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ABSTRACT 

 

The microbiome, defined as the vast number of microorganisms inhabiting both human and non-

human environments, has been associated with human disease as well as other important 

ecological phenomena. However, its quantitative study is complicated in part by measurement 

error and computational limitations, pointing to a need for more sensitive and reproducible DNA 

sequence analysis techniques. To this end, I have developed a variety of improved methods 

including a flexible short-read quality control pipeline, curated databases of marker genes and 

whole genomes, streamlined OTU picking software, and a high-throughput optimal aligner with 

taxonomy interpolation. Together, these methods represent advancements over traditional 

sequence analysis pipelines and may improve the quality of downstream statistical analyses. 
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INTRODUCTION 
 

The microbiome is defined by the myriad microbes living in, on, and around us. Due to its 

intimate relationship with its environment, including its human hosts, it holds tremendous 

promise for unlocking secrets of human disease and wellbeing, as well as unraveling mysteries 

spanning from global warming to the evolution of virulence. However, as of the time of writing, 

the field of microbiome analysis remains in its infancy, enabled only recently by the emergence 

of ubiquitous high-throughput DNA sequencing technology. This technology has empowered us 

to probe the hitherto unfathomable diversity of microbes, the extent of which eluded us until a 

few decades ago despite centuries of earlier attempts to culture them in the laboratory. However, 

this new technology is not without problems of its own. 

 

The abundance and diversity of the microbes comprising these microbiomes entails the collection 

of massive amounts of measurement data in the form of short DNA fragments, which must be 

cast into meaningful biological features prior to use in solving problems such as predicting 

clinical outcomes or ecological modeling. This arguably places the field within the burgeoning 

realm of “big data,” inheriting as such both the latter’s power and limitations. Adding to this 

complexity is the fact that these pieces of DNA may be ambiguous; they could be shared by 

multiple microbes, or exist in multiple places within the genome of a single microbe, or a 

combination of these. Further, our databases remain incomplete; there are many microbial species 

and genes we have yet to characterize, further complicating the use of microbes as meaningful 

features. These DNA readouts are also error-prone, introducing fuzziness into the database 

lookup problem in addition to meriting multiple steps of quality control to maintain analytical 

rigor. 
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Tools currently exist in the microbiome sciences to address these problems to some extent, but 

they suffer from numerous shortcomings. One issue is that there are many potential tools for each 

step, the order, use, and configuration of which requires expert knowledge to operate for best 

results. This increases the barrier to entry for performing even basic analyses, and also increases 

time investment in learning an operating multiple toolsets along with their interactions. Another 

distinct issue is in the quality of existing tools themselves, which may be cumbersome to install, 

slow to operate, or inaccurate in the results produced.  

 

As highlighted at the top of Figure 1, there are 3 distinct stages to processing metagenomic 

communities for analysis. The first stage, quality control, aims to manicure raw DNA reads 

produced by sequencing instruments and get them into a usable, high-quality format for 

downstream processing. This task is currently accomplished with disparate tools such as Cutadapt 

[1] to remove sequencing adaptors, FLASh [2] to join overlapping paired end reads together, 

QIIME [3] or Trimmomatic [4] to filter reads containing low-quality bases, and potentially other 

programs or pipeline stages to convert the reads into formats usable by downstream tools (i.e. 

conversion to multiplexed FASTA format [3]).  

 

The second stage in microbiome data processing involves microbial community profiling. 

Existing tools for this task exist but are proprietary (“black box” and costly), inaccurate, slow to 

run and install, or a combination of these [5]. The standard tool in QIIME [3] until very recently 

was the proprietary USearch [6] tool, and more recently changed to the slower but open-source 

sortMeRNA tool [7]. Other tools exist along this spectrum, trading off quality for performance, or 

both for open-source status. Examples include popular general purpose read mappers such as 

bowtie2 [8] as well as aligners such as BLAST [9].  
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The third stage in the pipeline comprises the umbrella of statistical analyses that are performed on 

the microbial census data. Common to many workflows is the investigation of microbial diversity 

metrics within and between samples (alpha and beta diversity, respectively). Phylogenetic 

analyses are also common for use in ecological distance metrics such as UniFrac [10]. Different 

statistical frameworks are appropriate for each type of analysis, such as longitudinal analysis or 

compositional data analysis.  

 

It has been my goal in this PhD work to create and provide accurate, high-performance tools to 

tackle these issues – from initial quality control to microbiome characterization and analysis. 

Starting from the beginning of a typical microbiome analysis pipeline (Figure 1), I have created a 

pipeline called “SHI7” (pronounced “Shizen”), which is a quality control tool that automatically 

learns the characteristics of the raw data on which it is applied, enabling it to tune its own 

parameters and produce manicured, high-quality sequences as its output. I have also developed a 

pipeline for rough characterization of the microbiome based on heuristic sequence alignment 

called “NINJA-OPS,” and due to what I believed to be lingering limitations of this method, I 

went on to create “BURST,” a metagenome-scale exhaustive optimal (non-heuristic) short read 

aligner intended for multi-genome high-throughput alignment with robust error tolerance. Given 

the reliance of both of the latter tools on a reference database of known microbes, I have also 

produced software called “aKronyMer” that rapidly performs database-free microbiome 

characterizations, including alpha and beta diversity analysis as well as phylogeny generation, 

with only the raw short-read data as its input.  
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I have also produced new databases for use with my database-dependent tools, including a 

human- and murine-associated microbial genome database, data handling pipelines for database 

and phylogeny generation, and a novel fungal ITS-based fungal phylogeny for marker gene 

“mycobiome” studies. I pioneered a lossless data compression codec called “kafan.” Using some 

of my other tools (SHI7, NINJA-OPS, aKronyMer, and BURST), I also created an ultra-fast, 

scalable de novo clustering/sequence variant isolation pipeline with the intention of dramatically 

speeding up the database-free identification of microbes from amplicon sequences. In addition, I 

have produced a tool that dramatically speeds up heuristic database-dependent taxonomic 

profiling called “UTree,” which samples tiny “fingerprints” from short reads to identify candidate 

matches it then aggregates using a voting or lowest-common-ancestor scheme to infer the 

taxonomic composition of a community. Finally, I have made contributions to various 

downstream microbiome analysis projects that make use of these and other techniques, including 

statistics and machine learning. 

 
Figure 1. Microbiome workflow and selected contributions. A typical microbiome analysis workflow is shown in the top 

arrow, with each of my selected contributions positioned in the corresponding location in the lower arrow. 
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This thesis will focus on an important subset of my various tools, namely the quality control 

pipeline (SHI7), the amplicon characterization pipeline (NINJA-OPS), and the optimal 

metagenomic aligner (BURST). These were selected for inclusion based on relevance, 

publication status (all are published or in submission), and personal interest. It is my hope that 

you find this presentation of my work as beneficial and enriching as I did producing it. Onward! 

 

Gabe 

 

(References are provided at the end of this thesis.) 
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I. SHI7: A self-learning pipeline for multi-purpose short-read DNA quality control 
 

(First published: Al-Ghalith, Gabriel A., et al. "SHI7 Is a Self-Learning Pipeline for Multipurpose 
Short-Read DNA Quality Control." MSystems 3.3 (2018): e00202-17.) 
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Summary.  

Next-generation sequencing technology is of great importance for many biological disciplines. 

However, due to technical and biological limitations, the short DNA sequences produced by 

modern sequencers require numerous quality control (QC) measures to reduce errors, remove 

technical contaminants, or merge paired end reads together into longer or higher quality 

fragments. Many tools for each step exist, but choosing the appropriate methods and usage 

parameters can be challenging because the parameterization of each step depends on the 

particularities of the sequencing technology used, the type of samples being analyzed, and the 

stochasticity of the instrumentation and sample preparation. Further, end users may not know all 

of the relevant information about how their data were generated, such as the expected overlap for 

paired-end sequences or type of adaptors used, to make informed choices. This increasing 

complexity and nuance demands a pipeline that combines existing steps together in a user-

friendly way, and when possible learns reasonable quality parameters from the data 

automatically. We propose a user-friendly quality-control pipeline called SHI7 (canonically 

pronounced “shizen”), which aims to simplify quality control of short read data for the end user 

by predicting presence and/or type of common sequencing adaptors, what quality scores to trim, 

whether the dataset is shotgun or amplicon sequencing, whether reads are paired end or single 

end, and whether pairs are stitchable, including the expected amount of pair overlap. We hope 

that SHI7 will make it easier for all researchers, expert and novice alike, to follow reasonable 

practices for short-read data quality control.  

 

Importance. Quality control of high-throughput DNA sequencing data is an important but 

sometimes laborious task requiring background knowledge of the sequencing protocol used (such 

as adaptor type, sequencing technology, insert size/stitchability, paired-endedness, etc). Quality 

control protocols typically require applying this background knowledge to selecting and 
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executing numerous quality control steps with the appropriate parameters, which is especially 

difficult when working with public data or data from collaborators who use different protocols. 

We have created a streamlined quality control pipeline intended to substantially simplify the 

process of DNA quality control from raw machine output files to actionable sequence data. In 

contrast to other methods, our proposed pipeline is easy to install and use, and attempts to learn 

the necessary parameters from the data automatically with a single command.  

 

Introduction.  

Next-generation sequencing (NGS) technology has become increasingly common across the 

biological sciences (1). The emergence of quality control (QC) software in tandem with the influx 

of NGS data highlights a need for measures to reduce noise, improve base-call quality, increase 

read length, filter out spurious sequences, split sequencing lanes by barcode for pooled 

sequencing runs, and otherwise improve the signal-to-noise ratio present within the large volume 

of data used to drive downstream analyses and make important decisions.  

However, the increasing number of sequencing protocols available can make it difficult for a non-

technical user to understand how to tune subtly different QC parameters when processing raw 

data. Different sequencing facilities use different techniques to shear longer DNA molecules into 

sufficiently short fragments for the sequencing instrument to process.  Further, different DNA 

preparation kits may be used, and with different sequencing platform adaptors. There may be 

further points of difference as well, depending on the type of study performed. For instance, 

whereas shotgun sequencing methods attempt uniform coverage over all input DNA molecules, 

amplicon sequencing methods seek to minimize sequencing cost by targeted amplification of 

specific (marker) genes (2).  
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Common workflows 

Despite numerous differences, the basic QC workflow for short-read sequencing has some 

common ground following sample preparation (Figure 2 shows a simplified schematic in context 

of microbiome sequencing). Essentially, the result of a typical paired-end sequencing run results 

in one or more pairs of FASTQ files containing raw sequence information for 100-300bp 

sequences along with quality scores representing the sequencing instrument’s measure of 

confidence in the accuracy of each base call. This is useful because a rudimentary quality control 

procedure may read these scores and determine, through a set of logical parameters, how much of 

each individual short read to retain. These scores may also be used directly by downstream 

applications to weight the influence of particular bases in alignments, such as in recent versions 

of the popular bowtie2 aligner (3). In some cases, there are multiple samples contained within a 

single sequencing lane, each with its unique sample barcode, as multiplex marker gene 

sequencing (4), which subsequently must be demultiplexed in order for downstream analyses to 

differentiate among the various samples.  
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Figure 2. Basic quality control workflow. A linear schematic shows steps in a typical quality control procedure for 

marker gene (microbiome) data. The process flows from removing known technical artifacts to assembling short 

contiguous regions to trimming remaining contamination post-stitching and creating a final set (or optionally, single 

pooled file) of sequences in the desired format (FASTA or FASTQ). Notable exceptions to this procedure exist; for 

instance, pairs may not be stitchable depending on insert size for shotgun sequencing.   

At an early stage in the QC process, it is essential to remove sequencing instrument adaptors 

introduced by the sequencing platform chemistry. Depending on the protocol used, some data 

may be more heavily contaminated with adaptors than others (5). The presence of adaptors can 

influence downstream analyses, including other QC steps, particularly if downstream global 

alignment (e.g. clustering) or end-to-end alignment (e.g. most short read mapping) will be 

performed. Because these adaptor nucleotides will not be present in reference sequences or 

databases, their presence in the reads will decrease alignment scores. In some cases, paired-end 

sequencing protocols allow for the paired ends to overlap one another, allowing the two reads in a 

pair to be merged or “stitched” together to form a single, often longer or higher quality, contig. 
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Throughout the region where both reads in a pair overlap, consensus quality determination is 

possible in cases of disagreement between pairs by retaining the higher quality of any two 

discordant bases. If the region of overlap is shorter than each individual read, this stitching also 

allows for the assembly of the two reads into a single longer contig. Merging pairs hence both 

improves quality in the region of overlap and extends the read, both of which improve the 

accuracy of downstream analysis (6). After stitching, any remaining poor quality regions, often 

located near the ends of the reads where the average base quality is lowest in general (6), can be 

trimmed until an acceptable quality is achieved throughout the read. Finally, these quality-

controlled reads may be converted into the simpler FASTA format devoid of quality information, 

and in some domains such as microbiome analysis, samples may be pooled into a single file with 

sequence headers indicating which biological sample a read came from, using standards-

compliant formatting (7).   

Each of these typical steps in QC has received extensive study, and there exist a variety of tools 

for performing these steps. Under the reasonable baseline assumption that any such tool has a 

profile of strengths and weaknesses, it is not our goal here to perform extensive meta-analyses 

thereof, but instead to provide a user-friendly pipeline integrating a small number of well-known 

tools under a highly simplified interface. The primary contribution of our QC pipeline, SHI7 

(pronounced “shizen”), is its ease of use. Specifically, SHI7 is trivial to install (either 

systematically with Conda, or as a portable standalone package with all dependencies included), 

easy to run from the commandline, and features a learning module which makes data-driven 

predictions for various QC parameters and presents these predictions for the user to run directly 

or tweak as desired. Importantly, although we do not posit that SHI7 will outperform any 

dedicated tool(s) or pipeline(s) on any well-defined short-read sequencing workflow, it is 

expected to perform reasonably well with little user intervention or expert knowledge across 
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various workflows and data sources, especially when knowledge of sequencing and DNA 

preparation methodology is scarce or unreliable.  

