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ABSTRACT 

As the acceptance and implementation of autonomous vehicle technology continues to 

grow, further research into autonomous intersection management has become imperative. 

Autonomous intersection management is a type of intersection control for autonomous 

vehicles which eliminates the need for a traffic signal by using vehicle-to-infrastructure 

communication. Vehicles communicate information to an intersection manager which 

includes their turning intentions, and the intersection manager determines vehicle ordering 

and spacing such that vehicles can pass safely and efficiently through the intersection. 

Specifically, reservation-based autonomous intersection management, which give vehicles 

space-time path reservations through an intersection, has the potential to greatly increase 

the capacity of intersections by allowing an intersection controller to optimize the path that 

each vehicle takes. In this study, a mixed-integer linear program is proposed which expands 

on previous studies’ models by giving the intersection manager more flexibility through 

optimizing vehicle acceleration and velocity through the intersection.  

In addition, this new model was integrated with the microsimulation software Aimsun to 

simulate intersections under varying conditions. By utilizing Aimsun’s Application 

Programming Interface (API), the reservation-based intersection control model developed 

in this study was implemented into the software. Then, various scenarios were simulated 

which included fluctuating the vehicle demands, altering the permitted vehicle 

accelerations and speeds, and modifying the safety buffer between vehicles.  

The results indicate that the model proposed in this study has the capability to reduce delay 

and increase average speed experienced by vehicles at an intersection for different 

scenarios. Overall, the results show that the model offers several improvements to the 

existing reservation-based intersection control formulations and conventional signal 

controls. It has promising practical applications too, with its integration with the popular 

microsimulation tool Aimsun. Moving forward, this study’s model and formulation will be 

valuable tools in implementing autonomous intersection management, especially when 

used in conjunction with a microsimulation program.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Topic Introduction 

One of the hottest topics today in the transportation industry is autonomous vehicles. As 

the testing and use of autonomous vehicles on the country’s roads has already begun, the 

further growth of autonomous vehicle technology is imminent. More specifically, many 

car manufacturers have implemented autonomous driving technologies like lane-keep 

assist, adaptive cruise control, and park assist. Furthermore, companies like Uber and 

Google have begun testing driverless vehicles in large metropolitan cities across the nation. 

The potential improvements they can bring to society make further research and 

development of this technology imperative. Some of these are improvements in safety, 

accessibility, and efficiency. Since connected autonomous vehicles have the capability of 

communicating with each other and with infrastructure, this allows for unprecedented 

flexibility in how vehicles operate in traffic. To accomplish this, an intersection manager 

can be utilized which can receive messages from vehicles that can include information like 

turning intentions, vehicle speed and location, and vehicle limitations such as maximum 

speed or acceleration. Then, the intersection manager can use this information to determine 

vehicle ordering and spacing and assign “reservations” to vehicles to pass through the 

intersection at specific times to ensure a safe traversal.  

One innovative research topic in the crossover field of traffic engineering and autonomous 

vehicle technology is autonomous intersection management (AIM). AIM is an intriguing 

concept because vehicles can communicate with each other and the intersection manager 

to seamlessly pass through the intersection safely without using a traffic signal. 

Reservation-based AIM is one type of this traffic control which focuses on assigning 

vehicles non-conflicting space-time path reservations through the intersection. This 

technology has the potential to greatly increase the efficiency of intersections by allowing 

an intersection controller to optimize the path that each vehicle takes. 
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Additionally, AIM brings significant safety improvements to the public by removing 

potential human error when navigating through intersections. Intersections are hotspots for 

collisions due to the high number of conflict points, but by allowing a flawless intersection 

controller to dictate where vehicles should maneuver through an intersection, the risk for 

collisions is significantly reduced. In the big picture of AIM, time spent waiting at 

intersections may be mostly eliminated which can lead to enormous time savings. Further 

improvements in efficiency are brought by first and foremost researching more effective 

methods of this intersection control.  

1.2 Problem Statement and Objectives of Study 

Since AIM does not exist in real-world locations today, microsimulation provides the best 

means to practically compare and contrast its effects with variable traffic conditions 

compared to both existing models of reservation-based AIM and conventional intersection 

control. To obtain the greatest benefits from reservation-based AIM, it is necessary to 

optimize it for actual traffic behavior. Traffic microsimulation software provides an 

opportunity to accurately model this intersection control and to examine the effects of the 

technology on various factors. However, current traffic simulation software does not have 

built-in capabilities to simply construct intersections with these controls. Most of these 

simulation programs do have capabilities to use application programming interfaces (APIs) 

for detailed customization of the software. Therefore, the goal of this research project is to 

integrate AIM with traffic microsimulation software and to analyze the behavior of 

vehicles at these intersections under varying conditions compared to other forms of 

intersection control. 

In order to do that, this study expands upon the AIM strategies developed in previous 

studies first from Dresner and Stone [1] and more recently from Levin and Rey [2]. The 

early studies of AIM utilized policies that were not optimization-based. For example, many 

studies used a “first-come first-served” policy which gave priority to pass through the 

intersection to whichever vehicle sent a request to the intersection manager first. However, 

this approach can lead to suboptimal results since a more efficient of vehicle ordering may 

exist that is not necessarily based on “first-come first-served”. Optimization of AIM, then, 
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can lead to major improvements in delay for an entire section and for individual vehicles. 

In this study, the model gives the intersection manager more flexibility through optimizing 

vehicle acceleration through the intersection. This will allow the intersection controller to 

optimize vehicle trajectories based on their current position and desired turning movement 

while ensuring that vehicles can maneuver safely through the intersection. In current 

literature, there is no research on reservation-based AIM which allows the intersection 

controller so much freedom in controlling vehicles’ speeds and accelerations as they pass 

through the intersection. In addition, by allowing the intersection manager to optimize 

acceleration, it will lead to better modeling in microsimulation. 

In this study, an AIM formulation was developed as a mixed-integer linear program. This 

formulation was implemented in the popular microsimulation software Aimsun using the 

application programming interface. Then, a sensitivity analysis of the new AIM 

formulation was conducted and compared to two other forms of intersection control: a 

conventional signal and another form of AIM. Multiple scenarios were considered in the 

sensitivity analysis, and several parameters were varied during the evaluation. The results 

show how delay and average speed changed for the different forms of intersection control. 

The technology presented in this research is not yet practice-ready as there are several 

aspects that need to be included to make it more implementable. However, this work serves 

as a stepping point to further develop autonomous intersection management – specifically 

for automobiles. More specifically, the research proposed in this plan has a two-fold 

contribution: providing a more flexible and improved AIM optimization model and 

allowing for more accurate testing of this intersection control which can bring the 

technology one step closer towards being a reality. 

1.3 Thesis Organization 

The remainder of the paper will be organized into several main sections. 

Chapter 2 will provide the background and literature review of AIM on a general scale, 

the various policies and optimization models that can be used in AIM, and possible 

accommodations of human vehicles in AIM.  
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Chapter 3 will discuss the methodology which includes the mixed-integer linear program 

(MILP) that was developed for this study. More specifically, an explanation will be given 

of how the MILP was developed, what new benefits it provides compared to previous 

studies’ models, and assumptions that were made in the formulation. 

Chapter 4 will go into detail about the use of the application programming interface (API) 

that was utilized in Aimsun microsimulation to add the functionality of AIM to the 

program. A general overview of the Aimsun network will be provided, followed by an 

explanation of the coordination of Aimsun’s API and the Gurobi optimization software. 

More specific details about the use of Gurobi in this study will be given, and the modeling 

choices and overall model development will be outlined. 

In Chapter 5, the different test scenarios that were considered for the study will be 

summarized. This included sensitivity analyses which consider several measures of 

effectiveness (MOEs) and several parameters. Then, the results of the study will be 

presented based on these scenarios. 

Lastly, Chapter 6 will provide the conclusions that were drawn from the study as well as 

discuss the potential future work that could be extended from this work.  
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CHAPTER 2 

2 BACKGROUND 

Although AIM is a relatively new research subject, there is a surprisingly large scope of 

subtopics that have spawned from it. The topics relevant to this study can be broken down 

into four main categories: the background of AIM, the various policies of AIM, the 

optimization-based models of AIM, and the accommodation of human vehicles within 

AIM.  

2.1 Background of Autonomous Intersection Management 

While autonomous vehicle technology has not started gaining major support and advances 

until relatively recently, some research on AIM dates back at least twenty years [3]. 

However, this research mainly considered very general methods of autonomous vehicles 

crossing intersections according to predetermined strategies. The classic AIM was 

introduced by Dresner and Stone which proposed a “first-come first-served” (FCFS) 

reservation-based AIM in which cars acted as agents that could send and receive 

intersection reservations to and from an intersection manager [1]. However, this study did 

not consider the optimization of vehicle requests and only considered whether or not each 

request conflicted with an already assigned reservation. 

After the introduction of AIM, Dresner and Stone also conducted a study which 

summarized the benefits and outcomes of reservation-based AIM, namely the reductions 

in delay that vehicles experience at an intersection which can be significantly reduced and 

even eliminated as the number of autonomous vehicles increases [4]. Furthermore, they  

detailed in another study how potential mechanical failures of an AIM system could be 

addressed, especially since AIM systems that are unequipped with failure protocol could 

be dangerous due to the automated nature of the vehicles [5].  

Several studies also took AIM one step further to test its feasibility by taking a more 

practical approach. Quinlan et al. was able to test AIM in a realistic setting by creating a 

mixed-reality setting where an actual autonomous vehicle interacted with other 
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autonomous vehicles that only existed in simulation [6]. Similarly, De La Fortelle and Qian 

discussed issues of AIM when it was used in real-world tests and suggested criteria for how 

to expand autonomous driving technology including safety, efficiency scalability, etc. [7].  

In general, though, there are numerous studies which demonstrate the extreme 

improvements that AIM can provide when compared to either standard signalized 

intersections or stop-controlled intersections [1, 5, 8-18]. Fajardo et al. conducted an 

extensive study utilizing a custom simulation program to compare the performance of AIM 

versus signals considering many different factors like the number of left-turning vehicles 

and the distance of buffer between vehicles [8]. This study showed that the delay 

experienced by vehicles in AIM was significantly less than the delay at a standard traffic 

signal. Even in a real-life test, traditional traffic signals were outperformed by AIM [6]. 

Since the introduction of AIM, many different strategies and methods were developed in 

order to find a more optimal approach to AIM. Several different policies were developed 

in response to the FCFS, and beyond that, several optimization models were created to 

build upon the original strategy proposed for AIM. Over time, these concepts have become 

more practical due to the applicability of simulation software that can accurately model 

and simulate AIM.  

2.2 Methods and Policies of Autonomous Intersection Management 

After the introduction of the FCFS reservation-based model of AIM, several alternative 

AIM policies and methods have been studied. Many new policies built-upon the FCFS 

reservation-based policy originally created by Dresner and Stone by implementing several 

improvements to the original FCFS model to make it more realistic and more efficient [9-

12, 19-23]. Various other methods have appeared as well that have taken a different 

approach to policies of AIM [13-14, 24-28].  

Shortly after the concept of AIM was introduced, Dresner and Stone improved their FCFS 

model, which was originally very limited. Vehicles at autonomous intersections now had 

the capability to turn and accelerate, and it was not necessary that vehicles have any 

knowledge of the policy being used by the intersection manager [9]. Later, they completed 
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a study which detailed several aspects that could be improved in AIM for both the 

intersection manager and for driver agents [19]. For example, intersection managers could 

provide a more delayed response when granting reservations to vehicles in order to provide 

a more optimal reservation for all vehicles. They could also give priority to certain vehicles 

or even treat the intersection as a market. For driver agents, vehicles could utilize the 

“intersection market” to bid for reservations and more flexibility could be given to vehicles 

for lane changing. Related to the suggestions from the study of Dresner and Stone, Au et 

al. actually considered how an intersection manager could receive batch reservations, or 

multiple reservation requests at one time, and how it could prioritize reservations based on 

vehicle type or wait times [22-23]. Additionally, Dresner and Stone extended the 

applicability of AIM to intersection control for low-volume roadways which requires no 

infrastructure (mechanism only relies on vehicle-to-vehicle communication) [12].  

Other improvements to FCFS AIM have included extending its applicability to a multi-

intersection network and introducing a planning-based model to reduce the chance that 

vehicles have to stop prior to entering the intersection [20-21]. Li et al. created an AIM 

model termed ‘ACUTA’ which expanded upon the FCFS model by allowing advanced stop 

location so vehicles could enter the intersection at higher speeds, non-deceleration zones – 

so vehicles did not have to stop if their reservation was rejected – and priority reservation 

[10]. This model of AIM was incorporated into the popular microsimulation software 

VISSIM to provide more reliable results than a custom simulation software when 

evaluating AIM against other conventional traffic control methods [11].  

One study considered several paradoxes of reservation-based AIM [29]. Specifically, it 

noted and proved that signals could actually perform better than reservation-based AIM in 

certain situations – like when vehicles on local roads were prioritized over arterials. It 

found AIM performed better at symmetric intersections (i.e. downtown) versus asymmetric 

intersections (local/arterial). Additionally, reservation-based AIM could encourage selfish 

routing choices for drivers. This helped lead to the conclusion that more optimal policies 

of AIM than the FCFS policy could exist. In fact, Vasirani and Ossowski compared FCFS 

AIM to four other policies that were based on the adversarial queuing theory (AQT), which 



8 

 

 

included longest-in-system, shortest-in-system, farthest-to-go, and nearest-to-source [30]. 

It found that, while FCFS was simpler and required less information about the vehicle, it 

was not as efficient as the other policies of AQT. 

One popular AIM policy that has appeared more in literature is auction-based AIM [24-

26]. The concept of implementing auctions into AIM was first proposed in a study by 

Carlino et al., and it was also tested in microsimulation [24]. Another study proposed a 

market-based mechanism at the intersection level in which the intersection manager assigns 

space-time slots to vehicles in order to pass through the intersection [25]. In two different 

studies, Schepperle and Böhm and Levin and Boyles implemented intersection auctions for 

reservation-based control with dynamic traffic assignment [26-27]. They modified tile-

based AIM so that it could be applied to large networks. Furthermore, Levin compared 

intersection auctions to the traditional FCFS reservation-based control and found several 

benefits that were provided by auction control.  

Other AIM methods include decentralized autonomous intersection management, vehicle 

back-off protocol, and implementation of a multiclass cell-transmission (CTM) model with 

consideration of autonomous intersections [13-14, 28]. The decentralized control system 

for AIM utilized the popular microsimulation software Aimsun paired with Matlab to look 

at benefits of AIM compared to standard signals, with a main focus in energy-use 

optimization [13]. Vehicle back-off protocol used vehicle messages and collision 

avoidance to control traffic within intersections and showed several benefits when modeled 

in simulation [14]. In the multiclass CTM model, tile-based reservation was combined with 

the legacy early method to model AIM for one intersection [28]. This study proved useful 

in determining the autonomous vehicle (AV) penetration rate at which AIM became more 

efficient than standard signal control. 

