio test for equality of CVs (Krishnamoorthy and Lee 2014)
within the R package cvequality (Marwick and Krishnamoorthy 2018; see also Feltz and
Miller 1996) to find the range of T, values for which the CV in growth rate estimates did
not significantly differ from the minimum. We carried out these and all subsequent

calculations in R version 3.4.1 (R Core Team 2017).

i1) The 10 °C rule
Chezik et al. (2014b) showed that T can be estimated by subtracting 10 °C from the
mean development temperature for a given species (i.e., the “10 °C rule”; Charnov and
Gillooly 2003), and that the mean development temperature can be estimated using
bioenergetics models. Bioenergetics models simulate fish growth using an energy balance
approach in which the potential for growth is based on energetic gains (via consumption)
minus metabolic costs and waste (Kitchell et al. 1977, Jobling 1995, Hanson et al. 1997).
We can therefore use bioenergetics models to estimate the mean growth rate across a
range of temperatures for various fish species, and we can use the temperature that
corresponds with that mean growth rate (i.e., Tjeqn) as @ proxy for the mean

development temperature. To do this, we simulated fish growth using bioenergetics

42



models from the Fish Bioenergetics 4.0 software (Deslauriers et al. 2017) that conform to
the Wisconsin bioenergetics framework (Kitchell et al. 1977, Hanson et al. 1997). For
each of these models, we (1) simulated daily growth across hypothetical water
temperatures (range = 0-40 °C), (2) calculated the mean growth rate (g-d!) between the
low-temperature minimum and maximum growth rates (i.e., not including growth rates at
temperatures higher than the optimum growth temperature), (3) identified T};,045,, and (4)
subtracted 10 °C from T}, 04y to estimate T,. We implemented these simulations in a
proprietary framework in R (see Appendix 2, Section A2.1 for code). We set the
proportion of maximum consumption (p(Cmax)) at 1 for all models for the sake of
simplicity and because varying consumption levels had negligible effects on T, estimates
(results not shown). When possible, we set predator energy densities and initial fish
masses based on values from literature sources and FishBase (Froese and Pauly 2016).
For cases in which we could not find estimates for these parameters, we used values that
were reasonable and/or similar to those of closely-related species. We provide a complete
description of model parameters and settings in Supplementary Data File 2. We set T, at
0 °C for cases in which this process resulted in T estimates < 0 °C. Because these
simulations used hypothetical water temperatures, T, estimates generated using this

approach are most appropriate for calculating WDD.

i11) Comparison to thermal guilds
We assigned each species to a thermal guild using Coker et al.'s (2001) classification

based on summer preferred temperatures. We classified species as cold (< 19 °C), cool
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(19 to 25 °C) or warm (> 25 °C). We assigned a species to an intermediate class (e.g.,
cold/cool) when its preferred temperature range overlapped the ranges of adjacent
categories (Coker et al. 2001, Hasnain et al. 2013). We used temperature preference
range data from FishBase (Froese and Pauly 2016), Coker et al. (2001), and other
literature sources (see Table 3.1). Finally, we calculated mean T, values for each guild.
For species with multiple T, estimates across life stages, we included the T, for the most

advanced life stage available in our guild-level mean calculations.

3.3  Results
1) Empirical growth analysis
Our dataset included length-at-age data for 978 populations of 28 freshwater fish species
across nine families, with Centrarchidae (11 species), Ictaluridae (6 species) and
Salmonidae (4 species) having the highest representation (Fig. 3.1; Table 3.1). We
compiled data for an average of 35 populations per species (range = 4-132 populations
per species; see Table 3.1). Our dataset spanned almost 90 years (1928-2017), although
the sampling dates were unknown for many samples (see Supplementary Data File 1).
Our estimate of the appropriate value for T was 0 °C for 19 (68%) species (Table
3.1). In addition, the CV in growth rate estimates at T, = 0 °C did not significantly differ
from the minimum CV for all cases. Our T, estimates agreed well across the age ranges
that we included in the regressions for each species, suggesting that our results were

likely not biased due to incidental inclusion of adult growth data (see Table A2.1). We
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provide examples of the relationships between T and the CV in growth rate estimates for

four example species in Figure 3.2.

i1) The 10 °C rule
We estimated T, using the 10 °C rule for 84 bioenergetics models describing 61 species
(multiple life stages for some species; Table 3.1). Our estimates of T fell below 10 °C for
all but three species (red river shiner Notropis bairdi, plains killifish Fundulus zebrinus,
and Indo-pacific lionfish Pterois spp.). Our T, estimates from this approach were often
similar for closely-related species (e.g., T, = 0 °C for all salmonids, gadids, and osmerids)
and varied predictably across thermal guilds (see below). We provide examples of
bioenergetics-based growth curves, along with estimates of T},,04, and T, for four

example species in Figure 3.3.

i11) Comparison to thermal guilds
We were unable to find thermal preference data for two species: humpback chub Gila
cypha and northern pikeminnow Ptychocheilus oregonensis. In addition, we did not
classify Tilapia spp. in a single thermal guild because the genus is highly diverse (~100
species).

Our T, estimates from the empirical growth analysis were similar across thermal
guilds (cold, T, = 0 °C (n = 4); cold/cool, T, = 0 °C (n = 1); cool, Ty = 2.17 °C (n = 6);
and warm, T, = 3.06 °C (n = 17; Fig. 3.4a)), although variability in T, was higher in the

cool and warm guilds compared to the cold and cold/cool guilds. There were no T,
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estimates from the empirical growth analysis for species in the cool/warm guild. In

contrast, our T, estimates from the 10 °C rule approach varied predictably with thermal
guild (i.e., Ty consistently increased from the cold through warm guilds; cold, Ty = 0.23
°C (n=21); cold/cool, T, = 1.33 °C (n=3); cool, Ty = 3.12 °C (n = 13); cool/warm, Ty =

5.81 °C (n = 7); and warm, T, = 8.66 °C (n = 14; Fig. 3.4b)).

3.4  Discussion

We provide biologically-based estimates of T, for 82 fish species. Our empirical growth
analysis provided T, estimates appropriate for calculating ADD for 28 freshwater species,
and our 10 °C rule approach yielded T, estimates appropriate for calculating WDD for 61
freshwater and marine species. We provide T, estimates from both approaches for seven
species. In general, our results suggest that relatively low T, values are often most
appropriate (e.g., Ty < 10 °C), particularly when calculating ADD. Moreover, we found
that T, estimates were often similar for closely-related species and within thermal guilds.
Below, we provide advice for selecting T, in various scenarios, discuss caveats to our
analyses, and suggest additional approaches for estimating Ty,.

Low T, values appear to be most appropriate for calculating ADD. The results
from our empirical growth analysis suggest that T;, should be set to 0 °C for the majority
of the freshwater species in our dataset. Moreover, the coefficient of variation in growth
rate estimates at T, = 0 °C was not significantly different from the minimum for all
species. As such, T, = 0 °C might be a reasonable choice for calculating ADD in nearly

all situations. Our results also show that selecting relatively high T, values (e.g., Tp > 15
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°C) can lead to increased variation in temperature-corrected growth rate estimates among
populations. Our advice therefore echoes that of Chezik et al. (2014b), who recommend
erring low when selecting T,,. Our T, estimate for yellow perch Perca flavescens from the
empirical growth analysis (T =5 °C) is slightly lower than that of Chezik et al. (2014b;
T, =9 °C). However, whereas we used juvenile growth data, Chezik et al. (2014b) used
young-of-the-year growth data, and thermal optima are generally expected to be higher
for early life stages than for later life stages (e.g., Edsall and Colby 1970, Karas and
Thoresson 1992; see Table 3.1). In addition, our T, estimates from this approach are
similar to those of Rypel and David (2017) for some species (e.g., yellow perch, cisco
Coregonus artedi), but differ for many species (e.g., largemouth bass Micropterus
salmoides, smallmouth bass Micropterus dolomieui, common carp Cyprinus carpio,
bluegill Lepomis macrochirus). These differences may result from the fact that Rypel and
David (2017) used production rather than growth data to estimate T, (i.e., the “base
temperature for production” may differ from the base temperature for growth).

Our T, estimates from the 10 °C rule approach were slightly more variable than
those from the empirical growth analysis. However, almost all of our T estimates fell
below 10 °C. Our results from the 10 °C rule approach therefore echo those from the
empirical growth analysis in suggesting that low T, values are generally more appropriate
than high T values. In addition, we found that T estimates based on the 10 °C rule were
often similar for closely-related species. For example, T, = 0 °C for all gadids, salmonids,
clupeids, and osmerids. These results highlight the potential for using phylogeny to

estimate T among closely-related species (see below). In addition, these results align
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well with those of Hasnain et al. (2013), who found that evolutionary history plays an
important role in determining thermal traits across species.

We found that T, estimates from the 10 °C rule approach were tightly linked to
thermal guilds, with estimates consistently increasing from cold to warm guilds (Fig.
3.4b). This is unsurprising given that the 10 °C rule approach relies on bioenergetics
models, and that bioenergetics models leverage a deep understanding of thermal
tolerances and optima across species (e.g., Kitchell et al. 1977, Hanson et al. 1997).
Indeed, thermal guilds are often defined using data from the same experiments that are
used to estimate parameters for bioenergetics models (e.g., Coker et al. 2001). These
results echo those of Hasnain et al. (2010), who found that many temperature-related
traits (e.g., optimum growth temperature, upper incipient lethal temperature, critical
thermal maximum) vary predictably across thermal guilds. Additionally, these results
highlight the potential for predicting Ty based on thermal guild and/or using information
on other traits (see below). In contrast, T, estimates from the empirical growth analysis
were similar across thermal guilds, although estimates for some species were higher in
the cool and warm guilds compared to the cold and cold/cool guilds (Fig. 3.4a). The lack
of a tight relationship between these T, estimates and thermal guild may result from, for
example, the disconnect between air and water temperatures (although ADD can serve as
a good proxy for WDD; see Honsey et al. in press). Alternatively, it may simply result
from the fact that mean air temperatures are generally lower than mean water
temperatures, and that relatively low base temperatures are therefore appropriate for most

species and scenarios when calculating ADD.
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Our empirical growth analysis involved finding the T, value for which growth
rate variation among populations was minimized, and it operated under the assumption
that growth should respond similarly to thermal energy among populations (within
species). This assumption may have been violated in some cases due to countergradient
growth (CGG), whereby individuals living in colder environments grow faster per unit
thermal energy (e.g., per DD) than conspecifics in warmer environments (Conover and
Present 1990, Chavarie et al. 2010, Rypel 2012b). Given that our empirical growth data
spanned a broad latitudinal gradient for many species (Supplementary Data File 1), it is
possible that our dataset included some populations that exhibit CGG. However, even the
minimum coefficients of variation in growth rates were relatively high across species
(CV = 0.2-0.5 or higher; Table A2.1). This variation is likely due to myriad local factors
(e.g., per capita prey availability, predation, water clarity, differences in the relationship
between ADD and WDD among lakes), perhaps including CGG in some cases.
Moreover, even if populations exhibiting CGG were present, they may not have affected
T, estimates; faster growth per unit thermal energy does not necessarily coincide with
differing T, . Finally, large sample sizes (mean = 35 and maximum = 135 populations per
species) likely mitigated any effects of CGG on T, estimates. We therefore argue that it is
unlikely that CGG significantly biased our results, although we encourage future research
to explore the effects of CGG on T and T, estimation.

Bioenergetics model parameters and settings were seldom fully reported in the
Fish Bioenergetics 4.0 software. For instance, predator energy densities (i.e., the energy

density of the modeled species) were not reported in many cases, and settings such as
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prey energy density and initial fish mass were almost always omitted because users
typically adjust them to match the systems that they are modeling. Importantly, we found
that varying prey energy densities had minimal impacts on T,, estimates (results not
shown). As such, we initially set prey energy density to a middling value (3500 J-g™!) for
all models; however, we found that some models required higher prey energy density
values to produce realistic results (i.e., positive growth), possibly due to a lack of proper
accounting for the energy density of oxygen during model parameterization (B. Shuter,
University of Toronto, personal communication; see Supplementary Data File 2). As
noted in Section 3.2ii, we set predator energy densities and initial fish masses based on
literature sources and/or values for closely-related species. Our T estimates from the 10
°C rule approach would likely benefit from a better understanding of these parameters
and settings across species.

Honsey et al. (in press) suggested another approach for estimating T, that involves
simulating annual fish growth. This approach hinges on the idea that, if DD are an
accurate representation of the thermal scope for growth, then growth should be
proportional to DD when DD are calculated using the proper T, value. One can therefore
estimate T, by finding the T, value that forces the growth versus DD relationship through
the origin (i.e., when growth is proportional to DD). We tried this approach using the
Shuter et al. (1983) water temperature model and the bioenergetics models mentioned
above. We found that T,, estimates varied dramatically with changes in model settings.
For example, changing the proportion of maximum consumption parameter from 1 to 0.5

led to a shift in T;, from roughly 0 °C to 8 °C for the generalized coregonid bioenergetics
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model (Rudstam et al. 1994; Table A2.2). We also found that T, estimates were highly
sensitive to the range of temperatures used to drive the bioenergetics models.
Unfortunately, selecting appropriate values for these and other model settings across
species is highly subjective, particularly given that they may vary among systems. As
such, we chose not to include T, estimates from this approach (but see Appendix 2,
Section A2.2 for more details and example results).

Future work should aim to provide T, estimates for additional species using
multiple approaches. Extending our empirical approach will require the compilation of
growth data for additional species. In addition, the 10 °C rule approach can be used to
estimate T, for more species as new bioenergetics models become available. Finally, we
recommend estimating T, using two additional approaches and existing T,, estimates. The
first approach is based on the fact that life history traits are often correlated (e.g., Roff
1984, Hasnain et al. 2010, 2013). Because T, is effectively a life history trait, it may be
possible to predict T using regressions of existing T, estimates versus other life history
traits. This approach may be particularly effective given information on other thermal
traits (e.g., estimating T, from optimum growth temperature or final temperature
preferendum; Hasnain et al. 2010). Moreover, this approach may be more useful for
estimating T}, values for calculating WDD compared to ADD given that many of our T,
estimates for calculating ADD were 0 °C. The second approach is based on the idea that
T, may be similar for closely-related species, a notion which is generally supported by
our results (see also Hasnain et al. 2013). It may therefore be possible to predict T, using

phylogeny. Specifically, for clusters of taxa with known T, values, one can withhold each
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T, value in turn and determine how well it is predicted by phylogeny. If these predictions
are accurate, then one can estimate T, for a given species using existing T,, estimates for

closely-related taxa.
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a Cisco b Northern pike

CV in growth rate estimates

c Yellow perch d Largemouth bass
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Figure 3.2 Example relationships between the coefficient of variation (CV) in
temperature-corrected growth rate estimates among populations and the base temperature
used to calculate degree-days for (a) Coregonus artedi (n = 35 populations), (b) Esox
lucius (n = 84 populations), (c) Perca flavescens (n = 110 populations), and (d)
Micropterus salmoides (n = 132 populations). We considered the base temperature at
which the CV in growth rate estimates was minimized as the best estimate for the base
temperature for growth (T,; vertical dashed lines). The horizontal dashed line indicates
the cutoff above which CVs in growth rate estimates were significantly different from the
minimum. In some cases, such as in (b), CVs shifted dramatically at relatively high base
temperatures due to changes in sample size (i.e., 0 degree-days at high base temperatures
for some high-latitude populations). Although we conducted analyses at base
temperatures ranging from 0-20 °C, we show results for 0-16 °C to facilitate the
visualization of trends at low base temperatures.
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Figure 3.3 Example bioenergetics model-derived relationships between daily growth (g)
and water temperature (°C) for (a) adult Oncorhynchus tshawytscha, (b) larval and
juvenile Sander vitreus, (c) juvenile Lepomis macrochirus, and (d) juvenile and adult
Pterois spp. We estimated base temperatures for growth (7,; vertical dashed lines) by
subtracting 10 °C (arrows) from the temperature at the mean growth rate (defined as the
mean between the low-temperature minimum and maximum growth rates; points). We set
T, to 0 °C for cases in which this process resulted in a negative estimate for T}, as in (a).
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Figure 3.4 Estimates of the base temperature for growth (T; °C) for species across

thermal guilds from (a) the empirical growth analysis and (b) the 10 °C rule approach.
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Chapter 4

Accurate estimates of age at maturity from the growth trajectories of

fishes and other ectotherms

Synopsis
Age-at-maturity (AAM) is a key life history trait that provides insight into ecology,
evolution, and population dynamics. However, maturity data can be costly to collect or
may not be available. Life history theory suggests that growth is biphasic for many
organisms, with a change-point in growth occurring at maturity. If so, then it should be
possible to use a biphasic growth model to estimate AAM from growth data. To test this
prediction, we used the Lester biphasic growth model in a likelihood profiling framework
to estimate AAM from length-at-age data. We fit our model to simulated growth
trajectories to determine minimum data requirements (in terms of sample size, precision
in length-at-age, and the cost to somatic growth of maturity) for accurate AAM estimates.
We then applied our method to a large walleye Sander vitreus data set and show that our
AAM estimates are in close agreement with conventional estimates when our model fits
well. Finally, we highlight the potential of our method by applying it to length-at-age data
for a variety of ectotherms. Our method shows promise as a tool for estimating AAM and

other life history traits from contemporary and historical samples.
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4.1 Introduction

Age-at-maturity (AAM) is an important life history trait in ecology and evolution that
affects lifetime reproductive success and other fitness components (Stearns and Koella
1986, Roff 1992, Stearns 1992, Bernardo 1993, Berrigan and Charnov 1994, Engelhard et
al. 2003, Stearns and Hoekstra 2005, Brunel et al. 2013). Estimates of AAM can be used
to address questions related to life history plasticity (e.g., Reznick 1990, Augert and Joly
1993, Ebert 1994, Kuwamara et al. 1996, Lester et al. 2014) and evolution (e.g., Charnov
and Berrigan 1990, Heino et al. 2002, Kuparinen and Merild 2007), as indicators of stress
(Trippel 1995), and for management purposes (e.g., fisheries stock assessment; Hilborn
and Walters 1992). Conventional methods for estimating AAM at the population level
include logistic regression (Chen and Paloheimo 1994), probit analysis (Hubert 1984),
probabilistic methods (DeMaster 1978), visual inspection, and others (Trippel and
Harvey 1991). All of these methods require individual maturity data, which can be costly
to collect and may be absent for historical samples.

Life history theory suggests that resource allocation and therefore growth change
throughout ontogeny (Roff 1992, Stearns 1992, Kozlowski 1996). In many organisms, a
shift in resource allocation occurs at maturity, when individuals begin to invest energy in
reproduction (Kozlowski 1996, Quince et al. 2008a, Mollet et al. 2010). For
indeterminate growers, this shift in resource allocation leads to slower growth in adults
(Day and Taylor 1997, Lester et al. 2004, Quince et al. 2008a, Lester et al. 2014, Minte-
Vera et al. 2016). Unfortunately, conventional growth models (e.g., the von Bertalanffy

growth model; VBGM; von Bertalanffy 1938, Beverton and Holt 1957) are single curves

62



that do not explicitly account for this shift (Day and Taylor 1997). To address this issue, a
number of biphasic growth models have been proposed that include a change-point in
growth that occurs at maturity (Lester et al. 2004, Quince et al. 2008a, Mollet et al. 2010,
Boukal et al. 2014, Minte-Vera et al. 2016). For example, the basic form of the Lester
model (LM) assumes that immature growth is linear because surplus energy is invested
solely in somatic growth, while mature growth is asymptotic because energy is invested
in both somatic growth and reproduction (Lester et al. 2004). Because it is grounded in
life history theory, the LM is suitable for addressing life history questions (Boukal et al.
2014) and allows for the estimation of numerous life history traits (e.g., juvenile growth
rate, length-at-maturity, asymptotic length, the cost to somatic growth of maturity, natural
mortality rate; Lester et al. 2004).