 

Results. 

SHI7 was evaluated on publicly available sequence data from various sources including the 

Human Microbiome Project (HMP) (9). A random deep shotgun sequencing sample was selected, 

for simplicity, from the associated HMP data in the Sequence Read Archive for analysis: 

SRS014271 (Tongue). Without considering specifics of the sequencing platform, chemistry, 

adaptors, read lengths, library size, or paired-end status, the contents of the sequence archive were 

extracted into a new folder and the file called “singletons” was removed. SHI7 determined that 

there was some “TruSeqv2” adaptor contamination, which it removed. It determined these were 

not amplicon reads, but stitchable shotgun reads (just over 60% of the reads in this sample could 

be stitched together), which it performed. The distribution of stitched lengths resembled a normal 

distribution centered around 150, as the command-line debug output shows (Figure 3a).  The final 

trimming removed fewer than 0.1 bases, on average, from either end of the stitched reads, and the 

average base quality throughout was 36.3 (very high) with an average read length of just under 

150bp. Processing time was around 18 minutes for the 24GB pair of FASTQ files on 16 cores of 

a Xeon E7-4850 server over gigabit network SATA storage.  
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Figure 3. Histogram of stitched reads. These histograms show read length distribution in a single Human Microbiome 

Project (HMP) metagenomic sample (a) and 16S V4 Primate Microbiome Project (PMP) sample (b).  (a) A shotgun 

metagenomic sample produces stitched contigs spanning range of lengths. The truncation after read lengths of 185bp is 

due to enforcing a minimum overlap length of 15 base pairs, which in a dataset consisting of 100bp reads is the 

maximum allowable length (100+100-15). Because the mean of this distribution is 148.6 and its standard deviation is 

20.62, the coefficient of variation (CV) is 0.139, above the 0.1 threshold under which the data would be considered 

amplicon-like by default; the data are hence considered shotgun reads by SHI7. (b) A 16S amplicon sample produces a 

distinct histogram marked by high representation of certain contig lengths corresponding to target gene size, in this 

case 252 and 253 base pairs, and a much lower CV (mean = 254.4, SD = 15.7; CV = 0.062). Most residual longer 

reads match PhiX174, an Illumina control contaminant, and are later removed by SHI7 in “learning mode” by filtering 

out sequences within mean read length ± SD/2 in amplicon samples. 

These results are interesting in that it was not obvious that there was specific adaptor 

contamination (albeit at low level), nor was it obvious that a majority of these 100bp paired-end 

shotgun reads overlapped throughout half their length. Downstream analyses also benefit from 

this procedure in straightforward ways. By way of simple illustration, matched sequences pre- 

and post-QC from the same HMP sample were submitted to nucleotide BLAST (10, 11) against 

the “nt” database. As would be expected, comparison between the stitched, quality-controlled 

sequences produced by SHI7 and the corresponding raw R1 reads shows higher e-values after 
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QC. In some cases, the post-QC reads received higher match identity for the same query (Figure 

4a), and in other cases a different, and presumably more probable, highest scoring match (Figure 

4b), although this particular query may still not resolve at the subspecies level with appropriately 

high similarity, possibly due to the lack of its specific matching reference strain in the database. 

This illustrates the potential implications of QC for pipelines and analyses relying on such “best-

match” alignments. Higher scores (and/or lower e-values) are generally expected following 

stitching because longer reads have higher information content (it is less likely to match longer 

series of nucleotides by chance), and consensus quality scores in overlapping regions are likely to 

result in fewer technical errors, raising match identity. The benefit in using QC to trim adaptor 

contamination is expected to be higher in end-to-end alignments than in local alignments which 

implicitly perform soft-clipping.  

 
Figure 4. Example of SHI7 QC effects on BLAST alignments. This comparison illustrates BLAST alignments before and 
after SHI7 quality control on the same reads of an HMP shotgun sample. (a) shows the SHI7-QC read (right) achieving 
a different best-scoring alignment than the non-QC read (left) despite the former’s slightly lower identity (SHI7 
alignment: 94% and e-val 1e-55, non-QC: 96% and e-val 2e-35). The same reference as in the non-QC alignment also 
appears for the SHI7-QC read with the same identity (96%) and 90% coverage, but in third place. (b) shows a different 
alignment; here the SHI7-QC read (right) finds the same best match as the non-QC read (left), but at higher identity 
and lower e-value (SHI7: 96% and e-val 8e-72, non-QC: 94% and e-val 1e-32). The case demonstrated by (a) occurs 
less frequently than (b) for this test data, but may have additional important implications for pipelines relying on "best 
match" read mapping. 

SHI7 was also evaluated on 16S amplicon data. A sample from the Primate Microbiome Project 

(12) was run through “learning mode,” which determined it contained Nextera adaptor 

contamination, stitchable reads (over 97% stitched successfully) with combined lengths 
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concentrated around 252 base pairs. SHI7 detected that the sample was an amplicon sample due 

to the low coefficient of variation in the stitching sizes (<0.03). This in turn informed SHI7 to 

impose a length minimum and maximum near the peak to reduce contaminant reads (Figure 3b), 

which we found in this sample to be primarily PhiX174 control sequences that this particular 

Illumina sequencing technology is known to introduce. The final run took 6 seconds for this 

sample, consisting of a 56MB pair of input FASTQ files.  

The learning module was also tested on a variety of datasets to ascertain whether it was able to 

discover reasonable QC parameters across sequencing protocols, technologies, and data sources. 

As summarized in Table 1, SHI7 in each case learns parameters which agree with expectations 

given background knowledge of the datasets. Some exceptions to our expectations were produced 

by the learning module, including the ability to stitch reads unexpectedly in the HMP tongue 

shotgun data, no detection of expected Nextera adaptors in the mouse tutorial data, and detection 

of TruSeq3-2 adaptors when ScriptSeq adaptors were used for the RNAseq data. However, these 

decisions were justifiable when each case was investigated carefully: the majority of HMP tongue 

shotgun reads do indeed stitch appropriately, the mouse tutorial data had its forward adaptors 

already removed and used longer amplicons without bleed-through of reverse adapters, and the 

appropriate ScriptSeq adaptors were actually contained within Trimmomatic's version of the 

TruSeq3-2 adaptor library.  

Table 1. Results of SHI7 learning module.  SHI7’s learning module produces meaningful QC parametrizations on 
internal and publicly available datasets. 

Dataset Availability Learned parameters 
HMP tongue; shotgun 
(Illumina HS PE TS2) 

Public, 
SRS014271(9) 

--adaptor TruSeq2 --flash True --allow_outies False 
--filter_qual 36 --trim_qual 36 

Immigrant Microbiome 
Project; amplicon (mixed 
Illumina PE Nextera) 

Internal --adaptor Nextera --flash True --allow_outies False 
--filter_qual 34 --trim_qual 32 

Small bowel aspirate; 
amplicon (Illumina PE 
Nextera) 

Internal --adaptor Nextera --flash True --allow_outies False 
--filter_qual 36 --trim_qual 34 



16 
 

Primate Microbiome Project 
stomach; amplicon (Illumina 
PE TS2) 

Internal --adaptor TruSeq2 --flash True --allow_outies False 
--filter_qual 36 --trim_qual 33 --min_overlap 239 --
max_overlap 269 

Longitudinal diet study; 
shotgun (Illumina HS SE 
Nextera) 

Internal -SE --adaptor Nextera --flash False --allow_outies 
False --filter_qual 36 --trim_qual 34 

HMP stool; amplicon (454 
SE)† 

Public(17), 
stool 

-SE --adaptor None --flash False --allow_outies 
False --filter_qual 34 --trim_qual 31 

Mouse tutorial; amplicon 
(Illumina PE Nextera) 

Public(18) --adaptor None --flash True --allow_outies False --
filter_qual 34 --trim_qual 34 --min_overlap 154 --
max_overlap 172 

Irritable bowel syndrome 
cohort; shotgun (Illumina HS 
SE Nextera) 

Internal -SE --adaptor Nextera --flash False --allow_outies 
False --filter_qual 37 --trim_qual 35 

Human microbiome; RNAseq 
(Illumina HS PE ScriptSeq) 

Internal --adaptor TruSeq3-2 --flash True --allow_outies 
False --filter_qual 39 --trim_qual 36 

†sff_extract -Q was used for the initial conversion of .sff to .fastq format (19)  
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Discussion. 

As mentioned previously, these results are not intended to illustrate any advantage in quality or 

QC performance SHI7 might be expected to achieve over alternative quality control pipelines. 

This is particularly the case compared to pipelines developed and tested in the context of well-

defined workflows utilizing known extraction, amplification, size selection, and sequencing 

protocols, where each step is carefully translated into the appropriate QC parameters and tested 

with a variety of tools against mock datasets produced by the same. SHI7 is not intended to 

replace such highly-specialized workflows. Furthermore, regardless of the validity of the selected 

parameters, we strongly caution against any blind application of bioinformatics analysis tools 

without a working comprehension of the concepts underlying biological sequence processing, as 

this may lead to erroneous analyses.  

Instead, the simplicity and convenience afforded by SHI7 is our primary focus, as our results 

imply that SHI7 is capable of achieving reasonable quality control without need for the user to 

know or supply any procedural parameters in advance. Further, the resulting merged FASTA file 

(if this output mode is used) is immediately compatible with OTU picking solutions such as 

NINJA-OPS and others (3, 13, 14), whose outputs are in turn compatible with statistical analyses 

in standard metagenomics pipelines including QIIME (15). The intention, then, is for SHI7 to 

bring users, in most cases, from raw FASTQ data to sequence analysis capability in a single step 

without needing to know any details of the sequencing procedure or technology, while still 

providing reasonable quality control.  

We believe the ease-of-use, speed, flexibility, and intelligent learning capabilities of SHI7 will be 

of benefit to novices and experts alike, particularly when dealing with FASTQ data from various 

sources where the details underlying the sequencing protocol are not well known in advance. For 

use with both shotgun and 16S sequencing projects, as well as on data from collaborators or 

online repositories which are often accompanied with sparse methodological detail, we find that 
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SHI7 reduces time spent adjusting and exploring settings for QC parameters, while providing 

consistent quality control that mirrors standard practices.  

SHI7 is available as free and open-source software under the AGPLv3 license. Dependencies 

(trimmomatic and FLASH) are distributed with the compatible GPLv3 license. The software is 

freely available for multiple operating systems on Github (16): https://github.com/knights-

lab/shi7 (see release page for portable package). This GitHub page also includes tutorials, 

example use cases, and a frequently-monitored interface for requesting new features and filing 

bug reports. SHI7 may be also installed using Anaconda: https://anaconda.org/knights-lab/shi7 

 

Methods. 

We have developed a pipeline that integrates standard QC practices with a learning module that 

automatically tests for and optimizes parameters based on the sequence data itself. Each phase of 

the pipeline is aware of the parameters selected in other phases and optimized accordingly. This 

pipeline is applicable across domains, handles a range of short-read sequencing lengths, and can 

automatically determine whether reads are likely to be paired-end, whether pairs can be stitched 

and with how much overlap, whether the sequences derive from amplicon or whole-genome 

shotgun sources, what adaptors were used on the reads (Illumina platform), what aggressiveness 

to perform quality trimming, and how to transform sample/lane names into standards-compliant 

FASTA labels if a combined FASTA is desired (or the filenames of the final FASTQ files, if 

FASTQ is desired as the output).  

To accomplish these objectives, SHI7 incorporates just two well-known, lightweight programs: 

Trimmomatic (5) and FLASH (6), and introduces its own high-performance error-correcting 

barcode demultiplexer (gotta_split) and quality control (shi7_trimmer) modules. These new 

modules are written in C, and their performance saturates with the write speeds of modern hard 

https://github.com/knights-lab/shi7
https://github.com/knights-lab/shi7
https://anaconda.org/knights-lab/shi7
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drives. The gotta_split demultiplexer features ambiguous base support in the barcodes (including 

barcodes beginning with a series of “N” bases), supports staggered barcodes, barcodes occurring 

elsewhere in the reads than the beginning (disabled by default), and error-correction up to a user-

specified number of mismatches, including the ability to report whether the specified number of 

mismatches could cause one adaptor to be mistaken for another. The shi7_trimmer module 

implements numerous simple trimming methods, uses different quality cutoffs for trimming either 

end of the read, and filters for length and average PHRED score.  

The primary reason for including the shi7_trimmer module is its variable-length sliding quality 

floor mode for trimming the ends of reads. This functionality is currently not available in 

Trimmomatic. Unlike averaged quality scores, which are commonly used in sliding-window-

based quality control, the floor function will not tolerate the presence of even a single base of 

lower quality than a given threshold, regardless of the quality of other bases in the window. Only 

once all bases in in the sliding window are above this threshold will it stop trimming from the 

ends of a given read. This behavior is especially useful for removing residual adaptor 

contamination following full-read-length stitching (as for bacterial 16S V4 amplicon sequencing), 

where the amplified region is shorter than the technical read length, causing the resulting 

sequences to contain part of the opposing adaptor. Due to the merging process, these artefactual 

portions will likely produce poor base matching (as the forward and reverse adaptors are 

essentially being overlaid), which the FLASH software reports in the form of very low quality 

scores, allowing shi7_trimmer to remove them from the read.   

 

Interactive mode (manual selection of parameters) 

SHI7 can be run without a learning mode, in which case it becomes a simplified wrapper script 

for standard QC practices with sensible defaults for most paired-end adaptor-free workloads 
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assuming the possibility of stitching. Each stage of the pipeline can be turned off or on with a 

single command line flag (including disabling stitching, paired end mode, combining results into 

FASTA, adaptor trimming with specified adaptors, or splitting FASTQ files into samples based 

on barcodes). Although easy to use, this mode of operation is more suitable for users with a 

knowledge of their data generation processes, as it depends on the correct assumptions about the 

data (e.g., are reads paired and if so, are they amenable to stitching? Were adaptors removed and 

if not, which ones?). It also exposes a few commandline options for each of these stages, allowing 

for flexible, but not overwhelming, parameter customization. Individual steps in the pipeline can 

also be run separately without the python wrapper, including the two C modules (gotta_split and 

shi7_trimmer) for even more flexibility. 