While these methods and policies considered many different approaches to AIM, many 

opportunities still exist for improvements in efficiency. They do not consider the 

optimization of intersection control, which is a promising avenue in bringing more 

improvements to AIM. As demonstrated by Levin et al., several cases exist in which signals 

can outperform FCFS [29]. While the aforementioned studies showed that AIM has many 
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benefits over standard intersection control, using optimization in AIM can still bring even 

more benefits and solve the situations in which AIM could be outperformed by signals. 

2.3 Optimization Models of Autonomous Intersection Management 

Studies concerning the optimization of intersection control started to appear shortly after 

the introduction of FCFS reservation-based AIM. Optimization of reservation-based AIM,  

optimization of time-space AIM models, and several other optimization methods are all 

present in literature. Even models that were derived from various intersection control 

policies utilize different methods of optimization. 

A number of studies utilized the reservation-based approach proposed by Dresner and 

Stone combined with optimization algorithms in order to develop optimizable models of 

AIM [31-33]. De La Fortelle developed a reservation algorithm based on the FCFS 

reservation-based model in order to optimize the arrival time at the intersection for all 

reservation requests [31]. This is similar to the batch reservation policies [22-23] except 

that an optimization algorithm is also included in the model. Levin et al. developed an 

integer program optimization for tile-based intersections in order to optimize the order in 

which vehicles cross the intersection [32]. Additionally, this model was tested with two 

different objective functions (minimize travel time and minimize fuel consumption) using 

a transportation network model. Lastly, another study presented a centralized scheduling 

algorithm based on vehicle reservations, but also considered vehicle priority in the 

intersection control [33]. This model was tested in a self-developed simulation to 

demonstrate the efficiency of the optimized AIM model. 

Tangent to the development of AIM and the development of optimization methods of AIM, 

an important relevant subtopic of intersection control considers the optimization of air 

traffic conflicts [34-36]. In an airspace, it is also necessary to optimize the crossing of 

aircraft in order to ensure safety and maximum efficiency. Chiang et al. utilized 

computational geometry and algorithms to route aircraft through an airspace full of conflict 

zones [34]. Another strategy used in studies on airspace conflict optimization is to utilize 

speed regulation and control combined with optimization [35-36]. Rey et al. used 
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optimization to reduce the duration of and total number of conflict zones by adjusting and 

regulating aircraft speed. It was found that air conflicts could be resolved without adding 

much delay to individual aircrafts. The strategies used in air traffic optimization are 

relevant since they provide approaches that can also be used for AIM and are similar to the 

approach utilized in the optimized-AIM model in this study. 

This leads to a similar strategy in AIM used by several papers which is concerned with the 

time-space optimization of vehicles at an intersection [2, 15-16, 37-43]. Two studies used 

an approach in which the intersection manager received vehicle information like speed, 

location, or acceleration and optimized the time that a vehicle should enter the intersection 

(or the path that it should take through the intersection) [37-38]. Another method called the 

“CVIC” model utilized an algorithm that found a safe maneuver for every vehicle through 

the intersection [15]. This model also included an algorithm that would take over in case 

of system failure. This study was further expanded to consider multiple intersection within 

the model [39]. Another approach was to apply model predictive control to optimizing AIM 

[16, 40]. This framework determined optimal trajectories or vehicle ordering with collision 

avoidance using an intersection manager considering speed limits and vehicle constraints. 

One study tested this framework with simulation in comparison to standard traffic signals 

and showed several improvements [16]. 

Wuthishuwong and Traechtler created a model that used a node reservation algorithm 

which assigned each vehicle a certain time to enter the intersection [41]. Additionally, a 

dynamic program in this study found the trajectory of each vehicle through the intersection 

with continuous movement and no collisions. Grégoire et al. proposed a mathematical 

framework for a continuous scheduling optimization in conjunction with vehicle priority 

for AIM [42]. This was done by assigning each vehicle path-velocity assignments through 

the intersection. Similarly, Altché and De La Fortelle utilized a mixed-integer linear 

program for AIM which determined velocity assignments as well as vehicle ordering 

through an intersection [43]. In this study, results of the model were also compared to the 

results from the FCFS policy. In a more recent study, a conflict-point formulation of AIM 

was proposed in which an intersection manager assigned time-space reservations to 
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vehicles after mixed-integer linear program optimization [2]. This formulation was used as 

the foundation for the formulation that was derived in this paper’s study. This type of 

optimization is similar to aircraft conflict resolution in that it ensures no conflict regions 

overlap within an intersection.  

Other methods of AIM optimization have also been considered [17-18, 44]. Zohdy et al. 

took an approach of intersection management using cooperative adaptive cruise control, 

which showed major improvements in delay when compared to traffic lights [17]. In 

another study, polling-systems were used, in which vehicles are subject to differential 

constraints in conjunction with a coordination control algorithm [44]. Zhu and Ukkusuri 

developed a linear program based on traffic dynamics for AIM which included a bi-level 

optimization combining system optimal dynamic traffic assignment and AIM [18].  

The methods used in the optimization of intersection control are wide-ranging. While 

different approaches can be used in solving AIM, advantages and disadvantages are present 

in each. The conflict-point formulation presented by Levin and Rey, which was expanded 

upon in this study, was flexible and extremely efficient in optimizing AIM. Additionally, 

while simulation was used frequently in analyzing the different policies and methods of 

intersection control, combining the use of microsimulation software with optimized AIM 

has not been done before. 

2.4 AIM with Human Vehicles 

While most studies concerning AIM are based on the assumption that all vehicles passing 

through a given intersection are fully autonomous, there is existing literature that actually 

considers methods of AIM that are accommodating of human vehicles. It will either take a 

significantly long period of time for all vehicles on the road to be autonomous or it may 

never fully happen since some people will choose to drive themselves due to monetary 

reasons or for the enjoyment of driving. Accordingly, it is important to consider and 

understand methods that can be utilized or integrated with methods of AIM so that both 

autonomous and human vehicles can be accommodated. Some of these methods are 

unrelated to AIM, but others are extensions of the classic AIM model.  
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One of these other approaches to AIM is contextualized traffic controlling [45]. This 

method of intersection control sends commands to vehicles when they have the right of 

way in an intersection. This is determined based on vehicle information that is sent to the 

controller which then tries to find the most optimal vehicle ordering. Alonso et al. 

considered a method in which autonomous vehicles received information about the 

intentions about human vehicles like position, speed, and turning intentions and then were 

able to make their own decisions about crossing the intersection [46]. Similarly, another 

study developed an approach in which in-vehicle virtual traffic lights notified the driver 

when they were able to pass through the intersection [47]. While these methods are not 

related to AIM, they propose concepts that bring more flexibility and would allow human 

vehicles to traverse through AIM intersections. 

Other studies have tried to expand AIM specifically to be more accommodating of human 

vehicles [48-51]. In two separate studies, Dresner and Stone improved their AIM model by 

discussing how to incorporate human vehicles (with an emphasis on emergency vehicles) 

[48]. A method was presented in which AIM capabilities could be added to an intersection 

gradually as the penetration rate of AVs increased [49]. Another study was an extension of 

AIM that developed an algorithm with a space-time reservation scheme that worked with 

low percentages of non-autonomous vehicles [50]. Additionally, Qian et al. developed a 

priority-based coordination AIM system which supported legacy vehicles [51]. In this 

approach, legacy vehicles maintained a safe following distance from vehicles – allowing 

for human vehicles to be incorporated in AIM.  

These studies that address considerations of human vehicles with AIM are relevant to this 

study because they demonstrate that methods exist that incorporate human vehicles into 

AIM. In this study, then, it is assumed that all vehicles are fully autonomous since one of 

the previous methods could be incorporated with the model in this study to allow for human 

vehicles. As the number of autonomous vehicles rises, though, the efficiency of AIM will 

also increase.  
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CHAPTER 3 

3 METHODOLOGY 

In this study, a mixed-integer linear program (MILP) was developed which was based on 

the formulation created by Levin and Rey [2]. The formulation proposed in this study, 

which will be referred to as AIM+, was based on a reservation scheme of AIM in which an 

intersection manager utilized a conflict-point formulation to assign vehicles a space-time 

reservation through the intersection. Each vehicle met the assigned reservation by 

modifying its speed to arrive at conflict points within the intersection at specific times. The 

assigned trajectories of all of the vehicles in the network were optimized in such a way that 

every vehicle could pass through the intersection collision-free and as efficiently as 

possible.  

3.1 MILP Development 

To improve the formulation presented by Levin and Rey, AIM+ gives the intersection 

manager more flexibility in assigning space-time reservations to vehicles by allowing the 

vehicles to pass through the intersection at accelerating speeds. In the previous model, 

vehicles passing through an intersection were only able to do so with a constant speed. By 

allowing vehicles to accelerate through the intersection, the intersection will operate more 

efficiently. Control of acceleration is also necessary to integrate AIM+ into a 

microsimulation environment.  

3.1.1 MILP Assumptions 

The development of this formulation was made on the basis of several assumptions. First 

of all, it was assumed that the vehicle would utilize a constant acceleration rate from its 

first conflict point to its last point. Conflict points are the points at which different vehicle 

paths intersect, merge, or diverge. By using the assumption of constant acceleration, the 

kinematic equations were able to be utilized in the formulation to determine vehicle 

acceleration. Equation (1) was used to relate acceleration to arrival time and distance 

traveled.  
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𝑑 = 𝑣𝑖𝑡 +
1

2
𝑎𝑡2         (1) 

Since this kinematic equation contains a quadratic term, and in order to keep the 

formulation as a linear program so that optimization software was easily able to solve the 

problem, the assumption was made that the initial velocity, 𝑣𝑖, is zero. This assumption 

only existed within the MILP formulation in order to ensure that the optimization 

formulation was solvable. Since it was not optimal to require vehicles to come to a stop 

immediately before entering the intersection when considering overall efficiency of the 

intersection, provisions were made by establishing the first conflict point at a spot several 

hundred feet upstream of the intersection. This conflict point was considered as the initial 

conflict point for each vehicle’s path, but it served more so as an abstract point which 

signified where the vehicle should be at rest as opposed to being an actual point of crossing 

of vehicle paths. The vehicle would have sufficient distance and time before entering the 

intersection to accelerate to a higher speed. Further provisions were made within 

microsimulation so that each vehicle would not physically have to come to a stop in the 

simulation. This will be discussed more in-depth in Chapter 4. Figure 1 illustrates the 

trajectories and conflict points for a four-leg intersection. The trajectories for the eastbound 

movements are shown in red, and the conflict points for the eastbound through movement 

in the left lane are numbered. 
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Figure 1, Intersection Conflict Points 

It was also assumed that the acceleration and speed between the first and last conflict points 

of an intersection would be non-negative. This ensured that vehicles in the system would 

only accelerate on their trajectories. 

Lastly, the assumption was made that autonomous vehicles utilizing the intersection 

controlled by AIM+ would not cause a collision. Since every vehicle has a list of specific 

conflict points, in the case of a malfunction, it’s possible to determine if a vehicle has 

deviated from its path. The intersection manager can then take action to alert other vehicles. 

When considering the technology of connected autonomous vehicles, it is important to note 

that they are (or will be) capable of transmitting basic safety messages (BSMs) which 
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include information like vehicle location and speed. These messages that are broadcasted 

by vehicles can be used to help eliminate collisions at intersections controlled by AIM. The 

National Highway Traffic Safety Administration has worked on implementing a policy 

requiring new vehicles to have the technology to broadcast these messages which can be 

emitted nearly every 0.1 seconds [52]. If vehicles are able to broadcast BSMs, an 

intersection manager can notice if a vehicle stops broadcasting messages for a certain time 

period (i.e. a malfunctioning vehicle does not send BSMs for 0.5 seconds). In the case of a 

vehicle malfunction in an intersection, the intersection manager can then send out an alert 

to tell all vehicles approaching the intersection to slow down and come to a stop to prevent 

any potential collisions. Any vehicles that are already in the intersection at the time of a 

malfunction can appropriately and safely accelerate and avoid the trajectory of the 

malfunctioning vehicle and finish exiting in the intersection. In fact, several studies have 

been conducted that consider how BSMs can be used to prevent collisions [53-54]. This 

technology would pair well with AIM to ensure maximum efficiency and maximum safety 

at intersections.  

To go more in-depth, a half second can be utilized, as a generalization, as the point at which 

an intersection manager sends out an alert because it has not received a message from a 

vehicle that will be entering the intersection. In reality, this threshold may be more or less 

than half a second, but regardless of the number, kinematics can be used to describe how 

to ensure that all vehicles with potential conflicts with the malfunctioning vehicle can come 

to a stop safely. After 0.5 seconds of not receiving BSMs from a certain vehicle, the 

intersection manager will assume this vehicle has malfunctioned. Accordingly, it can then 

send a signal to all vehicles to slow down. Assuming that the malfunctioning vehicle has 

an initial velocity of 40 mph and will decelerate at 11.2 ft/s2 (the value commonly used for 

vehicle deceleration by the American Association of State Highway and Transportation 

Officials), the time it takes that vehicle to come to rest can be calculated according to 

equation (2) below. 

 𝑣𝑓 = 𝑣𝑖 + 𝑎𝑡          (2) 
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Therefore, it will take a malfunctioning vehicle approximately 5.2 seconds to come to rest. 

For all other vehicles, they will continue to travel at their initial speed of 40 mph for 0.5 

seconds until alerted by the intersection manager to come to a stop. At that point, the 

vehicles will have approximately 4.7 seconds (5.2 seconds minus 0.5 seconds) to come to 

a stop. The required deceleration rate to accomplish this is 12.4 ft/s2 which can also be 

calculated from equation (2). According to the National Cooperative Highway Research 

Program Report 600, mean deceleration rates of 17.7 ft/s2 were attainable under good 

traction conditions [55]. While this rate is higher than the normal comfortable deceleration 

rate, it is still reasonable to assume that vehicles could utilize this deceleration rate in case 

of a malfunction at an intersection.  

While this example is more general, it illustrates the capability of utilizing BSMs as a way 

to alert an intersection manager that a vehicle is malfunctioning. By knowing 

approximately where a vehicle has started malfunctioning, the intersection manager can 

know the trajectory of how the vehicle will come to rest. Accordingly, the intersection 

manager can calculate required deceleration rates for each vehicle so that they can also stop 

before crossing the path of the malfunctioned vehicle. While no collisions occur within the 

simulated scenarios in Aimsun, this example illustrates how BSMs and an intersection 

manager can work together to ensure that the intersection can still operate efficiently. 