The LM was designed for datasets that include estimates of AAM. However, if
immature and mature growth rates differ, then it should be possible to use the LM to not
only describe lifetime growth, but also estimate AAM. If the LM can be fit to length-at-
age data without estimates of AAM, then it could be a powerful tool for estimating life
history traits from contemporary and historical samples. Previous attempts to estimate
AAM from growth data using breakpoint linear regressions (Rijnsdorp and Storbeck
1995, Baulier and Heino 2008, Scott and Heikkonen 2012), modified forms of the
VBGM (Ohnishi et al. 2012), biphasic growth models (Mollet et al. 2010, Brunel et al.
2013, Uusi-Heikkila et al. 2015, Chavarie et al. 2016, Minte-Vera et al. 2016), and
discriminant and neural network analyses (Engelhard et al. 2003) have produced varying

results (reviewed in Section 4.4iii). Two recent studies have used the LM to estimate
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AAM from length-at-age data (Uusi-Heikkild et al. 2015, Chavarie et al. 2016), but their
methods have not been validated and rely on indirect assessments for inference on
parameter values. Thus, the potential and limitations of the LM as a tool for estimating
AAM and other life history parameters remain largely unexplored.

Herein, we (1) describe a likelihood-based method for estimating AAM from
length-at-age data using the LM, (2) conduct a simulation study to outline data quality
requirements and provide application guidelines, and (3) use empirical data to assess the
performance of the method. Our method provides direct inference on parameter values,
allows for simple assessments of fit quality, and, given sufficient data quality, accurately

estimates AAM for fishes and other ectotherms.

4.2 Methods

1) Overview
We used the “fixed g” formulation of the LM (Lester et al. 2004, Quince et al. 2008a,
Lester et al. 2014) to test the prediction that AAM can be accurately estimated from
length-at-age data. This formulation assumes that metabolism scales with body size in a
2/3 power relationship and that the cost to somatic growth of maturity (typically assumed
to be dominated by investment in reproduction; Roff 1983, Kozlowski 1996) is constant

for adults. For length at time t (i.e., l;), the growth trajectory is given by

(1) [, =1y + ht, t <T for juveniles,
) Iy = lo(1 — e™*(t=t)), ¢ > T for adults,
with
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_ 3h
g
k=ln(1+%)

ty = T+1n(1—g(TT_tl)>/ln(1+%)

(see Table 4.1 for parameter descriptions). The deterministic model can be defined as a
function of four parameters: [y, h, T, and g. To fit the LM to length-at-age data, we
assumed a normal distribution for length given age, the mean of which is given by
equation 1 for immature individuals and equation 2 for mature individuals. The result is a
joint likelihood function comprised of 5 unknown parameters, Lik(l,, h, T, g, 02). To
improve model performance, we included information on [, and h in the form of normal
marginal likelihoods (which account for uncertainty in [, and h estimates), and used the
resulting estimated likelihood for inference (Pawitan 2013); i.e., Lik(ly, h, T, g, 62) =
Lik(ly)*Lik(h)*Lik(T, g, 02| Ly, h). We used a two-step process to specify the marginal
likelihoods and fit the full model from a single dataset. Note that if separate data are
available for Lik(ly) and Lik(h), then this becomes a combined likelihood that, like a
Bayesian posterior, incorporates prior information (Pawitan 2013).

We used a likelihood-based evidentialist approach (Royall 1997, 2004, Sober
2008) to infer AAM and other life history parameters from length-at-age data. According

to the law of likelihood (Hacking 1965), the ratio of the likelihood for different parameter

values gives a direct measure of evidential support in the data for a given parameter value
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relative to another value, allowing for the construction of likelihood ratio intervals that
represent the range of parameter values that are supported by the data. We used profile
likelihoods to generate likelihood intervals (Kalbfleisch and Sprott 1970, Taper and Lele
2011) for evaluating parameter estimability in application (Raue et al. 2009). To generate
likelihood intervals for T (the Lester model parameter for AAM), we constructed vectors
of T; = [Ty, Ty, ..., T,y] and maximized the likelihood over [l,, h, g, 6] for each T;. The
likelihood interval for T included all T; such that Lik(Ty.z)/Lik(T;) < ». Royall (1997)
recommends a value of » = 8 for strong evidence, meaning that every value outside of the
interval is < 1/8 as likely as the maximum likelihood estimate. Although the likelihood
method does not assume a distribution for the likelihood ratio, the intervals are similar in
form to a frequentist confidence interval that is based on a chi-squared approximation of
the likelihood ratio distribution. For comparison purposes, » = 8 in a likelihood interval

corresponds to a ~96% confidence interval.

i1) Simulation study
We conducted a simulation study to determine the data requirements and estimate
reliability of our Lester model likelihood profiling (LMLP) method. Specifically, we
focused on the accuracy of the LMLP estimator for T across variation in three important
factors: sample size, precision in length-at-age, and the maturity cost parameter g. We
defined precision as the inverse of the coefficient of variation in length-at-age (i.e., as
precision increases, variability in length-at-age decreases). We simulated individuals that

grew according to the LM with growth parameters that were loosely based on walleye
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Sander vitreus, a well-studied, predatory game fish that is common throughout northern
North America (T = 5 yrs, [, = 100 mm, h = 50 mm-yr"!, maximum age = 25 yrs; Bozek
et al. 2011). Each population initially consisted of 1000 individuals from which we drew
random samples of varying sizes. To replicate common sampling methods, we adjusted
sample sizes-at-age for gear selectivity and natural mortality (see Appendix 3, Section
A3.1, Table A3.1). We chose ten levels for each of the three sampling factors (ranges:
sample size=50-1000 individuals; precision=4-30; g=0.05-0.3; Table A3.2). A new
population of individuals was generated for each of 100 iterations of all possible three-
way factor level combinations (100,000 simulations). We performed all simulations and
subsequent calculations in R version 3.2.0 (R Core Team 2015) with the additional
packages car (Fox and Weisberg 2011) and boot (Davison and Hinkley 1997, Canty and
Ripley 2015).

We applied LMLP separately for each iteration and constructed profile
likelihoods for T. The vector of T values ranged from 1-16 yrs in increments of 0.025 yrs
(i.e., 601 values of T). We defined the marginal likelihoods for [, and h as normal
distributions with standard deviations of 25 mm and 5 mm-yr’!, respectively, with means
equal to the slope (h) and intercept (1) estimates from a linear model fit to the first four
ages in the simulated sample (actual ages varied due to random sampling). To maximize
the likelihood for each T;, we used the optim function with the following starting values:
[,=linear model intercept estimate, h=linear model slope estimate, g=0.15, 0=25. The

likelihood intervals included all T; such that Lik(Ty.z)/Lik(T;) < 8.
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To quantify accuracy in T 5 across factor levels, we calculated the mean percent
error in Ty, p for each factor combination. We used an error contour plot (smoothed using
LOESS with degree = 2 and a = 0.75) to determine the sample size and precision
required for Ty, to fall within +/- 0.5 yrs of the true value across levels of g. Because
sample size is known and precision can be calculated a priori, the contour plot allows for

visual estimation of the minimum value of g needed for accurate estimates of AAM.

111) Empirical assessment
We compared the LMLP AAM estimator to a conventional approach (age-at-50%
maturity; Asg) using age, length, sex, and maturity data from walleye that were collected
in Ontario and Quebec, Canada during fall gill net surveys (1993-2008; Morgan 2002),
and Minnesota, USA during trap-netting, trawling, seining, angling, gillnetting,
electrofishing, and trot-lining surveys (March-December, 2001-2011; Chezik et al.
2014a). To prepare these data for analysis and minimize the incidence of erroneous ages,
we removed (1) samples from the period December-July, (2) fish above age-0 that were
aged in the field, (3) fish above age-5 that were aged using scales, and (4) males. We
focused on females because (1) they are often the focus of life history studies in fisheries
due to their importance with regard to evolution and stock productivity (e.g., Herczeg et
al. 2012, Hixon et al. 2014), and (2) maturity status based on visual inspection of gonads
may be more reliable for females than males due to the more obvious appearance of
ovaries with eggs. The resulting dataset contained a large number of unsexed fish. Given

that immature walleye grow at similar rates regardless of sex (Venturelli et al. 2010) and
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in order to preserve realistic sample sizes-at-age, we assumed a 1:1 sex ratio for
immature fish and randomly removed half of the unsexed fish that were smaller than the
smallest mature male (143 mm total length). That is, we retained half of the unsexed fish
that were very likely to be immature. We then removed all unsexed fish above this size to
avoid including mature males, which could skew our estimates of female AAM and other
parameters due to sexually dimorphic maturity (Venturelli et al. 2010).

We first applied LMLP to data from individual lakes in a single year (lake-year).
We selected one lake-year from each lake in an effort to span as much of the sample size
and precision parameter space as possible. To increase sample size, we then combined
data from up to three consecutive lake-years and analyzed them as a single lake-year
(multi-lake-year). We used the same LM fitting procedure for these data as for our
simulation study. Because we had no prior knowledge of T for these datasets, and
because other estimates of AAM can be inaccurate (Trippel and Harvey 1991), we
identified a good fit as having one likelihood peak and a likelihood interval <2 yrs. We
estimated precision in length-at-age for these datasets by averaging the inverse of the
coefficient of variation in length at each age across all ages, weighted by sample size-at-
age. As such, our estimate of precision in length-at-age included all potential sources of
variation, including individual variation in growth, sampling bias, and processing error.

To compare LMLP to conventional estimators, we compared T, from good fits
to As, from logistic regression using a standard major axis regression, which assumes
error in both variables. Given that female walleye gonadal investment during the

preceding growing season is likely visible during August-November, T, 5 (the age at
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which the average individual begins to invest in reproduction) and Az, (the age at which
half of the individuals that were collected in fall had developed gonads) should be
similar.

To explore LMLP performance in estimating AAM for a broad variety of taxa, we
also applied LMLP to empirical length-at-age data describing another freshwater fish
(lake whitefish Coregonus clupeaformis), a marine fish (haddock Melanogrammus
aeglefinus), an elasmobranch (Alaska skate Bathyraja parmifera; Matta and Gunderson
2007), and an amphibian (the seal salamander Desmognathus monticola; Castanet et al.
1996; see Appendix 3, Section A3.2 for data descriptions). Because our goal was to
demonstrate that LMLP can work for many species, we selected data for which LMLP
fits were good. Due to the low sample size (n =4), we compared Ty from these fits to
Ac, by calculating the confidence interval for the difference between the two parameters
(Daniel and Cross 2013). If this interval contained zero, the parameters were considered
not significantly different from one another (see Appendix 3, Section A3.2 and Table

A3.3).

4.3 Results

1) Simulation study
Simulation results suggest that LMLP performance is positively related to each data
quality factor (i.e., sample size, precision, and g), and that a low value of one factor will
result in poor LMLP performance unless the remaining factors are high enough to

compensate. The sample size and precision required for Ty, to fall within +/- 0.5 yrs of
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T across values of g are shown in Fig. 4.1 (gray lines; see Fig. A3.1 for an error contour
plot without empirical data points). In general, LMLP performed poorly for sample sizes
< 100-150 individuals, precision in length-at-age < 6, and g < 0.1. Across all simulations,
Ty g Was biased above the simulated value of 5 yrs (mean = 5.39 yrs, sd = 1.85 yrs);
however, nearly all of this bias occurred when the likelihood interval was > 2 yrs wide (n
=47,419; mean = 5.74 yrs; sd = 2.46 yrs). Both bias and variability in Ty;; p were smaller
when LMLP likelihood intervals were <2 yrs (n = 52,581; mean = 5.07 yrs, sd = 0.92
yrs). Most of the remaining bias resulted from cases in which likelihood intervals were <
2 yrs but Ty, was very high (> 13 yrs; n=338), all of which occurred when sample size
was < 150 individuals, precision was < 6, and/or g was < 0.1 (without these cases, mean
=5.01 yrs, sd = 0.37 yrs; see Appendix 3, Section A3.3 and Figs. A3.2-A3.11 for
additional diagnostics). Results were similar for the remaining parameters in that
estimates were biased when likelihood intervals were wide, but virtually unbiased when

they were narrow.

1) Empirical assessment
Our empirical analysis included 46 lake-years and 11 multi-lake-years (Table A3.4).
LMLP fits were good for 40 of these datasets and poor for the remaining 17 (see Fig. 4.2
for examples of good and poor fits). When compared to our simulation results, 51 (89%)
of the datasets were above their respective error contours (i.e., should be accurate within
+/- 0.5 yrs) for the nearest (lower) value of g, based on g from a LMLP fit (Fig. 4.1;

Table A3.4). LMLP fit poorly to twelve (21%) of these datasets. For seven of these poor
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fits, Ty estimates were between 2-4 yrs, which might suggest a need for higher data
quality when T < 5. Of the six (11%) datasets that were below their respective error
contours, only one was a good fit (Lac Regnault in 1998; n=150, precision=14.30,
§=0.12).

The standard major axis regression indicated that Ty, ; was not significantly
different from A5, when LMLP fits were good (Fig. 4.3). We excluded two lake-years
(Lac Regnault in 1998 and Lake St. Joseph in 1999) from the regression due to a high
likelihood of erroneous ageing and/or maturity classification (see Section 4.4). The fit to
Tys and Az, from the remaining datasets did not significantly differ from a 1:1 line
(intercept = -0.01, 95% CI = (-0.83, 0.68); slope = 0.99, 95% CI = (0.84, 1.18)), and the
mean difference between Ty, and A5, was 0.50 yrs (sd = 0.41 yrs, range 0-2 yrs).

The confidence intervals for the differences between Ty, and As, contained zero
for all four LMLP fits to data describing additional species (lake whitefish: (-0.81, 1.21);
haddock: (-0.72, 0.44); Alaska skate: (-0.03, 1.45); seal salamander: (-0.65, 0.56)),
suggesting that LMLP can accurately estimate AAM for a variety of ectotherms (Fig. 4.4;

see Table A3.3 for additional details).

4.4  Discussion

1) Simulation study
We designed our simulation study to determine the conditions required for LMLP
estimates of AAM (i.e., Ty ) to fall within +/- 0.5 yrs of the true value given the “ideal”

case in which individuals grow according to the LM. We found that T),; ; was biased
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high for poor LMLP fits, likely because low information on AAM led to relatively high
likelihood values (which are maximized over all other parameters) for a larger range of T
values. It is not unexpected that mean Ty,; ; would fall above the true value given that (1)
the simulations covered many sampling factor combinations for which the model fit
poorly, and (2) our vector of possible T values included more values above the true value
of 5 yrs (n = 440) than below it (n = 160). Importantly, bias in Ty;;y was much smaller
when the likelihood interval was < 2 yrs wide.

The error contour plot (gray lines in Fig. 4.1; Fig. A3.1) shows the values of
sample size, precision, and g required for average Ty, to fall within +/- 0.5 yrs of the
true value. This plot can be used to assess the likelihood of an accurate LMLP fit. For
example, if sample size = 300 individuals and precision = 20, then it is likely that Ty, 5
will be accurate because (300, 20) falls above a large number of error contours across
values of g. However, if sample size = 50 individuals and precision = 4, an accurate fit is
unlikely because (50, 4) falls beneath all error contours for g values examined herein.
Such assessments can be augmented by additional information about the species or
population (e.g., if g is typically > 0.2 for a given species or population). For instance,
for cases in which AAM is known a priori, one could fit a Lester model in conjunction
with the maturity information (e.g., with T fixed at AAM or with likelihoods of maturity-
at-age from a logistic-type model) to estimate the remaining model parameters, thereby
providing insight regarding reasonable values of g for a given species or population prior
to using LMLP. Moreover, one can use the error contour plot together with (1) the

sample size and precision of the dataset and (2) the LMLP § to evaluate whether Ty, ¢
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should be an accurate estimate of AAM. If a dataset falls above the nearest contour for g
(based on g from a LMLP fit) for a given combination of sample size and precision, then
Ty should be accurate within +/- 0.5 yrs, particularly if Ty, > 5. For example, if a
dataset falls above the error contour for g = 0.1, then Ty,  should be accurate if § > 0.1.
To be conservative, we recommend referring to the nearest lower contour for g when
using the contour plot to assess Ty, accuracy (as we have done for our empirical
assessment). That is, if g from a LMLP fit is 0.115, then we recommend referring to the
contour for g = 0.1 as opposed to the contour for g = 0.125. This means of evaluating
accuracy in parameter estimation can supplement assessments of fit quality from the
likelihood profile, especially when one has reason to doubt the accuracy of the model
(e.g., if a likelihood profile has a single peak and a narrow confidence interval but sample

size is very low).

i1) Empirical assessment
When applied to empirical female walleye data, LMLP fits were generally good (based
on likelihood profile assessments and likelihood interval width) when simulation results
suggested that they should be accurate (i.e., when datasets were above their respective
error contours), and vice versa. However, there were more poor LMLP fits when datasets
fell above their respective error contours (n = 12; 23.5%) than good fits when datasets fell
below their respective contours (n = 1; 16.7%). This discrepancy could be due to
variation in AAM among the empirical datasets. For example, if AAM is <5 yrs, then

there are fewer age classes (i.e., less information) to describe immature growth, which
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likely reduces LMLP fit quality. Consistent with this hypothesis, results from two
additional sets of simulations in which we varied the LM parameter for age-at-maturity
(i.e., T; one with T = 3 yrs and another with T = 7 yrs) suggest that LMLP requires higher
data quality when T = 3 yrs but not when T = 7 yrs (Appendix 3, Section A3.4 and Figs.
A3.12-A3.14). Furthermore, variation in AAM across cohorts or lake-years (e.g., due to
plastic or evolutionary changes in growth and maturation; see Enberg et al. 2012) may
reduce confidence in Ty, and alter LMLP data requirements. The sensitivity of LMLP
to AAM could explain some of our results. For instance, Ty, was 11.05 yrs for the only
lake-year that fell below its error contour but had a good fit (Lac Regnault in 1998), and
was between 2-4 yrs for seven of the 12 lake-years that were above the error contours but
had poor LMLP fits.

In addition to variation in AAM, LMLP may also be sensitive to data distribution,
data coverage, and violations of the LM. Our simulations were based on sample
distributions that were comparable to fisheries data (see Appendix 3, Section A3.1 and
Table A3.1), but these distributions are not always realized. For example, LMLP fit
poorly to a large dataset (Upper Red Lake in 2003, n = 465) because 91% of the fish in
the sample were age 2 or 4 as a result of stocking (Logsdon 2006), thus providing little
information on lifetime growth. Similarly, if AAM is 6 yrs but the dataset only contains
ages 6-12, then LMLP will likely fail to detect AAM. Finally, LMLP may perform poorly
because the LM is inappropriate. For example, growth leading up to maturity may be
non-linear. Fortunately, the LM can be relaxed to allow for non-linear immature growth

(Quince et al. 2008, Boukal et al. 2014; not explored here). Additionally, lifetime growth
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may span major changes in per-capita food availability, leading to additional change-
points in growth that could reduce LMLP accuracy (Lorenzen and Enberg 2002).
However, such changes may only have a significant impact when analyzing longitudinal
data.

