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Abstract 

Ectotherm growth is inextricably linked to both temperature and other aspects of life 

history. In this dissertation, I leverage life history and bioenergetics theory to (1) justify 

and standardize the use of metrics that adequately describe the effect of temperature on 

ectotherm growth, and (2) develop and apply methods that leverage the links between 

ectotherm growth and life history to extract life history information from growth data. I 

focus on fishes as example ectotherms. Fish growth is driven by the amount of thermal 

energy accrued over time (i.e., the thermal integral). Accordingly, numerous studies have 

found strong linear relationships between fish growth and degree-days (DD), a thermal 

integral metric. Despite these findings, fish science lags behind other fields in the 

widespread adoption of DD, likely due to (1) a lack of theoretically-sound support for the 

observed linear relationships between fish growth and DD, and (2) insufficient 

justification for using DD derived from air temperatures in place of DD derived from 

water temperatures in fish science. Moreover, there is limited guidance for selecting the 

base temperature for growth (𝑇𝑇0), an important parameter for calculating DD, among 

fishes and scenarios. In Chapter 2, I combine empirical data and simulation modeling to 

provide bioenergetic and limnological foundations for the linear relationship between fish 

growth and DD, and I show that air-based DD can serve as an accurate proxy for water-

based DD for describing fish growth. In Chapter 3, I provide estimates of 𝑇𝑇0 for 82 fish 

species using approaches that are rooted in fish biology. Together, these analyses will 

help to justify and standardize the use of DD in fish science. Fish growth is also strongly 

correlated with other aspects of life history (e.g., maturity, mortality). Recent advances in 
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life history theory have led to the development of biphasic growth models that allow for 

the estimation of age-at-maturity, reproductive investment, and other life history traits 

from growth data. However, these models can be difficult to fit in the absence of maturity 

data. In Chapter 4, I develop a statistical framework for fitting biphasic growth models 

using only length-at-age data. I show that this approach can provide accurate estimates of 

age-at-maturity and other life history traits, and I evaluate the performance of the method 

across various species and data quality scenarios. In Chapter 5, I use a similar approach 

to investigate shifts in life history traits in an ecologically and economically important 

fish stock (Gulf of Mexico red snapper Lutjanus campechanus) from 1941-2005. This 

growth-based approach allows for the estimation of life history traits deeper into the past 

than would have been possible using traditional approaches and provides a more holistic 

understanding of how red snapper life histories have shifted in the face of fishing 

pressure and other stressors. Taken together, this work has the potential to improve 

fisheries research, promote sustainable fisheries management, increase global food 

security, and encourage similar advances in other fields. 

 

Supplementary Files 

Supplementary Data File 1 describes the fish length-at-age dataset used for the empirical 

growth analysis in Chapter 3. Supplementary Data File 2 describes the bioenergetics 

model parameters and settings used for the 10 oC rule approach, also in Chapter 3. 
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Chapter 1 

 

General introduction: fish growth, temperature, and life history 

 

Understanding individual growth is a central focus of modern biology and is key to a 

wide range of biological inquiry. Growth influences population dynamics (Lorenzen and 

Enberg 2002) and is strongly linked to evolutionary fitness (e.g., growth correlates with 

maturity, reproduction, and mortality; Stearns 1992, Bernardo 1993, Lester et al. 2004). 

In addition, growth and other aspects of life history often shift in response to 

environmental drivers (e.g., temperature) and human activities (e.g., fishing; Hutchings 

and Fraser 2008, Heino et al. 2015, Dunlop et al. 2018). These shifts can complicate 

management (Heino et al. 2013), reduce yields from harvested populations (Heino 1998), 

and increase the likelihood of population crashes (Anderson et al. 2008). Detecting and 

accounting for these shifts requires a thorough understanding of growth and is crucial for 

sustainable management (Hilborn and Walters 1992), particularly in the face of stressors 

such as climate change (IPCC 2014). Unfortunately, conventional methods for 

understanding growth are often limited both in their representation of important processes 

(e.g., the effect of temperature on ectotherm growth) and their ability to provide 

information on growth-correlated traits (e.g., maturity, mortality). 

 Ectotherm growth and other physiological processes are driven by ambient 

temperature (Hazel and Prosser 1974, Atkinson 1994, Diana 2003). More specifically, 

ectotherm metabolic processes and phenologies are closely linked with the amount of 
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thermal energy that is accrued over a given time period (i.e., the thermal integral; 

Charnov and Gillooly 2003, Neuheimer and Taggart 2007). The integrated nature of the 

effects of thermal energy on ectotherm metabolic processes also holds for many plant 

species; as a result, plant biologists have used thermal integrals to describe plant 

physiological processes for centuries (Réamur 1735). Some ectotherm-centered branches 

of biology (e.g., entomology) have also used thermal integrals for many years (Seamster 

1950, Allen 1976). In contrast, fish science lags behind in the widespread adoption of 

thermal integrals despite the fact that they consistently outperform commonly-used 

temperature metrics (e.g., mean temperatures over a given time period) and calendar time 

in describing fish growth and other physiological processes (Neuheimer and Taggart 

2007, Chezik et al. 2014a, 2014b). There are a number of potential reasons for this lag. 

For example, high-resolution water temperature data are relatively scarce, and, although 

air temperatures may serve as an accurate proxy for water temperatures in many cases, 

sufficient justification for using thermal integrals derived from air temperatures to 

describe fish growth is lacking. In addition, the appropriate value for the base 

temperature for growth, an important parameter for thermal integral calculation, is 

unknown for many fish species. As a result, fish scientists have used a variety of base 

temperatures to calculate thermal integrals with little or no justification (Chezik et al. 

2014b), which can complicate inference and lead to erroneous conclusions (e.g., the 

apparent evolution of countergradient growth; Levins 1969, Conover and Present 1990). 

Among the most pressing challenges that remain are to (1) explore the validity of using 

air temperatures to calculate thermal integrals in fish science and (2) create an objective 
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and theoretically-sound framework for estimating base temperatures for growth for 

various fishes. 

 The lifetime growth of ectotherms is not only coupled with temperature, but it is 

also strongly correlated with other aspects of life history. For example, increases in 

growth rates typically lead to earlier maturity, increased investment in reproduction, and 

increased mortality rates (Stearns 1992). Moreover, growth rates often change throughout 

life based on life history. For example, although ectotherms grow indeterminately (i.e., 

they continue growing throughout life), their growth typically slows after maturity due to 

energetic investment in reproduction (Kozlowski 1996). Unfortunately, traditional 

approaches for modeling ectotherm growth (e.g., the von Bertalanffy growth model; von 

Bertalanffy 1938) smooth over these changes by describing lifetime growth as a single 

curve. In response to this issue, researchers have proposed growth models that account 

for changes in growth throughout life and include parameters that correspond with life 

history traits (e.g., age-at-maturity; Lester et al. 2004, Quince et al. 2008, Mollet et al. 

2010, Boukal et al. 2014). Regrettably, the application of these models is limited due to 

their strict requirements for data on a variety of life history traits (but see Quince et al. 

2008b, Mollet et al. 2013, Lester et al. 2014, Uusi-Heikkilä et al. 2015, Chavarie et al. 

2016). However, because growth is correlated with many other life history traits, it 

should be possible to estimate multiple life history traits from growth data. The ability to 

do so accurately would provide a wealth of relevant knowledge from common growth 

data and allow us to address important questions related to life history plasticity and 

evolution. 
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My overarching goal is to improve our understanding of ectotherm growth and 

life history through the development and application of methods that leverage the 

inextricable links between temperature, growth, and life history. My first broad aim 

focuses on temperature and fish growth. In Chapter 2, I use theoretically-sound and well-

supported models of both fish bioenergetics and annual lacustrine surface water 

temperature cycles to provide physiological and limnological foundations for using 

thermal integrals derived from air temperatures to describe fish growth. Specifically, I 

show that thermal integrals derived from both air and water temperature data are roughly 

linearly related to fish growth, highlighting their utility as metrics for describing fish 

growth and physiology. In Chapter 3, I meet the need for guidance in calculating thermal 

integrals by providing estimates of the base temperature for growth for 82 fish species 

using approaches that are rooted in fish biology. My results show that the appropriate 

value for the base temperature for growth varies across species and life stages and can 

also differ for calculating air- versus water-based thermal integrals within species. My 

second broad aim centers on estimating life history traits from fish growth data. In 

Chapter 4, I develop a statistical framework for estimating age-at-maturity and other life 

history traits solely from growth data. I show that this method provides accurate estimates 

of age-at-maturity in the absence of maturity data for fishes and other ectotherms. In 

addition, I use simulation modeling to explore the ability of the method to recover ‘true’ 

life history trait values across various data quality scenarios, thereby providing guidance 

to users. In Chapter 5, I use an approach similar to the one developed in Chapter 4 to 

track changes in life history traits over time for Gulf of Mexico red snapper Lutjanus 
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campechanus, an economically important and historically overexploited fish stock. By 

leveraging growth data, I provide otherwise unattainable estimates of life history traits for 

red snapper during the expansion of the fishery in the 1940s-1960s. Moreover, I show 

that red snapper life histories shifted dramatically toward a faster regime (i.e., faster 

growth, earlier maturity) in the mid-20th century, likely in response to fishing pressure. 

Chapter 2 has been accepted for publication in the Canadian Journal of Fisheries 

and Aquatic Sciences and is currently in press (dx.doi.org/10.1139/cjfas-2018-0051). As 

such, Chapter 2 is referred to as Honsey et al. (in press) throughout this document. The 

publication of this chapter by the University of Minnesota is granted by the Canadian 

Journal of Fisheries and Aquatic Sciences Author Rights, which state the following: 

“Authors may reuse all or part of their manuscript in other works created by them for 

non-commercial purposes, provided the original publication in an NRC Research Press 

journal is acknowledged through a note or citation.” Chapter 4 is published in Ecological 

Applications (https://doi.org/10.1002/eap.1421) and is referred to as Honsey et al. (2017) 

herein. A document granting permission to publish this material from John Wiley and 

Sons has been submitted to the University of Minnesota Graduate Student Services and 

Progress office alongside this dissertation. Chapters 3 and 5 are currently in preparation 

for publication in peer-reviewed scientific journals. Co-authors on these manuscripts are 

as follows: Chapter 2, Paul A.Venturelli and Nigel P. Lester; Chapter 3, Andrew L. Rypel 

and Paul A. Venturelli; Chapter 4, David F. Staples and Paul A. Venturelli; and Chapter 

5, Robert J. Allman, Gary R. Fitzhugh, and Paul A. Venturelli. I use plural pronouns (i.e., 
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“we” and “our” instead of “I” and “my”) in Chapters 2-5 to reflect these authors’ 

contributions to the work. 
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Chapter 2 

 

Bioenergetic and limnological foundations for using degree-days 

derived from air temperatures to describe fish growth 

 

Synopsis 

Degree-days (DD) are an effective metric for quantifying the thermal opportunity for 

ectotherm growth. There is strong empirical evidence to suggest that DD are useful for 

describing fish growth, and that immature growth increases linearly with DD. However, 

fish ecology lags behind other disciplines in the widespread adoption of DD. We provide 

(1) a foundation for the observed linear relationship between immature fish growth and 

DD, and (2) justification for using DD derived from air temperatures as a proxy for DD 

derived from water temperatures in fish science. We use bioenergetics models and both 

simulated and empirical water temperatures to show that immature annual and 

interannual fish growth are approximately linear with water DD. We then use simulated 

and empirical data to show that air and surface water temperatures are often highly 

correlated, and that immature fish growth is also approximately linear with air DD. By 

connecting the dots among air temperature, water temperature, and fish growth, we lay 

the foundation for wider adoption of DD in fish science. 
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2.1 Introduction 

There is an obvious link between ambient temperatures and physiological processes in 

ectotherms (Hazel and Prosser 1974; Atkinson 1994; van der Have and de Jong 1996). 

Less obvious is how one should measure temperature to best understand its influence on 

ectotherm growth and other metabolic processes. Instantaneous metrics (e.g., mean 

temperatures over a given time period; Pauly 1980; Doubleday et al. 2015) are often used 

to explain ectotherm growth. These metrics are easy to calculate but may not adequately 

index the effect of temperature on ectotherm growth and metabolism (Neuheimer and 

Taggart 2007). 

Degree-days (DD) are a summation of the metabolically-relevant thermal energy 

that is experienced by an individual over time. As such, DD are a useful index of the 

thermal scope for ectotherm growth (Chezik et al. 2014a). Other fields (e.g., agronomy, 

entomology) have used DD extensively for decades to centuries (Neuheimer and Taggart 

2007), and DD have been shown to outperform calendar time in describing ectotherm 

growth (e.g., Colby and Nepszy 1981). Moreover, because DD integrate time and 

temperature, they provide a physiologically-valid understanding of how growth responds 

to temperature that can be particularly useful when comparing growth rates among 

populations (e.g., for studies of countergradient variation in growth; Chezik et al. 2014b; 

Snover et al. 2015). 

The application of DD in fish science has become increasingly common, as has 

the use of DD derived from air temperatures as a surrogate for DD calculated from water 

temperatures (e.g., Fig. 1.1 in Chezik 2013). In particular, DD have been shown to be 
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useful for describing fish growth, with multiple empirical studies finding strong linear 

relationships between DD and immature fish growth (e.g., Neuheimer and Taggart 2007; 

Venturelli et al. 2010; Chezik et al. 2014a). Although fish culturists have used DD for 

many decades (e.g., Wallich 1901; Soderberg 1992; Dumas et al. 2010), other fish 

sciences, such as fish ecology, have yet to adopt DD in a widespread manner. Likely 

reasons for this lack of widespread adoption include the relative scarcity of high-

resolution water temperature data compared to air temperature data, and insufficient 

evidence to suggest that DD calculated from air temperatures can serve as an accurate 

proxy for DD derived from water temperatures. Moreover, researchers who are familiar 

with conventional, nonlinear fish growth models (e.g., the von Bertalanffy model; von 

Bertalanffy 1938; Beverton and Holt 1957) may not be convinced by the evidence for 

linear relationships between immature fish growth and DD (e.g., Malzahn et al. 2003; 

Neuheimer and Taggart 2007; Chezik et al. 2014a). 

Our objectives were to provide (1) a bioenergetic foundation for the linear 

relationship between immature fish growth and DD that has been found in multiple 

empirical studies, and (2) justification for using DD derived from air temperatures as a 

proxy for DD derived from water temperatures. To accomplish these objectives, we 

review existing knowledge and use simulated and empirical data to connect the dots 

among air temperature, water temperature, and fish growth. First, we use bioenergetics 

models to demonstrate the effect of water temperature on fish growth at daily, annual, 

and interannual time scales. We then examine the relationships between air and surface 

water temperatures, and we assess whether air-based DD can serve as an accurate proxy 
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for water-based DD. Finally, we compare the performance of air- and water-based DD in 

describing fish growth, and we discuss the limits of using air-based DD to describe 

growth (e.g., for coldwater fishes in thermally stratified systems). By providing a 

theoretically-sound and empirically-supported basis for the expanded and appropriate use 

of DD, our analyses promote a more thorough understanding of the growth and 

physiology of fishes and other aquatic organisms. 

 

2.2 Water temperature and fish growth 

In this section, we use bioenergetics models to demonstrate the effects of water 

temperature on fish growth (Kitchell et al. 1977; Jobling 1995; Hanson et al. 1997). 

Bioenergetics models are based on an energy balance equation in which the potential for 

growth is governed by energy acquired via consumption minus metabolism (e.g., 

respiration, specific dynamic action) and waste. The functions that describe these 

processes often depend on water temperature. As a result, growth is also temperature-

dependent, and the nature of the growth-temperature relationship is shaped by species-

specific parameters (e.g., optimum temperature for consumption, upper lethal water 

temperature; Hanson et al. 1997). 

We used bioenergetics models to simulate juvenile growth for three fishes: yellow 

perch Perca flavescens, brown bullhead Ameiurus nebulosus, and tiger muskellunge 

(northern pike Esox lucius X muskellunge Esox masquinongy). These models encompass 

diversity in two key areas. First, they use different combinations of model functions (i.e., 

equations) for the various model processes (Table 2.1). For instance, the brown bullhead 
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model uses a respiration function that is exponential with temperature, whereas the 

respiration function used in the other two models accounts for decreased respiration rates 

at high temperatures. Therefore, any similarities in model results are unlikely to be driven 

by similar functional response assumptions across model processes. Second, the thermal 

regimes differ for each model species, with the three models encompassing a fair amount 

of thermal diversity for cool- and warmwater species (thermal optima for consumption 

ranging from 24-29 oC). Parameters, equations, and sources for these models are given in 

Table 2.1. We excluded models for coldwater species because our analytical approaches 

assumed that the simulated fish experienced epilimnetic temperatures year-round (see 

below). As such, we chose models for cool- and warmwater fishes so that this assumption 

would likely not be meaningfully violated. 

 

i) Daily growth 

We begin by showing how daily growth in length varies with water temperature across 

levels of prey consumption and activity (a multiplier on respiration, with 1 = resting 

metabolism). We did this to establish a foundation for how growth responds to these 

factors over short time periods, which is an important first step in understanding how 

growth relates to DD over longer time periods. We set initial sizes to 100 mm for yellow 

perch and brown bullhead, and 150 mm for tiger muskellunge. We used geometric mean 

parameters for the length-weight relationship from FishBase (Froese and Pauly 2016) for 

length-weight conversions. We set the energy density of oxygen to 13556 J∙g-1 here and 
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throughout (Elliott and Davison 1975). We conducted these and all additional 

calculations and simulations in R version 3.4.1 (R Core Team 2017). 

Our bioenergetics simulations produced typical results showing the non-linear 

relationship between daily growth in length and temperature (Fig. 2.1). This relationship 

is positive for most water temperatures and approximately linear across a midrange of 

temperatures (e.g., 10-20 oC). The relationship appears to become more linear when 

either activity is higher than resting metabolism or consumption is below satiation (Fig. 

2.1a,b). However, if we consider growth as a proportion of maximum growth for a given 

activity or consumption level (Fig. 2.1c,d), we see that the relationship is nonlinear for all 

scenarios examined, and among the most noticeable effects of increased activity or 

reduced consumption is a decrease in the optimum temperature for growth (see Kitchell 

et al. 1977). Fig. 2.1 shows results for the yellow perch bioenergetics model; results for 

the other two models are shown in Appendix 1, Figs. A1.1 and A1.2.  

 

ii) Annual growth 

In fish science and other disciplines, samples are often collected at a relatively coarse 

temporal resolution (e.g., once per year), and individual sizes across ages and/or sampling 

events are compared to approximate growth patterns (Lorenzen 2016). Therefore, we 

were primarily interested in examining the cumulative effect of water temperature on 

growth at annual and interannual time scales. 

For this portion of the analysis, our goal was to examine the effect of varying 

temperature scenarios on the relationship between annual immature fish growth and DD 
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derived from water temperatures (WDD). We first simulated annual surface water 

temperature cycles using the Shuter water temperature model and empirical predictors for 

maximum daily surface water temperature (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) and the duration of the ice-free season 

(𝐷𝐷𝐷𝐷; Shuter et al. 1983): 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 23.5 ∙ 𝑍̅𝑍−0.108𝑒𝑒0.0437∙𝐴𝐴𝐴𝐴����−0.002∙𝐴𝐴𝐴𝐴����2 

𝐷𝐷𝐷𝐷 = 149 ∙ 𝑍̅𝑍0.073𝑒𝑒0.06∙𝐴𝐴𝐴𝐴���� 

𝑇𝑇𝑡𝑡 = 4 + (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 − 4) ∙ sin (𝜋𝜋 ∙
𝑡𝑡 − (365 − 𝐷𝐷𝐷𝐷)

𝐷𝐷𝐷𝐷
) 

where 𝑍̅𝑍 is mean lake depth (or mean thermocline depth for stratified systems), 𝐴𝐴𝐴𝐴���� is 

mean annual air temperature, and 𝑇𝑇𝑡𝑡 is mean surface water temperature on day 𝑡𝑡. We 

used simulated rather than empirical water temperatures for this portion of the analysis so 

that we could encompass a broad range of climatic scenarios in a relatively 

straightforward and analytically robust manner. We assumed that liquid water 

temperature did not fall below 4 oC and that the year was 365 days long. Using these 

equations, the annual water temperature cycle can be defined as a function of 𝑍̅𝑍 and 𝐴𝐴𝐴𝐴����. 

We fixed 𝑍̅𝑍 at 8 m for the sake of simplicity and because variation in 𝑍̅𝑍 generally has a 

smaller impact than variation in 𝐴𝐴𝐴𝐴���� on the surface water temperature cycle (see Appendix 

1, Section A1.1 and Fig. A1.3). We then simulated annual surface water temperature 

cycles from 0 to 10 oC 𝐴𝐴𝐴𝐴���� in increments of 0.5 oC. 

 We used these simulated daily water temperatures to drive the yellow perch, 

brown bullhead, and tiger muskellunge bioenergetics models (Table 2.1). We assumed 

that fish experienced surface water temperatures, which approximate the temperature of 

the typically well-mixed epilimnion (e.g., Livingstone and Lotter 1998), throughout the 
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ice-free season. We then summed daily growth in length throughout the ice-free season, 

assuming that growth during winter was negligible (Pitcher and Macdonald 1973; García-

Berthou et al. 2012). We subtracted initial length from final length to determine annual 

growth. We then compared annual growth to WDD above 5 oC (WDD5), calculated as 

(1)                                             𝑊𝑊𝐷𝐷𝐷𝐷5 =  �𝑇𝑇𝑡𝑡 − 5
𝑁𝑁

𝑡𝑡=1

, 𝑇𝑇𝑡𝑡 > 5 

where 𝑁𝑁 is the number of days (in this case, 365) and 𝑇𝑇𝑡𝑡 is the daily mean surface water 

temperature on day 𝑡𝑡. We used 5 oC as a base temperature because it is highly correlated 

with the length of the ice-free season (Shuter et al. 1983; Venturelli et al. 2010) and has 

been used to describe growth in yellow perch and other fishes (e.g., Power and McKinley 

1997; Purchase et al. 2005; Rennie et al. 2010).  

We first simulated growth under the ‘ideal’ bioenergetic scenario in which 

individuals achieve satiation at resting metabolism. However, these results are unrealistic 

because empirical data suggest that activity costs are often higher than resting 

metabolism (e.g., Rowan and Rasmussen 1996). In addition, consumption can be highly 

variable (e.g., Schaeffer et al. 1999) and is typically estimated at roughly 40-60% of 

satiation in wild populations (Hartman and Margraf 1992; Petersen and Paukert 2005; 

Hartman and Cox 2008). To explore the nature of the relationship between WDD5 and 

annual growth given reduced consumption and/or increased activity, we repeated the 

simulations for three additional bioenergetics scenarios: (1) satiation with increased 

activity (activity multiplier = 3); (2) lower consumption (50% of satiation) with resting 

metabolism; and (3) lower consumption (85% of satiation) with increased activity 
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(activity multiplier = 2). Our results show that the relationship between annual growth 

and WDD5 is approximately linear for all of these bioenergetic scenarios (all R2 ≥ 0.99), 

with the most substantial change in the relationship among scenarios being a change in 

the slope of the line (Fig. 2.2). 

 

iii) Interannual growth 

We have shown that annual fish growth in length is roughly linear with WDD5 across a 

variety of scenarios. Here, we test whether interannual immature growth (i.e., length-at-

age) is also approximately linear with WDD5 for many bioenergetic scenarios. We focus 

on immature growth because the linear approximation of the length-at-age versus DD 

relationship is typically only valid for growth leading up to maturity (Lester et al. 2004), 

whereas adult length-at-age is often nonlinear due to investment in reproduction and 

other factors (e.g., increasing activity costs with body size; Ware 1978; Kozlowski 1996; 

Andersen and Beyer 2015).  

We included empirical water temperature in this portion of the analysis by 

retrieving five years of publicly-available daily mean water temperature data (1 m depth) 

from two lakes: Sparkling Lake, WI, USA (2000, 2002-2005) and Lake Lacawac, PA, 

USA (2010-2014; Fig. 2.3). The Sparkling Lake data were retrieved from the University 

of Wisconsin’s North Temperate Lakes Long Term Ecological Research network (NTL 

LTER 1991a). These data were continuous apart from eight gaps (mean ± SD gap length 

= 2.875 ± 3.23 days; 1.3% of total sample size), which we filled using linear 

interpolation. The Lake Lacawac data were retrieved from an electronic database 
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maintained by Lehigh University (http://www.lehigh.edu/~brh0/pocono_mon/) and were 

continuous. 

 We used the empirical water temperature data to drive multi-annual bioenergetics 

simulations for each of our model species (Table 2.1). We summed growth throughout 

the ice-free seasons (i.e., when water temperatures at 1 m were > 4 oC) and defined 

length-at-age as the length on the last day of each year. We carried out a factorial 

simulation to determine the effects of varying consumption (10-100% satiation in 

increments of 5%), activity (1-4 in increments of 0.2), and initial size (yellow perch = 25, 

50, and 75 mm; brown bullhead = 50, 100, 150 mm; tiger muskellunge = 100, 150, 200 

mm) on interannual growth. We fit a linear model to the length versus WDD5 relationship 

and recorded the adjusted R2 value after each simulation. We focused on R2 because we 

were primarily interested in the explanatory power of a metric (WDD5) in describing 

interannual fish growth in a linear model framework across a wide range of bioenergetic 

scenarios; we were not interested in, e.g., the relative performance of a given model, or 

whether a particular relationship was statistically significant. We disregarded R2 values 

for scenarios in which individuals did not grow across all five years (e.g., fish losing 

weight from one year to the next) because these scenarios would likely result in death. 

Figure 2.4 shows example results from simulations with consumption set at 40% of 

satiation and the activity multiplier set at 1.2. We acknowledge that simulating immature 

growth across five years may be unrealistic because the model species may mature before 

age 5 (e.g., Trippel 1995; Feiner et al. 2015); however, we argue that these simulations 

are valid given our goal of better understanding how immature growth relates to DD, and 
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we note that the relationship should be approximately linear leading up to maturity 

regardless of age-at-maturity. 

 Our results suggest that immature interannual growth is approximately linear with 

WDD5 for most bioenergetic scenarios across species (Fig. 2.5). The brown bullhead and 

tiger muskellunge models displayed nearly linear (R2 ≥ 0.90) growth for all scenarios 

examined. Simulated growth for the yellow perch model was less linear (R2 < 0.90) in 

some cases; however, most of these cases occurred when activity was unrealistically high 

for immature yellow perch (e.g., ACT ≥ 2; Rowan and Rasmussen 1996). The yellow 

perch model was the most sensitive to initial fish size, with fewer cases of highly linear 

growth at smaller initial sizes. Importantly, growth was approximately linear (R2 ≥ 0.90) 

with WDD5 for 95% of cases (n = 268) for which consumption was similar to empirical 

estimates (40-60% of satiation, or p(Cmax) = 0.4-0.6; Hartman 2017). This percentage 

increased to 98% (n = 256) for realistic levels of activity (ACT ≈ 1-2.4 for immature 

fishes; Rowan and Rasmussen 1996). These summaries and Fig. 2.5 describe the 

simulations driven by Sparkling Lake water temperatures; results from the simulations 

driven by Lake Lacawac temperatures were nearly identical (Appendix 1, Fig. A1.4). 