However, it’s also important to consider situations where BSMs aren’t received by the 

intersection due to other reasons (i.e. temporary communication blockage). In these 

situations, using the current algorithm, the intersection manager would still assume that a 

vehicle has malfunctioned and a signal would be sent to vehicles. This issue would create 

cases where vehicles are falsely alarmed of a malfunction They would still begin to come 

to a stop and incur delay and vehicle speed would be affected. However, once the 

intersection manager has started receiving messages from the vehicle again, an alert can be 

sent back to vehicles to assign them new paths based on their current location and speed. 

3.1.2 Notation 

Several variables will be defined prior to introducing the constraints of the AIM+ MILP 

formulation. These variables can be found in Table 1. 
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Table 1, MILP Formulation Variables 

𝒱 set of all vehicles in network 𝑒𝑖 

earliest time that vehicle 𝑖 
can reach initial conflict 

point 

𝜌𝑖 
path vehicle 𝑖 takes through 

intersection 
𝑑𝑖(𝑐𝑖

1, 𝑐𝑖
𝑛) 

distance vehicle 𝑖 travels 

between intersection 

entry point and conflict 

point 𝑛  

𝑐𝑖
0 

Initial conflict point for vehicle 𝑖 
located some specified distance 

upstream of the intersection 
𝐷𝑖 width of vehicle 𝑖 

𝑐𝑖
1 

intersection entry point for vehicle 

𝑖 
𝐿𝑖 length of vehicle 𝑖 

𝑐𝑖
𝑁 

intersection exit point for vehicle 𝑖 
(last conflict point for vehicle 𝑖)  

𝑤 congested wave speed 

𝑐𝑖
𝑛 

nth conflict point on path of 

vehicle 𝑖 
𝑎𝑖 

minimum acceleration 

that vehicle 𝑖 can travel 

through the intersection 

𝑡𝑖(𝑐𝑖
𝑁) 

time at which vehicle 𝑖 reaches 

intersection exit point 
𝑎𝑖 

maximum acceleration 

that vehicle 𝑖 can travel 

through the intersection 

𝜏𝑖(𝑐𝑖
𝑁) 

time it takes vehicle 𝑖 to 

completely pass through 

intersection exit point 

𝜆𝑖 

equivalent to√
1

𝑎𝑖
 . Written 

as such to ensure linear 

constraints 

𝑡𝑖(𝑐𝑖
𝑛) 

time at which vehicle 𝑖 reaches 

conflict point 𝑐𝑖
𝑛 

𝑈𝑖 
minimum velocity that 

vehicle 𝑖 can travel 

through the intersection 

𝜏𝑖(𝑐𝑖
𝑛) 

estimated time it takes vehicle 𝑖 to 

pass through conflict point 𝑐𝑖
𝑛 

𝑈𝑖 

maximum velocity that 

vehicle 𝑖 can travel 

through the intersection 

 

𝑡𝑖(𝑐𝑖
1) 

time at which vehicle 𝑖 reaches 

intersection entry point 
𝛿𝑖𝑗(𝑐𝑖

𝑛) 

binary variable denoting 

if vehicle 𝑖 and vehicle 𝑗 

overlap at point 𝑐𝑖
𝑛 

𝜏𝑖(𝑐𝑖
1) 

time it takes vehicle 𝑖 to 

completely pass through 

intersection entry point 

𝑀𝑖𝑗 
large positive constant for 

separation constraint 

𝑓𝑖 priority or weight of each vehicle, where fi > 0  

The key purpose of an intersection manager in AIM is to determine every vehicle’s arrival 

time at each conflict point, because these must be assigned such that a smooth and collision-

free traversal can be made through the intersection. Each vehicle’s respective list of conflict 
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points depended on its turning movement and approach. For example, a left-turning vehicle 

would have more conflict points than a right-turning vehicle, because a left-turning vehicle 

crosses the paths of through-moving vehicles. As previously mentioned, this list of conflict 

points includes the initial conflict point which was some specified distance upstream of the 

intersection. It should be noted that when 𝑛 = 0, this refers to the initial conflict point, 𝑛 =

1 refers to the intersection entry point, and 𝑛 = 𝑁 refers to the intersection exit point (the 

last conflict point). 

3.1.3 Decision Variables and Known Inputs 

As discussed, the intersection manager determines the time of arrival for each vehicle 𝑖 at 

each of its conflict points 𝑐𝑖
𝑛 – which is denoted by 𝑡𝑖(𝑐𝑖

𝑛). This is one of the decision 

variables of the AIM+ formulation in addition to the acceleration term, 𝜆𝑖, and the binary 

separation variable, 𝛿𝑖𝑗. The term 𝜏𝑖(𝑐𝑖
𝑛), which defines the time required for vehicle 𝑖 to 

pass through a conflict point 𝑐𝑖
𝑛, is based on the decision variables and other known values 

of the formulation. These known variables include the distance between two conflict 

points, 𝑑𝑖(𝑐𝑖
𝑛−1, 𝑐𝑖

𝑛), the minimum vehicle acceleration, 𝑎𝑖, and the minimum vehicle 

velocity, 𝑈𝑖, and are constant exogenous values. The other variables of the formulation are 

directly output by Aimsun and will be discussed further in Chapter 4.   

3.1.4 Vehicle Ordering 

For every vehicle that was approaching an intersection, it was possible to calculate its 

earliest arrival time (𝑒𝑖) to the intersection entry point based on parameters like location, 

speed, and acceleration. Accordingly, every vehicle 𝑖 𝜖 𝒱 was not able to arrive at the 

intersection at any time earlier than its earliest arrival time. Therefore: 

𝑡𝑖(𝑐𝑖
0) ≥ 𝑒𝑖     ∀ 𝑖 ∈ 𝒱         (3) 

Furthermore, it was necessary to ensure correct vehicle ordering for vehicles that had the 

same initial conflict point (𝑐𝑖
0). By doing this, it ensured that vehicles were not assigned 

arrival times that were earlier than the arrival times of vehicles in front of them in the same 

lane. This applied to all pairs of vehicles 𝑖 and 𝑗 in the set of vehicles 𝒱 for every shared 
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conflict point along each vehicle’s path. If ei < ej, then vehicle 𝑗 could not enter conflict 

point 𝑐𝑖
𝑛 until vehicle 𝑖 had arrived at that point – denoted by 𝑡𝑖(𝑐𝑖

𝑛) – and finished passing 

through the point – denoted by 𝜏𝑖(𝑐𝑖
𝑛). A constraint was introduced which guaranteed this 

vehicle following order which essentially ensured that the first vehicle to enter a lane was 

the first vehicle to exit that lane and enter the intersection (like first-in first-out). 

𝑡𝑖(𝑐𝑖
𝑛) + 𝜏𝑖(𝑐𝑖

𝑛) ≤ 𝑡𝑗(𝑐𝑗
𝑛)     ∀𝑖, 𝑗 ∈ 𝒱: 𝑐𝑖

0 = 𝑐𝑗
0, 𝑒𝑖 < 𝑒𝑗, ∀𝑐𝑖

𝑛 ∈ 𝜌𝑖 ∩ 𝜌𝑗: 𝑛 ∈ [1, 𝑁𝑖] (4) 

3.1.5 Travel Time between Conflict Points 

As a vehicle traversed its path between conflict points, its speed and acceleration were 

constrained so that it did not exceed a value that was reasonable for each unique vehicle. 

Each vehicle had a maximum velocity that was assigned based on the speed limit of the 

link and the intended turning movement of the vehicle. For example, vehicles making 

through movements at the intersection had higher maximum velocities than vehicles that 

were turning left or right. This was done to more accurately model turning movements at 

an intersection. In addition, each vehicle was assigned a minimum velocity so that its 

velocity at least reached a reasonable and appropriate velocity upon entering the 

intersection. The constraint on this velocity for every vehicle was derived from the 

definition of velocity: 

2𝑑𝑖(𝑐𝑖
0,𝑐𝑖

𝑁)

𝑈𝑖
≤ 𝑡𝑖(𝑐𝑖

𝑁) − 𝑡𝑖(𝑐𝑖
0) ≤

2𝑑𝑖(𝑐𝑖
0,𝑐𝑖

𝑁)

𝑈𝑖
     ∀𝑖 ∈ 𝒱      (5) 

The variables within the constraint were rearranged such that the decision variables 

(𝑡𝑖(𝑐𝑖
𝑛)) were isolated from the remaining terms of the equation. Average velocity is 

𝑈𝑎𝑣𝑒 =
𝑑𝑖(𝑐𝑖

0,𝑐𝑖
𝑁)

𝑡𝑖(𝑐𝑖
𝑁)−𝑡𝑖(𝑐𝑖

0)
, the distance between the first conflict point and the last conflict point 

for vehicle 𝑖 over the time it takes to travel between those two points. While this constraint, 

by definition, concerned the average velocity of the vehicle, this equation could be easily 

modified to be constrained by the maximum velocity.  
𝑈

2
= 𝑈𝑎𝑣𝑒 if acceleration is constant 

and the vehicle is starting from rest (at the initial conflict point). Combining the two 
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equations 𝑈𝑎𝑣𝑒 =  
𝑈

2
 and 𝑈𝑎𝑣𝑒 =

𝑑𝑖(𝑐𝑖
0,𝑐𝑖

𝑁)

𝑡𝑖(𝑐𝑖
𝑁)−𝑡𝑖(𝑐𝑖

0)
 led to equation (5). The 𝑈 value was 

constrained identically.  

The vehicle acceleration was also constrained in a similar manner so that vehicles utilized 

a reasonable acceleration as they traversed through the intersection and so that the 

acceleration was within the capabilities of each individual vehicle. With the MILP 

assumption of zero initial velocity, constant acceleration can be related to distance and time 

by 𝑎𝑖 =
𝑑𝑖(𝑐𝑖

0,𝑐𝑖
𝑛)

(𝑡𝑖(𝑐𝑖
𝑛)−𝑡𝑖(𝑐𝑖

0))2. This created an issue since the acceleration term is quadratic in the 

decision variable of arrival time. To linearize the constraints, a substitution was made for 

the acceleration term so 𝜆𝑖 = √
1

𝑎𝑖
 or 𝑎𝑖 =

1

𝜆𝑖
2 . This allowed for constraining of acceleration 

for each vehicle by: 

√
1

𝑎𝑖
≤ 𝜆𝑖  ≤ √

1

𝑎𝑖
     ∀𝑖 ∈ 𝒱        (6) 

This solved the non-linearity issue since 𝜆𝑖 is a decision variable, and it is not a quadratic 

term in the constraint. Next, the 𝜆𝑖 term was constrained according to the kinematic 

equation (1) shown previously. The initial velocity term was assumed to be zero, and the 

acceleration term was substituted for 𝜆𝑖 to obtain the constraint: 

𝑡𝑖(𝑐𝑖
𝑛) − 𝑡𝑖(𝑐𝑖

0) =  𝜆𝑖√2𝑑𝑖(𝑐𝑖
0,  𝑐𝑖

𝑛)     ∀ 𝑖 ∈ 𝒱, ∀𝑐𝑖
𝑛 ∈ 𝜌𝑖 : 𝑛 ∈ [1, 𝑁𝑖]  (7) 

This constraint allowed the assigned acceleration for each vehicle to constrain the arrival 

time at conflict points based on the kinematic equation in equation (1). This constraint is 

still linear because the term in the square root (the distance) is a constant. 

3.1.6 Time Passing through Conflict Points 

Since vehicles do not pass through conflict points instantaneously, it was necessary to 

know how long it took each vehicle to fully pass through a conflict point. Then, a constraint 

was added to the formulation based on this to calculate the time that a vehicle occupies a 
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conflict point. Two separate constraints were introduced to the formulation: one for the 

first conflict point where the vehicle was starting from rest and one for the remainder of 

the conflict points in a vehicle’s path 𝜌𝑖.  

The two constraints for the estimated passing time through a conflict point, 𝜏𝑖(𝑐𝑖
𝑛), share 

two terms. This included a term based on the vehicle headway and a term based on 

kinematics which considered the actual time that a vehicle spent driving through a given 

point. The constraint for the estimated passing time through the initial conflict point is: 

  

𝜏𝑖(𝑐𝑖
0) =

𝐿𝑖

𝑤
+

𝐿𝑖𝜆𝑖

√2𝑑𝑖(𝑐𝑖
0, 𝑐𝑖

1)

     ∀ 𝑖 ∈ 𝒱       (8) 

The first term of the equation considered the headway with the vehicle length, 𝐿𝑖, divided 

by the backwards wave speed, 𝑤. This term accounts for the reaction time headway 

between vehicles. Although autonomous vehicles do not require as large of a reaction time 

as human-driven vehicles need, a smaller reaction time headway between vehicles could 

still be needed. The second term was derived from the kinematic equation 𝑣𝑓
2 = 𝑣𝑖

2 + 2𝑎𝑑, 

where the acceleration variable was written in terms of 𝜆𝑖. Since the initial velocity was 

assumed to be zero, the 𝑣𝑓 term simplified to 
√2𝑑𝑖(𝑐𝑖

0, 𝑐𝑖
1)

𝜆𝑖
 where the distance describes the 

length between the initial conflict point and the intersection entry point. This was an 

estimate of the velocity of the vehicle during the passage through the initial conflict point 

since it was actually describing the velocity of the vehicle at the intersection entry point 

(𝑐𝑖
1). The time it took to pass through the point is estimated by taking the length of the 

vehicle divided by this velocity. Thus, this was a slight underestimation of the vehicle’s 

actual passing time through the initial conflict point but was sufficient for this application 

since this underestimation would only become an issue if the spacing between vehicles is 

significantly small. 