The standard major axis regression indicated that T, and As, do not
significantly differ when LMLP fits well. We excluded two lake-years with questionable
maturity data: Lac Regnault (1998) and Lake St. Joseph (1999; Fig. 4.3, Table A3.4). For
Lac Regnault (n = 150), A5, = 13.67 yrs but Ty = 11.05 yrs. This discrepancy stems
from three fish aged 26, 16, and 15 that were recorded as immature, likely as a result of
ageing error, observational error, or cryptic maturity such as skipped spawning (Rideout
et al. 2005). These probable errors had high leverage on the logistic regression; Ax,
decreased to 12.59 yrs after removing the oldest immature fish and to 11.82 yrs after
removing all three probable errors. Data from Lake St. Joseph (n = 563) appeared to
contain similar errors; although Ty, = 3.5 yrs, the data included multiple immature fish
aged 10-16 yrs. We considered these probable errors as sufficient justification for
excluding these lake-years from the analysis. Because such errors have high leverage on
Asg, LMLP (when it fits well) may be a more reliable method for estimating AAM. Both
methods assume that ageing is accurate, but LMLP assumes that length is measured
accurately whereas Ag, assumes that maturity is classified correctly. Although further
work is needed, we posit that length errors are usually small and therefore unlikely to
have a large impact on LMLP estimates. In contrast, maturity classification errors can

lead to large errors in Asy. However, A5, may be more reliable in certain cases; for
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example, changes in per-capita food availability can lead to multiple change-points in

growth that would impact LMLP but not Ag,.

i11) Comparison to Other Methods for Estimating AAM from Growth Data
We are not the first to attempt to estimate AAM from growth data. Rijnsdorp and
Storbeck (1995) estimated AAM using a segmented linear regression of annual body
mass increments against body mass derived from female plaice Pleuronectes platessa
otoliths. The method was somewhat inaccurate when compared to independent estimates
and, like LMLP, was less accurate for early AAM. Baulier and Heino (2008) applied the
method and found 47.6% agreement with AAM estimated from scales for Norwegian
spring-spawning herring Clupea harengus. Scott and Heikkonen (2012) applied a
conceptually similar approach in which a segmented linear regression was fit to plaice
mean length-at-age data. Their model was sometimes inaccurate compared to estimates
derived from a maturation reaction norm approach, especially for males, and was also
inaccurate for early AAM. Unlike LMLP, these methods do not allow for estimation of
life history parameters other than AAM (e.g., the cost to somatic growth of maturity,
asymptotic length, natural mortality rate).

Engelhard et al. (2003) used discriminant analysis and artificial neural networks
to predict AAM from individual scale measurements for Norwegian spring-spawning
herring. This method correctly classified AAM in 66-68% of cases, although the margin
of error was seldom > 1 yr (2.9-5.2% of cases). Importantly, the models were highly

accurate for low AAM (unlike LMLP and the other methods discussed here). As with the
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segmented linear methods, these methods did not allow for estimation of additional life
history parameters, but they show significant potential for estimating AAM.

Mollet et al. (2010) proposed a biphasic approach to estimate AAM and other life
history parameters from individual lifetime weight-at-age data. The Mollet model is
conceptually similar to LMLP, but is founded on the metabolic theory of ecology (West
et al. 1997, 1999), which assumes that metabolism scales with body size according to a
3/4 power law. The model showed confounding between variables when estimating four
parameters (AAM, energy acquisition, maintenance, and reproductive investment). To
avoid this issue, the authors proposed a three parameter model (by assuming constant
maintenance) that increased the robustness of results. After this adjustment, Mollet model
estimates of AAM for female plaice were in general agreement with independent
estimates. Brunel et al. (2013) reduced the confounding between parameters in the Mollet
model by incorporating random effects (Laird and Ware 1982). However, this model was
sensitive to starting values and struggled to converge, particularly when estimating more
than four parameters. Moreover, the Brunel model was biased in some cases (up to
~45%, although some cases involved unrealistic parameter combinations) and was
sometimes inaccurate in estimating AAM when compared to scale-based estimates for
Norwegian spring-spawning herring (30-61% agreement, although differences in AAM
estimates were < 1 yr for 97% of cases). As with LMLP, both the Mollet and Brunel
models were less accurate for early AAM.

Ohnishi et al. (2012) proposed an extended VBGM that allows for estimation of

AAM. Unfortunately, they did not evaluate the accuracy of their model in estimating
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AAM, and they noted that practical applications of the model would necessitate
additional parameters. Despite this potential disadvantage, Ohnishi et al. present an
intriguing model that deserves further attention.

Minte-Vera et al. (2016) presented a review and assessment of models that
incorporate the cost of reproduction, including the LM and related models (Quince-
Boukal; Quince et al. 2008, Boukal et al. 2014). Although they used some of these
models to estimate AAM from size and age data (including Quince-Boukal but not the
LM), they focused on describing two new biphasic models and comparing their
goodness-of-fit to existing models. As such, they did not rigorously assess the ability of
the models to estimate AAM. In addition, they fit the models to only four empirical
datasets (split by sex) describing lake trout Salvelinus namaycush. A more complete
examination of the accuracy of the various models (particularly the two novel ones) in

estimating AAM and other life history parameters is merited.

iv) Advantages and Additional Applications of LMLP
The LMLP method offers many advantages over other techniques for estimating AAM. It
requires only length-at-age data, which are common across disciplines, and can provide
accurate estimates of AAM in the absence of maturity data. In addition, LMLP provides
estimates of other life history parameters, such as juvenile growth rate (h), the average
cost to somatic growth of maturity (g), asymptotic length (), mean length-at-maturity,
and the instantaneous rate of natural mortality (Lester et al. 2004). One could use LMLP

to track changes in life history parameters over time (see Kuparinen and Merild 2007),
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compare life history parameters among populations (Chavarie et al. 2016), or estimate the
vital rates of a Leslie projection matrix (Uusi-Heikkil4 et al. 2015).

We used a simple version of the LM, but the LMLP approach can also be used to
fit models that relax the assumptions of the “fixed g” LM that may be difficult to fit
otherwise. For instance, parameters could be added to fit the “generic biphasic” model
proposed by Quince et al. (2008; see also Boukal et al. 2014), which (1) allows g to vary
with age, e.g., as a result of increasing investment in reproduction (Kozlowski 1996) or
activity costs (Ware 1978, Andersen and Beyer 2015) and (2) relaxes the assumption that
metabolism scales with body size according to a 2/3 power law, which may be inaccurate
for many species (Glazier 2010).

The likelihood function is a common basis for both frequentist and Bayesian
statistics, and likelihood intervals have a clear interpretation as model parameter values
supported by the data. Like Bayesian methods, LMLP can incorporate information about
parameters, although in both cases inference depends upon assumptions about those
parameters (either a Bayesian prior or in the specification of a marginal likelihood). For
applications in which data are not informative of parameters (e.g., low sample size),
asymptotic results on unbiasedness for likelihood inference may not apply for profile
likelihoods (Pawitan 2013). It is therefore important to verify estimator performance via
simulation. For our analyses, we used the same two-step algorithm for all LMLP fits to
simulated and empirical data for insight on sample conditions when the empirical fits
may be unreliable. Likelihood profiles provide a useful means of assessing fit quality

because they show the number of likely parameter values (likelihood peaks) and the
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degree of confidence in those values (the width of each peak). We found that as data
became less informative on AAM, likelihood intervals became wider and estimates could
be biased. We also found that parameter estimates were robust to starting values (not
shown). Nonetheless, fit quality and accuracy may be improved by adjusting starting
values or other aspects of the algorithm, particularly when data quality is poor.

Our study focused on data describing an entire population at a particular time (i.e.,
cross-sectional data), but our approach can also be applied to longitudinal data that track
individuals or cohorts through time. Fitting to longitudinal data may be more
theoretically consistent than fitting to cross-sectional data (Mollet et al. 2010),
particularly for studies of life history evolution. In addition, LMLP fits to longitudinal
data may provide a more realistic understanding of life history variation (e.g., by
allowing for the construction of probabilistic maturation reaction norms; Heino et al.
2002). Random effects should be included when fitting to individual lifetime growth data
(Laird and Ware 1982, Brunel et al. 2013). Although LMLP can be adjusted to include
random effects, incorporating these additional parameters may make the model difficult
to fit; however, this impact may be minimized by including additional information on
parameters.

Our LMLP algorithm has potentially broad applicability. It can work well not
only for walleye, but also for any species that has a similar lifetime growth trajectory and
an associated shift in growth that corresponds to maturity. Our fits to four additional
species (including fishes, an elasmobranch, and an amphibian) display the potential

utility of LMLP in accurately estimating AAM for a variety of taxa. The LMLP
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algorithm may be particularly useful when only length-at-age data are available or
attainable. However, because LMLP may not work well for some species (e.g., due to
violations in the assumptions of the LM), more work is needed to determine the

reliability and data quality requirements of LMLP across taxa.

v) Conclusion
Our LMLP algorithm demonstrates that the LM can be leveraged to estimate AAM and
other life history parameters for a variety of taxa. In addition, we provide a realistic
assessment of the data requirements of LMLP. In general, our method performed poorly
for sample sizes < 100-150 individuals, precision in length-at-age < 6, and g <0.1. The
algorithm is also sensitive to low AAM, sample distribution across ages, data coverage,
and violations of the LM. Future work should address these factors and also investigate
the validity and accuracy of LMLP given different reproductive strategies (e.g.,
hermaphroditism) or when compared to other approaches for assessing maturity (e.g.,
histology). Despite these drawbacks, LMLP shows promise as a tool for research and
management. Given adequate data quality, LMLP accurately estimates AAM (compared
to Asg) and allows for the estimation of additional life history parameters. As such, we
argue that LMLP represents a valuable addition to the growth modeling toolbox. Future
research should also (1) assess the capacity for more complex modeling algorithms to
broaden the applicability and utility of LMLP, (2) adjust LMLP to fit to longitudinal data,
and (3) apply LMLP to historical datasets and/or ancient data (e.g., lifetime growth back-

calculated from hard structures in sediment cores or middens) to address questions related
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to life history variation and evolution. More broadly, we argue that this work makes an
important contribution to the expanding body of literature centered on extracting life
history information from growth data. Recent efforts have also met with conditional
success (see Section 4.4ii1), suggesting that these growth-related methods have great

potential for improving our understanding of life history.

4.5  Data accessibility
Example R code and data describing haddock, Alaska skate, seal salamanders, and

walleye from Minnesota lakes are available from the Dryad Digital Repository:

http://dx.doi.org/10.5061/dryad.vb957. To request data collected by the Ontario Ministry

of Natural Resources and Forestry and the Quebec Ministry of Natural Resources and

Wildlife, please contact Dr. Sandra Orsatti (OMNRF; sandra.orsatti@ontario.ca) and Dr.

Michel Legault (QMNRW; michel.legault@mnrf.gouv.qc.ca).
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Table 4.1 Description of Lester model parameters.

Parameter Description

Iy Theoretical length at age 0 (mm)

h Net rate of energy acquisition expressed as somatic growth rate (mm-yr™)

T Last immature age (yr; Lester model parameter for age-at-maturity)

loo Asymptotic length (mm)

k von Bertalanffy growth coefficient (yr')

to von Bertalanffy (adult) hypothetical age at length 0 (yr)

ty Lester (immature) hypothetical age at length 0 (yr)

g Cost to somatic growth of maturity (expressed in equivalent energetic units)
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Figure 4.1 Empirical data describing female walleye Sander vitreus from individual
lakes (n = 57) in relation to simulated error contours for Ty, g to fall within +/- 0.5 yrs of
T when T =5 yrs across levels of sample size, precision, and g (gray lines, labeled
according to levels of g; Table A3.2). Symbols indicate LMLP fit quality (see Section
4.2) and the position of each point relative to the nearest (lower) contour for g, based on
g from a LMLP fit. Error contours were smoothed using LOESS (degree = 2, a = 0.75).
Datasets that are above the nearest contour for g in the sample size and precision
parameter space (based on g from a LMLP fit) are likely to provide accurate estimates of
T. The position of points depends only on sample size and precision, and not on §. See
Table A3.4 for a description (including sample size, precision, and §) of each dataset.
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Figure 4.3 Standard major axis (SMA) regression comparing Ty, from good fits to Ax,

across datasets. Datasets marked with “x” were excluded from the regression due to

probable errors in ageing and/or maturity assessment. The standard major axis regression

line was not significantly different from a 1:1 line.
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Figure 4.4 Examples of LMLP fits to data describing a variety of taxa, including (a) lake

whitefish Coregonus clupeaformis (n=149, precision=24.26, g=0.18), (b) haddock

Melanogrammus aeglefinus (n=359, precision=10.12, §=0.34), (c) Alaska skate
Bathyraja parmifera (n=231, precision=15.87, §=0.18), and (d) seal salamaders

Desmognathus monticola (n=83, precision=50.79, §=0.38). Solid lines = immature
growth; dashed lines = mature growth; box and whiskers = A, and bootstrapped 95%

confidence intervals, respectively. Likelihood profiles are shown in gray. For all four fits,
Tyyg did not significantly differ from A5, (see Appendix 3, Section A3.2 and Table A3.3

for details and data descriptions).
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Chapter 5

A deep dive into the past: biphasic growth models reveal shifts in Gulf
of Mexico red snapper Lutjanus campechanus life histories from 1941-

2005

Synopsis
Fishing tends to select for faster fish life histories (e.g., faster growth, earlier maturity). In
some cases, fisheries-induced shifts in life history can be hard to detect due to inadequate
data. For example, maturity data are often insufficient or absent from historical samples,
which can complicate the analysis of long-term trends in fish life histories. Recent work
has shown that many life history traits, including maturity-based and reproductive traits,
can be extracted from growth data using biphasic growth models. Herein, we use a
biphasic growth model and length-at-age data back-calculated from otoliths to examine
long-term trends in life history for an economically important and historically
overexploited fish stock, Gulf of Mexico red snapper Lutjanus campechanus. We show
that red snapper life histories were relatively slow in the 1940s-1960s, but shifted
dramatically in the 1970s-1980s to a faster regime in the 1990s-2000s. These shifts do
not appear to have been driven by temperature, but they coincide with increases in fishing
pressure that occurred as the fishery developed after World War II. In addition, we found
limited evidence for recovery of red snapper life histories through 2005 following the

implementation of strict fishery regulations in 1991. We present otherwise unattainable
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estimates of life history traits for Gulf of Mexico red snapper during the mid-20" century,
thereby providing a more complete understanding of how red snapper life histories have

shifted since the expansion of the fishery.
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5.1 Introduction

Selectively harvesting fish can lead to plastic and/or evolutionary changes in fish life
histories (Heino et al. 2015, Audzijonyte et al. 2016). For instance, increased mortality of
older, larger fish due to harvest can select for faster life histories characterized by, e.g.,
faster juvenile growth, earlier maturation, and increased reproductive investment (e.g.,
Law 2000, Heino and Godo 2002, Kuparinen and Hutchings 2012). Fisheries-induced
shifts in life history are likely widespread and can reduce both yield and economic benefit
from global fisheries (Heino 1998, Zimmerman and Heino 2013). Unfortunately, these
shifts can be difficult to detect. Experiments (e.g., Conover and Munch 2002) may not
translate to real-world scenarios, many methods (e.g., Heino et al. 2002) require large
amounts of data that can be hard to collect, and data describing fish population baselines
(e.g., from pre-exploitation time periods or early in the development of a fishery) are
often unavailable or inadequate.

Growth is the net result of myriad ecological and evolutionary factors and
processes and is tightly linked to many life history traits (Roff 1983, Stearns 1992).
Recent advances in growth modeling allow for the extraction of a wealth of life history
information from growth data (e.g., Mollet et al. 2010, Boukal et al. 2014, Minte-Vera et
al. 2016). For example, the Lester model (LM; Lester et al. 2004, 2014, Quince et al.
2008Db) is rooted in life history theory and allows for the estimation of multiple life
history traits from length-at-age data (e.g., age-at-maturity, juvenile growth rate,
energetic investment in reproduction), many of which cannot be directly estimated using

traditional growth models (e.g., the von Bertalanffy model; von Bertalanffy 1938, 1957,
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Beverton and Holt 1957). The LM has been shown to provide accurate life history trait
estimates for fishes and other ectotherms (Honsey et al. 2017; see also Wilson et al.
2018). As such, and given the relative abundance of fish length and age data compared to
other types of data (e.g., maturity data), the LM is a potentially useful tool for detecting
and monitoring shifts in fish life histories.

Red snapper Lutjanus campechanus is one of the top recreationally-landed species
in the US (Figueira and Coleman 2010, Abbott et al. 2018) and is among the most
ecologically and economically important fishes in the Gulf of Mexico (GOM; e.g.,
Bradley and Bryan 1975). Fishing effort for GOM red snapper increased dramatically
following World War II due to advances in technology, fishery expansion to the northern
Gulf shelf off of Louisiana and Texas, and increased recreational catches (Carpenter
1965, Porch et al. 2007, SEDAR 2018). Overfishing led to severe declines in GOM red
snapper biomass during the 1940s-1990s, with commercial landings in 1991 comprising
approximately 12-15% of those in 1965 (Wilson and Nieland 2001, SEDAR 2018). Since
1991, strict size limits and catch quotas have been enforced in an effort to reduce
overfishing and promote stock recovery (Schirippa and Legault 1999). It is possible that
these substantial shifts in fishing effort and biomass have driven fisheries-induced
changes in GOM red snapper growth and life history. Unfortunately, estimating some life
history traits (e.g., age-at-maturity) using traditional approaches can be challenging for
red snapper (see Cook et al. 2009 and Section 5.4). Moreover, although some studies
have focused on GOM red snapper growth (Bradley and Bryan 1975, Szedlmayer and

Shipp 1994, Patterson III et al. 2001, Wilson and Nieland 2001), comparisons of growth
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across time periods are limited to recent years and relatively narrow temporal ranges
(e.g., 1998-2004, 2001-2012; Nieland et al. 2007, Patterson III et al. 2012, SEDAR
2013). As such, a comprehensive analysis of GOM red snapper life histories before,
during, and after the period of high exploitation is lacking.

Our objectives were to (1) examine shifts in GOM red snapper life histories from
the mid-20'" century to recent decades, and (2) explore potential drivers of any observed
shifts in red snapper life histories. To do this, we estimated life history traits for red
snapper from cohorts stretching from 1941-2005 by fitting the LM to growth data back-
calculated from otoliths. We then regressed our estimates against an important
environmental factor (temperature) and examined the plausibility of that factor as a driver

of the observed trends compared to other potential drivers (e.g., fishing pressure).

5.2 Methods

1) Data
We retrieved 166 GOM red snapper otoliths from archival collections located in the
National Oceanic and Atmospheric Administration (NOAA) Panama City Laboratory
(FL, USA). The otoliths were taken from individuals that were landed primarily in
eastern GOM ports (NOAA Fisheries grids 1-12 in Appendix 4, Fig. A4.1) from 1980-
2016. Individuals were landed via the commercial fishery (n = 105; 63%), recreational
fisheries (n = 32; 19%), and fisheries-independent surveys (n = 29; 18%). We included
otoliths from individuals that were estimated to be roughly 10 yr old or greater.

Moreover, we selected otoliths in an effort to include a broad range of individual sizes-
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and ages-at-capture within cohorts (or among a limited range of cohorts, e.g., 1991-1995)
throughout the time series. That is, we tried to include otoliths from both older, larger
individuals and younger, smaller individuals that hatched at roughly the same time. We
did this in an effort to ensure that our dataset included the range of life history strategies
present in the population for a given cohort or range of cohorts. Our dataset included
individuals with ages-at-capture ranging from 7-59 yr from cohorts ranging from 1941-
2005. In addition, we included only otoliths from known females when possible. We
focused on females because of their importance with regard to evolution and stock
productivity (i.e., females are often considered ‘limiting’; Herczeg et al. 2012, Hixon et
al. 2014). Unfortunately, many of the otoliths came from individuals that were captured
via the commercial fishery, the data from which seldom included information on sex. The
increased prevalence of data from recreational fisheries and fisheries-independent
surveys (for which sex data were more common) in recent years allowed us to include
only known females for recent cohorts. Of our 166 individuals, 58 (35%) were female, 2
(1%) were male, and 106 (64%) were of unknown sex. See Appendix 4, Table A4.1 for a
description of each individual included in the analysis.

