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Abstract

This is a collection of works that I have done during my PhD research at the Univer-

sity of Minnesota. There are three parts dedicated to different topics, of which abstracts

are included below.

Abstract for Distributed Robust Subspace Recovery

We propose distributed solutions to the problem of Robust Subspace Recovery

(RSR). Our setting assumes a huge dataset in an ad hoc network without a central

processor, where each node has access only to one chunk of the dataset. Furthermore,

part of the whole dataset lies around a low-dimensional subspace and the other part is

composed of outliers that lie away from that subspace. The goal is to recover the under-

lying subspace for the whole dataset, without transferring the data itself between the

nodes. We first apply the Consensus Based Gradient method to the Geometric Median

Subspace algorithm for RSR. For this purpose, we propose an iterative solution for the

local dual minimization problem and establish its r-linear convergence. We then explain

how to distributedly implement the Reaper and Fast Median Subspace algorithms for

RSR. The proposed algorithms display competitive performance on both synthetic and

real data.

Abstract for Solving Jigsaw Puzzles By The Connection Graph Laplacian

We propose a novel mathematical framework to address the problem of automatically

solving large jigsaw puzzles. The latter problem assumes a large image, which is cut

into equal square pieces that are arbitrarily rotated and shuffled and asks to recover

the original image given the rotated and shuffled pieces. We suggest a method for

recovering the unknown orientations of the puzzle pieces by using the connection graph

Laplacian associated with the puzzle. The connection graph Laplacian is also used to

form a metric between puzzle pieces and this metric is more accurate than the commonly

used metric. Numerical experiments demonstrate the competitive performance of the

proposed method.

Abstract for Non-convex Analysis of Multi-Graph Matching

We propose an iterative algorithm together with its theoretical analysis for the Multi-

Graph Matching (MGM) problem. The latter problem assumes a set of graphs, each of

iii



which has the same number of vertices and further assumes that for each pair of graphs

there exists a one-to-one correspondence map between their vertices. Given only noisy

measurements of the mutual correspondences, the MGM problem asks to improve the

correspondence maps between pairs of them. Our proposed algorithm iteratively solves

the non-convex optimization problem associated with the MGM problem. We prove

that for a specific noise model if the initial point of our proposed iterative algorithm is

good enough, the algorithm linearly converges to the unique solution. Furthermore, we

show how to find such an initial point. Numerical experiments demonstrate competitive

speed and recovery results for our proposed algorithm with a state-of-the-art method.
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Chapter 1

Introduction

In machine learning and data analysis, discrete optimization is a topic that consists

of finding an optimal object within a finite set of objects. Due to the computational

complexity, when the number of objects is too large, brute-force type algorithms are

infeasible. Moreover, a small amount of error in measurements might drastically affect

the result of such algorithms.

Recently, many successful algorithms suggest to find a larger set, usually convex

but possibly non-convex, which contains the discrete set and solve the problem in this

setting, rather than solving directly for the discrete set. After finding the solution, the

next challenge is to find a way to project it onto the initial discrete set.

Due to the success of such algorithms in recent years, this has become one of the

most active research areas in machine learning. In my dissertation I present my results

for three problems in this context: Distributed Robust Subspace Recovery, Automatic

Solution of Large Jigsaw Puzzles and Multi-Graph Matching.
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Chapter 2

Part I: Distributed Robust

Subspace Recovery

2.1 Introduction

Distributed computing is a central theme in modern computation. Its setting includes

a system with multiple components, which communicate and coordinate in order to

achieve their common computational goal. A special distributed setting assumes a

central processor, which is connected to all other processors. This processor contains

no data, but has enough memory to handle some computations, such as averaging

communicated estimates. A more general distributed setting assumes an arbitrarily

connected network of processors, among which the data is partitioned. Each processor

computes a local estimate of the desired output based on its local data and on estimates

passed by its neighbors. Then, it communicates its estimate to its neighbors. This

procedure iterates until convergence.

Some common approaches for solving distributed computing problems are the dif-

fusion method [3], the Consensus-Based Gradient Ascent (CBGA) [4, 5, 6, 7], the dis-

tributed subgradient method [8,9] and the Consensus Alternating Direction Method of

Multipliers (CADMM) [6,9,10,11,12]. Some of these algorithms have been successfully

adapted to important applied problems of signal processing and wireless communica-

tions [12,13,14,15]. Various distributed algorithms have been proposed for the important

problem of Principal Component Analysis (PCA) and related problems, such as the total

2
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least squares. Most of them are for centrally-processed networks [16, 17, 18, 19, 20, 21],

but some of them are for arbitrarily connected networks [4, 22]. To the best of our

knowledge there are no distributed algorithms for robust versions of PCA.

This work discusses distributed algorithms for Robust Subspace Recovery (RSR)

with arbitrarily connected networks. RSR is an alternative paradigm for PCA that is

more robust to outliers. The underlying problem of RSR assumes data points, composed

of inliers and outliers, where the inliers are well-explained by an affine low-dimensional

subspace and the outliers come from a different model. The goal is to recover the

underlying subspace in the presence of outliers. A careful review of the problem and its

solutions appears in [23].

We first suggest a distributed implementation for the Geometric Median Subspace

(GMS) [24] algorithm for RSR, which applies to arbitrarily connected networks. We

propose an iterative algorithm for the local dual problem and establish its r-linear

convergence (defined later in Definition 2). We also propose distributed implementations

for two other RSR algorithms: Reaper [25] and FMS [26]. This is done by iterative

application of distributed PCA. On the other hand, the GMS implementation does not

iterate the distributed scheme and is thus more efficient in terms of the communication

cost. We remark that the theorems for robustness of GMS, Reaper and FMS carry over

to our distributed setting.

This chapter is organized as follows: §2.2 contains a short introduction to CBGA and

its convergence analysis; §2.3 proposes the distributed CBGA algorithm for GMS and

discusses its various properties; §2.4 proposes immediate distributed implementations for

the Reaper and FMS algorithms; and §2.5 concludes with numerical experiments that

test the proposed algorithms for distributed RSR. Sections 2.6.1 and 2.6.2 use ideas

of §2.2 to solve the problems of distributed PCA and distributed geometric median.

Section 2.6.3 explains how to apply CADMM instead of CBGA for a distributed version

of GMS. Section 2.7 provides details of proofs of all theoretical statements.

2.2 Review of Consensus-Based Gradient Ascent (CBGA)

The setting of CBGA [7] assumes a connected network, with K nodes and M edges. It

also assumes a convex set of matrices S ⊆ RD×D and convex functions F1, . . . , FK on S,
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associated with the K nodes. The goal is to minimize
∑K

k=1 Fk over S, where each node

k has only access to Fk and may communicate to its neighbors. The consensus-based

formulation of this problem uses local neighborhoods as follows. For 1 ≤ k ≤ K, let Nk
denote the set of all nodes connected (by an edge) to the node k. The desired problem,

minQ∈S
∑K

k=1 Fk(Q), can be computed locally as follows:

min
Q1,...QK∈S

K∑
k=1

Fk(Qk),where Qk = Qq,∀1 ≤ k ≤ K, q ∈ Nk, q < k. (2.1)

The constraints in the right side of (2.1) are called consensus constraints. The consensus

constraints have the following formulation by a matrix equation. For 1 ≤ m ≤ M , let

em denote the edge indexed by m. We write em = {k, q} whenever em connects the

nodes indexed by k and q. For 1 ≤ k ≤ K and 1 ≤ m ≤M , Cmk is the following D×D
matrix

Cmk = cmkI, where cmk =


1, if em = {k, q} and k < q;

−1, if em = {k, q} and q < k;

0, otherwise.

(2.2)

Let C denote the DM × DK block matrix with blocks {Cmk}M,K
m=1,k=1 and let Q̄ =

[QT
1 , . . . ,Q

T
K ]T , then the consensus constraints can be formulated as CQ̄ = 0.

The minimization problem of (2.1) is inseparable and thus hard to compute in a

distributed setting. That is, one cannot find the exact solution by just computing and

adding results from each node. Instead, one needs to invoke the dual problem, which

we describe next. The Lagrangian for problem (2.1) is

L(Λ, Q̄) =

K∑
k=1

Fk(Qk) + tr(ΛTCQ̄),

where Λ = [ΛT
1 , . . . ,Λ

T
M ]T ∈ RMD×D, and the dual function is

d(Λ) = min
Q̄∈SK

L(Λ, Q̄). (2.3)
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Finally, the dual problem of (2.1) is

Λ̂ = arg maxΛ∈RMD×D d(Λ). (2.4)

Recall that strong duality means that the minimizer of (2.3) with Λ̂ found by the

dual problem (2.4) coincides with the minimizer of (2.1). In order to solve (2.3),

the CBGA procedure uses the following separability of the dual function: d(Λ) =∑K
k=1 dk(Λ), where

dk(Λ) = min
Qk∈S

(Fk(Qk) + tr(ΛT
mAk)), (2.5)

Ak =
∑
m∈Ek

cmkΛ
T
m, (2.6)

{cmk}M K
m=1,k=1 are defined in (2.2) and Ek denotes the set of all edges that contain the

node k. Such separation gives rise to a distributed solution of (2.3). In order to solve

(2.4), the CBGA procedure applies subgradient descent over Λ. According to [27], one

possible subgradient is CQ̄(Λ), where Q̄(Λ) is the solution of (2.3) for the given Λ.

Moreover, if d(Λ) is differentiable, then CQ̄(Λ) is the gradient. Therefore, the CBGA

algorithm simultaneously solves problems (2.3) and (2.4). It starts with an initial guess

of Λ, then solves the separable problem of (2.3), next uses it for subgradient descent

update of (2.4), which results in a new value of Λ, and iterates the two main steps until

convergence. The CBGA procedure converges if the following conditions are satisfied

(see [27]): 1. the set H is convex and the functions Fk are convex; 2. strong duality

holds for (2.1); 3. the subgradients of d(Λ) are uniformly bounded for all values of Λ.

We emphasize that this procedure assumes a solution of the separable problem in (2.3)

and without such a solution it is inapplicable.

2.3 Distributed GMS

We review the GMS problem in §2.3.1, propose a distributed solution in §2.3.2, establish

convergence guarantees in §2.3.3 and discuss the time complexity and possible reduction

of the communication cost in §2.3.4.
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2.3.1 Review of GMS

In order to motivate the GMS algorithm for RSR, we first review the following convex

formulation of PCA for full-rank data due to [24]. Assume that X = {xi}Ni=1 is a

dataset of N points in RD, centered at 0 and recall that the PCA d-subspace is the

d-dimensional linear subspace minimizing the sum of squared residuals. If the dataset X
is full rank, then according to Theorem 10 of [24] the PCA d-subspace is spanned by the

bottom d eigenvectors of the following matrix Q̂ (or equivalently, the top d eigenvectors

of −Q̂):

Q̂ = arg minQ∈H
∑
x∈X
‖Qx‖2, where H = {Q ∈ SD, tr(Q) = 1}. (2.7)

Here and throughout the chapter SD denotes the set of D-dimensional symmetric ma-

trices, SD+ denotes the set of D-dimensional positive semi-definite matrices and SD++

denotes the set of D-dimensional positive definite matrices.

The GMS procedure modifies (2.7) by replacing the squared deviations ‖Qx‖2 in

(2.7) with the more robust unsquared deviations ‖Qx‖, while smoothing the resulted

objective function around 0 with a parameter δ > 0. The convex minimization problem

of GMS [24] for the dataset X = {xi}Ni=1 ⊂ RD and the regularization parameter δ is

Q̃ = arg minQ∈H F
δ(Q), (2.8)

where H is defined in (2.7) and

F δ(Q) =
∑

x∈X ,‖Qx‖≥δ

‖Qx‖+
∑

x∈X ,‖Qx‖<δ

(
‖Qx‖2

2δ
+
δ

2

)
. (2.9)

Given a target dimension 1 ≤ d ≤ D−1, the output of GMS is a d-dimensional subspace

spanned by the bottom d eigenvectors of Q̃ (or the top ones of −Q̃).

Clearly, the objective function in (2.7) is strictly convex for full-rank data. The

objective function in (2.9) is strictly convex under the following stronger condition,

which is referred to as the two-subspaces criterion [24]:



7

Definition 1. A dataset Y satisfies the two-subspaces criterion if

(Y ∩L1) ∪ (Y ∩L2) 6= Y for all D − 1 dimensional subspaces L1,L2 ∈ RD. (2.10)

When this criterion is satisfied, the unique minimizer of (2.8) can be computed by a

very simple IRLS procedure (see Algorithm 2 in [24]). If the dataset is not centered, one

may appropriately center it at each iteration of the IRLS procedure. Alternatively and

more commonly, one may initially center the original data by the geometric median.

Zhang and Lerman [24] discuss the conditions under which GMS recovers the un-

derlying subspace and show that they hold with high probability under a certain prob-

abilistic model describing inliers and outliers (see §1.3 and §2 of [24]). These conditions

can be non-technically described as follows. First, the inliers need to spread throughout

the whole underlying subspace, that is, they cannot concentrate on a lower dimensional

subspace of the underlying subspace. Second, the outliers need to spread throughout

the complement of the underlying subspace within the ambient space. Third, the mag-

nitude of outliers needs to be restricted and they may not concentrate around lines.

Zhang and Lerman [24] propose some ways of preprocessing the data to avoid some

restrictions imposed by these conditions (see §5.2 of [24]).

The GMS solution to (2.9) can be interpreted as a robust inverse covariance esti-

mator. Indeed, the solution to the least-squares problem (2.7) is a scaled version of the

inverse sample covariance (see Theorem 10 of [24]). The IRLS procedure, which aims

to solve (2.9), scales the cross products of the sample covariance at each iteration in a

way which may avoid the effect of outliers, and then inverts the resulting matrix or a

regularized version of it.

2.3.2 Consensus-Based Subgradient Algorithm for Distributed GMS

We assume a dataset X with {Xk}Kk=1 distributed at K nodes. We further assume

that for 1 ≤ k ≤ K, Xk satisfies the two-subspaces criterion (see Definition (1)), so

they are full rank. For general X1, . . . ,XK which may not satisfy this criterion, we

suggest reducing their dimensions (see e.g., the discussion in §2.6.1) so that they are full-

rank. In typical cases of noisy inliers concentrated around a subspace, the preprocessed

X1, . . . ,XK with full rank will also satisfy the two-subspaces criterion.
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We follow §2.2 and solve the minimization problem for the dual function of GMS in

each node, while communicating these solutions via CBGA. Following (2.5), (2.8) and

(2.9), we need to solve at each node the following optimization problem:

dk(Λ) = min
Q∈H

Gδk(Q) for Gδk(Q) = F δk (Q) + tr(QAk), (2.11)

where

F δk (Q) =
∑

x∈Xk,‖Qx‖≥δ

‖Qx‖+
∑

x∈Xk,‖Qx‖<δ

(
‖Qx‖2

2δ
+
δ

2

)
.

To find the minimizer of (2.11) sufficiently fast, we introduce an iterative algorithm

similar to Algorithm 2 of [24] and guarantee its r-linear convergence. Let Q0
k = I/D

(or arbitrarily fix Q0
k ∈ SD++ ∩H) and for iteration 1 ≤ t ≤ T, let Qt

k be the solution of

the following Lyapunov equation in Q, where ck ∈ R is chosen such that tr(Qt
k) = 1:

Q

∑
x∈Xk

xxT

2 max(‖Qt−1
k x‖, δ)

+

∑
x∈Xk

xxT

2 max(‖Qt−1
k x‖, δ)

Q = ckI −Ak. (2.12)

The following lemma establishes the existence and uniqueness of ck ∈ R and Qt
k ∈

SD++ ∩H, which satisfy (2.12). It is proved in §2.7.5.

Lemma 1. Let X = {xi}Ni=1 be a full rank dataset in RD, Q ∈ SD++ ∩ H and A ∈ SD

with tr(A) = 0 and

‖A‖2 ≤ 1

/
tr

(∑
x∈X

xxT

2 max(‖x‖, δ)

)−1
 . (2.13)

There exists a unique c′ ∈ R such that the following equation with c = c′

P

(∑
x∈X

xxT

2 max(‖Qx‖, δ)

)
+

(∑
x∈X

xxT

2 max(‖Qx‖, δ)

)
P +A = cI (2.14)

has a unique solution P ∈ SD++ ∩H.
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If Q∗ is the solution of (2.14) with c = 0 and A = Ak, then

c′ = −2(tr(Q∗)− 1)

/
tr

(∑
x∈X

xxT

2 max(‖Q∗x‖, δ)

)−1
. (2.15)

Algorithm 1 summarizes the above procedure of solving (2.11). In §2.3.3 we establish

the r-linear convergence of {Qt
k}t∈N to the minimizer of (2.11).

Given this solution of the local problem, the iterative CBGA algorithm for GMS is

straightforward. As explained in §2.2, at each iteration s ≥ 1 and edge em = {k, q},
indexed by 1 ≤ m ≤ M , the CBGA algorithm needs to update the corresponding Λs

m

by the following gradient descent procedure

Λs
m = Λs−1

m + µ · (cmkQs−1
k − cmkQs−1

q ). (2.16)

Note that the update of Λs
m in (2.16) uses Λs−1

m and the local solutions {Qs−1
k }Kk=1 of the

previous iteration s− 1. The idea is to use Λs
m in solving the local problems. However,

these problems only require the matrices As
k =

∑
m∈Ek

cmk(Λ
s
m)T for k = 1, . . . ,K. The

combination of (2.16), the latter expression for As
k (see also (2.6)), the fact that c2

mk = 1

whenever the mth edge is incident to the kth vertex and appropriate replacement of the

set of edges Ek with the set of vertices Nk results in the following update formula

As
k = As−1

k + ρ
∑
q∈Nk

(
Qs−1
k −Qs−1

q

)
. (2.17)

The CBGA procedure for GMS thus iteratively updates the matrices {As
k}Kk=1, by using

the solutions of the local problems according to (2.17), and solves the local problems by

using the matrices {As
k}Kk=1. This simple procedure, which we refer to as CBGA-GMS

is summarized in Algorithm 2. In §2.7.6 we discuss how a sufficiently small step-size

in Algorithm 2 ensures that the above condition (2.13), which is necessary for solving

the local problems, is satisfied at each node for all iterations of Algorithm 1. We also

explain in §2.7.6 why the required upper bound in (2.13) can be relaxed in practice and

based on this observation we suggest a practical choice for the step-size in (2.36).
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Algorithm 1 Algorithm for computing the minimizer of (2.11)

Input: X = {x1, . . . ,xN} ⊆ RD: data, Ak ∈ SD with tr(Ak) = 0, TGMS : stopping
iteration number, δ : regularization parameter (default: 10−10)
Set: Q0

k = I/D and t = 0
while t ≤ TGMS or Gδk(Q

t+1
k ) > Gδk(Q

t
k) do

• Let Q∗ be the solution of (2.14) with Q = Qt
k, c = 0 and A = Ak

• Compute c′ according to (2.15)

• Let Q̂
t+1
k be the solution of (2.14) with Q = Qt

k, c = c′ and A = Ak

• t := t+ 1
end while
return Q̂k := Qt

k

Algorithm 2 Consensus-Based Subgradient Algorithm for GMS (CBGA-GMS)

Input: Network with K nodes and M edges, X1, . . . ,XK : datasets in the K nodes,
TCBGA, TGMS : stopping iteration numbers, δ: regularization parameter (default:
10−10) and µ: sufficiently small constant step-size
Set: For all 1 ≤ m ≤ M , Λ0

m = 0 and for all 1 ≤ k ≤ K, A0
k = 0 and Q0

k is the
solution of Algorithm 1 with input Xk, A0

k, TGMS and δ
for s = 1 : TCBGA do

for k = 1 : K do
• Transmit Qs−1

k to Nk

• Compute As
k according to (2.17)

• Qs
k is the output of Algorithm 1 with input Xk,As

k, TGMS and δ
end for

end for
return Lk := the span of the bottom d eigenvectors of QTCBGA

k , 1 ≤ k ≤ K
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2.3.3 Properties of CBGA-GMS

We establish r-linear convergence of Algorithm 1 and briefly discuss the mere conver-

gence of Algorithm 2 and its recovery guarantees. For completeness, we include the

definition of r-linear convergence.

Definition 2. A sequence {xk}∞k=1 ⊂ R r-linearly converges to x if there exists a se-

quence {vk}∞k=1 ⊂ R, such that |xk − x| < vk for all k and there exists q ∈ (0, 1) such

that vk+1 ≤ qvk for all k sufficiently large.