A similar constraint was introduced to constrain the passing time of each vehicle through 

its remaining conflict points: 
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 𝜏𝑖(𝑐𝑖
𝑛) =

𝐿𝑖

𝑤
+

𝐿𝑖(𝑡𝑖(𝑐𝑖
𝑛)−𝑡𝑖(𝑐𝑖

𝑛−1))

𝑑𝑖(𝑐𝑖
𝑛−1, 𝑐𝑖

𝑛 )
+

𝐷𝑖

2𝑈𝑖
     ∀ 𝑖 ∈ 𝒱, ∀𝑐𝑖

𝑛 ∈ 𝜌𝑖 : 𝑛 ∈ [1, 𝑁𝑖]    (9) 

The first term of this constraint is identical to that shown in equation (8). The estimated 

passing time through each conflict point in this constraint was determined in a different 

manner – based on the vehicle’s speed when it arrived at that conflict point. In other words, 

the distance between the conflict point of interest and the previous conflict point divided 

by the time used by the vehicle to travel between those two points was used as the vehicle’s 

velocity through the conflict point. This was a slight overestimation of the vehicle’s passing 

time through the conflict point since the vehicle was actually accelerating at all times, but 

a constant velocity was used in the constraint. An overestimation, though, will never lead 

to a collision since vehicles are actually passing through a conflict point faster than what 

is expected. Then, the actual passing time was found by taking the vehicle length divided 

by this velocity (represented in terms of distance and time). In addition, the last term of the 

constraint added an additional buffer to the passing time. Since conflict points are only 

one-dimensional, when vehicles were occupying a conflict point, they were taking up some 

additional space based on their width. Accordingly, this last term took the vehicle’s width 

divided by two (because a vehicles width is split halfway on each “side” of a conflict point). 

Then, this value was divided by the vehicle’s minimum velocity to guarantee a sufficient 

time buffer at conflict points shared by multiple vehicles. Adding this term to the previous 

constraint was not necessary since it concerned only the initial conflict point on each 

vehicle’s path. Since the initial conflict point is not actually a crossing point of trajectories, 

it was not necessary to add this buffer to account for the vehicle’s width. 

3.1.7 Conflict Point Separation 

The binary decision variable 𝛿𝑖𝑗(𝑐𝑖
𝑛), which was already briefly mentioned, denoted 

whether vehicles 𝑖 and 𝑗 overlap at conflict point 𝑐𝑖
𝑛. Each pair of vehicles that shared a 

conflict point was designated two decision variables 𝛿𝑖𝑗 and 𝛿𝑗𝑖. If vehicle 𝑖 arrived before 

vehicle 𝑗, then 𝛿𝑖𝑗 = 1 and 𝛿𝑗𝑖 = 0 (or vice versa). Additionally, if vehicle 𝑖 arrived before 

vehicle 𝑗, 𝑡𝑗(𝑐𝑗
𝑛) ≥ 𝑡𝑖(𝑐𝑖

𝑛) + 𝜏𝑖(𝑐𝑖
𝑛) was necessary to prevent a collision. To handle the two 
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cases, a large positive constant 𝑀𝑖𝑗 was introduced into the conflict point separation 

constraints: 

𝑡𝑖(𝑐𝑖
𝑛) + 𝜏𝑖(𝑐𝑖

𝑛) − 𝑡𝑗(𝑐𝑗
𝑛) ≤ (1 − 𝛿𝑖𝑗(𝑐𝑖

𝑛)) 𝑀𝑖𝑗     ∀𝑖, 𝑗 ∈ 𝒱: 𝑐𝑖
0 ≠ 𝑐𝑗

0, ∀𝑐𝑖
𝑛 ∈ 𝜌𝑖 ∩ 𝜌𝑗: 𝑛 ∈ [1, N𝑖] (10) 

This constraint held for every pair of vehicles that did not have the same initial conflict 

point and for every conflict point that was shared in their paths. Furthermore, to guarantee 

this separation using the previous method, it was necessary to introduce another constraint 

concerning 𝛿𝑖𝑗: 

𝛿𝑖𝑗(𝑐𝑖
𝑛) + 𝛿𝑗𝑖(𝑐𝑖

𝑛) = 1     ∀𝑖, 𝑗 ∈ 𝒱: 𝑐𝑖
0 ≠ 𝑐𝑗

0, 𝑖 < 𝑗, ∀𝑐𝑖
𝑛 ∈ 𝜌𝑖 ∩ 𝜌𝑗: 𝑛 ∈ [1, N𝑖] (11) 

To ensure no vehicle overlapping, this constraint guaranteed that for every shared conflict 

point by a pair of vehicles (not including the initial conflict point), that vehicle 𝑖 will arrive 

at the conflict point before vehicle 𝑗 or vice versa.  

Lastly, the decision variable 𝛿𝑖𝑗 was established as a binary variable in the MILP 

formulation for every pair of vehicles that did not have the same initial conflict point and 

for every conflict point that was shared in their paths. Thus: 

𝛿𝑖𝑗(𝑐𝑖
𝑛) ∈ {0,1}     ∀𝑖, 𝑗 ∈ 𝒱: 𝑐𝑖

0 ≠ 𝑐𝑗
0, ∀𝑐𝑖

𝑛 ∈ 𝜌𝑖 ∩ 𝜌𝑗: 𝑛 ∈ [1, N𝑖]   (12) 

3.1.8 Objective Function 

The objective function of this formulation decided how the intersection manager should 

prioritize the flow of traffic. Several objective functions could be implemented in this 

formulation such as maximizing throughput, ensuring FCFS, or minimizing delay. This 

was given by: 

min ∑ 𝑓𝑖 (𝑡𝑖(𝑐𝑖
𝑁) + 𝜏𝑖(𝑐𝑖

𝑁))𝑖∈𝒱        (13) 

In this equation, 𝑓𝑖 denoted the priority or weight of each vehicle. For the purposes of this 

research, the objective function aimed to minimize the total time that vehicles spent driving 

in the intersection (or maximizing the throughput), so 𝑓𝑖 = 1 for all vehicles. The value of 

𝑓𝑖 could change to other non-negative values like the earliest arrival time 𝑒𝑖 to obtain a 

fairer optimization approach. 
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3.2 Mixed-Integer Linear Program 

Considering the constraints and objective function that were previously outlined [equations 

3-13], these were combined into one formulation to establish the mixed-integer linear 

program (below) for AIM+. This formulation was utilized for this study and eventually 

integrated into microsimulation software (which will be discussed in Chapter 4).  

 

 

 

min ∑ 𝑓𝑖 (𝑡𝑖(𝑐𝑖
𝑁) + 𝜏𝑖(𝑐𝑖

𝑁))𝑖∈𝒱       (14) 

𝑠. 𝑡.     𝑡𝑖(𝑐𝑖
0) ≥ 𝑒𝑖      ∀ 𝑖 ∈ 𝒱        (15) 

          𝜏𝑖(𝑐𝑖
0) =

𝐿𝑖

𝑤
+

𝐿𝑖(𝜆𝑖)

√2𝑑𝑖(𝑐𝑖
0, 𝑐𝑖

1)

     ∀ 𝑖 ∈ 𝒱       (16) 

           𝜏𝑖(𝑐𝑖
𝑛) =

𝐿𝑖

𝑤
+

𝐿𝑖(𝑡𝑖(𝑐𝑖
𝑛)−𝑡𝑖(𝑐𝑖

𝑛−1))

𝑑𝑖(𝑐𝑖
𝑛−1, 𝑐𝑖

𝑛 )
+

𝐷𝑖

2𝑈𝑖
     ∀ 𝑖 ∈ 𝒱, ∀𝑐𝑖

𝑛 ∈ 𝜌𝑖 : 𝑛 ∈ [1, 𝑁𝑖]  (17) 

               𝑡𝑖(𝑐𝑖
𝑛) − 𝑡𝑖(𝑐𝑖

0) =  𝜆𝑖√2𝑑𝑖(𝑐𝑖
0,  𝑐𝑖

𝑛)     ∀ 𝑖 ∈ 𝒱, ∀𝑐𝑖
𝑛 ∈ 𝜌𝑖 : 𝑛 ∈ [1, 𝑁𝑖]   (18) 

         √ 
1

𝑎𝑖
≤ 𝜆𝑖  ≤ √

1

𝑎𝑖
     ∀𝑖 ∈ 𝒱       (19) 

           
2𝑑𝑖(𝑐𝑖

0,𝑐𝑖
𝑁)

𝑈𝑖
≤ 𝑡𝑖(𝑐𝑖

𝑁) − 𝑡𝑖(𝑐𝑖
0) ≤

2𝑑𝑖(𝑐𝑖
0,𝑐𝑖

𝑁)

𝑈𝑖
     ∀𝑖 ∈ 𝒱     (20) 

           𝑡𝑖(𝑐𝑖
𝑛) + 𝜏𝑖(𝑐𝑖

𝑛) ≤ 𝑡𝑗(𝑐𝑗
𝑛)     ∀𝑖, 𝑗 ∈ 𝒱: 𝑐𝑖

0 = 𝑐𝑗
0, 𝑒𝑖 < 𝑒𝑗 , ∀𝑐𝑖

𝑛 ∈ 𝜌𝑖 ∩ 𝜌𝑗: 𝑛 ∈ [1, 𝑁𝑖] (21) 

           𝑡𝑖(𝑐𝑖
𝑛) + 𝜏𝑖(𝑐𝑖

𝑛) − 𝑡𝑗(𝑐𝑗
𝑛) ≤ (1 − 𝛿𝑖𝑗(𝑐𝑖

𝑛)) 𝑀𝑖𝑗    ∀𝑖, 𝑗 ∈ 𝒱: 𝑐𝑖
0 ≠ 𝑐𝑗

0, ∀𝑐𝑖
𝑛 ∈ 𝜌𝑖 ∩ 𝜌𝑗: 𝑛 ∈ [1, 𝑁𝑖] (22) 

           𝛿𝑖𝑗(𝑐𝑖
𝑛) + 𝛿𝑗𝑖(𝑐𝑖

𝑛) = 1     ∀𝑖, 𝑗 ∈ 𝒱: 𝑐𝑖
0 ≠ 𝑐𝑗

0, 𝑖 < 𝑗, ∀𝑐𝑖
𝑛 ∈ 𝜌𝑖 ∩ 𝜌𝑗: 𝑛 ∈ [1, 𝑁𝑖] (23) 

           𝛿𝑖𝑗(𝑐𝑖
𝑛) ∈ {0,1}     ∀𝑖, 𝑗 ∈ 𝒱: 𝑐𝑖

0 ≠ 𝑐𝑗
0, ∀𝑐𝑖

𝑛 ∈ 𝜌𝑖 ∩ 𝜌𝑗: 𝑛 ∈ [1, 𝑁𝑖]  (24) 

The decision variables of the formulation were the arrival times for each vehicle at each of 

its conflict points 𝑡𝑖(𝑐𝑖
𝑛), the binary vehicle separation variable 𝛿𝑖𝑗(𝑐𝑖

𝑛), and the 

acceleration term, 𝜆𝑖. As previously mentioned, 𝜏𝑖(𝑐𝑖
𝑛) was determined based on 



26 

 

 

predefined inputs which included distances between conflict points, vehicle lengths, and 

the backwards wave speed. In order to implement this optimization formulation, 

coordination between Aimsun microsimulation and Gurobi was established. 
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CHAPTER 4 

4 INTEGRATION WITH MICROSIMULATION 

The second part of this study involved implementing the MILP into the microsimulation 

software Aimsun. Current microsimulation software does not come with built-in 

capabilities to simulate AIM, so the Aimsun Application Programming Interface (API) was 

used to integrate this new capability into the software. The Aimsun Next version of Aimsun 

was utilized for this study. Microsimulation was chosen as the analysis tool in this study 

due to its flexibility and robustness in providing accurate and in-depth results. Since AIM 

does not exist at intersections today, simulation software must be used to test its 

effectiveness. 

4.1 Aimsun Intersection Details 

The intersection that was utilized for this microsimulation case study was a symmetrical 

four-leg intersection. By considering a symmetrical intersection, the left-turn and right-

turn trajectories could be modeled as quarter circles. This allowed for straight-forward 

calculation of conflict-point locations. However, AIM+ could be implemented for 

intersections with any geometry. Vehicle turning radii can be determined in conjunction 

with the lane spacing and intersection width in order to determine the location of the 

coordinates for all conflict points in any given intersection. Each approach of the 

intersection (henceforth notated as north, east, south, and west approaches) contained two 

lanes. The inner lane for each approach was used for left-turns and through movements 

(aka left-through). The outer lane for each approach was used for through movements (aka 

right-through) and right-turns. Additionally, the width of the lanes, the length of the 

incoming and outgoing links, and the width of the intersection were all chosen during the 

creation of the network.  

Prior to calculating each vehicle’s arrival time at each of its conflict points, it was necessary 

to extract the location of each conflict point so that overlapping vehicle trajectories could 

be determined. A vehicle’s conflict points were determined based on two parameters: 
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vehicle approach (north, east, south, or west) and vehicle movement (left-turn, through-

left, through-right, and right-turn). Knowing the vehicle turning radii, lane spacing, and 

intersection width allowed for the determination of all possible vehicle trajectories. The 

points where trajectories cross signify all of the conflict points for the intersection. Since 

the intersection was symmetrical, the coordinates of each conflict point could be 

determined using geometry. Knowing the approach and movement of a vehicle gave its 

trajectory, which was made up of a list of specific conflict-points (with known coordinates).  

The distance between various conflict points was a known constant which was based on 

the intersection geometry. This was especially important since many of the constraints of 

the MILP required knowing the distance between either two consecutive conflict points or 

between the initial conflict point and any of the remaining conflict points. Once the 

intersection had been created, it was possible to establish the coordination between Aimsun 

and Gurobi. 

4.2 Aimsun and Gurobi Coordination 

To solve the proposed MILP, the optimization software Gurobi was utilized in this study. 

Gurobi Optimizer is a popular mathematical programming tool which has the capability to 

solve a wide range of optimization problems including linear programming, MILP, and 

mixed-integer quadratic programming (MIQP) [56]. The Python API of Gurobi was used 

in this study since the microsimulation software that was used in this study, Aimsun, also 

has a Python API. 

As evidenced by the discussion of the methodology, several input parameters were 

necessary prior to running Gurobi to obtain an optimal solution. The majority of these 

inputs were output from Aimsun during a simulation, but some other parameters were 

chosen as a user-defined default value. The necessary input parameters for AIM+ into 

Gurobi for each vehicle 𝑖, as well as the source and the value of each parameter, are shown 

in Table 2. 
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Table 2, Gurobi Parameters 

Parameter Source Value 

Vehicle Identification Aimsun API Ascending integer number 

Vehicle Length, 𝐿𝑖 Aimsun API 11.48 ft – 14.76 ft 

Vehicle Width, 𝐷𝑖 Aimsun API 6.56 ft 

Vehicle Approach Aimsun API 
0 (west), 1 (north), 2 (east), 

3 (south) 

Vehicle Movement Aimsun API 
0 (left), 1 (through-left), 2 

(through-right), 3 (right) 

Earliest Arrival Time, 𝑒𝑖 

Aimsun API (based on 

a calculation using 

location and speed) 

Decimal value dependent 

on simulation time, speed, 

and location 

Minimum Velocity, 𝑈𝑖 User-Defined 10 ft/s 

Maximum Velocity, 𝑈𝑖 Aimsun API 
25 mph – 55 mph (lower 

during turn movements) 

Minimum Acceleration, 𝑎𝑖 User-Defined 1.5 ft/s2 

Maximum Acceleration, 𝑎𝑖 Aimsun API 8.53 ft/s2 – 11.15 ft/s2 

Backwards Wave Speed, 𝑤 User-Defined 
∞ (since headway between 

AVs is negligible) 

The Aimsun API for this study was developed in such a way that every time a vehicle 

entered the network, the values of the above parameters were exported and appended to a 

CSV file (referred to as “Aimsun Output”). This information, in turn, was used as an input 

by Gurobi. The Gurobi formulation was run once over a specified time interval. This 

calculated the optimal arrival time at each conflict point for each vehicle, considering all 

of the vehicles that had been output by Aimsun to the CSV file up to that point in time.  