We thin-sectioned sagittal otoliths through the transverse plane with a high-speed
saw to a thickness of 0.5 mm following Cowan et al. (1995). We assigned ages to
sectioned otoliths based on the number of annuli (opaque zones). We analyzed growth
increments along the dorsal side of the sulcal groove with a binocular dissecting
microscope at 40x magnification under transmitted light. We photographed all samples

with a digital camera and then measured growth increment widths using the program
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ImagePro Plus v. 7.0 (Media Cybernetics, Silver Spring, Maryland). We measured
growth increments (distances between opaque zones) continuously from the focus to the
dorsal distal margin, including any partially formed translucent zone on the margin. We
measured a total of two axes per otolith, always following the direction of growth (i.e.
perpendicular to the growth increments). Allman et al. (2005) provides additional

information on otolith reading protocols and practices.

i1) Back-calculation of growth trajectories
We back-calculated growth trajectories from otolith measurements in order to generate
estimates of size-based life history traits (e.g., somatic growth rates, length-at-maturity,
asymptotic size) which would be unattainable otherwise (although some life history traits
such as age-at-maturity can be estimated directly from otolith measurements; see, e.g.,
Engelhard et al. 2003). We converted otolith measurements to body lengths-at-age via the
‘age effect’ model proposed by Morita and Matsuishi (2001), with a modification to
include a biological intercept (an approximation of the length and otolith size of newly-
hatched fish; Ashworth et al. 2017b). This method was found to be among the most
accurate back-calculation approaches evaluated by Ashworth et al. (2017b). We used data
describing age-0 red snapper from Allman et al. (2005) to estimate the biological
intercept. We then fit a regression model to data describing otolith radius at capture, age
at capture, and total length for all individuals included in the analysis (n = 166), as well
as juveniles from Allman et al. (2005) (n=125; total n = 291). Our regression model took

the form
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R = Rg + B(L—Lg) + y(t —tg),
where R is otolith radius at capture, Rp; is otolith radius at the biological intercept (set at
432.6 um), L is total length at capture, Lg; is total length at the biological intercept (set at
50 mm), t is age at capture, tp; is age at the biological intercept (set at 0.044 yr), and S
and y are estimated parameters (Ashworth et al. 2017b). We then estimated lengths-at-

age for adult red snapper (n = 166) as:

- Rg; — BLg; — vyt Ry, — BLg; — yt R;;
i = _lBI BLg; VBI+(LL_+ B — BLp; YBI+<y>ti)<i>—(Z
i

e B B B R/ B

)t
(Ashworth et al. 2017b), where Zj‘i is estimated length at age t; for fish i, L; is length at

capture for fish i, ¢; is age at capture for fish i, R; ; is otolith radius at age ¢; for fish i, R;

is otolith radius at capture for fish i, and the remaining parameters are as described

above.

i11) Lester model fits to individual growth data
We fit the “fixed g” formulation of the Lester model (LM; Lester et al. 2004, 2014,
Quince et al. 2008b, 2008a, Honsey et al. 2017) to the back-calculated red snapper
growth data. For length at time t ([;), the growth trajectory is given by
l; =1y + ht, t <T for juveniles,
l; = (1 — e *(t7t)), ¢ > T for adults,

with
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k = In(1 +§)

to=T+In(1-2C%) /n(149).

In these equations, [, is the theoretical length at age 0 (mm); h is the juvenile somatic
growth rate (mm - yr'!); T is the last immature age (LM parameter for age-at-maturity;
yr); Lo is the asymptotic length (mm); k is the von Bertalanffy growth coefficient (yr);
to 1s the von Bertalanffy theoretical age at length O (yr); t; is the Lester (immature)
theoretical age at length O (yr); and g is the cost to somatic growth of maturity (expressed
in equivalent energetic units), which is often assumed to be dominated by energetic
investment in reproduction (Roff 1983, Kozlowski 1996, Honsey et al. 2017). We
assumed that fish length at age t was normally distributed around the length predicted by
the model for that age, fi;(6) (Quince et al. 2008b). In order to allow error to scale with

fish size, we defined the standard deviation of this distribution, a;, as a power function of

the predicted length: o, = ¢ﬂt¢, where ¢ and Y are estimated parameters (see
Supplement in Quince et al. 2008a). As such, we estimated six parameters for each model
fit: [y, h, T, g, ¢, and Y.

We fit the LM in a Bayesian framework using Stan (Carpenter et al. 2017) via
RStan (Stan Development Team 2018). We fit the model in a fixed-effects framework

separately to data describing each individual. For each fit, we ran four Hamiltonian
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Monte Carlo (HMC) chains for 10000 iterations each (3500 warmup, 6500 sampling). To
improve model performance, we fit a linear model to the first 2-4 length-at-age data
points for each individual and used the slope and intercept estimates to inform priors on h
and [y, respectively. This process promotes model convergence without leveraging
information outside of the data and is similar to the approach used by Honsey et al.
(2017). We used vague priors for the remaining parameters. We used the potential scale
reduction factor (R; Gelman and Rubin 1992) and visually examined HMC chain trace
plots to assess convergence, and we inspected model fits to the data to assess fit quality.
We provide code for this model in Appendix 4, Section A4.1.

The LM fits provided individual-level estimates of eight parameters (excluding
variance parameters). Five of these parameters (h, T, g, k, and [l,,) can be considered
estimates of life history traits. The remaining three parameters ([, ty, and t;) have
limited biological interpretation (but see Lester et al. 2004). We used these parameter
estimates to generate estimates of two additional life history traits. We estimated length-
at-maturity (l7; mm) by simply calculating the predicted length at age T':

lr = 1y + hT.
We then estimated the late-stage juvenile and adult instantaneous mortality rate (Z; yr')
using two empirically-derived relationships that leverage well-established tradeoffs

between maturity, reproductive investment, and mortality (Lester et al. 2004, 2014):

(1) Z~ —In (1 _ (ﬁ))
) Z ~In <(T1_9t51) + 1).
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iv) Cohort group-level mean life history traits
We examined trends in mean life history trait values among red snapper individuals
across the cohorts present in our dataset by first grouping individuals into one of nine
cohort groups: 1941-1950, 1951-1960, 1961-1970, 1971-1980, 1981-1985, 1986-1990,
1991-1995, 1996-2000, and 2001-2005. We selected these groups in an effort to balance
temporal resolution and sample size (e.g., low sample sizes precluded the use of five-year
cohort groups for pre-1980 cohorts). We then extracted draws from the posterior
probability distributions for each individual-level LM fit (random sample of 2500 draws
per parameter per individual), and we compiled these subsampled draws across all
individuals within a cohort group. We effectively treated these draws as data for
estimating cohort group-level means in a hierarchical Bayesian framework, once again
using Stan via RStan. The hierarchical framework was constructed with group-level

parameters 6, arising as 8, ~ N(6y, 0g), where 8, are individual-level parameter

estimates (i.e., estimates for fish k) and oy is the estimated standard deviation for a given
group-level parameter estimate. In essence, the hierarchical model re-estimated
individual-level means and standard deviations from the posterior draws, and then used
this information to estimate group-level means. We used this approach to ensure that the
uncertainty around individual-level parameter estimates was appropriately propagated
when estimating group-level means. For each fit, we ran four HMC chains for 5000
iterations each (2000 warmup, 3000 sampling). We considered cases in which the 95%
credible intervals did not overlap for a given pair of group-level parameter estimates to be

significant differences. We provide code for this model in Appendix 4, Section A4.2.
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Although most of the individuals included in our analysis were landed in the
eastern Gulf, some were caught and/or landed in the western GOM (NOAA Fisheries
grids 13-21 in Appendix 4, Fig. A4.1; see Table A4.1). There is evidence to suggest that
red snapper life histories may differ across the Gulf, possibly due to historically different
exploitation levels and/or other factors such as habitat quality (e.g., Fischer et al. 2004,
Jackson et al. 2007). For this reason, we conducted an analysis to determine whether life
histories differed among individuals in our dataset that were captured in the eastern
versus western GOM. Specifically, we calculated group-level mean life history trait
estimates separately for individuals captured in the eastern versus western GOM within
each cohort group using the approach described above. We again considered cases in
which the 95% credible intervals did not overlap to be significant differences. Additional

details are provided in Appendix 4, Section A4.3.

V) Life history trait estimates versus temperature
Temperature is an important driver of fish growth, physiology, and life history (e.g.,
Hazel and Prosser 1974, Diana 2003). In general, higher temperatures tend to select for
faster life histories (i.e., faster growth, earlier maturity, higher natural mortality rates,
etc.; e.g., Pauly 1980, Berrigan and Charnov 1994, Thorson et al. 2017). To examine
whether temperature is a plausible driver of shifts in red snapper life history, we obtained
mean monthly sea surface temperature data from the Hadley HadISST 1.1 1 x 1 degree
dataset (http://hadobs.metoffice.gov.uk/hadisst; Rayner et al. 2003, Dzaugis et al. 2017)

for a location in the northeastern GOM (29.5°N, 86.5°W) and for all months from 1941-
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2005. We used these data to calculate annual degree-days (DD), which are a useful metric
for describing fish growth and life history (e.g., Neuheimer and Taggart 2007, Chezik et

al. 2014a, Honsey et al. in press). We calculated DD as

12
DD = Z(Tm “Ty)dy, Tn>T,
m=1

where T, is the mean sea surface temperature for month m, T is the base temperature for
growth (i.e., the temperature below which thermal energy is considered irrelevant to
growth), and d,,, is the number of days in month m. Previous work has shown that the
selection of the base temperature (Ty) can influence growth rate estimates (Chezik et al.
2014b). In an effort to account for potential bias due to base temperature selection, we
calculated DD above three base temperatures (0, 5, and 10 °C) and compared results
generated using the three metrics (i.e., DDo, DDs, and DDo).

To provide an index of the average annual thermal energy available to red snapper
individuals in early life, we calculated mean DDo, DDs, and DD1o across the years
included in each cohort group (i.e., 1941-1950, 1951-1960, etc.) using a Bayesian model
of the mean in Stan via RStan. We then regressed the group-level life history trait
estimates against these metrics for each cohort group using a hierarchical modeling
framework similar to the one described above. Specifically, we extracted draws from the
posterior probability distributions for both the group-level life history trait estimates and
the mean DD estimates (2500 random draws per trait/metric). We incorporated these
draws in a hierarchical regression framework (again using Stan via RStan) in order to

propagate error in both the life history trait estimates and the mean DD estimates. For
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these fits, we again ran four HMC chains for 5000 iterations each (2000 warmup, 3000

sampling).

5.3 Results

1) Lester model fits to individual growth data
The LM generally provided good fits to the back-calculated length-at-age data despite a
broad range of parameter estimates (i.e., dramatically different growth trajectories)
among individuals and cohort groups. For instance, T ranged from 1.72-11.67 yr, and h
ranged from 32.14-262.31 mm-yr"' among individuals (Fig. 5.1). However, we
considered LM fits for 19 individuals to be untrustworthy due to a lack of convergence
and/or poor fits to the data (e.g., Fig. 5.1¢,d). These poor model fits appear to have been
caused by low sample size (i.e., fish that were relatively young at capture) and/or
multiple plateaus in the growth trajectory (i.e., a ‘stair-step-like’ growth pattern), leading
to multiple likelihood peaks for model parameters. We present results excluding
parameter estimates from these unreliable fits (as well as for fits to males) throughout the
remainder of the paper. Results including these fits were qualitatively almost identical;
these results and additional details and are provided in Appendix 4 (Section A4.4, Figs.

A4.9-4.15).

i1) Cohort group-level mean life history traits
Our results suggest that red snapper life histories were significantly faster in recent

decades than they were in the mid-20" century (Figs. 5.2, 5.3). Mean age at maturity (T)
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more than halved from 7.45 yr in 1941-1950 to 3.06 yr in 2001-2005 (Fig. 5.2), and mean
juvenile growth rate (h) roughly doubled from 63.84 mm-yr! in 1941-1950 to 124.47
mm-yr' in 2001-2005 (Fig. 5.3a). Similarly, investment in reproduction (g; Fig. 5.3b),
adult growth rate (k; Fig. 5.3¢c), and mortality rate (Z; Fig. 5.3d) all approximately
doubled from 1941-1950 to 2001-2005. We did not find any significant trends in [, (Fig.
5.3e) or l (Fig. 5.3f), although there is evidence for a non-significant decrease in both
traits over time. Our estimates of Z from eq. 1 (Fig. 5.3d) were consistently higher than
those from eq. 2 (see Appendix 4, Fig. A4.16), but the trends over time were similar for
both approaches. In general, our results indicate that GOM red snapper life histories were
relatively slow from 1941-1970, after which they transitioned during 1971-1990 to a
faster life history regime in 1991-2005. We did not find any evidence for a significant
recovery of life histories (i.e., to the slower life history regimes of the mid-20" century)
by 2001-2005 (but see Section 5.4). Moreover, we did not detect any significant
differences in life history traits within cohort groups among individuals captured in the
eastern versus western GOM (see Appendix 4, Section A4.3 and Figs. A4.2-A4.8 for

details).

111) Life history trait estimates versus temperature
Our three thermal metrics (DDo, DDs, and DD1o) were highly correlated (Pearson’s r >
0.99 for all pairwise comparisons), and inference from the regression models was
identical for each metric. We present results for DDo herein; results generated using the

other two metrics are provided in Appendix 4, Table A4.2.
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We found a marginally significant, positive relationship between DDo and T
(slope = 0.016; 95% credible interval = (0.002, 0.031)), and marginally significant,
negative relationships for regressions of DDo versus h (slope = -0.282; 95% credible
interval = (-0.497, -0.066), and k (slope = -2.81 - 10™*; 95% credible interval = (-5.55 - 10-
4.-1.80 - 10®); Fig. 5.4). In contrast, we found non-significant relationships (i.e., the 95%

credible intervals for slope estimates overlapped 0) for DDo versus g, Z, L, and [,.

5.4  Discussion

Our results suggest that Gulf red snapper life histories have become significantly faster
since the mid-20" century. Specifically, we observed a roughly two-fold reduction in
age-at-maturity, and a roughly two-fold increase in somatic growth rates, energetic
investment in reproduction, and mortality rates from 1941-2005. In addition, we found
weak but marginally significant relationships between temperature and three of our life
history trait estimates: age-at-maturity, juvenile somatic growth rate, and adult somatic
growth rate (i.e., the von Bertalanfty growth coefficient). However, the direction of these
relationships was opposite to that predicted by life history theory. Increases in
temperature generally lead to faster growth and earlier maturity (e.g., Pauly 1980,
Berrigan and Charnov 1994, Venturelli et al. 2010). In contrast, we found that higher
temperatures were correlated with slower growth and later maturity for the individuals in
our dataset. These relationships appear to be driven by estimates from early portions of
the time series in which temperatures were relatively warm and red snapper life histories

were relatively slow. For instance, estimates of both DDo and T were highest for the
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1941-1950 and 1951-1960 cohort groups (upper-rightmost points in Fig. 5.4a). Given our
relatively low sample size (n = 9 cohort groups) and that the observed relationships
contradict life history theory, we argue that these results are an example of correlation
without causation, and we suggest that factors other than temperature likely drove the
observed shifts in red snapper life histories.

Fishing pressure is perhaps the most plausible driver of the observed shifts in red
snapper life histories. Fishing pressure for GOM red snapper increased dramatically
following World War II (Fig. 5.5; SEDAR 2018), leading to substantial declines in
biomass and the implementation of strict fishing regulations in 1991 (Schirippa and
Legault 1999). It is plausible, and perhaps even likely, that the selective exploitation of
GOM red snapper contributed to shifts in life history (see Nieland et al. 2007). We did
not explicitly include an index of fishing pressure as a driver of life history shifts in our
models because doing so was not as straightforward as for other factors that have more
immediate effects (e.g., temperature), and may therefore have led to erroneous
conclusions. For instance, we expect that there was a lag between fishing pressure and its
effects on fish life histories, and the length of that lag was likely dynamic with shifts in
life histories (e.g., changes in generation times). However, we note that GOM red snapper
life histories appear to have shifted following the rapid increase in fishing pressure in the
1950s-1970s (Fig. 5.5), which is consistent with the hypothesis that fishing pressure is an
important driver of the observed shifts.

We did not find evidence for significant recovery (i.e., ‘slowing down’) of life

histories at the cohort group-level by 2001-2005 in response to the enforcement of strict
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size limits and catch quotas since 1991 (Schirippa and Legault 1999). However, there is
evidence to suggest that life histories for recent red snapper cohorts are indeed shifting
toward historical regimes (Brown-Peterson et al. in press, SEDAR 2018). Despite the fact
that we did not see significant recovery at the cohort group level, our results at the
individual level hint at potential recovery. For example, there were four individuals
(16%) in the 2001-2005 cohort group with relatively slow life histories compared to the
group-level mean (e.g., T estimates of 5.05, 5.11, 5.62, and 7.27 yr; group-level mean for
2001-2005 = 3.06 yr). Individuals with similar life histories were less common in the
1996-2000 (two individuals (10%) with T between 5 and 6 yr) and 1991-1995 (one
individual (3%) with T > 5 yr) cohort groups. Future analyses using the LM or a similar
approach may detect significant recovery at the group level by, for example, leveraging
larger sample sizes and/or including older individuals from more recent cohorts, once
they have aged sufficiently.

Our mortality rate estimates (Z) can be considered estimates of total mortality rate
(i.e., fishing mortality rate + natural mortality rate) assuming an evolutionary equilibrium
state. This assumption likely does not hold given the history of the Gulf red snapper
fishery, which includes large shifts in fishing pressure, and therefore selective pressures,
over time (Schirippa and Legault 1999; see Fig. 5.5). However, we argue that these
estimates are still informative given that they provide insight regarding the mortality rates
to which individuals are likely adapted, based on their growth and other life history traits.
Moreover, our estimates appear to be reasonable given previous estimates of fishing and

natural mortality rates. For example, fishing mortality rates for red snapper at artificial
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reef sites have been estimated at roughly 0.27-0.44 yr! (Topping and Szedlmayer 2013,
Williams-Grove and Szedlmayer 2016) for recent years, and natural mortality rate
estimates for adults often fall near 0.1 yr! (Topping and Szedlmayer 2013, SEDAR
2018). An approximate range of plausible Z is therefore 0.37-0.54 yr''. The fact that our
LM-based Z estimates for recent cohorts largely fall in this range (Z = 0.45-0.58 yr'! for
eq. 1 and 0.39-0.47 yr'! for eq. 2 for 1986-2005) suggests that red snapper life histories
may be well-adapted to current Z.

We were unable to make direct comparisons between our results and life history
trait estimates generated from conventional approaches in most cases. For example,
estimating age-at-maturity using traditional methods (e.g., age-at-50% maturity or Aso;
Chen and Paloheimo 1994) requires maturity data, which were not available for most of
the early portion of our time series. Moreover, estimating maturity-based traits can be
challenging for red snapper even when maturity data are available. Specifically, young,
small red snapper can be difficult to catch and are often rare in assessment datasets,
which can lead to problems when calculating maturity metrics (e.g., unrealistic and/or
highly uncertain estimates of 4s50; Cook et al. 2009). For this reason, we did make any
direct comparisons between T and A4s0. In addition, many of our growth parameter
estimates were not directly comparable to those from conventional models (e.g., von
Bertalanffy growth models) due to differing functional forms and parameterizations
among models. However, we did find that our estimates of asymptotic length (l,,) align
well with those generated from von Bertalanffy models in other studies (I, = 850-1025

mm; Szedlmayer and Shipp 1994, Patterson III et al. 2001, Wilson and Nieland 2001,
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SEDAR 2013). Moreover, a recent meta-analysis found modest shifts toward slower life
history strategies in female GOM red snapper reproductive parameters (e.g., increase in
spawning interval, decrease in relative batch fecundity) from 1991-2017 (Brown-Peterson
et al. in press). Our results show a somewhat similar trend: we observed a slight (non-
significant) decrease in reproductive investment (g) from 1991-1995 to 1996-2000,
although mean reproductive investment was similar for 1991-1995 and 2001-2005. Lester
model-based analyses of more recent cohorts in future years may further elucidate trends
in reproductive parameters since the implementation of strict fishing regulations in 1991.