The following theorem guarantees that {Qt
k}t∈N of Algorithm 1 r-linearly converges

to the unique minimizer of (2.11). This theorem is later proved in §2.8.

Theorem 1. Assume Xk = {xi}Nki=1 ⊂ RD satisfies the two-subspaces criterion, Ak ∈
SD satisfies (2.13) and tr(Ak) = 0. If {Qt

k}t∈N is obtained by Algorithm 1 at node k

with TGMS =∞, then it r-linearly converges to the unique minimizer of (2.11).

Note that CBGA-GMS is a gradient descent method. Indeed, Theorem 2 of [24]

implies the strict convexity of F δ. This and Theorems 26.1 and 26.3 of [28] imply

the differentiability of its dual function d(Λ) =
∑K

k=1 dk(Λ), where dk(Λ) is defined in

(2.11).

The conditions for convergence of CBGA discussed in §2.2 are satisfied for CBGA-

GMS. Indeed, the first condition is straightforward, since Gδk and H are convex. The

strong duality of the problem is shown by easily verifying Slater’s condition (see §5.2.3

of [29]). Finally, the gradient of d(Λ) is CQ̄ and its norm is bounded by K||C||. Indeed,

for each 1 ≤ k ≤ K, the kth block of Q̄, Qk, is in SD++ with tr(Qk) = 1 and thus

||CQ̄|| ≤ K||C||.
Since the convex optimization problem for the total data of CBGA-GMS is the same

as the convex optimization problem for regular GMS [24], the exact and near recovery

theory of CBGA-GMS follow from [24].

2.3.4 Time Complexity

Algorithm 1 solves (2.12) twice. The computation of the coefficient of (2.12),

Nk∑
i=1

xix
T
i /(2 max(‖Q̂s−1

k xi‖, δ))
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, requires O
(
Nk ×D2

)
operations. Solving (2.12) requires O

(
D3
)

operations (see [30]).

Since Nk ≥ D, the total complexity for each iteration of algorithm 1 at node k is

O
(
Nk ×D2

)
. Denoting Nmax = max1≤k≤K Nk, we conclude that the complexities of

Algorithms 1 and 2 are O
(
TGMS ×Nmax ×D2

)
and O

(
TCBGA × TGMS ×Nmax ×D2

)
respectively.

Algorithm 2 transfers D×D matrices between nodes in each iteration, which might

not be cost efficient. In order to reduce the communication cost we suggest transferring

only the top d eigenvectors of those matrices. Once a node receives the top d eigen-

vectors, it reconstructs the D ×D matrix UTU/ tr(UTU), where U ∈ Rd×D contains

the orthogonal top d eigenvectors as rows. We cannot guarantee the convergence of this

modified procedure, but it seems to work well in practice.

2.4 Distributed Reaper and Distributed FMS

We present distributed versions of two other RSR algorithms: Reaper [25] and FMS

[26]. These algorithms are reviewed in §2.4.1 and their straightforward distributed

implementations are explained in §2.4.2.

2.4.1 Review of the Reaper and FMS Algorithms

Assume a dataset X ⊂ RD, a target dimension d ∈ {1, 2, . . . D− 1} and a regularization

parameter δ > 0.

The Reaper algorithm [25] solves the following convex optimization problem1:

min
P∈SD+ , tr(P )=d

∑
x∈X

‖x−Px‖≥δ

‖x− Px‖+
∑
x∈X

‖x−Px‖<δ

(
‖x− Px‖2

2δ
+
δ

2

)
. (2.18)

It uses an IRLS framework for minimizing (2.18). The robust d-subspace is spanned

by the top d eigenvectors of this solution. A generic condition for subspace recovery by

Reaper with an error bound is established in [25].2 It requires similar restrictions as

those described in the first and third non-technical conditions for GMS in §2.3.1.

1The formulation in [25] adds the additional optimization constraint I − P ∈ SD+ , but as is obvious
from the proof of Lemma 14 in [24], it is not needed and thus omitted from (2.18)

2For simplicity, the analysis in [25] is restricted to the case where δ = 0.
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Note that plugging Q = I − P into (2.9) results in an objective function similar to

(2.18). The main difference is that (2.18) further assumes that P ∈ SD+ .

The FMS algorithm [26] tries to directly solve a regularized least unsquared de-

viations variant of PCA. Recall that the PCA subspace minimizes the least-squares

function
∑

x∈X dist2(x, L), where dist(x, L) = miny∈L ‖x−y‖2, over the Grassmannian

G(D, d), which is the set of d-dimensional linear subspaces in RD. The least unsquared

deviations cost function is
∑

x∈X dist(x, L), where L ∈ G(D, d). FMS aims to minimize

the following smooth version of this function with the regularization parameter δ > 0:

min
L∈G(d,D)

∑
x∈X ,dist(x,L)≥δ

dist(x, L) +
∑

x∈X ,dist(x,L)<δ

(
dist2(x, L)

2δ
+
δ

2

)
. (2.19)

This minimization is hard to solve in general (it was proved to be NP hard when

δ = 0 [31]). FMS is a straightforward IRLS heuristic for solving (2.19). At each

iteration it scales the original data points by the square root of their distance to the

subspace of the previous iteration and then computes the current subspace by applying

PCA to the scaled data. Recovery and r-linear convergence of FMS were established

only for data generated from very particular probabilistic models [26] . However, in

practice FMS seems to obtain competitive accuracy and speed for many datasets.

We note that the target function in (2.19) is similar to that in (2.9), where dist(x, L)

replaces ‖Qx‖. In fact, both GMS and Reaper are convex relaxations of the minimiza-

tion in (2.19), where Reaper is the tightest possible one [25].

2.4.2 Distributed Implementations for Reaper and FMS

We assume a dataset X with {Xk}Kk=1 distributed at K nodes so that Xk has full rank

for 1 ≤ k ≤ K. If the data is not full rank, it is preprocessed according to the discussion

in §2.6.1.

Distributed Reaper requires distributedly solving (2.18). This can be done by ap-

plying distributed full PCA at each IRLS iteration of Algorithm 4.1 of [25]. More

precisely, this procedure first initializes the IRLS weights by β0
x = 1 for all data points

x ∈ X . Then, at each iteration s ≥ 1 it applies distributed full PCA of the weighted

dataset {
√
βs−1
x x}x∈X to obtain P s

k at each processor with index k. Then, it updates
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the weights by βx ← 1/max(δ, ‖x − P s
kx‖), for all x ∈ X . This procedure is iterated

until convergence and the local subspace is obtained by the top d eigenvectors of P s′
k ,

where s′ corresponds to the final iteration.

The distributed FMS is obtained by distributed PCA at each iteration of FMS.

Note that FMS uses randomized SVD to find only the top d principal components. For

central processing and D � d, we recommend applying a distributed randomized SVD

algorithm [32]. For an ad hoc network, we are not aware of effective implementation of

a distributed algorithm that can find only the top d principal components.

2.5 Numerical Experiments

This section tests the distributed algorithms proposed in this chapter using both syn-

thetic and real data. It is organized as follows: §2.5.1 describes the synthetic data

model, §2.5.2 contains experiments on data generated from this model and §2.5.7 con-

tains experiments on real datasets.

Throughout this section, Algorithm 1 uses TGMS = 30 and Algorithm 2 uses TCBGA =

250 and µ as in (2.36) or in a specified range of values. In all RSR algorithms the

regularization parameter is δ = 10−10. CBGA-PCA of §2.6.1 is used as “distributed

PCA” and is also implemented in the iterative schemes of distributed Reaper and FMS.

All codes necessary to duplicate these results are available in https://github.com/

vahanhuroyan/Distributed-RSR.

2.5.1 Synthetic Data Model for Distributed RSR

In §2.5.2 we use the following synthetic model to generate distributed RSR data. It

depends on the following parameters: K,N0, N1, D, d and σ. We create a connected

graph with K nodes as explained below, and we randomly fix L ∈ G(D, d). For each

node we sample N1/K inliers from the d-dimensional Multivariate Normal distribution

N(0,P L), where P L denotes the orthoprojector onto L, with additive Gaussian noise

N(0, σ2I), where 0 ≤ σ < 1. Furthermore, for each node we sample N0/K outliers

from the uniform distribution on [0, 1]D. Note that the outliers are asymmetric. Unless

otherwise specified (see §2.5.3), the graph is obtained by arbitrarily generating a span-

ning tree with K nodes and then randomly and independently connecting 2 nodes with

https://github.com/vahanhuroyan/Distributed-RSR
https://github.com/vahanhuroyan/Distributed-RSR
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probability 1/2. It is demonstrated for K = 8 in Fig. 2.1c.

2.5.2 Demonstration on Synthetic Data

We study the effect of the network topology and the step-size on the convergence rate

of CBGA-GMS in §2.5.3 and §2.5.4 respectively. In §2.5.5 we compare the accuracy

of a CADMM version of GMS with CBGA-GMS. In §2.5.6 we compare our proposed

distributed RSR algorithms. In each experiment 50 random samples are generated

according to the model of §2.5.1. The recovery error of the tested algorithm is averaged

over the random 50 samples. For Figs. 2.2a-2.2c we further average the recovery error

over the K processors to demonstrate the average rate of convergence. We remark that

in all experiments, the data is full rank at each processor, so there was no need to

initially apply dimension reduction.

2.5.3 The Influence of the Network Topology on Convergence
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(a)

1 2

3
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8

(b)

1 2

3

4

56

7
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Figure 2.1: Three types of connected networks with 8 nodes. Fig. 2.1a: sparsely
connected network; Fig. 2.1b: fully connected network; and Fig. 2.1c: randomly
connected network.

To check the effect of the network topology on the convergence rate we use three

different networks, whose graphs are shown in Fig. 2.1. The graph in Fig. 2.1a is sparse,

the graph in Fig. 2.1b is fully connected and the graph in Fig. 2.1c is generated according

to the recipe described in §2.5.1. We generate data according to the model of §2.5.1,

where K = 10, N1 = 200, N0 = 2000, D = 50, d = 3, σ = 0.1 and µ = 100. The average

recovery error as a function of the number of iterations for the 3 different networks is
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shown in Fig. 2.2a. The fully connected network has the fastest convergence and as the

network gets sparser, the convergence rate decreases.

2.5.4 The Influence of the Step-size on the Convergence Rate

We generate data according to the model of §2.5.1, whereK = 10, N1 = 200, N0 = 2000,

D = 50, d = 3, and σ = 0.1. Fig. 2.2b shows the average recovery error for CBGA-GMS

as a function of the number of iterations for 7 different step-sizes: 10, 30, 50, 100, 150,

200 and the one proposed in (2.36), whose value here is 22.5. The average error of GMS

for the total data is included as a baseline. These results imply that the convergence

rate increases with the step-size. However, additional experiments, not reported in here,

indicate that for a very large step-size the algorithm does not converge. We also note

that for large step-sizes, the increase of the step-size does not significantly change the

convergence rate, for example, for step-sizes 150 and 200 we see almost the same result,

while the difference between convergence results is obvious for smaller step-sizes.

2.5.5 Comparing CBGA-GMS with CADMM-GMS

A CADMM scheme for GMS, which directly follows [12], is described in §2.6.3. It is

referred to as CADMM-GMS. Both CBGA-GMS and CADMM-GMS are somewhat

parallel and it follows from (2.17) and (2.24) that their corresponding parameters µ and

ρ play similar roles. We compare them using data generated from the model described

in §2.5.1, where K = 5, D = 50, d = 3, σ = 0.05, N0 = 5000 and N1 = 500. We tested

the following same values of ρ and µ: 50, 100 and 200. We remark that the µ proposed

in (2.36) obtained the value 51.1. Since both algorithms performed similarly when using

this value and 50, we did not report the performance with this value. Fig. 2.2c shows the

recovery errors vs. the number of iterations for both algorithms with these step-sizes.

We note that both algorithms converge with very similar speed, where CBGA-GMS

converges slightly faster. For the smaller values of µ and ρ (100 and 200) the algorithms

achieve the same recovery error. However, for the larger value of the parameter (300),

the recovery error of CADMM-GMS is slightly higher than the recovery error of CBGA-

GMS.
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Figure 2.2: Demonstration of properties of the distributed algorithms on synthetic data.
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2.5.6 Comparison of the Proposed Algorithms

We compare GMS, the 3 proposed distributed RSR algorithms and distributed PCA

in different settings and report the results in Figs. 2.2d-2.2f. Fig. 2.2d demonstrates

how the inlier noise variance σ affects the convergence of the four methods. The data

for this figure was created according to the model described in §2.5.1, where D = 50,

d = 3, K = 5, N0 = 3000, N1 = 1000 and σ varies between 0 and 0.2 with increments

of 0.01. In this figure, for all tested values of σ, CBGA-PCA performs the worst and

distributed FMS performs the best, where CBGA-GMS and distributed Reaper are

somewhat comparable.

Figs. 2.2e and 2.2f demonstrate the influence of the outlier percentage on the average

recovery error of the four distributed methods and GMS (for the total data) with and

without inlier noise. We generate data according to the model of §2.5.1, where D = 50,

d = 3, K = 10, σ = 0 for Fig. 2.2e, σ = 0.5 for Fig. 2.2f, N0 = 5000 and N1 is

chosen such that the outlier percentage in the total data varies between 30% to 95%

with increments of 5%. For both cases (σ = 0 and σ = 0.05) and for all percentages of

outliers, the recovery error for distributed FMS is the smallest one and that of CBGA-

PCA is the largest one. Figs. 2.2e and 2.2f also demonstrate that when the data is

corrupted with outliers (percentage of outliers higher than 65%), the distributed RSR

algorithms perform significantly better than distributed PCA. For the case of σ = 0,

distributed FMS and CBGA-GMS succeed with exact recovery up to 90% and 55% of

outliers respectively, whereas distributed Reaper could not exactly recover the subspace

in the tested range.

In Figs. 2.2d, 2.2e and 2.2f, the recovery errors obtained by CBGA-GMS and GMS

are comparable. We remark that the distributed implementations of PCA, Reaper

and FMS also obtain similar recovery errors as the non-distributed ones in all of these

experiments. However, since these figures are already dense, we do not report the results

of the latter non-distributed implementations.
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Figure 2.3: Demonstration of the proposed distributed algorithms on two real datasets:
CTslices and HAR.

2.5.7 Real Data Experiments

Distributed RSR algorithms can be used as a preprocessing step for clustering, classifi-

cation and regression. We apply our proposed distributed algorithms as a preprocess-

ing step for two different tasks: linear regression, where we use the CTslices dataset

(N = 53,500, D = 386) [33], and classification (multiclass SVM), where we use the

Human Activity Recognition (HAR) dataset (N = 10,299, D = 561) [33, 34]. For both

datasets we apply initial centering by the geometric median and to ensure full-rank data

in all processors we reduce dimension to D = 150 by distributed exact PCA (see §2.6.1).

We remark that higher values of reduced dimensions D were also possible. We report

the results for one of the processors as they are the same for all of them.

For the CTslices data, the algorithms are trained on 50,000 data points and tested

on 3500 data points. The training data is divided between 5 processors, each containing

10,000 data points. We apply CBGA-PCA, CBGA-GMS, distributed FMS and dis-

tributed Reaper to reduce the dimension of the dataset to lie between 5 and 30. We

then apply linear least squares regression in the reduced dimension. Fig. 2.3a reports

the relative regression error for the different projected dimensions. The relative regres-

sion error is the regression error for the data with the reduced dimension divided by the

relative error for the data in 150 dimensions. We notice that for almost all dimensions,

the relative errors of distributed FMS and GMS are lower than those of distributed
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PCA, and the relative errors of distributed Reaper are either lower or comparable to

those of distributed PCA.

For the HAR data, the algorithms are trained on 7352 data points and tested on

2947 data points. The training data is divided between 8 processors, each containing

919 data points. We apply CBGA-PCA, CBGA-GMS, distributed FMS and distributed

Reaper to reduce the dimension of the dataset to lie between 2 and 20. We then apply

classification in the reduced dimensions. Fig. 2.3b reports classification error for the

different projected dimensions. It demonstrates that in dimension 2, the distributed

RSR algorithms, in particular, distributed FMS and GMS, have a clear advantage over

distributed PCA. In other dimensions, distributed RSR algorithms perform at least as

good as distributed PCA.

We comment that for all real datasets, the results of the distributed algorithms are

very similar to those of the non-distributed ones. Differences between all distributed

and non-distributed implementations may exist when the initial dimension D is large

and an initial dimension reduction by OSE is applied (see §2.6.1). An effect of OSE on

the performance of PCA in a distributed setting is documented in [19].

2.6 Solutions of Related Problems

We first use the idea of CBGA-GMS to solve two simpler problems: distributed compu-

tation of the PCA subspace and distributed computation of the geometric median. We

then describe a CADMM solution for distributed GMS.

2.6.1 Distributed PCA for Arbitrarily Distributed Network

Before describing the CBGA procedure for PCA, we remark that if the dimension D is

not high, then the following simple procedure can be applied to solve the problem. One

may propagate the local covariance matrices among the network and recover the exact

covariance matrix at each processor and use it for PCA computation. We refer to it as

exact distributed PCA. If the dimension D is high, then it can be reduced by an OSE

procedure described below before applying the exact distributed PCA algorithm.

Our proposed CBGA-PCA algorithm is similar to [4, 21, 22], but uses instead the

PCA formulation in (2.7). This formulation leads to a direct solution of the local
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optimization problem. In order to apply (2.7), one needs to guarantee that for all

1 ≤ k ≤ K, Xk has full rank. If Xk is rank-deficient, one can reduce its dimension.

If the dimension D is high, one can sample an Oblivious Subspace Embedding (OSE)

matrix H [35] and instead of Xk consider HXk. One common OSE H has only one

non-zero entry per row. By taking an appropriate number of rows for H, one can

assume that the projected data at each node has full rank. If the dimension D is not

high, then the exact distributed PCA, or a faster approximate version of it, can be used

to reduce the dimension.

Next, we clarify the application of CBGA to (2.7). In view of §2.2, it is sufficient to

compute the dual function of (2.7) at each node, that is, compute for each 1 ≤ k ≤ K:

dk(Λ) = min
Q∈H

∑
x∈Xk

‖Qx‖2 + tr(AkQ)

 , where Ak =
∑
m∈Ek

cmkΛ
T
m. (2.20)

Appendix 2.7.1 guarantees the unique minimizer of (2.20) and explains how to find it.

Since the minimized function in (2.7) is strongly convex, it follows from [36] that its

dual function d(Λ) =
∑K

k=1 dk(Λ), where dk(Λ) is defined in (2.20), is Lipschitz smooth.

This implies that the CBGA algorithm for PCA converges to the PCA solution for the

total data with rate O(1/t). The complexity of CBGA-PCA is O(TCBGA ×Nmax ×D2)

(see §2.7.4). This algorithm is not optimal in terms of complexity and communication.

Indeed, the distributed exact PCA algorithm described above is simpler and achieves

the exact PCA subspace. Nevertheless, we find this CBGA-PCA interesting for two

reasons. First of all, it is similar to previous attempts [4,21,22] that did not clarify how

to solve the local dual problem. Second of all, CBGA-PCA simply demonstrates the

main idea of the more complicated CBGA-GMS procedure.

2.6.2 Distributed Geometric Median

The geometric median of a discrete dataset X ⊂ RD is defined as

arg miny∈RD
∑
x∈X
‖x− y‖. (2.21)
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Weiszfeld’s algorithm [37] is a common numerical approach to approximating (2.21)

within a sufficiently small error. It applies an iteratively reweighted least squares (IRLS)

procedure. However, if in one of the iterations, the estimate coincides with one of the

data points, then Weiszfeld’s algorithm fails to converge to the geometric median. To

avoid this issue, we consider the following regularized version of (2.21):

arg miny∈RD
∑

x∈X ,‖x−y‖≥δ

‖x− y‖+
∑

x∈X ,‖x−y‖<δ

(
‖x− y‖2

2δ
+
δ

2

)
, (2.22)

where δ > 0 is a small regularization parameter. We can solve (2.22) by the generalized

Weiszfeld’s algorithm [38, §4]. This algorithm runs as follows: it starts with an initial

guess y0 ∈ RD, and at iteration s ≥ 1 it computes

ys =
∑
x∈X

x

max
(
‖x− ys−1‖, δ

) / ∑
x∈X

1

max
(
‖x− ys−1‖, δ

) .
The sequence {ys}s∈N r-linearly converges to the solution of (2.22) (see [38]).

