
Evaluation of the Benefits and Limitations of

Verification Activities in Developing a Critical

System using Model-Based Development

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Young Sub Lee

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

Dr. David Lilja, Advisor and Dr. Mats Heimdahl, Co-Advisor

August, 2018

c© Young Sub Lee 2018

ALL RIGHTS RESERVED

Acknowledgements

First of all, I would like to thank my family, especially my parents, who has been

a constant source of support and love.

Also, I would like all the members of the Crisys research team. Especially like

to thank Sanjai and TaeJoon. They were always willing to help me when I needed

help. Without their helping, it would have been much more difficult to complete

my Master’s Degree.

Finally, I would many thanks to Prof. Mats Heimdahl, my advisor. He has

introduced me to new ways of thinking about research approach, software, and

hardware testing. His support and feedback in this research were invaluable.

i

Abstract

In developing safety-critical cyber-physical systems, model-based development

(MBD) promotes design and verification activities at the model-level, which is

an abstract description of the behavior of the software to be implemented. MBD

tool suites such as MATLAB’s Simulink and Stateflow implements the principles

of MBD so that system developers can easily incorporate various verification and

validation activities such as modeling, simulation, testing, and even formal verifi-

cation. Among all activities involved in MBD, simulation and model-level testing

are widely adopted to identify bugs in the early phase of the model development.

Formal verification of the design model, on the other hand, is often considered

difficult or impractical so it is less widely adopted in the practice.

This report investigates the practicality, limitations, and benefits of adopting

various model-based V&V activities in developing a safety-critical cyber-physical

system. We have developed a rocket-launch control system in cooperation with a

local rocketry club following MBD principles. More specifically, we developed a

Simulink model, performed model-level simulation, testing, and model-level prop-

erty verification of three safety properties. In each phase of the development, we

demonstrate that each activity can be easily incorporated into the development

ii

process. The verification result of the Simulink Design Verifier shows that our

safety properties of concern hold, with which we could gain confidence in the cor-

rectness of the model. This report will help people who design a critical system

using MBD to chose the verification techniques that they need.