Our methods did not allow us to explicitly disentangle plastic versus evolutionary
change, a common difficulty with studies that leverage phenotypic data describing wild
populations (Heino et al. 2015). With more data, it may be possible to pair our methods
with a probabilistic reaction norm approach (e.g., Heino et al. 2002) to differentiate
between plastic and evolutionary shifts in life history traits (although there is debate as to
whether such approaches succeed in doing so; e.g., Law 2007, Uusi-Heikkild et al. 2011,
Salinas and Munch 2014). Importantly, we did not find evidence for significant decreases
in asymptotic length or length-at-maturity over time (although there were non-significant
decreases in both traits), both of which are often expected to occur as a result of fisheries-
induced evolution (Heino 1998, Heino et al. 2015).

Although we attempted to include individuals spanning a broad range of ages- and
sizes-at-capture within each cohort group, individuals from early cohorts were
consistently older than individuals from more recent cohorts. This was largely

unavoidable, given that, e.g., we did not have samples from before 1980, and therefore
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we could not include younger individuals from these earlier cohorts. However, it is
possible that there is (and has been) a broad range of life history strategies present in
GOM red snapper populations, and that older individuals tend to display relatively slow
life histories. Sampling may therefore have contributed to the observed shifts in life
histories. For instance, individuals displaying slow life histories from recent cohorts may
be present in the population, but may not have been sampled (and vice versa for earlier
cohorts). As such, our results may be biased due to Lee’s phenomenon (Lee 1920),
whereby population-level estimates of life history traits can be skewed due to
unrepresentative sampling. A more complete explanation of this potential bias would
require sampling older fish from recent cohorts in the future (i.e., age 40-50+ individuals
sampled 30-40 yr from now, if present), as well as younger fish from cohorts early in the
time series (which may only be possible via the collection of otoliths from sediment
cores; see below). That being said, we did observe traits suggestive of relatively slow life
histories in some individuals from recent cohorts, despite the fact that they were captured
at relatively young ages (see Appendix 4, Table A4.1). Moreover, we observed traits
suggestive of slow life histories from individuals that were captured at relatively young
ages earlier in the time series. For example, two individuals from the 1961-1970 cohort
group that were captured at ages 11 and 15 yr displayed relatively slow growth rates
(47.42 and 54.12 mm-yr’!, respectively) and late ages-at-maturity (5.97 and 5.73 yr,
respectively). Two individuals from the same cohort group that were captured at older
ages of 27 and 35 yr displayed faster life histories (growth rates = 97.74 and 106.98

mm-yr’, respectively; ages-at-maturity = 4.80 and 3.85 yr, respectively). The fact that we
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estimated relatively slow life histories for individuals that were captured at relatively
young ages (and vice versa) suggests that our results are not solely a product of Lee’s
phenomenon.

Growth trajectories estimated via back-calculation from otoliths can be biased
(e.g., Campana 1990). We used a method that was found to be among the most accurate
back-calculation methods (Ashworth et al. 2017a, 2017b). We chose not use the method
proposed by Ashworth et al. (2017a, 2017b), which was found to have similar accuracy
to the approach used herein, because it requires applying the best-fitting growth curves to
length-at-age and otolith size-at-age data. These growth curves may take various forms
(e.g., von Bertalanffy, logistic, Piitter). Using growth curves that differ from the LM in
form in the back-calculations could have complicated, and possibly confounded, the
fitting of the LM to back-calculated length-at-age data. For example, using a von
Bertalanffy or logistic model to inform back-calculations could influence the shape of the
resultant growth trajectory (i.e., trajectory might be more von Bertalanffy-like or logistic
in shape) and could therefore bias LM parameter estimates in nuanced and cryptic ways.

Our results may have been influenced by the incidental inclusion of males in our
analyses. There is evidence to suggest that some male red snapper reproduce at younger
ages and smaller sizes than females (Futch and Bruger 1976, White and Palmer 2004,
Brown-Peterson et al. 2009). In contrast, Render (1995) reports similar lengths-at-50%
maturity for male and female red snapper, with some females maturing at smaller sizes
than males. In addition, Wilson and Nieland (2001) found that growth trajectories

significantly differed between males and females, whereas Patterson III et al. (2001)
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found a non-significant difference in growth between sexes. In an effort to mitigate this
potential bias, we selected only otoliths from known females when possible, and we
present results excluding known males. Unfortunately, most (64%) of the individuals in
our dataset were of unknown sex. As such, the number of males in the dataset (and
therefore the degree of potential bias in our results) is unclear. To examine the potential
for bias driven by the inclusion of unknown sex individuals, we conducted an analysis to
compare life history trait estimates for females versus unknown sex individuals within
cohort groups. Importantly, we found that trait estimates did not significantly differ
between females and unknown sex individuals for all but one case (., was slightly higher
for females than for unknown sex individuals in 1981-1985), although we were only able
to compare traits for two cohort groups due to sample size limitations (see Appendix 4,
Section A4.5 and Table A4.3 for additional details and results).

Hierarchical frameworks offer some advantages over fixed-effects frameworks for
fitting growth models, such as better partitioning of the variability in growth (Vigliola
and Meekhan 2009, Ogle et al. 2018). However, hierarchical frameworks also have
drawbacks; for example, the ‘shrinkage effect’, a phenomenon whereby individual-level
parameter estimates are pulled toward the group mean (Helser and Lai 2004), can
complicate inference from hierarchical models. This effect can be especially problematic
for individuals with limited information (i.e., low sample size) and/or parameters that
vary substantially from the mean. We attempted to fit the LM simultaneously to all
individuals within a cohort group using a hierarchical framework, but the models often

failed to converge and there appeared to be issues with shrinkage. For example, model
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fits to data were often very poor for individuals with few data points and/or with growth
trajectories that differed considerably from those of other individuals within a cohort
group. Given these issues, we chose to use a fixed-effects framework for fits to individual
growth data. This approach allowed us to make minor modifications (e.g., adjustments to
priors for some parameters) to fits for each individual, thereby leading to better
convergence and improved fits to the data. Although our LM fits at the individual level
were coded in a fixed-effects framework, we used a hierarchical framework that
incorporated error in the individual-level parameter estimates to generate cohort group-
level mean parameter estimates, and we focused on these means for inference. Our hybrid
approach leveraged advantages of both fixed-effects and hierarchical frameworks and
allowed us to effectively propagate error without sacrificing fit quality at the individual
level.

Our study provides a more thorough understanding of how red snapper life
histories have changed since the expansion of the fishery following World War II, and we
present otherwise unattainable estimates of life history traits for the early portion of that
expansion. For example, using a growth-based approach allowed us to estimate age-at-
maturity and other life history traits for red snapper cohorts stretching back into the 1940s
despite insufficient maturity data. Furthermore, it may be possible to use the LM or a
similar approach to estimate life history traits for red snapper even deeper into the past by
back-calculating growth from otoliths collected in sediment cores. Leveraging growth
data and theoretically-sound models to understand life history is a potentially fruitful and

important direction for future life history studies.
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Figure 5.1 Example fits of the Lester biphasic growth model to back-calculated Gulf of
Mexico red snapper Lutjanus campechanus length-at-age data. Panels depict model fits
that were considered trustworthy (a,b) versus fits that were considered untrustworthy
(c,d) for relatively old (a,c) and relatively young (b,d) individuals. The solid line denotes
the juvenile growth phase, while the dashed line denotes the mature growth phase. The
disconnect between the two growth phases in (c,d) is an indicator of poor model

convergence. Note that x-axis ranges differ among panels.
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Figure 5.3 Mean cohort group-level life history trait estimates generated from Lester
model fits to back-calculated Gulf of Mexico red snapper Lutjanus campechanus growth
data for cohorts from 1941-2005. Parameters describe (a) juvenile growth rate 2 (mm-yr
1, (b) the cost to somatic growth of maturity, typically assumed to be dominated by
energetic investment in reproduction g (gonad mass/somatic mass), (c) adult growth rate
k (the von Bertalanffy growth coefficient; yr'!), (d) instantaneous total mortality rate Z
(yr'h), (e) asymptotic length /. (mm), and (f) length-at-maturity /7(mm). Points represent
cohort group-level mean parameter estimates, and error bars indicate 95% Bayesian
credible intervals. Sample sizes for each cohort group are identical to those displayed in
Fig. 5.2.
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Figure 5.4 Statistically significant relationships of mean annual degree-days above 0 °C
(DDo) vs. Lester model-based cohort group-level mean estimates of (a) age-at-maturity
(T yr), (b) juvenile somatic growth rate (4; mm-yr'), and adult growth rate (k, the von
Bertalanffy growth coefficient; yr'!) for Gulf of Mexico red snapper Lutjanus
campechanus from 1941-2005. See Chapter 5 and Figs. 5.2-5.3 for a description of the
cohorts included in each group. Annual DDo were averaged across the years included in
each cohort group. Error bars indicate 95% Bayesian credible intervals. Relationships
between DDo and the remaining Lester model-based life history trait estimates (g, Z, [,
[r) were not significant.
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Chapter 6

General discussion

6.1 Summary

Ectotherm growth is intricately linked to both temperature and other aspects of life
history (e.g., Stearns 1992, Neuheimer and Taggart 2007, Lester et al. 2014).
Understanding the way in which temperature influences growth, and using metrics that
reflect that understanding to describe growth, is of paramount importance to ectotherm
research and management. In Chapters 2 and 3, my coauthors and I combined theory,
empirical data, and simulation modeling to provide (1) foundations for using degree-days
(DD) derived from both air and water temperature data to describe fish growth, and (2)
guidance for calculating DD for many fishes and scenarios. We showed that the linear
relationship between DD and immature fish growth is rooted in fish bioenergetics, and
that DD derived from air temperatures can serve as a good proxy for DD derived from
water temperatures. We also provided estimates for the base temperature for growth, an
important parameter for calculating DD, for many fishes and scenarios. In addition,
recent advances in life history theory (e.g., West et al. 1999, Lester et al. 2004, Quince et
al. 2008a) have led to the development of growth models that allow for the extraction of a
wealth of life history information from growth data (e.g., Mollet et al. 2010, Boukal et al.

2014, Andersen and Beyer 2015). In Chapter 4, my coauthors and I developed a
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statistical approach to use one such model, the Lester biphasic growth model (Lester et al.
2004), to estimate multiple life history traits from growth data. We showed that our
approach can provide accurate estimates of age-at-maturity for fishes and other
ectotherms, and we evaluated the performance of the method across various species and
data quality scenarios. Finally, in Chapter 5, we applied the Lester model to investigate
changes in life history traits for Gulf of Mexico red snapper Lutjanus campechanus from
1941-2005. We showed that red snapper life histories shifted toward a faster life history
regime in the mid-20" century, likely in response to exploitation. Using this approach, we
were able to paint a picture of red snapper life histories deeper into the past than would
have been possible otherwise, thereby gaining a more complete understanding of how red
snapper traits have changed in the face of fishing pressure and other stressors.

In essence, this work updates and expands the analytical toolkit used by fish
scientists. As such, it has the potential to advance fish science and promote sustainable
fisheries management. For example, justifying and providing guidance for the use of DD
in fish science should improve estimates of sustainable exploitation rates (Lester et al.
2014), help to disentangle the effects of temperature and other factors (e.g., fishing) on
growth and life history (Neuheimer and Grenkjer 2012), and provide insight into
fundamental questions about the evolution of growth along a thermal gradient (Angilletta
2009). Inferring maturity and other life history information from growth data can be a
powerful tool for adaptive management (Walters 1986) and for analyses of life history
shifts in response to anthropogenic or other stressors (e.g., Audzijonyte et al. 2016),

particularly when other methods cannot be used (e.g., for samples that lack life history
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data). More broadly, this work may be applicable to many species (e.g., see Fig. 4.4) and

could motivate similar research in other fields.

6.2 Future directions

Good scientific research raises more questions than it answers (Venturelli 2009). The
work described in this volume is no exception. Below, I elaborate on the questions and
suggested future directions for research highlighted in Chapters 2-5 that I would argue
are most important for advancing fisheries research and management.

DD are particularly useful for comparing growth and physiological traits among
populations because they account for differences in thermal energy experienced by
individuals in those populations. That is, because DD integrate time and temperature,
they allow for comparisons across thermal gradients that would be otherwise confounded
by differences in temperature (e.g., Venturelli et al. 2010, Chezik et al. 2014b). The fact
that air-based DD (ADD) can serve as an accurate proxy for water-based DD (WDD) is
especially advantageous because air temperature data are much more common than water
temperature data. However, as mentioned in Section 2.4, the relationship between ADD
and WDD may vary among waterbodies. For example, although ADD and WDD may be
highly correlated for many waterbodies, the nature (i.e., slope) of that correlation likely
differs among waterbodies due to factors such as water clarity, waterbody morphometry,
and flow. The two lakes used in Chapter 2 are a prime example of such a difference;
although ADD and WDD were highly correlated for both Sparkling Lake and Lake

Lacawac, the slopes of the correlations slightly differed. As such, 1 ADD for Sparkling
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Lake is not equivalent to 1 ADD for Lake Lacawac from the perspective of an aquatic
organism. For cases in which the slopes of ADD versus WDD relationships are
substantially different among waterbodies, ADD may fail to accurately quantify
differences in thermal environments among populations. It is therefore critical to examine
the extent to which ADD versus WDD relationships vary among lakes and regions, and
to account for any potential biases that those differences may introduce, when using ADD
to describe growth and physiology among populations. Fortunately, given the ubiquity of
air temperature data and the fact that there are well-studied and closely-monitored aquatic
systems in many regions of the world (see, e.g., the Global Lake Ecological Observatory
Network; http://gleon.org/), it should be rather straightforward to construct relationships
between ADD and WDD among waterbodies with varying characteristics, and to develop
quantitative tools to account for differences in those relationships (i.e., based on
waterbody characteristics) that can inform studies that use ADD.

Section 2.4 also mentions the potential to improve DD calculations using upper
threshold temperatures. Fish growth and physiological rates decrease dramatically as
temperatures increase above optima and toward lethal temperatures (e.g., Kitchell et al.
1977, Jobling 1995). DD do not account for this decrease in physiological rates at high
temperatures and may therefore provide an inadequate index of thermal habitat as it
relates to fish growth and metabolism, particularly for cases in which individuals spend
substantial portions of their time in superoptimal temperatures. Adding an upper
threshold temperature, above which growth (or the physiological process in question) is

assumed to be negligible, to the DD calculation can help to address this issue. This
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practice is already common in plant science (e.g., Snyder et al. 1999). Determining upper
threshold temperatures for fishes should be facilitated by the extensive knowledge of
thermal traits for some species (e.g., upper incipient lethal temperatures, critical thermal
maxima; Hasnain et al. 2010) and by the fish bioenergetics literature. Moreover, future
research should explore imposing penalties (i.e., negative DD) when upper threshold
temperatures are exceeded using appropriate functional forms; that is, the penalty to DD
should increase nonlinearly as temperatures increase above the upper threshold, with
higher temperatures leading to a greater penalty. The nature (and perhaps form) of this
relationship will likely vary among species but should align with bioenergetics theory
(e.g., Hanson et al. 1997).

In Chapters 4 and 5, my coauthors and I used the simplest form of the Lester
biphasic growth model (the ‘fixed g’ formulation; Lester et al. 2004, Quince et al. 2008a)
to estimate life history traits from length-at-age data. The model provided accurate
estimates of age-at-maturity and generally fit well to the data. However, this simple
model operates under a few key assumptions, one of which is that metabolism scales with
body size to the 2/3 power. There is an extensive literature on metabolic scaling, with an
entire body of theory resting on the assumption that metabolism scales with body size to
the 3/4 power (i.e., the metabolic theory of ecology; see, e.g., West et al. 1997, 1999,
2001). Thorough reviews and empirical studies have found that this metabolic scaling
exponent varies among taxa, typically falling between 2/3 and 1 (Glazier 2005, 2010,
Killen et al. 2010). As such, assuming a value of 2/3 for the metabolic scaling exponent

may be inaccurate for some species. Quince et al. (2008a) developed a generic
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formulation of the biphasic model that relaxes this assumption and allows for the
metabolic scaling exponent to be estimated during model fitting (see also Boukal et al.
2014). Using this model may therefore be more appropriate for many species and may
help to inform our understanding of both life history and metabolic scaling among taxa.
In addition, this generic model allows for the reproductive investment parameter to
increase with individual size (i.e., hyperallometric scaling of reproductive investment), a
phenomenon that recent work argues is common among fishes and has important
implications for fisheries science and management (Marshall and White in press,
Barneche et al. 2018). The downside to using the Quince et al. (2008a) model is that it
requires the estimation of more parameters than the Lester et al. (2004) model, which will
likely complicate model fitting. Future work should explore this more fully and evaluate
the performance of the Quince et al. (2008a) model across species and data quality
scenarios.

The analyses in Chapter 5 showed that it is possible to estimate life history traits
by fitting biphasic growth models to length-at-age data that are back-calculated from hard
structures such as otoliths. This approach provided estimates of red snapper life history
traits from cohorts in the 1940s, a feat which would have been impossible using
traditional approaches due to data limitations. It may be possible to use a similar
approach to generate estimates of fish life history traits even further into the past using
otoliths that have been preserved in lake or ocean sediments. Due to their aragonite
structure, otoliths are readily preserved in sediments and are common teleost fossils

(Smol et al. 2001). In addition, otolith morphology often varies among fish species (e.g.,
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Reichenbacher et al. 2007, Zorica et al. 2010). Provided that sediment-preserved otoliths
can be identified to species, and operating under some assumptions regarding the
relationships between otolith size, fish body size, and fish age (which can be informed
using present-day data), it may be possible to estimate life history traits for fishes far into
the past using biphasic growth models and otoliths from sediment cores. As such, it may

be possible to address questions related to fish life history evolution over millennia.

6.3 Conclusion

This work represents an important step forward in how we describe and model ectotherm
growth that leverages mechanistic understandings of both the effects of temperature on
growth and the inextricable links between growth and life history. Fish science lags
behind other fields in the widespread adoption of DD. Chapters 2 and 3 provide
justification and guidance for using DD and will help to encourage the application of this
important metric in the aquatic sciences. In addition, growth data contain a wealth of
information on life history. Chapters 4 and 5 show that we can use biphasic growth
models to extract some of that information and use it to address ecological questions.
Ultimately, this work introduces and promotes accurate and theoretically-sound methods
for analyzing fisheries data. As such, it has the potential to stimulate a diversity of
important basic and applied fisheries research, promote adaptive and sustainable fisheries

management, and increase global food security.
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Appendix 1

Additional analyses and methodological details for Chapter 2
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Figure Al.1 (a-b) The effect of temperature, activity level, and consumption (as a
proportion of maximum consumption, p(Cmax)) on daily growth in length for brown
bullhead Ameiurus nebulosus, based on a bioenergetics model. (c-d) Relative brown
bullhead growth in length (i.e., growth as a proportion of maximum growth) across levels
of temperature, activity, and consumption.
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Figure A1.2 (a-b) The effect of temperature, activity level, and consumption (as a
proportion of maximum consumption, p(Cmax)) on daily growth in length for tiger
muskellunge (northern pike Esox lucius X muskellunge Esox masquinongy), based on a
bioenergetics model. (c-d) Relative tiger muskellunge growth in length (i.e., growth as a
proportion of maximum growth) across levels of temperature, activity, and consumption.
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Al.1 Influence of mean annual air temperature and mean lake depth on the
surface water temperature cycle
We used the Shuter et al. (1983) water temperature model (see Chapter 2 for details) to
demonstrate the effect of varying mean annual air temperature (AT ) and mean
lake/thermocline depth (Z) on the surface water temperature cycle. We first simulated
annual water temperature cycles with Z fixed at 8 m and AT at 2.5, 5, and 10 °C. We then
repeated the simulation with AT fixed at 5 °C and Z at 4, 8, and 16 m. These values cover
a range of scenarios that is realistic for many lakes in North America.