 

2.3 Air temperature and fish growth 

 i) Air temperature as a proxy for water temperature 

Air temperatures and surface water temperatures are often highly correlated in lacustrine 

(Macan and Maudsley 1966; Livingstone and Lotter 1998; Livingstone and Dokuli 2001) 

and riverine (Pilgrim et al. 1998; Mohseni and Stefan 1999; Erickson and Stefan 2000) 
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systems during open water periods. For this reason, air temperatures have been used in 

place of surface water temperatures in fish science (e.g., Schlesinger and Regier 1982; 

Rypel 2012; Honsey et al. 2016). Moreover, because heat flux at the air-water interface is 

a major driver of lake temperatures (e.g., Edinger et al. 1968; Wetzel and Likens 2000; 

Read et al. 2014), air temperatures are commonly included as drivers in limnological 

models (e.g., Hondzo and Stefan 1993; Jacobson et al. 2010; Piccolroaz et al. 2017). 

We first demonstrate the correlation between air and surface water temperatures 

in Sparkling Lake and Lake Lacawac. To do this, we retrieved mean daily air temperature 

data from weather stations near the two lakes that covered the same time periods as the 

water temperature data. For Sparkling Lake, we retrieved air temperature data from 

Woodruff Airport (-4.22 m elevation and 9.11 km from Sparkling Lake; NTL LTER 

1991b). These data contained three gaps (mean ± SD gap length = 7.33 ± 10.12 days; 

1.2% of total sample size). Because one of the gaps in these data was 19 days long and 

because mean daily air temperature data from other nearby sites were unavailable, we 

used a linear model to predict the unknown mean daily air temperatures as a function of 

daily minimum and maximum air temperatures from another nearby weather station 

(Minocqua Dam, -11.32 m elevation and 6.05 km from Woodruff Airport; Kratz 1983; n 

= 1805, R2 = 0.994). For Lake Lacawac, we retrieved continuous mean daily air 

temperature data from the Wilkes Barre Scranton International Airport (-160.66 m 

elevation and 35.97 km from Lake Lacawac) using the National Oceanic and 

Atmospheric Administration Climate Data Online tool (https://www.ncdc.noaa.gov/cdo-

web/). Air and surface water temperatures were highly correlated for both lakes 
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(Pearson’s ρ = 0.87 and 0.91 for Sparkling and Lacawac, respectively; Fig. 2.3), 

suggesting that mean daily air temperatures can serve as a good proxy for mean daily 

surface water temperatures. 

Our next goals were to examine the relationship between DD derived from air 

temperatures (ADD) and WDD, and to determine whether ADD can serve as an accurate 

proxy for WDD. Both the degree to which ADD correlates with WDD within lakes and 

the nature of the ADD versus WDD relationship among lakes have important 

implications for ADD applications (e.g., using ADD to describe fish growth and 

physiology within and/or among lakes, using ADD to drive limnological models, etc.).  

We used both simulated and empirical data to explore these relationships. For the 

empirical comparisons, we calculated ADD above 5 oC (ADD5) using eq. 1 and the air 

temperature data described above. We then calculated the Pearson correlation coefficient 

between ADD5 and WDD5 derived from the empirical water temperature data from each 

lake at both annual and cumulative (i.e., summed across years) time scales. For the 

simulations, we once again used the Shuter model (Shuter et al. 1983) to generate annual 

water temperature cycles across four values of 𝑍̅𝑍 (4, 8, 16, and 32 m) and with 𝐴𝐴𝐴𝐴���� 

ranging from -10 to 15 oC in increments of 0.5 oC. We used these water temperature data 

and eq. 1 to calculate WDD5. We then collected air temperature data from 107 weather 

stations in the United States and Canada using the National Oceanic and Atmospheric 

Administration Climate Data Online tool (see Appendix 1, Section A1.2 for details), and 

we used these data to generate an empirical relationship for predicting ADD5 from 𝐴𝐴𝐴𝐴����: 

𝐴𝐴𝐴𝐴𝐴𝐴5 = 1346.8 ∙ 𝑒𝑒0.0729∙𝐴𝐴𝐴𝐴����.  
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We used this relationship to estimate ADD5 for the simulated scenarios, and we 

compared annual ADD5 to WDD5 across simulations.  

Our empirical results show that annual ADD5 and WDD5 are highly correlated for 

both the Sparkling Lake and Lake Lacawac datasets (ρ = 0.97 and 0.87, respectively; Fig. 

2.6). Moreover, although WDD5 is consistently higher than ADD5 due to higher average 

water temperatures (Fig. 2.3), the two cumulative metrics are almost linearly related for 

both datasets (ρ > 0.99; Appendix 1, Fig. A1.7). These results suggest that ADD5 can be 

an accurate surrogate for WDD5 both within and across years. Our simulation results 

indicate that the relationship between WDD5 and ADD5 is nonlinear and not proportional 

(Fig. 2.6). However, the relationship for a given 𝑍̅𝑍 value is approximately linear across 

relatively broad ranges of temperatures (e.g., ~1300-3000 ADD5), suggesting that the 

slope of the relationship (and therefore the utility of ADD5 as a proxy for WDD5) is not 

likely to change within a given lake due to annual variation in temperature. 

 

ii) Annual growth 

Our next aim was to investigate the relationship between annual growth and ADD across 

a variety of temperature scenarios. To do this, we used the Shuter model to generate 

water temperatures, with 𝑍̅𝑍 fixed at 8 m and with 𝐴𝐴𝐴𝐴���� ranging from 0 to 10 oC in 

increments of 0.5 oC. We used these simulated temperatures to drive the three 

bioenergetics models (Table 2.1), summed daily growth throughout the ice-free season, 

and subtracted initial length from final length to determine annual growth (Δmm). We 

calculated ADD5 using the empirical relationship described above. We then regressed 



21 
 

ADD5 against annual growth for four bioenergetic scenarios: (1) the ‘ideal’ case of 

satiation at resting metabolism, (2) satiation with activity multiplier = 3, (3) 50% of 

satiation at resting metabolism, and (4) 85% of satiation with activity multiplier = 2.  Our 

results show that annual growth is roughly linear with the empirically-derived ADD5 for 

all bioenergetic scenarios examined (all R2 ≥ 0.98), suggesting that ADD5 can be as 

effective as WDD5 for describing annual growth within lakes (Fig. 2.7). 

 

iii) Interannual growth  

We have shown that ADD and WDD can have nearly equivalent power in explaining 

annual fish growth. Our final goal was to compare the performance of ADD to that of 

WDD in describing interannual growth (i.e., length-at-age). To do this, we again used 

five years of empirical water temperature data from Sparkling Lake and Lake Lacawac to 

drive bioenergetics simulations for the three model species (Table 2.1), and we employed 

the same factorial design used above to examine the effects of varying consumption, 

activity, and initial size on the growth versus DD relationship. In this case, we calculated 

ADD5 using the empirical air temperature datasets collected near each lake and eq. 1 

(substituting ADD5 for WDD5), and we fit linear models to the length versus ADD5 

relationship for each simulation. Our results closely mirrored those of the length versus 

WDD5 comparisons for both Sparkling Lake (Fig. 2.8) and Lake Lacawac (Appendix 1, 

Fig. A1.8). In some cases, adjusted R2 values were higher for the length versus ADD5 

regressions than they were for the length versus WDD5 regressions (e.g., Fig. 2.8g,h,i). 
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These results suggest that immature fish length-at-age is approximately linear with ADD5 

across a wide range of bioenergetic scenarios. 

 

2.4 Discussion 

Our analysis provides bioenergetic foundations for the nearly linear relationship between 

DD and immature fish growth, as well as justification for using ADD as a proxy for 

WDD when describing growth. We show that, although daily growth rates are nonlinear 

with temperature, the nonlinear increase in DD through time explains the nonlinear 

nature of growth in a linear manner at annual and interannual time scales (Neuheimer and 

Taggart 2007). In other words, growth occurs intermittently, but always along a trajectory 

that is approximately linear with DD at relatively coarse (but highly relevant) time scales. 

The fact that ADD can serve as an accurate proxy for WDD should facilitate the use of 

DD and promote a more physiologically-valid understanding of how the growth of fishes 

and other aquatic organisms responds to thermal energy. 

A number of factors can limit the ability of surface WDD or ADD to describe fish 

growth. For example, the growth versus ADD relationship may be nonlinear if ADD 

become disentangled from WDD (e.g., due to wind, groundwater, shade, etc.). We also 

assumed that our simulated fish experienced epilimnetic temperatures throughout the 

growing season. This assumption was reasonable for our three model species, but 

coldwater species in many stratified systems spend much of the growing season below 

the epilimnion. As such, ADD and surface WDD may not provide an adequate 

description of the thermal environments experienced by these fishes. We note that more 
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adequate DD metrics could be calculated for fishes that do not inhabit the epilimnion 

year-round, but that doing so would require both depth-specific water temperature data 

and knowledge of the depths that individuals inhabit throughout the year, which may 

render the calculation of such a metric impractical or impossible (although more complex 

water temperature models could facilitate such efforts; e.g., Read et al. 2014). We also 

note that any shortcomings of ADD in describing growth of coldwater fishes in stratified 

systems would likely extend to any air temperature-based metric due to the often poor 

correlation between air temperatures and meta- or hypolimnetic water temperatures (e.g., 

Robertson and Ragotzkie 1990). Importantly, Chezik et al. (2014a) showed that ADD can 

still have a high degree of explanatory power in describing length-at-age for a coldwater 

species (cisco Coregonus artedi), albeit a reduced amount compared to cool- and 

warmwater fishes. Furthermore, if surface water temperatures exceed growth optima and 

no refugia are present (e.g., in unstratified systems), then the growth versus surface WDD 

or ADD relationship may become nonlinear; however, we expect that nonlinearities due 

to this mechanism are relatively rare in nature because species seldom persist in systems 

in which temperatures regularly exceed growth optima and in which no refugia are 

present (e.g., coldwater species such as lake trout do not inhabit warm, unstratified lakes). 

That being said, individuals may spend some amount of time in temperatures that are 

above growth optima (e.g., Sellers et al. 1998), which can reduce the utility of DD 

metrics in describing growth and other physiological processes. Future work should 

address this shortcoming, perhaps by introducing an upper temperature limit for 

calculating DD or incorporating a ‘penalty’ (i.e., reduction in DD) if temperatures exceed 
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some (likely species-specific) value. Finally, growth may be nonlinear due to a variety of 

other biological factors, including factors that cause large changes in consumption rates 

or activity costs within or among years (e.g., substantial shifts in prey or predator density; 

ontogenetic diet shifts, especially in very early life; etc.; Lorenzen and Enberg 2002).  

Although the adult fish growth versus DD relationship may be nonlinear due to 

investment in reproduction and other factors (e.g., Lester et al. 2004; Andersen and Beyer 

2015; Honsey et al. 2017), using DD to describe lifetime growth is still useful, 

particularly when comparing growth among populations that experience different thermal 

regimes (Chezik et al. 2014b; Lester et al. 2014). That being said, daily growth for adult 

fishes is often a near-linear function of temperature over a midrange of temperatures, 

much as it is for immature fishes (see Appendix 1, Section A1.3). Indeed, many fish 

bioenergetics models are intended to apply to both juvenile and adult growth for a given 

species, as is the case for the brown bullhead model used herein (Hartman 2017; see also, 

e.g., Madon et al. 2001; Pääkkönen et al. 2003). As such, many of our results 

(particularly the linearity of annual growth versus DD) may also extend to adult fish 

growth. 

Both our simulated and empirical comparisons of ADD and WDD highlight the 

potential for the ADD versus WDD relationship to vary among lakes. For instance, in 

Lake Lacawac, 𝑊𝑊𝑊𝑊𝑊𝑊5  ≈ 1.2 ×  𝐴𝐴𝐴𝐴𝐴𝐴5. In contrast, 𝑊𝑊𝑊𝑊𝑊𝑊5  ≈ 1.3 ×  𝐴𝐴𝐴𝐴𝐴𝐴5 for 

Sparkling Lake. This result is intuitive because water temperatures in lakes with different 

characteristics (e.g., Secchi depth, morphometry) will respond differently to air 

temperatures (e.g., Rose et al. 2016). These differences are important to consider for a 
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number of applications, including using ADD to (1) describe growth and other 

physiological processes among lakes and (2) drive limnological models of lake thermal 

regimes. Future work should examine the degree to which the ADD versus WDD 

relationship varies among lakes, and explore whether that variation introduces substantial 

error and/or bias in among-lake comparisons of growth and other physiological 

processes. 

 If DD are an accurate index for the thermal scope for growth, then growth should 

be proportional to DD given that they are calculated using the correct base temperature 

for growth, i.e., the temperature below which growth is negligible. This base temperature 

for growth (𝑇𝑇0) is a key parameter for calculating DD; incorrect 𝑇𝑇0 values can bias 

growth rate estimates, which can be particularly problematic for among-population 

comparisons (Chezik et al. 2014b). Unfortunately, 𝑇𝑇0 has not been estimated for most fish 

species. It may be possible to use bioenergetics models to estimate 𝑇𝑇0 by finding the 𝑇𝑇0 

value for which the growth versus DD relationship is proportional (i.e., passes through 

the origin). We provide an example of this approach using the yellow perch bioenergetics 

model in the annual growth simulation framework described above (see Appendix 1, 

Section A1.4). Our results indicate that the appropriate 𝑇𝑇0 value for yellow perch when 

using ADD is ~9 oC (Fig. 2.9), which agrees with two other independent estimates for 

this species (Chezik et al. 2014b). 

 In our view, DD remain underutilized in fish science (but see, e.g., Rypel and 

David 2017; Ward et al. 2017). Our results suggest that the empirically-observed, linear 

relationship between DD and immature fish growth is rooted in bioenergetics. As such, 
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DD are an effective metric for quantifying the thermal scope for growth in fishes. In 

addition, ADD can serve as an accurate proxy for WDD. Given that high-resolution air 

temperature data are more common than water temperature data, this result provides a 

foundation for expanding the use of DD in fish science and other aquatic disciplines. This 

expanded use of DD should, in turn, promote a better understanding of the growth and 

physiology of aquatic organisms and may be particularly useful for assessing and 

predicting the impacts of global change. In addition to the suggestions mentioned above, 

future work should focus on (1) standardizing DD calculation (e.g., by estimating 𝑇𝑇0 for 

many fishes) and (2) assessing whether ADD can serve as an accurate proxy for WDD in 

lotic and marine systems. 
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Table 2.1 Bioenergetics equations and parameters used for simulation. All models follow  

the Wisconsin bioenergetics framework; see Hanson et al. (1997) for equations and 

details. Sources are listed in footnotes. 

Model component Model species 
 Yellow perch1 Brown bullhead2 Tiger muskellunge3 

Consumption equation 2 3 2 
CA  0.25 0.12 0.2215 
CB  -0.27 -0.225 -0.18 
CQ 2.3 15 2.53 
CTO  29 24 26 
CTM 32 26 34 
CTL - 30 - 
CK1 - 0.473 - 
CK4 - 0.55 - 
    
Respiration equation 2 1 1 
RA  0.0108 0.0007 0.00246 
RB  -0.2 -0.271 -0.18 
RQ 2.1 0.0915 0.055 
RTO 32 0.4055 0 
RTM 35 0 0 
RTL - 0 0 
RK1 - 1 0 
RK4 - 0 0 
ACT variable variable variable 
BACT - 0 0 
SDA 0.172 0.172 0.14 
    
Egestion-excretion equation 2 1 1 
FA 0.158 0.2 0.13 
FB -0.222 - - 
FG 0.631 - - 
UA 0.0253 0.07 0.07 
UB 0.58 - - 
UG -0.299 - - 
    
Energy density equation 1 1 1 
Predator energy density (J∙g-1) 4186 6700 3600 
Prey energy density (J∙g-1) 37704 43925 38746 

 
1Hanson et al. (1997) 
2Hartman (2017) 
3Schoenebeck et al. (2008)  
4Approximate energy density of Daphnia sp. (Luecke and Brandt 1993, Tabor et al. 1996) 
5Energy density of Chironomidae larvae (Myrvold and Kennedy 2015) 
6Energy density of fathead minnow Pimephales promelas (Chipps et al. 2000, Schoenebeck et al. 2008) 
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Figure 2.3 Daily mean surface water (1 m depth; blue line) and air (gray line) 
temperatures across five years in/near (a) Sparkling Lake, WI (2000, 2002-2005) and (b) 
Lake Lacawac, PA (2010-2014). Surface water and air temperatures were highly 
correlated in both cases (ρ = 0.87 and 0.91 for (a) and (b), respectively). The horizontal 
dashed line at 5 oC indicates the base temperature for degree-day calculations used 
herein.  
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Figure 2.9 Air-based degree-days calculated using various base temperatures for growth 
(ADDx; base temperatures from 6-10 oC) vs. annual growth (Δmm) from a yellow perch 
Perca flavescens bioenergetics model. The growth vs. degree-day relationship is roughly 
proportional when the base temperature is 9 oC, suggesting that this base temperature is 
most appropriate for among-population studies of yellow perch growth.  
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Chapter 3 

 

Advice for selecting base temperatures when using degree-days to 

describe fish growth 

Synopsis 

Degree-days (DD) are becoming increasingly popular as a metric for describing fish 

growth and other physiological processes. However, there is a lack of advice regarding 

how to calculate DD for different fish species. In particular, appropriate values for the 

base temperature for growth (𝑇𝑇0) are unknown for most fish species. Previous work 

showed that error in the value of 𝑇𝑇0 can bias growth rate estimates and lead to erroneous 

conclusions when comparing growth among populations. It is therefore critical to use 

appropriate and biologically-valid 𝑇𝑇0 values when calculating DD. We used two 

approaches that leverage empirical growth data and bioenergetics models to estimate 𝑇𝑇0 

for 82 fish species. We found that 𝑇𝑇0 varied among fish species and across thermal 

guilds, with coldwater species having relatively low 𝑇𝑇0 values and warmwater species 

having higher 𝑇𝑇0 values. In addition, we found that 𝑇𝑇0 varied across life stages and 

depending on whether one uses air or water temperature data to calculate DD. Our results 

provide guidance for calculating DD in fish science for many species and scenarios.  
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3.1 Introduction 

Ambient temperature drives ectotherm growth and other physiological processes (Hazel 

and Prosser 1974, Atkinson 1994, Diana 2003). More specifically, ectotherm metabolic 

processes and phenologies are tightly linked to the amount of thermal energy accrued 

over a given time period, i.e., the thermal integral (Charnov and Gillooly 2003, 

Neuheimer and Taggart 2007). Recent studies have found strong relationships between 

thermal integrals and fish growth and physiology (Honsey et al. in press, Venturelli et al. 

2010a, Chezik et al. 2014b, 2014a). As such, the application of thermal integrals in the 

aquatic sciences is becoming increasingly common (e.g., Kumar et al. 2009, Hansen et al. 

2017, Rypel and David 2017, Ward et al. 2017). 

The degree-day (DD) is perhaps the most commonly-used and well-supported 

thermal integral metric. DD are calculated as 

𝐷𝐷𝐷𝐷 =  �𝑇𝑇𝑡𝑡 − 𝑇𝑇0

𝑁𝑁

𝑡𝑡=1

, 𝑇𝑇𝑡𝑡 > 𝑇𝑇0 

where 𝑁𝑁 is the number of days, 𝑇𝑇𝑡𝑡 is the mean temperature on day 𝑡𝑡, and 𝑇𝑇0 is the base 

temperature below which thermal energy is assumed to be irrelevant to the physiological 

process in question (e.g., growth, maturity). DD can provide an accurate description of 

the thermal energy available for fish growth and are an increasingly popular metric in fish 

science (Neuheimer and Taggart 2007, Righton et al. 2010, Venturelli et al. 2010, Chezik 

et al. 2014a, 2014b, Lester et al. 2014). 

Although DD are a useful metric and are becoming more popular, there are few 

guidelines in fish science for how to apply DD or interpret results. For example, there are 
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competing approaches to determining the base temperature for growth (𝑇𝑇0) and a 

relatively poor understanding of the effect that the choice of 𝑇𝑇0 has on our ability to 

describe growth. As a result, fish scientists have used a variety of base temperatures to 

calculate DD, often with little or no justification (Chezik et al. 2014a). Chezik et al. 

(2014b) combined theory, simulations, and empirical data to show that error in the value 

of 𝑇𝑇0 can complicate inference and lead to erroneous conclusions when comparing 

growth rates among populations (e.g., the apparent evolution of countergradient growth; 

Levins 1969, Conover and Present 1990). These results highlight the need for objective, 

biologically-sound estimates of 𝑇𝑇0 among fishes. 

 Our goal was to provide guidance for calculating DD in fish science by estimating 

𝑇𝑇0 for as many fish species as possible. We used two approaches to do this. Our first 

approach used empirical fish growth data and model-estimated air temperatures to 

provide 𝑇𝑇0 estimates that are most appropriate for calculating DD using air temperature 

data (ADD). Our second approach used fish bioenergetics models and hypothetical water 

temperatures to generate 𝑇𝑇0 estimates that are most appropriate for calculating DD using 

water temperature data (WDD). Our results provide advice for calculating DD across a 

broad range of scenarios and should help to facilitate the interpretation and comparability 

of analyses using DD in fish science. 

 

3.2 Methods 

i) Empirical growth analysis 



40 
 

Our first approach for estimating 𝑇𝑇0 hinges on the notion that growth should respond 

similarly to accumulated thermal energy among populations of a given fish species, and 

that variation in growth rates (in terms of thermal time, e.g., mm∙DD-1) among 

populations should be largely due to local factors such as habitat quality and food 

availability (but see Conover and Present 1990 and discussion below). We can therefore 

estimate 𝑇𝑇0 by finding the value for 𝑇𝑇0 that minimizes variation in growth rates among 

populations (Chezik et al. 2014b). To do this, we compiled empirical mean length-at-age 

data for freshwater fish species across lentic systems in North America and Europe from 

the literature, agency sources, and personal communication (see Supplementary Data File 

1 for more details). We excluded lotic, marine, estuarine, and very large lentic (i.e., the 

Laurentian Great Lakes, Great Bear Lake, Great Slave Lake, Lake Athabasca, Lake 

Winnipeg, Lake Winnipegosis, and Lake Manitoba) systems because (1) we used air 

temperatures to approximate the thermal energy available to individuals at each location 

(see below), and (2) air and surface water temperatures can become decoupled in these 

systems due to physical factors (e.g., flow, wind; Ward 1985, Rouse et al. 2005, Desai et 

al. 2009). 

 We indexed thermal energy using air temperatures because we were unable to 

find water temperature data for all locations in our dataset, and because air temperatures 

are often highly correlated with surface water temperatures in lacustrine systems (e.g., 

Macan and Maudsley 1966, Livingstone and Lotter 1998, Livingstone and Dokuli 2001). 

Moreover, ADD can serve as an accurate proxy for WDD (Honsey et al. in press). 

Estimates of 𝑇𝑇0 generated using this approach are therefore most appropriate for 
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calculating ADD. Given that our samples covered a broad temporal range (see Section 

3.3), our goal was to generate estimates of mean annual thermal energy over a relatively 

long period of time. To do this, we used the ClimateNA v5.21 

(http://tinyurl.com/ClimateNA; Wang et al. 2016) and ClimateEU v4.63 

(http://tinyurl.com/ClimateEU; based on the methodology described by Hamann et al. 

2013; see also Hamann and Wang 2005, Wang et al. 2006, 2012, Mbogga et al. 2009) 

software tools to generate estimates of mean annual ADD for each location at integer 𝑇𝑇0 

values from 0-20 oC, based on the 1970-2000 climate normal. We then converted fish 

calendar ages to thermal ages by multiplying calendar age by the mean annual ADD 

values for each location and 𝑇𝑇0 value.  

 We used a linear model to regress the mean length data against thermal age (in 

ADD). This approach is appropriate because immature fish growth is approximately 

linear with ADD (Honsey et al. in press). However, this linear approximation may not 

hold for adults due to energetic investment in reproduction and other factors (Lester et al. 

2004, Honsey et al. 2017). We therefore made an effort to exclude data describing adult 

growth. Unfortunately, doing so is not straightforward because age at maturity can vary 

among populations (e.g., due to varying annual DD, local biotic factors, etc.; Venturelli et 

al. 2010a, Lester et al. 2014, Feiner et al. 2015). In an effort to mitigate bias due to 

incidental inclusion of adult growth data, we fit linear models to 2-3 sets of ages per 

species and compared results. For example, walleye Sander vitreus mature at ages 3-6+ 

in most systems (Bozek et al. 2011, Honsey et al. 2017). In an attempt to exclude adult 

growth data for walleye, we fit linear models to mean lengths-at-ages ≤ 3, ≤ 4, and ≤ 5 
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(converted to ADD) and compared results. We provide a complete list of the age ranges 

used for each species in Table A2.1. We then calculated the coefficient of variation (CV) 

in growth rate estimates (i.e., slope estimates in mm∙ADD-1) across locations for each 

combination of species, age range, and 𝑇𝑇0 value. We estimated 𝑇𝑇0 by finding the 𝑇𝑇0 value 

for which the CV in growth rate estimates was minimized. In addition, we used the 

modified signed likelihood ratio test for equality of CVs (Krishnamoorthy and Lee 2014) 

within the R package cvequality (Marwick and Krishnamoorthy 2018; see also Feltz and 

Miller 1996) to find the range of 𝑇𝑇0 values for which the CV in growth rate estimates did 

not significantly differ from the minimum. We carried out these and all subsequent 

calculations in R version 3.4.1 (R Core Team 2017). 

 

ii) The 10 oC rule  

Chezik et al. (2014b) showed that 𝑇𝑇0 can be estimated by subtracting 10 oC from the 

mean development temperature for a given species (i.e., the “10 oC rule”; Charnov and 

Gillooly 2003), and that the mean development temperature can be estimated using 

bioenergetics models. Bioenergetics models simulate fish growth using an energy balance 

approach in which the potential for growth is based on energetic gains (via consumption) 

minus metabolic costs and waste (Kitchell et al. 1977, Jobling 1995, Hanson et al. 1997). 

We can therefore use bioenergetics models to estimate the mean growth rate across a 

range of temperatures for various fish species, and we can use the temperature that 

corresponds with that mean growth rate (i.e., 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) as a proxy for the mean 

development temperature. To do this, we simulated fish growth using bioenergetics 
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models from the Fish Bioenergetics 4.0 software (Deslauriers et al. 2017) that conform to 

the Wisconsin bioenergetics framework (Kitchell et al. 1977, Hanson et al. 1997). For 

each of these models, we (1) simulated daily growth across hypothetical water 

temperatures (range = 0-40 oC), (2) calculated the mean growth rate (g∙d-1) between the 

low-temperature minimum and maximum growth rates (i.e., not including growth rates at 

temperatures higher than the optimum growth temperature), (3) identified 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, and (4) 

subtracted 10 oC from 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 to estimate 𝑇𝑇0. We implemented these simulations in a 

proprietary framework in R (see Appendix 2, Section A2.1 for code). We set the 

proportion of maximum consumption (p(Cmax)) at 1 for all models for the sake of 

simplicity and because varying consumption levels had negligible effects on 𝑇𝑇0 estimates 

(results not shown). When possible, we set predator energy densities and initial fish 

masses based on values from literature sources and FishBase (Froese and Pauly 2016). 

For cases in which we could not find estimates for these parameters, we used values that 

were reasonable and/or similar to those of closely-related species. We provide a complete 

description of model parameters and settings in Supplementary Data File 2. We set 𝑇𝑇0 at 

0 oC for cases in which this process resulted in 𝑇𝑇0 estimates < 0 oC. Because these 

simulations used hypothetical water temperatures, 𝑇𝑇0 estimates generated using this 

approach are most appropriate for calculating WDD. 

 

iii) Comparison to thermal guilds 

We assigned each species to a thermal guild using Coker et al.'s (2001) classification 

based on summer preferred temperatures. We classified species as cold (< 19 oC), cool 
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(19 to 25 oC) or warm (> 25 oC). We assigned a species to an intermediate class (e.g., 

cold/cool) when its preferred temperature range overlapped the ranges of adjacent 

categories (Coker et al. 2001, Hasnain et al. 2013). We used temperature preference 

range data from FishBase (Froese and Pauly 2016), Coker et al. (2001), and other 

literature sources (see Table 3.1). Finally, we calculated mean 𝑇𝑇0 values for each guild. 

