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Abstract

Symbolic model checkers can construct proofs of properties over very complex models.

However, the results reported by the tool when a proof succeeds do not generally provide

much insight to the user. It is often useful for users to have traceability information

related to the proof: which portions of the model were necessary to construct it. This

traceability information can be used to diagnose a variety of modeling problems such

as overconstrained axioms and underconstrained properties, and can also be used to

measure completeness of a set of requirements over a model.

We propose the notion of inductive validity cores (IVCs), which are intended to trace

a property to a minimal set of model elements necessary for proof. Such cores are not

unique, and algorithms for efficiently producing both single IVC and all IVCs are pre-

sented. IVCs can be used for several interesting analyses, including regression analysis

for testing/proof, determination of the minimum (as opposed to minimal) number of

model elements necessary for proof, the diversity examination of model elements leading

to proof, and analyzing fault tolerance.
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Chapter 1

Introduction

Software has become an integral part of our daily life and is being used in various

environments (such as homes, hospitals, factories) and application areas (such as medical

devices, aircraft flight control, weapons, and nuclear systems) where failure could lead to

loss of life, financial loss, or environmental damage. It is vital to verify the soundness and

safety of such critical applications. Formal verification, the process of mathematically

proving or disproving the correctness of a system with respect to certain requirements

or properties, is increasingly applied to critical systems to ensure they work in all cases.

One of the most successful and powerful methods for formal verification is symbolic

model checking. Symbolic model checking using induction-based techniques such as

IC3/PDR [1] and k-induction [2] can often determine whether safety properties hold of

complex finite or infinite-state systems. Model checking tools are attractive both because

they are automated, requiring little or no interaction with the user, and if the answer

to a correctness query is negative, they provide a counterexample to the satisfaction

of the property. These counterexamples can be used both to illustrate subtle errors

in complex hardware and software designs [3–5] and to support automated test case

generation [6, 7].

In the event that a property is proved, however, it is not always clear what level

of assurance should be invested in the result. It is well known that issues such as

vacuity [8] can cause verification to succeed despite errors in a property specification or

in the model. Even for non-vacuous specifications, it is possible to over-constrain the

specification of the environment in the model such that the implementation will not work

1
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in the actual operating environment. Given that these kinds of analyses are performed

for safety- and security-critical software, these issues can lead to overconfidence in the

behavior of the fielded system. In such cases, a system or subsystem component will not

exhibit the expected behavior in its intended operating environment, which may bring

about catastrophic losses. Achieving a proof in verification of safety requirements is not

enough: careful scrutiny of the property of interest, the model, and the assumptions

(axioms) used during proof must be performed. For these reasons, the level of feedback

provided by the tools to the user in the event of a proof is important.

Inductive Validity Cores (IVCs) offer an explanation as to why a property is satisfied

by a model in a formal and human-understandable way. Informally, if a model is viewed

as a conjunction of constraints, a minimal IVC (MIVC) is a set of constraints that is

sufficient to construct a proof such that if any constraint is removed, the property is

no longer valid. IVCs and MIVCs can be used for several purposes, including perform-

ing traceability between specification and design elements, assessing model coverage,

and explaining unsatisfiable test obligations when using model checkers for test case

generation.

1.1 Objectives and Significance

In this thesis, we are specifically concerned with the scenarios where a model checker

establishes the correctness proof of a given property. When it comes to verification, if

the answer to a correctness query is positive, most tools provide no further information.

The objective of this dissertation is to provide traceability information that explains a

proof, in much the same way that a counterexample explains a negative result. Such an

explanation should be both formal and human-understandable. This research will add

to the usability of the symbolic model checkers by equipping the tools with a mechanism

to show why a proved property is valid.

Reasoning about the proofs is not a new idea: UNSAT cores [9] provide the same kind

of information for individual SAT or SMT queries, and this approach has been lifted to

bounded analysis for Alloy in [10]. What we propose is a generic and efficient mechanism

for extracting supporting information, similar to an UNSAT core, from the proofs of

safety properties using inductive techniques such as PDR and k-induction. Because
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many properties are not themselves inductive, these proof techniques introduce lemmas

as part of the solving process in order to strengthen the properties and make them

inductive. Our approach, which we call inductive validity cores (IVCs), allows efficient,

accurate, and precise extraction of model elements necessary even in the presence of

such auxiliary lemmas. The idea lifts UNSAT cores [9] to the level of sequential model

checking algorithms using induction. Informally, if a model is viewed as a conjunction of

constraints, a minimal IVC (MIVC) is a set of constraints that is sufficient to construct

a proof such that if any constraint is removed, the property is no longer valid.

The IVC idea facilitates several useful system analyses/engineering tasks. Specifi-

cally, it is useful when the validity of a safety requirement has been established by the

model checker. In this case, IVCs provide usable information both formal and human-

understandable that explains why the requirement is satisfied. Such information is

valuable in analyzing safety-critical systems and can be used for many purposes in the

software verification process, including at least the following:

Vacuity detection: The idea of syntactic vacuity detection (checking whether all sub-

formulae within a property are necessary for its satisfaction) has been well stud-

ied [8]. However, even if a property is not syntactically vacuous, it may not require

substantial portions of the model. This in turn may indicate that either a.) the

model is incorrectly constructed or b.) the property is weaker than expected. We

have seen several examples of this mis-specification in our verification work, espe-

cially when variables computed by the model are used as part of antecedents to

implications of the a property specification.

Traceability: Certification standards for safety-critical systems (e.g., [11, 12]) usually

require traceability matrices that map high-level requirements to lower-level re-

quirements and (eventually) leaf-level requirements to code or models. Current

traceability approaches involve either manual mappings between requirements

and code/models [13] or a heuristic approach involving natural language pro-

cessing [14]. Both of these approaches tend to be inaccurate. For functional

properties that can be proven with inductive model checkers, inductive validity

cores can provide accurate traceability matrices with no user effort.

Symbolic Simulation / Test Case Generation: Model checkers are now often used



4

for symbolic simulation and structural-coverage-based test case generation [6,15].

For either of these purposes, the model checker is supposed to produce a witness

trace for a given coverage obligation using a “trap property” which is expected to

be falsifiable. In systems of sufficient size, there is often “dead code” that cannot

ever be reached. In this case, a proof of non-reachability is produced, and the IVC

provides the reason why this code is unreachable.

Nevertheless, to be useful for these tasks, the generation process must be efficient and the

generated IVC must be accurate and precise (that is, sound and close to minimal). The

requirement for accuracy is obvious; otherwise the “minimal” set of model elements is no

longer sufficient to produce a proof, so it no longer meets our IVC definition. Minimality

is important because (for traceability) we do not want unnecessary model elements in

the trace matrix, and (for completeness) it may give us a false level of confidence that

we have enough requirements.

In addition, we are also interested in diversity: how many different IVCs can be

computed for a given property and model? Requirements engineers often talk about

“the traceability matrix” or “the satisfaction argument”. If proofs are regularly diverse,

then there are potentially many equally valid traceability matrices, and this may lead to

changes in traceability research. It is often the case that there are multiple MIVCs for

a given property. In this case, computing a single IVC provides, at best, an incomplete

picture of the traceability information associated with the proof. Depending on the

model and property to be analyzed, there is often substantial diversity between the IVCs

used for proof, and there can also be a substantive difference in the size of a minimal

IVC and a minimum IVC, which is the (not necessarily unique) smallest MIVC. If all

MIVCs can be found, then several additional analyses can be performed:

Coverage Analysis: Closely related to vacuity detection is the idea of completeness

checking, e.g., are all atoms in the model necessary for at least one of the properties

proven about the model? Several different notions of completeness checking have

been proposed [16, 17], but these are very expensive to compute, and in some

cases, provide an overly strict answer (e.g., checking can only be performed on

non-vacuous models for [17]). MIVCs can be used to define coverage metrics

by examining the percentage of model elements required for a proof. However,
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since MIVCs are not unique, there are multiple, equally legitimate coverage scores

possible. Having all MIVCs allows one to define additional metrics: coverage of

MAY elements, coverage of MUST elements, as well as policies for the existing

MIVC metric: e.g., choose the smallest MIVC.

Optimizing Logic Synthesis: synthesis tools can benefit from MIVCs in the process

of transforming an abstract behavior into a design implementation. A practical

way of calculating all MIVCs allows us to find a minimum set of design elements

(optimal implementation) for a certain behavior. Such optimizations can be per-

formed at different levels of synthesis.

Impact Analysis: Given all MIVCs, it is possible to determine which requirements

may be falsified by changes to the model. This analysis allows for selective regres-

sion verification of tests and proofs: if there are alternate proof paths that do not

require the modified portions of the model, then the requirement does not need

to be re-verified.

Robustness Analysis: It is possible to partition the model elements into MUST and

MAY sets based on whether they are in every MIVC or only some MIVCs, re-

spectively. This may allow insight into the relative importance of different model

elements for the property. For example, if the MUST set is empty, then the re-

quirement has been implemented in multiple ways, such as would be expected in

a fault-tolerant system.

The Requirements Engineering community is keenly interested in approaches to

manage requirements traceability. In most cases, it is assumed that there is a single

“golden” set of trace links that describes how requirements are implemented in soft-

ware [18–20]. With computing a single minimal IVC, we are able to automatically

establish one accurate traceability matrix. However, if there are multiple MIVCs, then

it is possible that there are several equally valid sets of trace links. Examining the di-

versity of all MIVCs could lead to changes in how traceability is performed for critical

systems.
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1.1.1 Use in Research & Systems Development

Three of the important concerns in certification of critical systems are: conformance,

traceability, and adequacy. Conformance involves determining whether a system meets

its requirements: formal verification tools have excellent support for conformance. How-

ever, most formal verification tools do not provide support for traceability and adequacy.

IVCs could be a mechanism by which formal verification tools address these concerns.

For example, airborne software must undergo a rigorous software development pro-

cess to ensure its airworthiness. This process is governed by DO-178C: Software Con-

siderations in Airborne Systems and Equipment Certification and when formal methods

tools are used, DO-333: Formal Methods Supplement to DO-178C and DO-278A [11].

DO178C currently uses a variety of metrics to determine adequacy of requirements, but

much of the effort involves code-level testing. Test suites are derived from requirements

and used to test the software and measured using different structural coverage test met-

rics. If code-level test suites do not achieve full coverage, then an analysis is performed

to determine whether there are missing requirements and test cases. The kind of struc-

tural coverage required (e.g., statement, branch, MCDC) for adequate testing is driven

by the criticality of the software in question.

With the idea of IVCs, we propose a set of proof-based coverage metrics suitable for

analyzing requirements competentness. Then, we will have the utility of the proposed

approach evaluated by an industrial partner.

1.2 Contributions

Inductive validity cores have potential software engineering uses in several phases of

the development cycle. However, efficient and effective generation strategies must be

proposed to achieve these benefits. The contributions of the work are as follows:

• Efficient techniques for extracting inductive validity cores from inductive proofs of

safety properties over sequential models involving lemmas: The thesis provides a

formalization of techniques for computing inductive validity cores, and efficient

algorithms for computing approximately minimal IVCs from proofs. Efficient in

this context means that the computation time required is a small fraction of the

time required to compute the original proof.
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• Efficient algorithms for computing all minimal IVCs from inductive proofs of safety

properties over sequential models involving lemmas: depending on the model and

the property specification, the property of interest may be satisfied through dif-

ferent proof paths, which could results in multiple distinct IVCs. This thesis

formalizes techniques for producing all inductive validity cores. It explores meth-

ods that are sound and reasonably efficient for computing all IVCs. It is not

possible to guarantee completeness due to decidability issues, but we present al-

gorithms that are complete for decideable problems and that will report possibly

incomplete results to the user in situations in which a complete solution may not

be possible.

• A family of coverage metrics for formal verification based on minimal Inductive

Validity Cores (MIVCs) that evaluate requirements adequacy: we present a new ap-

proach to coverage analysis in formal verification which is much more efficient than

previously proposed mutation-based analyses. Our goal is to provide a set of met-

rics that offer a range of levels of rigor that can be tailored to the criticality of the

software. We discuss the relationship between proof-based metrics and mutation-

based metrics, including a proof of equivalence between non-deterministic muta-

tion coverage and one of our proposed proof-based metrics.

• A new notion of proof-based auto-traceability based on IVCs: requirements trace-

ability is the primary application of IVCs. Currently, this task is performed manu-

ally without any formal analysis, which takes a lot of effort and yet is not accurate.

With IVCs, we present the notion of complete traceability, by which requirement

traceability can be performed automatically and accurately driven from the proofs

of the properties.

• A study of the relationship between inductive validity cores and bounded validity

cores (BVCs). IVCs are derived from inductive proofs. In some cases, proving

safety properties over complex systems is often very expensive or infeasible. In

these cases, engineers have to rely on bounded proofs. Bounded validity cores

explain bounded proofs in the same way that inductive validity cores explain

inductive proofs. By definition, such cores are smaller than inductive cores as they

explain partial proofs. However, there are important relationships to be studied
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between bounded and inductive cores: how quickly do bounded cores converge to

IVC sets? Can bounded cores be used as a notion of completeness or traceability?

• Implementation of all the techniques: the correctness of the techniques is proved/

discussed formally, while their efficacy is evaluated via substantial experiments. To

this end, we have implemented all our methods in an open source model checker.

The implementation and experimental results are publicly available. To this end,

we have chosen an industrial model checker called JKind [21], which verifies safety

properties of infinite-state synchronous systems. It accepts Lustre programs [22]

as input. In JKind, verification is supported by multiple “proof engines” that

execute in parallel, including k-induction, property directed reachability (PDR),

and lemma generation engines that attempt to prove multiple properties in par-

allel. To implement the engines, JKind emits SMT problems using the theories

of linear integer and real arithmetic. JKind supports the Z3, Yices, MathSAT,

SMTInterpol, and CVC4 SMT solvers as back-ends. We have extended JKind with

new engines that implement our IVC generation algorithms.

• An initial examination of how IVCs can be used to meet certification objectives:

critical software systems must undergo a rigorous software development process to

ensure their correctness. This process is usually governed by an standard such as

DO-178C [11]. We would like to examine the usefulness of the IVCs in providing

satisfaction arguments that formally show how a system meets the certification

objectives.

1.3 Chapters

This thesis is organized in 7 chapters. Chapter 2 mentions some formal notations and

background and broadly discusses related work. Chapter 3 describes the notion of IVC,

minimal IVC, all minimal IVCs, and BVCs while providing some algorithms for each

of them. The correctness of the algorithms are formally established in this chapter. In

Chapter 4, we describe the implementation of the proposed techniques and algorithms.

In Chapter 5, we evaluate our techniques through a set of substantial experiments. In

this chapter we introduced some uses of the IVCs. Chapter 6 shows how IVCs could
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be used in different areas. Finally, Chapter 7 concludes this thesis and outlines future

research directions.



Chapter 2

Preliminaries and Related Work

Inductive validity cores aim to bridge the gap between verification techniques and the

user insight into the results provided by the tools. The goal behind this idea is to have

expressive verification results that help the engineers to evaluate the quality of a system

or specification.

This chapter, first, provides some formal background on symbolic model checking,

which is the underlying method for IVC generation. Broadly, IVCs can be compared

with several existing methods such as invariant minimization, minimal unsatisfiable

subformula, and slicing. We compare IVCs with these techniques in this chapter. Several

major uses of IVCs are in requirements traceability, checking adequacy and vacuity. This

chapter also discusses existing approaches in the literature used for these purposes.

2.1 Symbolic Model Checking

The idea of inductive validity cores is applicable to the context of symbolic model check-

ing using inductive proof methods. After proving the correctness of a given property, we

extract a minimal portion of the system (model) necessary for the proof of the property,

which is what we call IVCs. Correctness can be expressed in terms of safety and live-

ness properties. Safety properties state that nothing bad ever happens, while liveness

properties specifying that something good eventually happens.

IVCs determine why a safety property is satisfied by the system. Since this infor-

mation is obtained from the inductive proofs, we call it inductive validity core. With

10
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minimal IVCs, we are able to abstract away the part of the system irrelevant to the proof

of the property. This section mentions some background on symbolic model checking.

Given a state space U , a transition system (I, T ) consists of an initial state predicate

I : U → bool and a transition step predicate T : U × U → bool . We define the notion

of reachability for (I, T ) as the smallest predicate R : U → bool which satisfies the

following formulas:

∀u. I(u)⇒ R(u)

∀u, u′. R(u) ∧ T (u, u′)⇒ R(u′)

A safety property P : U → bool is a state predicate. A safety property P holds

on a transition system (I, T ) if it holds on all reachable states, i.e., ∀u. R(u) ⇒ P (u),

written as R ⇒ P for short. When this is the case, we write (I, T ) ` P .

For an arbitrary transition system (I, T ), computing reachability can be very ex-

pensive or even impossible. Thus, we need a more effective way of checking if a safety

property P is satisfied by the system. The key idea is to over-approximate reachability.

If we can find an over-approximation that implies the property, then the property must

hold. Otherwise, the approximation needs to be refined.

A good first approximation for reachability is the property itself. That is, we can

check if the following formulas hold:

∀u. I(u)⇒ P (u) (2.1)

∀u, u′. P (u) ∧ T (u, u′)⇒ P (u′) (2.2)

If both formulas hold then P is inductive and holds over the system. If (2.1) fails to

hold, then P is violated by an initial state of the system. If (2.2) fails to hold, then P

is too much of an over-approximation and needs to be refined.

One way to refine our over-approximation is to add additional lemmas to the prop-

erty of interest. For example, given another property L : U → bool we can consider

the extended property P ′(u) = P (u) ∧ L(u), written as P ′ = P ∧ L for short. If P ′

holds on the system, then P must hold as well. The hope is that the addition of L
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I(u0)⇒ P (u0)
...

I(u0) ∧ T (u0, u1) ∧ · · · ∧ T (uk−2, uk−1)⇒ P (uk−1)

P (u0) ∧ T (u0, u1) ∧ · · · ∧ P (uk−1) ∧ T (uk−1, uk)⇒ P (uk)

Figure 2.1: k-induction formulas: k base cases and one inductive step

makes formula (2.2) provable because the antecedent is more constrained. However, the

consequent of (2.2) is also more constrained, so the lemma L may require additional

lemmas of its own. Finding and proving these lemmas is the means by which property

directed reachability (PDR) strengthens and proves a safety property [1].

Another way to refine our over-approximation is to use use k-induction which unrolls

the property over k steps of the transition system. For example, 1-induction consists of

formulas (2.1) and (2.2) above, whereas 2-induction consists of the following formulas:

∀u. I(u)⇒ P (u)

∀u, u′. I(u) ∧ T (u, u′)⇒ P (u′)

∀u, u′, u′′. P (u) ∧ T (u, u′) ∧ P (u′) ∧ T (u′, u′′)⇒ P (u′′)

That is, there are two base step checks and one inductive step check. In general, for

an arbitrary k, k-induction consists of k base step checks and one inductive step check

as shown in Figure 3.2 (the universal quantifiers on ui have been elided for space). We

say that a property is k-inductive if it satisfies the k-induction constraints for the given

value of k. The hope is that the additional formulas in the antecedent of the inductive

step make it provable. In practice, inductive model checkers often use a combination

of the above techniques. Thus, a typical conclusion is of the form “P with lemmas

L1, . . . , Ln is k-inductive”.

Unbounded model checking is performed through inductive proof methods such as

k-induction [2] and IC3/PDR [1]. The PDR is currently the dominant unbounded model

checking technique. In the past few years, several variations of this algorithm have been
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published [23–26]. The original idea in PDR is to compute a safe inductive invari-

ant by strengthening the property using inductive couter-examples without unrolling

the transition relation, while a classical implementation of k-induction tries to find an

inductive invariant through k-step unrolling of a transition relation. Symbolic model

checkers usually employ these proof methods, using an SMT/SAT solver in the backend.

For example, JKind [21] is an SMT-based model checker for safety properties that uses

parallel cooperating engines including k-induction, PDR, and template-based invariant

generation.

Another form of symbolic evaluation is performed through bounded model checking.

The goal of bounded model checking is to decide if a given program reaches an error

within at most k unfolding of the transition relation. Although bounded model checkers

do not provide a full proof of correctness, they are useful to discover bugs. For example,

CBMC [27] checks array bounds (buffer overflows), absence of null de-references, and

assertions. The Alloy analyzer [28] is another bounded model checker that checks

temporal formulas specified using LTL. This tool also has a core extraction capability

based on UNSAT cores. JBMC [29] is a Bounded Model Checker for Java programs

that checks runtime exceptions and user-definded assertions. LLBMC is another bounded

model checker for finding bugs in C/C++ programs, mainly intended for checking low-

level system code. By exploiting the UNSAT core generation mechanism, we will be

able to determine bounded validity cores using these tools1.

As you can see, there are many efficient algorithms and tools for checking safety

properties due to their prevalence in practical applications. However, system specifica-

tions still contains liveness requirements. Informally, safety properties demonstrate that

the system preserves some invariant throughout its execution, while liveness properties

demonstrate that eventually the system meets some goal. Formally, liveness properties

can be distinguished from safety properties in that they require an infinite counterex-

ample, an infinite path demonstrating the goal was not achieved.

When it comes to checking such requirements, there are techniques that exploit

existing safety verification tools to check liveness. One approach is to reduce a liveness

problem to a safety problem [30], where a suitable counterexample-detection logic is used

by duplicating state elements, Ucopy = {uc|u ∈ U}. It non-deterministically samples

1See 2.3 and 3.2.
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the design state and tries to find a valid counterexample scenario with finding a state

repetition loop during which the behavior of the liveness and fairness conditions are

observed.

Although converting liveness to safety makes it possible to use existing safety ver-

ification algorithms, such translations may be impractical because they substantially

increase the problem size and complexity. Another technique is bounded liveness check-

ing, k-liveness, [30], which proves the absence of a liveness failure up to a certain bound;

i.e., for a property GF P , instead of proving ¬P cannot happen infinitely often, it tries

to prove ¬P does not occur consecutively for k steps. k-liveness checks liveness as a

sequence of safety checks increasing k incrementally. An improved version of k-liveness

is to perform a sequence of safety queries as necessary to find a large-enough bound

to avoid spurious failures by counting the maximum number of times that ¬P can oc-

cur [31]. Adapting any of these methods for liveness checking makes it possible to tackle

the problem with existing inductive algorithms for safety verification.

We do not discuss liveness further within this thesis, but note that either of these

reduction techniques can be transparently used with the IVC techniques in this thesis

to perform validity core reasoning for liveness properties.

2.1.1 Compositional Reasoning

Complex systems are usually composed from libraries of components. The specification

of such systems are decomposed into properties of each individual component. Then,

compositional verification is employed to ensure the correctness of the top level prop-

erties while integrating components [32]. Previously, Murugesan et al. demonstrated a

model-based approach to system construction in which compositional proofs are used to

to establish satisfaction arguments [3]. To cope with the complexity of modeling and

scalability of verification of large systems, they proposed an approach in which systems

can be decomposed into subsystems, modeled individually and verified compositionally.