We assume a dataset X with {Xk}Kk=1 distributed at K nodes, and distributedly

compute the regularized geometric median of X by CBGA. In view of §2.2, it is enough

to compute the dual function of (2.22) at each node, that is, compute for each 1 ≤ k ≤ K

dk(λ) = min
y∈RD

∑
x∈Xk,
‖x−y‖≥δ

‖x− y‖+
∑

x∈Xk,
‖x−y‖<δ

(
‖x− y‖2

2δ
+
δ

2

)
+
∑
m∈Ek

cmkλ
T
my, (2.23)

where λ = [λT1 , . . . ,λ
T
M ]T ∈ RMD. We suggest solving (2.23) by IRLS as follows: start

with an initial guess y0
k ∈ RD and at iteration s ≥ 1 compute

ysk =

2
∑
x∈Xk

x

max
(
‖x− ys−1

k ‖, δ
) − ∑

m∈Ek

cmkλm

/ 2
∑
x∈Xk

1(
‖x− ys−1

k ‖, δ
)
 .

The convergence of {ysk}s∈N follows from that of IRLS (see [38]) and CBGA (see §2.2).
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2.6.3 CADMM Solution for the Distributed GMS Problem

We formulate in Algorithm 3 a CADMM solution of the distributed GMS problem by

following the CADMM scheme of [12]. The solution of the local problem is discussed in

§2.6.4.

Algorithm 3 CADMM implementation for distributed GMS (CADMM-GMS)

Input: Network with K nodes, X1, . . . ,XK : datasets in the K nodes, TCADMM ,

TGMS : stopping iteration numbers, δ: regularization parameter (default: 10−10) and

ρ: penalty parameter for CADMM

Set: For all 1 ≤ k ≤ K, Z0
k = 0 and Q0

k is the solution of Algorithm 1 with input

Xk, Ak = 0, TGMS and δ

for s = 1 : TCADMM do

• For 1 ≤ k ≤ K update Zs
k by

Zs
k = Zs−1

k + ρ
∑
j∈Nk

(
Qs−1
k −Qs−1

j

)
(2.24)

• For 1 ≤ k ≤ K apply the algorithm described in §2.6.4 to solve

Qs
k = arg minQk∈H G̃ADMM (Qk), where (2.25)

G̃ADMM (Qk) = Fk(Qk) + tr
(
QT
kZ

s
k

)
+ ρ

∑
j∈Nk

∥∥∥∥Qk −
Q

(s−1)
k +Q

(s−1)
j

2

∥∥∥∥2

2

end for

return Lk := the span of the bottom d eigenvectors of QTCADMM
k , 1 ≤ k ≤ K

2.6.4 Algorithm for computing the solution of (2.25)

We propose an iterative scheme for solving (2.25), which is almost identical to Algo-

rithm 1, but at each iteration s instead of finding the trace one solution of (2.14), it
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finds the trace one solution of the following Lyapunov equation in P :

P

∑
x∈Xk

xxT

2 max(‖Qx‖, δ)
+ ρ|Nk|I

+

∑
x∈Xk

xxT

2 max(‖Qx‖, δ)
+ ρ|Nk|I

P
+Zs

k − ρ
∑
j∈Nk

(
Qs−1
k +Qs−1

j

)
= cI. (2.26)

Here, c is chosen so that tr(P ) = 1 and its existence is guaranteed by Lemma 3. The

convergence theory for this iterative algorithm is the same as the one developed for

Algorithm 1.

2.7 Supplementary Details

2.7.1 On the Minimizer of (2.20)

We first state the main result of this section:

Lemma 2. If Xk ⊂ RD is full rank and Ak ∈ SD, then the minimizer of (2.20) is

unique. Furthermore, there exists a unique c′ ∈ R such that this minimizer is the

unique solution of the following equation with c = c′

Q

∑
x∈Xk

xxT

+

∑
x∈Xk

xxT

Q+Ak = cI. (2.27)

Section 2.7.2 states and proves a lemma about the solution of the above Lyapunov

equation and §2.7.3 then uses this latter lemma to conclude lemma 2. At last, §2.7.4

briefly discusses the computation of the minimizer of (2.20).

2.7.2 Preliminary lemma

We verify the following lemma.

Lemma 3. If c ∈ R, X ∈ SD++ and A ∈ SD, then the following Lyapunov equation

QX +XQ+A = cI (2.28)
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has a unique solution in Q ∈ SD. Furthermore, tr(Q) is an increasing linear function

of c with slope tr(X−1)/2.

Proof. The existence and uniqueness of the solution of (2.28) is well-known [39, page

107]. We thus only need to show that tr(Q) is an increasing linear function of c. Assume

that Q1 and Q2 are the solutions of (2.28) corresponding to c1 and c2, that is,

Q1X +XQ1 +A = c1I and Q2X +XQ2 +A = c2I. (2.29)

Subtracting the two equations in (2.29), results in

(Q1 −Q2)X +X(Q1 −Q2) = (c1 − c2)I, (2.30)

whose unique solution is (Q1 −Q2) = (c1 − c2)X−1/2. By taking traces of both sides

of the solution, we get that (tr(Q1)− tr(Q2))/(c1 − c2) = tr(X−1)/2 > 0.

2.7.3 Proof of Lemma 2

Since Xk is full rank,
∑

x∈Xk xx
T ∈ SD++. Hence the minimized function in (2.20) is

strongly convex and its minimizer is unique.

We note that (2.27) is a Lyapunov equation in Q. Lemma 3 implies that there is

a unique value c′ for which the unique solution of (2.27) has trace 1. We denote this

solution by Q′. Next, we show that Q′ is the minimizer of (2.20). The following two

facts:
∑

x∈Xk ‖Qxk‖
2 + tr(AkQ) =

∑
x∈Xk tr(Qxkx

T
kQ) + tr(AkQ) for Q ∈ H and

tr(Q) = 1 for Q ∈ H, imply the same minimizer for (2.20) and

min
Q∈H

l(Q), where l(Q) =
∑
x∈Xk

tr(Qxkx
T
kQ) + tr(AkQ)− c′ tr(Q). (2.31)

Since l(Q) is convex on H, we conclude that Q′ minimizes (2.31) by showing that the

derivative of l(Q) at Q′, when restricted to H, is 0:

d

dQ
l(Q)

∣∣∣∣
Q=Q′

= Q′

∑
x∈Xk

xxT

+

∑
x∈Xk

xxT

Q′ +Ak − c′I = 0. �
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2.7.4 Computing the Minimizer of (2.20)

In view of Lemma 3 we compute c′ and the corresponding solution of (2.29) as follows.

We solve (2.27) with c = 0 to obtain Q∗ ∈ SD. We then use tr(Q∗) and the slope

tr(X−1)/2, where X =
∑

x∈Xk xx
T , to find c′. Therefore, computing this minimizer

requires computing X, which costs O(Nmax×D2), and solving two Lyapunov equations,

which costs O(D3) (see [30]).

2.7.5 Proof of lemma 1

Let X =
∑N

i=1 xix
T
i / (2 max(‖Qxi‖, δ)) and note that X ∈ SD++. This observation

and Lemma 3 imply that there is a unique value c ∈ R for which (2.14) has a unique

solution in H. We will show that c > λ1(A), equivalently A− cI � 0, and thus in view

of [39, page 107], this solution is in SD++.

To get this estimate, we rewrite (2.14) as P + XPX−1 + AX−1 = cX−1. Ap-

plying trace to both sides and using the following facts: tr(P ) = 1, tr(XPX−1) =

tr(X−1XP ) = 1 and tr(AX−1) ≥ λD(A) tr(X−1) yields c ≥ 2/ tr(X−1) + λD(A).

Let X∗ =
∑N

i=1 xix
T
i / (2 max(‖xi‖, δ)) . Since Q ∈ SD+ ∩ H and max(‖Qxi‖, δ) ≤

max(‖xi‖, δ) for 1 ≤ i ≤ N, X −X∗ ∈ SD+ , which implies that X−1
∗ −X−1 ∈ SD+ .

Combining the last result with (2.13), ‖A‖2 > λ1(−A) and the estimate of c we obtain

that c ≥ 2/ tr(X−1
∗ ) + λD(A) ≥ 2‖A‖2 − λ1(−A) ≥ λ1(A).

The last statement of the lemma is a direct application of Lemma 3. �

2.7.6 On the Choice of the Step-Size

In view of lemma 1, we require that condition (2.13) holds at each iteration of Algo-

rithm 2 and each node k. The following lemma shows that a choice of a sufficiently

small step-size µ guarantees this requirement. After verifying this lemma, we discuss

weaker restrictions on the step-size as well as a weaker practical version of condition

(2.13).
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Lemma 4. If {Xk}Kk=1 ⊂ RD are datasets distributed at K nodes, n ∈ N and

µ ≤ 1

n · max
1≤k≤K

|Ek| · tr

( ∑
x∈Xk

xxT

max(‖x‖,δ)

)−1
 , (2.32)

then at each iteration s ≤ n of Algorithm 2 and node k, As
k satisfies condition (2.13).

Proof. We estimate the LHS of (2.13) at iteration s as follows:

‖As
k‖2 =

∥∥∥∥∥∥
∑
m∈Ek

cmkΛ
s
m

∥∥∥∥∥∥
2

≤
∑
m∈Ek

‖Λs
m‖2. (2.33)

In order to evaluate ‖Λs
m‖2 for 1 ≤ m ≤M, we apply (2.16) and basic inequalities:

‖Λs
m‖2 = ‖Λs−1

m + µ(cmkQ
s
k − cmkQs

q)‖2 ≤ ‖Λs−1
m ‖2 + µ‖Qs

k −Qs
q‖2 ≤

‖Λs−1
m ‖2 + µmax{‖Qs

k‖2, ‖Qs
q‖2} ≤ ‖Λs−1

m ‖2 + µ ≤ · · · ≤ sµ ≤ nµ. (2.34)

Combining (2.32), (2.33) and (2.34) results in

‖As
k‖2 ≤

∑
m∈Ek

‖Λs
m‖2 ≤ |Ek|nµ ≤ 1

/
tr

(∑
x∈X

xxT

2 max(‖x‖, δ)

)−1
 . (2.35)

In practice one may apply several iterations with the same fixed step-size and gradu-

ally reduce it until it satisfies the estimate above. Nevertheless, this estimate represents

a worse-case scenario and typically we expect an improved one. Indeed, first note that

condition (2.13) represents a worse-case scenario. In the proof of lemma 1 we used

the worst-case estimate ‖Q‖ ≤ 1. However, typically ‖Q‖ ∼ 1/D. This will intro-

duce a multiplicative factor D for the RHS of (2.13) and thus of (2.32). Second, in

(2.34) we used the estimate ‖Qs
k −Qs

q‖ ≤ max{‖Qs
k‖2, ‖Qs

q‖2} ≤ 1. However, typically

for Qs
k,Q

s
q ∈ H ∩ SD++, max{‖Qs

k‖2, ‖Qs
q‖2} ∼ 1/D. This observation introduces an-

other multiplicative factor D for the RHS of (2.32). These two observations suggest, in
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practice, the following choice of a step-size:

µ =
D2

n · max
1≤k≤K

|Ek| · tr

( ∑
x∈Xk

xxT

max(‖x‖,δ)

)−1
 . (2.36)

Third of all, we note that for sufficiently small step-sizes the gradient descent gets closer

to the solution, that is, ‖Qs
k−Qs

q‖2 → 0, for 1 ≤ k, q ≤ K. However, we used 1/D as an

upper bound for ‖Qs
k−Qs

q‖2. At last, we comment that while the above analysis aims to

guarantee that at each iteration the solution is in H∩SD++ (since (2.13) guarantees this),

in practice it is not a main concern for small step-sizes and large number of iterations.

Indeed, the solution of (2.4) coincides with the solution of GMS for the total data, which

is in H∩SD++. Thus, by choosing the step-size small enough we will always converge to

the solution.

2.8 Proof of Theorem 1

We establish an auxiliary lemma in §2.8.1 and conclude Theorem 1 in §2.8.2 by following

ideas of [24,38] and using this lemma.

2.8.1 Preliminary Proposition

We first apply Lemma 3 to define the mapping TA(Q) and then establish the continuity

of TA(Q) in SD++.

Definition 3 (The mapping TA(Q)). If {xi}Ni=1 ⊂ RD, δ > 0, Q ∈ SD+ ∩H and A ∈ SD

with tr(A) = 0, then TA(Q) is the solution of the following equation in P

P

(
N∑
i=1

xix
T
i

max(‖Qxi‖, δ)

)
+

(
N∑
i=1

xix
T
i

max(‖Qxi‖, δ)

)
P +A = cI, (2.37)

where c = c(Q) ∈ R is uniquely chosen so that the solution has trace 1.

Lemma 5. Assume a sequence {Qt}t∈N ⊂ SD++∩H, A ∈ SD with tr(A) = 0, {xi}Ni=1 ⊂
RD and δ > 0. If Qt → Q̂, then TA(Qt)→ TA(Q̂).
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Proof. For t ∈ N, let P t = TA(Qt) be the trace one solution of (2.37) with Q = Qt and

c = ct. Let P̂ = TA(Q̂) be the trace one solution of (2.37) with Q = Q̂ and c = ĉ. We

need to prove that P t → P̂ as t→∞. We write (2.37) with P t,Qt and ct as

P t

(
N∑
i=1

xix
T
i

max(‖Qtxi‖, δ)

)
+

(
N∑
i=1

xix
T
i

max(‖Qtxi‖, δ)

)
P t +A = ctI. (2.38)

Note that Rt :=
∑N

i=1 xix
T
i /max(‖Qtxi‖, δ) → R̂ :=

∑N
i=1 xix

T
i /max(‖Qxi‖, δ) as

t→∞. Also observe that for Q = Q̂, c = ĉ and TA(Qt) = P t, (2.37) has the form

P tRt +RtP t +A = ctI. (2.39)

By subtracting ctI from both sides of (2.39) and rewriting ctI = ctRt−1
Rt/2+RtctRt−1

/2,

(2.39) becomes (P t − ctRt−1
/2)Rt + Rt(P t − ctRt−1

/2) + A = 0. Similarly, (P̂ −
ĉR̂
−1
/2)R̂ + R̂(P̂ − ĉR̂−1

/2) + A = 0. Since A is fixed and Rt → R̂ as t → ∞, it

follows from the last two expressions that

P t − ctRt−1
/2→ P̂ − ĉR̂−1

/2 as t→∞. (2.40)

By taking the trace of both sides of (2.40) and using the facts that tr(P t) = tr(P̂ ) = 1

and R̂
t → R as t→∞, we get that ct → ĉ and consequently P t → P̂ as t→∞.

2.8.2 Conclusion of Theorem 1

We divide the proof of Theorem 1 into the following steps suggested in [24].

Step 1: The majorizing function H and its minimizer. Let Hδ
k denote the

following function

Hδ
k(Q,Q∗) =

∑
x∈Xk

(
‖Qx‖2

2 max(‖Q∗x‖, δ)
+

max(‖Q∗x‖, δ)
2

)
+ tr(QAk). (2.41)

We show next that Hδ
k majorizes Gδk, that is,

Hδ
k(Q,Q) = Gδk(Q) and Gδk(Q) ≤ Hδ

k(Q,Q∗). (2.42)
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The above equality is immediate. To prove the above inequality we define

Gδk(x,Q) =

‖Qx‖, if ‖Qx‖ ≥ δ;
‖Qx‖2

2δ + δ
2 , if ‖Qx‖ < δ,

Hδ
k(x,Q,Q∗) =

‖Qx‖2

2 max(‖Q∗x‖, δ)
+

max(‖Q∗x‖, δ)
2

.

We show that Gδk(x,Q) ≤ Hδ
k(x,Q,Q∗) by considering four complementing cases:

Case 1: ‖Qx‖ ≥ δ and ‖Q∗x‖ ≥ δ. In this case

Gδk(x,Q) = ‖Qx‖ =
‖Qx‖‖Q∗x‖
‖Q∗x‖

≤ ‖Qx‖
2 + ‖Q∗x‖2

2‖Q∗x‖
= Hδ

k(x,Q,Q∗).

Case 2: ‖Qx‖ ≥ δ and ‖Q∗x‖ < δ. We conclude the desired property as follows 0 ≤
(‖Qx‖ − δ)2 = ‖Qx‖2 − 2‖Qx‖δ + δ2 = δ

(
Hδ
k(x,Q,Q∗)−Gδk(x,Q)

)
.

Case 3: ‖Qx‖ < δ and ‖Q∗x‖ ≥ δ. In this case

Gδk(x,Q)−Hδ
k(x,Q,Q∗) =

1

2

(
‖Qx‖2

δ
+ δ − ‖Qx‖

2

‖Q∗x‖
− ‖Q∗x‖

)
=

‖Q∗x‖ − δ
2

(
‖Qx‖2

δ‖Q∗x‖
− 1

)
≤ 0.

Case 4: ‖Qx‖ < δ and ‖Q∗x‖ < δ. Then Gδk(x,Q) = Hδ
k(x,Q,Q∗).

We thus conclude (2.42) as follows

Gδk(Q) =
∑
x∈Xk

Gδk(x,Q) + tr(QAk) ≤ Hδ
k(x,Q,Q∗) + tr(QAk) = Hδ

k(Q,Q∗). (2.43)

Next, we claim that the minimizer of Hδ
k(Q,Qt

k) over all Q ∈ H is Qt+1
k . First we

note that since the data satisfies the two-subspaces criterion and since tr(AkQk) is a

linear function, then according to Theorem 2 of [24], Hδ
k(Q,Qt

k) is strictly convex over

Q ∈ H. We further note that for Q ∈ H, Hδ
k(Q,Q∗) = H̃δ

k(Q,Q∗), where

H̃δ
k(Q,Q∗) =

∑
x∈Xk

(
tr(QxxTQ)

2 max(‖Q∗x‖, δ)
+

max(‖Q∗x‖, δ)
2

)
+ tr(QAk). (2.44)
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Therefore, the minimizers over H of Hδ
k(Q,Qt

k) and H̃δ
k(Q,Qt

k)−ck tr(Q) are the same.

We compute the derivative of the latter term w.r.t. Q as follows:

d

dQ

(
H̃δ
k(Q,Qt

k)− ck tr(Q)
)∣∣∣∣

Q=Qt+1
k

=

1

2

Qt+1
k

∑
x∈Xk

xxT

max(‖Qt
kx‖, δ)

+
∑
x∈Xk

xxT

max(‖Qt
kx‖, δ)

Qt+1
k

+Ak − ckI = 0. (2.45)

The last equation follows from the definition of Qt+1
k (see (2.12)). Combining this with

the fact that Hδ(Q,Qt
k) is strictly convex when restricted to Q ∈ H, we conclude that

Qt+1
k is the unique minimizer of Hδ(Q,Qt

k) for Q ∈ H.
Step 2: Convergence of {Gδk(Q

t
k)}t∈N. We first note that Gδk is bounded from

below on H. Indeed, Gδk(Q) ≥ tr(QAk) ≥ tr(Q)×min eig(Ak) = min eig(Ak).

Next, we show that Gδk(Q
t
k) decreases with t. By using (2.42) and the fact that

Qt+1
k is the minimizer of Hδ

k(Q,Qt
k) for Q ∈ H, we get that

Gδk(Q
t+1
k ) ≤ Hδ

k(Qt+1
k ,Qt

k) ≤ Hδ
k(Qt

k,Q
t
k) = Gδk(Q

t
k). (2.46)

Since {Gδk(Q
t
k)}t∈N is bounded from below and decreases, it converges.

Step 3: ‖Qt
k − Q

t+1
k ‖ → 0 as t → ∞. It follows from (2.45) and the fact that

Qt
k −Q

t+1
k ∈ SD has trace 0, that

tr

(Qt+1
k

∑
x∈Xk

xxT

max(‖Qt
kx‖, δ)

+
∑
x∈Xk

xxT

(‖Qt
kx‖, δ)

Qt+1
k + 2Ak)(Q

t
k −Qt+1

k )

 = 0.