iii

Contents

Acknowledgements i

Abstract ii

List of Figures vii

1 Introduction 1

1.1 Model-Based Development . 2

1.2 Software Verification and Validation 3

1.2.1 Software Simulation . 4

1.2.2 Hardware in the Loop Simulation 5

1.2.3 Formal Model Verification 5

1.3 The Rocket Launch System . 5

1.4 Scope of Study . 7

iv

2 Modeling and Simulation 9

2.1 Simple Launch System . 11

2.1.1 Designing LaunchLogic . 11

2.1.2 Simulation for LaunchLogic 13

2.1.3 Designing ButtonLogic and ArbiterLogic 14

2.1.4 Simulation for Simple Launch System 15

2.1.5 HIL Simulation for Simple Launch System 16

2.2 Launch PadUnit . 19

2.2.1 Designing PadLogic . 21

2.2.2 Simulation for PadLogic 21

2.2.3 Designing Atomic Padlogic 22

2.2.4 Simulation for PadLib . 24

2.2.5 Designing Pad Communication Blocks 25

2.2.6 PadLib with Communication Block 27

2.3 Launch Controller . 27

2.3.1 Designing Atomic Controller Logic 28

2.3.2 Building the Controller Model 30

2.4 Rocket Launch System . 33

2.4.1 Combining Models to Build Rocket Launch System 34

2.4.2 HIL Simulation Environment 35

v

2.4.3 HIL Simulation Result . 37

3 Model Formal Verification 38

3.1 Designing Property Check Models 39

3.2 First Property Model . 41

3.2.1 Designing the First Property Model 41

3.2.2 Running Design Verifier for First Property 43

3.3 Second Property Model . 48

3.3.1 Designing Second Property Model 48

3.3.2 Running Design Verifier for Second Property Check Model 50

3.4 Third Property Model . 51

3.4.1 Designing the Third Property Model 52

3.4.2 Running Design Verifier for Third Property Check Model . 54

3.4.3 Re-designing Third Property Model 56

3.4.4 Re-running Design Verifier for Third Property Check Model 57

3.4.5 Fixing the defects of the PadSW 58

3.4.6 Discussion . 59

4 Summary and Conclusion 61

Bibliography 63

vi

List of Figures

2.1 LaunchLogic Stateflow Chart . 12

2.2 Simulation Model for the LaunchLogic 13

2.3 ArbiterLogic Stateflow Chart . 15

2.4 ButtonLogic Stateflow Chart . 16

2.5 Simulation Model for Simple Launch System 17

2.6 HIL Simulation Model for the Software Part of the Simple Launch

System . 18

2.7 HIL Simulation Model for Software Part of Simple Launch System 19

2.8 PadLogic Stateflow Chart . 20

2.9 Simulation Model for PadLogic 22

2.10 Simplified PadLogic Stateflow Chart 23

2.11 Simplified PadLogic Stateflow Chart 24

2.12 PadTxLib Stateflow Model . 25

vii

2.13 TXlogic State Machine . 26

2.14 PadRxLib Stateflow Model . 26

2.15 RXlogic State Machine . 27

2.16 PadLib Model . 28

2.17 ControllerLogic State Machine . 29

2.18 Controller Model Combined Hardware and Software Blocks 30

2.19 ControllerHW Model . 31

2.20 ControllerSW Model . 32

2.21 Button Library for One Atomic ControllerLogic 33

2.22 Eight Atomic ControllerLogic . 33

2.23 Rocket Launch System . 34

2.24 HIL Simulation Software Environment 35

2.25 ControllerSW Model for One PadLib 36

2.26 HIL Simulation Hardware Environment 37

3.1 Overall Formal Verification Model for PadSW Model 40

3.2 Overall Formal Verification Model for PadSW Model 42

3.3 Running the Prove Properties Program in the Simulink 42

3.4 Design Verifier Report for the First Property Check Model 44

3.5 Harness Model created by Design Verifier 45

3.6 A Counter Example for the First Property Check Model 46

viii

3.7 Revised Version of the First Property Check Model 47

3.8 Design Verifier Report for the Renewal First Property Check Model 47

3.9 Second Property Check Model . 48

3.10 Second Property Logic State Machine 49

3.11 Design Verifier Report for the Second Property Check Model . . . 51

3.12 Third Property Check Model . 52

3.13 Third Property Logic State Machine 53

3.14 Design Verifier Report for the Third Property Check Model 54

3.15 Design Verifier Report for the Third Property Check Model 55

3.16 Improved State Machine that Describes Third Property Check Model 56

3.17 A Counter Example for Improved Third Property Check Model . 57

3.18 Redesigned PadRxLib Model . 58

3.19 A Counter Example for Improved Third Property Check Model

after Redesigned PadRxLib Model 59

3.20 (a) Redesigned Pulse Generator Model (b) Design Verifier Report

of Verifying Third Property . 60

ix

Chapter 1

Introduction

In developing safety-critical cyber-physical systems, model-based development

(MBD) promotes design and verification activities at the model-level, an abstract

description of the behavior of the software to be implemented. MBD tool suites

such as MATLAB’s Simulink and Stateflow implements the principles of MBD

so that system developers can easily incorporate various verification and valida-

tion activities such as modeling, simulation, testing, and even formal verification.

Among the activities involved in MBD, simulation and model-level testing are

widely adopted to identify bugs in the early phase of model development. Formal

verification of the design model, on the other hand, is often considered difficult or

impractical so it is less widely adopted in practice.

1

2

This report evaluates the practicality, limitations, and benefits of adopting var-

ious V&V activities in developing a safety-critical cyber-physical system. We have

developed a rocket-launch control system in cooperation with a local rocketry club

[1] following MBD principles. More specifically, we developed a Simulink/Stateflow

model, performed model-level simulation, testing, and model-level property veri-

fication of three safety properties. In each phase of the development, we demon-

strate that each activity can be easily incorporated into the development process.

The verification result of the Simulink Design Verifier shows that our safety prop-

erties of concern hold, with which we could gain confidence in the correctness of

the program. This report will help people who design a critical system using MBD

to select the verification techniques which they need.

In the remainder of the introduction, we will provide an overview of model-

based development, describe our case examples, and the discuss the overall orga-

nization of this report.

1.1 Model-Based Development

Model-Based Development (MBD) is a method in the software and systems devel-

opment fields. MBD focuses on high-level executable models of the system to be

fielded. MBD is able to support design of a system from concepts to C, C++, or

3

HDL code implementing the actual software/hardware system. To be specific, a

user can design the concepts in a graphical programming environment as models

and the user can generate C, C++, or HDL code that has the same behaviors as

the models. One more advantage to use MBD is that the models support analysis,

including simulation, hardware-in-the-loop testing, and formal model verification.

These activities can help find faults at the early in development cycles so that we

can reduce development costs.

MATLAB/Simulink [2], a popular tool suite for MBD that provides a graphical

user interface for modeling using block diagrams and customized block libraries.

The environment also supports add-on products such as Stateflow, which is a

design environment for developing and simulating state machines. Also, MAT-

LAB supports Embedded Coder to generate C/C++ code from the Simulink and

Stateflow models. In this report, we used MATLAB/Simulink and Stateflow to

design a critical rocket launch system.

1.2 Software Verification and Validation

Verification and Validation (V&V) are the activities of analyzing that a system

meets specifications and requirements. Both activities look similar but they are

not the same thing. Barry W. Boehm expressed the difference between V&V [3].

4

• Verification: Are we building the product right?

• Validation: Are we building the right product?

The verification activities help us in evaluating a software system. To be specific,

we can say that verification are the activities that are checking the correctness

of a development phase. The validation activities help us in confirming that a

software system meets its designated use (does what it needs to do).

In this report we show software V&V methods that are a part of the MBD

process. We performed three activities for V&V, two activities (Software Simu-

lation and Hardware in the Loop Simulation) in the course of the development

process and another (Formal Model Verification) at the end of the development

to ensure the safety requirement were indeed met.

1.2.1 Software Simulation

Software Simulation is based on the process of modeling. After developing a

software model, you can simulate the model under a set of conditions to observe the

model behavior in a virtual environment. Simulation has benefits when developing

a critical system since it is expensive and hard to test the software in a real system.

5

1.2.2 Hardware in the Loop Simulation

Hardware in the loop (HIL) simulation is one of the techniques used to verify

a real-time embedded system by simulating a virtual (software) system which

connects with physical (hardware) system by a data acquisition (DAQ) device.

The physical system includes a plant, sensors, and actuators. The DAQ is a

sensor that processes electrical signals and also a generator that generate electric

signals as digital or analog. In HIL simulation, we used the DAQ device (National

Instruments USB-6001) to connect the software system and hardware system [4].

1.2.3 Formal Model Verification

Formal model verification is the act of proving or disproving the correctness of

model with respect to a formal specification or property. This method depends

on mathematical procedures to check all possible execution paths of the model to

find hidden design errors and to prove the design meets the stated requirements.

1.3 The Rocket Launch System

Tripoli Minnesota is a club that flies rockets as a hobby [1]. They develop their

rocket individually but share the rocket launch system that they call mLaunch 3.

At their launch facility, they launch all sizes of rockets from small to huge models.

6

The high power rockets can be hazardous even if the rocket launch system causes

a small malfunction. Hence, the system must have rigorous V&V activities before

the system is released.

Using MBD, we developed a rocket launch system with the mLaunch 3 require-

ments and specifications. The basic function of this system is launching rockets

in a safe manner as well as having fun. mLaunch 3 has four pad units (the unit

that sits on a rocket launch pad) and each unit can launch up to two rockets. A

launch controller can command to an individual pad unit to launch the rockets.

In order to launch a rocket, the rocket owner places the rocket on the pad unit to

connect the pad-unit’s ignition to the ignitor in the rocket. The owner can press

a button on the pad unit to send an activation signal to the controller. When the

controller gets the pad activated signal, the Launch Control Officer (LCO) can

press a armed button on the controller sending a pad armed signal to pad unit to

close the first of two relays. After the pad unit is ready to launch and the owner

is back to a safe place, the LCO presses a rocket launch button on the controller.

