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Abstract

Recommendation systems have become an integral part of our everyday lives. Although

there have been many works focusing on recommendation quality, many real-world as-

pects of the recommendation process are typically overlooked: How can we ensure that

the very top recommendations users see are engaging? How to recommend venues

matching user interests, while preventing many users from being directed to the same

venue? Can we design recommenders which first converse with users and then give a

recommendation? What is the best way to model recommendation systems as interac-

tive systems, while learning on-the-fly the user-item structure? To what extent can a

malicious party perform machine learned adversarial attacks against a recommender?

The goal of this thesis is to pave the way towards the next generation of recom-

mendation systems tackling such real-world challenges to improve the user experience,

while giving good recommendations. This thesis, bridging techniques from machine

learning, optimization, and real-world insights, introduces novel tools to address the

above questions. We focus on three directions: (1) encoding real-world constraints into

the objective functions, (2) learning to interact with users, and (3) modeling machine

learned fake users with malicious goals.

For the first direction, by adjusting the optimization objective to capture real-world

constraints—(1a) the screen space is small, creating the need for the top recommenda-

tions to be relevant, (1b) the item capacities are limited—we suitably guide the learning

of model parameters. For the second direction, to balance the need to explore users’

preferences with the desire to exploit what has been learned, at a large user and item

scale, we combine interactive learning techniques with the principle that similar users

tend to behave similarly. This combination results in novel recommendation systems

that learn to (2a) converse with new users, and (2b) collaboratively interact with users.

For the third direction, taking the perspective of an adversary of the recommender, we

use machine learning to learn fake user profiles, which are indistinguishable from real

ones, while having a malicious goal. Illustrating the vulnerability of modern recom-

menders to machine learned attacks will arguably create new directions for designing

robust recommendation systems against such attacks.
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Chapter 1

Introduction

The focus of this dissertation is on how to create better personalized user experiences

using machine learning. Our goal is to expose the reader to novel views of the recom-

mendation problem capturing real-world challenges which have been largely overlooked

by the recommendation literature, and to introduce machine learning tools to approach

each view. The work presented in this dissertation can be used as a stepping stone to

transition to the new generation of real-world recommendation systems.

Why Care About Recommendation?

Everyday life is filled with choices—which movie to watch? what articles to read? which

pair of shoes to buy? which restaurant to try out?; the list goes on and on. The role of

recommendation systems is to assist the user with making these choices, by curating for

the user a list of things they would be interested in. This role has become increasingly

important, due to the plethora of choices available and the creation of new content every

hour of the day.

It is not surprising then, that entire industries (Netflix, Pandora, Amazon, to name

a few) have been built harnessing algorithms with the goal of providing good recommen-

dations. With all the industrial and research interest in the recommendation problem

[7, 57, 94], one could think that this is a solved problem. This is far from the truth.

There are many facets of the recommendation process which have received little to no

attention. Thus, there is large untapped potential for improved user experience, that

this thesis attempts to shed light on.

When doing recommendations, as expected, the things that one thinks are great, can

be very different from what another person likes. As a result, the experience one user

1
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has with the system could be potentially very different from the experience of another

user. This makes personalization important. To achieve good personalization at scale,

machine learning algorithms are fundamental.

Why Machine Learning?

Imagine a computer program that would hand-code, say: if Bob likes french documen-

taries and “Die Hard”-type movies; has poorly rated romantic comedy movies; and is

between 25 and 35 years old, then, a good movie to suggest for his next Friday movie

night is a “James Bond” one that he has not watched before.

It is easy to see that such an approach would not scale, as enumerating all such

possibilities for hundreds of thousands of users and movies is infeasible.

This is where machine learning comes in.

The field of machine learning harnesses the power of data, which is fortunately

available thanks to the advent of the Web. Using the data, machine learning algorithms

attempt to understand the underlying data patterns, and learn the program, i.e., the

mapping of some input to some output. In the above example, the input would be

Bob’s data along with all other system users’ data, and the output is recommending the

James Bond movie to Bob. To accomplish this task, machine learning algorithms rely

on three things: (1) data, (2) model, and (3) loss functions to optimize.

Data.

We start with the data. When trying to classify an image as a cat or a dog, the data

is tuples of (input: pixels of the image, output: dog/ cat). In recommendation sys-

tems, a very important piece of data is how different users have rated or interacted with

different items, or else (user, item, rating) tuples. Items is an umbrella term covering

movies to watch, news articles to read, products to purchase, and so on, depending on

the application domain that the system is tailored for.

Of course, other data could be available beyond ratings, such as proprietary infor-

mation about the user (e.g. age, gender, location, social network among users), and

about the item (e.g. genre, date of release, price, thematic content). For simplicity,

throughout this thesis, we assume the presence of only (user, item, rating) tuples, suc-

cinctly represented as a sparse matrix with the users as rows and the items as columns,

and the rating/ interaction values as matrix entries. The matrix is sparse, as only a

few items have been explicitly rated (e.g. in a 1-5 rating scale) or implicitly rated (e.g.



3

clicked/ viewed) by each user.

Model.

The model encodes the beliefs about the data patterns. A prominent model we will

use throughout this dissertation is the one of collaborative filtering [94, 150]. This

term denotes the assumption that similar users tend to like or rate things in a similar

way. One can try to realize this purely based on observed correlations. For the above

example, the model would need to learn underlying facets of the movies (capturing

e.g. obscure documentaries, French movies, action movies, movies liked by around 30

year-olds), and of the users (capturing age, liking french movies, and so on) (Chapter 2).

Loss Function—or encoding real world constraints.

The loss function captures how good of a fit the algorithm’s predictions are (what

does the recommendation algorithm predict or suggest to each user?) compared to the

ground truth (what does each user actually like?). In particular, the machine learning

algorithm attempts to learn the model parameters, so that the loss function measuring

the goodness of fit of the model to the ground truth, both in the data used for the

algorithm’s training, and in some held-out set of unseen rating tuples, is minimized.

This ability to generalize well in previously unseen data is the core of machine learning;

typically, this is realized by the model chosen, the prior beliefs, the given representation

of the data, and the controlling of the model’s complexity [70].

What the loss function does, is that it guides how the learning of the model pa-

rameters proceeds. In 2006, when the Netflix prize happened [23], (a competition by

Netflix largely responsible for boosting the interest in recommendation, which released

data inviting teams to develop algorithms surpassing the recommendation performance

of their baseline), the recommendation problem was posed as a matrix completion prob-

lem. That is, the task was to predict with how many stars a user will rate a movie,

penalizing mistakes using the square loss.

However, this view is not well-aligned with how users view and use recommendations.

It penalizes, say, 5-star movies predicted as 3 stars, and 1-star movies predicted as 3

stars, equally. In reality, the former is much more important, as a 5-stars movie is one

that should appear at the top of the recommendation list. Instead, the problem can be

posed as: How can we rank a 5 stars movie higher than a 3 stars movie? Re-iterating,

the top of the list is what a user will see; especially as the screen size becomes smaller
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and smaller (recommendations can now be viewed in a screen as small as the one of a

watch or a pair of glasses!) So, an even better formulation is: how can we ensure that

the very top of the ranked list, instead of the entire list, contains only movies a user

will like (say, movies users would have rated with 5/4 stars if shown to them)? We will

see in Chapter 3 that this is a better formulation, leading to improved recommendation

quality.

The loss function can also encode multiple objectives we care to capture in the

user experience [7]. As established before, one important objective is that the items

are appropriately ranked for the user, so that they can find something interesting fast.

As a result, not surprisingly, most recommendation works have focused on a single

objective capturing quality of recommendations [118, 141]. However, other important

facets of the recommendation experience exist, such as novelty, or diversity, and have

been encoded in the loss functions [115]. In Chapter 4 we bring light to a new objective

that we believe is important: that of penalizing the cases when the expected usage

of items exceeds the respective item capacities. This is important, especially in the

case of recommending physical spaces, as recommending a place that ends up being

overcrowded, would probably not be a good user experience, if the users have to wait

for hours in a queue, or cannot find a ticket. What is more interesting is that we

find that such an objective is not necessarily antagonistic to the objective of good

recommendation quality.

Part I illustrates how encoding real world constraints into the loss function can in-

deed lead to the expected changes in the experience users have with the system.

Data Revisited—or learning to interact.

In Part I, we assume that the data is magically given to us. But, where does the data

actually come from? The short answer is: The recommendation system itself acquires

this data, by deciding every time what to suggest to its users. In the extreme, for a

system starting to learn to interact with its users, the rating users × items matrix is

empty, and the system decides which ground truth entries to reveal.

To approach the recommendation problem from such a perspective, a radically dif-

ferent view is needed. The recommendation system, as most web systems, actively

interacts with the user. Every time a user comes to the system, the system decides

which item, or rather which list of items, to show to the user. Then, the user considers

this list and decides, based on some internal model informed by their preferences, and
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influenced by the list presentation, to say, click on the second item of the list. This now

becomes a new data tuple (this user, this item, click), which will be incorporated into

the training of the system, and will affect the subsequent system’s decisions about this,

and about potentially other similar users, too.

One could say that a way of implementing this is by periodically retraining the

already learned models, that we will call from now on offline models, to incorporate

the newly obtained data. This view is not ideal, as apart from the cost of periodic

retraining, it misses an important part of the story. That is, every time a user gives

feedback, the system knows only what happened with the given system’s choice, i.e.,

whether the user liked something from this particular presented list. It does not know

the counterfactual—what would have happened had it shown something else. Such feed-

back is called limited information or bandit feedback, and an entire subfield of machine

learning is devoted to it [18, 31]. Put differently, there are two parts to the problem

which are coupled: (1) active data collection and (2) learning the model. As a result,

recommendation can be naturally viewed as a learning to interact problem (else dubbed

as bandit problem) [104]. Such a problem inherently presents the trade-off: given the

limited information, how can we explore the user preference space, while at the same

time exploiting what has been acquired about the user needs so far? We will find in both

Chapters 5 and 6, that one can use the model’s uncertainty about the user preferences

as an intuitive way to balance this trade-off.

The bandit learning view can be especially useful when the user is new to the system.

Usually, for this scenario, recommendation systems use external features representing

the user so to better capture the profile, and relate this profile with that of existing

users. However, what if such feature information is not available? Conceptually, if in

your everyday interactions with people, a person you don’t know asks you for a rec-

ommendation, typically, you would first ask a couple of questions to better understand

what this person likes or not, and then you would give a recommendation. Motivated by

this, Chapter 5 presents a shift towards more conversational recommendation systems—

asking the user a few questions and then giving a recommendation. With the recent

surge of interest in personal assistants [15], viewing recommendation as a conversation

is particularly interesting, and models such as the ones developed in Chapter 5, as well

as in our subsequent work in [49], could prove useful for better eliciting user preferences,

and increasing the user’s engagement with the system/ assistant.

In a nutshell, Part II concerns with which questions to ask the user (Chapter 5), or
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which items to present to the user (Chapter 6), to deliver a good user experience. Put

simply, it focuses on which data to ask from a user, while caring for a good personalized

user experience.

(Malicious) Data—or the attack of the fake users.

A related theme to where the data comes from (Part II) is, whether the ratings used to

train the recommendation system are truthful, and reported with good interest. Most

recommendation algorithms rely on the assumption that user ratings come from a benign

environment. In fact, as previously discussed, they harness the power of collaborative

learning across users and items; if Alice and Bob have similar preferences, and Alice

likes the movie Pretty Woman, then Pretty Woman would be a good fit for Bob too.

What if though, there is an adversarial party with the purpose to manipulate the

recommender’s predictions? That is, what if an adversary injects fake user profiles into

the recommender’s training, so that the underlying similarities learned are disturbed

towards some adversarial purpose? In that case, if Bob is similar to some of the fake

user profiles, his top-N recommendations could end up being compromised, resulting in

a bad user experience.

This is a pressing question which deserves attention, as recommendation algorithms

have become such an integral part of social networks, entertainment websites, and in-

formation delivery, to name a few. Researchers have been long concerned with this

question; however, most robust recommendation systems have been developed having

in mind attacks where fake user profiles are hand-engineered [98]. With the recent ad-

vances in machine learning, the subfield of adversarial examples has emerged [74]; these

works pose finding such examples that are indistinguishable to the human eye from

real ones, but nevertheless with high probability to be misclassified, as an optimization

problem. Part III seeks out to take a similar optimization-based approach for finding

adversarial fake user profiles; although the approach is similar, the setting is consider-

ably more complex than mis-classifying single examples, as the fake users can target

entire sub-groups of users or items. The perspective of Part III is from the side of the

adversary, not the recommender side; assuming that the recommender does not even

know that an adversary is present, i.e., is oblivious.

Looking closer, Chapters 4 and 7, although seemingly very different, are motivated

by the same question: what happens in the context of a sharing economy? Both chap-

ters are a direct derivative of the fact that the recommendations that one person gets
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might affect the experience of another person, and so on. In the case of Chapter 4, the

resources might be scarce because many people would like and are recommended the

same item. In the case of Chapter 7, a part of the user population, if carefully crafts

an attack using machine learning, can affect other users’ experience with the system.

In what follows, we describe in more detail our specific contributions.

1.1 Contributions

Machine Learning Models for Recommendation

Real World Constraints

Part I

Screen Space

Ch. 3

Item Capacities

Ch. 4

Learning to Interact

Part II

Conversational

Ch. 5

Collaboratively interact

Ch. 6

Adversary’s Presence

Part III

Learned Fake User Generator

Ch. 7

Figure 1.1: Thesis organization: novel views of the recommendation problem.

The thesis addresses a number of important questions regarding how to transition

recommendation systems into the wild where real world constraints are present, through

the lenses of novel machine learning formulations.

Figure 1.1 gives the overall structure of our research with the mapping to the chapters

of this thesis. Each chapter views the recommendation problem from a different angle,

motivated by real-world scenarios.

The core contributions of this thesis are five new tools for recommendation systems

with real-world constraints. We summarize them at the end of this chapter in Table

1.1. The next subsections provide additional details on the tools and our main findings.

1.1.1 Chapter 3—Recommendation as a Top Ranking Problem

Can we improve the ranking performance at the top of the recommendation lists?

Real-World Scenario: Consider a user interacting with the items suggested by a

recommendation system, i.e., which video to watch, or which restaurant review to read.

Most users would rarely scroll down to, say, page 9 to see the results. Also, since people
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Figure 1.2: New tool for recommendation as a top ranking problem [larger values are
better]. Our proposed collaborative push approaches outperform in terms of the quality
of top-10 recommendations (measured by Average Precision (AP)@10 as defined in
chapter 2.4): (i) methods focusing at the entire list, (ii) methods pushing down non-
relevant items individually per user, and (iii) competing top-ranking methods optimizing
surrogates of ranking metrics.

tend to check their recommendations on their smartphones, only a few recommendations

fit in the screen size. Hence, limited space is a common constraint in recommendation,

creating the need for recommenders that give good recommendations towards the top

of the ranked list.

Classical Tools: The above scenario has led to a conceptual shift from framing rec-

ommendation as a rating prediction problem, using square loss to penalize model errors

[118], to posing it as a top-ranking problem. Most top-ranking approaches have explored

the idea based on ranking metrics (2.4) such as NDCG [175] or Reciprocal Rank [159].

However, such objectives are difficult to optimize directly.

New Tool: In Chapter 3, building on advances from the learning to rank literature,

we introduce a framework that uses functions paying more emphasis towards the top of

the list, constructed collaboratively across users. Particularly, using low rank represen-

tations while working with ranking losses for individual users which focus on accuracy

at the top of the list for each user, we offer a flexible new family of approaches for collab-

orative ranking, dubbed as collaborative p-norm push, infinite push, and reverse-height

push. We propose efficient alternating minimization methods for iteratively updating

the latent factors, including a new approach for the non-smooth problem based on gradi-

ent mapping for minimax problems. Through extensive experiments, we illustrate that:

ranking loss indeed performs better than squared loss; collaborative ranking outper-

forms individual ranking; and the proposed set of algorithms are competitive, usually
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better than existing baselines (Figure 1.2).

The algorithmic framework and experimental results have appeared as the publica-

tion “Collaborative Ranking with a Push at the Top” in the World Wide Web Conference

(WWW) 2015 [46].

1.1.2 Chapter 4—Recommendation as a Collective Process

How can we give good product recommendations

that do not result in ‘out of stock’ messages?

Real-World Scenario: Another common constraint in recommendation is that items

can be associated with a maximum capacity, such as number of seats in a venue or

size of an item’s virtual shelf. For example, if the recommendation system suggested

most users to go to the same Broadway show or to visit the same theme park, the

recommended place would possibly get overcrowded, resulting in long queues.

Classical Tools: Athough other important objectives have been considered, such as

novelty [82] or diversity [82], the above scenario has not been addressed in its described

form. The closest approaches are those considering constrained resources in different

application scenarios, like minimizing volume in email [76], or display advertising with

a budget [14]; which however vary significantly from our setting.

New Tool: To close this gap, we develop in Chapter 4 a novel framework for rec-

ommendation with capacity constraints for item and venue—typically called Point-of-

Interest (POI)—recommendation. To the best of our knowledge, we are the first to

develop a recommendation algorithm so that the items’ expected usage respects the

corresponding capacities, while good recommendations are given.

Particularly, we introduce the concept of user propensity to follow the recommenda-

tion, and we propose a set of strategies for estimating item capacities and user propen-

sities from data, when they contain no such information. Our experiments in real-world

datasets show that adding the capacity loss to the recommendation objective, besides

improving the extent to which the items’ expected usage respect the items’ capacities

as expected, has the side unexpected benefit of improving the top-N recommendation

quality when capacities are proportional to user demand (Figure 1.3).

This chapter is based on the paper “Recommendation with Capacity Constraints”

which appeared in the proceedings of the Conference on Information and Knowledge

Management (CIKM) 2017 [50].
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Figure 1.3: New tool for recommendation as a collective process [larger values are bet-
ter]. Our capacity-constrained approach aims at a trade-off among the capacity loss and
the recommendation quality. The latter (measured by WAP@50, i.e., a weighted average
of the users’ AP@50 metrics with weights the tendency of users to follow the recom-
mendations) depends on how item capacities are defined: (i) When item capacities are
proportional to user demand, recommendations are better compared to unconstrained
methods; (ii) when capacities are inversely proportional to usage, the quality of recom-
mendations reduces.

1.1.3 Chapter 5—Recommendation as a Conversational Procedure

Can we create human-like recommenders

that represent how people give recommendations?

Real-World Scenario: Most recommendation systems behave very differently from a

human when asked for a recommendation. In particular, humans can quickly establish

preferences when asked to make a recommendation for someone they do not know. For

instance, if a conference attendee in your home town, whom you have never met before,

asked you for a recommendation on where to eat dinner tonight, most likely you would

start with one or two clarifying questions, perhaps whether the person likes seafood, or

whether they have a car; and these questions would depend on the context.

Classical Tools: The majority of works on recommendation have focused on the

offline problem [94]. Recent works pose the problem in a contextual bandit framework

[104], but usually rely on the existence of contextual information, which might not

always be available. Preference elicitation techniques have been proposed, but typically

they either rely on contextual information again, and/ or they are not demonstrated in

a fully online setting [40].

New Tool: Motivated by the scenario of recommending to a new user a restaurant to
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Figure 1.4: New tool for recommendation as a conversational procedure [larger values
are better]. Placing the new users as the average offline user, performance increases from
.217 to .584, even without asking any questions. After only 2 questions, performance
is improved from .584 to .734 (25% improvement). Absolute questions perform better
compared to relative questions, achieving after 15 questions .975 performance.

dine in, in Chapter 5, we present a conversational human-like recommender which asks

a few questions, and then gives a recommendation. For this, a multi-faced approach is

necessary: studying large-scale search logs to understand the space of real user needs

and using the insights to collect preference data in a user study; devising elicitation

mechanisms and combining them with active and bandit learning-inspired question se-

lection strategies. Our contributions are summarized as: (1) We propose a novel view

of human-like recommenders that converse with new users to learn their preferences.

(2) We successfully demonstrate a fully online learning approach for recommendation

both using absolute and relative feedback. (3) We propose a systematic approach to

incorporating offline data to initialize online learning recommenders, and demonstrate

performance improvements, even using weakly labeled offline data. (4) We propose a

set of item selection strategies for deciding what question to ask to a cold-start user to

quickly infer preferences, and demonstrate benefits of bandit-based strategies. (5) We

offer a system that makes effective use of the online user feedback, improving person-

alized recommendations over a static model by 25% after asking only two questions.

(Figure 1.4)

The work of Chapter 5 has appeared as the paper “Towards Conversational Rec-

ommender Systems” in the proceedings of the Knowledge Discovery and Data Mining

Conference (KDD) 2016 [51].
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1.1.4 Chapter 6—Recommendation as Learning to Interact with Users

Which interactive recommendation systems are the most effective?

Real-World Scenario: Most recommendation systems build an offline model based

on past user-item observations that is periodically retrained to incorporate new obser-

vations. Besides the computational overhead of retraining, this approach is limiting as

it has been shown there can be a big gap between offline and online metrics measuring

user engagement [7]. To capture online user behavior and optimize for long-term user

engagement, a promising direction is to design interactive recommenders that continu-

ously learn user preferences and balance the trade-off of exploiting what the model has

learned about the user so far, versus giving a chance to the yet unexplored areas of the

preference space.

Classic Tools: While recent literature has explored the idea of combining collabora-

tive filtering approaches with bandit techniques (e.g. [91]), there exist two limitations:

(i) they usually consider Gaussian rewards, which are not suitable for implicit feed-

back data (i.e., clicks, views) powering most recommendation systems, and (ii) they are

restricted to the one-item recommendation setting while typically a list of recommen-

dations is given.

New Tool: In Chapter 6 we address both limitations: (i) For one-item recommenda-

tion, we devise learning to interact recommendation algorithms for Bernoulli rewards,

and we provide the first, to the best of our knowledge, overall empirical comparison of

the state-of-the-art interactive recommendation algorithms. (ii) For top-N list recom-

mendation following the cascade model, we propose the novel framework of collaborative

cascade bandit ranking, and we show empirically that it outperforms the state-of-the-

art in cascade bandit ranking. For both cases, we leverage Thompson Sampling (TS), a

technique that naturally balances the explore-exploit trade-off using the model uncer-

tainty. Overall, we find that when the number of users and items is large, propagating

the feedback across users and items while collaboratively learning latent features and

balancing the explore-exploit trade-off, is the most effective approach for systems to

learn to interact with the users (Figure 1.5).

Chapter 6 is published in the proceedings of the SIAM Conference on Data Mining

(SDM) 2018 as “Learning to Interact with Users: A Collaborative-Bandit Approach”

[48].
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Figure 1.5: New tool for recommendation as learning to interact with users for the
cascade list user model [smaller values are better]. Our proposed approach of learning
on-the-fly the latent user-item structure collaboratively is better than (i) using a separate
bandit per user-item, (ii) using explicit context, and of course the (iii) random baseline.

1.1.5 Chapter 7—Recommendation as a Game against Adversaries

How vulnerable are recommendation models to machine learned adversarial attacks?

Real-World Scenario: Inspired by recent developments showing that deep learning

models are easy to be fooled [74, 122] in the case of adversarial examples, which are found

in an optimization setting as adding a minimal perturbation to an existing correctly-

classified example, a natural question is: Can we learn adversarial user profiles that

can deteriorate the recommendation quality of recommendation systems in a principled

mathematical framework?

Classical Tools: While researchers have been interested in the direction of adversarial

fake user profiles, dubbed as shilling attacks, they typically rely on hand-coding such

profiles; these are typically profiles that rate with the maximum or minimum score the

target item they want to push up or down respectively in users’ lists, and rating the

rest of the items with scores following the normal or random distribution [98, 127].

New Tool: Instead, in Chapter 7, we explore how to design machine learned adver-

sarial attacks and we measure how susceptible latent-factor models are to those. This

is an important direction, as finding adversarial users with machine learning is a step-

ping stone towards evaluating current recommendation algorithms against them, and

motivating the need for models robust to adversarial manipulations.

Particularly, we formulate adversarial recommendation as a game of an adversary vs.

an oblivious recommender; and we solve the problem from the adversary’s perspective
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Figure 1.6: New tool for adversarial recommendation. A successful attack for a tar-
get item h consists of targeting the user with the higherst predicted score from the
recommeder model before the attack. The y-axis shows the average ‘attack difference’
metric ∆, measuring the magnitude of decrease in the mean predicted score of item
h over a set of users. We see that although (i) ∆ over all users is only .0298; (ii)
for the bottom-10 users, i.e., the ones predicted before the attack to want h the least,
∆ is -6.024—their predicted score increased; and (iii) for the top 10 users, i.e., those
predicted before the attack to want h the most, ∆ is 6.12—their score decreased by ∼6.

using: (i) generative adversarial nets [73] to learn user profiles that mimic the true

distribution and (ii) gradient descent to update them so to optimize an adversarial goal.

To the best of our knowledge, this is the first time to pose finding fake user profiles in

an optimization setting; this allows optimizing various complex objectives in a unified

way. We offer a range of experiments evaluating the success of the adversarial fake

user generator in a variety of attacks, ranging from targeting the score of a (user, item)

entry, removing an item from the top of a user’s recommendation list, to targeting

the predicted score over a subset of users or items. One main finding of this work is

that when the adversary targets the top user of an item, i.e., the user predicted by the

recommender model before the attack as the one who wants the target item the most,

then the top-K users predicted to want the item, and the top-K items for this top user,

are affected as well (Figure 1.6).

This work is in arXiv as “Adversarial Recommendation: The Attack of the Learned

Fake Users” [47] and is currently under review.
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1.2 Broader Impact

Follow-up works have extended our reverse height collaborative push construction (Chap-

ter 3, [46]) for various useful recommendation scenarios, such as for cross-domain recom-

mendation [137], for generating trust-based recommendations [138], for incorporating

social relationships [136], for semi-supervised settings [22]. Also, application domains

such as venue suggestion [13], or fine-grained tweet geolocation [41], seem to benefit as

well from the collaborative height formulation.

Our conversational recommendation work (Chapter 5, [51]) has been considered as

a starting point for transitioning towards more conversational systems [155, 135]. It

has been included as a suggested reading in graduate classes (Illinois CS 591txt Fall

2016 Text Mining seminar, BRAIN York Data Mining Seminar 2016). Also, it has

been featured as a contributed talk in the Women in Machine Learning workshop 2016,

co-located with NIPS.

The gist of most works presented in this dissertation has been included in two invited

presentations in the AI With The Best conference [44, 45].

1.3 Bibliographical Notes

For the theme of ranking with a focus at the top, motivated by the need for scalability

of our top-ranking methods, in a subsequent work in collaboration with Mojtaba Kad-

khodaie, Maziar Sanjabi, and my advisor Arindam Banerjee, we developed a general,

provably and empirically fast optimization method which accelerates the large-scale op-

timization method of Alternating Direction Method of Multipliers [28], and we showed

that the performance of our method on ranking problems for web search can surpass

specialized methods.

Regarding the theme of conversational recommendation, in a subsequent joint work

with Alex Beutel, Rui Li, Sagar Jain and Ed Chi, titled “Q&R: A Two-Stage Approach

toward Interactive Recommendation”, we developed a two-stage approach in order to

further engage users in YouTube. We observed that, factoring recommendation into

the two stages: (1) “what to ask?”, and (2) given the user’s reply, “how to adapt the

recommendations?”, can lead to a better understanding of user preferences, and as a

result, better user experiences in multiple applications.

These two works have not been included in this thesis, but can be found in the

proceedings of the Knowledge Discovery and Data Mining (KDD) conference 2015 [88],
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Concept Classical tools New tool

Focus at the top of the

recommendation list.

Algorithms optimizing square loss [156],

or surrogates of non-convex ranking

metrics [159, 175].

Family of algorithms for more

emphasis on the top of the list,

using push at the collaborative

heights. Ch. 3; [46]

Respect the limited

capacities of the items,

while giving good

recommendations.

No prior tool for the exact scenario.

Other objectives (e.g. serendipity,

novelty, diversity) have been considered

[115]. Other resource-constrained

application domains are related [80].

Capacity-Constrained

recommendation, based on

capacities and users’ propensities to

listen. Ch. 4; [50]

Converse with users to

understand their

preferences before giving

recommendations.

Offline, non-interactive, models [119].

Interactive models relying on contextual

features, which might not be available

[104]. Preference elicitation techniques,

typically using contextual features [40].

Use of latent factor

recommendation, and bandit and

active learning techniques, in a

fully online learning setting,

asking absolute and relative

questions to the users. Ch. 5; [51]

Learning to interact with

users.

Focus on Gaussian rewards for the

one-item recommendation setting [91], or

on using explicit features for the

cascade-list recommendation setting

[186].

Collaborative-cascade bandits

for cascade-list setting, and

extension of collaborative-bandits

for one-item setting for

Bernoulli-type feedback. Ch. 6;

[48]

Find the extent to which

machine learned

adversarial attacks can

affect the

recommendation model.

Hand-engineered fake user profiles

[98, 127].

Machine learned adversarial fake

user generator, playing against

an oblivious recommender. Ch. 7;

[47]

Table 1.1: Tools for novel views of the recommendation process developed in this thesis.

and 2018 [49], respectively.

Next, we present basic background and preliminaries; we then proceed with each of

the three main parts of this dissertation: Encoding Real World Constraints, Learning

to Interact With Users, and Malicious Data.
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Figure 1.7: Mind map of the key ideas included in this dissertation.



Chapter 2

Preliminaries and Background

We begin with an overview of the background concepts used throughout this disserta-

tion. In discussing such concepts, we cite the general related work, but we will go into

more depth in the related chapters of this thesis.

Unless noted otherwise, we will use the following convention. We will use capital

calligraphic characters (e.g. A) to denote a set, uppercase characters (e.g., X) to denote

a matrix, lowercase bold characters (e.g., x) to denote a vector. All vectors are column

vectors, and all row vectors will be represented using the transpose superscipt T (e.g.,

xT ). xij will denote the scalar in the (i, j) position of matrix X. We will use xTi to

denote the i-th row of matrix X, and xj for the j-th column of matrix X. We will use

·̂ to denote predicted values, e.g., x̂ij is the predicted value for the (i, j) entry of matrix

X, and ·̃ to denote sampled values. We will use | · | to denote the cardinality of a set.

2.1 Basic concepts

A recommendation system is broadly defined as a system assisting the user by tailoring

for them suggested lists of, say, products they might want to purchase, songs they might

want to listen to, news articles they might like to read, and so on.

In a recommendation system there is a set of users U , a set of items I (products/

news articles/ songs/ venues, etc.), and feedback/ interaction data. The data represents

the feedback users from U have given on items from I, or more generally user-item in-

teractions. As discussed in the introductory chapter, additional data might be available,

such as contextual feature data, describing the users and/ or items; but, this thesis will

rely only on feedback data. The only exception will be chapter 4, in which we will use

18
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the additional information of geographical location about the items.

Types of feedback. The feedback can be explicit, i.e., the user explicitly says that

they like an item, or dislike an item. For example, the user clicks thumbs up or thumbs

down in a song, or rates a movie in a scale of say, one to five stars, with more stars

denoting higher liking. Usually, explicit feedback data, are either binary, represented

as +1, and -1 (or 0), for positive and negative feedback respectively, or they are in a

multi-level relevance scale, e.g. the 1, 2, 3, 4, 5 rating scale.

Alternatively, the feedback can be implicit, i.e., derived from the browsing behavior

of the user—e.g. the user clicked on a product, checked in a venue, or viewed an article.

Implicit feedback data are represented as positive values, usually either 1s, representing

that an interaction has happened, or positive integers denoting the number of interac-

tions (e.g. the number of times the user has checked in the venue). Importantly, implicit

feedback data do not contain negative observations; so, several strategies sampling neg-

atives from the unobserved user-item interactions have been proposed [129].

A further distinction of feedback data is: the feedback can be absolute, e.g., some-

thing is liked or disliked by the user, or relative, e.g., user i prefers item j over item h,

which will be represented as j >i h.

In chapter 3 we use binary explicit feedback data, denoted as +1,−1 for relevant and

non-relevant items, with a relative view-point—relevant items should be preferred over

non-relevant items. In chapter 5 we use explicit absolute binary feedback, i.e., +1, 0

representing like, dislike, and explicit relative feedbcak, represented as tuples (i, j, h)

noting that j >i h. In chapters 4 and 6 we experiment with both implicit and explicit

feedback. Last, in chapter 7 we train the recommender under attack with explicit feed-

back in a rating scale of 1 to 5. For ease of presentation, in what follows, we will assume

absolute feedback data, unless otherwise noted.

Scoring matrix (alternatively called rating/ interaction matrix.) The data, typically

given as tuples of (user i, item j, rating), can be succintly represented with the mathe-

matical construction of a matrix R, where users are the rows, and items are the columns

(Figure 2.1). Let M = |U| be the number of users and N = |I| be the number of items.

Then, the matrix R ∈ RM×N is sparse, as every user i has rated only a few items Li ⊆ I,

and every item j has been rated by a subset of all users Ra(j) ⊆ U . Formally, a row rTi
represents user i’s ratings with only |Li| non-zero entries, and a column rj represents
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Figure 2.1: Sketch of a users by items scoring matrix. The left panel represents the
offline model view, while the right panel illustrates the interactive learning view.

the ratings on item j with only Ra(j) non-zero entries. The zeros represent missing data.

Recommender strategies. The wide interest in personalized recommendations has

sparked substantial research in this area [94]. The most common approaches are content-

based approaches [133] (which rely on the availability of external feature information to

build user and item profiles) and collaborative filtering (CF) [57, 118]. In this thesis, we

build on the collaborative filtering principle, which powers most modern recommenders.

Collaborative Filtering (CF) relies on the intuitive idea that similar users tend

to like different items similarly. Collaborative filtering methods use an a-priori available

set of user-item ratings to learn the interdependencies among users and items. They

predict a user’s rating on an item either via the neighboring items’ ratings (neighbor-

based [57, 150, 42]) or by inferring latent factors which find similar users and items in a

low dimensional embedding (latent factor-based [118, 160, 43]). In this dissertation we

build on top of the latent-factor based approach [94] (more details in Section 2.2).

Offline models vs. Learning to interact. Typically, recommendation algorithms

are built with the view of fitting their model, say a collaborative filtering one, on given

feedback data (Figure 2.1, left panel). However, this view can only allow to learn asso-

ciational relationships among the data—for example it can learn by observing the past

data that when user i likes item j, and user i′ who is similar to i likes items j, k, then

user i will probably like item k, too. However, such a view cannot answer questions of
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the form what would happen if we show item j′ on user i? To answer such questions,

we cannot have a static (offline) perspective of the data anymore.

Instead, we need online type of learning, and we need the ability to make an inter-

vention, aka. intervene and show to user i item j′; get i’s feedback on item j′ (in terms

of clicks, time spent, or other signals); and update the model with the newly acquired

data. Recently, there has been a line of work on recommendation systems modeling

them as interactive systems instead of fitting offline models [104, 85]. While chapters 3

and 4 perform offline model fitting, chapters 5 and 6 represent examples of such a shift

toward modeling recommendation as an interactive process.

Bandits. Importantly, when you are doing an intervention, showing item j
′

to user i,

you only get to see feedback for this i-j
′

interaction; namely, you do not get access to

the counter-factual: what would have happened had you shown something else, e.g. an

item j′′? Thus, this is a setting where only limited information, or else bandit feedback,

is available (in contrast to the classic online learning scenario occuring e.g. in weather

forecasting, where full information is observed after the prediction [31]). This makes the

construction of a Multi-Armed Bandit, i.e., a tool for sequential decision making in the

presence of an unknown reward distribution whose parameters are to be sequentially

learned [152], nicely suited for modeling interventions.

