
Domain decomposition algorithms for the solution of
sparse symmetric generalized eigenvalue problems

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Vasileios Kalantzis

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Yousef Saad

September, 2018

© Vasileios Kalantzis 2018

ALL RIGHTS RESERVED

Acknowledgments

I am indebted to my father for living, but to my teacher for living well.

Alexander the Great, King of the Ancient Greek (Hellenic) Kingdom of Macedon

First, I would like to thank my doctoral supervisor, Professor Yousef Saad, for all of his

guidance and support over the last five years. Professor Saad has been always willing to share

his immense amount of knowledge with me and working with him has been a great privilege. I

consider myself lucky to have him as my doctoral supervisor.

Second, I would like to thank the members of my thesis examination committee: Professor

Daniel Boley, Professor George Karypis, and Professor John Sartori, for their kindness to serve

on my committee and the time they devoted while on it.

Thinking back to how it all started, it is appropriate to thank Professor Efstratios Gallopou-

los, the thesis supervisor of my M. Eng and M. Sc theses at University of Patras, for initiating

and keep “watering” my interest in numerical methods and parallel computing. The course of

my life would have been much different had I not walked into his “Scientific Computing II” class

that Spring semester of 2010. Moreover, I would like to thank Eugenia Kontopoulou, Dr. Geor-

gios Kollias, Professor Andreas Stathopoulos and Professor Petros Drineas for their constant

support and advices over the past few years. Especially, Eugenia and Georgios has been close

to me since the very beginning of my graduate life.

While carrying my graduate studies at University of Minnesota, I was fortunate enough

to meet/collaborate with many great people. First, I would like to acknowledge the help and

support of the people I was lucky to share the lab space with: Ruipeng Li, Thanh Ngo, Shashanka

Ubaru, Yuanzhe Xi, Geoffrey Dillon, Zachary Bookey, Peter Solfest, and Agnieszka Miedlar.

Second, my collaborators: Jared L. Aurentz, Anthony P. Austin, Michele Benzi, Yuanzhe Xi,

i

James Kestyn, Eric Polizzi, Athanasio Nikolakopoulo, Ruipeng Li, and John Garofalaki.

My studies on this side of the Atlantic would not have been possible without the support of

the National Science Foundation and the Department of Energy; and, by extension, the people

of the United States of America. I owe them all a great debt of gratitude. Similarly, I owe the

outmost to my native country, Greece, and its people, for educating me since the first day of

my life.

My friends from back home should also get part of the credits of my accomplishments:

Christos, Nikos, Nikos, Giorgos, Ilias, Ilias, Sotiris, Thanasis, Giannis, Thomas, Giannis, Gior-

gos, Giorgos, Panos, and Kostas. An even bigger part of the aforementioned credits should go

to my family (my parents Giorgos and Eleni, and my siblings Andreas and Katerina) for being

equally excited as I about my happiness and success. I am lucky to have them in my life.

ii

Dedication

To Giorgos, Eleni, Andreas and Katerina.

iii

Abstract

This dissertation focuses on the design, implementation, and evaluation of domain de-

composition techniques for the solution of large and sparse algebraic symmetric generalized

eigenvalue problems. Domain decomposition techniques begin by partitioning the global (dis-

cretized) domain into a number of subdomains. The solution of the algebraic eigenvalue problem

is then decoupled into two separate subproblems: (1) one defined locally in the interior of each

subdomain, and (2) one defined on the interface region connecting neighboring subdomains. As

soon as the part of the solution associated with the interface region is computed, the part of the

solution associated with the interior variables in each subdomain can be computed locally and

independently of the rest of the subdomains.

The domain decomposition techniques proposed in this dissertation can be classified into two

categories: (1) filtering techniques, and (2) root-finding techniques.

Filtering techniques are projection methods applied to a transformation of the original ma-

trix pencil chosen so that, ideally, the eigenvalues of interest are mapped to the only nonzero

eigenvalues in the transformed pencil. This dissertation combines domain decomposition with

filtering approaches and demonstrates how this class of hybrid algorithms can outperform cur-

rent state-of-the-art filtering techniques. Apart being well-suited for execution on distributed

memory systems, an immediate advantage of such hybrid techniques is that any orthogonaliza-

tion necessary needs to be performed only to vectors whose length is equal to the number of

interface variables. Moreover, we show that if the filter is applied only to that portion of the

pencil associated with the interface variables, it is possible to even achieve convergence within

a number of steps that is smaller than the number of eigenvalues located inside the interval of

interest. In contrast, any projection method applied to a transformation of the original matrix

pencil must perform a number of steps that is at least equal to the number of eigenvalues lo-

cated inside the interval of interest. Implementation aspects of the proposed numerical schemes

on many-core/multi-core computer systems and experiments on serial/distributed computing

environments are also discussed.

Root− finding techniques convert the interface eigenvalue problem into one of computing

roots of scalar functions, i.e., the eigenvalues of the original eigenvalue problem are roots of

iv

a carefully chosen scalar function. This allows the use of existing fast iterative root-finding

schemes, e.g. Newton’s method, for the solution of symmetric generalized eigenvalue problems.

Root-finding techniques can be especially useful when only a few eigenvalues and associated

eigenvectors are sought. The numerical schemes proposed in this part of the present disserta-

tion are compared against other single-vector eigenvalue solvers such as the Rayleigh Quotient

Iteration and Residual Inverse Iteration. Numerous theoretical details and practical considera-

tions are considered. Implementation aspects of the proposed numerical schemes on multi-core

computer systems and experiments on serial/distributed computing environments are also pre-

sented.

v

Contents

Abstract iv

List of Tables xi

List of Figures xiv

1 Introduction 1

1.1 The symmetric generalized eigenvalue problem 2

1.1.1 Notation . 3

1.2 The framework of domain decomposition . 4

1.2.1 Graph partitioning and the local viewpoint of the eigenvalue problem . . 4

1.3 Domain decomposition eigenvalue solvers . 7

1.4 Organization and contribution of this dissertation 8

1.4.1 Filtering-based techniques . 8

1.4.2 Root-finding techniques . 11

1.5 List of publications and conferences attended . 12

1.6 Computing environments and programming models 14

1.6.1 Hardware . 14

1.6.2 Software . 14

1.7 Funding and access to computational resources 15

2 Related Work 16

2.1 The Rayleigh-Ritz procedure . 16

2.1.1 Optimality of the Rayleigh-Ritz procedure 17

vi

2.2 The shift-and-invert Lanczos method for symmetric generalized eigenvalue problems 18

2.3 Rational filtering . 21

2.3.1 Construction of the rational filter . 21

2.3.2 Rational filtering projection methods . 23

2.3.3 Discussion . 28

2.4 Polynomial filtering . 29

2.4.1 The FILTLAN library . 30

2.5 Domain decomposition techniques . 32

2.5.1 Invariant subspaces from a Schur complement viewpoint 34

2.5.2 The Automated Multi-Level Substructuring method 35

2.6 Test matrices . 36

2.6.1 The Dirichlet eigenvalue problem . 36

2.6.2 General matrices . 38

2.7 Details on notation . 38

I Filtering techniques 39

3 A Krylov-based rational filtering domain decomposition technique 40

3.1 Approximation of span
([
y(1), . . . , y(nev)

])
. 41

3.1.1 Rational filtering restricted to the interface region 41

3.1.2 A Krylov-based approach . 43

3.2 Approximation of span
([
u(1), . . . , u(nev)

])
. 45

3.2.1 The basic approximation . 46

3.2.2 Enhancing accuracy by resolvent expansions 48

3.2.3 Enhancing accuracy by eigenvector deflation 50

3.3 The RF-DDES algorithm . 51

3.3.1 The projection matrix Z . 52

3.3.2 Comparison with AMLS . 53

3.4 Experiments . 54

3.4.1 Numerical illustration of RF-DDES . 55

3.4.2 A comparison of RF-DDES and RF-KRYLOV in distributed computing

environments . 59

vii

3.5 Summary . 65

4 Domain decomposition from a contour integral viewpoint 66

4.1 Full integration of the matrix resolvent . 67

4.1.1 Practical aspects of the DD-FP scheme 68

4.2 Partial integration of the matrix resolvent . 70

4.2.1 Computational comparison of the DD-FP and DD-PP schemes 73

4.3 Solving the Schur complement linear systems . 73

4.3.1 Schur complement preconditioners . 74

4.3.2 Matrix-Vector products with the matrix S(ζ) 76

4.4 Experiments . 76

4.4.1 A comparison of the DD-FP and DD-PP schemes for 2D domains 77

4.4.2 A 3D model problem . 79

4.4.3 The PARSEC matrix collection . 83

4.5 Summary . 86

5 Acceleration of rational filtering eigenvalue solvers by exploiting multiple lev-

els of distributed memory parallelism 87

5.1 Combining DD-FP with an additional layer of distributed memory parallelism . . 88

5.1.1 Evaluation . 88

5.2 The PFEAST scheme . 91

5.2.1 Experimental framework . 91

5.2.2 Strong scalability of levels L2 and L3 . 92

5.2.3 Notes on the optimal distribution of parallel resources 93

5.3 Summary . 94

6 Cucheb: A GPU implementation of FILTLAN 96

6.1 Motivation . 97

6.2 Chebyshev polynomial filters . 99

6.2.1 Choosing the filter degree m . 101

6.3 Combining polynomial filtering with block Lanczos 101

6.4 Experiments . 103

6.4.1 GPU benchmarking . 104

viii

6.4.2 CPU-GPU comparison . 106

6.5 Summary . 108

II Root-finding techniques 109

7 The method of single linear approximations 110

7.1 Eigenbranches . 111

7.2 An algorithm for computing a single eigenpair . 114

7.2.1 An equivalent update scheme for Newton’s method 116

7.3 Eigenbranches across the poles . 118

7.4 A branch-hopping algorithm . 122

7.5 Experiments . 123

7.5.1 Results . 124

7.5.2 A comparison with ARPACK . 126

7.6 Summary . 128

8 The method of mixed linear approximations 130

8.1 The method of Mixed Linear Approximations . 131

8.1.1 Eigenbranches . 131

8.1.2 Formulation of a Newton-based procedure 132

8.1.3 Characterization of the eigenbranches as σ approaches an eigenvalue of

(A,M) . 136

8.1.4 Characterization of the eigenbranches as σ approaches an eigenvalue of

(B,MB) . 140

8.2 Practical aspects of MLA . 147

8.2.1 Determining which roots of θ(σ) are eigenvalues of (A,M) 147

8.2.2 A categorization of the roots . 148

8.2.3 The impact of the location of the eigenvalues of (B,MB) 150

8.3 Numerical Experiments . 152

8.3.1 Details on the experimental framework . 152

8.3.2 Results . 153

8.3.3 Increasing the number of interface variables 155

ix

8.4 Summary . 158

9 Summary and future work 159

9.1 Filtering techniques . 159

9.2 Root-finding techniques . 161

References 163

x

List of Tables

3.1 n: size of A and M , nnz(X): number of nonzero entries in matrix X. 55

3.2 Maximum relative errors of the approximation of the lowest nev = 100 eigenvalues

returned by RF-DDES for the matrix pencils listed in Table 8.1. 55

3.3 Number of iterations performed by Algorithm 3.1.1 for the matrix pencils listed

in Table 8.1. ’s’ denotes the number of interface variables. 56

3.4 n: size of A, nnz(A): number of nonzero entries in matrix A. s2 and s4 denote

the number of interface variables when p = 2 and p = 4, respectively. 59

3.5 Number of iterations performed by RF-KRYLOV (denoted as RFK) and Algo-

rithm 3.1.1 in RF-DDES (denoted by RFD(2) and RFD(4), with the number

inside the parentheses denoting the value of p) for the matrix pencils listed in

Table 3.4. The convergence criterion in both RF-KRYLOV and Algorithm 3.1.1

was tested every ten iterations. 60

3.6 Maximum relative error of the approximate eigenvalues returned by RF-DDES

for the matrix pencils listed in Table 3.4. 60

3.7 Wall-clock times of RF-KRYLOV and RF-DDES using τ = 2, 4, 8, 16 and

τ = 32 computational cores. RFD(2) and RFD(4) denote RF-DDES with p = 2

and p = 4 subdomains, respectively. 61

3.8 Time elapsed to apply the rational filter in RF-KRYLOV and RF-DDES using

τ = 2, 4, 8, 16 and τ = 32 computer cores. RFD(2) and RFD(4) denote

RF-DDES with p = 2 and p = 4 subdomains, respectively. For RF-KRYLOV

the times listed also include the amount of time spent on factorizing matrices

A− ζ`M, ` = 1, . . . , Nc. For RF-DDES, the times listed also include the amount

of time spent in forming and factorizing matrices S(ζ`), ` = 1, . . . , Nc. 62

xi

4.1 Average amount of time spent on a single quadrature node in DD-PP and DD-

FP to approximate the eigenvalues λ1001, . . . , λ1200 and associated eigenvectors

for three discretized 2D Laplacians. 78

4.2 Wall-clock time to compute eigenvalues λ1001, . . . , λ1200 and corresponding eigen-

vectors of the n = 15002 Laplacian by the CI-M and DD-FP schemes, as the

values of Nc and r vary. “Its” denotes the number of outer iterations required by

Subspace Iteration. 79

4.3 Best (lowest) wall-clock times achieved by executing CI-M and DD-FP for Nc = 1

and Nc = 2. For CI-M we kept τ = 1 fixed, while for DD-FP we kept p = 32

fixed. Variable “Its” denotes the total number of outer iterations performed by

CI-M and DD-FP. 82

4.4 Test matrices obtained by the PARSEC collection. We list the matrix size n,

the total number of non-zero entries nnz, the interval of interest [α, β], and the

number of eigenvalues r located inside [α, β]. 83

4.5 Time elapsed to perform the Nc LU matrix factorizations A−ζjM, j = 1, . . . , Nc

in CI-M versus time elapsed to form and factorize the block-Jacobi preconditioner

in DD-FP. 84

4.6 Time elapsed to perform the computation
∑Nc
j=1(A − ζjM)−1v with (DD-FP)

and without (CI-M) using the domain decomposition framework. Vector v ∈ Cn

denotes a random complex vector. 84

4.7 Wall-clock times of CI-M and DD-FP to compute all eigenpairs located inside

the intervals [α, β] reported in Table 4.4 (we set p = 32). “Its” denotes the total

number of outer iterations performed by DD-FP and CI-M. 85

5.1 The total number of MPI processes is held constant but is split between the two

different levels of distributed memory parallelism. 94

6.1 A list of the PARSEC matrices used to evaluate our GPU implementation, where

n is the dimension of the matrix, nnz is the number of nonzero entries and

[λmin, λmax] is the spectral interval. 104

6.2 Computing the eigenpairs inside an interval using FLP with various filter poly-

nomial degrees. Times listed are in seconds. 106

xii

6.3 Percentage of total compute time required by various components of the algo-

rithm. For all these examples the dominant computational cost are the matrix-

vector multiplications (MV). 107

7.1 Computing nev = 1 and nev = 5 eigenvalues next to ζ for a set of 2D problems.

For the case where ζ 6= 0, the starting shift for each particular eigenpair compu-

tation in Newton’s scheme was provided by first performing three steps of Inverse

Iteration. Times are listed in seconds. 125

7.2 Computing nev = 1 and nev = 5 eigenvalues next to ζ for a set of 3D problems.

For the case where ζ 6= 0, the starting shift for each particular eigenpair compu-

tation in Newton’s scheme was provided by first performing three steps of Inverse

Iteration. Times are listed in seconds. 127

7.3 Computing nev = 1 and nev = 5 eigenvalues next to ζ with the proposed Newton

scheme and ARPACK. The discretization selected as nx = 71, ny = 70, and

nz = 69. Times are listed in seconds. 128

8.1 n: size of A and M , nnz(.): number of nonzero entries. 153

8.2 Total number of iterations required by MLA, BrH, and RQI, to compute the

ten algebraically smallest eigenvalues and associated eigenvectors of the matrix

pencils listed in Table 8.1. 154

xiii

List of Figures

1.1 3-dimensional plot of a 3 unit cell Carbon NanoTube (CNT-3). The molecule is

composed of 3 |UaUb| units cells, includes an additional Ua ring, and is terminated

with hydrogen atoms Uh at each end. 2

1.2 Two classical ways of partitioning a graph associated with a 5× 5 discretization

of a 2D Dirichlet eigenvalue problem discretized by Finite Differences. In this

example the 2D discretized domain is partitioned into p = 4 subdomains. Left:

edge-separator (vertex-based partitioning). Right: vertex-separator (edge-based)

partitioning. 5

1.3 The local viewpoint of each subdomain after partitioning by an edge-separator. 6

1.4 A 5× 5 mesh partitioned into two subdomains. Interface variables are colored in

red while interior variables are colored in green. Once the part of the solution

associated with the interface variables is determined (solid line), the part of the

solution associated with the interior variables is computed in parallel in each

subdomain (dashed lines). 7

1.5 Filtering of the eigenvalues by a (polynomial) transformation of the pencil (A,M)

to p(A,M). 9

2.1 The modulus of the rational filter function ρ(ζ) when ζ ∈ [−2, 2]. Left: Gauss-

Legendre rule. Right: Midpoint rule. 22

2.2 Chebyshev polynomial approximation of I[α,β], [α, β] ⊆ [−1, 1], for different de-

gree values. Left: [α, β] = [.1, .3]. Right: [α, β] = [−1,−.5]. 30

2.3 Sparsity pattern of A and M obtained by partitioning the graph of |A|+ |M | in

p = 4 subdomains by METIS. Different colors indicate entries that are associated

with different subdomains. 33

xiv

2.4 a) The FE mesh, b) the sparsity pattern of matrix A, and c) the sparsity pattern

of matrix M . 37

3.1 The leading singular values of <e
{∑Nc

`=1 ω`S(ζ`)
−1
}

for different values of Nc

when (2.2) is discretized by the Midpoint rule. 45

3.2 Relative errors of the approximation of the lowest nev = 100 eigenvalues for the

“qa8fk/qafm” matrix pencil. Left: nevB = 50. Center: nevB = 100. Right:

nevB = 200. 56

3.3 The 150 leading singular values of <e
{∑Nc

`=1 ω`S(ζ`)
−1
}

for the matrix pencils

“bcsst24” and “Kuu/Muu”. 57

3.4 Total number of iterations performed by Algorithm 3.1.1 when applied to ma-

trix “FDmesh1” with [α, β] = [λ1, λ200]. Results reported are for all different

combinations of p = 2, 4, 8 and p = 16, and Nc = 1, 2, 4, 8 and Nc = 16. . . . 58

3.5 The leading 250 singular values of <e
{∑Nc

`=1 ω`S(ζ`)
−1
}

for the same problem as

in Figure 3.4. Left: p = 2. Right: p = 8. For both values of p we set Nc = 1, 2, 4,

and Nc = 8. 58

3.6 Time spent on orthonormalization in RF-KRYLOV and RF-DDES when com-

puting the nev = 100, 200 and nev = 300 algebraically smallest eigenvalues and

associated eigenvectors of matrices “FDmesh2” and “FDmesh3”. 63

3.7 Amount of time required to apply the rational filter (“Interface”), form the sub-

space associated with the interior variables (“Interior”), and total wall-clock time

(“Total”) obtained by an MPI-only execution of RF-DDES for the case where

nev = 300. Left: “shipsec8”. Right: “FDmesh2”. 64

4.1 Maximum residual norm of the approximation of all eigenpairs in the interval

[1.6, 1.7] for a 51× 50 Finite Difference discretization of the Laplacian operator. 73

4.2 Maximum residual norm of the approximation of the eigenpairs inside the interval

[α, β] = [(λ1000 + λ1001)/2, (λ1200 + λ1201)/2], when DD-PP is applied to the

n = 10002 Laplacian. 78

4.3 Total number of preconditioned GMRES iterations in order to solve a linear

system with a single right-hand side for various values of Nc and p. 80

xv

4.4 Time breakdown of the CI-M scheme (time spent on factorizations and trian-

gular substitutions) for Nc = 1, Nc = 2 and Nc = 3 quadrature nodes, us-

ing the optimal choice of r for each different value of Nc, and p = 128 MPI

processes. For each choice of Nc, we show the breakdown for intervals i1 :=

[(λ100 + λ101)/2, (λ120 + λ121)/2], i2 := [(λ100 + λ101)/2, (λ200 + λ201)/2], i3 :=

[(λ500 + λ501)/2, (λ520 + λ521)/2], and i4 := [(λ500 + λ501)/2, (λ600 + λ601)/2]. . . 82

4.5 Maximum residual norm of the approximation of the eigenpairs inside the inter-

val [α, β], as a function of the number of outer iterations performed by DD-FP.

Results are shown for Nc = 2, Nc = 3, and r = 400, r = 500. Solid lines cor-

respond to r = 400, while dashed lines correspond to r = 500. Left: Ge99H100.

Right:Si41Ge41H72. 85

5.1 Schematic sketch of the 2D grid of MPI processes when two levels of distributed

memory parallelism are used in DD-FP. The first level (blue solid lines) are re-

served for domain decomposition. The second level (red dashed lines) can be

used to distribute either the quadrature nodes or the different right-hand sides to

different groups of MPI processes. 89

5.2 Wall-clock time of CI-M and DD-FP to compute all nev = 100 eigenpairs inside

the intervals [α, β] = [(λ100 + λ101)/2, (λ200 + λ201)/2] and [α, β] = [(λ500 +

λ501)/2, (λ600 + λ601)/2] when a 2D grid of MPI processes is exploited. The

number of right-hand sides was set to r = 200. 90

5.3 Wall-clock times and scalability of the L2 level of distributed memory parallelism.

The number of L2 MPI processes is increased from 1 to 16 while the number of

L3 MPI processes is kept constant (3 MPI processes per L2 MPI process). . . . 92

5.4 Wall-clock times and scalability of the L3 level of distributed memory parallelism. 93

6.1 Chebyshev approximation of the ideal filter I[−1,1](z) using a degree 80 polyno-

mial. Left: [α, β] = [.1, .3]. Right: [α, β] = [−1,−.5]. 100

6.2 Chebyshev and approximation of the ideal filter I[−1,1](z). Left: [α, β] = [.1, .3]

with an optimal degree of 48. Right: [α, β] = [−1,−.5] with an optimal degree of

10. 101

6.3 Sparsity pattern of matrix Si41Ge41H72. 104

xvi

6.4 Speedup of the GPU FLP implementation over the CPU (FILTLAN) for the

PARSEC test matrices. 108

7.1 Visualization of µj(σ) and µκσ (σ) for a 2D Laplacian matrix. The red circles

along the real axis denote eigenvalues of the pencil (A,M). Left: Eigenbranches

µj(σ), j = 1, . . . , 8. Right: Eigenbranches µj(σ), j = 1, . . . , 8 (dotted lines) and

µκσ (σ) ≡ µ(σ) (solid line). Each eigenvalue of (A,M) is a root of (at least) one

eigenbranch, and thus a root of µ(σ) as well. 112

7.2 Plot of
∣∣µ(s)(σ)

∣∣ for different values of σ and s. 117

7.3 Visualization of µj(σ) and µκσ (σ) for a 2D Laplacian matrix. The red circles along

the real axis denote eigenvalues of the pencil (A,M). The red dashed vertical

lines denote eigenvalues of the pencil (B,MB). Left: eigenbranches µj(σ), j =

1, . . . , 12 chased across panels defined by consecutive eigenvalues of the pencil

(B,MB). Right: focus on eigenbranches µ1(σ) and µ2(σ) as σ crosses the two

algebraically smallest eigenvalues of the pencil (B,MB). 119

8.1 Visualization of θj(σ) and θκσ (σ). The red circles along the real axis denote

eigenvalues of the pencil (A,M). Left: Eigenbranches θj(σ), j = 1, . . . , 8. Right:

Eigenbranches θj(σ), j = 1, . . . , 8 (dotted lines) and θκσ (σ) ≡ θ(σ) (solid line).

Each eigenvalue of (A,M) is a root of (at least) one eigenbranch, and thus a root

of θ(σ) as well. 132

8.2 Numerical value of θj(σ) and χ3,j(σ) as σ → λ3. 139

8.3 Numerical values of θj(σ) and εj,1(σ) as σ → δ1. 142

8.4 Visualization of the first few eigenbranches. Vertical dashed lines denote eigen-

values of (B,MB). Left: Eigenbranches θj(σ) as σ ∈ [0.0, 0.11]. Right: Close-up

view of the left subfigure focusing in the region around the four algebraically

smallest eigenvalues of (B,MB). 142

8.5 Eigenbranches of the matrix appearing in (8.14) for different values of d ≡ m and

s. The red circles along the real axis denote eigenvalues of the pencil (A,M). The

dashed vertical lines denote eigenvalues of matrix B. Left: B = A(1 : 3, 1 : 3).

Middle: B = A(1 : 2, 1 : 2). Right: B = A(1 : 1, 1 : 1). 150

xvii

8.6 Top row (left subfigure): the eigenvalues of (B,MB) located inside the inter-

val [0.0, 4.0] (marked by “◦”) for three different arrangements. The eigenvalues

λ1, . . . , λ12 of (A,M) (marked by “x”) are also shown. Top row (middle and

right subfigures): plot of θj(σ), 1 ≤ j ≤ 12 for the first and second arrange-

ment of the algebraically smallest eigenvalues of (B,MB). Bottom row: plot of

θ′j(σ), 1 ≤ j ≤ 12, for the first (left), second (middle), and third (right) arrange-

ment of the eigenvalues of (B,MB). 151

8.7 Total number of steps required by Inverse Iteration (II) at each individual iteration

of MLA when computing the ten algebraically smallest eigenvalues of the matrix

“nos3”. The initial eigenvalue approximation σ0 for each sought eigenvalue λ was

set to σ0 = λ(1 + 1e− 2) (left subfigure) and σ0 = λ(1 + 1e− 3) (right subfigure). 154

8.8 Total number of steps required by Inverse Iteration (II) at each individual iteration

of MLA when computing the ten algebraically smallest eigenvalues of the matrix

“saylr4”. The initial eigenvalue approximation σ0 for each sought eigenvalue λ

was set to σ0 = λ(1 + 1e − 2) (left subfigure) and σ0 = λ(1 + 1e − 3) (right

subfigure). 155

8.9 Eigenbranches θj(σ) (top) and associated derivatives θ′j(σ) (middle) of the matrix

“nos3” as the number of subdomains varies from p = 16 (left) to p = 64 (right).

The bottom figures plot the relative residual curves of MLA (“©”), BrH (“�”)

and RQI (“5”) obtained using p = 16 (left) and p = 64 (right) subdomains. . . . 156

8.10 A comparison of MLA (“©”), BrH (“�”) and RQI (“5”). The initial approxi-

mation of each sought eigenvalue was determined as σ := λ(1+1e−3). Left: The

ten algebraically smallest eigenvalues of (A,M) and the approximate eigenvalues

returned by MLA, BrH, and RQI. Right: Relative residual curves. First column:

a 65× 26 Dirichlet eigenvalue problem (M = I). Second column: a 25× 20× 10

Dirichlet eigenvalue problem (M = I). Third column: “FEmesh”. 157

xviii

8.11 A comparison of MLA (“©”), BrH (“�”) and RQI (“5”). The initial approx-

imation of each sought eigenvalue was determined as σ := λ(1 + 1e − 3). Left:

The ten algebraically smallest eigenvalues of (A,M) and the approximate eigen-

values returned by MLA, BrH, and RQI. Right: Relative residual curves. First

column: an artificial generalized 35 × 20 × 5 Dirichlet eigenvalue problem with

M = toeplitz(2, 1, zeros(1, n − 2)). Second column: “nos3” (M = I). Third

column: “nos5” (M = I). 158

xix

Chapter 1

Introduction

The numerical solution of large and sparse algebraic eigenvalue problems is a problem of ma-

jor interest in many scientific and engineering applications. One such application is structural

mechanics [1]. The frequency response function of an engineering structure with respect to a

force vector f is often modeled as the solution of the linear system A− ω2M = f , where A and

M denote the stiffness and mass matrix, respectively, and ω ∈ [ωl, ωu] represents a frequency

value within the range of interest [2, 3]. As the aforementioned linear system might need be

solved for many different frequency values, e.g. hundreds or thousands, the standard approach

of solving each linear system on a one-by-one basis can become computationally challenging;

especially for modern Finite Element pencils the size of which runs in the order of millions.

A popular approach to reduce the computational costs associated with the standard approach

is the modal superposition method. Therein, the true frequency response of the structure is

approximated by that of the projection of the equation A − ω2M = f on a basis formed by

the eigenvectors associated with those eigenvalues of the matrix pencil (A,M) located within a

certain real interval [α, β]. The main computational procedure then is the solution of the as-

sociated generalized eigenvalue problem. Another important application of eigenvalue problems

is in Density Functional Theory (DFT), a modeling technique used to calculate the electronic

structure and ground-state properties of molecules [4]. In DFT, the solution of the all-electron

Schrödinger equation is replaced by a one-electron Schrödinger equation with an effective po-

tential which leads to a nonlinear eigenvalue problem known as the Kohn-Sham equation [5, 6].

The most widely used technique for solving the Kohn-sham equations is the self-consistent field

1

2

iteration at each iteration of which a partial spectral decomposition of a symmetric matrix pencil

must be computed. In particular, a typical electronic structure calculation with many atoms

requires the calculation of (at least) the nocc smallest eigenvalues and associated eigenvectors,

where nocc denotes the number of occupied states (for most systems of interest this is half the

number of valence electrons). Thus, it is possible to see eigenvalue problems in the size of

millions where tens of thousands of eigenvalues are needed. Other applications of large scale

eigenvalue problems can be found in applications areas such as control theory, electrical net-

works and combustion processes [7], normal mode analysis in molecular dynamics simulations

[8], recommender systems [9, 10], and Principal Component Analysis in the study of population

genetics [11].

Figure 1.1: 3-dimensional plot of a 3 unit cell Carbon NanoTube (CNT-3). The molecule
is composed of 3 |UaUb| units cells, includes an additional Ua ring, and is terminated with
hydrogen atoms Uh at each end.

1.1 The symmetric generalized eigenvalue problem

This dissertation focuses on the design, development, and implementation of numerical methods

for the solution of large and sparse algebraic symmetric generalized eigenvalue problems. More

specifically, our goal is to compute scalar-vector pairs (λ, x), x 6= 0, that satisfy the following

matrix equation

Ax = λMx,

(A− λM)x = 0.
(1.1)

3

The matrices A ∈ Rn×n and M ∈ Rn×n are assumed large, sparse and symmetric, while matrix

M is also positive-definite1 (SPD). Matrices A and M are most often the result of a discretization

scheme applied to a continuous problem of interest defined on a certain domain (either by Finite

Difference, Finite Element, Finite Volume, or Spectral Element methods). When M = I, i.e.,

M is the identity matrix, the eigenvalue problem in (1.1) is of the standard form. While

the numerical methods developed in this dissertation are concerned with the solution of the

generalized eigenvalue problem, some of our experiments will be focusing on the solution of

standard eigenvalue problems. Throughout this dissertation we will use the notation “pencil

(A,M)” to refer to the eigenvalue problem in (1.1).

1.1.1 Notation

The matrix pencil (A,M) has n eigenvalue-eigenvector pairs (eigenpairs) and we will denote

its ith eigenpair as
(
λi, x

(i)
)
, i = 1, . . . , n. The eigenvalues of the matrix pencil (A,M) are

all real. The eigenvectors x(i) can be chosen to be either real or complex. Throughout this

dissertation we restrict our attention to the real vector space. As most engineering applications

typically require only the computation of those eigenvalues (and, maybe, associated eigenvectors)

which are located within a prescribed real interval, throughout this dissertation we will focus

on computing the nev ≥ 1 eigenpairs
(
λi, x

(i)
)

for which λi ∈ [α, β]. The exact value of nev

is assumed2 unknown, and the scalars α ∈ R and β ∈ R that define the real interval [α, β] are

either user-given or dictated by the application itself.

When only the interval [α, β] is given, we will assume that the eigenvalues of the matrix

pencil (A,M) are indexed such that eigenvalues λi, i = 1, . . . , nev (ordered by algebraic value)

are located inside [α, β] while eigenvalues λi, i = nev + 1, . . . , n are outside. When the interval

of interest is given in the form [α, β] := [λk, λj] it should be inferred that we seek to compute the

nev eigenvalues λk, λk+1, . . . , λj (and, optionally, associated eigenvectors) where the subscripts

k, . . . , j indicate the order of the algebraic value of the sought eigenvalues with respect to all n

eigenvalues of the matrix pencil (A,M), i.e., λ1 ≤ . . . ≤ λk ≤ . . . ≤ λj ≤ . . . ≤ λn.

While in this dissertation we compute each eigenpair (or invariant subspace) up to an abstract

level of accuracy, we note that the level of accuracy up to which each approximate eigenpair

1This is equivalent to saying that all eigenvalues of matrix M are positive
2With the exception of the numerical technique presented in Chapter 4, the rest of the numerical techniques

presented in this dissertation do not require the explicit knowledge (or approximation) of the value of nev

4

needs be computed in most engineering applications is typically not greater than the truncation

error permitted during the discretization of the continuous problem.

Definition 1.1.1 For any symmetric matrix pencil (L,C) with C a SPD matrix, we will denote

Λ(L,C) := {λ | det (L− λC) = 0}.

Definition 1.1.2 A subspace Z will be called invariant subspace if M−1AZ ⊆ Z.

1.2 The framework of domain decomposition

The numerical techniques developed in this dissertation are by and large based on the concept

of domain decomposition [12, 13, 14]. Algebraic domain decomposition approaches start by

splitting the computational domain into a set of p ∈ Z+ smaller subdomains with the help

of a graph partitioner. Throughout this dissertation we consider non-overlapping subdomains

whose union equals the original domain. The main idea then is to solve for the restriction of the

original problem in the interior of each subdomain independently and in parallel of the rest of

the subdomains. The part of the solution associated with the interface region is computed by

solving a coarse problem in a process in which all all subdomains cooperate. Some of the main

advantages of domain decomposition approaches include (1) inherent concurrency and ability to

execute efficiently on distributed memory environments, (2) applicability to various PDEs and

flexibility to handle problems of heterogeneous nature (e.g. different boundary conditions), (3)

natural approach to implement hybrid numerical methods to balance cost/accuracy.

1.2.1 Graph partitioning and the local viewpoint of the eigenvalue

problem

Figure 1.2 shows a common way of partitioning the graph of a 5×5 Finite Difference discretiza-

tion of a Laplacian operator on a 2D square domain. On the left side is an edge-separator in

which a vertex is an equation-unknown pair and the vertex set is subdivided into p partitions,

i.e., p non-overlapping subsets whose union is equal to the original vertex set. On the right

side is a vertex-separator in which each subdomain is formed by sets of edges. Throughout this

dissertation we will consider edge-separators only.

5

A good partitioning is one in which each subdomain contains roughly n/p vertices, while,

at the same time, either the number of edges connecting neighboring subdomains (for edge-

separators) or the cardinality of the vertex separator set (for vertex-separators) is small. Com-

puting an optimal partitioning is known to be NP-hard and in practice we have to rely on

approximation algorithms. As was mentioned above, domain decomposition techniques are nat-

urally suited for parallel computing. The value of p is then typically related to the number of

cores or processors of the available computer system. As a general rule of thumb each subdomain

is mapped to a single core or processor and is handled by a separate process. This means that a

large value of p must be used in order to take advantage of the compute capabilities of large clus-

ter computers with (tens of) thousands of processors. On the other hand, increasing the value

of p also increases the total number of interface variables across the subdomains, i.e., vertices

that are located on the boundaries of the subdomains, thus leading to higher inter-subdomain

communication.

The focus of this dissertation lies on the development of novel numerical schemes and as such

we will mostly consider the effects of the value of p with respect to the attainable accuracy and

convergence of the proposed schemes. Nonetheless, some of the schemes proposed in this thesis

are implemented so that they execute on distributed memory environment systems, and details

on the parallel efficiency of the numerical scheme studied for different values of p will be given.

Figure 1.2: Two classical ways of partitioning a graph associated with a 5 × 5 discretization
of a 2D Dirichlet eigenvalue problem discretized by Finite Differences. In this example the 2D
discretized domain is partitioned into p = 4 subdomains. Left: edge-separator (vertex-based
partitioning). Right: vertex-separator (edge-based) partitioning.

The eigenvalue problem Once a partitioning of the (discretized) domain is computed, three

types of unknowns appear: (1) interior unknowns that are coupled only with local equations, (2)

6

local interface unknowns that are coupled with both non-local (external) and local equations,

and (3) external interface unknowns that belong to other subdomains and are coupled with local

interface variables. Figure 1.3 sketches the local viewpoint of each subdomain after partitioning.

Figure 1.3: The local viewpoint of each subdomain after partitioning by an edge-separator.

The solution of the eigenvalue problem Ax = λMx is then divided into the solution of the

two following subproblems:

1. compute the part of the solution associated with the interface variables across all subdo-

mains, and

2. compute the part of the solution associated with the interior variabels of each subdomain.

The order of the above two steps is not coincidental as the computation of the part of the

solution associated with the interface variables is typically a prerequisite to compute the part

of the solution associated with interior variables. Moreover, since the interior variables in each

subdomain are not coupled with any external interface variables from other subdomains, the

part of the solution associated with the interior variables in each subdomain can be computed

independently, and in parallel with the rest of the subdomains. On the other hand, the solution of

the interface part of the eigenvalue problem is non-local in the sense that exchange of information

among the subdomains is required.

7

Figure 1.4: A 5×5 mesh partitioned into two subdomains. Interface variables are colored in red
while interior variables are colored in green. Once the part of the solution associated with the
interface variables is determined (solid line), the part of the solution associated with the interior
variables is computed in parallel in each subdomain (dashed lines).

1.3 Domain decomposition eigenvalue solvers

While domain decomposition techniques have been studied extensively for the solution of sparse

linear systems, e.g. see [12, 13] and the thesis in [15], relatively little is known for the applica-

tion of these techniques to the solution of sparse (generalized) symmetric eigenvalue problems.

Indeed, while for linear systems the interface problem is also a linear system, for eigenvalue

problems the interface problem is a nonlinear eigenvalue problem, i.e., the matrix operator

associated with the interface variables is nonlinear. Throughout this dissertation we will be

commonly referring to this operator as spectral Schur complement. The idea of using domain

decomposition for the numerical solution of eigenvalue problems is not new. Though not for-

mulated in the framework of domain decomposition, the paper by Abramov and Chishov [16] is

the earliest we know that introduced the concept of spectral Schur complements. Other earlier

publications describing approaches that share some common features with domain decomposi-

tion can be found in [17, 18, 19, 20, 21, 22]. In particular, the articles [17, 18] establish some

theory of spectral Schur complement techniques from a Partial Differential Equations viewpoint.

The paper [19] also resorts to spectral Schur complements, but it is not a domain decomposition

approach. Rather, it exploits a given subspace, on which the Schur complement is based, to

extract approximate eigenpairs. Although not presented from a spectral Schur complements

viewpoint, the articles [21, 22] discuss condensation techniques applied to the Raviart-Thomas

8

and discontinuous Galerkin approximation of second order elliptic eigenvalue problems. Conden-

sation leads to the solution of non-linear, but smaller, eigenvalue problems and the techniques

described therein have similarities with spectral Schur complement-based approaches.

The literature of domain decomposition-based ideas for the numerical solution of sparse sym-

metric (generalized) eigenvalue problems appears to be richer in structural mechanics [23, 24],

although these ideas are generally closer to the idea of substructuring.3 Similarly to domain

decomposition, substructuring techniques divide the structure (global domain) into a set of

smaller, independent substructures. An approximation of the solution of the original problem

is then obtained by a linear combination of the solutions associated with the substructures. A

major step forward towards popularizing domain decomposition techniques for the solution of

sparse algebraic symmetric eigenvalue problems was realized by the development of the the Au-

tomated Multi-Level Substructuring method [25] (AMLS), a multilevel extension of Component

Mode Synthesis [26]. Some details on AMLS are given in Section 2.5.2 of this dissertation.

1.4 Organization and contribution of this dissertation

The domain decomposition techniques presented in this dissertation are organized into two

separate parts: (1) Filtering-based techniques (Chapters 3-6), and (2) Root-finding techniques

(Chapters 7-8). Chapter 2 discusses background material on a few well-known techniques used

throughout this dissertation for comparison purposes. Finally, Chapter 9 summarizes the ma-

terial presented in this dissertation and presents potential future research directions.

1.4.1 Filtering-based techniques

The first class of domain decomposition eigenvalue solvers presented in this dissertation consists

of filtering-based approaches in which a transformation ρ(.) (also called the “filter function”)

is applied to the matrix pencil (A,M). This transformation ρ(.) can be either rational or

polynomial. The eigenvalues of the transformed pencil ρ(A,M) are equal to ρ(λ) while the

corresponding eigenvectors remain the same. In practice, the transformation ρ(.) is constructed

so that the nev eigenvalues of the pencil (A,M) located inside the interval [α, β] become ap-

proximately equal to a pre-specified value, e.g. one, while most of the n-nev eigenvalues located

3Substructuring techniques predate hybrid domain decomposition techniques and solve the interface eigenvalue
problem by a direct method

9

-1 0 1

-1

-0.5

0

0.5

1
Eigenvalues of (A,M)

wanted
unwanted

0 0.5 1

-1

-0.5

0

0.5

1

Eigenvalues of p(A,M)

wanted
unwanted

Figure 1.5: Filtering of the eigenvalues by a (polynomial) transformation of the pencil (A,M)
to p(A,M).

outside [α, β] are mapped to (approximately) zero. An example of a polynomial transformation

is shown in Figure 1.5. Domain decomposition is then applied onto the transformed pencil

p(A,M). We present the proposed techniques, discuss their theoretical and practical details,

and demonstrate via numerical experiments that this class of hybrid algorithms can outperform

current state-of-the-art filtering-based approaches.

Chapter 3 presents RF-DDES (Rational Filtering Domain Decomposition Eigenvalue Solver),

a numerical technique which combines domain decomposition with Krylov subspace projection

methods and rational filters. Standard rational filtering techniques apply the rational filter to

the entire matrix pencil, i.e., they require the solution of linear systems with complex coefficient

matrices of the form A−ζM for different complex values of ζ ∈ C. In contrast, RF-DDES applies

the rational filter only to that part of A− ζM that is associated with the interface variables of

the domain. This approach has several advantages: (1) if a Krylov projection method is applied,

orthonormalization needs to be applied to vectors whose length is equal to the number of inter-

face variables only, (2) while RF-DDES also requires the solution of complex linear systems, the

associated computational cost is lower than that of standard rational filtering approaches, (3)

focusing on the interface variables only makes it possible to achieve convergence of the Krylov

projection method in even fewer than nev iterations. In contrast, any Krylov projection method

10

applied to a rational transformation of the original matrix pencil must perform at least nev

iterations.

Chapter 4 discusses domain decomposition techniques in the context of contour integral

eigenvalue solvers and proposes two numerical schemes. The first scheme can be seen as an

extension of domain decomposition linear system solvers in the framework of contour integral

methods for eigenvalue problems. In particular, contour integral eigenvalue solvers have mostly

been associated with the use of sparse direct solvers to solve the linear systems which arise from

the numerical approximation of the contour integral. This approach, however, is not always

feasible due to the possible large amount of fill-in in the triangular factors, e.g. when factoring

matrices that originate from discretizations of 3D computational domains. This chapter fills part

of the gap that exists between contour integral eigenvalue solvers and the use of hybrid iterative

solvers. The second scheme integrates the resolvent operator only partially. This leads to a

scheme that is computationally cheaper than integrating over the entire resolvent operator but

also requires special care if high accuracy is sought. A parallel implementation of the proposed

schemes is described and results on distributed memory computing environments are reported.

These results show that domain decomposition approaches can lead to reduced wall-clock times

and improved scalability.

Chapter 5 considers the performance of contour integral eigenvalue solvers when additional

levels of distributed memory parallelism are utilized. In particular, our main goal is to suggest a

guideline on what are the opportunities for additional parallelism, and how a certain number of

computational resources should be exploited so that the lowest possible wall-clock times can be

achieved. We present results on the application of two levels of distributed memory in contour

integral eigenvalue solvers such as those suggested in Chapter 4 and FEAST [27].

Chapter 6 describes the Cucheb4 software package, a GPU implementation5 of the fil-

tered Lanczos procedure for the solution of large sparse symmetric eigenvalue problems. The

filtered Lanczos procedure uses a carefully chosen polynomial spectral transformation to accel-

erate convergence of the Lanczos method when computing eigenvalues within a desired interval.

Polynomial filtering approaches have been proven particularly effective for eigenvalue problems

4https://github.com/jaurentz/cucheb
5Although not based on Schur complements, the method presented in Chapter 6 is classified as a “domain

decomposition” approach in the sense that the linear algebra operations underlying the numerical technique
described therein are performed using the domain decomposition framework

https://github.com/jaurentz/cucheb

11

that arise in electronic structure calculations and density functional theory. Compared to ratio-

nal filtering techniques, polynomial filtering techniques access the matrix pencil only through

Matrix-Vector products. The goal of this chapter is twofold. First, we describe our open source

software package Cucheb that uses the filtered Lanczos procedure to accelerate large sparse

eigenvalue computations using Nvidia brand GPUs. Second, we demonstrate the effectiveness of

using GPUs to accelerate the filtered Lanczos procedure by solving a set of eigenvalue problems

originating from electronic stucture calculations with Cucheb and comparing it with a similar

CPU implementation. We compare Cucheb against a similar CPU-based implementation and

show that using the GPU can reduce the wall-clock time by more than a factor of ten.

1.4.2 Root-finding techniques

The second class of domain decomposition eigenvalue solvers presented in this dissertation fo-

cuses on computing each sought eigenpair of the matrix pencil (A,M) independently of the

others. In this sense, the techniques proposed in this section can be seen as alternatives to

single-vector iterative schemes such as the Residual Inverse Iteration [28] and Rayleigh Quotient

Iteration (RQI) [29].

Root-finding techniques compute an eigenpair (λ, x) of the matrix pencil (A,M) by first

solving the interface eigenvalue problem to obtain the eigenvalue λ and interface part of eigen-

vector x. The remaining part of the eigenvector x, that associated with the interior variables, is

computed independently in each subdomain. The main bottleneck is the solution of the inter-

face eigenvalue problem, which although is of a much smaller dimension (equal to the number

of interface variables), it is also of a nonlinear nature.