 

Learning mode (automatic) 

The SHI7 pipeline in “learning” operation mode first applies heuristics to determine basic 

features of the data. These include PHRED scale determination, whether reads are paired-end 

(using filename string pattern checks), and approximate read lengths prior to adaptor removal or 

quality trimming. The presence of an oligonucleotide file (text file implementing MOTHUR 

format paired barcodes, typically “oligos.txt”) signals to split a single pair of FASTQ files into 

multiple separate FASTQ files named by corresponding sample ID (8). The software also 

determines whether reads stitch and if so at what level of overlap if reads are detected to be 

amplicons. The quality scores at which to filter and trim reads are also learned by profiling the 

distribution of base qualities in a sampling of reads.  

 

Learning mode operation 
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In its “learning mode,” SHI7 runs a learning pass on a subsampled selection of the reads across 

files (up to 1000 reads per fastq file), gathering data by running various combinations of settings, 

and reports its best estimation for these parameters to the user before proceeding with the full QC 

pipeline using these options. Specifically, the learning module first subsamples each FASTQ file 

to 1000 sequences, recording sequence lengths. To determine whether pairs are present, if an 

even number of FASTQ files exist, these are run through basic pattern recognition to identify if a 

known pattern exists across all files that successfully distinguishes pairs (“R1/R2”, “.1/.2”, 

“_1/_2” are checked for among others in a growing list of patterns). If pairs are detected, the 

subsequent adaptor detection stage proceeds in paired mode (otherwise, unpaired mode is used). 

The adaptor detection runs a separate instance of trimmomatic using each one of its included 

repertoire of adapters and picks the adaptor set that produces the smallest output filesize.  

Following adaptor detection and removal, if paired-end reads are present, stitching is attempted 

using generous defaults (minimum overlap of 10 bases and maximum overlap of 700 bases). A 

histogram of resulting overlaps is generated with FLASH, allowing SHI7 to determine whether a 

reasonable proportion of reads reliably stitch (25% or more, by default), and further assessing 

whether coefficient of variation (CV) in stitched read lengths is less than 0.1, signaling significant 

DNA fragment length uniformity indicative of amplicon or amplicon-like reads. This allows 

SHI7 to bound the minimum and maximum overlap considered in the stitching process over an 

expected range (set by default to +/- twice the standard deviation). This “bounded stitching” itself 

serves as an additional quality control agent by eliminating falsely-stitched reads that result from 

unexpectedly long or short contaminants, and reducing rare instances of tied equal scoring 

overlaps by restricting to overlaps in the expected range. 

The final trimming quality parameters are determined by scanning the reads again (after all 

previous QC steps have been completed) to determine average quality as well as “terminus” 

quality (quality scores averaged over the first and last 10 bases of each read). The learning 
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module recommends a per-read average quality filter equal to the average base quality throughout 

the dataset, and produces a recommendation for end trimming between this value and the average 

“terminus” quality calculated previously.  

 

Limitations 

Notable limitations of this software include reliance on Trimmomatic’s adaptor collection for 

detecting explicit adaptor contamination, although any adaptors can be added to this collection by 

the user if this information is known through the corresponding Trimmomatic interfaces. The 

pipeline requires both Python 2.7+ (including 3.x, for the wrapper and learning module) and Java 

SE (for trimmomatic’s adaptor removal). Minimum runtime requirements include a 64-bit 

operating system (Windows, Linux, or OSX), 4GB RAM (with 1 thread; add 4GB per additional 

thread used), and free disk space equal to about twice the original size of the data being 

processed. FASTQ files must not contain entries split across lines (word wrap), and paired ends 

(if used) must be in split-file format. FASTQ files appearing in interleaved format (both pairs 

appear in the same file) are not explicitly supported in paired-end mode, but will still be 

processed normally as though they were single-end reads. Compressed fastq files are not 

supported; the user must currently extract these files to use them with SHI7 such as with the 

command “gunzip *”, but support for compressed formats are planned for a future release. If 

demultiplexing is desired, a text file named “oligos.txt” is required in the input directory in 

MOTHUR format; there is no automatic detection of barcodes for demultiplexing. 
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Data Availability 

All code used in SHI7 is available in its repository located at https://github.com/knights-lab/shi7. 

External test datasets are available from their respective citations in Table 1; our own validation 

datasets are made publically available in the Sequence Read Archive with accession SRP132961.  
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II. NINJA-OPS: fast, accurate marker gene alignment using concatenated ribosomes 
 

(First published: Al-Ghalith, Gabriel A., et al. "NINJA-OPS: fast accurate marker gene alignment 

using concatenated ribosomes." PLoS computational biology 12.1 (2016): e1004658.) 
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Summary.  

The explosion of bioinformatics technologies in the form of next generation sequencing (NGS) 

has facilitated a massive influx of genomics data in the form of short reads. Short read mapping is 

therefore a fundamental component of next generation sequencing pipelines which routinely 

match these short reads against reference genomes for contig assembly. However, such 

techniques have seldom been applied to microbial marker gene sequencing studies, which have 

mostly relied on novel heuristic approaches. We propose NINJA Is Not Just Another OTU-

Picking Solution (NINJA-OPS, or NINJA for short), a fast and highly accurate novel method 

enabling reference-based marker gene matching (picking Operational Taxonomic Units, or 

OTUs). NINJA takes advantage of the Burrows-Wheeler (BW) alignment using an artificial 

reference chromosome composed of concatenated reference sequences, the “concatesome,” as the 

BW input. Other features include automatic support for paired-end reads with arbitrary insert 

sizes. NINJA is also free and open source, and implements several pre-filtering methods that 

elicit substantial speedup when coupled with existing tools. We applied NINJA to several 

published microbiome studies, obtaining accuracy similar to or better than previous reference-

based OTU-picking methods while achieving an order of magnitude or more speedup and using a 

fraction of the memory footprint. NINJA is a complete pipeline that takes a FASTA-formatted 

input file and outputs a QIIME-formatted taxonomy-annotated BIOM file for an entire MiSeq run 

of human gut microbiome 16S genes in under 10 minutes on a dual-core laptop. 
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Importance. 

The analysis of the microbial communities in and around us is a growing field of study, partly 

because of its major implications for human health, and partly because high-throughput DNA 

sequencing technology has only recently emerged to enable us to quantitatively study them. One 

of the most fundamental steps in analyzing these microbial communities is matching the 

microbial marker genes in environmental samples with existing databases to determine which 

microbes are present. The current techniques for doing this analysis are either slow or closed-

source. We present an alternative technique that takes advantage of a high-speed Burrows-

Wheeler alignment procedure combined with rapid filtering and parsing of the data to remove 

bottlenecks in the pipeline. We achieve an order-of-magnitude speedup over the current state of 

the art without sacrificing accuracy or memory use, and in some cases improving both 

significantly. Thus, our method allows more biologists to process their own sequencing data 

without specialized computing resources, and it obtains more accurate taxonomic annotation for 

their marker gene sequencing data. 

 

Introduction. 

The advent of next-generation sequencing technologies, combined with major advances in 

molecular and bioinformatics techniques, have enabled rapid growth in the culture-independent 

sequencing of amplified marker genes (amplicons) from environmental microbial communities. 

The major benefit of amplicon sequencing is that it allows reasonable resolution of taxonomic 

composition in these communities at a fraction of the cost of deep metagenomic sequencing. 

Once these sequences are generated, a common analysis approach is to bin them by sequence 

identity into operational taxonomic units (OTUs)[1–4]. For environments containing a large 

fraction of novel taxa, one must rely on unsupervised (“de novo”) clustering of amplicons to 

https://paperpile.com/c/IKKOiF/rwTF+Fg8O+X8SK+3mGZ
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convert the raw reads to features representing organisms belonging to distinct evolutionary 

clades. On the other hand, in habitats with mostly well-characterized microbes, we have the 

option of matching the generated amplicon sequences to reference databases containing example 

marker genes from known taxa [5]. A hybrid approach may also be used, where sequences are 

first compared to a reference database, with subsequent de novo clustering of those that failed to 

match. As the number of published culture-independent amplicon-based surveys of microbial 

communities continues to grow, our ability to rely on reference sequences also increases. 

However, although the crucial analysis step of mapping generated amplicons to reference marker 

genes has received much attention from the microbial bioinformatics field, with a variety of 

solutions proposed [6–10], there is much room for improvement in terms of speed, accuracy, 

memory footprint, and openness of code. NINJA, our portable, open-source OTU picking 

pipeline, realizes these goals. 

 

Originally conceived as a means to make data more compressible, the Burrows-Wheeler 

transform (BWT) [11] is a lossless, reversible transformation that effectively positions series of 

like characters close to each other in a way that can easily be undone to recover the original data. 

It involves creating a circular suffix array, sorting the final column lexicographically, and storing 

that column as the transformed data for later compression. This algorithm also has the interesting 

property of enabling rapid substring search, with O(1) order of growth in finding exact string 

matches. As long as there is an efficient indexing scheme that stores the indices of the 

transformed bases into the original string, the BWT can be used for fast database substring search 

amounting to binary searching (or looking up via rank matrix) the transformed reference string 

representation and mapping back to the original, and has hence been employed in a number of 

commonly used DNA alignment tools [11–14]. Although these tools are approximate methods 

due to the high additional computational cost of performing optimal local or global alignment 

https://paperpile.com/c/IKKOiF/aDKr
https://paperpile.com/c/IKKOiF/5vqF+7Wgb+5EQB+0B7Z+udyP
https://paperpile.com/c/IKKOiF/8PwL
https://paperpile.com/c/IKKOiF/KyHF+1RqJ+8PwL+qrg0
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search when mismatches occur, they are generally fast and widely used in the genome-enabled 

research community (http://bowtie-bio.sourceforge.net/bowtie2/other_tools.shtml). 

 

Here we demonstrate that BWT-enabled DNA alignment can be effectively used for accurate and 

fast assignment of marker-gene sequences to a reference database. We present the NINJA-OPS 

pipeline utilizing several novel contributions to achieve an order of magnitude speedup and 

higher accuracy when compared to commonly used approaches (or up to two orders of magnitude 

when combined with denoising). To test the accuracy and efficacy of our approach, we perform 

closed-reference OTU-picking on a wide range of biological data sets from varied environments. 

 

This is accomplished by the NINJA core tools and an optimal aligner which produces a BLAST-

style %ID for each query sequence against the reference sequence chosen by the OTU picking 

method. Speed was assessed as the elapsed time from parsing the input FASTA file until the 

alignment (against a pre-generated database) has terminated, but it may be useful to note that 

NINJA also significantly speeds up the subsequent steps of tallying reads, incorporating 

taxonomic annotations, and producing an OTU table in sparse BIOM 1.0 format, as well as other 

steps prior to the alignment such as reverse complementing and trimming reads. Hence, the 

NINJA pipeline accelerates many stages of the OTU-picking pipeline beyond the alignment step. 

 

Methods. 

Pipeline overview. 

The pipeline follows three stages: filtering, aligning, and parsing. After forming the concatenated 

reference string, called the “concatesome,” from the individual references, NINJA applies a 
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powerful filtering step which uses a 3-way radix quicksort on string pointers to rapidly de-

duplicate millions of reads, construct a sample dictionary, and output a streamlined filtered 

FASTA file and sample dictionary (Figure 5). The program implements this lossless filtering 

approach as well as a lossy variant, making use of singleton filtering as well as statistical 

profiling over the entire set of reads to exclude reads with a user-defined number of duplicates or 

rare segments (k-mers) appearing below a user-defined threshold of prevalence. The lossy 

filtering is intended to independently identify reads with probable read error, and speeds up the 

resulting alignment by excluding such reads from the BWT aligner. This adds an additional 

speedup because BWT string matching spends a disproportionate amount of search effort to align 

erroneous or low-identity reads.  

 

Figure 5. Schematic of the NINJA pipeline. NINJA core programs are represented by pentagons, data files by 

cylinders, processes within a program as lists, rounded rectangles as index operations, and other swappable programs 

by other shapes. The entire upper-left branch of the schematic (from input references to bowtie-build and TaxMap) 

does not need to be performed if using an existing database, such as that supplied with NINJA. The python wrapper 

encompasses the remaining two branches (bottom and right) for convenience. In general, Ninja_prep prepares the 

concatesome, Ninja_filter prepares the reads for alignment, bowtie2 (or any BWT-enabled aligner) performs the 

alignment, and Ninja_parse merges the various pieces into a complete OTU table. 
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The NINJA filter step also performs reverse-complementing and sequence length trimming at the 

same time as the other filtering steps. Because of this simultaneous multi-step filtering, no 

intermediate files are created prior to the alignment stage, and all filtering steps are performed 

rapidly in optimized C code on data structures already in memory. This takes a fraction of the 

time used by other filtering pipelines which perform sequential operations often written in 

general-purpose scripting languages and generate numerous large intermediate files after each 

step. Using the base NINJA filter parameters, the entire filtering process itself takes 

approximately 10-20% of the time it takes to align the resulting filtered file when using all 

optional filtering steps.  

 

Next, the filtered reads are aligned against a reference database containing the (the concatesome) 

via any BWT-derived short read aligner such as BWA[11], Bowtie[13]/Bowtie2[12], hpg-aligner 

[15], SOAP2 [16] -- or, more broadly, any read aligner whatsoever capable of outputting to 

headerless SAM format[17] and suppressing unmatched input reads. Utilizing SAM is much 

faster than BAM (binary compressed SAM) after deduplication, as the alignment step is not I/O 

bound and the overhead of BAM’s additional compression/decompression step can be significant. 