The problem intuitively demonstrates the explore-exploit trade-off, i.e., the system

has to balance the need to learn new information about the user (explore), while focusing

on what has already been learned about their preferences (exploit). For this, bandit

algorithms (e.g. Upper Confidence Bound, ε-greedy, Thompson Sampling) have been

proposed; a detailed survey can be found in [31]. In chapters 5 and—especially—6, we

focus on Thompson Sampling thanks to its good empirical guarantees [38].

Formally, as we will see in more detail in chapter 6, in recommendation, every user

can be modeled as a bandit problem, with possible arms / actions the items, and with

revealed rewards the clicks / ratings/ other interaction signals. In other words, the

interactive recommendation algorithm actively chooses which column-entry to reveal

for an incoming row-user (Figure 2.1, right panel), while balancing the explore-exploit

trade-off, and learning the underlying unknown reward parameters.
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2.2 Model: Matrix Factorization

Latent-factor or matrix factorization (MF) based approaches have become very popular

in recommendation systems [94] both for implicit [81, 87, 43] and explicit feedback [148].

They predict a user’s rating on an item on the basis of low dimensional latent factors,

by optimizing an objective function (Section 2.3).

Let U ∈ Rk×M be the latent factor matrix corresponding to the users, where the

ith column ui ∈ Rk is the latent factor for user i. Similarly, let V ∈ Rk×N be the

latent factor for the items, where the jth column vj ∈ Rk is the latent factor for item j.

Simply put, U represents the latent preferences of the users, and V represents the latent

attributes of the items. Then, latent factor-based methods model the predicted score

of user i on item j as r̂ij = uTi vj , so that the overall score matrix R ∈ RM×N is of low

rank k �M,N , and can be approximated by UTV . Effectively, this is a dimensionality

reduction approach, projecting both users and items in the same low dimensional space,

where items which are nearby are similar, users which are nearby in the embedding are

similar, and items which are near a user are a good fit for this user.

2.3 Learning

Objective functions. In order to learn the model parameters, e.g. the U , V in

latent-factor approaches, we need to specify our objective. This objective measures the

goodness of fit of the model to the data. Usually the objective is formulated as a loss

function we want to minimize for the cases when the model’s predictions disagree with

the data which the model attempts to fit. Our goal is to find the model parameters

that minimize the loss function.

One common loss function is the square loss [148, 156], which is used by Probabilistic

Matrix Factorization PMF:

arg min
U,V

M∑
i=1

∑
j∈Li

(rij − uTi vj)
2. (2.1)

As mentioned, the square loss has the drawback of penalizing equally a 3-stars movie

predicted as a 1-star, and a 5-stars movies as a 3-stars, which is not what we want.

Instead, loss functions which are inspired by viewing the recommendation problem as a

learning-to-rank problem (i.e., the user is the query, and the items for recommendation
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play the role of documents to rank pertinent to the query) have been proposed [141, 159];

chapter 3 of this thesis is in fact devoted to merging novel learning-to-rank losses with

a latent-factor model. A popular ranking-based loss function is the one of Bayesian

Personalized Ranking (BPR) [141] which focuses on correctly ranking item pairs instead

of scoring single items. Let Li,+, Li,− denote the set of positively (+1) and negatively

rated (-1) items by user i respectively. Then the objective of BPR is:

arg min
U,V

M∑
i=1

∑
k∈Li,+

∑
j∈Li,−

log(1 + exp(−uTi (vk − vj))). (2.2)

We will use PMF and BPR as baselines, and will build on them in chapters of this thesis.

Regularization. As our goal is to learn model parameters that do not only fit well the

data used for training, but also generalize well to new unseen held-out data, we need a

way to prevent over-fitting of the model parameters to the training data. One prominent

way of achieving this is by adding an additional term in the objective function that pe-

nalizes the model complexity. This is the so-called regularization term. A popular type

of regularization is the L2 regularization, which for latent-factor approaches is:

+ λ
(
‖U‖2F + ‖V ‖2F

)
, (2.3)

preventing the norm of U, V from becoming too large. The parameter λ controls the

extent to which we want to regularize our model, and the symbol ‖ · ‖F denotes the

Frobenius norm of a matrix.

Optimization. To optimize objective functions, a popular approach is to use stochastic

gradient descent (SGD) [124]. The idea is to modify the parameters by a magnitude

proportional to η (i.e., the learning rate) in the opposite direction of the gradient of

the objective function. For optimizing the square loss function of PMF another popular

alternative is to use alternating least squares, alternating between fixing U and updating

V , for which a closed form update is available, and fixing V to update U with its closed

form update [94]. Throughout this thesis we will use SGD updates; we will go more into

the specifics in each chapter. For chapter 7 we use alternating least squares to train PMF.
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Multiple objectives. It has been found that several criteria are important in rec-

ommendation systems, beyond just accuracy [97, 143, 1]. So, Multiple Objective Op-

timization (MOO) has been employed to e.g., optimize various ranking metrics [163],

diversity [84], novelty [82], time spent along with click-through-rate [9], and more gen-

erally to improve user engagement while satisfying a set of desired business objectives

[8, 4, 115, 166]. Our work in chapter 4 is an example where multiple objectives need

to be optimized, given that we want to optimize for expected usage which respects the

capacity constraints, while maximizing predictive accuracy.

Bayesian models. An alternative view for learning our model is the Bayesian view.

Particularly, we can specify our model as a generative procedure, i.e., a Bayesian model

by which we believe our data is generated, and then learn the Bayesian model param-

eters by maximizing the likelihood of the data being generated [27]. In fact, both BPR

and PMF have a Bayesian interpretation, with the former maximizing the posterior dis-

tribution of the probability that a user will prefer the positive items over the negative

ones, and the latter maximizing the log-likelihood of the data under the assumption that

the ratings rij are generated by a Gaussian N (uTi vj , σ
2), and ui,vj having spherical

Gaussian priors, e.g., ui ∼ N (0, σ2
uI) where I ∈ Rk×k is the identity matrix.

We will adopt the Bayesian view in chapters 5 and 6, as this will allow us to take

advantage of the model uncertainty, as captured by the variance in the parameter dis-

tributions.

2.4 Evaluating Recommendation Performance

For user i, we obtain the user’s predicted recommendation list by sorting all items by

decreasing values of predicted ratings r̂i. We evaluate this list by looking at the ground

truth ri, i.e., capturing whether the user liked/disliked each item, or with how many

stars did the user rate each movie. We will denote with top the truncation threshold,

reflecting the number of recommendations we want to consider. Let ` be the index

ranging over positions in the ranked list (` = {0, . . . , top− 1}), and let [`] represent the

index of the item present in rank `, with [`] = 0 corresponding to the index of the top

recommended item. We will denote with ri[`] the ground truth relevance of the item in

the `-th position, for the user i.
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In what follows, we describe evaluation metrics capturing the performance of a rec-

ommender system that we will use in chapters of this dissertation.

We start with two metrics widely used in learning-to-rank [29, 37, 99] which are

used to capture the quality of recommendations at the top of the list, i.e., Average Pre-

cision @top (AP@top), and Normalized Discounted Cumulative Gain@top (NDCG@top).

Average Precision (AP)@top. AP@top is a widely used, precision-oriented metric

[77] for capturing accuracy in the top. AP@top is defined as the average of preci-

sions computed at each liked position in the top items of the user’s ranked list. P@`

(Precision@`) is the fraction of liked items out of the top `+ 1 ranked items. Thus,

AP@top =

top−1∑
`=0

P@` · ri[`]
min(top,# of liked items)

(2.4)

where ri[`] can be either 1 (relative) or 0 (non-relative) to the user.

Normalized Discounted Cumulative Gain@top (DCG@top). Discounted Cumu-

lative Gain@top (DCG@top) captures the importance of finding the correct ordering

among higher ranked items compared to that among lower ranked items, by discount-

ing the importance weight with the item’s position in the ranked list. DCG@top is

formally given by

DCG@top =

top−1∑
`=0

2ri[`] − 1

log2(`+ 2)
(2.5)

NDCG@top is the ratio of DCG@top to the Ideal DCG@top for that user, i.e the

DCG@top obtained had the user’s recommendation list been sorted according to the

ground truth ratings of the user.

After computing the metrics per user, we average the results over all users, and

report the results for Mean Average Precision@top (MAP@top) and Mean NDCG@top.

Higher values, closer to 1, are better.

Next, we discuss two metrics capturing quality of predictions in the entire list, namely

Root Mean Square Error (RMSE), which was popularized by the Netflix challenge but

it is accompanied by the problems of approaching recommendation as a matrix com-

pletion problem mentioned in the introduction; and 0/1 Pairwise loss which captures
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whether relevants items are ranked over non-relevant ones throughout the whole list.

Root Mean Square Error (RMSE). RMSE measures test set rating prediction

accuracy in a set of held-out user ratings, for each user i, Li,test:

RMSE =

√√√√ 1

M

M∑
i=1

1

|Li,test|
∑

j∈Li,test

(r̂ij − rij)2. (2.6)

0/1 Pairwise Loss measures the average number of incorrectly ordered pairs (-1 ranked

above +1):

0/1 Pair. Loss =
1

M

M∑
i=1

1

|L−i,test| · |L
+
i,test|

∑
j∈L−i,test

∑
k∈L+

i,test

1[r̂ij ≥ r̂ik], (2.7)

where L+
i,test and L−i,test denote the set of positively and negatively rated items by user i

in the test set respectively, and 1[·] denotes the indicator function, or else the 0-1 loss.

For RMSE, and 0/1 Pairwise Loss, smaller values, closer to 0 are better.

Cumulative regret. When viewing recommendation as a learning to interact problem,

we need a metric measuring the online algorithm performance in a fixed time horizon

T [31]. This metric measures the gap between the best the algorithm could have done

in hindsight, and the actual model performance—smaller values closer to 0 are better;

a formal definition of regret will be given in chapter 6.

2.5 Table of symbols

In Table 2.1 we list common symbols used in the thesis. Each chapter then also intro-

duces chapter-specific concepts and symbols.

2.6 Table of datasets

Each chapter of this thesis uses a subset of the following described publicly available

real-world recommendation datasets: four movie datasets (MovieLens 100K, MovieLens
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Symbol Description

M (or m) Number of users in the recommendation system
N (or n) Number of items in the recommendation system
R Scoring/ Rating/ Interaction matrix, R ∈ RM×N
i User in the recommendation system, i.e., i = 1, . . . ,M
j Item in the recommendation system, i.e., j = 1, . . . , N
U Set of users, U = {u1, . . . , uM}
I Set of items, I = {i1, . . . , iN}
| · | Cardinality of a set
Li Subset of items rated by user i, Li ⊆ I
Ra(j) Subset of users who have rated item j, Ra(j) ⊆ I
k (or d) Rank of the latent factors
U Latent factor of users, Rk×M
V Latent factor of items, Rk×N

R̂ Model predicted score matrix, e.g. for latent-factor, R̂ = UTV
ui Latent factor for user i, i-th column of U , ui ∈ Rk
vj Latent factor for item j, j-th column of V , vj ∈ Rk

Table 2.1: Table of common symbols used in this thesis.

1M, Netflix, EachMovie), a musical artist dataset from Yahoo! containing user ratings

of music artists [174], and two datasets containing user check-ins1 in Points-of-Interest

(POIs). Each chapter will describe the specifics on the evaluation setup used, and

how the data are transformed to best fit the application scenario. Below a general

pre-processing of the datasets used in all chapters is described.

The two MovieLens datasets were kept in their original form. The EachMovie dataset

used was a subset of the original EachMovie including the ratings of 30,000 randomly

selected users with 20 or more ratings2. The Yahoo! dataset was subsampled to speed

up the experiments, since the original dataset had close to 2 million users and 100,000

items. For the Yahoo! dataset, we first selected the 1,000 most popular items and

then selected the 6,000 most heavy users (with the most ratings). In addition to the

subsampling we removed the user ratings of the special value 255 (‘never play again’)

and rescaled user ratings from 0-100 to the 1-5 interval. The rescaling was done by

mapping 0-19 to 1, 20-39 to 2, etc. The procedure followed for the Yahoo! dataset

is close to the one described in [170]. Similarly, for the Netflix dataset, we considered

a dense sub-matrix containing the 500 most popular items and the 5,000 most heavy

1 http://www.ntu.edu.sg/home/gaocong/data/poidata.zip 2 http://mlcomp.org/datasets/350
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Dataset Number of Users Number of Items Number of Ratings

MovieLens 100K 943 1,682 100,000
MovieLens 1M 6,040 3,706 1,000,209
Netflix 5,000 500 1,922,815
EachMovie 30,000 1,623 2,109,780
Yahoo! R1 6,000 1,000 3,522,232

Foursquare 2,025 2,759 85,988
Gowalla 7,104 8,707 195,722

Table 2.2: Table of common datasets used in this thesis.

users. For the Gowalla and Foursquare datasets, we removed the users and POIs with

less than or equal to 10 ratings.

The statistics of the datasets (total number of users, items, and ratings) are shown

in Table 2.2, and for ease of reference, each chapter will report the statistics of the

respective subset of datasets it uses.

This concludes the presentation of the basic concepts needed to follow the contribu-

tions presented in the main body of this dissertation. Every chapter will also contain

its own review of chapter-specific related works as needed.



Part I

Loss Functions: Encoding Real

World Constraints

Based on work previously published in

WWW 2015 [46] and CIKM 2017 [50].

29



Part I: Overview

To transition recommenders to the real world, we need to design loss functions that

encode the real-world constraints imposed by the application scenario. Here, we examine

two such constraints: (1) The constraint of screen space in which the recommendations

need to fit—making it necessary for the absolute top of the recommendation list to be

relevant for the user (as this is what they will get to see). (2) The constraint of every

item candidate for recommendation having a certain limited capacity (i.e., number of

people who can simultaneoulsy use the same product or visit the same place)—making

it as a result important to not recommend to everyone the same product, venue, etc.

In pursuit of the goal of encoding real-world constraints in the recommendation

algorithm’s objective function, we offer the following contributions:

• Collaboratively push relevant items to the top of the list. Or push down

non-relevant items from the top of the list; or push down the highest ranked

non-relevant item from the top of a user’s list, collaboratively across users and

items.

• Penalize expected usage of items exceeding respective capacities. Intro-

ducing the notion of a user’s propensity to listen—or more simply, user’s tendency

to follow a system’s recommendations, and using items’ capacities as external

information—, we formalize a linear combination of the proposed “capacity loss”

and a classic loss capturing recommendation quality.

In both cases, we find that a suitable loss function can successfully encode the respec-

tive real-world constraint, i.e., it can lead to (1) a better quality of recommendations

at the top of the list, and (2) a minimized capacity loss, while achieving improved

recommendations when items’ capacities are proportional to demand.
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Chapter 3

Recommendation as a Top

Ranking Problem

Can we improve the ranking performance at the top of the recommendation lists?

The goal of collaborative filtering is to get accurate recommendations at the top of the

list for a set of users. From such a perspective, collaborative ranking based formulations

with suitable ranking loss functions are natural. While recent literature has explored the

idea based on objective functions such as NDCG or Average Precision, such objectives

are difficult to optimize directly. In this chapter, building on recent advances from

the learning to rank literature, we introduce a novel family of collaborative ranking

algorithms which focus on accuracy at the top of the list for each user while learning

the ranking functions collaboratively. We consider three specific formulations, based on

collaborative p-norm push, infinite push, and reverse-height push, and propose efficient

optimization methods for learning these models. Experimental results illustrate the

value of collaborative ranking, and show that the proposed methods are competitive,

usually better than existing popular approaches to personalized recommendation.

3.1 Introduction

Probabilistic matrix factorization type of approaches, widespread especially after the

Netflix challenge [23], pose the problem of personalized recommendation as a rating

prediction or matrix completion problem, trying to predict the ratings of unrated items

[5, 148, 156]. Such approaches consider the square loss or variants as a measure of
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prediction accuracy. In reality, for a 5-point rating scale, predicting a true 5 as a 3 is

often more costly than predicting a 3 as a 1, although their square loss is the same. More

generally, what matters in a recommendation system is the ranking of items, especially

the ranking performance at the top of the list, i.e., the items the user will actually see.

In this chapter, we consider the recommendation problem as a collaborative ranking

(CR) problem, such that the ranking loss focuses on accuracy at the top of the list for

each user. The consideration is inspired by recent results [20, 170, 175] which support

the hypothesis that posing recommendation as a ranking problem, as opposed to rating

prediction, leads to better performance.

While existing CR models do optimize certain classical ranking metrics [159, 157,

158, 175], most of these metrics are non convex, so one works with a relaxation of the

original problem, e.g., CofiRank [175] optimizes a convex upper bound of a loss based

on Normalized Discounted Cumulative Gain (NDCG) [86], CLiMF [159] optimizes a

smoothed version of the Reciprocal Rank [19] via a lower bound, etc. Moreover, certain

CR models [100] consider the entire list, rather than focusing on accuracy at the top of

the list.

We build on two good ideas respectively from the collaborative filtering and the

learning to rank literature. First, the low rank representation with latent factors for

users and items is indeed a simple and powerful idea. Second, the convex loss functions

developed in the recent literature on learning to rank, such as p-norm push, infinite

push, and reverse-height push [10, 139, 146], perform well to get accurate rankings

at the top of the list. In our work, we use low rank representations for CR while

working with ranking losses for individual users which focus on accuracy at the top of

the list for each user. The result is a flexible new family of approaches for CR based on

collaborative p-norm push, infinite push, and reverse-height push. We propose efficient

alternating minimization methods for iteratively updating the latent factors, including a

new approach for the non-smooth problem in infinite push based on gradient mapping for

minimax problems [124]. Empirical evaluation carefully considers three key questions:

1. Between square loss and ranking loss with focus at the top of the list, which does

better with recommendations at the top of the list?

2. Between individual ranking and collaborative ranking, which does better for rec-

ommendations across all users?

3. Are the new collaborative ranking methods competitive with related existing
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ideas?

Through extensive experiments, we illustrate that ranking loss indeed performs bet-

ter than squared loss, collaborative ranking outperforms individual ranking, and the

proposed set of algorithms are competitive, usually better than existing baselines.

The rest of the chapter is organized as follows. In Section 3.2, we combine the ideas of

push and collaborative ranking, and propose three algorithms for collaborative ranking

with a push at the top of the list. We empirically evaluate the proposed methods in

Section 3.3, review related work in Section 3.4, and give a summary in Section 3.5.

3.2 Collaborative Ranking With a Push at the Top

Consider a collaborative ranking setting with m users

{ρ1, . . . , ρm} and n items {x1, . . . , xn}, where the items can be movies, books, news

articles, etc. Each user ρi is assumed to have rated a total of ni ≤ n items, of which n+
i

items are rated as ‘relevant’ and n−i items are rated as ‘not relevant.’ Let L+
i denote

the set of relevant items and L−i denote the set of non-relevant items for user ρi, so

that |L+
i | = n+

i and |L−i | = n−i . For convenience, for a given user ρi, we will denote the

relevant items as x+
k (not xi,+k to avoid clutter) and the non-relevant items as x−j .

The goal is to construct ranking/scoring functions fi(x) over the items for each user

ρi such that relevant items for ρi get a higher rank/score. From a ranking perspective,

fi(x) induces a ranking over all items, and the goal is to make sure relevant items are

ranked higher than non-relevant items. To accomplish the goal, our algorithms focus

on two aspects: the ranking functions fi(x) for users will be

(i) trained with focus on accuracy at the top of the list for each user, and

(ii) constructed collaboratively across all the users, rather than separately for each

user.

The working hypothesis that emphasis on these two aspects for collaborative ranking

leads to better performance will be carefully evaluated in Section 3.3, where we consider

alternative approaches which give equal importance to the entire list, or train the ranking

functions individually on each user. We start with a discussion on how these two aspects

are realized in our algorithms.
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3.2.1 Push and Collaborative Ranking

Ranking with a Push: The idea of ranking with emphasis on the top of the list has

been explored in the learning to rank literature [10, 29, 139, 146]. We build on a specific

idea, originally due to [146]. For any user ρi, the “height” of a non-relevant item x−j is

the number of relevant examples x+
k ranked below it by the learned ranking function fi,

i.e.,

Hi(x
−
j ) =

∑
k∈L+

i

1[fi(x
+
k ) ≤ fi(x−j )] , (3.1)

where 1[·] is the indicator function. The vector Hi ∈ Rn
−
i

+ contains the height of all non-

relevant items. A high value of Hi(x
−
j ) implies that several relevant items are ranked

below the non-relevant x−j according to fi(·). The learning of fi(·) needs to focus on

making the heights of non-relevant items small, i.e., push the non-relevant items down,

with more emphasis on the large entries in Hi, i.e., non-relevant items towards the

top of the list. One can consider learning fi(·) by minimizing the Lp-norm of Hi [146]

(p-norm push), or, the L∞-norm of Hi (infinite push), which simply focuses on the

largest element [10]. Other such suitable functions of Hi, which focus on pushing down

non-relevant items from the top of the list, can also be considered.

An alternative approach involves pushing the relevant examples up, rather than

pushing the non-relevant examples down. For any user ρi, the “reverse height” of a

relevant item x+
k is the number of non-relevant examples x−j ranked above it by the

learned ranking function fi, i.e.,

Ri(x
+
k ) =

∑
j∈L−i

1[fi(x
+
k ) ≤ fi(x−j )] . (3.2)

The vector Ri ∈ Rn
+
i

+ contains the reverse height of all relevant items. A high value

of Ri(x
+
k ) implies that several non-relevant items are ranked above the relevant x+

k

according to fi(·). The learning of fi(·) needs to focus on making the reverse heights

of relevant items small, i.e., push the relevant items up. As before, one can choose

objective functions on Ri which put more emphasis on relevant items with high reverse

heights, e.g., one can use p-norm or infinite push.

The use of indicator functions 1[fi(x
+
k ) ≤ fi(x

−
j )] to define heights, while concep-

tually convenient, is not suitable for optimization purposes. As a result, we will use a

surrogate for the indicator function. For this work, with ∆i(k, j) = fi(x
+
k )− fi(x−j ), we
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use the logistic loss of the difference as the surrogate:

`(∆i(k, j)) = log(1 + exp(−∆i(k, j))) , (3.3)

noting that it forms a convex upper bound to the indicator function. In what follows,

we refer to the height (reverse height) computed using the surrogate, as surrogate height

H̃i (surrogate reverse height R̃i).

Collaborative Ranking: Instead of learning the functions fi(·) separately for each

user, we focus on learning them collaboratively. Towards this end, we build on the

existing approach of low rank or latent-factor based representation of the scores, widely

used in the collaborative filtering literature [118, 175]. Let U ∈ Rd×m be the latent

factor corresponding to the users, where the ith column ui ∈ Rd is the latent factor for

user ρi. Similarly, let V ∈ Rd×n be latent factor for the items, where jth column vj ∈ Rd

is the latent factor for item xj . Then, we assume the scoring function fi(xj) = uTi vj , so

that the overall score matrix F = UTV ∈ Rm×n is of rank d, where d is a user specified

parameter. Based on such a representation, we have

∆i(k, j) = fi(x
+
k )− fi(x−j ) = uTi (vk − vj) . (3.4)

Plugging the above form to compute the surrogate height of a non-relevant sample from

(3.1) gives

H̃i(x
−
j ) =

∑
k∈L+

i

log
(
1 + exp(−uTi (vk − vj))

)
. (3.5)

Similarly, we obtain the form of the surrogate reverse height for a relevant sample from

(3.2) as

R̃i(x
+
k ) =

∑
j∈L−i

log
(
1 + exp(−uTi (vk − vj))

)
. (3.6)

In the rest of the section, we discuss three different loss functions which work with

such surrogate heights and put emphasis on accuracy at the top of the list. We outline

algorithms for minimizing such loss functions over the latent factors (U, V ).
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3.2.2 P-Norm Push Collaborative Ranking

The main idea in p-norm push collaborative ranking (P-Push CR), building on [146], is

to consider the Lp norm of the surrogate height vector H̃i with elements as in (3.5), and

construct an objective function as a suitable scaled sum of such norms over all users.

In particular, we consider:

Ep-push(U, V ) =
m∑
i=1

‖H̃i‖pp
ni

=
m∑
i=1

1

ni

∑
j∈L−i

(
H̃i(x

−
j )
)p

(3.7)

=

m∑
i=1

1

ni

∑
j∈L−i

∑
k∈L+

i

log
(
1 + exp(−uTi (vk − vj))

)p

.

The optimization is done by alternating minimization [83], i.e., updating U while keeping

V fixed, and then updating V while keeping U fixed. The objective function is bi-convex,

i.e., convex in one argument while keeping the other fixed. The updates of the latent

factors for each user and each item can be done using gradient descent. In each iteration

t+ 1:

ut+1
i ← uti − η∇uiEp-push(U t, V t) , i = 1, . . . ,m, (3.8)

vt+1
h ← vth − η∇vhEp-push(U t+1, V t) , h = 1, . . . , n. (3.9)

The gradients can be obtained by a direct application of chain rule. For compact

notation, let

σ(x) =
1

1 + exp(x)
. (3.10)

From (3.3) and (3.4), we get the gradients

∇∆i(k,j)`(∆i(k, j)) = −σ(∆i(k, j)) , (3.11)

∇ui∆i(k, j) = (vk − vj) , (3.12)

∇vh∆i(k, j) =

 ui , if h = k ,

−ui , if h = j .
(3.13)
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By chain rule, the gradient of the objective w.r.t. ui is

∇uiEp-push(U, V ) =
p

ni

∑
j∈L−i

(H̃i(x
−
j ))p−1

∑
k∈L+

i

σ(∆i(k, j))(vj − vk)

 .

The latent factors vh play different roles for different users, depending on whether xh is

relevant or non-relevant for user ρi. For item xh, let Γ+
h be the set of users for which xh

is relevant, and let Γ−h be the set of users for which xh is non-relevant. There may be

additional users who have no (announced) preference on item xh, and the optimization

of vh will not depend on these users. Then, by dividing the sum over all users into sums

over Γ+
h and Γ−h and noting the gradients of ∆i(k, j) w.r.t. vh for the two cases from

(3.13), by chain rule we have

∇vhEp-push(U, V ) =
∑
i∈Γ−h

p

ni

∑
j∈L−i

(H̃i(x
−
j ))p−1

∑
k∈L+

i

σ(∆i(k, j))ui


−
∑
i∈Γ+

h

p

ni

∑
j∈L−i

(H̃i(x
−
j ))p−1

∑
k∈L+

i

σ(∆i(k, j))ui

 .

In practice, instead of summing over all users in Γ+
h ,Γ

−
h , one can pick a mini-batch of

users to do the update on, in the flavor of stochastic or mini-batch gradient descent.

3.2.3 Infinite Push Collaborative Ranking

The main idea in infinite push collaborative ranking (Inf-Push CR), building on [10],

is to consider the L∞ norm, i.e., the largest element, of the surrogate height vector

H̃i, and construct an objective function as a suitable scaled sum of such norms over all

users. We consider the objective

Einf-push(U, V ) =

m∑
i=1

‖H̃i‖∞
ni

=

m∑
i=1

1

ni
max
j∈L−i

H̃i(x
−
j ) (3.14)

=

m∑
i=1

1

ni
max
j∈L−i

∑
k∈L+

i

log
(
1 + exp(−uTi (vk − vj))

) .
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From an optimization perspective, the infinite push objective above is non-smooth,

since it considers the maximum over all elements in H̃i. One can consider a sub-gradient

descent approach, or add auxiliary variables to handle the non-smoothness, and possibly

consider the dual problem. Such approaches, however, can be slow in practice, and

ignore the specific type of non-smoothness in the problem. In our approach we observe

that fixing any one variable U or V , the problem is a smooth minimax problem in

the other variable, for which efficient gradient-like first order methods exist [124]. We

discuss such efficient updates for U , while keeping V fixed, noting that similar updates

are possible for V , leading to suitable alternating minimization algorithms.

Consider the latent factor ui corresponding to user ρi. Assuming V is fixed, the

objective function to minimize for ui is given by the max-type function

f(ui) = max
j∈L−i

fj(ui) (3.15)

where

fj(ui) ,
∑
k∈L+

i

log
(
1 + exp(−uTi akj)

)
, (3.16)

with akj = (vk − vj) being a fixed vector. Note that fj(ui) = H̃i(x
−
j ), and we are

using a more suitable notation for the current discussion illustrating the dependency

on ui. For the development, we assume that each fj(ui) are α-strongly convex and

β-smooth [124]. For the current setting, the assumptions are satisfied as long as ui,vj

are bounded.

Following [124], we define the linearization of the max-type function f(ui) at ūi as

f(ūi; ui) = max
j∈L−i

[fj(ūi) + 〈∇fj(ūi),ui − ūi〉] . (3.17)

To define a gradient mapping, we consider a proximal operator of the linearization,

given by

fγ(ūi; ui) = f(ūi; ui) +
γ

2
‖ui − ūi‖2 , (3.18)
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where γ > 0. Based on the proximal operator, let

f∗(ūi; γ) = min
ui

fγ(ūi; ui) , (3.19)

u∗i (ūi; γ) = argmin
ui

fγ(ūi; ui) , (3.20)

gf (ūi; γ) = γ(ūi − u∗i (ūi; γ)) , (3.21)

where gf (ūi; γ) is the gradient mapping of the max-type function f at ūi [124, Sec-

tion 2.3]. Assuming the individual functions fj , the gradient method for the minimax

problem is given by the simple iterative update:

ut+1
i ← uti − ηgf (uti; γ) , (3.22)

where η is the learning rate and uti serves as the linearization point ūi. Since each

function fj(ui) is β-smooth, we can set γ = β. With any η ≤ 1
β , the gradient method has

an exponential convergence rate [124, Theorem 2.3.4], which is substantially better than

just treating the problem as non-smooth optimization and using sub-gradient descent

[124].

The key step in obtaining the gradient mapping in (3.21) is to solve the optimization

problem in (3.19). Using the definition of the linearization and the proximal operator

[132], we get the following optimization problem:

min
ui

{
max
j∈L−i

[fj(ūi) + 〈∇fj(ūi),ui − ūi〉] +
γ

2
‖ui − ūi‖2

}
. (3.23)

The above problem is the proximal operator of a piecewise linear function. The problem

can be rewritten as a constrained optimization problem:

min
ui,t

t+
γ

2
‖ui − ūi‖2

s.t. fj(ūi) + 〈∇fj(ūi),ui − ūi〉 ≤ t .
(3.24)

A direct calculation shows that the dual of the constrained problem is equivalent to a

quadratic minimization problem over the probability simplex:

min
y

yTQy + bTy s.t.
∑
j

yj = 1, yj ≥ 0 , (3.25)
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where Q is a positive semi-definite matrix. The dual objective is concave, and simply the

negative of the above quadratic form, and y corresponds to the Lagrange multipliers.

The quadratic problem with simplex constraints can be solved by a projected gradient

or exponentiated gradient method [61, 92]. In practice, we use early stopping of the

dual projected gradient descent, compute the gradient mapping, and update ui based

on (3.22).

3.2.4 Reverse-Height Push Collaborative Ranking

We now consider a formulation based on the reverse height Ri(x
+
k ) of positive items x+

k

for user ρi as in (3.2). As discussed in [146], the reverse height is similar to the rank

of a positive item x+
k , but only considering the negative items x−j which are above it,

and disregarding the other positive items. By treating reverse height as a surrogate for

rank, one can follow the existing literature on learning to rank, and consider maximizing

objectives such as reciprocal rank or discounted cumulative gain (DCG), e.g., for each

user ρi, maximize ∑
k∈L+

i

1

Ri(x
+
k )

or
∑
k∈L+

i

1

log(1 +Ri(x
+
k ))

.

However, these objectives are difficult to directly maximize. Instead, staying in the

spirit of these objectives, we consider the following objective

∑
k∈L+

i

log

(
1

1 +Ri(x
+
k )

)
,

which decreases with increasing rank.

To maintain consistency with the earlier formulations, we consider minimizing the

negative of the objective. Further, using the surrogate reverse height R̃i(x
+
k ) as in (3.6),

and considering the objective over all users, we focus on minimizing the following ob-

jective:

Erh-push(U, V ) =

m∑
i=1

1

ni

∑
k∈L+

i

log(1 + R̃i(x
+
k )) (3.26)

where

R̃i(x
+
k ) =

∑
j∈L−i

log
(
1 + exp(−uTi (vk − vj))

)
. (3.27)
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Figure 3.1: (a) A comparison of log-log loss with the logistic loss, and (b) the log-log
loss with a y-log scale.

Denoting ∆i(k, j) = z for simplicity, the above loss has components of the form log(1 +

log(1 + exp(−z)), which we refer to as log-log loss. Interestingly, while the log-log loss

is not convex, it is quasi-convex and monotonic decreasing, as shown in Figure 3.1.

Further, the objective is more robust than the logistic loss for negative z, and stays

closer to the 0-1 loss for which it acts as a surrogate. Related non-convex losses have

been explored in the literature, e.g., in the context of t-logistic regression [59].

We again use alternating minimization of the objective in (3.26), i.e., updating U

keeping V fixed, and updating V keeping U fixed. In the current setting, the alternating

minimization will reach a stationary point, possibly a local minimum of the objective.

As we discuss in Section 3.3, the empirical results from the log-log loss are surprisingly

good along with fairly stable parameter sensitivity, which implies the need for further

study of the loss. For alternating minimization, the updates can be done using gradient

descent:

ut+1
i ← uti − η∇uiErh-push(U t, V t) , i = 1, . . . ,m, (3.28)

vt+1
h ← vth − η∇vhErh-push(U t+1, V t) , h = 1, . . . , n. (3.29)

As before, the gradients can be obtained by chain rule. Using (3.11) and (3.12), from
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(3.26) we have

∇uiErh-push(U, V ) =
1

ni

∑
k∈L+

i

 1

1 + R̃i(x
+
k )

∑
j∈L−i

σ(∆i(k, j))(vj − vk)

 .

Recall that the latent factors vh play different roles for different users, depending on

whether xh is relevant or not for user ρi. As before, for item xh, let Γ+
h be the set of

users for which xh is relevant, and let Γ−h be the set of users for which xh is non-relevant.

There may be additional users who have no (announced) preference on item xh, and the

optimization of vh will not depend on these users. Then, by dividing the sum over all

users into sums over Γ+
h and Γ−h and noting the gradients of ∆i(k, j) w.r.t. vh for the

two cases from (3.13), from (3.26), by chain rule we have

∇vhErh-push(U, V ) =
∑
i∈Γ−h

1

ni

∑
j∈L−i

 1

1 + R̃i(x
+
k )

∑
k∈L+

i

σ(∆i(k, j))ui


−
∑
i∈Γ+

h

1

ni

∑
j∈L−i

 1

1 + R̃i(x
+
k )

∑
k∈L+

i

σ(∆i(k, j))ui

 .

Again, in practice, instead of summing over all users in Γ+
h ,Γ

−
h , one can pick a mini-

batch of users to do the update on, in the flavor of stochastic or mini-batch gradient

descent.

For all of our proposed formulations we consider an additional regularization term
λ
2 (‖U‖2 +‖V ‖2). The gradient term for the ui updates then has an additional term λui,

and similarly for the vh updates. Also, the computational complexity for computing

the gradients for a user ρi in one iteration is O(n+
i n
−
i ), which is small in practice since

n+
i , n

−
i � n, the total number of items.