Gurobi then created three separate CSV files. One included the output information on each 

vehicle’s arrival time and passing time at each conflict point (referred to as the “Gurobi 

Output”). Another utilized this information to calculate and output the velocity of each 

vehicle at every time step (0.1 seconds) so that it arrived at each conflict point at the time 

specified by the Gurobi Output (this was referred to as “Time Step Velocities”). These time 

step velocities changed at a constant rate due to the constant acceleration, and the velocities 

took effect at some point upstream of the intersection. Lastly, the vehicle information 
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originally output by Aimsun plus the Gurobi Output for a specific set of the vehicles 

considered in the Gurobi run were stored to a CSV file (referred to as “Previous Aimsun 

Output”). This set was made up of vehicles that were added to the Aimsun Output file 

shortly before Gurobi was run. They potentially would not enter the intersection before the 

next run of Gurobi which was determined based on the arrival times at each vehicle’s initial 

conflict point specified in the Gurobi Output. The arrival times of this set of vehicles were 

set as a constraint for the following Gurobi run to ensure that vehicles from the next 

iteration were not assigned arrival times that conflicted with vehicles that already had path 

assignments. 

Next, the Aimsun API was used to read in this information to modify the speed of the 

appropriate vehicle at the specified time step to ensure that each vehicle would pass through 

the intersection seamlessly and collision-free. Figure 2 depicts a flowchart showing the 

progression described above between Aimsun and Gurobi.  

 

 

 

 

 

 

 

 

 

 

 

4.3 Gurobi Specifications within Aimsun 

The coordination between the Aimsun simulation software and the Gurobi optimizer 

required the establishment of several methods before any simulation trials could be run. In 

Aimsun 

Aimsun Output 

CSV File 

 

Gurobi 

Previous Aimsun 

Output CSV File 

Gurobi Output  

CSV File 

Time Step Velocities 

CSV File 

For Next Iteration 

Figure 2, Aimsun-Gurobi Coordination Flowchart 
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an ideal situation, Gurobi would be run once for a one-hour simulation in order to find the 

most optimal solution. However, a vehicle’s planned path may not be known to the 

intersection manager until it is within some specific distance. Accordingly, a rolling 

horizon approach was adopted for this study, where only a specific set of vehicles were 

considered within each run of Gurobi.  

The rolling horizon approach used in this study was useful because it only considered 

vehicles that were within a certain arrival time of the intersection. It also maintained a 

reasonable computation time when looking for the optimal solution within Gurobi. While 

simulation is paused while looking for an optimal solution, it is important to have a 

reasonable computation time in order to make AIM+ more realistic since traffic cannot be 

paused in real life to look for a solution. In addition, the intersection manager used an “as-

soon-as-possible” (ASAP) policy in which vehicles were assigned their time-space 

trajectory through the intersection as soon as they entered the link leading up to an 

intersection and Gurobi was run for the next iteration. This method was chosen over an 

“as-late-as-possible” (ALAP) policy, because Levin and Rey found that the benefits of 

using ALAP over ASAP were small and also required much higher computation times [2]. 

As mentioned in the previous section, a subset of the vehicles which already had their time-

space trajectory assigned to them from the prior run of Gurobi had their path set as a 

constraint for the next run of Gurobi. That way, vehicles that entered links later did not 

overlap with already assigned paths. 

In order to establish a balance between optimality and reasonable computation time, 20 

seconds was chosen as the frequency with which Gurobi would be run during a simulation. 

A solution for each vehicle’s optimal trajectory, then, had to be determined prior to the 

vehicle needing to alter (raise or lower) its speed. Accordingly, the length of an incoming 

link to an intersection needed to be long enough so that there was adequate time for the 

intersection manager to obtain information about each incoming vehicle and run Gurobi at 

some multiple of 20 seconds. Every vehicle continued to drive towards the intersection 

throughout this time. The vehicles from the previous Gurobi run that were considered in 

the following run were selected based on their assigned arrival time at their initial conflict 
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point in reference to the simulation time that Gurobi was last run. For example, for a Gurobi 

run that occurred at 10 minutes into the simulation, if a vehicle was assigned an arrival 

time at the intersection entry point of 10 minutes and 30 seconds, this gives a time 

difference of 30 seconds. For most of the scenarios considered in this study (which will be 

discussed further in Chapter 5), if this time difference was 35 seconds or more, then the 

vehicles arrival times would be considered as fixed values in the next run of Gurobi. This 

was chosen because vehicles that had their information obtained by the intersection 

manager more than five seconds before the next run of Gurobi would not have any 

conflicting trajectory with vehicles in the next run since they were sufficiently separated 

(both in distance and time). In general, this time threshold can be chosen by considering 

how much time it would take a vehicle to fully cross an intersection based on the 

intersection geometry (i.e. number of lanes that must be crossed) and the vehicle speed. 

For example, an intersection with only one lane per approach and a speed limit of 55 mph 

does not take much time for vehicles to cross. As such, a lower time threshold could be 

used. On the other hand, an intersection with four lanes per approach and a speed limit of 

only 35 mph would need a higher time threshold since vehicles will spend more time in the 

intersection.  

4.4 Aimsun Modeling Choices and Assumptions 

Several modeling choices and assumptions were made while constructing the intersection 

in Aimsun that was utilized in the analysis for this study. This included both the physical 

geometrical construction of the intersection and also the behavior of the vehicles in AIM+.  

4.4.1 Intersection Construction Details 

In this study, a symmetrical intersection was created to allow for simple extraction of 

conflict point coordinates. However, AIM+ can be extended to any intersection if the 

location of conflict points can be determined. Figure 3 below shows the intersection 

created in Aimsun that was used for the analysis in this study. 
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           Figure 3, Aimsun Intersection 

The width of the intersection was 100 feet with a left-turn radius of 62 feet, a right-turn 

radius of 27 feet, and a lane width of 11 feet. No turn-lanes were considered in this 

intersection. The standard incoming and outgoing link length used for the intersection 

was 2500 feet (or approximately a half-mile). This is similar to link/road lengths that 

would appear between intersections for a real road network. The coordinates of the 

conflict points for the intersection were found utilizing the geometry equations given in 

Levin and Rey [2]. One key difference was the introduction of the aforementioned initial 

“conflict-point” which was located 200 feet upstream of the intersection entry point for 

each lane of the intersection. As discussed in the previous chapter, this point served as the 

location where the vehicle was at-rest so that the MILP formulation could be maintained 

as a convex optimization problem. This location was chosen to be far enough back so that 

vehicles were able to accelerate to a reasonable speed before entering the intersection.  

4.4.2 Incoming Link Vehicle Velocity 

A vehicle’s arrival time at each of its conflict points was based on its earliest arrival time 

(as discussed in Chapter 3). To calculate this parameter for each vehicle, it was necessary 

to know a vehicle’s location and speed. Then, the time it took to arrive to the initial conflict 
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point was determined by calculating the distance between its actual location and its initial 

conflict point and then dividing by its speed. Adding this value to the simulation time gave 

the earliest arrival time. Since AIM+ assumes 100% autonomous vehicles, it is plausible 

to assume that all vehicles approaching an intersection are approaching it at a constant 

velocity. Therefore, the intersection modeled in Aimsun assumed that vehicles were 

approaching the intersection at a constant velocity, which allowed for straightforward 

calculation of earliest arrival time. This assumption was valid for this model only until the 

vehicle changed its speed so that it could meet its intersection reservation at the correct 

time and speed. This constant velocity that the vehicle actually used was dependent on the 

speed limit for the roadway. This assumption could be easily relaxed in future work, but 

was a trivial matter concerning the scope of the research in this study. 

4.4.3 Lane-Changing Behavior 

In this Aimsun model of AIM+, the lane-changing behavior was simplified on the incoming 

links. All of the necessary vehicle lane-changing was assumed to occur prior to vehicles 

entering the links of the model. Since the conflict point arrival times that were assigned to 

vehicles were based on the vehicle’s location and speed, changing lanes could interfere 

with a vehicle meeting its assigned arrival on-time and at the correct speed. On the outgoing 

links from the intersection, vehicles were free to lane-change.  

4.4.4 Vehicle Acceleration Provisions 

As previously mentioned, the MILP formulation operated under the assumption that 

vehicles came to rest at the initial conflict point. However, this assumption is both 

unrealistic and undesirable for autonomous vehicles. Thus, provisions were made in the 

Aimsun model so that vehicles were not actually required to come to rest at the initial 

conflict point. All vehicles still had to meet their reservation within the intersection that 

was assigned by the intersection manager. However, as long as each vehicle arrived at its 

intersection entry point at the assigned time and velocity, the vehicle had some flexibility 

in modifying its speed so that it did not have to come to a stop upstream of the intersection 

at the initial conflict point.  
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To allow for this accommodation in the model, a piecewise acceleration function was 

determined for each vehicle. This function was based on each vehicle’s initial constant 

velocity, its required intersection entry speed, and its assigned arrival times at the initial 

conflict point and the intersection entry point. The piecewise acceleration function 

prompted each vehicle to start decelerating at a constant rate at some specific distance 

upstream from the initial conflict point. After passing the initial conflict point, the vehicle 

began to accelerate at the constant rate specified by Gurobi. These changes from 

deceleration to acceleration near the initial conflict point were done so gradually, with no 

sudden jump in velocity. Utilizing these already known values mentioned above, the 

velocity value at which the decreasing vehicle velocity started to increase (represented by 

𝑉𝑥) could be determined according to equation (25). 𝑉𝑖 denotes the vehicle’s initial constant 

velocity which was utilized until the vehicle began decelerating at the point 𝑑 feet upstream 

of the intersection entry point, 𝑉𝑓 denotes the vehicles final velocity upon accelerating and 

reaching the intersection entry point, and 𝑡∗ represents the time of arrival at the deceleration 

starting point. 

𝑉𝑥 =
𝑑−𝑉𝑖(𝑡𝑖(𝑐𝑖

0)−𝑡∗)−𝑉𝑓(𝑡𝑖(𝑐𝑖
1)−𝑡𝑖(𝑐𝑖

0))

𝑡𝑖(𝑐𝑖
1)−𝑡∗        (25) 

This acceleration function was used to determine the velocity for each vehicle at every time 

step starting at the distance 𝑑 feet upstream from the intersection entry point until the 

vehicle entered the intersection, upon which its velocity was specified within the Time Step 

Velocities CSV file. As briefly mentioned, the time step within Aimsun was set to the 

minimum of 0.1 seconds in order to ensure that a vehicle’s velocity was increased or 

decreased as gradually as possible. The upstream point 𝑑 at which vehicles began to 

decelerate was generally chosen to be 1000 feet prior to the initial conflict point (which 

was 200 feet prior to the intersection entry point). This distance ensured that vehicles would 

not have to decelerate rapidly, and it also ensured that vehicles were not prompted to 

change their velocity before their path and time step velocities had been assigned by 

Gurobi. This meant that vehicles began to have their speed controlled by their assigned 

time-path 1200 feet before the intersection entry point. The incoming links to the 

intersection were long enough to ensure this was possible, and the speed of the vehicles 
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was sufficiently low to guarantee that vehicles would not arrive to the 1200-foot upstream 

point before receiving an intersection reservation. Figure 4 shows an example of how this 

piecewise acceleration could look, where 𝑉𝑖 = 40 mph, 𝑉𝑓 = 30 mph, and 𝑉𝑥 was 

determined to be 25 mph. 

 

Figure 4, Piecewise Acceleration Function 

The summarized purpose of this piecewise acceleration function was that each vehicle’s 

velocity was altered every 0.1 second time step in a unique way so that it arrived at the 

intersection entry point at the correct time and speed according to the optimal solution 

found by Gurobi. This precise arrival at the intersection entry point was imperative to 

ensure a collision-free traversal through the intersection. The implementation of this 

acceleration function removed the need for having each vehicle come to a rest at the initial 

conflict point – which is much more realistic and desirable. 

4.4.5 Aimsun Vehicle Static Parameters 

Several static parameters for every vehicle class have default values when creating a 

network in Aimsun. These parameters ensure that vehicles obey the car-following model – 

which is quintessential in traffic microsimulation. However, when modeling autonomous 

vehicles in microsimulation, some of these parameters needed to be altered since 
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autonomous vehicles have more flexibility when driving due to the reduced/negligible 

margin of driving error.  

The two main parameters that were changed using the Aimsun API were the sensitivity 

factor and the minimum distance between vehicles. The sensitivity factor is a parameter 

that specifies how a following vehicle estimates the deceleration of a leader vehicle [57]. 

If a leading vehicle begins to decelerate, the following vehicle will also begin decelerating. 

Because autonomous vehicles have the capability of automatically knowing if a leading 

vehicle will begin decelerating, it is not necessary for a vehicle to start decelerating in 

advance on its own. Another related default vehicle parameter is the minimum distance 

between vehicles. This parameter prompts vehicles to automatically start decelerating if 

they are within a certain distance of another vehicle. Since autonomous vehicles do not 

require this strict spacing between each other, the minimum distance between vehicles can 

be lowered significantly.  
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CHAPTER 5 

5 SENSITIVITY ANALYSES AND RESULTS 

In this study, three forms of intersection control were evaluated and compared utilizing 

Aimsun: AIM+, AIM with FCFS, and signal-control. Several different measures of 

effectiveness (MOEs) were considered, and multiple parameters were varied during the 

scenarios in the analysis.  

5.1 Aimsun Simulation Details 

Each different scenario was made up of multiple runs (with a minimum of two), where the 

actual number depended on the resulting confidence interval. Aimsun automatically 

calculated the average values of different MOEs over all of the replications of each 

scenario. Each run was made up of 60 minutes of simulation, with one minute of warm-up 

time. This warm-up time was sufficient enough so that vehicles on each link were able to 

arrive to the intersection before the recording of the MOEs began. 

