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Abstract 

Genomewide selection is now routine in maize (Zea mays L.). The first two studies in this 

dissertation investigated advanced aspects of genomewide selection, whereas the last 

study investigated the potential of targeted recombination in elite biparental crosses. The 

three studies utilized data on 969 maize populations that were phenotyped for yield, 

moisture, and test weight at multiple years and locations and genotyped with 2911 single 

nucleotide polymorphism markers. The first study showed that prior selection in the 

training population reduced the response to selection and predictive ability, but it did not 

increase the similarity among the best lines. Including a small number of the poorest lines 

in the training population nearly restored the predictive ability to its original level. The 

second study showed that in genomewide selection, it is better to use a smaller ad hoc 

training population than a single, large training population. In particular, the response to 

selection and predictive ability were lower in a global training population with about 

50,000 lines than in a set of about 4500 lines chosen to maximize relatedness with the 

population undergoing genomewide selection. The third study showed that on average, 

targeted recombination doubled the predicted gains. For each trait, the gains with targeted 

recombination were 60% to 400% of the gains from nontargeted recombination. Targeted 

recombination did not increase gains in only around 4% of the populations. The results 

indicated that targeted recombination is a potentially powerful sequel to genomewide 

selection in maize.  
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Chapter 1: Maintaining the accuracy of genomewide predictions when 

selection has occurred in the training population 

Routine genomewide selection in maize (Zea mays L.) will lead to phenotyping 

only a subset of the lines in a biparental population between inbreds A and B. If the cross 

is used as part of the training population for predicting the performance of lines in a future 

cross, the training population would be a selected rather than a random subset of lines. 

Our objective was to determine if selection in the training population (i) reduces the 

response to selection and accuracy of genomewide selection in a biparental (A/B) 

population, and (ii) increases the genetic similarity of the best lines in the A/B population. 

A total of 969 biparental maize populations were evaluated at 4 to 12 environments from 

2000 to 2008 for grain yield, moisture, and test weight. The parents of the 969 populations 

were genotyped with 2911 single nucleotide polymorphism (SNP) markers, and marker 

data were imputed from lower-density screening of the progeny in each biparental cross. 

Having phenotypic information on only a selected fraction (25%) of the lines significantly 

reduced the response to selection and predictive ability. However, augmenting the training 

set with the five poorest lines nearly restored the predictions to their original level of 

accuracy. Prior selection in the training population did not increase the genetic similarity 

(calculated from nonimputed SNP data) of the best lines in the A/B population. We 

concluded that including a small number of the poorest lines in a training population is a 

practical way to maintain the effectiveness of genomewide selection. 

Introduction 

Maize (Zea mays L.) breeding usually involves crossing two inbreds (A and B) 

and evaluating the testcross performance of selfed lines, recombinant inbreds, or doubled 

haploids from the A/B cross (Hallauer, 1990). Genomewide selection (or genomic 

selection) can be performed in the A/B biparental cross, and previous studies have shown 

that genomewide selection is effective when the training population is representative of 

the A/B population (Schulz-Streeck et al., 2012; Riedelsheimer et al., 2013; Jacobson et 

al., 2014). The general combining ability (GCA) model, where A/* populations (* being 

a parent from the same heterotic group as A and B) and */B populations are pooled into a 

training population to predict the performance of progeny in the A/B cross, has been found 
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useful for routine genomewide selection in elite maize biparental crosses (Jacobson et al., 

2014). The GCA model circumvented the need to phenotype progeny of the A/B cross 

and led to 85% of the gains that eventually would have been obtained with phenotypic 

selection in the A/B cross (Jacobson et al., 2014). In addition, the predictions from the 

GCA model were improved by imputing single nucleotide polymorphism (SNP) data from 

the parents to their progeny (Jacobson et al., 2015a). 

The GCA model therefore provides a simple framework for the routine use of 

genomewide selection in maize breeding programs. As genomewide selection in maize 

biparental crosses becomes increasingly routine, it is important to consider the long-term 

effects of the procedure. In particular, routine genomewide selection within a breeding 

program will lead to only a subset of the lines in a biparental cross being phenotyped prior 

to the best candidates being eventually released as cultivars. If that cross is used as part of 

the training population for predicting the performance of lines in a future cross with either 

of the parents (Fig. 1), the training population would be a selected subset of lines. Having 

a nonrandom subset of progeny in the training population could in turn affect the accuracy 

of future predictions and increase the genetic similarity of the lines predicted to be the best 

(Jacobson et al., 2015b). 

Information is currently lacking on how the effectiveness of genomewide selection 

is affected by prior selection in the training population. Our objective was therefore to 

determine if selection in the training population (i) reduces the response to selection and 

accuracy of genomewide selection in an A/B population, and (ii) increases the genetic 

similarity of the best lines in the A/B population. 

Materials and methods 

Phenotypic and marker data 

Monsanto provided us with testcross phenotypic and SNP marker data for 969 

biparental maize populations. The populations were evaluated for grain yield (Mg ha−1), 

moisture (g H2O kg−1), and test weight (kg hL−1) at 4 to 12 environments (year-location 

combinations) in the United States from 2000 to 2008 (Jacobson et al., 2014). A total of 

27 F2 populations were selected as the A/B populations that were subjected to 

genomewide selection. The 27 A/B populations were chosen on the basis of having at least 
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four A/* and */B crosses, a minimum population size of 50 lines, and an entry-mean 

heritability (h2) significantly greater than zero for each trait (Lian et al., 2014; Jacobson et 

al., 2015a, 2015b). The lines in the A/B, A/*, and */B populations had the same inbred as 

the tester. The heritability on an entry-mean basis was estimated as h2 = VG/(VG + VR/e), 

where VG was the genetic variance, VR was the residual variance, and e was the harmonic 

mean of the number of locations in the trial (Holland et al., 2003). Only F2 populations 

with h2 significantly different from zero (P = 0.05) were used. 

The parents of the populations were genotyped with 2911 SNP markers, whereas 

the progeny in each of the 27 F2 populations were genotyped with 25 to 123 markers. The 

genotypes at each locus were coded as 1 if the line was homozygous for the SNP allele 

from parent A, −1 if the line was homozygous for the SNP allele from parent B, and 0 if 

the line was heterozygous. Marker loci that were monomorphic between the two parental 

inbreds or that had a minor allele frequency <0.10 were excluded within each population 

(Lian et al., 2014; Jacobson et al., 2015a). The SNP data for the progeny were then 

imputed from the parental SNP data, based on the conditional probability of a nonobserved 

marker genotype given the two flanking-marker genotypes (Jacobson et al., 2015a). The 

imputed marker data were used to measure the response to selection and predictive ability 

when selection occurred in the A/* and */B populations, whereas the nonimputed SNP 

markers were used to calculate the genetic similarity among the 10% best lines in each 

A/B population (as described below). 

Prior selection in the training population 

Suppose A/*, */C, B/*, and */D populations are evaluated in Year 0. A/C and B/D 

are new biparental crosses available in Year 1. According to the GCA model, the A/* and 

*/C populations can be pooled as a training population to predict the performance of 

progeny in the A/C cross (Fig. 1; Jacobson et al., 2014). Likewise, the B/* and */D 

populations can be pooled as a training population for the B/D cross. From genomewide 

predictions, the A/C progeny and B/D progeny predicted to be the best are subsequently 

phenotyped in field trials. Assessing the effects of prior genomewide selection therefore 

requires Year 0 training populations to predict the performance of Year 1 populations, and 
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the Year 1 populations becoming part of the training population to predict the performance 

of Year 2 populations. 

Only two of the 27 A/B populations had the above conditions necessary for prior 

selection based on genomewide predictions. We therefore performed two experiments. In 

Exp. 1, prior selection in the training population was based on phenotypic values. Prior 

selection was considered for all 27 A/B crosses, and phenotypic selection was therefore 

considered as a surrogate for genomewide selection. The ramifications of this assumption 

are discussed in the Results and Discussion. In Exp. 2, prior selection in the training 

population was based on genomewide predictions, and such prior selection was considered 

for only the two A/B crosses for which prior selection via the GCA model could be 

studied. 

In both Exp. 1 and 2, genomewide selection was conducted via seven schemes that 

were functions of the percentage (denoted by PSel) of lines retained in A/* and */B crosses 

on the basis of line performance (100, 50, and 25%), whether or not the A/* and */B 

progeny were a selected subset or a random subset, and whether or not the training 

population was augmented with the five poorest lines in each of the A/* and */B crosses. 

The seven schemes were: (i) no selection in the training population (PSel = 100%), (ii) the 

top 25% of lines retained (PSel = 25%), (iii) the top 50% of lines retained (PSel = 50%), 

(iv) the top 25% of lines plus the poorest five lines (PSel = 25% + 5), (v) the top 50% of 

lines plus the poorest five lines (PSel = 50% + 5), (vi) the 25% of lines chosen at random 

(PSel = 25% random), and (vii) the 50% of lines chosen at random (PSel = 50% random). 