Simplifying the above equation, we get that

tr
(
Ak

(
Qt
k −Qt+1

k

))
= − tr

Qt+1
k

∑
x∈Xk

xxT

max(‖Qt
kx‖, δ)

(
Qt
k −Qt+1

k

) =

tr

∑
x∈Xk

Qt+1
k xxT (Qt+1

k −Qt
k))

max(‖Qt
kx‖, δ)

 =
∑
x∈Xk

xTQt+1
k (Qt+1

k −Qt
k)x

max(‖Qt
kx‖, δ)

. (2.47)
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It follows from (2.46) and (2.41) that

Gδk(Q
t
k)−Gδk(Qt+1

k ) ≥ Hδ
k(Qt

k,Q
t
k)−Hδ

k(Qt+1
k ,Qt

k) =

1

2

∑
x∈Xk

(
‖Qt

kx‖2 − ‖Q
t+1
k x‖2

max(‖Qt
kx‖, δ)

)
+ tr((Qt

k −Qt+1
k )A) =

1

2

∑
x∈Xk

(
xT (Qt

k)
2x− xT (Qt+1

k )2x

max(‖Qt
kx‖, δ)

)
+ tr((Qt

k −Qt+1
k )A). (2.48)

The combination of (2.47) and (2.48) yields

Gδk(Q
t
k)−Gδk(Qt+1

k ) ≥ 1

2

∑
x∈Xk

(
xT (Qt

k)
2x− xT (Qt+1

k )2x

max(‖Qt
kx‖, δ)

)
+

∑
x∈Xk

xTQt+1
k (Qt+1

k −Qt
k)x)

max(‖Qt
kx‖, δ)

=
1

2

∑
x∈Xk

‖(Qt
k −Q

t+1
k )x‖2

max(‖Qtx‖, δ)
≥ 0. (2.49)

Since {G(Qt
k)}t∈N converges, (2.49) implies that

∑
x∈Xk

‖(Qt
k −Q

t+1
k )x‖2

max(‖Qt
kx‖, δ)

→ 0 as t→∞ (2.50)

and consequently (using the fact that Span{x}x∈Xk = RD):

‖Qt
k −Qt+1

k ‖ → 0 as t→∞. (2.51)

Step 4: Convergence of {Qt
k}t∈N to the minimizer of Gδk(Q). The sequence

{Qt
k}t∈N lies in the compact set of positive semi-definite matrices with trace 1. By

Bolzano-Weierstrass theorem, {Qt
k}t≥1 has a converging subsequence. Let Q̃k denote

the limit of the subsequence. We show that

Q̃k = arg minQ∈HG
δ
k(Q). (2.52)

By lemma 5 and the fact that the limits of Gδk(Q
t
k) and Gδk(Q

t+1
k ) ≡ Gδk(TA(Qt

k))

are the same, we conclude that Gδk(Q̃k) = Gδk(TA(Q̃k)). Combining this result with
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(2.46) we get that Hδ
k(TA(Q̃k), Q̃k) = Hδ

k(Q̃k, Q̃k). Since TA(Q̃k) is the unique min-

imizer of Hδ
k(Q, Q̃k) among all Q ∈ H we get that TA(Q̃k) = Q̃k. That is, Q̃k is

the unique minimizer of Hδ
k(Q, Q̃k) and H̃δ

k(Q, Q̃k) among all Q ∈ H and thus the

directional derivatives of H̃δ
k(Q, Q̃k) with respect to Q restricted to H are 0. Hence,

tr

((
d
dQH̃

δ
k(Q, Q̃k)|Q=Q̃k

)(
P − Q̃k

)T)
= 0 and thus there exists c ∈ R such that

d
dQH̃

δ
k(Q, Q̃k)|Q=Q̃k

= cI. This implies that

cI =
1

2
Q̃k

∑
x∈Xk

xxT

max(‖Q̃kx‖, δ)
+

1

2

∑
x∈Xk

xxT

max(‖Q̃kx‖, δ)
Q̃k +Ak =

d

dQ
G̃δk(Q)|Q=Q̃k

, (2.53)

where

G̃δk(Q) =
∑

x∈Xk,‖Qx‖≥δ

√
tr(QxxTQ) +

∑
x∈X ,‖Qx‖<δ

(
tr(QxxTQ)

2δ
+
δ

2

)
+ tr(QAk).

The directional derivatives of d
dQG̃

δ
k(Q)|Q=Q̃k

restricted to H are

tr

((
d

dQ
G̃δk(Q)|Q=Q̃k

)(
P − Q̃k

)T)
= tr

(
cI
(
P − Q̃k

)T)
= 0, (2.54)

where for the first equality we used (2.53) and for the last equality we used that P , Q̃k ∈
H and thus tr(P ) = tr(Q̃k) = 1. Equation (2.54) and the fact that Gδk(Q) = G̃δk(Q)

for Q ∈ H imply (2.52). Finally, combining (2.51), (2.52), the definition of Q̃k and [40,

Theorem 2.1], we conclude that Qt
k → Q̃k as t→∞.

Step 5: r-linear Convergence. The proof of r-linear convergence of Qt
k follows

from Theorem 6.1 of [38] (similarly to the proof of Theorem 11 of [24]). To show that

the conditions of the theorem are satisfied we just need to check that the functions G

and H satisfy Hypotheses 4.1 and 4.2 of [38] (see proof of Theorem 6.1 in there and

note that G and H of this work are parallel to F and H of [38], respectively). We note

that [38] states the result for vector-valued functions, which can be easily generalized

for matrix-valued functions. Since Qt
k converges, it is enough to show that Hypotheses

4.1 and 4.2 hold for some local neighborhood B(Q̃k, ε) of Q̃k, for some ε > 0. Conditions
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1 and 3 of Hypothesis 4.1 are easy to check, since G is twice differentiable on B(Q̃k, ε)

and G is bounded from below (as we have already shown). There is no need to check

condition 2, since Q is restricted to H. To verify condition 1 of Hypothesis 4.2 we need

to show that

Hδ
k(Q1,Q2) = Gδk(Q2) + tr((Q1 −Q2)T

d

dQ
Gδk(Q)|Q=Q2

)+

1

2
tr((Q1 −Q2)TC(Q2)(Q1 −Q2)). (2.55)

To prove (2.55), we write its RHS as follows:

∑
x∈Xk,‖Q2x‖≥δ

‖Q2x‖+
∑

x∈Xk,‖Q2x‖<δ

(
‖Q2x‖2

2δ
+
δ

2

)
+ tr(Q2Ak)+

tr

(
(Q1 −Q2)T

1

2

(
Q2

∑
x∈Xk

xxT

max(‖Q2x‖, δ)
+
∑
x∈Xk

xxT

max(‖Q2x‖, δ)
Q2

)
+Ak

)
+

tr((Q1 −Q2)T
1

2
C(Q2)(Q1 −Q2)).

By setting C(Q) =
∑

x∈Xk xx
T /max(‖Qx‖, δ), the above equation becomes

∑
x∈Xk,‖Q2x‖≥δ

‖Q2x‖+
∑

x∈Xk,‖Q2x‖<δ

(
‖Q2x‖2

2δ
+
δ

2

)
+ tr(Q2Ak)+

tr

(
(Q1 −Q2)TQ2

∑
x∈Xk

xxT

max(‖Q2x‖, δ)
+Ak

)
+

tr

(Q1 −Q2)T
∑
x∈Xk

xxT

2 max(‖Q2x‖, δ)
(Q1 −Q2)

 =
∑

x∈Xk,‖Q2x‖≥δ

‖Q2x‖+

∑
x∈Xk,‖Q2x‖<δ

(
‖Q2x‖2

2δ
+
δ

2

)
+ tr(Q1Ak)−

∑
x∈Xk

‖Q2x‖2

max(‖Q2x‖, δ)
+

∑
x∈Xk

‖Q2x‖2

2 max(‖Q2x‖, δ)
+
∑
x∈Xk

‖Q1x‖2

2 max(‖Q2x‖, δ)
=
∑
x∈Xk

‖Q1x‖2

2 max(‖Q2x‖, δ)
+

∑
x∈Xk

max(‖Q2x‖, δ)
2

+ tr(Q1Ak) = H(Q1,Q2).

That is, condition 1 of Hypothesis 4.2 is verified, conditions 2 and 3 follow directly from
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the definition of C(Q) and condition 4 follows from (2.43). �



Chapter 3

Part II: Solving Jigsaw Puzzles

By The Connection Graph

Laplacian

3.1 Introduction

Solving jigsaw puzzles is an entertaining task, which is commonly explored by children

and adults. It is also a challenging mathematical and engineering problem that oc-

cupies researchers in computer science, mathematics and engineering. The solution of

this problem is useful for several industrial applications. One example is reassembling

archaeological artifacts [41, 42], where one tries to recover the shape of an archaeolog-

ical object from damaged pieces. Another example is recovering shredded documents

or photographs [43, 44], where one tries to recover a document or a picture from small

pieces of it. Additional applications appear in biology [45] and speech descrambling [46].

The automatic solution of puzzles, without having any information on the under-

lying image, is known to be NP hard [47, 48]. The first algorithm that attempted to

automatically solve general puzzles was introduced by Freeman and Garder [49] in 1964.

It was designed to solve puzzles with 9 pieces by only considering the geometric shapes

of the pieces.

A recent setting of “jigsaw” puzzles assumes an image cut into equal square pieces

36
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and the mathematical problem is to recover the original image from the given pieces,

which are possibly rotated and shifted along the puzzle grid. Gallagher [50] categorized

these kinds of jigsaw puzzles into three types. In type 1 puzzles the pieces are not

rotated, but shifted. In type 3 puzzles the pieces are not shifted, but rotated. In type

2 puzzles, the pieces are both shifted and rotated. We later formulate a more general

setting, but our current work address this special setting.

Many proposals for solving the latter jigsaw puzzles are based on greedy meth-

ods [50, 51, 52, 53, 54]. However, greedy algorithms can easily get trapped in locally

optimal solutions, which are not global. Some proposals also involve non-greedy con-

structive methods [55, 56, 57], which are often combined with greedy procedures. This

work proposes a constructive framework for recovering rotations and for improving the

metric between puzzle pieces. However, it also relies on common methods for recovering

locations, which are either greedy or partly greedy.

3.1.1 Previous Work

Several algorithms have been recently proposed for automatic solution of the latter

jigsaw puzzles [46,50,51,52,53,54,55,56,57,58,59]. The problem gets more challenging

when the number of puzzle pieces increases and the sizes of puzzle pieces decrease.

Some of these algorithms only consider type 1 puzzles (see e.g., [46,51,52,55,56]), since

recovering orientations increases the possible comparisons between two pieces by four

and may also decrease the accuracy of solving the puzzle. The rest of these algorithms

focus on type 2 puzzles, where [50] also separately discusses type 3 puzzles.

Cho et al. [55] proposed a probabilistic, graphical model approach to the jigsaw

puzzle problem and discussed different compatibility metrics between puzzle pieces.

Pomeranz et al. [51] proposed a greedy method, discussed few compatibility metrics

and included some analysis on how to pick the correct compatibility metric for their

method. Gallagher [50] proposed a tree-based reassembly algorithm, which greedily

merges components while respecting the geometric consistence constraints. It runs in

three steps: building a constrained tree, trimming and filling. Andalo et al. [52] proposed

quadratic assignment approach, which maximizes a constrained quadratic function via

constrained gradient ascent. Sholomon et al. [56, 57] proposed a genetic algorithm.

Son et al. [53] proposed finding small loops (4-cycles) of puzzle pieces, which form
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consistent cycles, and then hierarchically combining these small loops into higher order

loops in a bottom-up fashion. They argued that loop constraints could effectively elimi-

nate pairwise matching outliers. Son et al. [54] proposed a growing consensus approach

that assembles pieces by multiple modest bonds and uses a new objective function that

maximizes consensus configurations. Yu et al. [59] proposed a linear programming based

formulation, which combines global and greedy approaches. Their proposed solver si-

multaneously exploits all the pairwise matches, and globally computes the location of

each piece/component at each step of the algorithm.

A procedure for solving type 3 puzzles was only considered by Gallagher [50] using

a greedy method. We are not aware of any previous constructive and non-greedy pro-

cedure for solving type 3 puzzles. More importantly, we are not aware of a previous

general method for finding the orientations of puzzle pieces with unknown locations.

Such a procedure can enhance the solution of type 2 puzzles.

3.1.2 Our Contribution

In this chapter we propose a novel approach to address type 2 and type 3 jigsaw puzzles.

For type 3 puzzles, we suggest fast, robust and constructive solution that uses the

connection graph Laplacian (CGL) [60] (discussed in §3.3.1). Since the locations of

puzzle pieces are given for type 3 puzzles, there is no need to find the metric between

puzzle pieces, but only between neighboring pieces. Therefore the complexity of our

proposed algorithm for type 3 puzzles is relatively low.

For type 2 puzzles we propose a novel iterative algorithm, which solves the following

two subproblems (SPs) iteratively:

SP1 Finding the orientations of all puzzle pieces.

SP2 Finding the locations of all puzzle pieces.

These two steps are iteratively repeated until the desired result is achieved. We solve

SP1 by using the CGL. We solve SP2 by incorporating an improved metric, obtained

from the solution of SP1, within any state-of-the-art solution of type 1 puzzles. Some

information inferred from the solution of SP2 is used to improve the solution of SP1.

All previous algorithms for solving type 2 puzzles simultaneously addressed both

subproblems. On the other hand, this work separately solves the two subproblems
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and iteratively updates the solutions. The proposed procedure is also faster than the

previous simultaneous procedures as long as the solver for SP1 is relatively accurate.

Indeed, SP2 asks to solve type 1 puzzles, which are easier than type 2 puzzles. Moreover,

most previous algorithms are greedy, whereas the one proposed here is not.

3.1.3 Structure of This Chapter

This chapter is organized as follows: §3.2 discusses a general mathematical setting for

the jigsaw puzzle problem and a special case of it, which is studied in the work; §3.3

presents a solution for SP1, which assumes the existence of a “connection graph”; §3.4

shows how to construct the connection graph for type 2 and type 3 puzzles; §3.5 presents

a solution of SP2 that uses the solution of SP1 and also suggests how to update the

solution of SP1 based on the solution of SP2; §3.6 concludes with numerical experiments

that test the proposed algorithm using digital images; at last, §3.7 concludes with a short

discussion that includes possible extensions of this work.

3.2 The Mathematical Setting for Jigsaw Puzzles

Here we mathematically formalize the jigsaw puzzle problem. We first formulate a

general abstract setting of this problem in §3.2.1. We then describe a specific special

case of interest in §3.2.2, where we also discuss possible generalization and the direct

application to the discrete setting of the application area of this work. At last, §3.2.3

discusses the main challenge of addressing the specific setting.

3.2.1 A General Mathematical Formulation

Our general mathematical formulation assumes a d-dimensional compact manifold M

embedded in Rq via the inclusion map ι. For simplicity, we refer to the embedded

manifold by M instead of ι(M). For this embedded M , we further assume a sufficiently

smooth function f : M → Rk, where k ≥ 1. One may assume different smoothness

classes containing f depending on the application domain. For the application we

consider, which has a discrete setting with discontinuities of f , the assumption f ∈
L2(M,Rk) seems natural.
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We will first discuss the notion of patches partitioning the embedded M as well as

image patches. Generally, a patch is a subset of the embedded M . Since our mathemat-

ical setting is continuous we assume that patches are open sets. We later explain how

this assumption does not matter to the discrete setting of this work. An image patch

on the embedded M is a pair of a patch and the restriction of f on it. For simplicity, we

denote a patch by P , even though ι(P ) is more precise. Similarly, we denote an image

patch by (P, f |P ), even though (ι(P ), f |ι(P )) is more precise.

We partition M into open patches {Pi}ni=1 so that M = ∪ni=1P̄i, where for 1 ≤ i ≤ n,

Pi ⊂ M and P̄i is the closure of Pi, and also for 1 ≤ i 6= j ≤ n, Pi ∩ Pj = ∅. When

defining the corresponding image patches we allow local rigid transformations, such

as rotations and translations. We make the problem formulation even more general

by considering local diffeomorphic transformations. For each 1 ≤ i ≤ n, consider a

transform Di on Rq, so that Di(Pi) ⊂ Rq is diffeomorphic to Pi. For x ∈ Rq, define

(Di ◦ f |Pi)(x) := f(D−1
i (x)) when D−1

i (x) ∈ Pi and 0 otherwise.

There are three jigsaw puzzle problems we could formulate:

P0: Given a set of image patches Q := {(Di(Pi), Di ◦ f |Pi)}ni=1 and M , recover f.

P1: Given a set of image patches Q := {(Di(Pi), Di ◦ f |Pi)}ni=1, recover f and M.

P2: Given a set of patches P := {Di(Pi)}ni=1, recover M.

In general these are ill-defined and challenging problems, since more conditions may be

needed. For example, if f is a constant function on a sufficiently large region of M and

the shapes of the puzzle patches are not sufficient to uniquely determine neighboring

patches, then there is no information available for reconstructing f . Similarly, estimating

the unknown local diffeomorphic functions is a challenging problem, and it makes sense

to further restrict them. On the other hand, there are simplified, well-defined versions

of these problems. In this work we address P0 in the very specific setting of the 2-

dimensional square jigsaw puzzle problem, which we describe next.

3.2.2 A Special Setting and its Generalization

In the 2-dimensional square jigsaw puzzle problem, M is a rectangle in R2, M = [a1, b1]×
[a2, b2] and {Pi}ni=1 form a square tiling of M . That is, the open patches partitioning M



41

are shifted versions of the same square. We assume that f ∈ L2(M,Rk) and k ≥ 1. We

think of the graph {(x, f(x)) : x ∈ M ⊂ R2 as a continuous version of an image. One

may use k = 1 for gray-scale images, k = 3 for color images and higher k for multispectral

and hyperspectral images. We further assume that the diffeomorphic transformations

Di, 1 ≤ i ≤ n, are proper rigid transformations from one patch to another. That is,

they are combinations of rotations and translations, where a rotation is by 0◦, 90◦,

180◦ or 270◦, and all shifts of patches {Pi}ni=1 can be described as {Pσ(i)}ni=1, where σ

is a permutation of degree n. This assumes that the grid is labeled by numbers and

the goal is to find the correct permutation for the indexes of all patches that would

place each square in the correct position of the tile. Therefore, we can write the set of

image patches as Q = {(Rσi(Pσi), Rσi ◦ f |Pσi )}
n
i=1, where σ is a permutation of degree

n, Rσi is an element of the cyclic group Z4 and the action ◦ was defined above. The

problem of interest in this setting is P0. Note that its solution requires recovering

{Ri}ni=1 and σ. We also remark that in this case finding M in P1 is unique up to a

proper rigid transformation, however, the extra component of P1 is artificial for this

setting. Furthermore, in this setting, P2 is ill-defined as it has many possible solutions.

In general, a solution of P2 requires stronger assumptions, for example, on the shape of

puzzle patches that can be in the standard shape of jigsaw puzzles or on the manifold

that can be asked to be closed.

One can consider an equivalent formulation, where instead of having patches initially

on the grid, the patches are arbitrarily shifted and rotated within R2. In this new

formulation, Di = Txi ◦ Ri, where xi is an arbitrary vector in R2, Txi(x) = xi + x

for each x ∈ M ⊂ R2, and Ri is an arbitrary element of SO(2). The equivalence of

the two formulations is evident. Indeed, given patches with any choice of centers and

rotations, one can arbitrarily assign them to a grid and use the former formulation, and

vice versa. Nevertheless, the latter formulation can apply to more general settings. For

example, settings with more complicated shapes of patches, such as polygonal shapes,

which are common in tangram puzzles, or shapes with curvy edges, which are common

in commercial jigsaw puzzles. Mathematical ideas for solving these two kinds of puzzles

appear in [61] and [58] respectively. We remark that there are cases of more complicated

shapes that are easier to solve. For example, if the shapes of the patches lead to

unique determination of the neighboring patches, then exact reconstruction is easier.
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We remark that whenever we refer to neighboring patches in the two-dimensional square

jigsaw puzzle, we mean the four nearest neighbors of the given patch (left, right, top

or bottom). On the other hand, there are clearly very difficult cases of complicated

shapes with many possibilities of aligning them together. In general, one may also

consider various 3D puzzles or more complicated problems. Note that most of the ideas

discussed in this chapter can be well suited for puzzles with non-square patches and

higher dimensional non-flat manifold.