For species with multiple 𝑇𝑇0 estimates across life stages, we included the 𝑇𝑇0 for the most 

advanced life stage available in our guild-level mean calculations. 

 

3.3 Results 

i) Empirical growth analysis 

Our dataset included length-at-age data for 978 populations of 28 freshwater fish species 

across nine families, with Centrarchidae (11 species), Ictaluridae (6 species) and 

Salmonidae (4 species) having the highest representation (Fig. 3.1; Table 3.1). We 

compiled data for an average of 35 populations per species (range = 4-132 populations 

per species; see Table 3.1). Our dataset spanned almost 90 years (1928-2017), although 

the sampling dates were unknown for many samples (see Supplementary Data File 1). 

 Our estimate of the appropriate value for 𝑇𝑇0 was 0 oC for 19 (68%) species (Table 

3.1). In addition, the CV in growth rate estimates at 𝑇𝑇0 = 0 oC did not significantly differ 

from the minimum CV for all cases. Our 𝑇𝑇0 estimates agreed well across the age ranges 

that we included in the regressions for each species, suggesting that our results were 

likely not biased due to incidental inclusion of adult growth data (see Table A2.1). We 
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provide examples of the relationships between 𝑇𝑇0 and the CV in growth rate estimates for 

four example species in Figure 3.2. 

 

ii) The 10 oC rule 

We estimated 𝑇𝑇0 using the 10 oC rule for 84 bioenergetics models describing 61 species 

(multiple life stages for some species; Table 3.1). Our estimates of 𝑇𝑇0 fell below 10 oC for 

all but three species (red river shiner Notropis bairdi, plains killifish Fundulus zebrinus, 

and Indo-pacific lionfish Pterois spp.). Our 𝑇𝑇0 estimates from this approach were often 

similar for closely-related species (e.g., 𝑇𝑇0�  = 0 oC for all salmonids, gadids, and osmerids) 

and varied predictably across thermal guilds (see below). We provide examples of 

bioenergetics-based growth curves, along with estimates of 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑇𝑇0, for four 

example species in Figure 3.3. 

 

iii) Comparison to thermal guilds 

We were unable to find thermal preference data for two species: humpback chub Gila 

cypha and northern pikeminnow Ptychocheilus oregonensis. In addition, we did not 

classify Tilapia spp. in a single thermal guild because the genus is highly diverse (~100 

species). 

  Our 𝑇𝑇0 estimates from the empirical growth analysis were similar across thermal 

guilds (cold, 𝑇𝑇0�  = 0 oC (n = 4); cold/cool, 𝑇𝑇0�  = 0 oC (n = 1); cool, 𝑇𝑇0�  = 2.17 oC (n = 6); 

and warm, 𝑇𝑇0�  = 3.06 oC (n = 17; Fig. 3.4a)), although variability in 𝑇𝑇0�  was higher in the 

cool and warm guilds compared to the cold and cold/cool guilds. There were no 𝑇𝑇0 
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estimates from the empirical growth analysis for species in the cool/warm guild. In 

contrast, our 𝑇𝑇0 estimates from the 10 oC rule approach varied predictably with thermal 

guild (i.e., 𝑇𝑇0�  consistently increased from the cold through warm guilds; cold, 𝑇𝑇0�  = 0.23 

oC (n = 21); cold/cool, 𝑇𝑇0�  = 1.33 oC (n=3); cool, 𝑇𝑇0�  = 3.12 oC (n = 13); cool/warm, 𝑇𝑇0�  = 

5.81 oC (n = 7); and warm, 𝑇𝑇0�  = 8.66 oC (n = 14; Fig. 3.4b)). 

 

3.4 Discussion 

We provide biologically-based estimates of 𝑇𝑇0 for 82 fish species. Our empirical growth 

analysis provided 𝑇𝑇0 estimates appropriate for calculating ADD for 28 freshwater species, 

and our 10 oC rule approach yielded 𝑇𝑇0 estimates appropriate for calculating WDD for 61 

freshwater and marine species. We provide 𝑇𝑇0 estimates from both approaches for seven 

species. In general, our results suggest that relatively low 𝑇𝑇0 values are often most 

appropriate (e.g., 𝑇𝑇0 ≤ 10 oC), particularly when calculating ADD. Moreover, we found 

that 𝑇𝑇0 estimates were often similar for closely-related species and within thermal guilds. 

Below, we provide advice for selecting 𝑇𝑇0 in various scenarios, discuss caveats to our 

analyses, and suggest additional approaches for estimating 𝑇𝑇0. 

 Low 𝑇𝑇0 values appear to be most appropriate for calculating ADD. The results 

from our empirical growth analysis suggest that 𝑇𝑇0 should be set to 0 oC for the majority 

of the freshwater species in our dataset. Moreover, the coefficient of variation in growth 

rate estimates at 𝑇𝑇0 = 0 oC was not significantly different from the minimum for all 

species. As such, 𝑇𝑇0 = 0 oC might be a reasonable choice for calculating ADD in nearly 

all situations. Our results also show that selecting relatively high 𝑇𝑇0 values (e.g., 𝑇𝑇0 ≥ 15 
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oC) can lead to increased variation in temperature-corrected growth rate estimates among 

populations. Our advice therefore echoes that of Chezik et al. (2014b), who recommend 

erring low when selecting 𝑇𝑇0. Our 𝑇𝑇0 estimate for yellow perch Perca flavescens from the 

empirical growth analysis (𝑇𝑇0 = 5 oC) is slightly lower than that of Chezik et al. (2014b; 

𝑇𝑇0 ≈ 9 oC). However, whereas we used juvenile growth data, Chezik et al. (2014b) used 

young-of-the-year growth data, and thermal optima are generally expected to be higher 

for early life stages than for later life stages (e.g., Edsall and Colby 1970, Karas and 

Thoresson 1992; see Table 3.1). In addition, our 𝑇𝑇0 estimates from this approach are 

similar to those of Rypel and David (2017) for some species (e.g., yellow perch, cisco 

Coregonus artedi), but differ for many species (e.g., largemouth bass Micropterus 

salmoides, smallmouth bass Micropterus dolomieui, common carp Cyprinus carpio, 

bluegill Lepomis macrochirus). These differences may result from the fact that Rypel and 

David (2017) used production rather than growth data to estimate 𝑇𝑇0 (i.e., the “base 

temperature for production” may differ from the base temperature for growth). 

 Our 𝑇𝑇0 estimates from the 10 oC rule approach were slightly more variable than 

those from the empirical growth analysis. However, almost all of our 𝑇𝑇0 estimates fell 

below 10 oC. Our results from the 10 oC rule approach therefore echo those from the 

empirical growth analysis in suggesting that low 𝑇𝑇0 values are generally more appropriate 

than high 𝑇𝑇0 values. In addition, we found that 𝑇𝑇0 estimates based on the 10 oC rule were 

often similar for closely-related species. For example, 𝑇𝑇0�  = 0 oC for all gadids, salmonids, 

clupeids, and osmerids. These results highlight the potential for using phylogeny to 

estimate 𝑇𝑇0 among closely-related species (see below). In addition, these results align 
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well with those of Hasnain et al. (2013), who found that evolutionary history plays an 

important role in determining thermal traits across species. 

We found that 𝑇𝑇0 estimates from the 10 oC rule approach were tightly linked to 

thermal guilds, with estimates consistently increasing from cold to warm guilds (Fig. 

3.4b). This is unsurprising given that the 10 oC rule approach relies on bioenergetics 

models, and that bioenergetics models leverage a deep understanding of thermal 

tolerances and optima across species (e.g., Kitchell et al. 1977, Hanson et al. 1997). 

Indeed, thermal guilds are often defined using data from the same experiments that are 

used to estimate parameters for bioenergetics models (e.g., Coker et al. 2001). These 

results echo those of Hasnain et al. (2010), who found that many temperature-related 

traits (e.g., optimum growth temperature, upper incipient lethal temperature, critical 

thermal maximum) vary predictably across thermal guilds. Additionally, these results 

highlight the potential for predicting 𝑇𝑇0 based on thermal guild and/or using information 

on other traits (see below). In contrast, 𝑇𝑇0 estimates from the empirical growth analysis 

were similar across thermal guilds, although estimates for some species were higher in 

the cool and warm guilds compared to the cold and cold/cool guilds (Fig. 3.4a). The lack 

of a tight relationship between these 𝑇𝑇0 estimates and thermal guild may result from, for 

example, the disconnect between air and water temperatures (although ADD can serve as 

a good proxy for WDD; see Honsey et al. in press). Alternatively, it may simply result 

from the fact that mean air temperatures are generally lower than mean water 

temperatures, and that relatively low base temperatures are therefore appropriate for most 

species and scenarios when calculating ADD. 
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 Our empirical growth analysis involved finding the 𝑇𝑇0 value for which growth 

rate variation among populations was minimized, and it operated under the assumption 

that growth should respond similarly to thermal energy among populations (within 

species). This assumption may have been violated in some cases due to countergradient 

growth (CGG), whereby individuals living in colder environments grow faster per unit 

thermal energy (e.g., per DD) than conspecifics in warmer environments (Conover and 

Present 1990, Chavarie et al. 2010, Rypel 2012b). Given that our empirical growth data 

spanned a broad latitudinal gradient for many species (Supplementary Data File 1), it is 

possible that our dataset included some populations that exhibit CGG. However, even the 

minimum coefficients of variation in growth rates were relatively high across species 

(CV ≈ 0.2-0.5 or higher; Table A2.1). This variation is likely due to myriad local factors 

(e.g., per capita prey availability, predation, water clarity, differences in the relationship 

between ADD and WDD among lakes), perhaps including CGG in some cases. 

Moreover, even if populations exhibiting CGG were present, they may not have affected 

𝑇𝑇0 estimates; faster growth per unit thermal energy does not necessarily coincide with 

differing 𝑇𝑇0. Finally, large sample sizes (mean = 35 and maximum = 135 populations per 

species) likely mitigated any effects of CGG on 𝑇𝑇0 estimates. We therefore argue that it is 

unlikely that CGG significantly biased our results, although we encourage future research 

to explore the effects of CGG on 𝑇𝑇0 and 𝑇𝑇0 estimation. 

 Bioenergetics model parameters and settings were seldom fully reported in the 

Fish Bioenergetics 4.0 software. For instance, predator energy densities (i.e., the energy 

density of the modeled species) were not reported in many cases, and settings such as 
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prey energy density and initial fish mass were almost always omitted because users 

typically adjust them to match the systems that they are modeling. Importantly, we found 

that varying prey energy densities had minimal impacts on 𝑇𝑇0 estimates (results not 

shown). As such, we initially set prey energy density to a middling value (3500 J∙g-1) for 

all models; however, we found that some models required higher prey energy density 

values to produce realistic results (i.e., positive growth), possibly due to a lack of proper 

accounting for the energy density of oxygen during model parameterization (B. Shuter, 

University of Toronto, personal communication; see Supplementary Data File 2). As 

noted in Section 3.2ii, we set predator energy densities and initial fish masses based on 

literature sources and/or values for closely-related species. Our 𝑇𝑇0 estimates from the 10 

oC rule approach would likely benefit from a better understanding of these parameters 

and settings across species. 

 Honsey et al. (in press) suggested another approach for estimating 𝑇𝑇0 that involves 

simulating annual fish growth. This approach hinges on the idea that, if DD are an 

accurate representation of the thermal scope for growth, then growth should be 

proportional to DD when DD are calculated using the proper 𝑇𝑇0 value. One can therefore 

estimate 𝑇𝑇0 by finding the 𝑇𝑇0 value that forces the growth versus DD relationship through 

the origin (i.e., when growth is proportional to DD). We tried this approach using the 

Shuter et al. (1983) water temperature model and the bioenergetics models mentioned 

above. We found that 𝑇𝑇0 estimates varied dramatically with changes in model settings. 

For example, changing the proportion of maximum consumption parameter from 1 to 0.5 

led to a shift in 𝑇𝑇0�  from roughly 0 oC to 8 oC for the generalized coregonid bioenergetics 



51 
 

model (Rudstam et al. 1994; Table A2.2). We also found that 𝑇𝑇0 estimates were highly 

sensitive to the range of temperatures used to drive the bioenergetics models. 

Unfortunately, selecting appropriate values for these and other model settings across 

species is highly subjective, particularly given that they may vary among systems. As 

such, we chose not to include 𝑇𝑇0 estimates from this approach (but see Appendix 2, 

Section A2.2 for more details and example results). 

 Future work should aim to provide 𝑇𝑇0 estimates for additional species using 

multiple approaches. Extending our empirical approach will require the compilation of 

growth data for additional species. In addition, the 10 oC rule approach can be used to 

estimate 𝑇𝑇0 for more species as new bioenergetics models become available. Finally, we 

recommend estimating 𝑇𝑇0 using two additional approaches and existing 𝑇𝑇0 estimates. The 

first approach is based on the fact that life history traits are often correlated (e.g., Roff 

1984, Hasnain et al. 2010, 2013). Because 𝑇𝑇0 is effectively a life history trait, it may be 

possible to predict 𝑇𝑇0 using regressions of existing 𝑇𝑇0 estimates versus other life history 

traits. This approach may be particularly effective given information on other thermal 

traits (e.g., estimating 𝑇𝑇0 from optimum growth temperature or final temperature 

preferendum; Hasnain et al. 2010). Moreover, this approach may be more useful for 

estimating 𝑇𝑇0 values for calculating WDD compared to ADD given that many of our 𝑇𝑇0 

estimates for calculating ADD were 0 oC. The second approach is based on the idea that 

𝑇𝑇0 may be similar for closely-related species, a notion which is generally supported by 

our results (see also Hasnain et al. 2013). It may therefore be possible to predict 𝑇𝑇0 using 

phylogeny. Specifically, for clusters of taxa with known 𝑇𝑇0 values, one can withhold each 
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𝑇𝑇0 value in turn and determine how well it is predicted by phylogeny. If these predictions 

are accurate, then one can estimate 𝑇𝑇0 for a given species using existing 𝑇𝑇0 estimates for 

closely-related taxa.
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Figure 3.2 Example relationships between the coefficient of variation (CV) in 
temperature-corrected growth rate estimates among populations and the base temperature 
used to calculate degree-days for (a) Coregonus artedi (n = 35 populations), (b) Esox 
lucius (n = 84 populations), (c) Perca flavescens (n = 110 populations), and (d) 
Micropterus salmoides (n = 132 populations). We considered the base temperature at 
which the CV in growth rate estimates was minimized as the best estimate for the base 
temperature for growth (𝑇𝑇0; vertical dashed lines). The horizontal dashed line indicates 
the cutoff above which CVs in growth rate estimates were significantly different from the 
minimum. In some cases, such as in (b), CVs shifted dramatically at relatively high base 
temperatures due to changes in sample size (i.e., 0 degree-days at high base temperatures 
for some high-latitude populations). Although we conducted analyses at base 
temperatures ranging from 0-20 oC, we show results for 0-16 oC to facilitate the 
visualization of trends at low base temperatures.  
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Figure 3.3 Example bioenergetics model-derived relationships between daily growth (g) 
and water temperature (oC) for (a) adult Oncorhynchus tshawytscha, (b) larval and 
juvenile Sander vitreus, (c) juvenile Lepomis macrochirus, and (d) juvenile and adult 
Pterois spp. We estimated base temperatures for growth (𝑇𝑇0; vertical dashed lines) by 
subtracting 10 oC (arrows) from the temperature at the mean growth rate (defined as the 
mean between the low-temperature minimum and maximum growth rates; points). We set 
𝑇𝑇0 to 0 oC for cases in which this process resulted in a negative estimate for 𝑇𝑇0, as in (a). 
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Figure 3.4 Estimates of the base temperature for growth (𝑇𝑇0; oC) for species across 
thermal guilds from (a) the empirical growth analysis and (b) the 10 oC rule approach.  
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Chapter 4 

 

Accurate estimates of age at maturity from the growth trajectories of 

fishes and other ectotherms 

 

Synopsis 

Age-at-maturity (AAM) is a key life history trait that provides insight into ecology, 

evolution, and population dynamics. However, maturity data can be costly to collect or 

may not be available. Life history theory suggests that growth is biphasic for many 

organisms, with a change-point in growth occurring at maturity. If so, then it should be 

possible to use a biphasic growth model to estimate AAM from growth data. To test this 

prediction, we used the Lester biphasic growth model in a likelihood profiling framework 

to estimate AAM from length-at-age data. We fit our model to simulated growth 

trajectories to determine minimum data requirements (in terms of sample size, precision 

in length-at-age, and the cost to somatic growth of maturity) for accurate AAM estimates. 

We then applied our method to a large walleye Sander vitreus data set and show that our 

AAM estimates are in close agreement with conventional estimates when our model fits 

well. Finally, we highlight the potential of our method by applying it to length-at-age data 

for a variety of ectotherms. Our method shows promise as a tool for estimating AAM and 

other life history traits from contemporary and historical samples. 
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4.1 Introduction 

Age-at-maturity (AAM) is an important life history trait in ecology and evolution that 

affects lifetime reproductive success and other fitness components (Stearns and Koella 

1986, Roff 1992, Stearns 1992, Bernardo 1993, Berrigan and Charnov 1994, Engelhard et 

al. 2003, Stearns and Hoekstra 2005, Brunel et al. 2013). Estimates of AAM can be used 

to address questions related to life history plasticity (e.g., Reznick 1990, Augert and Joly 

1993, Ebert 1994, Kuwamara et al. 1996, Lester et al. 2014) and evolution (e.g., Charnov 

and Berrigan 1990, Heino et al. 2002, Kuparinen and Merilä 2007), as indicators of stress 

(Trippel 1995), and for management purposes (e.g., fisheries stock assessment; Hilborn 

and Walters 1992). Conventional methods for estimating AAM at the population level 

include logistic regression (Chen and Paloheimo 1994), probit analysis (Hubert 1984), 

probabilistic methods (DeMaster 1978), visual inspection, and others (Trippel and 

Harvey 1991). All of these methods require individual maturity data, which can be costly 

to collect and may be absent for historical samples. 

 Life history theory suggests that resource allocation and therefore growth change 

throughout ontogeny (Roff 1992, Stearns 1992, Kozlowski 1996). In many organisms, a 

shift in resource allocation occurs at maturity, when individuals begin to invest energy in 

reproduction (Kozlowski 1996, Quince et al. 2008a, Mollet et al. 2010). For 

indeterminate growers, this shift in resource allocation leads to slower growth in adults 

(Day and Taylor 1997, Lester et al. 2004, Quince et al. 2008a, Lester et al. 2014, Minte-

Vera et al. 2016). Unfortunately, conventional growth models (e.g., the von Bertalanffy 

growth model; VBGM; von Bertalanffy 1938, Beverton and Holt 1957) are single curves 
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that do not explicitly account for this shift (Day and Taylor 1997). To address this issue, a 

number of biphasic growth models have been proposed that include a change-point in 

growth that occurs at maturity (Lester et al. 2004, Quince et al. 2008a, Mollet et al. 2010, 

Boukal et al. 2014, Minte-Vera et al. 2016). For example, the basic form of the Lester 

model (LM) assumes that immature growth is linear because surplus energy is invested 

solely in somatic growth, while mature growth is asymptotic because energy is invested 

in both somatic growth and reproduction (Lester et al. 2004). Because it is grounded in 

life history theory, the LM is suitable for addressing life history questions (Boukal et al. 

2014) and allows for the estimation of numerous life history traits (e.g., juvenile growth 

rate, length-at-maturity, asymptotic length, the cost to somatic growth of maturity, natural 

mortality rate; Lester et al. 2004). 

 The LM was designed for datasets that include estimates of AAM. However, if 

immature and mature growth rates differ, then it should be possible to use the LM to not 

only describe lifetime growth, but also estimate AAM. If the LM can be fit to length-at-

age data without estimates of AAM, then it could be a powerful tool for estimating life 

history traits from contemporary and historical samples. Previous attempts to estimate 

AAM from growth data using breakpoint linear regressions (Rijnsdorp and Storbeck 

1995, Baulier and Heino 2008, Scott and Heikkonen 2012), modified forms of the 

VBGM (Ohnishi et al. 2012), biphasic growth models (Mollet et al. 2010, Brunel et al. 

2013, Uusi-Heikkilä et al. 2015, Chavarie et al. 2016, Minte-Vera et al. 2016), and 

discriminant and neural network analyses (Engelhard et al. 2003) have produced varying 

results (reviewed in Section 4.4iii). Two recent studies have used the LM to estimate 
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AAM from length-at-age data (Uusi-Heikkilä et al. 2015, Chavarie et al. 2016), but their 

methods have not been validated and rely on indirect assessments for inference on 

parameter values. Thus, the potential and limitations of the LM as a tool for estimating 

AAM and other life history parameters remain largely unexplored.  

Herein, we (1) describe a likelihood-based method for estimating AAM from 

length-at-age data using the LM, (2) conduct a simulation study to outline data quality 

requirements and provide application guidelines, and (3) use empirical data to assess the 

performance of the method. Our method provides direct inference on parameter values, 

allows for simple assessments of fit quality, and, given sufficient data quality, accurately 

estimates AAM for fishes and other ectotherms. 

 

4.2 Methods 

 i) Overview 

We used the “fixed 𝑔𝑔” formulation of the LM (Lester et al. 2004, Quince et al. 2008a, 

Lester et al. 2014) to test the prediction that AAM can be accurately estimated from 

length-at-age data. This formulation assumes that metabolism scales with body size in a 

2/3 power relationship and that the cost to somatic growth of maturity (typically assumed 

to be dominated by investment in reproduction; Roff 1983, Kozlowski 1996) is constant 

for adults. For length at time 𝑡𝑡 (i.e., 𝑙𝑙𝑡𝑡), the growth trajectory is given by 

(1)     𝑙𝑙𝑡𝑡 = 𝑙𝑙0 + ℎ𝑡𝑡, 𝑡𝑡 ≤ 𝑇𝑇 for juveniles,                                           

(2)                 𝑙𝑙𝑡𝑡 = 𝑙𝑙∞�1 − 𝑒𝑒−𝑘𝑘(𝑡𝑡−𝑡𝑡0)�,   𝑡𝑡 > 𝑇𝑇 for adults,                           

with 
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𝑡𝑡1 = −
𝑙𝑙0
ℎ

 

𝑙𝑙∞ =
3ℎ
𝑔𝑔

 

𝑘𝑘 = ln (1 +
𝑔𝑔
3

) 

𝑡𝑡0 = 𝑇𝑇 + ln�1 −
𝑔𝑔(𝑇𝑇 − 𝑡𝑡1)

3
� / ln �1 +

𝑔𝑔
3
� 

(see Table 4.1 for parameter descriptions). The deterministic model can be defined as a 

function of four parameters: 𝑙𝑙0, ℎ, 𝑇𝑇, and 𝑔𝑔. To fit the LM to length-at-age data, we 

assumed a normal distribution for length given age, the mean of which is given by 

equation 1 for immature individuals and equation 2 for mature individuals. The result is a 

joint likelihood function comprised of 5 unknown parameters, 𝐿𝐿𝐿𝐿𝐿𝐿(𝑙𝑙0, ℎ, 𝑇𝑇, 𝑔𝑔, 𝜎𝜎2). To 

improve model performance, we included information on 𝑙𝑙0 and ℎ in the form of normal 

marginal likelihoods (which account for uncertainty in 𝑙𝑙0 and ℎ estimates), and used the 

resulting estimated likelihood for inference (Pawitan 2013); i.e., 𝐿𝐿𝐿𝐿𝐿𝐿(𝑙𝑙0, ℎ, 𝑇𝑇, 𝑔𝑔, 𝜎𝜎2) = 

𝐿𝐿𝐿𝐿𝐿𝐿(𝑙𝑙0)*𝐿𝐿𝐿𝐿𝐿𝐿(ℎ)*𝐿𝐿𝐿𝐿𝐿𝐿(𝑇𝑇, 𝑔𝑔, 𝜎𝜎2| 𝑙𝑙0, ℎ). We used a two-step process to specify the marginal 

likelihoods and fit the full model from a single dataset. Note that if separate data are 

available for 𝐿𝐿𝐿𝐿𝐿𝐿(𝑙𝑙0) and 𝐿𝐿𝐿𝐿𝐿𝐿(ℎ), then this becomes a combined likelihood that, like a 

Bayesian posterior, incorporates prior information (Pawitan 2013). 

We used a likelihood-based evidentialist approach (Royall 1997, 2004, Sober 

2008) to infer AAM and other life history parameters from length-at-age data. According 

to the law of likelihood (Hacking 1965), the ratio of the likelihood for different parameter 

values gives a direct measure of evidential support in the data for a given parameter value 
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relative to another value, allowing for the construction of likelihood ratio intervals that 

represent the range of parameter values that are supported by the data. We used profile 

likelihoods to generate likelihood intervals (Kalbfleisch and Sprott 1970, Taper and Lele 

2011) for evaluating parameter estimability in application (Raue et al. 2009). To generate 

likelihood intervals for 𝑇𝑇 (the Lester model parameter for AAM), we constructed vectors 

of 𝑇𝑇𝑖𝑖 = [𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑚𝑚] and maximized the likelihood over [𝑙𝑙0, ℎ, 𝑔𝑔, 𝜎𝜎2] for each 𝑇𝑇𝑖𝑖. The 

likelihood interval for 𝑇𝑇 included all 𝑇𝑇𝑖𝑖 such that 𝐿𝐿𝐿𝐿𝐿𝐿(𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀)/𝐿𝐿𝐿𝐿𝐿𝐿(𝑇𝑇𝑖𝑖) <  ϰ. Royall (1997) 

recommends a value of ϰ = 8 for strong evidence, meaning that every value outside of the 

interval is < 1/8 as likely as the maximum likelihood estimate. Although the likelihood 

method does not assume a distribution for the likelihood ratio, the intervals are similar in 

form to a frequentist confidence interval that is based on a chi-squared approximation of 

the likelihood ratio distribution. For comparison purposes, ϰ = 8 in a likelihood interval 

corresponds to a ~96% confidence interval. 

 

 ii) Simulation study 

We conducted a simulation study to determine the data requirements and estimate 

reliability of our Lester model likelihood profiling (LMLP) method. Specifically, we 

focused on the accuracy of the LMLP estimator for 𝑇𝑇 across variation in three important 

factors: sample size, precision in length-at-age, and the maturity cost parameter 𝑔𝑔. We 

defined precision as the inverse of the coefficient of variation in length-at-age (i.e., as 

precision increases, variability in length-at-age decreases). We simulated individuals that 

grew according to the LM with growth parameters that were loosely based on walleye 
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Sander vitreus, a well-studied, predatory game fish that is common throughout northern 

North America (𝑇𝑇 = 5 yrs, 𝑙𝑙0 = 100 mm, ℎ = 50 mm∙yr-1, maximum age = 25 yrs; Bozek 

et al. 2011). Each population initially consisted of 1000 individuals from which we drew 

random samples of varying sizes. To replicate common sampling methods, we adjusted 

sample sizes-at-age for gear selectivity and natural mortality (see Appendix 3, Section 

A3.1, Table A3.1). We chose ten levels for each of the three sampling factors (ranges: 

sample size=50-1000 individuals; precision=4-30; 𝑔𝑔=0.05-0.3; Table A3.2). A new 

population of individuals was generated for each of 100 iterations of all possible three-

way factor level combinations (100,000 simulations). We performed all simulations and 

subsequent calculations in R version 3.2.0 (R Core Team 2015) with the additional 

packages car (Fox and Weisberg 2011) and boot (Davison and Hinkley 1997, Canty and 

Ripley 2015). 