To solve the interface eigenvalue problem, root-finding techniques recast its solution into one

of root-finding with a scalar function F(.) that satisfies the relation

F(σ) : R→ R | λ ∈ Λ(A,M)→ F(σ) ≡ 0,

i.e., the eigenvalues of (A,M) are roots of the scalar function F(σ). Note that the above

definition allows F(.) to have roots which are not eigenvalues of the matrix pencil (A,M).

Chapter 7 presents a root-finding technique in which the scalar function F(.) is defined

by parameterizing the eigenvalues of a zero-order approximation of the nonlinear matrix-valued

function associated with the interface region, i.e., the spectral Schur complement operator. The

12

root-finding problem is then solved by Newton’s method. The primary goal of the approach

presented in this chapter is to further extend current understanding of spectral Schur complement

domain decomposition methods for the solution of symmetric eigenvalue problems, as well as to

develop practical related algorithms. Distributed memory implementations of these algorithms

are discussed and their performance is demonstrated.

Chapter 8 is similar to the techniques described in Chapter 7, i.e., the interface eigenvalue

problem is recasted into one of computing roots of a scalar function. However, there is a

notable difference. While the root-finding approach presented in Chapter 7 is applied on a

scalar function defined by a zeroth-order approximation of the nonlinear matrix-valued function

associated with the interface variables, the technique presented in this chapter exploits a first-

order approximation instead. This choice requires a separate theoretical analysis, while it also

leads to faster convergence of the root-finding scheme. The latter is verified experimentally

where we demonstrate that the proposed scheme converges similarly, if not faster, than both

RQI and the techniques described in Chapter 7, while is also more robust in the absence of

accurate initial eigenvalue approximations.

Remark 1 Throughout this dissertation the term “domain decomposition” has a dual meaning.

In the first case, the domain decomposition framework is used as a mean to perform in parallel

the various computational operations performed by a sparse eigenvalue solver applied to the

matrix pencil (A,M), e.g. linear system solutions, Matrix-Vector products, inner products.

In the second case, the domain decomposition framework is applied directly to the eigenvalue

equation Ax = λx, and the parts of the solution associated with the interior and interfaces

variables are obtained in two separate phases. With the exception of Chapters 5 and 6, the focus

of this dissertation lies on directly applying domain decomposition to the eigenvalue problem

Ax = λMx.

1.5 List of publications and conferences attended

A list of the core research articles associated with the present dissertation is as following:

1. V. Kalantzis, Y. Xi, and Y. Saad, Beyond Automated MultiLevel Substructur-

ing: Domain Decomposition with Rational Filtering. SIAM Journal on Scientific

Computing, Vol. 40, No. 4, pp. C477-C502, 2018.

13

2. V. Kalantzis, J. Kestyn, E. Polizzi, and Y. Saad, Domain Decomposition Approaches

for Accelerating Contour Integration Eigenvalue Solvers for Symmetric Eigen-

value Problems, Numerical Linear Algebra with Applications (To Appear).

3. J. L. Aurentz, V. Kalantzis, and Y. Saad, Cucheb: A GPU Implementation of the

Filtered Lanczos Procedure, Computer Physics Communications, Vol. 220, pp. 332-

340, 2017.

4. V. Kalantzis, R. Li, and Y. Saad, Spectral Schur Complement Techniques for Sym-

metric Eigenvalue Problems, Electronic Transactions on Numerical Analysis, Vol. 45,

pp. 305-329, 2016.

5. V. Kalantzis, Spectral Schur complement Techniques for Symmetric Generalized

Eigenvalue Problems, In Submission.

In addition to the above research articles, the following articles are also related to this disserta-

tion to some extent:

1. J. Kestyn, V. Kalantzis, E. Polizzi, and Y. Saad, PFEAST: A High Performance

Sparse Eigenvalue Solver Using Distributed-Memory Linear Solvers, In Pro-

ceedings of the 2016 ACM/IEEE Supercomputing Conference (SC16).

2. G. Dillon, V. Kalantzis, Y. Xi, and Y. Saad, A Hierarchical Low-Rank Schur Com-

plement Preconditioner for Indefinite Linear Systems, SIAM Journal on Scientific

Computing, Vol. 40, No. 4, pp. A2234-A2252, 2018.

Parts of the work appearing in this dissertation have been presented at the following con-

ferences and institutions: 1) SIAM Conference on Computational Science and Engineering 2015

(Salt Lake City, Utah, USA), 2) SIAM Conference on Applied Linear Algebra 2015 (Atlanta,

Georgia, USA), 3) ACM/IEEE Supercomputing Conference 2016 (Salt Lake City, Utah, USA),

4) SIAM Conference on Computational Science and Engineering 2017 (Atlanta, Georgia, USA),

5) PETSc User Meeting 2017 (Boulder, Colorado, US), 6) 21st Conference of the International

Linear Algebra Society (Ames, Iowa, USA), 7) Argonne National Laboratory (Lemont, IL,

USA), 8) Sandia National Laboratories (Albuquerque, NM, USA), and 9) Intel Parallel Com-

puting Laboratories (Santa Clara, CA, USA). Travel support awards were granted by the funding

committees of the following conferences: (a) SIAM Conference on Computational Science and

14

Engineering 2017, (b) PETSc User Meeting 2017, and (c) 21st Conference of the International

Linear Algebra Society. The Computer Science and Engineering Department of the University

of Minnesota also provided full funding for the (d) SIAM 2015 Conference on Computational

Science and Engineering.

1.6 Computing environments and programming models

1.6.1 Hardware

The above software was designed, developed and tested on the computer systems of the Min-

nesota Supercomputing Institute. Some of the computer implementations used to perform the

experiments presented in this dissertation can be found on the following webpage of the author:

https://www-users.cs.umn.edu/~kalan019/software.html. More specifically, the experi-

ments presented in this dissertation were performed on the following computing systems:

� The Itasca Linux cluster at Minnesota Supercomputing Institute. Itasca is an HP

Linux cluster with 1,091 HP ProLiant BL280c G6 blade servers, each with two-socket,

quad-core 2.8 GHz Intel Xeon X5560 “Nehalem EP” processors sharing 24 GB of system

memory, with a 40-gigabit QDR InfiniBand (IB) interconnect. In all, Itasca consists of

8, 728 compute cores and 24 TB of main memory.

� The Mesabi Linux cluster at Minnesota Supercomputing Institute. Mesabi consists by

741 nodes of various configurations with a total of 17,784 compute cores provided by Intel

Haswell E5-2680v3 processors. Each node features two sockets, each socket with twelve

physical cores at 2.5 GHz and 32 GB of system memory. In total, Mesabi features a peak

performance of 711 TeraFLOPS and 67 TB of memory.

1.6.2 Software

This dissertation features computer implementations written in Matlab, CUDA [30] and C/C++.

The graphic illustrations appearing in this dissertation were generated by Matlab, and by the

TikZ and PGF LATEX packages. All of the distributed memory implementations featured in this

dissertation were written in C/C++ and on top of the Portable Extensible Toolkit for Scientific

https://www-users.cs.umn.edu/~kalan019/software.html

15

Computation (PETSc) library [31, 32, 33]. PETSc is a collection of data structures and rou-

tines for the parallel solution of scientific applications, and is built on top of the Message Passing

Interface (MPI) [34], a standardized and portable programming model for distributed memory

computing environments. All linear algebra computations in the aforementioned C/C++ imple-

mentations were performed by calling the appropriate routines in the BLAS [35] and LAPACK

[36] numerical libraries as those were implemented in the Math Kernel Library (MKL) [37].

1.7 Funding and access to computational resources

The research output presented in this dissertation was supported by (a) NSF under award CCF-

1505970, (b) the Scientific Discovery through Advanced Computing (SciDAC) program funded

by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and

Basic Energy Sciences under award number DE-SC0008877; and (c) a Gerondelis foundation

scholarship. The Department of Computer Science and Engineering at University of Minnesota

also contributed to the research that led to this dissertation by offering a full academic year’s

salary and tuition benefits through its Teaching Assistantships program.

The author would also like to acknowledge the Minnesota Supercomputing Institute (MSI)

at the University of Minnesota for providing resources that contributed to the research results

reported in this dissertation.6

6The MSI, NSF, and DOE logos are listed in this dissertation with the sole purpose of acknowledging the
support made available by the aforementioned institutions/departments.

Chapter 2

Related Work

The standard approach to compute a few, e.g. nev � n, eigenpairs of large and sparse symmetric

eigenvalue problems of the form Ax = λMx is to perform a Rayleigh-Ritz projection onto a

low-dimensional subspace that spans an invariant subspace associated with the nev eigenvalues

located inside the real interval [α, β]. This section reviews some well-known techniques to build

an efficient Rayleigh-Ritz projection subspace.

2.1 The Rayleigh-Ritz procedure

Algorithm 2.1.1 sketches the Rayleigh-Ritz procedure to approximate eigenpairs of eigenvalue

problems of the form Ax = λMx. The full column rank matrix Z ∈ Rn×κ represents a basis of

the projection subspace Z.

Algorithm 2.1.1 The Rayleigh-Ritz procedure

0. Input: A, M , Z ∈ Rn×κ

1. Form H = ZTAZ and W = ZTMZ

2. Solve the eigenvalue problem Hg(i) = λ̂iWg(i), i = 1, . . . , κ

3. Compute the Ritz vectors x̂(i) = Zg(i), i = 1, . . . , κ

The approximate eigenvalues λ̂i computed by the Rayleigh-Ritz procedure are referred

16

17

to as Ritz values while the corresponding approximate eigenvectors x̂(i) are the associated

Ritz vectors. It is straightforward to verify that the Rayleigh-Ritz procedure extracts approxi-

mate eigenpairs
(
λ̂i, x̂

(i)
)

which satisfy the Galerkin condition:

x̂(i) ∈ Z, Ax̂(i) − λ̂iMx̂(i)⊥Z.

After a Ritz pair
(
λ̂i, x̂

(i)
)

is computed, we can determine its accuracy by computing the

(relative) norm of the residual r(i) = Ax(i) − λ̂iMx(i).

2.1.1 Optimality of the Rayleigh-Ritz procedure

Let Z denote the projection subspace and, as previously, let Z ∈ Rn×κ denote a corresponding

basis such that Q = [Z,K] is an orthogonal matrix. Then, if M = I, i.e., M is the identity

matrix, we can show the following.

Theorem 2.1.1 Let T = ZTAZ. The minimum of ‖AZ − ZR‖2 over all κ-by-κ symmetric

matrices R is equal to ‖KTAZ‖2 and is attained when R = T . Similarly, let T = Y Λ̂Y T be the

eigenvalue decomposition of the matrix T . Then, the minimum of ‖AP − PD‖2 over all n× κ

orthonormal matrices P where span(P) = span(Z) and diagonal matrices D is also equal to

‖KTAZ‖2 and is attained by P = ZY and D = Λ̂.

Proof: See [38]. �

According to Theorem 2.1.1, the columns of matrix P = ZY (the Ritz vectors) are the

“optimal” approximate eigenvectors and the diagonal entries of Λ̂ are the “optimal” approximate

eigenvalues in terms of minimizing the residual norm ‖AP − PD‖.

A similar result can be also shown for the case where M is a general SPD matrix through

converting the matrix pencil (A,M) to an equivalent one of the form (L−1AL−T , I) where

M = LLT . In the latter case, the computed approximate eigenvectors will have to be multiplied

by L−T in order to retrieve the approximate eigenvectors x̂(i) of the original matrix pencil

(A,M).

Theorem 2.1.2 Let the Ritz pairs of (A,M) computed by applying the Rayleigh-Ritz procedure

on the projection subspace Z ≡ span (Z) , Z ∈ Rn×κ, be of the form (λ̂i, Zg
(i)) where g(i)

18

satisfies (ZTAZ − λ̂iZTMZ)g(i) = 0, and M = LLT . Then, the Ritz pairs minimize

∥∥L−1R
∥∥2

F
= trace

(
RTM−1R

)
,

where R =
[
r(1), . . . , r(κ)

]
with r(i) = Ax(i) − λ̂iMx(i), and x(i) ∈ span (Z).

Proof: See [29]. �

2.2 The shift-and-invert Lanczos method for symmetric

generalized eigenvalue problems

The Lanczos method has become the standard method for approximating a few of the extremal

eigenvalues and associated eigenvectors of large and sparse matrix pencils [7]. In a nutshell,

the Lanczos method generates a low-dimensional (Krylov) subspace onto which the original

eigenvalue problem is projected by imposing the Galerkin criterion. This projection is carried out

iteratively and is represented by a tridiagonal matrix. The solution of the projected eigenvalue

problem is then exploited to approximate the eigenpairs of the matrix pencil (A,M).

Throughout the rest of this section we describe the shift-and-invert variant of Lanczos. In

particular, let σ ∈ R \ Λ(A,M), and consider the following transformation

Ax = λMx

(A− σM)x = (λ− σ)Mx

M−1(A− σM)x = (λ− σ)x

Cx =

(
1

λ− σ

)
x

where

C := (A− σM)−1M.

The eigenvectors of matrix C are identical to those of the matrix pencil (A,M). Moreover, each

eigenvalue λi, i = 1, . . . , n, of the matrix pencil (A,M) is mapped to the eigenvalue
1

λi − σ
of matrix C. Since Lanczos typically converges towards the extremal eigenvalues first [39], the

shift σ is chosen so that the eigenvalues
1

λ1 − σ
, . . . ,

1

λnev − σ
of matrix C are those of largest

19

magnitude. Note here that while matrix C is nonsymmetric, the symmetry can be recovered by

replacing the inner product < x, y >= xT y by < x, y >M= xTMy.

More specifically, the shift-and-invert Lanczos method builds a recurrence

CWµ = WµTµ + reTµ

where WT
µMWµ = I, eµ ∈ Rµ denotes the µth canonical vector, and

Wµ =
[
w(1), . . . , w(µ)

]
.

The columns of Wµ form an M -orthogonal basis for the Krylov subspace

Kj(C,w(1)) = span
([
w(1), Cw(1), . . . , Cj−1w(1)

])
.

The matrix

Tµ = (MWµ)T (A− σM)−1MWµ

is symmetric and tridiagonal, i.e., Tµ has the form

Tµ =



α1 β2

β2 α2
. . .

. . .
. . . βµ

βµ αµ


.

Algorithm 2.2.1 lists the shift-and-invert variant of the Lanczos method combined with full

orthogonalization. Each iteration shift-and-invert Lanczos requires one linear system solution

with matrix A− σM and O(nµ) floating point operations to perform the orthonormalization at

Steps (5)-(7). The matrix A−σM need be factorized only once at the outset. When accounting

for all µ steps, the total computational cost associated with the full orthogonalization runs at

O(nµ2) floating point operations. Note that Algorithm 2.2.1 can be applied also in cases where

M is singular1 [40].

1As long as components in the direction of the nullspace of M are kept away from entering the computations

20

Algorithm 2.2.1 The shift-and-invert Lanczos method with full orthogonalization

0. Start with w(0) = 0, β1 = 0,
(
w(1)

)T
Mw(1) = 1

1. For µ = 1, 2, . . .

2. Compute r = (A− σM)−1M︸ ︷︷ ︸
C

w(µ) − w(µ−1)βµ

3. αµ = rTMw(µ)

4. r = r − w(µ)αµ

5. r = r −Wµ(WT
µ (Mr))

6. βµ+1 = ‖rTMr‖2
7. w(µ+1) = r/βµ+1

8. Compute the eigendecomposition Tµ = SµΘµS
T
µ

and test the accuracy of the Ritz pairs

9. End

The ith eigenpair
(
θ

(µ)
i , s

(µ)
i

)
of matrix Tµ satisfies the equation

Tµs
(µ)
i = θ

(µ)
i s

(µ)
i , i = 1, . . . , µ,

and it is used to compute a Ritz value

λ
(µ)
i = σ +

1

θ
(µ)
i

,

and Ritz vector

x
(µ)
i = Wµs

(µ)
i ,

of the matrix pencil (A,M). The residual r
(µ)
i = Ax

(µ)
i −λ

(µ)
i Mx

(µ)
i of the approximate eigenpair(

λ
(µ)
i , x

(µ)
i

)
of (A,M) satisfies the equation

(
θ

(µ)
i 6= 0

)

r
(µ)
i = − 1

θ
(µ)
i

(A− σM)w(µ+1)βµ+1s
(µ)
µ,i .

Therefore, the norm of the residual r
(µ)
i is small whenever the absolute value of the ratio

βµs
(µ)
µ,i /θ

(µ)
i is also small.

21

2.3 Rational filtering

When the number of eigenvalues nev located inside the interval of interest [α, β] is very large, e.g.

thousands, the shift-and-invert Lanczos method presented in Section 2.2 becomes less practical

due to the requirement to store and retain the orthonormality of the Krylov basis. Moreover,

convergence towards invariant subspaces associated with eigenvalues lying further away from

the shift σ can be slow. An idea to reduce memory and orthogonalization costs is to exploit

partial orthogonalization [41] and/or thick restarting [42]. Another option is to reduce the

memory and orthogonalization costs by computing the eigenpairs of interest by “slices”, i.e.,

by subdividing the interval [α, β] into smaller subintervals and computing the eigenvalues and

eigenvectors associated with each slice independently of the others [43]. This is the main idea

behind the EigenValues Slicing Library2 [44] (EVSL).

In this section we consider the acceleration of the convergence of Krylov subspace and Sub-

space Iteration projection methods by rational filtering. Rational filtering techniques are

projection methods applied to a rational transformation of the pencil (A,M) so that (1) the

eigenvalues located inside the interval [α, β] are mapped to an a-priori chosen value (typically

one), and (2) those eigenvalues of (A,M) located outside the interval [α, β] are mapped to (ap-

proximately) zero. It is easy to verify that the shift-and-invert Lanczos method presented in

Section 2.2 is also based on rational transformations, i.e., of the form ρ(ζ) =
1

ζ − σ
, but does

not necessarily satisfy the second condition mentioned above.

In this section we discuss rational filtering approaches for the solution of real symmetric

generalized eigenvalue problems, and focus on two specific methods: FEAST [27], and RF-

KRYLOV [45].

2.3.1 Construction of the rational filter

The classic approach to construct a rational filter function ρ(ζ) : C→ R is to exploit the Cauchy

integral representation of the indicator function

I[α,β](ζ) =

 1, iff ζ ∈ [α, β]

0, iff ζ /∈ [α, β]
. (2.1)

2https://www-users.cs.umn.edu/~saad/software/EVSL/index.html

https://www-users.cs.umn.edu/~saad/software/EVSL/index.html

22

-2 -1 0 1 2

ζ

10 -10

10 -5

10 0

ρ
(ζ

)

Gauss-Legendre

N
c
=4

N
c
=8

N
c
=12

N
c
=16

-2 -1 0 1 2

ζ

10 -10

10 -5

10 0

ρ
(ζ

)

Midpoint

Figure 2.1: The modulus of the rational filter function ρ(ζ) when ζ ∈ [−2, 2]. Left: Gauss-
Legendre rule. Right: Midpoint rule.

In particular, let Γ[α,β] be a smooth, closed contour that encloses only those nev eigenvalues of

(A,M) which are located inside [α, β], e.g. a circle centered at (α+ β)/2 with radius (β−α)/2.

We then have

I[α,β](ζ) =
1

2πi

∫
Γ[α,β]

1

ν − ζ
dν, (2.2)

where the integration is performed counter-clockwise. The filter function ρ(ζ) can be obtained

by applying a quadrature rule to discretize the right-hand side in (2.2):

ρ(ζ) =

2Nc∑
`=1

ω̂`
ζ` − ζ

=

2Nc∑
`=1

ω`
ζ − ζ`

, (2.3)

where {ζ`, ω`}1≤`≤2Nc ≡ {ζ`,−ω̂`}1≤`≤2Nc and {ζ`, ω̂`}1≤`≤2Nc are the poles and weights of the

quadrature rule. Note that if the 2Nc poles in (2.3) come in conjugate pairs, and the first Nc

poles lie on the upper half plane, the expression in (2.3) can be simplified into

ρ(ζ) = 2<e

{
Nc∑
`=1

ω`
ζ − ζ`

}
, when ζ ∈ R. (2.4)

Since the spectrum of the matrix pencil (A,M) is real, we will be relying on the expression in

(2.4). Other approaches to construct rational filters (not related to Cauchy’s formula) can be

found in [46, 47, 48, 49].

Figure 2.1 plots the modulus of the rational function ρ(ζ) (scaled such that ρ(α) ≡ ρ(β) ≡

23

1/2) in the interval ζ ∈ [−2, 2], where {ζ`, ω`}1≤`≤2Nc are obtained by numerically approximating

I[−1,1](ζ) by the Gauss-Legendre rule (left) and Midpoint rule (right) [50]. Notice that as Nc

increases, ρ(ζ) becomes a more accurate approximation of I[−1,1](ζ) [48].

2.3.2 Rational filtering projection methods

The eigenvalue problem Ax = λMx is equivalent to the eigenvalue problem M−1Ax = λx. The

spectral projector associated with the eigenvalues of the pencil (A,M) ≡ (M−1A, I) located

inside the interval [α, β] can be written as

P
(M−1A)
Γ[α,β]

=
1

2πi

∫
Γ[α,β]

(νI −M−1A)−1dν (2.5)

where, similarly to (2.2), Γ[α,β] is a smooth, closed contour that encloses only those nev eigen-

values of (A,M) which are located inside [α, β], the integration is performed counter-clockwise.

The spectral projector can be written equivalently as

P
(M−1A)
Γ[α,β]

=
1

2πi

∫
Γ[α,β]

(νM−1M −M−1A)−1dν

=
1

2πi

∫
Γ[α,β]

[
M−1(νM −A)

]−1
dν

=
1

2πi

∫
Γ[α,β]

(νM −A)−1Mdν

=

nev∑
i=1

x(i)
(
x(i)
)T

M.

(2.6)

In practice, the spectral projector in (2.6) will be discretized by a quadrature rule. This

approximation ρ(M−1A) ≈ P (M−1A)
Γ[α,β]

can be written as

ρ(M−1A) =

Nc∑
`=1

ω̂`(ζ`M −A)−1M,

where {ζ`, ω̂`}1≤`≤2Nc are the same as in Section (2.3.1). Let Λ := diag (λ1, . . . , λn) and recall

24

the identity ω` = −ω̂`. Then, ρ(M−1A) can be written as

ρ(M−1A) =

Nc∑
`=1

ω`(A− ζ`M)−1M

= 2<e

{
Nc∑
`=1

ω`(A− ζ`M)−1M

}

= X

(
2<e

{
Nc∑
`=1

ω`(Λ− ζ`I)−1

})
XTM

= Xρ(Λ)XTM

=

n∑
i=1

ρ(λi)x
(i)
(
x(i)
)T

M

(2.7)

where ρ(.) is the filter function defined in (2.4) and

ρ(Λ) =



ρ(λ1)

ρ(λ2)

. . .

ρ(λn)


.

The eigenvectors of ρ(M−1A) are identical to those of the matrix pencil (A,M), while the

corresponding eigenvalues are transformed to {ρ(λj)}j=1,...,n. Since ρ(λ1), . . . , ρ(λnev) are all

larger than ρ(λnev+1), . . . , ρ(λn), the nev eigenvalues of (A,M) located inside [α, β] become the

nev dominant eigenvalues of matrix ρ(M−1A). Applying a projection method to ρ(M−1A) can

then lead to rapid convergence towards an invariant subspace associated with the nev eigenvalues

of (A,M) located inside [α, β].

The FEAST method

The FEAST3 method, summarized in Algorithm 2.3.1, is a rational filtering scheme based on

Subspace Iteration. In a nutshell, FEAST applies the Subspace Iteration projection scheme to

the rational transformation of the matrix pencil (A,M) in (2.7). By recalling standard results

on Subspace Iteration [7], the convergence rate of FEAST is then determined by the ratio

3http://www.feast-solver.org/

http://www.feast-solver.org/

25

ρ(λr)/ρ(λnev), where r ≥ nev denotes the dimension of the initial approximation subspace Z.

A detailed numerical analysis of FEAST is presented in [51]. An extension to nonsymmetric

eigenvalue problems can be found in [52].

Algorithm 2.3.1 FEAST

0. Start with Z ∈ Rn×r (r ≥ nev)

1. For µ = 1, 2, . . .

2. Compute W = 2<e
{∑Nc

`=1 ω`(A− ζ`M)−1MZ
}

3. Set AW = WTAW and MW = WTMW

4. Solve AWQ = MWQΛ̂

5. Z = WQ

6. End

FEAST naturally captures all multiple eigenvalues. As FEAST is based on Subspace It-

eration, a reasonably accurate estimation of nev (i.e., we must have r ≥ nev). Techniques to

estimate the number of eigenvalues located inside an interval [α, β] can be found in [53]. FEAST

terminates as soon as the trace of matrix Λ̂ remains the same up to a certain tolerance. Al-

ternatively, we can determine the convergence of each approximate eigenpair independently by

computing its residual norm explicitly and signal it as an accurate enough approximation if

the latter norm is less than some user-given threshold. In practice, a robust implementation of

FEAST should also take care of spurious solutions, e.g. see Section 3.7 in [52].

The dominant computational procedure of the FEAST method is that of computing the

solution of the sparse linear systems with matrices A − ζ1M, . . . , A − ζNcM at each iteration.

These linear system solutions are performed in complex arithmetic and only their real part is

retained.

Rational filtering Arnoldi

An alternative to Subspace Iteration is to exploit Krylov projection schemes [54, 55] as the pro-

jection scheme of choice. One immediate advantage of this approach is that no estimation of nev

is then necessary. Additionally, Krylov projection schemes typically requires less computational

work per eigenpair than Subspace Iteration. On the other hand, standard Krylov subspace ap-

proaches construct the projection subspace one vector at a time, and thus their efficiency might

26

be lower than techniques based in Subspace Iteration which can take advantage of specialized

multiple right-hand side linear system solvers. To remedy the latter drawback, block versions

of Krylov projection schemes are possible, however these are not considered throughout this

dissertation [56].

Algorithm 2.3.2 sketches the Arnoldi procedure applied to matrix ρ(M−1A) for the com-

putation of all eigenvalues of the matrix pencil (A,M) located inside the interval [α, β] and

associated eigenvectors. Step (2) computes the “filtered” vector w by applying the matrix func-

tion ρ(M−1A) to q(µ), which in turn requires the solution of the Nc linear systems associated

with matrices A − ζ`M, ` = 1, . . . , Nc. Steps (3)-(12) orthonormalize w against the previous

Arnoldi vectors q(1), . . . , q(µ) to produce the next Arnoldi vector q(µ+1). Step (13) checks the

sum of those eigenvalues of the upper-Hessenberg matrix Hµ which are no less than 1/2. If

this sum remains constant up to a certain tolerance, the outer loop stops. Finally, Step (16)

computes the Rayleigh quotients associated with the approximate eigenvectors of ρ(M−1A) (the

Ritz vectors obtained in Step (15)).

27

Algorithm 2.3.2 RF-KRYLOV

0. Start with q(1) ∈ Rn s.t.
∥∥q(1)

∥∥
2

= 1

1. For µ = 1, 2, . . .

2. Compute w = 2<e
{∑Nc

`=1 ω`(A− ζ`M)−1Mq(µ)
}

3. For κ = 1, . . . , µ

4. hκ,µ = wT q(κ)

5. w = w − hκ,µq(κ)

6. End

7. hµ+1,µ = ‖w‖2
8. If hµ+1,µ = 0

9. generate a unit-norm q(µ+1) orthogonal to q(1), . . . , q(µ)

10. Else

11. q(µ+1) = w/hµ+1,µ

12 EndIf

13. If the sum of eigenvalues of Hµ no less than 1/2 is unchanged

during the last few iterations; BREAK; EndIf

14. End

15. Compute the eigenvectors of Hµ and form the Ritz vectors of (A,M)

16. For each Ritz vector q̂, compute the corresponding approximate

Ritz value as the Rayleigh quotient q̂TAq̂/q̂TMq̂

Throughout the rest of this dissertation, Algorithm 2.3.2 will be abbreviated as RF-KRYLOV.

We note at this point that while RF-KRYLOV is based on the Arnoldi scheme, it is also possible

to convert the eigenvalue problem with the matrix transformation ρ(M−1A) to a symmetric one

and use the Lanczos method instead. In particular, we can multiply both sides of the eigenvalue

equation ρ(M−1A)x = ρ(λ)x from the left side by matrix M to get

Mρ(M−1A)x = ρ(λ)Mx,

2

(
M<e

{
Nc∑
`=1

ω`(A− ζ`M)−1

}
M

)
x = ρ(λ)Mx.

28

This is a SPD eigenvalue problem since M is SPD and 2
(
M<e

{∑Nc
`=1 ω`(A− ζ`M)−1

}
M
)

is symmetric. Alternatively, it is possible to set x = M−1y and write the eigenvalue equation

ρ(M−1A)x = ρ(λ)x as

ρ(M−1A)M−1y = ρ(λ)M−1y,

2<e

{
Nc∑
`=1

ω`(A− ζ`M)−1

}
y = ρ(λ)M−1y.

Again, this is a SPD eigenvalue problem since M−1 is SPD and 2<e
{∑Nc

`=1 ω`(A− ζ`M)−1
}

is

symmetric. More details on the above can be found in [44].

2.3.3 Discussion

Both RF-KRYLOV and FEAST are highly suitable for execution on current high-end com-

puters. In addition to the ability to slice the interval of interest [α, β] to non-overlapping

subintervals and process each subinterval in parallel [43, 57], the application of the matrix

2<e
{∑Nc

`=1 ω`(A− ζ`M)−1M
}

to a vector (or a set of vectors) can be performed in parallel by

assigning each one of the Nc linear system solutions to different groups of processors. Clearly,

this level of parallelism is restrained by Nc. A third level of parallelism is also possible by

solving each one of the Nc linear systems by a domain decomposition distributed linear system

solver. More details on the parallelization strategies of rational filtering approaches, FEAST in

particular, can be found in [58] and Section 5 of the present dissertation.

By default the linear systems in both FEAST and RF-KRYLOV are solved by a direct sparse

linear system solver. When iterative solvers are the only practical option, FEAST is more robust

than RF-KRYLOV due to the fact that Subspace Iteration is by itself more robust than Krylov

subspace approaches in the presence of inexact applications of the coefficient matrix. Note here

that the application of iterative solvers in both FEAST and RF-KRYLOV can be particularly

challenging as Nc increases since in this case the quadrature nodes ζj , j = 1, . . . , Nc will come

closer to the real axis. Therefore, when iterative linear system solvers are considered, it might

be more practical to set Nc to a low value, e.g. one or two. Another idea is to try to fix the

location of the quadrature node(s) a-priori, and compute the associated weights of the rational

filter ρ(.) by a least-squares approximation of the indicator function I[α,β](.) [48]. Some results

on this subject from the viewpoint of contour integral filters can be found in [59, 60] (see also

29

Section 4 of the present dissertation).

While not discussed in this dissertation, it is possible to consider contour integrals of other

rational functions, e.g., the scalar function uH(ζM − A)−1v, with u, v, ∈ Cn, as proposed by

Sakurai and Sugiura [61, 62, 63]. The poles of this scalar function are the eigenvalues of the

matrix pencil (A,M). A similar algorithm, based on pole-finding of rational interpolants of

u∗(ζM −A)−1v, can be found in [46].

2.4 Polynomial filtering

Similarly to rational filtering techniques, polynomial filtering approaches aim to accelerate the

convergence rate of the projection method of choice by applying a polynomial transformation

to matrix pencil (A,M). More specifically, let M = LLT be the Cholesky decomposition of

matrix M . Then, the original eigenvalue problem Ax = λMx can be written in an equivalent

form L−1AL−T
(
LTx

)
= λ

(
LTx

)
. The idea then is to apply a projection method, i.e., Lanczos,

to a polynomial transformation of the matrix L−1AL−T , p
(
L−1AL−T

)
, where p(.) : R → R is

chosen so that p(λi) ≈ 0 for any λi /∈ [α, β].

In practice, the polynomial filter p(.) is typically an approximation of the indicator function

I[α,β](.). Another option is to construct p(.) by considering a polynomial approximation of the

Dirac delta function. This technique is implemented in the EVSL library [44]. In any case,

Chebyshev polynomials are used as the basis functions. Then, p(.) can be written as

p(ζ) =

m∑
i=0

biTi(ζ), ζ ∈ R, (2.8)

where {bi}mi=0 are the expansion coefficients, and Ti denotes the ith Chebyshev polynomial of

the first kind. The expansion coefficients can be computed in a few different ways, e.g. by either

truncating the Chebyshev series approximation of I[α,β](.) or solving a least-squares problem

[43].

Since Chebyshev polynomials are defined over the reference interval [−1,1], a linear trans-

formation is needed to map the eigenvalues of L−1AL−T to this reference interval. This can be

achieved by shifting the origin, i.e.,

L−1AL−T =
L−1AL−T − xI

e
, x =

λmin + λmax

2
, e =

λmin − λmax

2
,

30

-1 -0.5 0 0.5 1

-0.2

0

0.2

0.4

0.6

0.8

1

Chebyshev polynomial approximation in [.1, .3]

ideal filter
Chebyshev, m=20
Chebyshev, m=80
Chebyshev, m=180

-1 -0.5 0 0.5 1

-0.2

0

0.2

0.4

0.6

0.8

1

Chebyshev polynomial approximation in [−1,−.5]

ideal filter
Chebyshev, m=20
Chebyshev, m=80
Chebyshev, m=180

Figure 2.2: Chebyshev polynomial approximation of I[α,β], [α, β] ⊆ [−1, 1], for different degree
values. Left: [α, β] = [.1, .3]. Right: [α, β] = [−1,−.5].

where I denotes the identity matrix of the same dimension as A, and λmin, λmax denote the al-

gebraically smallest and largest eigenvalues of L−1AL−T (i.e., (A,M)), respectively. In practice,

we do not need to know the exact values of λmin and λmax, but rather a tight underestimation

and overestimation, respectively. Note that the same transformation should be also applied to

the interval [α, β], i.e., [α, β] := [(α− x)/e, (β − x)/e].

Figure 2.2 shows a Chebyshev polynomial approximation of I[α,β] for different degree values

m and intervals [α, β]. In practice the degree m will have to be set automatically, e.g. see

Section 6.2.1 of this dissertation and the discussion in [43]. Note that higher values of m do not

necessarily lead to (much) faster convergence. Indeed, our experience tells us that increasing m

typically pays off only for heavily interior eigenvalue problems.

2.4.1 The FILTLAN library

Algorithm 2.4.1 (FILTLAN) applies the Lanczos method combined with full orthogonalization

to matrix p(L−1AL−T). Since A is symmetric, the matrix Hµ is actually tridiagonal, and no

entries above the leading superdiagonal need be retained. Each iteration of FILTLAN requires

2m triangular substitutions with matrix L, m Matrix-Vector products with matrix A, as well as

O(nµ) floating point operations to orthonormalize w with against the Krylov basis generated up

to the µth iteration. The total orthogonalization cost runs at O(nµ2) floating point operations.

31

Algorithm 2.4.1 FILTLAN with full orthogonalization

0. Start with q(0) = 0, β1 = 0, q(1) ∈ Rn s.t.
∥∥q(1)

∥∥
2

= 1

1. For µ = 1, 2, . . .

2. Compute w = p(L−1AL−T)q(µ)-q(µ−1)βµ

3. hµ,µ = wT q(µ)

4. For κ = 1, . . . , µ

5. γ = wT q(κ)

6. w = w − γq(κ)

7. End

8. hµ+1,µ = hµ,µ+1 = ‖w‖2
9. If Hµ+1,µ = 0

10. generate a unit-norm q(µ+1) orthogonal to q(1), . . . , q(µ)

11. Else

12. q(µ+1) = w/Hµ+1,µ

13. EndIf

14. If the sum of eigenvalues of Hµ no less than 1/2 is unchanged

during the last few iterations; BREAK; EndIf

15. End

16. Compute the eigenvectors of Hµ and form the Ritz vectors of (A,M)

17. For each Ritz vector q̂, compute the corresponding approximate

Ritz value as the Rayleigh quotient q̂TAq̂/q̂TMq̂

By the above discussion it becomes apparent that unless M has a very particular structure,

e.g. diagonal, the FILTLAN implementation presented in Algorithm 2.4.1 can be considerably

expensive due to the repeated triangular substitutions with the triangular matrices L and LT .

Indeed, the true strength of the method is realized when (1) M = I, (2) A is large and sparse,

and (3) a factorization of A is impractical. Polynomial filtering has proven itself highly successful

when applied to eigenvalue problems associated with matrices originating structure calculations

[64], e.g. see [65, 66, 67].

A computer implementation4 of FILTLAN combined with partial orthogonalization [41] and

4http://www-users.cs.umn.edu/~saad/software/filtlan/

http://www-users.cs.umn.edu/~saad/software/filtlan/

32

least-squares polynomial filters can be found in [67]. For an implementation of polynomial

filtering approaches on multi-core CPUs and distributed memory environments we refer to [68,

44].

2.5 Domain decomposition techniques

An alternative to reduce the orthonormalization costs in large scale eigenvalue computations is to

consider domain decomposition-type approaches (we refer to [13, 12] for an in-depth discussion

of domain decomposition). Domain decomposition approaches decouple the original eigenvalue

problem into two separate subproblems: (a) one defined locally in the interior of each subdomain,

and (b) one defined on the interface region connecting neighboring subdomains. Once the

original eigenvalue problem is solved for the interface region, the solution associated with the

interior of each subdomain is computed independently of the rest of the subdomains [69, 70,

25, 71, 17, 18, 20]. When the number of variables associated with the interface region is much

smaller than the number of global variables, domain decomposition approaches can provide

approximations to thousands of eigenpairs while avoiding excessive orthogonalization costs.

Algebraic domain decomposition eigensolvers begin by calling a graph partitioner [72, 73]

to decompose the adjacency graph of |A| + |M | into p ∈ Z+ non-overlapping subdomains. If

we then order the interior variables in each subdomain before the interface variables across all

subdomains, matrices A and M take the following block structures:

A =



B1 E1

B2 E2

. . .
...

Bp Ep

ET1 ET2 . . . ETp C


,

M =



M
(1)
B M

(1)
E

M
(2)
B M

(2)
E

. . .
...

M
(p)
B M

(p)
E(

M
(1)
E

)T (
M

(2)
E

)T
. . .

(
M

(p)
E

)T
MC


.

(2.9)

33

0 500 1000

0

200

400

600

800

1000

Figure 2.3: Sparsity pattern of A and M obtained by partitioning the graph of |A| + |M | in
p = 4 subdomains by METIS. Different colors indicate entries that are associated with different
subdomains.

The matrices Bj and M
(j)
B are of size dj × dj , where dj denotes the number of interior variables

residing in the jth subdomain. On the other hand, matrices Ej and M
(j)
E are rectangular

matrices of size dj × s. In particular, the matrices Ej , M
(j)
E have a special nonzero pattern

of the form Ej =
[
0dj ,`j , Êj , 0dj ,νj

]
, and M

(j)
E =

[
0dj ,`j , M̂

(j)
E , 0dj ,νj

]
, where sj denotes the

number of interfaces variables in the jth subdomain (note that s =
∑p
j=1 sj), `j =

∑k<j
k=1 sk,

νj =
∑k=p
k>j sk, and 0χ,ψ denotes the zero matrix of size χ × ψ. Throughout the rest of this

dissertation we will partition the adjacency graph of |A|+ |M | by the METIS library [72].

Under the permutation in (2.9), A and M can be also written as:

A =

 B E

ET C

 , M =

MB ME

MT
E MC

 . (2.10)

The block-diagonal matrices B and MB are of size d× d, where d =
∑p
i=1 di, while E and ME

are of size d× s. Matrices C and MC are square matrices of size s× s, where s =
∑p
j=1 sj .

Figure 2.3 plots the sparsity pattern of A and M after a reordering obtained by partitioning

the graph of |A| + |M | in p = 4 subdomains by METIS. Matrix A was chosen as 7-pt stencil

Finite Difference discretization of the Laplace operator on the unit cube using a regular grid

with the same step size in each direction.

34

Throughout the rest of this dissertation we will retain the symbols A and M to denote the

permuted matrices in (2.9).

2.5.1 Invariant subspaces from a Schur complement viewpoint

Domain decomposition eigenvalue solvers can be seen as Rayleigh-Ritz projection techniques in

which the subspace Z to perform the projection onto is of the form

Z = U ⊕ Y, (2.11)

where U and Y are (structurally) orthogonal subspaces that approximate the part of the solution

associated with the interior and interface variables, respectively.

Let the ith eigenvector of (A,M) be partitioned as

x(i) =

u(i)

y(i)

 , i = 1, . . . , n, (2.12)

where u(i) ∈ Rd and y(i) ∈ Rs correspond to the eigenvector parts associated with the interior

and interface variables, respectively. We can then rewrite Ax(i) = λiMx(i) in the following block

form  B − λiMB E − λiME

ET − λiMT
E C − λiMC


u(i)

y(i)

 = 0. (2.13)

Eliminating u(i) from the second equation in (2.13) leads to the following nonlinear eigenvalue

problem of size s× s:

[
C − λiMC − (E − λiME)T (B − λiMB)−1(E − λiME)

]
y(i) = 0. (2.14)

Once λi and y(i) are computed in the above equation, u(i) can be recovered by the following

linear system solution

(B − λiMB)u(i) = −(E − λiME)y(i). (2.15)

In practice, since matrices B and MB in (2.9) are block-diagonal, the p sub-vectors u
(i)
j ∈

Rdj of u(i) =

[(
u

(i)
1

)T
, . . . ,

(
u

(i)
p

)T]T
can be computed in a decoupled fashion among the p

35

subdomains as

(
Bj − λiM (j)

B

)
u

(i)
j = −

(
Êj − λiM̂ (j)

E

)
y

(i)
j , j = 1, . . . , p, (2.16)

where y
(i)
j ∈ Rsj is the subvector of y(i) =

[(
y

(i)
1

)T
, . . . ,

(
y

(i)
p

)T]T
that corresponds to the jth

subdomain.

By (2.14) and (2.15) we see that the subspaces U and Y in (2.11) should ideally be chosen

as

Y = span
([
y(1), . . . , y(nev)

])
, (2.17)

U = span
([

(B − λ1MB)−1(E − λ1ME)y(1), . . . , (B − λnevMB)−1(E − λnevME)y(nev)
])
. (2.18)

2.5.2 The Automated Multi-Level Substructuring method

The Automated Multi-Level Substructuring (AMLS) method [25, 70, 74], originally developed

by the structural engineering community for the frequency response analysis of Finite Element

automobile bodies, is one of the best known algebraic substructuring techniques eigenvalue

solvers. AMLS has been proven considerably faster than the block Lanczos shift-and-invert

(SIBL) [75] approach implemented in the NASTRAN industrial package [76] in applications

where nev � 1. One of the main reasons of this superiority of AMLS versus SIBL lies on the

fact that AMLS avoids the orthonormalization of n-dimensional subspaces. On the other hand,

AMLS is a non-iterative method and as such its accuracy is relatively modest only for those of

(A,M) located close to some user-given shift σ ∈ R. Some techniques to improve the accuracy

provided of AMLS by means of post-processing can be found in [70, 77].

AMLS is essentially a Rayleigh-Ritz projection technique onto a subspace defined as

ZAMLS = UAMLS ⊕ YAMLS ,

where UAMLS and YAMLS are structurally orthogonal subspaces associated with the interior

and interface variables, respectively. In particular, AMLS approximates the part of the solution

associated with the interface variables, span
([
y(1), . . . , y(nev)

])
, by the subspace

YAMLS = span
([
ŷ(1), . . . , ŷ(k)

])
, (2.19)

36

where ŷ(i), i = 1, . . . , k, denote the eigenvectors associated with the k eigenvalues of smallest

magnitude of the SPD matrix pencil (S(σ),−S′(σ)) where S′(σ) denotes the derivative of the

matrix-valued function S(.) evaluated at σ ∈ R. In AMLS this shift σ is typically zero since the

method was originally developed for the analysis of low-frequency response of automobile bodies.

Similarly, AMLS approximates the part of the solution associated with the interior variables of

the domain by the subspace

UAMLS = span
([

(B − σMB)−1(E − σME)
[
ŷ(1), . . . , ŷ(k)

]
, V
])
,

where V ∈ Rb×pnevB is a block-diagonal matrix that is distributed row-wise among the p different

subdomains,

V =



V1

V2

. . .

Vp


,

and Vj holds the eigenvectors associated with the nevB smallest magnitude eigenvalues of each

matrix pencil
(
Bj − σM (j)

B ,M
(j)
B

)
.

In order to reduce the computational costs associated with each subdomain, AMLS computes

each matrix Vj by applying the same technique recursively, i.e., Vj is also computed by applying

AMLS to each matrix pencil
(
Bj − σM (j)

B ,M
(j)
B

)
, j = 1, . . . , p. As a result, AMLS is typically

combined with a recursive Nested Dissection ordering of the pencil (A,M) [78].

2.6 Test matrices

This section provides details on the test matrices used throughout this dissertation.

2.6.1 The Dirichlet eigenvalue problem

Throughout this dissertation we will use the solution of the Dirichlet eigenvalue problem as

a testbed to provide insights on the performance of various eigenvalue solvers. The Dirichlet

37

-1 -0.5 0 0.5 1

x

-1

-0.5

0

0.5

1

y

(a)

0 1000 2000

0

500

1000

1500

2000

2500

Stiffness matrix

(b)

0 1000 2000

0

500

1000

1500

2000

2500

Mass matrix

(c)

Figure 2.4: a) The FE mesh, b) the sparsity pattern of matrix A, and c) the sparsity pattern of
matrix M .

eigenvalue problem can be formally defined as

∆u+ λu = 0 in Ω

u|∂Ω = 0
(2.20)

where ∆ =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
is the Laplace operator. We will consider two different discretization

techniques, Finite Difference and Finite Element. In both cases, the eigenvalues of the discretized

Dirichlet eigenvalue problem will be real and positive.