The particular instance of the 2-dimensional square jigsaw puzzle problem we discuss

in this work is demonstrated in Figure 3.1. In this setting of RGB images k = 3. While

the digital images and their patches are discrete, they have a corresponding continuous

description. That is, f can be viewed as a piecewise constant function with constant

values on squares corresponding to image pixels. This is the common way of presenting

discrete images, and is evident in the presentation of patches at the top right image of

Figure 3.2 where the number of pixels per unit length is low relative to the demonstration

on top left image of Figure 3.2. We remark that the last column of this figure, illustrates

the image patches Q = {(Rσi(Pσi), Rσi ◦ f |Pσi )}
n
i=1 discussed above.

Figure 3.1: Examples of puzzles with 12 patches. Left column: the original image;
Central column: division of the image into 12 square patches of the same size. Right
column: The 12 patches are randomly reordered and rotated.
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3.2.3 The Main Challenge of the Special Setting

We recall that the formulation of the 2-dimensional square jigsaw puzzle problem re-

quires finding a permutation σ and rotations {Ri}ni=1 ⊂ SO(2). Equivalently, one may

solve for locations {xi}ni=1 on a uniform grid, representing the centers of the patches,

and rotations {Ri}ni=1. In order to estimate these from Q for general functions f , one

needs to rely on the similar function values on edges of neighboring patches. In our

setting of digital images, we should often expect discontinuities in values of f on neigh-

boring edges. The top right image of Figure 3.2 demonstrates this phenomenon for two

patches selected from the puzzles shown in top left image with lower resolution. Such

discontinuity can result in loss of information for determining neighbors and may lead

to ill-posed problems.

There are also special images for which the puzzle problem is ill-posed. For example,

the bottom left image of Figure 3.2 demonstrates a case where several patches look very

similar to each other and it is impossible to determine the right permutation. Never-

theless, the output of common algorithms given this particular puzzle is often visually

acceptable. On the other hand, the bottom right image of Figure 3.2 demonstrates a

case where the image consists of two parts that are disconnected by a uniform back-

ground. In this particular instance, the background is the white sky, one part is the

main scene of the image and the other part includes two short branches of another tree

at the top left corner of the image. In this case it would be impossible to figure out the

exact position of the latter part of the image.

The following definition quantifies an ideal type of metric between edges of image

patches that if exists, that is, if the problem is well-posed, it can be used to solve the

two-dimensional square jigsaw puzzle problem.

Definition 4. Fix an image I and a set of image patches Q := {Pi, f |Pi}ni=1. A metric

defined on Q is called perfect if there exists c > 0 so that two neighboring patches have

a distance less than c and two non-neighboring patches have a distance greater than c.

The main challenge of solving reasonable instances of the 2-dimensional square jigsaw

puzzle problem, is to find a nearly perfect metric. Empirically, we have found that the

the Mahalanobis Gradient Compatibility (MGC) metric, described in §3.4.1, is often

near perfect in well-posed cases.
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3.3 Frameworks for Recovering Rotations of Puzzle Pieces

This section applies the framework of [60, 62] for recovering the global orientations of

puzzle patches. It also mentions another framework. These frameworks require the

construction of a graph whose vertices correspond to the puzzle patches and its edges

connect neighboring patches. The rest of the section is organized as follows: §3.3.1 forms

the connection graph Laplacian (CGL) and explains how to estimate the rotations of

puzzle patches by this graph; §3.3.2 describes an equivalent framework for solving this

problem; §3.3.3 theoretically justifies the method described in §3.3.1.

3.3.1 Estimation of Orientations Using the Connection Graph

The general connection graph [60] G = (V,E,W,R) consists of four components: ver-

tices V, edges E, affinity function (or weight function) W : E → [0, 1] and the connection

function R : E → G, where G is a given group. The first three components are deter-

mined by the weighted graph and the fourth one depends on the application in which

the graph is used. In the case of the two-dimensional square jigsaw puzzles with a per-

fect metric (recall Definition 4), the ideal connection graph is formed as follows. The

vertices represent patches in Q, the edges connect neighboring patches and the weights

are 1 for all edges and 0 otherwise. The group G is the cyclic group Z4 which we can

represent either by the four complex numbers {1, i,−1,−i} with complex multiplication

or by the following four 2× 2 matrices:[
1 0

0 1

]
,

[
0 −1

1 0

]
,

[
−1 0

0 −1

]
,

[
0 1

−1 0

]

with matrix multiplication. Note that for each edge {i, j} with i < j, which connects

patches Pi and Pj , an element R(i, j) of G = Z4 is a rotation whose application to Pj

results in a match with Pi after an appropriate plane translation.

For possibly imperfect scenarios of the two-dimensional square jigsaw puzzles, the

vertices are formed as above, but one needs to construct meaningful edges, affinity

function and connection function (with G = Z4). A heuristic construction of these is

suggested for type 2 and type 3 puzzles in §3.4.3 and §3.4.2 respectively. Here we propose

a general heuristic that uses a given connection graph of two-dimensional square jigsaw
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puzzles to estimate the unknown orientations of the patches. This heuristic is later

justified in §3.3.3 under special assumptions. The main idea of this heuristic is to use

the CGL for inferring global information (in the form of a certain eigendecomposition)

from local information (needed to form the CGL).

Next, we review several matrices associated with a general connection graph. Since

for two-dimensional square jigsaw puzzles, W and R are defined on the set {1, . . . , n}×
{1, . . . , n}, where n is the number of puzzle pieces, we denote them from now on by

their corresponding matrices W ∈ Rn×n and R ∈ R2n×2n, respectively. Note that R is

a block matrix whose 2 × 2 blocks represent rotations. For 1 ≤ i, j ≤ n, we denote by

R(i, j) the i, j-th 2 × 2 block of R. The connection graph is thus G = (V,E,W ,R).

The connection adjacency matrix is an n × n block matrix S with 2 × 2 submatrices,

where for 1 ≤ i, j ≤ n the (i, j)-th submatrix is

Sij =

{
W (i, j)R(i, j), when (i, j) ∈ E;

0, otherwise.
(3.1)

The degree matrix is an n × n block diagonal matrix D, where for 1 ≤ i ≤ n, its i-th

diagonal submatrix is

Dii =
∑
j 6=i
W (i, j)I2, (3.2)

where I2 is the 2× 2 identity matrix. We define C := D−1S and C̃ := D−1/2SD−1/2,

and refer to the matrix I − C as the CGL matrix and I − C̃ as the normalized CGL

matrix.

The CGL matrix is associated with a random walk, whose transition probability

matrices are W (i, j), 1 ≤ i, j ≤ n. This can be seen by its action on a block vector

v ∈ R2n×2, whose n submatrices are

v[j] =

[
v2j−1,1 v2j−1,2

v2j,1 v2j,2

]
∈ R2, 1 ≤ j ≤ n
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in the following way

(Cv)[i] =

∑
j:(i,j)∈EW (i, j)R(i, j)v[j]∑

k:(i,k)∈EW (i, k)
.

To recover the global orientations of the puzzle patches, we follow the procedures

of [60,62]. We form the block vectorU ∈ R2n×2 whose columns are the top 2 eigenvectors

of C. We then project each of the 2×2 blocks of U onto Z4 and use the resulting blocks

as the global orientations. Algorithm 4 summarizes the above straightforward procedure

of recovering the unknown orientations of the image patches for a given two-dimensional

square jigsaw puzzles.

Algorithm 4 The CGL Algorithm

Input: Connection graph: G = (V,E,W ,R)

• Construct the Connection Adjacency Matrix S by (3.1)

• Construct the degree matrix D by (3.2)

• Let C = D−1S

• Form U ∈ R2n×2 whose columns are the 2 top eigenvector of C

• For 1 ≤ i ≤ n, let Ri ∈ Z4 be the projection of the ith block of U onto Z4

Return: Global rotation matrices R1, . . ., Rn

We emphasize that the CGL algorithm for recovering the orientations of patches is

non-greedy. Indeed, it directly constructs the orientation of patches using the informa-

tion in the connection graph. On the other hand, other methods, such as [50,51,53,54],

try to greedily match pieces based on their relative orientations. We also mention that

the CGL algorithm does not use any knowledge of the size of the puzzle image, or

equivalently, of the number of puzzle pieces per length or width of the image.

3.3.2 Another Formulation

The general problem we have addressed in §3.3.1 is referred to as synchronization. That

is, one assumes a connection graph G = (V,E,W,R) and needs to estimate for all

vertices i ∈ V a group element gi ∈ G from noisy or wrong measurements of gig
T
j ∈ G.
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In the particular case of the two-dimensional square jigsaw puzzle, the graph is G =

(V,E,W ,R), G = Z4 and gig
T
j = R(i, j), which was defined in §3.3.1. In this case the

synchronization problem is referred to as angular.

We describe here a least-squares formulation for this problem, review two common

solutions for it and discuss the similarities and differences of one of them with the

method above. Using the matrix S defined in (3.1), the least-squares formulation for

angular synchronization asks to solve the optimization problem

arg minu∈Zn4 ‖uu
T − S‖2, (3.3)

or equivalently,

arg maxu∈Zn4 tr(uuTS). (3.4)

We remark that sometimes the problem above is formulated with R instead of S when

the affinities are ones for edges in E and zeros otherwise, so that R = S.

This problem is NP-hard [63]. Nevertheless, approximate solutions were proposed,

in particular, semidefinite programming and spectral relaxation [64]. The semidefinite

programming method suggests to remove the rank 2 constraint on the PSD (positive

semi-definite) matrix uuT in (3.4) and consequently solve

arg maxH�0,H(i,i)=I2
tr(HS). (3.5)

The solution v ∈ R2n×2 is recovered by projecting the blocks of top 2 eigenvectors of

solution (3.4) into Z4.

The spectral relaxation method suggests to relax the set Zn4 into R2n×2 and solve

the following eigenvalue/eigenvector problem

arg maxu∈R2n×2: ‖u‖=2n tr(uTSu). (3.6)

The block vector ṽ, which contains the top 2 eigenvectors of S, solves (3.6). To recover

the gis one can project the 2 × 2 blocks of ṽ into Z4. The spectral relaxation is faster

and better suited for higher-volume data. The SDP relaxation is often more accurate

than the spectral relaxation for SO(2), however, for the special case of Z4 their accuracy

should be comparable, since there are only four, well-separated elements of Z4. We note
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that the spectral relaxation method is very similar to the method described in §3.3.1,

but directly uses the matrix S instead of C. In fact, the method proposed in §3.3.1 is a

spectral relaxation of (3.3) when S is replaced by C. One of the advantages of using C

instead of S is that it gives rise to a natural diffusion distance, which is discussed later

in §3.5.1.

3.3.3 Theoretical Justification of the CGL Algorithm

In this section we show that the CGL algorithm for two-dimensional square jigsaw

puzzles is robust to noise and incorrect measurements. By incorrect measurements we

mean that there are mistakes in estimating the connection graph. The three puzzles in

Figure 3.2 exemplify cases where incorrect measurements are expected due to indistin-

guishability of some patches or low-resolution of patches.

For a given two-dimensional square jigsaw puzzle, let Gtrue = (V,Etrue,W true,Rtrue)

denote the true connection graph. Note that the graph (V,Etrue) is a grid, the true

affinity function W true is defined by

W true(i, j) =

1, if {i, j} ∈ Etrue;

0, otherwise,
(3.7)

and the true connection function Rtrue is defined by

Rtrue(i, j) =

RiR
T
j , if {i, j} ∈ Etrue;

0, otherwise,
(3.8)

whereR1, . . ., Rn are the rotation matrices of the rotations R1, . . ., Rn defined in §3.2.2.

Let Gest = (V,Eest,W est,Rest) denote the estimated connection graph. At last, denote

by Cest and Ctrue the CGL matrices corresponding to Gest and Gtrue respectively.

The following lemma shows that if the estimated connection graph is a good ap-

proximation of the true connection graph, then the estimated CGL matrix is a good

approximation of the true CGL matrix. It is analogous to Lemmas 2.1 and 2.2 of Karoui

and Wu [62], but assumes a different noise model. In fact, its proof is parallel to the

proofs of the latter lemmas and is thus omitted here.
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Lemma 6. Suppose that Gtrue and Gest are the true and estimated connection graphs

respectively. Assume that there exist ε > 0 and f1, . . ., fn > 0 such that

sup
1≤i,j≤n

∣∣∣∣W true(i, j)−
W est(i, j)

fi

∣∣∣∣ < ε (3.9)

and there exists γ > ε such that infi
∑

j 6=iwij/n > γ. Assume further that there exists

a set E′ ∈ Etrue ∩ Eest such that (V,E′) is a connected graph and such that

Rest(i, j) =

{
Rtrue(i, j), if {i, j} ∈ E′

arbitrary element of Z4, otherwise.

Then

‖Ctrue −Cest‖2 ≤
2ε

γ
+

4ε

γ(γ − ε)
. (3.10)

Note that if two patches are wrongly connected as neighbors in the estimated graph,

then (3.9) enforces their affinity function to be small. Also note that each of fi cannot

be too large, otherwise (3.9) cannot be satisfied when two patches are neighbors.

Recall that according to [60] the top 2 eigenvectors of the true CGL matrix Ctrue

recovers the global orientations of puzzle patches up to global rotation. Thus, if the top

2 eigenvectors of the estimated CGL matrix approximate well the top 2 eigenvectors of

the true CGL matrix, they would recover the global orientations of puzzle patches. The

Davis-Kahan sin Θ Theorem [1, 65] guarantees such a good approximation when (3.10)

holds for a small enough ε > 0. Indeed, the matrix V true of top 2 column eigenvectors

of Ctrue and the matrix V est of top 2 column eigenvectors of Cest satisfy

‖ sin Θ(V true,V est)‖2 ≤
‖Ctrue −Cest‖2
n− λ3(Cest)

, (3.11)

where λ3(Cest) is the third largest eigenvalue of Cest. To bound λ3(Cest), we first note

that λ3(Ctrue) = 0 since Ctrue is a positive semidefinite matrix of rank 2. Furthermore,

by Weyl’s inequality [66],

|λ3(Cest)| = |λ3(Ctrue)− λ3(Cest)| ≤ ‖Ctrue −Cest‖2. (3.12)
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Combining (3.11) and (3.12) yields

‖ sin Θ(V true,V est)‖2 ≤
‖Ctrue −Cest‖2

n− ‖Ctrue −Cest‖2
, (3.13)

We thus conclude by (3.10) and (3.13) that if ε is sufficiently small then V est closely

approximates V true. We remark that this analysis generalizes to other puzzles and not

just the two-dimensional square jigsaw puzzle.

3.4 Connection Graph Construction For Type 2 and Type

3 puzzles

As we have discussed in §3.3.1, if we are given a perfect metric, we can easily construct

the connection graph. However, there is no perfect metric that would work for all images.

For example, if part of the image contains a region with a uniform color, such as sky or

ocean (see the images on the second row of Figure 3.2), the metric between the edges of

the image patches from this region will be close to zero. Thus, all these patches should be

wrongly identified by a perfect metric as neighbors. Furthermore, if all edges of patches

are similar to each others, then the patches are indistinguishable and the problem is ill-

posed. Therefore, the idea of finding a perfect metric and using a threshold to identify

neighbors may not lead to a correct affinity graph. Instead, we suggest to iteratively

update the graph construction, while identifying possibly incorrect edges and reassigning

zero or small affinities to them. The rest of this section is organized as follows: §3.4.1

reviews the Mahalanobis Gradient Compatibility (MGC) metric that is used for the

proposed graph construction; §3.4.3 describes a construction of the connection graph

for type 2 puzzles; and §3.4.2 proposes a construction of the connection graph for type

3 puzzles.

3.4.1 Approximate a Perfect Metric Between Image Patches

To automatically assemble a jigsaw puzzle, no matter what algorithm is used, one needs

to have a measure that can indicate whether two patches are neighbors or not. As we

can see in the first row of Figure 3.2, it can be challenging to compare patches. We

recall that the discrete values of the digital image at two sides of an edge between two
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patches are not the same. The right image of the first row of Figure 3.2 shows two

neighboring patches at high resolution, where the difference between the image values

at the two sides of the edge (left and right) is noticeable. On the other hand, in the

left image of the first row of Figure 3.2, this difference is hard to notice in the printed

resolution. Nevertheless, we emphasize here the existing difference of numerical values

at two sides of edges, which is challenging for any algorithm that needs to align patches.

In this work, we align patches by using the MGC metric, which was proposed in [50].

It is based on two main ideas. The first idea is that the derivatives of RGB values in the

perpendicular direction to the edge are similar in both sides of that edge. The second

idea is that these values can be compared by using the covariance between the color

channels and the corresponding Mahalanobis distance.

To review Gallagher’s precise definition, we assume two neighboring image patches

Pi and Pj of size s× s. There are four different relative positions of Pi and Pj , namely,

left-right, right-left, top-bottom and bottom-top, and the computation needs to adapt

to each case. We assume without loss of generality we the left-right relative position,

that is, Pi on the left and Pj on the right, and compute the corresponding MGC, which

we denote by MGClr(Pi, Pj), as follows. For each color channel c (red, green and blue),

each row r, 1 ≤ r ≤ s of the patch Pi, or equivalently Pj , and the last column s of the

left patch Pi we find the derivatives near the right edge of the image patch Pi in the

direction left-right as follows:

GiL(r, c) = Pi(r, s, c)− Pi(r, s− 1, c).

The subscript L in the above equation indicates that patch Pi is on the left side of

the patch Pj . Note that the matrix GiL is in Rs×3 and can be singular. Gallagher

[50] suggests regularizing it by adding the following 9 additional rows (0, 0, 0), (1, 1, 1),

(−1,−1,−1), (0, 0, 1), (0, 1, 0), (1, 0, 0), (−1, 0, 0), (0,−1, 0) and (0, 0,−1). The resulting

regularized matrix in R(s+9)×3 is denoted by G̃iL.

Next, for each color channel c we define the mean distribution for those derivatives

on the right side of the s× s patch Pi as

µiL(c) =
1

s

s∑
r=1

GiL(r, c).
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The regularized covariance matrix ΣiL ∈ R3×3 between color channels is

ΣiL =
1

s+ 8
(G̃iL −mean(G̃iL))T (G̃iL −mean(G̃iL)),

where

mean(G̃iL) =
s+9∑
r=1

G̃iL(r, c)/(s+ 9) =
s∑
r=1

GiL(r, c)/(s+ 9).

We also define GijLR(p), the derivative from the left s × s image patch Pi to the right

s× s image patch Pj at row r and color c, by

GijLR(r, c) = Pj(r, 1, c)− Pi(r, s, c).

The left-to-right compatibility measure from Pi to Pj is defined by

DLR(Pi, Pj) =
s∑
r=1

(GijLR(r)− µiL)Σ−1
iL (GijLR(r)− µiL)T .

Similarly, one can defined the right-to-left compatibility measure from Pj to Pi in the

same left-right setting, where Pi is to the left of Pj . The left-right MGC metric then

has the symmetrized form

MGClr(Pi, Pj) = DLR(Pi, Pj) +DRL(Pj , Pi). (3.14)

The right-left, top-bottom and bottom-top MGC’s, denoted by MGCrl(Pi, Pj), MGCtb(Pi, Pj)

and MGCbt(Pi, Pj) respectively, are similarly computed.

3.4.2 Connection Graph Construction for Type 3 Puzzles

For type 3 puzzles, the locations of patches are given. Furthermore, edges are drawn

between neighboring patches. The affinity function is set by W (i, j) = 1 for all {i, j} ∈
E. One need only find the unknown orientations, that is, the unknown connection

matrix R.

To construct the connection function we propose to use the MGC metric, described

in §3.4.1. For all neighboring patches Pi and Pj , we calculate the possible 16 values of

the MGC metric (for all possible 16 relative positions) and select the smallest of these
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numbers and its corresponding rotation R(i, j). If there is no unique minimum among

these 16 values we suggest assigning W (i, j) = 1/2 (or another value smaller than 1)

and letting Ri,j be the mean of the candidate rotations that obtain the minimal value.

3.4.3 Connection Graph Construction for Type 2 Puzzles

We propose the following step-by-step procedure for constructing the affinity graph, the

affinity function and the connection function for type 2 puzzles and then summarize

this procedure in Algorithm 5.