We have chosen to standardize NINJA around Bowtie2 for our tests and publish the command 

line options for Bowtie2 as we have found it to be suitable for the purposes of BLAST-identity-

based OTU picking. Following alignment, the resulting SAM file is fed to the NINJA parsing 

step, which takes in the sample dictionary metadata as well as an optional taxonomy map to 

rapidly re-assign each de-duplicated read to the biological sample(s) in which it originally 

occurred, add taxonomy annotation to each picked OTU, bin all reads by their matched OTU into 

a sample-by-OTU matrix (OTU table), and output the result in sparse BIOM 1.0 format (or a tab-

delimited legacy QIIME format that can be read by both human and machine). This can also be 

incorporated into an open-reference OTU-picking pipeline. 

https://paperpile.com/c/IKKOiF/8PwL
https://paperpile.com/c/IKKOiF/1RqJ
https://paperpile.com/c/IKKOiF/KyHF
https://paperpile.com/c/IKKOiF/0hzY
https://paperpile.com/c/IKKOiF/qh2l
https://paperpile.com/c/IKKOiF/LU2e
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Burrows-Wheeler transform. 

The BWT has received a lot of attention in the alignment of short reads to a reference genome, 

and now enjoys routine use in clinical and other settings as a well-vetted technique for mapping 

short DNA reads to a longer reference, where it is known as Burrows-Wheeler alignment. The 

BWT is based on the principle that a long string of text can be reversibly transformed to reduce 

the complexity of substring queries to effectively two binary searches into the transformed 

representation of the original string, which is then converted back to indices into the original 

reference string with a short walk-back (the BW Last-First, or LF walk) or lookup. The efficacy 

of this approach in matching short reads to a reference database of numerous short reference 

marker genes has remained largely unexplored [1].  

 

Forming the concatesome.  

We concatenate the reference gene sequences to form a single long string. Although this synthetic 

chromosome is highly repetitive, the BWT effectively enables alignment against all identical 

reference prefixes simultaneously, which are narrowed down as alignment progresses and 

differences (or errors) accrue. This enables us to leverage the advantages of the BW technique for 

amplicon matching and evaluate its quality and speed compared to some of the current heuristic 

techniques[7][18][19] that have emerged specifically to address the marker-gene matching 

problem in microbial metagenomics. This step also exists in varying forms and efficiencies in 

recent versions of some BWT-based read aligners. It is performed by NINJA in a rapid and 

unified way, enabling drop-in replacement of any BWT-based algorithm, by joining reference 

sequences them into a single long sequence and recording the location of each OTU in the new 

longer sequence. The concatesome is output as a new single-line FASTA file, and the original 

indices are output as an index table of OTU names and IDs. The concatesome serves as the 

https://paperpile.com/c/IKKOiF/rwTF
https://paperpile.com/c/IKKOiF/7Wgb
https://paperpile.com/c/IKKOiF/7Wgb
https://paperpile.com/c/IKKOiF/9PJE
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reference for the BWT-enabled aligner to construct its database. For bowtie2, which we have 

used as the pipeline’s BWT aligner for the subsequent analyses, this is accomplished with the 

bowtie-build command.  

 

k-mer-based denoising.  

NINJA’s filter step implements a variant of 3-way radix quicksort [20] that achieves high binning 

and de-duplication performance on amplicon datasets using minimal RAM. This is due to its 

general high performance on strings combined with a median pivot scheme and increasing 

performance on data with larger numbers of duplicates, which is especially true for amplicon 

datasets. Trimming is implemented in C and is performed before deduplication during the parsing 

process by halting the read pointer and skipping to the next sequence, speeding up the parse and 

using less memory. Trimming at this stage can also speed up the subsequent deduplication by 

feeding shorter sequences to the sorting algorithm. Additionally, reads that are uniformly trimmed 

(preferably informed by average quality score prior to running NINJA) are more likely to have 

identical matches, resulting in a more condensed deduplicated output file and faster subsequent 

alignment. Reverse complementing is performed after any trimming at the time of output file 

writing by populating the write buffer in reverse with the result of a lookup performed on each 

sequential character in the read.  

 

The k-mer based lossy filtering step is performed by incrementing an array of counters indexed 

by the integer representation of each k-mer formed as the read head slides across each base in the 

read. Formally, each k-mer is represented as a binary string with 2k bits constructed as follows: 

https://paperpile.com/c/IKKOiF/K1uP
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𝑥𝑥2𝑖𝑖,2𝑖𝑖+1 = �

𝐴𝐴: 00
𝐶𝐶: 01
𝐺𝐺: 10
𝑇𝑇: 11

 

The array of counters is of length 22k, and contains the number of instances observed of a given k-

mer in the query DNA sequences. We use k = 8 by default (adjustable at compile-time with a 

practical maximum of 14), giving a counter array of length 216, occupying up to 216 × 64 bits or 4 

MB of RAM.  

 

The counter is incremented per k-mer per read to represent the number of that k-mer’s duplicates 

in the dataset. The resulting count array after all sequences are parsed forms the empirical k-mer 

frequency distribution across all input reads. For amplicon data, the sorted frequency distribution 

resembles an exponential curve, with a small number of k-mers well represented and others with 

fewer occurrences (and many with none, depending on k-mer size). With sufficient number of 

input reads, the likelihood of observing an k-mer of a given rareness can be estimated from the 

area under the empirical frequency distribution. By checking the number of occurrences of a 

given k-mer against the empirical duplicate count at that probability threshold, we can determine 

if a given k-mer is an outlier and hence discard the read. The user can modify the stringency of 

outlier calling by setting a different observation frequency cutoff. We have found empirically that 

k-mers (with k=8 to k=14) appearing less often than 0.5%-0.1% (parameter D 0.0001) provide a 

reasonably safe threshold for low-strength 16S amplicon denoising, but the user is encouraged to 

evaluate various thresholds in context of the sequencing technology used, as well as read depth, 

community diversity, and experimental biases.  

 

Singleton-based denoising.  
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The k-mer-based filtering provides a highly flexible and sensitive approach to denoising, but we 

have also implemented a very simple denoising step, which is to exclude all singleton (or 

doubleton, etc.) sequences from the alignment step. This is based on the premise that any 

sequences that appears twice or more is highly unlikely to have been the result of sequencing 

error, while sequences that appear exactly once are likely erroneous or so rare that they are just at 

the detection threshold. In several data sets we have found that this eliminates approximately 10% 

of the total sequences due to high likelihood that they contain errors. The resulting OTU 

assignments are generally unchanged when excluding singletons (Figure 6), and yet the runtime 

achieves an additional 3-10x speedup over the non-denoised approach. We recommend these 

settings (parameter “D 2”) for most users unless they have very low read counts. 

 

Figure 6. Effects of singleton filtering on taxonomy. These comparisons show taxa abundance correlation between 

singleton filtering (D2) and no singleton filtering (D1) per taxonomic level.  The plots show, from left to right, the 

scatterplot of log abundances of all matched taxa in a dataset of 6.5 million 225-base-pair sequences at progressively 

higher taxonomic specificity, along with best fit lines for each. The axes correspond to log abundance within the 

dataset, and each dot to an arbitrary taxon abundance in the singleton denoised (Y-axis) and non-denoised (X-axis) 

OTU tables. The left plot shows the family-level concordance (Pearson = 0.9901727, Spearman = 0.9848349), the 

middle shows genus-level concordance (Pearson = 0.9845869, Spearman = 0.974338), and the right shows species-

level concordance (Pearson = 0.9789319, Spearman = 0.9604182). 

 

Alignment.  
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We have conducted most of our testing using bowtie2 as the BWT-enabled aligner for NINJA. To 

perform OTU-picking in a manner consistent with current tools, a custom set of command-line 

parameters was used. We sought to maintain concordance with various USEARCH operating 

assumptions which have become the standard for marker gene sequencing (as used in the QIIME 

pipeline). The primary criterion used for matching should be percent identity, which weights all 

matches in an alignment 1, and mismatches of any type 0. The sum of all such scores across the 

alignment, spanning the length of the query sequence, is divided by the total length of that 

alignment. Matches to ambiguous bases are also not penalized, nor are sequential gaps weighted 

any differently than single gaps (no affine penalty). Further, once a reasonable match has been 

identified in the database matching these criteria, the search terminates. The following options for 

bowtie2 target this behavior: 

--np 0 --mp "1,1" --rdg "0,1" --rfg "0,1" --score-min "L,0,-0.03" -k 1 --norc 

The percent ID is specified by setting the third argument to the minimum scoring function (--

score-min) as %ID/100 - 1. In this case, to match with 97% ID, the parameter is set to 97/100 - 1 

= -0.03. It is recommended that users not modify other parameters of bowtie2 pertaining to 

scoring criteria or output format, to maintain compatibility with the %ID match criterion and 

downstream NINJA parsing. It is further recommended to use the included python wrapper so 

that all steps from reading the formatted FASTA to OTU table creation are performed 

automatically for the user with a single command.  

 

Additionally, for compatibility with NINJA and to save space, reads that fail to align are 

suppressed and no headers are printed to the output SAM file and the concatesome built with 

bowtie2-build is used as the reference database. The input sequences are the result of the filtering 

step. Full examples of the bowtie2 command are given in the online documentation. By default, 
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we include presets for fast or very sensitive matching. Very sensitive matching typically improves 

the quality of matches noticeably at the expense of a 3-6x longer running time. 

 

Parsing.  

The final step in NINJA-OPS combines parsing the alignments, assigning OTU identity and 

taxonomy, and tallying OTU counts in each sample as an output OTU table (in BIOM 1.0 or 

legacy QIIME format). This is performed by NINJA using the information provided in sample 

dictionary generated by the filtering step, as well as the alignment data produced by the aligner 

and (optionally) a user-supplied table of OTU taxonomic assignments (which is also provided 

pre-compiled with NINJA-OPS). This parsing step is I/O bound and runs in under a second on 

our test computer and dataset.  

 

Comparison.  

To compare NINJA-OPS against USEARCH 8 (an earlier version of USEARCH is used in the 

QIIME pipeline [1]), we built the USEARCH database using the same multiple reference FASTA 

used to create the concatesome, the Greengenes 97% OTU representative sequence database. We 

performed single-strand alignment with the following fast USEARCH settings, which correspond 

to the stringency used for USEARCH in the QIIME pipeline:  

-usearch_global input.fna -db db.udb -id 0.97 -blast6out hits.b6 -strand plus -maxaccepts 1 -

maxrejects 32 -threads 1 

 

Results 

https://paperpile.com/c/IKKOiF/rwTF
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Benchmarks for this article were performed on a 2013 MacBook Air with a dual-core Core i7 

CPU and 256GB SSD.  

 

Database preparation (ninja_prep).  

The runtime performance of the database generation is significantly longer than is practical to 

perform on-the-fly. This step only needs to be performed once for each reference database. 

Although ninja_prep performs the concatenation of references rapidly (it is I/O bound on the 

Macbook’s SSD), the BWT program may spend a long time generating the BW index. For 

bowtie2 on our test machine, this takes over half an hour (with a maximum of one thread) on the 

Greengenes 97% OTU representative sequence database. For this reason, it is best to store and 

use pre-compiled databases for all subsequent alignments, and NINJA-OPS is distributed with a 

number of pre-compiled databases for commonly performed 16S bacterial marker-gene OTU 

matching.  

 

Short-read filtering (ninja_filter).  

NINJA filtering takes approximately 10-20% of the alignment time. For our 1.6 million read 

175bp test data, without additional processing, filtering runs in just under 6 seconds and outputs a 

de-duplicated FASTA file approximately 1/5 the size of the original.  

 

Short-read alignment (bowtie2).  

Bowtie2 with the settings mentioned in methods aligns the entire test dataset of 1.6 million 175bp 

reads in 60 seconds on a single thread of the test machine. Performance for various stringency 

presets were measured (Figure 7), in addition to the speedup using the standard and fast presets 
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across different datasets (Figure 8). RAM usage during alignment was 205MB in all cases, while 

that of USearch 8 was 720MB. Using multiple threads during alignment decreases the running 

time further, but speedup is sublinear, having somewhat more advantage in datasets with longer 

reads or higher error rates (and hence more difficult alignments). Runtime decreases to 6 seconds 

when using the singleton-based denoising (k-mer denoising). 

 

 

Figure 7. NINJA-OPS vs USearch 8: speed. This benchmark shows runtimes for NINJA (4 bars on the left) compared 

to USEARCH 8 (the bar on the right) in a single-threaded environment. Multi-threaded alignments are faster (not 

shown). This represents the entire time from parsing the initial FASTA file to the completion of the OTU table. The 
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sortMeRNA program took substantially longer than USEARCH 8 (approximately 8000 seconds; bar not shown to 

preserve scale).  

 

 

Figure 8. NINJA-OPS speedup without denoising. The effect of denoising on speedup (in multiples, or “X” speedup) 

over USearch 8 varies by dataset. Note that the Gevers dataset [23], for which the default NINJA preset is over 21 

times faster, is fairly representative of human gut communities. 

Parsing of filtered alignments (ninja_parse_filtered). 

Parsing with ninja_parse takes roughly 0.5-3 seconds on datasets in the size range included here 

(0.5-2 million sequences). Outputting to legacy tab-delimited format instead of BIOM increases 

the runtime by a second or two. A Python-based convenience wrapper distributed with NINJA 

adds additional overhead if the user requests a FASTA file containing the sequences that failed to 

match the database. 

 

 

 

https://paperpile.com/c/IKKOiF/BmBI
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Accuracy.  

To assess the accuracy of the alignments found by NINJA, and to compare them to existing tools, 

we calculated the optimal alignment, using a semi-global version of the Smith-Waterman 

algorithm, of each query sequence with the reference sequence assigned by a given tool. We 

found that NINJA generally finds higher-accuracy matches than USEARCH 8 (Mann-Whitney U 

test p < 2.2e-16) (Figure 9, Figure 10). In a published dataset containing healthy subjects and 

patients with Crohn’s disease the two methods produced the same list of differentiated genera 

across disease conditions with occasional disagreements about the direction of the association 

(Figure 11). NINJA produced a comparable percentage of matches (with standard and fast 

presets) to USEARCH (Figure 12), and generally comparable taxonomic assignments despite 

some interesting differences (Figure 13).  