Response to selection and genetic diversity among selected lines 

Marker effects were obtained for all 2911 SNP loci (nonimputed and imputed) by 

ridge regression–best linear unbiased prediction (RR-BLUP) as implemented in the 

rrBLUP package (Endelman, 2011) in R software (R Core Team, 2018). In Exp. 1, marker 

effects were estimated separately within each A/* and */B population for each trait. The 

marker effects were then averaged across the A/* and */B populations (Jacobson et al., 

2014; 2015a). In Exp. 2, marker effects were first estimated separately for the (i) A/* and 

*/C populations evaluated in Year 0, (ii) B/* and */D populations evaluated in Year 0, and 

(iii) A/C and B/D populations evaluated in Year 1. Marker effects were then averaged as 
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follows: (i) across the A/* and */C populations to predict the performance of progeny in 

the A/C population, (ii) across B/* and */D to predict the performance of progeny in the 

B/D population, and (iii) across the A/C and B/D populations to predict the performance 

of progeny in the A/B population. The performance of all N individuals in the A/C, B/D, 

and A/B populations was predicted as y = µ1 + Xm, where y was an N x 1 vector of 

predicted performance, µ was the estimated overall mean, 1 was an N x 1 vector with 

elements equal to 1, X was an N x NM incidence matrix with elements of 1, −1, and 0, and 

m was an NM x 1 vector of RR-BLUP marker effects (Jacobson et al., 2014). The response 

to selection (R) and predictive ability (rMP) were calculated for each A/B population as 

described by Jacobson et al. (2014, 2015a). For each trait, R was calculated as the 

phenotypic mean of the 10% of lines with the best predicted performance minus the 

overall mean of the A/B population. The rMP was calculated as the correlation between the 

marker-predicted and observed values for the progeny in each A/B population. A t test 

was used to determine if the R and rMP values across the A/B populations were 

significantly different (P = 0.05) among the seven selection schemes for each trait. 

The genetic similarity between pairs of selected lines was calculated as the simple 

matching coefficient across the SNP loci (Sokal and Michener, 1958; Jacobson et al., 

2015b). First, we calculated the within-locus simple matching coefficients by considering 

the possible combinations of marker genotypes (MM, Mm, and mm) between two lines. 

The simple matching coefficient was 1 between MM and MM or between mm and mm, 0 

between MM and mm, and 0.50 between Mm and any other genotype (MM, Mm, or mm). 

Second, we calculated the mean of the within-locus simple matching coefficients across 

the SNP loci. The simple matching coefficients were calculated separately for each of the 

seven selection schemes and the three traits (Jacobson et al., 2015b). We performed t tests 

to test the significance (P = 0.05) of differences between mean simple matching 

coefficients. 
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Results and discussion 

Response to selection and predictive ability when selection has occurred in the training 

population 

In Exp. 1, phenotypic selection of the best 25% of lines (PSel = 25%) in the A/* 

and */B training populations significantly (P = 0.05) reduced R and rMP. For yield, R 

decreased from 0.22 Mg ha−1 with no selection (PSel = 100%) to 0.07 Mg ha−1 with PSel = 

25%, whereas rMP decreased from 0.20 with PSel = 100% to 0.08 with PSel = 25%. For all 

traits, R and rMP were reduced by 50% or more (Table 1). 

In contrast, phenotypic selection of the best 50% of lines in the A/* and */B 

training populations did not significantly reduce R and rMP, except rMP for test weight 

(Table 1). These results suggested that the effect of selection on subsequent genomewide 

selection depends on the proportion of lines selected. Among 17 maize populations in a 

commercial breeding program, the percentage of lines selected during first-year testing 

had a mean of 25.4% and a maximum of 37% (Bernardo, 1991). These results suggested 

that the significant (P = 0.05) changes in R and rMP with PSel = 25% are more relevant than 

the nonsignificant changes in R and rMP with PSel = 50%. Therefore, selection in the 

training population in current maize breeding programs could be compromising long-term 

gains.  

Because selection in the training population decreases the training population size 

(N), it was important to separate the effects of selection per se from the effects of a lower 

N on R and rMP. Without selection, the mean size (range in parentheses) of the A/* and 

*/B training populations for the 27 A/B populations was 4525 lines (894–10,171). With 

PSel = 25%, the mean size of the training population decreased to 1131 lines (224–2543). 

Theoretical (Daetwyler et al., 2008, 2010) and empirical (Endelman et al., 2014; Lian et 

al., 2014) results have shown that the expected prediction accuracy decreases as √" 

decreases. The lower R and rMP with PSel = 25% could therefore have been due to selection, 

a lower √", or a combination of selection and a lower  √". When 25% of the lines were 

chosen at random (PSel = 25% random), however, R and rMP were not significantly reduced 

compared with no selection (Table 1). Furthermore, the differences in both R and rMP were 

significantly different between PSel = 25% selected and PSel = 25% random, except for R 
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for grain yield, which was 0.07 Mg ha−1 with PSel = 25% and 0.14 Mg ha−1 with PSel = 

25% random (Table 1). These results indicated that selection itself played a key role in 

reducing R and rMP. We speculate that if the training populations are smaller, both 

selection and a lower √" would be important in the effectiveness of genomewide 

selection. 

Including the five poorest lines in the training populations (PSel = 25% + 5) 

restored R and rMP (Table 1). For yield, R was initially 0.22 Mg ha−1 with no selection, 

decreased to 0.07 Mg ha−1 with PSel = 25%, and increased to 0.18 Mg ha−1 with PSel = 25% 

+ 5 (Table 1). The corresponding rMP for grain yield was initially 0.20 with no selection, 

decreased to 0.08 with PSel = 25%, and increased to 0.18 with PSel = 25% + 5. Similar 

trends were found for moisture and test weight (Table 1). These results support previous 

simulation results which showed that in beef cattle (Bos taurus L.), including individuals 

with extreme yield deviation values (best and poorest) in a reference population can lead 

to the highest predictive ability of breeding values (Boligon et al., 2012). Including a set 

of poorer lines in the training population is therefore a simple approach to maintain R and 

rMP. 

If poor lines are to be included in the training population, a relevant question is 

how many poor lines to include. Including a larger number of lines (e.g., 10 instead of 

five) would increase the space requirements in subsequent phenotyping. Including only 

the very poorest line (e.g., PSel = 25% + 1) would lead to lower space requirements 

compared with PSel = 25% + 5. For yield, R was initially 0.22 Mg ha−1 with no selection, 

decreased to 0.07 Mg ha−1 with PSel = 25%, increased to 0.18 Mg ha−1 with PSel = 25% + 

5 (Table 1), and was 0.14 Mg ha−1 with PSel = 25% + 1. The corresponding rMP was initially 

0.20 with no selection, decreased to 0.08 with PSel = 25%, increased to 0.18 with PSel = 

25% + 5, and was 0.10 with PSel = 25% + 1. If only the poorest line is included, it becomes 

a high-leverage observation that will force the regression line to fit perfectly or nearly 

perfectly at the poorest value due to the lack of neighboring observations (Chatterjee and 

Hadi, 1986). Due to the risks associated with a high-leverage observation (which could be 

a single outlier) and the lack of improvement in R and rMP with PSel = 25% + 1 over PSel 
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= 25% + 5, we do not recommend including only the very poorest line in the training 

population. 

In Exp. 2, in which selection in the A/* and */B training populations was done of 

the basis of genomewide predictions, the overall trends in R and rMP were similar as with 

Exp. 1. In Exp. 2, R and rMP for the three traits were generally the largest with no selection, 

smallest with PSel = 25%, and intermediate with PSel = 50%. However, the only significant 

(P = 0.05) differences were for rMP for test weight, and the few significant differences in 

rMP were small (Table 2). We attributed this failure to detect significant differences to the 

low number of A/B populations in Exp. 2. Whereas Exp. 1 involved 27 A/B populations, 

Exp. 2 had only two A/B populations. 

We used phenotypic selection (Exp. 1) as a surrogate for genomewide selection 

(Exp. 2) because of the larger number of A/B populations available in Exp. 1 than in Exp. 

2. The similar trends in both experiments suggested that the effect of selection in the 

training population did not strongly depend on whether phenotypic selection or 

genomewide selection was used. In addition, the effect of selection on the subsequent R 

would depend on the stringency of selection: the more stringent the selection, the greater 

the effect we should expect. In the maize populations we studied, phenotypic selection 

was more stringent than genomewide selection, as evidenced by the higher R for 

phenotypic selection in the Jacobson et al. (2014) study. Hence, phenotypic selection as 

implemented in Exp. 1 was arguably equivalent to a stringent case of routine genomewide 

selection in a breeding program. 

Diversity of best predicted lines when selection has occurred in the training population 

In Exp. 1, the mean genetic diversity of lines predicted to be the best was close to 

0.53 for all levels of PSel and for all traits. In Exp. 2, the mean genetic diversity of lines 

predicted to be the best ranged from 0.51 to 0.52 for yield and moisture, and from 0.51 to 

0.53 for test weight (data not shown). The similar mean genetic diversity across different 

levels of PSel indicated a maintenance of genetic diversity among the lines that would be 

selected. In a previous study with the same 27 A/B populations, genomewide selection 

(with no selection in the training population) led to only a slight increase in the genetic 

similarity among selected lines compared with phenotypic selection (Jacobson et al., 
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2015b). These previous authors speculated that the increase in the genetic similarity 

among the selected lines was minimal because of the near-zero probability of having a 

line that had the favorable SNP allele across all loci. We speculate that the same reason 

applied to the current study. 

Application 

Our results suggested that prior selection in the training population reduces R and 

rMP in maize biparental populations, but it does not increase the genetic similarity of the 

best lines in the A/B population. To counteract this decrease in R and rMP, we recommend 

including a small number (e.g., five) of the poorest lines in the A/* and */B crosses that 

form a training population for the A/B population. Phenotyping the poorest lines, which 

are unlikely to become cultivars, will require using valuable field space. Phenotyping the 

five lines predicted to be the poorest should therefore be viewed as an investment to 

maintain the long-term effectiveness of genomewide selection. Including the five lines 

with the poorest predicted performance would also serve as a check for the short-term 

effectiveness of genomewide selection. For example, if field tests later show that the five 

poorest lines in A/* have the same performance as the PSel = 25% of lines in A/*, the 

breeders would then be alerted that genomewide selection might be less effective than 

expected. 
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Table 1: Mean and range (in parentheses) of response to selection (R) and predictive ability (rMP) via the general combining ability 

(GCA) model in Exp. 1, for seven schemes that involved phenotypic selection of different percentages (PSel) of lines in the A/* and */B 

training populations (* being a parent from the same heterotic group as A and B). 