Finite Difference discretization We consider the solution of the Dirichlet eigenvalue prob-

lem in (2.20) on 3D (2D) domains Ω := [0, 1] × [0, 1] × [0, 1] (Ω := [0, 1] × [0, 1]). For the

Finite Difference discretization, we consider 5-pt (2D) and 7-pt (3D) stencils. We will denote

the mesh size of the domain by nx × ny × nz and the discretized Laplacian matrix A will be of

size n = nx × ny × nz (or n = nx × ny for the 2D case).

Finite Element discretization We consider the solution of the Dirichlet eigenvalue problem

in (2.20) on 2D domains Ω := [−1, 1]×[−1, 1]. Unless noted otherwise, we will use linear elements

with target maximum mesh edge length of h = 0.05.

Figure 2.4 plots the FE mesh and sparsity pattern of matrices A and M of a Finite Element

discretization of the [−1, 1] × [−1, 1] plane using linear elements with target maximum mesh

edge length of h = 0.05.5

5We used Matlab’s PDE toolbox to generate these matrices

38

2.6.2 General matrices

The second class of matrices used throughout this dissertation can be found in the SuiteSparse6

Matrix Collection [79], a freely accessible set of sparse matrices that arise in various real-world

applications.

2.7 Details on notation

Throughout the rest of this dissertation we will frequently need to refer to matrices B − σMB ,

E − σME , C − σMC and C − σMC − (E − σME)T (B − σMB)−1(E − σME). Therefore, we

introduce the following notation.

Definition 2.7.1 For any σ ∈ C, we define the following matrix-valued functions:

Bσ = B − σMB ,

Eσ = E − σME ,

Cσ = C − σMC .

and

S(σ) = C − σMC − (E − σME)T (B − σMB)−1(E − σME),

= Cσ − ETσB−1
σ Eσ.

(2.21)

6https://sparse.tamu.edu/

Part I

Filtering techniques

39

Chapter 3

A Krylov-based rational filtering

domain decomposition technique

This section presents a Krylov-based rational filtering domain decomposition technique.1 The

main idea behind the proposed technique is to perform a Rayleigh-Ritz projection onto a sub-

space Z of the form

Z = U ⊕ Y,

where U and Y are (structurally) orthogonal subspaces that approximate the part of the solution

associated with the interior and interface variables, respectively. As was already discussed in

Section 2.5.1, the ideal choice for subspaces U and Y is to set

Y = span
([
y(1), . . . , y(nev)

])
,

U = span
([

(B − λ1MB)−1(E − λ1ME)y(1), . . . , (B − λnevMB)−1(E − λnevME)y(nev)
])
.

The technique presented in this section is abbreviated as Rational Filtering Domain Decomposi-

tion Eigenvalue Solver (RF-DDES). RF-DDES builds the subspace associated with the interface

variables of the subdomains by leveraging rational filters. On the other hand, the subspace

associated with the interior variables of each subdomain is built independently from the rest

of the subdomains using only real arithmetic. Compared to shift-and-invert Krylov projection

1This is joint work with Yuanzhe Xi and Yousef Saad (University of Minnesota, Twin Cities)

40

41

schemes applied to the matrix pencil (A,M), RF-DDES applies orthonormalization to vec-

tors whose length is equal only to the number of interface variables. Numerical experiments

performed in distributed memory architectures illustrate the competitiveness of the proposed

technique against rational filtering Krylov approaches.

The structure of this chapter is as follows: Section 3.1 describes computational approaches

for the solution of the eigenvalue problem associated with the interface variables. Section 3.2

describes the solution of the eigenvalue problem associated with the interior variables in each

subdomain. Section 3.3 combines all previous discussion into the form of an algorithm. Section

3.4 presents experiments performed on model and general matrix pencils. Finally, Section 3.5

contains our concluding remarks.

3.1 Approximation of span
([
y(1), . . . , y(nev)

])
In this section we propose a numerical scheme to approximate span

([
y(1), . . . , y(nev)

])
. Before

we proceed, we remind the reader of the following identities:

ρ(ζ) = 2<e

{
Nc∑
`=1

ω`
ζ − ζ`

}
,

and

ρ(M−1A) = 2<e

{
Nc∑
`=1

ω`(A− ζ`M)−1M

}
.

where {ζ`, ω`}1≤`≤Nc are complex pairs.

3.1.1 Rational filtering restricted to the interface region

Each matrix (A− ζ`M)−1 can be written in a 2× 2 block form as

(A− ζ`M)−1 =

B−1
ζ`

+B−1
ζ`
Eζ`S(ζ`)

−1ETζ`B
−1
ζ`

−B−1
ζ`
Eζ`S(ζ`)

−1

−S(ζ`)
−1ETζ`B

−1
ζ`

S(ζ`)
−1

 . (3.1)

42

Substituting (3.1) into ρ(M−1A) leads to

ρ(M−1A) =2<e


Nc∑
`=1

ω`


[
B−1
ζ`

+B−1
ζ`
Eζ`S(ζ`)

−1ETζ`B
−1
ζ`

]
−B−1

ζ`
Eζ`S(ζ`)

−1

−S(ζ`)
−1ETζ`B

−1
ζ`

S(ζ`)
−1


M. (3.2)

On the other hand, for any ζ /∈ Λ(A,M) we can write

(A− ζM)−1 =

n∑
i=1

x(i)
(
x(i)
)T

λi − ζ
. (3.3)

The above equality yields another equivalent expression for ρ(M−1A):

ρ(M−1A) =

n∑
i=1

ρ(λi)x
(i)
(
x(i)
)T

M (3.4)

=

n∑
i=1

ρ(λi)

u(i)
(
u(i)
)T

u(i)
(
y(i)
)T

y(i)
(
u(i)
)T

y(i)
(
y(i)
)T
M. (3.5)

Equating the (2,2) blocks of the right-hand sides in (3.2) and (3.5), yields

2<e

{
Nc∑
`=1

ω`S(ζ`)
−1

}
=

n∑
i=1

ρ(λi)

[
y(i)

(
y(i)
)T]

. (3.6)

Equation (3.6) provides a way to approximate span
([
y(1), . . . , y(nev)

])
through the information

in matrix 2<e
{∑Nc

`=1 ω`S(ζ`)
−1
}

. In particular, the magnitude of ρ(λi) can be interpreted

as the contribution of the direction y(i) in 2<e
{∑Nc

`=1 ω`S(ζ`)
−1
}

. In the ideal case where

ρ(ζ) ≡ ±I[α,β](ζ), we have
∑n
i=1 ρ(λi)y

(i)
(
y(i)
)T

= ±
∑nev
i=1 y

(i)
(
y(i)
)T

. In practice, ρ(ζ) will

only be an approximation to±I[α,β](ζ), and since ρ(λ1), . . . , ρ(λnev) are all nonzero, the following

relation holds:

span
([
y(1), . . . , y(nev)

])
⊆ range

(
<e

{
Nc∑
`=1

ω`S(ζ`)
−1

})
. (3.7)

The above relation suggests to compute an approximation to span
([
y(1), . . . , y(nev)

])
by cap-

turing the range space of <e
{∑Nc

`=1 ω`S(ζ`)
−1
}

.

43

3.1.2 A Krylov-based approach

To capture range
(
<e
{∑Nc

`=1 ω`S(ζ`)
−1
})

we consider the numerical scheme outlined in Algo-

rithm 3.1.1. In contrast with RF-KRYLOV (see Section 2.3.2), Algorithm 3.1.1 is based on the

Lanczos process [7]. Variable Tµ denotes a µ× µ symmetric tridiagonal matrix with α1, . . . , αµ

as its diagonal entries, and β2, . . . , βµ as its off-diagonal entries, respectively. Step (2) computes

the “filtered” vector w by applying <e
{∑Nc

`=1 ω`S(ζ`)
−1
}

to q(µ) by solving the Nc linear sys-

tems associated with matrices S(ζ`), ` = 1, . . . , Nc. Steps (4)-(12) orthonormalize w against

vectors q(1), . . . , q(µ) in order to generate the next vector q(µ+1). Throughout this chapter we

apply full orthogonalization but other choices, e.g. partial orthogonalization [41], are possible.

Algorithm 3.1.1 terminates when the trace of the tridiagonal matrices Tµ and Tµ−1 remains the

same up to a certain tolerance.

Algorithm 3.1.1 Krylov restricted to the interface variables

0. Start with q(1) ∈ Rs, s.t.
∥∥q(1)

∥∥
2

= 1, q0 := 0, β1 = 0, tol ∈ R

1. For µ = 1, 2, . . .

2. Compute w = <e
{∑Nc

`=1 ω`S(ζ`)
−1q(µ)

}
− βµq(µ−1)

3. αµ = wT q(µ)

4. For κ = 1, . . . , µ

5. w = w − q(κ)
(
wT q(κ)

)
6. End

7. βµ+1 = ‖w‖2
8. If βµ+1 = 0

9. generate a unit-norm q(µ+1) orthogonal to q(1), . . . , q(µ)

10. Else

11. q(µ+1) = w/βµ+1

12 EndIf

13. If the sum of the eigenvalues of Tµ remains unchanged (up to tol)

during the last few iterations; BREAK; EndIf

14. End

15. Return Qµ =
[
q(1), . . . , q(µ)

]

44

Algorithm 3.1.1 shares a few key differences with RF-KRYLOV. First, Algorithm 3.1.1 re-

stricts orthonormalization to vectors of length s instead of n. In addition, Algorithm 3.1.1 only

requires linear system solutions with S(ζ) instead of A − ζM . As can be verified by (8.1.3), a

computation of the form (A−ζM)−1v = w requires, in addition to a linear system solution with

matrix S(ζ), two linear system solutions with Bζ as well as two Matrix-Vector multiplications

with Eζ . Finally, in contrast to RF-KRYLOV which requires at least nev iterations to compute

any nev eigenpairs of the pencil (A,M), Algorithm 3.1.1 might terminate in fewer than nev

iterations. This possible “early termination” of Algorithm 3.1.1 is explained in more detail by

Proposition 3.1.1.

Proposition 3.1.1 The rank of the matrix <e
{∑Nc

`=1 ω`S(ζ`)
−1
}

,

r(S) = rank

(
<e

{
Nc∑
`=1

ω`S(ζ`)
−1

})
, (3.8)

satisfies the inequality

rank
([
y(1), . . . , y(nev)

])
≤ r(S) ≤ s. (3.9)

Proof: We first prove the upper bound of r(S). Since <e
{∑Nc

`=1 ω`S(ζ`)
−1
}

is of size s × s,

r(S) can not exceed s. To get the lower bound, let ρ(λi) = 0, i = nev + κ, . . . , n, where

0 ≤ κ ≤ n− nev. We then have

<e

{
Nc∑
`=1

ω`S(ζ`)
−1

}
=

nev+κ∑
i=1

ρ(λi)y
(i)
(
y(i)
)T

,

and rank
(
<e
{∑Nc

`=1 ω`S(ζ`)
−1
})

= rank
([
y(1), . . . , y(nev+κ)

])
. Since ρ(λi) 6= 0, i = 1, . . . , nev,

we have

r(S) = rank
([
y(1), . . . , y(nev+κ)

])
≥ rank

([
y(1), . . . , y(nev)

])
.

�

By Proposition 3.1.1, Algorithm 3.1.1 will perform at most r(S) iterations, and r(S) can

be as small as rank
([
y(1), . . . , y(nev)

])
. We quantify this with a short example for a 2D

Laplacian matrix generated by a Finite Difference discretization with Dirichlet boundary con-

ditions (for more details on this matrix see entry “FDmesh1” in Table 8.1) where we set

45

0 20 40 60 80 100 120

Index of top singular values

10
-20

10
-15

10
-10

10
-5

10
0

M
a
g
n
it
u
d
e

Midpoint

N
c
=4

N
c
=8

N
c
=12

N
c
=16

Figure 3.1: The leading singular values of <e
{∑Nc

`=1 ω`S(ζ`)
−1
}

for different values of Nc when

(2.2) is discretized by the Midpoint rule.

[α, β] = [λ1, λ100] (thus nev = 100). After computing the vectors y(1), . . . , y(nev) explicitly,

we found that rank
([
y(1), . . . , y(nev)

])
= 48. Figure 3.1 plots the 120 (after normaliza-

tion) leading singular values of matrix <e
{∑Nc

`=1 ω`S(ζ`)
−1
}

. As Nc increases, the trailing

s − rank
([
y(1), . . . , y(nev)

])
singular values approach zero. Moreover, even for those singular

values which are not zero, their magnitude might be small, in which case Algorithm 3.1.1 might

still converge in fewer than r(S) iterations. Indeed, when Nc = 16, Algorithm 3.1.1 terminates

after exactly 36 iterations which is lower than r(S) and only one third of the minimum num-

ber of iterations required by RF-KRYLOV for any value of Nc. As a sidenote, when Nc = 2,

Algorithm 3.1.1 terminates after 70 iterations.

3.2 Approximation of span
([
u(1), . . . , u(nev)

])
Recall the eigenvector partitioning

(
x(i)
)T

=
[(
u(i)
)T
,
(
y(i)
)T]T

for each x(i), λi, i = 1, . . . , nev.

A straightforward approach to compute the part u(i) of x(i) is then to solve the block-diagonal

linear system −Bλu(i) = Eλy
(i). However, this approach entails two main drawbacks. First,

solving the linear systems with matrix Bλi for all λi, i = 1, . . . , nev becomes prohibitively

expensive when nev � 1. In addition, Algorithm 3.1.1 only returns an approximation of

46

span
([
y(1), . . . , y(nev)

])
, rather than the individual vectors y(1), . . . , y(nev), or the eigenvalues

λ1, . . . , λnev.

In this section we consider alternative approaches to approximate the subspace span
([
u(1), . . . , u(nev)

])
.

Since the following discussion applies to any of the n eigenpairs (λ, x(i)) of (A,M), we will drop

the superscripts in vectors u(i) and y(i).

3.2.1 The basic approximation

Let xT =
[
uT , yT

]T
be the eigenvector associated with (the unknown) eigenvalue λ of (A,M).

The part associated with the interior variables, u, can be then approximated as

û = −B−1
σ Eσy (3.10)

where σ ∈ R. As it is trivial to verify, when σ ≡ λ, the formula in (3.10) leads to û ≡ u. In the

general case, the approximation error is of the following form.

Lemma 3.2.1 Suppose u and û are computed as in (2.15) and (3.10), respectively. Then:

u− û = −
[
B−1
λ −B

−1
σ

]
Eσy + (λ− σ)B−1

λ MEy. (3.11)

Proof: We can write u as

u = −B−1
λ Eλy

= −B−1
λ (Eσ − (λ− σ)ME)y

= −B−1
λ Eσy + (λ− σ)B−1

λ MEy.

(3.12)

The result in (3.11) follows by combining (3.10) and (3.12). �

We are now ready to compute an upper bound of u− û measured in the MB-norm.2

Theorem 3.2.2 Let the eigendecomposition of (B,MB) be written as

BV = MBV D, (3.13)

where D = diag(δ1, . . . , δd) and V =
[
v(1), . . . , v(d)

]
. If û is defined as in (3.10) and

(
δ`, v

(`)
)
, ` =

2We define the X-norm of any nonzero vector y and SPD matrix X as ||y||X =
√
yTXy.

47

1, . . . , d, denote the eigenpairs of (B,MB) where each eigenvector v(`) is scaled such that
(
v(`)
)T
MBv

(`) =

1, then

‖u− û‖MB
≤ max

`

|λ− σ|
|(λ− δ`)(σ − δ`)|

||Eσy||M−1
B

+ max
`

|λ− σ|
|λ− δ`|

||MEy||M−1
B
, (3.14)

Proof: Since MB is SPD, vectors Eσy and MEy in (3.12) can be expanded in the basis MBv
(`)

as:

Eσy = MB

`=d∑
`=1

ε`v
(`), MEy = MB

`=d∑
`=1

γ`v
(`), (3.15)

where ε`, γ` ∈ R are the expansion coefficients. By recalling (3.13) and noticing that V TMBV =

I, we get

B−1
σ = V (D − σI)−1V T , B−1

λ = V (D − λI)−1V T . (3.16)

Substituting the expressions in (3.15) and (3.16) into the right-hand side of (3.11) gives

u− û =− V
[
(D − λI)−1 − (D − σI)−1

]
V T

(
MB

`=d∑
`=1

ε`v
(`)

)

+ (λ− σ)V (D − λI)−1V T

(
MB

`=d∑
`=1

γ`v
(`)

)

=−
`=d∑
`=1

ε`(λ− σ)

(δ` − λ)(δ` − σ)
v(`) +

`=d∑
`=1

γ`(λ− σ)

δ` − λ
v(`).

(3.17)

Now, taking the MB-norm of (3.17), we finally obtain

||u− û||MB
≤

∥∥∥∥∥
`=d∑
`=1

−ε`(λ− σ)

(δ` − λ)(δ` − σ)
v(`)

∥∥∥∥∥
MB

+

∥∥∥∥∥
`=d∑
`=1

γ`(λ− σ)

δ` − λ
v(`)

∥∥∥∥∥
MB

=

∥∥∥∥∥
`=d∑
`=1

∣∣∣∣ (λ− σ)

(δ` − λ)(δ` − σ)

∣∣∣∣ ε`v(`)

∥∥∥∥∥
MB

+

∥∥∥∥∥
`=d∑
`=1

∣∣∣∣ (λ− σ)

δ` − λ

∣∣∣∣ γ`v(`)

∥∥∥∥∥
MB

≤ max
`

|λ− σ|
|(λ− δ`)(σ − δ`)|

∥∥∥∥∥
`=d∑
`=1

ε`v
(`)

∥∥∥∥∥
MB

+ max
`

|λ− σ|
|λ− δ`|

∥∥∥∥∥
`=d∑
`=1

γ`v
(`)

∥∥∥∥∥
MB

= max
`

|λ− σ|
|(λ− δ`)(σ − δ`)|

∥∥M−1
B Eσy

∥∥
MB

+ max
`

|λ− σ|
|λ− δ`|

∥∥M−1
B MEy

∥∥
MB

= max
`

|λ− σ|
|(λ− δ`)(σ − δ`)|

‖Eσy‖M−1
B

+ max
`

|λ− σ|
|λ− δ`|

‖MEy‖M−1
B
.

48

�

Theorem 3.2.2 indicates that the upper bound of ||u−û||MB
depends on the distance between

σ and λ, as well as the distance of these values from the eigenvalues of (B,MB). In particular,

this upper bound becomes small when λ and σ lie close to each other, and far from the eigenvalues

of (B,MB).

3.2.2 Enhancing accuracy by resolvent expansions

Consider the resolvent expansion of B−1
λ around σ ∈ R:

B−1
λ = B−1

σ

∞∑
θ=0

[
(λ− σ)MBB

−1
σ

]θ
. (3.18)

By recalling (3.11), the error u − û consists of two components: i) (B−1
λ − B−1

σ)Eσy; and ii)

(λ−σ)B−1
λ MEy. A straightforward idea then is to approximate B−1

λ by also considering higher-

order terms in (3.18) instead of B−1
σ only. Furthermore, the same idea can be repeated for

the second error component. Thus, we can extract û by a projection step from the following

subspace

û ∈
{
B−1
σ Eσy, . . . , B

−1
σ

(
MBB

−1
σ

)ψ−1
Eσy,B

−1
σ MEy, . . . , B

−1
σ

(
MBB

−1
σ

)ψ−1
MEy

}
. (3.19)

The following theorem refines the upper bound of ‖u− û‖MB
presented in Theorem 3.2.2.

Theorem 3.2.3 Let U = span (U1, U2) where

U1 =
[
B−1
σ Eσy, . . . , B

−1
σ

(
MBB

−1
σ

)ψ−1
Eσy

]
,

U2 =
[
B−1
σ MEy, . . . , B

−1
σ

(
MBB

−1
σ

)ψ−1
MEy

]
.

(3.20)

If û := arg ming∈U ‖u − g‖MB
, and

(
δ`, v

(`)
)
, ` = 1, . . . , d, denote the eigenpairs of (B,MB),

then:

‖u− û‖MB ≤ max
`

|λ− σ|ψ

|(λ− δ`)(σ − δ`)ψ|
||Eσy||M−1

B
+ max

`

|λ− σ|ψ+1

|(λ− δ`)(σ − δ`)ψ|
||MEy||M−1

B
. (3.21)

49

Proof: Define the vector g := U1c1 + U2c2 where

c1 = −
[
1, λ− σ, . . . , (λ− σ)ψ−1

]T
, c2 =

[
λ− σ, . . . , (λ− σ)ψ

]T
.

The difference u− g then is equal to

u− g =−
[
B−1
λ −B

−1
σ

ψ−1∑
θ=0

[
(λ− σ)MBB

−1
σ

]θ]
Eσy (3.22)

+ (λ− σ)

[
B−1
λ −B

−1
σ

ψ−1∑
θ=0

[
(λ− σ)MBB

−1
σ

]θ]
MEy.

Expanding B−1
σ and B−1

λ in the eigenbasis of (B,MB) gives

B−1
λ −B

−1
σ

ψ−1∑
θ=0

[
(λ− σ)MBB

−1
σ

]θ
= (λ− σ)ψV (D − λI)−1(D − σI)−ψV T , (3.23)

and thus (3.22) can be simplified as

u− g =− (λ− σ)ψV (D − λI)−1(D − σI)−ψV TEσy

+ (λ− σ)ψ+1V (D − λI)−1(D − σI)−ψV TMEy.

Plugging in the expansion of Eσy and MEy defined in (3.15) finally leads to

u− g = −
`=d∑
`=1

ε`(λ− σ)ψ

(δ` − λ)(δ` − σ)ψ
v(`) +

`=d∑
`=1

γ`(λ− σ)ψ+1

(δ` − λ)(δ` − σ)ψ
v(`). (3.24)

Similarly to Theorem 3.2.2, we consider the MB-norm of (3.24):

‖u− g‖MB ≤

∥∥∥∥∥
`=d∑
`=1

−ε`(λ− σ)ψ

(δ` − λ)(δ` − σ)ψ
v(`)

∥∥∥∥∥
MB

+

∥∥∥∥∥
`=d∑
`=1

γ`(λ− σ)ψ+1

(δ` − λ)(δ` − σ)ψ
v(`)

∥∥∥∥∥
MB

≤ max
`

|λ− σ|ψ

|(λ− δ`)(σ − δ`)ψ|

∥∥∥∥∥
`=d∑
`=1

ε`v
(`)

∥∥∥∥∥
MB

+ max
`

|λ− σ|ψ+1

|(λ− δ`)(σ − δ`)ψ|

∥∥∥∥∥
`=d∑
`=1

γ`v
(`)

∥∥∥∥∥
MB

= max
`

|λ− σ|ψ

|(λ− δ`)(σ − δ`)ψ|
||Eσy||M−1

B
+ max

`

|λ− σ|ψ+1

|(λ− δ`)(σ − δ`)ψ|
||MEy||M−1

B
.

50

Recalling that û := arg ming∈U ‖u− g‖MB
finishes the proof. �

A comparison of the bound in Theorem 3.2.3 with the bound in Theorem 3.2.2 indicates that

one may expect an improved approximation when σ is close to λ. The numerical examples in

Section 3.4 will verify that this approach enhances accuracy even when |σ−λ| is not very small.

3.2.3 Enhancing accuracy by eigenvector deflation

Both Theorem 3.2.2 and Theorem 3.2.3 imply that the approximation error u − û might have

its largest components along those eigenvector directions associated with those eigenvalues of

(B,MB) located the closest to σ. We can remove these error directions explicitly by augmenting

the projection subspace with the corresponding eigenvectors of (B,MB).

Theorem 3.2.4 Let δ1, δ2, . . . , δκ be the κ eigenvalues of (B,MB) that lie the closest to σ, and

let v(1), v(2), . . . , v(κ) denote the corresponding eigenvectors. Moreover, let U = span (U1, U2, U3)

where

U1 =
[
B−1
σ Eσy, . . . , B

−1
σ

(
MBB

−1
σ

)ψ−1
Eσy

]
,

U2 =
[
B−1
σ MEy, . . . , B

−1
σ

(
MBB

−1
σ

)ψ−1
MEy

]
,

U3 =
[
v(1), v(2), . . . , v(κ)

]
.

(3.25)

If û := arg ming∈U ‖u − g‖MB
and

(
δ`, v

(`)
)
, ` = 1, . . . , d, denote the eigenpairs of (B,MB),

then:

‖u− û‖MB ≤ max
`>κ

|λ− σ|ψ

|(λ− δ`)(σ − δ`)ψ|
||Eσy||M−1

B
+ max

`>κ

|λ− σ|ψ+1

|(λ− δ`)(σ − δ`)ψ|
||MEy||M−1

B
. (3.26)

Proof: Let us define the vector g := U1c1 + U2c2 + U3c3 where

c1 = −
[
1, λ− σ, . . . , (λ− σ)ψ−1

]T
, c2 =

[
λ− σ, . . . , (λ− σ)ψ

]T
,

c3 =
[γ1(λ− σ)ψ+1 − ε1(λ− σ)ψ

(δ1 − λ)(δ1 − σ)ψ
, . . . ,

γκ(λ− σ)ψ+1 − εκ(λ− σ)ψ

(δκ − λ)(δκ − σ)ψ

]T
.

51

We then have

u− g =

`=d∑
`=1

−ε`(λ− σ)ψ

(δ` − λ)(δ` − σ)ψ
v(`) +

`=d∑
`=1

γ`(λ− σ)ψ+1

(δ` − λ)(δ` − σ)ψ
v(`)

−
`=κ∑
`=1

−ε`(λ− σ)ψ

(δ` − λ)(δ` − σ)ψ
v(`) −

`=κ∑
`=1

γ`(λ− σ)ψ+1

(δ` − λ)(δ` − σ)ψ
v(`)

=

`=d∑
`=κ+1

−ε`(λ− σ)ψ

(δ` − λ)(δ` − σ)ψ
v(`) +

`=d∑
`=κ+1

γ`(λ− σ)ψ+1

(δ` − λ)(δ` − σ)ψ
v(`),

(3.27)

and taking the MB-norm of u− g finally leads to

‖u− g‖MB ≤

∥∥∥∥∥∥
`=d∑
`=κ+1

−ε`(λ− σ)ψ

(δ` − λ)(δ` − σ)ψ
v(`)

∥∥∥∥∥∥
MB

+

∥∥∥∥∥∥
`=d∑
`=κ+1

γ`(λ− σ)ψ+1

(δ` − λ)(δ` − σ)ψ
v(`)

∥∥∥∥∥∥
MB

≤ max
`>κ

|λ− σ|ψ

|(λ− δ`)(σ − δ`)ψ |
||Eσy||M−1

B
+ max
`>κ

|λ− σ|ψ+1

|(λ− δ`)(σ − δ`)ψ |
||MEy||M−1

B
,

Recalling that û := arg ming∈U ‖u− g‖MB
concludes the proof. �

3.3 The RF-DDES algorithm

RF-DDES starts by calling a graph partitioner to partition the graph of |A|+ |M | into p subdo-

mains and reorders the matrix pencil (A,M) as in (2.9). RF-DDES then proceeds to the compu-

tation of those eigenvectors associated with the nev
(j)
B smallest (in magnitude) eigenvalues of each

matrix pencil
(
Bj − σM (j)

B ,M
(j)
B

)
, and stores these eigenvectors in Vj ∈ Rdj×nev

(j)
B , j = 1, . . . , p.

As our current implementation stands, these eigenvectors are computed by Lanczos combined

with shift-and-invert [75]. While we do not consider any special mechanisms to set the value of

nev
(j)
B , it is possible to adapt the work in [80]. The next step of RF-DDES is to call Algorithm

3.1.1 and approximate span
(
y(1), . . . , y(nev)

)
by range{Q}, where Q denotes the orthonormal

matrix returned by Algorithm 3.1.1. RF-DDES then builds an approximation subspace as de-

scribed in Section 3.3.1 and performs a Rayleigh-Ritz (RR) projection to extract approximate

eigenpairs of (A,M). The complete procedure is shown in Algorithm 3.3.1.

52

Algorithm 3.3.1 RF-DDES

0. Input: A, M, α, β, σ, p, {ω`, ζ`}`=1,...,Nc ,
{
nev

(j)
B

}
j=1,...,p

, ψ

1. Reorder A and M as in (2.9)

2. For j = 1, . . . , p:

3. Compute the eigenvectors associated with the nev
(j)
B smallest

(in magnitude) eigenvalues of
(
B

(j)
σ ,M

(j)
B

)
and store them in Vj

4. End

5. Compute Q by Algorithm 3.1.1

6. Form Z as in (3.30)

7. Solve the Rayleigh-Ritz eigenvalue problem: ZTAZG = ZTMZGΛ̂

8. If eigenvectors were also sought, permute the entries of each

approximate eigenvector back to their original ordering

The Rayleigh-Ritz eigenvalue problem at Step (7) of RF-DDES can be solved either by a

shift-and-invert procedure or by the appropriate routine in LAPACK [36].

3.3.1 The projection matrix Z

Let matrix Q returned by Algorithm 3.1.1 be written in its distributed form among the p

subdomains,

Q =



Q1

Q2

...

Qp


, (3.28)

where Qj ∈ Rsi×µ, j = 1, . . . , p, is local to the jth subdmonain and µ ∈ N∗ denotes the total

number of iterations performed by Algorithm 3.1.1. By defining

B(j)
σ = Bj − σM (j)

B ,

Φ(j)
σ = −

(
Êj − σM̂ (j)

E

)
Qj ,

Ψ(j) = M̂
(j)
E Qj ,

(3.29)

53

the Rayleigh-Ritz projection matrix Z in RF-DDES can be written as:

Z =



V1 Σ
(ψ)
1 Γ

(ψ)
1

V2 Σ
(ψ)
2 Γ

(ψ)
2

. . .
...

...

Vp Σ
(ψ)
p Γ

(ψ)
p

[Q, 0s,(ψ−1)µ]


, (3.30)

where 0χ,ζ denotes a zero matrix of size χ× ζ, and

Σ
(ψ)
j =

[
(B(j)

σ)−1Φ(j)
σ , (B(j)

σ)−1M
(j)
B (B(j)

σ)−1Φ(j)
σ , . . . , (B(j)

σ)−1
(
M

(j)
B (B(j)

σ)−1
)ψ−1

Φ(j)
σ

]
,

Γ
(ψ)
j =

[
(B(j)

σ)−1Ψ(j), (B(j)
σ)−1M

(j)
B (B(j)

σ)−1Ψ(j), . . . , (B(j)
σ)−1

(
M

(j)
B (B(j)

σ)−1
)ψ−1

Ψ(j)

]
.

(3.31)

When ME is a nonzero matrix, the size of matrix Z is n× (κ+ 2ψµ), κ =
∑p
j=1 nev

(j)
B . When

ME ≡ 0d,s (as is the case for example when M is the identity matrix) the size of Z reduces to

n× (κ+ψµ) since Γ
(ψ)
j ≡ 0dj ,ψµ. The total memory overhead of RF-DDES associated with the

jth subdomain is then at most that of storing dj(nev
(j)
B + 2ψµ) + siµ floating point scalars.

3.3.2 Comparison with AMLS

Both RF-DDES and AMLS exploit the domain decomposition framework discussed in Section

2.5. However, the two methods differ in a few points.

In contrast to RF-DDES which exploits Algorithm 3.1.1, AMLS approximates the part of

the solution associated with the interface variables of (A,M) by solving a generalized eigenvalue

problem stemming by a first-order approximation of the nonlinear eigenvalue problem in (2.14).

More specifically, AMLS approximates span
([
y(1), . . . , y(nev)

])
by the span of the eigenvectors

associated with a few of the eigenvalues of smallest magnitude of the SPD pencil (S(σ),−S′(σ)),

where σ is some real shift and S′(σ) denotes the derivative of the Schur complement matrix at

σ. As such, only the span of those vectors y(i) for which λi lies sufficiently close to σ can

be captured very accurately. In the standard AMLS method the shift σ is zero. In contrast,

RF-DDES can capture all of span
([
y(1), . . . , y(nev)

])
to high accuracy regardless of where λi is

located inside the interval [α, β] of interest.

54

Another difference between RF-DDES and AMLS concerns the way in which the two schemes

approximate span
([
u(1), . . . , u(nev)

])
. As can be easily verified, AMLS is similar to RF-DDES

with the choice ψ = 1 [70]. While it is possible to combine AMLS with higher values of ψ, this

might not always lead to a significant increase in the accuracy of the approximate eigenpairs of

(A,M) due to the inaccuracies in the approximation of span
([
y(1), . . . , y(nev)

])
. In contrast, be-

cause RF-DDES can compute a good approximation to the entire space span
([
y(1), . . . , y(nev)

])
,

the accuracy of the approximate eigenpairs of (A,M) can be improved by simply increasing ψ

and/or nev
(j)
B and repeating the Rayleigh-Ritz projection.

From a computational viewpoint, AMLS computes the factorization of S(σ) in real arithmetic

and proceeds to compute a partial solution of the eigenvalue problem with the matrix pencil

(S(σ),−S′(σ)). When the accuracy provided by AMLS is deemed accurate enough without

computing a large number of eigenvectors of (S(σ),−S′(σ)), AMLS can be potentially faster

than RF-DDES. Note, however, that even in this scenario RF-DDES might also be an appealing

approach due to its good parallelization properties, e.g. when a distributed memory environment

is available.

3.4 Experiments

In this section we present numerical experiments performed in serial and distributed memory

computing environments. The RF-KRYLOV and RF-DDES schemes were written in C/C++

and built on top of the PETSc and MKL scientific libraries. The source files were compiled

with the Intel MPI compiler mpiicpc, using the -O3 optimization level. For RF-DDES, the

computational domain was partitioned to p non-overlapping subdomains by the METIS graph

partitioner, and each subdomain was then assigned to a distinct processor group. Communica-

tion among different processor groups was achieved by means of the MPI standard. The linear

system solutions with matrices A − ζ1M, . . . , A − ζNcM and S(ζ1), . . . , S(ζNc) were computed

by the Multifrontal Massively Parallel Sparse Direct Solver (MUMPS) [81], while those with the

block-diagonal matrices Bζ1 , . . . , BζNc , and Bσ by MKL PARDISO.

The quadrature node-weight pairs {ω`, ζ`}, ` = 1, . . . , Nc were computed by the Midpoint

quadrature rule of order 2Nc, retaining only the Nc quadrature nodes (and associated weights)

with positive imaginary part. Unless stated otherwise, the default values used throughout the

experiments were p = 2, Nc = 2, and σ = 0, while we set nev
(1)
B = . . . = nev

(p)
B = nevB . The

55

Table 3.1: n: size of A and M , nnz(X): number of nonzero entries in matrix X.

Mat. pencil n nnz(A)/n nnz(M)/n [α, β] nev

1. bcsst24 3,562 44.89 1.00 [0, 352.55] 100
2. Kuu/Muu 7,102 47.90 23.95 [0, 934.30] 100
3. FDmesh1 24,000 4.97 1.00 [0, 0.0568] 100
4. bcsst39 46,772 44.05 1.00 [-11.76, 3915.7] 100
5. qa8fk/qa8fm 66,127 25.11 25.11 [0, 15.530] 100

Table 3.2: Maximum relative errors of the approximation of the lowest nev = 100 eigenvalues
returned by RF-DDES for the matrix pencils listed in Table 8.1.

nevB = 50 nevB = 100 nevB = 200
Mat. pencil ψ = 1 ψ = 2 ψ = 3 ψ = 1 ψ = 2 ψ = 3 ψ = 1 ψ = 2 ψ = 3

bcsst24 2.2e-2 1.8e-3 3.7e-5 9.2e-3 1.5e-5 1.4e-7 7.2e-4 2.1e-8 4.1e-11
Kuu/Muu 2.4e-2 5.8e-3 7.5e-4 5.5e-3 6.6e-5 1.5e-6 1.7e-3 2.0e-6 2.3e-8
FDmesh1 1.8e-2 5.8e-3 5.2e-3 6.8e-3 2.2e-4 5.5e-6 2.3e-3 1.3e-5 6.6e-8
bcsst39 2.5e-2 1.1e-2 8.6e-3 1.2e-2 7.8e-5 2.3e-6 4.7e-3 4.4e-6 5.9e-7
qa8fk/qa8fm 1.6e-1 9.0e-2 2.0e-2 7.7e-2 5.6e-3 1.4e-4 5.9e-2 4.4e-4 3.4e-6

stopping criterion in Algorithm 3.1.1, was set to tol = 1e-6. All computations were carried out

in 64-bit (double) precision, and all wall-clock times reported throughout the rest of this section

will be listed in seconds.

3.4.1 Numerical illustration of RF-DDES

We tested RF-DDES on the matrix pencils listed in Table 8.1. For each pencil, the interval of

interest [α, β] was chosen so that nev = 100. Matrix pencils 1), 2), 4), and 5) can be found

in the SuiteSparse matrix collection. Matrix pencil 3) was obtained by a discretization of a

differential eigenvalue problem associated with a membrane on the unit square with Dirichlet

boundary conditions on all four edges using Finite Difference, and is of the standard form, i.e.,

M = I, where I denotes the identity matrix of appropriate size.

Table 3.2 lists the maximum (worst-case) relative error among all nev approximate eigenval-

ues returned by RF-DDES. In agreement with the discussion in Section 3.2, exploiting higher

values of ψ and/or nevB leads to enhanced accuracy. Figure 3.2 plots the relative errors among

all nev approximate eigenvalues (not just the worst-case errors) for the largest matrix pencil

listed in Table 8.1. Since all eigenvalues of “qa8fk/qa8fm” are positive, and σ = 0, we expect

the algebraically smallest eigenvalues of (A,M) to be approximated more accurately. Increasing

56

0 50 100

Eigenvalue index

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

R
e

la
ti
v
e

 e
rr

o
r

nev
B

= 50

RF-DDES(1)

RF-DDES(2)

RF-DDES(3)

0 50 100

Eigenvalue index

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

R
e
la

ti
v
e
 e

rr
o
r

nev
B

=100

RF-DDES(1)

RF-DDES(2)

RF-DDES(3)

0 50 100

Eigenvalue index

10 -15

10 -10

10 -5

10 0

R
e
la

ti
v
e
 e

rr
o
r

nev
B

=200

RF-DDES(1)

RF-DDES(2)

RF-DDES(3)

Figure 3.2: Relative errors of the approximation of the lowest nev = 100 eigenvalues for the
“qa8fk/qafm” matrix pencil. Left: nevB = 50. Center: nevB = 100. Right: nevB = 200.

Table 3.3: Number of iterations performed by Algorithm 3.1.1 for the matrix pencils listed in
Table 8.1. ’s’ denotes the number of interface variables.

Mat. pencil s s/n Nc = 2 Nc = 4 Nc = 8 Nc = 12 Nc = 16

bcsst24 449 0.12 164 133 111 106 104
Kuu/Muu 720 0.10 116 74 66 66 66
FDmesh1 300 0.01 58 40 36 35 34
bcsst39 475 0.01 139 93 75 73 72
qa8fk/qa8fm 1272 0.01 221 132 89 86 86

the value of ψ and/or nevB then will mainly improve the accuracy in the approximation of those

eigenvalues λ located farther away from σ. A similar pattern was also observed for the rest of

the matrix pencils listed in Table 8.1.

Table 3.3 lists the number of iterations performed by Algorithm 3.1.1 as the value of Nc

increases. Observe that for matrix pencils 2), 3), 4) and 5) this number can be less than

nev (recall the “early termination” property discussed in Proposition 3.1.1), even for values of

Nc as low as Nc = 2. Moreover, Figure 3.3 plots the 150 leading3 singular values of matrix

<e
{∑Nc

`=1 ω`S(ζ`)
−1
}

for matrix pencils “bcsst24” and “Kuu/Muu” as Nc = 4, 8, 12 and

3After normalization by the spectral norm

57

0 50 100 150

Singular values index

10
-15

10
-10

10
-5

10
0

M
a
g
n
it
u
d
e

bcsst24

N
c
=4

N
c
=8

N
c
=12

N
c
=16

0 50 100 150

Singular values index

10
-15

10
-10

10
-5

10
0

M
a

g
n

it
u

d
e

Kuu/Muu

N
c
=4

N
c
=8

N
c
=12

N
c
=16

Figure 3.3: The 150 leading singular values of <e
{∑Nc

`=1 ω`S(ζ`)
−1
}

for the matrix pencils

“bcsst24” and “Kuu/Muu”.

Nc = 16. In agreement with the discussion in Section 3.1.2, as the value of Nc increases the

magnitude of the trailing s− rank
([
y(1), . . . , y(nev)

])
singular values approaches zero.

Except the value of Nc, the number of subdomains p might also affect the number of iterations

performed by Algorithm 3.1.1. Figure 3.4 shows the total number of iterations performed by

Algorithm 3.1.1 when applied to matrix “FDmesh1” for p = 2, 4, 8 and p = 16 subdomains. For

each different value of p we considered Nc = 2, 4, 8, 12, and Nc = 16 quadrature nodes. The

interval [α, β] was set so that it included only eigenvalues λ1, . . . , λ200 (nev = 200). Observe that

higher values of p might lead to an increase in the number of iterations performed by Algorithm

3.1.1. For example, when the number of subdomains is set to p = 2 or p = 4, setting Nc = 2

is sufficient for Algorithm 3.1.1 to terminate in less than nev iterations. On the other hand,

when p ≥ 8, we need at least Nc ≥ 4 if a similar number of iterations is to be performed. This

potential increase in the number of iterations performed by Algorithm 3.1.1 for larger values of

p is a consequence of the fact that the columns of matrix Y =
[
y(1), . . . , y(nev)

]
now lie in a

higher-dimensional subspace. This might not only increase the rank of Y , but also affect the

decay of the singular values of <e
{∑Nc

`=1 ω`S(ζ`)
−1
}

. This can be seen more clearly in Figure

3.5 where we plot the leading 250 singular values of <e
{∑Nc

`=1 ω`S(ζ`)
−1
}

of the problem in

Figure 3.4 for two different values of p, p = 2 and p = 8. Notice how the leading singular values

decay more slowly for the case p = 8. Similar results were observed for different values of p and

for all matrix pencils listed in Table 8.1.

58

2 4 6 8 10 12 14 16

102

103

of subdomains (p)

#
of

it
er

a
ti

o
n

s

Nc = 1
Nc = 2
Nc = 4
Nc = 8
Nc = 12
Nc = 16

Figure 3.4: Total number of iterations performed by Algorithm 3.1.1 when applied to matrix
“FDmesh1” with [α, β] = [λ1, λ200]. Results reported are for all different combinations of p =
2, 4, 8 and p = 16, and Nc = 1, 2, 4, 8 and Nc = 16.

0 100 200 300

Index of top singular values

10
-20

10
-15

10
-10

10
-5

10
0

M
a
g
n
it
u
d
e

p=2

N
c
=1

N
c
=2

N
c
=4

N
c
=8

0 100 200 300

Index of top singular values

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

M
a
g
n
it
u
d
e

p=8

Figure 3.5: The leading 250 singular values of <e
{∑Nc

`=1 ω`S(ζ`)
−1
}

for the same problem as

in Figure 3.4. Left: p = 2. Right: p = 8. For both values of p we set Nc = 1, 2, 4, and Nc = 8.

59

Table 3.4: n: size of A, nnz(A): number of nonzero entries in matrix A. s2 and s4 denote the
number of interface variables when p = 2 and p = 4, respectively.

Matrix n nnz(A)/n s2 s4 [λ1, λ101, λ201, λ300]

1. shipsec8 114,919 28.74 4,534 9,001 [3.2e-2, 1.14e-1, 1.57e-2, 0.20]
2. boneS01 172,224 32.03 10,018 20,451 [2.8e-3, 24.60, 45.42, 64.43]
3. FDmesh2 250,000 4.99 1,098 2,218 [7.8e-5, 5.7e-3, 1.08e-2, 1.6e-2]
4. FDmesh3 1,000,000 4.99 2,196 4,407 [1.97e-5, 1.4e-3, 2.7e-3, 4.0e-3]

3.4.2 A comparison of RF-DDES and RF-KRYLOV in distributed

computing environments

In this section we compare the performance of RF-KRYLOV and RF-DDES on distributed

computing environments for the matrices listed in Table 3.4. All eigenvalue problems in this

section are of the form (A, I), i.e., standard eigenvalue problems. Matrices “boneS01” and

“shipsec8” can be found in the SuiteSparse matrix collection. Similarly to “FDmesh1”, matrices

“FDmesh2” and “FDmesh3” were generated by a Finite Difference discretization of the Laplacian

operator on the unit plane using Dirichlet boundary conditions and two different mesh sizes so

that n = 250, 000 (“FDmesh2”) and n = 1, 000, 000 (“FDmesh3”).

Throughout the rest of this section we will keep Nc = 2 fixed, since this option was found

the best both for RF-KRYLOV and RF-DDES.

Wall-clock time comparisons

We now consider the wall-clock times achieved by RF-KRYLOV and RF-DDES when executing

both schemes on τ = 2, 4, 8, 16 and τ = 32 computer cores. For RF-KRYLOV, the value of

τ will denote the number of single-threaded MPI processes. For RF-DDES, the number of MPI

processes will be equal to the number of subdomains, p, and each MPI process will utilize τ/p

compute threads. Unless mentioned otherwise, we will assume that RF-DDES is executed with

ψ = 3 and nevB = 100.

Table 3.7 lists the wall-clock time required by RF-KRYLOV and RF-DDES to approximate

the nev = 100, nev = 200, and nev = 300 algebraically smallest eigenvalues of the matrices

listed in Table 3.4. For RF-DDES we considered two different values of p; p = 2 and p = 4.