3.3 Experiments

We conducted extensive experiments in order to validate the performance of the three

proposed collaborative ranking approaches (P-Push CR, Inf-Push CR, RH-Push CR) on

real world datasets. We have divided our experiments into three sets in order to address

the following questions:

1. What is the impact of posing the problem as a rating prediction problem versus

a ranking one, i.e., optimizing for the square loss versus a ranking loss with focus
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Dataset # Users # Items # Ratings

MovieLens 100K 943 1,682 100,000
MovieLens 1M 6,040 3,706 1,000,209
EachMovie 30,000 1,623 2,109,780
Yahoo! R1 6,000 1,000 3,522,232

Table 3.1: Dataset Statistics.

on the top of the list?

2. Is learning the ranking functions collaboratively across all users more effective than

constructing a separate ranking model per user?

3. Do the proposed push collaborative ranking approaches outperform state-of-the-

art CR approaches for recommendation systems?

After discussing the experimental setup, we evaluate each one of these questions empir-

ically.

Datasets. We used four publicly available datasets (Section 2.6): three movie datasets

MovieLens 100K, MovieLens 1M, EachMovie and the musical artist dataset from Ya-

hoo!. The users, items and ratings statistics are summarized in Table 3.1.

Data Split. Throughout our experiments we adopted the “weak” generalization setting

which has become standard practice in the literature [20, 100, 170, 175]. In this setting,

we fix the number of training ratings per user ni = {10, 20, 50} and randomly choose ni

ratings for each user for training, 10 ratings for validation, and test on the remaining

ratings. The experimental setting facilitates the comparison with the state-of-the-art

approaches and allows the study of the ranking algorithms’ sensitivity to the number of

available training ratings per user. Users with less than ni + 20 ratings are removed to

ensure that we can evaluate on at least 10 ratings for each user. Note that the number

of test items vary significantly across users, with many users having many more test

ratings than training ones, thus simulating the real life recommendation scenario [170].

For each setting of ‘given ni’ ratings per user we repeated the whole procedure 10 times

and reported the mean and standard deviation of the results.
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Setup. In the evaluation phase, for each user, we compare pairs of items (xh, xh′)

belonging to the test set for that user, such that each of these items have appeared in

the training set of some users. Using such items ensures that the latent factors of the

items have been updated during training, and we are not working with their randomly

initialized value. In addition, in order to simulate the setup of two-level relevance ratings

(Section 3.2), we transformed the ratings of all datasets from a multi-level relevance scale

to a two-level scale (+1,−1), i.e., using 4 as relevance threshold for MovieLens 100K,

MovieLens 1M and Yahoo!, and 5 for EachMovie. In particular, for the two MovieLens

datasets and the Yahoo! dataset, ratings of the value 4-5 are marked as relevant, and

1-3 are marked as non-relevant. For the EachMovie dataset 5-6 are marked as relevant,

and 1-4 are marked as non-relevant. Also, we removed users with no positive (relevant)

or no negative (non-relevant) ratings in the training set, so that there is at least one

positive example to “pull up” or at least one negative example to “push down”. The

exact same input was given to all algorithms.

Metrics. Since our goal is to achieve accuracy towards the top of the ranked list,

we chose two evaluation metrics which reflect this and have been widely used in learn-

ing to rank, Average Precision@top, and NDCG@top (Section 2.4) [29, 37, 99]. For the

definition of Average Precision@top, ri[`] = 0 if this is a non-relevant item for the user,

and 1 otherwise. For the computation of NDCG@top, ri[`] equals to the user’s observed

rating from the multi-level scale, i.e., 1-6 for EachMovie, 1-5 for the rest of the datasets.

The latter choice was made for the sake of consistency with the state-of-the-art litera-

ture [170, 175], though during training all approaches have access just to the two-level

relevance scale ratings.

In our experiments, we reported the results for MAP@top and Mean NDCG@top

over all users. We varied top, also denoted as k in our figures, from 1 to 10 as this is

usually the size of a recommendation list fitting a device’s screen.

Model Parameters. The validation set was used for selecting the best model pa-

rameters. We varied the regularization coefficient λ in the range {10−4, 10−3, 10−2,

10−1,1} and the rank of the latent factors in {5, 10, 20, 30, 50, 70, 90}. We fixed the

learning rate for the gradient based updates to be η = 10−4 for MovieLens 1M and

Yahoo!, and η = 10−3 for MovieLens 100K and EachMovie. In addition, the validation

set was used to determine early stopping. We stopped either after 200 iterations or
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Figure 3.2: Ranking vs. Rating Prediction (PMF) for the two MovieLens datasets. All
Push CR methods outperform PMF in terms of AP@10.

when the improvement in MAP@5 in the validation set got smaller than some threshold

(10−4).

For the p-Push CR method we set the parameter p = 2, which gives a small push

towards the top of the list. The reason we chose a small p was because of numerical

instabilities which appeared for higher values of p. For the inner optimization problem

(3.23) of the Inf-Push CR approach, we used the following parameter setting: We set

γ of the proximal operator equal to 10, learning rate equal to 0.01 and regularization

coefficient 1/γ = 0.1. Early stopping was used, since there was no need to solve the inner

problem fully as in the next outer iteration the same optimization problem would have

to be solved. We stopped either when the improvement in the value of the optimization

problem was smaller than 0.01 or after 25 iterations.

3.3.1 Validation—Ranking vs. Rating Prediction

In the first set of experiments, we validate the effect of optimizing for a ranking based

loss function versus the square loss. Since such a comparison has been explored in the

recent literature [20, 175], we limit the set of experiments to a direct comparison be-

tween probabilistic matrix factorization (PMF) [118] (rating prediction) and the proposed

Push CR approaches (ranking) in terms of AP@10. For the experiments, we used the

two MovieLens datasets, with the number ni of training ratings per user set to vary
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Figure 3.3: Inf-Push CR vs. Infinite Push per User for the two MovieLens datasets.
Collaboratively learning ranking function results in better top 10 performance than
constructing different ranking model per user.

in the range of {10, 20, 50}. Figures 3.2(a) and 3.2(b) illustrate the superiority of opti-

mizing a ranking based loss function compared to the square loss. The results support

the effectiveness of posing recommendation as a ranking problem rather than a rating

prediction problem based on squared loss. Thus, in the rest we focus on comparing

ranking approaches.

3.3.2 Validation—Collaborative vs. Individual

The second set of experiments is conducted to examine whether collaborative ranking,

i.e., learning latent factors for the users and items from the rating matrix, results in

higher ranking accuracy compared to training separate ranking functions per user. For

this task, we compare the proposed collaborative model for Infinite Push (Inf-Push

CR) with the approach of building a separate Infinite Push model per user (Inf-Push per

User). We again used the two MovieLens datasets, varying the number ni of training

ratings per user in the range of {10, 20, 50} and reported the mean and standard de-

viation of AP@10. For Inf-Push per User we implemented Infinite Push as in [10] and

used the feature vectors of the items (movie genre) in order to learn the linear ranking

function [5, 156]. Note that according to [156], genre seems to be the most informative

feature among other types of side information. Further, any helpful feature one can add

for the items, the collaborative model can also be extended to take advantage of such
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Figure 3.4: Comparison of performance of the proposed Push CR models against
CofiRank and GCR in NDCG@top for top = {1, 2, 3, 4, 5, 10} for the two MovieLens
datasets. All of our proposed Push CR methods outperform CofiRank and GCR.

features. Figures 3.3(a) and 3.3(b) show that learning the latent factors collaboratively

clearly outperforms learning a separate ranking function per user using the rated items’

features. The experiment validates the effectiveness of the collaborative ranking frame-

work and allows us to focus on CR approaches for recommendation for the rest of this

chapter.

3.3.3 Performance of Proposed Approaches

In the third set of experiments, we address the question: Do our three proposed CR

approaches, i.e., p-Push CR, Inf-Push CR, RH-Push CR outperform the state-of-the-art

CR methods? We compare the Push CR methods with CofiRank [175], which is consid-

ered a very popular baseline in the CR literature, and with Global Collaborative Ranking

(GCR) [100] which is the ranking counterpart of PMF-type methods. For CofiRank, we

used the publicly available package1 and set the same parameter values provided in the

1 www.cofirank.org
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Figure 3.5: Comparison of performance of the proposed Push CR models against
CofiRank and GCR in Average Precision@top for top k = {1, 2, 3, 4, 5, 10} for the two
MovieLens datasets. All of our proposed Push CR methods outperform CofiRank and
GCR.

original paper [175] (rank = 100 and λ = 10), and default values provided in the source

code for unstated parameters. For GCR, we implemented the source code based on the

publicly available package2 since the original code used slightly different experimental

setting than ours, making the comparison of the different methods difficult. In the GCR

experiments, we chose the model rank in the validation set, varying it in the range

{5, 10, 15, 20} and the regularization parameter λ in {10−3, 10−2, 10−1}, and kept the

rest of the parameters in their default values given in the package. Also, we optimized

for the average number of mis-ordered pairs (0-1 error) [100, Eq (6)] and we stopped

the algorithm either when the improvement in the 0-1 error in the validation set got

smaller than some threshold (0.001) or after 200 iterations.

Results and Discussion. We report the mean and standard deviation of AP@top

and NDCG@top over 10 runs, where top k varies in the range of {1, 2, 3, 4, 5, 10}
2 prea.gatech.edu
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Figure 3.6: Comparison of performance of the proposed Push CR models vs. CofiRank
in NDCG@top for the Yahoo! and EachMovie datasets. In most cases at least one
(usually all) of our proposed Push CR methods outperforms CofiRank.

and the fixed number of training ratings per user (ni) varies in {10, 20, 50}. Recall

that the parameters, such as rank, regularization parameter, and early stopping, for the

Push CR methods were all chosen based on performance on AP@5 in the validation set.

Figures 3.4(a)-(c), 3.4(d)-(f), 3.6(a)-(c), 3.6(d)-(f) compare the competing methods in

terms of NDCG@top for the MovieLens 100K, 1M, EachMovie and Yahoo! datasets re-

spectively, whereas figures 3.5(a)-(c), 3.5(d)-(f), 3.7(a)-(c), 3.7(d)-(f) show the AP@top

comparison.

Based on the experimental results illustrated in Figures 3.4, 3.5, 3.6, 3.7 we con-

clude that in most cases at least one (usually all) of our proposed Push CR methods

outperforms CofiRank in terms of both ranking metrics. The only case where the mean

of NDCG@top of CofiRank outperforms the proposed approaches is for Yahoo!, Given

50. For the same case, the mean of AP@top of CofiRank almost coincides with that

of Inf-Push CR, is higher than that of P-Push CR but is outperformed by RH-Push CR.

For the case of Yahoo!, Given 20, the NDCG@ top of CofiRank outperforms that of



50

1 2 3 4 5 10
k

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

A
P
@
k

Given 19, Yahoo! 

CofiRank Inf-Push CR RH-push CR P-push CR

(a) Yahoo!, Given10

1 2 3 4 5 10
k

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

A
P
@
k

Given 20, Yahoo! 

CofiRank Inf-Push CR RH-push CR P-push CR

(b) Yahoo!, Given20

1 2 3 4 5 10
k

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

A
P
@
k

Given 50, Yahoo! 

CofiRank Inf-Push CR RH-push CR P-push CR

(c) Yahoo!, Given50

1 2 3 4 5 10
k

0.5

0.6

0.7

0.8

0.9

1.0

A
P
@
k

Given 10, EachMovie 

CofiRank Inf-Push CR RH-push CR P-push CR

(d) EachMovie, Given10

1 2 3 4 5 10
k

0.5

0.6

0.7

0.8

0.9

1.0
A
P
@
k

Given 20, EachMovie 

CofiRank Inf-Push CR RH-push CR P-push CR

(e) EachMovie, Given20

1 2 3 4 5 10
k

0.5

0.6

0.7

0.8

0.9

1.0

A
P
@
k

Given 50, EachMovie 

CofiRank Inf-Push CR RH-push CR P-push CR

(f) EachMovie, Given50

Figure 3.7: Comparison of performance of the proposed Push CR models vs. CofiRank
in AP@top for the Yahoo! and EachMovie datasets. In all cases at least one (usually
all) of our proposed Push CR methods outperforms CofiRank.

P-Push CR but lags behind Inf-Push CR and RH-Push CR. So, overall, our Push CR ap-

proaches significantly outperform CofiRank. In addition, from our experiments in the

two MovieLens datasets, we observe that CofiRank and all proposed Push CR methods

always outperform GCR in terms of the two top-ranking metrics.

We can also compare the performance among the proposed Push CR methods. The

improvement of Inf-Push CR is particularly notable when the amount of available train-

ing points (ni) is small. For ni=10, Inf-Push CR outperforms all other methods in terms

of both AP@top and NDCG@top, in all datasets apart from EachMovie (where it lags

behind P-Push CR). In contrast, the improvement of RH-Push CR is particularly notable

when the amount of available training points (ni) grows larger. For ni=50, RH-Push CR

outperforms the rest of Push CR methods in both AP@top and NDCG@top, except for

EachMovie, where the mean of AP@top lags behind that of P-Push CR. Also, P-Push

CR has the most variability in its performance across the ten runs.
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Comparison with CLiMF. For completeness, we also compare the proposed Push

CR methods with another state-of-the-art method, CLiMF [159]. Such a comparison is

tricky as CLiMF uses implicit binary ratings data while Push CR methods use explicit

binary ratings. We train CLiMF on the explicit feedback datasets by binarizing the rat-

ing values using 4 as the relevance threshold, treating ratings of value 1-3 as 0 (not

observed). Otherwise, we evaluate CLiMF using exactly the same setup as in the rest

of the methods. For this experiment, we use the MovieLens 100K and 1M datasets,

fix the number of training ratings per user ni = 20, choose best parameters (λ: {10−4,

10−3, 10−2, 10−1,}, rank: {5, 10, 20, 30, 50, 70, 90}) in the validation set and report

the mean of AP@5 and NDCG@5 over ten random runs. Results are reported in Table

3.2 and show that the Push CR methods are competitive, usually better on AP@5 and

NDCG@5 compared to CLiMF. Similar trends were observed for different values of ‘top’

and ni, and are thus omitted.

MovieLens 100K MovieLens 1M

Method AP@5 NDCG@5 AP@5 NDCG@5

CLiMF 0.8446 0.6424 0.8787 0.6982
Inf-Push CR 0.8605 0.6612 0.8938 0.7042
RH-Push CR 0.8665 0.6693 0.8926 0.7092
P-Push CR 0.8443 0.6402 0.8865 0.7028

Table 3.2: Comparison of Push CR methods with CLiMF.

3.3.4 Parameter Sensitivity Analysis

Figures 3.8 and 3.9 show how the Push CR models behave with different combinations

of parameters. We used the two MovieLens datasets, fixing the number of training

ratings per user ni=10. To study the effect of the rank of the latent factors on the

model performance, we varied it in the range of {5, 10, 20, 30, 50, 70, 90} while keeping

the regularizer λ fixed to 0.0001. Figures 3.8(a)-(b) show that there is a decrease in

AP@5 for high values of rank (70, 90). For P-Push CR, in the MovieLens 100K dataset,

higher values of rank resulted in numerical instability issues. Also, in order to study

the effect of the regularizer on the model performance, we varied λ in the range of

{0.0001, 0.001, 0.01, 1} while keeping the rank fixed to 10. Figures 3.9(a)-(b) show that

for all three methods there is a decrease in AP@5 for high values of λ (0.1, 1). We
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Figure 3.8: Effect of Rank of Latent Factors on AP@5 for MovieLens 100K and Movie-
Lens 1M, for ni = 10. The rank varies in {5, 10, 20, 30, 50, 70, 90} while the regularizer
is fixed to 0.0001. There is a decrease in AP@5 for high values of rank, e.g., (70, 90).

have performed early stopping based on the validation set, leading to robustness of our

methods to different parameter choices.

3.4 Related Work

In Information Retrieval (IR), the Learning To Rank (LTR) problem considers a set

of training queries, where for each query a set of retrieved documents along with their

relevance scores are given [32, 33, 35, 37, 111, 153]. The goal is to learn a ranking

function which maps the features of the documents to a relevance score, based on which

the documents will be ranked by degree of predicted relevance. A vast literature for

LTR exists, and the categories of the methods proposed to approach the problem are

pointwise [53], pairwise [10, 29, 32, 33, 146, 153] and listwise [35, 178]. The pointwise

techniques require fitting to the actual relevance values, which is analogous to optimizing

for the AUC metric. Thus, pointwise techniques try to predict the exact relevance scores

of unseen documents instead of just capturing the correct ordering between them. The

pairwise approach avoids these drawbacks by predicting the preference order between

data. The two LTR approaches we employ, i.e., P-Norm Push [146] and Infinite Push

[10] both lie in the category of pairwise LTR approaches. Their main disadvantage

is the computational complexity, which is however not prohibitive when being applied

to recommender systems, because of the sparsity of ratings for the users. Listwise
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Figure 3.9: Effect of regularization parameter on AP@5 for MovieLens 100K and Movie-
Lens 1M, for ni = 10. The regularizer λ varies in {0.001, 0.001, 0.1, 1} while rank= 10.
For high values of λ, AP@5 decreases.

approaches learn a ranking model for the entire set of documents.

Inspired by the analogy between query-document relations in IR and user-item rela-

tions in recommender systems, many CR approaches have been proposed over the past

few years for personalized recommendations [20, 95, 100, 141, 159, 157, 158, 170, 175].

The majority of them optimize one of the (top-N) ranking evaluation metrics by exploit-

ing advances in structured estimation [168] that minimize convex upper bounds of the

loss functions based on these metrics [99]. CofiRank is one of the state-of-the-art listwise

CR approaches which optimizes a convex relaxation of the NDCG measure for explicit

feedback data (i.e., ratings) [175]. CLiMF and xCLIMF respectively optimize a smooth

lower bound for the mean reciprocal rank on implicit (based on user behavior) feedback

data [159], and expected reciprocal rank for data with multiple levels of relevance [158].

GAPfm [157] has been proposed to optimize Graded Average Precision, in order to

address the concerns with Average Precision in multiple-relevance graded data. Recent

work in [170], in the same spirit as [20], argued the need to bridge the ideas in the LTR

community with Collaborative Filtering (CF). For that, they used a novel approach of

generating features for the LTR task using CF techniques, i.e., neighborhood-based and

model-based techniques, so that the problem can be transformed to a classic pairwise

LTR problem. Recently, [100] introduced a method for Local Collaborative Ranking

(LCR) where ideas of local low rank matrix approximation were applied to the pairwise
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ranking loss minimization framework. A special case of this framework is Global Col-

laborative Ranking (GCR) where global low rank structure is assumed, as is usually done

in the ranking counterpart of Probabilistic Matrix Factorization (PMF)-type methods

[5, 148, 156], although equal importance is given to the whole ranked list.

3.5 Summary

This chapter builds on and merges two keys themes from the collaborative filtering

and learning to rank literature: the use of a low rank representation for collaborative

scoring, and the use of ranking losses which focus on the accuracy at the top of the

list, by pushing down non-relevant items and/or pulling up relevant items. The merge

results in a family of novel collaborative ranking algorithms with a push at the top of

the ranked list for each user. The proposed algorithms are simple and scalable from an

optimization perspective and are shown to be competitive to state-of-the-art baselines

through extensive experiments.

The modular structure of the development shows that other representations, beyond

low rank, and other ranking losses, beyond the three considered here, can be considered

with simple changes to the ideas presented. Our methods are applicable in a variety of

settings where (i) explicit binary relevance ratings are available (i.e., helpfulness of a

review, like/dislike of a song) and (ii) implicit binary ratings are treated as explicit, for

example considering non-clicks as non-relevant [57], and using proxies like dwell time as

a threshold to quantify item relevance [179]. A natural extension for Push CR methods

is to handle multi-level relevance ratings, and incorporate feature information from users

and items when available.



Chapter 4

Recommendation as a Collective

Process

How can we give good product recommendations

that do not result in ‘out of stock’ messages?

In many recommendation settings, the candidate items for recommendation are

associated with a maximum capacity, i.e., number of seats in a Point-of-Interest (POI) or

number of item copies in the inventory. However, despite the prevalence of the capacity

constraint in the recommendation process, the existing recommendation methods are

not designed to optimize for respecting such a constraint.

Towards closing this gap, in this chapter we propose Recommendation with Capac-

ity Constraints—a framework that optimizes for both recommendation accuracy and

expected item usage that respects the capacity constraints. We show how to apply our

method to three state-of-the-art latent factor recommendation models: probabilistic

matrix factorization (PMF), bayesian personalized ranking (BPR) for item recommen-

dation, and geographical matrix factorization (GeoMF) for POI recommendation. Our

experiments indicate that our framework is effective for providing good recommenda-

tions while taking the limited resources into consideration. Interestingly, our methods

are shown in some cases to further improve the top-N recommendation quality of the

respective unconstrained models.

55
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4.1 Introduction

Consider what would happen if a Point-of-Interest (POI) recommendation system sug-

gests to a large number of users to visit the same POI, e.g. the same attraction in a

theme park, or the same coffee shop; or what would be the effect of an item recom-

mendation system recommending the same products (e.g. movies, jackets) to the vast

majority of customers. It is easy to imagine that in the first case the recommended POI

might get overcrowded, resulting in long queues, thus high waiting times. In the second

case, the customers might view an ‘out of stock’ or ‘server overload’ message. In either

scenario, the user experience will be deteriorated.

The above scenarios, although seemingly different, share the following key property:

every item candidate for recommendation is associated with a maximum capacity—for

a POI it could be the number of visitors allowed at the same time or the number of

seats or tables; for a product it could be the maximum number of copies that can be

purchased/consumed simultaneously.

As recommendation systems become more prevalent and touch more aspects of ev-

eryday life, there is an increase in potential applications that require providing recom-

mendations while respecting the capacity constraints for the items. A few interesting

examples that can be expressed in this setting are: (1) book recommendation systems

employed by libraries, where the books recommended to the borrowers should be on the

shelf, (2) route recommendation systems, which aim to suggest the best road for driv-

ing while keeping the roads from getting congested, (3) class recommendation systems

employed by universities, where every recommended class can accept a limited number

of students, (4) viral content recommenders, which serve personalized content in rush

watching periods such as Prime Time or the Oscars, and many more.

To the best of our knowledge, none of the state-of-the-art recommendation ap-

proaches for item and POI recommendation is designed to respect the capacity con-

straints. Instead, they are often designed to optimize for rating prediction [148, 156] or

personalized ranking accuracy [46, 141, 159], or other metrics such as serendipity [67],

novelty [82], and diversity [84].

We propose a novel approach that both optimizes for recommendation accuracy,

measured suitably by rating prediction or personalized ranking losses, and penalizes ex-

cessive usage of items that surpasses the corresponding capacities. We show how to apply

our approach to three state-of-the-art latent factor recommender models: probabilistic

matrix factorization (PMF) [148], geographical matrix factorization (GeoMF) [108], and
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bayesian personalized ranking (BPR) [141]. We introduce the concepts of user propensity

(i.e., the probability to follow the recommendations) and item capacity. Both concepts

are key factors for estimating the extent to which the expected usage of the items ex-

ceeds the capacities. Our experimental results in real-world recommendation datasets

show that our formulation (i) is suitable for different choices of propensities, capacities,

and surrogate loss for the capacity objective, and (ii) allows for recommendations which

respect the capacity constraints, while the recommendation quality is not deteriorated

by a lot; in fact, in some cases our methods outperform the state-of-the-art in top-N

recommendation quality.

The rest of the chapter is organized as follows. In Section 4.2 we introduce the

concepts of user propensities and item capacities. In Section 4.3 we devise our methods

for recommendation with capacity constraints. We empirically evaluate our method in

Section 4.4, review related work in Section 4.5, and summarize in Section 4.6.

4.2 Key Concepts and Preliminaries

We start with introducing some useful concepts.

4.2.1 Item Capacities

Every item j = 1, . . . , N is characterized by a parameter indicating the maximum

number of users who can simultaneously use it. We refer to this variable as capacity

and denote it with cj > 0, resulting in a vector of capacities c ∈ RN+ for all N items. For

POI recommendation, a POI’s capacity could be the total number of seats, or number

of visitors allowed per time slot. For general item recommendation, an item’s capacity

could be the maximum number of users that can watch the same movie online without

leading to a system crash, or the maximum number of copies of the same item in the

inventory.

Capacity is key for recommendation systems, as when many users are directed to the

same item, the item will quickly reach its capacity. This will in turn lead to deteriorated

user experience, such as long waiting times or out of stock items.
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4.2.2 User Propensities

Every user i is associated with a variable, indicating the probability that he will follow

the system’s recommendations. We refer to this variable as user propensity and denote

it with pi ∈ [0, 1], resulting in a vector of propensities p ∈ RM for all M users. There

are many ways propensities can be modeled; one possible definition is:

pi =
# times user i followed the recommendation

# user i-system interactions
,

which uses feedback of the form user follows/ignores the recommendation. Alternative

definitions are explored in Section 4.4.

Propensity to follow the recommendations can be an inherent user property: some

users tend to listen to the system’s recommendations more, compared to others. How-

ever, the same user’s propensity might vary with time, e.g. the user might go to a

certain place for lunch every day at 2pm, so no matter how good the restaurant recom-

mendation is, he will not listen (low propensity); in contrast, he might be experimental

during his dinner time (high propensity). Also, factors such as who the user is with or

quality of experience with the system can affect the user’s propensity.

We argue that user propensity, which has connections to the themes of [109, 151], is

a key factor for recommendation systems. Though we use it to compute the expected

usage of items, one can also use it to e.g. target the users with low/high propensities.

4.2.3 Geographical Matrix Factorization (GeoMF)

Here we briefly review GeoMF as we use it as the basis recommendation model for Point-

of-Interest (POI) recommendation.

In POI recommendation, the rating matrix R contains the check-in data of M users

on N POIs. Because of the natural characterization of POIs in terms of their geo-

graphical location (latitude and longitude) and the spatial clustering in human mobility

patterns, recommendations can be further improved [181]. This insight has led re-

searchers to the development of GeoMF [108] which jointly models the geographical and

MF component. The key idea behind GeoMF, and the related works of [107, 181], is

that if a user i has visited a POI j but has not visited the nearby POIs, these nearby

POIs are more likely to be disliked by this user compared to far-away non-visited POIs.

GeoMF represents the users and items not only by their latent factors U, V , but also by

the activity and influence vectors X,Y respectively. By splitting the entire world into



59

L even grids, GeoMF models a user i’s activity area as a vector xi ∈ RL, where every

entry xi` of the vector denotes the possibility that this user will appear in the `-th grid.

Similarly, the model represents every POI by a vector yj ∈ RL, referred to as influence

vector, where every entry yj` indicates the quantity of influence POI j has on the `-th

grid. While the activity area vector xi of every user i is latent, the influence vectors

yj for every POI j are given as input to the model and are pre-computed using kernel

density estimation [182] as follows. The degree of the influence POI j has on the `-th

grid is computed as yj` = 1
σK(d(j,`)

σ ) where K is the standard Gaussian distribution, σ is

the standard deviation and d(j, `) is the Euclidean distance between the POI j and the

`-th grid. Although in [108] the activity area vectors are constrained to be non-negative

and sparse, in our work we do not make such an assumption. Concretely, GeoMF predicts

user i’s rating on POI j as

r̂ij = uTi vj + xTi yj . (4.1)

GeoMF uses the point-wise square loss of PMF; however, we can also replace this with the

BPR loss, giving rise to a method we refer to as GeoBPR.

4.3 Recommendation with Capacity Constraints

As discussed in Section 4.1, many recommendation scenarios ranging from viral video

recommendation, limited shelf on a virtual store, road congestion, to POI recommen-

dation, can benefit from a system that gives recommendations while respecting the

capacity constraints. In these settings, we want good recommendation accuracy, while

the items’ estimated usage does not exceed the respective capacities. To achieve this,

we discuss two alternative approaches.

4.3.1 Approach 1: Post-Processing

The first simple method we discuss is referred to as post-process. This method takes as

input the predicted scores r̂ij for every user - item (i, j) pair. Although we use the scores

provided by either of the models of PMF, BPR, GeoMF, GeoBPR, any recommendation model

can be used in place. The idea of this approach is that for every item j with capacity

cj , we find the cj users with the top predicted scores, i.e., who are the users who want

item j the most, up until it reaches its capacity? To provide top-N recommendations

per user, keeping track of which users are allocated to which items, we sort the assigned
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items based on the predicted scores in descending order. Note that by construction,

this approach achieves recommendations that respect the capacity constraints.

Algorithm 1 post-process

Require: ∀j cj , ∀(i, j) r̂ij from unconstrained method
1: For every item j, (i) rank users based on r̂ij , (ii) recommend item j only to top cj

users.
2: For every user i, rank the assigned items from step 1, based on r̂ij , and
3: return top-N recommendation list.

4.3.2 Approach 2: Proposed Framework

The second approach we introduce is formalizing the problem of recommendation with

capacity constraints as a weighted sum between two objectives: (i) we want to both

optimize for recommendation accuracy, while (ii) penalizing when the items’ expected

usage exceeds the respective capacities. To balance the two objectives we use a trade-off

parameter α ∈ [0, 1]. We will refer to our proposed approaches under this framework as

weighted objectives.

Personalized Scoring. To provide personalized recommendations, we follow the repre-

sentation used by PMF/BPR for item recommendation, and the one used by GeoMF/GeoBPR

in POI recommendation. Specifically, the predicted score of user i on item j is:

r̂ij =

{
uTi vj for item recommendation

uTi vj + xTi yj for POI recommendation
(4.2)

Note that any model estimating whether a user i will buy/visit item/POI j can be

used to replace (4.2), thus leading to a family of recommendation with capacity con-

straints algorithms.

Expected Usage. We define the expected usage of an item j as the expected num-

ber of users who have been recommended item j and will follow the recommendation:∑M
i=1 pir̂ij . If r̂ij was either 1 or 0, the

∑M
i=1 r̂ij term would indicate the total number of

users who have been recommended item j. For ease of optimization, we do not thresh-

old r̂ij to be either 0 or 1. Instead, we constrain r̂ij in the range of [0, 1] by using the

sigmoid function, σ(·) = 1
1+exp(−(·)) :
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E[usage(j)] =

M∑
i=1

piσ(r̂ij) , (4.3)

which is the weighted combination of the estimated ratings for the users, using as weights

the corresponding user propensities.

Capacity Loss. Since we wish to penalize the model for giving recommendations

which result in the expected usage of the items exceeding the corresponding capacities,

we want to minimize the average capacity loss, given by:

1

N

N∑
j=1

1[cj ≤ E[usage(j)]] . (4.4)

Given that the use of the indicator function 1[·] is not suitable for optimization purposes,

we will use a surrogate for the indicator function. Considering the difference

∆(cj ,E[usage(j)]) = cj −E[usage(j)], (4.5)

we use the logistic loss of the difference as the surrogate:

`(∆(cj ,E[usage(j)])) = log(1 + exp(−∆(cj ,E[usage(j)])) , (4.6)

noting that it forms a convex upper bound to the indicator function. Alternative sur-

rogate losses to consider are:

`(∆(cj ,E[usage(j)])) =

{
exp(−∆) (Exponential loss)

max(−∆, 0) (Hinge Loss)
(4.7)

Although the square loss (−∆)2 is a convex surrogate of the indicator as well, it is not

a suitable surrogate for the capacity loss, as it penalizes both positive and negative dif-

ferences, whereas we want to penalize only when the expected usage exceeds the capacity.

Overall Objective. Depending on which loss to minimize in order to capture rec-

ommendation quality, i.e., rating prediction loss or pairwise ranking loss, we devise the

following four methods: Cap-PMF, Cap-BPR for item recommendation, and Cap-GeoMF,

Cap-GeoBPR for POI recommendation.

Putting everything together, using the logistic loss as the surrogate loss, our method
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minimizes the following objective for item recommendation (Cap-PMF):

Ecap-PMF(U, V ) = (1− α) ·
M∑
i=1

∑
j∈Li

(rij − uTi vj)
2 (4.8)

+ α · 1

N

N∑
j=1

log

(
1 + exp

(
M∑
i=1

piσ(uTi vj)− cj

))
+ λ(‖U‖2F + ‖V ‖2F ) ,

while for POI recommendation our method Cap-GeoMF minimizes:

Ecap-GeoMF(U, V,X) = (1− α) ·
M∑
i=1

∑
j∈Li

(rij − uTi vj − xTi yj)
2, (4.9)

+ α · 1

N

N∑
j=1

log

(
1 + exp

(
M∑
i=1

pi(σ(uTi vj + xTi yj))− cj

))
+ λ(‖U‖2F + ‖V ‖2F + ‖X‖2F ) .

In the above formulation, α is a fixed, user-chosen parameter in [0, 1] that handles

the trade-off between the prediction loss and the capacity loss. When α is equal to

0, our model reduces to PMF (or GeoMF). When α is 1, we are not interested in good

prediction accuracy—our only concern is to ensure that every item’s expected usage will

not exceed its fixed capacity.

If we replace the first objective in (4.8) (or (4.9)) with the one of BPR to optimize

for ranking accuracy, we obtain Cap-BPR (or Cap-GeoBPR). For Cap-BPR we optimize

for:

Ecap-BPR(U, V ) = (1− α) ·
M∑
i=1

∑
k∈Li,+

∑
j∈Li,−

log(1 + exp(−uTi (vk − vj))) (4.10)

+ α · 1

N

N∑
j=1

log

(
1 + exp

(
M∑
i=1

piσ(uTi vj)− cj

))
+ λ(‖U‖2F + ‖V ‖2F ).

Learning the model. Following, we give the gradient updates only for Cap-PMF and

Cap-GeoMF. The optimization is done by alternating minimization. The latent factor
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updates are done using gradient descent, and for iteration t+ 1 they are:

∀i = 1, . . . ,M, ut+1
i ← uti − η∇uiEcapMF(U t, V t, Xt)

∀j = 1, . . . , N, vt+1
j ← vtj − η∇vjEcapMF(U t+1, V t, Xt)

∀i = 1, . . . ,M, xt+1
i ← xti − η∇xiEcap-GeoMF(U t+1, V t+1, Xt)

where the last gradient update is valid only for Cap-GeoMF. We use ECapMF to denote

either ECap-GeoMF or ECap-PMF. The gradients can be obtained by a direct application of

the chain rule. From (4.2), (4.3), (4.5) and (4.6), we get the gradients

∇∆`(∆(cj ,E[usage(j)])) = −σ(−∆(cj ,E[usage(j)])) (4.11)

∇ui∆(cj ,E[usage(j)]) = −pivjσ(r̂ij)σ(−r̂ij) (4.12)

∇vj∆(cj ,E[usage(j)]) = −
∑
i

piuiσ(r̂ij)σ(−r̂ij) (4.13)

∇xi∆(cj ,E[usage(j)]) = −piyjσ(r̂ij)σ(−r̂ij) , (4.14)

where for (4.12), (4.13), (4.14) we used the property ∇xσ(x) = σ(x) · σ(−x). Using

(4.11)-(4.14), we obtain the gradient of the latent parameters as follows. The gradient

of the objective, w.r.t ui is

∇uiEcapMF = −(1− α)
∑
j∈Li

2(rij − uTi vj)vj + 2λui

+
α

N

N∑
j=1

σ(−∆(cj ,E[usage(j)])) · pivjσ(r̂ij)σ(−r̂ij) .

Similarly, the gradient of the objective, w.r.t vj is

∇vjEcapMF = −(1− α)
∑

i∈Ra(j)

2(rij − uTi vj)ui + 2λvj

+
α

N
σ(−∆(cj ,E[usage(j)])) ·

M∑
i=1

piuiσ(r̂ij)σ(−r̂ij) .
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Dataset # Users # Items # Ratings

MovieLens 100K 943 1,682 100,000
MovieLens 1M 6,040 3,706 1,000,209
Foursquare 2,025 2,759 85,988
Gowalla 7,104 8,707 195,722

Table 4.1: Dataset Statistics.