 Grain yield Moisture Test weight 

PSel (%) R (Mg ha−1) rMP R (g kg−1) rMP R (kg hL−1) rMP 

100 0.22a† (−0.16, 0.45) 0.20a (−0.04, 0.36) −6.41a (−15.07, 0.33) 0.42a (−0.11, 0.67) 0.52a (0.10, 1.01) 0.36a (−0.06, 0.59) 

50 0.17a (−0.18, 0.37) 0.15a (−0.08, 0.27) −4.97a (−11.01, 1.07) 0.36a (−0.07, 0.54) 0.40a (−0.20, 0.88) 0.28b (−0.17, 0.52) 

50 + 5‡ 0.20a (−0.11, 0.47) 0.19a (−0.02, 0.34) −6.08a (−13.06, 1.41) 0.41a (−0.09, 0.61) 0.49a (−0.06, 0.96) 0.34a (−0.04, 0.57) 

25 0.07b (−0.27, 0.31) 0.08b (−0.13, 0.29) −2.69b (−13.59, 3.94) 0.21b (−0.09, 0.52) 0.21b (−0.48, 0.83) 0.15c (−0.22, 0.43) 

25+ 5 0.18a (−0.14, 0.48) 0.18a (−0.03, 0.34) −5.80a (−13.31, 1.10) 0.40a (−0.09, 0.61) 0.47a (0.01, 0.96) 0.33a (0.00, 0.56) 

50 random 0.19a (−0.19, 0.46) 0.19a (−0.04, 0.37) −6.13a (−15.70, 0.43) 0.41a (−0.08, 0.63) 0.46a (−0.03, 0.87) 0.35a (−0.04, 0.56) 

25 random 0.14ab (−0.21, 0.43) 0.16a (−0.13, 0.35) −5.79a (−13.88, 0.24) 0.39a (−0.10, 0.63) 0.44a (−0.01, 0.77) 0.30a (−0.03, 0.50) 

† Within a column, estimates with a common letter were not significantly different (P = 0.05). 

‡ + 5 indicates that the five poorest lines were added.   
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Table 2: Mean and range (in parentheses) of response to selection (R) and predictive ability (rMP) via the general combining ability 

(GCA) model in Exp. 2, for five schemes that involved genomewide selection of different percentages (PSel) of lines in the A/* and */B 

training populations (* being a parent from the same heterotic group as A and B). 

 Grain yield Moisture Test weight 

PSel (%) R (Mg ha−1) rMP R (g kg−1) rMP R (kg hL−1) rMP 

100 0.21a† (0.19, 0.22) 0.17a (0.10, 0.24) −3.78a (−7.78, 0.22) 0.28a (0.09, 0.47) 0.39a (0.34, 0.44) 0.22a (0.20, 0.23) 

50 0.14a (0.07, 0.21) 0.17a (0.10, 0.24) −4.39a (−8.01, −0.78) 0.25a (0.08, 0.42) 0.27a (0.08, 0.46) 0.12ab (0.12, 0.12) 

50 + 5‡ 0.17a (0.13, 0.22) 0.19a (0.15, 0.24) −3.96a (−8.14, 0.22) 0.25a (0.08, 0.42) 0.15a (−0.06, 0.37) 0.12b (0.11, 0.13) 

25 0.07a (0.02, 0.12) 0.16a (0.06, 0.26) −3.62a (−5.96, −1.29) 0.20a (0.09, 0.31) 0.19a (−0.01, 0.39) 0.12b (0.11, 0.12) 

25 + 5 0.14a (0.14, 0.14) 0.18a (0.11, 0.25) −3.32a (−4.54, −2.10) 0.18a (0.04, 0.31) 0.17a (−0.05, 0.38) 0.11ab (0.08, 0.13) 

† Within a column, estimates with a common letter were not significantly different (P = 0.05). 

‡ + 5 indicates that the five poorest lines were added. 
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Figure 1: General combining ability (GCA) model and prior selection in the training 

population on the basis of phenotypic values (Exp. 1) and genomewide predictions (Exp. 

2). In Exp. 1, all available A/* and */B crosses (* being a parent from the same heterotic 

group as A and B) were pooled to predict the performance of progeny in each of 27 

biparental (A/B) crosses. In Exp. 2, the A/* and */C populations evaluated in Year 0 were 

pooled to predict the performance of progeny in the A/C cross, whereas the B/* and */D 

populations evaluated in Year 0 were pooled to predict the performance of progeny in the 

B/D cross. The A/C and B/D progeny with the best predicted performance were 

phenotyped in Year 1. The A/C and B/D progeny phenotyped in Year 1 were then pooled 

to predict the performance of progeny in the A/B cross in Year 2. 
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Chapter 2: Small ad hoc versus large general training populations for 

genomewide selection in maize biparental crosses 

In genomewide selection, different types of training populations can be used for a 

biparental population made from homozygous parents (A and B). Our objective was to 

determine if the response to selection (R) and predictive ability (rMP) in an A/B population 

are higher with a large training population that is used for all biparental crosses, or with 

smaller ad hoc training populations highly related to the target A/B population. We studied 

969 biparental maize (Zea mays L.) populations phenotyped at four to 12 environments. 

Parent-offspring marker imputation was done for 2911 single nucleotide polymorphism 

(SNP) loci. For 27 A/B populations, training populations were constructed by pooling: (i) 

all prior populations with A as one parent (A/*, where * is a related inbred) and with B as 

one parent (*/B) [General Combining Ability (GCA) model]; (ii) A/* or */B crosses only; 

and (iii) all */* crosses (Same Background model, SB). The SB model training population 

was 450–6000% as large as the GCA model training populations, but the mean coefficient 

of coancestry between the training population and A/B population was lower for the SB 

model (0.44) than for the GCA model (0.71). The GCA model had the highest R and rMP 

for all traits. For yield, R was 0.22 Mg ha-1 with the GCA model, 0.15 Mg ha-1 with the 

SB model, and 0.15–0.16 Mg ha-1 with the A/* and */B models. We concluded that it is 

best to use an ad hoc training population for each A/B population. 

Introduction 

In maize (Zea mays L.) breeding, genomewide selection (or genomic selection) is 

typically performed among the progeny within a biparental cross. Suppose a biparental 

population is formed from the cross between two maize inbreds (A and B) that belong to 

the Iowa Stiff Stalk Synthetic (BSSS) heterotic group. A training population for the A/B 

cross, as well as for all other BSSS biparental crosses, can be made by pooling all prior 

biparental crosses that belong to the same BSSS genetic background. On the other hand, 

because genomewide selection is most effective when the training population is 

representative of the A/B population (Schulz-Streeck et al., 2012; Riedelsheimer et al., 

2013; Jacobson et al., 2014), the response to selection (R) and predictive ability (rMP) 
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within the A/B population may be higher if the training population includes only those 

prior biparental populations that are most related to the A/B cross. 

The General Combining Ability (GCA) model, which estimates the mean effects 

of marker alleles from parents A and B in a series of prior crosses, has been found effective 

for genomewide selection in an A/B population (Jacobson et al., 2014). In particular, the 

training population in the GCA model is formed by pooling all prior A/* populations (* 

being a parent from the same heterotic group as A and B) and all prior */B populations to 

predict the performance of progeny in the A/B cross. Among 30 maize A/B populations, 

the mean R for grain yield, moisture, and test weight was 72% higher with the GCA model 

than with a Same Background model that used prior */* crosses (with A/* and */B 

populations being excluded) as the training population (Jacobson et al., 2014). The GCA 

model therefore provides an easy rule for choosing an ad hoc training population that is 

smaller but is highly related to each A/B population undergoing genomewide selection. 

In a previous study of the GCA model (Jacobson et al., 2014), the number of 

crosses (NX) in the training population was kept constant between the GCA model and the 

Same Background model, and the number of lines (N) were kept generally similar to that 

in the GCA model. This assumption was needed to make an equal-resources comparison 

between the two models. However, this assumption did not reflect the reality that NX and 

N are naturally higher in the Same Background model than in the GCA model because a 

breeding program has more */* crosses than A/* and */B crosses. In practice, all prior */* 

crosses can be used in Same Background model. As shown later in this study, the training 

population in the GCA model may consist of 4500 lines from all prior A/* and */B 

biparental crosses, but the training population in the Same Background model may consist 

of 50,000 lines. Because rMP increases as N increases (Daetwyler et al., 2008, 2010; 

Endelman et al., 2014; Lian et al., 2014), the larger training population may compensate 

for the lower level of relatedness between the training population and A/B population in 

the Same Background model. 

Choosing only those */* crosses that meet a specified threshold of similarity with 

the A/B population may increase the relatedness between the Same Background training 

population and the A/B population. Moreover, pooling together */* crosses with A/* and 
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*/B crosses may also improve the relatedness between the training population and A/B 

population compared to the SB model, while also increasing N. Furthermore, the GCA 

model assumed that both A and B had previously been used as parents of biparental 

crosses. While a new inbred obtained from an external source (Parra and Hallauer, 1996; 

Phillips, 2010) may immediately be used as one of the parents of an A/B cross, the new 

inbred would not have prior A/* or */B data available. Having either A/* crosses only or 

*/B crosses only may decrease the effectiveness of the GCA model. 

Our main objective was to determine if R and rMP in an A/B population are higher 

with a single, large training population that is used for all biparental crosses (Same 

Background model), or with smaller ad hoc training populations that have a high level of 

relatedness with a given A/B population (GCA model). Our specific goals were to 

determine if the usefulness of the GCA model is diminished in comparison with having 

prior data on only A or B, or in comparison with a Same Background model that has a 

larger NX and N as well as different levels of similarity between the */* populations and 

the A/B population. 