Overall, RF-DDES was found to be faster than RF-KRYLOV, especially for higher values of

nev. Table 3.5 lists the number of iterations performed by RF-KRYLOV and Algorithm 3.1.1 in

60

Table 3.5: Number of iterations performed by RF-KRYLOV (denoted as RFK) and Algorithm
3.1.1 in RF-DDES (denoted by RFD(2) and RFD(4), with the number inside the parentheses
denoting the value of p) for the matrix pencils listed in Table 3.4. The convergence criterion in
both RF-KRYLOV and Algorithm 3.1.1 was tested every ten iterations.

nev = 100 nev = 200 nev = 300
Matrix RFK RFD(2) RFD(4) RFK RFD(2) RFD(4) RFK RFD(2) RFD(4)

shipsec8 280 170 180 500 180 280 720 190 290
boneS01 240 350 410 480 520 600 620 640 740
FDmesh2 200 100 170 450 130 230 680 160 270
FDmesh3 280 150 230 460 180 290 690 200 380

Table 3.6: Maximum relative error of the approximate eigenvalues returned by RF-DDES for
the matrix pencils listed in Table 3.4.

nev = 100 nev = 200 nev = 300
Matrix nevB=25 nevB=50 nevB=100 nevB=25 nevB=50 nevB=100 nevB=25 nevB=50 nevB=100

shipsec8 1.4e-3 2.2e-5 2.4e-6 3.4e-3 1.9e-3 1.3e-5 4.2e-3 1.9e-3 5.6e-4
boneS01 5.2e-3 7.1e-4 2.2e-4 3.8e-3 5.9e-4 4.1e-4 3.4e-3 9.1e-4 5.1e-4
FDmesh2 4.0e-5 2.5e-6 1.9e-7 3.5e-4 9.6e-5 2.6e-6 3.2e-4 2.0e-4 2.6e-5
FDmesh3 6.2e-5 8.5e-6 4.3e-6 6.3e-4 1.1e-4 3.1e-5 9.1e-4 5.3e-4 5.3e-5

RF-DDES. For all matrices but “boneS01”, Algorithm 3.1.1 required fewer iterations than RF-

KRYLOV. Table 3.6 lists the maximum relative error of the approximate eigenvalues returned

by RF-DDES when p = 4. The decrease in the accuracy of RF-DDES as nev increases is due

the fact that nevB remains constant. More specifically, an increase in the value of nev should

be also accompanied by an increase in the value of nevB , if the same level of maximum relative

error need be retained. On the other hand, RF-KRYLOV computed all nev eigenpairs within

an accuracy which was of the order O(10−13) or lower for all four matrices considered.

Table 3.8 lists the amount of time spent on the triangular substitutions required to apply the

rational filter in RF-KRYLOV, as well as the amount of time spent on forming and factorizing

the Schur complement matrices and applying the rational filter in RF-DDES. For the values of

nev tested in this section, these procedures were found to be the computationally most expensive

ones. Figure 3.6 plots the total amount of time spent on orthonormalization by RF-KRYLOV

and RF-DDES when applied to matrices “FDmesh2” and “FDmesh3”. For RF-KRYLOV, we

report results for all different values of nev and number of MPI processes. For RF-DDES

we only report the highest times across all different values of nev, τ and p. RF-DDES was

61

Table 3.7: Wall-clock times of RF-KRYLOV and RF-DDES using τ = 2, 4, 8, 16 and τ = 32
computational cores. RFD(2) and RFD(4) denote RF-DDES with p = 2 and p = 4 subdomains,
respectively.

nev = 100 nev = 200 nev = 300
Matrix RFK RFD(2) RFD(4) RFK RFD(2) RFD(4) RFK RFD(2) RFD(4)
shipsec8(τ = 2) 114 195 - 195 207 - 279 213 -

(τ = 4) 76 129 93 123 133 103 168 139 107
(τ = 8) 65 74 56 90 75 62 127 79 68
(τ = 16) 40 51 36 66 55 41 92 57 45
(τ = 32) 40 36 28 62 41 30 75 43 34

boneS01(τ = 2) 94 292 - 194 356 - 260 424 -
(τ = 4) 68 182 162 131 230 213 179 277 260
(τ = 8) 49 115 113 94 148 152 121 180 187
(τ = 16) 44 86 82 80 112 109 93 137 132
(τ = 32) 51 66 60 74 86 71 89 105 79

FDmesh2(τ = 2) 241 85 - 480 99 - 731 116 -
(τ = 4) 159 34 63 305 37 78 473 43 85
(τ = 8) 126 22 23 228 24 27 358 27 31
(τ = 16) 89 16 15 171 17 18 256 20 21
(τ = 32) 51 12 12 94 13 14 138 15 20

FDmesh3(τ = 2) 1021 446 - 2062 502 - 3328 564 -
(τ = 4) 718 201 281 1281 217 338 1844 237 362
(τ = 8) 423 119 111 825 132 126 1250 143 141
(τ = 16) 355 70 66 684 77 81 1038 88 93
(τ = 32) 177 47 49 343 51 58 706 62 82

62

Table 3.8: Time elapsed to apply the rational filter in RF-KRYLOV and RF-DDES using
τ = 2, 4, 8, 16 and τ = 32 computer cores. RFD(2) and RFD(4) denote RF-DDES with p = 2
and p = 4 subdomains, respectively. For RF-KRYLOV the times listed also include the amount
of time spent on factorizing matrices A − ζ`M, ` = 1, . . . , Nc. For RF-DDES, the times listed
also include the amount of time spent in forming and factorizing matrices S(ζ`), ` = 1, . . . , Nc.

nev = 100 nev = 200 nev = 300
Matrix RFK RFD(2) RFD(4) RFK RFD(2) RFD(4) RFK RFD(2) RFD(4)
shipsec8(τ = 2) 104 153 - 166 155 - 222 157 -

(τ = 4) 71 93 75 107 96 80 137 96 82
(τ = 8) 62 49 43 82 50 45 110 51 47
(τ = 16) 38 32 26 61 33 28 83 34 20
(τ = 32) 39 21 19 59 23 20 68 24 22

boneS01(τ = 2) 86 219 - 172 256 - 202 291 -
(τ = 4) 64 125 128 119 152 168 150 178 199
(τ = 8) 46 77 88 84 95 117 104 112 140
(τ = 16) 43 56 62 75 70 85 86 84 102
(τ = 32) 50 42 44 72 51 60 82 63 61

FDmesh2(τ = 2) 227 52 - 432 59 - 631 65 -
(τ = 4) 152 22 36 287 24 42 426 26 45
(τ = 8) 122 13 14 215 14 16 335 15 18
(τ = 16) 85 9 8 164 10 10 242 11 11
(τ = 32) 50 6 6 90 7 8 127 8 10

FDmesh3(τ = 2) 960 320 - 1817 341 - 2717 359 -
(τ = 4) 684 158 174 1162 164 192 1582 170 201
(τ = 8) 406 88 76 764 91 82 1114 94 88
(τ = 16) 347 45 43 656 48 49 976 51 52
(τ = 32) 173 28 26 328 28 32 674 31 41

63

10
0

10
1

10
2

of MPI processes

10
-1

10
0

10
1

10
2

T
im

e
 (

s
)

FDmesh2

RF-KRYLOV, nev=100

RF-KRYLOV, nev=200

RF-KRYLOV, nev=300

RF-DDES, max

(a) FDmesh2 (n = 250, 000).

10
0

10
1

10
2

of MPI processes

10
-1

10
0

10
1

10
2

10
3

T
im

e
 (

s
)

FDmesh3

RF-KRYLOV, nev=100

RF-KRYLOV, nev=200

RF-KRYLOV, nev=300

RF-DDES, max

(b) FDmesh3 (n = 1, 000, 000).

Figure 3.6: Time spent on orthonormalization in RF-KRYLOV and RF-DDES when computing
the nev = 100, 200 and nev = 300 algebraically smallest eigenvalues and associated eigenvectors
of matrices “FDmesh2” and “FDmesh3”.

64

p = 2 p = 4 p = 8 p = 16 p = 32

50

100

150

200

157

82

56 50 4951

21
10 6 4

213

107

72
64 62

T
im

e
(s

)

Interface Interior Total

p = 2 p = 4 p = 8 p = 16 p = 32

20

40

60

80

100

120

65

45

31
26 27

48

38

28
21

15

116

85

63

53
48T

im
e

(s
)

Interface Interior Total

Figure 3.7: Amount of time required to apply the rational filter (“Interface”), form the subspace
associated with the interior variables (“Interior”), and total wall-clock time (“Total”) obtained
by an MPI-only execution of RF-DDES for the case where nev = 300. Left: “shipsec8”. Right:
“FDmesh2”.

found to spend a considerably smaller amount of time on orthonormalization than what RF-

KRYLOV did, mainly because s was much smaller than n (the values of s for p = 2 and p = 4

can be found in Table 3.4). Indeed, if both RF-KRYLOV and Algorithm 3.1.1 in RF-DDES

perform a similar number of iterations, we expect the former to spend roughly n/s more time

on orthonormalization compared to RF-DDES.

Figure 8.2 lists the wall-clock times achieved by an MPI-only implementation of RF-DDES,

i.e., p still denotes the number of subdomains but each subdomain is handled by a separate

(single-threaded) MPI process, for matrices “shipsec8” and “FDmesh2”. In all cases, the MPI-

only implementation of RF-DDES led to higher wall-clock times than those achieved by the

hybrid implementations discussed in Tables 3.7 and 3.8. More specifically, while the MPI-only

implementation reduced the cost to construct and factorize the distributed S(ζ`) matrices, the

application of the rational filter in Algorithm 3.1.1 became more expensive due to: a) each

linear system solution with S(ζ`) required more time, b) a larger number of iterations had to

be performed as p increased (Algorithm 3.1.1 required 190, 290, 300, 340 and 370 iterations

for “shipsec8”, and 160, 270, 320, 350, and 410 iterations for “FDmesh2” as p = 2, 4, 8, 16

and p = 32, respectively). Note that the scalability of the MPI-only version of RF-DDES

for increasing values of p is limited by the scalability of the linear system used, which in this

particular case was not high. This suggests that reducing p and applying RF-DDES recursively to

the local pencils
(
B

(j)
σ ,M

(j)
B

)
, j = 1, . . . , p might be the best combination when only distributed

65

memory parallelism is considered.

3.5 Summary

In this chapter we proposed a rational filtering domain decomposition approach (termed as RF-

DDES) for the computation of all eigenpairs of real symmetric pencils located inside a given

interval [α, β]. In contrast with rational filtering Krylov approaches, RF-DDES applies the ra-

tional filter only to the interface variables. This has several advantages. First, orthogonalization

is performed on vectors whose length is equal to the number of interface variables only. Second,

the Krylov projection method may converge in fewer than nev iterations. Third, it is possible

to solve the original eigenvalue problem associated with the interior variables in real arithmetic

and with trivial parallelism with respect to each subdomain. RF-DDES can be considerably

faster than rational filtering Krylov approaches, especially when nev is large.

Chapter 4

Domain decomposition from a

contour integral viewpoint

In this chapter we present1 two domain decomposition eigenvalue solvers which take advantage

of the contour integral representation of the spectral projector2

P
(M−1A)
Γ[α,β]

=
1

2iπ

∫
Γ[α,β]

(ζM −A)−1Mdζ

=

nev∑
i=1

x(i)
(
x(i)
)T

M,

(4.1)

where Γ[α,β] is a counter-clockwise oriented smooth Jordan curve, e.g. a circle, that encloses

only the nev eigenvalues of (A,M) located inside the interval [α, β].

The first scheme proposed can be seen as an extension of domain decomposition linear

system solvers in the framework of contour integral techniques, such as FEAST, for the solution

of symmetric eigenvalue problems. The second scheme proposed shares similarities with the

work of Beyn in [82] and approximates only certain parts of the contour integral of the matrix

resolvent (ζM−A)−1. This approach leads to a numerical scheme which can be computationally

more efficient than following the standard approach of numerically integrating the entire matrix

1This is joint work with James Kestyn and Eric Polizzi (University of Massachusetts, Amherst) and Yousef
Saad (University of Minnesota, Twin Cities)

2Background material in contour integral spectral projectors is presented in Sections 2.3.1 and 2.3.2 of the
present dissertation

66

67

resolvent, especially when the linear system solutions associated with the interior variables of the

subdomains are relatively expensive. Numerical experiments performed in distributed memory

environments using the MPI programming model are also reported.

The organization of this chapter is as follows. Section 4.1 presents a scheme that is based

on a domain decomposition of the contour integral of the matrix resolvent. Section 4.2 presents

a scheme that integrates the contour integral of the matrix resolvent only partially. Section 4.3

focuses on the solution of the linear systems during the numerical integration phase and presents

details on the implementation of domain decomposition-based preconditioners in distributed

memory environments. Section 4.4 presents computational experiments. Finally, in Section 4.5

we state our concluding remarks.

4.1 Full integration of the matrix resolvent

We start by noticing that (ζM −A)−1 = −(A− ζM)−1 and thus

(ζM −A)−1 =

−
[
B−1
ζ + F (ζ)S(ζ)−1F (ζ)T

]
F (ζ)S(ζ)−1

S(ζ)−1F (ζ)T −S(ζ)−1

 , (4.2)

where

F (ζ) = B−1
ζ Eζ . (4.3)

The spectral projector P
(M−1A)
Γ[α,β]

in (4.1) can be then written in a 2×2 block form by integrating

each block of (ζM −A)−1 separately:

P
(M−1A)
Γ[α,β]

=
1

2iπ

∫
Γ[α,β]

(ζM −A)−1Mdζ

=

 H W

WT G

M,

(4.4)

68

with

H =
−1

2iπ

∫
Γ[α,β]

[B−1
ζ + F (ζ)S(ζ)−1F (ζ)T]dζ

G =
−1

2iπ

∫
Γ[α,β]

S(ζ)−1dζ

W =
1

2iπ

∫
Γ[α,β]

F (ζ)S(ζ)−1dζ.

(4.5)

In order to extract an eigenspace from the expression of P
(M−1A)
Γ[α,β]

in (4.4), we consider the

product P
(M−1A)
Γ[α,β]

V , where V = MZ, Z ∈ Rn×r, r ≥ nev, written as

P
(M−1A)
Γ[α,β]

Vu
Vs

 =

HVu +WVs

WTVu + GVs

 ≡
Zu
Zs

 , (4.6)

where V = [V Tu , V
T
s]T , and Vu ∈ Rd×r, Vs ∈ Rs×r, respectively.

We finally get

Zu =
−1

2iπ

∫
Γ[α,β]

B−1
ζ Vudζ −

−1

2iπ

∫
Γ[α,β]

F (ζ)S(ζ)−1[Vs − F (ζ)TVu]dζ

Zs =
−1

2iπ

∫
Γ[α,β]

S(ζ)−1[Vs − F (ζ)TVu]dζ.

(4.7)

Let X̂ =
[
x(1), . . . , x(nev)

]
and assume that V ∈ Rn×r is chosen such that V T X̂ has rank

nev. Then, the expression in (4.7) captures the exact invariant subspace of (A,M) associated

with the eigenvalues λ1, . . . , λnev. In the process, the matrix Z ≡ P
(M−1A)
Γ[α,β]

V can be exploited

in a Rayleigh-Ritz projection to recover the actual eigenpairs of (A,M). Because the above

discussed scheme considers all blocks of P
(M−1A)
Γ[α,β]

, we will refer to it as “Domain Decomposition

Full Projector” (DD-FP). In the following, we summarize the practical details of the DD-FP

scheme.

4.1.1 Practical aspects of the DD-FP scheme

In practice, the contour integrals in (4.7) will have to be approximated numerically. Once a

quadrature rule is selected, with quadrature nodes and weights3 {ζj , ω̂j}, j = 1, . . . , 2Nc, the

3The pairs {ζj , ω̂j}, j = 1, . . . , 2Nc are computed by discretizing the expression
1

2iπ

∫
Γ[α,β]

(ζM −A)−1Mdζ

69

expression in (4.7) is approximated by the following summations:

Z̃u = −
2Nc∑
j=1

ω̂j(B − ζjMB)−1Vu +

2Nc∑
j=1

ω̂jF (ζj)S(ζj)
−1[Vs − F (ζj)

TVu], (4.8)

Z̃s = −
2Nc∑
j=1

ω̂jS(ζj)
−1[Vs − F (ζj)

TVu]. (4.9)

The numerical integration can be performed by one of the available quadrature rules, e.g., the

Gauss-Legendre [27] or the Midpoint [50] rules. Since the eigenvalues of A are real, using a

rule in which4 the quadrature nodes appear in conjugate pairs, i.e., ζj = ζj+Nc , j = 1, . . . , Nc,

reduces the cost of the numerical approximation by a factor of two, since

B − ζjMB = B − ζj+NcMB , S(ζj) = S(ζj+Nc), j = 1, . . . , Nc.

For each quadrature node ζj , j = 1, . . . , Nc, and each one of the r columns of matrix V we

must solve two linear systems with Bζj and one linear system with S(ζj). The calculation takes

four steps that accumulate the sums (4.8)-(4.9) into Z̃u, Z̃s, and is shown in Algorithm 4.1.1:

Algorithm 4.1.1 DD-FP

0. Start with random V ∈ Rn×r and set Z̃ = [Z̃Tu , Z̃
T
s]T = 0

1. Do until convergence

2. For j = 1, . . . , Nc:

3. Wu := B−1
ζj
Vu

4. Ws := Vs − ETζjWu

5. Ws := S(ζj)
−1Ws, Z̃s := Z̃s −<e(ω̂jWs)

6. Wu := Wu − F (ζj)Ws, Z̃u := Z̃u −<e(ω̂jWu)

7. End

8. Rayleigh-Ritz: solve the eigenvalue problem
(
Z̃TAZ̃

)
Q =

(
Z̃TMZ̃

)
QΛ̂

-. If not satisfied with accuracy, repeat with Vu = Z̃uQ, Vs = Z̃sQ

9. EndDo

4We assume here that none of the quadrature nodes lies on the real axis

70

The factorization of each block-diagonal matrix Bζj , j = 1, . . . , Nc is decoupled into the

factorization of the matrices Bi − ζjM (i)
B , i = 1, . . . , p. Recall here that Bi − ζjM (i)

B is local

to the ith subdomain. Moreover, only the real parts of Z̃s and Z̃u need be retained. Step (8)

of Algorithm 4.1.1 extracts the approximate eigenpairs of A by a Rayleigh-Ritz projection, and

also verifies whether all eigenpairs inside [α, β] are approximated up to a sufficient accuracy

(this part is omitted from the description of the algorithm). If not satisfied with the accuracy

achieved, we can repeat Steps (2)-(7) using the current approximate eigenvectors as the new

matrix V .

If a direct solver is utilized to solve the linear systems with matrices Bζj , S(ζj), j = 1, . . . , Nc

then the DD-FP scheme is equivalent to the FEAST method tied to a domain decomposition

solver to compute the products (A − ζjM)−1MV, j = 1, . . . , Nc. However, a factorization of

S(ζ) is not always feasible. In such scenarios, the DD-FP scheme can leverage hybrid iterative

solvers which might be more practical.

4.2 Partial integration of the matrix resolvent

In this section we describe an alternative scheme, also based on domain decomposition, which

attempts to extract approximate eigenpairs at a lower cost than the DD-FP scheme.

Recall the matrix X̂ =
[
x(1), . . . , x(nev)

]
and the identity of the spectral projector P

(M−1A)
Γ[α,β]

defined in (4.4), P
(M−1A)
Γ[α,β]

= X̂X̂TM . Now, let X̂ be written as X̂ = [XT
u , X

T
s]T with Xu ∈

Rd×nev, Xs ∈ Rs×nev. Then, P
(M−1A)
Γ[α,β]

can be also expressed in a block-partitioned form:

X̂ ≡

Xu

Xs

 , P = X̂X̂TM → P
(M−1A)
Γ[α,β]

= [P1,P2]M =

XuX
T
u XuX

T
s

XsX
T
u XsX

T
s

M. (4.10)

Under the mild assumption that nev ≤ s, i.e., the number of interface variables s is greater

than the number of eigenvalues of the matrix pencil (A,M) located inside the interval [α, β].

The range of P
(M−1A)
Γ[α,β]

M−1 can be then captured by the range of P2 = X̂XT
s = [XT

u , X
T
s]TXT

s .

Equating (4.10) with (4.4) shows that XsX
T
s ≡ G and XuX

T
s ≡ W, and thus, in contrast with

the DD-FP scheme, we only need to compute the contour integrals W and G, and ignore the

block H. As discussed in Section 4.2.1, and confirmed via experiments in Section 4.4, avoiding

the computation of H can lead to considerable savings in certain cases.

71

Because the above scheme approximates the spectral projector P only partially, we will refer

to it as “Domain Decomposition Partial Projector” (DD-PP).

The DD-PP scheme

The range of G and −W can be captured by the range of:

GR =
−1

2iπ

∫
Γ

S(ζ)−1Rdζ, WR =
1

2iπ

∫
Γ

B−1
ζ EζRdζ, (4.11)

for any R ∈ Rs×r such that rank(XT
s R) ≡ rank(Xs).

In practice, (4.11) will be approximated numerically by a quadrature rule, and thus

GR ≈ G̃R = −
2Nc∑
j=1

ω̂jS(ζj)
−1R, WR ≈ W̃R =

2Nc∑
j=1

ω̂jB
−1
ζ EζS(ζj)

−1R. (4.12)

Combining the contribution of all quadrature nodes together, the final subspace accumulation

proceeds as in Algorithm 4.2.1, which we abbreviate as DD-PP.

Algorithm 4.2.1 DD-PP

0. Start with a random R ∈ Rs×r and set Z̃ = [Z̃Tu , Z̃
T
s]T = 0

1. For j = 1, . . . , Nc:

2. Ws := S(ζj)
−1R, Z̃s := Z̃s −<e(ω̂jWs)

3. Wu := −F (ζj)Ws, Z̃u := Z̃u −<e(ω̂jWu)

4. End

5. Rayleigh-Ritz: solve the eigenvalue problem
(
Z̃TAZ̃

)
Q =

(
Z̃TMZ̃

)
QΛ̂

Analysis of the DD-PP scheme

The matrix inverse (ζM − A)−1 in (8.1.3) can be also written in terms of the eigenvectors of

(A,M) as

(ζM −A)−1 =

n∑
i=1

x(i)
(
x(i)
)T

ζ − λi
. (4.13)

72

If we partition each eigenvector x(i) of (A,M) as x(i) =
[(
u(i)
)T
,
(
y(i)
)T]T

, i = 1, . . . , n, and

combine (4.13) with (8.1.3) for all ζ ≡ ζj , j = 1, . . . , 2Nc, we get

2Nc∑
j=1

ω̂j(ζjM −A)−1 =

n∑
i=1

ρ(λi)

u(i)(u(i))T u(i)
(
y(i)
)T

y(i)(u(i))T y(i)
(
y(i)
)T
 (4.14)

where ρ(ζ) =
∑2Nc
`=1

ω̂`
ζ`−ζ is the filter function defined in (2.3) and which approximated. Equating

the (1,2) and (2,2) blocks of (8.1.3) and (4.14) gives

G̃ = −
2Nc∑
j=1

ω̂jS(ζj)
−1 =

n∑
i=1

ρ(λi)y
(i)
(
y(i)
)T

W̃ =

2Nc∑
j=1

ω̂jB
−1
ζ EζS(ζj)

−1 =

n∑
i=1

ρ(λi)u
(i)
(
y(i)
)T

.

(4.15)

By the expression in (4.15) we see that if ρ(λnev+1), . . . , ρ(λn) damp sufficiently close to zero,

then range{G̃} ≈ span
([
y(1), . . . , y(nev)

])
, and range

(
W̃
)
≈ span

([
u(1), . . . , u(nev)

])
, which

are exactly the subspaces required to retrieve the sought eigenpairs
(
λ1, x

(1)
)
, . . . ,

(
λnev, x

(nev)
)

of the matrix pencil (A,M). In the opposite case, an increase in r, the number of columns in

matrix R, becomes necessary.

Figure 4.1 shows the average residual norm of the approximate eigenpairs obtained by the

DD-FP and DD-PP schemes for a small 2D discretized Laplacian of size n = 51 × 50 in the

interval [α = 1.6, β = 1.7]. In contrast to DD-PP, DD-FP can use a smaller number of quadrature

nodes and increase the accuracy of the approximate eigenpairs of the matrix pencil (A,M) by

repeating the numerical integration phase and using the most recent approximate eigenvectors

as the new set of right-hand sides. Indeed, after four iterations, the DD-FP scheme with Nc = 4

quadrature nodes achieves an accuracy close to that of the DD-PP scheme utilizing Nc = 12

quadrature nodes.

We note at this point that the above discussion on the accuracy of DD-PP is independent of

the number of subdomains p.

73

1 1.5 2 2.5 3 3.5 4

10−5

10−4

10−3

Iterations

M
a
x
.

R
es

.
N

or
m

r = nev

DD-PP, Nc = 4
DD-PP, Nc = 8
DD-PP, Nc = 12
DD-FP, Nc = 4

1 1.5 2 2.5 3 3.5 4
10−15

10−12

10−9

10−6

10−3

Iterations

M
ax

.
R

es
.

N
o
rm

r = 2nev

Figure 4.1: Maximum residual norm of the approximation of all eigenpairs in the interval [1.6, 1.7]
for a 51× 50 Finite Difference discretization of the Laplacian operator.

4.2.1 Computational comparison of the DD-FP and DD-PP schemes

From a numerical viewpoint, both the DD-PP and DD-FP schemes can perform similarly, but,

from a computational viewpoint, there are some notable differences. DD-PP has a lower com-

putational complexity per quadrature node than DD-FP, since it avoids performing the first

two steps of the latter. A straightforward calculation reveals that for each quadrature node, the

DD-FP scheme also introduces n×r more floating point operations than the DD-PP scheme (the

block matrix subtractions in Steps 3 and 5 in Algorithm 4.1.1). When accounting for all quadra-

ture nodes together, the DD-FP scheme introducesNc×r×[cost solve(Bζ)+cost MV(Eζ)+n] ad-

ditional floating point operations compared to DD-PP. Herein, cost solve(Bζ) and cost MV(Eζ)

denote the costs to multiply B−1
ζ (by solving the linear system) and Eζ by a single vector,

respectively.

4.3 Solving the Schur complement linear systems

The major distributed computational procedure in both Algorithm 4.1.1 and Algorithm 4.2.1 is

the solution of linear systems with the Schur complement matrices S(ζj), j = 1, . . . , Nc, where

each linear system has r ≥ nev right-hand sides.

Assuming that each subdomain is assigned to a different MPI process, S(ζ) is distributed by

74

rows among the different processors and has a natural block structure of the form

S(ζ) =


S1(ζ) S12 . . . S1p

S21 S2(ζ) . . . S2p

...
...

. . .
...

Sp1 Sp2 . . . Sp(ζ)

 , (4.16)

where

Si(ζ) = Ci − ζM (i)
C −

(
Êi − ζM̂ (i)

E

)T (
Bi − ζM (i)

B

)−1 (
Êi − ζM̂ (i)

E

)
, i = 1, . . . , p,

is the “local” Schur complement matrix that corresponds to the ith subdomain, and the off-

diagonal blocks Sik, i, k = 1, . . . , p, i 6= k, are sparse matrices of size si×sk that account for the

coupling among the different subdomains. The matrix Sik is nonzero if and only if subdomains

i and k are adjacent. The matrix M
(i)
C denotes the si × si on-diagonal block of matrix MC .

The standard approach to solve the distributed linear system with the Schur complement

coefficient matrix in (4.16) is to explicitly form S(ζ) and compute its LU factorization by a

call to a parallel sparse direct solver [81, 83]. For problems issued from discretizations of 2D

domains, forming and factorizing S(ζ) explicitly is an attractive option since the size of the

Schur complement is small even when a large number of subdomains is used. On the other

hand, Schur complements which originate from discretizations of 3D computational domains

typically involve a much higher memory requirement since in the 3D case the size of the Schur

complement can become exceedingly large. An alternative discussed next is to solve these linear

systems without forming S(ζ) by exploiting a preconditioned iterative method, e.g. GMRES

[84].

4.3.1 Schur complement preconditioners

We consider sparsified approximations of S(ζ) that are based on sparsity and/or numerical

constraints [85, 86, 87], a procedure summarized in Algorithm 4.3.1. Other Schur complement

preconditioning approaches can be found in [88, 89, 90].

To form the preconditioner, which we denote by SG(ζ), we use two levels of dropping based on

numerical constraints. The first level of dropping concerns the LU factorization of Bi− ζM (i)
B =

75

L̂iÛi which is performed inexactly, by dropping all entries in the LU factorization whose real

or imaginary part is below a threshold value drop-B. Then, the ith subdomain forms its local

Schur complement

Ŝi(ζ) = Ci − ζM (i)
C −

(
Û−Ti

(
Êi − ζM̂ (i)

E

))T
L̂−1
i

(
Êi − ζM̂ (i)

E

)
, (4.17)

while also dropping any entry whose real or imaginary part is below a threshold value drop-S.

Overall, the preconditioner takes the form:

SG(ζ) =


Ŝ1(ζ) S12 . . . S1p

S21 Ŝ2(ζ) . . . E2p

...
...

. . .
...

Sp1 Sp2 . . . Ŝp(ζ)

 . (4.18)

Algorithm 4.3.1 Schur complement preconditioner SG(ζ)

0. Given ζ ∈ C, drop-B, drop-S

1. For i = 1, . . . , p:

2. Obtain a factorization [L̂i, Ûi] = Bi − ζM (i)
B with drop tolerance drop-B

3. Form Ŝi(ζ) = Ci − ζM (i)
C −

(
Û−Ti

(
Êi − ζM̂ (i)

E

))T
L̂−1
i

(
Êi − ζM̂ (i)

E

)
and

-. drop any entry smaller than drop-S

4. End

5. Factorize SG(ζ) by a sparse direct solver.

Here are a few details regarding Algorithm 4.3.1. When we form SG(ζ) we compute Ŝi(ζ) a

few columns at a time and immediately sparsify (for each incomplete factorization of Bi−ζM (i)
B

we must solve a linear system with si sparse right-hand sides). By default we form Ŝi(ζ) two

hundred columns at a time, where all right-hand sides are solved simultaneously using the

Pardiso software library (version 5.0.0) [91, 92]. More details will be given in Section 4.4.

76

4.3.2 Matrix-Vector products with the matrix S(ζ)

The Matrix-Vector (MV) product between S(ζ) and a vector v ∈ Cs can be computed as:

S(ζ)v = Cζv − ETζ B−1
ζ Eζv. (4.19)

Since the matrices Bζ and Eζ are block-diagonal and already distributed among the set of avail-

able MPI processes, no communication is required when we perform operations with them. On

the other hand, performing operations with C demands communication between MPI processes

which handle neighboring subdomains.

In summary, the computations involved in (4.19) are:

1. Compute ETζ B
−1
ζ Eζv (local),

2. Distribute (exchange) the necessary parts of v and perform Cζv (global),

3. Subtract the vector in 1) from the vector in 2) (local).

Communication in step 2) might overlap with computations in step 1). Using more subdomains

(larger values for p) will reduce the computational cost per processor, but, on the other hand,

increase communication cost.

4.4 Experiments

The experiments were performed on the Mesabi Linux cluster at Minnesota Supercomputing

Institute. All numerical schemes were implemented in C/C++ and built on top of the PETSc

and MKL scientific libraries. For PETSc, we used a complex build.5 The source files were

compiled with the Intel MPI compiler mpiicpc, using the -O3 optimization level.

Regarding DD-FP and DD-PP, the computational domain was partitioned in p non-overlapping

subdomains using METIS, and each subdomain was then assigned to a distinct processor group.

Communication between different processor groups was achieved by means of MPI. Through-

out this section, the number of subdomains p will also denote the number of MPI processes.

The LU factorizations and linear system solutions associated with the block-diagonal matrices

Bζj , j = 1, . . . , Nc, were performed by the shared-memory, multi-threaded version of the Pardiso

5The complex version of PETSc was built using the option --with-fortran-kernels=generic

77

library. Unless stated otherwise, the default number of threads per MPI process, as denoted by

variable τ , will be equal to one.

The quadrature nodes and weights ζj , ω̂j , j = 1, . . . , Nc were computed by the Gauss-

Legendre quadrature rule of order 2Nc, retaining only the Nc quadrature nodes (and associated

weights) with positive imaginary part. While it is possible to utilize block Krylov subspace6

solvers, e.g., block GMRES [95], throughout the rest of this section, the multiple right-hand

sides will be solved one after the other. Whenever we computed an incomplete factorization

of the block-diagonal matrices Bζj , j = 1, . . . , Nc, that was obtained by the UMFPACK [96]

library, and the resulting triangular factors were then passed to Pardiso.

Finally, all distributed memory matrix factorizations and triangular substitutions associated

with the distributed matrices A− ζjM and S(ζj), j = 1, . . . , Nc, were performed by MUMPS.

Throughout the rest of this section we will set M = I.

4.4.1 A comparison of the DD-FP and DD-PP schemes for 2D do-

mains

We start by comparing the DD-FP and DD-PP schemes on a set of discretized 2D Laplacian

matrices (nz = 1), where the Schur complement matrices S(ζj), j = 1, . . . , Nc, were formed and

factorized explicitly (drop-B=drop-S=1e-16). In order to perform a fair comparison between

these two schemes, we allowed only one outer iteration in DD-FP.

The interval of interest was set to [α, β] = [(λ1000 + λ1001)/2, (λ1200 + λ1201)/2] and thus

included nev = 200 eigenvalues. We tried Nc = 4, Nc = 8 and Nc = 12 quadrature nodes,

while we also varied the number of right-hand sides, r. Table 4.1 reports the average time spent

on a single quadrature node for the case Nc = 8. Per quadrature node timings for the rest

of the values of Nc were basically identical. DD-PP was always faster than DD-FP, especially

as p obtained smaller values, and n and r larger values, respectively. The latter results lie in

agreement with the discussion in Section 4.2.1.

Figure 4.2 plots the maximum residual norm of the approximate eigenpairs of the 2D Lapla-

cian of size n = 10002 for all different combinations of Nc and r reported in Table 4.1. The

residual norms of the DD-FP and DD-PP schemes were of the same order of magnitude, therefore

we report results only for the DD-PP scheme.

6See [93, 94] for details and references

78

Table 4.1: Average amount of time spent on a single quadrature node in DD-PP and DD-FP
to approximate the eigenvalues λ1001, . . . , λ1200 and associated eigenvectors for three discretized
2D Laplacians.

p = 8 p = 16 p = 32 p = 64

DD-PP DD-FP DD-PP DD-FP DD-PP DD-FP DD-PP DD-FP

n = 5002

r = nev + 10 9.45 13.7 6.77 8.91 5.25 6.34 4.65 5.30
r = 3nev/2 + 10 13.5 19.5 9.65 12.7 7.59 9.01 6.64 7.54
r = 2nev + 10 18.1 26.0 12.9 16.8 10.0 12.1 8.83 10.1

n = 10002

r = nev + 10 41.8 62.7 25.3 35.8 17.9 23.1 14.8 19.0
r = 3nev/2 + 10 59.7 89.5 36.0 49.9 25.5 33.1 21.1 26.9
r = 2nev + 10 79.1 119.3 68.1 68.1 34.1 44.2 28.4 36.3

n = 15002

r = nev + 10 100.8 140.7 65.2 88.8 39.9 44.2 29.5 37.8
r = 3nev/2 + 10 144.2 201.3 93.1 126.4 57.6 63.9 42.6 54.9
r = 2nev + 10 192.7 268.6 124.5 168.9 76.0 84.3 56.7 72.7

102.3 102.4 102.5 102.6

10−6

10−5

10−4

10−3

10−2

r

M
ax

.
re
si
d
u
al

n
or
m

Nc = 4
Nc = 8
Nc = 12

Figure 4.2: Maximum residual norm of the approximation of the eigenpairs inside the interval
[α, β] = [(λ1000+λ1001)/2, (λ1200+λ1201)/2], when DD-PP is applied to the n = 10002 Laplacian.

79

Table 4.2: Wall-clock time to compute eigenvalues λ1001, . . . , λ1200 and corresponding eigenvec-
tors of the n = 15002 Laplacian by the CI-M and DD-FP schemes, as the values of Nc and r
vary. “Its” denotes the number of outer iterations required by Subspace Iteration.

Its p = 64 p = 128 p = 256

CI-M DD-FP CI-M DD-FP CI-M DD-FP
Nc = 2

r = 3nev/2 + 10 9 3,922.7 2,280.6 2,624.3 1,242.4 1,911.2 859.5
r = 2nev + 10 5 2,863.2 1,764.5 1,877.7 998.5 1,255.5 615.3

Nc = 4

r = 3nev/2 + 10 5 4,181.5 2,357.0 2,815.7 1,280.2 1,874.1 877.5
r = 2nev + 10 4 4,330.3 2,571.4 2,869.5 1,462.9 2,023.2 1,036.2

Nc = 6

r = 3nev/2 + 10 3 3,710.3 2,068.2 2,504.1 1,122.1 1,790.8 766.5
r = 2nev + 10 3 4,774.8 2,798.5 3,177.7 1,595.2 2,743.6 1,125.1

Nc = 8

r = 3nev/2 + 10 3 4,911.6 2,722.2 3,318.7 1,476.1 2,367.7 1,006.5
r = 2nev + 10 2 4,204.7 2,445.2 2,802.1 1,395.4 1,806,6 982.1

The last experiment of this section focuses on a comparison between DD-FP and a PETSc-

based implementation of the FEAST algorithm that utilizes MUMPS to factorize and solve

the linear systems with matrices A − ζjM, j = 1, . . . , Nc. We refer to this scheme as Contour

Integration-MUMPS (CI-M). Table 4.2 lists the wall-clock times of DD-FP and CI-M to compute

all eigenpairs located inside the interval [α, β] = [(λ1000 +λ1001)/2, (λ1200 +λ1201)/2] for the n =

15002 Laplacian. Each eigenpair was sought to at least eight digits of accuracy and the variable

“Its” denotes the number of outer iterations (same in both schemes). For CI-M, p denotes the

number of MPI processes set in MUMPS. Increasing Nc leads to fewer outer iterations, although

this does not necessarily imply lower wall-clock times. The performance gap between the DD-

FP and CI-M schemes follows a slightly increasing trend as larger values of p are used, mainly

because the linear system solution phase scales better in DD-FP than what in CI-M.

4.4.2 A 3D model problem

In this section we consider the solution of an eigenvalue problem where the matrix A originates

from a discretization of the Laplacian operator on the unit cube using nx = ny = nz = 150

(n = 3, 375, 000). For 3D problems of this size, a direct formation and factorization of the Schur

complement matrices can be rather expensive, and, depending on the number of eigenvalues

sought, as well as their location in the spectrum, preconditioned iterative solvers might form a

80

0 100 200 300

of MPI processes

20

30

40

50

60
70
80
90

#
 o

f
p

re
c
/n

e
d

 G
M

R
E

S
 i
te

ra
ti
o

n
s

N
c
=1, [λ

101
,λ

120
]

N
c
=2, --

N
c
=3, --

Figure 4.3: Total number of preconditioned GMRES iterations in order to solve a linear system
with a single right-hand side for various values of Nc and p.

better alternative.

In contrast with Section 4.4.1, the solution of linear systems with the Schur complement

matrices in this section far dominates the overall computational time. We compare the DD-

FP and CI-M schemes and consider the problem of computing the smallest nev=20 and all

nev=100 eigenvalues (and associated eigenvectors) located inside the intervals: [α, β] = [(λ100 +

λ101)/2, (λ200 + λ201)/2], and [α, β] = [(λ500 + λ501)/2, (λ600 + λ601)/2].

DD-FP with preconditioned iterative linear system solvers

Figure 4.3 lists the total number of preconditioned GMRES iterations to compute
∑Nc
j=1 S(ζj)

−1v

for a random v ∈ Cs. Details on the preconditioner used will be given later in this section. The

interval of interest was set to [α, β] = [(λ100 + λ101)/2, (λ120 + λ121)/2]. We can observe that as

Nc increases, the number of preconditioned GMRES iterations also increases. Indeed, iterative

solvers are greatly affected by the location of the quadrature nodes ζj , j = 1, . . . , Nc, with ζj ’s

which lie closer to the real axis leading to slower convergence [59]. By construction, higher values

of Nc will lead to some quadrature nodes being closer to the real axis. Thus, when iterative

solvers are exploited, setting Nc to a low value, e.g. Nc = 1 or Nc = 2, might in practice be a

good choice.

Throughout this section, the iterative linear system solver used by DD-FP will be the right

preconditioned GMRES, allowing up to 250 iterations per restart. The linear system solution

81

process will terminate as soon as the norm of the residual of the corresponding approximate

solution is ten orders of magnitude smaller compared to the initial residual norm.

A comparison of the CI-M and DD-FP schemes

We now compare the wall-clock times of CI-M and DD-FP to compute the smallest nev = 20 and

all nev = 100 eigenpairs located inside the intervals [α, β] = [(λ100 + λ101)/2, (λ200 + λ201)/2],

and [α, β] = [(λ500 + λ501)/2, (λ600 + λ601)/2]. For DD-FP, we kept p = 32 fixed, allowing each

MPI process to utilize exactly p/32 threads.

Table 4.3 lists the best (lowest) wall-clock times achieved by executing CI-M and DD-FP

for two different values of Nc, Nc = 1 and Nc = 2 (setting Nc > 2 always led to longer

times), and three different values of r. DD-FP was considerably faster than CI-M in all cases

where nev = 20. When nev = 100, DD-FP was faster than CI-M for the interval [α, β] =

[(λ100 + λ101)/2, (λ200 + λ201)/2], but considerably slower than CI-M for the interval [α, β] =

[(λ500 + λ501)/2, (λ600 + λ601)/2]. In the latter case, the average time required to solve for a

right-hand side by MUMPS was much lower than the amount of time required by preconditioned

GMRES in DD-FP.

Note that the wall-clock times of DD-FP (especially its scalability) can generally improve,

since, for reasons of fair comparison against CI-M, for MUMPS we used only MPI parallelism,

and thus only a fraction of the available computer cores were active in DD-FP when we applied

the preconditioner SG(ζj).

Figure 4.4 plots the time breakdown of CI-M if we focus on its two main computational

procedures, i.e., the amount of time spent on factorizations and triangular substitutions. Results

shown are for the optimal choice r for each different value of Nc shown, and for p = 128 MPI

processes. The average (per quadrature node) factorization time required by MUMPS was

679.02, 332.11, and 298.43 seconds, for 64, 128, and 256 MPI processes, respectively. Combining

the latter with the results in Table 4.3, we observe that for the values of Nc reported in this

section, the amount of time spent on linear system solutions generally dominates the wall-clock

times. Similar observations also hold for DD-FP.

82

Table 4.3: Best (lowest) wall-clock times achieved by executing CI-M and DD-FP for Nc = 1
and Nc = 2. For CI-M we kept τ = 1 fixed, while for DD-FP we kept p = 32 fixed. Variable
“Its” denotes the total number of outer iterations performed by CI-M and DD-FP.

Its p× τ = 64 p× τ = 128 p× τ = 256

Nc = 1 Nc = 2 CI-M DD-FP CI-M DD-FP CI-M DD-FP

[α, β] ≡ [λ101, λ120]

r = 50 8 5 1,607.2 324.8 841.4 240.0 685.0 217.9
r = 100 6 4 2,073.9 473.1 1,092.1 353.2 875.2 313.8
r = 39 8 5 1,420.6 265.5 741.6 194.8 609.1 166.8

[α, β] ≡ [λ501, λ520]

r = 50 9 5 1,723.9 1,029.1 904.3 777.4 732.5 685.9
r = 100 5 4 1,840.5 1,140.3 966.9 862.3 780.0 781.2
r = 39 9 5 1,492.9 808.9 780.4 609.5 638.5 541.6

[α, β] ≡ [λ101, λ200]

r = 200 14 5 6,013.9 3,141.9 3,185.4 2,389.6 2,510.1 2,105.4
r = 300 9 4 6,942.3 3,030.7 3,662.1 2,304.9 2,814.3 2,072.7
r = 236 10 5 6,179.6 2,652.6 3,294.9 1,989.3 2,547.1 1,766.4

[α, β] ≡ [λ501, λ600]

r = 200 12 5 6,013.9 13,373.4 3,185.8 10,195.8 2,510.2 9,447.2
r = 400 7 3 6,950.2 15,596.3 3,664.1 11,892.2 2,876.2 10,564.3
r = 166 13 5 5,220.4 11,954.5 2,759.9 9,114.0 2,178.1 8,444.6

i1 i2 i3 i4

20

40

60

32

4

31

4

44

16

44

17

55

19

46

20

Interval

P
er
ce
n
ta
ge

Percentage of runtime spent on fact

Nc = 1 Nc = 2 Nc = 3

i1 i2 i3 i4

40

60

80

100

68

96

69

96

56

84

56

83

45

81

54

80

Interval

P
er
ce
n
ta
ge

Percentage of runtime spent on tri/lar subs

Nc = 1 Nc = 2 Nc = 3

Figure 4.4: Time breakdown of the CI-M scheme (time spent on factorizations and triangular
substitutions) for Nc = 1, Nc = 2 and Nc = 3 quadrature nodes, using the optimal choice of r
for each different value of Nc, and p = 128 MPI processes. For each choice of Nc, we show the
breakdown for intervals i1 := [(λ100 + λ101)/2, (λ120 + λ121)/2], i2 := [(λ100 + λ101)/2, (λ200 +
λ201)/2], i3 := [(λ500 + λ501)/2, (λ520 + λ521)/2], and i4 := [(λ500 + λ501)/2, (λ600 + λ601)/2].

83

Table 4.4: Test matrices obtained by the PARSEC collection. We list the matrix size n, the total
number of non-zero entries nnz, the interval of interest [α, β], and the number of eigenvalues r
located inside [α, β].

Matrix n nnz [α, β] r
Ge99H100 112,985 8,451,295 [−0.65,−0.0096] 250
Si41Ge41H72 185,639 15,011,265 [−0.64,−0.0028] 218
Si87H76 240,369 10,661,631 [−0.66,−0.0300] 213

4.4.3 The PARSEC matrix collection

Our third set of experiments consists of a few matrices originating from applications in Elec-

tronic Structure Calculations. The matrices of interest (Hamiltonians) were generated using

the PARSEC software package [64], and can be found in the SuiteSparse Matrix Collection.

Details on the size of the matrices, as well as the interval of interest determined by the Density

Functional Theory application, are listed in Table 4.4.