The demand and the routing choices of each scenario was determined by using an origin-

destination (OD) matrix. Since the intersection was made up of four incoming links and 

four outgoing links, four nodes were created which supplied the demand to all of the 

incoming links. Within the OD matrix, the number of vehicles traveling from each 

incoming link to each outgoing link was specified (which varied depending on the 

scenario). Figure 5 shows an example of what this OD matrix looks like within Aimsun 

where the names specify the approach. 

 

            Figure 5, Aimsun OD Matrix 
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5.2 Analysis Scenario Measures of Effectiveness 

Two main MOEs were used in the sensitivity analysis to determine how AIM+ affected 

these factors under varying situations. The MOEs used in the sensitivity analysis were: 

 Average delay – measured in seconds or seconds/mile 

 Average speed – measured in miles/hour (mph) 

These MOEs were directly output by Aimsun after each simulation. Delay time per vehicle 

was calculated by taking the difference between the expected travel time – which is the 

travel time under ideal conditions (i.e. no congestion and vehicles are able to travel at the 

posted speed limit without slowing or stopping) – minus the actual travel time. The average 

speed was the average speed experienced by all vehicles throughout their entire journey 

through the network.  

5.3 Sensitivity Analyses 

Two other forms of intersection control were also compared to AIM+ in the analysis: 

conventional traffic signal control and AIM with FCFS policy. This allowed for 

comparison of AIM+ both to the intersection control that exists today and to another form 

of AIM. Both of these other forms of intersection control were also modeled similarly in 

Aimsun with some minor differences that will be discussed later in this chapter. 

It is also important to note that, as mentioned previously, cases of malfunctioning vehicles 

were not modeled in the simulations. Using the malfunction-handling algorithm mentioned 

in Chapter 3, vehicles approaching the intersection would have to come to a stop if a 

vehicle stopped transmitting BSMs. This holds true even if a vehicle stops transmitting 

BSMs for cases that don’t involve a malfunctioning vehicle. If these occurrences happen 

frequently (including when they occur unnecessarily), the intersection will not be able to 

operate as efficiently. As such, it should be noted that the results presented from these 

analyses consider scenarios without malfunctions, and the operational capabilities of AIM+ 

could become worse depending on the frequency of vehicle malfunctions.   



40 

 

 

In the sensitivity analyses for the three forms of intersection control, both MOEs were 

utilized to evaluate the operational capabilities. In addition, up to five different categories 

of parameter-varying scenarios were considered in the sensitivity analyses. These five 

categories were safety buffer, maximum speed, intersection demand, turn ratio, and 

approach ratio. These parameters will be discussed more in-depth later in the chapter.  

5.3.1 Scenario Standard Parameter Values 

During the analysis of each parameter category, the remaining parameter values were held 

constant for most cases. The standard values for the parameters were: 

 Intersection demand: 5600 vehicles per hour for the entire intersection 

 Approach ratio: 1:1:1:1 (even split of the demand among all four approaches) 

 Turn ratio: 22.5%/55%/22.5% split of the total demand for left-turns, through 

movements, right-turns respectively 

 Safety buffer: 0.0 seconds of extra time headway between vehicles (except for some 

cases in maximum speed category) 

 Maximum speed: 40 miles/hour 

In a large majority of the cases, only one parameter was varied for each scenario so that 

the impact of solely that parameter on the operational capabilities of each intersection 

control could be assessed. 

5.3.2 Traffic Signal Control Intersection 

A signalized intersection was considered in the analysis in order to determine what 

improvements in efficiency AIM+ could bring to today’s methods of intersection control. 

The construction of the traffic-signal controlled intersection in Aimsun was slightly 

different than the model used for AIM+, but the same skeleton layout of the intersection 

was used (i.e. link lengths, lane widths, etc.). For the analysis of the signal-controlled 

intersection, the goal was to create a signalized intersection that was able to reasonably 

handle the demand that utilized the intersection. By doing this, a fair comparison could be 

made between AIM+ and the signalized intersection.  
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For the signalized intersection in Aimsun, dual left-turn lanes and one right-turn lane with 

storage lengths of 500 feet were added to the model in order to serve the higher demand of 

turning vehicles. Without the addition of these lanes, the results of the MOEs can be 

skewed if, for example, left-turning vehicles spend an unrealistic and unreasonable amount 

of time waiting in a queue to turn left when very few gaps are present. This modification 

ensured that the MOEs were affected by the intersection control and not the intersection 

geometry. Figure 6 shows an image of the signalized intersection in Aimsun. 

 

         Figure 6, Signalized Intersection in Aimsun 

Other provisions made for the signalized intersection included permitting lane changing so 

that vehicles were not stuck behind a non-moving queue and allowing for a slight 

variability in the speed used by vehicles (in reference to the speed limit). This was done by 

changing the speed acceptance within the vehicle class in Aimsun. To ensure that the most 

optimal signal timings were used in the simulations of the signalized intersection, Synchro 

by Trafficware was used for each scenario considered in the analysis. This signal timing 

optimization used protected phases for the left-turns and varying cycle and phase lengths. 

The unique signal timing obtained from Synchro for each scenario was then inputted into 

the Aimsun model. 
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5.3.3 AIM with FCFS Intersection 

The analysis of AIM with FCFS policy was important, because it showed the benefits that 

AIM+ could provide in comparison to another method of AIM. The FCFS AIM policy was 

chosen for this analysis over other AIM policies because it was the first policy that was 

developed for AIM. Additionally, it represents a realistic policy due to its fairness of letting 

the first vehicle that enters the vicinity of the intersection be the first vehicle to pass through 

the intersection. The intersection used for AIM with FCFS in Aimsun was identical to that 

of AIM+. The major difference between the two came with the addition of two constraints 

to the MILP formulation. Equations (26) and (27) show these two additional constraints. 

𝑡𝑖(𝑐𝑖
0) ≤ 𝑡𝑗(𝑐𝑗

0)     ∀𝑖, 𝑗 ∈ 𝒱, 𝑒𝑖 < 𝑒𝑗       (26) 

𝑡𝑖(𝑐𝑖
𝑁) ≤ 𝑡𝑗(𝑐𝑗

𝑁)     ∀𝑖, 𝑗 ∈ 𝒱, 𝑒𝑖 < 𝑒𝑗       (27) 

The introduction of these two constraints ensured that the vehicle that had the smaller 

earliest arrival time (i.e. it entered the network first) arrived at its initial conflict point and 

exited the intersection before the vehicle that entered the network at a later time.  

5.4 Sensitivity Analyses Scenarios and Results 

After running all of the scenarios for AIM+, the signalized intersection, and AIM with 

FCFS, the results were compiled for the scenarios and the MOEs previously specified. The 

results for each of the five varying parameters: safety buffer, maximum speed, intersection 

demand, turn ratio, and approach ratio will all be presented individually. For the scenarios 

that are applicable, AIM+ will first be compared to a signalized intersection, then to AIM 

with FCFS. Lastly, the trends of AIM+ individually will be discussed for each of the five 

parameters. All the results show the standard error for a 95% confidence interval. 

5.4.1 Intersection Demand Scenarios and Results 

Intersection demand for the analysis scenarios was considered as the total number of 

vehicles that entered the network from all four approaches of the intersection. The range 

for this parameter was 3200 vehicles per hour up to 8800 vehicles per hour. Given two 

lanes per approach, this range came to 400 vehicles per hour per lane up to 1100 vehicles 
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per hour per lane. By knowing the speed limits that were set for each link and the backwards 

wave speed, it is possible to calculate the lane capacity for the network in Aimsun. Since 

the backwards wave speed (𝑤) and free flow speed (𝑢𝑓) (the speed limit) were known 

values, the capacity (𝑄) can be calculated using the jam density (𝑘𝑗) for a link based on the 

triangular fundamental diagram according to equation (28).  

𝑄 =
𝑘𝑗𝑢𝑓𝑤

𝑤−𝑢𝑓
          (28) 

This information can be useful when deciding what ranges of demand should be tested on 

the intersection. However, this parameter had the largest impact on the computation time 

of the simulation, so 8,800 vehicles per hour was chosen as the maximum to keep the 

computation time within a reasonable range. Figure 7 shows the change in computation 

time for one hour of simulation as the total intersection demand rose from 3200 vehicles 

per hour up to 8800 vehicles per hour for one replication of each scenario. The computer 

used for simulation had 16.0 GB of RAM with an Intel Xeon processor at 3.80 GHz. 

 

       Figure 7, AIM+ Intersection Demand Computation Time 

Several potential modifications could be made that could lead to an improvement in the 

computation time. First, lowering the horizon time will also lower the computation time. 

Since Gurobi would be run more frequently, less vehicles would be considered in each run. 
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This modification could also work for cases where the link free flow time is lower than the 

computation time. Since there would be less decision variables, the computation time 

would be faster. Secondly, a time-cap could be set for each run of Gurobi. By doing this, 

there is the chance that the most optimal solution to AIM+ would not be found for each 

run. However, the solution that is found within the time period would still be sufficient to 

ensure safe traversals for all vehicles through the intersection. Lastly, the computation 

could be reduced by using faster processors or dedicated hardware for solving this MILP. 

5.4.1.1 Intersection Demand Results: AIM+ Versus Signal Control 

The most pertinent comparison that was made between two forms of intersection control 

is the overall intersection demand. Intersection demand is a parameter that commonly 

fluctuates in real-world cases at intersections (i.e. if a signal is in a rural or urban location, 

if it is peak hour or non-peak hour, etc.). This made it important to evaluate how the forms 

of intersection control operated under fluctuating demand. Figure 8a and Figure 8b show 

the average delay and the average speed experienced by vehicles as intersection demand 

increased for AIM+ and traffic signal control. 

 

Figure 8a, AIM+/Signal: Intersection Demand and Delay 
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Figure 8b, AIM+/Signal: Intersection Demand and Speed 

The intersection with a traffic signal as the form of traffic control was much more impacted 

by increasing demand than AIM+. In fact, the delay and average speed with AIM+ appear 

to be unaffected by fluctuating demand when compared to the magnitude at which the 

signalized intersection was affected by the demand. The signalized intersection saw an 

increase in delay of approximately 60 seconds between 3200 vehicles per hour and 8800 

vehicles per hour. This increase largely occurred between 6000 vehicles per hour and 

higher. Additionally, the average speed per vehicle decreased from approximately 35 mph 

at 3200 vehicles per hour to 26 mph at 8800 vehicles. The larger drop also began to occur 

at approximately 6000 vehicles per hour.  

5.4.1.2 Intersection Demand Results: AIM+ Versus AIM with FCFS 

Considering the effect of increasing intersection demand on AIM with FCFS versus AIM+, 

similar trends to the signal control scenarios for intersection demand were noted for delay 

and average speed – as shown in Figure 9a and Figure 9b.  
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Figure 9a, AIM+/AIM FCFS: Intersection Demand and Delay 

 

Figure 9b, AIM+/AIM FCFS: Intersection Demand and Speed 

The significant jump in both delay and average speed for AIM with FCFS occurred right 

around the 6,400 vehicles per hour mark. However, it was interesting to note that the 

difference between AIM+ and AIM with FCFS at lower demands was not very pronounced. 

The difference in delay for AIM with FCFS and AIM+ ranged from approximately half a 

second to approximately three seconds (with AIM+ performing better). Similarly, AIM 

with FCFS saw a difference in average speed ranging from approximately 0.2 mph up to 

more than 1 mph in favor of AIM+. 
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5.4.1.3 Intersection Demand Results: AIM+ 

Probably most interesting within the individual sensitivity analysis of AIM+ was the 

varying of the intersection demand parameter. Figure 10a and Figure 10b show how delay 

and average speed were affected by increasing intersection demand – split evenly among 

all approaches. 

 

Figure 10a, AIM+: Intersection Demand and Delay 

 

Figure 10b, AIM+: Intersection Demand and Speed 
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Similar yet opposing trends for average delay and average speed can be noted. The delay 

per vehicle increased slightly as the demand increased from 3200 vehicles per hour to 8800 

vehicles per hour. The total delay increase, though, was less than half a second per mile. 

For the average speed, a downward trend was seen, with only a total change in average 

speed of approximately 0.2 mph across the whole spectrum of demand.  

5.4.2 Approach Ratio Scenarios and Results 

The approach ratio was defined as the percentage of the total intersection demand that 

utilized a specific approach of the intersection (i.e. north leg). Three different sets of 

scenarios were considered in the analysis of the approach ratio. The first set of scenarios 

increased the percentage of total demand that was experienced on just one leg of the 

intersection. Table 3 shows the first set of scenarios with the split of total intersection 

demand over the four approaches (north, east, south, and west) as a percentage. 

          Table 3, Approach Ratio Scenarios Part 1 

 
Percentage of Total Intersection Demand 

Approach\Scenario AR1 AR2 AR3 AR4 

North Leg (SB) 32.5% 40.0% 47.5% 55.0% 

East Leg (WB) 22.5% 20.0% 17.5% 15.0% 

South Leg (NB) 22.5% 20.0% 17.5% 15.0% 

West Leg (EB) 22.5% 20.0% 17.5% 15.0% 

As Table 3 shows, the demand on the north leg increased from 32.5% up to 55%, while 

the demand from the remaining three legs was proportionally subtracted. This could be 

comparable to traffic conditions near an event where a large percentage of the demand is 

loaded onto just one approach of an intersection.  

The second set of scenarios increased the percentage of total demand experienced on two 

of the legs (the north and south legs). Table 4 shows the second set of scenarios considered 

in the approach ratio analysis of AIM+.  
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        Table 4, Approach Ratio Scenarios Part 2 

 Percentage of Total Intersection Demand 

Approach\Scenario AR5 AR6 AR7 

North Leg (SB) 31.25% 37.50% 43.75% 

East Leg (WB) 18.75% 12.50% 6.25% 

South Leg (NB) 31.25% 37.50% 43.75% 

West Leg (EB) 18.75% 12.50% 6.25% 

In this set of scenarios, the demand was progressively added onto the north and south 

approaches and subtracted proportionally from the other two approaches. This is similar to 

an intersection where there is an obvious major road and an obvious minor road. The 

percentage of total demand on the north and south approaches increased from 

approximately 31% each up to approximately 44% each, as shown in Table 4.  

A final scenario considered an approach ratio where there was no demand originating from, 

or traveling to, one of the legs of the intersection. In this case, the intersection behaved like 

a T-intersection. The demand was split evenly among the remaining approaches (33% of 

demand each). Table 5 shows the exact distribution of the demand over the approaches. 