 

Materials and methods 

Phenotypic and marker data 

The data and procedures have been previously described (Jacobson et al., 2014, 

2015a, b; Lian et al., 2014; Brandariz and Bernardo, 2018) but are also briefly described 

here for the readers’ convenience. Monsanto provided us with testcross phenotypic and 

SNP marker data for 969 biparental maize populations. The populations were evaluated 

for grain yield (Mg ha-1 at 155 g H2O kg–1), moisture (g H2O kg–1), and test weight (kg 

hL–1) at four to 12 environments in the U.S. from 2000 to 2008 (Jacobson et al., 2014). A 

total of 27 F2 populations were selected as the A/B populations according to criteria 

described by Jacobson et al. (2014, 2015a). The lines in the A/B and training populations 

had the same inbred as the tester. The A and B parents belonged to the same heterotic 

group whereas the tester belonged to the opposite heterotic group. Among the 969 

biparental crosses, 485 A/B populations were in one heterotic group whereas 484 A/B 
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populations were in an opposite heterotic group. For a given trait, F2 populations with 

nonsignificant (P = 0.05) h2 estimates were excluded from the analysis. 

The parents of the populations were genotyped with 2911 SNP markers, whereas 

the progeny in each of the 27 F2 populations were genotyped with 25 to 123 markers. The 

genotypes at each locus were coded as 1 if the line was homozygous for the SNP allele 

from parent A, –1 if the line was homozygous for the SNP allele from parent B, and 0 if 

the line was heterozygous. Marker loci that were monomorphic between the two parental 

inbreds or that had a minor allele frequency less than 0.10 were excluded within each 

population (Lian et al., 2014; Jacobson et al., 2015a). The SNP data for the progeny were 

then imputed from the parental SNP data, based on the conditional probability of a non-

observed marker genotype given the two flanking-marker genotypes (Jacobson et al., 

2015a). A previous study with the same data sets showed that marker imputation improved 

the predictive ability and response to selection, and that around 500 SNP markers were 

sufficient for yield and 1000 SNP markers were sufficient for moisture and test weight 

(Jacobson et al., 2015a). 

Training populations 

The training populations were constructed as follows: (i) GCA model, wherein all 

A/* populations and all */B populations were pooled in the training population for 

predicting the performance of progeny in the A/B population; (ii) A/* populations only; 

(iii) */B populations only; (iv) Same Background (SB) model, wherein the training 

population comprised all available */* populations within each heterotic group; (v) SB 

model with the same NX and a similar N as the GCA model (SBEqual); (vi) SB model with 

a coefficient of similarity greater than 0.60 between the */* crosses and the A/B population 

(SB0.60); (vii) SB model with a coefficient of similarity greater than 0.70 between the */* 

crosses and the A/B population (SB0.70); and (viii) a combination of the SB and GCA 

models, with */*, A/* and */B populations pooled together (SB + GCA). The coefficient 

of similarity between the parents of an A/B population and training population was 

calculated as the simple matching coefficient across the SNP loci (Sokal and Michener, 

1958), as described by Jacobson et al. (2015b). 
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Coefficient of coancestry 

For each A/B population, we estimated the coefficient of coancestry among A, B, 

and the parents denoted by * to which A and B were crossed. As shown in the Results 

section, these coefficients of coancestry (fAB, fA*, and f*B) determined the coefficient of 

coancestry between an individual in the training population and an individual in the A/B 

population. The marker-based coefficient of coancestry between any two individuals (X 

and Y) was estimated as fXY = (SXY – Ɵ)/(1 – Ɵ), where SXY was the marker similarity 

between X and Y, and Ɵ was the probability that two individuals share alleles that are 

alike in state but are not identical by descent (Lynch, 1988; Bernardo, 1993; Bernardo, 

2010). Given that SNP loci are biallelic, we assumed Ɵ was equal to 0.50. This value of 

Ɵ further assumed allele frequencies of 0.50 among unrelated individuals. Nevertheless, 

Ɵ was expected to remain close to 0.50 as long as marker allele frequencies ranged from 

about 0.40 to 0.60. With the latter allele frequencies, Ɵ was [1 – 2(0.60)(0.40)] = 0.52 

instead of 0.50. 

Response to selection and predictive ability  

Marker effects were obtained for all 2911 SNP loci (non-imputed and imputed) by 

ridge regression–best linear unbiased prediction (RR-BLUP) as implemented in the 

rrBLUP package (Endelman, 2011) in R software (R Core Team, 2018). We used RR-

BLUP because previous studies have shown that more complex models did not 

substantially improve the prediction accuracy for yield (Lorenzana and Bernardo, 2009; 

Heffner et al., 2011; Heslot et al., 2012; Riedelsheimer et al., 2012). Marker effects were 

estimated separately within each cross for each trait according to procedures described by 

Jacobson et al. (2014). The performance of all N individuals in the A/B population was 

predicted as y = µ1 + Xm, where y was an N × 1 vector of predicted performance; µ was 

the estimated overall mean; 1 was an N × 1 vector with elements equal to 1; X was an N 

× NM incidence matrix with elements of 1, –1, and 0; and m was an NM × 1 vector of RR-

BLUP marker effects averaged across the biparental populations in the training 

population, e.g., A/* and */B populations in the GCA model, and */* populations in the 

SB model (Jacobson et al., 2014). The R and rMP were calculated for each A/B population. 

For each trait, R was calculated as the phenotypic mean of the 10% of lines with the best 
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predicted performance minus the overall mean of the A/B population. The rMP was 

calculated as the correlation between the marker-predicted and observed values for the 

progeny in each A/B population. A t test was used to determine if the R and rMP values 

across the test populations were significantly different (P = 0.05) among the training 

population models for each trait.  

 

Results  

Training population size, genetic similarity, and coancestry  

The number of crosses (NX) and lines (N) varied among the different types of 

training populations. The ranking of the models in terms of size of the training population 

(largest to smallest) was as follows: SB + GCA, SB, SB0.60, SB0.70, GCA and SBEqual, and 

A/* and */B (Fig. 2). The SB model had a mean (range in parenthesis) NX of 320 (289–

352) and a mean N of 49,941 (45,422–54,691, Fig. 2). The GCA model had a mean NX of 

27 (5–59) and a mean N of 4,525 (894–10,171). The SB + GCA model resulted in a mean 

NX of 347 (338–357) and a mean N of 54,466 (53,406–55,627). In terms of N, the SB 

model training population was 450 to 6000% as large as the training population in the 

GCA model. The A/* model training population was 60% of the size of the GCA model 

training population and the */B model training population was 40% of the size of the GCA 

model training population. 

The marker similarity between the training population and the A/B population 

(STP,A/B) varied among the different models for constructing the training population. The 

STP,A/B was highest in the GCA model, with a mean STP,A/B (range in parenthesis) of 0.80 

(0.73–0.86, Fig. 2). The A/* and */B models had a mean STP,A/B of 0.80 (0.73–0.85). The 

SBEqual model had the lowest STP,A/B, with a mean of 0.72 (0.63–0.77), but the STP,A/B 

values were close among the SBEqual, SB, and SB0.60 and SB + GCA models.  

The coefficient of coancestry between the training population and the A/B 

population (fTP,A/B) likewise varied among the different models. First, the marker-based 

coefficients of coancestry had a mean (range in parentheses) of 0.47 (0.21–0.67) for fAB, 

0.65 (0.47–0.94) for fA*, and 0.70 (0.45–0.92) for f*B in the GCA model. Second, we found 

that the expected value of fTP,A/B was (1 + fAB + fA* + f*B)/4 in the GCA model. The 



 19 

estimated fTP,A/B in the GCA model had a mean of 0.71 (0.59–0.80). Third, the marker-

based coefficients of coancestry had a mean (range in parentheses) of 0.44 (0.26–0.55) for 

fA*, and 0.43 (0.26–0.52) for f*B in the SB model. Fourth, we found that the expected value 

of fTP,A/B was (fA* + f*B)/2 in the SB model. The estimated fTP,A/B in the SB model had a 

mean of 0.44 (0.28–0.51). Fifth, we found that the expected value of fTP,A/B was (1 + fAB 

+ fA* + f*B)/4 in the A/* and */B models. This expected value was the same as that for the 

GCA model, and the estimated fTP,A/B had a mean of 0.73 (0.57–0.81) in the A/* model 

and 0.67 (0.57–0.78) in the */B model. Sixth, the marker-based coefficients of coancestry 

had a mean (range in parentheses) 0.47 (0.21–0.67) for fAB, 0.45 (0.28–0.56) for fA*, and 

0.44 (0.27–0.52) for f*B in the SB + GCA model. In the SB + GCA model, the expected 

value of fTP,A/B is intermediate to the expected fTP,A/B values in the SB model and GCA 

model. 

Response to selection and predictive ability with different training populations 

A single, large training population (SB model and SB + GCA model) led to lower 

R and rMP across the 27 A/B populations compared to the GCA model, but the differences 

were statistically significant only for moisture and test weight for the SB model, and only 

for test weight for the SB + GCA model (P = 0.05, Table 1). For grain yield, R was 0.22 

Mg ha-1 with the GCA model, 0.15 Mg ha-1 with the SB model and 0.17 Mg ha-1 with the 

SB + GCA model. The corresponding rMP for yield was 0.20 with the GCA model, 0.16 

with the SB model and 0.18 with the SB + GCA model. For moisture and test weight, the 

SB model and SB + GCA model led to larger decreases in R and rMP (Table 3). 