We applied LMLP separately for each iteration and constructed profile 

likelihoods for 𝑇𝑇. The vector of 𝑇𝑇 values ranged from 1-16 yrs in increments of 0.025 yrs 

(i.e., 601 values of 𝑇𝑇). We defined the marginal likelihoods for 𝑙𝑙0 and ℎ as normal 

distributions with standard deviations of 25 mm and 5 mm∙yr-1, respectively, with means 

equal to the slope (ℎ) and intercept (𝑙𝑙0) estimates from a linear model fit to the first four 

ages in the simulated sample (actual ages varied due to random sampling). To maximize 

the likelihood for each 𝑇𝑇𝑖𝑖, we used the optim function with the following starting values: 

𝑙𝑙0=linear model intercept estimate, ℎ=linear model slope estimate, 𝑔𝑔=0.15, 𝜎𝜎=25. The 

likelihood intervals included all 𝑇𝑇𝑖𝑖 such that 𝐿𝐿𝐿𝐿𝐿𝐿(𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀)/𝐿𝐿𝐿𝐿𝐿𝐿(𝑇𝑇𝑖𝑖) < 8. 
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To quantify accuracy in 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 across factor levels, we calculated the mean percent 

error in 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 for each factor combination. We used an error contour plot (smoothed using 

LOESS with degree = 2 and α = 0.75) to determine the sample size and precision 

required for 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 to fall within +/- 0.5 yrs of the true value across levels of 𝑔𝑔. Because 

sample size is known and precision can be calculated a priori, the contour plot allows for 

visual estimation of the minimum value of 𝑔𝑔 needed for accurate estimates of AAM. 

 

 iii) Empirical assessment 

We compared the LMLP AAM estimator to a conventional approach (age-at-50% 

maturity; 𝐴𝐴50) using age, length, sex, and maturity data from walleye that were collected 

in Ontario and Quebec, Canada during fall gill net surveys (1993-2008; Morgan 2002), 

and Minnesota, USA during trap-netting, trawling, seining, angling, gillnetting, 

electrofishing, and trot-lining surveys (March-December, 2001-2011; Chezik et al. 

2014a). To prepare these data for analysis and minimize the incidence of erroneous ages, 

we removed (1) samples from the period December-July, (2) fish above age-0 that were 

aged in the field, (3) fish above age-5 that were aged using scales, and (4) males. We 

focused on females because (1) they are often the focus of life history studies in fisheries 

due to their importance with regard to evolution and stock productivity (e.g., Herczeg et 

al. 2012, Hixon et al. 2014), and (2) maturity status based on visual inspection of gonads 

may be more reliable for females than males due to the more obvious appearance of 

ovaries with eggs. The resulting dataset contained a large number of unsexed fish. Given 

that immature walleye grow at similar rates regardless of sex (Venturelli et al. 2010) and 
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in order to preserve realistic sample sizes-at-age, we assumed a 1:1 sex ratio for 

immature fish and randomly removed half of the unsexed fish that were smaller than the 

smallest mature male (143 mm total length). That is, we retained half of the unsexed fish 

that were very likely to be immature. We then removed all unsexed fish above this size to 

avoid including mature males, which could skew our estimates of female AAM and other 

parameters due to sexually dimorphic maturity (Venturelli et al. 2010). 

 We first applied LMLP to data from individual lakes in a single year (lake-year). 

We selected one lake-year from each lake in an effort to span as much of the sample size 

and precision parameter space as possible. To increase sample size, we then combined 

data from up to three consecutive lake-years and analyzed them as a single lake-year 

(multi-lake-year). We used the same LM fitting procedure for these data as for our 

simulation study. Because we had no prior knowledge of 𝑇𝑇 for these datasets, and 

because other estimates of AAM can be inaccurate (Trippel and Harvey 1991), we 

identified a good fit as having one likelihood peak and a likelihood interval ≤ 2 yrs. We 

estimated precision in length-at-age for these datasets by averaging the inverse of the 

coefficient of variation in length at each age across all ages, weighted by sample size-at-

age. As such, our estimate of precision in length-at-age included all potential sources of 

variation, including individual variation in growth, sampling bias, and processing error. 

To compare LMLP to conventional estimators, we compared 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 from good fits 

to 𝐴𝐴50�  from logistic regression using a standard major axis regression, which assumes 

error in both variables. Given that female walleye gonadal investment during the 

preceding growing season is likely visible during August-November, 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 (the age at 
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which the average individual begins to invest in reproduction) and 𝐴𝐴50 (the age at which 

half of the individuals that were collected in fall had developed gonads) should be 

similar. 

To explore LMLP performance in estimating AAM for a broad variety of taxa, we 

also applied LMLP to empirical length-at-age data describing another freshwater fish 

(lake whitefish Coregonus clupeaformis), a marine fish (haddock Melanogrammus 

aeglefinus), an elasmobranch (Alaska skate Bathyraja parmifera; Matta and Gunderson 

2007), and an amphibian (the seal salamander Desmognathus monticola; Castanet et al. 

1996; see Appendix 3, Section A3.2 for data descriptions). Because our goal was to 

demonstrate that LMLP can work for many species, we selected data for which LMLP 

fits were good. Due to the low sample size (n = 4), we compared 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 from these fits to 

𝐴𝐴50�  by calculating the confidence interval for the difference between the two parameters 

(Daniel and Cross 2013). If this interval contained zero, the parameters were considered 

not significantly different from one another (see Appendix 3, Section A3.2 and Table 

A3.3). 

 

4.3 Results 

 i) Simulation study 

Simulation results suggest that LMLP performance is positively related to each data 

quality factor (i.e., sample size, precision, and 𝑔𝑔), and that a low value of one factor will 

result in poor LMLP performance unless the remaining factors are high enough to 

compensate. The sample size and precision required for 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 to fall within +/- 0.5 yrs of 



 

71 
 

𝑇𝑇 across values of 𝑔𝑔 are shown in Fig. 4.1 (gray lines; see Fig. A3.1 for an error contour 

plot without empirical data points). In general, LMLP performed poorly for sample sizes 

< 100-150 individuals, precision in length-at-age < 6, and 𝑔𝑔 < 0.1. Across all simulations, 

𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 was biased above the simulated value of 5 yrs (mean = 5.39 yrs, sd = 1.85 yrs); 

however, nearly all of this bias occurred when the likelihood interval was > 2 yrs wide (n 

= 47,419; mean = 5.74 yrs; sd = 2.46 yrs). Both bias and variability in 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 were smaller 

when LMLP likelihood intervals were ≤ 2 yrs (n = 52,581; mean = 5.07 yrs, sd = 0.92 

yrs). Most of the remaining bias resulted from cases in which likelihood intervals were ≤ 

2 yrs but 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 was very high (≥ 13 yrs; n=338), all of which occurred when sample size 

was < 150 individuals, precision was < 6, and/or 𝑔𝑔 was < 0.1 (without these cases, mean 

= 5.01 yrs, sd = 0.37 yrs; see Appendix 3, Section A3.3 and Figs. A3.2-A3.11 for 

additional diagnostics). Results were similar for the remaining parameters in that 

estimates were biased when likelihood intervals were wide, but virtually unbiased when 

they were narrow. 

 

 ii) Empirical assessment 

Our empirical analysis included 46 lake-years and 11 multi-lake-years (Table A3.4). 

LMLP fits were good for 40 of these datasets and poor for the remaining 17 (see Fig. 4.2 

for examples of good and poor fits). When compared to our simulation results, 51 (89%) 

of the datasets were above their respective error contours (i.e., should be accurate within 

+/- 0.5 yrs) for the nearest (lower) value of 𝑔𝑔, based on 𝑔𝑔� from a LMLP fit (Fig. 4.1; 

Table A3.4). LMLP fit poorly to twelve (21%) of these datasets. For seven of these poor 
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fits, 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 estimates were between 2-4 yrs, which might suggest a need for higher data 

quality when 𝑇𝑇 < 5. Of the six (11%) datasets that were below their respective error 

contours, only one was a good fit (Lac Regnault in 1998; n=150, precision=14.30, 

𝑔𝑔�=0.12). 

The standard major axis regression indicated that 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 was not significantly 

different from 𝐴𝐴50�  when LMLP fits were good (Fig. 4.3). We excluded two lake-years 

(Lac Regnault in 1998 and Lake St. Joseph in 1999) from the regression due to a high 

likelihood of erroneous ageing and/or maturity classification (see Section 4.4). The fit to 

𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 and 𝐴𝐴50�  from the remaining datasets did not significantly differ from a 1:1 line 

(intercept = -0.01, 95% CI = (-0.83, 0.68); slope = 0.99, 95% CI = (0.84, 1.18)), and the 

mean difference between 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 and 𝐴𝐴50�  was 0.50 yrs (sd = 0.41 yrs, range 0-2 yrs). 

The confidence intervals for the differences between 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 and 𝐴𝐴50�  contained zero 

for all four LMLP fits to data describing additional species (lake whitefish: (-0.81, 1.21); 

haddock: (-0.72, 0.44); Alaska skate: (-0.03, 1.45); seal salamander: (-0.65, 0.56)), 

suggesting that LMLP can accurately estimate AAM for a variety of ectotherms (Fig. 4.4; 

see Table A3.3 for additional details). 

 

4.4 Discussion 

 i) Simulation study 

We designed our simulation study to determine the conditions required for LMLP 

estimates of AAM (i.e., 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀) to fall within +/- 0.5 yrs of the true value given the “ideal” 

case in which individuals grow according to the LM. We found that 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 was biased 
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high for poor LMLP fits, likely because low information on AAM led to relatively high 

likelihood values (which are maximized over all other parameters) for a larger range of 𝑇𝑇 

values. It is not unexpected that mean 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 would fall above the true value given that (1) 

the simulations covered many sampling factor combinations for which the model fit 

poorly, and (2) our vector of possible 𝑇𝑇 values included more values above the true value 

of 5 yrs (n = 440) than below it (n = 160). Importantly, bias in 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 was much smaller 

when the likelihood interval was ≤ 2 yrs wide.  

The error contour plot (gray lines in Fig. 4.1; Fig. A3.1) shows the values of 

sample size, precision, and 𝑔𝑔 required for average 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 to fall within +/- 0.5 yrs of the 

true value. This plot can be used to assess the likelihood of an accurate LMLP fit. For 

example, if sample size = 300 individuals and precision = 20, then it is likely that 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 

will be accurate because (300, 20) falls above a large number of error contours across 

values of 𝑔𝑔. However, if sample size = 50 individuals and precision = 4, an accurate fit is 

unlikely because (50, 4) falls beneath all error contours for 𝑔𝑔 values examined herein. 

Such assessments can be augmented by additional information about the species or 

population (e.g., if 𝑔𝑔 is typically ≥ 0.2 for a given species or population). For instance, 

for cases in which AAM is known a priori, one could fit a Lester model in conjunction 

with the maturity information (e.g., with 𝑇𝑇 fixed at AAM or with likelihoods of maturity-

at-age from a logistic-type model) to estimate the remaining model parameters, thereby 

providing insight regarding reasonable values of 𝑔𝑔 for a given species or population prior 

to using LMLP. Moreover, one can use the error contour plot together with (1) the 

sample size and precision of the dataset and (2) the LMLP 𝑔𝑔� to evaluate whether 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 
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should be an accurate estimate of AAM. If a dataset falls above the nearest contour for 𝑔𝑔 

(based on 𝑔𝑔� from a LMLP fit) for a given combination of sample size and precision, then 

𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 should be accurate within +/- 0.5 yrs, particularly if 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 ≥ 5. For example, if a 

dataset falls above the error contour for 𝑔𝑔 = 0.1, then 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 should be accurate if 𝑔𝑔� ≥ 0.1. 

To be conservative, we recommend referring to the nearest lower contour for 𝑔𝑔 when 

using the contour plot to assess 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 accuracy (as we have done for our empirical 

assessment). That is, if 𝑔𝑔� from a LMLP fit is 0.115, then we recommend referring to the 

contour for 𝑔𝑔 = 0.1 as opposed to the contour for 𝑔𝑔 = 0.125. This means of evaluating 

accuracy in parameter estimation can supplement assessments of fit quality from the 

likelihood profile, especially when one has reason to doubt the accuracy of the model 

(e.g., if a likelihood profile has a single peak and a narrow confidence interval but sample 

size is very low). 

 

 ii) Empirical assessment 

When applied to empirical female walleye data, LMLP fits were generally good (based 

on likelihood profile assessments and likelihood interval width) when simulation results 

suggested that they should be accurate (i.e., when datasets were above their respective 

error contours), and vice versa. However, there were more poor LMLP fits when datasets 

fell above their respective error contours (n = 12; 23.5%) than good fits when datasets fell 

below their respective contours (n = 1; 16.7%). This discrepancy could be due to 

variation in AAM among the empirical datasets. For example, if AAM is < 5 yrs, then 

there are fewer age classes (i.e., less information) to describe immature growth, which 
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likely reduces LMLP fit quality. Consistent with this hypothesis, results from two 

additional sets of simulations in which we varied the LM parameter for age-at-maturity 

(i.e., 𝑇𝑇; one with 𝑇𝑇 = 3 yrs and another with 𝑇𝑇 = 7 yrs) suggest that LMLP requires higher 

data quality when 𝑇𝑇 = 3 yrs but not when 𝑇𝑇 = 7 yrs (Appendix 3, Section A3.4 and Figs. 

A3.12-A3.14). Furthermore, variation in AAM across cohorts or lake-years (e.g., due to 

plastic or evolutionary changes in growth and maturation; see Enberg et al. 2012) may 

reduce confidence in 𝑇𝑇𝑀𝑀𝑀𝑀𝐸𝐸 and alter LMLP data requirements. The sensitivity of LMLP 

to AAM could explain some of our results. For instance, 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 was 11.05 yrs for the only 

lake-year that fell below its error contour but had a good fit (Lac Regnault in 1998), and 

was between 2-4 yrs for seven of the 12 lake-years that were above the error contours but 

had poor LMLP fits.  

In addition to variation in AAM, LMLP may also be sensitive to data distribution, 

data coverage, and violations of the LM. Our simulations were based on sample 

distributions that were comparable to fisheries data (see Appendix 3, Section A3.1 and 

Table A3.1), but these distributions are not always realized. For example, LMLP fit 

poorly to a large dataset (Upper Red Lake in 2003, n = 465) because 91% of the fish in 

the sample were age 2 or 4 as a result of stocking (Logsdon 2006), thus providing little 

information on lifetime growth. Similarly, if AAM is 6 yrs but the dataset only contains 

ages 6-12, then LMLP will likely fail to detect AAM. Finally, LMLP may perform poorly 

because the LM is inappropriate. For example, growth leading up to maturity may be 

non-linear. Fortunately, the LM can be relaxed to allow for non-linear immature growth 

(Quince et al. 2008, Boukal et al. 2014; not explored here). Additionally, lifetime growth 
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may span major changes in per-capita food availability, leading to additional change-

points in growth that could reduce LMLP accuracy (Lorenzen and Enberg 2002). 

However, such changes may only have a significant impact when analyzing longitudinal 

data. 

 The standard major axis regression indicated that 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 and 𝐴𝐴50�  do not 

significantly differ when LMLP fits well. We excluded two lake-years with questionable 

maturity data: Lac Regnault (1998) and Lake St. Joseph (1999; Fig. 4.3, Table A3.4). For 

Lac Regnault (n = 150), 𝐴𝐴50�  = 13.67 yrs but 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 = 11.05 yrs. This discrepancy stems 

from three fish aged 26, 16, and 15 that were recorded as immature, likely as a result of 

ageing error, observational error, or cryptic maturity such as skipped spawning (Rideout 

et al. 2005). These probable errors had high leverage on the logistic regression; 𝐴𝐴50�  

decreased to 12.59 yrs after removing the oldest immature fish and to 11.82 yrs after 

removing all three probable errors. Data from Lake St. Joseph (n = 563) appeared to 

contain similar errors; although 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 = 3.5 yrs, the data included multiple immature fish 

aged 10-16 yrs. We considered these probable errors as sufficient justification for 

excluding these lake-years from the analysis. Because such errors have high leverage on 

𝐴𝐴50, LMLP (when it fits well) may be a more reliable method for estimating AAM. Both 

methods assume that ageing is accurate, but LMLP assumes that length is measured 

accurately whereas 𝐴𝐴50 assumes that maturity is classified correctly. Although further 

work is needed, we posit that length errors are usually small and therefore unlikely to 

have a large impact on LMLP estimates. In contrast, maturity classification errors can 

lead to large errors in 𝐴𝐴50� . However, 𝐴𝐴50 may be more reliable in certain cases; for 
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example, changes in per-capita food availability can lead to multiple change-points in 

growth that would impact LMLP but not 𝐴𝐴50. 

 

 iii) Comparison to Other Methods for Estimating AAM from Growth Data 

We are not the first to attempt to estimate AAM from growth data. Rijnsdorp and 

Storbeck (1995) estimated AAM using a segmented linear regression of annual body 

mass increments against body mass derived from female plaice Pleuronectes platessa 

otoliths. The method was somewhat inaccurate when compared to independent estimates 

and, like LMLP, was less accurate for early AAM. Baulier and Heino (2008) applied the 

method and found 47.6% agreement with AAM estimated from scales for Norwegian 

spring-spawning herring Clupea harengus. Scott and Heikkonen (2012) applied a 

conceptually similar approach in which a segmented linear regression was fit to plaice 

mean length-at-age data. Their model was sometimes inaccurate compared to estimates 

derived from a maturation reaction norm approach, especially for males, and was also 

inaccurate for early AAM. Unlike LMLP, these methods do not allow for estimation of 

life history parameters other than AAM (e.g., the cost to somatic growth of maturity, 

asymptotic length, natural mortality rate). 

 Engelhard et al. (2003) used discriminant analysis and artificial neural networks 

to predict AAM from individual scale measurements for Norwegian spring-spawning 

herring. This method correctly classified AAM in 66-68% of cases, although the margin 

of error was seldom > 1 yr (2.9-5.2% of cases). Importantly, the models were highly 

accurate for low AAM (unlike LMLP and the other methods discussed here). As with the 
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segmented linear methods, these methods did not allow for estimation of additional life 

history parameters, but they show significant potential for estimating AAM. 

  Mollet et al. (2010) proposed a biphasic approach to estimate AAM and other life 

history parameters from individual lifetime weight-at-age data. The Mollet model is 

conceptually similar to LMLP, but is founded on the metabolic theory of ecology (West 

et al. 1997, 1999), which assumes that metabolism scales with body size according to a 

3/4 power law. The model showed confounding between variables when estimating four 

parameters (AAM, energy acquisition, maintenance, and reproductive investment). To 

avoid this issue, the authors proposed a three parameter model (by assuming constant 

maintenance) that increased the robustness of results. After this adjustment, Mollet model 

estimates of AAM for female plaice were in general agreement with independent 

estimates. Brunel et al. (2013) reduced the confounding between parameters in the Mollet 

model by incorporating random effects (Laird and Ware 1982). However, this model was 

sensitive to starting values and struggled to converge, particularly when estimating more 

than four parameters. Moreover, the Brunel model was biased in some cases (up to 

~45%, although some cases involved unrealistic parameter combinations) and was 

sometimes inaccurate in estimating AAM when compared to scale-based estimates for 

Norwegian spring-spawning herring (30-61% agreement, although differences in AAM 

estimates were < 1 yr for 97% of cases). As with LMLP, both the Mollet and Brunel 

models were less accurate for early AAM. 

 Ohnishi et al. (2012) proposed an extended VBGM that allows for estimation of 

AAM. Unfortunately, they did not evaluate the accuracy of their model in estimating 
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AAM, and they noted that practical applications of the model would necessitate 

additional parameters. Despite this potential disadvantage, Ohnishi et al. present an 

intriguing model that deserves further attention. 

 Minte-Vera et al. (2016) presented a review and assessment of models that 

incorporate the cost of reproduction, including the LM and related models (Quince-

Boukal; Quince et al. 2008, Boukal et al. 2014). Although they used some of these 

models to estimate AAM from size and age data (including Quince-Boukal but not the 

LM), they focused on describing two new biphasic models and comparing their 

goodness-of-fit to existing models. As such, they did not rigorously assess the ability of 

the models to estimate AAM. In addition, they fit the models to only four empirical 

datasets (split by sex) describing lake trout Salvelinus namaycush. A more complete 

examination of the accuracy of the various models (particularly the two novel ones) in 

estimating AAM and other life history parameters is merited. 

 

 iv) Advantages and Additional Applications of LMLP 

The LMLP method offers many advantages over other techniques for estimating AAM. It 

requires only length-at-age data, which are common across disciplines, and can provide 

accurate estimates of AAM in the absence of maturity data. In addition, LMLP provides 

estimates of other life history parameters, such as juvenile growth rate (ℎ), the average 

cost to somatic growth of maturity (𝑔𝑔), asymptotic length (𝑙𝑙∞), mean length-at-maturity, 

and the instantaneous rate of natural mortality (Lester et al. 2004). One could use LMLP 

to track changes in life history parameters over time (see Kuparinen and Merilä 2007), 
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compare life history parameters among populations (Chavarie et al. 2016), or estimate the 

vital rates of a Leslie projection matrix (Uusi-Heikkilä et al. 2015). 

We used a simple version of the LM, but the LMLP approach can also be used to 

fit models that relax the assumptions of the “fixed 𝑔𝑔” LM that may be difficult to fit 

otherwise. For instance, parameters could be added to fit the “generic biphasic” model 

proposed by Quince et al. (2008; see also Boukal et al. 2014), which (1) allows 𝑔𝑔 to vary 

with age, e.g., as a result of increasing investment in reproduction (Kozlowski 1996) or 

activity costs (Ware 1978, Andersen and Beyer 2015) and (2) relaxes the assumption that 

metabolism scales with body size according to a 2/3 power law, which may be inaccurate 

for many species (Glazier 2010). 

 The likelihood function is a common basis for both frequentist and Bayesian 

statistics, and likelihood intervals have a clear interpretation as model parameter values 

supported by the data. Like Bayesian methods, LMLP can incorporate information about 

parameters, although in both cases inference depends upon assumptions about those 

parameters (either a Bayesian prior or in the specification of a marginal likelihood). For 

applications in which data are not informative of parameters (e.g., low sample size), 

asymptotic results on unbiasedness for likelihood inference may not apply for profile 

likelihoods (Pawitan 2013). It is therefore important to verify estimator performance via 

simulation. For our analyses, we used the same two-step algorithm for all LMLP fits to 

simulated and empirical data for insight on sample conditions when the empirical fits 

may be unreliable. Likelihood profiles provide a useful means of assessing fit quality 

because they show the number of likely parameter values (likelihood peaks) and the 
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degree of confidence in those values (the width of each peak). We found that as data 

became less informative on AAM, likelihood intervals became wider and estimates could 

be biased. We also found that parameter estimates were robust to starting values (not 

shown). Nonetheless, fit quality and accuracy may be improved by adjusting starting 

values or other aspects of the algorithm, particularly when data quality is poor. 

 Our study focused on data describing an entire population at a particular time (i.e., 

cross-sectional data), but our approach can also be applied to longitudinal data that track 

individuals or cohorts through time. Fitting to longitudinal data may be more 

theoretically consistent than fitting to cross-sectional data (Mollet et al. 2010), 

particularly for studies of life history evolution. In addition, LMLP fits to longitudinal 

data may provide a more realistic understanding of life history variation (e.g., by 

allowing for the construction of probabilistic maturation reaction norms; Heino et al. 

2002). Random effects should be included when fitting to individual lifetime growth data 

(Laird and Ware 1982, Brunel et al. 2013). Although LMLP can be adjusted to include 

random effects, incorporating these additional parameters may make the model difficult 

to fit; however, this impact may be minimized by including additional information on 

parameters. 

 Our LMLP algorithm has potentially broad applicability. It can work well not 

only for walleye, but also for any species that has a similar lifetime growth trajectory and 

an associated shift in growth that corresponds to maturity. Our fits to four additional 

species (including fishes, an elasmobranch, and an amphibian) display the potential 

utility of LMLP in accurately estimating AAM for a variety of taxa. The LMLP 
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algorithm may be particularly useful when only length-at-age data are available or 

attainable. However, because LMLP may not work well for some species (e.g., due to 

violations in the assumptions of the LM), more work is needed to determine the 

reliability and data quality requirements of LMLP across taxa. 

 

 v) Conclusion 

Our LMLP algorithm demonstrates that the LM can be leveraged to estimate AAM and 

other life history parameters for a variety of taxa. In addition, we provide a realistic 

assessment of the data requirements of LMLP. In general, our method performed poorly 

for sample sizes < 100-150 individuals, precision in length-at-age < 6, and 𝑔𝑔 < 0.1. The 

algorithm is also sensitive to low AAM, sample distribution across ages, data coverage, 

and violations of the LM. Future work should address these factors and also investigate 

the validity and accuracy of LMLP given different reproductive strategies (e.g., 

hermaphroditism) or when compared to other approaches for assessing maturity (e.g., 

histology). Despite these drawbacks, LMLP shows promise as a tool for research and 

management. Given adequate data quality, LMLP accurately estimates AAM (compared 

to 𝐴𝐴50) and allows for the estimation of additional life history parameters. As such, we 

argue that LMLP represents a valuable addition to the growth modeling toolbox. Future 

research should also (1) assess the capacity for more complex modeling algorithms to 

broaden the applicability and utility of LMLP, (2) adjust LMLP to fit to longitudinal data, 

and (3) apply LMLP to historical datasets and/or ancient data (e.g., lifetime growth back-

calculated from hard structures in sediment cores or middens) to address questions related 
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to life history variation and evolution. More broadly, we argue that this work makes an 

important contribution to the expanding body of literature centered on extracting life 

history information from growth data. Recent efforts have also met with conditional 

success (see Section 4.4iii), suggesting that these growth-related methods have great 

potential for improving our understanding of life history. 

 

4.5 Data accessibility 

Example R code and data describing haddock, Alaska skate, seal salamanders, and 

walleye from Minnesota lakes are available from the Dryad Digital Repository: 

http://dx.doi.org/10.5061/dryad.vb957. To request data collected by the Ontario Ministry 

of Natural Resources and Forestry and the Quebec Ministry of Natural Resources and 

Wildlife, please contact Dr. Sandra Orsatti (OMNRF; sandra.orsatti@ontario.ca) and Dr. 

Michel Legault (QMNRW; michel.legault@mnrf.gouv.qc.ca).   
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Table 4.1 Description of Lester model parameters.  
Parameter Description 
𝑙𝑙0 Theoretical length at age 0 (mm) 
ℎ Net rate of energy acquisition expressed as somatic growth rate (mm∙yr-1) 
𝑇𝑇 Last immature age (yr; Lester model parameter for age-at-maturity) 
𝑙𝑙∞ Asymptotic length (mm) 
𝑘𝑘 von Bertalanffy growth coefficient (yr-1) 
𝑡𝑡0 von Bertalanffy (adult) hypothetical age at length 0 (yr) 
𝑡𝑡1 Lester (immature) hypothetical age at length 0 (yr) 
𝑔𝑔 Cost to somatic growth of maturity (expressed in equivalent energetic units) 
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Figure 4.1 Empirical data describing female walleye Sander vitreus from individual 
lakes (n = 57) in relation to simulated error contours for 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 to fall within +/- 0.5 yrs of 
𝑇𝑇 when 𝑇𝑇 = 5 yrs across levels of sample size, precision, and 𝑔𝑔 (gray lines, labeled 
according to levels of 𝑔𝑔; Table A3.2). Symbols indicate LMLP fit quality (see Section 
4.2) and the position of each point relative to the nearest (lower) contour for 𝑔𝑔, based on 
𝑔𝑔� from a LMLP fit. Error contours were smoothed using LOESS (degree = 2, α = 0.75). 
Datasets that are above the nearest contour for 𝑔𝑔 in the sample size and precision 
parameter space (based on 𝑔𝑔� from a LMLP fit) are likely to provide accurate estimates of 
𝑇𝑇. The position of points depends only on sample size and precision, and not on 𝑔𝑔�. See 
Table A3.4 for a description (including sample size, precision, and 𝑔𝑔�) of each dataset. 
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Figure 4.3 Standard major axis (SMA) regression comparing 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 from good fits to 𝐴𝐴50�  
across datasets. Datasets marked with “x” were excluded from the regression due to 
probable errors in ageing and/or maturity assessment. The standard major axis regression 
line was not significantly different from a 1:1 line. 
  