This button causes a second relay to close providing current to the ignition system

in the rocket causing the rocket to launch.

7

1.4 Scope of Study

In this report we investigate the practicality, limitations, and benefits of three

V&V activities when we developed the rocket launch system. When starting

this investigation, I had no background in MBD and formal verification. In the

process of conducting the work, I explored modeling using Simulink and State-

flow, hardware in the loop-simulation, model testing, and formal verification. For

some of these activities, this investigation was my first exposure and there was

a significant—but rewarding—learning curve. To allow for a successful develop-

ment and learning environment, we planned on staging the development from

technology familiarization with simple models to a more complete modeling of

the software system. We did the same with the system hardware where we first

built simple buttons and programmed the embedded platform, moved on to use

the DAQ card to connect models and hardware, and finally conducted hardware

in the loop simulation. The organization of the report reflects this staged devel-

opment and is structured as follows:

• The next chapter discusses the design and simulation processes of the

rocket launch system in chronological order, from a simple model to a more

complete model including hardware in the loop simulation. We discuss the

lessons learned as we describe our modeling efforts.

8

• Chapter 3 discusses the design of the formal verification models for our

safety properties, the results of the verification, and the lessons learned

from the effort.

• Chapter 4 concludes and discusses merits and limitations of the V&V

techniques in MBD.

Chapter 2

Modeling and Simulation

In this chapter, we will discuss how we modeled and simulated the rocket launch

system using Simulink and Stateflow. We developed a small part of the system as

a start to learn how to use the tools. We also developed initial hardware needed

for the system, for example, the launch buttons needed to control the launch. We

then gradually added functionality and structure to our models to create a whole

system.

In short, we first developed a model of the launch logic to learn and determine

if this approach seemed suitable for this modeling project. After establishing

feasibility, we started adding functionality, developing and connecting the sys-

tem hardware (and the models needed to communicate with the hardware), and

separating the models to reflect the distributed nature of mLaunch 3 (a central

9

10

controller and launch units placed at each launch pad).

Each model used simulation to anticipate and evaluate behaviors. We designed

the system by iterating between modeling and simulation in the early developed

models to improve the quality of the system and to reduce the number of errors

found later in the design process.

It is worth noting that the investigation also included exploring programming

Intel x86 embedded controller and connecting it to hardware models. We con-

ducted this study to understand how a powerful embedded computer was pro-

grammed and how to build the hardware that would communicate with it (the

buttons and relay controllers). This part of the project was surprisingly time-

consuming since we had no experience with this controller and little experience

with building the hardware to communicate with it. Although this part of the

project did not directly contribute to our modeling efforts and will not be further

discussed in this report, the lessons learned were valuable.

In the following four subsection we will describe how we developed a simplified

launch system and connected it to the launch buttons as a demonstration and

learning experience. We will then discuss the development of the unit that goes

on the launch pad and controls the relays providing current to the rocket engine.

We then discuss how the simplified launch system is extended to serve as the

launch controller and we conclude the section with a discussion on how the pad

11

unit and launch controller are brought together to a complete launch system.

2.1 Simple Launch System

Before developing the launch controller and the pad units, we first design a simple

launch system that can fly a rocket using three buttons. Each of the buttons

works as same as the buttons of mLaunch 3. The desired behavior of the Simple

Launch System is if buttons are pushed sequentially, first B1 (pad ready), then

B2 (arm launch pad), and finally B3 (launch), then a rocket will launch. As we

will see, even such simple functionality led an inexperienced developer to make

mistakes and finding such mistakes in modeling and simulation was helpful.

2.1.1 Designing LaunchLogic

To design the initial system logic, LaunchLogic, we used Stateflow, which is a

toolbox of Simulink, and is based on state machines. The LaunchLogic has three

inputs, the buttons B1 (pad ready), B2 (arm launch pad), and B3 (launch) and two

outputs, relay1 and relay2 closing the circuit that ignites the rocket engine. Figure

2.1 shows there are four states connected with transition conditions. Each state

has two output status so that the outputs can be changed when the current state

transits to another state. In the Initial State, if buttons are pressed sequentially

12

Figure 2.1: LaunchLogic Stateflow Chart

B1, B2, and B3 then the current state machine changes to the Launch State,

which means both relays are closed and a rocket will fire. After two seconds in

the Launch State, the state machine goes back to the Initial State and both relays

opened. To avoid dangerous situations, we built two safety conditions. The first

condition is that after 10 seconds in the CheckingConnection State, if there is

no further activity the state machine times out and goes back to the initial state.

13

The second condition is to allow a reset if the user presses B2 in the LaunchReady

State (the user arms the launcher with a B2 button push and resets the system

with a subsequent B2 push).

Figure 2.2: Simulation Model for the LaunchLogic

2.1.2 Simulation for LaunchLogic

To check the behavior of the LaunchLogic, we simulated the Stateflow model.

Figure 2.2 shows a simulation model that included three Manual Switch blocks

to generate input signals and a Scope block to see the result of the simulation

outputs. We confirmed the model operated as desired behavior when we pushed

the button individually.

However, through this simple testing we also found that the system had critical

faults. The faults, we called them crushed button errors, occurred when the model

14

got input signals simultaneously generated by the Switch blocks (buttons). One

case of undesired behavior is that the Manual Switch3 first generate value 1 then

Manual Switch1 and Switch2 generate value 1 sequentially. In this case, the

sequence of the button pushes was B3, B1, B2 (the wrong order) but the system

model closed both relays anyway; clearly, it is not enough to check of the signals

are high, the order in which they are pressed is of imperative importance. The

result of our erroneous model means that a rocket might be fired even if it is not

provided the correct launch sequence.