Initial Step

We start with an initial construction of the directed graph G = (V,Eest). The vertex set

V contain the patches in Q. The edge set Eest is updated by the following procedure. In

order to describe it, we denote by R ·P the action of the rotation R ∈ Z4 on the patch

P . For a patch Pi, we find the patches Pit , Pil , Pib , Pir and the corresponding rotations

R(i, it),R(i, il),R(i, ir),R(i, ib) ∈ Z4 such that

{Pit ,R(i, it)} ∈ arg minP∈Q,R∈Z4
MGCbt(Pi,R · P ),

{Pil ,R(i, il)} ∈ arg minP∈Q,R∈Z4
MGCrl(Pi,R · P ),

{Pib ,R(i, ib)} ∈ arg minP∈Q,R∈Z4
MGCtb(Pi,R · P ),

{Pir ,R(i, ir)} ∈ arg minP∈Q,R∈Z4
MGClr(Pi,R · P ).

(3.15)

The set Eest of directed edges contains the edges that connect each vertex with index i,

1 ≤ i ≤ n, to the vertices with indices it, il, ib and ir. Note that these indices solving

(3.15) may not be unique and we consider all solutions of (3.15) when forming Eest.

We next modify the directed graph G = (V,Eest) into an undirected graph. We fix

two values of weights: w1 = 1 and w2 = 0.01, and define an initial affinity functionW init

by setting W init(i, j) = W init(j, i) = w1 if both (i, j) and (j, i) ∈ Eest and W init(i, j) =

W init(j, i) = w2 if only one of (i, j) or (j, i) is in Eest. Figure 3.3 demonstrates this

construction for a fixed patch.

Next, we enforce the constraint that for two-dimensional square jigsaw puzzles each

patch can have at most one neighbor for each direction and trim some edges that are

likely not neighbors. This is done as follows. Assume without loss of generality that
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patch Pi has more than one neighbor in the top direction and denote these neighbors

by Pi1 , . . . , Pik where k > 1. Then we solve the minimization problem

j ∈ arg min1≤j≤k MGCbt(Pi, Pij ). (3.16)

If (3.16) has a unique solution, we keep the edge {i, ij} and remove rest of the edges.

Otherwise, we remove all edges {i, ij}kj=1 from E. The procedure is analogous if Pi has

more than one neighbors from left, bottom or right. If edges were eliminated from Eest,

then the matrix W init is updated so it is zero on the corresponding indices. This process

results in the following initial connection graph G = (V,Eest,W init,R).

The construction of this graph uses a nearest-neighbor construction. For high-noise

regime, Karoui and Wu [62] recommend avoiding a nearest-neighbor construction. How-

ever, due to the special lattice structure of the true graph, the nearest-neighbor initial

construction is natural for the two-dimensional square jigsaw puzzle problem.

Use of Jaccard Index to refine the graph

Next, we refine the connection graph by trying to assess the validity of the edges and

decrease the weights of edges that do not seem valid, that is, they may not appear in

the true connection graph. The idea is to check whether after removing an edge, its

neighbors are still connected in some weak sense to each others. If so, then the edge

seems to be valid and otherwise, it may not be valid. For this purpose, we use the

Jaccard index [67].

The description of this index uses the following notation in a graph G = (V,E).

Given a vertex i, 1 ≤ i ≤ |V |, let N1
G,i denote the set of vertices in V which are

connected to vertex i, that is, N1
G,i = {j ∈ V |{i, j} ∈ E}. Using our terminology,

N1
G,i contains the neighbors of i. The set N2

G,i contains all vertices, but vertex i, which

are at most 2 steps away from i. That is, N2
G,i =

⋃
j∈N1

G,i
N1
G,j \ {i}. At last, denote

G\(i,j) = (V,E \ (i, j)). The set N1
G,i and N2

G,i are demonstrated in Figure 3.4.

By using this notation, we define the Jaccard index between vertices i and j as

µJaccard(i, j) = |N2
G\(i,j),i ∩N

2
G\(i,j),j |. (3.17)

This definition is similar to the one in [67]. The difference is that we consider the
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graph G\(i,j) instead of G and we do not divide by |N2
G\(i,j),i

∪ N2
G\(i,j),j

|. The latter

division does not matter to us as we only care about the positivity of this index. Fig-

ure 3.5 demonstrates calculation of the Jaccard index for a special example. Note that

the chance of two vertices i and j to be neighbors in the graph (V,Eest) is higher if

µJaccard(i, j) > 0 than µJaccard(i, j) = 0. Thus, we propose to use the Jaccard indices

to refine the connection graph. We use another weight matrix W Jaccard ∈ Rn×n. If

{i, j} ∈ Eest and µJaccard(i, j) = 0, then W Jaccard(i, j) = W Jaccard(j, i) = 0. If on the

other hand µJaccard(i, j) > 0, then W Jaccard(i, j) = W Jaccard(j, i) = W init(i, j).

Since this procedure might also remove a lot of correct edges by zeroing out the

corresponding values of the affinity function, we propose using an affinity function,

which is a linear combination of W init and W Jaccard with larger coefficient given to

W Jaccard. In our experiments we set W nb = 0.2×W init + 0.8×W Jaccard and use the

following affinity graph G = (V,E,W nb, R).

Making the Affinity Graph Connected

The procedures described in §3.4.3 and §3.4.3 might result in a disconnected affinity

graph G as demonstrated in the left image of Figure 3.6. To complete G so it is con-

nected, we first find all connected components of G. Assume that they are k connected

components with corresponding vertices V1, . . ., Vk that partition the set of vertices V .

Assume further that they are labeled by descending size order, i.e. |V1| ≥ |V2| · · · ≥ |Vk|.
Next, we find vertices i ∈ V1 and j ∈ V \ V1, that minimize the MGC metric between

the patches Pi and Pj . Mathematically, we find

{i, j,R} ∈ arg mini∈V \V1,j∈V1,R∈Z4
min{MGClr(Pi,R · Pj)),MGCtb(Pi,R · Pj)),

MGCrl(Pi,R · Pj)),MGCbt(Pi,R · Pj))}.
(3.18)

If the solution of (3.18) is not unique, we randomly choose one solution. We then add

the edge {i, j} of the chosen solution to Eest and update the weight as follows: W (i, j) =

W (j, i) = w3, where w3 = w2/2 = 0.005 and also set R(i, j) = R and R(j, i) = RT . We

iterate the procedure described above until the graph becomes connected. The number

of iterations needed are k − 1 since there are k connected components and at iteration
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we connect the largest component with a remaining component.

Taking Advantage of 4-Loops

We refine the constructed connection graph by using the following property of the two-

dimensional square jigsaw puzzle: If two patches Pi and Pj are diagonal neighbors, then

there exists exactly two other patches Pn1 and Pn2 and a cycle containing the vertices

i, n1, j and n2, this idea is demonstrated in Figure 3.7. Such a cycle of 4 vertices

is referred to as a 4-loop by [53]. In this latter work, 4-loops were used to solve the

puzzle problem. We use them to define a better connection graph. As we have already

discussed for the true grid, each patch can have at most 4 direct neighbors (right, top,

left or bottom). Furthermore, each patch has at most 4 diagonal neighbors. Exactly

four diagonal neighbors are obtained for patches in the interior of the puzzle, a single

diagonal neighbor occurs for a corner patch and there are 2 diagonal neighbors when

the patch lies on the boundary of the grid but not on a corner.

For patches Pi and Pj we define

δdiag(i, j) = |N1
G,i ∩N1

G,j |. (3.19)

We observe that patches Pi and Pj are diagonal neighbors in the true grid if and only

if δdiag(i, j) = 2. To find the diagonal neighbors for graph G = (V,E) we propose a two

step procedure. First, we find the set of all pairs of vertices {i, j} ∈ V × V for which

δdiag(i, j) = 2. For each such pair {i, j} there exists another pair {n1, n2} such that

N1
G,i ∩N1

G,j = {n1, n2}, (3.20)

or equivalently, i, n1, j and n2 are contained in a 4-loop. We set

W diag(i, j) =

{
1, when δdiag(i, j) = 2 and R(i, n1)R(n1, j) = R(i, n2)R(n2, j);

0, otherwise.

(3.21)

The condition R(i, n1)R(n1, j) = R(i, n2)R(n2, j) in (3.21) is explained below after the

whole procedure is clarified. We further update blocks of the matrix W nb as follows,
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where we denote by W nb([i, j], [n1, n2]) the 2 × 2 block of W nb with indices (i, n1),

(i, n2), (j, n1) and (j, n2),

W nb([i, j], [n1, n2]) =



W nb([i,j],[n1,n2])
3 , if δdiag(i, j) = 2 and

R(i, n1)R(n1, j) 6= R(i, n2)R(n2, j);

12×2, if δdiag(i, j) = 2 and

R(i, n1)R(n1, j) = R(i, n2)R(n2, j);

2W nb([i,j],[n1,n2])
3 , otherwise.

(3.22)

We note that the support sets of W nb and W diag are disjoint. We set W = W nb +

W diag and this is the final set of constructing the connection graph G = (V,Eest,W ,R)

for two-dimensional square jigsaw puzzles. The full algorithm of this construction is

summarized in Algorithm 5.

The condition for rotations in (3.21) and (3.22), that is,R(i, n1)R(n1, j) = R(i, n2)R(n2, j),

is naturally satisfied in a true graph as demonstrated in Figure 3.8. Therefore, when

it is satisfied and also δdiag(i, j) = 2, the maximal weight of 1 is assigned to the corre-

sponding diagonal edge. Equation (3.22), on the other hand, considers the case where

this condition is violated, but δdiag(i, j) = 2. In this case, there is an evidence for a

mismatch between puzzle pieces and therefore the weight is reduced by a factor of 2 so

that the diagonal edge is less valid.

3.5 Estimation of Locations for Type 2 puzzles and Up-

date of the Connection Graph

This section completes the solution of type 2 jigsaw puzzles by estimation of the correct

locations of the patches. This is done after forming the connection graph according

to Algorithm 5 and estimating the correct orientations by Algorithm 4. The section

is organized as follows. In §3.5.1 we review the vector diffusion map and distance and

explain how to use them for updating the MGC metric. The updated metric is later
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Algorithm 5 Connection Graph Construction for Type 2 puzzles

Input: Puzzle Patches: {Pi}ni=1 ⊂ Rp×p×3

• For all 1 ≤ i < j ≤ n calculate the 16 MGC metric values between patches Pi
and Pj as explained in §3.4.1

• Construct G = (V,Eest,W init,R) according to the procedure described in §3.4.3
with the following three stages: nearest-neighbors construction based on (3.15),
symmetrization of W init and pruning extra neighbors with the use of (3.16)

• For all {i, j} ∈ Eest, calculate µJaccard(i, j) according to (3.17)

• For all {i, j} ∈ Eest, if µJaccard(i, j) = 0, set W Jaccard(i, j) = 0; otherwise,
W Jaccard(i, j) = 1

• Set W nb = 0.8×W Jaccard + 0.2×W init

• If the graph G is disconnected, iteratively connect the largest connected com-
ponent to smaller connected components as explained in §3.4.3

• For all i, j ∈ V , calculate δdiag(i, j) according to (3.19) and if δdiag(i, j) = 2,
calculate n1 and n2 according to (3.20)

• Form W diag according to (3.21) and update W nb according to (3.22)

• Set W = W nb +W diag

Return: G = (V,Eest,W ,R), MGC values for all pairs of patches
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used for better estimation of locations. In §3.5.2 we discuss the problem of recovering

the location of patches. We propose a mathematical idea for solving the problem by

applying a quadratic assignment formulation with respect to the affinity function W

defined in §3.4.3. However, the solver of the combinatorial optimization problem is

not sufficiently fast and accurate. We thus recommend applying some other existing

algorithms for finding locations of patches. In §3.5.2 we propose an idea for recovering

the location of patches by applying a quadratic assignment problem with respect to the

affinity function W defined in §3.4.3. In §3.5.3 we propose a procedure for updating

the affinity function and the connection function based on the estimated rotations and

locations. At last, §3.5.4 summarizes the complete algorithm to solve type 2 puzzles.

We remark that the main contribution of the work to type 2 puzzles is in the appli-

cation of Algorithm 5 and Algorithm 4, which were already described in earlier sections.

As explained below, the practical code does not use the new ideas in §3.5.1 and §3.5.2,

but follows a previous procedure for estimating locations, which is mentioned in §3.5.2.

Nevertheless, our numerical experiments indicate that the procedure in §3.5.3 improves

the performance of the whole algorithm.

3.5.1 Updating the Metric between Puzzle Pieces by Vector Diffusion

Distances

The MGC metric defined in §3.4.1 is not a perfect metric, but it provides some in-

formation whether two patches are neighbors or not. However, if two patches are not

neighbors, the MGC metric between them does not provide any information about their

distance in the image. Such information can be helpful since the estimated information

on neighboring patches can be wrong. For this purpose, we suggest updating the MGC

metric by considering the diffusion process associated with the random walk determined

by C. The diffusion vector framework for doing this was suggested in [60]. This part is

performed after the rotations of the patches were estimated according to Algorithm 5.

For t > 0, the vector diffusion map (VDM) [60] in our setting is a function Vt,n :

Q → R2n×2n defined by

Vt,n : Pi 7→
(
(µC,lµC,r)

t〈vC,l[i], vC,r[i]〉
)2n
l,r=1

,
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where µC,l and vC,l are the l-th eigenvalue and eigenvector, respectively, of C, and

vC,l[i] is a 2-dim vector containing the (2(i− 1) + 1)-th and (2i)-th entries of vC,l. The

vector diffusion distance (VDD) [60] between two patches indexed by i and j is

dC,t,n(i, j) := ‖Vt,n(Pi)− Vt,n(Pj)‖2. (3.23)

This distance converts the local information into a global information and provides an

estimate of the distance between patches in the original grid. Based on this distance

one can infer whether two patches are close to each other in the original image or far

away. As demonstrated in Figure 3.9, this distance is not sufficiently accurate to infer

nearness when patches have comparable distances. In particular, it cannot be used to

infer whether two patches are neighbors or diagonal neighbors.

Nevertheless, it is still possible to use the VDD for improving the MGC metric in the

following way. We first compute the VDD between all patches. For each image patch

Pi ∈ Q, we sort the VDD distances of all other patches to Pi and record the patches

in the 0.1-quantize of largest distances. The MGC metric between these patches and

Pi is then increased by the factor α = 2. This ensures that patches that are not likely

neighbors of Pi are penalized by a larger distance and thus have a smaller chance of

becoming neighbors in the final solution.

Our numerical tests did not indicate any significant improvement when using this

procedure. In order to reduce the computational time of the algorithm, we do not apply

it in practice and mention it as an optional step for the whole algorithm.

3.5.2 Possible Estimation of Locations by Quadratic Assignment Prob-

lem

As we have already mentioned, the main contribution of this work is to introduce a new

approach for the recovery of the unknown orientations of patches in type 2 puzzles by

using the CGL. After one recovers the unknown orientations, the problem reduces to

solving a type 1 puzzle. According to our numerical tests the following algorithms for

type 1 puzzles are highly competitive: Gallagher [50] and Yu et al. [59]. We have often

noticed a slight advantage of the latter algorithm, which applies a linear programming

procedure. Therefore, in the experiments reported in this chapter we use the algorithm
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of Yu et al. [59]. However, one could use instead any algorithm that solves type 1

puzzles.

Nevertheless, one can try to take advantage of the affinity function W est, whose

construction is described in §3.4.3, and the fact that for two-dimensional square jigsaw

puzzles the true affinity function W true is known. Therefore, one may try to match

W est with W true. This gives rise to the problem of finding a permutation matrix

P , which corresponds to the permutation σ described in §3.4.3, such that W est and

P TW trueP match. The desired permutation can be expressed as the solution of the

following optimization problem:

arg minP∈Perm(n) ‖W est − P TW trueP ‖22. (3.24)

Note that (3.24) is the Quadratic Assignment Problem (QAP) for the matricesW true

and W est. However, existing solvers are slow as the number of patches increase and

thus we are not sure how to make this procedure practical for large puzzles. A similar

idea has been proposed by Andalo et al. [52] for solving type 1 puzzles. They suggest

solving a QAP with different weight matrices by using constrained gradient descent. It

is unclear to us if their procedure is applicable to the QAP problem in (3.24).

3.5.3 Updating the Affinity Function and the Connection Function

After estimating the orientations and locations of the puzzle pieces, we recommend

updating the values of the affinity and connection functions and estimate again the

orientations and locations. This procedure can be iterated several times. The idea

is that given the estimated puzzle solution, one can infer possible mismatches. These

identified mismatches could be used to reassign values for the affinity and connection

functions that may lead to a more accurate solution.

First, we figure out which patches are wrongly placed in the assembled puzzle and

remove them from the grid. For this purpose we use the following kinds of metrics,

which we refer to as NAM (Neighbor-Averaged Metric). For each patch i, 1 ≤ i ≤ n,

with neighbors it, il, ib and ir, from top, left, bottom and right respectively, we define

NAMall(i) = (MGCbt(i, it) + MGCrl(i, il) + MGCtb(i, ib) + MGClr(i, ir))/4. (3.25)
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If a patch i is at the edge or corner of the puzzle grid, then it has 3 or 2 neighbors

respectively. In this case, we only sum up the respective MGC values and divide the

sum by the number of neighbors. Similarly we define the following four metrics:

NAMltr(i) = (MGCrl(i, il) + MGCbt(i, it) + MGClr(i, ir))/3,

NAMtrb(i) = (MGCbt(i, it) + MGClr(i, ir) + MGCtb(i, ib))/3,

NAMblt(i) = (MGCtb(i, ib) + MGCrl(i, il) + MGCbt(i, it))/3,

NAMlbr(i) = (MGCrl(i, il) + MGCtb(i, ib) + MGClr(i, ir))/3.

(3.26)

Again, if the patch is at the edge or corner of the puzzle grid, then we sum the appro-

priate MGC values and divide by the corresponding number of neighbors.

If the puzzle is correctly assembled, the NAM values of all patches are relatively

small as demonstrated for NAMall values in last figure of the first row of Figure 3.10.

Otherwise, if there are some wrongly placed patches, their corresponding NAM values

should be relatively higher. This is demonstrated in first and second figures of the first

row of Figure 3.10, where the spikes of NAMall values correspond to wrongly orientated

or placed patches. Based on this observation, we suggest to find all patches, for which

the corresponding NAMall value and at least one of the NAMltr, NAMtrb, NAMblt and

NAMlbr values exceed 1.5 times the median of all corresponding NAM values. We

remove the corresponding edges from the grid. For example, for NAMltr we remove the

edges connecting vertex i with its left, top and right neighbors. We refer to a location

as empty if all edges connecting the patch in this location to its top, bottom, left and

right neighbors were removed. Patches at empty locations at each iteration of this

procedure are demonstrated in the second row of Figure 3.10. Their removal, which

literally creates empty locations, is demonstrated in the last row of this figure.

Next, we identify all the empty locations for which at least 2 of 4 neighboring

locations are not empty. We consider the neighboring locations in the puzzle grid,

regardless of edges that were removed in the current process. For each fixed empty

location, denote the set of neighboring patches (according to locations) by Snb. Note

that Snb contains either 2, 3 or 4 indices of patches. We identify the empty location with

the set Snb. For the same empty location, find an oriented patch that minimizes the
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averaged MGC metric with respect to the vertices in Snb among all patches with non-

empty locations and with their all four orientations. The corresponding minimal value

of the averaged MGC metric for a specified empty location with neighboring patches

Snb is denoted by NAMSnb
. Assuming the index of this latter patch is i, we denote its

pairwise orientation with respect to patch j ∈ Snb by Ri,j . Let med(NAMall) denote

the median value of all NAMall values. We update the affinity and connection functions

for i and j ∈ Snb as above by

W est(i, j) = W est(j, i) =

{
0.6, if NAMSnb

< med(NAMall);

0.3, if med(NAMall) < NAMSnb
< 2med(NAMall)

(3.27)

and

Rest(i, j) = Ri,j and Rest(i, j) = RT
i,j if med(NAMall) < 2med(NAMall). (3.28)

Algorithm 6 summarizes this update procedure.

Most state-of-the-art methods use a greedy step to make final corrections to the

solved puzzle. On the other hand, the step discussed here only updates the connection

graph and is thus non-greedy. It is possible to incorporate greedy procedures that may

improve the performance of our algorithm, however, we would like to show that a more

principled method can be competitive.

3.5.4 Improvement and Final Solution for Type 2 Puzzles

As we have discussed in §3.3.3, if the constructed connection graph is good enough, the

top 2 eigenvectors of the CGL matrix can recover the orientations of puzzle patches.