For cap-GeoMF, the gradient of the objective, w.r.t xi is

∇xiEcap-GeoMF = −(1− α)
∑
j∈Li

2(rij − uTi vj − xTi yj)yj + 2λxi

+
α

N

N∑
j=1

σ(−∆(cj ,E[usage(j)])) · piyjσ(r̂ij)σ(−r̂ij) .

4.4 Experimental Results

We present empirical results to address the following questions:

1. What is the interplay of rating prediction and capacity loss for Cap-PMF, Cap-GeoMF

as we vary the trade-off α? Similarly for pairwise ranking loss versus capacity loss

for Cap-BPR, Cap-GeoBPR?

2. How do the proposed approaches Cap-PMF, Cap-GeoMF, Cap-BPR, Cap-GeoBPR com-

pare with their state-of-the-art unconstrained counterparts?

3. How do post-process and weighted objectives solutions compare in terms of quality

of recommendations at the top of the list?

4. How robust is our framework to different choices, i.e., surrogate loss for capacity

loss, propensity choices, capacity choices, implicit vs. explicit data?

Data. For item recommendation, we considered two public real-world datasets con-

taining users’ ratings on movies: MovieLens 100K and MovieLens 1M; for POI recom-

mendation, we used the Gowalla and Foursquare datasets. The users, items and ratings

statistics of the data are found in Table 4.1, and preprocessing details can be found in

Section 2.6.

Foursquare and Gowalla contain implicit check-in data (only values of 1 and 0 are

present). A value of 1 denotes that the user has visited the POI while a 0 denotes
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that the user has not visited it; because the user potentially does not like the POI

or does not know about it. MovieLens 100K and MovieLens 1M contain ratings in a

multi-relevance scale of 1 to 5 stars. We experimented with two feedback setups for the

MovieLens datasets: (i) two-scale explicit feedback (+1, -1), using 4 as the threshold of

liking, and (ii) implicit feedback, marking every non-zero rating as 1, and keeping the

rest as 0.

Evaluation Setup. We repeated all experiments five times by drawing new train/test

splits in each round. We randomly selected 50% of the ratings for each user in the train-

ing set and moved the other 50% of each user’s ratings to the test set. As the number of

ratings per user vary, we chose this scheme to simulate the real recommendation setup:

there exist users with a few ratings as well as users with many ratings.

For the implicit feedback datasets, as only positive observations are available, we

introduced negative observations (disliked items) in the training set as follows. For ev-

ery user with N train
i positive observations (+1), we sampled N train

i items as negatives

(-1) from the set of items marked as 0 both for train and test data. This is common

practice to avoid skewed predictions from training on only positive observations, and to

reduce the computational overhead of having all unrated items as negative observations.

Capacities and Propensities. The solution to the recommendation with capacity

constraints problem relies on the availability of users’ propensities (how likely they are

to follow the recommendations); and of item/POI capacities (how many people are al-

lowed to simultaneously use/occupy an item/place). As the information of capacities

and propensities is not given in the considered data, and to the best of our knowledge to

any of the publicly available recommendation datasets, we considered different simple

ways of estimating them based on usage data.

For capacities, we analyzed the three exhaustive cases: (i) capacities analogous to

usage, i.e., such a setting is inspired by the supply-demand law: the more users ask

for an item, the more copies of the item will be in the market, (ii) capacities inversely

proportional to usage, i.e., capturing when items with low capacities are often in high

demand, and (iii) irrespective of usage. In particular, we instantiated the above concepts

with the following:

(C1) ‘actual’: ∀j, cj = # users who have rated item j.1

1 An alternative would be # users who have liked the item in explicit data.
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(a) Foursquare, capacities (b) Gowalla, capacities

(c) Foursquare, propensities (d) Gowalla, propensities

Figure 4.1: (a-b) Item capacities sorted in decreasing order, based on four different
definitions. (c-d) User propensities, sorted in decreasing order, according to three defi-
nitions.

(C2) ‘binning’: Transform actual capacities to the bins: [0, 20] → 5, [21, 100] → 50,

[101,max capacity] → 150.

(C3) ‘uniform-k’: Set all item capacities to a value k, e.g. 10.

(C4) ‘linear max’: Spread the items’ capacities in [0, maximum actual capacity] using

a linear function.

(C5) ‘linear mean’. Same as ‘linear max’, but spread in the range [0, 2*mean of actual

capacities].

(C6) ‘reverse binning’: Map the actual capacities to the following bins : [0, 20]→ 150,

[21, 100]→ 50, [101,max capacity] → 5.
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Note that (C1) -(C2) are analogous to usage, (C3) - (C5) are irrespective of usage

and (C6) is inversely proportional to usage. Figures 4.1(a), (b) show all items’ capacity

scores sorted decreasingly for various capacity choices, for the POI datasets.

For user propensities, we considered the following cases: (i) user propensities are

analogous to system usage by the user, and (ii) user propensities are irrespective of

usage (i.e., capturing that propensity is an inherent user property). In particular, we

considered:

(P1) ‘actual’:

pi =
# observed ratings for user i

Total # items
=
|Li|
N

(4.15)

(An alternative could be: pi = # liked items for user i
# observed ratings for user i =

|L+
i |
|Li| .)

(P2) ‘median’: Set propensities ≥ the median of the actual propensities to 0.45, and

propensities < median to 0.01. This illustrates two distinct groups of users; those

who tend to listen to the system’s recommendations, and those who do not.

(P3) ‘linear’: Spread propensities in [0, 0.6] using a linear function.

Note that (P1)-(P2) are analogous to user usage, while (P3) is irrespective of usage.

Figures 4.1(c), (d) show users’ propensity scores sorted decreasingly for the propensity

choices in the POI data.

More intricate capacity and propensity estimation models can be considered as input

to our framework as well.

Location. The POI datasets Foursquare and Gowalla contain apart from the check-in

observations, location information about where every POI lies in terms of geographical

latitude and longitude coordinates. In Figures 4.2(a), (c) we show scatter plots of the

latitudes (x axis) and longitudes (y axis) for the POIs of the non-subsampled datasets

of Foursquare and Gowalla respectively.

Using the Mercator projection, and fixing the ground resolution to level of detail set

to 15, we transformed the latitude/longitude coordinates of every POI to one of the 215

tiles where the entire Earth can be divided into2. We show the tiles x-y coordinates of

the various POIs for Foursquare in Figure 4.2(b) and for Gowalla in Figure 4.2(d). We

set L, i.e., the dimension of the influence vector, to the number of unique tiles found.

2 https://msdn.microsoft.com/en-us/library/bb259689.aspx
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(a) Foursquare, lat./long. coordinates (b) Foursquare, tile coordinates

(c) Gowalla, lat./long. coordinates (d) Gowalla, tile coordinates

Figure 4.2: Location information scatter plots.

For Foursquare L is 290, whereas for Gowalla L is 4320. Considering the set of all

L unique tiles and representing every POI as a pair of (tileX, tileY) coordinates, we

pre-computed the influence matrix Y ∈ RL×N using Kernel Density Estimation [182],

following the procedure briefly described in Section 4.2.3.

Parameter Setting. We stopped the training of the algorithm either when the im-

provement in the value of the optimization objective in the training set was smaller than

10−5 or after 3,000 iterations. Similarly to [103], we set the rank of the latent factors

k to 10. We used for the learning rate of gradient descent the Adagrad rule [60], which

for the latent factor of the user i, ui at iteration t is: ηt = 1/
√∑t−1

τ=0∇2
ui,τ . We fixed

the regularization parameter λ to 10−5. We chose these parameters because we found

they gave stable model performance. In practice, to further improve the performance,

the parameters of rank and regularization can be tuned in a validation set.
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Metrics. For the weighted objectives solutions of CapMF, Cap-(Geo)BPR, we report

metrics relevant to the losses they optimize, to study the interplay of the two objec-

tives. Particularly, we report test-set performance in terms of:

• For Cap-PMF and Cap-GeoMF, we report Root Mean Square Error (RMSE) which

measures test set rating prediction accuracy (Section 2.4).

• For Cap-BPR and Cap-GeoBPR we report 0/1 Pairwise Loss which measures the

average number of incorrectly ordered pairs, i.e., -1 ranked above +1 (Section 2.4).

• Capacity Loss, which measures on average the extent to which the recommenda-

tions lead to violating the capacity constraints:

Capacity Loss =
1

N

N∑
j=1

`

(
cj −

M∑
i=1

piσ(r̂ij)

)
, (4.16)

with ` given by (4.6) or (4.7). For all three above metrics, values closer to 0 are

better.

• Overall Objective. Given that our methods optimize the two objectives of rat-

ing prediction (CapMF)/ranking (Cap-BPR) loss and capacity loss, we also re-

port: (1− α)RMSE2 + αCapacity Loss for CapMF (or (1− α)0/1 Pairwise Loss +

αCapacity Loss for Cap-BPR), which captures the overall loss in the test set.

To compare methods overall, we use as a criterion the quality of recommendations at

the top of the list, as measured by AP@top (Section 2.4).

Methods Compared. We compare our methods with the baselines of: PMF [148],

BPR [141], GeoMF [108], GeoBPR, and onlyCap, i.e., the baseline of setting α to 1. Also,

we compare our proposed weighted objectives methods with the post-process methods.

4.4.1 Validation: Interplay between Objectives

In the first set of experiments, our goal is to validate that indeed, using the trade-off pa-

rameter α, one can effectively balance recommendation performance and capacity loss.

We expect that as α approaches 0, the algorithm will have better predictive perfor-

mance but will be violating more the capacity constraints. In contrast, as α approaches

1, we expect the algorithm to respect more the capacity constraints at the cost of worse
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(a) MovieLens 100K (b) MovieLens 1M

(c) Foursquare (d) Gowalla

Figure 4.3: Effect of capacity trade-off parameter α in range {0, 0.2, 0.4, 0.6, 0.8, 1} on
CapMF’s performance in test RMSE, Capacity Loss and Overall Objective. As expected,
the higher the α, the higher the RMSE and the lower the Capacity Loss.

predictive ability. To illustrate this, we vary the trade-off parameter in {0, 0.2, 0.4, 0.6,
0.8, 1}. We set the surrogate loss for the capacity objective to the logistic loss, and use

the ‘actual’ capacity and propensity definitions.

Rating Prediction vs. Capacity Loss: In Figure 4.3, we report the test set metrics

of RMSE, Capacity Loss and Overall objective for all four datasets. The results show

that indeed the more we increase the trade-off parameter, the smaller the capacity loss

and the higher the RMSE. This validates that α can be used to specify to what extent

the rating prediction accuracy is more/less important compared to the capacity loss for

the considered application domain.
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(a) MovieLens 100K (b) Foursquare

(c) MovieLens 100K (d) Foursquare

Figure 4.4: Effect of capacity trade-off parameter α in range {0, 0.2, 0.4, 0.6, 0.8, 1} on
CapBPR’s performance in test 0/1 Pairwise Loss, Capacity Loss and Overall Objective.
(a), (b): Using ‘Actual’ capacity definition. We observe that the 0/1 Pairwise Loss does
not increase much as we increase α. (See why in Figure 4.5.) (c), (d): Using ‘Reverse
Binning’ capacity definition. We observe the expected trade-off between ranking loss
and capacity loss.

Ranking vs. Capacity Loss: Considering as first objective the pairwise ranking

objective, in Figures 4.4(a), (b), we show the results of Cap-BPR/Cap-GeoBPR for Movie-

Lens 100K and Foursquare, as we vary the trade-off parameter in the range of [0, 1].

Interestingly, we observe that while as expected, the capacity loss decreases with the in-

crease of α, the 0/1 pairwise loss does not change much. Similar trends hold for the rest

of the datasets (not shown). We found that the reason why this happens is that when

the capacities are analogous to usage (here we used the ‘actual’ capacity definition),

even if α is set to 1, i.e., not optimizing at all for ranking accuracy, the 0/1 pairwise

training loss still decreases (Figure 4.5). This shows that when capacities are analogous
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(a) MovieLens 100K (b) Foursquare

Figure 4.5: Training Pairwise 0/1 Loss of (a) Cap-BPR, (b) Cap-GeoBPR for ‘actual’
capacities, varying trade-off α ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}.

to usage, the capacity loss is related to the pairwise loss; namely, the capacity loss can

help reconstruct the correct pairwise accuracy given only the item capacities and user

propensities, with no other access to user-item ratings. Thus, the aggregate statistics

of ‘actual’ user propensities and ‘actual’ item capacities act as sufficient statistics.

To see the expected trade-off between the objectives of capacity and ranking loss,

we report in Figures 4.4(c), (d) Cap-BPR’s results for item capacities set inversely pro-

portional to usage, using the ‘reverse binning’ capacity definition. Indeed, in this case,

the fraction of incorrectly ordered pairs increases with the increase in α.

4.4.2 Comparison with Unconstrained Methods

For the next experiments we set α to 0.2, as we found it can lead to a reasonable trade-off

among the objectives. In practice, α should be tuned in a validation set, to meet the de-

sired trade-off of capacity loss vs. recommendation performance per application domain.

Comparison with PMF/GeoMF in RMSE/Capacity Loss: Based on Figure 4.3, con-

sidering the left end of the spectrum for the value of the trade-off parameter, i.e., α = 0,

we can compare our algorithm CapMF with the unconstrained methods PMF/GeoMF. We

observe that: (i) For item recommendation, Cap-PMF significantly improves over PMF’s

Capacity Loss performance of 11.29 to 1.65. This happens though at the cost of deterio-

rated performance in terms of RMSE from .38 to .71. Similar is the trend for MovieLens

1M. (ii) For POI recommendation, we observe that for Foursquare, Cap-GeoMF improves
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over GeoMF’s Capacity Loss performance of 2.35 to .15, at the cost of RMSE which in-

creases from .66 to .97. Similar trends hold for Gowalla.

Comparison with BPR/Geo-BPR in Pairwise Loss/Capacity Loss: From Fig-

ures 4.4(a), (b), we can compare our method Cap-BPR with BPR and GeoBPR respectively.

We see that for MovieLens 100K, Cap-BPR achieves Capacity Loss of 0.08 compared to

4.51 of BPR, while it results in 0/1 Pairwise Loss of .14 compared to .12 (higher values

are worse). For Foursquare, Cap-GeoBPR achieves .02 Capacity Loss compared to .81 of

GeoBPR, and also achieves a better 0/1 Pairwise Loss of .28 compared to .31. Similar

trends hold for the other datasets.

Comparison with onlyCap: Focusing now on the other end of the spectrum of the

trade-off parameter, i.e., α = 1, we compare CapMF with onlyCap. We can see from

Figure 4.3(a) that for MovieLens 100K, onlyCap improves Capacity Loss from 1.65 to

.04, but results in RMSE from .71 to 1.43. Also, onlyCap results in a worse 0/1 pairwise

loss of .17, compared to .14 of Cap-BPR, as seen from Figure 4.4(a).

Top-N Recommendations: Here, we evaluate the top recommendation quality using

AP@top as our metric, varying top in {1, 5, 10}.
From Figure 4.6 we see that for CapMF, and ‘actual’ capacities and propensities:

for (a) MovieLens 1M, Cap-PMF has lower AP@top compared to PMF, while for (b)

Foursquare, Cap-GeoMF achieves higher AP@top compared to GeoMF. We observe that

(a) MovieLens 1M (b) Foursquare

Figure 4.6: Average Precision (AP)@{1, 5, 10} of CapMF.
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as α increases, the top-N recommendation performance potentially improves, indicating

that emphasizing more the capacity loss can further make the quality of the recommen-

dations better. This aligns with our finding that the capacity loss can relate to the

pairwise ranking loss, using the sufficient statistics of capacity and propensity. Also, as

expected, while we increase the top, AP@top decreases.

4.4.3 Comparison between Proposed Approaches

In this set of experiments, we compare our weighted objective methods (Section 4.3.2)

with the post-process methods (Section 4.3.1). Recall that the post-process methods, by

design, do not violate the capacity constraints. For the purposes of the novel setting of

recommendation with capacity constraints, we propose a new metric:

Weighted Average Precision @ top (WAP@top) =

∑M
i=1 piAP i@top∑M

i=1 pi
, (4.17)

where AP i is user i’s Average Precision. WAP@top measures recommendation qual-

ity in the top taking into account the users’ propensities, by using propensities as weights

in the weighted average of users’ average precisions. We report in Table 4.2 the compar-

ison of the post-process methods, using the best performing tuned α, with our proposed

weighted objectives methods, and the respective unconstrained methods. For this ex-

periment, we use Foursquare and explicit MovieLens 100K, and consider as underlying

models GeoMF/GeoBPR and PMF/BPR respectively.

Based on Table 4.2, we make the following overall observations:

• For square loss, when capacities are proportional to usage (‘actual’, ‘binning’),

Cap-PMF outperforms PostMF, and even more interestingly outperforms PMF for

top = 50. However, when the capacities are inversely proportional to usage,

or are uniform, our proposed weighted objectives solution outperforms PostMF,

but cannot outperform the unconstrained method. We can also see that for any

choice of capacity, for geographically-aware methods, Cap-GeoMF outperforms both

Post-GeoMF and GeoMF.

• For ranking loss, when capacities are proportional to usage, similar to square loss,

Cap-BPR outperforms post-process, and can even outperform BPR. When capacities

are uniform, Cap-BPR outperforms Post-BPR, and for item recommendation can

even improve upon the unconstrained method. In contrast, for capacities inversely
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Square Loss Pairwise Ranking Loss

Capacity Def. WAP@10 WAP@50 WAP@10 WAP@50

MF PostMF CapMF MF PostMF CapMF BPR PostBPR Cap-BPR BPR PostBPR Cap-BPR

M
L

1
00

K Actual 0.152 0.153* 0.138 0.086 0.087 0.127* 0.115 0.117 0.209* 0.069 0.07 0.126*
Binning 0.152 0.15* 0.136 0.086 0.077 0.086* 0.115 0.112 0.209* 0.069 0.064 0.136*
Reverse 0.152 0.045 0.072* 0.086 0.013 0.031* 0.115 0.04* 0.02 0.069 0.012* 0.01
Uniform 0.152 0.055 0.135* 0.086 0.014 0.062* 0.115 0.055 0.137* 0.069 0.013 0.078*

F
o
u
rs

q
u
a
re Actual 0.016 0.016 0.041* 0.011 0.011 0.027* 0.056 0.049 0.084* 0.033 0.023 0.048*

Binning 0.016 0.016 0.023* 0.011 0.009 0.014* 0.056 0.04 0.084* 0.033 0.017 0.047*
Reverse 0.016 0.011 0.039* 0.011 0.005 0.015* 0.056 0.016* 0.013 0.033 0.005 0.007*
Uniform 0.016 0.011 0.047* 0.011 0.004 0.024* 0.056 0.016 0.039* 0.033 0.005 0.023*

Table 4.2: Comparison of weighted objectives methods (denoted with Cap-) with post-
process methods (denoted with Post), in terms of Weighted Average Precision@top,
top = {10, 50}, for various capacity settings. Bold letters denote the best among the
unconstrained, post-process, and Cap- methods. Asterisk (*) shows which capacity
constrained method, i.e., Post- or Cap-, is better. Overall, the Cap- methods largely
outperform the respective Post- methods. Interestingly, in some cases, Cap- meth-
ods outperform the unconstrained methods, showing the value of our method to even
improve the recommendation quality.

proportional to usage, Cap-BPR, Cap-GeoBPR tends to be outperformed by the

other methods.

Similar trends can be observed for non-weighted Average Precision, and for the other

datasets, as well. Overall, these results highlight that our weighted objectives methods

largely outperform the post-process solution. We can also draw the further conclusion

that out of the alternative definitions considered for capacity, the definitions which

are analogous to usage, namely ‘actual’ and ‘binning’, are the ones which lead to the

best top-N recommendation results. In particular, under these settings the weighted

objectives approach surpasses the post-process solution, and also is better than the

unconstrained methods. This shows that these capacity settings can be realistic, and

are worth incorporating in the optimization objective of the recommendation algorithms,

to further improve top-N performance.

4.4.4 Sensitivity Analysis

Effect of Surrogate Loss for Capacity Term. Figure 4.7 compares the effect of

different surrogate losses for the capacity objective on CapMF’s performance. For this

experiment, we consider rating prediction as the first objective, we set α to 0.2, and use

the ‘actual’ propensity and capacity definitions. We observe that for MovieLens 100K

and MovieLens 1M (omitted), logistic and hinge loss result in similar performance,
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Figure 4.7: MovieLens
100K. Effect of surrogate
loss for capacity term.

Figure 4.8: Foursquare.
Effect of user propensities
on CapMF.

Figure 4.9: Gowalla. Ef-
fect of item capacities on
CapMF.

while exponential loss results in the highest RMSE and the smallest capacity loss. For

Foursquare and Gowalla (omitted), hinge loss obtains the smallest capacity loss and

RMSE, making it the best option for the POI datasets. This happens since the expo-

nential loss assigns very high penalties for large negative differences. Also, exponential

and logistic losses assign small penalties for small negative and also positive values,

while hinge does not penalize when expected usage is within the capacity constraints.

Effect of User Propensities. In Figure 4.8 we study the effect of different user

propensities as input to our algorithm (i.e., ‘actual’, ‘median’ and ‘linear’) on CapMF’s

performance in the Foursquare dataset. For this experiment, we set α to 0.2, the surro-

gate loss to the logistic loss, the capacities to ‘actual’ and the first objective to rating

prediction. We see that for ‘median’ and ‘linear’ choices of propensity, the values of

both RMSE and Capacity Loss are higher compared to those obtained for the ‘actual’

propensity choice. This happens because the ‘median’ and ‘linear’ options generally re-

sult in higher values of user propensities (Figure 4.1(c)). This leads to higher expected

usage values, making it more likely to have the capacity constraints violated.

Effect of Item Capacities. Here we study the effect of different item capacities,

namely ‘actual’, ‘linear mean’, ‘linear max’ and ‘binning’, as input to CapMF. The setting

is the same as before, except for the propensity definition which is set to ‘actual’. Fig-

ure 4.9 compares CapMF’s performance for four choices of capacity for Gowalla—similar

trends hold for the other datasets. We can see that the choice of ‘binning’ results in the

highest RMSE and Capacity Loss, whereas the other choices result in almost identical

performance. We explain this result as based on Figure 4.1(b) the ‘binning’ definition
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(a) MovieLens 100K (b) MovieLens 1M

Figure 4.10: Cap-PMF on explicit feedback data. The results shown compared to Figures
4.3(a), (b) indicate that the trends for implicit and explicit feedback data are similar.

typically results in the smallest items’ capacities, which means that it is more likely

that the recommendations will violate the capacity constraints. Also, when setting all

items’ capacities uniformly to e.g. the mean actual capacity (not shown), the capacity

constraints are directly satisfied.

Implicit vs. Explicit Feedback: Finally, we report in Figure 4.10 the results

of Cap-PMF in terms of the competing objectives for the original explicit MovieLens

datasets. This allows us to explore how sensitive our framework is to implicit versus

explicit data. Thus, we can compare Figure 4.10(a) with Figure 4.3(a) for Movie-

Lens 100K, and Figure 4.10(b) with Figure 4.3(b) for MovieLens 1M. We can see that

although the particular values of the objectives are different, the trends are similar.

Similar trends were also found for Cap-BPR.

4.5 Related Work

Although we could not trace literature handling the problem of recommendation with

capacity constraints, there are works using the notion of constrained resources or budget

[80]. Here, we present how each of these settings presents unique challenges, and differs

from our problem.

Email Volume. One related constraint which has been recently explored by Gupta et

al., and posed as a Multiple Objectives Optimization (MOO) problem [76], is deciding

which emails to send so to minimize the total number of emails, while the number of
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downstream sessions is maximized, and the number of spam reporting and unsubscribe

actions is minimized. While email volume can be seen as a capacity constraint, our

work is rather different: In our setting, the end goal is to provide personalized recom-

mendations which respect the capacity constraints, whereas in [76] a non-personalized

email allocation scheme is proposed.

Budget. The problems of sponsored search [14], advertisement display [101, 116],

auction [180, 102] etc., are naturally associated with the notion of a budget. For instance,

for ad displays, the algorithm decides which ads to show so that the number of clicks

or revenue is maximized, while the advertisers stay in their specified budget. Typically,

such problems have been formulated using online matching [116], or bandits [180, 102].

Our setting departs from the above problem in a number of ways: (i) Items have a

budget, instead of users having a budget. (ii) We collaboratively allocate items to users

in a unified way; in contrast, usually, ad serving systems have separate entities for ad

bidding and for serving personalized ads to users.

Course Requirements. In [131] the authors propose novel methods for set recommen-

dations of courses, so that the courses recommended to a student satisfy the specified

degree requirements. In our work, instead of focusing on constraints within the list

of items, we focus on satisfying the capacity constraint coupling recommendation lists

across users as a whole.

Quantity constraints. Zhang et al. proposed to boost the Pareto efficiency of web

allocations [183]. While they also provide personalized allocations modeling the web

economy as a whole, their focus is rather different from ours; they maximize each user’s

individual surplus, while we focus on maximizing recommendation performance, as typ-

ically captured in recommender systems. Also, they require the product prices as input,

which is not applicable in our case. Our work is the first to introduce the novel aspect of

the tendency of users to follow the system’s recommendations, giving different weights

to the various users when estimating item usage, and to provide personalized allocations

that also account for geographical influence.

4.6 Summary

We have presented a novel approach for providing recommendations that satisfy capacity

constraints. We have demonstrated how this generic approach can be applied to three

state-of-the-art latent factor models, PMF [148], GeoMF [108], and BPR [141], so that the
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items’ expected usage respects the corresponding capacities. Our experimentation has

given light into how our methods perform under different settings of item capacities and

user propensites. We have shown that our framework effectively provides recommenda-

tions which respect the capacity constraints, without deteriorating the recommendation

performance by a lot; interestingly, in some cases our methods can improve the top-N

recommendation quality compared to the respective unconstrained methods.



Part II

Data: Learning To Interact with

Users

Based on work previously published in

KDD 2016 [51] and SDM 2018 [48].
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Part II: Overview

This part addresses the question: where does the data with which we train the recom-

mendation model come from? More specifically, how can we answer questions of the

form: what will happen if we show an item j to user i?

To answer this question, the offline model view used in the majority of works on

recommendation, including the previous part of this dissertation, is insufficient; as it can

only capture associational relationships among variables based on given data. This static

view (i) suffers from the cost of periodically retraining the model to incorporating new

observations, (ii) fails to capture preference drifts, and (iii) has the inherent limitation

that what is built to optimize offline performance does not necessarily translate to

equally good online user behavior.

Interactive learning: User in the loop in a recommendation system.
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Instead, in the following part we will adopt a modern approach of viewing recom-

mendation as an interactive learning problem [104, 165], which can allow the making

of interventions—changing what we see instead of just observing what is there—and

which models the presence of limited information (bandit fedback): when showing item

j to user i, we do not know what would have happened had we shown something else.

However, because of the large dimensionality of the user and item space, classic off-the-

shelf multi-armed bandit techniques are not directly applicable. Thus, in both chapters

of this part, we will couple bandit techniques with collaboratively learning on-the-fly

the structure among users and items.

We postulate that modeling recommendation in an online learning framework while

balancing the explore-exploit trade-off present in any system learning to interact, can

lead to better understanding of the user’s preferences, and thus improved recommenda-

tion quality. Specifically, we offer two contributions:

• Learning to converse with new users. By asking a cold-start user a couple of

questions, either of absolute-type (Do you like restaurant j?) or of relative-type

(Do you prefer restaurant j over restaurant h?), not only can the system learn more

about the user’s preferences and about what question can more quickly allow the

system to give a good recommendation, but also we make a step towards modeling

how a real person would make a recommendation to someone they do not know.

• Learning to collaboratively interact with users. We find that by coupling

Thompson Sampling (i.e., a bandit technique that uses the underlying model

uncertainty to balance the explore-exploit trade-off) with a latent-factor based

collaborative filtering model, we can achieve improved online system performance,

when the number of users and the size of the pool of items is large.



Chapter 5

Recommendation as a

Conversational Procedure

Can we create human-like recommenders

that represent how people give recommendations?

People often ask others for restaurant recommendations as a way to discover new

dining experiences. This makes restaurant recommendation an exciting scenario for

recommender systems and has led to substantial research in this area. However, most

such systems behave very differently from a human when asked for a recommendation.

The goal of the work presented in this chapter is to begin to reduce this gap.

In particular, humans can quickly establish preferences when asked to make a recom-

mendation for someone they do not know. We address this cold-start recommendation

problem in an online learning setting. We develop a preference elicitation framework

to identify which questions to ask a new user to quickly learn their preferences. Tak-

ing advantage of latent structure in the recommendation space using a probabilistic

latent factor model, our experiments with both synthetic and real world data com-

pare different types of feedback and question selection strategies. We find that our

framework can make very effective use of online user feedback, improving personalized

recommendations over a static model by 25% after asking only 2 questions. Our results

demonstrate dramatic benefits of starting from offline embeddings, and highlight the

benefit of bandit-based explore-exploit strategies in this setting.
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5.1 Introduction

Recommendation is an everyday process that frequently touches people’s lives. Hence,

it has seen tremendous research interest (such as [57, 94]). Most work in recommenda-

tion falls into two broad classes: Collaborative Filtering starts with a set of user/item

affinity scores and assumes that two users who agree about one item are more likely to

agree about another item; Content-Based Filtering builds user or item profiles based on

external feature information. We note that neither model represents how real people

make recommendations, particularly in a cold-start setting where the person making a

recommendation does not know a lot about the person asking for one.

Consider what would happen if a conference attendee in your home town, whom

you have never met before, asked for a recommendation on where to eat dinner today.

Most likely, you would start with one or two clarifying questions, perhaps whether the

person likes seafood, or whether they have a car. These questions would depend on the

context; for instance if there are great restaurants around the corner, then whether they

have a car would be irrelevant.

We argue that such an interaction can be represented using online learning, where

two types of learning are occurring. First, the person making the recommendation is

learning about the preferences of the person asking. However, the attributes learned will

be contextual, based on the likely follow-on answers (such as the car question earlier).

Second, the person making the recommendation is learning about which questions allow

them to quickly reach a good recommendation in the current context. In this chapter, we

present a recommendation system that exhibits these two types of learning. Further,

the learning is online: It immediately impacts future recommendations for this user,

rather than requiring a batch reprocessing of information learned.

We present a bandit-based approach for online recommendation, applied to restau-

rant recommendation so as to ground it in a specific application. Our approach builds

on top of prior work, such as [184], but learns to adapt the recommendation space

(user-item embedding) to its users throughout their interactions. We use generalized

Thompson Sampling to systematically sample questions to ask the user and to incorpo-

rate observed feedback. We further propose and compare a range of alternative question

selection strategies to identify characteristics of approaches that most effectively learn

users’ preferences. We use a matrix factorization approach [118, 160] to learn and adapt

the embedding.

Our main contributions are four-fold:
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1. We propose a novel view of human-like recommenders that converse with new

users to learn their preferences.

2. We successfully demonstrate a fully online learning approach for recommendation—

both using absolute and relative feedback.

3. We propose a systematic approach to incorporating offline data to initialize online

learning recommenders, and demonstrate performance improvements, even using

weakly labeled offline data.

4. We propose a set of item selection strategies for deciding what question to ask to

a cold-start user to most quickly infer preferences, and demonstrate benefits of

bandit-based strategies.

Our extensive experiments on both synthetic and real data evaluate each step of our

approach.

Importantly, we note that this work is applicable to a wide variety of recommen-

dation scenarios. Here, we focus on one such application, restaurant recommendation,

where we study search logs to understand the space of real user needs; we use the insights

to collect preference data in a user study; we use online behavioral data to initialize

the recommendation system; we use both synthetic and user study data to evaluate our

approaches.

We now present an analysis of real-live restaurant search (Section 5.2). Next, we

describe our model (Section 5.3) and empirical setup (Section 5.4), and validate the

model on synthetic data (Section 5.5). We evaluate on real data to further empirically

analyze our learning framework (Section 5.6). Finally, we review related work (Section

5.7), and summarize our work (Section 5.8).

5.2 Understanding Real Users

A recommendation system that aims to satisfy real people should reflect how real people

look for recommendations. Therefore, we start by analyzing restaurant-related search

behavior in a commercial Web search engine. Our goals are two-fold. First, to gain

insight into our target domain, namely understand the criteria people use to choose

restaurants1. Second, to identify questions we must ask users to construct ground truth

1 Keeping in mind that these criteria to some degree reflect users’ perception of the search engine and

its capabilities.
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data for evaluating our system.

Given a large sample of all queries issued between 07/2014 and 07/2015, we filtered

for those that contain restaurant or dining, and terms such as for, near(by), next (to),

close (to), with and in. Let Q be the most frequent 10,000 such queries.

5.2.1 Query Annotation with Entities

We tagged the top several hundred queries from Q as containing a location, name,

cuisine, food type, or terms such as best and menu. The dictionary of tags was not pre-

specified to avoid biasing our annotations due to prior beliefs about categories people

should be looking for. Rather, our methodology used content analysis [144] to develop

a coding that captures the dominant behaviors involved.

We found that 39% of queries specify a location, 19% a restaurant name, 9% cuisine

constraints, 7% have the term best or other superlative. More rarely, queries specified

food ethnicity (2%), an adjective describing the restaurant (2%), dish name (2%), dec-

oration, etc. The most common term co-occurences are location and name in the same

query (29%), cuisine and location (10%), and best and location (8%).

5.2.2 Understanding Common Phrases

The above statistics show that location is an important factor in restaurant search.

Hence we zoom in to discover the specific ways in which people constrain locations.

Similarly, the context under which users search for a restaurant is a second common

constraint. We analyzed the specific terms appearing after a variety of prepositions,

and constructed a dictionary of the most frequent contextual constraints.

A sample of these is shown in Table 5.1. For example, the top places people search

for restaurants in are nyc, chicago, las vegas. Using the preposition ‘near’ to indicate

location, the majority of terms shows users want a restaurant near me. Queries can also

be very specific, e.g. searching for a restaurant near points of interest (times square),

airports (miami airport, lax ), postal codes or entire addresses. The contexts under

which users search for restaurants vary from an occasion (wedding reception), to dietary

restrictions, to type of meal or a group of people. People also search for restaurants

with live music, piano etc.
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IN NEAR FOR WITH

nyc me wedding receptions party room
chicago by large group small private room
las vegas times square rich piano
houston here dessert live music
miami lax your 21st birthday someone
los angeles miami airport steak at lunch time a view
atlanta airport gluten free food play area
brooklyn fenway park valentine day in dallas banquet room

Table 5.1: Contextual terms in restaurant related queries.

Cuisine Freq.

mexican 475
chinese 407
italian 381
thai 174
indian 144
japanese 125

Adj. Freq.

good 27
famous 13
nice 12
romantic 11
upscale 6
small 6

Food Freq.

seafood 139
sushi 40
steak 32
bbq 29
fish 24
tapas 19

Table 5.2: Restaurant Feature Dictionaries (note: frequency counts have been rescaled).

5.2.3 Restaurant Feature Dictionaries

As user queries can be very specific (e.g., combining constraints, ‘adjective & dish &

great & location’), we now study the terms that people use to describe restaurants. We

annotated the top 1,013 phrases appearing before the word ‘restaurant’ or ‘dining’ in

5,000 queries from Q with a number of traits. The traits identified are related to food

(cuisine, meal, dietary restrictions, quality e.g. organic, healthy, buffet, menu), rating

(e.g michelin star), atmosphere (view, fancy or romantic), time/location (opening hours,

decade theme, time of the day) etc.

For every trait, we collected the most common terms. Table 5.2 shows a few common

examples, giving us a glimpse into the most searched cuisines, food types, and adjectives.