The decomposition of a system into subsystems induces the need to decompose the re-

quirements of the system “flowed down” to each subsystem that is then modeled and

verified.

Given an architectural model of the system (decomposition of system into compo-

nents) in which each component (including the system) is endowed with its own set
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of requirements, they used a tool suite called AGREE [32] – a reasoning framework

based on assume-guarantee reasoning – to compositionally verify whether system level

requirements are established as a logical consequence of the component level require-

ments and the system level assumptions. Using AGREE they were able to verify large

and complex systems efficiently. AGREE partitions the task of verification along the

architectural lines of the system. Stating from the leaf level, it systematically verifies

if the parent level requirements hold as a logical consequence of its immediately child

component requirements in the given architecture.

To verify the requirements, AGREE uses the JKind [21] model checker. The underlying

SMT solver in JKind automatically constructs proofs to establish satisfaction of require-

ments in the model. A proof can be visualized as a derivation tree where the leaves of

the tree are axioms – elements of the model such as components requirements, interface

connections, system assumptions – and each interior node represents the application of

an inference rule that leads to proving the system requirement. If the solver encounters

a violation of a requirement while constructing the proof, it reports it along with a

counterexample - a concrete path of execution that explains the violation. On the other

hand, when the proof is successfully constructed, the tool reports that the requirement

is satisfied. There are other tools that perform similar verifications; for example Kind

2 [33] also supports (assume-guarantee) contracts and NuXmv has a tool called OCRA [34]

that supports the specification and analysis of component-based architectures.

An evidence in this context is nothing but an explanation of which parts of the

model (the component requirements and system assumptions) the model checker used

to prove the system level requirement. Since the solvers typically abstract away the

proof it creates, with IVCs, we develop a technique to query the solver to excavate

the axioms that were used as part of the proof. The IVC helps explain how the solver

reported the satisfaction of the requirement, that is comparable to the counterexample

explains the negative result.

2.1.2 Commercial Model Checkers

Several commercial tools produce proof-cores [35, 36], which we believe to be similar

to IVCs/MIVCs, but are not presented at a level of formality to perform a precise

comparison. However, to the best of our knowledge, none of these tools offer to calculate
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all proof-cores. Besides, the proof-core provided by these tools is usually used for

internal analyses the tool performs such as coverage measurement. Therefore, the cores

are not intended to be returned to the user in a clear way representing the actual design

elements or a portion of the model. Moreover, these tools usually skip the minimization

process, so their computed cores are not minimal.

In general, solutions provided by the commercial tools are quite underspecified: no

formal description of the proof-core notion or algorithms are provided. In addition, no

implementations or experimental results are provided, so we are not able to benchmark

our techniques against those tools. However, our work can also be useful towards the

support of this capability in future editions of these tools.

2.2 Slicing

Program Slicing is a well-known decomposition technique that maintains a set of pro-

gram statements relevant to the computation of a selected function, called a slicing

criterion. Generally speaking, given a slicing criterion, a slice is defined as any subset

of the program which maintains the original effect of the program on the criterion [37],

which is called an executable slice [38]. Slicing has many applications including opti-

mizing program models for the purpose of verification using model checking [38–40].

Slicing is usually performed based on reachability analysis in program dependence

graphs (PDGs). PDG nodes and edges show program states and dependence2, respec-

tively. PDGs are specifically useful in static slicing, where a slice is independent of

the inputs, and maintains the program effects on the criterion correctly for all possi-

ble executions. Alternatively, dynamic slicing executes a path through the program,

computing the statements which have an impact on the criterion for that specific ex-

ecution [38]. Dynamic slicing is very useful in debugging, while static slicing is more

attractive as an aid to verification.

For a given slicing criterion, static slices can be constructed from a backward or

forward analysis. A backward slice of a program with respect to a program point p and

set of program variables V include all the program statements that may affect the value

of variables in V at p [41]. Consider the program in Figure 2.2 (a). A backward slice

2data dependence or control dependence
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Figure 2.2: Example of backward and forward static slicing

for this code snippet over V = {b} at the end of the program is shown in Figure 2.2 (b).

A forward slice of a program with respect to a program point p and set of program

variables V consists of all program statements that may be affected by the value of

variables in V at location p [41] (e.g. Figure 2.2 (c)).

In summary, in the backward approach, the statements of the program that does not

have any effect on the criterion are sliced away. However, the forward approach slices

away those statements not affected by the criterion. Our work can be viewed as a more

accurate form of backwards static slicing starting from a requirement [42]. Slicing can

determine the cone of influence (COI) for a given property, while IVCs are a subset of

COI.

In fact, to start the verification process and IVC computation, we fisrt perform

backwards slicing from the formula that defines the property of interest of the model.

This step is to speed up the verification process. Then, IVCs are computed from the

proof of the property over the sliced model. The slice produced is smaller and more

accurate than a static slice of the formula [43], but guaranteed to be a sound slice for

the formula for all program executions, unlike dynamic slicing [44]. Predicate-based
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slicing has been used [45] to try to minimize the size of a dynamic slice. Our approach

may have utility for some concerns of program slicing (such as model understanding) by

constructing simple “requirements” of a model and using the tool to find the relevant

portions of the model.

2.3 UNSAT cores and Minimal UNSAT Subformulae

Satisfiability (SAT) Modulo Theories (SMT) solvers are powerful tools to decide the

satisfiability of formulas with respect to background theories expressed in classical first

order logic with equality. When using SAT solvers, instead of SMT solvers, the language

of the solver is Boolean logic and the problem must be encoded into propositional logic.

A Boolean formula is satisfiable if there is a consistent assignment of values true or

false to its variables in such a way that the formula evaluates to true. If the formula

evaluates to false for all possible variable assignments, then it is unsatisfiable. For

example, the formula a ∧ ¬a is unsatisfiable because there is no possible assignment

for a to make the formula evaluate to true. On the other hand the formula a ∨ b is

satisfiable when at least either a or b is assigned to true. An assignment that makes the

formula true is called a model. Solvers return a satisfiable model in case the formula is

satisfiable: a = true is one possible model for our example.

For a given unsatisfiable problem instance, solvers try to generate a proof of unsat-

isfiability. It is usually more useful to have a minimum proof of unsatisfiability. Such a

proof is dependent on identifying a sub-set of clauses that make the problem unsatisfi-

able. Solvers are usually capable of reporting such sub-sets in the proof, which is known

as UNSAT core. However, the generated unsat core is not guaranteed to be minimal.

Every propositional logic formula can be transformed into an equivalent conjunctive

normal form (CNF) using the laws of Boolean algebra. A formula is in CNF if it is a

conjunction of clauses (or a single clause). Each clause is a disjunction of positive or

negative literals (i.e., a variable or the negation of a variable). So each CNF formula

can be formulated as a finite set of clauses (or constraints). Then we assume there

is a function CheckSat(F ) which determines if F is satisfiable or not. When F is

unsatisfiable, we assume we have a function UnsatCore() which returns a minimal

subset of the constraints such that the formula is satisfiable without them.
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Algorithm 1: SAT domain single MUS extraction algorithm

input : an unsatisfiable set of constraints C
output: MUS M

1 M ← C
2 for c ∈M do
3 if CheckSat(M \ c) = UNSAT then
4 M ←M \ {c}

5 return M

Definition 1. Minimal Unsatisfiable Subformulas(MUSes): Let C be a finite set of

constraints. U ⊆ C be its unsatisfiable subset. A constraint c ∈ U is an unsatisfiable

core for U if U \{c} is satisfiable. A set of all unsatisfiable cores of U constitute an MUS

for C. Note that such a set is not necessarily unique, and C can have several distinct

MUSes.

Our work builds on top of a substantial foundation building MUSes from UNSAT

cores [46]. Recent algorithms can handle very large problems, but computing MUSes is

still a resource-intensive task. While some work is aimed at providing a set of minimal

unsatisfiable formulae, minimality is usually defined such that given a set of clauses M ,

removing any member of M makes it satisfiable [47]. The step of producing minimal

invariants for proofs has been investigated in depth by Ivrii et al. [48].

In recent years, a number of efficient algorithms for extracting minimal UNSAT

subformulae (MUSes) have been proposed [49], most of which are focused on computing

a single MUS [50–54]. A general algorithm for extracting a single MUS is shown in

Algorithm 1.

As mentioned, an unsatisfiable problem can have several distinct MUSes. Although

the problem of finding all MUSes is even harder than finding one MUS, there is some

strong research in the literature focusing on this problem. For example, Recent work by

Liffiton et al. [55] proposed an efficient algorithm to generate MUSes, called MARCO.

Another work by Bendik et al. [56] tries to address this problem in the domains where

minimization process is rather expensive. These algorithms can be used in our work in

order to develop a new algorithm for computing all minimal IVCs. This will require

changing the underlying mechanisms that are used to construct candidate solutions and
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also changing the structure of the proof of correctness. The technique used in MARCO

can be adapted to our work for computing all minimal IVCs. Algorithm 2 is an abstract

version of MARCO. This algorithm uses a symbolic representation of the power set of C,

P(C), cleverly exploiting isomorphism between finite power sets and Boolean algebras.

A brute-force approach to calculate all MUSes is basically explore all subsets of C and

determine if they are MUS or not. In the power set exploration process, subsets whose

satisfiability is not known yet are called unexplored ; i.e., initially, all subsets in P(C)

are unexplored, and at the end, satisfiability of every subset is known; i.e., all are

explored. In MARCO, subsets of C = {c1, c2, . . . , cn} are encoded using a set of Boolean

variables (literals) A = {a1, a2, . . . , an} such that every constraint ci ∈ C is assigned to

a Boolean variable ai ∈ A. Let assume we have a function Lit : C → A that returns a

corresponding literal of ci ∈ C.

Then the algorithm maintains a Boolean formula from literals of A, called map, to

represent the set of unexplored subsets of C. map is initially true. MARCO iteratively

explores P(C) to find each MUS. In each iteration, an unexplored subset C ′ ⊆ C is

non-deterministically selected by finding a model of map. If C ′ is satisfiable, it is grown

to a maximal satisfiable subset (MSS); Set S ∈ C is MSS if ∀c ∈ C \ {S}, (S ∪ {c})
is unsatisfiable. All subsets of a maximal satisfiable subset are also satisfiable. So, in

this case, map is updated in a way to block those subsets from future computation by

marking them as explored (line 5). On the other hand, if C ′ is UNSAT, it is shrunk to a

MUS. When an MUS is found then all of its supersets are guaranteed to be unsatisfiable.

So, map is updated in a way to mark all those supersets as explored in order to block

them from future exploration (line 9). The grow/shrink procedure can be carried out

by any algorithm for a single MSS/MUS extraction which makes MARCO applicable

to arbitrary constraint satisfaction domain.3

UNSAT cores and MUSes are used for many different activities within formal verifi-

cation. Gupta et al. [57] and McMillan and Amla [58] introduced the use of unsatisfiable

cores in proof-based abstraction engines. Their goal is to shrink the abstraction size by

omitting the parts of the design that are irrelevant to the proof of the property under

verification. However this work is for finite systems in the domain of SAT solving, and

3In Algorithm 2 we abstracted these procedures. The shrink is basically the loop in Algorithm 1.
A similar approach can be taken to perform the grow procedure: constraints are added one by one in a
loop to check for unsatisfiability. We will explain these procedures further in Chapter 3.
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Algorithm 2: MARCO algorithm for computing all MUSes

input : an unsatisfiable set of constraints C
output: set of all MUSes AM

1 AM ← map← >
2 while CheckSat(map) = SAT do
3 C ′ ← find an unexplored subset of C using a model of map if

CheckSat(C ′) = SAT then
4 M ← grow (C ′)
5 map← map ∧ (

∨
ci /∈M Lit(ci))

6 else
7 M ← shrink (C ′)
8 AM ← AM ∪M
9 map← map ∧ (

∨
ci∈M ¬Lit(ci))

10 return AM

the abstractions built are not intended to be returned to the user. We design our algo-

rithms for IVC computation for infinite systems with the support of the state of the art

of the SMT solvers. In addition, for IVC computation, the goal is to provide meaningful

results to the user.

2.4 Proof/Lemma Minimization

The IVC idea shares many similarities with approaches for computing minimal invariant

sets for inductive proofs (such as is performed for inductive proof certificates [48, 59]).

A proof certificate is an artifact embodying a proof of the claim that can then be

validated by a trusted checker. Given a safety property P , an formula Q is a k inductive

strengthening of P if P → Q, and Q is k inductive. Formula Q is a certificate for

property P if Q is a k inductive strengthening of P . Certificates need to be concise and

efficient to check by an independent tool or method. In particular, checking a certificate

should not take more time than proving the original property. Mebsout and Tinelli

presented a method for extracting and verifying proof certificates [59] implemented

in Kind 2 model checker. Kind 2 performs verification by running different engines

concurrently. Specifically, it employs number of auxiliary invariant generation engines to

discover and pass along auxiliary invariants that might be helpful in proving a property
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of interest. Then these invariants are considered as safety certificates for the property.

To simplify the certificates, they either reduce k or the size/complexity of the certificate

formula. After obtaining a k inductive invariant Q, Kind 2 starts with reducing k

before simplifying the formula. It will replay the inductive step for Q for values i < k ,

following one of three different strategies:

• forward enumeration: all values of 1 ≤ i ≤ k′ < k are checked, and k′ is the first

where k′ inductiveness holds.

• binary search: the interval [1, k] is divided into subintervals [1, k′] and [k′ + 1, k]

of similar size. Then, the first or the second interval is recursively considered

depending on whether Q is k′ inductive or not.

• backward enumeration: all values of i from k down to 1 are checked, and it stops

when k′ inductiveness does not hold anymore.

To simplify the certificate, Q is converted into a set of subformulae. Iteratively, each

subformula is removed from a set and it is checked if Q is still k inductive or not. In this

case subformulae not needed to prove Q are pruned away. Finally, to verify a certificate,

it needs to be proved that Q is a k inductive strengthening of the original property.

Our IVC algorithm also needs to find a minimal lemma set. However, there is a

substantive difference: to find a minimal set of constraints, it is usually necessary to

find new proofs involving new lemmas not used in the original proof, which accounts

for the expense of finding an accurate minimal IVC. This process will be explained in

Chapter 3.

2.5 Traceability

Requirements traceability can be defined as

“the ability to describe and follow the life of a requirement, in both for-

wards and backwards direction (i.e., from its origins, through its development

and specification, to its subsequent deployment and use, and through all pe-

riods of on-going refinement and iteration in any of these phases).” [60].
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Traceability has been of great interest in research and practice for several decades.

Intuitively, it concerns establishing relationships, called trace links, between the require-

ments and one or more artifacts of the system. Among the several different development

artifacts and the relationships that can be established from/to the requirements, being

able to establish trace links from requirements to artifacts that realize or satisfy those

requirements—particularly to entities within those artifacts called target artifacts [61]—

has been enormously useful in practice. For instance, it helps analyze the impact of

changes in one artifact on the other, assess the quality of the system, aids in creating

assurance arguments for the system, etc. In this work, we focus our attention on a

subset of requirements traceability that we call Requirements Satisfaction Traceability.

Instead of just recording the trace links from each requirement to the target artifacts,

Satisfaction Arguments [62] offer a semantically rich way to establish them. Originally

proposed by Zave and Jackson [62], a satisfaction argument demonstrates how the be-

haviors of the system and its environment together satisfy the requirements. From a

traceability perspective, these arguments help establish trace links (the satisfied by rela-

tionship) between the requirements and those parts of the system and environment (the

target artifacts) that were necessary to satisfy the requirements; We call those target

artifacts a set of support for that requirement. This set of support is the same as a

minimal inductive validity core obtained from the correctness proof of the requirement.

2.6 Requirements Adequacy

Determining adequacy of properties has also been extensively studied. Certification

standards such as DO-178C [11] require that requirements-derived tests achieve some

level of structural coverage (MC/DC, decision, statement) depending on the criticality

level of the software, in order to approximate adequacy. If coverage is not achieved,

then additional requirements and tests are added until coverage is achieved. Recent

work by Murugesan [63] and Schuller [64] attempted to combine test coverage metrics

with requirements to determine completeness. Chockler [16] defined the first adequacy

(completeness) metrics directly on formal properties based on mutation coverage. Later

work by Kupferman et al. [65] defines completeness as an extension of vacuity to elements

in the model. We present an alternative approach that uses the proof directly, which
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we expect to be considerably less expensive to compute.

2.6.1 Coverage and Mutations

Different notions of coverage have been defined in software testing. However, in formal

verification, it is not immediately obvious how to define and compute coverage.

Coverage in verification was introduced in [66, 67]. Hoskote et al. [66] suggested a

state-based metric in model checking based on FSM mutations, which are small atomic

changes to the design. Then, the method for measuring coverage is to model check a

given property for each mutant design. Later in [16], Chockler et al. provided corre-

sponding notions of metrics used in simulation-based verification for formal verification.

In fact, they improved the same idea of mutation-based coverage where each mutation

is generated to check if a specific design element is necessary for the proof of the prop-

erty. However, the proposed algorithm is both computationally expensive: each mutant

model must be separately analyzed, which can easily lead to tens of thousands of ver-

ification problems on models of moderate size. Note that most of the mutation-based

metrics, including [17, 68], are focused on finite state systems and hardware systems.

In general, specification completeness can be defined with regard to the notion of cov-

erage. In fact, the way that coverage is formalized plays a key part in the strength/

effectiveness of a method for the assessment of completeness.

The goal of a coverage metric is usually to assign a numeric score that describes

how well properties cover the design. The majority of the work on coverage metrics

has focused on mutations, which are “atomic” changes to the design, where the set

of possible mutations depends on the notation that is used. A mutant is “killed” if

one of the properties that is satisfied by the original design is violated by the mutated

design [16, 17, 65, 68, 69]. There are many different kinds of mutations that have been

proposed, primarily focused on checking sequential bit-level hardware designs. For these

designs, state-based mutations flip the value of one of the bits in the state. There are

several variations depending on whether the flip is performed on a single state within

a Kripke structure [66], or in the description of the signal in the transition relation of

the circuit [68]. Logic-based mutations fix the value of a bit to constant zero or one,

and can be used to determine whether properties can find stuck-at faults. Syntactic
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mutations [16] remove states in a control flow graph representation of hardware. Sim-

ilarly, for software, it is possible to apply any of the “standard” source code mutation

operators used for software testing [70] towards requirements coverage analysis. Some

examples of software mutations are [71]:

1. Replace an integer constant C by one of {0, 1,−1, C + 1, C − 1},

2. Replace an arithmetic, relational, logical, bitwise logical, increment/decrement, or

arithmetic-assignment operator by another operator from the same class,

3. Negate the decision in an if or while statement,

4. Delete a statement.

Mutation-based approaches are often impractically expensive to compute; even for

small models, there are many possible mutations and we deal with too many verification

problems. The number of single-mutation programs is roughly the product of the leaf

elements of the program abstract syntax tree (AST) and the size of the chosen set of

mutations, which can lead to an impractical number of verification problems.

Mutations for hardware are discussed in [17, 65, 69]. A more recent work in [69]

performs coverage analysis through interpolation [72]. This work is also based on design-

dependent mutations [16], where a design is considered as a net-list with nodes of types

{ and, inv, reg, input}. Each mutant design changes the type of a single node to

input. To decrease the cost of computation, coverage analysis is performed at several

stages; first, all the nodes that do not appear in the resolution proof of a given property

are marked as not-covered, and the rest of the nodes are marked as unknown. Then, for

the unknown nodes, the basic mutation check is performed: if a corresponding mutant

design violates the property, it will be considered as covered. Otherwise, the algorithm

tries to drive an inductive invariant to prove that the node is not covered. Finally, an

interpolant-based model checking is applied to the nodes that are still unknown.

Most of the mutation-based coverage techniques can be put into the category of

falsity coverage, where we mutate the design and see if the property is still valid or

not. In this way, we understand if that mutant was necessary (covered) for (by) that

property. It is important to note that some mutations yield a subset of the state space

of the system to be explored; in this case, any universal property that was true of the
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original system must, by definition, be true of the mutated system. This is where falsity

coverage is not effective, and the notion of vacuity coverage comes into play. Falsity

coverage asks weather the mutant FSM still satisfies the property, while vacuity coverage

checks if the mutant FSM satisfies the property vacuously. In vacuity coverage, first, we

makes sure the property is non-vacuous. Then, we mutate the design. If the property

is vacuous afterwards, it means that the mutant was necessary for that property.

A similar notion to IVCs outlined in a patent [35], which sketches a family of proof

core-based metrics for use in hardware verification. While the approach described by

the patent is general, it is quite underspecified and it is not possible to compare their

approach and ours. In addition, in commercial hardware verification frameworks do

different forms of coverage analysis: Cadence JasperGold [36] does some form of proof

core coverage and Synopsys VC Formal [73] does a mutation-based coverage approach.

These coverage measurement approaches may be similar to the metrics we introduce

but are not described in sufficient depth to be compared.

A different approach to measure coverage involves checking whether each output

signal is fully constrained by the specification [74–76]. For example, in [75], authors

propose a design-independent coverage analysis where missing properties are identified

by unconstrained output signals. Given a property list and a specific computed signal

s (usually drawn from the circuit outputs), if there is a trace with a point in time when

s is not constrained to be a single value by the set of properties and the input trace,

then the property set is incomplete. Alternately, given two traces that differ only in

the value of signal s at a particular time step, if both traces satisfy property P , then

s is not covered by P . The work in [77] refines this notion of coverage by providing a

numeric score for each incompletely covered signal s. Such metrics are very rigorous but

can lead to overspecification: the specification must completely define the input/output

function of the implementation.

Another technique to measure requirements completeness is to employ several sur-

rogate models; for example, Zowghi and Gervasi [78] use refinement to show relative

completeness with respect to a domain model, which describes the behavior of the real

world, irrespective of change induced by software. In their model, each iteration of

refinement of requirements and domain models must be sufficient to prove the require-

ments of the previous iteration. However, this idea has two problems: first it provides
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no notion of absolute completeness, and second, it requires construction of a domain

model, which is often difficult and/or expensive to construct.

Outside the context of formal verification, many authors have theorised and em-

pirically validated conceptual model completeness, which are mostly dependent on a

subjective judgement [78–83].

2.7 Vacuity Detection

Another potential use of our work is for “semantic” vacuity detection. A standard

definition of vacuity is syntactic and defined as follows [65]: A system K satisfies a

formula φ vacuously iff K ` φ and there is some subformula ψ of φ such that ψ does

not affect φ in K. Vacuity has been extensively studied [65, 84–88] considering a range

of different temporal logics and definitions of “affect”. On the other hand, our work can

be used to consider a broader definition of vacuity. Even if all subformulae are required

(the property is not syntactically vacuous), it may not require substantial portions of the

model, and so may be provable for vacuous reasons. The problem is exacerbated when

the modeling and property language are the same (as in JKind), because whether a

subformula is considered part of the model or part of the property, from the perspective

of checking tools, can be unclear.