 

88 
 

 
 
Figure 4.4 Examples of LMLP fits to data describing a variety of taxa, including (a) lake 
whitefish Coregonus clupeaformis (n=149, precision=24.26, 𝑔𝑔�=0.18), (b) haddock 
Melanogrammus aeglefinus (n=359, precision=10.12, 𝑔𝑔�=0.34), (c) Alaska skate 
Bathyraja parmifera (n=231, precision=15.87, 𝑔𝑔�=0.18), and (d) seal salamaders 
Desmognathus monticola (n=83, precision=50.79, 𝑔𝑔�=0.38). Solid lines = immature 
growth; dashed lines = mature growth; box and whiskers = 𝐴𝐴50�  and bootstrapped 95% 
confidence intervals, respectively. Likelihood profiles are shown in gray. For all four fits, 
𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 did not significantly differ from 𝐴𝐴50�  (see Appendix 3, Section A3.2 and Table A3.3 
for details and data descriptions).  
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Chapter 5 

 

A deep dive into the past: biphasic growth models reveal shifts in Gulf 

of Mexico red snapper Lutjanus campechanus life histories from 1941-

2005 

Synopsis 

Fishing tends to select for faster fish life histories (e.g., faster growth, earlier maturity). In 

some cases, fisheries-induced shifts in life history can be hard to detect due to inadequate 

data. For example, maturity data are often insufficient or absent from historical samples, 

which can complicate the analysis of long-term trends in fish life histories. Recent work 

has shown that many life history traits, including maturity-based and reproductive traits, 

can be extracted from growth data using biphasic growth models. Herein, we use a 

biphasic growth model and length-at-age data back-calculated from otoliths to examine 

long-term trends in life history for an economically important and historically 

overexploited fish stock, Gulf of Mexico red snapper Lutjanus campechanus. We show 

that red snapper life histories were relatively slow in the 1940s-1960s, but shifted 

dramatically in the 1970s-1980s to a faster regime in the 1990s-2000s. These shifts do 

not appear to have been driven by temperature, but they coincide with increases in fishing 

pressure that occurred as the fishery developed after World War II. In addition, we found 

limited evidence for recovery of red snapper life histories through 2005 following the 

implementation of strict fishery regulations in 1991. We present otherwise unattainable 
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estimates of life history traits for Gulf of Mexico red snapper during the mid-20th century, 

thereby providing a more complete understanding of how red snapper life histories have 

shifted since the expansion of the fishery. 
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5.1 Introduction 

Selectively harvesting fish can lead to plastic and/or evolutionary changes in fish life 

histories (Heino et al. 2015, Audzijonyte et al. 2016). For instance, increased mortality of 

older, larger fish due to harvest can select for faster life histories characterized by, e.g., 

faster juvenile growth, earlier maturation, and increased reproductive investment (e.g., 

Law 2000, Heino and Godo 2002, Kuparinen and Hutchings 2012). Fisheries-induced 

shifts in life history are likely widespread and can reduce both yield and economic benefit 

from global fisheries (Heino 1998, Zimmerman and Heino 2013). Unfortunately, these 

shifts can be difficult to detect. Experiments (e.g., Conover and Munch 2002) may not 

translate to real-world scenarios, many methods (e.g., Heino et al. 2002) require large 

amounts of data that can be hard to collect, and data describing fish population baselines 

(e.g., from pre-exploitation time periods or early in the development of a fishery) are 

often unavailable or inadequate. 

Growth is the net result of myriad ecological and evolutionary factors and 

processes and is tightly linked to many life history traits (Roff 1983, Stearns 1992). 

Recent advances in growth modeling allow for the extraction of a wealth of life history 

information from growth data (e.g., Mollet et al. 2010, Boukal et al. 2014, Minte-Vera et 

al. 2016). For example, the Lester model (LM; Lester et al. 2004, 2014, Quince et al. 

2008b) is rooted in life history theory and allows for the estimation of multiple life 

history traits from length-at-age data (e.g., age-at-maturity, juvenile growth rate, 

energetic investment in reproduction), many of which cannot be directly estimated using 

traditional growth models (e.g., the von Bertalanffy model; von Bertalanffy 1938, 1957, 
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Beverton and Holt 1957). The LM has been shown to provide accurate life history trait 

estimates for fishes and other ectotherms (Honsey et al. 2017; see also Wilson et al. 

2018). As such, and given the relative abundance of fish length and age data compared to 

other types of data (e.g., maturity data), the LM is a potentially useful tool for detecting 

and monitoring shifts in fish life histories. 

Red snapper Lutjanus campechanus is one of the top recreationally-landed species 

in the US (Figueira and Coleman 2010, Abbott et al. 2018) and is among the most 

ecologically and economically important fishes in the Gulf of Mexico (GOM; e.g., 

Bradley and Bryan 1975). Fishing effort for GOM red snapper increased dramatically 

following World War II due to advances in technology, fishery expansion to the northern 

Gulf shelf off of Louisiana and Texas, and increased recreational catches (Carpenter 

1965, Porch et al. 2007, SEDAR 2018). Overfishing led to severe declines in GOM red 

snapper biomass during the 1940s-1990s, with commercial landings in 1991 comprising 

approximately 12-15% of those in 1965 (Wilson and Nieland 2001, SEDAR 2018). Since 

1991, strict size limits and catch quotas have been enforced in an effort to reduce 

overfishing and promote stock recovery (Schirippa and Legault 1999). It is possible that 

these substantial shifts in fishing effort and biomass have driven fisheries-induced 

changes in GOM red snapper growth and life history. Unfortunately, estimating some life 

history traits (e.g., age-at-maturity) using traditional approaches can be challenging for 

red snapper (see Cook et al. 2009 and Section 5.4). Moreover, although some studies 

have focused on GOM red snapper growth (Bradley and Bryan 1975, Szedlmayer and 

Shipp 1994, Patterson III et al. 2001, Wilson and Nieland 2001), comparisons of growth 
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across time periods are limited to recent years and relatively narrow temporal ranges 

(e.g., 1998-2004, 2001-2012; Nieland et al. 2007, Patterson III et al. 2012, SEDAR 

2013). As such, a comprehensive analysis of GOM red snapper life histories before, 

during, and after the period of high exploitation is lacking. 

Our objectives were to (1) examine shifts in GOM red snapper life histories from 

the mid-20th century to recent decades, and (2) explore potential drivers of any observed 

shifts in red snapper life histories. To do this, we estimated life history traits for red 

snapper from cohorts stretching from 1941-2005 by fitting the LM to growth data back-

calculated from otoliths. We then regressed our estimates against an important 

environmental factor (temperature) and examined the plausibility of that factor as a driver 

of the observed trends compared to other potential drivers (e.g., fishing pressure). 

 

5.2 Methods 

i) Data 

We retrieved 166 GOM red snapper otoliths from archival collections located in the 

National Oceanic and Atmospheric Administration (NOAA) Panama City Laboratory 

(FL, USA). The otoliths were taken from individuals that were landed primarily in 

eastern GOM ports (NOAA Fisheries grids 1-12 in Appendix 4, Fig. A4.1) from 1980-

2016. Individuals were landed via the commercial fishery (n = 105; 63%), recreational 

fisheries (n = 32; 19%), and fisheries-independent surveys (n = 29; 18%). We included 

otoliths from individuals that were estimated to be roughly 10 yr old or greater. 

Moreover, we selected otoliths in an effort to include a broad range of individual sizes- 
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and ages-at-capture within cohorts (or among a limited range of cohorts, e.g., 1991-1995) 

throughout the time series. That is, we tried to include otoliths from both older, larger 

individuals and younger, smaller individuals that hatched at roughly the same time. We 

did this in an effort to ensure that our dataset included the range of life history strategies 

present in the population for a given cohort or range of cohorts. Our dataset included 

individuals with ages-at-capture ranging from 7-59 yr from cohorts ranging from 1941-

2005. In addition, we included only otoliths from known females when possible. We 

focused on females because of their importance with regard to evolution and stock 

productivity (i.e., females are often considered ‘limiting’; Herczeg et al. 2012, Hixon et 

al. 2014). Unfortunately, many of the otoliths came from individuals that were captured 

via the commercial fishery, the data from which seldom included information on sex. The 

increased prevalence of data from recreational fisheries and fisheries-independent 

surveys (for which sex data were more common) in recent years allowed us to include 

only known females for recent cohorts. Of our 166 individuals, 58 (35%) were female, 2 

(1%) were male, and 106 (64%) were of unknown sex. See Appendix 4, Table A4.1 for a 

description of each individual included in the analysis. 

 We thin-sectioned sagittal otoliths through the transverse plane with a high-speed 

saw to a thickness of 0.5 mm following Cowan et al. (1995). We assigned ages to 

sectioned otoliths based on the number of annuli (opaque zones). We analyzed growth 

increments along the dorsal side of the sulcal groove with a binocular dissecting 

microscope at 40x magnification under transmitted light. We photographed all samples 

with a digital camera and then measured growth increment widths using the program 
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ImagePro Plus v. 7.0 (Media Cybernetics, Silver Spring, Maryland). We measured 

growth increments (distances between opaque zones) continuously from the focus to the 

dorsal distal margin, including any partially formed translucent zone on the margin. We 

measured a total of two axes per otolith, always following the direction of growth (i.e. 

perpendicular to the growth increments). Allman et al. (2005) provides additional 

information on otolith reading protocols and practices. 

 

ii) Back-calculation of growth trajectories 

We back-calculated growth trajectories from otolith measurements in order to generate 

estimates of size-based life history traits (e.g., somatic growth rates, length-at-maturity, 

asymptotic size) which would be unattainable otherwise (although some life history traits 

such as age-at-maturity can be estimated directly from otolith measurements; see, e.g., 

Engelhard et al. 2003). We converted otolith measurements to body lengths-at-age via the 

‘age effect’ model proposed by Morita and Matsuishi (2001), with a modification to 

include a biological intercept (an approximation of the length and otolith size of newly-

hatched fish; Ashworth et al. 2017b). This method was found to be among the most 

accurate back-calculation approaches evaluated by Ashworth et al. (2017b). We used data 

describing age-0 red snapper from Allman et al. (2005) to estimate the biological 

intercept. We then fit a regression model to data describing otolith radius at capture, age 

at capture, and total length for all individuals included in the analysis (n = 166), as well 

as juveniles from Allman et al. (2005) (n=125; total n = 291). Our regression model took 

the form 
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𝑅𝑅 =  𝑅𝑅𝐵𝐵𝐵𝐵 +  𝛽𝛽(𝐿𝐿 − 𝐿𝐿𝐵𝐵𝐵𝐵) +  𝛾𝛾(𝑡𝑡 − 𝑡𝑡𝐵𝐵𝐵𝐵), 

where 𝑅𝑅 is otolith radius at capture, 𝑅𝑅𝐵𝐵𝐵𝐵 is otolith radius at the biological intercept (set at 

432.6 μm), 𝐿𝐿 is total length at capture, 𝐿𝐿𝐵𝐵𝐵𝐵 is total length at the biological intercept (set at 

50 mm), 𝑡𝑡 is age at capture, 𝑡𝑡𝐵𝐵𝐵𝐵  is age at the biological intercept (set at 0.044 yr), and 𝛽𝛽 

and 𝛾𝛾 are estimated parameters (Ashworth et al. 2017b). We then estimated lengths-at-

age for adult red snapper (n = 166) as: 

 

𝐿𝐿�𝑗𝑗,𝑖𝑖 =  −
𝑅𝑅𝐵𝐵𝐵𝐵 − 𝛽𝛽𝐿𝐿𝐵𝐵𝐵𝐵 − 𝛾𝛾𝑡𝑡𝐵𝐵𝐵𝐵

𝛽𝛽
+ �𝐿𝐿𝑖𝑖 +

𝑅𝑅𝐵𝐵𝐵𝐵 − 𝛽𝛽𝐿𝐿𝐵𝐵𝐵𝐵 − 𝛾𝛾𝑡𝑡𝐵𝐵𝐵𝐵
𝛽𝛽

+ �
𝛾𝛾
𝛽𝛽�

𝑡𝑡𝑖𝑖� �
𝑅𝑅𝑗𝑗,𝑖𝑖

𝑅𝑅𝑖𝑖
� − (

𝛾𝛾
𝛽𝛽

)𝑡𝑡𝑗𝑗 

 

(Ashworth et al. 2017b), where 𝐿𝐿�𝑗𝑗,𝑖𝑖 is estimated length at age 𝑡𝑡𝑗𝑗 for fish 𝑖𝑖, 𝐿𝐿𝑖𝑖 is length at 

capture for fish 𝑖𝑖, 𝑡𝑡𝑖𝑖 is age at capture for fish 𝑖𝑖, 𝑅𝑅𝑗𝑗,𝑖𝑖 is otolith radius at age 𝑡𝑡𝑗𝑗 for fish 𝑖𝑖, 𝑅𝑅𝑖𝑖 

is otolith radius at capture for fish 𝑖𝑖, and the remaining parameters are as described 

above. 

 

iii) Lester model fits to individual growth data 

We fit the “fixed g” formulation of the Lester model (LM; Lester et al. 2004, 2014, 

Quince et al. 2008b, 2008a, Honsey et al. 2017) to the back-calculated red snapper 

growth data. For length at time 𝑡𝑡 (𝑙𝑙𝑡𝑡), the growth trajectory is given by  

𝑙𝑙𝑡𝑡 = 𝑙𝑙0 + ℎ𝑡𝑡, 𝑡𝑡 ≤ 𝑇𝑇 for juveniles, 

𝑙𝑙𝑡𝑡 = 𝑙𝑙∞�1 − 𝑒𝑒−𝑘𝑘(𝑡𝑡−𝑡𝑡0)�,   𝑡𝑡 > 𝑇𝑇 for adults, 

with 
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𝑡𝑡1 = −
𝑙𝑙0
ℎ

 

𝑙𝑙∞ = 3ℎ
𝑔𝑔

  

𝑘𝑘 = ln (1 +
𝑔𝑔
3

) 

𝑡𝑡0 = 𝑇𝑇 + ln �1 − 𝑔𝑔(𝑇𝑇−𝑡𝑡1)
3

� / ln �1 + 𝑔𝑔
3
�. 

 

In these equations, 𝑙𝑙0 is the theoretical length at age 0 (mm); ℎ is the juvenile somatic 

growth rate (mm ∙ yr-1); 𝑇𝑇 is the last immature age (LM parameter for age-at-maturity; 

yr); 𝑙𝑙∞ is the asymptotic length (mm); 𝑘𝑘 is the von Bertalanffy growth coefficient (yr-1); 

𝑡𝑡0 is the von Bertalanffy theoretical age at length 0 (yr); 𝑡𝑡1 is the Lester (immature) 

theoretical age at length 0 (yr); and 𝑔𝑔 is the cost to somatic growth of maturity (expressed 

in equivalent energetic units), which is often assumed to be dominated by energetic 

investment in reproduction (Roff 1983, Kozlowski 1996, Honsey et al. 2017). We 

assumed that fish length at age 𝑡𝑡 was normally distributed around the length predicted by 

the model for that age, 𝜇̂𝜇𝑡𝑡(𝜃𝜃) (Quince et al. 2008b). In order to allow error to scale with 

fish size, we defined the standard deviation of this distribution, 𝜎𝜎𝑡𝑡, as a power function of 

the predicted length: 𝜎𝜎𝑡𝑡 = 𝜙𝜙𝜇̂𝜇𝑡𝑡
𝜓𝜓, where 𝜙𝜙 and 𝜓𝜓 are estimated parameters (see 

Supplement in Quince et al. 2008a). As such, we estimated six parameters for each model 

fit: 𝑙𝑙0, ℎ, 𝑇𝑇, 𝑔𝑔, 𝜙𝜙, and 𝜓𝜓. 

 We fit the LM in a Bayesian framework using Stan (Carpenter et al. 2017) via 

RStan (Stan Development Team 2018). We fit the model in a fixed-effects framework 

separately to data describing each individual. For each fit, we ran four Hamiltonian 
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Monte Carlo (HMC) chains for 10000 iterations each (3500 warmup, 6500 sampling). To 

improve model performance, we fit a linear model to the first 2-4 length-at-age data 

points for each individual and used the slope and intercept estimates to inform priors on ℎ 

and 𝑙𝑙0, respectively. This process promotes model convergence without leveraging 

information outside of the data and is similar to the approach used by Honsey et al. 

(2017). We used vague priors for the remaining parameters. We used the potential scale 

reduction factor (𝑅𝑅�; Gelman and Rubin 1992) and visually examined HMC chain trace 

plots to assess convergence, and we inspected model fits to the data to assess fit quality. 

We provide code for this model in Appendix 4, Section A4.1. 

The LM fits provided individual-level estimates of eight parameters (excluding 

variance parameters). Five of these parameters (ℎ, 𝑇𝑇, 𝑔𝑔, 𝑘𝑘, and 𝑙𝑙∞) can be considered 

estimates of life history traits. The remaining three parameters (𝑙𝑙0, 𝑡𝑡0, and 𝑡𝑡1) have 

limited biological interpretation (but see Lester et al. 2004). We used these parameter 

estimates to generate estimates of two additional life history traits. We estimated length-

at-maturity (𝑙𝑙𝑇𝑇; mm) by simply calculating the predicted length at age 𝑇𝑇: 

𝑙𝑙𝑇𝑇 =  𝑙𝑙0 + ℎ𝑇𝑇. 

We then estimated the late-stage juvenile and adult instantaneous mortality rate (𝑍𝑍; yr-1) 

using two empirically-derived relationships that leverage well-established tradeoffs 

between maturity, reproductive investment, and mortality (Lester et al. 2004, 2014): 

(1)    𝑍𝑍 ≈  − ln �1 − � 𝑔𝑔
1.18

�� 

(2)     𝑍𝑍 ≈ ln�� 1.95
𝑇𝑇−𝑡𝑡1

� + 1�. 
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iv) Cohort group-level mean life history traits 

We examined trends in mean life history trait values among red snapper individuals 

across the cohorts present in our dataset by first grouping individuals into one of nine 

cohort groups: 1941-1950, 1951-1960, 1961-1970, 1971-1980, 1981-1985, 1986-1990, 

1991-1995, 1996-2000, and 2001-2005. We selected these groups in an effort to balance 

temporal resolution and sample size (e.g., low sample sizes precluded the use of five-year 

cohort groups for pre-1980 cohorts). We then extracted draws from the posterior 

probability distributions for each individual-level LM fit (random sample of 2500 draws 

per parameter per individual), and we compiled these subsampled draws across all 

individuals within a cohort group. We effectively treated these draws as data for 

estimating cohort group-level means in a hierarchical Bayesian framework, once again 

using Stan via RStan. The hierarchical framework was constructed with group-level 

parameters 𝜃𝜃𝑔𝑔 arising as 𝜃𝜃𝑔𝑔 ~ 𝑁𝑁(𝜃𝜃𝑘𝑘,𝜎𝜎𝜃𝜃), where 𝜃𝜃𝑘𝑘 are individual-level parameter 

estimates (i.e., estimates for fish 𝑘𝑘) and 𝜎𝜎𝜃𝜃 is the estimated standard deviation for a given 

group-level parameter estimate. In essence, the hierarchical model re-estimated 

individual-level means and standard deviations from the posterior draws, and then used 

this information to estimate group-level means. We used this approach to ensure that the 

uncertainty around individual-level parameter estimates was appropriately propagated 

when estimating group-level means. For each fit, we ran four HMC chains for 5000 

iterations each (2000 warmup, 3000 sampling). We considered cases in which the 95% 

credible intervals did not overlap for a given pair of group-level parameter estimates to be 

significant differences. We provide code for this model in Appendix 4, Section A4.2. 
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Although most of the individuals included in our analysis were landed in the 

eastern Gulf, some were caught and/or landed in the western GOM (NOAA Fisheries 

grids 13-21 in Appendix 4, Fig. A4.1; see Table A4.1). There is evidence to suggest that 

red snapper life histories may differ across the Gulf, possibly due to historically different 

exploitation levels and/or other factors such as habitat quality (e.g., Fischer et al. 2004, 

Jackson et al. 2007). For this reason, we conducted an analysis to determine whether life 

histories differed among individuals in our dataset that were captured in the eastern 

versus western GOM. Specifically, we calculated group-level mean life history trait 

estimates separately for individuals captured in the eastern versus western GOM within 

each cohort group using the approach described above. We again considered cases in 

which the 95% credible intervals did not overlap to be significant differences. Additional 

details are provided in Appendix 4, Section A4.3.  

 

v) Life history trait estimates versus temperature 

Temperature is an important driver of fish growth, physiology, and life history (e.g., 

Hazel and Prosser 1974, Diana 2003). In general, higher temperatures tend to select for 

faster life histories (i.e., faster growth, earlier maturity, higher natural mortality rates, 

etc.; e.g., Pauly 1980, Berrigan and Charnov 1994, Thorson et al. 2017). To examine 

whether temperature is a plausible driver of shifts in red snapper life history, we obtained 

mean monthly sea surface temperature data from the Hadley HadISST 1.1 1 x 1 degree 

dataset (http://hadobs.metoffice.gov.uk/hadisst; Rayner et al. 2003, Dzaugis et al. 2017) 

for a location in the northeastern GOM (29.5oN, 86.5oW) and for all months from 1941-
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2005. We used these data to calculate annual degree-days (DD), which are a useful metric 

for describing fish growth and life history (e.g., Neuheimer and Taggart 2007, Chezik et 

al. 2014a, Honsey et al. in press). We calculated DD as 

𝐷𝐷𝐷𝐷 =  � (𝑇𝑇𝑚𝑚 − 𝑇𝑇0) ∙ 𝑑𝑑𝑚𝑚

12

𝑚𝑚=1

, 𝑇𝑇𝑚𝑚 > 𝑇𝑇0, 

where 𝑇𝑇𝑚𝑚 is the mean sea surface temperature for month 𝑚𝑚, 𝑇𝑇0 is the base temperature for 

growth (i.e., the temperature below which thermal energy is considered irrelevant to 

growth), and 𝑑𝑑𝑚𝑚 is the number of days in month 𝑚𝑚. Previous work has shown that the 

selection of the base temperature (𝑇𝑇0) can influence growth rate estimates (Chezik et al. 

2014b). In an effort to account for potential bias due to base temperature selection, we 

calculated DD above three base temperatures (0, 5, and 10 oC) and compared results 

generated using the three metrics (i.e., DD0, DD5, and DD10). 

To provide an index of the average annual thermal energy available to red snapper 

individuals in early life, we calculated mean DD0, DD5, and DD10 across the years 

included in each cohort group (i.e., 1941-1950, 1951-1960, etc.) using a Bayesian model 

of the mean in Stan via RStan. We then regressed the group-level life history trait 

estimates against these metrics for each cohort group using a hierarchical modeling 

framework similar to the one described above. Specifically, we extracted draws from the 

posterior probability distributions for both the group-level life history trait estimates and 

the mean DD estimates (2500 random draws per trait/metric). We incorporated these 

draws in a hierarchical regression framework (again using Stan via RStan) in order to 

propagate error in both the life history trait estimates and the mean DD estimates. For 
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these fits, we again ran four HMC chains for 5000 iterations each (2000 warmup, 3000 

sampling). 

 

5.3 Results 

i) Lester model fits to individual growth data 

The LM generally provided good fits to the back-calculated length-at-age data despite a 

broad range of parameter estimates (i.e., dramatically different growth trajectories) 

among individuals and cohort groups. For instance, 𝑇𝑇�  ranged from 1.72-11.67 yr, and ℎ� 

ranged from 32.14-262.31 mm∙yr-1 among individuals (Fig. 5.1). However, we 

considered LM fits for 19 individuals to be untrustworthy due to a lack of convergence 

and/or poor fits to the data (e.g., Fig. 5.1c,d). These poor model fits appear to have been 

caused by low sample size (i.e., fish that were relatively young at capture) and/or 

multiple plateaus in the growth trajectory (i.e., a ‘stair-step-like’ growth pattern), leading 

to multiple likelihood peaks for model parameters. We present results excluding 

parameter estimates from these unreliable fits (as well as for fits to males) throughout the 

remainder of the paper. Results including these fits were qualitatively almost identical; 

these results and additional details and are provided in Appendix 4 (Section A4.4, Figs. 

A4.9-4.15). 

 

ii) Cohort group-level mean life history traits 

Our results suggest that red snapper life histories were significantly faster in recent 

decades than they were in the mid-20th century (Figs. 5.2, 5.3). Mean age at maturity (𝑇𝑇) 
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more than halved from 7.45 yr in 1941-1950 to 3.06 yr in 2001-2005 (Fig. 5.2), and mean 

juvenile growth rate (ℎ) roughly doubled from 63.84 mm∙yr-1 in 1941-1950 to 124.47 

mm∙yr-1 in 2001-2005 (Fig. 5.3a). Similarly, investment in reproduction (𝑔𝑔; Fig. 5.3b), 

adult growth rate (𝑘𝑘; Fig. 5.3c), and mortality rate (𝑍𝑍; Fig. 5.3d) all approximately 

doubled from 1941-1950 to 2001-2005. We did not find any significant trends in 𝑙𝑙∞ (Fig. 

5.3e) or 𝑙𝑙𝑇𝑇 (Fig. 5.3f), although there is evidence for a non-significant decrease in both 

traits over time. Our estimates of 𝑍𝑍 from eq. 1 (Fig. 5.3d) were consistently higher than 

those from eq. 2 (see Appendix 4, Fig. A4.16), but the trends over time were similar for 

both approaches. In general, our results indicate that GOM red snapper life histories were 

relatively slow from 1941-1970, after which they transitioned during 1971-1990 to a 

faster life history regime in 1991-2005. We did not find any evidence for a significant 

recovery of life histories (i.e., to the slower life history regimes of the mid-20th century) 

by 2001-2005 (but see Section 5.4). Moreover, we did not detect any significant 

differences in life history traits within cohort groups among individuals captured in the 

eastern versus western GOM (see Appendix 4, Section A4.3 and Figs. A4.2-A4.8 for 

details).  

 

iii) Life history trait estimates versus temperature 

Our three thermal metrics (DD0, DD5, and DD10) were highly correlated (Pearson’s 𝑟𝑟 > 

0.99 for all pairwise comparisons), and inference from the regression models was 

identical for each metric. We present results for DD0 herein; results generated using the 

other two metrics are provided in Appendix 4, Table A4.2. 
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 We found a marginally significant, positive relationship between DD0 and 𝑇𝑇 

(slope = 0.016; 95% credible interval = (0.002, 0.031)), and marginally significant, 

negative relationships for regressions of DD0 versus ℎ (slope = -0.282; 95% credible 

interval = (-0.497, -0.066), and 𝑘𝑘 (slope = -2.81 ∙ 10-4; 95% credible interval = (-5.55 ∙ 10-

4, -1.80 ∙ 10-6); Fig. 5.4). In contrast, we found non-significant relationships (i.e., the 95% 

credible intervals for slope estimates overlapped 0) for DD0 versus 𝑔𝑔, 𝑍𝑍, 𝑙𝑙𝑇𝑇, and 𝑙𝑙∞. 