Though not shown, top amenities searched are garden, jazz, patio and top restaurant

types are bar, fast food.
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5.2.4 Outlook

Besides motivating our application scenario, this search log analysis forms the basis of

the user study in Section 5.6. Given this understanding of what to ask people who

look for a restaurant, we also focus on how to ask it. In this work, among the vari-

ous combinations of the feedback type (explicit/implicit, absolute/relative/list) on the

available content (explicit features/items/latent features), we elicit users’ preferences

using explicit feedback from absolute and relative questions about explicit items (e.g.

restaurants).

5.3 Model

We next present our approach for determining ‘what to ask’ and ‘how to ask’ as the

key pieces of a conversational recommender, starting with a high level picture of the

entire algorithm (Section 5.3.1). Then, we describe the pieces in detail as we require

(i) a model exploiting implicit structure among items and users to efficiently propagate

feedback (Section 5.3.2); (ii) an explore-exploit approach to probe the space of items,

to allow continuous learning, (Section 5.3.3) and (iii) a feedback elicitation mechanism

for selecting absolute (Section 5.3.3) and relative questions (Section 5.3.4).

5.3.1 Overview

Our recommendation pipeline can be summarized as:

1. Pick a model (Absolute/Pairwise) and preference elicitation mechanism: Abs /

Abs Pos / Abs Pos & Neg / Pairwise.

2. Initialize model parameters using offline data.

3. A new user arrives. Now iterate for a few questions:

(a) Mechanism selects a question to ask

(b) User answers the question

(c) All model parameters are updated

(d) Remove the question from the allowed questions

4. System presents the final recommended list
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The inner loop represents the ‘human in the loop’ present in all interactive systems, i.e.,

we make an intervention which affects the user and thus the future system decisions.

5.3.2 Latent Factor Recommendation

Consider how people make recommendations when a friend asks them to suggest a

restaurant. They strategically ask each question with the goal of eliminating or con-

firming strong candidates for dining out. Similarly, when designing a conversational

recommender that asks questions about explicit items, a principled way of selecting

items is desired.

The implicit structure of the item space that allows us to learn quickly is motivated

by collaborative filtering. Items that have been co-rated similarly (liked/disliked) by

users will lie close in a low dimensional embedding. For our model we use a simplified

version of the Matchbox Recommender model [160]—equivalent to PMF [118]. This is a

generative model, in that it specifies a probabilistic procedure by which the observed

likes/dislikes of users on items are generated on the basis of latent variables. The model

variables are learned so that the model can explain the observed training data.

We use the convention that i denotes the index over M users, forming the set U ,

and j denotes the index over N items, forming the set I. Every user i ∈ U is modeled

by a user bias variable αi ∈ R, accounting for users who tend to like/dislike most of the

items, and a d-dimensional trait vector ui ∈ Rd. The trait vector represents the latent

embedding of user i in a d-dimensional space, where d � M,N . Every item j ∈ I is

modeled with latent variables βj ∈ R (the item bias that accounts for item popularity)

and a trait vector vj ∈ Rd that represents the latent embedding of item j in the same

d-dimensional space. In the rest of the chapter, we use the notions of trait vectors and

latent factors interchangeably.

Given that both users and items trait vectors lie in the same latent space, the simi-

larity between a user i and an item j can be measured with the inner product of their

corresponding trait vectors uTi vj . We now present two models for estimating the latent

variables, depending on the type of observations we obtain from users, i.e., absolute or

pairwise.

Absolute Model. First, let us assume that we have observed tuples of the form

(user i, item j, 1/0).2 The model estimates the affinity of user i to item j based on the

2 We use the convention that 0 denotes dislike and 1 like.
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biases and traits. The generative procedure is:

1. User i has traits ui ∼ N (0, σ2
1I), bias αi ∼ N (0, σ2

2).

2. Item j has traits vj ∼ N (0, σ2
1I), bias βj ∼ N (0, σ2

2).

3. (a) The (unobserved) affinity is

yij = αi + βj + uTi vj . (5.1)

Observations are modeled as the noisy estimate ŷij ∼ N (yij , εij), where εij models

the affinity variance, accounting for noise in user preferences. This yields an

observation of whether the user likes an item (r̂ij):

r̂ij = 1[ŷij > 0]. (5.2)

The hyper-parameters σ1, σ2 model the variance in traits and biases. The model vari-

ables are learned by maximizing the log-posterior over the item and user variables with

fixed hyper-parameters, given the training observations.

Pairwise Model. People are often better at giving relative preferences over items

instead of absolute judgments. Such preferences yield tuples of the form (user i, item

j, item h) when user i prefers item j over item h (both j and h are indices over I.) We

can adapt the generative model to such ground truth data by modifying the third step

of the Absolute model to yield a pairwise model:

3. (b) For each observation (i, j, h) compute

noisy difference: ŷijh = ŷij − ŷih (5.3)

where the noisy item affinities are defined as before. Using ŷijh, we estimate if

user i prefers j over h:

j �i h : r̂ijh = 1[ŷijh > 0] (5.4)

5.3.3 Continuous Learning Recommender

To generate recommendations, most latent factor-based recommender systems use an

offline trained model based on past interactions, such as the one described above, that
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Algorithm 2 Preference Elicitation Algorithm

Require: ∀i ∈ U : ui, αi, ∀j ∈ I : vj , βj (offline embedding)
1: A new user i arrives. Initialize prior based on Eq. 5.5.
2: ∀j ∈ I, infer noisy affinity yij (Eq. 5.1)
3: while fewer than allowed questions have been asked: do
4: Pick item(s) for absolute (relative) question (Sec. 5.3.3/ 5.3.4).
5: Incorporate feedback according to (i) Abs (Sec. 5.3.3), (ii) Abs Pos, (iii) Abs Pos

& Neg, or (iv) Pairwise. (Sec. 5.3.4)
6: Update ui, αi, v, β (Section 5.3.3) and infer the noisy affinity distribution yi (Eq.

5.1) or noisy difference (Eq. 5.3).
7: end while

they periodically update to incorporate new data. The parameters for new users are

typically initialized based on a combination of explicit attributes and past ratings (e.g

[5]). The items with the highest predicted noisy affinity mean comprise the recommen-

dations presented to the user.

In contrast, recent work has moved towards continuously learning recommenders

[30, 104, 184]. This optimizes for online performance using explore-exploit (EE) strate-

gies. We present our fully online updated recommendation approach with the embedded

preference elicitation in Algorithm 2. Following, we detail the components of this algo-

rithm for the case of asking absolute questions (Abs). In Section 5.3.4 we show how we

extend this framework for relative questions.

Initialization from Offline Data

We propose to initialize online learning models using an initial embedding, that is

learned offline. We hypothesize that such an initial embedding will allow the system

to learn new user’s preferences more quickly. Effective learning from few questions is

crucial for conversational recommenders.

We start by learning the offline embedding of items from logged observations. Then,

we initialize the prior of every item j ∈ I by setting the trait vj and bias βj from the

corresponding offline posterior—assuming that all items in the online phase appeared

in the offline data.

For the initialization of the user parameters, we focus on the case when the user is

new to the system. Without additional information, we can assume that the new user

is similar to the average offline user. We implement this by using as trait and bias the



92

mean value over all offline users:

ucold ∼ Ei=1,...,M [ui] αcold ∼ Ei=1,...,M [αi] (5.5)

Question Selection Strategies

When a new user initiates interaction with a continuous recommender, the system asks

a few questions to learn about the user’s preferences. During this phase, it is important

to select questions that lead to learning effectively (i) the user’s preferences and (ii)

the questions’ quality, so that the number of questions asked can be minimized and

interactions remain enjoyable. This task can be modeled as an item selection task.

Here, we propose approaches that capture characteristics of active learning and bandit

learning. Active learning approaches capture the intuition that learning is fastest when

the system queries for labels that provide a high amount of new information [145].

Bandit learning approaches balance the need to learn new information with a focus on

what has already been learned [17, 38]. In the context of conversational recommenders,

such a balance may help focus questions on the most relevant part of the latent space,

while still considering that highly preferred items may lie in as of yet unexplored areas

of the space.

The model’s confidence in its belief over the user’s preferences on items j ∈ I at a

given time is captured by the current variances of the posterior of the noisy affinities

ycold
j . As we ask about an item j∗ and observe the user’s feedback, the variance of

the inferred noisy affinity of this item and of the nearby items in the learned embed-

ding is reduced. Also, the means of these items’ inferred noisy affinities change. It

is this property that allows us to search the space of items quickly. Hence, while in

the classic multi-armed bandit scenario the bandit algorithms converge only after all

arms are sufficiently explored, in our setting the collaborative structure allows for faster

convergence.3

We compare a number of approaches for question selection that reflect the considera-

tions discussed above, and several baselines. All approaches are listed in Table 5.3. Each

selects an item j∗ to obtain user feedback on. While the first few are self-explanatory

baselines, we discuss three in more detail. (1) MaxT approximates maximizing infor-

mation gain, in the vein of active learning: As user-item ratings are observed, the PMF

3 A formal regret analysis lies beyond the scope of this work.
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Greedy: j∗ = arg maxj yij
A trivial exploit-only strategy: Select the item with highest estimated affinity mean.

Random: j∗ = random(1,N)
A trivial explore-only strategy.

Maximum Variance (MV): j∗ = arg maxj εij
A explore-only strategy, variance reduction strategy: Select the item with the highest
noisy affinity variance.

Maximum Item Trait (MaxT): j∗ = arg maxj ‖vj‖2
Select the item whose trait vector vj contains the most information, namely has highest

L2 norm ‖vj‖2 =
√
v2
j1 + v2

j2 + . . .+ v2
jd.

Minimum Item Trait (MinT): j∗ = arg minj ‖vj‖2
Select the item with trait vector with least information.

Upper Confidence (UCB): j∗ = arg maxj yij + εij
Based on UCB1 [17]: Pick the item with the highest upper confidence bound, namely
mean plus variance (95% CI)

Thompson Sampling (TS) [38]: j∗ = arg maxj ŷij
For each item, sample the noisy affinity from the posterior. Select item with the maxi-
mum sampled value.

Table 5.3: Question selection strategies evaluated.

model adds information to the corresponding user and item trait vectors. In the op-

posite extreme case, if all item trait elements are close to 0, the corresponding item

carries no information. As MinT does the opposite from MaxT, it is hypothesized to

have low performance and is employed to establish a lower bound on question selection

performance. (2) UCB [17] is a popular bandit algorithm that selects the items with the

highest confidence bound to avoid missing preferences for promising items. (3) Thomp-

son Sampling (TS) is a bandit algorithm that balances exploration and exploitation by

selecting items using a sampling strategy [38]. It samples from its current posterior

belief over noisy affinities, and then acts optimally according to this sampled belief. TS

focuses on items with high mean affinity, but is also likely to select items with high

variance.

Online Updating

After posing a question to the user, the observed response needs to be incorporated into

to the recommender to allow for continued learning. As shown in [128], the questions

can be incorporated into the model by setting the probability of the question to 1 and
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incorporating the user’s response following standard probability theory.

The user’s response thus becomes a new observation that the system uses to update

the posterior distributions of all latent model parameters related to the incoming user

i and the item j asked about, i.e., αi, βj ,ui,vj (but affecting only user i’s interaction

session). To select the next question for user i, we use the updated posteriors as the new

priors to infer the user’s noisy affinity distribution ŷij for all items j ∈ I, denoted by

ŷi. As the system keeps asking questions to user i and incorporates his/her feedback,

the beliefs about the user, and the item in the question, change. This allows the model

to move towards the true underlying affinity distribution. All online updates were im-

plemented using expectation propagation [160] in Infer.NET [117].

Absolute Model, Absolute Questions (Abs): So far we have presented the en-

tire framework for the case where the system poses absolute questions. Before turning

to relative feedback, we describe the high-level approach for asking absolute questions

(Abs). Using TS for illustration purposes, Abs asks user i about the item with the

largest sampled noisy affinity as inferred by the Absolute model:

j∗ = arg max
j∈I

ŷij (5.6)

Based on whether the user (dis)liked item j∗, a new observation (i, j∗,1/0) is incorpo-

rated into the Absolute model.

5.3.4 Extension to Relative Preferences

An alternative is for the system to ask for a preference about a pair of items, i.e., does

the user prefer item A (j∗) or item B (h∗)? Therefore, we present here the extension of

our framework to the case of asking relative questions.

We consider three separate formulations (referred to as Abs Pos, Abs Pos & Neg

and Pairwise) for selecting relative questions and incorporating feedback, to identify

the best way of asking relative questions. Importantly, in every such formulation there

are two choices: (i) the underlying model (Absolute vs. Pairwise) and (ii) how the user’s

response to the question is incorporated back into the model. For the first choice, Abs

Pos and Abs Pos & Neg use the Absolute model, while Pairwise uses the Pairwise

model. The second choice is applicable only for Abs Pos and Abs Pos & Neg, as they

represent two ways of incorporating relative feedback into the absolute model.
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Absolute Model, Relative Questions.

First, we present Abs Pos and Abs Pos & Neg. Both use the same mechanism to gen-

erate the question “A vs. B” for user i:

1. Select item A as in Abs (Equation 5.6).

2. Virtual observation: Assume user i did not like A.

3. Virtual update: Incorporate the tuple (i, A, 0) into the Absolute model, infer the

posteriors for all model parameters and set them as the virtual new prior.

4. Select item B, again according to Abs, but this time using the virtual prior as

prior.

The insight behind this mechanism of constructing the relative question is that the

two items the user is asked to give a relative preference on should be relatively far apart

in the latent embedding, so that (i) the system can learn users’ preferences effectively

and (ii) the user is not forced to choose among very similar items. This diversity

enforcing mechanism is inspired by the approach in [39].

The two methods introduced here differ only in the way the feedback is incorporated

into the Absolute model. Abs Pos incorporates only positive information while Abs Pos

& Neg incorporates both positive and negative information. For example, assume that

the user preferred item B to A. Then, Abs Pos incorporates only the observation (i,

B, 1), interpreting the relative preference on the preferred item B as a like for B. In

contrast, Abs Pos & Neg incorporates two observations: (i, B, 1) for the preferred item

and (i, A, 0) for the less preferred item. This can be seen as a variant of the “sparring”

approach to dueling bandits [12], which samples item pairs and updates the model for

both items as if an absolute reward were observed.

Pairwise Model, Relative Questions.

The third method for selecting relative questions, Pairwise, uses the Pairwise model

that directly takes pairwise preferences as input, to generate the relative question and

incorporate the observations. Thus, the user’s relative feedback is incorporated into the

model without any intermediate transformation, i.e., as an observation (i, B, A) when

B is preferred over A.

The Pairwise method picks A exactly as in Abs, and for item B, inspired by the

dueling bandit approach in [185], it picks the item with the largest probability of being

preferred to item A. We instantiate the latter by selecting the item with the maximum
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noisy difference from item A (j∗):

item B = h∗ = arg max
h∈I

ŷihj∗ (5.7)

For the selection of item B, any question selection strategy besides TS illustrated here

(except for MinT, MaxT), can be employed exactly as in Table 5.3, with the difference

that the noisy difference distribution should be used.

Incorporating the ‘Neither’ Option. Preliminary experiments showed that when the

method asks the user to give a relative preference on two items that he dislikes, forcing

him/her to choose one could mislead the model about the users preferences. Thus, we

adjusted all methods so that in such a case the user can specify that he likes neither. We

implemented this by (i) incorporating two dislikes in Abs Pos & Neg and (ii) omitting

the update in Abs Pos and Pairwise.

5.4 Experimental Setup

We now describe our overall empirical setup, used for the experiments in the next two

sections.

Setting. One main difficulty of evaluating conversational recommenders is that it

requires the ability to have access to user reactions to any possible system action. We

address this requirement using generative user models. The first user model is con-

structed synthetically and is used to validate our model (Section 5.5). The second is

instantiated from real user preferences, collected via a user study (Section 5.6).

All experiments consist of an offline and an online phase. During the offline phase,

the model is presented with data where M users interact with N items. In the subse-

quent online phase, the model is used to interact with cold-start users, asking questions

from the pool of the N offline items.

We varied the number of questions from 0 to 15 and report the model’s performance

after each question. In practice, recommendations could be given after fewer questions,

could be integrated with initial recommendations, or could be spread out over several

interactions with a given user.

Research Questions. Our experiments are designed to address the following key
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questions:

1. Can our model adapt to the user’s preferences?

2. Does our model learn effectively under either absolute or relative feedback?

3. Which relative question method performs better?

4. Is absolute or relative feedback more effective?

5. Does the offline initialization step help?

6. Which question selection strategy is more effective?

Metric. To answer each of these questions, we need some measure of evaluating the

effectiveness of our framework. Given that the goal of preference elicitation is a good

recommendation list adhering to the user’s preferences, we use Average Precision@top

(AP@top) as our evaluation metric (Section 2.4), setting top to 10.

We report the average and 95% confidence intervals of AP@10 over all cold-start

users. Higher value (closer to 1) of AP@10 implies better recommendation list. Results

in additional metrics, such as ratio of correctly ranked pairs and mean reciprocal rank,

were omitted as they showed similar trends.

5.5 Learning Synthetic User Type Preferences

We begin our experiments with an intentionally simplistic example of restaurant recom-

mendation, as real world high-dimensional data are difficult to visualize. The example

is meant to demonstrate concepts of our model and to illustrate the effectiveness of

our approach to unlearn initial prior beliefs and tailor recommendations to specific user

types, answering the first question affirmatively.

In our framework, we first use observations to learn an offline embedding for users

and items in the same low-d space. Here, we generated the offline observations by con-

sidering types of users and restaurants as follows:

Restaurant types %

expensive 15%

cheap & spicy 5%

cheap & not-spicy 10%

only cheap 35%

only not-spicy 15%

only spicy 20%

User types %

Like expensive 20%

Like spicy 15%

Like not-spicy 25%

Like cheap 30%

Like only not-spicy 5%

Like only spicy 5%
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We generated N = 200 restaurants, and M = 200 users. For each offline user,

according to their type, we sampled 10 items from their liked category as likes and

10 items from the rest of the categories as dislikes. We used this intentionally simple

synthetic setup to evaluate various parameter choices, and we show results for σ2
1 = 10,

σ2
2 = 0.5, ε = 0.1. To allow visualization, we considered only two latent traits (d=2) for

this example. We see that in the learned embedding, the first trait indicates spiciness,

while the second the price.

In the same space, an embedding for users is also learned (not shown to avoid

clutter). The average trait vector over all users is shown with a red cross. This becomes

the initial trait vector for the cold-start user. Considering also the learned items’ biases

and the average user bias (not shown here), the system constructs an initial estimate of

the noisy affinity distribution of the incoming user about all items.

Based on the offline observations, the learned prior for this affinity distribution favors

user types which were popular in the offline data. The task of selecting restaurants for

online users resembling the mean offline user is easy, as the prior already captures

valuable information. As Fig. 5.1, bottom right panel shows, even with no questions, a

close to perfect recommendation list can be given for Liking not-spicy users. Similar is

the trend for the Liking cheap users (not shown).

In contrast, when the user is of a type that was rarely seen during the offline phase

(e.g., expensive, shown in Fig. 5.1, top right panel), the online recommender has to col-

lect observations that move away from more popular types. The trends for Liking spicy,

Liking only-spicy, and only not-spicy user types are similar to the Liking expensive. For

these types, the model (all four approaches) starts with AP@10 close to 0, but after

every question asked, unlearns the initial wrong prior beliefs, and learns the specific

user types’ preferences. For the results reported, we considered 60 cold-start users of

each type and used TS for the question selection.

All methods learn effectively across all user types, with minor differences (Fig. 5.1,

left) answering the second question positively.
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Figure 5.1: Results on synthetic restaurant data, across user types (left), and two of
the user types (right).

5.6 Results on Real Data

Here, we turn our attention to a real-world setting to address all research questions in

the context of ‘where to dine in Cambridge, UK’. For the offline initialization of our

framework, we use real users’ online search behavior in a commercial search engine.

We use the insights from Section 5.2 to design a user study that is used to collect

real restaurant preferences for Cambridge. The collected responses serve as a basis for

evaluating our online recommendation methods. We sketch a novel two-step approach

to infer ratings for all restaurants, apart from those asked in the study. We extensively

evaluate our choices for the recommendation pipeline.

5.6.1 Search Data for Offline Initialization

We start by describing the data which serve as our offline user-restaurants observations,

based on which we learn the embedding used to warm start the question-asking phase.

This data is obtained by identifying restaurant review pages for restaurants in Cam-

bridge (UK) on a major restaurant review service provider. Next, we filter the query

and click logs from a major commercial search engine to find (anonymous) cookies that

mark a single PC accessing a sequence of these restaurant pages. Each cookie is taken

to be a distinct user, and all visits on restaurant review pages are considered to be
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indicating the user liking the restaurant.4

In particular, taking logs from 26 March to 26 April 2015, we identified 3,549 cook-

ies (users) who accessed at least one of the 512 distinct Cambridge restaurant review

pages identified on the review service provider. This resulted in an index of Cambridge

restaurants, each one visited by at least one user. Augmenting each of the restaurants

with all known links and metadata associated with it in a proprietary restaurant index,

and selecting a further three months back in each of those users’ search histories, we

recorded every interaction of these users with these restaurant links. During the total

four-months search history of the users, we recorded interactions with 289 unique restau-

rants out of the 512 Cambridge restaurants. The total number of unique user-restaurant

interactions recorded is 9330.

Thus, our offline data consists of M = 3549 users, N = 289 restaurants, and 9330

positive observations (1). To introduce dislikes (0) to the rating matrix as well, for

every user i who has liked n+
i items, we sampled uniformly at random n−i = min(10, n+

i )

restaurants as dislikes.

To learn the offline embedding, we set the hyper-parameters to the combination that

achieved the highest pairwise accuracy in the offline observations: d = 4 (i.e., 4 latent

traits), σ2
1 = σ2

2 = 10, ε = 0.1.

5.6.2 User Study as Basis for Online Evaluation

One of the issues of evaluating a conversational recommender is that one needs to know

the user’s ground truth on the space of all items (and questions). To obtain this,

one needs to implement an interactive recommender asking questions to real users and

receiving their responses. As an intermediate step, we conducted a user study and used

the collected responses as ground truth for online users.

In the user study conducted, each participant filled in an anonymous web question-

naire about their preferences on a pool of restaurants in Cambridge, UK. The partici-

pants were asked “would you consider restaurant X for your next Friday night dinner?”,

labeling each restaurant with a binary label (yes/no). These responses comprise our

ground truth.

For the pool of Cambridge restaurants we carefully selected ten restaurants, diverse

in various features (as identified in Section 5.2). We recruited twenty eight individuals

4 Though URL visitation is a weak positive signal, the experiments indicate it is a reasonable proxy for

interest.
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for the study. Given the anonymity of the questionnaire (in order to encourage truthful-

ness in the responses), demographic information was not recorded. However, the larger

pool of individuals from which the participants were drawn (65 people working in a

research lab) varied in factors such as age, job level, income, time spent in Cambridge.

Each participant was presented with the questionnaire about the same restaurants,

but with varying order to avoid presentation bias. The participants were advised to

visit the restaurant webpage when unfamiliar with the restaurant.

5.6.3 Obtaining Ground Truth

In our user study, we obtained restaurant labels for 10 out of the 289 Cambridge restau-

rants present in the offline data, for 28 participants. However, for reliable evaluation we

need labels for the entire item space (rather than limiting our methods to ask about just

these 10 restaurants). Therefore, we introduce an approach to fill in complete ground

truth labels. Also, to increase the diversity of the user space, inspired by [110], we used

bootstrapping to obtain 50 cold-start users based on the 28 participants’ ground truth.

In particular, for each cold-start user:

1. Randomly sample one of the 28 participants.

2. Observe the sampled user’s labels on the pool of 10 restaurants asked in the user

study.

3. Infer user’s traits ui (prior= learned embedding in 5.6.1).

4. Sample ũi ∼ ui. Set this to be the new prior of ui.

5. With this prior, infer the ratings ri distribution.

6. Sample ratings from their distribution r̃i ∼ ri.

In this way, for each bootstrapped user we obtain a complete rating list for all 289

restaurants that is consistent with the user study labels of some user, yet is perturbed

to account for variety in real user populations.

As far as we are aware, this approach for filling in the missing ratings is novel. It gives

us ground truth as close to real as possible given the resources available. Alternatives

would be exhaustive labels (not feasible for our study), or rejection/importance sampling

(only effective when leveraging logged exploration data from large-scale systems, e.g

[104]).
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Figure 5.2: Differences between relative feedback models (left); and comparing absolute
and relative feedback (right).

5.6.4 Results

Having obtained the offline embedding and the online users’ ground truth for all items,

we now present our experiments on a real restaurant recommendation scenario with the

focus of answering the remaining research questions. Each of these questions investigates

a separate component of our continuously learning recommender system.

Which method for relative questions is better?

Recall that we proposed three approaches for modeling relative feedback. The results of

the three methods’ comparison are shown in the left panel of Figure 5.2. These results

were obtained using TS for question selection and start from the offline embedding. We

see no significant difference among the methods during the first few questions. After

only 2 questions, all methods significantly improve over the initial performance of .584 to

respectively .734 (Abs Pos), .780 (Abs Pos & Neg), and .684 (Pairwise). However, as

we ask more questions, Abs Pos & Neg forces negative observations on liked restaurants,

thus causing the method to degrade the ranking. Overall, Abs Pos is the most effective

method for relative questions.

Are absolute or relative questions better?

To answer this question, we compare the performance of the absolute-question asking

method (Abs) with the best relative-question asking method (Abs Pos). The results are



103

0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0
A

P
@

1
0

  
/ 

 #
q
u
e
st

io
n
s

Abs (Prior)

Abs (Offline Init)

0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

A
P
@

1
0

  
/ 

 #
q
u
e
st

io
n
s

Abs Pos (Prior)

Abs Pos (Offline Init)

Figure 5.3: Impact of offline initialization on performance for absolute (Abs, left) and
relative feedback (Abs Pos, right).

shown in the right panel of Figure 5.2. Until 2 questions, both methods have almost

identical performance. But, after 5 questions, Abs performs significantly better than the

relative feedback method, and achieves close to perfect performance after 15 questions

(AP@10 = .975). We hypothesize that this result can be explained by the fact that our

offline embedding favored absolute feedback.

Although our result shows that very high accuracy can be achieved when users

provide accurate feedback on absolute questions, in practice this may not always be

possible. Psychological effects such as anchor bias [89] can lead users to implicitly

compare items, lowering the quality of absolute feedback. When this is the case, our

result shows that high performance can be achieved with relative feedback as well.

Does offline initialization help?

Next, we investigate the impact of model initialization, i.e., initializing the online rec-

ommender with an initial offline embedding, compared to starting from a generic prior.

We present the results of this comparison in Figure 5.3 both for the absolute (Abs) and

the best relative feedback model (Abs Pos), in the left and right panel correspondingly.

Our hypothesis is that the offline embedding learned from the weakly labeled data

of a search log captures sufficient information to helpfully constrain continued learning,

even if it does not exactly match the structure that underlies online users. Indeed,

Figure 5.3 demonstrates great performance improvements when initializing the models

from this embedding over generic prior initialization. By placing the new users as
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the average offline user, performance increases from .217 to .584, even without asking

any questions. As the recommender collects more responses, performance continues to

improve in both cases.

One observation is that the uninitialized system can ultimately achieve high per-

formance, and for Abs Pos (Prior) even pass the offline initialized system. However,

this is only achieved after many questions (here: 14). The phenomenon is nevertheless

interesting, as it may point to a bias-variance trade-off. Starting from the generic prior

allows the system to eventually perfectly fit a given user’s preferences, however, learning

takes a long time because there is no initial structure to constrain learning outcomes.

We conclude that using offline initialization is highly beneficial.

Which question selection strategy is best?

In Figure 5.4 we report the comparison results of the various question selection strategies

of Section 5.3.3 (except MaxV whose performance almost coincides with UCB), for the Abs

and Abs Pos methods initialized with the offline embedding.

For the Abs model (Figure 5.4, top), we observe that: (i) as expected, lowest AP@10

is achieved by MinT, (ii) Random learns slowly, likely because it fails to focus on more

promising items for effective learning, and (iii) all remaining strategies perform equally

well. We hypothesize that Greedy performs well thanks to the offline embedding, along

with the online updating of all parameters after each response.

Turning to Abs Pos (Figure 5.4, bottom), the best performing strategies are those

that encourage more diversity across the questions of the interactive session, namely

the bandit-based ones and Random. Greedy and MaxT are the worst performing ones,

following MinT. Our insight why this is the case is that they tend to select questions A

vs B, followed by A vs C, etc. when A is preferred. Given that there is no construction

encouraging B and C to be diverse (such as sampling or taking into account uncertain-

ties), the questions focus on comparing parts of the embedding which are similar across

questions, thus preventing truly effective learning.

Overall, we find that the bandit-inspired strategies perform the most robustly,

achieving top performance across models. In the classic bandit setting, these approaches

systematically balance the need to explore new solutions with the need to reap the re-

wards of what has already been learned. Here, we find that similar principles allow

these strategies to collect user feedback that balances the need to not discard any areas

of the latent space prematurely with the need to focus questions on the most promising



105

areas. This insight is important because it shows that bandit-based question selection

strategies can lead to benefits that go beyond the typical bandit problem.
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Figure 5.4: Performance of question selection strategies for: Top: absolute (Abs); Bot-
tom: relative (Abs Pos) models.

Discussion

All our results show that our methods enable effective learning from interactions with

their users, under either feedback type, answering positively the first two questions.

We show substantial recommendation performance improvements over the perfor-

mance we would get without adapting to the user; by 25% after only 2 questions.

Although our underlying model can be augmented with external features [160], one
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key advantage is it does not need them. It learns online both the user’s and the items’

latent traits. Together with [112] and [184], our findings corroborate the effectiveness

of latent-feature interactive recommenders.

A novel insight is that taking into account the uncertainties in the learning of both

the item and the user embedding, we can adapt to the specific user’s preferences, under

a certain context. This answers to the question posed by [184] and is key for allowing the

system to learn both the user’s profile and the questions’ effectiveness in a contextual

manner.

We have demonstrated effective learning from feedback present in many interactive

settings. Thus, our approach is a good candidate for online learning across domains.

5.7 Related Work

The presented work in this chapter builds on work in multiple active research areas. We

review recent work in the most closely related ones.

Online Recommenders. Although most works on recommendation have focused on

offline recommenders, a recent line of work has posed the problem in a contextual bandit

formulation [104, 165, 169], where items are seen as arms, users as contexts, and the

goal is to explore the arm space in order to exploit the best performing arm for a given

context (section 2.1). Most work in this area relies on the availability of user/item

features and assumes that the reward of an arm for a given context is a linear/logistic

function of the concatenated feature of arm-context [104, 105, 165]. [169] uses Gaussian

process kernel functions on top of contextual bandits to allow effective feedback sharing

among similar contexts and arms.

Using the collaborative filtering (CF) point of view, [30] introduced an ε-greedy

online user-user neighbor-based CF method. The first latent-factor online recommender

was introduced in [184], which uses bandit strategies on top of probabilistic matrix

factorization (PMF). However, while [184] fixes the item latent factors to those learned

offline, formulating the problem as a contextual linear bandit, our method fully online

lears all user and item parameters, including the biases; [184] can be seen as a special

case of our framework. In [91], the authors extend Thompson Sampling for PMF with a

Kalman filter to track changing preferences over time. This work is orthogonal to ours.

Preference Elicitation. The problem of eliciting user feedback has long been of

interest for a variety of tasks (e.g [52]). To elicit the preferences of an existing or new
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user (cold-start), a range of methods have been proposed, varying from interview-based

strategies (e.g [162]), to asking users to rate some items, to active learning [145], entropy

minimization [149], picture-based [123], and explore-exploit strategies on top of a latent

factor model [184]. Our work is the first to elicit users’ preferences by utilizing either

absolute or relative feedback in a fully online setting.

Interactive Recommenders. Many works (critique-based [40], constraint-based [64],

dialog, utility-based recommenders [113]) have emphasized the importance of interactiv-

ity in recommenders so that the user has a more active role over the recommendations.

However, these works rely on prior modeling of the items’ features, preventing the flex-

ibility in adaptation to a different domain; thus a comparison with them is out of the

scope of this work.

In contrast, our work, in the same spirit as a recent line of work [112, 75] initiated by

[184], learns online the latent factors from PMF and uses these to do interactive prefer-

ence elicitation. These methods, although close in principle, have significant differences

from our work. Briefly, in [112], the authors focus on set-based feedback and propose a

progressive building of the user’s latent factor in each question. In contrast, our work

focuses on absolute and relative feedback on (pairs of) items, and uses a preference elic-

itation phase fully integrated with the online updates of the PMF model. The method

of [75] focuses on choice-based feedback and updates online only the user’s latent factor.

Neither of [75, 112] balance the explore-exploit trade-off.

5.8 Summary

In this chapter, we proposed a novel view of recommendation as an interactive process.

Like human recommenders, we envision recommender systems that can converse with

new users to learn to know their preferences.

We develop such a conversational recommender, using restaurant recommendation

as our motivating example. We started by examining restaurant related queries issued

in a commercial search engine. Using these insights, we conducted a user study to elicit

ground truth for evaluating our system. We proposed a conversational recommender

model that is theoretically well anchored in probabilistic matrix factorization models

[118, 160]. We showed how such models can be extended to support continuous learning.

We empirically evaluated our approach using the ground truth based on real dining

preferences elicited through our user study.
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Our results have important implications for the development of conversational rec-

ommender systems. First, we demonstrated that best performance can be achieved with

absolute questions. However, even in settings where only relative feedback is available,

effective learning is possible. Second, we proposed a systematic approach to initializ-

ing conversational recommenders with an offline learned embedding, boosting greatly

the performance even when only weakly supervised data is available. Third, we iden-

tified question selection strategies that can elicit feedback for very effective learning.

Together, these insights pave the way towards conversational recommenders.

A promising future direction is to extend conversational recommenders to use re-

inforcement learning approaches, for capturing longer-term dependencies [110]. The

modular structure of our framework allows various choices in a plug-and-play-manner,

considering different feedback types, underlying probabilistic models etc., with the goal

of building a suite of conversational recommenders for a variety of settings.



Chapter 6

Recommendation as

Collaboratively Learning to

Interact

Which interactive recommendation systems are the most effective?

Learning to interact with users and discover their preferences is central in most

web applications, with recommender systems being a notable example. From such

a perspective, merging interactive learning algorithms with recommendation models

is natural. While recent literature has explored the idea of combining collaborative

filtering approaches with bandit techniques, there exist two limitations: (1) they usually

consider Gaussian rewards, which are not suitable for implicit feedback data powering

most recommender systems, and (2) they are restricted to the one-item recommendation

setting while typically a list of recommendations is given.

In this chapter, to address these limitations, apart from Gaussian rewards we also

consider Bernoulli rewards, the latter being suitable for dyadic data. Also, we consider

two user click models: the one-item click/no-click model, and the cascade click model

which is suitable for top-K recommendations. For these settings, we propose novel

machine learning algorithms that learn to interact with users by learning the underlying

parameters collaboratively across users and items. We provide an extensive empirical

study, which is the first to illustrate all pairwise empirical comparisons across different

interactive learning algorithms for recommendation.

Our experiments demonstrate that when the number of users and items is large,

109
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propagating the feedback across users and items while learning latent features is the

most effective approach for systems to learn to interact with the users.

6.1 Introduction

Learning to interact with users is at the core of many web applications, ranging from

search engines, to recommender systems, and more [85]. The reason is that these systems

exhibit the user-system interaction loop: every time a user uses the system, the system

has decided to show a list of items to the user, from which the user selects zero, one,

or more items; then, the system gets the user’s feedback (in terms of clicks, time spent,

and other signals) to update its model of the user’s preferences—which might affect the

system’s future decisions on this and other users.