The number of nonzero entries of each Hamiltonian is quite large, a consequence of the high-

order discretization used, as well as the addition of a (dense) ‘non-local’ term. Together with

the 3D nature of the problem, this leads to a large number of interface variables, challenging

the practicality of direct linear system solvers. In order to increase the efficiency of contour

integration eigensolvers for such problems, we consider the replacement of direct solvers by

preconditioned iterative solvers. Throughout this section we will only consider block-Jacobi

preconditioners

SBJ(ζj) = bdiag(S1(ζj), . . . , Sp(ζj)), j = 1, . . . , Nc. (4.20)

Table 4.5 lists the time elapsed to perform all Nc factorizations of the form A − ζjM, j =

1, . . . , Nc (CI-M) versus the elapsed time to form and factorize the block-Jacobi preconditioner

for all i = 1, . . . , p, and j = 1, . . . , Nc (DD-FP). We report times obtained for a varying number

of MPI processes (subdomains). A “X” flag under the CI-M scheme implies that not all Nc

matrix factorizations could fit in the memory allocated by each MPI process.

Table 4.6 lists the time elapsed to solve all Nc linear systems by the CI-M and DD-FP schemes

for a random right-hand side v ∈ Cn, i.e,
∑Nc
j=1(A− ζjM)−1v. For lower values of p, the DD-FP

scheme is not competitive, since the cost to apply the block-Jacobi preconditioner is quite high

in this case. However, as p increases, the time to solve a linear system by a preconditioned

84

Table 4.5: Time elapsed to perform the Nc LU matrix factorizations A− ζjM, j = 1, . . . , Nc in
CI-M versus time elapsed to form and factorize the block-Jacobi preconditioner in DD-FP.

p = 4 p = 8 p = 16 p = 32

CI-M DD-FP CI-M DD-FP CI-M DD-FP CI-M DD-FP
Ge99H100

Nc = 1 424.1 27.9 362.8 5.1 155.9 1.36 80.2 0.51
Nc = 2 860.9 56.4 714.2 10.7 308.7 2.57 162.3 0.92
Nc = 3 1,265.9 86.3 1,089.4 15.5 461.1 4.26 239.5 1.47

Si41Ge41H72

Nc = 1 1276.1 38.8 942.6 10.1 486.1 3.31 230.2 1.52
Nc = 2 X 74.5 1888.1 19.8 969.3 6.46 452.7 2.81
Nc = 3 X 117.4 X 28.8 1,442.5 10.0 691.3 4.40

Si87H76

Nc = 1 X 119.8 1726.2 14.5 942.4 1.23 382.1 0.51
Nc = 2 X 247.4 X 29.7 1872.8 2.53 758.0 0.94
Nc = 3 X 355.1 X 44.6 2,853.9 3.82 1,127.4 1.61

Table 4.6: Time elapsed to perform the computation
∑Nc
j=1(A − ζjM)−1v with (DD-FP) and

without (CI-M) using the domain decomposition framework. Vector v ∈ Cn denotes a random
complex vector.

p = 4 p = 8 p = 16 p = 32

CI-M DD-FP CI-M DD-FP CI-M DD-FP CI-M DD-FP
Ge99H100

Nc = 1 0.7 5.1 0.7 1.7 0.4 0.6 0.3 0.3
Nc = 2 1.5 13.1 1.4 3.2 0.8 1.7 0.7 0.5
Nc = 3 2.3 33.3 1.9 11.8 1.1 4.1 1.0 1.2

Si41Ge41H72

Nc = 1 1.8 7.5 1.2 3.7 0.7 1.0 0.7 0.5
Nc = 2 X 32.8 2.5 12.1 1.4 3.5 1.4 0.8
Nc = 3 X 61.3 X 31.2 2.1 8.6 2.1 2.1

Si87H76

Nc = 1 X 15.0 1.6 4.3 1.3 0.9 0.9 0.4
Nc = 2 X 50.2 X 14.0 2.8 3.3 1.9 0.8
Nc = 3 X 120.5 X 34.8 4.0 7.5 2.7 2.0

85

0 2 4 6 8

of iterations

10
-15

10
-10

10
-5

10
0

M
a

x
 r

e
s
id

u
a

l
n

o
rm

Ge99H100

Nc = 2, r̂ = 400

Nc = 2, r̂ = 500

Nc = 3, r̂ = 400

Nc = 3, r̂ = 500

0 2 4 6 8

of iterations

10
-20

10
-15

10
-10

10
-5

10
0

M
a

x
 r

e
s
id

u
a

l
n

o
rm

Si41Ge41H72

Nc = 2, r̂ = 400

Nc = 2, r̂ = 500

Nc = 3, r̂ = 400

Nc = 3, r̂ = 500

Figure 4.5: Maximum residual norm of the approximation of the eigenpairs inside the interval
[α, β], as a function of the number of outer iterations performed by DD-FP. Results are shown
for Nc = 2, Nc = 3, and r = 400, r = 500. Solid lines correspond to r = 400, while dashed lines
correspond to r = 500. Left: Ge99H100. Right:Si41Ge41H72.

Table 4.7: Wall-clock times of CI-M and DD-FP to compute all eigenpairs located inside the
intervals [α, β] reported in Table 4.4 (we set p = 32). “Its” denotes the total number of outer
iterations performed by DD-FP and CI-M.

r = 400 r = 500
Its CI-M DD-FP Its CI-M DD-FP

Ge99H100

Nc = 2 22 5,990 4,675 9 4,164 3,198
Nc = 3 12 3,787 4,438 5 2,750 3,091

Si41Ge41H72

Nc = 2 13 7,651 4,392 8 5,996 3,410
Nc = 3 5 4,806 4,287 6 6,865 6,360

Si87H76

Nc = 2 15 12,059 4,593 10 10,172 3,852
Nc = 3 5 6,467 3,960 6 9,114 5,915

iterative method drops dramatically (we note that the number of iterations is only slightly

increased as p increases). Moreover, increasing the value of Nc results in a proportional increase

in computational time for the direct solver but to a much more pronounced increase for the

case of preconditioned iterative solvers, owed to the fact that iterative solvers are sensitive to

the magnitude of the complex part of each quadrature node (see also the discussion in Section

4.4.2).

Figure 4.5 plots the maximum residual norm of the approximation of the eigenpairs located

inside the interval [α, β] as a function of the number of outer iterations performed by DD-FP.

Finally, Table 4.7 reports the total wall-clock time required by CI-M and DD-FP to compute

86

all sought eigenpairs for the case p = 32. DD-FP was faster7 than CI-M for almost all different

combinations of Nc and r tested, due to the avoidance of the costly matrix factorizations in

CI-M and its lower timings to perform the required linear system solutions.

4.5 Summary

In this chapter we studied contour integration methods for computing eigenvalues and eigen-

vectors of sparse matrices using a domain decomposition viewpoint. We discussed two different

numerical schemes. The first scheme, abbreviated as DD-FP, is a flexible implementation of the

domain decomposition framework in the context of contour integral-based methods. When a

direct solver is used for the Schur complement linear systems, DD-FP is equivalent to FEAST

combined with a domain decomposition-based direct solver. The second scheme, abbreviated as

DD-PP, focuses on approximating the contour integrals only partially by integrating the Schur

complement operator along the complex contour. Moreover, we considered the use of domain

decomposition in the context of preconditioned iterative solvers as a replacement of the direct

solvers. Experiments indicate that this approach can potentially be faster, but that its ultimate

effectiveness will be dictated by the performance of the iterative scheme used for solving the lin-

ear systems. In particular, the method can be vastly superior than FEAST with a direct solver

when computing eigenvalues on both ends of the spectrum but it may encounter difficulties when

the eigenvalues to be computed are located deep inside the spectrum.

7DD-FP also required far less memory than CI-M.

Chapter 5

Acceleration of rational filtering

eigenvalue solvers by exploiting

multiple levels of distributed

memory parallelism

So far in this dissertation we have considered only one level of distributed memory parallelism;

that stemming by applying the domain decomposition framework directly to the eigenvalue

equation. On the other hand, one of the main advantages of contour integral eigenvalue solvers

is their ability to take advantage of additional levels of MPI parallelism, e.g. by distributing

different quadrature nodes and/or right-hand sides to different groups of MPI processes. In this

chapter1 we consider (1) the performance of the DD-FP2 and FEAST eigenvalue solvers if more

than one levels of distributed memory parallelism are exploited, and (2) the benefits of using

domain decomposition linear system solvers in FEAST. Our main goal is not to perform an

exhaustive analysis but rather to a) suggest a guideline on what the opportunities for additional

levels of parallelism are, and b) strategies to allocate the computational resources so that the

1This is joint work with James Kestyn and Eric Polizzi (University of Massachusetts, Amherst) and Yousef
Saad (University of Minnesota, Twin Cities)

2See Chapter 4

87

88

lowest possible wall-clock times are achieved.

The organization of this chapter is as follows. Section 5.1 repeats the experiments in Section

4.4.2 for the case where the available computational resources are organized into a 2D grid of

MPI processes. Section 5.2 presents a comprehensive examination of the performance of FEAST

for a collection of Hamiltonians representing carbon nanotube (CNT) molecules of varying length

when two different levels of distributed memory parallelism are considered. Finally, Section 5.3

presents our concluding remarks.

5.1 Combining DD-FP with an additional layer of dis-

tributed memory parallelism

By recalling the discussion in Section 4.2.1, each iteration of DD-FP requires 2r linear system

solutions with matrix Bζ and r linear system solutions with matrix S(ζ) for each quadrature

node ζ ≡ ζj , j = 1, . . . , Nc.

Let us first focus on the linear system solutions with matrices S(ζ1), . . . , S(ζNc). Let R ∈

Rs×r as in Chapter 4 and consider the application of the matrix 2<e
{∑Nc

`=1 ω̂`S(ζ`)
−1
}

onto

the matrix R. The first level of distributed memory parallelism is already in-place as the Schur

complement matrix S(ζ) is distributed by blocks of rows among the MPI processes handling the

p subdomains. A second level of parallelism can be exploited by organizing the set of available

MPI processes into a 2D grid and restricting MPI processes within the same column subgrid to

perform computations related to either a fraction of the Nc quadrature nodes, or a fraction of the

r right-hand sides. The distribution of the linear system solutions with matrices Bζ1 , . . . , BζNc ,

which are also distributed by blocks among the p subdomains, follows the same pattern with

the solutions with matrices S(ζ1), . . . , S(ζNc).

5.1.1 Evaluation

We repeated the experiment in Section 4.4.2, this time organizing the MPI processes in various

2D grid formations. As previously, the maximum number of MPI processes was set to 256. For

CI-M we tried four different 2D formations; 64×1, 64×2, 64×3, and 64×4. Similarly, for DD-

FP, we considered the 2D formations 32×1, 32×2, 32×3, and 32×4, allowing each MPI process

to utilize τ = 2 computational threads. For simplicity, we considered only the case r = 200.

89

MPI DD

MPI Nc or MPI r

Figure 5.1: Schematic sketch of the 2D grid of MPI processes when two levels of distributed
memory parallelism are used in DD-FP. The first level (blue solid lines) are reserved for do-
main decomposition. The second level (red dashed lines) can be used to distribute either the
quadrature nodes or the different right-hand sides to different groups of MPI processes.

For DD-FP, we considered a single quadrature node (Nc = 1) and assigned different right-hand

sides to different column subgrids of MPI processes (thus each column subgrid of MPI processes

was responsible for only a fraction of the r right-hand sides in each iteration in DD-FP). For

CI-M, we tested two options. First, we considered CI-M with Nc = 1 and Nc = 2, and assigned

different right-hand sides to different column subgrids of MPI processes (thus, similarly to DD-

FP, each column subgrid of MPI processes was responsible for all Nc quadrature nodes but only

a fraction of the r right-hand sides at each CI-M iteration). We denote this option by CI-M1.

Note that CI-M1 is limited only to scenarios where each column subgrid of MPI processes has

enough memory to store all Nc matrix factorizations. Second, we considered CI-M with Nc = 4

quadrature nodes and assigned the different quadrature nodes to different column subgrids of

MPI processes (thus each separate column subgrid of MPI processes was responsible for all r

right-hand sides, but for one/a few of the Nc quadrature node(s) only). We denote this option

by CI-M2.

Figure 5.2 plots the wall-clock times of CI-M and DD-FP when two levels of MPI parallelism

are considered. Exploiting a 32 × 4 2D grid, DD-FP computed all r = 100 eigenpairs inside

the intervals [α, β] = [(λ100 + λ101)/2, (λ200 + λ201)/2] and [α, β] = [(λ500 + λ501)/2, (λ600 +

90

50 100 150 200 250

103

103.5

of computer cores

T
im

e
(s

)

[λ101, λ200]

CI-M1 (Nc = 1)

CI-M1 (Nc = 2)

CI-M2 (Nc = 4)

DD-FP (Nc = 1)

50 100 150 200 250

103.5

104

of computer cores

T
im

e
(s

)

[λ501, λ600]

Figure 5.2: Wall-clock time of CI-M and DD-FP to compute all nev = 100 eigenpairs inside the
intervals [α, β] = [(λ100 +λ101)/2, (λ200 +λ201)/2] and [α, β] = [(λ500 +λ501)/2, (λ600 +λ601)/2]
when a 2D grid of MPI processes is exploited. The number of right-hand sides was set to r = 200.

λ601)/2], in less than 900 and 3,500 seconds, respectively. The latter wall-clock times constitute

a considerable improvement over those obtained by the 1D grid of MPI processes reported in

Table 4.3. For CI-M1, the wall-clock time improvement over the 1D grid of MPI processes

was not as pronounced as in DD-FP due to the overhead introduced by the factorizations of

matrices A − ζjM, j = 1, . . . , Nc. On the other hand, increasing Nc and distributing the

quadrature nodes, as in CI-M2, seems to be a more efficient choice when a larger number of

computational resources becomes available. A more detailed list of comments is following.

� Distributing the r right-hand sides to different processor groups (e.g. CI-M1(Nc)) seems

to be the most efficient approach when the largest portion of the total wall-clock time is

spent on the distributed triangular substitutions. Clearly, this approach is limited only to

scenarios where each column subgrid of MPI processes has enough memory to store all Nc

matrix factorizations (since each column subgrid of MPI processes must perform all Nc

matrix factorizations independently of the other subgrids).

� Distributing the Nc quadrature nodes to different groups of processors, as CI-M2(Nc) does,

is the most efficient approach when either a) an increase in the value of Nc leads to (much)

faster convergence, or b) not all Nc matrix factorizations can fit in the system memory of

a particular group of processors (and thus CI-M1 is inapplicable).

91

� Increasing the value of Nc and distributing the Nc quadrature nodes to different groups of

processors is the most efficient approach when a larger number of computational resources

is available, since this technique requires less memory (since each group of MPI processes

performs only one/a few of the total Nc matrix factorizations), and also leads to faster

convergence.

5.2 The PFEAST scheme

The Parallel FEAST (PFEAST) scheme is a fully parallel implementation of the FEAST library

(the algorithmic component of FEAST is described in Section 2.3.2). In particular, PFEAST

features three distinct levels of distributed memory parallelism: (L1) spectrum slicing, (L2)

distribution of the Nc different quadrature nodes of the matrix 2<e
{∑Nc

`=1 ω`(A− ζ`M)−1M
}

to up to Nc different groups of processors, and (L3) distributed memory solution of each linear

system with the matrix A− ζ`M .

In this section we consider the performance of PFEAST as we vary the number of MPI

processes in levels L2 and L3.

5.2.1 Experimental framework

The matrix used for the experiments in this section is a Hamiltonian matrix which represents a

CNT (carbon nanotube) molecule system discretized by the Finite Element method using second

degree polynomial refinement, and was generated by a 3-3 CNT unit cell.In particular, the Hamil-

tonian considered in our experiments had 5 unit cells (CNT-5) and 78 atoms in total. The system

was terminated with six hydrogen atoms at each end and follows a (Uh|UaUb| . . . |UaUb|Ua|Uh)

pattern (see the 3 unit cell CNT in Figure 1.1) with Uh representing the six hydrogen atoms

and Ua and Ub different configurations of six atom carbon rings. Each carbon atom contains

six electrons, which corresponds to three eigenmodes (since the electron spin is not explicitly

taken into account). The dimension of the problem was equal to n = 302, 295 and the number

of sought eigenvalues was set to nev = 226, where the first six eigenvalues (modes) correspond

to the twelve terminating hydrogen atoms, the next eighteen eigenvalues to the Ua carbon ring,

and the additional 5× 36 eigenvalues to the |UaUb| unit cells.

The experiments were performed on the Mesabi Linux cluster at Minnesota Supercomputing

92

0 5 10 15

0

1,000

2,000

3,000

of L2 MPI processes

F
a
ct

T
im

e
(s

)

Total Time

DD-Solver
MUMPS

Cluster-MKL-Pardiso

0 5 10 15
0

5

10

15

of L2 MPI processes

F
ac

t
T

im
e

(s
)

L2 Scalability

Figure 5.3: Wall-clock times and scalability of the L2 level of distributed memory parallelism.
The number of L2 MPI processes is increased from 1 to 16 while the number of L3 MPI processes
is kept constant (3 MPI processes per L2 MPI process).

Institute. Although the PFEAST kernel could be interfaced with an iterative or hybrid solver,

we consider only the application of three different sparse direct solvers. Both Cluster-MKL-

PARDISO and MUMPS have been tested with the full matrices generated by stitching together

the interstitial and atomic meshes within our finite-element electronic structure code. Our

application specific domain-decomposition solver (DD-Solver) reorders the matrix based on the

number of L3 MPI processes, in order to reduce communication. For consistency the matrices

have been permuted the exact same way for Cluster-MKL-PARDISO, MUMPS and the DD-

Solver. All tests have been run with default parameters for the solvers operating in ‘in-core’

mode.

Throughout the rest of this chapter each MPI process will be utilizing 12 threads. The

number of right-hand sides was set to r = 600 while that of quadrature nodes was set to

Nc = 16.

5.2.2 Strong scalability of levels L2 and L3

We start with the L2 level scalability. The results can be seen in Figure 5.3. Each linear system

solution with matrix A − ζ`M, ` = 1, . . . , Nc, exploited 3 MPI processes (for a total of 3 to

48 MPI processes and thus 36 to 576 computer cores). The total time to solve the eigenvalue

problem is plotted on the left subfigure. Four PFEAST iterations were needed to reach the

default convergence criteria of 10−12 on the eigenvector residuals. The right subfigure shows the

93

0 5 10 15 20 25 30 35

1,000

2,000

3,000

4,000

of L3 MPI processes

F
a
ct

T
im

e
(s

)

Total Time

DD-Solver
MUMPS

Cluster-MKL-Pardiso

0 5 10 15 20 25 30 35

1

2

3

4

of L3 MPI processes

F
a
ct

T
im

e
(s

)

L3 Scalability

Figure 5.4: Wall-clock times and scalability of the L3 level of distributed memory parallelism.

observed speedups for each one of the three different solvers used. We see very close to linear

scaling at this level. Note that the maximum speedup we can expect at this level of parallelism

is bounded by Nc.

Figure 5.4 plots the wall-clock times (left sibfigure) and scalability (right subfigure) of the

L3 level of distributed memory parallelism. The number of L3 MPI processes was varied from 1

to 32. The speedup on the right subfigure uses the results obtained by using 2 L3 MPI process

as the time of reference. We followed this approach to account for the communication overhead

associated with distributed memory solvers. The time should, ideally, drop by half each time

the number of MPI processes is doubled. As can be seen in the graph, the efficiency of the

L3 scaling is much worse than that observed for L2. In practice, the scalability of the third

level of parallelism L3 is limited by the properties of the eigensystem and linear-system solver.

The strong scalability of the DD-Solver, specifically, may be limited by the number atoms. All

L3 MPI processes can work together in the solution to the interstitial matrix regardless of the

number of atoms. Note that problems that require a distributed memory solver will usually

target nanostructures with many atoms; usually far outnumbering the parallel resources.

5.2.3 Notes on the optimal distribution of parallel resources

Another situation common within the scientific computing community is that where parallel

resources are limited to a specific number of processors. Here the three different levels of

parallelism within PFEAST can help to optimally utilize all parallel resources and achieve good

94

Table 5.1: The total number of MPI processes is held constant but is split between the two
different levels of distributed memory parallelism.

L2 # L3 # Rows DD-Solver PARDISO MUMPS

1 64 6260 639 982 923

2 32 10553 323 511 643

4 16 19139 172 315 332

8 8 38277 116 171 194

16 4 76554 104 115 125

performance. For our experiment we only consider the second and third levels of parallelism

L2 and L3. The question becomes how to divide these resources among these two levels. We

consider 64 sockets of Mesabi (thus 32 nodes in total) where each socket is equipped with

a Intel Xeon Processor E5-2680 v3, i.e., each socket has 12 computer cores. Assuming that

Nc = 16 quadrature nodes are used, then there are then five ways to distribute the resources

across the L2 and L3 levels of parallelism. In particular, the possible number of MPI processes

used in the L2 level of distributed memory parallelism are 1, 2, 4, 8, and 16. In order to fully

utilize the computational resources at our disposal we choose the number of L3 MPI processes

as 64, 32, 16, 8, and 4, respectively. Table 5.1 presents the total time to solve the eigenvalue

problem for a fixed number of MPI processes but different distributions of parallel resources

over the L2 and L3 levels. As we initially predicted, it is optimal to place as many resources as

possible at the L2 level. In paricular, the best performance is obtained when 16 MPI processes

are used in the L2 level. On the other hand, more MPI processes at the L3 level will reduce the

memory required by each MPI process (i.e. the number of rows of the eigenvector and system

matrices assigned to each process), and might become a necessity for larger problems.

5.3 Summary

In this chapter we considered the performance of the DD-FP (see Chapter 4) and FEAST eigen-

value solvers if more than one levels of distributed memory parallelism are exploited, as well as

the benefits of using domain decomposition linear system solvers in FEAST. For DD-FP, adding

one more level of distributed memory parallelism can lead to a significant reduction of the wall-

clock time/memory footprint. In particular, distributing different right-hand sides to different

95

groups of processors seems to be a good choice when the Schur complement linear systems are

solved by preconditioned iterative solvers. Similarly, the scalability of PFEAST mainly depends

on the technique used to solve the complex linear systems as well as the distribution of the

parallel resources to the different possible levels of parallelism. If enough resources are available,

it is advisable to place as many MPI processes at the first and second levels of parallelism (i.e.,

L1 and L2) as possible, as these levels lead close to almost ideal linear scaling.

Chapter 6

Cucheb: A GPU implementation

of FILTLAN

In this chapter we present a Graphics Processing Unit (GPU) implementation of the Lanczos

method combined with polynomial filtering. We will refer to such techniques as Filtered Lanczos

Procedures (FLP). The proposed GPU implementation will consist of a high-level, open source

C/C++ library called Cucheb 1 [97] which depends only on the Nvidia CUDA Toolkit [98, 30]

and standard C libraries, allowing for easy interface with Nvidia brand GPUs.

A GPU is a single instruction multiple data scalable model which consists of multi-threaded

streaming Multiprocessors, each equipped with multiple scalar processor cores (SPs), with each

SP performing the same instruction on its local portion of data. While they were initially

developed for the purposes of graphics processing, GPUs were adapted in recent years for general

purpose computing, and the development of the Compute Unified Device Architecture (CUDA)

[30] parallel programming model by Nvidia (an extension of the C/C++ language) provides an

easy way for computational scientists to take advantage of the GPU’s raw power. Additional

information on the programming of of GPUs can be found in [99].

The FLP implemented in the Cucheb libary is similar to FILTLAN presented in Section 2.4.

There are, however, a few notable differences. Cucheb features full orthogonalization instead

of partial orthogonalization as is the case in FILTLAN. Moreover, Cucheb includes the ability

1This is joint work with Jared L. Aurentz (Instituto de Ciencias Matemàticas) and Yousef Saad (University
of Minnesota, Twin Cities)

96

97

to use block counterparts of the Lanczos method which can be more efficient in the case of

multiple or clustered eigenvalues. In addition, FILTLAN uses a more complicated least-squares

filter polynomial while Cucheb utilizes the filters described in section 6.2.

While our numerical experiments presented in Section 6.4 consider only the solution of stan-

dard symmetric eigenvalue problems, the discussion of the numerical scheme presented through-

out this chapter will focus on the more general case of generalized eigenvalue problems. As in the

previous chapters, the goal is to compute the nev ≥ 1 eigenpairs
(
λ1, x

(1)
)
, . . . ,

(
λnev, x

(nev)
)

of

the matrix pencil (A,M) whose corresponding eigenvalues are located inside the interval [α, β].

6.1 Motivation

In the DFT framework the solution of the all-electron Schrödinger equation is replaced by a one-

electron Schrödinger equation with an effective potential which leads to a nonlinear eigenvalue

problem known as the Kohn-Sham equation [5, 6]:

[
−∇

2

2
+ Vion(r) + VH(ρ(r), r) + VXC(ρ(r), r)

]
Ψi(r) = EiΨi(r), (6.1)

where Ψi(r) is a wave function and Ei is a Kohn-Sham eigenvalue. The ionic potential Vion

reflects contributions from the core and depends on the position r only. Both the Hartree and

the exchange-correlation potentials depend on the charge density:

ρ(r) = 2

nocc∑
i=1

|Ψi(r)|2, (6.2)

where nocc is the number of occupied states (for most systems of interest this is half the number

of valence electrons). Since the total potential Vtotal = Vion + VH + VXC depends on ρ(r)

which itself depends on eigenfunctions of the Hamiltonian, Equation (6.1) can be viewed as a

nonlinear eigenvalue problem or a nonlinear eigenvector problem. The Hartree potential VH is

obtained from ρ by solving the Poisson equation∇2VH(r) = −4πρ(r) with appropriate boundary

conditions. The exchange-correlation term VXC is the key to the DFT approach and captures

the effects of reducing the problem from many particles to a one-electron problem, i.e., from

replacing wavefunctions with many coordinates into ones that depend solely on space location

r.

98

Self-consistent iterations for solving the Kohn-Sham equation start with an initial guess of

the charge density ρ(r), from which a guess for Vtotal is computed. Then (6.1) is solved for

Ψi(r)’s and a new ρ(r) is obtained from (6.2) and the potentials are updated. Then (6.1) is

solved again for a new ρ obtained from the new Ψi(r)’s, and the process is repeated until the

total potential has converged.

A typical electronic structure calculation with many atoms requires the calculation of a large

number of eigenvalues, specifically the nocc leftmost ones. In addition, calculations based on

time-dependent density functional theory [100, 101], require a substantial number of unoccupied

states, states beyond the Fermi level, in addition to the occupied ones. Thus, it is not uncommon

to see eigenvalue problems in the size of millions where tens of thousands of eigenvalues may be

needed.

Efficient numerical methods that can be easily parallelized in current high-performance com-

puting environments are therefore essential in electronic structure calculations. The high com-

putational power offered by GPUs has increased their presence in the numerical linear algebra

community and they are gradually becoming an important tool of scientific codes for solving

large-scale, computationally intensive eigenvalue problems. While GPUs are mostly known for

their high speedups relative to CPU-bound operations2, sparse eigenvalue computations can also

benefit from hybrid CPU-GPU architectures. Although published literature and scientific codes

for the solution of sparse eigenvalue problems on a GPU have not been as common as those

that exist for multi-CPU environments, recent studies demonstrated that the combination of

polynomial filtering eigenvalue solvers with GPUs can be beneficial [102].

The rest of this chapter is organized as follows. Section 6.2 introduces the concept of polyno-

mial filtering for symmetric eigenvalue problems and provides the basic formulation of the filters

used. Section 6.3 provides details on the block Lanczos methods combined with polynomial

filtering. Section 6.4 presents computational results with the proposed GPU implementations.

Finally, a summary is presented in Section 6.5.

2See also the MAGMA project at http://icl.cs.utk.edu/magma/index.html

99

6.2 Chebyshev polynomial filters

In order to quickly construct a polynomial that is a good approximation to the indicator function

I[−1,1]
3 defined in (2.1) it is important that we choose a good basis. For functions supported

on [−1, 1] the obvious choice is Chebyshev polynomials of the first kind. Such representations

have already been used successfully for constructing polynomial spectral transformations and

for approximating matrix-valued functions in quantum mechanics (see for example [102, 65, 67,

103, 104, 105, 106, 68, 107, 108, 109]).

Recall that the Chebyshev polynomials of the first kind obey the following three-term recur-

rence

Ti+1(z) = 2zTi(z)− Ti−1(z), i ≥ 1. (6.3)

starting with T0(z) = 1, T1(z) = z. The Chebyshev polynomials also satisfy the following

orthogonality condition and form a complete orthogonal set for the Hilbert space L2
µ ([−1, 1]),

dµ(z) =
(
1− z2

)−1/2
dz:

∫ 1

−1

Ti(z)Tj(z)√
1− z2

dz =


π, i = j = 0,

π
2 , i = j > 0,

0, otherwise.

(6.4)

Since I[−1,1] ∈ L2
µ ([−1, 1]) it possesses a convergent Chebyshev series

I[−1,1](z) =

∞∑
i=0

biTi(z), (6.5)

where the scalars {bi}∞i=0 are defined as follows:

bi =
2− δi0
π

∫ 1

−1

I[−1,1](z)Ti(z)√
1− z2

dz, (6.6)

where δij represents the Dirac delta symbol. For a given α and β the {bi} are known analytically

(see for example [110]),

bi =

 (arccos(α)− arccos(β)) /π, i = 0,

2 (sin (i arccos(α))− sin (i arccos(β))) /iπ, i > 0.
(6.7)

3Recall that we map the interval [α, β] to [−1, 1]

100

An obvious choice for constructing an approximation to I[−1,1](z) is to fix a degree m ∈ Z and

truncate the Chebyshev series of I[−1,1](z),

pm(z) =

m∑
i=0

biTi(z). (6.8)

Due to the discontinuities of I[−1,1](z), pm(z) does not converge to I[−1,1](z) uniformly as m→

∞. The lack of uniform convergence is not an issue as long as the filter polynomial separates

the wanted and unwanted eigenvalues.

-1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

Degree 80 polynomial for [.1, .3]

ideal filter
Chebyshev

-1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

Degree 80 polynomial for [−1,−.5]

ideal filter
Chebyshev

Figure 6.1: Chebyshev approximation of the ideal filter I[−1,1](z) using a degree 80 polynomial.
Left: [α, β] = [.1, .3]. Right: [α, β] = [−1,−.5].

Figure 6.1 shows approximations of the ideal filter I[−1,1](z) for two different subintervals

of [−1, 1], using a fixed degree m = 80. In the left subfigure the interval of interest is located

around the middle of the spectrum [α, β] = [.1, .3], while in the right subfigure the interval of

interest is located at the left extreme part [α, β] = [−1,−.5]. Note that the oscillations near the

discontinuities do not prevent the polynomials from separating the spectrum.

Let M = LLT where L ∈ Rn×n is a lower triangular matrix with positive diagonal entries,

and let L−1AL−T be a scaled version of matrix L−1AL−T such that the spectrum of the latter

matrix is mapped to the interval [−1, 1]. We can the apply the polynomial filter pm(z) to

L−1AL−T . Multiplying pm(L−1AL−T) by a vector can be done efficiently in parallel using a

vectorized version of Clenshaw’s algorithm [111] when pm(z) is represented in a Chebyshev basis.

Moreover Clenshaw’s algorithm can be run entirely in real arithmetic whenever the Chebyshev

coefficients of pm(z) are real.

101

6.2.1 Choosing the filter degree m

Assuming that the spectrum of the matrix pencil (A,M) is mapped to [−1, 1], a “good” degree

m for [α, β] ⊂ [−1, 1] can be computed using the following formula:

m = min{m > 0 : ||pm(z)− I[−1,1](z)|| < ε||I[−1,1](z)||}, (6.9)

where ||f(z)|| denotes the weighted Chebyshev 2-norm of some function f(.). The tolerance ε is

a parameter and is chosen experimentally, with the goal of maximizing the separation power of

the filter while keeping the polynomial degree and consequently the computation time low.

-1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

Degree 48 polynomial for [.1, .3]

ideal filter
Chebyshev

-1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

Degree 10 polynomial for [−1,−.5]

ideal filter
Chebyshev

Figure 6.2: Chebyshev and approximation of the ideal filter I[−1,1](z). Left: [α, β] = [.1, .3] with
an optimal degree of 48. Right: [α, β] = [−1,−.5] with an optimal degree of 10.

Figure 6.2 uses the same ideal filters from Figure 6.1 but this time computes the filter degree

based on (6.9). In the left subfigure the interval of interest is located around the middle of the

spectrum [α, β] = [.1, .3] and the distance between α and β is relatively small, giving a filter

degree of 48. In the right subfigure the interval of interest is located at the left extreme part

of the spectrum [α, β] = [−1,−.5] and the distance α and β is relatively large, giving a filter

degree of 10. Although these filters seem like worse approximations than those in Figure 6.1,

the lower degrees lead to much shorter computation times.

6.3 Combining polynomial filtering with block Lanczos

Assuming we have constructed a polynomial filter pm(z), we can approximate eigenvalues of

L−1AL−T by first approximating eigenvalues and eigenvectors of pm(L−1AL−T) using a simple

102

version of the Lanczos method [112]. Many of the matrices arising in practical applications

possess repeated eigenvalues, requiring the use of block Lanczos algorithm [113], so we describe

the block version of FLP as it contains the standard algorithm as a special case.

Given a block size r and a matrix Q ∈ Rn×r with orthonormal columns, the filtered Lanzos

procedure iteratively constructs an orthonormal basis for the Krylov subspace generated by

pm(L−1AL−T) and Q:

Kk
(
pm(L−1AL−T), Q

)
= span

([
Q, pm(L−1AL−T)Q, . . . , pm(L−1AL−T)k−1Q

])
. (6.10)

Let us denote by Qk ∈ Rn×rk the matrix whose columns are generated by k − 1 steps of

the block Lanczos algorithm. Then, for each integer k we have QTkQk = I and range(Qk) =

span
(
Kk(pm(L−1AL−T), Q)

)
. Since p(L−1AL−T) is symmetric the columns of Qk can be

generated using short recurrences. This implies that there exists symmetric {Di}ki=1 and upper-

triangular {Si}ki=1, Di, Si ∈ Rr×r, such that

p(L−1AL−T)Qk = Qk+1T̃k, (6.11)

where

T̃k =

 Tk

SkE
T
k

 , Tk =



D1 ST1

S1 D2 ST2

S2 D3
. . .

. . .
. . . STk−1

Sk−1 Dk


, (6.12)

and Ek ∈ Rkr×r denotes the last r columns of the identity matrix of size kr×kr. Left multiplying

(6.11) by QTk gives the Rayleigh-Ritz projection

QTk pm(L−1AL−T)Qk = Tk. (6.13)

The matrix Tk is symmetric and banded, with a semi-bandwidth of size r. The eigenvalues of Tk

are the Ritz values of pm(L−1AL−T) associated with the subspace spanned by the columns of Qk

and for sufficiently large k the dominant eigenvalues of pm(L−1AL−T) will be well approximated

by these Ritz values. Of course we aren’t actually interested in the eigenvalues of pm(L−1AL−T)

103

but those of L−1AL−T . We can recover these eigenvalues by using the fact that pm(L−1AL−T)

has the same eigenvectors as L−1AL−T . Assuming that an eigenvector v of pm(L−1AL−T) has

been computed accurately we can recover the corresponding eigenvalue λ of L−1AL−T from the

Rayleigh quotient of v:

λ =
vTL−1AL−T v

vT v
. (6.14)

In practice we will often have only a good approximation v̂ of v. The approximate eigenvector

v̂ will be a Ritz vector of pm(L−1AL−T) associated with Qk. To compute these Ritz vectors

we first compute an eigendecomposition of Tk. Since Tk is real and symmetric there exists an

orthogonal matrix Wk ∈ Rrk×rk and a diagonal matrix Λk ∈ Rrk×rk such that

TkWk = WkΛk. (6.15)

Combining (6.11) and (6.15), the Ritz vectors of p(L−1AL−T) are formed as V̂k = QkWk.

6.4 Experiments

In this section we illustrate the performance of our GPU implementation of the FLP described

above. Our test matrices (Hamiltonians) originate from electronic structure calculations. In

this setting, one is typically interested in computing a few eigenvalues around the Fermi level of

each Hamiltonian. The Hamiltonians were generated using the PARSEC package [64] and can

be also found in the SuiteSparse matrix collection. These Hamiltonians are real, symmetric, and

have clustered, as well as multiple, eigenvalues. Polynomial filtering has often been reported

to be the most efficient numerical method for solving eigenvalue problems with the PARSEC

matrix collection [68, 67, 105, 106, 109, 66]. Table 6.1 lists the size n, the total number of

non-zero entries nnz, as well as the endpoints of the spectrum of each matrix, i.e., the interval

[λmin, λmax]. The average number of nonzero entries per row for each Hamiltonian is quite large,

a consequence of the high-order discretization and the addition of a (dense) “non-local” term.

Figure 6.3 plots the sparsity pattern of matrix “Si41Ge41H72”.

All GPU experiments in this section were implemented using the Cucheb library and per-

formed on a machine which has an Intel Xeon E5-2680 v3 2.50GHz processor with 128GB of

CPU RAM and two Nvidia K40 GPUs each with 12GB of GPU RAM and 2880 computer cores.

104

Figure 6.3: Sparsity pattern of matrix Si41Ge41H72.

We made no attempt to access mutliple GPUs and all the experiments were performed using a

single K40.

Matrix n nnz nnz/n Spectral interval

Ge87H76 112, 985 7, 892, 195 69.9 [−1.21e+0, 3.28e+1]
Ge99H100 112, 985 8, 451, 395 74.8 [−1.23e+0, 3.27e+1]
Si41Ge41H72 185, 639 15, 011, 265 80.9 [−1.21e+0, 4.98e+1]
Si87H76 240, 369 10, 661, 631 44.4 [−1.20e+0, 4.31e+1]
Ga41As41H72 268, 096 18, 488, 476 69.0 [−1.25e+0, 1.30e+3]

Table 6.1: A list of the PARSEC matrices used to evaluate our GPU implementation, where
n is the dimension of the matrix, nnz is the number of nonzero entries and [λmin, λmax] is the
spectral interval.

6.4.1 GPU benchmarking

The results of the GPU experiments are summarized in Table 6.2. The variable ‘interval’ for

each Hamiltonian was set so that it included roughly the same number of eigenvalues from

the left and right side of the Fermi level, and in total ‘eigs’ eigenvalues. For each matrix and

105

interval [α, β] we repeated the same experiment five times, each time using a different degree

m for the filter polynomial. The variable ‘iters’ shows the number of FLP iterations, while

‘MV’ shows the total number of matrix-vector products (MV) with A, which is computed using

the formula ‘MV’ = rm × ‘iters’. Throughout this section, the block size of the FLP will

be equal to r = 3. Finally, the variables ‘time’ and ‘residual’ show the total compute time

and maximum relative residual of the computed eigenpairs. The first four rows for each matrix

correspond to executions where the degree m was selected a priori. The fifth row corresponds

to an execution where the degree was selected automatically by our implementation, using the

mechanism described in (6.9). As expected, using larger values for m leads to faster convergence

in terms of total iterations, since higher degree filters are better at separating the wanted and

unwanted portions of the spectrum. Although larger degrees lead to less iterations, the amount

of work in each filtered Lanczos iteration is also increasing proportionally. This might lead to

an increase of the actual computational time, an effect verified for each one of the matrices in

Table 6.2.

Table 6.3 compares the percentage of total computation time required by the different sub-

processes of the FLP method. We denote the preprocessing time, which consists solely of

approximating the upper and lower bounds of the spectrum for A, by ‘PREPROC’. We also

denote the total amount of time spent in the full reorthogonalization and the total amount of

time spent in performing all MV products of the form pm(L−1AL−T)v on the GPU, by ‘ORTH’

and ‘MV’ respectively. As we can verify, all matrices in this experiment devoted no more than

12% of the total compute time to estimating the spectral interval (i.e. the algebraically small-

est/largest eigenvalues λmin/λmax of the matrix pencil (A,M)). For each one of the PARSEC

test matrices, the dominant cost came from the MV products, due to their relatively large num-

ber of non-zero entries. Note that using a higher degree m will shift the cost more towards the

MV products, since the Lanczos procedure will typically converge in fewer outer steps and thus

the orthogonalization cost reduces.

We would like to note that the Cucheb software package is capable of running Lanczos

without filtering. We originally intended to compare filtered Lanczos with standard Lanczos on

the GPU, however for the problems considered in this chapter the number of Lanczos vectors

required for convergence exceeded the memory of the K40 GPU. This suggests that for these

particular problems filtering is not only beneficial for performance but also necessary if this

106

Matrix interval nev m iters MV time residual

50 210 31, 500 31 1.7e−14
100 180 54, 000 40 4.0e−13

Ge87H76 [−0.645,−0.0053] 212 150 150 67, 500 44 7.4e−14
200 150 90, 000 56 6.3e−14
49 210 30, 870 31 9.0e−14
50 210 31, 500 32 6.2e−13

100 180 54, 000 41 8.6e−13
Ge99H100 [−0.650,−0.0096] 250 150 180 81, 000 56 5.0e−13

200 180 108, 000 70 1.1e−13
49 210 30, 870 32 3.2e−13
50 210 31, 500 56 6.4e−13

100 180 54, 000 73 2.0e−11
Si41Ge41H72 [−0.640,−0.0028] 218 150 180 81, 000 99 5.6e−14

200 150 90, 000 104 5.0e−13
61 180 32, 940 52 8.9e−13
50 150 22, 500 38 3.5e−14

100 90 27, 000 35 4.0e−15
Si87H76 [−0.660,−0.3300] 107 150 120 54, 000 63 9.1e−15

200 90 54, 000 60 1.3e−13
98 90 26, 460 35 1.2e−14

200 240 144, 000 225 1.5e−15
300 180 162, 000 236 2.1e−15

Ga41As41H72 [−0.640, 0.0000] 201 400 180 216, 000 306 2.5e−15
500 180 270, 000 375 1.0e−12
308 180 166, 320 242 1.5e−15

Table 6.2: Computing the eigenpairs inside an interval using FLP with various filter polynomial
degrees. Times listed are in seconds.

particular hardware is used.

6.4.2 CPU-GPU comparison

Figure 6.4 shows the speedup of the GPU FLP implementation over the CPU-based counterpart.

The CPU results were obtained by executing the FILTLAN software package on the Mesabi linux

cluster at University of Minnesota Supercomputing Institute. The FILTLAN package has the

107

Matrix m iters PREPROC ORTH MV

50 210 7% 22% 52%
100 180 5% 13% 71%

Ge87H76 150 150 5% 9% 80%
200 150 4% 7% 84%
49 210 7% 21% 52%
50 210 7% 21% 53%

100 180 5% 13% 71%
Ge99H100 150 180 4% 10% 79%

200 180 3% 8% 83%
49 210 7% 21% 53%
50 210 10% 19% 55%

100 180 8% 12% 72%
Si41Ge41H72 150 180 6% 9% 80%

200 150 5% 6% 84%
61 180 11% 17% 61%
50 150 11% 22% 54%

100 90 12% 12% 70%
Si87H76 150 120 7% 10% 78%

200 90 7% 7% 83%
98 90 12% 13% 70%

200 240 4% 8% 82%
300 180 4% 5% 88%

Ga41As41H72 400 180 3% 4% 91%
500 180 2% 3% 93%
308 180 4% 5% 89%

Table 6.3: Percentage of total compute time required by various components of the algorithm.
For all these examples the dominant computational cost are the matrix-vector multiplications
(MV).

option to link the Intel Math Kernel Library (MKL) when it, as well as a compatible Intel

compiler are available. For these experiments we used the Intel compiler icpc version 11.3.2.

We have divided the comparison into four parts: a “low degree” situation when m = 50

(m = 200 for Ga41As41H72), and a “high degree” situation when m = 100 (m = 300 for

Ga41As41H72) and within each of these we also executed FILTLAN using both 1 thread and 24

threads. The multithreading was handled entirely by the MKL. In the single thread case, the

GPU implementation obtains a speedup which ranges between 10 and 14. In the 24 thread case,

which corresponds to one thread per core on this machine, the speedups ranged between 2 and

3.

108

G
e 87

H 76

G
e 99

H 100

S
i 41

G
e 41

H 72

S
i 87

H 76

G
a 41

A
s 41

H 72

0

2

4

6

8

10

12

14
GPU v. CPU speedups, τ:= # of threads in MKL

τ=1

τ=4

τ=8

τ=12

τ=16

τ=20

τ=24

Figure 6.4: Speedup of the GPU FLP implementation over the CPU (FILTLAN) for the PAR-
SEC test matrices.

6.5 Summary

In this chapter we presented a GPU implementation of the filtered Lanczos procedure for solving

large and sparse eigenvalue problems such as those that arise from real-space DFT methods in

electronic structure calculations. Our experiments indicate that the use of GPU architectures

in the context of electronic structure calculations can provide a speedup of at least a factor

of 10 over a single core CPU-based implementation, and at least of factor of 2 over a 24 core

CPU-based implementation.

Part II

Root-finding techniques

109

Chapter 7

The method of single linear

approximations

This chapter presents domain decomposition algorithms a root-finding technique based on spec-

tral Schur complements.1 In contrast with filtering techniques described so far, root-finding

techniques approximate each sought eigenpair of the matrix pencil (A,M) independently of

each other. The main idea is to compute the pair
(
λi, y

(i)
)

of each sought eigenpair
(
λi, x

(i)
)

of

(A,M), x(i) =
[(
u(i)
)T
,
(
y(i)
)T]T

, by recasting the interface eigenvalue problem S(λi)y(λi) = 0

into one of a root-finding. This root-finding problem can be solved by Newton’s method. The

remaining part of x(i), u(i), is then computed by solving the linear system B−1
λi
u(i) = −Eλy(i).

This chapter is organized as follows: Section 7.1 introduces the concept of eigenbranches;

a parameterization of the eigenvalues of the matrix-valued function S(σ). Section 7.2 proposes

a Newton-based scheme for the computation of a single eigenpair of the matrix pencil (A,M).

Section 7.3 provides insight on the behavior of the eigenbranches as they cross the poles of

S(σ). Section 7.4 discusses a generalization to the computation of more than one eigenpairs of

the matrix-pencil (A,M). Section 7.5 presents numerical experiments on distributed memory

environments. Finally, a summary is given in Section 7.6.

1This is joint work with Ruipeng Li (Lawrence Livermore National Laboratory) and Yousef Saad (University
of Minnesota, Twin Cities)

110

111

7.1 Eigenbranches

Consider the following parameterized symmetric eigenvalue problem, stemming by a zero-order

approximation of S(λ) around a real scalar σ ∈ R:

S(σ)yj(σ) = µj(σ)yj(σ),

where µj(σ) denotes the jth, j = 1, . . . , s, eigenvalue of the pencil S(σ) in a sorted (algebraic)

ascending order, and yj(σ) denotes the corresponding eigenvector.