 

Figure 9. NINJA-OPS vs USearch 8: aggregate accuracy. The upper two red bars are darker for NINJA, showing more 

reads aligned at higher accuracy. The thick black bar corresponds to the average alignment accuracy, and the thin 

bars represent the interquartile range. A Student’s T-test on the mean alignment accuracy shows NINJA’s mean ID was 

98.9%, while USEARCH 8 produced 98.7% with p-value < 2.2e-16. For NINJA, default settings are used, and for 

USEARCH 8, fast settings are used (corresponding to the defaults in the QIIME pipeline). 
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Figure 10. NINJA-OPS vs USearch 8: per-read accuracy. These scatterplots show alignment accuracy of NINJA vs 

USEARCH 8 for reads where both reported a match. Each point on the graph represents an sequence for which both 

tools found a valid alignment. A point’s position along the X axis corresponds to alignment score (in %ID) for the 

match chosen by USEARCH 8, and its position on the Y axis corresponds to the alignment score against the match 

chosen by NINJA. Points along the diagonal represent sequences for which both tools picked the same quality match. 

Points above the diagonal correspond to sequences for which NINJA produced more accurate hits, and points below 

the diagonal represent sequences for which USEARCH 8 produced more accurate hits. Note the presence of a line at 

the top of the graph showing a number of sequences for which NINJA selected a perfect match from the database while 

USEARCH 8 could not. 
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Figure 11. Significantly expressed taxa in an IBD dataset. Top left: shows concordance between NINJA and QIIME 1.8 

(USEARCH/UClust). This is the most typical case. Top right: diverging trends between groups. Despite being 

significantly different across groups, directionality of the trend is inverted between Control and IC/UC groups for the 

two methods. Bottom left: preservation of general trends but difference in taxonomic abundance of [Ruminococcus]. 

Bottom right: NINJA reports significance difference in [Eubacterium] expression while QIIME+USEARCH/Uclust 

does not. Significance was determined by q-values < 0.05.  
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Figure 12. Proportion of successful database matching. The percentage of reads NINJA (default preset, no denoising, 

“D 0”) successfully maps to the database are compared to USEARCH 8. There is very little difference in numbers of 

reads mapped to the database across datasets. 

 

 

Figure 13. NINJA-OPS vs USearch 8: genus-level concordance. Each point represents a genus-level assignment, with 

coordinates along each axis corresponding to the total number of reads mapped to that particular genus by either 

Ninja (X-axis) or USEARCH 8 (Y-axis). Distance from the diagonal represents discordance of taxon calls. 
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Discussion. 

Our tool leverages a combination of several novel approaches to accomplish an order of 

magnitude speedup over existing methods without compromising accuracy, and in many cases 

NINJA is more accurate than popular existing tools. In combination with a recommended 

denoising step, the pipeline achieves up to two orders of magnitude speedup over USEARCH 8. 

The key innovation of this tool is our use of a single long reference genome, or concatesome, 

composed of concatenated marker genes. This approach allows NINJA to leverage the benefits of 

the Burrows-Wheeler transform (Figure 14). The code is available at http://ninja-ops.ninja (or 

https://github.com/GabeAl/NINJA-OPS). 

 

 

Figure 14. Burrows-Wheeler transform on concatenated sequences. Example of the Burrows-Wheeler transform on 

both small sequences (top) and a concatenated longer sequence (bottom). The concatenated sequence is more easily 

searchable using the LF walk. NINJA forms a BWT-compatible concatesome that can be used interchangeably among 

various BWT-based aligners as an artificial reference chromosome. This concatenated sequence serves as a reference 

against which environmentally-obtained marker sequences are aligned. 

 

http://ninja-ops.ninja/
https://github.com/GabeAl/NINJA-OPS
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Deduplication and NINJA-filter. 

Optimizations within NINJA-OPS include tweaks to the parsing and filtering programs to 

increase the throughput of the processes leading up to the alignment. Deduplication is a viable 

strategy in marker-gene sequencing contexts because samples usually consist of fewer taxa than 

there are reads, and in fact are often dominated by a few highly abundant species. This results in a 

large number of identical reads which can be filtered out to reduce the alignment time. In human 

gut datasets which are quality-trimmed (or where the marker gene reads are of approximately 

equal length), this may result in losslessly discarding 80% of the reads as duplicates, depending 

on the microbial community sampled, which can speed up the downstream alignment step 

substantially (Figure 15). A sequence-to-sample(s) dictionary keeps track of the abundance of 

each sequence in each sample to ensure that each original sequence is properly accounted for 

wherever it was originally found. By default, NINJA-filter also performs read compaction 

(parameter “D 1"), which normalizes for variation in read lengths within a dataset by treating 

reads which are subsets of longer reads as copies of the longer reads. This increases consistency 

of OTU calling as well as decreasing runtime. This behavior can easily be disabled (parameter “D 

0”).  
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Figure 15. NINJA-OPS speedup per dataset with filtering. This bar graph shows speedup in times (or “X”) of the 

alignment step after filtering (without denoising). Filtering can provide upwards of 2.5x improvement in alignment 

performance, depending on the dataset. Smaller or more unique datasets see more modest improvements. Datasets with 

communities of redundant sequences benefit the most. This benchmark was performed without denoising or read 

compaction (parameter “D 0”). Using NINJA-OPS with denoising or read compaction provides a substantially greater 

speedup. 

An optional beneficial feature during the filter step is the ability to perform lossy denoising. 

NINJA performs this in two ways. The first and most straightforward for amplicon reads is to 

discard singleton reads (parameter “D 2”); that is, reads that have no identical match in the entire 

list of queries, or which are not perfectly contained in a longer read. This can be extended as the 

user desires from singletons to doublets and so on (parameter “D 3”, “D 4”, etc.). The second 

form of denoising is discarding reads judged to be erroneous by breaking each read into its 

component overlapping k-mers and comparing each of these k-mers to the counts of that k-mer in 

an empirical distribution of all k-mers in the body of input reads. Reads with k-mers that fail to 

meet user-defined criteria for support (appearing under a certain % in the dataset) are discarded 

completely from subsequent analysis. The resulting speedup for the downstream alignment is 

often much greater than the proportion of reads discarded, because Burrows-Wheeler alignment 
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programs expend a disproportionately large amount of effort attempting to align erroneous reads 

that will not match the database compared to non-erroneous reads which will often find perfect 

(or near-perfect) matches in a well-populated database. The BW substring search is designed for 

perfect substring searches, so it performs most efficiently in aligning reads that have few to no 

mismatches with a subsequence of the database. This is also why NINJA and BWT tools perform 

most effectively when the alignment identity is high (%ID in the mid-to upper-90’s, with 

taxonomic resolutions at the level of genus or finer). Performance of BWT-based tools is 

expected to increase as the diversity of available reference sequences increases, because the 

probability of finding a perfect match likewise increases. 

 

One early concern as we were considering how to most effectively construct the concatesome was 

that some reads would align by chance to the boundary between two concatenated marker genes, 

which would produce a meaningless mapping. However, in practice, such an occurrence is 

exceedingly unlikely to occur in end-to-end marker gene alignments at genus-level or greater 

resolution due to the high identity expected over the entire length of the input read. This is even 

more true of marker gene alignment, where reads are much more similar to each other than in 

shotgun data, and the possible sites of alignment seeding are likewise similar, with significantly 

less randomness than would produce alignments with the boundary region by chance. The 

prevalence of such reads in our 16S test data is accordingly less than 1 in 1,000,000 reads aligned. 

Furthermore, in the unlikely event that such an alignment does occur, it is trivial to discard it in 

the final parsing step by testing whether the index at the end of the alignment is equal to or 

greater than the starting index of the subsequent marker gene. NINJA-parse automatically 

discards reads that map to junctions between concatenated marker genes.   
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An interesting finding that corroborates past findings [21] is that the commonly used bowtie, 

bowtie2, and BWA alignment tools do not scale linearly with increasing read length. However, 

due to the ability to substitute alternative BWT-based alignment programs for the alignment step, 

it is possible to use alternatively optimized variants such as HPG Aligner, which uses 

uncompressed suffix arrays instead of “traditional” BWT but shares many of the same 

characteristics with the added benefit of better scaling for longer reads. GPU-accelerated variants 

of the original algorithm are also available [22]. Additionally, NINJA-OPS is not restricted to the 

domain of 16S OTU picking, although it is distributed with a pre-built 16S database. Marker 

genes such as ITS for fungal identification [24], bacterial rpoB [25], and the recently proposed 

Cpn60 universal bacterial barcode [26] are easily incorporated into NINJA-OPS simply by 

compiling the included “ninja_prep.c” and running it on an appropriately-formatted FASTA file 

containing the desired marker sequences, followed by the BWT-based aligner’s database 

generation step. Further, NINJA-OPS can be incorporated as a preliminary step in another 

pipeline; for instance, NINJA-OPS can be used to group reads prior to de novo assembly [27]. 

This flexibility of the pipeline in allowing for substituting the aligner itself, as well as the marker 

gene database used, makes NINJA-OPS applicable for situations and optimizations beyond what 

were envisioned at the time of writing, and enable the pipeline to keep pace with emerging 

technologies in the sequencing and computing spheres alike. 
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Summary. 

One of the fundamental tasks in analyzing next-generation sequencing data is genome database 

search, in which DNA sequences are compared to known reference genomes for identification or 

annotation. Although algorithms exist for optimal database search with perfect sensitivity and 

specificity, these have largely been abandoned for next-generation sequencing (NGS) data in 

favor of faster heuristic algorithms that sacrifice alignment quality. This problem is compounded 

in metagenomics where many similar genomes (or marker genes) must be searched, leading to 

multiple best alignments. Here we introduce BURST, a mathematically optimal high-throughput 

DNA short-read aligner that enables provably optimal alignment faster than existing optimal 

alignment algorithms by relying on several key novel optimizations. Moreover, BURST 

guarantees to find all equally good matches in the database above a specified identity threshold 

and can either report all of them, pick the most likely among tied matches for a query given all 

query alignments, or interpolate taxonomic annotation with a user-specified confidence level for 

sequences that match multiple genomes. BURST can align, disambiguate, and assign taxonomy at 

a rate of 1,000,000 query sequences per minute against the RefSeq v82 representative prokaryotic 

genome database (5,500 microbial genomes, 19GB) at 98% identity on a 32-core computer, 

representing a speedup of up to 20,000-fold over current optimal alignment techniques. This may 

have broader implications for clinical applications, strain tracking, and other situations where 

fast, exact metagenomic alignment is desired. 

 

Introduction. 

As the amount of next-generation DNA sequencing data increases at a higher rate than 

computational power[1], approximate heuristic solutions to the fundamental DNA 

alignment/mapping problem are increasingly used[2]. Paradoxically, it seems, the more data 
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made available through advances in sequencing throughput, the less accurate the alignment 

algorithms used to analyze it. Algorithms with maximal theoretical sensitivity and specificity 

under mismatch constraints exist but have largely been eclipsed, for high-throughput alignment, 

by techniques providing faster alignment rate at the cost of absolute alignment quality in terms of 

precision and/or recall.  

 

History and background 

The problem of short read mapping can be recast as one of fuzzy database search. A database is 

formed from numerous nucleotide sequences about which some information is known (the so-

called “references”); using this database, lookups are then performed for shorter substrings about 

which little or no information is known (“queries”). A successful lookup assigns meaning to the 

query, be it match identity, relative position, functional content, taxonomy, or other information 

as conferred though association with the matched reference(s). It is these assigned meanings 

themselves that are then treated, often in aggregate, with statistical theory to arrive at some 

biological insight.  

 

The role of the lookup function in this fuzzy database search problem is simply to provide 

meaningful mappings from queries to references. As such, the precise technical underpinnings are 

arguably irrelevant in cases where any such mapping, regardless of the potential existence of 

closer matches or the number and distribution of other valid matches, provides sufficient 

information to annotate queries with the desired meaning(s),. Thus, the simpler the information 

required of a match, the simpler the mapping function can be to provide adequate information. A 

trivial example is the taxonomic assignment of a single-organism sample to one of two highly 

divergent taxonomies; an approximate match of a query to any genomic information in one or the 
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other suffices to reasonably infer the taxonomic origin of that query, and the sample’s final 

assignment can be inferred by tallying the votes of all queries in the sample.  

 

The converse also holds, in that when more complex information is desired, the mapping function 

must likewise increase in sophistication or accuracy. For instance, if information such as the 

uniqueness of a match is required, or if the best match is required among many similar matches to 

resolve biologically minute differences, a lookup function sufficiently sensitive to consider and 

discriminate among many close alignments to select the correct match would be preferable to one 

that would select an arbitrary “close” match.  

 

As mentioned, the technical underpinnings of the mapping function can determine these 

properties. Examples of simple mapping functions are those using exact match (k-mers, substring 

search) and other alignment free approaches; by contrast, rigorous mapping functions are often 

implemented via dynamic programming[3,4], as this technique is the foundation for non-heuristic 

alignment, as well as other fuzzy matching techniques such as bitap[5] or edit distance kernels. 

Hybrid functions include popular “seed-and-extend” heuristics[6] which combine a simple initial 

search (seed) with dynamic programming (extension) to produce mappings of intermediate 

stringencies.  

 

Previous work 

Efforts to accelerate optimal alignment have largely focused on using efficient data structures[7] 

and low-level hardware capabilities[8]. Some efforts have also focused on pre-processing a 

database of reference sequences[9,10]. To our knowledge, however, there have been no previous 
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efforts to bring optimal short-read mapping to metagenome-scale datasets with the ability to 

elucidate all ties and perform exhaustive inline taxonomic interpolation and/or minimum 

reference set computation to disambiguate tied matches deterministically.  

 

Challenges and opportunities in short-read optimal alignment 

In comparison to general-case alignment, short-read alignment, particularly of the metagenomic 

variety, presents distinct challenges[11]. Perhaps the most obvious among these challenges is the 

requirement to map millions or billions of short reads to databases containing thousands of 

organisms with various degrees of interrelatedness. Less obvious is the need for meaningful 

disambiguation when a read maps to numerous genomes or chromosomal locations, or the need to 

aggregate reads into taxonomic bins with a certain level of confidence (the "taxonomic binning 

problem" in metagenomics). The size of the databases required is large, often containing 

numerous redundancies (tandem repeats, multiple genomes from a single bacterial species, etc). 