Torlak et al. in [10] finds MUSes of Alloy specifications, and considers semantic

vacuity. Alloy models are only analyzed up to certain size bounds, however, and in

general are unable to prove properties for arbitrary models. Also, because we are ex-

tracting information from proofs, it is possible to use IVCs for additional purposes (proof

explanation and completeness checking).

2.8 Safety Standards

Due to the complexity of computer systems and our reliance on them, it is of the utmost

importance that the development of these systems proceeds in a way that minimizes

development errors. There are a several safety standards that focus on safety critical

components, including DO-178C [11], MOD-0053 [89], and ISO 26262 [90]. Production



28

of a functional safety case is usually a requirement for compliance with a specific stan-

dard, which brings opportunities and challenges to safety practitioners and researchers.

In this section we briefly describes the objectives of these standards and how IVCs can

be related to this area.

Software Considerations in airborne systems and equipment are usually regulated

by certification: the DO-178C standard [11]. There are a couple of key components in

DO-178C that are related to our purpose; first is to ensure the low-level requirements

are in compliance with the high-level safety requirements. That is, each refinement must

be shown not to introduce functionality not present in the artifact from which it was

derived (adequacy). Another component of DO-178C is coverage analysis at the two

levels: requirements-based analysis and structural analysis. After requirements-based

testing, which ensures the software in the target computer will satisfy the high-level

requirements, the purpose of coverage analysis in DO-178C is to determine how well

this type of testing verified the implementation of the software requirements. Then, the

structural coverage analysis is to determine which code structure was not exercised by

the requirements-based test procedure. DO178C uses a variety of metrics to determine

adequacy of requirements, but much of the effort involves code-level testing. Test suites

are derived from requirements and used to test the software, then measured using differ-

ent structural coverage test metrics. If code-level test suites do not achieve full coverage,

then an analysis is performed to determine whether there are missing requirements and

test cases. The kind of structural coverage required (e.g., statement, branch, MCDC) for

adequate testing is driven by the criticality of the software in question. Traceability is

another explicitly defined component of DO-178C; that is, low-level requirements must

be traceable to the high-level requirements that they refine. Further, two other trace-

ability objectives in DO-178C are (1) traceability of high-level requirements to system

requirements and (2) traceability of software design to high-level requirements, which

specifically require applicants to demonstrate bi-directional traceability.

MOD-0053 [89] is a defense standard that provides safety management requirements

for defense systems, which are designed to be applied in different phases of the devel-

opment process of MOD4 projects. A key component of this standard is a Safety Case,

which demonstrates how safety will be achieved and maintained. To summarize a Safety

4Ministry of Defence
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Case and document safety management activities, Safety Case Reports should be pro-

vided. These reports describe a structured argument that the system is acceptably

safe. Hazard analysis is another important component of MOD-0053, for which enough

evidence must be provided to show all hazards are identified and properly managed.

Therefore, traceability in this standard is a key component defined at two levels: (1)

traceability between each safety requirement and the source of that requirement, and

(2) traceability of the safety risk/hazards management to hazards and accidents. Re-

quirements traceability in MOD-0053 should be established in both ways: (1) to trace

each requirement to the part of the code which implements it, and (2) to trace from any

part of the code, back through the software design/specification, to the requirement.

Currently, traceability checks are performed via traceability matrices built manually,

however, MOD-0053 recommends that traceability be provided between the formal ar-

guments and the software requirement, which will help to check if all the requirements

have been verified, and to ensure that the implications of changes to requirements can

be assessed. In addition to traceability, this standard requires an assessment of the

veracity and completeness of the software Safety Case. We believe that many of these

traceability and adequacy checks can be automated using IVCs.

ISO 26262 [90] is a common standard used in the automotive industry whether

an automotive system is acceptably safe. This standard provides guidance in different

steps of the product development process to manage functional safety of a system at the

hardware and software levels. One important component of ISO 26262 is Automotive

Safety Integrity Levels (ASILs), by which each component is assigned to an acceptable

risk level determined at the beginning of the development process. The goal is to analyze

the system functionalities with respect to possible hazards. Each requirement is assigned

a class of criticality from A to D, where D has the most safety critical processes and

strictest testing regulations. In ISO 26262, qualification of software components demand

testing not only under normal operating conditions, but also in the presence of faults

so to determine how system reacts to abnormal inputs. ISO 26262 has other important

components like test tool qualification, which are not closely related to the context of

verification.

In order to meet the objectives of the safety standards, developers have to put a lot

of manual effort into providing acceptable evidence such as assurance cases, traceability
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matrices, and requirements adequacy. We claim that some of these safety analyses

can be automated with the IVC notion, and we would like to study how we can achieve

that. Since IVCs are derived from the formal proofs, they will make much more accurate

safety evidence than those created manually.



Chapter 3

Validity Cores

So far we have explained the idea of inductive validity cores and provided an informal

explanation of their definition. This chapter provides a formal definition of IVCs and

provides algorithms for computing them efficiently. Techniques for generating IVCs dis-

cussing the correctness of the techniques formally. We will provide detailed algorithms

and illustrative examples for computing the proposed validity cores notions.

Let us start with a very simple system from the avionics domain to illustrate our

approach. An Altitude Switch (ASW) is a hypothetical device that turns power on

to another subsystem, the Device of Interest (DOI), when the aircraft descends below

a threshold altitude, and turns the power off again after the aircraft ascends over the

threshold plus some hysteresis factor. An implementation of an ASW containing two

altimeters written in the Lustre language (simplified and adapted from Heimdahl et

al. [91]) is shown in Figure 3.1. If the system is not inhibited, and either altimeter is

below the constant THRESHOLD, then it turns on the DOI; else, if the system is inhibited

or both altimeters are above the threshold plus the hysteresis factor T HYST, then the

DOI is turned off, and if neither condition holds, then in the initial computation it is

false and thereafter retains its previous value. The notation (false -> pre(doi on)) in

equation (7) describes an initialized register in Lustre: in the first step, the expression

is false, and thereafter it is the previous value of doi on. The input variable inhibit

determines whether or not the system is inhibited.

A simple property on p states that if both altimeters are under the threshold, then

the DOI is turned on:

31
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Figure 3.1: Altitude Switch Model

on_p = ((alt1 < THRESHOLD) and (alt2 < THRESHOLD))

and not inhibit => doi_on = true;

This property can easily be proved over the model using a k-induction based veri-

fier such as JKind [21]. If we perform a backwards static slice over the model start-

ing from on p, the entire model is returned. However, it is possible to prove the

property with a minimal inductive validity core containing the equations assigning

{a1 below, one below, doi on, on p}. We can assign arbitrary values to variables out-

side the subset and the properties are still provable. Note that for this model there is a

symmetric IVC: {a2 below, one below, doi on, on p}.
Given a transition system that satisfies a safety property P , we want to know which
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parts of the system are necessary for satisfying the safety property. One possible way

of asking this is, “What is the most general version of this transition system that still

satisfies the property?” The answer is disappointing. The most general system is

I(u) = P (u) and T (u, u′) = P (u′), i.e., you start in any state satisfying the property

and can transition to any state that still satisfies the property. This answer gives no

insight into the original system because it has no connection to the original system.

In this section we formalize the notion of inductive validity core (IVC) which looks at

generalizing the original transition system while preserving a safety property.

We assume the transition relation has the structure of a top-level conjunction. Given

T (u, u′) = T1(u, u
′) ∧ · · · ∧ Tn(u, u′) we will write T =

∧
i=1..n Ti for short. By further

abuse of notation, T is identified with the set of its top-level conjuncts. Thus, Ti ∈ T
means that Ti is a top-level conjunct of T , and S ⊆ T means all top-level conjuncts of

S are top-level conjuncts of T . When a top-level conjunct Ti is removed from T , we

write T \ {Ti}. Such a transition system can easily encode our example model, where

each equation defines a conjunct within T that we will denote by the variable assigned;

so, T = { a1 below, a2 below, a1 above, a2 above, below, above hyst, doi on, d1,

d2 }.

Definition 2. Inductive Validity Core (IVC): Let (I, T ) be a transition system and let

P be a safety property with (I, T ) ` P . We say S ⊆ T for (I, T ) ` P is an Inductive

Validity Core, denoted by IVC(P, S), iff (I, S) ` P . When I, T , and P can be inferred

from context we will simply say S is an inductive validity core.

Definition 3. Minimal Inductive Validity Core (MIVC): S ⊆ T is a minimal Inductive

Validity Core, denoted by MIVC(P, S), iff IVC(P, S) ∧ ∀Ti ∈ S. (I, S \ {Ti}) 0 P .

Note that, given (I, T ) ` P , P always has at least one MIVC, and it may also have

many distinct MIVC s corresponding to different proof paths. To capture the latter, the

all MIVCs (AIV C) relation has been introduced in [92].

Definition 4. All MIVCs (AIV C): Given (I, T ) ` P , AIV C(P ) is the set of all MIVC s

for P :

AIV C(P ) ≡ { S | S ⊆ T ∧MIV C(P, S)}

Inductive validity cores have the following monotonicity property.
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Figure 3.2: Graphical representation of MIVC s for the model in Figure 3.1 with P =
(on p)

Lemma 1. Let (I, T ) be a transition system and let P be a safety property with

(I, T ) ` P . Let S1 ⊆ S2 ⊆ T . If S1 is an inductive validity core for (I, T ) ` P then S2

is an inductive validity core for (I, T ) ` P .

Proof. From S1 ⊆ S2 we have S2 ⇒ S1. Thus the reachable states of (I, S2) are a subset

of the reachable states of (I, S1).

Figure 3.2 illustrates these notions by a graphical representation of minimal IVCs

for property P = (on p) in the ASW example. As shown in the picture, this prop-

erty has two distinct MIVC s, which means the model satisfies P in two different ways:

{{a1 below, below, doi on}, {a2 below, below, doi on}}, This is because in the imple-

mentation, the DOI is turned on when either of the altimeters is below the threshold,

while our property states that they both must be below. Note that there is a subset

of model elements, {a1 above, a2 above, above hyst, d1, d2}, that does not show up

in AIV C(P ). Elements in such a subset do not affect the satisfaction of P . For com-

parison, note that a backwards static slice starting from on p will include the entire

model.

Generally, an IVC computation technique aims to determine, for any subset S ⊆ T ,

whether P is provable by S. Then, a minimal subset that satisfies P is seen as a minimal

proof explanation called a minimal Inductive Validity Core.

The notion of validity cores can also be adapted for bounded model checking to
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Algorithm 3: IVC BF: Brute-force algorithm for computing a minimal IVC

input : (I, T ) ` P
output: MIVC for (I, T ) ` P

1 S ← T
2 for x ∈ S do
3 if (I, S \ {x}) ` P then
4 S ← S \ {x}

5 return S

quantify how much of models have been explored by bounded analysis. We coin the

term Bounded Validity Core (BVC) for this idea.

Definition 5. Bounded Validity Core (BVC): Let (I, T ) be a transition system and let

P be a safety property that is valid up to a given bound k, denoted by (I, T ) `k P . We

say S ⊆ T for (I, T ) ` P is a Bounded Validity Core at depth k, denoted by BVCk(P, S),

iff (I, S) `k P . When I, T , and P can be inferred from context we will simply say S is

a bounded validity core at depth k.

3.1 Algorithms for computing an inductive validity core

Lemma 1 gives us a simple, brute-force algorithm for computing a minimal inductive

validity core, Algorithm 3 (IVC BF). The resulting set of this algorithm is obviously

an inductive validity core for (I, T ) ` P . The following lemma shows that it is also

minimal.

Lemma 2. The result of Algorithm 3 is a minimal inductive validity core for (I, T ) ` P .

Proof. Let the result be S′. Suppose towards contradiction that S′ is not minimal.

Then there is an inductive validity core M with M ⊂ S′. Take x ∈ S′ \M . Since

x ∈ S′ it must be that during the algorithm (I, S \ {x}) ` P is not true for some set S

where S′ ⊆ S. We have M ⊂ S′ ⊆ S and x 6∈ M , thus M ⊆ S \ {x}. Since M is an

inductive validity core, Lemma 1 says that S \ {x} is an inductive validity core, and so

(I, S \ {x}) ` P . This is a contradiction, thus S′ must be minimal.
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Algorithm 4: IVC UC: Efficient algorithm for computing a nearly minimal induc-
tive validity core from UNSAT cores

input : P with invariants Q is k-inductive for (I, T )
output: IVC for (I, T ) ` P

1 k ←MinimizeK(T, P ∧Q)
2 R← ReduceInvariantsk(T,Q, P )
3 return MinimizeIvck(I, T,R)

This algorithm has two problems. First, checking if a safety property holds is un-

decidable in general, thus, the algorithm may never terminate even when the safety

property is provable over the original transition system. Second, this algorithm is very

inefficient since it attempts to re-prove the property multiple times.

The key to a more efficient algorithm is to make better use of the information that

comes out of model checking. In addition to knowing that P holds on a system (I, T ),

suppose we also know something stronger: P with the invariant set Q is k-inductive for

(I, T ). This gives us the broad structure of a proof for P which allows us to reconstruct

the proof over a modified transition system. However, we must be careful since this

proof structure may be more than is actually needed to establish P . In particular, Q

may contain unneeded invariants which could cause the inductive validity core for P ∧Q
to be larger than the inductive validity core for P . Thus before computing the inductive

validity core we first try to reduce the set of invariants to be as small as possible. This

operation is expensive when k is large so as a first step we minimize k. This is the

motivation behind Algorithm IVC UC (4).

To describe the details of Algorithm 4 we define queries for the base and inductive

steps of k-induction (Figure 3.3). Note, in IndQuery(T,Q, P ) we separate the assump-

tions made on each step, Q, from the property we try to show on the last step, P . We

use this separation when reducing the set of invariants.

We assume that our queries are checked by an SMT solver. That is, we assume

we have a function CheckSat(F ) which determines if F , an existentially quantified

formula, is satisfiable or not. In order to efficiently manipulate our queries, we assume

the ability to create activation literals which are simply distinguished Boolean variables.

The call CheckSat(A,F ) holds the activation literals in A true while checking F .

When F is unsatisfiable, we assume we have a function UnsatCore() which returns
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BaseQuery1(I, T, P ) ≡ ∀s0. I(s0)⇒ P (s0)

BaseQueryk+1(I, T, P ) ≡ BaseQueryk(I, T, P ) ∧
(∀s0, . . . , sk. I(s0) ∧ T (s0, s1) ∧ · · · ∧ T (sk−1, sk)⇒ P (sk))

IndQueryk(T,Q, P ) ≡ (∀s0, . . . , sk.
Q(s0) ∧ T (s0, s1) ∧ · · · ∧Q(sk−1) ∧ T (sk−1, sk)⇒ P (sk))

FullQueryk(I, T, P ) ≡
BaseQueryk(I, T, P ) ∧ IndQueryk(T, P, P )

Figure 3.3: k-induction queries

Algorithm 5: MinimizeK(T, P )

1 k′ ← 1
2 while CheckSat(¬IndQueryk′(T, P, P )) = SAT do
3 k′ ← k′ + 1

4 return k′

a minimal subset of the activation literals such that the formula is unsatisfiable with

those activation literals held true. In practice, SMT solvers often return a non-minimal

set, but we can minimize the set via repeated calls to CheckSat. We assume both

CheckSat and UnsatCore are always terminating.

The function MinimizeK(T, P ) is defined in Algorithm 5. This function assumes

that P is k-inductive for (I, T ). It returns the smallest k′ such that P is k′-inductive

for (I, T ). We start checking at k′ = 1 since smaller values of k′ are much quicker to

check than larger ones. The checking must eventually terminate since P is k-inductive.

We also only check the inductive query since we know the base query will be true for

all k′ ≤ k. Although we describe each query in Algorithm 5 separately, in practice they

can be done incrementally to improve efficiency.

The function ReduceInvariantsk(T, {Q1, . . . , Qn}, P ) is defined in Algorithm 6.

This function assumes that P ∧Q1 ∧ · · · ∧Qn is k-inductive for (I, T ). It returns a set

R ⊆ {P,Q1, . . . , Qn} such that R is k-inductive for (I, T ) and P ∈ R. Like MinimizeK,

this function only checks the inductive query since each element of R is an invariant

and therefore will always pass the base query. A significant complication for reducing
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Algorithm 6: ReduceInvariantsk(T, {Q1, . . . , Qn}, P )

1 R← {P}
2 Create activation literals A = {a1, . . . , an}
3 C ← (a1 ⇒ Q1) ∧ · · · ∧ (an ⇒ Qn)
4 while true do
5 CheckSat(A,¬IndQueryk(T,C,R))
6 if UnsatCore() = ∅ then
7 return R

8 for ai ∈ UnsatCore() do
9 R← R ∪ {Qi}

10 C ← C \ {ai ⇒ Qi}

invariants is that some invariants may mutually require each other, even though none of

them are needed to prove P . Thus, in Algorithm 6 we find a minimal set of invariants

needed to prove P , then we find a minimal set of invariants to prove those invariants,

and so on. We terminate when no more invariants are needed to prove the properties

in R. Algorithm 6 is guaranteed to terminate since R gets larger in every iteration of

the outer loop and it is bounded above by {P,Q1, . . . , Qn}. As with Algorithm 5, we

describe each query in Algorithm 6 separately, though in practice large parts of the

queries can be re-used to improve efficiency.

This iterative lemma determination does not guarantee a minimal result. For ex-

ample, we may find P requires just Q1, that Q1 requires just Q2, and that Q2 does not

require any other invariants. This gives the result {P,Q1, Q2}, but it may be that Q2

alone is enough to prove P thus the original result is not minimal. Also note, we do not

care about the result of CheckSat, only the UnsatCore that comes out of it. Since

P ∧Q1 ∧ · · · ∧Qn is k-inductive, we know the CheckSat call will always return UNSAT.

The function MinimizeIvck(I, {T1, . . . , Tn}, P ) is defined in Algorithm 7. This func-

tion assumes that P is k-inductive for (I, T ). It returns a minimal inductive validity

core R ⊆ {T1, . . . , Tn} such that P is k-inductive for (I,R). It is trivially terminating.

Since Algorithms 5, 6, and 7 are terminating, Algorithm 4 is always terminating.

Our full inductive validity core algorithm in Algorithm 4 does not guarantee a mini-

mal inductive validity core. One reason is that ReduceInvariants does not guarantee

a minimal set of invariants. A larger reason is that we only consider the invariants that
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Algorithm 7: MinimizeIvck(I, {T1, . . . , Tn}, P )

1 Create activation literals A = {a1, . . . , an}
2 T ← (a1 ⇒ T1) ∧ · · · ∧ (an ⇒ Tn)
3 CheckSat(A,¬FullQueryk(I, T, P ))
4 R← ∅
5 for ai ∈ UnsatCore() do
6 R← R ∪ {Ti}
7 return R

the algorithm is given at the outset. It is possible that there are other invariants which

could lead to a smaller inductive validity core, but we do not search for them. The

following theorem shows that minimality checking is at least as hard as model checking

and therefore undecidable in many settings.

Theorem 1. Determining if an IVC is minimal is as hard as model checking.

Proof. Consider an arbitrary model checking problem (I, T ) `? P where P is not a

tautology. We will construct an IVC for a related model checking problem which will be

minimal if and only if (I, T ) 0 P . Let x and y be fresh variables. Construct a transition

system with initial predicate I∧¬x and transition predicate (x′ ⇒ y′)∧ ((y′ ⇒ P ′)∧T ).

The constructed system clearly satisfies the property x⇒ P . Thus S = {x′ ⇒ y′, (y′ ⇒
P ′) ∧ T} is an IVC. S is minimal if and only if neither {x′ ⇒ y′} nor {(y′ ⇒ P ′) ∧ T}
is an IVC. Since x and y are fresh and P is not a tautology, {x′ ⇒ y′} is not an IVC.

Since x and y are fresh, {(y′ ⇒ P ′) ∧ T} is an IVC for the property x⇒ P if and only

if (I, T ) ` P . Therefore, S is minimal if and only if (I, T ) 0 P .

When minimality is important, we can combine IVC BF and IVC UC into a single

algorithm which aims to more efficiently determine minimality. The hybrid algorithm,

IVC UCBF (Algorithm 8), consists of running IVC UC to generate an initial nearly minimal

IVC which is then run through IVC BF to attempt to achieve minimality. For sequential

model checking problems with infinite theories, neither IVC BF or IVC UCBF is guaranteed

to terminate, so our implementations simply time out after a set threshold. If no proof

can be found within a certain time threshold after removing a model element, we declare

that element necessary to the proof. In Chapter 5 we show that in practice our algorithm

is nearly minimal and much more efficient than the brute-force approach.
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Algorithm 8: An abstract representation of IVC UCBF

input : (I, T ) ` P
output: Minimal IVC for (I, T ) ` P

1 S ← IVC UC((I, T ) ` P )
2 for x ∈ S do
3 if (I, S \ {x}) ` P then
4 S ← S \ {x}

5 return S

Algorithm 9: BVC: Algorithm for computing a bounded validity core

input : P `k′ (I, T ) and bound k ≤ k′
output: BVC for (I, T ) ` P at depth k

1 Create activation literals A = {a1, . . . , an}
2 T ← (a1 ⇒ T1) ∧ · · · ∧ (an ⇒ Tn)
3 CheckSat(A,¬BaseQueryk(I, T, P ))
4 R← ∅
5 for ai ∈ UnsatCore() do
6 R← R ∪ {Ti}
7 return R

Note that as part of our IVC generation process we generate a k-inductive strength-

ening that is usually smaller and more efficiently computed than the work of Mebsout

and Tinelli, as discussed in Section 2.4.

3.2 Algorithms for computing bounded validity cores

One straightforward technique for extracting BVCs is based on the conventional bounded

model checking. We described k-induction in Chapter 2. Bounded model checking is

the base-case in for a given k. To obtain validity cores from the base-case query, we need

to unroll transition relation step by step (for i = 0 to i ≤ k). Assuming the property of

interest is valid, at least up to bound k, in each step the result of BaseQueryk(I, T, P )

(described in Algorithm 3.3 using the formulas from Figure 9) will be UNSAT. In the

same way with IVCs, we can map the unsat-cores to the model elements, which will

result in BVCs.
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3.3 Algorithm for computing all minimal inductive valid-

ity cores

The traceability information provided by MIVCs can be used to perform a variety of en-

gineering analysis such as coverage analysis, robustness analysis, and vacuity detection.

The more MIVCs are identified, the more precisely such analyses can be performed. A

full enumeration of all MIVCs is an interesting problem that can be approached from

two perspectives:

1. Offline approach: obtaining all minimal IVCs is guaranteed at the end of the com-

putation. In this approach we can make use of the fast approximate IVC genera-

tion algorithm. However, intermediate results are not guaranteed to be minimal.

This approach is useful in problems for which the algorithm can terminate in a

reasonable time.