 

5.4 Discussion 

Our results suggest that Gulf red snapper life histories have become significantly faster 

since the mid-20th century. Specifically, we observed a roughly two-fold reduction in 

age-at-maturity, and a roughly two-fold increase in somatic growth rates, energetic 

investment in reproduction, and mortality rates from 1941-2005. In addition, we found 

weak but marginally significant relationships between temperature and three of our life 

history trait estimates: age-at-maturity, juvenile somatic growth rate, and adult somatic 

growth rate (i.e., the von Bertalanffy growth coefficient). However, the direction of these 

relationships was opposite to that predicted by life history theory. Increases in 

temperature generally lead to faster growth and earlier maturity (e.g., Pauly 1980, 

Berrigan and Charnov 1994, Venturelli et al. 2010). In contrast, we found that higher 

temperatures were correlated with slower growth and later maturity for the individuals in 

our dataset. These relationships appear to be driven by estimates from early portions of 

the time series in which temperatures were relatively warm and red snapper life histories 

were relatively slow. For instance, estimates of both DD0 and 𝑇𝑇 were highest for the 
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1941-1950 and 1951-1960 cohort groups (upper-rightmost points in Fig. 5.4a). Given our 

relatively low sample size (n = 9 cohort groups) and that the observed relationships 

contradict life history theory, we argue that these results are an example of correlation 

without causation, and we suggest that factors other than temperature likely drove the 

observed shifts in red snapper life histories. 

Fishing pressure is perhaps the most plausible driver of the observed shifts in red 

snapper life histories. Fishing pressure for GOM red snapper increased dramatically 

following World War II (Fig. 5.5; SEDAR 2018), leading to substantial declines in 

biomass and the implementation of strict fishing regulations in 1991 (Schirippa and 

Legault 1999). It is plausible, and perhaps even likely, that the selective exploitation of 

GOM red snapper contributed to shifts in life history (see Nieland et al. 2007). We did 

not explicitly include an index of fishing pressure as a driver of life history shifts in our 

models because doing so was not as straightforward as for other factors that have more 

immediate effects (e.g., temperature), and may therefore have led to erroneous 

conclusions. For instance, we expect that there was a lag between fishing pressure and its 

effects on fish life histories, and the length of that lag was likely dynamic with shifts in 

life histories (e.g., changes in generation times). However, we note that GOM red snapper 

life histories appear to have shifted following the rapid increase in fishing pressure in the 

1950s-1970s (Fig. 5.5), which is consistent with the hypothesis that fishing pressure is an 

important driver of the observed shifts. 

We did not find evidence for significant recovery (i.e., ‘slowing down’) of life 

histories at the cohort group-level by 2001-2005 in response to the enforcement of strict 
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size limits and catch quotas since 1991 (Schirippa and Legault 1999). However, there is 

evidence to suggest that life histories for recent red snapper cohorts are indeed shifting 

toward historical regimes (Brown-Peterson et al. in press, SEDAR 2018). Despite the fact 

that we did not see significant recovery at the cohort group level, our results at the 

individual level hint at potential recovery. For example, there were four individuals 

(16%) in the 2001-2005 cohort group with relatively slow life histories compared to the 

group-level mean (e.g., 𝑇𝑇 estimates of 5.05, 5.11, 5.62, and 7.27 yr; group-level mean for 

2001-2005 = 3.06 yr). Individuals with similar life histories were less common in the 

1996-2000 (two individuals (10%) with 𝑇𝑇 between 5 and 6 yr) and 1991-1995 (one 

individual (3%) with 𝑇𝑇 > 5 yr) cohort groups. Future analyses using the LM or a similar 

approach may detect significant recovery at the group level by, for example, leveraging 

larger sample sizes and/or including older individuals from more recent cohorts, once 

they have aged sufficiently. 

Our mortality rate estimates (𝑍𝑍) can be considered estimates of total mortality rate 

(i.e., fishing mortality rate + natural mortality rate) assuming an evolutionary equilibrium 

state. This assumption likely does not hold given the history of the Gulf red snapper 

fishery, which includes large shifts in fishing pressure, and therefore selective pressures, 

over time (Schirippa and Legault 1999; see Fig. 5.5). However, we argue that these 

estimates are still informative given that they provide insight regarding the mortality rates 

to which individuals are likely adapted, based on their growth and other life history traits. 

Moreover, our estimates appear to be reasonable given previous estimates of fishing and 

natural mortality rates. For example, fishing mortality rates for red snapper at artificial 



 

107 
 

reef sites have been estimated at roughly 0.27-0.44 yr-1 (Topping and Szedlmayer 2013, 

Williams-Grove and Szedlmayer 2016) for recent years, and natural mortality rate 

estimates for adults often fall near 0.1 yr-1 (Topping and Szedlmayer 2013, SEDAR 

2018). An approximate range of plausible 𝑍𝑍 is therefore 0.37-0.54 yr-1. The fact that our 

LM-based 𝑍𝑍 estimates for recent cohorts largely fall in this range (𝑍𝑍 = 0.45-0.58 yr-1 for 

eq. 1 and 0.39-0.47 yr-1 for eq. 2 for 1986-2005) suggests that red snapper life histories 

may be well-adapted to current 𝑍𝑍. 

We were unable to make direct comparisons between our results and life history 

trait estimates generated from conventional approaches in most cases. For example, 

estimating age-at-maturity using traditional methods (e.g., age-at-50% maturity or A50; 

Chen and Paloheimo 1994) requires maturity data, which were not available for most of 

the early portion of our time series. Moreover, estimating maturity-based traits can be 

challenging for red snapper even when maturity data are available. Specifically, young, 

small red snapper can be difficult to catch and are often rare in assessment datasets, 

which can lead to problems when calculating maturity metrics (e.g., unrealistic and/or 

highly uncertain estimates of A50 ; Cook et al. 2009). For this reason, we did make any 

direct comparisons between 𝑇𝑇 and A50. In addition, many of our growth parameter 

estimates were not directly comparable to those from conventional models (e.g., von 

Bertalanffy growth models) due to differing functional forms and parameterizations 

among models. However, we did find that our estimates of asymptotic length (𝑙𝑙∞) align 

well with those generated from von Bertalanffy models in other studies (𝑙𝑙∞ ≈ 850-1025 

mm; Szedlmayer and Shipp 1994, Patterson III et al. 2001, Wilson and Nieland 2001, 
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SEDAR 2013). Moreover, a recent meta-analysis found modest shifts toward slower life 

history strategies in female GOM red snapper reproductive parameters (e.g., increase in 

spawning interval, decrease in relative batch fecundity) from 1991-2017 (Brown-Peterson 

et al. in press). Our results show a somewhat similar trend: we observed a slight (non-

significant) decrease in reproductive investment (𝑔𝑔) from 1991-1995 to 1996-2000, 

although mean reproductive investment was similar for 1991-1995 and 2001-2005. Lester 

model-based analyses of more recent cohorts in future years may further elucidate trends 

in reproductive parameters since the implementation of strict fishing regulations in 1991. 

Our methods did not allow us to explicitly disentangle plastic versus evolutionary 

change, a common difficulty with studies that leverage phenotypic data describing wild 

populations (Heino et al. 2015). With more data, it may be possible to pair our methods 

with a probabilistic reaction norm approach (e.g., Heino et al. 2002) to differentiate 

between plastic and evolutionary shifts in life history traits (although there is debate as to 

whether such approaches succeed in doing so; e.g., Law 2007, Uusi-Heikkilä et al. 2011, 

Salinas and Munch 2014). Importantly, we did not find evidence for significant decreases 

in asymptotic length or length-at-maturity over time (although there were non-significant 

decreases in both traits), both of which are often expected to occur as a result of fisheries-

induced evolution (Heino 1998, Heino et al. 2015). 

 Although we attempted to include individuals spanning a broad range of ages- and 

sizes-at-capture within each cohort group, individuals from early cohorts were 

consistently older than individuals from more recent cohorts. This was largely 

unavoidable, given that, e.g., we did not have samples from before 1980, and therefore 
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we could not include younger individuals from these earlier cohorts. However, it is 

possible that there is (and has been) a broad range of life history strategies present in 

GOM red snapper populations, and that older individuals tend to display relatively slow 

life histories. Sampling may therefore have contributed to the observed shifts in life 

histories. For instance, individuals displaying slow life histories from recent cohorts may 

be present in the population, but may not have been sampled (and vice versa for earlier 

cohorts). As such, our results may be biased due to Lee’s phenomenon (Lee 1920), 

whereby population-level estimates of life history traits can be skewed due to 

unrepresentative sampling. A more complete explanation of this potential bias would 

require sampling older fish from recent cohorts in the future (i.e., age 40-50+ individuals 

sampled 30-40 yr from now, if present), as well as younger fish from cohorts early in the 

time series (which may only be possible via the collection of otoliths from sediment 

cores; see below). That being said, we did observe traits suggestive of relatively slow life 

histories in some individuals from recent cohorts, despite the fact that they were captured 

at relatively young ages (see Appendix 4, Table A4.1). Moreover, we observed traits 

suggestive of slow life histories from individuals that were captured at relatively young 

ages earlier in the time series. For example, two individuals from the 1961-1970 cohort 

group that were captured at ages 11 and 15 yr displayed relatively slow growth rates 

(47.42 and 54.12 mm∙yr-1, respectively) and late ages-at-maturity (5.97 and 5.73 yr, 

respectively). Two individuals from the same cohort group that were captured at older 

ages of 27 and 35 yr displayed faster life histories (growth rates = 97.74 and 106.98 

mm∙yr-1, respectively; ages-at-maturity = 4.80 and 3.85 yr, respectively). The fact that we 
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estimated relatively slow life histories for individuals that were captured at relatively 

young ages (and vice versa) suggests that our results are not solely a product of Lee’s 

phenomenon. 

 Growth trajectories estimated via back-calculation from otoliths can be biased 

(e.g., Campana 1990). We used a method that was found to be among the most accurate 

back-calculation methods (Ashworth et al. 2017a, 2017b). We chose not use the method 

proposed by Ashworth et al. (2017a, 2017b), which was found to have similar accuracy 

to the approach used herein, because it requires applying the best-fitting growth curves to 

length-at-age and otolith size-at-age data. These growth curves may take various forms 

(e.g., von Bertalanffy, logistic, Pütter). Using growth curves that differ from the LM in 

form in the back-calculations could have complicated, and possibly confounded, the 

fitting of the LM to back-calculated length-at-age data. For example, using a von 

Bertalanffy or logistic model to inform back-calculations could influence the shape of the 

resultant growth trajectory (i.e., trajectory might be more von Bertalanffy-like or logistic 

in shape) and could therefore bias LM parameter estimates in nuanced and cryptic ways. 

 Our results may have been influenced by the incidental inclusion of males in our 

analyses. There is evidence to suggest that some male red snapper reproduce at younger 

ages and smaller sizes than females (Futch and Bruger 1976, White and Palmer 2004, 

Brown-Peterson et al. 2009). In contrast, Render (1995) reports similar lengths-at-50% 

maturity for male and female red snapper, with some females maturing at smaller sizes 

than males. In addition, Wilson and Nieland (2001) found that growth trajectories 

significantly differed between males and females, whereas Patterson III et al. (2001) 
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found a non-significant difference in growth between sexes. In an effort to mitigate this 

potential bias, we selected only otoliths from known females when possible, and we 

present results excluding known males. Unfortunately, most (64%) of the individuals in 

our dataset were of unknown sex. As such, the number of males in the dataset (and 

therefore the degree of potential bias in our results) is unclear. To examine the potential 

for bias driven by the inclusion of unknown sex individuals, we conducted an analysis to 

compare life history trait estimates for females versus unknown sex individuals within 

cohort groups. Importantly, we found that trait estimates did not significantly differ 

between females and unknown sex individuals for all but one case (𝑙𝑙∞ was slightly higher 

for females than for unknown sex individuals in 1981-1985), although we were only able 

to compare traits for two cohort groups due to sample size limitations (see Appendix 4, 

Section A4.5 and Table A4.3 for additional details and results). 

Hierarchical frameworks offer some advantages over fixed-effects frameworks for 

fitting growth models, such as better partitioning of the variability in growth (Vigliola 

and Meekhan 2009, Ogle et al. 2018). However, hierarchical frameworks also have 

drawbacks; for example, the ‘shrinkage effect’, a phenomenon whereby individual-level 

parameter estimates are pulled toward the group mean (Helser and Lai 2004), can 

complicate inference from hierarchical models. This effect can be especially problematic 

for individuals with limited information (i.e., low sample size) and/or parameters that 

vary substantially from the mean. We attempted to fit the LM simultaneously to all 

individuals within a cohort group using a hierarchical framework, but the models often 

failed to converge and there appeared to be issues with shrinkage. For example, model 
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fits to data were often very poor for individuals with few data points and/or with growth 

trajectories that differed considerably from those of other individuals within a cohort 

group. Given these issues, we chose to use a fixed-effects framework for fits to individual 

growth data. This approach allowed us to make minor modifications (e.g., adjustments to 

priors for some parameters) to fits for each individual, thereby leading to better 

convergence and improved fits to the data. Although our LM fits at the individual level 

were coded in a fixed-effects framework, we used a hierarchical framework that 

incorporated error in the individual-level parameter estimates to generate cohort group-

level mean parameter estimates, and we focused on these means for inference. Our hybrid 

approach leveraged advantages of both fixed-effects and hierarchical frameworks and 

allowed us to effectively propagate error without sacrificing fit quality at the individual 

level. 

Our study provides a more thorough understanding of how red snapper life 

histories have changed since the expansion of the fishery following World War II, and we 

present otherwise unattainable estimates of life history traits for the early portion of that 

expansion. For example, using a growth-based approach allowed us to estimate age-at-

maturity and other life history traits for red snapper cohorts stretching back into the 1940s 

despite insufficient maturity data. Furthermore, it may be possible to use the LM or a 

similar approach to estimate life history traits for red snapper even deeper into the past by 

back-calculating growth from otoliths collected in sediment cores. Leveraging growth 

data and theoretically-sound models to understand life history is a potentially fruitful and 

important direction for future life history studies. 
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Figure 5.1 Example fits of the Lester biphasic growth model to back-calculated Gulf of 
Mexico red snapper Lutjanus campechanus length-at-age data. Panels depict model fits 
that were considered trustworthy (a,b) versus fits that were considered untrustworthy 
(c,d) for relatively old (a,c) and relatively young (b,d) individuals. The solid line denotes 
the juvenile growth phase, while the dashed line denotes the mature growth phase. The 
disconnect between the two growth phases in (c,d) is an indicator of poor model 
convergence. Note that x-axis ranges differ among panels. 
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Figure 5.3 Mean cohort group-level life history trait estimates generated from Lester 
model fits to back-calculated Gulf of Mexico red snapper Lutjanus campechanus growth 
data for cohorts from 1941-2005. Parameters describe (a) juvenile growth rate h (mm∙yr-

1), (b) the cost to somatic growth of maturity, typically assumed to be dominated by 
energetic investment in reproduction g (gonad mass/somatic mass), (c) adult growth rate 
k (the von Bertalanffy growth coefficient; yr-1), (d) instantaneous total mortality rate Z 
(yr-1), (e) asymptotic length l∞ (mm), and (f) length-at-maturity lT (mm). Points represent 
cohort group-level mean parameter estimates, and error bars indicate 95% Bayesian 
credible intervals. Sample sizes for each cohort group are identical to those displayed in 
Fig. 5.2. 
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Figure 5.4 Statistically significant relationships of mean annual degree-days above 0 oC 
(DD0) vs. Lester model-based cohort group-level mean estimates of (a) age-at-maturity 
(T; yr), (b) juvenile somatic growth rate (h; mm∙yr-1), and adult growth rate (k, the von 
Bertalanffy growth coefficient; yr-1) for Gulf of Mexico red snapper Lutjanus 
campechanus from 1941-2005. See Chapter 5 and Figs. 5.2-5.3 for a description of the 
cohorts included in each group. Annual DD0 were averaged across the years included in 
each cohort group. Error bars indicate 95% Bayesian credible intervals. Relationships 
between DD0 and the remaining Lester model-based life history trait estimates (g, Z, l∞, 
lT) were not significant. 
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Chapter 6 

 

General discussion 

 

6.1 Summary 

Ectotherm growth is intricately linked to both temperature and other aspects of life 

history (e.g., Stearns 1992, Neuheimer and Taggart 2007, Lester et al. 2014). 

Understanding the way in which temperature influences growth, and using metrics that 

reflect that understanding to describe growth, is of paramount importance to ectotherm 

research and management. In Chapters 2 and 3, my coauthors and I combined theory, 

empirical data, and simulation modeling to provide (1) foundations for using degree-days 

(DD) derived from both air and water temperature data to describe fish growth, and (2) 

guidance for calculating DD for many fishes and scenarios. We showed that the linear 

relationship between DD and immature fish growth is rooted in fish bioenergetics, and 

that DD derived from air temperatures can serve as a good proxy for DD derived from 

water temperatures. We also provided estimates for the base temperature for growth, an 

important parameter for calculating DD, for many fishes and scenarios. In addition, 

recent advances in life history theory (e.g., West et al. 1999, Lester et al. 2004, Quince et 

al. 2008a) have led to the development of growth models that allow for the extraction of a 

wealth of life history information from growth data (e.g., Mollet et al. 2010, Boukal et al. 

2014, Andersen and Beyer 2015). In Chapter 4, my coauthors and I developed a 
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statistical approach to use one such model, the Lester biphasic growth model (Lester et al. 

2004), to estimate multiple life history traits from growth data. We showed that our 

approach can provide accurate estimates of age-at-maturity for fishes and other 

ectotherms, and we evaluated the performance of the method across various species and 

data quality scenarios. Finally, in Chapter 5, we applied the Lester model to investigate 

changes in life history traits for Gulf of Mexico red snapper Lutjanus campechanus from 

1941-2005. We showed that red snapper life histories shifted toward a faster life history 

regime in the mid-20th century, likely in response to exploitation. Using this approach, we 

were able to paint a picture of red snapper life histories deeper into the past than would 

have been possible otherwise, thereby gaining a more complete understanding of how red 

snapper traits have changed in the face of fishing pressure and other stressors. 

In essence, this work updates and expands the analytical toolkit used by fish 

scientists. As such, it has the potential to advance fish science and promote sustainable 

fisheries management. For example, justifying and providing guidance for the use of DD 

in fish science should improve estimates of sustainable exploitation rates (Lester et al. 

2014), help to disentangle the effects of temperature and other factors (e.g., fishing) on 

growth and life history (Neuheimer and Grønkjær 2012), and provide insight into 

fundamental questions about the evolution of growth along a thermal gradient (Angilletta 

2009). Inferring maturity and other life history information from growth data can be a 

powerful tool for adaptive management (Walters 1986) and for analyses of life history 

shifts in response to anthropogenic or other stressors (e.g., Audzijonyte et al. 2016), 

particularly when other methods cannot be used (e.g., for samples that lack life history 
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data). More broadly, this work may be applicable to many species (e.g., see Fig. 4.4) and 

could motivate similar research in other fields. 

 

6.2 Future directions 

Good scientific research raises more questions than it answers (Venturelli 2009). The 

work described in this volume is no exception. Below, I elaborate on the questions and 

suggested future directions for research highlighted in Chapters 2-5 that I would argue 

are most important for advancing fisheries research and management. 

DD are particularly useful for comparing growth and physiological traits among 

populations because they account for differences in thermal energy experienced by 

individuals in those populations. That is, because DD integrate time and temperature, 

they allow for comparisons across thermal gradients that would be otherwise confounded 

by differences in temperature (e.g., Venturelli et al. 2010, Chezik et al. 2014b). The fact 

that air-based DD (ADD) can serve as an accurate proxy for water-based DD (WDD) is 

especially advantageous because air temperature data are much more common than water 

temperature data. However, as mentioned in Section 2.4, the relationship between ADD 

and WDD may vary among waterbodies. For example, although ADD and WDD may be 

highly correlated for many waterbodies, the nature (i.e., slope) of that correlation likely 

differs among waterbodies due to factors such as water clarity, waterbody morphometry, 

and flow. The two lakes used in Chapter 2 are a prime example of such a difference; 

although ADD and WDD were highly correlated for both Sparkling Lake and Lake 

Lacawac, the slopes of the correlations slightly differed. As such, 1 ADD for Sparkling 
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Lake is not equivalent to 1 ADD for Lake Lacawac from the perspective of an aquatic 

organism. For cases in which the slopes of ADD versus WDD relationships are 

substantially different among waterbodies, ADD may fail to accurately quantify 

differences in thermal environments among populations. It is therefore critical to examine 

the extent to which ADD versus WDD relationships vary among lakes and regions, and 

to account for any potential biases that those differences may introduce, when using ADD 

to describe growth and physiology among populations. Fortunately, given the ubiquity of 

air temperature data and the fact that there are well-studied and closely-monitored aquatic 

systems in many regions of the world (see, e.g., the Global Lake Ecological Observatory 

Network; http://gleon.org/), it should be rather straightforward to construct relationships 

between ADD and WDD among waterbodies with varying characteristics, and to develop 

quantitative tools to account for differences in those relationships (i.e., based on 

waterbody characteristics) that can inform studies that use ADD. 

Section 2.4 also mentions the potential to improve DD calculations using upper 

threshold temperatures. Fish growth and physiological rates decrease dramatically as 

temperatures increase above optima and toward lethal temperatures (e.g., Kitchell et al. 

1977, Jobling 1995). DD do not account for this decrease in physiological rates at high 

temperatures and may therefore provide an inadequate index of thermal habitat as it 

relates to fish growth and metabolism, particularly for cases in which individuals spend 

substantial portions of their time in superoptimal temperatures. Adding an upper 

threshold temperature, above which growth (or the physiological process in question) is 

assumed to be negligible, to the DD calculation can help to address this issue. This 
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practice is already common in plant science (e.g., Snyder et al. 1999). Determining upper 

threshold temperatures for fishes should be facilitated by the extensive knowledge of 

thermal traits for some species (e.g., upper incipient lethal temperatures, critical thermal 

maxima; Hasnain et al. 2010) and by the fish bioenergetics literature. Moreover, future 

research should explore imposing penalties (i.e., negative DD) when upper threshold 

temperatures are exceeded using appropriate functional forms; that is, the penalty to DD 

should increase nonlinearly as temperatures increase above the upper threshold, with 

higher temperatures leading to a greater penalty. The nature (and perhaps form) of this 

relationship will likely vary among species but should align with bioenergetics theory 

(e.g., Hanson et al. 1997). 

 In Chapters 4 and 5, my coauthors and I used the simplest form of the Lester 

biphasic growth model (the ‘fixed g’ formulation; Lester et al. 2004, Quince et al. 2008a) 

to estimate life history traits from length-at-age data. The model provided accurate 

estimates of age-at-maturity and generally fit well to the data. However, this simple 

model operates under a few key assumptions, one of which is that metabolism scales with 

body size to the 2/3 power. There is an extensive literature on metabolic scaling, with an 

entire body of theory resting on the assumption that metabolism scales with body size to 

the 3/4 power (i.e., the metabolic theory of ecology; see, e.g., West et al. 1997, 1999, 

2001). Thorough reviews and empirical studies have found that this metabolic scaling 

exponent varies among taxa, typically falling between 2/3 and 1 (Glazier 2005, 2010, 

Killen et al. 2010). As such, assuming a value of 2/3 for the metabolic scaling exponent 

may be inaccurate for some species. Quince et al. (2008a) developed a generic 
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formulation of the biphasic model that relaxes this assumption and allows for the 

metabolic scaling exponent to be estimated during model fitting (see also Boukal et al. 

2014). Using this model may therefore be more appropriate for many species and may 

help to inform our understanding of both life history and metabolic scaling among taxa. 

In addition, this generic model allows for the reproductive investment parameter to 

increase with individual size (i.e., hyperallometric scaling of reproductive investment), a 

phenomenon that recent work argues is common among fishes and has important 

implications for fisheries science and management (Marshall and White in press, 

Barneche et al. 2018). The downside to using the Quince et al. (2008a) model is that it 

requires the estimation of more parameters than the Lester et al. (2004) model, which will 

likely complicate model fitting. Future work should explore this more fully and evaluate 

the performance of the Quince et al. (2008a) model across species and data quality 

scenarios. 

 The analyses in Chapter 5 showed that it is possible to estimate life history traits 

by fitting biphasic growth models to length-at-age data that are back-calculated from hard 

structures such as otoliths. This approach provided estimates of red snapper life history 

traits from cohorts in the 1940s, a feat which would have been impossible using 

traditional approaches due to data limitations. It may be possible to use a similar 

approach to generate estimates of fish life history traits even further into the past using 

otoliths that have been preserved in lake or ocean sediments. Due to their aragonite 

structure, otoliths are readily preserved in sediments and are common teleost fossils 

(Smol et al. 2001). In addition, otolith morphology often varies among fish species (e.g., 
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Reichenbacher et al. 2007, Zorica et al. 2010). Provided that sediment-preserved otoliths 

can be identified to species, and operating under some assumptions regarding the 

relationships between otolith size, fish body size, and fish age (which can be informed 

using present-day data), it may be possible to estimate life history traits for fishes far into 

the past using biphasic growth models and otoliths from sediment cores. As such, it may 

be possible to address questions related to fish life history evolution over millennia. 

 

6.3 Conclusion 

This work represents an important step forward in how we describe and model ectotherm 

growth that leverages mechanistic understandings of both the effects of temperature on 

growth and the inextricable links between growth and life history. Fish science lags 

behind other fields in the widespread adoption of DD. Chapters 2 and 3 provide 

justification and guidance for using DD and will help to encourage the application of this 

important metric in the aquatic sciences. In addition, growth data contain a wealth of 

information on life history. Chapters 4 and 5 show that we can use biphasic growth 

models to extract some of that information and use it to address ecological questions. 

Ultimately, this work introduces and promotes accurate and theoretically-sound methods 

for analyzing fisheries data. As such, it has the potential to stimulate a diversity of 

important basic and applied fisheries research, promote adaptive and sustainable fisheries 

management, and increase global food security. 
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Appendix 1 
 

Additional analyses and methodological details for Chapter 2 

 

 

Figure A1.1 (a-b) The effect of temperature, activity level, and consumption (as a 
proportion of maximum consumption, p(Cmax)) on daily growth in length for brown 
bullhead Ameiurus nebulosus, based on a bioenergetics model. (c-d) Relative brown 
bullhead growth in length (i.e., growth as a proportion of maximum growth) across levels 
of temperature, activity, and consumption. 
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Figure A1.2 (a-b) The effect of temperature, activity level, and consumption (as a 
proportion of maximum consumption, p(Cmax)) on daily growth in length for tiger 
muskellunge (northern pike Esox lucius X muskellunge Esox masquinongy), based on a 
bioenergetics model. (c-d) Relative tiger muskellunge growth in length (i.e., growth as a 
proportion of maximum growth) across levels of temperature, activity, and consumption. 
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A1.1 Influence of mean annual air temperature and mean lake depth on the 

surface water temperature cycle 

We used the Shuter et al. (1983) water temperature model (see Chapter 2 for details) to 

demonstrate the effect of varying mean annual air temperature (𝐴𝐴𝐴𝐴���� ) and mean 

lake/thermocline depth (𝑍̅𝑍) on the surface water temperature cycle. We first simulated 

annual water temperature cycles with 𝑍̅𝑍 fixed at 8 m and 𝐴𝐴𝐴𝐴���� at 2.5, 5, and 10 oC. We then 

repeated the simulation with 𝐴𝐴𝐴𝐴���� fixed at 5 oC and 𝑍̅𝑍 at 4, 8, and 16 m. These values cover 

a range of scenarios that is realistic for many lakes in North America. 