However, when it is impossible to construct an accurate affinity graph (see, for ex-

ample, Figure 3.2), one might consider top few eigenvectors, as they might also con-

tain some useful information about the orientations of patches. For some puzzles and

poorly-estimated connection graphs, the orientations recovered by the top 3-rd and 4-th

eigenvectors are more accurate than the ones recovered by the top 2 eigenvectors. We

thus suggest that in the initial step of solving the puzzle (before applying the updates
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Algorithm 6 Updating the affinity function and the connection function at a given
iteration

Input: MGC metric values between all patches, current solution to the puzzle prob-
lem

• Calculate the NAM values for all patches according to (3.25) and (3.26)

• Remove all edges from the solution grid for which the corresponding NAMall

value and at least one of the NAMltr, NAMtrb, NAMblt and NAMlbr values
exceed 1.5 times the median of all corresponding NAM values

• For any empty location (that is, for any location whose all edges were removed)
which has at least two non-empty neighboring locations (according to the nat-
ural grid of locations), find the patch with the correct rotation which best fits
in that position and update the affinity function and the connection function
according to (3.27) and (3.28).

Return: G = {V,Eest,W est,Rest}.

described in §3.5.3), one should compare the accuracy of the solved puzzles according

to top 2 eigenvectors and the top 3-rd and 4-th eigenvectors. For this purpose, we

recommend using the following metric

n∑
i=1

(MGClr(Pi, Pir) + MGCtb(Pi, Pib) + MGCrl(Pi, Pil) + MGCbt(Pi, Pib)) , (3.29)

where it, il, ib and ir are the corresponding neighbors of patch i from top, left, bottom

and right; if patch i is at the edge or corner of the puzzle grid, we only sum the respective

MGC values. We remark that this procedure is not needed at the later updates of §3.5.3

since the connection graphs are nicely approximated then. Our experiments indicate

that even for the initial stage, the use of this procedure is beneficial for only few images.

We thus leave this step as optional.

Finally, our proposed algorithm for reassembling two-dimensional square jigsaw puz-

zles is summarized in Algorithm 7.
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Algorithm 7 Solution of type 2 puzzles

Input: Puzzle Patches: {Pi}Ni=1 ⊂ Rp×p×3

• Apply Algorithm 5 with {Pi}ni=1 to construct the Affinity Graph G =
(V,E,W ,R) and obtain MGC values between all patches

• Run Algorithm 4 with G = (V,E,W ,R) to find the orientations {Ri}Ni=1

• Optional: Apply Algorithm 4 with G = (V,E,W ,R), but use top 3-4 eigenvec-
tors to find the orientations {Ri,2}Ni=1, and check by (3.29) whether this solution
is better than the one from the previous step. If it is, set Ri = Ri,2, 1 ≤ i ≤ N .

• Optional: Update the MGC metric according to the procedure explained in
§3.5.1

• Apply the type 1 jigsaw puzzle solver of [59] to solve the type 1 puzzle with
patches {Ri · Pi}ni=1 and obtain their estimated permutation vector σ.

• for iterations 1:5 do
Apply Algorithm 6 with σ, {Ri}Ni=1 and the MGC values to obtain the up-
dated connection graph G = (V,E,W ,R)
Apply Algorithm 4 with G = (V,E,W ,R) to recover the orientations {Ri}Ni=1

Optional: Update the MGC metric according to the procedure explained in
§3.5.1
Apply the type 1 jigsaw puzzle solver of [59] to solve the type 1 puzzle with
patches {Ri · Pi}ni=1 and obtain their estimated permutation vector σ.

• end for

Return: {Ri}ni=1 and σ.
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3.5.5 Time Complexity

The most time consuming step is to find the MGC metric between all puzzle pieces.

The order of operations for this is step is O(n2d), where n is the number of image

patches and d is the size of the square image patches. However, one can parallelize this

procedure and achieve faster computation. We would like to mention that this step is

vital for all jigsaw puzzle solvers.

After finding the MGC metric between all puzzle pieces, our proposed algorithm

finds the orientations of all patches and converts a type 2 puzzle into a type 1 puzzle.

To find the orientations of puzzle patches we need only construct the connection graph,

which requires nearest neighbors computation for each patch. The worst case complexity

for this is O(n2) and the average complexity is O(n log(n)). Then, it finds the top

eigenvector of a sparse symmetric matrix with 4 nonzero elements in each column and

row, which would take O(n) time. For the type 1 puzzle, the complexity depends on

the state-of-the-algorithm being used. It is faster then using the latter algorithm for

directly solving the type 2 puzzle.

One may suggest using subsampling to speed up the computation. That is, instead

of calculating the MGC metric between a given patch and all other patches, one may

only consider a fraction p of the other patches. However, this procedure would only

speed up the computation by a constant factor, so the order of time complexity will

still remain the same. Also, one needs to be cautious when applying this idea since

for a 2-dimensional square jigsaw puzzle each patch has at most 4 neighbors, and if for

each patch one subsamples 50% of patches, there are on average only 2 neighbors for a

central patch. This may yield a disconnected graph and may also result in sensitivity

to individual mistakes.

3.6 Numerical Experiments

We apply our proposed algorithm to solve two-dimensional square jigsaw puzzles of

the following standard image datasets: The MIT dataset from Cho et al. [55], which

contains 20 images, each with 432 patches, and three datasets from Pomeranz et al. [51],

where the first two, which are referred to as McGill and Pomeranz, include 20 images

with 540 and 805 patches, respectively, and the third one has 3 images with 3300
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patches, which is also referred to as Pomeranz or large Pomeranz. For all datasets, the

patches are of size 28 × 28. Figure 3.11 demonstrates the application of our proposed

algorithm to four images that represent the four datasets. To test the accuracy of our

proposed algorithm we use the following four metrics, defined in Gallagher [50] and Cho

et al. [55]: The direct comparison, the neighbors comparison, the largest component

and the perfect reconstruction. The direct comparison measures the percentage of

image patches whose location and orientation are correct. The neighbors comparison

calculates the percentage of pairs of image patches that are matched correctly. The

largest component calculates the percentage of patches in the largest correctly assembled

component of the solved puzzle. Finally, the perfect reconstruction of a puzzle is 1 if it

is solved correctly and 0 otherwise.

We compared our algorithm with the algorithms of Gallagher [50] and Yu et al. [59]

since these were the only algorithms with available codes (we have requested codes

from all authors of published algorithms). While our algorithm is deterministic, we

noticed some randomness in the results of these two algorithms and we thus report

their averaged results over 20 different instances. Nevertheless, this randomness is not

significant. For example, the standard deviations for these 20 instances, averaged over

the 20 images of the MIT dataset, are 0.055 and 0.015 for Gallagher [50] and Yu et

al. [59], respectively.

Table 3.1 compares the four metrics of our proposed algorithm with some state-of-

the-art algorithms. For the first three metrics, which obtain percentages, we report the

means and standard deviations among each of the four datasets. We clarify that here

the means and standard deviations are with respect to the results of the various images

in the datasets, whereas for Gallagher [50] and Yu et al. [59] they are averaged over the

20 instances mentioned above. On the other hand, the standard deviations mentioned

above are with respect to these 20 instances, while we averaged them over the images

in the MIT dataset. For the fourth metric of perfect reconstruction, we report its sum,

that is the numbers of perfectly solved images in each dataset. Figure 3.12 presents

histograms of the metrics of accuracy of the algorithm for the first three datasets with

20 images. The fourth dataset is excluded from this figure since it only has three images.

As we can see, our results are comparable with those of state-of-the-art methods.

The mean error of the first three metrics are slightly better for [59], but with relatively



68

Table 3.1: Comparison of results for type 2 puzzles for the four datasets. For the first
three metrics, we report the mean values and standard deviations over all the images
in a dataset. For the fourth metric we report the sum over all images in a dataset. Due
to randomness, the results of the algorithms of Gallagher [50] and Yu et al. [59] are
averaged over 20 instances of solving a given puzzle.

Dateset Method Direct Neighbor Largest Perfect

mean std mean std mean std

MIT dataset, Gallagher [50] 84.2 19.7 89.1 12.4 87.2 14.3 9
20 images, Yu et al. [59] 95.5 13.0 95.4 8.7 95.4 13.2 13
432 patches (28× 28) Our method 95.3 9.5 95.0 9.7 95.2 9.6 13

McGill dataset, Gallagher [50] 77.2 35.3 85.8 19.8 84.6 21.3 7
20 images, Yu et al. [59] 92.9 24.6 93.5 14.8 93.1 15.4 13
540 patches (28× 28) Our method 86.9 30.4 91.6 16.4 90.8 18.7 13

Pomeranz dataset, Gallagher [50] 77.5 27.8 85.3 15.5 79.3 22.6 5
20 images Yu et al. [59] 91.8 14.2 92.7 13.0 91.7 14.2 9
805 patches (28× 28) Our method 86.4 24.6 90.0 14.7 89.3 15.7 8

Pomeranz dataset, Gallagher [50] 82.9 15.6 84.2 14.2 82.8 15.7 1
3 images Yu et al. [59] 89.7 12.3 90.2 11.0 89.7 12.3 1
3300 patches (28× 28) Our method 86.4 14.0 88.1 11.7 86.4 14.0 1

large standard deviations. The histograms in Figure 3.12 indicate that are results are

comparable to those of state-of-the-art methods. We remark that images with low

percentages of recovered puzzle pieces have large portions of patches with the same

uniform color. For example, in the MIT dataset, the puzzle that our proposed algorithm

assembled with lowest percentage of 65% contains a lot of patches that are uniformly

white and are identical. This puzzle, with the solution of our proposed algorithm, is

presented in the first row of Figure 3.11. In this scenario, there is no way to find the

exact original positions of all patches. However, the solution obtained by our proposed

algorithm is visually identical with the original one. On the other hand, in puzzles

where most of the patches have non-zero gradients around their boundaries, we get

perfect recovery.

At last, we would like to mention that our proposed algorithm for recovering the

unknown orientations of the puzzle patches has no assumption on the shape and size of

the puzzle, unlike [50,59]. Furthermore, it is non-greedy. On the other hand, most state-

of-the-art algorithms, in particular [50,53,59], use a greedy step to make final corrections.
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We believe that by using that final step of corrections we could further improve our

results, however, we would like to avoid any greedy or semi-greedy procedure.

3.7 Discussion and Conclusion

This chapter introduced a novel, non-greedy mathematical approach for solving two-

dimensional square jigsaw puzzles. More specifically, its main contribution is a theoretically-

guaranteed strategy for recovering the unknown orientations of type 2 puzzle patches.

Furthermore, it also suggests a non-greedy step for updating the full puzzle solution

based on the latter strategy for solving orientations. Some components of the proposed

algorithm, in particular, the strategy for recovery of orientations are relatively fast,

though the main bottleneck in the computational complexity is shared by all exist-

ing algorithms. Numerical experiments on datasets of two-dimensional square jigsaw

puzzles indicate competitive results, that is, results, which are at least comparable to

state-of-the-art methods.

We expect some possible extensions of the proposed algorithm. First of all, we

believe that the ideas pursued in this work could be extended to puzzles that come from

more complicated manifolds, such as the two-dimensional sphere or a three-dimensional

cube jigsaw puzzle, or to puzzles with more complicated shapes of patches, such as

tangrams. The CGL algorithm should be the same, however, instead of considering

the group Z4, one needs to consider the corresponding rotation group. One of the

main challenges would be to define a metric between puzzle pieces and construct the

connection graph. By doing this, one will extend the applicability of this work to

various real-world applications, such as three-dimensional image reconstruction from

two-dimensional images.

In terms of theory, it is interesting to analyze our proposed CGL algorithm with more

complicated noise models. It is also interesting to see if one can utilize the information

from the VDD distances in a more effective way. Another question is whether one may

modify the VDD distances and resolve the problem with the current definition discussed

in §3.5.1.
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Figure 3.2: Examples of two-dimensional square jigsaw puzzles, where the comparison of
two neighboring patches is challenging or impossible. The top left image shows a puzzle
with 432 pieces, each of size 28× 28. The top right image demonstrates an example of
2 neighboring patches in the latter puzzle that have different pixel values around the
boundaries due to the discrete nature of a digital image. These patches are circled with
red in the original puzzle (top left image) and their nearby edges are circled with red in
the top right image. The bottom two images demonstrate examples of puzzles that have
patches with uniformly white edges (circled with red in the bottom left image) and also
have some uniformly white patches. Natural solutions of the bottom left puzzle seem
to yield visually correct images that may not coincide with the original assignment.
However, there are natural solutions of the bottom right puzzle that result in different
images than the original one. Indeed, the small component of the image circled with
red can be placed in different area within the skies.



71

R(i, i
t
)=

i
l

i
t

i
r

i
b

R(i, i
l
)= (-1

0 -1
0 )

0
(-1

-1
0)

)1
10
0(R(i, i

r
)=

)1
0

0
-1(R(i, i

b
)=

W(i, i
l
)=0.01

W(i, i
t
)=0.01

i
b

W(i, i
r
)=1

W(i, i
b
)=1

i
t

i
r

i
l

Figure 3.3: Demonstration of the initial step for the construction of the connection
graph. The left figure demonstrates the best matches for a given patch from the four
directions: top, left, bottom and right. For each matching patch it records the rotation
needed to apply to it. The right figure shows the application of these rotations to the
matching patches and demonstrates how to assign the weights to undirected graph. In
this example, the matching patches from top and left were originally connected by a
single direction, their weights in the undirected graph are thus 0.01. On the other hand,
the patches from right and bottom are connected in both directions and thus their
weights in the undirected graph are 1.

i

Figure 3.4: Demonstration of the sets N1
G,i and N2

G,i. A given vertex i is colored in red,

the elements of the set N1
G,i are colored in blue, and the elements of the set N2

G,i are
colored in blue and orange.
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ji

Figure 3.5: Demonstration of Jaccard index. Vertex i is denoted by a red circle and
vertex j is denoted by a red cross. The edge between these vertices was removed from
the grid. The elements of N2

G\(i,j),i
are denoted by blue circles and the elements of

N2
G\(i,j),j

by orange crosses. The Jaccard index is four since there are four elements in

N2
G\(i,j),i

∩N2
G\(i,j),j

(denoted by blue circles filled with orange crosses).

Figure 3.6: Demonstration of a disconnected affinity graph and the way it got connected.
The left figure shows an example where the affinity graph resulted by our method is
disconnected. Indeed, the two top right patches are not connected to any of the other
patches. The black edges connect between true neighbors and the only red edge is
a wrongly determined edge. The right figure demonstrates the result of the simple
procedure described in §3.4.3. The connected graph has two new blue edges. While
these blue edges connect between non-neighboring patches, the originally disconnected
patches are uniformly white and thus their rotations do not matter for the reconstruction
of the image.
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i
j

Figure 3.7: Demonstration of finding diagonally neighboring vertices in the grid. Two
vertices i and j are denoted by a red circle and a red cross respectively. The elements
of the sets N1

G,i and N1
G,j are colored by blue and orange respectively. The intersection

of these sets yield the two diagonally neighboring vertices to i and j.
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Figure 3.8: Intuition for the condition in (3.21) and (3.22). The two vertices i and j
are diagonal neighbors and the vertices n1 and n2 satisfy (3.20). Thus, i, j, n1 and
n2 form a cycle of size 4, that is, a 4-loop. The relative rotations between vertices
are indicated on the corresponding edges. We note that both R(i, n1)R(n1, j) and
R(i, n2)R(n2, j) are equal to the relative rotation R(i, j) shown on edge (i, j). In par-
ticular,R(i, n1)R(n1, j) = R(i, n2)R(n2, j). The assigned weights thus try to encourage
this constraint on rotations and penalize cases where it is not satisfied.
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k

i j

Figure 3.9: An example where VDD fails to reflect the distance between nearby patches.
The graph is a grid with one missing edge between vertices i and j (all other neighboring
edges are connected by an edge). Due to the structure of the grid, the shortest path
between vertices i and j is of length 3, whereas the shortest path between vertices i and
k is 2. Thus the use of VDD leads to the wrong conclusion that vertex i is closer to
vertex k than to vertex j.
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Figure 3.10: Demonstration of the update step for 2 iterations, described in §3.5.3, of
a type 2 puzzle with 540 pieces each with sizes of 28 × 28. The first row shows the
histograms of the NAMall metric values for all patches, defined in (3.25). The second
row shows the solution of the puzzle after each iteration of assembling the puzzle and
the third row shows the remaining patches of an assembled puzzle after removing the
patches that are wrongly placed or oriented.
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Figure 3.11: Reconstruction results of our algorithm for type 2 puzzles representing the
four datasets. The images in the left column are the inputs for the algorithm and the
ones in the right column are the outputs generated by our proposed algorithm. All the
patches are of size 28 × 28. The puzzle in first row is from the MIT dataset with 432
patches, the puzzle in the second row is from the McGill dataset with 540 patches, the
puzzle in the third row is from the Pomeranz dataset with 805 patches and the puzzle
in the fourth row is from the Pomeranz dataset with 3300 patches.
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Figure 3.12: Histograms of the percentages of the recovered patches for type 2 jigsaw
puzzle. The three rows correspond to results by our proposed algorithm, the algorithm
of [59] and the algorithm of [50], respectively. The three columns correspond to the
MIT, McGill and (small) Pomeranz datasets, respectively.



Chapter 4

Part III: Non-convex Analysis of

Multi-Graph Matching

4.1 Introduction

Multi-Graph Matching (MGM) is a well-known problem that arises naturally in many

computer vision applications. Its setting assumes n graphs each with m vertices. Fur-

thermore, it assumes that for each pair of graphs there exists a one-to-one correspon-

dence map between their vertices. The MGM problem asks to find the complete set of

correspondence maps between all graphs given only noisy measurements of the mutual

correspondences. The solution of this setting is useful for several applications, includ-

ing 3D shape matching [68], 3D reconstruction/Stereo Matching [69], Structure from

Motion (SfM) [70] etc.

The following computer vision application helps to motivate the problem: Assume

we take pictures of the same scene from different angles and that this scene has m

points of interests that we can identify among all images. Next, for each image we

construct a graph that connects between these points of interests and define a vector

of characteristics (one possible option is SIFT features) for each point. Assume we are

given an algorithm that matches between each of these two graphs (corresponding to

two images) and finds the correspondence map, possibly with some mistakes in it. The

goal is to correctly register the same points of interests across all images.

If the measurements are corrupted, naive methods, such as trying to start with one

78
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graph and chase the points by mutual correspondences often fail. Indeed, one mistake

would lead to many wrong assignments. Thus, more robust algorithms are needed.

Some algorithms have already addressed the MGM problem [2, 71, 72, 73]: Pachauri et

al. [72] propose a harmonic analysis approach; Pachauri et al. [2] propose the eigenvector

synchronization approach; Shi et al. [73] propose tensor power iteration method; Chen

et al. [71] propose semidefinite relaxation method; Yan et al. [74] propose graduated

consistency-regularized boosting method.

In this work we propose to apply the Projected Power Method (PPM) to MGM

problem. The PPM is an iterative algorithm that starts at an initial guess and im-

proves the guess at each iteration. This framework has been applied and analyzed for

synchronization problem for various groups: Chen and Candes [75] apply PPM to joint

alignment problem (the group is Z/nZ), Boumal [76] applies PPM to phase synchro-

nization problem (the group is SO(2)).

We show that under some conditions on the initial guess and for a particular data

model the PPM algorithm for MGM linearly converges to the unique solution of the

problem and show how to find such an initial guess. Furthermore, we present numerical

experiments for both synthetic and real world datasets and compare the results with a

state-of-the-art algorithm.

4.1.1 Structure of This Chapter

The rest of this chapter is organized as follows: §4.2 contains a short description of

the mathematical framework of MGM; §4.3 reviews the projected power method for

MGM; §4.4 theoretically analyses the PPM algorithm for MGM; and §4.5 concludes

with numerical experiments that test the accuracy of the proposed algorithm.

4.2 The Mathematical Setting for MGM

In this section we summarize the mathematical formulation of the MGM problem. Con-

sider a set of permutation matrices P 1, . . .P n ∈ Perm(m), where Perm(m) denotes the

set of all m × m permutation matrices. Next, assume we are given noisy measure-

ments of the relative permutations, that is, for all 1 ≤ i 6= j ≤ n we are given a noisy
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measurement of P iP
−1
j , which is the same as P iP

T
j (indeed, for a permutation ma-

trix P ∈ Perm(m), P−1 = P T ). We register these measurements in a block matrix

L ∈ Rmn×mn (with m×m blocks) as its ij-th block.