2. Online approach: identifying all MIVCs one by one, which allows the computation

to stop at any time. In this approach, we need to come up with an efficient way

to obtain as many MIVCs as possible. This approach is useful when the offline

approach is very resource consuming and expensive and we need to obtain part of

the existing MIVCs (if not all of them); e.g. for properties with a few hundreds

of MIVCs, or large and complex models.

3.3.1 Offline Algorithm for all MIVCs

Now, we turn to the problem of finding all minimal IVCs. By definition, this approach

allows us to find the minimum IVC in terms of number of elements (which may not be

unique), and it allows us to explore the diversity of proofs for a particular property.

Considering the definition of a MIVC, a brute-force technique for enumerating all

MIVC s would be the same as exploring the power set of T (denoted by P(T )). Basically,

the algorithm needs to explore the provability of a given property by any subset of T ,

which would be computationally expensive. Our approach is an adaptation of the the

work of MARCO for generating all minimal unsatisfiable subsets (MUSes) in [55], and

only needs to explore a (small) portion of P(T ) in order to compute AIV C. In fact,

it can be viewed as an instantiation of the MARCO proof schema for the richer theory
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of sequential model checking. We begin by introducing several additional notions and

definitions, most of which are analogous or equivalent to those in [55].

Definition 6. Maximal Inadequate Set (MIS): S ⊂ T for (I, T ) ` P is a Maximal

Inadequate Set (MIS ) iff (I, S) 0 P and ∀Ti ∈ T \ S. (I, S ∪ {Ti}) ` P .

Given (I, T ) ` P , for every S ∈ P(T ), we have either (I, S) ` P or (I, S) 0 P . In

the former case, we say S is adequate for P ; in the latter, we say that S is inadequate

for the proof of P . Note that every IVC is an adequate set for P , and every MIS is an

inadequate set.

Corollary 1. For (I, T ) ` P , if a given subset S is inadequate, then all of its subsets

are inadequate as well:

∀S1 ⊆ S2 ⊆ T. (I, S2) 0 P ⇒ (I, S1) 0 P

Proof. Immediate from Lemma 1.

The basic idea behind an algorithm for computing AIV C(P ) is the same as ex-

ploration of P(T ), with two major performance improvements. First, Lemma 1 and

Corollary 1 are used to block large portions of P(T ) from consideration. For example, if

a set S ∈ P(T ) is found to be inadequate, then all subsets of S are also inadequate and

do not need to be explicitly considered. Second, if a set S ∈ P(T ) is found to be ade-

quate, then a fast algorithm (such as IVC UC from [93]) is used to find a smaller S′ ⊆ S
which is still adequate. This feeds into the first optimization since now all supersets of

S′ rather than S are blocked from future consideration.

To guide our algorithm, we now introduce a way of exploring P(T ) which allows us

to eliminate all subsets or supersets of any given set. We use a Boolean expression called

map, which is in conjunctive normal form (CNF) and built gradually as the algorithm

proceeds. Satisfying assignments for map correspond to elements of P(T ). For each

S ∈ P(T ) that the algorithm determines to be adequate or inadequate, a corresponding

clause is added to map which blocks S and all supersets or subsets, respectively, from

consideration. When a clause is added to map, the corresponding S ∈ P(T ) is called

explored. The supersets or subsets of S which are blocked from consideration are called

excluded. The remaining elements of P(T ) are unexplored.
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More precisely, given T with n top-level conjuncts, we define an ordered set of

activation literals A = {a1, . . . , an}, where each ai has type Boolean. We assume the

function ActLit : T → A is a bijection assigning every Ti ∈ T to an ai ∈ A and vice

versa. Then, a map for AIV C(P ) is a CNF formula built over the elements of A such

that:

• Initially map is > since all of P(T ) is unexplored.

• When map is satisfiable, a model of it is a set M ∈ P(A) consisting of those a ∈ A
which are assigned true.

• Every model M of map corresponds to a set S ∈ P(T ) such that

S =
⋃

ai∈M ActLit−1(ai) and M =
⋃

Ti∈S ActLit(Ti).

• For every explored set S ∈ P(T ):

– if S is adequate for P , then map contains a clause
∨

Ti∈S ¬ActLit(Ti). This

clause blocks all supersets of S from future consideration which is consistent

with Lemma 1.

– if S is inadequate for P , then map contains a clause
∨

Ti∈(T\S)ActLit(Ti).

This clause blocks all subsets of S from future consideration which is consis-

tent with Corollary 1.

Lemma 3. When map is satisfiable with model M , set S =
⋃

ai∈M ActLit−1(ai) is

not equal to any adequate or inadequate explored set, nor a subset (superset) of any

inadequate (adequate) explored set in P(T ).

Proof. Proof by contradiction. Case 1: Suppose there is an adequate set Ex ⊆ S

that has been already explored. Therefore, according to the definition, map contains

a clause C =
∨

Ti∈Ex ¬ActLit(Ti), and since Ex ⊆ S, it is impossible for the model

M =
⋃

Ti∈ExActLit(Ti) to satisfy C; hence, the assumption is false.

Case 2: Suppose there is an inadequate set Ex such that S ⊆ Ex and Ex has

been already explored. Therefore, according to the definition, map contains a clause

C =
∨

Ti∈(T\S)ActLit(Ti), and since S ⊆ Ex, it is impossible for the model M =⋃
Ti∈S ActLit(Ti) to satisfy C; so, the assumption is false.
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From Case 1 and Case 2, there is no model of map whose corresponding set in P(T )

is a non-strict subset (superset) of any inadequate (adequate) explored set.

Lemma 4. For (I, T ) ` P , map is satisfiable iff at least one S ∈ AIV C(P ) or one MIS

of T is unexplored.

Proof. Let map be satisfiable with a model M , and let S =
⋃

ai∈M ActLit−1(ai) be

the corresponding set of P(T ). If S is adequate, then it contains a MIVC. That MIVC

must not be explored since otherwise S would have been blocked from consideration.

The MIVC must not be excluded since it is not a strict superset of any adequate set

(by minimality) nor a subset of any inadequate set (by Corollary 1). Thus the MIVC

must be unexplored. The case where S is inadequate is symmetric.

In the other direction, let S ⊆ T be an unexplored MIVC. Then consider the model

M =
⋃

Ti∈S ActLit(Ti). We will show that each clause of map is satisfied by M . There

are two types of clauses to consider. A clause
∨

Ti∈S′ ¬ActLit(Ti) is in map only if S′ is

adequate. M would falsify this clause only if S′ ⊆ S which is impossible by minimality

of S. A clause
∨

Ti∈(T\S′)ActLit(Ti) is in map only if S′ is inadequate. M would falsify

this clause only if S ⊆ S′ which is imposssible by Corollary 1. Thus M is a model for

map. The case for an unexplored MIS is symmetric.

Corollary 2. For (I, T ) ` P , map is unsatisfiable iff every S ∈ P(T ) has been explored

or excluded.

Proof. Immediate from the definition of map and Lemma 4.

Algorithm 10 shows the process of capturing all MIVC s, which are kept in set A,

along with a warning flag, explained below. In line 2, we create the set of activation

literals used by function ActLit. Line 3 initializes map with > over the set of literals

we have. The main loop of state exploration starts at line 4 and continues until map

becomes UNSAT which means all the MIVC s have been found. We assume we have a

function CheckSat that determines if an existentially quantified formula is satisfiable

or not. As long as map is satisfiable, the algorithm computes a maximal SAT model

for it (line 5). In this context, a maximal SAT model is a model with as many true

assignment as possible without violating a clause; this problem is equivalent to the
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MaxSAT problem, which has been well studied in the literature [94,95].1 So, we assume

there is a method by which we are able to have a maximal model of map. Line 6 extracts

a set M ∈ P(A) of literals assigned to true in the model. Then, we need to obtain the

corresponding set of S in P(T ), which is done with function ActLit−1 in line 7.

We also assume there is a function CheckAdq that checks whether or not P is

provable by a given subset of T . Note that from Theorem 1, finding a minimal IVC

is (in general) undecidable if the original checking problem is undecidable. Thus, for

undecidable model checking problems, CheckAdq can return Unknown (after a user-

defined timeout) as well as Adequate or Inadequate. For a given set S, if our

implementation is unable to prove the property, we conservatively assume that the

property is falsifiable and set a warning flag w to the user that the results may be

approximate. if S is adequate, a MIVC is computed by GetIVC and added to set A

(lines 10-11).2 In this case map is constrained by a new clause in a way described before

and shown in line 12. However, in the case that S is inadequate or unknown, map is

constrained by the corresponding literals from T \S in line 14. Finally, if S is unknown,

the warning flag w is set to true, as the results may be approximate (lines 15-16).

Theorem 2. Algorithm 10 will terminate.

Proof. We assume that CheckAdq has a finite timeout, so all operations within the

loop require finite time. Each iteration of the while loop in Algorithm 10 blocks at

least one element of P(T ) which was not previously blocked. Since P(T ) is finite, the

algorithm terminates.

Theorem 3. If no approximation warning is returned (w is False), Algorithm 10

enumerates all MISes and MIVC s.

Proof. By Theorem 2 the algorithm terminates. This means map is eventually un-

satisfiable. If w = False then all model checking problems are solved definitively

1MaxSAT is defined as the problem of satisfying as many (weighted) clauses as possible in a SAT
instance. For N variables, similar to the MaxSAT problem, each clauses is weighted at N + 1 and extra
unit-weight clauses are added forcing each variable to 1.

2Note that CheckAdq can be any method that verifies a safety property, such as K-induction, and
the GetIVC function can be any function that returns an (approximately) minimal IVC, such as the
IVC UC or IVC UCBF algorithms. The only requirement is that it follows the definition of an inductive
validity core, that is: S′ ← GetIVC(P, S) implies that S′ ⊆ S and (I, S′) ` P .
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Algorithm 10: Algorithm All IVCs for computing AIV C

input : (I, T ) ` P
output: AIV C(P ), Approximation warning flag w

1 A← ∅; w ← False
2 Create activation literals {a1, . . . , an}
3 map← >
4 while CheckSat(map) = SAT do
5 model← build a maximal model of map
6 M ← extract the set of variables assigned true in model
7 S ←

⋃
ai∈M ActLit−1(ai)

8 res← CheckAdq(P, S)
9 if res = Adequate then

10 S′ ← GetIVC(P, S)
11 A← A ∪ {S′}
12 map← map ∧ (

∨
Ti∈S′ ¬ActLit(Ti))

13 else
14 map← map ∧ (

∨
Ti∈(T\S)ActLit(Ti))

15 if res = Unknown then
16 w ← True

17 return A,w

(no Unknown results), so by Lemma 4, all MISes and MIVC s are either explored or

excluded. However, by maximality and Lemma 1, an MIS can never be excluded.

Similarily, by minimality and Corollary 1, a MIVC can never be excluded. Thus all

MISes and MIVC s are explored and are elements of A by the end of the algorithm.

Note that none of the proofs above require that GetIVC returns a minimal IVC.

As shown in Chapter 5, it is computationally cheap to find an approximately minimal

IVC using the algorithm IVC UC; however, using the better, usually minimal IVC using

the IVC UCBF algorithm is computationally expensive. For efficiency reasons, it is much

better to use the approximate IVC UC algorithm to compute the set of all MIVC s. The

IVC UCBF algorithm attempts to repeatedly prove the property by brute-force removing

elements (BF = “brute force”), so does much of the work of Algorithm 10 in a way that

is not effective towards finding other IVCs. The overhead of the IVC UC algorithm is on
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average 31% over the baseline proof, as opposed to 2276% for the IVC UCBF algorithm.

In addition, the average increase in size of IVCs returned by IVC UC is approximately

8% of the IVC UCBF algorithm.

On the other hand, if GetIVC does not return minimal adequate sets, at the end

of the process, set A may contain both MIVC s and some supersets of MIVC s. To make

sure that the algorithm only returns the minimal adequate sets (MIVC s), all we need

is to remove any supersets of other sets in A. We can do this “on the fly” by changing

line 11 to the following: A ← A ∪ {S′} \ {S | S ∈ A ∧ S′ ⊂ S}. Obviously, the closer

to minimal the results of GetIVC are, the fewer iterations are required for Algorithm

1 to terminate. Each non-minimal adequate set returned by GetIVC will induce an

additional iteration for Algorithm 1.

3.3.2 Online Algorithm for all MIVCs

This section describes collaborative work with Masaryk University (Bendik et al. [96]).

We present an online approach for enumerating all MIVCs. With an offline technique,

described in Section 3.3.1, minimality of the IVCs is guaranteed when the algorithm

terminates. However, if the termination requires a lot of resources, we may prefer to

calculate as many minimal IVCs as possible in a given time. An online enumeration

technique can be useful for such cases. The online approach finds minimal IVCs itera-

tively where minimality is guaranteed at the end of each iteration.

As explained, inadequate sets are duals to inductive validity cores. Each U ⊆ T is

either inadequate set or an inductive validity core. In order to unify the notation, we

use notation inadequate and adequate. Note that especially minimal inductive validity

cores can be thus called minimal adequate sets.

The monotonicity allows to determine status of multiple subsets of T while using only

a single check for adequacy. For example, if a set U ⊆ T is determined to be adequate,

than all of its supersets are adequate and do not need to be explicitly checked. Let

Sup(U) and Sub(U) denote the set of all supersets and subsets of U , respectively.

Every algorithm for computing MIVCs has to determine status (i.e adequate or

inadequate) of every subset of T . We introduce the notion of explored vs unexplored

subsets in Section 3.3.2. Moreover, we distinguish maximal unexplored subsets:

• Umax is a maximal unexplored subset of T iff Umax ⊆ T , Umax is unexplored, and
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Algorithm 11: A näive shrinking algorithm

input : (I, U) ` P
output: MIVC for (I, U) ` P

1 for Ti ∈ U do
2 if (I, U \ {Ti}) ` P then U ← U \ {Ti}
3 return U

each of its proper supersets is explored.

A straightforward way to find a (so far unexplored) MIVC of T is to find an unex-

plored adequate subset U ⊆ T and turn U into an MIVC by a process called shrinking.

A shrinking procedure iteratively attempts to remove elements from the set that is being

shrunk, checking each new set for adequacy and keeping only changes that leave the set

adequate. A näive example is shown in Algorithm 11.

Section 3.3.2 proposed an algorithm for MIVC enumeration which is based on the

MUS enumeration algorithm MARCO [97]. The algorithm iteratively chooses maximal

unexplored subsets and tests them for adequacy. Each maximal subset that is found to

be adequate is then shrunk into a MIVC. This algorithm enumerates MIVCs in an online

manner with a relatively steady rate of the enumeration. However, an evaluation of the

algorithm shown that it is rather slow since the shrinking procedure can be extremely

time consuming as each check for adequacy is in fact a model checking problem.

In this section, we propose a novel algorithm for online MIVC enumeration using an

improved shrinking procedure. Moreover, the algorithm uses a procedure grow, which

is a dual of the shrinking procedure. The algorithm also maintains the set Unexplored

of unexplored subsets.

We can effectively use the set Unexplored for speeding up the shrinking procedure.

When testing the set U \{Ti} (see line 2 in Algorithm 11) we first check whether U \{Ti}
is still unexplored. If U \ {Ti} is already explored, then its status is already known and

no test for adequacy is needed.

Shrink Procedure

In the following observation, we specify which explored subsets can be used to speed up

the shrinking procedure.
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Algorithm 12: Approximate grow

input : (I, T ) ` P
input : inadequate U ⊂ T for (I, T ) ` P
input : set Unexplored of unexplored subsets of T
output: approximately maximal inadequate set for (I, T ) ` P

1 M ← a maximal M ∈ Unexplored such that M ⊇ U
2 while (I,M) ` P do
3 MIVC ← IVC UC((I,M), P ) // gets approximately minimal IVC

4 Ti ← choose Ti ∈ (MIVC \ U)
5 M ←M \ {Ti}
6 return M

Observation 1.. Let U1, U2 be subsets of T such that U1 is explored, U2 is unexplored,

and U1 ⊂ U2. Then U1 is inadequate for (I, T ) ` P .

Symetrically, if U1, U2 are subsets of T such that U2 is explored, U1 is unexplored, and

U1 ⊂ U2. Then U2 is adequate for (I, T ) ` P .

Proof. If U1 is adequate, then all of its supersets are necessarily adequate. Thus, if

U1 is determined to be adequate, then not just U1 but also all of its supersets becomes

explored. Since U1 is explored and U2 is unexplored, then U1 is necessarily an inadequate

subset of T .

In other words, during the shrinking procedure, we are guaranteed that whenever

we find an explored set, this set is inadequate. Thus, as a further optimization in our

algorithm we try to identify as many inadequate sets as possible before starting the

shrinking procedure. The search for inadequate sets is done with the help of the grow

procedure.

Grow Procedure

Recall that if a set is determined to be inadequate then all of its subsets are necessarily

also inadequate. Therefore, the larger is the set that is determined to be inadequate,

the more inadequate sets are explored. To identify inadequate sets as quickly as possible

we search for maximal inadequate sets (MISes).

In order to find a MIS, we can find an inadequate set U ⊂ T and use a process called

grow which turns U to a MIS for (I, T ) ` P . The grow procedure iteratively attempts
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Algorithm 13: Solving algorithm

1 Function Solve(I,U ,P):
2 res ← CheckAdq(I, U, P )
3 if res = Unknown then
4 approximateWarning ← true // a global variable

5 return (res = Adequate)

to add elements from T \U to U , checking each new set for adequacy and keeping only

changes that leave the set inadequate. Same as in the case of shrink procedure, we can

use the set Explored to avoid checking sets whose status is already known. However,

such grow procedure might still perform too many checks for adequacy and thus be very

inefficient.

Instead, we propose to use a different approach. Algorithm 12 shows a procedure

that, given an inadequate set U for (I, T ) ` P , finds an approximately maximal inade-

quate set. It first finds some maximal unexplored set M such that M ⊇ U and checks

it for adequacy. If M is inadequate, then it is necessarily a MIS (this is a straightfor-

ward consequence of Observation 1.) Otherwise, if M is adequate then it is iteratively

reduced until an inadequate set is found.

In particular, whenever M is found to be adequate, the approximative algorithm

IVC UC is used to find an approximately minimal IVC MIV C of M . MIV C succinctly

explains M ’s adequacy. In order to turn M into an inadequate set, it is reduced by

one element from MIV C \ U and checked for adequacy. If M is still adequate then the

approximate growing procedure continues with a next iteration. Otherwise, if M is

inadequate, the procedure finishes.

Given an unexplored inadequate set U for (I, T ) ` P and a set Unexplored of

unexplored subsets of T , Algorithm 12 returns an unexplored inadequate subset M of

T .

Proof. Let us denote initial M as Minit. Since Minit ⊇ U and M is recursively reduced

only by elements that are not contained in U , then in every iteration holds that U ⊆M ⊆
Minit. Since both U, Minit are unexplored, then M is necessarily also unexplored.
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Solve Procedure

Determining whether a particular subset of elements U ⊂ T can prove a property of

interest P is as hard as model checking (1). Thus, in the general case, determining

whether a set of model elements is an MIVC may not be possible for model checking

problems that are in general undecidable, such as those involving infinite theories. We

assume there is a function CheckAdq that checks whether or not P is provable for

some (I, U). CheckAdq can return Unknown (after a user-defined timeout) as well

as Adequate or Inadequate. For a given set U , if our implementation is unable to

prove the property, we conservatively assume that the property is falsifiable and set a

global warning flag approximateWarning to the user that the results produced may be

approximate.

Complete Algorithm

In this section, we describe, how to combine the shrink and grow methods to form

an efficient online MIVC enumeration algorithm. We call the algorithm Grow-Shrink

algorithm. Since knowledge of (approximately) maximal inadequate subsets can be

exploited to speed up the shrinking procedure, it might be tempting to first find all

MISes. However, this is in general intractable since there can be up to exponentially

many MISes (w.r.t. the size of T ). Instead, we propose to alternate both the shrinking

and growing procedures. Note that during shrinking, we might determine some subsets

to be inadequate. Such subsets can be subsequently used as seeds for growing. Dually,

adequate subsets that are explored during growing can be later used as seeds for the

shrinking procedure.

The pseudocode of our algorithm is shown in Algorithm 14. The computation of

the algorithm starts with an initialisation procedure Init which creates a global vari-

able Unexplored for maintaining the unexplored subsets and a global shrinking queue

shrinkingQueue for storing seeds for the shrinking procedure. Then the main procedure

FindMIVCs of our algorithm is called.

Procedure FindMIVCs works iteratively. In each iteration, the procedure picks a

maximal unexplored subset Umax and checks it for adequacy. If Umax is inadequate,

then Umax and all of its subsets are marked as explored. Otherwise, if Umax is adequate,
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then the algorithm IVC UC [93] is used to reduce Umax into an approximately minimal

IVC, and subsequently the procedure Shrink is used to shrink it into a MIVC.

Procedure Shrink works as described in Section 3. However, besides shrinking the

given set into a MIVC, the procedure has also another purpose. Every inadequate set

that is found during the shrinking is stored in a queue growingQueue. At the end

of the procedure, all of these inadequate sets are grown into approximately maximal

inadequate sets using the procedure Grow.

Procedure Grow turns a given inadequate set V into an approximately maximal

inadequate set M as described in Section 3. The resultant set and all of its subsets are

marked as explored. Moreover, every adequate set found during the growing is marked

as explored and enqueued into shrinkingQueue. The queue shrinkingQueue is dequeued

at the end of each iteration of the main procedure FindMIVCs and the sets that were

stored in the queue are shrunk to MIVCs.

We need to ensure that each result of the shrinking procedure is a fresh MIVC, i.e.,

that each MIVC is produced only once. We shrink two kinds of inadequate sets in our

algorithm: those that result from the inadequate maximal unexplored subsets, and those

that are stored in shrinkingQueue. In the former case, we always shrunk an unexplored

subset UIVC which guarantees that the resultant MIVC UMIVC is unexplored and thus

fresh (if UMIVC is already explored, then UIVC would be necessarily also explored).

However, in the latter case, all the sets stored in shrinkingQueue are already explored.

To guarantee that shrinking of the sets from shrinkingQueue result only in fresh MIVCs,

we maintain the following invariants of the queue:

I1) For each already produced MIVC M holds that there is no U in the queue such

that M ⊆ U .

I2) There are no two U, V in the queue such that U ⊆ V .

To ensure that the invariants hold, we use the procedure UpdateShrinkingQueue

which given an adequate set U removes from shrinkingQueue all supersets of U . We call

the procedure every time a MIVC is found and every time a set is added to the queue.

Correctness: The algorithm produces only the MIVCs found by the shrinking pro-

cedure and all of them are fresh, i.e., produced only once. Only subsets whose status is
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known are removed from the set Unexplored , thus no MIVC is excluded from the compu-

tation. The algorithm terminates and all MIVCs are found since the size of Unexplored

is reduced after every iteration.