Definition 7.1.1 The scalar function µj(σ) : R→ R,

µj(σ) =
yTj (σ)S(σ)yj(σ)

yTj (σ)yj(σ)
, (7.1)

will be referred to as the j’th eigenbranch of S(σ), j = 1, . . . , s. Throughout this chapter, the

numbering of the eigenbranches will be based on their algebraic value, i.e., µ1(σ) ≤ . . . ≤ µs(σ).

Moreover, let µj(σ), j = 1, . . . , s be defined as in (7.1), and consider the following integer:

κσ = arg min1≤j≤s |µj(σ)|. (7.2)

We then define the functions µ(σ) : R→ R and y(σ) : R→ Rs,

µ(σ) := µκσ (σ), y(σ) := yκσ (σ),

i.e., (µ(σ), y(σ)) denotes the eigenpair associated with the eigenvalue of smallest magnitude of

the matrix pencil S(σ).

The main idea behind the numerical approach presented in this chapter is that a scalar σ ∈ R

will be an eigenvalue of (A,M) if and only if µ(σ) = 0, i.e., S(σ) is singular. The question now

becomes how to find a σ for which S(σ) is singular. One idea, adopted in [17], is to consider the

equation det(S(σ)) = 0 but this is not practical for large problems. On the other hand, S(σ)

will be singular exactly when at least one of µj(σ), j = 1, . . . , s is zero. With this, the original

eigenvalue problem can be reformulated as that of finding a shift σ such that the eigenvalue of

smallest magnitude, µ(σ), of S(σ) is zero.

112

0 0.05 0.1

σ

-0.1

-0.05

0

0.05

0.1
µ

j(σ
)

Eigs 1 through 8 in [0.0 0.1]

0 0.05 0.1

σ

-0.1

-0.05

0

0.05

0.1

µ
j(σ

)
a
n
d

µ

(σ
)

Eigs 1 through 8 in [0.0 0.1]

Figure 7.1: Visualization of µj(σ) and µκσ (σ) for a 2D Laplacian matrix. The red circles along
the real axis denote eigenvalues of the pencil (A,M). Left: Eigenbranches µj(σ), j = 1, . . . , 8.
Right: Eigenbranches µj(σ), j = 1, . . . , 8 (dotted lines) and µκσ (σ) ≡ µ(σ) (solid line). Each
eigenvalue of (A,M) is a root of (at least) one eigenbranch, and thus a root of µ(σ) as well.

The advantage of working directly with µ(σ) is that it allows the computation of any eigen-

value λ of (A,M) without the explicit knowledge of the particular index 1 ≤ j ≤ s for which

δj(λ) = 0. In this chapter we consider Newton’s method as the root-finding technique [114].

One potential complication with this choice is that µ(σ) is not differentiable across its entire

domain of definition. This can be easily verified by Figure 7.1 (right subfigure) where we plot

the function µ(σ) (solid line) on top of the first few eigenbranches µj(σ) (dotted lines). As we

can observe, the index κσ defined in (7.2) does not remain constant as σ varies. Nonetheless,

Newton’s method can still be applied if during its application the integer κσ remains fixed. This

follows from the analyticity of the eigenbranches.

Proposition 7.1.1 For any σ ∈ R, the first derivative of S(σ), S′(σ), is given by

S′(σ) =
dS(σ)

dσ
= −MC − ETσB−1

σ MBB
−1
σ Eσ + ETσB

−1
σ ME +MT

EB
−1
σ Eσ. (7.3)

Moreover, the matrix −S′(σ) is SPD.

Proof: Let ω ∈ R. We can write

S(σ + ω) = Cσ − ωMC − (Eσ − ωME)T (Bσ − ωMB)−1(Eσ − ωME)

= Cσ+ω − ETσB−1
σ+ωEσ + ω

(
ETσB

−1
σ+ωME +MT

EB
−1
σ+ωEσ − ωMT

EB
−1
σ+ωME

) (7.4)

113

Taking the derivative of S(σ + ω) with respect to ω leads to:

S′(σ + ω) = −MC + ETσB
−1
σ+ωME +MT

EB
−1
σ+ωEσ − ETσ

[
B−1
σ+ω

]′
Eσ +R(ω),

where

R(ω) = ωMT
E

[
B−1
σ+ω

]′
Eσ + ωETσ

[
B−1
σ+ω

]′
ME − 2ωMT

EB
−1
σ+ωME − ω2MT

E

[
B−1
σ+ω

]′
ME ,

and

B−1
σ+ω = B−1

σ

∑
`=0

[
ωMBB

−1
σ

]`
.

The result in (7.3) follows by setting S′(σ) = S′(σ + ω)ω=0 and noticing that

[
B−1
σ+ω

]′
ω=0

= B−1
σ MBB

−1
σ ,

and R(0) = 0.

To show the second item, let matrix Uσ ∈ Rn×n be defined as

Uσ =

I −B−1
σ Eσ

0 I

 .

Then,

UTσMUσ =

 I 0

ETσB
−1
σ I


MB ME

MT
E MC


I B−1

σ Eσ

0 I


=

 MB ME −MBB
−1
σ Eσ

MT
E − ETσB−1

σ MB T

 ,

where

T = MC −MT
EB
−1
σ Eσ − ETσB−1

σ ME + ETσB
−1
σ MBB

−1
σ Eσ

is a principal submatrix of UTσMUσ. Recalling that M is SPD (and thus UTσMUσ is also SPD)

and noticing that T = −S′(σ) concludes the proof. �

Proposition 7.1.2 The eigenbranches µj(σ), j = 1, . . . , s are analytic at any point σ /∈ Λ(B,MB),

114

where Λ(B,MB) denotes the spectrum of (B,MB). The derivative of each eigenbranch at these

points is given by

µ′j(σ) =
dµj(σ)

dσ
= −

yTj (σ)S′(σ)yj(σ)

yTj (σ)yj(σ)
(7.5)

Proof: Differentiating S(σ)yj(σ) = µj(σ)yj(σ) with respect to σ leads to

S′(σ)yj(σ) + S(σ)y′j(σ) = µ′j(σ)yj(σ) + µj(σ)y′j(σ),

where after collecting terms we get

(S(σ)− θj(σ)I)y′j(σ) = −S′(σ)yj(σ)− µ′j(σ)yj(σ).

Multiplying by yTj (σ) from the left, and noticing that yTj (σ)(S(σ)− θj(σ)I) = 0, leads to (7.5).

The analyticity of µj(σ) and yj(σ) follows directly from [115] (see also [116]) with the results

also holding for multiple (semi-simple) eigenvalues. �

Corollary 7.1.2.1 The eigenbranches µj(σ), j = 1, . . . , s, are strictly decreasing for any σ ∈ R.

7.2 An algorithm for computing a single eigenpair

Algorithm 7.2.1 sketches the main steps of Newton’s root-finding applied to the scalar function

µ(σ). For any σ, Algorithm 7.2.1 computes the eigenpair (µ(σ),y(σ)) of the matrix S(σ), and

evaluates the derivative µ′(σ) to update σ. The algorithm terminates as soon as |µ(σ)| becomes

smaller than a threshold tolerance tol, which, together with an initial approximation of the

sought eigenvalue, are the only inputs of Algortihm 7.2.1.

115

Algorithm 7.2.1 Root-finding eigenvalue solver

0. Given tol ∈ R and an initial approximation σ ∈ R

1. Do while (true):

2. Solve S(σ)y(σ) = µ(σ)y(σ) for the eigenvalue µ(σ)

of smallest magnitude and associated eigenvector y(σ)

3. If |µ(σ)| ≤ tol, break;

4. Compute µ′(σ) = −y
T (σ)S′(σ)y(σ)

yT (σ)y(σ)

5. Update σ = σ − µ(σ)

µ′(σ)

6. EndDo

7. Return σ and x̂ =
[
−(B−1

σ Eσy(σ))T , yT (σ)
]T

Algorithm 7.2.1 does not specify how to extract the eigenpair (µ(σ), y(σ)) in Step (3) for

any σ. All that is needed is the eigenvalue of S(σ) closest to zero and its associated eigenvector.

This is a perfect setting for a form of inverse iteration [117]. Alternatively, we can use the

Lanczos method with partial orthogonalization and perform as many steps as needed to compute

(µ(σ), y(σ)).

Proposition 7.2.1 Let σ /∈ {Λ(A,M) ∪ Λ(B,MB)} and let µ(s)(σ) denote the eigenvalue of

smallest magnitude of matrix Ss(σ) where 1 ≤ s < n denotes the size of the matrix S(σ), i.e.,

the total number of interface variables. Then

∣∣∣µ(s2)(σ)
∣∣∣ ≤ ∣∣∣µ(s1)(σ)

∣∣∣
for any 1 ≤ s1 < s2 ≤ n− 1.

Proof: Recall the identity

S(σ)−1 =

n∑
i=1

1

λi − σ
y(i)

(
y(i)
)T

,

116

where y(i) is the bottom s×1 part of the ith eigenvector x(i) =
[(
u(i)
)T
,
(
y(i)
)T]T

of the matrix

pencil (A,M). The eigenvalue equation S(σ)y(σ) = µ(σ)y(σ) can be written equivalently as

S(σ)−1y(σ) =
1

µ(σ)
y(σ). By the Courant-Fischer-Weyl min-max principle we then have either

1

µ(σ)
= min‖r‖=1 r

TS(σ)−1r (if µ(σ) < 0) or
1

µ(σ)
= max‖r‖=1 r

TS(σ)−1r (if µ(σ) > 0).

Now, let Ss1(σ) and Ss2(σ) be the Schur complement matrices associated with two different

values for the number of interface variables (i.e., the size of matrix Cσ), and let 1 ≤ s1 < s2 ≤

n− 1. In addition, denote the corresponding vectors y(i) of eigenvector x(i) of the matrix pencil

(A,M) as y
(i)
s1 and y

(i)
s2 , respectively. Then

Ss2(σ)−1 =

n∑
i=1

1

λi − σ
y(i)
s2

(
y(i)
s2

)T

=

∗ ∗

∗
∑n
i=1

1

λi − σ
y

(i)
s1

(
y

(i)
s1

)T


=

∗ ∗

∗ Ss1(σ)−1

 ,

i.e., matrix Ss1(σ)−1 is a principal submatrix of matrix Ss2(σ)−1. Therefore, by Cauchy’s matrix

interlacing theorem we get ∣∣∣∣ 1

µ(s2)(σ)

∣∣∣∣ ≥ ∣∣∣∣ 1

µ(s1)(σ)

∣∣∣∣∣∣∣µ(s2)(σ)
∣∣∣ ≤ ∣∣∣µ(s1)(σ)

∣∣∣ .
�

Figure 7.2 plots the values of
∣∣µ(s)(σ)

∣∣ as σ and s vary for a matrix obtained by a 5-pt stencil

discretization of the Laplace operator in [0, 1]× [0, 1]. Regardless of the value of σ,
∣∣µ(s)(σ)

∣∣ is

a decreasing function of s.

7.2.1 An equivalent update scheme for Newton’s method

Since Algorithm 7.2.1 is Newton’s method, we expect that if the initial shift σ is “close enough” to

an eigenvalue λ of (A,M), Algorithm 7.2.1 will converge quadratically to λ [114]. By Proposition

7.1.2, each eigenbranch is an analytic branch and the first derivative is always non-zero (bounded

from above by -1). In addition the second derivative of µ(σ) is finite for any σ /∈ Λ(B,MB).

117

0 50 100

Number of interface variables (s)

10
-6

10
-4

10
-2

10
0

10
2

µ
(s
) (
σ
)

σ = 0.0600
σ = 0.1746
σ = 0.2411

Figure 7.2: Plot of
∣∣µ(s)(σ)

∣∣ for different values of σ and s.

Therefore, when the scheme converges, it will do so quadratically.

Let

x̂(σ) =

−B−1
σ Eσy(σ)

y(σ)

 . (7.6)

be the approximate eigenvector associated with the approximate eigenvalue σ of the matrix

pencil (A,M). The approximate eigenpair (σ, x̂(σ)) has a special residual. Indeed,

(A− σM)x̂(σ) =

Bσ Eσ

ETσ Cσ

−B−1
σ Eσy(σ)

y(σ)

 =

 0

µ(σ)y(σ)

 . (7.7)

Proposition 7.2.2 Let σj+1 = σj + µ(σj)/(1 + η2
j) be the Newton update at the j’th step of

Algorithm 7.2.1, where we set ηj = ‖B−1
σj Eσjy(σj)‖2. Then, σj+1 = ρ(A,M, x̂(σj)), where

ρ(A,M, x̂(σj)) =
x̂T (σj)Ax̂(σj)

x̂T (σj)Mx̂(σj)
is the Rayleigh Quotient of (A,M) with respect to the vector

x̂(σj) defined by (7.6).

Proof: For simplicity, set x̂ ≡ x̂(σj) and assume, without loss of generality, that ‖y(σj)‖ = 1.

We can write ρ(A,M, x̂) = σj + ρ(A−σjM,M, x̂). The right term of the right-hand is equal to

ρ(A− σjM, x̂) =
x̂T (A− σjM)x̂

x̂TMx̂
. (7.8)

118

The expressions (7.6) and (7.7) show that x̂T (A − σjM)x̂ = µ(σj) while x̂T x̂ = 1 + η2
j . Thus,

ρ(A− σjM,M, x̂) = µ(σj)/(1 + η2
j) and so ρ(A,M, x̂) = σj + µ(σj)/(1 + η2

j) = σj+1. �

Note that the equivalent update formula discussed in Proposition 7.2.2 is primarily of theo-

retical interest. In practice, we use the update formula provided in Step 5 of Algorithm 7.2.1.

When µ(σ) = 0 then σ is an eigenvalue of the matrix pencil (A,M). In general, we expect

that the closer µ(σ) is to zero, the closer the approximate eigenpair (σ, x̂(σ)) should be to an

eigenpair (λ, x) of the matrix pencil (A,M).

Proposition 7.2.3 Let x̂(σ) be defined as in (7.6). Then,

‖Ax̂(σ)− σMx̂(σ)‖
‖x̂(σ)‖

≤ |µ(σ)|.

Proof: The relation in (7.7) shows immediately that:

‖Ax̂(σ)− σMx̂(σ)‖
‖x̂(σ)‖

=
|µ(σ)|√
1 + η2

. (7.9)

where η = ‖B−1
σ Eσy(σ)‖. �

7.3 Eigenbranches across the poles

In the following we will refer to the eigenvalues of the matrix pencil (B,MB) simply as the

“poles”. An interesting property is revealed when observing the eigenvalues across the poles.

While the matrix S(σ) is not defined at a pole, the plot reveals that individual eigenvalues may

exist and, quite interestingly, seem to define differentiable branches across the poles. Informally,

we can say that in this situation S(σ) has one infinite eigenvalue and s− 1 finite ones.

To explain this observation, let δ1,. . .,δd be the eigenvalues of (B,MB) with associated eigen-

vectors v1, . . . , vd, and consider S(σ) written in the following form

S(σ) = Cσ − ETσB−1
σ Eσ = Cσ −

d∑
j=1

wjw
T
j

θj − σ
, with wj ≡ ETσ vj . (7.10)

We assume for simplicity that δk is a simple eigenvalue in what follows. The operator S(σ) is

not formally defined when σ equals one eigenvalue δk of (B,MB). However, it can be defined

on a restricted subspace, namely the subspace {wk}⊥ and eigenvalues of this restricted operator

119

0 0.05 0.1 0.15 0.2

σ

-0.1

-0.05

0

0.05

0.1
µ

j(σ
)

Eigs 1 through 12 in [0.0 0.2]

0 0.05 0.1 0.15

σ

-4

-3

-2

-1

0

µ
j(σ

)

Eigs 1 through 4 in [0.0 0.1]

Figure 7.3: Visualization of µj(σ) and µκσ (σ) for a 2D Laplacian matrix. The red circles
along the real axis denote eigenvalues of the pencil (A,M). The red dashed vertical lines denote
eigenvalues of the pencil (B,MB). Left: eigenbranches µj(σ), j = 1, . . . , 12 chased across panels
defined by consecutive eigenvalues of the pencil (B,MB). Right: focus on eigenbranches µ1(σ)
and µ2(σ) as σ crosses the two algebraically smallest eigenvalues of the pencil (B,MB).

are finite.

Accordingly we let ŵk = wk/‖wk‖ and define the orthogonal projector

Pk = I − ŵkŵTk (7.11)

and

Sk(σ) ≡ Cσ −
d∑

j=1,j 6=k

wjw
T
j

δj − σ
, Sk,|(σ) = [PkSk(σ)Pk]|wk⊥ , (7.12)

where[PkSk(σ)Pk]|wk⊥ denotes the restriction of PkSk(σ)Pk to the subspace orthogonal to wk.

The operator Sk,|(σ) defined above is an operator from Rs−1 to itself that acts only on

vectors of wk
⊥. We denote its eigenvalues, also labeled increasingly, by µj(Sk,|(σ)). Apart from

an extra zero eigenvalue, the spectrum of PkSk(σ)Pk is identical with that of Sk,|(σ). The next

theorem examines closely the eigenvalues of S(σ) as σ converges to δk from the left or the right

direction.

Theorem 7.3.1 When δk is a simple eigenvalue then the following equalities hold:

lim
σ→δ−k

µj(σ) =

 −∞ if j = 1

µj−1(Sk,|) if j > 1
, lim
σ→θ+k

µj(σ) =

 +∞ if j = s

µj(Sk,|) if j < s
. (7.13)

120

Proof: Consider the first part of the theorem (σ → δ−k) and assume that σ is in an interval

[σ0, δk] that contains no other poles than δk. We define for any nonzero vector r the two Rayleigh

quotients:

ρ(σ, r) =
(S(σ)r, r)

(r, r)
, ρk(σ, r) =

(Sk(σ)r, r)

(r, r)
. (7.14)

Note that from (7.10) we have the following relation for a vector r of unit length:

ρ(σ, r) = ρk(σ, r)− (wTk r)
2

δk − σ
. (7.15)

For j = 1 we have µ1(σ) = minr 6=0 ρ(σ, r). By taking r = wk/‖wk‖ in (7.15), the term

−(wTk r)
2/(δk−σ) can be made arbitrarily large and negative when σ → δ−k . Hence, the minimum

of ρ(σ, r) will have a limit of −∞ when σ → δ−k . The vector wk can be viewed as an eigenvector

associated with this infinite ‘eigenvalue’.

Consider now the situation when j > 1. We first show that the limit of µj(σ) is finite. For

this we invoke the Min-Max theorem [118]:

µj(σ) = min
Uj ,dim(Uj)=j

max
r∈Uj ,‖r‖=1

ρ(σ, r). (7.16)

Take any subspace U j of dimension j. Since U j is of dimension j > 1 and dim{wk}⊥ = s − 1,

there is a nonzero vector in the intersection U j ∩ {wk}⊥. Note also that for any σ ∈ [σ0, δk],

Sk(σ) has no poles and so the term ρk(σ, r) is bounded from below by a certain (finite) value η

for any r of unit length and any σ ∈ [σ0, δk]. Therefore,

max
r∈Uj ,‖r‖=1

ρ(σ, r) ≥ max
r∈Uj∩ {wk}⊥,‖r‖=1

ρ(σ, r) = max
r∈Uj∩ {wk}⊥,‖r‖=1

ρk(σ, r) ≥ η.

This is true for all U j of dimension j > 1 and all σ ∈ [σ0, δk]. As a result, µj(σ) which is the

smallest of these maxima over all U j ’s of dimension j, is also ≥ η and so is its limit as σ → δ−k .

Thus limσ→δ−k
µj(σ) ≥ η.

Now let j > 1 and yj(σ) be a (unit) eigenvector of S(σ) associated with the eigenvalue µj(σ).

For each σ we have

µj(σ) = ρ(σ, yj(σ)) = ρk(σ, yj(σ))− (yj(σ)Twk)2

δk − σ
.

121

Thus, (yj(σ)Twk)2 = (δk − σ)(ρk(σ, yj(σ))− µj(σ)), and since ρk(σ, yj(σ)) is bounded for σ ∈

[σ0, δk] and µj(σ) ≥ η, we must have limσ→δ−k
wTk yj(σ) = 0.

Multiplying the equality S(σ)yj(σ) = µj(σ)yj(σ) on both sides from the left by Pk and

making use of the identities yj(σ) = Pkyj(σ) + (ŵTk yj(σ))ŵk, and PkS(σ)Pk = PkSk(σ)Pk,

yields the relation:

PkSk(σ)Pkyj(σ)− µj(σ)Pkyj(σ) = −PkSk(σ)(ŵTk yj(σ))ŵk.

The above expresses the residual of the approximate eigenpair (µj(σ), Pkyj(σ)) with respect to

PkSk(σ)Pk.2 When σ → δ−k , the operator PkSk(σ)Pk converges to PkSk(δk)Pk which is now

well defined. Since limσ→δ−k
(ŵTk yj(σ)) = 0, the above residual converges to zero. Therefore, the

eigenpair (µj(σ), Pkyj(σ)) converges to an eigenpair of PkSk(δk)Pk, which is a trivial extension

of Sk,|.

Now we know that each j-th eigenvalue, with j > 1, converges to an eigenvalue of Sk,|, but

it is left to determine to which one. Consider the case j = 2, i.e., the eigenpair (µ2(σ), y2(σ)).

The eigenvalue µ2(σ) is the minimum of ρ(σ, r) over the set of all vectors r that are orthogonal

to y1(σ). Therefore,

µ2(σ) = min
{
ρ(σ, t) |t =

(
I − y1(σ)y1(σ)T

)
r 6= 0, r ∈ Rs

}
. (7.17)

Since limσ→δ−k
y1(σ) = ŵk (in direction) the limit of the above quantity as σ → δ−k is

lim
σ→δ−k

µ2(σ) = min{ρk(δk, t) |t = (I − ŵkŵTk)r, r ∈ Rs}.

The Rayleigh quotient ρk(δk, t) which can be written as

ρk(δk, t) =
(Pkr)

T [PkSk(δk)Pk](Pkr)

(Pkr)T (Pkr)T

must be minimized over all vectors r such that Pkr be nonzero, i.e., over all vectors t = Pkr

that are nonzero members of {wk}⊥. The minimum of this quantity is the smallest eigenvalue

of Sk,|. The proof for the other eigenvalues is similar except that for the jth eigenvalue we now

2Note that Pkyj(σ) = P 2
k yj(σ)

122

need to use cumulative projectors, i.e., t in (7.17), is to be replaced by

t =
(
I − yj−1(σ)yj−1(σ)T

)
· · ·
(
I − y2(σ)y2(σ)T

) (
I − y1(σ)y1(σ)T

)
r.

The proof for the second part of the theorem is a trivial extension of the above proof,

provided the eigenvalues are labeled decreasingly instead of increasingly for the proof. Then we

would obtain (for this labeling) limσ→δ+k
µ1(σ) = +∞ and limσ→δ+k

µj(σ) = µj−1(Sk,|) when

j > 1. Relabeling the eigenvalues increasingly yields the result by noting that Sk,| has s − 1

eigenvalues. �

For simplicity we assumed that δk(σ) has multiplicity equal to one, but the result can be

easily extended to more general situations.

7.4 A branch-hopping algorithm

The discussion above suggests an algorithm for computing all eigenvalues in an interval [α, β] by

selecting the shifts carefully. We start with a shift σ equal to α then iterate as in Algorithm 7.2.1

until convergence. Once the first eigenvalue has converged we need to catch the next branch of

eigenvalues. Since we are moving from left to right we will just select the next positive eigenvalue

of S(σ) after the zero eigenvalue µ(σ) which has just converged. We would then extract the

corresponding eigenvector and compute the next σ by Newton’s scheme as in Algorithm 7.2.1.

The “Branch-hopping” idea just described above can be formulated as an iterative procedure

and is listed as Algorithm 7.4.1.

Algorithm 7.4.1 Branch hopping Newton-Spectral Schur complement

0. Given α, β. Select σ = α

1. While σ < β

2. Until convergence Do:

3. Compute µ(σ) = Smallest eigenvalue in modulus of S(σ)

-. along with the associated unit eigenvector y(σ)

4. If (|µ(σ)| < tol)

5. σ and associated eigenvector have converged – save them

6. Obtain µ(σ) = smallest positive eigenvalue of S(σ)

123

-. along with the associated unit eigenvector y(σ)

7. End

8. Set µ′(σ) = −y
T (σ)S′(σ)y(σ)

yT (σ)y(σ)

9. Set σ := σ − µ(σ)/µ′(σ)

10. End

11. End

Similarly to Algorithm 7.2.1, Step (3) in Algorithm 7.4.1 is performed using a form of the

inverse iteration algorithm with the matrix S(σ), in which an iterative method (with or without

preconditioning) is invoked to solve the linear systems. Algorithm 7.4.1 can be optionally tied

with some form of inverse iteration to obtain a more accurate shift σ for the next target eigenvalue

before the Newton scheme is applied. This is the purpose of Step (9+) right after Step (9).

If this optional step is used, Algorithm 7.4.1 reverts back to Newton’s iteration as soon as the

approximate eigenvalue is considered accurate enough. More sophisticated schemes to determine

when to switch from inverse iteration back to Newton’s iteration can be found in [119]. Regarding

the computation of the smallest positive eigenvalue in Step (6) of Algorithm 7.4.1, this step is

also computed using inverse iteration, with the difference that the computed eigenvector y(σ)

that corresponds to the eigenvalue of smallest magnitude in Step (3) is explicitly deflated to

avoid repeated convergence. See [120] for a detailed discussion on deflation for symmetric linear

systems.

7.5 Experiments

This section reports on numerical results with the Newton schemes proposed in Algorithms 7.2.1

and 7.4.1. All numerical experiments were performed on the Itasca Linux cluster at Minnesota

Supercomputing Institute.

We implemented and tested three different methods: a) (inexact) Residual Inverse Iteration

(RII) applied to (A,M) (each time with the appropriate shift), as discussed in [28], b) Newton’s

method as described in Algorithms 7.2.1 and 7.4.1, and c) a combination of (inexact) inverse

iteration with Algorithms 7.2.1 and 7.4.1 where we first perform a few steps of inverse iteration

with (A,M), followed by the Newton’s scheme. We chose to compare against RII mainly because

124

of its simplicity and the fact that it represents the most likely contender to our approach. As in

the proposed Newton approach, RII approximates an eigenpair “in-place”, e.g. without building

a subspace.

For Algorithms 7.2.1 and 7.4.1, the number of subdomains used will always equal the number

of MPI processes used. The matrix Bσ was factored by the LDL factorization, obtained by

the associated routine in the CHOLMOD [121] package. We did not consider any further high-

performance computing optimizations. For RII the inner tolerance for each linear system solution

was kept fixed. We tried different inner tolerances and report the best results obtained. For

Newton’s method, used either as a standalone method as in Algorithms 7.2.1 and 7.4.1, or pre-

processed by inverse iteration with (A,M), each update of σ was made after approximating

(µ(σ), y(σ)) by solving a linear system with S(σ), using a fixed tolerance of tol ls = 1e-2. For all

(iterative) linear system solutions, we used the MINimum RESisudal (MINRES) [122] method

as the iterative solver of choice (we used the existing implementation in PETSc). By default we

used no preconditioning for the inner linear system solution in any of the methods tested. The

residual norm tolerance for accepting an approximate eigenpair as accurate enough was set to tol

= 1e-8, although the proposed Newton method almost all the times returned an approximation

with residual norm less than 1e-10 or 1e-11. The residual norm was always evaluated directly by

using the formula ‖r‖ = ‖Ax̂(σ) − σMx̂(σ)‖/
√
x̂T (σ)TMx̂(σ). All experiments were repeated

multiple times and the average execution time is reported.

Throughout the rest of this section we will set M = I. Nonetheless, we will keep referring

to the matrix pencil form (A,M).

7.5.1 Results

Table 7.1 shows the actual wall-clock timings when computing nev = 1 and nev = 5 consecutive

eigenpairs next to ζ ∈ R for a set of 2D Laplacians, while Table 7.2 presents similar results for

a set of 3D Laplacians. The values of ζ were selected such that the eigenvalue problem was

either extremal or slightly interior for both problems. For the 2D problems we chose ζ = 0 and

ζ = 0.01 while for the 3D problems we set ζ = 0 and ζ = 0.1. The number in parentheses next

to ζ (when ζ > 0) denotes the number of negative eigenvalues of the matrix pencil (A−ζM,M).

As previously, p denotes the number of subdomains, s denotes the size of the Schur complement

matrix S(σ), and “It” denotes the total number of Newton steps performed by Algorithm 7.2.1

125

Table 7.1: Computing nev = 1 and nev = 5 eigenvalues next to ζ for a set of 2D problems. For
the case where ζ 6= 0, the starting shift for each particular eigenpair computation in Newton’s
scheme was provided by first performing three steps of Inverse Iteration. Times are listed in
seconds.

n = 601× 600

ζ = 0.0 ζ = 0.01 (269)

(p, nev) s TNT It TRII TNT It TRII

(16,1) 7951 2.21 3 3.18 70.2 4 128.2
(16,5) - - 11.1 15 16.2 363.0 19 615.8
(32,1) 12377 0.89 3 1.63 18.3 3 78.2
(32,5) - - 5.41 14 9.01 85.2 14 402.5
(64,1) 18495 0.28 3 0.77 13.9 3 58.3
(64,5) - - 1.94 14 3.63 67.3 14 192.4

n = 801× 800

ζ = 0.0 ζ = 0.01 (488)

(p, nev) s TNT It TRII TNT It TRII

(64,1) 24945 1.09 3 1.25 37.4 2 156.4
(64,5) - - 5.95 15 6.98 198.7 12 775.1
(128,1) 36611 0.27 2 0.67 24.0 2 75.4
(128,5) - - 1.31 9 3.82 125.0 11 382.1
(256,1) 52319 0.22 2 0.48 11.2 2 44.9
(256,5) - - 1.59 9 2.73 61.3 10 231.6

n = 1001× 1000

ζ = 0.0 ζ = 0.01 (764)

(p, nev) s TNT It TRII TNT It TRII

(128,1) 46073 0.42 3 1.03 95.3 2 102.1
(128,5) - - 2.84 15 5.33 482.7 10 532.1
(256,1) 65780 0.27 2 0.64 54.2 2 73.4
(256,5) - - 1.35 10 3.32 281.3 9 381.4
(512,1) 93440 0.25 2 0.58 49.4 2 58.1
(512,5) - - 1.42 10 3.21 256.7 10 312.8

126

(when nev = 1) or Algorithm 7.4.1 (when nev = 5). We denote the total time spent in Algorithm

7.2.1 or Algorithm 7.4.1 by “TNT ” while the time spent in RII applied to (A,M) is denoted as

“TRI”. All timings are listed in seconds. Because (µ(σ), y(σ)) is computed only approximately,

extra care must be taken in order to avoid divergence when ζ 6= 0. We always performed three

steps of (inexact) inverse iteration with (A,M) in order to “lock” the correct eigenpair(s) before

we switch to Newton’s scheme. In any case, the times reported are total running times and

include all phases.

For 2D problems there is a significant advantage of the Newton-based method, for both ζ = 0

and ζ = 0.01 values, as can be seen in Table 7.1. By using p = 256 subdomains, we can compute

the lowest eigenpair of a n ≈ 106 2D Laplacian in 0.2 seconds, while the five lowest eigenpairs

can be computed in about one second. The severe difference in the runtimes when changing from

ζ = 0.0 to ζ = 0.01 is due to the fact that A−0.01M is now indefinite and has a large number of

clustered eigenvalues very close to zero. Results for 3D problems are different from those of the

2D case and residual inverse iteration becomes more competitive relative to the Newton-based

approach. The main reason is that now iterating with the spectral Schur complement is more

expensive because the number of interface nodes, s, is larger and also the factorization of the

Bσ matrix is more expensive. The Newton-based approach becomes faster when we increase p.

As a general comment regarding the results, for both the 2D and 3D problems, the overall

cost typically scales linearly with the number of eigenpairs sought. This is a natural consequence

of the fact that our method is not a projection method and each eigenpair of (A,M) is computed

independently of the rest.

7.5.2 A comparison with ARPACK

This subsection provides a brief comparison between the Newton scheme and ARPACK [123],

a broadly used software package based on an implicitly restarted Arnoldi/Lanczos process. By

their different nature the two methods are not easy to compare but our goal here is to give a rough

idea on how the two methods perform when a small number of eigenvalues are to be computed.

ARPACK is expected to be superior to the Newton when a large number of eigenvalues is to

be computed. For the Newton scheme we used only one node of Itasca (8 cores). Thus, now

each core actually handles multiple subdomains. Under this framework we can also test the

performance of the Newton scheme in “serial” environments. For ARPACK, we set the size of

127

Table 7.2: Computing nev = 1 and nev = 5 eigenvalues next to ζ for a set of 3D problems. For
the case where ζ 6= 0, the starting shift for each particular eigenpair computation in Newton’s
scheme was provided by first performing three steps of Inverse Iteration. Times are listed in
seconds.

n = 41× 40× 39

ζ = 0.0 ζ = 0.1 (19)

(p, nev) s TNT It TRII TNT It TRII

(16,1) 15423 0.21 3 0.10 1.07 4 1.32
(16,5) - - 1.39 15 0.62 5.85 19 7.77
(32,1) 20037 0.06 3 0.03 0.27 2 0.90
(32,5) - - 0.32 14 0.19 1.52 14 4.86
(64,1) 24789 0.09 3 0.04 0.14 3 0.66
(64,5) - - 0.44 14 0.21 1.01 15 3.51

n = 71× 70× 69

ζ = 0.0 ζ = 0.1 (137)

(p, nev) s TNT It TRII TNT It TRII

(64,1) 83358 0.80 3 0.61 15.4 2 15.9
(64,5) - - 4.20 14 3.22 80.4 10 79.9
(128,1) 108508 0.19 3 0.32 3.12 2 8.41
(128,5) - - 1.25 14 1.71 15.1 10 38.5
(256,1) 136159 0.10 3 0.27 5.99 2 12.7
(256,5) - - 0.68 13 1.45 25.3 10 51.7

n = 101× 100× 99

ζ = 0.0 ζ = 0.1 (439)

(p, nev) s TNT It TRII TNT It TRII

(128,1) 230849 2.73 3 2.02 48.1 3 93.3
(128,5) - - 13.2 15 10.3 233.2 16 472.1
(256,1) 293626 1.10 3 1.61 23.4 3 62.4
(256,5) - - 5.80 14 8.32 129.2 16 301.5
(512,1) 369663 0.62 2 0.99 32.4 2 75.3
(512,5) - - 3.01 12 5.71 168.9 12 322.9

128

Table 7.3: Computing nev = 1 and nev = 5 eigenvalues next to ζ with the proposed Newton
scheme and ARPACK. The discretization selected as nx = 71, ny = 70, and nz = 69. Times are
listed in seconds.

ζ = 0.0 ζ = 0.1 (137)

(p, nev) TNT TARP TNT TARP

(64,1) 5.5 35.4 170.0 351.5
(128,1) 3.4 – 105.1 –
(256,1) 5.3 – 122.5 –
(64,5) 28.3 94.1 884.7 416.3
(128,5) 15.3 – 532.3 –
(256,5) 25.9 – 605.3 –

the search subspace equal to twenty and we used only one execution core. The tolerance tol for

the requested eigenpairs set again to tol = 1e − 8 for both methods. As a demonstration, we

used a single test 3D Laplacian with nx = 71, ny = 70, and nz = 69 discretization points in each

dimension. As previously, we selected ζ = 0 and ζ = 0.1.

Table 7.3 compares the execution times obtained of the Newton (TNT) and ARPACK (TARP)

schemes when searching for nev = 1 and nev = 5 eigenpairs of (A, I), and using a different

number of subdomains. Because ARPACK operates directly on (A, I) it is oblivious to the

number of subdomains used. On the other hand, the performance of the Newton scheme varies

as the number of subdomains changes.

As expected, ARPACK becomes more efficient than the Newton-based method as we increase

the number of eigenpairs sought for the specific problem, especially for eigenvalues deeper into

the spectrum, since it is a projection method and can obtain simultaneous approximations

for multiple eigenpairs. On the other hand, the Newton method approximates each eigenpair

separately (the size of the subspace is always one) and the total cost is approximately linear

to the number of eigenpairs sought. Note however that when the size of the search subspace

in ARPACK was set to less than ten, ARPACK was slower than the proposed Newton-based

schemes.

7.6 Summary

The method presented in this chapter combines Newton’s method with spectral Schur comple-

ments in a domain decomposition framework. The scheme essentially amounts to solving the

129

eigenvalue problem along the interface points only, and exploits the fact that solves with the

local subdomains are relatively inexpensive. A parallel implementation was presented and its

performance evaluated for model Laplacian problems and general matrices from electronic struc-

ture calculations. The proposed method can be quite fast when only one or a very small number

of extremal eigenpairs are sought. It can be combined with a few steps of inverse iteration to

provide again a fast technique for solving what might be termed moderately interior eigenprob-

lems, i.e., problems with eigenvalues not too deep inside the spectrum. One might compare the

proposed approach to a Rayleigh quotient iteration, whereby the consecutive linear systems are

handled by an iterative method in a domain decomposition framework. However, the focus on

the Schur complement provides additional insights and leads to the Newton procedure presented

here.

Chapter 8

The method of mixed linear

approximations

The method proposed in this chapter is similar to the technique presented in Chapter 7. This

means that in order to compute each sought eigenpair
(
λi, x

(i)
)

of (A,M), where x(i) =[(
u(i)
)T
,
(
y(i)
)T]T

, we first compute the pair
(
λi, y

(i)
)

by recasting the interface eigenvalue

problem S(λi)y(λi) = 0 into one of a root-finding. Similarly to Chapter 7, this root-finding

problem is solved by Newton’s method and the remaining part of x(i), u(i), is computed by

solving the linear system B−1
λi
u(i) = −Eλy(i). However, in the root-finding approach developed

in Chapter 7, the scalar function of interest is defined by the eigenbranches of a zeroth-order

approximation of the spectral Schur complement. In contrast, in this chapter we exploit a first-

order approximation instead. As we show, this choice requires a separate theoretical analysis,

while it also leads to faster convergence of the root-finding scheme.

The structure of this chapter is as follows: Section 8.1 discusses the proposed approach and

provides some theoretical analysis. Section 8.2 discusses practical details. Section 8.3 presents

numerical experiments performed on a set of matrix pencils, and compares the scheme proposed

in this chapter against RQI and the root-finding scheme presented in Chapter 7. Finally, Section

8.4 contains our concluding remarks.

130

131

8.1 The method of Mixed Linear Approximations

Consider the following parameterized (symmetric) generalized eigenvalue problem, stemming by

a first-order approximation of S(λ) around a real scalar σ ∈ R:

S(σ)ŷj(σ) = θj(σ)
[
− S′(σ)

]
ŷj(σ), (8.1)

where S′(σ) denotes the first derivative of S(σ), θj(σ) (j = 1, . . . , s) denotes the jth eigenvalue

of the pencil (S(σ),−S′(σ)) in a sorted (algebraic) ascending order, and ŷj(σ) denotes the

corresponding eigenvector.

A scalar σ /∈ Λ(B,MB) will be an eigenvalue of (A,M) if and only if there exists an index

1 ≤ j ≤ s such that θj(σ) = 0. The rest of this section presents a root-finding approach to

compute the eigenpair (λ, x) of (A,M) associated with the eigenvalue λ lying the closest to some

user-given initial approximation.

Remark 2 Except where stated otherwise, throughout the rest of this section we will consider

only the case in which:

(a) the sought eigenvalue λ of the matrix pencil (A,M) is simple,

(b) λ /∈ Λ(B,MB).

Extensions to the cases where λ is a multiple eigenvalue of the matrix pencil (A,M) or λ ∈

Λ(B,MB) are possible though, and we will comment where deemed necessary.

8.1.1 Eigenbranches

Definition 8.1.1 The scalar function θj(σ) : R→ R,

θj(σ) =
ŷTj (σ)S(σ)ŷj(σ)

ŷTj (σ)[−S′(σ)]ŷj(σ)
, (8.2)

will be referred to as the jth eigenbranch of (S(σ),−S′(σ)), j = 1, . . . , s. Throughout this

chapter, the numbering of the eigenbranches will be based on their algebraic value, i.e., θ1(σ) ≤

. . . ≤ θs(σ).

132

0 0.02 0.04 0.06 0.08 0.1

σ

-0.04

-0.02

0

0.02

0.04

0.06
θ

j(σ
)

Eigs 1 through 8 in [0.0 0.1]

0.02 0.04 0.06 0.08 0.1

σ

-0.04

-0.02

0

0.02

0.04

0.06

θ
j(σ

)
a

n
d

θ
(σ

)

Eigs 1 through 8 in [0.0 0.1]

Figure 8.1: Visualization of θj(σ) and θκσ (σ). The red circles along the real axis denote eigen-
values of the pencil (A,M). Left: Eigenbranches θj(σ), j = 1, . . . , 8. Right: Eigenbranches
θj(σ), j = 1, . . . , 8 (dotted lines) and θκσ (σ) ≡ θ(σ) (solid line). Each eigenvalue of (A,M) is a
root of (at least) one eigenbranch, and thus a root of θ(σ) as well.

Moreover, let θj(σ), j = 1, . . . , s be defined as in (8.2), and consider the following integer:

κσ = arg min1≤j≤s |θj(σ)|. (8.3)

We then define the functions θ(σ) : R→ R and ŷ(σ) : R→ Rs,

θ(σ) := θκσ (σ), ŷ(σ) := ŷκσ (σ), (8.4)

i.e., (θ(σ), ŷ(σ)) denotes the eigenpair associated with the eigenvalue of smallest magnitude of

the matrix pencil (S(σ),−S′(σ)).

Figure 8.1 visualizes the first few eigenbranches of a disretized Laplacian operator. Each

eigenvalue of (A,M) is a root of (at least) one eigenbranch θj(σ), 1 ≤ j ≤ s, and thus a root of

θ(σ) as well. Thus, the problem of computing an eigenvalue of (A,M) is converted into one of

computing the root of the scalar function θ(σ) defined in (8.4) that lies the closest to the initial

approximation.

8.1.2 Formulation of a Newton-based procedure

Similarly to Chapter 7 we consider Newton’s method as the root-finding technique [114]. While

θ(σ) is not differentiable across its entire domain of definition, Newton’s method can still be

applied if the integer κσ defined in (8.3) remains fixed. This follows from the analyticity of the

133

eigenbranches.

Proposition 8.1.1 The eigenbranches θj(σ), j = 1, . . . , s are analytic for any σ /∈ Λ(B,MB).

The derivative of each eigenbranch is given by

θ′j(σ) =
dθj(σ)

dσ
= −

ŷTj (σ) [S′(σ) + θj(σ)S′′(σ)] ŷj(σ)

ŷTj (σ)S′(σ)ŷj(σ)
, (8.5)

where

S′′(σ) =
d2S(σ)

dσ2
= 2ETσB

−1
σ MBB

−1
σ MBB

−1
σ Eσ − 2MT

EB
−1
σ ME + 2MT

EB
−1
σ MBB

−1
σ Eσ

+ 2ETσB
−1
σ MBB

−1
σ ME

(8.6)

denotes the second derivative of S(σ).

Proof: Differentiating S(σ)ŷj(σ) = −θj(σ)S′(σ)ŷj(σ) with respect to σ leads to

S′(σ)ŷj(σ) + S(σ)ŷ′j(σ) = −θj(σ)
[
S′′(σ)ŷj(σ) + S′(σ)ŷ′j(σ)

]
− θ′j(σ)S′(σ)ŷj(σ),

where after collecting terms we get

[S(σ) + θj(σ)S′(σ)] ŷ′j(σ) = − [S′(σ) + θj(σ)S′′(σ)] ŷj(σ)− θ′j(σ)S′(σ)ŷj(σ).

Multiplying by ŷTj (σ) from the left, and noticing that ŷTj (σ) [S(σ) + θj(σ)S′(σ)] = 0, leads to

(8.5), which can be further simplified to

θ′j(σ) = −1− θj(σ)
ŷTj (σ)S′′(σ)ŷj(σ)

ŷTj (σ)S′(σ)ŷj(σ)
,

or θ′j(σ) = −1+θj(σ)ŷTj (σ)S′′(σ)ŷj(σ) if the eigenvectors ŷj(σ) are normalized as−ŷTj (σ)S′(σ)ŷj(σ) =

1. Differentiating the expression of S′(σ) in Proposition 7.1.1 twice leads to

S′′(σ + ω) =− ETσ
[
B−1
σ+ω

]′′
Eσ − 2

(
MT
E

([
B−1
σ+ω

]′
ME −

[
B−1
σ+ω

]′
Eσ
)
− ETσ

[
B−1
σ+ω

]′
ME

)
+R(ω)

134

where

R(ω) = ω
(
MT
E [B−1

σ+ω]′′Eσ + ETσ [B−1
σ+ω]′′ME

)
− 2ωMT

E

(
[B−1
σ+ω]′ + [B−1

σ+ω]′′
)
ME

− ω2MT
E [B−1

σ+ω]′′ME .

The result in (8.6) follows by setting S′′(σ) = S′′(σ + ω)ω=0 and noticing that in addition to[
B−1
σ+ω

]′
ω=0

= B−1
σ MBB

−1
σ , we also have

[
B−1
σ+ω

]′′
ω=0

= −2B−1
σ MBB

−1
σ MBB

−1
σ ,

and R(0) = 0.

Finally, the analyticity of θj(σ) and ŷj(σ) follows directly from [124] with the results also

holding for multiple (semi-simple) eigenvalues. �

Remark 3 When M is the identity matrix, i.e., M = I, we have MB = MC = I and ME =

0, and the first and second derivatives of the matrix-valued function S(σ) are simplified to

S′(σ) = −
(
I + ET (B − σI)−2E

)
and S′′(σ) = 2ET (B − σI)−3E, respectively.