Restricting the SB model to having the same number of randomly selected crosses 

(SBEqual) as the GCA model significantly decreased R and rMP for all traits (P = 0.05, Table 

1). For grain yield, R was initially 0.22 Mg ha-1 with the GCA model, decreased to 0.15 

Mg ha-1 with the SB model, and decreased further to 0.11 Mg ha-1 with the SBEqual model. 

The corresponding rMP for grain yield was 0.20 with the GCA model, 0.16 with the SB 

model, and 0.12 with the SBEqual model. Larger reductions were found for moisture and 

test weight (Table 3). The values of R and rMP with the SBEqual model differed from those 

reported by Jacobson et al. (2014) because of three reasons: (1) the previous study used 

unimputed marker data, while in this study marker data were imputed from lower-density 
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screening of the progeny in each biparental cross (see Materials and methods); (2) the 

previous study used 30 instead of 27 A/B populations; and (3) the crosses for the SBEqual 

training population were selected at random, which meant that the */* crosses used were 

not the same in the two studies. 

Filtering the */* crosses (used in the SB model) to increase similarity with the A/B 

population (SB0.60 or SB0.70) was ineffective for improving R and rMP compared to the SB 

model (Table 3). For grain yield, R was 0.22 Mg ha-1 with the GCA model and 0.15–0.16 

Mg ha-1 with the SB, SB0.60, and SB0.70 models. Similar trends were found for moisture 

and test weight (Table 3).  

When the training population included only the A/* crosses or only the */B 

crosses, R and rMP were reduced although the differences were significant (P = 0.05) only 

for test weight (Table 3). For yield, R was 0.22 Mg ha-1 with the GCA model and 0.15–

0.16 Mg ha-1 with the A/* and */B models, whereas the corresponding rMP was 0.20 with 

the GCA model and 0.15–016 with the A/* and */B model. Similar trends were found for 

moisture and test weight (Table 3).  

Discussion 

Our main finding was that in genomewide selection in maize, it is better to use an 

ad hoc training population for each A/B biparental population (GCA model) than to use a 

single, large training population for all A/B populations (SB model and SB + GCA model). 

The training population should then be put together only after each A/B population has 

been chosen. The results also showed the importance of both the relatedness between the 

training population and A/B population, and the size of the training population. 

The SB model and SB + GCA model had, to our knowledge, the largest training 

population ever described in the literature for plants (mean N of about 50,000; Fig. 2). 

Despite this very large N in the SB model and SB + GCA model, the R and rMP were 

higher with the GCA model, which had a mean N of about 4500. This result indicated that 

the relatedness between the A/B population and training population is more important than 

the size of the training population. Previous studies likewise highlighted the importance 

of including related crosses in the training population rather than increasing N by adding 



 21 

unrelated or less-related crosses (Riedelsheimer et al., 2013; Jacobson et al., 2014; Lorenz 

and Smith, 2015).  

The higher relatedness in the GCA model was evidenced by the higher coefficient 

of coancestry between the training population and the A/B population (fTP,A/B) in the GCA 

model (0.71) than in the SB model (0.44) and SB + GCA model (0.45). In accordance 

with theoretical expectations, the estimated fTP,A/B was equal between the GCA model and 

the A/* or */B models. Furthermore, fTP,A/B is expected to be highest when individuals in 

an A/B population are used as the training population for other individuals in the same 

A/B population [i.e., A/B model, Jacobson et al. (2014)]. For the 27 A/B populations used 

in this study, the estimated fTP,A/B for the A/B model had a mean (range in parentheses) of 

0.74 (0.60–0.84). The mean fTP,A/B of 0.71 in the GCA model was therefore close to the 

value of fTP,A/B in the A/B model. 

The expected values of fTP,A/B were (1 + fAB + fA* + f*B)/4 in the GCA model and 

A/* and */B models, versus (fA* + f*B)/2 in the SB model. The high fTP,A/B in the GCA and 

A/* and */B models was partly due to the higher values of fA* and f*B in these three models 

than in the SB model. These higher values of fA* and f*B in the GCA model and A/* and 

*/B models were likely due to A/B crosses being made primarily within subgroups of 

parental inbreds. Suppose that the Iowa Stiff Stalk Synthetic maize heterotic group 

includes three subgroups: B14-type inbreds, B37-type inbreds, and B73-type inbreds. 

Inbreds within each subgroup are more closely related than inbreds in different subgroups. 

Furthermore, suppose that A/B crosses are most often (but not always) made within each 

subgroup. If A and B are both B73-type inbreds, the A/* and */B populations that are 

pooled into the GCA model training population will be mostly of the B73 background. In 

contrast, the SB model, as therefore the SB + GCA model, for a B73-type A/B population 

will also include crosses within the B14 and B37 subgroups. The fA* and f*B will 

consequently be lower in the SB, intermediate in the SB + GCA model and higher model 

than in the GCA model, as was observed in this study.  

The GCA model as well as the A/*, */B and SB + GCA models obviously assume 

that the A and B parents have been used as parents of prior biparental crosses. There may 

be situations in which neither parent has been used in inbred development in previous 
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years. In this situation, the GCA model cannot be used and the SB model will need to be 

used. The lower R and rMP with the SB model than with the GCA model underscores the 

difficulty in predicting the performance of progeny of two untested parental inbreds. 

Smaller sizes of the training population have been shown to decrease prediction 

accuracy (rMG), which is defined as the correlation between predicted and true genotypic 

values and is equal to rMP/h, where h is the square root of heritability (Daetwyler et al., 

2008, 2010; Endelman et al., 2014; Lian et al., 2014). The expected prediction accuracy 

is E(rMG) = r2 [(Nh2 / r2Nh2 + Me)]1/2, where r2 is the linkage disequilibrium between a 

marker and a quantitative trait locus, and Me is the effective number of chromosome 

segments (Lian et al., 2014). This E(rMG) applies only if the training population is 

genetically identical to the population undergoing genomewide selection (i.e., A/B 

model). For the 969 maize biparental crosses used in this study, Lian et al. (2014) reported 

mean values of r2 = 0.46, h2 = 0.46, and Me = 82 for grain yield. The mean N in the SB 

model (49,941) was about 10 times larger than the mean N (4525) in the SBEqual model. 

However, E(rMG) [with the r2, h2, and Me values reported by Lian et al. (2014)] increases 

by less than 4% when N increases from 4525 to 49,941. In contrast, if N increases 10-fold 

from 450 to 4500, E(rMG) increases by 31%. Therefore, when N is already large, the 

increase in rMG due to further increases in N is minor. The training population was also 

already large with the A/* model (mean N of 2726) and */B model (mean N of 1777). This 

phenomenon of diminishing returns when N is large also explained why a 50% decrease 

in N led to less than a 50% decrease in rMP when the training population included prior 

crosses for only one of the two parents (A/* and */B models) in comparison with the GCA 

model. 

In the SB0.60 and SB0.70 models, filtering the */* crosses to increase the similarity 

between the training population and the A/B population (STP,A/B) increased fTP,A/B while 

maintaining a large N (mean N > 36,000, Fig. 2). However, R and rMP were not 

significantly higher in the SB0.60 and SB0.70 models than in the SB model (Table 3). 

Because the mean STP,A/B in the GCA model was 0.80, we tried a stricter threshold of 0.80 

(SB0.80 model) in 20 of the 27 A/B populations for which such a stricter threshold was 

possible. The SB0.80 model had a mean (range in parentheses) N of 4983 (164, 12483) and 
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a mean NX of 34 (1, 88), but the R and rMP in the SB0.80 model were lower than those in 

the SB0.70 and SB0.60 models (results not shown). 

This lack of improvement was noteworthy because the mean N, NX, and STP,A/B 

were all roughly equal between the SB0.80 model and the GCA model. Suppose A1 and A2 

are the parents of A, and B1 and B2 are the parents of B. A grandparental training 

population can be formed by pooling the A1/*, A2/*, */B1, and */B2 biparental crosses, but 

such a grandparental training population was found ineffective for predicting the 

performance of progeny in the A/B biparental population (Hickey et al., 2015). While all 

of the individual alleles in the A/B population are found among the four grandparents, 

chromosomal blocks found in the A/B biparental population are represented better in the 

A/* and */B crosses than in the grandparental crosses.  

These previous results (Hickey et al., 2015), as well as those in the current study, 

suggest that the usefulness of the GCA model may be due to having large blocks of 

chromosomes in common between the A/* and */B crosses used as the training population 

and the A/B population undergoing genomewide selection. The current study used data 

on 2911 SNP markers and the Hickey et al. (2015) study simulated up to 100,000 markers. 

Given the agreement between our empirical results and the Hickey et al. (2015) simulation 

results, we speculate that our overall results would remain the same even if a larger 

number of SNP markers are used. In the maize populations we studied, the mean r2 

between adjacent SNP markers was 0.93 within each of the 27 A/B populations, 0.49 

across the pool of A/* and */B populations used in the GCA model, and 0.23 across the 

pool of */* populations used in the SB model. Having a larger number of markers may 

increase the linkage disequilibrium in the training populations for both the GCA and SB 

models, but the effect of this higher linkage disequilibrium is unclear given that the linkage 

disequilibrium in the A/B populations was already very high (0.93) with 2911 SNP 

markers. The current study and the Hickey et al. (2015) studies both used RR-BLUP, and 

it remains to be seen whether the combined use of Bayesian models and higher marker 

densities would improve R and rMP for traits with no major QTL (such as yield) in maize 

biparental crosses. 
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Table 3: Mean and range (in parentheses) of response to selection (R) and predictive ability (rMP) for grain yield, moisture, and test 

weight across 27 A/B maize populations, for the following training population models: (1) General Combining Ability (GCA) model 

with A/* and */B crosses; (2) A/* crosses only (A/*); (3) */B crosses only (*/B); (4) Same Background model with all */* crosses (SB); 

(5) SB with the same number of randomly selected */* crosses as the GCA model (SBEqual); (6) SB with a coefficient of similarity 

between the */* crosses and A/B population greater than 0.60 (SB0.60); (7) SB with a coefficient of similarity between the */* crosses 

and A/B population greater than 0.70 (SB0.70); and (8) SB + GCA model with */*, A/* and */B crosses.   