Symbolic Representation of Unexplored Subsets

Since there are exponentially many subsets of T , it is intractable to represent the set

Unexplored explicitly. Instead, we use a symbolic representation that is based on a

well known isomorphism between finite power sets and Boolean algebras. We encode

T = {T1, T2, . . . , Tn} by using a set of Boolean variables X = {x1, x2, . . . , xn}. Each

valuation of X then corresponds to a subset of T . This allows us to represent the set of

unexplored subsets Unexplored using a Boolean formula fUnexplored such that each model

of fUnexplored corresponds to an element of Unexplored . The formula is maintained as

follows:

• Initially, fUnexplored = True since all of P(T ) are unexplored.

• To remove an adequate set U ⊆ T and all its supersets from the set Unexplored

we add to fUnexplored the clause
∨

i:Ti∈U ¬xi.

• To remove an inadequate set U ⊆ T and all its subsets from the set Unexplored

we add to fUnexplored the clause
∨

i:Ti 6∈U xi.

In order to get an element of Unexplored , we ask a SAT solver for a model of

fUnexplored . In particular, to get a maximal unexplored subset, we ask a SAT solver for

a maximal model of fUnexplored . To get a maximal unexplored superset of U ⊆ T , we

fix the truth assignment to the Boolean variables that correspond to elements in U to

True and ask for a maximal model of fUnexplored .

Let us illustrate the symbolic representation on T = {T1, T2, T3}. If all subsets of T

are unexplored then fUnexplored = True. If {T1, T3} is classified as an MIVC and {T1, T2}
as a inadequate set, then fUnexplored is updated to True ∧ (¬x1 ∨ ¬x3) ∧ (x3).
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3.3.3 Illustration

Offline AIVC

To illustrate the All IVCs algorithm we use the example presented in Chapter 3 with P =

(on p) . For better description, we view T as an ordered set of its top-level conjuncts;

i.e., T = { a1 below, a2 below, a1 above, a2 above, below, above hyst, doi on, d1,

d2 }. The algorithm starts with creating activation literals for each Ti ∈ T . Let

the ordered set of Boolean variables {a1, . . . , a9} be the corresponding literals to the

elements of T (e.g. ActLit(a1 below) = a1 and ActLit(d2) = a9). Then, line 3

initializes map with >.

In the first iteration of the while loop, since map is empty, it is satisfiable, and

a model for it can be any subset of literals. So obviously, the first maximal model of

map contains all the literals, which means, in line 6, M = {a1, . . . , a9}, and in line 7,

S = T . Since S is adequate for P , the GetIVC module is called in line 10. Suppose the

returned MIVC by this function is S′ = {a1 below, below, doi on}; this set is added to

A in line 11, and thus it comes to adding a new clause to map (line 12), which makes

map = (¬a1 ∨¬a5 ∨¬a7). As discussed, this constraint marks all the supersets of S′ as

blocked and prunes them off the search space.

For the second iteration, map is still satisfiable, so the algorithm gets to find a

maximal model of it in line 5. Suppose this time, the maximal model makes M =

{a1, . . . , a4, a6, . . . , a9}, then S = T \{below} will be another inadequate set that makes

map become map← map ∧ a5 in line 14.

Suppose, in the third iteration, the maximal model leads to M = {a2, . . . , a9} and

S = T \ {a1 below} in lines 6 and 7. Since this S is adequate for P , GetIVC computes

a new MIVC in line 10. Let the new MIVC be S′ = {a2 below, below, doi on}; after

adding this set to A, it is time to constrain map by a new clause in line 11, which results

in map← map ∧ (¬a2 ∨ ¬a5 ∨ ¬a7).
After these iterations, map is still satisfiable, and the maximal model is S = T \

{a1 below, a2 below} in line 7. In this case, S is inadequate, so we update map as

map← map∧ (a1∨a2) (line 14). After adding this new clause to map, all the subsets of

T \ {a1 below, a2 below} will be blocked. The algorithm continues similar to the fourth

iteration leading to S (in line 7) and map (in line 14) to be as S = T \ {doi on} and
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Figure 3.4: The power set from the example execution of our algorithm.

map← map ∧ a7.
Finally, after the fifth iteration, map becomes UNSAT and the algorithm terminates.

Note that MISes and IV Cs may be discovered in different orders from what explained

here. The order by which sets are explored is quite dependent on the maximal model

returned in line 5 as well as the MIVC returned in line 10 because there could be several

distinct maximal models (MISes) and MIVC s. For this example with a |T | = 9 and

|P(T )| = 29, a brute force approach of power set exploration needs to look into 512

cases. However, the All IVCs algorithm only explored 5 cases to cover the entire power

set.

Online AIVC

The following example explains the execution of our algorithm on a simple instance

where the transition step predicate T is given as a conjunction of five sub-predicates

{T1, T2, T3, T4, T5}. For the sake of simplicity, we do not exactly state what are the

predicates and what is the safety property of interest. Instead, Figure 3.4 illustrates

the power set of {T1, T2, T3, T4, T5} together with an information about adequacy of

individual subsets. The subsets with solid green border are the adequate subsets, and

the subsets with dashed red border are the inadequate ones. To save space, we en-

code subsets as bitvectors, for example the subset {T1, T2, T4} is written as 11010.

There are three MIVCs in this example: 00011, 01001, and 11010.
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We illustrate the first iteration of the main procedure FindMIVCs of our algo-

rithm. Initially, all subsets are unexplored, i.e., fUnexplored = True and the queue

shrinkingQueue is empty. The procedure starts by finding a maximal unexplored sub-

set and checking it for adequacy. In our case, Umax = 11111 is the only maximal

unexplored subset and it is determined to be adequate. Thus, the algorithm IVC UC is

used to compute an approximately minimal IVC UIVC = 01101 which is then shrunk to

a MIVC 01001.

During the shrinking, sets 00101, 01001, and 01000 are subsequently checked for ad-

equacy and determined to be inadequate, adequate, and inadequate, respectively. The

set 01001 is the resultant MIVC, thus the formula fUnexplored is updated to fUnexplored =

True ∧ (¬x2 ∨ ¬x5). The other two sets, 00101 and 01000, are enqueued to the

growingQueue and grown at the end of the procedure.

We first grow the set 00101. Initially, the procedure Grow picks M = 10111 as

the maximal unexplored superset of 00101, and checks it for adequacy. It is adequate

and thus, an approximately minimal IVC MIVC = 00011 is computed, enqueued to

shrinkingQueue, and formula fUnexplored is updated to fUnexplored = True ∧ (¬x2 ∨
¬x5) ∧ (¬x4 ∨ ¬x5). Then, M is (based on MIVC ) reduced to M = 10101 and checked

for adequacy. It is found to be inadequate, thus formula fUnexplored is updated to

fUnexplored = True∧ (¬x2∨¬x5)∧ (¬x4∨¬x5)∧ (x2∨x4), and the procedure terminates.

The growing of the set 01000 results into an approximately maximal inadequate

subset 01110. Moreover, an approximately minimal IVC 11110 is found during the

growing and enqueued into shrinkingQueue. The formula fUnexplored is updated to

fUnexplored = True∧(¬x2∨¬x5)∧(¬x4∨¬x5)∧(x2∨x4)∧(¬x1∨¬x2∨¬x3∨¬x4)∧(x1∨x5).
After the second grow, the procedure Shrink terminates and the main procedure

FindMIVCs continues. The queue shrinkingQueue contains two sets: 00011, 11110, thus

the procedure now shrinks them. During shrinking the set 00011, the algorithm would

attempt to check the sets 00001 and 00010 for adequacy, however since both these are

already explored, the set 00011 is identified to be a MIVC without performing any

adequacy checks. The procedure FindMIVCs would now shrink also the set 11110, thus

empty the queue shrinkingQueue, and continue with a next iteration.
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Algorithm 14: The Grow-Shrink algorithm

1 Function Init((I, T ) ` P):
2 Unexplored ← P(T ) // a global variable

3 shrinkingQueue ← empty queue // a global variable

4 approximateWarning ← false // a global variable

5 FindMIVCs()

1 Function FindMIVCs():
2 while Unexplored 6= ∅ do
3 Umax ← a maximal set ∈ Unexplored
4 if Solve(I, Umax , P ) then
5 UIVC ← IVC UC((I, Umax ), P )
6 Shrink(UIVC )

7 else
8 Unexplored ← Unexplored \ Sub(Umax )

9 while shrinkingQueue is not empty do
10 U ← Dequeue(shrinkingQueue)
11 Shrink(U )

1 Function Shrink(U ):
2 growingQueue ← empty queue
3 for Ti ∈ U do
4 if U \ {Ti} ∈ Unexplored then
5 if Solve(I,U \ {Ti}, P ) then U ← U \ {Ti}
6 else Enqueue(growingQueue,U \ {Ti})

7 output U // Output Minimal IVC

8 UpdateShrinkingQueue(U )
9 Unexplored ← Unexplored \ Sup(U )

10 while growingQueue is not empty do
11 V ← Dequeue(growingQueue)
12 Grow(V )

1 Function Grow(V ):
2 M ← a maximal set ∈ Unexplored such that M ⊇ V
3 while Solve(I ,M ,P) do
4 MIVC ← IVC UC((I ,M ),P)
5 UpdateShrinkingQueue(MIVC )
6 Enqueue(shrinkingQueue,MIVC )
7 Unexplored ← Unexplored \ Sup(MIVC )
8 Ti ← choose Ti ∈ (MIVC \V )
9 M ← M \ {Ti}

10 Unexplored ← Unexplored \ Sub(M )

1 Function UpdateShrinkingQueue(U ):
2 for V ∈ shrinkingQueue do
3 if U ⊆ V then remove V from shrinkingQueue



Chapter 4

Implementation in JKind

This chapter explains the implementation of IVC techniques. Part of this chapter is

from a collaborative paper with Gacek et al. [98] and [21].

All of the inductive validity core algorithms presented in Chapter 3 have been imple-

mented in JKind model checker [21]. JKind is an open-source industrial infinite-state

inductive model checker for safety properties. Models and properties in JKind are spec-

ified in Lustre [99], a synchronous data-flow language, using the theories of linear real

and integer arithmetic. JKind uses SMT-solvers to prove and falsify multiple properties

in parallel.

JKind is one of a number of similar infinite-state inductive model checkers including

Kind 2, Kind, NuXmv, and Zustre. These tools each offer multi-engine solvers that

utilize both k-induction and some variant of IC3/PDR. In a recent comparison [33],

JKind was the second most capable solver in terms of the number of problems solved

(behind Kind 2) and had competitive performance across a large benchmark suite. The

most noticeable bottleneck in JKind is the start-up time for the Java Virtual Machine

(JVM). This cost is insignificant for larger models but causes decreased performance for

benchmarks consisting of many very small models. There are also other tools such as

ESBMC-DepthK [100], VVT [101] CPAchecker, [102], CPROVER [103] attempting to prove C

programs using similar techniques (k-induction, invariant generation, and PDR).

An important characteristic of JKind is that is it designed to be integrated di-

rectly into user-facing applications. Written in Java, JKind runs on all major platforms

and is easily compiled into other Java applications. JKind bundles the Java-based

58
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Figure 4.1: JKind engine architecture

SMTInterpol solver [104] and has no external dependencies. However, it can optionally

call Z3 [105], Yices [106], MathSAT [107], and CVC4 [108] if they are available.

Another distinguishing characteristic of JKind is its focus on the usability of results.

For a falsified property, JKind provides options for simplifying the counterexample in

order to highlight the root cause of the failure. New integration of IVCs in JKind,

allows it to provide traceability between the property and individual model elements

for a proven property. These additional usability aspects have been found in industrial

applications to be at least as important as the primary results [98].

In the rest of this chapter, we describe JKind architecture, functionality, and appli-

cations. Then, we provide implementation details about the integration of IVCs in this

tool.

4.1 JKind Functionality and Main Features

JKind is structured as several parallel engines that coordinate to prove properties, mim-

icking the design of Kind and Kind 2 [33,109]. Some engines are directly responsible for

proving properties, others aid that effort by generating invariants, and still others are
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reserved for post-processing of proof or counterexample results. Each engine can be en-

abled or disabled separately based on the user’s needs. The architecture of JKind allows

any engine to broadcast information to the other engines (for example, lemmas, frames,

proofs/counterexamples) allowing straightforward integration of new functionality.

The solving engines in JKind are:

• Bounded Model Checking (BMC). The BMC engine performs a standard

iterative unrolling of the transition relation to find counterexamples and to serve

as the base case of k-induction. The BMC engine guarantees that any counterex-

ample it finds is minimal in length.

• k-induction. The k-induction engine performs the inductive step of k-induction,

possibly using invariants generated by other engines. Invariant Generation.

The invariant generation engine uses a template-based invariant generation tech-

nique [110] using its own k-induction loop.

• Property Directed Reachability (PDR). The PDR engine performs property

directed reachability [111] using the implicit abstraction technique [112]. Unlike

BMC and k-induction, each property is handled separately by a different PDR

sub-engine. Invariants generated as a side-product of PDR are shared with the

k-induction process.

Invariant sharing between the solvers (shown in Figure 4.1) is an important part of

the architecture. In our internal benchmarking, we have found that implicit abstraction

PDR performs best when operating over a single property at a time and without use

of lemmas generated by other approaches. On the other hand, the invariants generated

by PDR and template lemma generation often allow k-induction, which operates on all

properties in parallel, to substantially reduce the verification time required for models

with large numbers of properties.

4.1.1 Post Processing and Re-verification

A significant part of the research and development effort for JKind has focused on

post-processing results for presentation and repeated verification of models under de-

velopment.
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Smoothing

To aid in counterexample understanding and in creating structural coverage tests that

can be more easily explained, JKind provides an optional post-processing step to min-

imize the number of changes to input variables, smoothing the counterexample. The

smoothing engine uses a MaxSat query over the original BMC-style unrolling of the

transition relation combined with weighted assertions that each input variable does not

change on each step. The MaxSat query therefore tries (as best as possible) to hold all

inputs constant while still falsifying the original property. This engine is only available

with SMT-solvers that support MaxSat such as Yices and Z3.

Advice

The advice engine saves and re-uses the invariants that were used by JKind to prove the

properties of a model. Prior to analysis, JKind performs model slicing and flattening

to generate a flat transition-relation model. Internally, invariants are stored as a set

of proven formulas (in the Lustre syntax) over the variables in the flattened model.

An advice file is simply the emitted set of these invariant formulas. When a model is

loaded, the formulas are loaded into memory; formulas that are no longer syntactically

or type correct are discarded, and the remaining set of formulas are submitted as an

initial set of possible invariants to be proved via k-induction: if they are proved, they

are passed along to other engines; if falsified, they are discarded. Names constructed

between multiple runs of JKind are stable, so if a model is unchanged, it can be trivially

re-proved using the invariants and k-induction with k = 1. In the case that a model is a

small delta of a previously-proved model, it is often the case that most of the invariants

can be re-proved, leading to reduced verification times.

4.2 Tool Installation

The prerequisite for installing and using JKind is to have Java installed and on the

PATH variable for the OS. Installing JKind is accomplished by the following steps:

1. Download the zip containing the latest release from:

https://github.com/agacek/jkind/releases
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Figure 4.2: Successful installation of JKind

As of the writing of this document, that is version 4.0.1

2. Unzip the contents of that zip to the directory of your choice.

3. Add the folder from step 2 to the PATH variable for your OS. The installation

can be tested by executing jkind help from the command line.

Successful installation will provide the following result in Figure 4.2.

To add a solver, users must perform these steps:

1. Download the solver of choice.

2. Unzip the contents of the solver into a directory.

3. Create an environment variable called <SOLVER> HOME that points to the

directory used the previous step. This is:

• CVC4 HOME for CVC4

• Z3 HOME for Z3
1All IVCs techniques are not yet part of the official release, but they can be obtained from [113]
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Figure 4.3: Jkind comment grammar elements

• MATHSAT HOME for MathSAT

• YICES HOME for Yices 1

• YICES2 HOME for Yices 2

4. JKind will automatically look for the “bin” directory under <SOLVER> HOME

when the solver is activated.

4.3 JKind Lustre Grammar and Command Line Argu-

ments

JKind accepts input from the synchronous dataflow language Lustre used for program-

ming real-time systems. A dataflow language consists of a set of equations that assign

variables where a variable can be computed as soon as its data dependencies have been

computed. Such a language is a completely functional model without side effects, suit-

able for formal verification and program transformation. Like all functional language,

a data flow language is naturally parallel where the only constraints on parallelism are

due to the data-dependencies between variables.

Dataflow models can be either synchronous or asynchronous. In a synchronous

dataflow model, the model is recomputed in a sequence of time instants. In an asyn-

chronous model, the outputs of the system are continually recomputed depending on

the inputs to the system.

4.3.1 Syntax Overview

JKind Lustre grammar is built in ANTLR and can be referenced at http://github.com/agacek/

jkind/blob/master/jkind-common/src/jkind/lustre/parsing/Lustre.gz.

JKind supports single line and multi-line comment styles. The grammar elements

for comments are shown in Figure 4.3.



64

Figure 4.4: Jkind identifier grammar

Figure 4.5: Jkind literal grammar

The grammar for identifiers in Jkind are shown in Figure 4.4. Valid identifers

will begin with a upper or lowercase letter, followed by 0 or more letters, numbers, or

underscore characters.

The grammar for Jkind literals are shown in Figure 4.5.

A Lustre program is a collection of constant, type, node, and function declarations.

The grammar elements for these declarations are shown in Figure 4.6.

JKind performs different analyses such as realizability, IVCs, and safety verification,

etc. based on several LUSTRE annotations shown in Figure 4.7. The entry point of

JKind analysis is a node. For the programs with more than one node, the node annotated

with the −−%MAIN declaration is considered as the entry point, otherwise JKind will

use the last node in the file as the main node. To do any meaningful analysis, a Lustre

program must have at least one node defined. The remaining elements (constants,

type definitions, and functions) can be used to specify a Lustre program for analysis.

Properties are Lustre equations identified with −−%PROPERTY annotation. JKind

runs the verification engines over equations listed in this annotation. We have added

one more annotation for IVC analyses, −−%IVC, which will be described in the next

section.

Figure 4.8 shows the grammar elements for the Lustre types that JKind supports.

The grammar snippet in Figure 4.9 shows the Lustre expressions elements JKind sup-

ports. ID expressions are used to reference variables, enumeration values, and record

field elements by name. Literal expressions are used to express boolean literals of true/-

false, integer literals 0 to Infinity, and real literals 0.0 to Infinity. For more information
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Figure 4.6: Lustre program declarations

Figure 4.7: Lustre annotations used by JKind

Figure 4.8: JKind Lustre type grammar
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Figure 4.9: JKind Expression and Equation grammar

on other expressions, see JKind User Guide [21].

4.3.2 Command Line

Different JKind functionalities explained so far are accessible from the tool command

line. Table 4.1 summarizes major options in JKind.

4.4 Integration of IVCs into JKind

For a proven property, an inductive validity core is a subset of Lustre equations from

the input model for which the property still holds. JKind performs IVC analyses based
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Table 4.1: Major options in JKind command line

Command Description

−solver <arg> SMT solver (default: smtinterpol, alternatives: z3, yices, yices2,
cvc4, mathsat)

−n <arg> maximum depth for BMC and k-induction

−timeout <arg> maximum runtime in seconds (default: unbounded)

−no bmc disable bounded model checking

−no k induction disable k-induction

−pdr max <arg> maximum number of PDR parallel instances: if arg is 0, PDR
will be disabled

−no inv gen disable invariant generation

−no slicing disable slicing

−ivc find an inductive validity core for valid properties (based on
−−%IV C annotated elements in the LUSTRE input file)

−all assigned mark all equations of the input file as −−%IV C

−all ivcs find all inductive validity cores for valid properties

−all ivcs algv <arg> algorithm to be used for finding all IVCs (1: offline generation,
2: online generation)

−bvc generate BVC at depth −n within given −timeout

−use unsat core <arg> call UCBF algorithm on an input xml file containing the result
provided by the use of −ivc and −xml options

−xml generate results in XML format

−scratch produce files for debugging purposes

−write advice <arg> write advice to specified file

−read advice <arg> read advice from specified file

−smooth smooth counterexamples (minimal changes in input values)

−interval generalize counterexamples using interval

−help print all the command line options
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Figure 4.10: An example of a LUSTRE program

on the annotation shown at line 41 of Figure 4.7. Using this annotation, we can mark

program variables as potential IVC elements. By doing so, we are asking the tool

to check which of these variables are necessary for the proof of each property. Such

annotation affects the analyses, and a conservative approach is to bring all variables

in this annotation, which can be done with −all assigned JKind option. Figure 4.10

is the LUSTRE file for the example presented in Chapter 3 with the complete an-

notations ready to pass to JKind for IVC analyses. As you can see, all the program

equations are annotated as potential IVC elements. With the current annotation, JKind

finds 2 MIVCs {{a1 below, below, doi on}, {a2 below, below, doi on}}. However, if

we change annotation, we may get different results. For example, if we remove a1 below

and doi on from the annotation, the All IVCs analysis will come up with only one MIVC

containing {below}. If we only remove a1 below from the annotation, we will get only

one MIVC of the form of {below, doi on}.

To perform IVC analyses, we have extended JKind with a set of IVC generation

engines. When a property is proved and IVC generation is enabled, our IVC engine
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executes one of the IVC UC, IVC BF, IVC UCBF algorithms [93] to generate an (approxi-

mately) minimal IVC. This IVC generation engine is used to implement the GetIVC

procedure in Algorithm 10. For generating all minimal IVCs, we have added another

engine to JKind that implements our online and offline algorithms.

As previously discussed, one issue that needs to be handled in any implementation of

the IVC UC, IVC UCBF, and All IVCs algorithms involves the undecidability of the model

checking problem; in each iteration of Algorithms 3 and 10 from Chapter 3, we attempt

to prove the property with a subset S of the original model. Although we know that

(I, T ) ` P , from Theorem 1, the problem of determining whether or not any S ⊂ T

is adequate is undecidable. Therefore, we have to set timeouts for the model checking

algorithm for each iteration of the All IVCs procedure. In our implementation, we

measure the time required to prove the property over the original model (proof-time),

and the time required to calculate the first (approximate) IVC using IVC UC (IVC UC-

time). The timeout we set for each iteration of the IVC UCBF and All IVCs algorithms is

(30 sec + 5 × (proof-time + IVC UC-time)).

If the while loop times out for S in line 8 of Algorithm 10, we treat S as an

inadequate set to ensure that all results support a proof. In this case, line 13 will prune

off S and all its subsets from the search space. Since the timeout is used by both the

brute-force algorithm and the All IVCs algorithm, minimality is only guaranteed if there

are no timeouts. If a timeout occurs during computation, we report a warning to the

user that our results are not guaranteed to be minimal. It is important to note that by

increasing the timeout, it is possible that in some cases smaller IVCs can be generated,

but the general problem will remain due to the undecidability of the model checking

problem.

To implement BVC algorithm, a new tool is buit on top of JKind. In the implementa-

tion, basically, the JKind BMC engine has been hacked to emit the bounded cores after

each step of transition relation unrolling. The user needs to provide a desired bound

and timeout for this calculation.