Our results suggest that variation in AT generally has a larger impact on the
surface water temperature cycle than variation in Z across the range of values that we
investigated (Fig. A1.3). In particular, variation in AT has a much larger impact on the

duration of the ice-free season than variation in Z.
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Al.2 Empirical relationship for predicting air-based degree-days from mean
annual air temperatures

To predict air-based degree-days above 5 °C (ADDs) from mean annual air temperatures
(AT), we collected empirical air temperature data from 107 weather stations in the United
States and Canada using the National Oceanic and Atmospheric Administration Climate
Data Online tool (https://www.ncdc.noaa.gov/cdo-web/). The locations of these 107
weather stations are shown in Fig. A1.5. The data described mean daily air temperatures
from 1 January through 31 December 2015, and all datasets were continuous. We used
these data to calculate both AT and ADDs, and we constructed a relationship to predict
ADD; from AT (Fig. A1.6):

ADD: = 1346.8 - ¢0-07294T
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Figure A1.5 Locations of air temperature stations used to generate the empirical
relationship for predicting air-based degree-days above 5 °C from mean annual air
temperatures. Image © 2016 Google.
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Figure A1.6 Empirical relationship between mean annual air temperature (°C) and air-

based degree-days above 5 °C (Air DDs) constructed using data from 107 weather
stations in the United States and Canada.
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Al1.3 Daily growth across water temperatures for adult fishes

In Chapter 2, we focus on immature fish growth because the linear approximation of the
length-at-age versus DD relationship is typically only valid for growth leading up to
maturity (Lester ef al. 2004; Andersen and Beyer 2015; Honsey et al. 2017). However,
much like with immature growth, the response of adult growth to water temperature is
often nearly linear over a midrange of temperatures. For this reason, some of our results
(e.g., the linearity of annual growth versus DD) may also extend to adult growth.

To demonstrate the nearly linear response of adult growth in length to water
temperature across middling water temperatures, we simulated daily fish growth using
bioenergetics models that were parameterized for adults of three species: white crappie
Pomoxis annularis (Bajer et al. 2004), steelhead Oncorhynchus mykiss (Rand et al. 1993),
and rainbow smelt Osmerus mordax (Lantry and Stewart 1993). Parameters and
equations for these models are given in Table Al.1. We assumed that individuals
achieved satiation and set the activity multiplier to the suggested number (Table Al.1).
We used geometric mean parameters for the length-weight relationship from FishBase
(Froese and Pauly 2016) for length-weight conversions, and we set the energy density of
oxygen at 13556 J-g'! (Elliott and Davison 1975). We set initial fish sizes at 253 mm (250
g), 453 mm (1 kg), and 197 mm (60 g) for adult white crappie, steelhead, and rainbow
smelt, respectively. Our results show that, although the shapes of the relationships differ,
daily growth is nearly linear with water temperature across a midrange of temperatures

for these adult fish models, much like it is for immature fishes (Fig. A1.9).
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Table A1.1 Bioenergetics equations and parameters used for supplemental simulations.
All models follow the Wisconsin bioenergetics framework; see Hanson et al. (1997) for
equations and details. Sources are listed in footnotes.

Model component

Model species

White crappie! Steelhead? Rainbow smelt?
Consumption equation 2 3 3
CA 1.2589 0.628 0.18
CB -0.661 -0.3 -0.275
cQ 2.945 5 3
CTO 24 20 10
CT™M 32 20 12
CTL - 24 18
CK1 - 0.33 0.4
CK4 - 0.2 0.01
Respiration equation 1 1 1
RA 0.02366 0.00264 0.0027
RB -0.623 -0.217 -0.216
RQ 0.0237 0.06818 0.036
RTO 0 0.0234 0
RTM 0 0 0
RTL 0 25 0
RK1 1 1 0
RK4 0 0.13 0
ACT 1 9.7 1
BACT 0 0.0405 0
SDA 0.16 0.172 0.175
Egestion-excretion equation 1 3 1
FA 0.104 0.212 0.16
FB 0 -0.222 0
FG 0 0.631 0
UA 0.068 0.0314 0.1
UB 0 0.58 0
UG 0 -0.299 0
Energy density equation 1 2 1
Predator energy density (J-g%) 4186 - 4814
Alpha; - 5764 -
Beta; - 0.9862 -
Cutoff (g) - 4000 -
Alpha; - 7602 -
Beta, - 0.5266 -
Prey energy density (J-g%) 3500 3500 3500

Bajer et al. (2004),2Rand et al. (1993), 3Lantry and Stewart (1993)
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Figure A1.9 Daily growth in length (assuming satiation) across water temperatures for
adult (a) white crappie Pomoxis annularis, (b) steelhead Oncorhynchus mykiss, and (c)
rainbow smelt Osmerus mordax, based on bioenergetics models (Table Al.1).
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Al.4 Estimating the base temperature for growth using annual growth simulations
If degree-days (DD) are an accurate index for the thermal scope for growth, then growth
should be proportional to DD provided that DD are calculated using the correct base
temperature for growth (T ; the temperature below which growth is assumed to be
negligible). Using this logic, one can estimate T, for a given species by finding the T,
value for which the growth versus DD relationship is proportional (i.e., passes through
the origin).

Here, we demonstrate this approach using the juvenile yellow perch bioenergetics
model (Table 2.1) and the annual growth simulation framework described in Chapter 2
(see the two subsections entitled ‘Annual growth”). We chose to estimate T, for air-based
degree-days (ADD) in order to further promote their application. We used the approach
and empirical data described in Section A1.2 to construct relationships between mean
annual air temperatures and ADD at T, values ranging from 0-15 °C. The parameters for
these relationships are given in Table A1.2. We then used these relationships to estimate
ADD from the hypothetical mean annual air temperatures used in the simulations, and we
compared annual growth to ADD at various T values. Our results suggest that the
juvenile yellow perch annual growth versus ADD relationship passes through the origin

when T is roughly 9 °C (Fig. 2.9).
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Table A1.2 Parameters for relationships between mean annual air temperatures and air-

based degree-days at various base temperature values (derived from empirical air

temperature data; see Section Al.2). Equations take the following form: ADDy =

aePAT where ADDz, is air-based degree-days at base temperature Ty, AT is mean

annual air temperature, and o and 3 are parameters.

Base temperature (T; °C) a B
0 224483 0.0613
1 2044.76 0.0635
2 1855.44 0.0657
3 1676.31 0.0680
4 1506.71 0.0704
5 1346.80 0.0729
6 1196.23 0.0757
7 1054.94 0.0786
8 922.88 0.0817
9 800.67 0.0851
10 687.39 0.0887
11 583.10 0.0927
12 486.54 0.0974
13 396.94 0.1032
14 315.02 0.1104
15 241.93 0.1193
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Appendix 2

Additional details, results, and analyses for Chapter 3

Table A2.1 Estimates of the base temperature for growth (Ty; °C) across species from the
empirical growth analysis, including maximum ages included in regressions, minimum
coefficients of variation (CV) in growth rate estimates among populations, and number of

populations (N). Linear fits included ages up to and including the maximum age.

Scientific name Common name T, Maximum age CV N
Ameiurus melas Black bullhead 0 2 0.362 78
Ameiurus melas Black bullhead 0 3 0.349 80
Ameiurus melas Black bullhead 0 4 0.302 81
Pomoxis nigromaculatus Black crappie 1 2 0.222 20
Pomoxis nigromaculatus Black crappie 1 3 0.238 20
Ictalurus furcatus Blue catfish 0 3 0.510 24
Ictalurus furcatus Blue catfish 0 4 0.457 25
Ictalurus furcatus Blue catfish 0 5 0.487 25
Lepomis macrochirus Bluegill 0 2 0.495 68
Lepomis macrochirus Bluegill 0 3 0.451 68
Ameiurus nebulosus Brown bullhead 0 2 0.553 5
Ameiurus nebulosus Brown bullhead 0 3 0.378 8
Ameiurus nebulosus Brown bullhead 0 4 0.313 8
Ictalurus punctatus Channel catfish 11 2 0.656 7
Ictalurus punctatus Channel catfish 18 3 0.749 19
Ictalurus punctatus Channel catfish 18 4 0.934 27
Coregonus artedi Cisco 0 3 0.479 32
Coregonus artedi Cisco 0 4 0.435 35
Cyprinus carpio Common carp 0 3 0.416 30
Cyprinus carpio Common carp 0 4 0.352 30
Cyprinus carpio Common carp 0 5 0.309 30
Pylodictus olivaris Flathead catfish 0 3 0.317 10
Pylodictus olivaris Flathead catfish 2 4 0.751 11
Pylodictus olivaris Flathead catfish 0 5 0.471 11
Centrarchus macropterus Flier 4 2 0.308 7
Centrarchus macropterus Flier 4 3 0.249 7
Lepomis cyanellus Green sunfish 4 2 0.324 6
Lepomis cyanellus Green sunfish 4 3 0.311 6
Acipenser fulvescens Lake sturgeon 0 6 0.280 4
Acipenser fulvescens Lake sturgeon 0 7 0.277 4
Acipenser fulvescens Lake sturgeon 0 8 0.305 4
Salvelinus namaycush Lake trout 0 4 0.480 28
Salvelinus namaycush Lake trout 0 5 0.395 31
Salvelinus namaycush Lake trout 0 6 0.338 31
Coregonus clupeaformis Lake whitefish 0 3 0.441 55
Coregonus clupeaformis Lake whitefish 0 4 0.538 61
Coregonus clupeaformis Lake whitefish 0 5 0.405 66
Micropterus salmoides Largemouth bass 0 3 0.312 132
Micropterus salmoides Largemouth bass 0 4 0.283 132
Lepomis megalotus Longear sunfish 5 2 0.570 11
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Table A2.1 contd.

Lepomis megalotus Longear sunfish 10 3 0.523 11
Esox lucius Northern pike 0 3 0.553 82
Esox lucius Northern pike 0 4 0.515 84
Oncorhynchus mykiss Rainbow trout 0 2 0.370 10
Oncorhynchus mykiss Rainbow trout 0 3 0.398 11
Lepomis auritus Redbreast sunfish 0 2 0.217 10
Lepomis auritus Redbreast sunfish 6 3 0.191 10
Lepomis microlophus Redear sunfish 0 2 0.395 15
Lepomis microlophus Redear sunfish 0 3 0.414 15
Ambloplites rupestris Rock bass 7 2 0.324 12
Ambloplites rupestris Rock bass 7 3 0.334 13
Micropterus dolomieui Smallmouth bass 0 3 0.249 29
Micropterus dolomieui Smallmouth bass 0 4 0.239 29
Sander vitreus Walleye 0 3 0.242 57
Sander vitreus Walleye 0 4 0.245 57
Sander vitreus Walleye 0 5 0.252 57
Lepomis gulosus Warmouth 0 2 0.397 28
Lepomis gulosus Warmouth 0 3 0.402 28
Morone chrysops White bass 0 2 0.385 40
Morone chrysops White bass 0 3 0.358 40
Morone chrysops White bass 0 4 0.375 40
Catostomus commersoni White sucker 0 3 0.328 12
Catostomus commersoni White sucker 0 4 0.479 15
Catostomus commersoni White sucker 0 5 0.377 15
Ameiurus natalis Yellow bullhead 10 2 0.348 4
Ameiurus natalis Yellow bullhead 10 3 0.441 5
Ameiurus natalis Yellow bullhead 9 4 0.336 6
Perca flavescens Yellow perch 9 2 0.330 82
Perca flavescens Yellow perch 5 3 0.315 110
Perca flavescens Yellow perch 4 4 0.287 110
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A2.1 R code for estimating base temperatures for growth using bioenergetics

models and the 10 °C rule

## Estimating base temperatures for growth using the 10 degree C rule

## Author: Andrew E. Honsey, University of Minnesota

## Read in the file of bioenergetics parameters (Supplementary Data File 2) and
## name it "params"

params<-read.csv("All_bioenergetics parameters.csv")

## Add a column to store base temperature estimates
Base.estimate<-rep(NA,length(params$Order))

params<-cbind(params,Base.estimate)

## define energy density of oxygen

oxygen.energy.density<-13556

## loop through models

for (j in 1:length(params$Order)){

## Set other initial parameters

t=seq(from=0.01,t0=40,by=0.01) # temperature range
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w=params$initial.mass[j] # initial mass in g

p=1 # proportion of max consumption

## Create empty vecors to record consumption, respiration, egestion, excretion,
## total wastes (redundant with egestion + excretion),

## energy lost to specific dynamic action, specific growth in mass, absolute growth
## in mass

cons<-rep(NA,length(t))

resp<-rep(NA,length(t))

eges<-rep(NA,length(t))

excr<-rep(NA,length(t))

wastes<-rep(NA,length(t))

spec<-rep(NA,length(t))

energy.gain<-rep(NA,length(t))

energy.change<-rep(NA,length(t))

resp.energy.loss<-rep(NA,length(t))

growth.mass<-rep(NA,length(t))

## Loop through values of temperature, using
## correct equations for each model

for (i in 1:length(t)){
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## Consumption equations

if (params$CEQ[j] == 1){
f.t=exp(params$CQ[j1*t[i])
c.max=params$CA[j]*w”params$CB[j]
cons[i]=c.max*p*f.t

}

else (

if (params$CEQ[j] == 2){

z=log(params$CQ[j])* (params$CTM[j]-params$SCTO[j])

y=log(params$CQ[j])*(params$CTM][j]-params$CTO[j]+2)

v=(params$CTMIj]-t[i])/(params$CTMIj]-paramsSCTO[j])

x=(z"2*(1+(1+(40/y))0.5)"2)/400

ft=(v*x)*exp(x*(1-v))

¢.max=params$CA[j]*w"params$CBI[j]

cons[i]=c.max*p*f.t

}

else (

if (params$CEQ[j] == 3){
¢1=(1/(params$CTO[j]-params$CQ[j]))*log((0.98*(1-

params$CK 1[j]))/(params$CK 1[j]*0.02))

11=exp(g1*(t[i]-params$CQ[j]))
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22=(1/(params$CTL[j]-paramsSCTMIj]))*log((0.98*(1-
params$CK4[j]))/(params$CKA[j]*0.02))

12=exp(g2*(params$CTL[j]-t[i]))

ka=(params$CK 1[j]*11)/(1+params$CK 1[j]*(11-1))

kb=(params$CKA4[j]*12)/(1+params$SCKA[j]*(12-1))

f.t=ka*kb

c.max=params$CA[j]*w”params$CB[j]

cons[i]=c.max*p*f.t

)
)

## Respiration equations

if (params$REQ[j]==1) {
if (t[i] > params$SRTL[j]) vel<-params$RK1[j]*w”(params$RK4[j]) else vel <-

params$ ACT[j]*w”(params$RK4[j])*exp(params$BACT[j]*t[i])

activ<-exp(params$SRTO[j]*vel)
if (activ == 1) activity <- params$ACT][j] else activity <- activ
f.t2=exp(params$RQ[j]*t[i])
resp[i]=params$RA[j]*w”"params$SRB[j]*f.t2*activity

}

else(
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if (params$SREQ[j] == 2){
z2=log(params$RQ[j])*(params$SR TM[j]-params$RTO[;])
y2=log(params$RQ[j])* (params$RTM([j]-params$RTO[j]+2)
v2=(params$RTM[j]-t[i])/(params$R TM[j]-params$RTO[j])
Xx2=(z2°2%(1+(1+40/y2)"0.5)2)/400
£2=(v2"x2)*exp(x2*(1-v2))
resp[i]=paramsSRA[j]*w"params$SRB[j]*f.t2*params$SACT[j]

§

)

## Egestion and excretion

if (params$SEGEXEQ[j] == 1) {
eges[i]<-params$FA [j]*consi]
excr[i]<-params$UA[j]*(cons[i]-eges[i])
wastes[i]<-eges[i]+exc[i]

§

else(

if (paramsSEGEXEQ[j] > 1){
eges[i]<-paramsSFA[j]*(t[i]"paramsSFBIj])*(exp(paramsSFG[j]*p))*consi]
excr[i]<-params$UA[j]*(t[i]"paramsSUB(j])* (exp(params$SUG[j]*p)) *(cons[i]-eges[i])
wastes[i]<-eges[i]+exc[i]

§

)
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## Energy lost to specific dynamic action

spec[i]=params$SDA[j]*(cons[i]-eges[i])

### Predator energy density

if (params$PREDEDEQ[j] == 1){
pred.energy.density <- params$SEDJ[j]

}

else(

if (params$PREDEDEQY[j] == 2){
if (w <= params$Cutoff[j]) pred.energy.density <- params$Alphal[j] +
params$Betal[j]*w else pred.energy.density <- params$Alpha2[j] + params$Beta2[j]*w

}

#Growth in mass
energy.gain[i]<-(cons[i]-wastes[i]-spec[i])*params$PREYED[j|*w
resp.energy.loss[i]<-resp[i]*w*oxygen.energy.density
energy.change[i]<-energy.gain[i]-resp.energy.loss[i]

growth.mass[i]<-energy.change[i]/pred.energy.density

# Compile results; calculate and store base temp using 10 C rule
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res<-as.data.frame(cbind(t,growth.mass))
res<-res[is.finite(res$growth.mass) == T, ]

res<-res[res$growth.mass > 0,]

## optional -- plot growth vs temp relationships for each species
plot(res$t,res$growth.mass,main=params$Species[j],xlab="Water

temperature",ylab="Daily growth (g)")

## find optimum temperature for growth, remove results above this temperature
opt<-res[which(res$growth.mass == max(res$growth.mass)),]

res<-res[res$t <= opt$t,]

## Calculate mean development temperature
mndev<-(max(res$growth.mass)+min(res$growth.mass))/2
MNDEV<-res[which(abs(res$growth.mass-mndev)==min(abs(res$growth.mass-
mndev))),]

mndevtemp<-MNDEV$t

## Calculate and store base temperature for growth
base.est<-mndevtemp-10

params$Base.estimate[j|<-base.est

}
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A2.2 Example results using annual growth simulations to estimate T,

Honsey et al. (in press) suggested that the base temperature for growth (T;,) can be
estimated across fish species using annual growth simulations. This approach is based on
the idea that, if degree-days are an accurate index of the thermal scope for growth, then
growth should be proportional to degree-days when they are calculated using the
appropriate value for T,. We used the Shuter et al. (1983) water temperature model to
generate annual water temperature cycles across mean annual air temperature (AT) values
(see Honsey et al. in press). We used these water temperatures to drive bioenergetics
simulations that lasted 365 days using the bioenergetics models described in
Supplemental Data File 2. We determined annual growth by subtracting initial fish length
from the length on day 365. We then calculated degree-days across T, ranging from 0 to
20 °C for water temperatures using the equation Section 3.1, and we used empirical
relationships to predict air-based degree-days from AT for T, ranging from 0 to 15 °C
(see Appendix 1, Table A1.2). Finally, we fit linear models to the annual growth versus
water- and air-based degree-day relationships (i.e., separately for each species and T,
value), and we determined the T, value for which the relationship was nearest to
proportional by finding the y-intercept value that was closest to 0. In general, we found
that T, estimates were highly sensitive to changes in model settings (e.g., consumption
levels, the range of AT values used). Although the selection of these model settings can
be somewhat intuitive (e.g., models for coldwater species should include lower AT ranges
than models for warmwater species), we argue that choosing “appropriate” settings for

each species is ultimately highly subjective. As such, we chose to exclude results from
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this approach. We provide results from two example models and for various consumption

and AT settings in Table A2.2.
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Table A2.2 Examples of variation in estimates of the base temperature for growth for
calculating degree-days from water (T 1) and air (T, 4) temperatures across
bioenergetics and limnological model settings for two bioenergetics models. p(Cmax) =
proportion of maximum consumption, AT = mean annual air temperature.