The theoretical number of alignments required to perform an exhaustive search is staggering even 

at seemingly modest scales[12]; naively aligning one million short reads against a database of one 

million genes would require one trillion alignments, each of which necessitating a number of 

calculations proportional to the product of the lengths of query and reference.  

 

However, these challenges of short-read alignment are not without attendant opportunities from a 

computational perspective. There are numerous restrictions embedded in the problem definition, 

which afford opportunities to reduce computational complexity. Since the alignments are 

typically DNA (or reverse-transcribed RNA), the effective alphabet size is small (usually 4 

letters, but up to 16 with IUPAC ambiguity codes[13]). Since “mapping” implies the presence of 

close matches in the database, tools for exploring more remote evolutionary homologies (local 
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alignment, affine gaps, and evolutionary scoring matrices) may not be entirely applicable. Indeed, 

allowing for some degree of mismatch, each query sequence is expected to be fully contained 

within some reference in order for a mapping to qualify. Further, particularly in metagenomics, a 

uniform selection criterion such as sequence identity (BLAST[14] percent id), or some number of 

mismatches, is often imposed by which to filter out potentially spurious alignments. Such a 

criterion also naturally gives rise to a simplified scoring framework by which to compare 

alignments across queries and references, and such a scoring scheme (percent identity) is used in 

the literature to define taxonomic homology thresholds for marker genes.  

 

There are other advantageous restrictions from a computational standpoint. Databases are 

relatively immutable; that is, it is reasonable to expect that multiple query datasets will be aligned 

against a single reference database, allowing pre-processing or indexing of this database to 

facilitate future alignments. Because of the nature of short-read datasets, query sequences 

produced by a given sequencing technology have a well-defined maximum length. This is 

particularly applicable when the database contains numerous repeats, as this maximum length can 

define a "duplication window" with which to abstract away duplicated portions of reference 

sequences during database pre-processing, espousing concepts from compressive genomics and 

allowing database size to scale sub-linearly with the number of reference sequences therein. In 

addition to such database redundancy, query sequences of a limited alphabet, when sorted, 

contain trivial prefix redundancy which increases with the number of queries considered at a 

time, even for randomly generated queries.  

Further advantageous restrictions can be found in the alignments themselves, as researchers often 

provide a "minimum acceptable" alignment score in the form of a minimum percent identity or 

maximum number of mismatches. Further, alignments other than the best alignment(s) may be 

suppressed, depending on use-case. Certain combinations of these restrictions naturally imply 
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others; for instance, when no minimum acceptable score is provided but only the best alignments 

are desired in the alignment report, the program can internally infer such a score for each query as 

more alignments are seen. This is useful if the program is capable of disqualifying alignments 

known to be worse than the current best without needing to calculate the entire alignment. 

Alternatively, if the user specifies a threshold and requires all alignments be reported above it 

regardless of which are best, the program can still disqualify some alignments based on the 

provided minimum score.  

 

For each of the aforementioned restrictions (and others discussed in later sections), an 

implementation is possible that can guarantee that the resulting alignment report (after any user-

defined filters are applied) will be exactly identical to that produced by a full exhaustive 

alignment of all queries against all full-length references. This holds even in the presence of 

ambiguous bases (which, except for bases 'X' and 'N', default to allowing unpenalized matches).  

 

The reporting of alignments themselves, however, is often of limited use at the metagenomic 

scale, as information about the likely taxonomic identity (or some interpolation of other 

hierarchical metadata) may be desired instead. Alternatively, some useful disambiguation of 

multiply matched queries is often warranted by taking into account relationships among the 

queries themselves post-alignment. A simple use-case is picking a single reference for each query 

that will minimize the total number of references chosen by all queries, in order to produce the 

most likely minimal set of references that sufficiently matches all queries. The latter may be of 

particular use for determining which individuals among closely related reference sequences are 

represented in a complex community.  
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Results 

 

Figure 16. Schematic of BURST. This schematic depicts both the database-generation and alignment arms of BURST. 

In a common workflow, the user begins by creating a database out of a FASTA of reference sequences, then using that 

database to align a FASTA of queries and produce alignments with taxonomy according to the desired reporting mode.  

 

Here we present BURST, a metagenomic-scale alignment software which performs exhaustive, 

optimal alignment to map short reads to a (meta-)genomic database, guaranteeing the recovery of 

any or all matches of query sequences to references in the database above a user-specified 

alignment similarity score (percent identity). A schematic is presented in Figure 16. Various 

output modes exist (with similar runtime performance) to output all tied best matches, select a 

single best match among ties that minimizes the number of unique references chosen, and assign 

interpolated taxonomy (or other semicolon-delimited hierarchical metadata) that satisfies a user-

specified confidence threshold.  
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To accomplish this with feasible runtime performance, a series of optimizations have been 

performed as shown in Table 2. It is important to note that only optimizations that do not reduce 

sensitivity of specificity of alignment are included; they increase speed at no cost of accuracy. 

Table 2. Overview of algorithmic optimizations in BURST.BURST uses multiple optimizations to achieve speedup 
without affecting alignment quality. "+" indicates further speedup is possible in tandem with other items.   

Optimization Speedup 

Error-aware pruning >2x1 

Lexicographic table caching >2x1 

Eliminate matrix tracebacks 2x 

Vectorization along reference clusters, SSE4.1 
instructions 

10x 

2-pass search: edit distance, BLAST identity 2x 

Code micro-optimizations 2x 

Multithreading: thread-local data with global 
sync 

+0.9x/thread 

Optional high-identity map filter 
("accelerator") 

2-20x2 

Optional database support with low-identity 
fingerprint filter 

1-5x3 

Lossless Heuristics: Ordering, pre-pass, best-
hit prioritizing 

1-10x3 

1 Up to 100x when both caching and pruning are used together 
2 Lower estimate for amplicon databases; higher for shotgun databases 
3 Depends on read length, shearing factor, database uniqueness, and desired identity cutoff 
 

Performance and system requirements 

Generally, the memory and disk requirements of BURST are low with only a primary database, 

but high when an additional accelerator is produced. The primary database alone occupies space 

and memory of 0.5-1x the size of the original FASTA file of references. The accelerator, if 
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produced, further occupies 2-7x the size of the original FASTA file of references in RAM and 

disk space.  

BURST transparently distinguishes between two types of accelerator formats, "small" and 

"large." Large format accelerators are produced when the number of reference sequences after 

shearing and deduplication exceeds 1 million. The RAM and space requirements of both the 

database and accelerator tends to be just over 7x the size of the original FASTA file of references 

used to produce them, assuming little redundancy in the original sequences. An example is the 

"reference and representative genome collection" from NCBI RefSeq[15] v82, which contains 

just over 5000 representative prokaryotic genomes and very little redundancy. With increasing 

redundancy, this factor can drop considerably, such as to 2.5x with over 51,000 prokaryotic 

genomes, such as those drawn from NCBI RefSeq v84 (all complete, chromosome-, and scaffold-

level genomes plus all "representative" contig-level genomes). This factor is expected to drop 

further with the addition of more genomes as more redundancy is found.  

Importantly, BURST demonstrates dramatic speedup over existing optimal algorithms in terms of 

alignment speed on a real gut amplicon dataset (Table 3). In practical metagenomic alignment, 

BURST can align, disambiguate, and assign taxonomy at a rate of 1,000,000 150-base query 

sequences per minute against the RefSeq[15] v82 representative prokaryotic genome database 

(5,500 microbial genomes, 19GB) at 98% identity on a 32-core computer. 
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Table 3. Alignment through the ages. BURST, an exact method, shows runtime performance comparable to heuristic 
algorithms on human gut amplicon data using the Greengenes 97% OTU database. 

 

 

Availability 

BURST is available under the AGPLv3 license. Precompiled static binaries (with no 

dependencies or installation required other than simply downloading and running BURST). It is 

available on GitHub at github.com/knights-lab/BURST (see the releases page under "Downloads" 

for the precompiled binaries: github.com/knights-lab/BURST/releases).  

 

Methods 

Alignment 

The alignment scoring function proposed and used in this work is fundamentally a dynamic-

programming based similarity measure with a two-component objective function, the first of 

which is Levenshtein distance[16] and the second being alignment identity (sometimes called 

"BLAST id"). Creation of this hybrid metric was informed by a desire to score internal 

alignments using criteria consistent with those commonly used later to filter them. The advantage 

in using the hybrid measure over either component alone is that the Levenshtein distance alone is 
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subject to producing multiple different but identically-scoring alignments from a single short-read 

alignment, and the BLAST id may produce a slightly higher-scoring alignment that is 

substantially longer and more gap-ridden, and hence of dubious biological merit. Using BLAST 

id to pick from among those alignments produced by Levenshtein distance provides a natural 

resolution. Another commonly used metric for screening and evaluating alignments, the e-value, 

was not considered as BURST performs end-to-end alignments only, and in context of short-read 

mapping, the query sequences are often of similar or identical lengths as one another, reducing 

the discriminative utility of the e-value in this context.   

Although the omission of alternative scoring criteria such as variable gap penalties or nucleotide-

specific scores may be unreasonable for general-purpose alignments[17,18], their utility in the 

high-identity short-read mapping problem is unclear. The objective of short-read mapping, rather 

than characterizing local evolutionary homology as with comparison of two full-length protein 

sequences, is instead tantamount to fuzzy substring search where the relatively few allowable 

mismatches can be contributed by artifactual sequencing noise. Hence, the unbiased measurement 

of absolute sequence similarity was deemed appropriate in this context. Further, such an approach 

may have contributed to the high relative sensitivity and specificity of the bowtie2-based NINJA-

OPS[19] software in short-read amplicon mapping despite bowtie2’s reliance on randomization 

and seed-and-extend heuristics[10].  

 

"Synergistic" caching and pruning 

Within the alignment matrix, two major optimizations are used which in tandem increase the rate 

of alignment more than either alone. The first such optimization is lexicographic caching of 

previous query alignments to the same reference, eliminating the need to recalculate this matrix 

for a number of rows equal to the length of the shared prefix. Importantly, for such an 
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optimization to be useful, query sequences are sorted using a fast multi-threaded sorting method 

to maximize the length of the shared prefix between adjacent query sequences. For 1 million 

random sequences with 4-letter alphabet (DNA), it is easy to observe that the length of a shared 

prefix of length 10 will be observed, on average, 61.5% of the time between any two adjacent 

queries: 1-(1-(1/4)^10)^1000000. For amplicon data, the shared prefix length is typically much 

higher as the selection of genomic region in this case is non-random. Figure 17 (blue cells) shows 

an example of this optimization (we can assume the previous query sequence is "TCGAACAA").  

Another optimization used in tandem with this caching step is opportunistic pruning of 

guaranteed "dead end" paths through the dynamic programming matrix (Figure 17, orange cells). 

For each cell, a threshold score calculated by summing that cell's current alignment score with the 

maximum possible score for all remaining nucleotides in the query, assuming all receive perfect 

matches from this query position onward. The cell is marked inactive if this threshold score is 

lower than the minimum user-defined score (or the best score among all previous alignments of 

this query, if in a "best-hit" reporting mode). Elimination of traceback is also implemented so as 

not to require final traversal through the best-scoring path at the end of alignment; this is 

accomplished by storing an auxiliary matrix that tracks gap counts directly rather than noting the 

direction of the best-scoring path at each cell (Figure 17, black arrows).  

 

Figure 17. Simplified example DNA alignment accelerated by BURST. Optimal alignments usually require filling a 

dynamic programming matrix from top-left to bottom-right and finding the highest-scoring path. BURST skips 
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calculating all blue and orange cells while guaranteeing the best alignment (saving 146/160 = 91.25% of the 

computation). The previous query’s alignment (not shown) is cached until the point of prefix divergence from the 

current (blue). Also, cells that cannot form future valid alignments given current scores (orange) are not pursued. Path 

traceback (arrows) is also eliminated. 

Another strategy for improving runtime performance is the use of a 2-pass scoring criterion for 

determination of best matches. Because the Levenshtein distance calculation is prerequisite for 

the secondary BLAST id selection, the former alone can be applied as an initial screening pass; if 

an alignment fails the first criterion, it will by definition fail the second and be rejected, sparing 

the need to compute both for each alignment.  

 

BURST enables arbitrarily confident taxonomy assignment per read with thresholded LCA. 

In one of its modes of operation, BURST can assign taxonomy (or any other hierarchical, 

semicolon-delimited feature) to each read using lowest common ancestor (LCA).  

 

Discussion 

BURST is a high-performance standalone program with no dependencies that enables exhaustive, 

high-throughput metagenomic alignment without heuristics or approximations. This makes 

BURST uniquely suitable for a variety of tasks where accuracy is of paramount importance, such 

as part of a pathogen screening or strain detection pipeline. As shown in Figure 18a, the heuristic 

aligner bowtie2[10] increasingly fails to discover optimal matches with higher sequence 

divergence from known references, whereas BURST’s best hit always returns an optimal match. 

Not only does BURST provide more accurate “best hits” with decreasing sequence similarity, it 

also enables some novel use-cases as well.  
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BURST can be used to report conservative taxonomy on a per-read basis by finding the lowest 

common ancestor among all tied alignments against all references for each query. Using this 

approach on an example human amplicon dataset[20] with the Greengenes[21] 13_8 reference 

database, we find that using a naïve “best-hit” approach for assigning taxonomy results in drastic 

levels of overconfidence in taxonomy assignments (Figure 18b). This overconfidence can lead to 

split signals when, for instance, multiple different species of a genus are reported when they do 

not actually exist in a sample. In this case, BURST would report higher amounts of the genus 

alone without assigning arbitrary species labels at random.  