The additional IVC engines integrated in JKind are shown in Figure 4.11. Once

IVC generation is activated, through −ivc options, an approximately minimal IVC is

generated. If JKind has been called with −all ivcs, the IVC UC engine passes the

first approximate MIVC to the All IVCs engine, where one of the all IVC generation
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Figure 4.11: JKind IVC engines

algorithms will run depending on the provided configuration.

There are three stand-alone tools implemented in JKind:

• BVC: this engine starts bounded model checking for a given bound within a spec-

ified timout. At the end of the process, it returns bounded validity cores.

• IVC MUST: MUST computation comes for free after −all ivcs engine finds all

the minimal MIVCs. The by-product of having all MIVCs are the MUST el-

ements, the intersection of all MIVCs. However, MUST elements can be com-

puted from one single (approximate) minimal IVC, as explained in Chapter 6. The

IVC MUST engine can be called individually and as input it takes the output of

IVC UC engine.

• UCBF: this is another stand-alone engine that takes the output of IVC UC engine

and minimize the approximate MIVC to guarantee minimality.

To wrap up this section, we attach the outputs of the IVC engines for our running

example (Figure 4.12- 4.16).
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Figure 4.12: Sample output of IVC UC engine

Figure 4.13: Sample output of ALL IVCs engine
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Figure 4.14: Sample output of IVC MUST engine

Figure 4.15: Sample output of UCBF engine

4.5 Integration of JKind and IVCs into Other Tools

JKind is the back-end for a variety of user-facing applications. In this section, we briefly

highlight a few and how they employ the features discussed previously. JKind is de-

veloped in Java which makes it multi-platform and very easy to integrate into other

Java applications. Moreover, it comes with JKindApi package which contains utilities

for creating Lustre specifications, calling JKind, processing JKind results, graphically

displaying real-time results, and nicely formatting counterexamples. Many of the appli-

cations in this section make heavy use of JKindApi.

4.5.1 Assume Guarantee Reasoning Environment

The Assume Guarantee Reasoning Environment (AGREE) [3, 114, 115] is an open-source

compositional verification tool that proves properties of hierarchically-composed models

in the Architectural Analysis and Design Language (AADL) language.

JKind is used as the default model checker for the Assume Guarantee Reasoning En-

vironment (AGREE) [114]. AGREE refers to both an embedded language annex in the
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Figure 4.16: Sample output of BVC engine for bound 4
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Architectural Analysis and Design Language (AADL) and to a plugin for the OSATE

AADL Integrated Development Environment. The AGREE annex annotates the AADL

model with formal requirements, and the plugin reasons about these requirements. The

purpose of AGREE is to model behavioral requirements of an embedded system using

formal assume guarantee contracts. The plugin generates Lustre specifications that are

checked by JKind. AGREE makes use of multiple JKind features including smoothing

and interval generalization to present clear counterexamples, IVC to show requirements

traceability, and counterexample generation to check the consistency of an AADL com-

ponent’s contract. AGREE also uses JKind for test-case generation from component

contracts.

4.5.2 Specification and Analysis of Requirements

The Specification and Analysis of Requirements (SpeAR) tool is an open source tool

for prototyping and analysis of requirements [116]. Starting from a set of formalized

requirements, SpeAR uses JKind to determine whether or not the requirements meet

certain properties. It uses IVCs to create a traceability matrix between requirements

and properties, highlighting unused requirements, over-constrained properties, and other

common problems. SpeAR also uses JKind with smoothing for test case generation using

the Unique First Cause criteria [117]. SpeAR captures requirements in a way that is

backed by the formal semantics of Lustre, which enables them to be analyzed using

model checking to ensure they are correct and consistent.

SpeAR uses JKind to prove properties over requirements, and uses IVC to create a

traceability matrix between requirements and properties. This quickly highlights unused

requirements, over-constrained properties, and other common problems. SpeAR also uses

JKind for test case generation using the Unique First Cause criteria [117] by creating

trap properties. Each trap property is expected to be falsifiable, but in such a way that

the counterexample has exactly the desired properties for a given test case. SpeAR uses

smoothing in JKind to ensure the resulting test cases are simple and understandable.
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4.5.3 Static IMPerative AnaLyzer

The Static IMPerative AnaLyzer (SIMPAL) is a tool for performing compositional rea-

soning over software [118]. SIMPAL is based on Limp, a Lustre-like imperative language

with extensions for control flow elements, global variables, and a syntax for specifying

preconditions, postconditions, and global variable interactions of preexisting compo-

nents. SIMPAL translates Limp programs to an equivalent Lustre representation which

is passed to the JKind to perform assume-guarantee reasoning, reachability, and viabil-

ity analyses. The feedback from these analyses is used to refine the program to ensure

that the software functions as intended.

JKind is also used by two proprietary tools used by product areas within Rockwell

Collins. The first is a Mode Transition Table verification tool used for the complex state

machines which manage flight modes of an aircraft. JKind is used to check properties

and generate tests for mode and transition coverage from Lustre models generated from

the state machines. IVCs are used to establish traceability, i.e., which transitions are

covered by which properties. The second is a Crew Alerting System MC/DC test-case

generation tool for a proprietary DSL used for messages and alerts to airplane pilots.

Smoothing is very important in this context as test cases need to be run on the actual

hardware where timing is not precisely controllable. Thus, test cases with a minimum

of changes to the inputs are ideal.



Chapter 5

Experiments

We would like to evaluate the different algorithms presented in Chapter 3. The use

of JKind allows additional dimensions to our investigation: as mentioned before, it

supports two different inductive algorithms: k-induction and PDR, and a “fastest”

mode, that runs both algorithms in parallel. Also, JKind supports multiple back-end

SMT solvers including Z3 [105], Yices [106], MathSAT [107], and SMTInterpol [104].

This chapter is organized in two parts. First we evaluate IVCs and their relationship

to model checking algorithms. There are two dominant model checking algorithms in

modern solvers: PDR and k-induction, and we would like to determine (1) whether

the choice of inductive algorithm affects the size of the IVCs calculated by IVC UC, (2)

whether different solvers are more or less efficient at producing approximate minimal

IVCs (IVC UC), and (3) whether running different solvers/algorithms leads to a diversity

of solutions obtained by IVC UC.

Second, using the IVC UC algorithm as a baseline, we evaluate the performance the

IVC algorithms presented in Chapter 3 in Section 5.2. Broadly speaking, we are inter-

ested in the following aspects: (4) The runtime efficiency of all IVC algorithms, (5) The

efficacy (in terms of minimality) of the IVC UC algorithm, (6) factors impacting perfor-

mance of computing all IVCs. In terms of the sixth question, experimental data was

used to construct the online algorithm; an accurate accounting of the relative cost of

SAT and UNSAT problems is necessary to create an efficient algorithm for this problem.

Finally, we examine the relationship between inductive validity cores and bounded

validity cores in Section 5.4. There are many cases where systems become to large
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or complex to find an inductive proof; in such cases it is still possible to perform a

bounded proof (in terms of the number of steps). Bounded validity cores are always

underapproximations of some IVC, so can be used to witness traceablity and adequacy

relationships between properties and implementation elements. Several questions are

of interest: (1) how similar are BVCs of different depths to IVCs? (2) how quickly do

they tend to converge to a specific size?, and (3) is the converged set the same as one

of the MIVCs? This initial experiment is designed to lay the groundwork for future

explorations of the relationship between these two concepts.

The initial experiments allow us to choose an optimal configuration for JKind based

on which we can run our major experiments. The major experiments are conducted

to evaluate the efficiency and efficacy the IVC algorithms presented in Chapter 3. In

summary, we are interested in the following aspects:

• Evaluating the performance of IVC UC algorithm and All IVCs,

• Evaluating the efficacy (minimality) of the IVC UC algorithm outcome,

• Effective factors on the performance of finding all minimal IVCs,

• Evaluating the online approach for generating all minimal IVCs,

• Studying validity cores in bounded model checking.

For this purpose, we organize the major experiments in different categories; Section

5.2 is about the evaluation of our two key proposed algorithms: IVC UC and All IVCs.

Then in Section 5.3, we examine our approach for calculating all minimal IVCs in the

online manner as described in 3.3.2. Finally in Section 5.4, we investigate a couple of

interesting research questions related to bounded validity cores.

5.1 On the Relationship between Model Checking Algo-

rithms and IVCs

In this section we study the effect of different model checking algorithms/solvers on the

performance and accuracy of the IVC UC algorithm. We started from a suite of 700 Lustre

models developed as a benchmark suite by Hagen and Tinelli [119]. We augmented this
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suite with 81 additional models from recent verification projects including avionics and

medical devices [3,115]. Most of the benchmark models from [119] are small (with 6-40

equations) and contain a range of hardware benchmarks and software problems involving

counters. The additional models are much larger: with over 300 up to 10000 equations.

We added the new benchmarks to better check the scalability for the tools, especially

with respect to the brute force algorithm. Each benchmark model has a single property

to analyze. For our purposes, we are only interested in models with a valid property

(though it is perhaps worth noting that there is no additional computation—and thus no

overhead—using the JKind IVC options for invalid properties). In our benchmark set,

295 models yield counterexamples, and 10 additional models are neither provable nor

yield counterexamples in our test configuration (see next paragraph for configuration

information). The benchmark suite therefore contains 476 models with valid properties,

which we use as our initial test subjects.

For each test model, we computed IVC UC in 12+1 configurations: the twelve config-

urations were the cross product of all solvers {Z3, Yices, MathSAT, SMTInterpol} and

inductive algorithms {k-induction, PDR, fastest}, and the remaining (+1) configura-

tion was an instance of IVC BF run on Yices, which is the default solver in JKind. In

addition, for each of the 12 configurations, we ran an instance of JKind without IVC to

examine overhead. The initial experiments were run on an Intel(R) i5-2430M, 2.40GHz,

4GB memory machine, with a 1 hour timeout for each analysis on any model. The data

gathered for each configuration of each model included the time required to check the

model without IVC, with IVC, and also the set of elements in the computed IVC.1

Note that not all analysis problems were solvable with all algorithms: for all solvers,

k-induction (without IVC) was unable to solve 172 of the examples. When compar-

ing minimality of different solving algorithms, we only considered cases where both

algorithms provided a solution.

For this study, we are interested in the following research questions:

• RQ1: Does the choice of SMT solver affect the performance of IVC UC?

• RQ2: Does the choice of SMT solver or algorithm used to produce a proof (k-

induction or PDR) matter in terms of the minimality of the IVCs generated by

1The benchmarks, all raw experimental results, and computed data are available on [120].
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Table 5.1: IVC UC runtime with different solvers

runtime (sec) min max mean stdev

Z3 0.005 2.335 0.192 0.355

Yices 0.014 13.297 0.589 1.473

SMTInterpol 0.029 19.254 1.396 2.991

MathSAT 0.011 86.421 3.071 10.403

IVC UC?

• RQ3: Do different solvers and algorithms lead to different minimal cores for

IVC UC?

RQ1

First, we examine the performance overhead of the IVC UC algorithm over the time

necessary to find a proof using inductive model checking. To examine this question, we

use the default fastest option of JKind which terminates when either the k-induction

or PDR algorithm finds a proof. To measure the performance overhead of the IVC UC

algorithm, we execute it over the proof generated by the fastest option.

Since the IVC UC algorithm uses the UNSAT core facilities of the underlying SMT

solver, the performance is dependent on the efficiency of this part of the solver. Looking

at Tables 5.1 and 5.2, it is possible to examine both the computation time for analysis

using the four solvers under evaluation and the overhead imposed by the IVC UC algo-

rithm. Figure 5.1 allows a visualization of the runtime for the IVC UC algorithm running

different solvers. The lines are sorted individually based on the running time of the

IVC UC for each model. The data suggests that Yices (the default solver in JKind) and

Z3 are the most performant solvers both in terms of computation time and overhead.
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Figure 5.1: IVC UC performance on different solvers

Table 5.2: Overhead of IVC UC computations using different solvers

solver min max mean stdev

Z3 0.73% 84.13% 17.38% 16.92%

Yices 0.17% 351.47% 52.20% 54.50%

SMTInterpol 1.46% 175.75% 46.81% 37.35%

MathSAT 0.78% 955.52% 80.21% 112.92%
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RQ2

As described in Chapter 3, the IVC UC algorithm is not guaranteed to produce minimal

cores due in part to the role of invariants used in producing a proof; as k-induction and

PDR use substantially different invariant generation algorithms, it is likely that the set

of necessary invariants for proofs are dissimilar, and that this would in turn affect the

number of model elements required for the proof. It is possible that one or the other

algorithm is more likely to yield smaller invariant sets. In addition, differences in the

choice of the UNSAT core algorithms in the different solvers could affect the size of

the generated core. However, our algorithm already performs a minimization step on

UNSAT cores, and thus the only differences would be due to one algorithm leading to

a different minimal core than another.

As mentioned, k-induction is unable to solve all of the analysis problems; therefore

we include only models that are solvable using both k-induction and PDR by all solvers,

304 models in all. Examining the aggregate data in Table 5.4, we can see the sizes of

cores produced by different algorithms and solvers.

RQ3

In this section, we examine the issue of diversity: do different solvers and algorithms

lead to different minimal cores? This is both a function of the models and the solution

algorithms: for certain models, there is only one possible minimal IVC set, whereas

other models might have many. Given that there are multiple solutions, the interesting

question is whether using different solvers and algorithms will lead to different solutions.

The reason diversity is considered is that it has substantial relevance to some of the

uses of the tool, e.g., for constructing multiple traceability matrices from proofs (see

Section 6.1). Note that our exploration in this experiment is not exhaustive, but only

exploratory, based on the IVCs returned by different algorithms and tools; we leave

exhaustive exploration of IVCs for future work.

To measure diversity of the generated IVCs, we use Jaccard distance:

Definition 7. Jaccard distance: dJ(A,B) = 1− |A∩B||A∪B| ,

0 ≤ dJ(A,B) ≤ 1
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Table 5.3: Pairwise Jaccard distances among all models

min max mean stdev

0.0 0.878 0.026 0.059

Figure 5.2: Pairwise Jaccard distance between IVCs

Jaccard distance is a standard metric for comparing finite sets (assuming that both sets

are non-empty) by comparing the size of the intersection of two sets over its union. For

each model in the benchmark, the experiments generated 13 potentially different IVCs.

Therefore, we obtained
(
13
2

)
= 78 combinations of pairwise distances per model. Then,

minimum, maximum, average, and standard deviation of the distances were calculated

(Figure 5.2), by which, again, we calculated these four measures among all models. As

seen in Table 5.3, on average, the Jaccard distance between different solutions is small,

but the maximum is close to 1, which indicates that even for our exploratory analysis,

there are models for which the tools yield substantially diverse solutions. The diversity

between solutions is represented graphically in Figure 5.2, where for each model, we

present the min, max, and mean pairwise Jaccard distance of the solutions produced by

algorithm IVC UC for each model, sorted by the mean distance.
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Table 5.4: Aggregate IVC sizes produced by IVC UC using different inductive algorithms
and solvers

solver PDR k-induction total

Z3 2378 2379 4757

Yices 2384 2376 4760

MathSAT 2375 2369 4744

SMTInterpol 2378 2368 4746

total 9515 9492

5.2 On the efficiency and efficacy of different “offline” IVC

algorithms

We would like to evaluate the cost of computing one single IVC using the brute-force

algorithm (IVC UCBF) and the UNSAT core-based algorithm (IVC UC). Then, we are in-

terested in examining the efficacy and efficiency of generating all minimal IVCs, as

compared to algorithms for computing a single approximately minimal IVC (IVC UC al-

gorithm), and a minimal IVC (IVC UCBF algorithm). We would also like to know how

performance is affected by the size of models and number of minimal IVCs. Next,

we are also interested in examining the minimality of the cores found by IVC UCBF vs

IVC UC. Finally we would like to determine whether the All IVCs algorithm generates

smaller cores than are generated by the IVC UCBF algorithm. Therefore, we investigate

the following research questions:

• RQ1: How expensive is it to compute IVCs? For this question we examine the cost

of the IVC UC and IVC UCBF algorithms that find a single approximately minimal

and guaranteed minimal IVC,respectively, as well as the All IVCs algorithm for

determining all minimal IVCs.

• RQ2: How is the performance of the All IVCs algorithm affected by the baseline

proof time and the number of IVCs that can be found for a property?
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• RQ3: How close to minimal are the IVCs computed by IVC UC as opposed to the

(guaranteed minimal) IVC UCBF and the minimum IVC computed by All IVCs?

How do the sizes of IVCs compare to static slices of the model?

5.2.1 Experimental Setup

To perform the experiments, we augmented the 476 benchmarks in Section 5.1 with more

complex and larger models. We have collected a set of benchmarks containing 660 Lustre

models, including all of the benchmark models yielding a valid result (530 in total)

from [59, 119] and 130 industrial models yielding valid results derived from an infusion

pump system [3] and other sources [59, 121]. The benchmark includes 2 models from

the NASA Quad-redundant Flight Control System (QFCS) [121]: the Flight Control

System (FCS) with 5259 Lustre equations and the Flight Control Computer (FCC)

with 10969 equations.

We selected only benchmark problems consisting of a Lustre model with properties

that JKind could prove with a 3-hour timeout. In initial evaluation (Section 5.1),

we showed that the IVC UC algorithm using the Z3 and Yices SMT solvers adds a

modest performance penalty to the time required for inductive proofs compared to

others. Moreover, we concluded that neither PDR nor k-induction yields a smaller

inductive validity core in general. And, the choice of underlying SMT solver does not

substantially affect the size of the inductive validity cores. Therefore We choose Z3

for the rest of our experiments. For each test model, we computed All IVCs, IVC UC,

and IVC UCBF algorithms in a configuration with the Z3 solver and the “fastest” mode

of JKind (which involves running the k-induction and PDR engines in parallel and

terminating when a solution is found). The experiments were run on an Intel(R) i5-

4690, 3.50GHz, 16 GB memory machine running Linux, and are available online [120].

2

5.2.2 Experimental Results

In this section, we examine our experimental results to address the research questions

defined in the experiment.

2We will use this configuration and machine for the rest of the experiments presented in this chapter.
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Figure 5.3: Runtime of All IVCs, IVC UCBF, and IVC UC algorithms

RQ1

To address RQ1, we measured the performance overhead of the various IVC algorithms

against the baseline time necessary to find a proof using inductive model checking.

Figure 5.3 provides an overview of the overhead of the All IVCs algorithm in comparison

with the IVC UC and IVC UCBF algorithms. In the figure, each curve is sorted along the

x-axis according to the time required for the algorithm to terminate for each analysis

problem. Table 5.5 provides a summary of the computation time and the overhead

of different algorithms. The IVC UC algorithm imposes a 31% overhead to the baseline

proof time, whereas both the IVC UCBF and All IVCs algorithms add a substantial time

penalty: IVC UCBF and All IVCs add a (mean) 2276% and 9588% overhead, respectively,

to the proof time. For small models, much of this penalty is due to starting many

instances of the SMT solver; if we examine models that require ≥ 6s of analysis time,

the mean overhead of All IVCs over the baseline analysis drops from 9588% to 2514%.
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Table 5.5: Runtime of different computations

runtime (sec) min max mean stdev

proof-time 0.016 4961 1.250 192.97

All IVCs 0.002 105460 229.16 4148.85

IVC UCBF 0.139 5016.6 28.449 294.92

IVC UC 0.001 188.241 0.730 10.019

RQ2

For this research question, we examine how the proof time of the original model and the

number of MIVCs associated with the property affects the analysis time of the All IVCs

algorithm. Figure 5.4 provides an overview of this data. The data in Figure 5.4 is

sorted twice along the x-axis: the major axis is the number of MIVCs that exist for the

model, and the minor axis is the analysis time of the baseline model. In this graph, we

can visualize how both factors affect the performance of the All IVCs algorithm. Note

that there are two scales for the y-axis: the scale on the left is a logarithmic scale of

performance in terms of the run time; the scale on the right is a linear scale based on

the number of minimal IVCs discovered.

Figure 5.4 shows two distinct trends. First, for models whose baseline proofs are

inexpensive and that only have a single MIVC, the All IVCs is roughly equivalent in

performance to the IVC UCBF. However, as proofs become more expensive for a single

MIVC, the All IVCs begins to underperform the IVC UCBF, this is the case for the prop-

erties with one MIVC. In the cases where several MIVCs are found, the performance of

the All IVCs is driven to a large degree by the number of MIVCs that exist : the more

MIVCs associated with a property, the higher the expense of All IVCs as compared to

the IVC UCBF algorithm.
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Figure 5.4: Runtime of different computations along with the number of MIVCs

RQ3

For this research question, we analyzed the minimality of the produced IVCs by each

algorithm. Results are shown in Figure 5.5. Since 515 of the models had only one MIVC,

for these models, the size of the minimum model produced by the All IVCs algorithm

should be the same as the IVC UCBF algorithm. For the remainder, even when multiple

MIVCs were produced, in only 47 cases did the All IVCs produce smaller minimal IVCs.

For these 47 models, the smallest MIVC was 44% the size of the MIVC produced by

IVC UCBF, and in the most dramatic case, the number of elements shrank from 62 to 35.

The final question asks how well the approach compares to backwards static slic-

ing [42], since slicing also reduces the set of model elements necessary to construct a

proof. We start the slice from the equation defining the property of interest, and use the

usual approach [122] that performs an iterative backward traversal from the variables

used within an equation to their defining equations. We expect the IVC mechanism to

be more precise, because the slice overapproximates the set of equations necessary for

any proof. This claim is demonstrated in Figure 5.5; slices are (mean) 574% larger than

the IVCs produced by our IVC UC algorithm and 597% larger than those produced by
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Figure 5.5: Size of the IVC sets produced by different algorithms

IVC UCBF algorithm.

5.3 On the relative performance of offline and online al-

gorithms for all IVCs.

We are interested in examining the performance of algorithms to compute minimal

IVCs. We examine Grow-Shrink, the algorithm presented in Section 3.3.2, and the

two state-of-the-art algorithms: Offline MARCO (All IVCsSection 3.3.1), and Online

MARCO (Section 3.3.2) that performs a shrink step prior to returning a solution to

ensure minimality. We investigate the following research questions:

• RQ1: For the large models where the complete MIVC enumeration is intractable,

how many MIVCs are found within the given time limit?

• RQ2: For the tractable models, i.e., models in which all MIVCs are found, how

much time is required to complete the enumeration of MIVCs?

• RQ3: Finally, we are interested in how many solver calls are necessary for the
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enumeration. What is the (average) number of solver calls with result adequate/i-

nadequate required by evaluated online algorithms to produce individual MIVCs?

5.3.1 Experimental Setup

We start from a benchmark suite that is a superset of the benchmarks used in the

previous experiments. This suite contains 660 models, and includes all models that

yield a valid result (530 in total) from previous Lustre model checking papers [59, 119]

and 130 industrial models yielding valid results derived from an infusion pump system [3]

and other sources [59,121]. As this paper is concerned with analysis problems involving

multiple MIVCs, we include only models that had more than 4 MIVCs (46 models in

total). To consider problems with many IVCs, we took those models and mutated them,

constructing 20 mutants for each model. The mutants varied both in the number and

in the size of individual MIVCs. We added the mutants that still yielded valid results

and have more than 5 MIVCs (384 in total) back to the benchmark suite. Thus, the

final suite contains 430 Lustre models. The original benchmarks and our augmented

benchmark are available online3.