Algorithm 8.1.1 sketches the main steps of Newton’s root-finding applied to the scalar

function θ(σ). For any σ, Algorithm 8.1.1 computes the eigenpair (θ(σ),ŷ(σ)) of the pencil

(S(σ),−S′(σ)), and evaluates the derivative θ′(σ) to update σ. The algorithm terminates as

soon as |θ(σ)| becomes smaller than a threshold tolerance tol ∈ R, which, together with an

initial approximation of the sought eigenvalue, are the only inputs required by Algorithm 8.1.1.

Throughout the rest of this paper we will refer to Algorithm 8.1.1 as the method of Mixed Linear

Approximations (MLA).

The convergence of MLA can be monitored by computing the residual norm of the approx-

imate eigenpair (σ, x̂(σ)), ‖Ax̂(σ) − σMx̂(σ)‖. Alternatively, we can skip the Matrix-Vector

135

multiplications with matrices A and M and only monitor |θ(σ)| since

‖Ax̂(σ)− σMx̂(σ)‖ =

∥∥∥∥∥∥∥
Bσ Eσ

ETσ Cσ


B−1

σ Eσ ŷ(σ)

ŷ(σ)


∥∥∥∥∥∥∥

=

∥∥∥∥∥∥
 0

−θ(σ)S′(σ)ŷ(σ)

∥∥∥∥∥∥
≤ |θ(σ)| ‖ŷ(σ)‖ λmax (−S′(σ)) ,

where λmax(.) denotes the largest eigenvalue of the SPD matrix −S′(σ).

Algorithm 8.1.1 MLA

0. Given tol ∈ R and an initial eigenvalue approximation σ ∈ R

1. Do while (true):

2. Solve S(σ)ŷ(σ) + θ(σ)S′(σ)ŷ(σ) = 0 for the eigenvalue θ(σ)

of smallest magnitude and associated eigenvector ŷ(σ)

3. If |θ(σ)| ≤ tol, break;

4. Compute θ′(σ) = −1− θ(σ)
ŷT (σ)S′′(σ)ŷ(σ)

ŷT (σ)S′(σ)ŷ(σ)

5. Update σ = σ − θ(σ)

θ′(σ)

6. EndDo

7. Return σ and x̂(σ) = [−(B−1
σ Eσ ŷ(σ))T , ŷT (σ)]T

MLA is essentially Newton’s method applied to the scalar function θ(σ). Therefore, when it

converges, we expect MLA to do so at a quadratic rate; at least if a sufficiently accurate initial

approximation is provided [114]. In practice, the rate of convergence of MLA will depend on

the shape of the eigenbranches. As we discuss in Section 8.2.3, the shape of the eigenbranches

might be very close to that of a linear function, in which case MLA will converge rapidly.

MLA can be easily extended to the computation of additional eigenpairs of (A,M). The

only requirement is to provide an initial approximation of the next sought eigenvalue.

136

Computation of semi-simple eigenvalues

The MLA scheme can capture the correct multiplicity ρ of a semi-simple eigenvalue λ of the

pencil (A,M) as long as ρ ≤ s.

Proposition 8.1.2 Suppose that λ /∈ Λ(B,MB) and let ρ be a non-negative integer such that

1 ≤ ρ ≤ s. Then, λ is a root of θ(σ) of multiplicity ρ if and only if λ is an eigenvalue of (A,M)

of multiplicity ρ.

Proof: Let λ be a root of θ(σ) with multiplicity ρ. Then, there exist ρ linearly independent vec-

tors y(1), . . . , y(ρ) such that S(λ)y(i) = 0, i = 1, . . . , ρ. The ρ vectors x(i) = [−(B−1
λ Eλy

(i))T , (y(i))T]T

are then linearly independent and satisfy the equation (A− λM)x(i) = 0.

To prove the converse, let x(i) =
[
−
(
B−1
λ Eλy

(i)
)T
,
(
y(i)
)T]T

, i = 1, . . . , ρ be the ρ eigen-

vectors of (A,M) associated with eigenvalue λ. Stacking these ρ eigenvectors next to each other

leads to

X =

−B−1
λ Eλy

(1) · · · −B−1
λ Eλy

(ρ)

y(1) · · · y(ρ)

 =

−B−1
λ Eλ

I

[y(1), . . . , y(p)
]
.

Matrix X is of rank ρ and thus vectors y(1), . . . , y(ρ) are linearly independent. In addition, the

vectors y(1), . . . , y(ρ) satisfy the equation S(λ)y(i) = 0, i = 1, . . . , ρ, and thus S((λ),−S′(λ)) has

a zero eigenvalue with multiplicity ρ. �

Remark 4 In practice, the multiplicity of an eigenvalue λ of (A,M) will not be known. A prac-

tical approach is then to compute the second eigenvalue of smallest magnitude of (S(λ),−S′(λ)).

If this eigenvalue is non-zero, then, by Proposition 8.1.2, λ is a simple eigenvalue of (A,M). In

the opposite case, λ is a semi-simple eigenvalue, and to compute its exact multiplicity we must

repeat the same procedure until either the next computed eigenvalue of smallest magnitude of

S((λ),−S′(λ)) is non-zero, or all s eigenpairs of S((λ),−S′(λ)) are computed.

8.1.3 Characterization of the eigenbranches as σ approaches an eigen-

value of (A,M)

We now consider the behavior of the eigenbranches as σ approaches a simple eigenvalue of

(A,M).

137

Theorem 8.1.3 Let λκ /∈ Λ(B,MB), 1 ≤ κ ≤ n, denote a simple eigenvalue of the pencil

(A,M), with an associated eigenvector x(κ) =
[(
u(κ)

)T
,
(
y(κ)

)T]T
. Then,

span {limσ→λκ ŷ(σ)} ≡ span {ŷ(λκ)} ≡ span
{
y(κ)

}
. (8.7)

Moreover, for any j 6= limσ→λκ κσ, we have

limσ→λκ θj(σ) = − limσ→λκ

 ŷTj (σ)ŷj(σ)∑n
i=1, i 6=κ

(
ŷTj (σ)y(i)

) (
ŷTj (σ)S′(σ)y(i)

)
λi − σ

 , (8.8)

where 1 ≤ κσ ≤ s denotes the index of the eigenvalue of smallest magnitude of the pencil

(S(σ),−S′(σ)), i.e., (θκσ (σ), ŷκσ (σ)) ≡ (θ(σ), ŷ(σ)).

Proof: Equating the (2,2) blocks of the identities

(A− σM)−1 =

B−1
σ +B−1

σ EσS
−1
σ ETσB

−1
σ −B−1

σ EσS
−1
σ

−S−1
σ ETσB

−1
σ S−1

σ

 ,

and

(A− σM)−1 =

n∑
i=1

1

λi − σ
x(i)

(
x(i)
)T

=

n∑
i=1

1

λi − σ

u(i)
(
u(i)
)T

u(i)
(
y(i)
)T

y(i)
(
u(i)
)T

y(i)
(
y(i)
)T
 ,

gives

S(σ)−1 =

n∑
i=1

1

λi − σ
y(i)

(
y(i)
)T

.

Let σ /∈ {Λ(B,MB) ∪ Λ(A,M)}. We can rewrite S(σ)ŷj(σ) = θj(σ)[−S′(σ)]ŷj(σ) for any

eigenpair (θj(σ), ŷj(σ)) as:

1

θj(σ)
ŷj(σ) = −S(σ)−1S′(σ)ŷj(σ)

= −
n∑
i=1

1

λi − σ
y(i)

(
y(i)
)T

S′(σ)ŷj(σ).

(8.9)

138

Moreover, if we define define the scalar function

χi,j(σ) =
(
y(i)
)T

S′(σ)ŷj(σ),

for all i = 1, . . . , n, and j = 1, . . . , s, we can write (8.9) as

1

θj(σ)
ŷj(σ) = −χκ,j(σ)

λκ − σ
y(κ) −

n∑
i=1, i 6=κ

χi,j(σ)

λi − σ
y(i). (8.10)

Now, let j ≡ κσ, and multiply both sides in (8.10) by (λκ− σ)/χκ,κσ . Taking limits leads to

− limσ→λκ

(
λκ − σ

χκ,κσ (σ)θ(σ)
ŷ(σ)

)
= y(κ) + limσ→λκ

 n∑
i=1, i 6=κ

χi,κσ (σ)(λκ − σ)

χκ,κσ (σ)(λi − σ)
y(i)


= y(κ),

(8.11)

where the second equality follows directly from the fact that λκ is simple.

Since limσ→λκ θ(σ)→ 0, the limit of each entry of the vector on the left-hand side of (8.11)

is of the form 0/0. Let `η denote the ηth, 1 ≤ η ≤ s, entry of vector ŷ(σ). Applying l’Hôspital’s

rule (where we differentiate with respect to σ) gives:

limσ→λκ

(
−(λκ − σ)`η
χκ,κσ (σ)θ(σ)

)
= limσ→λκ

(
[− (λκ − σ) `η]′

[χκ,κσ (σ)θ(σ)]′

)
= limσ→λκ

(
`η

χκ,κσ (σ)θ′(σ)

)
, (8.12)

where we used the identity limσ→λκ θ(σ) = θ(λk) = 0. Since both χκ,κσ (σ) and θ′(σ) are

non-zero, the above limit is well-defined. Applying (8.12) to all entries of ŷ(σ) finally gives

limσ→λκ

(
1

χκ,κσ (σ)θ′(σ)
ŷ(σ)

)
= limσ→λκ

(
−1

χκ,κσ (σ)
ŷ(σ)

)
=

−1

χκ,κλκ (λκ)
ŷ(λκ) = y(κ),

where we used the identity limσ→λκ θ
′(σ) = θ′(λk) = −1.

To prove the second item, first notice that the eigenvectors of (S(σ),−S′(σ)) are S′(σ)-

orthogonal, and thus ŷTj (σ)S′(σ)ŷκσ (σ) = 0, j 6= κσ. Exploiting that span{limσ→λκ ŷκσ (σ)} ≡

span
{
y(κ)

}
leads to limσ→λκ(ŷTj (σ)S′(σ)y(κ)(σ)) = 0 for any j 6= κσ. Thus, (8.10) is simplified

to

limσ→λκ
1

θj(σ)
ŷj(σ) = − limσ→λκ

 n∑
i=1, i 6=κ

χi,j(σ)

λi − σ
y(i)

 , (8.13)

139

2.3462 2.3464 2.3466 2.3468 2.3470 2.3472

10−7

10−5

10−3

10−1

σ

M
ag

n
it

u
d
e

θ1(σ)

θ2(σ)

θ3(σ)

2.3462 2.3464 2.3466 2.3468 2.3470 2.3472

10−17

10−13

10−9

10−5

10−1

σ

M
ag

n
it

u
d
e

χ1,1(σ)

χ1,2(σ)

χ1,3(σ)

Figure 8.2: Numerical value of θj(σ) and χ3,j(σ) as σ → λ3.

for any (θj(σ), ŷj(σ)), j = 1, . . . , s, j 6= κσ. Multiplying (8.13) by ŷTj (σ) from the left and

re-arranging terms leads to (8.8). �

Theorem 8.1.3 suggests that as σ converges towards the sought (simple) eigenvalue of (A,M),

a shift-and-invert-based inner eigenvalue solver will require fewer iterations to compute (θ(σ), ŷ(σ)).

We will verify this behavior in Section 8.3. A similar result also holds for multiple eigenvalues λ

of (A,M) with algebraic multiplicity µλ, i.e., there exist µλ eigenvalues θj(σ) of (S(σ),−S′(σ))

such that limσ→λκ θj(σ) = 0, with the limit of the rest s − µλ ones converging to a nonzero

value. Details are omitted.

Example 1 Let

A =



2 1 0 1

1 3 1 1

0 1 2 0

1 1 0 2


, M =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, (8.14)

and consider d = 1, s = 3. Figure 8.2 plots θj(σ), j = 1, 2, 3 (left subfigure), and χ3,j(σ) as

σ → λ3 (λ3 = 2.3473 is simple). As predicted by Theorem 8.1.3, there is exactly one eigenbranch,

in this example θ2(σ), for which limσ→λ3
θ2(σ) = 0. For this same eigenbranch, we also have

limσ→λ3
χ2,1(σ) 6= 0. On the other hand, limσ→λ3

χ3,j(σ) = 0 for any j 6= 1.

140

8.1.4 Characterization of the eigenbranches as σ approaches an eigen-

value of (B,MB)

Let the ηth eigenvalue-eigenvector pair of (B,MB) be denoted as (δη, vη), η = 1, . . . , d.

If we set

wη = ETσ vη, fη = MT
E vη, (8.15)

and make use of the identity

B−1
σ =

d∑
η=1

vηv
T
η

δη − σ
,

we can rewrite

S(σ) = Cσ −
d∑
η=1

wηw
T
η

δη − σ
, (8.16)

and

−S′(σ) = MC +

d∑
η=1

wηw
T
η

(δη − σ)2
−

d∑
η=1

wηf
T
η

δη − σ
−

d∑
η=1

fηw
T
η

δη − σ
. (8.17)

While S(σ) and S′(σ) can not be formally defined when σ ∈ Λ(B,MB), in practice the

eigenbranches remain well-defined regardless of how close σ approximates an eigenvalue of the

pencil (B,MB).

Theorem 8.1.4 Let δk /∈ Λ(A,M), 1 ≤ k ≤ d, be a simple eigenvalue of (B,MB), and define

for any η = 1, . . . , d,

εj,η(σ) = wTη ŷj(σ), φj,η(σ) = fTη ŷj(σ), (8.18)

where wη and fη are defined in (8.15). Then:

� If limσ→δk εj,k(σ) 6= 0, then limσ→δk θj(σ) = 0.

� If limσ→δk εj,k(σ) = 0 then

limσ→δk θj(σ) =

ŷTj (σ)Cσ ŷj(σ)−
∑d
η=1,η 6=k

ε2j,η(σ)

δη − σ

ŷTj (σ)Mcŷj(σ) +
∑d
η=1,η 6=k

[
ε2j,η(σ)

(δη − σ)2
− 2εj,η(σ)φj,η(σ)

δη − σ

] . (8.19)

141

Proof: Making use of Eqs. (8.16) and (8.17), each eigenbranch θj(σ), j = 1, . . . , s can be

written as:

θj(σ) =

ŷTj (σ)Cσ ŷj(σ)−
∑d
η=1

ε2j,η(σ)

δη − σ

ŷTj (σ)Mcŷj(σ) +
∑d
η=1

ε2j,η(σ)

(δη − σ)2
−
∑d
η=1

2εj,η(σ)φj,η(σ)

δη − σ

.

Multiplying both the numerator and denominator by (δk − σ)2 gives:

θj(σ) =

(δk − σ)2

(
ŷTj (σ)Cσ ŷj(σ)−

∑d
η=1,η 6=k

ε2j,η(σ)

δη − σ

)
− (δk − σ)ε2j,κ(σ)

(δk − σ)2

(
ŷTj (σ)Mcŷj(σ) +

∑d
η=1,η 6=k

[
ε2j,η(σ)

(δη − σ)2
− 2εj,η(σ)φj,η(σ)

δη − σ

])
+ γ(j, k, σ)

(8.20)

where

γ(j, k, σ) = ε2j,k(σ)− 2(δk − σ)εj,k(σ)φj,k(σ).

As σ → δk, the numerator in (8.20) approaches zero while the denominator approaches

limσ→δk γ(j, k, σ) = limσ→δk ε
2
j,k(σ). If limσ→δk εj,k(σ) 6= 0, then

lim
σ→δk

θj(σ) =
0

limσ→δk ε
2
j,k(σ)

= 0.

In the opposite case, the ratio in (8.20) becomes one of an undetermined form and we need to

apply l’Hôspital’s rule twice, which then leads to (8.19). Details are omitted. �

Corollary 8.1.4.1 Under the assumptions stated in Theorem 8.1.4, there exists at least one

1 ≤ j ≤ s such that limσ→δk θj(σ) = 0.

Proof: The eigenvectors of (S(σ),−S′(σ)) are linearly independent, and thus span the entire

s-dimensional subspace. Since wk is nonzero, there must exist at least one eigenvector ŷj(σ) of

(S(σ),−S′(σ)) such that limσ→δk εj,k(σ) = limσ→δk w
T
k ŷj(σ) 6= 0, and thus, by Theorem 8.1.4,

limσ→δk θj(σ) = 0. �

Example 2 Consider the same matrices A and M as in Example 1, and let d = 1, s = 3.

Figure 8.3 reports the values of θj(σ), j = 1, 2, 3, and εj,1(σ) as σ → δ1 (δ1 = 2.0 is simple).

142

1.9990 1.9992 1.9994 1.9996 1.9998 2

10−7

10−5

10−3

10−1

σ

M
ag

n
it

u
d

e

θ1(σ)

θ2(σ)

θ3(σ)

1.9990 1.9992 1.9994 1.9996 1.9998 2
10−17

10−13

10−9

10−5

10−1

σ

M
ag

n
it

u
d

e

ε1,1(σ)

ε2,1(σ)

ε3,1(σ)

Figure 8.3: Numerical values of θj(σ) and εj,1(σ) as σ → δ1.

0.02 0.04 0.06 0.08 0.1

−0.02

0

0.02

0.04

0.06

0.08

σ

µ
i(σ

)

0.104 0.106 0.108 0.11 0.112 0.114

0

1

2

3

4

5

x 10
−3

σ

µ
i(σ

)

Figure 8.4: Visualization of the first few eigenbranches. Vertical dashed lines denote eigenvalues
of (B,MB). Left: Eigenbranches θj(σ) as σ ∈ [0.0, 0.11]. Right: Close-up view of the left
subfigure focusing in the region around the four algebraically smallest eigenvalues of (B,MB).

As predicted by Theorem 8.1.4, only the eigenbranch for which limσ→δ1 εj,1(σ) 6= 0, in this

example θ2(σ), shifts to zero. On the other hand, limσ→δ1 εj,1(σ) = 0 for any j 6= 2 and thus

limσ→δ1 θj(σ) 6= 0.

Figure 8.4 shows the typical behavior of the eigenbranches as σ approaches an interval that

contains one or more simple eigenvalues of (B,MB). In particular, as we show in Theorem

8.1.5, there exists exactly one eigenbranch which crosses the real axis as σ approaches a simple

eigenvalue of (B,MB). Moreover, this eigenbranch crosses the real axis having a positive slope

(see Section 8.3.1).

Definition 8.1.2 For any non-zero scalar σ ∈ R and vector r ∈ Rs we define the generalized

143

Rayleigh quotient:

π(σ, r) =
rTS(σ)r

rT [−S′(σ)]r

=

rT (C − σMC)r −
∑d
η=1

(rTwη)2

δη − σ

rTMCr +
∑d
η=1

(rTwη)2

(δη − σ)2
− 2

∑d
η=1

(rTwη)(rT fη)

δη − σ

.

The eigenvalues of the pencil (S(σ),−S′(σ)) can be then characterized by a generalization of

the Courant-Fischer minimax theorem as:

θj(σ) = min
dim(U)=j

max
r∈U, r 6=0

π(σ, r).

Theorem 8.1.5 Let δk /∈ Λ(A,M), 1 ≤ k ≤ d, be a simple eigenvalue of (B,MB). Then:

� There exists exactly one index 1 ≤ ζ ≤ s such that limσ→δk θζ(σ) = 0.

� For any eigenpair (θj(σ), ŷj(σ)) that satisfies limσ→δk θj(σ) 6= 0, we have limσ→δk ŷ
T
j (σ)wk = 0.

Proof: Let I = [δk − σ0, δk) ∪ (δk, δk + σ0] for some positive σ0 ∈ R such that I contains no

other eigenvalues of (B,MB) or any eigenvalues of (A,M), and let σ ∈ I. By Corollary 8.1.4.1,

we know that there exists at least one integer 1 ≤ ζ ≤ s such that limσ→δk θζ(σ) = 0. Let

1 ≤ ψ ≤ s be the first such integer, i.e.,

limσ→δk θψ(σ) = limσ→δk

(
min

dim(U)=ψ
max

r∈U, r 6=0
π(σ, r)

)
= 0.

Since limσ→δk θ1(σ) ≤ limσ→δk θ2(σ) ≤ . . . ≤ limσ→δk θs(σ), it follows immediately that when

ψ = s the pencil limσ→δk(S(σ),−S′(σ)) has exactly one zero eigenvalue. It remains to show

the same when ψ < s.

Define the subspaces

V ≡ span
({
v|vTwk = 0

})
,

Z ≡ span
({
v|vT [−S′(σ)] ŷj(σ) = 0, j = 1, . . . , ψ

})
,

and let r ∈ V ∩ Z. Because r ∈ Z, we have limσ→δk π(σ, r) ≥ 0. In addition, because S(σ)

is non-singular we have limσ→δk π(σ, r) 6= 0 for any r ∈ V. Combining these two observations

144

gives limσ→δk π(σ, r) > 0. What remains is to show that we can always find such a vector r for

any 1 ≤ ψ ≤ s − 1. Indeed, dim(Z)= s − ψ, dim(V)= s − 1, and wk /∈ Z. It follows that for

any U such that dim(U)=ψ + 1, we have dim(U ∩ Z ∩ V)≥ 1. Therefore

limσ→δk θψ+1(σ) = limσ→δk

(
min

dim(U)=ψ+1
max

r∈U, r 6=0
π(σ, r)

)
> 0.

The same argument also applies to eigenvalues limσ→δk θψ+2(σ), . . . , limσ→δk θs(σ) which con-

cludes the proof of the first item.

To prove the second item, recall (8.18) and consider the variables εj,η(σ) = wTη ŷj(σ), and

φj,η(σ) = fTη ŷj(σ), η = 1, . . . , d, where wη and fη are defined in (8.15). If we set

χj,k(σ) = (δk − σ)2

ŷTj (σ)Cσ ŷj(σ)−
d∑

η=1,η 6=k

ε2j,η(σ)

δη − σ


and

ωj,k(σ) = (δk − σ)2

ŷTj (σ)Mcŷj(σ) +

d∑
η=1,η 6=k

[
ε2j,η(σ)

(δη − σ)2
− 2εj,η(σ)φj,η(σ)

δη − σ

] ,

we can rewrite (8.20) as

limσ→δk θj(σ) = limσ→δk

[
χj,k(σ)− (δk − σ)ε2j,κ(σ)

ωj,k(σ)− (ε2j,k(σ)− 2(δk − σ)εj,k(σ)φj,k(σ))

]
. (8.21)

Then, for any limσ→δk θj(σ) 6= 0, re-arranging1 terms in (8.21) leads to

limσ→δk ε
2
j,k(σ) = − limσ→δk

[
2(δk − σ)εj,k(σ)φj,k(σ) + ωj,k(σ) +

χj,k(σ)− (δk − σ)ε2j,κ(σ)

θj(σ)

]
.

(8.22)

Since both limσ→δk ωj,k(σ) → 0 and limσ→δk χj,k(σ) → 0, the right-hand side in (8.22) con-

verges to zero, and thus limσ→δk ε
2
j,k(σ) = limσ→δk(wTk ŷj(σ))2 = 0. �

Let us now define ŵη = wη/‖wη‖, η = 1, . . . , d, where wη is defined in (8.15), and the

1Note that the limit of the denominator is assumed non-zero and thus limσ→δk
a

b
=

limσ→δk a

limσ→δk b

145

corresponding orthogonal projector

Pη = I − ŵηŵη. (8.23)

Moreover, let 1 ≤ k ≤ d and assume that δk /∈ Λ(A,M) is simple eigenvalue of (B,MB). We

then define the matrices

Sk(σ) = Cσ −
d∑

η=1,η 6=k

wηw
T
η

δη − σ
,

and

−S′k(σ) = MC +

d∑
η=1,η 6=k

wηw
T
η

(δη − σ)2
−

d∑
η=1,η 6=k

wηf
T
η

δη − σ
−

d∑
η=1,η 6=k

fηw
T
η

δη − σ

and the operators

Sk,|(σ) = [PkSk(σ)Pk]|wk⊥ , −S′k,|(σ) = − [PkS
′
k(σ)Pk]|wk⊥ , (8.24)

where [PkSk(σ)Pk]|wk⊥ and [−PkS′k(σ)Pk]|wk⊥ are (s − 1) × (s − 1) matrices that denote the

restriction of PkSk(σ)Pk and −PkS′k(σ)Pk to the subspace orthogonal to ŵk, respectively.

Lemma 8.1.6 Let Pk be defined as in (8.23). Then, the eigenvalues of the matrix pencil

(Sk,|(σ), −S′k,|(σ)) are identical to the non-zero eigenvalues of the matrix pencil (PkSk(σ)Pk,

−PkS′k(σ)Pk).

Proof: See Lemma 2.2 in [125]. �

We can now prove the following theorem.

Theorem 8.1.7 Let δk /∈ Λ(A,M), 1 ≤ k ≤ d, be a simple eigenvalue of (B,MB), and let

τ1(δk), . . . , τs−1(δk) denote the eigenvalues of the pencil (Sk,|(δk),−S′k,|(δk)). Then, the s − 1

nonzero eigenbranches of limσ→δk(S(σ),−S′(σ)) satisfy the equation

lim
σ→δk

θj(σ) = τi(δk), (8.25)

where 1 ≤ i ≤ s− 1 and j ∈ {1, . . . , s} − {ζ} with ζ determined by Lemma 8.1.5.

146

Proof: Multiplying both sides of S(σ)ŷj(σ) = θj [−S′(σ)]ŷj(σ) by Pk from the left, and taking

advantage of the identity

ŷj(σ) = Pkŷj(σ) + (ŵTk ŷj(σ))ŵk,

leads to

PkS(σ)ŷj(σ) = θj [−PkS′(σ)]ŷj(σ)

PkS(σ)[Pkŷj(σ) + (ŵTk ŷj(σ))ŵk] = θj [−PkS′(σ)][Pkŷj(σ) + (ŵTk ŷj(σ))ŵk].
(8.26)

Reordering terms in (8.26) and noticing that

PkS(σ)Pk = PkSk(σ)Pk,

PkS
′(σ)Pk = PkS

′
k(σ)Pk,

finally leads to

Pk [Sk(σ) + θj(σ)S′k(σ)]Pk(Pkŷj(σ)) = −[PkSk(σ) + θj(σ)PkS
′
k(σ)](ŵTk ŷj(σ))ŵk. (8.27)

The right-hand side of (8.27) simply expresses the residual of the approximate eigenpair (θj(σ), Pkŷj(σ))

with respect to the matrix pencil (PkSk(σ)Pk, −PkS′k(σ)Pk), which is now well-defined as

σ → δk, and converges to (PkSk(δk)Pk,−PkS′k(δk)Pk). By Lemma 8.1.6, the latter pencil is a

trivial extension of the pencil (Sk,|(δk),−S′k,|(δk)).

To finalize the proof, recall that by Lemma 8.1.5 we have that limσ→δk ŵ
T
k ŷj(σ) = 0 for any

limσ→δk θj(σ) 6= 0. Thus each approximate eigenpair (θj(σ), Pkŷj(σ)) eventually converges to

an actual eigenpair of the pencil (Sk,|(δk),−S′k,|(δk)). �

For simplicity we assumed that δk is a simple eigenvalue of (B,MB), but the results in

Theorem 8.1.7 can be easily extended to the case where δk is semi-simple.

Remark 5 By Proposition 8.1.1, each eigenbranch θj(σ) is an analytic (and thus continuous)

function of σ in each interval (δk−1, δk), k = 2, . . . , d. Moreover, by Theorem 8.1.7, the limits

limσ→δk θj(σ), j 6= κσ, exist and converge to the same value as σ approaches δk from any

side. It follows that each eigenbranch θj(σ), j = 1, . . . , s is a continuous functions of σ ∈ R

except at those real points that are equal to an eigenvalue δk of (B,MB) and, at the same time,

limσ→δk θj(σ)→ 0. In the latter case, the limit exists, but θj(δk) is not formally defined.

147

8.2 Practical aspects of MLA

8.2.1 Determining which roots of θ(σ) are eigenvalues of (A,M)

In Section 8.1 we saw that the eigenvalues of both matrix pencils (A,M) and (B,MB) are roots

of θ(σ). In this section we describe a simple mechanism to identify which of these roots are

eigenvalues of (A,M).

Definition 8.2.1 (Sylvester’s law of matrix inertia [118]) The inertia of a symmetric matrix

X ∈ Rn×n, is a triplet [ν−(X), ν0(X), ν+(X)] consisting of the numbers of negative, zero, and

positive eigenvalues of X, respectively.

Proposition 8.2.1 A real interval [α, β] contains one or more eigenvalues of (A,M) if and

only if ν−(A−βM) > ν−(A−αM). Moreover, it holds that ν−(A−βM) = ν−(S(β))+ν−(Bβ),

and ν−(A− αM) = ν−(S(α)) + ν−(Bα).

Proof: Writing (A− σM)x = (λ− σ)Mx, and noticing that M is SPD, the number of eigen-

values of (A,M) that are less than σ is equal to the number of negative eigenvalues of A− σM .

Thus, [α, β] contains one or more eigenvalues of (A,M) if and only if ν−(A−βM) > ν−(A−αM).

Now, consider the following congruence transformation of A− σM : I

−ETσB−1
σ I

Bσ Eσ

ETσ Cσ

I −B−1
σ Eσ

I

 =

Bσ
S(σ)

 . (8.28)

Since congruence transformations preserve inertias, the inertia of A−σM is equal to the inertia

of the block-diagonal matrix on the right-hand side of (8.28), which in turn is equivalent to the

sum of the inertias of Bσ and S(σ). Thus, ν−(A− σM) = ν−(S(σ)) + ν−(Bσ). �

Since−S′(σ) is SPD, the inertia of S(σ) is identical to the inertia of the pencil (S(σ),−S′(σ)).

We can now show the following Proposition.

Proposition 8.2.2 Let τ ∈ R be a simple root of θ(σ) such that either τ ∈ Λ(A,M) or τ ∈

Λ(B,MB). Moreover, let τ ∈ [τ−, τ+] where τ−, τ+ are two real scalars located within an

infinitesimal distance from τ such that a) the index κσ of θ(σ) ≡ θκσ (σ) remains constant for

any σ ∈ [τ−, τ+], and b) [τ−, τ+] includes no other roots of θ(σ).

Then:

148

� If θ(τ−) > 0 and θ(τ+) < 0, τ ∈ Λ(A,M). The converse also holds.

� If θ(τ−) < 0 and θ(τ+) > 0, τ ∈ Λ(B,MB). The converse also holds.

Proof: By assumption 1 ≤ κσ ≤ s remains constant for any σ ∈ [τ−, τ+]. In addition,

θj(σ), j 6= κσ, are continuous functions of σ in [τ−, τ+], and thus their sign is fixed (since they

do not cross the real axis).

Consider the first item and let θ(τ−) > 0 and θ(τ+) < 0. We then have ν−(S(τ+)) =

ν−(S(τ−)) + 1. Now, assume that τ ∈ Λ(B,MB). Then, we also have ν−(Bτ+) = ν−(Bτ−) + 1.

Combining the two latter equations leads to ν−(A − τ+M) = ν−(A − τ−M) + 2, i.e., τ is

also a semi-simple eigenvalue of (A,M). The latter is a contradiction since τ was assumed an

(simple) eigenvalue of either (A,M) or (B,MB). Thus, τ ∈ Λ(A,M). To show the converse, let

τ ∈ Λ(A,M). Then ν−(A−τ+M) = ν−(A−τ−M)+1. On the other hand, since τ /∈ Λ(B,MB),

we have ν−(Bτ+) = ν−(Bτ−), which in turn implies ν−(S(τ+)) = ν−(S(τ−)) + 1. Since θ(σ)

is the only eigenbranch that can cross the real axis and change sign in the interval [τ−, τ+], it

follows that θ(τ−) > 0 and θ(τ+) < 0.

To show the second item, let θ(τ−) < 0 and θ(τ+) > 0. Following the same reasoning as

above, we get ν−(S(τ+)) = ν−(S(τ−)) − 1. Now, assume that τ ∈ Λ(A,M). We then have

ν−(A − τ+M) = ν−(A − τ−M) + 1, which implies that ν−(Bτ+) = ν−(Bτ−) + 2, i.e., τ is

also a semi-simple eigenvalue of (B,MB). The latter is a contradiction since τ was assumed an

(simple) eigenvalue of either (A,M) or (B,MB). Thus, τ ∈ Λ(B,MB). To show the converse,

let τ ∈ Λ(B,MB). Then ν−(Bτ+) = ν−(Bτ−) + 1. On the other hand, because τ /∈ Λ(A,M),

we have ν−(A − τ−M) = ν−(A − τ+M), which in turn implies ν−(S(τ+)) = ν−(S(τ−)) − 1.

Since θ(σ) is the only eigenbranch that can cross the real axis and change sign in the interval

[τ−, τ+], it follows that θ(τ−) < 0 and θ(τ+) > 0. �

In practice, the conditions in Proposition 8.2.2 can be replaced by the conditions θ′(σ) < 0,

and θ′(σ) > 0, respectively, for any σ sufficiently close to the root.

8.2.2 A categorization of the roots

Definition 8.2.2 We define the “upslope roots” of an eigenbranch θj(σ), 1 ≤ j ≤ s, to be those

real scalars δ ∈ Λ(B,MB) satisfying limσ→δ θj(σ) = 0. Similarly, we define the “regular roots”

of an eigenbranch θj(σ) to be those real scalars λ ∈ Λ(A,M) satisfying θj(λ) = 0.

149

Proposition 8.2.3 Let n and d be the size of matrix pencils (A,M) and (B,MB), respectively,

and assume that Λ(A,M)∩Λ(B,MB) = ∅. Then, each eigenbranch θj(σ), 1 ≤ j ≤ s, s = n−d,

has:

� at least one regular root and at most n regular roots, and

� none, one, or at most d upslope roots.

Proof: Let σl and σr denote two real scalars chosen such that [λ1, λn] ⊂ [σl, σr], and recall that

n = d+ s where d and s denote the size of matrices Bσ and S(σ), respectively. By Proposition

8.2.1 we have

(ν−(S(σr)) + ν−(Bσr))− (ν−(S(σl)) + ν−(Bσl)) = n.

By a generalization of Cauchy’s interlacing property we have [δ1, δd] ⊆ [λ1, λn], and thus

ν−(Bσr) − ν−(Bσl) = d, leading to ν−(S(σr)) − ν−(S(σl)) = s. In addition, −S′(σl) and

−S′(σr) are both SPD, and thus the inertias of matrices S(σl) and S(σr) are identical to those

of matrix pencils (S(σl),−S′(σl)) and (S(σr),−S′(σr)), respectively. Clearly, (S(σl),−S′(σl))

has no negative eigenvalues, while (S(σr),−S′(σr)) has no positive eigenvalues. Thus, all s eigen-

branches change their sign from positive to negative at least once within the interval [σl, σr].

Since we assumed that Λ(B,MB) ∩ Λ(A,M) = ∅, Proposition 8.2.2 suggests that the sign of

an eigenbranch changes from positive to negative only when it crosses an eigenvalue of (A,M),

and thus the proof of the first item is completed.

Regarding the second item, there exist at most d upslope roots overall, and thus this is also

the largest number of upslope roots an eigenbranch can have. To see that an eigenbranch can

have no upslope roots, simply consider the case where d < s. �

Figure 8.5 plots the eigenbranches of the toy matrix pencil shown in (8.14), A =
(
B E
ET C

)
=(

2 1 0 1
1 3 1 1
0 1 2 0
1 1 0 2

)
, as the dimension d of the leading principal submatrix B varies (M was chosen as the

identity matrix). When d = n − 1 = 3, there exists only one eigenbranch and this eigenbranch

crosses the real axis at all real points σ ∈ Λ(B,MB)∪Λ(A,M). Note that although λ1 = λ2 = 1,

only one copy of this semi-simple eigenvalue can be computed. On the other hand, when

d = n− 2 = 2 we have s = 2, and both eigenbranches cross the real axis at σ = λ1 = λ2. More

generally, MLA can compute the correct multiplicity of a semi-simple eigenvalue of (A,M) only

if the latter is less or equal than s. In agreement with Proposition 8.2.3, each eigenbranch has

150

0 2 4

σ

-0.5

0

0.5

1

1.5

θ
j(σ

)

m=3, s=1

0 2 4

σ

-2

-1

0

1

2

θ
j(σ

)

m=2, s=2

0 2 4

σ

-3

-2

-1

0

1

2

3

θ
j(σ

)

m=1, s=3

Figure 8.5: Eigenbranches of the matrix appearing in (8.14) for different values of d ≡ m and s.
The red circles along the real axis denote eigenvalues of the pencil (A,M). The dashed vertical
lines denote eigenvalues of matrix B. Left: B = A(1 : 3, 1 : 3). Middle: B = A(1 : 2, 1 : 2).
Right: B = A(1 : 1, 1 : 1).

at least one regular root, and none, one, or at most d upslope roots. For example, when d = 1,

there exist two eigenbranches that have one regular root but no upslope root.

8.2.3 The impact of the location of the eigenvalues of (B,MB)

Ideally, we would like the shape of the eigenbranches of (S(σ),−S′(σ)) to be as close to that of

a linear function as possible. In particular, we are interested on the shape of the eigenbranch

θj(σ) of (S(σ),−S′(σ)) that satisfies limσ→λ θj(σ) = 0.

Let us first consider the case where σ ≈ λ, i.e., σ lies in a small neighborhood around λ.

In this scenario, we expect the shape of the eigenbranch θj(σ) to be very close to linear since

θj(σ) ≈ 0 and thus the derivative θ′j(σ) = −(1 + O(θ(σ)) is almost constant. But what can we

tell about the shape of θj(σ) when σ is located further away from λ? While a detailed analysis

lies outside the scope of this paper, we have observed that the further σ lies from the upslope

root(s) of θj(σ), the closer to linear the shape of θj(σ) is. This observation implies that, ideally,

the sought eigenvalue λ should lie as far as possible from the upslope roots of the eigenbranch

that satisfies limσ→λ θj(σ) = 0.

While it is impossible to either impose any control over the eigenvalues of (B,MB) or deter-

mine a-priori what eigenvalues of (B,MB) are the upslope roots of a given eigenbranch θj(σ),

it is possible to reduce the total number of upslope roots by reducing the size of (B,MB). For

example, the eigenvalues of the pencil (B,MB) in Figure 8.5 are {1, 2, 4}, {1.38, 3.61} and {2},

when the size of matrices B and MB is set to d = 3, d = 2, and d = 1, respectively. Therefore,

choosing the dimension d of the matrix pencil (B,MB) to be smaller increases the likelihood

151

1
s
t
ru

n

Location of roots

2
n
d
 r

u
n

0 1 2 3 4

σ

3
rd

 r
u
n

0 0.5 1

σ

-0.5

0

0.5

1

θ
j(σ

)

Eigs 1 through 12 in [0.0 1.1]

0 0.5 1

σ

-1

-0.5

0

0.5

1

θ
j(σ

)

Eigs 1 through 12 in [0.0 1.1]

0 0.5 1

σ

-1.2

-1

-0.8

-0.6

-0.4

-0.2

θ
j'(
σ

)

Derivs 1 through 12 in [0.0 1.1]

0.2 0.4 0.6 0.8 1

σ

-1

-0.95

-0.9

-0.85

θ
j'(
σ

)

Derivs 1 through 12 in [0.0 1.1]

0 0.5 1

σ

-1.005

-1

-0.995

-0.99

-0.985

-0.98

θ
j'(
σ

)

Derivs 1 through 12 in [0.0 1.1]

Figure 8.6: Top row (left subfigure): the eigenvalues of (B,MB) located inside the interval
[0.0, 4.0] (marked by “◦”) for three different arrangements. The eigenvalues λ1, . . . , λ12 of (A,M)
(marked by “x”) are also shown. Top row (middle and right subfigures): plot of θj(σ), 1 ≤ j ≤ 12
for the first and second arrangement of the algebraically smallest eigenvalues of (B,MB). Bottom
row: plot of θ′j(σ), 1 ≤ j ≤ 12, for the first (left), second (middle), and third (right) arrangement
of the eigenvalues of (B,MB).

that a regular root λ ∈ Λ(A,M) of an eigenbranch θj(σ) will be located relatively further away

from the upslope roots of the latter. On the other hand, choosing a smaller d increases the size

of the eigenvalue problem at each iteration in MLA.

Example 3 We consider the computation of eigenvalues λ1, . . . , λ12 of a SPD pencil (A,M)

generated by a 5-pt Finite Difference discretization of the Laplace operator on the unit plane (M

is chosen as the identity matrix). Each eigenvalue λj , j = 1, . . . , 12, is a regular root of eigen-

branch θj(σ), and we focus on the shape of eigenbranches θj(σ), j = 1, . . . , 12, as their upslope

roots located the closest to [λ1, λ12] are progressively shifted away. More specifically, we con-

sider three different arrangements of the upslope roots (we only show those located within the

interval [0.0, 4.0]), each one of them formed by progressively increasing the number of interface

variables of the pencil (A,M) (thus reducing the value of d). The exact location of eigenval-

ues λ1, . . . , λ12 (some of these eigenvalues were semi-simple), as well as the location of the

algebraically smallest upslope roots of eigenbranches θj(σ), j = 1, . . . , 12, are shown in Figure

8.6. In the same figure we also plot eigenbranches θj(σ), 1 ≤ j ≤ 12, for the first and second

arrangement of the upslope roots. It is easy to verify that for the second arrangement of the

152

upslope roots the shape of the eigenbranches is closer to linear compared to that for the first

arrangement. The latter is shown more clearly in the bottom row subfigures in Figure 8.6 where

we plot θ′j(σ) = −1− θj(σ)
ŷTj (σ)S′′(σ)ŷj(σ)

ŷTj (σ)S′(σ)ŷj(σ)
, j = 1, . . . , 12, for the first (left), second (middle),

and third (right) arrangement of the upslope roots.

8.3 Numerical Experiments

In this section we consider the performance of MLA. The experiments were performed in a

Matlab environment (version R2016a), using 64-bit arithmetic (double precision), on a single

core of a computer system equipped with an Intel Haswell2 E5-2680v3 processor and 32 GB of

system memory.

8.3.1 Details on the experimental framework

Throughout the rest of this section we will be comparing three different schemes:

1. The MLA method proposed in Algorithm 8.1.1.

2. The “Branch Hopping” root-finding technique presented in [71]. This method essentially

coincides with the MLA method applied to the matrix pencil (S(σ), I), and will be abbre-

viated as “BrH”.

3. The Rayleigh Quotient Iteration (RQI), a scheme which is known to converge (asymptot-

ically) cubically for symmetric eigenvalue problems [29]. We note here that no variants

of RQI that pre-process the initial eigenvalue approximation by Inverse Iteration so as to

improve robustness were considered, e.g. see [119].

Each approximate eigenpair
(
λ̃, x̃

)
will be signaled as a sufficiently accurate approximation

of an eigenpair (λ, x) of (A,M) as soon as the corresponding residual norm satisfies ‖Ax̃ −

λ̃Mx̃‖ ≤ 1e − 8 × ‖x̃TMx̃‖. Each approximation (θ̃, ỹ) of the eigenpair (θ(σ), ŷ(σ)) will be

considered sufficiently accurate as soon as the residual norm satisfies ‖S(σ)ỹ + θ̃S′(σ)ỹ‖ ≤

1e− 10×‖ỹTS′(σ)ỹ‖.3 The backslash “(\)” Matlab operator is set as the default linear system

solver. Each eigenpair (θ(σ), ŷ(σ)) is computed by our own implementation of Inverse Iteration.

2See https://ark.intel.com/
3In practice we found that the inner eigenvalue problem can be solved even less accurately (see [126] for more

details on the convergence of inexact Newton methods).

153

Unless mentioned otherwise, p = 16 will be the default number of subdomains used through-

out this section.

8.3.2 Results

Table 8.1: n: size of A and M , nnz(.): number of nonzero entries.

Matrix pencil n nnz(A)/n nnz(M)/n s Application

1. nos5 468 11.1 1.0 251 Structural
2. nos3 960 16.5 1.0 310 Structural
3. bcsst{k,m}27 1,224 45.9 45.9 418 Structural
4. FEmesh 2,689 6.9 6.8 287 Model problem
5. saylr4 3,564 6.3 1.0 762 CFD
6. FDmesh 5,000 6.6 1.0 433 Model problem
7. {K,M}uu 7,102 47.9 24.0 911 Structural

We consider the application of the numerical schemes listed in Section 8.3.1 to the com-

putation of the ten lowest eigenvalues (and eigenvectors) of the matrix pencils listed in Table

8.1. All sought eigenvalues were simple. The entries under the label ’s’ denote the number of

interface variables for the default choice of p = 16 subdomains. All matrix pencils but 4) and 6)

can be found in the Suite Sparse Matrix Collection. Matrix “FDmesh” represents a five-point

Finite Difference approximation of the Laplace operator on a regular grid with homogeneous

Dirichlet boundary conditions on the entire boundary of the domain [0, 1]× [0, 1] using a mesh

size nx = 100 and ny = 50 along the first and second dimension, respectively. Matrix pencil

“FEmesh” represents a Finite Elements discretization of the [−1, 1]× [−1, 1] plane using linear

elements with target maximum mesh edge length of h = 0.05. Matrix pencils 1), 2), 5) and 6)

are of the standard form, i.e., (A, I), where I denotes the identity matrix of appropriate size.

Table 8.2 reports the total number of iterations required by MLA, BrH, and RQI, to compute

the ten algebraically smallest eigenvalues and associated eigenvectors of the matrix pencils listed

in Table 8.1. The initial eigenvalue approximation σ0 of each sought eigenvalue λ was set to

either σ0 = λ(1+1e−2) (left bar), or σ0 = λ(1+1e−3) (right bar). The number of subdomains

was set to its default value p = 16 for both values of σ0. The values inside the parentheses

denote the total number of eigenpairs missed due to misconvergence, i.e., the number of times

each scheme converged to a previously computed eigenpair. For the values of p and σ0 reported4

in this section, we found RQI to be considerably less robust than the root-based eigensolvers.

4For example, when p = 2 and σ0 = λ(1+1e−2), the root-based eigensolvers also misconverged to a previously
computed eigenpair for some of the matrices listed in Table 8.1.

154

Table 8.2: Total number of iterations required by MLA, BrH, and RQI, to compute the ten
algebraically smallest eigenvalues and associated eigenvectors of the matrix pencils listed in
Table 8.1.