 

Figure 18. BURST vs Bowtie2: best hit and LCA taxonomy (a) A comparison of BURST in best-hit mode compared to 

the default runtime configuration of bowtie2 on an example gut amplicon dataset against the Greengenes 97% OTU 

database. BURST recovers an optimal best-scoring match for all queries at all alignment similarities, while bowtie2 

returns more suboptimal matches with decreasing alignment identity. (b) A comparison of BURST in LCA mode vs 

bowtie2 default settings in terms of reported taxonomy. When multiple identically-scoring best hits exist, BURST will 

return the lowest common ancestor (LCA) as the taxonomy, while best-hit methods pick an arbitrary representative 

which is often over-specific or, due to heuristics, sometimes the wrong lineage entirely. 

When used in “Forage” mode, BURST can also be used as an exhaustive means to determine 

where a set of primers may align in a database of many genomes, including the ability to specify 

primers with ambiguous bases and any number of mismatches, insertions, or deletions. 

Additionally, using BURST’s ability to report all tied best alignments (“allpaths” mode) can be 

used in interesting ways such as in Figure 19, which shows a Cytoscape visualization of the 
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relatedness of 21 strains within three species of the bacterium Enterococcus. For E. faecalis and 

E. faecium, 10 strains each were randomly selected from RefSeq [15] v86 assemblies, and a 

single strain of E. aquimarinus was used. As expected from a phylogenetic analysis[22], E. 

faecalis and E. faecium are substantially more closely related than either is to E. aquimarinus. 

Ecologically, the former two microbes are also common gut commensals, whereas E. 

aquimarinus was isolated from sea water[23]. It may also be inferred that the randomly selected 

E. faecalis strains are more dissimilar to one another than the E. faecium strains. This may have 

important implications for creation of a reference database, as intelligent strain selection may be 

beneficial to capture a species’ full pan-genomic content without inflating the size of the database 

with highly similar strains. More fundamentally, it visually highlights the fact that not all species 

of a genus are equidistant from one another, nor are strains of a species. 

 

Figure 19. BURST reveals species relatedness through shared genes. All genes from 21 strains of Enterococcus were 

aligned with BURST in “allpaths” mode against a database of the same strains’ genomes. Large nodes indicate 

individual genomes, colored by species, and white dots represent individual genes. Lines indicate alignments between 

genes and genomes. Force-directed layout was used to automatically orient the network. The randomly selected E. 
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faecalis and E. faecium share more genes with themselves than with each other, and the E. aquimarinus shares little 

with either other species.   

Another reporting mode in BURST that may be especially useful for whole-genome 

metagenomics is the “capitalist” reporting mode, a Minpath-like[24] parsimony-based 

disambiguation scheme the workings of which are highlighted in Figure 20a in comparison to the 

conservative LCA method (Figure 20b) also demonstrated above. An example of running this 

mode on a simulated dataset is shown in Figure 21.  

 

Figure 20. Illustration of BURST "Capitalist" disambiguation vs LCA. (a) Tied best matches arise due to repetition in 

multi-organism reference databases. To resolve this, BURST computes the minimal set of references necessary to 

satisfy all queries. This reduces split statistical signals present in most metagenomic data. (b) Lowest common ancestor 

(LCA) is an alternative, more conservative approach that independently assigns each read a taxonomy by backtracking 

from leaf to root (most specific to least specific). BURST implements both methods. 
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Figure 21. Practical example of CAPITALIST. In this example run on a simulated dataset, all of the queries (white 

dots) originate from the same reference (red dot in right-center). However, in two of these queries (two white dots on 

the left-center), the nucleotides necessary to confer unambiguous best alignments to their reference of origin were 

mutated, making them align equally well to a number of other references as well. Lines represent all possible tied best 

alignments; blue lines represent capitalist picks (minimizing alignments), which would eliminate all extraneous 

references on the left and properly assign the two left-most queries to the same reference as the other queries. 

 

Conclusion. 

With its favorable performance attributes and guarantee of alignment optimality, BURST may be 

a reasonable alternative to other aligners in the metagenome space. Further, BURST incorporates 

a number of features useful for metagenomic analysis including methods to disambiguate ties, 

assign conservative taxonomy annotations, and reduce database size with increasing numbers of 

similar reference genomes.  Because it is not splice-aware, nor does it support human-centric 

alignment formats such as SAM [25], it may not be immediately suitable for human genomic 

applications reliant on these features.  
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Further improvements to BURST may include the ability to align protein sequences (including 

local alignments within a specified minimum length and support for distance matrices) as well as 

further improvements to the compressive database engine and other optimizations to increase 

speed and reduce memory usage. Improvements to the reporting of alignments may also include 

incorporation of a “coverage”-based statistic, the goal of which would be to disambiguate reads 

based not only on aggregate parsimony but also on evenness of read coverage throughout the 

genome. Future work may characterize the extent to which the various output modes of BURST 

impact the performance of statistical and machine learning models.  

 

(References are provided at the end of this thesis.) 
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IV. Other contributions to comparative genomics and database generation/search. 
 

(Not submitted for publication as of this thesis.) 
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Summary. 

DNA sequence alignment is a foundational centerpiece of modern genome-enabled disciplines. 

Despite its ubiquity, however, sequence alignment is employed in vastly different ways 

depending on the biological objective desired. For strain detection and clinical applications, 

sensitivity and specificity are paramount; for broad ecological analyses of uncharacterized 

communities, a rough taxonomic synopsis of an environment is often sufficient. Accordingly, 

where databases are used (i.e., for alignment, taxonomy profiling, or phylogenetics), their use-

cases likewise differ by purpose. The various extant “biological objective functions” have driven 

the development of numerous bioinformatics tools for alignment, profiling, and both database-

dependent and database-independent comparison methods for sequences and communities of 

sequences. I have developed and implemented a variety of tools to tackle problems across 

metagenomic sequence analysis, including specialized databases, algorithms, utilities, and 

pipelines for various applications. Specifically treated here are: marker gene and whole-genome 

metagenomics sequence databases and phylogenies, a lossless data compression engine, a fast 

heuristic aligner, automated database update protocol, an alignment-free phylogenetic tree 

algorithm, a database-free metagenomic sample comparison algorithm, a fast de novo amplicon 

clustering pipeline, a non-parametric statistical comparison technique for groups with differing 

baselines and sample numbers, a toolset for metagenomic alignment summarization including 

coverage analysis, and a microbial coalition-based feature generator. Each of these tools improves 

upon existing standards in various ways, and some provide entirely new capabilities for 

generating biological insights.  
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Microbial genomic, taxonomic, and phylogenetic marker databases. 

I have produced a database for 16S microbial marker gene analysis based on the NCBI RefSeq 

Targeted Loci Project (TLP) [1], as well as an ITS microbial marker gene database based on a 

related curation project for fungi [2]. A primary motivation for this project is a consistent curation 

system as well as gold-standard (TYPE-strain) taxonomic information. The 16S records each 

contain a full-length or near-full-length 16S region selected by a small number of universal 

primers. Each ITS record contains full-length, contiguous ITS1, 5.8S, and ITS2 regions.  

Phylogenetic trees were created from these full-length records using rigorous multiple-sequence 

alignment (MSA) via structural global sequence alignment with the rigorous and 

computationally-intensive MAFFT v.7.310 Q-INS-i algorithm [3] on Minnesota Supercomputing 

Institute servers, followed by maximum-likelihood tree creation with RAXML-ng v0.5.0 [4].   

These databases are particularly useful with an exhaustive optimal aligner such as BURST 

[Chapter 3] because taxonomy assignment can occur through conservative lowest-common-

ancestor approach at lower alignment identity, which is not feasible with other applications which 

require heuristically pre-clustered databases such as Greengenes [5]. Particularly for fungal 

analysis, the UNITE [6] database is not as useful with BURST LCA due to many records lacking 

meaningful taxonomic annotation, leading to many annotations being overly conservative.   
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Table 4. BURST LCA with UNITE vs LTP. The top 10 taxonomic annotations resultant from BURST LCA are shown 

for both the UNITE 7 database and my new TLP-based database.  

A meaningful fungal ITS marker tree created using modern rigorous methods has not been 

previously attempted. The closest analog, Ghost-tree [7], uses a two-step approach which requires 

additional matching records using another ribosomal subunits which may not be available for all 

TYPE strains. Additionally, the alignment and tree generation methods used in that publication 

are dated, and the databases used do not include all up-to-date TYPE strain information from the 

TLP. In contrast, my tree can be regenerated directly from the full TLP ITS data and has tips for 

all fungi included therein (Figure 22). Furthermore, I have found this ITS tree performs 

comparably well (or slightly better) in separating fungi by environmental body sites than Ghost-

tree in a real human mycobiome dataset [8] as shown in Figure 23. 
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Figure 22. Phylogenetic ITS marker tree. 

 

Figure 23. ITS tree distinguishes communities by body site.  (left) ITS marker tree-based UniFrac dstance. (right) 

Naïve taxonomic analyis without phylogeny using Bray-Curtis disance metric.  

 

 



73 
 

Prokaryotic metagenomic full-genome databases. 

I have also produced a number of full-genome databases based on NCBI RefSeq microbial 

assemblies. Using the “representative” and “reference” genome labels provided by RefSeq for its 

microbial databases, I have produced a streamlined whole-genome and gene-separated database 

containing approximately 6,000 distinct representative microbes spanning the tree of life from 

RefSeq v87. I have also created a more comprehensive database of over 50,000 prokaryotes from 

all microbes except those with genomes labeled to be of the lowest level of assembly by NCBI, 

the “contig” classification. For genomes of “contig” level completeness, I only included genomes 

marked “representative” or “reference” as contained in the streamlined database, making the 

comprehensive database a perfect superset of the representative database.  

I have also produced a specialized human and murine-associated microbial reference database 

containing over 10,000 microbes selected as follows. First, a list of candidate microbial species 

was obtained by aligning human and murine reads from in-house as well as publicly available 

human metagenomic datasets from around the world, as well as murine samples from multiple 

strains and laboratory mice, against a comprehensive database. All available RefSeq strains for 

each matched bacterial species, subsampled down to 100 random strains if more were available 

for a given species, were selected for inclusion. Additionally, all records for all matched genera 

present in the “representative” or “reference” RefSeq genome were also added, in addition to 3 

representative archaea.   

Both the streamlined representative database as well as the denser but human-specific reference 

databases based on RefSeq v87 occupy less than 110GB of RAM when formatted for the BURST 

aligner, making them suitable for performing exhaustive metagenomic alignment on increasingly 

common 128GB RAM workstations. Typical human and mouse datasets show 50-80% of 

metagenomics reads aligning at 95% sequence identity or higher. 
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Databases are available on S3 upon request and also on a Google Drive public folder: 

https://drive.google.com/drive/folders/0B_nJId0uAM7oYnJJTTBndl9zTGs?usp=sharing 

 

Lossless nucleotide sequence compression with kafan. 

I have developed a compression codec called “kafan” based on a heavily modified and extended 

version of the LZ78 algorithm [9]. An early edition of kafan appeared in NINJA-OPS [10] using 

the TCF wrapper. My initial motivation its development was to integrate extremely high-

throughput and compact compression code for use as the concatesome format, as distribution of 

NINJA-OPS databases required small files due to hosting limitations at the time. Indeed, the 

entirety of the original implementation in NINJA-OPS consists of a single function, where the 

entire compliable code for concatesome creation, preprocessing, and compression is 160 lines of 

C including comments, debug code, and user help strings. Decompression is comparably 

straightforward.  

Kafan was later extended into a general-purpose blockwise binary compression codec with 

multiple compression speed presets (Figure 24). The default speed preset is an order of magnitude 

faster than default gzip compression/decompression (Table 4) yet also offers a superior 

compression ratio for such sequence databases (along with extreme code portability).  

https://drive.google.com/drive/folders/0B_nJId0uAM7oYnJJTTBndl9zTGs?usp=sharing
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Figure 24. Kafan speed vs compression. The blue series represents filesize (left axis, in bytes) and the red represents 

compression speed (right axis, in seconds). The x axis shows compression speed preset, with -1 being no compression 

(raw file).   

 

Table 5. Comparison of kafan and gzip (GZ) modes with no preprocessing. 

Mode Compression (s) Decompression (s) Size 

0 500 96 44.0GB 

1 570 175 42.4GB 

2 800 144 35.7GB 

3 1170 200 33.3GB 

GZ1 2500 1250 36.8GB 

GZ5 13,100 Not measured 27.7GB 

 

The primary algorithmic developments of kafan over vanilla LZ78 are support for block-wise 

compression, dynamic multi-pass dictionary pruning and regeneration (implemented in mode > 
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7), and modified dictionary initialization and no-expansion guarantee for text/sequence 

compression (implemented in mode 0). Pre-filtering options such as implemented in NINJA-OPS 

TCF also improve compression performance for sequence data by separating the binary data for 

sequence headers from sequences, and sorting to allow common prefixes to occur together 

(similar to an effect associated with Burrows-Wheeler compression [11]).  

There are widespread implications for an algorithm that is both tremendously faster and 

somewhat more efficient than gzip on nucleotide data, including more efficient storage, retrieval, 

and transmission of sequence data, which is growing exponentially [12]. 

Source and binaries are available on GitHub: https://github.com/knights-lab/kafan 

 

Fast heuristic alignment, classification, and taxonomy assignment with UTree. 

UTree is a general-purpose, ultra-fast k-mer mapper and DNA sequence classifier. It is the fastest 

known mapper/classifier known to the author at the time of writing, outperforming the current 

widely-used k-mer-based metagenomic taxonomy classifier kraken [] by approximately two-fold 

in alignment performance, 10-fold in database creation speed, and 10-fold in memory usage. It 

supports inline reverse-complementing of the query sequences, and two voting schemes including 

plurality vote and LCA (Figure 25).  
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Figure 25. Illustration of UTree's operation. A prefix forest of predefined size is allocated, followed by the creation of 

suffix trees at the tips representing unique k-mers in a given species. Querying the database involves using a k-mer’s 

prefix to map directly into the prefix forest (a), followed by traversing the suffix tree in search of its suffix (b). If 

multiple k-mers match within a read, the algorithm votes using different possible methods (c) to determine what 

taxonomic assignment can confidently be made. 