This inherently interactive nature of web systems creates the need for machine learn-

ing models that learn how to interact with users over time; instead of static models

trained based on offline data, that are periodically retrained to incorporate newly ac-

quired information. Such interactive learning models are largely composed of two parts:

which technique is used to balance the need for exploring user preferences vs. exploiting

what has been learned so far, and what are the underlying model assumptions for the

user reward?

In this chapter, inspired by recent works which pose recommendation as an interac-

tive learning problem [104, 106, 184, 91], we build on two good ideas, corresponding to

each of these two parts. First, given that the recommender system sequentially learns

about its users and items from repeated interactions, we make use of the construction of

multi-armed bandits [152]—we particularly focus on Thompson Sampling thanks to its

good empirical guarantees [38]. Second, the collaborative filtering principle, i.e., similar

users tend to like different items similarly, is a powerful tool which can be used to inform

the underlying interactive learning models. By merging the two ideas, one can develop

algorithms which learn to effectively interact with users, by propagating the user feed-

back across users and items. The construction, although illustrated in the context of

recommender systems, can be used in other web systems where personalization plays

a key factor, ranging from medical interventions, to personalized search engines, and

more.

Particularly, our contributions are three-fold:

1. As most user interaction data are implicit and are an important signal for learning
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recommendations [81, 87], we develop new algorithms well-suited for Bernoulli

rewards (Sections 6.4.1, 6.4.2).

2. Establishing the connection among one-item and cascade list recommendation

algorithms (Section 6.3), we offer the novel construction of collaborative cascade

ranking bandits (Section 6.4.2).

3. Empirical evaluation carefully considers both the one-item and the cascade list

setup, under both Gaussian and Bernoulli rewards; as far as we know, this is the

first study making all such pairwise comparisons (Section 6.5).

Our extensive experiments show that for both the one-item and cascade list setup,

when the number of users and items in the system is large, (1) collaborative bandits

outperform running individual bandits per user; and (2) collaboratively learning across

users indeed outperforms the contextual linear and clustering principle in the interactive

learning setting.

6.2 Key Concepts & Overview

We start with a discussion of some useful concepts.

6.2.1 Collaborative Filtering

Let M be the number of users, N the number of items, and R ∈ RM×N the rating

matrix of users’ ratings on items. According to the latent-factor collaborative filtering

assumption (Section 2.2), the matrix can be approximated by the inner product of two

low dimensional latent factor matrices: U ∈ RM×d and V ∈ RN×d, which represent the

latent features of the users and items respectively [148, 147]

6.2.2 Recommendation as Learning to Interact

Recommender systems sequentially learn the users’ preferences based on repeated in-

teractions with them. Let’s assume that at each interaction round, a user, randomly

drawn from the user population, comes to the system. Then, the system-user interaction

model is characterized by two steps:

• step 1: the decision step, where the system decides to show an item (or list) to

the user, on which the user gives feedback (reward) explicitly or implicitly; and
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• step 2: the model update step, where the system updates its parameters using

the user-provided feedback.

The system’s goal is to select items so that maximum cumulative reward (or minimum

cumulative regret) over the total T interaction rounds is achieved.

Given the sequential nature of the interactions, every user can be seen as a multi-

armed bandit [152]—that is, for every user who interacts with the system, the parameters

underlying the user’s reward model have to be sequentially learned. The arms or actions

of the user-bandit are the candidate items for recommendation. In the rest of the

chapter, we will use the terms users/bandits and items/arms interchangeably. For a user

i ∈ U , let Li be the set of active arms, which are the candidate items for recommendation

(noting that the cardinality of Li can be less than N). The reward of item j for a user

i is denoted by rij and captures the feedback (e.g., click/no-click, buy/not-buy, rating)

user i gives on item j. Rather than the reward matrix R = [rij ] being arbitrary, we

will assume that R has a parametric form, and specific rewards rij depend on the user

i, the item j, and the unknown parameters θ∗ (such an assumption will be empirically

evaluated in Section 6.5).

6.2.3 User Reward Models

We assume that the rewards of the arms per bandit are stochastic [56]. This allows for

a flexible setting where user feedback is noisy, as is the case in various recommendation

scenarios, including news and content recommendation [7]. We consider the following

two types of rewards:

• Gaussian Rewards: the reward of item j for user i is modeled with a Gaussian

distribution rij ∼ N (µ∗ij , σ
2
ij), rij = µ∗ij + εij , where εij ∼ N (0, σ2

ij) is the noise

and µ∗ij is the average rating of user i on j.

• Bernoulli Rewards: suited for settings where a user gives binary feedback (ex-

plicit, e.g., thumbs up/down on a song, or implicit e.g., click/skip on a news

article). Let π∗ij ∈ [0, 1] be the probability that user i likes an item j. Then, we

model the reward of user i on j with a Bernoulli distribution rij = Ber(π∗ij), i.e.,

rij = 1 with probability π∗ij and rij = 0 with probability 1− π∗ij .

In both reward models, the reward of item j ∈ Li for every user i is modeled based on a

true parameter θ∗ij (π∗ij for Bernoulli rewards or µ∗ij for Gaussian rewards). If we knew
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the true value of θ∗ij , at every round the system would pick for incoming user i the item

that maximizes the expected reward, maxj E(rij |i, j, θ∗ij).

6.2.4 Random Probability Matching Principle

Since we do not know the true value of the underlying parameters θ∗, we maintain

a distribution over the parameters P (θ). If we wanted to maximize the immediate

reward in a pure exploit setting, one would choose for user i the item that maximizes

E[rij |i, j] =
∫
E[rij |i, j, θij ]P (θij |·)dθij . However, to balance the explore-exploit (EE)

trade-off, Thompson Sampling (TS) [167] uses the probability matching heuristic, and

chooses for bandit i an action j according to its probability of being optimal [38], i.e.,

with probability:∫
1

[
E[rij |i, j, θij ] = max

j′∈Li
E[rij′ |i, j′, θij′ ]

]
P (θij |·)dθij ,

where 1[·] is the indicator function, the E inside the integral denotes expectation over

the stochastic nature of the rewards, and the integral denotes expectation over the

parameter distribution. The integral can be approximated by drawing for every arm j a

sample from the corresponding posterior P (θij |·). TS chooses the arm with the largest

drawn posterior sample.

Various EE strategies such as UCB [18], ε-greedy or TS have been used in the

different works posing recommendation as a learning to interact problem [104, 106, 184,

91]. Throughout this chapter, we use TS as it can be efficiently implemented and it has

been shown to have competitive empirical performance [38].1

6.2.5 Click Models

• One/no-click: a single item is presented to the user and the user decides to

click or skip (or to explicitly like or dislike). We interchangeably refer to this as

one-item.

• Cascade Model: originally introduced to study web search behavior, it models

the interaction of the user with a top-K list [54]. It assumes that the user examines

the list top to bottom, and clicks one item as soon as they find an interesting one.

1 Our goal is not to compare TS with other EE strategies, or to compare alternative ways of posterior

sampling; rather, keeping TS as the EE strategy of our choice, we aim to compare the interactive

learning recommendation algorithms.
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The user decides whether to click on each item before moving to the next, and the

click probability on each item is independent from the rest. Thus, if a user clicks

on item j at position k (jk), they dislike the items on the above k − 1 positions,

and ignore the items from k + 1 onward. The probability of clicking item jk is

cjk = rjk
∏k−1
l=1 (1 − rjl), where rj is the probability of clicking item j, and 1 − rj

is the skipping probability.

6.3 Learning to Interact with Users

Recommender systems that learn to interact with users balance the need to learn new in-

formation about the user (explore) while also focusing on what has already been learned

about their preferences (exploit). They achieve this for a user i in the following way.

They start with a prior distribution over the latent parameters of the reward distribu-

tion p0(θij) for every item j. Typically, a conjugate prior of the likelihood p(D|θij , ·)
is used, where D is the collection of the thus far observed rewards, so that the poste-

rior distribution p(θij |D, ·) ∝ p(D|θij , ·)p0(θij) is of the same form as the prior. Next,

for every item j the system gets a sample from the posterior θ̃ij ∼ P (θij |D, ·), and

shows the item that results in the largest reward r̃ij , estimated as a function of θ̃ij .

The user gives feedback on the shown item ĵ, and based on this feedback the system

updates its belief about the underlying parameters of the reward distribution. In the

next interaction round the updated posterior distribution becomes the new prior. The

wider the posterior distribution, the more the system explores. As more feedback is col-

lected, the posterior distribution P (θij |D, ·) becomes more peaked and shifts to better

capture the mean of the true underlying parameters θ∗ij—thus, the system exploits more.

One/no-click vs. Cascade list. Algorithms 3 and 4 show the discussed procedure

for the one/no-click model and the cascade list model respectively. Comparing the two

algorithms, it is easy to establish the connection among learning to interact algorithms

for one-item and cascade list recommendation. The cascade list recommendation al-

gorithms differ from the click/no-click ones in two aspects: (i) they select the top K

items instead of just the top one, and (ii) the model updates its parameters based on

skips/clicks for all items up until and including the clicked one; the model does not

perform any update for the items after the click. Later in the chapter, we will exploit

this connection to create novel learning to interact algorithms for the cascade model.
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Algorithm 3 TS-based One-Item Recommendation

Require: hyper-parameters of the prior P 0(θ).
1: for round t = 1, . . . , T do
2: User i ∼ Uniform(1,M) comes to the system.
3: for j = 1, . . . , |Li| do
4: Draw θ̃ij ∼ Posterior distribution P (θij |D, ·).
5: end for
6: ∀j: estimate reward as a function of the sampled parameters r̃ij = f(θ̃ij , ·).
7: Show the item ĵ = arg maxj r̃ij .
8: Observe reward riĵ : (i) for Bernoulli: ∼ Ber(θ∗

iĵ
), (ii) for Gaussian: ∼ N (θ∗

iĵ
, σ2

ij).

9: Update parameters θ.
10: end for

Algorithm 4 TS-based Cascade List Recommendation

Require: hyper-parameters of the prior P 0(θ).
1: for round t = 1, . . . , T do
2: User i ∼ Uniform(1,M) comes to the system.
3: for j = 1, . . . , |Li| do
4: Draw θ̃ij ∼ Posterior distribution P (θij |D, ·).
5: end for
6: ∀j: estimate r̃ij = f(θ̃ij , ·), sort items based on r̃ij , and show the top K items.
7: Observe feedback on position Ct (at most 1 click).
8: for l = 0, . . . ,min(Ct,K) do
9: Update parameters for item ĵ at position l.

10: end for
11: end for

6.3.1 Parametric Assumptions for User Rewards

The various learning to interact recommendation algorithms differ only in their paramet-

ric assumptions for the reward distribution; specifically in the input prior distribution

(line 0), the posterior distribution (line 4), the definition of reward as a function of

the parameters θ (line 6), and the way they update the parameters (line 9). Some

parametric assumptions are:

1. Independent [38]: The reward parameters of the items j, j′ of a given user i are

uncorrelated, i.e., θ∗ij 6= θ∗ij′ . Also, the parameters for every user i are independent

from the parameters of every other user i′ ∈ U .

2. Contextual Linear [104, 105]: Every arm j is represented by a feature vector

xj ∈ Rd representing the context. For a user i the rewards of the different arms

are correlated via a common parameter vector θ∗i ∈ Rd capturing how important

each dimension of the context is: E[rij ] = h(θ∗Ti xj), where for Gaussian rewards
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h is the identity function, while for Bernoulli rewards it is the sigmoid function

σ(·) = 1
1+exp(−·) .

3. Contextual Clustering [125, 68, 69, 93]: This case assumes that there exist clusters

of the user population which have similar rating behaviors over the items, and

contextual features xj ∈ Rd are available for each item j. All users who belong

to the same cluster c will share the same reward parameter vector θ∗c ∈ Rd:
E[rij ] = h(θ∗Tc xj). The parameters of cluster c are independent from those of any

other cluster c′.

4. Low Rank CF [51, 91, 184]: Using the CF view and particularly the low rank

assumption (Section 6.2.1), both users and items can be represented by latent fea-

ture vectors. Concretely, considering ∀i ∈ U ri ∈ RN the vector of true underlying

rewards, we assume the reward matrix R ∈ RM×N is drawn from a parameter ma-

trix Θ∗ which is a function of a low rank matrix. Thus, if u∗i denotes the i-th row

of the true latent user matrix U∗ and v∗j the j-th row of the true underlying latent

item matrix V ∗, E[rij ] = h(u∗Ti v∗j ).

Note that with the independent assumption, if ∀i ∈ U , |Li| = N , M ×N parameters

need to be learned. In contrast, the other parametric models do parameter sharing,

coupling the items (and the users/clusters). Contextual linear and clustering models

assume that contextual features are available and informative, which is not always true.

Also, while both clustering and CF models share parameters among users with similar

rating patterns, the former capture coarser user preferences represented by the clusters,

whereas the latter can collaboratively learn finer grained latent preferences.

6.3.2 Existing Algorithms and Outline

For One-Item Recommendation: As far as we know, the independent assumption has

been employed only within the context of a single multi-armed bandit [38], not as a

baseline in multiple user-bandits for recommender systems—we have derived Gauss/

Bernoulli Independent TS. Using the contextual linear principle has led to the pi-

oneering work for applying bandits on news recommendation, resulting in LinTS and

LogTS for Gaussian and Bernoulli rewards respectively [104, 105]. The contextual clus-

tering principle has been applied for Gaussian rewards, resulting in CluLinTS (in Sec-

tion 6.5 we experiment with the variant of [125], but other sophisticated variants exist

[68, 69, 93])—we have also devised CluLogTS for Bernoulli rewards. The CF low rank

principle has been applied on interactive recommenders for Gaussian rewards, giving rise
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to Gauss Low Rank TS [91] (also, the CF principle has been applied using co-clustering

instead of matrix factorization in [106]). In Section 6.4.1, we will offer collaborative

low rank bandits for Bernoulli rewards as well. Its predecessor was Gauss/ Bernoulli

ICF, standing for Interactive Collaborative Filtering, where the items’ latent factors

V are pre-learned and used as contextual features, allowing to pose the problem in a

contextual linear setting [184].

For the Cascade setup: The independent assumption has been applied, resulting to

Gauss/Bernoulli Independent Cascade TS [96]. Also, the contextual linear principle

has been used, leading to CascadeLinTS [186] for Gaussian feedback—we have also

devised CascadeLogTS for Bernoulli rewards. On the one hand, these methods are

suitable for large-scale recommendation data, since the independent assumption does

not scale well when the number of items candidate for recommendation is large (as is

usually the case) [186]. On the other hand, they suffer from the following drawbacks:

they rely on contextual features, and they do not propagate feedback among users, thus

neglecting that similar users tend to like the various items similarly. In Section 6.4.2,

we will apply the low rank CF assumption, giving rise to the novel construction of

collaborative low rank cascade bandits. Also, we have devised Gauss/ Bernoulli ICF

Cascade TS; specifically we have formulated the problem as a separate CascadeLinTS or

CascadeLogTS per user, and used as contextual features the pre-learned latent attributes

of the items.2

The parameter updates of the existing and novel interactive recommendation algo-

rithms are in the Appendix A.1.

6.4 Learning to Collaboratively Interact with Users: Pro-

posed Algorithms

In this section we proceed with our novel contributions on learning to interact with

users by collaboratively learning parameters across them.

In our formulations, we build on two good ideas: (1) collaborative filtering and (2)

interactive learning. The merge of these two ideas is key for efficiently propagating

feedback among users, while at the same time learning the low dimensional embeddings

of users and items on the same underlying latent space. The construction is suited for

2 We omit the development of clustering cascade bandits, as early experiments showed the value of low

rank.
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scenarios where contextual features are not explicitly given, and the fine-grained similar

rating patterns are to be discovered collaboratively.

Although the combination of the two ideas has been explored in [51, 91, 106], we

propose two technical developments: (1) We develop collaborative bernoulli bandits

referred to as Bernoulli Low Rank TS, considering the popular logistic matrix factor-

ization model [87] which is successful for modeling click/no-click data, which are widely

available in recommender systems. This is useful as most recommendation algorithms

for top-K recommendation are powered from implicit type data [81]. (2) Having real-

ized the connection among the one-item and cascade setup (Section 6.3), we develop

collaborative interactive learning algorithms for the cascade setting both for Gaussian

and Bernoulli user reward models.

6.4.1 One-Item Bernoulli Collaborative Bandits

In this setting, we use the low rank CF assumption to couple the probabilities {πij}
across users {i}Mi=1 and items {j}Nj=1. We assume that every entry πij of the matrix

Π ∈ RM×N (i.e., the probabilities of how much each user likes every item) will be esti-

mated by the sigmoid function of the inner product of ui and vj . The sigmoid function

is used to map the entries to the range of [0, 1] as they represent probabilities. Particu-

larly, Bernoulli Low Rank TS assumes that E[rij ] = σ(uTi vj) = 1/(1 + exp(−uTi vj)).

The model considered for parameter estimation follows the modeling assumptions of

probabilistic logistic matrix factorization [87] and is also related to [58]. At step t:

∀i : uti ∼ N (û
(t−1)
i , St−1

ui ) ∀j : vtj ∼ N (v̂
(t−1)
j , St−1

vj )

∀ij : πtij = σ(ut
T

i vtj), r
t
ij ∼ Bernoulli(πtij)

The log of the posterior distribution over the user and the item latent features U, V is:∑
i

∑
ĵ

rt
iĵ

lnπt
iĵ

+ (1− rt
iĵ

) ln(1− πt
iĵ

)

− 1

2

M∑
i=1

(uti − û
(t−1)
i )TS

(t−1)−1

ui (uti − û
(t−1)
i )

− 1

2

N∑
j=1

(vtj − v̂
(t−1)
j )TS

(t−1)−1

vj (vtj − v̂
(t−1)
j ). (6.1)
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If we fix the latent item features V and consider a single user i, Equation (6.1)

reduces to a logistic regression problem with parameter vector ui. Given that exact

Bayesian inference for logistic regression is intractable, we use the Laplace approxi-

mation to approximate the conditional posterior of ui with a Gaussian distribution

q(ui) = N (ui|ûi, Sui , ·), where ûi = uMAP
i is the mode of the posterior and Sui is the

Hessian matrix of second derivatives of the negative log posterior [21]. We compute

the mode of the posterior by minimizing the negative log posterior with online gradient

descent ût+1
i ← ûti − ηt∇tui :

∇tui = S
(t−1)−1

ui (ûti − ût−1
i ) + (πt

iĵ
− rt

iĵ
)vt
ĵ
,

where the step size follows the Adagrad rule ηt = 1/
√∑t−1

τ=0∇u2
i,τ . The inverse of Sui ,

denoted as S−1
ui , is constructed online as:

St+1−1

ui = St
−1

ui + πt
iĵ

(1− πt
iĵ

)vt
ĵ
vt

T

ĵ
. (6.2)

using moment matching [21]. Similarly, we approximate the posterior distribution of

the latent feature of items q(vj) = N (vj |v̂j , Svj , ·). In practice, to efficiently compute

the inverse of Sui , Svj , we used the Woodburry matrix identity [176].

Concretely, Bernoulli Low Rank TS proceeds as follows: At every round that user i

interacts with the recommender system, we sample ũi from the posteriorN (ui|ûi, Sui , ·),
and for every arm j ∈ Li, we sample ṽj from the posterior N (vj |v̂j , Svj , ·). We show

the item ĵ = arg maxj ũTi ṽj (as sigmoid is a monotonic function). The user provides

feedback riĵ . Based on this feedback, we update ûi, Sui , v̂ĵ , Svĵ , thus updating the

posteriors. At the next round, the posteriors become the new priors.

6.4.2 Collaborative Cascade Ranking Bandits

Here, we propose a novel algorithm assuming the low rank CF principle for the cascade

list recommendation setting. Recall that the cascade list setting is suitable for systems

learning to interact with users in a top-K list recommendation setup (Section 6.2.5).

We model the reward of an item j for user i with E[rij ] = uTi vj for Gaussian rewards,

and E[rij ] = sigmoid(uTi vj) for Bernoulli rewards similarly to Section 6.4.1.

Gauss/Bernoulli Low Rank Cascade TS proceeds: At every user i-system interac-

tion round we sample ũi ∼ N (ui|ûi, Sui , ·), and ṽj ∼ N (vj |v̂j , Svj , ·) ∀ candidate item



120

j. Sorting the estimated rewards based on the sampled values r̃ij = ũTi ṽj , we present

the list of items with the top K rewards. We observe the user’s click on an item from

the top-K list (if any), and update ûi, Sui , v̂ĵ , Svĵ for every item ĵ at position ≤ the

position of the click using as feedback riĵ = 0 for the skipped items, and riĵ = 1 for the

clicked item.

This new collaborative cascade ranking formulation does not need contextual fea-

tures, and can learn the underlying implicit structure among users and items on-the-fly.

This is what allows for effective propagation of the feedback across items and users via

the learned embedding; and can lead to improved regret performance.

6.5 Experimental Results

We present our experiments with the goal of addressing the two following questions:

1. For one-item recommendation, which TS-based interactive recommendation algo-

rithm is the most effective?

2. For top-K cascade list recommendation, how collaborative cascade ranking ban-

dits compare to the other learning to interact algorithms?

6.5.1 Experimental Procedure

For each question we consider both Gaussian rewards and Bernoulli rewards, using the

corresponding set of algorithms.3

Methods. We compare ten algorithms for the click/no-click setup—five for Gaussian

and five for Bernoulli; and eight algorithms for the cascade click setup—four for Gaus-

sian and four for Bernoulli rewards. Additionally, we included the baseline strategies

of: (i) Random, an explore-only strategy, which at every round, selects for the incoming

user i a random item from the set of active arms Li, and (ii) Low Rank (LR) Greedy,

an exploit-only low rank CF strategy, which at every round, instead of sampling from

the distributions P (ui|ûi, Sui , ·), P (vĵ |v̂ĵ , Svĵ , ·), operates according to the distribution

means ûi, v̂ĵ , following precisely [114].

Evaluation Metric. We evaluate the algorithms in terms of cumulative regret, as

3 A comparison among the two sets though is not applicable, due to the separate reward generation

procedures.
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Dataset # Users # Items # Ratings

MovieLens 100K 943 1,682 100,000
MovieLens 1M 6,040 3,706 1,000,209
Netflix 5,000 500 1,922,815
Yahoo! 6,000 1,000 3,522,232

Table 6.1: Real Data Statistics.

learning to interact algorithms aim to minimize the difference between their actual per-

formance and the optimal performance [152]. Formally, the cumulative regret over T

rounds (Section 2.4) is

RT = E

[
T∑
t=1

rA∗,θ∗ − rAt,θt)

]
, (6.3)

where A∗ is the optimal item/list maximizing the reward at any time t, At what the

system actually showed at round t, and r denotes the reward. Smaller values of RT are

better, with 0 indicating optimal system performance.

Datasets. We used real recommendation data, whose statistics are shown in Table

6.1. Particularly, we considered three movie datasets: MovieLens 100K, MovieLens 1M,

Netflix and a musical artist dataset from Yahoo! (Section 2.6).

Offline to Interactive Setup. Evaluating learning to interact algorithms on offline

datasets, is a known issue and an active research topic [105]. Most public recommen-

dation data, including the ones considered in Table 6.1, contain ratings on user-item

interactions without giving access to the counter-factual response, i.e., how every user

would have interacted with other items, had they been shown to them. Although rejec-

tion sampling and importance sampling techniques have been proposed, they typically

require large-scale exploration data [104, 105]; however, the collected recommendation

data are far from being purely exploratory. Thus, adopting the setup used in other

interactive recommendation works (e.g., [91]), we incrementally showed entries of the

observed rating matrix, as follows:

At the 0-th interaction round, no entry of the reward matrix R has been revealed.

At every round t, we randomly sample one of the users present in the data it to interact

with the system; this can be a user the system has already interacted with in previous

rounds (warm-start), or a new one (cold-start). We consider as the active set of arms for
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user i, i.e., Li, only the items he has rated in the original dataset. The under evaluation

algorithm decides which arm(s)/item(s) to recommend to the user.

Feedback Simulation. We simulate the user’s feedback on the shown item ĵt us-

ing the two reward models discussed in Section 6.2.3. For this, we need access to (i)

the true underlying parameters θ∗ and (ii) for Gaussian rewards, the noise level. For

(i), we performed a transformation of the rating values of the original datasets. The

original MovieLens 100K and 1M contain ratings in a scale of 1 to 5 stars, while Net-

flix and Yahoo! have ratings in a 1 to 6 scale. To set the µ∗ij of Gaussian rewards,

we converted all ratings ≥ 4 to 1 (user likes the item), and < 4 to 0.01 (user dislikes

the item). For Bernoulli rewards, we set the true user probability of liking an item

π∗ij by transforming the original ratings of scale [1, 5 or 6] to the scale [0, 1) so as to

represent probabilities. For this, we used the mapping [4.5, 6] → 0.9, [4, 4.5) → 0.85,

[3.5, 4)→ 0.8, [0.5, 3.5)→ 0.05, [0, 0.5)→ 0 which indicates that the higher the rating,

the more likely the user will click on the item. For (ii), for the one/no-click model, we

set noise σij to 0.5 ∀i, j; in contrast, for the cascade click model we set noise to 0 (1 is

a click, and 0.01 a skip).

Parameter Setting. We set the number of interaction rounds T to 1,000,000. We ini-

tialize the parameters of the prior distributions as follows: For Independent (Cascade)

TS, we set the prior to a broad one, i.e., N (0, 1). For Bernoulli Low Rank (Cascade)

TS, we set the variance of the user and item latent features to 0.1, i.e., σ2
u = σ2

v = 0.1.

For Gauss Low Rank (Cascade) TS, we set σ2
u, σ

2
v to 0.001. These choices were made

as we found that larger variance values can lead to deteriorated performance. In any

method assuming low rank structure, a rank of 2 is used, similarly to [91]. For clustered

bandits, the number of clusters is set to 10. In practice, one should do parameter tuning.

In the Appendix A.2, we explore Low Rank TS’s sensitivity to the various parameters.

6.5.2 Which interactive recommender is the best for one/no-click rec-

ommendation?

Figure 6.1 shows the performance of the learning to interact recommendation algo-

rithms for the one/no-click setup. Results only for MovieLens 1M and 100K (Gauss

and Bernoulli) are shown for brevity. In the Appendix A.3 we include results for all

datasets for completeness.
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(a) MovieLens 1M, Gauss (b) MovieLens 100K, Gauss

(c) MovieLens 1M, Bernoulli (d) MovieLens 100K, Bernoulli

Figure 6.1: Comparison of learning to interact algorithms for the One Item setup w.r.t
cumulative regret. The low rank hypothesis achieves the best performance, except for
MovieLens 100K Gauss, where LinTS is the best.

Low rank vs. Independent.

In all datasets, both for Bernoulli and Gaussian rewards, Low Rank TS is (among) the

best strategies. Particularly, for datasets with a larger number of observations (Movie-

Lens 1M, Netflix and Yahoo!), Low Rank TS seems to couple users and items in the low

dimensional embedding effectively; thus making the value of the low rank representa-

tion more prominent. In these cases, Low Rank TS clearly outperforms Independent

TS (IndTS), whose performance is close to Random. In contrast, for datasets with fewer

observations (MovieLens 100K), the gap between Low Rank TS and Independent TS

closes.
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Greedy vs. TS.

For Gaussian rewards, for MovieLens 100K and MovieLens 1M LR Greedy performs

closely to Low Rank TS—this is due to the small value of noise; while for larger scale

datasets Low Rank TS is the best. For Bernoulli rewards, LR Greedy surpasses Low

Rank TS, indicating that the low rank part is more important than the exploration

part. This happens because we set π∗ij very close to the extremes of 0 and 1.

Latent context vs. Explicit context.

Recall that CluLinTS, LinTS, CluLogTS and LogTS are the only algorithms which use the

contextual information. We evaluate these algorithms’ performance only for MovieLens

100K and MovieLens 1M, as these are the only datasets which contain explicit context.

We used as contextual features the items’ genre features, since it has been found that

genre correlates well with the users’ ratings for these datasets [156]. Every such feature

is represented as an one-hot encoding of the genres characterizing the movie, and has

dimension the total number of genres (19 for MovieLens 100K and 18 for MovieLens

1M).

We can see that for MovieLens 100K, the genre feature is informative enough, as

after about 400,000 interaction rounds LinTS outperforms Low Rank TS. However, for

the larger dataset of MovieLens 1M, even though Low Rank TS does not take advantage

of the explicit context information, it is able to surpass LinTS by learning both user

and item features. For Bernoulli rewards, for both datasets, treating recommendation

as a low rank bandit problem instead of a contextual linear bandit is better.

Comparing the contextual algorithms, we see that for Bernoulli rewards, sharing

feedback among the clusters outperforms having independent LogTS per user for Movie-

Lens 1M, whereas the opposite trend is found in MovieLens 100K. For Gaussian rewards,

in both datasets LinTS is better than CluLinTS, but the performance gap closes for the

larger MovieLens 1M.

Fixing V vs. learning V .

Recall that ICF uses an independent LinTS per user using as contextual features pre-

learned item latent features V . Following [91], for ICF we learn V by performing online

Gaussian/Logistic matrix factorization in the first 20%T of the interaction rounds, dur-

ing which we randomly show an item while updating vj and the user covariance matrix
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(a) MovieLens 100K, Gauss (b) Yahoo!, Gauss

(c) MovieLens 1M, Bernoulli (d) Netflix, Bernoulli

Figure 6.2: Comparison of learning to interact algorithms for the Cascade List setup in
terms of cumulative regret. For larger datasets, the low rank principle for the cascade
ranking setup achieves the smallest regret.

Sui . After 20%T rounds, we fix vj and we show the item ĵ = arg maxj ũTi vj . In all the

datasets, learning the latent features of both users and items via Low Rank TS surpasses

ICF both for Gaussian and Bernoulli rewards.

6.5.3 Which interactive recommender is the best for cascade list rec-

ommendation?

Figure 6.2 shows how collaborative cascade bandits compare to the rest cascade learning

to interact algorithms. Based on results from all datasets (although here we show only

the performance for MovieLens 1M and Netflix for Bernoulli rewards, and for MovieLens

100K and Yahoo! for Gaussian rewards), we observe the following:
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Independent vs. Low Rank.

When enough observations are available (MovieLens 1M, Netflix, Yahoo!), Low Rank

Cascade TS outperforms Independent Cascade TS. But when the number of these

observations is small (MovieLens 100K), Independent Cascade TS is better.

Latent context vs. Explicit context.

For MovieLens 100K, using the genre feature as context is enough to achieve quite good

performance; particularly, for Gaussian rewards, CascadeLinTS is the best performing

strategy. In contrast, in the larger dataset of MovieLens 1M, learning on-the-fly the la-

tent attributes of users and items via Low Rank Cascade TS results in a smaller regret

compared to CascadeLinTS/CascadeLogTS for either reward setting.

We conclude that for both Bernoulli and Gaussian rewards, Low Rank Cascade TS is

the best performing strategy for large-scale datasets. The only exception is the Yahoo!

dataset for Gaussian rewards, where ICF Cascade TS surpasses Low Rank Cascade TS;

which however again is a low rank cascade bandit strategy.

6.6 Related Work

Here we highlight some pairwise comparisons among the various learning to interact for

recommendation algorithms which have happened in the literature: (1) Li et al. devised

contextual linear bandits and showed that their proposed algorithm LinUCB outperforms

several baselines (e.g., popular, random, user segment-based algorithms) [104]. (2) The

authors of [125] using the clustering parametric assumptions on top of LinUCB, devised

CluLinUCB and showed that it outperforms having an independent LinUCB for each user,

and performs similarly or better than the closely related baseline proposed in [69]. (3)

Zhao et al. proposed ICF, posing recommendation as a contextual linear bandit with

context the learned item features, and showed that it outperforms interview-based and

active learning strategies with a few user-system interactions [184]. (4) In [91], Kawale

et al. showed that combining TS with online matrix factorization, while maintaining

particle filters to sample from the posterior, outperforms ICF as well as alternative ways

of posterior sampling. A similar model was proposed for conversational recommender

systems [51]. (5) In [106], Li et al.’s collaborative filtering bandits, which implement

the CF view via co-clustering, were shown to surpass LinUCB and the clustering bandits
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in [36, 69]. Other relevant works are [93, 171, 177, 68], which all combine the clustering

or CF principle with contextual features on the Gaussian rewards, one-item setup.

Other works balancing the EE trade-off in recommendation are: [6] which gives

bayesian schemes for serving content, [169] which combines Gaussian processes with

EE, [30] which proposes an ε-greedy user-user neighbor-based CF method, [154] which

gives an ε-greedy online matrix factorization method, and [173] which combines CF with

TS and topic models.

6.7 Summary

In this chapter, we tackled the problem of learning to interact with users, which is

central in recommender systems, and made the following contributions:

• Algorithms: We (a) developed interactive learning recommendation algorithms

suitable for dyadic data, and (b) offered the novel collaborative cascade bandits.

• Experiments: (a) We provided an extensive study making all pairwise com-

parisons among various learning to interact algorithms for recommendation: 10

algorithms for one-item (5 for Bernoulli, 5 for Gaussian), and 8 algorithms for

cascade list (4 for Bernoulli, 4 for Gaussian). (b) We showed that for large-scale

data, collaboratively learning to interact algorithms are the best performing ones.



Part III

(Malicious) Data: The Attack of

The Fake Users

Based on work in [47].
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Part III: Overview

So far in this dissertation, similarly to most works on recommendation, we have as-

sumed that the users in the recommendation system give their data, either in the offline

setting (Part I), or in the interactive setting (Part II), with good intentions—truthfully

reporting what they like or they do not like, or browsing according to their actual

preferences.

However, what happens if there is a small proportion of users in the recommendation

system who have some adversarial goal, e.g. target a certain subset of users or items?

How does this affect the recommendation system’s performance, especially when the

model parameters are learned collaboratively, relying on the idea that similar users

tend to like items similarly?

Sketch of an adversarial attack in a recommender system.

Such a scenario is called an adversarial attack in recommendation systems, relying

on including a small set of fake user profiles, hand-engineered to target a specific item.

Typically, this hand-coding consists of having the fake users use the maximum allowed
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score for the item they target, and specify random or normal-distributed scores in a

subset of the items I [127, 98].

Recently, with the great successes of neural networks in image recognition, and the

wide door of possibilities of applying such tools in everyday life, a line of work has

emerged on how to use machine learning to learn adversarial attacks against neural

networks so to mis-classify images with high probability [164, 74, 122]. Learning such

attacks is step one towards safer and more trustworthy machine learning systems; step

two is ensuring that the systems are robust to such learned attacks.

It is only natural then, to ask whether in the context of recommendation systems

we can perform machine learned adversarial attacks. This is the focus of the following

chapter.



Chapter 7

Recommendation as a Game with

an Adversary

How vulnerable are recommendation models to machine learned adversarial attacks?

Can machine learning models for recommendation be easily fooled? While the ques-

tion has been answered for hand-engineered fake user profiles, it has not been explored

for machine learned adversarial attacks. This chapter attempts to close this gap.

We propose a framework for generating fake user profiles which, when incorporated

in the training of a recommendation system, can achieve an adversarial intent, while

remaining indistinguishable from real user profiles. We formulate this procedure as a

repeated general-sum game between two players: an oblivious recommendation system

R and an adversarial fake user generator A with two goals: (G1) the rating distribution

of the fake users needs to be close to the real users, and (G2) some objective fA encoding

the attack intent, such as targeting the top-K recommendation quality of R for a subset

of users, needs to be optimized. We propose a learning framework to achieve both goals,

and offer extensive experiments considering multiple types of attacks highlighting the

vulnerability of recommendation systems.