Model species p(Cmax) AT range (°C) Tow (°C) Tya (°C)
Bighead carp | 0-12.5 9 10
Bighead carp 1 -10-12.5 7 14
Bighead carp 1 -15-0 4 14
Bighead carp 0.5 0-12.5 15 >15
Bighead carp 0.5 -10-12.5 9 >15
Bighead carp 0.5 -15-0 4 >15

Generalized coregonid 1 0-12.5 <0 <0
Generalized coregonid 1 -10-12.5 <0 <0
Generalized coregonid 1 -15-0 3 11
Generalized coregonid 0.5 0-12.5 8 10
Generalized coregonid 0.5 -10-12.5 5 13
Generalized coregonid 0.5 -15-0 4 >15
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Appendix 3

Supplementary methods and results for Chapter 4

A3.1 Adjusting sample sizes-at-age for gear selectivity and natural mortality

For our simulation study, we adjusted sample sizes-at-age to approximate data scenarios
that are common in fisheries science (and may be similar in other disciplines) to provide
realistic estimates of the data quality required for LMLP to perform well. To do this, we
emulated sample sizes-at-age for walleye Sander vitreus caught in gill nets from the
expansive Fall Walleye Index Netting surveys conducted by the Ontario Ministry of
Natural Resources and Forestry (Morgan 2002). Sample sizes-at-age for all simulations
are shown in Table A3.1. See Section A3.4 below for more details onthe T =3 and T =7
simulations.

We did not include size selectivity on early age-classes (i.e., gears catching the
largest individuals in a given young age-class) in our simulations; however, the potential
impacts of gill net size selectivity on model estimates are likely relatively small for
organisms such as walleye across the ages included in the simulations (Walker et al.
2013). Nevertheless, size selectivity may affect LMLP fits for some datasets and should

be considered on a case-by-case basis.
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Table A3.1 Sample sizes-at-age for populations of 1000 individuals used in Lester model
likelihood profiling simulations. Random samples of varying sizes (see Table A3.2) were
drawn from these populations for each of 100,000 iterations.

Sample Size

Age T=3 T=5 T="7
1 50 30 5
2 120 70 20
3 160 130 50
4 155 140 95
5 135 150 115
6 70 130 125
7 50 65 125
8 41 45 110
9 36 38 70
10 32 32 50
11 28 28 38
12 24 24 30
13 21 22 26
14 18 18 22
15 15 15 19
16 13 12 17
17 11 10 15
18 9 8 13
19 7 7 11
20 5 6 9
21 - 5 8
22 - 5 7
23 - 4 6
24 - 3 4
25 - 3 3
26 - - 2
27 - - 2
28 - - 1
29 - - 1
30 - - 1
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Table A3.2 Levels of sample size, precision (CV™!) in length-at-age, and the annual cost
to somatic growth of maturity g (expressed in equivalent energetic units) used to simulate
length-at-age data. Simulations consisted of 100 iterations of each parameter combination

(N = 100,000 iterations).

Sample Size Precision g
50 4 0.05
100 5 0.075
150 6 0.1
200 7 0.125
250 8 0.15
300 9 0.175
400 10 0.2
500 12 0.225
750 20 0.25
1000 30 0.3
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A3.2 LMLP fits to data describing species other than walleye Sander vitreus
To show the potentially broad applicability of our algorithm, we applied LMLP to four
additional datasets describing four different species: lake whitefish Coregonus
clupeaformis, haddock Melanogrammus aeglefinus, Alaska skate Bathyraja parmifera,
and the seal salamander Desmognathus monticola. The lake whitefish data describe
females from Shoal Lake, ON in 2000-2001 (n=149, precision=24.26, §=0.18) and were
collected by the Ontario Ministry of Natural Resources and Forestry as part of their fall
gill netting surveys (Morgan 2002). The haddock data describe females from the Gulf of
Maine collected during spring 2015 (n=359, precision=10.12, §=0.34) as part of the
National Oceanic and Atmospheric Administration (NOAA) Northeast Fisheries Science
Center’s bottom trawl surveys (data provided by Mike Palmer, NOAA). The Alaska skate
data describe females taken from the eastern Bering Sea from 2003-2005 (n=231,
precision=15.87, §=0.18) and were collected by NOAA Fisheries groundfish trawl
surveys during the summers of 2003 and 2004, and throughout 2004 and 2005 by the
North Pacific Groundfish Observer Program on flatfish trawlers and Pacific cod longline
vessels (see Matta and Gunderson 2007; data provided by Beth Matta, NOAA). Finally,
the salamander data describe individuals collected from Wolf Creek, North Carolina,
USA during 1994-1995 (see Castanet et al. 1996; n=83, precision=50.79, §=0.38; data
provided by Richard Bruce, Professor Emeritus, Western Carolina University).

Due to the low sample size (n=4), we did not use a standard major axis regression
to compare Ty, to As, for these fits. Instead, we calculated confidence intervals for the

difference between the two parameters assuming that the likelihood interval (LI;
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approximate 96% chi-squared confidence interval) was similar to a 95% confidence
interval (CI). That is, we assumed that the LI was approximated by Ty £ 1.96xSE,
where SE is the standard error of the parameter estimate. We used this formula and the
known LIs for Ty, and bootstrapped Cls for As, to calculate SEs for each parameter.
Because the intervals were not necessarily symmetrical, we took the mean of the two SE
estimates (derived from the upper and lower interval bounds) as the SE estimate for each
case. We then used the following formula to calculate the confidence interval for the

difference between the two parameters (Daniel and Cross 2013):

| Twze — Aso| +1.96 % \/SETMLEZ + SEA;)Z

If this interval contained 0, the parameters were considered not significantly different
from one another. Complete results for these comparisons, including parameter estimates,

LIs, Cls, and difference intervals, are shown in Table A3.3.

188



189

(95°0 °$9°0-) vL01 17L 8€0 61°0 Sy TLe) 19 sT0 (€97 °99°¢) vI'y 6L°0S €8 Jopuetue[es [e0g
(S¥'T °€0°0°) LTTL  9LTYT 810 1€0 (I'TT°6.8°6) $9°01 170 (9701 °€9°6) v6'6 L8'ST 1€ ojeys eyse[y
(90 2L 0°) v1I'S6  10°8CI  +¥€0 80°0 (€T€€6D € 670  (€8°€ 1L DYI'E 7101 6S¢ JooppeH
(111807 SSy 0L'€ST 810 6€°0 (8L°L LTI L re0  (€S°L°61°9) 089 9Tve 6t1 USIIYM e
[eAI)U] DU y % 6 Migg Ty “Vgg %y (1-AD) uorspaIg u saadg

"(SpoyIowW UOTB[NI[BD [BAIIUI JUIJIP Pue suondLidsap jaserep
10J 7'€V UONDAS 995) G()'() = 0 I8 PAIRIJIP A[IUBIJIUSIS SAJRWIISI JNVY U} JO SUON ‘sidjowered VY 0M) AU} J0J [BAIIUL QOUIJIP Ay}
pue ‘((,.IA.wur) djer YImoI3 dnewios se passardxe uonismboe A310ud Jo ojer Jou = y (W) () 93¢ J& YISUI[ [BO1AI0Y) = 07 {(syrun o1aFISUd
JuareAINbS Ul passardxd ssew d1)BWOS/SSBW PeUOSF) AJLINJBW JO YIMOIS J1)BWOS 0) 1S0J [enuue = b)) sidjowered JTAT [BUOIPPE 991} IOF
so1eWINS? ‘19jowered VY [OBd 10J S9IBWINSA JOIId pIepue)s ‘dge-1e-yi3ud] ur uorstoaxd (u) azrs ojdwes are papnjour os[y ‘(' 81) so10ads
Jo Kyorrea e 3uIquIOSOp sjoselep Inoj 1oy (°5) uorssardor onsi3of pue (F74) JTNT woxy sojewnss (NVV) ALmnjew-1e-03y €' ¢V d[qeL



190

10°L9 08781 610 (EI'S8YE) €St (STS601) €8t A 9L €l 0T 6661 20 emedry]
LY9L €TTLT  €€0  (8LECETOSHE (T6°€ ‘17°€) 0S°€ A €9°¥1 60T 6861 20 Suojeyseq
8¢°SS 1691 €70  (SL°89°9) Sv'9 (S8 06't) €€°S A €8°01 11T 900T NO Py
98°TL SH8T  Tr0 (€Y °SE)88€ 09t ‘STY) vEH X 8491 €Iz 0002 NN sse)
0’19 6T0LT 810 (F¥°897)8S¢ Ty ‘06¢) 611 X 89°T1 SIz 0107 NIN [reL 1910
I8¢t 08°LST Tz0 (SL'8°SL'L) 8T (90°01 “€¥°L) 8€'8 A 90°0C 61T L661 D0 Axsuise x
€1y ¥9°691  LO0 86¥ sy (0t'L T0'9) 0L9 A ¥6°C1 12C 200T D0 oesstolq
8E'HS SLL9T  +1°0 (€99°87°¢) ¢ (@1'L91'9) +99 N 06 T 6661 NO SOB] IA Sop
€109 eLve 610 (S0°S 9 €Sy (LOY ‘99°¢) €8°¢ A [AWA YLT 6661 NO oory
10°€S 8L 11T LT0  (€SS°€L9LY 0T vL€) T6'E A $8°CI 8LT  T-100C NO SurssidiN
108T  0S°09T 210 (89°11°6°9) 801  (LTEISO'TT) LYTI N 0TI €87 879661 20 USJBMYBIM
€L°€9 ¢erIcr 00 (89°¢ ‘500 € (P19 ‘PES) 8L'S N 6S°L S0€  L-S00C NN Kurey
9p°¢S €1'20T 910  (S0°S‘S9°¢) Sey LSV T0Y) vTH X 86°T1 90¢ 6661 00 ~d BMENQ
W09 TSLST  1T0 (859°¢6°¢) 9 (€0°S‘6SY) 8LV N 786 e Y00T NO SPOOA\ Y1 JO axe]
0929 9¢871 €70 (L9°5E9) 8¢ (299 °LSS) ¥6°S X ol 743 1002 NO | A A
0S'LS 1L9¢1  Tzo  (6L°80°L)€S'L (056 ‘6¢°L) 61°8 A 61°%1 STE 678661 20 newesnoqry)
18°S6 €8 I¢l 6€0  (€8°€°8S°E) L€ @1y ILe) €6°¢ A SS°S1 we  600C NN o2o]
TIL LSTIT  €€0  (EL€TEOStE (97°€ 967 60°€ A 97Tl €ve  €-100C NN [oda]
€L'ES 89%81  SI1°0 (€Esshv) s (6£°S ‘vLY) 60°S A 16°CI Stb 11-600T NN UOIIULID A
98°69 0S'19T 010 (€L 19T T8V ‘ceh) LSY N Y611 9 €007 NN poy Jeddn
8419 vLeoz 170 (ELVTY) €bd (86t “LEY) 99t X 9Lp1 Y6y  6°L661 NN sse)
L9°68 TILET  8€0 (€1¥°8°¢) 6°¢ (€9 ‘ccv) o'y A 10°91 LSS 00T NO (uo3idiN ") Aeg eYIqeqUO
LOY9 LULET  8T0  (€8°€TESE (LTL 1S9 ¥8°9 X 44| €95 6661 NO ydasor 18
STYL 0T9ST 920  (SSPsTv) vy (ST¥°569) Ot A 16°L1 879  S-€661 NN S0 9[[IAl
LY'T9 8Y'8LT  1T0 (€6v sy Lt (L1Y96°¢) SO'Y A 99'81 9¢9  11-600C NI YSIYSOTIqruuI gy
0L'SS 0T°€91 610 (69°€9) 99 (IS°s91°9) €€°¢ A 0Tl 8¢9  $-€00C NN SPOOA 93 JO e
LL'TS YIvrl $€0  (8EYST'H) ST (80% ‘08°¢) €6°€ A 9091 9¢L 110T NN SO 9[[IA
LY'¥8 IS0LT  1€0 (EP€°C0°E) STE 611 °L9€) 16°€ A L6CI 6vL  €100C NO uo3rdiN

Yy % b I 05y Nead dBulS  (;-AD) uoIsAIg u SIBdX  uondIpsLing JweN

QJPIIA\ PUB SI0IN0SIY [BINJEN JO ANSIUIN 99qanQ)

) pue ‘AIISAI0 PUB SIIINOSIY [eIMBN JO ANSIUIIA OLIBIUQ) A} ‘SI0INOSIY [InjeN JO judureda(] BIOSAUUIIA AU} Aq PAJOd[[0d d1oM
eje( (1A wuw) )e1 Y)moIg3 dnewos se passardxd uonisimboe AZ10us Jo dje1)oU = Y {(wrw) () 95e Je YPIUI[ [8ONRI0dY) = 0 {(s)run o1d3Ioud
wdeAmbs ur passardxa) Ajumjewr Jo y3moI3 o1ewos 03 3509 [enuue = £ :s1djowered [opow Jururewal 9y} J0J SOJBWIIS pue ‘(S[eAIdIUL
J0UdPIFU0I 9,66 paddersiooq Pim ‘sik) dewnsd 05y ayy ‘(S[eAIIUL POOYI[ANI] YIM ‘SIK) [ I0F 2JBWNSD POOYI[INI] WNWIXEW

oy ‘(ou=N ‘sak=x) ead o[3urs € pourejuod d[yoxd pooyraI] 9y JoyIoym ([ AD “o'T) uorsrodd ‘ozis sdues ‘sreak ‘uonorpsumnf
‘Queu e[ SuUIpNoUl ‘SUOI)BIO] SNOLIBA WOIJ SIOSBIRD SM24J1A LopUpS JA[[em [eILIIAWD 0] SIIJ [OPOW JO SHNSAY $°€V dqe.L



191

y1°68
$699
8896
86°¢S
6L798
SI'vC
69°'IL
YL'LY
169¢
LEIL
15765
8Y°CS1
€88y
65201
EL’IS
YL'19
8L0L
€8'CL
00°19
6011
I8¢
19°6C
L9°S9
LTSY
€8°611
09°Cs
619
8S°8L
€8’ 1L

89°6S1
80°9¢1
96'GLI
§0c0T
78881
LTPYEL
60°L0T
oY'¥8
I¥'861
L S0T
STV
01°8¢I
607991
€6°8¢1
61°80C
06'9LI1
[ a44t
LE8IT
12861
96'GLI
Ly01C
LL'GST
S9°T8I
881
8PS
80°Ch1
1€1¢€T
08°C81
6€96G1

¥€0
¥T0
9¢0
610
0¥°0
10°0
174\
9T°0
LT0
€0
ST0
870
cro
o
LT°0
9T°0
174\
0€0
LT0
wo
610
cro
9C0
1T0
LSO
120
61°0
LEO
0€0

(L'€°8L1) 88T
(88°S ‘st't) S0°S
STeT1ISST
ST19°CTH) €TS
(€8¢ ‘s¢9)9¢
(€921 SL° 1) $S°6
(8¢cco¢
(€€5°€69) €Sy
8ES IV 61
(867 ‘€97 8¢€°¢
(86'S ‘89t) €S
(97510 8€T
Srene
(€LeTeosre
(67 ‘s1°¢)$8°¢
(ST'S€TH) €9F
(€5°s°6sp) ¢
(s6°¢ sy 8¢
(8T9°€TH) s¢'s
(89°¢‘€1°¢) 8¢°¢€
(€0°LSH) ST9
(SLTT°T°01) SO'T1
(€LY 60 S¢€
(867 V) S
(L7810 SPC
(9°SSTH) €8'F
81¥°€9D ¢’
(Tyse) e8¢
(S0°S ‘T €9F

orvLsocee
(6ESCTY) ILY
(105 ‘05°¢) L6°E
(80°S ‘v6't) 10°S
(LO'E 56D 10°€E
(9€°61 ‘67°01) 6€°€1
(107 ‘20°¢) T6°€
F6'L TS99 61°L
(LLy €89 STy
(66'T°19°0) st'C
F6°s ‘611) SO°S
(6v'7°86'1) 97T
(¢8°L°€T9) €89
(10°€ 15D ¥6°C
01°S‘60t) 891
(687 ‘18°€) STV
90's‘oLY) s
(ozvzse) L6’
(66'9°90°6) 719
90 € €€ ILT
(60t ‘66°€) €0t
(EL°LT°€9°TT) LYET
(T6'¥ ‘s6¢) tr'y
Ory“1L°9) 0¥
FTS 0S¢ sty
(16'9 ‘48°6) 0£°9
LYy 9L €) SOV
(8¢t ‘85°¢) L8'€
(6TS ‘LS S6'F

AR TR R Z LR LN LR LN L L L L

0S¥l
€Syl
06l
861
(4R %4
ITI1
86°L1
61°¢cl
6L°€C
09°¢€T
LT'Cl
el
SLCI
YT9C
LT'ST
ssol
88°v1
8CT'I11
Icel
8I'I¢C
YeLI
0€v1
€6'6
1191
erve
LTI
88°CI
L6°81
£€9°¢l

(14
0¢
[43
134
19
€9
99
L
SL
8L
6L
¥8
6
v6
II
LT1
Il
Sl
0¢I
Iel
6v1
0s1
122!
8¢S1
6S1
IL1
VLI
981
10T

6661
000¢
6661
6661
oroc
661
6661
100¢
L00T
100¢
L00T
900¢
800C
100¢
6661
900¢
6661
6661
6661
100¢
6661
8661
6661
L00T
€00T
100¢
000¢
6661
L661

NO
NO
NO
NO
NIA
D0
NO
NO
NN
NO

NI
NO
NO
NO
NN
NO
NO
NO
NO
NO
D0
NO
NN
NO
NO
20
NO
NI

[CEEHAN
ONNOIAN
oruudy
sIopue[{
yoarg
TweSeje|
Au101§
uonn(
XNOIS 300,] IND
o3ueudyg
jutod pueg
Juols Sig
Kurey
Texe
Sunuaqey 1S9
ewe3039qey]
30
TYSOUSEMYSqO]
QoquBA[
[eoys
SuruoFexod
jneusoy
opewIN|[y
ySIysoSIqruuI gy
ueweuQ
JO0II00WS
e3uoqe)
uo3idiN
SPOOA\ dU3 JO oYe]

‘PIUOD PEV dlqEL



NN °

30

QLGQ

28

oov®

N [ N
[\S] N [s}]

N
o
B °

Precision (CV ")
®> ® o b B > &
© RN ©
//(

50 150 250 350 450 550 650 750 850 950
Sample Size

Figure A3.1 Simulated error contours for Ty, to fall within +/- 0.5 yrs of T when T =5

yrs across levels of sample size, precision, and g (labeled to the left of contours; Table
A3.2), smoothed using LOESS (degree=2, a=0.75).
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A3.3 Additional diagnostics

To provide a more complete picture of LMLP performance across the data quality
scenarios investigated, we generated figures that show (1) the percent of cases in which
the likelihood interval contained the true value for T and (2) the mean width of the
likelihood intervals across levels of sample size, precision, and the maturity cost
parameter g (Figs. A3.2-A3.11). Note that point size and colour scales vary among plots.