 Grain yield Moisture Test weight 

Model R (Mg ha-1) rMP R (g kg-1) rMP R (kg hL-1) rMP 

GCA 0.22aa  

(-0.16, 0.45) 

0.20a  

(-0.04, 0.36) 

-6.41a  

(-15.07, 0.33) 

0.42a  

(-0.11, 0.67) 

0.52a  

(0.10, 1.01) 

0.36a  

(-0.06, 0.59) 

A/* 0.15ab  

(-0.10, 0.36) 

0.15ab  

(-0.04, 0.43) 

-5.23ab  

(-12.01, 1.03) 

0.35ab  

(-0.13, 0.63) 

0.42ab  

(0.07, 0.73) 

0.28b  

(-0.04, 0.47) 

*/B 0.16ab  

(-0.15, 0.47) 

0.16ab  

(-0.09, 0.39) 

-5.17ab  

(-14.19, 0.44) 

0.35ab  

(-0.02, 0.64) 

0.34bcd  

(-0.41, 0.65) 

0.26b  

(-0.17, 0.43) 

SB 0.15ab  

(-0.26, 0.38) 

0.16ab  

(-0.05, 0.42) 

-4.38b  

(-9.36, -0.98) 

0.31bc  

(-0.03, 0.58) 

0.31cd  

(-0.05, 0.74) 

0.24bc  

(-0.07, 0.43) 

SBEqual 0.11b  

(-0.20, 0.38) 

0.12b  

(-0.10, 0.39) 

-3.84b  

(-10.69, 2.36) 

0.25c  

(-0.06, 0.46) 

0.23d  

(-0.33, 0.53) 

0.18c  

(-0.02, 0.38) 

SB0.60 0.15ab  0.16ab  -4.31b  0.31bc  0.31cd  0.24bc  
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(-0.26, 0.38) (-0.05, 0.43) (-9.36, -0.98) (-0.03, 0.58) (-0.05, 0.74) (-0.06, 0.43) 

SB0.70 0.16ab  

(-0.19, 0.42) 

0.16ab  

(-0.04, 0.41) 

-4.40b  

(-10.33, -0.13) 

0.32bc  

(-0.02, 0.58) 

0.32bcd  

(-0.05, 0.73) 

0.24bc  

(-0.06, 0.44) 

SB + GCA 0.17ab  

(-0.30, 0.41) 

0.18ab  

(-0.05, 0.45) 

-5.00ab  

(-13.53, -0.98) 

0.35ab  

(0.01, 0.60) 

0.40bc  

(-0.05, 0.96) 

0.29b  

(-0.07, 0.48) 
a Within a column, estimates with a common letter were not significantly different (P = 0.05).  
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Figure 2: Mean genetic similarity between training and A/B populations (top), number of 

crosses in the training population (middle), and number of lines in the training population 

(bottom) for seven training population models across the 27 A/B populations. 
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Chapter 3: Predicted genetic gains from targeted recombination in elite 

biparental maize populations 

Targeted recombination is the ability to induce or select for specific recombination 

points on chromosomes. A first study with the intermated B73 × Mo17 maize (Zea mays 

L.) population showed that targeted recombination doubles the predicted gains for yield 

and other agronomic traits. Our objective was to assess the predicted gains from targeted 

recombination for quantitative traits in multiple, elite maize populations. A total of 969 

biparental maize populations were phenotyped at 4–12 environments in the U.S. from 

2000 to 2008. Positions of one and two targeted recombinations per chromosome were 

determined from genomewide marker effects for 2911 single nucleotide polymorphism 

(SNP) loci. Relative efficiency (RETargeted) was calculated as the predicted response to 

targeted recombination divided by the predicted response to nontargeted recombination. 

On average, targeted recombination doubled the predicted genetic gains for yield, 

moisture, and test weight. For each trait, RETargeted ranged from around 60% to 400% 

among the populations, and targeted recombination did not increase gains in around 4% 

of the populations. The RETargeted tended to decrease as the similarity between the parents 

increased. Having targeted recombination on three chromosomes (for yield and test 

weight) to seven chromosomes (for moisture) led to the same or greater predicted gain 

than nontargeted recombination. Marker intervals for targeted recombination varied 

across populations and traits. Overall, our results for multiple, elite maize populations 

indicated that targeted recombination is a most promising breeding approach. 

Introduction 

Maize (Zea mays L.) breeding usually involves crossing two inbreds (A and B) to 

form a breeding population, developing selfed lines or doubled haploids from the A/B 

population, and evaluating the lines for their testcross performance (Hallauer, 1990). 

Breeders therefore choose which crosses to make and which progeny to select. However, 

breeders have not attempted to control recombination among loci for quantitative traits 

and have simply relied on the results of random meiosis and fertilization during the 

development of breeding lines (Bernardo, 2017).  
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Targeted recombination is the ability to induce or select for specific recombination 

points so that genetic gains can be maximized. The marker intervals where targeted 

recombination should occur can be determined from genomewide marker effects 

(Bernardo, 2017; Ru and Bernardo, 2018). Suppose a chromosome has three SNP (single 

nucleotide polymorphism) markers and the effects of marker alleles (in order on the 

chromosome) carried by two parental inbreds are as follows: [0.2, 0.4, –0.5] in parent A, 

and [–0.2, –0.4, 0.5] in parent B. If recombination occurs between the second and third 

markers, a [0.2, 0.4, 0.5] homologue that maximizes the genetic gain can be recovered and 

converted into a doubled haploid. The same process can be done with many SNP loci on 

a chromosome and across multiple chromosomes.  

An initial study in the intermated B73 × Mo17 maize population indicated that 

targeted recombination can be a powerful breeding approach (Bernardo, 2017). In 

particular, predicted gains with one targeted recombination per chromosome (x = 1) in this 

classic maize population were twice the predicted gains with nontargeted recombination 

for yield and other agronomic traits (Bernardo, 2017). Predicted gains were higher with 

two targeted recombinations per chromosome (x = 2). While this initial Bernardo (2017) 

study indicated that targeted recombination is a promising breeding approach, we do not 

know if the predicted gains will also be doubled in newer, elite maize germplasm. We also 

do not know the extent of variation in the usefulness of targeted recombination among 

multiple breeding populations. Lastly, information is lacking on factors that influence the 

usefulness of targeted recombination for quantitative traits. 

Our main objective of this study was to assess the predicted gains from targeted 

recombination for maize yield, moisture, and test weight in multiple, elite breeding 

populations. Our specific goals were to: (i) determine the extent of variation in predicted 

gains from targeted recombination across elite maize populations; (ii) identify factors that 

cause targeted recombination to be ineffective; and (iii) determine the number of 

chromosomes on which targeted recombination needs to be performed to achieve equal or 

greater predicted gain as nontargeted recombination.   
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Materials and methods 

Phenotypic and marker data 

The data have been previously described (Jacobson et al., 2014, 2015a, b; Lian et 

al., 2014; Brandariz and Bernardo, 2018) but are also briefly described here for the 

readers’ convenience. Monsanto provided us with testcross phenotypic and SNP marker 

data for 969 biparental maize populations. The populations were evaluated for yield (Mg 

ha-1 at 155 g H2O kg–1), moisture (g H2O kg–1), and test weight (kg hL–1) at four to 12 

environments in the U.S. from 2000 to 2008 (Jacobson et al., 2014). Only the F2 

populations with heritability (h2) significantly different from zero (P = 0.05) were used in 

this study. 

The parents of the populations were genotyped with 2911 SNP markers, whereas 

the progeny were genotyped with 25 to 123 markers. The genotypes at each locus were 

coded as 1 if the line was homozygous for the SNP allele from parent A, –1 if the line was 

homozygous for the SNP allele from parent B, and 0 if the line was heterozygous. Marker 

loci that were monomorphic between the two parental inbreds or that had a minor allele 

frequency less than 0.10 were excluded within each population (Lian et al., 2014; 

Jacobson et al., 2015a). The SNP data for the progeny were then imputed from the parental 

SNP data, based on the conditional probability of a non-observed marker genotype given 

the two flanking-marker genotypes (Jacobson et al., 2015a). Monsanto provided us with 

a consensus map for all populations. The linkage map comprised 1668 cM, and the 

chromosome sizes ranged from 103 cM for chromosome 6 to 245 cM for chromosome 1. 

Genomewide marker effects  

Marker effects were obtained by ridge regression–best linear unbiased prediction 

(RR–BLUP) as implemented in the rrBLUP package (Endelman, 2011) in R software (R 

Core Team, 2018). Two training population models were used for estimating the marker 

effects: the A/B model, and the General Combining Ability (GCA) model. In the A/B 

model, marker effects were estimated from the A/B population itself. For each trait, the 

performance of an individual was predicted from information on the rest of the individuals 

(N – 1) as yp = µ + Xm, where yp was the predicted performance of the individual; µ was 

the estimated overall mean from RR-BLUP analysis of the N – 1 individuals used in the 
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training population; X was an 1 × NM incidence matrix with elements of 1, –1, and 0; and 

m was an NM × 1 vector of marker effects estimated from the remaining N – 1 individuals 

(Jacobson et al., 2014). The marker effects and predictive ability (rMP), the latter defined 

as the correlation between marker-predicted genotypic values and phenotypic values, were 

estimated by deleting one individual at a time as described above and with cross-validation 

across environments as described by Jacobson et al. (2014). 