2.1.3 Designing ButtonLogic and ArbiterLogic

To solve the above button problem, we designed two models. one is an Arbiter-

Logic model and the other is the ButtonLogic model. Both of these models work

between inputs and the LaunchLogic model, and their role is to create an envi-

ronment where the LaunchLogic can handle only one input signal at the time.

Figure 2.3 and Figure 2.4 show Stateflow models of the ArbiterLogic and the

ButtonLogic.

The function of the ArbiterLogic is to allow the system to provide only one

input to the LaunchLogic and prioritize simultaneous inputs. To be specific, if

several Manual Switch blocks generate value 1 at the same time, the ArbiterLogic

compares priorities of the input signals and makes just one output to activate

15

Figure 2.3: ArbiterLogic Stateflow Chart

one specific ButtonLogic. The ButtonLogic model produces output value 1 when

the input values meet a condition, otherwise, it maintains output value 0. The

condition is that an input signal, B, is a rising edge and another input, Token, is

true. The input B connects to one of the Manual Switch models, and Token wires

with the output of the ArbiterLogic

2.1.4 Simulation for Simple Launch System

Figure 2.5 shows how we composed the Simple Launch System. The system has a

LaunchLogic at the main model, an ArbiterLogic model, and three ButtonLogic

library models. We made the ButtonLogic model a library to allow us to reuse

the ButtonLogic model several time.

16

Figure 2.4: ButtonLogic Stateflow Chart

We simulated the system using the same simulation environment above in

Figure 2.2. In the simulation, we put the same input sequences which caused

errors when we simulated the LaunchLogic alone and now the system did not

exhibit the errors at these conditions. The system only closed both relays given

the expected input sequences, which is sequentially on and off for Manual Switch1,

Manual Switch2, and Manual Switch3. After this simulation, we moved on to see

if we could implement the buttons in hardware.

2.1.5 HIL Simulation for Simple Launch System

We used Hardware-in-the-loop (HIL) simulation to verify the Simple Launch Sys-

tem function in real-time simulation with hardware inputs. Figure 2.6 shows

the HIL simulation model of the software. The simulation model has a Simple

17

Figure 2.5: Simulation Model for Simple Launch System

Launch System model and two built-in blocks. The built-in blocks can connect

the Simulink environment with a Data Acquisition (DAQ) device. The roles of the

DAQ was measuring three input signals from the physical world and generating

four outputs to the physical world.

Figure 2.7 shows the hardware part of the HIL simulation. At the left side

of the figure, we have the DAQ (model name is USB-6001 produced by National

Instrument) [4]. The breadboard on the right side of the figure has two simple

circuits. One is an input circuit generating inputs using toggle buttons and also

indicating with a LED each status of the pressed buttons. The second is the

output circuit which makes it easy to see the output result from the DAQ. The

meaning of a red LED on and green LED off is to indicate the status of the opened

relay. The closed relay appeared the red LED off and green LED on.

The result of the HIL simulation was enough to show that the Simple Launch

18

Figure 2.6: HIL Simulation Model for the Software Part of the Simple Launch
System

System valid. We generated input sequences as in similar input cases with section

2.1.4 using the hardware buttons. The system was processing the input signals in

real time and controlled the LEDs in the hardware circuit. We could only find one

sequence of button pushes to turn on both green LEDs at the second circuit and

the sequence was what we expected (B1, B2, and then B3). Thus, we considered

the initial modeling a success and we had good understanding of the modeling,

the hardware, and the DAQ; it was time to move on to modeling the rest of the

system and bring it all together.

19

Figure 2.7: HIL Simulation Model for Software Part of Simple Launch System

2.2 Launch PadUnit

The next step was to develop a separate model of the unit that was going to sit

out on the pad and actually launch the rocket, we separated the launch logic that

is going in the launch controller from the logic that manages the relays sitting out

on the pad in the launch pad unit. Each Launch PadUnit/PadLib is capable of

managing two Padlogic models. The PadUnit can manage two rockets and has

four relays (two per rocket and is managed through what we call the Padlogic),

two pad activate buttons (one for each rocket; the pad activate button is pushed

when the rocket has been wired to indicate that the rocket is ready for launch),

20

and LEDs to show the status of the relays. The PadUnit is a critical model for the

entire rocket launch system because users approaching the pad to attach rockets

and it is the place to fire rockets, we do not want a rocket to launch inadvertently

while a user is standing by the pad. If one of the PadUnit fires a rocket due to

a malfunction, it could lead to personal injury. Therefore, it was necessary to be

careful in model development and test simulation.

Figure 2.8: PadLogic Stateflow Chart

21

2.2.1 Designing PadLogic

We designed a Stateflow model, PadLogic, which was the main operating logic

as Figure 2.8. The basic operation is the same as shown in the Simple Launch-

Logic explained above. The difference of them is the input method. The Simple

LaunchLogic has three hardware push button to launch a rocket. But PadLogic

has one hardware button (PCC, Pad to Controller Corresponding) and two dig-

ital signals (CPC, Controller to Pad Corresponding and CPL, Controller to Pad

Corresponding) from the Controller that we develop after. The PadLogic takes

input from one button for each rocket on the pad (indicating that the rocket has

been wired with an ignition system) and two external inputs from the Launch

Controller, one to arm the launch pad and one to launch.

2.2.2 Simulation for PadLogic

We configured the simulation environments as shown in Figure 2.9. It has similar

input mechanisms as the ones described in subsection 2.1.2. The difference is

using the visualization model, Lamp Simulink block, to indicate the status if each

relay. If the relay is closed, the lamp will change to green and in the other case

it is red. The simulation result was the same as what we expected. The Padlogic

worked perfectly under an assumption. The assumption was that all input signals

22

go back to the 0 value after generating a 1 value to prevent the crushed button

error that we discussed above in subsection 2.1.2.

Figure 2.9: Simulation Model for PadLogic

2.2.3 Designing Atomic Padlogic

The Padlogic functionally worked well but the inside logic looked was hard to

understand because each state had lots of output. So, we decided to make the

main logic simply using parallel states. Also, the PadUnit contained two identical

Padlogic state machines. Hence, we changed the Padlogic type to atomic subcharts

that helps you reuse the same state or subchart across multiple charts and models;

basically an atomic subchart is a template that can be instantiated several times.