For each test model, we configured JKind to use the Z3 solver and the “fastest”

mode of JKind (which involves running the k-induction and PDR engines in parallel

and terminating when a solution is found). The experiments were run on a 3.50GHz

Intel(R) i5-4690 processor 16 GB memory machine running Linux with a 30 minute

timeout. All experimental data is available online4.

5.3.2 Experimental Results

In this section, we examine the experimental results to address the research questions.

RQ1 and RQ2

Data related to the first two research questions are shown in Figures 5.6 and 5.7. Fig-

ure 5.6 describes the number of MIVCs found be the two online algorithms in the

intractable benchmarks, i.e., the benchmarks where the algorithms did not complete

3https://github.com/elaghs/benchmarks
4https://github.com/jar-ben/online-mivc-enumeration

https://github.com/elaghs/benchmarks
https://github.com/jar-ben/online-mivc-enumeration
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Figure 5.6: Number of MIVCs produced by online algorithms.

Figure 5.7: Runtime for tractable benchmarks for all algorithms in a log scale.
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the computation within the time limit. There are 33 such benchmarks. The Grow-

Shrink substantially outperforms Online MARCO in the majority of the benchmarks,

finding an average of 55% additional MIVCs.

Figure 5.7 describes the time for each algorithm needed to complete the computation

in the case of 397 tractable benchmarks.

Grow-Shrink is on average only 1.08 times slower than Offline MARCO, yet as

previously discussed, has the advantage of returning guaranteed MIVCs, rather than

approximate MIVCs. It is on average 1.50 times faster than Online MARCO.

RQ3

For RQ3, we examined the number of required calls to the solver per MIVC. For this

question, we used the 33 models that contained a large number of MIVCs (>70) in

order to show the solver efficiency as the number of MIVCs increased. A point with

coordinates (x, y) states that the algorithm needed to perform y solver calls (on average)

in order to produce the first x MIVCs. We grouped the calls in terms of the number

of calls that returned adequate vs. inadequate results. It is evidenced by the results in

Figure 5.8, the new algorithm improves upon Online MARCO as the number of MIVCs

becomes larger.

The improvement in the number of inadequate calls is due the novel shrinking and

growing procedures. Each (approximately) maximal inadequate subset found by the

growing procedure allows to save (up to exponentially) many inadequate calls during

subsequent executions of the shrinking procedure. Indeed, the Grow-Shrink algorithm

performed on average only 353 inadequate calls to output the first 70 MIVCs, whereas

the online MARCO needed to perform 7775 calls to output the same number of MIVCs.

The improvement in the number of adequate calls is not so significant as in the

case of inadequate calls. Yet, since the adequate calls are usually much more time

consuming than inadequate ones, even a slight saving in the number of adequate calls

might significantly speed up the whole computation. The Grow-Shrink algorithm saves

adequate calls due to the usage of the shrinking queue and due to the invariants that

are maintained by the queue. In particular, shall two comparable sets appear in the

queue, only the smaller is left. Thus, the algorithm avoids shrinking of relatively large

sets and saves some adequate calls.
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(a) Checks with result “adequate”

(b) Checks with result “inadequate”

Figure 5.8: Average number of performed adequacy checks required to produce individ-
ual MIVCs. Note that Figure (b) is in a log scale.
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5.4 On the relationship of BVCs and MIVCs

We would like to to observe and study how validity cores evolves over unrolling the

transition relation. It is interesting to see how quickly validity cores from a bounded

proof converges to an actual minimal IVC.

Note that the purpose of our experiments on BVCs is mostly to point out some

research directions. Further studies may even can make use of BVCs in verification

problems. It can be the case that a valid property is hard or impossible for an inductive

model checker to prove. In such cases, looking at the history of BVC runs may give

us some confidence about the correctness of the property. The experimental results

show that when we reach one of the actual MIVCs, the BVC algorithm then constantly

generates the same cores as depth of exploration increases. That is to say, when the

BVC runs begin generating stable cores that do not change as depth changes, it may

imply we might have already seen all the reachable states, and implicitly known they

are safe. Although this hypothesis is by no means guaranteed to hold, it may be worth

further investigations.

5.4.1 Experimental Setup

We perform our experiments on the same benchmark suite with 660 models introduced

in Section 5.2.1. The experiment is conducted with a maximum depth of 10 and one

hour timeout; i.e., for each model, if unrolling to depth 10 takes more than one hour,

the BVC algorithm will terminate. We capture BVCk for 0 ≤ k ≤ 10, then compare each

BVC of depth k to see how they change during unrolling. Then, the final bounded

validity cores obtained from at the maximum5 reachable depth in one hour, denoted

by BVCmax , are considered as our final cores. These cores are compared with all the

MIVCs gathered in Section 5.2.2 to see if they match up with any of the actual minimal

IVCs.

Research questions we would like to answer in this study are as follows:

• RQ1: How many of the final BVC s match one of the MIVC s?

• RQ2: How do BVC s evolve as the analysis depth changes?

5Maximum depth in this experiment is 10. For most of the models, it is possible to reach this depth
in less than an hour.
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• RQ3: Is there a relationship between size and structure of models and the size of

BVC s and the rate at which they converge with a MIVC ?

RQ1

The result of the experiments show that BVCmax is the same as one of the MIVCs for

474 models out of 660. For 27 of the models, BVCmax was not subset of any MIVCs (had

additional elements, also none of the MIVCs was a subset of the BVCmax)6. However,

BVCmax was a subset of one of the MIVCs in 159 of the models.

We performed the experiments with Z3 and Yices solvers. UNSAT core generation

in Z3 is faster than Yices in the current implementation of JKind. Using Z3, 12 of the

models did not reach depth 10 in one hour. With Yices, 18 of the models timed out.

An interesting fact is that we had models that did not reach BVC10, but their BVCmax

was the same as one of the MIVCs. For example, one of the models containing 571

design elements only reached to BVC2, but BVC2 was the same as one of the MIVCs.

The BVC size for that model at different depths is as follows:7

|BVC0| = 6, |BVC1| = 11, |BVC2| = 128

There are interesting case studies where from the initial depth, the BVC was the

same as one of the MIVCs. For example, in our benchmark we have a model with 27

design elements8, for which |BVCi| = 5, i ≤ 0 ≤ 10, and BVC0 is the same as its only

one MIVC.

RQ2

Our experimental results show that among 474 models for which BVCmax is the same

as one of the MIVCs, the size of the BVCs were (nonstrictly) increasing 99.9% of the

time:

0 ≤ i ≤ max, |BVCi| ≤ |BVCi+1|
6We will explain the reason in RQ2
7This particular model is named “steam boiler no arr1.lus” in our benchmarks. You can see the

results and model in our experimental directories [120].
8File “car all e8 856 e2 585.lus” in our benchmark directory.
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In other words, for only 12 of these models, the above relation did not hold. It is

expected that bounded cores in each unrolling step (nonstrictly) increase as in each

step more states are being reached and the cores required for the proof of the property

is more likely to expand. We run the experiments over those 12 models with different

solvers (once with Z3 and once with Yices). The result of BVC runs for these models

(on Yices) is shown in Table 5.6.

It is interesting to see why those 12 models show different behavior. By looking at

different case studies, we have found three main reasons that explain this anomaly. The

first explanation is that when a model has several distinct MIVCs, the bounded core

could change during unrolling. However, the set of 12 models contain models that have

only a single MIVC, so this cannot be the entire reason. Another explanation for such

models is that MIVCs obtained from All IVCs contained timeout loops; therefore, we do

not have the exact minimal IVCs for those cases (for example model#6 in Table 5.6).

The third reason why the size of BVCs is not always increasing is more interesting.

This reason explains why in some cases BVCmax is not the subset of any of the MIVCs.

This only has to do with the depth of bounded model checking. In some problems,

when we are at the earlier steps of unrolling transition relation (i.e., lower depths),

the property can be satisfied in different ways. In other words, a property may have

multiple BVC s at depth k, but as we advance towards the deeper bounds leading to

a proof, the validity cores converge to a smaller subset. For example, consider the toy

example in Figure 5.9. It shows a simple model containing two counters. The first

counter (counter1) has the initial value of 0, and the second counter (counter2) starts

off from 6. The property (OK) is either counter1 is less than 5 or (counter2) is greater

than 5. This property has only one MIVC, which is {counter2, OK}. However, before

depth 5, this property can be satisfied into ways with {counter1, OK} and {counter2,

OK}. You can see the output of the BVC engine for this example in Figure 5.10.

Let us take a look at one of the models that is small enough to display its results in a

reasonable amount of space. This model is named ex3 e8 381 e7 224 in our benchmarks

(Figure 5.11). It only has one MIVC ({V19 late, V64 incr, V63 diff, V65 PC, OK}),

and JKind is able to prove its property in less than a second. In addition, for this model,

there is no timeout issue in the inner loops of All IVCs algorithm. Using Yices in our

experiments, BVCmax is not the subset of the only MIVC that this model has. However
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Table 5.6: BVC runs for the models with non-increasing behavior where BVCmax is the
same as one of the MIVCs.

|BVCi| / i = 0 1 2 3 4 5 6 7 8 9 model
size

#of
MIVCs

model#1 2 9 34 36 28 28 28 28 28 28 70 1

model#2 5 15 11 11 11 11 11 11 11 11 123 1

model#3 8 9 13 33 28 40 38 41 41 41 57 7

model#4 2 5 8 10 12 10 10 10 10 10 64 9

model#5 (Yices) 9 24 84 84 82 82 82 82 82 82 96 1

model#5 (Z3) 9 24 82 82 82 82 82 82 82 82 96 1

model#6 5 6 5 7 5 7 5 7 5 7 7 1

model#7 5 6 6 5 5 6 6 5 5 6 6 1

model#8 (Yices) 9 12 14 28 37 36 36 36 36 36 103 1

model#8 (Z3) 9 12 14 28 37 37 37 37 37 37 103 1

model#9 (Yices) 2 6 10 4 4 4 4 4 4 4 64 1

model#9 (Z3) 2 4 4 4 4 4 4 4 4 4 64 1

model#10 2 6 8 11 7 7 7 7 7 7 64 1

model#11 4 13 32 47 61 54 54 54 54 54 103 8

model#12 (Yices) 8 8 21 29 39 38 38 40 41 41 57 6

model#12 (Z3) 8 17 21 29 32 38 38 32 32 32 57 6

Actual model names in the benchmark, respectively: fast 1 e8 751.lus, microwave05.lus,

DRAGON 12.lus, Display Control-Gaurantee0, fast 2 e8 976.lus, twisted counters.lus,

two counters.lus, cruise controller 04.lus, Display Control-Gaurantee2.lus,

Display Control-Gaurantee1.lus, cruise controller 24.lus, DRAGON 13.lus
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Figure 5.9: A toy example that shows multiple BVCs at earlier depths for a property
with single MIVC

if we had just increased the depth by 1, from BVC10 on, the BVC would have become the

same as the MIVC. For this model, up to depth 10, we have two ways of satisfying the

property (we have two bounded validity cores {V19 late, V64 incr, V63 diff, V65 PC,

OK} and {V20 early, V64 incr, V63 diff, V65 PC, OK}), but after depth 10, the prop-

erty is satisfied with only one validity core ({V19 late, V64 incr, V63 diff, V65 PC,

OK}). Figure 5.12 shows the output of the JKind BVC engine over this model up to

depth 15.

RQ3

In order to show how quickly BVCs change and converge to an actual MIVC, we chose

BVC0, BVC3, and BVCmax runs and plot the size of the cores. Mostly for models with

less than 200 design elements, size of BVCs did not change much from depth 3 to 9.

For the larger models there is some difference between the size of BVC3 and BVCmax

(Figure 5.13).

We calculated the difference of BVCmax of each model with its MIVCs. Part of

the results is described in RQ1. If BVCmax is the subset of one of the MIVCs, we

calculated the difference between those two, and if not, BVCmax is compared with one
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Figure 5.10: BVCs for the property in Figure 5.9
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Figure 5.11: Model ex3 e8 381 e7 224 as a case study
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Figure 5.12: BVC runs for model ex3 e8 381 e7 224
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Figure 5.13: Size of BVCs at depth 3 and max

of the MIVCs of the model, selected randomly. Note that it is possible for BVCmax to

be a subset of more than one of the MIVCs. In our calculation, we randomly selected

the first MIVC containing BVCmax. Figure 5.14 shows the size of the models versus the

size differences of MIVCs and BVCs in logarithmic scale.

Discussion

Experimental results show that in many cases, bounded validity cores can be as accurate

as actual minimal IVCs. The abnormal behavior in some cases showed that we cannot

make a strong claim about the relationships between BVCs and IVCs. One observation

is that at deeper bounds, we can have more accurate bounded validity cores. The

more accurate bounded cores are, the more useful information we have to evaluate

completeness and adequacy of proofs.

It may be possible to make use of other techniques to evaluate the accuracy of the

bounded cores. For example, in case of non-increasing BVCs, we may build different

abstractions for the model using different BVCs, and try to prove the property over

abstracted models. If property fails over one abstraction, we can easily rule out the

bounded core used for that abstraction. For example, in Figure 5.9, if we terminate the
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Figure 5.14: Difference between BVCmax and MIVCs vs the model size

BVC generation at depth 4, we need to decide which of {counter1, OK} and {counter2,

OK} is necessary for an inductive proof (i.e., is the subset of our MIVC). In order to

do so, if we build a new abstract model using BVC {counter1, OK} (Figure 5.15 (a)),

and try to re-prove the property, property will be violated, which tells us counter2 was

necessary for the proof of our property. In the same way, if we build an abstract model

using BVC {counter2, OK} (Figure 5.15 (b)) and try to re-prove the property, we will

see the property is still valid, which means counter1 is not in MIVC of the property.

Another observation is that if we calculate all BVCs at a given depth for a valid

property, there should be at least one BVC, which is the subset of one of the MIVCs. As

we advance towards deeper bounds when BVCs stay the same, one may even conclude

that BVC has already converged to an actual minimal IVC. However, this conclusion

is not always accurate. It is possible that final MIVC is a superset of multiple BVCs

at different bounds. Consider the toy example in Figure 5.9. If the initial value of

counter2 changes from 6 to 3, the MIVC of the property will be {counter1, counter2,

OK} because the correctness of OK is dependent on both counters. However, if we obtain

the BVCs for this new model (Figure 5.16), you will see that BVC up to depth 5 is
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Figure 5.15: Building abstraction using BVCs

Figure 5.16: A toy example where MIVC is the superset of multiple unique BVCs

{counter1, OK}, thereafter becomes {counter2, OK} and will not change (Figure 5.17).
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Figure 5.17: BVCs for the property in Figure 5.16



Chapter 6

Applications

As described in Section 1, IVCs can facilitate several engineering tasks in different phases

of a system development process. This chapter explains some of the IVC applications

we have explored.

6.1 Automatic Proof-Based Traceability

Requirements traceability can be defined as

“the ability to describe and follow the life of a requirement, in both for-

wards and backwards direction (i.e., from its origins, through its development

and specification, to its subsequent deployment and use, and through all pe-

riods of on-going refinement and iteration in any of these phases).” [60].

Traceability is concerned with establishing relationships, called trace links, between

the requirements and one or more artifacts (design elements) of the system. Among

the several different development artifacts and the relationships that be can established

from/to the requirements, being able to establish trace links from requirements to ar-

tifacts that realize or satisfy those requirements—particularly to entities within those

artifacts called target artifacts [61]—has been enormously useful in practice. For in-

stance, it helps analyze the impact of changes in one artifact on the other, assess the

105
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quality of the system, aid in creating assurance arguments for the system, etc.

There is substantial interest within the Requirements Engineering research commu-

nity towards automating the construction and maintenance of traceability links [19,20,

123]. There are many kinds of trace links that may have to do with functional correct-

ness, performance, architectural qualities, user understanding, and many other criteria.

We focus our attention to this subset of requirement traceability called Satisfaction Ar-

guments that are used to determine the portions of a design or model that are necessary

to satisfy a requirement. IVCs automatically provide such arguments accurately and

with no human effort. In addition, we can automatically generate expected artifact

types, such as traceability matrices for these kind of relationships (see Figures 6.3 and

6.4).

It is also the case, when computing all IVCs, that we can provide additional insight.

As far as we are aware, none of the existing Satisfaction Argument literature discusses

the issue that there are often multiple satisfaction arguments between a requirement

and its implementation. Given all IVCs, it is possible to perform more accurate impact

analysis and define multiple notions of requirements adequacy, as we will see in the

following sections.

6.2 Coverage Analysis and Requirements Completeness

For critical systems, it has been argued that formal methods should be applied to gain

higher assurance than is possible with testing [5,124,125]. For these approaches, testing

may still be performed, but the verification effort is primarily focused on performing

proofs. Unfortunately, proof-based approaches tend not to answer the question as to

whether implementations have additional functionality that is not covered by require-

ments. Testing, despite its faults, can measure structural coverage to find untested

functionality and can find some errors by serendipity, in which problems not directly

related to the requirement under test are exposed. Therefore, in formal verification

approaches, it is even more important that requirements be complete.

In general, specification completeness can be defined with regard to the notion of

coverage. In fact, the way that coverage is formalized plays a key part in the strength-

/effectiveness of a method for the assessment of completeness. The goal of a coverage
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metric is usually to assign a numeric score that describes how well properties cover the

design. Relatively recently, techniques have been devised for analyzing completeness

of requirements against formal implementation models, specified as transition systems

or Kripke structures [68, 74–76]. These models are agnostic to the abstraction level

of the implementation: implementations can be lower-level requirements, software ar-

chitectures, or concrete implementations of system behavior. The mechanism used is

based on mutation and proof: is it possible to prove that the requirements still hold

of the system after mutating the model in some way? If so, then the requirements are

incomplete with respect to that model element. Mutations are “atomic” changes to the

design, where the set of possible mutations depends on the notation that is used. A mu-

tant is “killed” if one of the properties that is satisfied by the original design is violated

by the mutated design [16, 17, 65, 68, 69]. There are many different kinds of mutations

that have been proposed, primarily focused on checking sequential bit-level hardware

designs. For these designs, State-based mutations flip the value of one of the bits in

the state. There are several variations depending on whether the flip is performed on

a single state within a Kripke structure [66], or in the description of the signal in the

transition relation of the circuit [68]. Logic-based mutations fix the value of a bit to

constant zero or one, and can be used to determine whether properties can find stuck-at

faults. Syntactic mutations [16] remove states in a control flow graph representation of

hardware. Similarly, for software, it is possible to apply any of the “standard” source

code mutation operators used for software testing [70] towards requirements coverage

analysis. Some examples of software mutations are [71]:

1. Replace an integer constant C by one of {0, 1,−1, C + 1, C − 1},

2. Replace an arithmetic, relational, logical, bitwise logical, increment/decrement, or

arithmetic-assignment operator by another operator from the same class,

3. Negate the decision in an if or while statement,

4. Delete a statement.

We assume each element Ti ∈ T has a set of possible mutations associated with it.

Depending on the modeling formalism used, this may be the value of a gate or signal or

an expression within a statement in a program. We will further assume the existence of
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a mutation function fm that, given a model element, will return a finite set of mutations

for that element. We can then define the set of mutant models M as follows:

M = {(T \ {Ti}) ∪ {m} | Ti ∈ T,m ∈ fm(Ti)}

and then define the mutation score for property P in the standard way:

Definition 8. Generalized mutation coverage.

Mutant-Cov =
|{m | m ∈M ∧ (I,m) 0 P}|

|M |
Note that without loss of generality, we consider a single property P , which can be

viewed as the conjunction of all the properties of the model.

The state of the art of mutation-based coverage can be found in Chockler et al. [69],

where a design is considered as a net-list with nodes of types {AND, INVERTER, REGISTER,

INPUT}. Each mutant design changes the type of a single node to INPUT. When property

φ satisfied by the original net-list fails on the mutant design, it is said that a mutant

is discovered for φ. Then, the coverage metric for φ is defined as the fraction of the

discovered mutants, based on which the coverage of a set of properties is measured as

the fraction of mutants discovered by at least one property. To decrease the cost of

computation, coverage analysis is performed at several stages; first, all the nodes that

do not appear in the resolution proof of a given property are marked as not-covered, and

the rest of the nodes are marked as unknown. Then, for the unknown nodes, the basic

mutation check is performed: if a corresponding mutant design violates the property, it

will be considered as covered.

Unfortunately, previous completeness metrics can underapproximate which portions

of a program are necessary to fulfill the requirements. That is, if we construct a model

consisting of only the required model elements as determined by the analysis, it is

often no longer possible to prove the requirement. Thus the feedback provided to the

developer may be somewhat misleading. In addition, the mutation-based analyses tend

to be very computationally expensive. For example, for model checkers, state of the art

techniques have runtimes of (in the best case) several times more than is required for

proof [69]. We propose a new approach for measuring property completeness based on

proof rather than mutation.
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Definition 9. IVC coverage (IVC-Cov):

Given S ∈ AIV C(P ), Ti is covered by P via S iff Ti ∈ S.

We call Definition 9 a proof-preserving metric because, with a set of the model

elements marked as covered by IVC-Cov, P is provable. Other notions, as will be

discussed, may yield subsets of the model that are insufficient to reconstruct the proof

of the property. The coverage score for IVC-Cov can be calculated with:

|S|
|T |

Because P may have multiple MIVC s, IVC-Cov metric can lead to various scores that

belong to the following set:

{ |S|
|T |
| S ∈ AIV C(P ) }

Note that if an MIVC contains all model elements (i.e., the model is completely covered),

then there is only one possible MIVC, so in this case there is no diversity of scores.

Using the notions of MAY and MUST , we can introduce additional coverage met-

rics.

Definition 10. (May-Cov): Ti ∈ T is covered by P iff Ti ∈ May-Cov(P ), where

May-Cov(P ) = {Ti | ∃S ∈ AIV C(P ) . Ti ∈ S}.

Definition 11. (Must-Cov): Ti ∈ T is covered by P iff Ti ∈ Must-Cov(P ), where

Must-Cov(P ) = {Ti | ∀S ∈ AIV C(P ) . Ti ∈ S}.

The May-Cov notion aims to deal with the fact that a property P may have several

distinct MIVC s. In such cases, IVC-Cov only looks at an arbitrary MIVC that may

contain a subset of MAY (P ), which means, depending on which MIVC it considers,

every time it may report a different part of MAY (P ) as uncovered. However, May-Cov

resolves this issue reporting the entire set of MAY (P ) as covered, which also leads to

higher coverage scores. Must-Cov takes the opposite view, considering a model element

as covered only if it affects all the proofs of P . Algorithm 15 is also an efficient way

of computing the must set of a given property using IVC UC. A different algorithm for
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Algorithm 15: IVC MUST: an algorithm to compute MUST (P ) for a given P

input : (I, T ) ` P
output: Must set for (I, T ) ` P

1 S ← IVC UC((I, T ) ` P )
2 M ← ∅
3 for x ∈ S do
4 if (I, T \ {x}) 0 P then
5 M = M ∪ {x}

6 return M

computing MUST (P ) is to first compute AIV C(P ) and then take the intersection of

all sets in AIV C(P ).