In the GCA model, the training population was obtained by pooling all prior A/* 

populations (* being a parent from the same heterotic group as A and B) and all prior */B 

populations to predict the performance of progeny in the A/B cross. Marker effects were 

estimated separately within each cross for each trait (Jacobson et al., 2014). The 

performance of all N individuals in the A/B population was predicted as y = µ1 + Xm, 

where y was an N × 1 vector of predicted performance; 1 was an N × 1 vector with 

elements equal to 1; X was an N × NM incidence matrix with elements of 1, –1, and 0; and 

m was an NM × 1 vector of marker effects averaged across the A/* and */B populations 

(Jacobson et al., 2014). Marker effects were estimated with data from all environments 

within the A/* and */B populations, and rMP was estimated using cross-validation across 

environments (Jacobson et al., 2014; 2015a).  

A total of 27 F2 populations were selected as the A/B populations on the basis of 

having at least four A/* and */B crosses, a minimum population size of 50 lines, and an 

entry-mean heritability (h2) significantly greater than zero for each trait as described by 

Jacobson et al. (2014, 2015a). The conditions previously described allowed us to compare 

the A/B and GCA models only for these 27 A/B populations. The model that achieved 

greater rMP for each trait and A/B population was selected. For the rest of the populations, 

only the A/B model was used. Once predictions were obtained, populations were filtered 

according to having (i) rMP greater than 0.40, or (ii) a correlation between marker-

predicted genotypic values and true genotypic values (rMG) greater than 0.65. The rMG 

values were estimated as rMP/h (Dekkers, 2007; Lee et al., 2008).  

The number of F2 populations with h2 > 0 was 706 for yield, 707 for moisture, and 

698 for test weight. The number of F2 populations with rMP > 0.40 was 30 for yield, 314 
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for moisture, and 187 for test weight. The number of F2 populations with rMG > 0.65 was 

6 for yield, 51 for moisture, and 17 for test weight. 

Predicted gains from targeted recombination  

Marker effects were used to determine the marker intervals where one and two 

targeted recombinations should occur on each chromosome, as described by Bernardo 

(2017). First, one targeted recombination was considered at each marker interval on each 

chromosome. The performance of two doubled haploids, induced from each of the two 

resulting homologues, was calculated as the sum of the effects of the alleles carried by 

each homologue. The homologue with superior performance (higher yield and test weight, 

and lower moisture) was identified. The procedure was repeated for all 10 chromosomes. 

The predicted performance of the doubled haploid resulting from targeted recombination 

was calculated as the sum of µ from RR-BLUP analysis plus the sum of the gains from 

targeted recombination within each chromosome. Second, two targeted recombinations 

were considered between all pairs of marker intervals within each chromosome, assuming 

independent recombinations on each chromosome. Subsequent procedures were the same 

as those with one targeted recombination per chromosome.  

For each F2 population, the response to selection with targeted recombination 

(RTargeted) was calculated as the predicted performance of the best doubled haploid from 

targeted recombination minus the estimate of µ from RR-BLUP analysis. The response 

with nontargeted recombination (RNontargeted) was estimated as the marker-predicted 

performance of the best observed line minus the the estimate of µ from RR-BLUP analysis 

(Bernardo, 2017).  

The relative efficiency of selection with targeted recombination compared to 

nontargeted recombination was calculated for each population as RETargeted = (RTargeted / 

RNontargeted) × 100 (Bernardo, 2017). Confidence intervals (P = 0.05) for the difference in 

the genetic gain with targeted recombination compared to nontargeted recombination were 

conducted by obtaining the difference in the genetic gain for each chromosome and 

performing 1,000 bootstrap samples within each chromosome (Ru and Bernardo, 2018; 

Bernardo, 2017).  
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Factors associated with the relative efficiency of targeted recombination 

The correlation was calculated between RETargeted and rMP, rMG, h2, and the marker 

similarity (SAB) between the parents of the biparental cross. The SAB between parents was 

estimated as the simple matching coefficient across the SNP loci (Sokal and Michener, 

1958; Jacobson et al., 2015b; Brandariz and Bernardo, 2018). First, we calculated the 

within-locus simple matching coefficients by considering the possible combinations of 

marker genotypes (MM, Mm, and mm) between the parents. The simple matching 

coefficient was 1 between MM and MM or between mm and mm, 0 between MM and mm, 

and 0.50 between Mm and any other genotype (MM, Mm, or mm). Second, we calculated 

the mean of the within-locus simple matching coefficients across the SNP loci.  

Results  

Mean and variability of the relative efficiency of targeted versus nontargeted 

recombination  

On average, having one (x = 1) or two (x = 2) targeted recombinations per 

chromosome doubled the predicted genetic gain for yield, moisture, and test weight. For 

yield, the mean RETargeted was 217% with x = 1 and 233% with x = 2 for populations with 

h2 > 0; 230% with x = 1 and 258% with x = 2 for populations with rMP > 0.40; and 243% 

with x = 1 and 292% with x = 2 for populations with rMG > 0.65 (Fig. 3). The mean 

RETargeted for moisture and test weight was also around 200% for all subsets of populations 

meeting the h2, rMP, and rMG criteria (Fig. 3).    

While the mean RETargeted was around 200%, the individual RETargeted values 

differed among the populations. For the populations with h2 > 0, RETargeted for yield ranged 

from 60 to 454% with x = 1, and from 72 to 452% with x = 2. However, for populations 

with rMP > 0.40 or with rMG > 0.65, RETargeted for yield was always greater than 100% (Fig. 

3). For moisture, RETargeted ranged from 63 to 422% with x = 1, and from 80 to 449% with 

x = 2 for populations with h2 > 0. Similar variation in RETargeted was found among 

populations with rMP > 0.40 or with rMG > 0.65 (Fig. 3). The RETargeted for test weight 

ranged from 60 to 415% with x = 1, and from 81 to 431% with x = 2 with h2 > 0. Some 

populations with rMP > 0.40 had RETargeted less than 100%, but none of the populations 

with rMG > 0.65 had RETargeted less than 100% (Fig. 3). 
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The variation in RETargeted (i.e., ratio between predicted gains) was accompanied 

by variation in the predicted gain itself (i.e., numerator of RETargeted). For the populations 

with h2 > 0, RTargeted for yield ranged from <0.1 to 3.0 Mg ha-1 with x = 1, and from <0.1 

to 3.7 Mg ha-1 with x = 2. These RTargeted values resulted in predicted yields ranging from 

9 to 17 Mg ha-1 with x = 1 and x = 2 (Fig. 4). About 97% of predicted yields were lower 

than 15.7 Mg ha-1 (250 bushels ac–1) with either x = 1 and x = 2 with h2 > 0 (Fig. 4).     

The RTargeted for moisture ranged from less than –0.1 to –64 g kg-1 with x = 1 and 

from less than –0.1 to –69.3 g kg-1 with x = 2, resulting in predicted moisture values of 

123 to 313 g kg-1 with x = 1 and x = 2 (Fig. 4). For test weight, the RTargeted ranged from 

<0.1 to 5 kg hL-1 with x = 1 and from <0.1 to 5.7 kg hL-1 with x = 2, resulting in predicted 

test weights of 68 to 82 kg hL-1 with x = 1 and x = 2 (Fig. 4). 

Frequency of populations in which targeted recombination is likely ineffective  

Targeted recombination was predicted to be ineffective when (i) RETargeted was less 

than 100%, or (ii) RETargeted was numerically greater than 100% but was not statistically 

different (P = 0.05) from 100%. The numbers of populations with RETargeted < 100% were 

as follows: 13 for yield (1.8%) with x = 1 and 8 (1.1%) with x = 2 (5 in common); 6 for 

moisture (0.85%) with x = 1 and 8 (1.1%) with x = 2 (2 in common); and 10 for test weight 

(1.4%) with x = 1 and 7 (1.0%) with x = 2 (3 in common). In these populations, the best 

line had more than two nontargeted recombinations on some chromosomes (results not 

shown). The numbers of populations with RETargeted exceeding 100%, but not significantly 

greater than 100%, were as follows: 20 for yield (2.8%) with x = 1 and 19 (2.7%) with x 

= 2 (14 in common); 15 for moisture (2.3%) with x = 1 and 21 (3.0%) with x = 2 (11 in 

common); and 17 for test weight (2.4%) with x = 1 and 19 (2.7%) with x = 2 (11 in 

common). Adding the frequencies of RETargeted < 100% and RETargeted not significantly 

greater than 100% led to an overall frequency of around 4% of populations for which 

targeted recombination for a given trait was ineffective. 

The correlations were low (–0.04 to 0.14) and mostly nonsignificant between 

RETargeted and values of h2, rMP, and rMG for all traits. However, the correlation was 

significant between RETargeted for each trait and the marker similarity (SAB) between the 

parents of the biparental cross. The correlations between RETargeted and SAB were as 



 34 

follows: –0.23 for yield with both x = 1 and x = 2; –0.25 for moisture with x = 1 and –0.27 

with x = 2; and –0.24 for test weight with x = 1 and –0.25 with x = 2.   

Chromosome contributions and targeted-recombination positions 

In general, chromosomal contributions to the total predicted gain (averaged across 

populations with h2 > 0) were proportional to the sizes (in cM) of the chromosomes (Fig. 

5). However, chromosomal contributions were slightly larger than expected for 

chromosomes 1, 5 and 2 and were slightly smaller than expected for chromosomes 8 and 

9. The mean and range (in parentheses) of the minimum number of chromosomes needed 

for targeted recombination to reach equal or greater predicted gains compared with 

nontargeted recombination was: 3 (1, 8) with x = 1 and 3 (1, 9) with x = 2 for yield; 7 (1, 

9) with x = 1 and 7 (3, 9) with x = 2 for moisture; and 3 (1, 9) with both x = 1 and x = 2 

for test weight. 