23

In Figure 2.10, the Padlogic has two parallel (AND) states, Operating and

Relay that can be active at the same time. From now on, where we refer to

Padlogic we are referring to the logic in Figure 2.10. Parallel states are displayed as

dashed rectangles. The Operating state machine shows how the Padlogic operates

as inputs are received. The Relay logic controls when the relays on the bad are

opened and closed.

Figure 2.10: Simplified PadLogic Stateflow Chart

24

In the Operating state, each state is represented by one output, status, which

data type is an enumerated type (enum). The status, the output of the Operating

state, opens and closes the two relays; in other words an input of Relay state is the

output of the Operating state. Also, the status of Operating state is sent to the

Controller. In the Relay state, there are two parallel states. Each state controls

a relay reacting to the output of Operating state.

Figure 2.11: Simplified PadLogic Stateflow Chart

2.2.4 Simulation for PadLib

Using our previous models, we combine a PadLib model for one hardware pad

that can control two rockets with our launch logic. Figure 2.11 shows the PadLib,

which is divided into two big parts, PadSW and PadHW. The PadSW is the main

25

parts of the PadLib for operation. Others are there to support simulation and

test. PadUnit has two Atomic Padlogic. In the PadSW, a Pulse Generator has

two ButtonLogic which we developed in subsection 2.1.3.

2.2.5 Designing Pad Communication Blocks

The Pad and a Controller communicate with each other to send the Pad status

information from the pad to the controller and the Controller’s commands to

the pad. The PadLib generates an enum type output to indicate the Padlogic’s

Stateflow status. Since the DAQ we used in our work has binary signals, we

created converters that would encode an enumerated output as a collection of

binary signals.

Figure 2.12: PadTxLib Stateflow Model

PadTxLib (Figure 2.12) encodes the enum type to binary information. PadRxLib

(Figure 2.14) decodes binary signals to enum type information. The PadTxLib

26

Figure 2.13: TXlogic State Machine

has two TXlogics which contains five states in Figure 2.13. The TXlogic gener-

ates two binary output according to input conditions. For example, if the input

is PAD LAUNCHED then the binary output are port1 is true and port2 is also

true. You can see other cases in Figure 2.13. The PadRxLib also has two RXlogics

shown in Figure 2.15. The RXlogic get the binary signals from the Controller and

it decodes the inputs to enum type and sends it to PadLib.

Figure 2.14: PadRxLib Stateflow Model

27

Figure 2.15: RXlogic State Machine

2.2.6 PadLib with Communication Block

The final PadLib model that we developed is shown in Figure 2.16; we combine

the communication blocks with the pad logic. We put the communication part of

PadLib in the PadSW section. From this point, when we refer to PadLib, we refer

to the model in Figure 2.16. Since we had a simulation test for each small parts,

we hoped the PadUnit model had the right behavior. To verify the behavior of

PadLib, we will have simulation tests together with the Controller Model because

they have to communicate with each other.

2.3 Launch Controller

The Controller can control four PadUnits/PadLibs. The Controller has eight Con-

trollerLogic and each ControllerLogic processes four inputs to launch a rocket. The

28

Figure 2.16: PadLib Model

Controller has 17 hardware buttons. Most of the models were already developed

as libraries earlier so we focused on the design of the ControllerLogic and on the

composition of the models to a full model of the launch control system.

2.3.1 Designing Atomic Controller Logic

The Controller model commands to launch eight rockets on the PadUnits. So we

designed a reusable ControllerLogic as an atomic state that controls a rocket. The

logic is heavily influenced by our original simple logic designed as a prototype and

technology demonstration early in the project (and described first in this chapter).

The role of the logic is to sends commands to the PadLib to launch the rockets. It

processes three binary inputs from hardware buttons (Launch, Arm, and Reset)

29

and one digital input from the PadLib (pad active).

Figure 2.17: ControllerLogic State Machine

The Figure 2.17 shows the state machine of the ControllerLogic. It is divided

into two parts, PadReset and Operating. Whenever the user presses a Reset

button, the current state changes to PadReset and it means that the Controller-

Logic sends a reset signal to the PadLib to reset the Padlogic for safety reasons.

In the Operating state, the ControllerLogic generates three different commands

according to the input conditions.

30

Figure 2.18: Controller Model Combined Hardware and Software Blocks

2.3.2 Building the Controller Model

Using the ControllerLogic and other Stateflow models, we built a Controller Model

(Figure 2.18). The Controller also has a ControllerHW subsystem (Figure 2.19)

for the simulation and a ControllerSW subsystem (Figure 2.20) that includes

main operation logic. In the ControllerSW, it contains a EightControllerButtons,

31

four ControllerRxLibs, four ControllerTxLibs and a EightControllerLogic. The

EightControllerButtons has four ButtonsForPad subsystem (Figure 2.21) which

includes ArbiterLogic, and two Button models. The atomic ControllerLogic han-

dles two different hardware button signals so prevent a critical button problem

above subsection 2.1.2, we decided to use ArbiterLogic. The Figure 2.22 shows the

EightControllerLogic which is the main logic of the Controller. The eight atomic

ControllerLogics process the input signals as simultaneously.

Figure 2.19: ControllerHW Model

32

Figure 2.20: ControllerSW Model

33

Figure 2.21: Button Library for One Atomic ControllerLogic

Figure 2.22: Eight Atomic ControllerLogic

2.4 Rocket Launch System

Given the modeling described this far, we are now ready to show the entire Rocket

Launch System, simulation test, and the way to do the hardware in the loop (HIL)

test.

34

2.4.1 Combining Models to Build Rocket Launch System

Figure 2.23 shows the entire rocket launch system which includes four PadLibs,

a Communication Delay block, and a Controller. The PadLib is the same we

developed in section 2.2. The Controller is also the same as in section 2.3. The

purpose of the Communication Delay is generating a unit delay to simulate a

wireless networking environment which has a delay time.