It is still possible to build more relaxed coverage metrics in which coverage is cap-

tured by looking at individual properties, rather than their conjunction. We can, for

example, describe a metric in which any element used by an MIVC for any property is

considered covered. The next definition, Model-Cov, formalizes this notion.

Definition 12. (Model-Cov): Given a set of properties ∆ over T , Ti ∈ T is covered iff

Ti ∈Model-Cov(T ), where Model-Cov(T ) = {Ti | ∃P ∈ ∆, S ∈ AIV C(P ). Ti ∈ S}.

Based on the categorization of elements, we will state some relationships about

MIVC s so to compare different proof-based metrics proposed earlier.

Lemma 5. If MAY (P ) 6= ∅, then P is not provable by MUST (P ).

Proof. MAY (P ) 6= ∅ ⇒ ∃Ti ∈ MAY (P ). Ti ∈
⋃
AIV C(P ) ∧ Ti /∈ MUST (P ),

which implies ∃S ∈ AIV C(P ). Ti ∈ S. Considering the fact that S is minimal and

MUST (P ) ⊂ S (since Ti ∈ S ∧ Ti /∈ MUST (P )), @S′ ⊂ S. (I, S′) ` P , which means

(I,MUST (P )) 0 P .

Now we focus on the relationship between non-deterministic mutation-based cover-

age and proof-based metrics. In Chockler et. al. [69], each mutant design changes

the type of a single node to an input node . Given a suitable encoding of the netlist,

assigning a “fresh” input is an isomorphic operation to simply removing a Ti from T .

The mapping is as follows: the net-list becomes a conjunction of equations, where each
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vertex becomes a variable vi ∈ U , and where each non-input vertex becomes an as-

signment equation Ti ∈ T . For example, given an AND-vertex vi with three input

edges from other vertexes {va, vb, vc}, we would define an equation Ti ∈ T of the form

(vi = (va ∧ vb ∧ vc)).
Given this encoding, we can reframe the non-deterministic coverage proposed in [69]

as follows:

Definition 13. Nondeterministic coverage (alternate specification) (Nondet-Cov∗)

[69]. Ti ∈ T is covered by property P iff Ti ∈ Nondet-Cov∗(P ), where Nondet-Cov∗(P ) =

{Ti | (I, T ) ` P ∧ (I, T \ {Ti}) 0 P}.

Given this definition, it becomes straightforward to define some additional properties.

Lemma 6. Ti ∈ Nondet-Cov∗(P )⇔ Ti ∈Must-Cov(P ).

Proof. Ti ∈ Nondet-Cov∗(P ) means that (I, T \ {Ti}) 0 P then ∀S ⊂ T. Ti /∈
S ⇒ (I, S) 0 P . Therefore, since (I, T ) ` P , Ti ∈

⋂
AIV C(P ), which means

Ti ∈MUST (P ). On the other hand, let Ti ∈MUST (P ); then ∀S ∈ AIV C(P ). Ti ∈ S.

By definition, any proof of P is a superset of some minimal IVC in AIV C(P ). Thus,

any subset S of T leading to proof contains Ti. Therefore, T \ {Ti} does not lead to a

proof.

In light of Lemma 6, the Nondet-Cov∗ coverage score of specification P can be

also calculated by
|MUST (P )|

|T |

Corollary 3. Nondet-Cov∗ is not proof-preserving.

Proof. Immediate from Lemma 5 and Lemma 6

Corollary 4. IVC-Cov is proof-preserving.

Proof. Immediate from Definition 3 and Definition 9
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Figure 6.1: Runtime of different analyses

To conclude this section, we should mention that one can define many more proof-

based coverage metrics based on the MIVC/AIV C idea. Metrics that make use of

the AIV C relation are computationally more expensive to compute than IVC-Cov

although they result in higher coverage scores.

Figure 6.1 allows a visualization of the runtime of different coverage analyses in com-

parison with the proof time1, which indicates the overhead induced by each algorithm.

As can be seen, it is computationally cheap to find an approximately minimal IVC us-

ing the algorithm IVC UC; however, finding a guaranteed minimal IVC using the IVC UCBF

algorithm is computationally expensive. The overhead of the IVC UC algorithm is on

average 31% over the baseline proof, as opposed to 2276% for the IVC UCBF algorithm.

Therefore, in order to compute IVC-Cov, it is much more efficient to use IVC UC rather

than the IVC UCBF algorithm. In terms of comparing cost of coverage computation from

IVC-Cov and Must-Cov, the Must-Cov computation imposes an average 4183%

runtime overhead on the verification time.

When a coverage metric brings about lower coverage scores on average, it is said

1Note that this graph is similar to the performance analysis in Chapter 5, except it introduces
IVC MUST
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Figure 6.2: Size of the set of covered elements by different algorithms

that the metric is harder to satisfy. To study this aspect of the proposed metrics, we

first calculated the size of the output sets generated by each algorithm: on average, the

ratio of the size of the sets generated by IVC UC to the size of the ones obtained from

IVC UCBF is 1.08, while this ratio for IVC MUST to IVC UCBF is 0.93, which shows IVC MUST

is harder to satisfy, and also is not proof-preserving.

Figure 6.2 is a visualization of the size of the set of covered elements by different algo-

rithms. Models over the x-axis are sorted based on the size of the minimal IVCs obtained

from the IVC UCBF algorithm. The graph shows the degree of under-approximation of a

minimal proof set by IVC MUST as well as the degree of over-approximation by IVC UC.

Moreover, the size of sets computed by IVC UC is very close to the size of the ones ob-

tained from IVC UCBF, especially for larger models. For our benchmark suite, in the

industrial models, the size of sets obtained from IVC UCBF and IVC UC is more or less the

same, which may indicate that the IVC UC is likely to find MIVCs in realistic problems.

The average increase in size of IVCs returned by IVC UC is approximately 8% of the

IVC UCBF algorithm. Since the overhead of producing IVC UC is only approximately 31%

more expensive than the baseline analysis, this test may be efficient enough to run as a

standard part of the model checking process.



114

Table 6.1: Coverage score of different algorithms

score min max mean stddev

IVC-Cov with IVC UC 0.002 1.0 0.475 0.302

IVC-Cov with IVC UCBF 0.002 1.0 0.445 0.291

Must-Cov 0.002 1.0 0.417 0.291

May-Cov 0.002 1.0 0.476 0.301

Table 6.1 describes the aggregate of the coverage scores returned by the analyses.

Across all benchmarks, the min and max coverage scores are the same, and as expected,

the average number of elements required is smallest for the IVC MUST algorithm and

largest the for IVC UC algorithm.

The proposed coverage metrics can be ranked in terms of their scores as follows:

Nondet-Cov∗ ≤ IVC-Cov ≤May-Cov ≤Model-Cov

IVC-Cov and Nondet-Cov∗ are equivalent when all elements within the model are

covered: if all model elements are MUST elements, then there can only be one MIVC,

and this MIVC uses all of the model elements. The equivalence of Must-Cov and

Nondet-Cov∗ allows us to compare our algorithms against state-of-the-art mutation

based coverage.

To investigate the relationship between provability and different coverage notions, we

were interested in the number of models in the benchmark for which IVC MUST resulted

in the sets not equal to an MIVC (i.e. models for which IVC MUST did not preserve

provability). Obviously properties are provable by 100% of the IVCs computed by

IVC UC (and IVC UCBF). As for the IVC MUST algorithm, the properties of 290 models in

the benchmarks were not provable by the output of IVC MUST. In practice, for larger

models, Must-Cov is more likely not to maintain provability, and since more than half

of the models are small, 43% may still not reveal the actual degree to which Must-Cov

underapproximates the covered parts of a model. The notion of proof preservation is
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appealing because it allows a concrete demonstration to the user of the irrelevance of

portions of the implementation. The IVC coverage notion also allows, in cases where

there are multiple minimal satisfying sets, insight on multiple ways by which the model

meets a requirement.

6.3 Discussion

In this section we show how traceability and coverage analyses can be performed using

IVCs. The goal of this section is to both illustrate the techniques and discuss the

potential pitfalls of the analysis. Here we adapt the same ASW example presented in

Section 3. The code is slightly changed so we can discuss how IVCs help to improve the

design and specification.

We illustrate the results with traceability matrices produced by the Spear require-

ments specification tool [126]. JKind is used as the model checker for the AADL AGREE

tool suite [32] and also Spear [126]. We have extended both tools to add graphical

support for displaying adequacy and traceability results. We show screenshots for the

Spear tool for our running example in Figures 6.3 and 6.4.

The ASW is responsible for turning on and off a device of interest, so we formulate

two requirements that describe when the ASW should be on and when it should be off.

The first attempt at formalization (property set 1) is as follows:

on_p = (a1_below and a2_below) and not inhibit =>

doi_on = true;

off_p = (a1_above and a2_above) and inhibit =>

doi_on = false;

all_p = on_p and off_p;

Informally, when both altimeters are below the threshold and not inhibited, then the

DOI should be on (on p), and when both altimeters are below the threshold and the

ASW is inhibited, then the DOI should be off (off p). For each of the IVC-Cov,

May-Cov, and Must-Cov metrics, all p only requires {below, d1, doi on}, as

shown in Figure 6.3. This small set of elements is due to a classic specification prob-

lem: using computed variables as the antecedents of implications. If these values are
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Figure 6.3: Elements covered by the initial property set

computed incorrectly (say, we choose the wrong threshold for a1 below), it may cause

the property to be valid for incorrect reasons.

We therefore modify our properties to use inputs and constants as antecedents and

derive:

on_p = ((alt1 < THRESHOLD) and (alt2 < THRESHOLD))

and not inhibit => doi_on = true;

off_p = ((alt1 >= T_HYST) and (alt2 >= T_HYST))

and inhibit => doi_on = false;

In this version, distinctions emerge between the metrics. all p has two MIVC s: {{a1 below,

below, doi on, d1}, {a2 below, below, doi on, d1}}, because of the on p prop-

erty: in the implementation, the DOI is turned on when either of the altimeters is

below the threshold, while our property states that they both must be below. Domain

experts determine that the requirement is correctly specified and that our implementa-

tion is a reasonable refinement, so there is no need to change the model or the property.

The MUST elements are the same as version 1: {below, doi on, d1}, because nei-

ther a1 below or a2 below is required for all proofs. The MAY elements contain both

a1 below and a2 below.

The above hyst, a1 above, a2 above, and d2 equations are still missing, meaning

that the “above” thresholds are irrelevant to our properties. Examining off p, we

realize that we have a specification error; the DOI should be off if either inhibit is true

or both altimeters are above the threshold. The fix is:

off_p = ((alt1 >= T_HYST) and (alt2 >= T_HYST))

or inhibit => doi_on = false;
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Figure 6.4: Elements covered by the final property set

Now the all p requirement proof yields a single MIVC that requires all variables except

{d2}, so MIVC = MAY = MUST. Interestingly, the off p proof requires both the lower

altimeter thresholds even though the on p proof does not; the reason is that if either

of these is false, then doi on will be true. To cover {d2}, we realize no property covers

the hysteresis case, so an additional property is added for this case:

hyst_p = not inhibit and

(alt1 > THRESHOLD and alt2 > THRESHOLD) and

(alt1 < T_HYST or alt2 < T_HYST) =>

(doi_on = false -> doi_on = pre(doi_on))

all_p = on_p and off_p and hyst_p;

The final property states that if the antecedent conditions hold, then in the initial state,

the doi on variable is assigned false, and in subsequent steps, it retains the same value

as it previously had.

As shown in Figure 6.4, the measures again coincide and include all variables, and

we appear to have a reasonably complete specification. However, the measures are

certainly not foolproof; it turns out that using only the hysteresis property hyst p

will also yield a “complete” result for all of the metrics: to establish its validity, all

of the equations that we have defined in the model are required. This is because the

partitioning of the transition system (i.e., the equations) is insufficiently granular to

detect the incompleteness.

6.3.1 Granularity

As we have described in Section 2, a transition relation is considered to be a conjunction

of Boolean formulas. The granularity of these formulas substantially affects the analysis
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results. In the presented example, it was possible to have a “complete” specification

of the model involving only the hysteresis property hyst p. The way that the model

was structured, in order to determine the validity of the property, all of the equations

in the model were required. However, for this property certain subexpressions of the

equations were irrelevant, notably the value assigned to the doi on variable in the then

branches of equations (7) and (8). If we decompose the equations into smaller pieces,

e.g., creating separate equations for the then and else branches, this incompleteness

becomes visible and the model is no longer completely covered. It is often the case that

splitting a model into more conjuncts, that is, making the model more granular, leads

to lower coverage of the model.

We have explored granularity within the context of the Lustre language. Lustre

provides a nice formalism for discussion because it is top-level conjunctive (as required

by our IVC definition), equational, and referentially transparent [22]: the behavior of

a Lustre program is defined by a system of equations, and any subexpression on the

right side of an equation can be extracted and assigned to a fresh variable2 which is

substituted into the original equation without changing the meaning of a program. In

this context, we can define a granular refinement as an extraction of a subexpression

into a new equation assigning a fresh variable.

We call a Lustre model totally decomposed if (1) each computed (i.e., non-input)

variable is used at most once in the right-hand side of an equation, and (2) each equation

is either a single operator (which may be a ternary operator in the case of if-then-else)

with leaves all variable expressions, or a constant expression, and (3) each model input

is directly assigned to one or more fresh variables and is not used elsewhere in the model.

In this case, each instance of a subexpression and each use of an input in the original

model is assigned its own variable, so it is maximally factored. Intuitively, if the proofs

require each of these elements, it means that there is a reasonably strong claim that the

requirements are adequate.

If a set of requirements achieves 100% coverage of a totally decomposed model, then

no granular refinement will achieve less than 100% coverage. This is straightforward to

show in a proof sketch. Based on the right side of the equation, there are two cases:

(1) the entire right-hand side of the equation is extracted (which may be a constant

2A fresh variable is a variable with an identifier that has not been used within the program.
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or a single operator expression). In this case, by assumption the variable assigned

is necessary for proof, so its definition must be necessary for the proof; in this case,

the fresh variable must also be necessary for the proof; (2) a leaf expression of the

single right-hand side operator is extracted. Since (by definition) the leaf is a variable

expression that is used only once, and (by assumption) the variable is necessary for

proof, then the fresh variable is also necessary for proof. The resultant model is also a

totally-decomposed model, so we can do any number of these extractions.

We have implemented a transformation that splits Lustre models into totally de-

composed models. In a small initial experiment involving 30 of the original models,

we performed our transformation and re-ran the analysis. By changing the granularity

of the model, the analysis tools perform significantly slower for proofs, but the ratio

of performance between the proof and the IVC UC and IVC MUST algorithms is largely

unchanged. However, on some models, the IVC MUST algorithm becomes unacceptably

slow (analysis times of tens of hours) and occasionally causes the solver to run out of

memory.

The issue of granularity of models is significant, but to the best of our knowledge, is

not discussed in previous work. In our approach, we allow the user to choose the level

of granularity, but in certain cases, this may lead to misleading answers when checking

the adequacy of requirements. This aspect will be a focus of our future work, especially

in situations in which the tool determines that a set of requirements is complete. We

believe that it is possible to substantially optimize the näive preprocessing algorithm

that we have presented.



Chapter 7

Conclusions and Future Work

In this thesis, we have introduced the notion of validity cores as an effective means

of explaining the proof of a property. We have discussed the applications and uses of

this idea. This notion has been formalized, and an efficient technique of extracting a

minimal IVC has been provided.

However, a single IVC often does not provide a complete picture of the traceability

from a property to a model. We have addressed the problem of extracting all mini-

mal IVCs. Obtaining minimal IVCs for a given property is completely relevant to the

problem of proving the correctness of that property. Since, in general, provability is

undecidable, sometime engineers have to rely on bounded proofs. In order to utilize the

IVC ideas in such cases, we have introduced the idea of bounded validity cores (BVCs).

We have shown the correctness and completeness of our methods and algorithms.

We have implemented all of the inductive validity core algorithms in the JKind [21]

industrial model checker, which verifies safety properties of infinite-state synchronous

systems. It accepts Lustre programs [22] as input. The translation of Lustre into a

symbolic transition system in JKind is straightforward and is similar to what is de-

scribed in [119]. Verification is supported by multiple “proof engines” that execute in

parallel, including k-induction, property directed reachability (PDR), and lemma gen-

eration engines that attempt to prove multiple properties in parallel. To implement the

engines, JKind emits SMT problems using the theories of linear integer and real arith-

metic. JKind supports the Z3, Yices, MathSAT, SMTInterpol, and CVC4 SMT solvers

as back-ends. We extend JKind with new engines that implement our IVC generation

120
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algorithms. When a property is proved and IVC generation is enabled, an additional

parallel engine executes one of the IVC algorithms.

In addition, we have performed a substantial evaluation that shows that the prac-

ticality and efficiency of our technique. For this purpose, we have collected a large

set of benchmarks from different sources. Our experiments are conducted on a set of

benchmarks containing 660 Lustre models, 530 from [59,119] and 130 industrial models

derived from [3] and other sources [59, 121]. This evaluation shows promising results

about the IVC techniques.

7.1 Future Research Directions

Our method for computing all MIVCs was inspired by recent work in the domain of

satisfiability analysis [55]. One interesting future direction is to devise similar MIVC

enumeration algorithms based on other studies on MUSes extraction such as [54]. An-

other interesting direction for this project is to parallelize the enumeration process: it is

certainly possible to ask for multiple distinct maximal models to be solved in parallel.

A straight forward parallelization starts with computing one approximate IVC. Then

IVC MUST can be executed on one machine while several other engines are running the

All IVCs in parallel. The results of IVC MUST shall be dispatched among the engines to

expedite the process of exploring the map1.

It is worthwhile to investigate additional applications of the idea. When performing

compositional verification, the All-IVCs technique may be able to determine minimal

component sets within an architecture that can satisfy a given set of requirements, which

may be helpful for design-space exploration and synthesis. In addition the approach

can be used for robustness analysis; will system satisfy requirement R even if a certain

component fails? To answer this question, the All-IVCs analysis can tell us if the

requirement is satisfied by different components independently.

An study of the relationship between IVCs of the component-level and system-level

properties itself is very interesting and can be useful; for example, in cases that the

system property has only bounded proof, we can estimate/obtain its MIVCs without a

proof. To do so, we need to map out an algorithm for extracting MIVCs of a system

1see 3.3.1
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level property from the MIVCs of the component properties.

The granularity issue discussed in 6.3 opens up a new research direction. At this

time, we rely on the model structure (granularity level) provided by the designer. There

is a notion of “sufficient granularity” that guarantees that if the properties reference all

model elements, then no other decomposition will say that it is incomplete.

There is more to be studied over the bounded validity cores. The way we tackled

this problem in this thesis was through the conventional bounded model checking tech-

nique. With BMC, the state space exploration starts with a set of initial states, and

expands over unrolling the transition relation. However, in some other model checking

techniques, such as PDR, state space exploration starts with the universal set (true),

and shrinks over each blocking step. It would be interesting to look at the relationship

between bounded cores derived from a bounded-PDR vs BMC. This may help to es-

timate more accurate BVCs when it comes to unprovable properties. When we have

limited resources (time and computing power) to prove a certain property, estimating

BVCs may help us to build an abstract model, from which we can prove our property

of interest.

The notion of bounded validity core can be applied into testing, where we deal with

too many execution paths due to program complexities including loops. It would be

interesting to perform coverage analysis with BVCs at the program level, and then

compare the results with other existing mutation-based techniques for testing. For

example, this can be done for C programs, for which there are powerful code model

checkers such as CBMC. Finally, we are interested in adapting the notion of “all” validity

cores for bounded model checking.

Investigating the IVC notions in model based development would be another re-

search direction. Model-based development starts with a formal model as an executable

specification refined and verified throughout development. In the late stage of the devel-

opment when it comes to implementation, usually the model is automatically translated

into code. For example, AADL AGREE tool suite is a powerful tool for this purpose. It

starts with AADL modeling language, converted to LUSTRE for verification by JKind.

Then C code is automatically generated from LUSTRE. We already implemented the

IVC techniques for LUSTRE and JKind. One could implement these techniques in some

C model checker, and then comparing IVCs at the code and model level might reveal
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valuable information that could be useful in safety analysis and future research.

Having all MIVCs can be useful in optimizing logic synthesis by discovering a min-

imum set of design elements (optimal implementation) for a certain behavior. This

shall lead to an optimal design implementation after transforming an abstract behavior.

Putting this idea into practice would be worthwhile future work.

Our method for extracting approximate MIVCs (IVC UC) is fast and efficient. How-

ever there is room for improvement. In the current approach, after obtaining the proof,

in order to extract a minimal set of lemmas, we re-prove the property with the k-

induction technique, then a minimum k is calculated to build IVC queries (in a k-

induction manner). A different approach could be to employ other proof methods such

as interpolation or PDR.

Another future study would be to use the IVC approches for fault injection. Fault

injection allows to analyze the system behavior in the presence of faults through the

use of verification tools. We can investigate the use of IVCs in fault models in order to

find the maximum set of faults for which a system is resilient.
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[47] Anton Belov, Mikoláš Janota, Inês Lynce, and Joao Marques-Silva. On com-

puting minimal equivalent subformulas. In Principles and Practice of Constraint

Programming, pages 158–174. Springer, 2012.

[48] Alexander Ivrii, Arie Gurfinkel, and Anton Belov. Small inductive safe invari-

ants. In Formal Methods in Computer-Aided Design, FMCAD 2014, Lausanne,

Switzerland, 2014, pages 115–122, October 2014.

[49] Mark H Liffiton et al. From MaxSAT to MinUNSAT: Insights and applications.

Ann Arbor, 2005.

[50] Fahiem Bacchus and George Katsirelos. Using minimal correction sets to more

efficiently compute minimal unsatisfiable sets. In CAV’15, 2015.

[51] Anton Belov and Joao Marques-Silva. Muser2: An efficient mus extractor. JSAT

journal, 2012.



129

[52] Anton Belov et al. Core minimization in sat-based abstraction. In DATE’13,

2013.

[53] Anton Belov et al. Towards efficient MUS extraction. AI Communications, 2012.

[54] Alexander Nadel et al. Accelerated deletion-based extraction of minimal unsatis-

fiable cores. JSAT journal, 2014.

[55] Mark Liffiton et al. Fast, flexible MUS enumeration. Constraints, 2016.

[56] Jaroslav Bend́ık, Nikola Benes, Ivana Cerná, and Jiŕı Barnat. Tunable Online
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