 Our results suggest that variation in 𝐴𝐴𝐴𝐴���� generally has a larger impact on the 

surface water temperature cycle than variation in 𝑍̅𝑍 across the range of values that we 

investigated (Fig. A1.3). In particular, variation in 𝐴𝐴𝐴𝐴���� has a much larger impact on the 

duration of the ice-free season than variation in 𝑍̅𝑍. 

  



 

160 
 

 

  

Fi
gu

re
 A

1.
3 

Ef
fe

ct
 o

f (
a)

 m
ea

n 
an

nu
al

 a
ir 

te
m

pe
ra

tu
re

 (𝐴𝐴
𝐴𝐴���
� )

 a
nd

 (b
) m

ea
n 

la
ke

/th
er

m
oc

lin
e 

de
pt

h 
(𝑍𝑍

) o
n 

th
e 

an
nu

al
 

su
rf

ac
e 

w
at

er
 te

m
pe

ra
tu

re
 c

yc
le

, b
as

ed
 o

n 
th

e 
Sh

ut
er

 e
t a

l. 
(1

98
3)

 m
od

el
. I

n 
th

es
e 

si
m

ul
at

io
ns

, d
ay

 0
 is

 th
e 

fir
st

 d
ay

 o
n 

w
hi

ch
 th

e 
su

rf
ac

e 
of

 th
e 

si
m

ul
at

ed
 la

ke
 is

 fr
oz

en
. 

 



 

161 
 

 

 

 

  

Fi
gu

re
 A

1.
4 

Co
ef

fic
ie

nt
s o

f d
et

er
m

in
at

io
n 

(a
dj

us
te

d 
R

2 ) 
fr

om
 li

ne
ar

 m
od

el
 fi

ts
 to

 th
e 

le
ng

th
 v

s. 
w

at
er

-b
as

ed
 d

eg
re

e-
da

y 
(W

D
D

5) 
re

la
tio

ns
hi

p 
fro

m
 

fiv
e 

ye
ar

 g
ro

w
th

 si
m

ul
at

io
ns

 g
iv

en
 v

ar
io

us
 c

om
bi

na
tio

ns
 o

f c
on

su
m

pt
io

n 
(p

ro
po

rti
on

 o
f m

ax
im

um
 c

on
su

m
pt

io
n,

 p
(C

m
ax

))
, a

ct
iv

ity
 (A

C
T)

, a
nd

 
in

iti
al

 si
ze

 (c
ol

um
ns

). 
(a

-c
) R

es
ul

ts
 fr

om
 th

e 
ye

llo
w

 p
er

ch
 P

er
ca

 fl
av

es
ce

ns
 b

io
en

er
ge

tic
s m

od
el

, w
ith

 in
iti

al
 si

ze
s o

f (
a)

 2
5 

m
m

, (
b)

 5
0 

m
m

, a
nd

 
(c

) 7
5 

m
m

. (
d-

f)
 R

es
ul

ts
 fr

om
 th

e 
br

ow
n 

bu
llh

ea
d 

Am
ei

ur
us

 n
eb

ul
os

us
 b

io
en

er
ge

tic
s m

od
el

, w
ith

 in
iti

al
 si

ze
s o

f (
d)

 5
0 

m
m

, (
e)

 1
00

 m
m

, a
nd

 (f
) 

15
0 

m
m

. (
g-

i) 
R

es
ul

ts
 fr

om
 th

e 
tig

er
 m

us
ke

llu
ng

e 
(n

or
th

er
n 

pi
ke

 E
so

x 
lu

ci
us

 X
 m

us
ke

llu
ng

e 
Es

ox
 m

as
qu

in
on

gy
) b

io
en

er
ge

tic
s m

od
el

, w
ith

 in
iti

al
 

si
ze

s o
f (

g)
 1

00
 m

m
, (

h)
 1

50
 m

m
, a

nd
 (i

) 2
00

 m
m

. B
io

en
er

ge
tic

s s
im

ul
at

io
ns

 in
co

rp
or

at
ed

 e
m

pi
ric

al
 w

at
er

 te
m

pe
ra

tu
re

 d
at

a 
(1

 m
 d

ep
th

) f
ro

m
 

La
ke

 L
ac

aw
ac

, P
A

, U
SA

. W
hi

te
 c

el
ls

 (“
N

A
”)

 d
en

ot
e 

ca
se

s i
n 

w
hi

ch
 in

di
vi

du
al

s d
id

 n
ot

 g
ro

w
 a

cr
os

s a
ll 

fiv
e 

ye
ar

s. 



 

162 
 

A1.2 Empirical relationship for predicting air-based degree-days from mean 

annual air temperatures 

To predict air-based degree-days above 5 oC (𝐴𝐴𝐴𝐴𝐴𝐴5) from mean annual air temperatures 

(𝐴𝐴𝐴𝐴����), we collected empirical air temperature data from 107 weather stations in the United 

States and Canada using the National Oceanic and Atmospheric Administration Climate 

Data Online tool (https://www.ncdc.noaa.gov/cdo-web/). The locations of these 107 

weather stations are shown in Fig. A1.5. The data described mean daily air temperatures 

from 1 January through 31 December 2015, and all datasets were continuous. We used 

these data to calculate both 𝐴𝐴𝐴𝐴���� and 𝐴𝐴𝐴𝐴𝐴𝐴5, and we constructed a relationship to predict 

𝐴𝐴𝐴𝐴𝐴𝐴5 from 𝐴𝐴𝐴𝐴���� (Fig. A1.6): 

𝐴𝐴𝐴𝐴𝐴𝐴5 = 1346.8 ∙ 𝑒𝑒0.0729∙𝐴𝐴𝐴𝐴����.  
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Figure A1.5 Locations of air temperature stations used to generate the empirical 
relationship for predicting air-based degree-days above 5 oC from mean annual air 
temperatures. Image © 2016 Google. 
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Figure A1.6 Empirical relationship between mean annual air temperature (oC) and air-
based degree-days above 5 oC (Air DD5) constructed using data from 107 weather 
stations in the United States and Canada. 
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A1.3 Daily growth across water temperatures for adult fishes 

In Chapter 2, we focus on immature fish growth because the linear approximation of the 

length-at-age versus DD relationship is typically only valid for growth leading up to 

maturity (Lester et al. 2004; Andersen and Beyer 2015; Honsey et al. 2017). However, 

much like with immature growth, the response of adult growth to water temperature is 

often nearly linear over a midrange of temperatures. For this reason, some of our results 

(e.g., the linearity of annual growth versus DD) may also extend to adult growth. 

 To demonstrate the nearly linear response of adult growth in length to water 

temperature across middling water temperatures, we simulated daily fish growth using 

bioenergetics models that were parameterized for adults of three species: white crappie 

Pomoxis annularis (Bajer et al. 2004), steelhead Oncorhynchus mykiss (Rand et al. 1993), 

and rainbow smelt Osmerus mordax (Lantry and Stewart 1993). Parameters and 

equations for these models are given in Table A1.1. We assumed that individuals 

achieved satiation and set the activity multiplier to the suggested number (Table A1.1). 

We used geometric mean parameters for the length-weight relationship from FishBase 

(Froese and Pauly 2016) for length-weight conversions, and we set the energy density of 

oxygen at 13556 J∙g-1 (Elliott and Davison 1975). We set initial fish sizes at 253 mm (250 

g), 453 mm (1 kg), and 197 mm (60 g) for adult white crappie, steelhead, and rainbow 

smelt, respectively. Our results show that, although the shapes of the relationships differ, 

daily growth is nearly linear with water temperature across a midrange of temperatures 

for these adult fish models, much like it is for immature fishes (Fig. A1.9).  
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Table A1.1 Bioenergetics equations and parameters used for supplemental simulations. 
All models follow the Wisconsin bioenergetics framework; see Hanson et al. (1997) for 
equations and details. Sources are listed in footnotes. 

Model component Model species 

 White crappie1 Steelhead2 Rainbow smelt3 
Consumption equation 2 3 3 
CA 1.2589 0.628 0.18 
CB -0.661 -0.3 -0.275 
CQ 2.945 5 3 
CTO 24 20 10 
CTM 32 20 12 
CTL - 24 18 
CK1 - 0.33 0.4 
CK4 - 0.2 0.01 

    
Respiration equation 1 1 1 
RA 0.02366 0.00264 0.0027 
RB -0.623 -0.217 -0.216 
RQ 0.0237 0.06818 0.036 
RTO 0 0.0234 0 
RTM 0 0 0 
RTL 0 25 0 
RK1 1 1 0 
RK4 0 0.13 0 
ACT 1 9.7 1 
BACT 0 0.0405 0 
SDA 0.16 0.172 0.175 

    
Egestion-excretion equation 1 3 1 
FA 0.104 0.212 0.16 
FB 0 -0.222 0 
FG 0 0.631 0 
UA 0.068 0.0314 0.1 
UB 0 0.58 0 
UG 0 -0.299 0 
    
Energy density equation 1 2 1 
Predator energy density (J∙g-1) 4186 - 4814 
Alpha1 - 5764 - 
Beta1 - 0.9862 - 
Cutoff (g) - 4000 - 
Alpha2 - 7602 - 
Beta2 - 0.5266 - 
Prey energy density (J∙g-1) 3500 3500 3500 

1Bajer et al. (2004), 2Rand et al. (1993), 3Lantry and Stewart (1993) 
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Figure A1.9 Daily growth in length (assuming satiation) across water temperatures for 
adult (a) white crappie Pomoxis annularis, (b) steelhead Oncorhynchus mykiss, and (c) 
rainbow smelt Osmerus mordax, based on bioenergetics models (Table A1.1). 
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A1.4 Estimating the base temperature for growth using annual growth simulations 

If degree-days (DD) are an accurate index for the thermal scope for growth, then growth 

should be proportional to DD provided that DD are calculated using the correct base 

temperature for growth (𝑇𝑇0; the temperature below which growth is assumed to be 

negligible). Using this logic, one can estimate 𝑇𝑇0 for a given species by finding the 𝑇𝑇0 

value for which the growth versus DD relationship is proportional (i.e., passes through 

the origin).  

 Here, we demonstrate this approach using the juvenile yellow perch bioenergetics 

model (Table 2.1) and the annual growth simulation framework described in Chapter 2 

(see the two subsections entitled ‘Annual growth’). We chose to estimate 𝑇𝑇0 for air-based 

degree-days (ADD) in order to further promote their application. We used the approach 

and empirical data described in Section A1.2 to construct relationships between mean 

annual air temperatures and ADD at 𝑇𝑇0 values ranging from 0-15 oC. The parameters for 

these relationships are given in Table A1.2. We then used these relationships to estimate 

ADD from the hypothetical mean annual air temperatures used in the simulations, and we 

compared annual growth to ADD at various 𝑇𝑇0 values. Our results suggest that the 

juvenile yellow perch annual growth versus ADD relationship passes through the origin 

when 𝑇𝑇0 is roughly 9 oC (Fig. 2.9). 
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Table A1.2 Parameters for relationships between mean annual air temperatures and air-

based degree-days at various base temperature values (derived from empirical air 

temperature data; see Section A1.2). Equations take the following form: 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇0 =

 𝛼𝛼𝑒𝑒𝛽𝛽∙𝐴𝐴𝐴𝐴����, where 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇0 is air-based degree-days at base temperature 𝑇𝑇0, 𝐴𝐴𝐴𝐴���� is mean 

annual air temperature, and α and β are parameters. 

 
Base temperature (𝑻𝑻𝟎𝟎; oC) α β 

0 2244.83 0.0613 
1 2044.76 0.0635 
2 1855.44 0.0657 
3 1676.31 0.0680 
4 1506.71 0.0704 
5 1346.80 0.0729 
6 1196.23 0.0757 
7 1054.94 0.0786 
8 922.88 0.0817 
9 800.67 0.0851 
10 687.39 0.0887 
11 583.10 0.0927 
12 486.54 0.0974 
13 396.94 0.1032 
14 315.02 0.1104 
15 241.93 0.1193 
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Appendix 2 

 

Additional details, results, and analyses for Chapter 3 

Table A2.1 Estimates of the base temperature for growth (𝑇𝑇0; oC) across species from the 
empirical growth analysis, including maximum ages included in regressions, minimum 
coefficients of variation (CV) in growth rate estimates among populations, and number of 
populations (N). Linear fits included ages up to and including the maximum age. 
 
 
 

 

 

 

 

 

 

 

 

 

 
 
 

Scientific name Common name 𝑻𝑻𝟎𝟎�  Maximum age CV N 
Ameiurus melas Black bullhead 0 2 0.362 78 
Ameiurus melas Black bullhead 0 3 0.349 80 
Ameiurus melas Black bullhead 0 4 0.302 81 

Pomoxis nigromaculatus Black crappie 1 2 0.222 20 
Pomoxis nigromaculatus Black crappie 1 3 0.238 20 

Ictalurus furcatus Blue catfish 0 3 0.510 24 
Ictalurus furcatus Blue catfish 0 4 0.457 25 
Ictalurus furcatus Blue catfish 0 5 0.487 25 

Lepomis macrochirus Bluegill 0 2 0.495 68 
Lepomis macrochirus Bluegill 0 3 0.451 68 
Ameiurus nebulosus Brown bullhead 0 2 0.553 5 
Ameiurus nebulosus Brown bullhead 0 3 0.378 8 
Ameiurus nebulosus Brown bullhead 0 4 0.313 8 
Ictalurus punctatus Channel catfish 11 2 0.656 7 
Ictalurus punctatus Channel catfish 18 3 0.749 19 
Ictalurus punctatus Channel catfish 18 4 0.934 27 
Coregonus artedi Cisco 0 3 0.479 32 
Coregonus artedi Cisco 0 4 0.435 35 
Cyprinus carpio Common carp 0 3 0.416 30 
Cyprinus carpio Common carp 0 4 0.352 30 
Cyprinus carpio Common carp 0 5 0.309 30 

Pylodictus olivaris Flathead catfish 0 3 0.317 10 
Pylodictus olivaris Flathead catfish 2 4 0.751 11 
Pylodictus olivaris Flathead catfish 0 5 0.471 11 

Centrarchus macropterus Flier 4 2 0.308 7 
Centrarchus macropterus Flier 4 3 0.249 7 

Lepomis cyanellus Green sunfish 4 2 0.324 6 
Lepomis cyanellus Green sunfish 4 3 0.311 6 

Acipenser fulvescens Lake sturgeon 0 6 0.280 4 
Acipenser fulvescens Lake sturgeon 0 7 0.277 4 
Acipenser fulvescens Lake sturgeon 0 8 0.305 4 

Salvelinus namaycush Lake trout 0 4 0.480 28 
Salvelinus namaycush Lake trout 0 5 0.395 31 
Salvelinus namaycush Lake trout 0 6 0.338 31 

Coregonus clupeaformis Lake whitefish 0 3 0.441 55 
Coregonus clupeaformis Lake whitefish 0 4 0.538 61 
Coregonus clupeaformis Lake whitefish 0 5 0.405 66 
Micropterus salmoides Largemouth bass 0 3 0.312 132 
Micropterus salmoides Largemouth bass 0 4 0.283 132 

Lepomis megalotus Longear sunfish 5 2 0.570 11 
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Table A2.1 contd. 
  Lepomis megalotus Longear sunfish 10 3 0.523 11 

Esox lucius Northern pike 0 3 0.553 82 
Esox lucius Northern pike 0 4 0.515 84 

Oncorhynchus mykiss Rainbow trout 0 2 0.370 10 
Oncorhynchus mykiss Rainbow trout 0 3 0.398 11 

Lepomis auritus Redbreast sunfish 0 2 0.217 10 
Lepomis auritus Redbreast sunfish 6 3 0.191 10 

Lepomis microlophus Redear sunfish 0 2 0.395 15 
Lepomis microlophus Redear sunfish 0 3 0.414 15 
Ambloplites rupestris Rock bass 7 2 0.324 12 
Ambloplites rupestris Rock bass 7 3 0.334 13 

Micropterus dolomieui Smallmouth bass 0 3 0.249 29 
Micropterus dolomieui Smallmouth bass 0 4 0.239 29 

Sander vitreus Walleye 0 3 0.242 57 
Sander vitreus Walleye 0 4 0.245 57 
Sander vitreus Walleye 0 5 0.252 57 

Lepomis gulosus Warmouth 0 2 0.397 28 
Lepomis gulosus Warmouth 0 3 0.402 28 
Morone chrysops White bass 0 2 0.385 40 
Morone chrysops White bass 0 3 0.358 40 
Morone chrysops White bass 0 4 0.375 40 

Catostomus commersoni White sucker 0 3 0.328 12 
Catostomus commersoni White sucker 0 4 0.479 15 
Catostomus commersoni White sucker 0 5 0.377 15 

Ameiurus natalis Yellow bullhead 10 2 0.348 4 
Ameiurus natalis Yellow bullhead 10 3 0.441 5 
Ameiurus natalis Yellow bullhead 9 4 0.336 6 
Perca flavescens Yellow perch 9 2 0.330 82 
Perca flavescens Yellow perch 5 3 0.315 110 
Perca flavescens Yellow perch 4 4 0.287 110 
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A2.1 R code for estimating base temperatures for growth using bioenergetics 

models and the 10 oC rule 

 

## Estimating base temperatures for growth using the 10 degree C rule 

## Author: Andrew E. Honsey, University of Minnesota 

 

## Read in the file of bioenergetics parameters (Supplementary Data File 2) and  

## name it "params" 

params<-read.csv("All_bioenergetics_parameters.csv") 

 

## Add a column to store base temperature estimates 

Base.estimate<-rep(NA,length(params$Order)) 

params<-cbind(params,Base.estimate) 

 

## define energy density of oxygen 

oxygen.energy.density<-13556 

 

## loop through models 

for (j in 1:length(params$Order)){ 

 

## Set other initial parameters 

t=seq(from=0.01,to=40,by=0.01) # temperature range 
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w=params$initial.mass[j] # initial mass in g 

p=1 # proportion of max consumption 

 

## Create empty vecors to record consumption, respiration, egestion, excretion, 

## total wastes (redundant with egestion + excretion),  

## energy lost to specific dynamic action, specific growth in mass, absolute growth 

## in mass 

cons<-rep(NA,length(t)) 

resp<-rep(NA,length(t)) 

eges<-rep(NA,length(t)) 

excr<-rep(NA,length(t)) 

wastes<-rep(NA,length(t)) 

spec<-rep(NA,length(t)) 

energy.gain<-rep(NA,length(t)) 

energy.change<-rep(NA,length(t)) 

resp.energy.loss<-rep(NA,length(t)) 

growth.mass<-rep(NA,length(t)) 

 

## Loop through values of temperature, using 

## correct equations for each model 

for (i in 1:length(t)){ 
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  ## Consumption equations 

  if (params$CEQ[j] == 1){ 

    f.t=exp(params$CQ[j]*t[i]) 

    c.max=params$CA[j]*w^params$CB[j] 

    cons[i]=c.max*p*f.t 

  } 

  else ( 

  if (params$CEQ[j] == 2){ 

  z=log(params$CQ[j])*(params$CTM[j]-params$CTO[j]) 

  y=log(params$CQ[j])*(params$CTM[j]-params$CTO[j]+2) 

  v=(params$CTM[j]-t[i])/(params$CTM[j]-params$CTO[j]) 

  x=(z^2*(1+(1+(40/y))^0.5)^2)/400 

  f.t=(v^x)*exp(x*(1-v)) 

  c.max=params$CA[j]*w^params$CB[j] 

  cons[i]=c.max*p*f.t 

  } 

  else ( 

  if (params$CEQ[j] == 3){ 

    g1=(1/(params$CTO[j]-params$CQ[j]))*log((0.98*(1-

params$CK1[j]))/(params$CK1[j]*0.02)) 

    l1=exp(g1*(t[i]-params$CQ[j])) 
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    g2=(1/(params$CTL[j]-params$CTM[j]))*log((0.98*(1-

params$CK4[j]))/(params$CK4[j]*0.02)) 

    l2=exp(g2*(params$CTL[j]-t[i])) 

    ka=(params$CK1[j]*l1)/(1+params$CK1[j]*(l1-1)) 

    kb=(params$CK4[j]*l2)/(1+params$CK4[j]*(l2-1)) 

    f.t=ka*kb 

    c.max=params$CA[j]*w^params$CB[j] 

    cons[i]=c.max*p*f.t 

  } 

  ) 

  ) 

  ## Respiration equations 

  if (params$REQ[j] == 1) { 

    if (t[i] > params$RTL[j]) vel<-params$RK1[j]*w^(params$RK4[j]) else vel <- 

params$ACT[j]*w^(params$RK4[j])*exp(params$BACT[j]*t[i]) 

    activ<-exp(params$RTO[j]*vel) 

    if (activ == 1) activity <- params$ACT[j] else activity <- activ 

    f.t2=exp(params$RQ[j]*t[i]) 

    resp[i]=params$RA[j]*w^params$RB[j]*f.t2*activity 

  } 

  else( 
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  if (params$REQ[j] == 2){ 

    z2=log(params$RQ[j])*(params$RTM[j]-params$RTO[j]) 

    y2=log(params$RQ[j])*(params$RTM[j]-params$RTO[j]+2) 

    v2=(params$RTM[j]-t[i])/(params$RTM[j]-params$RTO[j]) 

    x2=(z2^2*(1+(1+40/y2)^0.5)^2)/400 

    f.t2=(v2^x2)*exp(x2*(1-v2)) 

    resp[i]=params$RA[j]*w^params$RB[j]*f.t2*params$ACT[j] 

  } 

  )   

  ## Egestion and excretion 

  if (params$EGEXEQ[j] == 1) { 

    eges[i]<-params$FA[j]*cons[i] 

    excr[i]<-params$UA[j]*(cons[i]-eges[i]) 

    wastes[i]<-eges[i]+excr[i] 

  } 

  else( 

  if (params$EGEXEQ[j] > 1){ 

    eges[i]<-params$FA[j]*(t[i]^params$FB[j])*(exp(params$FG[j]*p))*cons[i] 

    excr[i]<-params$UA[j]*(t[i]^params$UB[j])*(exp(params$UG[j]*p))*(cons[i]-eges[i]) 

    wastes[i]<-eges[i]+excr[i] 

  } 

  ) 
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  ## Energy lost to specific dynamic action 

  spec[i]=params$SDA[j]*(cons[i]-eges[i]) 

   

 ### Predator energy density 

  if (params$PREDEDEQ[j] == 1){ 

    pred.energy.density <- params$ED[j] 

  } 

  else( 

    if (params$PREDEDEQ[j] == 2){ 

      if (w <= params$Cutoff[j]) pred.energy.density <- params$Alpha1[j] + 

params$Beta1[j]*w else pred.energy.density <- params$Alpha2[j] + params$Beta2[j]*w 

    } 

  ) 

 

  #Growth in mass 

  energy.gain[i]<-(cons[i]-wastes[i]-spec[i])*params$PREYED[j]*w 

  resp.energy.loss[i]<-resp[i]*w*oxygen.energy.density 

  energy.change[i]<-energy.gain[i]-resp.energy.loss[i] 

  growth.mass[i]<-energy.change[i]/pred.energy.density 

} 

 

# Compile results; calculate and store base temp using 10 C rule 
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res<-as.data.frame(cbind(t,growth.mass)) 

res<-res[is.finite(res$growth.mass) == T,] 

res<-res[res$growth.mass > 0,] 

 

## optional -- plot growth vs temp relationships for each species 

plot(res$t,res$growth.mass,main=params$Species[j],xlab="Water 

temperature",ylab="Daily growth (g)") 

 

## find optimum temperature for growth, remove results above this temperature 

opt<-res[which(res$growth.mass == max(res$growth.mass)),] 

res<-res[res$t <= opt$t,] 

 

## Calculate mean development temperature 

mndev<-(max(res$growth.mass)+min(res$growth.mass))/2 

MNDEV<-res[which(abs(res$growth.mass-mndev)==min(abs(res$growth.mass-

mndev))),] 

mndevtemp<-MNDEV$t 

 

## Calculate and store base temperature for growth 

base.est<-mndevtemp-10 

params$Base.estimate[j]<-base.est 

}  
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A2.2 Example results using annual growth simulations to estimate 𝑻𝑻𝟎𝟎 

Honsey et al. (in press) suggested that the base temperature for growth (𝑇𝑇0) can be 

estimated across fish species using annual growth simulations. This approach is based on 

the idea that, if degree-days are an accurate index of the thermal scope for growth, then 

growth should be proportional to degree-days when they are calculated using the 

appropriate value for 𝑇𝑇0. We used the Shuter et al. (1983) water temperature model to 

generate annual water temperature cycles across mean annual air temperature (𝐴𝐴𝐴𝐴����) values 

(see Honsey et al. in press). We used these water temperatures to drive bioenergetics 

simulations that lasted 365 days using the bioenergetics models described in 

Supplemental Data File 2. We determined annual growth by subtracting initial fish length 

from the length on day 365. We then calculated degree-days across 𝑇𝑇0 ranging from 0 to 

20 oC for water temperatures using the equation Section 3.1, and we used empirical 

relationships to predict air-based degree-days from 𝐴𝐴𝐴𝐴���� for 𝑇𝑇0 ranging from 0 to 15 oC 

(see Appendix 1, Table A1.2). Finally, we fit linear models to the annual growth versus 

water- and air-based degree-day relationships (i.e., separately for each species and 𝑇𝑇0 

value), and we determined the 𝑇𝑇0 value for which the relationship was nearest to 

proportional by finding the y-intercept value that was closest to 0. In general, we found 

that 𝑇𝑇0 estimates were highly sensitive to changes in model settings (e.g., consumption 

levels, the range of 𝐴𝐴𝐴𝐴���� values used). Although the selection of these model settings can 

be somewhat intuitive (e.g., models for coldwater species should include lower 𝐴𝐴𝐴𝐴���� ranges 

than models for warmwater species), we argue that choosing “appropriate” settings for 

each species is ultimately highly subjective. As such, we chose to exclude results from 
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this approach. We provide results from two example models and for various consumption 

and 𝐴𝐴𝐴𝐴���� settings in Table A2.2. 
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Table A2.2 Examples of variation in estimates of the base temperature for growth for 
calculating degree-days from water (𝑇𝑇0,𝑊𝑊) and air (𝑇𝑇0,𝐴𝐴) temperatures across 
bioenergetics and limnological model settings for two bioenergetics models. p(Cmax) = 
proportion of maximum consumption, 𝐴𝐴𝐴𝐴���� = mean annual air temperature. 
 

Model species p(Cmax) 𝑨𝑨𝑨𝑨���� range (oC) 𝑻𝑻𝟎𝟎,𝑾𝑾 (oC) 𝑻𝑻𝟎𝟎,𝑨𝑨 (oC) 
Bighead carp 1 0-12.5 9 10 
Bighead carp 1 -10-12.5 7 14 
Bighead carp 1 -15-0 4 14 
Bighead carp 0.5 0-12.5 15 >15 
Bighead carp 0.5 -10-12.5 9 >15 
Bighead carp 0.5 -15-0 4 >15 

Generalized coregonid 1 0-12.5 <0 <0 
Generalized coregonid 1 -10-12.5 <0 <0 
Generalized coregonid 1 -15-0 3 11 
Generalized coregonid 0.5 0-12.5 8 10 
Generalized coregonid 0.5 -10-12.5 5 13 
Generalized coregonid 0.5 -15-0 4 >15 
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Appendix 3 

 

Supplementary methods and results for Chapter 4 

 

A3.1 Adjusting sample sizes-at-age for gear selectivity and natural mortality 

For our simulation study, we adjusted sample sizes-at-age to approximate data scenarios 

that are common in fisheries science (and may be similar in other disciplines) to provide 

realistic estimates of the data quality required for LMLP to perform well. To do this, we 

emulated sample sizes-at-age for walleye Sander vitreus caught in gill nets from the 

expansive Fall Walleye Index Netting surveys conducted by the Ontario Ministry of 

Natural Resources and Forestry (Morgan 2002). Sample sizes-at-age for all simulations 

are shown in Table A3.1. See Section A3.4 below for more details on the 𝑇𝑇 = 3 and 𝑇𝑇 = 7 

simulations. 