Figure 2.23: Rocket Launch System

When I did simulation testing, the whole system showed the desired behav-

iors. Since we only simulate on the software virtual environment, so we could not

completely trust the result of the simulation testing when the system is realized

to a physical system. Hence we decided to do HIL simulation to generate the

35

model to C code and to upload code to a microprocessor. For the HIL simulation,

we split the system into a smaller system which contained a PadLib and a Con-

troller. The reason was that the number of DAQ port was less then the number of

communication channels. But we designed the system using libraries and atomic

states so we assumed that if we ensure the smaller system, we can also trust the

entire system.

2.4.2 HIL Simulation Environment

To search for PadLib and a Controller design errors, we decided to do HIL sim-

ulation tests. We constructed two parts which were PadLib as software part and

Controller as hardware parts. To simulate software and hardware at the same

time, we used the DAQ device to connect the two.

Figure 2.24: HIL Simulation Software Environment

36

Figure 2.24 shows the software part. The PadLib (PadDigitalCommunication-

Lib) connects with the Digital Input/Output blocks. Simulink supports the blocks

to connect to the NI-DAQ device. The ControllerSW, Figure 2.25, was designed to

control one PadLib. We generated C code from the ControllerSW model using the

embedded coder which is the add-on toolbox in Simulink. To build a hardware sys-

tem, we used a microprocessor (a Nucleo-F412ZG). We developed glue code to con-

nect the generated C codes to the given Nucleo libraries in the online IDE. We built

a simple circuit to generate the hardware button signals and to connect the DAQ to

the microprocessor. Figure 2.26 represents the hardware system and DAQ device.

Figure 2.25: ControllerSW Model for One PadLib

37

Figure 2.26: HIL Simulation Hardware Environment

2.4.3 HIL Simulation Result

When I simulated the system, I got the expected outputs according to the input

sequences. Also, I tested the previous button problem in subsection 2.1.2 and

there were no errors. The binary communication through the DAQ device was

successful. According to the HIL test result, we could say this system was reli-

able and correct, and consequently we could trust the entire system. However,

given the consequences of failures if a person was standing next to a rocket inad-

vertently launched, we proceeded to formal verification to ensure that our safety

requirements were satisfied in our system.

Chapter 3

Model Formal Verification

In the previous chapter, we confirmed that the Rocket Launch System works well

through simulation and testing. Nevertheless, there was some uncertainty because

we tested it with a limited number of simulation input conditions. Also, a critical

system shall always meet its safety requirements. Hence, we examined the system

with all possible input conditions using the Design Verifier, which is a toolbox in

Simulink.

The first thing to do to formally verify that the design behavior meets its

requirements is to write the safety requirements in a natural language. After that,

using MATLAB functions, Simulink, and Stateflow, the formal requirements can

be expressed. The requirements model, which is called property check model in

the Simulink Design Verifier, can be used to prove the correctness of a design with

38

39

respect to these properties using formal methods, which Design Verifier supports.

In this chapter, we show that we verified the design correctness of the PadSW

in the development model in the PadLib with respect to three safety requirements.

The reason why we only tested the PadSW at this time was twofold; the notion

of formal versification was new to me so it was a steep learning curve to get

the verification going and even when more experienced, the formal verification

involved surprisingly much effort and cost to build the property check models.

We discuss the three property check models and the results of the analysis in the

next few sections. At the end of this chapter, we illustrate how the results of the

analysis was used to modify the model so that it met its requirements.

3.1 Designing Property Check Models

Figure 3.1 shows the overall formal verification model. The PadSW is connected

to input and output ports. The three property check models are connected to

some system inputs and outputs relevant to the property at hand; the requirement

models only care about the inputs and outputs from the model under investigation,

they care about the black-box behavior without regard to the internal design of the

model under investigation. In the next subsection, we will cover the translation

processes for each of the property check models.

40

Figure 3.1: Overall Formal Verification Model for PadSW Model

41

3.2 First Property Model

The first safety requirement for the PadSW model is that the rocket shall launch

only when the Controller sends the launch signal. In other words, if the controller

does not send the launch command, the PadSW will never fire a rocket. Failure

to observe this requirement can be fatal, for example, users can be at risk if

their rockets are fired when they install their rockets on the Pad. We wrote the

requirement informally in natural language as follows: Without a launch signal,

the ‘pad1 relay2/pad2 relay2’ shall not be high. The launch signal is an input

condition which is that the port1 is true and port2 is false (the binary encoding

we developed for the enumerated types) as shown in Figure 2.15. The pad1 relay2

and pad2 relay2 are outputs that are only true when the Pad launches rockets on

the Pad, these are the outputs that cause the rocket engine to ignite.

3.2.1 Designing the First Property Model

For the first requirement, we designed a property check models using Simulink

logical operators as shown in Figure 3.2. If the outputs of the property check

models are always false then the result of the property testing says that the PadSW

fulfilled the first requirement. The Implies block is a logical operator, its outputs

false when the first input is true and second input is false, otherwise, the output

42

true. The condition that pad1 relay2/pad2 relay2 are true is the same as the false

output condition of the Implies block; hence, the outputs of the property check

model should always be false.

Figure 3.2: Overall Formal Verification Model for PadSW Model

Figure 3.3: Running the Prove Properties Program in the Simulink

43

3.2.2 Running Design Verifier for First Property

Running the Design Verifier was easy. As Figure 3.3 explains, the way to run the

prove properties program is achieved through menu selections. The Design Verifier

created a report that shows the list of objectives for which the design was proven

valid and the list of objectives for which the analysis found counterexamples. A

counterexample is a sequence of inputs that will lead to one of the properties being

violated (indicated by the output from the property block being true). The report

shown in Figure 3.4 shows that the PadSW was falsified against the requirement,

a surprise to the analyst since this seemed like one of the easiest safety properties

to ensure true. One of the merits to use Simulink Design Verifier is they can create

a harness model (Figure 3.5) with counterexamples (Figure 3.6) that the analysis

found; in essence, the harness model is a test driver that can show us how the

property is violated in the model.