 

There are numerous advantages of UTree over other aligners, such as my BURST aligner 

[Chapter 3]. For the simpler biological objective of per-read taxonomic classification, the 

accuracy remains sufficiently high, if a bit more conservative (lower specificity). Yet the speed of 

operation is orders of magnitudes faster, and the memory usage an order of magnitude less. For 

high-throuhgput metagenomic profiling on a personal laptop computer in minutes, UTree is the 

only viable solution known to date. Additionally, UTree is capable of producing a reference 

database of nearly 100,000 prokaryotes (spanning over 10,000 unique species) – the entirety of 

RefSeq’s assembly records – in a memory and disk footprint of approximately 30GB while 

retaining high sensitivity and specificity at the species level. 

Further, UTree allows customizable amounts of lossy database compression. The previous 

statistics presented were for the default compression level of 2, but compression can be tuned 

from 0 to 4. Each increasing compression level affords a 4-fold reduction in database size over 

the previous at a cost of less than 50% reduction of specificity per-read (or approximately 10% 

when aggregated over an entire sample). Higher compression levels may allow metagenomic 

profiling to operate with reasonable performance on a mobile phone or tablet.  
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Unlike BURST and other short-read methods considered here, UTree is capable of classifying 

long reads and even entire genomes. It can simulate database alignment of long-reads simply by 

building a database out of reference genomes and providing a taxonomy for each genome 

including a specific genome identifier as the strain label. UTree is also capable of handling 

arbitrary ranks in hierarchical taxonomic data, which can be used to novel and powerful effect. 

For instance, the user can provide it root-to-leaf node traversal data in lieu of traditional 

taxonomy, including phylogenetic tree splits, functional annotations,  

UTree is used by the SHOGUN engine [13] and is available on GitHub: 

https://github.com/knights-lab/UTree 

 

Alignment-free phylogenetics and metagenomic sample comparison with aKronyMer. 

aKronyMer is a dependency-free, standalone software that dramatically enhances and accelerates 

both pairwise sequence comparison and phylogenetic tree construction using a variety of methods 

(Table 6).  

Table 6. Overview of algorithmic optimizations in aKronyMer. aKronyMer derives its accuracy and performance 
characteristics from a combination of algorithm and feature optimizations. aKronyMer can operate on individual 
sequence data (such as within a sample) or on entire samples within a dataset. 
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Huge phylogeny creation 

A critical component in the study of microbial ecology, taxonomy, and evolution, including all 

fields that utilize principles of these, is the phylogenetic tree. This tree models the evolutionary 

distances (and in essence, the similarities) between microbes hierarchically. Such trees are also 

used for metagenomic sample comparison through the use of kernels such as UniFrac [14].  

However, producing phylogenetic trees on large numbers (>10,000) organisms is complex and 

time-consuming, and quickly becomes intractable for conventional methods to produce for NGS-

scale data. Some methods exist that attempt to divide the phylogeny creation problem into smaller 

subsets [15] but most require creation of multiple-sequence alignments (MSA) to produce an 

initial alignment, followed by a dedicated phylogenetic tree creation software [4] to produce the 

final tree.  

However, it has been found that pairwise distance-based methods for phylogenetic tree creation 

such as Nei-Saitou [16] perform almost equally well as more complicated methods such as 

minimum evolution, maximum parsimony, or maximum likelihood as the number of sequences 

considered increases, especially when read lengths are comparatively short [17]. Therefore, there 

are 2 primary bottlenecks to forming massive phylogenetic trees: the creation of the multiple 

sequence alignment, and the formation of the tree itself, both of which are computationally 

intensive. Furthermore, rearrangements and other structural changes within genomes or marker 

genes may cause alignment-based techniques to fail to accurately form multiple-sequence 

alignments, and consideration of these events would further slow the alignment process. 

Additionally, the use of longer sequences with which to create a phylogeny require exponentially 

more time in both the alignment and tree construction stages.   

To address all of these issues, aKronyMer is a k-mer-based pseudoalignment method that can 

take a single FASTA file containing marker genes or even entire genomes, and produce a non-
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heuristic evolution-corrected Nei-Saitou phylogenetic tree in a single step. aKronyMer supports 

pseudo-local and pseudo-global sequence comparison, adjusts for sequence dissimilarity due to 

differential sequence lengths, and implements a Jukes-Cantor-like distance correction [18] shown 

to improve phylogenic accuracy as well as diminish long-branch-attraction artifacts in the 

resulting tree.  

In our test datasets, the Robinson-Foulds distance [19] between an aKronyMer-produced tree of 

500 randomly selected 16S sequences reaches over 75% (a high similarity) with a rigorous 

standard tree using MAFFT G-INS-i and raxml-ng, and this number is expected to increase with 

the addition of more sequences. From initiation to completion of the process took aKronyMer less 

than 200ms, and the standard method over 2 hours on the same dual-core laptop.  

This level of performance allows a completely de novo phylogenetic amplicon analysis given just 

the denoised starting amplicons and is suitable for use in UniFrac and other diversity analysis 

(Figure 26). Furthermore, the speed and performance of aKronyMer allows the creation of 

genome-scale alignments, demonstrated by a phylogenomic tree of approximately 100,000 

RefSeq prokaryotes (whole genomes) in under 6 hours on a workstation computer (Figure 27).   

 

Figure 26. Rapid de novo amplicon phylogeny. Samples collected in the Immigrant Microbiome Project cluster by 

group in a phylogenetic ordination. Left: Unweighted UniFrac principle components ordination; p-values show 

clustering is significant by PERMANOVA. Middle: aKronyMer phylogeny of representative amplicons (no database). 

Right (truncated): single clade exclusively contains all archaea in dataset (validated independently by exhaustive 

database alignment of these amplicons). 
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Figure 27. Snapshot of aKronyMer phylogeny from ~100,000 full genomes. 

 

Database- and phylogeny-free metagenomic comparison 

Metagenomes are high-dimensional mixtures of microorganisms playing complex ecological 

roles. Because of the gaps of knowledge reflected in our incomplete databases of microbes, there 

is great difficulty characterizing the precise strain composition of a community. Yet such a 

breakdown (a “census” or “tally” or “profile”) is often considered essential for performing other 

comparative analyses between microbiomes. These downstream analyses are often characterized 

by diversity and/or sample similarity calculations, which are then used to determine whether two 

given microbiomes are likely from the same group (geographic location, treatment status, etc), or 

otherwise assess aggregate diversity statistics within or between groups or samples. Another 

usage for individual microbes is as features for machine learning models. 

However, for many of these use-cases, the determination of the abundances of which known (or 

assumed) microbes is unnecessary if a method existed which could directly produce distance 
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matrices (beta-diversity), as well as alpha-diversity measures, for all samples. For use in 

downstream statistical or machine learning, the distance matrix itself can be used as the input 

features as a de facto kernel, and such techniques have been shown to be comparable to raw 

feature-based techniques [20].  

aKronyMer is capable of producing highly accurate sample comparisons, and outputs alpha 

diversity scores per sample, beta diversity matrices, and sample comparison trees representing 

inter-sample distances. The raw sample data (both amplicon and whole-genome shotgun data is 

supported) is simply provided in FASTA format (a tool exists to convert sample sequence files to 

the required merged records), and results are output such as in Figure 28.  

 

 

Figure 28. aKronyMer analysis of gut timeseries. aKronyMer can output a distance matrix, which can be ordinated 

directly with principle coordinate analysis (left). This distance matrix is nearly identical to one produced from 

exhaustive database alignment and creation of features followed by Bray-Curtis ordination of features (top-middle). 

aKronyMer also outputs a sample tree output (right) that may better model relationships among samples, evidenced by 

the pizza-like slices grouping together each person’s multiple timepoints. Both the distance matrix and tree are capable 

of recapitulating the chronological ordering of the timepoints (bottom-middle).  

To demonstrate the capabilities of aKronyMer for database-free sample comparison, I evaluated 

whether aKronyMer could recover known trends in existing datasets. In a public 16S amplicon 

dataset containing samples from patients on antibiotics and healthy controls [21], aKronyMer 
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successfully separates the controls from the antibiotic classes (Figure 29). The algorithm also 

correctly separates by body site, exemplified by both amplicon and whole-genome shotgun 

sequencing (Figure 30). 

 

Figure 29. aKronyMer groups controls distinct from antibiotic users. In an example amplicon dataset [21], control 

patients (yellow) cluster separately from various antibiotic classes.  
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Figure 30. aKronyMer distinguishes between body sites. Primate Microbiome Project amplicon samples (left) is shown 

to separate by stool (brown) and stomach (teal) samples. Alpha diversity was also significantly different between the 

stomach and stool groups (p < 0.03). Human Microbiome Project [22] whole-genome shotgun samples (right) subset 

to 250,000 reads per sample also separate by stool (brown) and tongue (red) samples. 

aKronyMer is available on GitHub: https://github.com/knights-lab/aKronyMer 

 

Pipeline for de novo amplicon sequencing. 

I have also developed a de novo amplicon clustering / denoising pipeline exclusively utilizing my 

other tools. This pipeline operates by performing basic quality control using the SHI7 pipeline 

[23; Chapter 1]. It then de-duplicates amplicon sequences according to an exact (with allowable 

subsets/overhangs) deduplication using the ninja_filter module of NINJA-OPS [10; Chapter 2] 

according to expected number of errors in a read given read length and sequencing platform. 

These deduplicated sequences become the “representative set” of amplicons in the dataset. The 

pipeline then re-aligns the entire dataset against the deduplicated “representative set” at a lower 

identity (usually 98% or greater identity, or dynamically chosen so that 95% of the raw reads 

align, assuming 5% outliers) using the “capitalist” mode of BURST [Chapter 3] and aggregated 
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into an OTU table. A phylogenetic tree is then created from the representative set using 

aKronyMer [Chapter 4]. Optionally, if a database is available, BURST is also used to assign 

taxonomy using its lowest common ancestor mode [LCA] to all sequences in the representative 

set. The alignment file, phylogenetic tree, and (optional) taxonomy file are sufficient for all 

amplicon analyses. Runtime performance of the entire de novo pipeline is from 60 seconds to 10 

minutes on typical amplicon datasets following quality control. 

 

Non-parametric baseline-independent statistical comparator. 

I have developed a permutation-based technique for assessing the statistical significance between 

two groups with pre- and post- sampling groups and multiple (potentially varying in number) 

repeated samples per group. The premise is to first calculate the sum of the differences between 

all microbial abundances between the two timepoints for each group, and normalize by the 

number of all repeated samplings per group. The group labels are shuffled within each person, 

preserving the number of repeated samples in the original groupings, and the former calculation is 

repeated and compared with the original distances. This permutation and re-calculation step are 

repeated many times (such as 1 million), and the proportion of times the permuted distances are 

greater than or equal to the originals is reported as the empirical p-value.  

Because this technique uses linear algebra techniques with hardware accelerated manipulation in 

R, it is capable of calculating the permuted distances of each group to its baseline simultaneously, 

speeding up the process hundreds-fold and allowing hundreds of microbial taxa to be compared 

with one million iterations on a desktop computer in under an hour. This also allows p-value 

resolutions sufficient for multiple-hypothesis correction, a weakness of other permutation-based 

tests that are only capable of running few permutations in a reasonable amount of time.  

This code is available on GitHub: https://github.com/knights-lab/megaperm  

https://github.com/knights-lab/megaperm
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Toolset for metagenomic alignment summarization.  

I have created a variety of convenience utilities to streamline and integrate various tools I have 

created. These are referred to as “embalmlets” and perform a variety of tasks such as linearizing 

genomes comprised of multiple contigs while separating out plasmids (“lingenome”), creating 

text-format semi-colon delimited taxonomic annotations for arbitrary NCBI data in a memory and 

time-efficient way (“a2gg”), and performing aggregation of alignment results from BURST.  

This aggregation can be simple, such as creating a relative abundance table (“embalmulate”), or 

more complex, utilizing position information in the alignment table to perform coverage analysis 

(“bcov”). The former enables conventional microbiome analyses such as amplicon studies; the 

latter is more useful in determining whether a given genome is actually present in a community 

by assessing the fraction of its genome is actually spanned by query reads. This coverage analysis 

is important for database-dependent strain detection, and performs well as a classifier for strain 

presence/absence (Figure 31).  

 

Figure 31. Performance of bcov for strain detection in an example dataset. Area under the curve (“AUC”) is a 

measure of classifier performance in machine learning. 0.91 is a high score. 

These tools are available on GitHub: https://github.com/knights-

lab/BURST/tree/master/embalmlets 

 

https://github.com/knights-lab/BURST/tree/master/embalmlets
https://github.com/knights-lab/BURST/tree/master/embalmlets
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Microbial coalition-based feature generator. 

Metagenomic data analysis is characterized by highly multidimensional data such as the genomes 

present in a microbial community. However, treating each microbe as an independent variable 

may be untenable given the ecological dynamics (cooperation, competition) that exist between 

microbes. This is a particularly important consideration when performing pairwise statistical tests 

or machine learning, where either multiple hypothesis correction is performed or feature selection 

is used. This is because these strategies often do not account specifically for community 

dynamics and instead only reduce or account for number of features, but not the higher-order 

associations between them. I have produced a software called WRANGLr, which uses greedy 

feature recombination and Nei-Saitou-inspired clustering by correlation with an outcome 

variable, to facilitate feature creation through aggregation instead of individual microbes.  

By considering microbes as coalitions, groups of microbes are found to form cooperative or 

competitive units through mutual correlation or anti-correlation with respect to an outcome 

variable such as treatment group. Preliminary analyses indicate that use of these aggregates 

instead of individual microbes results in modest but consistent performance improvements in 

statistical and machine learning tasks. Additionally, studying the members of these microbial 

aggregates may lead to new biological insights (i.e. through enrichment analysis for factors such 

as shared ecology, functional capabilities, or phylogenetic relatedness).  
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