The noise model that we consider in this work is the random corruption model. It

assumes 0 ≤ π0 ≤ 1 and for each 1 ≤ i 6= j ≤ n, with probability π0 the measured

relative permutation is the correct one, otherwise it is a uniformly random permutation

matrix. That is

L[i, j] =

P iP
T
j with probability π0,

Unif(m) otherwise,
(4.1)

where Unif(m) denotes the random variable corresponding to the uniform distribution

on m ×m permutation matrices. The parameter π0, introduced in (4.1) is called the

non-corruption rate and 1− π0 is called the corruption rate.

Note, that if π0 = 1, that is, we did not make any mistakes in measurements, then

L = P̄ P̄
T

, where

P̄ =


P 1

...

P n

 . (4.2)

The MGM problem asks to determine the permutation matrices P 1, . . . ,P n ∈ Perm(m),

up to a global permutation, from L. To tackle this problem we consider the following

optimization problem:

arg minQ̄∈Permn(m) ‖L− Q̄Q̄
T ‖2F , (4.3)

where Permn(m) represents the set of matrices in Rmn×n which has m×m permutation

matrices as its blocks,

Q̄ =


Q1
...

Qn

 , (4.4)

and Qi ∈ Perm(m) for all 1 ≤ i ≤ n. Since the set of all permutation matrices of size

m is discrete and n is finite, the set Permn(m) is discrete, thus, non-convex. Note, that
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(4.3) is equivalent to

arg max
Q̄∈Rnm×m

tr(Q̄
T
LQ̄). (4.5)

If we relax the constraint Q̄ ∈ Rnm×m in (4.3) and (4.5) they would become an

eigenvalue-eigenvector problem and the matrix λ that has its columns as the top m

eigenvectors of L would solve them. Pachauri et al. [2] propose an algorithm, which

relaxes the condition Q̄ ∈ Rnm×m, solves the eigenvector problem to obtain λ and

projects the blocks of λ into the set of permutation matrices.

We propose to apply the Projected Power Method (PPM) to solve the MGM prob-

lem. Note, that in Pachauri et al [2], to find the top m eigenvectors of matrix L they

use the Power Method (PM) algorithm. The PPM is a similar iterative procedure as

the PM, but instead, at each iteration it projects the result into the given set (in our

case it would be Permn(m)). Thus, it preserves the non-convexity of the problem.

4.3 Projected Power Method for Multi-Graph Matching

In this section we review the PPM for MGM algorithm. Assume we are given the matrix

L, defined in (4.1), and a starting point (initial guess)

Q̄
0

=


Q0

1
...

Q0
n

 , (4.6)

where Q0
1, . . . ,Q

0
n ∈ Perm(m) are permutation matrices. The PPM is an iterative

algorithm, which has two main steps in each of its iteration: First, for iteration 1 ≤ t

calculate the following matrix Q̃
t
i = LQ̄

t−1
i . Second, project the m ×m blocks of Q̃

t
i

into the set of m×m permutation matrices Perm(m).

Before we summarize the algorithm, there are two things that we need to justify.

First, at each iteration of the algorithm we need to project the blocks of Q̃ into the

set Perm(m). We define the projection of a square matrix A ∈ Rm×m into the set of

permutation matrices P as a permutation matrix P which solves the following problem:

P∆(A) = arg maxQ∈Perm(m) tr(QTA). (4.7)
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This problem is known as linear assignment problem, with an assignment matrix A.

There are some well-known algorithms for solving (4.7), the one that we use in this

work is the well-known Hungarian algorithm, which is also known as Kuhn-Munkres

algorithm or Munkres assignment algorithm [77].

Second, since the problem is non-convex, in order to guarantee convergence, we need

to find a proper starting point for the algorithm. We propose to use the spectral initial-

ization. That is, let the matrix λ ∈ Rnm×m has its columns as the top m eigenvectors

of L. Furthermore, set the m × m blocks of Q̄
0

as P∆(λ−1
1 λi), where λi is the i-th

m×m block of λ. In §4.4 we show that such initialization guarantees the convergence

of the algorithm. However, in our numerical experiments we see that under some con-

ditions on m,n and π0 random initialization would just be as successful as the spectral

initialization.

The PPM for MGM algorithm is summarized in Algorithm 8 and the theoretical

analysis of the algorithm is presented in §4.4.

Algorithm 8 Projected Power Method for Multi-Graph Matching

Input: The block matrix L ∈ Rmn×mn, where for all 1 ≤ i, j ≤ n L[i, j] ∈ Perm(m),
Tppm: stopping parameter.
Find λ ∈ Rmn×m which has top m eigenvectors of L as its columns
Set: Q0

i = P∆(λ−1
1 λi) for 1 ≤ i ≤ n and combine Q0

1, . . . , Q0
n into Q̄

0
as in (4.6).

for 1 ≤ t ≤ Tppm do

Set: Qt
i = P∆((LQ̄

t−1
)i) for all 1 ≤ i ≤ n

Combine: Qt
1, . . . , Qt

n into

Q̄
t

=

Q
t
1

...
Qt
n

 ,
end for
Output: Q̄

T

4.4 Theoretical analysis

This section provides theoretical analysis for the PPM for MGM algorithm. In §4.4.1

we state and prove a theorem for the noise free case, and in §4.4.2 we provide with
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theoretical analysis for the random corruption model.

4.4.1 A Theorem with its Proof for the Noise Free Case

As a quick warm up before we start the analysis of the random corruption model, we

analyze the algorithm for noise free case. The following theorem states that if the data

is noise free (that is π0 = 1) no matter which initial point we start with the proposed

algorithm will converge to the true solution.

Theorem 2 (Projected power method for noise free data). Assume we are given P 1,

. . . , P n ∈ Perm(m), m×m permutation matrices and that the matrix L ∈ Rmn×mn for

all 1 ≤ i, j ≤ n has its ij-th m ×m block as P iP
T
j . For any Q̄

0 ∈ Rmn×m with Q1,

. . . , Qn ∈ Perm(m) the iterates produced by Algorithm 8 will converge to P̄ .

Proof. We start the proof by showing that at each iteration of Algorithm 8 the value of

the following function, f(Q̄) = tr(Q̄
T
LQ̄) either increases or stays the same. That is

f(Q̄
t+1

) ≥ f(Q̄
t
) for all t ≥ 1.

To prove this we use the fact that f is convex. Note, that since π0 = 1, L = Q̄Q̄
T

,

thus L is positive semi-definite matrix on the convex hull of permutation matrices (which

is the set of doubly stochastic matrices). Which implies, that f is convex on the set of

doubly stochastic matrices. Thus, the following inequality holds

f(Q̄
t+1

)− f(Q̄
t
) ≥ 2 tr((Q̄

t+1 − Q̄t
)LQ̄

t
) ≥ 0. (4.8)

For the second inequality we used the fact that each block of Qt+1 is the projection of

a corresponding block of LQt. Thus, at each iteration of Algorithm 8 the value of f

either increases or stays the same. We also note that since Permn(m) is a discrete set,

f |Permn(m) is bounded above.

Next, we show that if for two consecutive iterations, the value of f is the same, that

is for some t ≥ 1, f(Q̄
t
) = f(Q̄

t+1
) then the algorithm has reached to a fixed point,

that is Q̄
t

= Q̄
t+1

. To prove this claim we write

tr(Q̄
tT
LQ̄

t
) = tr(Q̄

t+1T
LQ̄

t+1
). (4.9)

Furthermore, using the fact that Qt+1 is the projection of LQt and using the definition
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of the projection operator we obtain

tr(QtTLQt) ≤ tr(Qt+1TLQt). (4.10)

Next, we combine (4.9) and (4.10) to conclude

tr
(
(Qt+1 −Qt)TL(Qt+1 −Qt)

)
= tr(Qt+1TLQt+1)+

tr(QtTLQt)− 2 tr(Qt+1TLQt) ≤ 0. (4.11)

Since L is a positive semi-definite matrix, it implies that Qt+1−Qt ∈ ker(L) and since

the blocks of Qt+1 and Qt are permutation matrices we get that Qt+1 = Qt. Thus, the

algorithm converges to a fixed point.

Next, we analyze the fixed points of the projection operator and prove that if L =

P̄ P̄
T

, there is only one fixed point which is P̄ (up to a global permutation). Assume

Q̄ is a fixed point, note that the ij-th block of L, L[i, j] = P iP
T
j . Which means that if

we denote X := LQ and write the projection for the i-th block of X we will obtain

P∆(Xi) = P∆(

n∑
k=1

LikQi) = P∆(

n∑
k=1

P iP
T
kQk) =

P∆(P i

n∑
k=1

P T
kQk) = P i × P∆(

n∑
k=1

P T
kQk) = Qi. (4.12)

For the last equation we used the fact that Q̄ is a fixed point. We conclude from (4.12)

that for all 1 ≤ i ≤ n, Pi × P∆(
n∑
k=1

P Tk Qk) = Qi, which means that for all 1 ≤ i ≤ n

P∆(

n∑
k=1

P T
kQk) = P T

i Qi. (4.13)

Note, that the LHS of (4.13) does not depend on i, which implies that for all 1 ≤ i ≤ n,

P T
i Qi = const. This concludes the proof.
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4.4.2 Theoretical Analysis of Algorithm 8 for Random Corruption

Model

In this section we state and prove a theorem which claims that at each iteration of

Algorithm 8, it improves the current guess. Then, we discuss how to apply this theorem

and why the spectral initialization works.

To state the main theorem, we need the following definition:

Definition 5. For P̄ , Q̄,∈ Rmn×m with P 1, . . . , P n ∈ Perm(m) and Q1, . . . , Qn ∈
Perm(m) by δ(P̄ , Q̄) we denote

δ(P̄ , Q̄) =
‖P̄ − Q̄‖0,m

n
, (4.14)

where ‖.‖0,m is the 0-norm over the m×m blocks of a block vector.

Theorem 3. Assume we are given

P̄ =


P 1

...

P n

 , Q̄ =


Q1
...

Qn

 , (4.15)

with P 1, . . . , P n ∈ Perm(m) and Q1, . . . , Qn ∈ Perm(m). Furthermore assume that L

is constructed according to the random corruption model (4.1) for some π0 > 0 and for

all 1 ≤ i, j ≤ n, if L[i, j] 6= P iP
t
j then Qj is independent of L[i, j]. If α = 1−δ(P̄ , Q̄) >

0.5, then for all 1 ≤ i ≤ n and sufficiently large n

Prob
(
P∆

(
(LQ̄)i

)
= P i

)
> 1− 1

2
e
− (2α−1)2nπ0

2(1−π0)
.

Proof. Assume that the matrix (block vector) R̄ is obtained by projecting the blocks

LQ̄ into the set Perm(m). That is for each 1 ≤ i ≤ n, Ri = P∆((LQ̄)i). We aim

to analyze δ(P̄ , R̄) and show that with high probability for large n if δ(P̄ , Q̄) < 0.5,

δ(P̄ , R̄) < ρδ(P̄ , Q̄).
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We start with the computation of the i-th block of LQ̄.

(LQ̄)i =

n∑
j=1

L[i, j]Qj . (4.16)

Now, if for all 1 ≤ i ≤ n by Ji ⊂ {1, . . . , n} we denote the set of indices j for which

L[i, j] = P iP
T
j , that is the set of indices for which the measurement is correct. We can

break the sum in (4.16) into the following:

(LQ̄)i =

n∑
j∈Ji

P iP
T
j Qj +

n∑
j /∈Ji

L[i, j]Qj = P i

n∑
j∈Ji

P T
j Qj +

n∑
j /∈Ji

L[i, j]Qj . (4.17)

Furthermore, by S ⊂ {1, . . . , n} let us denote the set of indices for which Qi = P i. We

proceed with (4.17) by

(LQ̄)i = |Ji ∩ S|P i + P i

n∑
j∈Ji\S

P T
j Qj +

n∑
j /∈Ji

L[i, j]Qj . (4.18)

Now, since for j 6∈ Ji,  L[i, j] is a uniformly distributed permutation independent of Qj ,

we get that L[i, j]Qj is also uniformly distributed. Furthermore, since for all j1, j2 6∈ Ji,
 L[i, j1] and  L[i, j2] are independent and Qj is fixed for all j ∈ Ji we can claim that

∑
k 6∈Ji

L[i, j]Qj ≈
|Ji|
m

1T × 1. (4.19)

To make (4.19) rigorous we use the matrix Bernstein inequality [78], which concludes

that

Prob

∥∥∥∥∥∥
∑
j∈Ji

(
L[i, j]− 1

m
11T

)∥∥∥∥∥∥ ≥ t
 ≤ 2me

− t2/2
v(Z)+Lt/3 (4.20)
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Thus, if n is large enough, for 1 ≤ i ≤ n, with high probability we can claim that

P∆

(
(LQ̄)i

)
= P∆

|Ji ∩ S|P i + P i

n∑
j∈Ji\S

P T
j Qj +

n∑
j /∈Ji

L[i, j]Qj

 =

P∆

|Ji ∩ S|P i + P i

n∑
j∈Ji\S

P T
j Qj

 =

P iP∆

|Ji ∩ S|Im +
n∑

j∈Ji\S

P T
j Qj

 . (4.21)

Note, that if |Ji ∩ S| > |Ji \ S| then P∆

(
|Ji ∩ S|Im +

∑n
j∈Ji\S P

T
j Qj

)
= Im and thus

P∆

(
(LQ̄)i

)
= P i. This implies that

Prob
(
P∆

(
(LQ̄)i

)
= P i

)
≥ Prob (|Ji ∩ S| > |Ji \ S|)

Note, that |Ji ∩ S| ∼ Binom(π0, nα) and |Ji \ S| ∼ Binom(π0, n(1− α)). Thus,

Prob
(
P∆

(
(LQ̄)i

)
= P i

)
≥ Prob (Binom(π0, nα)− Binom(π0, n(1− α) > 0) .

Next, we use the normal approximation for binomials to conclude that if n is large

enough

Prob (Binom(π0, nα)− Binom(π0, n(1− α) > 0) ≈ Prob(N(nαπ0, nαπ0(1− π0))−

N(n(1− α)π0, n(1− α)π0(1− π0) > 0) = Prob (N((2α− 1)nπ0, nπ0(1− π0))) .

Combining all these results yields

Prob
(
P∆

(
(LQ̄)i

)
= P i

)
> Prob (N((2α− 1)nπ0, nπ0(1− π0))) , (4.22)

for large enough n. We conclude by noting that if α > 1/2, that is 2α − 1 > 0 we get

that

Prob (N((2α− 1)nπ0, nπ0(1− π0))) ≥ 1− 1

2
e
− (2α−1)2nπ0

2(1−π0) . (4.23)

Combining (4.22) and (4.23) we conclude the proof.
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4.4.3 Discussion on Spectral Initialization and Independence

Next, we would like to mention that Chen and Candes [75][Theorem 9] prove a general

result for spectral initialization, which is applicable for our problem. It guarantees that

the initial guess that we obtain from the top m eigenvectors of L is in the range where

Theorem 3 is applicable.

The last thing to justify is that in Algorithm 8, during the iterations for all 1 ≤ i, j ≤
n if L[i, j] 6= P iP

T
j then L[i, j] andQt+1

j stay independent, given that δ(P̄ , Q̄
t+1

) < 0.5.

We observe that similar to (4.17) we can write

(LQ̄)i =
n∑
j=1

L[i, j]Qj (4.24)

and thus, if we follow the analysis in the proof of Theorem 3, removing 1 summand,

with high probability for sufficiently large n will not change P∆((LQ̄)i).

4.5 Numerical Experiments

In this section we test the PPM for MGM algorithm, proposed in this work, by using

both synthetic and real datasets. This section is organized as follows: §4.5.1 contains

experiments on datasets generated from random corruption model (4.1) and §4.5.2 con-

tains experiments on real data sets.

4.5.1 Synthetic Data Experiments

In Figure 4.1 we compare the PPM for MGM algorithm with the algorithm for permu-

tation synchronization proposed by Pachauri et al. [2] (the top eigenvectors method).

We create the datasets according to the random corruption data model, defined in

Equation (4.1), with fixed permutation size m = 5 and for each subfigure we vary the

number of permutations n = 80, 100, 150 and 200. As we can see in all four subfigures

of Figure 4.1 PPM for MGM performes better than the method proposed by Pachauri

et al. [2]. Note that for larger number of permutation matrices the algorithm can handle

higher corruption rate.

In Figure 4.2 we show that the PPM for MGM algorithm converges even if instead
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of spectral initialization we use random initialization. We initialize the algorithm with a

uniformly random Q̄, with Q1, . . . , Qn ∈ Perm(m) and run it for 100 uniformly random

initial points for 3 different values of the corruption rate. We report the average results

in Figure 4.2. For all experiments we fix the number of permutations to be n = 500

and the size of permutations to be m = 5. For the left figure the corruption rate is 0.89

for the middle figure the corruption rate is 0.90 and for the right figure the corruption

rate is 0.91. As we can see the smaller the corruption rate is the faster algorithm

converges. However, for larger corruption rates we see a slow convergence region for

initial iterations. We describe this by the fact that if the initial point is not in the

region of fast convergence, it needs to slowly improve the guess and eventually end up

in the fast convergence region. Note, that for all 3 subfigures of Figure 4.2 there is a

point after which the algorithm converges very fast, for smaller corruption rate values

it happens faster than for larger corruption rate values.

4.5.2 Real Data Experiments

To test the accuracy of PPM for MGM we use the WILLOW-Object Class dataset

released in [79]. There are 5 groups of images in this dataset, the first one has 109

images of faces, the second one has 50 images of ducks, the third one has 66 images of

Wine Bottles, the fourth one contains 40 images of motorbikes and the fifth one contains

40 images of cars. For each image 10 feature points are manually labeled. The goal is

to register the points among images that correspond to the same area of the image.

For each of the 5 datasets we start by preprocessing the images and feature points

as follows: We first creat the graphs between the feature points and match pairwisely

between them according to the procedure described in Cho et al. [80], which uses re-

weighted random walks to match between graphs. Then, after obtaining the mutual

correspondences we use the PPM for MGM algorithm. The results are presented in

Table 4.1.
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Figure 4.1: This figure demonstrates a comparison between PPM for MGM and [2],
the number of permutation size is fixed to 5 and the number of permutation varies as
follows: for the left figure of the first row it is 80, for the right figure of the first row it is
100, for the left figure of the second row it is 150 and for the right figure of the second
row it is 200.
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Figure 4.2: This figure demonstrates the convergence speed of the PPM for MGM with
random initialization for different corruption rates. For the first figure the corruption
rate is 0.89, for the second figure the corruption rate is 0.9 and for the third figure the
corruption rate is 0.91.
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Table 4.1: Results of PPM for MGM algorithm on the real image datasets.

Dataset # images # feat. points mistake % in est. recovery %

Car 40 10 58.1 92.5

Duck 50 10 64.2 84.0

Wine Bottle 66 10 45.5 94.0

Motorbike 40 10 45.3 97.5

Face 109 10 20.1 100.0



References

[1] Y. Yu, T. Wang, and R. Samworth. A useful variant of the Davis–Kahan theorem

for statisticians. Biometrika, 102(2):315–323, 2014.

[2] D Pachauri, R. Kondor, and V. Singh. Solving the multi-way matching problem

by permutation synchronization. In 27th NIPS: Lake Tahoe, Nevada, USA, pages

1860–1868, 2013.

[3] J. Chen and A. H. Sayed. Diffusion adaptation strategies for distributed opti-

mization and learning over networks. IEEE Transactions on Signal Processing,

60(8):4289–4305, 2012.

[4] A. Bertrand and M. Moonen. Consensus-based distributed total least squares

estimation in ad hoc wireless sensor networks. IEEE Trans. Signal Processing,

59(5):2320–2330, 2011.

[5] B. Johansson, C.M. Carretti, and M. Johansson. On distributed optimization using

peer-to-peer communications in wireless sensor networks. In Sensor, Mesh and Ad

Hoc Communications and Networks, pages 497–505, June 2008.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization

and statistical learning via the alternating direction method of multipliers. Found.

Trends Mach. Learn., 3(1):1–122, January 2011.

[7] M. G. Rabbat, R. D. Nowak, and J. A. Bucklew. Generalized consensus compu-

tation in networked systems with erasure links. In IEEE 6th Workshop on Signal

Processing Advances in Wireless Communications, 2005., pages 1088–1092, June

2005.

92



93
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