Using the counterexample, we found a faulty design of the properties check

model (Figure 3.2); at this point, we considered the model to be correct, but

the safety requirement we formalized was wrong. The problem was that we did

not consider the output delay time. To be specific, when the inputs changed,

the output does not change immediately. Processing time in the PadSW leads

to a delay until the output is produced; the command is given, but the close

44

Figure 3.4: Design Verifier Report for the First Property Check Model

relay signal is not produced until the next time step. One can look at the safety

property and think that this behavior would be OK; it is fine to give the launch

command and not launch (step 1) and then in step 2 the launch command remains

and we launch the rocket. The problem is when the launch command goes away,

the relay will not be closed until in the subsequent step. Thus, before the relay

signal goes to zero, there will be a step where there is no launch command, but

the launch signal is high–a violation of the property. As mentioned above, there

is a delay in setting the launch signal high; similarly, there is a delay in setting it

to off and that leads to a property violation.

45

Figure 3.5: Harness Model created by Design Verifier

We modified the requirement blocks and added a delay block, Not and And

logic operators as shown in Figure 3.7. These operators made the pad1 relay2/pad2 relay2

signals delayed so that the last And operator compared synchronized signals. We

analyzed the PadSW against with the first property, using the Design Verifier.

The report (Figure 3.8) showed that the PadSW model was proven correct with

respect to this requirement.

46

Figure 3.6: A Counter Example for the First Property Check Model

47

Figure 3.7: Revised Version of the First Property Check Model

Figure 3.8: Design Verifier Report for the Renewal First Property Check Model

48

3.3 Second Property Model

The second critical requirement is that the rocket must not fire if the owner did

not push a pad activate button. To be specific, if the rocket can be fired before

pressing the pad button, the rocket may be fired while an owner is installing the

rocket, resulting in a risk of serious injury to the user. We have expressed the

property to the formal requirement as follows: If ‘pad1 activate/pad2 activate’

have not been set high (we have not seen a rising edge on the signal), the

‘pad1 relay2/pad2 relay2’ shall not be high.

Figure 3.9: Second Property Check Model

3.3.1 Designing Second Property Model

The difference as compared to the first property model is that the second model is

designed with Stateflow as shown in Figure 3.9, not using the MATLAB Simulink

logical operators. Developing a property model the Stateflow was more intuitive

and easier to model than when modeling requirements with logical operators.

49

In Figure 3.10, there are two state machines that operate in parallel. The De-

tectActivate detects the pad1 activate/pad2 activate signal and the Verification

judges if the PadSW model is correct or falsified. If the pad1 relay2/pad2 relay2

is true and the status of DetectActive is false, then the system does not fulfill

the requirement, in all other conditions, the system is correct with respect to our

second safety requirement.

Figure 3.10: Second Property Logic State Machine

50

3.3.2 Running Design Verifier for Second Property Check

Model

When we run the Design Verifier to attempt to prove our second property, as

shown in Figure 3.11, the results summary said that the PadSW was valid against

the second requirement. Based on the formal verification, we surely can say that

the system meets the second requirement formalized requirement. What we can-

not guarantee is that we have formalized the requirement correctly. This is a

concern with formal verification and the validation of the formalized properties is

an ongoing area of research; “How do we know when we have gotten our properties

right?”

In particular, this is a problem when the verification indicates that there is no

violation. This can be because the model and property are both correct, but it

can also be because the property is incorrect and it now fails to catch an incorrect

model. The user does not know which one and might erroneously believe it is

because of the former. On the other hand, if we get a counterexample, as for the

verification of the first property above, the user has concrete information about

what went wrong and can correct the model or the property depending on which

one is deemed to be incorrect (in the example above, the property was the one

that was wrong).

51

Figure 3.11: Design Verifier Report for the Second Property Check Model

3.4 Third Property Model

The last safety requirement is that if the PadSW gets a reset command from

the Controller, then the rocket shall not launch and the PadSW goes back to

the initial state. The meaning of pressing the reset button on the Controller is

the launch officer needed to cancel the launch for some reasons. Hence, it is one

of the critical safety requirements. We had expressed the property as a natural

language expression as follows: If pad1/pad2 is reset, the pad1 relays/pad2 relays

do not close. An alternate formulation is that upon a reset, the two relays must

be opened preventing a launch.

52

3.4.1 Designing the Third Property Model

We realized when defining property two that using Stateflow to capture properties

was relatively easy (as described on Section 3.3) so we decided to use Stateflow

again for our third property. Figure 3.12 shows the inputs that the ThirdProp-

ertyLogic uses and Figure 3.13 represents the details of the ThirdPropertyLogic.

Figure 3.12: Third Property Check Model

In the logic, the DetectReset state and Verification state operate simulta-

neously. The reset signal detected in the DetectReset state and the detecting

condition is that pad cmd p1 and pad cmd p2 are true (the encoding for a reset).

In the Verification state, the results of the property check are set. If one of the

relays is true after the reset status is true, then the PadSW is not correct with

respect to the third safety requirement. The purpose of the MATLAB function,

after(80, msec), is to synchronize the time delay to decode the reset signal in the

PadRxLib model.

53

Figure 3.13: Third Property Logic State Machine

54

3.4.2 Running Design Verifier for Third Property Check

Model

We ran the Design Verifier to attempt to prove the correctness of the PadSW

design by examining all possible input conditions. The report (Figure 3.14) rep-

resented the objectives are falsified.

Figure 3.14: Design Verifier Report for the Third Property Check Model

To figure out what is the problem we created a harness model and got a

counterexample (Figure 3.15). According to analysis of the counterexample, we

found out the PadRxLib in the PadSW could not process the received signal if

the signal is too short.

55

Figure 3.15: Design Verifier Report for the Third Property Check Model

Also, we figured out the pad activate can be a problem. If the signal has a

falling edge right before the reset signal, then the Pulse Generator in the PadSW

activates the PadUnitLogic for 1 second. shown in Figure 2.4, the Pulse Generator

generates 1 second true signal when the pad1 activate has a falling edge. So

following the signal sequence brings out a critical safety problem that the reset

button do not stop to fire a rocket in the dangerous situation. The signal sequence

is that a short CMD RESET signal (less than 1 second) after falling edge of

56

pad1 activate signal, CMD ARM, and CMD LAUNCH then the rocket will be

launched.