Table 5, Approach Ratio Scenarios Part 3 

 
Percentage of Total Intersection Demand 

Approach\Scenario AR8 

North Leg (SB) 33.33% 

East Leg (WB) 33.33% 

South Leg (NB) 33.33% 

West Leg (EB) 0.00% 

An important difference to note with this scenario concerns the standard parameter values 

that were utilized. In this scenario, the turn ratio was split 50% to 50% between left and 

right turns for the “T-approach” (the east leg). For the remaining two approaches, the 
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through movements had 66% of the total approach demand, and the turn movement (either 

left- or right-turn) had 33% of the total approach demand. 

5.4.2.1 Approach Ratio Results: AIM+ Versus Signal Control 

Based on the first set of scenarios previously detailed in Table 3, the effect of gradually 

increasing the overall proportion of demand on just one approach for a signalized 

intersection is shown below in Figure 11a and Figure 11c and for AIM+ in Figure 11b 

and Figure 11d. 

 
Figure 11a, Signal: Approach Ratio and Delay Part 1 

 
Figure 11b, AIM+: Approach Ratio and Delay Part 1 
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Figure 11c, Signal: Approach Ratio and Speed Part 1 

 
Figure 11d, AIM+: Approach Ratio and Speed Part 1 

Figure 11a and Figure 11c show that all four approaches notice somewhat of a significant 

change in both delay and average speed for traffic signal control. The MOEs for AIM+, 

however, remain relatively constant (as shown in Figure 11b and Figure 11d). In Figure 

11a describing the signalized intersection, the delay for the north approach actually 

decreased by a few seconds (approximately 2 seconds), which can be explained by the 

changing phase length for the north approach as the demand increased. The other three 

approaches saw an increase in delay ranging between 5 seconds and 15 seconds. 
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Furthermore, the average speed for the signalized intersection on the north approach 

increased slightly by about 3 mph, while the other approaches experienced decreases in 

average speed between 1 mph and 4 mph. All of the approaches for the signalized 

intersection experienced at least 15 additional seconds of delay more than AIM+. For the 

average speed, AIM+ approaches experienced average speeds of at least 4 mph higher. 

The second set of scenarios was described in Table 4. Below, Figure 12a and Figure 12c 

show the impact of loading more demand on the north and south approaches on the delay 

and average speed for a signalized intersection. Figure 12b and Figure 12d show the 

counterpart results for AIM+. 

 
Figure 12a, Signal: Approach Ratio and Delay Part 2 

 
 Figure 12b, AIM+: Approach Ratio and Delay Part 2  
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Figure 12c, Signal: Approach Ratio and Speed Part 2 

 
Figure 12d, AIM+: Approach Ratio and Speed Part 2 

In these scenarios, there was not much overall change in either delay or average speed for 

the signalized intersection or AIM+. While the overall differences between AIM+ and 

signal control were large for both delay and average speed, the trends experienced by both 

for the above scenarios was relatively the same. One difference was that in AIM+, the 

performance (in terms of delay and average speed) was better for the east and west 

approaches, which had lower amounts of demand. On the other hand, for the signalized 

intersection, the west and east approaches had worse values for delay and average speed. 
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AIM+ approaches experienced, on average, 16 seconds of delay less than the signalized 

intersection approaches. For the average speed, AIM+ approaches had an average speed 

that was 5 mph more than the signalized intersection approaches. These results point to the 

fact that AIM+ is more flexible and capable of handling unbalanced approach ratios than a 

signalized intersection is – especially when one roadway has much higher volumes in both 

directions than the other roadway.  

The last scenario, which considered a T-intersection as detailed in Table 5, was also 

analyzed for a signalized intersection. Figure 13a and Figure 13c illustrate the impact of 

traffic signal control on the delay and average speed respectively. Similarly, Figure 13b 

and Figure 13d show the corresponding results for the AIM+ scenarios. 

 

 

 
Figure 13a, Signal: Approach Ratio and Delay Part 3 
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Figure 13b, AIM+: Approach Ratio and Delay Part 3 

 

 

 

 

 
Figure 13c, Signal: Approach Ratio and Speed Part 3 
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Figure 13d, AIM+: Approach Ratio and Speed Part 3 

The relative delay and average speed differences at each approach for the signalized 

intersection matched those for AIM+. The magnitude of differences between each of the 

approaches was much more pronounced for the signalized intersection, though. For 

example, the difference in delay between the north approach and the east approach was 

approximately 20 seconds. For AIM+ this same difference was only about one second. 

Similarly, the difference between the average speed for the north and east approaches was 

approximately 10 mph for the signalized intersection and less than 1 mph for AIM+. A 

similar pattern was noted when comparing the south approach to the other approaches. The 

absolute difference between delay for AIM+ and the signal control intersection was at least 

20 seconds for each approach, where AIM+ outperformed the signalized intersection. As 

for average speed, AIM+ had higher average speeds ranging from 5 mph for the south 

approach up to 20 mph for the east approach. 

5.4.2.2 Approach Ratio Results: AIM+ Versus AIM with FCFS 

The three sets of scenarios concerning approach ratio were also considered in the analysis 

of AIM with FCFS. Figure 14a and Figure 14c illustrate the impact on delay and average 

speed for AIM with FCFS. The AIM+ results for the first set of approach ratio scenarios 

(which were already shown on a different y-axis scale in Figure 11b and Figure 11d) are 

shown in Figure 14b and Figure 14d. 
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Figure 14a, AIM FCFS: Approach Ratio and Delay Part 1 

 

 
Figure 14b, AIM+: Approach Ratio and Delay Part 1 
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Figure 14c, AIM FCFS: Approach Ratio and Speed Part 1 

 
Figure 14d, AIM+: Approach Ratio and Speed Part 1 

Compared with AIM+, AIM with FCFS had, on average, approximately one second more 

of delay across the scenarios AR1-AR4. Additionally, AIM with FCFS saw a decrease in 

average speed of about 0.7 mph compared to AIM+. Trends were comparable for all 

approaches with the exception of the north approach, which had the most delay for all four 

scenarios and was affected most. In AIM with FCFS, the trends for all four approaches 

were approximately the same for both delay and average speed. In AIM+, though, the north 

approach saw more delay and a lower average speed than the other approaches. The 

conclusion drawn from this was that individual approaches were more sensitive to 
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increasing demand for AIM+, but considering the overall values for the MOEs, AIM+ still 

performed better. 

Figure 15a and Figure 15c shows the results for AIM with FCFS considering the second 

set of approach ratio scenarios, in which the demand was progressively added to two 

opposing approaches (north and south). Figure 15b and Figure 15d show the AIM+ 

counterpart results (which were also shown in Figure 12b and Figure 12d with a different 

scale on the y-axis). 

 
Figure 15a, AIM FCFS: Approach Ratio and Delay Part 2 

 
Figure 15b, AIM+: Approach Ratio and Delay Part 2 
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Figure 15c, AIM FCFS: Approach Ratio and Speed Part 2 

 
Figure 15d, AIM+: Approach Ratio and Speed Part 2 

For the second set of scenarios, AIM with FCFS performed almost identically to AIM+ in 

terms of the trends observed for delay and average speed. It can be observed that the delay 

for the north and south approaches (which had the larger amount of delay) was very slightly 

higher, and the average speed was just slightly lower than AIM+. Similar to the first set of 

scenarios for approach ratio of AIM with FCFS, the delay decrease and average speed 

increase with AIM+ is important to note. The difference in delay was approximately 0.9 

seconds in these scenarios, and the average speed difference was approximately 0.6 miles 

per hour. 
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The results for the T-intersection scenario for AIM with FCFS are shown in Figure 16a 

and Figure 16c and in Figure 16b and Figure 16d for AIM+ (also shown in Figure 13b 

and Figure 13d). 

 
Figure 16a, AIM FCFS: Approach Ratio and Delay Part 3 

 
Figure 16b, AIM+: Approach Ratio and Delay Part 3 
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Figure 16c, AIM FCFS: Approach Ratio and Speed Part 3 

 
Figure 16d, AIM+: Approach Ratio and Speed Part 3 

Similar to the signalized intersection scenario, the delay and average speed for AIM with 

FCFS matched the same trends for AIM+. The difference in delay and average speed was 

seen for this scenario as well. Delay increased by about one second for the north and south 

approaches in AIM with FCFS, but the delays were approximately the same for the east 

approach. For the average speed, there was a decrease of approximately 0.8 miles per hour 

for AIM with FCFS for the north and south approaches. The decrease in average speed for 

the east approach was not as significant at 0.4 miles per hour, although more noticeable 

than the change in delay for the approach. 
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5.4.2.3 Approach Ratio Results: AIM+ 

The trends of results for the approach ratio scenarios in AIM+ specifically were also 

evaluated to assess the sensitivity of AIM+. The figures shown in this section were also 

shown in sections 5.4.2.1 and 5.4.2.2 but were recreated here on a smaller y-axis so that 

the trends of the different approaches could be analyzed more specifically. Figure 17a and 

Figure 17b show the impact of loading the demand on one leg on the delay per vehicle and 

the average speed for each approach using AIM+ as the form of intersection control.  

 
Figure 17a, AIM+: Approach Ratio and Delay Part 1 

 
Figure 17b, AIM+: Approach Ratio and Speed Part 1 
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The delay and average speed per vehicle remained relatively constant for all three 

approaches across the four scenarios. A very slight decrease in delay and increase in 

average velocity for the south approach were seen. For the north approach, there was a 

much more obvious change in both delay and average speed. The delay increased by 

approximately 0.2 seconds and the average speed decreased by approximately 0.1 mph. 

While this showed that adding demand to one approach can affect its performance, again, 

it is important to note the very small overall change that occurred from both extremes of 

the scenarios. 

Figure 18a and Figure 18b show how increasing the demand on two of the approaches 

affected the delay and average speed per vehicle. 

 

 

 
Figure 18a, AIM+: Approach Ratio and Delay Part 2 
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Figure 18b, AIM+: Approach Ratio and Speed Part 2 

Again, there was not much change in either the delay or the average speed for the west and 

east approaches, which had progressively less demand for each scenario. In this second set 

of scenarios, a similar trend was noted to that of the first set of scenarios for approach ratio. 

In these scenarios, though, the south and north approach were both impacted by the added 

demand, which was reasonable since vehicles further upstream on links had to wait for 

vehicles in front of them to arrive to the intersection for the reservation. The delay increased 

by only approximately 0.05 seconds per vehicle for the north and south approaches, and 

the average speed decreased by only approximately 0.05 mph. 

Figure 19a and Figure 19b show the average delay and average speed respectively for 

the T-intersection scenario. 
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Figure 19a, AIM+: Approach Ratio and Delay Part 3 

 
Figure 19b, AIM+: Approach Ratio and Speed Part 3 

In this case, the east approach was the approach which was required to turn either left or 

right at the intersection. Compared to the south and north approaches, the east approach 

had a lower average delay by 0.5 seconds and 1 second and a lower average speed by 

approximately 0.6 and 0.8 mph respectively. The south approach performed slightly worse 

than the north approach which could be expected since the north approach only had through 

movements and right-turns and not any left-turn movements, which have more impact on 

the delay and speed. 
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5.4.3 Safety Buffer Scenarios and Results 

Safety buffer is the time spacing between vehicles at conflict points within the intersection. 

This spacing can be increased incrementally to provide additional time-space between 

vehicles which may make the traversal through the intersection more realistic and 

comfortable for the rider. In the analysis, values for the safety buffer ranged from 0.0 

additional seconds up to 0.35 additional seconds of spacing between vehicles. Figure 20 

shows illustrations of the different increasing spacing of vehicles. 

                

Figure 20, Safety Buffers (0.0 seconds, 0.1 seconds, 0.2 seconds, 0.3 seconds respectively) 

This entire range was not used for all comparisons in the analysis due to the large increase 

in computation time that occurs as this safety buffer increases (since vehicles require more 

spacing when passing through the intersection less gaps are available). Furthermore, the 

safety buffer scenarios were not considered in the analysis of the signalized intersection. 

These were excluded since predefined safety buffers are non-existent with human vehicles, 

so there is no pertinence in considering them for the signalized intersection evaluation. 

5.4.3.1 Safety Buffer Results: AIM+ Versus AIM with FCFS  

Since AIM with FCFS does concern autonomous vehicles, it was possible to compare how 

the two forms of AIM operate as the safety buffer between vehicles increases. Figure 21a 

and Figure 21b compare the functionality of both AIM with FCFS and AIM+ considering 

delay per vehicle and average speed with respect to increasing safety buffer. 
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Figure 21a, AIM+/AIM FCFS: Safety Buffer and Delay 

 
Figure 21b, AIM+/AIM FCFS: Safety Buffer and Speed 

For the delay, there was a much larger upward trend for AIM with FCFS than for AIM+. 

Even at the point where no safety buffer was added, the delay for AIM with FCFS was 

approximately one second larger than AIM+. As the safety buffer increased, this difference 

became much more pronounced, and at 0.15 seconds of added safety buffer, there was a 

much more dramatic increase in delay for AIM with FCFS. While the delay for AIM with 

FCFS was not significantly different than AIM+, AIM+ still performed better. Average 

speed saw a similar (yet opposite) trend, in which the average speed for AIM with FCFS 

was slightly worse than AIM+ when no safety buffer was added, but around 0.15 seconds 
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of added safety buffer, the average speed started to decline more rapidly for AIM with 

FCFS.  

5.4.3.2 Safety Buffer Results: AIM+ 

Figure 22a and Figure 22b show the effect of increasing the safety buffer on the average 

delay experienced per vehicle (in seconds per mile) and the average speed for every vehicle 

(in miles per hour) considering AIM+ as the form of intersection control. 

 
Figure 22a, AIM+: Safety Buffer and Delay 

 
Figure 22b, AIM+: Safety Buffer and Speed 
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In Figure 22a, a gradual upward trend in delay experienced per vehicle is visible, which is 

reasonable since a vehicle should expect to experience greater delay if more spacing 

between vehicles is required. However, it is important to note the overall change in delay 

between no additional buffer added (0.0 seconds) and 0.35 seconds (the maximum) added. 

Providing this additional safety buffer (as was illustrated in Figure 20) only contributed to 

an additional delay of approximately half a second per mile per vehicle. For the average 

speed in Figure 22b, a gradual downward trend in average speed can be observed. Again, 

though, the change from 0.0 seconds to 0.35 seconds of added buffer only led to an overall 

decrease in average speed of approximately 0.15 miles per hour. 

5.4.4 Turn Ratio Scenarios and Results 

The turn ratio parameter is defined by the percentage of the total intersection demand that 

turns left, right, or passes through the intersection. While the percentage of turning vehicles 

was held constant for the intersection demand scenarios, in reality, there are intersections 

that experience much higher (or lower) left-turning volumes. For these scenarios, the 

percentage of the total demand making right-turns was held constant at 20%. This was done 

since right-turning vehicles have little impact on the delay or average speed of the 

intersection since the number of conflict points along their trajectories is minimal. For left-

turns and through movements, the remaining 80% of demand was split at increasing 

increments of 10% (i.e. 10% left-turning and 70% through, 20% left-turning and 60% 

through, up to 70% left-turning and 10% through). Turn ratio scenarios were excluded for 

the signalized intersection scenarios since the provided dual left-turn lanes led to a 

dissimilar comparison to AIM+ turn ratio scenarios.  