Results for T =3 and T = 7 simulations are available upon request.
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Figure A3.2 Mean likelihood interval width and the percent of likelihood intervals
containing the true value for T across levels of sample size and precision (Table A3.2)
when T =5 and g = 0.05. Larger, bluer circles generally indicate better model
performance.
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Figure A3.3 Mean likelihood interval width and the percent of likelihood intervals
containing the true value for T across levels of sample size and precision (Table A3.2)
when T =5 and g = 0.075. Larger, bluer circles generally indicate better model
performance.
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Figure A3.4 Mean likelihood interval width and the percent of likelihood intervals
containing the true value for T across levels of sample size and precision (Table A3.2)
when T =5 and g = 0.1. Larger, bluer circles generally indicate better model
performance.
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Figure A3.5 Mean likelihood interval width and the percent of likelihood intervals
containing the true value for T across levels of sample size and precision (Table A3.2)
when T =5 and g = 0.125. Larger, bluer circles generally indicate better model
performance.
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Figure A3.6 Mean likelihood interval width and the percent of likelihood intervals
containing the true value for T across levels of sample size and precision (Table A3.2)
when T =5 and g = 0.15. Larger, bluer circles generally indicate better model
performance.
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Figure A3.7 Mean likelihood interval width and the percent of likelihood intervals
containing the true value for T across levels of sample size and precision (Table A3.2)
when T =5 and g = 0.175. Larger, bluer circles generally indicate better model
performance.
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Figure A3.8 Mean likelihood interval width and the percent of likelihood intervals
containing the true value for T across levels of sample size and precision (Table A3.2)
when T =5 and g = 0.2. Larger, bluer circles generally indicate better model
performance.
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Figure A3.9 Mean likelihood interval width and the percent of likelihood intervals
containing the true value for T across levels of sample size and precision (Table A3.2)
when T =5 and g = 0.225. Larger, bluer circles generally indicate better model
performance.
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Figure A3.10 Mean likelihood interval width and the percent of likelihood intervals
containing the true value for T across levels of sample size and precision (Table A3.2)
when T =5 and g = 0.25. Larger, bluer circles generally indicate better model
performance.
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Figure A3.11 Mean likelihood interval width and the percent of likelihood intervals
containing the true value for T across levels of sample size and precision (Table A3.2)
when T =5 and g = 0.3. Larger, bluer circles generally indicate better model
performance.
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A3.4 Additional simulations

We conducted two additional sets of simulations in which T =3 and T = 7 to explore the
sensitivity of our Lester model likelihood profiling (LMLP) method to varying age-at-
maturity. Growth parameters for these simulations differed from T = 5 simulations and
were also loosely based on walleye populations for which AAM was estimated at
approximately 3 or 7. For T = 3 simulations, [, = 150 mm, h = 65 mm-yr"', and maximum
age = 20 yrs (see Table 4.1 for parameter descriptions). For T = 7 simulations, [, = 80
mm, h =40 mm-yr', and maximum age = 30 yrs. Sample sizes-at-age also differed for
these simulations (Table A3.1). Apart from these differences, T = 3 and T = 7 simulations
were identical to T = 5 simulations (see Chapter 4). As with the T = 5 simulations, we
used error contour plots (smoothed using LOESS with degree = 2 and o = 0.75) to
determine the sample size and precision required for Ty to fall within +/- 0.5 yrs of the
true value across levels of g. Results indicate that higher data quality (i.e., higher sample
size, higher precision) is needed for Ty, to fall within +/- 0.5 yrs of the true value for a
given value of g when T = 3 (Fig. A3.12). Data quality requirements for T = 7 were
similar to those for T =5 (Figs. A3.13, A3.14). We expect that as T - 0, data quality
requirements become increasingly restrictive, likely in a nonlinear fashion. Thus,
requirements for T = 5 seem to be appropriate for any scenario in which T > 5, and
become increasingly conservative as T increases. Future work should more thoroughly
address the data quality required for LMLP to provide accurate Ty g, particularly when T

<5.
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Figure A3.12 Simulated error contours for Ty, g to fall within +/- 0.5 yrs of T when T =
3 yrs across levels of sample size, precision, and g (labeled to the left of contours; Table
A3.2), smoothed using LOESS (degree=2, a=0.75).
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Figure A3.13 Simulated error contours for Ty, g to fall within +/- 0.5 yrs of T when T =

7 yrs across levels of sample size, precision, and g (labeled to the left of contours; Table
A3.2), smoothed using LOESS (degree=2, a=0.75).
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Figure A3.14 Simulated error contours for Ty, g to fall within +/- 0.5 yrs of T for all
simulations across all levels of sample size and precision and three levels of g (labeled to
the left of contours; Table A3.2), smoothed using LOESS (degree=2, a=0.75). Solid
lines: T = 3 error contours; dashed lines: T = 5 error contours; dotted lines: T = 7 error
contours.
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Appendix 4

Additional details, methods, and results for Chapter 5

NMFS Statistical Zones of the Southeast Region

97°W 96°'W O95°W 94°'W O93'W 92'W 91°W 90°W 89°W 88°'W 87°W 86'W 85°'W B4'W 83'W 82°W B81°W 80'W T9°W T78W T7'W T78°W T75'W T4°W

OT'W 96°W O5'W O4°W 93'W O2°W O1I'W 90°W B89°'W 88'W 87°W 86°W B85°W B84°W B83'W B2W 81°W BO'W TO'W T8W TT'W TEW 75W T74°W
Note: Stat zone 12 expands east to include Chandeleur Islands (see inset)

Figure A4.1 Map of the National Oceanic and Atmospheric Administration (NOAA)
National Marine Fisheries Service (NMFS, now NOAA Fisheries) statistical zones in the

Gulf of Mexico. Figure reproduced with the permission of Dr. Robert Allman, NOAA
Southeast Fisheries Science Center, Panama City, FL, USA.
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A4.1 Stan model code for fitting the Lester biphasic growth model
// Stan model code for fitting the Lester biphasic growth model

//'in a fixed-effects framework.

// Author: Andrew E. Honsey, University of Minnesota

/I ' This code should be saved as a '.stan' file.

//'See mc-stan.org for documentation.

/I define data
data {
int<lower=0> N; // number of data points
int<lower=0> Nages; // number of unique ages
vector<lower=0>[Nages] uniqueages; // vector of unique age values
int<lower=0> ageindex[N]; // age index (first age, second age, etc.)
vector<lower=0>[N] length; // length data
real hest; // h estimate from a priori linear model fit to first few length-at-age data pts

real 10est; // 10 estimate from a priori linear model fit to first few length-at-age data pts

// define parameters to be estimated

parameters {
real<lower=0,upper=max(age)> Tmat; // age-at-maturity
real<lower=0> h; // juvenile growth rate (slope of linear phase)
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real 10; // juvenile growth intercept
real<lower=0,upper=1> g; // cost to somatic growth of maturity
real<lower=0> phi; // "slope" of standard deviation (scaled with length)

real<lower=0> psi; // power of standard deviation (scaled with length)

/I define additional model parameters and relationships
transformed parameters {

real t1; // juvenile age at length 0

real<lower=0> Linf; // asymptotic length

real k; // adult growth rate

real t0; // adult age at length 0

// relationships between parameters assumed by Lester model
tl =-10/h;

Linf = 3*h/g;

k =log(1+g/3);

t0 = Tmat + (log(1-(g*(Tmat-t1)/3)))/1og(1+g/3);

model {

// define vectors for loops below
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vector[Nages] juv;
vector[Nages] adult;
vector[Nages] pred;

vector[Nages] sigma;

/I modify priors for some parameters
g ~ uniform(0,(3/(Tmat-t1))); // analytical bounds for g
h ~ normal(hest,7.5); // prior for h -- variance can be adjusted

10 ~ normal(10est,15); // prior for 10 -- variance can be adjusted

for (iin 1:Nages) {
/I growth functions
juv[i] =10 + h*uniqueages][i];

adult[i] = Linf*(1-exp(-k*(uniqueages[i]-t0)));

// if/then statement to estimate age-at-maturity

pred[i] = uniqueages[i] <= Tmat? juv[i] : adult[i];

// variance parameter (scales with age)

sigmali] = phi*pow(pred[i],psi);
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for (iin 1:N) {
/I assume that lengths are distributed normally around Lester model predictions

length[i] ~ normal(pred[ageindex[i]],sigma[ageindex[i]]);

217



A4.2 Stan model code for fitting a hierarchical model of the mean
// Stan model code for fitting a hierarchical model of the mean.

// Author: Andrew E. Honsey, University of Minnesota.

/I ' This code should be saved as a '.stan' file.

// ' See mc-stan.org for documentation.

// define data

data {
int<lower=0> N; // number of data points
int<lower=0> N_ind; // number of individuals
int<lower=1, upper=N_ind> ID[N]; // individual ID
vector[N] points; // data points

}

// define parameters

parameters {
vector[N_ind] mu_ind; // individual-level means
real<lower=0> mu_global; // group-level aka global mean
real<lower=0> sigma_mu_global; // variance for global mean

vector[N _ind] sigma mu_ind; // variance for individual means

}
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// model likelihoods

model {

// individual means are assumed to be distributed normally around the global mean
for (iin 1:N_ind){

mu_ind[i] ~ normal(mu_global,sigma mu_global);

// data for each individual is assumed to be distributed normally around the individual
means
for (i in 1:N){
points[i] ~ normal(mu_ind[IDJ[i]],sigma_mu_ind[ID[i]]);

}
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A4.3 Comparing life history traits among red snapper Lutjanus campechanus
individuals from the eastern versus western Gulf of Mexico

We conducted an analysis to determine whether our Lester model-based life history trait
estimates significantly differed among red snapper Lutjanus campechanus individuals
captured in the eastern (grids 1-12 in Figure A4.1) versus western (grids 13-21 in Figure
A4.1) Gulf of Mexico. To do this, we used an approach similar to that used to estimate
mean life history trait values at the cohort group-level (described in Chapter 5). Briefly,
we extracted draws from the posterior probability distributions for each individual-level
Lester model fit. We effectively treated these draws as data in hierarchical Bayesian
models of the mean that were fit separately to individuals from each region (see Table
A4.1) within each cohort group. For each fit, we ran four Hamiltonian Monte Carlo
chains for 5000 iterations each (2000 warmup, 3000 sampling). We did not find evidence
for any significant differences in life history traits among eastern versus western
individuals across cohort groups; that is, the 95% credible intervals overlapped for all
comparisons of life history traits among eastern versus western individuals within cohort

groups (Fig. A4.2-A4.8).
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Figure A4.2 Mean cohort group-level estimates of age-at-maturity (7; yr) generated from
Lester model fits to back-calculated red snapper Lutjanus campechanus growth data for
individuals from the eastern (circles) versus western (triangles) Gulf of Mexico across
cohorts from 1941-2005. Points represent mean estimates of age-at-maturity for each
cohort group within each region, and error bars indicate 95% Bayesian credible intervals.
Sample sizes for each group are displayed above the error bars. When sample size = 1,
error bars represent 95% Bayesian credible intervals around the parameter estimate for
that individual.
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Figure A4.3 Mean cohort group-level estimates of juvenile growth rate (#; mm-yr™')
generated from Lester model fits to back-calculated red snapper Lutjanus campechanus
growth data for individuals from the eastern (circles) versus western (triangles) Gulf of
Mexico across cohorts from 1941-2005. Points represent mean estimates of juvenile
growth rate for each cohort group within each region, and error bars indicate 95%
Bayesian credible intervals. Sample sizes for each group are displayed above the error
bars. When sample size = 1, error bars represent 95% Bayesian credible intervals around

the parameter estimate for that individual.
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Figure A4.4 Mean cohort group-level estimates of the cost to somatic growth of maturity
(g; gonad mass/somatic mass) generated from Lester model fits to back-calculated red
snapper Lutjanus campechanus growth data for individuals from the eastern (circles)
versus western (triangles) Gulf of Mexico across cohorts from 1941-2005. Points
represent mean estimates of g for each cohort group within each region, and error bars
indicate 95% Bayesian credible intervals. Sample sizes for each group are displayed
above the error bars. When sample size = 1, error bars represent 95% Bayesian credible
intervals around the parameter estimate for that individual.
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Figure A4.5 Mean cohort group-level estimates of adult growth rate (k; yr'!) generated
from Lester model fits to back-calculated red snapper Lutjanus campechanus growth data
for individuals from the eastern (circles) versus western (triangles) Gulf of Mexico across
cohorts from 1941-2005. Points represent mean estimates of k£ for each cohort group
within each region, and error bars indicate 95% Bayesian credible intervals. Sample sizes
for each group are displayed above the error bars. When sample size = 1, error bars
represent 95% Bayesian credible intervals around the parameter estimate for that

individual.
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Figure A4.6 Mean cohort group-level estimates of mortality rate (Z, yr''; generated using
eq. 1 in Chapter 5) from Lester model fits to back-calculated red snapper Lutjanus
campechanus growth data for individuals from the eastern (circles) versus western
(triangles) Gulf of Mexico across cohorts from 1941-2005. Points represent mean
estimates of mortality rate for each cohort group within each region, and error bars
indicate 95% Bayesian credible intervals. Sample sizes for each group are displayed
above the error bars. When sample size = 1, error bars represent 95% Bayesian credible

intervals around the parameter estimate for that individual.
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Figure A4.7 Mean cohort group-level estimates of asymptotic length (/»; mm) generated
from Lester model fits to back-calculated red snapper Lutjanus campechanus growth data
for individuals from the eastern (circles) versus western (triangles) Gulf of Mexico across
cohorts from 1941-2005. Points represent mean estimates of asymptotic length for each
cohort group within each region, and error bars indicate 95% Bayesian credible intervals.
Sample sizes for each group are displayed above the error bars. When sample size = 1,
error bars represent 95% Bayesian credible intervals around the parameter estimate for
that individual.
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Figure A4.8 Mean cohort group-level estimates of length-at-maturity (/7; mm) generated
from Lester model fits to back-calculated red snapper Lutjanus campechanus growth data
for individuals from the eastern (circles) versus western (triangles) Gulf of Mexico across
cohorts from 1941-2005. Points represent mean estimates of length-at-maturity for each
cohort group within each region, and error bars indicate 95% Bayesian credible intervals.
Sample sizes for each group are displayed above the error bars. When sample size = 1,
error bars represent 95% Bayesian credible intervals around the parameter estimate for
that individual.
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A4.4 Results of analyses including poor fits and males

For our analyses in Chapter 5, we excluded parameter estimates from Lester model fits to
individual red snapper Lutjanus campechanus that we considered to be untrustworthy due
to a lack of convergence and/or poor fits to the data (see Fig. 5.1c,d). These
untrustworthy fits sometimes produced unrealistic parameter estimates (e.g., an
asymptotic length of > 2000 mm for one individual, which is more than double the mean
value; see Table A4.1) that could have skewed our results. However, results including
these untrustworthy fits were qualitatively similar to those presented in Chapter 5 (Fig.

A4.9-A4.15).
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Figure A4.9 Mean cohort group-level estimates of age-at-maturity (T'; yr) generated from
both trustworthy and untrustworthy Lester model fits to back-calculated Gulf of Mexico

red snapper Lutjanus campechanus growth data for cohorts from 1941-2005. Points
represent mean estimates of age-at-maturity for each cohort group, and error bars indicate

95% Bayesian credible intervals. Sample sizes for each group are displayed above the

error bars.
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Figure A4.10 Mean cohort group-level estimates of juvenile growth rate (h; mm-yr™!)
generated from both trustworthy and untrustworthy Lester model fits to back-calculated
Gulf of Mexico red snapper Lutjanus campechanus growth data for cohorts from 1941-
2005. Points represent mean estimates of juvenile growth rate for each cohort group, and
error bars indicate 95% Bayesian credible intervals. Sample sizes for each group are

displayed above the error bars.
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Figure A4.11 Mean cohort group-level estimates of the cost to somatic growth of
maturity (g; gonad mass/somatic mass) generated from both trustworthy and
untrustworthy Lester model fits to back-calculated Gulf of Mexico red snapper Lutjanus
campechanus growth data for cohorts from 1941-2005. Points represent mean estimates
of g for each cohort group, and error bars indicate 95% Bayesian credible intervals.
Sample sizes for each group are displayed above the error bars.
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Figure A4.12 Mean cohort group-level estimates of adult growth rate (k; yr'') generated
from both trustworthy and untrustworthy Lester model fits to back-calculated Gulf of
Mexico red snapper Lutjanus campechanus growth data for cohorts from 1941-2005.
Points represent mean estimates of k for each cohort group, and error bars indicate 95%
Bayesian credible intervals. Sample sizes for each group are displayed above the error
bars.
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Figure A4.13 Mean cohort group-level estimates of mortality rate (Z, yr''; generated
using eq. 1 in Chapter 5) generated from both trustworthy and untrustworthy Lester
model fits to back-calculated Gulf of Mexico red snapper Lutjanus campechanus growth
data for cohorts from 1941-2005. Points represent mean estimates of mortality rate for

each cohort group, and error bars indicate 95% Bayesian credible intervals. Sample sizes
for each group are displayed above the error bars.
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Figure A4.14 Mean cohort group-level estimates of asymptotic length ({,,; mm)
generated from both trustworthy and untrustworthy Lester model fits to back-calculated
Gulf of Mexico red snapper Lutjanus campechanus growth data for cohorts from 1941-
2005. Points represent mean estimates of asymptotic length for each cohort group, and
error bars indicate 95% Bayesian credible intervals. Sample sizes for each group are
displayed above the error bars.
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Figure A4.15 Mean cohort group-level estimates of length-at-maturity (ly-; mm)
generated from both trustworthy and untrustworthy Lester model fits to back-calculated
Gulf of Mexico red snapper Lutjanus campechanus growth data for cohorts from 1941-
2005. Points represent mean estimates of length-at-maturity for each cohort group, and
error bars indicate 95% Bayesian credible intervals. Sample sizes for each group are
displayed above the error bars.
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Figure A4.16 Mean cohort group-level estimates of instantaneous total mortality rate (Z,
yr'!; calculated using eq. 2 in Chapter 5) generated from Lester model fits to back-
calculated Gulf of Mexico red snapper Lutjanus campechanus growth data for cohorts
from 1941-2005. Points represent mean estimates of mortality rate for each cohort group,
and error bars indicate 95% Bayesian credible intervals. Sample sizes (i.e., number of
individuals) for each cohort group are displayed above the error bars.
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A4.5 Comparison of life history trait estimates between females and individuals of
unknown sex
We were interested in examining whether life history trait estimates for known red
snapper Lutjanus campechanus females differed from those for individuals of unknown
sex. To do this, we calculated mean life history trait estimates separately for females and
unknown sex individuals for the only two cohort groups that had > 3 individuals of each
sex classification (1981-1985 and 1996-2000). We used a frequentist (i.e., conventional)
approach to calculate means, and we calculated 95% confidence intervals as follows:

u £1.96-SE,
where u is the sex-specific group-level mean for a given life history parameter and SE is
the standard error of the mean. Our results show that the 95% confidence intervals
overlap for all comparisons of life history traits between females and unknowns, apart
from one case: [, was slightly higher, on average, for females than for unknowns in
1981-1985 (Table A4.3). This result was likely influenced by one individual in the
unknown sex category with an abnormally low [, value (735.57 mm). As a whole, these
results suggest that life history trait estimates for females do not consistently significantly
differ from those for unknown sex individuals; however, these conclusions are based on
low sample sizes. Future work should explore the potential for differences in life history
traits between females and individuals of unknown sex more fully, preferably with

increased sample sizes.
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