3.4.3 Re-designing Third Property Model

Based on the results of the previous test, we built a new property model (Figure

3.16). The requirements model was simpler than the previous model and added

a condition to detect the pad activate signal.

Figure 3.16: Improved State Machine that Describes Third Property Check Model

57

3.4.4 Re-running Design Verifier for Third Property Check

Model

Using the above property check model, we verified the PadSW again. However,

the system did not meet the requirement. The counterexample (Figure 3.17)

showed the same problem as the previous verification result. The PadRxLib did

not detect the reset signal because it was too short. At this point, we considered

that the PadSW design might be wrong and we decided to fix the property model

and to change the PadRxLib model.

Figure 3.17: A Counter Example for Improved Third Property Check Model

58

3.4.5 Fixing the defects of the PadSW

When we saw the PadRxLib in Figure 2.15, it needed two state transitions to

change the command output value. We redesigned the PadRxLib as shown in

Figure 3.18 to respond to short inputs signal by reducing the number of transition

step needed to react to the input. Then ran the Design Verifier to check the

new PadRxLib solved the problem. However, the result (Figure 3.19) said the

objectives had the same problem (counterexample).

Figure 3.18: Redesigned PadRxLib Model

The second problem that we found was the Pulse Generator activates the

PadUnitLogic for 1 second at the falling edge of a pad activate signal. Figure 3.20

(a) shows the edited Pulse Generator Stateflow logic. The output is true during a

transition time when the input signal is the rising edge. After changing the Pulse

Generator, the Design Verifier could prove that PadSW satisfies third property

(Figure 3.20 (b)).

59

Figure 3.19: A Counter Example for Improved Third Property Check Model after
Redesigned PadRxLib Model

3.4.6 Discussion

As mentioned earlier, if the verification leads to a counterexample, there is concrete

information that can be used to improve the model or the property that has been

violated. On the other hand, if the properties are verified, there is a concern

whether or not the properties have been captured correctly. Unfortunately, there

is little guidance as to how to ensure that the properties are correct. This is a

60

Figure 3.20: (a) Redesigned Pulse Generator Model (b) Design Verifier Report
of Verifying Third Property

concern in this project since a miss-specified property is seemingly very easy to

construct. In our opinion, much more guidance as to how to effectively specify

and validate properties is needed.

Chapter 4

Summary and Conclusion

We have developed a critical system, the rocket launch system, using MAT-

LAB/Simulink, which are model-based development tool suites. In the devel-

opment process, I used three different verification techniques that are supported

by MATLAB/Simulink. The verification techniques have merits but also have

disadvantages.

In chapter 2, we used the simulation test and hardware in the loop simulation.

The advantages of the simulation test are that they are quite easy to use and it

is fast to check the objective behaviors, but a limited number of input conditions

reduces confidence in the simulation test result. The merit of the hardware in

the loop simulation is that the software model can be tested in the real hardware

environment. The disadvantage is that it takes more cost than the simulation test

61

62

to design a circuit and to write glue code to connect the auto-generated code with

the libraries of the microprocessor.

In chapter 3, we used the formal verification technique. The verification is

requirement based testing. The Design Verifier examines all possible input condi-

tions to prove the correctness of a system against safety requirements. The Design

Verifier caught design errors, however, other verification technique did not. The

reliability of test results is the highest of three techniques, but developing property

check model involves more effort, cost and can’t make easy for big systems.

In this paper, we focus on the development of the critical system. For the

future works, I want to compare the results to verify whole system using formal

verification and testing using object code coverage [5]. The object code coverage

is one of the research topics in the UMN Crisys Group.

Bibliography

[1] TripolyMN: High Power Rocketry Club. url: http://www.tripolimn.org/.

[2] MATLAB. url: https://www.mathworks.com/?s_tid=gn_logo/.

[3] Hoang Pham. Software reliability. Springer Science & Business Media, 2000.

[4] National Instruments. url: http://www.ni.com/data-acquisition/.

[5] Taejoon Byun et al. “Toward Rigorous Object-Code Coverage Criteria”.

In: Software Reliability Engineering (ISSRE), 2017 IEEE 28th International

Symposium on. IEEE. 2017, pp. 328–338.

63

http://www.tripolimn.org/
https://www.mathworks.com/?s_tid=gn_logo/
http://www.ni.com/data-acquisition/

	Acknowledgements
	Abstract
	List of Figures
	Introduction
	Model-Based Development
	Software Verification and Validation
	Software Simulation
	Hardware in the Loop Simulation
	Formal Model Verification

	The Rocket Launch System
	Scope of Study

	Modeling and Simulation
	Simple Launch System
	Designing LaunchLogic
	Simulation for LaunchLogic
	Designing ButtonLogic and ArbiterLogic
	Simulation for Simple Launch System
	HIL Simulation for Simple Launch System

	Launch PadUnit
	Designing PadLogic
	Simulation for PadLogic
	Designing Atomic Padlogic
	Simulation for PadLib
	Designing Pad Communication Blocks
	PadLib with Communication Block

	Launch Controller
	Designing Atomic Controller Logic
	Building the Controller Model

	Rocket Launch System
	Combining Models to Build Rocket Launch System
	HIL Simulation Environment
	HIL Simulation Result

	Model Formal Verification
	Designing Property Check Models
	First Property Model
	Designing the First Property Model
	Running Design Verifier for First Property

	Second Property Model
	Designing Second Property Model
	Running Design Verifier for Second Property Check Model

	Third Property Model
	Designing the Third Property Model
	Running Design Verifier for Third Property Check Model
	Re-designing Third Property Model
	Re-running Design Verifier for Third Property Check Model
	Fixing the defects of the PadSW
	Discussion

	Summary and Conclusion
	Bibliography