5.4.4.1 Turn Ratio Results: AIM+ Versus AIM with FCFS 

Since the Aimsun intersection used for the analysis of AIM with FCFS was the same as 

that used for the analysis of AIM+, a fair comparison was made between the two 

considering varying amounts of turn ratios. Figure 23a and Figure 23b details the results 

of this comparison for AIM+ and AIM with FCFS for delay and average speed. Note that 

the x-axis denotes the percentage of the total demand that was making left-turn movements. 
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Figure 23a, AIM+/AIM FCFS: Turn Ratio and Delay 

 
Figure 23b, AIM+/AIM FCFS: Turn Ratio and Speed 

The results for these scenarios were interesting because an almost identical trend can be 

noted between the left movements and the through movements for AIM+ and the left 

movements and through movements for AIM with FCFS. Looking at the average delay at 

low percentages of left-turning vehicles, the delays were approximately the same for AIM 

with FCFS. As that percentage increased, though, a more defined increase in delay was 

noted. For average speed using AIM with FCFS, left movements experienced, on average, 

half a mile per hour difference at 10% of the total demand serving left movements. 

Contrasting to the pattern of delay, this difference actually became slightly less pronounced 
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as the number of left-turning vehicles increased. Looking at the results for the turn ratio 

scenarios for AIM+, similar trends, yet more gradual, were observed for delay and average 

speed for both movements. Left-turn movements experienced between 0.4 seconds and 1 

second less delay in AIM+, and through movements experienced around 2 seconds less 

delay for AIM+. For the average speed in AIM with FCFS, left-turning vehicles 

experienced an increase in average speed ranging from 0.3 mph to 0.8 mph and through 

moving vehicles saw an increase in average speed between 0.8 mph and 1.4 mph. 

5.4.4.2 Turn Ratio Results: AIM+ 

Considering only AIM+, Figure 24a and Figure 24b depict how the increasing percentage 

of left-turning vehicles affects the average delay per vehicle and the average speed. These 

figures were also shown in the section above but were represented again here in order to 

observe the AIM+-specific trends for the turn ratio scenarios. 

 

 
Figure 24a, AIM+: Turn Ratio and Delay 
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Figure 24b, AIM+: Turn Ratio and Speed 

As the percentage of left-turning vehicles increased while the demand remained constant, 

the delay experienced by both left and through movements increased – but only by 

approximately 0.2-0.3 seconds. Since the introduction of more left-turning trajectories 

created more conflict points with other paths, the delay increased for both left and through 

movements since more maneuvering through conflict points was required as the number of 

left-turning vehicles increased. The delay for left-turning movements was, on average, 

larger than that of through movements. Correspondingly, the average speed for both of 

these movements was observed to gradually decrease by approximately 0.2 mph as the 

percentage of left-turning vehicles increased. The average speed of left-turning vehicles 

was approximately 1 mph less than that of through-moving vehicles. Similar trends for left 

and through movements were noted from these results, but the through movements were 

impacted slightly more by the increasing percentage of left-turning vehicles versus the left 

movements. 

5.4.5 Maximum Speed Scenarios and Results 

The last parameter considered in the analyses was the maximum speed. The maximum 

speed parameter is comparable to changing the speed-limit for the network. In AIM 

scenarios, this speed was the constant initial velocity that vehicles utilized upon entering 

the network until they were instructed to change their velocity by the intersection manager. 
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This parameter was varied from a minimum of 25 mph to a maximum of 55 mph. Speeds 

outside of this range are unlikely to be used at intersections where signals are present. The 

varying of this parameter required several minor modifications to the Aimsun model. First, 

the length of the links had to be slightly extended to ensure that there was sufficient time 

for Gurobi to run before a vehicle reached the point at which it should start decelerating. 

Additionally, at some of the cases of higher maximum speed (around 50 mph and 55 mph), 

it was necessary to modify the vehicle class so that each vehicle’s maximum acceleration 

was sufficient enough for a vehicle to attain the maximum speed when starting from rest. 

For scenarios where the maximum velocity was set to lower values, a safety buffer was 

added to provide sufficient spacing between vehicles. Lastly, the threshold time at which 

vehicles were considered in the next Gurobi run varied for these scenarios since vehicles 

would arrive at the intersection more quickly or more slowly than with the standard 

parameter value of 40 mph. 

The maximum speed category was not considered for the signal control intersection since 

the changing speed limit has little impact on the signal timing and, thus, the MOEs as well. 

Additionally, it was not considered in the analysis of AIM with FCFS. 

5.4.5.1 Maximum Speed Results: AIM+ 

Since intersections can be located at roadways of varying, the effect on AIM+ of increasing 

the speed limit was tested. Figure 25a and Figure 25b illustrate the effects on delay and 

average speed from increasing the maximum speed for the vehicles in the Aimsun.  
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Figure 25a, AIM+: Maximum Speed and Delay 

 
Figure 25b, AIM+: Maximum Speed and Speed 

From Figure 25a, a sporadic downward trend in delay can be observed. Between 25 mph 

and 35 mph, there was a more sudden drop in the average delay experienced per vehicle (a 

drop of about 2.5 seconds). After 35 mph, the delay per vehicle remained relatively 

unchanged until a slight decrease was experienced between 45 mph and 55 mph (a drop of 

about half a second per mile). Figure 25b provides a good illustration of the capabilities 

of AIM+ to handle fluctuating speed limits. The average speed approximately matched the 

maximum speed that was set for the network. As the maximum speed reached 35 mph and 



76 

 

 

more, the average speed started to decrease slightly. This could be because vehicles needed 

to slow down more to make turns than would be necessary at lower speeds like 25 mph. 

5.4.6 Results Summary 

In summary, the effects of the changing parameters on the three forms of intersection 

control were evaluated and presented. AIM+ was shown to outperform the signalized 

intersection and AIM with FCFS for all scenarios. This demonstrates the tremendous 

improvements that AIM+ can provide in terms of average delay and average speed. A 

summary of the different comparisons and sensitivity analyses is presented in this section. 

5.4.6.1 AIM+ Versus Traffic Signal Control Results Summary 

Comparing the results from the simulation of the signalized intersection to the results for 

AIM+ showed major differences. Both the delay and the average speed at signalized 

intersections were much worse with traffic signal control. Fluctuating the amount of 

demand experienced on each approach yielded mostly similar results between AIM+ and 

signalized intersection control in terms of the trends noted. However, the overall difference 

in the values of the MOEs was quite significant. Table 6 details some of the approximate 

percentage reduction ranges for delay and percentage increase ranges in average speed 

when comparing AIM+ to standard traffic signals. The reduction and increase percentages 

for the approach ratio scenarios considered the most conservative approach (i.e. the 

approach with the lowest delay or the highest average speed for signals and the approach 

with the highest delay or the lowest average speed for AIM+). 

Table 6, AIM+ vs Traffic Signal Control Results Summary 

Scenarios Delay Reduction with AIM+ Average Speed Increase with AIM+ 

Intersection 

Demand 
71% - 91% 9% - 46% 

Approach 

Ratio Part 1 
69% - 73%  11% - 19% 

Approach 

Ratio Part 2 
75% 19% 

Approach 

Ratio Part 3 
78% 16% 
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5.4.6.2 AIM+ Versus AIM with FCFS Results Summary 

While the overall differences in delay and average speed were not as drastic as the 

differences when AIM was compared to signals, it was still obvious that AIM performed 

better than AIM with FCFS in all situations. It was reasonable that AIM with FCFS 

generally followed the same trends as AIM+ since they are based on the same formulation. 

Table 7 summarizes the approximate percentage reductions in delay and percentage 

increases in average speed for the various scenarios when comparing AIM+ to AIM with 

FCFS. For the turn ratio scenarios and the approach ratio scenarios, the percentages 

considered the most conservative approach (i.e. the approach/movement with the lowest 

delay or the highest average speed for AIM with FCFS and the approach/movement with 

the highest delay or the lowest average speed for AIM+). 

Table 7, AIM+ vs AIM with FCFS Results Summary 

Scenarios Delay Reduction with AIM+ Average Speed Increase with AIM+ 

Safety 

Buffer 
14% - 36% 1% - 3% 

Intersection 

Demand 
4% - 31% 0% - 3% 

Turn Ratio 5% - 12% 0% - 1% 

Approach 

Ratio Part 1 
11% - 12% 2% 

Approach 

Ratio Part 2 
11% - 13% 2% 

Approach 

Ratio Part 3 
1% 0% 

5.4.6.3 AIM+ Sensitivity Analysis Results Summary 

Overall, the results for all of the parameter scenarios showed the robustness of AIM+ under 

varying conditions. While fluctuating the parameters did affect the delay and average 

speed, the overall impact was generally very minimal. Most scenarios saw less than one 

second of added delay or 1 mph decrease from the lower extreme to the upper extreme. 

The sensitivity analysis proved that AIM+ was flexible in dealing with changing 

parameters, while ensuring that the overall performance of the intersection was maintained. 
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CHAPTER 6 

6 CONCLUSIONS 

The research presented in this study accomplished several items. First, an introduction of 

the topic of AIM was provided, and a literature review was presented encompassing several 

key milestones and aspects of research concerning AIM. Then, the methodology was 

presented which was later integrated with microsimulation. After discussing the scenarios 

and parameters considered in the analysis, the results were presented. 

6.1 Main Research Contributions 

The research contributions of this research involved three main components. First, an 

improved optimization model of AIM was developed, which was based on a conflict-point 

reservation-based model of AIM. This was accomplished by developing a mixed-integer 

linear program formulation (MILP) which assigned arrival times at all of the conflict points 

on a vehicle’s path using a specific acceleration. Second, this AIM+ formulation was 

integrated with Gurobi and Aimsun using Aimsun’s Application Programming Interface 

(API). Lastly, this AIM capability that was integrated with microsimulation was utilized to 

model AIM+ for different scenarios. Different parameters were considered like safety 

buffer, maximum speed, intersection demand, turn ratio, and approach ratio. Furthermore, 

AIM+ was compared to other forms of intersection control such as traffic signal control 

and another type of AIM based on a “first-come first-served” principle. The research 

conducted in this study was unique because optimization-based AIM had not yet been 

integrated into off-the-shelf popular simulation software. 

The results that have been gathered from this study are very promising for the efficiency 

of AIM+. The robustness of AIM+ as a form of AIM was clearly demonstrated with the 

results that were presented in the sensitivity analyses. Despite the fluctuation of the various 

parameters in the analysis, the measures of effectiveness used (delay and average speed) 

were barely affected. Additionally, significant reductions in delay and significant increases 
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in average speed were observed when AIM+ was compared to a standard traffic signal. 

Even when comparing AIM+ to AIM with FCFS, AIM+ performed better in all metrics.  

6.2 Future Work 

Although the improvements that AIM+ can bring to road users are major, several things 

must still be studied and implemented into AIM+ before it can be realistically used at real 

intersections. The results that were presented in the sensitivity analyses were based on 

scenarios that were more idealistic. Upon expansion of AIM+, further simulation scenarios 

should be tested to better understand its overall capabilities and efficiency. While several 

of the proposed aspects of the potential future work can bring improvements to safety and 

practicability, they could also have an impact on the efficiency of AIM+. Specifically, if 

large safety buffers are used to prevent issues with malfunctions or if BSM-triggered halts 

are required even in false alarm cases, efficiency could be significantly impacted. 

First, the model of AIM+ proposed in this study could be extended to a multi-intersection 

network. When considering a corridor or transportation network of several consecutive 

AIM-equipped intersections, there may be even more savings in delay or improvements in 

vehicle speed. These consecutive intersections could be designed to be coordinated even 

with AIM+. This could be accomplished by having an intersection manager automatically 

send vehicle information to the next intersection manager for the vehicles that would exit 

the intersection before the next run of Gurobi. This would allow the next intersection to 

know about incoming vehicle locations and speeds as soon as possible. However, since 

networks with consecutive intersections may have shorter links (and hence shorter travel 

times), vehicles need to have sufficient time to output their information, receive an 

intersection reservation, and modify their speed appropriately.  

Secondly, the formulation could be modified to allow for fluctuating vehicle accelerations 

through the intersection. This would give the intersection manager yet even more flexibility 

in solving for the most optimal vehicle paths through the intersection. Additionally, the 

computational efficiency of the proposed AIM+ model could be improved within the 

Aimsun API and Gurobi solver. This would allow for the testing of even larger demands 
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or even larger safety buffers within a reasonable amount of time. This is especially 

important if AIM+ is utilized at multiple intersections since multiple yet different 

optimization problems would need to be solved simultaneously.   

Lastly, the AIM+ formulation should be developed further in order to accommodate other 

modes of traffic. This should include at least pedestrians, cyclists, transit vehicles, and 

shared vehicles. Since this study only concerned automobiles, it is important to add 

accommodations for these other forms of traveling as well in order to make it more realistic 

and precise for real-world applications. More specifically, pedestrians and cyclists can be 

accommodated at crosswalks by allowing them some specified crossing time. During this 

crossing time, vehicles should not be assigned arrival times that intersect the crosswalk that 

is being utilized until some time after the pedestrian or cyclist has finished crossing. This 

accommodation could have significant impacts on the operational capability of AIM+ since 

pedestrians would require much more time to cross an intersection than an automobile. 

Future simulations could show that the intersection efficiency would not be as impacted by 

pedestrians if platoons of vehicles moved through the intersection instead of random 

arrivals of vehicles. Additionally, in order to ensure that AIM+ is a socially equitable 

technology, modifications should include prioritizing these other modes of traffic (i.e. 

having transit vehicles receive assigned arrival times that are earlier than what is assigned 

for automobiles).  While this can be easily done within the objective function of the 

formulation, a prioritization scheme should be developed so that vehicles with higher 

occupancies receive more priority than other vehicles. 

6.3 Future of Autonomous Vehicles and AIM 

As this research clearly indicated, the improvements to efficiency that both autonomous 

vehicles and AIM can bring to our society is revolutionary. Furthermore, the improvements 

in safety are opportunities that cannot be ignored. As policy for autonomous vehicles 

continues to take a more definite shape, these technologies become closer to being a reality 

in the transportation industry. With further research that will be conducted on these topics, 

it is obvious that more groundbreaking discoveries and concepts will be realized that will 

further advance the transportation world. 
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