σ0 = λ(1 + 1e− 2) σ0 = λ(1 + 1e− 3)
Matrix MLA BrH RQI MLA BrH RQI

nos5 26 33 36(1) 20 30 30
nos3 24 29 35(1) 20 26 28

bcsst{k,m}27 31 36 44(3) 30 30 35
FEmesh 31 38 40 23 30 31
saylr4 24 29 49(4) 20 26 35(4)

FDmesh 29 35 36(6) 22 30 44(6)
{K,M}uu 30 38 36 22 31 28

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

0

20

40

60

80

Eigenvalue of (A,M)

T
ot

al
n
u
m

b
er

o
f

II
st

ep
s

First MLA iteration
Second MLA iteration
Third MLA iteration

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

2

4

6

Eigenvalue of (A,M)

T
ot

al
n
u
m

b
er

of
II

st
ep

s

First MLA iteration
Second MLA iteration

Figure 8.7: Total number of steps required by Inverse Iteration (II) at each individual iteration
of MLA when computing the ten algebraically smallest eigenvalues of the matrix “nos3”. The
initial eigenvalue approximation σ0 for each sought eigenvalue λ was set to σ0 = λ(1 + 1e − 2)
(left subfigure) and σ0 = λ(1 + 1e− 3) (right subfigure).

More generally, the root-based eigensolvers were found faster (in terms of convergence) and more

robust than RQI for virtually all values of p and σ0 we tested.

Convergence of Inverse Iteration as the inner eigenvalue solver

Figures 8.7 and 8.8 plot the total number of steps required by Inverse Iteration to compute θ(σ)

at each individual iteration of MLA when computing the ten algebraically smallest eigenvalues

of the matrix “nos3” and “saylr4”, respectively. As the iteration index of MLA increases, the

number of Inverse Iteration steps per iteration decreases. Indeed, as MLA converges towards

the sought simple eigenvalue (root) λ of (A,M), θ(σ) converges to zero, while, at the same time,

the rest of the eigenvalues of matrix pencil (S(σ),−S′(σ)) converge to nonzero values. On the

155

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

0

50

100

Eigenvalue of (A,M)

T
ot

al
n
u
m

b
er

of
II

st
ep

s

First MLA iteration
Second MLA iteration
Third MLA iteration

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

0

5

10

15

Eigenvalue of (A,M)

T
ot

al
n
u
m

b
er

of
II

st
ep

s

First MLA iteration
Second MLA iteration

Figure 8.8: Total number of steps required by Inverse Iteration (II) at each individual iteration
of MLA when computing the ten algebraically smallest eigenvalues of the matrix “saylr4”. The
initial eigenvalue approximation σ0 for each sought eigenvalue λ was set to σ0 = λ(1 + 1e − 2)
(left subfigure) and σ0 = λ(1 + 1e− 3) (right subfigure).

other hand, a cluster of eigenvalues of (A,M) around σ leads to a cluster of eigenvalues around

the origin in matrix S(σ). As a result, more Inverse Iteration steps are needed to compute θ(σ).

Eventually, σ will come much closer to the sought eigenvalue λ compared to the rest of the

eigenvalues of (A,M). As soon as this regime is achieved, one or two steps of Inverse Iteration

per MLA iteration will generally be enough.

8.3.3 Increasing the number of interface variables

Increasing the number of interface variables leads to fewer upslope roots. This seems to have

a positive effect on the convergence of root-finding eigenvalue solvers as was already hinted in

Section 8.2.3. While an exhaustive experimental analysis lies outside the context of this paper,

the remaining of this section presents some illustrative results.

Figure 8.9 plots the eigenbranches θj(σ), j = 1, . . . , 10 (top) and associated derivatives θ′j(σ)

(middle) of the matrix “nos3” as the number of subdomains varies from p = 16 (left) to p = 64

(right), i.e., as the number of interface variables increases. Similarly to Section 8.2.3, increasing

the number of interface variables led to eigenbranches whose shape is closer to that of a linear

function. The bottom row plots the relative residual curves of MLA, BrH, and RQI obtained

using p = 16 (left) and p = 64 (right) subdomains. The initial approximation of each sought

eigenvalue was set to σ = λ(1 + 1e − 2). Increasing the number of interface variables has a

positive effect on MLA. On the other hand, this has minimal effects on the convergence of RQI.

156

0 1 2 3 4

σ

-2

-1

0

1

2

θ
j(σ

)
Eigs 1 through 10 in [0.0 3.9]

0 1 2 3 4

σ

-2

-1

0

1

2

θ
j(σ

)

Eigs 1 through 10 in [0.0 3.9]

0 1 2 3 4

σ

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

θ
j'(
σ

)

Derivs 1 through 10 in [0.0 3.9]

1 2 3

σ

-1.05

-1

-0.95

θ
j'(
σ

)

Derivs 1 through 10 in [0.0 3.9]

0 10 20 30 40

Iteration

10
-15

10
-10

10
-5

10
0

R
e
s
id
u
a
l
n
o
r
m

0 10 20 30 40

Iteration

10
-15

10
-10

10
-5

10
0

R
e
s
id
u
a
l
n
o
r
m

Figure 8.9: Eigenbranches θj(σ) (top) and associated derivatives θ′j(σ) (middle) of the matrix
“nos3” as the number of subdomains varies from p = 16 (left) to p = 64 (right). The bottom

figures plot the relative residual curves of MLA (“©”), BrH (“�”) and RQI (“5”) obtained

using p = 16 (left) and p = 64 (right) subdomains.

157

0 2 4 6 8 10

Eigvl id

0

0.02

0.04

0.06

0.08

0.1

T
ru
e
a
n
d
a
p
p
ro
x
im

a
te

E
ig
v
ls True Eigvls

MLA

BrH

RQI

0 2 4 6 8 10

Eigvl id

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T
ru
e
a
n
d
a
p
p
ro
x
im

a
te

E
ig
v
ls True Eigvls

MLA

BrH

RQI

0 2 4 6 8 10

Eigvl id

0

10

20

30

40

50

T
ru
e
a
n
d
a
p
p
ro
x
im

a
te

E
ig
v
ls True Eigvls

MLA

BrH

RQI

0 10 20 30 40

Iteration

10
-15

10
-10

10
-5

R
e
s
id
u
a
l
n
o
r
m

0 10 20 30 40 50

Iteration

10
-15

10
-10

10
-5

10
0

R
e
s
id
u
a
l
n
o
r
m

5 10 15 20 25 30

Iteration

10
-15

10
-10

10
-5

R
e
s
id
u
a
l
n
o
r
m

Figure 8.10: A comparison of MLA (“©”), BrH (“�”) and RQI (“5”). The initial approxima-

tion of each sought eigenvalue was determined as σ := λ(1 + 1e−3). Left: The ten algebraically
smallest eigenvalues of (A,M) and the approximate eigenvalues returned by MLA, BrH, and
RQI. Right: Relative residual curves. First column: a 65 × 26 Dirichlet eigenvalue problem
(M = I). Second column: a 25× 20× 10 Dirichlet eigenvalue problem (M = I). Third column:
“FEmesh”.

The latter was expected since RQI only solves a linear system of the form (A− σM)x = b, and

the solution vector x is not affected by the size of the Schur complement matrix.

Figures 8.10 and 8.11 show a comparison of MLA, BrH, and RQI when each one of these

techniques is applied to the computation of the ten algebraically smallest eigenvalues of various

matrix pencils. The number of subdomains used in this section was larger than before, in

particular we set p = 64. For all matrix pencils considered, the root-based techniques proved to

be considerably faster than RQI. Moreover, the root-based techniques were considerably more

robust than RQI in terms of misconvergence for the first two pencils considered. It is worth

mentioning that when p = 64 and σ = λ(1 + 1e − 3) MLA required exactly two iterations per

eigenpair to converge to the sought accuracy.5

Remark 6 While MLA might converge faster than RQI, the computational cost per iteration

of the former is higher than that of the latter, since MLA requires repeated linear system solu-

tions with matrix S(σ) until the eigenpair of smallest magnitude of (S(σ),−S′(σ)) is computed.

5In practice MLA required only one iteration per eigenpair as the second step only verified that the sought
accuracy was already reached.

158

0 2 4 6 8 10

Eigvl id

0.07

0.08

0.09

0.1

0.11

0.12

0.13

T
ru
e
a
n
d
a
p
p
ro
x
im

a
te

E
ig
v
ls True Eigvls

MLA

BrH

RQI

0 2 4 6 8 10

Eigvl id

0

1

2

3

4

T
ru
e
a
n
d
a
p
p
ro
x
im

a
te

E
ig
v
ls

True Eigvls

MLA

BrH

RQI

0 2 4 6 8 10

Eigvl id

0

100

200

300

400

500

T
ru
e
a
n
d
a
p
p
ro
x
im

a
te

E
ig
v
ls True Eigvls

MLA

BrH

RQI

0 10 20 30 40

Iteration

10
-20

10
-15

10
-10

10
-5

10
0

R
e
s
id
u
a
l
n
o
r
m

0 10 20 30 40

Iteration

10
-15

10
-10

10
-5

10
0

R
e
s
id
u
a
l
n
o
r
m

0 10 20 30

Iteration

10
-10

10
-5

10
0

R
e
s
id
u
a
l
n
o
r
m

Figure 8.11: A comparison of MLA (“©”), BrH (“�”) and RQI (“5”). The initial approxima-

tion of each sought eigenvalue was determined as σ := λ(1 + 1e−3). Left: The ten algebraically
smallest eigenvalues of (A,M) and the approximate eigenvalues returned by MLA, BrH, and
RQI. Right: Relative residual curves. First column: an artificial generalized 35×20×5 Dirichlet
eigenvalue problem with M = toeplitz(2, 1, zeros(1, n− 2)). Second column: “nos3” (M = I).
Third column: “nos5” (M = I).

In contrast, RQI requires only a single linear system solution with S(σ). Assuming that both

schemes converge to the same eigenpair, MLA might be a better alternative than RQI when the

computational cost to form and factorize S(σ) is higher than the cost associated with solving a

few linear systems with the matrix S(σ).

8.4 Summary

In this chapter we proposed the Mixed Linear Approximations (MLA) scheme, an approach

based in domain decomposition and root-finding. MLA recasts the original linear eigenvalue

problem into one of computing roots of scalar functions defined by the eigenvalues of a general-

ized eigenvalue problem stemming by a first-order approximation of the non-linear matrix-valued

function associated with the interface variables. To solve this root-finding problem MLA con-

siders Newton’s iteration. We discussed several theoretical and implementation details, and

demonstrated by experiments that MLA can converge rapidly with a rate which is comparable

of even faster than that of the Rayleigh Quotient Iteration, while also being more robust.

Chapter 9

Summary and future work

This dissertation focused on domain decomposition techniques for the solution of symmetric

generalized eigenvalue problems. In this chapter we summarize the contributions of the present

dissertation and discuss possible future research directions.

9.1 Filtering techniques

The first class of numerical techniques presented in this dissertation applied domain decompo-

sition onto a transformation ρ(.) of the matrix pencil (A,M). This transformation was chosen

so that: (1) the nev eigenvalues of the matrix pencil (A,M) located inside the interval [α, β]

become those of largest magnitude in the transformed matrix pencil ρ(A,M), and (2) the eigen-

values of the matrix pencil (A,M) located outside the interval [α, β] become approximately zero

in the transformed matrix pencil ρ(A,M). The eigenvectors of the transformed matrix pen-

cil ρ(A,M) are identical to those of the matrix pencil (A,M). Both rational and polynomial

transformations were considered.

In Chapter 3 we combined domain decomposition with rational filtering and Krylov subspace

projection schemes. The proposed technique, abbreviated as RF-DDES, applies the rational

filter only to the region defined by the interface variables. This approach leads to advantages

such as (1) reduced orthogonalization costs, (2) reduced usage of complex arithmetic, and (3) the

ability to achieve convergence in even fewer than nev iterations. As part of future work, we aim

to extend RF-DDES by considering additional levels of parallelism. In addition to the ability to

159

160

divide the initial interval [α, β] into non-overlapping subintervals and apply RF-DDES to each

one of them in parallel, e.g. see [58, 43], we can also assign the complex linear system solutions

associated with different quadrature nodes to distinct processor groups. Moreover, these linear

systems can be solved by distributed preconditioned Krylov subspace approaches which could be

helpful when RF-DDES is applied to the solution of symmetric eigenvalue problems arising from

discretization of 3D domains. To this end, one option we are currently exploring is to combine

RF-DDES with the distributed memory extension of the work in [127]. Another interesting

research direction would also be to explore recursive implementations of RF-DDES. For example,

RF-DDES could be applied individually to each matrix pencil
(
B

(j)
σ ,M

(j)
B

)
, j = 1, . . . , p.

This could be particularly helpful when either dj , the number of interior variables of the jth

subdomain, or nev
(j)
B , are large. On the algorithmic side, it would be of interest to develop more

efficient criteria to set the value of nev
(j)
B , j = 1, . . . , p in each subdomain; perhaps by adapting

the work in [80].

In Chapter 4 we combined domain decomposition with contour integral eigenvalue solvers.

In particular, we presented two numerical schemes. The first scheme, abbreviated as DD-FP,

is similar to FEAST with the difference that the Schur complement linear systems are solver

by a hybrid iterative solver. The second scheme, abbreviated as DD-PP, integrates the matrix

resolvent only partially. Experiments performed in distributed memory environments verified

the superiority of the proposed schemes over popular contour integral eigenvalue solvers such

as FEAST. One major direction we plan to explore as part of future work is the development

of techniques to increase the accuracy of DD-PP. As presented, DD-PP is a one-shot algorithm.

However, it is possible to increase its accuracy by considering ideas similar to those in RF-DDES

discussed in Chapter 3. More specifically, we can keep applying the matrix <e
{∑Nc

`=1 ω`S(ζ`)
−1
}

onto a set of new vectors each time till we capture its range space or the numerical rank of the

product matrix stops increasing. The main advantage of this approach over using Lanczos (as

RF-DDES does) is that (1) it allows for inexact solves, and (2) its simplicity when block linear

system solvers are considered. Other future research directions include the incorporation of a

distributed block GMRES linear system solver in DD-FP and DD-PP to solve the complex linear

systems with the Schur complement matrices, as well as a further study of the performance of

DD-FP and DD-PP when additional levels of distributed and shared memory parallelism are

exploited.

161

In Chapter 5 we considered the performance of the DD-FP and FEAST eigenvalue solvers

when more than one levels of distributed memory parallelism are exploited. For FEAST, we also

considered the benefits of using domain decomposition linear system solvers. For DD-FP, adding

one more level of distributed memory parallelism can lead to a significant reduction of the wall-

clock time/memory footprint. In particular, distributing different right-hand sides to different

groups of processors seems to be a good choice when the Schur complement linear systems are

solved by preconditioned iterative solvers. Similarly, the scalability of parallel FEAST mainly

depends on the technique used to solve the complex linear systems as well as the distribution of

the parallel resources to the different possible levels of parallelism.

In Chapter 6 we described Cucheb, a GPU implementation of the filtered Lanczos procedure

for the solution of large sparse symmetric eigenvalue problems. Cucheb was compared against

FILTLAN, a similar CPU-based filtered Lanczos procedure, on a set of eigenvalue problems

originating from electronic structure calculations. In particular, our experiments indicate that

the use of GPU architectures in the context of electronic structure calculations can provide a

speedup of at least a factor of 10 over a single core CPU implementation and at least of factor

of 2 for a 24 core implementation. Possible future research directions include the utilization of

more than one GPU to perform the filtered Lanczos procedure in computing environments with

access to multiple GPUs. Each GPU can then be used to either perform the sparse Matrix-Vector

products and other operations of the FLP in parallel, or compute all eigenpairs in a sub-interval

of the original interval. In the later case the implementation proposed in this chapter can be

used without any modifications. Another interesting extension would be the ability to support

additional sparse matrix formats. A dense matrix version of the proposed implementation would

also be of interest, e.g. to solve sequences of eigenvalue problems as in [128].

9.2 Root-finding techniques

The second part of this dissertation focused on computing each sought eigenpair of the matrix

pencil (A,M) independently by converting the eigenvalue problem into one of a root-finding.

In Chapter 7 we presented a spectral Schur complement technique which recasts the interface

eigenvalue problem into one of computing the roots of a scalar function. The aforementioned

scalar function is defined by parameterizing the eigenvalues of an approximation of the nonlinear

matrix-valued function associated with the interface region. The root-finding problem is then

162

solved by Newton’s method. A parallel implementation was presented and its performance was

evaluated for model Laplacian problems. The proposed method can be quite fast when only a few

extremal eigenpairs of the matrix pencil (A,M) are sought. A key issue still requiring further

investigation is to find efficient ways to approximate the eigenpair (µ(σ), y(σ)) of the Schur

complement S(σ). In this chapter we used inverse iteration implemented with the MINRES

iterative method but did not consider any specific preconditioners. Preconditioning will become

mandatory when solving interior eigenvalue problems where the desired eigenvalues are deep

inside the spectrum. Such problems can be extremely difficult to solve if sparse direct solvers

are ruled out as is the case for very large 3D problems. Eigenvectors of previous spectral Schur

complements can again be used to accelerate the iterative solution as the shift σ changes.

In Chapter 8 we proposed the scheme of Mixed Linear Approximations (MLA). Similarly to

Chapter 7, MLA recasts the original linear eigenvalue problem into one of computing roots of a

scalar function. However, in contrast to the approach presented in Chapter 7, the scalar function

of interest in MLA is defined by the eigenvalue of smallest magnitude of a generalized eigenvalue

problem stemming by a first-order approximation of the non-linear matrix-valued function asso-

ciated with the interface variables. To solve the root-finding problem MLA considers Newton’s

iteration. We discussed several theoretical and implementation details, and demonstrated by

experiment that MLA can converge rapidly with a rate which is comparable of even faster than

that of the Rayleigh Quotient Iteration, while also being more robust. Several practical details

remain to be considered. For example, in our experiments we used Inverse Iteration as the inner

eigenvalue solver in MLA, however other approaches, e.g. Lanczos of (generalized) Davidson,

are possible. Furthermore, this dissertation only considered the use of direct solvers to solve

the linear systems with the Schur complement matrices. The trade-off between performing the

Newton update and linear system solutions inexactly and their effect in the convergence of of

MLA is the subject of ongoing research. Finally, another interesting research direction would

be the adaptation of MLA (where possible) to the solution of symmetric (Hermitian) nonlinear

eigenvalue problems.

References

[1] R. K. Clough and J. Penzien. Dynamics of Structures. McGraw Hill, New York, 1975.

[2] Jin Hwan Ko and Zhaojun Bai. High-frequency response analysis via algebraic substruc-

turing. International Journal for Numerical Methods in Engineering, 76(3):295–313, 2008.

[3] Karl Meerbergen and Zhaojun Bai. The Lanczos method for parameterized symmetric

linear systems with multiple right-hand sides. SIAM Journal on Matrix Analysis and

Applications, 31(4):1642–1662, 2010.

[4] Eberhard KU Gross and Reiner M Dreizler. Density functional theory, volume 337.

Springer Science & Business Media, 2013.

[5] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Physical Review, 136:B864–

B871, Nov 1964.

[6] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation

effects. Physical Review, 140:A1133–A1138, Nov 1965.

[7] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Society for Industrial and

Applied Mathematics, 2011.

[8] Edgar Bright Wilson, John Courtney Decius, and Paul C Cross. Molecular vibrations: the

theory of infrared and Raman vibrational spectra. Courier Corporation, 1955.

[9] A. N. Nikolakopoulos, V. Kalantzis, E. Gallopoulos, and J. D. Garofalakis. Factored prox-

imity models for top-n recommendations. In Proceedings of the 2017 IEEE International

Conference on Big Knowledge (ICBK), pages 80–87, Aug 2017.

163

164

[10] Athanasios N. Nikolakopoulos, Vassilis Kalantzis, Efstratios Gallopoulos, and John D.

Garofalakis. Eigenrec: generalizing puresvd for effective and efficient top-n recommenda-

tions. Knowledge and Information Systems, May 2018.

[11] Aritra Bose, Vassilis Kalantzis, Eugenia M. Kontopoulou, Mai Elkadi, Peristera Paschou,

and Petros Drineas. TeraPCA: a fast and scalable method to study genetic variation in

tera-scale genotypes. Technical Report, 2018.

[12] Andrea Toselli and Olof Widlund. Domain decomposition methods: algorithms and theory.

Springer, 2005.

[13] Barry F. Smith, Petter E. Bjørstad, and William D. Gropp. Domain Decomposition: Par-

allel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University

Press, New York, NY, USA, 1996.

[14] Tony F. Chan and Tarek P. Mathew. Domain decomposition algorithms. Acta Numerica,

3:61–143, 1994.

[15] Azzam Haidar. On the parallel scalability of hybrid linear solvers for large 3D problems.

PhD thesis, INPT, 2008.

[16] A. Stathopoulos, Y. Saad, and C. Fischer. A Schur complement method for eigenvalue

problems. 7th Copper Mountain Conference on Multigrid Methods, NASA Conference

Proceedings, NASA, 1995.

[17] S. H. Lui. Kron’s method for symmetric eigenvalue problems. Journal of Computational

and Appied Mathematics, 98(1):35–48, 1998.

[18] S. H. Lui. Domain decomposition methods for eigenvalue problems. Journal of Computa-

tional and Appied Mathematics, 117(1):17–34, 2000.

[19] A. Knyazev and A. Skorokhodov. Preconditioned gradient-type iterative methods in a sub-

space for partial generalized symmetric eigenvalue problems. SIAM Journal on Numerical

Analysis, 31(4):1226–1239, 1994.

[20] B. Philippe and Y. Saad. On correction equations and domain decomposition for com-

puting invariant subspaces. Computer Methods in Applied Mechanics and Engineering,

165

196(8):1471 – 1483, 2007. Domain Decomposition Methods: recent advances and new

challenges in engineering.

[21] B. Cockburn, J. Gopalakrishnan, F. Li, N.-C. Nguyen, and J. Peraire. Hybridization and

postprocessing techniques for mixed eigenfunctions. SIAM Journal on Numerical Analysis,

48(3):857–881, 2010.

[22] J. Gopalakrishnan, F. Li, N.-C. Nguyen, and J. Peraire. Spectral approximations by the

HDG method. Mathematics of Computation, 84(293):1037–1059, 2015.

[23] Dennis de Klerk, Daniel J Rixen, and SN Voormeeren. General framework for dynamic

substructuring: history, review, and classification of techniques. AIAA journal, 46(5):1169,

2008.

[24] Klaus-Jrgen Bathe and Jian Dong. Component mode synthesis with subspace iterations

for controlled accuracy of frequency and mode shape solutions. Computers Structures,

139:28 – 32, 2014.

[25] J. K. Bennighof and R. B. Lehoucq. An automated multilevel substructuring method for

eigenspace computation in linear elastodynamics. SIAM Journal on Scientific Computing,

25:2084–2106, 2004.

[26] Mervyn CC Bampton and Roy R Craig Jr. Coupling of substructures for dynamic analyses.

AIAA Journal, 6(7):1313–1319, 1968.

[27] Eric Polizzi. Density-matrix-based algorithm for solving eigenvalue problems. Physical

Review B, 79:115112, Mar 2009.

[28] A. Neumaier. Residual inverse iteration for the nonlinear eigenvalue problem. SIAM

Journal on Numerical Analysis, 22(5):914–923, 1985.

[29] B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Upper Saddle River,

NJ, USA, 1998.

[30] NVIDIA Corporation. NVIDIA CUDA C Programming Guide, v7.0 edition, October 2015.

[31] S. Balay et al. PETSc Web page. http://www.mcs.anl.gov/petsc, 2015.

http://www.mcs.anl.gov/petsc

166

[32] S. Balay et al. PETSc users manual. Technical Report ANL-95/11 - Revision 3.6, Argonne

National Laboratory, 2015.

[33] S. Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient man-

agement of parallelism in object oriented numerical software libraries. In E. Arge, A. M.

Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific Computing,

pages 163–202. Birkhäuser Press, 1997.

[34] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra. MPI-

The Complete Reference, Volume 1: The MPI Core. MIT Press, Cambridge, MA, USA,

2nd. (revised) edition, 1998.

[35] L Susan Blackford et al. An updated set of Basic Linear Algebra Subprograms (BLAS).

ACM Transactions on Mathematical Software, 28(2):135–151, 2002.

[36] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz, S. Hammer-

ling, J. Demmel, C. Bischof, and D. Sorensen. Lapack: A portable linear algebra library

for high-performance computers. In Proceedings of the 1990 ACM/IEEE Conference on

Supercomputing, Supercomputing ’90, pages 2–11, Los Alamitos, CA, USA, 1990. IEEE

Computer Society Press.

[37] Intel Math Kernel Library. Reference Manual. Intel Corporation, 2009. Santa Clara, USA.

ISBN 630813-054US.

[38] James W. Demmel. Applied Numerical Linear Algebra. Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 1997.

[39] J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates for the solution

of algebraic eigenvalue problems: a practical guide. Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 2000.

[40] Bahram Nour-Omid, Beresford N Parlett, Thomas Ericsson, and Paul S Jensen. How to

implement the spectral transformation. Mathematics of Computation, 48(178):663–673,

1987.

[41] H. D. Simon. The Lanczos algorithm with partial reorthogonalization. Mathematics of

Computation, 42(165):pp. 115–142, 1984.

167

[42] Kesheng Wu and Horst Simon. Thick-restart Lanczos method for large symmetric eigen-

value problems. SIAM Journal on Matrix Analysis and Applications, 22(2):602–616, May

2000.

[43] Ruipeng Li, Yuanzhe Xi, Eugene Vecharynski, Chao Yang, and Yousef Saad. A thick-

restart Lanczos algorithm with polynomial filtering for hermitian eigenvalue problems.

SIAM Journal on Scientific Computing, 38(4):A2512–A2534, 2016.

[44] Ruipeng Li, Yuanzhe Xi, Lucas Erlandson, and Yousef Saad. The EigenValues

Slicing Library (EVSL): Algorithms, implementation, and software. arXiv preprint

arXiv:1802.05215, 2018.

[45] V. Kalantzis, Y. Xi, and Y. Saad. Beyond Automated MultiLevel Substructuring: Domain

decomposition with rational filtering. SIAM Journal on Scientific Computing, 40(4):C477–

C502, 2018.

[46] Anthony P. Austin and Lloyd N. Trefethen. Computing eigenvalues of real symmetric

matrices with rational filters in real arithmetic. SIAM Journal on Scientific Computing,

37(3):A1365–A1387, 2015.

[47] Stefan Güttel, Eric Polizzi, Ping Tak Peter Tang, and Gautier Viaud. Zolotarev quadra-

ture rules and load balancing for the FEAST eigensolver. SIAM Journal on Scientific

Computing, 37(4):A2100–A2122, 2015.

[48] Yuanzhe Xi and Yousef Saad. Computing partial spectra with least-squares rational filters.

SIAM Journal on Scientific Computing, 38(5):A3020–A3045, 2016.

[49] Jan Winkelmann and Edoardo Di Napoli. Non-linear least-squares optimization of rational

filters for the solution of interior eigenvalue problems. arXiv preprint arXiv:1704.03255,

2017.

[50] Milton Abramowitz. Handbook of Mathematical Functions, With Formulas, Graphs, and

Mathematical Tables,. Dover Publications, Incorporated, 1974.

[51] Ping Tak Peter Tang and Eric Polizzi. FEAST as a subspace iteration eigensolver ac-

celerated by approximate spectral projection. SIAM Journal on Matrix Analysis and

Applications, 35(2):354–390, 2014.

168

[52] James Kestyn, Eric Polizzi, and Ping Tak Peter Tang. FEAST eigensolver for non-

hermitian problems. SIAM Journal on Scientific Computing, 38(5):S772–S799, 2016.

[53] Edoardo Di Napoli, Eric Polizzi, and Yousef Saad. Efficient estimation of eigenvalue counts

in an interval. Numerical Linear Algebra with Applications, 23(4):674–692, 2016.

[54] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied

Mathematics, second edition, 2003.

[55] Jörg Liesen and Zdenek Strakos. Krylov subspace methods : principles and analysis.

Numerical mathematics and scientific computation. Oxford University Press, Oxford, 2013.

[56] Gene Howard Golub and Richard Underwood. The block lanczos method for computing

eigenvalues. In Mathematical software, pages 361–377. Elsevier, 1977.

[57] Hasan Metin Aktulga, Lin Lin, Christopher Haine, Esmond G. Ng, and Chao Yang. Par-

allel eigenvalue calculation based on multiple shift - invert Lanczos and contour integral

based spectral projection method. Parallel Computing, 40(7):195 – 212, 2014. 7th Work-

shop on Parallel Matrix Algorithms and Applications.

[58] James Kestyn, Vasileios Kalantzis, Eric Polizzi, and Yousef Saad. PFEAST: A high perfor-

mance sparse eigenvalue solver using distributed-memory linear solvers. In In Proceedings

of the ACM/IEEE Supercomputing Conference (SC16), 2016.

[59] Martin Galgon, Lukas Krämer, Jonas Thies, Achim Basermann, and Bruno Lang. On the

parallel iterative solution of linear systems arising in the FEAST algorithm for computing

inner eigenvalues. Parallel Computing, 49(C):153–163, November 2015.

[60] Vassilis Kalantzis, James Kestyn, Eric Polizzi, and Yousef Saad. Domain decomposition

approaches for accelerating contour integration eigenvalue solvers for symmetric eigenvalue

problems. To appear in Numerical Linear Algebra with Applications, 2018.

[61] Tetsuya Sakurai and Hiroshi Sugiura. A projection method for generalized eigenvalue

problems using numerical integration. Journal of Computational and Applied Mathemat-

ics, 159(1):119 – 128, 2003. 6th Japan-China Joint Seminar on Numerical Mathematics;

In Search for the Frontier of Computational and Applied Mathematics toward the 21st

Century.

169

[62] Tetsuya Sakurai and Hiroto Tadano. CIRR: a Rayleigh-Ritz type method with contour

integral for generalized eigenvalue problems. Hokkaido Math Journal, 36(4):745–757, 11

2007.

[63] Junko Asakura, Tetsuya Sakurai, Hiroto Tadano, Tsutomu Ikegami, and Kinji Kimura.

A numerical method for nonlinear eigenvalue problems using contour integrals. JSIAM

Letters, 1:52–55, 2009.

[64] L. Kronik et al. PARSEC–the pseudopotential algorithm for real-space electronic structure

calculations: recent advances and novel applications to nano-structures. Physics Status

Solidi (B), 243(5):1063–1079, 2006.

[65] C. Bekas, E. Kokiopoulou, and Yousef Saad. Computation of large invariant subspaces us-

ing polynomial filtered Lanczos iterations with applications in Density Functional Theory.

SIAM Journal on Matrix Analysis and Applications, 30(1):397–418, April 2008.

[66] Y. Saad, A. Stathopoulos, J. Chelikowsky, K. Wu, and S. Öǧüt. Solution of large eigenvalue

problems in electronic structure calculations. BIT, 36(3):563–578, 1996.

[67] Haw ren Fang and Yousef Saad. A filtered Lanczos procedure for extreme and interior

eigenvalue problems. SIAM Journal on Scientific Computing, 34(4):A2220–A2246, 2012.

[68] G. Schofield, J. R. Chelikowsky, and Y. Saad. A spectrum slicing method for the Kohn–

Sham problem. Computer Physics Communications, 183:497 – 505, 2012.

[69] Alexander L. Skorokhodov Andrew V. Knyazev. Preconditioned gradient-type iterative

methods in a subspace for partial generalized symmetric eigenvalue problems. SIAM

Journal on Numerical Analysis, 31(4):1226–1239, 1994.

[70] C. Bekas and Y. Saad. Computation of smallest eigenvalues using spectral Schur comple-

ments. SIAM Journal on Scientific Computing, 27:458–481, 2006.

[71] V. Kalantzis, R. Li, and Y. Saad. Spectral Schur complement techniques for symmetric

eigenvalue problems. Electronic Transactions on Numerical Analysis, 45:305–329, 2016.

[72] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning

irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998.

170

[73] F. Pellegrini. Scotch and libScotch 5.1 User’s Guide. INRIA Bordeaux Sud-Ouest,

IPB & LaBRI, UMR CNRS 5800, 2010.

[74] Weiguo Gao, Xiaoye S. Li, Chao Yang, and Zhaojun Bai. An implementation and evalu-

ation of the AMLS method for sparse eigenvalue problems. ACM Transactions on Math-

ematical Software, 34(4):20:1–20:28, July 2008.

[75] Roger G. Grimes, John G. Lewis, and Horst D. Simon. A shifted block Lanczos algorithm

for solving sparse symmetric generalized eigenproblems. SIAM Journal on Matrix Analysis

and Applications, 15(1):228–272, January 1994.

[76] L. Komzsik and T. Rose. Parallel methods on large-scale structural analysis and physics

applications substructuring in MSC/NASTRAN for large scale parallel applications. Com-

puting Systems in Engineering, 2(2):167 – 173, 1991.

[77] Jiacong Yin, Heinrich Voss, and Pu Chen. Improving eigenpairs of automated multilevel

substructuring with subspace iterations. Computers Structures, 119:115 – 124, 2013.

[78] Alan George. Nested dissection of a regular finite element mesh. SIAM Journal on Nu-

merical Analysis, 10(2):345–363, April 1973.

[79] Timothy A. Davis and Yifan Hu. The university of Florida sparse matrix collection. ACM

Transactions on Mathematical Software, 38(1):1:1–1:25, December 2011.

[80] Chao Yang, Weiguo Gao, Zhaojun Bai, Xiaoye S. Li, Lie-Quan Lee, Parry Husbands, and

Esmond Ng. An algebraic substructuring method for large-scale eigenvalue calculation.

SIAM Journal on Scientific Computing, 27(3):873–892, 2005.

[81] Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and Jacko Koster. A fully asyn-

chronous multifrontal solver using distributed dynamic scheduling. SIAM Journal on

Matrix Analysis and Applications, 23(1):15–41, 2001.

[82] Wolf-Jürgen Beyn. An integral method for solving nonlinear eigenvalue problems. Linear

Algebra and its Applications, 436(10):3839 – 3863, 2012.

[83] Xiaoye S. Li and James W. Demmel. Superlu dist: A scalable distributed-memory sparse

direct solver for unsymmetric linear systems. ACM Transactions on Mathematical Soft-

ware, 29(2):110–140, June 2003.

171

[84] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing,

7(3):856–869, 1986.

[85] L. M. Carvalho, L. Giraud, and P. Le Tallec. Algebraic two-level preconditioners for

the Schur complement method. SIAM Journal on Scientific Computing, 22(6):1987–2005,

2001.

[86] Luc Giraud, Azzam Haidar, and Yousef Saad. Sparse approximations of the Schur com-

plement for parallel algebraic hybrid solvers in 3D. Numerical Mathematics, 3(3):276–294,

2010.

[87] S. Rajamanickam, E.G. Boman, and M.A. Heroux. ShyLU: A hybrid-hybrid solver for

multicore platforms. In Parallel Distributed Processing Symposium (IPDPS), 2012 IEEE

26th International, pages 631–643, May 2012.

[88] Y. Saad and B. Suchomel. ARMS: an Algebraic Recursive Multilevel Solver for general

sparse linear systems. Numerical Linear Algebra with Applications, 9(5):359–378, 2002.

[89] Zhongze Li, Yousef Saad, and Masha Sosonkina. pARMS: a parallel version of the algebraic

recursive multilevel solver. Numerical Linear Algebra with Applications, 10(5-6):485–509,

2003.

[90] Yousef Saad and Maria Sosonkina. Distributed Schur complement techniques for general

sparse linear systems. SIAM Journal on Scientific Computing, 21(4):1337–1356, 1999.

[91] Andrey Kuzmin, Mathieu Luisier, and Olaf Schenk. Fast methods for computing selected

elements of the Green’s function in massively parallel nanoelectronic device simulations.

In Proceedings of the 19th International Conference on Parallel Processing, Euro-Par’13,

pages 533–544, Berlin, Heidelberg, 2013. Springer-Verlag.

[92] Cosmin G. Petra, Olaf Schenk, Miles Lubin, and Klaus Gärtner. An augmented incomplete

factorization approach for computing the Schur complement in stochastic optimization.

SIAM Journal on Scientific Computing, 36(2):C139–C162, 2014.

172

[93] Vassilis Kalantzis, Costantinos Bekas, Alessandro Curioni, and Efstratios Gallopoulos.

Accelerating data uncertainty quantification by solving linear systems with multiple right-

hand sides. Numerical Algorithms, 62(4):637–653, 2013.

[94] Vassilis Kalantzis, A. Cristiano I. Malossi, Costas Bekas, Alessandro Curioni, Efstratios

Gallopoulos, and Yousef Saad. A scalable iterative dense linear system solver for multiple

right-hand sides in data analytics. Parallel Computing, 74:136 – 153, 2018.

[95] V. Simoncini and E. Gallopoulos. Convergence properties of block GMRES and matrix

polynomials. Linear Algebra and its Applications, 247:97 – 119, 1996.

[96] Timothy A. Davis. Algorithm 832: UMFPACK V4.3—an Unsymmetric-pattern Multi-

frontal Method. ACM Transactions on Mathematical Software, 30(2):196–199, June 2004.

[97] J. L. Aurentz, V. Kalantzis, and Y. Saad. Cucheb. https://github.com/jaurentz/

cucheb, 2016.

[98] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming with

CUDA. Queue, 6(2):40–53, 2008.

[99] David B Kirk and W Hwu Wen-Mei. Programming massively parallel processors: a hands-

on approach. Morgan Kaufmann, 2016.

[100] J. R. Chelikowsky, Y. Saad, and I. Vasiliev. Atoms and clusters. In Time-Dependent

Density Functional Theory, volume 706 of Lecture notes in Physics, chapter 17, pages

259–269. Springer-Verlag, Berlin, Heidelberg, 2006.

[101] W. R. Burdick, Y. Saad, L. Kronik, M. Jain, and J. R. Chelikowsky. Parallel implemen-

tations of time-dependent density functional theory. Computer Physics Communications,

156:22–42, 2003.

[102] J. L. Aurentz. GPU accelerated polynomial spectral transformation methods. PhD thesis,

Washington State University, 2014.

[103] L. O. Jay, H. Kim, Y. Saad, and J. R. Chelikowsky. Electronic structure calculations for

plane-wave codes without diagonalization. Computer Physics Communications, 118(1):21–

30, 1999.

https://github.com/jaurentz/cucheb
https://github.com/jaurentz/cucheb

173

[104] Y. Saad. Filtered conjugate residual-type algorithms with applications. SIAM Journal on

Matrix Analysis and Applications, 28(3):845–870, 2006.

[105] Y. Zhou. A block Chebyshev-Davidson method with inner-outer restart for large eigenvalue

problems. Journal of Computational Physics, 229(24):9188 – 9200, 2010.

[106] Y. Zhou and Y. Saad. A Chebyshev-Davidson algorithm for large symmetric eigenprob-

lems. SIAM Journal on Matrix Analysis and Applications, 29(3):954–971, 2007.

[107] R. N. Silver, H. Roeder, A. F. Voter, and J. D. Kress. Kernel polynomial approxima-

tions for densities of states and spectral functions. Journal of Computational Physics,

124(1):115–130, 1996.

[108] A. Weiße, G. Wellein, A. Alvermann, and H. Fehske. The kernel polynomial method. Rev.

Modern Phys., 78(1):275, 2006.

[109] Y. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky. Self-consistent-field calculations

using Chebyshev-filtered subspace iteration. Journal of Computational Physics, 219(1):172

– 184, 2006.

[110] D. Jackson. The Theory of Approximation, volume 11 of Colloquium publications. AMS,

New York, NY, USA, 1930.

[111] C. W. Clenshaw. A note on the summation of Chebyshev series. Mathematics of Compu-

tation, 9:118–120, 1955.

[112] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear dif-

ferential and integral operators. Journal of Research of the National Bureau of Standards,

45:255–282, 1950.

[113] J. Cullum and W. E. Donath. A block Lanczos algorithm for computing the q algebraically

largest eigenvalues and a corresponding eigenspace of large, sparse, real symmetric matri-

ces. In Decision and Control including the 13th Symposium on Adaptive Processes, 1974

IEEE Conference on, pages 505–509. IEEE, 1974.

[114] C. Kelley. Iterative Methods for Linear and Nonlinear Equations. Society for Industrial

and Applied Mathematics, 1995.

174

[115] T. Kato. Perturbation Theory for Linear Operators. Springer–Verlag, New–York, 1976.

[116] Peter D. Lax. Linear algebra and its applications. Pure and applied mathematics. Wiley-

Interscience, Hoboken (N.J.), 2007.

[117] Ilse C. F. Ipsen. Computing an eigenvector with inverse iteration. SIAM Review, 39(2):254–

291, 1997.

[118] G. H. Golub and C. F. Van Loan. Matrix Computations, 4th edition. Johns Hopkins

University Press, Baltimore, MD, 4th edition, 2013.

[119] Daniel B. Szyld. Criteria for combining inverse and Rayleigh quotient iteration. SIAM

Journal on Numerical Analysis, 25(6):1369–1375, 1988.

[120] Andr Gaul, Martin H. Gutknecht, Jörg Liesen, and Reinhard Nabben. A framework for

deflated and augmented Krylov subspace methods. SIAM Journal on Matrix Analysis and

Applications, 34(2):495–518, 2013.

[121] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickan. Algorithm 887: CHOLMOD,

supernodal sparse Cholesky factorization and update/downdate. ACM Transactions on

Mathematical Software, 35:22:1–22:14, 2008.

[122] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations.

SIAM Journal on Numerical Analysis, 12:617–629, 1975.

[123] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK users guide: Solution of large-scale

eigenvalue problems by implicitely restarted Arnoldi methods. SIAM, Philadelphia, PA,

1998.

[124] Alan L. Andrew and Roger C. E. Tan. Computation of derivatives of repeated eigenvalues

and the corresponding eigenvectors of symmetric matrix pencils. SIAM Journal on Matrix

Analysis and Applications, 20(1):78–100, 1998.

[125] Haim Avron and Esmond Ng. A generalized Courant-Fischer minimax theorem. 2008.

[126] Stanley C. Eisenstat and Homer F. Walker. Choosing the forcing terms in an inexact

Newton method. SIAM Journal on Scientific Computing, 17(1):16–32, 1996.

175

[127] G. Dillon, V. Kalantzis, Y. Xi, and Y. Saad. A hierarchical low rank Schur comple-

ment preconditioner for indefinite linear systems. SIAM Journal on Scientific Computing,

40(4):A2234–A2252, 2018.

[128] M. Berljafa, D. Wortmann, and E. Di Napoli. An optimized and scalable eigensolver for se-

quences of eigenvalue problems. Concurrency and Computation: Practice and Experience,

27(4):905–922, 2015.

	Abstract
	List of Tables
	List of Figures
	Introduction
	The symmetric generalized eigenvalue problem
	Notation

	The framework of domain decomposition
	Graph partitioning and the local viewpoint of the eigenvalue problem

	Domain decomposition eigenvalue solvers
	Organization and contribution of this dissertation
	Filtering-based techniques
	Root-finding techniques

	List of publications and conferences attended
	Computing environments and programming models
	Hardware
	Software

	Funding and access to computational resources

	Related Work
	The Rayleigh-Ritz procedure
	Optimality of the Rayleigh-Ritz procedure

	The shift-and-invert Lanczos method for symmetric generalized eigenvalue problems
	Rational filtering
	Construction of the rational filter
	Rational filtering projection methods
	Discussion

	Polynomial filtering
	The FILTLAN library

	Domain decomposition techniques
	Invariant subspaces from a Schur complement viewpoint
	The Automated Multi-Level Substructuring method

	Test matrices
	The Dirichlet eigenvalue problem
	General matrices

	Details on notation

	I Filtering techniques
	A Krylov-based rational filtering domain decomposition technique
	Approximation of span([y(1),…,y(nev)])
	Rational filtering restricted to the interface region
	A Krylov-based approach

	Approximation of span ([u(1),…,u(nev)])
	The basic approximation
	Enhancing accuracy by resolvent expansions
	Enhancing accuracy by eigenvector deflation

	The RF-DDES algorithm
	The projection matrix Z
	Comparison with AMLS

	Experiments
	Numerical illustration of RF-DDES
	A comparison of RF-DDES and RF-KRYLOV in distributed computing environments

	Summary

	Domain decomposition from a contour integral viewpoint
	Full integration of the matrix resolvent
	Practical aspects of the DD-FP scheme

	Partial integration of the matrix resolvent
	Computational comparison of the DD-FP and DD-PP schemes

	Solving the Schur complement linear systems
	Schur complement preconditioners
	Matrix-Vector products with the matrix S()

	Experiments
	A comparison of the DD-FP and DD-PP schemes for 2D domains
	A 3D model problem
	The PARSEC matrix collection

	Summary

	Acceleration of rational filtering eigenvalue solvers by exploiting multiple levels of distributed memory parallelism
	Combining DD-FP with an additional layer of distributed memory parallelism
	Evaluation

	The PFEAST scheme
	Experimental framework
	Strong scalability of levels L2 and L3
	Notes on the optimal distribution of parallel resources

	Summary

	Cucheb: A GPU implementation of FILTLAN
	Motivation
	Chebyshev polynomial filters
	Choosing the filter degree m

	Combining polynomial filtering with block Lanczos
	Experiments
	GPU benchmarking
	CPU-GPU comparison

	Summary

	II Root-finding techniques
	The method of single linear approximations
	Eigenbranches
	An algorithm for computing a single eigenpair
	An equivalent update scheme for Newton's method

	Eigenbranches across the poles
	A branch-hopping algorithm
	Experiments
	Results
	A comparison with ARPACK

	Summary

	The method of mixed linear approximations
	The method of Mixed Linear Approximations
	Eigenbranches
	Formulation of a Newton-based procedure
	Characterization of the eigenbranches as approaches an eigenvalue of (A,M)
	Characterization of the eigenbranches as approaches an eigenvalue of (B,MB)

	Practical aspects of MLA
	Determining which roots of () are eigenvalues of (A,M)
	A categorization of the roots
	The impact of the location of the eigenvalues of (B,MB)

	Numerical Experiments
	Details on the experimental framework
	Results
	Increasing the number of interface variables

	Summary

	Summary and future work
	Filtering techniques
	Root-finding techniques

	References