We did not include size selectivity on early age-classes (i.e., gears catching the 

largest individuals in a given young age-class) in our simulations; however, the potential 

impacts of gill net size selectivity on model estimates are likely relatively small for 

organisms such as walleye across the ages included in the simulations (Walker et al. 

2013). Nevertheless, size selectivity may affect LMLP fits for some datasets and should 

be considered on a case-by-case basis. 
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Table A3.1 Sample sizes-at-age for populations of 1000 individuals used in Lester model 
likelihood profiling simulations. Random samples of varying sizes (see Table A3.2) were 
drawn from these populations for each of 100,000 iterations. 
 

 Sample Size 
Age 𝑻𝑻 = 3 𝑻𝑻 = 5 𝑻𝑻 = 7 

1 50 30 5 
2 120 70 20 
3 160 130 50 
4 155 140 95 
5 135 150 115 
6 70 130 125 
7 50 65 125 
8 41 45 110 
9 36 38 70 
10 32 32 50 
11 28 28 38 
12 24 24 30 
13 21 22 26 
14 18 18 22 
15 15 15 19 
16 13 12 17 
17 11 10 15 
18 9 8 13 
19 7 7 11 
20 5 6 9 
21 - 5 8 
22 - 5 7 
23 - 4 6 
24 - 3 4 
25 - 3 3 
26 - - 2 
27 - - 2 
28 - - 1 
29 - - 1 
30 - - 1 
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Table A3.2 Levels of sample size, precision (CV-1) in length-at-age, and the annual cost 
to somatic growth of maturity 𝑔𝑔 (expressed in equivalent energetic units) used to simulate 
length-at-age data. Simulations consisted of 100 iterations of each parameter combination 
(N = 100,000 iterations). 
 

Sample Size Precision g 
50 4 0.05 

100 5 0.075 
150 6 0.1 
200 7 0.125 
250 8 0.15 
300 9 0.175 
400 10 0.2 
500 12 0.225 
750 20 0.25 

1000 30 0.3 
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A3.2 LMLP fits to data describing species other than walleye Sander vitreus 

To show the potentially broad applicability of our algorithm, we applied LMLP to four 

additional datasets describing four different species: lake whitefish Coregonus 

clupeaformis, haddock Melanogrammus aeglefinus, Alaska skate Bathyraja parmifera, 

and the seal salamander Desmognathus monticola. The lake whitefish data describe 

females from Shoal Lake, ON in 2000-2001 (n=149, precision=24.26, 𝑔𝑔�=0.18) and were 

collected by the Ontario Ministry of Natural Resources and Forestry as part of their fall 

gill netting surveys (Morgan 2002). The haddock data describe females from the Gulf of 

Maine collected during spring 2015 (n=359, precision=10.12, 𝑔𝑔�=0.34) as part of the 

National Oceanic and Atmospheric Administration (NOAA) Northeast Fisheries Science 

Center’s bottom trawl surveys (data provided by Mike Palmer, NOAA). The Alaska skate 

data describe females taken from the eastern Bering Sea from 2003-2005 (n=231, 

precision=15.87, 𝑔𝑔�=0.18) and were collected by NOAA Fisheries groundfish trawl 

surveys during the summers of 2003 and 2004, and throughout 2004 and 2005 by the 

North Pacific Groundfish Observer Program on flatfish trawlers and Pacific cod longline 

vessels (see Matta and Gunderson 2007; data provided by Beth Matta, NOAA). Finally, 

the salamander data describe individuals collected from Wolf Creek, North Carolina, 

USA during 1994-1995 (see Castanet et al. 1996; n=83, precision=50.79, 𝑔𝑔�=0.38; data 

provided by Richard Bruce, Professor Emeritus, Western Carolina University).  

 Due to the low sample size (n=4), we did not use a standard major axis regression 

to compare 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 to 𝐴𝐴50�  for these fits. Instead, we calculated confidence intervals for the 

difference between the two parameters assuming that the likelihood interval (LI; 
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approximate 96% chi-squared confidence interval) was similar to a 95% confidence 

interval (CI). That is, we assumed that the LI was approximated by 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 ± 1.96×SE, 

where SE is the standard error of the parameter estimate. We used this formula and the 

known LIs for 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 and bootstrapped CIs for 𝐴𝐴50�  to calculate SEs for each parameter. 

Because the intervals were not necessarily symmetrical, we took the mean of the two SE 

estimates (derived from the upper and lower interval bounds) as the SE estimate for each 

case. We then used the following formula to calculate the confidence interval for the 

difference between the two parameters (Daniel and Cross 2013): 

� 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐴𝐴50� �  ± 1.96 × �𝑆𝑆𝑆𝑆𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀
2 + 𝑆𝑆𝑆𝑆𝐴𝐴50�

2  

If this interval contained 0, the parameters were considered not significantly different 

from one another. Complete results for these comparisons, including parameter estimates, 

LIs, CIs, and difference intervals, are shown in Table A3.3. 
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Figure A3.1 Simulated error contours for 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 to fall within +/- 0.5 yrs of 𝑇𝑇 when 𝑇𝑇 = 5 
yrs across levels of sample size, precision, and 𝑔𝑔 (labeled to the left of contours; Table 
A3.2), smoothed using LOESS (degree=2, α=0.75). 
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A3.3 Additional diagnostics 

To provide a more complete picture of LMLP performance across the data quality 

scenarios investigated, we generated figures that show (1) the percent of cases in which 

the likelihood interval contained the true value for 𝑇𝑇 and (2) the mean width of the 

likelihood intervals across levels of sample size, precision, and the maturity cost 

parameter 𝑔𝑔 (Figs. A3.2-A3.11). Note that point size and colour scales vary among plots. 

Results for 𝑇𝑇 = 3 and 𝑇𝑇 = 7 simulations are available upon request. 
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Figure A3.2 Mean likelihood interval width and the percent of likelihood intervals 
containing the true value for 𝑇𝑇 across levels of sample size and precision (Table A3.2) 
when 𝑇𝑇 = 5 and 𝑔𝑔 = 0.05. Larger, bluer circles generally indicate better model 
performance. 
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Figure A3.3 Mean likelihood interval width and the percent of likelihood intervals 
containing the true value for 𝑇𝑇 across levels of sample size and precision (Table A3.2) 
when 𝑇𝑇 = 5 and 𝑔𝑔 = 0.075. Larger, bluer circles generally indicate better model 
performance. 
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Figure A3.4 Mean likelihood interval width and the percent of likelihood intervals 
containing the true value for 𝑇𝑇 across levels of sample size and precision (Table A3.2) 
when 𝑇𝑇 = 5 and 𝑔𝑔 = 0.1. Larger, bluer circles generally indicate better model 
performance. 
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Figure A3.5 Mean likelihood interval width and the percent of likelihood intervals 
containing the true value for 𝑇𝑇 across levels of sample size and precision (Table A3.2) 
when 𝑇𝑇 = 5 and 𝑔𝑔 = 0.125. Larger, bluer circles generally indicate better model 
performance. 
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Figure A3.6 Mean likelihood interval width and the percent of likelihood intervals 
containing the true value for 𝑇𝑇 across levels of sample size and precision (Table A3.2) 
when 𝑇𝑇 = 5 and 𝑔𝑔 = 0.15. Larger, bluer circles generally indicate better model 
performance.  
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Figure A3.7 Mean likelihood interval width and the percent of likelihood intervals 
containing the true value for 𝑇𝑇 across levels of sample size and precision (Table A3.2) 
when 𝑇𝑇 = 5 and 𝑔𝑔 = 0.175. Larger, bluer circles generally indicate better model 
performance. 
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Figure A3.8 Mean likelihood interval width and the percent of likelihood intervals 
containing the true value for 𝑇𝑇 across levels of sample size and precision (Table A3.2) 
when 𝑇𝑇 = 5 and 𝑔𝑔 = 0.2. Larger, bluer circles generally indicate better model 
performance. 
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Figure A3.9 Mean likelihood interval width and the percent of likelihood intervals 
containing the true value for 𝑇𝑇 across levels of sample size and precision (Table A3.2) 
when 𝑇𝑇 = 5 and 𝑔𝑔 = 0.225. Larger, bluer circles generally indicate better model 
performance. 
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Figure A3.10 Mean likelihood interval width and the percent of likelihood intervals 
containing the true value for 𝑇𝑇 across levels of sample size and precision (Table A3.2) 
when 𝑇𝑇 = 5 and 𝑔𝑔 = 0.25. Larger, bluer circles generally indicate better model 
performance. 
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Figure A3.11 Mean likelihood interval width and the percent of likelihood intervals 
containing the true value for 𝑇𝑇 across levels of sample size and precision (Table A3.2) 
when 𝑇𝑇 = 5 and 𝑔𝑔 = 0.3. Larger, bluer circles generally indicate better model 
performance. 
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A3.4 Additional simulations 

We conducted two additional sets of simulations in which 𝑇𝑇 = 3 and 𝑇𝑇 = 7 to explore the 

sensitivity of our Lester model likelihood profiling (LMLP) method to varying age-at-

maturity. Growth parameters for these simulations differed from 𝑇𝑇 = 5 simulations and 

were also loosely based on walleye populations for which AAM was estimated at 

approximately 3 or 7. For 𝑇𝑇 = 3 simulations, 𝑙𝑙0 = 150 mm, ℎ = 65 mm∙yr-1, and maximum 

age = 20 yrs (see Table 4.1 for parameter descriptions). For 𝑇𝑇 = 7 simulations, 𝑙𝑙0 = 80 

mm, ℎ = 40 mm∙yr-1, and maximum age = 30 yrs. Sample sizes-at-age also differed for 

these simulations (Table A3.1). Apart from these differences, 𝑇𝑇 = 3 and 𝑇𝑇 = 7 simulations 

were identical to 𝑇𝑇 = 5 simulations (see Chapter 4). As with the 𝑇𝑇 = 5 simulations, we 

used error contour plots (smoothed using LOESS with degree = 2 and α = 0.75) to 

determine the sample size and precision required for 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 to fall within +/- 0.5 yrs of the 

true value across levels of 𝑔𝑔. Results indicate that higher data quality (i.e., higher sample 

size, higher precision) is needed for 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 to fall within +/- 0.5 yrs of the true value for a 

given value of 𝑔𝑔 when 𝑇𝑇 = 3 (Fig. A3.12). Data quality requirements for 𝑇𝑇 = 7 were 

similar to those for 𝑇𝑇 = 5 (Figs. A3.13, A3.14). We expect that as 𝑇𝑇  0, data quality 

requirements become increasingly restrictive, likely in a nonlinear fashion. Thus, 

requirements for 𝑇𝑇 = 5 seem to be appropriate for any scenario in which 𝑇𝑇 ≥ 5, and 

become increasingly conservative as 𝑇𝑇 increases. Future work should more thoroughly 

address the data quality required for LMLP to provide accurate 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀, particularly when 𝑇𝑇 

< 5. 
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Figure A3.12 Simulated error contours for 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 to fall within +/- 0.5 yrs of 𝑇𝑇 when 𝑇𝑇 = 
3 yrs across levels of sample size, precision, and 𝑔𝑔 (labeled to the left of contours; Table 
A3.2), smoothed using LOESS (degree=2, α=0.75). 
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Figure A3.13 Simulated error contours for 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 to fall within +/- 0.5 yrs of 𝑇𝑇 when 𝑇𝑇 = 
7 yrs across levels of sample size, precision, and 𝑔𝑔 (labeled to the left of contours; Table 
A3.2), smoothed using LOESS (degree=2, α=0.75). 
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Figure A3.14 Simulated error contours for 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 to fall within +/- 0.5 yrs of 𝑇𝑇 for all 
simulations across all levels of sample size and precision and three levels of 𝑔𝑔 (labeled to 
the left of contours; Table A3.2), smoothed using LOESS (degree=2, α=0.75). Solid 
lines: 𝑇𝑇 = 3 error contours; dashed lines: 𝑇𝑇 = 5 error contours; dotted lines: 𝑇𝑇 = 7 error 
contours. 
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Appendix 4 

 

Additional details, methods, and results for Chapter 5 

 

Figure A4.1 Map of the National Oceanic and Atmospheric Administration (NOAA) 
National Marine Fisheries Service (NMFS, now NOAA Fisheries) statistical zones in the 
Gulf of Mexico. Figure reproduced with the permission of Dr. Robert Allman, NOAA 
Southeast Fisheries Science Center, Panama City, FL, USA.
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A4.1 Stan model code for fitting the Lester biphasic growth model 

// Stan model code for fitting the Lester biphasic growth model 

// in a fixed-effects framework.  

// Author: Andrew E. Honsey, University of Minnesota 

// This code should be saved as a '.stan' file. 

// See mc-stan.org for documentation. 

 

// define data 

data { 

  int<lower=0> N; // number of data points 

  int<lower=0> Nages; // number of unique ages 

  vector<lower=0>[Nages] uniqueages; // vector of unique age values 

  int<lower=0> ageindex[N]; // age index (first age, second age, etc.) 

  vector<lower=0>[N] length; // length data 

  real hest; // h estimate from a priori linear model fit to first few length-at-age data pts 

  real l0est; // l0 estimate from a priori linear model fit to first few length-at-age data pts 

} 

 

// define parameters to be estimated 

parameters{ 

  real<lower=0,upper=max(age)> Tmat; // age-at-maturity 

  real<lower=0> h; // juvenile growth rate (slope of linear phase) 
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  real l0; // juvenile growth intercept 

  real<lower=0,upper=1> g; // cost to somatic growth of maturity 

  real<lower=0> phi; // "slope" of standard deviation (scaled with length)  

  real<lower=0> psi; // power of standard deviation (scaled with length) 

} 

 

// define additional model parameters and relationships 

transformed parameters { 

  real t1; // juvenile age at length 0 

  real<lower=0> Linf; // asymptotic length 

  real k; // adult growth rate 

  real t0; // adult age at length 0 

 

  // relationships between parameters assumed by Lester model 

  t1 = -l0/h; 

  Linf = 3*h/g; 

  k = log(1+g/3); 

  t0 = Tmat + (log(1-(g*(Tmat-t1)/3)))/log(1+g/3); 

} 

 

model { 

  // define vectors for loops below 
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  vector[Nages] juv; 

  vector[Nages] adult; 

  vector[Nages] pred; 

  vector[Nages] sigma; 

   

  // modify priors for some parameters 

  g ~ uniform(0,(3/(Tmat-t1))); // analytical bounds for g 

  h ~ normal(hest,7.5); // prior for h -- variance can be adjusted 

  l0 ~ normal(l0est,15); // prior for l0 -- variance can be adjusted 

   

  for (i in 1:Nages) { 

  // growth functions 

  juv[i] = l0 + h*uniqueages[i]; 

  adult[i] = Linf*(1-exp(-k*(uniqueages[i]-t0))); 

 

  // if/then statement to estimate age-at-maturity 

  pred[i] = uniqueages[i] <= Tmat? juv[i] : adult[i]; 

 

  // variance parameter (scales with age) 

  sigma[i] = phi*pow(pred[i],psi); 

} 
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  for (i in 1:N) { 

  // assume that lengths are distributed normally around Lester model predictions 

  length[i] ~ normal(pred[ageindex[i]],sigma[ageindex[i]]); 

} 

} 
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A4.2 Stan model code for fitting a hierarchical model of the mean 

// Stan model code for fitting a hierarchical model of the mean.  

// Author: Andrew E. Honsey, University of Minnesota. 

// This code should be saved as a '.stan' file. 

// See mc-stan.org for documentation. 

 

// define data 

data { 

  int<lower=0> N; // number of data points 

  int<lower=0> N_ind; // number of individuals  

  int<lower=1, upper=N_ind> ID[N]; // individual ID 

  vector[N] points; // data points 

} 

 

// define parameters 

parameters { 

  vector[N_ind] mu_ind; // individual-level means 

  real<lower=0> mu_global; // group-level aka global mean 

  real<lower=0> sigma_mu_global; // variance for global mean 

  vector[N_ind] sigma_mu_ind; // variance for individual means 

} 
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// model likelihoods 

model { 

 

  // individual means are assumed to be distributed normally around the global mean 

  for (i in 1:N_ind){ 

    mu_ind[i] ~ normal(mu_global,sigma_mu_global);  

} 

   

  // data for each individual is assumed to be distributed normally around the individual 

means 

  for (i in 1:N){ 

    points[i] ~ normal(mu_ind[ID[i]],sigma_mu_ind[ID[i]]);  

   } 

} 
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A4.3 Comparing life history traits among red snapper Lutjanus campechanus 

individuals from the eastern versus western Gulf of Mexico 

We conducted an analysis to determine whether our Lester model-based life history trait 

estimates significantly differed among red snapper Lutjanus campechanus individuals 

captured in the eastern (grids 1-12 in Figure A4.1) versus western (grids 13-21 in Figure 

A4.1) Gulf of Mexico. To do this, we used an approach similar to that used to estimate 

mean life history trait values at the cohort group-level (described in Chapter 5). Briefly, 

we extracted draws from the posterior probability distributions for each individual-level 

Lester model fit. We effectively treated these draws as data in hierarchical Bayesian 

models of the mean that were fit separately to individuals from each region (see Table 

A4.1) within each cohort group. For each fit, we ran four Hamiltonian Monte Carlo 

chains for 5000 iterations each (2000 warmup, 3000 sampling). We did not find evidence 

for any significant differences in life history traits among eastern versus western 

individuals across cohort groups; that is, the 95% credible intervals overlapped for all 

comparisons of life history traits among eastern versus western individuals within cohort 

groups (Fig. A4.2-A4.8). 
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Figure A4.2 Mean cohort group-level estimates of age-at-maturity (T; yr) generated from 
Lester model fits to back-calculated red snapper Lutjanus campechanus growth data for 
individuals from the eastern (circles) versus western (triangles) Gulf of Mexico across 
cohorts from 1941-2005. Points represent mean estimates of age-at-maturity for each 
cohort group within each region, and error bars indicate 95% Bayesian credible intervals. 
Sample sizes for each group are displayed above the error bars. When sample size = 1, 
error bars represent 95% Bayesian credible intervals around the parameter estimate for 
that individual. 
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Figure A4.3 Mean cohort group-level estimates of juvenile growth rate (h; mm∙yr-1) 
generated from Lester model fits to back-calculated red snapper Lutjanus campechanus 
growth data for individuals from the eastern (circles) versus western (triangles) Gulf of 
Mexico across cohorts from 1941-2005. Points represent mean estimates of juvenile 
growth rate for each cohort group within each region, and error bars indicate 95% 
Bayesian credible intervals. Sample sizes for each group are displayed above the error 
bars. When sample size = 1, error bars represent 95% Bayesian credible intervals around 
the parameter estimate for that individual. 
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Figure A4.4 Mean cohort group-level estimates of the cost to somatic growth of maturity 
(g; gonad mass/somatic mass) generated from Lester model fits to back-calculated red 
snapper Lutjanus campechanus growth data for individuals from the eastern (circles) 
versus western (triangles) Gulf of Mexico across cohorts from 1941-2005. Points 
represent mean estimates of g for each cohort group within each region, and error bars 
indicate 95% Bayesian credible intervals. Sample sizes for each group are displayed 
above the error bars. When sample size = 1, error bars represent 95% Bayesian credible 
intervals around the parameter estimate for that individual. 
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Figure A4.5 Mean cohort group-level estimates of adult growth rate (k; yr-1) generated 
from Lester model fits to back-calculated red snapper Lutjanus campechanus growth data 
for individuals from the eastern (circles) versus western (triangles) Gulf of Mexico across 
cohorts from 1941-2005. Points represent mean estimates of k for each cohort group 
within each region, and error bars indicate 95% Bayesian credible intervals. Sample sizes 
for each group are displayed above the error bars. When sample size = 1, error bars 
represent 95% Bayesian credible intervals around the parameter estimate for that 
individual. 
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Figure A4.6 Mean cohort group-level estimates of mortality rate (Z, yr-1; generated using 
eq. 1 in Chapter 5) from Lester model fits to back-calculated red snapper Lutjanus 
campechanus growth data for individuals from the eastern (circles) versus western 
(triangles) Gulf of Mexico across cohorts from 1941-2005. Points represent mean 
estimates of mortality rate for each cohort group within each region, and error bars 
indicate 95% Bayesian credible intervals. Sample sizes for each group are displayed 
above the error bars. When sample size = 1, error bars represent 95% Bayesian credible 
intervals around the parameter estimate for that individual. 
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Figure A4.7 Mean cohort group-level estimates of asymptotic length (l∞; mm) generated 
from Lester model fits to back-calculated red snapper Lutjanus campechanus growth data 
for individuals from the eastern (circles) versus western (triangles) Gulf of Mexico across 
cohorts from 1941-2005. Points represent mean estimates of asymptotic length for each 
cohort group within each region, and error bars indicate 95% Bayesian credible intervals. 
Sample sizes for each group are displayed above the error bars. When sample size = 1, 
error bars represent 95% Bayesian credible intervals around the parameter estimate for 
that individual. 
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Figure A4.8 Mean cohort group-level estimates of length-at-maturity (lT; mm) generated 
from Lester model fits to back-calculated red snapper Lutjanus campechanus growth data 
for individuals from the eastern (circles) versus western (triangles) Gulf of Mexico across 
cohorts from 1941-2005. Points represent mean estimates of length-at-maturity for each 
cohort group within each region, and error bars indicate 95% Bayesian credible intervals. 
Sample sizes for each group are displayed above the error bars. When sample size = 1, 
error bars represent 95% Bayesian credible intervals around the parameter estimate for 
that individual. 
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A4.4 Results of analyses including poor fits and males 

For our analyses in Chapter 5, we excluded parameter estimates from Lester model fits to 

individual red snapper Lutjanus campechanus that we considered to be untrustworthy due 

to a lack of convergence and/or poor fits to the data (see Fig. 5.1c,d). These 

untrustworthy fits sometimes produced unrealistic parameter estimates (e.g., an 

asymptotic length of > 2000 mm for one individual, which is more than double the mean 

value; see Table A4.1) that could have skewed our results. However, results including 

these untrustworthy fits were qualitatively similar to those presented in Chapter 5 (Fig. 

A4.9-A4.15). 
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Figure A4.9 Mean cohort group-level estimates of age-at-maturity (𝑇𝑇; yr) generated from 
both trustworthy and untrustworthy Lester model fits to back-calculated Gulf of Mexico 
red snapper Lutjanus campechanus growth data for cohorts from 1941-2005. Points 
represent mean estimates of age-at-maturity for each cohort group, and error bars indicate 
95% Bayesian credible intervals. Sample sizes for each group are displayed above the 
error bars. 
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Figure A4.10 Mean cohort group-level estimates of juvenile growth rate (ℎ; mm∙yr-1) 
generated from both trustworthy and untrustworthy Lester model fits to back-calculated 
Gulf of Mexico red snapper Lutjanus campechanus growth data for cohorts from 1941-
2005. Points represent mean estimates of juvenile growth rate for each cohort group, and 
error bars indicate 95% Bayesian credible intervals. Sample sizes for each group are 
displayed above the error bars. 
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Figure A4.11 Mean cohort group-level estimates of the cost to somatic growth of 
maturity (𝑔𝑔; gonad mass/somatic mass) generated from both trustworthy and 
untrustworthy Lester model fits to back-calculated Gulf of Mexico red snapper Lutjanus 
campechanus growth data for cohorts from 1941-2005. Points represent mean estimates 
of 𝑔𝑔 for each cohort group, and error bars indicate 95% Bayesian credible intervals. 
Sample sizes for each group are displayed above the error bars. 
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Figure A4.12 Mean cohort group-level estimates of adult growth rate (𝑘𝑘; yr-1) generated 
from both trustworthy and untrustworthy Lester model fits to back-calculated Gulf of 
Mexico red snapper Lutjanus campechanus growth data for cohorts from 1941-2005. 
Points represent mean estimates of 𝑘𝑘 for each cohort group, and error bars indicate 95% 
Bayesian credible intervals. Sample sizes for each group are displayed above the error 
bars. 
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Figure A4.13 Mean cohort group-level estimates of mortality rate (Z, yr-1; generated 
using eq. 1 in Chapter 5) generated from both trustworthy and untrustworthy Lester 
model fits to back-calculated Gulf of Mexico red snapper Lutjanus campechanus growth 
data for cohorts from 1941-2005. Points represent mean estimates of mortality rate for 
each cohort group, and error bars indicate 95% Bayesian credible intervals. Sample sizes 
for each group are displayed above the error bars. 
 
 
 
 
 

 
 
 
 
 
 
 
 

  



 

234 
 

 
 
Figure A4.14 Mean cohort group-level estimates of asymptotic length (𝑙𝑙∞; mm) 
generated from both trustworthy and untrustworthy Lester model fits to back-calculated 
Gulf of Mexico red snapper Lutjanus campechanus growth data for cohorts from 1941-
2005. Points represent mean estimates of asymptotic length for each cohort group, and 
error bars indicate 95% Bayesian credible intervals. Sample sizes for each group are 
displayed above the error bars. 
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Figure A4.15 Mean cohort group-level estimates of length-at-maturity (𝑙𝑙𝑇𝑇; mm) 
generated from both trustworthy and untrustworthy Lester model fits to back-calculated 
Gulf of Mexico red snapper Lutjanus campechanus growth data for cohorts from 1941-
2005. Points represent mean estimates of length-at-maturity for each cohort group, and 
error bars indicate 95% Bayesian credible intervals. Sample sizes for each group are 
displayed above the error bars. 
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Figure A4.16 Mean cohort group-level estimates of instantaneous total mortality rate (Z, 
yr-1; calculated using eq. 2 in Chapter 5) generated from Lester model fits to back-
calculated Gulf of Mexico red snapper Lutjanus campechanus growth data for cohorts 
from 1941-2005. Points represent mean estimates of mortality rate for each cohort group, 
and error bars indicate 95% Bayesian credible intervals. Sample sizes (i.e., number of 
individuals) for each cohort group are displayed above the error bars.
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A4.5 Comparison of life history trait estimates between females and individuals of 

unknown sex 

We were interested in examining whether life history trait estimates for known red 

snapper Lutjanus campechanus females differed from those for individuals of unknown 

sex. To do this, we calculated mean life history trait estimates separately for females and 

unknown sex individuals for the only two cohort groups that had > 3 individuals of each 

sex classification (1981-1985 and 1996-2000). We used a frequentist (i.e., conventional) 

approach to calculate means, and we calculated 95% confidence intervals as follows: 

𝜇𝜇 ± 1.96 ∙ 𝑆𝑆𝑆𝑆, 

where 𝜇𝜇 is the sex-specific group-level mean for a given life history parameter and 𝑆𝑆𝑆𝑆 is 

the standard error of the mean. Our results show that the 95% confidence intervals 

overlap for all comparisons of life history traits between females and unknowns, apart 

from one case: 𝑙𝑙∞ was slightly higher, on average, for females than for unknowns in 

1981-1985 (Table A4.3). This result was likely influenced by one individual in the 

unknown sex category with an abnormally low 𝑙𝑙∞ value (735.57 mm). As a whole, these 

results suggest that life history trait estimates for females do not consistently significantly 

differ from those for unknown sex individuals; however, these conclusions are based on 

low sample sizes. Future work should explore the potential for differences in life history 

traits between females and individuals of unknown sex more fully, preferably with 

increased sample sizes.
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