7.1 Introduction

Fake social media accounts are created to promote news articles about a political ide-

ology; false online product reviews attempt to bias users’ opinions favorably or against

certain products—these are just a few of the many real life examples illustrating that
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recommendation systems are exposed and can be susceptible to threats from adversarial

parties.

Machine learning algorithms have an ever-growing impact on people’s everyday lives.

Recommendation systems heavily rely on such algorithms to help users make their

decisions—from which show to watch, to which news articles to read (which could end

up influencing their beliefs). Thus, a natural question is: How easy is it to manipulate

a machine learned system for malicious purposes? An answer to such a question would

be a stepping stone towards safer artificial intelligence [130, 71].

To study this question, the first necessary step is the creation of adversarial exam-

ples; this would allow to test the algorithms against them, and potentially increase the

algorithms’ resistance [74]. With this motivation, a recently thriving subfield of ma-

chine learning is the one of adversarial examples—find the minimal perturbation vector

to add to the feature vector of an example so that an oblivious classifier misclassifies

the perturbed example. These works focus on classification [164, 74, 122, 121, 161].

In recommendation systems, the adversarial attacks have a different form. Instead

of minimally perturbing an existing example to misclassify it, the attack consists of

creating a few adversarial user profiles rating items with some intent. The intent could

be to promote a specific item, or to deteriorate the recommendation quality of a group

of users. The setting is not new; in fact, it has been researched since [127, 98]. However,

the injected fake user profiles are hand-coded—typically, the fake users rate the target

item with a small or large score, and the rest with random or normal distributed scores

to mimic the true rating distribution.

Our goal is to revisit the question of crafting adversarial fake user profiles for a

recommendation system from an optimization perspective. We pose this as finding a

matrix of fake users×items, so that (G1) the distance between the distributions of real

and fake users is small, and (G2) the adversary’s intent is accomplished, e.g. remov-

ing a group of news articles of the opposing ideology from users’ top-K recommended

lists. The scenario is highly realistic—e.g., an adversary A creates a small number of

realistic-looking fake user accounts with the goal of removing a target group of a com-

petitor company’s products from target users’ top lists. We assume that A knows the

recommender’s model and algorithm to fit the model, and can fit similar models on any

new/fake data.

Particularly, we make the following contributions:
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1. We formulate adversarial recommendation as a game of an adversary vs. an obliv-

ious recommender, e.g. a low-rank model. There are two objectives: (1) given the

real and some fake ratings, learn the low-rank model based on the recommender’s

objective and (2) use the low-rank model to evaluate the adversarial objective.

This two-step process makes the adversary’s task more involved.

2. We propose a learning framework for adversarial attacks on recommendation

systems, using: (i) generative adversarial nets (GANs) [73] to learn initial fake

users that mimic the true rating distribution and (ii) suitably update them op-

timizing an objective encoding the adversarial goal. For (ii), we use 0-th order

optimization to construct the gradient, as the adversary does not have direct access

to the gradient.

3. This is the first time to pose finding fake user profiles in an optimization setting,

and thus finding machine learned attacks on recommendation systems; this allows

optimizing complex objectives in a unified way, even in the absence of gradient

information.

4. Our real-world experiments show that machine learned adversarial attacks

with a wide range of intents are very much possible. As a striking example of a

malicious attack we illustrate that in order to ruin the predicted scores of a specific

item for users who would have loved or hated that item, it suffices to minimize

the predicted score of the user with the highest predicted score before the attack.

The rest of the chapter is organized as follows. In Section 7.2 we formalize the

problem of adversarial recommendation and in Section 7.3 we propose our learning

procedure from the perspective of an adversary of the recommender. We empirically

evaluate the proposed methods in Section 7.4, review related work in Section 7.5, and

give a summary in Section 7.6.

7.2 Problem Formulation

We begin with a discussion of the model for attacking a recommendation system. The

model involves two players: an oblivious recommendation system R and an adversarial

‘fake user’ generator A. The goal of the recommendation system R is to build a model

with parameters θR to minimize a suitable loss function between true and model pre-

dicted ratings over all users and items. The goal of the adversary A is to generate fake

users using a model with parameters θA such that:
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(G1) the fake users are indistinguishable from the real users based on reasonable met-

rics, e.g., ratings distributions of the fake users are similar to real users, eigen-

spectrum of the fake user ratings are similar to that of real user ratings, etc.,

and

(G2) a recommendation model learned by R using the fake users generated by A leads

to worse predicted ratings for a suitable subset of the real users and/or items,

e.g., makes an item less desirable to a subset of users.

Let I be the set of items, and U the set of real users present in the recommendation

system. Let m = |I| be the number of items and n = |U| the number of real users,

where | · | denotes the cardinality of a set. Let X ∈ R|U|×|I| denote the matrix of ratings

from real users. We assume that the adversary A has a certain budget of k fake user

profiles, where k � |U|; and that each user profile is a |I| dimensional vector; aka how

the user has rated the different items in I, with zero values denoting empty ratings.

Particularly, A outputs a matrix Z ∈ Rk×|I|, where each row zi′ for {i′}k1 is a fake user

profile. The total of real and fake users is n′ = n+ k.

The setting can be formulated as a repeated, general-sum game between two players:

the row player, the recommender R and the column player, the adversary A. The

recommender R maps (u, j, r) tuples to some real-valued score representing the predicted

rating of user u on item j, and is parameterized by θR. The actions of R include all

θR, e.g., for low rank recommender models, each θR corresponds to a pair of U, V latent

factor matrices. The actions of the adversary A include all fake user profiles Z, which

are generated using a model parameterized by θA.

Both players consider a loss function (the negative of a payoff function) they wish to

minimize. If the row player chooses actions Ũ , Ṽ (latent factor matrices) and the column

player chooses action Z̃ (fake user matrix), then for the row player, the functional form

of the payoff is fR(Ũ , Ṽ , Z̃), and for the column player, is fA(Ũ , Ṽ , Z̃).

In the general setting, each player maintains a distribution over respective action

spaces, and will play by drawing an action from the distribution. The row player

maintains a distribution Pr over the space of (U, V ), i.e., (Ũ , Ṽ ) ∼ Pr(U, V ), and the

column player maintains a distribution Pc over Z, i.e., Z̃ ∼ Pc(Z). The distributions of

the recommender and the adversary are parameterized by θR and θA respectively. In a

repeated game setting, let (θtR, θ
t
A) be the current parameterizations of the two players.

In the next step, the goal of each player is to find optimal parameters θt+1
R and θt+1

A
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respectively such that their corresponding expected loss is minimized:

θt+1
R = argmin

θR

fR(θR, θ
t
A), θt+1

A = argmin
θA

fA(θtR, θA)

or

θ
(t+1)
R = E(U,V )∼Pr(θR),Z∼Pc(θtA) [fR(U, V, Z)]

θ
(t+1)
A = E(U,V )∼Pr(θtR),Z∼Pc(θA) [fA(U, V, Z)] .

Note that fR 6= −fA, so the game is not zero sum.

However, one main challenge for A is that there is a two-step process going on:

(step 1) given some fake ratings, learning say the low-rank model based on the recom-

mendation system objective, typically using non-convex optimization, and (step 2) use

the low-rank model to evaluate the adversarial objective. As a result, the adversary

typically cannot compute the gradient of the effect w.r.t. Z. In the sequel we approach

the problem of constructing Z from the adversary’s perspective.

7.3 Learning

We detail the specifics of the recommender and adversary considered, and discuss our

proposed learning approach.

Recommender Strategy. We assume throughout that the recommender R is oblivious

to the existence of an adversary, hence, it optimizes its loss over all given data—before

the attack over only the Creal original training user-item-rating tuples {uc, jc, yc}Creal
c=1 ;

after the attack over both {uc, jc, yc}Creal
c=1 and the Cfake non-zero ratings of the k fake

user profiles, succinctly represented as a sparse matrix Z ∈ Rk×m produced by the

adversaryA, resulting in an augmented training set of {uc, jc, yc}Call
c=1, with Call = Creal +

Cfake. In particular, R, using parameters θR and a goodness-of-fit loss function `(·),
maps input tuples {uc, jc, yc}C

all

c=1 to estimated scores {ŷc}Call
c=1, so that the loss fR is

minimized

min
θR

fR(θR, θA) = min
θR

1

Call

Call∑
c=1

`(yc, ŷc(uc, jc; θR, θA)).

We assume that the recommender is a low rank model; however, our overall approach is

not specific to such a model. The low rank recommender has latent factors U ∈ Rn′×d
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capturing the latent preferences of users, and V ∈ Rm×d capturing the latent attributes

of the items, and optimizes its expected loss over its parameters U, V :

(U∗, V ∗) = arg min
U,V
‖[X;Z]− UV T ‖22 + λ(‖U‖22 + ‖V ‖22) (7.1)

where [; ] denotes concatenation of two matrices over the row axis. We optimize the loss

by alternative minimization (alt-min for short), i.e., alternating the closed-form U, V up-

date equations, for a few iterations [119]. The model has a probabilistic interpretation:

the prior parameter distributions are ui ∼ N (0, λI),vj ∼ N (0, λI) and conditional

model X(i, j) ∼ N (uTi vj , σ), where I is the d × d identity matrix, ui is the i-th row

of U , and vj the j-th row of V . Thus, from a Bayesian perspective, R can maintain

a posterior distribution over its parameters (U, V ). For computational simplicity, R is

assumed to pick the mode (U∗, V ∗) of the posterior distribution.

The adversary A is aware of the model and algorithm, and is able to compute the

point estimates (U∗, V ∗) for any chosen Z. Note that since an alt-min algorithm is

needed to obtain (U∗, V ∗), the adversary does not have a direct way to do gradient

descent w.r.t. Z on functions of (U∗, V ∗); we will return to this point later.

Adversary Strategy. The adversary A, with parameters θA, learns and outputs a

(distribution over) fake user matrix Z ∈ Rk×m, which should satisfy the two goals pre-

sented earlier—(G1) the unnoticeability goal and (G2) satisfying an adversarial intent.

The intent is captured by the loss function fA(θtR, θA); various intents capturing differ-

ent attack strategies are explored in our experiments. The intent can be defined over a

set of target items IH, target users UH, a single target user u, or target item h. Some

examples of intents are:

• Target the predicted score for (u, h): fA = ŷ(u, h)

• Target the mean predicted score for h over the target users UH:

fA = 1
|UH|

∑
u∈UH

ŷ(u, h)

• Target recommendation metric@top for UH:

e.g. Hit Rate (HR), fA = 1
|UH|

∑
u∈UH

HR(u).

Approach for (G1). We generate fake users by using generative adversarial nets

(GANs) [73]. In GANs, a pair of Generator-Discriminator networks pitty each other—

the generator G generating samples with the goal of fooling the discriminator D to not

being able to distinguish them from real. At convergence, the conditional distribution
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of the generator G should give fake user samples which D cannot discriminate from real

ones. We discuss details of the GANs architecture in the experiments.

Approach for (G2). To accomplish both (G1) and (G2), one could in principle change

the loss of GANs to be a convex combination of two losses: the “perception” loss of

fooling D (as in GANs formulation) and the “adversarial loss” encoding the adversary’s

intent, i.e., fA.

Instead, we opt for a simpler two-step approach: first train GANs until convergence

and sample a set of fake users Z1 = ZGAN from the conditional posterior of G; and

second, suitably modify the sampled users using a variant of gradient descent to optimize

the adversary’s intent fA over the fake users Z. In the process, we want to make sure

that the resulting fake users helping with the adversary’s intent do not come across as

obviously fake.

Let us consider the problem of interest to the adversary:

min
Z
fA(Z), (7.2)

where recall that Z plays the role of the θA actions of the adversary and the argument

θtR, i.e., U t, V t, is dropped for brevity. To optimize (7.2) we use projected gradient

descent for {t}T1

Z̃t+1 = Zt − η∇ZtfA(Z; θA), Zt+1 = Πallowed range(Z̃t+1) (7.3)

where the projection Π is to ensure that the marginals of real and fake users remain close

after the descent, η is the learning rate, and ∇ZtfA is the gradient of the adversarial

loss w.r.t Zt.

Now the question is, how can we compute the gradient ∇ZtfA? To make things

concrete, let us consider as adversarial intent: minimize the predicted rating of item h

over all real users who have not rated the item

min
Z

1

|{u /∈ Ra(h)}|
∑

u/∈Ra(h)

uTuvh (7.4)

At first glance, from (7.4) the loss is a function of the recommender’s parameters, and

not Z. But, recall from (7.1) that the parameters of the recommender are a function

of Z—more generally, fA is a function of (θA, θ
t
R). After playing fake matrix Z, the
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adversary player gets to observe the loss only for this single Z played, and not the other

actions/ matrices it could have played. Thus, the adversary gets limited information,

or else bandit feedback. Put differently: the gradient of the loss is not directly given for

the optimization over Z.

To obtain an approximation of the gradient, we build upon 0th-order optimization

works in bandit optimization [3, 62]. The idea is that if we can only perform query

evaluations, to obtain the gradient of f(Z), we need to query f(Z) at two nearby

points: Zt and Zt + αZ0, for a small α and a suitable fixed matrix Z0. Then we can

compute the gradient as the directional derivative along the direction Z0: ∇f(Zt) =

(f(Zt + αZ0)− f(Zt))Z0/α.

We use a refinement of Algorithm 3 in [3]: there instead of two-point evaluation, they

needed K directions and computed the gradient using all K directions. Instead we use

as K directions the K top left and right singular vectors of the fake user matrix at round

t Zt, obtained from a Singular Value Decomposition on Zt: Zt = ŨΣṼ T . Let Z(h) be

the rank one matrices built from each left and right singular vectors of Zt, Z
(h) = ũhṽ

T
h

for {h}K1 , where K is the rank of Zt. Then, we can use these rank-1 matrices Z(h) as

K possible directions, and compute the matrix gradient based on these:

∇f(Zt) = 1/α
K∑
h=1

(f(Zt + αZ(h))− f(Zt))Z
(h) (7.5)

This involves K + 1 evaluations of the function f(Z). To make things faster, we use

warm-start—we first evaluate f(Zt), then, for any f(Zt+αZ(h)), we use the final (U, V )

for f(Zt) to warm start the iterates. Similar strategies have been studied in stochastic

and evolutionary optimization [26, 78].

Algorithm 5 summarizes our proposed learning approach.

Algorithm 5 Learning Algorithm for Adversary’s Strategy

1: U0, V 0 ← train low rank R over real data X.
2: Z0 ← train generative adversarial nets on the dataset.
3: for t = 1, . . . , T do
4: Update the adversary’s Z descending its gradient (7.5).
5: for each of the K + 1 evaluations fA(Z) do
6: Update the recommender’s (U, V ) with alt-min (7.1).
7: end for
8: end for
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Dataset # of Items 2D H ×W Shape # of Users

MovieLens 100K 1682 29× 58 943
MovieLens 1M 3706 34× 109 6040

Table 7.1: Dataset Statistics. The 2D Shape is the conversion of the |I|-d vector to a
2-D H × W “image”.

7.4 Experiments

We design our experiments to understand the effectiveness of the proposed approach in

creating an adversary model A that produces fake users which cannot be distinguished

from real, and which influence in some way the recommender R.

7.4.1 Can We Learn Realistic User Profiles?

The first question we investigate is whether with generative adversarial nets we can

learn fake user profiles that seem like real.

Network Architecture. We used the popular DCGAN architecture [134]. The Dis-

criminator D takes an image of size H×W (fake or real user sample) and outputs either

a 0 or a 1 (is it fake or real?). It consists of four 2D convolutional CONV units, with leaky

ReLUs and batch normalization (BN), whose depths are respectively [64, 128, 256, 512],

followed by a single-output fully connected (FC) unit with sigmoid activation. The

Generator G takes as input noise z ∼ N (0, 100) and outputs an H × W image (the

fake user sample). It consists of a FC unit of dimension 2 × 4 (or 7) × 512 with ReLU

and BN, reshaped to a 2, 4 or 7, 512 image, followed by four transposed CONV units of

depths [256, 128, 64, 1] respectively, each with ReLU and BN, except for the final with a

tanh. We set for the (transposed) CONV units the stride to 2, the kernel size to 5 × 5.

We set batch size to 64, and run DCGAN for 100 epochs (each epoch does a cyclic pass).

Datasets. Since we want to learn user profiles for recommendation systems, we used

two popular movie recommendation datasets (Section 2.6), MovieLens 100K, MovieLens

1M [79], whose statistics are shown in Table 7.1. They contain the ratings of users on

different movies in the scale {0, 1, 2, 3, 4, 5} with 5 the highest like, and 0 denoting that

the user has not rated the movie. As the last layer of G has the tanh activation function,

fake user samples are in [−1, 1]; hence, using r′ = (r− 2.5)/2.5 we transformed the real
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(a) Real User Sample (first 64 users) (b) Epoch 0

(c) Epoch 20 (d) Epoch 90

Figure 7.1: Visualization of 64 sampled fake users for MovieLens 1M in a 8 × 8 grid.
The red box in (a) surrounds one real user sample, which is of dimension 34×109—when
flattened it is 3706-dimensional, i.e., |I|. As the training epochs progress, the generator
network G of GANs learns to generate realistic-looking fake users.

ratings from [0, 5] to [−1, 1].

Setup. Each user profile is an |I|-d sparse vector, which needs to be transformed

to a H ×W 2D array to go through the DCGAN 2D (de-)convolutional units. We set

as H the smallest factor of |I| and as W = |I|/H. This way, each user is viewed as a

2D H ×W image with pixel values the ratings of the user on the different items.

Results. Periodically during training, we sample 64 fake users from the conditional

posterior of the generator G and visualize them in a grid of 8 by 8 H ×W images. In

Figure 7.1 we illustrate the progress of the samples during training for MovieLens 1M,

with the first column visualizing the first 64 real users. We see that in the first epochs

the sampled users are noise, but as training goes on, the real distribution seems to be

learned; similar results hold for MovieLens 100K.

We also want to validate quantitatively that the fake user distribution is close to

the real one at DCGAN’s training convergence. For these experiments, we sample 700

fake users from G so that the size of the real and fake user distribution—at least for

MovieLens 100K—is comparable.

We compute the correlation matrix over items of the fake data ZTZ (based on Z

sampled from the conditional posterior of the learned G of the last training epoch),
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Figure 7.2: (a) x-axis: index of top eigenvalue, ranging from 0 to 9, y-axis: corresponding
eigenvalue. The eigenspectrums of the correlation matrices of the real, the fake, and
the [real; fake] concatenated data are similar. (b) x-axis: DCGAN training iteration,
y-axis: mean JS. At convergence, the distance between the real and fake distributions
is approximately 0.

and the correlation matrix of the real data XTX, and we compare their respective

eigenspectrum; specifically their top-10 eigenvalues.

We compute distance metrics between the real and fake user distributions: For

each item j, the real users form a distribution P j over the rating values [−1.0, 1.0] (i.e.,

for MovieLens 100K with 943 samples), and the fake users G(z) form a Qj distribution

over [−1.0, 1.0] (with 700 samples). Then, we discretize the values to the six bins

[−1.0,−0.6,−0.2, 0.2, 0.6, 1.0] (corresponding to [0, 1, 2, 3, 4, 5]): for each of the six bins,

we compute the fraction of (real or fake) users who have rated j in this bin out of all

(real or fake) users. For a certain item j, we compute two such six-dimensional vectors,

one for the real users, and a second for the fake users, and then use the following metrics

to measure distance between distributions [70]:

Total Variation Distance (TVD)(P j , Qj) =
∑
|P j −Qj |/2 (7.6)

Jensen-Shannon Divergence (JS)(P j , Qj) =
1

2
(D(P j ||M j) +D(Qj ||M j)) (7.7)

where M j = 1
2(P j + Qj) and D is the Kullback-Leibler divergence. After we have

computed the distance metric for each item, we report the average over all items, i.e,

mean TVD and mean JS Div.

In Figure 7.2 we plot the (a) top-10 eigenvalues and (b) JS Divergence for the

MovieLens 1M dataset. For (b), the reported results are averaged over five different



142

runs of DCGAN. The results shown, along with similar results we have observed for

MovieLens 100K, indicate our first key finding:

Generative adversarial nets can produce fake user samples whose distribution

is close to the real user distribution.

7.4.2 Experimental Design

To evaluate the adversary A’s capability of attacking a recommender R, we use the two-

phased approach described in Section 7.3: (1) We first train DCGAN on the respective

dataset, as presented before in 7.4.1, and (2) we then perform the Z-SGD updates,

which are initialized by a sample of DCGAN-generated fake users, denoted by ZGAN,

transformed from the [−1, 1] to the expected by the recommender range of [0, 5].

Throughout all experiments, the sample size of ZGAN will be set to 64; the 64 fake

users, iteratively optimized during the Z-SGD updates, represent only 0.063 fraction of

all system users (real and fake) for MovieLens 100K, and 0.01 fraction for MovieLens

1M.

We use two types of experimental setups:

(E1) A targets unrated user-item entries (thus entries which are candidates for recom-

mendation) not included in the training of R.

(E2) A targets a small subset from the recommender’s true (user, item, rating) tuples,

which is held out from the training of R.

For (E2), we define a target set where the adversarial loss fA is optimized over, and

a test set which is unknown to both the recommender and the adversary—the test set

is used to check whether the success of adversarial intent generalizes from the target

to the test set. We form the target and test sets in two ways: (E2-a) either using the

leave-one-out setup, i.e., leaving one tuple per user in the target set (and another tuple

in the test set), or (E2-b) an 80-10-10 split, i.e., splitting the original dataset into 80%

of the total ratings per user for training, 10% for the target set, and 10% for the test

set.

The recommender R under attack is a matrix factorization (else low rank) model,

trained on explicit ratings in the scale {0, 1, 2, 3, 4, 5}. Unless otherwise specified, we

set the latent factor dimension d to 40, the regularization parameter λ to 0.001, and R

is trained before the attack for 10 alt-min iterations.
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For the adversary A, we set the SVD approximation rank K to 30, and the approx-

imate gradient step constant α to 0.0001. During a single Z-SGD iteration for each of

the K + 1 fA evaluations, 5 alt-min iterations of R are performed.

We perform warm-start, i.e., for the t + 1 Z-SGD iteration, R’s parameters are

initialized from the ones obtained at the end of the alt-min R iterations from the previous

t Z-SGD step.

To be consistent with the original movie ratings from the datasets, every time fA is

evaluated, e.g. either during the approximate gradient computation or the loss compu-

tation, the Z values are rounded to the closest integers, and get clipped to [0, 5]. Also,

to ensure that while performing the Z-SGD updates, the fake user distribution does not

diverge from the real distribution, we perform projected gradient descent:

Z̃t+1 = Zt − η∇ZtfA (7.8)

Zt+1 = clip(Z̃t+1, 0, 5), (7.9)

where (7.9) corresponds to a box-projection.

To evaluate the success of the adversary, we use various metrics; every time we

introduce a new metric, we will use bold letters. Overall, we use the metric of Attack

Difference, (or else magnitude of the attack) denoted by ∆(Z):

∆(Z) = fbefore(X)− fA(X;Z) (7.10)

where fbefore(X) denotes the value of the adversarial loss before Z is concatenated with

the real users’ data (before the attack). In other words this metric expresses the decrease

of the adversarial loss. In order for the attack to be considered successful, ∆(Z) needs

to be at least positive, and ideally larger than zero by a certain margin. Depending

on the intent of the adversary, as encoded by fA, this metric could imply for example

a decrease in the predicted score of a target item—in which case, it is related to the

“prediction shift metric” [98, 126]—, or a change in the recommendation quality of a

target group of users.

Each of the following sections introduces a separate attack type, as specified by

target user(s), item(s) and intent of A.
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7.4.3 Targeting a User-Item Pair

We start with the adversarial intent: can A learn realistic users that reduce the predicted

score for an unrated user-item entry? For this, we adopt the (E1) experimental setup.

Let target user be denoted with u and target item with h, where h /∈ RatedBy(u).

The adversarial loss is the predicted score for (u, h): f
(u,h)
A (X;Z) = ŷ(u, h) and the

magnitude of the attack is ∆(u,h) = f
(u,h)
before(X)− f (u,h)

A (X;Z), where f
(u,h)
before(X) denotes

the predicted score for the pair by R before the attack.

We set η to 100, α to 50, K to 5. The adversary performs a total of T = 21 Z-SGD

iterations, or fewer if a certain stopping criterion is satisfied. We explore two stopping

criteria, and two cases for how to specify the (u, h) target entry.

Stopping criterion is ∆ ≥ 1

First, we considered to stop the Z-SGD iterations when the predicted score for (u, h) is

decreased by at least 1 after the attack. We performed this experiment for 70 uniformly

at random sampled items for the MovieLens 100K dataset. For each target item h, we

sampled target user u from the set of users who have not rated h. Considering an attack

successful only if ∆ is larger than 0, we found that for only 2 out of the 70 sampled

target items the attack was not successful.

Targeting Top Item of User, Stopping criterion: Remove from Top

Next, we used the early-stopping criterion that the item does not exist in the top of the

recommendation list anymore, as this aligns better with the actual user experience in a

recommendation setting. For this, we randomly sampled target users, and for each user

u, we considered as target item h the one out of the unrated set predicted to be at the

top of the user’s list before the attack—simply put, the top item h of user u. Beyond the

attack difference metric 7.10, and the distance metrics (7.6), (7.7), we report the metric

of Rank Loss @ top(h) = 1[item h @ top-list], where we considered top = {1, 5, 10}.
In the first experiment, for the stopping criterion, we set to remove h from the top-1

list: we found that out of the 135 sampled target users, only for one user the top-one

item remained at the top.

In the second experiment, we set for the stopping criterion to remove h from the

top-10. We found that out of the 55 sampled users, only for two users the attack was

not successful—for the rest, notably, the adversary managed to remove the target item
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Figure 7.3: The adversary A targets the top-1 item h ID-1062 “A Little Princess (1995)”
for user u ID-0, with stopping criterion that h is removed from the top-10 recommen-
dation list of u. x-axis: SGD iterations varying from 1 to 19, with 1 corresponding to
using as Z the ZGAN. Left: The y-axis represents metrics capturing the success of A in
targeting (u, h), and distance metrics for real-fake user distribution. Right: Zooming in
the ranking loss @top : {1, 5, 10}. Gist: As Z-SGD updates progress, (i) the adversarial
loss (‘Adv. Loss’ fA, blue line), which is the same as the estimated score of R on the
target (u, h) pair (‘Est.’, yellow line) goes down; (ii) the attack difference ∆(Z) (ma-
genta line) increases, and the difference of the score fA(X;ZGAN)− fA(X;Z) (red line)
increases too; (iii) the rank losses @ top-1/ 5/ 10 (black/ blue/ cyan lines) reach 0 after
17/ 18/ 19 Z-SGD iterations; (iv) the real-fake distribution distance metrics (mean ‘JS
Div’, mean ‘TVD’, green lines) remain close to 0, despite the adversarial updates.

from the target user’s top-10 list, while looking realistic. As an example, Figure 7.3

illustrates the metrics for the movie “A Little Princess” that appeared in the top-1 of

user ID-0 before the attack. We can see that the attack is successful, removing the

top item from the top-1 at iteration 17, and from top-10 at iteration 19 (thus stopping

the Z-SGD updates), optimizing well the adversarial loss of the estimated score for the

(u, h) entry (yellow line), while the real-fake distribution distance metrics of mean TVD

and mean JS Div (green lines) remain close to 0.

This experiment illustrates our second key finding:

The adversary can successfully target the top-1 predicted item of a user, and

remove it from the top-10.

7.4.4 Targeting Item’s Mean Predicted Score

Here, we examine whether the adversary can accomplish a more ambitious goal: can

A target (push down) the mean predicted score of a target item h over all real users
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Figure 7.4: The adversary A targets item’s h ID-1348 “Mille bolle blu (1993)” average
predicted score by R over all users {u ∈ U} /∈ Ra(h), with stopping criterion that
∆(Z) ≥ 1. x-axis: SGD iterations varying from 1 to 22, with 1 corresponding to using
as Z the ZGAN. Left: The y-axis represents the average metrics over all users. The
metrics presented are the same as in Figure 7.3, except for the rank loss metrics which
are not included. The ‘Adv. Loss’/ ‘Est.’ is given by (7.11). Right: Every line
corresponds to each user’s ∆(Z) varying with Z-SGD updates; the average over these
lines is the magenta line on the left plot. Gist: Although on average the attack can
seem successful, i.e., the ∆(Z) increases and the distance metrics remain close to 0
(left), each user’s ∆ follows its own trend (right). We conclude that such an attack is
difficult.

who have not rated h in the training dataset?—again, we adopt the (E1) experimental

setup. The reason for choosing this target user set is because these are the users for

which h can be a candidate item for recommendation. This intent can be formulated

as:

fhA =
∑

u∈U ,/∈Ra(h)

ŷ(u, h), (7.11)

and the attack will be successful if fhA(X;Z) becomes smaller than the predicted score

fhbefore(X).

We keep the same setting as before, except for setting η = 1000 and choosing α in

{500, 1000}, as we found that for this experiment larger values tend to lead to larger

∆. The early-stopping criterion is ∆(Z) ≥ 1. We performed this experiment for 29

randomly chosen target items from MovieLens 100K and found that out of the 29 items,

only for 6 items early stopping was realized. Also, for 6 out of the 29 items, the attack

was unsuccessful; ∆ ≤ 0, i.e., the average score after the attack remained the same or

increased. Overall, we conclude that:
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Targeting the average predicted score of an item is a hard task.

To understand why this happens, we examine how the distribution of ∆ over all users

who have not rated target item h evolves over the Z-SGD iterations. From Figure 7.4

we can see for the sampled movie “Mille bolle blu (1993)” (similar behavior is noticed

in the others too), that although the average difference reached 0.2 (magenta line in

Figure 7.4, left panel), every user’s attack difference follows its own trend (Figure 7.4,

right panel); with mainly the users with the largest or smallest ∆ affecting the average

∆. This shows that the fake users cannot move all users’ scores on h simultaneously to

the same direction.

7.4.5 Targeting the Top User of an Item

In reality, to attack a target item, the adversary does not need to solve the more

difficult problem of pushing down all unrated users’s score. Instead, they only need

to push the score of users who would be good candidates for getting this item in their

recommendations. Put differently, these are the users with the higher predicted scores

from R before the attack; the rest of the users would not get h in their recommendations

either way.

In this experiment, the adversary’s intent is to target the top user of an item, i.e.,

the user from u /∈ Ra(h) with the largest predicted score from R before the attack. This

can be seen again as a targeting a single (u, h) entry attack, that we found earlier in

Section 7.4.3 to be a successful attack; but while h can be any arbitrary target item, u

is the top user of the item.

In Figures 7.5, 7.6 we show the results of targeting the top user u of item h “The

Joy Luck Club” (similar results hold for other target movies). We can see that just by

targeting the predicted score of the most-wanting-“The Joy Luck Club” userID 1417,

the scores of all other users who have not rated h get affected too; similarly the scores

of userID 1417 for all the other movies he has not rated get affected.

Figure 7.5 shows how the mean attack difference (y-axis) when considering only the

top/ bottom users for the item h (left panel), or when considering only the top/ bottom

items for the user u (right panel), varies as we vary the top/ bottom (x-axis).

Figure 7.5, left panel shows that although the average difference over all users who

have not rated h is only .48, if we consider only the top-5 users with the highest pre-

diction scores for h before the attack, the average difference is 8. In fact, for the top-80

users the average difference is larger than 2, whereas for the users who were predicted
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Figure 7.5: Main Result. The adversary A targets the top user u of item h ID-1417
“The Joy Luck Club” (1993). We say top/ bottom to refer to what was predicted with
the highest/ lowest score from R before the attack. We focus on the metric of attack
difference ∆(Z) using the Z obtained after the 21 Z-SGD updates, or when stopping
criterion ∆(Z) ≥ 1 was satisfied; but we define ∆(Z) over different subsets of users or
items. Left: x-axis: varying number of users considered to compute ∆(Z), from 5 to
320 top users, or from 320 to 5 bottom users, for item h. y-axis: The orange dotted line
is the average over all users /∈ Ra(h), computed to .48. The blue line connects points
of the average ∆(Z) over the corresponding subset of users, e.g., for the top-5 users
∆(Z) = 8, for the bottom-5 users ∆(Z) = −6. Right: x-axis: varying number of items
out of /∈ RatedBy(u) considered to compute ∆(Z), from 5 to 320 top items, or from
320 to 5 bottom items for user u. y-axis: Same as left panel, but instead of top/bottom
users for h, here ∆ is computed over top/ bottom items for u. Gist: Targeting the
top predicted user of an item attacks also the top-K predicted users of this item, and
the top-K predicted items of this user. Also, the bottom predicted users/ items are
attacked, as for them the score is increased, which is the opposite from what they would
want.

to hate the item the most (bottom-5) the average difference is close to -6; this means

that for users who were predicted to least like the item, the predicted score increased,

which is opposite to what a good recommender should do.

The right panel illustrates a similar story for the items. The average difference on

the items which were predicted to be liked the most by u before the attack is > 60

(items which were a good fit for this user are pushed down), and the average difference

on the items which were predicted to be liked the least by the user is -70 (items which
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Figure 7.6: Same setup as Figure 7.5. The effect of targeting the top user u for item h
ID-1417 on the rest of users who have not rated h; and on the rest of items that have
not been rated by the top-user u. For both cases, each dot in the scatter plot (colors
are for aesthetic purposes) is the attack difference for a single (user, target item) entry
or (target user, item) entry. Left: x-axis represents the user-target user correlations,
computed either based on the estimated latent factors U before the attack (left), or
based on the real ratings, i.e., rows of X (right). Right: x-axis represents the item-
target item correlations, computed either based on the estimated latent factors V before
the attack (left), or based on the real ratings, i.e., columns of X (right). Gist: The red
line represents a linear-line fitting on the data points to find if there is a relationship
between ∆(Z) and correlations. Although the line-slope is positive, the r2 is small, thus
rejecting the hypothesis for a relationship. However, when only the most correlated
(> .35 correlation) users are considered, r2 is .74 for latent-factor based correlations—
showing that as the correlations increase, ∆(Z) also increases. Such a relationship does
not hold for the case of items (r2 = .29 for all items with item-item correlation > .6 );
we see though that as item-target item correlations increase, the variance over the ∆s
reduces.

were a bad fit for the user are pushed up).

This illustrates an important finding of this work:

A successful attack on item h is: When A targets the score of the top user,

i.e., the user u predicted by R to like h the most before the attack, then the

top-K users for h and top-K items for u are also attacked.

On a side note, we want to see whether there is a relationship among the attack

differences ∆ of the various users for the target item h with the user-target user u
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correlations; or among the ∆s of the target user u for the various items with the item-

target item h correlations. Thus, Figure 7.6 shows how the different users’ (left panel)

or items’ ∆s (right panel) vary as a function of the correlation with the target user

or target item respectively. We compute the correlations (a) based on the estimated

latent factors U (V ) of the R before the attack, or (b) based on the true rating matrix

X. We find that for items with small correlation with the target item, the variance

of the differences is large; as the correlation increases, the variance reduces. We also

find that for the users who are most correlated with the target user (> 0.6 factor-based

correlation), the more correlated they are with the target user, the higher the attack

difference.

7.4.6 Targeting a Group of Items

Next, we focus on attacks that target an entire group of items, in contrast to the

presented experiments so far, where a single item was the target of each attack. We

examine two adversarial goals:

(A1) minimize the mean predicted score over all items in a group, and

(A2) maximize the prediction error, as measured by mean absolute error, over a group.