The most frequent position(s) where one and two targeted recombinations should 

occur varied across populations. For yield, the most frequent position with x = 1 on 

chromosome 1 had an incidence of 15% (Table 4). In other words, 15% of the populations 

had the same targeted-recombination position for x = 1 on chromosome 1. Chromosomes 

6 and 9 were the chromosomes that shared the greatest incidence of the most frequent 

positions for each of the traits (Table 4). For these two chromosomes, around 40% of the 

populations had the same targeted-recombination position for x = 1, and around 30% of 

the populations shared a position for x = 2.   

 Targeted-recombination positions also varied across traits. For x = 1 on 

chromosome 1, only 3% of the populations shared the same targeted-recombination 

position for all three traits, 24% of the populations shared the same position for two traits, 

and 73% had unique positions for each trait (Table 5). More than 50% of the populations 

did not share targeted-recombination positions across traits, except for chromosomes 6 

and 9 with x = 1 (Table 5).  

Discussion 

Targeted recombination as a promising breeding approach  

Our results strongly indicated that targeted recombination can substantially 

improve genetic gains for yield, moisture, and test weight in elite maize breeding 
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populations. On average, targeted recombination doubled the predicted gains for all traits. 

The RETargeted values in this study were similar to those found for yield in the B73 × Mo17 

maize population (212% with x = 1 and 254% with x = 2; Bernardo, 2017). Thus, targeted 

recombination is a most promising breeding approach for quantitative traits in maize. As 

discussed in the next section, this assumes that inducing artificial targeted recombination 

or pyramiding natural recombinations that already occur at the desired marker intervals 

becomes feasible.  

While the predicted gains were doubled on average, the RETargeted for each trait 

ranged from around 60 to 400% among the populations, showing that predicted gains from 

targeted recombination may be population dependent. More importantly, targeted 

recombination was ineffective in only around 4% of the populations per trait. This low 

frequency suggests that targeted recombination will usually be superior to nontargeted 

recombination. The infrequent values of RETargeted < 100% were due to having more than 

two nontargeted recombinations on some chromosomes. A larger number of targeted 

recombinations (x > 2 per chromosome) is expected to increase the gains from targeted 

recombination, but achieving more than 1–2 targeted recombinations per chromosome 

will likely be difficult. The few ineffective RETargeted values were associated with crossing 

highly similar parents. However, the effectiveness of targeted recombination was not 

associated with variation in h2, rMP, and rMG (assuming h2 > 0). 

Although we compared the RTargeted for the best double haploid with the RNontargeted 

for the best F3 line, we do not expect a difference in the RNontargeted if we would have been 

able to estimate it from the best double haploid. We based this on empirical results that 

showed similar ranges between mean testcross performances of 50 S1 and 50 S8 lines 

crossed to five different testers (Lopez-Perez, 1979). In particular, the range of the mean 

testcross performances when crossed to Mo17 as a tester, which was the suggested tester 

to use as an elite inbred from opposite heterotic group, was higher with S1 (31.8 q ha-1) 

than S8 lines (27.34 q ha-1) for yield, and was similar for moisture (see Table 16 from 

Lopez-Perez, 1979). Therefore, we expect a similar RNontargeted if we would have estimated 

it with the best predicted double haploid. 
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Designing a maize breeding program that incorporates targeted recombination  

Incorporating targeted recombination will alter key stages in breeding a hybrid 

species such as maize, as well as in breeding self-pollinated species for which predicted 

gains from targeted recombination also doubled the gains from nontargeted recombination 

(Ru and Bernardo, 2018). Our results indicated that if targeted recombination is to be used, 

the parents of a biparental cross should not be highly similar to each other. Therefore, the 

SAB between the parents should be assessed.  

Once the parents are chosen, the training population for obtaining the marker 

effects should be selected. In the A/B model (Jacobson et al., 2014), the training 

population is genetically identical to the population in which targeted recombination will 

be done. Therefore, the A/B model is likely preferable as long as the number of lines in 

the A/B cross is large enough to obtained high values of rMP. However, a disadvantage of 

the A/B model is that progeny in the A/B cross need to be phenotyped to estimate the 

marker effects. An alternative is to use the GCA model (Jacobson et al., 2014; Jacobson 

et al., 2015a). In the GCA model, previous A/* and */B crosses need to be available and 

marker data should be imputed from lower-density screening of the progeny (Jacobson et 

al., 2015a). Genomewide marker effects can then be used to estimate the RNontargeted and 

the RTargeted with x = 1 and x = 2; more than two targeted recombinations per chromosome 

might be infeasible. Populations with significant RETargeted > 100% should be used for 

targeted recombination. Given that the position of a targeted recombination affects the 

performance of multiple traits, a selection index can be used and one or two targeted-

recombination positions per chromosome can be identified for the selection index value 

(Bernardo, 2017).     

Targeted recombination can be achieved in two ways. The most feasible way 

consists on screening and pyramiding recombination events with a similar procedure to 

marker-assisted backcrossing. This approach involves performing foreground selection 

for chromosomes with a targeted-recombination position, and background selection 

across the rest of the chromosomes (Bernardo, 2014; Bernardo, 2017). Our results 

indicated that targeted recombination do not need to occur on all chromosomes to achieve 

equal or greater gains compared to nontargeted recombination. As chromosomes 
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contributed in different proportions to the total predicted gains, having targeted 

recombination on about three (for yield and test weight) to seven (for moisture) 

chromosomes was predicted to achieve equal or greater gains than nontargeted 

recombination. Hence, for an efficient use of resources the breeders should prioritize 

chromosomes and combine targeted with natural recombination. Further research is 

needed on breeding schemes to pyramid natural targeted recombinations as efficiently as 

possible.  

A second way of achieving targeted recombination involves CRISPR technology 

(clustered regularly interspaced short palindromic repeats; Cong et al., 2013; Ran et al., 

2013; Hsu et al., 2014). CRISPR system has been used to target recombination for 

building a fine map for manganese sensitivity in yeast (Sadhu et al., 2016). In addition, it 

has been used to target recombination between homologous chromosomes in tomato 

(Filler Hayut et al., 2017). A protocol that involves a multiplex CRISPR system for 

inducing homologous recombinations, screening cells with the targeted recombinations, 

and regenerating cells into plants is yet to be developed (Bernardo, 2017). Thus, the 

feasibility of CRISPR technology for routinely inducing targeted recombination in plants 

is still undetermined. 
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Table 4: Incidence (%) of the most frequent position(s) for one (x = 1) and two (x = 2) targeted recombinations per chromosome, 

across maize F2 populations with heritability on an entry-mean basis (h2) greater than 0. 

  Yield Moisture Test weight 

Chromosomes x = 1 x = 2 x = 1 x = 2 x = 1 x = 2 

1 15 4, 3 15 4, 4 14 4, 4 

2 25 10, 10 20 9, 9 24 10, 10 

3 25 14, 14 29 12, 12 27 14, 14 

4 22 8, 8 24 9, 9 20 6, 6 

5 23 9, 9 22 9, 9 22 9, 9 

6 45 35, 35 42 32, 32 39 31, 31 

7 28 16, 16 27 14, 14 27 15, 15 

8 29 16, 16 27 14, 14 26 13, 13 

9 42 33, 33 44 34, 34 41 33, 33 

10 30 15, 15 26 11, 11 27 14, 14 
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Table 5: Percentage (%) of maize F2 populations for which targeted-recombination positions were common for different traits. 

Populations with heritability on an entry-mean basis (h2) greater than 0 were used. Targeted-recombination positions were evaluated 

for one targeted recombination (x = 1) and two targeted recombinations (x = 2) per chromosome.  

 

	  Chromosome  

Targeted recombinations  

per chromosome 

Positions shared  

across traits 

1 2 3 4 5 6 7 8 9 10 

x = 1 All traits  

with same position 
3 4 8 3 5 19 6 8 19 7 

Two traits  

with same position 
24 33 36 30 33 42 38 31 46 37 

All traits  

with unique position 
73 63 56 66 62 39 55 61 35 55 

x = 2 All traits  

with same position 
3, 3 5, 3 7, 6 2, 2 5, 5 17, 18 5, 7 7, 7 19, 18 6, 7 

Two traits  

with same position 
26, 27 33, 32 33, 36 25, 31 34, 30 38, 39 35, 31 32, 34 41, 42 38, 38 

All traits  

with unique position 
71, 70 62, 64 59, 58 73, 67 62, 65 45, 43 60, 62 61, 59 39, 40 56, 54 
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Figure 3: Box-plot of relative efficiency (RETargeted, %) of selection with one targeted 

recombination (x = 1) and two targeted recombinations (x = 2) per chromosome compared 

to nontargeted recombination, for maize F2 populations with: heritability on an entry-mean 

basis (h2) greater than 0; correlation between marker-predicted genotypic values and 

phenotypic values (rMP) greater than 0.40; and correlation between marker-predicted 

genotypic values and true genotypic values (rMG) greater than 0.65. 
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Figure 4: Predicted performance to selection with nontargeted recombination, one targeted 

recombination (x = 1) and two targeted recombinations (x = 2) per chromosome, for maize 

F2 populations with: heritability on an entry-mean basis (h2) greater than 0; correlation 

between marker-predicted genotypic values and phenotypic values (rMP) greater than 0.40; 

and correlation between marker-predicted genotypic values and true genotypic values 

(rMG) greater than 0.65. 
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Figure 5: Mean percentage (%) of: (i) chromosome contribution relative to the total 

predicted gain with one targeted recombination (x = 1) and two targeted recombinations 

(x = 2) per chromosome; and (ii) size of each chromosome relative to the total linkage 

map, across maize populations with heritability on an entry-mean basis (h2) greater than 

0. 
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