Experimental Setup. We adopt the (E2) experimental setup (Section 7.4.2) of using the

extra information of a “target set”—the adversary A has the added power of, besides

making queries to access R’s predictions, being able to target some held-out tuples of

(user, item, score) which have not been used as part of R’s true training data. This is

in contrast to the (E1) setup where A targeted one or a set of unrated user-item entries.

We used the (E2-b) setup of 80-10-10 split of ratings per user.

To define the target item groups, we explored four different ways: (i) grouping them

into 10-percentile groups based on the predicted scores from R before the attack, (ii)

using the side information of movie genre, where the same movie can belong to multiple

groups, (iii) 10-percentile groups based on the prediction error of R before the attack,

or (iv) 10-percentile groups based on number of training ratings per item. To be more

precise, for (i) and (iii), we first computed for each item h R’s average predicted scores,

and average mean absolute error respectively, over the corresponding (user, h, score)

tuples in the target set, and we then divided them into deciles based on these values.

Setting. For R, we set d to 100, and λ to 0.1, and we train it for 100 alt-min iterations

before the attack. For the adversary A, we set η to 1000, K to 5, α to 50, and T = 30.
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Figure 7.7: The adversary A targets the predicted score–goal (A1)–of a group of items
defined over (user, item, score) entries in the target held-out set under the (E2) setup.
y-axis: % target improved (percentage of decrease in the fA). x-axis: target group bins.
Left: Groups are 10-percentile groups based on R’s predicted scores before the attack.
Right: Groups are defined based on movie genres. Gist: % improved is larger for
groups with higher predicted score before the attack; up to 6.1% decrease in predicted
score happens for the “adventure” genre.

We report the best results from A’s side, for the Z-SGD iteration with the best value of

fA in the target set. We report the

% Target Improved =
∆ ∗ 100

fbefore
A

, (7.12)

where ∆ is given by (7.10).

Figure 7.7 focuses on goal (A1)—decreasing the average predicted score from R

over an item group, defined as the mean of the predicted scores over the subset of the

target held-out user-item entries belonging to that group. Figure 7.7, left panel shows

that A tends to be capable of larger % target improved, i.e., larger % of decrease in

the predicted score, for the movie groups with larger original predicted score; A can

achieve up to 10.9% for the bucket with predicted scores before the attack between

[4.47, 6.53). This is interesting, as these are the entries which would be more likely to

appear on users’ lists, if the attack did not happen. Figure 7.7, right panel shows that

when grouping the movies into buckets based on their genre, A can achieve up to 6.1%

decrease in predicted score for the adventure genre; the second largest % was found for

the unknown genre.

Figure 7.8 focuses on goal (A2)—maximizing the target prediction error of a group.

The left panel shows the results for grouping movies based on the target prediction error
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Figure 7.8: The adversary A targets the prediction error–goal (A2)–of a group of items
defined over (user, item, score) entries in the target held-out set under the (E2) setup.
The x-axis (groups), and y-axis (% Improved) are as described in Figure 7.7. Left:
Groups are 10-percentile groups based on R’s initial, i.e., before the attack, prediction
error. Right: Groups are 10-percentile groups based on number of training ratings per
item. Gist: % improved is larger for groups with smaller initial predicted error (left); as
number of training ratings per item increase, the attack can be more successful (right).

of R before the attack, and shows that A can achieve up to 59.3% target prediction error

increase for the well-modeled buckets, i.e., those with [0.02, 0.49) error before the attack.

The right panel shows that A can achieve up to 4.2 % error increase for the item bucket

with [79, 134) training ratings; however, the groups with fewer than 4 training ratings

were not successfully targeted.

7.4.7 Targeting Improved Modeling for a Group of Users or Items

In the last set of experiments, the adversary’s intent is to achieve improvement in the

modeling of groups of users or items in the target set—we will refer to those as targeted

improvements. The difference between this experiment and Section 7.4.6 is that here,

A wants to improve how R models groups of users or items, whereas before in the (A2)

goal A wanted to deteriorate how R modeled the groups of items.

We examine three goals:

(I1) improve the average recommendation quality, as measured by Hit Rate@10 (check-

ing whether on average per user, the user’s held-out entry is included in their

top-10 recommender list (hit=1), or not (hit=0)), over a user group,

(I2) improve the modeling, as measured by mean absolute predicted error, over a group

of items, and
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Figure 7.9: The adversary A targets to improve the recommendations, as measured by
Hit Rate, of groups of users—goal (I1)—, defined over over (user, item, score) entries
in the target set under the (E2) setup. The x-axis (groups), and y-axis (% Improved)
are as described in Figure 7.7. Left: Groups are 10-percentile groups of users based on
number of training ratings per user. Right: Groups are 10-percentile groups based on
age. Gist: The largest improvement is observed for the [36, 48) training ratings bucket
(left); for the youngest age bucket (right).

(I3) ensure that two user groups are equally well modeled, i.e., the gap between their

modeling errors is reduced.

Goal (I2) is essentially the negative of goal (A2). In all three (I1), (I2), (I3) goals, the

metrics are defined in the target set.

The setup followed is again the (E2) experimental setup (Section 7.4.2), and the

parameter setting stays the same as described in Section 7.4.6. However, for the sub-

experiment focusing on the (I1) goal, the target set is formed based on the (E2-a) leave-

one-out setup so to compute the Hit Rates, whereas for (I2), (I3) the (E2-b) 80-10-10

split was used.

We explore different ways of defining the target user or item groups: For the exper-

iment realizing goal (I1) we group users into 10-percentile groups based on number of

training ratings per user, or based on the side information of age. For the experiment re-

alizing goal (I2), we create the item groups by grouping movies into 10-percentile groups

based on number of training ratings per item. Finally, for the goal (I3)-experiment, we

create user groups either based on side information, dividing into two user groups based

on gender, i.e., male and female, or dividing them into four 25-percentile groups using

the number of training ratings per user.

For the (I1), (I2) set of experiments, we report again the % target improved metric,

i.e., the percentage of improvement in the average Hit Rate over the users belonging to
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Figure 7.10: The adversary A targets to improve the modeling of groups of users or
items; setup is the same as in Figure 7.9, focusing on goals (I2), (I3). Left: Goal
(I2)—decrease the prediction error for groups of items, where groups are 10-percentile
buckets defined based on number of training ratings per item. The x-axis shows the
groups, and the annotations on top of the bars are the initial (before the attack) target
prediction errors. Right: Goal (I3)—minimize the gap betwen the prediction errors
of user groups, thus improving the fairness in the modeling of them. User groups are
25-percentile buckets based on number of training ratings per user. Here, the target is
to reduce the gap between groups 0 and 3. The figure shows how the prediction error
of each group (y-axis) varies as Z-SGD iterations (x-axis) proceed. Gist: The fake
users can improve the prediction error more for the item groups with smaller initial
prediction error (left); the target gap between groups 0 (blue line) and 3 (red line)
becomes 0, affecting also the target prediction errors over the other groups (right).

the group, or the percentage of decrease in the mean absolute error over the target set.

For (I3), we measure the gap, i.e., absolute difference, among the two prediction errors

in the target set we optimize fA over.

Figure 7.9 focuses on goal (I1), i.e., improving the Hit Rates of certain user groups.

From Figure 7.9, left panel we find that the user group with the largest number of

ratings is not improved, in fact, it is hurt by the fake users. The groups which benefit

the most from A tend to be those in the middle of the rating distribution. Figure

7.9, right panel shows that grouping users into deciles [7, 20), [20, 23) up to [51, 73), a

targeted improvement is possible; with the largest observed for the youngest age bucket.

But, these targeted improvements do not transfer to an unseen test set from the same

age group (yellow bars). We argue that this happens as the before-the-attack trends of

HRs over the age groups in the target and test set differ (Figure 7.11, right).

Figure 7.10, left panel focuses on goal (I2), and shows the % improvement results in

the modeling of item groups defined based on the number of training ratings per item.
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Figure 7.11: Left: Initial target and test prediction errors over ratings-based item
groups. Right: Initial target and test Hit Rates over age-based user groups. Gist:
When the target-test trends are similar (left), the adversary can target successfully
unseen test groups (Figure 7.10, left, yellow bars); else when the trends of the initial
metrics are different (right), the % Improved trends over target and test are different
too (Figure 7.9, right, yellow bars).

We find that groups with the smallest target prediction errors before the “attack” (data

labels annotated on top of the bars in the plot), are the ones which are better targeted,

i.e., the ones with the largest % target improved. Based on the yellow bars, we can also

see the % improvements in a test set—we see that in this case the adversary can achieve

targeted improvements in an unseen test set, albeit of typically smaller size compared to

the respective ones in the target set. From Figure 7.11, left we can see that the original

metrics of the target and test set hold similar trends across groups, which might be one

reason why the attack generalizes here (further future analysis is needed).

Last, we focus on goal (I3), which can be viewed as ensuring fair treatment of two

user groups. By grouping users into two groups, males and females, and measuring the

target mean absolute prediction error, we find that: the error for (females, males) was

before the “attack” (1.299, 1.339); during the “attack”, A attempts to minimize the

error of the group with the larger original error; and after the “attack” the rounded

prediction errors became equal: (1.281, 1.281), improving the absolute gap between the

two groups from 0.04 to 0.0001 (without the rounding). Similar trends can be found

when defining user groups based on number of ratings, or the age side information. For

example, Figure 7.10, right panel shows that for 25-percentile groups 0, 1, 2, and 3

of users based on number of training ratings per user, the gap between group 0 and

3 becomes 0. Also, the plot shows how targeting 0-3 gap affects the prediction errors

of the other groups as well as Z-SGD updates progress—this observation holds for all
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group-based attacks: targeting a group has an effect of improvement/ decrease in the

other groups, too. This inter-connection among the groups seems to play a role for

understanding when/ why attacks generalize to a test set (to be explored in the future).

These results serve as proof of concept that:

Using fake users generated from A, one can improve in a target set how R

models target groups of users or items.

More rigorous analysis though is needed to understand patterns for the user/ item

groups that can enjoy larger targeted improvements.

Discussion

Overall, our experiments indicate that an adversary can achieve a variery of intents on

target groups of users or items defined in a variety of ways, while the distance between

the real user and fake user distribution remains close1. It is important to emphasize

again that this happens under the assumptions that the adversary A has the ability to:

• query the recommender R for predicted scores,

• know the underlying true distribution of user-item ratings (so to be able to create

realistic-looking user profiles), and

• under the (E2) setup, to target true—not unrated as in the (E1) setup—user-item

entries; which however, might not be realizable in real-world settings,

while R is oblivious to A, and is periodically (at every Z-SGD update) warm-start

retrained over both real and fake ratings for a few alt-min iterations. Nevertheless,

it is still notable that the adversary A can affect the recommender’s predictions; with

perhaps the most interesting result being that just by targeting the top user predicted

for an item, all top users predicted by R for this item, and all top items predicted by R

for this user are successfully targeted as well.

7.5 Related Work

Most works on attacking a recommender system R injecting fake users (i.e., “shilling

attacks”), have focused on engineering user profiles with high/ small score on the target

1 Although from Section 7.4.5 onwards we omitted the distance metrics, in all experiments mean TVD

and mean JS Divergence remain close to 0.
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item(s) and average or normal-distributed scores for (a subset of) the other items. These

approaches vary in terms of: the recommender model under attack (e.g. user/ item-

based collaborative filtering, model/ memory-based), the adversary’s knowledge (e.g. of

the true rating distribution, the recommender’s architecture or parameters), the attack

intent (e.g. promote/ demote an item or group), and the adversary’s success metric

[11, 34, 120, 127, 126]. Our work is the first where the adversarial fake user generator A

learns to generate fake profiles in an end-to-end fashion, capturing different adversarial

intents. Our approach is demonstrated for a low rank R [119], assuming that A knows

the true rating distribution, and can evaluate R’s objective, but not its gradient.

By learning fake user profiles, we attempt to bridge the gap between shilling attacks

and works on adversarial examples [161, 122, 121, 72, 74]. These have largely focused

on classification; only recently a new adversarial attack type was introduced for graph

data [187]. Our approach, although related with works on adversarial examples, has im-

portant differences: it (i) consists of injecting fake user profiles during training, instead

of perturbing the features of examples on a deployed trained model, and (ii) consid-

ers the recommendation problem, which can lead to attacks of considerably bigger size

than e.g. one-pixel attacks [161], or small-norm perturbation attacks—especially since

recommendation models rely on the assumption that similar users tend to like items

similarly.

In [55] adversarial classification was formulated in a game-theory framework, giv-

ing an optimal classifier given the adversary’s optimal strategy. Our work focuses on

recommendation and presents the strategy from the adversary’s view, considering an

oblivious recommender.

Our work is the first to apply generative adversarial nets (GANs) [73], to produce

realistic-looking fake users. Previous works have used GANs in recommenders, either

for better matrix reconstruction [172], or to find visually similar item recommendations

[90]—but never to learn the rating distribution.

When injecting fake user profiles, the original rating data is augmented. Hence, data

augmentation works become related [16]. Also, our experiments in Section 7.4.7 make

works on adversarial training to tailor representations [66, 63, 24], or on better subset

modeling [25, 42, 43] relevant.

Our work does not focus on the recommender’s strategy to resist; stategies in [130,

71] and robust models [34, 120] remain to be tested. Another direction is to relate our

results to stability [2] and ratings’ influence [140, 142].
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7.6 Summary

In this chapter we presented the first work on machine learned adversarial attacks to

recommendation systems. We introduced the framework of adversarial recommenda-

tion, posed as a game between a low rank recommender R oblivious to the adversary’s

existence, and an adversary A aiming to generate fake user profiles that are realistic-

looking, and optimize some adversarial intent. Our experiments showed that adversarial

attacks for a variety of intents are possible, while remaining unnoticeable. A notable

attack example is that to ruin the predicted scores of a specific item for users who

would have loved or hated that item, it suffices to minimize the predicted score of the

top predicted user for that item before the attack.

This study provides several interesting directions for future research on adversarial

recommendation. First, our approach needs to be tested in other recommendation

datasets, and against other recommendation models, while also varying the knowledge

of the adversary A. Second, our work has only scratched the surface on how data

augmentation with adversarially learned users can improve the modeling of certain

groups; further research is needed to develop a more thorough understanding as to

when it could help, and how it would compare with alternative techniques [25, 24].

Third, other optimization objectives could be encoded for the adversarial intent so to

craft the recommendations / representations for certain goals [66]. Also, generating

new realistic-looking user profiles could be used to improve testbeds of recommendation

algorithms. Finally, one of the most important directions is to to create adversary-

aware recommenders, and evaluate the degree to which they, as well as existing robust

recommenders [34], can resist to such machine learned attacks.
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Chapter 8

Epilogue

Can we ensure that the very top recommendations that will appear on users’ lists will

be relevant to them? How can we give good recommendations, while avoiding long

queues or out-of-stock messages? Can we create conversational recommender systems,

that converse with users to first effectively elicit the preferences—like a human would

do—and then give good recommendations? How to best model recommendation as a

learning to interact with users problem, while learning on-the-fly the underlying struc-

ture among users and items? Is it possible for an external adversarial party, which uses

machine learning, to create fake user profiles which cannot be distinguished by real ones,

that when inserted in the training of a recommender, can achieve some individualistic

purpose?

We argue that these are all important questions which need to be answered, so to

lead to a smoother transition towards the next generation of recommendation systems

which are fully effective in the real world. In particular, while there has been a lot of

progress in the field of recommendation systems, most works have focused on how to

improve the quality of recommendations; they usually overlook challenges present in the

real-world.

To reduce this gap, this dissertation, combining techniques from machine learning

and optimization with real-world insights, offers novel tools that capture the real-

world challenges while caring for good recommendations, so to improve the users’

personalized experiences.

Each chapter of this dissertation in turn addresses each of the above questions. In

doing so, each chapter gives a novel view of the recommendation process which goes

well beyond the classic matrix completion view, popularized after the Netflix challenge.
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First, in Chapter 3 we viewed recommendation as a top ranking problem, ensur-

ing that by giving a push on relevant items higher ranked than non-relevant ones, the

quality of recommendations can be improved (Figure 1.2). Second, in Chapter 4 we saw

recommendation as optimizing two objectives: the one of capturing good recommen-

dation quality, and the one of penalizing when the items’ expected usage exceeds

capacities; we found that adding the second objective can make it more unlikely for

items to become overcrowded, but also when items’ capacities are proportional to user

demand, can even improve the quality of recommendations (Figure 1.3).

Both of these views (Part I) can be seen as a special case of how to encode real-

world constraints—in the first case limited screen space, in the second case lim-

ited item capacities—into the loss function. This illustrates the importance of loss

functions—how they can correctly guide the learning of the model parameters into bet-

ter user experience in the real world.

Then, in Part II, we asked the question: Where though does the data used for the

learning of the model come from? In this part, a radical shift in viewpoint is made.

Instead of assuming that we have already offline data given to us, and we fit our model

to this data, so to find associative relationships, we ask the following, from the point

of view of the recommendation system: What intervention can I make so to increase

the user’s recommendation quality? For example, what question can I ask a new user

so to (i) learn more about the user, and (ii) narrow down the space of questions?

This represents the novel conversational view introduced in Chapter 5 (Figure 1.4).

Or, for example, what item or list of items can I show to an existing user, so that I

exploit what I have learned about the user’s preferences so far, while I probe the as-of-

yet unexplored areas of the latent preference space? This represents the learning to

interact view, while using the principle that similar users will probably have similar

needs, presented in Chapter 6 (Figure 1.5).

In both of these views, we use the system’s underlying uncertainty as a way to guide

the exploration. We view the recommendation system as an agent, making decisions

(which question to ask? which list of items to show?), with the goal of improving the

cumulative performance of the algorithm in some fixed time horizon. This is in sharp

contrast to the majority of works on recommendation which have focused on static,

offline models.

Finally, in the last part (Part III), we thought—what if the data used to train the

recommendation system are not all benign? We took a rather different perspective



162

from the rest of this thesis; using machine learning to tailor the strategy of an adversary

of the recommender. In Chapter 7 we saw that it is possible, when the opponent

uses machine learning to create indistinguishable user profiles, and to suitably update

these profiles to target a certain group of items, or users, to harm the recommendation

system (Figure 1.6). This creates an avenue for future work exploring how to resist

these machine-learned adversarial attacks.

Taken together, the work presented in this dissertation paves the way towards the

next generation of recommendation systems that tackle real-world challenges and put

the user’s needs first, so to improve the overall user experience. We hope that the

presented novel views and corresponding new machine learning models will serve as a

stepping stone to how to transition recommendation systems into the wild.

To carefully think how to tailor the objective functions so to capture the constraints

present, and lead to an ultimately better user experience.

To view recommender systems as the truly interactive agents they are, and seam-

lessly learn to converse and generally interact with their users.

To beware that machine learning can be used from an adversarial perspective as

well, and thus, the underlying models and learning algorithms need to be robust.
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Appendix A

Learning to Interact
Recommendation Algorithms

A.1 Updates for Learning to Interact Algorithms

Below we give more details into the derivation of the various learning to interact algo-
rithms described in Chapter 6.3.1, with parameter updates summarized in Table A.1.
The second, third, and fourth columns correspond to lines 0, 4, and 9 of Algorithms 3
and 4 of Chapter 6.

A.1.1 Independent Bandits

Independent Gaussian Bandits. For a given user i, when rij ∼ Gaussian(θij , σ
2
ij), with

σ2
ij known and fixed and unknown mean θij for every arm j, we can model the prior

distribution of the reward mean θij with the Gaussian distribution θij ∼ N (µ0
ij , τ

0
ij),

as it is the conjugate prior to the Gaussian distribution [65]. After incorporating the
reward of the item shown ĵ for the incoming user i, using Bayes rule we can update
the posterior, which will also be a Gaussian due to conjugacy, with mean and variance
specified in Table A.1. We refer to this as Independent Gauss TS.

Independent Bernoulli Bandits. For a user i, when rij ∼ Bernoulli(πij), it is standard
to model the prior distribution of the reward of every arm j with the Beta distribution
πij ∼ Beta(aij , bij), as it is the conjugate prior to the Bernoulli distribution. Due
to conjugacy, the posterior will be a Beta distribution πij ∼ Beta(a

′
ij , b

′
ij) with new

parameters a
′
ij , b

′
ij defined based on number of observed successes (1) and failures (0).

We call this algorithm Independent Bernoulli TS; details for each bandit are in [38].
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Algorithm Prior/ Parameter Init. Posterior Parameter Update for ĵ

Independent N (θij |µ0
ij , τ

0
ij) N (θij |µ0

ij , τ
0
ij , rij) µ0

iĵ
=

σ2
iĵ
∗µ0
iĵ

+τ0
iĵ
∗riĵ

τ0
iĵ

+σ2
iĵ

Gauss TS Init. µ0
ij , τ

0
ij , Input σ2

ij τ0
iĵ

=
τ0
iĵ
∗σ2
iĵ

τ0
iĵ

+σ2
iĵ

Independent aij = bij = 1 Beta(πij |aij , bij , rij) aiĵ = aiĵ + 1[riĵ = 1]

Bernoulli TS [38] Beta(πij |aij , bij) biĵ = biĵ + 1[riĵ = 0]

LinTS [104] Ai = Id×d,bi = 0d×1 N (θi|θ̂i, A−1
i , rij) Ai = Ai + xĵx

T
ĵ

θ̂i = 0d×1 bi = bi + riĵxĵ , θ̂i = A−1
i bi

LogTS [105] Ai = Id×d ≈ N (θi|θ̂i, A−1
i , rij) πiĵ = σ(θ̃Ti xĵ)

θ̂i = 0d×1 (Laplace Approx.) Ai = Ai + πiĵ(1− πiĵ)xĵx
T
ĵ

θ̂i ← θ̂i − η(πiĵ − riĵ)xĵ
CluLinTS [125] Ai = Id×d,bi = 0d×1 N (θc|θ̂c, A−1

c , rij) Update Ai,bi based on LinTS

θ̂i = 0d×1, # clusters Ac =
∑

i:cAi − I, bc =
∑

i:c bi
θ̂c = A−1

c bc
CluLogTS Ai = Id×d ≈ N (θc|θ̂c, A−1

c , rij) Update Ai,θi based on LogTS

θ̂i = 0d×1, # clusters (Laplace Approx.) Ac =
∑

i:cAi − I, θ̂c =
∑

i:c θi
Gauss S−1

ui = σ2
uI N (ui|ûi, Sui , rij) S−1

ui = S−1
ui + ṽĵṽ

T
ĵ

, S−1
vĵ

= S−1
vĵ

+ ũiũ
T
i

Low Rank TS S−1
vj = σ2

vI N (vj |v̂j , Svj , rij) dĵ = dĵ + riĵũi, v̂ĵ = Svĵdĵ
[184, 91] Rand. v̂j , ûi bi = bi + riĵṽĵ , ûi = Suibi

Bernoulli S−1
ui = σ2

uI ≈ N (ui|ûi, Sui , rij) S−1
ui = S−1

ui + π̃iĵ(1− π̃iĵ)ṽĵṽ
T
ĵ

Low Rank TS S−1
vj = σ2

vI ≈ N (vj |v̂j , Svj , rij) S−1
vĵ

= S−1
vĵ

+ π̃iĵ(1− π̃iĵ)ũiũ
T
i

Rand. v̂j , ûi (Laplace Approx.) Update ûi, v̂ĵ
Gauss S−1

ui = σ2
vI N (ui|ûi, Sui , rij) S−1

ui = S−1
ui + ṽĵṽ

T
ĵ

ICF [184] Rand. ûi bi = bi + riĵṽĵ , ûi = Suibi
Bernoulli S−1

ui = σ2
uI ≈ N (ui|ûi, Sui , rij) S−1

ui = S−1
ui + π̃iĵ(1− π̃iĵ)vĵv

T
ĵ

ICF [184] Rand. ûi (Laplace Approx.) Update ûi

Table A.1: Parametric updates in learning to interact recommendation algorithms.
After the feedback riĵ of user i on shown item ĵ, the previous posterior becomes the
new prior. Time indices are omitted to avoid clutter. Symbol ·̃ denotes sampled values.

A.1.2 Contextual Linear Bandits

LinTS. In [104], for a given bandit i, the reward of the arms is assumed to have linear
structure: E[rij ] = (θ∗i )

Txj , where note that only d parameters, typically � N need to
be learned. LinTS assumes that the posterior distribution of θi is N (θi|θ̂i, A−1

i ) where
the mean and the variance are updated based on online Bayesian linear regression [27].

LogTS. In [105], Li et al. extended contextual linear bandits for the case when the
rewards come from a generalized linear model (e.g. Bernoulli, Poisson, etc.) [27]. Here,
we consider only when rewards come from a Bernoulli distribution, where the reward
assumption is that E[rij ] = σ(θ∗

T

i xj) = 1/(1 + exp(−θ∗Ti xj). LogTS uses online logistic
regression to update the underlying parameters. Given that the posterior distribution
is not a Gaussian anymore due to the non-linearity introduced, moment matching is
employed to approximate it with a Gaussian ≈ N (θi|θ̂i, A−1

i ) [27]. Also, as there is no
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closed form update for θ̂i, an iterative algorithm is needed.

A.1.3 Contextual Clustering Bandits

CluLinTS [125]. In [125], users are allowed to move to other clusters, based on how
close their parameter vector is to the parameter vector of each of the clusters. At every
round, after the parameters of the incoming user are updated based on LinTS, the
cluster parameters are updated, and users are re-assigned to the closest cluster. Briefly,
the posterior distribution of θc is a N (θ̂c, A

−1
c ), where the cluster parameters Ac,bc are

derived by averaging Ai,bi of the users {i} who are assigned to it (Table A.1, [125]).
CluLogTS. (new method) Here, we devise a new contextual clustered TS algorithm

for Bernoulli rewards, referred to as CluLogTS, to better capture binary data, such as
click/no-click. CluLogTS assumes that the reward of item j for user i assigned to cluster

c follows: E[rij ] = 1/(1 + exp(−θ∗Tc xj). The parameters of the reward distribution of
every user i are learned via LogTS. Initially, users are randomly assigned to clusters,
and cluster parameters are initialized. At every round, an item ĵ is shown to the
incoming user i based on the sampled parameters of the corresponding cluster c the user
is currently assigned to. After incorporating the observed feedback riĵ , user i’s LogTS

parameters get updated, the user is allowed to dynamically move to the closest cluster
based on the proximity of the user-cluster parameters, and the clusters’ parameters get
updated based on the parameters of the users belonging to the cluster.

A.1.4 CF low rank Bandits

ICF. ICF [184] was the first work to use CF for recommendation bandits. However,
the authors formulated the problem as a contextual linear bandit, where they used as
contextual features the latent features of the items as pre-learned from training PMF
[148] on some user-item observations. In their formulation, vj ’s are given as input to
the algorithm and only ui’s are learned online. They devised both Gauss ICF and
Bernoulli ICF, with updates found in [184].

Gauss Low Rank TS, variants of which have been considered in [91], assumes that
the mean reward of the arms follows the low rank assumption, i.e., µij = uTi vj . In
particular, Gauss Low Rank TS, using as the underlying model PMF [148], makes the
following parametric assumptions for the underlying parameters of the reward distribu-
tion at time step t:

∀i : uti ∼ N (û
(t−1)
i , St−1

ui ) ∀j : vtj ∼ N (v̂
(t−1)
j , St−1

vj )

∀ij : rtij ∼ N (ut
T

i vtj , σ
2
ij)

where the parametric form of ûi, v̂j , Sui , Svj is defined in Table A.1.
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A.2 Sensitivity Analysis

Here, we present a set of experiments to determine the sensitivity of collaborative
learning to interact algorithm Low Rank TS with respect to different choices of hyper-
parameters. For this we consider the following described synthetic data sets which
exhibit the CF principle. Specifically, we study how sensitive the algorithm is to (a) the
initial parameter setting of the covariance matrices of the latent factors, (b) the noise
present in the Gaussian rewards, (c) the rank of the latent factors. For the first two we
consider synthetic data, whereas for the last we use the real datasets described in Table
6.1. Following, we describe our synthetic data setup, and then we discuss our sensitivity
results illustrated in Figure A.1.

Synthetic Data. For Gaussian rewards, we generated our data via the PMF model,
i.e., every entry rij of the reward matrix R is rij = uTi vj+εij . For the Bernoulli rewards,
we generated our data based on the logistic matrix factorization model: every entry rij
∼ Bernoulli(sigmoid(uTi vj)). For both cases we created different data sets, varying both
the number of users M and the number of items N in the range of {10, 100, 1000}. For
every M,N combination, we created five random data sets with different random seeds
and report results averaged over them.

(a) Synthetic Data
M = N = 1000

(b) Synthetic Data
M = N = 1000

(c) ML100K, Bernoulli (d) Netflix, Gaussian

Figure A.1: (a) Effect of variance s = σu, σv on Bernoulli Low Rank TS for Bernoulli
synthetic data with 100 users, 1000 items. Smaller values of s lead to lower RT . (b)
Effect of noise σij = {0.5, 1.5} on Gauss Low Rank TS vs. Low Rank Greedy for Gauss
synthetic data with 1000 users, 1000 items. For higher noise, Low Rank TS outperforms
Low Rank Greedy. (c)-(d) Effect of rank d, varying in {2, 5, 10, 20} on Low Rank TS.

Effect of σu, σv for Bernoulli. To determine the effect of the initialization of the
covariance matrices Sui , Svj on Low Rank TS, we vary σ2

u = σ2
v in the range of {0.001,

0.01, 0.1, 1, 10, 100}. We present our results for Bernoulli rewards for the synthetic
data set of M = 100, N = 1000 in Figure A.1(a). We can see that typically, smaller
values of these hyper-parameters lead to lower cumulative regret. We observed a similar
trend for the real data sets for both types of rewards.

Effect of noise σij for Gaussian. Next, we study how the noise level in the user
feedback under Gaussian rewards affects Gauss Low Rank TS compared to the Gauss
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Low Rank Greedy baseline. We vary the noise standard deviation σij to {0.5, 1.5} and
report the results in Figure A.1(b) for the synthetic data set of 1,000 users interacting
with 1,000 items. Similar trends hold for the real data sets too. We can see that when the
noise level is small, Low Rank Greedy and Low Rank TS have similar performance, and
the former tends to be better. However, when the noise is larger, TS is more robust and
outperforms Greedy. We expect real-world user feedback to be noisy, making Thompson
Sampling a possibly better choice.

Effect of Rank. To study the effect of the rank d of the latent factors U, V on the
performance of Low Rank TS, we vary d in the range of {2, 5, 10, 20}. Based on Figure
A.1, we can see that for Movielens 100K with Bernoulli rewards, rank 2 results in the
lowest cumulative regret, while for the data set of Netflix with Gaussian rewards, rank 20
is the best, as the number of observed ratings is an order of magnitude larger. Although
in Chapter 6 we present results with rank set to 2, this brief sensitivity experiment shows
that a tuned value of the rank would result in even smaller RT .

A.3 Real Data Full Experiments

Figures A.2-A.5 contain the experiments on all real datasets, for Bernoulli and Gaussian
reward models, for one-item and cascade list recommendation setup.

(a) Movielens 100K (b) Movielens 1M (c) Netflix (d) Yahoo

Figure A.2: Comparison of one-item recommendation methods for Gaussian Rewards.
Low Rank (LR) TS is among the top performing methods for Movielens 100K and
Movielens 1M, and outperforms all for larger scale data sets: Netflix and Yahoo.
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(a) Movielens 100K (b) Movielens 1M (c) Netflix (d) Yahoo

Figure A.3: Comparison of one-item recommendation methods for Bernoulli Rewards.
Low Rank (LR) TS and Greedy Low Rank are the best performing methods.

(a) Movielens 100K (b) Movielens 1M (c) Netflix (d) Yahoo

Figure A.4: Comparison of cascade list recommendation methods for Gaussian rewards.
For the larger scale datasets, Casc. LR TS is among the top performing methods.

(a) Movielens 100K (b) Movielens 1M (c) Netflix (d) Yahoo

Figure A.5: Comparison of all cascade list recommendation methods for Bernoulli re-
wards. Casc. LR TS achieves the smallest cumulative regret for larger-scale datasets.


	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Contributions
	Chapter ??—Recommendation as a Top Ranking Problem
	Chapter ??—Recommendation as a Collective Process
	Chapter ??—Recommendation as a Conversational Procedure
	Chapter ??—Recommendation as Learning to Interact with Users
	Chapter ??—Recommendation as a Game against Adversaries

	Broader Impact
	Bibliographical Notes

	Preliminaries and Background
	Basic concepts
	Model: Matrix Factorization
	Learning
	Evaluating Recommendation Performance
	Table of symbols
	Table of datasets

	I Loss Functions: Encoding Real World Constraints
	Recommendation as a Top Ranking Problem
	Introduction
	Collaborative Ranking With a Push at the Top
	Push and Collaborative Ranking
	P-Norm Push Collaborative Ranking
	Infinite Push Collaborative Ranking
	Reverse-Height Push Collaborative Ranking

	Experiments
	Validation—Ranking vs. Rating Prediction
	Validation—Collaborative vs. Individual
	Performance of Proposed Approaches
	Parameter Sensitivity Analysis

	Related Work
	Summary

	Recommendation as a Collective Process
	Introduction
	Key Concepts and Preliminaries
	Item Capacities
	User Propensities
	Geographical Matrix Factorization (GeoMF)

	Recommendation with Capacity Constraints
	Approach 1: Post-Processing
	Approach 2: Proposed Framework

	Experimental Results
	Validation: Interplay between Objectives
	Comparison with Unconstrained Methods
	Comparison between Proposed Approaches
	Sensitivity Analysis

	Related Work
	Summary


	II Data: Learning To Interact with Users
	Recommendation as a Conversational Procedure
	Introduction
	Understanding Real Users
	Query Annotation with Entities
	Understanding Common Phrases
	Restaurant Feature Dictionaries
	Outlook

	Model
	Overview
	Latent Factor Recommendation
	Continuous Learning Recommender
	Extension to Relative Preferences

	Experimental Setup
	Learning Synthetic User Type Preferences
	Results on Real Data
	Search Data for Offline Initialization
	User Study as Basis for Online Evaluation
	Obtaining Ground Truth
	Results

	Related Work
	Summary

	Recommendation as Collaboratively Learning to Interact
	Introduction
	Key Concepts & Overview
	Collaborative Filtering
	Recommendation as Learning to Interact
	User Reward Models
	Random Probability Matching Principle
	Click Models

	Learning to Interact with Users
	Parametric Assumptions for User Rewards
	Existing Algorithms and Outline

	Learning to Collaboratively Interact with Users: Proposed Algorithms
	One-Item Bernoulli Collaborative Bandits
	Collaborative Cascade Ranking Bandits

	Experimental Results
	Experimental Procedure
	Which interactive recommender is the best for one/no-click recommendation?
	Which interactive recommender is the best for cascade list recommendation?

	Related Work
	Summary


	III (Malicious) Data: The Attack of The Fake Users
	Recommendation as a Game with an Adversary
	Introduction
	Problem Formulation
	Learning
	Experiments
	Can We Learn Realistic User Profiles?
	Experimental Design
	Targeting a User-Item Pair
	Targeting Item's Mean Predicted Score
	Targeting the Top User of an Item
	Targeting a Group of Items
	Targeting Improved Modeling for a Group of Users or Items

	Related Work
	Summary


	IV Concluding Remarks
	Epilogue
	References
	 Appendix A.  Learning to Interact Recommendation Algorithms
	Updates for Learning to Interact Algorithms
	Independent Bandits
	Contextual Linear Bandits
	Contextual Clustering Bandits
	CF low rank Bandits

	Sensitivity Analysis
	Real Data Full Experiments



